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OZET

MULTIFRAKTAL, SPEKTRAL ANALIZ VE UZUN-KISA SURELi HAFIZA
DERIN OGRENME MODELi KULLANILARAK EEG SINYALLERINDEN
KANAL BAZINDA EPIiLEPTIK NOBET TESPITi

MUSTAFAYEY, Karim
Yiiksek Lisans Tezi, ileri Teknolojiler Anabilim Dal
Tez Damismani: Doc. Dr. Omer KASIM
Ocak, 2023, 110 sayfa

Beyindeki elektriksel aktivitesinin dilizensiz seviyede bosalmasi onemli bir
rahatsizliktir. Epilepsi olarak bilinen bu rahatsizlik uzmanlarca Elektroensefalografi
sinyalleri incelenerek teshis edilir. Uzmanlarin yogun c¢alismasi ve uzun
Elektroensefalografi ¢ekimlerinde nobetlerin tespitinin yapay zeka ile desteklenmesi
onemlidir. Bu amag¢ dogrultusunda, bu ¢alismada Onerilen yapay zeka modeli ile CHB-
MIT Scalp veri setindeki elektroensefalografi sinyalleri analiz edilerek normal ve
epileptik veriler olarak siniflandirilmistir. Analiz i¢in 22 kanaldan kaydedilen ve 10
saniyelik segmentlere ayrilan elektroensefalografi sinyallerine Multifraktal Analiz, Anlik
Frekans ve Spektral Entropi yontemleri uygulanmistir. Analiz yontemleri ile 162
bilesenden olusan 6zellik vektorii elde edilmistir. 175 adet normal etiketli ve 172 adet
epileptik nobet elektroensefalografi kayitlaria ait 6zellik vektorleri calismanin veri seti
olusturulmustur. Sonrasinda calismadaki yapay zeka yonteminin egitimi i¢in veri seti,
%380 egitim ve %20 dogrulama olarak ikiye ayrilmistir. Egitim i¢in ayrilan 278 veri ile
Cift Yonlii Uzun-Kisa Siireli Hafiza Derin Ogrenme Modeli egitilmistir. Kalan 69 veri ile
de derin 6grenme modeli dogrulanmistir. Dogrulama sonucu kanal bazinda en yliksek
basar1 metrikleri Fp1-F7 ve CZ-PZ kanallarindan elde edilmistir. Bu kanallardaki basari
metrikleri siras1 ile Dogruluk %85,29, Ozgiilliik %87,88, Hassasiyet %87,88, Yanlis
Pozitif Orant %12,12, Duyarlilik %82,86, Negatif Tahmin Degeri %82,86, F1-puani
%85,29, Mathews Korelasyon Katsayisi %70,74, Yanlis Negatif Oran1 %17,14 ve Yanlis
Kesif Oran1 %12,12 hesaplanmistir. Bu sonug 6nerilen yontemin kanal bazinda epileptik
nobetleri tespit edebildigini gosterir. Sonug olarak, gelistirilen yapay zeka yontemi bu

alanda ¢alisan uzmanlari asiste edebilecek niteliktedir.

Anahtar Kelimeler: Epileptik Nobet Tespiti, EEG Sinyal Isleme, Multifraktal Analiz,

Spektral Analiz, Uzun-Kisa Siireli Hafiza Derin Ogrenme Modeliyle Siniflandirma.
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ABSTRACT

EPILEPTIC SEiZURE DETECTIiON FROM EEG SIGNALS ON THE BASIS OF
CHANNELS USING MULTIFRACTAL, SPECTRAL ANALYSIiS AND LONG-
SHORT-TERM MEMORY DEEP LEARNING MODEL

MUSTAFAYEY, Karim
Master Thesis, Department of Advantages Technologies
Thesis Advisor: Assoc. Dr. Omer KASIM
January, 2023, 110 pages

Irregular discharge of electrical activity in the brain is an important disorder. This
disorder, known as epilepsy, is diagnosed by experts by examining
electroencephalography signals. It is important to support the detection of seizures with
artificial intelligence in the intensive work of experts and long electroencephalography
shots. For this purpose, the artificial intelligence model proposed in this study and the
electroencephalography signals in the CHB-MIT Scalp data set were analyzed and normal
and epileptic data were classified. Multifractal, Instantaneous frequency and Spectral
entropy methods were applied to electroencephalography signals recorded from 22
channels and divided into 10-second segments for analysis. With the analysis methods, a
feature vector consisting of 162 components was obtained. The feature vectors of 175
normal labeled and 172 epileptic seizure electroencephalography recordings were created
for the study. Afterwards, the dataset of the study was divided into two as 80% for training
and 20% for validation. Long-short-term memory deep learning model was trained with
278 data allocated for training. The deep learning model was validated with the remaining
69 data. As a result of the validation, the highest success metrics on channel basis were
obtained in the Fpl-F7 and CzZ-PZ channels. The success metrics in these channels are
Accuracy 85.29%, Originality 87.88%, Sensitivity 82.86%, False Positive Rate 12.12%,
Sensitivity 82.86%, Negative Prediction Value 82.86%, F1-score 85%, respectively. .29,
Matthews Correlation Coefficient 70.74%, False Negative Rate 17.14% and False
Discovery Rate 12.12%. These results show that the proposed method can detect epileptic
seizures on a channel basis. As a result, the developed artificial intelligence method is

capable of assisting experts working in this field.

Keywords: Epileptic Seizure Detection, EEG Signal Processing, Multifractal
Analysis, Spectral Analysis, Long-Short-Term Memory Classification with Deep
Learning Model.
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GIRIS
Epilepsi, beyinde diizensiz seviyede elektriksel aktivitesinin bosalmasina verilen
kronik gecici olmayan bir hastaliktir (Sisodiya, vd., 2022). Yapilan arastirmalarda
Epilepsi, beyin hastaliklar1 arasinda diinyada en fazla rastlanan tigiiniincli hastaliktir
(Thijs, vd., 2019). Su anda diinya capinda yaklasik 50 milyon insanda epilepsi rahatsizlig1
bulunmaktadir (Pale, vd., 2022). Yapilan aragtirmalar, 15 yasin altindaki ¢ocuklar ve 65
yasin tlizerindeki kisilerin epilepsi rahatsizligin1 gecirmelerinin daha riskli oldugunu

ortaya koymustur (Taquet, vd., 2022).

Uzmanlar, epilepsi rahatsizligin1 belirlemek i¢in elektroensefalografi (EEG)
teknigini kullanirlar (Alkhachroum, vd., 2022). EEG kullanilarak uzmanlar hastaligin 3
asamasini sinyaller tizerinden etiketlerler (Lillo, Mora ve Lucero, 2022). Bunlar sirasi ile
ndbet Oncesi, nébet aninda ve ndbet sonrasidir (Schiissler, vd., 2022). Ham sinyallerden
nobet anmin goézlemlenmesi zordur (Xiong, vd., 2021). Farkli bozucu etmenler ve
uzmanlarin analiz aninda yogun olmasi gibi durumlar nobet aninin belirlenmesini etkiler
(Saedi, vd., 2022). Ayrica EEG sinyal kalitesi, viicut hareketi, elektrot hareketleri, normal
kas aktivitesi, elektromanyetik girisim gibi artefaktlar beynin elektriksel aktivitesinin
daha diisiik uzaysal ayriklig1 acisindan problemler bulunmaktadir (Mercier, vd., 2022).
Bu nedenle, giinliik hasta izleme ve nobet uyarisi olusturma i¢in kafa derisi EEG kayitlari,
intrakraniyal elektrotlara kiyasla uygulanabilirlik ve kullanim kolaylig1 acisindan daha

yiiksek potansiyele sahiptir (Biondi, vd., 2022).

Yapay zeka yontemleri, yiiksek karmasikliga sahip EEG sinyallerindeki nobet
aninin  belirlenmesine yenilik getirdi (Comanducci, vd., 2020). Ayrica, EEG
sinyallerindeki gizli 6zellikleri elde etmede ve spektral 6zelliklerin sunulmasina katki
saglar (Yiu, vd., 2022). Son birkag yila kadar, geleneksel makine 6grenme teknikleri EEG
analizinde tek gecerli secenekti (Fouad, 2022). Ancak Derin Ogrenme (DO)
yontemlerinin kullanilmaya bagslamasi ile efektif ve giirbiiz ¢oziimleri miimkiin hale
getirdi (Baduge, vd., 2022). Nobet tahmininde, Evrigimli Sinir Aglar1 (ESA) ve Uzun-
Kisa Siireli Hafiza Derin Ogrenme Modeli (UKSHDOM) agirlikl1 olarak arastirmacilarin
ilgisini gekmistir (Tuncer ve Bolat, 2022). UKSHDOM, kaybolan gradyan problemini ele
almak ve algoritmanin hangi bilgilerin hafizasinda tutulmasi gerektigini ve nelerin
kaldirilmasi gerektigini daha kesin olarak kontrol etmesine izin vermek i¢in kapilar dahil
edilmistir (Rath, vd., 2022). EEG sinyaller esasen olduk¢a dinamik, dogrusal olmayan

zaman serisi verileri oldugu goz éniine alindiginda UKSHDOM tasarim geregi, duygu
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tanima, karisiklik tahmini ve karar verme gibi ¢esitli uygulamalarda bildirildigi gibi farkli
durumlar sirasinda beyin aktivitesinin zamansal 6zelliklerini izole etmede ESA’ya gore

avantaja sahiptir (Khademi, Ebrahimi ve Kordy, 2022).

Her ne kadar epilepsi teshisi EEG sinyalleri kullanarak yapilsa da farkli
elektrotlarin dogruluga etkisi arastirilmamistir. Bu c¢alismanin  hipotezi EEG
cekimlerindeki farkli kanallardan hangisinin epilepsi teshisine ne kadarlik katki
sagladigidir. Dahas1 DO yontemlerinden UKSHDOM ile yapilan akademik ¢alismalarda
yiiksek basarilar elde edilmesi bizi motive etti. Bu ¢alismanin amaci1 DO yontemleri ile
uygun Ozellik setinin olusturulmas: yardimi ile 22 kanalli EEG cihazi ile kaydedilen
epilepsi hastalarina ait verilerden hangi kanalin teshiste Onemli oldugunun
belirlenmesidir. Bu ¢alismanin hedefleri ise CHB-MIT Scalp veri setindeki EEG verileri
10 saniyelik dilimler halinde organize ederek epilepsi ndbet an1 ve normal durumdaki
etiketlenen seklinde organize edilir. Sonrasinda Multifraktal Analiz (MA), Anlik Frekans
(AF), Spektral Entropi (SE) yontemleri ile 6zellik seti olusturulur. CYUKSHDOM ile
smiflandirmadan sonra Dogruluk, Ozgiilliik, Hassasiyet, Duyarlilik, Yanlis Pozitif Orani
(YPO), Negatif Tahmin Degeri (NTD), F1-puani, Mathews Korelasyon Katsayis1 (MKK),
Yanlis Negatif Oran1 (YNO) ve Yanhs Kesif Oran1 (YKO) istatistiksel yontemleri ile

dogrulanir. Bu ¢alismanin katkilar1 s6yle siralanabilir.

1. Epilepsi teshisinde 22 kanalin etkisi gézlemlenmistir. En yiiksek dogruluk basari
metrigi 6n lobdaki Fp1-F7 ve Cz-PZ kanallarindan elde edilmistir.

2. Spektral Analiz (SA) ile frekans uzayindaki duragan olmayan sinyallerin
ozelliklerinin analizi ile EEG sinyalindeki diizensizlikler olgiilebilir hale
gelmektedir. Bu ¢ogunlukla 6l¢eklendirme iislerini 6lgmekten olusan MA, ¢ogu
ampirik veri analizinde pratik olarak etkilidir ve sonlu uzunluga sahip tek bir veri

gbzlemine bu calismada uygulanmustir.

3. Onerilen yéntemde kaybolan gradyanlar etkilenmeyen CYUKSHDOM

kullanilmas1 kaybolan gradyanlar probleminin ¢6ziimiine katki saglamistir.
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1.1. LITERATUR

Literatiire bakildiginda epileptik nobetleri EEG sinyallerinden tespit etmek icin
farkli yontemler kullanilmistir. Bu yontemler genelde 6zellik ¢ikarimi, siniflandirma ve
sinyal isleme iizerinde yogunlagilmistir. Bizde bu ¢alismamizda MA, SA yontemleri ile

ozellik ¢ikarilmistir. Ayrica UKSHDOM ile siniflandirilmustir.

Wang vd. (2021), epileptik EEG sinyalini nobet 6ncesini ayarlamak i¢in Rastgele
Secim ve Veri Artirma (RS-VA) stratejisi ile birlestirilmis yiginlanmis tek boyutlu
evrisimsel sinir ag1 (1B-ESA) modelini kullanmiglardir. EEG sinyalleri bu ¢aligmada ilk
once 2 saniyelik pencere ile boliitlenmistir. Daha sonra, 2-saniyelik EEG sinyal dilimleri
interiktal ve iktal olarak 1B-ESA modeli ile smiflandirilmistir. RS-VA metodu
kullanilarak, model egitimi zamaninda 6rnek daginiklig1 problemi ¢oziilmiistiir. Sonugcta,
Onerilen yaklasimin performanslarini degerlendirmek icin segment bazli ve olay bazl
seviyeleri kullanilmistir. Bu ¢alisma CHB-MIT Stereo Elektroensefalografi (SEEG) veri
seti ve SWEC-ETHZ Intrakraniyal Elektroensefalografi iEEG) veri setleri ile beraber
test edilmistir. CHB-MIT sEEG veri seti icin Duyarlilik %88,14, Ozgiilliik %99,62 ve
Dogruluk %99,54 elde edilmistir. Olaya dayal1 seviye agisindan bakildiginda, Hassasiyet
%99,31, (YPO) 0,2/saat ve ortalama 8,1 sn gecikme goriilmiistir. SWEC-ETHZ iEEG
veri seti i¢in Duyarlilik %90,09, Ozgiilliikk %99,81 ve Dogruluk %99,73 hesaplanmistir.
Olaya dayal1 diizeyde ise Duyarlilik %97,52, YPO 0,07/saat ve ortalama 13,2sn gecikme
elde edilmistir. Bu sonuglardan, epileptik nobetleri hem SEEG hem de iEEG verilerinden
tespit edilebildigi calismada gosterilmistir.

Zhang ve L1 (2022), CHB-MIT Scalp veri setinden faydalanmislardir. Goriintii
Déniisiimii (GD) kullanilarak 6zel bir nébet tahmin modeli ¢calismistir. Oncelikle, CHB-
MIT Scalp veri seti i¢in her hastanin EEG sinyali filtrelenmistir ve preiktal ve interiktal
boliitlemeler etiketlenmistir. Daha sonra islenen EEG sinyali Kisa Siireli Fourier
Déniisiimii (KSFD) aracilifiyla iki Boyutlu Spektrogramlara (IBS) déniistiiriilmiistiir.
Son olarak, islenmis IBS, belirli epileptik EEG sinyallerinin &zellik ¢ikarma ve
siniflandirma tahminini tamamlamak i¢in GD modelini kullanilmistir. Sonuglar, GD
kullanilarak epilepsi hastalarindan en iyi performansa Chb21 ile etiketli hasta sahip
olmustur. Bu veri setinin metrik degerleri: Dogruluk %94,6, Duyarlilik %98,6, Ozgiilliik
%389,8, Hassasiyet %90,5 ve Egri Altindaki Alan Degeri (EAAD) 0,989 olarak elde

edilmistir.
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Saidi, Othman ve Saoud (2021), yaptiklari calismada CHB-MIT Scalp veri setini
kullanmiglardir. Bu veri setini ESA ve ESA-Destek Vektor Makinesi (DVM)
yontemlerine gore smiflandirilmistir. CHB-MIT Scalp veri setinin ESA siiflandirma
yontemine gore birinci hastada %100, ikinci hastada %91,9, besinci hastada %91,87, on
dokuzuncu hastada %99,9, yirminci hastada %97,24, yirmi birinci hastada %93,68 ve
yirmi ii¢lincii hastada %100 Dogruluk elde edilmistir. CHB-MIT Scalp veri setinin ESA-
DVM smiflandirma yéntemine gore ise birinci hastada %95, ikinci hastada %94, besinci
hastada %94, on dokuzuncu hastada %99, yirminci hastada %100, yirmin birinci hastada
%96 ve yirmi {igiincii hastada %100 Dogruluk elde edilmistir. Sonug olarak, ESA-DVM
siiflandirma yonteminin dogrulugu, ESA siiflandirma yonteminin dogrulugundan daha

1yi basar1 degerine ulagsmustir.

Salvatierra vd. (2020), yaptiklar1 calismada CHB-MIT Scalp veri setini
kullanmiglardir. Yazarlar, epileptik hastalarda ndbetleri kestirmek i¢cin EEG sinyalleri
tizerinde Mutlak Spektral Glig (MSG) ve Spektral Giig Oran1 (SGO) ile 6zellik
cikarmiglardir ve Dogruluk %100 elde etmislerdir. Sonu¢ olarak, bir ndbet tahmin
algoritmasiyla karsilastirilmistir ve bdylece elde edilen sonu¢ degerleri onu diisiik bir

hesaplama maliyetiyle eslestirilmistir.

Hasnaoui ve Djebbari (2022), yaptiklar1 ¢alismada CHB-MIT Scalp veri setini
kullanmislardir. Bu veri setindeki ¢ok sayida kanal arasindaki yararli kanallar1 ayrigtirmak
icin Ayrik Dalgacik Doniisiimii (ADD) ve bir k-En Yakin Komsu (KEYK) siniflandirici
ile bir sistem olusturulmustur. Tktal dncesi ve normal sinyalleri 5 seviyeli bir ADD ile
ayristirilmistir ve ardindan bunlar secilen temel 6zellikleri kullanarak siniflandirilmagtir.
Bu ydntemleri kullanib metrik degerleri Dogruluk %98,27, Duyarlilik %100 ve Ozgiilliik
%96,66 elde edilmistir. Gelistirilen teknikte yazarlar, gelismis hesaplama siiresi ve tatmin
edici sonuclarla EEG verilerini isleyerek epilepsiyi verimli bir sekilde tahmin

edebilmislerdir.

Fathima, Rahna ve Gaffoor (2020), yilinda yaptiklar1 ¢alismada ndbet tespiti i¢in
CHB-MIT Scalp kullanmiglardir. Nobetlerin tespiti i¢in Dalgacik Doniisiimii tabanl
Oznitelikler kullanilmistir. Sekiz 6zellik yani: Standart Sapma, Ortalama Mutlak Sapma,
Kok Ortalama Kare Degeri, Minimum, Ceyrekler Arast Menzil, Carpiklik, Entropi ve
Maksimum Dalgacik Katsayilar {izerinden ¢ikarilmistir. Ozelliklerin siralamasi, T-Testi
Sinif Ayrilabilirlik Kriteri kullanilarak yapilmistir. Simiflandirma, en 6nemli alt1 6zellik

kullanilarak DVM siniflandiricist kullanilarak yapilmustir ve Ozgiilliik %100, Duyarlilik
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%97,2 ve Dogruluk %98,6 elde edilmistir. Sonuglar, ilgili ¢calismalara gore bir gelisme

gostermektedir.

Yang vd. (2021), yaptiklari ¢alismada ¢ok kanalli EEG sinyallerinden elde edilen
verilerin Zaman-Frekans Korelasyonunu (ZFK) kesfederek belirli hastalarda nobetleri
tahmin etmek i¢in genel bir yontem gelistirmeyi amaglamislardir. Orijinal EEG sinyalleri,
EEG sinyallerine KSFD uygulayarak Zaman-Frekans (ZF) 6zelliklerini temsil eden
spektrogramlara gevrilmistir. ilk kez, performansi daha iyi tahmin etmek igin kanal
eslemeleri arasindaki karsilikli bagimlilig1 arastiran bir kanal dikkat modiili ile yerel
ozellikleri kiiresel ozelliklerle biitiinlestiren bir spektrum dikkat modiiliinii birlestiren
ikili Bir Oz-Dikkat Artik Ag1 (IBODAA) 6nerilmistir. Onerilen yaklasim, CHB-MIT
Scalp EEG veri setinden 13 hastada Hassasiyet %89,33, Ozgiilliik %93,02, EAAD
%91,26 ve Dogruluk %92,07 elde edilmistir. Yapilan deneyler sonucunda, farkli EEG
sinyali tahmin segment uzunluklarinin, tahmin performansini etkileyen dnemli bir faktor
oldugunu gostermistir. Onerilen yontem yarisimei ve hastaya 6zel miihendislik olmadan

1yi saglamlik saglamistir.

Qin vd. (2020), yaptiklar1 ¢alismada CHB-MIT Scalp veri setini kullanarak
ndbetleri tahmin etmek icin ESA ve Asir1 Ogrenme Makinesinden (AOM) olusan karma
bir model oOnermislerdir. CHB-MIT Scalp veri setini KSFD yontemi ile 6zellik
cikarmiglardir ve ESA-ELM yontemi ile de smiflandirmislardir. Yazarlar deneysel
sonuclarda Duyarlilik %95,85, YPO 0.045/saat elde etmislerdir. ilk olarak, KSFD
kullanarak 30 saniyelik pencerelerdeki EEG zaman serilerini 2B spektrogramlara
dontstiirilmiistiir. Ardindan, 6zellikleri otomatik olarak ¢ikarmak i¢in bu goriintiilere
ESA'lar1 uygulanmistir. Son olarak, preiktal ve interiktal segmentleri stniflandirmak igin
AOM kullamlmigtir. Onerilen yéntem, CHB-MIT Scalp EEG veri setinde Hassasiyet
%95,85 ve YPO 0,045/saat elde edilmistir.

Zhao vd. (2021), ham EEG verilerinden nobetleri tespit etmek i¢in bir Lineer
Grafik Evrisim Agina (LGEA), fokal kayip modeli ve LGEA dayal1 yeni bir ndbet tespit
modeli Onermislerdir. Grafik sinir aginin giris grafiini olusturmak icin ham EEG
sinyallerinin Pearson Korelasyon Matrisi (PKM) hesaplanmistir. Deneyler CHB-MIT
Scalp veri setinde uygulanmistir. CHB-MIT Scalp veri setinin LGEA ile Odak Kayip
Modeline (OKM) gore nobet saptama dogrulugu %99,3, ozgiilliigi %99,43, duyarlilig:
%98,82, F1-puan1 %98,73 ve EAAD 9%98,57 degerleri elde edilmistir. CHB-MIT Scalp
veri setinin LGEA modeline gorede ndbet saptama Dogrulugu %95,89, Ozgiilliigii %95,3,
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Duyarlilig1 %93,8, F1-puan1 %89,36 ve EAAD 9%82,35 degerleri elde edilmistir. Sonug
olarak, EAAD + OKM CHB-MIT Scalp veri setinde iistiin performansini saglamistir.

Sopic, Aminifar ve Atienza (2018), EEG sinyallerinin nébet geciren anini tespiti
icin dort elektrot vasitesi ile e-Glass sistemi gelistirmislerdir. Deneysel degerlendirmeler,
sistemin tek bir pil sarj1 ile 2,71 glin ¢aligmaya izin vererek, Hassasiyet %93,8 ve
Ozgiilliik %93,37 elde edilmistir. Genel olarak, e-Glass epilepsinin sosyoekonomik
yukiinii azaltarak hastanin yasam kalitesinde iyilesmelere Onemli Olgiide katkida

bulunmustur.

Singh ve Malhotra (2021), EEG sinyallerinin DO dayali SA ydntemini
kullanarak epileptik nobetlerin otomatik tahmini i¢in akilli bir saglik izleme yaklagimi
onermislerdir. Yazarlar, nobet olusumunun 6ngdriilmesi gorevini, ham EEG sinyallerinin
filtrelenmesini, zaman alan1 segmentasyonunu, frekans alanina doniistiirtilmesini,
EEG'nin spektral segmentlerinin ¢esitli farkli frekans bantlarina ayrilmasint ve
ozelliklerin ¢ikarilmast dahil olmak iizere farkli uygulama adimlarini uygulamislardir.
Onerilen ESA modelinin sonuglari, iki farkli spektral bant kombinasyonu icin preiktal
nobet durumunda %98,3 maksimum dogruluk elde edilmistir ve interiktal ndbet
durumunda %97,4 maksimum Dogruluk elde edilmistir. Bu nedenle, EEG sinyallerinin
SA eslik ettigi onerilen ESA mimarisi, epileptik nobetlerin giivenilir ve gergek zamanli

tahmini i¢in uygun bir yontem saglamistir.

Zhang vd. (2022), epilepsinin tan1 ve tedavisini kolaylagtirmak i¢in Cift Yonli
Kapili Tekrarlayan Birim (CYKTB) sinir agina dayali otomatik bir nobet tespit yontemi
onermislerdir. CHB-MIT Scalp EEG veri setinde Hassasiyet %93,89, Ozgiilliik %98,49
ve 124 nobetten 867,14 saatlik test verilerinde YPO metrigini saatte 0,31 olarak almistir.
Sonug olarak, CYKTB aginin uzun siireli EEG'nin ¢ekiminde giivenilir bir sonuglara

ulasilmustir.

Shen vd. (2022), ADD, DVM ve karar agact makine 6grenimi modellerini
kullanan EEG tabanli bir gercek zamanli epilepsi ndbet tespit yaklagimi 6nermislerdir ve
performansin1 karsilastirarak degerlendirmislerdir. Farkli alt frekans bantlarindaki
Oznitelikleri ¢ikarmak i¢in ADD ve sekiz 6zdeger algoritmasi uygulanmistir. Daha sonra,
saglik kontrolii, nobetsiz ve nobet aktif li¢ sinif siniflandirmasi i¢in DVM kullanilmistir
ve son olarak, gercek zamanli ndbet baglangici tespiti i¢in karar agaci yontemi
uygulanmistir. Belirlenen algoritma, UB ve CHB-MIT Scalp veri setlerinde

uygulanmistir. Sonuglar, algoritmanin UB veri setindeki saglik kontrolii, ndbetsiz ve
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nobet aktif gruplar ti¢ siniflt siniflandirmasinda Dogruluk %97 ve Duyarlilik %96,67 ve
CHB-MIT Scalp Veri Kiimesinde ger¢ek zamanli nobet baslangici tespiti i¢in Dogruluk
%96,38, Duyarlilik %96,15, YPO %3,24 elde edilmistir.

He vd. (2022), CHB-MIT Scalp veri seti ve Temple Universitesinin TUH veri
seti lizerinde deneyler yapmislardir. Yazarlar, nobet tespiti icin Grafik Dikkat Aglari
(GDA)ve CYUKSHDOM tabanli yeni bir nobet tespit yontemi Onermislerdir.
Calismada yapilan deneylerde CHB-MIT Scalp veri setinin GDA ve CYUKSHDOM
yontemine gére Dogruluk %98,52, Duyarlilik %97,75, Ozgiilliik %94,34 elde edilmistir.
TUH veri setinin GAT ve CYUKSHDOM yéntemine gore de Dogruluk %98,02,
Duyarlilik %97,7, Ozgiilliik %99,06 elde edilmistir. CHB-MIT Scalp veri setinin GDA
yontemine gére Dogruluk %96,28, Duyarlilik %93,03, Ozgiilliikk %92,75 elde edilmistir.
CHB-MIT Scalp veri setinin CYUKSHDOM yéntemine gore Dogruluk %94,16,
Duyarlilik %88,23, Ozgiilliik %75 elde edilmistir. TUH veri setinin GDA ydntemine gore
Dogruluk %95,5, Duyarlilik %94,95, Ozgiilliik %96,52 elde edilmistir. TUH veri setinin
CYUKSHDOM yéntemine gore Dogruluk %84,43, Duyarlilik %90,9, Ozgiillik %89,1
elde edilmistir. Uygulanan yontemin, 6zellik ¢ikarimi aninda ¢ekilmis EEG sinyallerinin

epileptik anin1 tespit etmek icin kaliteli bir sonuclara ulagilmistir.

Ansari, Sharma ve Tripathi (2020), frekans etki alani Ozniteliklerinin ve
Notrozofik Mantik Tabanli  K-Ortalama En Yakin Komsu (NMTKOEYK)
smiflandiricisinin -~ bir  kombinasyonu olan nodbet tespiti i¢in bir algoritma
onermislerdir. Onerilen algoritmanin performansindaki tutarlilik, Bonn Universitesi ve
CHB-MIT Scalp EEG veri setlerine uygulanarak kontrol edilmistir. Onerilen algoritma
test edildiginde AIIMS veri setine gore %98,16, Bonn Universitesi veri setine gore %100
ve CHB-MIT Scalp veri setine gore %89,06 siniflandirma dogruluklarina ulagsmislardir.
NMTKOEYK smiflandiricidan elde edilen Dogruluk degeri, Lineer Diskriminant
Analizi, DVM ve KEYK siniflandiricilarinin elde edilen sonuglariyla karsilagtirilmistir.
Bonn Universitesi ve CHB-MIT Scalp veri setlerini uygulayarak, dnerilen algoritmanin
performansindaki Dogruluk degeri test edilmistir. Onerilen NMTKOEYK, mevcut ii¢
siiflandiric1 tabanli yontemden daha iyi performans gostermistir. Sonug olarak, EEG
sinyallerinden 06zellik c¢ikarmak amaciyla NMTKOEYK smiflandiricisini kullanarak

epilepsi teshisinde basarili bir sonug elde edilebilmistir.

Shahbazi ve Aghajan (2018), EEG sinyallerinden ndbet tahmini i¢in DO dayali

yeni bir model sunmuslardir. Bu amagla, EEG segmentlerinden elde edilen KSFD
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iizerinde bir ESA-UKSHDOM sinir ag1 egitilmisti. CHB-MIT Scalp veri setinde
Hassasiyet %98,21 ve 0,13/saat diisitk YPO ve 44,74 ortalama tahmin siiresi degerleri
elde edilmistir. Onerilen yontem, nobet tahmini i¢in DO’e dayali son teknoloji

algoritmalardan daha iyi performans gosterir.

Ansari, Sharma ve Tripathi (2020), iktal (ndbet an1), interiktal (ndbetler arasi) ve
preiktal (nobet Oncesi) siniflandirmast i¢in minimum Oznitelik kiimesine sahip
UKSHDOM o&nermislerdir. Onerilen yéntem, CHB-MIT Scalp veri taban1 kullanilarak
test yapildiginda nobet tahmininde Dogruluk %91,02 ve nobet tespitinde Dogruluk
%96,59 elde edilmistir. CHB-MIT Scalp veri setinden alinan EEG sinyalleri 983 saatte
UKSHDOM agi ile siniflandirilmistir. EEG sinyali gekilirken Preiktal (ndbet 6ncesi) 30
dakikalik siire ve sonra interiktal (ndbetler aras1) 1 saatlik siire siirece dahil edilmediginde
Dogruluk %95,71 elde edilmistir. Degerlendirmenin sonuglari, onerilen agin, ndbet
tespitinin yani sira ndbet tahmininde minimal bir dizi 6zellik ile kullanilmasini

Onermektedir.

Anuragi, Sisodia ve Pachori (2021), epileptik ndbetleri belirlemek icin Fourier-
Bessel Serisi Genisleme Tabanli Ampirik Dalgacik Doniistimii (FBSE-AMDD)
yontemini kullanan otomatik bir 6grenme cergcevesi Onermislerdir. FBSE-AMDD
yontemi ile EEG sinyallerini alt bant sinyallerine ayristirilmistir. En 6nemli 6znitelikleri
secmek icin Kabartma-F Oznitelik Siralama (KFOS) yontemi kullanilmistir. Bonn ve
CHB-MIT Scalp veri setlerini kullanarak EEG sinyalinin nobet tespiti edilmistir. 10 kat
capraz dogrulama teknigi uygulayarak modellerin egitimi ve testi yapilmistir. FBSE-
AMDD o6grenme modeli iki veri seti i¢in de gerceklestirilmistir ve diger son teknoloji
yontemlerle kiyaslanmistir. Deneysel sonuglar, Onerilen c¢ercevenin Bonn EEG veri
setinde Dogruluk %100 elde edilmistir ve CHB-MIT Scalp EEG veri setinde Dogruluk
%99,84 ulastigin1 gostermistir.

Ciurea vd. (2020), hesaplama karmagikliginin azaltilmasini saglamak i¢in girdi
olarak bir saniye uzunlugundaki EEG kayitlarin1 kullanarak, bir saniye uzunlugundaki
EEG kayitlar1 bi¢ciminde zaman alant Ozniteliklerini ¢ikaran verimli bir algoritma
onermislerdir. Ozellikler, algilama igin basit bir sinir agina beslenmistir. Modeli tek tek
ve kiiresel olarak Upenn-Mayo Clinic veri setinde ve CHB-MIT Scalp veri setinde
dogrulanmistir. Sonug olarak, hasta bazinda Dogruluk %99,17, Duyarlilik %99,44 ve
Ozgiilliik %98,89, kiiresel olarak Dogruluk %92,69, Duyarlilik %91,99 ve Ozgiilliik

%93,38 elde edilmistir. Bununla birlikte, sonuglar daha fazla veriye genellestirilmelidir.
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Mohan vd. (2018), yaptiklar1 calismanin temel amaci, EEG sinyallerini
minimum YPO ile analiz ederek epileptik ndbetleri en erken tahmin etmislerdir. Bu
algoritma, Gizli Dirichlet Ayirim1 (GDA), QDA ve KEYK siniflandiricilari i¢in Physionet
ATM'den alinmis EEG veri setinde test edilmistir. Bu ¢alismada farkli siniflandiricilarin
performanslari degerlendirilmis ve karsilastirilmistir. Elde edilen ortalama tahmin siiresi,
31,6 dakikada YPO degeri 1,3 olmustur. Sonuglarin umut verici oldugu goz Oniine

alinmustir.

Li vd. (2021), yaptiklar1 calismada EMD ve CSP'ye dayali yeni bir hastaya 6zel
ndbet baslangici tespit sistemi Onermislerdir. Sistem, iki veri tabanindan 34 denekten
alman CHB-MIT Scalp EEG veri kayitlar1 iizerinde degerlendirilmistir. Deneysel
sonuglar, énerilen algoritmanin CHB-MIT Scalp veri setinde Ozgiilliik %97,5, Duyarlilik
%97,34 ve SH-SDU veri setinde Ozgiillik %96,06, Duyarlilik %93,67 elde ettigini
gostermistir. Daha sonra, CSP uzamsal filtresinin, ndbet baslangiglarinda yer alan EEG
kanallarini1 tanimlamaya yardimci oldugunu gdstermistir. 23 denek icin 19 hastanin ndbet
baslangi¢ alanlar1 dogru tahmin edilmistir. Bu tatmin edici sonugclar, dnerilen sistemin
klinik uygulamalarda ndbet baslangic1 tespiti i¢in bir referans saglayabilecegini

gostermektedir.

Steele vd. (2021), yaptiklar1 ¢alismada tiim sensor alani iizerinde bulunan bir
karisik filtre ve birden ¢ok kanal kullanarak ¢oklu nébet durumu tahminleri yapmislardir.
Yazarlar, ¢oklu tahminler tiretmek i¢in bu islemi tekrarlamislardir ve bir Kalman Filtresi
uygulayarak coklu tahminlerden olusan birlesik bir ndbet durumu tahmini elde
etmisglerdir. Tiim sensor uzayindan, tek bir nébet durumu tahmini tiretmek i¢in bir stirekli
ve bir ikili 6zellik belirlenmistir. Sonug olarak, CHB-MIT Scalp EEG veri seti lizerinde
deneyler yapilmistir ve Onerilen tahmin yontemini dogrulamistir ve Dogruluk %92,7,
Duyarlilik %92,8 ve Ozgiilliikk %93,4 metrik degerlerine ulasilmistir. Elde edilen birlesik
nobet durumu tahmini, tek bir tahmin kullanarak elde edebileceklerinden daha yiiksek

Dogruluk, Duyarlilik ve Ozgiilliige sahip olmustur.

Ahmad vd. (2020), yaptiklar1 caligmada preiktal/iktal ve interiktal donemlerdeki
EEG sinyallerinden Oznitelik ¢ikarma, smiflandirma ve diizenleme siireci yoluyla
epileptik hastalarda nobetleri tahmin etmeye calismislardir. 10 epilepsi hastasinin
beyninin ¢esitli bolgelerinden gelen EEG sinyalleri degerlendirilmistir. Sinyallerin Faz
Acist (FA), Genlik ve Gii¢ Spektral Yogunlugunu (GSY) tayin etmek i¢in Hizl1 Fourier

Doéntisimii (HFD) yontemi kullanilmistir. Sinyalleri siniflandirmak amaciyla DVM
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kullanilmistir. Onerilen yaklasim CHB-MIT Scalp EEG veri seti iizerinde test edilmistir
ve epileptik nobetleri ndbet baslangicindan ortalama 25 dakika énce Dogruluk %100 ve
saatte diisiik bir yanlis alarm orani 0,46 elde edilmistir. Tip biliminde gelismis nobet

tahmin cihazlarinin gelistirilmesine yardime1 olacaktur.

Wang vd. (2021), EEG sinyallerinin zaman, frekans ve kanal bilgilerini analiz
etmek icin yeni bir ESA 6nermislerdir. Onerilen ESA modeli CHB-MIT Scalp EEG veri
tabani ile degerlendirilmistir, deneysel sonuglar modelimizin mevcut en son teknolojiden
daha iyi performans gostermistir ve Dogruluk %80,5, Duyarlilik %85,8 ve Ozgiilliik
%75,1 elde edilmistir.

Shariat vd. (2021), yaptiklar1 ¢alismada CHB-MIT Scalp ve sEEG veri setlerini
kullanmiglardir. Bu veri setlerini 0n islemesi icin Butterworth filtre ve bdéliitleme
kullanmislardir, covaryans matrisi ile 6zellik ¢ikarmislardir, Maksimum Alaka Diizeyi
Minimum Fazlalik ve Sirali fleri Ozellik Secimi ile 6zellik secmislerdir ve DVM ilede
siiflandirilmigtir. CHB-MIT Scalp veri setine gore Dogruluk %99,87, Duyarlilik %99,91
ve Ozgiillik %99,82 elde edilmistir. SEEG veri setine gore de Dogruluk %98,14,
Duyarlilik %98,16 ve Ozgiilliik %98,12 elde edilmistir.

Ryu vd. (2021), yaptiklar1 ¢alismada EEG verilerini kullanarak epileptik nobet
tahmini i¢in DenseNet ve UKSHDOM yodntemlerini birlestirerek yeni bir model
Onermislerdir. Sonrasinda bu model ile dnceden doniistliriilmiis goriintii egitilmistir.
Sonug olarak, Dogruluk %93,28, Duyarlilik %92,92, Ozgiilliik %93,65, saatte yanlis
pozitif oran1 0,063 elde edilmistir ve preiktal uzunluk 5 dakika oldugunda F1-puani 0,923
elde edilmistir. Sonug olarak, onerilen yontem Onceki ¢aligsmalarla karsilastirildiginda,

ndbet tahmin performansinin 6nemli dl¢ilide iyilestigi dogrulanmugtir.

Zhao vd. (2020), ndbet tahmini icin Ikili 1-B ESA énermislerdir. Ikili 1-B ESA,
tahmin performansini iyilestirmek icin Tek Evrisimli Cekirdekleri (TEC) kullanilmistir.
[k katman harig, gerekli hesaplama ve depolamay1 azaltmak igin tiim parametreler ikili
hale getirilmistir. Amerikan Epilepsi Dernegi Nobet Tahmini Miicadelesi veri setine gore
EAAD 0,915, duyarlilik %89,26 ve YPO 0,117/saat ve CHB-MIT Scalp veri setine gore
de EAAD 0,97, Duyarlilik %94,69 ve YPO 0,095/saat elde edilmistir. Son teknoloji {iriinii
calismalarla karsilastirildiginda, 6nerilen Ikili 1-B ESA daha iyi performans sunmustur.
Ayrica, TEC in teorik agiklamasi, Ikili 1-B ESA modeline kiyasla nobet tahmininde daha

iyi performans elde etmistir.
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Khalilpour vd. (2020), CHB-MIT Scalp EEG veritabanin1 kullanarak epileptik
ndbetleri tahmin etmek icin yapay bir model gelistirmislerdir. Nobetin baglama zamanini
bulmak i¢in EEG sinyallerini Tek Boyutlu ESA (TBESA)
modeli ile incelemislerdir. Yedi Katmanli ESA (YKESA), onerilen modelin
performansinin Dogruluk %97, Ozgiilliik %98,47 ve Duyarlilik %98,5 elde edilmistir.
Ayrica Onerilen model, bireysel kanala gore besleme ve gruplanmis kanallara gore

besleme durumunda egitilmistir. Toplanan sonuglarin faydali oldugu gézlemlenmistir.

Ghembaza vd. (2022), CHB-MIT Scalp veri setinden faydalanmislardir.
Onerilen calismada, ZF denkleminde genisletilmis bir Renyi Entropisi ile dinamik kanal
se¢im algoritmasi1 dnermislerdir. Onerdikleri algoritma ile yiiksek ¢oziiniirliiklii ikinci
dereceden ZF dagilimlarmi kullanarak bu algoritmay1 uygulamislardir. Bu veri setini
DVM ve KEYK siniflandiricilart ile siniflandirmiglardir. Spektrogram, Diizlestirilmis
S6zde Wigner—Ville Dagilimi (DSWVD) karsilastirmast amaciyla Choi—Williams
Dagilimi (CWD) sayesinde Oznitelliklerini belirlemislerdir. CHB-MIT Scalp veri setinin
DVM smiflandiricisinin - Spektrogram  6znitelik se¢imine gore Dogruluk %97,69,
Duyarlilik %100, Ozgiilliik %97,56, F1-puan %82,35 ve MKK 0,82 elde edilmistir. CHB-
MIT Scalp veri setinin DVM smiflandiricisinin DSWVD  6znitelik se¢imine gore
Dogruluk %98,46, Duyarliik %100, Ozgiilliik %98,4, Fl-puan %80 ve MKK 0,81
degerleri alinmistir. CHB-MIT Scalp veri setinin DVM siniflandiricisinin CWD 6znitelik
secimine gore Dogruluk %96,15, Duyarlilik %100, Ozgiilliik %96,12, F1-puan %28,57
ve MKK 0,4 metrik degerleri alimmisti. CHB-MIT Scalp veri setinin KEYK
siniflandiricisinin Spektrogram 6znitelik se¢imine gore Dogruluk %98,46, Duyarlilik
%100, Ozgﬁllﬁk %98,36, Fl-puan %88,88 ve MKK 0,88 elde edilmistir. CHB-MIT
Scalp veri setinin KEYK smiflandiricisinin DSWVD 6znitelik se¢imine gore Dogruluk
%99,23, Duyarlilik %100, Ozgiillik %99,2, Fl-puan %90,9 ve MKK 0,9 degerleri
alimmisti. CHB-MIT Scalp veri setinin KEYK smiflandiricisinin CWD  6znitelik
secimine gdre Dogruluk %96,92, Duyarlilik %100, Ozgiilliik %96,87, F1-puan1 %50 ve
MKK 0,56 metrik degerleri alinmistir. Sonuglar, cesaret verici olmustur. Yani sira,
Onerilen ¢caligmada ZF artirilmis RE tabanli kanal se¢im (RETKS) yontemi, otomatik bir
sekilde EEG dinamik boyutsallik indirgemesi i¢in verimli bir hesaplama ¢6ziimii

olmustur.

MohanBabu vd. (2021), optimize edilmis DO Ag Modeli kullanilarak uzun-kisa

stireli kayitlardan elde edilen ndbet tahminine odaklanmislardir. Bu yazida, islevsel bir
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baglant1 dlciisii olarak etkilesim grafigi modeli kullanilarak, senkronizasyon kaliplar1 ve
preiktal ile interiktal durumlar1 ayirt etme fizibilitesi incelenmistir. Degerlendirme, CHB-
MIT Scalp EEG veri seti lizerinde uygulanarak, ndbet tahmini i¢cin Duyarlilik %100 ve
0,1 ile 0,02 arasinda diisiik yanlis tahmin oran1 saglamistir. Onerilen DO Ag Modeli
metodolojisi, mevcut makine 6grenimi ve ESA yontemleriyle karsilastirildiginda, nobet

tahmininin performans oraninda kayda deger bir artis oldugunu ortaya koymaktadir.

Bilal vd. (2019), epileptik nobet tespiti probleminde, veriye dayali bir
boyutsallik azaltma teknigi olan Cok Coziiniirliikklii Dinamik Mod Ayristirma (CCDMA)
uygulamiglardir. Yazarlar, bu algoritmayr CHB-MIT Scalp ve KU Leaven veri kiimeleri
kullanmislardir. Onerilen ¢alismada, YPO azaltmasi icin ve Duyarlilik ile Ozgiilliigiin
artirmasi amaciyla islem sonrasi gerekli adimlar uygulanmustir. Iki veri kiimesinede bu
yontem uygulanmistir ve ayrintili bir analiz elde edilmistir. Algoritma, CHB-MIT Scalp
veri seti icin Hassasiyet 0,937, Ozgiilliik 0,99, saatte YPO 0,587 ve gecikme siiresi 3,12
saat elde edilmistir. KU Leuven veri seti i¢in Hassasiyet 0,96, Ozgiilliik 0,99, saatte YPO
0,413 ve gecikme siiresi 2,75 saat elde edilmistir. Bu sonuglara gore, Coklu-Coziiniirliik
Analizi (CCA) ile Temel Dinamik Mod Ayristirmasi (TDMA) karsilagtirilmistir. Bu
karsilastirilma sonucunda CCA’in  Duyarlilifinda daha fazla gelisme sagladigi

gorilmiistir.

Tang vd. (2018), CHB-MIT Scalp veri seti ile ndbet tahmini performansini
artirmak amaciyla Otonom Artefakt Azaltma (OAA) yontemi dnermislerdir. Onerilen bu
yontem 1ile FElektookiilografi (EOG) ve Elektromiyografi (EMG) artefaktlar ile
Cokdegiskenli Ampirik Mod Ayristinrmi-Bagimsiz Bilesen Analizini (CAMA-BBA)
birlestirmistir. Bu yontem iki asamadan olusan artifakt tanimlama sayesinde artefaktlarda
ciddi bir azalma gozlenmistir. CHB-MIT Scalp veri tabanina dayali olarak Dogruluk
%90,59 ve Hassasiyet %91,09 elde edilmistir.

Tallon-Ballesteros vd. (2022), yaptiklar1 ¢alismada etkili otomatik capraz 6zne
nobet tespiti i¢in ayrilabilir derinlik bazinda evrisime dayali degistirilmis bir ESA
mimarisi dnermislerdir ve arastirmislardir. Onerilen ydntemin performansi, CHB-MIT
Scalp ve UBonn veri setleri lizerinde degerlendirilmistir. Yontem, CHB-MIT Scalp veri
setine gore Duyarlilik %91,93 ve saatte YPO 0,005 ulasilmistir. Ubonn veri setine gorede
Duyarlilik %100 ve saatte YPO 0,057 elde edilmistir. Siniflandirma sonuglari, derinlik

bilgisine sahip evrisim katmanlarini kullanan bu ¢alismanin ESA mimarisinin hem kii¢iik
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hem de oldukga biiyiik bir veri taban1 kullanarak epileptik nobet tespiti i¢in iyi performans

gosterdigini gostermektedir.

Zhang vd. (2019), yaptiklar1 ¢alismada Ortak Uzaysal Model (OUM) ve ESA
kullanilarak nébet tahmini iizerine yeni bir ¢dziim dnermislerdir. Onerilen ¢dziim, CHB-
MIT Scalp veri setinden alinan 23 hastanin verileri lizerinde, bir disarida birakma ¢apraz
dogrulamasi kullanilarak degerlendirilmistir ve Hassasiyet %92,2 ve YPO 0,12/saatlik
elde edilmistir. Deneysel sonuglar, 6nerilen yaklagimin en gelismis yontemlerin ¢ogundan

daha iyi performans gosterdiginin farkina varilmstir.

Tsiouris vd. (2018), yaptiklart ¢calismada, EEG sinyalleri kullanilarak epileptik
ndbet tahmininde UKSHDOM kullanmislardir. Bu ¢alismada, CHB-MIT Scalp EEG veri
tabanindan sinyaller ile calisilmistir. Onerilen metodolojinin 185 ndbetin tamamini
tahmin edebildigini, yliksek nobet tahmin Duyarlilifi oranlar1 ve YPO 0,11 elde
edilmistir. UKSHDOM temelli bu yontem ile geleneksel makine 6grenmeleri ve daha

onceki ESA aglara gore ndbet tahmin performansinda daha iyi sonuglara ulasilmistir.

Zou vd. (2018), yaptiklari calismada derin yapiya sahip Kanal Kisithh ESA
(KKESA) kullanan hastaya 6zel bir nobet tespit sistemi gdstermislerdir. Bu ¢aligmada
CHB-MIT Scalp veri seti kullanilmistir. 23 epileptik nobet geciren hastanin verileri test
edilmis ve glizel basar1 elde edilmistir. YPO degeri saatte 0,12 olarak dlgiilmiistiir. 167
ndbetten olusan teste 1 tanesi dogru tahmin edilememistir. Sonug olarak, tavsiye edilen

bu yontem ile detektdr performansi en iist diizey teknoloji seviyesindedir.

Kaziha ve Bonny (2020), ham EEG sinyallerinden nobetleri tespit etmek
amaciyla yazilim tabanli bir sinir ag1 gelistirmislerdir. Bir sinir ag1, ESA dayali olarak
tasarlanmis ve EEG ham sinyal veri seti CHB-MIT Scalp {izerinde egitilmistir. CHB-MIT
Scalp veri seti lizerinde yazilimsal olarak tasarlanmis bir ESA ile egitim ve ¢ikarim
yapilmistir ve Dogruluk %96,74, Ozgiilliik %100 ve Duyarlilik %82,35 elde edilmistir.
Siniflandirict daha sonra edinim i¢in gerekli ¢evre birimleri ile yeniden yapilandirilabilir
donanim {izerinde gergeklestirilerek tasmabilir bir ¢ip iizerinde sisteme Giivenlik

Operasyon Merkezi (GOM) doniistiiriilebilir.

Xu vd. (2020), bir ESA kullanarak ugtan uca bir DO ¢6ziimii dnermislerdir. Bir
ve iki boyutlu ¢ekirdekler, sirasiyla erken ve ge¢ asama evrisim ve maksimum havuzlama
katmanlarinda benimsenmistir. Onerilen ESA modeli, Kaggle kafa ici ve CHB-MIT Scalp

veri setleri lizerinde degerlendirilmistir. Kaggle kafa ici EEG veri setinde Hassasiyet
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%93,5, YPO 0,063/saat ve EAAD 0,981 elde edilmistir. CHB-MIT Scalp EEG veri
setinde Hassasiyet %98,8, YPO 0,074/saat degerlerine ulasilmigtir. Son teknoloji
caligmalarla karsilastirma, onerilen modelin tahmin performansini asan bir basar elde

ettigini gostermektedir.

Raghu vd. (2019), EEG sinyallerinde epileptik ndbetlerin tespiti i¢cin Sigmoid
Entropi (SGE) olarak adlandirilan yeni bir 6zellik dnermislerdir. SGE, her alt banttaki
dalgacik katsayilarindan tahmin edildi ve bir 6zneyi disarida birak ¢apraz dogrulamali
dogrusal olmayan bir DVM siniflandiricis1 kullanilarak siniflandirilmisti. RMCH,
UBonn ve CHB-MIT Scalp veri setlerini ADD yontemi ile 6zellik ¢ikariimistir. Onerilen
yontemin performansi, 115 denekten alinan 58 Saatlik EEG'den olusan RMCH veri
tabani, Bonn Universitesi (UBonn) ve CHB-MIT Scalp veri tabanlari ile test edilmistir.
RMCH veri taban1 i¢in ndbet saptama oran1 %96,34, YPO 0,5/saatlik ve 1,2 saniyelik bir
ortalama algilama gecikmesi gozlemlenmistir. UBonn veri setine gore Duyarlilik %100
ve CHB-MIT Scalp veri setine gorede Duyarlilik %94,21 elde edilmistir. Sonug olarak,
SGE’in, daha az hesaplama karmasiklig: ile epileptik ndbet davranisini anlamak igin

beyin dinamiklerini analiz etmek i¢in kullanilabilecegi sonucuna varikmistir.

Zheng vd. (2020), yaptiklar1 ¢alismada optimum 6zellik ve minimum kanal ile
CHB-MIT Scalp EEG ol¢iimlerini kullanarak etkili, glivenilir ve otomatik bir epileptik
ndbet tahmin sistemi gelistirmislerdir. CHB-MIT Scalp veri setinden interiktal ve preiktal
donemlerdeki EEG verileri, nobet tahmini i¢in kullanilir. i1k olarak, orijinal sinyaller bir
ADD kullanilarak birka¢ frekans bandina ayristirilir. Daha sonra, standart sapma (S),
genlik giinligi (L), ceyrek (Q) ve varyasyon katsayisi (CV) gibi 6zellikler ¢ikarilir. Son
olarak, yukaridaki iki durumu (preiktal ve interiktal durumlar) siniflandirmak i¢in farkl
ozellik vektor kombinasyonlari siniflandiricilara (destek vektor makinesi (SVM) ve asiri
o6grenme makinesi (ELM)) beslenir. Performans analizi, optimal 6zelligin CV, optimal alt
bandin 16-31 Hz oldugunu ve optimal EEG kanalinin FP1-F7, T7-P7, FP1-F3, P3-O1
veya P7-T7 olarak secilebilecegini gostermektedir. ELM, simiflandirma sonuglarini
karsilagtirarak daha saglam bir ve DVM'den daha yiiksek genel dogruluk ve hem ELM
hem de DVM'in en iyi ortalama dogrulugu %100'e kadar ulasilabilmistir. CHB-MIT
Scalp veri setini ELM ve DVM yontemleri ile siiflandirmislardir ve %100 dogruluk

basarisi elde etmislerdir.

Cheng vd. (2021), epileptik nobetleri tahmin etmek i¢in DO ve uyku CHB-MIT
Scalp veri setine dayali hastaya dzel yeni bir yontem dnermislerdir. CYUKSHDOM,
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birini disarida birak ¢apraz dogrulama yontemiyle birlestirilmis siniflandirma sonuglarini
elde etmek i¢in en ayirt edici 6zellikleri ortaya ¢ikarmak i¢in uygulanmistir. Ardindan, iki
asamal1 bir son isleme siireci, tahmin sonuglarini optimize edilmistir. CYUKSHDOM
yonteminde Dogruluk %99,47, Duyarlilik %99,34 ve Ozgiilliik %99,6 elde edilmistir.
CYUKSHDOM ile smiflandirma performansi diger sinir aglarina gore daha yiiksektir.
Sonug olarak, uyku sirasinda nobet tahmini i¢in mevcut yontemlerle karsilastirildiginda,

Onerilen yontem daha iyi bir tahmin performansina sahiptir.



IKiNCi BOLUM

GENEL KISIMLAR



18
2.1. EPILEPSI HASTALIGI

2.1.1. Epilepsi Hastali@imin Tanimi

Epilepsi, beyindeki hiicrelerin elektriksel aktivitesinin ani olarak bosalmasina ve
biling kayb1 olusturan bir hastaliktir. Manyetik Rezonans Goriintiilleme (MRG), ve EEG
sinyallerinin analizi epilepsilerdeki beyin siireglerini anlamamizi ilerletmede temel
olmustur (Sisodiya, vd., 2022). Epilepsi, 0Ozellikle c¢ocuklarda sik goriilen bir
rahatsizliktir. Sinir rahatsizligidir. Cocuklarda yetigkinlere gore 15 kat daha fazla goriiniir.
Diinyada rastlanilan hastalar %80°ni ilk ndbetini 18 yasindan dnce geg¢irmistir. Epilepsi
rahatsizlig1 kisinin yasam kalitesine 6nemli ol¢lide azaltir. Bunun yaninda 6liime kadar
gidebilir. Paroksistik ndrolojik bozukluklar arasinda yer alir. Oliimciil oldugu i¢in gergek

zamanli izleme ve nobet tespiti oldukca 6nemlidir.

Epilepsi dogum anindaki kafa darbelerinden, genetik ge¢misten, cocukluk
aninda yliksek seviyede atesli hastaliklardan, beyin kanamasindan, beyin
iltihaplanmasindan ve alkol kullanimina bagli durumlar temel olarakepilepsiye neden

oldugu bilimsel ¢aligmalarla ortaya konulmustur (Sarudiansky, vd., 2021).

Epilepsi tedavisi tam olamayan bir rahatsizlik olsa bile uzmanlarin dnerecegi
farkli tedavi yontemleriyle siire¢ hafifletilir (Catalkaya, vd., 2022). Epilepsi ilag
kullanmadada dogru ilaglardan ve dogru dozda belirlenmelidir (Yulug, Ozsimsek ve
Oktem, 2022). Doktorlar kisinin yasma, onun siirekli ndbet gecirmesine ve baska

nedenlere gore hangi ilact kullanacagina karar verir (Dogan, 2022).

2.1.2. Epilepsi Hastali@inin Tiirleri

Epilepsi hastaliginin su ndbet tiirleri bulunmaktadir: fokal ve jeneralize
(Fordington ve Manford, 2020). Bundan sonra gelen alt boliimlerde bunlarin kisaca

aciklamalar1 verilmistir.
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2.1.2.1. Fokal Nobet

Fokal epilepsi, sol ya da sag beyinde kaynaklanan ndbetlere ek olarak, tek veya

¢oklu olarak bozukluklar igerir (Lattanzi, vd., 2019).

2.1.2.2. Jeneralize Nobet

Beynin her iki lobunda ortaya ¢ikan, tibbi aragtirmalarla veya EEG ¢ekimi ile
fark edilebilen nobetlere jeneralize baslangicli ndbetler denir. Jeneralize ndbetlerin sik
rastlanilan nobetleri: Absans, jeneralize tonik-klonik, miyoklonik ve atonik ndbetlerdir

(Gray, vd., 2020).

Absans epilepsi idiopatik jeneralize epilepsiler grubunda bulunmakta olup biling
kaybiyla eslik eden, iktal EEG’ de 2,5-4 frekansinda bilateral ve simetrik Diken Dalga
Desarjlarla (DDD) karakterizedir (Huguenard, 2019).

Tonik-klonik ndbetlerde ise genellikle bilincin azalmasi gézlemlenir, tonik fazda
hastanin kaslar sertlesir ve yana devrilir, klonik fazda ise siddetli kas daralmalar tespit

edilir (Elmali, vd., 2020).

Miyoklonik ndbetler bas, govde veya ekstremitelerde ortaya ¢ikan ani, kisa
stireli, otonom olarak gerceklesen kas kasilmalari ile 6zgiinlestirilmektedir (Shakeshaft,

vd., 2021).

Atonik nobetler viicudun toniis kaybi ile gergeklestigi bilinmektedir. Toniisiin
ani olarak kaybolmasi sonucunda dizler, bas ve govde 6ne dogru biikiiliir, ani diisiisler
gerceklesir. Nobet esnasinda hasta ayakta ise genellikle oldugu yere diiser (Angione, vd.,

2019).

2.2. ELEKTROENSEFALOGRAFI SINYALLERi

EEG, beyin tarafindan iiretilen elektrik alanlarinin yiiksek zamansal ve uzaysal
cOziintirliige sahip tek beyin goriintileme yontemidir. EEG, beyinden gelen elektrik
sinyallerini kaydeder, bdylece beyin aktivitesiyle ilgili degerli bilgileri ¢ikarma yetenegi
saglar. EEG sinyalleri, noronlar tarafindan iiretilen elektriksel beyin aktivitesinin

izlenmesini saglar. Sizofreni, zihinsel bozukluklar ve diger ilgili hastaliklarda EEG'den
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makine 6grenimi araglari son yillarda 6nem kazanmistir. EEG, epilepsi tespiti i¢in ana

araglardan biridir (Stancin, Cifrek ve Jovic, 2021).

EEG sinyalleri frekansina gore Delta (9), Teta (0), Alfa(a), Beta (B) ve Gama (y)
olmak iizere bes alt bantta incelenir (Jayaraj ve Mohan, 2021). 0,5-4 Hz aralifinda
frekansa ve 20-400 pV araliginda genliye sahip olan dalgaya Delta () dalgasi denir
(Yildirim ve Varol, 2016). 4-8 Hz araliginda frekansa ve 5-100 pV araliginda genlige
sahip olan dalgaya Teta (0) dalgas1 denir (Uys, 2019). 8-14 Hz araliginda frekansa ve 2-
10 pV araliginda genliye sahip olan dalgaya Alfa(a) dalgasi denir (Bednaya, vd., 2021).
14-30 Hz araliginda frekansa ve 1-5 pV araliginda genliye sahip olan dalgaya Beta ()
dalgasi denir (Todd, Govender ve Colebatch, 2018), 30-100 Hz araliginda frekansa sahip
olan dalgaya ise Gama (y) dalgas1 denir (Cavelli, vd., 2020).

Sekil 2.1: EEG Sinyalinin Gama (y) Band1
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Sekil 2.1°de yer alan sinyal, EEG sinyalinin gama bandina ait bir 6rnek sinyaldir.

Bu dalgalar, duyusal ve calisma hafizasi ile ilgili siireclerde ortaya ¢ikmaktadir (Reinhart
ve Nguyen, 2019).



Sekil 2.2: EEG Sinyalinin Beta () Bandi
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Sekil 2.2°de EEG sinyalinin beta bandina ait bir 6rnek sinyaldir. Beta sinyali

erken yas araliginda beynin orta-arka bolgelerinde bulunur, sonraki yaslarda ise frontal

bolgelere dogru kayabilmektedir (Frohlich, vd., 2021).

Sekil 2.3: EEG Sinyalinin Alfa (o) Bandi
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Sekil 2.3’te EEG sinyalinin alfa bandina ait bir 6rnek sinyaldir. Zihinsel aktivite

ve g6z agip kapamaya yeniden etkinlestiriyor. Uyku aninda goriilmez amma uyanikken

goriiliir (O'Hara ve Guerriero, 2019).



22

Sekil 2.4: EEG Sinyalinin Teta (0) Bandi
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Sekil 2.4’te EEG sinyalinin teta bandina ait bir 6rnek sinyaldir. Yetiskenlerde

uykuya girerken frontal bolgede gézlemlenebilir (Snipes, vd., 2022).

Sekil 2.5: EEG Sinyalinin Delta (A) Bandi
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Sekil 2.5’te EEG sinyalinin delta bandina ait bir 6rnek sinyaldir. Delta dalgasi

insanlarin gozlerinin hareketsiz halinde ve dinlenirken ortaya ¢ikmaktadir (Fitriana, vd.,

2021).
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2.2.1. Elektroensefalografinin Ol¢iimii

EEG ¢ekim oOncesi elektrodlarin diizenli bir seviyede yerlestirilmesi onemli
hazirlik faktorlerden biridir. EEG ¢ekim aninda 23 tane kiiclik elektroda bir tiir jel
kullanarak sagli kafa derisine yerlestirilir ve sonra bir bilgisayar arayiizii ile beyinin

elektriksel aktivitesi kaydedilir (Stevenson, vd., 2019).

Genel olarak EEG testinin siiresi 20 dakika kadar ¢ekilir. Bazi hallerde hastaligin
teshisine gore testin siiresi uzatila bilmektedir (Lillo, Mora ve Lucero, 2022). Ozellikle
uykuda gercgeklesen ndbetlerin tanisinda EEG ¢ekimi uzatilmakta ve hastanin uyumasi

saglanmaktadir (San-Segundo, vd., 2019).

Sekil 2.6: Epilepsi Paterni (Kalib1)
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Kaynak: Beleza, vd., 2010.

Doktorlar Sekil 2.6’daki kalib1t EEG sinyallerinde gordiiklerinde epilepsi tanisi
koymaktadirlar (Beleza, vd., 2010).
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Sekil 3.1: Bu Calismaya Ait Akis Diyagrami

Segmentasyon Ozellik Cikarma Siniflandirma
Multifraktal Anlik frekans
. = =) CYUKSHDOM
’
Spektral
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i

Giktilar

Epilepsi Normal

[ EEG Sinyal Alimi }

Sekil 3.1°de ¢calismamizin akist gosterilmistir.

Bu EEG verileri Physionet.org veri sitesinden alinmistir. Bu veriler 2 kisima
ayrilmistir. Bunlar sirasiyla epileptik ve normaldir. Bu veriler, veri setinde hazir bir
sekilde siniflara ayrilarak etiketlenmistir. Veri seti incelendiginde epileptik ndbet aninda
172 veri yer almaktadir. Nobet aninda olmayan normal EEG sinyalinden ise 175 veri yer
almaktadir. Bu ¢alismada EEG sinyalleri kanallar bazinda analiz edildi. ilk olarak her
kanala ait veriler sirasiyla epileptik ve normal sinyaller, 10 saniyelik boliitlere ayrildi.
Boliitlenen verilerin her biri 1*2560 olarak ele alinmistir. Boliitlemeden sonra 3 tane
analiz yontemi ile sinyalin 6zellikleri ¢ikarilmistir. Bu yontemler dalgacik temelli MA
yontemi, AF ve SE’dir. Dalgacik temelli MA yontemi kullanilarak sinyale ait 36 6zellik
elde edilmistir. Bu ozelliklerden 11 tanesi tekillik spektrumu (dh) temsil eder. Bu
Ozelliklerden diger 11 tanesi tutucu iis tahminlerini (h) temsil eder. Diger 11 6zellik ise
Olceklendirme iisleri (tauq) verilerini ilgilendirir. Geriye kalan 3 tanesi ise kiimiilant (cp)
parametrelerini temsil eder. AF analiz yontemi ile sinyalin uzunluguna gore 63 6zellik
hesaplanmistir. SE analiz yontemi ile yine ayn sekilde sinyalin uzunluguna goére 63 tane
spektral 6zellik hesaplanmigtir. Bu 3 yontemle hesaplanan 6zellikler bir araya getirilerek
EEG sinyalinin ¢ekildigi her bir kanala ait 6zellik vektorleri elde edilmistir. Her bir

ozellik vektoriinde 162 ozellik yer almaktadir. Sonrasinda, her bir kanala ait 6zellik
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vektorleri ile CYUKSHDOM egitilmistir. Yapilan egitim sonucunda epileptik verilerin
tespitinde Fp1-F7 ve ve CZ-PZ kanallarindan %85,3 basar1 elde edilmistir.

3.1. ELEKTROENSEFALOGRAFI KAYITLARI

Yaptigimiz deneylerde kullandigimiz EEG verileri PhysioNet.org’da yer alan
CHB-MIT Scalp EEG veri tabanindan alinmistir. Doktorlar epilepsili kisilerden ¢ekilen
EEG sinyallerini Boston Cocuk Hastanesinde 22 denekten (5 erkek, 3-22 yas, 17 kadin,
1.5-19 yas) aralarinda kayitlar alinmistir. SUBJECT-INFO dosyasinda EEG sinyali
cekilen kisilerin yas ve cinsiyet karakterleri, EEG sinyalleri bulunmaktadir (Shoeb, 2009).

Sekil 3.2: Uluslararas1 10-20 Elektrot Sistemi

Kaynak: Tosun, vd., 2018.

Bu calismamizda 21 elektrot kullanilan veri setinden faydalanilmistir. Bu

kullanilan elektrotlarin agiklamalar1 Tablo 3.1°de gosterilmistir.

Tablo 3.1: Elektrotlar Ve Onun Ac¢iklamalari

Elektrotun adi Aciklamasi
FP1 sol en 6n frontal
F7 en sol frontal
T6 sol temporal
P3 sol parietal
01 sol osipital

FP2 Sag en 6n frontal



http://hdl.handle.net/1721.1/54669

Tablo 3.1 (devam): Elektrotlar Ve Onun Ac¢iklamalari
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Elektrotun adi Aciklamasi
Al Sol referans elektrotu
A2 Sag referans elektrotu
F3 Sol frontal
Fz Merkezi frontal
F4 Sag frontal
F8 En sag frontal
T3 Sol temporal
C3 Sol merkez
Cz Merkez
C4 Sag merkez
T4 Sag temporal
T5 Sol arka temporal
Pz Merkezi parietal
P4 Sag parietal
02 Sag ossipital

Bu c¢alismada kullandigimiz veri seti 22 kanaldan olusmaktadir. Bu kanallar

Tablo 3.2’de verilmistir.



Tablo 3.2: Kanallar
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Kanal isimleri

Aciklamasi

Kanall-FP1-F7

FP1 ve F7 arasindaki potansiyel fark

Kanal2-F7-T7

F7 ve T7 arasindaki potansiyel fark

Kanal3-T7-P7

T7 ve P7 arasindaki potansiyel fark

Kanal4-P7-01

P7 ve Ol arasindaki potansiyel fark

Kanal5-FP1-F3

FP1 ve F3 arasindaki potansiyel fark

Kanal6-F3-C3

F3 ve C3 arasindaki potansiyel fark

Kanal7-C3-P3

C3 ve P3 arasindaki potansiyel fark

Kanal8-P3-01

P3 ve O1 arasindaki potansiyel fark

Kanal9-FP2-F4

FP2 ve F4 arasindaki potansiyel fark

Kanal10-F4-C4

F4 ve C4 arasindaki potansiyel fark

Kanall1-C4-P4

C4 ve P4 arasindaki potansiyel fark

Kanal12-P4-02

P4 ve 02 arasindaki potansiyel fark

Kanall3-FP2-F8

FP2 ve F8 arasindaki potansiyel fark

Kanall4-F8-T8

F8 ve T8 arasindaki potansiyel fark

Kanal15-T8-P8

T8 ve P8 arasindaki potansiyel fark

Kanal16-P8-02

P8 ve O2 arasindaki potansiyel fark

Kanall7-FZ-CZ

FZ ve CZ arasindaki potansiyel fark

Kanall18-CZ-PZ

CZ ve PZ arasindaki potansiyel fark

Kanal19-P7-T7

P7 ve T7 arasindaki potansiyel fark
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Tablo 3.2 (devam): Kanallar

Kanal isimleri Aciklamasi
Kanal20-T7-FT9 T7 ve FT9 arasindaki potansiyel fark
Kanal21-FT9-FT10 FT9 ve FT10 arasindaki potansiyel fark
Kanal22-FT10-T8 FT10 ve T8 arasindaki potansiyel fark

Biitiin sinyaller, saniyede 256 Hz 6rnekleme frekansiyla ve 16 bit ¢oziiniirliikte
cekilmistir. Genellikle Pysionette yer alan EEG sinyalleri 22 kanal iizerinden elektrotlar
vasitasi ile ¢ekilmistir (Shoeb, 2009).

EEG kayaitlarini elde edebilmek i¢in Uluslararasi 10-20 EEG elektrot konumlari
ve isimlendirme sistemi kullanilmistir. Baz1 epileptik EEG sinyallerinin ¢ekimlerinde
farkli elektrotlar ile kaydedilmistir. Onlar, epileptik chbO4'e ait son 36 dosyadaki bir
Elektrokardiyografi (EKG) sinyali ve vaka chb09'a ait son 18 dosyadaki bir Vagal Sinir
Stimulus (VSS) sinyali gibi bagka sinyaller de kaydedilmistir. EEG veri seti hakkinda
daha ayrintil1 bilgi Tablo 3.3’te gosterilmistir (Shoeb, 2009). Bu ¢alismada VSS kayitlar

kullanilmamustir.

Tablo 3.3: EEG Veri Seti Bilgisi

Vaka Cinsiyet Yas
Chb01 F 11
Chb02 M 11
Chb03 F 14
Chb04 M 22
Chb05 F 7
Chb06 F 15

Chb07 F 14,5



http://hdl.handle.net/1721.1/54669

Tablo 3.3 (devam): EEG Veri Seti Bilgisi
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Vaka Cinsiyet Yas
Chb08 M 3,5
Chb09 F 10
Chb10 M 3
Chb11 F 12
Chb12 F 2
Chb13 F 3
Chb14 F 9
Chb15 M 16
Chbh16 F 7
Chb17 F 12
Chb18 F 18
Chb19 F 19
Chb20 F 6
Chb21 F 13
Chb22 F 9
Chb23 F 6

RECORDS dosyasi, bu koleksiyonda yer alan tiim verilerin bir listesini igerir.
RECORDS-WITH-SEIZURES dosyasi ise bir veya daha fazla ndbet iceren 129 dosyay1
listeler. Toplamda, bu kayitlar 198 nobet (23 vakalik orijinal sette 182); her nobetin

baslangici ([) ve bitisi (]), nobetli kayitlar'da listelenen dosyalarin her birine eslik eden.

seizure ek agiklama dosyalarinda agiklanir. Ayrica chb nn -summary.txt adli dosyalar, her


https://physionet.org/content/chbmit/1.0.0/RECORDS
https://physionet.org/content/chbmit/1.0.0/RECORDS-WITH-SEIZURES
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kayit i¢in kullanilan montaj ve her “edf” dosyasinin baglangicindan, igerdigi her bir
epileptik an1 yakalamanin baslangicina ve sonuna kadar gecen siire hakkinda saniye

cinsinden bilgiler icerir (Goldberger, vd., 2000).

3.2. EEG Sinyallerinin Boliitlemesi

EEG sinyallerinin belirli zaman dilimlerine béliinmesine bdliitleme denir (Siuly,
vd., 2020). Veri kiimesinin her bir durumu i¢in ham EEG sinyaller, baslangigta, bitisik
boliimler arasinda ortiisme olmaksizin 10 saniyelik uzun béliimlere (segmentlere) ayrilir.

Her segment iktal ve normal siniflamalara boliinmiistiir.

Sekil 3.3: Chb01 04 Veri Setinin EEG Sinyali
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Sekil 3.3.’de chb01 04 klasoriinde yer alan bir EEG sinyali ornek olarak
gosterilmistir. Bu sinyal epilepsi aninda kaydedilen bir sinyaldir. Sekil 3.3’
incelendiginde 10x10° saniye aralifinda ve 0 ile ortalama +1500 -1500 uV araliginda
degistigi gortilmektedir.
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Sekil 3.4: Chb01 04 EEG Veri Setinin Boliitlenmis Hali
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Sekil 3.3.b’de chb01 04 klasoriinden alinan normal durumdaki sinyal oldugu
icin boliitleme yapilmistir. Bu sinyal epilepsi ndbetinde bulunmayan normal sinyale ait
ornegi temsil etmektedir. Boliitleme 3 smifa ayrilmistir: Preiktal (ndbet Oncesi), iktal
(ndbet an1), postiktal (ndbet sonrasi) olarak ifade edilmektedir. Boliitleme yaparken ndbet

anindaki sinyalleri aldik, (iktal) boliitiini Sekil 3.3 (b) gosterdik.
Iktal hissesinin formiile gore nasil alindig1 asagida gosterilmistir.
datai {2,1}=val (:,375552:382464) (3.1)

Formiil (3.1) denkleminde: datai {2,1}, data verisinin iktal hissesinin 2’nci satir
I’inci siitunu anlamima gelmektedir. Denklemin sag tarafindaki val degiskenindeki
rakamlar su sekilde ifade edilebilir: once baslangic saniyesi 1467 ve bitis saniyesi 1494

alinmistir. Bu veri setinin EEG sinyalleri 256 Hz 6rnekleme frekansi ile ¢ekilmistir.
Too1 x Fs= veri (3.2)

Denklem 3.2°de boliitleme isleminde ilk 6nce Toas saniyeni 10 san Fs 6rnekleme

frekans1 256 Hz ile ¢arpiyoruz ve sonugta 2560 veri elde ediyoruz.

Sonra baglangic 1467 ve bitis 1494 saniyeleri ile 6rnekleme frekansi 256 Hz ile
carplyoruz.
[k &nce biz iktal béliitiiniin baslangi¢ saniyesini hesaplamistik.

Tras X Fs= segmentin baslangic noktas1 (3.3)
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Denklem 3.3’te Tpqq * Fs = tSB, tpqa 1467 san., F; 256 Hz ve sonucta iktal

hissesinin 375552 baglangi¢ saniyesini aldik.
Tuit. X Fs = segmentin bitis noktasi (3.4)

Denklem 3.4°’te tp;; * F; = tsBit, tp;; 1494 san., F, 256 Hz ve sonugcta iktal

hissesinin 382464 bitis saniyesini aldik.

Boylece 375552 saniyesi ile 382464 saniye arasindaki veriler boliitlenerek elde
edilmektedir.

3.3. ELEKTROENSEFALOGRAFi ANALiZ YONTEMLERI

3.3.1. Dalgacik Multifraktal Analiz

Fraktallar Oklid geometrisini tanimanin imkansiz oldugu dogal yapilarin
bicimlerini karakterize etmekte kullanilan diizensiz geometrik yapilardir (Andronache,

Liritzis ve Jelinek, 2023).

Dalgalanma fonksiyonu, sinyalin dalgalanmasini ve gii¢ yasasi ozellikleri
tanimlar (Villarreal-Hernandez, vd., 2020). Farkli q degerleri ve farkli zaman 6lcekleri
altinda zaman serilerinin degisen egilimini daha acik bir sekilde ifade etmek i¢in, dalga
fonksiyonunun noktalarmi bir dogruya sigdirmak i¢in en kiiglik kareler yontemini

kullaniriz (Davidson, Grabowsky ve Jayatilaka, 2022).
y(t) = Xk Sj e Pi i )+ Xjsj, 2 djcjr (t) (3.5)

Denklem 3.5’te ayristirma katsayilar yaklasik (s;, k) ve detay katsayilari (d; )
olarak adlandirilir. Ikincisinin, sinyalin 6zelliklerini farkli Slceklerde (¢Oziiniirliik
seviyeleri) tanimladig1 kabul edilir. Bu amagla, d; ;'nin standart sapmalar1 ¢j ¢oziinirliik
seviyesinin bir fonksiyonu olarak kullanilir. Coklu ¢oziiniirliiklii dalgacik analizi,
sirastyla distik gecisli filtre ve yiiksek gecisli filtre olan 6lgekleme fonksiyonu ¢(t) ve
dalgacik wy(t)'den olusturulan iki filtre setini kullanarak bir y(t) sinyalini ayristirir
(Pavlova, Guyo ve Pavlov, 2022).

1 boyutlu ana dalgacik su sekilde tanimlanir:

Lx(i; k) = Sup/l'c3/1j_k|dx(j’ k)l (36)
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Denklem 3.6’1 soyle anlatmak olar: ADD kullanarak  dalgacik
katsayilarini, d x (j,k) hesaplanir ve her o6l¢ek i¢in her katsaymmin mutlak degeri
kaydedilir. Her daha ince 6lcek, bir sonraki daha kaba 6lgekten iki kat daha fazla katsayiya
sahiptir. 2 j 6l¢egindeki her ikili aralik, daha ince bir dlgekte iki araligin birlesimi olarak
yazilabilir. Elde edilen en iyi 6lgekten bir seviye daha kaba olan dlgekte baslanir. Ilk
degeri tiim daha ince ikili araliklariyla karsilastirilir ve maksimum degeri elde edilir. Bir
sonraki degere gidilir ve degerini tiim hassas olgek degerleriyle karsilastirilir. Degerleri
i¢ ice degerleri ile karsilastirmaya devam edilir ve maksimumlari elde edilir. O dlgek i¢in
elde edilen maksimum degerlerden ilk {i¢ degeri inceleyerek bu komsularin
maksimumunu elde edilir. Bu maksimum deger, o 6l¢ek i¢in bir dalgaciktir. Bu 6lgek igin
diger dalgaciklar1 elde etmek i¢cin maksimum degerleri karsilagtirmaya devam edilir. Bir

sonraki kaba 6l¢ege gecilir ve islemi tekrarlanir (Wendt ve Abry, 2007).

Sekil 3.5: Ornek Dalgacik MA Calisma Adim 1 (Wendt ve Abry, 2007)

Sekil 3.5’te iist satirdaki rakamlar sinyali anlatiyor. Daha sonra o sinyallerin her

biri iki sinyale ayristyorlar (Wendt ve Abry, 2007).

Sekil 3.6: Ornek Dalgacik MA Calisma Adim 2 (Wendt ve Abry, 2007)

Sekil 3.6°da en ince Olcekten (alt sira) sonraki en kaba diizey olan {ist siradan

baslayarak, her degeri ikili araliklariyla karsilastirilir ve maksimumlari elde edilir.
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Sekil 3.7: Ornek Dalgacik MA Calisma Adim 3 (Wendt ve Abry, 2007)
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Sekil 3.7°de iic komsu degere bakilir ve maksimumu elde edilir. Sonraki ii¢
komsu i¢in tekrarlanir. Bu maksimal, 7 ve 7, bu seviye i¢in ana dalgacik sayilir (Wendt

ve Abry, 2007).

Tekillik spektrum (dh), —5 ile 5 arasindaki dogrusal aralikli momentler igin
belirlenen yap1 fonksiyonlari kullanilarak tahmin edilir. Yap1 fonksiyonlari, biorthogonal
spline dalgacik filtresi kullanilarak elde edilen dalgacik liderlerine dayali olarak
hesaplanir. Kullanilan biorthogonal spline dalgacik filtresi, sentez dalgaciginda bir
kaybolma anina ve analiz dalgaciginda bes kaybolma anina sahiptir. Varsayilan olarak,
multifraktal tahminler, minimum 3 diizeyinde ve en az alt1 dalgacik liderinin oldugu

maksimum diizeyde dalgacik liderlerinden tiiretilir (Wendt ve Abry, 2007).

Once dh tekillik spektrumunun normal kisiden alinan sinyalden analizi
yapilmistir. Bu analiz i¢in chbO1 01 veri setini 6rnek olarak kullanilan veriye ait grafik

Sekil 3.7.’de gosterilmistir.

Sekil 3.8: Normal EEG Sinyaline Ait Chb01_01 Verisine Ait Tekillik Spektrumu (dh)
Grafigi
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Sekil 3.8.’de x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az aciklasak genlik sayist 0,8 ile 0,9 sayilar1 arasinda baslarken Ornekleme
numarasinin 1 sayisina denk gelmistir. Genlik sayisinin 0,9 rakami Ornekleme
numarasinin 2 rakamia denk gelmistir. Genlik sayisinin 0,9 ile 1 rakamlar1 arasi
ornekleme numarasinin 4 rakamina denk gelmistir. Genlik sayisinin 0,9 ile 1 rakamlari
aras1 Ornekleme numarasmin 5 rakamina denk gelmistir. Genlik sayisinin 1 rakami
ornekleme numarasinin 6 rakamina denk gelmistir. Genlik sayisinin 0,9 ile 1 rakamlari
arast Ornekleme numarasinin 7 rakamina denk gelmistir. Genlik sayisinin 0,8 ile 0,9
rakamlari aras1t 6rnekleme numarasinin 8 rakamina denk gelmistir. Genlik sayisinin 0,7
degeri 0rnekleme numarasinin 9 degerine denk gelmistir. Genlik sayisinin bitis noktasi

0,2 ile 0,3 degerleri aras1 6rnekleme numarasinin 11 degerine denk gelmistir.

Daha sonra dh tekillik spektrumunun epileptik kisiden alinan sinyalinden analiz
yaptik. Chb05 13 veri setini 6rnek olarak kullanilan veriye ait grafik Sekil 3.8’de

gosterilmistir.

Sekil 3.9: Epilepsi Aninda Alinan Chb05 13 Veri Setinin Tekillik Spektrumu (dh) Grafigi
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Sekil 3.9.’da x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Sekilde
genlik sayis1 0,5 ile 0,6 degerleri arasinda baslarken 6érnekleme numarasinin 1 degerine
denk gelmistir. Genlik sayisinin 0,6 ile 0,7 degerleri arasinda rakami Ornekleme
numarasinin 2 degerine denk gelmistir. Genlik sayisinin 0,8 ile 0,9 degerleri arasinda

rakami Ornekleme numarasinin 4 degerine denk gelmistir. Genlik sayisinin 0,9 ile 1
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degerleri arasinda rakami ornekleme numarasinin 5 degerine denk gelmistir. Genlik
sayisinin 1 degeri 6rnekleme numarasinin 6 degerine denk gelmistir. Genlik sayisinin 0,9
ile 1 degerleri aras1 6rnekleme numarasinin 7 degerine denk gelmistir. Genlik sayisinin

bitis noktas1 0,6 ile 0,7 degerleri aras1 6rnekleme numarasinin 11 degerine denk gelmistir.

Epilepsi olmayan normal bir EEG sinyalinden analiz edilen tekillik spektrumu
(dh) epileptik EEG sinyalden analiz edilen tekillik spektrumunun grafiklerinin farkina
bakildiginda normal anda alinan EEG sinyalinin tekillik spektrumu daha yiiksek genlige
sahiptir.

Tutucu iis tahminleri (h), 1'e 11 skaler vektorii olarak dondiiriiliir. Tutucu isler,
sinyal diizenliligini karakterize eder. Bir Holder {issii 1'e ne kadar yakinsa, fonksiyon
tiirevlenebilir olmasina o kadar yakin olur. Tersine, Holder {issii sifira ne kadar yakinsa,

fonksiyon siireksizlige o kadar yakin olur (Jaffard, Lashermes ve Abry, 2006).

Normal kisiden alinan EEG sinyalleri analiz edilerek h tutucu iis tahminleri elde

edilmistir. Bu analizde chb01 01 veri setine ait grafik Sekil 3.9’da gosterilmistir.

Sekil 3.10: Normal EEG Sinyaline Ait Tutucu Us Tahminleri (h) Grafigi (Chb01 01)

Genlik

Ornek numarasi

Sekil 3.10.’da x ekseni 6rnek numarasini ve y ekseni de genlik gdsterir. Grafigi
bir az agiklasak genlik 0,55 ile 0,6 degerleri arasinda baglarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genlik 0,5 ile 0,55 degerleri arasinda rakami Ornekleme
numarasinin 4 degerine denk gelmistir. Genlik 0,2 ile 0,25 degerleri arasinda rakami
ornekleme numarasinin 10 degerine denk gelmistir. Genligin bitis noktas1 0,15 ile 0,2

degerleri aras1 6rnekleme numarasinin 11 degerine denk gelmistir.
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Daha sonra h Tutucu iis tahminleri epileptik kisiden alinan sinyalle yapilan analiz

chb05 13 veri setini 6rnek olarak kullanilan veriye ait Sekil 3.10°da gosterilmistir.

Sekil 3.11: Epileptik Kisiden Alinan Chb05 13 Veri Setinin Tutucu Us Tahminleri (h)
Grafigi

Genlik

Ornek numarasi

Sekil 3.11.’da x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik 0,65 ile 0,7 degerleri arasinda baslarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genlik 0,65 degerinde o6rnekleme numarasinin 2 degerine denk
gelmistir. Genlik 0,6 ile 0,65 degerleri arasinda rakami 6rnekleme numarasinin 3 degerine
denk gelmistir. Genlik 0,55 ile 0,6 degerleri arasinda 6rnekleme numarasinin 4 degerine
denk gelmistir. Genlik 0,35 degerinde 6rnekleme numarasinin 7 degerine denk gelmistir.
Genlik 0,3 degerinde 6rnekleme numarasinin 8 degerine denk gelmistir. Genlik 0,25 ile
0,3 degerleri arasinda ornekleme numarasinin 9 degerine denk gelmistir. Genlik 0,25
degerinde 6rnekleme numarasinin 10 degerine denk gelmistir. Genlik bitig noktas1 0,2 ile

0,25 degerleri aras1 6rnekleme numarasinin 11 degerine denk gelmistir.

Normal EEG sinyalinden analiz edilen Tutucu iis tahminleri (h) epileptik EEG
sinyalden analiz edilen Tutucu iis tahminleri (h) grafiklerinin farki sdyledir: normal
kisiden alinan EEG sinyalinin Tutucu s tahminleri (h) grafiginde baslangi¢ genlik
degerinin bitis genlik degerinden yiiksek degere sahiptir ve epileptik kisiden alinan EEG
sinyalinin Tutucu iis tahminleri (h)’da ayn1 grafiktendir, ancak farki normal kisiden alinan
EEG sinyalinin Tutucu iis tahminleri (h) genlik epileptik kisiden alinan EEG sinyalinin
Tutucu iis tahminleri (h)’dan kiigiik degere sahiptir.

Kiimiilantlar (cp), 1'e 3 skaler vektorii olarak dondiiriiliir. Vektor, 6l¢eklendirme

tislerinin ilk ii¢ giinliik birikimlerini icerir. Ilk kiimiilant, 6lgeklendirme iislerindeki
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dogrusal davramis1 karakterize eder. Ikinci ve iiglincii kiimiilantlar, dogrusalliktan

ayrilmay1 karakterize eder (Wendt ve Abry, 2007).

Kiimiilantlara bakildiginda normal anda alinan sinyalle yapilan analiz chbO1 01

veri setini 6rnek olarak kullanilan veriye ait Sekil 3.11°de gosterilmistir.

Sekil 3.12: Normal EEG Sinyaline Ait Kiimiilant Grafigi (Chb01 _01)
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Sekil 3.12.’de x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik 0,4 ile 0,5 degerleri arasinda baslarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genlik -0,1 ile 0 degerleri arasinda 6rnekleme numarasinin 2
degerine denk gelmistir. Genligin bitis noktas1 -0,1 ile 0 degerleri aras1 Ornekleme

numarasinin 3 degerine denk gelmistir.

Daha sonra cp kiimiilantlar1 epileptik kisiden alinan sinyalle yapilan analiz

chb05 13 veri setini 6rnek olarak kullanilan veriye ait Sekil 3.12°de gosterilmistir.

Sekil 3.13: Epileptik Kisiden Alinan Chb05 13 Veri Setinin Kiimiilantlar1 (cp) Grafigi
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Sekil 3.13.’de x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik 0,4 ile 0,5 degerleri arasinda baglarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genlik -0,1 ile 0 degerleri arasinda 6rnekleme numarasinin 2
degerine denk gelmistir. Genligin bitis noktast 0 ile 0,1 degerleri arasi1 Ornekleme
numarasinin 3 degerine denk gelmistir. Normal EEG sinyalinden analiz edilen
Kiimiilantlar1 (cp) epileptik EEG sinyalden analiz edilen Kiimiilantlar1 (cp) grafiklerinin
farki soyledir: normal kisiden alinan EEG sinyalinin Kiimiilantlar1 (cp) grafikinde bitis
genlik degeri epileptik kisiden alinan EEG sinyalinin Kiimiilantlar1 (cp)’dan kiiglik degere
sahiptir.

Olgeklendirme iisleri (tauq), siitun vektorii olarak dondiiriiliir. Usler, -5 ile +5
arasindaki dogrusal aralikli momentler icermektedir (Jaffard, Lashermes ve Abry, 2006).
Once tauq Olgeklendirme iisleri normal kisiden alman sinyalle yapilan analiz chb01_01

veri setini 0rnek olarak kullanilan veriye ait Sekil 3.13te gdsterilmistir.

Sekil 3.14: Normal EEG Sinyaline Ait Olgeklendirme Us Grafigi (Chb01 01)
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Sekil 3.14.’de x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik -3 ile -2,5 degerleri arasinda baglarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genligin bitis noktast 1,5 ile 2 degerleri arasi1 ornekleme

numarasinin 11 degerine denk gelmistir.

Daha sonra tauq Olgeklendirme iisleri epileptik kisiden alian sinyalle yapilan

analiz chb05 13 veri setini 6rnek olarak kullanilan veriye ait Sekil 3.14°te gosterilmistir.
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Sekil 3.15: Epileptik Kisiden Alinan Chb05 13 Veri Setinin Olgeklendirme Usleri (tauq)
Grafigi

Genlik
AN

Ornek numarasi

Sekil 3.15.’de x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik -3 ile -2,5 degerleri arasinda baslarken 6rnekleme numarasinin 1
degerine denk gelmistir. Genligin bitis noktas1 1,5 degerinde 6rnekleme numarasinin 11

degerine denk gelmistir.

Normal EEG sinyalinden analiz edilen Olceklendirme iisleri (tauq) epileptik
EEG sinyalden analiz edilen Olgeklendirme {isleri (tauq) grafiklerinin farki sdyledir:
normal kisiden alman EEG sinyalinin Olgeklendirme iisleri (tauq) grafiginde bitis genlik
degeri epileptik kisiden alinan EEG sinyalinin Olgeklendirme iisleri (tauq)’dan azca

biiyiik degere sahiptir.

3.3.2. Spektral Analiz

ZF sinyal isleme, dogru temsil ve duragan olmayan sinyallerin verimli analizi ve
islenmesi ihtiyaci nedeniyle ortaya ¢ikar (Boashash ve Ouelha, 2018). Duragan olmayan
sinyaller ¢cok yaygin dogal fenomenlerdir (Varanis, vd., 2021). Fourier doniisiimii gibi
duraganlik kabul eden geleneksel yontemlerle analiz i¢in uygun olmamalarini saglayan
zamanla degisen frekans icerikleri ile karakterize edilirler (Galadi, vd., 2021). ZF sinyal
isleme, ortak ZF alanindaki sinyalleri géstermek amaciyla Tek Bilesenli Sinyaller (TBS)
kullanir. Bu sayede sinyalleri zaman bazinda spektral degisimleri gozlenir (Feng, vd.,
2020).
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Tek bilesenli sinyaller i¢in, TBS'in sabit zamanli kesitlerinin tepe noktalari ve
birinci dereceden momenti, sinyalin AF yasasinin tahminlerini verir (Straub, vd.,
2020). Cok bilesenli bir sinyal i¢in ¢cok AF ile ¢alisiimaktadir (Shi, vd., 2022). Bu tiir
sinyalleri karakterize etmek i¢in, her sinyal bilesenine bir AF kurali atanir (Bruni,
Tartaglione ve Vitulano, 2020). Cok bilesenli sinyaller i¢in ¢esitli AF tahmin yaklagimlari
onerilmistir (Amin, Zhang ve Himed, 2019). Sinyal bilesenlerini ZF temsilinden lokalize
etmek ve AF tahmin prosediiriinii gergeklestirmek olar (Khan ve Ali, 2020). Yontemler,
bilesenlerinin ZF alaninda ayrilmasi disinda, analiz edilen sinyal hakkinda 6nceden bilgi
gerektirmeme avantajina sahiptir (Vrankovi¢, Lerga ve Saulig, 2020), bu durum

genellikle yeni dogan EEG sinyalleri tarafindan karsilanir (Alkhachroum, vd., 2022).

Bir spektrogram, frekans analizine bir zaman boyutu getirerek duragan olmayan
bir sinyaldeki frekanslari tahmin etmek i¢in kullanilir. Yontemler sinyali kisa olarak boler
(Varanis, vd., 2021). Zaman dilimleri ve sinyalin her segment i¢inde sabit oldugunu
varsayilir. Daha sonra her segment i¢in bir periodogram hesaplanir (Castro-Tirado, vd.,

2021).

3.3.2.1. AF analizi

AF, frekans igeriginin zamanla nasil degistigini aciklayan duragan olmayan bir
sinyalin anahtar parametresidir (Xin, Hao ve Li, 2019). Tek bilesenli bir analitik sinyal

(Zhou, vd., 2022) Denklem 3.10’da gosterilmistir.
z(t) = a(t) - e/?® (3.10)
Denklem 3.10°da z(t) Tek Bilesenli Analitik Sinyal (TBAS), Anlik Genlik (AG)

a(t) ile sinyalin eksponensial degeri lizeri jg(t) carpimina esittir ve ¢ (t) sinyalin anlik

fazidir (Sengupta ve Lande, 2020). AF hesaplamak i¢cin Denklem 3.11°de gosterilmistir:

d
fi)= -2 G

Denklem 3.11°de f; (t) sinyalin AF’dir. Sinyalin ters periodunun yani

do(t)
dt

1 . e s
frekansinin py anlik fazinin zamana gore degisiminin ¢arpimina esittir.
VA
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Once normal kisiden alinan sinyalden AF analiz yapilmistir. Bu analiz igin

chb01 01 veri setini 6rnek olarak kullanilan veriye ait grafik Sekil 3.15.’de gosterilmistir.

Sekil 3.16: Normal EEG Sinyaline Ait AF Grafigi (Chb01 01)
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Sekil 3.16°da x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik O ile 5 degerleri arasinda baslarken 6rnekleme numarasinin 0
degerine denk gelmistir. Genligin bitis noktas1 5 degerinde drnekleme numarasinin 250
ile 300 degerine denk gelmistir. Grafik periodiktir, amplitiidleri artip azalan yondedir.
Ornek numarasi 0:50:300, genlik 0:5:45 ardicilligrynan artar.

Daha sonra epileptik kisiden alinan sinyalden AF analiz yapilmistir. Bu analiz
icin chb05 13 veri setini 6rnek olarak kullanilan veriye ait grafik Sekil 3.16’da

gosterilmistir.

Sekil 3.17: Epileptik Kisiden Alinan Chb05 13 Veri Setinin AF Grafigi
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Sekil 3.17°de x ekseni 6rnek numarasini ve y ekseni de genligi gosterir. Grafigi
bir az acgiklasak genlik O ile 5 degerleri arasinda baslarken 6rnekleme numarasinin 0
degerine denk gelmistir. Genligin bitis noktas1 0 ile 5 degerleri arasinda ornekleme
numarasinin 250 ile 300 degerine denk gelmistir. Grafik periodiktir, amplitiidleri artip

azalan yondedir. Ornekleme numarasi 0:50:300, genlik 0:5:45 ardicilligiynan artar.

Normal EEG sinyalinden analiz edilen AF epileptik EEG sinyalden analiz edilen
AF grafiklerinin farki soyledir: normal kisiden alinan EEG sinyalinin AF grafiginde bitis
genlik degeri epileptik kisiden alinan EEG sinyalinin AF’dan azca biiyiik degere sahiptir.

3.3.2.2. Spektral Entropi

Sinyallerde spektral karmagikligini 6lgen bir sisteme giic SE’si denilir (Patel ve
Annavarapu, 2021). Belirsiz bir sistem ig¢in, sistemin durumlar olarak rastgele bir

degisken X varsayalim, X'in degeri Denklem 3.12’da kullanilarak hesaplanir.
X = {x1, x5, ..., x,} (3.12)

Denklem 3.12°da X — EEG sinyalinin degiskenidir, x4, x5, ...,x, - EEG

sinyalinin degiskeninin degerleridir.
Karsilik gelen olasilik
P={p, psre, Pn},0<p; <1, i=12,..,n(3.13)

Denklem 3.13’te karsilik gelen olasilik P esittir karsilik gelen olasiligin
degerlerine py, pa,..., Pn- Pi 0, 1 ve arasindaki degerleri aliyor. i’de karsilik gelen

olasiligin indeks degeridir, 1’den belirlenen maksimum art1 degerleri almaktadir.
Liopi=1 (3.14)

Denklem 3.14’te toplam karsilik gelen olasilik degeri 1’den n kadar toplam

sayilar alir.
Bu nedenle, sistemin bilgi entropisi su sekilde ifade edilebilir
H= — 3L pinp; (3.15)

Denklem 3.15°te, H, sistemin bilgi entropisidir esittir eksi toplamda kisitlamalar

altinda olan olasiliga karsilik gelen ve olasiligin logaritmik degerine karsilik gelen p; ile
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carpilir. Denklem 3.14’te gordiiglimiiz gibi toplam kisitlamalar altinda olan degere

karsilik gelen olasilik degeri olarak bir alinir.

Shannon tarafindan belirlenen diizensiz 6l¢iide hesaplayip sonuca varan entropi
degerine Shannon SE denir. SE, bir sinyalin frekans alaninda normallestirilmis dagitim
giicti ile bir olasilik dagilimi olarak ¢alisir. Bir sinyal i¢in SE'nin matematiksel agiklamast,
giic spektrumu ve olasilik dagilim denklemlerinden tiiretilebilir. Bir sinyal g(m) igin,
sinyal gii¢c spektrumu su sekilde ifade edilir: P,(m). Nerede, P,(m) = |g(m)|?. Olasilik

dagilimi, P;(m) asagidaki denklemde verilmistir.

Ps
P,(m) = #”(‘3) (3.16)

Denklem 3.16°da m herhangi bir anlik dizi i degeridir. Olasilik dagilimi P;(m)
sinyalin gli¢ spektrumunun P;(m) toplam giic spektrumunun i degerine

2 P;(i) boliinmesiyle hesaplamak olur. SE, Denklem 3.17’de gosterilmistir.

Se=— S _ Pa(m)logsPa(m) (3.17)

Denklem 3.17°de eksi toplamda herhangi bir anlik dizinin m=1 degerinden
baslar. Frekans noktalart N sayisinin degerlerine kadar toplam islemi gider. — YN _;
Olasilik dagiliminin logaritmik degerin olasilik dagiliminin ¢arpimina esitliye SE formiile

gore tanimidir.

Denklem (3.17) normallestirdikten sonra, asagidaki denklem (3.18) elde edilir,

N
g = _ 2 meq Pa(m)logs P g(m)
En log,N

(3.18)
Denklem 3.18’de Denklem 3.17°i log,N, frekans alani iizerinde diizgiin
dagilimli beyaz giiriiltiiniin maksimum SE’ne boldiikte SE’in normallesmis haline gelir.

Denklem 3.18’de N frekans noktalar1, log,N, frekans alani lizerinde diizgiin
dagilimli beyaz giiriiltiiniin maksimum SE’dir. Anlik bir siire i¢in SE asagidaki Denklem

(3.19) gibi hesaplanir.

Se(®) = = Ty_y Palt;m)log;Pa(t,m) (3.19)
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Denklem 3.19’da eksi toplamda herhangi bir anlik dizinin m=1 degerinden
baslar frekans noktalar1 N sayisinin degerlerine kadar toplam islemi gider — Y% _, anlik
bir siirede olasilik dagiliminin logaritmik degerin anlik bir siirede olasilik dagiliminin

carpimina esitliye anlik stirede SE’in Denkleme gore tanimidir (Patel ve Annavarapu,
2021).

SE (pa) normal kisiden alinan sinyalle yapilan analiz chb0O1 01 veri setini 6rnek

olarak kullanilan veriye ait sekil 3.17°de gosterilmistir.

Sekil 3.18. Normal EEG Sinyaline Ait Spektral Entropi Grafigi (Chb0O1 01)
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Sekil 3.18’de x ekseni 6rnek numarasini ve y ekseni de genligi gosterir. Grafigi
bir az agiklasak genlik 0,45 ile 0,5 degerleri arasinda baslarken 6rnekleme numarasinin 0
degerine denk gelmistir. Genligin bitis noktasi 0,6 ile 0,65 degerleri arasinda 6rnekleme
numarasinin 250 ile 300 degerine denk gelmistir. Grafik periodiktir, amplitiidleri artip
azalan yondedir. Ornek numarasi 0:50:300, genlik sayilarda 0,45:0,05:0,9 aricilirysan

artar.

SE (pa) epileptik kisiden alinan sinyalle yapilan analiz Chb05 13 veri setini

ornek olarak kullanilan veriye ait sekil 3.18’de gosterilmistir.
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Sekil 3.19: Epileptik Kisiden Alinan Chb05 13 Veri Setinin SE (pa) Grafigi
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Sekil 3.19°da x ekseni 6rnek numarasini ve y ekseni de genliyi gosterir. Grafigi
bir az agiklasak genlik 0,6 ile 0,65 degerleri arasinda baslarken 6rnekleme numarasinin 0
degerine denk gelmistir. Genligin bitis noktas1 0,5 ile 0,55 degerleri arasinda drnekleme
numarasinin 250 ile 300 degerine denk gelmistir. Grafik periodiktir, amplitiidleri artip
azalan yondedir. Ornek numarasi 0:50:300, genlik sayilarda 0,45:0,05:0,9 olarak artar.

Normal ana ait EEG sinyalinden analiz edilen SE (pa) epileptik EEG sinyalden
analiz edilen SE (pa) grafiklerinin farki sdyledir: normal kisiden alinan EEG sinyalinin
SE (pa) grafiginde baslangi¢ ve bitis genlik degeri epileptik kisiden alinan EEG sinyalinin

SE (pa)’dan azca kiiclik degere sahiptir.

3.4. UZUN-KISA SURELI HAFIZA DERIN OGRENME MODELI

UKSHDOM verilerin yapilarinin (kaliplarinin) taninmasindan ve daha sonra
analiz edilmesinden elde edilen bilgileri depolar. UKSHDOM, bir DO algoritmasi olan
Tekrarlayan Sinir Agina (TSA) dayanmaktadir. TSA, aktivasyon enerjisi yerel olarak
besleyen ve tekrarlayan yapilardan olusur, bu nedenle 6nceki ciktilar1 depolamak igin
harici kayitlara veya belleklere ihtiya¢ yoktur. TSA'da kullanilan tekrarlayan yapilar
nedeniyle UKSHDOM’da hesaplama karmasikligi diisiikti. UKSHDOM i¢ yapist
(Sekil 3.20°de) gosterilmistir (Smagulova ve James, 2019).



Sekil 3.20: CYUKSHDOM i¢ Yapist
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Kaynak: Tosun ve Cetin, 2022.

UKSHDOM blok teorisinde, garpma “*” gereksiz iceri§in unutulmasina,
toplama “+” ise yeni bir seyin hatirlanmasini ifade eder. Veri dizileri nemli ve yeni bir

seyle karsilastiysa, bu uzun vadeli igerige (C;) eklenmelidir.

UKSHDOM ag1 3 kapidan olusur. Bunlar unutma kapisi, girdi kapisi ve ¢iktt
kapisidir. Unutma kapist hiicre durumundan hangi bilgilerin atilabilecegini belirlemektir.
Bu kap1 yalniz sigmoidal katmandan (o) olusur. Baglangigta, 6zyinelemenin mevcut
adimindaki X, giris degeri, blogun onceki gizli durumu ile birlestirilir ve sinir aginin
sigmoidal tam bagli katmaninin girigine beslenir. Ciktida bu f; degeri, C;_, vektoriiniin
boyutuna esit boyutta olusturulur. Ayrica f;, 0 ile 1 aralifindaki elemanlardan olusur

(Tiwari, vd., 2023). f; Denklem 3.20°de ile hesaplanir.
fe = o(Ws - [he—1, %] + bf) (3.20)

Denklem 3.20’de tam bagl bir sigmoid katmanin girisinde ilk basta bdyle bir
ortak vektor [h;_q, x;] olusturuldugunu gorliyoruz, daha sonra Wy agirlik katsayilari ile
carpiliyor, ardindan bias ofset by ekleniyor, ancak tiim bunlar sigmoid islevinden gegirilir.
Ciktida f; vektorii alinir. Yani f; vektorii hangi bilgileri saklanacagini ve unutulacagini
gosteriyor. Bu onun egitimi sirasinda belirlenir. Yani, 08renme siirecinde agirlik
katsayilari, agin ortalama olarak uzun vadeli icerik vektoriinilin gereksiz degerlerini dogru

bir sekilde zayiflatmasi ve ihtiya¢ duyulani birakmasi i¢in secilir (Khalil, vd., 2019).
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Girdi kapisi, hiicrenin durumunda hangi yeni bilgilerin saklanacagina karar
vermektedir. Bu kap1 iki katmandan olusmaktadir. Bunlar, sigmoidal ve tanh
katmanlaridir. Burada ayrica, daha once elementel ekleme islemi de kullanilmaktadir.
Carpmadan eklemeye giden vektor, iki miktar temelinde olusturulur, bunlar i, ve

C/_,dir. Asagidaki denklemlerde i, ve C; — nin hesaplama formiilleri gosterilmistir.
ip =0 (Wp - [he-1, %] + by) (3.21)

C~t = tanh (WC . [h’t—li xt] + bc) (322)

Denklem 3.21 ve 3.22’i soyle anlatabiliriz: Sigmoid ve tanh katmanlarinin
denklemlerde gordigiimiiz gibi boyle ortak vektorii [hy_4,x;] olusur. Sonra sigmoid
katmanindan W), ve tanh katmanindan W, agirlik katsayilar ile ¢arpiliyor, ardindan
sigmoid katmaninda bias ofset b; tanh katmaninda b, ekleniyor, ancak tiim bunlar hem
sigmoid hem de tanh katmanlarindan gegiriliyor. Cikista sigmoid katmanindan i; ve tanh

katmanindan C, vektorleri aliir (Smagulova ve James, 2019).

Cikt1 kapisi, ¢ikti olarak hangi bilgileri almak istedigimize karar vermemiz
gerekiyor. Cikt1 kapisi iki katmandan olusur: Sigmoid ve tanh. Cikt1, hiicre durumumuza
dayali olmaktadir ve buna bazi filtreler uygulanmaktadir. Ilk olarak, hiicre durumundan
hangi bilgileri ¢ikaracagimiza karar veren bir sigmoid katman uygulanir. Hiicre durum
degerleri daha sonra -1 ile 1 araliginda cikt1 degerleri liretmek i¢in tanh katmanindan

gecirilir ve sadece gerekli bilgileri ¢iktilamak i¢in sigmoid katmaninin ¢ikti degerleri ile
carpilir.
0p = 0 W, [he—1,xe] + bo)  (3.23)
Denklem 3.23’te tam bagli bir sigmoid katmanin girisinde ilk basta boyle bir
ortak vektor [h;_q, x¢] olusturuldugunu goriiyoruz, daha sonra W, agirlik katsayilari ile

carpiliyor, ardindan bias ofset b, ekleniyor, ancak tiim bunlar sigmoid islevinden gegirilir.

Ciktida o, vektorii alinir. Yani o, vektorii hangi bilgileri almak istedigimizi gosteriyor.
h: = o; * tanh (C;) (3.24)

Denklem 3.24’te ¢ikt1 degeri h; sigmoid katmaninin ¢ikti degerinin o¢ tanh

katmaninin C; ¢ikt1 degerinin ¢arpimidir (Siami-Namini, Tavakoli ve Namin, 2019).
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3.5. DENEYLERIN DOGRULANMASI

Tez galismasinda, deneyler UKSHDOM ile siniflandirilmistir. Bu siniflandirma
ile veri setinin yiizde (%) kac basar1 kazandigini gordiik. Bundan ziyade, karsilik matrisi
ile Dogruluk, Ozgiilliik, Hassasiyet, YPO, Duyarlilik, NTD, F1-puani;, MKK, YNO, YKO

metrikleri hesaplanmistir.

Egitim ve testin basaris1 karmagsiklik matrisi ile performanslar1 belirlenmistir.

Analizler ne kadar diizenli sekilde yapilirsa karmasiklik matrisi de o kadar basarili olur.
Karmasiklik matrisi Tablo 3.5’te gosterilmistir.

Tablo 3.5: Karmagikhik Matrisi Tahmini

Tahmini sinif

E N
Gergek sinif E TP FP
N FN TN

Dogruluk: Dogru tahmin sayisinin toplam veri sayisina oranidir (Mangalathu,
vd., 2020).

TP+TN

Dogruluk = ——————
TP+TN+FN+FP

(3.25)

Denklem 3.25’te TP- dogru bir bilgiyi dogru kabul etmek, TN - yanlis bir
bilgiyi yanls kabul etmek, FN - yanlis bir bilgiyi dogru kabul etmek, FP - dogru bir

bilgiyi yanlis kabul etmek anlamina geliyorlar.

Ozgiilliik: Toplam negatif sayisina béliinen dogru negatif tahminlerin sayis

olarak hesaplanir (Balaanand, vd., 2019).

TN
TN+FP

Ozgillik = (3.26)
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Hassasiyet: Pozitif toplam tahmin sayisinin dogru pozitif tahminlere oranidir

(Maragkakis, vd., 2009). Hassasiyet, Denklem 3.27 ile hesaplanir.

TP
TP+FP

Hassasiyet = (3.27)

YPO: Toplam negatif sayisina boliinen hatali pozitif tahminlerin sayis1 olarak

hesaplanir (Dankers, vd., 2019). YPO, Denklem 3.28 ile hesaplanir.

FP
TN + FP

YPO =

(3.28)

Duyarhhlik: Pozitif toplam sayinin pozitif dogru tahminlere oranidir (Tomasev,

vd., 2019). Duyarlilik, Denklem 3.29 ile hesaplanir.

TP
TP+FN

Duyarlilik = (3.29)

NTD: Toplam negatif tahmin sayisina bdliinen dogru negatif tahminlerin

sayisina olarak hesaplanir (Guastavino, vd., 2022). NTD, Denklem 3.30 ile hesaplanir.

TN
TN+FN

NTD =

(3.30)

F1-puani: Kesinlik ve hatirlamanin harmonik bir ortalamasidir (Miao ve Zhu,

2022). F1 puani, Denklem 3.31 ile hesaplanir.

2TP

F1 —puani = —
2TP+FP+FN

(3.31)

MKK: Karigiklik matrisindeki dort degerin tiimii kullanilarak hesaplanan bir
korelasyon katsayisidir (Alotaibi, vd., 2022). MKK, Denklem 3.32 ile hesaplanir.

TP*xTN—FP*FN

MKK = (3.32)

J(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)

YNO: Toplam negatif sayisina boliinen yanlis negatif tahminlerin sayis1 olarak

hesaplanir (Bhaduri, vd., 2022). YNO, Denklem 3.33 ile hesaplanir.

FN
FN+TP

YNO = (3.33)

YKO: Pozitif toplam tahmin sayisinin yanlis pozitif tahmin sayisina oranidir
(Habiger ve Liang, 2022). YKO, Denklem 3.34 ile hesaplanr.

FP
FP+TP

YKO = (3.34)
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Denklem 3.34’te TP- dogru bir bilgiyi dogru kabul etmek, TN — yanlis bir bilgiyi
yanlis kabul etmek, FN — yanlis bir bilgiyi dogru kabul etmek, FP — dogru bir bilgiyi

yanlis kabul etmek anlamina geliyorlar.



DORDUNCU BOLUM

BULGULAR VE DENEYSEL CALISMALAR
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Hazirladigimiz bu tezde EEG sinyallerini gruplandirmak amaciyla normal ve
epileptik olarak 2 ¢esit gruba ayirmak i¢in deneyler yapilmistir. Sekil 4.1°de normal
chb01 01 EEG sinyali 2’nci kanaldan alinmistir ve Sekil 4.2°de epileptik chb05 13 EEG

sinyali 7’nci kanaldan alinmastir.

Sekil 4.1: Normal Chb01 01 EEG Sinyali
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Sekil 4.1’de CHB-MIT Scalp veri setinden alinan CHBO1_01 olarak etiketlenen
bireyden alinan 10 saniyelik EEG sinyal boliitlemesi gosterilmistir. Sinyal ilgili kisinin

epilepsi nobeti gecirilmedigi doneme aittir. Bu tez ¢alismasinda yapilan deneylerde bu

sinyaller “normal” olarak etiketlendi.

Sekil 4.2: Epileptik Chb05 13 EEG Sinyali
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Sekil 4.2°de gosterilen epileptik EEG sinyali elektrik aktivasyonu bozulmaya

ugrayarak hareket etmistir.
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4.1. YAPILAN DENEYLER

Calistigimiz tezimizde yapilan deney sayis1 22°dir. Bu deneylerdede kullanilan
CYUKSHDOM yapay zekd algoritmasinda hiperparametreler MaxEpochs=150,
MiniBatchSize=384, InitialLearnRate=0,01, SequenceLength=1000,

GradientThreshold=1 olarak ayarlanmistir.

1. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir. Bu
deney verilen degerlerle denenmistir CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %85,29’luk basar1 saglanmistir.

Tablo 4.1: Birinci Deneydeki Karisikhik Matrisi

E N
E 29 4
N 6 29

Birinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.1°de verilmistir. Tablodaki 4.1°deki 33 epileptik EEG sinyalinden 29’u epileptik
gruba konulmustur. 35 normal kisiden 29°u normal gruba konulabilmistir. Karigiklik
matrisinden elde edilen degerler kullanilarak sirasiyla Dogruluk, Ozgiilliik, Hassasiyet,
YPO, Duyarlilik, NTD, Fl-puani, MKK, YNO, YKO hesaplanmistir. Hesaplanan bu

metrikler Tablo 4.2°de sunulmustur.

Tablo 4.2: Birinci Deneyin Metrikleri

Metrikler Degerler
Dogruluk %85,29
Ozgillik %87,88
Hassasiyet %87,88
YPO %12,12

YPO %12,12
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Tablo 4.2 (devam): Birinci Deneyin Metrikleri

Metrikler Degerler
Duyarlilik 982,86
NTD %382,86
F1-puani 9085,29
MKK %70,74
YNO %17,14

Tablo 4.2°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %85,29 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %87,88 olarak olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%87,88 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %12,12 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %82,86 olarak ol¢iildii.
NTD; toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %17,14 olarak o6lgiildii. Hassasiyet ve hatirlamanin harmonik bir ortalamasi olan
F1-puani: %85,29 olarak gortildii. Karisiklik matrisindeki dort degerin tlimii kullanilarak
hesaplanan bir korelasyon katsayis1 olan MKK: %70,74 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %17,14
olarak dlgiildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %12,12 olarak 6l¢iildii.
2. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.

Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %61,76’lik basar1 saglanmastir.
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Tablo 4.3: Ikinci Deneydeki Karisiklik Matrisi

E N
E 16 17
N 9 26

Ikinci deneyde yapilan gruplandirmada ortaya cikan karisiklik matrisi verileri
Tablo 4.3’te verilmistir. Tablodaki 4.3’teki 33 epileptik EEG sinyalinden 16’1 epileptik
gruba konulmustur. 35 normal kisiden 26’1 normal gruba konulabilmistir. Karigiklik
matrisinden elde edilen degerler kullanilarak sirastyla Dogruluk, Ozgiilliik, Hassasiyet,
YPO, Duyarlilik, NTD, Fl-puani, MKK, YNO, YKO hesaplanmistir. Hesaplanan bu

metrikler Tablo 4.4’te sunulmustur.

Tablo 4.4: Ikinci Deneyin Metrikleri

Metrikler Degerler
Dogruluk 961,76
Ozgiillik %60,47
Hassasiyet %48,48
YPO %39,53
Duyarlilik %64
NTD %36
F1-puani %55,17
MKK %23,6
YNO %36

YKO %51,52
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Tablo 4.4’teki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %61,76 olarak l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %60,47 olarak olctildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%48,48 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %39,53 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %64 olarak 6l¢iildii. NTD;
toplam negatif saymnin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger
%236 olarak Olciildii. Hassasiyet ve hatirlamanin harmonik bir ortalamasi olan F1-puani:
%355,17 olarak gortldi. Karigiklik matrisindeki dort degerin timi  kullanilarak
hesaplanan bir korelasyon katsayist olan MKK: %?23,6 olarak goriildii. YNO; toplam
negatif sayimin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %36
olarak 6lg¢iildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %51,52 olarak 6l¢iildii.
3. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmuistir.

Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %80,88’lik basar1 saglanmastir.

Tablo 4.5: Uciincii Deneydeki Karisikhk Matrisi

E N
E 25 8
N 5 30

Ugiincii deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.5’te verilmistir. Tablodaki 4.5’teki 33 epileptik EEG sinyalinden 25’1 epileptik
gruba konulmustur. 35 normal kisiden 30’u normal gruba konulabilmistir. Bu sonuglar

dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.6’dak: degerler elde edilmistir.
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Tablo 4.6: Ugiincii Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %80,88
Ozgillik %78,95
Hassasiyet %75,76
YPO %21,05
Duyarlilik 983,33
NTD %85,71
F1-puant 979,37
MKK %61,87
YNO %16,67
YKO %24,24

Tablo 4.6’daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %80,88 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oramidir. Hesaplanan deger %78,95 olarak olciildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%75,76 olarak olciildii. YPO; toplam negatif sayinin, béliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %21,05 olarak o6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %83,33 olarak o6l¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %385,71 olarak olgiildii. Hassasiyet ve hatirlamanin harmonik bir ortalamasi olan
F1-puani: %79,37 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayis1 olan MKK: %61,87 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %16,67
olarak 6l¢iildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %24,24 olarak 6l¢iildii.
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4. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.

Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %75’lik basar1 saglanmistir.

Tablo 4.7: Dordiincii Deneydeki Karisiklik Matrisi

E N
E 29 4
N 13 22

Doérdiincli deneyde yapilan gruplandirmada ortaya c¢ikan karisiklik matrisi
verileri Tablo 4.7’de verilmistir. Tablodaki 4.7°deki 33 epileptik EEG sinyalinden 29°u
epileptik gruba konulmustur. 35 normal kisiden 22’si normal gruba konulabilmistir. Bu
sonuclar dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.8’deki degerler elde

edilmistir.

Tablo 4.8: Dordiincii Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %75
Ozgiilliik %84,62
Hassasiyet %87,88
YPO %15,38
Duyarlilik %069,05
NTD %62,86
F1-puant %77,33

MKK %52,18
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Tablo 4.8 (devam): Dordiincii Deneyin Metrikleri

Metrikler Degerleri
YNO %30,95
YKO %12,12

Tablo 4.8’deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %75 olarak 6lgiildii. Ozgiilliik; toplam negatif sayinm, dogru negatif
tahminlerin oranidir. Hesaplanan deger %84,62 olarak Ol¢iildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%87,88 olarak olgiildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %15,38 olarak oOl¢iildii. Duyarlilik; toplam pozitif sayimun,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %69,05 olarak olgiildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %62,86 olarak dl¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %77,33 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %52,18 olarak
goriildi. YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %30,95 olarak dl¢iildii. YKO; toplam pozitif saymin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %12,12 olarak dl¢iildii.

5. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmuistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %79,41°lik basar1 saglanmistir.

Tablo 4.9: Besinci Deneydeki Karisikhik Matrisi
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Besinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.9’da verilmistir. Tablodaki 4.9°daki 33 epileptik EEG sinyalinden 25’1 epileptik
gruba konulmustur. 35 normal kisiden 29°u normal gruba konulabilmistir. Bu sonuglar

dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.10°daki degerler elde edilmistir.

Tablo 4.10: Besinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %79,41
Ozgulluk %78,38
Hassasiyet %75,76
YPO %21,62
Duyarlilik 280,65
NTD %82,86
F1-puani %78,13
MKK %58,82
YNO %19,35
YKO %24,24

Tablo 4.10°daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %79,41 olarak 6l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger 9%78,38 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%75,76 olarak olciildii. YPO; toplam negatif sayiin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %21,62 olarak olciildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %80,65 olarak ol¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan

deger %82,86 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
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puant: %78,13 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan MKK: %58,82 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oramidir. Hesaplanan deger %19,35
olarak ol¢tildii. YKO; toplam pozitif saymin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %24,24 olarak 6l¢iildii.

6. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %58,82’lik basar1 saglanmaistir.

Tablo 4.11: Altinc1 Deneydeki Kanisikhik Matrisi

E N
E 22 11
N 17 18

Altinct deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.11°de verilmistir. Tablodaki 4.9°dak1 33 epileptik EEG sinyalinden 22°si epileptik
gruba konulmustur. 35 normal kisiden 18’1 normal gruba konulabilmistir. Bu sonuglar

dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.10’daki degerler elde edilmistir.

Tablo 4.12: Altinc1 Deneyin Metrikleri

Metrikler Degerleri
Dogruluk 258,82
Ozgulluk %62,07
Hassasiyet %66,67
YPO %37,93
Duyarlilik 0056,41

NTD %51,43
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Tablo 4.12 (devam): Altinc1 Deneyin Metrikleri

Metrikler Degerleri

F1-puani 961,11
MKK %18,29
YNO %43,59
YKO %33,33

Tablo 4.12°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %58,82 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %84,62 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%87,88 olarak olgiildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %15,38 olarak Ol¢iildii. Duyarlilik; toplam pozitif sayimun,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %69,05 olarak ol¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %62,86 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %61,11 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayis1 olan MKK: %18,29 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oramidir. Hesaplanan deger %30,95
olarak dlgiildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %12,12 olarak ol¢iildii.

7. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %80,88’lik basar1 saglanmaistir.
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Tablo 4.13: Yedinci Deneydeki Karisiklik Matrisi

E N
E 26 7
N 6 29

Yedinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.13’te verilmistir. Tablodaki 4.9’daki1 33 epileptik EEG sinyalinden 26°s1 epileptik
gruba konulmustur. 35 normal kisiden 29’u normal gruba konulabilmistir. Bu sonuglar

dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.14’teki degerler elde edilmistir.

Tablo 4.14: Yedinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %080,88
Ozgullik %80,56
Hassasiyet %78,79
YPO %19,44
Duyarlilik %081,25
NTD %82,86
F1-puani %80
MKK %61,73
YNO %18,75

YKO %21,21




66

Tablo 4.14’teki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %80,88 olarak ol¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %80,56 olarak olctildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%78,79 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %19,44 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %81,25 olarak o6lgiildii.
NTD; toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %82,86 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %80 olarak gorildii. Karigiklik matrisindeki dort degerin timii kullanilarak
hesaplanan bir korelasyon katsayis1 olan MKK: %61,73 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %18,75
olarak 6lg¢iildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %21,21 olarak 6l¢iildii.

8. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmuistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %70,59’luk basar1 saglanmustir.

Tablo 4.15: Sekizinci Deneydeki Karisiklik Matrisi

E N
E 24 9
N 11 24

Sekizinci deneyde yapilan gruplandirmada ortaya cikan karigiklik matrisi
verileri Tablo 4.9°da verilmistir. Tablodaki 4.15°teki 33 epileptik EEG sinyalinden 24’1
epileptik gruba konulmustur. 35 normal kisiden 24’ii normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.16’dak1 degerler elde

edilmistir.
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Tablo 4.16: Sekizinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %70,59
Ozgiillik %72,73
Hassasiyet %72,73
YPO %27,27
Duyarlilik 268,57
NTD %68,57
F1-puani %70,59
MKK %41,30
YNO %31,43
YKO %27,27

Tablo 4.16’daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %70,59 olarak 6l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger 9%72,73 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%72,73 olarak olgiildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %27,27 olarak ol¢iildii. Duyarlilik; toplam pozitif sayimin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %68,57 olarak ol¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %68,57 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %70,59 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayist olan MKK: %41,3 olarak goriildii. YNO; toplam
negatif saymin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %31,43
olarak dl¢iildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %27,27 olarak 6lgiildii.
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9. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir.
Bu deney verilen degerlerle denenmisti. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %82,35’1lik basar1 saglanmaistir.

Tablo 4.17: Dokuzuncu Deneydeki Karisiklik Matrisi

E N
E 26 7
N 5 30

Dokuzuncu deneyde yapilan gruplandirmada ortaya c¢ikan karigiklik matrisi
verileri Tablo 4.17°da verilmistir. Tablodaki 4.17’daki 33 epileptik EEG sinyalinden 26’1
epileptik gruba konulmustur. 35 normal kisiden 30’u normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.18’deki degerler elde

edilmistir.

Tablo 4.18: Dokuzuncu Deneyin Metrikleri

Metrikler Degerleri
Dogruluk 2082,35
Ozgiillik %81,08
Hassasiyet %78,79
YPO %18,92
Duyarlilik %283,87
NTD %85,71
F1-puani %81,25

MKK %64,73
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Tablo 4.18 (devam): Dokuzuncu Deneyin Metrikleri

Metrikler Degerleri
YNO %16,13
YKO %21,21

Tablo 4.18°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %82,35 olarak o6lgiildii. Ozgiilliik; toplam negatif saymin, dogru
negatif tahminlerin oranidir. Hesaplanan deger %81,08 olarak olgiildii. Hassasiyet;
Toplam pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan
deger %78,79 olarak ol¢iildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif
tahminlerin oranidir. Hesaplanan deger %18,92 olarak 6l¢iildii. Duyarlilik; toplam pozitif
sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %83,87 olarak
Ol¢iildii. NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir.
Hesaplanan deger %385,71 olarak olciildii. Kesinlik ve hatirlamanin harmonik bir
ortalamasi olan F1-puani: %81,25 olarak goriildii. Karigiklik matrisindeki dort degerin
timii kullanilarak hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon
Katsayis1: %64,73 olarak goriildii. YNO; toplam negatif saymin, yanlis negatif
tahminlerin sayisina oranidir. Hesaplanan deger %16,13 olarak o6l¢iildii. YKO; toplam
pozitif saymnin, yanlis pozitif tahminlerin sayisina oranidir. Hesaplanan deger %21,21

olarak olguldii.

10. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %77,94’liik basar1 saglanmstir.

Tablo 4.19: Onuncu Deneydeki Karisiklik Matrisi
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Onuncu deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.19’da verilmistir. Tablodaki 4.19°daki 33 epileptik EEG sinyalinden 27’1
epileptik gruba konulmustur. 35 normal kisiden 26’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.20°deki degerler elde

edilmistir.

Tablo 4.20: Onuncu Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %77,94
Ozgulluk %81,25
Hassasiyet 981,82
YPO %18,75
Duyarlilik %75
NTD %74,29
F1-puani 0078,26
MKK %56,18
YNO %25
YKO %18,18

Tablo 4.20°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %77,94 olarak &lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %81,25 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%381,82 olarak 6lciildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %18,75 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %75 olarak 6l¢iildii. NTD;

toplam negatif saymnin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger
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%74,29 olarak 0l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-puani:
%78,26 olarak gorildi. Karigiklik matrisindeki dort degerin timii  kullanilarak
hesaplanan bir korelasyon katsayis1 olan Matthews Korelasyon Katsayisi: %56,18 olarak
goriildi. YNO; toplam negatif saymnin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %25 olarak olgiildi. YKO; toplam pozitif sayinin, yanlis pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %18,18 olarak dl¢iildii.

11. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %64,71°lik basar1 saglanmaistir.

Tablo 4.21: On birinci Deneydeki Karisikhik Matrisi

E N
E 20 13
N 11 24

On birinci deneyde yapilan gruplandirmada ortaya c¢ikan karigiklik matrisi
verileri Tablo 4.21°de verilmistir. Tablodaki 4.21°deki 33 epileptik EEG sinyalinden 20’1
epileptik gruba konulmustur. 35 normal kisiden 24’ii normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.22°deki degerler elde

edilmistir.

Tablo 4.22: On birinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %64,71
Ozgullik %64,86
Hassasiyet %60,61
YPO %35,14

Duyarlilik %064,52
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Tablo 4.22 (devam): On birinci Deneyin Metrikleri

Metrikler Degerleri
NTD %68,57
F1-puani 962,50
Matthews Korelasyon Katsayisi %29,28
YNO %35,48
YKO 939,39

Tablo 4.22°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %64,71 olarak ol¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %64,86 olarak Ol¢iildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%60,61 olarak olciildii. YPO; toplam negatif sayinin, béliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %35,14 olarak olciildii. Duyarlilik; toplam pozitif sayimin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %64,52 olarak o6l¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %68,57 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puani: %62,50 olarak goriildi. Karnisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %29,28 olarak
goriildi. YNO; toplam negatif saymnin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %35,48 olarak dl¢iildi. YKO; toplam pozitif saymin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %39,39 olarak dl¢iildii.

12. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistur.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %69,12’lik basar1 saglanmaistir.
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Tablo 4.23: On Ikinci Deneydeki Karisiklik Matrisi

E N
E 31 2
N 19 16

On ikinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi verileri
Tablo 4.9°da verilmistir. Tablodaki 4.23’teki 33 epileptik EEG sinyalinden 31°1 epileptik
gruba konulmustur. 35 normal kisiden 16’1 normal gruba konulabilmistir. Bu sonuglar

dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.24’teki degerler elde edilmistir.

Tablo 4.24: On ikinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %69,12
Ozgiilliik %88,89
Hassasiyet 993,94
YPO %11,11
Duyarlilik %62
NTD %45,71
Fl-puani %74,70
Matthews Korelasyon Katsayisi %44,92
YNO %38
YKO %6,06

Tablo 4.24’teki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.

Hesaplanan deger %69,12 olarak &l¢iildii. Ozgiilliik; toplam negatif saymin, dogru negatif
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tahminlerin oranidir. Hesaplanan deger %88,89 olarak olciildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%93,94 olarak olgiildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %11,11 olarak o6lgiildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %62 olarak 6l¢iildii. NTD;
toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger
%45,71 olarak dlgiildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-puani:
%74,7 olarak goriildii. Karigiklik matrisindeki dort degerin tiimii kullanilarak hesaplanan
bir korelasyon katsayist olan Matthews Korelasyon Katsayisi: %44,92 olarak goriildii.
YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan
deger %38 olarak Ol¢iildii. YKO; toplam pozitif saymnin, yanhs pozitif tahminlerin

sayisina oranidir. Hesaplanan deger %6,06 olarak dl¢iildii.

13. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik
gruplandirmasinda %60,29°luk basar1 saglanmustur.

Tablo 4.25: On iiciincii Deneydeki Karisikhik Matrisi

E N
E 13 20
N 7 28

On iiglincii deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi
verileri Tablo 4.25°te verilmistir. Tablodaki 4.9’dak1 33 epileptik EEG sinyalinden 13’1
epileptik gruba konulmustur. 35 normal kisiden 28’1 normal gruba konulabilmistir. Bu
sonuclar dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.26’daki degerler elde

edilmistir.
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Tablo 4.26: On Ugiincii Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %60,29
Ozgiillik 958,33
Hassasiyet 939,39
YPO %41,67
Duyarlilik %65
NTD %80
F1-puant %049,06
Matthews Korelasyon Katsayisi %21,27
YNO %35
YKO %60,61

Tablo 4.26°daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %60,29 olarak 6l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger 958,33 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%39,39 olarak olgiildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %41,67 olarak ol¢iildii. Duyarlilik; toplam pozitif sayimin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %65 olarak 6l¢iildii. NTD;
toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger
%80 olarak olciildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-puani:
%49,06 olarak goriildi. Karisiklik matrisindeki dort degerin tiimii  kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %21,27 olarak
goriildii. YNO; toplam negatif saymnin, yanlis negatif tahminlerin sayisina oranmidir.
Hesaplanan deger %35 olarak 6lciildi. YKO; toplam pozitif saymin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %60,61 olarak 6l¢iildii.
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14. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmisti. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %66,18’lik basar1 saglanmaistir.

Tablo 4.27: On Dordiincii Deneydeki Karisikhik Matrisi

E N
E 16 17
N 6 29

On dordiincii deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi
verileri Tablo 4.27°de verilmistir. Tablodaki 4.27°deki 33 epileptik EEG sinyalinden 16’1
epileptik gruba konulmustur. 35 normal kisiden 29’u normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.28’deki degerler elde

edilmistir.

Tablo 4.28: On dordiincii Deneyin Metrikleri

Metrikler Degerleri
Dogruluk 966,18
Ozgiilliik %63,04
Hassasiyet %48,48
YPO %36,96
Duyarlilik %72,73
NTD %82,86
F1-puani %58,18

Matthews Korelasyon Katsayisi %33,48
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Tablo 4.28 (devam): On doérdiincii Deneyin Metrikleri

Metrikler Degerleri
YNO %27,27
YKO %51,52

Tablo 4.28°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %66,18 olarak &l¢iildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %63,04 olarak olgtildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%48,48 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %36,96 olarak olciildii. Duyarlilik; toplam pozitif sayimin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %72,73 olarak olgiildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %82,86 olarak oOlciildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %58,18 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %33,48 olarak
goriildi. YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %27,27 olarak dl¢iildii. YKO; toplam pozitif saymin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %51,52 olarak dl¢iildii.

15. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik
gruplandirmasinda %76,47°1ik basar1 saglanmistir.

Tablo 4.29: On Besinci Deneydeki Karisiklik Matrisi
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On besinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi
verileri Tablo 4.29°da verilmistir. Tablodaki 4.9°daki 33 epileptik EEG sinyalinden 24’1
epileptik gruba konulmustur. 35 normal kisiden 28’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.30°daki degerler elde

edilmistir.

Tablo 4.30: On Besinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %76,47
Ozgiilliik %75,68
Hassasiyet %72,73
YPO %24,32
Duyarlilik 0%77,42
NTD %80
F1-puant %75
Matthews Korelasyon Katsayist %52,91
YNO %22,58
YKO %27,27

Tablo 4.30°daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %76,47 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %75,68 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%72,73 olarak 6lciildii. YPO; toplam negatif sayiin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %24,32 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %77,42 olarak ol¢iildii.

NTD; toplam negatif sayimin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
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deger %80 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamast olan F1-
puant: %75 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayis1 olan Matthews Korelasyon Katsayisi: %52,91 olarak
goriildi. YNO; toplam negatif saymnin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %22,58 olarak 6l¢iildii. YKO; toplam pozitif saymnin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %27,27 olarak dl¢iildii.

16. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmistur.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %73,53’liik basar1 saglanmstir.

Tablo 4.31: On altinc1 Deneydeki Karisiklik Matrisi

E N
E 29 4
N 14 21

On altinct deneyde yapilan gruplandirmada ortaya cikan karisiklik matrisi
verileri Tablo 4.31°de verilmistir. Tablodaki 4.31’°daki 33 epileptik EEG sinyalinden 29°u
epileptik gruba konulmustur. 35 normal kisiden 21’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.32°deki degerler elde

edilmistir.

Tablo 4.32: On Altinc1 Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %73,53
Ozgulluk %84
Hassasiyet %87,88
YPO %16

Duyarlilik %67,44
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Tablo 4.32 (devam): On Altinci Deneyin Metrikleri

Metrikler Degerleri
NTD %60
F1-puani 976,32
Matthews Korelasyon Katsayist %49,63
YNO %32,56
YKO %12,12

Tablo 4.32’deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %73,53 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %84 olarak dl¢iildii. Hassasiyet; Toplam pozitif
tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %87,88
olarak o6l¢iildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin oranidir.
Hesaplanan deger %16 olarak 6l¢iildii. Duyarlilik; toplam pozitif saymnin, dogru pozitif
tahminlerin sayisina oranidir. Hesaplanan deger %67,44 olarak olciildii. NTD; toplam
negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger %60 olarak
oOlciildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-puani: %76,32 olarak
goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak hesaplanan bir korelasyon
katsayis1 olan Matthews Korelasyon Katsayisi: %49,63 olarak goriildii. YNO; toplam
negatif sayinin, yanlis negatif tahminlerin sayisina oranidir. Hesaplanan deger %32,56
olarak dlgiildii. YKO; toplam pozitif sayinin, yanlis pozitif tahminlerin sayisina oranidir.

Hesaplanan deger %12,12 olarak 6l¢iildii.

17. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmuistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %70,59’luk basar1 saglanmstir.
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Tablo 4.33: On yedinci Deneydeki Karisikhik Matrisi

E N
E 23 10
N 10 25

On yedinci deneyde yapilan gruplandirmada ortaya ¢ikan karigiklik matrisi
verileri Tablo 4.33’te verilmistir. Tablodaki 4.33’teki 33 epileptik EEG sinyalinden 23’1
epileptik gruba konulmustur. 35 normal kisiden 25’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.34’teki degerler elde

edilmistir.

Tablo 4.34: On Yedinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %70,59
Ozgulluk %71,43
Hassasiyet %69,7
YPO %28,57
Duyarlilik %69,7
NTD %71,43
F1-puani %69,7
Matthews Korelasyon Katsayisi %41,13
YNO %30,3

YKO %30,3
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Tablo 4.34’teki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %70,59 olarak 6l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %71,43 olarak olctildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%69,7 olarak 6l¢iildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %28,57 olarak dl¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger 9%69,7 olarak olgiildii.
NTD; toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %71,43 olarak 6l¢iildi. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %69,7 olarak goriildi. Karisiklik matrisindeki dort degerin tiimi kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %41,13 olarak
goriildii. YNO; toplam negatif saymnin, yanhs negatif tahminlerin sayisina oramidir.
Hesaplanan deger %30,3 olarak ol¢iildi. YKO; toplam pozitif saymin, yanlis pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %30,3 olarak 6l¢iildii.

18. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmaistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %85,29’luk basar1 saglanmistir.

Tablo 4.35: On sekizinci Deneydeki Karisiklik Matrisi

E N
E 29 4
N 6 29

On sekizinci deneyde yapilan gruplandirmada ortaya cikan karigiklik matrisi
verileri Tablo 4.35’te verilmistir. Tablodaki 4.35’teki 33 epileptik EEG sinyalinden 29’u
epileptik gruba konulmustur. 35 normal kisiden 29’u normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.36’dak1 degerler elde

edilmistir.
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Tablo 4.36: On sekizinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %85,29
Ozgiillik %87,88
Hassasiyet %87,88
YPO %12,12
Duyarlilik %082,86
NTD %82,86
F1-puant %085,29
Matthews Korelasyon Katsayisi %70,74
YNO %17,14
YKO %12,12

Tablo 4.36°daki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %85,29 olarak 6l¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %87,88 olarak ol¢iildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%87,88 olarak olgiildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %12,12 olarak ol¢iildii. Duyarlilik; toplam pozitif sayimin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %82,86 olarak ol¢iildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %82,86 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %385,29 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %70,74 olarak
goriildii. YNO; toplam negatif saymnin, yanlis negatif tahminlerin sayisina oranmidir.
Hesaplanan deger %17,14 olarak olciildii. YKO; toplam pozitif sayinin, yanlis pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %12,12 olarak dl¢iildii.
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19. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmisti. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %82,35’1lik basar1 saglanmaistir.

Tablo 4.37: On dokuzuncu Deneydeki Karisikhik Matrisi

E N
E 27 6
N 6 29

On dokuzuncu deneyde yapilan gruplandirmada ortaya ¢ikan karigiklik matrisi
verileri Tablo 4.37°de verilmistir. Tablodaki 4.37’deki 33 epileptik EEG sinyalinden 27’1
epileptik gruba konulmustur. 35 normal kisiden 29’u normal gruba konulabilmistir. Bu
sonuclar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.38’deki degerler elde

edilmistir.

Tablo 4.38: On Dokuzuncu Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %82,35
Ozgiilliik %82,86
Hassasiyet %81,82
YPO %17,14
Duyarlilik %81,82
NTD %82,86
F1-puani %81,82

Matthews Korelasyon Katsayisi %64,68
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Tablo 4.38 (devam): On Dokuzuncu Deneyin Metrikleri

Metrikler Degerleri
YNO %18,18
YKO %18,18

Tablo 4.38’deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %82,35 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %82,86 olarak olgtildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%81,82 olarak olgiildii. YPO; toplam negatif sayinin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %17,14 olarak o6l¢iildii. Duyarlilik; toplam pozitif sayiun,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %81,82 olarak olgiildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %82,86 olarak oOlciildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %81,82 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %64,68 olarak
goriildi. YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %18,18 olarak dl¢iildii. YKO; toplam pozitif saymin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %18,18 olarak 6l¢iildii.

20. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %82,35’1lik basar1 saglanmaistir.

Tablo 4.39: Yirminci Deneydeki Karisikhik Matrisi
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Yirminci deneyde yapilan gruplandirmada ortaya ¢ikan karigiklik matrisi verileri
Tablo 4.39’da verilmistir. Tablodaki 4.39°daki 33 epileptik EEG sinyalinden 28’1
epileptik gruba konulmustur. 35 normal kisiden 28’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayni sirayla Tablo 4.40°taki degerler elde

edilmistir.

Tablo 4.40: Yirminci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %282,35
Ozgiilliik %84,85
Hassasiyet %84,85
YPO %15,15
Duyarlilik %80
NTD %80
F1-puant %082,35
Matthews Korelasyon Katsayist %64,85
YNO %20
YKO %15,15

Tablo 4.40’tak1 Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %82,35 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger %84,85 olarak Ol¢iildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oramidir. Hesaplanan deger
%384,85 olarak 6lciildii. YPO; toplam negatif sayiin, bdliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %15,15 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %80 olarak 6l¢iildii. NTD;

toplam negatif saymnin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan deger



87

%80 olarak olciildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-puani:
%82,35 olarak gorildi. Karigiklik matrisindeki dort degerin tiimii  kullanilarak
hesaplanan bir korelasyon katsayis1 olan Matthews Korelasyon Katsayisi: %64,85 olarak
goriildi. YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %20 olarak ol¢iildi. YKO; toplam pozitif sayinin, yanlis pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %15,15 olarak 6l¢iildii.

21. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmaistir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %83,82’l1ik basar1 saglanmaistir.

Tablo 4.41: Yirmi birinci Deneydeki Karisikhik Matrisi

E N
E 28 5
N 6 29

Yirmi birinci deneyde yapilan gruplandirmada ortaya cikan karigiklik matrisi
verileri Tablo 4.41°de verilmistir. Tablodaki 4.41°deki 33 epileptik EEG sinyalinden 28’1
epileptik gruba konulmustur. 35 normal kisiden 29’u normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.42°deki degerler elde

edilmistir.

Tablo 4.42: Yirmi birinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk 283,82
Ozgiilliik %85,29
Hassasiyet %84,85
YPO %14,71

Duyarlilik 982,35
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Tablo 4.42 (devam): Yirmi birinci Deneyin Metrikleri

Metrikler Degerleri
NTD %82,86
F1-puani 9083,58
Matthews Korelasyon Katsayisi %67,68
YNO %17,65
YKO %15,15

Tablo 4.42°deki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %83,82 olarak 6lgiildii. Ozgiilliik; toplam negatif saymin, dogru negatif
tahminlerin oranidir. Hesaplanan deger 9%85,29 olarak olgiildii. Hassasiyet; Toplam
pozitif tahmin saymin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%84,85 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %14,71 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayinin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %82,35 olarak ol¢iildii.
NTD; toplam negatif saymin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %82,86 olarak ol¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %83,58 olarak goriildii. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %67,68 olarak
goriildi. YNO; toplam negatif sayinin, yanlis negatif tahminlerin sayisina oramidir.
Hesaplanan deger %17,65 olarak o6lgiildii. YKO; toplam pozitif saymin, yanhs pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %15,15 olarak 6l¢iildii.

22. Deney: Yaptigimiz deneyde EEG sinyallerinde epileptik saptanmustir.
Bu deney verilen degerlerle denenmistir. CYUKSHDOM ile yapilan epileptik

gruplandirmasinda %80,88’lik basar1 saglanmaistir.
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Tablo 4.43: Yirmi ikinci Deneydeki Karisiklik Matrisi

E N
E 27 6
N 7 28

Yirmi ikinci deneyde yapilan gruplandirmada ortaya ¢ikan karisiklik matrisi
verileri Tablo 4.43’te verilmistir. Tablodaki 4.43’teki 33 epileptik EEG sinyalinden 27’1
epileptik gruba konulmustur. 35 normal kisiden 28’1 normal gruba konulabilmistir. Bu
sonuglar dogrultusunda elde edilen metrikler ayn1 sirayla Tablo 4.44’teki degerler elde

edilmistir.

Tablo 4.44: Yirmi Ikinci Deneyin Metrikleri

Metrikler Degerleri
Dogruluk %380,88
Ozgiilliik %82,35
Hassasiyet %81,82
YPO %17,65
Duyarlilik %79,45
NTD %80
F1-puani %80,6
Matthews Korelasyon Katsayisi %61,79
YNO %20,59

YKO %18,18
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Tablo 4.44’teki Dogruluk; dogru tahmin sayisinin toplam veri sayisina oranidir.
Hesaplanan deger %80,88 olarak ol¢iildii. Ozgiilliik; toplam negatif sayinin, dogru negatif
tahminlerin oranidir. Hesaplanan deger 9%82,35 olarak Olgiildii. Hassasiyet; Toplam
pozitif tahmin sayinin, dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger
%81,82 olarak olciildii. YPO; toplam negatif sayinin, boliinen hatali pozitif tahminlerin
oranidir. Hesaplanan deger %17,65 olarak 6l¢iildii. Duyarlilik; toplam pozitif sayiin,
dogru pozitif tahminlerin sayisina oranidir. Hesaplanan deger %79,45 olarak olgiildii.
NTD; toplam negatif sayinin, dogru negatif tahminlerin sayisina oranidir. Hesaplanan
deger %80 olarak 6l¢iildii. Kesinlik ve hatirlamanin harmonik bir ortalamasi olan F1-
puant: %80,6 olarak goriildi. Karisiklik matrisindeki dort degerin tiimii kullanilarak
hesaplanan bir korelasyon katsayisi olan Matthews Korelasyon Katsayisi: %61,79 olarak
goriildii. YNO; toplam negatif saymnin, yanhs negatif tahminlerin sayisina oramidir.
Hesaplanan deger %?20,59 olarak ol¢iildii. YKO; toplam pozitif saymnin, yanls pozitif

tahminlerin sayisina oranidir. Hesaplanan deger %18,18 olarak dl¢iildii.

Yapmis oldugumuz deneylerin basar1 yiizdeleri karigiklik matrisleri ile

belirtilmistir. Deneyimizin basar1 grafigi Sekil 4.3’te gosterilmistir.

Sekil 4.3: Yapilan Deneylerin Basar1 Yiizdeleri
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Sekil 4.3’te Yapilan Deneylerdeki CYUKSHDOM ile % basar1 oranlari
gosterilmistir. En yliksek basart degeri Deney 1’de alinmistir (yani Fpl-F7 kanalinda).

Grafikte x ekseni Deneyleri (Kanallar1) ve y ekseninde basar1 degerlerini gostermektedir.

Sekil 4.3°de Deney 1 %85,29 basari elde edilmistir, Deney 2 %61,76 basari elde
edilmistir, Deney 3 %80,88 basar1 elde edilmistir, Deney 4 %75 basari elde edilmistir,
Deney 5 9%79,41 basar1 elde edilmistir, Deney 6 %58,82 basar1 elde edilmistir, Deney 7
%380,88 basar1 elde edilmistir, Deney 8 %70,59 basar1 elde edilmistir, Deney 9 %82,35
basar1 elde edilmistir, Deney 10 %77,94 basar1 elde edilmistir, Deney 11 %64,71 basar1
elde edilmistir, Deney 12 %69,12 basar1 elde edilmistir, Deney 13 %60,29 basar1 elde
edilmistir, Deney 14 %66,18 basar1 elde edilmistir, Deney 15 %76,47 basar1 elde
edilmistir, Deneyl16 9%73,53 basar1 elde edilmistir, Deney 17 %70,59 basar1 elde
edilmistir, Deney 18 %85,29 basar1 elde edilmistir, Deney 19 %82,35 basar1 elde
edilmistir, Deney 20 %82,35 basar1 elde edilmistir, Deney 21 %383,82 basar1 elde
edilmistir, Deney 22 %80,88 basari elde edilmistir.
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5.1. TARTISMA

Literatiire bakildiginda CHB-MIT Scalp veri seti kullanilarak epilepsi teshisine
yonelik ¢okca calisma yapildig1 goriilmektedir. Bu ¢alismalarda farkli analiz yontemleri

ile EEG sinyalleri analiz edilerek farkli siniflandirma yontemleri kullanilmistir.

Tablo 5.1: Literatiirdeki Cahsmalarin Kullandiklar1 Yontemlere Gore Metrik
Degerleri (%)

Yazarlar Kullanilan veri seti ~ Kullamlan yontemler Basar1 oram (%0)

He vd. 2022 CHB-MIT Scalp CYUKSHDOM Dogruluk: %94,16;
Duyarlilik: %88,23;
Ozgiillik: %75

Ryu vd. 2021 CHB-MIT Scalp UKSHDOM Dogruluk: %93,28;
Duyarlilik: %92,92;
Ozgiillik: %93,65;
YPO: 0,063;
F1-puani: 0,923

Ansari vd. 2020 CHB-MIT Scalp UKSHDOM Preiktal ve interiktal
bolitler dahil
edildiginde Nobet

tahmini zamaninda:
Dogruluk: %96,59;

Preiktal ve interiktal
bolutler dahil

edilmediginde:

Dogruluk: %95,71.

Tsiouris vd. 2018 CHB-MIT Scalp UKSHDOM YPO: 0,11

Cheng vd. 2018 CHB-MIT Scalp CYUKSHDOM Dogruluk: %99,47;
Duyarlilik: %99,34;
Ozgullik: %99,6
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He vd. (2022), yilinda yaptiklart ¢alismada CHB-MIT Scalp veri setini
CYUKSHDOM simniflandirma ydntemine gore Dogruluk: %94,16; Duyarlilik: %88,23;
Ozgiilliik: %75 elde etmislerdir. Ryu vd. (2021), yilinda yaptiklar1 calismada CHB-MIT
Scalp veri setini UKSHDOM smiflandirma yontemine gére Dogruluk: %93,28;
Duyarlilik: %92,92; Ozgiillikk: %93,65; YPO: 0,063; F1-puani: 0,923 elde etmislerdir.
Ansari vd. (2020), yilinda yaptiklar1 ¢alismada CHB-MIT Scalp veri setinin UKSHDOM
siniflandirma yontemine gore Preiktal ve interiktal boliitler dahil edildiginde Nobet
tahmini zamaninda Dogruluk: %91,02, Nobet tespiti zamaninda Dogruluk: %96,59 elde
etmislerdir. CHB-MIT scalp veri setinin UKSHDOM smiflandirma ydntemine gore
Preiktal ve interiktal boliitler dahil edilmediginde Dogruluk: %95,71 elde etmislerdir.
Tsiouris vd. (2018), yilinda CHB-MIT Scalp veri setinin UKSHDOM smiflandirma
yontemine gore YPO: 0,11 ve Yanlis Alarm Orani1 0,02 elde etmislerdir. Cheng vd. (2018),
yilinda yaptiklar1 calismada CHB-MIT Scalp veri setini CYUKSHDOM smiflandirma
yontemine gore Dogruluk: %99,47; Duyarlilik: %99,34; Ozgiilliik: 99,6 elde etmislerdir.

MA, sinyal tanimlamaya yarar. Multifraktal spektrum, bir sinyal icin
Olceklendirme iislerinin dagilimin etkin bir sekilde gosterir. Esdeger olarak, multifraktal
spektrum, bir sinyalin yerel diizenliliginin zaman i¢inde ne kadar degistiginin bir
Olciisiinii saglar (Amoura, Gaci ve Bounif, 2022). Monofraktal olan bir sinyal, zaman
icinde her yerde esasen ayni diizenliligi sergiler ve bu nedenle dar destekli ¢ok fraktal bir
spektruma sahiptir (Rahmani ve Fattahi, 2022). SE — karmasik sinyallerin diizenlilik
derecesini belirleyebilir. SE, ariza tespiti ve teshisinde 6zellik ¢ikarma icin bir avantajdir
(Mi, vd., 2022). AF, EEG sinyallerinde salinimli ndbet tipinin saptanmasi i¢in bir 6zellik
olarak siklikla kullanilir. Duragan olmayan bir sinyalin AF’s1, sinyal gelistikge mevcut
frekanslarin ortalamasina iliskin zamanla degisen bir parametredir. Bu, AF'in karmagsik
degerli sinyaller i¢in destekledigi tek yontemdir. AF, sinyalin AF’n1 ve karsilik gelen
ornekleme siirelerini hesaplamak i¢indir (Maity, Veeraraghavan ve Sabharwal, 2022).
CYUKSHDOM - bilgileri uzun siire hatirlayabilir ve kaybolan gradyan sorununu
¢ozebilir (Kadhuim ve Al-Janabi, 2023).

Onerilen yéntemlerin dogrulamalarina bakildiginda oldukga yiiksek basar
metrikleri sunulmustur. Her ne kadar basarilar elde edilse de sinyalin niteliginin
kaybedilmedigi, spektral oOzelliklerle desteklenen, AF etkin kullanildigi, kaybolan

gradyanlar probleminden etkilenmeyen ve en dnemlisi beynin hangi bdlgesinin epilepsi
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teshisinde belirgin oldugu yonelik calismalara ihtiyag vardir. Biz bu calismada DO temelli
MA, SA igeren EEG sinyaller analiz yontemi ile epilepsi teshisini gergeklestirdik. Sonug
olarak FP1-F7 ve CZ-PZ kanallarindan Dogruluk %85,29, Ozgiilliik %87,88, Hassasiyet
%87,88, YPO %12,12, Duyarlilik %82,86, NTD %382,86, Fl-puam1 %86,29, MKK
%70,74, YNO %17,14 ve YKO %12,12 elde edilmistir.
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SONUCLAR VE ONERILER

EEG verilerinin hacmi ve karmasiklig1 arttikga, DO algoritmalar, ele almadaki
yeteneklerini gostermeye baslar. EEG sinyallerinin kaotik dogas1 ve epileptik nobet
tahmini gibi zorlu biyomedikal uygulamalarda yeni firsatlar agar. CYUKSHDOM bu
calismada nobet tahmininde tanitildi ve epileptik nobetlerin EEG sinyallerinin analizi i¢in
ideal bir ara¢ oldugu kanitlandi. Literatiirdeki diger yontemlerin aksine kanal bazinda
analizin yapilabilecegi deneysel ¢alismalarla ortaya kondu. Bu ¢aligsma, epilepsi i¢in etkili
bir tahmin araci olarak yararliliginin ve bireyler i¢cin zamaninda miidahalesinin gii¢lii
gostergelerini sunmaktadir. Bundan sonraki ¢alismalarda uzmanlarin da destekledigi bir
veri seti olusturularak sahadaki epilepsi hastaliginin kanal bazinda tespitini saglayacak

bir model ortaya konulacaktir.

Bu yazilim sayesinde ndroloji doktorlarinin EEG sinyallerini daha kolay
yorumlayacaklardir. Bu sayede hata pay1 en aza encektir. Hastanedeki kalite artacaktir.
Epilepsi hastalar1 i¢in bu yazilim rahatsizlik verilerini anlamada yardimer olacaktir. Bu
yazdigimiz tezde 22 adet kanal bazinda deneyler gerceklestirilmistir. UKSHDOM y&ntem
ile smiflandirirken 22 deneye bakildiginda en yiiksek basari degeri birinci deneyde
alinmistir. Sonug olarak yaptigimiz siniflandirma ve analiz yontemleri gelecekte diger

veri setlerine gorede iyi bir sonug elde etmede katkida bulunacaktir.



97

KAYNAKCA

Ahmad, S. R. R., Sayeed, S. M., Ahmed, Z., Siddique, N. M., & Parvez, M. Z. (2020,
June). Prediction of epileptic seizures using support vector machine and
regularization. In 2020 IEEE Region 10 Symposium (TENSYMP) (pp. 1217-
1220). IEEE.

Alkhachroum, A., vd. (2022). Quantitative EEG-Based Seizure Estimation in Super-
Refractory Status Epilepticus. Neurocritical Care, 36(3), 897-904.

Alotaibi, G., vd. (2022). Artificial intelligence (AI) diagnostic tools: utilizing a
convolutional neural network (CNN) to assess periodontal bone level
radiographically—a retrospective study. BMC Oral Health, 22(399), 1-7.

Amin, V. S., Zhang, Y. D., & Himed, B. (2019, April). Improved instantaneous frequency
estimation of multi-component FM signals. In 2019 IEEE Radar Conference
(RadarConf) (pp. 1-6). IEEE.

Amoura, S., Gaci, S., & Bounif, M. A. (2022, October). Wavelet leader-based multifractal
analysis for characterizing subsurface heterogeneities using velocity logs.

In 2022 2nd International Conference on Advanced Electrical Engineering
(ICAEE) (pp. 1-5). IEEE.

Andronache, 1., Liritzis, I. & Jelinek, H. F. (2023). Fractal algorithms and RGB image
processing in scribal and ink identification on an 1819 secret initiation
manuscript to the “Philike Hetaereia”. Scientific Reports, 13(1735), 1-22.

Angione, K., vd. (2019). Genetic testing in a cohort of patients with potential epilepsy
with myoclonic-atonic seizures. Epilepsy research, 150, 70-77.

Ansari, A. Q., Sharma, P. ve Tripathi, M. (2020). Automatic seizure detection using
neutrosophic classifier. Physical and Engineering Sciences in Medicine, 43(3),
1019-1028.

Ansari, A. Q., Sharma, P., & Tripathi, M. (2020, December). A deep learning network
with minimal set of features for classification of ictal, interictal, and preictal

EEG states. In 2020 2nd International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN) (pp. 259-263). IEEE.

Anuragi, A., Sisodia, D. S. ve Pachori, R. B. (2021). Automated FBSE-EWT based
learning framework for detection of epileptic seizures using time-segmented
EEG signals. Computers in Biology and Medicine, 136(104708), 1-16.

Baduge, S. K., vd. (2022). Artificial intelligence and smart vision for building and
construction 4.0: Machine and deep learning methods and applications.
Automation in Construction, 141(104440), 1-26.

Balaanand, M., vd. (2019). An enhanced graph-based semi-supervised learning algorithm
to detect fake users on Twitter. The Journal of Supercomputing, 75, 6085-6105.



98

Bednaya, E., vd. (2021). Oscillatory signatures of Repetition Suppression and Novelty
Detection reveal altered induced visual responses in early deafness. Cortex, 142,
138-153.

Beleza, P., vd. (2010). Epidural and foramen-ovale electrodes in the diagnostic evaluation
of patients considered for epilepsy surgery. Epileptic disorders, 12, 48-53.

Benbadis, S. R., vd. (2020). The role of EEG in patients with suspected epilepsy. Epileptic
Disorders, 22(2), 143-155.

Beniczky, S., vd. (2022). Seizure semiology: ILAE glossary of terms and their
significance. Epileptic Disorders, 24(3), 447-495.

Bhaduri, R., vd. (2022). Extending the susceptible-exposed-infected-removed (SEIR)
model to handle the false negative rate and symptom-based administration of
COVID-19 diagnostic tests: SEIR-fansy. Statistics in Medicine, 41(13), 2317-
2337.

Bilal, M., vd. (2019). Automatic seizure detection using multi-resolution dynamic mode
decomposition. /EEE Access, 7, 61180-61194.

Biondi, A., vd. (2022). Noninvasive mobile EEG as a tool for seizure monitoring and
management: A systematic review. Epilepsia, 63(5), 1041-1063.

Boashash, B., & Ouelha, S. (2018). Designing high-resolution time—frequency and time—
scale distributions for the analysis and classification of non-stationary signals: a
tutorial review with a comparison of features performance. Digital Signal
Processing, 77, 120-152.

Brandt, C., vd. (2020). Adjunctive perampanel and myoclonic and absence seizures: post
hoc analysis of data from study 332 in patients with idiopathic generalized
epilepsy. Seizure, 80, 115-123.

Bruni, V., Tartaglione, M. ve Vitulano, D. (2020). A signal complexity-based approach
for am—fm signal modes counting. Mathematics, 8(2170), 1-33.

Carneiro, M. R., de Almeida, A. T. & Tavakoli, M. (2020). Wearable and comfortable e-
textile headband for long-term acquisition of forehead EEG signals. /[EEE
Sensors Journal, 20(24), 15107-15116.

Cartailler, J., vd. (2019). Alpha rhythm collapse predicts iso-electric suppressions during
anesthesia. Communications biology, 2(327), 1-10.

Castro-Tirado, A. J., vd. (2021). Very-high-frequency oscillations in the main peak of a
magnetar giant flare. Nature, 600(7890), 621-624.

Cavelli, M., vd. (2020). Nasal respiration entrains neocortical long-range gamma
coherence during wakefulness. European Journal of Neuroscience, 51(6), 1463-
1477.



99

Cheng, C., vd. (2021). Patient-specific method of sleep electroencephalography using
wavelet packet transform and Bi-LSTM for epileptic  seizure
prediction. Biomedical Signal Processing and Control, 70(102963), 1-13.

Ciurea, A., Manoila, C. P, Tautan, A. M., & Ionescu, B. (2020, October). Low latency
automated epileptic seizure detection: Individualized vs. Global approaches.

In 2020 International Conference on e-Health and Bioengineering (EHB) (pp.
1-4). IEEE.

Comanducci, A., vd. (2020). Clinical and advanced neurophysiology in the prognostic
and diagnostic evaluation of disorders of consciousness: review of an IFCN-
endorsed expert group. Clinical Neurophysiology, 131(11), 2736-2765.

Caglayan, H. Z. B., Ataoglu, E. E. ve Kibaroglu, S. (2018). The Assesment of Efficacy of
Traditional and Complementary Medicine Practices in Neurology. Turk Noroloji
Dergisi, 24(2), 111-116.

Catalkaya, O., vd. (2022). Epilepsi Tespitinde Giirbiiz Yerel Ortalama Ayrisim ve Ampirik
Kip Ayrisim Yontemlerinin Performans Analizi. Avrupa Bilim ve Teknoloji
Dergisi, (39), 132-137.

Dankers, F. J., vd. (2019). Prediction modeling methodology. Fundamentals of clinical
data science, 10(1007), 101-120.

Darra, F., vd. (2023). CDKL5-associated developmental and epileptic encephalopathy: a
long-term, longitudinal electroclinical study of 22 cases. Epilepsy Research,
190(107098), 1-11.

Davidson, M. L., Grabowsky, S. & Jayatilaka, D. (2022). X-ray constrained
wavefunctions based on Hirshfeld atoms. I. Method and review. Acta

Crystallographica Section B: Structural Science, Crystal Engineering and
Materials, 78(3), 312-332.

DeGiorgio, C. M., vd. (2019). Sudden unexpected death in epilepsy: Risk factors,
biomarkers, and prevention. Acta Neurologica Scandinavica, 139(3), 220-230.

Doudou, M., Bouabdallah, A. & Berge-Cherfaoui, V. (2020). Driver drowsiness
measurement technologies: Current research, market solutions, and

challenges. International Journal of Intelligent Transportation Systems
Research, 18, 297-319.

Dogan, S. (2022). Otizm spektrum bozuklugu olan bireylere sunulan saglik becerileri
ogretim paketinin etkileri (Yayimlanmis Doktora Tezi). Anadolu Universitesi,
Egitim Bilimleri Enstitiisii, Eskisehir.

Elmali, A. D., vd. (2020). How to diagnose and classify idiopathic (genetic) generalized
epilepsies. Epileptic Disorders, 22(4), 399-420.

Fan, H. C., vd. (2021). Clinical Characteristics of Mitochondrial Encephalomyopathy,
Lactic Acidosis, and Stroke-Like Episodes. Life, 11(11), 1-24.



100

Fareri, D. S., vd. (2015). Normative development of ventral striatal resting state
connectivity in humans. Neuroimage, 118, 422-437.

Fathima, T., Rahna, P., & Gaffoor, T. (2020, September). Wavelet based detection of
epileptic seizures using scalp EEG. In 2020 International Conference on

Futuristic Technologies in Control Systems & Renewable Energy (ICFCR) (pp.
1-5). IEEE.

Feng, Z., vd. (2020). Generalized adaptive mode decomposition for nonstationary signal
analysis of rotating machinery: Principle and applications. Mechanical Systems
and Signal Processing, 136(106530), 1-23.

Fitriana, L. A., vd. (2021). Differences of electroencephalography wave with eyes-closed
between older women with dementia and without dementia. Journal of
Engineering Research, 10(36909), 1-10.

Fordington, S., & Manford, M. (2020). A review of seizures and epilepsy following
traumatic brain injury. Journal of neurology, 267, 3105-3111.

Fouad, I. A. (2022). A robust and efficient EEG-based drowsiness detection system using
different machine learning algorithms. Ain Shams Engineering Journal, 14(3),
1-18.

Frohlich, S., vd. (2021). Characteristics of resting state EEG power in 80+-year-olds of
different cognitive status. Frontiers in Aging Neuroscience, 13(675689), 1-14.

Galadi, J. A., vd. (2021). Capturing the non-stationarity of whole-brain dynamics
underlying human brain states. Neuroimage, 244(118551), 1-17.

Ghembaza, F., & Djebbari, A. (2022, May). A Robust Dynamic EEG Channel Selection
using Time-Frequency Extended Renyi Entropy. In 2022 7th International

Conference on Image and Signal Processing and their Applications (ISPA) (pp.
1-8). IEEE.

Goldberger, A. L., vd. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic
signals. circulation, 101(23), €215-e220.

Gray, R. A., vd. (2020). Anticonvulsive properties of cannabidiol in a model of
generalized seizure are transient receptor potential vanilloid 1
dependent. Cannabis and Cannabinoid Research, 5(2), 145-149.

Guastavino, S., vd. (2022). Prediction of severe thunderstorm events with ensemble deep
learning and radar data. Scientific Reports, 12(20049), 1-14.

Habiger, J., & Liang, Y. (2022). Publication Policies for Replicable Research and the
Community-Wide False Discovery Rate. The American Statistician, 76(2), 131-
141.



101

Hasnaoui, L. H., & Djebbari, A. (2022, May). Epileptic Activity Prediction Within Pre—
ictal Epochs: Application on Selected Channels. In 2022 7th International

Conference on Image and Signal Processing and their Applications (ISPA) (pp.
1-6). IEEE.

He, J., vd. (2022). Spatial-temporal seizure detection with graph attention network and
bi-directional LSTM architecture. Biomedical Signal Processing and
Control, 78(103908), 1746-8094.

Hirsch, E., vd. (2022). ILAE definition of the idiopathic generalized epilepsy syndromes:
position statement by the ILAE task force on nosology and
definitions. Epilepsia, 63(6), 1475-1499.

Huguenard, J. (2019). Current controversy: spikes, bursts, and synchrony in generalized
absence epilepsy: unresolved questions regarding thalamocortical synchrony in
absence epilepsy. Epilepsy Currents, 19(2), 105-111.

Jaffard, S., Lashermes, B. & Abry, P. (2006). Wavelet leaders in multifractal
analysis. Wavelet analysis and applications, 1, 219-264.

Jayaraj, R., & Mohan, J. (2021). Classification of sleep apnea based on sub-band
decomposition of EEG signals. Diagnostics, 11(1571), 1-14.

Kadhuim, Z. A., & Al-Janabi, S. (2023). Codon-mRNA prediction using deep optimal
neurocomputing  technique = (DLSTM-DSN-WOA) and  multivariate
analysis. Results in Engineering, 17(100847), 1-18.

Kaminiow, K., Rygufa, I. & Paprocka, J. (2022). Ataxia in Neurometabolic
Disorders. Metabolites, 13(1), 1-18.

Kaziha, O., & Bonny, T. (2020, February). A convolutional neural network for seizure
detection. In 2020 Advances in Science and FEngineering Technology
International Conferences (ASET) (pp. 1-5). IEEE.

Khademi, Z., Ebrahimi, F. ve Kordy, H. M. (2022). A transfer learning-based CNN and
LSTM hybrid deep learning model to classify motor imagery EEG signals.
Computers in Biology and Medicine, 143(105288), 0010-4825.

Khalil, K., vd. (2019). Economic LSTM approach for recurrent neural networks. /EEE
Transactions on Circuits and Systems II: Express Briefs, 66(11), 1885-1889.

Khalilpour, S., vd. (2020, April). Application of 1-D CNN to predict epileptic seizures
using EEG records. In 2020 6th International Conference on Web Research
(ICWR) (pp. 314-318). IEEE.

Khan, N. A., & Ali, S. (2020). A robust and efficient instantaneous frequency estimator
of multi-component signals with intersecting time-frequency signatures. Signal
Processing, 177(107728), 1-6.



102

Lattanzi, S., vd. (2019). Antiepileptic monotherapy in newly diagnosed focal epilepsy. A
network meta-analysis. Acta Neurologica Scandinavica, 139(1), 33-41.

Lee, E., vd. (2022). Entrapment of Binaural Auditory Beats in Subjects with Symptoms
of Insomnia. Brain Sciences, 12(339), 1-11.

Li, C., vd. (2021). Seizure onset detection using empirical mode decomposition and
common spatial pattern. [EEE  Transactions on Neural Systems and
Rehabilitation Engineering, 29, 458-467.

Li, H., & Wang, J. (2022, December). Based on Wavelet Threshold Denoising-LDA and
Bilstm Aircraft Engine Life Prediction. In Journal of Physics: Conference Series.
IOP Publishing. Sweden.

Lillo, E., Mora, M. ve Lucero, B. (2022). Automated diagnosis of schizophrenia using
EEG microstates and Deep Convolutional Neural Network. Expert Systems with
Applications, 209(118236), 1-10.

Lujan, M. A., vd. (2021). A survey on eeg signal processing techniques and machine
learning: Applications to the neurofeedback of autobiographical memory deficits
in schizophrenia. Electronics, 10(23), 1-19.

Lundqvist, M., vd. (2016). Gamma and beta bursts underlie working
memory. Neuron, 90(1), 152-164.

Maity, A. K., Veeraraghavan, A. ve Sabharwal, A. (2022). PPGMotion: Model-based
detection of motion artifacts in photoplethysmography signals. Biomedical
Signal Processing and Control, 75(103632), 1-12.

Mangalathu, S., vd. (2020). Data-driven machine-learning-based seismic failure mode
identification ~ of  reinforced  concrete = shear  walls. Engineering
Structures, 208(110331), 1-10.

Maragkakis, M., vd. (2009). Accurate microRNA target prediction correlates with protein
repression levels. BMC bioinformatics, 10, 1-10.

Mercier, M. R., vd. (2022). Advances in human intracranial electroencephalography
research, guidelines and good practices. Neurolmage, 260(119438), 1-63.

Mi, Y., vd. (2022). Bubble transfer spectral entropy and its application in epilepsy EEG
analysis. Communications  in  Nonlinear  Science  and  Numerical
Simulation, 110(106294), 1-20.

Miao, J.,, & Zhu, W. (2022). Precision—recall curve (PRC) classification
trees. Evolutionary intelligence, 15(3), 1545-1569.

Mohan, N., PP, M. S., Sulthan, N., Sofiya, S., & Khan, K. A. (2018, April). Automatic
epileptic seizure prediction in scalp EEG. In 2018 International Conference on
Intelligent Circuits and Systems (ICICS) (pp. 275-280). IEEE.



103

MohanBabu, G., Anupallavi, S. & Ashokkumar, S. R. (2021). An optimized deep learning
network model for eeg based seizure classification using synchronization and

functional connectivity measures. Journal of Ambient Intelligence and
Humanized Computing, 12(7), 7139-7151.

Mutlu-Bayraktar, D., vd. (2022). Split-attention effects in multimedia learning
environments: eye-tracking and EEG analysis. Multimedia Tools and
Applications, 81(6), 8259-8282.

Ng, C. R., vd. (2022). Multi-Center Evaluation of Gel-Based and Dry Multipin EEG
Caps. Sensors, 22(8079), 1-16.

Nobili, L., vd. (2021). Standard procedures for the diagnostic pathway of sleep-related
epilepsies and comorbid sleep disorders: An EAN, ESRS and ILAE-Europe
consensus review. European journal of neurology, 28(1), 15-32.

O'Hara, B., & Guerriero, L. (2019). Meditation, sleep, and performance. OBM Integrative
and Complementary Medicine, 4(2), 1-18.

Onder, U., & Ayaz, F. (2022). Epilepsy disease and treatment approaches. Advanced
Engineering Days (AED), 5, 117-119.

Pale, S., vd. (2022). Anticonvulsant effects of Cymbopogon giganteus extracts with
possible effects on fully kindled seizures and anxiety in experimental rodent
model of mesio-temporal epilepsy induced by pilocarpine. Journal of
Ethnopharmacology, 286(114863), 1-9.

Patel, P., & Annavarapu, R. N. (2021). EEG-based human emotion recognition using
entropy as a feature extraction measure. Brain informatics, 8(20), 1-13.

Patel, S., vd. (2021). The long-term efficacy of cannabidiol in the treatment of refractory
epilepsy. Epilepsia, 62(7), 1594-1603.

Pavlova, O. N., Guyo, G. A. ve Pavlov, A. N. (2022). Multifractal formalism combined
with multiresolution wavelet analysis of physiological signals. The European
Physical Journal Special Topics, 1-5.

Pourmotabbed, H., Wheless, J. W. & Babajani-Feremi, A. (2020). Lateralization of
epilepsy using intra-hemispheric brain networks based on resting-state MEG
data. Human Brain Mapping, 41(11), 2964-2979.

Qin, Y., vd. (2020, July). Patient-specific seizure prediction with scalp EEG using
convolutional neural network and extreme learning machine. In 2020 39th
Chinese Control Conference (CCC) (pp. 7622-7625). IEEE.

Raghu, S., vd. (2019). Performance evaluation of DWT based sigmoid entropy in time
and frequency domains for automated detection of epileptic seizures using SVM
classifier. Computers in biology and medicine, 110, 127-143.



104

Rahmani, F., & Fattahi, M. H. (2022). Exploring the association between anomalies and
multifractality variations in river flow time series. Hydrological Sciences
Journal, 67(7), 1084-1095.

Rath, P., vd. (2022). A Tuned Whale Optimization-Based Stacked-LSTM Network for
Digital Image Segmentation. Arabian Journal for Science and Engineering, 48,
1735-1756.

Reinhart, R. M., & Nguyen, J. A. (2019). Working memory revived in older adults by
synchronizing rhythmic brain circuits. Nature neuroscience, 22(5), 820-827.

Rupom, A. 1., & Patwary, A. B. (2019, February). P300 speller based ALS detection using
daubechies wavelet transform in electroencephalograph. In 2019 International

Conference on Electrical, Computer and Communication Engineering
(ECCE) (pp. 1-5). IEEE.

Ryu, S., & Joe, 1. (2021). A Hybrid DenseNet-LSTM model for epileptic seizure
prediction. Applied Sciences, 11(16), 1-13.

Saedi, S., vd. (2022). Applications of electroencephalography in
construction. Automation in Construction, 133(103985), 1-15.

Saidi, A., Othman, S. B. & Saoud, S. B. (2021, July). A novel epileptic seizure detection
system using scalp EEG signals based on hybrid CNN-SVM classifier. In 2021
IEEE Symposium on Industrial Electronics & Applications (ISIEA) (pp. 1-6).
IEEE.

Salpekar, J. A., & Mula, M. (2019). Common psychiatric comorbidities in epilepsy: How
big of a problem is it?. Epilepsy & behavior, 98, 293-297.

Salvatierra, N., Sakanishi, R. & Flores, C. (2020, October). Epileptic Seizure prediction
from scalp EEG using ratios of spectral power. In 2020 IEEE Engineering
International Research Conference (EIRCON) (pp. 1-4). IEEE.

San-Segundo, R., vd. (2019). Classification of epileptic EEG recordings using signal
transforms and convolutional neural networks. Computers in biology and
medicine, 109, 148-158.

Sarudiansky, M., vd. (2021). Patients’ Explanatory Models about drug-resistant epilepsy
in Argentina. A thematic analysis. Seizure, 91, 409-416.

Schiissler, S. C., vd. (2022). Long-term outcomes of very-low-birth-weight and low-birth-
weight preterm newborns with neonatal seizures: A single-center perspective.
European Journal of Paediatric Neurology, 36, 137-142.

Sengupta, S., & Lande, B. K. (2020). An approach to PAPR reduction in OFDM using
Goppa codes. Procedia Computer Science, 167, 1268-1280.



105

Shahbazi, M., & Aghajan, H. (2018, November). A generalizable model for seizure
prediction based on deep learning using CNN-LSTM architecture. In 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP) (pp. 469-
473). IEEE.

Shakeshaft, A., vd. (2021). Trait impulsivity in juvenile myoclonic epilepsy. Annals of
clinical and translational neurology, 8(1), 138-152.

Shariat, A., vd. (2021). Automatic detection of epileptic seizures using Riemannian
geometry from scalp EEG recordings. Medical & Biological Engineering &
Computing, 59, 1431-1445.

Shen, M., vd. (2022). An EEG based real-time epilepsy seizure detection approach using
discrete wavelet transform and machine learning methods. Biomedical Signal
Processing and Control, 77(103820), 1-8.

Shi, J., vd. (2022). Instantaneous frequency synchronized generalized stepwise
demodulation transform for bearing fault diagnosis. /[EEE Transactions on
Instrumentation and Measurement, 71, 1-15.

Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection
and treatment (Published PhD Thesis). MIT University, Massachusetts Institute
Of Technology, Cambridge.

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019, December). The performance of
LSTM and BiLSTM in forecasting time series. In 2019 IEEE International
Conference on Big Data (Big Data) (pp. 3285-3292). IEEE.

Singh, K., & Malhotra, J. (2021). Deep learning based smart health monitoring for
automated prediction of epileptic seizures using spectral analysis of scalp
EEG. Physical and Engineering Sciences in Medicine, 44(4), 1161-1173.

Sisodiya, S. M., vd. (2022). The ENIGMA-Epilepsy working group: Mapping disease
from large data sets. Human brain mapping, 43(1), 113-128.

Siuly, S., vd. (2020). A new framework for automatic detection of patients with mild
cognitive impairment using resting-state EEG signals. [EEE Transactions on
Neural Systems and Rehabilitation Engineering, 28(9), 1966-1976.

Smagulova, K., & James, A. P. (2019). A survey on LSTM memristive neural network
architectures and applications. The European Physical Journal Special
Topics, 228(10), 2313-2324.

Snipes, S., vd. (2022). The theta paradox: 4-8 Hz EEG oscillations reflect both sleep
pressure and cognitive control. Journal of Neuroscience, 42(45), 8569-8586.

Sopic, D., Aminifar, A., & Atienza, D. (2018, May). e-glass: A wearable system for real-
time detection of epileptic seizures. In 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (pp. 1-5). IEEE.



106

Specchio, N., vd. (2022). International League Against Epilepsy classification and
definition of epilepsy syndromes with onset in childhood: Position paper by the
ILAE Task Force on Nosology and Definitions. Epilepsia, 63(6), 1398-1442.

Stancin, 1., Cifrek, M. & Jovic, A. (2021). A review of EEG signal features and their
application in driver drowsiness detection systems. Sensors, 21(3786), 1-29.

Steele, A. G., vd. (2021). A Mixed Filtering Approach for Real-Time Seizure State
Tracking Using  Multi-Channel  Electroencephalography  Data. I[EEE

Transactions on Neural Systems and Rehabilitation Engineering, 29, 2037-
2045.

Stevenson, N. J., vd. (2019). A dataset of neonatal EEG recordings with seizure
annotations. Scientific data, 6(1), 1-8.

Straub, K. M., vd. (2020). Buffered, incomplete, and shredded: The challenges of reading
an imperfect stratigraphic record. Journal of Geophysical Research: Earth
Surface, 125(3), 1-44.

Tallon-Ballesteros, A. J. (2022, January). An Effective Deep Neural Network Architecture
for Cross-Subject Epileptic Seizure Detection in EEG Data. In Proceedings of
CECNet 2021: The 11th International Conference on Electronics,
Communications and Networks (CECNet), November 18-21, 2021. IOS Press.
Canada.

Tang, L., vd. (2018, October). Automatic Artifact Reduction Based on MEMD-for
Seizure Prediction. In 2018 IEEE Biomedical Circuits and Systems Conference
(BioCAS) (pp. 1-4). IEEE.

Taquet, M., vd. (2022). Neurological and psychiatric risk trajectories after SARS-CoV-2
infection: an analysis of 2-year retrospective cohort studies including 1 284 437
patients. The Lancet Psychiatry, 9(10), 815-827.

Thijs, R. D., vd. (2019). Epilepsy in adults. The Lancet, 393(10172), 689-701.

Tiwari, S., vd. (2023). A smart decision support system to diagnose arrhythymia using
ensembled ConvNet and ConvNet-LSTM model. Expert Systems with
Applications, 213(118933), 1-13.

Todd, N. P., Govender, S. ve Colebatch, J. G. (2018). The human electrocerebellogram
(ECeG) recorded non-invasively wusing scalp electrodes. Neuroscience
letters, 682, 124-131.

TomaSev, N., vd. (2019). A clinically applicable approach to continuous prediction of
future acute kidney injury. Nature, 572(7767), 116-119.

Tosun, M., & Cetin, O. (2022). A new phase-based feature extraction method for four-
class motor imagery classification. Signal, Image and Video Processing, 16,283-
290.



107

Tosun, M., vd. (2018). EEG verileri kullanilarak fiziksel el hareketleri ve bu hareketlerin
hayalinin yapay sinir aglar1 ile siniflandirilmasi. Sakarya University Journal of
Computer and Information Sciences, 1(2), 1-9.

Tsiouris, K. M., vd. (2018). A long short-term memory deep learning network for the
prediction of epileptic seizures using EEG signals. Computers in biology and
medicine, 99, 24-37.

Tuncer, E., & Bolat, E. D. (2022). Classification of epileptic seizures from
electroencephalogram (EEG) data using bidirectional short-term memory (Bi-
LSTM) network architecture. Biomedical — Signal  Processing  and
Control, 73(103462), 1-10.

Uys, P. 1. (2019). Image classification from EEG Brain Signals using machine learning
and deep learning techniques (Yayimlanmigs Doktora Tezi). Stellenbosch
Universitesi, Miihendislik Fakiiltesi, Stellenbosch.

Varanis, M., vd. (2021). A tutorial review on time-frequency analysis of non-stationary
vibration signals with nonlinear dynamics applications. Brazilian Journal of
Physics, 51, 859-877.

Villarreal-Hernandez, C. A., vd. (2020). Discrete-time modeling and control of double
dual boost converters with implicit current ripple cancellation over a wide
operating range. [EEE Transactions on Industrial Electronics, 68(7), 5966-
5977.

Vrankovié, A., Lerga, J. & Saulig, N. (2020). A novel approach to extracting useful
information from noisy TFDs using 2D local entropy measures. EURASIP
Journal on Advances in Signal Processing, 2020, 1-19.

Wang, X., vd. (2021). One dimensional convolutional neural networks for seizure onset
detection using long-term scalp and intracranial EEG. Neurocomputing, 459,
212-222.

Wang, Z., Yang, J. & Sawan, M. (2021, June). A novel multi-scale dilated 3D CNN for
epileptic seizure prediction. In 2021 IEEE 3rd International Conference on
Artificial Intelligence Circuits and Systems (AICAS) (pp. 1-4). IEEE.

Wendt, H., & Abry, P. (2007). Multifractality tests using bootstrapped wavelet
leaders. IEEE Transactions on Signal Processing, 55(10), 4811-4820.

Xin, Y., Hao, H. ve Li, J. (2019). Time-varying system identification by enhanced
empirical wavelet transform based on synchroextracting transform. Engineering
Structures, 196(109313), 1-13.

Xiong, Z., vd. (2021). A study on seizure detection of EEG signals represented in
2D. Sensors, 21(15), 1-22.



108

Xu, Y., Yang, J., Zhao, S., Wu, H., & Sawan, M. (2020, August). An end-to-end deep
learning approach for epileptic seizure prediction. In 2020 2nd IEEE

International Conference on Artificial Intelligence Circuits and Systems
(AICAS) (pp. 266-270). IEEE.

Yaakub, S. N., vd. (2020). Heritability of alpha and sensorimotor network changes in
temporal lobe epilepsy. Annals of clinical and translational neurology, 7(5),
667-676.

Yang, X., vd. (2021). An effective dual self-attention residual network for seizure
prediction. [EEE  Transactions on Neural Systems and Rehabilitation
Engineering, 29, 1604-1613.

Yildirim, N., & Varol, A. (2016). Warning System for Drivers according to Attention and
Meditation Status Using Brain Computer Interface. International Journal of
Advances in Electronics and Computer Science, 3(9), 49-53.

Yiu, C. Y., vd. (2022). Towards safe and collaborative aerodrome operations: assessing
shared situational awareness for adverse weather detection with EEG-enabled
Bayesian neural networks. Advanced Engineering Informatics, 53(101698), 1-
19.

Yulug, B., Ozsimsek, A. & Oktem, E. O. (2022). Investigation of the Antiepileptics on
Levels of Vitamin D and Calcium. Acta Medica Alanya, 6(2), 167-172.

Zhang, X., & Li, H. (2022, March). Patient-specific seizure prediction from scalp EEG
using vision transformer. In 2022 I[EEE 6th Information Technology and
Mechatronics Engineering Conference (ITOEC) (Vol. 6, pp. 1663-1667). IEEE.

Zhang, Y., vd. (2019). Epilepsy seizure prediction on EEG using common spatial pattern
and convolutional neural network. I[EEE Journal of Biomedical and Health
Informatics, 24(2), 465-474.

Zhang, Y., vd. (2022). Epileptic Seizure Detection Based on Bidirectional Gated
Recurrent Unit Network. [EEE Transactions on Neural Systems and
Rehabilitation Engineering, 30, 135-145.

Zhao, S., vd. (2020, October). Binary single-dimensional convolutional neural network
for seizure prediction. In 2020 IEEE International Symposium on Circuits and
Systems (ISCAS) (pp. 1-5). IEEE.

Zhao, Y., vd. (2021). EEG-Based Seizure detection using linear graph convolution
network with focal loss. Computer Methods and Programs in
Biomedicine, 208(106277), 0169-2607.

Zheng, H., vd. (2020, August). Automatic Seizure Prediction from Scalp EEG with
Optimal Feature and Minimum Channels. In 2020 Chinese Control And
Decision Conference (CCDC) (pp. 4351-4355). IEEE.



109

Zhou, W., vd. (2022). Empirical Fourier decomposition: An accurate signal
decomposition method for nonlinear and non-stationary time series
analysis. Mechanical Systems and Signal Processing, 163(108155), 1-22.

Zou, L., Liu, X., Jiang, A., & Zhousp, X. (2018, November). Epileptic seizure detection
using deep convolutional network. In 2018 IEEE 23rd International Conference
on Digital Signal Processing (DSP) (pp. 1-4). IEEE.



110
DIiZIN

-A-

AF, xvi, 2, 25, 41, 42, 43, 95

_C_

CYUKSHDOM, xv, xvi, 2, 8, 16, 26, 47,
54, 55,57, 59, 60, 62, 64, 65, 67, 69, 71,
72,74, 76, 77, 79, 81, 82, 84, 86, 87, 89,
91,93, 94, 95, 96

-E-

EEG, v, vi, xi, xiv, xv, xvi, 1, 2,4, 5,6, 7,
8,9,10, 11, 12, 13, 14, 15, 18, 19, 20,
21,22,23,25, 26,29, 30, 31, 32, 35, 36,
37,38, 39,40,41,42,43, 45, 46, 53, 54,
55,56,57,59, 60,61, 62,64, 65, 66, 67,
68,69,70,71,72,73,74,75,76,77,78,
79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 93,
95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111

Epilepsi, v, ix, xiv, 1, 2, 7, 11, 18, 19, 22,
36, 93, 96, 97, 101

M-
MA, xiv, xvi, 2, 4, 25, 34, 95

_S-
SE, xv, xvii, 2, 25, 43, 44, 45, 46, 95



