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ÖZET 

CORYNEBACTERIUM GLUTAMICUM İLE TİROZİNAZA BAĞLI MELANİN 

ÜRETİMİ 

Tahmini olarak 30 milyar doları aşan değeri ile pigmentler, dünya çapında büyük bir 

ekonomik öneme sahiptir. Bu pigmentlerden biri olan melanin, kimyasal yapısına göre 4 

farklı kategoriye ayrılır: eumelanin, feomelanin, nöromelanin ve allomelanin. Eumelanin, 

siyah ila kahverengi tonlarda ve tirozinin L-3,4-dihidroksifenilalanine (L-DOPA) oksidatif 

polimerizasyon türevleri ile oluşturulan melanin bir alt grubu olarak kabul edilir. Eumelanin 

üreten kaynaklardan biri, öncüleri tirozin veya L-DOPA olan bakterilerdir. Bu tezde 

ekonomik melanin pigmentinin üretimi için üç farklı Corynebacterium glutamicum 

hücresinde üretim araştırılmıştır. İlk olarak, Cg-EKV-I hücresi kullanılarak tirozinaz 

tarafından besi yerine ilave edilen tirozin L-DOPA'ya dönüştürülmüş ve sonrasında L-

DOPA dopakinon'a dönüşmüştür. Dopakinon kendiliğinden okside olmuş ve melanin 

polimerleri oluşmuştur. Önce bu hücre ile melaninin optimum eldesi, üretim şişesi şekli, 

üretim hacmi ve rotasyon hızı incelenerek belirlenmiştir. Ek olarak, üretime başladıktan 24 

saat sonra, toz L-tirozin eklenerek ilave edilen tirozinin üretime ne kadar katkı sağladığı 

incelenmiştir. Elde edilen deneysel sonuçlar tirozin üreticisi AROM3D hücresiyle üretim 

için kullanılmıştır. Modelleme temelli optimizasyon ile AROM3D hücrelerinin maksimum 

melanin üretim koşulları belirlenmiştir. Tirozin ilavesi ile Cg-EKV-I hücreleri elde edilen 

maksimum melanin üretimi 0.75 g/L iken, tirozin ilavesi olmadan AROM3D hücresinden 

optimizasyon sonrasında elde edilen melanin üretimi 1.03 g/L olmuştur. Optimizasyon 

sonrasında elde edilen melanin saflaştırılmıştır. Üretilen bu pigmentin melanin olduğu 

HPLC, UV-Vis, FT/IR ve SEM analizleri ile gösterilmiştir. Son olarak, Cg-EKV-II hücresi 

ile portakal kabuğu hidrolizi kullanılarak melanin üretimi gerçekleştirilmiştir. Hücre miktarı, 

sıcaklık ve rotasyon hızı optimize edilmiştir. Bu tez çalışmasıyla, melanin pigmentinin 

optimum ve ekonomik olarak uygun bir şekilde elde edilmesi sağlanmıştır. 
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ABSTRACT 

TYROSINASE-BASED MELANIN PRODUCTION IN CORYNEBACTERIUM 

GLUTAMICUM 

Pigments, with an estimated value surpassing 30 billion dollars in the industry, hold 

significant economic importance worldwide. Melanin, one of these pigments, is categorized 

into four distinct types based on its chemical structure: eumelanin, pheomelanin, 

neuromelanin, and allomelanin. Eumelanin, ranging from black to brown tones, is 

considered a subcategory of melanin formed by oxidative polymerization derivatives of 

tyrosine such as L-3,4-dihydroxyphenylalanine (L-DOPA). One of the sources producing 

eumelanin is bacteria with precursors like tyrosine or L-DOPA. This thesis investigates the 

production of economical melanin pigment using three different Corynebacterium 

glutamicum cells. Initially, using the Cg-EKV-I cell, tyrosine added instead of a growth 

medium is converted to L-DOPA by tyrosinase and subsequently L-DOPA transforms into 

dopaquinone. Dopaquinone undergoes auto-oxidation, resulting in the formation of melanin 

polymers. The optimal conditions for melanin production with this cell, including production 

vessel shape, volume, and rotation speed, were determined. Additionally, the contribution 

of added tyrosine to production was examined by adding powdered L-tyrosine 24 hours after 

the start of production. The experimental results were used for production with the tyrosine-

producing AROM3D cell. Using modeling-based optimization, the maximum melanin 

production conditions for AROM3D cells were determined. While the maximum melanin 

production from Cg-EKV-I cells with tyrosine addition was 0.75 g/L, the melanin production 

after optimization from AROM3D cells without tyrosine addition was 1.03 g/L. The 

obtained melanin was purified after optimization. The produced pigment's identification as 

melanin was confirmed through HPLC, UV-Vis, FT/IR, and SEM analyses. Lastly, melanin 

production was attempted using orange peel hydrolysate with the Cg-EKV-II cell, with 

optimization of cell amount, temperature, and rotation speed. This thesis ensures the 

optimum and economically feasible production of melanin pigment. 
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1. INTRODUCTION 

1.1. Melanin 

Melanin is a heterogeneous pigment produced by organisms from bacteria to mammals. In 

humans, melanin is significantly accountable for the color of the skin and eyes (d’Ischia et 

al., 2015; Solano, 2014). This is generally a black or brown pigment, deriving its name from 

melanos, an ancient Greek term for black color (Borovanskỳ & Riley, 2011). It may also 

appear pink or red, such as pheomelanin found in freckles, feathers, and red hair. Melanin 

pigments are classified according to their chemical structure. These include eumelanin, 

pheomelanin, neuromelanin, and allomelanin. Different melanin types are outlined in Figure 

1.1 (D’Ischia et al., 2013). The widespread origins of melanin contribute to its heterogeneity 

in size, color, function, and composition. Its hydrophobic nature, high molecular weight, and 

a highly negative charge make melanin challenging to employ classical analytical 

approaches for defining and characterizing its structure (I.-E. Pralea et al., 2019). In addition 

to exhibiting insolubility in the majority of solvents it displays resistance to chemical 

degradation (Nosanchuk & Casadevall, 2003; I. E. Pralea et al., 2019).  

Eumelanin, the predominant melanin type in animals and humans, belongs to the black to 

brown subgroup of melanin pigments. It is produced through the oxidative polymerization 

of derivatives of the tyrosine amino acid, specifically L-3,4-dihydroxyphenylalanine (L-

Dopa) (Solano., 2014). Eumelanin is crucial from both technological and biological 

perspectives and is extensively worked on and utilized as an example for synthetic melanin. 

Pheomelanin which is distinct from eumelanin due to the presence of sulphur in its 

composition, is commonly found in hair, freckles, and feathers. Its precursor is 5-cysteinyl-

Dopa. Another melanin type is neuromelanin, which is generated inwardly human neurons 

through the oxidation of dopamine precursors and, also catecholamine precursors. 

Allomelanin is often found in fungi. This group contains various non-nitrogenous subgroups 

of melanin produced from different catechol and dihydroxynaphthalene precursors. Catechol 

melanin is produced by plants, and DHN-melanin pheomelanin is melanin produced by 

bacteria and fungi (Cordero & Casadevall., 2017; Eisenman & Casadevall., 2012;Tran-Ly 

et al., 2020). The different types of melanin are summarized in Table 1.1. 

Table 1.1 The summary of general melanins, sources, and their related precursor                    

(Tran-Ly et al., 2020). 
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Group of Melanin                                    Producing source                          Melanin precursors 

Eumelanin (DOPA-

melanin)          

Animals, bacteria, fungi                   Tyrosine or L-Dopa 

Pheomelanin Animals 5-S-cys-Dopa 

Neuromelanin Human brain              Dopamine and 5-S-cys 

Dopamine 

Catechol-melanin Plant Catechol 

DHN-melanin Fungi, bacteria           1,8-dihydroxynaphthalene 

(DHN) 

Pyomelanin                                                Fungi, bacteria                            Homogentisic acid 

 

 

Figure 1.1 Synthetic melanin types adapted from  (Cao et al., 2021) 

 



3 

1.2. Melanin Production 

Several fruits and vegetables serve as sources of melanin, including potatoes, bananas, 

garlic, and apples (Hagiwara et al., 2016; Lefevre & & Perrett, 2015; Qi et al., 2020). 

Additionally, melanin can be extracted from plants, as demonstrated for Mucuna 

monosperma (Wight) callus (Inamdar et al., 2014). Presently, commercial melanin relies on 

extraction from sepia or synthetic production routes (Tran-Ly et al., 2020). The chemical 

structure of melanin from Sepia officinalis is given in Figure 1.2. Unfortunately, these 

methods come with several drawbacks, such as environmental pollution risks and high 

production costs. Alternatively, melanin production maybe achievable through microbial 

routes using bacteria and fungi. Thus, microbial melanin production holds significant 

importance due to its sustainability, relatively fast production, and scalability for mass 

production. Because the studies conducted by Ghadge (2020), Kazi (2022), Rudrappa 

(2022), Bayram (2020), Restaino (2024), El-Zawawy (2024), Polapally (2022), El-Naggar 

(2022), Surwase (2012), Guo J. (2014), Wang L. (2019) utilized ingredients such as starch, 

yeast, casein, peptone, or complex chemicals, the purification process has proven to be 

challenging. Additionally, in most of these studies, the supplementation of tyrosine was 

necessary. Furthermore, due to the utilization of mushrooms in some of these studies, as 

observed in the works of Saber (2023), Ribera J. (2019), Sun S. (2016), and Jalmi P. (2012), 

the production duration extended and became more intricate. 

 

Figure 1.2 Chemical structure of melanin from Sepia officinalis (Melanin | C18H10N2O4 

– PubChem., n.d.) 
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Table 1.2 General melanin production 

Table 1.2 General melanin production (more) 

Microorganism Type Melanin 

g / L ( time 

/day- hour) 

L-Tyr Metal Substrate  Reference 

Bacteria 

Pseudomonas 
stutzeri 

Dopa 6.7  (72h) No No Nutrient broth, 
seawater 

Ganesh Kumar., 
(2013) 

Salicornia 
brachiata 

Eumelanin 1.5 (7) Yes No Starch, sodium 
nitrate 

Ghadge., (2020) 
 

Pseudomonas 
koreensis UIS 19 

Eumelanin 5.5 (2) Yes No Nutrient broth 
 

Eskandari., (2021) 

Streptomyces sp. 
BJZ10 

Eumelanin 3 (2) Yes No starch casein agar 
medium 

Kazi.,(2022) 
 

Streptomyces sp. 
MR28 

Dopa 0.6 (10) Yes No Skimmed milk 
powder, casein, 
starch 

Rudrappa., (2022) 
 

Streptomyces 

djakartensis NSS-3 

Eumelanin 11.8 (7) Yes ferric 

ammoniu
m citrate 

Casein agar 

 
 
 

El-

Zawawy.,(2024) 

Streptomyces 
nashvillensis DSM 
40314 

Dopa 0.74 (2) No No Glucose, yeast Restaino., (2024) 
 

Streptomyces 
hyderabadensis 7V
PT5-5R 

Dopa 5.54 (7-10) No ferric 
ammoniu
m citrate 

Peptone, yeast 
 
 
 

Ghadge., (2022) 
 

Streptomyces 
parvus BSB49 
 

Eumelanin 0.16-0.24 (4-
5) 

No CaCO3 Starch, yeast, 
dextrose 
 

Bayram., (2020)  
 

S. glaucescens NE
AE-H 

Dopa 0.35 (3-6) No ferric 
ammoniu
m citrate 

Peptone, yeast El-Naggar., 
(2022)   
 

S.roseochromogen
es ATCC 13400 

Eumelanin 3.94 (5) No No Glucose, yeast, 
egagropili 
powder 

Restaino., (2022) 
 

S.roseochromogen
es ATCC 13400 

Eumelanin 9.20 (4) 
(batch) 

No No Glucose, yeast, 
egagropili 

powder 

Restaino.,  (2022)  
 

S.puniceus RHPR9 Eumelanin 0.386 (7) No ferric 
ammoniu
m citrate 

Peptone, yeast Polapally., (2022)  
 

Klebsiella sp. 
GSK46 

Eumelanin 0.13 (4) Yes ammonia
cal silver 
nitrite, 
potassiu
m 
ferricyani

de 

Glucose Sajjan., (2010) 
 

Actinoalloteichus 
sp. MA-32 

Dopa 0.1 (7) Yes Fe, Mg Glycerol Manivasagan P., 
(2013)  

Brevundimonas sp. 
SGJ 

Dopa 6.8 (54h) Yes Cu Tryptone Surwase ., (2012)  
 
 

Pseudomonas 
stutzeri HMGM-7 

Dopa 7.2 (3) Yes No Nutrient broth in 
sea water 

Ganesh Kumar., 
(2013)  

Streptomyces 
glaucescens NEAE-

H 

Dopa 0.4 (6) yes Fe Protease peptone El-Naggar NEA., 
(2017)  

Streptomyces 
kathirae SC-1 

Dopa 13.7 (5) yes Cu Amylodextrine, 
yeast extract 

Guo J., (2014)  
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Microorganism Type Melanin 

g / L ( time 

/day- hour) 

L-Tyr Metal Substrate  Reference 

Streptomyces sp. 
ZL-24 

Dopa 4.2 (5) No Fe, Ni Soy peptone 
 

Wang L., (2019)  
 

S. kathirae SC-1 Dopa 13.7 (5) Yes NaCl, 
CuSO4 , 
CaCl2 

Amylodextrine, 
yeast 
 
 

Guo., (2014) 

Streptomyces 
antibioticus NRRL 

B-1701 

Dopa 0.24  (36h) Yes CuSO4  yeast extract, 
soluble starch, 

HAO -DBRH 

Kraseasintra., 
(2023) 

Brevundimonas sp. 
SGJ. 

Dopa 3.81 (18h) Yes Cu peptone, yeast 
extract, beef 
extract 

Surwase., (2012)  
 

S.djakartensis NSS
-3 
 
 
 

 

Fungi 
 
 
Aureobasidium 
pullulans AKW 
 

Dopa 
 
 
 
 

 
 
 
 
 
Dopa 

2.83 (7) 
 
 
 
 

 
 
 
 
 
9.295 
(167.994 h) 

Yes 
 
 
 
 

 
 
 
 
 
Yes 

Fe 
 
 
 
 

 
 
 
 
 
No 

Peptone, yeast 
extract, iron 
broth (PYI) 
 
 

 
 
 
 
 
Potato sucrose 
browth 

El-Zawawy., 
(2024)  
 
 
 

 
 
 
 
 
Saber., (2023) 

 Aureobasidium 

pullulans AKW 

Dopa 10.192 

(167.994 h) 

Yes No Potato sucrose 

broth 

Saber., (2023)  

Armillaria borealis DOPA 11.58 (97) Yes Cu,Fe,M
g 

Glucose,yeast 
extract 

RiberaJ.,  (2019)  
 

Armillaria 
cepistipes 

DOPA 27.98 (161) Yes Cu,Fe,M
g 

Glucose, yeast 
extract 

Ribera J., (2019)  
 

Armillaria ostoyae DOPA 24.80 (153) Yes Cu,Fe,M
g 

Glucose, yeast 
extract 

Ribera J., (2019)  
 

Auricularia 
auricula 

DOPA 2.97 (8) Yes Cu,Fe,M
g 

Lactose,yeast 
extract 

Sun S., (2016)  
 

Daldinia 
concentrica 

DOPA 1.78 (73) Yes Cu,Fe,M
g 

Glucose,yeast 
extract 

Ribera J., (2019)  

Gliocephalotrichu
m simplex 

DOPA 6.60 (6) Yes Cu,Fe Peptone,yeast 
extract 

Jalmi P., (2012)  
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1.3. Chemical Synthesis 

In chemical melanin synthesis, polydopamine and natural melanin exhibit similarities due to 

their shared functional groups, namely imine, catechol, and amine groups (Solano, 2017).  

These groups are synthesized through the oxidative polymerization of dopamine. Three 

primary approaches are employed for polydopamine synthesis: solution oxidation (1), 

enzymatic oxidation (2), and electro polymerization (3) (Liu et al., 2014). The solution 

oxidation approach, which is carried out in an alkaline environment, entails oxidation using 

oxygen. Alternatively, it can be synthesized by auto-polymerization of dopamine monomers. 

The alternative method includes the enzymatic oxidation of L-tyrosine facilitated by the 

tyrosinase enzyme. Besides, the diphenolic groups of dopamine may undergo oxidation, and 

then later polymerization onto polydopamine with the help of a laccase. The last approach 

is used to form polydopamine on an electrode. One drawback of this method is that 

polydopamine deposition is typically limited to conductive materials, as the electrode 

surface must be conductive (Tran-Ly et al., 2020). 

1.4. Extraction From Conventional Natural Sources 

Traditionally, melanin may be obtained from two sources: sepia ink or from dark hair and 

feathers of animals. However, these sources pose challenges for melanin extraction and 

production due to the tight binding of melanin to cellular components within melanosomes 

(Prota, 1995). Consequently, the isolation steps for melanin often involve rigorous chemical 

treatments to eliminate cell debris, protein fractions, and unconsumed nutrients. Usually, 

these procedures involve thorough hydrolysis through boiling acids or bases, followed by 

rinsing steps using organic solvents (I.-E. Pralea et al., 2019; Wakamatsu et al., 2003). 

Unfortunately, these procedures can lead to chemical changes and give damage to the 

melanin polymeric skeleton (I. E. Pralea et al., 2019). An alternative method reported 

employs gentler isolation techniques like mechanical separation using ultracentrifugation, 

proteolytic digestion aided by enzymes, or a combination of these methods (Novellino et al., 

2000). Natural melanin has limited potential for modification, being a complete polymer. 

Additionally, the drying method used significantly influences the physical characteristics of 

melanin, such as its tendency to aggregate, surface area-to-mass ratio, and porosity (Tran-

Ly et al., 2020). A summary of the two melanin extraction methods is outlined in Figure 1.3. 
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Figure 1.3 Mild and harsh procedures employed for extracting melanin from living cells 

(J. Lee et al., 2016). 

Natural melanin production faces challenges for scale-up due to its cost and limited supply. 

Moreover, extraction of melanin from bird feathers may introduce contamination, as these 

sources may contain toxic metals from their ecological exposure. On the other hand, reports 

suggest that natural melanin outperforms synthetic melanin in biotechnological applications 

(Tran-Ly et al., 2020). 

1.5. Microbial Production  

Microbial production of melanin offers several advantages, including the absence of lack of 

restrictions on seasonal growth, low prices, and environmental friendliness, making 

microbial melanin a crucial origin of natural melanin. Microbial synthesis involves two 

pathways with different enzymes. There might be considerable variations in the synthesis of 

melanin among different microorganisms (Cordero & Casadevall., 2017; Eisenman & 

Casadevall., 2012; Nosanchuk & Casadevall., 2003; Plonka., 2006; Solano., 2014). The 

DOPA pathway, also known as DOPA-melanin or eumelanin, transforms tyrosine into L-

DOPA, which is further converted to dopaquinone with the assistance of a tyrosinase or 

laccase. Dopaquinones spontaneously oxidize and polymerize to form melanin. The second 

pathway, known as the 1,8-dihydroxy naphthalene (DHN) pathway, utilizes malonyl-
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coenzyme A as a precursor, producing DHN-melanin through a series of enzymatic reactions 

(Eisenman & Casadevall., 2012; Pavan et al., 2020;Plonka., 2006). High-yield melanin 

production is often challenging with microorganisms that use the DHN pathway, as they 

synthesize melanin endogenously and this tightly binds to the inner side of the cell wall 

(Toledo et al., 2017). Extraction of melanin from these microorganisms is extremely difficult 

due to the strong bonding with the cell wall and  harsh extraction chemicals lead to artifacts. 

On the other hand, melanogenesis through the DOPA pathway is considered a mechanism 

for neutralizing toxic phenolic compounds in the environment (Almeida-Paes et al., 2012; 

Schmaler-Ripcke et al., 2008). A summary of the melanin synthesis from DHN and DOPA 

pathways are outlined in Figure 1.4. Many microbes require external tyrosine or tyrosine-

derived substrates for melanin synthesis. While tyrosine is the most commonly known 

substrate, other catecholamines such as dopamine can also be utilized. Melanin production 

from different substrates can yield structurally diverse melanins because of varied catabolic 

processes by various enzymes, allowing for the tuning of physicochemical properties and 

optimization of microbial melanin production. 

 

Figure 1.4 The schematic representation that illustrates melanin synthesis, highlighting 

important chemical transformations shared among microbial melanin-building processes in 

bacteria and fungi. The pathways depicted include the DHN-pathway (a) and the DOPA-

pathway (b). In cases of enzymatic imbalances (c), altered metabolic pathways may result 

in the formation of different types of melanins, such as pyomelanin (Tran-Ly et al., 2020). 
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Various factors, including nutritional factors, physicochemical conditions, and the control 

or modulation of enzymes involved in the synthesis of melanin, significantly impact melanin 

production. Metals like copper, which serve as cofactors for tyrosinases and laccases, are 

crucial for melanin production (Reiss et al., 2013; Sendovski et al., 2011; Yang et al., 2017). 

Different metals, including iron and nickel, can enhance melanin production, although these 

stress reactions induced in microbes may influence the process of melanin formation (Wang 

et al., 2018; Gowri., 1996). Other factors such as high temperature, different growth media, 

and hyperosmotic pressure also support melanin synthesis (Cordero & Casadevall, 2017; 

Coyne & Al-Harthi., 1992; Fogarty, 1996). Microbial growth and pigment production are 

influenced by factors like temperature, pH, light, and the presence of oxygen. To this end, 

statistical tools like the Taguchi method, the Plackett-Burman design, and the Response 

Surface Methodology maybe utilized to design multifactorial experiments and optimize the 

impact of each factor in the production process (El- Naggar et al., 2017; Saini & & Melo., 

2015; Sun et al., 2016; Surwase et al., 2012). It is clear that a multitude of factors affecting 

melanin production makes it challenging to identify a specific culture medium or optimum 

conditions for production by melanogenic microorganisms. Several studies have also 

explored the use of agricultural residues such as corn steep liquor, wheat bran extract, and 

fruit waste extract to achieve lower production costs and high-yield production (Hamano & 

Kilikian., 2006; Silveria et al., 2008; Zou & Tian., 2016).  

1.6. Limitations of Microbial Melanin In Commercialization and Industrial Uses 

Melanin holds significant potential as a biomaterial, but the commercial use of microbial 

melanin has been restricted due to its inherent complexity and diversity. The challenges lie 

in difficult synthetic routes that require maintaining and controlling physical properties, 

biological functionalities, melanin quality, and performance. The random organization of 

radicals in melanin contributes to these challenges. Additionally, the economics of melanin 

production process pose challenges. While materials can produce several grams per liter of 

end products in industrial applications, economic considerations remain a constraint in the 

production process. Purification is a further limitation, as it currently involves the use of 

strong acids/bases and organic solvents, which are not environmentally friendly. There is 

need to overcome the harsh extraction processes and to adopt to more eco-friendly methods. 

Finally, commercialization of microbial melanin is also limited by regulations related to 

human toxicity and concerns about targeting the human body with physiologically active 

materials, given its production by microorganisms (Choi., 2021). 
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1.7. Applications of Melanin 

Melanin is primarily investigated for its critical role in the virulence of pathogenic 

organisms, particularly fungi and bacteria (Cordero & Casadevall., 2017). However, 

advancements in technology have allowed melanin pigments to be repurposed in various 

fields such as areas of material science, biomedicine, cosmetics, and environmental 

remediation. One notable physiochemical property of melanin is its innate ability to act as a 

"natural sunscreen," absorbing the UV-visible light spectrum, making it a potent antioxidant 

by blocking UV-visible light. Melanin finds major use in hair dyeing and sunscreen for 

dermal and cosmetic applications. Moreover, it serves environmental purposes as a metal 

chelator (Figure 1.5).  

 

Figure 1.5 Applications of microbial melanin (Singh et al., 2021) 

 

  

 



 

 

11 

 

Microbial melanin offers several advantages, including bioavailability, biocompatibility, 

and biodegradability. In environmental applications, melanin has been employed in the eco-

friendly synthesis of silver nanostructures, demonstrating broad-spectrum antimicrobial 

activity against food pathogens in the food sectors and health sectors (Kiran et al., 2014; 

Patil et al., 2018).  

The co-production of melanin and biochemicals within a single cell holds promise for 

enhancing melanin's applications in biological processes. Ahn et al. observed the co-

production of melanin with important biochemicals, such as cadaverine, a diamino pentane 

derived from the decarboxylation of lysine (Ahn et al., 2021). Cadaverine is produced 

directly in relation to melanin polymerization. This co-production strategy not only ensures 

competitive market pricing but also allows for the simultaneous production of biochemicals 

through single enzyme expression, adding functionality to the bioprocess (Tran-Ly et al., 

2020). 

1.8. Melanin Analysis 

Pure melanin can be characterized and analyzed by several techniques. Below given is a 

summary of the techniques that can be used. 

It has long been a standard practice to identify and describe the extracted melanin pigments 

using UV-visible absorption spectra, particularly in the UV range. While this method 

provides a preliminary understanding, more advanced techniques have been developed to 

distinguish between different types of melanin or for quantitative goals. Depending on the 

melanin source, the maximum absorption wavelength for the majority of melanin forms in 

alkali solutions ranges from 196 to 300 nm. Strong optical absorption in the UV range is 

exhibited by alkaline melanin solutions, which progressively decrease at longer 

wavelengths. The complex linked molecules in the melanin structure that absorb, and scatter 

UV light photons are probably the cause of melanin's significant UV light absorption (El-

Naggar & El-Ewasy, 2017; Hou et al., 2019). The subsequent decrease in absorption is 

nearly linear for most melanins. Consequently, plotting the alkaline melanin solution's 

logarithm of absorbance against wavelength yields straight lines with negative slopes. These 

linear plot slopes are frequently employed as essential standards for the detection and 

description of melanin. One advanced technique commonly used for melanin analysis is 

Fourier transform infrared spectroscopy (FTIR). FTIR technique is generally advantageous 
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for accurately assigning spectral characteristics related to functional groups and their 

corresponding absorption bands, which play important roles in absorption processes 

(Centeno & Shamir, 2008). Material characterization through FTIR involves creating a 

spectrum of the radiation energy absorbed by material molecules and interpreting the 

resulting spectrum. FTIR stands out as a powerful characterization technique due to its 

speed, non-destructive nature, and the need for small-sized samples. In the material under 

analysis, chemical bonds vibrate at frequencies specific to their structure, bond angle, and 

length (Swann & Patwardhan., 2011). These individual molecules can interact with incident 

radiation by absorbing it at particular wavelengths. By examining individual absorption 

peaks, one can identify and assign specific chemical bonds, allowing for the qualitative or 

quantitative identification of individual compounds within complex systems. Scanning 

Electron Microscopy (SEM) proves to be a robust method for the morphological 

characterization and determination of particle size distribution in various types of melanins 

(Mbonyiryivuze et al., 2015; Strube et al., 2015). Numerous sample preparation methods 

outlined in literature consider factors, such as sample size, shape, state, and conductive 

properties (Beltrán-García et al., 2014; Büngeler et al., 2017; Prados-Rosales et al., 2015). 

To achieve conductivity, melanin samples typically need to undergo a coating process. 

Commonly, a thin layer of gold (Araujo et al., 2012; Costa et al., 2012; Li et al., 2018) or a 

gold/palladium alloy (Srisuk et al., 2015) is applied for this purpose. The granule 

morphology of melanin, depending on its source, typical size range of melanin granules 

usually falls between 30 and 1000 nm, and these granules generally exhibit amorphous 

characteristics with irregular shapes. Finally, high Performance Liquid Chromatography 

(HPLC) is an analytical technique that can be used to identify the components alone or in a 

mixture and separate mixtures of very similar compounds. For the detection of melanin with 

HPLC, a UV detector is required. The simple sample preparation, sensitivity, and rapidness 

of HPLC make it advantages over other techniques. 

1.9. Metabolic Engineering 

Metabolism is a universal process found in all organisms, serving as a central mechanism 

through which cells harness energy from various sources to generate cellular materials and 

fulfil energy requirements (Shams Yazdani & Gonzalez, 2008). Strain improvement is 

paramount for optimizing biotechnological production processes, and metabolic engineering 

serves as an effective framework for achieving this. Metabolic engineering, pioneered in the 

early 1990s, represents a revolutionary approach to the rational design of microbial systems 
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with precisely defined genetics to achieve high production yields (R. R. Kumar & Prasad., 

2011). By analysing genome-wide differential gene expression data, along with information 

on protein substances and in vivo metabolic fluxes, metabolic engineering allows for a 

comprehensive understanding and manipulation of cellular processes. It operates at the 

intersection of various multidisciplinary fields, including chemical engineering, 

biochemistry, and biotechnology. Engineering principles such as the design of metabolic 

pathways are crucial for achieving targeted goals in this dynamic field (Farmer & Liao, 

2000). Metabolic engineering is encouraged by commercial applications where developing 

methods for improving strains can increase the production of metabolites (F. C. Lee et al., 

2010). In the present day, the goals of metabolic engineering are aligned with green 

chemistry and sustainable development, reflecting the increasing advancements in the 

biotechnology field, particularly within related industries. The focus on sustainability 

underscores the broader impact of metabolic engineering in driving environmentally friendly 

and economically viable processes. In contemporary biotechnology, metabolic engineering 

is exploited to use renewable plant biomass for the cost-effective production of bulk 

chemicals (R. R. , & P. S. Kumar, 2011) (Farmer & Liao, 2000) 

1.10. Corynebacterium Glutamicum 

The history of Corynebacterium glutamicum as an amino acid producer began with the 

isolation of Micrococcus glutamicus by Kinoshita. In 1956, the company Kyowa Hakko 

identified it as a natural glutamate producer (Kinoshita et al., 1957; Nakayama et al., 1966; 

UDAKA., 1960). Corynebacterium, a facultatively anaerobic, non-spore-forming gram-

positive bacterium, was later renamed Corynebacterium glutamicum. It is generally 

recognized as a safe host (J. Y. Lee et al., 2016) engineered to secrete other amino acids, 

including L-lysine, L-arginine, L-histidine, and L-valine (Eggeling & Sahm., 1999; Ikeda., 

2003; Kimura et al., 2003). Studies on Corynebacterium involve the analysis of cell wall 

composition and lipid sections, highlighting the significance of cell wall chemistry and lipid 

structure. The cell wall of C. glutamicum contains an arabinogalactan polysaccharide partly 

esterified by mycolic acids, directly cross-linked to peptidoglycan. Additionally, the cell 

wall features a significant amount of glucose and mannose. Other components include a 

protein surface layer, high and low molecular mass lipoglycans, arabinomannan, and glucan. 

C. glutamicum boasts several advantages as an industrial host, possessing key physiological 

properties essential for industrial applications. These properties include: (i) being a safe 

strain for humans (GRAS); (ii) rapid growth to high cell densities; (iii) genetic stability due 
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to the lack of a recombination repair system; (iv) a limited restriction-modification system; 

(v) an extensive spectrum of carbon usages, including hexoses and pentoses; and (vi) robust 

secondary metabolism. These characteristics make C. glutamicum well-suited for cultivation 

and manipulation in industrial conditions (J. Y. Lee et al., 2016). 

1.11. Renewable Carbon Source 

The utilization of renewable carbon sources plays a pivotal role in combating climate change 

by reducing dependence on fossil resources. While decarbonization is a viable strategy in 

the energy sector, it is not suitable for organic chemistry, which heavily relies on carbon. 

Thus, it is crucial to explore sustainable and climate-friendly industries that leverage 

alternative carbon sources, often referred to as renewable carbon. Shifting towards 

renewable carbon in the chemical industry is imperative given the significance of carbon as 

a fundamental building block for various applications (Amooghin et al., 2013; Carus et al., 

2020). Lignocellulosic biomass, also known as lignocellulose, stands out as one of the most 

abundant renewable materials globally (Zhou et al., 2011). Produced through the absorption 

of atmospheric CO2 and water, using sunlight energy, lignocellulosic biomass consists of 

phenolic polymers, polysaccharides, and proteins. Its complex spatial structure involves 

cellulose, hemicellulose, and lignin. Cellulose, a carbohydrate polymer, is enveloped by a 

dense structure formed by hemicellulose, other carbohydrate polymers, and lignin, an 

aromatic polymer. Lignocellulosic biomass generally exists in three forms: biomass, virgin 

biomass, and energy crops (Yousuf et al., 2019). 

1.11.1. Orange peel hydrolysate 

Production of oranges is generally increasing each year, and within the orange industry, 

orange peel is recognized as the garbage with both the highest volume and the greatest 

potential benefit. It is estimated that orange peel constitutes approximately 20% of an 

orange. According to literature findings, orange peel comprises 11% hemicellulose, 22% 

cellulose, 23% sugar, and 25% pectin. The utilization of orange peel as a carbon source is of 

significant interest. Establishing an integrated process that effectively converts the 

hemicellulose content of the biomass into fermentable sugars, is essential for microbial 

utilization. This conversion process ensures easy accessibility for microorganisms during 

fermentation. The carbohydrate monomers obtained from the degradation of polymers 

include glucose, fructose, xylose, and galactose. Among the processes used to achieve this 
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degradation are acid hydrolysis, fermentation, and enzymatic hydrolysis. For orange peel, 

one easy and economical method for hemicellulose and cellulose degradation is hydrolysis 

with diluted acid, as demonstrated by Ayala et al. (2021). This approach is considered the 

suitable option for breaking down the complex components of orange peel into simpler 

sugars, facilitating subsequent processes such as fermentation (Ayala et al., 2021). 

1.12. Model Based Optimization 

Numerical optimization entails the use of mathematical models to identify values for 

decision factors (independent variables) that either minimize or maximize an objective 

function (dependent variable or response). Different numerical optimization methods are 

employed based on the arrangement of the mathematical model and characteristics of the 

target function. In this study, conditions for highest melanin titers have been found via global 

optimization using Kriging and Quadratic methods. In this research, global optimization was 

employed, aiming to identify the optimal values of variables for obtaining highest melanin 

titers. Given the potential presence of multiple local optima, the goal of global optimization 

is to pinpoint the global optimum of the system (Brownlee, 2021). In this study, both low-

order polynomials (frequently used for RSM) and Kriging methods were used for modelling 

and optimization. 
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2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Strains 

The strains used in this study are summarized in Table 2.1. 

Table 2.1 List of strains and descriptions 

Strain Description Reference                                                                                                   

 

EKV-I                                    C. glutamicum ATCC 13032 

harbouring pEKEx2-tyrRs                          

(Kurpejović et al. 2021) 

EKV-II                                   EKV-I harbouring pEKEx3-

xylAXc-xylBCg 

(Kurpejović et al. 2021) 

AROM3D AROM3 harbouring 

pEKEx3-tyrRs 

(Kurpejović et al. 2023) 

 

2.1.2. Chemicals 

D(+)-glucose was from NeoFroxx, IPTG (Isopropyl β-Dithiogalactopyranoside) was from 

BioFroxx, MOPS (3-morpholinopropanesulfonic acid) was from Wisent, brain heart 

infusion (BHI) was from Biolife, L-tyrosine was from Multicell, Ammonium sulfate, 

kanamycin sulfate,  urea,  manganese (II) sulfate monohydrate,  glycerol, Biotin were from 

Sigma, Spectinomycin dihydrochloride 5-hydrate was from AppliChem, 3,4-

Dihydroxybenzoic acid, protocatechuic acid (PKS) were from Alfa Aesar, and Agar,  sodium 

chloride,  calcium chloride, and  nickel (II) chloride hexahydrate, magnesium sulfate 

heptahydrate, copper (II) sulfate pentahydrate,  di-potassium hydrogen phosphate were from 

Merck, and potassium phosphate monobasic, iron (II) sulfate heptahydrate, zinc sulfate 

heptahydrate were from Isolab. 
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2.1.3. Buffers and media 

Brian-Heart infusion medium: Firstly, 37 g of BHI were weighed and dissolved in 1 liter of 

distilled water. It was autoclaved for 15 minutes at 121 degrees Celsius. 15 g of agar were 

weighed for 1 liter of BHI medium for growth experiments to prepare a solid medium. After 

autoclaving, the mixture was poured onto petri dishes. 

CgXII defined medium: CgXII medium was prepared by mixing 900 mL of basic medium 

and 100 mL of a solution with the carbon source. The basic medium had 5 g/L urea, 1 g/L 

K2HPO4, 1 g/L KH2PO4, 20 g/L (NH2)2SO4, and 42 g/L MOPS. The pH of the basic medium 

was adjusted to 7 with 10 M NaOH. 40% glucose solution was used as the carbon source. 

The final concentration of glucose in the CgXII medium was 4%. The two components were 

autoclaved at 121 degrees Celsius for 15 minutes. For Cg-EKV-I, CgXII defined medium 

was supplemented with 1 g/L L-Tyr. 

CgXII medium with orange peel hydrolysate as the carbon source: When orange peel 

hydrolysate was used as the main carbon source, 5X basic CGXII medium was prepared as 

a concentrated solution. This medium was prepared by dissolving 100 g/L (NH2)2SO4, 25 

g/L urea, 5 g/L KH2PO4, 5 g/L K2HPO4, and 210 g/L MOPS in 1 liter of distilled water. The 

medium with orange peel was autoclaved at 121 degrees Celsius for 15 minutes. The pH of 

the orange peel hydrolysate was then adjusted to 7 using 10 M NaOH. The medium was 

prepared by mixing 80 ml hydrolysate with 20 ml 5X concentrated basic medium. 

Trace elements: For 1 Liter of CgXII medium 0.25 g/L MgSO4.7H2O, 10 mg/L CaCl2, 10 

mg/L MnSO4.H2O, 10 mg/L FeSO4.7H2O, 1 mg/L ZnSO4.7H2O, 0.2 mg/L CuSO4.5H2O, 

0.02 mg/L NiCl2.6H2O, 0.2 mg/L biotin, and 30 mg/L protocatechuic acid were prepared 

and sterilized using 0.22 um filters. They are kept at -20 degrees Celsius. The trace elements 

were mixed with a basic medium and carbon source before cultivation started.  

Acid treatment of orange peel: Orange peels were dried in an oven at 75 °C for 2 days and 

then blended into a powder form. 12.5 g of orange peel were weighed and mixed with 2% 

H2SO4 in 100 mL of distilled water. Afterwards, the mixture was autoclaved at 121 degrees 

Celsius for 50 minutes. The orange peel was filtered using filter paper after autoclaving. 

Approximately 50-60 mL of the filtered orange extract was then adjusted to pH 7 with 10 M 

NaOH. The hydrolysate was sterilized for 15 minutes at 121 degrees Celsius to be used in 

growth media. 
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The formulations of all media and used all buffers are presented in Table 2.2. 

Table 2.2 List of media and buffers used. 

Media and buffers Composition  

Brain heart infusion media (BHI) 37 g/L BHI  

Brain heart infusion agar plates 

 

15 g/L agar  

37 g/L BHI 

CGXII minimal medium 

 

 

 

 

 

Trace element solution’s: 

 

 

20 g/L (NH2)2SO4, 

5 g/L urea, 

1 g/L KH2PO4 

1 g/L K2HPO4  

42 g/L MOPS 

4% (w/v) glucose  

0.25 g/L MgSO4·7H2O 

10 mg/L CaCl2 

10 mg/L FeSO4·7H2O 

10 mg/L MnSO4·H2O 

1 mg/L ZnSO4·7H2O 

0.2 mg/L CuSO4·5H2O 

0.02 mg/L NiCl2·6H2O 

0.2 mg/L biotin  

30 g/L protocatechuic acid (PKS)  

 

2.2. Methods 

2.2.1. Experimental techniques 

2.2.1.1. Cultivation conditions 

All strains were kept in 25% glycerol solution at -80 °C. C. glutamicum strains were cultured 

in 25 mL and 50 mL CGXII medium in 250 mL and 500 mL baffled flasks. The strains were 

grown under the following conditions: 

Glycerol stocks were retrieved from the freezer and streaked onto BHI agar plates. 

Subsequently, the plates were incubated for two days at 30 °C. A single colony from each 
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plate was selected and inoculated into 5 mL BHI medium for 8 hours and 200 rpm at 30 °C. 

For Cg-EKV-I, 25 μg/mL of kanamycin was supplemented to the medium, for AROM3D, 

100 μg/mL of spectinomycin was supplemented, and both antibiotics were added for Cg-

EKV-II. 

50 mL of CGXII medium with a 4 % carbon source was inoculated with 1 mL of the 

overnight preculture, adjusting the OD600 to 1 for the main culture (Keilhauer et al., 1993). 

This mixture was cultivated in 500 mL flasks overnight 150 rpm and at 30 °C for a total of 

18 hours, serving as the preculture. 

2.2.1.2. Fermentative melanin production with Cg-EKV-I  

The Cg-EKV-I strain harboring pEKEx2-tyrRs was employed for melanin production using 

glucose as the sole carbon source. An overday culture of a single colony was incubated in 5 

mL BHI tubes with kanamycin at 30 °C and 200 rpm in a shaker for 6-8 hours. The second 

preculture was prepared by mixing 25 mL of CgXII basic medium supplemented with trace 

elements, kanamycin, and 4 % (w/v) glucose and inoculated with 1 mL of the overday culture 

in a 25 mL flask. The flask was placed in a shaker at 30 degrees Celsius, 150 rpm for 16-18 

hours. The production medium was 50 mL of CgXII medium supplemented with L-Tyr, 

glucose, trace elements, and kanamycin. Additionally, 0.1-0.6 mM CuSO4 was added to 

activate the tyrosinase enzyme. The production medium was inoculated with the second 

preculture adjusting the initial OD600 to 1. The flask was incubated at 30 °C, 150 rpm. After 

90 minutes, 1 mM of IPTG was added as the inducer. Cells were grown up to 144 hours. 

Growth was monitored by measuring OD600 value. To get the final value the OD600 value of 

the cell-free culture was subtracted from the OD600 of the culture-containing cells. This 

resulting value was then converted to dry cell weight per milliliter using a calibration curve. 

The cell-free supernatant was analysed for melanin and L-Tyr production. To study if L-Tyr 

amount limited melanin formation, additional L-Tyr was added in powder form after 24 

hours to get a final concentration of 4 g/L and melanin formation was followed. 
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2.2.1.3. Fermentative melanin production with AROM3D 

The AROM3D strain was utilized for melanin production from glucose as the sole carbon 

source. An overnight production culture was prepared from a single colony on a BHI plate 

with spectinomycin. The single colony was incubated in 5 mL BHI tubes with spectinomycin 

at 30 °C and 200 rpm in a shaker for 6-8 hours. The second preculture was prepared by 

mixing 25 mL of CgXII basic medium supplemented with trace elements, spectinomycin, 

and 4 % (w/v) glucose and inoculated with 1 mL of the overday culture in a 25 mL flask. 

Additionally medium was supplemented with 2 mM L-Phe, and 1 mL since the strain is a L-

Phe bradytrophs. The flask was placed in a shaker at 30 degrees Celsius, 150 rpm for 16-18 

hours. The production medium was 50 mL of CgXII medium supplemented with glucose, 

trace elements, spectinomycin, and 0.5 mM L-Phe. Additionally, 0.1 mM CuSO4 was added 

to activate the tyrosinase enzyme. The production medium was inoculated with the second 

preculture adjusting the initial OD600 to 1. The flask was incubated at 30 °C, 150 rpm. After 

90 minutes, 1 mM of IPTG was added as the inducer. Cells were grown up to 144 hours, 

growth was monitored by measuring OD600 value. To get the final value the OD600 value of 

the cell-free culture was subtracted from the OD600 of the culture-containing cells. This 

resulting value was then converted to dry cell weight per milliliter using a calibration curve. 

The cell-free supernatant was analysed for melanin and L-Tyr production. To study if L-Tyr 

amount limited melanin formation, additional L-Tyr was added in powder form after 24 

hours to get a final concentration of 4 g/L and melanin formation was followed. 

2.2.1.4. Melanin production from orange peels sugar extract in Cg-EKV-II  

When orange peel hydrolysate was used for melanin production, the overnight preculture 

medium contained 20 % (v/v) orange peel hydrolysate and LB medium. When essential, 25 

µg/mL kanamycin and 100 µg/mL spectinomycin were supplemented. The preculture was 

grown at 30 °C, 150 rpm, for 16-18 hours. The grown cells were harvested, washed with 

CgXII medium without glucose, and used to inoculate the main culture. The main culture 

consisted of 30 % orange peel hydrolysate., and the cells were grown at shaker 150 rpm at 

30 °C for 48 hours. Based on the mathematical optimization results 0.31 mM copper ions 

wer added as a cofactor for the enzyme . After 90 minutes, 1 mM of IPTG was added as the 

inducer. Growth was monitored by measuring OD600 value. To get the final value the OD600 

value of the cell-free culture was subtracted from the OD600 of the culture-containing cells. 

This resulting value was then converted to dry cell weight per milliliter using a calibration 
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curve. Cells were grown for 48 hours, and the cell-free supernatant was analysed for melanin 

production. 

2.3. Melanin Extraction 

Grown cells were centrifuged at 2600 g for 15 minutes to separate and obtain the cell free 

supernatants with melanin. The resulting supernatant was acidified using 3 molar HCl to 

achieve a pH of 3. The acidified sample was then incubated in an oven at 30°C for 24 hours. 

Subsequently, the sample was centrifuged at 2600 g for 15 minutes to obtain crude melanin 

pigments. The melanin pellet was washed with a 1:1 ratio of acetone and ethanol. The 

pigments, mixed with acetone-ethanol, were centrifuged at 2600 g for 15 minutes, and the 

supernatant was discarded. Finally, the precipitated pigments, containing melanonids, were 

boiled in a water bath for 15 minutes to eliminate the melanoidins. The obtained pigments 

were dried in an oven at 50°C for 3 days (Gibson & George, 1998; Eskandari & Etemadifar, 

2021). Melanin was resuspended in 0.5 M NaOH for further characterization. 

2.4. Melanin Quantification  

Eumelanin determination was carried out in the cell-free supernatants at OD400 nm following 

the method described by Turick et al. (2002) (Turick et al., 2002). The obtained OD400 value 

was then converted to melanin titer using the conversion factor of 0.066 g/L = 1 OD400, as 

reported by Ahn et al. (2021) (Ahn et al., 2021). Subsequently, this value was converted to 

dry cell weight per milliliter using a calibration curve. The entire cell-free culture was stored 

at +4°C for further analyses (Lagunas-Munoz, 2006). 

2.5. Analysis of melanin with High Performance Liquid Chromatography  

High-Performance Liquid Chromatography (HPLC) analysis was performed using the 

Agilent 1100 system, equipped with a C18 Zorbax column (250 × 4.6 mm, 5 μm), and a UV 

detector set at 280 nm. A mobile phase comprising methanol and 1% acetic acid in a 20:80 

ratio was used. The flow rate was fixed to 0.5 mL/minute, and the running time was set at 

20 minutes. An injection volume of 20 µL for melanin dissolved in 0.5 M NaOH was 

utilized. The temperature was maintained at 50 °C (Sun et al. 2016) (Eskandari & 

Etemadifar., 2021). The HPLC chromatogram of the purified melanin was compared to that 

of the standard melanin from Sepia officinalis (Sigma CAS no: 8049-97-6) (Sigma M2649). 

2.6. Analysis of L-tyr High Performance Liquid Chromatography 
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To monitor L-Tyr consumption as the substrate during melanin production, HPLC was 

employed. As recently described by Kurpejović et al. (2023), an Agilent 1100 system 

equipped with a C18 Zorbax column (250x4.6 mmx5µm) and a UV detector set at 280 nm 

was utilized (Kurpejović et al., 2023). The mobile phase consisted of 0.1 N acetic acid-

methanol at a ratio of 10:1. The flow rate was set to 1.2 mL/min, and the analysis was carried 

out at 30°C. An injection volume of 20 µL was used for each sample. The retention time for 

standard L-Tyr was determined to be 3.3 minutes. 

2.7. Analysis of melanin with UV-Vis Spectrophotometry 

Dilutions of the extracted melanin, dissolved in 0.5 M NaOH, were prepared in double-

distilled water at ratios of 1:10 and 1:100. The pH of the solutions was adjusted to 12 using 

1 N NaOH. Different concentrations of the purified melanin (0.1, 0.125, 0.05, 0.25 g/L) were 

then prepared using these dilutions. Alkaline double-distilled water adjusted to pH 12 served 

as the blank. The solutions were scanned at UV and visible wavelengths (200-900 nm) using 

a spectrophotometer (Bio-Rad, Smart Spec Plus). The relationships between log absorbance 

and wavelength were calculated and plotted according to the method described by Raman 

and Ramasamy (Raman & Ramasamy., 2017). 

2.8. Analysis of melanin with Fourier Transform Infrared Microscopy (FT/IR) 

The functional groups and bond structures of the purified melanin were identified using a 

Fourier Transform Infrared spectrophotometer (FTIR, Jasco FT/IR-4700). The instrument 

was provided with a Gladi Attenuated Total Reflection (ATR) viewing plate (Diamond ATR 

crystal) and a liquid-nitrogen-cooled mercury cadmium telluride (MCT) detector. Spectra 

were recorded in the wavelength range of 4000 cm−1 to 400 cm−1 at a temperature of 23°C 

(Mahmutoglu et al., 2023). 

2.9. Analysis of melanin with scanning electron microscopy (SEM) 

For SEM analysis, melanin was fixed on membranes following the procedure previously 

described by Gokgoz (Gokgoz., 2017). Specifically, 25 µL of a melanin solution in 0.5 M 

NaOH, containing approximately 20 mg of purified melanin, was carefully deposited onto a 

0.22 µm pore sized membrane filter. The samples were then fixed for 90 minutes by floating 

the filters on 2% glutaraldehyde. After fixation, the samples were washed with distilled 

water. The filters were dehydrated by sequential immersion in increasing concentrations of 
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ethanol (30%, 50%, 70%, and 90%) for 10 minutes each, followed by immersion in absolute 

ethanol for 1 hour. Subsequently, the filter was air-dried overnight at room temperature and 

coated with platinum using a sputter coater before imaging. Imaging was performed using a 

Philips XL30 ESEM-FEG/EDAX system under high vacuum mode, with 5 kV energy and 

a 3.0 spot size. 

2.10. Whole cell biocatalysts with orange peel hydrolysate 

The CgEKV-II strain was grown on 30% orange peel hydrolysate for 48 hours. At the end 

of this period, the cells were centrifuged at 10.000 g for 10 minutes. The supernatant was 

discarded, and the cells were collected. The cells were then resuspended in water to achieve 

a calculated OD600 of 1. A solution of 1 g/L  L-Tyr was prepared using distilled water. In 15 

mL falcon tubes, 10 mL of the prepared L-Tyr solution was mixed with CgEKV-II cells with 

varying volumes from 50 µL to 450 µL. A total of 18 different conditions were conducted 

for melanin production. The experiments were conducted under two sets of conditions: the 

first set was without shaking at room temperature, and the second set was at 150 rpm in a 

shaker at 30 °C. To each falcon tube, 100 µL of copper ions were added to activate the 

tyrosinase. After 24 hours, the tubes were centrifuged at 10.000 rpm for 10 minutes, and the 

OD400 of the samples was measured using a spectrophotometer. 

2.11. Model based optimization 

2.11.1. Design of experiments  

Two sets of data points were selected to design experiments with three independent variables 

(factors): copper addition time, copper concentration, and L-Phe concentration. The limits 

for the variables were: 0-24 hours for copper addition, 0-0.4 mM for copper ion 

concentration, and 0-0.5 mM for L-Phe concentration. The first set of data points were 

designed using a traditional approach. 12 data points were randomly selected using 

MATLAB's  function. Experiments with these data points were tested in triplicate. The 

second set of data points were selected with 3 factors and 5 levels using MATLAB’s 

ccdesign to support the modelling. Here, the total number of experiments was 24 with 10 

center points. 10 repetitions allowed for a more uniform estimation of prediction variance.  

2.11.2. Modelling and optimization 
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Two approaches were used to model the experimental data and determine the optimum 

values of the selected independent variables. These were low-order polynomial modelling, 

which is often used as a part of response surface methodology (RSM) and Kriging. For RSM 

(low-order polynomial), MATLAB’s fitlm function has been used. The response (dependent 

variable) was melanin titer. For Kriging, MATLAB’s fitrgp function has been used. This is 

a quadratic model and has a pure quadratic basis function and a rational quadratic kernel 

function. In both modeling approaches, for a comprehensive description of the model, all 

data were used were used to fit a model. Then for numerical optimization, MATLAB's global 

optimization toolbox was utilized. Unlike general optimization toolbox solvers, the global 

optimization toolbox is specifically designed to explore multiple local minima. The primary 

improvement value utilized was fmincon, employing the interior point algorithm for 

minimization under constraints. The fmincon function is tailored for identifying the minimal 

of nonlinear and multiple variable functions. The optimal values for the concentration of 

copper ions, copper addition time, and  L-Phe concentration were determined for maximum 

melanin titer. 
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3. RESULTS AND DISCUSSION 

3.1. Melanin production with Cg-EKV-I 

Tyrosinases function as copper-dependent enzymes, catalyze the hydroxylation of L-Tyr to 

L-DOPA. These enzymes, while primarily focused on L-Tyr conversion, also possess 

bifunctionality, converting  L-DOPA to  L-dopaquinone, which is subsequently oxidized to 

form melanin (Valıpour., 2015). To this end, CgEKV-I cells, engineered for the conversion 

of L-Tyr to L-DOPA as outlined by Kurpejović et al. (Kurpejović et al. 2021), were employed 

for melanin synthesis using externally supplemented L-Tyr. Initially, for melanin production 

with these cells, an optimal concentration of 0.4 mM copper ions was established for L-

DOPA production (Kurpejović et al., 2021). 

3.1.1. Effect of different copper ion concentrations 

Since tyrosinase is activated by the presence of copper ions, melanin production was 

investigated with different copper ion concentrations ranging from 0.1 to 0.6 mM with Cg-

EKV-I for 72 hours. It can be inferred that concentrations above 0.3 mM of copper ions 

exhibited a toxic effect on melanin production, as indicated by lower melanin yields and 

lower cell yields. The results are given in Table 3.1.  

Table 3.1 Effect of different copper ion concentrations for Cg-EKV-I 

Time 

(hour) 

0.1 mM 0.2 mM 0.25 mM 0.3 mM 0.4 mM 0.6 mM 

24 0.51±0.1 0.59±0.1 0.84±0.1 0.85±0.1 0.67±0.3 0.44±0.1 

48 0.75±0.1 0.81±0.1 0.91±0.1 0.93±0.04  0.75±0.1 0.52±0.1 

72 0.81±0.1 0.84±0.1 0.93±0.04 0.95±0.04 0.78±0.1 0.57±0.1 

The highest melanin production was with 0.3 mM copper ions after 24, 48, and 72 hours. 

Overall, production with 0.25 mM and 0.3 mM copper yielded very similar melanin titers. 

Based on the results in Table 3.1, production with 0.1 mM and 0.2 mM copper ions yielded 

similar melanin titers. Although melanin titer with 0.1 mM copper ions was lower than the 

titerl obtained with 0.3 mM copper ions, considering environmental issues, this 

concentration could also be considered for melanin production with this system and 

production period could be 72 hours. There was only a slight difference (10-15%) in melanin 
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titer with low copper ion concentrations. Therefore, further experiments with Cg-EKV-I 

were completed in the presence of 0.1- or 0.2-mM copper ions. 

3.1.2. Effect of different flask volumes 

Different production volumes were considered since they directly influence oxygen 

availability and consequently L-DOPA oxidation to form melanin. To this end, growth 

media as 25, 50, and 75 mL in 500 mL flasks for melanin production with Cg-EKV-I have 

been considered and the obtained results are displayed in Table 3.2. Among the production 

volumes tested, the lowest melanin production was in 75 mL with 0.84 g/L melanin after 72 

hours, probably due to oxygen insufficiency. Although production in 25 mL seemed slightly 

better, due to excessive foaming, it was difficult to work with this volume. Therefore, 

optimum production volume was selected as 50 mL for further experiments.  

Table 3.2 Effect of culture volume on melanin production with Cg-EKV-I. 

 

Time 

Melanin titer (g/L) 

25 mL 50 mL 75 mL 

24 0.54±1.0 0.82±0.4 0.40±0.2 

48 0.94±0.03 0.85±0.02 0.65±0.2 

72 0.97±0.03 0.90±0.03 0.84±0.04 

 

3.1.3. Effect of different rotation speeds 

Under rigorous shaking, oxygen transfer rate increases, therefore different rotation speeds 

of the shake flasks during cultivation were considered. Melanin production was again 

achieved in 500 mL flasks with 50 mL growth media. Tyrosinase was activated with 0.1 or 

0.2-mM copper ion (Table 3.2). Production was followed for 72 hours. The three different 

speeds tested were 120, 150, and 200 rpm. With 0.1 mM copper ions, the lowest production 

was with 120 rpm for which the maximum titer was 0.58 g/L after 48 hours (Table 3.3). The 

highest production was with 200 rpm for which the titer was 0.89 g/L. The titer with 150 

rpm as 0.81 g/L was very close to the titer obtained with 200 rpm. 
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Table 3.3 Effect of rotation speed on melanin production by Cg-EKV-I with 0.1 mM 

copper ions 

 Melanin titer (g/L) 

Time 120 rpm 150 rpm 200 rpm 

24 0.35 0.59 0.65 

48 0.58 0.81 0.89 

72 0.58 0.81 0.89 

Melanin titers obtained when copper ion concentration was 0.2 mM are given in Table 3.4. 

Again, the three different rotation speeds used were 120, 150, and 200 rpm. Interestingly, 

the lowest production which was with 200 rpm and the titer after 48 hours was only 0.45 

g/L. The highest production was with 150 rpm and the titer was 0.75 g/L. 

Table 3.4 0.2 mM copper concentration at 120, 150, and 200 rpm with Cg-EKV-I on 

melanin production 

 Melanin titer (g/L) 

Time 120 rpm 150 rpm 200 rpm 

24 0.35 0.59 0.40 

48 0.55 0.75 0.45 

72 0.58 0.75 0.45 

 

Considering 0.1 mM copper ion concentrations, 200 rpm was the best but when energy 

consumption issues are considered, 150 rpm could be regarded feasible. Furthermore, 

foaming with higher rotations was unfavorable. Considering 0.2 copper ion concentrations, 

150 rpm was the best. In either case, 120 rpm was not enough for high production. So, 150 

rpm selected for further work. 

3.1.4. Effect of different additional L-Tyr 

In order to increase melanin titer, the medium was supplemented with additional L-Tyr. In 

the first attempt, after 24 hours L-Tyr was added to get a final concentration of 4 g/L g. For 

this, three different L-Tyr addition times were tested to enhance melanin production. 

Additions were achieved in powder form melanin since the low solubility of L-Tyr prevented 
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concentrated stock preparation. All the samples contain 0.1 mM copper. Titers and yields 

were calculated from 24 to 144 hours. The yield on L-Tyr calculated are given in Table 3.5. 

However, there was no significant difference observed between the control group and the 

group with an additional 0.2 g of L-Tyr for melanin production. When compared to three 

different conditions, the lowest melanin production was with the addition of L-Tyr after 48 

hours. Additionally, neither the addition of 0.1 g of L-Tyr after 24 hours nor after 48 hours 

efficiently produced melanin. It can be inferred that L-Tyr cannot be effectively utilized after 

48 hours, as the titer was calculated to be very low. There was a notable difference between 

the addition of 0.2 g of L-Tyr after 24 hours and the addition of 0.1 g of L-Tyr after both 24 

and 48 hours. (Lagunas-Munoz. 2006). 

Table 3.5 Effect of additional 4 g/L L-Tyr supplement at different times for melanin 

production by CgEKV-I (yield on  L-Tyr). 

Time 

(hour) 

Control 4 g/L L-tyr added, 

@ t24 

4 g/L L-tyr added, 

@ t48 

2 g/L L-tyr added,  

@ t24, 

2 g/L L-tyr added,  

@ t48 

24 0.24 0.36 0.18 0.36 

48 0.80 0.23 0.57 0.34 

72 0.92 0.23 0.12 0.20 

96 0.69 0.32 0.12 0.29 

120 0.87 0.33 0.13 0.32 

144 0.93 0.33 0.13 0.32 

 

If we compare with the control, there was no huge difference with additional L-Tyr. Melanin 

titer was higher but yield on L-Tyr was not higher. Therefore, it was not feasible to add extra 

L-Tyr. 

3.1.5. Effect of flask geometry 

Finally, melanin production in flasks with different geometries was investigated. Again after 

48 hours there was no significant melanin accumulation. In the first 24 hours melanin 

accumulation was higher in the flask with larger baffles and closed with tin cotton. This 
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could be because exposure to oxygen was slightly higher, e.g. aeration rate could be higher. 

Thus  L-Tyr is converted to melanin faster. However, after that time, the titers were pretty 

similar in the two different flasks (Table 3.6). 

Table 3.6 Effect of different flask geometries for Cg-EKV-I 

 

Time (hour) 

Titer (g/L) 

Flask with larger baffles 

and closed with tin cotton 

Flask with larger baffles 

and closed with a blue cap 

24 0.29 0.16 

48 0.69 0.65 

72 0.65 0.71 

 

3.1.6. Summary with CgEKV-I cells  

Under the conditions determined for L-DOPA production, in the absence of the antioxidant, 

L-DOPA was expected to be converted to melanin. Following a 24-hour production period, 

melanin titer with CgEKV-I cells reached 0.67±0.4 g/L. There a was a subsequent increase 

to 0.75±0.1 g/L after additional 24 hours. Extended production times beyond this point 

resulted in only marginal improvements in titer (72 hours: 0.78±0.1 g/L and 96 hours: 

0.82±0.1). Consequently, for further optimization experiments involving externally added L-

Tyr, the selected production time was set at 48 hours. In the work by Kraseasintra et al. 

(Kraseasintra., 2023), cultivation was for 7 days at 150 rpm and at 30 °C. The time required 

in study took much longer compared to our work, and despite the extended duration, 

produced melanin titer was lower. In the work by Elsayis (Elsayis., 2022), melanin was 

produced with 2 g/L of tyrosine addition, and the production medium consisted of beef 

extract peptone. On the other hand, in this thesis, rather than a rich medium, defined medium 

was used. This was favourable for scale-up and industrial production. Additionally, only 1 

g/L L-tyr was used for melanin production. Furthermore, their incubation period was 10 days 

at 30 °C with an agitation speed of 180 rpm. They have reported a maximum melanin yield 

of 0.938 g/L (Elsayis., 2022). In this study, melanin was obtained without using a simpler 

medium and the production time was only 2 days, at  30 °C with agitation speed 150 rpm. 

The maximum melanin yield was approximately 0.91 g/L. 

3.2. Melanin production with AROM3D 
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Copper ions play a crucial role in tyrosinase activity; however, their presence significantly 

hampers AROM3D growth (published data). Beyond their impact on microbial growth, 

copper ions raise environmental and sustainability concerns. The release of copper ions into 

the environment can induce toxicity in aquatic ecosystems and soil, posing risks to non-

target organisms. Moreover, copper mining and extraction processes carry substantial 

environmental consequences, including habitat destruction and water pollution. In 

comparison to alternative methods that employ more environmentally friendly materials, 

copper-based microbial production processes exhibit a less sustainable overall lifecycle. In 

light of these considerations, a preliminary optimization of copper ions was conducted by 

externally adding L-Tyr as a proof-of-concept study. The presence of CuSO4 in the medium 

was found to enhance melanin production by increasing enzymatic activity; however, 

excessive CuSO4 concentration could exert toxicity on cells, leading to a reduction in 

melanin yield (Plonka., 2006). In the findings of Zou and Hou (2017), indicate that L-

tyrosine can enhance melanin production, but an excess of L-Tyr may have a 

counterproductive effect. This is attributed to the reduced solubility of L-Tyr at higher 

concentrations, leading to substrate accumulation in the reactor through precipitation. The 

accumulation can disrupt normal cell functioning, as the degradation of L-Tyr releases 

ammonia. So, in the second part of the study, melanin was produced without external L-Tyr 

(Kraseasintra., 2023). 

3.2.1. Effect of copper addition time and L-Phe concentration 

AROM3D cells are L-Phe bradytroph, therefore L-Phe supplementation was necessary. On 

the other hand, high L-Phe concentrations inhibit L-Phe synthesis. To this end,  0.25- and 

0.5-mM L-Phe concentrations were tested with initial 0.1 mM copper addition and 0.1 mM 

copper addition after 24 hours. The results are given in Table 3.7. Here, if copper is added 

after 24 hours, melanin production is not efficient, indicating that it should be added earlier 

in the process. In the initial stages of the experiment, copper ions were introduced. Upon 

considering L-Phe concentrations ranging between 0.25 mM and 0.5 mM, it was observed 

that a concentration of 0.5 mM of L-Phe yielded better results compared to 0.25 mM 

concentrations. 

Table 3.7 Melanin production with 0.25 or 0.5  L-Phe and 0.1 mM copper at t0 and t24 

Melanin (g/L) 
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3.2.2. Effect of copper and L-Phe concentration on melanin production 

Three different copper and L-Phe concentrations were tested for optimum melanin 

production. Results are given in Tables 3.8, 3.9, and 3.10. When comparing 0.1 mM, 0.2 

mM, and 0.3 mM copper ions, it was found that 0.2 mM and 0.3 mM copper ions resulted 

in nearly identical melanin production levels, suggesting that 0.2 mM was preferable over 

0.3 mM copper ions. Upon comparing 0.2 mM and 0.1 mM copper ions, the difference 

between them was not significant, indicating that 0.1 mM copper ion was the optimal 

concentration. Similarly, when considering L-Phe concentrations of 0.125 mM, 0.25 mM, 

and 0.50 mM, 0.50 mM was determined to be the optimal concentration due to its efficiency 

in melanin production. 

Table 3.8 0.1 mM copper ion and 0.125, 0.25, 0.50 mM  L-Phe concentrations were added 

initially with AROM3D on melanin production. 

Time 0.125  L-Phe (mM) 0.25  L-Phe (mM) 0.5  L-Phe (mM) 

24 0.16 0.27 0.39 

48 0.25 0.40 0.50 

72 0.27 0.43 0.43 

 

  

   

Time     

0.5 mM L-Phe, 

copper @ t0  

 0.25 mM L-Phe 

copper @ t0  

0.5 mM L-Phe       

copper @ t24 

0.25 mM L-Phe 

copper @ t24 

  24 0.39 0.32          0.07 0.18 

  48 0.51 0.46          0.16 0.19 

  72 0.49 0.55          0.23 0.26 
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Table 3.9 0.2 mM copper ions and 0.125, 0.25, 0.50 mM L-Phe concentrations were added 

initially with AROM3D on melanin production. 

Time 0.125  L-Phe (mM) 0.25  L-Phe (mM) 0.5  L-Phe (mM) 

24 0.13 0.22 0.33 

48 0.30 0.49 0.67 

72 0.30 0.65 0.67 

 

Table 3.10 0.3 mM copper ions and 0.125, 0.25, 0.50 mM  L-Phe concentrations were 

added initially with AROM3D on melanin production. 

Time 0.125  L-Phe (mM) 0.25  L-Phe (mM) 0.5  L-Phe (mM) 

24 0.12 0.12 0.15 

48 0.22 0.46 0.69 

72 0.35 0.57 0.79 

 

3.2.3. Growth curve analysis with dissolved oxygen measurement 

After determining the optimal conditions for melanin production with an initial addition of 

0.1 mM copper ions and 0.5 mM L-Phe concentration, the growth curve of this production 

was analysed. To facilitate comparison, production under the same conditions but with 

copper ions added 24 hours later was also assessed. The growth graph was generated based 

on dissolved oxygen data collected over a 72-hour period using the growth curve. The 

observation of growth cessation at 72 hours indicates that these production processes can 

endure for up to 72 hours. 

According to Figure 3.1, specific production conditions were selected, and changes in 

oxygen levels were observed using AROM3D strains with the growth curve. Two different 

conditions were tested in the experiment. The first production, depicted by the dot 

commenced with an initial addition of 0.5 mM L-Phe and 0.1 mM Cu. The second 

production, illustrated by the triangle, began with an initial addition of 0.5 mM L-Phe, 

followed by the addition of 0.1 mM Cu after 24 hours. Both productions started with the 

same initial oxygen level of 85. Notably, the second production exhibited faster growth 

compared to the first production. The first production sustained growth until 36 hours, as 
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evidenced by the increase in oxygen levels after 36 hours. Similarly, the second production 

displayed growth until 30 hours, as indicated by the rise in oxygen levels after 30 hours. By 

the 50-hour mark, both productions entered the death phase. Despite the time difference, the 

first production demonstrated greater efficacy than the second production in terms of 

melanin production. The cells continued to grow up to 72 hours, suggesting that the optimal 

production time extends up to 72 hours. 

 

Figure 3.1 AROM3D oxygen measurement in PreSense. Both productions set up with 0.1 

mM copper ions and 0.5 mM L-Phe concentration. The dots: Copper ions added initially, 

the triangle: Copper ions added after 24 hours. 

3.3. The model-based optimization for Kriging and Quadratic model 

3.3.1. Experimental results of central composite design  

In this approach, 24 experiments designed by central composite design were conducted and 

melanin production was determined from the 24th  to the 72nd  hour. The data of the selected 

parameters and melanin titers are given in Table 3.11.  
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Table 3.11 Titers obtained from points selected by central composite design. 

Time of copper addition           

(hour) 

Cu 

(mM) 

L-Phe 

(mM) 

Melanin titer 

   24 h 48 h 72 h 

0 0.23 0.30 0.18 0.52 0.74 

5 0.12 0.42 0.21 0.29 0.30 

5 0.33 0.18 0.12 0.15 0.27 

5 0.33 0.42 0.36 0.44 0.55 

5 0.23 0.30 0.14 0.18 0.30 

12 0.05 0.30 0.09 0.12 0.21 

12 0.40 0.30 0.11 0.18 0.24 

12 0.23 0.30 0.10 0.18 0.24 

12 0.23 0.30 0.12 0.17 0.26 

12 0.23 0.30 0.11 0.17 0.26 

12 0.23 0.30 0.12 0.17 0.30 

12 0.23 0.30 0.12 0.15 0.30 

12 0.23 0.30 0.16 0.18 0.26 

12 0.23 0.30 0.10 0.16 0.27 

12 0.23 0.30 0.14 0.30 0.49 

12 0.40 0.30 0.09 0.19 0.23 

12 0.23 0.30 0.12 0.15 0.24 

12 0.12 0.18 0.11 0.17 0.24 

12 0.23 0.30 0.10 0.15 0.24 

19 0.12 0.18 0.07 0.14 0.15 

19 0.12 0.42 0.07 0.15 0.25 

19 0.33 0.18 0.08 0.17 0.25 

19 0.33 0.42 0.08 0.17 0.29 

24 0.23 0.30 0.04 0.26 0.22 

In initial experiments, 48 hours had been identified as the optimal time for melanin 

production. The results demonstrate that higher L-Phe concentrations yielded better 

production outcomes compared to lower concentrations. Moreover, the productions 
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remained consistent across repetitive experiments. When the L-Phe concentration and the 

timing of copper addition were held constant, but different copper concentrations were 

employed, the production with higher copper concentrations consistently yielded greater 

melanin production. 

Adding copper after 19 hours did not efficiently produce melanin, and increasing the copper 

concentration did not lead to improved melanin production. In contrast, the production that 

added copper ions after 0.5 hours, with very low copper ions and higher L-Phe 

concentrations, produced more melanin than others. This suggests that adding copper ions 

earlier resulted in better melanin production. Upon examining the production with 0.12 mM 

copper added at the 19th hour, it was observed that despite having the same copper and L-

Phe concentrations, melanin production remained constant, indicating that increasing the L-

Phe concentration did not enhance production. Similarly, looking at the production with 0.33 

mM copper added at the 19.6th  hour, there was no increase in melanin production even with 

an increase in  L-Phe concentration. Adding copper at the 19th  hour did not prove to be 

efficient. Additionally, when only the copper addition time differed, melanin production 

increased with earlier copper addition. The best production was achieved with copper added 

at the beginning. All these results were considered with a focus on the 48th  hour, as it was 

chosen as the optimum production time. No significant changes were observed at the 72nd  

hour, rendering it inefficient and time-consuming. In the Surwase (2012),  tryptone 1.440 

g/L , L-Tyr 1.872 g/L and CuSO4 0.0366 g/L mM were used for melanin production. The 

actual yield calculated was 1.227 g/L. However, in this thesis tryptone and tyrosine were not 

used, also, although, copper concentration was 0.0775 g/L, melanin was more produced than 

Surwase 2012 without L-tyr and tryptone (Surwase., 2012). 

3.3.2. Experimental results of random sampling 

For randomly selected 12 points, experiments were conducted in triplicate. Melanin titers 

were determined for various time the 24th  to the 72nd  hour as given in Table 3.12.  

 

 

 

Table 3.12 Titers obtained from randomly selected points. 



 

 

36 

 

Time of copper addition           

(hour) 

Cu (mM)  L-Phe (mM) 24      48 72 

0.5 0.07 0.20 0.20 0.30 0.35 

0.5 0.07 0.20 0.23 0.39 0.41 

0.5 0.07 0.20 0.31 0.42 0.46 

3.3 0.18 0.12 0.25 0.35 0.37 

3.3 0.18 0.12 0.28 0.39 0.38 

3.3 0.18 0.12 0.31 0.55 0.48 

5.7 0.22 0.28 0.40 0.63 0.49 

5.7 0.22 0.28 0.27 0.44 0.46 

5.7 0.22 0.28 0.39 0.42 0.43 

6.3 0.33 0.36 0.37 0.47 0.51 

6.3 0.33 0.36 0.36 0.42 0.54 

6.3 0.33 0.36 0.40 0.61 0.63 

9.1 0.12 0.15 0.11 0.22 0.24 

9.1 0.12 0.15 0.09 0.25 0.23 

9.1 0.12 0.15 0.1 0.25 0.24 

10.6 0.36 0.45 0.08 0.26 0.28 

10.6 0.36 0.45 0.12 0.26 0.29 

10.6 0.36 0.45 0.11 0.26 0.34 

13.3 0.14 0.40 0.11 0.19 0.26 

13.3      0.14 0.40 0.10 0.18   0.26 

13.3 0.14 0.40 0.11 0.19 0.25 

14.2 0.29 0.33 0.08 0.11 0.19 

14.2 0.29 0.33 0.08 0.11 0.18 

14.2 0.29 0.33 0.07 0.10 0.19 

16.3 0.1 0.5 0.12 0.20 0.27 

16.3 0.1 0.5 0.11 0.20 0.27 

16.3 0.1 0.5 0.10 0.21 0.26 

19.6 0.24 0.24 0.08 0.15 0.22 

19.6 0.24 0.24 0.08 0.14 0.21 

19.6 0.24 0.24 0.07 0.14 0.21 

20.5 0.39 0.21 0.11 0.19 0.26 

20.5 0.39 0.21 0.11 0.18 0.26 

20.5 0.39 0.21 0.10 0.17 0.25 

23.9 0.28 0.38 0.24 0.20 0.27 

23.9 0.28 0.38 0.03 0.21 0.28 

23.9 0.28 0.38 0.24 0.21 0.27 

Experiments conducted under nearly identical production conditions resulted in similar 

melanin yields. The lowest melanin production was observed when copper was added at 3.3 
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hours, with concentrations of 0.18 mM for copper and 0.12 mM for L-Phe at the 48th hour. 

Conversely, the highest melanin production occurred when copper was added after 23.9 

hours, with concentrations of 0.28 mM for copper and 0.38 mM for L-Phe at the 48th hour. 

Contamination was suspected in these productions because achieving melanin production 

after 24 hours without copper ions is unlikely. In experiments where copper was added 

simultaneously and in the same quantity, varying L-Phe concentrations did not significantly 

influence production. Interestingly, even with reduced amounts of copper and L-Phe, 

production did not decrease when copper was added earlier. For example, the production 

with 0.33 mM copper added after 6.3 hours, initially with 0.36 mM L-Phe, resulted in 0.61 

g/L melanin. In comparison, when 0.18 mM copper was added after 3.3 hours, initially with 

0.12 mM L-Phe, it produced 0.55 g/L, indicating minimal difference. This suggests that the 

timing of copper addition significantly impacts production. The lowest production occurred 

when copper was added after 23.9 hours, as expected since copper plays a crucial role as a 

cofactor in the initial 24 hours. High production was achieved with 0.22 mM copper added 

after 5.7 hours, initially with 0.22 mM L-Phe. However, this production was not substantially 

different from the one in which 0.18 mM copper was added after 3.3 hours, initially with 

0.12 mM L-Phe. This implies that adding copper earlier than 5.7 hours would be more 

logical. 

3.3.3. Model based optimization for melanin production  

For model-based optimization, all the experimental data points were used to find the 

optimum conditions. For this, the two models predicted the best values for the 3 parameters 

selected for 24, 48, and 72 hours. Then these data points were used to find the optimum 

conditions that yielded the highest melanin titers in table 3.13.  
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Table 3.13 Actual melanin titers under optimal conditions (initially added copper ion and 

0.5 mM L-Phe). 

 Melanin titer (g/L) 

 

Time 

Cu (mM) 

0.27 0.31 0.4 

24 0.23 0.17 0.13 

48 0.83 0.91 0.63 

72 0.96 1.03 0.77 

For both the Kriging and Quadratic models, initial copper addition was the optimal time. 

Additionally, when copper was added initially, the optimal L-Phe concentration was at 0.5 

mM. Under the conditions of a copper concentration of 0.4 mM, the titers for the Quadratic 

model remained consistent at 24, 48, and 72 hours. However, for the Kriging model, the 

titers varied at 24, 48, and 72 hours for different copper concentrations of 0.27, 0.31, and 0.4 

mM. The expected melanin titer was determined to be 0.75 g/L based on the initial melanin 

production experiments with Cg-EKV-I. The lowest melanin titer was found with 0.4 mM 

copper ion. There was no high difference between 0.31 mM and 0.27 mM copper 

concentrations. The best melanin production was calculated at 0.91 g/L with 0.27 mM 

copper concentration. Both the Kriging and Quadratic models demonstrated successful 

representation of the dataset from which they were created, as indicated by their respective 

values. Based on the OD600 data, growth was observed from 24 to 72 hours. Experiments 

with the same copper and L-Phe concentrations but varying copper addition times exhibited 

almost identical growth rates, indicating that copper addition time had minimal impact. As 

expected, a decrease in L-Phe concentrations corresponded to a reduction in growth. 

Additionally, earlier copper addition led to decreased growth, as copper hindered AROM3D 

growth. The lowest growth was observed when copper was added at the beginning of 

production. Repeated experiments consistently showed almost the same results. The results 

indicate that, in two productions with the same amount of copper added at the same time but 

different L-Phe concentrations, higher L-Phe concentration led to greater growth, 

emphasizing the effect of L-Phe on growth. Likewise, a decrease in L-Phe concentration 

coupled with an increase in copper concentration resulted in decreased growth.  
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3.4. Purification of melanin  

After the optimization of the melanin, it was purified as described in Section 2.3. Two 

different production conditions were used, as shown in Table 3.14. These productions were 

carried out in two separate flasks with volumes of 25 mL and 50 mL respectively and stirring 

speeds of 150 and 180 rpm were examined to observe variations in melanin production. 

When considering volume, it was observed that 50 mL volumes resulted in higher yields 

compared to 25 mL. Productions using 25 mL volumes did not yield similar results and were 

considered unsuitable for purification. On the other hand, 50 mL volume productions 

provided calculations with similar yields, making it the most suitable volume for purification 

purposes. In terms of stirring speed, there was no significant difference between 150 and 

180 rpm. The optimum value was determined to be 150 rpm due to energy consumption 

considerations. However, the yield was not efficient for melanin purification. In Guo (2014), 

yeast was used extensively, which may complicate the purification process. In addition, the 

use of Amylodextrine may also hinder purification. Therefore, it is advisable to use more 

simple media. Consequently, yeast and its derivatives were not used in our study (Guo., 

2014).In the Kraseasintra (2023)  Yeast extract, soluble starch and HAO-DBRH were used. 

The inclusion of yeast, starch and HAO-DBRH in the study makes the purification process 

much more challenging (Kraseasintra., 2023). According to the Surwase (2012), tryptone 

was employed, making the purification process more challenging (Surwase., 2012). The use 

of tryptone probably made the medium more complex and economically more expensive 

than ours. Our medium is simpler in composition. Therefore, our purification process should 

be simpler and cost-effective. 

Table 3.14 The yields result from the purification of melanin with different growth 

conditions. 

Volume 

 (mL) 

    Yield  (mg Mel / mg L-Tyr)  

                150 rpm 

Yield  (mg Mel / mg L-Tyr)  

            180 rpm 

   50                    0.2±0.03                 0.2±0.02 

   25                    0.5±0.4                 0.3±0.2 
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3.5. Melanin analysis 

3.5.1. HPLC analysis of melanin 

Figure 3.2 shows an analysis of melanin with an HPLC at 50 °C. When examining the 

experiments conducted at 25 and 70 degrees, it was observed that the peaks were not 

sufficiently separated, which prevented us from making a detailed analysis. When 

experiments conducted at 35 degrees were examined, it was noticed that two peaks were not 

sufficiently separated, indicating that the temperature was not suitable. At 50 degrees, the 

peaks were most clearly separated, making it the optimal temperature. The peak 

corresponding to the melanin pigment is clearly visible, facilitating accurate and easy 

analysis. Therefore, the optimum temperature was selected as 50°C.                                                              

 

     

Figure 3.2 A) 1 g/L Standard melanin analysis B) 1 g/L purified melanin with HPLC           

at 50 °C 

3.5.2. UV-Vis analysis of melanin 

According to the Figure 3.3, the absorbance decreased continuously as the wavelength 

increased from 200 to 800 nm. There was a linear correlation between wavelength and log 

absorbance which is an important issue for the characterization of melanin. This can be 

related to the percentage of absorption is greatest in the UV region (Raman & Ramasamy, 

2017). 

 

A B 
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Figure 3.3 Relationship between log absorbance and wavelength from 200 to 800 nm on 

purified melanin. The lines show 0.25 g/L, the triangles show 0.125 g/L, the squares show 

0.1 g/L, and the dots show 0.05 g/L of purified melanin. 

 

3.5.3. FT/IR analysis of melanin 

A broad absorption band centered around 3422 cm−1 was observed, as depicted in Figure 

3.4. This large absorption band is indicative of the O-H or N-H stretching vibration modes. 

The presence of carboxylic acid, phenolic, and aromatic amino functions in the indolic and 

pyrrolic systems is suggested to contribute to this broad absorption between 3600 and 3200 

cm-1 spectral regions. Specifically, the peak associated with this band was identified at 3438 

cm-1. Other observed peaks include those at 2917, 2839, 1621, 1464, 1374, 1038, and 661, 

as reported by Mbonyiryivuze et al. (2015). In work described by Kiran 2017 ccharacteristics 

peaks were observed at 3264 cm-1, 2924.56 cm-1, 1622.84 cm-1, 1529.27 cm-1, 1412.64 cm-

1, 1216.86 cm-1, 1041.37 cm-1, 611 cm-1, as seen in Figure 9. Those peaks are quite similar 

to peak obtained by FTIR analysis for melanin produced in this work.  
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Figure 3.4 A) FTIR analysis of melanin (Kiran., 2017) B) Analysis of purified melanin 

 

Two absorption peaks associated with the stretching vibration of the aliphatic C-H group 

were observed: a weak peak at 2839 cm-1 and a medium-intensity band at 2917 cm-1. These 

frequencies align well with those reported in the literature. The presence of distinct 

surroundings for hydrogen atoms in various components of sepia may explain the 

observation of two slightly different frequencies for CH stretching. Apart from the C=O 

double bond (COOH) of the carboxylic function, the bending vibration modes of the 

aromatic ring C=C and C=N bonds in the aromatic system contribute to a prominent, strong 

band at 1621 cm (within the range of 1647 - 1531 cm−1). Weak bands below 700 cm-1 in the 

melanin pigment are attributed to alkene C-H substitution, while the mode between 1468 

and 1330 cm-1 may result from aliphatic C-H groups (Kiran et al., 2017). The OH bending 

of the carboxylic and phenolic groups, indicating the Indole ring vibration/CNC stretching, 

is manifested in the 1400–1300 cm–1 region, specifically at the peak centered at 1374 cm–1. 

The in-plane/out-of-plane deformation of the CH is represented by the peak with a center of 

1038 cm-1. Ultimately, the weak bands below 700 cm-1 in sepia melanin are attributed to the 

out-of-plane bending of the aromatic carbon-hydrogen bond (Tarangini 2014). 

 

3.5.4. SEM analysis of melanin 
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To validate the melanin production in this study, the Scanning Electron Microscope (SEM) 

technique was utilized, and the outcomes are depicted in Figure 3.5. The SEM analysis 

provided insights into the morphological characteristics and structural arrangement of the 

pigment extracted from C. glutamicum. The results revealed that the pigment exhibits a 

unique crystal shape, reminiscent of structures seen in yeast cells (Elsayis., 2022). The 

average size of the extracted pigment particles was determined to be around 1.83 µm ±0.35. 

 

 

Figure 3.5 Images obtained from SEM with purified melanin.                                          

(Magnitude 15000x, size 5µm) 

 

3.6. Melanin production with orange peel hydrolysate with Cg-EKV-II 

Melanin was produced with Cg-EKV-II strain grown on orange peel hydrolysate and the 

results are given in Table 3.15. It was seen that there was no huge melanin production 

difference between room temperature and 30 °C. So, it can be said that for production room 

temperature can be used. This could help to save energy. Also, there was no vital melanin 

production difference between non-shaking and shaking (150 rpm) conditions. According to 

all these results, melanin can be produced at room temperature and non-shaking. This 

production way has many advantages such as low cost, ease, and environmental issues. The 

optimum cell amount was obtained at 1.12 mg cells. 

Table 3.15 Whole-cell bio-fermentation melanin production with CgEKV-II after 24 hours 

with 100 µL copper ions. 
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Cell amount 

(mg) 

Melanin (mg/L) 

(room temperature, 0 rpm) 

Melanin (mg/L) 

(30°,  150 rpm) 

0.14 4.6 4.6 

0.28 6.8 2.8 

0.42 4.4 4.2 

0.56 7.0 9.1 

0.70 6.1 9.6 

0.84 10.6 6.3 

0.98 6.2 8.1 

1.12 11.2 9.2 

1.26 9.9 11.2 
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4. CONCLUSION 

Pigments are colored materials that hold significant economic value globally, estimated to 

be worth around 30 billion dollars in the industry. It is crucial to reduce the production cost 

of melanin. This study aims to optimize the production of melanin, a biological pigment and 

agricultural waste, to attain optimal conditions for the cultivation of commercially 

significant bacteria, C. glutamicum. Melanin was produced using three different strains. In 

these experiments, CGXII minimal medium was utilized as a carbon source for the 

cultivation of AROM3 harboring pEKEx3-tyrRs, C. glutamicum ATCC 13032 harboring 

pEKEx2-tyrRs, and EKV-I harboring pEKEx3-xylAXc-xylBCg. Firstly, melanin production 

conditions were selected with CgEKV-I. Among various production methods, AROM3D 

was chosen for optimization due to its lack of requirement for L-tyr, making it a cost-

effective and environmentally friendly method. Before optimization, 0.75 g/L melanin was 

produced with 1 g/L L-Tyr and 0.1 mM Cu after 48 hours. Then, production without L-Tyr 

addition in AROM3D cells was achieved. Experiments with three independent variables for 

melanin production were designed using a statistical approach, and then Quadratic and 

Kriging models were used to find the optimal production conditions. Three self-sustaining 

variables for melanin production were copper concentration, copper addition time, and L-

Phe concentration. After optimization, an optimum copper concentration of 0.31 mM, L-Phe 

concentration of 0.5 mM, and initial copper addition time were obtained under the optimum 

conditions, and melanin titer was 1.03 g/L after 72 hours under these conditions. The 

resulting melanin underwent quality control through HPLC, SEM, UV/Vis, and FT/IR 

analyses, all of which yielded excellent results. Subsequently, the obtained melanin was 

purified using various methods. Although the purification results were not highly efficient, 

the absence of additional substrates made purification easier. Lastly, melanin was produced 

using orange peel hydrolysate, a method that was cost-effective, simple, and 

environmentally friendly. Cell amount, rpm, and temperature were optimized using this 

technique. The primary advantages of whole-cell biocatalysis include the use of inexpensive 

(orange peel hydrolysate) and abundant raw materials, as well as the ability to catalyze 

multistep reactions. In the future, this whole-cell biocatalysis method can be further 

developed and refined for melanin production using food waste. According to table 1.2, 

melanin production from different sources was analyzed. The purification of productions 

containing yeast, starch, casein, peptone, and tryptone is very difficult; therefore, none of 

these products were used in this study. Melanin production took only 2 days, which is a 
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shorter duration compared to most studies. According to the table, using bacteria instead of 

fungi not only shortened the duration of the study but also made the working conditions 

easier. Additionally, C. glutamicum compared to other bacteria has many advantages: it is 

engineered to secrete amino acids, is a safe strain for humans (GRAS), displays rapid growth 

to high cell densities, has genetic stability due to the lack of a recombination repair system, 

and has an extensive spectrum of carbon usage. Furthermore, since waste was used as a 

substrate, an economic advantage was achieved compared to other studies. Although 

tyrosine is used in most studies, melanin production was achieved without the use of tyrosine 

in this study. Unlike other studies, production was carried out without the need for an 

additional metal ion. Considering all this, this work was achieved in the cheapest, fastest, 

and most environmentally friendly way 
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APPENDIX A – Raw data on Cg-EKV-I 

For each raw data, different copper ions, different volume of production, and purification of 

melanin with different conditions were tabled.  

Table A.1: Raw data for different copper ions on Cg-EKV-I  

Time of copper addition 

 (hour) 

                   Cu  

(mM) 

Titer 

 (g/L) 

 

 

 

 

24  

0.1 0.59 

0.43 

0.2 0.72 

0.46 

 

0.25 

0.84 

0.75 

 

0.3 

0.85 

0.75 

 

0.4 

0.92 

0.42 

0.6 0.44 

0.54 

 

 

 

 

 

 

48  

 

0.1 

0.64 

0.84 

0.77 

 

0.2 

0.68 

0.92 

0.82 

 

0.25 

0.91 

0.81 

0.80 

 

0.3 

0.93 

0.83 

0.90 
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0.4 

0.70 

0.89 

0.67 

 

0.6 

0.64 

0.54 

0.40 

 

 

 

 

 

 

 

72  

 

0.1 

0.73 

0.92 

0.77 

 

0.2 

0.76 

0.96 

0.81 

 

0.25 

0.93 

0.83 

0.90 

 

0.3 

0.95 

0.90 

0.85 

 

0.4 

0.80 

0.91 

0.62 

0.6 0.44 

0.64 

0.70 
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Table A.2: Raw data for different volume of production effect on Cg-EKV-I  

Time  

(hour) 

Volume of production 

(mL) 

Titer  

(g/L) 

 

 

 

 

 

 

 

24  

 

25  

0.72 

2.44 

0.53 

0.37 

 

50  

1.17 

1.17 

0.50 

0.43 

 

75  

0.54 

0.54 

0.26 

0.26 

 

 

 

 

 

48  

 

25  

0.95 

0.95 

0.95 

0.90 

 

50  

0.84 

0.88 

0.87 

0.84 

 

75  

0.50 

0.50 

0.81 

0.77 

 

 

 

 

 

25  

0.98 

0.94 

1.01 

0.94 
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72  

 

50  

0.88 

0.91 

0.94 

0.89 

 

75  

0.85 

0.89 

0.81 

0.81 

 

Table A.3: Raw data the yields result from the purification of melanin for Cg-EKV-I with 

different growth conditions. 

 

Volume (mL) 

 

Rpm Yield (mg Mel / mg Tyr) 

 

50 

 

 

150 

 

 

 

 

0.192 

0.179 

0.229 

 

25 

0.226 

0.047 

0.855 

50 

180 

0.176 

0.205 

25 0.05 

0.302 
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APPENDIX B – Kriging and Quadratic model selected data 

The selected data for Kriging and Quadratic models were given in tables. 

Table B.1: Kriging model selected data 

Time of copper 

addition  

(hour) 

Cu 

(mM) 

L-Phe  

(mM) 

5 0.12 0.18 

5 0.12 0.42 

5 0.33 0.18 

5 0.33 0.42 

19 0.12 0.18 

19 0.12 0.42 

19 0.33 0.18 

19 0.33 0.42 

0 0.23 0.30 

24 0.23 0.30 

12 0.05 0.30 

12 0.40 0.30 

12 0.23 0.10 

12 0.23 0.50 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 

12 0.23 0.30 
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Table B.2: Quadratic model selected data 

Time of copper 

addition 

(hour) 

  Cu  

(mM) 

        L-Phe  

       (mM) 

0.5    0.07                    0.20 

13.3    0.14                    0.40 

6.3 0.33                    0.36 

3.3 0.18                    0.12 

16.3 0.10                   0.50 

19.6 0.24                   0.24 

5.7 0.22                   0.28 

14.2 0.29                   0.33 

23.9 0.28                   0.38 

10.6 0.36                   0.45 

20.5 0.39                   0.21 

9.1 0.12                   0.15 
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APPENDIX C – OD600 results 

Below, the OD600  results of Kriging and Quadratic models were given in tables. It is 

announced in the table titles which OD600 results fits to which tables in the results section. 

 

Table C.1: Kriging model OD600 results from Table 3.12. 

Time of copper 

addition (hour) 

Cu 

(mM) 

 L-Phe 

(mM) 

24 48 72 

0 0.23 0.30 5.87 14.6 18.7 

5 0.12 0.42 25.5 25.1 32.7 

5 0.33 0.18 15.6 24.2 21 

5 0.33 0.42 10.06 24 28 

5 0.23 0.30 10.24 16.7 15.8 

12 0.05 0.30 16.8 21 30.3 

12 0.40 0.30 15.3 21.3 36.6 

12 0.23 0.30 18.6 23.2 45.8 

12 0.23 0.30 18.16 25.7 23.1 

12 0.23 0.30 30.5 34.5 32.9 

12 0.23 0.30 12.12 23.2 22.5 

12 0.23 0.30 15.74 21.5 20.3 

12 0.23 0.30 16.14 22.1 18.1 

12 0.23 0.30 17.3 13.3 21.7 

12 0.23 0.30 16 18.9 39.1 

12 0.40 0.30 12.32 25 22.2 

12 0.23 0.30 15.1 25.7 22.6 

12 0.12 0.18 15.84 13.2 21.7 

12 0.23 0.30 16.3 24 36.3 

19 0.12 0.18 9.24 16.5 21.7 

19 0.12 0.42 25.3 34 34.7 

19 0.33 0.18 10.9 18.3 18.7 

19 0.33 0.42 25.8 36.1 40.7 

24 0.23 0.30 13.38 25.5 22 
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Table C.2: Quadratic model OD600 results from Table 3.13. 

Time of copper addition 

(hour) 

Cu 

(mM) 

L -Phe 

(mM) 

24 48 72 

0.5 0.07 0.20 7.03 13.26 10.5 

0.5 0.07 0.20 9.32 11.66 12.7 

0.5 0.07 0.20 7.34 19.9 19.5 

3.3 0.18 0.12 7.52 8.78 8.32 

3.3 0.18 0.12 7.38 7.5 7.43 

3.3 0.18 0.12 7.64 7.5 8.23 

5.7 0.22 0.22 14.9 18.3 22 

5.7 0.22 0.28 12.8 21.84 25 

5.7 0.22 0.28 13.2 19.32 22.6 

6.3 0.33 0.36 25.4 26.3 31.2 

6.3 0.33 0.36 22.5 25.6 32.1 

6.3 0.33 0.36 19.6 26.9 23.4 

10.6 0.36 0.45 28.4 35.9 32.5 

10.6 0.36 0.45 31.9 31.2 31.9 

10.6 0.36 0.45 31.8 34.5 30.8 

13.3 0.14 0.40 23.6 25.4 24 

13.3 0.14 0.40 23.7 26.1 25.7 

13.3 0.14 0.40 23.8 24 26 

14.2 0.29 0.33 15.1 18 20.8 

14.2 0.29 0.33 16.9 17.6 21.7 

14.2 0.29 0.33 14 16.9 22.5 

16.3 0.1 0.5 29.7 28.3 22.7 

16.3 0.1 0.5 28.5 27.7 21.9 

16.3 0.1 0.5 27.5 26.6 21.8 

19.6 0.24 0.24 9.36 21.7 18.7 

19.6 0.24 0.24 8.7 20.8 17.7 

19.6 0.24 0.24 9.5 21.5 16.9 

20.5 0.39 0.21 7.57 9.55 12.3 

20.5 0.39 0.21 6.9 9.8 11.9 

20.5 0.39 0.21 8.1 10.1 13.1 

23.9 0.28 0.38 25.7 31.2 32.5 

23.9 0.28 0.38 35.8 33.3 21.9 

23.9 0.28 0.38 35.5 33.9 36.4 



 

 

68 

 

APPENDIX D – HPLC results 

All the Hplc results from result section in 3.5.1. 

 

Figure D.1: Melanin analysis with HPLC at 25 °C 

 

    

 

Figure D.2: Melanin analysis with HPLC at 35 °C  

 

 

Figure D.3: Melanin analysis with HPLC at 70 °C 
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