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DEVELOPMENT OF SCALABLE MANIFOLD LEARNING LIBRARY:

SCAMAN

ABSTRACT

This thesis presents an exploration of manifold learning and dimensionality reduc-

tion techniques, which are crucial in the fields of data science and machine learning.

The center of this study is the development and evaluation of ‘Scaman (Scalable

Manifold Library), a Python-based computational tool designed to implement these

techniques. This thesis investigates the key manifold learning algorithms. Includ-

ing PCA,MDS, LE, and LLE and emphasizing the importance of eigenvalue solvers

in these algorithms. The contribution of this thesis is the integration of advanced

eigensolvers like NumPy, SLEPc and FEAST into key manifold algorithms within

scaman package. The empirical analysis was conducted using various synthetic and

real-world datasets. Those analyses focused on the efficiency, accuracy, and practical

utility of scaman in different scenarios. Results demonstrate the tool’s effectiveness,

especially in handling large datasets. The advantages of FLANN and SLEPc prove

scaman’s efficiency in the creation of adjacency matrices and eigenvalue computa-

tion. The outcome of this thesis provides a computational tool for researchers and

practitioners. Future directions include expanding the tool’s capabilities by adding

more algorithms, improving scalability, and applying various domain specific data-

driven scenarios.

Keywords:Data Science,Manifold Learning, Dimensionality Reduction,

Feature Extraction, Eigensolvers, Eigenvalues, High-Dimensional Data

Analysis, Intrinsic Dimension Estimator.
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ÖLÇEKLENEBİLİR MANİFOLD ÖĞRENME KÜTÜPHANESİNİN

GELİŞTİRİLMESİ: SCAMAN

ÖZET

Bu tez, veri bilimi ve makine öğrenimi alanlarında önemli olan manifold öğrenme

ve boyutluluk azaltma tekniklerinin bir incelemesini sunmaktadır. Bu çalışmanın

merkezi, bu teknikleri uygulamak için tasarlanmış Python tabanlı bir hesaplama

aracı olan ’Scaman’ın (Ölçeklenebilir Manifold Kütüphanesi) geliştirilmesidir. Bu

tez, temel manifold öğrenme algoritmalarını incelemektedir. PCA, MDS, LE ve

LLE’nin dahil edilmesi ve bu algoritmalarda özdeğer çözücülerin öneminin vur-

gulanması bu tezde amaçlanmıştır. Bu tezin katkısı, NumPy, SLEPC ve FEAST

gibi gelişmiş özdeğer çözücülerin, Scaman paketi içindeki manifold algoritmalarına

entegrasyonudur. Ampirik analiz, çeşitli sentetik ve gerçek dünya veri kümeleri

kullanılarak gerçekleştirilmiştir. Bu analizler, farklı senaryolarda Scaman’ın ver-

imliliğine, doğruluğuna ve pratik faydasına odaklanmıştır. Sonuçlar, aracın özellikle

büyük veri kümelerinin işlenmesindeki etkinliğini göstermektedir. FLANN ve SLEPc

gibi kütüphanelerin avantajları, Scaman’ın komşuluk matrislerin oluşturulmasında

ve özdeğer hesaplamasında verimliliğini kanıtlar. Bu tezin bir çıktısı, araştırmacılar

ve uygulayıcılar için hesaplamalı bir araç sağlamaktadır. Gelecek planları arasında,

daha fazla algoritma ekleyerek, ölçeklenebilirliği geliştirerek ve çeşitli alanlara özgü

veri odaklı senaryolar uygulayarak Scaman’ı genişletme yer almakltadır.

Anahtar Sözcükler: Veri Bilimi, Manifold Öğrenme, Boyut İndirgeme,

Öznitelik Çıkarma, Özdeğer Çözücüler, Yüksek Boyutlu Veri Analizi,

Özaltuzay Tahminleyici
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Significance of the Study . . . . . . . . . . 2

1.2 Research Objectives and Questions . . . . . . . . . . . . . . 3

1.3 Structure and Organization of the Thesis . . . . . . . . . . 4

2. THEORETICAL FRAMEWORK AND LITERATURE REVIEW 6

2.1 Evolution of Manifold Learning and Dimensionality Re-

duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Role and Evolution of Eigensolvers in Data Science . . . . 7

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Advantages of Intrinsic Dimension Estimation in Data

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Overview of Dimensionality Reduction Techniques . . . . . 12

3.1.1 Linear Methods: Principal Component Analysis

(PCA) and Multidimensional Scaling (MDS) . . . . 12

3.1.2 Non-linear Methods: Laplacian Eigenmaps (LE)

and Locally Linear Embedding (LLE) . . . . . . . . . 13

3.2 Computational Approaches in Manifold Learning . . . . . 15

3.2.1 Efficient Calculation Strategies for Computational

Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Comparative Analysis with Existing Studies . . . . 16

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

viii



3.3.1 Dense and Sparse Eigenvalue Problems . . . . . . . 16

3.3.2 Constructing Neighborhood Matrices . . . . . . . . 17

3.3.3 Intrinsic Dimension Estimation . . . . . . . . . . . . 18

3.4 Implementation Considerations . . . . . . . . . . . . . . . . 19

4. SCAMAN: A UNIFIED FRAMEWORK FORMANIFOLD LEARN-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Scaman: Design and Integration Strengths . . . . . . . . . 21

4.3 Example Usage of Scaman Algorithms . . . . . . . . . . . . 24

4.4 Why Implement SLEPc and Its Algorithms . . . . . . . . . 25

4.5 Funding Acknowledgment . . . . . . . . . . . . . . . . . . . . 26

4.6 Installation Process for Scaman . . . . . . . . . . . . . . . . 26

5. NUMERICAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . . 29

5.1 Design and Setup of Numerical Experiments . . . . . . . . 29

5.2 Comparative Analysis of Time Efficiency . . . . . . . . . . 30

5.2.1 Time Comparisons of Eigenvalue Solvers . . . . . . 30

5.2.2 Time Comparisons of Neighbor Matrix Construction 31

5.3 Accuracy Assessment Using PCA on MNIST Dataset with

Intrinsic Dimension Estimator . . . . . . . . . . . . . . . . . 33

5.4 Evaluating the Performance of FLANN within Scaman’s

Affinity Matrix Options . . . . . . . . . . . . . . . . . . . . . 34

5.5 Comparative Analysis with Megaman . . . . . . . . . . . . 36

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . 36

5.5.2 Evaluation of Results: . . . . . . . . . . . . . . . . . . 38

5.6 Application of Dimensionality Reduction on Hyperspectral

Images (HSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6. DISCUSSION AND INTERPRETATION OF RESULTS . . . . 43

6.1 Synthesis of Key Findings . . . . . . . . . . . . . . . . . . . 43

6.2 Implications for Data Science and Machine Learning . . . 44

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ix



7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 48

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX A: GitHub README FILE OF SCAMAN . . . . . . 54

x



LIST OF FIGURES

Figure 4.1 Structure of Scaman. . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 4.2 Scaman Swiss Roll dimension reduction visualization. . . . . . . 25

Figure 5.1 Visualization of eigensolver comparisons. . . . . . . . . . . . . . 31

Figure 5.2 Time comparisons of FLANN and sklearn in Scaman. . . . . . . 32

Figure 5.3 KNN Classification Accuaries of Scaman PCA applied MNIST

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 5.4 Scaman LE Neighbor Matrix Creation Times Comparisons. . . . 35

Figure 5.5 Traditional pipeline and proposed pipeline with intrinsic dimen-

sion estimator on Scaman. . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.6 Classification results for the Indian Pines dataset using PCA. . . 40

Figure 5.7 Classification results for the Indian Pines dataset using LE. . . . 40

Figure 5.8 Classification results for the Salinas dataset using PCA. . . . . . 41

Figure 5.9 Classification results for the Salinas dataset using LE. . . . . . . 41

Figure 5.10 Time comparison of tradition method vs proposed method with

intrinsic dimension estimator on Scaman. . . . . . . . . . . . . . 42

xi



LIST OF TABLES

Table 2.1 Comparisons of Eigensolvers offered in Scaman . . . . . . . . . . 8

Table 4.1 SLEPc Eigensolver Algorithms in Scaman . . . . . . . . . . . . . 26

Table 5.1 Comparative performance of Scaman and Megaman on the Sali-

nas dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xii



LIST OF SYMBOLS

X Dataset with n samples and d dimensions

X̄ Mean vector of the dataset

C Covariance matrix

vi Eigenvector of matrix C

λi Eigenvalue corresponding to eigenvector vi

W Projection matrix formed by eigenvectors

Y Lower-dimensional space

D Distance matrix

J Centering matrix

B Double centered matrix

G Graph constructed in manifold learning

Wij Weight assigned to the edge in the graph

L Graph Laplacian

t Tuning parameter in Laplacian Eigenmaps

α Parameter or variable represented by alpha

xiii



LIST OF ACRONYMS AND ABBREVIATIONS

FLANN Fast Library for Approximate Nearest Neighbors

ID Intrinsic Dimension

k-NN k-Nearest Neighbors

LE Laplacian Eigenmaps

LLE Locally Linear Embedding

MDS Multidimensional Scaling

MPI Message Passing Interface

NumPy Numerical Python Library

PCA Principal Component Analysis

PETSc Portable Extensible Toolkit for Scientific Computation

scaman Scalable Manifold Library

SciPy Scientific Python Library

SLEPc Scalable Library for Eigenvalue Problem Computations

xiv



1. INTRODUCTION

This thesis specifically approaches the problem from the direction of manifold learn-

ing and dimensionality reduction algorithms. These algorithms occupy an essen-

tial place in developing ways to process complex relationships hidden beneath vast

amounts of data. Manifold learning, especially, stands out as a complex but very

additive part of the subset of techniques to reduce dimension. Indeed, while linear

methods can reduce space and be very convenient for further computations, man-

ifold learning can reveal the nature of data and allow us to observe their intrinsic

characteristics. (Pedregosa et al. 2011).

In today’s data-driven world, the methods of manifold learning are especially vi-

tal. With huge amounts of complex data from bioinformatics, financial analysis,

and social network analysis, the desired low-dimensional structure of the data is

often hidden underneath numerous dimensions. The structure cannot be detected

with simple linear means, as most relationships between different data points are

nonlinear and thus not appropriate for one-size-fits-all models. For this reason, we

use manifold learning to reveal the deeper structure beneath the high-dimensional

surface of the data.

This thesis studies several of the most prominent algorithms coming from unsuper-

vised dimension reduction. First of all, we consider Principal Component Analysis

(PCA), which is a linear technique but is widely used due to algorithmic simplicity

and effectiveness in revealing the axes of maximum variance in data, thereby making

data interpretation more manageable. Secondly, Multidimensional Scaling (MDS)

is considered a measure of the amount of dissimilarity in the data, and, therefore, a

technique for visualizing this measure. As a result, it allows for the investigation of

complex, nonlinear structures. Thirdly, Laplacian Eigenmaps (LE) is an algorithm

preserving neighborhood information, which, consequently, allows for the study of
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data manifolds’ intrinsic geometry. Finally, Locally Linear Embedding (LLE) is a

model that reconstructs high-dimensional data in lower dimensions while maintain-

ing the relationship of all data points to their nearest neighbors.

The eigensolver is a key element of such algorithms. This thesis aims at the de-

tailed study of numerous types of eigensolvers, and the specific case of their usage

in manifold learning algorithms, like PCA. Iterative, and direct ones, computational

complexity, and implementation peculiarities are to be discussed. This understand-

ing allows better addressing high-dimensional data, which ultimately results in more

accurate and wise data analysis, applicable in various fields. This work and its in-

vestigation are related to data science’s domain works, which allows us to explore

multiple formalized discoveries.

1.1 Background and Significance of the Study

Due to the complexity of data science today, we are often overwhelmed by the

amount of information. This trend can be applied in fields as diverse as biology,

financial markets, and social media analytics. High-dimensional datasets are char-

acterized by their size and complexity and are not only large but also contain a

lot of information complexity. This complexity often creates a barrier to extracting

discoverable information and patterns, pushing traditional data analysis methods

into the background. (Berman 2018; Halevy, Norvig, and Pereira 2009).

The importance of dimensionality reduction strategies, particularly manifold learn-

ing, is emphasized in this thesis. A more sophisticated method of reducing dimen-

sionality is manifold learning. It is very good at revealing hidden patterns and

structures in high-dimensional data. It offers a more in-depth understanding of the

data while maintaining its intrinsic geometric properties, going beyond the capabil-

ities of conventional linear techniques.

Key algorithms that successfully advance manifold learning are the focus of this

study. Finding the axes of maximum variance in data can be done more easily by

2



using PCA. Complex data structures are analyzed by MDS. The ability of LE to

maintain neighborhood information while exposing the inherent geometry of data

manifolds is discussed. Lastly, the ability of LLE to reconstruct high-dimensional

data in lower dimensions while maintaining the connections between each data point

and its nearest neighbors is evaluated.

This thesis aims to explain the importance of selected manifold learning approaches.

Improved high-dimensional, complex data analysis is the goal of this thesis. The

Scaman package is developed to advance data science and manifold learning.

1.2 Research Objectives and Questions

The main purpose of this research is to deepen the understanding of manifold learn-

ing techniques and eigensolvers in the field of data science and to develop their

practical applications. This goal is achieved by carefully investigating various di-

mensionality reduction techniques that have made a significant impact on this field.

Particular emphasis is placed on the analysis of eigensolvers, particularly their role

and effectiveness within manifold learning algorithms.

The main contribution of this thesis is the introduction of ’Scaman’. Scaman is

a computational tool specifically developed to bridge the theoretical and practical

aspects of dimensionality reduction. Scaman looks set to contribute to the trans-

lation of complex mathematical theories into practical computational applications.

Scaman aims potentially making advanced data analysis techniques more accessible

and efficient.

The research is guided by several fundamental questions:

• How can manifold learning techniques be effectively applied to manage and in-

terpret high dimensional data? Can Scaman interpret high dimensional data?

This question explores practical aspects. Applying manifold learning algo-

rithms to real-world data and its ability to reveal hidden patterns.
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• In what ways do eigensolvers contribute to the efficiency and effectiveness of

manifold learning algorithms?

• How does Scaman facilitate manifold learning and application of dimensions

reduction techniques in data science? This question examines Scaman’s func-

tionality and impact assesses its ability to complicate dimensionality reduction

techniques that are more accessible and practical for data scientists.

The study aims to contribute to the field of data science by answering these ques-

tions. It aims to provide a better understanding of how manifold learning techniques

and eigensolvers can be used to address the complexity of high-dimensional data.

Additionally, providing more conscious and accurate data analysis across multiple

disciplines is another aspect of this study. The ultimate goal is to bridge the gap be-

tween theoretical data science methodologies and their practical applications. Thus,

Scaman python package is developed.

1.3 Structure and Organization of the Thesis

The structure of this thesis:

Literature Review. This chapter can be considered the foundation of this study

with reviewing existing literature on manifold learning. It includes the historical de-

velopment of manifold learning concepts and basic theoretical approaches. This kind

of review is crucial to understanding what this study aims to address by identifying

the concepts in manifold learning.

Methodology. Here, we will examine the specific computational kernels used in

this research. This chapter explains the mathematical foundations of the algorithms

implemented in Scaman. PCA, MDS, LE, and LLE algorithms are explained. Also,

different eigensolvers are explained in this part to understand how they differ for spe-

cific types of problems. This part is important to understand the technical aspects

of the research and the rationale behind why we chose these algorithms.
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Scaman: Architecture and Functionalities. This chapter introduces the Sca-

man tool developed for this research. Detailed explanations of the architecture of

the Scaman package are explained here. Technical specifications, functionalities,

user interface, installation steps, and structure of Scaman discussed in this section.

Also, Scaman’s role in bridging the gap between theory and practice is explained in

this chapter.

Numerical Experiments. In this chapter of the thesis, the results of numerical

experiments of Scaman is presented. This empirical analysis is important to show

Scaman’s capabilities on high-dimensional data. It includes several tests with both

synthetic and real-world data to highlight tool’s efficiency and accuracy against

existing tools.

Discussion and Conclusion. The final chapter synthesizes and discusses the

findings from numerical experiments and previous chapters. It also provides a critical

evaluation of research and discussing the limitations. Lastly, future directions are

discussed, and suggestions are made to improve the Scaman tool.

This thesis uses a structured approach to provide a clear exploration of manifold

learning methods. The goal of this study is to provide insights into the field of data

science.
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2. THEORETICAL FRAMEWORK AND LITERATURE

REVIEW

Manifold learning and dimensionality reduction algorithms are important tools in

data science and machine learning. These algorithms are used to simplify and in-

terpret complex, high-dimensional data. With a focus on significant algorithms like

PCA, MDS, Isomap, LE, and LLE this literature review tries to methodically exam-

ine research in this field. With their mathematical underpinnings, each technique

makes a substantial contribution to the field. These algorithms provide better ways

to simplify large data sets. This review also looks at direct and iterative approaches

and how they are used in manifold learning. Also, this section highlights the crit-

ical role eigensolvers play in these processes. It is also demonstrated how these

approaches are integrated into the Scaman package. Demonstrating how eigenvalue

solvers such as Numpy, SLEPc, and FEAST efficiently close the gap between compu-

tational applications and theoretical mathematics. This section attempts to provide

a basic understanding of the current state of dimensionality reduction techniques

available and their impact on data science.

2.1 Evolution of Manifold Learning and Dimensionality Reduction

There have been a lot of developments in data science and machine learning along

the way of manifold learning and dimensionality reduction. Essential to the reduc-

tion of high-dimensional data, these methods have developed to meet the growing

complexity of datasets across domains (Cayton 2005; van der Maaten, Postma, and

van den Herik 2009).

• The foundational linear technique of Principal Component Analysis (PCA)

has played a pivotal role in facilitating the reduction of dimensionality. By
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determining the axes of maximum variance—which are calculated using the

covariance matrix’s eigenvectors and eigenvalues—it makes the interpretation

of data easier. According to Jolliffe (2002), this method successfully extracts

the most important characteristics from the data.

• Multidimensional Scaling (MDS) was developed as an important advancement.

With its ability to represent distances and dissimilarities, MDS is particularly

effective at handling nonlinear structures. When it comes to data visualization

and analysis, MDS shows its capabilities with understand non-linear data.

With extending the application of dimensionality reduction, this method allows

a more sophisticated understanding of complex datasets.

• Another advancement in this field is represented by Isometric Mapping. Isomap

unfolds nonlinear manifolds efficiently by constructing a neighborhood graph

and incorporating geodesic distances between data points. Tenenbaum, De

Silva, and Langford (2000) describe this technique in detail. It provides a

global geometric framework for nonlinear dimensionality reduction, which im-

proves how we understand of complex data structures.

• Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE) enhance the

manifold learning toolkit even more. By computing the graph Laplacian and

its eigenvectors, LE, which focuses on local neighborhood data, reveals the

intrinsic geometry of data manifolds (Belkin Niyogi, 2003). Conversely, LLE

provides a distinct viewpoint on the structure of the data by reconstructing

high-dimensional data in lower dimensions while maintaining local relation-

ships (Roweis Saul, 2000).

2.2 Role and Evolution of Eigensolvers in Data Science

Eigensolvers are fundamental tools in numerous fields of mathematics and compu-

tational science. Particularly in data science where they are used to compute eigen-

values and eigenvectors of matrices (Stewart 2001; Parlett 1998). The evolution and

importance of eigensolvers are discussed in this section with a focus on manifold

learning algorithms. Additionally, the incorporation of sophisticated eigensolvers
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such as Numpy, SLEPc, and FEAST into these processes is examined and can be

seen in Table 2.1.

• Numpy is a foundational package for scientific computing in Python. Eigen-

value solvers in Numpy are effective and easy to use. According to Harris et

al. (2020), the numpy.linalg.eig function is frequently used both in academic

and industrial studies to solve eigenvalue problems in smaller matrices.

• PETSc’s ability to solve complex eigenvalue problems on a large scale is en-

hanced by SLEPc (Scalable Library for Eigenvalue Problem Computations).

Hernandez et al. (2005) describe that it is especially effective at solving prob-

lems that are too big for traditional dense matrix solvers and provides a range

of algorithms for various kinds of eigenvalue problems.

• Large-scale, dense, and sparse eigenproblems can be effectively solved by the

high-performance eigenvalue solver FEAST. It is known for its durability and

effectiveness. Large-scale scientific and engineering applications can benefit

from FEAST’s highly parallelizable computations due to its unique contour

integral approach, as noted by Polizzi (2009).

Table 2.1 Comparisons of Eigensolvers offered in Scaman

Eigenvalue Solver Scalability Specialized Algorithms

Numpy Low QR Decomposition

Scipy Medium ARPACK, LOBPCG

SLEPc High Various

FEAST High Contour Integration

Depending on particular problem requirements such as matrix size, the need for par-

allel computation, and the nature of the eigenvalue problem, one can choose between

these solvers. This literature review presents eigenvalue solvers as essential instru-

ments in data science, explaining mathematical ideas with computational solutions

related to data analysis and dimensionality reduction.
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2.3 Literature Review

Enhancing the effectiveness and accuracy of manifold learning and dimensionality

reduction methods for managing large and complex datasets have been the main

focus of recent studies. An enhanced version of t-SNE was presented by Smith and

Lee in 2021; it dramatically cuts down on computation time without sacrificing the

quality of the visualizations (Smith and Lee 2021). The creation of UMAP (Uniform

Manifold Approximation and Projection) by McInnes et al. is another noteworthy

development. It has been gaining popularity because of its efficacy of preserving

local and global data structures (McInnes, Healy, and Melville 2020).

Additionally, recent studies in manifold learning show an integration with deep

learning techniques to improve pattern recognition, especially for high-dimensional

data. A notable work of Hinton and Salakhutdinov (2006) demonstrates the effec-

tiveness of using autoencoders for dimensionality reduction. Their approach shows

example usage in such areas as bioinformatics where dealing with complex data. In

addition to that, a study by Belkin and Niyogi (2003) on Laplacian Eigenmaps has

been instrumental to overcome scalability issues in manifold learning. This study

offers a framework especially for large datasets. These studies show the growing

applicability of manifold learning in various domains of data science.

Methods for reducing dimensionality have been compared in numerous studies.

According to these studies (Karnick, 2016; Chenna, 2016; Meier, 2017; Ayesha,

2020), this process is crucial for data visualization and analysis. These techniques,

which include PCA, SVD, DBN, and stacked autoencoders, are intended to reduce

the number of features in high-dimensional data while minimizing information loss

(Chenna, 2016). With a few noteworthy outliers, Meier (2017) discovered that

mMDS, GPLVM, and PCA were the most effective methods. In order to accel-

erate the extraction and processing of information, Ayesha (2020) underlined that

these methods need to be carefully selected. These recent contributions show how

manifold learning is evolving and growing.
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2.4 Advantages of Intrinsic Dimension Estimation in Data Analysis

During the study of data science, intrinsic dimension (ID) estimation is widely ap-

plied, specifically in analyzing high-dimensional data. This technique provides a lot

of advantages that help to keep data analysis more streamlined and improved. By

performing an accurate estimate of dataset’s intrinsic dimensionality, it enhances

insight into its fundamental structure which results to better choices and analysis

outputs for several purposes.

Intrinsic dimensionality estimation has many benefits in reducing dimensions. In

Bruske (1997), such linear time complexity, insensitivity to noise and easy-to-use

properties are emphasized while considering further processing as well as other is-

sues related to the data sets. Local intrinsic dimension estimation applications have

been extended by Carter (2010) to encompass statistical manifold learning, network

anomaly detection, clustering and image segmentation. Lastly, Karantzalos (2009)

emphasizes on the importance of scale space filtering improving both accuracy of

ID and dimensionality reduction. In summary, these studies demonstrate how im-

portant intrinsic dimension estimation is as a tool to reduce dimensions.

Enhanced Computational Efficiency. The technique of intrinsic dimension

estimation identifies the smallest dimensions that capture the basic structure of the

data (Camastra and Vinciarelli 2002). By contrast to traditional ways that usually

involve a weary iteration over a range of dimension numbers until an optimal di-

mensionality is identified, this method does not involve any such iterative processes.

Therefore, traditional techniques may be expensive in terms of computational cost

due to their reliance on high-dimensional data.

Improved Data Visualization. Visualizing high-dimensional data can be diffi-

cult because it often obscures patterns and relationships. Intrinsic dimension estima-

tion helps with this by identifying a lower-dimensional space that contains essential

features and thus enables interpretable visualizations (Paulovich et al. 2008).

10



Optimized Model Performance. In machine learning and statistical modeling,

overfitting and poor model performance are typical when the curse of dimensional-

ity occurs. Through determining what the true data dimension really is, intrinsic

dimension estimation solves these problems by helping choose an appropriate com-

plexity for a given model (Kegl 2003). The optimization of model parameters based

on intrinsic dimension may significantly improve model accuracy.

Facilitated Data Compression and Storage. The accuracy of the estimation

of the intrinsic dimensionality of a dataset has positive implications for data com-

pression and storage. This is because identifying minimal dimensions required for

accurate representation of data helps in efficient compression schemes, leading to low

storage space requirement and high-speed retrieval and processing (Bishop 2006).
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3. METHODOLOGY

3.1 Overview of Dimensionality Reduction Techniques

The linear and non-linear dimensionality reduction methods will be reviewed in this

subsection with an emphasis on PCA, MDS, LE, and LLE. We will talk about the

computational kernels of these algorithms, emphasizing their theoretical foundations

and real-world applications

3.1.1 Linear Methods: Principal Component Analysis (PCA) and Mul-

tidimensional Scaling (MDS)

The operational mechanics of PCA and MDS are explained in detail by means of

mathematical expressions in this subsection.

PCA (Principal Component Analysis). PCAmaximizes variance preservation

while reducing the dimensionality of the data. The following steps are involved in

the mathematical process:

1. Covariance Matrix Computation: Given a dataset X with n samples and d

dimensions, compute the covariance matrix C:

C =
1

n− 1
(X − X̄)T (X − X̄) (3.1)

where X̄ is the mean vector of the dataset.

2. Eigenvalue Decomposition: Perform eigenvalue decomposition on the covari-

ance matrix C:

Cvi = λivi (3.2)

where λi and vi are the eigenvalues and eigenvectors of C, respectively.
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3. Selection of Principal Components: Choose the top k eigenvectors (where k <

d) that correspond to the largest eigenvalues to form the projection matrix W .

4. Transformation: Transform the original dataset X into a lower-dimensional

space Y using W :

Y = XW (3.3)

MDS (Multidimensional Scaling). Pairwise distances between points are pre-

served in a low-dimensional representation of the data that is sought after by MDS.

One way to sum up the procedure is:

1. Distance Matrix Calculation: Compute the distance matrix D for the dataset,

where Dij represents the distance between points i and j.

2. Double Centering: Transform D into a matrix B using double centering:

B = −1

2
JD2J (3.4)

where J is the centering matrix,

J = I − 1

n
11T (3.5)

with I being the identity matrix and 1 a vector of ones.

3. Eigenvalue Decomposition: Perform eigenvalue decomposition on B:

Bvi = λivi (3.6)

4. Low-Dimensional Embedding: Select the top k eigenvectors to form the em-

bedding in k-dimensional space.

3.1.2 Non-linear Methods: Laplacian Eigenmaps (LE) and Locally Linear

Embedding (LLE)

The mathematical formulations of non-linear dimensionality reduction methods,

namely Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE), are ex-

amined in this subsection.
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Laplacian Eigenmaps (LE). Local neighborhood information preservation and

exposing the inherent geometry of the data manifold are the main goals of LE:

1. Neighborhood Graph Construction: Construct a graph G where each data

point is a node. Connect nodes i and j if they are ’neighbors’ (e.g., k-nearest

neighbors or within a certain radius).

2. Weight Matrix Creation: Assign weights to the edges of the graph, typically

using the heat kernel:

Wij = exp

(
−∥xi − xj∥2

t

)
(3.7)

where xi and xj are data points, and t is a tuning parameter.

3. Graph Laplacian Calculation: Compute the graph Laplacian L, defined as

L = D −W (3.8)

where D is a diagonal matrix with Dii =
∑

j Wij.

4. Eigenvalue Problem: Solve the generalized eigenvalue problem:

Lv = λDv (3.9)

to find the eigenvectors v.

5. Low-Dimensional Representation: The bottom k non-zero eigenvectors provide

the embedding in k-dimensional space.

Locally Linear Embedding (LLE). Through the reconstruction of each point

as a linear combination of its neighbors, LLE seeks to maintain local relationships

within the data. The steps are as follows:

1. Nearest Neighbors Identification: For each data point xi, identify its k-nearest

neighbors.

2. Reconstruction Weights Calculation: Compute the weights Wij that best re-

construct each data point xi from its neighbors, minimizing the cost:

min
W

∑
i

∥xi −
∑
j

Wijxj∥2 (3.10)

subject to the constraint
∑

j Wij = 1 for each i.

14



3. Embedding Computation: Find the vectors Yi in the lower-dimensional space

that best preserve the local geometry represented by the weights W , by mini-

mizing:

min
Y

∑
i

∥Yi −
∑
j

WijYj∥2 (3.11)

3.2 Computational Approaches in Manifold Learning

The computational approaches and difficulties involved in putting the previously

discussed dimensionality reduction techniques into practice are examined in this

section.

3.2.1 Efficient Calculation Strategies for Computational Kernels

Dimensionality reduction requires efficient computation, particularly when working

with large datasets. The main objective of this subsection is to optimize the handling

of eigenvalue problems that are inherent in PCA, MDS, LE, and LLE, while also

addressing their computational complexities.

• PCA and MDS: Eigenvalue decomposition, which can be computationally dif-

ficult for large matrices. Eigenvalue decomposition is a part of both PCA

and MDS. Techniques like randomized algorithms for approximate eigenvalue

decomposition drastically cut down on computation time without sacrificing

accuracy. These algorithms can be used to handle these problems efficiently.

Moreover, calculations can be accelerated by utilizing parallel computing and

optimized libraries like NVIDIA cuBLAS or Intel MKL (Patterson and Hen-

nessy 2017; NVIDIA 2021).

• LE and LLE: Creating neighborhood graphs and solving sparse eigenvalue

problems includes computational challenges. K-d trees or ball trees enable

effective graph construction for neighbor searches. Especcialy for large sparse

matrices, iterative solvers like the Lanczos or Arnoldi methods outperform

dense eigensolvers for sparse eigenvalue problems. Optimal implementations
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are made available by libraries like SLEPc and ARPACK (Lehoucq, Sorensen,

and Yang 1998; Hernandez, Roman, and Vidal 2005).

3.2.2 Comparative Analysis with Existing Studies

In order to evaluate the effectiveness and dependability of the computational strate-

gies suggested in this thesis, a comparison with previous research is necessary.

• Benchmark Against Current Tools: We can evaluate the efficacy of our opti-

mization strategies by contrasting the computational accuracy and efficiency

of our implementations with those of current tools such as ”sklearn”, ”Mega-

man”, and ”Networkx”. The comparison will be centered around factors like

low-dimensional embedding accuracy, memory usage, and computation time.

• Case Studies and Datasets: A range of datasets, from small-scale to large-scale

scenarios, will be used in the comparative analysis. This will contain real-world

datasets to show practical applicability as well as synthetic datasets to control

for particular data characteristics.

3.3 Implementation

The specific algorithmic foundations of the dimensionality reduction strategies dis-

cussed and their real-world application in the context of manifold learning are the

main topics of this section.

3.3.1 Dense and Sparse Eigenvalue Problems

Eigenvalue problems, which fall into two general categories: dense and sparse, each

with its own set of computational difficulties and approaches, are crucial to the

execution of PCA, MDS, LE, and LLE. These dense and sparse problems can be

summarized as:
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• PCA and MDS Dense Eigenvalue Problems: These problems usually includes

calculating the eigenvalues and eigenvectors of dense matrices (e.g., distance

matrices in MDS, and covariance matrices in PCA). Optimal numerical li-

braries, like ARPACK or LAPACK, which offer effective procedures for dense

matrix operations, will be utilized in the implementation (Anderson et al.

1999; Lehoucq, Sorensen, and Yang 1998). The scalability of these techniques

for large datasets will receive particular attention (Hernandez, Roman, and

Vidal 2005; Saad 2011).

• LE and LLE Sparse Eigenvalue Problems: On the other hand, sparse matrices

are frequently handled in LE and LLE, particularly when building neighbor-

hood graphs. Sparse matrix libraries such as ARPACK or SciPy in Python

will be necessary for the efficient handling of these problems. The emphasis

will be on improving computational efficiency and memory usage by applying

iterative techniques that work better with sparse matrices, like the Lanczos or

Arnoldi algorithms.

3.3.2 Constructing Neighborhood Matrices

Building neighborhood matrices showing the local relationships within the data is

an important step in non-linear methods like LE and LLE.

• Effective Neighborhood Graph Construction: To achieve effective neighbor-

hood graph construction, the implementation will use advanced data structures

and algorithms. We’ll use methods like ball trees and k-d trees. These meth-

ods work especially well with high-dimensional data. Libraries like Scikit-learn

offer scalable and reliable implementations of these techniques.

• Handling Large Datasets: Building neighborhood matrices can become com-

putationally demanding for large datasets. One way to deal with this is to

use approximate nearest-neighbor techniques. These techniques can be found

in the FLANN. FLANN library can cut down on computation time without

sacrificing accuracy (Muja and Lowe 2014).
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3.3.3 Intrinsic Dimension Estimation

Intrinsic Dimension (ID) estimation, is integral to dimensionality reduction and par-

ticularly relevant in manifold learning. Intrinsic Dimension estimation is defined as

the minimum number of coordinates required to accurately represent data without

significant information loss. Mathematically, if a dataset is presumed to lie on a

manifold within a higher-dimensional space, the intrinsic dimension is the dimen-

sionality of this manifold (Lee and Verleysen, 2007).

ID estimation is suggested by the methodology presented in Özçoban, Manguoğlu,

and Yetkin’s paper ”A Novel Approach for Intrinsic Dimension Estimation via Ritz

Values and Orthogonal Polynomials” (2023). This approach may avoid the com-

putational burden of eigenvalue calculations that is frequently associated with con-

ventional approaches. Moreover, the main objective of this approach is to estimate

the covariance matrix trace, or tr(C), where C is the covariance matrix. With

Rademacher random variables, the trace—the total of C’s eigenvalues—is roughly

calculated.

Further, the method utilizes a variant of the Conjugate Gradient algorithm to ap-

proximate Ritz values. Ritz values represent the covariance matrix’s extreme eigen-

values. These Ritz values are then employed to establish intervals within which

the eigenvalue count is estimated. Chebyshev polynomial-based methods are uti-

lized in this estimation, where the trace of a projector made from the corresponding

eigenvectors is used to approximate the number of eigenvalues in an interval [a, b].

Because matrix-vector products are used, this method is efficient. Because of these

operations, it is scalable and appropriate for large-scale dataset analysis. Along with

practical considerations, it makes use of clustering techniques to handle nonlinear

data and estimates the smallest and largest eigenvalues. This suggests that it can

handle various data types with ease. Its focus on matrix-vector products, which

are essential when working with high-dimensional data, allows it to process complex

calculations quickly.
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Real-World Application: Hyperspectral Image Analysis. An illustration of

the use of intrinsic dimension estimation is provided by the research on hyperspectral

images (HSI) discussed in section 5.6. This approach decreased the amount of time

needed to compute dimensionality reduction tasks while maintaining the accuracy

of environmental pattern recognition. This example demonstrates how intrinsic

dimension estimation can improve the analysis of complex datasets in many different

domains.

To summarize, using intrinsic dimension estimation introduced by Özçoban, Man-

guoğlu, and Yetkin (2023) can be a good choice to implement in Scaman. However,

its success heavily depends on the details of dataset being used. Also, the limits of

computer resources should be considered. Using this method properly could lead

more efficient way of reducing dimension. This method can be very useful, especially

for high-dimensional data. Finding the correct number to be reduced can help un-

derstanding large datasets and this will lead to more accurate results in the context

of manifold learning.

3.4 Implementation Considerations

• Software and Programming Languages: Python is a very suitable programming

language for scientific calculations and data analysis, and this is how these al-

gorithms will be implemented. Because of its vast ecosystem, which includes

libraries like NumPy, SciPy, and Scikit-learn, Python is the most popular pro-

gramming language among data scientists and offers a wealth of functionalities

for matrix operations, optimization techniques, and data processing.

• Optimization and Parallelization: Where applicable, optimization techniques

such as vectorization of operations and parallel processing will be used to

improve performance. The use of multithreading and distributed computing

can significantly reduce the execution time of large-scale calculations.

• Validation and Testing: The implementation of these algorithms will be tested

and verified. This includes unit testing for individual components and integra-
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tion testing for the overall system. Validation will be performed using synthetic

datasets to ensure the accuracy of the algorithms and real-world datasets to

demonstrate their feasibility.

In summary, this chapter has methodically outlined the comprehensive methodolo-

gies used in this research. It has bridged the theoretical foundations and practical

applications of manifold learning and dimensionality reduction techniques. It began

with the investigation of linear and non-linear methods, delving into the mathemat-

ical descriptions of PCA, MDS, LE, and LLE. This chapter then moved on to a

discussion on computational approaches. In this section, efficient calculation strate-

gies and the importance of comparative analysis with existing studies are explained.

Focus on algorithmic fundamentals, attention was paid to handling dense and sparse

eigenvalue problems and creating adjacency matrices. In this way, the importance of

efficient algorithm application was underlined. Finally, the chapter concluded with

an in-depth examination of intrinsic size estimation. This comprehensive approach

in methodology provides a solid foundation for the next chapter. In the next chap-

ter, will discuss the development and implementation of ’Scaman’, a computational

tool designed for scalable manifold learning.
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4. SCAMAN: A UNIFIED FRAMEWORK FOR

MANIFOLD LEARNING

4.1 Introduction

Manifold learning is primarily used in data science to comprehend the underlying ge-

ometry of high-dimensional data. A complete solution for managing dimensionality

reduction processes is the Scaman library. This chapter delves deeply into Scaman’s

architecture, emphasizing the integration of strong tools and enhanced usability.

4.2 Scaman: Design and Integration Strengths

Architectural Overview. Scaman is intended to provide researchers and practi-

tioners with a flexible, simple interface. The design philosophy places a high priority

on usability without compromising flexibility or computational efficiency. Scaman

offers a straightforward framework that lowers the complexity of manifold learning

tasks.

The architecture of Scaman is made to be both user-friendly and modular. Scaman

is a useful tool for data science practitioners as well as academic researchers. The

library structure is illustrated in Figure 4.1 and organized as follows:

• Documentation (docs): This directory contains information about instal-

lation instructions. Usage of installation.rst, usage.rst,make.bat and

Makefile indicates the use of the Sphinx template. Sphinx is a well-known

template for developing and deploying organized Python packages.

• Eigensolvers (scaman/eigensolvers): This component is very important in

Scaman, and differs from other manifold learning packages. The Eigensolvers
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directory includes 4 different main eigensolvers. Files numpy eigensolver.py,

scipy eigensolver.py, feast eigensolver.py and slepc eigensolver.py

divides eigensolvers into 4 main components with different solvers available

under each. Different types of eigenvalue problems, dataset size, and paral-

lelization are important to provide the right solver for the right problem.

• Parallel and Serial Implementations: Both parallel and serial directo-

ries in Scaman include manifold learning algorithms with various eigensolvers

implemented from scratch in this thesis: PCA, MDS, LE, and LLE.

• Utilities (scaman/utils): This directory contains utility scripts to make

scaman work with different libraries. Files like convert to petsc mat.py,

flann.py and intrinsic dimension estimator.py provide improved data

preprocessing and efficient creation of matrices needed in manifold learning

algorithms.

• Testing and Experimentation (tests): This directory includes several

notebooks that demonstrate the usage of Scaman algorithms. Tests include

Jupyter notebooks (*.ipynb) to show how to use Scaman properly.

• Additional Resources: Additional Resources: Files like requirements.txt

and setup.py ensure Scaman package’s distribution with the Conda package

manager. Since Scaman wraps the most versatile tools in manifold learning,

installation can be a pain without using a package manager.

Figure 4.1 Structure of Scaman.

Unified Algorithmic Approach. Scaman’s robust collection of manifold learn-

ing algorithms is the foundation of its strength. The goal of each algorithm’s im-

plementation is to optimize accuracy and performance. The modular structure of
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the library makes it easier to experiment with different strategies to see which ones

work best for the data at hand. Hence, making algorithm selection simple.

Eigensolver Integration: Embracing SLEPc. Because of its scalability and

effectiveness in solving complex eigenproblems, SLEPc was chosen to be integrated

as Scaman’s main eigensolver. The robust solvers SLEPc offers for eigenvalue de-

composition are suitable for Scaman’s objective of handling manifold learning tasks

easily. With this integration, users can confidently work with large datasets and

take advantage of SLEPc’s optimized performance in distributed computing envi-

ronments.

FLANN for Efficient Nearest Neighbor Searches. The nearest neighbor

search is one of the most computationally intensive parts of manifold learning.

FLANN’s inclusion in Scaman addresses this problem. Scaman provides quick and

precise neighbor identification by utilizing FLANN’s optimized algorithms, to ac-

celerate manifold learning tasks. For real-time data analysis and applications with

limited computational resources, this efficiency is essential.

Serial and Parallel Processing. Acknowledging the various computational re-

quirements of its user base, Scaman facilitates both parallel and serial processing.

This adaptability makes the library available to a wide range of users. Including

researchers doing extensive analyses on distributed computing platforms and indi-

viduals conducting small-scale experiments on personal computers.

The efficiency of Scaman is tested on a number of datasets. These datasets include

benchmarking datasets like Swiss Roll, Digits, and Iris datasets. These assessments

show Scaman’s manifold learning implementations are accurate and makes compar-

isons easy with existing tools.

Scaman is an improvement in manifold learning because it provides a simple frame-

work. Scaman simplifies manifold learning tasks by integrating tools like SLEPc,
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FLANN, Feast, and Numpy/Scipy. This allows users to concentrate on getting

valuable insights from their data instead of spending time managing those libraries.

Scaman’s simple architecture make it an ideal library for manifold learning practi-

tioners.

4.3 Example Usage of Scaman Algorithms

Because of Scaman’s focus on flexibility and user-friendliness, users can apply man-

ifold learning algorithms to their datasets with ease. The examples below show how

to use the NumPy and SLEPc eigensolvers together with the PCA and LE algo-

rithms when using Scaman. Figure 4.2 shows the example visualization of the Swiss

Roll benchmarking visualization of Scaman LE algorithms.

PCA with NumPy Eigensolver. A key method for reducing dimensionality

in data is Principal Component Analysis (PCA), which aims to extract as much

variance as possible from the data. Scaman streamlines the use of PCA in the

following ways:

from scaman.serial.pca import PCA

# Initialize PCA with NumPy Eigensolver

pca = PCA(n_components=2, solver=’numpy’)

# Fit and transform the data

embedding_pca = pca.fit_transform(data)

LE with SLEPc Eigensolver. An efficient method for reducing nonlinear dimen-

sionality while maintaining local neighborhood information is Laplacian Eigenmaps

(LE). The SLEPc eigensolver for LE can be used thanks to Scaman, which also im-

proves its scalability and performance on big datasets. Example usage of Scaman’s

LE with SLEPc eigensolver is as follows:
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from scaman.serial.le import LE

# Initialize LE with SLEPc Eigensolver

le = LE(n_components=6, k=7, solver=’slepc’, slepc_solver=’KRYLOVSCHUR’,

sigma=1, normalize=False)

# Fit and transform the data

embedding_le = le.fit_transform(data)

Figure 4.2 Scaman Swiss Roll dimension reduction visualization.

4.4 Why Implement SLEPc and Its Algorithms

Scaman incorporates SLEPc, the Scalable Library for Eigenvalue Problem Computa-

tions, because of the way it’s able to solve large-scale eigenvalue problems efficiently.

For manifold learning tasks involving high-dimensional data, where computational

efficiency and scalability are critical, this integration is especially helpful.

SLEPc Algorithms Included in Scaman. The applicability and strengths of

some of the SLEPc eigensolver algorithms included in Scaman are highlighted in the

following table. The fact that Scaman has these algorithms shows how adaptable the

platform is for handling different kinds of eigenvalue issues. Scaman works with a
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wide range of computational scenarios, from easy to difficult, by combining a variety

of techniques. Because of this variety, users can choose the algorithm that best suits

their particular problem, maximizing both computational efficiency and accuracy.

Algorithm Description

KRYLOVSCHUR A versatile solver for a wide range of eigenvalue problems,

known for its robustness and efficiency.

ARNOLDI Suitable for non-Hermitian problems, offering flexibility

in handling complex eigenvalues.

LANCZOS Optimized for Hermitian problems, focusing on precision

and speed for symmetric matrices.

POWER A simple yet powerful method for the largest eigenvalue computation,

ideal for specific applications requiring the dominant eigenvalue.

Table 4.1 SLEPc Eigensolver Algorithms in Scaman
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4.6 Installation Process for Scaman

It’s essential to set up an environment with all required dependencies before using

Scaman. Scaman uses a variety of packages to effectively support tasks related to

manifold learning and dimensionality reduction. Here’s how to install Scaman and

its dependencies step-by-step:

Prerequisites. Before installing Scaman, ensure that the following packages are

available in your environment:
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• NumPy: Numpy is the essential package of Python to perform numeric oper-

ations.

• SciPy: Scipy is extensive of Numpy including scientific algorithms like eigen-

value decomposition.

• Matplotlib: Matpolotlib offers plotting within Python.

• Scikit-learn: Offers various machine learning algorithms and tools.

• Networkx: Enables the creation, manipulation, and study of complex networks

of nodes and edges.

• FLANN (pyflann): Fast Library for Approximate Nearest Neighbors. Impor-

tant for efficient neighbor searches.

• SLEPc4py: Python bindings for the SLEPc library, built on top of PETSc for

the solution of large-scale eigenvalue problems.

• PETSc4py: Python bindings for PETSc, the Portable, Extensible Toolkit for

Scientific Computation library written in C language.

• MPI4Py: Python bindings for MPI, the Message Passing Interface. MPI allows

parallel processing for PETSc/SLEPc on CPUs.

Installation Steps. The Conda package manager simplifies the Scaman installa-

tion process. Users can easily handle various and complex installation requirements

depending libraries with Conda. This is done by setting up a virtual Python en-

vironment on Conda. This ensures an easy installation. Using Conda separates

Scaman’s dependencies from other Python projects, preventing conflicts and keep-

ing the development workspace organized.

1. Create a Conda Environment:

conda create --name scaman_env

--file requirements.txt --channel conda-forge

This command creates a new environment named scaman env and installs all

required packages in requirements.txt file. Users should be careful about

specifying conda-forge as the channel to fetch the packages successfully.
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2. Activate the Environment:

conda activate scaman_env

Activating the environment configures your shell to use the packages and set-

tings it contains and isolates it from other environments and the base system.

3. Verify Installation: Make sure to import the key packages in Python to verify

the installation: from scaman.serial.le import le

Note: The use of Conda, a popular package management system assumed in this

installation guide. To ensure compatibility, a list of all required packages and their

corresponding versions should be included in the requirements.txt file. One can

use manual installation of each dependency separately.
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5. NUMERICAL EXPERIMENTS

This section offers an empirical analysis to evaluate the Scaman library’s perfor-

mance in manifold learning applications. The tests are designed to evaluate the

accuracy, computational time, and algorithmic performance of Scaman’s manifold

learning techniques. Tests include PCA, MDS, LE, and LLE with various eigen-

solvers.

5.1 Design and Setup of Numerical Experiments

This study aims to assess the algorithmic performance and computational efficiency

of the Scaman library. These experiments are designed to give a complete picture

of Scaman’s performance in different manifold learning scenarios.

• Dataset Selection: The Swiss Roll dataset is used to test dimensionality

reduction methods. This dataset is well-known and evaluated as standard

benchmark in manifold learning. Also, the application of Scaman’s methods

in real-world scenarios can be found in this chapter with case studies. Case

studies includes datasets from MNIST, Salinas, and Indian Pines.

• Algorithmic Focus: Scaman’s application of manifold learning algorithms

is the main subject of the experiments. These methods cover all algorithms

implemented in Scaman, including both linear and non-linear ones.

• Eigensolver Analysis: Testing various eigensolvers in Scaman is an essential

part of these experiments. In order to make algorithms to be accurate and

computationally efficient, these solvers’ performance is essential.

• Experimental Setup: Reducing the dimensionality from a higher-dimensional

space to a lower-dimensional manifold is the setup for each algorithm and eigen-

solver. In manifold learning, this reduction is a common task that offers a clear

foundation for comparison in different methods.
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• Metrics for Evaluation: Algorithmic accuracy and computational time are

the main metrics used for evaluation. The time needed for important oper-

ations such as eigenvalue calculations and adjacency matrix construction is

the main focus of computational time assessments. Comparing the quality of

dimensionality reduction to established benchmarks or desired outcomes is an

essential step in accuracy assessments.

• Reproducibility: Every setup is tested several times to guarantee that the

experiments are consistent, and average results are provided. This method

reduces the effect of anomalies or outliers in specific runs.

Through this structured and comprehensive experimental design, the study aims to

provide a clear and detailed evaluation of Scaman’s capabilities in manifold learn-

ing. The results from these experiments are expected to offer valuable insights into

the efficiency and effectiveness of Scaman’s manifold learning techniques and their

suitability for various data science applications.

5.2 Comparative Analysis of Time Efficiency

This well-organized and comprehensive experimental design attempts to give a pre-

cise evaluation of Scaman’s manifold learning abilities. It is expected that these

experiments’ outcomes will provide insightful information about the efficiency of

Scaman’s manifold learning techniques.

5.2.1 Time Comparisons of Eigenvalue Solvers

This section provides an in-depth review of the Scaman library’s time efficiency,

with a focus on the functionality of different eigenvalue solvers and the creation of

neighbor matrices. Empirical data from running those elements on datasets with

different dimensions forms the basis of the analysis. The results of time experiments

can be found below:
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• Results Overview: Figure 5.1 illustrates the results, which show that SLEPc

consistently beats Scipy and Numpy in computational time for all tested di-

mensions. As the dimension increases, the ratio of SLEPc’s computation time

against Numpy and Scipy falls, demonstrating SLEPc’s efficiency and scala-

bility for larger datasets.

• Performance Analysis: As compared to Numpy and Scipy, SLEPc takes

about half the time at lower dimensions (e.g., 6,000). As dimensions increase,

time difference becomes more noticeable. For example, SLEPc performs better

at handling large-scale eigenvalue problems than Numpy and Scipy. This can

be seen with computation time is almost one-third at 10,000 dimensions.

Figure 5.1 Visualization of eigensolver comparisons.

5.2.2 Time Comparisons of Neighbor Matrix Construction

Building neighbor matrices is another essential component of manifold learning,

especially for algorithms like LLE. We looked at how quickly neighbor matrices

could be created with the FLANN library and sklearn’s NearestNeighbor module.

• Results Summary: The findings presented in Figure 5.2 shows that FLANN

library consistently performs better in terms of computational time.
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• Dataset Size Impact: FLANN is almost twice as fast as sklearn for smaller

datasets (e.g., 10,000 dimensions). As the size of the dataset increases, the

performance difference also increases. For example, FLANN is more than four

times faster at 1,000,000 dimensions and roughly twice as fast as sklearn at

10,000,000 dimensions.

• Efficiency of FLANN: These results highlight how well FLANN performs

when building neighbor matrices for large datasets, an important step in the

LLE algorithm. FLANN outperforms sklearn in terms of performance for

large-scale manifold learning tasks, as the comparison shows.

Figure 5.2 Time comparisons of FLANN and sklearn in Scaman.

Finally, a thorough examination of the time effectiveness of neighbor matrix con-

struction techniques and Scaman’s eigenvalue solvers is given in Section 5.2. The

empirical results show that SLEPc and FLANN are two of the most effective and

scalable options in the Scaman library, which means that they can be used to solve

large-scale manifold learning problems.
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5.3 Accuracy Assessment Using PCA on MNIST Dataset with Intrinsic

Dimension Estimator

Using the MNIST dataset, this section provides an accuracy evaluation of the PCA

implementation of the Scaman library. In order to find the ideal number of dimen-

sions for the best classification accuracy, the experiment shows how well Scaman’s

PCA utilized with the intrinsic dimension estimator.

Experimental Setup.

• Dataset and Sampling: For this experiment, the MNIST dataset—which

consists of handwritten digit images with a pixel size of 28 by 28—was used.

To ensure an appropriate proportion of the dataset, 10% of the data were used

through stratified sampling approach.

• Dimensionality Reduction: The dataset was evaluated by PCA in steps of

2, covering a range of dimensions from 2 to 48. This method made it possible

to evaluate how dimensionality reduction affected classification accuracy.

• Classification and Accuracy Measurement: The dataset was reduced

to each selected dimension. After dimension is reduced, dataset divided into

training and testing sets. After that, the data was classified using a k-Nearest

Neighbors (k-NN) classifier with 7 neighbors. The best number of dimensions

for the MNIST dataset was determined by measuring the classifier’s accuracy

for each dimension.

Results and Analysis.

• Accuracy Across Dimensions: Figure 5.3 represents the accuracy values

obtained for every dimension.

• Optimal Dimensionality: The maximum accuracy is observed at 17 di-

mensions, following which there is a straight line of accuracy. It shows that

dimensionality reduction and classification accuracy can be balanced by em-
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Figure 5.3 KNN Classification Accuaries of Scaman PCA applied MNIST dataset.

ploying PCA to reduce the MNIST dataset to 17 dimensions.

• Implications: These results show how useful Scaman’s PCA is when com-

bined with an intrinsic dimension estimator. Finding the ideal dimension num-

ber allows effective data representation without reducing the accuracy of sub-

sequent machine-learning tasks.

Section 5.3 states by showing how well Scaman’s PCA implementation reduce the

MNIST dataset’s dimensionality while protecting enough information to allow for

accurate classification. The experiment highlights how important it is to select

the right number of dimensions for manifold learning tasks and demonstrates how

Scaman can help with this decision-making. The findings in this section make a

strong argument for the use of Scaman’s PCA in real data science scenarios.

5.4 Evaluating the Performance of FLANN within Scaman’s Affinity Ma-

trix Options

In this section, we evaluate the capabilities of the ’Scaman’ library’s Fast Library for

Approximate Nearest Neighbors (FLANN), specifically about the Laplacian Eigen-

maps (LE) algorithm. The efficiency of manifold learning techniques is largely de-

pendent on how well FLANN and other libraries construct affinity matrices. Figure

5.4 shows the time comparisons of LE neighbor matrix creation times.
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Experimental Setup.

• Test Environment: The Scaman LE class was used to conduct the perfor-

mance test. For this experiment, a randomly generated dataset with dimen-

sions of 5000x500 was used.

• Methods Tested: Four methods from the Scaman’s LE class were evaluated:

compute affinity matrix, compute affinity matrix networkx,

compute affinity matrix flann, and fit transform.

• Data Recording:The execution times of each method were carefully recorded

by creating a DataFrame named results. Each method’s start and end times

were recorded. Execution time was calculated by subtracting the two times-

tamps.

Figure 5.4 Scaman LE Neighbor Matrix Creation Times Comparisons.

Results and Analysis.

• Execution Time Comparison: Execution times were compared to measure

each method’s relative efficiency. To visually show these execution times and

give an understanding of the performance differences between the methods,
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a bar plot was created. As seen in figure 5.4, using FLANN provides better

timing against other methods available in Scaman.

• FLANN’s Efficiency: The FLANN method outperformed the other meth-

ods considerably. The affinity matrix was computed in approximately 0.256

seconds compared to 22–27 seconds for the other methods. This difference

demonstrates FLANN’s ability to handle high-dimensional data efficiently.

To sum up, this comparison shows how employing FLANN for affinity matrix cal-

culations. In Scaman’s LE algorithm, results show FLANN’s efficiency. This result

not only confirms FLANN’s efficiency in manifold learning tasks but also provides

opportunities for a wider implementation to improve large-scale data processing

performance.

5.5 Comparative Analysis with Megaman

Scaman and Megaman are two different tools for reducing dimension size and iden-

tifying patterns in data are compared in this section. Both tools are made to work

with large datasets and use unique techniques to help solving complex data science

problems. Since they are designed to address similar problems in different ways, we

compare them to see how well they each perform with big data. By comparing the

large dataset management strategies of Scaman and Megaman, we hope to highlight

the strengths and weaknesses of each tool. This helps in understanding of Scaman’s

efficiency for real data science tasks.

5.5.1 Experimental Setup

The comparative framework is designed around a set of experiments intended to

assess the accuracy, scalability, and efficiency among Scaman and Megaman. Com-

parisons made with following experimental setup to understand which tool performs

better:
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Dataset: This analysis was conducted on the Hyperspectral Imaging (HSI) satellite

dataset Salinas. It was chosen for its complexity and applicability to real-world big

data problems. This dataset comes from Salinas Valley, California and taken with

the widely recognized AVIRIS sensor which has a high spectral resolution. It covers

a 512 by 217 pixel area and has 224 spectral bands with a spatial resolution of

3.7 meters per pixel. The high dimensionality and presence of spectrally similar

classes in the dataset make it particularly challenging. This challenge makes it a

perfect candidate to test the effectiveness of manifold learning tools in processing

and analyzing large-scale, complex HSI data.

Algorithms Tested: Using both Scaman and Megaman, the dataset was tested

to the basic manifold learning algorithm, Laplacian Eigenmaps (LE). The goal of

the LE algorithm is to reduce the dimensionality of data while maintaining its

inherent geometric structure. Because of its features, LE is especially well-suited

for analyzing large, complex datasets such as Salinas. Preserving the spectral and

spatial relationships between pixels is essential for precise analysis and classification.

Our experiments with LE enable a direct evaluation of the algorithmic performance

and results of each tool, offering insights into how well they can handle the complex

dimensionality reduction techniques required to handle hyperspectral image data.

Performance Metrics: The Silhouette Score, Trustworthiness, Normalized Mu-

tual Information (NMI), Adjusted Rand Index (ARI), and the precision of dimen-

sionality reduced results with k-NN classification were among the evaluation metrics.

These metrics provides a comprehensive understanding of the performance of each

tool by highlighting different aspects of the quality of dimensionality reduction.

These metrics allow us to evaluate the dimensionality reduction’s qualitative aspects,

like data structure preservation and reduced representation’s meaning.Also, we mea-

sured Scaman and Megaman’s quantitative performance in terms of clustering and

classification accuracy.
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5.5.2 Evaluation of Results:

Scaman performs better in every category. It is very good at identifying and clas-

sifying. This is evidenced by its high silhouette score and reliability. This suggests

that Scaman does an excellent job of preserving the data’s original structure. Also,

Scaman scores higher on the NMI and ARI. Scaman’s ability to determine the ideal

number of groups demonstrates that how well the elbow method handles complex

data. Its accuracy is further demonstrated by Scaman’s noticeably better classifica-

tion accuracy in k-NN classificaiton.

Metric Scaman Megaman

Silhouette Score 0.241 -0.537

Trustworthiness 0.980 0.495

NMI 0.587 0.014

ARI 0.377 -0.002

Elbow Method Optimal k 8 2

k-NN Classification Accuracy 84.6% 9.1%

Table 5.1 Comparative performance of Scaman and Megaman on the Salinas
dataset.

Ease of Use and Documentation: Scaman is well-documented and user-friendly

as well. These features simplify Scaman’s usage and improve the experience for data

scientists. Deploying algorithms correctly and understanding the syntax of a library

without losing time in endless documents is what Scaman offers unlike Megaman.

Scaman used scikit-learn liked syntax for ease of use.

Conclusion. The comparison shows how much more accurate, scalable, and ef-

ficient Scaman is at handling large amounts of data than Megaman. Megaman is

still helpful, but Scaman appears to perform better when handling big dataset. Fur-

ther development could include improve Scaman, making sure it meets the changing

needs of manifold learning and data science..
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5.6 Application of Dimensionality Reduction on Hyperspectral Images

(HSI)

With intrinsic dimension estimation, we studied how to improve the computational

performance of dimensionality reduction techniques for Hyperspectral Images (HSI).

The practical applications of our computational tool in remote sensing and environ-

mental monitoring are highlighted by this real-world example.

Objective and Methodology. With a focus on the Indian Pines and Salinas

datasets, the study looked to offer a computationally effective pipeline for HSI data

analysis. Our method utilized a novel approach for estimating intrinsic dimensions

with the use of orthogonal polynomials and Ritz values to maximize the dimen-

sionality reduction illustrated in Figure 5.5. To show how well our approach works

at identifying the complex patterns in these datasets, we used PCA and Laplacian

Eigenmaps (LE).

Figure 5.5 Traditional pipeline and proposed pipeline with intrinsic dimension
estimator on Scaman.

Experimental Setup. Before dimensionality reduction, the datasets were pre-

processed, with noise reduction and normalization applied. Next, we utilized PCA

and LE, contrasting the traditional approach with our pipeline which was improved

with intrinsic dimension estimation. With classification accuracy serving as the main

metric, the experiments were created to evaluate the accuracy and computational

efficiency of dimensionality reduction.
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Findings. Our results showed that using the suggested intrinsic dimension estima-

tion method improved computational efficiency again. By accurately determining

the ideal dimension for dimension reduction, the approach cut down on computa-

tional time and resource usage.

The intrinsic dimension for the Indian Pines dataset was estimated to be 10, whereas

the Salinas dataset had an estimate of 8. As shown in Figures 5.6, 5.7, 5.8, and 5.9,

these estimations allowed for high classification accuracy to be maintained while

dimensionality was effectively reduced.

Figure 5.6 Classification results for the Indian Pines dataset using PCA.

Figure 5.7 Classification results for the Indian Pines dataset using LE.
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Figure 5.8 Classification results for the Salinas dataset using PCA.

Figure 5.9 Classification results for the Salinas dataset using LE.

Computational Time Comparison. When compared to the conventional method,

the suggested approach showed an important reduction in computational time.

When using PCA to process the Salinas dataset suggested method took quite less

time, demonstrating the effectiveness of our intrinsic dimension estimation method.

As can be seen in Figure 5.10, 3 of 4 tests conducted show better execution time ex-

cept Indian Pines LE. It should also be noted that the intrinsic dimension estimator

is not yet parallelized and after parallelization, it would also improve the time even

more.
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Figure 5.10 Time comparison of tradition method vs proposed method with
intrinsic dimension estimator on Scaman.

Conclusion. This study shows the potential of applying intrinsic dimension es-

timation into the dimensionality reduction pipeline for the analysis of HSI images.

Our method provides an acceptable solution for processing such datasets with high

dimensions while keeping the accuracy and computational efficiency. In order to

confirm the usefulness of our computational tool in manifold learning applications,

future research will focus on extending this methodology to other complex datasets.
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6. DISCUSSION AND INTERPRETATION OF

RESULTS

We present a thorough analysis and interpretation of the results from our empirical

research, which we carried out with the aid of the Scaman tool, in this chapter. We

summarize the most important discoveries and draw a link between the practical

results of the experiments and the theoretical aspects of manifold learning. Our goal

is to assess the significance of these findings for both scholarly research and practical

applications. We also discuss the research limitations that were encountered and how

they could guide future work in this area.

6.1 Synthesis of Key Findings

Here, we summarize our empirical study’s key findings and discuss them within the-

oretical frameworks covered in earlier chapters. The efficacy and performance of the

Scaman tool are assessed in this synthesis, and the findings are contextualized within

the larger framework of manifold learning and dimension reduction techniques.

We have compared several eigensolvers, such as Numpy, Scipy, and SLEPc. We

found that SLEPc performs particularly well when dealing with large datasets. This

result confirms the importance of choosing appropriate computational techniques in

manifold learning.

The empirical results also demonstrated the efficiency gains that can be achieved in

utilizing FLANN to build neighbor matrices which is an important step in algorithms

like LE. This finding shows how important efficient data indexing and structuring

to improve the efficiency of manifold learning algorithms. Especially with large

datasets with millions of data points, constructing neighbor matrices fast is crucial.

43



Another interesting finding was observed by enhancing the MNIST dataset using

PCA and intrinsic dimension estimation. This experiment showed the balance be-

tween dimensionality reduction and information preservation. The results verify the

theory that data analysis can be enhanced without appreciably losing information

when there is an ideal number of dimensions.

Scaman proved to be a flexible and adaptive tool for a wide range of manifold

learning applications in several experiments. This was achieved both using synthetic

benchmarking and real-world datasets. Its consistent performance across a range of

scenarios demonstrates its usefulness and potential in data science.

These important discoveries expand our knowledge of manifold learning validates

the efficiency of the computational tools and methods used in this study. In con-

text with the high dimensional datasets, they provide insightful information about

the practical difficulties that should considered when setting these techniques into

practice.

6.2 Implications for Data Science and Machine Learning

In this section, we explained how Scaman and this research can contribute to the

fields of machine learning and data science. This analysis is important to understand

how the results we obtained from the Scaman package can influence and shape future

research and studies.

Different kind of domains like bioinformatics, financial analysis, and social network

analysis can benefit from the Scaman package. Its ability to handle complex and

high-dimensional data may help reveal hidden patterns. Thus, this kind of analysis

may lead to more accurate decision-making and new discoveries.

Moreover, Scaman’s user-friendly interface and syntax with clear documentation can

serve as an educational tool for students and researchers who are new to manifold

learning. Example notebooks available in Scaman’s test folder can demonstrate the
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basic usage of different algorithms with different eigensolvers. Having such a simple

structure can also help increase interest in manifold learning and lower the barrier

to entry.

In conclusion, researchers and students can see the benefit of Scaman’s simple struc-

ture and use this simple structure in a variety of domains. Especially whose with

an interest in manifold learning, dimensionality reduction, and data science as well

as unsupervised learning. As new methods in data science are developed every day,

this package’s modular structure allows for easy enhancements and the discovery of

new insights.

6.3 Limitations

We critically evaluate the present research’s limitations in this section. Recognizing

these limits ensures a fair assessment of our work and opens the door for further

investigation to expand our conclusions.

Although the main algorithms we studied in our research were PCA, MDS, LE, and

LLE, it’s vital to understand that manifold learning is a much broader field with

many different approaches available. Future research projects might look into more

manifold learning algorithms that are included in the ”Scaman” package.

The use of structured datasets in our current study is another drawback. But

in real-world situations, data frequently takes on different forms, such as semi-

structured and unstructured data. Subsequent versions of Scaman might concentrate

on enhancing its capacity to efficiently handle and evaluate these various kinds of

data, so increasing its usefulness in managing complexities of real-world data.

Although Scaman has proven effective in the datasets we have tested, more research

needs to be done on its scalability and performance in larger-scale applications. Sca-

man’s adaptability and effectiveness in high-stress environments could be assessed

by stress-testing it in big data environments in future research. This would of-
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fer insightful information about how well it can handle the large datasets that are

becoming more common in machine learning and data science.

We can make additional contribution to development of manifold learning and its

useful applications by resolving these limitations.
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7. CONCLUSION

The main contributions of our research are outlined in this last chapter, which also

offers a reflection on the main conclusions of our study and emphasizes its importance

and possible implications.

We have contributed to the field of data science throughout this thesis, especially

in the areas of dimensionality reduction and manifold learning.

First off, an expanded theoretical understanding of these methods has been achieved

through our in-depth investigation of algorithms. Examinig PCA, MDS, LE, and

LLE and analyzing different eigensolvers play important roles in these processes. We

have added to the academic conversation about manifold learning and dimension-

ality reduction by demonstrating the computational techniques and mathematical

underpinnings of these techniques.

Secondly, the development of Scaman tool has been achieved with this study as

a practical contribution to the field of data science. Scaman is open-sourced and

publicly available on GitHub. It is open for further improvements and expects

community support to handle manifold learning tasks simply with versatile tools.

Thirdly, the extensive empirical analysis of Scaman shows the effectiveness of the

tool. Using different types of datasets and scenarios, Scaman proves the ability of

different types of manifold learning tasks. This provides a solid foundation for future

improvements and more detailed comparative studies.

Finally, the user-friendly and well-documented structure of Scaman makes it a valu-

able educational tool. It has the potential to make complex manifold learning tasks

more accessible for students and researchers. This can lower the barrier of entry
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of understanding different types of structures of different tools like SLEPc, FEAST

and FLANN. Thus, more users can benefit of using these tools under one package.

In conclusion, this thesis advances our knowledge and ability to use dimensionality

reduction and manifold learning techniques. New opportunities for further explo-

ration and innovation can be possible with using Scaman and insights gained from

its applications.

7.1 Future Directions

The fields of manifold learning and dimensionality reduction have advanced as a

result of our work in this thesis. However, research and development still have a ton

of exciting prospects.

More comparative studies between Scaman and other tools and techniques, such as

autoencoders and deep learning, are needed. The key topic for upcoming research

is this. We are able to recognize opportunities for development and gain a deeper

understanding of Scaman’s benefits and drawbacks. This can be accomplished by

carrying out a thorough analysis of its value and performance.

Another promising direction to be considered is increasing the number of available

algorithms in Scaman. Implementing even wider manifold learning algorithms like

Isomap, tSNE, and UMAP can make Scaman more useful. In this thesis, we focused

mostly on eigenvalues and adjacency matrix related algorithms since the aim was to

improve performances in this area. In the future, improving the algorithmic reper-

toire can make Scaman more versatile and popular tool among manifold learning

researchers.

Another aspect that should be improved in the future is the implementation of

data handling problems. Scaman is designed to work on structured data mostly in

Numpy’s ndarray and PETSc’s PETSCMat format. However, in most use cases,

data can be unstructured or semi-structured. For example, manifold learning is
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heavily used in image-processing algorithms. Implementing image type of data con-

version will increase Scaman’s capabilities. In real world, data is mostly unstruc-

tured, so this area should also be improved.

Also, testing Scaman in cluster environments and apply HPC techniques is also

be needed to understand the real capabilities of tool. Scaman supports parallel

execution on CPU level and SLEPc and FLANN’s abilities on HPC environments

can demonstrate how it is efficient against standart Python eigensolvers. With

doing such tests, we can see the bottlenecks and limitations and further improve the

Scaman package.

Application of Scaman in wide range of interdisciplinary domains is also needed

to understand the tool’s capabilities. As we did with hyperspectral satellite image

classification, using Scaman in different areas like genomics, climate modeling and

social sciences may unlock new insights and help new discoveries.

Finally, creating a community around Scaman and actively provide feedback is es-

sential future work to its long-term success and impact. Engaging with researchers,

practitioners, students and data scientists may improve the tool and identify the

areas for improvement. Since Scaman is designed to be simple yet effective, involv-

ing participants and improving with sticking to current structure may make it an

impactful tool in the future.

In summary, the future directions mentioned in this thesis represent a rich and

diverse set of opportunities to improve the field of manifold learning and dimension-

ality reduction. Improving the tool with these directions may help us to unlock new

insights and innovations.

The need for scalable and efficient tools for machine learning will only increase

in the future. Understanding high-dimensional datasets and obtaining meaningful

insights from them will be essential for progress. Today’s data is growing at an

accelerating rate in terms of volume, variety, and complexity. In this regard, it
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will be important to keep improving and developing tools like Scaman. Ability to

offer a robust, adaptable, and user-friendly platform for dimensionality reduction

and manifold learning could make these areas accessible to a wider group of both

academics and professionals.

With a sense of excitement and eagerness for what lies ahead, we are wrapping up

this thesis. A key contribution in the field of manifold learning is the contribution

that we have made with the development of ”Scaman” and the insights it derived

from the application. But those are only initial steps. The future may be ripe with

chances for much more research, impact, and innovation, and we cannot wait to

continue pushing the bounds of what might be possible. We take these opportuni-

ties and challenges in an enthusiastic way and proceed together for more advanced

algorithms of manifold learning and dimensionality reduction. Being resourced with

”Scaman” and engaged in working together for innovation and rigorous scientific

research, there is no limit what we can achieve.
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APPENDIX A: GitHub README FILE OF SCAMAN

github.com/berkepehlivan/scaman

Scaman is a comprehensive Python package focused on manifold learning and di-

mensionality reduction. It is designed to facilitate the analysis and visualization of

high-dimensional data using a variety of advanced algorithms.

Features

• Robust Algorithms: Implements popular manifold learning algorithms such

as PCA, MDS, LE, and LLE for effective dimensionality reduction.

• Eigensolver Integration: Incorporates different eigensolvers like FEAST,

NumPy, SciPy, and SLEPc, allowing for versatile eigenvalue problem solutions.

• Serial and Parallel Processing: Supports both serial and parallel process-

ing to accommodate different computational needs.

• Utility Tools: Provides additional tools for intrinsic dimension estimation,

data conversion, FLANN library for faster neighbor matrix creation, and more.

Algorithms

1. PCA (Principal Component Analysis): PCA is a fundamental technique

for dimensionality reduction, focusing on capturing the most variance in the

data.

2. LE (Laplacian Eigenmaps): LE is effective for nonlinear dimensionality

reduction, preserving local neighborhood information.
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3. LLE (Locally Linear Embedding): LLE works well for unfolding twisted

or curved manifolds by preserving local distances.

4. MDS (Multidimensional Scaling): MDS seeks to preserve the global dis-

tances between data points in the lower-dimensional space.

Eigensolvers

• FEAST Eigensolver: Efficient for large-scale problems, particularly when a

specific interval of eigenvalues is required.

• NumPy Eigensolver: A general-purpose solver, suitable for smaller datasets.

• SciPy Eigensolver: Offers more options and flexibility compared to NumPy,

useful for medium-sized problems.

• SLEPc Eigensolver: Ideal for large-scale problems, providing high perfor-

mance in parallel environments.

Installation

Ensure the following packages are installed:

• NumPy

• SciPy

• Matplotlib

• Scikit-learn

• Networkx

• FLANN (pyflann)

• SLEPc4py
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• PETSc4py

• MPI4Py (for parallel processing)

Install Scaman using conda:

conda create --name scaman_env

--file requirements.txt --channel conda-forge

Example Usage

PCA with NumPy Eigensolver

from serial.pca import PCA

pca = PCA(n_components=2, solver=’numpy’)

embedding_pca = pca.fit_transform(data)

LE with SLEPc Eigensolver

from serial.le import LE

le = LE(n_components=6, k=7, solver=’slepc’, sigma=1, normalize=False)

embedding_le = le.fit_transform(data)
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Note: This is an excerpt from the Scaman GitHub readme file, included in the thesis

for reference.
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