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ÖNSÖZ  

 

Elektrozayıf ve yeğin etkileşmelerin ayar kuramı 𝑆𝑈(3)𝐶  𝑆𝑈(2)𝐿 𝑈(1)𝑌 deneyle 

uyuşan en başarılı kuram olup, Standart Model olarak adlandırılır. Bu model çerçevesinde 

hadronlar altı değişik çeşni kuarkın bir birleşimi olarak elde edilebilmektedir. Atom altı 

parçacıkların doğası hakkındaki bilgilere ulaşma saçılma deneyleri ile mümkün olmuştur. 

Hadron-hadron çarpışma deneyleri Avrupa Nükleer Araştırma Merkezi ‘nde (CERN) 

başlamış ve günümüzde de devam etmektedir. Bu deneylerden hadronların doğası 

hakkında önemli bilgiler elde edilmektedir. ISR (Intersecting Storage Rings)’de elde edilen 

veriler hadron-hadron derin inelastik saçılma süreçlerinin tesir kesiti hesaplarının yalnızca 

partonik düzeyde (önder tivistler) ele alınmasının yeterli olmadığını, alt süreçlerde baryon, 

mezon ve 2-kuark gibi birleşik yapıların da ele alındığı yüksek tivist katkıların da ele 

alınması gerektiğini göstermiştir.  

Çalışmada, ilk bölümde ayar kuramları temel bilgisinden başlayıp hadronik saçılma 

tesir kesiti hesaplamaları ile ilgili genel bilgiler verilmiştir. İkinci bölümde proton-proton 

inklusif tek ve çift mezon yaratılma süreçleri için önder-tivist ve yüksek-tivist katkılar 

hesaplanmıştır. Diğer bölümlerde, bulunan sonuçlar açıklanmış ve ortaya çıkan sonuçlar 

irdelenmiştir.  

Yüksek tivist katkıları konusunda çalışmayı öneren ve yardımını esirgemeyen Bakü 
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Bu tezde, esnek olmayan hadron–hadron saçılmalarında büyük–𝑝𝑇 inklusif tek ve çift 

mezon üretimi süreçleri incelenmiştir. Tek mezon üretimi için 𝑝 + 𝑝̅ → 𝜌+(𝜌−) + 𝛾 ve çift 

mezon üretimi için 𝑝𝑝̅ → 𝜋+𝜋−𝑋 ile 𝑝𝑝̅ → 𝜌0𝜌0𝑋 süreçlerinin tesir kesitlerine, yüksek–

tivist ve önder-tivist katkıları, KRD çerçevesinde, dondurulmuş etkileşme sabiti için hafif 

mezonların üretildiği deneylerdeki enerjiler alınarak hesaplanmış olup 𝑝𝑇 < 5𝐺𝑒𝑉/𝑐 

bölgesinde yüksek–tivist katkıların etkin olduğu görülmüştür. 
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In this thesis, we calculate the contribution of the higher–tivist Feynman diagrams to 

the large–𝑝𝑇 inclusive single (𝑝 + 𝑝̅ → 𝜌+(𝜌−) + 𝛾) and double (𝑝𝑝̅ → 𝜋+𝜋−𝑋 and 𝑝𝑝̅ →

𝜌0𝜌0𝑋) meson production cross section in hadron–hadron collisions in case of the frozen 

coupling approaches. The preceding results demonstrate that higher tivist contributions 

must be considered especially in the region of 𝑝𝑇 < 5𝐺𝑒𝑉/𝑐. 

 

Key words: QCD, Higher twist contributions, Meson production, Differential cross      
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𝐻𝑇 KRD’de p–p çarpışması inklusif mezon üretimi yüksek–tivist tesir kesiti 

𝑝𝑇  Mezon Geçiş Momentumu  

𝐹𝜇𝜈
𝑎   Renk Alan Tensörü 

𝐷𝑖𝑗
𝜇

   Kovaryant Türev  

𝐺𝑞
𝑝⁄   Dağılım Fonksiyonları  

𝐷𝑀
𝑞⁄   Paylaşım Fonksiyonları 

ΦM  Mezon Dalga Fonksiyonu 

𝑑𝜎̂  Partonik alt süreçlerin diferansiyel tesir kesiti 

∑  𝐻𝑇
𝜋+𝜋−  Yüksek tivist yüklü piyon çifti üretimi tesir kesiti 

∑  𝐻𝑇+𝐿𝑇
𝜋+𝜋−  Yüksek tivist ve önder yüklü piyon çifti üretimi tesir kesitlerinin toplamı 

∑  𝐻𝑇
𝜌𝐿

0𝜌𝐿
0  Yüksek tivist çift rho mezon üretimi tesir kesiti 

 



 

1. GENEL BİLGİLER 

 

1.1. Giriş 

 

Yüksek enerji ya da parçacık fiziği maddenin en temel yapı taşlarının neler olduğu, 

kendi aralarında ve diğer parçacıklarla nasıl etkileştiklerinin konu alan fizik dalıdır. Bugün 

doğada bilinen temel parçacıklar (Şekil 1) arasında şiddet sırasına göre yeğin, 

elektromagnetik, zayıf ve kütle-çekim olmak üzere dört temel etkileşme vardır. Standart 

Model (SM) ilk üç etkileşmeyi fenomenolojik açıdan başarılı bir şekilde açıklayan bir 

kuantum alan kuramıdır. Bu modelde temel etkileşmeler yerel ayar değişmezliği gerekliliği 

adı verilen genel bir ilkeden elde edilmektedir. Kuantum elektrodinamiğini (KED) 

modellemede kullanılan U(1) ayar alan kuramının 1954’te Chen Ning Yang ve Robert 

Mills tarafından SU(N) grupları için genişletilmesiyle, elektro-zayıf ve kuvvetli 

etkileşmelerin de ayar alan kuramları ile modellenmesinin önü açılmıştır [1]. Elektrozayıf 

etkileşim SU(2) grubu ile modellenirken yeğin etkileşme renormalize edilebilen, Abelyen 

olmayan SU(3)  ayar alan grubu ile modellenmektedir. 

 

 

 

          Şekil 1. Standart model temel parçacık ve etkileşmeler [2]. 
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Elektromanyetik etkileşmelerin teorisi KED’nin aksine yeğin etkileşmeler abelyen 

olmayan bir ayar alan grubu ile betimlenirler. Abelyen olmayan grup yapısından ötürü 

KRD bağlaşım sabiti aslında bir sabit olmayıp etkileşen parçacıklar arsındaki uzaklığa (ya 

da enerjiye) bağlıdır. Bu sabit uzun mesafelerde (düşük enerjilerde) büyük iken, çok kısa 

mesafelerde (yüksek enerjilerde) çok daha küçük değerler alır (Şekil 2). Büyük 

mesafelerde bağlaşım sabiti büyük olduğundan tedirgeme açılım uygulanamaz ve bu 

durumda tedirgemesiz yöntemlere gereksinim vardır. 

Standart model çerçevesinde hadronlar altı değişik çeşni kuarkın bir birleşimi olarak 

elde edilebilmektedir. Bu birleşim glüyonların aracılık ettiği yeğin etkileşme ile 

gerçekleşir. Kuark ve glüyonları diğer temel parçacıklardan ayıran önemli bir özellik renk 

yüküne sahip olmalarıdır. Glüyonlar da renk yükü taşıdıkları için diğer glüyonlarla ve 

kuarklarla yeğin etkileşmeye girerler. 

 

 

                     

Şekil 2. Yeğin bağlaşım sabiti 𝛼𝑠(𝑄
2) ve toplam belirsizliğin 

momentum aktarımınn fonksiyonu olarak değişimi [3-9]. 

 

Temel parçacıkların doğası hakkındaki bilgilere ulaşma saçılma deneyleri ile 

mümkün olmuştur. Hadron-hadron çarpışma deneyleri 1971 yılında Avrupa Nükleer 

Araştırma Merkezi‘nde (CERN) başlamış ve günümüzde de devam etmektedir. Bu 

deneylerden hadronların doğası hakkında önemli bilgiler elde edilmektedir. Yüksek 
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enerjilerde gerçekleştirilen hadron-hadron çarpışma deneylerinde kütle merkezi enerjisinin 

yaklaşık yarısı parçacık üretiminde harcanır. Üretilen ilk parçacıklar %90 oranında 

piyonlardır. Çarpışma sonucunda elde edilen hadronların tek tek momentumlarının 

ölçülmesi ve kuantum sayılarının belirlenmesi kütle merkezi enerjisi arttıkça 

zorlaşmaktadır. Bu tür hadronların momentumlarının saptanması yerine bunlardan bir 

kaçının momentumunun ve kuantum sayılarının bulunması da etkileşmenin dinamiği 

hakkında bilgi edinmemizi sağlamakta olup bu tür süreçlere inklusif süreçler denmektedir 

[10].  

 

1.2. Renkdinamiği 

 

Kuantum renk dinamiğinin simetrileri, Lagrange fonksiyonundaki terimlerin 

kuruluşu için iyi tanımlı kurallar verir. Langranjiyenin bir takım dönüşümler altında 

değişmez kalmasına “ayar değişmezliği” denilir ve ayar grubu ile ilgili olan yükün 

korunumu ile ilişkilidir. 

Göreli kuantum mekaniğinde serbest maddesel parçacıklar, örneğin elektron ya da 

kuarklar, Dirac denkleminin çözümleri olan spinör alanları ile betimlenirler. Bu serbest 

spinör alanların Lagranjiyen yoğunluğu  

 

ℒ = 𝑖𝜓̅𝛾𝜇𝜕𝜇𝜓 −𝑚𝜓̅𝜓  (1) 

 

Dirac Lagranjiyenidir. KRD’ne göre kuarklar kırmızı, mavi, yeşil olarak üç farklı renk 

durumunda bulunabileceği için Lagranjiyen üç fermion alanını da içerecek şekilde 

 

ℒ = ∑ 𝜓̅𝑗(𝑖𝛾
𝜇𝜕𝜇 − 𝑚)𝜓𝑗

3
𝑗=1   (2) 

 

olarak yazılır. Bu Lagranjiyen yerel olmayan (küresel) ayar dönüşümler altında değişmez 

kalırken 𝜆𝑎 Gell-Mann matrisleri olmak üzere 𝐓̂ = {Ta} = {
1

2
λ
a} , SU(3) simetri grubunun 

8 üreticisi olmak üzere 
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       Şekil 3. Yerel ve küresel dönüşümün sembolik çizimi 

 

 𝑈𝑖𝑗(𝑥) = 𝑒𝑥𝑝(𝑖 ∑ 𝛼𝑎(𝑥)𝑇𝑖𝑗
𝑎8

𝑎=1 )  (3) 

 

yerel ayar dönüşümleri altında değişmez kalmaz. Küresel simetri yerel simetriye 

dönüştüğü zaman sistemin değişmez kalması için 𝜕𝜇  türevi, 

 

 𝐷𝑖𝑗
𝜇
= 𝜕𝜇𝛿𝑖𝑗 − 𝑖𝐴𝑖𝑗

𝜇
   (4) 

 

kovaryant türev ile değiştirilmelidir. Yerel ve küresel dönüşümün sembolik çizimi Şekil 

3.’de görülmektedir. Yerel ayar dönüşümleri altında Lagranjiyenin değişmez kalması için 

KRD bağlaşım sabiti g olmak üzere yeni kütlesiz vektör bozon alanları 

  

𝐴𝜇 = 𝑔∑ 𝐴𝑎
𝜇8

𝑎=1 𝑇𝑎  (5) 

 

teoriye eklenmelidir. Görüldüğü gibi KRD Lagranjiyeninin SU(3) yerel dönüşümleri 

altında değişmez kalması için teoriye 8 yeni kütlesiz vektör alanı eklenmesi gerekmektedir. 

Bu 8 yeni alan yeğin etkileşmenin aracı parçacıkları olan glüyonlardır. 𝐹𝜇𝜈
𝑎  renk alan 

tensörü  

 

𝐹𝜇𝜈
𝑎 = 𝜕𝜇𝐴𝜐

𝑎 − 𝜕𝜈𝐴𝜇
𝑎 − 𝑔𝑓𝑎𝑏𝑐𝐴𝜇

𝑏𝐴𝜐
𝑏   (6) 
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olmak üzere, serbest glüyon Lagranjiyeni de eklenerek KRD Lagranjiyeni 

 

ℒ𝐾𝑅𝐷 = −
1

4
𝐹𝜇𝜈
𝑎 𝐹𝑎𝜇𝜈 + 𝜓̅𝑖(𝑖𝛾𝜇𝐷𝑖𝑗

𝜇
− 𝑚𝛿𝑖𝑗)𝜓𝑗  (7) 

 

olarak elde edilir. Bu Lagranjiyen SU(3) ayar dönüşümleri altında değişmezdir ve sekiz 

kütlesiz vektör alanı ile üç eşit kütleli Dirac alanını betimler. Lagranjiyene eklenen ayar 

alanı terimi, ayar alanlarının da kendi aralarında etkileşebileceği sonucunu doğurur. 

Serbest parçacıklara karşılık gelen alan kuramları, tamamen çözülebilir ve kolayca 

kuantize edilebilir, doğrusal alan denklemlerine sahiptirler. Öte yandan, parçacık 

etkileşmeleri, alan denklemlerindeki doğrusal olmayan terimlere karşılık gelir ve doğrusal 

olmayan alanların kuantum kuramı oldukça karmaşıktır. Etkileşimleri bir tedirgeme olarak 

ele almak ve etkileşimin kuvvet serisi açılımını aramak fenomolojik hesaplamalar için 

oldukça elverişlidir. KED'de etkileşim parametresi, elektron yükü olan 𝑒'dir ve ilgili 

ölçekte bağlaşım sabiti olan 𝑒2 = 𝛼 ' nin kuvvetlerinde bir açılım ortaya çıkar. Bağlaşım 

sabitinin küçüklüğü, kuvvet serisinin yakınsayıp yakınsamayacağı sorusu ile uğraşmak 

zorunda kalmadan, düşük seviyelerde çok iyi bir yaklaşıklık elde edilebileceği anlamına 

gelir.  

Kuantum Renk Dinamiğinin abelyen olmaması nedeni ile etkileşmeye aracılık eden 

glüyonların yük kuantum numarası taşıması ve kendileri ile etkileşmeye girmeleri, 

etkileşme sabitinin momentumun bir fonksiyonu olarak değişmesi sonucunu doğurur. 

Yeğin etkileşme için bağlaşım sabiti (𝛼𝑠 = 𝑔𝑠(𝑄)
2/4𝜋),  momentum transferinin (𝑄) 

yüksek olduğu değerlerde küçük, düşük olduğu değerlerde ise büyüktür. Bu özelliği ile 

yüksek momentumlu etkileşmelerde, renk kuantum yükü olan alanlar serbest gibi 

(asymptotic freedom) davranırken düşük momentum değerlerinde büyüyerek bağlı 

durumların (confinement) oluşturulmasına imkân vermektedir. 

 

1.3 Renormalizasyon  

 

Genel anlamda renormalizasyon, ilgili kuramdaki fiziksel gözlenemez yalın (bare) 

büyüklüklerin bunlara karşılık gelen ve fiziksel olarak gözlenebilir değerlerle yer 
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değiştirilmesi işlemidir. Anlamsız gibi gözüken bir ifadenin aslında bir veya iki sabit 

parametre ile gizlenmiş birçok yararlı içeriğe sahip olabileceğini gösterelim. 

 

𝑓(𝑥) = ∫ 𝑑𝑦/(𝑥 + 𝑦)
∞

1
  (8) 

 

şeklinde tanımlanan bir 𝑓(𝑥) fonksiyonunu göz önüne alalım. Büyük 𝑦 değerleri için 

integrand 1/𝑦 şeklinde sıfıra gider, ancak integralin logaritmik olarak ıraksamaması için 

yeterince hızlı değildir. Kuantum alan kuramlarında karşılaştığımız ıraksak ifadelerin 

büyük bir kısmı, logaritmik ıraksaktır. Iraksak 𝑓(𝑥) fonksiyonundan anlamlı bir sonuç elde 

etmek için, 𝑥'in iki farklı değeri arasındaki farka bakılabilir. 𝑓(𝑥) ‘i, 𝑥 = 0 daki değeri ile 

karşılaştırılırsa 

 

𝑓(𝑥) − 𝑓(0) = ∫ 𝑑𝑦 [
1

𝑥+𝑦
−
1

𝑦
]

∞

1
  (9) 

                               = −𝑥 ∫ 𝑑𝑦 [
1

𝑦(𝑥+𝑦)
]

∞

1
  (10) 

 

elde ediliri buradan 𝐴 = 𝑓(0) bir sonsuz sabit ve 𝑓 ̅ iyi davranışlı bir fonksiyon olmak 

üzere 

 

𝑓(𝑥) = 𝐴 + 𝑓(̅𝑥)  (11) 

 

yazılabilir. Bütün ıraksak integrallerin bu şekilde basit çıkarmalar ile kontrol 

edilemeyeceği vurgulanmalıdır. Kuantum alan kuramlarında karşılaştığımız integrallerin 

kontrol edilebilir olmaları çok önemli bir özelliktir. 

Yukarıda bahsedildiği gibi kuramdaki fiziksel gözlenemez yalın büyüklüklerin 

bunlara karşılık gelen ve fiziksel olarak gözlenebilir değerlerle yer değiştirebilmesi için 

öncelikle bir düzenleme (regularizasyon) şeması kullanılarak sonsuzluğa neden olan 

terimlerin ayrıştırılması gerekmektedir. Ayar değişmezliğinin korunması sebebiyle genel 

kabul gören şemalardan biri boyutsal düzenlemedir. Bu yöntemi anlamak için Şekil 4’teki 
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düzgün yük dağılımına sahip sonsuz uzunluklu telin bir noktada oluşturduğu elektrik 

potansiyeli ele alınabilir. Çizgisel yük yoğunluğu 𝜆 = 𝑄/𝐿 için 

 

 
                 

Şekil 4. Düzgün yük dağılımına sahip sonsuz uzun tel 

 

𝑑𝑉 =
1

4𝜋𝜖0

𝑑𝑄

𝑟
   (12) 

 

ve bunlar toplanırsa 

 

𝑉(𝑥) =
𝜆

4𝜋𝜖0
∫

𝑑𝑦

√𝑥2+𝑦2
→ ∞

+∞

−∞
   (13) 

 

olur. Bir 𝑘𝑥 noktası için ise benzer şekilde 

 

𝑉(𝑘𝑥) =
𝜆

4𝜋𝜖0
∫

𝑑𝑦

√𝑘𝑥2+𝑦2

+∞

−∞
                                                                                         

                        =
𝜆

4𝜋𝜖0
∫

𝑑(𝑦 𝑘⁄ )

√𝑥2+(𝑦 𝑘⁄ )2

+∞

−∞
  (14) 

                        =
𝜆

4𝜋𝜖0
∫

𝑑𝑧

√𝑥2+𝑧2

+∞

−∞
= 𝑉(𝑥)     

 

elde edilir. İki ayrı noktada potansiyelin aynı sonucu veriyor olması, iş terimi için  

 

𝑊 𝑄⁄ = ∆𝑉 = 𝑉(𝑥2) − 𝑉(𝑥1) = 0  (15) 

 

fiziksel olmayan bir sonuca götürür. Bu problem, boyutsal düzenleme ile tekrar ele 

alınacak olursa, (13) integrali 𝑑-boyutta  
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𝑑𝑦 → 𝑑𝑑𝑦 =
𝑑Ω

d−1

2
𝑦𝑑−1𝑑𝑦   (16) 

 

olmak üzere 

 

𝑉(𝑥) =
𝜆

4𝜋𝜖0
∫ 𝑑𝑦

𝑦𝑑−1

𝜇𝑑−1
1

2
∫𝑑Ωd−1

∞

0
  (17) 

 

olur. Burada, açıya bağlı kısım 

 

∫𝑑Ωd−1 =
2𝜋

𝑑
2

Γ(
𝑑

2
)
  (18) 

 

olmak üzere, 𝑉(𝑥) potansiyeli  

 

𝑉(𝑥) =
𝜆

4𝜋𝜖0

Γ(
1−𝑑

2
)

(
𝑥

𝜇
√𝜋)

1−𝑑   (19) 

 

olarak elde edilir. Bir boyut için 𝑑 = 1 − 𝜀 alınırsa 

 

 𝑉(𝑥) =
𝜆

4𝜋𝜖0
(
𝜇2𝜀

𝑥2𝜀
)

Γ(𝜀)

(𝜋)𝜀
  (20) 

 

elde edilir ve bu ifadenin 𝜀 = 0 komşuluğunda açılımı yapılırsa 

 

𝑉(𝑥) =
𝜆

4𝜋𝜖0
[
1

𝜀
+ 𝑙𝑛 (

𝑒−𝛾𝐸

𝜋
) + 𝑙𝑛 (

𝜇2

𝑥2
) + 𝛰(𝜀)]  (21) 

 

sonucuna ulaşılır. Görüldüğü gibi 𝑉(𝑥) potansiyelini ıraksak yapan 
1

𝜀
 terimi boyutsal 

düzenleme yöntemi ile genel ifadeden ayrıştırılmıştır, ancak bu işlem esnasında uzunluk 
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boyutunda isteksel bir 𝜇 sabiti (21) integralinin boyutunun değişmemesi için eklenmiştir. 

Şimdi (15) farkına bakacak olursak  

 

𝑉(𝑥2) − 𝑉(𝑥1)
𝜖→0
→  

𝜆

4𝜋𝜖0
𝑙𝑛 (

𝑥1
2

𝑥2
2)   (22) 

 

şeklinde sonlu fiziksel bir sonuç elde ederiz ve elde ettiğimiz sonuç 𝜇 parametresinden de 

bağımsızdır [12]. 

Iraksak ifade düzenlendikten sonra renormalizasyon yapılabilir, yani fiziksel 

gözlenemez yalın büyüklükler, bunlara karşılık gelen ve fiziksel olarak gözlenebilir 

değerlerle yer değiştirilebilir. Bu olayla ilk olarak akışkanlar mekaniğinde karşılaşılmıştır. 

19. yüzyılın ortalarında, bir akışkan içerisinde hareket eden bir cisme etki eden kuvvetlerin 

nasıl hesaplandığı iyi bilinmekteydi. Hareketli bir akışkan ve hareketli bir cisimden oluşan 

sistemin kinetik enerjisi 1/2 𝑀𝑉2’dir. Bununla birlikte, 𝑀 kütlesi akışkanın içinde hareket 

eden cismin 𝑀0  kütlesi değil, 𝑀′ kütlesi sistemin geometrisine ve akışkanın yoğunluğuna 

bağlı olmak üzere 𝑀 = 𝑀0 +𝑀′'dir. 𝑀 Newton'un hareket denklemindeki renormalize 

kütle olarak adlandırılacak olan kütledir. Bu genel bir sonuçtur, hareketin kaynağı ne 

olursa olsun, akışkan içerisinde hareket eden herhangi bir nesne, bu değişen kütle 

cinsinden tanımlanabilir. Bunun ilginç bir sonucu, bir nesnenin kütlesi kavramının belirsiz 

hale gelmesi ve içinde hareket ettiği akışkana bağlı olarak farklılık göstermesidir. Bir 

nesnenin yalnızca belirli bir ortamla mevcut olması durumunda, gözlenebilir kütlenin her 

zaman 𝑀 = 𝑀0 +𝑀′ olacağına dikkat etmek gerekir. Burada 𝑀’, nesnenin o ortamda 

yaptığı harekete bağlı olacaktır. Kütlenin tek bir ölçümü mutlaka 𝑀 = 𝑀0 + 𝑀′ 'yi verir, 

bu nedenle farklı ortam ve geometriler için 𝑀'yi belirlemek ve 𝑀0 için bir değer elde 

etmek mümkün olabilir. Ancak doğrudan 𝑀0 ölçümü mümkün olmaz [13].  

Kuantum Alan teorilerinin iyi bilinen bir özelliği, saçılma genliklerinin perturbasyon 

açılımında ıraksaklıkların ortaya çıkmasıdır. 4–boyutlu momentum uzayında hesaplanan 

Feynman integrallerinde görece büyük momentum değerlerinde ortaya çıkan ıraksaklıklar 

morötesi ıraksaklıklar (UV), küçük momentum değerlerindeki ıraksaklıklar ise kızılötesi 

ıraksaklıklar (IR) olarak adlandırılır [10]. Hem abelyen hem de abelyen olmayan ayar 

teorileri için, morötesi ıraksaklıkların gerçekte renormalize edilebilir olduğu, bağlaşım 
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sabitleri, kütleler ve alanlar gibi teorideki gözlemlenemeyen parametrelerin, 

gözlemlenebilir nicelikler için sonlu değerler verecek şekilde yeniden tanımlanabileceği 

gösterilmiştir. Uygulamada renormalizasyon, bu sonsuz değerli yalın parametrelerin, 

renormalize edilmiş sonlu bir nicelik ve sonsuz bir faktör 𝑍𝑖 (örneğin, KED bağlaşım sabiti 

𝑒0 = 𝑒𝑅𝑍𝑒) olarak ifade edilmesiyle gerçekleştirilir. Dyson "yük renormalizasyonu" ve 

"kütle renormalizasyonunun" yapılabilmesi durumunda KED'deki tüm ıraksaklıkların 

kalktığını gösterdi [11]. Daha genel olarak Dyson, yalnızca belirli türdeki kuantum alan 

teorileri için, tüm sonsuzlukları sonlu sayıda parametreyi yeniden tanımlayarak 

ıraksaklıktan kurtuldu. Böyle teorileri yeniden renormalize edilebilir olarak adlandırdı. 

Bundan sonra renormalize edilebilirlik, teori seçimi için bir ölçüt haline gelmiştir. 

 

1.3.1. İlmek İntegralleri 

 

Tedirgeme teorisinde saçılma genlikleri hesaplanırken, yüksek basamaktan Feynman 

çizimleride hesaplanmalıdır. Bu hesaplar sırasında  

 

∫
𝑑4𝑞

(2𝜋)4
(𝑞2)𝑚

[𝑞2−𝑀2+𝑖𝜀]𝑠
  (23) 

 

şeklinde integraller ile karşılaşılır. Örnek olarak 𝑚 = 0 durumunu ele alalım.  

 

 ∫
𝑑4𝑞𝐸

(2𝜋)4
1

[𝑞2−𝑀2+𝑖𝜀]𝑠
  (24) 

 

görüldüğü gibi  

 

𝑞2 = 𝑀2 − 𝑖𝜀 → (𝑞0)2 = 𝑞⃗2 +𝑀2 − 𝑖𝜖                                            

                     → 𝑞0 = ±√𝑞⃗2 +𝑀2 − 𝑖𝜖 ≈ ±√𝑞⃗2 + 𝑀2 (1 − 𝑖𝜖
1

𝑞⃗⃗2+𝑀2
)   (25) 

integralin kutup noktalarıdır. Bu noktalardan kurtulmak için Öklid metriğinde bir 𝑞𝐸  

vektörü tanımlanarak Şekil 5’deki gibi 𝑞0 = 𝑖𝑞𝐸
0,  𝑞⃗ = 𝑞⃗𝐸  Wick dönmesi 
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gerçekleştirilebilir. Dönüşüm ile elde edilen denklemin kutup noktası yoktur ve bu nedenle 

𝜀 sıfır alınabilir. Yeni denklem 

 

lim
𝜀→0
∫
𝑑4𝑞

(2𝜋)4
1

[𝑞2−𝑀2+𝑖𝜀]𝑠
= ∫

𝑑4𝑞𝐸

(2𝜋)4
𝑖

(−1)𝑠
1

[𝑞𝐸
2+𝑀2]

𝑠   (26) 

 

olur. 

 

 

                    

                          Şekil 5. Wick dönmesi 𝑙0 → −𝑖𝑙0 

 

Bu integral ıraksaktır ve burada kesim (cut-off) mekanizmasının kullanabilirliliği 

akla gelebilir. Ancak integral bir Λ maksimum momentum değerinde kesilerek bu 

ıraksaklıkların kaldırılmaya çalışılması, ayar değişmezliğinin bozulmasına neden olacaktır. 

Bu nedenle bu türlü integrallerde ıraksak terimi genel ifadeden ayırmak için  ‘t Hooft ve 

Veltman’ın geliştirdikleri boyutsal düzenleme yöntemi kullanılır [14]. Bu yöntemde 

integral d boyutta çözülür ve daha sonra 4 boyuta indirgenerek ıraksak terim açığa çıkarılır. 

d boyutta (26) integrali 

 

𝑖

(−1)𝑠
∫

𝑑𝑞𝐸

(2𝜋)𝑑
𝑞𝐸
𝑑−1

[𝑞𝐸
2+𝑀2]

𝑠
∞

0 ∫𝑑Ω𝑑−1   (27) 

 

olur. 𝑑 boyutta açılara bağlı integraller 

∫𝑑Ω𝑑−1 = ∫ 𝑑𝜃1
2𝜋

0 ∫ 𝑑𝜃2
𝜋

0
𝑠𝑖𝑛𝜃2…∫ 𝑑𝜃𝑑−1

𝜋

0
𝑠𝑖𝑛𝑑−2𝜃𝑑−1    (28)  
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𝑦 = 𝑠𝑖𝑛2𝜃 dönüşümü yapılarak ve  

 

∫ 𝑑𝜃
𝜋

0
(𝑠𝑖𝑛2𝜃)

𝑘

2 = ∫ 𝑑𝑦 𝑦
𝑘−1

2
1

0
(1 − 𝑦)−

1

2 =
Γ(
k+1

2
)Γ(

1

2
)

Γ(
k+2

2
)
   (29) 

 

eşitliği kullanılarak 

 

∫𝑑Ω𝑑−1 = ∫ 𝑑𝜃1
2𝜋

0 ∫ 𝑑𝜃2
𝜋

0
𝑠𝑖𝑛𝜃2…∫ 𝑑𝜃𝑑−1

𝜋

0
𝑠𝑖𝑛𝑑−2𝜃𝑑−1                  

                             = 2𝜋
Γ(
1

2
)Γ(

1

2
+
1

2
.1)

Γ(1+
1

2
.1)

Γ(
1

2
)Γ(

1

2
+
1

2
.2)

Γ(1+
1

2
.2)

…
Γ(
1

2
)Γ(

1

2
+
1

2
.(d−2))

Γ(1+
1

2
.(d−2))

 (30) 

                              = 2𝜋
(Γ(

1

2
))
d−2

Γ(1)

Γ(
d

2
)

= 2𝜋(𝜋)𝑑−2
1

Γ(
𝑑

2
)
=
2𝜋

𝑑
2

Γ(
𝑑

2
)
                              

 

olarak elde edilir. (26) integralinin ışınsal kısmını çözebilmek için de bir sıra değişken 

dönüşümü yapılmalıdır. İlk olarak 𝑦 =
𝑞𝐸

𝑀
⇒ 𝑑𝑦 =

𝑑𝑞𝐸

𝑀
  dönüşümü yapılarak 

 

∫
𝑑𝑞𝐸

(2𝜋)𝑑
𝑞𝐸
𝑑−1

[𝑞𝐸
2+𝑀2]

𝑠
∞

0
=

𝑀𝑑

𝑀2𝑠
∫ 𝑑𝑦

𝑦𝑑−1

[1+𝑦2]𝑠
∞

0
   (31) 

 

elde edilir. Ardından 𝑦 = sinh 𝑧 ve son olarak da 𝑢 = 𝑡𝑎𝑛ℎ2 𝑧 dönüşümleri yapılarak 

 

(𝑀2)
𝑑

2
−𝑠
∫ 𝑑𝑢
1

0
𝑢
𝑑−2

2 (1 − 𝑢)𝑠−
𝑑

2
−1 =

(𝑀2)
𝑑
2
−𝑠

2

Γ(
𝑑

2
)Γ(𝑠−

𝑑

2
)

Γ(𝑠)
   (32) 

 

elde edilir. Böylece (24) integrali için 
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lim
𝜀→0
∫
𝑑4𝑞

(2𝜋)4
1

[𝑞2−𝑀2+𝑖𝜀]𝑠
=

𝑖

(−1)𝑠
1

Γ(
𝑑

2
)2𝑑−1𝜋

𝑑
2

(𝑀2)
𝑑
2
−𝑠

2

Γ(
𝑑

2
)Γ(𝑠−

𝑑

2
)

Γ(𝑠)
               

                                                           =
(−1)𝑠𝑖

(4𝜋)
𝑑
2

Γ(𝑠−
𝑑

2
)

Γ(𝑠)
(𝑀2)

𝑑

2
−𝑠   (33) 

 

sonucuna ulaşılır. Bu ifadede ıraksaklık içerebilecek tek terim Γ (𝑠 −
𝑑

2
) dir. 𝑑 = 4 − 2𝜀 ve 

s=2 için  

 

Γ (𝑠 −
𝑑

2
) = Γ(𝜀) =

1

𝜀
+ Γ′(1) + 𝛰(𝜀)    (34) 

 

ıraksak terim açığa çıkarılmış olur böylece renormalizasyon gerçekleştirilebilir. 

 

1.3.2. KRD’de Renormalizasyon 

 

KRD de ikinci mertebe katkılar veren tek ilmek Feynman çizimleri Şekil (6) de 

verilmiştir.  

 

 

 

  Şekil 6. KRD bağlaşım sabitine ikinci mertebe katkılar veren tek  

                        ilmek Feynman çizimleri, a- köşe düzeltmesi, b- öz-enerji, 

                        c- boşluk kutuplanması [15]. 
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Şekil 6’daki öz enerji için Ek.1’deki Feynman kuralları kullanılırsa  

 

Σ(𝑘) = 𝑔2 ∫
𝑑4𝑞

(2𝜋)4
𝛾𝜇

𝑞

𝑞2+𝑖𝜂
𝛾𝜇

1

(𝑞+𝑘)2+𝑖𝜂
𝑇𝑟 (

𝜆𝑎

2

𝜆𝑎

2
)
1

3
   (35) 

 

ve gerekli işlemler yapıldığında 𝜇 boyutsal düzenleme esnasında boyutun değişmemesi 

için eklenen bir sabit olmak üzere  

 

Σ(𝑘) = 𝑖𝑘𝐶𝐹𝛿𝑎𝑏
𝛼𝑠

4𝜋
(
1

𝜀
+ ln 4𝜋 − 𝛾𝐸 + 1 + 𝑙𝑛

𝜇2

𝑘2
)   (36) 

 

elde edilir. 𝛾𝐸 = 0.57721 Euler-Mascheroni sabitidir. Denklem (36) da ıraksaklığa neden 

olan terim açığa çıkarılmış olup, bu aşamada bir renormalizasyon şeması kullanılarak 

Green fonksiyonları için sonlu değerler hesaplanmalıdır. Bu amaçla 𝑍’ler renormalizasyon 

sabitleri, 𝐵 alt indisliler ıraksak olan yalın değerleri olmak üzere  

 

𝜓𝐵 =  𝑍2
1/2
𝜓𝑅

𝐴𝐵
𝜇
=  𝑍3

1/2
𝐴𝑅
𝜇

𝑔𝐵 = 𝑍𝑔𝜇
𝜀𝑔𝑅

𝑚𝐵 = 𝑍𝑚𝑚𝑅

    (37) 

 

şeklinde 𝑅 alt indisli renormalize alanlar ile kütle ve bağlaşım sabiti tanımlanır.  Kolaylık 

olması için kuarkları kütlesiz olarak ele alırsak, 𝑍1 = 𝑍𝑔𝑍2𝑍3
1 2⁄

 ve 𝑍𝑛 = 1 + 𝛿𝑛 olmak 

üzere renormalize terimler cinsinden Lagranjiyen  

 

ℒ = 𝜓𝑖𝜕𝜓 −
1

4
𝐹𝜇𝜈
𝑎 𝐹

𝜇𝜈𝑎
+ 𝜇𝜀𝑔𝜓̅𝐴𝜓 + [𝑔ℎ𝑜𝑠𝑡𝑠, 𝐺𝑀]

                 +𝛿2𝜓̅𝑖𝜕𝜓 −
1

4
𝛿3𝐹𝜇𝜈

𝑎 𝐹
𝜇𝜈𝑎

+ 𝛿1𝜇
𝜀𝑔𝜓̅𝐴𝜓     

      (38) 

 

ile betimlenir. Burada karşıt terimler Şekil 6. daki Feynman çizimleri hesaplanarak elde 

edilir. Örneğin kuark öz enerjisi için minimum çıkarma (MS) (sadece kutup terimi, yani en 
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az sayıda terim) şemasında 𝛿2 = −𝐶𝐹
𝛼𝑠

4𝜋

1

𝜀
 olduğu (36)’da gösterilmiştir benzer şekilde 

glüyon öz enerjisi için 

 

𝛿3 = (
5

3
𝐶𝐴 −

4

3
𝑛𝑓𝑇𝑓)

𝛼𝑠

4𝜋

1

𝜀
    (39) 

 

ve 𝑞𝑞𝑔 köşe terimi için de 

 

𝛿1 = −(𝐶𝐴 + 𝐶𝑓)
𝛼𝑠

4𝜋

1

𝜀
     (40) 

 

elde edilir. 𝑍 renormalizasyon sabitleri de ıraksaktır ancak tüm Green fonksiyonlarını sonlu 

yapacak şekilde seçilirler. Bu koşulu sağlayan birden fazla renormalizasyon şeması yani 

farklı 𝑍’ler seçilebilir. Örneğin kuark öz-enerjisi için MS şemasında  

 

𝑍2
𝑀𝑆 = 1 − 𝐶𝐹

𝛼𝑠

4𝜋

1

𝜀
+ 𝛰(𝛼𝑠

2)      (41) 

 

iken değiştirilmiş minimum çıkarma (𝑀𝑆̅̅ ̅̅ ) şemasında  

 

𝑍2
𝑀𝑆̅̅̅̅̅ = 1 − 𝐶𝐹

𝛼𝑠

4𝜋
(
1

𝜀
+ ln 4𝜋 − 𝛾𝐸) + 𝛰(𝛼𝑠

2)  (42) 

 

olarak seçilir, bu durumda (36) denkleminde 𝜇 → 𝜇𝑀𝑆̅̅̅̅̅ =
𝑒𝛾𝐸 2⁄

√4𝜋
𝜇 olacaktır.  

 (38) Lagranjiyeni ile Feynman genlikleri hesaplandığında sonuçlar μ parametresine 

bağlı olarak ortaya çıkarlar. Fiziksel sonuçlar ise böyle bir parametreye bağlı olamazlar. 

Etkileşme sabitleri ve alan işlemcilerinde oluşan değişiklikler sonuçları bu parametrelerden 

bağımsız yapmaktadır. 
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1.3.3. Koşan Etkileşme Ssbiti 

 

Yalın bağlaşım sabiti, 𝜇 parametresinin seçiminden bağımsız olmalıdır, yani 

 

𝑑𝑔𝐵

𝑑𝜇
= 0   (43) 

 

dır. Yalın bağlaşım sabiti için (38)’deki ifade kullanılırsa 𝛼𝑠 = 𝑔𝑅
2 4𝜋⁄  ve  

𝑑

𝑑𝑡
= 𝜇2

𝑑

𝑑𝜇2
=

𝑑

𝑑𝑙𝑜𝑔𝜇2
 için 

 

 𝜀𝜇2𝜀𝑍𝑔
2𝛼𝑠 + 𝜇

2𝜀𝛼𝑠2𝑍𝑔
𝑑𝑍𝑔

𝑑𝑡
+ 𝜇2𝜀𝑍𝑔

2 𝑑𝛼𝑠

𝑑𝑡
= 0  (44) 

 

olur. Beta fonksiyonunu 𝛽(𝛼𝑠) =
𝑑𝛼𝑠

𝑑𝑡
, tanımlarsak  

 

𝛽(𝛼𝑠) + 2
𝛼𝑠

𝑍𝑔

𝑑𝑍𝑔

𝑑𝛼𝑠
𝛽(𝛼𝑠) = −𝜀𝛼𝑠  (45) 

 

elde ederiz. 𝛽 fonksiyonuna tek ilmek katkıları için Feynman çizimleri Şekil 7’de 

verilmiştir. Renormalizasyon sabiti 𝑍𝑔’yi seri açılımından 

 

𝑍𝑔 =
𝑍1

𝑍2𝑍3
1 2⁄ = 1 + 𝛿1 − 𝛿2 −

1

2
𝛿3  

                       = 1 +
𝛼𝑠

4𝜋

1

𝜀
[−

11

6
𝐶𝐴 +

2

3
𝑛𝐹𝑇𝐹] ≝ 1 −

1

𝜀
(
𝑏0

2
) 𝛼𝑠  (46) 

 

şeklinde (45) denkleminde yerine yazarsak 

 

𝛽(𝛼𝑠) =
−𝜀𝛼𝑠

1+2
𝛼𝑠
𝑍𝑔

𝑑𝑍𝑔

𝑑𝛼𝑠

=
−𝜀𝛼𝑠

1+
−𝑏0𝛼𝑠
𝜀

1−
1
𝜀
(
𝑏0
2
)𝛼𝑠

=
−2𝜀2𝛼𝑠+𝑏0𝜀𝛼𝑠

2

2𝜀−3𝑏0𝛼𝑠
    (47) 
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elde edilir. 𝛽 fonksiyonunun tedirgeme seri açılımı  

 

𝛽(𝛼𝑠) = −𝛼𝑠
2𝑏0(1 + 𝑏1𝛼𝑠 + 𝑏2𝛼𝑠

2 + 0(𝛼𝑠
3))  (48) 

 

için ilk üç katsayı şu şekildedir [16,17]; 

 

𝑏0 =
33−2𝑁𝐹

12𝜋
  

𝑏1 =
153−19𝑁𝐹

24𝜋2
  (49) 

𝑏2 =
77139−15099𝑁𝐹+325𝑁𝐹

2

3456𝜋3
  

  

Burada 𝑁𝐹 , hadrondaki 𝑚𝑞 kütlelerinin 𝜇𝑟’den küçük olan çeşni sayısıdır. Böylece 𝑁𝐹 = 3 

için yeğin etkileşme bağlaşım sabitini birinci mertebeden  

 

𝛼𝑠(𝜇
2) =

1

𝑏0ln (
𝜇2

Λ𝐾𝑅𝐷
2 )

   (50) 

 

olarak bulunur. ΛKRD enerji ölçeği KRD için 200 MeV’dir. Bu enerji ölçeğinin üstünde 

kuarklar, altında ise hadronlar bulunur.  

 

 

  

                                 Şekil 7. 𝛽 fonksiyonuna tek ilmek katkıları 
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                  Şekil 8. 𝑀𝑍
2 enerjisinde elektron-proton ve proton-proton çarpıştırıcılarında   

            elde edilen 𝛼𝑠 değerleri ve ortalaması; 𝛼𝑠(𝑀𝑍
2) = 0.1181 [18]. 

 

 Bağlaşım sabiti (∞ ve ΛKRD) sınır değerlerinde incelendiğinde giriş bölümünde 

bahsettiğimiz iki önemli olay ile karşılaşılır. 𝜇 → ∞ için 𝛼𝑠 sıfıra gitmektedir yani, kuarklar 

serbest parçacıklar gibi davranırlar. Bu olaya asimtotik özgürlük denilir. Diğer taraftan, 

ΛKRD’nın komşuluğunda  𝛼𝑠 ≥ 1 için tedirgemeli yaklaşımlar geçersiz olur. Ancak yine de 

düşük enerjilerdeki bu artış bu bölgede kuarkların yalnızca bağlı durumlarda 

bulunabileceğini serbest halde bulunamayacağını gösterir. Bu duruma ise kuark hapsi 

denilmektedir [19]. 𝛼𝑠’nin enerjiye bağlı değişimi Şekil 8’de gösterilmiştir. 

 

 1.4. Hadronik Saçılma Süreçleri 

 

 Yeğin bağlaşım sabitinin bu özelliği hadronik süreçlerin incelenmesinde yüksek 

enerji bölgelerinde tedirgemeli KRD’nin kullanılmasına olanak verirken, düşük enerji 

bölgelerinde tedirgemeli olmayan yöntemlerin kullanılmasını gerektirir. Bu nedenle 

partonik (kuark ve glüyon etkileşmeleri) alt süreçler tedirgemeli KRD ile hesaplanırken, 

parton dağılım fonksiyonu (PDF) ve paylaşım fonksiyonu (FF) ile tanımlanan hadronların 
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iç dinamikleri KRD toplama kuralları, örgü KRD, etkin alan kuramları gibi tedirgemeli 

olmayan yöntemler ile hesaplanır. Şekil 9, üç farklı hadron üreten saçılma süreci için 

faktorizasyon yöntemini betimlemektedir. Bu yönteme göre 𝜎 hadronik 𝜎 partonik 

süreçlerin tesir kesitleri; 

i. 𝑒+ + 𝑒− → ℎ + 𝑋;     𝜎 = 𝜎⨂𝐹𝐹 

ii. 𝑙 + 𝑁 → 𝑙 + ℎ + 𝑋;   𝜎 = 𝜎⨂𝑃𝐷𝐹⨂𝐹𝐹  

iii. 𝑝 + 𝑝 → ℎ + 𝑋;        𝜎 = 𝜎⨂𝑃𝐷𝐹⨂𝑃𝐷𝐹⨂𝐹𝐹  

ile verilir 

 

 

  

            Şekil 9. a) 𝑒+ + 𝑒− → ℎ + 𝑋, b) 𝑙 + 𝑁 → 𝑙 + ℎ + 𝑋, c) 𝑝 + 𝑝 → ℎ + 𝑋  

      süreçlerinin simgesel çizimi [20]. 

 

 İnklusif p+p sürecini ele alacak olursak. Büyük harfler hadronları, küçük harfler ise 

hadron bileşenlerini betimlemek üzere, 𝐴 + 𝐵 → 𝐶 + 𝑋  şeklinde bir inklusif süreç için 

Mandelstam değişkenlerini kullanmak oldukça kullanışlıdır. 𝐴 ve 𝐵 başlangıç hadronlar ve 

𝐶 gözlenen son durum hadronlar için momentumlar sırasıyla 𝑝𝐴, 𝑝𝐵 , 𝑝𝐶  olmak üzere 

Mandelstam değişkenleri, 

 

𝑠 = (𝑝𝐴 + 𝑝𝐵)
2, 𝑡 = (𝑝𝐴 − 𝑝𝐶)

2, 𝑢 = (𝑝𝐵 − 𝑝𝐶)
2  (51) 

 

ile verilir. 𝑠, değişkeni kütle merkezi gözlem çerçevesinde enerjinin karesidir. 𝑡 ve  𝑢, ise 

sırasıyla, 𝐴 ve 𝐵 parçacıklarından 𝐶 parçacığına aktarılan 4’lü momentum karesidir. Şekil 

10’da gösterildiği gibi, hadronların bileşenleri de 𝑎 +  𝑏 →  𝑐 +  𝑑 şeklinde alt süreç 

olarak da yazılır. 
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    Şekil 10. 𝐺𝑞
𝑝⁄
(𝑥𝑞) dağılım fonksiyonları 𝐷𝑀

𝑞⁄
(𝑍)paylaşım fonksiyonları  

ve sert-saçılma alt süreçlerinin simgesel gösterimi 

 

 Alt süreçlerin Mandelstam değişkenleri, değişken üzerine konulan şapka ile 

gösterilir. Hafif kuarkların kütleleri göz ardı edildiğinde, 𝑠̂ + 𝑡̂ + 𝑢̂ = 0 olur. Momentum 

bileşenleri, demet doğrultusuna dik (transverse) ya da boyuna (longitudinal) olabilir, bunlar 

sırasıyla 𝑝𝑇 ve 𝑝𝐿 ile gösterilir. Örneğin, demet z-doğrultusunda ise 𝑝𝑇 dik bileşeni, 

 

𝑝𝑐 = (𝑝0, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧) = (𝑝0, 𝑝𝑇 , 𝑝𝑧)  (52) 

 

ile ifade edilir. Genel olarak, 𝑝𝑇  ≪  1 𝐺𝑒𝑉/𝑐 bölgesi çarpışmalar esnek olarak adlandırılır 

ve bu durumda fenomonolojik KRD, 𝑝𝑇 ≫  1 𝐺𝑒𝑉/𝑐 bölgesi çarpışmalar sert olarak 

adlandırılır ve tedirgemeli KRD uygulanır. 

 Hadron ya da jet üretimi için 𝑎𝑏 → 𝑐𝑑 alt süreçlerinden olası tüm iki cisim kuark–

kuark, kuark–glüyon ve glüyon–glüyon saçılmaları içerecek şekilde, parton seviyesinde, 

𝐺𝑞/𝑝(𝑥𝑞) partonun hadrondaki dağılım oranını betimleyen dağılım fonksiyonları, mezonun 

partonda paylaşım oranını betimleyen paylaşım fonksiyonu da 𝐷𝑀/𝑞(𝑧) olmak üzere 

hadron–hadron çarpışmasında inklusif parton üretimi tesir kesiti, 
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𝐸𝑐
𝑑𝜎

𝑑3𝑝𝑐
(𝐴 + 𝐵 → 𝐶 + 𝑋) = ∑ ∫𝑑𝑥𝑎𝑑𝑥𝑏𝑑𝑥𝑐𝐺𝑎

𝐴

(𝑥𝑎)𝐺𝑏
𝐵

(𝑥𝑏)𝐷𝑐
𝐶

(𝑍𝑐)𝑎𝑏𝑐𝑑   

                                                      ×
𝑠̂

𝑧𝑐
2𝜋

𝑑𝜎

𝑑𝑡̂
(a + 𝑏 → 𝑐 + 𝑑)𝛿(𝑠̂ + 𝑡̂ + 𝑢̂)   (53) 

 

ile verilir [21].  

 Parton dağılım fonksiyonları (PDF) ve paylaşım fonksiyonları (FF), sırasıyla 

protonun ve hadronizasyon mekanizmasının iç dinamiklerini temsil eder. Bu fonksiyonlar 

tedirgemeli yöntemler kullanılarak hesaplanamaz ve çeşitli sert saçılma süreçleri için elde 

edilen verilerden türetilirler.  

 𝐺𝑎/𝐴 (𝑥)𝛿𝑥, A protonu içerisindeki 𝑥 ile 𝑥 + 𝛿𝑥 momentum aralığında bulunan 𝛼 

çeşnili kuark sayısı olarak tanımlanır. Şekil 11’de bazı basit PDF’ler gösterilmiştir. 

Bunlardan birincisi protonun içyapısı olmayan noktasal bir cisim olarak ele alındığı 

duruma karşılık gelmektedir; ikinci ise protonun üç tane etkileşmeyen kuarktan oluştuğu 

ve protonun toplam momentumunun kuarklar arasında eşit olarak paylaşıldığı durumu 

karşılık gelmektedir; üçüncü durumda bu kuarkların kendi aralarındaki etkileşmeler ile 

gerçekleşebilecek momentum transferleri de dikkate alınmıştır; dördüncü durumda ise 

sanal kuark çiftlerinin yaratılabildiği kuarklar arası yüksek mertebeden etkileşmeler de göz 

önüne alınmıştır. 

 

 

 

Şekil 11. PDF fonksiyonu için örnekler; a-noktasal parçacık, b- protonun   

               momentumunu eşit paylaşan etkileşimsiz 3 kuark c,d-aralarında    

               momentum transferi olan 3 etkileşen kuark [22]. 

 

 PDF’lerin tanımına benzer şekilde, 𝐷𝑐/𝐶(𝑍𝑐)𝛿𝑧 paylaşım fonksiyonu, c partonu 

içerisinde 𝑧 ile 𝑧 + 𝛿𝑧 momentum aralığındaki hadron sayısı olarak tanımlanabilir. PDF’ler 
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analitik olarak hesaplanamazlar ancak 𝑄2’ye bağlı olarak değişimleri Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) denklemi ile belirlenebilir [23-26].  Bu nedenle, belli bir 

𝑄2’de ölçülen PDF farklı 𝑄2 değerleri için de kullanılabilmesine olanak sağlar. Paylaşım 

fonksiyonlarının olasılık yorumu, PDF’lere benzer olup partondan bir hadron oluşumu 

ilgili tüm uzun mesafe bilgilerini içerir. 

 

 

Şekil 12. Proton için MRST parton dağılım fonksiyonları [27]. 

 

 

 

 

Şekil 13. Proton için MSTW (2008) parton dağılım fonksiyonları [28]. 

 



23 

 

 Elastik olmayan derin saçılma (DIS) deneyleri, kısa mesafeli ölçeklerde hadronların 

doğasını anlamamıza yardımcı olmaktadır. Stanford Doğrusal Hızlandırıcı Merkezi’nde 

(SLAC) 1967 yılında gerçekleştirilen DIS deneyinde 5-20 GeV arasında değişen enerjilere 

sahip elektronlar sıvı hidrojen hedefle çarpıştırılarak elektronlar için tesir kesiti ölçümleri 

yapılmıştır. Bu tesir kesitleri protonun yapı fonksiyonlarının tespiti için kullanıldığında 

sonuçların Bjorken ölçeklendirmesi [29] ve Callon-Gross eşitliğini [30] sağladığı 

görülmüştür (Şekil 14). Bu iki önemli sonuç birlikte değerlendirildiğinde, elastik olmayan 

derin elektron proton saçılmasının protonun içyapısındaki 1/2 spinli parçacıklardan 

elektronun elastik saçılması şeklinde gerçekleştiği anlaşılmış ve protonun içyapısındaki bu 

noktasal bileşenler Feynman tarafından parton olarak adlandırılmıştır. 

 

           

 

 Şekil 14. a) Bjorken ölçeklendirmesi ve b) Callon-Gross eşitliği 

 

 Bu deney sonuçlarından yararlanarak 1971 yılında Berman, Bjorken ve Kogut (BBK) 

[31] proton proton inklusif saçılma süreci (𝑝 + 𝑝 → 𝐶 + 𝑋) nin tesir kesiti için kuark-

glüyon seviyesinde ele alarak 

 

𝐸
𝑑3𝜎

𝑑𝑝3
~

1

𝑝𝑇
4 𝐹(𝑥𝑇 , 𝜃)  (54) 

 

şeklinde bir ifade (ölçek) elde ettiler.  

 Bu deney sonuçları klasik parton modeli ile açıklanabilmektedir. Bu modelde, 

kuarkların hadronik kökenleri (bağları) ihmal edilmekte ve başlangıç bileşenlerin; 
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(partonların) yalıtılmış, serbest, kabukta (on-shell) noktasal parçacıklar sistemi olarak ele 

alınmaktadır. Daha sonra Almanya'nın Hamburg şehrindeki DESY araştırma merkezindeki 

HERA çarpıştırıcısından elde edilen sonuçlara göre (Şekil15) 𝑥'in küçük değerlerinde, 𝐹2 

yapı çarpanı büyük ölçüde 𝑄2 bağımlılığı göstermiş. Bu davranış klasik patron modeli ile 

açıklanamazken, kuantum renk dinamiği ile açıklanabilmektedir. Büyük 𝑥 değerlerinde 

etkileşme, hadronu oluşturan değerlik kuarkları ile olmaktadır ve bu durum momentum 

transferinden bağımsızdır ancak küçük 𝑥 değerlerinde etkileşme deniz kuarkları ve 

glüyonlar tarafından gerçekleşebilmektedir ve bu etkileşmeler sabit değildir. 

 

 

      

         Şekil 15. HERA çarpıştırıcısında gerçekleştirilen ZEUS ve H1 deneylerinin  

                         verilerine göre farklı 𝑥 değerleri için 𝐹2 − 𝑄
2 değişimi [32]. 

 

 Valans kuarkların etkin olduğu 0.13 < 𝑥 < 0.18 bölgesi için Björken ölçeği başarılı 

bir yaklaşıklık ancak 𝑥’in daha küçük ve daha büyük değerleri için Björken ölçeğinin 

geçerli olamayacağı bu değişimden görülmektedir. 

 1972 yılında çalışmaya başlayan ISR (Intersecting Storage Rings)’de ilk hadron-

hadron çarpışması gerçekleştirilmesi ile deney sonuçlarının BBK'nın öngürdüğü sonuçlar 

ile özellikle 𝑝𝑇 < 6 𝐺𝑒𝑉/𝑐 bölgesinde uyuşmadığı ancak Blankenbecler, Brodsky and 

Gunion tarafından geliştirilen CIM (constituent interchange model) [33] modelinin 
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sonuçlar ile uyum içinde olduğu bilim dünyasına duyuruldu. Bu model proton-proton 

saçılması, alt süreçlerinin partonların yanı sıra mezon baryon ve 2-kuark gibi birleşik 

yapıları da içerebileceğini öngördü. Deney sonuçları ile CIM ve 𝑝𝑇
−4modellerinin 

karşılaştırılması Şekil 16 ‘da gösterilmiştir.  

 

 

 

  Şekil 16. Deney sonuçları ile CIM ve 𝑝𝑇
−4modellerinin karşılaştırılması [34,36] 

 

 ISR deney verileri elde edilene değin hadron-hadron derin inelastik saçılma 

süreçlerinin tesir kesiti hesaplarında alt süreçler, kuark-glüyon düzeyinde, günümüzdeki 

terminoloji ile önder tivistlerdir (Leading tivist, LT). Ancak deney sonuçlarının belirli 

bölgelerde bu hesaplamalardan önemli farklılıklar göstemesi sonucu baryon, mezon ve 2-

kuark gibi birleşik yapıların alt süreçlerde ele alındığı modeller önem kazanmış, bu türlü 

alt süreçlerin katkılarına yüksek tivist (Higher tivist, HT) katkıları denmektedir. 

 LT ve HT alt süreçleri göz önüne alarak (54) ifadesi, 𝑛𝑎𝑘𝑡𝑖𝑓 alt sürece katılan toplam 

parton, 𝑛𝑝𝑎𝑠𝑖𝑓 ise A,B ve C yi oluşturan partonlar içerisinden sürece katılmayan toplam 

parton sayısı olmak üzere, 

 

𝐸
𝑑𝜎

𝑑3𝑝
(𝐴𝐵 → 𝐶𝑋) ∝

(1−𝑥𝑇)
2𝑛pasif−1

𝑝𝑇
2𝑛𝑎𝑘𝑡𝑖𝑓−4   (55) 

 

şeklinde genelleştirildi. 𝑝𝑝 → 𝑝𝑋 sürecini ele alacak olursak, 𝑞𝑞 → 𝑞𝑞 dan gelecek olan 

yüksek tivist katkı için  𝑛𝑎𝑘𝑡𝑖𝑓 = 4, 𝑛𝑝𝑎𝑠𝑖𝑓 = 6 ve 𝑞𝑞 → 𝑝𝑞̄ dan gelecek olan yüksek tivist 
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katkı için 𝑛𝑎𝑘𝑡𝑖𝑓 = 6, 𝑛𝑝𝑎𝑠𝑖𝑓 = 4 olur.  

 Berger, Gottschalk ve Siver hadronik çarpışmalara inklusif tek piyon üretimi süreci 

için yüksek tivist katkılarını tedirgemeli KRD çerçevesinde hesapladılar ve 𝑝𝑇 < 6 𝐺𝑒𝑉/𝑐 

için önemli katkılar verdiğini gösterdiler [37]. Bu tarihten sonra yüksek tivist katkıların 

hesaplandığı birçok fenomolojik hesap yapıldı. Bunların başlıcaları hadron-hadron 

saçılmasında piyon üretimi [38] ve mezon çifti üretimi [39] için HT katkıları 

hesaplamaları, foton-proton saçılmasından inklusif mezon üretimi [40], piyon-hadron 

saçılmasında foton üretimidir [41]. Farklı yöntemler ile elde dilen yeni dalga fonksiyonları 

ile yapılan tesir kesiti hesaplamaları günümüzde de devam etmektedir [42-48] ve teorik 

parçacık fiziği fenemolojisi için önemlidir. 

 𝑝𝑝 → 𝑀𝛾 süreci için (53) ifadesi   

 

∑ ≡𝐻𝑇
𝑀 𝐸

𝑑𝜎

𝑑𝑝3
=  

                     

            

∫ ∫ 𝑑𝑥1𝑑𝑥2𝐺𝑞1
ℎ1

(𝑥1)𝐺𝑞2
ℎ2

(𝑥2) ×
𝑠̂

𝜋

𝑑𝜎

𝑑𝑡̂
(𝑞𝑞 → 𝑀𝛾)𝛿(𝑠̂ + 𝑡̂ + 𝑢̂)

1

0

1

0
 (56) 

 

olur. Alt süreçlerin 𝑇𝐻, sert–saçılma kısımlarından gelen katkıların toplamı ve ΦM mezon 

dalga fonksiyonu olmak üzere genlik 

 

𝑀(𝑠̂, 𝑡̂) = ∫ 𝑑𝑥1
1

0
∫ 𝑑𝑥2

1

0
𝛿(1− 𝑥1 − 𝑥2)Φ𝑀(𝑥1, 𝑥2, 𝑄

2),T𝐻(𝑥1, 𝑥2;𝑄
2, 𝜇𝑅

2 , 𝜇𝐹
2)  (57) 

 

Brodsky-Lepage formülü ile partonik alt süreçlerin diferansiyel tesir kesitleri ise  

 

𝑑𝜎̂(𝑎𝑏→𝑐𝑑)

𝑑𝑐𝑜𝑠𝜃
=

1

32𝜋𝑠̂
∑|𝑀̅|2  (58) 

 

ile hesaplanır. 𝑇𝐻 fonksiyonunun hesaplanmasında kullanılan 𝑞1 𝑞2 spin durumu, 
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 𝜒𝑞1𝑞̅2

𝑠 = ∑
𝑢𝑠1
(𝑥1𝑃𝑀)

√𝑥1

𝑣𝑠2(𝑥2𝑃𝑀)

√𝑥2
𝑠𝑠𝑠2

𝑁𝑠1 ,𝑠2
𝑠 = {

𝑃̂𝑀

√2
 ,             ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦  0,

∓
𝜖∓𝑃̂𝑀

√2
,          ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦 ± 1,

    (59) 

 

ile verilir. Görüldüğü gibi HT süreçlerde mezon üretimi partonların paylaşımı şeklinde 

olmayıp, süreç içerisinde doğrudan gerçekleştiği için FF’larına ihtiyaç yoktur, onun yerini 

mezonun bağlı durumunu tanımlayan dağılım genlikleri kullanılır. 

 Literatürde kuark karşıt-kuark çiftleri için farklı dağılım genlikleri bulunmaktadır. 

Hadronik süreçlerde ilk kullanılan, tedirgemeli KRD çerçevesinde geliştirilen  

 

𝜙𝑎𝑠𝑦(𝑥) = 6𝑥(1 − 𝑥) (60) 

 

asimtotik fonksiyondur. Daha sonra ise KRD toplama kuralları kullanılarak düşük 𝑄2 

bölgesi için de iyi sonuçlar veren  

 

𝜙𝑐𝑧(𝑥) = 5√3𝑥(1 − 𝑥)(1 − 2𝑥)
2  (61) 

 

Chernyak-Zhitnitsky fonksiyonu [49] kullanılmıştır, günümüzde ise özellikle skaler 

mezonlar için farklı yöntemler kullanılarak birçok dağılım genliği elde edilmiştir. Dağılım 

genlikleri 𝐶𝑛
3/2
(2𝑥 − 1) Gegenbauer polinomları cinsinden seriye açılabilir 

 

𝜙𝑀
∥,⊥(𝑥, 𝜇𝐹

2) = 𝜙𝑎𝑠𝑦(𝑥)[1+ ∑ 𝑎𝑛
∥,⊥(𝜇𝐹

2)𝐶𝑛
3 2⁄ (2𝑥 − 1)∞

𝑛=1 ]  (62) 

  𝑎𝑛
∥ (𝑥𝜇

2) = 𝑎𝑛
∥ (𝜇0) [

𝛼𝑠(𝜇𝐹)

𝛼𝑠(𝜇0)
]

𝛾𝑛
| |

(0)

2𝛽0   

𝑎𝑛
⊥(𝑥𝜇

2) = 𝑎𝑛
⊥(𝜇0) [

𝛼𝑠(𝜇𝐹)

𝛼𝑠(𝜇0)
]
(𝛾𝑛
⊥(0)−𝛾0

⊥(0)
/2𝛽0

  

𝛾𝑛
||(0)

= 8𝐶𝐹 [∑
1

𝑘
−

3

4

𝑛+1
𝑘=1 −

1

2(𝑛+1)(𝑛+2)
]  

𝛾𝑛
⊥(0) = 8𝐶𝐹 [∑

1

𝑘
−

3

4

𝑛+1
𝑘=1 ]  
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𝛽0 = 11 −
2

3
𝑛𝑓, 𝑛𝑓 = 3   

 

Belli bir 𝜇0 değerinde elde edilmiş olan dağılım genlikleri Efremov-Radyushkin-Brodsky-

Lepage denklemi kullanılarak farklı 𝜇 değerleri için elde edilebilir. Normalizasyon 

şartından, ilk katsayı 𝑎0
∥,⊥(𝜇0) bire eşitlenir ve diğer katsayılar tedirgemeli olmayan 

yöntemler veya deneylerden elde edilen verilerden hesaplanır.  

 Yüksek tivist tesir kesiti hesaplamalarında, önemli bir konu da yeğin etkileşim 

bağlaşım sabiti için renormalizasyon ölçeğinin belirlenmesidir. Bir Feynman çizimi için 

KRD bağlaşım sabitinin argümanı 𝜇𝑅, sert glüyonun momentumunun karesine eşit 

seçilebilir ve böylece (üretilen) mezonun (hadronun) kuarklarının taşıdıkları 𝑥1, 𝑥2 

momentum kesirlerine bağlıdır. Yüksek tivist tesir kesiti hesaplarında iki farklı 

yaklaşımdan birincisi “donmuş bağlaşım sabiti yaklaşımı olup  𝑥1 = 𝑥2 =
1

2
 olarak seçilir 

ve bağlaşım sabiti, ilgili integrallerde sabit bir terim olarak integral dışana çıkar. İkinci 

yaklaşım ise “koşan bağlaşım sabiti yaklaşımı” ve 𝑥1, 𝑥2 [0,1] aralığında değişken olarak 

alınır, bu durumda ise ilgili integrallerde ıraksaklıklar ortaya çıkar. Bu ıraksaklıklar 

Cauchy esas değer yaklaşımı kullanılarak hesaplanır. 

   

 

 

 

 

 

 

 

 



 

 2. YAPILAN ÇALIŞMALAR 

 

 2.1. Tek Mezon Üretimi 

 

 

 

  Şekil 17. 𝑝 + 𝑝̅ → 𝜌+(𝜌−) + 𝛾 yüksek–tivist alt süreçleri için Feynman çizimleri 

 

Bu çalışmada HT etkilerin rolünün anlaşılması için Du v.d. uyguladıkları yöntem 

kullanılarak, 𝑝 + 𝑝̅ → 𝜌+(𝜌−) + 𝛾 süreci yüksek tivist katkıları ile 𝑝 + 𝑝 → 𝜌+(𝜌−) + 𝛾 

sürecine gelecek yüksek tivist katkılarının farkı hesaplanmıştır. Bu yöntemin avantajı 

gluon ve deniz kuarklarından katkı gelmemesidir. Böylelikle daha iyi bildiğimiz değerlik 

kuarkların katkılarının hesaplanması yeterli olmaktadır. 

∑  𝑝𝑝̅  ve  ∑  𝑝𝑝  tesir kesitlerinin farkına katkı yalnızca değerlik kuarklar içeren 

𝑢𝑣+𝑑̅𝑣 → 𝜌+ + 𝛾 ve 𝑑𝑣+𝑢̅𝑣 → 𝜌− + 𝛾 süreçlerinden gelmektedir:  
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 ∑  𝑝𝑝̅ = 𝐸𝜌+
𝑑3𝜎

𝑑𝑃𝜌+ 
3 (𝑝𝑝̅ → 𝜌+ + 𝛾) + 𝐸𝜌−

𝑑3𝜎

𝑑𝑃𝜌− 
3 (𝑝𝑝̅ → 𝜌− + 𝛾) (63) 

 ∑  𝑝𝑝 = 𝐸𝜌+
𝑑3𝜎

𝑑𝑃𝜌+ 
3 (𝑝𝑝 → 𝜌+ + 𝛾) + 𝐸𝜌−

𝑑3𝜎

𝑑𝑃𝜌− 
3 (𝑝𝑝 → 𝜌− + 𝛾) (64) 

 

𝑠̂, 𝑡̂, 𝑢̂ yüksek tivist alt süreçlerinin Mandelstam değişkenleri   

 

𝑠̂ = (𝑝1 + 𝑝2)
2 = 𝑥1𝑥2𝑠  

𝑡̂ = (𝑝1 − 𝑃𝜌)
2 = 𝑥1𝑡  (65) 

𝑢̂ = (𝑝2 − 𝑃𝜌)
2 = 𝑥2𝑢  

 

olmak üzere, 

 

 ∆𝐻𝑇= ∑ −∑ =
1

𝜋
∫𝑑𝑥𝑑𝑦𝛿(𝑠̂ + 𝑡̂ + 𝑢̂)𝑠̂ 𝑝𝑝𝑝𝑝̅   

       [𝐺𝑃
𝑢𝑣(𝑥, 𝑄2)𝐺𝑃̅

𝑑𝑣(𝑦, 𝑄2)
𝑑𝜎

𝑑𝑡 (𝑢𝑣+𝑑𝑣→𝜌
++𝛾)

+𝐺𝑃
𝑑𝑣(𝑥, 𝑄2)𝐺𝑃̅

𝑢𝑣(𝑦, 𝑄2)
𝑑𝜎

𝑑𝑡̂(𝑑𝑣+𝑢𝑣→𝜌
−+𝛾)

]  (66) 

  

ile verilir. 

∆𝐿𝑇 için önder tivist katkıları ise yalnızca 𝑞𝑣(𝑢,𝑑)(𝑝) + 𝑞̅𝑣(𝑢,𝑑)(𝑝̅) → 𝑔 +

𝛾 (𝑔 → 𝜌+( 𝜌−)) alt sürecinden gelmektedir. 𝑠̂, 𝑡̂, 𝑢̂ önder-tivist alt sürecinin Mandelstam 

değişkenleri  

 

𝑠̂ = (𝑝1 + 𝑝2)
2 = 𝑥1𝑥2𝑠  

𝑡̂ = (𝑝1 − 𝑃𝜌)
2 =

𝑥1𝑡

𝑧
  

𝑢̂ = (𝑝2 − 𝑃𝜌)
2 =

𝑥2𝑢

𝑧
  (67) 

 

olmak üzere, ∆𝐿𝑇 
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 ∆𝐿𝑇= ∫ 𝑑𝑥𝑑𝑦𝑑𝑧𝛿(𝑠̂ + 𝑡̂ + 𝑢̂)𝑠̂
1

𝜋𝑧2

1

0
  

                                    

 

× (𝐺𝑃
𝑞𝑣(𝑥, 𝑄2)𝐺𝑃̅

𝑞𝑣(𝑦, 𝑄2)𝐷𝑔
𝜌(𝑧)

𝑑𝜎

𝑑𝑡̂
(𝑞𝑞̅ → 𝑔 + 𝛾))  (68) 

 

ile verilir. 

 

 
𝐺𝑃
𝑢𝑣(𝑥) ≡ 𝐺𝑃̅

𝑢𝑣(𝑥)

𝐺𝑃
𝑑𝑣(𝑥) ≡ 𝐺𝑃̅

𝑑̅𝑣(𝑥)
  (69) 

 

(66) ve (69) denklemlerinde 𝐺𝑝
𝑞𝑣(𝑥, 𝑄2) etkileşmeye giren kuarkların protondaki dağılım 

oranını betimleyen dağılım fonksiyonları, 𝐷𝑔
𝜌
(𝑧)

𝑑𝜎

𝑑𝑡̂
 ise paylaşım fonksiyonudur.   

 Tek rho mezonu üretimi hesaplarında CTEQ5 parton dağılım fonksiyonlarını [50] ve 

Idumathı ve Saveetha’nın elde ettikleri paylaşım fonksiyonları [51] kullandı.  

 Yüksek-tivist katkıların hesaplamalarına geçmeden önce farklı 𝑄2 değerlerinin 

sonucu nasıl etkileyeceğinin anlaşılması için literatürde kullanılan 4 farklı 𝑄2  

i) 𝑄1
2 = 𝑝𝑇

2 

ii) 𝑄2
2 = 2𝑠̂𝑡̂𝑢̂/(𝑠̂2 + 𝑡̂2 + 𝑢̂2) 

iii) 𝑄3
2 = 4 𝑝𝑇

2 

iv) 𝑄4
2 = 𝑝𝑇

2/2 

değerleri için HT hesaplaması yapılarak Şekil 18’de karşılaştırılmış ve farklı 𝑄2 

değerlerinin tesir kesiti üzerinde önemli bir etkisi olmadığı gözlenmiştir. Bu nedenle bu 

çalışmada parton dağılım fonksiyonları sadece 𝑄 
2 = 2𝑠̂𝑡̂𝑢̂/(𝑠̂2 + 𝑡̂2 + 𝑢̂2) için 

hesaplanmıştır. 
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      Şekil 18. Farklı 𝑄2 değerleri için yüksek tivist tesir kesitlerinin mezon geçiş         

momentumu 𝑝𝑇  ‘nin fonksiyonu olarak değişimi 

 

Renormalizasyon ve faktorizasyon ölçekleri, sert glüyonlar tarafından taşınan 

momentum kareleri 𝑄1
2 = −𝑥2𝑢̂ (Şekil 17 a ve b için) ve 𝑄2

2 = −𝑥1𝑡̂ (Şekil 17 c ve d için) 

olmak üzere dondurulmuş bağlaşım sabiti için 

 

 𝜇𝑅1
2 = 𝜇𝐹1

2 = −
𝑢

2
, 𝜇𝑅2

2 = 𝜇𝐹2
2 = −

𝑡̂

2
   (70) 

 

alınmıştır. 

Yüksek tivist alt süreçlerinin tesir kesiti hesapları Tablo 1’de gösterilen farklı 

yöntemler kullanılarak elde edilmiş dalga fonksiyonları kullanılarak hesaplanmıştır. Tablo 

1.’deki 𝜇0 değerleri hesapların yapıldığı karakteristik momentum değerlerini vermekte,  an
||

 

ve an
⊥ ler ise sırasıyla boyuna ve enine 𝜌 mezonlar için (62) denklemindeki Geganbauer 

katsayılarıdır.  

 

 

 

 

 



33 

 

Tablo 1. Boyuna ve enine rho mezonu için Geganbauer katsayıları 

 

Method 𝒂𝟐
||
  𝒂𝟐

||
  𝒂𝟒

||
  𝒂𝟒

⊥  𝒂𝟔
||
  𝒂𝟔

⊥  𝝁𝟎  

Lattice QCD[52] 0.132 0.101 - - - - 2 GeV 

Sum Rule I[53] 0.18 0.2 - - - - 1 GeV 

Sum Rule II[54] 0.047 -0.27125 -0.057 -0.0165 - - 1 GeV 

LFQM (Linear) [55] 0.02 0.06 -0.01 -0.01 -0.02 -0.02 1 GeV 

LFQM (H.O.) [55] -0.02 0.09 -0.01 0.03 - - 1 GeV 

 

 2.2. Çift Mezon Üretimi 

 

Bu çalışmada inklusif yüklü piyon ve yüksüz rho meson çifti üreten 𝑝𝑝̅ → 𝜋+𝜋−𝑋 ve 

𝑝𝑝̅ → 𝜌0𝜌0𝑋  süreçleri için LT ve HT alt süreçleri hesaplanmıştır. Mezon çifti üretimi üç 

farklı mekanizma ile gerçekleşebilir;  

 Mezon çifti doğrudan sert saçılma alt süreçlerinde üretilir (doğrudan mezon çift  

    üretimi), 

 Mezonlardan bir tanesi fragmantasyon sonucunda üretilir (yarı doğrudan mezon çift  

    üretimi), 

 Mezonların her ikisi de fragmantasyon sonucu üretilir.  

Bu mekanizmalardan ilk ikisi HT iken üçüncü LT dir. Tüm hesaplarda dondurulmuş 

bağlaşım sabiti yaklaşıklığı kullanılmıştır. Bu yaklaşıklığa göre renormalizasyon ve 

faktarizasyon ölçeği   

 

 𝑄2 =

{
 
 

 
 
1

2
𝑝𝑇

2,          doğrudan

1

2

𝑝𝑇
2

√𝑧
,   yarı doğrudan

1

2

𝑝𝑇
2

√𝑧𝑧′
 ,              𝐿𝑇          

   (71) 

 

olarak alınmıştır. İkinci bir yaklaşıklık olarak mezon çiftinin eşit enine momentum ile kütle 

merkezinde 𝜃 = 90𝑜 saçılma açısıyla ve ters yönlerde  

 

 𝑝𝑇 = 𝑝𝑇𝐶 = −𝑝𝑇𝐷  (72) 
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saçıldığı kabul edilmiştir. HT/LT oranı için daha keskin bir değer elde edebilmek için 

üretilen mezonlara eşlik eden, aynı doğrultuda saçılan başka hadronların olmadığı 

varsayılmıştır. Bu bir Δ𝑝 kesim parametresi ile sağlanmıştır. LT süreçlerinde mezonlar 

kesir momentumu z olan partonlardan doğrudan olmayan şekilde oluşurlar, bu momentum 

kesiti z’nin minimum değeri olan 𝑧𝑚𝑖𝑛 

 

 𝑧𝑚𝑖𝑛 =
𝑝𝑇

𝑝𝑇+∆𝑝
  (73) 

 

ile verilir.  

 Proton-proton çarpışması inklusif yüklü mezon çifti üretiminde  𝑔𝑔 → 𝑀𝑀̅ ve 

 𝑞𝑞̅ → 𝑀𝑀̅  alt süreçleri için olası HT Feynmann çizimleri Şekil 19’da verilmektedir. 

 

 

 

 Şekil 19. 𝑔𝑔 → 𝑀𝑀̅ ve 𝑞𝑞̅ → 𝑀𝑀̅ doğrudan mezon çift üretimi Feynman çizimleri  
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                     Şekil 20. 𝑞𝑞̅ → 𝑀𝑀̅ yarı doğrudan mezon çift üretimi Feynman çizimleri 

 

 

 𝐹(𝑧, 𝑧 ′) =
𝑧+𝑧′

2√𝑧𝑧′
𝑒𝑥𝑝 [

−(𝑧−𝑧′)2𝑝𝑇
2

2𝑧2𝑧′2<𝑞𝑇
2>
]  (74) 

 

korelasyon fonksiyonu olmak üzere proton-proton çarpışması mezon çifti üretimi  

tesir kesiti için (53) formülü  

 

 Σ𝑀𝑀̅ = 𝐸𝐶𝐸𝐷
𝑑𝜎

𝑑3𝑝𝐶𝑑
3𝑝𝐷   

 =  

                           
1

𝜋2𝑠<𝑞𝑇
2>
∫

𝑑𝑧

𝑧2

1

𝑧𝑚𝑖𝑛
∫

𝑑𝑧 ′

𝑧 ′
2

1

𝑧𝑚𝑖𝑛
𝐹(𝑧, 𝑧 ′)𝐺𝑞1 𝑝1⁄ (𝑥1, 𝑄

2)𝐺𝑞2 𝑝2⁄ (𝑥2, 𝑄
2) ×

                                      
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃(𝑞𝑞(𝑔𝑔)→𝑀𝑀̅)
𝐷𝑀 𝐶⁄ (𝑧, 𝑄

2)𝐷𝑀̅ 𝐷⁄ (𝑧
′, 𝑄2)  (75) 

 

olarak elde edilir. Burada 𝑠 hadronik kütle merkezi enerjisinin karesi, < 𝑞𝑇
2 > 

protonlardaki partonların momentum kare ortalamasıdır. 𝐺𝑞1 𝑝1⁄ (𝑥1, 𝑄
2) ve  𝐺𝑞2 𝑝2⁄  

fonksiyonları proton ve karşıt-protondaki sırasıyla 𝑞1ve 𝑞2 partonlarının dağılım 

fonksiyonlarıdır. Bu çalışmada MSTW2008 PDF’ler kullanılmıştır. 𝜃 saçılma açısı ve 

𝑑𝜎 𝑑𝑐𝑜𝑠𝜃⁄  diferansiyel tesir kesitidir. 𝐷𝑀 𝐶⁄ (𝑧, 𝑄
2) ve 𝐷𝑀̅ 𝐷⁄ (𝑧′, 𝑄

2) fonksiyonları ise 

paylaşım fonksiyonlarıdır. Doğrudan üretim mekanizmasında mezon çifti paylaşım 
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sonucunda değil, doğrudan oluşturulduğundan 𝐷𝑀/𝐶(𝑧, 𝑄
2) = 𝛿(1 − 𝑧) ve 𝐷𝑀̅/𝐷(𝑧, 𝑄

2) =

𝛿(1 − 𝑧′) olarak alınabilir. Benzer şekilde yarı doğrudan çift mezon üretimi sürecinde 

mezonlardan biri doğrudan, diğeri fragmantasyon yoluyla üretildiğinden 𝐷𝑀/𝐶(𝑧, 𝑄
2) =

𝛿(1 − 𝑧) olarak alıp 𝐷𝑀̅ 𝐷⁄ (𝑧
′, 𝑄2) için [56] paylaşım fonksiyonu, LT süreçlerinde ise, 

mezonların her ikisi de paylaşım ile oluşacağından iki mezon için de yine [48] paylaşım 

fonksiyonları kullanılır. Bu diferansiyel tesir kesitleri farklı Φ𝑀 dalga fonksiyonları için 

hesaplanabilir. Piyon (𝜋) dalga fonksiyonları olarak [57-60] 

 

 Φ𝑎𝑠𝑦(𝑥) = √6𝑓𝑀𝑥(1 − 𝑥)  (76) 

 Φ𝑉𝑆𝐵𝐺𝐿
ℎ𝑜𝑙 (𝑥) =

𝐴1𝑘1

2𝜋
√𝑥(1 − 𝑥)𝑒𝑥𝑝 (−

𝑚2

2𝑘1
2𝑥(1−𝑥)

)  (77) 

 Φ
ℎ𝑜𝑙(𝑥) =

4

√3𝜋
𝑓𝜋√𝑥(1 − 𝑥)   (78) 

 Φ𝐶𝑍(𝑥, 𝜇0
2) = Φ𝑎𝑠𝑦(𝑥) [𝐶0

3 2⁄ (2𝑥 − 1) +
2

3
𝐶2
3 2⁄ (2𝑥 − 1)]    (79) 

Φ𝐵𝑀𝑆(𝑥, 𝜇0
2) = Φ𝑎𝑠𝑦(𝑥)[𝐶0

3 2⁄ (2𝑥 − 1) + 

                                                  0.20𝐶2
3 2⁄ (2𝑥 − 1 − 0.14𝐶4

3 2⁄ (2𝑥 − 1))]  (80) 

 

ve rho (𝜌) dalga fonksiyonları olarak[52-55] 

 

 Φ𝜌𝐿
𝐵𝐵(𝑥, 𝜇0

2) = Φ𝐿
𝑎𝑠𝑦(𝑥) [𝐶0

3 2⁄ (2𝑥 − 1) + 0.18
2

3
𝐶2
3 2⁄ (2𝑥 − 1)]  (81) 

 Φ𝜌𝑇
𝐵𝐵(𝑥, 𝜇0

2) = Φ𝑇
𝑎𝑠𝑦(𝑥) [𝐶0

3 2⁄ (2𝑥 − 1) + 0.20
2

3
𝐶2
3 2⁄ (2𝑥 − 1)]  (82) 

 Φ𝜌𝐿
𝐿𝑖𝑛𝑒𝑎𝑟(𝑥, 𝜇0

2) = Φ𝜌𝐿
𝑎𝑠𝑦(𝑥) [1 + 0.02 (

15

2
(2𝑥 − 1)2 −

3

2
)  

                             −0.01 (
315

8
(2𝑥 − 1)4 −

105

4
(2𝑥 − 1)2 +

15

8
)  

                                 −

 

0.02
35

16
(
429

5
(2𝑥 − 1)6 − 99(2𝑥 − 1)4 + 27(2𝑥 − 1)2 − 1)] (83) 

 Φ𝜌𝐿
𝐻𝑂(𝑥, 𝜇0

2) = Φ𝜌𝐿
𝐻𝑂(𝑥) [1 − 0.02 (

15

2
(2𝑥 − 1)2 −

3

2
)]  

−0.03(
315

8
(2𝑥 − 1)4 −

105

4
(2𝑥 − 1)2 +

15

8
) 

                                            −0.02
35

16
(
429

5
(2𝑥 − 1)6 − 99(2𝑥 − 1)4 + 27(2𝑥 − 1)2 − 1) (84) 
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 Φ𝜌𝑇
𝐿𝑖𝑛𝑒𝑎𝑟(𝑥, 𝜇0

2) = Φ𝜌𝑇
𝑎𝑠𝑦(𝑥)  

                         [1 + 0.06 (
15

2
(2𝑥 − 1)2 −

3

2
) − 0.01 (

315

8
(2𝑥 − 1)4 −

105

4
(2𝑥 −

                             1)2 +
15

8
) − 0.02

35

16
(
429

5
(2𝑥 − 1)6 − 99(2𝑥 − 1)4 + 27(2𝑥 −

                             1)2 − 1)]  (85) 

 Φ𝜌𝑇
𝐻𝑂(𝑥, 𝜇0

2) = Φ𝜌𝑇
𝑎𝑠𝑦(𝑥)  

                               [1 + 0.07(
15

2
(2𝑥 − 1)2 −

3

2
) − 0.03 (

315

8
(2𝑥 − 1)4 −

105

4
(2𝑥 − 1)2 +

                    
5

8
) − 0.02

35

16
(
429

5
(2𝑥 − 1)6 − 99(2𝑥 − 1)4 + 27(2𝑥 − 1)2 − 1)]  (86) 

 

         𝑓𝜌
𝐿 = 0.141 𝐺𝑒𝑉  

         𝑓𝜌
𝑇 = 0.16 𝐺𝑒𝑉  

 

kullanılarak diferansiyel tesir kesitleri hesaplandı. 



 

3. BULGULAR 

 

3.1. Tek Mezon Üretimi 

 

Önce (69) integralinde  𝑑𝑧
𝑧2⁄ = 𝑑(−1

𝑧⁄ ) değişken değişimi yapılır, ardından Dirac 

delta fonksiyonunun 𝛿(𝑎𝑥 − 𝑏) = 1
|𝑎|⁄ 𝛿(𝑥 − 𝑏

𝑎⁄ ) özelliği kullanılır ve 𝑠̂ + 𝑡̂ + 𝑢̂ = 0 

eşitliğinde (68)’deki Mandelstam değişkenleri yerlerine yazılarak elde edilen 

 

 𝛿(𝑠̂ + 𝑡̂ + 𝑢̂) = 𝛿 (𝑥𝑦𝑠 +
𝑥𝑡

𝑧
+

𝑦𝑢

𝑧
) = 𝛿 ((𝑥𝑡 + 𝑦𝑢)

1

𝑧
+ 𝑥𝑦𝑠) 

                                                                            =
1

𝑥𝑡+𝑦𝑢
𝛿 (

1

𝑧
+

𝑥𝑦𝑠

𝑥𝑡+𝑦𝑢
)  (87) 

  

ifadesi yerine yazılırsa  

 

 ∆𝐿𝑇= ∑
2

𝜋
∫ 𝑑𝑥 ∫ 𝑑𝑦

1

𝑦𝑚𝑖𝑛

1

𝑥𝑚𝑖𝑛
𝑞𝑣=𝑢𝑣,𝑑𝑣

  

                                                 × [
𝑠

−(𝑥𝑡+𝑦𝑢)
[𝑥𝐺𝑃

𝑞𝑣(𝑥, 𝑄2)𝑦𝐺𝑃̅
𝑞̅𝑣(𝑦, 𝑄2)𝐷𝑔

𝜌
(𝑧)

𝑑𝜎

𝑑𝑡̂ (𝑞𝑞→𝑔+𝛾)
]]  (88) 

 

halini alır. Ek 3.’den görüleceği gibi 𝑠̂ + 𝑡̂ + 𝑢̂ = 0 kullanılarak 

 

 𝑥𝑚𝑖𝑛 =
𝑝𝑇𝑒𝑌

√𝑠−𝑝𝑇𝑒−𝑌     (89) 

 𝑦𝑚𝑖𝑛 =
𝑥𝑝𝑇𝑒−𝑌

√𝑠𝑥−𝑝𝑇𝑒𝑌 (90) 

 

elde edilir. Ayrıca Ek 2.’deki Feynman kurallarından yararlanarak gerekli işlemler 

yapılırsa bu alt sürecin diferansiyel tesir kesiti  
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𝑑𝜎

𝑑𝑡̂
(𝑞𝑞̅ → 𝑔 + 𝛾) =

8

9
𝜋𝛼𝑒𝛼𝑠(𝑄2)

𝑒𝑞
2

𝑠̂2 (
𝑡̂

𝑢
+

𝑢

𝑡̂
)  (91) 

 

olarak hesaplanır. 

Benzer şekilde (65)’deki Mandelstam değişkenleri kullanılıp LT deki adımlar 

uygulanırsa yüksek-tivist alt süreçler için de 

 

 ∆𝐻𝑇=  

            
1

𝜋
∫ 𝑑𝑥 [

𝑠

𝑢+𝑥𝑠
[𝑥𝐺𝑃

𝑢𝑣(𝑥, 𝑄2)𝑦𝐺𝑃̅
𝑑𝑣(𝑦, 𝑄2)

𝑑𝜎

𝑑𝑡̂
(𝑢𝑣+𝑑̅

𝑣 → 𝜌+ + 𝛾) +

                                                𝑥𝐺𝑃
𝑑𝑣(𝑥, 𝑄2)𝑦𝐺𝑃̅

𝑢𝑣(𝑦, 𝑄2)
𝑑𝜎

𝑑𝑡̂
(𝑑𝑣+𝑢̅𝑣 → 𝜌− + 𝛾)]]  (92) 

 

elde edilir. Şekil 17’deki HT alt süreçlerinin diferansiyel tesir kesitleri ise 𝜇𝑅
2  ve 𝜇𝐹

2  

sırasıyla faktörizasyon ve renormalizasyon ölçekleri ve  

 

 𝐼1 = ∫ ∫
𝛼𝑠(𝜇𝑅1

2 )𝜙𝑀(𝑥1,𝑥2;𝜇𝐹1
2 )𝛿(1−𝑥1−𝑥2)𝑑𝑥1𝑑𝑥2

𝑥2

1

0

1

0
  (93) 

 𝐼2 = ∫ ∫
𝛼𝑠(𝜇𝑅1

2 )𝜙𝑀(𝑥1,𝑥2;𝜇𝐹1
2 )𝛿(1−𝑥1−𝑥2)𝑑𝑥1𝑑𝑥2

𝑥1𝑥2

1

0

1

0
  (94) 

 𝐾1 = ∫ ∫
𝛼𝑠(𝜇𝑅2

2 )𝜙𝑀(𝑥1,𝑥2;𝜇𝐹2
2 )𝛿(1−𝑥1−𝑥2)𝑑𝑥1𝑑𝑥2

𝑥1

1

0

1

0
 (95) 

 𝐾2 = ∫ ∫
𝛼𝑠(𝜇𝑅2

2 )𝜙𝑀(𝑥1,𝑥2;𝜇𝐹2
2 )𝛿(1−𝑥1−𝑥2)𝑑𝑥1𝑑𝑥2

𝑥1𝑥2

1

0

1

0
  (96) 

 

olmak üzere, 𝜌𝐿  için 

 

𝑑𝜎

𝑑𝑡̂
=

1

16𝜋𝑠̂2
〈|𝑀|2〉 

       =
32

27

𝐶𝑓𝜋2𝛼𝑒

𝑢2𝑡̂2𝑠̂2
[𝑠̂2𝑡̂2𝑒1

2(𝑠̂𝐼1
2 + 𝑡̂2 𝑠̂⁄ 𝐼2

2) − 2 𝑡̂ 𝑠̂⁄ (𝑡̂𝐼2 + 𝑢̂𝐼1)𝐼1 + 𝑢̂2𝑠̂2𝑒2
2(𝑠̂𝐾1

2 +

            𝑢̂2 𝑠̂⁄ 𝐾2
2 − 2 𝑢̂ 𝑠̂⁄ (𝑡̂𝐾1 + 𝑢̂𝐾2

2)𝐾1) + 2𝑢̂𝑠̂𝑡̂𝑒1𝑒2(𝐼1𝐾1𝑠̂2 − 𝐼1(𝐾2𝑢̂ + 𝐾1𝑡̂)𝑢̂ −

           𝐾1(𝐼1𝑢̂ + 𝐼2𝑡̂)𝑡̂)]           (97) 
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𝜌𝑇 için ise Şekil 17’deki a ve c Feynman çizimlerinden katkı gelmez ve  

 

𝑑𝜎

𝑑𝑡̂
=

32

27

𝐶𝑓𝜋2𝛼𝑒

𝑢2𝑡̂2𝑠̂
[𝑒1𝑡̂𝐼2 − 𝑒2𝑢̂𝐾2]  (98) 

 

elde edilir. Donmuş bağlaşım sabiti yaklaşıklığında yeğin etkileşim bağlaşım sabiti integral 

dışına çıkarılabilir ve 𝑥1 ↔ 𝑥2 altında simetrik olan dalga fonksiyonları için  

 

𝐼2 = 2𝐼1 = 𝐼 (99) 

𝐾2 = 2𝐾1 = 𝐾  (100) 

 

elde edilir. Böylece (97) ve (98) denklemleri  

 

 
𝑑𝜎

𝑑𝑡
= {

8

27

𝐶𝑓𝜋2𝛼𝑒

𝑠̂3
[

1

𝑡̂2 +
1

𝑠̂2
] [𝑒1𝑡̂𝐼 − 𝑒2𝑢̂𝐾] , 𝜌𝐿 = 0

32

27

𝐶𝑓𝜋2𝛼𝑒

𝑢2𝑡̂2𝑠̂
[𝑒1𝑡̂𝐼 − 𝑒2𝑢̂𝐾]  ,               𝜌𝑇 = ±1

   (101) 

 

halini alır. 

Önce 𝑅 =  𝜎𝐿 𝜎𝑇⁄ ; boyuna ve enine rho-mezon tesir kesiti oranı ele alınarak beş 

farklı dalga fonksiyonu için R oranının hızlılık ile değişimi Şekil 21’de ve 𝑝𝑇 ile değişimi 

Şekil 22’de gösterilmiştir.  
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                    Şekil 21. Boyuna ve enine rho-mezon tesir kesiti oranı R’nin hızlılık 

                                    ile değişimi   

 

 

                      

                     Şekil 22. Boyuna ve enine rho-mezon tesir kesiti oranı R’nin                                               

                                     𝑝𝑇   ile değişimi 

 

√𝑠 = 62,4 𝐺𝑒𝑉 ve √𝑠  =  200 𝐺𝑒𝑉  kütle merkezi enerjisinde, 𝜃 = 450 ve 𝜃 = 900 

mezon saçılma açıları için  ∆’nın 𝑝𝑇 ile değişimi Şekil 23-30’da verilmiştir.  

 



42 

 

 

 

                 Şekil 23. √𝑠 = 62.4 𝐺𝑒𝑉, 𝑌 = 0 ve 𝜃 = 450 için enine rho mezon 

                                üretiminde Δ’nın 𝑝𝑇  ile değişimi 
 

 

                     

                  Şekil 24. √𝑠 = 62.4 𝐺𝑒𝑉, 𝑌 = 0 ve 𝜃 = 900 için enine rho mezon  

                                 üretiminde Δ’nın  𝑝𝑇  ile değişimi 
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                 Şekil 25. √𝑠 = 62.4 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 450 için boyuna rho mezonu   

                                 üretiminde Δ’nın 𝑝𝑇  ile değişimi 

  

 

                    

                    Şekil 26. √𝑠 = 62.4 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 900 için boyuna rho mezon   

                                   üretiminde Δ’nın 𝑝𝑇  ile değişimi 
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                   Şekil 27. √𝑠 = 200 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 450 için enine rho mezon  

                                   üretiminde Δ’nın 𝑝𝑇  ile değişimi 

 

 

               

                  Şekil 28. √𝑠 = 200 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 900 için enine rho mezon  

                                 üretiminde Δ’nın 𝑝𝑇  ile değişimi 
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                 Şekil 29. √𝑠 = 200 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 450 için boyuna rho mezon 

                                 üretiminde Δ’nın 𝑝𝑇  ile değişimi 

 

 

                

                  Şekil 30. √𝑠 = 200 𝐺𝑒𝑉, 𝑦 = 0 ve 𝜃 = 900 için boyuna rho mezon  

                                 üretiminde Δ’nın 𝑝𝑇  ile değişimi 
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3.2. Çift Mezon Üretimi 

 

Proton karşıt-proton çarpışmasında çift mezon yaratılması için önder tivist katkıları 

veren alt süreçler için Ek 2.’deki Feynman kurallarından yararlanarak elde edilen 

diferansiyel tesir kesitleri 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝑞𝑞̅) =

2𝜋𝛼𝑠
2

9𝑠̂
(

𝑢2+𝑠̂2

𝑡̂2 +
𝑢2+𝑡̂2

𝑠̂2 −
2

3

𝑢2

𝑠̂𝑡̂
) (102) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝑞′𝑞′̅) =

2𝜋𝛼𝑠
2

9𝑠̂
(

𝑢2+𝑡̂2

𝑠̂2 )            (103) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞′̅ → 𝑞𝑞′̅) =

𝜋𝛼𝑠
2

2𝑠̂

4

9
(

𝑢2+𝑠̂2

𝑡̂2 )  (104) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝑔𝑔) =

4𝜋𝛼𝑠
2

3𝑠̂
(

4

9

𝑢2+𝑡̂2

𝑢𝑡̂
−

𝑢2+𝑡̂2

𝑠̂2 ) (105) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑔 → 𝑞𝑔) =

𝜋𝛼𝑠
2

2𝑠̂
(

𝑢2+𝑠̂2

𝑡̂2 −
4

9

𝑢2+𝑠̂2

𝑢𝑠̂
)  (106) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝑔𝑔) =

𝜋𝛼𝑠
2

𝑠̂

9

4
(3 −

𝑢𝑡̂

𝑠̂2 −
𝑢 𝑠̂

𝑡̂2 −
𝑠̂𝑡̂

𝑢2)   (107) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝑞𝑞̅) =

𝜋𝛼𝑠
2

2𝑠̂
(

1

6

𝑢2+𝑡̂2

𝑢𝑡̂
−

3

8

𝑢2+𝑡̂2

𝑠̂2 )  (108) 

 

(104) ve (105)’de “ ‘ ” çeşniyi göstermektedir. 

Diferansiyel tesir kesitleri, Şekil 19-20’deki Feynman çizimlerinin analitik ifadeleri 

yazılıp Feynman kuralları kullanılarak gerekli işlemler yapıldığında   

i. Doğrudan çift piyon üretimi için; 

 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝜋+𝜋−) =

256𝜋3𝛼𝑠
4𝑓𝜋

4

23328
[∫ 𝑑𝑥

Φ𝜋(𝑥, 𝑄2)

𝑥(1 − 𝑥)

1

0

]

2

 

[∫ 𝑑𝑥
1

0

∫ 𝑑𝑦
1

0

Φ𝜋(𝑥, 𝑄2)Φ𝜋(𝑦, 𝑄2)

𝑥(1 − 𝑥)
.
𝑥(1 − 𝑥) + 𝑦(1 − 𝑦)

𝑥𝑦 + (1 − 𝑥)(1 − 𝑦)
]

2

(110) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝜋+𝜋−) =

256𝜋3𝛼𝑠
4𝑓𝜋

4

139968
[∫ 𝑑𝑥

Φ𝜋(𝑥, 𝑄2)

𝑥(1 − 𝑥)

1

0

]

2

 

       [∫ 𝑑𝑥
1

0

∫ 𝑑𝑦
1

0

Φ𝜋(𝑥, 𝑄2)Φ𝜋(𝑦, 𝑄2)

𝑥(1 − 𝑥)
.
𝑥(1 − 𝑥) + 𝑦(1 − 𝑦)

𝑥𝑦 + (1 − 𝑥)(1 − 𝑦)
]

2
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[7 − 16𝑥𝑦 −
1

𝑥𝑦 + (1 − 𝑥)(1 − 𝑦)
[2𝑥(1 − 2𝑦(𝑥 + 𝑦)) − 4𝑥2 + 4𝑥𝑦]] (111) 

 

ii. Doğrudan rho mezon çifti üretimi için ise mezonların olası kutuplanmasına göre  

a) 𝑝𝑝̅ → 𝜌𝐿
0𝜌𝐿

0𝑋 için 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝜌𝐿

0𝜌𝐿
0) =

16𝜋3𝛼𝑠
4𝑓𝜌𝐿

4

2916𝑠̂3 [∫ 𝑑𝑥
Φ𝜌𝐿

(𝑥,𝑄2)

𝑥(1−𝑥)

1

0
]

2

  

                                     [∫ 𝑑𝑥
1

0
∫ 𝑑𝑦

1

0

Φ𝜌𝐿
(𝑥,𝑄2)Φ𝜌𝐿

(𝑦,𝑄2)

𝑥(1−𝑥)𝑦(1−𝑦)
.

𝑥(1−𝑥)+𝑦(1−𝑦)

𝑥𝑦+(1−𝑥)(1−𝑦)
]

2

     (112)  

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝜌𝐿

0𝜌𝐿
0) = 0                                                                                                (113) 

 

b) 𝑝𝑝̅ → 𝜌𝑇
0 𝜌𝑇

0𝑋 için 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑢𝑢̅ → 𝜌𝑇

0𝜌𝑇
0) =

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑑𝑑̅ → 𝜌𝑇

0𝜌𝑇
0) =

4𝜋3𝛼𝑠
4𝑓𝜌𝑇

4

19683𝑠̂3 [∫ 𝑑𝑥
Φ𝜌𝑇

(𝑥,𝑄2)

𝑥(1−𝑥)

1

0
]                                                               

                                              [5 (
Φ𝜌𝑇

(𝑥,𝑄2)

𝑥(1−𝑥)
) ∫ 𝑑𝑥

1

0
∫

𝑑𝑦

𝑥(1−𝑥)𝑦(1−𝑦)

1

0

Φ𝜌𝑇
(𝑥,𝑄2)Φ𝜌𝑇

(𝑦,𝑄2)

𝑥(1−𝑥)𝑦(1−𝑦)
]

2

 (114)  

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑠𝑠̅ → 𝜌𝑇

0𝜌𝑇
0 ) =

16𝜋3𝛼𝑠
4𝑓𝜌𝑇

4

6561𝑠̂3 [∫ 𝑑𝑥
Φ𝜌𝑇

(𝑥,𝑄2)

𝑥(1−𝑥)

1

0
]

2

  

                                              [∫ 𝑑𝑥
1

0
∫

𝑑𝑦

𝑥(1−𝑥)𝑦(1−𝑦)

1

0

Φ𝜌𝑇
(𝑥,𝑄2)Φ𝜌𝑇

(𝑦,𝑄2)

𝑥𝑦+(1−𝑥)𝑦(1−𝑦)
]

2

 (115) 

 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝜌𝑇

0𝜌𝑇
0) = 0                                                                                                 (116) 

 

c) 𝑝𝑝̅ → 𝜌𝑇
0𝜌𝐿

0𝑋 için 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑢𝑢̅ → 𝜌𝑇

0𝜌𝐿
0) =

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑑𝑑̅ → 𝜌𝑇

0 𝜌𝐿
0) =

64𝜋3𝛼𝑠
4𝑓𝜌𝑇

4

19683𝑠̂3   
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[∫ 𝑑𝑥
1

0
∫ 𝑑𝑦

1

0
Φ𝜌𝑇

(𝑥, 𝑄2)Φ𝜌𝐿
(𝑦, 𝑄2) [

1

𝑥𝑦+(1−𝑥)(1−𝑦)
(

1−𝑦

𝑥𝑦(1−𝑥)
+

1

𝑦(1−𝑦)
−

2

𝑥
) +

                                                                                                           
9

𝑥𝑦(1−𝑥)
]]

2

    (117) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑠𝑠̅ → 𝜌𝑇

0𝜌𝐿
0) = 0                                                                                                 (118) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑔𝑔 → 𝜌𝑇

0𝜌𝐿
0) = 0                                                                                                 (119) 

 

Benzer şekilde yarı doğrudan mezon çifti üretimi için ise 

i. Çift piyon üretimi için; 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅′ → 𝜋∓𝑔) =

128𝜋2𝛼𝑠
3𝑓𝜋

2

729𝑠̂2
[∫

Φ𝜋(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

                                         (120) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑔 → 𝜋∓𝑞′) =

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞̅𝑔 → 𝜋∓𝑞̅′)

80𝜋2𝛼𝑠
3𝑓𝜋

2

3888𝑠̂2
[∫

Φ𝜋(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

          (121) 

 

ii. Çift rho üretimi için 

 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝜌𝑇

0𝑔) =
128𝜋2𝛼𝑠

3𝑓𝜌𝑇
2

729𝑠̂2 [∫
Φ𝜌𝑇

(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

                                      (122) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑔 → 𝜌𝑇

0 𝑞) =
𝜋2𝛼𝑠

3𝑓𝜌𝑇
2

486𝑠̂2 [∫
Φ𝜌𝑇

(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

                                                (123) 

𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑞̅ → 𝜌𝐿

0𝑔) =
32𝜋2𝛼𝑠

3𝑓𝜌𝐿
2

729𝑠̂2 [∫
Φ𝜌𝐿

(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

                                            (124) 

 
𝑑𝜎

𝑑𝑐𝑜𝑠𝜃
(𝑞𝑔 → 𝜌𝐿

0𝑞) =
5𝜋2𝛼𝑠

3𝑓𝜌𝐿
2

972𝑠̂2 [∫
Φ𝜌𝐿

(𝑥,𝑄2)𝑑𝑥

𝑥(1−𝑥)

1

0
]

2

                                              (125) 

 

elde edilir [52].  

Piyon çifti üretimi tesir kesiti çizimleri Şekil 31-40’da rho mezon çifti üretimi tesir 

kesiti çizimleri ise Şekil 41-49’da verilmiştir.  

 



49 

 

  

 

     Şekil 31. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐 ve 

                     𝑦 = 0 için ∑  𝐻𝑇
𝜋+𝜋− yüksek tivist yüklü piyon çifti üretimi tesir 

                     kesitinin 𝑝𝑇  ile değişimi. 

 

 

 

                  Şekil 32. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐   

                                 için yüksek tivist ve önder tivist yüklü piyon çifti üretimi tesir   

                                 kesitlerinin toplamının, 𝑝𝑇  ile değişimi. 
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                    Şekil 33. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2     

                                  ve 𝑦 = 0 için ∑ / ∑  𝐿𝑇
𝜋+𝜋−  𝐻𝑇

𝜋+𝜋− oranının 𝑝𝑇  ile değişimi.  

 

 

 

                Şekil 34. √20 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐     

                                için yüksek tivist yüklü piyon çifti üretimi tesir kesitinin 𝑝𝑇  ile   

                                değişimi 
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               Şekil 35. √20 𝐺𝑒𝑉 kütle merkezi enerjisinde, ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  𝑦 = 0  

                               için 𝑦üksek tivist ve önder tivist yüklü piyon çifti üretimi 

                               tesir kesitlerinin toplamının, 𝑝𝑇  ile değişimi 

 

 

 

                    Şekil 36. √20 𝐺𝑒𝑉 kütle merkezi enerjisinde < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2  

                                    ve 𝑦 = 0 için ∑ / ∑  𝐿𝑇
𝜋+𝜋−

𝐻𝑇
𝜋+𝜋− oranının 𝑝𝑇 ile değişimi 
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               Şekil 37. 𝑦 = 0 ve < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2 için ∑  𝐻𝑇

𝜋+𝜋− yüksek tivist  

                              yüklü piyon çifti üretimi tesir kesitinin √𝑠 ile değişimi 

 

 

 

                 Şekil 38. 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  için ∑  𝐻𝑇+𝐿𝑇
𝜋+𝜋− yüksek tivist ve önder  

                               tivist yüklü piyon çifti üretimi tesir kesitlerinin toplamının √𝑠 ile   

                               değişimi 
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              Şekil 39.  𝑦 = 0 ve < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2  için 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐 

                              için ∑ / ∑  𝐿𝑇
𝜋+𝜋−  𝐻𝑇

𝜋+𝜋− oranının √𝑠 ile değişimi  

  

 

                Şekil 40. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde 𝑦 = 0, < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2 

                                ve < 𝑞𝑇
2 >= 1 𝐺𝑒𝑉2/𝑐2  için yüksek tivist katkıların oranının  

                                𝑝𝑇 ile değişimi  
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                   Şekil 41.  √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐   

                                 için ∑  𝐻𝑇
𝜌𝐿

0𝜌𝐿
0 yüksek tivist çift rho mezon üretimi tesir kesitinin,  

                                 𝑝𝑇  ile değişimi 

 

 

 

                   Şekil 42. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  

                                için ∑  𝐻𝑇
𝜌𝑇

0𝜌𝑇
0 yüksek tivist çift rho mezon üretimi tesir kesitinin 𝑝𝑇   

                                ile değişimi 
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     Şekil 43. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  

                    için ∑  𝐻𝑇
𝜌𝐿

0𝜌𝑇
0 yüksek tivist çift rho mezon üretimi tesir kesitinin,  

                    𝑝𝑇  ile değişimi 

 

Şekil 44-46. olası kutuplanmalar için √15 𝐺𝑒𝑉 kütle merkezi gözlem çerçevesinde 

yüksek tivist ve önder tivist yüksüz rho mezon çifti üretimi tesir kesitlerinin oranı 

çizilmiştir.  

 

 



56 

 

 

                

                     Şekil 44. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde 𝑦 = 0 ve < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2    

                                  için ∑  𝐻𝑇
𝜌𝐿

0𝜌𝐿
0 ∑  𝐿𝑇

𝜌𝐿
0𝜌𝐿

0⁄ oranının 𝑝𝑇 ile değişimi 

 

 

                  

                   Şekil 45. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde 𝑦 = 0 ve < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2    

                                için ∑  𝐻𝑇
𝜌𝑇

0𝜌𝐿
0 ∑  𝐿𝑇

𝜌𝑇
0𝜌𝐿

0⁄ oranının  𝑝𝑇  ile değişimi 
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                    Şekil 46. √15 𝐺𝑒𝑉 kütle merkezi enerjisinde, 𝑦 = 0 ve < 𝑞𝑇
2 >= 0.25 𝐺𝑒𝑉2/𝑐2  

                                 için ∑  𝐻𝑇
𝜌𝐿

0𝜌𝑇
0 ∑  𝐿𝑇

𝜌𝐿
0𝜌𝑇

0⁄ oranının 𝑝𝑇  ile değişimi 

 

Son olarak olası kutuplanmalar için yüksek tivist tesir kesitlerinin kütle merkezi 

enerjisi √𝑠’ye göre değişimleri Şekil 47-49’da verilmiştir. 

 

 

                 Şekil 47. ∑  𝐻𝑇
𝜌𝐿

0𝜌𝐿
0 yüksek tivist tesir kesitlerinin, 𝑦 = 0 ve < 𝑞𝑇

2 >= 0.25 𝐺𝑒𝑉2/𝑐2   

                              için kütle merkezi enerjisi √𝑠’nin fonksiyonu olarak değişimi 
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                Şekil 48.  ∑  𝐻𝑇
𝜌𝑇

0𝜌𝑇
0 yüksek tivist tesir kesitinin, 𝑦 = 0 ve < 𝑞𝑇

2 >= 0.25 𝐺𝑒𝑉2/𝑐2   

                              için kütle merkezi enerjisi √𝑠’nin fonksiyonu olarak değişimi 

 

 

               Şekil 49.  ∑  𝐻𝑇
𝜌𝐿

0𝜌𝑇
0 yüksek tivist tesir kesitlerinin, 𝑦 = 0 ve < 𝑞𝑇

2 >= 0.25 𝐺𝑒𝑉2/𝑐2    

                             için kütle merkezi enerjisi √𝑠’nin fonksiyonu olarak değişimi 

 



 

 

4. İRDELEME 

 

Şekil 21’de görüldüğü gibi 4𝐺𝑒𝑉 < 𝑝𝑇 < 30 𝐺𝑒𝑉 bölgesinde, tüm dalga fonksiyonları 

için 𝑅 =  𝜎𝐿 𝜎𝑇⁄  büyüklük olarak farklılıklar gösterse de benzer davranış sergilemektedir. 

SR-II dalga fonksiyonu büyüklük açısından diğerlerinden tüm bölgelerde önemli farklılık 

göstermektedir. Bunun yanında Şekil 22’den görüleceği üzere 𝑝𝑇 < 2𝐺𝑒𝑉 için LFQM ile elde 

edilmiş iki dalga fonksiyonu diğerlerinden farklı davranış göstermektedir.  

Şekil 23-30’teki grafiklerden görüldüğü üzere artan 𝑝𝑇 ile ∆≡ Σ𝑝𝑝̅ − Σ𝑝𝑝 için HT 

katkılar LT katkılara göre daha hızlı azalmaktadır.  

Şekil 31-32 de √15 𝐺𝑒𝑉 kütle merkezi gözlem çerçevesinde 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  

için sırasıyla ∑  𝐻𝑇
𝜋+𝜋− yüksek tivist yüklü piyon çifti üretimi tesir kesitinin ve ∑  𝐻𝑇+𝐿𝑇

𝜋+𝜋−  yüksek 

tivist ve önder tivist yüklü piyon çifti üretimi tesir kesitlerinin toplamının piyon çiftinin geçiş 

momentumu 𝑝𝑇  ‘nin fonksiyonu olarak değişimi olup HT ve HT+LT tesir kesitlerinin 𝑝𝑇’nin 

artışıyla düzenli şekilde azalmaktadır. Şekil 31 ve Şekil 32, 3𝐺𝑒𝑉 < 𝑝𝑇 < 7 𝐺𝑒𝑉 bölgesinde 

karşılaştırıldığında ∑  𝐻𝑇+𝐿𝑇
𝜋+𝜋− için tüm dalga fonksiyonlarının üst üste binmiş olması bu bölgede 

LT katkıların baskın olduğunun göstergesidir. Şekil 33 √15 𝐺𝑒𝑉 kütle merkezi gözlem 

çerçevesinde ∑  
𝐻𝑇/𝐿𝑇
𝜋+𝜋− yüksek tivist ve önder tivist yüklü piyon çifti üretimi tesir kesitlerinin 

oranını göstermekte olup Φ𝐶𝑍 ve Φℎ𝑜𝑙 dalga fonksiyonları için oran düzenli şekilde 

azalmaktayken Φ𝑎𝑠𝑦, Φℎ𝑜𝑙 ve Φ𝑉𝑆𝐵𝐺𝐿  fonksiyonları için oranın 3𝐺𝑒𝑉 < 𝑝𝑇 < 7 𝐺𝑒𝑉 

bölgesinde 1-2 mertebe artış gösterdiği görülmüştür. Şekil 34-36 da Şekil 31-33 deki grafikler 

√20 𝐺𝑒𝑉 kütle merkezi gözlem çerçevesi için çizilmiş olup √15 𝐺𝑒𝑉 kütle merkezi gözlem 

çerçevesi için çizilen grafikler ile uyum içerisindedir.   

Şekil 37-39, ∑  𝐻𝑇
𝜋+𝜋− ,∑  𝐻𝑇+𝐿𝑇

𝜋+𝜋− ve ∑ / ∑  𝐿𝑇
𝜋+𝜋−  𝐻𝑇

𝜋+𝜋−  kütle merkezi enerjisi √𝑠’nin 

fonksiyonu olarak çizilmiş olup tüm dalga fonksiyonları için 15 GeV -20 GeV aralığında 

düzenli ve yavaş şekilde artış göstermektedir. Son olarak Şekil 40’da yüksek tivist katkılara <

𝑞𝑇
2 >’nin etkisini görebilmek için iki farklı < 𝑞𝑇

2 > değeri (0.25 𝐺𝑒𝑉2/𝑐2  ve 1 𝐺𝑒𝑉2/𝑐2) 

için elde edilen tesir kesitlerinin oranı çizilmiştir. 1𝐺𝑒𝑉 < 𝑝𝑇 < 3 𝐺𝑒𝑉 bölgesinde asy, CZ ve 

BMS dalga fonksiyonları için oranın 𝑝𝑇’nin artışıyla hol, VSBGL dalga fonksiyonlarına göre 

hızlı değişim gösterdiği, 3𝐺𝑒𝑉 < 𝑝𝑇 < 7 𝐺𝑒𝑉 bölgesinde ise tüm dalga fonksiyonlarının 

benzer davranış gösterdiği gözlenmiştir. 
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Şekil 41-43 de √15 𝐺𝑒𝑉 kütle merkezi gözlem çerçevesinde 𝑦 = 0 ve ∆𝑝 = 0.3 𝐺𝑒𝑉/𝑐  

için sırasıyla 𝑝𝑝̅ → 𝜌𝐿
0𝜌𝐿

0𝑋, 𝑝𝑝̅ → 𝜌𝑇
0𝜌𝑇

0 𝑋 ve 𝑝𝑝̅ → 𝜌𝐿
0𝜌𝑇

0𝑋 yüksek tivist yüksüz rho mezon 

çifti üretimi tesir kesitlerinin mezon çiftinin geçiş momentumu 𝑝𝑇  ‘nin fonksiyonu olarak 

çizilmiş olup  𝑝𝑇’nin artışıyla düzenli şekilde azaldıkları gözlenmiştir. Şekil 45’den ∑ /𝐻𝑇
𝜌𝑇

0𝜌𝑇
0

∑  𝐿𝑇
𝜌𝑇

0𝜌𝑇
0 oranının 𝑝𝑇’nin artışıyla düzenli şekilde azalmakta olduğu ve 3 𝐺𝑒𝑉/𝑐 < 𝑝𝑇 <

7 𝐺𝑒𝑉/𝑐 bölgesinde değişimin 1 𝐺𝑒𝑉/𝑐 < 𝑝𝑇 < 3 𝐺𝑒𝑉/𝑐 bölgesine göre daha hızlı olduğu 

görülmektedir. Şekil 46.’de ise  ∑ / ∑  𝐿𝑇
𝜌𝐿

0𝜌𝑇
0

𝐻𝑇
𝜌𝐿

0𝜌𝑇
0 oranının 1 𝐺𝑒𝑉/𝑐 < 𝑝𝑇 < 3 𝐺𝑒𝑉/𝑐 bölgesinde 

düzenli şekilde artış gösterdiği 3 𝐺𝑒𝑉/𝑐 < 𝑝𝑇 < 7 𝐺𝑒𝑉/𝑐 bölgesinde ise düzenli şekilde 

azaldığı görülmüştür. Şekil 45. ve Şekil 46. daki tüm dalga fonksiyonları yakın davranış 

göstermektedir. Şekil 44.’de ise ∑ / ∑  𝐿𝑇
𝜌𝐿

0𝜌𝐿
0

𝐻𝑇
𝜌𝐿

0𝜌𝐿
0 oranının 5 𝐺𝑒𝑉/𝑐’ye kadar ∑ / ∑  𝐿𝑇

𝜌𝑇
0𝜌𝑇

0
𝐻𝑇
𝜌𝑇

0𝜌𝑇
0 ve 

∑ / ∑  𝐿𝑇
𝜌𝐿

0𝜌𝑇
0

𝐻𝑇
𝜌𝐿

0𝜌𝑇
0 oranlarının aksine 𝑝𝑇’nin artışıyla düzenli şekilde artmakta olduğu 

görülmüştür. 𝑝𝑇’nin 5 𝐺𝑒𝑉/𝑐’den büyük değerlerinde oranın asy ve BB dalga fonksiyonları 

için artarken Lineer ve Harmonik dalga fonksiyonları için azaldığı görülmektedir. 

 

 



 

5. SONUÇLAR 

 

Bu çalışmada elde edilen sonuçlar değerlendirildiğinde HT katkıların beklenen bir 

özelliği olan “LT katkılara göre artan   ile daha hızlı şekilde azaldığı” grafiklerden 

görülmektedir.  

Farklı yöntemler ile elde edilmiş olan dalga fonksiyonlarının özellikle belli 

bölgelerde farklı davranışlar gösterdiği, tesir kesitlerinin seçilen dalga fonksiyonuna bağlı 

olduğu sonucuna varılmaktadır. 

Elde edilen sonuçlardan PDF’ler için farklı 𝑄2 seçimlerinin tesir kesitini önemli 

ölçüde değiştirmediği görülmektedir.  

Hadron-hadron çarpışma süreçlerinde LT katkıların HT katkılara göre daha baskın 

olmasından ötürü genellikle LT katkılar yeterli görülmektedir. Ancak şekillerden 

görüleceği gibi özellikle düşük 𝑝𝑇 bölgesinde HT katkıların çok etkin olduğu 

görülmektedir. Bu nedenle HT katkıların tesir kesiti hesaplarında dikkate alınması 

gerektiği sonucuna varılmıştır. 

 



 

6. ÖNERİLER 

  

Çift mezon üreten hadronik süreçler için tesir kesiti hesaplarında sonuçların seçilen 

parton dağılım fonksiyonlarına bağlılığı bulgular kısmında çizilmiş olan grafiklerden 

açıkça görülmektedir. Bu çalışmada çift mezon üretimi hesaplarında tek mezon üretim 

hesaplarında olduğu gibi tek parton dağılım fonksiyonları kullanılmıştır. Literatür tek 

parton dağılım fonksiyonlarının yanında çift parton dağılım fonksiyonları da 

bulunmaktadır. Çift mezon üretimi tesir kesiti hesapları çift parton dağılım fonksiyonları 

kullanılarak hesaplanabilir ve sonuçlar bu çalışmadaki sonuçlar ile karşılaştırılabilir.  

Yüksek tivist tesir kesiti hesaplarında bir Feynman çizimi için KRD bağlaşım 

sabitinin argümanı , sert glüyonun momentumunun karesine eşit seçilebilir ve böylece 

(üretilen) mezonun (hadronun) kuarklarının taşıdıkları  momentum kesirlerine 

bağlıdır. Yüksek tivist tesir kesiti hesaplarında iki farklı yaklaşımdan birincisi ve bu tez 

çalışmasında kullanılmış olan “donmuş bağlaşım sabiti” yaklaşımı olup   

olarak seçilir ve bağlaşım sabiti, ilgili integrallerde sabit bir terim olarak integral dışana 

çıkar. İkinci yaklaşım ise “koşan bağlaşım sabiti yaklaşımı” olup ve   

aralığında değişken olarak alınır. Yapılan çalışmalar koşan etkileşim sabiti kullanılarak 

hesaplanabilir. 

Ağır mezonlar için de tek ve çift mezon üretimi yüksek tivist tesir kesitleri 

hesaplanabilir. 
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8. EKLER 

 

Ek 1. Gösterim 

 

Metrik {+, −, −, −} 
Metrik tensör 

 

𝑔𝜇𝜈 = (

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 −1

)  E.1 

𝑔𝜇𝜈𝑔𝜇𝜈 = 4 E.2 

 

Kontravaryant vektör 

 

𝑥𝜇(𝑥0, 𝒙)  E.3 

 

Kovaryant vektör 

 

𝑥𝜇(𝑥0, −𝒙)  E.4 

 

Türevler  

 

𝜕𝜇 = (𝜕0, 𝛁)  

𝜕𝜇 = (𝜕0, −𝛁)  E.5 

 

Pauli matrisleri 

 

𝜎1 = (
0 1
1 0

)   𝜎2 = (
0 −𝑖
𝑖 0

)   𝜎1 = (
1 0
0 −1

)  E.6 

                     

𝜎𝜇 = {1, 𝝈} ve 𝜎̅𝜇 = {1,−𝝈}  
 

olmak üzere Dirac matrisleri 

 

 

𝛾𝜇 = (
0 𝜎𝜇

𝜎̅𝜇 0
)  E.7 

 

ve 

 

𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3 = (
−1 0
0 1

)   E.8 

 

Dirac matrisleri için komitasyon ilişkisi 

 
{𝛾𝜇 , 𝛾𝜈} = 2𝑔𝜇𝜈  E.9 
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Ek 1’in devamı 

 

ve 

 

𝛾𝜇𝛾𝜇 = 4  

𝛾𝜇𝛾𝛼𝛾𝜇 = −2𝛾
𝛼  

𝛾𝜇𝛾𝛼𝛾𝜆𝛾𝜇 = 4𝑔
𝛼𝜆  E.10  

𝛾𝜇𝛾𝛼𝛾𝜆𝛾𝜎𝛾𝜇 = −2𝛾
𝜎𝛾𝜆𝛾𝛼  

𝛾5𝛾𝜇 + 𝛾𝜇𝛾5 = 0  
 

Dirac matrislerinin izi 

 

𝑇𝑟[1] = 4  

𝑇𝑟[𝛾𝜇] = 𝑇𝑟[𝛾5] = 0  

𝑇𝑟[𝛾𝜇1𝛾𝜇2…𝛾𝜇2𝑛+1] = 0  

𝑇𝑟[𝛾𝜇1𝛾𝜇2…𝛾𝜇𝑛] = (−1)𝑛𝑇𝑟[𝛾𝜇𝑛…𝛾𝜇2𝛾𝜇1]  
𝑇𝑟[𝛾𝜇𝛾𝜐] = 4𝑔𝜇𝜈  E.11 

𝑇𝑟[𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎] = 4(𝑔𝜇𝜈𝑔𝜌𝜎 + 𝑔𝜇𝜎𝑔𝜈𝜌 − 𝑔𝜇𝜌𝑔𝜈𝜎)  
𝑇𝑟[𝛾5𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎] = −4𝑖𝜀𝜇𝜈𝜌𝜎 = 4𝑖𝜀𝜇𝜈𝜌𝜎  

𝑇𝑟[𝛾5] = 𝑇𝑟[𝛾5𝛾𝜇] = 𝑇𝑟[𝛾5𝛾𝜇𝛾𝜈] = 𝑇𝑟[𝛾5𝛾𝜇𝛾𝜈𝛾𝜌] = 0  
 

Levi-Civita tensörü 

 

𝜀𝑖𝑗𝑘 = 𝜀𝑖𝑗𝑘 = {

  +1;    𝑖𝑗𝑘 ′𝑛𝚤𝑛 ç𝑖𝑓𝑡 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑠𝑦𝑜𝑛 

−1;    𝑖𝑗𝑘 ′𝑛𝚤𝑛 𝑡𝑒𝑘 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑠𝑦𝑜𝑛
   0;     𝑖𝑘𝑖 𝑖𝑛𝑑𝑖𝑠 𝑎𝑦𝑛𝚤 𝑖𝑠𝑒             

  

𝜀𝜇𝜈𝜌𝜚 = −𝜀𝜇𝜈𝜌𝜚 = {

 +1   ; 𝜇𝜈𝜌𝜚 = ç𝑖𝑓𝑡 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑠𝑦𝑜𝑛 
−1   ; 𝜇𝜈𝜌𝜚 = 𝑡𝑒𝑘 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑠𝑦𝑜𝑛
   0   ; 𝑖𝑘𝑖 𝑖𝑛𝑑𝑖𝑠 𝑎𝑦𝑛𝚤 𝑖𝑠𝑒                

  E.12 

 

Dirac denklemi 

 

𝑖ℏ𝛾𝜇𝜕𝜇𝜓 −𝑚𝑐𝜓 = 0  E.13 

 

Momentum uzayında Dirac denklemi 

 

𝑝 ≡ 𝑝𝜇𝛾
𝜇   

(𝑝 − 𝑚)𝑢(𝑝) = 0, (𝑝 + 𝑚)𝜈(𝑝) = 0  E.14 

𝑢̅(𝑝)(𝑝 − 𝑚) = 0, 𝜈̅(𝑝)(𝑝 + 𝑚) = 0  
 

Parçacık ve karşıt parçacık spinörleri 

 

𝑢 = √𝐸

(

 
 

1
0
𝑃𝑧

𝐸+𝑚
𝑃𝑥+𝑖𝑃𝑦

𝐸+𝑚 )

 
 
                             𝑢̅ = √𝐸

(

 
 

0
1

𝑃𝑥−𝑖𝑃𝑦

𝐸+𝑚
0

−𝑃𝑧

𝐸+𝑚 )
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Ek 1’in devamı 

 

𝜈 = √𝐸

(

 
 

𝑃𝑥−𝑖𝑃𝑦

𝐸+𝑚
−𝑃𝑧

𝐸+𝑚

0
1 )

 
 
                              𝜈̅ = −√𝐸

(

 
 

𝑃𝑧

𝐸+𝑚
𝑃𝑥+𝑖𝑃𝑦

𝐸+𝑚

1
0 )

 
 

  E.15 

 

 

∑ 𝑢(𝒑, 𝜎)𝑢̅(𝒑, 𝜎) = 𝑝 +𝑚𝜎=1,2   

∑ 𝜈(𝒑, 𝜎)𝜈̅(𝒑, 𝜎) = 𝑝 −𝑚𝜎=1,2    E.16 
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Ek 2. Feynman Kuralları (Ağaç Seviyesi) 

 

Dış çizgiler, 

Spin (1/2) parçacıklar için; gelen parçacık 𝑢, gelen karşıt–parçacık 𝑣̅ , giden parçacık 𝑢̅, 

giden karşıt–parçacık 𝑣 ile betimlenmiştir. Benzer şekilde, spin 1 parçacıklar için; gelen 

parçacık 𝜖𝜇 , giden parçacık 𝜖𝜇
∗ kutuplanması ile betimlenmiştir. 

 

İlerleticiler, 

Spin 0 parçacıklar için: 

 
i

q2−(mc)2
  E.17  

 

spin 
1

2
 parçacıklar için: 

 
i(q+mc)

q2−(mc)2
   E.18 

 

Spin 1 parçacıklar için 

 

{

−igμυ

q2
                                        (kütlesiz)                        

−i[gμυ−qμqυ/(mc)
2]

q2−(mc)2
                   (kütleli)                          

                                     E.19 
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Ek 2’nin devamı 
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Ek 3. Kinematik 

 

𝑠 kütle merkezi gözlem çerçevesinde enerji karesi, 𝑡 ve 𝑢 ise hadronlardan (𝑃1, 𝑃2) 
mezona aktarılan momentum kareleri olmak üzere 𝑝𝑝̅ → 𝜌+(𝜌−) + 𝛾 süreci için 

Mandelstam değişkenleri  

 

𝑠 = (𝑃1 + 𝑃2)
2,     𝑡 = (𝑃1 − 𝑃𝜌)

2, 𝑢 = (𝑃2 − 𝑃𝜌)
2   E.20 

 

şeklinde tanımlanabilir. 

 

                                     
Şekil Ek.1 P-P kütle merkezi gözlem çerçevesinde hadronik ve  

                                 partonik saçılmaların şematik gösterimi 

 

 

Benzer şekilde 𝑞 + 𝑞̅ → 𝜌+(𝑜𝑟𝜌−) + 𝛾 HT alt süreci için Mandelstam değişkenleri 

ise, Şekil Ek1’de gösterildiği gibi x ve y partonların taşıdığı momentum kesirleri ve 𝑝1 =
𝑥𝑃1,  𝑝2 = 𝑦𝑃2 olmak üzere 

 

𝑠̂ = (𝑝1 + 𝑝2)
2 = 𝑥𝑦𝑠, 𝑡̂ = (𝑝1 − 𝑃𝜌)

2 = 𝑥𝑡, 𝑢̂ = (𝑝2 − 𝑃𝜌)
2 = 𝑦𝑢  E.21 

 

şeklinde tanımlanabilir. Kütle merkezi gözlem çerçevesinde partonların kütlesini ihmal 

edersek dörtlü momentumları 

 

𝑝1 = 𝑥
√𝑠

2
(1,0,0,1)  

          𝑝2 = 𝑦
√𝑠

2
(1,0,0,−1)   E.22 

 

şeklinde yazılabilir. Benzer şekilde üretilen mezonun dörtlü momentumu, 𝑃𝑇 enine 

momentum ve Y 

 

𝑌 =
1

2
𝑙𝑛 [

1+cos𝜃

1−𝑐𝑜𝑠𝜃
]   E.23 

 

şeklinde tanımlanan hızlılık (rapidite) olmak üzere   

 

𝑝𝜌 = 𝑃𝑇(cosh 𝑌 , 1,0, sinh 𝑌)  E.24 

 

olacaktır. Mandelstam değişkenleri 𝑡 ve 𝑢 kütle merkezi enerjisi, mezonunun enine 

momentumu ve hızlılık cinsinden yazmak da olasıdır: 

 

𝑡 = −𝑃𝑇√𝑠𝑒
−𝑌  

        𝑢 = −𝑃𝑇√𝑠𝑒
𝑌  E.25 
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Ek 3.’ün devamı 

 

Kütlelerin göz ardı edildiği durumda 𝑠̂ + 𝑡̂ + 𝑢̂ = 0 olacağından x ve y için  

 

 

𝑥 =
−𝑦𝑢

𝑦𝑠+𝑡
=

𝑦𝑃𝑇√𝑠𝑒
𝑌

𝑦𝑠−𝑃𝑇√𝑠𝑒
−𝑌, 𝑦 =

−𝑥𝑡

𝑥𝑠+𝑢
=

𝑥𝑃𝑇√𝑠𝑒
−𝑌

𝑥𝑠−𝑃𝑇√𝑠𝑒
𝑌  E.26 

  

bağıntıları kurulabilir. x’nin değerinin de 0 ile 1 arasında değiştiği göz önüne alınırsa 

yukarıdaki eşitlik kullanılarak 

 

𝑥𝑚𝑖𝑛 =
𝑃𝑇𝑒

𝑦

√𝑠−𝑃𝑇𝑒
−𝑦    E.27 

 

elde edilebilir. LT için ise benzer şekilde Mandelstam değişkenleri  

 

𝑠̂ = (𝑝1 + 𝑝2)
2 = 𝑥𝑦𝑠  

𝑡̂ = (𝑝1 − 𝑝𝜌)
2
= 𝑥

𝑡

𝑧
= −

𝑥

𝑧
𝑃𝑇√𝑠𝑒

−𝑌  E.28 

𝑢̂ = (𝑝2 − 𝑝𝜌)
2
= 𝑦

𝑢

𝑧
= −

𝑦

𝑧
𝑃𝑇√𝑠𝑒

𝑌  

 

olacaktır. 𝑠̂ + 𝑡̂ + 𝑢̂ = 0  eşitliği kullanılarak 

 

𝑧 = −
(𝑥𝑡+𝑦𝑢)

𝑥𝑦𝑠
=
𝑃𝑇

√𝑠

[𝑥𝑒−𝑌+𝑦𝑒𝑌]

𝑥𝑦
   E.29 

 

elde edilir. 𝑧’nin 0 ile 1 arasında değer alabileceği bilindiğinden 

 

𝑝𝑇𝑥𝑒
−𝑌 + 𝑝𝑇𝑦𝑒

𝑌 < 𝑥𝑦√𝑠     

𝑝𝑇𝑥𝑒
−𝑌 < 𝑦(𝑥√𝑠 − 𝑝𝑇𝑒

𝑦)
𝑥𝑝𝑇𝑒

−𝑌

𝑥√𝑠−𝑝𝑇𝑒
𝑦 < 𝑦  E.30 

 

elde edilir. Benzer şekilde 𝑦’nin değerinin de 0 ile 1 arasında değiştiği göz önüne alınırsa 

  

𝑥𝑝𝑇𝑒
−𝑌 < 𝑥√𝑠 − 𝑝𝑇𝑒

𝑦  

𝑥(𝑝𝑇𝑒
−𝑌 − √𝑠) + 𝑝𝑇𝑒

𝑦 < 0  

𝑥(√𝑠 − 𝑝𝑇𝑒
−𝑌) − 𝑝𝑇𝑒

𝑦 > 0  

𝑥 >
𝑝𝑇𝑒

𝑦

√𝑠−𝑝𝑇𝑒
−𝑌  E.31  

 

ve 

 

𝑦𝑚𝑖𝑛 =
𝑥𝑝𝑇𝑒

−𝑌

𝑥√𝑠−𝑝𝑇𝑒
𝑦 , 𝑥𝑚𝑖𝑛 =

𝑝𝑇𝑒
𝑦

√𝑠−𝑝𝑇𝑒
−𝑌  E.32 

 

elde edilir 
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Ek 4. 𝒑𝒑̅ → 𝝆𝜸 Süreci İçin HT Alt Süreçlerinin Sert Saçılma Tesir Kesitleri 

 

±1 Helisiteye sahip rho mezonu ele alınmıştır. Şekil 17’deki Feynman diyagramları 

için saçılma genlikleri 𝑀𝑎 = 𝑀𝑐 = 0,  

 

𝑀𝑏 = 𝜈̅(𝑃2)𝑐2
+ [

−𝑖𝑔𝑠

2
𝜆𝑏𝛾𝜈] 𝜈(𝑃4)𝑐4 [

−𝑖𝑔𝜇𝜈𝛿
𝑎𝑏

(𝑃2−𝑃4)
2 ] 𝑢̅(𝑃3)𝑐3

+[−𝑖𝑒1𝛾
𝛼]𝜀𝛼∗  

[
𝑖𝑃̂5+𝑃̂3

(𝑃5+𝑃3)
2
] [
−𝑖𝑔𝑠

2
𝜆𝑎𝛾𝜇] 𝑢(𝑃1)𝑐1             E.33 

𝑀𝑑 = 𝜈̅(𝑃2)𝑐2
+ [
−𝑖𝑔𝑠

2
𝜆𝑏𝛾𝜈] [

𝑖𝑃̂4+𝑃̂5

(𝑃4+𝑃5)
2
] 𝜀𝛼∗[𝑖𝑒2𝛾

𝛼]𝜈(𝑃4)𝑐4  

[
−𝑖𝑔𝜇𝜈𝛿

𝑎𝑏

(𝑃1−𝑃3)
2 ] 𝑢̅(𝑃3)𝑐3

+ [
−𝑖𝑔𝑠

2
𝜆𝑎𝛾𝜇] 𝑢(𝑃1)𝑐1        E.34 

 

şeklindedir ve her iki diyagram içinde renk faktörü 𝐶𝐹 =4/3’tür. Gerekli ara işlemler 

yapılarak toplam genlik  

 

𝐴 = 𝜈̅(𝑃2)𝛾
𝛼𝑃̂𝜌𝑢(𝑃1)   𝐵 = 𝜈̅(𝑃2)𝛾

𝛼𝜀−̂𝑢(𝑃1)  

𝐶 = 𝜈̅(𝑃2)𝑃̂𝜌𝜀−̂𝑢(𝑃1)  

𝐷 = 𝜈̅(𝑃2)𝑢(𝑃1)                       E.35 

   

olmak üzere  

 

𝑇𝐻 = 𝑀𝑎 +𝑀𝑏 +𝑀𝑐 +𝑀𝑑      

      =
2𝐶𝜀𝛼∗

𝑥1𝑥2𝑢𝑡̂𝑠̂
[𝑒1𝑡̂ + 𝑒2𝑠̂] ×  

         [2(𝜀−𝑃2 − 𝜀−𝑃1)𝐴 + (𝑢 − 𝑡)𝐵 + 2(𝑃2
𝛼 − 𝑃1

𝛼)𝐶 + (4𝜀1𝑃𝜌
𝛼 + 2𝑡̂𝜀−

𝛼)𝐷]  E.36 

   

ve genliğin karesi ise 

 

〈|𝑇𝐻|
2〉 =

128

9

𝜋3𝛼𝐸𝐶𝐹

𝑥1
2𝑥2
2𝑢2𝑡̂2

𝑠̂[𝑒1𝑡̂𝛼𝑠 + 𝑒2𝑠̂𝛼𝑠]
2                                                               E.37 

 

şeklinde elde edilir. 

 

𝑀 = ∫ 𝑑𝑥1 ∫ 𝑑
1

0
𝑥2𝜙𝑀𝛿(1 − 𝑥1𝑥2)

1

0
𝑇𝐻                                               E.38 

 

ifadesi kullanılarak sert saçılma diferansiyel tesir kesiti, 𝑥1 = 𝑥, 𝑥2 = 1− 𝑥 için 

 

𝐷(𝑠̂, 𝑡̂) = 𝑒1𝑡̂ ∫ 𝑑𝑥 [
𝛼𝑠(𝑄1

2)𝜙𝜌(𝑥,𝑄1
2)

𝑥(1−𝑥)
]

1

0
+ 𝑒2𝑠̂ ∫ 𝑑𝑥 [

𝛼𝑠(𝑄2
2)𝜙𝜌(𝑥,𝑄2

2)

𝑥(1−𝑥)
]

1

0
          E.39 

 

olmak üzere 

 
𝑑𝜎

𝑑𝑡
=
8

9

𝜋2𝛼𝐸𝐶𝐹

𝑢2𝑡2𝑠
[𝐷(𝑠̂, 𝑡̂)]2                                                                                                    E.40 

 

şeklinde elde edilir.  
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