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ABSTRACT 

CONVOLUTIONAL AUTOENCODER BASED  

HEART ARRHYTHMIA DETECTION SYSTEM 

Eravcı, Öykü 

MSc, Electrical and Electronics Engineering 

Advisor: Assoc. Prof. (PhD) Nalan Özkurt  

August 2024 

Remote monitoring of patients is essential for the early diagnosis of diseases and 

improving quality of life. The rapid development of deep learning techniques has 

significantly advanced wearable health technologies, making automatic diagnosis 

increasingly important. This study proposes a deep learning approach for classifying 

arrhythmias using a customized wavelet-based convolutional autoencoder (WBCAE) 

model for feature extraction and classification. The autoencoder model ingeniously 

combines the time-frequency domain examination capability of wavelets with the 

data-driven feature learning power of autoencoders. 

This thesis targets the classification of distinct types of cardiac arrhythmias: normal 

sinus rhythm (NSR), right bundle branch block (RBBB), left bundle branch block 

(LBBB), atrial premature contraction (APC), and premature ventricular contraction 

(PVC), in addition to atrial fibrillation (AF). Two different autoencoder approaches 

were employed in this thesis. The first one is to use an autoencoder as an anomaly 

detector, where the autoencoder is trained with only normal samples and abnormal 

inputs produce higher reconstruction errors. The second method is to use an 

autoencoder as a feature extractor. In this approach, samples from all classes are used 

in the training. Then, the compressed representation obtained at the encoder layer 

output is used with a classifier.   

The primary objectives of this thesis are to rigorously evaluate the performance of 

autoencoder-based deep learning algorithms and automate the classification of various  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

cardiac arrhythmias. The findings from our experiments underscore the importance of 

employing deep learning-based models in cardiac disease diagnosis, showcasing the 

immense potential of integrating wavelet methods with autoencoders in biomedical 

signal processing systems. This study substantially contributes to medical diagnostics 

by delivering a dependable tool for early disease detection and patient monitoring, 

ultimately advancing healthcare outcomes. 

Keywords: Deep learning, Atrial Fibrillation (AF), Arrhythmia classification, 

Wavelet-based autoencoder, WBCAE model, Cardiac arrhythmias, Biomedical signal 

processing.  





 

 

ÖZ 

EVRİŞİMSEL OTOMATİK KODLAYICI TABANLI KALP ARİTMİSİ 

TESPİT SİSTEMİ 

Eravcı, Öykü 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Danışman: Doç. Dr. Nalan Özkurt 

Ağustos 2024 

Hastaların uzaktan izlenmesi, hastalıkların erken teşhisi ve yaşam kalitesinin 

iyileştirilmesi açısından çok önemlidir. Derin öğrenme tekniklerinin hızlı gelişimi, 

giyilebilir sağlık teknolojilerini önemli ölçüde ilerletmiş ve otomatik teşhisi giderek 

daha önemli hale getirmiştir. Bu çalışmada, özellik çıkarımı ve sınıflandırma için özel 

bir dalgacık tabanlı konvolüsyonel otomatik kodlayıcı (WBCAE) modeli kullanan 

yenilikçi bir derin öğrenme yaklaşımı öneriyoruz. Otomatik kodlayıcı model, 

dalgacıkların zaman-frekans alanı inceleme yeteneğini, otokodlayıcıların veri odaklı 

özellik öğrenme gücüyle ustaca birleştirir. 

Bu çalışma, normal sinüs ritmi (NSR), sağ dal bloğu (RBBB), sol dal bloğu (LBBB), 

atriyal prematüre kasılma (APC) ve prematüre ventriküler kasılma (PVC) gibi farklı 

tipte kardiyak aritmilerin yanı sıra atriyal fibrilasyonun (AF) sınıflandırılmasına 

odaklanmaktadır. Derin öğrenme tabanlı modelleri kullanarak aritmi 

sınıflandırmasının doğruluğunu ve verimliliğini önemli ölçüde artırmayı amaçlıyoruz, 

böylece erken hastalık tespiti ve kapsamlı hasta izleme için sağlam bir çerçeve 

sağlıyoruz. 

Bu çalışmanın temel hedefleri, otomatik kodlayıcı tabanlı derin öğrenme 

algoritmalarının performansını titizlikle değerlendirmek ve çeşitli kardiyak aritmilerin 

sınıflandırılmasını otomatikleştirmektir. Deneylerimizden elde edilen bulgular, 

kardiyak hastalık teşhisinde derin öğrenme tabanlı modellerin kullanılmasının önemini 

vurgulamakta ve dalgacık yöntemlerinin otomatik kodlayıcılarla entegrasyonunun 

biyomedikal sinyal işleme sistemlerindeki büyük potansiyelini göstermektedir.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Bu çalışma, erken hastalık tespiti ve hasta izleme için güvenilir bir araç sunarak tıbbi 

teşhisler alanına önemli bir katkı sağlamakta ve nihayetinde sağlık sonuçlarını 

geliştirmektedir. 

Anahtar Kelimeler: Derin öğrenme, Atriyal Fibrilasyon (AF), Aritmi sınıflandırma, 

Dalgacık tabanlı otomatik kodlayıcı, WBCAE modeli, Kardiyak aritmiler, 

Biyomedikal sinyal işleme. 
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1. CHAPTER: INTRODUCTION 

1.1. Motivation and Background 

Cardiovascular diseases (CVDs) rank among the top causes of mortality globally. The 

irregular heartbeat, otherwise known as arrhythmia, is vital because it has a significant 

effect on cardiovascular health, which makes the victim susceptible to heart attack. 

Arrhythmias can make the heartbeat too fast, too slow, or irregular, causing poor blood 

flow, hence severe consequences that may result. They disrupt the normal functioning 

of the heart, thus leading to various complications. For instance, specially arrhythmia 

called atrial fibrillation (AF) results in blood pooling in the atria, resulting in clot 

formation. These clots then get transported elsewhere in the body up to the brain, 

causing a stroke (American Heart Association, 2023). 

Moreover, weak heart muscle due to arrhythmias can bring about heart failure with 

time, thus impairing the efficiency with which blood is being pumped. Notably, also 

ventricular tachycardia and ventricular fibrillation are mortal. These root in the lower 

chambers of the heart (ventricles) and can create a risk for sudden cardiac arrest if not 

treated urgently. Abrupt termination of heart beating, primarily due to ventricular 

fibrillation, is one of the most typical causes of myocardial infarction, leading to many 

deaths associated with it (Mayo Clinic, 2022). Furthermore, cardiac arrest is often 

induced by arrhythmias for instance ventricular tachycardia and fibrillation that result 

in the incapacity of the heart to maintain regular blood circulation (McComb, 2006). 

Therefore, patients with right bundle branch block (RBBB) and ST-segment elevation 

from V1 through V3 on electrocardiograms (ECG) who don't exhibit any obvious 

structural heart disease have an elevated risk of sudden death (Brugada et al., 1998).  

To ensure the prevention of these diseases among individuals, especially those who 

are prone to developing arrhythmias, there should be a multidimensional approach. 

Lifestyle modifications are essential because they can significantly prevent this 

condition. For individuals at high risk, medical interventions such as medications, 
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pacemakers, or defibrillators may be necessary to manage and prevent arrhythmias 

(Mayo Clinic, 2023).  

In economical aspect, atrial fibrillation is a significant burden considering the 

substantial cost of hospital stays, treatments, and complications management. Among 

heart rhythm abnormalities, it is one of the most frequent ones that contribute to 

substantial healthcare expenses. According to McBride and Mattenklotz (2009), AF 

has direct costs, including hospitalizations, medications, and procedures, and indirect 

costs, including lost productivity and long-term care for disabilities or complications 

like stroke, which escalates as complications increase. In cases where patients have 

heart failure or stroke, which require costly and intensive interventions, admission 

periods can be prolonged and recurrent for AF patients. To prevent severe 

complications that necessitate emergency care and hospital admission. Atrial 

fibrillation (AF) has become one of the significant contributors to increased medical 

expenses in recent years. The costs related to  AF arise from direct expenditures such 

as medication, hospitalization, and surgeries. On the other hand, there are indirect 

costs, such as loss of productivity by employees who have been incapacitated due to 

disabilities that result from arrhythmias-related strokes, among other causes. 

Protracted stays in the hospital may ensue, especially if a patient also suffers from 

congestive heart failure or when their stroke occurs at frequent intervals, thereby 

requiring expensive diagnostic tests plus therapies respectively. 

The usual way of diagnosis of arrhythmias is to consider standard electrocardiograms 

(ECGs), and event recordings. This method has limited monitoring periods and 

occasionally misses intermittent arrhythmic events among patients who use them. In 

the case of one-day-long ECG recordings of Holter devices, Manually interpreting 

ECG data may require an extensive amount of time and subject to human error, leading 

to potential misdiagnoses (Chung et al., 2022). Therefore, the topic of automatic 

diagnosis methods is very current, and a lot of research is being conducted in this area. 

Convolutional autoencoders (CAEs) represent a class of deep learning models with 

significant potential for various applications. Specifically, CAEs have demonstrated 

great promise in addressing specific challenges in anomaly detection for ECG data. 

The CAEs are of great advantage for processing and analyzing voluminous ECG data 

because of their capacity to learn hierarchical feature representations in an automated 

way. With the help of CAEs with greater computational power, the patient can 
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continuously measure and wear the ECG signal so that extra information cannot be 

provided longer. 

Furthermore, CAEs can induce a severe change in the precision of the arrhythmia 

detection process. These can be trained to understand signals that are small and not 

easy to pick up from the ECG data, which can lead to the elimination of minor 

neglected cases. These models can also be integrated with real-time monitoring 

systems to inform and alert healthcare providers who can act on the information, thus 

providing immediate intervention, which is essential for timely intervention. In 

addition to guaranteeing detection accuracy, CAEs can also automate the interpretation 

of the procedure, minimizing the workload on the medical professions, reducing 

human error, and so on, as well as the cost of service. The entailment of CAEs into the 

already existing arrhythmia detection frameworks can lead to the formation of more 

dependable and efficient diagnostic systems, ultimately leading to the cure of patients 

and the better use of the available resources in the healthcare sector.  

1.2. Literature Review 

Advanced deep learning (DL) and machine learning (ML) approaches have become 

essential in detecting arrhythmias. These techniques improve the efficiency of 

classifying arrhythmias from ECG data, which is crucial for early detection and 

management of cardiovascular diseases. 

Historically, several traditional methods have been employed for arrhythmia detection, 

including: 

• Support Vector Machines (SVM): SVMs are used to classify data by 

identifying the hyperplane in the feature space that efficiently classifies the 

different classes. They have been applied to ECG data to classify normal and 

abnormal heartbeats. However, this is limited by their performance because of 

the complexity of data and the extensive requirement for feature engineering. 

• Decision Trees: Intuitively, decision trees divide data into branches to 

generate predictions. Overfitting can hinder their accuracy when applied to 

ECG data for arrhythmia detection, especially with high-dimensional data. 

• K Nearest Neighbors (KNN): This algorithm classifies samples based on the 

majority class among its k-nearest neighbors in the feature space. Nevertheless, 
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despite being straightforward to implement, KNN faces challenges with large 

datasets and high-dimensional data to typical ECG signals. 

• Feedforward Neural Network (FNN): A feedforward neural network (FNN) 

is a class of artificial neural network (ANN) distinguished by the direction of 

data flow between its layers. Its flow is unidirectional, which means that 

information in the model only flows forward from the input nodes, via the 

hidden nodes, and to the output nodes. AF detection was successfully done 

using a feed-forward neural network proposed by Chen et al. (2021) with an 

area under the receiver operating characteristic curve of 89.40%, a sensitivity 

of 84.26%, a specificity of 93.23%, and an accuracy of 84.00%. In addition, 

Cheng et al. (2020) proposed a direct detection method of AF from compressed 

ECGs with a roughly varying accuracy of 91%. 63% to 98. typically is at a rate 

of 40%, with the compression ratio ranging between 10% and 90%. 

Although successful initially, these traditional methods often have to improve their 

precision and scalability when dealing with the vast volumes of data produced by 

contemporary ECG monitoring systems. This deficiency has resulted in the 

development of more sophisticated approaches. 

Arrhythmia detection has recently been transformed by deep learning. Deep learning 

types such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) have discovered complex patterns from ECG data. 

• Convolutional Neural Networks (CNNs): CNNs continuously use input data 

to determine the spatial hierarchies of features, making them very effective in 

processing grid-like data such as images and time series data such as ECG 

signals. Acharya et al. (2017) achieved high precision in detecting arrhythmias, 

using a nine-layer CNN model to automatically identify five distinct heartbeat 

classes in original and noise-attenuated sets of ECG readings. The model 

correctly classified heartbeats in original and noise-free ECGs with an 

accuracy of 94.03% and 93.47%, respectively. Therefore, because they capture 

detailed patterns without manual feature extraction, CNNs are very well-suited 

for arrhythmia detection. 

Numerous studies are being conducted to enhance the efficacy and 

applicability of deep learning models to detect arrhythmia. Scholars are 
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researching different architectures and training approaches to make these 

models more robust and generalizable. In addition, many patents have been 

filed for this kind of use in medical devices or applications. Substantial work 

has been done on innovation and patentable issues related to the application of 

CNNs in ECG arrhythmia detection. Kumar (2023) and Rajkumar (2019) 

developed CNN models for classifying ECG signals into different arrhythmia 

categories, explicitly mentioning developing a user-friendly web application. 

Ochiai (2018) suggested using a combination of CNN and denoising 

autoencoders to detect arrhythmia. The studies show prospects regarding 

patentable inventions by applying CNNs to ECG arrhythmia detection. There 

has been a focus on how accurate various atrial fibrillation (AF) classification 

methods are, including autoencoder convolutional neural networks (CNN), 

among other deep learning models. Hu et al. (2020) argued that AF 

classification is challenging because some features must be more discernable 

to avoid misclassification, thereby impeding poor results. 

• Recurrent Neural Networks (RNNs): Variants of recurrent neural networks 

(RNNs), particularly long short-term memory (LSTM) networks, are ideal for 

analyzing sequential data. They can incorporate temporal dependencies in the 

data as they are present inherently in time-series ECG signals. These models 

were applied to heartbeats modeling, which is usually a sequential signal, and 

the inclusion of temporal context seems fundamental when handling 

arrhythmia detection. This is a step forward in arrhythmia detection and an 

important shift from common Non-DL approaches. As a result, CNNs and 

RNNs are accurately analyzing complex ECG data and integrating it into 

wearable and remote monitoring systems, which are beginning to transform 

cardiac care. Ongoing research and technical improvements improve these 

models, promising significantly more reliable and efficient arrhythmia 

detection in the future. 

This synthesized study aims to collectively discuss recent developments in applying 

deep learning-based models for arrhythmia and atrial fibrillation (AF) classification, 

referencing essential publications regarding methods and results. This study is among 

the first to leverage an autoencoder pipeline in combination with wavelets. Therefore, 

the success of wavelets in grasping the time-frequency domain distribution of the 
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signals was integrated into the learning capability of autoencoders. Also, a large 

dataset collected from diverse databases was used for train and test to show the 

performance under various conditions. 

Integrating these deep learning techniques into medical devices and applications is 

actively being pursued. Numerous projects and patents are focused on developing real-

time arrhythmia detection systems that can be embedded in wearable devices and 

remote monitoring systems. These systems aim to provide continuous monitoring and 

timely alerts to healthcare providers, improving patient outcomes. 

Developing convolutional neural networks (CNN) and autoencoders has opened up a 

new path for analyzing medical data, particularly regarding the arrhythmia detection 

field. Initially designed for image recognition, CNNs were applied to extract 

characteristics from time series, such as ECG signals. On the other hand, the 

application of autoencoders is realized through their reputation in data compression 

and extraction of features, which can be extended to anomaly detection. For the 

implementation, we aim to give health professionals a more reliable and efficient early 

arrhythmia detection tool based on CNN, autoencoders, and wavelet integration for 

robustness in the augmentation of accuracy through the reduction of false positives, 

potentially saving lives through timely interventions. 

1.3. Aim of Study 

The primary objective of this study is to examine and assess the efficacy of deep 

learning-based models in the automatic classification of cardiac arrhythmias and the 

diagnosis of atrial fibrillation (AF). This study seeks to address the growing need for 

accurate and efficient diagnostic tools in cardiology by leveraging advanced machine-

learning techniques. The specific objectives of this study are outlined as follows: 

• Development of A Customized Wavelet-Based Autoencoder Model: Unlike 

traditional methods that may rely solely on either time-domain or frequency-

domain features, this study introduces a customized wavelet-based 

autoencoder (WBCAE) model. Therefore, a significant potential was offered 

for more detailed and relevant information extraction in the time-frequency 

domain. 

• Utilizing WBCAE for Feature Extraction: The study offers a solution 

approach for deep feature extraction from ECG data sets utilizing wavelet-
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based time series modeling. Following feature extraction, The MLP model is 

used for ECG beat classification, such that the results can fall into one of the 

different classes: normal heartbeats (NSR), right/left bundle branch block 

(RBBB/LBBB), atrial premature beats (APC), or premature ventricular beats 

(PVC).  The proposed approach is evaluated on publicly available datasets to 

achieve high metrics across precision, accuracy, recall, and F1 score.  

• Using WBCAE in Anomaly Detection Mode: We present a customized 

wavelet-based convolutional autoencoder (WBCAE) model as an anomaly 

detector for AF classification. The WBCAE model uses the combined 

capabilities of wavelet transformations and convolutional autoencoders to 

extract significant features from ECG signals. The WBCAE model is trained 

and validated on a comprehensive selection of publicly available datasets. The 

aim is to achieve robust diagnostic performance. Furthermore, the same model 

was tested for general-purpose anomaly detection for ECG arrhythmias. The 

WBCAE is trained with normal sinus rhythm beats and tested with different 

types of arrhythmia data to observe the performance of the anomaly detector.  

By implementing the objectives listed above, we aim to achieve the following general 

objectives: 

• Enhancing Diagnostic Accuracy: To achieve the ultimate goal of increasing 

accuracy rates in the medical area by deep learning algorithms. In these studies, 

we break current diagnostic limitations by employing wavelet-based feature 

selection with a contemporary neural network design. 

• Clinical Relevance: These are relevant to the development of new, non-

invasive diagnostic approaches for cardiology that may enable real-time 

monitoring and diagnosis of heart health. 

• Biomedical Engineering: These studies contribute to the wider field of 

biomedical engineering by demonstrating the practical applications of deep 

learning models in medical diagnostics, delivering a framework for future 

research and development in automated disease identification and 

classification. 

1.4. Thesis Outline 

The contents of the chapters of the thesis are as follows: 
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The Introduction chapter presents the motivation and engineering problem, 

summarizes the literature on arrhythmia detection, and states the study's aims. The 

Overview chapter explains the theoretical background, including ECG, types of 

arrhythmias, and common techniques for arrhythmia detection and classification. The 

Experiments and Results section starts by introducing the WBCAE model, detailing 

wavelet transformation, convolutional autoencoders, and their application in 

arrhythmia detection. A summary of the main findings, a discussion of the 

consequences, and recommendations for further research are provided in the section 

titled Conclusion and Future Work.  
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2. CHAPTER: OVERVIEW 

2.1. ECG 

The heart is a critical organ whose major function is blood circulation throughout the 

body. It functions as a muscle pump, keeping blood flowing by recurring rhythmic 

contractions. The heart is made up of four chambers: the right and left atriums, as well 

as the right and left ventricles. In turn, the deoxygenated blood received from the body 

is passed on into the right ventricle for eventual transmission to the lungs for 

oxygenation. On the contrary, the left atrium receives blood that is already oxygenated 

from the lungs and passes it into the left ventricle, which further sends it around the 

body (Mohrman & Heller, 2023). 

An intrinsic electrical conduction system controls the heart's rhythmic contractions. 

This system is essential for the coordinated contraction of the heart chambers and 

includes the following components and Figure 2.1. below illustrates the heart's 

conduction system: 

• Sinoatrial (SA) Node: The SA node in the right atrium is commonly called the 

heart's natural pacemaker. It starts the electrical impulses that regulate the 

heart's contraction pace. The atrial walls contract in response to impulses sent 

by the SA node, forcing blood into the ventricles (Widmaier, Raff, & Strang, 

2019). 

• Atrioventricular (AV) Node: To allow the atria to complete their contraction 

before the ventricles are, it slightly delays the impulse. Because it assures that 

the ventricles are full of blood before they pump blood out, this delay is 

important (Lilly, 2016). 

• Bundle of His: The Bundle of His allows the signal from the AV node to enter 

the ventricles. The electrical signals are subsequently transmitted down the 

heart's septum by these branches to the right and left bundle into the His bundle 

(Klabunde, 2021). 
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• Right and Left Bundle Branches: To ensure that the electrical activity 

reaches both sides of the heart at the same time, these branches deliver the 

electrical impulse to the appropriate ventricles (Klabunde, 2021). 

• Purkinje Fibers: Purkinje fibers are a representation of the ventricular 

myocardium's spreading and splitting off from the bundle branches. Leading 

to a synchronized contraction that pumps blood from the heart to the lungs and 

the rest of the body, they rapidly conduct the electrical impulse to the 

ventricular muscle cells (Klabunde, 2021). 

 

Figure 2.1. The heart's conduction system. 

Source: Widmaier, Raff, & Strang, 2019 

Electrocardiography (ECG) is the process of constantly recording the heart's electrical 

activity. This is accomplished by a noninvasive procedure in which electrodes are 

implanted in the skin to detect electrical impulses generated by the heart. The impulses 

are plotted on an ECG, which depicts the timing and amount of electrical signals as 

they travel through various areas of the heart. The ECG is critical for identifying 

cardiovascular illnesses such as arrhythmias, myocardial infarctions, and other cardiac 

irregularities. 

The ECG trace consists of several characteristic waves and segments, each 

representing a distinct heart cycle phase: 
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• P Wave: On the ECG, atrial depolarization is shown by the P wave. It starts in 

the right atrium and then moves to the left atrium. Right atrial depolarization 

can be observed in the first half of the P wave, while left atrial depolarization 

is noticed in the second. The P wave’s duration is three small squares wide and 

2.5 small squares high. Normal sinus rhythm is always positive in leads I and 

II, negative in lead aVR, and often biphasic in lead V1 (Sattar et al., 2020). 

• QRS Complex: It represents ventricle depolarization because the impulse 

travels through the AV node. Usually, the duration of the QRS complex should 

be less than three small squares, or approximately 120 ms (usually between 60 

and 100 ms). A widened QRS duration is a hallmark of hyperkalemia or a 

bundle branch block. Conversely, a broad QRS can indicate ventricular rhythm 

or a premature ventricular contraction. 

• Q Wave: The initial negative deflection that might not always be present. 

• R Wave: The initial positive deflection after the P wave. 

• S Wave: The negative deflection following the R wave. 

The QRS complex is significantly larger than the P wave due to the ventricles' greater 

muscle mass than the atria (Sattar et al., 2020). 

• T Wave: It shows ventricular repolarization and is sensitive to various cardiac 

and non-cardiac factors, including hormonal and neurological influences. 

Usually, the T wave is positive in leads with tall R-waves (upward deflection). 

The usual criteria for normal T waves are considered to have a height of less 

than 10 mm and should be between one-eighth and two-thirds the size of R 

waves (Sattar et al., 2020). 

• PR Interval: The duration between the beginning of the P wave and the 

beginning of the QRS complex is measured by this interval. It reflects the time 

the electrical impulse travels from the SA node through the atria, AV node, and 

His-Purkinje system to the ventricles (Goldberger, 2024). 

• ST Segment: This segment is the flat section of the ECG trace between the end 

of the S wave and the beginning of the T wave. It stands for the period when 

the ventricles are depolarized and contracting but not yet repolarized. The ST 

segment is vital in diagnosing ischemia and myocardial infarction (Goldberger, 

2024). 
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2.2. Arrhythmias 

2.2.1. Left Bundle Branch Block 

LBBB is a cardiac conduction disorder causing delayed or blocked electrical impulses 

in the left bundle branch, leading to altered left ventricular activation, contraction, and 

mechanics, and affecting patient diagnosis, treatment, and prognosis. 

2.2.2. Right Bundle Branch Block 

RBBB is a condition that affects the ventricular activation sequence, causing QRS to 

extend and modifying the orientation of R- and S-wave vectors in an ECG. 

2.2.3. Atrial Fibrillation 

AF is an arrhythmia caused by a variety of pathophysiological processes in the atria, 

which culminate in reduced atrial refractoriness and loss of atrial contractility. This 

syndrome is distinguished by rapid and irregular activity in various parts of the upper 

chambers of the heart, which contributes to high cardiac morbidity and mortality. 

2.2.4. Ventricular Premature Contraction 

PVCs are a kind of cardiac arrhythmias caused by ectopic heartbeats originating in the 

ventricles which are the heart's lower chambers, which can occur in healthy individuals 

or indicate serious conditions like structural heart disease, and cardiomyopathy.  

2.2.5. Premature Atrial Contraction 

Premature atrial contractions (PACs) are common irregular heartbeats originating in 

the atria, and upper chambers of the heart, associated with atrial fibrillation, stroke, 

and cardiovascular mortality, but are often considered benign. 

2.3. ECG Arrhythmia Detection and Classification  

2.3.1. Wavelet Transform 

The wavelet transform is an effective mathematical tool used for signal and data 

analysis, compression, and reconstruction. This approach decomposes signals into 

different scales or frequency bands while also providing time and frequency 

information. Unlike the Fourier transform, wavelets can identify frequency 
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components that change over time, giving them substantial advantages for dealing with 

non-stationary signals (Addison, 2017). Therefore, the wavelet transform is used for 

signal and image compression, reduction in noise levels, feature extraction, and time-

frequency analysis. The wavelet transform is used to reduce the space occupied by 

data. It also reduces noise in signals like medical images or time series data. Wavelet 

transform can also be applied to detect significant signal features, such as EEG or ECG 

biomedical signal abnormalities. An essential requirement in identifying transient 

events is the simultaneous processing of time and frequency components. The potential 

applications of the wavelet transform are in signal processing to analyze biomedical 

signals, including the ECG and EEG. Image processing is used in medical and satellite 

pictures, recognizing faces, and image compression. Its applications in engineering 

include vibration analysis,  signal assessment, and structural health monitoring. 

Critical wavelet transform properties, such as multiresolution analysis, allow 

researchers to study a signal's overall structure and details.  

Time-frequency localization allows for the identification of frequency components 

with time. Compactly supported wavelet functions obtain signal analysis, and 

orthogonal wavelets minimize the loss of information when the signals are 

decomposed into components. The various kinds of wavelet transforms are Continuous 

Wavelet Transforms (CWT), representing signals at continuous scales and shifts, 

thereby enabling a high-resolution time-frequency spectrum. Discrete Wavelet 

Transform (DWT) decomposes a signal at discrete scales and shifts and is less 

computationally demanding; therefore, it is more suitable for compression 

applications. Haar wavelets are relatively simple and fast for signal analysis and 

compression. Daubechies wavelets are more complex and smoother, hence providing 

better frequency resolution. Morlet wavelets are suitable for studying frequency, 

Meyer wavelets are smoothing wavelets with frequency domain definitions, and the 

wavelet transform is a comprehensive and powerful analysis technique that has proven 

useful in present signal and image processing. As a result, it was widely used in 

academic research and industrial applications. 

2.3.1.1 Continuous Wavelet Transform 

The continuous wavelet transform decomposes random processes into localized 

orthogonal basis functions for analysis, modeling, and simulation of non-stationary 

processes in a variety of applications, analyzing and reconstructing images, and 
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signals. For example, an equivalent representation might be more understandable or 

shorter than the original data. Generally, a wavelet transform is performed on a 

function f() using a wavelet ψ(). The wavelets are defined as a waveform localized in 

time and space; more formally, one requires that it be an element of, i.e., ψ(t) satisfies 

only some necessary conditions. These functions are manipulated through shifting 

along the time axis and dilation (expanding or compressing the wavelet) to transform 

the signal into a different form, effectively 'unfolding' it in scale and time. 

 

Figure 2.2. Wavelet functions, 4th level of resolution. 

Source: Author 

The 4th level of resolution plots of several wavelet functions used in the thesis are as 

in Figure 2.2. The definition of a continuous signal's wavelet transform for the wavelet 

function is, 

𝑇(𝑎, 𝑏) = 𝑤(𝑎) ∫ 𝑥(𝑡)𝜓∗ -"#$
%
.&

#& 𝑑𝑡  (1) 

w(a) is chosen as 1/ √𝑎   to ensure energy conservation across scales, with the asterisk 

notation implying the use of the wavelet function's complex conjugate during the 

transformation process. 
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From this point forward, we will use w(a) = 1/ √𝑎   Therefore, the wavelet transform 

has the following expression: 

𝑇(𝑎, 𝑏) = "
√%
	∫ 𝑥(𝑡)	𝜓∗ -"#$

%
.&

#& 𝑑𝑡	  (2) 

This is called the continuous wavelet transform (CWT). Here, we integrate the product 

of the wavelet function and the signal over the entire signal range. In simple terms, 

this integration process is known as convolution. The normalized wavelet function is 

often written more simply as, 

𝜓𝑎,𝑏(𝑡) =
1
√𝑎
	𝜓 #1−𝑏𝑎 $  

(3) 

Therefore, the normalization ensures that the energy of the wavelet function is 

considered. As a result, the integral of the transform can be expressed as, 

𝑇(𝑎, 𝑏) = 2 𝑥(𝑡)
&

#&
	𝜓%,$∗ (𝑡)	𝑑𝑡 

(4) 

An inverse wavelet transform is defined as follows: 

𝑥(𝑡) =
1
𝐶-
2 2 𝑇(𝑎, 𝑏)

&

.

&

#&
	𝜓%,$⬚ (𝑡)	

𝑑𝑎	𝑑𝑏
𝑎/  

(5) 

Through integration over all scales and locations, b, this approach enables the 

reconstruction of the original signal from its wavelet transform. It's important to note 

that we use the original wavelet function in the inverse transform, not its conjugate as 

used in the forward transformation. If we restrict the integration to a specific variety 

of scales, we can perform a basic filtering operation on the original signal rather than 

considering all possible scales. 

2.3.1.2 Discrete Wavelet Transform 

It is feasible to restore the original signal entirely by utilizing finite sums of discrete 

wavelet coefficients instead of continuous integrals, which are necessary for the 

Continuous Wavelet Transform (CWT). Its ability to handle the Fast Wavelet 

Transform enables the ability to compute the discrete wavelet transform and its inverse 

rapidly (Addison, 2017). 
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The wavelet transform of a continuous-time signal, x(t), is examined using discrete 

values for the dilation (scale) and translation parameters, a and b. One approach to 

discretizing these parameters is using a logarithmic scale for a, which governs the 

scale, and linking this to discrete steps in b, which determine the translation locations. 

This wavelet discretization method follows a structured format where b moves in 

discrete steps proportionate to the scale a. 

𝜓#,%(𝑡) = 	
&

'(!"
𝜓#)*%+!(!

"

(!"
$  (6) 

The parameters m and n determine the dilation and translation of the wavelet, 

respectively. 𝑎. is a predefined fixed parameter for dilation, set to a value greater than 

1, while 𝑏. is a location parameter that must be greater than zero. The parameters m 

and n can take any integer value, including positive and negative ones. 

Typical selections for the discrete wavelet parameters	𝑎. and 𝑏. are 2 and 1, 

correspondingly. This logarithmic scaling, where both dilation and translation steps 

follow powers of two, is referred to as the dyadic grid arrangement. The dyadic grid is 

regarded as the most basic and economical discretization approach for practical 

applications, allowing the generation of an orthonormal wavelet basis. By substituting 

𝑎.= 2 and 𝑏.= 1 into equation (6), we observe that the dyadic grid wavelet can be 

expressed as, 

𝜓𝑚,𝑛(𝑡) =	
1

'2𝑚
𝜓 #𝑡−𝑛2

𝑚

2𝑚 $  (7) 

Employing the dyadic grid wavelet from equation (7), The discrete wavelet transform 

(DWT) has the following expression: 

𝑇4,5 =	∫ 𝑥(𝑡)&
#& 𝜓4,5(𝑡)	𝑑𝑡  (8) 

Selecting an orthonormal wavelet basis, denoted as 𝜓4,5(𝑡),	allows us to reconstruct 

the original signal in relation to the wavelet coefficients, 𝑇4,5  using the inverse 

discrete wavelet transform in the following manner: 

𝑥(𝑡) = 	𝑇4,5 	 5 5 𝑇4,5	
&

56#&

&

46#&

𝜓4,5(𝑡) 
(9) 
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Figure 2.3. Two level decomposition and reconstruction from coefficients by low-

pass and high-pass filters. 

Source: Addison, 2017 

2.3.2. Neural Networks 

One of the most popular methods for mimicking how biological organisms learn is the 

use of artificial neural networks. An illustration of such a network in humans is the 

nervous system, where the main unit is the neuron that is connected and communicates 

with others using axons and dendrites at synapses, as shown in Figure 2.4(a). These 

synaptic connections change with experience and learning. To do this, artificial neural 

networks use computational units, termed neurons. In contrast to the biological neural 

network, these artificial counterparts depend on weights rather than synaptic strengths. 

Inputs to a neuron are influenced by these weights, which scale the neuron's calculation 

to produce an output. Figure 2.4 (b) An artificial neural network computes an output 

to give some inputs. It does this through the conduction of values from input to output 

neurons via weights acting as intermediary factors. Learning is achieved through 

changes to these weights connecting the neurons. (Aggarwal, 2018). 
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Figure 2.4. The link between neurons at the synapses. 

Source: Aggarwal, 2018 

2.3.2.1 The Perceptron 

The perceptron is the most straightforward class of neural networks. A perceptron has 

a single layer for input and one output node. A simple diagram of a perceptron is shown 

in Figure 2.5. The single-layer perceptron is one of the building blocks for artificial 

neural networks and was developed by Frank Rosenblatt. Perceptron is a basic model 

of an artificial neural network used for solving linearly separable tasks, pattern 

recognition, and classification, with applications in machine learning and 

computational models. 

 

Figure 2.5. The basic architecture of the perceptron. 

Source: Author 

A single-layer perceptron operates with an input vector x = [𝑥",	𝑥/,…,	𝑥5] and weight 

vector w = [𝑤",	𝑤/,…,	𝑤5] The goal is to check whether the product of the input vector 
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and the weight vector exceeds a threshold value, thereby producing an output. Steps 

as follows, 

1. Dot Product of Input and Weight Vectors:  

z	 = 	w ⋅ x	 = 	𝑤"𝑥"	 + 𝑤/𝑥/	 + ⋯+ 𝑤5𝑥5	 (10) 

2. Activation Function: The resulting z value is passed through an activation function, 

typically a step function for single layer perceptrons, θ is the threshold value. 

𝑦 = 	 =1,			𝑖𝑓	𝑧 ≥ θ
0,			𝑖𝑓	𝑧 < θ (11) 

3. Weight Update: During learning, weights are updated based on the difference 

between the predicted output and the actual output. The weight update rule is as 

follows: 

𝑤7 =	𝑤7 +	∆𝑤7 (12) 

Δ𝑤7 is the product of the learning rate (η) and the error (t−y), multiplied by the 

input value (𝑥7): 

	∆𝑤7 = 	𝜂(𝑡 − 𝑦)	𝑥7 (13) 

Repeat steps of (Equations 10 - 13) until convergence or a predetermined number 

of iterations. 

2.3.2.2 Convolutional neural networks 

CNNs are a kind of deep neural network that has revolutionized the task areas in 

computer vision and image processing. In particular, CNNs are designed to process 

structured grid data, especially images, to solve classification, image segmentation, 

and object detection tasks. CNNs have found their inspiration through the biological 

processes of the visual cortex. Spatial hierarchies of features can be automatically and 

adaptively learned by a CNN architecture from input images. This property of 

hierarchical learning makes CNNs strong in managing the complexity and high 

dimensionality of visual data. 

CNNs essentially involve convolutions, which are the actions of passing a filter or 

kernel through the input data such that feature maps are created. The process is similar 

to how the human brain processes visual information: it detects, in a hierarchical 
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manner, various edges and textures, along with other more complex structures. Some 

main layers in a usual CNN architecture are the convolutional, pooling, and fully 

connected (dense) layers. Each of the layers has a specific role in the processing 

pipeline. 

• Convolutional Layer: This is the basic module of a CNN. Convolutional 

layers apply an ensemble of learnable filters to the incoming data. When the 

filter moves across the input image, it does dot product operation and creates a 

feature map representing the presence of particular characteristics in various 

locations. 

 
Figure 2.6. The Convolution between an input layer and filter. 

Source: Aggarwal, 2018 

• Pooling Layer: After the convolutional layer, pooling layers are applied to 

down-sample the spatial dimensions of the feature maps. This reduces the 

computational load and also provides spatial invariance that makes the network 

robust to the variations in the input. The operation of max pooling is shown in 

Figure 2.7. with 7 × 7 map strides of 1 and 2. 
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Figure 2.7. Max-pooling applied to a single activation map. 

Source: Aggarwal, 2018 

• Fully Connected Layer: After some convolutional and pooling layers, the 

final classification is done via fully connected layers. These flatten the previous 

layer into a one-dimensional tensor to feed it into standard feed-forward neural 

networks to classify the images. 

Training a CNN is, in other words, finding out the most optimized weights for the 

filters in convolutional layers and connections in fully connected layers. Gradient 

descent is applied, most generally, through backpropagation. The process of training 

includes: 

• Forward Propagation: The input is fed to the model. At each convolutional 

layer, feature maps are generated. After that, the pooling layers down-sample 

those characteristics, and the features obtained from it are passed to fully 

connected layers to give the final output, such as class scores. 

• Loss Calculation: The loss function compares the network output with the 

actual ground truth labels, trying to quantify the difference or loss between 

actual and predicted labels. 

• Backward Propagation: It is a neural network learning algorithm that adjusts 

weights to minimize error and is useful in a variety of fields such as image 

compression, pattern recognition, and music analysis. It can learn complex 

nonlinearity and adaptive control, but it has limitations such as slow training. 

• Parameter Update: The network parameters are updated using an 

optimization algorithm, such as stochastic gradient descent (SGD), which 
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adjusts the weights in the direction that minimizes the loss (Goodfellow et al., 

2016). 

CNNs have been successfully applied to various applications, demonstrating their 

versatility and power in handling visual data. 

Batch Normalization 

Batch normalization is the newer technique devised to alleviate the vanishing and 

exploding gradients problems, in which gradients of activations in successive layers 

diminish or amplify in magnitude. Another major issue in training deep networks is 

internal covariate shift. Such a problem arises due to the variation of network 

parameters during the training process, leading to shifts in hidden variable activations 

(Aggarwal, 2018). In other words, the inputs from previous layers to later layers 

fluctuate back and forth, slowing down convergence when the later layers hit unstable 

data in the training. Batch normalization solves both problems by inserting 

"normalization layers" between hidden layers to change the features with more stable 

variance and stabilize training dynamics. 

Activation Functions  

Activation functions are applied in artificial neural networks to compute the output of 

neurons. Here, the activation functions transform the weighted sum of inputs to an 

output in a specified range, allowing the neural network to understand and identify 

complex patterns. Activation functions that are used alongside their formulas will be 

explained below. 

• Sigmoid Activation Function:  

The output is restricted by the sigmoid function to a range of 0 to 1. The formula 

is as follows: 

𝜎(𝑥) =
1

1 + 𝑒#8 (14) 

The main advantage of this function is that it keeps outputs within a bounded range. 

However, it can slow down the learning process due to small derivatives for large 

or small inputs. 

• ReLU (Rectified Linear Unit) Activation Function  
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The ReLU function leaves positive inputs unchanged and sets negative inputs to 

zero. The formula is as follows: 

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (15) 

ReLU is computationally simple and fast. It also performs well with large datasets.  

• Leaky ReLU Activation Function 

Leaky ReLU is a variation of the ReLU function that provides a small slope for 

negative inputs. The formula is as follows: 

Leaky ReLU(𝑥) = { 𝑥 𝑥 > 0
𝛼𝑥 𝑥 ≤ 0 (16) 

Here, 𝛼 is typically a small value (e.g., 0.01) in Equation 16. This allows some 

activation for negative inputs, reducing the "dead neuron" problem. 

 

Figure 2.8. Activation functions. 

Source: Author 

Loss Functions 

Loss functions define the error between target values in the train data and the 

prediction generated by a model. This needs to be minimized to increase the models' 

predictive power. This study measures the model's performance using mean absolute 

error (MAE). 

Mean Absolute Error 
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The mean absolute error, commonly used in loss functions, is the average magnitude 

of errors without considering direction. 

𝑀𝐴𝐸 =
1
𝑛5|

5

76"

𝑦7 − 𝑦
^
7| 

(17) 

Where in Equation 17: 

• n is the number of data points. 

• 𝑦7is the actual value for the i-th data point. 

• 𝑦
^
7is the predicted value for the i-th data point. 

2.3.3. Autoencoder 

Autoencoders are artificial neural networks used to learn effective codings in an 

unsupervised manner. Learning a representation for a set of data is the fundamental 

concept of an autoencoder, usually by trying to find good ways to compress and 

decompress the data. Besides its basic compression and decompression functionality, 

an autoencoder can learn a highly vital feature of the data, which can be used to 

reconstruct the input from this compressed representation. This study describes the 

architecture, types, applications, and challenges of autoencoders as part of machine 

learning. 

The encoder and the decoder are the two primary components of autoencoders. The 

input is compressed by the encoder into a latent-space representation, which the 

decoder then uses to recreate the original input. Mathematically, if 𝑥 is the input data, 

the encoder function 𝑓 maps 𝑥 to 𝑧, the latent representation, and the decoder function 

𝑔 maps 𝑧 back to 𝑥:, the reconstructed input. The goal is to minimize the reconstruction 

error, which can be expressed as: 

𝐿(𝑥, 𝑥:) = ||𝑥 − 𝑥:||/ (18) 

where 𝐿 is the loss function, typically the mean squared error or mean absolute error. 

The encoder part of AE transforms the input data 𝑥 into a latent representation 𝑧. It 

reduces the dimensionality of the data, capturing the most salient features. The encoder 

can be represented as: 
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𝑧 = 𝑓(𝑥) = 𝜎(𝑊𝑥 + 𝑏) (19) 

Where 𝑊 and 𝑏 are the weight matrix and bias vector of the encoder, respectively, and 

𝜎 is the activation function in Equation 19. 

The decoder part of AE reconstructs the original data from the latent representation. It 

maps the latent space back to the input space and can be represented as: 

𝑥: = 𝑔(𝑧) = 𝜎(𝑊:𝑧 + 𝑏:)	𝑥: (20) 

Where	𝑊: and 𝑏: are the decoder's weight matrix and bias vector, respectively, and 𝜎 

is the activation function. 

 

Figure 2.9. General architecture of an autoencoder. 

Source: CompThree, n.d. 

The architectures and the type of constraints applied to the autoencoders put them into 

different categories. Some of the most commonly used are the undercomplete, sparse, 

denoising, variational, and contractive autoencoders. An under-complete autoencoder 

is one in which the dimensionality of the latent space is lower than that of the input 

space, hence forcing the network to learn essential features of the data—in essence, 
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with its primary objective as that of a dimensionality reduction method. The hidden 

representation of sparse autoencoders is then enforced with a sparsity constraint, 

meaning that at any time, only a few neurons will be active, rendering their features 

useful for tasks like image recognition and anomaly detection. Denoising autoencoders 

(DAEs) are specialized autoencoder neural networks trained to reconstruct the original 

input from a corrupted or noisy version. This training process helps in learning robust 

representations that can effectively handle noise and corruption in the data (Vincent, 

2011). A probabilistic approach for auto-encoders introduces variational autoencoders, 

which map inputs to a distribution in place of a single point in the latent space and 

apply a probabilistic encoder and decoder; this term includes a loss that enforces 

learned distribution to be near a prior distribution. Lastly, contractive autoencoders 

add a penalty term to the loss function that penalizes large derivatives of the encoder 

function, ensuring that the encoder is less sensitive to minor variations in the input, 

which leads to more robust feature learning. 

Due to their capacity to learn compact and meaningful data representations, 

autoencoders can be applied to various domains. Autoencoders can be considered a 

dimensionality reduction technique, much like Principal Component Analysis (PCA), 

which reduces the features in data while maintaining vital information to be useful for 

visualization and data processing. Additionally, autoencoders can serve as anomaly 

detectors since they learn normal patterns from the data; this is because anomalies tend 

to give rise to high reconstruction errors, meaning that unusual patterns within the 

dataset can be found. Furthermore, denoising autoencoders can be instrumental in 

image enhancement and preprocessing by learning to reconstruct noisy images into 

their original versions. Moreover, variational autoencoders allow for the generation of 

new samples via sampling through learned latent space, thus facilitating applications 

like image generation, data augmentation, and semi-supervised learning. Lastly, these 

learned features often yield better performance than raw data because an Autoencoder 

can extract valuable features from the data applicable to other tasks, such as 

classification or clustering. 

Autoencoders are powerful, unsupervised learning tools capable of learning compact 

and meaningful data representations. They have many uses, from dimensionality 

reduction and anomaly detection to image denoising and data generation. However, 

they also come with challenges such as overfitting, interpretability, and computational 
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complexity. Despite these challenges, ongoing research continues to improve the 

robustness and efficiency of autoencoders, making them an essential component of 

modern machine-learning techniques.
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3. CHAPTER: EXPERIMENTS AND RESULTS 

The convolutional autoencoder model designed custom and used in the following studies will be 

mentioned in this section. Over the past few years, deep learning and signal processing have joined 

forces to create new ways to analyze data and extract features. A Wavelet-Based Convolutional 

Autoencoder (WBCAE)  model is proposed in this thesis for arrhythmia detection and 

classification. Unlike Fourier transforms, which give frequency info but lose track of time, 

wavelets keep both time and frequency details. This makes them great for looking at signals that 

change over time. The WBCAE combines wavelet transforms and convolutional neural networks 

(CNNs) into one model. Therefore, this model uses the advantages of both methods to improve 

feature extraction and data representation. This section looks at how Wavelet-based CAEs are 

built, how they work, and the results of the experiments. 

A WBCAE typically consists of the following components: 

• Wavelet Transform: The wavelet transform divides incoming data into frequency 

components. This method generates wavelet coefficients, which display the data at various 

scales and resolutions. The wavelet transform is useful for analyzing signals with 

temporary characteristics that change properties. It permits multi-level analysis of signals 

ranging from wide to detailed, which is crucial for detecting localized signal properties that 

vary over time (Li et al. 2023). 

• Convolutional Encoder: A convolutional encoder receives wavelet coefficients. This 

encoder contains several convolutional layers that apply filters to the wavelet coefficients. 

These layers capture geographical hierarchies and reduce the data size. The encoder's 

primary function is to compress the data into a smaller latent space while retaining 

important properties. 

• Convolutional Decoder: The squeezed version from the encoder is passed through a 

convolutional decoder, which attempts to recreate wavelet coefficients. The decoder 

utilizes deconvolutional layers (also known as transposed convolutional layers), which 

enhance the latent representation to match the original size of the wavelet coefficients. 
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• Inverse Wavelet Transform: To return the reconstructed wavelet coefficients to the 

original data domain, an inverse wavelet transform is applied. This phase guarantees that 

the output data looks identical to the original data, reducing reconstruction errors. 

3.1. Determination of Atrial Fibrillation with WBCAE Anomaly Detection 

Remote patient monitoring is crucial for early disease detection and improving quality of life. 

Advances in deep learning have propelled wearable health technologies forward, enhancing 

automatic diagnosis capabilities. The deep learning approach for classifying atrial fibrillation (AF) 

arrhythmia is presented in this study using a customized wavelet-based convolutional autoencoder 

(WBCAE). The WBCAE combines the time-frequency analysis of wavelets with the feature-

learning ability of convolutional autoencoders, serving as an anomaly detector.  

Atrial Fibrillation (AF) is the most studied heart rhythm disorder, characterized by irregular and 

rapid atrial rhythm (300-500 beats per minute). Unlike the regular impulses in Normal Sinus 

Rhythm (NSR), AF results from abnormalities in impulse generation or cellular connections, 

leading to chaotic impulses. Despite advancements, accurately classifying AF remains 

challenging, complicating treatment plans and prognosis. 

This study aims to develop a Wavelet-based Convolutional Autoencoder (WBCAE) for efficient 

AF detection. The study's contributions include: 

1. Enhancing AF detector performance using convolution filters on a single ECG signal 

channel. 

2. Combining wavelet signal analysis with deep learning via the WBCAE structure. 

3. Addressing data imbalance by training the network with a single signal type using anomaly 

detection. 

Anomaly detection entails identifying uncommon or atypical data points that significantly deviate 

from the majority of the data. Autoencoders are particularly adept at this task because they are 

trained to reconstruct normal patterns. During the testing phase, when encountering anomalous 

data, the reconstruction error tends to be higher, making it feasible to identify these anomalies. 

Steps in Anomaly Detection Using Autoencoders 

1. Training on Normal Data: The autoencoder is trained using normal sinus rhythm data, 

allowing it to learn the patterns and features of this data. 
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2. Reconstruction Error: During the testing phase normal and anomaly data are used and 

the autoencoder attempts to reconstruct new data. For normal data, the reconstruction error 

will be low. For anomalous data, the error will be high. 

3. Threshold Setting: A threshold for the reconstruction error is set based on the distribution 

of errors for the normal data. Data points with errors above this threshold are classified as 

anomalies and below are classified as normal. 

This model emphasizes identifying abnormalities over simply categorizing rhythms, offering a 

novel approach to AF detection. Testing on diverse datasets demonstrates its flexibility and 

reliability, distinguishing it from other studies. 

3.1.1. Dataset 

When discovered too late, atrial fibrillation can result in mortality, an embolism, or even a stroke. 

The most used method for timely detection of this severe condition is the examination of ECG 

records. In ECG recordings, three specific signs of atrial fibrillation are mainly considered: the 

absence of the P wave, irregular RR intervals, and fibrillation on the baseline.  

 

Figure 3.1.  Normal Sinus Rhythm and Atrial Fibrillation ECG recordings.  

Source: Clifford et al., 2017 

Figure 3.1 illustrates ECG recordings of normal sinus rhythm and atrial fibrillation. As can be 

observed from the upper graph, P waves, QRS complexes, and T waves can be easily identified 

for each beat. The distance between R peaks is regular. However, the second graph observes beats 

in irregular time instants. Furthermore, P peaks are absent, and a quivering isoelectric line is shown 

at the TQ interval. Autoencoder studies were carried out using publicly available ECG databases. 

NSR data “MIT-BIH Sinus Rhythm Database” (NSRDB) (Goldberger et al., 2000) and Atrial 
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Fibrillation data “MIT-BIH Atrial Fibrillation Database (AFDB)” (Moody, 1983), “The 

PhysioNet/Computing in Cardiology Challenge 2017” (AFPC) (Clifford et al., 2017) taken from 

databases. Table 3.1 is a list of all the database's features.  

Table 3.1. shows that NSRDB includes 24-hour data from 18 healthy individuals. In contrast, 

AFDB includes 10-hour AF and non-AF data from 25 patients and short-term single-channel ECG 

recordings used in the competition held by Physionet in 2017. Only the AF portion of the Physionet 

competition data was included in this study. The locations and beat labels of the QRS complexes 

of ECG signals in the NSRDB and AFDB databases are available.  

Table 3.1. Description of the databases. 

Data Subject Lead Duration of 

recordings 

Sampling 

frequency 

NSRDB 18 2 24  

Hours 

128 Hz 

AFDB 25 2 10  

Hours 

250 Hz 

AFPC 771 1 10-60 seconds 300 Hz 

AF signals in the AFPC database were separated with the Pan Tompkins algorithm and labeled by 

expert authors of this study. The sampling frequency was converted to 250 Hz for data at different 

sampling frequencies. Before the data was applied to the autoencoder, the signal was divided into 

256 sample windows, which can be seen in Figure 3.2.   
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Figure 3.2. Illustration of ECG Signal Windowing. 

Source: Author 

In Figure 3.2., each red line shows the interval of a signal window and Table 3.2. lists the number 

of data windows resulting from the process. 

Table 3.2. Number of Data Windows Used in Training and Testing 

Data NSRDB AFDB AFPC 

Number of frames used for 

training 

800,000 - - 

Number of frames used in 

testing  

(Test 1) 

395,455 395,455 - 

Number of frames used in 

testing  

(Test 2) 

32,010 - 32,010 

 

3.1.2. Evaluation methods 

This study uses an autoencoder for anomaly detection to recognize AF and NSR ECG signals. In 

anomaly detection, AE is trained with only a single class data, so the model is optimized to 

represent this data. In this study, the autoencoder was trained with NSR data to minimize the 

reconstruction error, as depicted in Figure 3.3. In the testing phase, NSR and AF signals are applied 

to the AE, and the reconstruction error is calculated, as seen in Figure 3.3. This approach allowed 
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for the evaluation of how well the autoencoder could reconstruct both NSR and AF signals, 

providing insights into its performance in distinguishing between the two rhythm types. If the error 

is less than the given threshold value, it is labeled as NSR; if it is greater than the given threshold 

value, it is labeled AF. 

 

Figure 3.3. Train and test of AE with NSR and AF rhythms in anomaly detection. 

Source: Author 

The critical issue in anomaly detection is to select the threshold. In this study, the following steps 

are applied to obtain an acceptable threshold value that leads to successful detection: 

1. Use the model to calculate reconstruction loss on normal data. 

2. Use the model to calculate reconstruction loss for anomalous data. 

3. Generate a range of threshold values between the minimum and maximum reconstruction 

loss values observed in the normal data. 

• Iterate over different threshold values to find the best F1 score. Compute the precision, 

recall, and F1 scores for each threshold value. 

• Update the best F1 score and corresponding threshold if the current F1 score exceeds 

the previous one. 

4. Return the best threshold and corresponding F1 score as the optimal threshold. 

The identified optimal threshold is applied to the mixed test data, consisting of normal and atrial 

fibrillation samples. The performance of the chosen threshold is assessed using several metrics, 
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including F1 score, precision, and recall, to assess the effectiveness of the anomaly detection 

system. After detecting normal and anomaly with threshold, the results of the models were 

examined with the evaluation metric. 

3.1.2.1 Evaluation Metrics 

Accuracy 

The percentage of correctly identified cases out of all the instances is what accuracy measures. It 

is a fundamental metric for evaluating the overall performance of the classification model. 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (21) 

Where in Equation 21: 

   TP = True Positives 

   TN = True Negatives 

   FP = False Positives 

   FN = False Negatives 

Precision 

The number of true positive predictions made out of all positive predictions is what precision 

quantifies. It shows how many predicted positives are positive. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (22) 

Recall 

The number of true positive predictions created out of all actual positive cases is known as recall 

or sensitivity. It indicates how many of the actual positive instances the model correctly identified. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (23) 

F1-Score 
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The F1-score combines both precision and recall into one measure by calculating their harmonic 

mean. This metric offers a balanced view of the model's performance, considering both how often 

it correctly identifies positive cases and how accurately it excludes negative ones. 

F1-Score = 2 ×
Precision × Recall
Precision+ Recall 

(24) 

These metrics collectively give a detailed insight into the model's performance, highlighting its 

strengths and areas needing improvement. 

3.1.3. Wavelet Based Convolutional Autoencoder Design 

In this study, An EncoderMiniBlock and DecoderMiniBlock, which are Wavelet-based 

Convolutional AutoEncoder (CAE) parts, are custom designed. When considering the feature 

space, the likelihood of overfitting increases with the complexity of the model during training. 

This study preferred a simple architecture to avoid overfitting and simultaneously reduce 

computational complexity. The proposed model is given in Figure 3.4. 

 

Figure 3.4. Proposed Wavelet-Based Convolutional Autoencoder Model. 

Source: Author 

The optimal model was discovered by experimenting with different models, changing 

architectures, layer counts, and other configurations. We found that the proposed model performed 

the best after trying various options. Figure 3.4 shows three EncoderMiniBlocks containing 128, 

64, and 32-dimensional filters used in the encoder. Similarly, 32, 64, and 128-dimensional 
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decoding MiniBlocks are included in the decoding section. The last layer contains a single-unit 

fully connected layer (dense layer) and a Rectified Linear Unit (ReLu). Within the 

EncoderMiniBlock are convolutional layers or 1D convolution layer, discrete wavelet transform 

(DWT) layer, batch normalization layer, and dropout layer, respectively. WaveTF library was used 

for wavelet function implementation (Versaci, 2020). 

WaveTF is a TensorFlow library that implements 1D and 2D wavelets, transforms them, and 

exposes them as Keras layers to easily add them to machine learning workflows. The library 

implements the most used Haar and DB2 wavelet kernels. Anti-symmetric reflection filling is 

applied to handle boundary effects, which broadens the signal while preserving its first-order finite 

difference at the boundary. WaveTF transparently supports both 32- and 64-bit floating point at 

runtime.  

Table 3.3. Reconstruction of low pass filter coefficients of the wavelet functions 

 Db2 Db3 Db4 Sym4 Coif2 Bior 3.5 

𝒈𝟎[𝟎] 0.48296 0.03223 -0.230378 0.032223 0.016387 0.0 

𝒈𝟎[𝟏] 0.836516 0.08544 0.714847 -0.012604 -0.041465 0.0 

𝒈𝟎[𝟐] 0.2241439 -0.13501 0.630881 -0.099219 -0.067373 0.0 

𝒈𝟎[𝟑] -

0.1294095 

-0.45988 -0.027984 0.2978578 0.3861101 0.0 

𝒈𝟎[𝟒]  0.80689 0.187035 0.8037388 0.8127236 0.1767767 

𝒈𝟎[𝟓]  -0.33267 0.0308414 0.4976187 0.417005 0.5303301 

𝒈𝟎[𝟔]   -

0.0328830 

-0.029636 -0.0764886 0.5303301 

𝒈𝟎[𝟕]   -0.010597 -0.075766 -0.0594344 0.1767767 

𝒈𝟎[𝟖]     0.02368017 0.0 

𝒈𝟎[𝟗]     0.00561144 0.0 



 38 

𝒈𝟎[𝟏𝟎]     -0.0018232 0.0 

𝒈𝟎[𝟏𝟏]     -0.0007206 0.0 

If wavelet transformation is active in the EncoderMiniBlock, the transformation function is 

defined for the selected wavelet. In the original version of the library, only Haar and Daubechies 

2 wavelets are defined. In this study, wavelets successfully used in literature for arrhythmia 

detection were also adapted to the library. The DecoderMiniBlock contains a 1D transpose 

convolution layer, Inverse Wavelet Transform (IDWT) layer, batch normalization layer, and 

dropout layer. This study conducted autoencoder experiments with Haar and DB2 wavelets and 

wavelets that generally give successful results in biomedical signal classification. To implement 

wavelet transform in WaveTF library, the low-pass reconstruction filter coefficients should be 

entered as model parameters.  The wavelet coefficients used are listed in Table 3.3. 

3.1.4. Experiments and Results 

This study aims to train the wavelet-based convolutional autoencoder with a single class of data, 

optimize it according to this signal, and obtain an efficient system separating the signal type from 

others in the testing phase. Model in Figure 3.4. was trained with NSR data from the NSRDB 

database. At the end of the training, the tests were performed with data from the NSRDB database, 

which the model did not see in training, and data taken from two different databases, AFDB and 

AFPC. Experiments were conducted in the TensorFlow 2 environment in Python 3. If there is no 

improvement in the validation error for ten epochs, early stopping is applied to prevent overfitting. 

Adagrad optimization algorithm was used with 128-dimensional batches. The initial learning rate 

was chosen as 10-3. The train is set to continue for a maximum of 50 epochs. In Test 1, 395,455 

entries from the NSRDB database and 395,455 from the AFDB database were used. In Test 2, 

32,010 entries from the NSRDB database and 32,010 from the AFPC database were used. The 

model was trained with 800,000 NSR entries from the NSRDB database for both tests. The data is 

divided into separate sets for train and test purposes. During training, the model learns to 

reconstruct the input data without exposure to the patient's data in the test set. This ensures that 

the test set consists of unseen examples, allowing for a rigorous evaluation of the model's 

generalization performance. Therefore, when training an autoencoder, the test data remains 

entirely independent, ensuring an unbiased assessment of the model's ability to reconstruct unseen 

instances. 
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3.1.4.1 Experiment 1: Effect of wavelet family on performance 

This experiment assesses how different wavelet families impact the performance of convolutional 

autoencoder models in anomaly detection tasks using ECG signals. By training multiple models 

with various wavelet families (e.g., Daubechies, Symlet, and Coiflet), the study aims to identify 

the optimal wavelet family that enhances the model's ability to extract relevant features and 

accurately detect anomalies. The WBCAE Model (Figure 3.4.) structure was established without 

a wavelet layer and also with the various wavelets. The system was optimized, and the loss 

function MAE, which gave the best results, was selected. The results of the experiments are listed 

in Table 3.4 and Figure 3.5. (a) and (b) separate performance graphs for both experiments are 

given according to wavelet type. 

Table 3.4. Experiment 1 Results: Analysis and Findings 

Wavelet Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

No 

Wavelet 

Test 1 57.09 78.62 55.02 64.74 

 Test 2 50.14 99.37 50.07 66.58 

Haar Test 1 91.44 94.61 87.92 91.14 

Test 2 94.03 99.98 88.09 93.66 

Db2 Test 1 91.79 94.41 88.88 91.56 

Test 2 93.94 99.96 87.92 93.55 

Db3 Test 1 92.21 98.48 85.77 91.69 

Test 2 94.23 99.99 88.46 93.88 

Db4 Test 1 84.23 85.32 82.77 84.02 

Test 2 91.44 100.00 82.89 90.64 

Sym4 Test 1 92.96 94.95 90.77 92.81 
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Test 2 95.44 99.99 90.90 95.23 

Coif2 Test 1 76.70 72.87 85.22 78.56 

Test 2 92.68 99.96 85.39 92.10 

Bior3.5 Test 1 86.98 87.89 85.85 86.86 

Test 2 93.02 99.99 86.05 92.50 

When Table 3.4. and Figure 3.5. are examined, it is observed that the addition of a wavelet layer 

improves the classification performance noticeably. Among all wavelet families, Symlet 4 

produced the best accuracy, and all the scores are balanced for this wavelet. In Test 2, all wavelets 

achieved better results compared to Test 1. The downloaded site provided the labels of the AFDB 

database used in Test 1. However, upon visual inspection by the experts, it was determined that 

the labeling was done in blocks, and some AF beats had more normal sinus rhythm characteristics 

than AF. Our cardiologist authors relabeled all the beats in the AFPC dataset, and all the beats 

used in Test 2 were correctly identified. This may explain the difference between the classification 

performance. Symlet 4 wavelet is evenly ahead in all performance scores for both sets. 

 

(a) 

 

(b) 

Figure 3.5. Performance Comparison of WBCAE with Various Wavelets. 

Source: Author
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3.1.4.2 Experiment 2: Effect of input window size on performance 

The performance of anomaly detection models trained on ECG data is the main focus 

of this experiment, which investigates the impact of changes in input window size. By 

varying the window size and evaluating model performance metrics, the experiment 

aims to determine the optimal window size for effectively capturing temporal 

dependencies and detecting anomalies in ECG data. The Sym4 wavelet and AFPC 

database were used in the tests. The results are given in Table 3.5. and Figure 3.6. The 

highest success was achieved for length 256. 

Table 3.5. The effect of different window size on the performance metrics 

Window Size Accuracy 

 (%) 

Precision 

 (%) 

Recall  

(%) 

F1 Score 

(%) 

256 95.44 99.99 90.9 95.23 

512 92.35 91.44 93.13 92.28 

1024 90.36 96.36 86.03 90.90 

 

 

Figure 3.6. Impact of Window Size on Performance Metrics. 

Source: Author 

3.1.5. Summary 

In experiment 1, different wavelet families are tested. We observed that a notable 

enhancement in the detection performance was obtained with the addition of a wavelet 

layer. Furthermore, it is observed that the Symlet 4 wavelet produces the best results. 
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The results validate our intuition that the wave closely resembling the analyzed normal 

sinus rhythm waveform will be deemed successful. During the model design phase, 

the impact of altering the structures by varying the number and positions of the layers 

was conducted. Our findings revealed that the proposed model, as depicted in Figure 

3.4., outperforms the other models tested. Thus, other models were not included in the 

study. In another experiment, the input window size of the system is changed for the 

proposed model with Sym4 wavelet. The window size 256 is observed to perform 

better in accuracy, precision, and F1 scores. The AF detection performance of the state-

of-the-art machine learning models in the literature is also considered. 

In this study, we developed a robust autoencoder structure based on wavelets, which 

proved highly effective even for a short window of approximately 1 second. We 

conducted various tests using essential wavelets and analyzed key performance 

metrics such as accuracy, recall, precision, and f1 score. These evaluations helped us 

compare the effectiveness of different wavelets. We also examined factors like input 

length and loss function across various models. The Sym4 wavelet emerged as the 

most promising and successful among the tested methodologies. The wavelet layer is 

shown to enhance the performance of the AE structure in anomaly detection mode. 

Thus, the proposed model can be employed in different signal-processing applications, 

even for unbalanced datasets. The selection of wavelets plays an essential role in the 

network performance.  

3.2. Arrhythmia Classification with WBCAE as Feature Extractor  

Autoencoders have a role, in extracting features and turning data into analyzable 

elements for tasks like classification and clustering. In the autoencoder setup, the 

encoder compresses input data into a space known as the space or bottleneck layer. 

This condensed representation captures features while filtering out noise and details. 

The compressed form can then serve as a feature vector, for machine learning tasks. 

Steps in Feature Extraction Using Autoencoders 

1. Data Preprocessing: Before feeding data into the autoencoder it is commonly 

prepared. This involves steps like scaling data and converting ECG signals into 

heartbeats. 
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2. Training the Autoencoder: The autoencoder undergoes training with the 

preprocessed data. It learns how to convert the incoming data into a latent space 

and then reconstruct it during this process. 

3. Extracting Features: Once trained the encoder component of the autoencoder 

can be utilized to convert input data into the space effectively extracting 

features from the data. 

4. Classification Using the Encoded Features: These features that have been 

extracted can serve as inputs for machine learning models, such, as classifiers 

or clustering algorithms. 

Autoencoders help with feature extraction. Offer benefits making them valuable, in 

numerous situations. Unlike PCA and other conventional approaches that focus on 

data analysis autoencoders leverage neural network structures to detect nonlinear 

connections, within their datasets.  This makes it possible to reduce dimensions 

without deleting essential aspects of the data for simplicity in processing and 

analyzing. For instance, the compression process may involve filters that make the 

features less noisy. Likewise, they are highly adaptive; hence, their versatility in 

feature extraction procedures is demonstrated by the fact that they may be used with a 

variety of data kinds, including text, time series, and pictures. 

This study proposes an efficient wavelet-based convolutional autoencoder model for 

the feature extraction of the arrhythmia types, such as right bundle branch block 

(RBBB), left bundle branch block (LBBB), premature ventricular contractions (PVC), 

atrial premature contractions (APC) as shown in Figure 3.8.  One-lead ECG signals 

are then classified with a Multilayer Perceptron (MLP), as illustrated in Figure 3.7.  

The combination of the wavelets with autoencoder structure is one of the main 

contributions of this study. Therefore, the success of wavelets in grasping the time-

frequency domain distribution of the signals was integrated into the learning capability 

of autoencoders. Also, a large dataset collected from different databases was used for 

training and testing to show the performance under various conditions (Eravcı & 

Ozkurt, 2023).  
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Figure 3.7. Diagram of proposed method. 

Source: Author 

3.2.1. Dataset 

Three databases, including the St. Petersburg INCART 12-Lead Arrhythmia Database, 

the MIT-BIH Arrhythmia Database, and the MIT-BIH Supraventricular Arrhythmia 

Database, were integrated as indicated in Table 3.6. We preserved 180 samples before 

and after each R-peak, obtained 360 sampling points for each beat, and then resampled 

all data to 180 Hz. The ECG signal was min-max normalized after each beat was 

divided into beat segments, as shown in Figure 3.8. 

 

Figure 3.8. Each heartbeat 360 Sampled RR-Interval lengths. 

Source: Author 

The MIT-BIH Arrhythmia Database is a commonly used test data for evaluating 

arrhythmia detectors (Moody & Mark, 2001). It's mainly composed of 48 two-channel 
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ambulatory ECG recordings sampled at 360Hz. Each recording contains 48 half-hour 

ECG excerpts. The data was gathered from 47 people. The ages of the participants, 

who comprised 25 men and 22 women, ranged from 32 to 89. This dataset consists of 

recordings with various degrees of arrhythmias and recordings with normal sinus 

rhythm. The MIT-BIH Supraventricular Arrhythmia Database is a publicly available 

database commonly used in cardiac arrhythmia research and comprises 78 half-hour-

long excerpts of two channel ECG. It includes a selection of ECG recordings with 

annotations concentrated on supraventricular arrhythmias (Chen et al., 2017). St. 

Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database has 75 

annotated recordings taken from 32 Holter records, which are included in this database. 

Each record has 12 standard leads sampled at 257 Hz and lasts 30 minutes. The 

recordings were taken from patients with various arrhythmias, including sinus rhythm 

and ventricular and supraventricular arrhythmias (Tihonenko et al., 2008). In this 

study, we concentrated on four types of arrhythmia and normal sinus rhythm listed in 

Table 3.6.   

Table 3.6. Data Distribution of Arrhythmia Types Used 

Arrhythmia Types Beat Size 

Left Bundle Branch Block (LBBB) 13,322 

Right Bundle Branch Block (RBBB) 12,068 

Normal Sinus Rhythm (NSR) 75,011 

Premature Ventricular Contraction (PVC) 33,632 

Atrial Premature Contraction (APC) 4,441 

Total  138,474 
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Figure 3.9. Five types of arrhythmia heartbeats. 

Source: Author 

3.2.2. Evaluation Methods and Experiments 

The designed convolutional autoencoder consists of an encoder and a decoder, 

illustrated in Figure 3.10., which are defined as sequential models using 1D 

convolutional, max pooling, Batch normalization, and upsampling layers. The number 

in the convolutional layer denotes the number of filters in each layer. The encoder 

takes as input a 1D signal of shape (360, 1) and applies a series of convolutional filters, 

along with activation functions like ReLU and padding. The input is downsampled 

using Max pooling layers, and the activations are normalized using Batch 

normalization layers. Similar definitions are applied to the decoder. 

However, convolutional layers are used for upsampling rather than downsampling. 

The final convolutional layer has one filter and a ReLu activation, and upsampling 

layers are employed to expand the input's dimensionality. 
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Figure 3.10. Proposed convolutional autoencoder architecture. 

Source: Author 

3.2.2.1 Arrhythmia detection with custom-designed convolutional AE 

The wavelet convolutional autoencoder class consists of an encoder and a decoder, 

defined as sequential models using convolutional layers, wavelet transformation 

layers, and other layers like batch normalization, as depicted in Figure 3.11. The 

encoder takes as input a 1D signal of shape (360, 1) and incorporates several 

convolutional layers with different configurations, including activation functions like 

ReLU, padding, and wavelet transformations using the WaveTF library. The decoder 

is defined similarly to the Convolutional autoencoder model.  

Table 3.7. The Reconstruction Coefficients of The Wavelet Functions Used. 

 Daubechies 2 Coif 2 Bior 3.5 

𝒈𝟎[𝟎] 0.48296 0.016387 0.0 

𝒈𝟎[𝟏] 0.836516 -0.041465 0.0 

𝒈𝟎[𝟐] 0.2241439 -0.067373 0.0 

𝒈𝟎[𝟑] -0.1294095 0.3861101 0.0 

𝒈𝟎[𝟒]  0.8127236 0.1767767 
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𝒈𝟎[𝟓]  0.417005 0.5303301 

𝒈𝟎[𝟔]  -0.0764886 0.5303301 

𝒈𝟎[𝟕]  -0.0594344 0.1767767 

𝒈𝟎[𝟖]  0.02368017 0.0 

𝒈𝟎[𝟗]  0.00561144 0.0 

𝒈𝟎[𝟏𝟎]  -0.0018232 0.0 

𝒈𝟎[𝟏𝟏]  -0.0007206 0.0 

The wavelet transform block is in Figure 3.11. involves the calculation of one-

dimensional Discrete Wavelet Transform of the given signal. WaveTF library 

conducts DWT by convolving inputs with low-pass and high-pass filter coefficients. 

These are matrix operations in the Tensorflow environment (Versaci, 2020). Initially, 

two mother wavelet options existed in the WaveTF library: Haar wavelet and 

Daubechies 2. In this study, different mother wavelets reported to have high 

performance in biomedical signal analysis were adapted to the algorithm. The used 

wavelet coefficients are listed in Table 3.7. the models were trained with different 

parameters to reach the optimal performance heuristically. We used wavelet transform 

as a layer in our autoencoder model because of its unique capacity to capture both 

time and frequency domain characteristics, allowing for excellent representation of 

transient patterns and variable frequency components. 

3.2.2.2 Classification with MLP 

The classifier model architecture includes several layers, including dense layers with 

ReLU activation functions, batch normalization layers for normalization, dropout 

layers to prevent overfitting, and a used softmax function for activation layer for multi-

class classification. The model is compiled with binary cross-entropy loss and the SGD 

optimizer. In this study, we used the Multi-Layer Perceptron (MLP) architecture for 

classification, taking advantage of its capacity to understand subtle patterns and non-

linear correlations within the data. The MLP's adaptability in modeling complicated 

decision boundaries and its effectiveness in handling varied classification tasks made 

it an attractive and powerful choice for our study, resulting in correct predictions. 
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3.2.3. Results 

After the model structures were created, the ECG beats in each class are shown in 

Table 3.6. were trained with the autoencoder model, each beat taken from the 

autoencoder model separated into train and test with a 0.20 ratio. The following 

procedure was the classification stage with the Multilayer Perceptron (MLP) model, 

and accuracy metrics were examined by feeding encoded data into the designed 

classification model.  In this study, we applied the Adam as an optimizer, a well-known 

gradient-based optimization technique for neural network training. The learning rate 

of the optimizer is set to 1e-3, which determines how much the model weights are 

updated during training. Then, by defining the optimizer and loss function for training, 

the model is compiled.  The loss function is set to mean absolute error (MAE), a typical 

loss function for problems involving classification. A comparison of the autoencoder 

model using different wavelets is shown in Table 3.8. 

Table 3.8. Performance Metrics Results 

Wavelet Batch 

Size 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

None 32 99.5 98.9 97.2 98.9 

64 98.0 97.8 97.2 97.5 

128 99.6 99.0 99.0 99.0 

Db2 32 99.3 98.4 98.1 98.2 

64 95.1 96.3 87.3 89.3 

128 99.5 98.9 98.8 98.9 

Bior 3.5 32 99.8 99.8 99.7 99.7 

64 99.6 99.5 99.1 99.3 

128 99.5 99.4 99.0 99.2 
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Coif 2 32 90.6 86.4 74.3 70.6 

64 98.3 97.6 96.5 97.0 

128 99.7 99.2 99.1 99.2 

In Table 3.8., the first column shows which mother wavelet was used. In the first 

experiment, the structure in Figure 3.11. with no wavelet layer was employed. 

Different batch sizes were used for each experiment, and the performance results were 

listed. We observed that Bior 3.5, with a batch size of 32, achieves the highest accuracy 

of 99.8%, followed closely by no wavelet with a batch size of 32.  When the other 

performance measures of the Bior 3.5 model were considered, out of all positive 

predictions, precision is defined as the percentage of true positive predictions. The 

highest result of the Bior 3.5 model indicates a high proportion of correct positive 

predictions. Recall also had the highest rate of true positive predictions out of all actual 

positive occurrences, suggesting that it can correctly identify many positive examples. 

The F1 score offers a balanced assessment of both measures and is calculated as the 

harmonic mean of recall and precision. Bior 3.5, with a batch size of 32, has the highest 

macro F1 score (99.7%), indicating a good balance between precision and recall. It can 

be noted that lower precision-recall results were obtained in the no-wavelet case.  

It's worth noting that the performance of each wavelet type varies across different 

batch sizes. For example, Coif 2, with a batch size of 32, shows lower performance 

compared to other batch sizes, particularly in precision, recall, and F1 scores. The 

proposed structure was compared with several advanced deep-learning algorithms for 

classifying arrhythmias. As can be observed from Table 3.9., different feature 

extraction and classification methods were employed for arrhythmia detection. The 

most important outcome of this research is achieving higher performance with a 

custom-designed wavelet-based autoencoder model. Another critical point is the size 

of the dataset. Our algorithm has been proven to have higher classification rates with 

more extensive data, which includes beats from different datasets with different 

properties (Eravcı & Ozkurt, 2023). 
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Table 3.9. Performance Of the Deep Learning Arrhythmia Detection Algorithms 

Authors Total 

Beat 

Method Accuracy 

(%) 

(Wu, Lu, Yang, & Wong, 

2021) 

32,422 CNN 97.41 

(Acharya et al., 2017) 109,449 CNN 94.03 

(Liu et al., 2022) 97,300 LSTM AE 

ANN 

99.00 

(Sahoo, Kanungo, Behera, & 

Sabut, 2017) 

109,494 DWT 

SVM 

98.39 

 

(Mohonta, Motin, & Kumar, 

2022) 

7,500 CWT 

2DCNN 

99.65 

(Ojha et al., 2022) 97,861 AE 

SVM 

99.53 

Proposed Method 

Bior 3.5 

138,474 

 

Wavelet-based 

Convolutional AE 

MLP 

99.80 
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Figure 3.11. Wavelet convolutional autoencoder architecture. 

Source: Author 

3.2.4. Summary 

Effective detection of cardiac arrhythmia types is a significant problem, especially in 

analyzing long medical records and wearable health tracking devices. In this study, we 

suggested a convolutional autoencoder model to categorize five distinct kinds of ECG 

beats. Our model takes advantage of the wavelet transform, which reveals the time-

frequency domain characteristics of signals. Thanks to the autoencoder model, the 

features contained in the data are encoded compactly and can be analyzed with a 

simple classifier. Furthermore, a high performance was obtained with extensive data 

collected from different datasets.  This is an indication of the robustness of the 

proposed model. 

The selection of the mother wavelet is still an important design parameter. Usually, 

the best mother wavelet is selected experimentally, as in this work. Bior 3.5 

demonstrated a successful performance for the problem at hand. In the upcoming 

studies, a signal-adaptive wavelet selection algorithm is proposed.  

3.3. Arrhythmia Anomaly Detection with WCAE 

Arrhythmia classification relies on a deep learning technique that uses a customized 

wavelet-based convolutional autoencoder (WBCAE) for this study. This anomaly 

detector integrates time-frequency analysis of wavelets and convolutional 

autoencoders for feature learning purposes. The analysis reveals the potentiality of 
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deep learning models in arrhythmia detection and wavelet approaches to biomedical 

signal processing. To conclude, this combination of WBCAE with arrhythmia data 

presents an important way to improve anomaly detection by taking advantage of both 

the strengths associated with deep learning as well as advanced signal processing 

strategies. 

3.3.1. Dataset 

In this study, the same datasets were used as in 3.2. but different sizes of samples. In 

addition to normal sinus rhythm, the dataset includes arrhythmia types such as 

premature ventricular contraction, left bundle branch block, right bundle branch block, 

and finally atrial premature contractions. The dataset comprises 360 samples, which 

include 128,399 segments of arrhythmia data, and 75,011 segments of normal sinus 

rhythm data as can be seen in Table 3.10. 

Table 3.10 Number of different data classes used in the study 

Arrhythmia Types Beat Size 

Left Bundle Branch Block (LBBB) 13,373 

Right Bundle Branch Block (RBBB) 12,092 

Normal Sinus Rhythm (NSR) 75,011 

Premature Ventricular Contraction (PVC) 98,497 

Atrial Premature Contraction (APC) 4,437 

Total  203,41 

 

3.3.2. Evaluation Methods and Experiments 

To thoroughly evaluate the performance of the proposed Wavelet-Based 

Convolutional Autoencoder (WBCAE) in detecting arrhythmias several evaluation 

metrics and methods were employed. These measurements offer a thorough 

comprehension of the model's efficacy and reliability in different scenarios. The 

anomaly detection method is mentioned in  4.1.2. was used. That is, If the error is less 
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than the given threshold value, it is labeled as normal sinus rhythm; if it is greater than 

the given threshold value, it is labeled anomaly. 

The experiments were carefully planned to assess the performance of the WBCAE in 

different scenarios and forms. The main objective was to optimize the model for 

arrhythmia detection as well as comparing its performance of wavelet families. 

Another aim of this study is to asses the performance of the anomaly detection 

approach in unbalanced datasets. 

For efficient processing of the dataset, WBCAE was implemented and trained on a 

high-performance computing cluster of Google Colab. The experiments entailed 

testing various configurations of the model, including choosing wavelets and 

hyperparameters. 

Hyperparameters: 

• Number of epochs: 50 

• Batch size: 60 

• Learning rate: Optimized through grid search and experimentation 

• Wavelets: Various wavelets, including Haar, Daubechies (db3, db4), 

Biorthogonal (bior 3.5), Coiflet (coif2), and Symlet (sym4), were tested. 

Model Architecture 

The WBCAE architecture consists of an encoder and a decoder. The encoder 

compresses the input ECG signals into a latent representation, while the decoder 

reconstructs the signal, emphasizing the detection of anomalies. The model used in 

Figure 3.4.  

Results 

The measures listed above were used to assess the WBCAE's performance. The results 

varied depending on the wavelet used, highlighting the impact of wavelet selection on 

model performance. 
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Table 3.11. Experiment Results. 

Wavelet Arrhythmia  Accuracy %   Precision %    Recall %    F1 Score %  
db3 RBBB 98,87 99,92 97,54 98,72 

LBBB 98,29 99,87 96,50 98,16 
APC 99,38 99,11 98,17 98,64 
PVC 99,27 99,99 99,17 99,58 

db4 RBBB 99,53 99,73 99,22 99,47 
LBBB 98,15 99,83 96,24 98,00 
APC 98,87 99,09 95,92 97,48 
PVC 99,60 99,89 99,66 99,77 

sym4 RBBB 99,54 99,81 99,16 99,49 
LBBB 99,34 99,74 98,86 99,30 
APC 99,80 99,44 99,68 99,56 
PVC 99,75 99,92 99,79 99,86 

bior3.5 RBBB 99,42 99,87 98,83 99,34 
LBBB 98,79 99,67 97,75 98,70 
APC 98,13 98,71 93,01 95,78 
PVC 99,62 99,92 99,64 99,78 

coif2 RBBB 99,63 99,73 99,44 99,59 
LBBB 99,41 99,47 99,29 99,38 
APC 99,57 99,79 98,31 99,05 
PVC 99,55 99,90 99,58 99,74 

 

3.3.3. Summary 

This study was achieved with a dataset containing normal heartbeats and four different 

types of arrhythmias (e.g. RBBB , APC, LBBB and PVC) with an anomaly detection 

approach and using the WBCAE method. As a first step, the data obtained from the 

electrocardiogram (ECG) signals were divided into normal and arrhythmic signals and 

each pulse signal was processed separately. The anomaly change is displayed in data 

wavelets and subjected to time-frequency analysis. Five different wavelets were used 

for this purpose: db3, db4, sym4, bior3.5 and coif2. Each wavelet analyzed the ECG 

signals from a different perspective and revealed important features. 

These features are given as input to the WBCAE model, and the aim is to preserve 

important features and create an optimized feature space by reducing the course of the 
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model to a low-dimensional representation . This way it is easier to distinguish 

between normal and arrhythmic. The outputs of the WBCAE model were then further 

examined with anomaly detection methods, and a specific threshold value was used to 

distinguish each arrhythmia (RBBB , APC, LBBB and PVC) from normal signals. 

This method ensures the correct organization of normal and normal (arrhythmic) 

functioning. 

Finally, the performance of the model was evaluated with metrics such as Accuracy , 

Precision, Recall   and F1 Score. These measurements measure the overall accuracy of 

the model, record positive predictions, and distinguish between types of arrhythmias. 

The results showed that WBCAE and the abnormality detection approach were highly 

successful in distinguishing between normal and four different arrhythmias.  

The WBCAE introduced in this study represents remarkable progress in arrhythmia 

detection especially in feature extraction, making use of the strengths of wavelet 

transforms and deep learning. The thorough evaluation and experimental results 

demonstrate the model’s robustness, flexibility, and high performance. The study 

highlights the power of wavelet methods combined with convolutional autoencoders 

in biomedical signal processing, which offers effective means for remote patient 

monitoring as well as early disease diagnosis. 
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4. CHAPTER: CONCLUSIONS AND FUTURE WORK 

In this thesis, we presented studies on detecting atrial fibrillation (AF) and other heart 
arrhythmias using wavelet based convolutional autoencoders. Both studies improved 
arrhythmia diagnosis and classification from ECG signals by utilizing wavelets and 
convolutional autoencoders' distinct abilities. 

 

In the first study wavelet-based convolutional autoencoder was used in anomaly 
detection mode designed exclusively for AF detection. Atrial fibrillation is 
distinguished by the absence of P waves and irregular heartbeats, which make it 
difficult to diagnose due to the nonstationary nature of ECG signals. To solve these 
issues, we combined wavelet transformations and convolutional autoencoders.  
The effect of the selected wavelet and the size of the signal window were analyzed 
heuristically. It is observed that Symlet 4 wavelet with 256 sample windows creates 
the best results with an accuracy of 95.44% and an f1 score of 95.23% for public 
datasets which shows the effectiveness of the algorithm. 

 

In the second study, the wavelet-based convolutional autoencoder was used as a 
feature extractor for different arrhythmias. This method combined the time-frequency 
analysis skills of wavelet transformations with the feature extraction power of 
convolutional autoencoders.  The WBCAE retrieved the essential features for 
classification using MLP. The model's results illustrate its ability to accurately detect 
and classify numerous types of heartbeats with minimal errors. One of the study's key 
findings was the significance of wavelet selection. The Bior 3.5 wavelet outperformed 
the other wavelets tested, emphasizing the significance of selecting the right wavelet 
for the job.  

The third study conducts arrhythmia detection by using anomaly detection for different 
types of arrhythmias. The anomaly detection method can distinguish normal and 
abnormal ECG signals. The performance of our anomaly detection model has shown 
significant improvement, especially in detecting rare arrhythmia types. With this 
approach, it is possible to detect abnormal functioning earlier and more accurately, and 
by doing so, it enables the early implementation of potentially life-saving 
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interventions. Future developments, testing this method on larger datasets and 
different arrhythmia types will contribute to learning the model's capacity to 
generalize. This study highlights the enhancement of anomaly detection techniques in 
medical data analysis and provides new research and application opportunities in the 
healthcare field. The model's resistance to imbalanced datasets and reasonable 
processing complexity increase its suitability for real-time applications such as 
wearable health monitoring devices. 

While the studies have shown promising results, there are several areas for future study 
to improve the proposed models further and extend their applicability: 

• Wavelet Selection Optimization: Develop adaptive algorithms for selecting the 
most suitable wavelet based on the characteristics of the input signal to further 
enhance classification performance. 

• Reducing Computational Complexity: Optimize the models to reduce 
computational demands, making them more suitable for real-time applications 
and deployment on wearable devices. 

• Integration with Wearable Devices: Adapt the models for wearable health 
monitoring devices, focusing on real-time processing and energy efficiency. 

• Handling Diverse and Noisy Data: Enhance the models’ robustness to noise 
and artifacts through advanced preprocessing and data augmentation 
techniques. 

• Clinical Validation: Conduct clinical trials to validate the models’ 
performance in real-world settings, ensuring their reliability and effectiveness 
for clinical diagnostics. 

By addressing these issues, we want to increase the accuracy, efficiency, and 

applicability of wavelet-based convolutional autoencoders for cardiac arrhythmia 

detection and other biomedical signal-processing tasks. The ultimate goal is to create 

complete diagnostic tools that may be extensively used in clinical practice and 

integrated into wearable health monitoring devices, allowing for early and accurate 

diagnosis of cardiac conditions and improving patient outcomes. 
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