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ÖZET 

MULTİFRAKTAL, SPEKTRAL ANALİZ VE UZUN-KISA SÜRELİ HAFIZA 

DERİN ÖĞRENME MODELİ KULLANILARAK EEG SİNYALLERİNDEN 

KANAL BAZINDA EPİLEPTİK NÖBET TESPİTİ 
 

MUSTAFAYEV, Karim 

Yüksek Lisans Tezi, İleri Teknolojiler Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Ömer KASIM 

Ocak, 2023, 110 sayfa 

 

Beyindeki elektriksel aktivitesinin düzensiz seviyede boşalması önemli bir 

rahatsızlıktır. Epilepsi olarak bilinen bu rahatsızlık uzmanlarca Elektroensefalografi 

sinyalleri incelenerek teşhis edilir. Uzmanların yoğun çalışması ve uzun 

Elektroensefalografi çekimlerinde nöbetlerin tespitinin yapay zekâ ile desteklenmesi 

önemlidir. Bu amaç doğrultusunda, bu çalışmada önerilen yapay zekâ modeli ile CHB-

MIT Scalp veri setindeki elektroensefalografi sinyalleri analiz edilerek normal ve 

epileptik veriler olarak sınıflandırılmıştır. Analiz için 22 kanaldan kaydedilen ve 10 

saniyelik segmentlere ayrılan elektroensefalografi sinyallerine Multifraktal Analiz, Anlık 

Frekans ve Spektral Entropi yöntemleri uygulanmıştır. Analiz yöntemleri ile 162 

bileşenden oluşan özellik vektörü elde edilmiştir. 175 adet normal etiketli ve 172 adet 

epileptik nöbet elektroensefalografi kayıtlarına ait özellik vektörleri çalışmanın veri seti 

oluşturulmuştur. Sonrasında çalışmadaki yapay zekâ yönteminin eğitimi için veri seti, 

%80 eğitim ve %20 doğrulama olarak ikiye ayrılmıştır. Eğitim için ayrılan 278 veri ile 

Çift Yönlü Uzun-Kısa Süreli Hafıza Derin Öğrenme Modeli eğitilmiştir. Kalan 69 veri ile 

de derin öğrenme modeli doğrulanmıştır. Doğrulama sonucu kanal bazında en yüksek 

başarı metrikleri Fp1-F7 ve CZ-PZ kanallarından elde edilmiştir. Bu kanallardaki başarı 

metrikleri sırası ile Doğruluk %85,29, Özgüllük %87,88, Hassasiyet %87,88, Yanlış 

Pozitif Oranı %12,12, Duyarlılık %82,86, Negatif Tahmin Değeri %82,86, F1-puanı 

%85,29, Mathews Korelasyon Katsayısı %70,74, Yanlış Negatif Oranı %17,14 ve Yanlış 

Keşif Oranı %12,12 hesaplanmıştır. Bu sonuç önerilen yöntemin kanal bazında epileptik 

nöbetleri tespit edebildiğini gösterir. Sonuç olarak, geliştirilen yapay zekâ yöntemi bu 

alanda çalışan uzmanları asiste edebilecek niteliktedir. 

 

Anahtar Kelimeler:  Epileptik Nöbet Tespiti, EEG Sinyal İşleme, Multifraktal Analiz, 

Spektral Analiz, Uzun-Kısa Süreli Hafıza Derin Öğrenme Modeliyle Sınıflandırma. 



vi 

 

ABSTRACT 

EPİLEPTİC SEİZURE DETECTİON FROM EEG SİGNALS ON THE BASİS OF 

CHANNELS USİNG MULTİFRACTAL, SPECTRAL ANALYSİS AND LONG-

SHORT-TERM MEMORY DEEP LEARNİNG MODEL 

MUSTAFAYEV, Karim 

Master Thesis, Department of Advantages Technologies  

Thesis Advisor: Assoc. Dr. Ömer KASIM 

January, 2023, 110 pages 

 

Irregular discharge of electrical activity in the brain is an important disorder. This 

disorder, known as epilepsy, is diagnosed by experts by examining 

electroencephalography signals. It is important to support the detection of seizures with 

artificial intelligence in the intensive work of experts and long electroencephalography 

shots. For this purpose, the artificial intelligence model proposed in this study and the 

electroencephalography signals in the CHB-MIT Scalp data set were analyzed and normal 

and epileptic data were classified. Multifractal, Instantaneous frequency and Spectral 

entropy methods were applied to electroencephalography signals recorded from 22 

channels and divided into 10-second segments for analysis. With the analysis methods, a 

feature vector consisting of 162 components was obtained. The feature vectors of 175 

normal labeled and 172 epileptic seizure electroencephalography recordings were created 

for the study. Afterwards, the dataset of the study was divided into two as 80% for training 

and 20% for validation. Long-short-term memory deep learning model was trained with 

278 data allocated for training. The deep learning model was validated with the remaining 

69 data. As a result of the validation, the highest success metrics on channel basis were 

obtained in the Fp1-F7 and CZ-PZ channels. The success metrics in these channels are 

Accuracy 85.29%, Originality 87.88%, Sensitivity 82.86%, False Positive Rate 12.12%, 

Sensitivity 82.86%, Negative Prediction Value 82.86%, F1-score 85%, respectively. .29, 

Matthews Correlation Coefficient 70.74%, False Negative Rate 17.14% and False 

Discovery Rate 12.12%. These results show that the proposed method can detect epileptic 

seizures on a channel basis. As a result, the developed artificial intelligence method is 

capable of assisting experts working in this field. 

 

Keywords: Epileptic Seizure Detection, EEG Signal Processing, Multifractal 

Analysis, Spectral Analysis, Long-Short-Term Memory Classification with Deep 

Learning Model. 
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TEZ METNİ 



1 

GİRİŞ 

Epilepsi, beyinde düzensiz seviyede elektriksel aktivitesinin boşalmasına verilen 

kronik geçici olmayan bir hastalıktır (Sisodiya, vd., 2022). Yapılan araştırmalarda 

Epilepsi, beyin hastalıkları arasında dünyada en fazla rastlanan üçününcü hastalıktır 

(Thijs, vd., 2019). Şu anda dünya çapında yaklaşık 50 milyon insanda epilepsi rahatsızlığı 

bulunmaktadır (Pale, vd., 2022). Yapılan araştırmalar, 15 yaşın altındaki çocuklar ve 65 

yaşın üzerindeki kişilerin epilepsi rahatsızlığını geçirmelerinin daha riskli olduğunu 

ortaya koymuştur (Taquet, vd., 2022).  

Uzmanlar, epilepsi rahatsızlığını belirlemek için elektroensefalografi (EEG) 

tekniğini kullanırlar (Alkhachroum, vd., 2022). EEG kullanılarak uzmanlar hastalığın 3 

aşamasını sinyaller üzerinden etiketlerler (Lillo, Mora ve Lucero, 2022). Bunlar sırası ile 

nöbet öncesi, nöbet anında ve nöbet sonrasıdır (Schüssler, vd., 2022). Ham sinyallerden 

nöbet anının gözlemlenmesi zordur (Xiong, vd., 2021). Farklı bozucu etmenler ve 

uzmanların analiz anında yoğun olması gibi durumlar nöbet anının belirlenmesini etkiler 

(Saedi, vd., 2022). Ayrıca EEG sinyal kalitesi, vücut hareketi, elektrot hareketleri, normal 

kas aktivitesi, elektromanyetik girişim gibi artefaktlar beynin elektriksel aktivitesinin 

daha düşük uzaysal ayrıklığı açısından problemler bulunmaktadır (Mercier, vd., 2022). 

Bu nedenle, günlük hasta izleme ve nöbet uyarısı oluşturma için kafa derisi EEG kayıtları, 

intrakraniyal elektrotlara kıyasla uygulanabilirlik ve kullanım kolaylığı açısından daha 

yüksek potansiyele sahiptir (Biondi, vd., 2022). 

Yapay zekâ yöntemleri, yüksek karmaşıklığa sahip EEG sinyallerindeki nöbet 

anının belirlenmesine yenilik getirdi (Comanducci, vd., 2020). Ayrıca, EEG 

sinyallerindeki gizli özellikleri elde etmede ve spektral özelliklerin sunulmasına katkı 

sağlar (Yiu, vd., 2022). Son birkaç yıla kadar, geleneksel makine öğrenme teknikleri EEG 

analizinde tek geçerli seçenekti (Fouad, 2022). Ancak Derin Öğrenme (DÖ) 

yöntemlerinin kullanılmaya başlaması ile efektif ve gürbüz çözümleri mümkün hale 

getirdi (Baduge, vd., 2022). Nöbet tahmininde, Evrişimli Sinir Ağları (ESA) ve Uzun-

Kısa Süreli Hafıza Derin Öğrenme Modeli (UKSHDÖM) ağırlıklı olarak araştırmacıların 

ilgisini çekmiştir (Tuncer ve Bolat, 2022). UKSHDÖM, kaybolan gradyan problemini ele 

almak ve algoritmanın hangi bilgilerin hafızasında tutulması gerektiğini ve nelerin 

kaldırılması gerektiğini daha kesin olarak kontrol etmesine izin vermek için kapılar dahil 

edilmiştir (Rath, vd., 2022). EEG sinyaller esasen oldukça dinamik, doğrusal olmayan 

zaman serisi verileri olduğu göz önüne alındığında UKSHDÖM tasarım gereği, duygu 
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tanıma, karışıklık tahmini ve karar verme gibi çeşitli uygulamalarda bildirildiği gibi farklı 

durumlar sırasında beyin aktivitesinin zamansal özelliklerini izole etmede ESA’ya göre 

avantaja sahiptir (Khademi, Ebrahimi ve Kordy, 2022).  

Her ne kadar epilepsi teşhisi EEG sinyalleri kullanarak yapılsa da farklı 

elektrotların doğruluğa etkisi araştırılmamıştır. Bu çalışmanın hipotezi EEG 

çekimlerindeki farklı kanallardan hangisinin epilepsi teşhisine ne kadarlık katkı 

sağladığıdır. Dahası DÖ yöntemlerinden UKSHDÖM ile yapılan akademik çalışmalarda 

yüksek başarıların elde edilmesi bizi motive etti. Bu çalışmanın amacı DÖ yöntemleri ile 

uygun özellik setinin oluşturulması yardımı ile 22 kanallı EEG cihazı ile kaydedilen 

epilepsi hastalarına ait verilerden hangi kanalın teşhiste önemli olduğunun 

belirlenmesidir. Bu çalışmanın hedefleri ise CHB-MIT Scalp veri setindeki EEG verileri 

10 saniyelik dilimler halinde organize ederek epilepsi nöbet anı ve normal durumdaki 

etiketlenen şeklinde organize edilir. Sonrasında Multifraktal Analiz (MA), Anlık Frekans 

(AF), Spektral Entropi (SE) yöntemleri ile özellik seti oluşturulur. ÇYUKSHDÖM ile 

sınıflandırmadan sonra Doğruluk, Özgüllük, Hassasiyet, Duyarlılık, Yanlış Pozitif Oranı 

(YPO), Negatif Tahmin Değeri (NTD), F1-puanı, Mathews Korelasyon Katsayısı (MKK), 

Yanlış Negatif Oranı (YNO) ve Yanlış Keşif Oranı (YKO) istatistiksel yöntemleri ile 

doğrulanır. Bu çalışmanın katkıları şöyle sıralanabilir. 

1. Epilepsi teşhisinde 22 kanalın etkisi gözlemlenmiştir. En yüksek doğruluk başarı 

metriği ön lobdaki Fp1-F7 ve CZ-PZ kanallarından elde edilmiştir.  

2. Spektral Analiz (SA) ile frekans uzayındaki durağan olmayan sinyallerin 

özelliklerinin analizi ile EEG sinyalindeki düzensizlikler ölçülebilir hale 

gelmektedir. Bu çoğunlukla ölçeklendirme üslerini ölçmekten oluşan MA, çoğu 

ampirik veri analizinde pratik olarak etkilidir ve sonlu uzunluğa sahip tek bir veri 

gözlemine bu çalışmada uygulanmıştır.  

3. Önerilen yöntemde kaybolan gradyanlar etkilenmeyen ÇYUKSHDÖM 

kullanılması kaybolan gradyanlar probleminin çözümüne katkı sağlamıştır. 
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BİRİNCİ BÖLÜM 

LİTERATÜR ÇALIŞMALARI 
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1.1. LİTERATÜR 

Literatüre bakıldığında epileptik nöbetleri EEG sinyallerinden tespit etmek için 

farklı yöntemler kullanılmıştır. Bu yöntemler genelde özellik çıkarımı, sınıflandırma ve 

sinyal işleme üzerinde yoğunlaşılmıştır. Bizde bu çalışmamızda MA, SA yöntemleri ile 

özellik çıkarılmıştır. Ayrıca UKSHDÖM ile sınıflandırılmıştır.  

Wang vd. (2021), epileptik EEG sinyalini nöbet öncesini ayarlamak için Rastgele 

Seçim ve Veri Artırma (RS-VA) stratejisi ile birleştirilmiş yığınlanmış tek boyutlu 

evrişimsel sinir ağı (1B-ESA) modelini kullanmışlardır. EEG sinyalleri bu çalışmada ilk 

önce 2 saniyelik pencere ile bölütlenmiştir. Daha sonra, 2-saniyelik EEG sinyal dilimleri 

interiktal ve iktal olarak 1B-ESA modeli ile sınıflandırılmıştır. RS-VA metodu 

kullanılarak, model eğitimi zamanında örnek dağınıklığı problemi çözülmüştür. Sonuçta, 

önerilen yaklaşımın performanslarını değerlendirmek için segment bazlı ve olay bazlı 

seviyeleri kullanılmıştır. Bu çalışma CHB-MIT Stereo Elektroensefalografi (sEEG) veri 

seti ve SWEC-ETHZ İntrakraniyal Elektroensefalografi (iEEG) veri setleri ile beraber 

test edilmiştir. CHB-MIT sEEG veri seti için Duyarlılık %88,14, Özgüllük %99,62 ve 

Doğruluk %99,54 elde edilmiştir. Olaya dayalı seviye açısından bakıldığında, Hassasiyet 

%99,31, (YPO) 0,2/saat ve ortalama 8,1 sn gecikme görülmüştür. SWEC-ETHZ iEEG 

veri seti için Duyarlılık %90,09, Özgüllük %99,81 ve Doğruluk %99,73 hesaplanmıştır. 

Olaya dayalı düzeyde ise Duyarlılık %97,52, YPO 0,07/saat ve ortalama 13,2sn gecikme 

elde edilmiştir. Bu sonuçlardan, epileptik nöbetleri hem sEEG hem de iEEG verilerinden 

tespit edilebildiği çalışmada gösterilmiştir. 

Zhang ve Li (2022), CHB-MIT Scalp veri setinden faydalanmışlardır. Görüntü 

Dönüşümü (GD) kullanılarak özel bir nöbet tahmin modeli çalışmıştır. Öncelikle, CHB-

MIT Scalp veri seti için her hastanın EEG sinyali filtrelenmiştir ve preiktal ve interiktal 

bölütlemeler etiketlenmiştir. Daha sonra işlenen EEG sinyali Kısa Süreli Fourier 

Dönüşümü (KSFD) aracılığıyla İki Boyutlu Spektrogramlara (İBS) dönüştürülmüştür. 

Son olarak, işlenmiş İBS, belirli epileptik EEG sinyallerinin özellik çıkarma ve 

sınıflandırma tahminini tamamlamak için GD modelini kullanılmıştır. Sonuçlar, GD 

kullanılarak epilepsi hastalarından en iyi performansa Chb21 ile etiketli hasta sahip 

olmuştur. Bu veri setinin metrik değerleri: Doğruluk %94,6, Duyarlılık %98,6, Özgüllük 

%89,8, Hassasiyet %90,5 ve Eğri Altındaki Alan Değeri (EAAD) 0,989 olarak elde 

edilmiştir. 
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Saidi, Othman ve Saoud (2021), yaptıkları çalışmada CHB-MIT Scalp veri setini 

kullanmışlardır. Bu veri setini ESA ve ESA-Destek Vektör Makinesi (DVM) 

yöntemlerine göre sınıflandırılmıştır. CHB-MIT Scalp veri setinin ESA sınıflandırma 

yöntemine göre birinci hastada %100, ikinci hastada %91,9, beşinci hastada %91,87, on 

dokuzuncu hastada %99,9, yirminci hastada %97,24, yirmi birinci hastada %93,68 ve 

yirmi üçüncü hastada %100 Doğruluk elde edilmiştir. CHB-MIT Scalp veri setinin ESA-

DVM sınıflandırma yöntemine göre ise birinci hastada %95, ikinci hastada %94, beşinci 

hastada %94, on dokuzuncu hastada %99, yirminci hastada %100, yirmin birinci hastada 

%96 ve yirmi üçüncü hastada %100 Doğruluk elde edilmiştir. Sonuç olarak, ESA-DVM 

sınıflandırma yönteminin doğruluğu, ESA sınıflandırma yönteminin doğruluğundan daha 

iyi başarı değerine ulaşmıştır. 

Salvatierra vd. (2020), yaptıkları çalışmada CHB-MIT Scalp veri setini 

kullanmışlardır. Yazarlar, epileptik hastalarda nöbetleri kestirmek için EEG sinyalleri 

üzerinde Mutlak Spektral Güç (MSG) ve Spektral Güç Oranı (SGO) ile özellik 

çıkarmışlardır ve Doğruluk %100 elde etmişlerdir. Sonuç olarak, bir nöbet tahmin 

algoritmasıyla karşılaştırılmıştır ve böylece elde edilen sonuç değerleri onu düşük bir 

hesaplama maliyetiyle eşleştirilmiştir. 

Hasnaoui ve Djebbari (2022), yaptıkları çalışmada CHB-MIT Scalp veri setini 

kullanmışlardır. Bu veri setindeki çok sayıda kanal arasındaki yararlı kanalları ayrıştırmak 

için Ayrık Dalgacık Dönüşümü (ADD) ve bir k-En Yakın Komşu (KEYK) sınıflandırıcı 

ile bir sistem oluşturulmuştur. İktal öncesi ve normal sinyalleri 5 seviyeli bir ADD ile 

ayrıştırılmıştır ve ardından bunları seçilen temel özellikleri kullanarak sınıflandırılmıştır. 

Bu yöntemleri kullanıb metrik değerleri Doğruluk %98,27, Duyarlılık %100 ve Özgüllük 

%96,66 elde edilmiştir. Geliştirilen teknikte yazarlar, gelişmiş hesaplama süresi ve tatmin 

edici sonuçlarla EEG verilerini işleyerek epilepsiyi verimli bir şekilde tahmin 

edebilmişlerdir.  

Fathima, Rahna ve Gaffoor (2020), yılında yaptıkları çalışmada nöbet tespiti için 

CHB-MIT Scalp kullanmışlardır. Nöbetlerin tespiti için Dalgacık Dönüşümü tabanlı 

öznitelikler kullanılmıştır. Sekiz özellik yani: Standart Sapma, Ortalama Mutlak Sapma, 

Kök Ortalama Kare Değeri, Minimum, Çeyrekler Arası Menzil, Çarpıklık, Entropi ve 

Maksimum Dalgacık Katsayıları üzerinden çıkarılmıştır. Özelliklerin sıralaması, T-Testi 

Sınıf Ayrılabilirlik Kriteri kullanılarak yapılmıştır. Sınıflandırma, en önemli altı özellik 

kullanılarak DVM sınıflandırıcısı kullanılarak yapılmıştır ve Özgüllük %100, Duyarlılık 
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%97,2 ve Doğruluk %98,6 elde edilmiştir. Sonuçlar, ilgili çalışmalara göre bir gelişme 

göstermektedir. 

Yang vd. (2021), yaptıkları çalışmada çok kanallı EEG sinyallerinden elde edilen 

verilerin Zaman-Frekans Korelasyonunu (ZFK) keşfederek belirli hastalarda nöbetleri 

tahmin etmek için genel bir yöntem geliştirmeyi amaçlamışlardır. Orijinal EEG sinyalleri, 

EEG sinyallerine KSFD uygulayarak Zaman-Frekans (ZF) özelliklerini temsil eden 

spektrogramlara çevrilmiştir. İlk kez, performansı daha iyi tahmin etmek için kanal 

eşlemeleri arasındaki karşılıklı bağımlılığı araştıran bir kanal dikkat modülü ile yerel 

özellikleri küresel özelliklerle bütünleştiren bir spektrum dikkat modülünü birleştiren 

İkili Bir Öz-Dikkat Artık Ağı (İBÖDAA) önerilmiştir. Önerilen yaklaşım, CHB-MIT 

Scalp EEG veri setinden 13 hastada Hassasiyet %89,33, Özgüllük %93,02, EAAD 

%91,26 ve Doğruluk %92,07 elde edilmiştir. Yapılan deneyler sonucunda, farklı EEG 

sinyali tahmin segment uzunluklarının, tahmin performansını etkileyen önemli bir faktör 

olduğunu göstermiştir. Önerilen yöntem yarışımcı ve hastaya özel mühendislik olmadan 

iyi sağlamlık sağlamıştır. 

Qin vd. (2020), yaptıkları çalışmada CHB-MIT Scalp veri setini kullanarak 

nöbetleri tahmin etmek için ESA ve Aşırı Öğrenme Makinesinden (AÖM) oluşan karma 

bir model önermişlerdir. CHB-MIT Scalp veri setini KSFD yöntemi ile özellik 

çıkarmışlardır ve ESA-ELM yöntemi ile de sınıflandırmışlardır. Yazarlar deneysel 

sonuçlarda Duyarlılık %95,85, YPO 0.045/saat elde etmişlerdir. İlk olarak, KSFD 

kullanarak 30 saniyelik pencerelerdeki EEG zaman serilerini 2B spektrogramlara 

dönüştürülmüştür. Ardından, özellikleri otomatik olarak çıkarmak için bu görüntülere 

ESA'ları uygulanmıştır. Son olarak, preiktal ve interiktal segmentleri sınıflandırmak için 

AÖM kullanılmıştır. Önerilen yöntem, CHB-MIT Scalp EEG veri setinde Hassasiyet 

%95,85 ve YPO 0,045/saat elde edilmiştir. 

Zhao vd. (2021), ham EEG verilerinden nöbetleri tespit etmek için bir Lineer 

Grafik Evrişim Ağına (LGEA), fokal kayıp modeli ve LGEA dayalı yeni bir nöbet tespit 

modeli önermişlerdir. Grafik sinir ağının giriş grafiğini oluşturmak için ham EEG 

sinyallerinin Pearson Korelasyon Matrisi (PKM) hesaplanmıştır. Deneyler CHB-MIT 

Scalp veri setinde uygulanmıştır. CHB-MIT Scalp veri setinin LGEA ile Odak Kayıp 

Modeline (OKM) göre nöbet saptama doğruluğu %99,3, özgüllüğü %99,43, duyarlılığı 

%98,82, F1-puanı %98,73 ve EAAD %98,57 değerleri elde edilmiştir. CHB-MIT Scalp 

veri setinin LGEA modeline görede nöbet saptama Doğruluğu %95,89, Özgüllüğü %95,3, 
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Duyarlılığı %93,8, F1-puanı %89,36 ve EAAD %82,35 değerleri elde edilmiştir. Sonuç 

olarak, EAAD + OKM CHB-MIT Scalp veri setinde üstün performansını sağlamıştır. 

Sopic, Aminifar ve Atienza (2018), EEG sinyallerinin nöbet geçiren anını tespiti 

için dört elektrot vasitesi ile e-Glass sistemi geliştirmişlerdir. Deneysel değerlendirmeler, 

sistemin tek bir pil şarjı ile 2,71 gün çalışmaya izin vererek, Hassasiyet %93,8 ve 

Özgüllük %93,37 elde edilmiştir. Genel olarak, e-Glass epilepsinin sosyoekonomik 

yükünü azaltarak hastanın yaşam kalitesinde iyileşmelere önemli ölçüde katkıda 

bulunmuştur. 

Singh ve Malhotra (2021), EEG sinyallerinin DÖ dayalı SA yöntemini 

kullanarak epileptik nöbetlerin otomatik tahmini için akıllı bir sağlık izleme yaklaşımı 

önermişlerdir. Yazarlar, nöbet oluşumunun öngörülmesi görevini, ham EEG sinyallerinin 

filtrelenmesini, zaman alanı segmentasyonunu, frekans alanına dönüştürülmesini, 

EEG'nin spektral segmentlerinin çeşitli farklı frekans bantlarına ayrılmasını ve 

özelliklerin çıkarılması dahil olmak üzere farklı uygulama adımlarını uygulamışlardır. 

Önerilen ESA modelinin sonuçları, iki farklı spektral bant kombinasyonu için preiktal 

nöbet durumunda %98,3 maksimum doğruluk elde edilmiştir ve interiktal nöbet 

durumunda %97,4 maksimum Doğruluk elde edilmiştir. Bu nedenle, EEG sinyallerinin 

SA eşlik ettiği önerilen ESA mimarisi, epileptik nöbetlerin güvenilir ve gerçek zamanlı 

tahmini için uygun bir yöntem sağlamıştır. 

Zhang vd. (2022), epilepsinin tanı ve tedavisini kolaylaştırmak için Çift Yönlü 

Kapılı Tekrarlayan Birim (ÇYKTB) sinir ağına dayalı otomatik bir nöbet tespit yöntemi 

önermişlerdir. CHB-MIT Scalp EEG veri setinde Hassasiyet %93,89, Özgüllük %98,49 

ve 124 nöbetten 867,14 saatlik test verilerinde YPO metriğini saatte 0,31 olarak almıştır. 

Sonuç olarak, ÇYKTB ağının uzun süreli EEG'nin çekiminde güvenilir bir sonuçlara 

ulaşılmıştır. 

Shen vd. (2022), ADD, DVM ve karar ağacı makine öğrenimi modellerini 

kullanan EEG tabanlı bir gerçek zamanlı epilepsi nöbet tespit yaklaşımı önermişlerdir ve 

performansını karşılaştırarak değerlendirmişlerdir. Farklı alt frekans bantlarındaki 

öznitelikleri çıkarmak için ADD ve sekiz özdeğer algoritması uygulanmıştır. Daha sonra, 

sağlık kontrolü, nöbetsiz ve nöbet aktif üç sınıf sınıflandırması için DVM kullanılmıştır 

ve son olarak, gerçek zamanlı nöbet başlangıcı tespiti için karar ağacı yöntemi 

uygulanmıştır. Belirlenen algoritma, UB ve CHB-MIT Scalp veri setlerinde 

uygulanmıştır. Sonuçlar, algoritmanın UB veri setindeki sağlık kontrolü, nöbetsiz ve 
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nöbet aktif gruplar üç sınıflı sınıflandırmasında Doğruluk %97 ve Duyarlılık %96,67 ve 

CHB-MIT Scalp Veri Kümesinde gerçek zamanlı nöbet başlangıcı tespiti için Doğruluk 

%96,38, Duyarlılık %96,15, YPO %3,24 elde edilmiştir.  

He vd. (2022), CHB-MIT Scalp veri seti ve Temple Üniversitesi'nin TUH veri 

seti üzerinde deneyler yapmışlardır. Yazarlar, nöbet tespiti için Grafik Dikkat Ağları 

(GDA) ve ÇYUKSHDÖM  tabanlı yeni bir nöbet tespit yöntemi önermişlerdir. 

Çalışmada yapılan deneylerde CHB-MIT Scalp veri setinin GDA ve ÇYUKSHDÖM 

yöntemine göre Doğruluk %98,52, Duyarlılık %97,75, Özgüllük %94,34 elde edilmiştir. 

TUH veri setinin GAT ve ÇYUKSHDÖM yöntemine göre de Doğruluk %98,02, 

Duyarlılık %97,7, Özgüllük %99,06 elde edilmiştir. CHB-MIT Scalp veri setinin GDA 

yöntemine göre Doğruluk %96,28, Duyarlılık %93,03, Özgüllük %92,75 elde edilmiştir. 

CHB-MIT Scalp veri setinin ÇYUKSHDÖM yöntemine göre Doğruluk %94,16, 

Duyarlılık %88,23, Özgüllük %75 elde edilmiştir. TUH veri setinin GDA yöntemine göre 

Doğruluk %95,5, Duyarlılık %94,95, Özgüllük %96,52 elde edilmiştir. TUH veri setinin 

ÇYUKSHDÖM yöntemine göre Doğruluk %84,43, Duyarlılık %90,9, Özgüllük %89,1 

elde edilmiştir. Uygulanan yöntemin, özellik çıkarımı anında çekilmiş EEG sinyallerinin 

epileptik anını tespit etmek için kaliteli bir sonuçlara ulaşılmıştır.  

Ansari, Sharma ve Tripathi (2020), frekans etki alanı özniteliklerinin ve 

Nötrozofik Mantık Tabanlı K-Ortalama En Yakın Komşu (NMTKOEYK) 

sınıflandırıcısının bir kombinasyonu olan nöbet tespiti için bir algoritma 

önermişlerdir.  Önerilen algoritmanın performansındaki tutarlılık, Bonn Üniversitesi ve 

CHB-MIT Scalp EEG veri setlerine uygulanarak kontrol edilmiştir. Önerilen algoritma 

test edildiğinde AIIMS veri setine göre %98,16, Bonn Üniversitesi veri setine göre %100 

ve CHB-MIT Scalp veri setine göre %89,06 sınıflandırma doğruluklarına ulaşmışlardır. 

NMTKOEYK sınıflandırıcıdan elde edilen Doğruluk değeri, Lineer Diskriminant 

Analizi, DVM ve KEYK sınıflandırıcılarının elde edilen sonuçlarıyla karşılaştırılmıştır. 

Bonn Üniversitesi ve CHB-MIT Scalp veri setlerini uygulayarak, önerilen algoritmanın 

performansındaki Doğruluk değeri test edilmiştir. Önerilen NMTKOEYK, mevcut üç 

sınıflandırıcı tabanlı yöntemden daha iyi performans göstermiştir. Sonuç olarak, EEG 

sinyallerinden özellik çıkarmak amacıyla NMTKOEYK sınıflandırıcısını kullanarak 

epilepsi teşhisinde başarılı bir sonuç elde edilebilmiştir.  

Shahbazi ve Aghajan (2018), EEG sinyallerinden nöbet tahmini için DÖ dayalı 

yeni bir model sunmuşlardır. Bu amaçla, EEG segmentlerinden elde edilen KSFD 

https://www.sciencedirect.com/topics/computer-science/attention-network
https://www.sciencedirect.com/topics/computer-science/attention-network
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üzerinde bir ESA-UKSHDÖM sinir ağı eğitilmiştir. CHB-MIT Scalp veri setinde 

Hassasiyet %98,21 ve 0,13/saat düşük YPO ve 44,74 ortalama tahmin süresi değerleri 

elde edilmiştir. Önerilen yöntem, nöbet tahmini için DÖ’e dayalı son teknoloji 

algoritmalardan daha iyi performans gösterir. 

Ansari, Sharma ve Tripathi (2020), iktal (nöbet anı), interiktal (nöbetler arası) ve 

preiktal (nöbet öncesi) sınıflandırması için minimum öznitelik kümesine sahip 

UKSHDÖM önermişlerdir. Önerilen yöntem, CHB-MIT Scalp veri tabanı kullanılarak 

test yapıldığında nöbet tahmininde Doğruluk %91,02 ve nöbet tespitinde Doğruluk 

%96,59 elde edilmiştir. CHB-MIT Scalp veri setinden alınan EEG sinyalleri 983 saatte 

UKSHDÖM ağı ile sınıflandırılmıştır. EEG sinyali çekilirken Preiktal (nöbet öncesi) 30 

dakikalık süre ve sonra interiktal (nöbetler arası) 1 saatlik süre sürece dahil edilmediğinde 

Doğruluk %95,71 elde edilmiştir. Değerlendirmenin sonuçları, önerilen ağın, nöbet 

tespitinin yanı sıra nöbet tahmininde minimal bir dizi özellik ile kullanılmasını 

önermektedir. 

Anuragi, Sisodia ve Pachori (2021), epileptik nöbetleri belirlemek için Fourier-

Bessel Serisi Genişleme Tabanlı Ampirik Dalgacık Dönüşümü (FBSE-AMDD) 

yöntemini kullanan otomatik bir öğrenme çerçevesi önermişlerdir. FBSE-AMDD 

yöntemi ile EEG sinyallerini alt bant sinyallerine ayrıştırılmıştır. En önemli öznitelikleri 

seçmek için Kabartma-F Öznitelik Sıralama (KFÖS) yöntemi kullanılmıştır. Bonn ve 

CHB-MIT Scalp veri setlerini kullanarak EEG sinyalinin nöbet tespiti edilmiştir. 10 kat 

çapraz doğrulama tekniği uygulayarak modellerin eğitimi ve testi yapılmıştır. FBSE-

AMDD öğrenme modeli iki veri seti için de gerçekleştirilmiştir ve diğer son teknoloji 

yöntemlerle kıyaslanmıştır. Deneysel sonuçlar, önerilen çerçevenin Bonn EEG veri 

setinde Doğruluk %100 elde edilmiştir ve CHB-MIT Scalp EEG veri setinde Doğruluk 

%99,84 ulaştığını göstermiştir. 

Ciurea vd. (2020), hesaplama karmaşıklığının azaltılmasını sağlamak için girdi 

olarak bir saniye uzunluğundaki EEG kayıtlarını kullanarak, bir saniye uzunluğundaki 

EEG kayıtları biçiminde zaman alanı özniteliklerini çıkaran verimli bir algoritma 

önermişlerdir. Özellikler, algılama için basit bir sinir ağına beslenmiştir. Modeli tek tek 

ve küresel olarak Upenn-Mayo Clinic veri setinde ve CHB-MIT Scalp veri setinde 

doğrulanmıştır. Sonuç olarak, hasta bazında Doğruluk %99,17, Duyarlılık %99,44 ve 

Özgüllük %98,89, küresel olarak Doğruluk %92,69, Duyarlılık %91,99 ve Özgüllük 

%93,38 elde edilmiştir. Bununla birlikte, sonuçlar daha fazla veriye genelleştirilmelidir. 

https://www.sciencedirect.com/topics/computer-science/epileptic-seizure
https://www.sciencedirect.com/topics/computer-science/wavelet-transforms
https://www.sciencedirect.com/topics/medicine-and-dentistry/scalp
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Mohan vd. (2018), yaptıkları çalışmanın temel amacı, EEG sinyallerini 

minimum YPO ile analiz ederek epileptik nöbetleri en erken tahmin etmişlerdir. Bu 

algoritma, Gizli Dirichlet Ayırımı (GDA), QDA ve KEYK sınıflandırıcıları için Physionet 

ATM'den alınmış EEG veri setinde test edilmiştir. Bu çalışmada farklı sınıflandırıcıların 

performansları değerlendirilmiş ve karşılaştırılmıştır. Elde edilen ortalama tahmin süresi, 

31,6 dakikada YPO değeri 1,3 olmuştur. Sonuçların umut verici olduğu göz önüne 

alınmıştır. 

Li vd. (2021), yaptıkları çalışmada EMD ve CSP'ye dayalı yeni bir hastaya özel 

nöbet başlangıcı tespit sistemi önermişlerdir. Sistem, iki veri tabanından 34 denekten 

alınan CHB-MIT Scalp EEG veri kayıtları üzerinde değerlendirilmiştir. Deneysel 

sonuçlar, önerilen algoritmanın CHB-MIT Scalp veri setinde Özgüllük %97,5, Duyarlılık 

%97,34 ve SH-SDU veri setinde Özgüllük %96,06, Duyarlılık %93,67 elde ettiğini 

göstermiştir. Daha sonra, CSP uzamsal filtresinin, nöbet başlangıçlarında yer alan EEG 

kanallarını tanımlamaya yardımcı olduğunu göstermiştir. 23 denek için 19 hastanın nöbet 

başlangıç alanları doğru tahmin edilmiştir. Bu tatmin edici sonuçlar, önerilen sistemin 

klinik uygulamalarda nöbet başlangıcı tespiti için bir referans sağlayabileceğini 

göstermektedir. 

Steele vd. (2021), yaptıkları çalışmada tüm sensör alanı üzerinde bulunan bir 

karışık filtre ve birden çok kanal kullanarak çoklu nöbet durumu tahminleri yapmışlardır. 

Yazarlar, çoklu tahminler üretmek için bu işlemi tekrarlamışlardır ve bir Kalman Filtresi 

uygulayarak çoklu tahminlerden oluşan birleşik bir nöbet durumu tahmini elde 

etmişlerdir. Tüm sensör uzayından, tek bir nöbet durumu tahmini üretmek için bir sürekli 

ve bir ikili özellik belirlenmiştir. Sonuç olarak, CHB-MIT Scalp EEG veri seti üzerinde 

deneyler yapılmıştır ve önerilen tahmin yöntemini doğrulamıştır ve Doğruluk %92,7, 

Duyarlılık %92,8 ve Özgüllük %93,4 metrik değerlerine ulaşılmıştır. Elde edilen birleşik 

nöbet durumu tahmini, tek bir tahmin kullanarak elde edebileceklerinden daha yüksek 

Doğruluk, Duyarlılık ve Özgüllüğe sahip olmuştur.  

Ahmad vd. (2020), yaptıkları çalışmada preiktal/iktal ve interiktal dönemlerdeki 

EEG sinyallerinden öznitelik çıkarma, sınıflandırma ve düzenleme süreci yoluyla 

epileptik hastalarda nöbetleri tahmin etmeye çalışmışlardır. 10 epilepsi hastasının 

beyninin çeşitli bölgelerinden gelen EEG sinyalleri değerlendirilmiştir. Sinyallerin Faz 

Açısı (FA), Genlik ve Güç Spektral Yoğunluğunu (GSY) tayin etmek için Hızlı Fourier 

Dönüşümü (HFD) yöntemi kullanılmıştır. Sinyalleri sınıflandırmak amacıyla DVM 
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kullanılmıştır. Önerilen yaklaşım CHB-MIT Scalp EEG veri seti üzerinde test edilmiştir 

ve epileptik nöbetleri nöbet başlangıcından ortalama 25 dakika önce Doğruluk %100 ve 

saatte düşük bir yanlış alarm oranı 0,46 elde edilmiştir. Tıp biliminde gelişmiş nöbet 

tahmin cihazlarının geliştirilmesine yardımcı olacaktır. 

Wang vd. (2021), EEG sinyallerinin zaman, frekans ve kanal bilgilerini analiz 

etmek için yeni bir ESA önermişlerdir. Önerilen ESA modeli CHB-MIT Scalp EEG veri 

tabanı ile değerlendirilmiştir, deneysel sonuçlar modelimizin mevcut en son teknolojiden 

daha iyi performans göstermiştir ve Doğruluk %80,5, Duyarlılık %85,8 ve Özgüllük 

%75,1 elde edilmiştir. 

Shariat vd. (2021), yaptıkları çalışmada CHB-MIT Scalp ve sEEG veri setlerini 

kullanmışlardır. Bu veri setlerini ön işlemesi için Butterworth filtre ve bölütleme 

kullanmışlardır, covaryans matrisi ile özellik çıkarmışlardır, Maksimum Alaka Düzeyi 

Minimum Fazlalık ve Sıralı İleri Özellik Seçimi ile özellik seçmişlerdir ve DVM ilede 

sınıflandırılmıştır. CHB-MIT Scalp veri setine göre Doğruluk %99,87, Duyarlılık %99,91 

ve Özgüllük %99,82 elde edilmiştir. sEEG veri setine göre de Doğruluk %98,14, 

Duyarlılık %98,16 ve Özgüllük %98,12 elde edilmiştir. 

Ryu vd. (2021), yaptıkları çalışmada EEG verilerini kullanarak epileptik nöbet 

tahmini için DenseNet ve UKSHDÖM yöntemlerini birleştirerek yeni bir model 

önermişlerdir. Sonrasında bu model ile önceden dönüştürülmüş görüntü eğitilmiştir. 

Sonuç olarak, Doğruluk %93,28, Duyarlılık %92,92, Özgüllük %93,65, saatte yanlış 

pozitif oranı 0,063 elde edilmiştir ve preiktal uzunluk 5 dakika olduğunda F1-puanı 0,923 

elde edilmiştir. Sonuç olarak, önerilen yöntem önceki çalışmalarla karşılaştırıldığında, 

nöbet tahmin performansının önemli ölçüde iyileştiği doğrulanmıştır. 

Zhao vd. (2020), nöbet tahmini için İkili 1-B ESA önermişlerdir. İkili 1-B ESA, 

tahmin performansını iyileştirmek için Tek Evrişimli Çekirdekleri (TEÇ) kullanılmıştır. 

İlk katman hariç, gerekli hesaplama ve depolamayı azaltmak için tüm parametreler ikili 

hale getirilmiştir. Amerikan Epilepsi Derneği Nöbet Tahmini Mücadelesi veri setine göre 

EAAD 0,915, duyarlılık %89,26 ve YPO 0,117/saat ve CHB-MIT Scalp veri setine göre 

de EAAD 0,97, Duyarlılık %94,69 ve YPO 0,095/saat elde edilmiştir. Son teknoloji ürünü 

çalışmalarla karşılaştırıldığında, önerilen İkili 1-B ESA daha iyi performans sunmuştur. 

Ayrıca, TEÇ’in teorik açıklaması, İkili 1-B ESA modeline kıyasla nöbet tahmininde daha 

iyi performans elde etmiştir. 
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Khalilpour vd. (2020), CHB-MIT Scalp EEG veritabanını kullanarak epileptik 

nöbetleri tahmin etmek için yapay bir model geliştirmişlerdir. Nöbetin başlama zamanını 

bulmak için EEG sinyallerini Tek Boyutlu ESA (TBESA) 

modeli ile incelemişlerdir. Yedi Katmanlı ESA (YKESA), önerilen modelin 

performansının Doğruluk %97, Özgüllük %98,47 ve Duyarlılık %98,5 elde edilmiştir. 

Ayrıca önerilen model, bireysel kanala göre besleme ve gruplanmış kanallara göre 

besleme durumunda eğitilmiştir. Toplanan sonuçların faydalı olduğu gözlemlenmiştir. 

Ghembaza vd. (2022), CHB-MIT Scalp veri setinden faydalanmışlardır. 

Önerilen çalışmada, ZF denkleminde genişletilmiş bir Renyi Entropisi ile dinamik kanal 

seçim algoritması önermişlerdir. Önerdikleri algoritma ile yüksek çözünürlüklü ikinci 

dereceden ZF dağılımlarını kullanarak bu algoritmayı uygulamışlardır. Bu veri setini 

DVM ve KEYK sınıflandırıcıları ile sınıflandırmışlardır. Spektrogram, Düzleştirilmiş 

Sözde Wigner–Ville Dağılımı (DSWVD) karşılaştırması amacıyla Choi–Williams 

Dağılımı (CWD) sayesinde öznitelliklerini belirlemişlerdir. CHB-MIT Scalp veri setinin 

DVM sınıflandırıcısının Spektrogram öznitelik seçimine göre Doğruluk %97,69, 

Duyarlılık %100, Özgüllük %97,56, F1-puan %82,35 ve MKK 0,82 elde edilmiştir. CHB-

MIT Scalp veri setinin DVM sınıflandırıcısının DSWVD öznitelik seçimine göre 

Doğruluk %98,46, Duyarlılık %100, Özgüllük %98,4, F1-puan %80 ve MKK 0,81 

değerleri alınmıştır. CHB-MIT Scalp veri setinin DVM sınıflandırıcısının CWD öznitelik 

seçimine göre Doğruluk %96,15, Duyarlılık %100, Özgüllük %96,12, F1-puan %28,57 

ve MKK 0,4 metrik değerleri alınmıştır. CHB-MIT Scalp veri setinin KEYK 

sınıflandırıcısının Spektrogram öznitelik seçimine göre Doğruluk %98,46, Duyarlılık 

%100, Özgüllük %98,36, F1-puan %88,88 ve MKK 0,88 elde edilmiştir.  CHB-MIT 

Scalp veri setinin KEYK sınıflandırıcısının DSWVD öznitelik seçimine göre Doğruluk 

%99,23, Duyarlılık %100, Özgüllük %99,2, F1-puan %90,9 ve MKK 0,9 değerleri 

alınmıştır. CHB-MIT Scalp veri setinin KEYK sınıflandırıcısının CWD öznitelik 

seçimine göre Doğruluk %96,92, Duyarlılık %100, Özgüllük %96,87, F1-puanı %50 ve 

MKK 0,56 metrik değerleri alınmıştır. Sonuçlar, cesaret verici olmuştur. Yanı sıra, 

önerilen çalışmada ZF artırılmış RE tabanlı kanal seçim (RETKS) yöntemi, otomatik bir 

şekilde EEG dinamik boyutsallık indirgemesi için verimli bir hesaplama çözümü 

olmuştur. 

MohanBabu vd. (2021), optimize edilmiş DÖ Ağ Modeli kullanılarak uzun-kısa 

süreli kayıtlardan elde edilen nöbet tahminine odaklanmışlardır. Bu yazıda, işlevsel bir 
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bağlantı ölçüsü olarak etkileşim grafiği modeli kullanılarak, senkronizasyon kalıpları ve 

preiktal ile interiktal durumları ayırt etme fizibilitesi incelenmiştir. Değerlendirme, CHB-

MIT Scalp EEG veri seti üzerinde uygulanarak, nöbet tahmini için Duyarlılık %100 ve 

0,1 ile 0,02 arasında düşük yanlış tahmin oranı sağlamıştır. Önerilen DÖ Ağ Modeli 

metodolojisi, mevcut makine öğrenimi ve ESA yöntemleriyle karşılaştırıldığında, nöbet 

tahmininin performans oranında kayda değer bir artış olduğunu ortaya koymaktadır. 

Bilal vd. (2019), epileptik nöbet tespiti probleminde, veriye dayalı bir 

boyutsallık azaltma tekniği olan Çok Çözünürlüklü Dinamik Mod Ayrıştırma (ÇÇDMA) 

uygulamışlardır. Yazarlar, bu algoritmayı CHB-MIT Scalp ve KU Leaven veri kümeleri 

kullanmışlardır. Önerilen çalışmada, YPO azaltması için ve Duyarlılık ile Özgüllüğün 

artırması amacıyla işlem sonrası gerekli adımlar uygulanmıştır. İki veri kümesinede bu 

yöntem uygulanmıştır ve ayrıntılı bir analiz elde edilmiştir. Algoritma, CHB-MIT Scalp 

veri seti için Hassasiyet 0,937, Özgüllük 0,99, saatte YPO 0,587 ve gecikme süresi 3,12 

saat elde edilmiştir. KU Leuven veri seti için Hassasiyet 0,96, Özgüllük 0,99, saatte YPO 

0,413 ve gecikme süresi 2,75 saat elde edilmiştir. Bu sonuçlara göre, Çoklu-Çözünürlük 

Analizi (ÇÇA) ile Temel Dinamik Mod Ayrıştırması (TDMA) karşılaştırılmıştır. Bu 

karşılaştırılma sonucunda ÇÇA’in Duyarlılığında daha fazla gelişme sağladığı 

görülmüştür. 

Tang vd. (2018), CHB-MIT Scalp veri seti ile nöbet tahmini performansını 

artırmak amacıyla Otonom Artefakt Azaltma (OAA) yöntemi önermişlerdir. Önerilen bu 

yöntem ile Elektookülografi (EOG) ve Elektromiyografi (EMG) artefaktları ile 

Çokdeğişkenli Ampirik Mod Ayrıştırımı-Bağımsız Bileşen Analizini (ÇAMA-BBA) 

birleştirmiştir. Bu yöntem iki aşamadan oluşan artifakt tanımlama sayesinde artefaktlarda 

ciddi bir azalma gözlenmiştir. CHB-MIT Scalp veri tabanına dayalı olarak Doğruluk 

%90,59 ve Hassasiyet %91,09 elde edilmiştir. 

Tallón-Ballesteros vd. (2022), yaptıkları çalışmada etkili otomatik çapraz özne 

nöbet tespiti için ayrılabilir derinlik bazında evrişime dayalı değiştirilmiş bir ESA 

mimarisi önermişlerdir ve araştırmışlardır. Önerilen yöntemin performansı, CHB-MIT 

Scalp ve UBonn veri setleri üzerinde değerlendirilmiştir. Yöntem, CHB-MIT Scalp veri 

setine göre Duyarlılık %91,93 ve saatte YPO 0,005 ulaşılmıştır. Ubonn veri setine görede 

Duyarlılık %100 ve saatte YPO 0,057 elde edilmiştir. Sınıflandırma sonuçları, derinlik 

bilgisine sahip evrişim katmanlarını kullanan bu çalışmanın ESA mimarisinin hem küçük  
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hem de oldukça büyük bir veri tabanı kullanarak epileptik nöbet tespiti için iyi performans 

gösterdiğini göstermektedir. 

Zhang vd. (2019), yaptıkları çalışmada Ortak Uzaysal Model (OUM) ve ESA 

kullanılarak nöbet tahmini üzerine yeni bir çözüm önermişlerdir. Önerilen çözüm, CHB-

MIT Scalp veri setinden alınan 23 hastanın verileri üzerinde, bir dışarıda bırakma çapraz 

doğrulaması kullanılarak değerlendirilmiştir ve Hassasiyet %92,2 ve YPO 0,12/saatlik 

elde edilmiştir. Deneysel sonuçlar, önerilen yaklaşımın en gelişmiş yöntemlerin çoğundan 

daha iyi performans gösterdiğinin farkına varılmıştır.  

Tsiouris vd. (2018), yaptıkları çalışmada, EEG sinyalleri kullanılarak epileptik 

nöbet tahmininde UKSHDÖM kullanmışlardır. Bu çalışmada, CHB-MIT Scalp EEG veri 

tabanından sinyaller ile çalışılmıştır. Önerilen metodolojinin 185 nöbetin tamamını 

tahmin edebildiğini, yüksek nöbet tahmin Duyarlılığı oranları ve YPO 0,11 elde 

edilmiştir. UKSHDÖM temelli bu yöntem ile geleneksel makine öğrenmeleri ve daha 

önceki ESA ağlara göre nöbet tahmin performansında daha iyi sonuçlara ulaşılmıştır. 

Zou vd. (2018), yaptıkları çalışmada derin yapıya sahip Kanal Kısıtlı ESA 

(KKESA) kullanan hastaya özel bir nöbet tespit sistemi göstermişlerdir. Bu çalışmada 

CHB-MIT Scalp veri seti kullanılmıştır. 23 epileptik nöbet geçiren hastanın verileri test 

edilmiş ve güzel başarı elde edilmiştir. YPO değeri saatte 0,12 olarak ölçülmüştür. 167 

nöbetten oluşan teste 1 tanesi doğru tahmin edilememiştir. Sonuç olarak, tavsiye edilen 

bu yöntem ile detektör performansı en üst düzey teknoloji seviyesindedir. 

Kaziha ve Bonny (2020), ham EEG sinyallerinden nöbetleri tespit etmek 

amacıyla yazılım tabanlı bir sinir ağı geliştirmişlerdir. Bir sinir ağı, ESA dayalı olarak 

tasarlanmış ve EEG ham sinyal veri seti CHB-MIT Scalp üzerinde eğitilmiştir. CHB-MIT 

Scalp veri seti üzerinde yazılımsal olarak tasarlanmış bir ESA ile eğitim ve çıkarım 

yapılmıştır ve Doğruluk %96,74, Özgüllük %100 ve Duyarlılık %82,35 elde edilmiştir. 

Sınıflandırıcı daha sonra edinim için gerekli çevre birimleri ile yeniden yapılandırılabilir 

donanım üzerinde gerçekleştirilerek taşınabilir bir çip üzerinde sisteme Güvenlik 

Operasyon Merkezi (GOM) dönüştürülebilir. 

Xu vd. (2020), bir ESA kullanarak uçtan uca bir DÖ çözümü önermişlerdir. Bir 

ve iki boyutlu çekirdekler, sırasıyla erken ve geç aşama evrişim ve maksimum havuzlama 

katmanlarında benimsenmiştir. Önerilen ESA modeli, Kaggle kafa içi ve CHB-MIT Scalp 

veri setleri üzerinde değerlendirilmiştir. Kaggle kafa içi EEG veri setinde Hassasiyet 

https://www.sciencedirect.com/topics/computer-science/epileptic-seizure
https://www.sciencedirect.com/topics/computer-science/epileptic-seizure
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%93,5, YPO 0,063/saat ve EAAD 0,981 elde edilmiştir. CHB-MIT Scalp EEG veri 

setinde Hassasiyet %98,8, YPO 0,074/saat değerlerine ulaşılmıştır. Son teknoloji 

çalışmalarla karşılaştırma, önerilen modelin tahmin performansını aşan bir başarı elde 

ettiğini göstermektedir. 

Raghu vd. (2019), EEG sinyallerinde epileptik nöbetlerin tespiti için Sigmoid 

Entropi (SGE) olarak adlandırılan yeni bir özellik önermişlerdir. SGE, her alt banttaki 

dalgacık katsayılarından tahmin edildi ve bir özneyi dışarıda bırak çapraz doğrulamalı 

doğrusal olmayan bir DVM sınıflandırıcısı kullanılarak sınıflandırılmıştır. RMCH, 

UBonn ve CHB-MIT Scalp veri setlerini ADD yöntemi ile özellik çıkarılmıştır. Önerilen 

yöntemin performansı, 115 denekten alınan 58 Saatlik EEG'den oluşan RMCH veri 

tabanı, Bonn Üniversitesi (UBonn) ve CHB-MIT Scalp veri tabanları ile test edilmiştir. 

RMCH veri tabanı için nöbet saptama oranı %96,34, YPO 0,5/saatlik ve 1,2 saniyelik bir 

ortalama algılama gecikmesi gözlemlenmiştir. UBonn veri setine göre Duyarlılık %100 

ve CHB-MIT Scalp veri setine görede Duyarlılık %94,21 elde edilmiştir. Sonuç olarak, 

SGE’in, daha az hesaplama karmaşıklığı ile epileptik nöbet davranışını anlamak için 

beyin dinamiklerini analiz etmek için kullanılabileceği sonucuna varıkmıştır. 

Zheng vd. (2020), yaptıkları çalışmada optimum özellik ve minimum kanal ile 

CHB-MIT Scalp EEG ölçümlerini kullanarak etkili, güvenilir ve otomatik bir epileptik 

nöbet tahmin sistemi geliştirmişlerdir. CHB-MIT Scalp veri setinden interiktal ve preiktal 

dönemlerdeki EEG verileri, nöbet tahmini için kullanılır. İlk olarak, orijinal sinyaller bir 

ADD kullanılarak birkaç frekans bandına ayrıştırılır. Daha sonra, standart sapma (S), 

genlik günlüğü (L), çeyrek (Q) ve varyasyon katsayısı (CV) gibi özellikler çıkarılır. Son 

olarak, yukarıdaki iki durumu (preiktal ve interiktal durumlar) sınıflandırmak için farklı 

özellik vektör kombinasyonları sınıflandırıcılara (destek vektör makinesi (SVM) ve aşırı 

öğrenme makinesi (ELM)) beslenir. Performans analizi, optimal özelliğin CV, optimal alt 

bandın 16-31 Hz olduğunu ve optimal EEG kanalının FP1-F7, T7-P7, FP1-F3, P3-O1 

veya P7-T7 olarak seçilebileceğini göstermektedir. ELM, sınıflandırma sonuçlarını 

karşılaştırarak daha sağlam bir ve DVM'den daha yüksek genel doğruluk ve hem ELM 

hem de DVM'nin en iyi ortalama doğruluğu %100'e kadar ulaşılabilmiştir. CHB-MIT 

Scalp veri setini ELM ve DVM yöntemleri ile sınıflandırmışlardır ve %100 doğruluk 

başarısı elde etmişlerdir. 

Cheng vd. (2021), epileptik nöbetleri tahmin etmek için DÖ ve uyku CHB-MIT 

Scalp veri setine dayalı hastaya özel yeni bir yöntem önermişlerdir. ÇYUKSHDÖM, 
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birini dışarıda bırak çapraz doğrulama yöntemiyle birleştirilmiş sınıflandırma sonuçlarını 

elde etmek için en ayırt edici özellikleri ortaya çıkarmak için uygulanmıştır. Ardından, iki 

aşamalı bir son işleme süreci, tahmin sonuçlarını optimize edilmiştir. ÇYUKSHDÖM 

yönteminde Doğruluk %99,47, Duyarlılık %99,34 ve Özgüllük %99,6 elde edilmiştir. 

ÇYUKSHDÖM ile sınıflandırma performansı diğer sinir ağlarına göre daha yüksektir. 

Sonuç olarak, uyku sırasında nöbet tahmini için mevcut yöntemlerle karşılaştırıldığında, 

önerilen yöntem daha iyi bir tahmin performansına sahiptir.
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2.1. EPİLEPSİ HASTALIĞI 

2.1.1. Epilepsi Hastalığının Tanımı 

Epilepsi, beyindeki hücrelerin elektriksel aktivitesinin ani olarak boşalmasına ve 

bilinç kaybı oluşturan bir hastalıktır. Manyetik Rezonans Görüntüleme (MRG), ve EEG 

sinyallerinin analizi epilepsilerdeki beyin süreçlerini anlamamızı ilerletmede temel 

olmuştur (Sisodiya, vd., 2022). Epilepsi, özellikle çocuklarda sık görülen bir 

rahatsızlıktır. Sinir rahatsızlığıdır. Çocuklarda yetişkinlere göre 15 kat daha fazla görünür. 

Dünyada rastlanılan hastalar %80’ni ilk nöbetini 18 yaşından önce geçirmiştir. Epilepsi 

rahatsızlığı kişinin yaşam kalitesine önemli ölçüde azaltır. Bunun yanında ölüme kadar 

gidebilir. Paroksistik nörolojik bozukluklar arasında yer alır. Ölümcül olduğu için gerçek 

zamanlı izleme ve nöbet tespiti oldukça önemlidir. 

Epilepsi doğum anındaki kafa darbelerinden, genetik geçmişten, çocukluk 

anında yüksek seviyede ateşli hastalıklardan, beyin kanamasından, beyin 

iltihaplanmasından ve alkol kullanımına bağlı durumlar temel olarakepilepsiye neden 

olduğu bilimsel çalışmalarla ortaya konulmuştur (Sarudiansky, vd., 2021).  

Epilepsi tedavisi tam olamayan bir rahatsızlık olsa bile uzmanların önereceği 

farklı tedavi yöntemleriyle süreç hafifletilir (Çatalkaya, vd., 2022). Epilepsi ilaç 

kullanmadada doğru ilaçlardan ve doğru dozda belirlenmelidir (Yuluğ, Özşimşek ve 

Öktem, 2022). Doktorlar kişinin yaşına, onun sürekli nöbet geçirmesine ve başka 

nedenlere göre hangi ilacı kullanacağına karar verir (Doğan, 2022).  

 

2.1.2. Epilepsi Hastalığının Türleri 

Epilepsi hastalığının şu nöbet türleri bulunmaktadır: fokal ve jeneralize 

(Fordington ve Manford, 2020). Bundan sonra gelen alt bölümlerde bunların kısaca 

açıklamaları verilmiştir.  
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2.1.2.1. Fokal Nöbet 

Fokal epilepsi, sol ya da sağ beyinde kaynaklanan nöbetlere ek olarak, tek veya 

çoklu olarak bozukluklar içerir (Lattanzi, vd., 2019). 

 

2.1.2.2. Jeneralize Nöbet                                                                                                                                    

Beynin her iki lobunda ortaya çıkan, tıbbi araştırmalarla veya EEG çekimi ile 

fark edilebilen nöbetlere jeneralize başlangıçlı nöbetler denir. Jeneralize nöbetlerin sık 

rastlanılan nöbetleri: Absans, jeneralize tonik-klonik, miyoklonik ve atonik nöbetlerdir 

(Gray, vd., 2020). 

Absans epilepsi idiopatik jeneralize epilepsiler grubunda bulunmakta olup bilinç 

kaybıyla eşlik eden, iktal EEG’ de 2,5-4 frekansında bilateral ve simetrik Diken Dalga 

Deşarjlarla (DDD) karakterizedir (Huguenard, 2019). 

Tonik-klonik nöbetlerde ise genellikle bilincin azalması gözlemlenir, tonik fazda 

hastanın kasları sertleşir ve yana devrilir, klonik fazda ise şiddetli kas daralmaları tespit 

edilir (Elmali, vd., 2020). 

Miyoklonik nöbetler baş, gövde veya ekstremitelerde ortaya çıkan ani, kısa 

süreli, otonom olarak gerçekleşen kas kasılmaları ile özgünleştirilmektedir (Shakeshaft, 

vd., 2021). 

Atonik nöbetler vücudun tonüs kaybı ile gerçekleştiği bilinmektedir. Tonüsün 

ani olarak kaybolması sonucunda dizler, baş ve gövde öne doğru bükülür, ani düşüşler 

gerçekleşir. Nöbet esnasında hasta ayakta ise genellikle olduğu yere düşer (Angione, vd., 

2019). 

 

2.2. ELEKTROENSEFALOGRAFİ SİNYALLERİ 

EEG, beyin tarafından üretilen elektrik alanlarının yüksek zamansal ve uzaysal 

çözünürlüğe sahip tek beyin görüntüleme yöntemidir. EEG, beyinden gelen elektrik 

sinyallerini kaydeder, böylece beyin aktivitesiyle ilgili değerli bilgileri çıkarma yeteneği 

sağlar. EEG sinyalleri, nöronlar tarafından üretilen elektriksel beyin aktivitesinin 

izlenmesini sağlar. Şizofreni, zihinsel bozukluklar ve diğer ilgili hastalıklarda EEG'den 
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makine öğrenimi araçları son yıllarda önem kazanmıştır. EEG, epilepsi tespiti için ana 

araçlardan biridir (Stancin, Cifrek ve Jovic, 2021). 

EEG sinyalleri frekansına göre Delta (δ), Teta (θ), Alfa(α), Beta (β) ve Gama (γ) 

olmak üzere beş alt bantta incelenir (Jayaraj ve Mohan, 2021). 0,5-4 Hz aralığında 

frekansa ve 20-400 μV aralığında genliye sahip olan dalgaya Delta (δ) dalgası denir 

(Yildirim ve Varol, 2016). 4-8 Hz aralığında frekansa ve 5-100 μV aralığında genliğe 

sahip olan dalgaya Teta (θ) dalgası denir (Uys, 2019). 8-14 Hz aralığında frekansa ve 2-

10 μV aralığında genliye sahip olan dalgaya Alfa(α) dalgası denir (Bednaya, vd., 2021). 

14-30 Hz aralığında frekansa ve 1-5 μV aralığında genliye sahip olan dalgaya Beta (β) 

dalgası denir (Todd, Govender ve Colebatch, 2018), 30-100 Hz aralığında frekansa sahip 

olan dalgaya ise Gama (γ) dalgası denir (Cavelli, vd., 2020).   

Şekil 2.1: EEG Sinyalinin Gama (γ) Bandı 

 

 

Şekil 2.1’de yer alan sinyal, EEG sinyalinin gama bandına ait bir örnek sinyaldir. 

Bu dalgalar, duyusal ve çalışma hafızası ile ilgili süreçlerde ortaya çıkmaktadır (Reinhart 

ve Nguyen, 2019). 
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Şekil 2.2: EEG Sinyalinin Beta (β) Bandı 

 

 

 

Şekil 2.2’de EEG sinyalinin beta bandına ait bir örnek sinyaldir. Beta sinyali 

erken yaş aralığında beynin orta-arka bölgelerinde bulunur, sonraki yaşlarda ise frontal 

bölgelere doğru kayabilmektedir (Fröhlich, vd., 2021). 

Şekil 2.3: EEG Sinyalinin Alfa (α) Bandı 

 

 

 

Şekil 2.3’te EEG sinyalinin alfa bandına ait bir örnek sinyaldir. Zihinsel aktivite 

ve göz açıp kapamaya yeniden etkinleştiriyor. Uyku anında görülmez amma uyanıkken 

görülür (O'Hara ve Guerriero, 2019).  
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Şekil 2.4: EEG Sinyalinin Teta (θ) Bandı 

 

 

 

Şekil 2.4’te EEG sinyalinin teta bandına ait bir örnek sinyaldir. Yetişkenlerde 

uykuya girerken frontal bölgede gözlemlenebilir (Snipes, vd., 2022). 

Şekil 2.5: EEG Sinyalinin Delta (Δ) Bandı  

 

 

 

Şekil 2.5’te EEG sinyalinin delta bandına ait bir örnek sinyaldir. Delta dalgası 

insanların gözlerinin hareketsiz halinde ve dinlenirken ortaya çıkmaktadır (Fitriana, vd., 

2021). 
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2.2.1. Elektroensefalografinin Ölçümü 

EEG çekim öncesi elektrodların düzenli bir seviyede yerleştirilmesi önemli 

hazırlık faktörlerden biridir. EEG çekim anında 23 tane küçük elektroda bir tür jel 

kullanarak saçlı kafa derisine yerleştirilir ve sonra bir bilgisayar arayüzü ile beyinin 

elektriksel aktivitesi kaydedilir (Stevenson, vd., 2019). 

Genel olarak EEG testinin süresi 20 dakika kadar çekilir. Bazı hallerde hastalığın 

teşhisine göre testin süresi uzatıla bilmektedir (Lillo, Mora ve Lucero, 2022). Özellikle 

uykuda gerçekleşen nöbetlerin tanısında EEG çekimi uzatılmakta ve hastanın uyuması 

sağlanmaktadır (San-Segundo, vd., 2019). 

Şekil 2.6: Epilepsi Paterni (Kalıbı)  

                                             

Kaynak: Beleza, vd., 2010. 

Doktorlar Şekil 2.6’daki kalıbı EEG sinyallerinde gördüklerinde epilepsi tanısı 

koymaktadırlar (Beleza, vd., 2010). 
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Şekil 3.1: Bu Çalışmaya Ait Akış Diyagramı 

 

Şekil 3.1’de çalışmamızın akışı gösterilmiştir. 

Bu EEG verileri Physionet.org veri sitesinden alınmıştır. Bu veriler 2 kısıma 

ayrılmıştır. Bunlar sırasıyla epileptik ve normaldir. Bu veriler, veri setinde hazır bir 

şekilde sınıflara ayrılarak etiketlenmiştir. Veri seti incelendiğinde epileptik nöbet anında 

172 veri yer almaktadır. Nöbet anında olmayan normal EEG sinyalinden ise 175 veri yer 

almaktadır. Bu çalışmada EEG sinyalleri kanallar bazında analiz edildi. İlk olarak her 

kanala ait veriler sırasıyla epileptik ve normal sinyaller, 10 saniyelik bölütlere ayrıldı. 

Bölütlenen verilerin her biri 1*2560 olarak ele alınmıştır. Bölütlemeden sonra 3 tane 

analiz yöntemi ile sinyalin özellikleri çıkarılmıştır. Bu yöntemler dalgacık temelli MA 

yöntemi, AF ve SE’dir. Dalgacık temelli MA yöntemi kullanılarak sinyale ait 36 özellik 

elde edilmiştir. Bu özelliklerden 11 tanesi tekillik spektrumu (dh) temsil eder. Bu 

özelliklerden diğer 11 tanesi tutucu üs tahminlerini (h) temsil eder. Diğer 11 özellik ise 

ölçeklendirme üsleri (tauq) verilerini ilgilendirir. Geriye kalan 3 tanesi ise kümülant (cp) 

parametrelerini temsil eder. AF analiz yöntemi ile sinyalin uzunluğuna göre 63 özellik 

hesaplanmıştır. SE analiz yöntemi ile yine aynı şekilde sinyalin uzunluğuna göre 63 tane 

spektral özellik hesaplanmıştır. Bu 3 yöntemle hesaplanan özellikler bir araya getirilerek 

EEG sinyalinin çekildiği her bir kanala ait özellik vektörleri elde edilmiştir. Her bir 

özellik vektöründe 162 özellik yer almaktadır. Sonrasında, her bir kanala ait özellik 
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vektörleri ile ÇYUKSHDÖM eğitilmiştir. Yapılan eğitim sonucunda epileptik verilerin 

tespitinde Fp1-F7 ve ve CZ-PZ kanallarından %85,3 başarı elde edilmiştir. 

 

3.1. ELEKTROENSEFALOGRAFİ KAYITLARI 

Yaptığımız deneylerde kullandığımız EEG verileri PhysioNet.org’da yer alan 

CHB-MIT Scalp EEG veri tabanından alınmıştır. Doktorlar epilepsili kişilerden çekilen 

EEG sinyallerini Boston Çocuk Hastanesinde 22 denekten (5 erkek, 3-22 yaş, 17 kadın, 

1.5-19 yaş) aralarında kayıtlar alınmıştır. SUBJECT-INFO dosyasında EEG sinyali 

çekilen kişilerin yaş ve cinsiyet karakterleri, EEG sinyalleri bulunmaktadır (Shoeb, 2009).  

Şekil 3.2: Uluslararası 10-20 Elektrot Sistemi  

   Kaynak: Tosun, vd., 2018. 

Bu çalışmamızda 21 elektrot kullanılan veri setinden faydalanılmıştır. Bu 

kullanılan elektrotların açıklamaları Tablo 3.1’de gösterilmiştir. 

Tablo 3.1: Elektrotlar Ve Onun Açıklamaları 

Elektrotun adı Açıklaması 

FP1 sol en ön frontal 

F7 en sol frontal 

T6 sol temporal 

P3 sol parietal 

O1 sol osipital 

FP2 Sağ en ön frontal 

http://hdl.handle.net/1721.1/54669
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Tablo 3.1 (devam): Elektrotlar Ve Onun Açıklamaları  

Elektrotun adı Açıklaması 

A1 Sol referans elektrotu 

A2 Sağ referans elektrotu 

F3 Sol frontal 

Fz Merkezi frontal 

F4 Sağ frontal 

F8 En sağ frontal 

T3 Sol temporal 

C3 Sol merkez 

Cz Merkez 

C4 Sağ merkez 

T4 Sağ temporal 

T5 Sol arka temporal 

Pz Merkezi parietal 

P4 Sağ parietal 

O2 Sağ ossipital 

 

Bu çalışmada kullandığımız veri seti 22 kanaldan oluşmaktadır. Bu kanallar 

Tablo 3.2’de verilmiştir. 
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Tablo 3.2: Kanallar 

Kanal İsimleri Açıklaması 

Kanal1-FP1-F7 FP1 ve F7 arasındaki potansiyel fark 

Kanal2-F7-T7 F7 ve T7 arasındaki potansiyel fark 

Kanal3-T7-P7 T7 ve P7 arasındaki potansiyel fark 

Kanal4-P7-O1 P7 ve O1 arasındaki potansiyel fark 

Kanal5-FP1-F3 FP1 ve F3 arasındaki potansiyel fark 

Kanal6-F3-C3 F3 ve C3 arasındaki potansiyel fark 

Kanal7-C3-P3 C3 ve P3 arasındaki potansiyel fark 

Kanal8-P3-O1 P3 ve O1 arasındaki potansiyel fark 

Kanal9-FP2-F4 FP2 ve F4 arasındaki potansiyel fark 

Kanal10-F4-C4 F4 ve C4 arasındaki potansiyel fark 

Kanal11-C4-P4 C4 ve P4 arasındaki potansiyel fark 

Kanal12-P4-O2 P4 ve O2 arasındaki potansiyel fark 

Kanal13-FP2-F8 FP2 ve F8 arasındaki potansiyel fark 

Kanal14-F8-T8 F8 ve T8 arasındaki potansiyel fark 

Kanal15-T8-P8 T8 ve P8 arasındaki potansiyel fark 

Kanal16-P8-O2 P8 ve O2 arasındaki potansiyel fark 

Kanal17-FZ-CZ FZ ve CZ arasındaki potansiyel fark 

Kanal18-CZ-PZ CZ ve PZ arasındaki potansiyel fark 

Kanal19-P7-T7 P7 ve T7 arasındaki potansiyel fark 
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Tablo 3.2 (devam): Kanallar  

Kanal İsimleri Açıklaması 

Kanal20-T7-FT9 T7 ve FT9 arasındaki potansiyel fark 

Kanal21-FT9-FT10 FT9 ve FT10 arasındaki potansiyel fark 

Kanal22-FT10-T8 FT10 ve T8 arasındaki potansiyel fark 

 

Bütün sinyaller, saniyede 256 Hz örnekleme frekansıyla ve 16 bit çözünürlükte 

çekilmiştir. Genellikle Pysionette yer alan EEG sinyalleri 22 kanal üzerinden elektrotlar 

vasıtası ile çekilmiştir (Shoeb, 2009).  

EEG kayıtlarını elde edebilmek için Uluslararası 10-20 EEG elektrot konumları 

ve isimlendirme sistemi kullanılmıştır. Bazı epileptik EEG sinyallerinin çekimlerinde 

farklı elektrotlar ile kaydedilmiştir. Onlar, epileptik chb04'e ait son 36 dosyadaki bir 

Elektrokardiyografi (EKG) sinyali ve vaka chb09'a ait son 18 dosyadaki bir Vagal Sınır 

Stimulus (VSS) sinyali gibi başka sinyaller de kaydedilmiştir. EEG veri seti hakkında 

daha ayrıntılı bilgi Tablo 3.3’te gösterilmiştir (Shoeb, 2009). Bu çalışmada VSS kayıtları 

kullanılmamıştır. 

Tablo 3.3: EEG Veri Seti Bilgisi 

Vaka Cinsiyet Yaş 

Chb01 F 11 

Chb02 M 11 

Chb03 F 14 

Chb04 M 22 

Chb05 F 7 

Chb06 F 1,5 

Chb07 F 14,5 

http://hdl.handle.net/1721.1/54669
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Tablo 3.3 (devam): EEG Veri Seti Bilgisi  

Vaka Cinsiyet Yaş 

Chb08 M 3,5 

Chb09 F 10 

Chb10 M 3 

Chb11 F 12 

Chb12 F 2 

Chb13 F 3 

Chb14 F 9 

Chb15 M 16 

Chb16 F 7 

Chb17 F 12 

Chb18 F 18 

Chb19 F 19 

Chb20 F 6 

Chb21 F 13 

Chb22 F 9 

Chb23 F 6 

 

RECORDS dosyası, bu koleksiyonda yer alan tüm verilerin bir listesini içerir. 

RECORDS-WITH-SEIZURES dosyası ise bir veya daha fazla nöbet içeren 129 dosyayı 

listeler. Toplamda, bu kayıtlar 198 nöbet (23 vakalık orijinal sette 182); her nöbetin 

başlangıcı ([) ve bitişi (]), nöbetli kayıtlar'da listelenen dosyaların her birine eşlik eden. 

seizure ek açıklama dosyalarında açıklanır. Ayrıca chb nn -summary.txt adlı dosyalar, her 

https://physionet.org/content/chbmit/1.0.0/RECORDS
https://physionet.org/content/chbmit/1.0.0/RECORDS-WITH-SEIZURES
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kayıt için kullanılan montaj ve her “edf” dosyasının başlangıcından, içerdiği her bir 

epileptik anı yakalamanın başlangıcına ve sonuna kadar geçen süre hakkında saniye 

cinsinden bilgiler içerir (Goldberger, vd., 2000).  

                                                                                                                                         

3.2. EEG Sinyallerinin Bölütlemesi 

EEG sinyallerinin belirli zaman dilimlerine bölünmesine bölütleme denir (Siuly, 

vd., 2020). Veri kümesinin her bir durumu için ham EEG sinyaller, başlangıçta, bitişik 

bölümler arasında örtüşme olmaksızın 10 saniyelik uzun bölümlere (segmentlere) ayrılır. 

Her segment iktal ve normal sınıflamalara bölünmüştür.  

Şekil 3.3: Chb01_04 Veri Setinin EEG Sinyali 

 

 

 

 

 

 

 

 

Şekil 3.3.’de chb01_04 klasöründe yer alan bir EEG sinyali örnek olarak 

gösterilmiştir. Bu sinyal epilepsi anında kaydedilen bir sinyaldir. Şekil 3.3’ü 

incelendiğinde 10x105 saniye aralığında ve 0 ile ortalama +1500 -1500 µV aralığında 

değiştiği görülmektedir.  
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Şekil 3.4: Chb01_04 EEG Veri Setinin Bölütlenmiş Hali  

 

 

Şekil 3.3.b’de chb01_04 klasöründen alınan normal durumdaki sinyal olduğu 

için bölütleme yapılmıştır. Bu sinyal epilepsi nöbetinde bulunmayan normal sinyale ait 

örneği temsil etmektedir. Bölütleme 3 sınıfa ayrılmıştır: Preiktal (nöbet öncesi), iktal 

(nöbet anı), postiktal (nöbet sonrası) olarak ifade edilmektedir. Bölütleme yaparken nöbet 

anındaki sinyalleri aldık, (iktal) bölütünü Şekil 3.3 (b) gösterdik.  

İktal hissesinin formüle göre nasıl alındığı aşağıda gösterilmiştir.  

datai {2,1}= val (:,375552∶382464)    (3.1) 

Formül (3.1) denkleminde: datai {2,1}, data verisinin iktal hissesinin 2’nci satır 

1’inci sütunu anlamına gelmektedir. Denklemin sağ tarafındaki val değişkenindeki 

rakamlar şu şekilde ifade edilebilir: önce başlangıc saniyesi 1467 ve bitiş saniyesi 1494 

alınmıştır. Bu veri setinin EEG sinyalleri 256 Hz örnekleme frekansı ile çekilmiştir.  

Tböl x Fs= veri (3.2) 

Denklem 3.2’de bölütleme işleminde ilk önce Tbaş saniyeni 10 san Fs örnekleme 

frekansı 256 Hz ile çarpıyoruz ve sonuçta 2560 veri elde ediyoruz. 

Sonra başlangıç 1467 ve bitiş 1494 saniyeleri ile örnekleme frekansı 256 Hz ile 

çarpıyoruz.  

İlk önce biz iktal bölütünün başlangıç saniyesini hesaplamıştık. 

Tbaş x Fs = segmentin başlangıc noktası (3.3) 
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Denklem 3.3’te 𝑇𝑏𝑎ş. ∗  𝐹𝑠 = 𝑡𝑠𝐵, 𝑡𝑏𝑎ş. 1467 san., 𝐹𝑠 256 Hz ve sonuçta iktal 

hissesinin 375552 başlangıç saniyesini aldık. 

Tbit. x Fs = segmentin bitiş noktası (3.4) 

Denklem 3.4’te 𝑡𝑏𝑖𝑡. ∗  𝐹𝑠 = 𝑡𝑠𝐵𝑖𝑡, 𝑡𝑏𝑖𝑡. 1494 san., 𝐹𝑠 256 Hz ve sonuçta iktal 

hissesinin 382464 bitiş saniyesini aldık. 

Böylece 375552 saniyesi ile 382464 saniye arasındaki veriler bölütlenerek elde 

edilmektedir. 

 

3.3. ELEKTROENSEFALOGRAFİ ANALİZ YÖNTEMLERİ 

3.3.1. Dalgacık Multifraktal Analiz 

Fraktallar Öklid geometrisini tanımanın imkânsız olduğu doğal yapıların 

biçimlerini karakterize etmekte kullanılan düzensiz geometrik yapılardır (Andronache, 

Liritzis ve Jelinek, 2023). 

Dalgalanma fonksiyonu, sinyalin dalgalanmasını ve güç yasası özellikleri 

tanımlar (Villarreal-Hernandez, vd., 2020). Farklı q değerleri ve farklı zaman ölçekleri 

altında zaman serilerinin değişen eğilimini daha açık bir şekilde ifade etmek için, dalga 

fonksiyonunun noktalarını bir doğruya sığdırmak için en küçük kareler yöntemini 

kullanırız (Davidson, Grabowsky ve Jayatilaka, 2022). 

𝑦(𝑡) =  ∑ 𝑠𝑗
𝑚,𝑘

𝑘 𝜑𝑗
𝑚,𝑘

(𝑡) +  ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘𝑘𝑗 ≥𝑗𝑚
(𝑡)  (3.5) 

Denklem 3.5’te ayrıştırma katsayıları yaklaşık (𝑠𝑗𝑚
,k) ve detay katsayıları (𝑑𝑗,𝑘) 

olarak adlandırılır. İkincisinin, sinyalin özelliklerini farklı ölçeklerde (çözünürlük 

seviyeleri) tanımladığı kabul edilir. Bu amaçla, 𝑑𝑗,𝑘 'nın standart sapmaları σj çözünürlük 

seviyesinin bir fonksiyonu olarak kullanılır. Çoklu çözünürlüklü dalgacık analizi, 

sırasıyla düşük geçişli filtre ve yüksek geçişli filtre olan ölçekleme fonksiyonu ϕ(t) ve 

dalgacık ψ(t)'den oluşturulan iki filtre setini kullanarak bir y(t) sinyalini ayrıştırır 

(Pavlova, Guyo ve Pavlov, 2022). 

1 boyutlu ana dalgacık şu şekilde tanımlanır: 

𝐿𝑥(𝑗, 𝑘) =  𝑠𝑢𝑝𝜆᾿⊂3𝜆𝑗,𝑘
|𝑑𝑥(𝑗, 𝑘)|  (3.6) 
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Denklem 3.6’ı şöyle anlatmak olar: ADD kullanarak dalgacık 

katsayılarını, d x (j,k) hesaplanır ve her ölçek için her katsayının mutlak değeri 

kaydedilir. Her daha ince ölçek, bir sonraki daha kaba ölçekten iki kat daha fazla katsayıya 

sahiptir. 2 j ölçeğindeki her ikili aralık, daha ince bir ölçekte iki aralığın birleşimi olarak 

yazılabilir. Elde edilen en iyi ölçekten bir seviye daha kaba olan ölçekte başlanır. İlk 

değeri tüm daha ince ikili aralıklarıyla karşılaştırılır ve maksimum değeri elde edilir. Bir 

sonraki değere gidilir ve değerini tüm hassas ölçek değerleriyle karşılaştırılır. Değerleri 

iç içe değerleri ile karşılaştırmaya devam edilir ve maksimumları elde edilir. O ölçek için 

elde edilen maksimum değerlerden ilk üç değeri inceleyerek bu komşuların 

maksimumunu elde edilir. Bu maksimum değer, o ölçek için bir dalgacıktır. Bu ölçek için 

diğer dalgacıkları elde etmek için maksimum değerleri karşılaştırmaya devam edilir. Bir 

sonraki kaba ölçeğe geçilir ve işlemi tekrarlanır (Wendt ve Abry, 2007). 

Şekil 3.5: Örnek Dalgacık MA Çalışma Adım 1 (Wendt ve Abry, 2007) 

6 2 7 5 

4 3 5 2 1 0 4 3 

 

Şekil 3.5’te üst satırdaki rakamlar sinyali anlatıyor. Daha sonra o sinyallerin her 

biri iki sinyale ayrışıyorlar (Wendt ve Abry, 2007). 

Şekil 3.6: Örnek Dalgacık MA Çalışma Adım 2 (Wendt ve Abry, 2007) 

6 2 7 5 

4 3 5 2 1 0 4 3 

6 
 

5 
 

7  5 

 

Şekil 3.6’da en ince ölçekten (alt sıra) sonraki en kaba düzey olan üst sıradan 

başlayarak, her değeri ikili aralıklarıyla karşılaştırılır ve maksimumları elde edilir. 
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Şekil 3.7: Örnek Dalgacık MA Çalışma Adım 3 (Wendt ve Abry, 2007) 

6 
 

5  7  5 

               7 

6 
 

5  7  5 

                             

      

Şekil 3.7’de üç komşu değere bakılır ve maksimumu elde edilir. Sonraki üç 

komşu için tekrarlanır. Bu maksimal, 7 ve 7, bu seviye için ana dalgacık sayılır (Wendt 

ve Abry, 2007).         

Tekillik spektrum (dh), –5 ile 5 arasındaki doğrusal aralıklı momentler için 

belirlenen yapı fonksiyonları kullanılarak tahmin edilir. Yapı fonksiyonları, biorthogonal 

spline dalgacık filtresi kullanılarak elde edilen dalgacık liderlerine dayalı olarak 

hesaplanır. Kullanılan biorthogonal spline dalgacık filtresi, sentez dalgacığında bir 

kaybolma anına ve analiz dalgacığında beş kaybolma anına sahiptir. Varsayılan olarak, 

multifraktal tahminler, minimum 3 düzeyinde ve en az altı dalgacık liderinin olduğu 

maksimum düzeyde dalgacık liderlerinden türetilir (Wendt ve Abry, 2007).  

Önce dh tekillik spektrumunun normal kişiden alınan sinyalden analizi 

yapılmıştır. Bu analiz için chb01_01 veri setini örnek olarak kullanılan veriye ait grafik 

Şekil 3.7.’de gösterilmiştir.  

Şekil 3.8: Normal EEG Sinyaline Ait Chb01_01 Verisine Ait Tekillik Spektrumu (dh) 

Grafiği 
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Şekil 3.8.’de x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik sayısı 0,8 ile 0,9 sayıları arasında başlarken örnekleme 

numarasının 1 sayısına denk gelmiştir. Genlik sayısının 0,9 rakamı örnekleme 

numarasının 2 rakamına denk gelmiştir. Genlik sayısının 0,9 ile 1 rakamları arası 

örnekleme numarasının 4 rakamına denk gelmiştir. Genlik sayısının 0,9 ile 1 rakamları 

arası örnekleme numarasının 5 rakamına denk gelmiştir. Genlik sayısının 1 rakamı 

örnekleme numarasının 6 rakamına denk gelmiştir. Genlik sayısının 0,9 ile 1 rakamları 

arası örnekleme numarasının 7 rakamına denk gelmiştir. Genlik sayısının 0,8 ile 0,9 

rakamları arası örnekleme numarasının 8 rakamına denk gelmiştir. Genlik sayısının 0,7 

değeri örnekleme numarasının 9 değerine denk gelmiştir. Genlik sayısının bitiş noktası 

0,2 ile 0,3 değerleri arası örnekleme numarasının 11 değerine denk gelmiştir. 

Daha sonra dh tekillik spektrumunun epileptik kişiden alınan sinyalinden analiz 

yaptık. Chb05_13 veri setini örnek olarak kullanılan veriye ait grafik Şekil 3.8’de 

gösterilmiştir. 

Şekil 3.9: Epilepsi Anında Alınan Chb05_13 Veri Setinin Tekillik Spektrumu (dh) Grafiği                                                 

                                                   

 

Şekil 3.9.’da x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Şekilde 

genlik sayısı 0,5 ile 0,6 değerleri arasında başlarken örnekleme numarasının 1 değerine 

denk gelmiştir. Genlik sayısının 0,6 ile 0,7 değerleri arasında rakamı örnekleme 

numarasının 2 değerine denk gelmiştir. Genlik sayısının 0,8 ile 0,9 değerleri arasında 

rakamı örnekleme numarasının 4 değerine denk gelmiştir. Genlik sayısının 0,9 ile 1 
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değerleri arasında rakamı örnekleme numarasının 5 değerine denk gelmiştir. Genlik 

sayısının 1 değeri örnekleme numarasının 6 değerine denk gelmiştir. Genlik sayısının 0,9 

ile 1 değerleri arası örnekleme numarasının 7 değerine denk gelmiştir. Genlik sayısının 

bitiş noktası 0,6 ile 0,7 değerleri arası örnekleme numarasının 11 değerine denk gelmiştir.  

Epilepsi olmayan normal bir EEG sinyalinden analiz edilen tekillik spektrumu 

(dh) epileptik EEG sinyalden analiz edilen tekillik spektrumunun grafiklerinin farkına 

bakıldığında normal anda alınan EEG sinyalinin tekillik spektrumu daha yüksek genliğe 

sahiptir.  

 

Tutucu üs tahminleri (h), 1'e 11 skaler vektörü olarak döndürülür. Tutucu üsler, 

sinyal düzenliliğini karakterize eder. Bir Holder üssü 1'e ne kadar yakınsa, fonksiyon 

türevlenebilir olmasına o kadar yakın olur. Tersine, Holder üssü sıfıra ne kadar yakınsa, 

fonksiyon süreksizliğe o kadar yakın olur (Jaffard, Lashermes ve Abry, 2006). 

Normal kişiden alınan EEG sinyalleri analiz edilerek h tutucu üs tahminleri elde 

edilmiştir. Bu analizde chb01_01 veri setine ait grafik Şekil 3.9’da gösterilmiştir. 

Şekil 3.10: Normal EEG Sinyaline Ait Tutucu Üs Tahminleri (h) Grafiği (Chb01_01) 

  

 

Şekil 3.10.’da x ekseni örnek numarasını ve y ekseni de genlik gösterir. Grafiği 

bir az açıklasak genlik 0,55 ile 0,6 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genlik 0,5 ile 0,55 değerleri arasında rakamı örnekleme 

numarasının 4 değerine denk gelmiştir. Genlik 0,2 ile 0,25 değerleri arasında rakamı 

örnekleme numarasının 10 değerine denk gelmiştir. Genliğin bitiş noktası 0,15 ile 0,2 

değerleri arası örnekleme numarasının 11 değerine denk gelmiştir.  
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Daha sonra h Tutucu üs tahminleri epileptik kişiden alınan sinyalle yapılan analiz 

chb05_13 veri setini örnek olarak kullanılan veriye ait Şekil 3.10’da gösterilmiştir. 

Şekil 3.11: Epileptik Kişiden Alınan Chb05_13 Veri Setinin Tutucu Üs Tahminleri (h) 

Grafiği  

 

 

Şekil 3.11.’da x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik 0,65 ile 0,7 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genlik 0,65 değerinde örnekleme numarasının 2 değerine denk 

gelmiştir. Genlik 0,6 ile 0,65 değerleri arasında rakamı örnekleme numarasının 3 değerine 

denk gelmiştir. Genlik 0,55 ile 0,6 değerleri arasında örnekleme numarasının 4 değerine 

denk gelmiştir. Genlik 0,35 değerinde örnekleme numarasının 7 değerine denk gelmiştir. 

Genlik 0,3 değerinde örnekleme numarasının 8 değerine denk gelmiştir. Genlik 0,25 ile 

0,3 değerleri arasında örnekleme numarasının 9 değerine denk gelmiştir. Genlik 0,25 

değerinde örnekleme numarasının 10 değerine denk gelmiştir. Genlik bitiş noktası 0,2 ile 

0,25 değerleri arası örnekleme numarasının 11 değerine denk gelmiştir. 

Normal EEG sinyalinden analiz edilen Tutucu üs tahminleri (h) epileptik EEG 

sinyalden analiz edilen Tutucu üs tahminleri (h) grafiklerinin farkı şöyledir: normal 

kişiden alınan EEG sinyalinin Tutucu üs tahminleri (h) grafiğinde başlangıç genlik 

değerinin bitiş genlik değerinden yüksek değere sahiptir ve epileptik kişiden alınan EEG 

sinyalinin Tutucu üs tahminleri (h)’da aynı grafiktendir, ancak farkı normal kişiden alınan 

EEG sinyalinin Tutucu üs tahminleri (h) genlik epileptik kişiden alınan EEG sinyalinin 

Tutucu üs tahminleri (h)’dan küçük değere sahiptir. 

Kümülantlar (cp), 1'e 3 skaler vektörü olarak döndürülür. Vektör, ölçeklendirme 

üslerinin ilk üç günlük birikimlerini içerir. İlk kümülant, ölçeklendirme üslerindeki 
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doğrusal davranışı karakterize eder. İkinci ve üçüncü kümülantlar, doğrusallıktan 

ayrılmayı karakterize eder (Wendt ve Abry, 2007). 

Kümülantlara bakıldığında normal anda alınan sinyalle yapılan analiz chb01_01 

veri setini örnek olarak kullanılan veriye ait Şekil 3.11’de gösterilmiştir. 

Şekil 3.12: Normal EEG Sinyaline Ait Kümülant Grafiği (Chb01_01) 

 

 

Şekil 3.12.’de x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik 0,4 ile 0,5 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genlik -0,1 ile 0 değerleri arasında örnekleme numarasının 2 

değerine denk gelmiştir. Genliğin bitiş noktası -0,1 ile 0 değerleri arası örnekleme 

numarasının 3 değerine denk gelmiştir. 

 Daha sonra cp kümülantları epileptik kişiden alınan sinyalle yapılan analiz 

chb05_13 veri setini örnek olarak kullanılan veriye ait Şekil 3.12’de gösterilmiştir. 

Şekil 3.13: Epileptik Kişiden Alınan Chb05_13 Veri Setinin Kümülantları (cp) Grafiği 
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Şekil 3.13.’de x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik 0,4 ile 0,5 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genlik -0,1 ile 0 değerleri arasında örnekleme numarasının 2 

değerine denk gelmiştir. Genliğin bitiş noktası 0 ile 0,1 değerleri arası örnekleme 

numarasının 3 değerine denk gelmiştir. Normal EEG sinyalinden analiz edilen 

Kümülantları (cp) epileptik EEG sinyalden analiz edilen Kümülantları (cp) grafiklerinin 

farkı şöyledir: normal kişiden alınan EEG sinyalinin Kümülantları (cp) grafikinde bitiş 

genlik değeri epileptik kişiden alınan EEG sinyalinin Kümülantları (cp)’dan küçük değere 

sahiptir. 

Ölçeklendirme üsleri (tauq), sütun vektörü olarak döndürülür. Üsler, –5 ile +5 

arasındaki doğrusal aralıklı momentler içermektedir (Jaffard, Lashermes ve Abry, 2006). 

Önce tauq Ölçeklendirme üsleri normal kişiden alınan sinyalle yapılan analiz chb01_01 

veri setini örnek olarak kullanılan veriye ait Şekil 3.13’te gösterilmiştir.  

Şekil 3.14: Normal EEG Sinyaline Ait Ölçeklendirme Üs Grafiği (Chb01_01) 

 

 

Şekil 3.14.’de x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik -3 ile -2,5 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genliğin bitiş noktası 1,5 ile 2 değerleri arası örnekleme 

numarasının 11 değerine denk gelmiştir. 

Daha sonra tauq Ölçeklendirme üsleri epileptik kişiden alınan sinyalle yapılan 

analiz chb05_13 veri setini örnek olarak kullanılan veriye ait Şekil 3.14’te gösterilmiştir.  
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Şekil 3.15: Epileptik Kişiden Alınan Chb05_13 Veri Setinin Ölçeklendirme Üsleri (tauq) 

Grafiği 

 

 

Şekil 3.15.’de x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik -3 ile -2,5 değerleri arasında başlarken örnekleme numarasının 1 

değerine denk gelmiştir. Genliğin bitiş noktası 1,5 değerinde örnekleme numarasının 11 

değerine denk gelmiştir. 

Normal EEG sinyalinden analiz edilen Ölçeklendirme üsleri (tauq) epileptik 

EEG sinyalden analiz edilen Ölçeklendirme üsleri (tauq) grafiklerinin farkı şöyledir: 

normal kişiden alınan EEG sinyalinin Ölçeklendirme üsleri (tauq) grafiğinde bitiş genlik 

değeri epileptik kişiden alınan EEG sinyalinin Ölçeklendirme üsleri (tauq)’dan azca 

büyük değere sahiptir. 

 

3.3.2. Spektral Analiz 

ZF sinyal işleme, doğru temsil ve durağan olmayan sinyallerin verimli analizi ve 

işlenmesi ihtiyacı nedeniyle ortaya çıkar (Boashash ve Ouelha, 2018). Durağan olmayan 

sinyaller çok yaygın doğal fenomenlerdir (Varanis, vd., 2021). Fourier dönüşümü gibi 

durağanlık kabul eden geleneksel yöntemlerle analiz için uygun olmamalarını sağlayan 

zamanla değişen frekans içerikleri ile karakterize edilirler (Galadí, vd., 2021). ZF sinyal 

işleme, ortak ZF alanındaki sinyalleri göstermek amacıyla Tek Bileşenli Sinyaller (TBS) 

kullanır. Bu sayede sinyalleri zaman bazında spektral değişimleri gözlenir (Feng, vd., 

2020). 
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Tek bileşenli sinyaller için, TBS'in sabit zamanlı kesitlerinin tepe noktaları ve 

birinci dereceden momenti, sinyalin AF yasasının tahminlerini verir (Straub, vd., 

2020). Çok bileşenli bir sinyal için çok AF ile çalışılmaktadır (Shi, vd., 2022). Bu tür 

sinyalleri karakterize etmek için, her sinyal bileşenine bir AF kuralı atanır (Bruni, 

Tartaglione ve Vitulano, 2020). Çok bileşenli sinyaller için çeşitli AF tahmin yaklaşımları 

önerilmiştir (Amin, Zhang ve Himed, 2019). Sinyal bileşenlerini ZF temsilinden lokalize 

etmek ve AF tahmin prosedürünü gerçekleştirmek olar (Khan ve Ali, 2020). Yöntemler, 

bileşenlerinin ZF alanında ayrılması dışında, analiz edilen sinyal hakkında önceden bilgi 

gerektirmeme avantajına sahiptir (Vranković, Lerga ve Saulig, 2020), bu durum 

genellikle yeni doğan EEG sinyalleri tarafından karşılanır (Alkhachroum, vd., 2022).  

Bir spektrogram, frekans analizine bir zaman boyutu getirerek durağan olmayan 

bir sinyaldeki frekansları tahmin etmek için kullanılır. Yöntemler sinyali kısa olarak böler 

(Varanis, vd., 2021). Zaman dilimleri ve sinyalin her segment içinde sabit olduğunu 

varsayılır. Daha sonra her segment için bir periodogram hesaplanır (Castro-Tirado, vd., 

2021).  

 

3.3.2.1. AF analizi 

AF, frekans içeriğinin zamanla nasıl değiştiğini açıklayan durağan olmayan bir 

sinyalin anahtar parametresidir (Xin, Hao ve Li, 2019). Tek bileşenli bir analitik sinyal 

(Zhou, vd., 2022) Denklem 3.10’da gösterilmiştir. 

𝑧(𝑡) = 𝑎(𝑡) ∙  𝑒𝑗𝜑(𝑡)    (3.10)  

Denklem 3.10’da z(t) Tek Bileşenli Analitik Sinyal (TBAS), Anlık Genlik (AG) 

a(t) ile sinyalin eksponensial değeri üzeri 𝑗𝜑(𝑡) çarpımına eşittir ve φ (t) sinyalin anlık 

fazıdır (Sengupta ve Lande, 2020). AF hesaplamak için Denklem 3.11’de gösterilmiştir: 

𝑓𝑖 (𝑡) =  
1

2𝜋 
⋅

𝑑𝜑(𝑡)

𝑑𝑡
   (3.11)  

Denklem 3.11’de  𝑓𝑖 (𝑡)  sinyalin AF’dır. Sinyalin ters periodunun yani 

frekansının  
1

2𝜋 
 anlık fazının zamana göre değişiminin 

𝑑𝜑(𝑡)

𝑑𝑡
 çarpımına eşittir.           
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Önce normal kişiden alınan sinyalden AF analiz yapılmıştır. Bu analiz için 

chb01_01 veri setini örnek olarak kullanılan veriye ait grafik Şekil 3.15.’de gösterilmiştir.  

Şekil 3.16: Normal EEG Sinyaline Ait AF Grafiği (Chb01_01) 

 

                                                                

Şekil 3.16’da x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik 0 ile 5 değerleri arasında başlarken örnekleme numarasının 0 

değerine denk gelmiştir. Genliğin bitiş noktası 5 değerinde örnekleme numarasının 250 

ile 300 değerine denk gelmiştir. Grafik periodiktir, amplitüdleri artıp azalan yöndedir. 

Örnek numarası 0:50:300, genlik 0:5:45 ardıcıllığıynan artar. 

Daha sonra epileptik kişiden alınan sinyalden AF analiz yapılmıştır. Bu analiz 

için chb05_13 veri setini örnek olarak kullanılan veriye ait grafik Şekil 3.16’da 

gösterilmiştir. 

Şekil 3.17: Epileptik Kişiden Alınan Chb05_13 Veri Setinin AF Grafiği 
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Şekil 3.17’de x ekseni örnek numarasını ve y ekseni de genliği gösterir. Grafiği 

bir az açıklasak genlik 0 ile 5 değerleri arasında başlarken örnekleme numarasının 0 

değerine denk gelmiştir. Genliğin bitiş noktası 0 ile 5 değerleri arasında örnekleme 

numarasının 250 ile 300 değerine denk gelmiştir. Grafik periodiktir, amplitüdleri artıp 

azalan yöndedir. Örnekleme numarası 0:50:300, genlik 0:5:45 ardıcıllığıynan artar. 

Normal EEG sinyalinden analiz edilen AF epileptik EEG sinyalden analiz edilen 

AF grafiklerinin farkı şöyledir: normal kişiden alınan EEG sinyalinin AF grafiğinde bitiş 

genlik değeri epileptik kişiden alınan EEG sinyalinin AF’dan azca büyük değere sahiptir. 

 

3.3.2.2. Spektral Entropi 

Sinyallerde spektral karmaşıklığını ölçen bir sisteme güç SE’si denilir (Patel ve 

Annavarapu, 2021). Belirsiz bir sistem için, sistemin durumları olarak rastgele bir 

değişken X varsayalım, X'in değeri Denklem 3.12’da kullanılarak hesaplanır. 

𝑋 =  {𝑥1,   𝑥2, …,   𝑥𝑛}  (3.12) 

Denklem 3.12’da X – EEG sinyalinin değişkenidir, 𝑥1, 𝑥2, … , 𝑥𝑛 - EEG 

sinyalinin değişkeninin değerleridir. 

Karşılık gelen olasılık 

𝑃 =  {𝑝1,   𝑝2, …,   𝑝𝑛}, 0 ≤ 𝑝𝑖 ≤ 1, 𝑖 = 1, 2, … , 𝑛 (3.13) 

Denklem 3.13’te karşılık gelen olasılık P eşittir karşılık gelen olasılığın 

değerlerine 𝑝1, 𝑝2,…, 𝑝𝑛. 𝑝𝑖 0, 1 ve arasındaki değerleri alıyor. 𝑖’de karşılık gelen 

olasılığın indeks değeridir, 1’den belirlenen maksimum artı değerleri almaktadır. 

∑ 𝑝𝑖
𝑛
𝑖=1 = 1  (3.14) 

Denklem 3.14’te toplam karşılık gelen olasılık değeri 1’den n kadar toplam 

sayıları alır. 

Bu nedenle, sistemin bilgi entropisi şu şekilde ifade edilebilir 

𝐻 =  − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖
𝑛
𝑖=1   (3.15) 

Denklem 3.15’te, H, sistemin bilgi entropisidir eşittir eksi toplamda kısıtlamalar 

altında olan olasılığa karşılık gelen ve olasılığın logaritmik değerine karşılık gelen 𝑝𝑖 ile 
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çarpılır. Denklem 3.14’te gördüğümüz gibi toplam kısıtlamalar altında olan değere 

karşılık gelen olasılık değeri olarak bir alınır. 

Shannon tarafından belirlenen düzensiz ölçüde hesaplayıp sonuca varan entropi 

değerine Shannon SE denir. SE, bir sinyalin frekans alanında normalleştirilmiş dağıtım 

gücü ile bir olasılık dağılımı olarak çalışır. Bir sinyal için SE'nin matematiksel açıklaması, 

güç spektrumu ve olasılık dağılım denklemlerinden türetilebilir. Bir sinyal g(m) için, 

sinyal güç spektrumu şu şekilde ifade edilir: 𝑃𝑠(𝑚). Nerede, 𝑃𝑠(𝑚) =  |𝑔(𝑚)|2. Olasılık 

dağılımı, 𝑃𝑑(𝑚) aşağıdaki denklemde verilmiştir. 

𝑃𝑑(𝑚) =  
𝑃𝑠(𝑚)

𝛴𝑖𝑃𝑠(𝑖)
 (3.16)  

Denklem 3.16’da m herhangi bir anlık dizi 𝑖 değeridir. Olasılık dağılımı 𝑃𝑑(𝑚) 

sinyalin güç spektrumunun 𝑃𝑠(𝑚) toplam güç spektrumunun 𝑖 değerine 

𝛴𝑖𝑃𝑠(𝑖) bölünmesiyle hesaplamak olur. SE, Denklem 3.17’de gösterilmiştir. 

𝑆𝐸 =  − ∑ 𝑃𝑑(𝑚)𝑙𝑜𝑔2𝑃𝑑(𝑚)
𝑁

𝑚=1
  (3.17) 

Denklem 3.17’de eksi toplamda herhangi bir anlık dizinin m=1 değerinden 

başlar. Frekans noktaları N sayısının değerlerine kadar toplam işlemi gider. − ∑𝑚=1
𝑁  

Olasılık dağılımının logaritmik değerin olasılık dağılımının çarpımına eşitliye SE formüle 

göre tanımıdır. 

Denklem (3.17) normalleştirdikten sonra, aşağıdaki denklem (3.18) elde edilir, 

𝑆𝐸𝑛
=  − 

∑ 𝑃𝑑(𝑚)𝑙𝑜𝑔2𝑃𝑑(𝑚)
𝑁

𝑚=1

𝑙𝑜𝑔2𝑁
 (3.18) 

Denklem 3.18’de Denklem 3.17’i 𝑙𝑜𝑔2𝑁, frekans alanı üzerinde düzgün 

dağılımlı beyaz gürültünün maksimum SE’ne böldükte SE’in normalleşmiş haline gelir. 

Denklem 3.18’de N frekans noktaları, 𝑙𝑜𝑔2𝑁, frekans alanı üzerinde düzgün 

dağılımlı beyaz gürültünün maksimum SE’dir. Anlık bir süre için SE aşağıdaki Denklem 

(3.19) gibi hesaplanır. 

𝑆𝐸(𝑡) =  − ∑ 𝑃𝑑(𝑡, 𝑚)𝑙𝑜𝑔2𝑃𝑑(𝑡, 𝑚)
𝑁

𝑚=1
 (3.19) 
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Denklem 3.19’da eksi toplamda herhangi bir anlık dizinin m=1 değerinden 

başlar frekans noktaları N sayısının değerlerine kadar toplam işlemi gider − ∑𝑚=1
𝑁   anlık 

bir sürede olasılık dağılımının logaritmik değerin anlık bir sürede olasılık dağılımının 

çarpımına eşitliye anlık sürede SE’in Denkleme göre tanımıdır (Patel ve Annavarapu, 

2021). 

SE (pa) normal kişiden alınan sinyalle yapılan analiz chb01_01 veri setini örnek 

olarak kullanılan veriye ait şekil 3.17’de gösterilmiştir. 

Şekil 3.18. Normal EEG Sinyaline Ait Spektral Entropi Grafiği (Chb01_01) 

  

 

 

 

 

 

 

Şekil 3.18’de x ekseni örnek numarasını ve y ekseni de genliği gösterir. Grafiği 

bir az açıklasak genlik 0,45 ile 0,5 değerleri arasında başlarken örnekleme numarasının 0 

değerine denk gelmiştir. Genliğin bitiş noktası 0,6 ile 0,65 değerleri arasında örnekleme 

numarasının 250 ile 300 değerine denk gelmiştir. Grafik periodiktir, amplitüdleri artıp 

azalan yöndedir. Örnek numarası 0:50:300, genlik sayılarda 0,45:0,05:0,9 arıcılığıysan 

artar. 

SE (pa) epileptik kişiden alınan sinyalle yapılan analiz Chb05_13 veri setini 

örnek olarak kullanılan veriye ait şekil 3.18’de gösterilmiştir. 
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Şekil 3.19: Epileptik Kişiden Alınan Chb05_13 Veri Setinin SE (pa) Grafiği 

 

 

 

 

 

 

 

Şekil 3.19’da x ekseni örnek numarasını ve y ekseni de genliyi gösterir. Grafiği 

bir az açıklasak genlik 0,6 ile 0,65 değerleri arasında başlarken örnekleme numarasının 0 

değerine denk gelmiştir. Genliğin bitiş noktası 0,5 ile 0,55 değerleri arasında örnekleme 

numarasının 250 ile 300 değerine denk gelmiştir. Grafik periodiktir, amplitüdleri artıp 

azalan yöndedir. Örnek numarası 0:50:300, genlik sayılarda 0,45:0,05:0,9 olarak artar. 

Normal ana ait EEG sinyalinden analiz edilen SE (pa) epileptik EEG sinyalden 

analiz edilen SE (pa) grafiklerinin farkı şöyledir: normal kişiden alınan EEG sinyalinin 

SE (pa) grafiğinde başlangıç ve bitiş genlik değeri epileptik kişiden alınan EEG sinyalinin 

SE (pa)’dan azca küçük değere sahiptir. 

 

3.4. UZUN-KISA SÜRELİ HAFIZA DERİN ÖĞRENME MODELİ 

UKSHDÖM verilerin yapılarının (kalıplarının) tanınmasından ve daha sonra 

analiz edilmesinden elde edilen bilgileri depolar. UKSHDÖM, bir DÖ algoritması olan 

Tekrarlayan Sinir Ağına (TSA) dayanmaktadır. TSA, aktivasyon enerjisi yerel olarak 

besleyen ve tekrarlayan yapılardan oluşur, bu nedenle önceki çıktıları depolamak için 

harici kayıtlara veya belleklere ihtiyaç yoktur. TSA'da kullanılan tekrarlayan yapılar 

nedeniyle UKSHDÖM’da hesaplama karmaşıklığı düşüktür. UKSHDÖM iç yapısı 

(Şekil 3.20’de) gösterilmiştir (Smagulova ve James, 2019). 
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Şekil 3.20: ÇYUKSHDÖM İç Yapısı 

 

Kaynak: Tosun ve Çetin, 2022. 

 

UKSHDÖM blok teorisinde, çarpma “*” gereksiz içeriğin unutulmasına, 

toplama “+” ise yeni bir şeyin hatırlanmasını ifade eder. Veri dizileri önemli ve yeni bir 

şeyle karşılaştıysa, bu uzun vadeli içeriğe (𝐶𝑡) eklenmelidir. 

UKSHDÖM ağı 3 kapıdan oluşur. Bunlar unutma kapısı, girdi kapısı ve çıktı 

kapısıdır. Unutma kapısı hücre durumundan hangi bilgilerin atılabileceğini belirlemektir. 

Bu kapı yalnız sigmoidal katmandan (𝜎) oluşur. Başlangıçta, özyinelemenin mevcut 

adımındaki 𝑋𝑡 giriş değeri, bloğun önceki gizli durumu ile birleştirilir ve sinir ağının 

sigmoidal tam bağlı katmanının girişine beslenir. Çıktıda bu 𝑓𝑡 değeri, 𝐶𝑡−1 vektörünün 

boyutuna eşit boyutta oluşturulur. Ayrıca 𝑓𝑡, 0 ile 1 aralığındaki elemanlardan oluşur 

(Tiwari, vd., 2023). 𝑓𝑡 Denklem 3.20’de ile hesaplanır. 

𝑓𝑡 =  𝜎(𝑊𝑓  · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.20) 

Denklem 3.20’de tam bağlı bir sigmoid katmanın girişinde ilk başta böyle bir 

ortak vektör [ℎ𝑡−1, 𝑥𝑡] oluşturulduğunu görüyoruz, daha sonra 𝑊𝑓 ağırlık katsayıları ile 

çarpılıyor, ardından bias ofset 𝑏𝑓 ekleniyor, ancak tüm bunlar sigmoid işlevinden geçirilir. 

Çıktıda 𝑓𝑡 vektörü alınır. Yani 𝑓𝑡 vektörü hangi bilgileri saklanacağını ve unutulacağını 

gösteriyor. Bu onun eğitimi sırasında belirlenir. Yani, öğrenme sürecinde ağırlık 

katsayıları, ağın ortalama olarak uzun vadeli içerik vektörünün gereksiz değerlerini doğru 

bir şekilde zayıflatması ve ihtiyaç duyulanı bırakması için seçilir (Khalil, vd., 2019).  
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Girdi kapısı, hücrenin durumunda hangi yeni bilgilerin saklanacağına karar 

vermektedir. Bu kapı iki katmandan oluşmaktadır. Bunlar, sigmoidal ve tanh 

katmanlarıdır. Burada ayrıca, daha önce elementel ekleme işlemi de kullanılmaktadır. 

Çarpmadan eklemeye giden vektör, iki miktar temelinde oluşturulur, bunlar 𝑖𝑡 ve  

𝐶̃𝑡−1
′ 𝑑𝑖𝑟.  Aşağıdaki denklemlerde 𝑖𝑡 ve 𝐶𝑡̃ – nin hesaplama formülleri gösterilmiştir. 

𝑖𝑡 = 𝜎 (𝑊𝑝 ∙ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)   (3.21) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ  (𝑊𝐶  ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3.22) 

 

Denklem 3.21 ve 3.22’ü şöyle anlatabiliriz: Sigmoid ve tanh katmanlarının 

denklemlerde gördüğümüz gibi böyle ortak vektörü [ℎ𝑡−1, 𝑥𝑡] oluşur. Sonra sigmoid 

katmanından 𝑊𝑝 ve tanh katmanından 𝑊𝐶 ağırlık katsayıları ile çarpılıyor, ardından 

sigmoid katmanında bias ofset 𝑏𝑖 tanh katmanında 𝑏𝐶 ekleniyor, ancak tüm bunlar hem 

sigmoid hem de tanh katmanlarından geçiriliyor. Çıkışta sigmoid katmanından 𝑖𝑡 ve tanh 

katmanından 𝐶̃𝑡 vektörleri alınır (Smagulova ve James, 2019).  

Çıktı kapısı, çıktı olarak hangi bilgileri almak istediğimize karar vermemiz 

gerekiyor. Çıktı kapısı iki katmandan oluşur: Sigmoid ve tanh. Çıktı, hücre durumumuza 

dayalı olmaktadır ve buna bazı filtreler uygulanmaktadır. İlk olarak, hücre durumundan 

hangi bilgileri çıkaracağımıza karar veren bir sigmoid katman uygulanır. Hücre durum 

değerleri daha sonra -1 ile 1 aralığında çıktı değerleri üretmek için tanh katmanından 

geçirilir ve sadece gerekli bilgileri çıktılamak için sigmoid katmanının çıktı değerleri ile 

çarpılır.  

𝑜𝑡 =  𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)       (3.23) 

Denklem 3.23’te tam bağlı bir sigmoid katmanın girişinde ilk başta böyle bir 

ortak vektör [ℎ𝑡−1, 𝑥𝑡] oluşturulduğunu görüyoruz, daha sonra 𝑊𝑜 ağırlık katsayıları ile 

çarpılıyor, ardından bias ofset 𝑏𝑜 ekleniyor, ancak tüm bunlar sigmoid işlevinden geçirilir. 

Çıktıda 𝑜𝑡 vektörü alınır. Yani 𝑜𝑡 vektörü hangi bilgileri almak istedığımızı gösteriyor. 

ℎ𝑡 =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ  (𝐶𝑡)       (3.24) 

Denklem 3.24’te çıktı değeri ℎ𝑡 sigmoid katmanının çıktı değerinin ot tanh 

katmanının 𝐶𝑡  çıktı değerinin çarpımıdır (Siami-Namini, Tavakoli ve Namin, 2019). 
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3.5. DENEYLERİN DOĞRULANMASI 

Tez çalışmasında, deneyler UKSHDÖM ile sınıflandırılmıştır. Bu sınıflandırma 

ile veri setinin yüzde (%) kaç başarı kazandığını gördük. Bundan ziyade, karşılık matrisi 

ile Doğruluk, Özgüllük, Hassasiyet, YPO, Duyarlılık, NTD, F1-puanı, MKK, YNO, YKO 

metrikleri hesaplanmıştır. 

Eğitim ve testin başarısı karmaşıklık matrisi ile performansları belirlenmiştir. 

Analizler ne kadar düzenli şekilde yapılırsa karmaşıklık matrisi de o kadar başarılı olur. 

Karmaşıklık matrisi Tablo 3.5’te gösterilmiştir. 

Tablo 3.5: Karmaşıklık Matrisi Tahmini 

 
        Tahmini sınıf 

E N 

Gerçek sınıf E TP FP 

N FN TN 

 

Doğruluk: Doğru tahmin sayısının toplam veri sayısına oranıdır (Mangalathu, 

vd., 2020). 

𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
  (3.25) 

 Denklem 3.25’te TP- doğru bir bilgiyi doğru kabul etmek, TN – yanlış bir 

bilgiyi yanlış kabul etmek, FN – yanlış bir bilgiyi doğru kabul etmek, FP – doğru bir 

bilgiyi yanlış kabul etmek anlamına geliyorlar. 

Özgüllük: Toplam negatif sayısına bölünen doğru negatif tahminlerin sayısı 

olarak hesaplanır (Balaanand, vd., 2019).  

Ö𝑧𝑔ü𝑙𝑙ü𝑘 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.26) 
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Hassasiyet: Pozitif toplam tahmin sayısının doğru pozitif tahminlere oranıdır 

(Maragkakis, vd., 2009). Hassasiyet, Denklem 3.27 ile hesaplanır. 

𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.27) 

YPO: Toplam negatif sayısına bölünen hatalı pozitif tahminlerin sayısı olarak 

hesaplanır (Dankers, vd., 2019). YPO, Denklem 3.28 ile hesaplanır. 

𝑌𝑃𝑂 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
    (3.28) 

Duyarlılık: Pozitif toplam sayının pozitif doğru tahminlere oranıdır (Tomašev, 

vd., 2019). Duyarlılık, Denklem 3.29 ile hesaplanır. 

𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3.29) 

NTD: Toplam negatif tahmin sayısına bölünen doğru negatif tahminlerin 

sayısına olarak hesaplanır (Guastavino, vd., 2022).  NTD, Denklem 3.30 ile hesaplanır. 

𝑁𝑇𝐷 =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
  (3.30) 

F1-puanı: Kesinlik ve hatırlamanın harmonik bir ortalamasıdır (Miao ve Zhu, 

2022). F1 puanı, Denklem 3.31 ile hesaplanır. 

𝐹1 − 𝑝𝑢𝑎𝑛𝚤 =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (3.31) 

MKK: Karışıklık matrisindeki dört değerin tümü kullanılarak hesaplanan bir 

korelasyon katsayısıdır (Alotaibi, vd., 2022). MKK, Denklem 3.32 ile hesaplanır. 

𝑀𝐾𝐾 =  
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
  (3.32) 

YNO: Toplam negatif sayısına bölünen yanlış negatif tahminlerin sayısı olarak 

hesaplanır (Bhaduri, vd., 2022). YNO, Denklem 3.33 ile hesaplanır. 

YNO = 
𝐹𝑁

𝐹𝑁+𝑇𝑃
  (3.33) 

YKO: Pozitif toplam tahmin sayısının yanlış pozitif tahmin sayısına oranıdır 

(Habiger ve Liang, 2022). YKO, Denklem 3.34 ile hesaplanır. 

𝑌𝐾𝑂 =  
𝐹𝑃

𝐹𝑃+𝑇𝑃
 (3.34) 

 



52 

 

Denklem 3.34’te TP- doğru bir bilgiyi doğru kabul etmek, TN – yanlış bir bilgiyi 

yanlış kabul etmek, FN – yanlış bir bilgiyi doğru kabul etmek, FP – doğru bir bilgiyi 

yanlış kabul etmek anlamına geliyorlar. 
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DÖRDÜNCÜ BÖLÜM 

BULGULAR VE DENEYSEL ÇALIŞMALAR 
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Hazırladığımız bu tezde EEG sinyallerini gruplandırmak amacıyla normal ve 

epileptik olarak 2 çeşit gruba ayırmak için deneyler yapılmıştır. Şekil 4.1’de normal 

chb01_01 EEG sinyali 2’nci kanaldan alınmıştır ve Şekil 4.2’de epileptik chb05_13 EEG 

sinyali 7’nci kanaldan alınmıştır. 

Şekil 4.1: Normal Chb01_01 EEG Sinyali 

 

 

 

 

 

 

 

Şekil 4.1’de CHB-MIT Scalp veri setinden alınan CHB01_01 olarak etiketlenen 

bireyden alınan 10 saniyelik EEG sinyal bölütlemesi gösterilmiştir. Sinyal ilgili kişinin 

epilepsi nöbeti geçirilmediği döneme aittir. Bu tez çalışmasında yapılan deneylerde bu 

sinyaller “normal” olarak etiketlendi. 

Şekil 4.2: Epileptik Chb05_13 EEG Sinyali 

 

 

Şekil 4.2’de gösterilen epileptik EEG sinyali elektrik aktivasyonu bozulmaya 

uğrayarak hareket etmiştir. 
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4.1. YAPILAN DENEYLER 

Çalıştığımız tezimizde yapılan deney sayısı 22’dir. Bu deneylerdede kullanılan 

ÇYUKSHDÖM yapay zekâ algoritmasında hiperparametreler MaxEpochs=150, 

MiniBatchSize=384, InitialLearnRate=0,01, SequenceLength=1000, 

GradientThreshold=1 olarak ayarlanmıştır. 

1. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır.  Bu 

deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %85,29’luk başarı sağlanmıştır. 

Tablo 4.1: Birinci Deneydeki Karışıklık Matrisi 

 

E N 

E 29 4 

N 6 29 

 

Birinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.1’de verilmiştir. Tablodaki 4.1’deki 33 epileptik EEG sinyalinden 29’u epileptik 

gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Karışıklık 

matrisinden elde edilen değerler kullanılarak sırasıyla Doğruluk, Özgüllük, Hassasiyet, 

YPO, Duyarlılık, NTD, F1-puanı, MKK, YNO, YKO hesaplanmıştır. Hesaplanan bu 

metrikler Tablo 4.2’de sunulmuştur. 

Tablo 4.2: Birinci Deneyin Metrikleri  

 

Metrikler Değerler 

Doğruluk %85,29 

Özgüllük %87,88 

Hassasiyet %87,88 

YPO %12,12 

YPO %12,12 
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Tablo 4.2 (devam): Birinci Deneyin Metrikleri  

 

Metrikler Değerler 

Duyarlılık %82,86 

NTD %82,86 

F1-puanı %85,29 

MKK %70,74 

YNO %17,14 

 

Tablo 4.2’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %85,29 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %87,88 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%87,88 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %12,12 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %82,86 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %17,14 olarak ölçüldü. Hassasiyet ve hatırlamanın harmonik bir ortalaması olan 

F1-puanı: %85,29 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %70,74 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %17,14 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %12,12 olarak ölçüldü. 

2. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %61,76’lık başarı sağlanmıştır. 
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Tablo 4.3: İkinci Deneydeki Karışıklık Matrisi 

E N 

E 16 17 

N 9 26 

 

İkinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.3’te verilmiştir. Tablodaki 4.3’teki 33 epileptik EEG sinyalinden 16’ı epileptik 

gruba konulmuştur. 35 normal kişiden 26’ı normal gruba konulabilmiştir. Karışıklık 

matrisinden elde edilen değerler kullanılarak sırasıyla Doğruluk, Özgüllük, Hassasiyet, 

YPO, Duyarlılık, NTD, F1-puanı, MKK, YNO, YKO hesaplanmıştır. Hesaplanan bu 

metrikler Tablo 4.4’te sunulmuştur. 

Tablo 4.4: İkinci Deneyin Metrikleri 

Metrikler Değerler 

               Doğruluk %61,76 

Özgüllük %60,47 

Hassasiyet %48,48 

YPO %39,53 

Duyarlılık %64 

NTD %36 

F1-puanı %55,17 

MKK %23,6 

YNO %36 

YKO %51,52 
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Tablo 4.4’teki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %61,76 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %60,47 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%48,48 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %39,53 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %64 olarak ölçüldü. NTD; 

toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer 

%36 olarak ölçüldü. Hassasiyet ve hatırlamanın harmonik bir ortalaması olan F1-puanı: 

%55,17 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %23,6 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %36 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %51,52 olarak ölçüldü. 

3. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %80,88’lık başarı sağlanmıştır. 

Tablo 4.5: Üçüncü Deneydeki Karışıklık Matrisi 

 E N 

E 25 8 

N 5 30 

 

Üçüncü deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.5’te verilmiştir. Tablodaki 4.5’teki 33 epileptik EEG sinyalinden 25’i epileptik 

gruba konulmuştur. 35 normal kişiden 30’u normal gruba konulabilmiştir. Bu sonuçlar 

doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.6’dakı değerler elde edilmiştir. 
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Tablo 4.6: Üçüncü Deneyin Metrikleri 

Metrikler Değerleri 

               Doğruluk %80,88 

Özgüllük %78,95 

Hassasiyet %75,76 

YPO %21,05 

Duyarlılık %83,33 

NTD %85,71 

F1-puanı %79,37 

MKK %61,87 

YNO %16,67 

YKO %24,24 

 

Tablo 4.6’dakı Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %80,88 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %78,95 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%75,76 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %21,05 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %83,33 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %85,71 olarak ölçüldü. Hassasiyet ve hatırlamanın harmonik bir ortalaması olan 

F1-puanı: %79,37 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %61,87 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %16,67 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %24,24 olarak ölçüldü. 
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4. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır.  

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %75’lik başarı sağlanmıştır. 

Tablo 4.7: Dördüncü Deneydeki Karışıklık Matrisi 

 E N 

E 29 4 

N 13 22 

 

Dördüncü deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.7’de verilmiştir. Tablodaki 4.7’deki 33 epileptik EEG sinyalinden 29’u 

epileptik gruba konulmuştur. 35 normal kişiden 22’si normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.8’deki değerler elde 

edilmiştir. 

Tablo 4.8: Dördüncü Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %75 

Özgüllük %84,62 

Hassasiyet %87,88 

YPO %15,38 

Duyarlılık %69,05 

NTD %62,86 

F1-puanı %77,33 

MKK %52,18 
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Tablo 4.8 (devam): Dördüncü Deneyin Metrikleri  

Metrikler Değerleri 

YNO %30,95 

YKO %12,12 

 

Tablo 4.8’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %75 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %84,62 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%87,88 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %15,38 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %69,05 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %62,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %77,33 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %52,18 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %30,95 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %12,12 olarak ölçüldü. 

5. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %79,41’lık başarı sağlanmıştır. 

Tablo 4.9: Beşinci Deneydeki Karışıklık Matrisi 

 E N 

E 25 8 

N 6 29 
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Beşinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.9’da verilmiştir. Tablodaki 4.9’dakı 33 epileptik EEG sinyalinden 25’i epileptik 

gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu sonuçlar 

doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.10’dakı değerler elde edilmiştir. 

Tablo 4.10: Beşinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %79,41 

Özgüllük %78,38 

Hassasiyet %75,76 

YPO %21,62 

Duyarlılık %80,65 

NTD %82,86 

F1-puanı %78,13 

MKK %58,82 

YNO %19,35 

YKO %24,24 

 

Tablo 4.10’daki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %79,41 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %78,38 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%75,76 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %21,62 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %80,65 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-
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puanı: %78,13 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %58,82 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %19,35 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %24,24 olarak ölçüldü. 

6. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %58,82’lik başarı sağlanmıştır. 

Tablo 4.11: Altıncı Deneydeki Karışıklık Matrisi 

 E N 

E 22 11 

N 17 18 

 

Altıncı deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.11’de verilmiştir. Tablodaki 4.9’dakı 33 epileptik EEG sinyalinden 22’si epileptik 

gruba konulmuştur. 35 normal kişiden 18’i normal gruba konulabilmiştir. Bu sonuçlar 

doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.10’dakı değerler elde edilmiştir. 

Tablo 4.12: Altıncı Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %58,82 

Özgüllük %62,07 

Hassasiyet %66,67 

YPO %37,93 

Duyarlılık %56,41 

NTD %51,43 
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Tablo 4.12 (devam): Altıncı Deneyin Metrikleri  

Metrikler Değerleri 

F1-puanı %61,11 

MKK %18,29 

YNO %43,59 

YKO %33,33 

 

Tablo 4.12’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %58,82 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %84,62 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%87,88 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %15,38 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %69,05 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer  %62,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %61,11 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %18,29 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %30,95 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %12,12 olarak ölçüldü. 

7. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %80,88’lik başarı sağlanmıştır. 
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Tablo 4.13: Yedinci Deneydeki Karışıklık Matrisi 

 E N 

E 26 7 

N 6 29 

 

Yedinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.13’te verilmiştir. Tablodaki 4.9’dakı 33 epileptik EEG sinyalinden 26’sı epileptik 

gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu sonuçlar 

doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.14’teki değerler elde edilmiştir. 

Tablo 4.14: Yedinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %80,88 

Özgüllük %80,56 

Hassasiyet %78,79 

YPO %19,44 

Duyarlılık %81,25 

NTD %82,86 

F1-puanı %80 

MKK %61,73 

YNO %18,75 

YKO %21,21 
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Tablo 4.14’teki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %80,88 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %80,56 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%78,79 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %19,44 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %81,25 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %80 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %61,73 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %18,75 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %21,21 olarak ölçüldü. 

8. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %70,59’luk başarı sağlanmıştır. 

Tablo 4.15: Sekizinci Deneydeki Karışıklık Matrisi 

 E N 

E 24 9 

N 11 24 

 

Sekizinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.9’da verilmiştir. Tablodaki 4.15’teki 33 epileptik EEG sinyalinden 24’ü 

epileptik gruba konulmuştur. 35 normal kişiden 24’ü normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.16’dakı değerler elde 

edilmiştir. 

 

 



67 

 

Tablo 4.16: Sekizinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %70,59 

Özgüllük %72,73 

Hassasiyet %72,73 

YPO %27,27 

Duyarlılık %68,57 

NTD %68,57 

F1-puanı %70,59 

MKK %41,30 

YNO %31,43 

YKO %27,27 

 

Tablo 4.16’daki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %70,59 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %72,73 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%72,73 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %27,27 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %68,57 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %68,57 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %70,59 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan MKK: %41,3 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır. Hesaplanan değer %31,43 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %27,27 olarak ölçüldü. 
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9. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %82,35’lik başarı sağlanmıştır. 

Tablo 4.17: Dokuzuncu Deneydeki Karışıklık Matrisi 

 E N 

E 26 7 

N 5 30 

 

Dokuzuncu deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.17’da verilmiştir. Tablodaki 4.17’dakı 33 epileptik EEG sinyalinden 26’ı 

epileptik gruba konulmuştur. 35 normal kişiden 30’u normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.18’deki değerler elde 

edilmiştir. 

Tablo 4.18: Dokuzuncu Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %82,35 

Özgüllük %81,08 

Hassasiyet %78,79 

YPO %18,92 

Duyarlılık %83,87 

NTD %85,71 

F1-puanı %81,25 

MKK %64,73 
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Tablo 4.18 (devam): Dokuzuncu Deneyin Metrikleri  

Metrikler Değerleri 

YNO %16,13 

YKO %21,21 

 

Tablo 4.18’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %82,35 olarak ölçüldü.  Özgüllük; toplam negatif sayının, doğru 

negatif tahminlerin oranıdır. Hesaplanan değer %81,08 olarak ölçüldü. Hassasiyet; 

Toplam pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan 

değer %78,79 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif 

tahminlerin oranıdır. Hesaplanan değer %18,92 olarak ölçüldü. Duyarlılık; toplam pozitif 

sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %83,87 olarak 

ölçüldü. NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. 

Hesaplanan değer  %85,71 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir 

ortalaması olan F1-puanı: %81,25 olarak görüldü. Karışıklık matrisindeki dört değerin 

tümü kullanılarak hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon 

Katsayısı: %64,73 olarak görüldü. YNO; toplam negatif sayının, yanlış negatif 

tahminlerin sayısına oranıdır.  Hesaplanan değer %16,13 olarak ölçüldü. YKO; toplam 

pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %21,21 

olarak ölçüldü. 

10. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %77,94’lük başarı sağlanmıştır. 

Tablo 4.19: Onuncu Deneydeki Karışıklık Matrisi 

 E N 

E 27 6 

N 9 26 
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Onuncu deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.19’da verilmiştir. Tablodaki 4.19’dakı 33 epileptik EEG sinyalinden 27’i 

epileptik gruba konulmuştur. 35 normal kişiden 26’ı normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.20’deki değerler elde 

edilmiştir. 

Tablo 4.20: Onuncu Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %77,94 

Özgüllük %81,25 

Hassasiyet %81,82 

YPO %18,75 

Duyarlılık %75 

NTD %74,29 

F1-puanı %78,26 

MKK %56,18 

YNO %25 

YKO %18,18 

 

Tablo 4.20’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %77,94 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %81,25 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%81,82 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %18,75 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %75 olarak ölçüldü. NTD; 

toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer 
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%74,29 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-puanı: 

%78,26 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %56,18 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %25 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %18,18 olarak ölçüldü. 

11. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %64,71’lik başarı sağlanmıştır. 

Tablo 4.21: On birinci Deneydeki Karışıklık Matrisi 

 E N 

E 20 13 

N 11 24 

 

On birinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.21’de verilmiştir. Tablodaki 4.21’deki 33 epileptik EEG sinyalinden 20’i 

epileptik gruba konulmuştur. 35 normal kişiden 24’ü normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.22’deki değerler elde 

edilmiştir. 

Tablo 4.22: On birinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %64,71 

Özgüllük %64,86 

Hassasiyet %60,61 

YPO %35,14 

Duyarlılık %64,52 
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Tablo 4.22 (devam): On birinci Deneyin Metrikleri  

Metrikler Değerleri 

NTD %68,57 

F1-puanı %62,50 

Matthews Korelasyon Katsayısı %29,28 

YNO %35,48 

YKO %39,39 

 

Tablo 4.22’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %64,71 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %64,86 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%60,61 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %35,14 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %64,52 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %68,57 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %62,50 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %29,28 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %35,48 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %39,39 olarak ölçüldü. 

12. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %69,12’lik başarı sağlanmıştır. 
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Tablo 4.23: On İkinci Deneydeki Karışıklık Matrisi 

 E N 

E 31 2 

N 19 16 

 

On ikinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.9’da verilmiştir. Tablodaki 4.23’teki 33 epileptik EEG sinyalinden 31’i epileptik 

gruba konulmuştur. 35 normal kişiden 16’ı normal gruba konulabilmiştir. Bu sonuçlar 

doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.24’teki değerler elde edilmiştir. 

Tablo 4.24: On ikinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %69,12 

Özgüllük %88,89 

Hassasiyet %93,94 

YPO %11,11 

Duyarlılık %62 

NTD %45,71 

F1-puanı %74,70 

Matthews Korelasyon Katsayısı %44,92 

YNO %38 

YKO %6,06 

 

Tablo 4.24’teki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %69,12 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 
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tahminlerin oranıdır. Hesaplanan değer %88,89 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%93,94 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %11,11 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %62 olarak ölçüldü. NTD; 

toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer 

%45,71 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-puanı: 

%74,7 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak hesaplanan 

bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %44,92 olarak görüldü. 

YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan 

değer %38 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin 

sayısına oranıdır. Hesaplanan değer %6,06 olarak ölçüldü. 

13. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %60,29’luk başarı sağlanmıştır. 

Tablo 4.25: On üçüncü Deneydeki Karışıklık Matrisi 

 E N 

E 13 20 

N 7 28 

 

On üçüncü deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.25’te verilmiştir. Tablodaki 4.9’dakı 33 epileptik EEG sinyalinden 13’ü 

epileptik gruba konulmuştur. 35 normal kişiden 28’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.26’dakı değerler elde 

edilmiştir. 
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Tablo 4.26: On Üçüncü Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %60,29 

Özgüllük %58,33 

Hassasiyet %39,39 

YPO %41,67 

Duyarlılık %65 

NTD %80 

F1-puanı %49,06 

Matthews Korelasyon Katsayısı %21,27 

YNO %35 

YKO %60,61 

 

Tablo 4.26’daki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %60,29 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %58,33 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%39,39 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %41,67 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %65 olarak ölçüldü. NTD; 

toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer 

%80 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-puanı: 

%49,06 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %21,27 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %35 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %60,61 olarak ölçüldü. 
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14. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %66,18’lik başarı sağlanmıştır. 

Tablo 4.27: On Dördüncü Deneydeki Karışıklık Matrisi 

 E N 

E 16 17 

N 6 29 

 

On dördüncü deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.27’de verilmiştir. Tablodaki 4.27’deki 33 epileptik EEG sinyalinden 16’ı 

epileptik gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.28’deki değerler elde 

edilmiştir. 

Tablo 4.28: On dördüncü Deneyin Metrikleri 

 

Metrikler Değerleri 

Doğruluk %66,18 

Özgüllük %63,04 

Hassasiyet %48,48 

YPO %36,96 

Duyarlılık %72,73 

NTD %82,86 

F1-puanı %58,18 

Matthews Korelasyon Katsayısı %33,48 
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Tablo 4.28 (devam): On dördüncü Deneyin Metrikleri 

 

Tablo 4.28’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %66,18 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %63,04 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%48,48 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %36,96 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %72,73 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %58,18 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %33,48 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %27,27 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %51,52 olarak ölçüldü. 

15. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %76,47’lık başarı sağlanmıştır. 

Tablo 4.29: On Beşinci Deneydeki Karışıklık Matrisi 

 E N 

E 24 9 

N 7 28 

 

 

Metrikler Değerleri 

YNO %27,27 

YKO %51,52 
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On beşinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.29’da verilmiştir. Tablodaki 4.9’dakı 33 epileptik EEG sinyalinden 24’ü 

epileptik gruba konulmuştur. 35 normal kişiden 28’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.30’dakı değerler elde 

edilmiştir. 

Tablo 4.30: On Beşinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %76,47 

Özgüllük %75,68 

Hassasiyet %72,73 

YPO %24,32 

Duyarlılık %77,42 

NTD %80 

F1-puanı %75 

Matthews Korelasyon Katsayısı %52,91 

YNO %22,58 

YKO %27,27 

 

Tablo 4.30’daki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %76,47 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %75,68 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%72,73 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %24,32 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %77,42 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 
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değer %80 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %75 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %52,91 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %22,58 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %27,27 olarak ölçüldü. 

16. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %73,53’lük başarı sağlanmıştır. 

Tablo 4.31: On altıncı Deneydeki Karışıklık Matrisi 

 E N 

E 29 4 

N 14 21 

 

On altıncı deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.31’de verilmiştir. Tablodaki 4.31’dakı 33 epileptik EEG sinyalinden 29’u 

epileptik gruba konulmuştur. 35 normal kişiden 21’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.32’deki değerler elde 

edilmiştir. 

Tablo 4.32: On Altıncı Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %73,53 

Özgüllük %84 

Hassasiyet %87,88 

YPO %16 

Duyarlılık %67,44 
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Tablo 4.32 (devam): On Altıncı Deneyin Metrikleri 

Metrikler Değerleri 

NTD %60 

F1-puanı %76,32 

Matthews Korelasyon Katsayısı %49,63 

YNO %32,56 

YKO %12,12 

 

Tablo 4.32’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %73,53 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %84 olarak ölçüldü. Hassasiyet; Toplam pozitif 

tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %87,88 

olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin oranıdır. 

Hesaplanan değer %16 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, doğru pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %67,44 olarak ölçüldü. NTD; toplam 

negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer %60 olarak 

ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-puanı: %76,32 olarak 

görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak hesaplanan bir korelasyon 

katsayısı olan Matthews Korelasyon Katsayısı: %49,63 olarak görüldü. YNO; toplam 

negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  Hesaplanan değer %32,56 

olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif tahminlerin sayısına oranıdır. 

Hesaplanan değer %12,12 olarak ölçüldü. 

17. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %70,59’luk başarı sağlanmıştır. 
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Tablo 4.33: On yedinci Deneydeki Karışıklık Matrisi 

 E N 

E 23 10 

N 10 25 

 

On yedinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.33’te verilmiştir. Tablodaki 4.33’teki 33 epileptik EEG sinyalinden 23’ü 

epileptik gruba konulmuştur. 35 normal kişiden 25’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.34’teki değerler elde 

edilmiştir. 

Tablo 4.34: On Yedinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %70,59 

Özgüllük %71,43 

Hassasiyet %69,7 

YPO %28,57 

Duyarlılık %69,7 

NTD %71,43 

F1-puanı %69,7 

Matthews Korelasyon Katsayısı %41,13 

YNO %30,3 

YKO %30,3 
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Tablo 4.34’teki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %70,59 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %71,43 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%69,7 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %28,57 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %69,7 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %71,43 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %69,7 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %41,13 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %30,3 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %30,3 olarak ölçüldü. 

18. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %85,29’luk başarı sağlanmıştır. 

Tablo 4.35: On sekizinci Deneydeki Karışıklık Matrisi 

 E N 

E 29 4 

N 6 29 

 

On sekizinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.35’te verilmiştir. Tablodaki 4.35’teki 33 epileptik EEG sinyalinden 29’u 

epileptik gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.36’dakı değerler elde 

edilmiştir. 
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Tablo 4.36: On sekizinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %85,29 

Özgüllük %87,88 

Hassasiyet %87,88 

YPO %12,12 

Duyarlılık %82,86 

NTD %82,86 

F1-puanı %85,29 

Matthews Korelasyon Katsayısı %70,74 

YNO %17,14 

YKO %12,12 

 

Tablo 4.36’daki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %85,29 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %87,88 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%87,88 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %12,12 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %82,86 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %85,29 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %70,74 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %17,14 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %12,12 olarak ölçüldü. 
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19. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %82,35’lik başarı sağlanmıştır. 

Tablo 4.37: On dokuzuncu Deneydeki Karışıklık Matrisi 

 E N 

E 27 6 

N 6 29 

 

On dokuzuncu deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.37’de verilmiştir. Tablodaki 4.37’deki 33 epileptik EEG sinyalinden 27’i 

epileptik gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.38’deki değerler elde 

edilmiştir. 

Tablo 4.38: On Dokuzuncu Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %82,35 

Özgüllük %82,86 

Hassasiyet %81,82 

YPO %17,14 

Duyarlılık %81,82 

NTD %82,86 

F1-puanı %81,82 

Matthews Korelasyon Katsayısı %64,68 
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Tablo 4.38 (devam): On Dokuzuncu Deneyin Metrikleri  

Metrikler Değerleri 

YNO %18,18 

YKO %18,18 

 

Tablo 4.38’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %82,35 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %82,86 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%81,82 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %17,14 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %81,82 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %81,82 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %64,68 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır. 

Hesaplanan değer %18,18 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %18,18 olarak ölçüldü. 

20. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %82,35’lik başarı sağlanmıştır. 

Tablo 4.39: Yirminci Deneydeki Karışıklık Matrisi 

 E N 

E 28 5 

N 7 28 
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Yirminci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi verileri 

Tablo 4.39’da verilmiştir. Tablodaki 4.39’dakı 33 epileptik EEG sinyalinden 28’i 

epileptik gruba konulmuştur. 35 normal kişiden 28’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.40’takı değerler elde 

edilmiştir. 

Tablo 4.40: Yirminci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %82,35 

Özgüllük %84,85 

Hassasiyet %84,85 

YPO %15,15 

Duyarlılık %80 

NTD %80 

F1-puanı %82,35 

Matthews Korelasyon Katsayısı %64,85 

YNO %20 

YKO %15,15 

 

Tablo 4.40’takı Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %82,35 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %84,85 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%84,85 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %15,15 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %80 olarak ölçüldü. NTD; 

toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan değer 
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%80 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-puanı: 

%82,35 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %64,85 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %20 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %15,15 olarak ölçüldü. 

21. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %83,82’lık başarı sağlanmıştır. 

Tablo 4.41: Yirmi birinci Deneydeki Karışıklık Matrisi 

 E N 

E 28 5 

N 6 29 

 

Yirmi birinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.41’de verilmiştir. Tablodaki 4.41’deki 33 epileptik EEG sinyalinden 28’i 

epileptik gruba konulmuştur. 35 normal kişiden 29’u normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.42’deki değerler elde 

edilmiştir. 

Tablo 4.42: Yirmi birinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %83,82 

Özgüllük %85,29 

Hassasiyet %84,85 

YPO %14,71 

Duyarlılık %82,35 
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Tablo 4.42 (devam): Yirmi birinci Deneyin Metrikleri 

Metrikler Değerleri 

NTD %82,86 

F1-puanı %83,58 

Matthews Korelasyon Katsayısı %67,68 

YNO %17,65 

YKO %15,15 

 

Tablo 4.42’deki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %83,82 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %85,29 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%84,85 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %14,71 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %82,35 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %82,86 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %83,58 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %67,68 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır.  

Hesaplanan değer %17,65 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %15,15 olarak ölçüldü. 

22. Deney: Yaptığımız deneyde EEG sinyallerinde epileptik saptanmıştır. 

Bu deney verilen değerlerle denenmiştir. ÇYUKSHDÖM ile yapılan epileptik 

gruplandırmasında %80,88’lik başarı sağlanmıştır. 
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Tablo 4.43: Yirmi ikinci Deneydeki Karışıklık Matrisi 

 E N 

E 27 6 

N 7 28 

 

Yirmi ikinci deneyde yapılan gruplandırmada ortaya çıkan karışıklık matrisi 

verileri Tablo 4.43’te verilmiştir. Tablodaki 4.43’teki 33 epileptik EEG sinyalinden 27’i 

epileptik gruba konulmuştur. 35 normal kişiden 28’i normal gruba konulabilmiştir. Bu 

sonuçlar doğrultusunda elde edilen metrikler aynı sırayla Tablo 4.44’teki değerler elde 

edilmiştir. 

Tablo 4.44: Yirmi İkinci Deneyin Metrikleri 

Metrikler Değerleri 

Doğruluk %80,88 

Özgüllük %82,35 

Hassasiyet %81,82 

YPO %17,65 

Duyarlılık %79,45 

NTD %80 

F1-puanı %80,6 

Matthews Korelasyon Katsayısı %61,79 

YNO %20,59 

YKO %18,18 
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Tablo 4.44’teki Doğruluk; doğru tahmin sayısının toplam veri sayısına oranıdır. 

Hesaplanan değer %80,88 olarak ölçüldü. Özgüllük; toplam negatif sayının, doğru negatif 

tahminlerin oranıdır. Hesaplanan değer %82,35 olarak ölçüldü. Hassasiyet; Toplam 

pozitif tahmin sayının, doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer 

%81,82 olarak ölçüldü. YPO; toplam negatif sayının, bölünen hatalı pozitif tahminlerin 

oranıdır. Hesaplanan değer %17,65 olarak ölçüldü. Duyarlılık; toplam pozitif sayının, 

doğru pozitif tahminlerin sayısına oranıdır. Hesaplanan değer %79,45 olarak ölçüldü. 

NTD; toplam negatif sayının, doğru negatif tahminlerin sayısına oranıdır. Hesaplanan 

değer %80 olarak ölçüldü. Kesinlik ve hatırlamanın harmonik bir ortalaması olan F1-

puanı: %80,6 olarak görüldü. Karışıklık matrisindeki dört değerin tümü kullanılarak 

hesaplanan bir korelasyon katsayısı olan Matthews Korelasyon Katsayısı: %61,79 olarak 

görüldü. YNO; toplam negatif sayının, yanlış negatif tahminlerin sayısına oranıdır. 

Hesaplanan değer %20,59 olarak ölçüldü. YKO; toplam pozitif sayının, yanlış pozitif 

tahminlerin sayısına oranıdır. Hesaplanan değer %18,18 olarak ölçüldü. 

Yapmış olduğumuz deneylerin başarı yüzdeleri karışıklık matrisleri ile 

belirtilmiştir. Deneyimizin başarı grafiği Şekil 4.3’te gösterilmiştir. 

Şekil 4.3: Yapılan Deneylerin Başarı Yüzdeleri 
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Şekil 4.3’te Yapılan Deneylerdeki ÇYUKSHDÖM ile % başarı oranları 

gösterilmiştir. En yüksek başarı değeri Deney 1’de alınmıştır (yani Fp1-F7 kanalında). 

Grafikte x ekseni Deneyleri (Kanalları) ve y ekseninde başarı değerlerini göstermektedir. 

Şekil 4.3’de Deney 1 %85,29 başarı elde edilmiştir, Deney 2 %61,76 başarı elde 

edilmiştir, Deney 3 %80,88 başarı elde edilmiştir, Deney 4 %75 başarı elde edilmiştir, 

Deney 5 %79,41 başarı elde edilmiştir, Deney 6 %58,82 başarı elde edilmiştir, Deney 7 

%80,88 başarı elde edilmiştir, Deney 8 %70,59 başarı elde edilmiştir, Deney 9 %82,35 

başarı elde edilmiştir, Deney 10 %77,94 başarı elde edilmiştir, Deney 11 %64,71 başarı 

elde edilmiştir, Deney 12 %69,12 başarı elde edilmiştir, Deney 13 %60,29 başarı elde 

edilmiştir, Deney 14 %66,18 başarı elde edilmiştir, Deney 15 %76,47 başarı elde 

edilmiştir, Deney16 %73,53 başarı elde edilmiştir, Deney 17 %70,59 başarı elde 

edilmiştir, Deney 18 %85,29 başarı elde edilmiştir, Deney 19 %82,35 başarı elde 

edilmiştir, Deney 20 %82,35 başarı elde edilmiştir, Deney 21 %83,82 başarı elde 

edilmiştir, Deney 22 %80,88 başarı elde edilmiştir. 
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5.1. TARTIŞMA 

Literatüre bakıldığında CHB-MIT Scalp veri seti kullanılarak epilepsi teşhisine 

yönelik çokça çalışma yapıldığı görülmektedir. Bu çalışmalarda farklı analiz yöntemleri 

ile EEG sinyalleri analiz edilerek farklı sınıflandırma yöntemleri kullanılmıştır.  

Tablo 5.1: Literatürdeki Çalışmaların Kullandıkları Yöntemlere Göre Metrik 

Değerleri (%) 

Yazarlar Kullanılan veri seti Kullanılan yöntemler Başarı oranı (%) 

He vd. 2022 CHB-MIT Scalp ÇYUKSHDÖM Doğruluk: %94,16;                     

Duyarlılık: %88,23;                       

Özgüllük: %75 

Ryu vd. 2021 CHB-MIT Scalp UKSHDÖM Doğruluk: %93,28; 

Duyarlılık: %92,92;                       

Özgüllük: %93,65;                

YPO: 0,063;                      

F1-puanı: 0,923 

Ansari vd. 2020 CHB-MIT Scalp UKSHDÖM Preiktal ve interiktal 

bölütler dahil 

edildiğinde Nöbet 

tahmini zamanında:  

Doğruluk: %96,59; 

Preiktal ve interiktal 

bölütler dahil 

edilmediğinde: 

 Doğruluk: %95,71. 

 

Tsiouris vd. 2018 CHB-MIT Scalp UKSHDÖM YPO: 0,11 

Cheng vd. 2018 CHB-MIT Scalp ÇYUKSHDÖM Doğruluk: %99,47; 

Duyarlılık: %99,34; 

Özgüllük: %99,6 
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He vd.  (2022), yılında yaptıkları çalışmada CHB-MIT Scalp veri setini 

ÇYUKSHDÖM sınıflandırma yöntemine göre Doğruluk: %94,16; Duyarlılık: %88,23; 

Özgüllük: %75 elde etmişlerdir. Ryu vd. (2021), yılında yaptıkları çalışmada CHB-MIT 

Scalp veri setini UKSHDÖM sınıflandırma yöntemine göre Doğruluk: %93,28; 

Duyarlılık: %92,92; Özgüllük: %93,65; YPO: 0,063; F1-puanı: 0,923 elde etmişlerdir. 

Ansari vd. (2020), yılında yaptıkları çalışmada CHB-MIT Scalp veri setinin UKSHDÖM 

sınıflandırma yöntemine göre Preiktal ve interiktal bölütler dahil edildiğinde Nöbet 

tahmini zamanında Doğruluk: %91,02, Nöbet tespiti zamanında Doğruluk: %96,59 elde 

etmişlerdir. CHB-MIT scalp veri setinin UKSHDÖM sınıflandırma yöntemine göre 

Preiktal ve interiktal bölütler dahil edilmediğinde Doğruluk: %95,71 elde etmişlerdir. 

Tsiouris vd. (2018), yılında CHB-MIT Scalp veri setinin UKSHDÖM sınıflandırma 

yöntemine göre YPO: 0,11 ve Yanlış Alarm Oranı 0,02 elde etmişlerdir. Cheng vd. (2018), 

yılında yaptıkları çalışmada CHB-MIT Scalp veri setini ÇYUKSHDÖM sınıflandırma 

yöntemine göre Doğruluk: %99,47; Duyarlılık: %99,34; Özgüllük: 99,6 elde etmişlerdir. 

MA, sinyal tanımlamaya yarar. Multifraktal spektrum, bir sinyal için 

ölçeklendirme üslerinin dağılımını etkin bir şekilde gösterir. Eşdeğer olarak, multifraktal 

spektrum, bir sinyalin yerel düzenliliğinin zaman içinde ne kadar değiştiğinin bir 

ölçüsünü sağlar (Amoura, Gaci ve Bounif, 2022). Monofraktal olan bir sinyal, zaman 

içinde her yerde esasen aynı düzenliliği sergiler ve bu nedenle dar destekli çok fraktal bir 

spektruma sahiptir (Rahmani ve Fattahi, 2022). SE – karmaşık sinyallerin düzenlilik 

derecesini belirleyebilir. SE, arıza tespiti ve teşhisinde özellik çıkarma için bir avantajdır 

(Mi, vd., 2022). AF, EEG sinyallerinde salınımlı nöbet tipinin saptanması için bir özellik 

olarak sıklıkla kullanılır. Durağan olmayan bir sinyalin AF’sı, sinyal geliştikçe mevcut 

frekansların ortalamasına ilişkin zamanla değişen bir parametredir. Bu, AF'in karmaşık 

değerli sinyaller için desteklediği tek yöntemdir. AF, sinyalin AF’nı ve karşılık gelen 

örnekleme sürelerini hesaplamak içindir (Maity,  Veeraraghavan ve Sabharwal, 2022). 

ÇYUKSHDÖM – bilgileri uzun süre hatırlayabilir ve kaybolan gradyan sorununu 

çözebilir (Kadhuim ve Al-Janabi, 2023). 

Önerilen yöntemlerin doğrulamalarına bakıldığında oldukça yüksek başarı 

metrikleri sunulmuştur. Her ne kadar başarılar elde edilse de sinyalin niteliğinin 

kaybedilmediği, spektral özelliklerle desteklenen, AF etkin kullanıldığı, kaybolan 

gradyanlar probleminden etkilenmeyen ve en önemlisi beynin hangi bölgesinin epilepsi 
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teşhisinde belirgin olduğu yönelik çalışmalara ihtiyaç vardır. Biz bu çalışmada DÖ temelli 

MA, SA içeren EEG sinyaller analiz yöntemi ile epilepsi teşhisini gerçekleştirdik. Sonuç 

olarak FP1-F7 ve CZ-PZ kanallarından Doğruluk %85,29, Özgüllük %87,88, Hassasiyet 

%87,88, YPO %12,12, Duyarlılık %82,86, NTD %82,86, F1-puanı %86,29, MKK 

%70,74, YNO %17,14 ve YKO %12,12 elde edilmiştir. 
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SONUÇLAR VE ÖNERİLER 

EEG verilerinin hacmi ve karmaşıklığı arttıkça, DÖ algoritmalar, ele almadaki 

yeteneklerini göstermeye başlar. EEG sinyallerinin kaotik doğası ve epileptik nöbet 

tahmini gibi zorlu biyomedikal uygulamalarda yeni fırsatlar açar. ÇYUKSHDÖM bu 

çalışmada nöbet tahmininde tanıtıldı ve epileptik nöbetlerin EEG sinyallerinin analizi için 

ideal bir araç olduğu kanıtlandı. Literatürdeki diğer yöntemlerin aksine kanal bazında 

analizin yapılabileceği deneysel çalışmalarla ortaya kondu. Bu çalışma, epilepsi için etkili 

bir tahmin aracı olarak yararlılığının ve bireyler için zamanında müdahalesinin güçlü 

göstergelerini sunmaktadır. Bundan sonraki çalışmalarda uzmanların da desteklediği bir 

veri seti oluşturularak sahadaki epilepsi hastalığının kanal bazında tespitini sağlayacak 

bir model ortaya konulacaktır.  

Bu yazılım sayesinde nöroloji doktorlarının EEG sinyallerini daha kolay 

yorumlayacaklardır. Bu sayede hata payı en aza encektir. Hastanedeki kalite artacaktır. 

Epilepsi hastaları için bu yazılım rahatsızlık verilerini anlamada yardımcı olacaktır. Bu 

yazdığımız tezde 22 adet kanal bazında deneyler gerçekleştirilmiştir. UKSHDÖM yöntem 

ile sınıflandırırken 22 deneye bakıldığında en yüksek başarı değeri birinci deneyde 

alınmıştır. Sonuç olarak yaptığımız sınıflandırma ve analiz yöntemleri gelecekte diğer 

veri setlerine görede iyi bir sonuç elde etmede katkıda bulunacaktır. 
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