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Kooperatif Adaptif Seyir Kontrolu (KASK), birden fazla aracın kısa mesafede güvenli ve 
konforlu bir şekilde seyahat etmesini amaçlar. Farklı araçlardan oluşan heterojen araç dizisinin 
gerçek trafik ortamındaki KASK uygulamalarında mutlaka incelenmelidir. Özellikle, farklı 
dinamik parametreler ve gaz / frenleme kuvveti üzerindeki eyleyici sınırları nedeniyle araç 
takibinde kritik öneme sahip olan dizi kararlılığını olumsuz yönde etkileyebilir. Buradan yola 
çıkarak, tez çalışmasında potansiyel eyleyici doyumuna sahip heterojen araç dizisinde KASK 
sürüş modeli için dizi kararlılık çalışması sunulmuştur. Araç dizisinin hız değişim manevrası 
sırasında dizi kararlılığını korumak için yeterli koşulların türetilmesini sağlayan hıza bağlı 
kuvvet sınırları formüle edilmiştir. Böylece, KASK sürüş modelinde aynı anda hem eyleyici 
doyumu engellenirken hem de sürüş konforu sağlanmıştır. Bu koşullar kullanılarak, farklı hız 
değişim manevralarında güçlü ℒ∞-dizi kararlılık koşullarını sağlayan minimum-zamanlı optimal 
kontrol probleminin formülasyonu ve analitik çözümü yapılmıştır. Bu, uygun olan lider araç 
yörüngelerinin gerçek trafik koşullarında hızlı ve gerçek zamanlı olarak hesaplanmasını 
sağlayan orijinal bir yöntemdir. Tez çalışmasında, araç dizi kararlılığını etkileyen eyleyici 
zaman gecikmesi ve zamanla değişen haberleşme zaman gecikmesi dikkate alınarak Lyapunov-
Krasovskii yaklaşımı ile kontrolcü sentezi yapılmıştır. İki farklı yöntem ile kontrolcü sentezinin 
yapıldığı çalışmada, ilk olarak geliştirilen Bi-Section algoritması güçlü ℒ∞-dizi kararlılık 
koşullarını garanti eden algoritma önerilmiştir. Orijinal bir yöntem olan doğrusal matris 
eşitsizlik (LMI) yapıları ile doğrudan güçlü ℒ∞ −dizi kararlılık koşullarını garantileyen 
kontrolcü sentezi yapılmıştır. Tez çalışması, KASK donanımlı heterojen araç dizisi ile birlikte 
gerçek dinamik araç parametreleri, eyleyici doyumu, zamanla değişen haberleşme zaman 
gecikmesinin birlikte dikkate alındığı ve güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü 
sentezinin yapıldığı ilk çalışmadır.  
 
 
Nisan 2024, 152 sayfa 
 
Anahtar Kelimeler: Kooperatif adaptif seyir kontrolü, heterojen araç dizisi, eyleyici doyumu, 
ℒ∞-dizi kararlılığı, minimum-zamanlı optimal yörünge, zamanla değişen haberleşme gecikmesi, 
sabit eyleyici gecikmesi, Lyapunov- Krasovskii teoremi. 
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Cooperative Adaptive Cruise Control (CACC) aims at the safe and comfortable travel of 
vehicles at short distances in the form of platoons. The heterogeneity of vehicles is an important 
factor when realizing cooperative adaptive cruise control in practice. Specifically, it has to be 
considered that platoons generally consist of vehicles with both different dynamic properties 
and actuator limits on the engine and braking force, which is expected to have a negative impact 
on important properties such as string stability. Accordingly, the one subject of this thesis is the 
preservation of string stability for CACC in heterogeneous vehicle strings with potential 
actuator saturation. To this end, the thesis formulates a velocity-dependent force an acceleration 
bound that enables the derivation of sufficient conditions for preserving string stability during 
velocity changes of heterogeneous platoons. This ℒ∞-string stability conditions ensure reducing 
the magnitude of the acceleration signal along the platoon, which help to avoid actuator 
saturation and increases driving comfort. Furthermore, the motion of vehicle platoons depends 
on the motion of the platoon leader. String stability conditions enable the formulation and 
analytical solution of a minimum-time optimal control problem for velocity changes of 
heterogeneous platoons under actuator saturation. Moreover, since the performance of CACC is 
adversely affected by time-varying communication and actuator delays, the controller design 
method using Lyapunov - Krasovskii theorem for ℒ∞-string stability is developed. At first, by 
performing controller synthesis with the developed Bi-Section algorithm strong ℒ∞-string 
stability conditions are guaranteed. Afterwards, an original method that enables controller 
synthesis with linear matrix inequality (LMI) structures is proposed and strong ℒ∞-string 
stability conditions are fulfilled. CACC-equipped heterogeneous vehicle string, real dynamic 
vehicle parameters, actuator saturation (velocity-dependent force and acceleration bounds) and 
time-varying communication time delay are taken into account for the first time to synthesis 
controller to guarantee strong ℒ∞-string stability conditions. 
 
 
April 2024, 152 pages 
 
Keywords: Cooperative adaptive cruise control, heterogeneous platoon, actuator saturation, 
ℒ∞-string stability, minimum-time optimal trajectory, time-varying communication delay, 
constant actuator delay, Lyapunov - Krasovskii theorem. 
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SİMGELER ve KISALTMALAR DİZİNİ 

ℕ Doğal sayılar kümesi 
ℂ Karmaşık sayılar kümesi 
ℝ Reel sayılar kümesi 
ℝ𝑛𝑛 𝑛𝑛 boyutlu gerçek vektörler kümesi 
ℝ𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 gerçek matrisler kümesi 
| . | Mutlak değer 
‖. ‖ Bir vektörün Öklid normu veya bir matrisin spektral normu 
‖. ‖∞ ℒ∞-norm 
‖. ‖2 ℒ2-norm 
diag(𝐴𝐴1, . . . ,𝐴𝐴𝑛𝑛)  Köşegen matris 
𝐴𝐴−1 A matrisinin tersi 
𝐴𝐴𝑇𝑇 A matrisinin devriği 
𝐴𝐴 > 0 A yarı-pozitif matris 
𝐴𝐴 ≥ 0 A pozitif matris 
�𝑀𝑀 𝑁𝑁
∗ 𝐿𝐿� Simetrik matris � 𝑀𝑀 𝑁𝑁

𝑁𝑁𝑇𝑇 𝐿𝐿� 
∀ 𝑡𝑡 Tüm t değerleri 
𝑎𝑎𝑖𝑖 Araç ivmesi 
𝑣𝑣𝑖𝑖 Araç hızı 
𝑞𝑞𝑖𝑖 Araç pozisyonu 
𝑒𝑒𝑖𝑖 Araç mesafe hatası 
𝑢𝑢𝑖𝑖 Araç kontrol girdisi 
𝑗𝑗𝑖𝑖 Araç sarsıntısı 
𝑑𝑑𝑖𝑖 Araçlar arası mesafe 
𝑑𝑑𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 Araçlar arası istenilen mesafe 
𝑠𝑠𝑑𝑑,𝑖𝑖 Durma pozisyonunda tamponlar arası uzaklık 
𝑤𝑤 Dışarıdan gelen bozulma sinyali 
𝜏𝜏𝑖𝑖 Yürüyen aksam zaman sabiti 
𝜙𝜙𝑖𝑖 Eyleyici zaman gecikmesi 
𝜃𝜃𝑖𝑖 Haberleşme gecikmesi 
𝛿𝛿𝑢𝑢 Maksimum zaman gecikmesi 
𝛿𝛿𝑑𝑑 Minimum zaman gecikmesi 
𝛿𝛿𝑢𝑢��� Zaman gecikme türevinin maksimum değeri  
𝛿𝛿𝑢𝑢 Zaman gecikme türevinin minimum değeri 
ℎ𝑖𝑖 Yakalama zamanı 
𝑚𝑚𝑖𝑖 Araç ağırlığı 
𝑀𝑀𝑖𝑖 Etkin kütle 
𝐽𝐽𝑖𝑖,𝐸𝐸 Motor eylemsizliği 
𝑟𝑟𝑖𝑖 Tekerlek yarıçapı 
𝜀𝜀𝑖𝑖,0 Vites dişli oranı 
λ𝑖𝑖,𝑟𝑟 Tahrik aksının kayması 
𝜎𝜎𝑖𝑖 Havanın özgül kütlesi 
𝐴𝐴𝑖𝑖 Kesit alanı 
𝑐𝑐𝑖𝑖,𝑑𝑑 Sürtünme katsayısı 
𝜇𝜇𝑖𝑖,𝑟𝑟 Yol yapışma katsayısı 
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𝑓𝑓𝑖𝑖,𝑅𝑅 Yuvarlanma direnci 
𝐹𝐹𝑖𝑖,𝐿𝐿 Boylamsal kuvvet 
𝐹𝐹𝑖𝑖,𝑅𝑅 Yuvarlanma direnç kuvveti 
𝐹𝐹𝑖𝑖,𝐴𝐴 Aerodinamik direnç kuvveti 
𝐹𝐹𝑖𝑖,𝑇𝑇 Çekme kuvveti 
𝐹𝐹𝑖𝑖,𝐷𝐷 İstenilen boylamsal kuvvet 
𝐹𝐹𝑖𝑖,𝑆𝑆 Maksimum tekerlek kuvveti 
𝐹𝐹𝑖𝑖,𝐵𝐵 Frenleme kuvveti 
𝐹𝐹𝑖𝑖,𝐸𝐸 Motor kuvveti 
𝐹𝐹𝑖𝑖,𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)  Maksimum çekiş kuvveti 
𝐹𝐹𝑖𝑖,𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) Minimum boylamsal kuvvet 
g Yerçekimi sabiti 
Θ Yol yüzeyi ile yatay düzlem arasındaki açı 
𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  Rüzgâr hızı 
𝐿𝐿𝑖𝑖  Araç uzunluğu 
𝑇𝑇𝑖𝑖,𝐸𝐸  Motor torku 
𝜂𝜂𝑖𝑖,𝑑𝑑  Yürüyen aksam verimliliği 
𝜔𝜔𝑖𝑖,𝐸𝐸  Motor hızı 
𝑙𝑙𝑖𝑖,𝑟𝑟  Arka aksın ağırlık merkezine olan mesafesi  
𝑙𝑙𝑖𝑖,𝑤𝑤 Dingil mesafesi uzunluğu  
𝑊𝑊𝑖𝑖,𝑓𝑓  Arka dingil üzerindeki yük değeri  
ℎ𝑖𝑖,𝑐𝑐  Ağırlık merkezinin yüksekliği  
𝛾𝛾𝑖𝑖 Dürtü yanıtı 
𝑣𝑣𝑠𝑠  Araç ilk hızı 
𝑣𝑣𝑓𝑓  Araç son hızı 
𝑡𝑡𝑓𝑓  Minimum yörünge süresi 
𝛶𝛶(𝑥𝑥(𝑡𝑡𝑓𝑓 ))  Terminaldeki nihai maliyet fonksiyonu 
𝐿𝐿(𝑥𝑥,𝑢𝑢)  Yörünge maliyet fonksiyonu 
𝑆𝑆(𝑥𝑥)  Durum kısıtı 
𝑀𝑀(𝑥𝑥,𝑢𝑢)  Birleştirilmiş girdi kısıtı 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  Maksimum ivme 
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 Minimum ivme 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Maksimum sarsıntı 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Minimum sarsıntı 
𝜓𝜓  Uç durum kısıtı 
𝜆𝜆  Birleşik değişken vektörü  
µ  Durum kısıt çarpanı 
𝜂𝜂  

 

Birleştirilmiş girdi kısıt çarpanı 
𝜙𝜙(𝑡𝑡)  Başlangıç değeri 
𝜅𝜅  Tolerans değeri 
𝛬𝛬  Lyapunov denklemi için sabit değer  
𝜌𝜌  Lyapunov denklemi için sabit değer  
ℎℒ2  ℒ2-norm için en uygun yakalama süresi zamanı 
ℎℒ∞  ℒ∞-norm için en uygun yakalama süresi zamanı 
ℎ𝑡𝑡𝑢𝑢 ℒ2- norm için yakalama süresi zamanı üst sınır 
ℎ𝑡𝑡𝑙𝑙  ℒ2-norm için yakalama süresi zamanı alt sınır 
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ℎℒ∞
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1. GİRİŞ 

Dünya genelinde artan sanayileşme ve kentleşme ile birlikte dünya nüfusunun yaklaşık 

yüzde 54’ü kentlerde yasamaktadır (Anonymous 2023). Birleşmiş Milletler’in 2022 

yılında yayınladığı verilere göre, 2050 yılına kadar dünya nüfusunun üçte ikisinin 

kentlerde yaşayacağı tahmin edilmektedir. Bu artış ile birlikte, mevcut kent nüfusunun 

yaklaşık olarak 2,5 milyar artacağı öngörülmektedir (Anonymous 2023). Böylece, kent 

yaşamıyla ilgili barınma, güvenlik, istihdam ve ulaşım da dahil olmak üzere birçok 

kentsel problemin oluşması kaçınılmazdır. 

Ulaşım sektörü açısından bakıldığında, artan nüfusa bağlı olarak araç sayısında da hızlı 

bir artış olacaktır. Yalnızca Çin’de, otomobil sektöründe toplam satış hacminin 2022 

yılında 26,9 milyona ulaştığı belirtilmiştir (Anonymous 2023). Bu ise, başta 

karayolunda trafik sıkışıklığının daha karmaşık hale gelmesine ve halihazırda olumsuz 

olan çevresel, sosyal ve ekonomik sorunların daha da kötüleşmesine sebep olacağı 

açıktır. Bu noktada, bilgi ve iletişim teknolojileri son yıllarda sürdürülebilir kentsel 

gelişimi destekleme programlarında kullanılmaktadır (Darbha ve Rajagopal 1999, 

Fernandes ve Nunes 2012, Sladkowski ve Pamula 2016). Bu sayede, büyük kentlerin 

yaşam kalitesinin artırılması ve kentlerin sürdürülebilirliğinin desteklenmesi 

amaçlanmaktadır (Bose ve Ioannou 2003, Zhang vd. 2018). Bu bağlamda, Akıllı Ulaşım 

Sistemleri (AUS) araç artışı ile birlikte ortaya çıkan birçok problem için umut verici bir 

teknoloji olarak öne çıkmaktadır. AUS, bilgisayar teknolojileri, elektronik sistemleri, 

kontrol sistemleri ve haberleşme ağları gibi farklı teknolojilerin kombinasyonlarından 

oluşmaktadır. AUS ile birlikte özellikle mevcut ulaşım sisteminin verimliliğini en üst 

düzeye çıkarmak ve trafik güvenliğini artırmak hedeflenmektedir. Böylece, trafik 

güvenliğinin arttırılması, trafik sıkışıklığını azaltılması, ulaşım verimliliğini arttırılması, 

hava kirliliğini azaltılması ve enerji verimliliğinin arttırılması gibi günlük hayatta 

karşılaştığımız birçok problem için çözüm aranmaktadır (Molinete vd. 2015, Nasim ve 

Kassler 2012). AUS ile önerilen çözümlerin birisi de yoğun trafikte araçların birbirinden 

bağımsız hareket etmesi yerine kısa mesafede araç dizisi oluşturarak birbirini takip 

etmesini sağlamaktır (Axelsson 2017, Godbole vd. 1996, Kavathekar ve Chen 2011). 
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Araç takibi ile aynı şeritte otonom olarak ilerleyen araçların birbiri ile olan etkileşimi 

incelenir. Araçlar arası etkileşim farklı matematiksel modeller ile tanımlanarak birçok 

araç takip modeli önerilmektedir. Temel olarak, araç takip modeli sürücü tarafından 

ayarlanan sabit hız değerinde araç hareketini sağlayan Seyir Kontrol (SK) sistemi 

üzerine geliştirilmiştir (Darbha ve Rajagopal 1999, Pan vd. 2022, Venhovens vd. 2000). 

Bu özellik, uzun yolculuklarda sürücü yorgunluğunu azaltabilir ve sürekli bir hızda 

seyahat ederek yakıt verimliliğini artırabilir. Ancak bu sistem, trafik veya yol 

koşullarındaki değişiklikleri dikkate almaz ve belirli durumlarda bu özelliği devre dışı 

bırakılması gerekebilir. Diğer tarafta, Adaptif Seyir Kontrol (ASK) sistemi temel olarak 

araç güvenliğine ve sürücü konforuna odaklanır (Raza ve Ioannou 2021, Swaroop ve 

Hedrick 1996) ASK sistemi RADAR ya da LİDAR sensör ölçümlerinden gelen sinyal 

bilgisine dayanarak birbirini takip hareket eden iki araç arasındaki mesafe ve hız farkı 

korunmaktadır (Kesting vd. 2008, Marsden vd. 2001, G. Naus vd. 2010, Vahidi ve 

Eskandarian 2003). Bu olanaklara rağmen, güvenliği sağlamak için herhangi bir acil 

durum senaryosunda araçlar arasında daha büyük mesafelere ihtiyaç duyulur. Bu ise 

karayolu üzerinde daha az aracın seyahat etmesine ve trafik akış hızının daha yavaş 

olmasına neden olacaktır. ASK’nin aksine Kooperatif Adaptif Seyir Kontrolü (KASK) 

olarak adlandırılan gelişmiş yöntem ile yoğun trafikte araçlar arası daha kısa mesafede 

araç takibi mümkün olmaktadır. Kısa mesafe araç takibi için kablosuz haberleşme ile 

araçtan araca (V2V) ve araçtan altyapıya (V2I) araçların ivme ve hız gibi ilgili durum 

sinyalleri iletilmektedir. Böylece, araçlar arası daha kısa mesafede yol kapasitesi 

arttırılarak trafik akışı hızlandırılır ve sürüş güvenliği sağlanır (Dey vd. 2016, Ploeg vd. 

2013, Wang ve Nijmeijer 2015). Performans, güvenlik ve konfor gereksinimlerini 

yerine getirmek için araç dizisi boyunca oluşabilecek olumsuzlukların etkisinin 

azaltılması ve sistemin dizi kararlı olması gerekmektedir (Z. Gao vd. 2022, Li vd. 2019, 

Swaroop ve Hedrick 1996, Wang ve Nijmeijer 2015, Yu vd. 2018). Bu sebeple, KASK 

ile kontrolcü tasarımı yapılırken dizi kararlılığı mutlaka yerine getirilmesi gereken temel 

koşuldur. Dizi kararlılık tanımının gelişimi dizi sistemindeki varsayımlarla yakından 

ilgilidir ve sistemin analiz yöntemini direkt olarak etkilemektedir (Feng vd. 2019). 

Lyapunov yaklaşımı, uzamsal olarak değişmez sistem (spatially invariant systems) 

yaklaşımı ve performans odaklı yaklaşım araç dizisinin kararlılık analizi için önerilen 

farklı yöntemleridir (Ploeg vd. 2013, Feng vd. 2019, Dey vd. 2016). Sistem 
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gereksinimlerine bağlı olarak asimptotik, ℒ2-norm ve ℒ∞-norm gibi farklı kararlılık 

koşulları için dizi kararlılık analizleri yapılmaktadır. 

Genel olarak, araç dizisinin kontrolü tek bir aracın kontrolünden daha zordur. Çünkü (i) 

heterojen ya da homojen araç dizisinde kontrolcü tasarımı için farklı dinamik araç 

modelleri kullanılmaktadır. Hesaplama yükünü azaltmak için genellikle kontrolcü 

tasarımında basitleştirilmiş model kullanılmaktadır (Darbha vd. 2017, Li vd. 2019, 

Ploeg vd. 2014, Santini vd. 2017). Çoğunlukla, ikinci ve üçüncü dereceden doğrusal 

model ve doğrusal olmayan modeller tercih edilmektedir. (ii) Kontrolcü, farklı hedefler 

doğrultusunda tasarlanır. Araç dizisinde kontrolcünün amacı, yalnızca bireysel araç 

kararlılığını sağlamak değil, aynı zamanda araç dizisinin kararlılığını da sağlamaktır. 

(iii) Araç dizisinin kontrolü için daha fazla araç kısıtı dikkate alınmalıdır. Bireysel araç 

kontrolündeki orijinal kısıtların yanı sıra takipçi araçlar arasındaki konum, hız, ivme ve 

sarsıntı (ivmenin türevi) gibi kısıtlar da araç kontrolünün tasarımında dikkate 

alınmalıdır (Baldi vd. 2021, Bingöl ve Schmidt, 2022; Feng vd. 2020, G. Guo ve Li 

2019, Luo vd. 2021, Santini vd. 2017, Tóth ve Rödönyi 2017, Turri vd. 2017, Zhai vd. 

2019, Zheng vd. 2017). Bu kısıtlar ihmal edildiğinde ise eyleyicinin doyuma uğraması 

kaçınılmazdır. Bunun sonucunda araç dizisinde kararsızlık görülmesi muhtemeldir. (iv) 

İletişim topolojisine göre aracın diğer araç ya da araçlardan kablosuz haberleşme ile 

aldığı bilgiler araç dizisinin kontrolü için gereklidir. Araçlar arası haberleşme sırasında 

zaman gecikmesinin olması muhtemeldir ve dizi kararlılığını sağlamak için mutlaka 

incelenmelidir (Baldi vd. 2021, Feng vd. 2020, Gao vd. 2016, Kayacan 2017, Y. Li vd. 

2019, Luo vd. 2021, Ploeg vd. 2014, Santini vd. 2017, Sawant vd. 2020, Sun vd. 2023, 

Zhu vd. 2020). Bu kavramlar farklı kombinasyonlarda dikkate alınarak, KASK sürüş 

modelinde farklı kararlılık koşulları için kontrolcü sentezi yapılmaktadır. 

Literatürde yapılan çalışmalar, zaman gecikmesi ve model kısıtları temel alınarak 

sınıflandırılmıştır. Çizelge 1.1’de verilen çalışmalarda, eyleyici doyumunu önlemek için 

gerekli olan kısıtlar ve zaman gecikmesi ihmal edilerek farklı kontrolcüler ile kararlılık 

analizleri yapılmıştır. Hu vd. (2020) tarafından önerilen çalışmada üçüncü dereceden 

dinamik araç modeli ve heterojen araç dizisi dikkate alınmıştır. KASK sürüş modelinde, 

haberleşme bağlantı hatası dikkate alınarak iki katmanlı dağıtılmış ve uyarlanabilir bir 
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kontrol mimarisi önerilmiştir. Çalışmada, Lyapunov yaklaşımı ile asimptotik kararlılık 

sağlanmıştır. Ayrıca, çalışmada sadece araçlar arası mesafe hata sinyali için kararlılık 

analizi yapılmıştır. Darbha vd. (2017) tarafından yapılan çalışmada doğrusal ve 

homojen araç dizisinde yalnızca mesafe hata sinyali dikkate alınmıştır. Araç dizisinin 

kararlılığı için frekans alan yaklaşımıyla ℒ2-normu incelenmiştir. Li vd. (2018) 

tarafından önerilen çalışmada heterojen araç dizisi için 𝐻𝐻∞ kontrolcü sentezi 

önerilmiştir. Çalışmada, ℒ2-normu ile dizi boyunca mesafe hata sinyalinde oluşan 

artışlar incelenmiştir.  

Lyapunov yaklaşımının kullanıldığı diğer çalışmalardan farklı olarak Besselink ve 

Johansson (2017) ve Aghababa vd. (2020) çalışmasında dışarıdan gelen bozukluklar 

(external disturbance) dizi kararlılık analizinde dikkate alınmıştır. Doğrusal olmayan 

homojen araç dizisi için uzamsal alan (spatial domain) yaklaşımı ile ℒ∞-norm kararlılık 

koşulları Besselink ve Johansson (2017) tarafından önerilmiştir. Aghababa vd. (2020) 

tarafından önerilen çalışmada ℒ2-norm kararlılık koşulu yalnızca araçlar arası mesafe 

hata sinyali için incelenmiştir. Homojen araç dizisinin kullanıldığı çalışmada doğrusal 

olmayan araç dinamikleri kullanılmıştır. Dai vd. (2022) çalışmasında, farklı iletişim 

topolojilerini kullanarak dizi kararlılığı üzerindeki etkisini incelemiştir. ℒ2-norm 

kararlılık koşulları ivme ve hız sinyalleri için incelendiği çalışmada zaman gecikmesi ile 

dinamik araç kısıtları ihmal edilmiştir. Wang vd. (2022) tarafından önerilen çalışmada 

KASK donanımlı homojen araç dizisinin asimptotik kararlılığı garantileyen model 

öngörülü kontrolcü önerilmiştir. Lyapunov yaklaşımı ile yapılan kararlılık analizinde 

hata (mesafe, ivme, hız) sinyalleri için kararlılık koşulları incelenmiştir. Chen ve Yan 

(2023) çalışmasında heterojen araç dizisinin ℒ2-norm kararlılık koşulları yalnızca 

mesafe hata sinyali için incelenmiştir. Ayrıca, doğrusal dinamik araç modeli ve farklı 

iletişim topolojilerinin kullanıldığı çalışmada zaman gecikmesi ve araç kısıtları dikkate 

alınmamıştır. 
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Çizelge 1.1 Zaman gecikmesi ve eyleyici doyum kısıtının ihmal edildiği çalışmalar 

Yayın Dizi Model Kararlılık Gecikme Kısıt 
Hu vd. (2020) heterojen 3D asimptotik X X 
Darbha vd. (2017) homojen 2D ℒ2-norm X X 
Li vd. (2018) heterojen 3D ℒ2-norm X X 
Besselink ve Johansson (2017) homojen N ℒ∞-norm X X 
Aghababa vd. (2020) homojen N ℒ2-norm X X 
Dai vd. (2022) homojen 3D ℒ2-norm X X 
Wang vd. (2022) homojen 3D asimptotik X X 
Chen ve Yan (2023) heterojen 3D ℒ2-norm X X 

2D, 3D: 2., 3. dereceden doğrusal model, N: doğrusal olmayan model 
 

 

Çizelge 1.2’de paylaşılan çalışmalarda, farklı zaman gecikmeleri dikkate alınırken 

model kısıtları ihmal edilmiştir. Li vd. (2019) tarafından zamanla değişen heterojen ve 

homojen zaman gecikmesi altında kontrol algoritması geliştirilmiştir. Önerilen kontrol 

algoritmasının asimptotik kararlılığı (mesafe sinyali ve hız sinyali), Lyapunov yaklaşımı 

ile yapılmıştır. Sawant vd. (2020) tarafından önerilen çalışmada sabit eyleyici ve 

haberleşme gecikmesi dikkate alınarak Kayan Mod Kontrol (KMK) yöntemi ile 

kontrolcü sentezi yapılmıştır. Önerilen kontrolcünün, parametre belirsizlikleri ve dış 

bozukluklardan etkilenen sistemi kontrol etmek için etkili bir teknik olduğu 

belirtilmiştir. Çalışmada, ℒ2-norm kararlılık analizi hız sinyali için incelenmiştir. 

Homojen araç dizisi ve doğrusal olmayan araç dinamiklerinin kullanıldığı çalışma 

Ghasemi vd. (2015) ile sabit zaman gecikmesi dikkate alınmıştır. Performans odaklı 

yaklaşım ile ℒ2-normu için kararlılık koşulları mesafe hata sinyali ve hız sinyali için 

incelenmiştir. Ploeg vd. (2014) tarafından önerilen çalışmada bozulmanın ilk araçta 

olduğu doğrusal sistem ve sabit haberleşme gecikmesi için ℒ2-dizi kararlılık koşullarını 

garantileyen kontrolcü sentezi yapılmıştır. Sabit haberleşme gecikmesi dikkate alındığı 

üçüncü derece doğrusal dinamik araç modeli ve heterojen araç dizisi için 𝐻𝐻∞ kontrolcü 

sentezi Kayacan (2017) tarafından önerilmiştir. Çalışmada, ℒ∞-norm için kararlılık 

koşulları ivme, mesafe, hız ve sarsıntı sinyalleri için garantilenmiştir.  

 

Lyapunov yaklaşımı ile ℒ2-norm kararlılık koşulları Zhu vd. (2020) ve Gao vd. (2016) 

tarafından önerilen çalışmalarda incelenmiştir. Sabit haberleşme ve eyleyici gecikmesi 
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altında hızlandırılmış ileri- beslemeli ve kontrol ileri- beslemeli kontrolcü sentezi Zhu 

vd. (2020) tarafından önerilmiştir. Çalışmada, ℒ2-norm kararlılık koşulları ivme sinyali 

için analiz edilmiştir. Gao vd. (2016) tarafından önerilen çalışmada zamanla değişen 

haberleşme gecikmesi ve belirsiz araç parametrelerinin dikkate alındığı heterojen araç 

dizisi için 𝐻𝐻∞  kontrolcü sentezi önerilmiştir. Araç dizisinin performansı, ℒ2-norm 

kararlılık koşulları ile mesafe hata sinyali ve hız hata sinyali için analiz edilmiştir. 

Çeşitli iletişim topolojileri ve zamanla değişen haberleşme gecikmesini dikkate alan 

doğrusal geri besleme kontrol yasası Huang vd. (2022) tarafından yapılan çalışmada 

önerilmiştir. Dinamik araç kısıtlarının ihmal edildiği çalışmada Lyapunov yaklaşımı ile 

ℒ2-norm kararlılık koşulları hata sinyalleri (mesafe, hız, ivme) için incelenmiştir. 

 

 Çizelge 1.2 Zaman gecikmesinin dikkate alındığı eyleyici doyum kısıtının ihmal 
edildiği çalışmalar 

Yayın Dizi Model Kararlılık Gecikme Kısıt 
Li vd. (2019) heterojen 2D asimptotik zdh X 

Sawant vd. (2020) homojen, 
heterojen 3D ℒ2-norm se,sh X 

Ghasemi vd. (2015) homojen N ℒ2- norm se X 
Ploeg vd. (2014) homojen 2D ℒ2-norm sh X 
Kayacan (2017) heterojen 3D ℒ2-norm sh X 

Zhu vd. (2020) homojen, 
heterojen 3D ℒ2-norm se,sh X 

Gao vd. (2016) homojen 
heterojen N ℒ2-norm zdh X 

Huang vd. (2022) homojen N ℒ2-norm zdh X 
zdh: zamanla değişen haberleşme, s[e,h] : sabit [eyleyici, haberleşme] 
2D, 3D: 2., 3. dereceden doğrusal model, N: doğrusal olmayan model 

 

 

Araç dizisinin kararlılık analizlerinde dikkat edilmesi gereken bir diğer kavram eyleyici 

doyumudur. Eyleyici doyumu için kısıtların dikkate alındığı fakat zaman gecikmesinin 

ihmal edildiği çalışmalar çizelge 1.3 ile gösterilmiştir. Zheng vd. (2017) tarafından 

önerilen çalışmada kontrolcünün sürüş performansını artırmak için kontrol girişindeki 

kısıtlar (gaz ve fren torku) dikkate alınmıştır. Asimptotik kararlılığın garantilendiği 

çalışmada mesafe ve hız hata sinyalleri incelenmiştir. Doğrusal olmayan araç modelinin 

kullanıldığı ve haberleşmenin ihmal edildiği heterojen araç dizisinde asimptotik 

kararlılığı sağlayan Model Öngörülü Kontrolcü (MÖK) önerilmiştir. Sabit kontrol giriş 
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limitleri altında sistemin gürbüzlük (robutness) gereksinimlerine göre doyum kontrol 

yöntemini içeren çalışma He vd. (2020) tarafından önerilmiştir. Sistemin asimptotik 

kararlılığını sağlamak için, düşük kazançlı geri beslemeli kontrol yasası tasarlanmıştır. 

Gerçek araç modelinde gözlenen hıza bağlı ivme limitleri yalnızca Tóth ve Rödönyi 

(2017) tarafından yapılan çalışmada incelenmiştir. Fakat, kuvvet doyumunun kesin 

modeli kullanılmamış ve doyumun aktif olması durumunda araçların performansının 

düştüğü görülmüştür. Ayrıca, hız ve yol eğimine bağlı ivme limitleri için sezgisel 

(heuristic) fonksiyon kullanılmıştır. Çalışmada, ivme sinyali için ℒ2-norm kararlılık 

koşullarını sağlayan kontrolcü önerilmiştir.  

Guo ve Li (2019), Gao vd. (2022b) ve Gao vd. (2023) tarafından önerilen çalışmalarda 

mesafe hata sinyali için ℒ2-norm dizi kararlılık koşulları incelenmiştir. Guo ve Li 

(2019) tarafından önerilen çalışmada, çekiş ve fren kuvvetindeki eyleyici doyumunu 

dikkate alan üçüncü derece doğrusal olmayan dinamik araç denklemleri ile çalışılmıştır. 

Eyleyici doyumunu önlemek hiperbolik teğet fonksiyonu önerilmiştir. KMK sentezinde 

araçlar arası istenilen mesafeyi korunması ve araçların lider araç hızını takip etmesi 

hedeflenmiştir. Diğer tarafta, heterojen araç dizisi ile analizler yapılırken homojen 

eyleyici doyumu dikkate alınmış ve zaman gecikmesi ihmal edilmiştir. Eyleyici 

doyumu, dinamik belirsizlikler ve bilinmeyen dış bozukluklar Gao vd. (2022b) 

tarafından yapılan çalışmada incelenmiştir. Doyumu engellemek için Gauss hata 

fonksiyonu (GEF) tabanlı doyum fonksiyonu önerilmiştir. Diğer tarafta, KASK 

donanımlı homojen araç dizisi ve doğrusal olmayan araç dinamiklerinin tercih edildiği 

çalışmada zaman gecikmeleri göz ardı edilmiştir. Bir önceki çalışmadan farklı olarak 

Lyapunov yaklaşımı ile dizi kararlılık analizi yapılmış ve KMK ile sabit zamanlı kontrol 

algoritması Gao vd. (2023) tarafından önerilmiştir. Davis (2014) tarafından önerilen 

çalışmada doğrusal araç modeli kullanarak ivme kısıtının dizi kararlılığı üzerindeki 

etkisi incelenmiştir. Doğrusal olmayan araç modelinin kullanıldığı Bingöl vd. (2016) 

tarafından önerilen çalışmada ise giriş sinyali sabit motor kuvveti ile sınırlandırılmıştır. 

Bu çalışmalarda, lider aracın motor kuvveti sınır değerini aşmadığı sürece araç dizisi 

boyunca araçların motor kuvvetinin doyuma ulaşmadığı görülmüştür. 
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Literatür çalışmaları sonucunda, araç takip sistemlerindeki farklılık ve zorluklar 

nedeniyle bazı kavramların kontrolcü sentezinde aynı anda dikkate alınmadığı 

görülmektedir. Gerçekte araç dinamiği, güçlü ve doğrusal olmayan yüksek dereceli bir 

sistemdir. Buna rağmen, gerçek araç dinamiğinin özellikleriyle çok fazla örtüşmeyen 

ikinci dereceden doğrusal sistem modelinin daha çok ele alındığı görülmektedir. Bunun 

yanında, araç dizisinin kontrolünde araç dinamiği üzerindeki etkisi bilinen eyleyici 

kısıtları da dikkate alınmalıdır. Bu durum, eğer ciddi bir şekilde ele alınmazsa araç 

dizisinde performans düşüşüne ve hatta kararsızlığa yol açabilir. Dolayısıyla, eyleyici 

kısıtlarına uygun kontrolcünün tasarlanması, pratik araç dizi sistemleri için büyük önem 

taşımaktadır. Özellikle giriş doyumu, araç üzerindeki fiziksel eyleyicilerin sınırlı 

kontrol kuvvetinden (gaz ve fren) kaynaklanan bir kontrol kısıtıdır. Giriş kısıtının 

incelendiği çalışmalarda ise kısıtlar sabit bir değer olarak ele alınmış ve hıza bağlı 

kuvvet limitleri ihmal edilmiştir. Literatür özetlerinde, KASK sürüş sisteminin 

kontrolünde zaman gecikmesinin genelde ihmal edildiği ya da sabit bir değer olarak 

alındığı görülmektedir. Bu durum, zamanla değişen haberleşme gecikmesinin dikkate 

alındığı kontrolcü sentezi ve dizi kararlılık analiz yöntemlerinin oldukça zorlayıcı 

olmasından kaynaklanmaktadır. Literatür özetlerinde, dizi kararlılık analizlerinde 

üzerinde çalışılması daha kolay olduğundan genellikle ℒ2-norm kararlılık koşullarının 

incelendiği görülmektedir. Çünkü, karşılık gelen transfer fonksiyonun 𝐻𝐻∞-normunun bir 

koşulu olarak yeniden yazılabilmektedir. Ayrıca, ℒ2-norm yalnızca ilgili sinyal 

enerjilerinin araç dizisi boyunca azalmasını hedefler ve potansiyel eyleyici doyumu için 

yetersiz kalmaktadır. Diğer tarafta, ℒ∞-norm dizi kararlılığı ile ilgili sinyallerin sınır 

değerlerindeki asmaları önlediğinden fiziksel anlamda daha güçlüdür. Bu özelliği 

sayesinde heterojen araç dizisinde oluşması muhtemel olan eyleyici doyumunu 

önleyebilmektedir. 
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Çizelge 1.3 Zaman gecikmesi ihmal edildiği eyleyici doyum kısıtının dikkate alındığı 
çalışmalar 

Yayın Dizi Model Kararlılık Gecikme Kısıt 
Zheng vd. (2017) heterojen N asimptotik X kontrol girişi 

He vd. (2020) homojen, 
heterojen 3D asimptotik X kontrol girişi 

Tóth ve Rödönyi 
(2017) heterojen 3D ℒ2-norm X 

ivme  
(hıza bağlı),  
kontrol girişi 
(ivmeye bağlı) 

Guo ve Li (2019) heterojen N ℒ2-norm X kontrol girişi 
Gao vd. (2022b) homojen N ℒ2-norm X kontrol girişi 
Gao vd. (2023) homojen N ℒ2-norm X kontrol girişi 
Bingöl vd. (2016) homojen N ℒ∞-norm X kontrol girişi 

2D, 3D: 2., 3. dereceden doğrusal model, N: doğrusal olmayan model 
 

 

Bu sonuçlar doğrultusunda, herhangi bir KASK sürüş modeli için çizelge 1.4’de 

belirtilen kavramların daha önce birlikte incelenmediği görülmektedir. Buradan yola 

çıkarak, bu tez çalışmasında bu parametrelerin tamamı dikkate alınarak araç takip 

modeli için kontrolcü sentezi yapılmıştır. 

 

Çizelge 1.4 Zaman gecikmesinin ve eyleyici doyum kısıtının dikkate alındığı çalışma 

Yayın Dizi Model Kararlılık Gecikme Kısıt 

Tez heterojen N ℒ∞-norm se, zdh hız, sarsıntı, ivme (hıza bağlı),  
kuvvet kısıtları (hıza bağlı) 

zdh: zamanla değişen haberleşme, s[e,h] : sabit [eyleyici, haberleşme] 
2D, 3D: 2., 3. Dereceden doğrusal model, N: doğrusal olmayan model 

 

 

Tezin başlıca katkıları şu şekilde sıralanır: 

 

• Basitleştirilmiş ikinci derece araç dinamiklerini dikkate alan mevcut birçok 

çalışmanın aksine, motor dinamiklerini de içeren doğrusal olmayan dinamik araç 

modeli dikkate alınmıştır. Araç dinamiklerini, üçüncü dereceden doğrusal 

sisteme dönüştürmek için geri besleme doğrusallaştırma yöntemi kullanılmıştır. 
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Üçüncü dereceden dinamik araç modelinde, ivme değişim oranının (sarsıntı) 

kontrolü sağlanarak sürüş sırasında yolcu konforu iyileştirilmiştir. 

• Heterojen araç dizisinde ve gerçek trafik ortamında, yapısal kısıtlamalar 

nedeniyle araçların gaz ve fren sistemlerinde eyleyici doyumunun oluşması 

kaçınılmazdır. Araç dizisinin doyuma uğramasını önlemek için bu değerler araç 

dizisindeki en zayıf araç limitlerine göre sınırlandırılmalıdır. Çalışmada, aracın 

hareketini etkileyen tüm boylamsal kuvvetler türetilmiştir. Özellikle, aracın 

hızlanmasını sağlayan çekiş kuvveti (maksimum çekiş kuvveti ve motor 

tarafından üretilen kuvvet) ve yavaşlamasını sağlayan frenleme kuvvet değerleri 

ayrıntılı olarak incelenmiştir. Gerçek kuvvet modeli kullanılarak, aracın 

hareketini sağlayan hıza bağlı minimum kuvvet limit değeri elde edilmiştir. 

Buna ek olarak, hıza bağlı kuvvet limitleri kullanılarak aracın hıza bağlı ivme 

limit değerleri türetilmiştir. Hıza bağlı gerçek kuvvet modelinin kullanıldığı ilk 

çalışmadır. 

• Eyleyici doyumunun araç dizisinin kararlılığını doğrudan etkileyeceği 

bilinmektedir. Hıza bağlı kuvvet ve ivme kısıtları kullanılarak eyleyici doyumu 

altında güçlü ℒ∞-dizi kararlılığını sağlayan yeterli koşullar türetilmiştir. Bu 

koşullar genel bir şekilde formüle edilmiştir. Güçlü ℒ∞-dizi kararlılık koşullarını 

sağlayan herhangi bir KASK sürüş modeli için uygulanabilir olduğu 

gösterilmiştir. 

• Farklı hız değişim manevralarında dizi kararlılığının yeterli koşullarını sağlayan 

minimum-zamanlı optimal kontrol problemi formüle edilmiştir. Analitik olarak 

çözülebilen optimal kontrol problemi istenilen lider araç yörüngesinin gerçek 

zamanlı olarak hesaplanmasına olanak sağlayan orijinal bir yöntemdir.  

• KASK sürüş modelinde, zamanla değişen haberleşme gecikmesi ve sabit 

eyleyici gecikmesi dikkate alınarak kontrolcü sentezi yapılmıştır. Zaman-

alanında Lyapunov kararlılık yaklaşımı ile iki farklı yöntem önerilmiştir. 

Öncelikle, Zhu vd. (2020) tarafından önerilen model temel alınarak zamanla 

değişen haberleşme gecikmesi ve sabit eyleyici gecikmesi altında ℒ2-dizi 

kararlılığını sağlayan kontrolcü değerleri Doğrusal Matris Eşitsizlikleri (LMI) ile 

elde edilmiştir. Sonrasında, geliştirilen Bi-Section algoritmasıyla tezin temel 

amacı olan güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü değerleri 
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hesaplanmıştır. Önerilen diğer yöntemde, Lyapunov-Krasovskii Fonksiyonu 

(LKF)’na uygun besleme fonksiyonları eklenerek güçlü ℒ∞- dizi kararlılık 

koşulları türetilmiştir. LKF’nin çözümü ile elde edilen LMI’lar sonucunda 

kontrolcü kazanç değerleri hesaplanmıştır.  

 

Tez çalışması şu şekilde düzenlenmiştir. Bölüm 2’de araç takibi, KASK sürüş 

modeli, hıza bağlı kuvvet kısıtları ve dizi kararlılık kavramı ile ilgili bilgi 

verilmiştir. Bölüm 3’de heterojen araç dizisinin eyleyici doyumu altında ℒ∞-dizi 

kararlılık koşullarını sağlayan yeterli koşullar açıklanmıştır. Ayrıca, farklı hız 

değişim manevralarında ℒ∞-dizi kararlılık koşullarını sağlayan minimum-zamanlı 

lider araç yörüngeleri analitik olarak hesaplanmıştır. Lider araç yörüngelerinin 

optimal olduğu yine Bölüm 3’de ispatlanmıştır. Bölüm 4’de, zamanla değişen 

haberleşme gecikmesi ve sabit eyleyici gecikmesi altında araç takip sistemi için dizi 

kararlılığını sağlayan kontrolcü sentezi yapılmıştır. Öncelikle, geliştirilen Bi-Section 

algoritma ile ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü sentezi açıklanmıştır. 

Sonrasında, Lyapunov yaklaşımı ile ℒ∞-dizi kararlılık koşullarını sağlayan LMI 

çözümü detaylı bir şekilde sunulmuştur. Bölüm 5’de, tez çalışmasında önerilen tüm 

yöntemler kapsamlı benzetim sonuçları ile analiz edilmiştir. Son olarak, Bölüm 6’da 

tez çalışmasında ulaşılan sonuçların genel bir değerlendirmesi yapılarak gelecek 

çalışmalara yönelik öngörüler sunulmuştur. 
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2. KAVRAMSAL TEMELLER 

Bu tezin temel amacı, eyleyici doyumu ve zaman gecikmesi altında Kooperatif Adaptif 

Seyir Kontrol (KASK) modelinin dizi kararlılığını sağlayan kontrolcü sentezi 

yapmaktır. Öncelikle, KASK sürüş modeli ile araç takibi için temel kavramların detaylı 

bir şekilde incelenmesi gerekir. Bu sayede, kontrolcü sentezini doğrudan etkileyen araç 

takip senaryosu oluşturulur. Ayrıca, araç için doğrusal olmayan dinamik modelin tercih 

edilmesi özellikle eyleyici doyumu açısından kritik öneme sahiptir. Çünkü, doğrusal 

olmayan dinamik model denklemleri araca etkiyen kuvvet değerleri ile doğrudan 

ilişkilidir. Bu kuvvet değerleri isteğe bağlı değerler olamaz ve eyleyici doyumunu 

önlemek için mutlaka sınırlandırılmalıdır. Bu sebeple, kontrol sisteminin kararlılık 

analizinde araca etkiyen kuvvetler ve sınır değerleri mutlaka dikkate alınmalıdır. KASK 

modeli ile araç takibinde diğer önemli konu da güvenli ve konforlu seyahat için araç 

dizisinin dizi kararlı olmasıdır. Özellikle, eyleyici doyumunun önlenebilmesi için uygun 

dizi kararlılık koşullarının türetilmesi gerekmektedir. Bölüm 2.1’de, KASK sürüş 

modeli ile birlikte araç takibi kavramı, araç takip politikası ve dinamik araç modeli 

açıklanmıştır. Bölüm 2.2’de, araca etkiyen çekiş ve fren kuvvet kısıtları türetilmiş ve 

hıza bağlı ivme kısıtları formüle edilmiştir. Güvenli araç takibi için dizi kararlılık 

kavramı bölüm 2.3’de sunulmuştur. Son olarak bölüm 2.4’de optimal kontrol 

probleminin tanımı ve çözümü için gerekli tanımlar yapılmıştır. 

2.1 Kooperatif Adaptif Seyir Kontrolü 

KASK sistemi, Şekil 2.1’de gösterildiği üzere 𝑛𝑛 tane araçtan oluşan araç dizisinin 

araçlar arası kısa mesafede ve otonom olarak güvenli bir şekilde seyahat etmesini 

amaçlamaktadır. 

 
Şekil 2.1 Araç dizisi 
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KASK sürüş modelinde, ASK’de olduğu gibi yerleşik sensörler kullanılarak araçlar 

arası mesafe hesaplanır. Aynı zamanda, araçtan araca (V2V) ve araçtan altyapıya (V2I) 

kablosuz haberleşme yöntemini kullanarak diğer araçlardan gelen sinyal bilgilerini 

(örneğin hızlanma, yavaşlama komutları gibi) almaktadır. Bu özellik, KASK’ın ASK’a 

kıyasla araçlar arası daha kısa mesafede ve daha dengeli sürüş yapmasına olanak sağlar 

(Feng vd.2020). 

Kooperatif kontrole sahip araç dizisinde asıl amaç araç dizisinin kararlılığını 

sağlamaktır. Genel olarak, dinamik araç modeli dışında araç dizisinin kararlılığını 

etkileyen başlıca üç faktör: aralık politikası (spacing policy), iletişim topolojisi ve 

kontrol algoritması olarak gösterilir. Bu kavramlar farklı kombinasyonlar ile bir araya 

getirilerek KASK sürüş modelini oluşturur. Bu bölümde, araç takibinde önemli olan iki 

kriter aralık politikası ve iletişim topolojisi incelenmiştir. 

2.1.1 Araç takibi 

Öncelikle literatürde tanımlanan farklı aralık politikaları açıklanmıştır. Sonrasında, araç- 

tan araca (V2V) kablosuz veri iletimi için kullanılan iletişim topolojileri incelenmiştir. 

2.1.1.1 Aralık politikası 

Aralık politikası, birbirini takip eden iki araç arasında güvenli takip mesafesini 

belirleyen kontrol algoritmasının önemli bileşenlerinden birisidir. Aralık politikası, 

trafik güvenliği ve yol kullanımı üzerinde doğrudan etkiye sahiptir. Şöyle ki, daha kısa 

mesafede araç takibi trafikte ilerleyen araçların çarpışma riskini arttırırken, daha geniş 

mesafede araç takibi ise karayolu üzerindeki araç kapasitesini azaltmaktadır. 

Literatürde, sabit aralık (SA), sabit zaman aralık (SZA) ve degişken zaman aralık 

(DZA) politikası olmak üzere üç farklı politika tanımlanmaktadır. 
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Sabit aralık (SA) politikası, yaygın olarak tercih edilen yöntemlerden birisidir. Araçlar 

arası istenilen uzaklık, durma pozisyonunda araçların tamponları arasındaki sabit 𝑠𝑠𝑑𝑑,𝑖𝑖 

(standstill distance) uzaklık değerine eşittir. 

𝑑𝑑𝑖𝑖,des = 𝑠𝑠𝑑𝑑,𝑖𝑖 ,  ∀i ∈ 𝑆𝑆𝑛𝑛                                               (2.1) 

 

Görüldüğü üzere bu mesafe araç hızından bağımsızdır (Huppe vd. 2003, Rajamani ve 

Zhu 2002, Swaroop ve Hedrick 1999a). Burada 𝑛𝑛 ∈  𝑁𝑁 olmak üzere dizideki araç 

sayısını ve 𝑆𝑆𝑛𝑛  =  {𝑖𝑖 ∈ 𝑁𝑁 | 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} olmak üzere 𝑖𝑖 araç indisini göstermektedir Daha 

önceki bölümde belirtildiği gibi KASK’ın en önemli motivasyonlardan birisi olan kısa 

mesafede araç takibini sağlamak ve yol kapasitesini artırmak için ekstra bilgiye ihtiyaç 

duyulmaktadır. Bu bilgi, araç dizisindeki araçların birbiri ile iletişim kurmasıyla elde 

edilir ve bu durum kontrolcü tasarımını karmaşık hale getirecektir. Diğer tarafta, 

Swaroop ve Hedrick (1999a) tarafından yapılan çalışmada SA politikasının karmaşık 

sürüş koşullarına uyum sağlayamadığı ve araç dizisinde meydana gelebilecek olumsuz 

bir durumda yeterli olmadığı açıkça gösterilmiştir. SA politikası kullanılarak dizi 

kararlılık koşulları sağlanırken düşük kapasitede yol kullanımına sebep olduğu 

Santhanakrishnan ve Rajamani (2003) tarafından yapılan çalışmada belirtmiştir. 

Araç dizisi boyunca ilgili sinyallerde (hız, ivme, mesafe hatası vb.) meydana gelen 

değişimlerin etkisini doğal olarak azaltan alternatif yöntem sabit zaman aralık (SZA) 

politikası ile tanımlanır (Chen vd. 2021, Hwang ve Yurkevich 2006, Shaw ve Hedrick 

2007a). SZA, en son literatür çalışmalarında yakalama zamanı (ℎ𝑖𝑖) ve araç hızı (𝑣𝑣𝑖𝑖) ile 

birlikte şu şekilde ifade edilmiştir. 

𝑑𝑑𝑖𝑖,des = 𝑠𝑠𝑑𝑑,𝑖𝑖 + ℎ𝑖𝑖𝑣𝑣𝑖𝑖                    (2.2) 

 

SZA politikası, hıza bağlı olarak araçlar arası mesafenin düzenlenmesini ve bu 

mesafenin dizi boyunca korunmasını sağlar (Ren vd. 2007). SA politikasına kıyasla, 

SZA politikasının araç dizisinin güvenliğini ve kararlılığını sağlamada daha güçlü bir 

yöntem olduğu görülür. Ploeg vd. (2014) tarafından yapılan çalışmada araç dizisinin 
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performansını iyileştirmek için SZA politikasının daha iyi bir potansiyele sahip 

olduğunu belirtmiştir. 

Son olarak değişken zaman aralık (DZA) politikası, farklı durumlarda istenilen 

ilerlemeyi değiştirebilmek için doğrusal olmayan bir ifade ile tanımlamaktadır. DZA 

politikası, araçlar arası mesafeyi daha esnek hale getirebilir, daha karmaşık sürüş 

ortamlarına uyum sağlayabilir, yol kullanımını ve trafik akış kararlılığını iyileştirebilir 

(Chen vd. 2021).  Ağır hizmet araçları için analiz edilen DZA politikasının bir örneği 

Yanakiev vd. (1998) tarafından yapılan çalışmada gösterilmiştir. Fakat, DZA 

politikasının SZA politikasından daha karmaşık analizler gerektirdiği de belirtilmiştir. 

Ayrıca, DZA politikası ile KASK modelinin kullanımı hala devam eden bir araştırma 

konusu olduğunu da belirtmek gerekmektedir. 

Bu doğrultuda, SZA politikasının diğer iki aralık politikasına göre dizi kararlılık analizi 

için daha uygun bir yöntem olduğu görülür. Bu tez çalışmasında, KASK donanımlı araç 

dizisinde araçlar arası istenilen mesafe bilgisini elde etmek için SZA politikası tercih 

edilmiştir. 

2.1.1.2 İletişim topolojisi  

İletişim topolojisi, KASK sürüş modelinde araçlar arası ve/veya altyapı arasında bilgi 

akışının nasıl sağlandığı gösterir. İletişim topolojisi, kontrolcü tarafından kullanılan 

bilgiler doğrultusunda belirlenir ya da topoloji bilgisine göre kontrolcü sentezi yapılır. 

İletişim topolojileri, merkezi kontrolcü ve merkezi olmayan kontrolcü olmak üzere iki 

ana grupta sınıflandırılır. Merkezi kontrolcüler aynı zamanda “akıllı yol” sistemleri 

olarak da adlandırılır (Naus vd. 2010). Merkezi kontrol sistemindeki kontrolcü iletişim 

halindeki tüm araçlardan veri toplar, yorumlar ve her araç için uygun bir yanıt belirtir. 

Kontrolcü yanıtının, araç dizisindeki her araca ulaşabilmesi için merkezi bir konumda 

bulunması gerekmektedir. Bu nedenle, merkezi kontrol sistemi için gerekli olan iletişim 

ağının boyutu nedeniyle ciddi ekonomik yatırıma ihtiyaç duyulmaktadır (Huang ve Ren 

1997, Naus vd. 2010, Ploeg vd. 2013). 
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Diğer tarafta, Akıllı Araç ve Karayolu Sistemi (AAKS) olarak önerilen bir diğer sistem 

daha önceki bölümlerde bahsedilen AUS sistemidir. Bu sistemde, yalnızca araçtan araca 

iletişimi kullanmak üzere, "akıllı araba" sistemi olarak da adlandırılan ve merkezi 

olmayan bir kontrol sistemi kullanılmaktadır. AUS ile ilgili yapılan son çalışmaların 

birçoğunda merkezi kontrol yerine merkezi olmayan kontrole odaklanılmıştır. Çünkü, 

iletişim sisteminin yapısı mevcut altyapı için daha az yatırım gerektirmektedir (Ploeg 

2014). 

Merkezi olmayan kontrol sistemleri için literatürde çeşitli iletişim topolojileri 

sunulmaktadır. Başlıca iletişim topoloji türleri Şekil 2.2’de sırasıyla: öncül araç takibi 

(ÖAT), öncül-lider araç takibi (ÖLT), iki öncül araç takibi (İÖT), iki öncül-lider araç 

takibi (İÖLT) ve çift-yönlü araç takibi (ÇAT) olarak gösterilir. Şekil 2.2 (a,b,c,d) 

yapılarında tek yönlü haberleşme, Şekil 2.2 (e) yapısında ise çift-yönlü haberleşme 

kullanılır. ÖLT ve İÖLT iletişim yapılarında (Şekil 2.2 b, d) lider aracın gerekli olan 

tüm sinyal bilgilerini tüm takipçi araçlara aktarması gerekmektedir. Ancak, araç 

dizisinin uzunluğu arttıkça bu iletişim zorlaşmaktadır (Yu vd. 2018). İÖT yapısında 

(Şekil 2.2 c) aynı anda ardışık iki araç arasında ve araç 𝑖𝑖 ile araç 𝑖𝑖 + 2 arasında tek 

yönlü veri akışı gerçekleşir. ÇAT topolojisinde (Şekil 2.2 e), her takipçi aracın aynı 

anda önünde ve arkasında bulunan araca bilgi iletmesi ve alması gerekmektedir. Bu ise 

araç dizisindeki her araç için ileri ve geri yönlü sinyal bozulmalarının incelenmesini 

gerektirir. Bu durum, araç dizisindeki kararlılık analizini oldukça karmaşık hale 

getirmektedir (Peppard 1974, Yanakiev vd. 1998). 

 

 



17 
 

 

Şekil 2.2 İletişim topolojileri: a) ÖAT b) ÖLT c) İÖT d) İÖLT e) ÇAT (Wang vd. 2018) 

Diğer tarafta, ÖAT iletişim yapısında (Şekil 2.2 a), her araç yalnızca önündeki araçtan 

aldığı bilgi sinyalini değerlendirdikten sonra arkasındaki takipçi araca iletir. Bu yapının 

pratikteki avantajı, yalnızca arka arkaya birbirini takip eden iki araç bilgisine ihtiyaç 

duymasıdır. Bu sayede, dizideki her bir aracın daha kısa sürede yanıt vermesini 

sağlayarak dizideki araçların daha güvenli seyahatini sağlar. Aynı zamanda, haberleşme 

gecikmesinin kaçınılmaz olduğu gerçek trafik koşullarında araçlar arası tek yönlü sinyal 

iletiminin olması kontrolcü tasarımında avantaj sağlar (Wang vd. 2018). Bu önemli 

özeliklerinden dolayı ÖAT topolojisi literatürde en çok tercih edilen iletişim yapısıdır. 

Daha basit bir iletişim yapısının kullanılması özellikle kontrolcü tasarımında çok daha 

fazla kolaylık sağlayacaktır. Bu sayede, araç dizisinin kararlılığını sağlamak için gerekli 

olan analizlerinde aynı oranda sadeleşmesine yardımcı olacaktır. Buna göre, ÖAT yapısı 

diğer topolojiler arasında en basit ve dolayısıyla da en çok tercih edilen iletişim 

yapısıdır. Tez çalışmasında, KASK sürüş modelinin önemli bir parçası olan iletişim ağı 

için ÖAT yapısı tercih edilmiştir. 
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2.1.1.3 Araç takip senaryosu 

KASK sürüş modeli için oluşturulan araç takip senaryosu Şekil 2.3 ile gösterilmiştir. 

Araçlar arası istenilen mesafeyi düzenlemek için SZA politikası ve tek yönlü sinyal 

iletimini sağlamak için ÖAT topolojisi kullanılmıştır. 

 

Şekil 2.3 KASK donanımlı araç dizisi 

Bu senaryoya göre, araç 𝑖𝑖 ve 𝑖𝑖 − 1 arasındaki araçlar arası mesafe (𝑑𝑑𝑖𝑖) şu şekilde ifade 

edilmektedir. 

𝑑𝑑𝑖𝑖 = 𝑞𝑞𝑖𝑖−1 − 𝑞𝑞𝑖𝑖 − 𝐿𝐿𝑖𝑖                                             (2.3) 

 

Burada, 𝑖𝑖. aracın arka tampon konumu 𝑞𝑞𝑖𝑖 ve uzunluğu 𝐿𝐿𝑖𝑖 ile gösterilmiştir. Mesafe 

bilgisi (𝑑𝑑𝑖𝑖), sensör ölçümleri (RADAR ya da LİDAR) kullanılarak hesaplanmaktadır. 

Mesafe hatası (𝑒𝑒𝑖𝑖) ise araçlar arası mesafe (𝑑𝑑𝑖𝑖) ve istenilen mesafe (𝑑𝑑𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑) farkı 

alınarak hesaplanır. Aşağıda verilen (2.2)’de yerine yazıldığında hıza bağlı mesafe 

hatası şu şekilde hesaplanmaktadır.                  

            𝑒𝑒𝑖𝑖 = 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖,des = (𝑞𝑞𝑖𝑖−1 − 𝑞𝑞𝑖𝑖 − 𝐿𝐿𝑖𝑖) − �𝑠𝑠𝑑𝑑,𝑖𝑖 + ℎ𝑖𝑖𝑣𝑣𝑖𝑖�               (2.4) 

 

Araç takibinde, araçların kararlı ve güvenilir sürüş gerçekleştirmesi için mesafe 

hatasının araç dizisi boyunca artmaması beklenir. Aksi bir durum, araçlar arasında 

iletilen ilgili sinyal genliklerinin dizi boyunca arttığını göstermektedir. KASK sürüş 

modeli ile oluşturan araç dizisi kararsız hale gelecektir. 
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2.1.2 Araç dinamikleri 

KASK donanımlı araç dizisini oluşturan önemli bileşenlerden birisi de araç dinamiğidir. 

Literatürde çoğunlukla analizi daha kolay olduğundan ikinci dereceden araç modeli 

tercih edilmektedir (Chen vd. 2020a, Li vd. 2019). İkinci dereceden araç modeli, güç 

aktarma sistemi dinamiklerinde eyleyici gecikmesine neden olabilir ve kararsızlığa yol 

açabilir (Li vd. 2015, Zhou ve Peng 2005, Liang ve Peng 1999). 

Diğer tarafta, gerçekte araç dinamiği motor, fren kuvveti, aerodinamik sürtünme, 

yuvarlanma direnci ve yer çekimi kuvveti vb. doğrusal olmayan araç dinamiklerini 

içermektedir. Bir araç dizisinde her araç genellikle motor veya fren sistemi kullanılarak 

kontrol edilir. Araç girişi (motor ve fren) yapı sınırlamaları nedeniyle keyfi değerler 

olamayacağından kontrolcü tasarımında mutlaka dikkate alınmalıdır.  

Ayrıca, doğrusal olmayan araç modeli teorik analiz için uygun değildir. Araç modelinin 

güç aktarım sisteminin giriş / çıkış davranışlarını yaklaşık olarak hesaplamak için 

çoğunlukla geri besleme doğrusallaştırma tekniği ya da alt katman kontrol tekniğini 

kullanılır (Li vd. 2015, Shladover vd. 1991, Stankovic vd. 2000, Zheng vd. 2014). 

Bir sonraki bölümde, ilk olarak tez kapsamında kullanılan doğrusal olmayan dinamik 

araç modeli detaylı olarak açıklanmıştır. Sonrasında, doğrusal olmayan araç 

dinamiklerine geri besleme doğrusallaştırma yöntemi uygulanarak üçüncü dereceden 

doğrusal araç modeli elde edilmiştir. 

2.1.2.1 Doğrusal olmayan araç modeli  

Doğrusal olmayan araç modeli, araca etkiyen tüm kuvvetler ve aralarındaki ilişki 

türünden tarif edilmektedir. Newton’un ikinci yasasına göre 𝑖𝑖. aracın boylamsal net 

kuvveti şu şekilde hesaplanır (Xiao ve Gao 2011). 

𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖 = 𝐹𝐹𝑖𝑖, L − 𝐹𝐹𝑖𝑖, A − 𝐹𝐹𝑖𝑖,R − 𝐹𝐹𝑖𝑖,G                                (2.5) 
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Eşitlikte, 𝐹𝐹𝑖𝑖,𝐿𝐿 boylamsal hareketi üzerine uygulanan 𝐹𝐹𝑖𝑖,𝑇𝑇 çekiş kuvveti (aracın 

hızlanması) veya 𝐹𝐹𝑖𝑖,𝐵𝐵 frenleme kuvvetini (aracın yavaşlaması) ifade etmektedir. 𝐹𝐹𝑖𝑖,𝐴𝐴 

aracın aerodinamik direnci, 𝐹𝐹𝑖𝑖,𝑅𝑅 aracın yuvarlanma direnci ve 𝐹𝐹𝑖𝑖,𝐺𝐺 yerçekimi direncini 

göstermektedir. Araç 𝑖𝑖 için aerodinamik direnç şu şekilde formüle edilir. 

𝐹𝐹𝑖𝑖, A = 𝜎𝜎𝑖𝑖  𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,d  (𝑣𝑣𝑖𝑖+𝑉𝑉wind )2

2
                                      2.6) 

 

 Burada, 𝜎𝜎𝑖𝑖, 𝐴𝐴𝑖𝑖 , 𝑐𝑐𝑖𝑖,𝑑𝑑  ve 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 sırasıyla havanın özgül kütlesi, i. aracın enine kesit alanı, 

sürüklenme katsayısı ve rüzgâr hızını göstermektedir. Son olarak, yuvarlama katsayısı 

𝑓𝑓𝑖𝑖,𝑅𝑅 , yerçekimi sabiti g, yol yüzeyi ile yatay düzlem arasındaki açı Θ kullanılarak 

yuvarlanma direnci şu şekilde tanımlanır. 

𝐹𝐹𝑖𝑖,R = 𝑓𝑓𝑖𝑖,R 𝑀𝑀𝑖𝑖 𝑔𝑔 cos(Θ)                                          (2.7) 

 

Yer çekimi kuvveti 𝐹𝐹𝑖𝑖,𝐺𝐺 şu denklem ile tanımlanır. 

𝐹𝐹𝑖𝑖,G = 𝑀𝑀𝑖𝑖 𝑔𝑔 sin(Θ)                                             (2.8) 

 

Toplam kütle 𝑀𝑀𝑖𝑖 değeri ise araç kütlesi 𝑚𝑚𝑖𝑖, motor eylemsizliği 𝐽𝐽𝑖𝑖,𝐸𝐸 , tekerlek yarıçapı 𝑟𝑟𝑖𝑖 

ve vites dişli oranı 𝜀𝜀𝑖𝑖,0 kullanılarak şu şekilde hesaplanır. 

𝑀𝑀𝑖𝑖 = 𝑚𝑚𝑖𝑖 + 𝐽𝐽𝑖𝑖,𝐸𝐸
𝑟𝑟𝑖𝑖
2 𝜖𝜖𝑖𝑖,02                                            (2.9) 

 

Bu tez çalışmasında; araçların düz, yatay bir yolda ve aynı yönde ilerlediği varsayılır. 

Bu durumda, yol yüzeyi ile yatay düzlem arasındaki açı Θ = 0 ve rüzgâr hızı 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0 

kabul edilir. Böylece, eşitlikler 𝐹𝐹𝑖𝑖,𝐺𝐺 = 0 ve 𝐹𝐹𝑖𝑖,𝑅𝑅 = 𝑓𝑓𝑖𝑖,𝑅𝑅 𝑀𝑀𝑖𝑖 𝑔𝑔  olarak sadeleşir. 

Ayrıca, motor dinamiği doğrusal olmayan diferansiyel denklem ile tanımlanır (Caudill 

ve Garrard 1976, Shladover 1991). 
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𝐹̇𝐹𝑖𝑖,𝐿𝐿 = 𝐹𝐹𝑖𝑖,D
𝜏𝜏𝑖𝑖
−  𝐹𝐹𝑖𝑖,L

𝜏𝜏𝑖𝑖
                                              (2.10) 

 

Eşitlikte, 𝐹𝐹𝑖𝑖,𝐷𝐷 istenilen boylamsal kuvveti ve 𝜏𝜏𝑖𝑖 yürüyen aksam zaman sabitini ifade 

etmektedir. Basit motor modeli, ortam sıcaklığı, motor sıcaklığı, rakım, bujilerin 

durumu, şanzıman dinamikleri vb. gibi parametreleri içermez. Bu sayede, karmaşık 

motor model parametrelerinden kurtularak denklemlerin sadeleşmesi sağlanır. 

2.1.2.2 Geri besleme doğrusallaştırması  

KASK sürüş modeli yalnızca doğrusal araç modeli için uygundur. Bir önceki bölümde 

tanımlanan doğrusal olmayan araç denklemlerinin doğrusal hale getirilmesi 

gerekmektedir. Bu nedenle, araç dizisindeki 𝑖𝑖. aracın giriş / çıkış davranışını 

doğrusallaştırmak için doğrusallaştırma yöntemi uygulanmıştır. Öncelikle, sadeleştirilen 

(2.5) ve (2.10) ele alınmıştır. İlk olarak, (2.5)’in zamana göre türevi alındığında şu 

eşitliğine ulaşılmaktadır. 

𝐹̇𝐹𝑖𝑖,𝐿𝐿 = 𝑀𝑀𝑖𝑖 𝑎̇𝑎𝑖𝑖 +  𝜎𝜎𝑖𝑖 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑  𝑣𝑣𝑖𝑖 𝑎𝑎𝑖𝑖                                      (2.11) 

 

Buna göre, eşitlik 𝐹𝐹𝑖𝑖,𝐿𝐿 ve 𝐹̇𝐹𝑖𝑖,𝐿𝐿 ifadeleri (2.10)’da yerine yazıldığında aşağıda verilen 

eşitlik elde edilmektedir. 

𝜏𝜏𝑖𝑖�𝑀𝑀𝑖𝑖 𝑎̇𝑎𝑖𝑖 +  𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑  𝑣𝑣𝑖𝑖 𝑎𝑎𝑖𝑖� + 𝑀𝑀𝑖𝑖 𝑎𝑎𝑖𝑖 + 1
2
𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑  𝑣𝑣𝑖𝑖2 + 𝑓𝑓𝑖𝑖,𝑅𝑅 𝑀𝑀𝑖𝑖 𝑔𝑔 = 𝐹𝐹𝑖𝑖,𝐷𝐷         (2.12) 

 

Sonuç olarak, 𝑖𝑖. aracın boylamsal hareketi için doğrusal olmayan model elde edilmiş 

olur (Xiao ve Gao 2011). Buna göre (2.12) ile tanımlanan doğrusal olmayan modeli 

doğrusal hale getirmek için aşağıda tanımlanan kontrol yasası kullanılmıştır. 

𝐹𝐹𝑖𝑖,D = 𝑀𝑀𝑖𝑖 𝑢𝑢𝑖𝑖 + 1
2
𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑  𝑣𝑣𝑖𝑖2 + 𝜏𝜏𝑖𝑖 𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑  𝑣𝑣𝑖𝑖 𝑎𝑎𝑖𝑖 + 𝑓𝑓𝑖𝑖,R 𝑀𝑀𝑖𝑖 𝑔𝑔                 (2.14) 
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Burada, 𝑢𝑢𝑖𝑖 dizayn edilecek girdi sinyalini ifade etmektedir. Kontrol yasası iki önemli 

avantaj sağlamaktadır:  

1. Araç dinamiklerinin girdi-çıktı davranışının duygusallaşmasını sağlar.  

2. Araç dinamiklerinden karakteristik parametreleri (örneğin, aracın kütlesi, 

mekanik sürüklenme, vb.) çıkartarak denklemleri sadeleştirir. 

 

Buna göre, kontrol yasası (2.13) ile birlikte geri besleme duygusallaşması uygulanır. 

Kontrol yasası, (2.12)’de yerine yazıldığında doğrusal eşitlik elde edilmektedir.  

𝜏𝜏𝑖𝑖 𝑎̇𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖 = 𝑢𝑢𝑖𝑖                                                (2.14) 

 

Bu hesaplamalar doğrultusunda, üçüncü derece araç modeli şu şekilde ifade 

edilmektedir (Shaw ve Hedrick 2007, Sheikholeslam ve Desoer 1990). 

𝑞̇𝑞𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡)                                                (2.15) 

 

𝑣̇𝑣𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖(𝑡𝑡)                                                (2.16) 

 

𝑎̇𝑎𝑖𝑖(𝑡𝑡) = − 1
𝜏𝜏𝑖𝑖
𝑎𝑎𝑖𝑖(𝑡𝑡) + 1

𝜏𝜏𝑖𝑖
𝑢𝑢𝑖𝑖(𝑡𝑡)                                 (2.17) 

 

KASK kontrolcüsü, dinamik sistemdeki eyleyici gecikmesi nedeniyle istenilen hızlanma 

ya da yavaşlamayı sağlayabilmek için yalnızca gecikmiş bilgiye erişebilmektedir. Bu 

durumda, (2.17)’de girdi sinyali (𝑢𝑢𝑖𝑖) eyleyici gecikmesi (𝜙𝜙𝑖𝑖) ile 𝑢𝑢𝑖𝑖(𝑡𝑡 −  𝜙𝜙𝑖𝑖) olarak 

iletilmektedir.  

𝑎̇𝑎𝑖𝑖(𝑡𝑡) =  − 1
𝜏𝜏𝑖𝑖
𝑎𝑎𝑖𝑖(𝑡𝑡) + 1

𝜏𝜏𝑖𝑖
(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                               (2.18) 

Araca hızlanma veya yavaşlama komutu verildiğinde, aracın bu komut sinyaline yanıt 

vermek için 𝜙𝜙𝑖𝑖 saniyelik bir gecikmeye maruz kalmaktadır. Buna göre (2.15), (2.16) ve 

(2.18) kullanılarak araç dizisinin durum uzay modeli aşağıdaki gibi elde edilir. 
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𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝐵𝐵𝑖𝑖𝑢𝑢𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                                       (2.19) 

 

�
𝑞̇𝑞𝑖𝑖(𝑡𝑡)
𝑣̇𝑣𝑖𝑖(𝑡𝑡)
𝑎̇𝑎𝑖𝑖(𝑡𝑡)

� = �
0 1 0
0 0 1
0 0 − 1

𝜏𝜏𝑖𝑖

� �
𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑣𝑣𝑖𝑖(𝑡𝑡)
𝑎𝑎𝑖𝑖(𝑡𝑡)

� + �
0
0
1
𝜏𝜏𝑖𝑖

� 𝑢𝑢𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                     (2.20) 

 

Üçüncü dereceden araç dinamik modeli, iki dereceli araç dinamik modeline kıyasla 

boylamsal araç dinamiğinin daha gerçekçi bir temsilidir. İkinci dereceli modelden farklı 

olarak motor dinamiklerini ve hızlanma/fren araç dinamiğinin doygunluğunu 

içermektedir (Bechlioulis vd. 2014, Guo vd. 2018, Kwon ve Chwa 2014, Verginis vd. 

2018). Bir aracın hızlanmasının veya yavaşlamasının isteğe bağlı olarak kontrol 

edilebileceğini gösterir. Ayrıca, bu model ivmelenmenin değişim oranı olan sarsıntı 

sinyalini de içermektedir. Sarsıntı sinyalinin kontrol edilmesi yolcuların daha konforlu 

seyahat edebilmesini sağlar. 

 

Giriş sinyali (𝑢𝑢𝑖𝑖(𝑡𝑡 – 𝜙𝜙𝑖𝑖)) ve pozisyon sinyali (𝑞𝑞𝑖𝑖(𝑡𝑡)) arasında gerekli işlemler 

yapıldığında, (2.21) ile gösterilen transfer fonksiyon elde edilmektedir (Naus vd. 2010, 

Ploeg vd. 2013). 

𝐺𝐺𝑖𝑖(𝑠𝑠) = 𝑄𝑄𝑖𝑖(𝑠𝑠)
𝑈𝑈𝑖𝑖(𝑠𝑠)

= 𝑒𝑒−𝑠𝑠𝜙𝜙𝑖𝑖

𝑠𝑠2(1+𝑠𝑠𝜏𝜏𝑖𝑖)
                                       (2.21) 

 

Burada, 𝑠𝑠 ∈  ℂ Laplace degişkenini göstermektedir. Eşitlikte, 𝑢𝑢𝑖𝑖(𝑡𝑡) ve 𝑞𝑞𝑖𝑖(𝑡𝑡) 

sinyallerinin Laplace dönüşümleri ise 𝑈𝑈𝑖𝑖(𝑠𝑠) ve 𝑄𝑄𝑖𝑖(𝑠𝑠) şeklinde gösterilmektedir. 

Böylece, geri besleme doğrusallaştırması ile düşük seviyeli kontrole (low-level control) 

dayalı aktarma organlarının doğrusal olmayan dinamik modelinden doğrusal model elde 

edilmiştir (Sheikholeslam ve Desoer 1993, Yue 2011). Fakat burada, her 𝑖𝑖. aracın hala 

doğrusal olmayan dinamik araç parametrelerini içerdiğini tekrar vurgulamak 

gerekmektedir.  
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2.1.3 Hızlandırılmış-ileri beslemeli KASK modeli  

Araç topolojisi, aralık politikası ve dinamik araç modelinden sonra tez çalışmasında 

kullanılan KASK sürüş modeli Şekil 2.4’de gösterilmiştir (Al-Jhayyish ve Schmidt 

2018). 

 

Şekil 2.4 Hızlandırılmış-ileri beslemeli KASK modeli 

Genel hızlandırılmış-ileri beslemeli KASK sisteminin kontrolcüsü temel olarak iki 

bölümden oluşmaktadır. İlk bölüm, RADAR ya da LİDAR gibi yerleşik sensörlere 

dayalı geri-beslemeli kısımdan oluşmaktadır. Şekilde gösterildiği üzere yakalama 

zamanı (ℎ𝑖𝑖) ile birlikte 𝐻𝐻𝑖𝑖 = 1 + 𝑠𝑠ℎ𝑖𝑖 bloğu mesafe politikasını tanımlamaktadır. Mesafe 

hata sinyali (𝑒𝑒𝑖𝑖), geri-besleme kontrolcüsü 𝐾𝐾𝑏𝑏,𝑖𝑖 ile kontrol edilmektedir. İkinci bölüm, 

bir önceki aracın hedeflenen dinamik davranışını bir sonraki araca ileten ileri-beslemeli 

kısımdan oluşmaktadır. Daha öncede bahsedildiği üzere KASK sisteminde bu bilgi 

araçlar arası (V2V) kablosuz haberleşme ile sağlanmaktadır. Doğal olarak, dizinin 

güvenliği ve kararlılığı bu kablosuz bağlantı ile doğrudan ilişkilidir (Eckhoff vd. 2013, 

van Nunen vd.  2017). Kablosuz haberleşme sebebiyle oluşan gecikme 𝐷𝐷𝑖𝑖 = 𝑒𝑒−𝑠𝑠𝜃𝜃𝑖𝑖   

bloğu ve haberleşme gecikme değeri (𝜃𝜃𝑖𝑖) ile gösterilmiştir. Dolayısıyla, bir önceki 

araçtan gelen zaman gecikmeli sinyal ileri-besleme kontrolcüsü 𝐾𝐾𝑓𝑓,𝑖𝑖 ile kontrol 

edilmektedir. Bu sürüş sistemine göre, araç dizisinde bulunan her 𝑖𝑖. aracın ivme 

sinyalleri arasındaki kapalı-döngü transfer fonksiyonu şu şekilde ifade edilir. 
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Γ𝑖𝑖(𝑠𝑠) =  𝐴𝐴𝑖𝑖(𝑠𝑠)
𝐴𝐴𝑖𝑖−1(𝑠𝑠)

=  𝐺𝐺𝑖𝑖�𝐾𝐾𝑏𝑏,𝑖𝑖+𝑠𝑠2𝐷𝐷𝑖𝑖𝐾𝐾𝑓𝑓,𝑖𝑖�

1+𝐾𝐾𝑏𝑏,𝑖𝑖𝐻𝐻𝑖𝑖𝐺𝐺𝑖𝑖
                                (2.22) 

 

Genel olarak, literatürde KASK modeli üzerinden mesafe hata sinyaline bağlı kapalı- 

döngü transfer fonksiyonları türetilmektedir. Amaçlanan ise sadece mesafe hata 

sinyalinin araç dizisi boyunca artmamasını sağlamaktır. Bu bağlamda, KASK donanımlı 

araç dizisi için kararlılık analizleri gerçekleştirilir. Fakat, mesafe hata sinyali üzerinden 

yapılan kararlılık analizinde ivme sinyalinin limit değerinde oluşabilecek aşmalar ihmal 

edilir. Öyle ki, gerçek araç modelinde her aracın yapısından dolayı farklı çekiş / fren 

kuvvet değeri ve buna bağlı olarak ulaşabileceği farklı ivme değeri vardır. Dolayısıyla, 

gerçek araç modelinin kullandığı KASK sisteminde ivme sinyali kontrol edilmez ise 

eyleyici doyumunun oluşması kaçınılmazdır. Beklendiği üzere bu durum araç dizisinde 

kararsızlığa yol açacaktır. Bu nedenle, tez çalışmasında özellikle ivme sinyaline bağlı 

kapalı-döngü transfer fonksiyonu türetilmiştir. Kapalı-döngü transfer fonksiyonu 𝛤𝛤𝑖𝑖(𝑠𝑠) 

ile birlikte farklı hız değerlerinde ivme sinyalinde oluşabilecek sinyal aşmaları 

incelenebilir.  

KASK donanımlı araç dizisinin kararlılığı iki farklı araç dizisi için tanımlanmaktadır. 

Homojen araç dizisi, tüm araçların aynı olduğu bir araç dizisinin kararlılığını ifade 

etmektedir. Araçlar aynı araç dinamiği, aynı mesafe politikası, aynı boylamsal kontrolcü 

vb. ile ifade edilmektedir (Ploeg, 2014). Dolayısıyla, her 𝑖𝑖. araç aynı kapalı-döngü 

transfer fonksiyonu ile ifade edilmektedir. Her 𝑖𝑖. araç için 𝛤𝛤𝑖𝑖(𝑠𝑠)  =  𝛤𝛤(𝑠𝑠). 

Diğer tarafta, heterojen araç dizisinde her aracın farklı araç dinamiklerine sahip olduğu 

araç dizisinin kararlılığını ifade etmektedir (Naus vd. 2010). Bu ise gerçek trafik 

koşulları için daha gerçekçidir. Heterojen araç dizisinde kapalı-döngü transfer 

fonksiyonu 𝛤𝛤𝑖𝑖(𝑠𝑠) ≠  𝛤𝛤𝑖𝑖−1(𝑠𝑠). 

Bununla birlikte, araç dinamiklerinden daha önemli düzeyde bir heterojenlik mevcuttur. 

Bu durum heterojen araçlardan oluşan bir araç dizisinde her aracın farklı motor kuvvet 

değerine sahip olmasından kaynaklanmaktadır. Heterojen motor kuvveti dikkate 

alınmadığı durumda araçların motor kuvveti doyum sınırına ulaştığında dizi kararlılığı 
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kaybolabilir. Örneğin, bir ticari araç ve birden fazla spor aracın olduğu bir araç 

dizisinde ticari aracın motor kuvveti spor aracın hızına yetişmesine engel olacaktır. 

Tez çalışmasında, heterojen araç dizisi için kararlılık analizi yapıldığından, kararlı araç 

dizisi için her aracın ulaşabileceği kuvvet limitlerinin incelenmesi gerekmektedir. Bir 

sonraki bölümde, gerçek araç modelinde araca yol üzerinde etkiyen maksimum çekiş / 

fren kuvveti ve araç motoru tarafından üretilen çekiş kuvvetinin tanımları yapılmıştır. 

Bu kuvvetler, aracın hızlanma ve yavaşlama ivme değerini doğrudan etkilediğinden 

aralarındaki ilişki detaylı olarak verilmiştir. 

2.2 Çekiş ve Fren Kuvveti 

Karayolu üzerinde araçların performansını belirleyen iki ana karşıt kuvvet: çekiş 

kuvveti (aynı zamanda itme olarak da adlandırılır) ve direnç kuvveti olarak adlandırılır. 

Çekiş kuvveti, yol üzerinde iş yapmak için mevcut olan kuvvettir. Direnç kuvveti ise 

aracın hareketini engelleyen kuvvet olarak tanımlanır. 

Bölüm 2.1.2.1 ile 𝑖𝑖. araca etkiyen net kuvvet (2.5) ile ifade edilmiştir. Araç üzerine 

etkiyen direncin üstesinden gelmek ve aracı hızlandırmak için mevcut olan çekiş 

kuvvetinin analiz edilmesi gerekmektedir. Bu çekiş kuvveti, araç motoru tarafından 

üretilen kuvvet ya da yol yüzeyi-lastik arayüzünün özelliklerine bağlı bazı maksimum 

değerler tarafından belirlenmektedir. Sonraki bölümlerde, bu kuvvetler ile ilgili detaylı 

bilgiler verilmiştir. 

2.2.1 Maksimum çekiş kuvveti 

Araç motoru, yol yüzeyinde ne kadar kuvvet uygularsa uygulasın lastiklerin patinaj 

yapmasına neden olan bir sınır noktası vardır. Bu sınır değerinde, aracın direnç 

üstesinden gelmesi ya da hızlanması mümkün değildir. Bu sebeple, aracın hareketini 

sağlayacak olan kuvveti analiz etmek önemlidir. 
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Öncelikle, maksimum çekiş kuvveti olarak adlandırılan ve tekerleğin patinaj yapmaya 

başladığı bu sınır değeri formüle edilmiştir. Şekil 2.5 ile araca etkiyen kuvvet ve 

momentler gösterilmiştir. Burada, 𝑙𝑙𝑖𝑖,𝑟𝑟 arka aksın ağırlık merkezine olan mesafesini, 

𝑙𝑙𝑖𝑖,𝑤𝑤 dingil mesafesi uzunluğunu ve ℎ𝑖𝑖,𝑐𝑐 ağırlık merkezinin yüksekliğini ifade etmektedir 

(Mannering ve Washburn 2020).  

 

Şekil 2.5 Araca etkiyen kuvvetler ve moment mesafeleri 

Ayrıca, 𝑊𝑊 = 𝑀𝑀𝑖𝑖  𝑔𝑔, 𝐹𝐹𝑖𝑖,𝐿𝐿 = 𝐹𝐹𝑖𝑖,𝑓𝑓 + 𝐹𝐹𝑖𝑖,𝑟𝑟 ve 𝐹𝐹𝑖𝑖,𝑅𝑅 = 𝐹𝐹𝑖𝑖,𝑅𝑅𝑅𝑅 + 𝐹𝐹𝑖𝑖,𝑅𝑅𝑅𝑅 eşitlilikleri yazılır. Buna 

göre, arka dingil üzerindeki yük değeri 𝑊𝑊𝑖𝑖,𝑟𝑟 ise momentlerin toplanmasıyla şu şekilde 

hesaplanır. 

𝐹𝐹𝑖𝑖,𝐴𝐴 ℎ𝑖𝑖,𝑐𝑐 −𝑊𝑊 ℎ𝑖𝑖,𝑐𝑐 sin(Θ) + 𝑊𝑊 𝑙𝑙𝑖𝑖,r cos(Θ) + 𝑀𝑀𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑖𝑖,𝑐𝑐 −𝑊𝑊𝑖𝑖,r 𝑙𝑙𝑖𝑖,w = 0             (2.23) 

Ayrıca, cos(Θ)  =  1 ve sin(Θ) = 0 olduğundan (2.23) aşağıdaki şekilde elde edilir. 

𝐹𝐹𝑖𝑖,𝐴𝐴 ℎ𝑖𝑖,𝑐𝑐 + 𝑊𝑊 𝑙𝑙𝑖𝑖,𝑓𝑓 + 𝑀𝑀𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑖𝑖,𝑐𝑐 −𝑊𝑊𝑖𝑖,𝑟𝑟 𝑙𝑙𝑖𝑖,𝑤𝑤 = 0                          (2.24) 

Burada, eşitlik (2.24) şu şekilde tekrar yazılarak düzenlenir. 
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𝑊𝑊𝑖𝑖,𝑟𝑟 𝑙𝑙𝑖𝑖,𝑤𝑤 = 𝑊𝑊 𝑙𝑙𝑖𝑖,𝑓𝑓 + 𝐹𝐹𝑖𝑖,𝐴𝐴 ℎ𝑖𝑖,𝑐𝑐 + 𝑀𝑀𝑖𝑖 𝑎𝑎𝑖𝑖 ℎ𝑖𝑖,𝑐𝑐                               (2.25) 

 

𝑊𝑊𝑖𝑖,𝑟𝑟 =  𝑙𝑙𝑖𝑖,𝑓𝑓
𝑙𝑙𝑖𝑖,𝑓𝑓
𝑊𝑊 + ℎ𝑖𝑖,𝑐𝑐

𝑙𝑙𝑖𝑖,𝑤𝑤
(𝐹𝐹𝑖𝑖,𝐴𝐴 + 𝑀𝑀𝑖𝑖𝑎𝑎𝑖𝑖)                                     (2.26) 

Sonrasında, (2.5) ile tanımlanan 𝑀𝑀𝑖𝑖  𝑎𝑎𝑖𝑖 = 𝐹𝐹𝑖𝑖,𝐿𝐿 − 𝐹𝐹𝑖𝑖,𝐴𝐴 − 𝐹𝐹𝑖𝑖,𝑅𝑅 eşitliği (2.26)’da yerine 

yazıldığında aşağıdaki eşitlik elde edilir. 

𝑊𝑊𝑖𝑖,r = 𝑊𝑊 𝑙𝑙𝑖𝑖,f
𝑙𝑙𝑖𝑖,w

+ ℎ𝑖𝑖,c
𝑙𝑙𝑖𝑖,w

�𝐹𝐹𝑖𝑖,𝐿𝐿 − 𝐹𝐹𝑖𝑖,𝑅𝑅�                                   (2.27) 

Karayolu yüzeyi ve lastik etkileşimi tarafından belirlenen maksimum çekiş kuvveti, yol 

tutuş katsayısı (𝜇𝜇𝑖𝑖,𝑟𝑟) ve arka dingildeki normal yük (𝑊𝑊𝑖𝑖,𝑟𝑟) çarpımı ile bulunur. 

𝐹𝐹𝑖𝑖,𝑆𝑆 =  𝜇𝜇𝑖𝑖,𝑟𝑟 𝑊𝑊𝑖𝑖,𝑟𝑟                                                 (2.28) 

Burada, (2.27), (2.28)’de yerine yazıldığında önden çekişli bir aracın maksimum çekiş 

kuvveti şu şekilde hesaplanır. 

𝐹𝐹𝑖𝑖,S = 𝜇𝜇𝑖𝑖,𝑟𝑟𝑊𝑊
𝑙𝑙𝑖𝑖,r+𝑓𝑓𝑖𝑖,Rℎ𝑖𝑖,c
𝑙𝑙𝑖𝑖,𝑤𝑤+𝜇𝜇𝑖𝑖,rℎ𝑖𝑖,c

                                          (2.29) 

İzin verilen maksimum çekiş kuvveti, aracın ağırlığı ve karayolu yüzeyi ile lastik 

arasındaki yapışma katsayısı tarafından belirlenir. Ağırlık ve tutunma katsayısı ne kadar 

fazla olursa, lastik ile karayolu arasında kaymaya neden olmadan tekerleklere o kadar 

fazla çekiş kuvveti uygulanabilir. 

2.2.2 Motor tarafından üretilen çekiş kuvveti 

Araca etkiyen diğer kuvvet, araç motoru tarafından üretilen çekiş kuvveti miktarıdır. Bu 

kuvvet, çeşitli aktarma organlarının tasarımı ile edilen bir fonksiyon olarak 
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tanımlanabilir. Motor modelinin tasarımda, yanma odasının şekli, yakıt tipi, yakıt girişi 

gibi parametreler motorun çıktısı ile bilgi vermektedir. 

Motor çıktısının, en yaygın kullanılan iki ölçüsü tork ve güç olduğu bilinmektedir. Tork, 

motor tarafından üretilen iş ve güç ise beygir gücü olarak ifade edilen motor çalışma 

oranı olarak tanımlanır. Araç motoru, hızın bir fonksiyonu olarak tork ve güç eğrileri ile 

karakterize edilebilir. Gerçek tasarım verilerine (Anonymous 1945) göre Audi Q3 1.4 

TFSI spor aracı için tork ve güç arasındaki bağlantı Şekil 2.6’da gösterilmiştir. 

Dolayısıyla, aracın motor çıkış verileri dikkate alındığında motor tarafından üretilen 

tork ile tahrik tekerleklerine iletilen çekiş kuvveti arasındaki ilişki araca uygulanan 

kuvvet ile ilgili bilgi vermektedir. 

 

Şekil 2.6 Audi Q3 1.4 TFSI benzinli motor aracın tork-güç grafiği 

Fakat, kabul edilebilir araç performansı yani aracın yeterli bir şekilde hızlanmasını 

sağlamak için gerekli olan çekiş kuvveti, daha düşük araç hızlarında daha yüksektir. 

Bunun sebebi, maksimum motor torkunun oldukça yüksek motor hızlarında elde 

edilmesidir. Bu sebeple, yüksek motor devirlerinde vites küçültmek gerekmektedir. 

Vites küçültme sayesinde, kabul edilebilir araç ivmesi için gerekli mekanik avantaj 

sağlanmış olur (Mannering ve Washburn 2020). Bu sebeple, tork, vites ve kuvvet 

arasındaki bağlantı formüle edilmiştir. Motor torkunun (𝑇𝑇𝑖𝑖,𝐸𝐸) aktarma organları 



30 
 

tarafından araç tekerleklerine iletildiği kabul edilir. Motor kuvveti (𝐹𝐹𝑖𝑖,𝐸𝐸) şu şekilde 

hesaplanmaktadır. 

𝐹𝐹𝑖𝑖,E = 𝑇𝑇𝑖𝑖,E 𝜖𝜖𝑖𝑖,0 𝜂𝜂𝑖𝑖,𝑑𝑑
𝑟𝑟𝑖𝑖

                                                (2.30) 

Burada, 𝜂𝜂𝑖𝑖,𝑑𝑑 aktarma organlarının verimliliğini gösterir (Mannering ve Washburn 2020). 

Motorun dönme hızı (𝜔𝜔𝑖𝑖,𝐸𝐸) ve araç hızı (𝑣𝑣𝑖𝑖) arasındaki ilişki şöyle ifade edilmektedir. 

𝑣𝑣𝑖𝑖 = 𝜔𝜔𝑖𝑖,E 𝑟𝑟𝑖𝑖 �1−𝜆𝜆𝑖𝑖,𝑟𝑟�
𝜖𝜖𝑖𝑖,0

                                            (2.31) 

Burada, 𝜆𝜆𝑖𝑖,𝑟𝑟 tahrik aksının kaymasını göstermektedir. Eşitlikler (2.30) ile (2.31) ve yine 

eşitliklerdeki 𝜔𝜔𝑖𝑖,𝐸𝐸 ile 𝑇𝑇𝑖𝑖,𝐸𝐸 arasındaki ilişki kullanılarak, 𝑣𝑣𝑖𝑖 ile 𝐹𝐹𝑖𝑖,𝐸𝐸 değeri arasındaki 

bağlantıyı belirlemek mümkündür. Motor bilgisi (Anonymous 1945) (𝜔𝜔𝑖𝑖,𝐸𝐸’dan 𝑇𝑇𝑖𝑖,𝐸𝐸,’ye 

eşleştirme) kullanılarak Audi Q3 1.4 TFSI aracı için motor kuvvet değeri Şekil 2.7’de 

örnek olarak gösterilmiştir. 

 

Şekil 2.7 Audi Q3 1.4 TFSI aracı için farklı vites ve hız değerlerinde motor kuvveti 
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Uygun vites seçilirken her hız değerinin karşılık geldiği bir maksimum kuvvet değeri 

olduğu şekilden görülmektedir. Maksimum çekiş kuvvetini tanımlamak için hıza bağlı 

𝐹𝐹𝑖𝑖,𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) fonksiyonun tanımlanmasına gerekmektedir. 

2.2.3 Çekiş ve fren kuvvet kısıtları 

Bölüm 2.2.1 tanımlanan motor tarafından üretilen hıza bağlı motor kuvveti 𝐹𝐹𝑖𝑖,𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) 

ve bölüm 2.2.2 ile tanımlanan karayolu-lastik arasındaki maksimum tekerlek kuvveti 

𝐹𝐹𝑖𝑖,𝑆𝑆 arasındaki ilişki dikkate alınmalıdır. Aracın kabul edilebilir performansı (örneğin, 

hızlanması) için bu iki kuvvet aynı anda incelenmesi gerekmektedir. Bu durumda, her 𝑖𝑖. 

aracın herhangi bir hız değerindeki maksimum çekiş kuvveti 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖), motor kuvveti 

ve maksimum tekerlek kuvvetinin minimum değeri alınarak bulunabilir. 

𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) = min�𝐹𝐹𝑖𝑖,E,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖),𝐹𝐹𝑖𝑖,S�                                     (2.32) 

Audi Q3 1.4 TFSI için hesaplanan mevcut çekiş kuvveti 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) Şekil 2.8 ile 

gösterilmektedir. 

 

Şekil 2.8 Farklı vitesler ve hızlar için maksimum motor gücü 
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Gösterilen şekilde, 𝐹𝐹𝑖𝑖,𝑆𝑆 ve 𝐹𝐹𝑖𝑖,𝐸𝐸,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) kuvvet değerlerinin farklılığı görülmektedir. 

Aracın hızlanması ya da yavaşlaması için yeterli minimum kuvvet hesabı (2.32) ile 

yapılabilir. Bu özellikle gerçek trafik koşullarında, birden fazla araçtan oluşan bir araç 

dizisinin karayolundaki güvenli seyahati için kritik öneme sahiptir. Çünkü, 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) 

değeri doğrudan  𝑖𝑖. aracın ivme değerine etki etmektedir.  

Burada tanımlanan maksimum çekiş kuvvetinin 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖), eşitlik (2.5) ile gösterilen 

aracın boylamsal hareketi için uygulanan 𝐹𝐹𝑖𝑖,𝐿𝐿 kuvvetine (çekiş ya da frenleme kuvveti) 

eşit olduğuna dikkat edilmelidir. Dolayısıyla, 𝑖𝑖. aracın hızlanmasını ya da yavaşlamasını 

sağlayan ivme sınır değeri, 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) kuvvetine göre farklılık gösterecektir. Buradan 

çıkartılacak en önemli sonuç, hızlanma ya da frenleme ivme değerinin keyfi değerler 

olamayacağıdır. Her 𝑖𝑖. aracın ulaşabileceği maksimum ya da minimum ivme değeri, 

𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)  kuvvetine bağlı olduğundan araçtan araca farklılık gösterecektir. Bu sebeple, 

her 𝑖𝑖. aracın maksimum ve minimum ivme kısıtları tez çalışması kapsamında detaylı bir 

şekilde analiz edilmiştir. 

Araç hızına bağlı aracın maksimum ivmesi, (2.5) ve (2.32) kullanılarak türetilmiştir. 

𝑎𝑎𝑖𝑖 ≤
𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)− 𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑 

𝑣𝑣𝑖𝑖
2

2  – 𝑓𝑓𝑖𝑖,𝑅𝑅 𝑀𝑀𝑖𝑖 𝑔𝑔

𝑀𝑀𝑖𝑖
= 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)                        (2.33) 

Benzer bir çıkarım frenleme kuvveti için de yapılabilir. Hızlanma sırasındaki 

maksimum çekiş kuvvetinden farklı olarak, fren eyleyicisinin her zaman maksimum 

tekerlek kuvvetini sağladığı varsayılır. Bu nedenle, minimum boylamsal frenleme 

kuvveti 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)  doğrudan frenleme sırasındaki maksimum lastik kuvvetine bağlıdır 

ve aşağıdaki gibi hesaplanır (Mannering ve Washburn 2020). 

𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) = −𝜇𝜇𝑖𝑖,𝑟𝑟 𝑚𝑚𝑖𝑖 𝑔𝑔
𝑙𝑙𝑖𝑖,w

�𝑓𝑓𝑖𝑖,R + ℎ𝑖𝑖,c�𝜇𝜇𝑖𝑖,𝑟𝑟 + 𝑙𝑙𝑖𝑖,r��                         (2.34) 
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Aynı şekilde, (2.5) ve (2.34) ile birlikte, i. aracın araç hızına bağlı minimum ivme kısıtı 

aşağıdaki gibi formüle edilir. 

𝑎𝑎𝑖𝑖 ≥
𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)− 𝜎𝜎 𝐴𝐴𝑖𝑖 𝑐𝑐𝑖𝑖,𝑑𝑑 

𝑣𝑣𝑖𝑖
2

2   − 𝑓𝑓𝑖𝑖,𝑅𝑅 𝑀𝑀𝑖𝑖 𝑔𝑔

𝑀𝑀𝑖𝑖
= 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)                     (2.35) 

Bu sayede, her 𝑖𝑖. aracın ulaşabileceği maksimum 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)  ve minimum 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) 

ivme sınır değeri hesaplanmış olur. Bu bilgiler doğrultusunda, KASK donanımlı araçlar 

ile benzetim çalışmaları gerçekleştirilmiştir. Benzetim çalışmalarında, dört farklı araç: 

Honda CR-V (𝑉𝑉1), Fiat 500 1.2 (𝑉𝑉2), Audi Q3 1.4 (𝑉𝑉3), ve Kia Ceed 1.4 (𝑉𝑉4), dikkate 

alınmıştır. Çizelge 2.1 ile verilen gerçek araç parametreleri kullanılmıştır (Anonymous 

1945). 

 

Çizelge 2.1 Gerçek araç parametreleri 

Araç 𝒎𝒎𝒊𝒊 [kg] 𝒍𝒍𝒊𝒊,𝒘𝒘 [m] 𝑨𝑨𝒊𝒊 [𝐦𝐦𝟐𝟐] 𝒉𝒉𝒊𝒊,𝒄𝒄 [m] 𝒍𝒍𝒊𝒊,𝒓𝒓 [m] 𝒓𝒓𝒊𝒊 [m] 𝒄𝒄𝒊𝒊,𝒅𝒅 [-] 𝜺𝜺𝒊𝒊,𝟎𝟎 [-] 

𝑉𝑉1 1610 2.66 2.58 1.68 1.6 0.398 0.33 9.543 

𝑉𝑉2 865 2.3 2.01 1.49 1.41 0.292 0.325 3.438 

𝑉𝑉3 1385 2.603 2.44 1.59 1.571 0.343 0.33 4.562 

𝑉𝑉4 1188 2.65 2.2 1.48 1.546 0.311 0.32 4.4 

 

 

Bu parametrelere ek olarak, çizelge 2.2 ile verilen değerler araç modeline özgü 

olmadığından her  𝑖𝑖. araç için aynı değerler kullanılmıştır. 

Çizelge 2.2 Tüm araçlar için aynı olan parametreler 

𝜂𝜂𝑖𝑖,𝑑𝑑  = 0.95 [-]  𝜆𝜆𝑖𝑖,𝑟𝑟 = 0.2 [-]  µ𝑖𝑖 , 𝑟𝑟 = 0.85 [-]  𝑓𝑓𝑖𝑖,𝑅𝑅 = 0.01 [-]  𝜎𝜎 = 1 kg/𝑚𝑚3 

 

 

Gerçek araç parametreleri kullanılarak (2.33) ve (2.35)’e göre hesaplanan ivme sınırları, 

Şekil 2.9 ile gösterilmiştir. Buna göre, Honda CR-V ve Audi Q3 1.4 aracının birbirine 
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en yakın ve en büyük maksimum ivme değerlerine sahip olduğu görülmektedir. Buna 

karsın, diğer iki araç Fiat 500 1.2 ve Kia Ceed 1.4 araçlarının maksimum ivmelerinin 

daha düşük olduğu kolayca gözlemlenebilir. Benzer şekilde, her araç modelinin farklı 

minimum ivme sınır değerine ulaştığı görülmektedir. 

 

 

Şekil 2.9 Araç modelleri için ivme kısıtları 

Sonuç olarak, (2.33) ve (2.35) kullanılarak hıza bağlı araç ivmesindeki sınırlar elde 

edilmiştir. Özellikle, herhangi i. aracın hızı için (2.36) sağlanmalıdır. 

𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) ≤ 𝑎𝑎𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖)                                   (2.36) 

Bu ancak, boylamsal kuvvet (𝐹𝐹𝑖𝑖,𝐿𝐿) (2.32) ve (2.34) limit değerleri arasında kaldığında 

elde edilmektedir.  

 

Bu sonuçlar doğrultusunda şu çıkarımlar yapılabilir:  

 

1. Her 𝑖𝑖. aracın ulaşabileceği maksimum çekiş ve minimum frenleme kuvveti araç 

yapısı gereği farklılık göstermektedir.  
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2. Çekiş ve frenleme kuvvetindeki bu farklılık, araç dizisinde her 𝑖𝑖. aracın 

ulaşabileceği maksimum ve minimum ivme sınırlarının farklı olmasına sebep 

olmaktadır.  

3.  Her 𝑖𝑖. aracın, hızlanma ya da yavaşlama ivmesindeki bu farklılık heterojen araç 

dizisinde her aracın istenilen ivme değerine ulaşmasına engel olmaktadır.  

4. Özellikle, Şekil 2.9’a göre herhangi bir hız değişim manevrasında düşük ivme 

değerine sahip lider aracı daha yüksek ivmeye sahip bir araç takip ettiğinde 

(2.36) eşitsizliğinin ihlal edileceği görülmektedir. Bu durumda, araç dizisi 

doğrusal olmayan davranış gösterebilir. 

 

Farklı hız değişim manevralarında kuvvet değerlerine bağlı olarak her aracın 

ulaşabileceği maksimum ve minimum ivme değerleri bu tez çalışmasında incelenmiştir. 

Bilindiği kadarıyla hıza bağlı ivme limit değerlerinin dikkate alınarak dizi kararlılık 

analizinin yapıldığı ilk çalışmadır. Bir sonraki bölümde, dizi kararlılık kavramının genel 

tanımı ve tez çalışması için tercih edilen dizi kararlılık koşulları açıklanmıştır. 

2.3 Dizi Kararlılık Kavramı 

2.3.1 Tanım 

Birden fazla araçtan oluşan ve birbirini takip eden araç grubu araç dizisi 

oluşturmaktadır. Araç takibinde temel hedeflerden birisi araçların hem bireysel hem de 

grup olarak güvenilir ve konforlu bir şekilde seyahatini sağlamaktır. Bu gereksinimleri 

sağlamak için araçların dizi kararlı davranış sergilemesi gerekir. Aksi bir durumda, yani 

eğer sistem dizi kararlı değilse, aracın ilgili sinyallerinde (hız, ivme, mesafe hatası vb.) 

oluşabilecek küçük bir artış araç dizisi boyunca artarak devam edecektir. Bu durum, 

rahatsız edici sürüş deneyimine, trafik karışıklığına ve hatta araçların çarpışmasına 

neden olacaktır. 

Dinamik bir sistemde kontrolcü tasarımı yapılırken farklı dizi kararlılık tanımları 

yapılmıştır. Dizi kararlılığı, literatürde performans kriteri ya da kararlılık özelliği olarak 

olarak kabul edilmiştir (Eyre vd. 1998, Naus vd. 2010, Sheikholeslam ve Desoer 1993). 
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Bu sebeple, dizi kararlılık kavramı için kesin bir tanım yapılması mümkün değildir. 

Literatürde, farklı yaklaşımlar ile dizi kararlılık kavramı incelenmektedir. En resmi 

yaklaşım Lyapunov kavramına dayanmaktadır. Bu yaklaşımda, başlangıç koşulundaki 

dış bozukluklara odaklanan Lyapunov kararlılık kavramı kullanılmaktadır. Sonuç olarak 

dizi kararlılığı, birbirine bağlı sistemlerin asimptotik kararlılığı olarak 

yorumlanmaktadır (Ploeg vd. 2014). Lyapunov yaklaşımının en büyük zorluğu 

Lyapunov-Krasovskii Fonksiyonel (LKF) yapılarını 36luşturmaktır. Hatta, bazı 

problemler için bu fonksiyonların çözümü oldukça zordur. İkinci yaklaşımda, esas 

olarak sonsuz uzunluktaki araç dizisine odaklanılır. Sistemin durum uzay modelinde 

Fourier dönüşümü kullanır ve karşılık gelen özdeğerler (eigenvalue) analiz edilerek dizi 

kararlılığı değerlendirilir. Diğer tarafta, performans odaklı yaklaşım en basit 

yaklaşımdır ve yalnızca doğrusal sistemler için uygundur (Dey vd. 2016). Doğrusal 

sistemlerde, kontrolcü tasarımında direkt öneriler sunduğundan dolayı dizi 

kararlılığında daha çok performans odaklı yaklaşım benimsenmiştir (Ploeg vd. 2013). 

Performansa odaklı yaklaşımda, dizi kararlılığından bahsederken tasarım 

gereksinimlerine göre istenilen ilgili sinyallerin (mesafe hatası, hız veya ivme sinyali) 

ilişkisi incelenir. Aşağıda, ℒ2-norm ve ℒ∞-norm için üç farklı kararlılık koşulu 

tanımlanmıştır. Buna göre, herhangi bir kontrol sisteminin giriş sinyali 𝑢𝑢(𝑡𝑡) ve çıkış 

sinyali 𝑦𝑦(𝑡𝑡) olarak gösterilsin. 

1. ℒ2-normları arasındaki ilişki: Bir sistem, 𝑦𝑦(𝑡𝑡) çıkısının ℒ2-normu ile temsil 

edilen enerjisi araç dizisi boyunca yukarı yönde artmıyorsa ℒ2-dizi kararlı 

olarak tanımlanır. 

2.  ℒ∞-normları arasındaki ilişki: Sistemin çıkış sinyalinin maksimum büyüklüğü, 

giriş sinyalinin maksimum büyüklüğünden daha küçük olmalıdır. Bu durumda 

sistem ℒ∞-dizi kararlı olarak adlandırılır. 

3.  ℒ∞-normları ve pozitif dürtü tepkisi arasındaki ilişki: ℒ∞-norm arasındaki 

tanıma ek olarak eğer giriş sinyali işaret değiştirmiyorsa, çıkış sinyali her zaman 

giriş sinyali ile aynı işarette olmalıdır. Sistem, güçlü ℒ∞-dizi kararlıdır. 

 

Bu kararlılık tanımları, sistemin türünden bağımsızdır ve yeterli koşulların sağlanması 

durumunda kontrol sisteminin kararlılığı korunur. Bu kararlılık kavramları için gerekli 



37 
 

olan yeterli koşulları açıklamadan önce genel norm tanımları ve aralarındaki bağlantılar 

bir sonraki bölümde açıklanmıştır. 

2.3.2 Matematiksel tanımlar 

İlgili çıkış sinyali 𝑦𝑦(𝑡𝑡) ve Laplace dönüşümü 𝑌𝑌(𝑠𝑠) olan modelde çıkış sinyalleri 

arasındaki bağlantı 𝛤𝛤(𝑠𝑠) transfer fonksiyonu ile gösterilsin. Ayrıca, 𝛤𝛤(𝑠𝑠) transfer 

fonksiyonunun ters Laplace dönüşümü yani dürtü sinyali 𝛾𝛾(𝑡𝑡) olarak ifade edilsin. 

1. ℒ1-normu: 𝛾𝛾(𝑡𝑡) sinyalinin ℒ1-normu, yani ∥ 𝛾𝛾 ∥1 şu şekilde tanımlanır. 

 

∥ 𝛾𝛾 ∥1= ∫  ∞
0 |𝛾𝛾(𝑡𝑡)|𝑑𝑑𝑑𝑑                                           (2.37) 

Bir sinyalin ℒ1-normu, belirli bir aralıktaki örneklerin mutlak değerlerinin toplamıdır. 

2. ℒ2-norm: Dürtü sinyalinin (𝛾𝛾(𝑡𝑡)), ℒ2-normu şu eşitlikle ifade edilir. 

 

∥ 𝛾𝛾 ∥2= �∫  ∞
0  |𝛾𝛾(𝑡𝑡)|2𝑑𝑑𝑑𝑑                                       (2.38) 

Bir sinyalin ℒ2-normu, belirli bir aralıktaki örneklerinin karelerinin toplamının 

kareköküne eşittir. 

3. ℒ∞-norm: Belirtilen aralıktaki sinyalinin en büyük mutlak değerini verir. Dürtü 

sinyalinin (𝛾𝛾(𝑡𝑡)), ℒ∞-normu şu şekilde ifade edilmektedir. 

 

∥ 𝛾𝛾 ∥∞= max
𝑡𝑡∈[0,∞)

 |𝛾𝛾(𝑡𝑡)|                                         (2.39) 

 

4. 𝐻𝐻∞-norm: Sistemin tüm sınırlı girişler için giriş ve çıkış sinyalleri arasında 

sağlayabileceği maksimum büyüme değeri  𝐻𝐻∞-norm ile temsil edilir. 
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∥ Γ(𝑠𝑠) ∥∞= max
𝑤𝑤

  ∥ Γ(𝑗𝑗𝑗𝑗) ∥2= max 
𝑤𝑤

 ℴ‾ (Γ(𝑗𝑗𝑗𝑗))                    (2.40) 

Burada, ∥ Γ(s) ∥∞ uyarılmış 2-norm veya eşdeğer maksimum değeri ile tanımlanır 

(maksimum değer ℴ‾  ile gösterilir). Norm tanımları ile birlikte aşağıda verilen sonuçlara 

ulaşılır. İlgili çıkış sinyali (𝑦𝑦(𝑡𝑡)) ve sistemin dürtü sinyali (𝛾𝛾(𝑡𝑡)) arasındaki ilişki şu 

şekilde tanımlanır (Eyre vd. 1998).  

 

‖𝛾𝛾 ∗ 𝑦𝑦‖∞ ≤ ‖𝛾𝛾‖1 ‖𝑦𝑦‖∞                                        (2.41) 

 

Eşitlik (2.41), maksimum giriş sinyali ile maksimum çıkış sinyali arasındaki ilişkiyi 

açıklamaktadır. Bu eşitsizlik ∥ 𝛾𝛾 ∥1 ifadesinin çarpımı ile ilişkili olduğundan sinyalin 

zayıflaması için gerekli ve yeterli gereksinim aşağıda tanımlanır. 

 

‖𝛾𝛾‖1 ≤ 1                                                 (2.42) 

 

Çıkış sinyalini zayıflatmak için bu koşul her zaman yerine getirilmelidir. Fakat, çok 

basit fonksiyonlar için bile ∥ 𝛾𝛾 ∥1 ile analiz yapmak oldukça zordur. Bu sebeple, analiz 

için frekans alan yaklaşımı daha çok tercih edilmektedir. Doğrusal sistem analizinden şu 

eşitsizlik yazılır.  

 

|Γ(0)| ≤∥ Γ ∥∞≤∥ 𝛾𝛾 ∥1                                         (2.43) 

 

Burada, (2.40)’dan ∥ Γ(𝑠𝑠) ∥∞=  max
𝑤𝑤

|Γ(𝑗𝑗𝑗𝑗)| eşitliğinin doğruluğu bilinmektedir. 

Sonrasında, (2.37), (2.43)’de yerine yazıldığında şu eşitsizlik elde edilir. 

Γ(0)| ≤ �∫  ∞
0 𝛾𝛾(𝑡𝑡)𝑑𝑑𝑑𝑑� ≤ ∫  ∞

0 |𝛾𝛾(𝑡𝑡)|𝑑𝑑𝑑𝑑 = ∥ 𝛾𝛾 ∥1                    (2.44) 

 

Eğer 𝛾𝛾(𝑡𝑡) ≥ 0 olursa, (2.44)’de verilen eşitlik şu şekilde tanımlanır. 

 

∥ Γ ∥∞= ‖𝛾𝛾‖1                                               (2.45) 
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Bu durumda, (2.45)’e göre zaman-alanında tanımlanan ∥ 𝛾𝛾 ∥1≤ 1 koşulu aşağıda 

verilen eşdeğer koşulları ile değiştirilir.  

∥ Γ ∥∞≤ 1  ve  𝛾𝛾(𝑡𝑡) ≥ 0,∀𝑡𝑡                                  (2.46) 

Bu tanımlar doğrultusunda, dizi kararlılık kavramları için yeterli koşullar bir sonraki 

bölümde her iki norm için türetilmiştir. 

2.3.3 KASK sistemi için dizi kararlılık koşulları 

KASK sistemi için dizi kararlılığı koşullarının türetimi bu başlık altında yapılmıştır. 

Öncelikle, araç sinyalleri arasındaki ilişki tanımlanmıştır. Dizi kararlı transfer fonksiyon 

𝛤𝛤𝑦𝑦,𝑖𝑖(𝑠𝑠) ile ifade edilsin. Burada 𝑦𝑦𝑖𝑖 sinyali 𝑢𝑢𝑖𝑖 girişi, 𝑎𝑎𝑖𝑖 ivme ve 𝑣𝑣𝑖𝑖 hız sinyallerini ifade 

etmektedir. Burada, lider aracın giriş sinyali (𝑢𝑢1) ve 𝑖𝑖. araç arasındaki transfer 

fonksiyon 𝑃𝑃𝑖𝑖(𝑠𝑠) olmak üzere 𝑖𝑖. Aracın giriş / çıkış ilişkisi şu şekilde tanımlanır. 

𝑌𝑌𝑖𝑖(𝑠𝑠) = 𝑃𝑃𝑖𝑖(𝑠𝑠)𝑈𝑈1(𝑠𝑠)                                               (2.47) 

 

Sinyaller 𝑢𝑢1(𝑡𝑡), 𝑦𝑦𝑖𝑖(𝑡𝑡), 𝑝𝑝𝑖𝑖(𝑡𝑡) Laplace dönüşümleri sırasıyla 𝑈𝑈1(𝑠𝑠), 𝑌𝑌𝑖𝑖(𝑠𝑠) ve 𝑃𝑃𝑖𝑖(𝑠𝑠) olarak 

ifade edilir. Dizi kararlı transfer fonksiyon 𝛤𝛤𝑦𝑦,𝑖𝑖(𝑠𝑠) için birbirini takip eden iki aracın 

çıkış sinyalleri arasındaki ilişki şu eşitlik ile ifade edilir. 

Γ𝑦𝑦,𝑖𝑖(𝑠𝑠) = 𝑌𝑌𝑖𝑖(𝑠𝑠)
𝑌𝑌𝑖𝑖−1(𝑠𝑠)

= 𝑃𝑃𝑖𝑖(𝑠𝑠)𝑃𝑃𝑖𝑖−1𝑖𝑖−1(𝑠𝑠)                                      (2.48) 

 

Bölüm 2.3.1 ve 2.3.2 ile açıklanan genel tanımlar doğrultusunda, ℒ2-norm ve ℒ∞-norm 

kararlılık koşulları aşağıdaki gibi tanımlanır. 

 

Teorem 2.1. (ℒ2-dizi kararlılığı) Bir sistemin ℒ2-dizi kararlılığı ancak aşağıda verilen 

durumlar sağlanırsa garantilenir. 

 

1.  ∥ 𝑃𝑃1(𝑗𝑗𝑗𝑗) ∥∞ varlığında 
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2.  ∥ 𝛤𝛤𝑖𝑖(𝑗𝑗𝑗𝑗) ∥∞ ≤  1 

 

Eğer, birinci koşulun model tarafından sağlandığı kabul edilirse aşağıda verilen yeterli 

koşulun sağlanması gerekir (Ploeg vd. 2013).  

‖Γ𝑖𝑖‖∞ ≤ 1                                                   (2.49) 

Buna göre, pratikte bir araç dizisi aşağıda verilen eşitliği sağlıyorsa sistem ℒ2-dizi 

kararlıdır.  

max
𝑦𝑦𝑖𝑖−1≠0

 ∥∥𝑦𝑦𝑖𝑖∥∥2
∥∥𝑦𝑦𝑖𝑖−1∥∥2

≤ 1                                          (2.50) 

Teorem 2.2. (ℒ∞-dizi kararlılığı) Bir sistemin ℒ∞-dizi kararlılığı ancak 

1.  ∥ 𝑝𝑝1(𝑡𝑡) ∥1 varlığında 

2.  ∥ 𝛾𝛾𝑖𝑖(𝑡𝑡) ∥1 ≤  1 

 

şartları gerçekleştiğinde sağlanır. 

 

Teorem 2.2 ile verilen ∥ 𝛾𝛾(𝑡𝑡) ∥1 normunun zaman-alanında analizi oldukça zor 

olduğundan aşağıda tanımlanan yeterli koşullar ile değiştirilebilir.  

 

Sonuç 2.1. Buna göre, bir sistem ancak şu yeterli koşulları sağlarsa ℒ∞-dizi kararlılığı 

garantilenir. 

 

1. ∥ 𝑝𝑝1(𝑡𝑡) ∥1 varlığında 

2. ∥ 𝛤𝛤𝑖𝑖(𝑠𝑠) ∥∞≤ 1 

3. 𝛾𝛾𝑖𝑖(𝑡𝑡) ≥ 0 

 

Aslında, Teorem 2.2 ile verilen koşullar zayıf ℒ∞-dizi kararlılığı olarak bilinmektedir.  

Bölüm 2.3.1 ile tanımlanan ℒ∞-normu ve pozitif dürtü sinyali aynı anda sağlanırsa 
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güçlü ℒ∞-dizi kararlılığı olarak adlandırılır. Bunun için Teorem 2.2 ile verilen ℒ∞-dizi 

kararlılık koşullarına ek olarak 𝛾𝛾𝑖𝑖(𝑡𝑡) ≥ 0 eşitsizliğinin sağlanması ile güçlü ℒ∞-dizi 

kararlılığı garanti edilir.  

‖Γ𝑖𝑖‖∞ ≤ 1      ve        𝛾𝛾𝑖𝑖(𝑡𝑡) ≥ 0,∀𝑡𝑡                                  (2.51) 

Pratik olarak, aşağıda verilen eşitsizlik sağlanıyorsa,  𝑛𝑛 tane araçtan oluşan bir araç 

dizisi güçlü ℒ∞-dizi kararlıdır.  

max
𝑦𝑦𝑖𝑖−1≠0

 ∥∥𝑦𝑦𝑖𝑖∥∥∞
∥∥𝑦𝑦𝑖𝑖−1∥∥∞

≤ 1                                          (2.52) 

Bu tanımlar doğrultusunda şu çıkarımlar yapılmaktadır (Eyre vd. 1998).  

 

1. Eğer dürtü sinyali pozitif değilse, frekans alanı analizi ile yalnızca ℒ2-dizi 

kararlılık şartları garanti edilir. Çünkü 𝐻𝐻∞-normu, uyarılmış ℒ2-normunun 

frekans alanına eşdeğerdir.  

2. ℒ2-dizi kararlılığı, istenilen enerji zayıflamasının bir garantisi olarak görülebilir. 

Fakat, bu durum sinyalin zayıflaması anlamına gelmez. 

3. Frekans alanında analizler yapıldığında, ∥ 𝛤𝛤𝑖𝑖 ∥∞ ve ∥ 𝛾𝛾𝑖𝑖 ∥1 normlarının eşdeğer 

olduğu görülmektedir. Bu nedenle, kontrol kazanımları açısından sinyal 

zayıflamasına karşı aynı eğilimleri gösterirler. Bu anlamda, ℒ2-dizi kararlılığı ve 

zayıf  ℒ∞-dizi kararlılığı eşdeğerdir.  

4. Diğer tarafta, güçlü ℒ∞-dizi kararlılığı, ℒ2 veya zayıf ℒ∞-kararlılık normunun 

varlığında bile her zaman elde edilemeyen pozitif dürtü sinyaline gereksinim 

duymaktadır. 

5. Güçlü ℒ∞-dizi kararlılığı, öndeki aracın ivmesine tepki olarak aşmayı önleyen 

kontrolcü sentezinin yapılmasına olanak sağlar.  

 

Literatürdeki dizi kararlılık analizlerinin büyük bir bölümü ℒ2-normu ile yapılmıştır 

(Canudas de Wit ve Brogliato 1999, Rogge ve Aeyels 2008, Swaroop ve Hedrick 1999, 

Klinge ve Middleton 2009a). Diğer tarafta, güçlü ℒ∞-normu sinyallerin maksimum 



42 
 

değerlerini ele aldığı için daha güçlü fiziksel anlama sahiptir. Ayrıca, güçlü ℒ∞-dizi 

kararlılığını doğrudan araç çarpışmasını önleme koşulu olarak kabul edilebilir (Monteil 

vd. 2019). 

 

Bu tez çalışmasında, dizi kararlılığı korumak için şu iki önemli maddenin sağlanması 

hedeflenmektedir. 

1. Çıkış sinyal enerjisinin araç dizisi boyunca azalmasını sağlamak.  

2. Çıkış sinyal genliğinin (özellikle ivme sinyali), maksimum ve/veya minimum 

sınır değerlerini aşmasını önlemek.  

Bilindiği kadarıyla, literatürde bu iki koşulun aynı anda dikkate alındığı çalışma 

bulunmamaktadır. Yalnızca, Monteil vd. (2019) tarafından önerilen çalışmada doğrusal 

araç modeli kullanılarak karışık trafik koşulları için ℒ2-dizi kararlılık ve ℒ∞-dizi 

kararlılık koşulları ayrı ayrı incelenmiştir. Fakat, ℒ2-dizi kararlılığı ya da ℒ∞-dizi 

kararlılık analizi yapılırken ivme sinyalindeki aşmalar dikkate alınmamıştır. 

 

2.4 Minimum-zaman Optimal Kontrol Problemi 

Genel olarak, dizi kararlılık analizleri sabit hız değerleri ya da hız değişim 

manevralarında incelenmektedir. Sabit hız değerlerinde yapılan kararlılık analizinde 

eyleyici doyumunun oluşturacağı etkiyi gözlemlemek mümkün değildir. Diğer tarafta, 

farklı hız değişim manevralarında eyleyici doyumunun sistem üzerindeki etkisi 

gözlemlenebilir. Eyleyici doyumunun etkisini inceleyebilmek için bu tez çalışmasında 

farklı hız değişim manevralarında araç dizisinin tepkisi incelenmiştir. 

 

Farklı araçlardan oluşan heterojen araç dizisinin karayolundaki hareketi lider aracın 

yörüngesine bağlıdır. Sadece lider araç yörüngesinin farklı hız değişim manevralarında 

gerekli dizi kararlılık koşulları için uygun olup olmadığı analiz edilebilir. Eğer lider araç 

yörüngesi dizi kararlılık koşullarını sağlarsa takipçi araçlar da doğrudan bu koşulları 

sağlayacaktır. Hızlı bir şekilde analitik yörüngenin hesaplanabilmesi ise özellikle 

trafikte pratik araç uygulamaları için oldukça önemlidir. Buradan yola çıkarak, 

minimum sürede ve güçlü ℒ∞-norm kararlılık koşullarını sağlayan uygun yörüngeler 

analitik olarak bu tez çalışmasında incelenmiştir. Minimum lider araç yörüngesinin 
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optimalliğini kontrol etmek için optimal kontrol problemi tanımlanmıştır. Öncelikle, 

genel optimizasyon denklemi aşağıdaki gibi ifade edilmiştir.  

𝐽𝐽 = Υ�𝑥𝑥(𝑡𝑡f)� + ∫  𝑡𝑡f
0 𝐿𝐿(𝑥𝑥,𝑢𝑢)𝑑𝑑𝑑𝑑                                    (2.53) 

Burada, 𝐿𝐿(𝑥𝑥,𝑢𝑢) yörünge maliyet (trajectory cost) fonksiyonu ve 𝛶𝛶(𝑥𝑥(𝑡𝑡𝑓𝑓)) terminaldeki 

nihai maliyet fonksiyonu olarak adlandırılır. 𝐿𝐿(𝑥𝑥,𝑢𝑢) ve 𝛶𝛶(𝑥𝑥(𝑡𝑡𝑓𝑓)) fonksiyonlarının 

seçimine bağlı olarak problem minimum-zaman, minimum-enerji ya da minimum-

zaman-enerji birleşimi şeklinde ifade edilir. Tez kapsamında, optimal minimum-zaman 

probleminin çözümü yapılacağından 𝐿𝐿(𝑥𝑥,𝑢𝑢) = 1 ve 𝛶𝛶(𝑥𝑥(𝑡𝑡𝑓𝑓)) = 0 olarak alınır. Hız 

değişimi manevrasında gerekli olan 𝑡𝑡𝑓𝑓 süresi için minimum-zaman probleminde 

performans kriteri şu şekilde yazılır. 

min
𝑢𝑢

  𝐽𝐽 = min
𝑢𝑢
 �∫  𝑡𝑡f

0  𝐿𝐿(𝑥𝑥,𝑢𝑢)𝑑𝑑𝑑𝑑� = min
𝑢𝑢
 �∫  𝑡𝑡f

0  1𝑑𝑑𝑑𝑑� = min
𝑢𝑢
  𝑡𝑡𝑓𝑓                 (2.54) 

Önceki bölümlerde belirtildiği üzere araç yapısından dolayı girdi sinyalinde (gaz, fren) 

mutlaka sınır olmalıdır. Girdi sinyalindeki sınırlar, doğrudan ivme sinyaline 

sınırlandırma getirmektedir. Trafik verimliliğini ve sürüş güvenliğini sağlamak için 

genellikle yoldaki araçlar için hız sınırlaması vardır. Lider aracın (𝑖𝑖 = 1) hızı aşağıdaki 

gibi sınırlandırılır. 

𝑣𝑣𝑠𝑠 ≤ 𝑣𝑣1(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓                                                  (2.55) 

Araç hızı, 𝑣𝑣𝑠𝑠  ve 𝑣𝑣𝑓𝑓 arasında monoton bir şekilde değiştiğinde, lider araç ivmesinin 

𝑎𝑎1(𝑡𝑡) pratikte uygun olan belirli bir aralıkla sınırlı olduğu varsayılır. Bu durumda, ivme 

kısıtı şu şekilde sınırlandırılmalıdır. 

𝛼𝛼min(𝑣𝑣s, 𝑣𝑣f) ≤ 𝑎𝑎1(𝑡𝑡) ≤ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣s, 𝑣𝑣f)                              (2.56) 
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Literatürde, güvenli sürüş için 𝑎𝑎 = 2  m/𝑠𝑠2 ve 𝑎𝑎 = −2 m/𝑠𝑠2 ivme kısıtları 

önerilmektedir (Matsuzakivd. 2014, Nandi vd. 2015, Wu vd. 2009). Dolayısıyla, ivme 

sinyali için (2.56)’da tanımlanan kısıt ve literatürde önerilen kısıtlar aynı anda dikkate 

alınmalıdır. 

Bilindiği üzere, hızlanma yoğunluğunun değişmesine bağlı olarak araç içerisinde 

sarsıntılar meydana gelmektedir. Bu durum ise araç içerisindeki yolcuların güvenli ve 

konforlu bir şekilde seyahat etmesini engelleyebilir. Bundan dolayı, hızlanan ya da 

yavaşlayan araç hareketi sırasında sürüş konforunu artırmak için sarsıntı sinyalindeki 

kısıtlar dikkate alınmalıdır (Grant ve Haycock 2008). Sarsıntı, ivmenin değişim oranı 

olan ivme vektörünün zamana göre türevine 𝑗𝑗(𝑡𝑡) = 𝑎̇𝑎(𝑡𝑡) eşittir. Doğal olarak, ivme 

sinyalinde olduğu gibi lider aracın sarsıntı sinyali de sınırlandırılmalıdır. 

𝑗𝑗min ≤ 𝑗𝑗1(𝑡𝑡) ≤ 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚                                            (2.57) 

Sarsıntı için 𝑗𝑗  =  5 m/𝑠𝑠3 ve 𝑗𝑗 =  5 m/𝑠𝑠3 kısıt aralıkları literatürde önerilmektedir ve 

sarsıntı için doğrudan bu kısıtlar kullanılabilir (Matsuzakivd. 2014, Nandi vd. 2015, Wu 

vd. 2009). 

 

Lider araç yörüngesini hesaplamak için ivme ve sarsıntı dikkate alınarak minimum 

zaman optimal kontrol problemi formüle edilmiştir. Optimal kontrol probleminde 

durum kısıtı 𝑆𝑆(𝑥𝑥,𝑢𝑢)  ≤  0 (ivme) ve birleştirilmiş girdi kısıtı 𝑀𝑀(𝑥𝑥,𝑢𝑢)  ≤  0 (sarsıntı) ile 

ifade edilmiştir. Optimal kontrol probleminin çözümü olan giriş 𝑢𝑢(𝑡𝑡)  =  𝑢𝑢∗ ve durum 

 𝑥𝑥(𝑡𝑡)  = 𝑥𝑥∗ değerleri aşağıda verilen durumları sağlamalıdır.  

 

1. Dinamik araç modeli 

2.  𝑆𝑆(𝑥𝑥,𝑢𝑢)  ≤  0 kısıtı 

3.  𝑀𝑀(𝑥𝑥,𝑢𝑢)  ≤  0 kısıtı 

4.  Performans kriteri: min
𝑢𝑢

 𝐽𝐽  =  min
𝑢𝑢

 𝑡𝑡𝑓𝑓 
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Böylece, optimal (𝑢𝑢∗, 𝑥𝑥∗) çözümü için gerekli olan koşulları sağlayan Hamiltonian 

fonksiyonu şöyle tanımlanır (Bryson ve Ho 2018). 

   𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝜇𝜇, 𝜂𝜂) = 𝐿𝐿(𝑥𝑥,𝑢𝑢) + 𝜆𝜆𝑇𝑇𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝜇𝜇𝑇𝑇𝑆𝑆𝑡𝑡(𝑥𝑥,𝑢𝑢) + 𝜂𝜂𝑇𝑇𝑀𝑀(𝑥𝑥,𝑢𝑢)        (2.58) 

Eşitlikte, 𝜆𝜆 değeri birleşik 45eğişken vektörünü, 𝜇𝜇 ve 𝜂𝜂 ise uygun boyutlara sahip 

çarpanları ifade etmektedir. Uygun lider araç yörüngelerin analitik hesaplanması ve 

optimal kontrol probleminin çözümü bölüm 3.3’de detaylı olarak incelenmiştir. 
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3. EYLEYİCİ DOYUMU VE DİZİ KARARLILIĞI  

Bir kontrol sisteminde, her fiziksel eyleyici veya sensör, maksimum ve minimum 

limitleri olması sebebiyle doyuma uğramaktadır. Bu sebeple, eyleyici doyumu içeren bir 

sistemin analizi ve tasarımı önemli bir problemdir. Bu problem hem teorik olarak 

oldukça zorlayıcı iken diğer tarafta pratik olarak da zorunludur. Eyleyici doyumunu 

önlemeye yönelik çalışmalar yapılmasına rağmen modern kontrol literatüründe yer alan 

birçok çalışmada eyleyici doyumunun etkisi göz ardı edilmiştir. Fakat, kontrol tasarım 

tekniklerinde eyleyici doyumunun ihmal edilmesinin sonucunda kontrol sisteminde 

istenmeyen geçici yanıtlar, kapalı-döngü sisteminin performansının düşmesi ve hatta 

kapalı-döngü sisteminin kararsızlığı gibi problemler görülebilir.  

Birden fazla farklı aracın kullanıldığı KASK gibi araç takip sistemlerinde de eyleyici 

doyumu ciddi sorunlara yol açmaktadır. Araçlarda, fiziksel eyleyiciler (gaz ve fren gibi) 

nedeniyle kontrol kuvveti ve araç yapısı nedeniyle de kontrol girişi belirli sınırları 

asmamalıdır. Aksi takdirde, giriş sinyali istenildiği şekilde uygun çalışmayabilir (Guo 

ve Zhang 2020, Wang vd. 2019). Bunun sonucunda araç dizisindeki doyum etkisi tüm 

araç dizisi boyunca yayılarak ciddi performans düşüşüne ve kararsızlığa yol açabilir. 

Diğer tarafta literatürde, eyleyici doyumunun araç takip sistemleri üzerindeki kararlılık 

ve performans etkileri büyük ölçüde keşfedilmemiş durumdadır. 

Bölüm 2.1.2.1’de belirtildiği üzere, farklı araçlardan oluşan heterojen araç konvoyunda 

her araç doğrusal olmayan model denklemleri ile ifade edilmiştir. Dolayısı ile burada 

farklı araç dinamiklerine bağlı bölüm 2.2.3’de tanımlanan ve hıza bağlı formüle edilen 

kuvvet limitleridir. Çekiş ve fren kuvvet limitlerinin her araç için farklı bir değerde 

olduğu bilinmektedir. Dolayısıyla, heterojen araç konvoyunda herhangi bir aracın hıza 

bağlı kuvvet limitlerini aşması kararsızlığa yol açabilir. Mevcut tüm çalışmalardan 

farklı olarak bu tez çalışmasında, eyleyici doyumu altında dizi kararlılığını sağlamak 

için çekiş ile fren kuvveti üzerindeki gerçekçi ve hıza bağlı limitler kullanılmıştır.  

Bu bölüm, şu şekilde organize edilmiştir. İlk olarak, heterojen araç dizisinde eyleyici 

doyumu altında güçlü ℒ∞-dizi kararlılığını sağlayan yeterli koşullar analitik olarak 
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türetilmiştir. Sonrasında, dizi kararlılığının yeterli koşullarını ve durum kısıtlarını 

sağlayan, farklı hız değişim manevrasında minimum zamanlı optimal uygun 

yörüngelerin analitik olarak elde edilmesi açıklanmıştır. 

3.1 Eyleyici Doyumunu Önlemek için Yeterli Koşullar 

Genel olarak, araç dizileri incelenirken araçların sabit bir hızda hareket ettiği 

varsayılarak çalışma yapılır. Bu durumda, araç dizisi boyunca oluşan bozukluklar ve 

sinyallerdeki oluşan küçük dalgalanmalar dikkate alınır. Ancak, araçlar özellikle sabit 

hızla hareket ettiğinde araçlarda oluşan doyum gözlenmez. Bu tez çalışmasında ise araç 

dizisinin lider araca göre manevra yaptığı bir senaryo ile çalışılmıştır. Buna göre ilgili 

manevra araç dizisindeki farklı hız değişiklikleridir. Çalışmada, 𝑛𝑛 (potansiyel olarak 

farklı) tane araçtan oluşan heterojen araç konvoyu oluşturulmuştur. 

Spesifik olarak, bir araç dizisinin 𝑣𝑣𝑠𝑠  başlangıç hızı ile hareket ettiği ve monoton bir 

artışla lider aracın (indeks 𝑖𝑖 = 1) hızını 𝑣𝑣𝑓𝑓 son hızına değiştirdiği varsayılmaktadır. Bu 

varsayım altında, araçların 𝑣𝑣𝑠𝑠 ve 𝑣𝑣𝑓𝑓 hızları arasında izin verilen maksimum ivme ve 

minimum ivme limit değerleri sırasıyla  𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓) ve 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚�𝑣𝑣𝑠𝑠,𝑣𝑣𝑓𝑓� şeklinde 

gösterilmiştir. Bu tanımlar, genel bir ifade ile aşağıdaki gibi formüle edilmiştir. 

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣s, 𝑣𝑣f) = min
𝑖𝑖=1,…,𝑛𝑛

 � min
𝑣𝑣∈[𝑣𝑣s,𝑣𝑣f]

 �𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖(𝑣𝑣)��                           (3.1) 

 

𝛼𝛼min(𝑣𝑣s, 𝑣𝑣f) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1,…,𝑛𝑛

�  𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈[𝑣𝑣s,𝑣𝑣f]

�𝑓𝑓min,𝑖𝑖(𝑣𝑣)��                           (3.2) 

Önceki bölümlerde tartışıldığı gibi, aracın belirli bir ivme ile hızlanması ya da 

yavaşlaması aracın hızına bağlıdır. Eyleyici doyumunu önlemek için, manevra boyunca 

her aracın kendi sınırları içerisinde kalması gerekmektedir. Teorem 3.1, herhangi bir 

aracın ivme sınırını aşmaması için gerekli olan yeterli koşulları tarif etmektedir. Bu 
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koşulların sağlanması için ℒ∞-dizi kararlılığının yeterli koşulları Teorem 3.1’de 

kullanılmıştır.  

Teorem 3.1. Eşitsizlik (2.51) ile ifade edilen ∥ 𝛤𝛤𝑖𝑖 ∥∞ ≤ 1 ve 𝛾𝛾𝑖𝑖(𝑡𝑡) ≥ 0 ifadelerinin 𝑛𝑛 

araçlı bir dizideki her 𝑖𝑖. araç için sağlandığı varsayılsın. Lider araç 1’in, 𝑣𝑣𝑠𝑠’den 𝑣𝑣𝑓𝑓’ye 

kadar hızını monoton bir şekilde değiştirdiği varsayılsın. Ayrıca, manevra sırasında 

araç 1’in maksimum ve minimum ivmesi 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ve  𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ile ifade edilsin. Buna göre, 

𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 eşitsizliği yazılabilir. Sonuç olarak, ℒ∞-dizi kararlılığının aşağıdaki 

durumlarda sağlandığı kabul edilir: 

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚�𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓� ≤ 𝛼𝛼�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ≤  𝛼𝛼�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚�𝑣𝑣𝑠𝑠,𝑣𝑣𝑓𝑓�                 (3.3) 

Bu durumda, hız değiştirme manevrası sırasında dizideki tüm araçlar için aşağıdaki 

koşullar sağlanır: 

 

1. 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎𝑖𝑖(𝑡𝑡) ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚  

2.  𝑚𝑚𝑚𝑚𝑚𝑚{𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓} ≤ 𝑣𝑣𝑣𝑣(𝑡𝑡) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓} 

3. 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖(𝑡𝑡)) ≤ 𝐹𝐹𝑖𝑖,(𝑡𝑡) ≤  𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖(𝑡𝑡)) 

 

İspat. Teoremin ispatı için, Teorem 3.1 ile belirtilen aşağıdaki varsayımlardan 

yararlanılmıştır. 

 

4.  ∥ 𝛾𝛾𝑖𝑖 ∥1 ≤ 1 (denklem (2.42)’den) 

5.  𝛾𝛾𝑖𝑖(𝑡𝑡) ≥ 0 (denklem (2.51)’den) 

6.  𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0 ve 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 

 

Bu varsayımlar altında, Teorem 3.1’in ispatı yapılmıştır. İlk olarak, tümevarım yoluyla 

1. Madde’de verilen eşitsizliğin nasıl elde edildiği gösterilmiştir. Varsayıma göre, 

𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎1(𝑡𝑡) ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 eşitsizliğinin sağlandığı açıkça görülmektedir. Bu eşitsizlik her 

𝑖𝑖. araç için genel bir ifade ile gösterilecek olursa, 𝑖𝑖. araç için 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎𝑖𝑖(𝑡𝑡) ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 

şeklinde yazılır. Ayrıca, (𝑖𝑖 + 1). araç için ivme kısıtları 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎𝑖𝑖+1(𝑡𝑡) ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 
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eşitsizliği ile ifade edilmiş olur. Bu tanımlar doğrultusunda, 1.Madde’de verilen 

eşitsizlik ispatı şu şekilde yapılmıştır. 

𝑎̂𝑎min ≤
(1)⋅(3)

𝑎̂𝑎min �  
𝑡𝑡

0
 |𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)|𝑑𝑑𝑑𝑑 =

(2)
�  
𝑡𝑡

0
  𝑎̂𝑎min𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 

 

                                ≤
𝑎̂𝑎min≤𝑎𝑎𝑖𝑖(𝑡𝑡)

∫  𝑡𝑡0  𝑎𝑎𝑖𝑖(𝑡𝑡)𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑖𝑖+1(𝑡𝑡)    

 

                                ≤
𝑎𝑎𝑖𝑖(𝑡𝑡)≤𝑎̂𝑎𝑚𝑚𝑚𝑚𝑚𝑚

∫  𝑡𝑡0   𝑎̂𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 

 

                      =
(2)

𝑎̂𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ∫  𝑡𝑡0  |𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)|𝑑𝑑𝑑𝑑 ≤
 (1).(3) 

𝑎̂𝑎𝑚𝑚𝑚𝑚𝑚𝑚                                    (3.4) 

Bir sonraki adımda, 2. Madde’de verilen eşitsizlik dikkate alınsın. Genel gösterimi 

kaybetmeden, 𝑣𝑣𝑠𝑠 < 𝑣𝑣𝑓𝑓 olduğu varsayılsın. Ayrıca, manevranın başlangıcında araç 

dizisinin sabit 𝑣𝑣𝑠𝑠 hızıyla bir denge noktasında olduğu gerçeği de bilinmektedir. Araç 𝑖𝑖. 

İçin hız farkı  ∆𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑣𝑣𝑠𝑠 ile ifade edilmektedir. Buna göre, 𝑖𝑖. araç için 0 ≤

∆𝑣𝑣𝑖𝑖(𝑡𝑡) ≤  𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠 eşitsizliği yazılır.  

Yine varsayıma göre, 1. araç (lider) için 0 ≤ 𝑣𝑣1(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠 eşitsizliğinin 

yazılabileceği açıktır. Bu ifade, her 𝑖𝑖. araç için genelleştirildiğinde 0 ≤ 𝑣𝑣𝑖𝑖(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠 

şeklinde gösterilir. Aynı şekilde, (𝑖𝑖 + 1). araç için 0 ≤ 𝑣𝑣𝑖𝑖+1(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠  eşitsizliği 

yazılır. İfadenin ispatında, genel tanımlardan bir tanesi ∆𝑣𝑣𝑖𝑖+1 = ∫ ∆𝑣𝑣𝑖𝑖 (𝑡𝑡)𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏) 𝑑𝑑𝑑𝑑𝑡𝑡
0  

eşitliği kullanılmıştır. Bu açıklamalar doğrultusunda 2.Madde’nin ispatı şu şekilde 

yapılır. 

                                     0 ≤
Δ𝑣𝑣𝑖𝑖(𝑡𝑡)≥0

∫0
𝑡𝑡 Δ𝑣𝑣𝑖𝑖(𝑡𝑡)|𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)| 𝑑𝑑𝑑𝑑              

 

                                           =
(2)

∫0
𝑡𝑡 Δ𝑣𝑣𝑖𝑖(𝑡𝑡) 𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 = Δ𝑣𝑣𝑖𝑖+1(𝑡𝑡) 

 

    ≤
Δ𝑣𝑣i(𝑡𝑡)≤𝑣𝑣f−𝑣𝑣s

 ∫0
𝑡𝑡 (𝑣𝑣f − 𝑣𝑣s) 𝛾𝛾𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝑑𝑑 ≤

 (1). (2) 
𝑣𝑣f − 𝑣𝑣s               (3.5) 
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Böylece, eşitsizlik 0 ≤  ∆𝑣𝑣𝑖𝑖(𝑡𝑡) ≤  𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠 elde edilir. Dolayısıyla, 𝑣𝑣𝑠𝑠  ≤  𝑣𝑣𝑖𝑖(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓 

ifadesi için her 𝑖𝑖. araç için sağlanmış olur. Aynı çıkarım, 𝑣𝑣𝑠𝑠 > 𝑣𝑣𝑓𝑓 durumunda her 𝑖𝑖. araç 

için yapılabilir. 

 

Son olarak, 3. Madde ’ün ispatı yapılmıştır. Her 𝑖𝑖. araç için 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑎𝑎𝑖𝑖(𝑡𝑡) ≤ 𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 

eşitsizliğinin doğruluğu 1.Madde ile ispat edilmiştir. Eşitsizlik 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓)  ≤  𝑎𝑎�𝑚𝑚𝑚𝑚𝑚𝑚 

ifadesi yazıldığında, her 𝑖𝑖. araç için 𝑣𝑣𝑠𝑠ve 𝑣𝑣𝑓𝑓 arasındaki tüm 𝑣𝑣𝑖𝑖 hızları için 𝑎𝑎𝑖𝑖(𝑡𝑡)  ≥

 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) eşitsizliği yazılır. Her 𝑖𝑖. araç için 𝑣𝑣𝑠𝑠  ≤ 𝑣𝑣𝑖𝑖(𝑡𝑡) ≤ 𝑣𝑣𝑓𝑓 eşitsizliğinin doğruluğu 

bilindiğinden, (2.34)’e göre 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖(𝑡𝑡)) ≤ 𝐹𝐹𝑖𝑖,𝐿𝐿(𝑡𝑡) eşitsizliği yazılır. Benzer şekilde, 𝑣𝑣𝑠𝑠 

ve 𝑣𝑣𝑓𝑓 arasındaki tüm 𝑣𝑣𝑖𝑖 hız değerleri için 𝑎𝑎𝑖𝑖(𝑡𝑡) ≤ 𝑓𝑓𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖) eşitsizliğinin doğruluğu 

bilinir. Sonuç olarak, (2.32) ile elde edilen 𝐹𝐹𝑖𝑖,𝐿𝐿(𝑡𝑡) ≤ 𝐹𝐹𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑖𝑖(𝑡𝑡)) sonuç ile Teorem 

3.1’in ispatı tamamlanmış olur.  

 

Böylece, Teorem 3.1’e göre lider aracın 𝑣𝑣𝑠𝑠’den 𝑣𝑣𝑓𝑓’ye hız değiştirme manevrası 

sırasında eğer aracın ivme sinyali (3.1) ile (3.2)’ye göre 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓) ile 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓) 

değerleri ile sınırlandırılırsa güçlü ℒ∞-dizi kararlılığı sağlanmış olur. Ayrıca, bu sınırlar 

eyleyici doyumunu önlemek için her i. aracın maksimum ve minimum ivme değerlerini 

de sağlamış olur. 

3.2 Benzetim Sonuçları 

Eyleyici doyumu altında dizi kararlılığı sonuçlarını göstermek için, dört farklı araç 

modeli ile farklı sıralamalarda araç dizileri oluşturulmuştur. Bu bölümdeki benzetim 

çalışmalarında, Şekil 2.4 ile gösterilen hızlandırılmış-ileri beslemeli KASK modeli için 

aşağıda verilen kontrol modeli kullanılmıştır (Al-Jhayyish ve Schmidt, 2018).  

𝐾𝐾𝑓𝑓,𝑖𝑖 = 1+𝑠𝑠𝜏𝜏𝑖𝑖
1+𝑠𝑠 ℎ𝑖𝑖

     ve     𝐾𝐾𝑏𝑏,𝑖𝑖 =  𝜔𝜔𝐾𝐾,𝑖𝑖(𝜔𝜔𝐾𝐾,𝑖𝑖 + 𝑠𝑠)                          (3.6) 

Ayrıca, çizelge 3.1 ile listelenen parametreler pratik deney verilerinden alınmıştır (Al-

Jhayyish ve Schmidt 2018). 
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Çizelge 3.1 Araç dizisi için sabit parametreler 

𝜏𝜏𝑖𝑖  =  0.1 [s] 𝜙𝜙𝑖𝑖  =  0.2 [s] 𝜃𝜃𝑖𝑖  =  0.02 [s] ℎ𝑖𝑖  =  0.8 [s] 𝜔𝜔K,𝑖𝑖  =  1.5 [-] 

 

İlk benzetim çalışmasında, araç dizisi şu sıralamaya göre oluşturulmuştur: Fiat 500 1.2, 

Honda CR-V, Audi Q3 1.4 ve Kia Ceed 1.4. Böylece, Şekil 2.9 ile gösterilen ivme 

kısıtlarına göre en zayıf olan aracı (Fiat 500 1.2) en güçlü araç (Honda CR-V) takip 

etmektedir. Lider araç önce hızını 50 km/s’den 90 km/s’e kadar arttırıp, ardından Şekil 

3.1 (a) ile gösterildiği gibi yavaşlayarak hızını 70 km/s’e düşürmektedir. Buna göre, 

lider aracın maksimum ve minimum ivmesi 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(50 km/s, 90 km/s) = 1.31 m/𝑠𝑠2 ve 

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(90 km/s, 70 km/s) = −8.52  m/𝑠𝑠2 ile sınırlanmıştır. Araç dizisindeki takipçi her 

𝑖𝑖. aracın ivme sinyali bu sınırlar içerisinde kaldığında güçlü ℒ∞-dizi kararlılığı 

sağlanmaktadır. 

 

Şekil 3.1 En zayıf aracın en önde olduğu durumda araç dizisinin manevrası 

Şekil 3.1 (a) ve (b)’de herhangi bir hız değişiklinde, ilk takipçi araç Honda CR-V’nin 

hız ve ivmesinin lider araç Fiat 500 1.2’nin sinyal değerini aşmadığı görülmektedir. Bu 

sırada, araç dizisindeki 𝑖𝑖. aracın kendi kuvvet limitleri içerisinde kaldığı şekil 3.1 (c)’de 
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gözlenmektedir. Aynı çıkarımlar, araç dizisindeki tüm öncül/takipçi araç ikilisi için 

geçerlidir. 

İkinci deney setinde araçlar Honda CR-V, Fiat 500 1.2, Audi Q3 1.4, Kia Ceed 1.4 

şeklinde sıralanmıştır. Buna göre, en güçlü araç (Honda CR-V) en zayıf araç (Fiat 500 

1.2) tarafından takip edilmektedir. Şekil 3.2 (a) ve (b) görülebileceği gibi, bu deney için 

ivme ve hız grafikleri, Şekil 3.1 ile gösterilen sonuçlar ile aynıdır. Çünkü, önceki 

benzetim çalışmasında olduğu gibi lider araç (Honda CR-V) aynı hızlanma kısıtlarını 

sağladığından güçlü ℒ∞-dizi kararlılığı garantilenmiştir. Lider araç ile aynı manevra 

yapıldığından ve tüm araçlar aynı doğrusal model ile kontrolcüye sahip olduğundan bu 

beklenen bir durumdur. Buradaki tek fark, araç dizisindeki sıralama değişikliği 

nedeniyle Honda CR-V Fiat 500 1.2 araçlarının çekiş kuvvetinde görülen farklılıktır. 

 

Şekil 3.2 En güçlü aracın en önde olduğu durumda araç dizisinin manevrası 

Son benzetim çalışmasında, ikinci deney setindeki aynı araç dizilimi kullanılmıştır. 

Burada lider aracın Honda CR-V, 𝑣𝑣𝑠𝑠 = 50 km/s başlangıç hızından 𝑣𝑣𝑓𝑓 = 90 km/s son 

hıza ulaşmak için sırasıyla maksimum ivme 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(50 km/s,90 km/s) = 2.75 m/𝑠𝑠2 ve 

minimum ivme 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(50 km/s, 90 km/s) = 0 m/𝑠𝑠2 değerleri uygulanmıştır. İlk takipçi 
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araç Fiat 500 1.2, Şekil 3.3 ile gösterildiği gibi çekiş kuvvetinin doyuma uğraması 

nedeniyle lider aracın ivme değerine ulaşamaz. Dolayısıyla, Teorem 3.1’deki koşulun 

ihlal edildiği görülmektedir. Şekil 3.3’te ayrıca takipçi araçların ivmesinin minimum 

Honda CR-V ivmesinin altına düştüğü ve takipçi araçların hızının Honda CR-V hız 

limitini aştığı da görülmektedir. Ayrıca, mesafe hatasında 10 m üzerine çıkarak 

istenmeyen bir artış 53luşturmaktadır. Bu mesafe hatasında, araç takibinde istenilen kısa 

mesafede araç takibi yapılması mümkün değildir.  

Teorem 3.1 ile farklı araçlardan oluşan heterojen araç dizisinde ve heterojen eyleyici 

doyumu varlığında güçlü ℒ∞-dizi kararlılık koşullarının garantilendiği görülmektedir. 

Son olarak, bu bölümde yapılan benzetim çalışmalarında eyleyici gecikmesi (𝜙𝜙𝑖𝑖) ve 

haberleşme gecikmesinin (𝜃𝜃𝑖𝑖) zamanla değişmediği ve sabit değer olarak alındığını 

vurgulanmalıdır. 

 

Şekil 3.3 Güçlü ℒ∞-dizi kararlılığının ihlali 

 

3.3 Dizi Kararlılığı için Optimal Kontrol  

Teorem 3.1 kullanılarak, lider araç yörüngesinin güçlü ℒ∞-dizi kararlılık koşulları için 

uygun olup olmadığını analiz etmek mümkündür. Tezin bu bölümünde, farklı hız 



54 
 

değişim manevraları için minimum ve uygun yörüngelerin analitik olarak hesaplanması 

yapılmıştır. Önerilen yöntem, araç konvoyundaki takipçi araçların ivme ve sarsıntı 

sinyallerine istenilen kısıtları getirerek minimum-zamanlı optimal yörüngenin analitik 

hesaplanmasını sağlayan orijinal bir yöntemdir. Bu bölümde, ilk olarak model kısıtları, 

minimum-zaman problemi için araç modeli ve kısıtların formülasyonu, sonrasında 

zamana uygun muhtemel yörünge segmentleri, optimal zaman yörüngeleri ve son olarak 

elde edilen sonuçlar gösterilmiştir. 

3.3.1 Hız değişim manevraları için formülasyon  

Lider araç yörüngesini analitik olarak hesaplamak için durum kısıtları (ivme ve hız) ve 

birleştirilmiş girdi kısıtı (sarsıntı) ile doğrusal zaman-optimal kontrol problemi formüle 

edilmiştir. Buradaki temel hedef, eyleyici doyumu engellenirken hızlı ve konforlu hız 

değişimleri elde etmektir. Böylece, Teorem 3.1 ile tanımlanan güçlü ℒ∞-dizi kararlılığı 

sağlanmış olur. Lider araç için minimum-zaman optimal yörünge hesaplanırken (2.16) 

ve (2.17) ile verilen dinamik araç denklemleri şu şekilde tekrar ifade edilir. 

Hesaplamalar sadece lider araç için yapılacağından (2.19) ile verilen gösterim aşağıdaki 

gibi sadeleştirilmiştir. 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) =  �
0  1
0 −1

𝜏𝜏
� 𝑥𝑥 +  �

0
1
𝜏𝜏
� 𝑢𝑢                                    (3.7) 

Durum vektörü 𝑥𝑥 =  [𝑣𝑣𝑇𝑇,   𝑎𝑎𝑇𝑇]𝑇𝑇 olarak tanımlanır. Dinamik sistemin matematiksel 

modeli (3.7) ve hız değişim manevraları için başlangıç ile bitiş değerleri (3.8) 

değerlerine göre belirlenmiştir. 

𝑥𝑥(0) = �00�      ve     𝑥𝑥(𝑡𝑡f) = �Δ𝑣𝑣0 �                                (3.8) 

İlk ve son hız arasındaki hız farkı ∆𝑣𝑣 =  𝑣𝑣𝑓𝑓 − 𝑣𝑣𝑠𝑠 olarak gösterilmiştir. Terminal 

zamanındaki 𝑡𝑡𝑓𝑓 eşitlik kısıtı 𝜓𝜓 (terminal constraint) aşağıdaki gibi tanımlanmıştır. 
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𝜓𝜓 �𝑥𝑥�𝑡𝑡𝑓𝑓�� =  �
𝑣𝑣�𝑡𝑡𝑓𝑓� − Δ𝑣𝑣
𝑎𝑎�𝑡𝑡𝑓𝑓� − 0

� = 0                                 (3.9) 

Optimal kontrol probleminde, (3.9)’da tanımlanan kısıta ek olarak durum kısıtları 

formüle edilmiştir. İlk olarak, optimal kontrol problemi için durum kısıtı 𝑆𝑆(𝑥𝑥) ≤ 0 

incelenmiştir. Burada, özellikle dikkate edilmesi gereken nokta şudur: eğer kısıt 

fonksiyonu açık bir şekilde kontrol girdisine bağlı değilse ekstra karışıklık 

oluşmaktadır. Böyle bir durumda kısıt fonksiyonunda kontrol girdisine ulaşıncaya kadar 

kısıt fonksiyonunun türevinin alınması gerekmektedir. 

⎣
⎢
⎢
⎡𝑆𝑆

(0)(𝑥𝑥, 𝑡𝑡)
𝑆𝑆(1)(𝑥𝑥, 𝑡𝑡)

⋮
𝑆𝑆(q)(𝑥𝑥, 𝑡𝑡)⎦

⎥
⎥
⎤
≤ 0                                                (3.10) 

Bu durum şu eşitlikler ile ifade edilir. 

𝑆𝑆(𝑞𝑞)(𝑥𝑥,𝑢𝑢, 𝑡𝑡) ≤ 0  ve  𝑆𝑆(𝑞𝑞) ≜ 𝑑𝑑𝑞𝑞𝑆𝑆
𝑑𝑑𝑡𝑡𝑞𝑞

                                 (3.11) 

Buna göre, (3.12) ile birlikte  

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = min{𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣s, 𝑣𝑣f),𝑎𝑎‾}    ve    𝑎𝑎min = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛼𝛼min(𝑣𝑣s, 𝑣𝑣f),𝑎𝑎�      (3.12) 

durum kısıtları S(0)(x, t) aşağıdaki şekilde ifade edilmiştir. 

 

𝑆𝑆(0)(𝑥𝑥, 𝑡𝑡) =  �
𝑎𝑎 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎min − 𝑎𝑎� ≤ 0                                  (3.13) 

 

Görüldüğü üzere, kontrol girdisine ulaşmak için 𝑆𝑆(0)(𝑥𝑥, 𝑡𝑡)’in bir kere türev alındığında 

şu eşitsizliğe ulaşılır. 

𝑆𝑆(1)(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝑆𝑆(0)

𝜕𝜕𝜕𝜕
= � 𝑎̇𝑎−𝑎̇𝑎� ≤ 0                                  (3.14) 
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Burada, 𝑎̇𝑎𝑖𝑖 yerine (2.14) yazıldığında 𝑆𝑆(1)(𝑥𝑥, 𝑡𝑡)’de kontrol girdisi 𝑢𝑢 sinyaline 

ulaşılmıştır. Böylece, durum kısıtı şu şekilde formüle edilmiştir. 

𝑆𝑆(1)(𝑥𝑥, 𝑡𝑡) =  1
𝜏𝜏
�𝑢𝑢 − 𝑎𝑎
𝑎𝑎 − u� ≤ 0                                  (3.15) 

Buna göre, ivme sinyali hem Teorem 3.1 ile tanımlanan kısıtları hem de sürüş konforu 

kısıtlarını karşılamaktadır. Son olarak, sarsıntı kısıtı 𝑀𝑀(𝑥𝑥,𝑢𝑢) ≤ 0 aşağıdaki formüle 

göre tanımlanmıştır. 

𝑗𝑗min ≤ 𝑎̇𝑎 = 1
𝜏𝜏

(𝑢𝑢 − 𝑎𝑎) ≤ 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚                                    (3.16) 

Ayrıca, 3.16 ile birleştirilmiş girdi kısıtı aşağıdaki gibi ifade edilmiştir. 

𝑀𝑀(𝑥𝑥,𝑢𝑢) = � 𝑢𝑢 − 𝑎𝑎 − 𝜏𝜏𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
−𝑢𝑢 + 𝑎𝑎 + 𝜏𝜏𝑗𝑗min

� ≤ 0                                   (3.17) 

Sonuç olarak, (3.7) ile (3.17) arasındaki model ve kısıtları dikkate alınarak (2.54) ile 

tanımlanan amaç fonksiyonunu minimuma indirmek hedeflenmektedir. 

 

3.3.2 Zaman-optimal yörünge segmentleri 

Durum kısıtları (3.13) ve (3.17) dikkate alınarak, muhtemel minimum-zamanlı optimal 

yörünge segmentleri tanımlanmıştır. 

 

1. Birleştirilmiş Girdi Kısıtı Aktif: İlk olarak, başlangıç noktası 𝑡𝑡0 anında (3.17) ile 

tanımlanan birleştirilmiş girdi kısıtının (mixed constraint) aktif olduğu 

varsayılmıştır. Hızlanma durumu ∆𝑣𝑣 > 0 için 𝑎̇𝑎 = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ve yavaşlama durumu 

∆𝑣𝑣 < 0 için 𝑎̇𝑎 = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 değerine eşit olduğu bilinmektedir. Bu durumda, ivme 

sinyali hızlanma ve yavaşlama durumları şu şekilde ifade edilmiştir. 
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𝑎𝑎(𝑡𝑡) = �
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 − 𝑡𝑡0) + 𝑎𝑎(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗min(𝑡𝑡 − 𝑡𝑡0) + 𝑎𝑎(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗min
                    (3.18) 

Hız denklemi 𝑣𝑣(𝑡𝑡) = ∫ 𝑎𝑎(𝑡𝑡)𝑑𝑑𝑑𝑑 𝑡𝑡
0 formülünden aşağıdaki şekilde elde edilir.  

𝑣𝑣(𝑡𝑡) =

⎩
⎨

⎧
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−𝑡𝑡0)2

2
+ 𝑎𝑎(𝑡𝑡0)(𝑡𝑡 − 𝑡𝑡0) + 𝑣𝑣(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗min(𝑡𝑡−𝑡𝑡0)2

2
+ 𝑎𝑎(𝑡𝑡0)(𝑡𝑡 − 𝑡𝑡0) + 𝑣𝑣(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗min

          (3.19)       

 

Son olarak, 𝑢𝑢(𝑡𝑡) = 𝜏𝜏 𝑎̇𝑎(𝑡𝑡) + 𝑎𝑎(𝑡𝑡) eşitliği kullanılarak giriş sinyali aşağıdaki gibi 

formüle edilmiştir. 

𝑢𝑢(𝑡𝑡) = �
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 + 𝜏𝜏 − 𝑡𝑡0) + 𝑎𝑎(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗min(𝑡𝑡 + 𝜏𝜏 − 𝑡𝑡0) + 𝑎𝑎(𝑡𝑡0)  eğer 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗min
               (3.20) 

 

Sırasıyla, 𝑎̇𝑎𝑖𝑖(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ve 𝑎̇𝑎𝑖𝑖(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 segmentleri 𝑀𝑀𝑢𝑢 ve 𝑀𝑀𝑑𝑑 kısaltmaları ile 

gösterilmiştir. 

2. Durum Kısıtı Aktif: İkinci olarak, 𝑡𝑡0 anında (3.13) ile gösterilen kısıtın aktif hale 

geldiği varsayılmıştır. Bu durumda,  ∆𝑣𝑣 > 0 için 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ve ∆𝑣𝑣 <

0 durumunda 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 eşitliğinin sağlanması gerekmektedir. Bu durumda, 

ivme sinyalinin yörüngesi şu şekilde tanımlanır. 

 

𝑎𝑎(𝑡𝑡) = �
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎min  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎min
                                     (3.21) 

Yine aynı şekilde hız sinyali aşağıdaki gibi formüle edilir. 
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𝑣𝑣(𝑡𝑡) = �
𝑣𝑣(𝑡𝑡0) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 − 𝑡𝑡0)  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑣𝑣(𝑡𝑡0) + 𝑎𝑎min(𝑡𝑡 − 𝑡𝑡0)  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎min 

                 (3.22) 

Tanımlanan ivme yörüngeleri için girdi sinyali şöyle hesaplanmıştır. 

𝑢𝑢(𝑡𝑡) = �
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎min  eğer 𝑎𝑎(𝑡𝑡) = 𝑎𝑎min 

                                (3.23) 

Burada, 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  ve 𝑎𝑎(𝑡𝑡) = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 için yörünge segmentleri sırasıyla 𝑆𝑆𝑢𝑢 ve 𝑆𝑆𝑑𝑑 ile 

ifade edilmiştir.  

3.3.3 Zaman-optimal yörüngeler 

Bölüm 3.3.2 ile tanımlanan segment parçaları kullanılarak uygun yörüngeler 

incelenmiştir. Bu bölümde, sadece hız artışının olduğu ∆𝑣𝑣 >  0 durumu ele alınmıştır. 

Muhtemel yörüngeler oluştururken, tüm ihtimaller değerlendirilmelidir. Buna göre, 

aşağıda belirtilen durumlar dikkate alınmalıdır. 

 

1. Yörüngeler 𝑀𝑀𝑢𝑢 segmenti ile başlamalıdır. Başlangıç anında sarsıntı 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 

(3.18)’e göre uygulanabilir. Fakat, (3.8)’e göre 𝑎𝑎(0) = 0 olduğundan yörüngeyi 

𝑎𝑎(0) =  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 eşitliği ile başlatmak pratikte mümkün değildir.  

2. Yörüngenin ilk segmenti için 𝑎̇𝑎(𝑡𝑡) = 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 sinyali uygulandığında ivmede bir 

artış olacaktır. Bu durumda, (3.8)’de istendiği gibi 𝑎𝑎�𝑡𝑡𝑓𝑓� = 0 değerine ulaşmak 

için son yörünge segmentinin 𝑀𝑀𝑑𝑑 ile tamamlanması gerekir. Bu durumda, son 

yörünge kesinlikle 𝑆𝑆𝑑𝑑 segmenti ile tamamlanamaz. 

3. Başlangıç anında 𝑀𝑀𝑢𝑢 segmenti uygulandığında, 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 sinyaline ulaşılması 

mümkündür. Bu durumda, yörünge 𝑆𝑆𝑢𝑢 yörünge segmentine ulaşarak devam 

etmelidir. 
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Gösterimi kolaylaştırmak için, manevranın başlangıç zamanının 𝑡𝑡0 = 0 olduğu 

varsayılmıştır. Sonuç olarak, hız artışı ∆𝑣𝑣 > 0 ve yukarıda verilen bilgiler 

doğrultusunda aşağıdaki verilen yörüngeler edilmiştir.  

 

1. 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 değerine ulaşılmazsa   𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑  

2.  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 değerine ulaşılırsa 𝑀𝑀𝑢𝑢 − 𝑆𝑆𝑢𝑢 −𝑀𝑀𝑑𝑑 

 

Bir sonraki bölümde, segmentler arasındaki geçiş süreleri ve yörüngelerin analitik 

olarak hesaplanması açıklanmıştır. 

 

3.3.3.1  𝑴𝑴𝒖𝒖 −𝑴𝑴𝒅𝒅 yörüngesi 

Şekil 3.4 ile gösterildiği üzere (3.18)’de verilen yörünge parçalarından 𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 

yörüngesi elde edilir. 𝑀𝑀𝑢𝑢 segmentinden 𝑀𝑀𝑑𝑑 segmentine geçiş süresi 𝑡𝑡1 anahtarlama 

süresi olarak tanımlanmıştır. 𝑀𝑀𝑢𝑢 segmentinin 𝑇𝑇1 = [0, 𝑡𝑡1] aralığında, 𝑀𝑀𝑑𝑑segmentinin 

ise 𝑇𝑇2 = [𝑡𝑡1,  𝑡𝑡𝑓𝑓] aralığında aktif olmaktadır. Burada, 𝑡𝑡𝑓𝑓 = 𝑡𝑡1 + 𝑡𝑡2 olarak ifade 

edilmektedir. 

 

 

Şekil 3.4 𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 giriş yörüngesi ve ivme sinyali 

Buna göre, ivme sinyali şu şekilde elde edilmiştir. 

𝑎𝑎(𝑡𝑡) = �  
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡       eğer   𝑡𝑡 ≤ 𝑡𝑡1

𝑗𝑗min(𝑡𝑡 − 𝑡𝑡1) + 𝑎𝑎(𝑡𝑡1)       diğer                            (3.24) 
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Hız sinyali ise aşağıdaki eşitlikler ile hesaplanmıştır.  

𝑣𝑣(𝑡𝑡) = � 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2
𝑡𝑡2      eğer   𝑡𝑡 ≤ 𝑡𝑡1

𝑗𝑗min
2

(𝑡𝑡 − 𝑡𝑡1)2 + 𝑎𝑎(𝑡𝑡1)(𝑡𝑡 − 𝑡𝑡1) + 𝑣𝑣(𝑡𝑡1)     diğer
          (3.25) 

Bu veriler doğrultusunda, 𝑡𝑡1 ve 𝑡𝑡2 değerleri (3.8) ile verilen kısıt tanımlarına göre 

aşağıdaki gibi hesaplanmıştır. 

𝑡𝑡1 =  −𝑡𝑡2
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

    ve   𝑡𝑡2 =  � 2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Δ𝑣𝑣
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)

                          (3.26) 

Buna göre, yörünge süresi 𝑡𝑡𝑓𝑓  =  𝑡𝑡1  +  𝑡𝑡2 şöyle elde edilmiştir. 

 

𝑡𝑡𝑓𝑓 =  − 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

� 2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Δ𝑣𝑣
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)

+ � 2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Δ𝑣𝑣
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)

                           (3.27) 

 

Anahtarlama süreleri 𝑡𝑡1 ve 𝑡𝑡2 değerlerinin hesaplamaları EK 1’de gösterilmiştir. 

Uygulanan giriş sinyali ise (3.20)’ye göre aşağıdaki şekilde elde edilir. 

𝑢𝑢(𝑡𝑡) = �  𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 + 𝜏𝜏)   eğer   𝑡𝑡 ≤ 𝑡𝑡1
𝑗𝑗min(𝑡𝑡 + 𝜏𝜏 − 𝑡𝑡1) + 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡1     diğer                      (3.28) 

3.3.3.2  𝑴𝑴𝒖𝒖 − 𝑺𝑺𝒖𝒖 −𝑴𝑴𝒅𝒅 yörüngesi 

𝑀𝑀𝑢𝑢 − 𝑆𝑆𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesinde, geçiş süreleri 𝑀𝑀𝑢𝑢  ve 𝑆𝑆𝑢𝑢 arasında 𝑡𝑡1, 𝑆𝑆𝑢𝑢 ve 𝑀𝑀𝑑𝑑 arasında 𝑡𝑡2  

olarak tanımlanmıştır. Şekil 3.5 ile gösterildiği üzere 𝑇𝑇1 =  [0, 𝑡𝑡1] aralığında 𝑀𝑀𝑢𝑢 

segmenti aktif, 𝑇𝑇2  =  [𝑡𝑡1, 𝑡𝑡1 + 𝑡𝑡2] aralığında 𝑆𝑆𝑢𝑢 segmenti aktif ve 𝑇𝑇3   =  [𝑡𝑡1 + 𝑡𝑡2, 𝑡𝑡𝑓𝑓] 

aralığında 𝑀𝑀𝑑𝑑 segmentinin aktif olduğu görülmektedir. Buna göre, 𝑡𝑡𝑓𝑓  =  𝑡𝑡1 +  𝑡𝑡2 + 𝑡𝑡3 

olarak ifade edilmiştir. 
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Şekil 3.5 𝑀𝑀𝑢𝑢 − 𝑆𝑆𝑢𝑢 −𝑀𝑀𝑑𝑑 giriş ve ivme sinyali 

Grafiğe göre ivme aşağıdaki şekilde hesaplanmıştır.  

𝑎𝑎(𝑡𝑡) = �  
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 eğer  𝑡𝑡 ≤ 𝑡𝑡1
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 eğer  𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2

𝑗𝑗min(𝑡𝑡 − 𝑡𝑡2) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 diğer 
                         (3.29) 

 

Hız sinyali ise eşitlik (3.30)’a göre hesaplanmıştır. 

𝑣𝑣(𝑡𝑡) =

⎩
⎨

⎧
  

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2
𝑡𝑡2 ğer  𝑡𝑡 ≤ 𝑡𝑡1

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 − 𝑡𝑡1) + 𝑣𝑣(𝑡𝑡1) eğer  𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
𝑗𝑗min
2

(𝑡𝑡 − 𝑡𝑡2)2 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 − 𝑡𝑡2) + 𝑣𝑣(𝑡𝑡2) diğer
         (3.30)   

Bu durumda, (3.8)’de tanımlanan kısıtlar uygulandığında,  𝑡𝑡1, 𝑡𝑡2 ve 𝑡𝑡3 anahtarlama 

süreleri aşağıdaki gibi hesaplanmıştır. 

𝑡𝑡1 =  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

,     𝑡𝑡2 =  Δ𝑣𝑣
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

,     𝑡𝑡3 =  −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

              (3.31) 

Yörünge süresi 𝑡𝑡𝑓𝑓 =  𝑡𝑡1  +  𝑡𝑡2 + 𝑡𝑡3 değeri şu eşitlik ile hesaplanmıştır.  

𝑡𝑡𝑓𝑓 =   Δ𝑣𝑣
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

                                    (3.32) 



62 
 

Dolayısıyla, giriş yörüngesi şöyle elde edilmiştir. 

𝑢𝑢(𝑡𝑡) = �
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡 + 𝜏𝜏) eğer  𝑡𝑡 ≤ 𝑡𝑡1

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 eğer  𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
𝑗𝑗min(𝑡𝑡 + 𝜏𝜏 − 𝑡𝑡1 − 𝑡𝑡2) + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 diğer

                   (3.33) 

Anahtarlama süreleri  𝑡𝑡1, 𝑡𝑡2 ve 𝑡𝑡3 parametrelerinin nasıl hesaplandığı EK 2’de 

gösterilmiştir. Bir sonraki başlıkta, elde edilen muhtemel yörüngelerin optimal olduğu 

ispatlanmıştır. 

 

Teorem 3.2. Yörünge segmentleri ∆𝑣𝑣 > 0 durumu için dikkate alınsın. Eğer, aşağıda 

verilen eşitlik sağlanırsa 

�
2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 Δ𝑣𝑣

𝑗𝑗min (𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)
<  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
                                           (3.34) 

 

Bölüm 3.3.1 ile gösterilen optimal kontrol probleminin çözümü, anahtarlama zamanı ve 

son zamanı (3.26) ve (3.27) ile gösterilen 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesidir. Aksi halde, 

𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑  yörüngesi için (3.31) ve (3.32)’ye göre anahtarlama süreleri elde edilir. 

 

Teorem 3.2’yi ispatını yapabilmek için öncelikle kontrol probleminin optimal çözümü 

için gerekli ve yeterli koşullar formüle edilmiştir. Optimal (𝑢𝑢∗, 𝑥𝑥∗) çözüm için diğer 

gerekli koşulları sağlamak için (2.58)’de tanımlanan Hamiltonian fonksiyonu dikkate 

alınmıştır. 

𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝜇𝜇, 𝜂𝜂) = 𝐿𝐿(𝑥𝑥,𝑢𝑢) +  𝜆𝜆𝑇𝑇𝑓𝑓(𝑥𝑥,𝑢𝑢) + 𝜇𝜇𝑇𝑇𝑆𝑆(𝑥𝑥,𝑢𝑢) +  𝜂𝜂𝑇𝑇𝑀𝑀(𝑥𝑥,𝑢𝑢) 

Eşitlikler (2.54) ve (3.7) incelendiğinde, L(x, u) ve f(x, u) fonksiyonlarının zamana bağlı 

olmadığı dolayısı ile H (x, u, λ, µ, η) fonksiyonunun optimal çözüm boyunca sabit 

olduğu görülür. Bunlara ek olarak, H (x, u, λ, µ, η) fonksiyonunun kısmi türevleri, u 

girdisine ve x durum vektörüne bağlı olarak aşağıdaki gibi hesaplanmıştır. 
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𝐻𝐻𝑢𝑢 = ∂𝐻𝐻
∂𝑢𝑢

= ∂𝐿𝐿
∂𝑢𝑢

+ 𝜆𝜆𝑇𝑇 ∂𝑓𝑓
∂𝑢𝑢

+ 𝜇𝜇𝑇𝑇 ∂𝑆𝑆𝑡𝑡
∂𝑢𝑢

+ 𝜂𝜂𝑇𝑇 ∂𝑀𝑀
∂𝑢𝑢

                                 (3.35) 

𝐻𝐻𝑥𝑥 = ∂𝐻𝐻
∂𝑥𝑥

= ∂𝐿𝐿
∂𝑥𝑥

+ 𝜆𝜆𝑇𝑇 ∂𝑓𝑓
∂𝑥𝑥

+ 𝜇𝜇𝑇𝑇 ∂𝑆𝑆𝑡𝑡
∂𝑥𝑥

+ 𝜂𝜂𝑇𝑇 ∂𝑀𝑀
∂𝑥𝑥

                                 (3.36) 

Optimal kontrol probleminin çözümü için (𝑢𝑢∗, 𝑥𝑥∗) yazılır. Öyle ki, 𝑢𝑢(𝑡𝑡) = 𝑢𝑢∗ girişi ve 

𝑥𝑥(𝑡𝑡) = 𝑥𝑥∗ durumu için (2.54), (3.7)-(3.9), (3.13) ve (3.17)’nin sağlanması 

gerekmektedir. Buna göre, optimum kontrol probleminin (𝑢𝑢∗, 𝑥𝑥∗) çözümü için gerekli 

koşullar aşağıda şöyle ifade edilmiştir (Bryson ve Ho, 2018). 

0 = (𝐻𝐻𝑢𝑢)|𝑥𝑥∗(𝑡𝑡),𝑢𝑢∗(𝑡𝑡),𝜆𝜆(𝑡𝑡),𝜇𝜇(𝑡𝑡),𝜂𝜂(𝑡𝑡))                                            (3.37) 

 

𝜆̇𝜆(𝑡𝑡)𝑇𝑇 = (−𝐻𝐻𝑥𝑥)|𝑥𝑥∗(𝑡𝑡),𝑢𝑢∗(𝑡𝑡),𝜆𝜆(𝑡𝑡),𝜇𝜇(𝑡𝑡),𝜂𝜂(𝑡𝑡))                                        (3.38) 

 

𝜆𝜆𝑇𝑇(𝑡𝑡f) = 𝛽𝛽𝑇𝑇 ∂𝜓𝜓
∂𝑥𝑥
�
𝑥𝑥∗(𝑡𝑡f)

                                                      (3.39) 

 

0 = 𝐻𝐻(𝑥𝑥∗(𝑡𝑡),𝑢𝑢∗(𝑡𝑡), 𝜆𝜆(𝑡𝑡), 𝜇𝜇(𝑡𝑡), 𝜂𝜂(𝑡𝑡))�,  ∀𝑡𝑡                                    (3.40) 

 

𝜇𝜇 ≥ 0,  𝜇𝜇𝑇𝑇𝑆𝑆(𝑥𝑥) ≥ 0                                                      (3.41) 

 

𝑆𝑆𝑡𝑡(𝑥𝑥∗(𝑡𝑡),𝑢𝑢∗(𝑡𝑡)) = 0  eğer  𝑆𝑆(𝑥𝑥∗(𝑡𝑡)) = 0                                  (3.42) 

 

𝜂𝜂 ≥ 0,  𝜂𝜂𝑇𝑇𝑀𝑀(𝑥𝑥,𝑢𝑢) = 0                                             (3.43) 

Ayrıca (𝑢𝑢∗, 𝑥𝑥∗) çözümünün optimal olması için yeterli koşullar şu şekilde olmalıdır. 

𝐻𝐻 (𝑥𝑥,𝑢𝑢, 𝜆𝜆, µ, 𝜂𝜂), (𝑥𝑥,𝑢𝑢) için içbükey olmalı, 𝑀𝑀(𝑥𝑥,𝑢𝑢), (𝑥𝑥,𝑢𝑢) için yarı içbükey, 𝑆𝑆(𝑥𝑥), 𝑥𝑥 için 

yarı içbükey olmalı ve 𝜓𝜓(𝑥𝑥), 𝑥𝑥 için doğrusal olmalıdır. Bu koşullar, 𝜆𝜆 = [𝜆𝜆1  𝜆𝜆2], 𝜂𝜂 =

 [𝜂𝜂1  𝜂𝜂2], 𝜇𝜇 =  [µ1  µ2] ve 𝛽𝛽 = [𝛽𝛽1  𝛽𝛽2] ile kullanılarak tezde önerilen optimal kontrol 

problemine uygulanmıştır. Buna göre, 2.58 ile gösterilen Hamiltonian fonksiyonu 

aşağıdaki şekilde tekrar düzenlenmiştir. 
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𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝜇𝜇, 𝜂𝜂) = 1 + 𝜆𝜆1𝑎𝑎 +
𝜆𝜆2
𝜏𝜏

(𝑢𝑢 − 𝑎𝑎) +
𝜇𝜇1
𝜏𝜏

(𝑢𝑢 − 𝑎𝑎) +
𝜇𝜇2
𝜏𝜏

(𝑎𝑎 − 𝑢𝑢) 

                         + 𝜂𝜂1(𝑢𝑢 − 𝑎𝑎 − 𝜏𝜏𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜂𝜂2(−𝑢𝑢 + 𝑎𝑎 + 𝜏𝜏𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) = 0                          (3.44) 

Sonrasında, (3.37)-(3.43) ile verilen gerekli koşullar aşağıda tekrar ifade edilmiştir. 

0 = 𝜆𝜆2
𝜏𝜏

+ 𝜇𝜇1
𝜏𝜏
− 𝜇𝜇2

𝜏𝜏
+ 𝜂𝜂1 − 𝜂𝜂2                                            (3.45) 

 

�𝜆̇𝜆1
𝜆̇𝜆2
� = �

0
−𝜆𝜆1 + 𝜆𝜆2

𝜏𝜏
+ 𝜇𝜇1

𝜏𝜏
− 𝜇𝜇2

𝜏𝜏
+ 𝜂𝜂1 − 𝜂𝜂2

� = � 0
−𝜆𝜆1

�                            (3.46) 

 

�𝜆𝜆1
(𝑡𝑡f)

𝜆𝜆2(𝑡𝑡f)
� = [𝛽𝛽1 𝛽𝛽2] �1 0

0 1� = �𝛽𝛽1𝛽𝛽2
�                                       (3.47) 

 

0 = 1 + 𝜆𝜆1(𝑡𝑡)𝑎𝑎(𝑡𝑡) + 𝜆𝜆2(𝑡𝑡)
𝜏𝜏

(𝑢𝑢(𝑡𝑡) − 𝑎𝑎(𝑡𝑡)),∀𝑡𝑡                                (3.48) 

 

�
𝜇𝜇1
𝜇𝜇2� ≥ 0,  𝜇𝜇1(𝑎𝑎 − 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜇𝜇2(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑎𝑎) ≥ 0                             (3.49) 

 

𝑢𝑢 = 𝑎𝑎  eğer 𝑎𝑎 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ve 𝑢𝑢 = 𝑎𝑎 eğer 𝑎𝑎 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚                            (3.50) 

 

�
𝜂𝜂1
𝜂𝜂2� ≥ 0,  𝜂𝜂1(𝑢𝑢 − 𝑎𝑎 − 𝜏𝜏 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) + 𝜂𝜂2(−𝑢𝑢 + 𝑎𝑎 − 𝜏𝜏 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚) = 0                 (3.51) 

İspat. İlk olarak, 𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, µ, 𝜂𝜂), 𝑀𝑀(𝑥𝑥,𝑢𝑢), S(x) ve 𝜓𝜓(𝑥𝑥, 𝑡𝑡) doğrusal olduğundan, optimal 

çözüm için yeterli koşullar karşılanmaktadır. Ayrıca, hem 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi hem de 

𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑  yörüngesinin, (3.7)-(3.9), (3.13), (3.17)’yi sağladığı görülmektedir. Bu 

durumda, geriye sadece (3.45)-(3.51) arasındaki gerekli koşulların incelenmesi 

gerekmektedir. 
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Eğer � 2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑣𝑣
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)

<  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

 ise bu durumda ivme sinyali için 𝑎𝑎(𝑡𝑡) < 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 ∀ 𝑡𝑡 

eşitsizliği geçerli olacaktır. Öyle ki 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi yalnızca (3.17) kısıtı etkin 

olduğundan gerçekten uygun olduğu görülür. Bir sonraki aşamada, 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesinin 

optimal çözüm için gerekli koşulları sağladığı gösterilmiştir. Buna göre, (3.45), (3.49) 

ve (3.51) dikkate alındığında şu sonuçlar elde edilmiştir. 

� 
𝜇𝜇1 = 𝜇𝜇2 = 𝜂𝜂2 = 0   ve   𝜂𝜂1 = −𝜆𝜆2

𝜏𝜏
     eğer 𝑡𝑡 ≤ 𝑡𝑡1

𝜇𝜇1 = 𝜇𝜇2 = 𝜂𝜂1 = 0 ve   𝜂𝜂2 = 𝜆𝜆2
𝜏𝜏

      diğer
                  (3.52) 

Ayrıca, (3.46) ve (3.48) eşitlikleri kullanılarak şu sonuçlara ulaşılmıştır. 

�
𝜆𝜆1(𝑡𝑡) = 0 ve     𝜆𝜆2(𝑡𝑡) = − 1

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
    eğer 𝑡𝑡 ≤ 𝑡𝑡1

𝜆𝜆1(𝑡𝑡) = 𝛽𝛽1 = 0            ve      𝜆𝜆2(𝑡𝑡) = 𝛽𝛽2 = − 1
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

      diğer 
            (3.53) 

 

Eşitlikler (3.24), (3.25) ve (3.28) ile verilen çözüm yörüngesi (𝑢𝑢∗, 𝑥𝑥∗) optimal çözüm 

için gerekli ve yeterli koşulları sağlamaktadır.  

Eğer � −2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑣𝑣
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚)

≥  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

  eşitsizliği sağlanırsa, 𝑎𝑎(𝑡𝑡) ivme sinyali 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 limit 

değerine ulaşmaktadır. Bu durumda, 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi elde edilir. Optimum çözüm 

için gerekli koşulları doğrulamak amacıyla öncelikle (3.45), (3.49) ve (3.51) ile göre şu 

eşitlikler elde edilmiştir. 

Optimum çözüm için gerekli koşulları doğrulamak amacıyla öncelikle (3.45), (3.49) ve 

(3.51) ile göre şu eşitlikler elde edilmiştir. 

⎩
⎨

⎧
  
𝜇𝜇1 = 𝜇𝜇2 = 𝜂𝜂2 = 0 𝜂𝜂1 = −𝜆𝜆2

𝜏𝜏
eğer  𝑡𝑡 ≤ 𝑡𝑡1

𝜇𝜇2 = 𝜂𝜂1 = 𝜂𝜂2 = 0 𝜇𝜇1 = −𝜆𝜆2 eğer 𝑡𝑡1 < 𝑡𝑡 ≤ 𝑡𝑡2
𝜇𝜇1 = 𝜇𝜇2 = 𝜂𝜂1 = 0 𝜂𝜂2 = 𝜆𝜆2

𝜏𝜏
diğer

                      (3.54) 
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Sonrasında, (3.46) ve (3.48)’i kullanılarak aşağıda verilen eşitliklere ulaşılmıştır.  

 �
𝜆𝜆1(𝑡𝑡) = − 1

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
ve  𝜆𝜆2(𝑡𝑡) = 1

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 − 1

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
eğer  𝑡𝑡 ≤ 𝑡𝑡1

𝜆𝜆1(𝑡𝑡) = − 1
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

ve  𝜆𝜆2(𝑡𝑡) = 1
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 − 1
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

diğer
               (3.55) 

Böylece, (3.29), (3.30) ve (3.33) ile verilen çözüm yörüngesi (𝑢𝑢∗, 𝑥𝑥∗), optimal çözüm 

için gerekli ve yeterli koşulları karşılamaktadır. Bir sonraki başlıkta, farklı hız değişim 

manevralarında elde edilen minimum-zamanlı optimal yörünge sonuçları paylaşılmıştır. 

 

3.4 Zaman-optimal Yörünge Sonuçları 

Minimum-zamanlı kontrol problemini test etmek için farklı hız değişim manevralarında 

lider araç yörüngesi analitik olarak Matlab programı ile hesaplanmıştır. Bölüm 3.3.3 ile 

belirtilen tüm yörüngeleri elde edebilmek için lider aracın farklı hız değişim 

manevralarıyla hareket etmesi gerekmektedir. Bu sebeple, çizelge 3.2 ile belirtilen farklı 

senaryolar test edilmiştir.  

Çizelgede, ∆𝑣𝑣𝑢𝑢 lider aracın hızlandığını ve ∆𝑣𝑣𝑑𝑑 ise lider aracın yavaşladığını 

göstermektedir. Her test durumunda lider araç ile birlikte araç dizisi önce hızlanır ve 

istenilen maksimum hız değerine ulaşmaktadır. Sonrasında ise yavaşlamaya başlar ve 

belirtilen minimum hız değerine ulaşmaktadır. 

Çizelge 3.2 Optimal yörünge için test senaryoları 

Test No ∆𝒗𝒗𝒖𝒖 ≥ 𝟎𝟎 ∆𝒗𝒗𝒅𝒅 ≤ 𝟎𝟎 

1 𝑣𝑣𝑠𝑠 =  90 km/s - 𝑣𝑣𝑓𝑓 = 120 km/s 𝑣𝑣𝑠𝑠 = 120 km/s - 𝑣𝑣𝑓𝑓 = 100 km/s 

2 𝑣𝑣𝑠𝑠 =  48 km/s - 𝑣𝑣𝑓𝑓 =  50 km/s 𝑣𝑣𝑠𝑠 = 50 km/s - 𝑣𝑣𝑓𝑓 = 20 km/s 

3 𝑣𝑣𝑠𝑠 = 108  km/s - 𝑣𝑣𝑓𝑓 = 110 km/s 𝑣𝑣𝑠𝑠 = 110 km/s - 𝑣𝑣𝑓𝑓 = 108 km/s 

4 𝑣𝑣𝑠𝑠 =  8 km/s - 𝑣𝑣𝑓𝑓 =  10 km/s 𝑣𝑣𝑠𝑠 = 10 km/s - 𝑣𝑣𝑓𝑓 =  8 km/s 
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Önceki bölümde belirtildiği üzere minimum-zamanlı optimal yörünge lider araç 

kısıtlarına göre hesaplanmaktadır. Literatürde, ivme için 𝑎𝑎 = 2 m/𝑠𝑠2 ve 𝑎𝑎 = − 2 m/𝑠𝑠2 

limit değerleri önerilmektedir. Aynı zamanda, farklı hız değişim manevrasında araçların 

ulaşabileceği ivme değerleri Şekil 2.9’da gösterilmektedir. Dolayısıyla, literatürde 

tanımlanan ivme limitleri ve Şekil 2.9’da verilen ivme değerleri kullanılarak (3.12) 

eşitliğine göre ivme limitleri hesaplanmıştır. Sonrasında bu limit değerleri 3.13’de 

verilen durum kısıtı için kullanılmıştır. Literatürde, güvenli ve konforlu sürüş için 𝑗𝑗 =

5 m/s3  ve  𝑗𝑗 = −5 m/s3 sarsıntı kısıtları önerilmektedir (Matsuzaki vd. 2014, Nandi 

vd. 2015, Wu vd. 2009). Dolayısıyla, 3.17’de belirtilen kısıtlar için bu sarsıntı kısıtları 

kullanılmıştır.  

İlk test senaryosu için elde edilen maksimum ve minimum limit değerleri çizelge 3.3 ile 

gösterilmiştir. Buna göre, araç dizisi hızlanma manevrasında 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0.5895 m/𝑠𝑠2 

değeri ile hızlanır ve yavaşlama manevrasında 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2 ile yavaşlar. Çizelge 

3.3 ile belirtildiği gibi bu kısıt değerleri altında hızlanma manevrasında 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 ve 

yavaşlama manevrasında 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi elde edilmiştir. Çizelgede gösterildiği 

üzere, 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi 14.2548 s, 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi 3.1778 s ve sonuç olarak 

𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑-𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi toplam 17.4326 s sürede tamamlanmıştır. Sonuç 

tablosunda, elde edilemeyen yörüngeler “-” işareti ile ifade edilmiştir. 

Çizelge 3.3 Test 1 senaryosu için kısıtlar ve yörüngeler 

∆𝒗𝒗𝒖𝒖 = 𝟑𝟑𝟑𝟑 km/s ∆𝒗𝒗𝒅𝒅 = −𝟐𝟐𝟐𝟐 km/s 
 
Yörünge ve süresi 
 

 
𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

 
- 

 
𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 

 
- 

 
 
  
𝑡𝑡𝑓𝑓 =  𝟏𝟏𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 s 
 
𝑴𝑴𝒖𝒖𝑺𝑺𝒖𝒖𝑴𝑴𝒅𝒅 - 𝑴𝑴𝒅𝒅𝑺𝑺𝒅𝒅𝑴𝑴𝒖𝒖 

 
𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 

 
14.2548 s 
 

 
𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 

 
3.1778 s 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  0.5895 m/𝑠𝑠2 

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 =  5 m/s3 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2  

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = −5 m/𝑠𝑠3 
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Elde edilen yörünge 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 ayrıntılı olarak Şekil 3.6 ile gösterilmiştir. 

Şekilde belirtilen 𝑇𝑇1, 𝑇𝑇2 ve 𝑇𝑇3 değerleri segmentlerin elde edildiği süreleri 

göstermektedir. Bir sonraki aşamada, elde edilen lider araç yörüngesinin optimal olup 

olmadığının kontrol edilmesi gerekmektedir. Çizelge 3.4 ile eşitlik 3.54’de tanımlanan 

aktif ve pasif olan 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 (𝑘𝑘 =  1, 2) çarpanlar belirtilmiştir. 

 

Şekil 3.6 Test 1 için lider araç yörüngesi 

Şekil 3.7 ile gösterildiği üzere hem hızlanma manevrasında 𝑇𝑇1 ve 𝑇𝑇3 aralıkları için 

µ𝑘𝑘 (𝑘𝑘 =  1, 2) çarpanı pasif olduğundan bu aralıklarda 𝑆𝑆𝑢𝑢 segmentine ulaşılamaz. 

Çizelge 3.4 Test 1 durumu için yörünge süreleri ve çarpanlar 

∆𝒗𝒗𝒖𝒖 = 30 km/s ∆𝒗𝒗𝒅𝒅 = -20 km/s 

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 

λ1 =  0, 

 λ2  ≤  0 

λ1  =  0, 

 λ2  ≤  0 

λ1  =  0, 

λ2  ≥  0 

λ1  =  0, 

λ2  ≥  0 

λ1  =  0, 

λ2  ≥  0 

λ1  =  0, 

λ2  ≤  0 

𝜇𝜇1 =  0, 

𝜇𝜇2 =  0 

𝜇𝜇1  =  −λ2, 

𝜇𝜇2  =  0 

𝜇𝜇1  =  0, 

𝜇𝜇2  =  0 

𝜇𝜇1  =  0, 

𝜇𝜇2  =  0 

𝜇𝜇1  =  0, 

𝜇𝜇2  =  λ2 

𝜇𝜇1  =  0, 

𝜇𝜇2  =  0 

η1  = −
 λ2
τ1

 , 

η2  =  0 

η1  =  0, 

η2  =  0 

η1  =  0, 

η2  =  
 λ2
τ1

 

η1  =  0,  

η2 =  
 λ2
τ1

 

η1  =  0,  

η2  =  0 

η1  =  −
 λ2
τ1

, 

 η2 =  0 
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Diğer tarafta, 𝑇𝑇2 aralıgında 𝜇𝜇1 çarpanı aktif 69lduğundan 𝑆𝑆𝑢𝑢 segmentine ulaşılmıştır. 

Ayrıca, hızlanma manevrasında 𝑇𝑇1 aralığında η1 çarpanı aktif olduğundan 𝑀𝑀𝑢𝑢 segmenti 

ve 𝑇𝑇3 aralığında η2 çarpanı aktif olduğundan 𝑀𝑀𝑑𝑑 segmenti belirtilen sürelerde elde 

edilmiştir. 

 

Şekil 3.7 Test 1 hızlanma manevrası için 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 

Şekil 3.8 ile gösterildiği üzere optimal yörünge için gerekli olan aktif ve pasif 

çarpanların, hızlanma manevrasındaki çarpanların tam tersi olduğu görülmektedir. Buna 

göre, 𝑇𝑇1  aralığında 𝜂𝜂2, 𝑇𝑇2 aralığında 𝜇𝜇2 ve 𝑇𝑇3 aralığında 𝜂𝜂1 çarpanları aktif hale 

gelmiştir. Beklenildiği gibi 𝜆𝜆2 çarpanı 𝑇𝑇1 ve 𝑇𝑇2 aralıklarında pozitif iken 𝑇𝑇3 aralığında 

negatiftir. Dolayısıyla, 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑-𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 lider araç yörüngesi için (2.54), (3.7)-(3.9), 

(3.13) ve (3.17) eşitlikleri ile belirtilen optimallik koşulları sağlanmıştır. 

 

Şekil 3.8 Test 1 yavaşlama manevrası için 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 
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Test 2 senaryosunda hızlanma ve yavaşlama manevrası için elde edilen sinyal kısıtları 

çizelge 3.5 ile gösterilmiştir. Şekil 2.9 ile gösterildiği gibi düşük hız manevrasında 

aracın ivme değeri daha yüksektir ve bu sebeple bu test senaryosunda lider araç daha 

yüksek ivme ile sınırlandırılmıştır. 

Bu kısıtlar altında elde edilen yörünge süreleri yine aynı çizelgede gösterilmiştir. Lider 

aracın maksimum ivme kısıtı 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2 𝑚𝑚/𝑠𝑠2 iken, aracın belirtilen hızlanma 

manevrasında bu değere ulaşamadığı ve ivme sinyalinin  𝑎𝑎1 = 1.6667 𝑚𝑚/𝑠𝑠2 değerine 

kadar arttığı görülmektedir. Bunun sonucunda 𝑆𝑆𝑢𝑢 segmentine ulaşılamadığından 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

yörüngesi elde edilmiştir. Sonuç tablosunda elde edilemeyen yörüngeler “-” işareti ile 

ifade edilmiştir. 

Çizelge 3.5 Test 2 senaryosu için kısıtlar ve yörüngeler 

∆𝒗𝒗𝒖𝒖 = 𝟐𝟐 km/s ∆𝒗𝒗𝒅𝒅 = −𝟑𝟑𝟎𝟎 km/s Yörünge ve süresi 

 
𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

 
0.6667 s 

 

 
𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 

 
- 

 
 
 

𝑡𝑡𝑓𝑓 =  𝟓𝟓.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 s 
 
𝑴𝑴𝒖𝒖𝑴𝑴𝒅𝒅 - 𝑴𝑴𝒅𝒅𝑺𝑺𝒅𝒅𝑴𝑴𝒖𝒖 

 
 

 

 
𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 

 
- 

 

 
𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 

 
4.5667 s 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2 m/𝑠𝑠2 

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 5 m/s3 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2  

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = −5 m/𝑠𝑠3 

 

 

Diğer tarafta, ∆𝑣𝑣𝑑𝑑 = −30 km/s yavaşlama manevrasında istenilen kısıt değerine 

ulaşılmış ve 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi elde edilmiştir. Analitik olarak hesaplanan yörünge 

Şekil 3.9 ile gösterilmiştir.  
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Şekil 3.9 Test 2 lider araç yörüngesi 

 

Çizelge 3.6 ile 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3 sürelerinde aktif ve pasif olan 𝜆𝜆𝑘𝑘, 𝜇𝜇𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 

verilmiştir. Hızlanma manevrasında, her iki zaman aralığında λ1değeri aynı ve sabit bir 

değerdir. 𝑇𝑇1 zaman aralığında λ2 çarpanı negatif ve 𝑇𝑇2 zaman aralığında λ2 çarpanı 

pozitif olarak hesaplanmıştır. Hesaplanan λk değerlerine bağlı olarak 𝜂𝜂𝑘𝑘 çarpanları 

hesaplanmıştır. 𝑇𝑇1 zaman aralığında  𝜂𝜂1 ve 𝑇𝑇2 zaman aralığında η2 çarpanının aktif 

olduğu Şekil 3.10’da gözlenmektedir. Diğer tarafta, µ𝑘𝑘 (k = 1,2) çarpanının tamamen 

pasif olduğu görülmektedir. Belirtilen hız manevrasında 𝑆𝑆𝑢𝑢 yörünge segmentine 

ulaşılamadığı görülmüştür. Öyle ki, hızlanma manevrası için sadece 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi 

elde edilmiştir. 

Çizelge 3.6 Test 2 durumu için yörünge süreleri ve çarpanlar 

∆𝒗𝒗𝒖𝒖 = 𝟐𝟐 km/s ∆𝒗𝒗𝒅𝒅 = −𝟑𝟑𝟎𝟎 km/s 
𝑇𝑇1 𝑇𝑇2 𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 

λ1 =  −0.6, 
λ2  ≤  0 

λ1  =  −0.6, 
λ2  ≥  0 

λ1  =  0.5, 
λ2  ≥  0 

λ1  =  0, .5, 
λ2  ≥  0 

λ1  =  0.5, 
λ2  ≤  0 

- - 𝜇𝜇1  =  0, 
𝜇𝜇2  =  0 

𝜇𝜇1  =  0, 
𝜇𝜇2  =  λ2 

𝜇𝜇1  =  0, 
𝜇𝜇2  =  0 

η1 =  −
 λ2
τ1

, 

η2 =  0 

η1  =  0, 

η2  =  
 λ2
τ1

, 

η1  =  0, 

η2 =  
 λ2
τ1

 
η1  =  0, 
η2  =  0 

η1  = −
 λ2
τ1

 , 

 η2 =  0 
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Çizelge 3.6 ile yavaşlama manevrası (∆𝑣𝑣𝑑𝑑 = −30 km/s) için hesaplanan çarpanlar Sekil 

3.11’de gösterilmiştir. 𝑇𝑇1,𝑇𝑇2,𝑇𝑇3 zaman aralıklarında 𝜇𝜇1 çarpanının sıfıra eşit olduğu 

görülmektedir. Bunun anlamı, 𝑆𝑆𝑢𝑢 segmentinin elde edilemediğini göstermektedir. 

Sadece, 𝑇𝑇2 aralığında 𝜇𝜇2 çarpanı pozitiftir ve 𝑆𝑆𝑑𝑑 segmenti elde edilmiştir. 𝑇𝑇1 zaman 

aralığında η2 ile 𝑀𝑀𝑑𝑑 segmentine ulaşılmıştır. 

 

Şekil 3.10 Test 2 hızlanma manevrası için 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 

Diğer tarafta, 𝑇𝑇3  aralığında 𝜂𝜂1 ve dolayısıyla 𝑀𝑀𝑢𝑢 segmenti elde edilmiştir. Böylelikle, 

hızlanma ve yavaşlama manevraları sonucunda 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi elde edilmiştir. Bu 

sonuçlar ile birlikte, analitik olarak hesaplanan 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑-𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesinin optimal 

olduğu doğrulanmıştır. 

 

Şekil 3.11 Test 2 yavaşlama manevrası için λk, µk ve ηk çarpanları 
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Test 3 senaryosunda, istenilen hız manevraları için kısıt değerleri çizelge 3.7 ile 

belirtilmiştir. Hızlanma manevrası için maksimum ivme sinyali 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =  0.6834 m/𝑠𝑠2 

olarak hesaplanmıştır. Beklenildiği gibi yüksek hız manevrasında daha düşük ivme 

kısıtı görülmektedir. 

Test 1 hızlanma manevrasında olduğu gibi Test 3 hızlanma manevrası için aynı yörünge 

𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 elde edilmiştir. Fakat, farklı hız değişim manevralarından dolayı anahtarlama 

sürelerinin farklı olduğu çizelge 3.7’de gösterilmiştir. Öyle ki, Test 1 senaryosuna 

kıyasla, belirlenen hız manevrasında minimum yörünge süresi 0.9496 s olarak 

hesaplanmıştır. Yavaşlama manevrasında, maksimum ivme kısıtı olmasına rağmen bu 

hız değerinde aracın ivme kısıt değerine ulaşamadığı görülmektedir. Dolayısıyla, 𝑆𝑆𝑑𝑑 

segmentine ulaşılamaz ve bu sebeple 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi elde edilmiştir. Sonuç tablosunda 

elde edilemeyen yörüngeler “-” işareti ile ifade edilmiştir. 

Çizelge 3.7 Test 3 senaryosu için kısıtlar ve yörüngeler 

 

 

 

 

 

 

 

 

 

 

Şekil 3.12 ile analitik olarak hesaplanan ve minimum zaman süresi 𝑡𝑡𝑓𝑓  =  1.6129 s 

olarak bulunarak 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi gösterilmiştir. 

 

∆𝒗𝒗𝒖𝒖 = 𝟐𝟐 km/s ∆𝒗𝒗𝒅𝒅 = −𝟐𝟐 km/s 
 
Yörünge ve süresi 
 

 
𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

 
- 

 
𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 

 
0.6667 s 

 
 
 

𝑡𝑡𝑓𝑓 =  𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 s 
 

𝑴𝑴𝒖𝒖𝑺𝑺𝒖𝒖𝑴𝑴𝒅𝒅 - 𝑴𝑴𝒅𝒅𝑴𝑴𝒖𝒖 

 
𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 

 
0.9496 s 

 

 
𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 

 
- 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 0.6834 m/𝑠𝑠2 

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 5 m/s3 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2  

𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = −5 m/𝑠𝑠3 
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Şekil 3.12 Test 3 lider araç yörüngesi 

𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑-𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesinin optimalliğini gösteren çarpanlar çizelge 3.8 ile 

paylaşılmıştır. Hızlanma manevrası için Test 1 ile aynı 𝜆𝜆𝑘𝑘, 𝜇𝜇𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanlarının aktif 

ya da pasif olduğu görülmektedir. 

Çizelge 3.8 Test 3 durumu için yörünge süreleri ve çarpanlar 

∆𝒗𝒗𝒖𝒖   = 30 km/s ∆𝒗𝒗𝒅𝒅   = -20 km/s 

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇1 𝑇𝑇2 

λ1 =  0, 

λ2  ≤  0 

λ1  =  0, 

λ2  ≤  0 

λ1  =  0, 

λ2  ≥  0 

λ1  =  0.6, 

λ2  ≥  0 

λ1  =  0.6, 

λ2  ≤  0 

𝜇𝜇1 =  0, 

𝜇𝜇2 =  0 

𝜇𝜇1  =  −λ2, 

𝜇𝜇2  =  0 

𝜇𝜇1  =  0, 

 𝜇𝜇2  =  0 
- - 

η1  = −
 λ2
τ1

 , 

η2  =  0 

η1  =  0, 

η2  =  0 

η1  =  0, 

η2  =  
 λ2
τ1

 

η1  =  0,  

η2 =  
 λ2
τ1

 

η1  =  −
 λ2
τ1

,  

η2  =  0 

 

 

Şekil 3.13 ile hızlanma manevrası için çarpan değerlerinin sonuçları paylaşılmıştır. 

Yavaşlama manevrasında ise 𝜇𝜇𝑘𝑘 (𝑘𝑘 = 1,2) çarpanının sıfır olduğu görülmektedir. 

Bunun anlamı, belirtilen manevra için 𝑆𝑆𝑑𝑑   segmenti elde edilemez. Diğer tarafta, 𝑇𝑇1 

aralığında η2 ve 𝑇𝑇2 aralığında η1 çarpanı aktif hale gelmiştir. Böylece sırasıyla 𝑀𝑀𝑑𝑑 ve 

𝑀𝑀𝑢𝑢 segmentlerine ulaşılmıştır. 
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Şekil 3.13 Test 3 hızlanma manevrası için 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 

Yavaşlama manevrası için elde edilen çarpanlar Şekil 3.14 ile gösterilmiştir. Bu 

sonuçlar doğrultusunda, optimallik koşulları sağlanmış ve 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑-𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 

yörüngesinin optimal olduğu gösterilmiştir. 

Son test senaryosunda, hız değişim manevraları ∆𝑣𝑣𝑢𝑢 = 2 km/s ve ∆𝑣𝑣𝑑𝑑 = -2 km/s için 

elde edilen yörünge sonuçları paylaşılmıştır. Öncelikle, hız manevraları için uygun olan 

ivme ve sarsıntı değerleri belirlenmiştir. Bu hız manevraları ve kısıt değerleri altında 

elde edilen yörünge segmentleri ve süreleri çizelge 3.9 ile paylaşılmıştır. Hızlanma ve 

yavaşlama manevrası için elde edilen 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi Şekil 3.15 ile 

gösterilmiştir. 

 

Şekil 3.14 Test 3 yavaşlama manevrası için 𝜆𝜆𝑘𝑘, µ𝑘𝑘 ve 𝜂𝜂𝑘𝑘 çarpanları 
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Test 2 ve Test 4 hızlanma senaryoları ile aynı kısıtlar altında aynı yörünge 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

hesaplanmıştır. Buna göre, maksimum ivme değeri 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2 m/𝑠𝑠2 olmasına rağmen 

belirtilen hız değerlerinde lider araç istenilen ivme değerine ulaşamaz. Sonuç 

tablosunda elde edilemeyen yörüngeler “-” işareti ile ifade edilmiştir. 

Çizelge 3.9 Test 4 senaryosu için kısıtlar ve yörüngeler 

∆𝒗𝒗𝒖𝒖 = 𝟐𝟐 km/s ∆𝒗𝒗𝒅𝒅 = −𝟐𝟐 km/s Yörünge ve süresi  
 

 
𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 

 
0.6667 s 

 
𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 

 
0.6667 s 

 
 

𝑡𝑡𝑓𝑓 =  𝟏𝟏.𝟑𝟑𝟑𝟑 s 
 

𝑴𝑴𝒖𝒖𝑴𝑴𝒅𝒅 - 𝑴𝑴𝒅𝒅𝑴𝑴𝒖𝒖 

 
𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 

 
- 

 
𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 

 
- 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 2 m/𝑠𝑠2 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 5 m/s3 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2  
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = −5 m/𝑠𝑠3 

 

 

Aynı şekilde, yavaşlama manevrası aynı kısıt değerlerine sahip olduğundan Test 3 ile 

aynı yörünge 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 elde edilmiştir. Dolayısıyla, aynı çarpan 𝜆𝜆𝑘𝑘 ve 𝜂𝜂𝑘𝑘 değerlerine 

sahiptir. Hem hızlanma hem de yavaşlama manevralarında µ𝑘𝑘 çarpanları sıfır 

olduğundan 𝑆𝑆𝑢𝑢 ve 𝑆𝑆𝑑𝑑 segmentlerine ulaşılamaz. Test 2 ve Test 4 hem hız değişim 

manevrası hem de kısıtlar aynı olduğundan aynı süre içerisinde 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 yörüngesi elde 

edilmiştir. Aynı durum Test 3 ve Test 4 yavaşlama manevrası için de geçerlidir ve 

𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢 yörüngesi 0.6667 s’de tamamlanmıştır. 

 

Şekil 3.15 Test 4 için lider araç yörüngesi 
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Optimal yörüngenin ispatı için gerekli olan çarpan değerleri çizelge 3.6  (∆𝑣𝑣𝑢𝑢 =

 2 km/s) ve çizelge 3.8 (∆𝑣𝑣𝑑𝑑 = −2 km/s) ile aynı olduğu belirtilmelidir. Aynı şekilde, 

optimal çözümün ispatı olan çarpanlar Şekil 3.10 ve Şekil 3.14 ile aynı olduğundan 

tekrar paylaşılmamıştır. 

Güçlü ℒ∞-dizi kararlılık koşullarını sağlayan minimum-zamanlı optimal yörünge 

analitik olarak hesaplanmıştır. Önerilen orijinal yöntem farklı hız değişim manevraları 

ve durum kısıtları altında test edilmiştir. Buna göre, her segment kullanılarak olası dört 

farklı optimal yörünge: 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢, 𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢, 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢, 

𝑀𝑀𝑢𝑢𝑀𝑀𝑑𝑑 - 𝑀𝑀𝑑𝑑𝑀𝑀𝑢𝑢  elde edilmiştir. 

Özetle, bu bölümde yalnızca doğrusal olmayan araç modeli, heterojen araç dizisi, 

eyleyici doyumu dikkate alınmıştır. Bu doğrultuda, farklı hız değişim manevrasında 

hıza bağlı kuvvet limitleri ve ivme limitleri dikkate alınarak heterojen araç dizisi için 

güçlü ℒ∞-dizi kararlılık koşulları belirlenmiştir. Böylece, heterojen araç dizisinde 

görülmesi muhtemel eyleyici doyumu engellemek için yeterli koşullar türetilerek dizi 

kararlılığı garantilenmiştir. Sonrasında, güçlü ℒ∞-dizi kararlılık koşullarını sağlayan 

lider araç yörüngeleri için minimum-zamanlı optimal kontrol problemi tanımlanmıştır. 

Gerçek trafik koşullarında ve farklı hız değişim manevralarında analitik olarak pratik bir 

şekilde hesaplanan muhtemel yörüngelerin optimal olduğu gösterilmiştir. Bu bölüme 

kadar yapılan çalışmalarda, KASK donanımlı araç dizisi için haberleşme gecikmesi ve 

eyleyici gecikmesi sabit değer olarak alınmıştır. Ayrıca, literatürde önerilen doğrusal 

kontrolcü modeli ve parametreleri hızlandırılmış-ileri beslemeli KASK kontrol 

sisteminde tercih edilmiştir. Diğer tarafta, araçlar arası iletişimin kablosuz haberleşme 

ile yapıldığı KASK sisteminde gerçek trafik koşullarında zamanla değişen haberleşme 

gecikmesi görülmektedir. Dolayısıyla, araç takip sisteminde zamanla değişen gecikme 

dikkate alınarak kontrolcü sentezi yapılmalıdır. 
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4. ZAMAN GECİKMESİ ALTINDA KONTROLCÜ SENTEZİ 

Bir kontrol sisteminde, zaman gecikmesinin sistemin performansını olumsuz yönde 

etkileyebilecek zaman gecikmelerine neden olacağı bilinmektedir. Örneğin, bir kontrol 

sisteminde zaman gecikmesinin varlığı salınım, performans düşüşü ve kararsızlığa yol 

açabilir (Dey vd. 2016). Bu nedenle, zaman gecikmesi olan bir sistemin kontrolü ve 

kararlılık analizi hem teorik ve hem de pratik anlamda mutlaka incelenmelidir. 

Zaman gecikmeli bir sistem olan KASK sürüş modelinde, araçtan araca kablosuz 

iletişim nedeniyle zamanla değişen haberleşme gecikmesinin oluşması kaçınılmazdır 

(Chen vd. 2021, di Bernardo vd. 2016, Liu vd. 2001, Ma vd. 2020, Vegamoor vd. 

2019). Ayrıca, üçüncü derece araç denklemleri ile ifade edilen araç modelinde 

eyleyicinin de zaman gecikmesine sebep olacağı bilinmektedir. Eyleyici gecikmesi hem 

araç içi kararlılığın ve hem de araç dizisinin kararlılığının sağlanması için kontrolcü 

sentezinde mutlaka dikkate alınmalıdır (Chen vd. 2020, Di Bernardo vd. 2014, Huang 

vd. 2022). Literatürde, zamanla değişen gecikmeli sistem için yapılan çalışmalar sabit 

zaman gecikmeli sisteme göre çok daha azdır (Ghasemi vd. 2015, Kayacan, 2017, Ploeg 

vd. 2014, Sawant vd. 2020). 

Tez çalışmasında, zaman gecikmeli sistemin kararlılığını sağlayan kontrolcü sentezi 

yapılmıştır. Bu bölüm, şu şekilde organize edilmiştir. Bölüm 4.1’de zaman gecikmesi 

için önerilen genel yaklaşım ve yöntemler ile ilgili bilgi verilmiştir. Sonraki bölümlerde 

notasyon ve problemin genel tanımı açıklanmıştır. Bölüm 4.2 geliştirilen Bi-Section 

algoritması ile güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü sentezi 

sunulmuştur. Bölüm 4.3’te Doğrusal Matris Eşitsizlikleri (LMI) ile güçlü ℒ∞-dizi 

kararlılık koşullarını sağlayan kontrolcü parametreleri elde edilmiştir. 

4.1 Kontrol Sisteminde Zaman Gecikmesine Genel Yaklaşım 

Zaman gecikmeli kontrol sisteminin kararlılık analizinde frekans-alanı ve zaman-alanı 

olmak üzere iki farklı yaklaşım önerilmektedir. Zaman gecikmesinin olmadığı bir 
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sistemin kararlılık analizinde, frekans-alanında karmaşık olduğu bilinmektedir 

(Kolmanovskii ve Richard 1999). Zaman gecikmesinin olduğu bir sistemin frekans-

alanında analizi ise çözüme ekstra kısıtlar getireceğinden, analizi ekstra karmaşık hale 

getirecektir (Kharitonov ve Zhabko 2003, Wu vd. 2010). 

Diğer tarafta, heterojen zaman gecikmesi söz konusu olduğunda zaman-alanında önemli 

bir alternatif olarak öne çıkmaktadır. Zaman-alanında Lyapunov tabanlı iki temel 

teorem bulunmaktadır: Lyapunov-Krasovskii ve Lyapunov-Razumikhin yaklaşımlarıdır. 

Lyapunov-Razumikhin fonksiyon yapılarının oluşturulması Lyapunov-Krasovskii 

fonksiyon yapılarına kıyasla kolaydır (Wu vd. 2010). Ancak, Lyapunov-Razumikhin 

kullanılarak elde edilen sonuçlar, Lyapunov-Krasovskii elde edilen sonuçlara kıyasla 

daha tutucudur (conservative) (Kharitonov ve Zhabko 2003). 

Lyapunov yaklaşımı ile zaman gecikmeli kontrol problemini çözmek için Riccati 

denklemleri ve eşitsizlikleri kullanılabilir. Fakat, Riccati denklemleri çok sayıda 

parametre içermektedir ve pozitif tanımlı simetrik matrislerin önceden ayarlanması 

gerekmektedir (Boyd vd. 1994). Dolayısıyla, kontrol probleminin bir sonucu olmasına 

rağmen çözüm bulunmayabilir. Bu, kontrol problemlerinin çözümü için büyük bir 

dezavantaj sağlamaktadır. Bu noktada, iç-nokta (interior-point) algoritmaları 

geliştirilmiş ve LMI aracı Matlab’da kullanmaya başlanmıştır (Boyd vd. 1994). LMI’lar 

kontrol sisteminin analizi ve tasarımında öne çıkan yöntemdir (Kharitonov ve Zhabko 

2003, Wu vd. 2010). LMI yapılarını elde edebilmek için kararlılık koşullarını sağlayan 

uygun Lyapunov-Krasovskii Fonksiyoneli (LKF)’nin çözümünün yapılması 

gerekmektedir. Önerilen sonuçların tutuculuğuna (conservatism) karar verdiğinden 

dolayı uygun LKF seçimi yapabilmek önemlidir (Kolmanovskii ve Richard 1999). Eğer 

elde edilen LMI’lar için nümerik çözüm bulunabilirse, Lyapunov-Krasovskii kararlılık 

teoremine göre zaman gecikmeli kontrol sistemi asimptotik olarak kararlıdır. 

Zaman gecikmeli sistemin kararlılık kriteri iki şekilde gruplandırılır. Birincisi, 

gecikmenin uzunluğundan bağımsızdır ve gecikmeden-bağımsız (delay-independent) 

koşullar olarak adlandırılır. Gecikmeden-bağımsız koşullar gecikme hakkında bilgi 

içermediğinden, özellikle gecikme değeri küçük olduğunda aşırı tutucudur. Diğer 
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kararlılık kriteri ise gecikmenin uzunluğu ile ilgili bilgileri kullanır ve gecikmeye-bağlı 

(delay-dependent) koşullar olarak isimlendirilir. Gecikmeye-bağlı sistemin kararlılık 

özelliği, bir parametre olarak görülen gecikme boyutunun bir fonksiyonudur. 

Gecikmeye-bağlı zaman gecikmeli sistemin kararlılığını sağlamak için iki yaklaşım 

önerilmiştir.  

1. Gecikme türevleri ile sınırlanmış gecikmeler: Zamanla değişen gecikme 

𝛿𝛿(𝑡𝑡),∀𝑡𝑡 ≥  0 için türevlenebilir fonksiyon olarak kabul edilsin. Bu durumda, 

zamanla değişen gecikme için aşağıda verilen zaman kısıtları LKF yapıları 

oluşturulurken dikkate alınmaktadır. 

 

𝛿𝛿𝑑𝑑 ≤ 𝛿𝛿(𝑡𝑡) ≤ 𝛿𝛿𝑢𝑢                                              (4.1) 

 

𝛿𝛿𝑑𝑑 ≤ 𝛿̇𝛿(𝑡𝑡) ≤ 𝛿𝛿𝑢𝑢                                              (4.2) 

Burada, 𝛿𝛿𝑑𝑑 ile 𝛿𝛿𝑢𝑢 zamanla değişen gecikme δ(t) için maksimum ve minimum 

sınırlarını ifade etmektedir. Zamanla değişen gecikme türevinin 𝛿̇𝛿(𝑡𝑡), 

maksimum ve minimum sınırları 𝛿𝛿𝑢𝑢  ve 𝛿𝛿𝑑𝑑 ile tanımlanmıştır. 

 

2. Zamanla değişen hızlı gecikme (fast time-varying delays- rate independent): Bu 

durumda, yalnızca 4.1’de tanımlanan zaman kısıtı dikkate alınmaktadır. 

 

Bu özel durumlar, sistem gereksinimlerine göre LKF yapıları oluşturulurken dikkate 

alınmaktadır. Bir sonraki başlıkta, çalışmada kullanılan gerekli notasyonlar ve 

Lyapunov-Krasovskii teoremi tanımlanmıştır.  

 

4.1.1 Notasyon 

Zaman gecikmesi altında kontrolcü sentezi için ℒ2-norm ve ℒ∞-norm kavramları 

dikkate alınmıştır. Bölüm 2.3.1’de yapılan tanımlar doğrultusunda ℒ2[0,∞)-dizi 
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kararlılığı 𝜙𝜙: ℝ+ → ℝ𝑛𝑛 normu ile ||𝜙𝜙||ℒ2 = �∫ |𝜙𝜙(ℏ)|2𝑑𝑑ℏ∞
0  şeklinde ifade 

edilmektedir. Temelde sınırlı fonksiyonların uzayı için ℒ∞(a, b) kararlılığı 𝜙𝜙𝑎𝑎, 𝑏𝑏) →

ℝ𝑛𝑛 normu ile ||𝜙𝜙||ℒ∞ = 𝑚𝑚𝑚𝑚𝑚𝑚
ℏ∈(𝑎𝑎,𝑏𝑏)

||𝜙𝜙(ℏ)|| olarak tanımlanmaktadır. Buna göre, 𝜙𝜙 ∶

[𝑎𝑎, 𝑏𝑏] →  ℝ𝑛𝑛 sürekli fonksiyonların uzayı için �|𝜙𝜙|�
ℂ

= 𝑚𝑚𝑚𝑚𝑚𝑚
ℏ∈[𝑎𝑎,𝑏𝑏]

||𝜙𝜙(ℏ)|| normuyla 

ℂ[𝑎𝑎, 𝑏𝑏], 𝜙𝜙: [𝑎𝑎, 𝑏𝑏] →  ℝ𝑛𝑛 sürekli fonksiyonların uzayı için �|𝜙𝜙|�
ℂ

= 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃∈[𝑎𝑎,𝑏𝑏]

||𝜙𝜙(ℏ)|| 

normuyla 𝑑𝑑𝜙𝜙
𝑑𝑑ℏ
∈ ℒ2[𝑎𝑎, 𝑏𝑏] ile ℂ1[𝑎𝑎, 𝑏𝑏]  ve 𝜙𝜙: [𝑎𝑎, 𝑏𝑏] → ℝ𝑛𝑛 mutlak sürekli fonksiyonların 

uzayı için ||𝜙𝜙||𝒲𝒲 = ||𝜙𝜙||ℂ + || 𝑑𝑑𝜙𝜙
𝑑𝑑ℏ

 ||ℒ2 normuyla 𝒲𝒲[𝑎𝑎, 𝑏𝑏] olarak yazılsın. 

 

Çalışmada, fonksiyonel diferansiyel denklem ile modellenen zaman gecikmeli sistem şu 

şekilde ifade edilmiştir. 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡)                                                 (4.3) 

Burada, 𝑥𝑥(𝑡𝑡)  ∈  ℝ𝑛𝑛 ve maksimum gecikme değeri 𝛿𝛿 için 𝑓𝑓 ∶  𝑅𝑅 ×  ℂ[−𝛿𝛿, 0] ×

 ℂ1[−𝛿𝛿, 0] → ℝ𝑛𝑛. Ayrıca 𝑓𝑓(𝑡𝑡, 0, 0) = 0 için (4.3)’ün denge noktası 𝑥𝑥(𝑡𝑡) ≡ 0. Bu 

bilgiler doğrultusunda, aşağıda verilen Lyapunov-Krasovskii teoremi tanımlanmıştır 

(Kolmanovskii ve Myshkis, 2012). 

 

Teorem 4.1. (Lyapunov-Krasovskii Teoremi) 𝑢𝑢, 𝑣𝑣,𝜔𝜔 ∶  ℝ+ →  ℝ+, 𝑢𝑢(0)  =  𝑣𝑣(0)  =  0, 

𝜔𝜔 ≠  0 ve ℏ >  0 için 𝑢𝑢(ℏ), 𝑣𝑣(ℏ),𝜔𝜔(ℏ)  >  0 eşitsizliğini sağlayan sürekli ve 

azalmayan fonksiyonları ifade etsin. Eğer pozitif tanımlı sürekli bir Lyapunov 

fonksiyoneli 𝑉𝑉 ∶  ℝ ×  𝒲𝒲[−𝛿𝛿, 0]  ×  ℒ2(−𝛿𝛿, 0)  →  ℝ+ varsa, 

𝑢𝑢(‖𝑥𝑥(𝑡𝑡)‖) ≤ 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡) ≤ 𝑣𝑣(‖𝑥𝑥𝑡𝑡‖𝒲𝒲 )                              (4.4) 

ve (4.3) sisteminin çözümü boyunca, 𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡) pozitif değil ise 

𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡) ≤ −𝜔𝜔(‖𝑥𝑥(𝑡𝑡)‖)                                        (4.5) 

 



82 
 

Eşitlik (4.3) çözümü asimptotik olarak kararlıdır. 

 

Bu tezin temel amacı, KASK sürüş sistemi için güçlü ℒ∞-norm dizi kararlılık 

koşullarını sağlamaktır. Lyapunov-Krasovskii teoremi ise zaman gecikmeli kontrol 

sisteminin yalnızca asimptotik kararlılığını sağlamaktadır. Dolayısıyla, istenilen dizi 

kararlılık koşullarını sağlayabilmek için uygun besleme fonksiyonu LKF’ye eklenerek 

güçlü ℒ∞-norm kararlılık koşulları türetilmektedir. 

 

Öncelikle, Teorem 4.1 kullanılarak ℒ2-dizi kararlılığı ve güçlü ℒ∞-dizi kararlılığını 

sağlayan yeterli koşullar için genel model oluşturulmuştur. Buna göre, 𝑤𝑤(𝑡𝑡) ∈ ℝ𝑚𝑚 girişi 

ve 𝑧𝑧(𝑡𝑡) ∈ ℝ𝑝𝑝 çıktısı olan sistem modeli aşağıdaki gibi tanımlanmıştır. 

𝑥̇𝑥(𝑡𝑡) = 𝑔𝑔(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡 ,𝑤𝑤(𝑡𝑡))                                             (4.6) 

 

𝑧𝑧(𝑡𝑡) = ℎ(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡 ,𝑤𝑤(𝑡𝑡))                                              (4.7) 

Burada, 𝑔𝑔: ℝ × ℂ[−𝛿𝛿, 0] × ℂ1[−𝛿𝛿, 0] × ℝ𝑚𝑚 → ℝ𝑛𝑛 ve ℎ: 𝑅𝑅 × ℂ[−𝛿𝛿, 0] × ℂ1[−𝛿𝛿, 0] ×

ℝ𝑚𝑚 → ℝ𝑝𝑝. 

 

4.1.2 Kontrolcü sentezi için model formülasyonu 

Dizi kararlılığını analiz etmek için KASK sürüş modeli (4.6) ve (4.7) formunda 

yazılmalıdır. Bunun için de uygun bozulma girişi 𝑤𝑤𝑖𝑖(𝑡𝑡) ve çıktı sinyali 𝑧𝑧𝑖𝑖(𝑡𝑡) ile birlikte 

türetilmesi gerekmektedir. Buna göre, (2.22) ile tanımlanan kapalı-döngü transfer 

fonksiyonu aşağıdaki şekilde yazılmalıdır.  

𝑍𝑍𝑖𝑖(𝑠𝑠)
𝑊𝑊𝑖𝑖(𝑠𝑠)

= Γ𝑖𝑖(𝑠𝑠)                                                        (4.8) 

Zhu vd. (2020) tarafından önerilen model dikkate alınarak model sunulmuştur. 

Öncelikle, düzenlenmiş girdi sinyali 𝑢𝑢�𝑖𝑖(𝑡𝑡) şu şekilde tanımlanmıştır.  
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      𝑈𝑈𝑖𝑖(𝑠𝑠) = 1+𝑠𝑠 𝜏𝜏𝑖𝑖
1+𝑠𝑠 ℎ𝑖𝑖

𝑈̂𝑈𝑖𝑖(𝑠𝑠)                                              (4.9) 

Sonrasında, (2.21) kullanılarak şu eşitlik elde edilmiştir. 

𝐴𝐴𝑖𝑖(𝑠𝑠) = 1
1+𝑠𝑠𝜏𝜏𝑖𝑖

𝑒𝑒−𝑠𝑠𝜙𝜙𝑖𝑖𝑈𝑈𝑖𝑖(𝑠𝑠) = 1
1+𝑠𝑠ℎ𝑖𝑖

𝑒𝑒−𝑠𝑠𝜙𝜙𝑖𝑖𝑈̂𝑈𝑖𝑖(𝑠𝑠)                      (4.10) 

 

⇒ 𝐴𝐴𝑖𝑖(𝑠𝑠)(1 + 𝑠𝑠ℎ𝑖𝑖) = 𝑒𝑒−𝑠𝑠𝜙𝜙𝑖𝑖𝑈̂𝑈𝑖𝑖(𝑠𝑠)                               (4.11) 

Devamında, (2.4)’de tanımlanan mesafe hatası (𝑒𝑒𝑖𝑖(𝑡𝑡)) kullanılarak ve (4.11)’in zaman 

alan eşdeğerini değiştirerek KASK sisteminin durum-uzay modeli elde edilmiştir. 

𝑒̇𝑒𝑖𝑖 = 𝑣𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖 − ℎ𝑖𝑖𝑎𝑎𝑖𝑖                                                   (4.12) 

 

𝑒̈𝑒𝑖𝑖 = 𝑎𝑎𝑖𝑖−1 − 𝑎𝑎𝑖𝑖 − ℎ𝑖𝑖𝑎̇𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖−1 − 𝑢̂𝑢𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                (4.13) 

Buna ek olarak, bozulma sinyali şu şekilde tanımlanmıştır. 

𝑤𝑤𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖−1 + ℎ𝑖𝑖𝑎̇𝑎𝑖𝑖−1                                            (4.14) 

Son olarak, Şekil 2.4 ile gösterilen kontrol mimarisindeki 𝐾𝐾𝑏𝑏,𝑖𝑖 ve 𝐾𝐾𝑓𝑓,𝑖𝑖 modülleri için 

geri-besleme ve ileri-besleme kazanç değerleri  𝑘𝑘𝑏𝑏,𝑖𝑖  ve 𝑘𝑘𝑓𝑓,𝑖𝑖 tanımlanmıştır. 

𝑢̂𝑢𝑖𝑖(𝑡𝑡) = 𝑘𝑘𝑏𝑏,𝑖𝑖 �
𝑒𝑒𝑖𝑖(𝑡𝑡)
𝑒̇𝑒𝑖𝑖(𝑡𝑡)

� + 𝑘𝑘𝑓𝑓,𝑖𝑖 𝑎𝑎𝑖𝑖−1(𝑡𝑡 − 𝜃𝜃𝑖𝑖(𝑡𝑡))                             (4.15) 

Mesafe sinyal bilgileri Şekil 2.4’te gösterildiği gibi sensör ölçümleri (RADAR ya da 

LİDAR) tarafından algılanmaktadır. Öndeki aracın ivmesi ise kablosuz haberleşme ile 

takipçi araca aktarılmaktadır. Bu sebeple, yalnızca ileri beslemeli bölüm haberleşme 

gecikmesini (𝜃𝜃𝑖𝑖(𝑡𝑡)) içermektedir. Eyleyici gecikmesi (𝜙𝜙𝑖𝑖), giriş sinyali ile birlikte 
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𝑢̂𝑢𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖) olarak sisteme uygulanır. Dolayısıyla, iletilen sinyalin aynı anda karşılaştığı 

zaman gecikmeleri, eyleyici gecikmesi ve zamanla değişen haberleşme gecikmesidir. 

Durum-uzay modeli, 𝑥𝑥𝑖𝑖(𝑡𝑡) = [𝑒𝑒𝑖𝑖(𝑡𝑡)   𝑒̇𝑒𝑖𝑖(𝑡𝑡)  𝑎𝑎𝑖𝑖−1(𝑡𝑡)]𝑇𝑇, bozulma giriş sinyali 𝑤𝑤𝑖𝑖(𝑡𝑡) ve 

çıkış sinyali 𝑧𝑧𝑖𝑖(𝑡𝑡) ile şöyle ifade edilmiştir. 

𝑥̇𝑥𝑖𝑖(𝑡𝑡) = 𝐀𝐀𝑖𝑖𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝐁𝐁𝑖𝑖𝐊𝐊𝑖𝑖,1𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖) + 𝐁𝐁𝑖𝑖𝐊𝐊𝑖𝑖,2𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖 − 𝜃𝜃𝑖𝑖(𝑡𝑡)) + 𝐂𝐂𝑖𝑖𝑤𝑤𝑖𝑖(𝑡𝑡)       (4.16) 

 

𝑧𝑧𝑖𝑖(𝑡𝑡) = 𝐊𝐊𝑖𝑖,1𝑥𝑥(𝑡𝑡 − 𝜙𝜙𝑖𝑖) + 𝐊𝐊𝑖𝑖,2𝑥𝑥(𝑡𝑡 − 𝜙𝜙𝑖𝑖 − 𝜃𝜃𝑖𝑖(𝑡𝑡)) = 𝑢̂𝑢𝑖𝑖(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                             (4.17) 

Sistem matrisleri aşağıda tanımlanmıştır.  

𝐀𝐀𝑖𝑖 = �
0 1    0
0 0    1
0 0 − 1

ℎ𝑖𝑖

� ,  𝐁𝐁𝑖𝑖 = �
0
−1
0
� ,  𝐂𝐂𝑖𝑖 = �

0
0
1
ℎ𝑖𝑖

�                             (4.18) 

 

𝐊𝐊𝑖𝑖,1 = [𝑘𝑘b,𝑖𝑖 0],       𝐊𝐊𝑖𝑖,2 = [0 0 𝑘𝑘𝑓𝑓,𝑖𝑖]                                (4.19) 

Kontrolcü 𝑘𝑘𝑏𝑏,𝑖𝑖  =  [𝑘𝑘𝑏𝑏,1,   𝑘𝑘𝑏𝑏,2] olarak ifade edilmektedir. Dolayısıyla, (4.11), (4.14) ve 

(4.17) birlikte kullanıldığında şu sonuca ulaşılmıştır. 

𝑍𝑍𝑖𝑖(𝑠𝑠)
𝑊𝑊𝑖𝑖(𝑠𝑠)

= 𝑒𝑒−𝑠𝑠𝜙𝜙𝑖𝑖𝑈̂𝑈𝑖𝑖(𝑠𝑠)
𝑊𝑊𝑖𝑖(𝑠𝑠)

= 𝐴𝐴𝑖𝑖(𝑠𝑠)(1+𝑠𝑠ℎ𝑖𝑖)
𝐴𝐴𝑖𝑖−1(𝑠𝑠)(1+𝑠𝑠ℎ𝑖𝑖)

= Γ𝑖𝑖(𝑠𝑠)                         (4.20) 

Bu sayede, (4.16) ve (4.17) ile tanımlanan model araç dizisinin kararlılık analizi için 

uygun hale getirilmiştir. 

 

KASK modelinde görüldüğü üzere eyleyici gecikmesi zamanla değişmediğinden sabit 

değer olarak alınmıştır. Diğer tarafta, haberleşme gecikmesi zamanla değişen gecikme 

olarak ele alınmıştır. LKF yapıları oluşturulurken, zamanla değişen haberleşme 

gecikmesi için (4.1) ve (4.2)’de tanımlanan zaman kısıtları dikkate alınmıştır. Gerçek 

trafik ortamında, kablosuz haberleşme sırasında zaman gecikmesinin olmama 

ihtimalinden dolayı minimum gecikme kısıtı 𝛿𝛿𝑑𝑑 = 0 ve maksimum gecikme kısıtı 𝛿𝛿𝑢𝑢 =
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𝜃𝜃 olarak kabul edilmiştir. Buna göre, zamanla değişen haberleşme gecikmesi için 0 ≤

𝜃𝜃(𝑡𝑡) ≤ 𝜃𝜃  zaman kısıtı kullanılmıştır. Ayrıca, zaman gecikmesinin türevi için 𝛿̇𝛿(𝑡𝑡) ≤ 𝛿𝛿𝑢𝑢 

maksimum kısıt değeri çalışmada dikkate alınmıştır. Bu genel tanımlar doğrultusunda 

LKF yapıları oluşturulmuştur. 

 

4.2 Bi-Section Algoritması ile Güçlü 𝓛𝓛∞-Dizi Kararlılık Analizi 

Zhu vd. (2020) tarafından önerilen çalışmada haberleşme zaman gecikmesi sabit olarak 

kabul edilmiştir. Öncelikle, Zhu vd. (2020) tarafından önerilen LKF yapıları zamanla 

değişen haberleşme gecikmesi için tekrar düzenlenmiştir. LKF yapılarının çözümü ile 

elde edilen LMI’lar ile ℒ2-dizi kararlılık koşullarını sağlayan kontrolcü sentezi 

yapılmıştır. 

 

Kontrolcü sentezinde yalnızca ℒ2-norm kararlılık şartları arandığından (4.16) ve (4.17) 

sistem için aşağıda verilen Lyapunov kararlılık koşulu tanımlanmıştır.  

 

Lemma 4.1. Sistem modeli (4.16) ve (4.17) için denge noktaları 𝑓𝑓 (𝑡𝑡, 0,0, 0) = 0 ve 

𝑔𝑔(𝑡𝑡, 0, 0,0) = 0 olarak kabul edilsin. Ayrıca, 𝑉𝑉 ∶  𝑅𝑅 ×  𝒲𝒲[−𝛿𝛿, 0]  ×  ℒ2(−𝛿𝛿, 0) → ℝ+ 

fonksiyonu (4.4) koşulunu sağlasın. Herhangi bir bozulma sinyali 𝑤𝑤(𝑡𝑡) ∈ ℒ2[𝑡𝑡0,∞) ve 

𝜌𝜌 > 0 değeri için şu eşitsizlik sağlanırsa sistem asimptotik kararlıdır. 

𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) − 𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡) ≤ 0                          (4.21) 

Eşitlik (4.22) ile verilen koşul garantilenir ve istenilen ℒ2-norm koşulları sağlanır 

(Fridman, 2014). 

 ∥ 𝑧𝑧(𝑡𝑡) ∥ℒ2≤ 𝜌𝜌 ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ2                                         (4.22) 

Lemma 4.1 temel alınarak sabit eyleyici ve zamanla değişen haberleşme gecikmesi ile 

ℒ2-dizi kararlılığını sağlayan kontrolcü sentezi gerçekleştirilmiştir. 
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Teorem 4.2. Sistem modeli (4.16)- (4.17), sabit 𝜙𝜙,𝜃𝜃,ℎ, 𝛿𝛿𝑢𝑢 değerleri ve zamanla değişen 

haberleşme gecikmesi 0 ≤ 𝜃𝜃(𝑡𝑡) ≤ 𝜃𝜃 için pozitif simetrik 𝐿𝐿, 𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅1, 𝑌𝑌1, 𝑌𝑌2, 𝑌𝑌1 

matrisleri ile 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3, 𝑁𝑁1, 𝑉𝑉1, 𝑉𝑉2 matrisleri ancak Ek 3’de verilen LMI kısıtları 

sağlanırsa elde edilir. Böylece, elde edilen geri besleme 𝐾𝐾1 = 𝑉𝑉1 𝐿𝐿−1 ve ileri besleme 

𝐾𝐾2 = 𝑉𝑉2𝐿𝐿−1 kontrol parametreleri sistemi kararlı hale getirir. 

 

Teorem 4.2’nin ispatı Ek 4’te verilmiştir. Bu sayede, zaman gecikmeli hızlandırılmış 

ileri-beslemeli KASK modeli için Teorem 4.2’ye göre ℒ2- dizi kararlılığını sağlayan 

kontrolcü hesaplanmıştır. LKF yapılarının oluşturulması ve çözümü ile detaylı bilgiler 

bölüm 4.3.1’de sunulmuştur. 

 

Bir sonraki bölümde, geliştirilen Bi-Section algoritması ℒ∞-dizi kararlılık koşullarını 

sağlayan kontrolcü kazançları ve minimum yakalama zaman değeri hesaplanmıştır. 

 

4.2.1 Geliştirilen Bi-Section algoritması 

Teorem 4.2 ile yalnızca ℒ2-norm kararlılık koşullarını sağlayan kontrolcü sentezi 

yapılmaktadır. Diğer tarafta, ℒ2-dizi kararlılık koşullarında yalnızca sinyallerin 

enerjileri dikkate alındığından araç dizisi boyunca sinyal genliklerinin artması 

önemsenmez. Bu durum, eyleyicinin doyuma uğramasına ve hatta sistemin kararsız hale 

gelmesine yol açabilir. Diğer tarafta, bölüm 3’te belirtildiği üzere ilgili sinyallerin ℒ∞-

normu sinyal aşmalarını engelleyerek araç dizisindeki muhtemel eyleyici doyumunun 

oluşmasını önlemektedir. Teorem 2.2’de belirtilen güçlü ℒ∞-normunun yeterli kararlılık 

koşullarını sağlamak için kapsamlı Bi-Section algoritması önerilmiştir.  

 

Algoritmanın tanımından önce çalışma için gerekli olan parametreler tanımlanmıştır. 

Öncelikle, çalışmada kullanılan ve Şekil (2.4) ile gösterilen KASK sürüş modelinin ileri 

besleme ve geri besleme modülleri şu şekilde ifade edilmektedir (Zhu vd. 2020). 

𝐾𝐾𝑏𝑏,𝑖𝑖 = (1+𝑠𝑠𝜏𝜏𝑖𝑖)⋅�𝑘𝑘b,1+𝑠𝑠𝑘𝑘b,2�
1+𝑠𝑠ℎ𝑖𝑖

      ve      𝐾𝐾𝑓𝑓,𝑖𝑖 = 𝑘𝑘f,i(1+𝑠𝑠𝜏𝜏𝑖𝑖)
1+𝑠𝑠ℎ𝑖𝑖

                            (4.23) 



87 
 

Teorem 4.2’ye göre kontrolcü parametrelerini hesaplamak için araç parametresi τi, 

eyleyici gecikmesi (𝜙𝜙𝑖𝑖), maksimum haberleşme gecikmesi (𝜃𝜃) ve yakalama zaman 

süresi (ℎ𝑖𝑖)  değerlerinin belirlenmesi gerekmektedir. Yakalama zaman sabiti, birbirini 

takip eden iki aracın birbirini hangi mesafede takip ettiğini göstermektedir. İki araç 

arasındaki bu mesafenin mümkün olduğu kadar az olması istenmektedir. Bu sayede, yol 

kapasitesi artırılarak daha fazla aracın karayolunda seyahat etmesi sağlanır. Geliştirilen 

Bi-Section algoritması ile birlikte minimum yakalama zamanı ve kontrolcü değerleri 

LMI yapılarının yinelemeli olarak kontrol edilmesiyle bulunmuştur. 

 

Güçlü ℒ∞-norm kararlılık koşullarını sağlamak için Teorem 2.2’ye göre  𝛤𝛤(𝑠𝑠) ≤ 1 ve 

𝛾𝛾(𝑡𝑡) ≥ 0 koşullarının aynı anda sağlanması gerekmektedir. Geliştirilen Bi-Section 

algoritmasında, ℒ2-norm kararlılık koşulunu sağlayan en küçük yakalama süresi zamanı 

ℎℒ2 ifade edilmiştir. Güçlü ℒ∞-dizi kararlılığı için ℎℒ2 alt sınır ve ℎℒ∞
𝑢𝑢  üst sınır olarak 

tanımlanmıştır. Buna göre, ℎℒ2 ≤ ℎ𝑖𝑖 ≤ ℎℒ∞
𝑢𝑢  aralığında 𝛾𝛾(ℎ𝑖𝑖) ≥ 0 eşitsizliğini sağlayan 

ℎℒ∞ yakalama zamanı süresi ve geri besleme kontrolcüsü 𝐾𝐾𝑏𝑏,ℒ∞  hesaplanmıştır. 

Algoritmada, 𝜅𝜅 tolerans değerini göstermektedir. Algoritma, dizi kararlılık koşullarının 

daha kolay takip edilebilmesi için iki parça halinde gösterilmiştir. Geliştirilen Bi-

Section Algoritması (A) ile ℒ2-dizi kararlılık koşullarını sağlayan minimum yakalama 

zamanı değeri hesaplanmıştır. Algoritmanın devamında, Geliştirilen Bi-Section 

Algoritması (B) ile güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü kazançları ve 

uygun yakalama zamanı değeri hesaplanmıştır. ℎℒ∞  = Bi-Section (𝛾𝛾(ℎ𝑖𝑖),ℎℒ2 ,ℎℒ∞
𝑢𝑢 , 𝜅𝜅) 

metodu algoritma ile açıklanmıştır. Algoritmada, gösterimi sadeleştirmek için 

87eğişkenlerden ve parametrelerden 𝑖𝑖 alt indisi çıkartılmıştır. 
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Geliştirilen Bi-Section Algoritması (A):  

 

Başlangıç: 𝜏𝜏 yürüyen aksam zaman sabiti atanır.  

Zaman gecikme değerleri 𝜙𝜙 ve 𝜃𝜃 tanımlanır.  

Haberleşme gecikme türevinin üst sınırı 𝛿𝛿𝑢𝑢 tanımlanır.  

Tolerans değeri κ atanır. 

İlk döngü için maksimum ℎ𝑡𝑡𝑢𝑢 ve minimum ℎ𝑡𝑡𝑙𝑙  sınır değerleri tanımlanır.  

 

1. ℎ𝑡𝑡𝑢𝑢 − ℎ𝑡𝑡𝑙𝑙 < 𝜅𝜅  eşitsizliği sağlanana kadar döngü devam eder.  

a. ℎ𝑡𝑡 =  ℎ𝑡𝑡
𝑢𝑢+ℎ𝑡𝑡

𝑙𝑙

𝟐𝟐
   değeri hesaplanır. 

b. ℎ𝑡𝑡 ,𝜙𝜙,𝜃𝜃 değerleri ile kontrol kazanç değerleri 𝑘𝑘𝑏𝑏,1, 𝑘𝑘𝑏𝑏,2,𝑘𝑘𝑓𝑓 Teorem 4.2 

ile bulunur. 

c. 𝜏𝜏, 𝜙𝜙, 𝜃𝜃, 𝑘𝑘𝑏𝑏,1,ℒ2 , 𝑘𝑘𝑏𝑏,2,ℒ2 , 𝑘𝑘𝑓𝑓,ℒ2 ile ℎ𝑡𝑡 ve ℎ𝑡𝑡𝑢𝑢 için kapalı-döngü transfer 

fonksiyonu hesaplanır. 

 

                                Γ(𝑠𝑠) = 𝐺𝐺�𝐾𝐾b+𝑠𝑠2𝐷𝐷𝐾𝐾f�
1+𝐾𝐾𝑏𝑏𝐻𝐻𝐻𝐻

       

 
d.  Eğer sigma(|𝛤𝛤(ℎ𝑡𝑡) –  1|)  = sigma(|𝛤𝛤(ℎ𝑡𝑡𝑢𝑢) –  1|) ise ℎ𝑡𝑡 değeri şu 

şekilde hesaplanır.  

ℎ𝑡𝑡𝑢𝑢 = ℎ𝑡𝑡  aksi halde ℎ𝑡𝑡𝑙𝑙 = ℎ𝑡𝑡 

e.  ℎ𝑢𝑢  ∶= ℎℒ∞
𝑢𝑢 ,  ℎ𝑙𝑙  ∶= ℎℒ2  olarak güncellenir. 
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Geliştirilen Bi-Section Algoritması (B):  

 

Başlangıç: 𝜏𝜏 yürüyen aksam zaman sabiti atanır.  

Zaman gecikme değerleri 𝜙𝜙 ve 𝜃𝜃 tanımlanır.  

Haberleşme gecikme türevinin üst sınırı 𝛿𝛿𝑢𝑢 tanımlanır.  

Tolerans değeri κ atanır. 

İlk döngü için maksimum ℎℒ∞
𝑢𝑢  sınır değerleri tanımlanır.  

 

2. ℎ𝑡𝑡𝑢𝑢 − ℎ𝑡𝑡𝑙𝑙 < 𝜅𝜅  eşitsizliği sağlanana kadar döngü devam eder.  

a. ℎℒ∞ =  ℎ
𝑢𝑢+ℎ𝑙𝑙

2
   değeri hesaplanır. 

b. ℎℒ∞ değeri için  𝑘𝑘𝑏𝑏,1,ℒ∞ , 𝑘𝑘𝑏𝑏,2,ℒ∞ , 𝑘𝑘𝑓𝑓,ℒ∞ değerleri Teorem 4.2 ile bulunur. 

c. Güncel veriler ile dürtü yanıtı 𝛾𝛾(𝑡𝑡) hesaplanır. 

d. Eğer  𝛾𝛾�ℎℒ∞� ≥  0 saglanırsa  

ℎ𝑢𝑢   = ℎℒ∞  aksi halde  ℎ𝑙𝑙   = ℎℒ∞  değerine eşit olur. 

e. ℒ∞-dizi kararlılık koşulunu sağlayan en uygun yakalama zamanı değeri 

bulunur. 

ℎℒ∞ =  ℎ𝑢𝑢 

f. 𝑘𝑘𝑏𝑏,1,ℒ∞ , 𝑘𝑘𝑏𝑏,2,ℒ∞ , 𝑘𝑘𝑓𝑓,ℒ∞ kontrol kazançları güncellenir. 

 
 

 

Bir sonraki bölümde, zaman gecikmesi altında ℒ2-dizi kararlılığı ve ℒ∞-dizi 

kararlılığını garantileyen kontrolcü parametreleri ile minimum yakalama zamanı değeri 

homojen araç dizisiyle değerlendirilmiştir. 

 

4.2.2 Değerlendirme  

Haberleşme ve eyleyici zaman gecikmesi altında kontrolcü sentezinin sonuçları 

Matlab/Simulink’te test edilmiştir. KASK donanımlı beş araçtan oluşan homojen araç 

dizisinde lider araç indeksi 𝑖𝑖 = 1 olarak alınmıştır. 
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Doğrusal dinamik araç modelinin kullanıldığı çalışmada yürüyen aksam zaman sabiti  

𝜏𝜏 = 𝜏𝜏𝑖𝑖 = 0.1 𝑠𝑠 olarak alınmıştır. Ayrıca, doğrusal modelde eyleyici gecikmesi  𝜙𝜙 =

𝜙𝜙𝑖𝑖 = 0.2 𝑠𝑠 olarak tercih edilmiştir. Geliştirilen Bi-Section algoritması için gerekli olan 

diğer parametreler çizelge 4.1’de gösterilmiştir.  

 

Çizelge 4.1 Geliştirilen Bi-Section algoritması için parametreler 

𝜃𝜃 =  0.2 [s]  𝛿𝛿𝑢𝑢 =  0.3 [-]  ℎ𝑡𝑡𝑢𝑢 =  1 [s]  ℎ𝑡𝑡𝑙𝑙 =  0.01 [s]  ℎℒ∞
𝑢𝑢  =  4 [s]  𝜅𝜅 =  103 [-] 

 

Teorem 4.2 ve geliştirilen Bi-Section algoritması ile elde edilen yakalama zamanı ve 

kontrolcü değerleri çizelge 4.2 ile gösterilmiştir. Algoritmada, literatürle tutarlı olması 

için ileri besleme kazancı 𝑘𝑘𝑓𝑓,ℒ2 = 1 [-] ve 𝑘𝑘𝑓𝑓,ℒ∞ = 1 [-] olarak alınmıştır. Elde edilen 

kontrolcü değerlerinin dizi kararlılığına etkileri ℒ2-norm ve ℒ∞-norm için incelenmiştir. 

 

Çizelge 4.2 Minimum yakalama zamanı ve kontrolcü kazançları 

No Yakalama zamanı Kontrolcü kazançları 

1. ℎℒ2 = 0.6614 [s] 𝑘𝑘𝑏𝑏,1,ℒ2 =  1.7963 [-] 𝑘𝑘𝑏𝑏,2,ℒ2 =  2.9352 [-] 

2. ℎℒ∞ =  1.2640 [s] 𝑘𝑘𝑏𝑏,1,ℒ∞ =   2.1435 [-] 𝑘𝑘𝑏𝑏,2,ℒ∞ =  3.4685 [-] 
 

Öncelikle, ℒ2-norm için elde edilen yakalama zamanı ℎℒ2 =0.6614 s ve kontrolcü 

değerleri KASK donanımlı homojen araç dizisine uygulanmıştır. Homojen araç 

dizisinde lider araca Şekil 4.1 ile gösterilen giriş sinyali uygulanmıştır. Ayrıca, Teorem 

4.2’de kontrolcü sentezi zamanla değişen haberleşme gecikmesi için yapılmasına 

rağmen benzetim çalışmalarında sabit haberleşme gecikmesi kullanılmıştır. 

Matlab/Simulink’te her 𝑖𝑖 (𝑖𝑖 = 2,· · · , 5) aracı için haberleşme gecikmesi 𝜃𝜃 = 𝜃𝜃𝑖𝑖 = 0.2 𝑠𝑠 

olarak alınmıştır. 
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Şekil 4.1 Homojen araç dizisine uygulanan giriş sinyali 

Şekil 4.2 (a) ile gösterildiği üzere ivme sinyalinin araç dizisi boyunca sönümlendiği ve  

‖𝑦𝑦𝑖𝑖‖ℒ2  ≤  ‖𝑦𝑦𝑖𝑖−1‖ℒ2 eşitsizliğinin sağlandığı görülmektedir. Böylece, bölüm 2.3’te 

tanımlanan ℒ2-norm kararlılık koşulu (2.49) her 𝑖𝑖 (𝑖𝑖 = 2,3, 4) aracı için garanti 

edilmiştir. Beklenildiği üzere, dürtü yanıtının bir süre sonra işaret değiştirdiği ve negatif 

olduğu Şekil 4.2 (b)’de görülmektedir. 

 

Şekil 4.2 ℒ2-dizi kararlılık sonucu ve (2.48) dürtü yanıtı 

Dürtü yanıtının işaret değiştirmesi takipçi araçların ivme sinyallerinin lider araç ivme 

sinyal değerini aştığının bir göstergesidir. Sonuç olarak, haberleşme gecikmesi ve 

eyleyici gecikmesi altında ℒ2-dizi kararlılığı araç dizisi boyunca korunmaktadır. Diğer 
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tarafta, 𝛾𝛾(𝑡𝑡)  ≥  0 eşitsizlik koşulu sağlanmadığından güçlü ℒ∞-dizi kararlılığının ihlal 

edildiği görülmektedir. 

Güçlü ℒ∞-dizi kararlılık sonuçları yakalama zamanı  ℎℒ∞ =  1.2640 𝑠𝑠 ve kontrolcü 

değerleri için Şekil 4.3’de gösterilmiştir. Şekil 4.3 (a)’da takipçi araç ivme sinyallerinin 

lider araç sinyal sınırları içerisinde kaldığı görülmektedir. İvme sinyalinin araç dizisi 

boyunca sınır değerleri içerisinde kaldığı görülmektedir. Böylece, (2.52)’de gösterilen 

‖𝑦𝑦𝑖𝑖‖ℒ∞  ≤  ‖𝑦𝑦𝑖𝑖−1‖ℒ∞ eşitsizliği her 𝑖𝑖. araç için sağlanmaktadır. Bu ise Şekil 4.3 (b) ile 

gösterilen dürtü yanıtının pozitif olmasının bir sonucudur. Sonuç olarak, (2.51)’de 

tanımlanan ℒ∞-norm kararlılık koşulları her 𝑖𝑖 (𝑖𝑖 = 2, 3,4) aracı için sağlanmaktadır. 

 

Şekil 4.3 ℒ∞-dizi kararlılık sonucu ve (2.48) dürtü yanıtı 

Benzetim sonuçlar ile ℒ∞-norm analizinin ℒ2-norm analizine kıyasla daha yavaş tepki 

gösterdiği açıktır. Fakat, bu durumun tezde önerilen yöntem için bir dezavantaj 

olmadığını vurgulamak gerekmektedir. Çünkü, bu tezin temel hedeflerinden birisi 

eyleyici doyumunu engellemektir. Bu ise ancak ‖𝑦𝑦𝑖𝑖‖ℒ∞  ≤  ‖𝑦𝑦𝑖𝑖−1‖ℒ∞ koşulu 

sağlandığında gerçekleşmektedir. Diğer tarafta, ℒ2-normu için ‖𝑦𝑦𝑖𝑖‖ℒ2  ≤  ‖𝑦𝑦𝑖𝑖−1‖ℒ2 

koşulu potansiyel olarak eyleyici doyumuna sebep olmaktadır. 
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Bir sonraki başlıkta LMI ile güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü 

sentezi için orijinal bir yöntem önerilmiştir. 

4.3 LMI ile Güçlü 𝓛𝓛∞-Dizi Kararlılık Analizi 

Doğrudan LMI ile güçlü ℒ∞-norm koşullarını sağlayabilmek için LKF yapılarına uygun 

besleme fonksiyonlarının eklenmesi gerekmektedir. Lyapunov yaklaşımı ile yeterli ℒ∞-

dizi kararlılık koşullarını sağlayan genel bir sonuç Lemma 4.2’de önerilmiştir.  

Lemma 4.2. Eşitlik (4.6) ve (4.7) ile verilen sistem ele alınsın. Denge noktaları 

𝑓𝑓 (𝑡𝑡, 0,0, 0) = 0 ve 𝑔𝑔(𝑡𝑡, 0, 0,0) = 0 olduğu varsayılsın. Aynı zamanda 𝑉𝑉:𝑅𝑅 ×

 𝒲𝒲[−𝛿𝛿, 0]  ×  ℒ2(−𝛿𝛿, 0) → 𝑅𝑅+ fonksiyonu (4.4) koşulunu sağlayan sürekli fonksiyon 

olsun. Eğer 𝛬𝛬 > 0 için aşağıda verilen eşitlik sağlanırsa 

1
Λ
𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 1

Λ2
𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡) + 2𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) − 𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡) ≤ 0   (4.24) 

sistem asimptotik olarak kararlıdır ve şu eşitsizlik sağlanır. 

∥ 𝑧𝑧(𝑡𝑡) ∥ℒ∞≤ 𝜌𝜌 ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ∞                                  (4.25) 

İspat. Öncelikle (4.4)’e göre, 𝑉𝑉 (𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡) ≥ 𝑢𝑢(∥ 𝑥𝑥(𝑡𝑡) ∥) eşitsizliğinin doğruluğu 

bilinmektedir. Ayrıca, (4.24)’de 𝑤𝑤(𝑡𝑡) = 0, 𝑧̇𝑧𝑇𝑇(𝑡𝑡) 𝑧̇𝑧(𝑡𝑡) ≥ 0 ve 𝑧𝑧𝑇𝑇(𝑡𝑡) 𝑧𝑧(𝑡𝑡) ≥ 0 için şu 

eşitsizlik ifade edilir. 

𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) ≤ −Λ 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) ≤ −Λ 𝑢𝑢(∥ 𝑥𝑥(𝑡𝑡) ∥)                           (4.26) 

Teorem 4.1’e göre (4.6) ile tanımlanan sistemi doğrudan asimptotik olarak kararlıdır. 

Bu durumda, (4.25)’i ispat etmek için aşağıda verilen genel eşitsizlik kullanılmıştır. 

1
Λ

 𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) +  1
Λ

 𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡) ≤  𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) +  1
Λ2

 𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡)             (4.27) 
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Sonrasında (4.24) ve (4.27)’i kullanarak aşağıda verilen eşitsizlik elde edilmiştir. 

1
Λ
𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 1

Λ
𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) + 1

Λ
𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡) + 𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) ≤ 𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡)    (4.28) 

 

Eşitsizliğin her iki tarafı  𝛬𝛬 𝑒𝑒𝛬𝛬 𝑡𝑡 > 0 ile çarpıldığında şu eşitsizliğe ulaşılır.  

𝑒𝑒Λ𝑡𝑡 �𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + Λ𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡)� + 𝑒𝑒Λ𝑡𝑡(𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡) + 𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) 

 

 + Λ𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡)) ≤ Λ𝑒𝑒Λ𝑡𝑡𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡)                                               (4.29) 

Sonrasında, eşitsizliğin zamana göre türevi alınır ve aşağıda verilen eşitlik elde edilir.  

𝑒𝑒Λ𝑡𝑡�𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) − 𝑉𝑉(0,𝜙𝜙(0), 𝜙̇𝜙(0))� + 𝑒𝑒Λ𝑡𝑡𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) ≤ 𝜌𝜌2∫0
𝑡𝑡 Λ𝑒𝑒Λ𝑡𝑡𝑤𝑤𝑇𝑇(𝑠𝑠)𝑤𝑤(𝑠𝑠)𝑑𝑑𝑑𝑑   (4.30) 

Burada, 𝜙𝜙(0) ile 𝜙̇𝜙(0) sırasıyla 𝑥𝑥𝑡𝑡 ile 𝑥𝑥𝑡̇𝑡 başlangıç değerlerini göstermektedir. Burada, 

𝑤𝑤𝑇𝑇(𝑠𝑠)𝑤𝑤(𝑠𝑠) ≤ ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ∞
2   üst sınırını kullanarak şu eşitsizliğe ulaşılır. 

𝑒𝑒Λ𝑡𝑡�𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) − 𝑉𝑉(0,𝜙𝜙(0), 𝜙̇𝜙(0))� + 𝑒𝑒Λ𝑡𝑡𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) 

 

≤ 𝜌𝜌2 ∫  𝑡𝑡0  Λ𝑒𝑒Λ𝑠𝑠 ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ∞
2 𝑑𝑑𝑑𝑑 ≤ 𝜌𝜌2𝑒𝑒Λ𝑡𝑡 ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ∞

2                 (4.31) 

Bu eşitsizlikte, 𝜙𝜙(0) = 𝜙̇𝜙(0) ≡ 0 için 𝑉𝑉 (0,𝜙𝜙(0), 𝜙̇𝜙 (0)) = 0  sonucuna ulaşılır. Bu 

durumda aşağıda verilen eşitsizlik elde edilmiştir. 

    𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡)+∥ 𝑧𝑧(𝑡𝑡) ∥ℒ∞
2 − 𝜌𝜌2 ∥ 𝑤𝑤(𝑡𝑡) ∥ℒ∞

2 ≤ 0                             (4.32) 

Sonuç olarak, 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡̇𝑡 ) ≥ 0 eşitsizliği için (4.25) koşulunun sağlandığı ispat 

edilmiştir. Böylelikle, asimptotik kararlılık ve ℒ∞-norm kararlılık koşulu 

sağlanmaktadır. 
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4.3.1 Temel teorem 

Durum-uzay modeli kullanılarak teorem formüle edilmiştir. Gösterimi sadeleştirmek 

için 95eğişkenler95en ve parametrelerden 𝑖𝑖 alt indisi çıkartılmıştır. Değerlendirmenin 

herhangi bir 𝑖𝑖. araç için geçerli olduğu varsayılmıştır.  

 

Teorem 4.3. Zaman gecikmeli sistem (4.16) ve (4.17) ile sabit ℎ,𝜙𝜙,𝜃𝜃,𝜌𝜌,𝛬𝛬,  𝛿𝛿𝑢𝑢 değerleri 

ve zamanla değişen gecikme için 0 ≤ 𝜃𝜃(𝑡𝑡) ≤ 𝜃𝜃,  ele alınsın. Uygun boyutlardaki 

matrisler 𝑉𝑉1, 𝑉𝑉2, 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3 ve pozitif tanımlı simetrik matrisler 𝑄𝑄, 𝑆𝑆1, 𝑆𝑆2, 𝑌𝑌1, 𝑌𝑌2 için 

aşağıda verilen LMI kısıtları sağlanır. 

       

⎣
⎢
⎢
⎢
⎢
⎢
⎡Ψ0 + Ψ2 + Ψ2𝑇𝑇 + 𝜙𝜙Y1 + 𝜃𝜃‾Y2 �𝜙𝜙

Λ
Ψ1𝑇𝑇 �𝜃𝜃‾

Λ
Ψ1𝑇𝑇 Ψ3𝑇𝑇 Ψ4𝑇𝑇

∗ −Q 0 0 0
∗ ∗ −Q 0 0
∗ ∗ ∗ − 1

2
0

∗ ∗ ∗ ∗ −Λ2I⎦
⎥
⎥
⎥
⎥
⎥
⎤

≤ 0         (4.33) 

  �
𝑌𝑌1 𝑁𝑁1
∗ Q �1

Λ
− 𝜙𝜙� + 4𝜙𝜙2

𝜋𝜋2
S1
� ≥ 0,          �

𝑌𝑌1 𝑁𝑁𝑖𝑖
∗ Q �1

Λ
− 𝜃𝜃‾� + 4𝜃𝜃‾ 2

𝜋𝜋2
S2
� ≥ 0, 𝑖𝑖 = 2,3   (4.34) 

   𝑄𝑄 = �𝑄𝑄1 0
0 𝑄𝑄_2�,    𝑉𝑉1 = [𝑘𝑘𝑏𝑏     0],       𝑉𝑉2 = [0      𝑘𝑘𝑓𝑓]                      (4.35) 

   Ψ0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

AQ+QA 𝑇𝑇

Λ + S1
Λ + Q B

ΛV1
B
ΛV2 0 0 0 C

Λ

∗ S2−S1
Λ 0 0 0 0 0

∗ ∗ −�1− 𝛿𝛿‾𝑢𝑢�
S2
Λ 0 0 0 0

∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜌𝜌2I⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                     (4.36) 

 

 Ψ1 = [AQ BV1 BV2 0 0 0 𝐶𝐶]                                  (4.37) 
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  Ψ2 = [N1 −N1 + N2 −N2 + N3 −N3 0 0 0]                     (4.38) 

  Ψ3 = [0 V1 V2 0 0 0 0]                                        (4.39) 

 Ψ4 = [0 0 0 0 V1 V2 0]                                        (4.40) 

Sonuç olarak, kazanç değerleri 𝑲𝑲1 = 𝑽𝑽1 𝑸𝑸−1 ve 𝑲𝑲2 = 𝑽𝑽2 𝑸𝑸−1 için (4.16) ve (4.17) ile 

tanımlanan kapalı-döngü sistemi güçlü ℒ∞-dizi kararlıdır. 

 

İspat.  Öncelikle, (4.4) doğrultusunda aday LKF aşağıdaki şekilde tanımlanmıştır. 

𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) = 𝑉𝑉1(𝑥𝑥(𝑡𝑡)) + 𝑉𝑉2(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉3(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉4(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉5(𝑥̇𝑥𝑡𝑡)             (4.41) 

Eşitlikteki 𝑉𝑉1(𝑥𝑥(𝑡𝑡)), 𝑉𝑉2( 𝑥𝑥𝑡̇𝑡 ) , 𝑉𝑉3( 𝑥𝑥𝑡̇𝑡 ), 𝑉𝑉4( 𝑥𝑥𝑡̇𝑡 ) ve 𝑉𝑉5( 𝑥𝑥𝑡̇𝑡 )fonksiyonları aşağıdaki gibi 

şekilde seçilmiştir. 

  𝑉𝑉1(𝑥𝑥(𝑡𝑡)) = 𝑥𝑥(𝑡𝑡)𝑇𝑇P𝑥𝑥(𝑡𝑡)                                            (4.42) 

𝑉𝑉2(𝑥̇𝑥𝑡𝑡) = ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙 𝑥𝑥𝑇𝑇(𝑠𝑠)R1𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                     (4.43) 

𝑉𝑉3(𝑥̇𝑥𝑡𝑡) = ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡) 𝑥𝑥

𝑇𝑇(𝑠𝑠)R2𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                (4.44) 

𝑉𝑉4(𝑥̇𝑥𝑡𝑡) = ∫  0
−𝜙𝜙 ∫  𝑡𝑡

𝑡𝑡+𝑟𝑟 𝑥̇𝑥
𝑇𝑇(𝑠𝑠)Z1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                               (4.45) 

𝑉𝑉5(𝑥̇𝑥𝑡𝑡) = ∫  0
−𝜃𝜃‾ ∫  𝑡𝑡−𝜙𝜙

𝑡𝑡−𝜙𝜙+𝑟𝑟 𝑥̇𝑥
𝑇𝑇(𝑠𝑠)Z2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                             (4.46) 

Burada, 𝑉𝑉2(𝑥𝑥𝑡̇𝑡)  ve 𝑉𝑉3(𝑥𝑥𝑡̇𝑡)  fonksiyonlarının 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑡̇𝑡) fonksiyonunda kullanabilmesi 

ve koşulların tutuculuğunu (conservative) azaltmak için Lemma 4.3 (Fridman 2014) ile 

belirtilen Wirtinger eşitsizliği kullanılmıştır.  
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Lemma 4.3. 𝑧𝑧(𝑡𝑡) ∶ (𝑎𝑎, 𝑏𝑏) → ℝ𝑛𝑛 sürekli fonksiyonu için   𝑧̇𝑧 ∈ ℒ∞ ve 𝑧𝑧(𝑎𝑎) = 0. Herhangi 

bir 𝑛𝑛 𝑥𝑥 𝑛𝑛 boyuttaki W matrisi için şu eşitlik sağlanır. 

 ∫  𝑎𝑎𝑏𝑏 𝑧𝑧𝑇𝑇(𝑟𝑟)𝑊𝑊𝑊𝑊(𝑟𝑟)𝑑𝑑𝑑𝑑 ≤ 4(𝑏𝑏−𝑎𝑎)2

𝜋𝜋2 ∫  𝑎𝑎𝑏𝑏 𝑧̇𝑧𝑇𝑇(𝑟𝑟)𝑊𝑊𝑧̇𝑧(𝑟𝑟)𝑑𝑑𝑑𝑑                           (4.47) 

Lemma 4.3’e göre 𝑉𝑉2(𝑥𝑥𝑡̇𝑡) aşağıdaki şekilde düzenlenmiştir. 

 𝑉𝑉2(𝑥̇𝑥𝑡𝑡) ≤
4𝜙𝜙2

𝜋𝜋2 ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙 𝑥̇𝑥𝑇𝑇(𝑠𝑠)R1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                (4.48) 

Ayrıca, 𝑉𝑉3(𝑥𝑥𝑡̇𝑡) fonksiyonu aşağıdaki şekilde yazılmıştır. 

𝑉𝑉3(𝑥𝑥𝑡̇𝑡)  ≤ 4𝜃𝜃‾ 2

𝜋𝜋2 ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃‾   𝑥̇𝑥

𝑇𝑇(𝑥𝑥)R2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                                           (4.49) 

≤ 4𝜃𝜃‾ 2

𝜋𝜋2 ∫  𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)
𝑡𝑡−𝜙𝜙−𝜃𝜃‾ 𝑥̇𝑥𝑇𝑇(𝑠𝑠)R2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑 + 4𝜃𝜃‾ 2

𝜋𝜋2 ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)   𝑥̇𝑥

𝑇𝑇(𝑠𝑠)R2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑  (4.50) 

Sonrasında, yukarıda tanımlanan aday fonksiyonlarının türevleri 

𝑉𝑉 ̇ (𝑡𝑡, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑡̇𝑡 ) hesaplanmıştır. 

      𝑉𝑉 ̇ (𝑡𝑡, 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑡̇𝑡 ) = 𝑉̇𝑉1(𝑥𝑥(𝑡𝑡)) + 𝑉̇𝑉2(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉3(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉4(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉5(𝑥̇𝑥𝑡𝑡)         

                        = 𝑥̇𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑇𝑇𝑥𝑥(𝑡𝑡) + 𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑥̇𝑥(𝑡𝑡) +  𝜙𝜙𝑥̇𝑥𝑇𝑇(𝑡𝑡)Z1𝑥̇𝑥(𝑡𝑡) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙   𝑥̇𝑥

𝑇𝑇(𝑠𝑠)Z1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑      

                         + 𝜃𝜃‾𝑥̇𝑥𝑇𝑇(𝑡𝑡)Z2𝑥̇𝑥(𝑡𝑡) − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃̇𝜃   𝑥̇𝑥

𝑇𝑇(𝑠𝑠)Z2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                                                                       

              + 𝑥𝑥𝑇𝑇(𝑡𝑡 − 𝜙𝜙)R2𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − �1 − 𝛿𝛿‾𝑢𝑢�𝑥𝑥𝑇𝑇(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡))R2𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡))       

(4.51) 

Bir sonraki aşamada, uygun boyutlardaki 𝑀𝑀1, 𝑀𝑀2 ve 𝑀𝑀3 ile Newton-Leibniz kuralı 

uygulandığında aşağıda verilen eşitlikler yazılmıştır. 
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 2𝜁𝜁(𝑡𝑡)M1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0                             (4.52) 

2𝜁𝜁(𝑡𝑡)M2 �𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡)) − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0            (4.53) 

2𝜁𝜁(𝑡𝑡)M3 �𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡)) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃‾) − ∫  𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)
𝑡𝑡−𝜙𝜙−𝜃𝜃‾   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0       (4.54) 

Bunlara ek olarak, 𝑋𝑋1 ve 𝑋𝑋2 matrisleri birlikte aşağıdaki eşitlikler tanımlanmıştır (Wu 

vd. 2010). 

 
𝜙𝜙𝜙𝜙(𝑡𝑡)X1𝜁𝜁𝑇𝑇(𝑡𝑡) − ∫  𝑡𝑡

𝑡𝑡−𝜙𝜙  𝜁𝜁
𝑇𝑇(𝑡𝑡)X1𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0                          (4.55) 

𝜃𝜃‾𝜁𝜁(𝑡𝑡)X2𝜁𝜁𝑇𝑇(𝑡𝑡) − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃‾  𝜁𝜁

𝑇𝑇(𝑡𝑡)X2𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0                       (4.56) 

Ayrıca, durum vektörü 𝜁𝜁(𝑡𝑡)  =  �𝑥𝑥(𝑡𝑡)  𝑥𝑥(𝑡𝑡 –𝜙𝜙)    𝑥𝑥�𝑡𝑡 –𝜙𝜙 − 𝜃𝜃(𝑡𝑡)�   𝑥𝑥�𝑡𝑡 –𝜙𝜙 −

𝜃𝜃�    𝑥̇𝑥(𝑡𝑡 –𝜙𝜙)   𝑥̇𝑥�𝑡𝑡 –  𝜙𝜙 –  𝜃𝜃(𝑡𝑡)�   𝑤𝑤(𝑡𝑡)�
𝑇𝑇
 olarak tanımlanmıştır. Sonrasında, eşitlikler 

(4.41), (4.51) ile birlikte (4.52)- (4.56) kullanılarak eşitlik (4.24) elde edilmiştir.  

    1
Λ
𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 1

Λ2
𝑧̇𝑧𝑇𝑇(𝑡𝑡)𝑧̇𝑧(𝑡𝑡) + 2𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) − 𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡) 

= 𝜁𝜁𝑇𝑇(𝑡𝑡)�Φ0 + Φ1
𝑇𝑇 𝜙𝜙𝑍𝑍1 + 𝜃𝜃‾𝑍𝑍2

Λ
Φ1 + Φ2

𝑇𝑇 + Φ2 + 2Φ3
𝑇𝑇Φ3 +

1
Λ2
Φ4
𝑇𝑇Φ4 + 𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2� 𝜁𝜁(𝑡𝑡) 

                          −∫  𝑡𝑡
𝑡𝑡−𝜙𝜙 𝜂𝜂𝑇𝑇(𝑡𝑡, 𝑠𝑠) �

𝑋𝑋1 𝑀𝑀1

∗ 𝑍𝑍1 �
1
Λ
− 𝜙𝜙� + 4𝜙𝜙2

𝜋𝜋2
𝑅𝑅1
� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑          

−∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡) 𝜂𝜂

𝑇𝑇(𝑡𝑡, 𝑠𝑠) �
𝑋𝑋2 𝑀𝑀2

∗ 𝑍𝑍2 �
1
Λ
− 𝜃𝜃‾� − 4𝜃𝜃‾ 2

𝜋𝜋2
𝑅𝑅2
� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑  

−∫  𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)
𝑡𝑡−𝜙𝜙−𝜃𝜃‾ 𝜂𝜂𝑇𝑇(𝑡𝑡, 𝑠𝑠) �

𝑋𝑋2 𝑀𝑀3

∗ 𝑍𝑍2 �
1
Λ
− 𝜃𝜃‾� − 4𝜃𝜃‾ 2

𝜋𝜋2
𝑅𝑅2
� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑              (4.57) 
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Burada, 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑇𝑇  = [𝜁𝜁𝑇𝑇(𝑡𝑡)  𝑥̇𝑥𝑇𝑇(𝑠𝑠)] olarak tanımlanmıştır. Ayrıca, Φ0, Φ1, Φ2, Φ3 ve 

Φ4 matrisleri aşağıdaki gibi tanımlanmıştır. 

Φ0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐴𝐴𝑇𝑇𝑃𝑃+𝑃𝑃𝑃𝑃

Λ
+ 𝑃𝑃 + 𝑅𝑅1

Λ
𝑃𝑃𝑃𝑃𝐾𝐾1
Λ

𝑃𝑃𝑃𝑃𝐾𝐾2
Λ

0 0 0 𝑃𝑃𝑃𝑃
Λ

∗ 𝑅𝑅2−𝑅𝑅1
Λ

0 0 0 0 0

∗ ∗ −�1 − 𝛿𝛿‾𝑢𝑢�
𝑅𝑅2
Λ

0 0 0 0
∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜌𝜌2I⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

              (4.58) 

  Φ1 = [𝐴𝐴 𝐵𝐵𝐾𝐾1 𝐵𝐵𝐾𝐾2 0 0 0 𝐶𝐶]                               (4.59) 

Φ2 = [𝑀𝑀1 𝑀𝑀2 −𝑀𝑀1 𝑀𝑀3 −𝑀𝑀2 −𝑀𝑀3 0 0 0]                   (4.60) 

Φ3 = [0 𝐾𝐾1 𝐾𝐾2 0 0 0 0]                                    (4.61) 

Φ4 = [0 0 0 0 𝐾𝐾1 𝐾𝐾2 0]                                    (4.62) 

Böylece, eğer aşağıda verilen eşitsizlikler sağlanırsa istenilen sonuç elde edilmiş olur. 

Φ0 + Φ1
𝑇𝑇 𝜙𝜙𝑍𝑍1+𝜃𝜃‾𝑍𝑍2

Λ
Φ1 + Φ2

𝑇𝑇 + Φ2 + 2Φ3
𝑇𝑇Φ3 + 1

Λ2
Φ4
𝑇𝑇Φ4 + 𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2 < 0     (4.63) 

�
𝑋𝑋1 𝑀𝑀1

∗ 𝑍𝑍1 �
1
Λ
− 𝜙𝜙� − 4𝜙𝜙2

𝜋𝜋2
𝑅𝑅1
� ≥ 0,    �

𝑋𝑋2 𝑀𝑀𝑖𝑖

∗ 𝑍𝑍2 �
1
Λ
− 𝜃𝜃‾� − 4𝜃𝜃‾ 2

𝜋𝜋2
𝑅𝑅2
� ≥ 0,  𝑖𝑖 = 2,3   (4.64) 

Ancak (4.63) ve (4.64)’ün LMI formunda olmadığını belirtmek gerekmektedir. 

Öncelikle, elde edilen matris eşitsizliklerine Schur tamamlayıcısı uygulanır. Schur 

formülü, dışbükey seklindeki doğrusal olmayan eşitsizliklerin LMI’ye 

dönüştürülmesinde kullanılmaktadır. 
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Lemma 4.4. LMI matrisi için 𝑥𝑥’e bağlı 𝑆𝑆1(𝑥𝑥)  =  𝑆𝑆1𝑇𝑇(𝑥𝑥), 𝑆𝑆3(𝑥𝑥)  =  𝑆𝑆3𝑇𝑇(𝑥𝑥) ve 

𝑆𝑆2(𝑥𝑥) tanımlansın. 

 

�
𝑆𝑆1(𝑥𝑥) 𝑆𝑆2(𝑥𝑥)
𝑆𝑆2𝑇𝑇(𝑥𝑥) 𝑆𝑆3(𝑥𝑥)� < 0                                      (4.65) 

Bu kural, Schur tamamlayıcısı olarak bilinir (Boyd vd. 1994). 

𝑆𝑆3(𝑥𝑥) < 0,  𝑆𝑆1(𝑥𝑥) − 𝑆𝑆2(𝑥𝑥)𝑆𝑆3(𝑥𝑥)−1𝑆𝑆2𝑇𝑇(𝑥𝑥) < 0                 (4.66) 

Lemma 4.4’de tanımlanan Schur tamamlayıcısı (4.63)’e uygulandığında (4.67) elde 

edilmiştir. 

⎣
⎢
⎢
⎢
⎢
⎢
⎡Φ0 + Φ2 + Φ2

𝑇𝑇 + 𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2 �𝜙𝜙
Λ
Φ1
𝑇𝑇𝑍𝑍1 �𝜃𝜃‾

Λ
Φ1
𝑇𝑇𝑍𝑍2 Φ3

𝑇𝑇 Φ4
𝑇𝑇

∗ −𝑍𝑍1 0 0 0
∗ ∗ −𝑍𝑍2 0 0
∗ ∗ ∗ − 1

2
𝐼𝐼 0

∗ ∗ ∗ ∗ −Λ2𝐼𝐼⎦
⎥
⎥
⎥
⎥
⎥
⎤

< 0      (4.67) 

Sonrasında, (4.64) ve (4.67)’yi sırasıyla sağ ve sol tarafı Ω ve 𝛱𝛱 matrisleri ile 

çarpılmıştır. 

Γ = diag (𝑄𝑄,𝑄𝑄,𝑄𝑄,𝑄𝑄,𝑄𝑄,𝑄𝑄, 𝐼𝐼)                                         (4.68) 

Π = diag (Γ,𝑍𝑍1−1,𝑍𝑍2−1, 𝐼𝐼, 𝐼𝐼)                                           (4.69) 

 

Ω = diag (Π,𝑄𝑄)                                                   (4.70) 

Ayrıca, doğrusal olmayan parametreleri yok etmek için şu 100eğişkenler tanımlanır.  

Ψ0 = ΓΦ0Γ,      Ψ1 = QΦ1Π,    Ψ2 = ΠΦ2Π                               (4.71) 

Ψ3 = Φ3Π,      Ψ4 = Φ4Π,      N𝑖𝑖 = ΠM𝑖𝑖Q,  𝑖𝑖 = 1,2,3                        (4.72) 
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V1 = K2Q,      V2 = K2Q,       Z1−1 = Z2−1 = Q                              (4.73) 

Y1 = ΠX1Π,   Y2 = ΠX2Π                                              (4.74) 

S1 = 𝑄𝑄R1Q,   S2 = 𝑄𝑄R1𝑄𝑄                                            (4.75) 

Son olarak, (4.71)- (4.75) yerine yazıldığında Teorem 4.3’de belirtilen (4.33) ve (4.34) 

LMI yapıları elde edilmiştir.  

 

LMI’lar elde edilirken herhangi bir model dönüşümü (tanımlayıcı model gibi) 

uygulamadan doğrudan sistem modeli kullanılmıştır. Ayrıca, LKF’nin tutuculuğunu 

azaltmak ve koşulları rahatlatmak için Wirtinger eşitsizliği ile Leibniz–Newton kuralı 

kullanılmıştır. 

 

4.3.2 Değerlendirme  

LMI probleminin çözümü için optimizasyon aracı YALMIP (Anonymous 2023) ile 

entegre edilen SDPT3 çözücü (solver) kullanılmıştır. Teoremin çözümü için gerekli ve 

uygun olan parametreler 𝜃𝜃, 𝜙𝜙𝑖𝑖, 𝛬𝛬, ρ, ℎℒ∞  ile LMI çözümü aranmıştır. LMI’lar aşırı 

tutucu olduğundan çözüme çok yaklaşmasına (∼ −10−4) rağmen sonuç başarısız 

(infeasible) olarak tanımlamaktadır. Çözücü, ancak (4.40) ile belirtilen Ψ4  =

 [0  0  0  0 𝑽𝑽1 𝑽𝑽2 0] terim, Ψ4 =  [0 0 0 0 0 0 0] olarak esnetilerek sonuca ulaşılmıştır. 

Bu sayede, LMI’ın tutuculuğu azaltılarak başarılı (feasible) sonuca ulaşmaktadır. 

LMI’da yapılan bu değişiklik doğrultusunda kontrolcü kazanç değerleri hesaplanmıştır.  

 

Benzetim çalışmalarında bölüm 4.2.2’de kullanılan aynı test ortamı kullanılmıştır. 

Ayrıca, dinamik araç model parametreleri 𝜏𝜏 = 𝜏𝜏𝑖𝑖 = 0.1 𝑠𝑠 ve 𝜙𝜙 = 𝜙𝜙𝑖𝑖 = 0.2 𝑠𝑠 olarak 

seçilmiştir. Kontrolcü kazançlarını hesaplamak için gerekli olan parametreler diğer 

çizelge 4.3 ile verilmiştir. 

 



102 
 

Çizelge 4.3 Teorem 4.3 için parametreler 

𝜃𝜃 =  0.2 s  ℎℒ∞ = 0.8 [s]  𝛿𝛿𝑢𝑢 =  0.3 s  𝛬𝛬 =  0.4 [-]  𝜌𝜌 = 1 [-] 

 

Bir önceki benzetim çalışmasında olduğu gibi ileri besleme kazancı 𝑘𝑘𝑓𝑓,ℒ∞ = 1  [-] 

olarak alınmıştır. Buna göre, Teorem 4.3 ile hesaplanan geri besleme kontrolcü 

değerleri çizelge 4.4 ile gösterilmiştir. 

Çizelge 4.4 Teorem 4.3 ile elde edilen kontrolcü kazançları 

Kontrolcü Kazançları 

𝑘𝑘𝑏𝑏,1,ℒ∞ = 0.8165 [-] 𝑘𝑘𝑏𝑏,1,ℒ∞ = 2.2023 [-] 

 
 
Elde edilen kontrolcü parametreleri ve giriş sinyali homojen araç dizisine uygulanmıştır. 

Şekil 4.4 (a)’da verilen gösterimde takipçi araç ivme sinyalinin lider aracın ivme 

sinyalini aşmadığı görülmektedir. 

 

Şekil 4.4 Teorem 4.3 ile ℒ∞-dizi kararlılık sonucu ve (2.48) dürtü yanıtı 

Böylece, ∥ 𝑦𝑦𝑖𝑖 ∥ℒ∞  ≤ ∥ 𝑦𝑦𝑖𝑖−1 ∥ℒ∞ eşitsizliği araç dizisi boyunca sağlanmaktadır. Ayrıca, 

(2.51)’de verilen ℒ∞-norm kararlılık koşulu her 𝑖𝑖 (𝑖𝑖 = 2,· · · , 5) aracı tarafından 
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sağlanmaktadır. Şekil 4.4 (b)’de gösterilen dürtü yanıtı pozitiftir. Benzetim 

çalışmalarında, haberleşme zaman gecikmesi yine sabit 𝜃𝜃 = 𝜃𝜃𝑖𝑖 = 0.2 𝑠𝑠 olarak 

alınmıştır. Dolayısıyla, dürtü yanıtı sabit haberleşme değeri kullanılarak hesaplanmıştır.  

Teorem 4.2 ile geliştirilmiş Bi-Section algoritması ve Teorem 4.3 kullanılarak zamanla 

değişen haberleşme gecikmesi altında KASK donanımlı kontrol sistemi için güçlü ℒ∞-

dizi koşullarını sağlayan kontrolcü sentezi yapılmıştır. Teorem 4.2 ile geliştirilmiş Bi-

Section algoritmasında güçlü ℒ∞-norm koşulları algoritma ile sağlanmıştır. Teorem 4.3 

ise LMI’lar ile güçlü ℒ∞-dizi koşullarını sağlayan orijinal bir yöntemdir. Tezin bir 

sonraki bölümünde önerilen tüm yöntemler için kapsamlı benzetim çalışmaları 

yapılmıştır. 
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5. BENZETİM SONUÇLARI  

Bölüm 3’de yapılan benzetim çalışmalarında doğrusal araç modeli ve kontrolcü için 

aynı ve gerçek parametreler kullanılarak eyleyici doyumu incelenmiştir. Farklı hız 

değişim manevralarında elde edilen minimum-zamanlı lider araç yörüngeleri ve 

yörüngelerin optimal olduğu gösterilirken yörüngeler araç dizisi ile test edilmemiştir.  

Bölüm 4’de gösterilen benzetim sonuçlarında güçlü ℒ∞-dizi kararlılığını sağlayan 

kontrolcü kazançları sabit haberleşme ve eyleyici zaman gecikmeleri için test edilmiştir. 

Homojen araç dizisinin kullanıldığı ve eyleyici doyumunun ihmal edildiği benzetim 

çalışmalarında her araç doğrusal model ile tanımlanmıştır.  

Bölüm 5’de, tez kapsamında elde edilen tüm sonuçlar KASK donanımlı heterojen araç 

dizisi ile test edilmiştir. Heterojen araç dizisinde her araç doğrusal olmayan dinamik 

araç modeli ile tanımlanmış ve gerçek araç parametreleri kullanılmıştır. Bölüm 5.1’de, 

farklı hız değişim manevralarında hıza bağlı kuvvet ve ivme kısıtları her araç için 

belirlenmiştir. Eyleyici doyumunu önlemek için gerekli olan heterojen araç dizilimleri 

için oluşturulmuştur. Bu kapsamda, minimum-zamanlı optimal lider araç yörüngeleri 

elde edilerek heterojen araç dizisi üzerindeki etkisi incelenmiştir. Bölüm 5.2’de zamanla 

değişen haberleşme gecikmesi ve sabit eyleyici gecikmesi altında ℒ∞-dizi kararlılığını 

sağlayan kontrolcü parametreleri heterojen araç dizisi ile birlikte test edilmiştir. Tez 

kapsamında gösterilen tüm benzetim çalışmalarında gerçek araç parametreleri 

kullanılmıştır. Gerçekte, bazı araç parametrelerinde belirsizlik olacağı bilinmektedir. 

Bölüm 5.3’de, parametre belirsizliklerinin güçlü ℒ∞-dizi kararlılığı ve minimum-

zamanlı yörünge üzerindeki etkileri ilk defa incelenmiştir. 

5.1 Farklı Hız Değişim Manevrası ve Minimum- Zamanlı Optimal Yörünge  

Bu bölümde, bölüm 3 ile önerilen teoremler için kapsamlı benzetim sonuçları 

paylaşılmıştır. Buna göre, farklı hız değişim manevrası için güçlü ℒ∞-dizi kararlılık 

koşullarını sağlayan minimum-zamanlı optimal yörünge analitik olarak hesaplanmıştır. 
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Sonrasında, yörünge farklı araç dizilimleri ile oluşturan heterojen araç dizisine giriş 

sinyali olarak uygulanmıştır. 

5.1.1 Benzetim ortamı 

Benzetim çalışmaları için Matlab/Simulink’te farklı araçlardan oluşan heterojen araç 

dizisi oluşturulmuştur. Araç dizisindeki her 𝑖𝑖. araç doğrusal olmayan dinamik araç 

modeli ile ifade edilmiştir. Honda CR-V (𝑉𝑉1), Fiat 500 1.2 (𝑉𝑉2), Audi Q3 1.4 (𝑉𝑉3) ve Kia 

Ceed 1.4 (𝑉𝑉4) araçları için çizelge 2.1 ve çizelge 2.2 ile gösterilen gerçek araç değerleri 

kullanılmıştır. 

 

Şekil 5.1 Heterojen araç dizisi 

Hızlandırılmış-ileri beslemeli KASK kontrol sisteminde (3.6)’da tanımlanan ileri-

besleme ve geri-besleme kontrolcü modeli kullanılmıştır. Çizelge 5.1 ile gösterilen 

model ve kontrolcü parametreleri 𝜏𝜏𝑖𝑖, 𝜙𝜙𝑖𝑖, 𝜃𝜃𝑖𝑖 ve 𝜔𝜔𝐾𝐾,𝑖𝑖 farklı araştırma gruplarının pratik 

deneylerinden alınmıştır (Al-Jhayyish ve Schmidt 2018). Benzetim çalışmalarında, 

eyleyici ve haberleşme zaman gecikmesinin sabit olduğu vurgulanmalıdır. 

Çizelge 5.1 Doğrusal model ve kontrolcü için parametreler 

 
Test No 

Yürüyen Aksam 
Zaman Sabiti 

Eyleyici 
Gecikmesi 

Haberleşme 
Gecikmesi 

Kontrolcü 
Kazancı 

𝜏𝜏𝑖𝑖 [s] 𝜙𝜙𝑖𝑖 [s] 𝜃𝜃𝑖𝑖 [s] 𝜔𝜔𝐾𝐾,𝑖𝑖  [rad/s] 

𝑃𝑃1 0.1 0.2 0.02 1.5 

𝑃𝑃2 0.38 0.18 0.06 3 

𝑃𝑃3 0.8 0.02 0.2 4.5 
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Lider aracın optimal yörüngesini hesaplamak için araç dizisindeki zayıf aracın 

belirlenmesi gerekmektedir. Öyle ki, lider araç yörüngesi eğer dizideki en güçlü aracın 

sahip 106lduğu kısıtlar ile hesaplanırsa eyleyici doyumu oluşacaktır. Çünkü, araç 

dizisindeki en zayıf aracın gücü, araç dizisindeki en güçlü araca yetişmek için yeterli 

olmayacaktır. 

Araçlar arasında güç sıralamasının yapılabilmesi için hız manevralarının belirlenmesi 

gerekmektedir. Buna göre, araç dizisinin 90 km/s-120 km/s hızlanma manevrası ve 120 

km/s-100 km/s yavaşlama manevrası ile hareket ettiği varsayılmıştır. Bu hız değişim 

manevrası (2.55)’deki hız kısıtlarını göstermektedir. Bu hız değişim manevralarında bu 

dört aracın en güçlüden en zayıf araca sıralanışı Şekil 2.9 ile gösterildiği üzere şu 

şekildedir: Honda CR-V, Audi Q3 1.4, Kia Ceed 1.4 ve Fiat 500 1.2. Bu nedenle, 

optimal lider araç yörüngesi araç dizisindeki en zayıf araç Fiat 500 1.2 kısıtlarına göre 

hesaplanmıştır. Dolayısıyla, farklı motor kuvvetleri ve dinamik aktarma organlarına 

sahip araç dizilerini karşılaştırmak amacıyla aşağıda verilen durumlar test edilmiştir. 

• Test 1:  𝑉𝑉1 − 𝑃𝑃1,     𝑉𝑉2 − 𝑃𝑃3,      𝑉𝑉3 − 𝑃𝑃2,    𝑉𝑉4 − 𝑃𝑃1 

• Test 2:  𝑉𝑉1 − 𝑃𝑃3,     𝑉𝑉2 − 𝑃𝑃1,        𝑉𝑉3 − 𝑃𝑃2,     𝑉𝑉4 − 𝑃𝑃1 

• Test 3:  𝑉𝑉2 − 𝑃𝑃3,     𝑉𝑉1 − 𝑃𝑃1,        𝑉𝑉3 − 𝑃𝑃1,     𝑉𝑉4 − 𝑃𝑃1 

• Test 4:  𝑉𝑉1 − 𝑃𝑃1,      𝑉𝑉3 − 𝑃𝑃2,        𝑉𝑉1 − 𝑃𝑃3,     𝑉𝑉3 − 𝑃𝑃2 

 

Bu durumda, Test 1 ve 2’de en güçlü aracı en zayıf araç takip ederken, Test 3 ile en 

zayıf aracı en güçlü araç takip etmektedir. Diğer tarafta, Test 4 yalnızca güçlü Honda 

CR-V ve Audi Q3 1.4 araçlarını içermektedir. Bu senaryolar için bölüm 3.3.2 ile 

tanımlanan minimum-zamanlı optimal yörünge Matlab kullanılarak analitik olarak 

hesaplanmıştır. 

 

5.1.2 Değerlendirme  

Belirtilen hız değişim manevralarında (2.32) ve (2.34)’e göre maksimum ve minimum 

kuvvet değerleri aşağıdaki şekilde hesaplanmıştır. 
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Çizelge 5.2 Hıza bağlı kuvvet değerleri 

Kuvvet [N] 
Araç Modeli 

Honda CR-V Audi Q3 1.4 Kia Ceed 1.4 Fiat 500 1.2 

F𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(90,120) 3106 2432.4 1513.6 1148.5 

F𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(120,100) -15367 -13037 -10537 -8425.4 

 

 
Aynı şekilde, belirtilen hız değişim manevralarında (2.33) ve (2.35) ile araçların 

maksimum ve minimum ivme değerleri çizelge 5.3 ile gösterilmiştir. 

Bu veriler doğrultusunda (2.56)’da verilen 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓) ≤ 𝑎𝑎1(𝑡𝑡) ≤ 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠,𝑣𝑣𝑓𝑓) 

eşitsizliğine göre Test 1, Test 2, Test 3 senaryoları için 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(90,120) = 0.5867 m/𝑠𝑠2 

ve 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(90,120) = −9.3910 m/𝑠𝑠2 olarak belirlenmiştir. Test 4 senaryosu yalnızca en 

kuvvetli araçlar Honda CR-V ve Audi Q3 1.4 oluştuğundan 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚(90,120) =  

1.1840 m/𝑠𝑠2 olarak alınmıştır. 

Çizelge 5.3 Hıza bağlı ivme değerleri 

İvme [𝐦𝐦/𝒔𝒔𝟐𝟐] Araç Modeli 
Honda CR-V Audi Q3 1.4 Kia Ceed 1.4 Fiat 500 1.2 

𝒂𝒂𝐢𝐢,𝒎𝒎𝒎𝒎𝒎𝒎(𝟗𝟗𝟗𝟗,𝟏𝟏𝟏𝟏𝟏𝟏) 1.4647 1.1840 0.6495 0.5867 

𝒂𝒂𝒊𝒊,𝒎𝒎𝒎𝒎𝒎𝒎(𝟏𝟏𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏) -9.3910 -9.0427 -8.7708 -8.3953 

 

 

Ayrıca, literatürde güvenli ve konforlu seyahat için önerilen 𝑎𝑎 =  2 m/𝑠𝑠2 ve 𝑎𝑎  =

 −2 m/𝑠𝑠2 ivme kısıtları da dikkate alınmalıdır. Buna göre, (3.12)’de verilen 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =

 min{𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓), 𝑎𝑎} ve 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = max {𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 (𝑣𝑣𝑠𝑠, 𝑣𝑣𝑓𝑓),𝑎𝑎} ivme eşitliğine göre Test 1, Test 

2, Test 3 senaryoları için 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = min{𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(90,120),𝑎𝑎}  = 0.5867 m/𝑠𝑠2 ve 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  =

 max {𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(90, 120),𝑎𝑎} = −2 m/𝑠𝑠2 olarak bulunmuştur. Test 4 senaryosu için 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 =

 min{𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(90,120),𝑎𝑎} = 1.1840 m/𝑠𝑠2 değerine eşittir. Optimal yörüngenin 

hesaplanabilmesi için (2.57)’deki sarsıntı kısıtları 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑗𝑗 = 5 m/𝑠𝑠3 ve 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑗𝑗 =

 −5 m/𝑠𝑠3 olarak alınmıştır. 
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Sonuç olarak, hız, ivme ve sarsıntı kısıtları ile birlikte her test durumu için minimum 

zamanlı optimal 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑  – 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 giriş yörüngesi elde edilmiştir. Minimum optimal 

yörünge süreleri çizelge 5.4’de gösterilmiştir. Beklendiği gibi, Test 1 Test 2 ve Test 3 

senaryolarında minimum yörünge süresi aynıdır. Diğer tarafta, Test 4 senaryosunda 

ivme kısıtı 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  = min{𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(90, 120),𝑎𝑎} = 1.1840 m/𝑠𝑠2 olduğundan dolayı daha 

kısa sürede optimal yörünge elde edilmiştir. Bu bölüme kadar yapılan analitik 

hesaplamaların tamamı Matlab ile gerçekleştirilmiştir. 

Çizelge 5.4 Minimum-zamanlı 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑  – 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢  yörünge süreleri 

Yörünge Süresi [s] Test 1 Test 2 Test 3 Test 4 

𝒕𝒕𝒇𝒇 17.4984 17.4984 17.4984 10.4530 

 

 

Şekil 5.1’de gösterilen heterojen araç dizisine lider araca minimum-zamanlı optimal 

yörünge uygulanmıştır. Her test durumu için benzetim sonuçları (giriş, hız, kuvvet, 

ivme, mesafe hatası, sarsıntı) Şekil 5.2-5.5 ile gösterilmiştir. Test 1 ve 2’de araç 

dizisindeki hiçbir aracın lider aracın maksimum ivme sınırına ulaşamadığı 

görülmektedir. Bunun nedeni, lider aracın en güçlü araç (Honda CR-V) olmasına 

rağmen, araç dizisinin ivme sınırı ikinci araç (Fiat 500 1.2) tarafından belirlenmesidir. 

Dolayısıyla, araç dizisinde tüm araçların ivmesi 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚(90, 120) = 0.5867 m/𝑠𝑠2 ile 

sınırlanmıştır. Ayrıca, Test 1 ve Test 2’de mesafe hatalarının farklı olduğu 

gözlenmektedir. Bu durum, araçların farklı araç dinamiklerine sahip olmasından 

kaynaklanmaktadır. 

Farklı olarak, Test 3’te lider araç (Fiat 500 1.2), araç dizisindeki güç olarak en zayıf 

araç olduğu için kendi ivme sınırına ulaşmaktadır. Aynı zamanda, Test 2 ve 3 

durumlarında hız, ivme, sarsıntı ve mesafe hatasının aynı olduğuna dikkat etmek 

gerekmektedir. Çünkü, araç dizisi her iki durumda da aynı dinamik parametreler ile 

ifade edilmektedir. Bununla birlikte, araç modellerinin farklı sıralaması nedeniyle 

araçlara uygulanan kuvvet değerlerinin de farklı olduğu görülmektedir. 
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Şekil 5.2 Test 1 parametreleri için benzetim sonuçları 

 
 

 
Şekil 5.3 Test 2 parametreleri için benzetim sonuçları 
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Özellikle, Test 2 durumunda lider araç (Honda CR-V), Test 3 durumundaki lider araçtan 

(Fiat 500 1.2) daha büyük bir kuvvet uygulamaktadır. Son olarak Test 4, araç dizisi en 

güçlü iki araçtan oluştuğunda daha kısa süreli optimal yörüngenin elde edildiği 

görülmektedir. Bu senaryoda lider araç yörüngesinin yine dizideki en zayıf araç olan 

Audi Q3 1.4 göre hesaplandığı belirtilmelidir.  

 

Her test senaryosunda hız, ivme ve sarsıntı kısıtlarının tüm takipçi araçlar tarafından 

sağlandığı görülmektedir. Diğer tarafta, Test 1 ve Test 4 senaryolarında takipçi araçların 

girdi sinyali, lider araç sinyalini aştığı gözlenmektedir. Fakat, girdi sinyali için herhangi 

bir kısıt olmadığından bu durumun yapılan çalışma için bir anlamı bulunmamaktadır. 

 

 

Şekil 5.4 Test 3 parametreleri için benzetim sonuçları 

Sonuç olarak, her test grubu için optimal yörünge analitik olarak hesaplanmıştır. Hız, 

ivme ve sarsıntı grafiklerinden de anlaşıldığı üzere elde edilen lider araç yörüngesi ile 
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birlikte güçlü ℒ∞-dizi kararlılık koşulu ∥ 𝑦𝑦𝑖𝑖 ∥ℒ∞  ≤ ∥ 𝑦𝑦𝑖𝑖−1 ∥ℒ∞ (𝑦𝑦𝑖𝑖 ∈ 𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑖𝑖 , 𝑗𝑗𝑖𝑖) araç dizisi 

boyunca tüm sinyaller için sağlanmaktadır. 

 

 

Şekil 5.5 Test 4 parametreleri için benzetim sonuçları 

5.2 Kontrolcü Sentezi 

Bölüm 4 ile açıklanan teoremler için benzetim sonuçları bu başlık altında 

değerlendirilmiştir. Benzetim çalışmasında Şekil 5.6’da gösterilen ağ bağlantılı 

heterojen araç dizisi oluşturulmuştur. 
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Şekil 5.6 Ağ bağlantılı heterojen araç dizisi 

Dizideki her araç doğrusal olmayan dinamik araç modeli ile tanımlanmıştır. Heterojen 

araç dizisi için bölüm 2.2’de çizelge 2.1 ve çizelge 2.2 ile verilen gerçek araç 

parametreleri kullanılmıştır. Ayrıca, tüm araçlar için çizelge 5.5’de gösterilen farklı 

yürüyen aksam zaman sabit değerleri ve farklı eyleyici zaman gecikme değerleri 

kullanılmıştır. 

Çizelge 5.5 Doğrusal model için parametreler 

Araç Modeli 

 
Yürüyen Aksam 
Zaman Sabiti 

 

Eyleyici Gecikmesi 

𝜏𝜏𝑖𝑖 [s] 𝜙𝜙i [s] 

Honda CR-V 0.1 0.2 

Fiat 500 1.2 0.38 0.18 

Audi Q3 1.4 0.8 0.02 

Kia Ceed 1.4 0.1 0.05 
 

 

Bölüm 2 ile belirtildiği gibi takipçi aracın yalnızca önündeki ve arkasındaki araçla tek 

yönlü iletişim kurabildiği varsayılmaktadır. Araçlar arası bu iletişim sırasında zamanla 

değişen haberleşme gecikmesi dikkate alınmıştır. Zamanla değişen gecikmelere sahip ağ 

bağlantılı kontrol sistemi için Steinberger vd. (2020) tarafından önerilen teknik 

kullanılmıştır. Ağ sisteminde örnekleme süresi 𝑇𝑇𝑠𝑠  = 0.01 s olarak kabul edilmiştir. 

Önerilen teknikte zaman gecikmesi örnekleme süresinin tamsayı katına eşit olduğu 

değerler ile sınırlandırılmıştır. Bu tekniğe göre, zamanla değişen haberleşme gecikmesi  

𝜃𝜃𝑖𝑖(𝑡𝑡) ∈ [0, 0.2] aralığında rastgele dağılmaktadır (maksimum haberleşme gecikmesi  

𝜃𝜃 = 0.2 s). Giriş sinyali olarak, farklı hız değişim manevrası ile elde edilen minimum-
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zamanlı optimal yörünge lider araca uygulanmıştır. Böylece, bölüm 3 ile açıklanan 

eyleyici doyumuna uygun yörünge analitik olarak elde edilmiştir. 

 

Araç dizisi ve iletişim ağının tamamı Matlab/Simulink ile oluşturulmuştur. Minimum-

zamanlı optimal yörünge, Bi-Section algoritması ve LMI eşitsizlikleri ile elde edilen 

kontrolcü kazançları Matlab ile elde edilmiştir. 

5.2.1 Teorem 4.3 ve dizi kararlılık sonuçları 

Teorem 4.3 ile kontrolcü değerlerini hesaplayabilmek için gerekli olan parametreler 

birisi de yakalama zamanı (ℎ𝑖𝑖) değeridir. Yakalama zamanı değeri uygun rastgele bir 

değer alınabileceği gibi en uygun minimum değer olarak da seçilebilir. Teorem 4.3 ile 

birlikte Geliştirilen Bi-Section Algoritması (B) her 𝑖𝑖 (𝑖𝑖 = 2,3,4) aracı için yinemeli 

olarak çalıştırılmıştır. Böylece, uygun yakalama zamanı değeri ℎ𝑖𝑖,ℒ∞ ile birlikte kontrol 

kazançları 𝐾𝐾𝑏𝑏,𝑖𝑖,ℒ∞  =  [𝑘𝑘𝑏𝑏,1,ℒ∞ ,   𝑘𝑘𝑏𝑏,2,ℒ∞] ve 𝐾𝐾𝑓𝑓,𝑖𝑖,ℒ∞  = 𝑘𝑘𝑓𝑓,𝑖𝑖,ℒ∞ araç 𝑖𝑖 (𝑖𝑖 = 2,3, 4) için 

hesaplanmıştır. 

Bi-Section algoritmasında, maksimum haberleşme gecikme 𝜃𝜃 = 0.2 s değerinin yanı 

sıra çizelge 5.6’da gösterilen gerekli parametreler heterojen araç dizisindeki tüm araçlar 

için aynıdır. Literatürde, gecikmesinin türevini sınırlandıran değer (𝛿𝛿𝑢𝑢) kesin olarak 

bilinmemekle birlikte 𝜃̇𝜃  ≤  𝛿𝛿𝑢𝑢 <  1 olarak kabul edilmektedir (Fridman ve Shaked 

2003, D. Yue ve Han 2005). Teorem 4.3, sabit parametre 𝛬𝛬 =  0.4 değeri için başarılı 

sonuç vermektedir. Aksi durumda, LMI eşitsizlikleri için çözücü (solver) başarısız 

(infeasible) sonuç vermektedir. 

Çizelge 5.6 Bi-Section algoritması ve Teorem 4.3 için parametreler 

ℎ𝑢𝑢 = 1 [𝑠𝑠] ℎ𝑙𝑙 =  0.01 [𝑠𝑠] Λ = 0.4 [-] 𝜌𝜌 = 1 [-]  𝛿𝛿𝑢𝑢 = 0.3 [-] 𝜅𝜅 = 10−3[-] 
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Sonuç olarak, algoritma için çizelge 5.5-5.6’da verilen parametreler ve Teorem 4.3 

sonucunda, çizelge 5.7’de gösterilen kontrol kazanç değerleri ve minimum yakalama 

zamanı değeri elde edilmiştir. Burada, araç dizisi lider araç (Honda CR-V) önderliğinde 

hareket ettiğinden bu araç için kontrolcü ve yakalama zamanı değerine ihtiyaç yoktur. 

Çizelge 5.7 Kontrolcü kazançları ve minimum yakalama zamanı 

Araç 
Yakalama Zamanı Kontrolcü Kazançları 

ℎ𝑖𝑖,ℒ∞ 𝑘𝑘𝑏𝑏,1,ℒ∞  [-] 𝑘𝑘𝑏𝑏,2,ℒ∞ [-] 

Honda CR-V - - - 

Fiat 500 1.2 0.7567 0.4152 1.9729 

Audi Q3 1.4 0.4727 0.9208 3.9121 

Kia Ceed 1.4 0.5204 0.8265 4.0212 
 

 

Elde edilen sonuçlar ile öncelikle güçlü ℒ∞-dizi kararlılık koşulu olan 𝛾𝛾𝑖𝑖(𝑡𝑡)  ≥  0 dürtü 

yanıtı kontrol edilmiştir. Şekil 5.8’deki gösterimde her 𝑖𝑖 (𝑖𝑖 = 2,3, 4) aracının dürtü 

yanıtı elde edilen kontrolcü ve yakalama zamanı 114eğerleri için pozitiftir. Bu, önerilen 

teorem sonucunda elde edilen kontrolcü değerlerinin güçlü  ℒ∞-norm kararlılık 

koşulunu sağladığını göstermektedir. 

 

Şekil 5.7 Araç 𝑖𝑖 (𝑖𝑖 =  2,3, 4) için dürtü yanıtı 
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Sonraki aşamada, hesaplanan kontrolcü ve yakalama zamanı değerleri KASK donanımlı 

heterojen araç dizisi Matlab/Simulink’te test edilmiştir. Öncelikle, hızlanma manevrası 

∆𝑣𝑣𝑢𝑢 =  30 km/s, yavaşlama manevrası ∆𝑣𝑣𝑑𝑑 = − 60 km/s ve kısıtlar (hız, ivme ve 

sarsıntı) altında Şekil 5.8 ile gösterilen optimal 𝑀𝑀𝑢𝑢𝑆𝑆𝑢𝑢𝑀𝑀𝑑𝑑 – 𝑀𝑀𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑢𝑢 giriş yörüngesi 

Matlab ile elde edilmiştir. 

 

Şekil 5.8 Optimal giriş yörüngesi 

Bu yörünge lider araca uygulanarak sabit eyleyici gecikmesi ve zamanla değişen 

haberleşme gecikmesi altında hız, ivme, sarsıntı ve mesafe sinyalleri incelenmiştir. 

Buna göre, Şekil 5.9’da araç dizisi boyunca her 𝑖𝑖 (𝑖𝑖 = 2, 3, 4) aracının hız sinyali lider 

araç sinyalinin sınır değerini aşmamıştır. Aynı şekilde, tüm araçların ivme sinyalleri 

𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚  =  2 m/𝑠𝑠2 ve 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 = −2 m/𝑠𝑠2 kısıt değerleri içerisinde kalmaktadır. Sürücü 

konforu için gerekli olan sarsıntı sinyal kısıtlarının 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 5 m/𝑠𝑠3 ve 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = −5 m/𝑠𝑠3 

araç dizisi boyunca korunduğu görülmektedir. 
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Şekil 5.9 Teorem 4.3 ve heterojen araç dizisi 

Benzetim süresince her 𝑇𝑇𝑠𝑠 = 0.01 örnekleme zamanında değişen rastgele haberleşme 

gecikmesinin dağılımı Şekil 5.10 ile gösterilmiştir. 

 

Şekil 5.10 Haberleşme gecikmesinin dağılımı 
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5.2.2 Geliştirilen Bi-Section algoritması ve dizi kararlılık sonuçları 

Bir önceki bölümde oluşturulan aynı heterojen araç modeli ve parametreleri benzetim 

çalışmalarında tercih edilmiştir. Geliştirilen Bi-Section algoritması için çizelge 5.8 ile 

gösterilen parametreler kullanılmıştır. Burada, ℎ𝑡𝑡𝑢𝑢 ve ℎ𝑡𝑡𝑙𝑙  değerleri ℒ2-dizi kararlılık 

koşullarını sağladığını ilk bölüm için alt ve üst sınır değerleridir. Algoritmanın 

devamında ℒ∞-dizi kararlılık koşulunu garantileyen kontrolcü sentezi için üst sınır ℎℒ∞
𝑢𝑢  

olarak tanımlanmıştır. 

Çizelge 5.8 Bi-Section algoritması ve Teorem 4.3 için parametreler 

ℎ𝑡𝑡𝑢𝑢 = 1 [𝑠𝑠] ℎ𝑡𝑡𝑙𝑙 =  0.01 [𝑠𝑠] ℎℒ∞
𝑢𝑢 = 4 [s] 𝜅𝜅 = 10−3 [-] 

 

 

Bi-Section algoritması sonucunda elde edilen kontrolcü değerleri ve minimum 

yakalama zamanı çizelge 5.9 ile gösterilmiştir. Teorem 4.3 ile önerilen yöntemden farklı 

olarak aynı haberleşme gecikme değerinde eyleyici gecikmesi (𝜙𝜙𝑖𝑖) azaldıkça minimum 

yakalama zamanı değerinin Bi-Section algoritmasında daha düşük olduğu 

görülmektedir. Öncelikle, her 𝑖𝑖 (𝑖𝑖 =  2, 3,4) aracı için güçlü ℒ∞-dizi kararlılık koşulu 

olan dürtü yanıtı 𝛾𝛾𝑖𝑖(𝑡𝑡)  ≥  0 incelenmiştir. Şekil 5.11 ile gösterilen dürtü yanıtı ile güçlü 

ℒ∞-norm kararlılık koşulunun sağlandığı görülmektedir. 

Çizelge 5.9 Geliştirilen Bi-Section algoritması ile kontrolcü kazançları ve minimum       
yakalama zamanı 

Araç 
Yakalama Zamanı Kontrolcü Kazançları 

ℎ𝑖𝑖,ℒ∞ 𝑘𝑘𝑏𝑏,1,ℒ∞  [-] 𝑘𝑘𝑏𝑏,2,ℒ∞  [-] 

Honda CR-V - - - 

Fiat 500 1.2 2.1130 3.5282 0.9761 

Audi Q3 1.4 2.8944 5.6032 0.3535 

Kia Ceed 1.4 2.5745 4.9498 0.392 
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Son aşamada, kontrolcü ve yakalama zamanı değerleri zamanla değişen haberleşme 

gecikmesinin olduğu heterojen araç dizisi Matlab/Simulink’te test edilmiştir. Zamanla 

değişen haberleşme gecikmesi altında araç dizisindeki takipçi araçların hız sinyali, lider 

araç kısıtlarını aşmadığı görülmektedir. Aynı şekilde, ivme ve sarsıntı kısıtları istenilen 

limitler içerisinde kalmaktadır. 

 
 

Şekil 5.11 Araç 𝑖𝑖 (𝑖𝑖 =  2, 3, 4) için dürtü yanıtı (geliştirilen Bi-Section algoritması) 

Hız, ivme ve sarsıntı sinyalleri için ∥ 𝑦𝑦𝑖𝑖 ∥ℒ∞  ≤ ∥ 𝑦𝑦𝑖𝑖−1 ∥ℒ∞  (𝑦𝑦𝑖𝑖 ∈ 𝑣𝑣𝑖𝑖 ,𝑎𝑎𝑖𝑖 , 𝑗𝑗𝑖𝑖) koşulu araç 

dizisi boyunca sağlanır ve KASK araç dizisi güçlü ℒ∞-dizi kararlıdır. 
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Şekil 5.12 Geliştirilen Bi-Section algoritması ve heterojen araç dizisi 

 

5.2.3 Kararlılık analiz yöntemlerinin karşılaştırılması 

Benzetim çalışmalarının son bölümünde farklı haberleşme ve eyleyici gecikmeleri 

altında uygun yakalama zaman değeri her iki yöntem için hesaplanmıştır. Zaman 

gecikmeleri 𝜃𝜃 = [0, 0.2] ve 𝜙𝜙 = [0, 0.2] için elde edilen ısı haritaları Şekil 5.13 ve 

Şekil 5.14 ile gösterilmiştir. 
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Şekil 5.13 Teorem 4.3 ile elde edilen ℎℒ∞ ısı haritası 

Eyleyici gecikmesi (𝜙𝜙𝑖𝑖) ve haberleşme gecikmesi (𝜃𝜃𝑖𝑖) arttıkça yakalama zamanı ℎℒ∞ 

değerinin arttığı Şekil 5.13’de görülmektedir. Aynı şekilde, geliştirilen Bi-Section 

algoritmasında da eyleyici ve haberleşme gecikmesinin artmasıyla yakalama zamanı 

değeri Şekil 5.14’de artmaktadır. Şekil 5.14’de düşük eyleyici zaman gecikmesi 

değerinde hesaplanan yakalama zamanı değeri Şekil 5.13’de hesaplanan değerlere göre 

daha düşüktür. Şekil 5.14’de haberleşme zaman gecikmesinin yüksek olduğu değerlerde 

yakalama zamanı değeri, Şekil 5.13’e kıyasla daha yüksek değerlerde olduğu 

görülmektedir. 

 
Şekil 5.14 Geliştirilen Bi-Section algoritması ile elde edilen ℎℒ∞ ısı haritası 
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Gerçek koşullarda, eyleyici zaman gecikmesinin haberleşme zaman gecikmesinden 

daha küçük olması beklenir. Beklenildiği gibi, haberleşme zaman gecikmesi azalırken 

eyleyici gecikmesinin artmasıyla ℎℒ∞değerinin arttığı görülür. Hatta, Şekil 5.14’de 

gösterilen ısı haritasında haberleşme gecikmesi 𝜃𝜃 = 0 𝑠𝑠 ve eyleyici gecikmesi 𝜙𝜙 =

0.08 s-0.2 s arasındaki değerler için güçlü ℒ∞-norm dizi kararlılık koşullarının 

sağlanamadığı ve bunun sonucunda ℎℒ∞ değerlerinin elde edilemediği görülmektedir. 

Şekil 5.13’de ise aynı zaman gecikmeleri altında uygun yakalama zaman değerleri 

hesaplanmıştır. 

İki farklı yöntem ile oluşturulan ısı haritalarına göre güçlü ℒ∞-dizi kararlılık koşullarını 

sağlayan orijinal yöntemin Bi-Section algoritmasına göre daha etkili olduğu 

görülmektedir. 

5.3 Araç Parametrelerinin Belirsizliği  

Bir önceki bölümde yapılan benzetim çalışmalarında gerçek araç parametreleri 

kullanılmıştır. Fakat, bazı araç parametrelerinde belirsizlik olması kaçınılmazdır. 

Özellikle, (2.33) ve (2.35) ile tanımlanan ivme sınır değerlerinin  𝑙𝑙𝑖𝑖,𝑟𝑟, 𝑙𝑙𝑖𝑖,𝑤𝑤, ℎ𝑖𝑖,𝑐𝑐, 𝜀𝜀𝑖𝑖,0, 𝐴𝐴𝑖𝑖, 

𝑐𝑐𝑖𝑖,𝑑𝑑, 𝜂𝜂𝑖𝑖,𝑑𝑑, 𝜎𝜎𝑖𝑖, 𝐽𝐽𝑖𝑖,𝐸𝐸, 𝑟𝑟İ, 𝑓𝑓𝑖𝑖,𝑅𝑅, 𝑚𝑚𝑖𝑖, 𝜆𝜆𝑖𝑖,𝑟𝑟 ve µ𝑖𝑖,𝑟𝑟 parametrelerine bağlı olduğu bilinmektedir. Bu 

parametreler, pratikte tam olarak bilinemeyeceğinden bu parametre belirsizliklerinin 

güçlü ℒ∞-dizi kararlılığı üzerindeki olumsuz etkisi analiz edilmiştir.  

Önceki benzetim sonuçlarından, açık bir şekilde eyleyici doyumu güç olarak en zayıf 

olan Fiat 500 1.2 (V2) aracının en güçlü araç Honda CR-V’yi (V1) takip ettiği hızlanma 

manevrasında görülmektedir. Bu sebeple, Honda CR-V aracı lider araç ve Fiat 500 1.2 

takipçi araç olduğu durum incelenmiştir.  

 

Analizde, sözde sabit parametrelerin 𝜀𝜀𝑖𝑖,0, 𝐴𝐴𝑖𝑖, 𝑐𝑐𝑖𝑖,𝑑𝑑, 𝜂𝜂𝑖𝑖,𝑑𝑑, 𝜎𝜎𝑖𝑖 ve 𝐽𝐽𝑖𝑖,𝐸𝐸 % ± 1 belirsizliği ile 

bilindiği varsayılırken, geri kalan parametreler gerçek zamanlı olarak tahmin 

edilmektedir. Literatürde, 𝑟𝑟𝑖𝑖, 𝑓𝑓𝑖𝑖,𝑅𝑅 ve 𝑚𝑚𝑖𝑖 parametrelerini % ± 5 belirsizlik ile tahmin 
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etmeye yönelik güncel algoritmalar bulunmaktadır (122eğer. 2020, Rajendran vd. 2019, 

Rath vd. 2015, Sharma vd. 2021, Tannoury vd. 2013, Wang vd. 2009). 

 

Parametre belirsizliklerinin olumsuz etkisini incelemek için Honda CR-V ve Fiat 500 

1.2 araçlarının nominal parametreleri kullanılarak Teorem 3.2’ye göre optimal lider 

yörüngesinin hesaplandığı varsayılmıştır. Ardından, takipçi aracın gerçek maksimum 

ivmesinin, nominal maksimum ivmeye kıyasla azaltıldığı en kötü durum senaryosu 

analiz edilmiştir. Bunun için (2.30) ile (2.33) arasındaki değerlerde su değişiklikler 

yapılmıştır: 𝜀𝜀𝑖𝑖,0, 𝜂𝜂𝑖𝑖,𝑑𝑑, %1 azaltılmakta, 𝜎𝜎𝑖𝑖, 𝐴𝐴𝑖𝑖 , 𝜂𝜂𝑖𝑖,𝑑𝑑, %1 arttırılmakta ve 𝑟𝑟𝑖𝑖, 𝑚𝑚𝑖𝑖, 𝑓𝑓𝑖𝑖,𝑅𝑅  %5 

arttırılmaktadır. Hız değişim manevraları 50 km/s-90 km/s ve 50 km/s-130 km/s için 

benzetim sonuçları ile Şekil 5.15’de sırasıyla gösterilmiştir. 

 

Şekil 5.15 Araç 2 için uygulanan kuvvet ve maksimum kuvvet 

Gösterimde, (2.32) eşitliğine göre Fiat 500 1.2 için uygulanan çekiş kuvveti 𝐹𝐹2,𝐿𝐿 (𝑡𝑡) ve 

maksimum çekiş kuvveti 𝐹𝐹2,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣2(𝑡𝑡)) karşılaştırılmıştır. Farklı hız değişim 

manevrasında, 𝐹𝐹2,𝐿𝐿 (𝑡𝑡) 122eğerinin, 𝐹𝐹2,𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣2(𝑡𝑡)) değerinin altında kaldığı açıkça 

görülmektedir. Buna göre, güçlü ℒ∞-dizi kararlılığının parametre belirsizlikleri altında 

dahi korunduğu görülmektedir.  
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Önceki benzetim çalışmalarında elde edilen olumlu sonuç Teorem 3.1 ile yeterli 

koşulların biraz tutucu olmasından kaynaklanmaktadır. Ancak bu durum, maksimum 

çekiş kuvvetinin hiçbir zaman aşılmayacağına dair kesin bir sonucu garanti 

etmemektedir. Bu sebeple alternatif olarak, en kötü durum parametre belirsizliğine sahip 

parametreleri kullanarak (2.33) ve (2.35)’e göre sınırları hesaplamak mümkündür. 

 

Çizelge 5.10 Manevra tamamlanma sürelerinin karşılaştırılması: nominal ve belirsiz 
parametreler 

Manevra [km/s] 50-90 50-110 50-130 60-100 60-120 

Nominal [s] 9.5 21.6 39.3 10.95 24.5 

Belirsiz [s] 10.4 22.3 39.5 11.5 24.9 

Manevra [km/s] 60-130 70-90 70-110 70-130 80-100 

Nominal [s] 34.4 4.9 14.4 29.5 5.6 

Belirsiz [s] 34.6 5.3 14.9 29.6 5.9 

Manevra [km/s] 80-120 80-130 90-110 90-120 90-130 

Nominal [s] 16.4 24.6 7.3 12.3 19.7 

Belirsiz [s] 16.6 24.7 7.5 12.5 19.8 

 

 

Bu durumda, manevra süresindeki artışa rağmen boylamsal kuvvetin doyuma 

ulaşmaması sağlanır. Bu artışı gözlemlemek için nominal ve en kötü durum 

parametreleri için farklı hız değişim manevralarında en uygun lider yörüngeler 

karşılaştırılmıştır. Çizelge 5.10’de manevra süresindeki artışın, çoğunlukla pratikte 

tolere edilebilir olan %10’un çok altında olduğu gösterilmiştir. 
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6. SONUÇ ve DEĞERLENDİRME  

Akıllı Ulaşım Sistemleri’nde (AUS) kısa mesafede araç takibi için önerilen en son 

teknolojilerden birisi Kooperatif Adaptif Seyir Kontrolü (KASK) yöntemidir. KASK 

kontrol sisteminde sürüş konforu ve güvenliği için birden fazla araçtan oluşan dizinin 

kararlı olması gerekmektedir. Dizi kararlılığında temel amaç araç dizisi boyunca 

oluşabilecek sinyal dalgalanması ya da bozulmasının sönümlenmesini sağlamaktır.  

 

Literatürde, genellikle aynı özelliklere sahip araçlardan oluşan homojen araç dizisi için 

kararlılık analizi yapılmıştır. Gerçek trafik koşullarında farklı araçlardan oluşan 

heterojen araç dizileri mevcuttur ve farklı güçlere sahip araçlar birbirini takip 

etmektedir. Farklı güçlere sahip bu araçların giriş değerleri keyfi bir değer olamaz ve 

mutlaka sınırlandırılmalıdır. Aksi halde, eyleyici doyumu nedeniyle güç olarak en zayıf 

olan araç en güçlü araca yetişemeyebilir. Bu ise KASK sisteminin en önemli görevi olan 

dizi kararlılığının ihlal edilmesine sebep olmaktadır. Literatürde yapılan çalışmaların 

aksine bu tezde eyleyici doyumunu önlemek ve dizi kararlılık koşullarını sağlamak için 

yeterli koşullar türetilmiştir. Öncelikle, aracın boylamasına hareketinde etkiyen tüm 

kuvvetler (maksimum çekiş kuvveti ve motor tarafından üretilen kuvvet) gösterilerek 

aracın hareket etmesini sağlayan hıza bağlı minimum kuvvet değeri hesaplanmıştır. 

Sonrasında, hıza bağlı gerçek kuvvet modeli kullanılarak yine hıza bağlı gerçek ivme 

kısıt değerleri belirlenmiştir. Hıza bağlı kısıt değerleri ile birlikte eyleyici doyumunu 

önlemek için yeterli koşullar gösterilmiştir. Bilindiği kadarıyla, gerçek araç 

parametreleri ile hıza bağlı gerçek kuvvet modeli ve ivme kısıtlarının eyleyici 

doyumunda dikkate alındığı ilk çalışmadır.  

 

Literatür çalışmalarının birçoğunda KASK donanımlı heterojen araç dizisinde ℒ2-dizi 

kararlılık koşulları için incelenmektedir. Fakat, potansiyel eyleyici doyumunu önlemek 

için ℒ2-normu yeterli değildir. Bu tez çalışmasında, güçlü ℒ∞-dizi kararlılık koşulları 

için analizler yapılmıştır. Bu nedenle, eyleyici doyumunu önlemek için türetilen yeterli 

koşullar yalnızca ℒ∞-norm koşulları için uygundur. Güçlü ℒ∞-dizi kararlılık koşullarını 

sağlayan yeterli koşullar kullanılarak minimum- zamanlı optimal kontrol problemi 

tanımlanmıştır. Farklı hız değişim manevraları ve durum kısıtları (ivme ve sarsıntı) 
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altında analitik çözümü yapılan bu yöntem gerçek zamanlı olarak hesaplanabilmektedir. 

Önerilen bu orijinal yöntem, istenilen araç yörüngelerinin trafikte hızlı bir şekilde 

hesaplanmasına olanak sağlamaktadır.  

 

Zamanla değişen haberleşme ve sabit eyleyici gecikmesi altında güçlü ℒ∞-dizi kararlılık 

koşullarını sağlayan kontrolcü sentezi bu tezin bir diğer katkısıdır. Lyapunov yaklaşımı 

ile güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü sentezi iki farklı yöntem ile 

yapılmıştır. İlk yöntemde, öncelikle LMI ile ℒ2-dizi kararlılık koşullarını sağlayan 

kontrolcü kazançları hesaplanmıştır. Sonrasında, geliştirilen Bi-Section algoritması 

kullanılarak güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü ve minimum 

yakalama zamanı değeri elde edilmiştir. Diğer yöntemde ise doğrudan LMI yapılarıyla 

güçlü ℒ∞-dizi kararlılık koşullarını sağlayan kontrolcü sentezi önerilmiştir. Önerilen 

yöntemde, zamanla değişen gecikmenin türev kısıtı ihmal edilerek hızlı değişen (fast 

time-varying delays) zaman gecikmesi ile LKF yapıları türetilmiştir. Gecikmenin 

sınırsız türevlerine sahip sistemlerde öngörülemeyen davranışlar ve hatta kararsızlık 

görülebilir. Bu tez çalışmasında ise zamanla değişen gecikmenin türevi  𝛿𝛿𝑢𝑢 <  1 değeri 

ile sınırlandırılmıştır. Ayrıca, LKF’nin tutuculuğunu azaltmak ve kısıt koşullarını 

esnetmek için Wirtinger eşitsizliği ile Leibniz–Newton formülü bu çalışmada aynı anda 

kullanılmıştır. Özellikle, 𝑉𝑉(𝑥𝑥𝑡𝑡) Lyapunov fonksiyonunu yazabilmek için Wirtinger 

eşitsizliğinden yararlanılmıştır. Leibniz–Newton formülü ise 𝑉̇𝑉(𝑥𝑥𝑡𝑡) fonksiyonunda 

çapraz terimleri yok etmek için tercih edilmiştir. Çözücü (solver), önerilen LMI 

yapılarıyla çözüme çok yaklaşmasına rağmen başarısız (infeasible) sonuç vermektedir. 

LMI’ın başarılı (feasible) sonuca ulaşabilmesi için LMI terimi esnetilerek çözümün 

tutuculuğu azaltılmış ve kontrolcü sentezi yapılmıştır. 

 

Özetle, heterojen araç dizisi, doğrusal olmayan araç modeli, eyleyici doyumu, zamanla 

değişen haberleşme gecikmesinin aynı anda dikkate alınarak güçlü ℒ∞-dizi kararlılık 

koşullarını sağlayan kontrolcü sentezinin yapıldığı ilk çalışmadır.  

 

Tezde önerilen tüm yöntemlerde araç dizisinin düz bir karayolunda seyahat ettiği 

varsayılmıştır. Diğer tarafta, gerçek trafik ortamında araç dizisi virajlı yollar mevcuttur. 

Bu durum dikkate alınarak önerilen yöntemler virajlı yollar için çalışılabilir. Buna ek 
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olarak, gerçek haberleşme sırasında oluşabilecek paket kaybı (packet loss) gibi olumsuz 

durumlar bu tez çalışmasında kontrolcü sentezi yapılırken ihmal edilmiştir. Sonraki 

çalışmalarda bu durumlar dikkate alınarak kontrolcü sentezi yapılabilir. Ayrıca, 

araçların yakıt tüketiminin azaltılması ekolojik ve ekonomik anlamda zorunluluk haline 

gelmiştir. Bu doğrultuda, farklı hız değişim manevralarında minimum yakıt tüketimi 

KASK sürüş sistemi için analiz edilebilir. Son olarak, bu tez çalışmasında heterojen araç 

dizisi de araçların içten yanmalı motorlara sahip olduğu varsayılmıştır. İçten yanmalı 

motorlar benzin, dizel ya da gaz ile çalışmaktadır. Günümüzde hem çevre dostu olan 

hem de ekonomik olarak uygun olan elektrikli araçların kullanımı artmaktadır. KASK 

sürüş modeli ile heterojen araç dizileri oluşturulurken farklı yakıt türü ile çalışan araçlar 

oluşturulabilir. Bu sayede, elektrikli araçların araç dizisindeki etkisi incelenebilir. 
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EK 1  𝑴𝑴𝒖𝒖 −𝑴𝑴𝒅𝒅 Optimal Yörünge için Anahtarlama Süreleri 

𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesinin hesaplanması için t1 ve t2 anahtarlama sürelerinde ivme ile hız 

değerleri şu şekilde gösterilir.  

[0, 𝑡𝑡1] → 𝑎̃𝑎1  ve   𝑣̃𝑣1                                             (A.1) 

[𝑡𝑡1, 𝑡𝑡2] →  𝑎̃𝑎2   ve   𝑣̃𝑣2                                            (A.2) 

𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesi için eşitlik (3.8) ile tanımlanan kısıtlar doğrultusunda eşitsizlikler 

yazılır. 

𝑎̃𝑎2 = 0                                                       (A.3) 

𝑣̃𝑣1 + 𝑣̃𝑣2 = Δ𝑣𝑣                                                  (A.4) 

𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesinin eşitlik (3.24) ve (3.25) ile tanımlanan ivme ve hız denklemleri 

kullanılarak şu denklemlere ulaşılır. 

𝑡𝑡1𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑡𝑡2𝑗𝑗min = 0  eşitlik (A.3)’e göre                      (A.5) 

𝑡𝑡12  𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2

+ 𝑡𝑡22  𝑗𝑗min
2

+ 𝑡𝑡1𝑡𝑡2 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = Δ𝑣𝑣     eşitlik  (A.4)'e göre             (A.6) 

Burada gerekli analitik işlemler yapıldığında 𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesi için 𝑡𝑡1 ve 𝑡𝑡2 eşitlikleri 

hesaplanmıştır. 

𝑡𝑡1 = − 𝑗𝑗min
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

� 2𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚Δ𝑣𝑣
𝑗𝑗min(𝑗𝑗min−𝑗𝑗max)

    ve     𝑡𝑡2 = � 2𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚Δ𝑣𝑣
𝑗𝑗min(𝑗𝑗min−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

�                (A.7) 
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Aynı analitik hesaplamalar ile 𝑀𝑀𝑢𝑢 −𝑀𝑀𝑑𝑑 yörüngesi için anahtarlama süreleri elde edilir. 

Bunun için yalnızca, yukarıda verilen eşitliklerde sırasıyla 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 yerine 

sırasıyla 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 yazılması yeterli olacaktır. 
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EK 2 𝑴𝑴𝒖𝒖 − 𝑺𝑺𝒖𝒖 −𝑴𝑴𝒅𝒅 Optimal Yörünge için Anahtarlama Süreleri 

𝑀𝑀𝑢𝑢 − 𝑆𝑆𝑢𝑢 −𝑀𝑀𝑑𝑑 yörünge manevrasında anahtarlama süreleri 𝑡𝑡1, 𝑡𝑡2 ve 𝑡𝑡3 değerleri analitik 

olarak hesaplanabilir. İlk olarak, zaman aralıklarında ivme ve hız değerleri şu şekilde 

gösterilsin. 

[0,   𝑡𝑡1]   →   𝑎̃𝑎1    ve    𝑣̃𝑣1                                                    (B.1) 

[𝑡𝑡1, 𝑡𝑡2]  →   𝑎̃𝑎2   ve    𝑣̃𝑣2                                                    (B.2) 

[𝑡𝑡2, 𝑡𝑡3]  →   𝑎̃𝑎3   ve    𝑣̃𝑣3                                                    (B.3) 

Eşitlik (3.8)’de tanımlanan kısıtlara göre aşağıda verilen denklemler tanımlanır.  

𝑎̃𝑎1 = 𝑎𝑎max                                                            (B.4) 

𝑎̃𝑎3 = 0                                                                 (B.5) 

𝑣̃𝑣1 + 𝑣̃𝑣2 + 𝑣̃𝑣3 = Δ𝑣𝑣                                                      (B.6) 

Buna göre, eşitlikler (3.29) ve (3.30) kullanılarak şu denklemlere ulaşılır. 

𝑡𝑡1 𝑗𝑗max = 𝑎𝑎max ,    eşitlik (B.4)'e göre                                       (B.7) 

𝑎𝑎max + 𝑡𝑡3 𝑗𝑗min = 0,   eşitlik (B.5)'e göre                                    (B.8) 

𝑡𝑡12
𝑗𝑗max
2

+ 𝑡𝑡32
𝑗𝑗min
2

+ 𝑡𝑡2𝑎𝑎max + 𝑡𝑡3𝑎𝑎max = Δ𝑣𝑣,   eşitlik (B.6)' ya göre               (B.9) 

Bu eşitlikler çözümlendiğinde ise 𝑡𝑡1, 𝑡𝑡2 ve 𝑡𝑡3 anahtarlama süreleri hesaplanır. 

𝑡𝑡1 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

,  𝑡𝑡2 = Δ𝑣𝑣
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝑎𝑎mak 
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚−𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚
2𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

,  𝑡𝑡3 = −𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚

                        (B.10) 
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𝑀𝑀𝑑𝑑 − 𝑆𝑆𝑑𝑑 −𝑀𝑀𝑢𝑢 yörüngesi için 𝑡𝑡1, 𝑡𝑡2 ve 𝑡𝑡3 anahtarlama süreleri aynı formülasyon takip 

edilerek hesaplanır. Sadece, sırasıyla 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 yerine 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚,  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 

yazılması yeterli olacaktır. 
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EK 3 Teorem 4.2 için Kontrolcü Sentezi 

Theorem 4.2 ile elde edilen LMI eşitsizlikleri şu şekilde tanımlanmıştır. 

   

⎣
⎢
⎢
⎡𝜓𝜓 + 𝜓𝜓2 + 𝜓𝜓2 𝑇𝑇 + 𝜙𝜙‾𝑌𝑌1 + 𝜃𝜃‾𝑖𝑖𝑌𝑌2 �𝜙𝜙𝜓𝜓1𝑇𝑇 �𝜃𝜃‾𝜓𝜓1 𝑇𝑇 𝜓𝜓3 𝑇𝑇

∗ −𝑊𝑊1 0 0
∗ ∗ −𝑊𝑊2 0
∗ ∗ ∗ −𝐼𝐼 ⎦

⎥
⎥
⎤
≤ 0                   (C.1) 

�
𝜖𝜖 + 𝜖𝜖2 + 𝜖𝜖2𝑇𝑇 + 𝜙𝜙𝑌𝑌‾1 �𝜙𝜙𝜖𝜖1𝑇𝑇 𝜖𝜖3𝑇𝑇

∗ −𝑊𝑊‾1 0
∗ ∗ −𝐺𝐺−1

� ≤ 0                                   (C.2) 

�𝑌𝑌1 𝑁𝑁1
∗ 𝐿𝐿 � ≥ 0,   �𝑌𝑌2 𝑁𝑁2

∗ 𝐿𝐿 � ≥ 0,    �𝑌𝑌2 𝑁𝑁3
∗ 𝐿𝐿 � ≥ 0, �𝑌𝑌

‾1 𝑁𝑁‾1
∗ 𝐿𝐿1

� ≥ 0               (C.3) 

Matrisler 𝜓𝜓, 𝜓𝜓1, 𝜓𝜓2, 𝜓𝜓3, 𝜖𝜖, 𝜖𝜖1, 𝜖𝜖2 ve 𝜖𝜖3 aşağıda tanımlanmıştır.  

  𝜓𝜓 =

⎣
⎢
⎢
⎢
⎡𝐴𝐴𝐴𝐴 + 𝐿𝐿𝐴𝐴𝑇𝑇 + 𝑅𝑅1 𝐵𝐵𝑉𝑉1 𝐵𝐵𝑉𝑉2 𝐶𝐶

∗ −𝑅𝑅1 + 𝑅𝑅2 0 0
∗ ∗ −�1 − 𝛿𝛿‾𝑢𝑢�𝑅𝑅2 0
∗ ∗ ∗ −𝜌𝜌2𝐼𝐼⎦

⎥
⎥
⎥
⎤
                       (C.4) 

𝜓𝜓1 = [𝐴𝐴𝐴𝐴, 𝐵𝐵𝑉𝑉1, 𝐵𝐵𝑉𝑉2, 0, 𝐶𝐶]                                          (C.5) 

𝜓𝜓2 = [𝑁𝑁1, −𝑁𝑁1 + 𝑁𝑁2,  𝑁𝑁3 − 𝑁𝑁2,  −𝑁𝑁3,  0]                                  (C.6) 

𝜓𝜓3 = [0, 𝑉𝑉1, 𝑉𝑉2, 0, 0]                                               (C.7) 

𝜖𝜖 = �𝐴𝐴11𝐿𝐿1 + 𝐿𝐿1𝐴𝐴11𝑇𝑇 + 𝑅𝑅‾1 𝐵𝐵1𝑉𝑉1
∗ 𝑅𝑅‾1

�                                            (C.8) 
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𝜖𝜖1 = [𝐴𝐴11𝐿𝐿1, 𝐵𝐵1𝑉𝑉1],  𝜖𝜖2 = [𝑁𝑁‾1, −𝑁𝑁‾1],     𝜖𝜖3 = [𝐿𝐿1, 0]                      (C.9) 

𝐿𝐿 = �𝐿𝐿1 0
0 𝐿𝐿2

� ,  𝑊𝑊1 = 𝑊𝑊2 = 𝐿𝐿,  𝑊𝑊‾1 = 𝐿𝐿1                                 (C.10) 

 

Sonuç olarak, (C.1)-(C.2) ve (C.3)’de verilen kısıtlar için ℒ2-norm kararlılık koşulları 

sağlanmıştır. 
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EK 4 Teorem 4.2 İspatı 

Öncelikle, (4.4)’e göre Lyapunov aday fonksiyoneli tanımlanmıştır. 

𝑉𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) = 𝑉𝑉1(𝑥𝑥(𝑡𝑡)) + 𝑉𝑉2(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉3(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉4(𝑥̇𝑥𝑡𝑡) + 𝑉𝑉5(𝑥̇𝑥𝑡𝑡)              (D.1) 

Eşitlikteki 𝑉𝑉1(𝑥𝑥(𝑡𝑡)), 𝑉𝑉2(𝑥̇𝑥𝑡𝑡), 𝑉𝑉3(𝑥̇𝑥𝑡𝑡), 𝑉𝑉4(𝑥̇𝑥𝑡𝑡) ve 𝑉𝑉5(𝑥̇𝑥𝑡𝑡) fonksiyonları aşağıdaki şekilde 

seçilmiştir. 

𝑉𝑉1(𝑥𝑥(𝑡𝑡)) = 𝑥𝑥(𝑡𝑡)𝑇𝑇P𝑥𝑥(𝑡𝑡)                                              (D.2) 

𝑉𝑉2(𝑥̇𝑥𝑡𝑡) = ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙  𝑥𝑥

𝑇𝑇(𝑠𝑠)Q1𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                        (D.3) 

𝑉𝑉3(𝑥̇𝑥𝑡𝑡) = ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)  𝑥𝑥

𝑇𝑇(𝑠𝑠)Q2𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                   (D.4) 

𝑉𝑉4(𝑥̇𝑥𝑡𝑡) = ∫  0
−𝜙𝜙  ∫  𝑡𝑡

𝑡𝑡+𝑟𝑟   𝑥̇𝑥
𝑇𝑇(𝑠𝑠)Z1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                 (D.5) 

𝑉𝑉5(𝑥̇𝑥𝑡𝑡) = ∫  0
−𝜃𝜃‾  ∫  𝑡𝑡−𝜙𝜙

𝑡𝑡−𝜙𝜙+𝑟𝑟   𝑥̇𝑥
𝑇𝑇(𝑠𝑠)Z2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                               (D.6) 

Sonrasında, Lyapunov aday fonksiyonlarının türevleri hesaplanmıştır. 

𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) =  𝑉̇𝑉1(𝑥𝑥(𝑡𝑡)) + 𝑉̇𝑉2(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉3(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉4(𝑥̇𝑥𝑡𝑡) + 𝑉̇𝑉5(𝑥̇𝑥𝑡𝑡)  

                 = 𝑥̇𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑇𝑇𝑥𝑥(𝑡𝑡) + 𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑥̇𝑥(𝑡𝑡)  + 𝑥𝑥𝑇𝑇(𝑡𝑡)Q1𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑇𝑇(𝑡𝑡 − 𝜙𝜙)Q1𝑥𝑥(𝑡𝑡 − 𝜙𝜙) 

                  + 𝑥𝑥𝑇𝑇(𝑡𝑡 − 𝜙𝜙)Q2𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − (1 − 𝜇𝜇𝑢𝑢)𝑥𝑥𝑇𝑇(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡))Q2𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡)) 

                  + 𝜙𝜙𝑥̇𝑥𝑇𝑇(𝑡𝑡)Z1𝑥̇𝑥(𝑡𝑡) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙   𝑥̇𝑥

𝑇𝑇(𝑠𝑠)Z1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑   
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 + 𝜃𝜃‾𝑥̇𝑥𝑇𝑇(𝑡𝑡)Z2𝑥̇𝑥(𝑡𝑡) − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃‾ 𝑥̇𝑥

𝑇𝑇(𝑠𝑠)Z2𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                                                 (D.7) 

Bir sonraki aşamada, uygun boyutlardaki M1, M2 ve M3 ile Newton-Leibniz kuralı 

uygulandığında aşağıda verilen eşitlikler yazılmıştır. 

2𝜁𝜁(𝑡𝑡)M1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0                              (D.8) 

2𝜁𝜁(𝑡𝑡)M2 �𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − 𝑥𝑥�𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡)� − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0                 (D.9) 

2𝜁𝜁(𝑡𝑡)M3 �𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡)) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃‾) − ∫  𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)
𝑡𝑡−𝜙𝜙−𝜃𝜃‾   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0        (D.10) 

Bunlara ek olarak, X1 ve X2 matrisleri birlikte aşağıdaki eşitlikler tanımlanmıştır (Wu 

vd. 2010).  

𝜙𝜙𝜙𝜙(𝑡𝑡)𝐗𝐗1𝜁𝜁𝑇𝑇(𝑡𝑡) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙  𝜁𝜁

𝑇𝑇(𝑡𝑡)X1𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0                     (D.11) 

𝜃𝜃‾𝜁𝜁(𝑡𝑡)𝐗𝐗2𝜁𝜁𝑇𝑇(𝑡𝑡) − ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃‾  𝜁𝜁

𝑇𝑇(𝑡𝑡)X2𝜁𝜁(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0                     (D.12) 

Burada, 𝜁𝜁(𝑡𝑡) = [𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜙𝜙)𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃(𝑡𝑡))𝑥𝑥(𝑡𝑡 − 𝜙𝜙 − 𝜃𝜃‾)𝑤𝑤(𝑡𝑡)]𝑇𝑇 durum vektörü 

tanımlanmıştır. Sonrasında, (D.7) ile birlikte (D.8)-(D.12) kullanılarak (4.21) elde 

edilmiştir 

𝑉̇𝑉(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑧𝑧𝑇𝑇(𝑡𝑡)𝑧𝑧(𝑡𝑡) − 𝜌𝜌2𝑤𝑤𝑇𝑇(𝑡𝑡)𝑤𝑤(𝑡𝑡)  

    = 𝜁𝜁𝑇𝑇(𝑡𝑡)(Φ0 + Φ2
𝑇𝑇 + Φ2 + 𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2 + 𝜙𝜙Φ1

𝑇𝑇𝑍𝑍1Φ1 + 𝜃𝜃‾Φ1
𝑇𝑇𝑍𝑍2Φ1 + Φ3

𝑇𝑇Φ3)𝜁𝜁(𝑡𝑡) 

     −∫  𝑡𝑡
𝑡𝑡−𝜙𝜙  𝜂𝜂

𝑇𝑇(𝑡𝑡, 𝑠𝑠) �𝑋𝑋1 𝑀𝑀1
∗ 𝑍𝑍1

� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑 −  ∫  𝑡𝑡−𝜙𝜙
𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)  𝜂𝜂

𝑇𝑇(𝑡𝑡, 𝑠𝑠) �𝑋𝑋2 𝑀𝑀2
∗ 𝑍𝑍2

� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑  

      −∫  𝑡𝑡−𝜙𝜙−𝜃𝜃(𝑡𝑡)
𝑡𝑡−𝜙𝜙−𝜃𝜃‾  𝜂𝜂𝑇𝑇(𝑡𝑡, 𝑠𝑠) �𝑋𝑋2 𝑀𝑀3

∗ 𝑍𝑍2
� 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑                                                          (D.13) 
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Burada, 𝜂𝜂(𝑡𝑡, 𝑠𝑠)𝑇𝑇 = [𝜁𝜁𝑇𝑇(𝑡𝑡) 𝑥̇𝑥𝑇𝑇(𝑠𝑠)]olarak tanımlanmıştır. Ayrıca, 𝛷𝛷0, 𝛷𝛷1, 𝛷𝛷2 ve 𝛷𝛷3 

matrisleri aşağıdaki gibi tanımlanmıştır. 

𝛷𝛷0 =

⎣
⎢
⎢
⎢
⎡𝐴𝐴

𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 + 𝑄𝑄1 𝑃𝑃𝑃𝑃𝐾𝐾1 𝑃𝑃𝑃𝑃𝐾𝐾2 0 𝑃𝑃𝑃𝑃
∗ 𝑄𝑄2 − 𝑄𝑄1 0 0 0
∗ ∗ −(1 − 𝜇𝜇𝑢𝑢)𝑄𝑄2 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ −𝜌𝜌2I⎦

⎥
⎥
⎥
⎤

             (D.14) 

𝛷𝛷1 = [𝐴𝐴 𝐵𝐵𝐾𝐾1 𝐵𝐵𝐾𝐾2 0 𝐶𝐶]                                       (D.15) 

𝛷𝛷2 = [𝑀𝑀1 𝑀𝑀2 −𝑀𝑀1 𝑀𝑀3 −𝑀𝑀2 −𝑀𝑀3 0]                          (D.16) 

𝛷𝛷3 = [0 𝐾𝐾1 𝐾𝐾2 0 0]                                          (D.17) 

Böylece, eğer aşağıda verilen eşitsizlikler sağlanırsa istenilen sonuç elde edilmiş olur.  

Φ0 + Φ2
𝑇𝑇 + Φ2 + 𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2 + 𝜙𝜙Φ1

𝑇𝑇𝑍𝑍1Φ1 + 𝜃𝜃‾Φ1
𝑇𝑇𝑍𝑍2Φ1 + Φ3

𝑇𝑇Φ3 < 0        (D.18) 

�𝑋𝑋1 𝑀𝑀1
∗ 𝑍𝑍1

� ≥ 0,      �𝑋𝑋2 𝑀𝑀2
∗ 𝑍𝑍2

� ≥ 0,     �𝑋𝑋2 𝑀𝑀3
∗ 𝑍𝑍2

� ≥ 0                      (D.19) 

Ayrıca, (D.18) ve (D.19)’nın LMI formunda değildir. Bu nedenle öncelikle elde edilen 

matris eşitsizliklerine Lemma 4.4 ile tanımlanan Schur tamamlayıcısı uygulandığında 

(D.20) ile belirtilen LMI elde edilmiştir. 

⎣
⎢
⎢
⎢
⎡Φ0 +Φ2 +Φ2

𝑇𝑇 +𝜙𝜙𝑋𝑋1 + 𝜃𝜃‾𝑋𝑋2 �𝜙𝜙Φ1
𝑇𝑇𝑍𝑍1 �𝜃𝜃‾Φ1

𝑇𝑇𝑍𝑍2 Φ3
𝑇𝑇

∗ −𝑍𝑍1 0 0
∗ ∗ −𝑍𝑍2 0
∗ ∗ ∗ −𝐼𝐼⎦

⎥
⎥
⎥
⎤

< 0              (D.20) 

Sonrasında, (D.19) ve (D.20)’yi sırasıyla sağ ve sol tarafı Ω ve Π matrisleri ile 

çarpılmıştır. 
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Γ = diag (𝑃𝑃−1,𝑃𝑃−1,𝑃𝑃−1,𝑃𝑃−1, 𝐼𝐼)                                    (D.21) 

Π = diag (Γ,𝑍𝑍1−1,𝑍𝑍2−1, 𝐼𝐼)                                           (D.22) 

Ω = diag (Π,𝑃𝑃−1)                                                 (D.23) 

Ayrıca, dogrusal olmayan parametreleri yok etmek için şu degişkenler tanımlanır. 

Öncesinde, 𝑃𝑃−1 =  𝐿𝐿 olarak tanımlansın. 

Ψ0 = ΓΦ0Γ,  Ψ1 = LΦ1Π,  Ψ2 = ΠΦ2Π                           (D.24) 

Ψ3 = Φ3Π,  Ψ4 = Φ4Π,  N𝑖𝑖 = ΠM𝑖𝑖L,  𝑖𝑖 = 1,2,3                      (D.25) 

V1 = K2P−1,  V2 = K2L                                     (D.26) 

Y1 = ΠX1Π,  Y2 = ΠX2Π                                    (D.27) 

R1 = LQ1L,  R2 = LQ2L                                    (D.28) 

Z1−1 = W1,   Z2−1 = W2                                      (D.30) 

Son olarak, (D.24) - (D.29) yerine yazıldığında Teorem 4.2’de belirtilen (C.1)-(C.5) 

LMI  eşitsizlikleri elde edilmiştir. Ayrıca, w(t) = 0 için 𝑥̇𝑥2 =  − 1
ℎ

 𝑥𝑥2 sisteminin negatif 

bir kökü olduğundan kararlıdır. Dolayısıyla, (D.30)’in kararlılığı da analiz edilmelidir. 

𝑥̇𝑥1(𝑡𝑡) = 𝐴𝐴11𝑥𝑥1(𝑡𝑡) + 𝐵𝐵1𝑘𝑘𝑏𝑏𝑥𝑥1(𝑡𝑡 − 𝜙𝜙𝑖𝑖)                             (D.30) 

Burada, sistem matrisleri 𝐴𝐴11 = �0 1
0 0� ve 𝐵𝐵1 = � 0

−1�  olarak tanımlanmıştır. 
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Buna göre, Lyapunov aday fonksiyonu 𝑉𝑉‾�𝑥𝑥1,𝑡𝑡� = 𝑉𝑉‾1(𝑥𝑥1(𝑡𝑡)) + 𝑉𝑉‾2�𝑥̇𝑥1,𝑡𝑡� + 𝑉𝑉‾3�𝑥̇𝑥1,𝑡𝑡� 

aşağıdaki gibi ifade edilmiştir. 

𝑉𝑉‾1(𝑥𝑥1(𝑡𝑡))  = 𝑥𝑥(𝑡𝑡)𝑇𝑇𝑃𝑃1𝑥𝑥(𝑡𝑡)                                   (D.31) 

𝑉𝑉‾2�𝑥̇𝑥1,𝑡𝑡�  = ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙  𝑥𝑥

𝑇𝑇(𝑠𝑠)𝑄𝑄‾1𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑                             (D.32) 

𝑉𝑉‾3�𝑥̇𝑥1,𝑡𝑡�  = ∫  0
−𝜙𝜙  ∫  𝑡𝑡

𝑡𝑡+𝑟𝑟   𝑥̇𝑥
𝑇𝑇(𝑠𝑠)𝑍𝑍‾1𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                          (D.33) 

Ayrıca, Lyapunov aday fonksiyonlarını LMI formunda yazabilmek için aşağıdaki 

eşitlikler kullanılmıştır. 

2𝜁𝜁‾(𝑡𝑡)𝑀𝑀‾1 �𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜙𝜙) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙   𝑥̇𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑� = 0                  (D.34) 

𝜙𝜙𝜁𝜁‾(𝑡𝑡)𝑋𝑋‾1𝜁𝜁‾𝑇𝑇(𝑡𝑡) − ∫  𝑡𝑡
𝑡𝑡−𝜙𝜙  𝜁𝜁‾

𝑇𝑇(𝑡𝑡)𝑋𝑋‾1𝜁𝜁‾(𝑡𝑡)𝑑𝑑𝑑𝑑 = 0                      (D.35) 

Burada, 𝜁𝜁‾(𝑡𝑡)𝑇𝑇 = �𝑥𝑥1
T,   𝑥𝑥1 𝑇𝑇(𝑡𝑡 − 𝜙𝜙)� olarak ifade edilmiştir. Sonrasında, (D.31)-

(D.33)’ün türevi alınarak (D.34) ve (D.35) eklendiğinde aşağıda verilen eşitlik 

yazılmıştır.    

  𝑉𝑉‾̇(𝑡𝑡, 𝑥𝑥𝑡𝑡 , 𝑥̇𝑥𝑡𝑡) + 𝑥𝑥1𝑇𝑇(𝑡𝑡)𝐺𝐺𝑥𝑥1(𝑡𝑡) 

              = 𝜁𝜁‾𝑇𝑇(𝑡𝑡)(Φ‾ 0 + Φ‾ 2𝑇𝑇 + 𝜙𝜙𝑋𝑋‾1 + Φ‾ 2 + 𝜙𝜙Φ‾ 1𝑇𝑇𝑍𝑍‾1Φ‾ 1 + Φ‾ 3𝑇𝑇𝐺𝐺Φ‾ 3)𝜁𝜁‾(𝑡𝑡)   

               −∫  𝑡𝑡
𝑡𝑡−𝜙𝜙 𝜂𝜂‾𝑇𝑇(𝑡𝑡, 𝑠𝑠) �𝑋𝑋

‾1 𝑀𝑀‾1
∗ 𝑍𝑍‾1

� 𝜂𝜂‾(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑                                                          (D.36) 

Burada, 𝜂𝜂‾(𝑡𝑡)𝑇𝑇 = �𝜁𝜁‾𝑇𝑇(𝑡𝑡), 𝑥̇𝑥1
𝑇𝑇(𝑠𝑠)� şeklinde tanımlanmıştır. Ayrıca, Φ‾ 0, Φ‾ 1, 

Φ‾ 2 ve Φ‾ 3 matrisleri aşağıdaki şekilde ifade edilmiştir. 
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Φ‾ 0 = �𝑃𝑃1𝐴𝐴11 + 𝐴𝐴11𝑇𝑇 𝑃𝑃1 + 𝑄𝑄‾1 𝑃𝑃1𝐵𝐵1𝑘𝑘𝑏𝑏
∗ 𝑄𝑄‾1

�                                    (D.37) 

Φ‾ 1 = [𝐴𝐴11,  𝐵𝐵1𝑘𝑘𝑏𝑏],  Φ‾ 2 = [𝑀𝑀‾1, −𝑀𝑀‾1],  Φ‾ 3 = [𝐼𝐼, 0]                    (D.38) 

Dolayısıyla, Φ‾ 0 +Φ‾ 2
𝑇𝑇 +𝜙𝜙𝑋𝑋‾ 1 +Φ‾ 2 +𝜙𝜙Φ‾ 1

𝑇𝑇𝑍𝑍‾ 1Φ‾ 1 +Φ‾ 3
𝑇𝑇𝐺𝐺Φ‾ 3  için Schur tamamlayıcısı 

uygulandığında şu eşitsizlikler elde edilmiştir. 

�
Φ‾ 0 + Φ‾ 2 + Φ‾ 2𝑇𝑇 + 𝜙𝜙𝑋𝑋‾1 �𝜙𝜙Φ‾ 1𝑇𝑇𝑍𝑍‾1 Φ‾ 3𝑇𝑇

∗ −𝑍𝑍‾1 0
∗ ∗ −𝐺𝐺−1

� ≤ 0,  �𝑋𝑋
‾1 𝑀𝑀‾1
∗ 𝑍𝑍‾1

� ≥ 0         (D.39) 

Bir önceki bölümde olduğu gibi (D.39) ile verilen matrisler sırasıyla Γ =

 diag(𝑃𝑃1−1,𝑃𝑃1−1) ve Π =  diag(Γ, Z1
−1

, 𝐼𝐼) ile çarpılmaktadır. Sonrasında, aşağıda verilen 

parametre degişkenleri tanımlanmıştır. 

R1 = 𝐿𝐿1𝑄𝑄‾1𝐿𝐿1,  𝑁𝑁‾1 = Π‾𝑀𝑀‾1𝐿𝐿1,     𝑍𝑍‾1−1 = 𝑊𝑊‾1                           (D.40) 

Bu eşitlikler yerine yazıldığında EK-3’de verilen LMI eşitsizlikleri elde edilmektedir. 
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