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ABSTRACT

CONVOLUTIONAL AUTOENCODER BASED

HEART ARRHYTHMIA DETECTION SYSTEM

Erave, Oykii
MSc, Electrical and Electronics Engineering
Advisor: Assoc. Prof. (PhD) Nalan Ozkurt
August 2024

Remote monitoring of patients is essential for the early diagnosis of diseases and
improving quality of life. The rapid development of deep learning techniques has
significantly advanced wearable health technologies, making automatic diagnosis
increasingly important. This study proposes a deep learning approach for classifying
arrhythmias using a customized wavelet-based convolutional autoencoder (WBCAE)
model for feature extraction and classification. The autoencoder model ingeniously
combines the time-frequency domain examination capability of wavelets with the

data-driven feature learning power of autoencoders.

This thesis targets the classification of distinct types of cardiac arrhythmias: normal
sinus rthythm (NSR), right bundle branch block (RBBB), left bundle branch block
(LBBB), atrial premature contraction (APC), and premature ventricular contraction
(PVC), in addition to atrial fibrillation (AF). Two different autoencoder approaches
were employed in this thesis. The first one is to use an autoencoder as an anomaly
detector, where the autoencoder is trained with only normal samples and abnormal
inputs produce higher reconstruction errors. The second method is to use an
autoencoder as a feature extractor. In this approach, samples from all classes are used
in the training. Then, the compressed representation obtained at the encoder layer

output is used with a classifier.

The primary objectives of this thesis are to rigorously evaluate the performance of

autoencoder-based deep learning algorithms and automate the classification of various






cardiac arrhythmias. The findings from our experiments underscore the importance of
employing deep learning-based models in cardiac disease diagnosis, showcasing the
immense potential of integrating wavelet methods with autoencoders in biomedical
signal processing systems. This study substantially contributes to medical diagnostics
by delivering a dependable tool for early disease detection and patient monitoring,

ultimately advancing healthcare outcomes.

Keywords: Deep learning, Atrial Fibrillation (AF), Arrhythmia classification,
Wavelet-based autoencoder, WBCAE model, Cardiac arrhythmias, Biomedical signal

processing.






0z

EVRISIMSEL OTOMATIK KODLAYICI TABANLI KALP ARITMISi
TESPIT SISTEMi

Erave, Oykii
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Danisman: Dog. Dr. Nalan Ozkurt
Agustos 2024

Hastalarin uzaktan izlenmesi, hastaliklarin erken teshisi ve yasam kalitesinin
iyilestirilmesi agisindan ¢ok Snemlidir. Derin 6grenme tekniklerinin hizli gelisimi,
giyilebilir saglik teknolojilerini dnemli dlcilide ilerletmis ve otomatik teshisi giderek
daha 6nemli hale getirmistir. Bu ¢alismada, 6zellik ¢ikarimi ve siniflandirma igin 6zel
bir dalgacik tabanli konvoliisyonel otomatik kodlayict (WBCAE) modeli kullanan
yenilik¢i bir derin 6grenme yaklagimi Oneriyoruz. Otomatik kodlayici model,
dalgaciklarin zaman-frekans alani inceleme yetenegini, otokodlayicilarin veri odakli

ozellik 6grenme giiciiyle ustaca birlestirir.

Bu calisma, normal siniis ritmi (NSR), sag dal blogu (RBBB), sol dal blogu (LBBB),
atriyal prematiire kasilma (APC) ve prematiire ventrikiiler kasilma (PVC) gibi farklhi
tipte kardiyak aritmilerin yani sira atriyal fibrilasyonun (AF) smiflandiriimasina
odaklanmaktadir. Derin  06grenme tabanli modelleri  kullanarak  aritmi
simiflandirmasinin dogrulugunu ve verimliligini 6nemli dl¢lide artirmay1 amagliyoruz,
boylece erken hastalik tespiti ve kapsamli hasta izleme i¢in saglam bir cergceve

sagliyoruz.

Bu calismanin temel hedefleri, otomatik kodlayici tabanli derin &grenme
algoritmalariin performansini titizlikle degerlendirmek ve ¢esitli kardiyak aritmilerin
smiflandirilmasint  otomatiklestirmektir. Deneylerimizden elde edilen bulgular,
kardiyak hastalik teshisinde derin 6grenme tabanli modellerin kullanilmasinin 6nemini
vurgulamakta ve dalgacik yontemlerinin otomatik kodlayicilarla entegrasyonunun

biyomedikal sinyal isleme sistemlerindeki biiyiik potansiyelini gdstermektedir.






Bu calisma, erken hastalik tespiti ve hasta izleme i¢in giivenilir bir ara¢ sunarak tibbi
teshisler alanina 6nemli bir katki saglamakta ve nihayetinde saglik sonuglarini

gelistirmektedir.

Anahtar Kelimeler: Derin 6grenme, Atriyal Fibrilasyon (AF), Aritmi siniflandirma,
Dalgacik tabanli otomatik kodlayic, WBCAE modeli, Kardiyak aritmiler,

Biyomedikal sinyal isleme.
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1. CHAPTER: INTRODUCTION

1.1. Motivation and Background

Cardiovascular diseases (CVDs) rank among the top causes of mortality globally. The
irregular heartbeat, otherwise known as arrhythmia, is vital because it has a significant
effect on cardiovascular health, which makes the victim susceptible to heart attack.
Arrhythmias can make the heartbeat too fast, too slow, or irregular, causing poor blood
flow, hence severe consequences that may result. They disrupt the normal functioning
of the heart, thus leading to various complications. For instance, specially arrhythmia
called atrial fibrillation (AF) results in blood pooling in the atria, resulting in clot
formation. These clots then get transported elsewhere in the body up to the brain,

causing a stroke (American Heart Association, 2023).

Moreover, weak heart muscle due to arrhythmias can bring about heart failure with
time, thus impairing the efficiency with which blood is being pumped. Notably, also
ventricular tachycardia and ventricular fibrillation are mortal. These root in the lower
chambers of the heart (ventricles) and can create a risk for sudden cardiac arrest if not
treated urgently. Abrupt termination of heart beating, primarily due to ventricular
fibrillation, is one of the most typical causes of myocardial infarction, leading to many
deaths associated with it (Mayo Clinic, 2022). Furthermore, cardiac arrest is often
induced by arrhythmias for instance ventricular tachycardia and fibrillation that result
in the incapacity of the heart to maintain regular blood circulation (McComb, 2006).
Therefore, patients with right bundle branch block (RBBB) and ST-segment elevation
from V1 through V3 on electrocardiograms (ECG) who don't exhibit any obvious

structural heart disease have an elevated risk of sudden death (Brugada et al., 1998).

To ensure the prevention of these diseases among individuals, especially those who
are prone to developing arrhythmias, there should be a multidimensional approach.
Lifestyle modifications are essential because they can significantly prevent this

condition. For individuals at high risk, medical interventions such as medications,



pacemakers, or defibrillators may be necessary to manage and prevent arrhythmias

(Mayo Clinic, 2023).

In economical aspect, atrial fibrillation is a significant burden considering the
substantial cost of hospital stays, treatments, and complications management. Among
heart rhythm abnormalities, it is one of the most frequent ones that contribute to
substantial healthcare expenses. According to McBride and Mattenklotz (2009), AF
has direct costs, including hospitalizations, medications, and procedures, and indirect
costs, including lost productivity and long-term care for disabilities or complications
like stroke, which escalates as complications increase. In cases where patients have
heart failure or stroke, which require costly and intensive interventions, admission
periods can be prolonged and recurrent for AF patients. To prevent severe
complications that necessitate emergency care and hospital admission. Atrial
fibrillation (AF) has become one of the significant contributors to increased medical
expenses in recent years. The costs related to AF arise from direct expenditures such
as medication, hospitalization, and surgeries. On the other hand, there are indirect
costs, such as loss of productivity by employees who have been incapacitated due to
disabilities that result from arrhythmias-related strokes, among other causes.
Protracted stays in the hospital may ensue, especially if a patient also suffers from
congestive heart failure or when their stroke occurs at frequent intervals, thereby

requiring expensive diagnostic tests plus therapies respectively.

The usual way of diagnosis of arrhythmias is to consider standard electrocardiograms
(ECGs), and event recordings. This method has limited monitoring periods and
occasionally misses intermittent arrhythmic events among patients who use them. In
the case of one-day-long ECG recordings of Holter devices, Manually interpreting
ECG data may require an extensive amount of time and subject to human error, leading
to potential misdiagnoses (Chung et al., 2022). Therefore, the topic of automatic

diagnosis methods is very current, and a lot of research is being conducted in this area.

Convolutional autoencoders (CAEs) represent a class of deep learning models with
significant potential for various applications. Specifically, CAEs have demonstrated
great promise in addressing specific challenges in anomaly detection for ECG data.
The CAEs are of great advantage for processing and analyzing voluminous ECG data
because of their capacity to learn hierarchical feature representations in an automated

way. With the help of CAEs with greater computational power, the patient can



continuously measure and wear the ECG signal so that extra information cannot be

provided longer.

Furthermore, CAEs can induce a severe change in the precision of the arrhythmia
detection process. These can be trained to understand signals that are small and not
easy to pick up from the ECG data, which can lead to the elimination of minor
neglected cases. These models can also be integrated with real-time monitoring
systems to inform and alert healthcare providers who can act on the information, thus
providing immediate intervention, which is essential for timely intervention. In
addition to guaranteeing detection accuracy, CAEs can also automate the interpretation
of the procedure, minimizing the workload on the medical professions, reducing
human error, and so on, as well as the cost of service. The entailment of CAEs into the
already existing arrhythmia detection frameworks can lead to the formation of more
dependable and efficient diagnostic systems, ultimately leading to the cure of patients

and the better use of the available resources in the healthcare sector.

1.2. Literature Review

Advanced deep learning (DL) and machine learning (ML) approaches have become
essential in detecting arrhythmias. These techniques improve the efficiency of
classifying arrhythmias from ECG data, which is crucial for early detection and

management of cardiovascular diseases.

Historically, several traditional methods have been employed for arrhythmia detection,

including:

e Support Vector Machines (SVM): SVMs are used to classify data by
identifying the hyperplane in the feature space that efficiently classifies the
different classes. They have been applied to ECG data to classify normal and
abnormal heartbeats. However, this is limited by their performance because of

the complexity of data and the extensive requirement for feature engineering.

e Decision Trees: Intuitively, decision trees divide data into branches to
generate predictions. Overfitting can hinder their accuracy when applied to

ECG data for arrhythmia detection, especially with high-dimensional data.

e K Nearest Neighbors (KNN): This algorithm classifies samples based on the

majority class among its k-nearest neighbors in the feature space. Nevertheless,



despite being straightforward to implement, KNN faces challenges with large
datasets and high-dimensional data to typical ECG signals.

Feedforward Neural Network (FNN): A feedforward neural network (FNN)
is a class of artificial neural network (ANN) distinguished by the direction of
data flow between its layers. Its flow is unidirectional, which means that
information in the model only flows forward from the input nodes, via the
hidden nodes, and to the output nodes. AF detection was successfully done
using a feed-forward neural network proposed by Chen et al. (2021) with an
area under the receiver operating characteristic curve of 89.40%, a sensitivity
of 84.26%, a specificity of 93.23%, and an accuracy of 84.00%. In addition,
Cheng et al. (2020) proposed a direct detection method of AF from compressed
ECGs with a roughly varying accuracy of 91%. 63% to 98. typically is at a rate

of 40%, with the compression ratio ranging between 10% and 90%.

Although successful initially, these traditional methods often have to improve their

precision and scalability when dealing with the vast volumes of data produced by

contemporary ECG monitoring systems. This deficiency has resulted in the

development of more sophisticated approaches.

Arrhythmia detection has recently been transformed by deep learning. Deep learning

types such as convolutional neural networks (CNNs) and recurrent neural networks

(RNNs) have discovered complex patterns from ECG data.

Convolutional Neural Networks (CNNs): CNNs continuously use input data
to determine the spatial hierarchies of features, making them very effective in
processing grid-like data such as images and time series data such as ECG
signals. Acharya et al. (2017) achieved high precision in detecting arrhythmias,
using a nine-layer CNN model to automatically identify five distinct heartbeat
classes in original and noise-attenuated sets of ECG readings. The model
correctly classified heartbeats in original and noise-free ECGs with an
accuracy of 94.03% and 93.47%, respectively. Therefore, because they capture
detailed patterns without manual feature extraction, CNNs are very well-suited
for arrhythmia detection.

Numerous studies are being conducted to enhance the efficacy and

applicability of deep learning models to detect arrhythmia. Scholars are



researching different architectures and training approaches to make these
models more robust and generalizable. In addition, many patents have been
filed for this kind of use in medical devices or applications. Substantial work
has been done on innovation and patentable issues related to the application of
CNNs in ECG arrhythmia detection. Kumar (2023) and Rajkumar (2019)
developed CNN models for classifying ECG signals into different arrhythmia
categories, explicitly mentioning developing a user-friendly web application.
Ochiai (2018) suggested using a combination of CNN and denoising
autoencoders to detect arrhythmia. The studies show prospects regarding
patentable inventions by applying CNNs to ECG arrhythmia detection. There
has been a focus on how accurate various atrial fibrillation (AF) classification
methods are, including autoencoder convolutional neural networks (CNN),
among other deep learning models. Hu et al. (2020) argued that AF
classification is challenging because some features must be more discernable
to avoid misclassification, thereby impeding poor results.

e Recurrent Neural Networks (RNNs): Variants of recurrent neural networks
(RNNSs), particularly long short-term memory (LSTM) networks, are ideal for
analyzing sequential data. They can incorporate temporal dependencies in the
data as they are present inherently in time-series ECG signals. These models
were applied to heartbeats modeling, which is usually a sequential signal, and
the inclusion of temporal context seems fundamental when handling
arrhythmia detection. This is a step forward in arrhythmia detection and an
important shift from common Non-DL approaches. As a result, CNNs and
RNNs are accurately analyzing complex ECG data and integrating it into
wearable and remote monitoring systems, which are beginning to transform
cardiac care. Ongoing research and technical improvements improve these
models, promising significantly more reliable and efficient arrhythmia

detection in the future.

This synthesized study aims to collectively discuss recent developments in applying
deep learning-based models for arrhythmia and atrial fibrillation (AF) classification,
referencing essential publications regarding methods and results. This study is among
the first to leverage an autoencoder pipeline in combination with wavelets. Therefore,

the success of wavelets in grasping the time-frequency domain distribution of the



signals was integrated into the learning capability of autoencoders. Also, a large
dataset collected from diverse databases was used for train and test to show the

performance under various conditions.

Integrating these deep learning techniques into medical devices and applications is
actively being pursued. Numerous projects and patents are focused on developing real-
time arrhythmia detection systems that can be embedded in wearable devices and
remote monitoring systems. These systems aim to provide continuous monitoring and

timely alerts to healthcare providers, improving patient outcomes.

Developing convolutional neural networks (CNN) and autoencoders has opened up a
new path for analyzing medical data, particularly regarding the arrhythmia detection
field. Initially designed for image recognition, CNNs were applied to extract
characteristics from time series, such as ECG signals. On the other hand, the
application of autoencoders is realized through their reputation in data compression
and extraction of features, which can be extended to anomaly detection. For the
implementation, we aim to give health professionals a more reliable and efficient early
arrhythmia detection tool based on CNN, autoencoders, and wavelet integration for
robustness in the augmentation of accuracy through the reduction of false positives,

potentially saving lives through timely interventions.

1.3. Aim of Study

The primary objective of this study is to examine and assess the efficacy of deep
learning-based models in the automatic classification of cardiac arrhythmias and the
diagnosis of atrial fibrillation (AF). This study seeks to address the growing need for
accurate and efficient diagnostic tools in cardiology by leveraging advanced machine-

learning techniques. The specific objectives of this study are outlined as follows:

¢ Development of A Customized Wavelet-Based Autoencoder Model: Unlike
traditional methods that may rely solely on either time-domain or frequency-
domain features, this study introduces a customized wavelet-based
autoencoder (WBCAE) model. Therefore, a significant potential was offered
for more detailed and relevant information extraction in the time-frequency
domain.

e Utilizing WBCAE for Feature Extraction: The study offers a solution

approach for deep feature extraction from ECG data sets utilizing wavelet-



based time series modeling. Following feature extraction, The MLP model is
used for ECG beat classification, such that the results can fall into one of the
different classes: normal heartbeats (NSR), right/left bundle branch block
(RBBB/LBBB), atrial premature beats (APC), or premature ventricular beats
(PVC). The proposed approach is evaluated on publicly available datasets to
achieve high metrics across precision, accuracy, recall, and F1 score.

Using WBCAE in Anomaly Detection Mode: We present a customized
wavelet-based convolutional autoencoder (WBCAE) model as an anomaly
detector for AF classification. The WBCAE model uses the combined
capabilities of wavelet transformations and convolutional autoencoders to
extract significant features from ECG signals. The WBCAE model is trained
and validated on a comprehensive selection of publicly available datasets. The
aim is to achieve robust diagnostic performance. Furthermore, the same model
was tested for general-purpose anomaly detection for ECG arrhythmias. The
WBCAE is trained with normal sinus rhythm beats and tested with different

types of arrhythmia data to observe the performance of the anomaly detector.

By implementing the objectives listed above, we aim to achieve the following general

objectives:

Enhancing Diagnostic Accuracy: To achieve the ultimate goal of increasing
accuracy rates in the medical area by deep learning algorithms. In these studies,
we break current diagnostic limitations by employing wavelet-based feature
selection with a contemporary neural network design.

Clinical Relevance: These are relevant to the development of new, non-
invasive diagnostic approaches for cardiology that may enable real-time
monitoring and diagnosis of heart health.

Biomedical Engineering: These studies contribute to the wider field of
biomedical engineering by demonstrating the practical applications of deep
learning models in medical diagnostics, delivering a framework for future
research and development in automated disease identification and

classification.

1.4. Thesis Outline

The contents of the chapters of the thesis are as follows:



The Introduction chapter presents the motivation and engineering problem,
summarizes the literature on arrhythmia detection, and states the study's aims. The
Overview chapter explains the theoretical background, including ECG, types of
arrhythmias, and common techniques for arrhythmia detection and classification. The
Experiments and Results section starts by introducing the WBCAE model, detailing
wavelet transformation, convolutional autoencoders, and their application in
arrhythmia detection. A summary of the main findings, a discussion of the
consequences, and recommendations for further research are provided in the section

titled Conclusion and Future Work.



2. CHAPTER: OVERVIEW

2.1. ECG

The heart is a critical organ whose major function is blood circulation throughout the
body. It functions as a muscle pump, keeping blood flowing by recurring rhythmic
contractions. The heart is made up of four chambers: the right and left atriums, as well
as the right and left ventricles. In turn, the deoxygenated blood received from the body
is passed on into the right ventricle for eventual transmission to the lungs for
oxygenation. On the contrary, the left atrium receives blood that is already oxygenated
from the lungs and passes it into the left ventricle, which further sends it around the

body (Mohrman & Heller, 2023).

An intrinsic electrical conduction system controls the heart's rhythmic contractions.
This system is essential for the coordinated contraction of the heart chambers and
includes the following components and Figure 2.1. below illustrates the heart's

conduction system:

¢ Sinoatrial (SA) Node: The SA node in the right atrium is commonly called the
heart's natural pacemaker. It starts the electrical impulses that regulate the
heart's contraction pace. The atrial walls contract in response to impulses sent
by the SA node, forcing blood into the ventricles (Widmaier, Raff, & Strang,
2019).

e Atrioventricular (AV) Node: To allow the atria to complete their contraction
before the ventricles are, it slightly delays the impulse. Because it assures that
the ventricles are full of blood before they pump blood out, this delay is
important (Lilly, 2016).

e Bundle of His: The Bundle of His allows the signal from the AV node to enter
the ventricles. The electrical signals are subsequently transmitted down the
heart's septum by these branches to the right and left bundle into the His bundle
(Klabunde, 2021).



e Right and Left Bundle Branches: To ensure that the electrical activity
reaches both sides of the heart at the same time, these branches deliver the

electrical impulse to the appropriate ventricles (Klabunde, 2021).

e Purkinje Fibers: Purkinje fibers are a representation of the ventricular
myocardium's spreading and splitting off from the bundle branches. Leading
to a synchronized contraction that pumps blood from the heart to the lungs and
the rest of the body, they rapidly conduct the electrical impulse to the

ventricular muscle cells (Klabunde, 2021).

Superior Atrioventricular node
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Interventricular Left bundle
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Figure 2.1. The heart's conduction system.

Source: Widmaier, Raff, & Strang, 2019

Electrocardiography (ECG) is the process of constantly recording the heart's electrical
activity. This is accomplished by a noninvasive procedure in which electrodes are
implanted in the skin to detect electrical impulses generated by the heart. The impulses
are plotted on an ECG, which depicts the timing and amount of electrical signals as
they travel through various areas of the heart. The ECG is critical for identifying
cardiovascular illnesses such as arrhythmias, myocardial infarctions, and other cardiac

irregularities.

The ECG trace consists of several characteristic waves and segments, each

representing a distinct heart cycle phase:
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P Wave: On the ECQG, atrial depolarization is shown by the P wave. It starts in
the right atrium and then moves to the left atrium. Right atrial depolarization
can be observed in the first half of the P wave, while left atrial depolarization
is noticed in the second. The P wave’s duration is three small squares wide and
2.5 small squares high. Normal sinus rhythm is always positive in leads I and
II, negative in lead aVR, and often biphasic in lead V1 (Sattar et al., 2020).

QRS Complex: It represents ventricle depolarization because the impulse
travels through the AV node. Usually, the duration of the QRS complex should
be less than three small squares, or approximately 120 ms (usually between 60
and 100 ms). A widened QRS duration is a hallmark of hyperkalemia or a
bundle branch block. Conversely, a broad QRS can indicate ventricular rhythm

or a premature ventricular contraction.
Q Wave: The initial negative deflection that might not always be present.
R Wave: The initial positive deflection after the P wave.

S Wave: The negative deflection following the R wave.

The QRS complex is significantly larger than the P wave due to the ventricles' greater

muscle mass than the atria (Sattar et al., 2020).

T Wave: It shows ventricular repolarization and is sensitive to various cardiac
and non-cardiac factors, including hormonal and neurological influences.
Usually, the T wave is positive in leads with tall R-waves (upward deflection).
The usual criteria for normal T waves are considered to have a height of less
than 10 mm and should be between one-eighth and two-thirds the size of R
waves (Sattar et al., 2020).

PR Interval: The duration between the beginning of the P wave and the
beginning of the QRS complex is measured by this interval. It reflects the time
the electrical impulse travels from the SA node through the atria, AV node, and
His-Purkinje system to the ventricles (Goldberger, 2024).

ST Segment: This segment is the flat section of the ECG trace between the end
of the S wave and the beginning of the T wave. It stands for the period when
the ventricles are depolarized and contracting but not yet repolarized. The ST
segment is vital in diagnosing ischemia and myocardial infarction (Goldberger,

2024).
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2.2. Arrhythmias

2.2.1. Left Bundle Branch Block

LBBB is a cardiac conduction disorder causing delayed or blocked electrical impulses
in the left bundle branch, leading to altered left ventricular activation, contraction, and

mechanics, and affecting patient diagnosis, treatment, and prognosis.

2.2.2. Right Bundle Branch Block

RBBB is a condition that affects the ventricular activation sequence, causing QRS to

extend and modifying the orientation of R- and S-wave vectors in an ECG.

2.2.3. Atrial Fibrillation

AF is an arrhythmia caused by a variety of pathophysiological processes in the atria,
which culminate in reduced atrial refractoriness and loss of atrial contractility. This
syndrome is distinguished by rapid and irregular activity in various parts of the upper

chambers of the heart, which contributes to high cardiac morbidity and mortality.

2.2.4. Ventricular Premature Contraction

PVCs are a kind of cardiac arrhythmias caused by ectopic heartbeats originating in the
ventricles which are the heart's lower chambers, which can occur in healthy individuals

or indicate serious conditions like structural heart disease, and cardiomyopathy.

2.2.5. Premature Atrial Contraction

Premature atrial contractions (PACs) are common irregular heartbeats originating in
the atria, and upper chambers of the heart, associated with atrial fibrillation, stroke,

and cardiovascular mortality, but are often considered benign.

2.3. ECG Arrhythmia Detection and Classification

2.3.1. Wavelet Transform

The wavelet transform is an effective mathematical tool used for signal and data
analysis, compression, and reconstruction. This approach decomposes signals into
different scales or frequency bands while also providing time and frequency

information. Unlike the Fourier transform, wavelets can identify frequency

12



components that change over time, giving them substantial advantages for dealing with
non-stationary signals (Addison, 2017). Therefore, the wavelet transform is used for
signal and image compression, reduction in noise levels, feature extraction, and time-
frequency analysis. The wavelet transform is used to reduce the space occupied by
data. It also reduces noise in signals like medical images or time series data. Wavelet
transform can also be applied to detect significant signal features, such as EEG or ECG
biomedical signal abnormalities. An essential requirement in identifying transient
events is the simultaneous processing of time and frequency components. The potential
applications of the wavelet transform are in signal processing to analyze biomedical
signals, including the ECG and EEG. Image processing is used in medical and satellite
pictures, recognizing faces, and image compression. Its applications in engineering
include vibration analysis, signal assessment, and structural health monitoring.
Critical wavelet transform properties, such as multiresolution analysis, allow
researchers to study a  signal's overall structure and  details.
Time-frequency localization allows for the identification of frequency components
with time. Compactly supported wavelet functions obtain signal analysis, and
orthogonal wavelets minimize the loss of information when the signals are
decomposed into components. The various kinds of wavelet transforms are Continuous
Wavelet Transforms (CWT), representing signals at continuous scales and shifts,
thereby enabling a high-resolution time-frequency spectrum. Discrete Wavelet
Transform (DWT) decomposes a signal at discrete scales and shifts and is less
computationally demanding; therefore, it is more suitable for compression
applications. Haar wavelets are relatively simple and fast for signal analysis and
compression. Daubechies wavelets are more complex and smoother, hence providing
better frequency resolution. Morlet wavelets are suitable for studying frequency,
Meyer wavelets are smoothing wavelets with frequency domain definitions, and the
wavelet transform is a comprehensive and powerful analysis technique that has proven
useful in present signal and image processing. As a result, it was widely used in

academic research and industrial applications.

2.3.1.1 Continuous Wavelet Transform
The continuous wavelet transform decomposes random processes into localized
orthogonal basis functions for analysis, modeling, and simulation of non-stationary

processes in a variety of applications, analyzing and reconstructing images, and
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signals. For example, an equivalent representation might be more understandable or
shorter than the original data. Generally, a wavelet transform is performed on a
function () using a wavelet y(). The wavelets are defined as a waveform localized in
time and space; more formally, one requires that it be an element of, i.e., y(t) satisfies
only some necessary conditions. These functions are manipulated through shifting
along the time axis and dilation (expanding or compressing the wavelet) to transform

the signal into a different form, effectively 'unfolding' it in scale and time.
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Figure 2.2. Wavelet functions, 4th level of resolution.
Source: Author

The 4th level of resolution plots of several wavelet functions used in the thesis are as
in Figure 2.2. The definition of a continuous signal's wavelet transform for the wavelet

function is,
T(ab) = w(a) [7 x(t)p" (=) dt (1)

wi(a) is chosen as 1/+/a to ensure energy conservation across scales, with the asterisk
notation implying the use of the wavelet function's complex conjugate during the

transformation process.



From this point forward, we will use w(a) = 1/+/a Therefore, the wavelet transform

has the following expression:
1 0o « (1D
T(a,b) == [ x(t) y* (=) dt )

This is called the continuous wavelet transform (CWT). Here, we integrate the product
of the wavelet function and the signal over the entire signal range. In simple terms,
this integration process is known as convolution. The normalized wavelet function is

often written more simply as,

Vo, =5 ¥ () ®

Therefore, the normalization ensures that the energy of the wavelet function is

considered. As a result, the integral of the transform can be expressed as,

r@h = | " () w0 dt @

An inverse wavelet transform is defined as follows:

da db )
aZ

x(t) = C—lg | Z fm T(a,b) ¥ ()

Through integration over all scales and locations, b, this approach enables the
reconstruction of the original signal from its wavelet transform. It's important to note
that we use the original wavelet function in the inverse transform, not its conjugate as
used in the forward transformation. If we restrict the integration to a specific variety
of scales, we can perform a basic filtering operation on the original signal rather than

considering all possible scales.

2.3.1.2 Discrete Wavelet Transform

It is feasible to restore the original signal entirely by utilizing finite sums of discrete
wavelet coefficients instead of continuous integrals, which are necessary for the
Continuous Wavelet Transform (CWT). Its ability to handle the Fast Wavelet
Transform enables the ability to compute the discrete wavelet transform and its inverse

rapidly (Addison, 2017).
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The wavelet transform of a continuous-time signal, x(t), is examined using discrete
values for the dilation (scale) and translation parameters, a and b. One approach to
discretizing these parameters is using a logarithmic scale for a, which governs the
scale, and linking this to discrete steps in b, which determine the translation locations.
This wavelet discretization method follows a structured format where b moves in

discrete steps proportionate to the scale a.

Ymn(®) = () (©)

m
)

The parameters m and n determine the dilation and translation of the wavelet,
respectively. a, is a predefined fixed parameter for dilation, set to a value greater than
1, while b, is a location parameter that must be greater than zero. The parameters m

and n can take any integer value, including positive and negative ones.

Typical selections for the discrete wavelet parameters a, and b, are 2 and 1,
correspondingly. This logarithmic scaling, where both dilation and translation steps
follow powers of two, is referred to as the dyadic grid arrangement. The dyadic grid is
regarded as the most basic and economical discretization approach for practical
applications, allowing the generation of an orthonormal wavelet basis. By substituting
ap= 2 and by= 1 into equation (6), we observe that the dyadic grid wavelet can be

expressed as,

Y = =9 (S5) ™

Employing the dyadic grid wavelet from equation (7), The discrete wavelet transform

(DWT) has the following expression:
T = J o (O Y (©) dt @®)

Selecting an orthonormal wavelet basis, denoted as ¥, ,(t), allows us to reconstruct
the original signal in relation to the wavelet coefficients, T,,, using the inverse

discrete wavelet transform in the following manner:

XO=Ton ) D Ton Pmn®

m=—0o0 N=—0o
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Figure 2.3. Two level decomposition and reconstruction from coefficients by low-

pass and high-pass filters.

Source: Addison, 2017

2.3.2. Neural Networks

One of the most popular methods for mimicking how biological organisms learn is the
use of artificial neural networks. An illustration of such a network in humans is the
nervous system, where the main unit is the neuron that is connected and communicates
with others using axons and dendrites at synapses, as shown in Figure 2.4(a). These
synaptic connections change with experience and learning. To do this, artificial neural
networks use computational units, termed neurons. In contrast to the biological neural
network, these artificial counterparts depend on weights rather than synaptic strengths.
Inputs to a neuron are influenced by these weights, which scale the neuron's calculation
to produce an output. Figure 2.4 (b) An artificial neural network computes an output
to give some inputs. It does this through the conduction of values from input to output
neurons via weights acting as intermediary factors. Learning is achieved through

changes to these weights connecting the neurons. (Aggarwal, 2018).
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Figure 2.4. The link between neurons at the synapses.

Source: Aggarwal, 2018

2.3.2.1 The Perceptron

The perceptron is the most straightforward class of neural networks. A perceptron has
a single layer for input and one output node. A simple diagram of a perceptron is shown
in Figure 2.5. The single-layer perceptron is one of the building blocks for artificial
neural networks and was developed by Frank Rosenblatt. Perceptron is a basic model
of an artificial neural network used for solving linearly separable tasks, pattern
recognition, and classification, with applications in machine learning and
computational models.

Perceptron Model without Bias Perceptron Model with Bias

Qutput
®

P
[ 13}

Figure 2.5. The basic architecture of the perceptron.

Source: Author

A single-layer perceptron operates with an input vector x =[x, X,,..., X, ] and weight

vector w = [Wy, W,,..., W, ]| The goal is to check whether the product of the input vector

18



and the weight vector exceeds a threshold value, thereby producing an output. Steps

as follows,

1. Dot Product of Input and Weight Vectors:

Z = WX = WXy +wyx, + -+ wpx, (10)

2. Activation Function: The resulting z value is passed through an activation function,

typically a step function for single layer perceptrons, 0 is the threshold value.

(L, ifz=0
Y= {o, ifz<0 (b

3. Weight Update: During learning, weights are updated based on the difference
between the predicted output and the actual output. The weight update rule is as

follows:
w; = Wi + AWL' (12)

Aw; is the product of the learning rate (1) and the error (t—y), multiplied by the

input value (x;):

Aw; = n(t —y) x; (13)

Repeat steps of (Equations 10 - 13) until convergence or a predetermined number

of iterations.

2.3.2.2 Convolutional neural networks

CNNs are a kind of deep neural network that has revolutionized the task areas in
computer vision and image processing. In particular, CNNs are designed to process
structured grid data, especially images, to solve classification, image segmentation,
and object detection tasks. CNNs have found their inspiration through the biological
processes of the visual cortex. Spatial hierarchies of features can be automatically and
adaptively learned by a CNN architecture from input images. This property of
hierarchical learning makes CNNs strong in managing the complexity and high

dimensionality of visual data.

CNNs essentially involve convolutions, which are the actions of passing a filter or
kernel through the input data such that feature maps are created. The process is similar

to how the human brain processes visual information: it detects, in a hierarchical
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manner, various edges and textures, along with other more complex structures. Some
main layers in a usual CNN architecture are the convolutional, pooling, and fully
connected (dense) layers. Each of the layers has a specific role in the processing

pipeline.

e Convolutional Layer: This is the basic module of a CNN. Convolutional
layers apply an ensemble of learnable filters to the incoming data. When the
filter moves across the input image, it does dot product operation and creates a

feature map representing the presence of particular characteristics in various
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FILTER MUST MATCH OF DIFFERENT FILTERS (5)

Figure 2.6. The Convolution between an input layer and filter.
Source: Aggarwal, 2018

e Pooling Layer: After the convolutional layer, pooling layers are applied to
down-sample the spatial dimensions of the feature maps. This reduces the
computational load and also provides spatial invariance that makes the network
robust to the variations in the input. The operation of max pooling is shown in

Figure 2.7. with 7 x 7 map strides of 1 and 2.

20



o &

3X3 POOLING
STRIDE=1

o|lo|u|ln|n
ola|n|n|n
olN|N|N|w

w | |w|N |~
w o o |~

slo|slo|w|o]e

wloe|n|Nlnv|s|lw

rir|rla|n|a|s

o|lw|u|w|[~w|a|a
slo|w|v|o|w|w

OUTPUT

Zlwlo|n|o|w
Flolo|lv]w|s|a]|w

]
c

3X3 POOLING 7|/5|5

3X3 POOLING STRIDE=1 8| s|7
STRIDE=1

8| 6|6

OUTPUT

8

Figure 2.7. Max-pooling applied to a single activation map.
Source: Aggarwal, 2018

Fully Connected Layer: After some convolutional and pooling layers, the
final classification is done via fully connected layers. These flatten the previous
layer into a one-dimensional tensor to feed it into standard feed-forward neural

networks to classify the images.

Training a CNN is, in other words, finding out the most optimized weights for the

filters in convolutional layers and connections in fully connected layers. Gradient

descent is applied, most generally, through backpropagation. The process of training

includes:

Forward Propagation: The input is fed to the model. At each convolutional
layer, feature maps are generated. After that, the pooling layers down-sample
those characteristics, and the features obtained from it are passed to fully

connected layers to give the final output, such as class scores.

Loss Calculation: The loss function compares the network output with the
actual ground truth labels, trying to quantify the difference or loss between

actual and predicted labels.

Backward Propagation: It is a neural network learning algorithm that adjusts
weights to minimize error and is useful in a variety of fields such as image
compression, pattern recognition, and music analysis. It can learn complex

nonlinearity and adaptive control, but it has limitations such as slow training.

Parameter Update: The network parameters are updated using an

optimization algorithm, such as stochastic gradient descent (SGD), which
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adjusts the weights in the direction that minimizes the loss (Goodfellow et al.,

2016).

CNNs have been successfully applied to various applications, demonstrating their

versatility and power in handling visual data.
Batch Normalization

Batch normalization is the newer technique devised to alleviate the vanishing and
exploding gradients problems, in which gradients of activations in successive layers
diminish or amplify in magnitude. Another major issue in training deep networks is
internal covariate shift. Such a problem arises due to the variation of network
parameters during the training process, leading to shifts in hidden variable activations
(Aggarwal, 2018). In other words, the inputs from previous layers to later layers
fluctuate back and forth, slowing down convergence when the later layers hit unstable
data in the training. Batch normalization solves both problems by inserting
"normalization layers" between hidden layers to change the features with more stable

variance and stabilize training dynamics.

Activation Functions

Activation functions are applied in artificial neural networks to compute the output of
neurons. Here, the activation functions transform the weighted sum of inputs to an
output in a specified range, allowing the neural network to understand and identify
complex patterns. Activation functions that are used alongside their formulas will be

explained below.

e Sigmoid Activation Function:
The output is restricted by the sigmoid function to a range of 0 to 1. The formula
is as follows:

(14)

7= T e

The main advantage of this function is that it keeps outputs within a bounded range.
However, it can slow down the learning process due to small derivatives for large

or small inputs.

e ReLU (Rectified Linear Unit) Activation Function
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The ReLU function leaves positive inputs unchanged and sets negative inputs to

zero. The formula is as follows:

ReLU(x) = max(0, x) (15)

ReLU is computationally simple and fast. It also performs well with large datasets.

e Leaky ReLU Activation Function

Leaky ReLU is a variation of the ReLU function that provides a small slope for

negative inputs. The formula is as follows:
_x x>0 (16)
Leaky ReLU(x) = {ax <0

Here, a is typically a small value (e.g., 0.01) in Equation 16. This allows some

activation for negative inputs, reducing the "dead neuron" problem.

RelU Activation Function Leaky RelU Activation Function Sigmoid Activation Function
= / 10}

200}

Figure 2.8. Activation functions.

Source: Author

Loss Functions

Loss functions define the error between target values in the train data and the
prediction generated by a model. This needs to be minimized to increase the models'

predictive power. This study measures the model's performance using mean absolute

error (MAE).

Mean Absolute Error
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The mean absolute error, commonly used in loss functions, is the average magnitude

of errors without considering direction.

1 n A (17)
MAE = Ez | yi — yil
=1

Where in Equation 17:
e nis the number of data points.

e y;is the actual value for the i-th data point.
e y;is the predicted value for the i-th data point.

2.3.3. Autoencoder

Autoencoders are artificial neural networks used to learn effective codings in an
unsupervised manner. Learning a representation for a set of data is the fundamental
concept of an autoencoder, usually by trying to find good ways to compress and
decompress the data. Besides its basic compression and decompression functionality,
an autoencoder can learn a highly vital feature of the data, which can be used to
reconstruct the input from this compressed representation. This study describes the
architecture, types, applications, and challenges of autoencoders as part of machine

learning.

The encoder and the decoder are the two primary components of autoencoders. The
input is compressed by the encoder into a latent-space representation, which the
decoder then uses to recreate the original input. Mathematically, if x is the input data,
the encoder function f maps x to z, the latent representation, and the decoder function
g maps z back to x’, the reconstructed input. The goal is to minimize the reconstruction

error, which can be expressed as:
L(x,x") = [|lx — x'||? (13)

where L is the loss function, typically the mean squared error or mean absolute error.

The encoder part of AE transforms the input data x into a latent representation z. It
reduces the dimensionality of the data, capturing the most salient features. The encoder

can be represented as:
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z=f(x)=0Wx+b) (19)
Where W and b are the weight matrix and bias vector of the encoder, respectively, and
o is the activation function in Equation 19.
The decoder part of AE reconstructs the original data from the latent representation. It
maps the latent space back to the input space and can be represented as:

x'=9gz)=a(W'z+b") x’ (20)

Where W' and b’ are the decoder's weight matrix and bias vector, respectively, and o

1s the activation function.
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Figure 2.9. General architecture of an autoencoder.
Source: CompThree, n.d.

The architectures and the type of constraints applied to the autoencoders put them into
different categories. Some of the most commonly used are the undercomplete, sparse,
denoising, variational, and contractive autoencoders. An under-complete autoencoder
is one in which the dimensionality of the latent space is lower than that of the input

space, hence forcing the network to learn essential features of the data—in essence,
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with its primary objective as that of a dimensionality reduction method. The hidden
representation of sparse autoencoders is then enforced with a sparsity constraint,
meaning that at any time, only a few neurons will be active, rendering their features
useful for tasks like image recognition and anomaly detection. Denoising autoencoders
(DAES) are specialized autoencoder neural networks trained to reconstruct the original
input from a corrupted or noisy version. This training process helps in learning robust
representations that can effectively handle noise and corruption in the data (Vincent,
2011). A probabilistic approach for auto-encoders introduces variational autoencoders,
which map inputs to a distribution in place of a single point in the latent space and
apply a probabilistic encoder and decoder; this term includes a loss that enforces
learned distribution to be near a prior distribution. Lastly, contractive autoencoders
add a penalty term to the loss function that penalizes large derivatives of the encoder
function, ensuring that the encoder is less sensitive to minor variations in the input,

which leads to more robust feature learning.

Due to their capacity to learn compact and meaningful data representations,
autoencoders can be applied to various domains. Autoencoders can be considered a
dimensionality reduction technique, much like Principal Component Analysis (PCA),
which reduces the features in data while maintaining vital information to be useful for
visualization and data processing. Additionally, autoencoders can serve as anomaly
detectors since they learn normal patterns from the data; this is because anomalies tend
to give rise to high reconstruction errors, meaning that unusual patterns within the
dataset can be found. Furthermore, denoising autoencoders can be instrumental in
image enhancement and preprocessing by learning to reconstruct noisy images into
their original versions. Moreover, variational autoencoders allow for the generation of
new samples via sampling through learned latent space, thus facilitating applications
like image generation, data augmentation, and semi-supervised learning. Lastly, these
learned features often yield better performance than raw data because an Autoencoder
can extract valuable features from the data applicable to other tasks, such as

classification or clustering.

Autoencoders are powerful, unsupervised learning tools capable of learning compact
and meaningful data representations. They have many uses, from dimensionality
reduction and anomaly detection to image denoising and data generation. However,

they also come with challenges such as overfitting, interpretability, and computational
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complexity. Despite these challenges, ongoing research continues to improve the
robustness and efficiency of autoencoders, making them an essential component of

modern machine-learning techniques.
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3. CHAPTER: EXPERIMENTS AND RESULTS

The convolutional autoencoder model designed custom and used in the following studies will be
mentioned in this section. Over the past few years, deep learning and signal processing have joined
forces to create new ways to analyze data and extract features. A Wavelet-Based Convolutional
Autoencoder (WBCAE) model is proposed in this thesis for arrhythmia detection and
classification. Unlike Fourier transforms, which give frequency info but lose track of time,
wavelets keep both time and frequency details. This makes them great for looking at signals that
change over time. The WBCAE combines wavelet transforms and convolutional neural networks
(CNNs) into one model. Therefore, this model uses the advantages of both methods to improve
feature extraction and data representation. This section looks at how Wavelet-based CAEs are

built, how they work, and the results of the experiments.
A WBCAE typically consists of the following components:

e Wavelet Transform: The wavelet transform divides incoming data into frequency
components. This method generates wavelet coefficients, which display the data at various
scales and resolutions. The wavelet transform is useful for analyzing signals with
temporary characteristics that change properties. It permits multi-level analysis of signals
ranging from wide to detailed, which is crucial for detecting localized signal properties that
vary over time (Li et al. 2023).

e Convolutional Encoder: A convolutional encoder receives wavelet coefficients. This
encoder contains several convolutional layers that apply filters to the wavelet coefficients.
These layers capture geographical hierarchies and reduce the data size. The encoder's
primary function is to compress the data into a smaller latent space while retaining
important properties.

e Convolutional Decoder: The squeezed version from the encoder is passed through a
convolutional decoder, which attempts to recreate wavelet coefficients. The decoder
utilizes deconvolutional layers (also known as transposed convolutional layers), which

enhance the latent representation to match the original size of the wavelet coefficients.
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e Inverse Wavelet Transform: To return the reconstructed wavelet coefficients to the
original data domain, an inverse wavelet transform is applied. This phase guarantees that

the output data looks identical to the original data, reducing reconstruction errors.

3.1. Determination of Atrial Fibrillation with WBCAE Anomaly Detection

Remote patient monitoring is crucial for early disease detection and improving quality of life.
Advances in deep learning have propelled wearable health technologies forward, enhancing
automatic diagnosis capabilities. The deep learning approach for classifying atrial fibrillation (AF)
arrhythmia is presented in this study using a customized wavelet-based convolutional autoencoder
(WBCAE). The WBCAE combines the time-frequency analysis of wavelets with the feature-

learning ability of convolutional autoencoders, serving as an anomaly detector.

Atrial Fibrillation (AF) is the most studied heart rhythm disorder, characterized by irregular and
rapid atrial rhythm (300-500 beats per minute). Unlike the regular impulses in Normal Sinus
Rhythm (NSR), AF results from abnormalities in impulse generation or cellular connections,
leading to chaotic impulses. Despite advancements, accurately classifying AF remains

challenging, complicating treatment plans and prognosis.

This study aims to develop a Wavelet-based Convolutional Autoencoder (WBCAE) for efficient

AF detection. The study's contributions include:

1. Enhancing AF detector performance using convolution filters on a single ECG signal

channel.
2. Combining wavelet signal analysis with deep learning via the WBCAE structure.

3. Addressing data imbalance by training the network with a single signal type using anomaly

detection.

Anomaly detection entails identifying uncommon or atypical data points that significantly deviate
from the majority of the data. Autoencoders are particularly adept at this task because they are
trained to reconstruct normal patterns. During the testing phase, when encountering anomalous

data, the reconstruction error tends to be higher, making it feasible to identify these anomalies.

Steps in Anomaly Detection Using Autoencoders

1. Training on Normal Data: The autoencoder is trained using normal sinus rhythm data,

allowing it to learn the patterns and features of this data.
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2. Reconstruction Error: During the testing phase normal and anomaly data are used and
the autoencoder attempts to reconstruct new data. For normal data, the reconstruction error

will be low. For anomalous data, the error will be high.

3. Threshold Setting: A threshold for the reconstruction error is set based on the distribution
of errors for the normal data. Data points with errors above this threshold are classified as

anomalies and below are classified as normal.

This model emphasizes identifying abnormalities over simply categorizing rhythms, offering a
novel approach to AF detection. Testing on diverse datasets demonstrates its flexibility and

reliability, distinguishing it from other studies.

3.1.1. Dataset

When discovered too late, atrial fibrillation can result in mortality, an embolism, or even a stroke.
The most used method for timely detection of this severe condition is the examination of ECG
records. In ECG recordings, three specific signs of atrial fibrillation are mainly considered: the

absence of the P wave, irregular RR intervals, and fibrillation on the baseline.
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Figure 3.1. Normal Sinus Rhythm and Atrial Fibrillation ECG recordings.
Source: Clifford et al., 2017

Figure 3.1 illustrates ECG recordings of normal sinus rhythm and atrial fibrillation. As can be
observed from the upper graph, P waves, QRS complexes, and T waves can be easily identified
for each beat. The distance between R peaks is regular. However, the second graph observes beats
in irregular time instants. Furthermore, P peaks are absent, and a quivering isoelectric line is shown
at the TQ interval. Autoencoder studies were carried out using publicly available ECG databases.

NSR data “MIT-BIH Sinus Rhythm Database” (NSRDB) (Goldberger et al., 2000) and Atrial
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Fibrillation data “MIT-BIH Atrial Fibrillation Database (AFDB)” (Moody, 1983), “The
PhysioNet/Computing in Cardiology Challenge 2017 (AFPC) (Clifford et al., 2017) taken from

databases. Table 3.1 is a list of all the database's features.

Table 3.1. shows that NSRDB includes 24-hour data from 18 healthy individuals. In contrast,
AFDB includes 10-hour AF and non-AF data from 25 patients and short-term single-channel ECG
recordings used in the competition held by Physionet in 2017. Only the AF portion of the Physionet
competition data was included in this study. The locations and beat labels of the QRS complexes

of ECG signals in the NSRDB and AFDB databases are available.

Table 3.1. Description of the databases.

Data Subject Lead Duration of Sampling
recordings frequency

NSRDB 18 2 24 128 Hz
Hours

AFDB 25 2 10 250 Hz
Hours

AFPC 771 1 10-60 seconds 300 Hz

AF signals in the AFPC database were separated with the Pan Tompkins algorithm and labeled by
expert authors of this study. The sampling frequency was converted to 250 Hz for data at different
sampling frequencies. Before the data was applied to the autoencoder, the signal was divided into

256 sample windows, which can be seen in Figure 3.2.
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Figure 3.2. Illustration of ECG Signal Windowing.

Source: Author

In Figure 3.2., each red line shows the interval of a signal window and Table 3.2. lists the number

of data windows resulting from the process.

Table 3.2. Number of Data Windows Used in Training and Testing

NSRDB AFDB AFPC
Data

Number of frames used for 800,000 - -
training
Number of frames used in 395,455 395,455 -
testing
(Test 1)
Number of frames used in 32,010 - 32,010
testing
(Test 2)

3.1.2. Evaluation methods

This study uses an autoencoder for anomaly detection to recognize AF and NSR ECG signals. In
anomaly detection, AE is trained with only a single class data, so the model is optimized to
represent this data. In this study, the autoencoder was trained with NSR data to minimize the
reconstruction error, as depicted in Figure 3.3. In the testing phase, NSR and AF signals are applied

to the AE, and the reconstruction error is calculated, as seen in Figure 3.3. This approach allowed
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for the evaluation of how well the autoencoder could reconstruct both NSR and AF signals,
providing insights into its performance in distinguishing between the two rhythm types. If the error
is less than the given threshold value, it is labeled as NSR; if it is greater than the given threshold
value, it is labeled AF.

Training Autoencoder

NSR
Encoder |——> Decoder —> )= Reconstruction
T ’ _ 'I Error
Test in Anomaly Detection Mode
" NSR h
Encoder ——> Decoder —>{ )—> Reconstruction
AF . ‘I Error
p. S/

Figure 3.3. Train and test of AE with NSR and AF rhythms in anomaly detection.

Source: Author

The critical issue in anomaly detection is to select the threshold. In this study, the following steps

are applied to obtain an acceptable threshold value that leads to successful detection:
1. Use the model to calculate reconstruction loss on normal data.
2. Use the model to calculate reconstruction loss for anomalous data.

3. Generate a range of threshold values between the minimum and maximum reconstruction

loss values observed in the normal data.

o [terate over different threshold values to find the best F1 score. Compute the precision,

recall, and F1 scores for each threshold value.

o Update the best F1 score and corresponding threshold if the current F1 score exceeds

the previous one.
4. Return the best threshold and corresponding F1 score as the optimal threshold.

The identified optimal threshold is applied to the mixed test data, consisting of normal and atrial

fibrillation samples. The performance of the chosen threshold is assessed using several metrics,
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including F1 score, precision, and recall, to assess the effectiveness of the anomaly detection
system. After detecting normal and anomaly with threshold, the results of the models were

examined with the evaluation metric.
3.1.2.1 Evaluation Metrics

Accuracy

The percentage of correctly identified cases out of all the instances is what accuracy measures. It

is a fundamental metric for evaluating the overall performance of the classification model.

TP + TN 1)
TP+ TN + FP + FN

Accuracy =

Where in Equation 21:
TP = True Positives
TN = True Negatives
FP = False Positives

FN = False Negatives

Precision

The number of true positive predictions made out of all positive predictions is what precision

quantifies. It shows how many predicted positives are positive.

TP (22)

P .. —
1rcC1s10n —TP T FP

Recall

The number of true positive predictions created out of all actual positive cases is known as recall

or sensitivity. It indicates how many of the actual positive instances the model correctly identified.

TP (23)

Recall = TP+—F1V

F1-Score
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The F1-score combines both precision and recall into one measure by calculating their harmonic
mean. This metric offers a balanced view of the model's performance, considering both how often

it correctly identifies positive cases and how accurately it excludes negative ones.

Precision X Recall (24)
Precision + Recall

F1-Score = 2 X

These metrics collectively give a detailed insight into the model's performance, highlighting its

strengths and areas needing improvement.

3.1.3. Wavelet Based Convolutional Autoencoder Design

In this study, An EncoderMiniBlock and DecoderMiniBlock, which are Wavelet-based
Convolutional AutoEncoder (CAE) parts, are custom designed. When considering the feature
space, the likelihood of overfitting increases with the complexity of the model during training.
This study preferred a simple architecture to avoid overfitting and simultaneously reduce

computational complexity. The proposed model is given in Figure 3.4.
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Figure 3.4. Proposed Wavelet-Based Convolutional Autoencoder Model.
Source: Author

The optimal model was discovered by experimenting with different models, changing
architectures, layer counts, and other configurations. We found that the proposed model performed
the best after trying various options. Figure 3.4 shows three EncoderMiniBlocks containing 128,

64, and 32-dimensional filters used in the encoder. Similarly, 32, 64, and 128-dimensional
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decoding MiniBlocks are included in the decoding section. The last layer contains a single-unit
fully connected layer (dense layer) and a Rectified Linear Unit (ReLu). Within the
EncoderMiniBlock are convolutional layers or 1D convolution layer, discrete wavelet transform
(DWT) layer, batch normalization layer, and dropout layer, respectively. WaveTF library was used

for wavelet function implementation (Versaci, 2020).

WaveTF is a TensorFlow library that implements 1D and 2D wavelets, transforms them, and
exposes them as Keras layers to easily add them to machine learning workflows. The library
implements the most used Haar and DB2 wavelet kernels. Anti-symmetric reflection filling is
applied to handle boundary effects, which broadens the signal while preserving its first-order finite
difference at the boundary. WaveTF transparently supports both 32- and 64-bit floating point at

runtime.

Table 3.3. Reconstruction of low pass filter coefficients of the wavelet functions

Db2 Db3 Db4 Sym4 Coif2 Bior 3.5
go[0] | 048296  0.03223 -0.230378  0.032223  0.016387 0.0
go[1] | 0.836516  0.08544  0.714847  -0.012604  -0.041465 0.0
go[2] | 0.2241439 -0.13501  0.630881  -0.099219  -0.067373 0.0
gol3] - -0.45988  -0.027984  0.2978578  0.3861101 0.0
0.1294095
gol4] 0.80689  0.187035 0.8037388  0.8127236  0.1767767
gol5] -0.33267 0.0308414 0.4976187  0.417005  0.5303301
gol6] - -0.029636  -0.0764886  0.5303301
0.0328830
gol7] -0.010597  -0.075766  -0.0594344  0.1767767
gol8] 0.02368017 0.0
gol9] 0.00561144 0.0




9o[10] -0.0018232 0.0
go[11] -0.0007206 0.0

If wavelet transformation is active in the EncoderMiniBlock, the transformation function is
defined for the selected wavelet. In the original version of the library, only Haar and Daubechies
2 wavelets are defined. In this study, wavelets successfully used in literature for arrhythmia
detection were also adapted to the library. The DecoderMiniBlock contains a 1D transpose
convolution layer, Inverse Wavelet Transform (IDWT) layer, batch normalization layer, and
dropout layer. This study conducted autoencoder experiments with Haar and DB2 wavelets and
wavelets that generally give successful results in biomedical signal classification. To implement
wavelet transform in WaveTF library, the low-pass reconstruction filter coefficients should be

entered as model parameters. The wavelet coefficients used are listed in Table 3.3.

3.1.4. Experiments and Results

This study aims to train the wavelet-based convolutional autoencoder with a single class of data,
optimize it according to this signal, and obtain an efficient system separating the signal type from
others in the testing phase. Model in Figure 3.4. was trained with NSR data from the NSRDB
database. At the end of the training, the tests were performed with data from the NSRDB database,
which the model did not see in training, and data taken from two different databases, AFDB and
AFPC. Experiments were conducted in the TensorFlow 2 environment in Python 3. If there is no
improvement in the validation error for ten epochs, early stopping is applied to prevent overfitting.
Adagrad optimization algorithm was used with 128-dimensional batches. The initial learning rate
was chosen as 10-3. The train is set to continue for a maximum of 50 epochs. In Test 1, 395,455
entries from the NSRDB database and 395,455 from the AFDB database were used. In Test 2,
32,010 entries from the NSRDB database and 32,010 from the AFPC database were used. The
model was trained with 800,000 NSR entries from the NSRDB database for both tests. The data is
divided into separate sets for train and test purposes. During training, the model learns to
reconstruct the input data without exposure to the patient's data in the test set. This ensures that
the test set consists of unseen examples, allowing for a rigorous evaluation of the model's
generalization performance. Therefore, when training an autoencoder, the test data remains
entirely independent, ensuring an unbiased assessment of the model's ability to reconstruct unseen

instances.
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3.1.4.1 Experiment 1: Effect of wavelet family on performance

This experiment assesses how different wavelet families impact the performance of convolutional
autoencoder models in anomaly detection tasks using ECG signals. By training multiple models
with various wavelet families (e.g., Daubechies, Symlet, and Coiflet), the study aims to identify
the optimal wavelet family that enhances the model's ability to extract relevant features and
accurately detect anomalies. The WBCAE Model (Figure 3.4.) structure was established without
a wavelet layer and also with the various wavelets. The system was optimized, and the loss
function MAE, which gave the best results, was selected. The results of the experiments are listed
in Table 3.4 and Figure 3.5. (a) and (b) separate performance graphs for both experiments are

given according to wavelet type.

Table 3.4. Experiment 1 Results: Analysis and Findings

Wavelet Accuracy  Precision Recall F1 Score
(%) (%) (%) (%)
No Test 1 57.09 78.62 55.02 64.74
Wavelet
Test 2 50.14 99.37 50.07 66.58
Haar Test 1 91.44 94.61 87.92 91.14
Test 2 94.03 99.98 88.09 93.66
Db2 Test 1 91.79 94.41 88.88 91.56
Test 2 93.94 99.96 87.92 93.55
Db3 Test 1 92.21 98.48 85.77 91.69
Test 2 94.23 99.99 88.46 93.88
Db4 Test 1 84.23 85.32 82.77 84.02
Test 2 91.44 100.00 82.89 90.64
Sym4 Test 1 92.96 94.95 90.77 92.81

39



Test 2 95.44 99.99 90.90 95.23
Coif2 Test 1 76.70 72.87 85.22 78.56
Test 2 92.68 99.96 85.39 92.10
Bior3.5 | Test1 86.98 87.89 85.85 86.86
Test 2 93.02 99.99 86.05 92.50

When Table 3.4. and Figure 3.5. are examined, it is observed that the addition of a wavelet layer
improves the classification performance noticeably. Among all wavelet families, Symlet 4
produced the best accuracy, and all the scores are balanced for this wavelet. In Test 2, all wavelets
achieved better results compared to Test 1. The downloaded site provided the labels of the AFDB
database used in Test 1. However, upon visual inspection by the experts, it was determined that
the labeling was done in blocks, and some AF beats had more normal sinus rhythm characteristics
than AF. Our cardiologist authors relabeled all the beats in the AFPC dataset, and all the beats
used in Test 2 were correctly identified. This may explain the difference between the classification

performance. Symlet 4 wavelet is evenly ahead in all performance scores for both sets.

Experiment 1- Test 1 Performance Evaluation

98,48
100 94,61 92,96 94,95 0077 92,81

91,44 L1a on79 M eise 9221
% 85, 77 84,23 8532 5, 77 84,02 86,98 87,89 g5,g5 86,86
20 78,62 76, 70 78,56
70 64,74
60 57,09 55,02
50

No Wavelet Haar Syma Coif2 Bior3.5

ccuracy M Specifity ® Sensitivity F1

(a)

Experiment 1- Test 2 Performance Evaluation
99,37 99,98 99,96 99,99 100,00 99,99 99,96 99,99

94,03 93,94 94,23 95,44 95,23
95 93,66 93,55 9388 o144 90,64 90,90 92,68 92,10 93,02 92,50
88,09 87,92 88,46
. 82,89 85,39 86,05
85
75
66,58
65
55 50,14 50,07
|

No Wavelet Haar Db2 Syma Coif2 Bior3.5

W Accuracy M Specifity m Sensitivity F1

(b)

Figure 3.5. Performance Comparison of WBCAE with Various Wavelets.

Source: Author
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3.1.4.2 Experiment 2: Effect of input window size on performance

The performance of anomaly detection models trained on ECG data is the main focus
of this experiment, which investigates the impact of changes in input window size. By
varying the window size and evaluating model performance metrics, the experiment
aims to determine the optimal window size for effectively capturing temporal
dependencies and detecting anomalies in ECG data. The Sym4 wavelet and AFPC
database were used in the tests. The results are given in Table 3.5. and Figure 3.6. The

highest success was achieved for length 256.

Table 3.5. The effect of different window size on the performance metrics

Window Size  Accuracy Precision Recall F1 Score
(%) (%) (%) (%)

256 95.44 99.99 90.9 95.23

512 92.35 91.44 93.13 92.28

1024 90.36 96.36 86.03 90.90

Performance vs Window Size

96.36
95,44 95,23

93,13
92,35 “
90,9 91,44

90,36 90,9
I I >

256 512 1024

92,28

W Accuracy M Specifity = Sensitivity F1

Figure 3.6. Impact of Window Size on Performance Metrics.

Source: Author

3.1.5. Summary

In experiment 1, different wavelet families are tested. We observed that a notable
enhancement in the detection performance was obtained with the addition of a wavelet

layer. Furthermore, it is observed that the Symlet 4 wavelet produces the best results.
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The results validate our intuition that the wave closely resembling the analyzed normal
sinus rhythm waveform will be deemed successful. During the model design phase,
the impact of altering the structures by varying the number and positions of the layers
was conducted. Our findings revealed that the proposed model, as depicted in Figure
3.4., outperforms the other models tested. Thus, other models were not included in the
study. In another experiment, the input window size of the system is changed for the
proposed model with Sym4 wavelet. The window size 256 is observed to perform
better in accuracy, precision, and F1 scores. The AF detection performance of the state-

of-the-art machine learning models in the literature is also considered.

In this study, we developed a robust autoencoder structure based on wavelets, which
proved highly effective even for a short window of approximately 1 second. We
conducted various tests using essential wavelets and analyzed key performance
metrics such as accuracy, recall, precision, and fl score. These evaluations helped us
compare the effectiveness of different wavelets. We also examined factors like input
length and loss function across various models. The Sym4 wavelet emerged as the
most promising and successful among the tested methodologies. The wavelet layer is
shown to enhance the performance of the AE structure in anomaly detection mode.
Thus, the proposed model can be employed in different signal-processing applications,
even for unbalanced datasets. The selection of wavelets plays an essential role in the

network performance.

3.2. Arrhythmia Classification with WBCAE as Feature Extractor

Autoencoders have a role, in extracting features and turning data into analyzable
elements for tasks like classification and clustering. In the autoencoder setup, the
encoder compresses input data into a space known as the space or bottleneck layer.
This condensed representation captures features while filtering out noise and details.

The compressed form can then serve as a feature vector, for machine learning tasks.

Steps in Feature Extraction Using Autoencoders

1. Data Preprocessing: Before feeding data into the autoencoder it is commonly
prepared. This involves steps like scaling data and converting ECG signals into

heartbeats.
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2. Training the Autoencoder: The autoencoder undergoes training with the
preprocessed data. It learns how to convert the incoming data into a latent space

and then reconstruct it during this process.

3. Extracting Features: Once trained the encoder component of the autoencoder
can be utilized to convert input data into the space effectively extracting

features from the data.

4. Classification Using the Encoded Features: These features that have been
extracted can serve as inputs for machine learning models, such, as classifiers

or clustering algorithms.

Autoencoders help with feature extraction. Offer benefits making them valuable, in
numerous situations. Unlike PCA and other conventional approaches that focus on
data analysis autoencoders leverage neural network structures to detect nonlinear
connections, within their datasets. This makes it possible to reduce dimensions
without deleting essential aspects of the data for simplicity in processing and
analyzing. For instance, the compression process may involve filters that make the
features less noisy. Likewise, they are highly adaptive; hence, their versatility in
feature extraction procedures is demonstrated by the fact that they may be used with a

variety of data kinds, including text, time series, and pictures.

This study proposes an efficient wavelet-based convolutional autoencoder model for
the feature extraction of the arrhythmia types, such as right bundle branch block
(RBBB), left bundle branch block (LBBB), premature ventricular contractions (PVC),
atrial premature contractions (APC) as shown in Figure 3.8. One-lead ECG signals
are then classified with a Multilayer Perceptron (MLP), as illustrated in Figure 3.7.
The combination of the wavelets with autoencoder structure is one of the main
contributions of this study. Therefore, the success of wavelets in grasping the time-
frequency domain distribution of the signals was integrated into the learning capability
of autoencoders. Also, a large dataset collected from different databases was used for
training and testing to show the performance under various conditions (Eravci &

Ozkurt, 2023).
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Figure 3.7. Diagram of proposed method.

Source: Author

3.2.1. Dataset

Three databases, including the St. Petersburg INCART 12-Lead Arrhythmia Database,
the MIT-BIH Arrhythmia Database, and the MIT-BIH Supraventricular Arrhythmia
Database, were integrated as indicated in Table 3.6. We preserved 180 samples before
and after each R-peak, obtained 360 sampling points for each beat, and then resampled
all data to 180 Hz. The ECG signal was min-max normalized after each beat was

divided into beat segments, as shown in Figure 3.8.

360 sample

[ 1
| | |

Figure 3.8. Each heartbeat 360 Sampled RR-Interval lengths.

Source: Author

The MIT-BIH Arrhythmia Database is a commonly used test data for evaluating
arrhythmia detectors (Moody & Mark, 2001). It's mainly composed of 48 two-channel
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ambulatory ECG recordings sampled at 360Hz. Each recording contains 48 half-hour
ECG excerpts. The data was gathered from 47 people. The ages of the participants,
who comprised 25 men and 22 women, ranged from 32 to 89. This dataset consists of
recordings with various degrees of arrhythmias and recordings with normal sinus
thythm. The MIT-BIH Supraventricular Arrhythmia Database is a publicly available
database commonly used in cardiac arrhythmia research and comprises 78 half-hour-
long excerpts of two channel ECG. It includes a selection of ECG recordings with
annotations concentrated on supraventricular arrhythmias (Chen et al., 2017). St.
Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database has 75
annotated recordings taken from 32 Holter records, which are included in this database.
Each record has 12 standard leads sampled at 257 Hz and lasts 30 minutes. The
recordings were taken from patients with various arrhythmias, including sinus rhythm
and ventricular and supraventricular arrhythmias (Tihonenko et al., 2008). In this
study, we concentrated on four types of arrhythmia and normal sinus rhythm listed in

Table 3.6.

Table 3.6. Data Distribution of Arrhythmia Types Used

Arrhythmia Types Beat Size
Left Bundle Branch Block (LBBB) 13,322
Right Bundle Branch Block (RBBB) 12,068
Normal Sinus Rhythm (NSR) 75,011
Premature Ventricular Contraction (PVC) 33,632
Atrial Premature Contraction (APC) 4,441
Total 138,474

45



Normal Sinus Rhythm Right Bundle Branch Block Left Bundle Branch Block Premature Ventricular Contraction Premature Atrial Contraction
10

08

050 06 02

4
0.25 0 0.0

-1
0.00 —
00 -1 0.2

-0.2 -0.4

—20 -04 -0.6

Figure 3.9. Five types of arrhythmia heartbeats.

Source: Author

3.2.2. Evaluation Methods and Experiments

The designed convolutional autoencoder consists of an encoder and a decoder,
illustrated in Figure 3.10., which are defined as sequential models using 1D
convolutional, max pooling, Batch normalization, and upsampling layers. The number
in the convolutional layer denotes the number of filters in each layer. The encoder
takes as input a 1D signal of shape (360, 1) and applies a series of convolutional filters,
along with activation functions like ReLU and padding. The input is downsampled
using Max pooling layers, and the activations are normalized using Batch
normalization  layers.  Similar  definitions are appliedto the decoder.
However, convolutional layers are used for upsampling rather than downsampling.
The final convolutional layer has one filter and a ReLu activation, and upsampling

layers are employed to expand the input's dimensionality.
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Figure 3.10. Proposed convolutional autoencoder architecture.
Source: Author

3.2.2.1 Arrhythmia detection with custom-designed convolutional AE

The wavelet convolutional autoencoder class consists of an encoder and a decoder,
defined as sequential models using convolutional layers, wavelet transformation
layers, and other layers like batch normalization, as depicted in Figure 3.11. The
encoder takes as input a 1D signal of shape (360, 1) and incorporates several
convolutional layers with different configurations, including activation functions like
ReLU, padding, and wavelet transformations using the WaveTF library. The decoder

is defined similarly to the Convolutional autoencoder model.

Table 3.7. The Reconstruction Coefficients of The Wavelet Functions Used.

Daubechies 2 Coif 2 Bior 3.5
gol0] | 0.48296 0.016387 0.0
gol[1] | 0.836516 -0.041465 0.0
gol2] | 0.2241439 -0.067373 0.0
gol[3] | -0.1294095 0.3861101 0.0
9ol4] 0.8127236 0.1767767
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9ol5] 0.417005 0.5303301
9ol6] -0.0764886 0.5303301
9ol7] -0.0594344 0.1767767
9ol8] 0.02368017 0.0
9ol9] 0.00561144 0.0
9o[10] -0.0018232 0.0
gol11] -0.0007206 0.0

The wavelet transform block is in Figure 3.11. involves the calculation of one-
dimensional Discrete Wavelet Transform of the given signal. WaveTF library
conducts DWT by convolving inputs with low-pass and high-pass filter coefficients.
These are matrix operations in the Tensorflow environment (Versaci, 2020). Initially,
two mother wavelet options existed in the WaveTF library: Haar wavelet and
Daubechies 2. In this study, different mother wavelets reported to have high
performance in biomedical signal analysis were adapted to the algorithm. The used
wavelet coefficients are listed in Table 3.7. the models were trained with different
parameters to reach the optimal performance heuristically. We used wavelet transform
as a layer in our autoencoder model because of its unique capacity to capture both
time and frequency domain characteristics, allowing for excellent representation of

transient patterns and variable frequency components.

3.2.2.2 Classification with MLP

The classifier model architecture includes several layers, including dense layers with
ReLU activation functions, batch normalization layers for normalization, dropout
layers to prevent overfitting, and a used softmax function for activation layer for multi-
class classification. The model is compiled with binary cross-entropy loss and the SGD
optimizer. In this study, we used the Multi-Layer Perceptron (MLP) architecture for
classification, taking advantage of its capacity to understand subtle patterns and non-
linear correlations within the data. The MLP's adaptability in modeling complicated
decision boundaries and its effectiveness in handling varied classification tasks made

it an attractive and powerful choice for our study, resulting in correct predictions.
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3.2.3. Results

After the model structures were created, the ECG beats in each class are shown in
Table 3.6. were trained with the autoencoder model, each beat taken from the
autoencoder model separated into train and test with a 0.20 ratio. The following
procedure was the classification stage with the Multilayer Perceptron (MLP) model,
and accuracy metrics were examined by feeding encoded data into the designed
classification model. In this study, we applied the Adam as an optimizer, a well-known
gradient-based optimization technique for neural network training. The learning rate
of the optimizer is set to le-3, which determines how much the model weights are
updated during training. Then, by defining the optimizer and loss function for training,
the model is compiled. The loss function is set to mean absolute error (MAE), a typical
loss function for problems involving classification. A comparison of the autoencoder

model using different wavelets is shown in Table 3.8.

Table 3.8. Performance Metrics Results

Wavelet  Batch  Accuracy Precision Recall FI

Size (%) (%) (%) Score
(%)

None 32 99.5 98.9 97.2 98.9
64 98.0 97.8 97.2 97.5

128 99.6 99.0 99.0 99.0

Db2 32 99.3 98.4 98.1 98.2
64 95.1 96.3 87.3 89.3

128 99.5 98.9 98.8 98.9

Bior 3.5 32 99.8 99.8 99.7 99.7
64 99.6 99.5 99.1 99.3

128 99.5 99.4 99.0 99.2
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Coif 2 32 90.6 86.4 74.3 70.6

64 98.3 97.6 96.5 97.0

128 99.7 99.2 99.1 99.2

In Table 3.8., the first column shows which mother wavelet was used. In the first
experiment, the structure in Figure 3.11. with no wavelet layer was employed.
Different batch sizes were used for each experiment, and the performance results were
listed. We observed that Bior 3.5, with a batch size of 32, achieves the highest accuracy
of 99.8%, followed closely by no wavelet with a batch size of 32. When the other
performance measures of the Bior 3.5 model were considered, out of all positive
predictions, precision is defined as the percentage of true positive predictions. The
highest result of the Bior 3.5 model indicates a high proportion of correct positive
predictions. Recall also had the highest rate of true positive predictions out of all actual
positive occurrences, suggesting that it can correctly identify many positive examples.
The F1 score offers a balanced assessment of both measures and is calculated as the
harmonic mean of recall and precision. Bior 3.5, with a batch size of 32, has the highest
macro F1 score (99.7%), indicating a good balance between precision and recall. It can

be noted that lower precision-recall results were obtained in the no-wavelet case.

It's worth noting that the performance of each wavelet type varies across different
batch sizes. For example, Coif 2, with a batch size of 32, shows lower performance
compared to other batch sizes, particularly in precision, recall, and F1 scores. The
proposed structure was compared with several advanced deep-learning algorithms for
classifying arrhythmias. As can be observed from Table 3.9., different feature
extraction and classification methods were employed for arrhythmia detection. The
most important outcome of this research is achieving higher performance with a
custom-designed wavelet-based autoencoder model. Another critical point is the size
of the dataset. Our algorithm has been proven to have higher classification rates with
more extensive data, which includes beats from different datasets with different

properties (Eravc1 & Ozkurt, 2023).
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Table 3.9. Performance Of the Deep Learning Arrhythmia Detection Algorithms

Authors Total Method Accuracy
Beat (%)
(Wu, Lu, Yang, & Wong, 32,422 CNN 97.41
2021)
(Acharya et al., 2017) 109,449 CNN 94.03
(Liu et al., 2022) 97,300 LSTM AE 99.00
ANN
(Sahoo, Kanungo, Behera, & | 109,494 DWT 98.39
Sabut, 2017) SVM
(Mohonta, Motin, & Kumar, | 7,500 CWT 99.65
2022) 2DCNN
(Ojha et al., 2022) 97,861 AE 99.53
SVM
Proposed Method 138,474 Wavelet-based 99.80
Bior 3.5 Convolutional AE
MLP
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Figure 3.11. Wavelet convolutional autoencoder architecture.
Source: Author

3.2.4. Summary

Effective detection of cardiac arrhythmia types is a significant problem, especially in
analyzing long medical records and wearable health tracking devices. In this study, we
suggested a convolutional autoencoder model to categorize five distinct kinds of ECG
beats. Our model takes advantage of the wavelet transform, which reveals the time-
frequency domain characteristics of signals. Thanks to the autoencoder model, the
features contained in the data are encoded compactly and can be analyzed with a
simple classifier. Furthermore, a high performance was obtained with extensive data

collected from different datasets. This is an indication of the robustness of the

proposed model.

The selection of the mother wavelet is still an important design parameter. Usually,
the best mother wavelet is selected experimentally, as in this work. Bior 3.5
demonstrated a successful performance for the problem at hand. In the upcoming

studies, a signal-adaptive wavelet selection algorithm is proposed.

3.3. Arrhythmia Anomaly Detection with WCAE

Arrhythmia classification relies on a deep learning technique that uses a customized
wavelet-based convolutional autoencoder (WBCAE) for this study. This anomaly
detector integrates time-frequency analysis of wavelets and convolutional

autoencoders for feature learning purposes. The analysis reveals the potentiality of
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deep learning models in arrhythmia detection and wavelet approaches to biomedical
signal processing. To conclude, this combination of WBCAE with arrhythmia data
presents an important way to improve anomaly detection by taking advantage of both
the strengths associated with deep learning as well as advanced signal processing

strategies.

3.3.1. Dataset

In this study, the same datasets were used as in 3.2. but different sizes of samples. In
addition to normal sinus rhythm, the dataset includes arrhythmia types such as
premature ventricular contraction, left bundle branch block, right bundle branch block,
and finally atrial premature contractions. The dataset comprises 360 samples, which
include 128,399 segments of arrhythmia data, and 75,011 segments of normal sinus

rhythm data as can be seen in Table 3.10.

Table 3.10 Number of different data classes used in the study

Arrhythmia Types Beat Size
Left Bundle Branch Block (LBBB) 13,373
Right Bundle Branch Block (RBBB) 12,092
Normal Sinus Rhythm (NSR) 75,011
Premature Ventricular Contraction (PVC) 98,497
Atrial Premature Contraction (APC) 4,437
Total 203,41

3.3.2. Evaluation Methods and Experiments

To thoroughly evaluate the performance of the proposed Wavelet-Based
Convolutional Autoencoder (WBCAE) in detecting arrhythmias several evaluation
metrics and methods were employed. These measurements offer a thorough
comprehension of the model's efficacy and reliability in different scenarios. The

anomaly detection method is mentioned in 4.1.2. was used. That is, If the error is less
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than the given threshold value, it is labeled as normal sinus rhythm; if it is greater than

the given threshold value, it is labeled anomaly.

The experiments were carefully planned to assess the performance of the WBCAE in
different scenarios and forms. The main objective was to optimize the model for
arrhythmia detection as well as comparing its performance of wavelet families.
Another aim of this study is to asses the performance of the anomaly detection

approach in unbalanced datasets.

For efficient processing of the dataset, WBCAE was implemented and trained on a
high-performance computing cluster of Google Colab. The experiments entailed
testing various configurations of the model, including choosing wavelets and

hyperparameters.
Hyperparameters:
e Number of epochs: 50
e Batch size: 60
e Learning rate: Optimized through grid search and experimentation

e Wavelets: Various wavelets, including Haar, Daubechies (db3, db4),
Biorthogonal (bior 3.5), Coiflet (coif2), and Symlet (sym4), were tested.

Model Architecture

The WBCAE architecture consists of an encoder and a decoder. The encoder
compresses the input ECG signals into a latent representation, while the decoder
reconstructs the signal, emphasizing the detection of anomalies. The model used in

Figure 3.4.

Results

The measures listed above were used to assess the WBCAE's performance. The results
varied depending on the wavelet used, highlighting the impact of wavelet selection on

model performance.
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Table 3.11. Experiment Results.

Wavelet  Arrhythmia Accuracy %  Precision % Recall % F1 Score %

db3 RBBB 98,87 99,92 97,54 98,72
LBBB 98,29 99,87 96,50 98,16

APC 99,38 99,11 98,17 98,64

PVC 99,27 99,99 99,17 99,58

db4 RBBB 99,53 99,73 99,22 99,47
LBBB 98,15 99,83 96,24 98,00

APC 98,87 99,09 95,92 97,48

PVC 99,60 99,89 99,66 99,77

sym4 RBBB 99,54 99,81 99,16 99,49
LBBB 99,34 99,74 98,86 99,30

APC 99,80 99,44 99,68 99,56

PVC 99,75 99,92 99,79 99,86

bior3.5 | RBBB 99,42 99,87 98,83 99,34
LBBB 98,79 99,67 97,75 98,70

APC 98,13 98,71 93,01 95,78

PVC 99,62 99,92 99,64 99,78

coif2 RBBB 99,63 99,73 99,44 99,59
LBBB 99,41 99,47 99,29 99,38

APC 99,57 99,79 98,31 99,05

PVC 99,55 99,90 99,58 99,74

3.3.3. Summary

This study was achieved with a dataset containing normal heartbeats and four different
types of arrhythmias (e.g. RBBB , APC, LBBB and PVC) with an anomaly detection
approach and using the WBCAE method. As a first step, the data obtained from the
electrocardiogram (ECQ) signals were divided into normal and arrhythmic signals and
each pulse signal was processed separately. The anomaly change is displayed in data
wavelets and subjected to time-frequency analysis. Five different wavelets were used
for this purpose: db3, db4, sym4, bior3.5 and coif2. Each wavelet analyzed the ECG

signals from a different perspective and revealed important features.

These features are given as input to the WBCAE model, and the aim is to preserve

important features and create an optimized feature space by reducing the course of the
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model to a low-dimensional representation . This way it is easier to distinguish
between normal and arrhythmic. The outputs of the WBCAE model were then further
examined with anomaly detection methods, and a specific threshold value was used to
distinguish each arrhythmia (RBBB , APC, LBBB and PVC) from normal signals.
This method ensures the correct organization of normal and normal (arrhythmic)

functioning.

Finally, the performance of the model was evaluated with metrics such as Accuracy ,
Precision, Recall and F1 Score. These measurements measure the overall accuracy of
the model, record positive predictions, and distinguish between types of arrhythmias.
The results showed that WBCAE and the abnormality detection approach were highly

successful in distinguishing between normal and four different arrhythmias.

The WBCAE introduced in this study represents remarkable progress in arrhythmia
detection especially in feature extraction, making use of the strengths of wavelet
transforms and deep learning. The thorough evaluation and experimental results
demonstrate the model’s robustness, flexibility, and high performance. The study
highlights the power of wavelet methods combined with convolutional autoencoders
in biomedical signal processing, which offers effective means for remote patient

monitoring as well as early disease diagnosis.
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4. CHAPTER: CONCLUSIONS AND FUTURE WORK

In this thesis, we presented studies on detecting atrial fibrillation (AF) and other heart
arrhythmias using wavelet based convolutional autoencoders. Both studies improved
arrhythmia diagnosis and classification from ECG signals by utilizing wavelets and

convolutional autoencoders' distinct abilities.

In the first study wavelet-based convolutional autoencoder was used in anomaly
detection mode designed exclusively for AF detection. Atrial fibrillation is
distinguished by the absence of P waves and irregular heartbeats, which make it
difficult to diagnose due to the nonstationary nature of ECG signals. To solve these
issues, we combined wavelet transformations and convolutional autoencoders.
The effect of the selected wavelet and the size of the signal window were analyzed
heuristically. It is observed that Symlet 4 wavelet with 256 sample windows creates
the best results with an accuracy of 95.44% and an fl score of 95.23% for public

datasets which shows the effectiveness of the algorithm.

In the second study, the wavelet-based convolutional autoencoder was used as a
feature extractor for different arrhythmias. This method combined the time-frequency
analysis skills of wavelet transformations with the feature extraction power of
convolutional autoencoders. The WBCAE retrieved the essential features for
classification using MLP. The model's results illustrate its ability to accurately detect
and classify numerous types of heartbeats with minimal errors. One of the study's key
findings was the significance of wavelet selection. The Bior 3.5 wavelet outperformed
the other wavelets tested, emphasizing the significance of selecting the right wavelet
for the job.

The third study conducts arrhythmia detection by using anomaly detection for different
types of arrhythmias. The anomaly detection method can distinguish normal and
abnormal ECG signals. The performance of our anomaly detection model has shown
significant improvement, especially in detecting rare arrhythmia types. With this
approach, it is possible to detect abnormal functioning earlier and more accurately, and

by doing so, it enables the early implementation of potentially life-saving
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interventions. Future developments, testing this method on larger datasets and
different arrhythmia types will contribute to learning the model's capacity to
generalize. This study highlights the enhancement of anomaly detection techniques in
medical data analysis and provides new research and application opportunities in the
healthcare field. The model's resistance to imbalanced datasets and reasonable
processing complexity increase its suitability for real-time applications such as

wearable health monitoring devices.

While the studies have shown promising results, there are several areas for future study

to improve the proposed models further and extend their applicability:

o  Wavelet Selection Optimization: Develop adaptive algorithms for selecting the
most suitable wavelet based on the characteristics of the input signal to further
enhance classification performance.

e Reducing Computational Complexity: Optimize the models to reduce
computational demands, making them more suitable for real-time applications
and deployment on wearable devices.

o Integration with Wearable Devices: Adapt the models for wearable health
monitoring devices, focusing on real-time processing and energy efficiency.

e Handling Diverse and Noisy Data: Enhance the models’ robustness to noise
and artifacts through advanced preprocessing and data augmentation
techniques.

e Clinical Validation: Conduct clinical trials to validate the models’
performance in real-world settings, ensuring their reliability and effectiveness

for clinical diagnostics.
By addressing these issues, we want to increase the accuracy, efficiency, and
applicability of wavelet-based convolutional autoencoders for cardiac arrhythmia
detection and other biomedical signal-processing tasks. The ultimate goal is to create
complete diagnostic tools that may be extensively used in clinical practice and
integrated into wearable health monitoring devices, allowing for early and accurate

diagnosis of cardiac conditions and improving patient outcomes.
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