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OZET

Anahtar kelimeler: Gradyant inisi, Broyden-Fletcher-Goldfarb-Shanno, ¢izgi arama,
ters problem, akustik goriintiileme, en kiigiik kareler yontemi.

Bu tezde, paraksiyel yaklagima dayali ultrason iletim tomografisi incelenmis ve ileri
problemi ¢dzmek i¢in akustik dalga yayilimi modellenmistir. Iteratif olarak yeniden
yapilanma i¢in, ileri modelden elde edilen kesin ve tahmini 6l¢iimler arasinda taniml
bir amag¢ fonksiyonu olusturulmustur. Dogrusal olmayan en kiiclik kareler seklinde
ifade edilen bu amag¢ fonksiyonu cesitli optimizasyon yontemleri kullanilarak
minimize edilmistir. Optimizasyon yontemleri olarak gradyant inis ve Gauss-Newton
eslenik gradyant yontemleri uygulanmig ve bu ydntemler hesaplama siireleri ve
yakinsama oranlar1 agisindan karsilagtirilmistir.

Giicli Wolfe kosulu igeren ¢izgi arama yontemi ile gradyant inisi yOntemi
birlestirilerek amac¢ fonksiyonunun yakinsamasi saglanmistir. Bu yakinsama oranini
tyilestirmek i¢cin de BFGS (Broyden-Fletcher-Goldfarb-Shanno) yontemi, gradyant
inisi yontemi ile birlestirilmistir. yilesen yakinsama hizinin verimini daha da arttirmak
i¢in ¢izgi arama yontemi ile BFGS yontemi birlestirilmistir. En hizli iteratif algoritma
olarak Gradyant inisi, ¢izgi arama ve BFGS optimizasyon yontemi test edilen en hizl
iteratif algoritma olarak gézlemlenmistir. Buna ek olrak optimizasyon yontemlerine
benchmark optimizasyon test fonksiyonlart uygulanmis ve karsilastirilma yapilmstir.
Gradyant inisi, ¢izgi arama ve BFGS yO6nteminin en modern Gauss — Newton eslenik
gradyant1 yontemine kiyasla daha az iterasyon sayisi ile ¢oziimlenmesi nedeniyle
ultrason tomografisindeki goriitii rekontriiksiiyonu i¢in umut verici bir algoritma
oldugu sonucuna varilmistir.
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RECONSTRUCTION OF THE ULTRASOUND IMAGE USING
NESTEROV ACCELERATED GRADIANT DESCENT

SUMMARY

Keywords: Gradient descent, BFGS, line search, benchmark optimization functions,
inverse problem, ultrasound imaging, least-squares problem.

In this thesis, ultrasound transmission tomography based on paraxial approximation
has been investigated and acoustic wave propagation has been modeled to solve the
forward problem. For iterative reconstruction, objective function was established
between precise and predicted measurements obtained from the forward model. This
objective function that is least square form, has been minimized by using various
optimization methods. As optimization methods, gradient descent method and Gauss-
Newton conjugate gradient has been compared in terms of computational time and
convergence rate.

The objective function convergence was achieved by combining the line search
method with strong Wolfe condition and the gradient descent method. To improve this
convergence rate, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is
combined with the gradient descent method. Line search method and BFGS method
have been combined to further improve the efficiency of the improved convergence
rate. Gradient descent, line search and BFGS optimization method as the fastest
iterative algorithm was observed as the fastest iterative algorithm tested. In addition,
benchmark optimization test functions were applied to optimization methods and
compared. It has been concluded that the gradient descent, line search and BFGS
method is a promising algorithm for image reconstruction in ultrasound tomography
since the most modern Gauss - Newton conjugate method is analyzed with less
iteration number
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BOLUM 1. GIRiS

Kanser diinya genelinde ve iilkemizde goriilen 6nemli saglik sorunlar1 arasinda yer
almaktadir. Oliimciil ya da iyilestirilemeyen bir hastalik olarak kabul gérmektedir
(Canatan, 2009). Tiirkiye’de y1l bazinda ortalama 62 bin kadin ve 97 bin erkek olmak
tizere toplamda 159 bin insan kansere yakalanmaktadir (Tiirkiye Halk Sagligi Kurumu
Kanser Daire Baskanligi, 2016: 1). Kanser viicut i¢cinde yayildiktan sonra teshis
edilmesinden dolay1, bir¢ok insanin §liimiine sebebiyet vermistir. Dolayisiyla kanserin
erken teshisi yayi1lmasini engellemek i¢in 6nemli bir faktordiir. Kanserlerin teshisi igin
daha hassas tibbi cihazlar gereklidir (Pérez-Liva ve ark., 2017). Ultrason (US),
Mamografi (MG) ve Manyetik Rezonans Goriintiileme (MRG) kanser teshislerinde

kullanilan baslica goriintiilleme yontemleridir.
1.1. Kanserde Kullanilan Biyomedikal Goriintiileme Cesitleri

MRG, 1970'lerde miikemmel doku kontrastt ve uzamsal c¢oziiniirlik nedeniyle
biyolojik dokudan goériintiilerin invazif olmayan ve kesin bir sekilde elde edilmesini
saglayan tibbi bir goriintiileme teknigi olarak gelistirilmistir. MR, Radyo Frekans (RF)
elektromanyetik dalgalar ve manyetik alan gradyantlar1 ile kombinasyon halinde giiglii
manyetik alanlar kullanan Niikleer Manyetik Rezonans (NMR) olarak bilinen bir
olguya dayanir (P. C. Lauterbur, Nature 1973). MR’1n dezavantajlarindan birisi pahali

bir gdriintiileme yontemi olmasidir.

X-ray mamografisi kanser teshisi i¢in sik kullanilan bir tibbi cihazdir ve daha ileri bir
teshis icin MRG cihaz1 kullanilabilir. X-ray mamografisi yiiksek ¢oziiniirliikli
olmasina ragmen iki boyutlu iz diisiim engelinden dolay1, kii¢iik lezyonlar1 algilamakta
zorlanir. Ayrica mamografi cihazinin yaymis oldugu radyasyon hastaya zarar

vermektedir.



Bilgisayarlt Ultrason Tomografisi (BUT), test altindaki yumusak dokularin akustik
ozellikleri hakkinda bilgi saglar (Gemmeke ve ark., 2007). Kanserli dokularda ses hiz1
ve akustik zayiflama yayilimlar1 saglikli dokulara gore farklidir. Ayrica, BUT un
radyasyon icermemesi ve daha ucuz olmasi sebebiyle MR ve mamografiye gore daha
avantajlidir. Bu 6zelliklere sahip olan BUT, 6zellikle meme kanseri hastalarinda, iyi

huylu ve kot huylu kitleler arasinda ayrim yapilmasini saglar.

1.2. Bilgisayarh Ultrason Tomografisi

BUT, kanserin erken teshisinde yeni bir potansiyel goriintiileme yontemi olarak
goriilmektedir. BUT cihazlari, yansima, zayiflama ve ses hizi goriintiilerinin yeniden
yapilandirilmasini ve hizli veri elde edilmesini saglar. ilk 2D ve 2.5D sistemleri, meme
tizerindeki tiim halka boyunca dondiiriilebilen ve kaydirilabilen bir halka iizerinde
bulunan transdiiserler tarafindan meme kanserini tespit etmek i¢in kullanilmistir.
Bununla birlikte, sinirli alan derinligi ve diizlem dis1 yansimalarin kaybi gibi bazi

sorunlar ile karsilasilmistir (Althaus, 2016).

Bu sorunlarin iistesinden gelmek i¢in, Karlshure Teknoloji Enstitiisti'nde (KIT) bir ii¢
boyutlu BUT sistemi gelistirilmistir. U¢ boyutlu BUT sistemi hasta yatagina
yerlestirilen yari eliptik bir aragtan meydana gelmektedir. Gorlintii isleme, su ile dolu
alana hasta gégsiinii koyarak uzanirken, yar1 eliptik alanin i¢ine gomiilii ve 4 verici, 9
alic1 ve 157 transdiiser vasitasi ile gergeklestirilir. Ug boyutlu BUT sistemi Sekil 1.1.”

de gosterilmistir.



Sekil 1.1. Ug boyutlu BUT sistemi (Althaus, 2016).

Olgiim asamasinda bir verici, bir su banyosuna yerlestirilen memeye kiiresel dalga
gonderir. Bu dalga cesitli gogiis dokularindan gegerek, basing dagiliminin tespit
edildigi alicilara ulagir. Bu islem tiim vericiler i¢in tekrarlanir ve basing dagilimi iki
farkli sinyal darbesinden (pulse) olusur. iletim darbesi, higbir yansimaya ve sagilmaya
ugramadan aliciya ulasan ilk darbedir. Daha sonraki darbeler, memenin c¢esitli
dokularindan sagilan yansima darbeleridir. Bu iki darbe arasindaki fark, ii¢ boyutlu
BUT’ un ana goriintiileme ydntemini olusturur (yansima ve iletim tomografisi).
Yansima tomografisi memenin yapisi hakkinda bilgi saglarken, iletim tomografisinde
goriintiilenen ses hiz1 ve zayiflama goriintiileri iyi ve kotli huylu hiicrelerin birbirinden
ayrilmasina olanak verir (Althaus, 2016). Olgiim asamasi sirasindaki ii¢ boyutlu

BUT’un iki ana goriintiileme yontemi sirasiyla Sekil 1.2.’de gosterilmektedir.
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Sekil 1.2. Ug boyutlu BUT’ un 6l¢iim isleminin sematik gosterimi (a) ve algilanan basincin alicidaki dagilimi (b)

(Althaus, 2016).

BUT o6lgiim verilerinden ses hizi ve zayiflama profillerinin goriintiisiiniin yeniden
olusturulmas1 hedeflenmektedir. Profiller ve ultrason sinyalleri arasindaki fiziksel
etkilesimi taklit eden ileri bir model gbz 6niine alindiginda, 6l¢timler profillere gore
tahmin edilebilir. Yeniden yapilanma, elde edilen tahmini Ol¢imlerin miimkiin
oldugunca kesin 6l¢limlere yakin olacak sekilde elde edilmesine imkan saglamaktadir.
Dolayistyla bu sapmayr minimize etmek i¢in optimizasyon metotlarina ihtiyag¢
duyulmaktadir. Daha Onceki c¢aligmalarda, goriintiiniin yeniden yapilandirilmasi
Gauss-Newton eslenik gradyanti kullanilarak yapilmistir (Althaus, 2016). Althaus’ un
caligmasindan farkli olarak bu caligmada iterasyon sayist ve hesaplama siiresi
acisindan daha iyi bir performans elde etmek i¢in Gauss-Newton eslenik gradyant
kullanmak yerine gradyant inisi yontemi kullanilmigtir. Bunun sebebi Gauss-Newton
eslenik gradyantinin her iterasyonunda bir i¢ dongii icermesinden dolay1 ve eslenik
gradyant i¢in, Jacobian ve Hessian matrislerinin hesaplanmasi daha karmasiktir. Diger
bir taraftan gradyant inisi metodu sadece gradyant hesaplamasi gerektirdiginden daha
basittir. Daha iyi performans elde etmek i¢in, uygun adim biiyiikliigliniin se¢ilmesine
imkan saglayan ¢izgi arama yontemleri ve BFGS yontemi, gradyant inisi yontemine
uyarlanmistir. Ayrica BFGS yontemi ile gradyant inisi, Gauss-Newton eslenik

gradyandina gore daha az iterasyon sayis1 gerektirir.



1.3. Optimizasyon

Optimizasyon, herhangi bir problem i¢in mevcut alternatif ¢oziiler kiimesinden en iyi
¢Oziimiin secilmesi siireci olarak tanimlanabilir. Optimizasyon kelime karsilig1 olarak

“en iyileme” seklinde ifade edilebilir.

Giliniimilizde; optimizasyonun baslica kullanildig1 alanlar olarak elektronik, tip,
savunma sanayii, bilisim sistemleri ve ekonomi gelmektedir. Basit 6rnekler verilecek
olursa yazilim alaninda yapilan optimizasyonlarla islem siirelerinin kisalmasi ve
performansinin artmasi saglanmigtir. Tibbi cihazlarin ise optimize edilerek daha iyi
tahminleme ve teshis yapabilme olanaklar1 dogmustur. Giin gegtik¢ce optimizasyon

popiilaritesini artirarak devam etmektedir.

Bir optimizasyon problemi genel olarak amag¢ fonksiyonu, tasarim degiskenleri ve
kisitlardan olugmaktadir. Optimizasyon probleminin tanimlanmasi ve ¢odziimiinde
kullanilacak yontemin belirlenmesi amag fonksiyonu, tasarim degiskenleri ve var ise

kisitlarin yapisina gore gerceklestirilir.

denemed
wanilma dinamik,

3

parametrell
Mo
cok
parametrell

tel

_ statik
fonksivon

OPTIMIZASYON

I
rasgele sk

PRI
arastirma

ZISlIUIS

siirekl

Sekil 1.3. Optimizasyon problemlerinin siniflandirilmasi



Yukarida verilen Sekil 1.3.” e gore bu ¢alismada fonksiyonu yer dogrusu olarak
kullanarak (ground truth) deneme yanilma yontemi vasitasiyla gercek goriintii ile

tahmini goriintii arasindaki farki azaltarak en iyi hala getirebilmeye caligilmistir.

Optimizasyon algoritmalar1 sayesinde karar degiskenlerimizin parametrelerini daha
net sekilde belirlemeye ¢alisabiliriz. Karar degiskenlerinin kullanilmasiyla olusacak
birden fazla c¢oziimlerin birbiriyle karsilastirmasini saglamak amaciyla amag
fonksiyonunun tanimlanmasi gerekir. Amag fonksiyonlar1 da problemin tiiriine gore
degisiklik gostermektedir. Ornegin bir problemde amag fonksiyonu zaman ise en kisa
zaman gerektiren ¢Oziimlerin kiyaslanmasi gerekirken, amag¢ fonksiyonu maliyet

fonksiyonu ise en diisiik sonucu iireten ¢6ziim en iyi ¢oziimdiir.



BOLUM 2. LITERATUR INCELEMESI

Bu boéliimde tez kapsaminda hedeflenen ¢alisma ile benzer yontemler igeren ¢alismalar

kisaca Ozetlenerek tezin kapsami hakkinda bilgi verilmistir.

2.1. Modern Yeniden Yapilandirma Yontemleri

Yeniden yapilandirma yontemlerinde bir¢ok optimizasyon metodu kullanilmaktadir.
Yeniden yapilandirma i¢in yaygin kullanilan optimizasyon yontemleri olarak gradyant
inisi, lineer olmayan eslenik gradyant ve Gauss Newton eslenik gradyantidir. Ornek
olarak, Akgelik ve arkadaslar1 dalga yayilimin ters ¢evrilmesini paralel ¢ok o6lcekli
Gauss — Newton — Krylov yontemleri ile hesaplanmasiyla pelvis kemiginin
goriintiisiiniin ~ olusturulmasimi  saglamiglardir. Kismi diferansiyel denklemler
tarafindan yonetilen sistemlerin hesaplanmasinin en biiyiik zorluklarindan biri biiytik
Ol¢cekli dogrusal olmayan parametre tahminidir. Bunlar, genellikle biiyiik 6l¢ekli
simiilasyonu karakterize eden ileri problemlerin aksine, ters problemler olarak bilinir.
Ters problemler, biiyiik yogun koétii konumlandirilmis operatorler, ¢coklu minimum
noktalari, uzay-zaman baglami ve ileri problemi tekrar tekrar ¢ozme ihtiyaci nedeniyle
ters problemlerin ¢oziilmesi onemli o6l¢iide daha zordur. Zamana bagli kismi
diferansiyel denklemlerin yOnettigi ters problemler igin paralel bir algoritma ve bir
akustik ortamin malzeme alanin1 belirlemede ters dalga yayilma problemi igin
Olceklenebilirlik sonuglart sunmusglardir. Yukarida belirtilen zorluklar, toplam
degiskenlik diizenlenmesini, onceden sartlandirilmis matris igermeyen Gauss-
Newton-Krylov yinelemesini, algoritmik kontrol noktasi belirleme ve cok olgekli

siirdiirme birlesimiyle ele alan bir ¢alisma yapmislardir (Akgelik ve ark., 2002).

Virieux ve Operto jeofizik alaninda tam dalga ters cevrimi ile ilgili arastirma
yapmistir. Tam dalga ters ¢evrimi sismogramlardan (sismograflarin grafik ¢iktisi)

sayisal bilgileri ¢ikarmak i¢in tam dalga alan1t modellemesine dayanan zorlu bir veri



uyarlama prosediiriidiir. Yayilan dalga boyunun yarisinda yiliksek c¢oziintirliiklii
goriintiileme beklenmektedir. Yiiksek performansli islemler ve cok katli / ¢ok bilesenli
genis agiklikli genis Azimuth kazanimlarindaki son gelismeler, bugiin 3 boyutlu
akustik tam dalga ters ¢evrimini miimkiin kilmaktadir. Tam dalga ters ¢evriminin kilit
bilesenleri verimli bir modelleme motorudur ve gradyan ile Hessian operatorlerinin
verimli bir sekilde tahmin edildigi yerel bir diferansiyel yaklagimdir. Bu noktada
Virieux ve Operto optimizasyon metotlarina bagvurmuslardir. Yerel optimizasyon,
baslangi¢ modelinin sinirlt dogrulugu, diisiik frekans eksikligi, giiriiltiiniin varlig1 ve
dalga fizigi karmasikliginin yaklasik modellenmesi nedeniyle fonksiyonun yerel
minimum noktasina yakinlagmasini engellememektedir. Bu nedenle farkli hiyerarsik
coklu oOlgek stratejileri, tam dalga ters c¢evriminde dogrusal olmayan ve 1iyi
konumlandirilmamis dalgalar1 azaltabilmek i¢in parametre alanina asamali olarak
daha kisa dalga boylar1 dahil ederek tasarlanmistir. Yeniden yapilandirilma
calismalarinda sentetik ve gergcek veri kullanilirken yogunluga, anizotropi ve
zayiflama faktorlerini kullanmislardir. Optimizasyon yontemleri olarak Newton,
Gauss — Newton, gradyant inisi yontemlerini kullanmislardir. Baslica karsilastigi
problemler ise ilk olarak dogru baslangic modelleri olusturmak, diisiik frekanslar
kaydetmekte yasadiklar1 zorluklardir. Ikincil yasadiklari problemler ise tam dalga ters
cevriminin genlik hatalarina olan duyarlilig1 azaltmak ve saglamlastirmak i¢in yeni en

aza indirme kriterleri tanimlamaktir (Virieux ve ark., 2009).

Sandhu ve arkadaslar1 (2015), frekans alanli ultrason dalga formu tomografisinde
meme goriintiileme caligmas1 yapmistir. Frekans bolgesi akustik dalga denkleminin
ultrason tomografi taramalarindan elde edilen verilere uygulanmasinin, en yiiksek
yeniden yapilandirilmis frekansin dalga boyunun sirasina gore yiiksek ¢oziniirliiklii
ses hiz1 goriintiileri sagladigr gosterilmistir. 0,4-1 MHz sinyal bant genisligi ve
ortalama 1500 m/s ses hiz1 kullanarak, ¢oziiniirliik yaklagik 1,5 mm 'dir. Nicel ses hiz1
degerleri ve bu goriintiiler tarafindan saglanan morfoloji, meme hastaliginin teshisini
ve siiflandirilmasini  bildirme potansiyeline sahiptir. Bu c¢alismada, halka
transdiiserlerini kullanan iki farkli ultrason tomografi tarayicisi tarafindan toplanan
meme verilerine uygulanan dalga formu tomografisinin formalizmi, pratik uygulamasi

ve vivo sonuglar1 sunulmaktadir. Formalizm, sonlu fark operatorleri kullanarak dalga



denkleminin frekans bolgesi modellemesinin bir incelemesini ve yinelemeli yeniden
yapilanma semast i¢in gradyant inig yonteminin bir incelemesini igerir. Dalga sekli
tomografisinin pratik uygulamasiin dogru bir baslangic modeli, dikkatli veri igleme
ve ses hizin1 yeniden yapilandirmaya kademeli olarak daha yiiksek frekans bilgisini
dahil etmek i¢in bir yontem gerektirdigi goriilmiistiir. Bu adimlarin ardindan memenin
yiiksek ¢oziintirliiklii nicel ses hiz1 goriintiileri elde etmislerdir. Bu goriintiiler yaygin
olarak kullanilan 1g1n tomografisinin yeniden yapilandirma yontemlerine gore belirgin
bir iyilesme gostermektedir. Yontemin saglamligi i¢in iki farkli ultrason tomografi

cihazindan benzer sonuglar elde edilerek gosterilmistir (Sandhu ve ark.,2015).

Sandhu ve arkadaslar1 (2017) diger bir calismasinda da tomografi prensiplerini bir
halka dizisi ultrason doniistiiriicii dizisi ile birlestirerek, arastirmacilar ultrason
tomografisinin nispeten yeni bir yontemini yaratmislardir. Bu teknik 1smin seyahat
stiresini temel alarak bir memenin ses hizini ve zayiflama 6zelliklerini 6lgmenin yani
sira tipik B modu yansima goriintiileri tiretme 6zelligine de sahiptir. B-modu, probdan
gelen ses dalgalarinin dokular i¢inde yayilma ve yansima ile geri donerek iki boyutlu
(2D) bir goriintii olusturmasidir. Bu goriintiiler, dokularin sese tepkisine gore ekranda
degisik parlakliktaki gri tonlar seklinde olusmaktadir. Seyahat siiresi tekniklerinin
aksine, frekans bolgesi dalga formu tomografi teknikleri, dalga yayiliminin fizigini
daha dogru bir sekilde modellemektedir. Gradyant inisinin evirilmis algoritmalari
gergek ve sentetik olarak iiretilen akustik basing alanlar1 arasindaki fark olarak
tanimlanan bir Amag¢ fonksiyonunu iteratif bir sekilde en aza indirerek, ultrason
yontemi ile incelenmis bdlgenin daha dogru ses hizi dagilimlarini yeniden
olusturmasina izin verir. Gradyant inisi algoritmalar1 ses hizinin imajiner kisma sahip
olmasini saglayarak ortamin ig¢sel zayiflamasinin modellenmesine olanak saglar. 2B
varsayimi ayrica diizlemden kaybedilen veya kazanilan enerjinin yeniden
yapilandirilma algoritmasi1 tarafindan diizglin bir sekilde hesaba katilmadigi
durumlarda zayiflama goriintiileme i¢in bir sorundur. Sandhu ve arkadaslari
gorilintiinlin yeniden yapilandirilmasinda gradyant inisi yontemini kullanmistir. Sonug
olarak Sandhu ve arkadaslar1 goriintiiniin yeniden yapilandirilmasinda daha az

hassasiyet problemi ve zaman problemleriyle karsilasmislardir. Ayrica kesit olarak
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alinan goriintii ile gorlintiinlin tamam1 alindiginda da siire olarak ¢cok marjinal bir artig

problemi gozlemlemislerdir (Sandhu et ark., 2017).

Li ve arkadaslar1 dalga bigimi zayiflama tomografisini kullanarak meme goriintiistinii
yeniden yapilandirmislardir. Grandyant azalmast metodunu kullanmislardir. Dalga
formu zayiflama goriintiisiiniin ¢ok daha yiiksek ¢oziintirliige sahip oldugu ve meme
lezyonu sinirlarina karsilik gelen 1sin bazli zayiflama goriintiisiinden daha iyi
tanimlayabildigini géstermektedir. Bu ¢alismada, bir halka dizisi ile elde edilen zaman
alan1 dalga formlarin1 6nceden islenmistir ve elde edilen dalga alanlarina gore
hesaplanan dalga alanlarini1 daha iyi eslestirmek i¢in yonlii doniistiiriicli 151n diizenini
kullanmiglardir. Dalga formu zayiflatmasini verilere uygulamiglar ve ortaya ¢ikan
dalga sekli zayiflama goriintiilerini, dalga big¢imi zayiflatma rekonstriiksiyonunun
¢Oziiniirliglinli ve dogrulugunu degerlendirmek igin 15 temelli kisimlarla
karsilagtirmislardir. Asimptotik bir yaklasima dayanan 15in tomografisine kiyasla,
dalga formu tomografisi, algilanan dalga ile tam dalga denklemini modellemektedir.
Her ne kadar ses hizi memedeki ¢esitli dokularin ayirt edilmesine yardimci olsada,
kistler, fibroadenomlar ve kanserler gibi dokularin ses hizi degerlerinde Ortligme
vardir. Zayiflama, bu lezyonlar1 benzer ses hizlarinda daha fazla karakterize etmeye
yardimct olmak i¢in esastir. Toplam zayiflamay1 yeniden yapilandiran 151n azaltma
algoritmasindan farkli olarak (yansima, sagilma ve igsel zayiflamay1 igeren toplam
enerji kaybina dayanarak), dalga bicimi zayiflatma algoritmast doku igsel

zayiflamasini yeniden yapilandirabilir (Li ve ark., 2017).

Wiskin ve arkadaglar1 (2017) yeni bir 3D ultrason teknolojisi olan kantitatif iletim
ultrason sistemi ve bir su banyosunda asil1 bir gégsiin goriintiilenmesi i¢in algoritma
tanimlamiglardir. Nicel olarak dogrulugu fantom ile saglarlarken, morfolojik dogruluk
memenin vivo goriintiileriyle saglamislardir. Teshis icin kullanillan el tipi
ultrasonlarda, gogiis goriintiilerinin elde edilmesi ve belgelenmesi zaman alict ve
Operatore bagimlidir. Ayrica bu el tipi ultrasonlarin goriis alaninin kiigiik olmasi,
dokudaki lezyonlarin goriintiinlenmesini zorlagtirmigtir.  General elektrigin ve
Siemens’in iiretmis oldugu bu otomatik gogiis tarama sistemleri, dogru 3 boyutlu veri

elde edemezler ve dokunun sertligi ile ilgili niceliksel bilgi saglamamaktadirlar. 2
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boyutlu kuantatif ters sacilma metotlarinda gelismeler olmasinin yaninda, kirinimi
hesaba katmayan ters problem yontemleride kullanilmistir. Tam dalga ters sagilma
¢Oziimii kullanmayan diger yontemler de arastirilmistir. Wiskin ve arkadaslarinin
(2017) ters sagilma yontemi, gdgiisiin 3 boyutlu volumetrik yapisin1 ve dokular
hakkinda niceliksel bilgi saglamistir. Bu, radyologlara, doku elastikiyetiyle ilgili ek
bilgiler ve meme dokusunun degerlendirilmesinde meme lezyonlarinin
karakterizasyonunda yardimci olarak kullanilabilecek ve sonucta 6zgiilliigii artiran
biyobelirtegler sunar. Ayrica, dogrusal olmayan eslenik gradyantin Ribiere-Polak (RP)
versiyonunu kullanarak ileri modelin paraksiyel yaklasimini gergeklestirmislerdir.

Fakat zayiflama goriintlisliniin ses hizi goriintiisiine gére daha zor hesaplandigini

kesfetmislerdir (Wiskin ve ark., 2017).

Althouse (2016) ayn1 paraksiyel yaklasima dayanan Gauss — Newton eslenik gradyanti
kullanarak goriintiiniin yeniden yapilandirilmasi {izerinde ¢alismalar yapmustir. Ters
problem yaklagimi ile goriintiiniin yeniden yapilandirilmasi ¢ok zaman aldigindan,
optimizasyon metodunu modifiye ederek daha az iterasyon sayisi ile bu teknolojiyi
ileri tasinmas1 amaglanmistir. Bu ¢alismada, Althouse (2016)’un ¢alismasindan yola
cikilarak paraksiyel yaklagima dayanan ileri model ultrason dalga yayilimi
aragtirilmistir. Iteratif olarak yeniden yapilandirilma icin gercek olgiimler ileri
modelden simule edilmistir ve her iterasyonda yenilenen tahmini O6l¢iimlerle
karsilagtirilmistir. Bu ters problem yaklasimi lineer olmayan en kiiciik kareler (least
square) yontemi ile ¢oziimlenmistir. Gradyant inisi, Gauss Newton eslenik gradyanti,
gradyant inisi ve BFGS, gradyant inisi ve ¢izgi arama ve gradyant inisi , BFGS ve
¢izgi arama metotlar1 karsilastirilmistir. Ek olarak ¢izgi arama yontemi olan giiclii
Wolfe kosulu (Nocedal ve Wright, 2000) her iterasyonda adim biiytikliiglinii segmek

i¢in bu optimizasyon yontemleriyle birlikte kullanilmistir.
2.2. Tezin Organizasyonu
Bu tezde gradyant inisi metodu ile BUT’ da ki ses hizi ve zayiflama profillerinin

yeniden yapilandirilmasi lizerinden ¢alisilmistir. Materyal ve yontemler kisminda ileri

modelin paraksiyel yaklagimina dayanan akustik dalga yayilimi gosterilmistir. Amag
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fonksiyonu lineer olmayan en kiigiik kareler yontemi ile olusturulmustur. Daha sonra
optimizasyon yontemleri tanitilmig ve amag fonksiyonunu minimize etmek i¢in Gauss-
Newton eslenik gradyanti, gradyant inisi, c¢izgi arama ve BFGS metotlar
kullanilmistir.  Eslenik metodu ile optimizasyon metotlar1 i¢in gerekli olan
gradyantlarin nasil hesaplanacagi agiklanmistir. Sonug bdliimiinde biitiin optimizasyon
yontemleri, 7 farkli fantom tizerinde iterasyon sayilar1 ve hesaplama siireleri agisindan
karsilagtirilmistir. Yeniden yapilandirilan ses hizi ve zayiflama profilleri ger¢ek yer
dogrusuna gore analiz edilmistir. Sonug¢ bdliimiinde ise en iyi optimizasyon yontemi

deneysel sonuglara gore tartigilmistir.



BOLUM 3. ULTRASON TOMOGRAFISINDE KULLANILAN
PARAKSIYEL YAKLASIMA DAYALI ILETIM
MODELLERI

Bu bdliimde, ultrason tomografisinde kullanilan paraksiyel yaklasima dayali iletim
modelleri anlatilmistir. Ger¢ek ve tahmini 6l¢iimler arasindaki sapma, en kiiciik
kareler yontemi ile olusturulmustur. iteratif olarak yeniden yapilandirma igin gerekli
olan optimizasyon yontemleri arastirilmistir. Bu yontemler Gauss Newton eslenik

gradyant, gradyant inisi, Wolfe kosullarina dayali ¢izgi arama yontemleri ve BFGS dir.
3.1. Ultrason Iletim Tomografisi

Ultrason iletim tomografisinin temel prensibi, yansima ve sa¢ilmadan olusan ultrason
dalga yayilimina dayanir (Suetens, 2009). Fakat dalga denklemlerinin tam ¢6ziimii cok
zordur. Dalga denklemlerinin sayisal ¢oziimii son zamanlarda miimkiin hale gelmistir
(vanDongen ve Wright, 2007). Dalga denklerimin ¢6ziimii i¢in birgok yaklasim
bulunmaktadir. Bunlardan bazilar1 dogrusal 1sin, Born, Rytov ve paraksiyel
yaklasimdir. Dogrusal 151 tomografisi en kisitlayict yaklagimdir. Ultrasonun
yayicidan alictya gectigi yol, homojen kabul edilen bir ortamda 1ginin kirilmasi ihmal
edilerek modellenir. Bu ¢ok sik kullanilan metot olmasinin yaninda, sinirli bir goriintii
¢Oziinlirliigline sahiptir (Dapp, 2013). Born yaklagimi, zayif sacilma ve kirilmay1
varsayarak ayni zamanda ¢oklu sagilmay1 ihmal ederek, dalga denkleminin ¢éziimiinii
basitlestirir. Bu yontem, kirmimla basa c¢ikarak i1sin tabanli yaklagimlara kiyasla
oldukca daha yiiksek bir ¢oziiniirliik elde edebilmesine ragmen, diislik kontrast farklar
olan goriintlileri yeniden olusturmakta basarisiz olur (Duric ve ark., 2011). Dalga
denklemlerinin yaklasik ¢6ziimii i¢in kullanilan Rytov yaklasimi genellikle, sadece tek
bir dalga boyunda faz degisiminin kii¢iik oldugu durumda gecerlidir. Fakat hesaplama

zorlugundan dolay1 2 boyutlu goriintiilemede ve diisiik frekanslarda sinirlandirilistir
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(Simonetti, 2008). Paraksiyel yaklasim, dalga yayilimini baskin olarak bir yonde
hesaplayarak ve dalganmn dilim-dilim iteratif aktarimiyla, hesaplama zorlugunu
azaltmaktadir. BUT i¢in, paraksiyel yaklasim, sensorlerin sinirli agilma acisi
yonliiliigiine bagl olarak uygun goriinmektedir ve tlim akustik etkiler (kirilma,
kirinim) dahil edildiginden 3 boyutlu BUT i¢in transmisyon tomografisini iyilestirme

konusunda en umut verici adaydir.
3.1.1. Ileri modelin paraksiyel yaklasimda kullanilmas:

Iletim tomografisinde elde edilen doku goriintiilerinin ses ve zayiflama profilleri
dokunun yapis1 hakkinda bize bilgi saglar. iteratif olarak iletim tomografisinin yeniden
yapilandirilmasi i¢in, Helmholtz denklemleri, akustik ortamda yansima, kirinim ve
coklu sacilma ile birlikte ultrasonun dalga yayilimi olarak tanimlanabilir (Althaus,

2016; Gemmeke ve ark., 2016).
Ap+ki?(1+n)?p=0 (3.1)

Burada (Denklem 3.1) ;

p: frekansa bagli basing alan,

ko :% . akustik ortam i¢in arka plan dalga numarast

1+7: yansima indeksi, # homojensizligin arka plan ortamindan sapmasini ifade eder.
Medikal goriintiileme i¢in, Helmholtz denklemlerinin tam ¢6ziimii ytliksek hesaplama
maliyeti ve efor gerektirdiginden, paraksiyel yaklasim tercih edilmistir (Althaus, 2016;
Fichtner, 2011). Bu yaklasim, transdiiserlerin dairesel veya kiiresel bir geometrisini
kullanirken, kiiresel dalgalar icin Helmholtz denklemlerinin ¢6ziimii olarak
tanimlanabilir. Basing alan1 denklemlerinin paraksiyel yaklasimindan ifade edilirse

(Althaus, 2016; Gemmeke ve ark., 2016).

P=ueiky? (3.2)
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Burada (Denklem 3.2) ;
p: Frekansa bagl basing alan,

ko :% : Akustik ortam i¢in arka plan dalga numarasi (akustik ortam tanimlanmasi i¢in)

u: Karmasik degerli genligi ve dalga vektoriinii
z: Paraksiyel yonii yani z eksenini belirtir.

Meme su arka plan ortamina yerlestirilir. Akustik dalga alani, emiterden aliciya
ilgilenilen bolge (IB) igerisinde heterojen ortamdan gecerek gonderilir. Paraksiyel
yaklasim ilgilenilen bodlge (IB) igerisinde uygulamir ve dilim dilim yayimlanir.
Paraksiyel yaklagimin ileri modeli Sekil 3.1. ‘de gosterilmistir (Gemmeke ve ark.,

2016).

77 Homojen arka plan

Piston modeline H,0 N Bir afllmdakl
gire dalgalarm / paraksiyel model
tasinmasi /. A\
/- v \ Aher
‘\
Verici | S"——— R+ +HHHHHHHHHHH 4 ‘% z
\\\ Paraksiyel S

S yaklagsim

Sekil 3.1. Paraksiyel yaklagimin ileri modeli (Gemmeke ve ark., 2016).

Paraksiyel yaklasim ayrica basing alani p nin, Helmholtz denklemini ¢6zen bir diizlem
dalgadan sapmast olarak da ifade edilir (homojen ortam i¢in #=0). ileri model ¢oziimii

iki boyutlu problemler i¢in asagidaki gibi hesaplanabilir (Gemmeke ve ark., 2016).

) lko\/zzzﬂz
Dt 1=eRoMkAZ jffr fo  N*O" fHrpi 1) (3.3)
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Burada (Denklem 3.3) kindeksi p ve i degiskenleri i¢in dikkate alinan zdilimini ifade
ederken, ¢ spektal degisken, fftve ifft sirasiyla ayrik Fourier doniisiimiinii ve ters ayrik

Fourier doniisiimiinii ifade eder.
3.1.2. Ters problemin tam kareler toplami formunda yazilmasi

BUT sisteminin birgok verici alici ¢iftinden alinan basing dagilim 6l¢iimlerinden,
homojen olmama tahmini siireci # ters problemdir. Ses ve zayiflama profilleri # ‘dan
tiiretilir. Bu ters problemi ¢6zmek i¢in (Denklem 3.4) tahmini basing alanlar1 ile
alicilarda alinan kesin Ol¢limler arasi sapma, dogrusal olmayan en kiigiik kareler

toplami1 formunda tanimlanir.
o)=/lp(n)-d/F? (3.4)

Amag fonksiyonumuz f (n)’1 minimize etmek i¢in ¢esitli optimizasyon algoritmalari
kullanilabilir. Daha o©nceki c¢alismalarda Gauss Newton eslenik inisi metodu
uygulanmisti. Bu projede gradyant inisi, ¢izgi arama ve BFGS metodu uygulanacak

ve optimizasyon performanslari karsilastirilacaktir.
3.2. Optimizasyon Metotlari

Optimizasyon yontemlerinin amaci, belirli bir aralikta giris degerini sistematik olarak
secerek tanimli bir amag¢ fonksiyonunun degerini maksimize etmek veya minimize
etmektir. Bu tez caligmasinda, yeniden yapilanmanin gergeklestirilmesi i¢in amag
fonksiyonumuzun minimuma indirilmesi gereklidir. Daha kolay anlasilmasi i¢in, vadi
tizerindeki bir topun yokus asagi adim adim diismesi olarak diisiiniilebilir. Ancak, her
adimda, farkli optimizasyon yontemleri farkli adimlarla yokus asagiya dogru farkl
“yonlerde” ilerler ve fonksiyonlarin en aza indirilmesi sirasinda farkli davraniglar

sergiler. Bu boliimde optimizasyon yontemlerinin temel prensipleri arastirilacaktir.



17

3.2.1. Gradyant inisi

Gradyant inisi, mevcut ama¢ fonksiyonunun yerel minimuma yakinsamasi igin
kullanilir. Minimum degere ulagmak i¢in her yinelemede alinan yon boyunca, adim
boyutunu belirlemek i¢in bir parametre gereklidir (Denklem 3.5). Diger bir deyisle
gradyant inisinin amaci ama¢ fonksiyonunun yarattigi yiizey iizerinde gradyant

yonlerini izleyerek minimum noktay1 bulmaktir (Ruder, 2016).

X1 = X — V() (3.5)

Adimm biylikligi a, > 0 yakinsama oranmni kontrol etmek icin Onemli bir
parametredir. Bir yandan ¢ok kiiclik bir parametre degeri algoritmanin ¢ok yavas
yakinsamasina neden olur. Ote yandan ¢ok biiyiik bir parametre degeri algoritmanin
yakinsamas1 yerine iraksamasina neden olur. Dolayisiyla her iterasyonda azalan bir
amag fonksiyonu degeri elde etmek i¢in adim biiyiikliigii uygun olarak secilmelidir

(Ruder, 2016).
3.2.2. Gauss-Newton eslenik gradyanti

Gauss-Newton eslenik gradyanti, ama¢ fonksiyonu olarak verilen dogrusal olmayan
en kiigiik kareler problemini en aza indirmek i¢in kullanilir. Ikinci mertebeden
tirevlerin hesaplanmasin1  gerektirmeyen bu yontem Newton yOnteminin
modifikasyonu olarak da ifade edilir. Amag¢ fonksiyonu, dogrusal olmayan

fonksiyonlarin karelerinin toplami olarak yazilabilir (Siregar ve Ramli, 2018).

JHOEE M (3.6)

Burada (Denklem 3.6), 7; residual vektor olup, Denklem 3.4°deki gibi ifade edilebilir
r =p(m) —d. Bu tezde, x yerine n olarak kabul edilmistir. Yani tahmin etmek
istedigimiz veya optimize etmek istedigimiz degerdir. Dolayisiyla r gergek Olglim ile

tahmini 6l¢iim arasindaki farktir (Denklem 3.7).
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r() = (1 (), 15(x), ..., T (X))T (3.7

Resudial gradyanti, tim resudiallerin V7; (x), Jacobian matrisini kullanarak
hesaplanabilir (Denklem 3.8). Jacobian matrisi ayrica resudiallerin parametrelere gore

kismi tiirevleri olarak bilinir.

Vr(x)"

Vry ()"

ariy1 . .
J(x) = 6—2] j=1,.mi=1...n= (3.8)

Vi, .(x)T

Amag fonksiyonunun f(x) gradyanti ve Hessian matrisleri Denklem 3.9 ve Denklem

3.10’ daki gibi hesaplanir (Siregar ve Ramli, 2018).

Vf(x) = Xt 10V () = J(x) r(x) 3.9)

V2f(x) = ZjLi1COVr (07 + Xt 0V (x) = J ()] () +
j=1 10V () (3.10)

Gauss-Newton arama yOniinii bulmak i¢in Denklem 3.11° deki yaklagima dayanir.

J )T Cedpe™ = JT ()T (xx) (3.11)
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Tablo 3.1. Gauss-Newton Eslenik Gradyant1 Algoritmast

Gauss-Newton Eslenik Gradyanti

1. iterasyon sayacini ayarla k = 0,baslangi¢ tahminini yap x,,

2. (J )TN = JT ()T () Lineer eslenik gradyanti kullanarak arama yonii pg" bulmak igin

¢z
3. Hesapla x4 = x; + pEN
4 iterasyon sayacini giincelle k = k + 1

5. f(x,) < € oldugu siirece, adim 2 ye git

Algoritma 1°de ikinci adimda dogrusal olmayan en kiiciik kareler problemi (Denklem

3.12) ¢ozlimiine karsilik gelir (Nocedal ve Wright, 2000; Siregar ve Ramli, 2018).
.1
mmg”](xk)P — (x| |? (3.12)

Gauss Newton metodu i¢in gerekli olan arama yoniinii pe” elde etmek icin eslenik
gradyanti olarak bilinen Ax = b problemini ele alalim.

Burada ;

A=) (x),
x =pgV,

b =JT () ()

olarak tanimlanir ve ¢oziimii Denklem 3.13° {in minimizasyonuna karsilik gelir

(Nocedal ve Wright, 2000).

min f(x) = ZxTAx — b'x (3.13)
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Gauss-Newton eslenik gradyanti, Denklem 3.11' i ¢6zmek i¢in pcg (A, b, tol) gibi
MATLAB’ta yer alan eslenik gradyant islevi goren fonksiyon kullanilarak
uygulanabilir. Burada A amag¢ fonksiyonu, Hessian matrisine karsilik gelen
J(xx)TJ (xx) olmalidir, diger taraftan B matrisi de Amag fonksiyonunun gradyantina

JT (x,)7(x;) karsilik gelmelidir.

3.2.3. Cizgi arama yontemleri ve wolfe kosullari

Cizgi arama yontemleri her iterasyonda adim biiyiikliiklerini belirlemek i¢in kullanilir.
Verilen arama yonii boyunca ne kadar gidecegini hesaplar. Cok kiiciik adim biiyiikligi
fonksiyonun yavas yakinsamasina sebep olurken, c¢ok biiylik adim biyikligi
iraksamasina neden olur. Adim biiyiikliigiinii uygun bir sekilde secilmesine ve ayni
zamanda amag fonksiyonunun yeterli miktarda azalmasina imkan verilmelidir. Cizgi
arama yontemleri de buna izin verir. Uygun adim biiylikligiiniin eksikliginden
kaynakli amag¢ fonksiyonunun yakinsamasi yerine iraksamasi Sekil 3.2.° de

gosterilmistir.

fix)

Sekil 3.2. Amag fonksiyonunun iraksamasi

Armijo kosulu amag fonksiyonunun yeterli miktarda azalmasina imkan saglamaktadir
ve temel olarak Denklem 3.14° de verilmistir. Amag¢ fonksiyonunun azalmasit hem

adim biiyiikliigline hem de yonlii tiireve baghdir (Nocedal ve Wright, 2000).
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[+ arpr) < (i) + crarVf (x) " pre (3.14)

Esitsizligin sag tarafin1 [(a) olarak, sol tarafin1 da ¢ () olarak kabul edelim. Adim
biiyilikliigii sadece @ () < l(a) kosulu saglarken azaltilabilir. Fakat ¢ok kiigiik adim
bliyiikliigli amag¢ fonksiyonunun global minimum noktasina ¢ok yavas yakinsamasina
sebep olabilir. Bu ¢ok kii¢iik adim biiytikliiklerini dengede tutabilmek i¢ini ikinci bir
kosul olan egrilik kosuluna ihtiya¢ duyulmaktadir (Nocedal ve Wright, 2000).

Vf(x + axpr) "o = 2V (x0) e (3.15)

Egrilik kosuluna gore, aj-da ki ¢ egimi, baslangic egiminden ¢'(0) ¢, kat daha
biiyiiktiir. Bu kosul (Denklem 3.15) amag¢ fonksiyonunun optimum yakinsamasini
saglar. Armijo kosulu ve egrilik kosulu sirasiyla Sekil 3.3. ve Sekil 3.4.’te

gosterilmistir.

@) =f(x,+ ap, )

N

kabul edilebilir . kabul edilebilir

Sekil 3.3. Armijo kosulu
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MHa)=f(x tap)

istenen
efim
tanjant

kabul edilebilir L kabul edilebilir

Sekil 3.4. Egrilik kosulu

Bu iki kosul birlikte Wolfe kosullar1 olarak adlandirilir (Denklem 3.15). Egrilik kosulu
yeniden tasarlanirsa daha gercek¢i adim biiyiikliikleri elde edilebilir ve bu da giiglii

Wolfe kosulu olarak adlandirilir.

IV (xk + axpi) " Dic| < 2|V (i) e (3.15)

Burada (Denklem 3.15) ; 0 < ¢; < ¢, < 1 olmalidir. Bu tezde, giiclii Wolfe kosulu
¢izgi arama yontemi uygulanmistir. Bu algoritmaya gore, ¢izgi arama kosulu iki
asamadan olusur. {1k asamada kiiciik adim biiyiikliigii ile baslanir ve kabul edilebilir
uygun bir araliga ulasana kadar artirilir. Ikinci asamada, uygun adim biiyiikliigiinii
bulana kadar, arama araligini1 azaltan yakinlagtirma fonksiyonu kullanilmistir (Nocedal

ve Wright, 2000). Algoritmanin detayli agiklamas1 Sekil 3.5. ve 3.6.” da verilmistir.



Baslangic adim
biiyiikligiinii sce.

Objektif fonksiyon
degerini adim
biiyiikligiinii

kullanarak hesapla.

Adim biiyiikliigii
veterli azalma
sagladi m?

Evet

Adim biiyiikliigi
kullanarak
fonksiyonun tiirevini
hesapla.

Adim biiytikliigi
egrilik kosulunu
sagladi mi?

Evet

Adim biiytikliigi
yeterli.

l

Cizgi aramadan cik.

———]

Bir énceki adim

Hayir biiviikliigii ile simdiki

adim biiyiikliigiiniin
adim araliklarini ayarla.

Hawvir Hayir

Egim pozitif mi?

Evet

Bir dnceki adim
biiyiikliigii ile simdiki
adim biiyiikliigii arasindaki
arama arahigim ayarla.

l

Yeterli adim biiyiikliigiinii
clde etme icin

Maksimum adim
bityiikliigiive simdiki adim
bityiikliigiiarasinda yeni
bir adimbityiikliigii sec.

vakinlasma fonksiyonunu
cagir.

Sekil 3.5. Giiglii Wolfe kosuluna dayanan ¢izgi arama yontemi akis semasi




Alt adim biiyiikliigi ile
iist adum biiyiikliigii
arasindaki bir
ara degeri bul

Objektif fonksiyon
degerini deneme adim
biiyiikligiinii kullanarak
hesapla.

Adim bilyiikliigii
veterli azalma saglad
mi? veya alt adim
biiyiikliigiinden
Kiiciik mii?

Evet

Deneme adim
biiyiikliigii kullanarak
fonksiyonun tiirevini
hesapla,

Adim biiyiikligii
cgrilik kosulunu
sagladr mi1?

Evet

Achm bityiikliigi
yeterli.

Yakinlasma
fonksivonundan ¢ik.

Hayir

—_—

Hayir
S

—

Deneme adim biiyiikliigiinii

lst adimbilyiikligiine
ayarla.

Egim pozitif mi?
ve iist adim biiyiikliigii
alt adim biiyiikliigiinden
fazla mi?

Hayir

Hawir

Durdurma kosulunu
sagladi m?

Evet

!

Ust adim biiyiikliigimii
alt adim biiviikliigiine
ayarla,

!

Alt adim biyiiklii giini

deneme adim biiyiikliigiine

ayarla.

Evet
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Sekil 3.6. Giiglii Wolfe kosuluna dayanan ¢izgi arama yontemi yakinlagma fonksiyonunun akis semast
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Tablo 3.2. Giiglii Wolfe kosulu ¢izgi arama algoritmasi

Gtigli Wolfe kosulu ¢izgi arama

1. Baslangi¢ adim biiyiikliigiini ayarla ¢y = 0 ;
2. Maksimum adim biiytikligiini se¢ &, > 0, ar € (0, Apay)

3. Tltersayon sayacini ayarla k = 1;

b

Baslangi¢ amag fonksiyonunu ayarla of 0 = of,of _x = of;

5. Bir sonraki iterasyonun amag fonksiyonunu ayarla of = f(x + a;po);

6. Egerof > fy + ciay egim0 veya of >= of _x

7. a * 4+— Yakinlastir(x, po, E§im0, @y, ay, 0of _0,0f _x , ¢y, c;); ve dur;
8. Hesapla Egimc = —V|f(x + aypo)T| po;

9. Eger abs(Egimc) < —c,Egim0

10. Ayarla a *= ay, ve dur;

11. Eger Egimc > 0

12. o *4—Yakmlastir(x, py, ESim0, ay, aq, 0f 0, of , 1, ¢3); ve dur;
13. Se¢ apy1 € (ap, dpa)veof x =of;k=k+1;

14. Adim 5’ e git

Tablo 3.3. Yakimlastirma fonksiyonu algoritmasi

Yakinlagtirma fonksiyonu

Fonksiyona *= Yakinlastir(x, po, E§imO0, g , @use , 0f _0,0fAlt, ¢y, C3)
1. Ayarlaj = 1; ve tammla MaX;terqsyon

2. @ = (gt + Quse)/2; // deneme adim biiyiikligil a;, g ve @y arasinda;

3. Hesaplaof = f(x+ a;p,);

4. Egerof > of_0 + c;a; Egim0 veyaof >= ofAlt
5. Giincelle aye: = a;;

6. Degilse

7. Hesapla Egimc = —V|f(x + a;po)”| po;
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Tablo 3.3. (Devami)
Yakinlagtirma fonksiyonu

8. Eger abs(egimc) < —c,egim0
9. Dondir o * «—;

10. Eger Egimc(ayse — Qgye) >0
11, aysr——agy;

12, aq4—aj;

13. of Alt = of;

14. Giincellej =j+1

15. j < MaXiterasyon oldugu siirece, adim 2‘ye git

Her iterasyonda adim biiyiikliiklerini belirlemek i¢in gradyant inisi metoduna, giiclii
Wolfe kosullarina dayanan ¢izgi arama yontemi uyarlanmistir. Gradyant inisi ve ¢izgi

arama algoritmasi Tablo 3.4.” de verilmistir.

Tablo 3.4. Gradyant inisi + ¢izgi arama algoritmast
Gradyant inisi + ¢izgi arama

1. TIterasyon sayacini ayarla k = 0. ilk tahmini yap x,,

2. Arama yoniinii hesapla py = Vf(xy),

3. Hesapla Egim = Vf(x)py

4. Cagir a; = GigliWolfeKosuluCizgiArama(xy, f (xy), pr, —Egim)
S Xpyr = X+ APy

6. k=k+1;

7. f(xx) < € oldugu siirece, adim 2’ye git.
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3.2.4. Yari-Newton yontemi

1950'lerin ortalarinda, Argonne Ulusal Laboratuvari'ndan Amerikali fizikgi W.C
Davidon, dogrusal olmayan optimizasyonda iterasyonu hizlandiran, Yari-Newton
algoritmas1 fikrini One siirdii. Yari-Newton metodu, gradyanlardaki degisimleri
Olgerek siiper lineer yakinsama saglayan Amag fonksiyonu modeli olusturur. Boylece,
Davidon (1950) tarafindan Onerilen oneriyi takip eden Fletcher ve Powell, mevcut
diger yontemlerden c¢ok daha hizli ve daha giivenilir yenilik¢i yaklasimlar
gelistirmistir. Glinlimiizde, siirlandirilmamis, siirlandirilmamig ve biiyiik olgekli
optimizasyon problemlerini ¢ézmek icin, Yari-Newton algoritmalarinin ¢esitliligini

igeren optimizasyon yazilimi kiitliphaneleri kullanilmaktadir.

3.2.5. Broyden, Fletcher, Goldfarb, and Shanno (BFGS) yontemi

Broyden, Fletcher, Goldfarb ve Shanno tarafindan icat edilen BFGS yontemi, en
popular Yari-Newton algoritmasi olarak bilinir. Kisitsiz optimizasyon sorunlari

genellikle Denklem 3.16’daki gibi tanimlanir;

minf(x), x € R" (3.16)

Burada, f, siirekli ikinci tiirevlere sahip genel bir dis biikey olmayan fonksiyon olarak
bilinmektedir. Yari-Newton metodu, Denklem 3.16 ‘daki denklemi ¢6zmek i¢in en gok

kullanilan ve en verimli yontemdir.

X1 = X + aH V() (3.17)

Denklem 3.17° deki x; baslangigtaki bir tahmin noktasim1 temsil ederken, H) ters
Hessian matrisini [V2f (x;)] ™%, Vf(x)) amag fonksiyonunun gradyantini temsil eder.
Adim biiyiikliigii a, gliclii Wolfe kosullu ¢izgi arama yontemler ile bulunabilir. Adim
vektorii spve g, BFGS'nin gilincellenmis formiilii i¢in tanimlanmistir (Denklem 3.18

ve Denklem 3.19).
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Sk = Xk+1 — Xk (3.18)

G = Vf(xis1) =V (xi) (3.19)

Yari-Newton yontemi, sonraki denklem matrisinin Hy,,; sekant denklemini

kargilamasini bekler.

Hy 11 91=Sk (3.20)

Ters Hessian gilincellemesi, Denklem 3.20 ’dekine benzer sekilde
[V2f (xk+1)] g = si ifade edilebilir. Bu nedenle, kuadratik durumda Yari-Newton
yonteminin superliner yakinsamasin1 ve pratik optimizasyonda cok etkili olmasini

saglar.

DFP adi verilen ilk Yari-Newton yontemi, Davidon ve Flecter ve Powell tarafindan
onerildi. DFP metodu i¢in, Hessian matrisinin Hj ile Hj,; yaklasimina gore
giincellenmesi Denklem 3.21° deki formiille hesaplanmaistir.

T T
_ Hrgk9rHr | SkSk
Hyyq = Hy —

QEHkgk g;fsk

(3.21)

DFP giincelleme formiilii olduk¢a etkilidir. Bununla birlikte, bugiinlerde Broyden,
Fletcher, Goldfarb ve Shanno tarafindan 6nerilen BFGS formiilii ile degistirildi. Ayrica
tiim Newton giincelleme formiilleri arasinda en etkili oldugu kabul edilmistir. BFGS

yonteminde, H,,; matrisi bu yolla giincellenebilir (Denklem 3.22 ve Denklem 3.23).

Hiv1 = (I — prese9i ) He (L — prguSe) + pSkSk (3.22)

Pr= (3.23)

T
Ik Sk
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Komple BFGS algoritmast gergeklestirmek i¢in, ilk yaklasik H, uygun sekilde
secilmelidir. Her durumda iyi sonug veren higbir sihirli formiil olmadigi i¢in, yaklagik
bir Hessian matrisinin tersinin x,'ta sonlu fark yontemi (finite difference) kullanilarak
hesaplanabilecegi gibi, problem hakkinda 6zel bilgiler kullanilabilir. Aksi takdirde,
baska bir yol olarak, birim matrisi (I) secilebilir veya degiskenlerin dl¢geklendirmesini
yansitmak i¢in birim matrisinin bir kat1 (u * I) olarak ayarlanabilir.

Bu béliimde, gradyant inis yontemi, gelismis yakinsama sonucu elde etmek i¢cin BFGS
yontemiyle birlestirilmistir. BFGS metodu i¢in gerekli olan adim biiytikligi, Giigli
Wolfe kosulu kullanilarak elde edilmistir.

Tablo 3.5. Gradyant inisi + BFGS algoritmasi
Gradyant Inisi + BFGS

1. Iterasyon sayagini ayarla k = 0, ilk tahmini yap x,
2. Yaklasik hessian matrisinin tersini ayarla Hy = p * [
3. Arama yoniini hesapla p, = —H,Vf (x;)

4. Hesapla x4 = x5 + Qg * Py

1
5. Tanmla s = X1 — X, G = V(1) — V(X)) ve p = 9Tk

6. Hessian giincellemesini yap Hy 1 = (I — piSk i )H (I = preguSt) + prSkSy
7. Gilincellek =k +1

8. f(xx) < € oldugu siirece adim adim 3°e git
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Tablo 3.6. Gradyant inisi + ¢izgi arama + BFGS algoritmasi
Gradyant Inisi + ¢izgi arama + BFGS

1. Iterasyon sayagini ayarla k = 0, ilk tahmini yap x,,

Yaklasik hessian matrisinin tersini ayarla Hy = p * [

Arama yoniinii hesapla p, = —H,Vf (x;)

HesaplaEgim = Vf (x;) oy

Cagiray= GligliWolfeKosuluCizgiArama(xy, f (x; ), pr, —Egim)

Hesapla x4, = x5 + . * px

A G

1
Tanimla s, = Xppq — Xk, G = Vf (1) — VI (xx) ve pp = a5k

8. Hessian giincellemesini yap Hyq = (I — prSgi)Hi (I — prgiSt) + prsist
9. Gincellek =k +1

10. f(xy) < € oldugu siirece adim adim 3 ‘e git

3.3. Optimizasyon Problemlerinde Test Fonksiyonlarinin Uygulama Alanlar:

Matematik uygulamalarinda yapay goriiniimler olarak bilinen test fonksiyonlari
hassasiyet, yakinsama orani, gilirbiizlik, genel performans gibi 06zellikleri
degerlendirmede kullanilir. Bu tezde uygulanan optimizasyon yoOntemlerinin test

fonksiyonlarinin yakinsama oranlarina gore kiyaslanmasi baz alinmaktadir.

BUT’ da gergeklestirilen yontemleri kiyaslamakta kullanilacak olan test fonksiyonlar1

fikir vermesi agisindan sunulacaktir.
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3.3.1. Ackley fonksiyonu

Ackley Fonksiyonu

f(x1,x2)

Sekil 3.7. Ackley Fonksiyonu (Adorio, E. P., ve Diliman, U. P., 2013).

f(x) = —aexp(—b /% d.xt)— exp (% 4 cos (cx))+a+exp (1) (3.24)

Ackley Fonksiyonu (Denklem 3.24), optimizasyon algoritmalarini test etmek igin
yaygin olarak kullanilir. Sekil 3.7 de gosterildigi gibi iki boyutlu formunda, neredeyse
diiz bir dis bolge ve merkezde biiyiik bir delik ile karakterize edilir. Bu fonksiyon,
optimizasyon algoritmalari i¢in, 6zellikle de tepe tirmanma algoritmalari, bir¢ok yerel
minimumundan birinde sikisip kalma riski tagimaktadir. Kiiresel minimum noktasi

x* = (0,...,0) i¢in f(x*) =0 ° dir (Back, T. 1996, Molga, M., ve Smutnicki, 2013;).



32

3.3.2. Beale fonskiyonu

Beale Fonksiyonu

Sekil 3.8. Beale Fonksiyonu (Hedar A.R, 2013)

f(x) = (1.5 —x; + x1x)% + (2.25 — xq + x,x5)% + (2.625 — x; + x,x3)?
(3.25)

Beale islevi (Denklem 3.25), giris alaninin kdselerinde keskin tepe noktalarina sahip,
¢ok yonlidiir. Kiiresel minimum noktast x* = (3,0.5) i¢in f(x*) =0 ° dir (Hedar
AR, 2013).
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3.3.3. Rosenbrock fonksiyonu

Rosenbrock Fonksiyonu

t ;ffa?{‘:i’f:ﬁ??xﬂIriﬁf‘%ﬂ%%ﬁﬁ}ﬂ}'ﬂ'fﬁu i
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Sekil 3.9. Rosenbrock Fonksiyonu Picheny ve ark. (2012)
f() = B 100(xi4q — xP)? + (x; — 1)?] (3.26)

Vadi veya muz fonksiyonu olarak da adlandirilan Rosenbrock fonksiyonu
(Denklem 3.6), gradyant tabanli optimizasyon algoritmalar1 i¢in popiiler bir test
problemidir. Fonksiyon tek bi¢imlidir ve kiiresel dar, parabolik bir vadide
konumlandirilmaktadir. Bununla birlikte, bu vadinin kolayca bulunmasina ragmen,
minimum seviyeye yakinlasma zordur (Picheny ve ark., 2012). Kiiresel minimum

noktast x* = (1,...,1) i¢in f(x*) =0 dur.

Picheny ve ark. (2012) fonksiyonu Denklem 3.27° deki gibi giincellemistir:

flx) = m[ 2 (100X —X¥5)2+ (1 — %)% —3.827x10°1m  (3.27)
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Burada (Denklem 3.27); ¥; = 15x; — 5 , tim i = 1,2,3,4 i¢in, fonksiyonun yeniden
6l¢eklendirilmis formu sifir ortalama ve bir varyansa sahiptir. Ayrica ¢iktiya kiigiik bir

Gauss hata terimi de eklenmistir.

3.3.4. Toplam kareler fonksiyonu

Toplam Kareler Fonksiyonu

(4
L
R
: DAL
*_ e by
. TR A5
RO
AL VANV
AR AR

L
ORI
i ;&“: AR
o “““’L‘-“‘\‘\"ﬁi5"‘0"‘1"‘ 4%
R
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N .\\\\
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Sekil 3.10. Toplam Kareler Fonksiyonu, Molga, M., & Smutnicki (2013)

f(x) = By ixf (3.28)

Eksen Paralel Hiper-Elipsoid islevi olarak da adlandirilan Toplama Kareleri
fonksiyonu (Denklem 3.28), global minimumdan bagka higbir yerel minimum sahip
degildir. Siirekli, digbiikey ve tek bigimlidir. Burada iki boyutlu olarak

gosterilmektedir.

Fonksiyon genellikle hiperkiip iizerinde tiim i=1, .. ,d i¢in x; € [-10,10]
degerlendirilir. Bu fonksiyon hiperkiip iizerinde tiim i=1, ..., d i¢in x; € [-5.12, 5.12]

siirli olabilir. Kiiresel minimum noktasi x* = (0, ..., 0) i¢in f(x*) = 0 dir.
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3.3.5. Goldstein Price fonskiyonu

Goldstein-Price Fonksiyonu

5
x 10

f(x1,x2)

Sekil 3.11. Goldstein Price Fonksiyonu, Dixon, L. C. W., & Szego, G. P. (1978)

fx) =1+ (x; +x, + 1)2(19 — 14x; + 3x% — 14x, + 631X, + 3x5)] *

[30 + (2x; — 3x,)2(18 — 32x; + 12x% + 48x, — 36x,%, + 27x,)?]
(3.29)

Goldstein fonksiyonu kiiresel bir optimizasyon test fonksiyonudur. Denklem 3.29° da

da goriilecegi lizere iki adet degiskene sahiptir. Kiiresel minimum noktasi

x*=(0,—-1) i¢in f(x*) = 3 dir.



3.3.6. Rastrigin fonksiyonu

Rastrigin Fonksiyonu

h f
i) 1 1,
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Sekil 3.12. Rastrigin Fonksiyonu, Pohlheim (2013)

f(x) =10d + Y% [x? — 10 cos(2mx;)]

i,*
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h 11“, \\ I
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(3.30)

Rastrigin'in fonksiyonu (Denklem 3.30), sik yerel minimum noktalar1 iiretmek i¢in

kosiniis modiilasyonunun eklenmesiyle De Jong'un fonksiyonuna dayanir. Bu nedenle,

test fonksiyonu oldukg¢a coklu bi¢imlidir. Bununla birlikte, minimum noktalarin

konumu diizenli olarak dagitilmaktadir. Fonksiyon genellikle tiim i=1,

., d igin

hiperkiip x; € [-5.12, 5.12] iizerinde degerlendirilir. Kiiresel minimum noktasi

x*=(0,0)i¢in f(x*) = 0’ dir.



3.3.7. Dondiiriilmiis hiper elipsoid fonksiyonu

f(x1,x2)

Sekil 3.13. Dondiiriilmiis hiper elipsoid fonksiyonu, Molga, M., & Smutnicki (2013)

15000\_”______._”:

10000 f ...

Déndiiriilmiis Hiper Elipsoid Fonksiyonu
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fe) =ZL Ejraf
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100

(3.31)

Dondiiriilmiis Hiper-Elipsoid fonksiyonu siirekli, digbiikey ve tek bi¢imlidir. Toplam

Kareler fonksiyonu olarak da adlandirilan eksen paralel hiper-elipsoid fonksiyonunun

bir uzantisidir. Sekil 3.13., fonksiyonun iki boyutlu seklini gdsterir. Fonksiyon

(Denklem 3.31) genellikle tim i=1, ... ,d i¢in hiperkiip x; € [-65.536, 65.536]

tizerinde degerlendirilir. Kiiresel minimum noktast x* = (0, 0) i¢in f(x*) = 0’ dir.
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3.3.8. Griewank fonksiyonu

Griewank Fonksiyonu Griewank Fonksivonu

200 .
150 f o

100 .

1(x1,52)
1(x1,x2)

50 T

0
1000 ai
1004

X2 -1000 1000 x1

Griewank Fonksiyoenu Gricwank Fenksivonu

{x1.x2)

Sekil 3.14. Griewank Fonksiyonu, Molga, M., & Smutnicki, C. (2013)

f(x) =3¢ i 4 cos (%) +1 (3.32)

i=14000

Griewank fonksiyonu Rastrigin fonksiyonuna benzer. Diizenli olarak dagitilan ¢ok
sayida yerel minimum noktasina sahiptir. Test alan1 genellikle i = 1, ... n icin
hiperkiip -600 < x; < 600 ile smirhdir. Kiiresel minimum noktast x* = (0, 0) i¢in
f(x*) = 0’dir. Fonksiyon yorumu Olcege gore degisir; genel olarak disbiikey
fonksiyonu, orta Olgekli goriiniim yerel ekstremumun varligini ve son olarak da

ayrintilarin yakinlagtiritlmasini 6nermektedir (Denklem 3.32).
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3.3.9. Alt1 kamburlu deve fonksiyonu

Alti Kamburlu Deve Fonksiyonu Altr Kamburlu Deve Fonksiyonu

f(x1.x2)
f(x1,x2)

Sekil 3.15. Altt Kamburlu Deve Fonksiyonu, Molga, M., & Smutnicki, C. (2013)
x4
fO) = (4= 2102 +2) a2 + xyx, + (=4 + 4ad)x2 (3.33)

Alt1 kamburlu deve fonksiyonu, kiiresel bir optimizasyon test fonksiyonudur.
Sinirlandirilmis bdlgede alt1 tane yerel minimum noktasina sahiptir. Iki tane de kiiresel
minimum noktast bulunmaktadir. Denklem 3.33° de goriildiigii iizere iki adet
degiskene sahiptir. Kiiresel minimum noktasi x* = (0.0898,—-0.7126) ve
x* = (—0.0898,0.7126) igin f(x*) = 0’ dur.
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3.3.10. 3 boyutlu Hartmann fonksiyonu

Hartmann 3

= - 1.0
10" -
10— - -D.8
10— - - D.6
107 -
-D.4
o -
1011 - - 0.2
1018 -
! ! ! ! ! ! - 0.0
0 20 40 G0 80 100
Sekil 3.16. 3 boyutlu Hartmann fonksiyonu , Molga, M., & Smutnicki, C. (2013)
— 4 3 2
f(x) = —Xizoaiexp (— Xj=1 4ij(x; — pij)°) (3.34)

Burada (Denklem 3.34) ;
a=(1.0,1.2,3.0,3,2)T

3.0 10 30
- |01 10 35
~[3.0 10 30

0.1 10 35

3689 1170 2673
04 4699 4387 7470
1091 8732 5547
381 5743 8828

P=1

Ucg boyutlu hartmann fonksiyonu 4 yerel minimum noktasina sahiptir. Fonksiyon
genellikle tim i = 1,2,3 i¢in hiperkiip x; € [0, 1] tizerinde degerlendirilir. Kiiresel

minimum noktasi x* = (0,114614, 0555649, 0.852547) i¢in f (x*) = —3.86278.



BOLUM 4. DENEYSEL SONUCLAR

Bu béliimde, cesitli dokular igeren dairesel yapi, meme MRI taramasini temsil eden
yedi farkli sayisal fantom iizerinde ¢alisilmistir. Bu fantomlar temel gergek referanslari
elde etmek icin hazirlanmistir. Amacimiz, optimizasyon algoritmalari kullanarak, ses
hiz1 ve zayiflama profillerinin tam parametrelerini tahmin etmektir. Optimizasyon
performansi boliimiinde, uygulanan optimizasyon yontemleri, yineleme sayis1 ve
hesaplama stiresi acisindan karsilagtirilir. Benchmark optimizasyon test sonuglari
boliimiinde, optimizasyon yontemleri Benchmark test fonksiyonlarna gore
karsilastirilmistir. Yeniden yapilanma sonuglari boliimiinde hem ses hem de zayiflama

profilleri i¢in tahmini ve kesin 6l¢lim arasindaki standart sapmalar elde edilmistir.
4.1. Fantom Goriintiisiit Hazirhklar:
Yeniden yapilanmay1 test etmek icin, gégiis dokusunda Olciilen ses ve zayiflama

parametrelerini igeren yedi farkli sayisal fantom kullandik. Meme dokusunda

kullanilan parametreler Tablo 4.1." de verilmistir.

Tablo 4.1. Meme dokusunda kullanilan parametreler

Doku Tipi Ses Hizi [m/s] Renk Zayiflama [dB/m/MHz]
Su 1485 Acik Mavi 0
Deri 1570 Sar1 70
Yag 1450 Koyu Mavi 24
Bez 1490 Yesil 20

Timor 1560 Amber 45




4.1.1. Fantom goriintiisii 1

Sekil 4.1." de, iginde su, cilt, yag, bez ve tiimor iceren 2 boyutlu simiilasyon fantom
goriintiisii gdsterilmistir. Ust satirda, sol kisim ses hizi goriintiisiinii, sag kisim

zayiflama gorilintlisiinii temsil eder. Alt satirda, sol kisim ses i¢in temel gergek referans

iken, sag kisim ise zayiflama i¢in temel gercek referansidir.

z [mm]

1600

1550

1500

Ses Hizi

1450

Sekil 4.1. Fantom goriintiisii 1 igin ses hiz1 ve zayiflama goriintiileri ve profillerinin iki boyutlu simiilasyonu.

Ses Hizi Goriintusii

X [mm]

1560
50
1540
0
1520
=0 1500
-50 0 50

Ses Hizi Goriintiisii Profili

Ses Hizi mis

Simulasyon

4.1.2. Fantom goriintiisii 2

Yeniden yapilanma i¢in gergek referansi elde etmek amaciyla su, cilt, yag, salgi bezi
ve tiimor bolgelerinden olusan fantom i¢in 2D simiilasyonu yapilmistir. Sekil 4.2.' de
su (arka plan) acik mavi, cilt sar1, yag koyu mavi, bez yesil ve timor amber renkte

goriiniir, burada hem ses hem de zayiflama i¢in fantom goriintiileri ve profilleri

gosterilmistir.

Zayiflama Faktorii

z [mm]

1.0001

0.9999

0.9998

0.9997

-50

Zayiflama Goriintiisii

50

o

099995

09999

099985

09998

X [mm]

Zayiflama Goriintiisii Profili

Simulasyon

x [mm]

50

Zayiflama Faktori
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Ses Hizi Goriintiisi Zayiflama Goriintiisii

1520

50

099995
1500

o

T ) ]
E, 1480 :'I:3 E. 09999 g
N 8 N E
N
50 -50
1460 0.99985
x [mm] X [mm]
Ses Hizi Gériintiisii Profili Zayiflama Goriintiisii Profili
1
1500
0.99995
2
N 1480 S
T X 0.9999
g w
o 10 g 099085
8
=
1440 T 09998
N
50 0 50 50 0 50
X [mm] X [mm]

Sekil 4.2. Fantom goriintiisii 2 i¢in ses hizi ve zayiflama goriintiileri ve profillerinin iki boyutlu simiilasyonu.

4.1.3. Fantom goriintiisii 3

Dairesel yapili su, deri, yag, bez ve tiimor igeren fantom goriintiisii profillerinin 2
boyutlu simiilasyonu Sekil 4.3." de gosterilmistir. Ust satirda, sol kisim ses hizi
goriintlislinill, sag kisim zayiflama goriintiislinii temsil eder. Alt satirlarda, ses ve
zayiflama profilleri i¢in temel gercek referanslari (1gi,, 0larak bilinen parametreler)

elde edilir.
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Ses Hizi Gériintiisii Zayiflama Gériintiisii

1520
50 50

099995
1500

°

5 £ F 2
E‘ 1480 % .g. 0.9999 :
N 8 N 5
g
-50 -50
1460 0.99985
X [mm] X [mm]
Ses Hizi Gériintiisii Profili Zayiflama Gériintiisii Profili
Simulasyon 1.00005 Simulasyon
1520
;
1500
0.99995
2
N 1480 el
I é 0.9999
ﬂln) w
D 1460 o
E 09005
=
>
1440 ﬁ 0.9998
-50 o 50 -50 0 50
x [mm] X [mm]

Sekil 4.3. Fantom goriintiisii 3 i¢in ses hizi ve zayiflama goriintiileri ve profillerinin iki boyutlu simiilasyonu.

4.1.4. Fantom goriintiisii 4

Yeniden yapilanma i¢in gergek referansi elde etmek amaciyla su, cilt, yag, salgi bezi
ve tiimor bolgelerinden olusan fantom i¢in 2D simiilasyonu yapilmistir. Su (arka plan)
acik mavi, cilt sar1, yag koyu mavi, bez yesil ve timor amber renkte ifade edilirken,
Sekil 4.4.’te hem ses hizi hem de zayiflama i¢in fantom goriintiileri ve profilleri

gosterilmistir.



Ses Hiz1 Goriintiisii

1560

1540

1520

E 1500
E
N
1480
-50
1460
-50 0 50
X [mm]
Ses Hizi Goriintiisii Profili
Simulasyon
1550
N 1500
T
(7]
[0
%)
1450
50 0 50
X [mm]

Ses Hizim/s

Zayiflama Faktoru

45

Zayiflama Goriintiisii

50

z [mm]

-50

0.99995

0.9999

Zayifiama Faktéri

0.99985

-50 0 50

X [mm]

Zayiflama Goriintiisii Profili

1.00005

0.99995

0.9999

0.99985

0.9998

Simulasyon

Sekil 4.4. Fantom goriintiisii 4 igin ses hizi ve zayiflama goriintiileri ve profillerinin 2 boyutlu simiilasyonu.

4.1.5. Fantom goriintiisii 5

Sekil 4.5." te, i¢inde su, cilt, yag, bez ve tiimor igeren 2 boyutlu simiilasyon fantom

goriintiisii gdsterilmistir. Ust satirda, sol kisim ses hizi gériintiisiinii, sag kisim

zayiflama goriintlisiinii temsil eder. Alt satirda, sol kisim ses i¢in temel gergek referans

iken, sag kisim ise zayiflama i¢in temel gercek referansidir.
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Ses Hizi Goriintiisii Zayiflama Gorintiisii

1520
0.99995

1500

T ° g g ° £
£ 5 £ 0.9999 &
£ : £ s
N 10 & N ]
H
50 -50
1460 0.99985
-50 0 50
x [mm] x [mm]
Ses Hizi Goriintiisii Profili Zayiflama Gériintiisii Profili
1
099995
_ 1500 :g
N £
= 0.9999
I <
g w
©
7] g 09985
S
=
1450 > 09998
)
N
-50 0 50 -50 0 50
x [mm] X [mm]

Sekil 4.5. Fantom goriintiisii 5 igin ses hizi ve zayiflama goriintiileri ve profillerinin 2 boyutlu simiilasyonu.

4.1.6. Manyetik rezonans tarama fantom goriintiisii

Sekil 4.6." da manyetik rezonans (MRI) tarama fantom goriintiisiiniin 2D simiilasyonu
hem ses hem de zayiflama profilleri i¢in verilmistir. Gergek memenin yapisini i¢eren
bu 6zel fantom, klinik bir MRI goriintiisiinden elde edilmistir. Alttaki satirlar hem ses
hizi hem de zayiflama igin temel gergek referansini (Mgesin Olarak bilinen

parametreler) gosterir.
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Sekil 4.6. Meme MRI Taramasi igin ses hiz1 ve zayiflama goriintiileri ve profillerinin 2 boyutlu simiilasyonu.

4.1.7. Test fantom goriintiisii

Sekil 4.7." de, i¢inde farkli kontrast-¢oziiniirliikk lezyonlar1 olan bir test fantomu igin

ses ve zayiflama goriintiilerinin 2D simiilasyonu verilmistir. Ust satirda, sol kisim ses

goriintilislinii, sag kisim ise zayiflama goriintiisiinii temsil eder.
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Sekil 4.7. Test fantomu i¢in ses hiz1 ve zayiflama goriintiileri ve profillerinin 2 boyutlu simiilasyonu.
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4.2. Goriintii Uzerine Uygulanan Optimizasyon Yontemlerinin

Performanslarinin Karsilastirilmasi

Denklem 3.4> de verilen amag fonksiyonu £ (77) ‘i minimize etmek igin ¢esitli
optimizasyon metotlar1 uygulanmistir. Gerg¢ek dlgiimler Denklem 3.3’ de verilen ileri
model probleminden fantomun gercek yer dogrusu parametrelerinden bulunmustur. Bu
fantom parametrelerini yeniden yapilandirmak ig¢in ilk tahmin olarak su fantom
parametreleri ile baglatilmisti. Daha sonra, tahmini Ol¢limde, ileri model
probleminden bulunarak gergek 6l¢iim ile her iterasyonda karsilastirilmis ve fonksiyon
degerimiz minimize edilmistir. Bu Amag¢ fonksiyonumuz belirledigimiz tolerans
degerine € kadar azalmaya devam etmistir. Optimizasyon metotlar1 olarak Gauss
Newton Eslenik Gradyanti (GNEG), gradyant inisi, gradyant inisi ve ¢izgi arama,
gradyant inisi ve BFGS ve gradyant inisi, BFGS ve ¢izgi arama yontemleri kiiresel
minimuma yakinsama oranlar1 ve hesaplama siireleri agisindan test edilmistir. Biitiin
deneyler MATLAB ortaminda, Intel (R) core (TM) 17-4700 HQ (2.40 GHZ) islemci
ile yapilmistir.

4.2.1. Goriintii fantomu 1

Bu deneyde, su, deri, yag, salgi bezi ve tiimorii igeren doku fantom parametreleri
yeniden yapilandirilmistir. BFGS ve ¢izgi arama yontemlerinin yakinsama oranlarina
nasil bir iyilestirme etkisi oldugu gosterilmistir. Gauss Newton eslenik gradyant i¢
dongii tolerans degeri 0,05 olarak secilirken, gradyant inisi sabit adim biiyiikligii,
Amag fonksiyonunun iraksamasini onlemek icin 4e-8 olarak ayarlandi. BFGS igin
Olceklendirme faktorleri, gradyant inisi i¢in uygun sekilde secilmistir. Secilen adim
boyutlar1 ve deneylerin sonuglar1 Tablo 4.2., Sekil 4.8. ve Sekil 4.9.” da

gosterilmektedir.
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Sekil 4.8. Yeniden yapilandirma metotlarinin karsilagtirilmasi iterasyon sayist ve amag fonksiyonu
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Sekil 4.9. Yeniden yapilandirma metotlarinin karsilastirilmasi hesaplama siiresi
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Tablo 4.2. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon Adim biytikligi Iterasyon sayisi Hesapla

yontemleri ma siiresi
(sn)

Gauss Newton Osabit =1, i¢ tolerans GNEG=0.075 I¢ dongii 65 24,387

Eslenik Gradyanti Dis dongii 12

Gradyant inisi Olsabit—4€-8 133 30,087

Gradyant inisi + Obaslangic =€-8, ci=1e-4, ¢,=0.9 107 70,369

¢izgi arama

Gradyant inisi + Osabit—4¢€-8, 112 332,904

BFGS Hpaglangic =1.2*1

Gradyant inisi + Olbaglangie =€-8, c1=1e-4, c2=0.9, Huaglangg 90 356,832

¢izgi arama + =1,2*1

BFGS

Tablo 4.2.°e gore, test edilen bes algoritma arasinda, gradyant inisi, ¢izgi arama ve
BFGS en kiiciik yineleme sayisindan (90 iterasyon) en hizl1 ydntemdi. Ote yandan, her
dongiide, Hessian matrisinin giincellenmesi BFGS yonteminde ve adim biiyiikligi
bulunmasinin ¢izgi arama yonteminde fazladan hesaplama siiresine neden olmaktadir.
Bu nedenle, Gauss Newton eslenik gradyanti en az zaman alan yontem (24,387 sn)

olarak goriilmiistiir.

4.2.2. Goriintii fantomu 2

Gauss-Newton eslenik gradyanti, gradyant inisi, gradyant inisi ve ¢izgi arama,
gradyant inisi ve BFGS ve gradyant inisi, ¢izgi arama ve BFGS metotlan tek tek
yakinsama hizi ve hesaplama siiresi agisindan ¢esitli su, deri, yag, beze ve timor
dokularini iceren fantom goriintiisii tizerinde test edilmistir. Gradyant inisi giiclii Wolfe
kosulu ¢izgi arama yonteminde adim biiyiikligii baslangigta (@pagiangic) 4€-8 ile
baslatilip, giiclii Wolfe kosullarina bagli olarak her iterasyonda gilincellenmistir.
Gradyant inisi i¢in en uygun adim biiyiikliigli Amag¢ fonksiyonunun iraksamasini
engellemek icin 3e-8 sec¢ilmistir. Her bir algoritmanin sonuglart ve secilen

parametreler Tablo 4.3., Sekil 4.10. ve Sekil 4.11.’de verilmistir.
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Sekil 4.10. Yeniden yapilandirma metotlarinin karsilastirilmasi iterasyon sayis: ve amag fonksiyonu
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Sekil 4.11. Yeniden yapilandirma metotlarinin karsilastirilmasi hesaplama siiresi ve amag fonksiyonu
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Tablo 4.3. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon Adim biytikligi Iterasyon sayisi Hesaplama
yontemleri stiresi (sn)
Gauss Newton Osabit =1, i¢ tolerans GNEG=0,068 I¢ dongii 86 28,494
Eslenik Gradyanti Di1s dongii 15

Gradyant inisi Olsabit=3€-8 362 86,403
Gradyant inisi + Obaslangic =4€-8, c1=1e-4, ¢2=0,9 271 223,412
¢izgi arama

Gradyant inisi + Osabit=3€-8, 317 954,766
BFGS Hoaglangie =1,2*1

Gradyant inisi + Obaslangic =4€-8, c1=1e-4, ¢2=0,9 228 1001,852
¢izgi arama + Hbaslangie =1,2*1

BFGS

Tablo 4.3 e gore, BFGS (317 iterasyon) ile Gradyant inisi i¢in sabit adim
biiyilikliigiine sahip gradyant inisi metoduna gore (362 iterasyon) yakinsama orani
acisindan gelistirilmistir. Ote yandan, iterasyon sayisi, gradyant inisi ve ¢izgi arama
metodunda 271 iken, gradyant inisi, ¢izgi arama ve BFGS i¢in 228'e diistriilmiistiir.
Tablo 4.3." de goriildiigii gibi, BFGS yontemine sahip olan yontemlerde her bir
iterasyonda, Hessian matrisi giincellemesinden dolay1r ¢ok daha fazla hesaplama
stiresiyle sonuclandigi goriilmiistiir. Sonug olarak en iyi yakinsama oranina sahip olan
gradyant inisi, ¢izgi arama ve BFGS i¢in gézlemlenirken (228 iterasyon), hesaplama
siiresi acisindan en iyi yontem Gauss Newton eslenik gradyantinda gézlemlenmistir

(28,494 sn).

4.2.3. Goriintii fantomu 3

Birka¢ yumusak doku iceren sayisal fantom parametreleri yeniden yapilanmayi test
etmek i¢in yiliklenmistir. Kesin 6l¢iim d, 110 x 86 boyutundaki bilinen fantom piksel
parametreleri (n_kesin) kullanilarak ileri problem algoritmasindan simiile edilmistir.
110 x 86 boyutlu bilinmeyen piksel parametrelerin () tahmini su fantom parametreleri
ile baglatilip tahmini basinci p ileri problem algoritmasindan elde edildi. Amag

fonksiyonu olarak bilinen p ve d arasindaki sapmay1 en aza indirmek i¢in, her bir



53

iterasyonda tahmin basinci p gilincellenip ve tolerans degeri € ulasana kadar kesin d
Olciimii ile kargilagtirilmistir. Bu siireg ters problem olarak adlandirilir. Gauss Newton
eslenik gradyant metodu, gradyant inisi, gradyant inisi ve ¢izgi arama, gradyant inisi
ve BFGS ve gradyant inisi, ¢izgi arama ve BFGS metotlar1 yakinsama hizi ve
hesaplama siiresi agisindan ayri1 ayri test edilmistir. Gauss Newton icin eslenik
gradyant i¢ dongii tolerans degeri, le-4 'in dis dongii tolerans degeri € ile en iyi
yakinsama nedeniyle ampirik yerine deneysel olarak 0,0075 olarak secildi. Gradyant
inisi i¢in sabit adim biiyiikliigii, iraksama ve yavas yakinsamay1 6nlemek i¢in ampirik
olarak 3e-8 'e ayarlandi. BGFS yonteminde en i1yi yakinsama oranini elde etmek igin
Olceklendirme faktorleri 1,2 olarak secilmistir. Her bir algoritma i¢in karsilik gelen

sonuclar Tablo 4.4., Sekil 4.12. ve Sekil 4.13. ' de verilmistir.

10
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Sekil 4.12. Yeniden yapilandirma metotlarinin karsilastirilmasi iterasyon sayist ve amag fonksiyonu
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Sekil 4.13. Yeniden yapilandirma metotlarinin karsilastirilmas: hesaplama siiresi ve amag fonksiyonu

Tablo 4.4. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon yontemleri ~ Adim biiyiikligi Iterasyon say1si Hesaplama

stiresi (sn)

Gauss Newton Eslenik Osabit =1, i¢ tolerans I¢ dongii 69 21,619

Gradyanti GNEG=0,075 Digdongii 11

Gradyant inisi Olsabit=3€-8 276 62,0163

Gradyant inisi + ¢izgi Olbaglangic =3€-8, c1=1e-4, ¢,=0,9 230 156,271

arama

Gradyant inisi + BFGS Olsabit=3€-8, 237 703,228
Hbagtangie =1,2*1

Gradyant inisi + ¢izgi Olbaslangis =3€-8, c1=1e-4, ¢,=0,9, 201 699,5716

arama + BFGS Hpagtangig =1,2*1
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Tablo 4.4.’teki veriler dogrultusunda, en iyi yakinsama hiz1 gradyant inisi, ¢izgi arama
ve BFGS metodunda gozlemlenmistir (201 iterasyon). Gradyant inisi metoduna (276
iterasyon) kiyasla ¢izgi arama yontemi ile uyarlanmis gradyant inisi metodunda (230
iterasyon) yakinsama oranlarinin daha da iyilestigi gozlemlenmistir. Hesaplama siiresi
acisindan Gauss Newton eslenik gradyantir en kisa siirede yeniden yapilandirmayi

tamamlamistir (21,619 sn).

4.2.4. Goriintii fantomu 4

Gauss Newton eslenik gradyanti, gradyant inisi, gradyant inisi ve ¢izgi arama ve
bunlarin BFGS ile uyarlanmis olan gradyant inisi ve BFGS ve gradyant inisi, ¢izgi
arama ve BFGS metotlarinin yakinsama sonuglar1 Sekil 4.14., 4.15. ve Tablo 4.5.” de
gosterilmistir. Gradyant inisi metodunda, amag¢ fonksiyonunun iraksamasini ve yavas
yakinsamani engellemek i¢in en uygun adim biytlikligii olarak 3e-08 olarak
secilmistir. Ayni sekilde BFGS metotlari i¢in 6l¢ekleme faktorii dis tolerans degerine
(le-4) wraksamadan en hizli sekilde yakinsamasi sebebi ile 1,2 olarak segilmistir.
Ayrica Wolfe kosullu ¢izgi arama yonteminin araliindan dolayi, parametreler
0<ci<c2<1 araliginda segilmistir. Genellikle literatiirlerde c1=10-4, c2=0.9 olarak
tavsiye edilir ve uygulamamizda da bu degerler kullamlmustir. Ilk asamada kiiciik bir
adim biiyiikliigii ile baslatilir ve kabul edilebilir bir adim biiyiikliigii bulunana kadar
artirlmaya devam eder. Ikinci asamada ise yakinlastirma fonksiyonu ile uygun bir

adim biiyiikliigii bulunana kadar arama aralig1 azaltilmaya devam eder.
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Sekil 4.15. Yeniden yapilandirma metotlarinin karsilastirilmasi hesaplama siiresi ve amag fonksiyonu
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Tablo 4.5. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon Adim blytikliigii Iterasyon sayisi Hesaplama
yontemleri stiresi (sn)
Gauss Newton Osabit =1, i¢ tolerans I¢ dongii 64 20,85
Eslenik Gradyanti GNEG=0,075 Dis dongii 11

Gradyant inisi Olsabit=3€-8 274 63,51
Gradyant inisi + Olbaglangic =3€-8, c1=1e-4, ¢,=0,9 228 165,60
¢izgi arama

Gradyant inisi + Olsabit=3€-8, 235 716,47
BFGS Hoaslangig =1,2*1

Gradyant inisi + Olbaglangic =3€-8, c1=1e-4, ¢,=0,9, 204 722,00
¢izgi arama + Hpaslangie =1,2%*1

BFGS

Tablo 4.5.” teki sonuglara gore, Gauss Newton eslenik gradyanti i¢ ve dig dongii olmak
lizere 704 iterasyonda tolerans degerine ulasmaktadir. Gradyant inisi metodunda sabit
adim biiyiikliigii sebebi ile 274 iterasyonda tamamlanirken, gradyant inisi ve ¢izgi
arama yonteminde adim biiyiikliigiiniin degismesi yakinsama oranini 228 iterasyona
distirmiustiir. Aym sekilde BFGS metodu ile uyarlanan gradyant inisi metodunda (235
iterasyon), gradyant inisi metoduna (274 iterasyon) gore yakinsama oraninda iyilesme
oldugu gozlemlenmistir. En iyi yakinsama orani olarak, 204 iterasyon ile, gradyant
inisi, ¢izgi arama ve BFGS metotunda goriiliirken zaman acgisindan en iyi metodun

Gauss Newton eslenik gradyant metotunda oldugu goriilmiistiir (20,85 sn).

4.2.5. Goriintii fantomu 5

Gauss Newton eslenik gradyant icin dis tolerans degeri 1e-04 ’e € en iyi sekilde
yakinsamasindan dolayi, i¢ tolerans degeri 0,07 olarak se¢ilmistir. Gradyant inisi igin
adim biiyiikliigli 3e-08 olarak seg¢ilmistir. Bunun nedeni 3e-08 ten biiyiik olan adim
biiyiikliikleri icin Amag fonksiyonu degerinin yakinsamasi yerine iraksamasina neden
olmasidir. Diger bir taraftan, 3e-08 ’den kii¢iik olan adim biiytiikliikleri i¢in de Amag
fonksiyonunun yavas bir sekilde yakinsamasina neden oldugundan dolay1 en iyi adim

bliytikliigli olarak 3e-08 secilmistir. Daha iyi yakinsama orani elde etmek i¢in BFGS
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metodu gradyant inisi metodu ile birlestirilmistir. Birim matrisi katsay1 ile ¢arparak
(u * I) , ilk Hessian matrisinin tersi seklinde tanimlanmigtir. Her iterasyonda, Hessian
matrisi BFGS formiiliine gore giincellenmistir. Amag¢ fonksiyonunun dis tolerans

degerine ulasamayip raksamasini 6nlemek i¢in, dlgekleme faktorii 1,2 secilmistir.

10 T T

Gauss-Newton eslenik gradyant

Gradyant inisi

Gradyant inisi + ¢izgi arama

Gradyant inisi + BFGS

10 H Gradyant inisi + gizgi arama + BFGS —

Iterasyon sayisi

Sekil 4.16. Yeniden yapilandirma metotlarinin karsilastirilmasi iterasyon sayist ve amag fonksiyonu



59

Yeniden yapilandirma metotlarinin karsilastiriimasi

10°

Gauss-Newton eslenik gradyant
Gradyant inisi

Gradyant inisi + cizgi arama
Gradyant inisi + BFGS
Gradyant inisi + cizgi arama + BFGS | 7

Zaman (dk)

Sekil 4.17. Yeniden yapilandirma metotlarinin karsilastiritlmasi hesaplama siiresi ve amag fonksiyonu

Tablo 4.6. Secilen adim biiytikliikleri, iterasyon sayilari ve hesaplama siiresi

Optmizasyon yontemleri

Gauss Newton Eslenik

Gradyant1

Gradyant inisi
Gradyant inisi + ¢izgi
arama

Gradyant inisi + BFGS

Gradyant inisi + ¢izgi
arama + BFGS

Adim biiyiikligi Iterasyon say1is1 ~ Hesaplam

a siiresi
(sn)
Osabit =1 i¢ tolerans GNEG=0,07 ¢ dongi 32 12,882
Di1s dongii 6

Osabit=3€-8 147 34,340

Olbaslangic =4€-8, c1=1e-4, ¢2=0,9 101 128,0781

Osabi=3€-8, 132 395,192

Hba$lang1c, =1.2*]

Olbaslangic =4€-8, ci=1e-4, ¢,=0,9, 82 466,767

Hba@langlg =1 ,2 *1
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Tablo 4.6.’e gore iterasyon sayilart acisindan Gauss Newton eslenik gradyanti igin,
eslenik gradyant i¢ dongiisiinde 32 iterasyon ile sonug¢lanirken, dig dongiide 6 iterasyon
ile sonuglanmistir. Eslenik gradyantinin MATLAB PCG fonksiyonun i¢ dongiisiinde
her iterasyonda fonksiyon degerine ulasilamadigindan Sekil 4.16.” da 32 iterasyon
olarak gdsterilmistir. Yani toplamda 192 iterasyon ile tolerans degerine ulagmustir.
Gradyant inisi metodu i¢in 147 iterasyon ile tolerans degerine ulasirken, Amagc
fonksiyonunun iraksamasini ve yavas yakinsamasini engelleyen gradyant inisi ve ¢izgi
arama yoOntemi, 101 iterasyon ile sonug¢lanmistir. Yani her iterasyonda adim
biiylikliigiiniin degismesi sebebi ile iterasyon sayisinda iyilesme gdzlemlenmistir.
Diger bir yandan gradyant inisi metoduna gore (147 iterasyon), gradyant inisi ve BFGS
metodunda (132 iterasyon) yakinsama oranlari acisindan iyilesme gozlemlenmistir.
Ayrica, gradyant inisi, ¢izgi arama ve BFGS metotlar1 birlikte kullanildiginda 82
iterasyona diistiigli géozlemlenmistir. Tolerans degerine ulagsmak icin, en iyi yakinsama
orani gradyant inisi, ¢izgi arama ve BFGS (82 iterasyon) gozlemlenirken, hesap
karmasalig1 sebebi ile zaman acisindan (466,767 sn) uzamaya sebep olmustur. Zaman

acisinda en iyi metot Gauss Newton eslenik gradyantinda (12 sn) gézlemlenistir.

4.2.6. Goriintii fantomu 6

Bu deneyde, manyetik rezonans tarama fantomu bes farkli yontem kullanilarak
yeniden yapilandirilmak {izere yiiklenmistir. Kesin 6l¢tim d, 110 * 86 bilinen piksel
parametrelerine (Nesin ) gOre ileri problem algoritmasindan simiile edilmistir. Bu
110 * 86 bilinen piksel parametrelerini yeniden yapilandirmak i¢in, ilk tahmin olarak
110 x 86 su piksel parametreleri ile baslatilmig olup (1)) , her iterasyonda ileri problemi
algoritmasindan tahmini basinci p elde edildi. Bu kesin 6l¢iim ile tahmini basing
arasindaki sapma her iterasyonda belirledigimiz tolerans degerine kadar minimize
edilmistir. Tolerans degerine en iyi yakinsama nedeniyle (1e-4), Gauss Newton eslenik
gradyantinin i¢ tolerans degeri 0,0075 olarak secilmistir. BFGS ydnteminin adim
boyutu ve ol¢eklendirme faktorii, Amag¢ fonksiyonunun iraksamasini 6nlemek ig¢in
uygun sekilde secildi. Her bir algoritma icin karsilik gelen sonuglar Tablo 4.7.,
Sekil 4.18. ve 4.19.'da verilmistir.
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Sekil 4.18. Yeniden yapilandirma metotlarinin karsilastirilmasi iterasyon sayisi ve amag fonksiyonu
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Sekil 4.19. Yeniden yapilandirma metotlarinin karsilastirilmast hesaplama siiresi ve amag fonksiyonu
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Tablo 4.7. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon Adim buyudklGgu iterasyon sayisi Hesaplama
yontemleri saresi (sn)
Gauss Newton Osabit =1, i¢ tolerans I¢ dongii 56 21,946
Eslenik Gradyantt GNEG=0,075 Dis dongii 8

Gradyant inisi Osabi=4e-8 203 51,0513
Gradyant inisi + Obaslangic =J€-8, c1=1e-4, 147 297,127
¢izgi arama c=0,9

Gradyant inisi + Osabit=4¢€-8, 175 546,5264
BFGS Hbastangi =1.2*1

Gradyant inisi + Obaslangic =J€-8, c1=1e-4, 106 681,1273

¢izgi arama +

C2:O,9, Hbaslanglc =1 72*1

BFGS

Tablo 4.7.’ya gore sabit adim biiyiikliigiine sahip gradyant inis metotunda, 203
iterasyondan sonra tolerans degerine ulagirken, gradyant inisi ve ¢izgi arama
yontemiyle 147 iterasyondan sonra ulastigi goriilmiistiir. Benzer sekilde, Hessian
giincellemesine sahip olan gradyant inisi, ¢izgi arama ve BFGS metotunda (106
iterasyon), gradyant inisi ve BFGS metoduna (175 iterasyon) kiyasla, iterasyon
sayisinda 6nemli bir azalma gdzlenmistir. Ote yandan, Gauss Newton eslenik gradyant
yontemi i¢ ve dis iterasyon olarak toplamda 448 iterasyon ile sonuclanmistir. Sekil
4.19." a gore, en kisa siirede tolerans degerine ulasan yontem, Gauss Newton eslenik
gradyanti iken (21,946 s), yakinsama orani agisindan en iyi metot gradyant inisi, ¢izgi

arama ve BFGS’ dir (106 iterasyon).

4.2.7. Goriintii fantomu 7

Uygulanan optimizasyon metotlarimizin performanslarini karsilastirmak i¢in numerik
test fantomu goriintiisii iizerinde, sirastyla Gauss Newton eslenik gradyanti, gradyant
inisi, gradyant inisi ve ¢izgi arama, gradyant inisi ve BFGS, gradyant inisi, ¢izgi arama
ve BFGS uygulanmistir. Tolerans degerine en iyi yakinsama nedeniyle (1e-4), Gauss
Newton eslenik gradyantinin i¢ tolerans degeri 0,0075 olarak secilmistir. BFGS

yonteminin adim boyutu ve 6l¢eklendirme faktorii, Amag fonksiyonunun iraksamasini
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Onlemek icin uygun sekilde secildi. Her bir algoritma i¢in karsilik gelen sonuglar

Tablo 4.8., Sekil 4.20. ve 4.21.'de verilmistir.

10 T T T T T T
Gauss-Newton eslenik gradyant
Gradyant inisi
Gradyant inisi + gizgi arama
Gradyant inisi + BFGS
-1
10 - Gradyant inisi + ¢izgi arama + BFGS -
. 2
S 10 L N\ 4
=
-3
10 - -
10 4 | | | |

0 20 40 60 80 100 120 140

Iterasyon sayisi

Sekil 4.20. Yeniden yapilandirma metotlarinin karsilagtilmasi iterasyon sayisi ve amag fonksiyonu
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10
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Gauss-Newton eslenik gradyant
Gradyant inisi

Gradyant inisi + cizgi arama
Gradyant inisi + BFGS

Gradyant inisi + ¢izgi arama + BFGS

107

Zaman (dk)

Sekil 4.21. Yeniden yapilandirma metotlarinin karsilastilmasi hesaplama siiresi ve amag fonksiyonu

Tablo 4.8. Segilen adim biiyiikliikleri, iterasyon sayilari ve hesaplama siiresi

Optimizasyon

yontemleri

Adim biyiikligi

herasyon sayisi

Hesaplama

stiresi (sn)

Gauss Newton
Eslenik Gradyanti
Gradyant inisi

Gradyant inisi +
¢izgi arama
Gradyant inisi +
BFGS

Gradyant inisi +
¢izgi arama +

BFGS

Osabit =1, i¢ tolerans
GNEG=0,09

Olsabit=3€-8

Olbaslangic =4€-8,
ci=le-4, ¢=0,9
Olsabir=3€-8,
Hbaslanglc =2*1
Olbaslangig =4e-8,
ci=le-4, ¢,=0,9,

Hba$lang1c, =2*]

I¢ dongii 33
Di1s dongii 6
127
81
112
72

15,129

31,1956

250,1322

342,5133

444,4838

Tablo 4.8. ve Sekil 4.20.'ye gore, ¢izgi arama ile giincellenen adim biiyiikligline sahip

olan gradyant inisi ile sabit adim biiytikliigline sahip olan gradyant inisi (127 iterasyon)
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karsilagtirildiginda  ¢izgi arama yonteminin yakinsama oranim iyilestirdigi
gozlemlenmistir. En hizli yakinsama hizi, en az yineleme sayisina bagli olarak,

gradyant inisi, ¢izgi arama ve BFGS metotunda (72 iterasyon) gozlemlenmistir.

4.3. Benchmark Optimizasyon Test Fonksiyonlar1

Uygulanan optimizasyon algoritmalari, Benchmark test fonksiyonlar1 ile test
edilmistir. Ackley test fonksiyonu, Gauss Newton eslenik gradyanti, gradyant inisi,
gradyant inisi ve ¢izgi arama, gradyant inisi ve BFGS ve gradyant inisi, ¢izgi arama
ve BFGS optimizasyon algoritmalar1 i¢in girdi degerleri x* = n olarak verilmistir.
Elde edilen sonuglar Tablo 4.9.” de gosterilmistir. Tablo 4.9.’e gore belirlenen ayn
tolerans degerleri i¢in (1e-04) global minimuma en iyi yakinsayan optimizasyon
algoritmasi1 gradyant inisi ve BFGS olarak gézlemlenmistir. Diger yandan Gauss

Newton eslenik gradyanti algoritmasi, global minimum degeri i¢in en yiiksek degerde

kalmastir.

Tablo 4.9. Ackley test fonskiyonu i¢in elde edilen global minimum degerleri
Ackley test fonksiyonu x* = (0,..,0) Global minimum f(x*) =0
Gauss Newton Eslenik x*=n f(x*) =0,0016795 — 0,0000299i
Gradyant1
Gradyant inisi x*=n f(x*) =0,0015956 — 0,0000141i
Gradyant inisi + ¢izgi arama x*=n f(x*) =0,0015994 — 0,0000136i
Gradyant inisi + BFGS x*=n f(x*) =0,0015727 — 0,0000117i
Gradyant inisi + ¢izgi arama + x*=n f(x*) =0,0015899 — 0,0000131i
BFGS

Her bir optimizasyon algoritmasi i¢in Beale test fonksiyonu uygulanmistir. Normalde
Beale fonksiyonu i¢in global minimum degerine x* = (3,0.5) girdi degerlerinde
ulasirken, optimizayon algoritmalarinin performans degerlendirmesi i¢in x* =7
olarak tercih edilmistir. Beale test fonskiyonu i¢in, her bir optimizasyon algoritmasinin
performans sonuglar1 Tablo 4.10.” da verilmistir. Tablo 4.10.” da verilen sonuglara gore,

global minimuma en iyi yakinsayan algoritma gradyant inisinde goriilmiistiir. Bunun
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sebebi belirlenen sabit adim biiylikliiglinlin her iterasyonda daha stabil bir sekilde
yakinsamasi olmustur. Buna karsin global minimum degerine en uzakta algoritma,

Gauss Newton eslenik gradyantinda gézlemlenmistir.

Tablo 4.10. Beale test fonskiyonu i¢in elde edilen global minimum degerleri

Beale test fonksiyonu x* = (3,0.5) Global minimum f(x*) =0
Gauss Newton Eslenik x*=n f(x*) = 14.2031403 — 0.0000051i
Gradyanti

Gradyant inisi x*=n f(x*) =14.2031307 — 0.0000024i
Gradyant inigi + ¢izgi arama x*=n f(x*) = 14.2031307 — 0.0000025i
Gradyant inisi + BFGS x*=n f(x*) = 14.2031317 — 0.0000027i
Gradyant inisi + ¢izgi arama + x*=n f(x*) = 14.2031307 — 0.0000025i
BFGS

Her bir optimizasyon algoritmasi i¢in Rosenbrock test fonksiyonu uygulanmistir.
Rosenbrock fonksiyonu i¢in global minimum degerine x* = (1,..,1) girdi
degerlerinde ulasir. Rosenbrock test fonksiyonu igin, her bir optimizasyon
algoritmasinin performans sonuglar1 Tablo 4.11.” de verilmistir. Tablo 4.11.” de verilen
sonuglara gore, global minimuma en iyi yakinsama orani, gii¢lii Wolfe kosullarina gore
belirlenen ve farkli adim biiyiikliiklerine olanak saglayan gradyant inisi ve ¢izgi arama
yonteminde goriilmiistiir. Buna karsin global minimum degerine en uzakta algoritma,

Gauss Newton eslenik gradyantinda gézlemlenmistir.

Tablo 4.11. Rosenbrock test fonskiyonu i¢in elde edilen global minimum degerleri

Rosenbrock test fonksiyonu x*=(1,..,1) Global minimum f(x*) =0
Gauss Newton Eslenik x*=n f(x*) =—-0.3002772 — 0.0000001i
Gradyant1

Gradyant inisi x*=n f(x*) = —-0.3000736 — 0.0001786i
Gradyant inisi + ¢izgi arama x*=n f(x*) = —-0.3000732 — 0.0001789i
Gradyant inisi + BFGS x*=n f(x*) = —0.3000846 — 0.0001566i
Gradyant inisi + ¢izgi arama + x*=n f(x*) = —-0.3000755 — 0.0001778i

BFGS
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Her bir optimizasyon algortimasi i¢in Toplam kareler test fonksiyonu uygulanmaistir.
Toplam kareler test fonskiyonu icin global minimum degerine x* = (0,0) girdi
degerlerinde ulasir. Toplam kareler test fonskiyonu ig¢in, her bir optimizasyon
algoritmasinin performans sonuglari Tablo 4.12.” de verilmistir. Tablo 4.12.” de verilen
sonuglara gore, gradyant inisi yontemine kiyasla gradyant inisi ve ¢izgi arama yontemi
global minimuma daha uzakta kaldig1 goriilmiistiir. Ote yandan, gradyant inisi ve
BFGS yontemi ile gradyant inisi, BFGS ve ¢izgi karsilastirildiginda, gradyant inisi ve
BFGS yontemi global minimuma daha iyi yakinsadig1 goriilmiistiir. Global minimum

degerine en wuzakta algoritma, Gauss Newton eslenik gradyantinda oldugu

gorilmiistiir.
Tablo 4.12. Toplam kareler test fonskiyonu i¢in elde edilen global minimum degerleri

Toplam kareler test x* = (0,0) Global minimum f(x*) =0
fonksiyonu
Gauss Newton Eslenik x*=n f(x*) =—-0.0011399 — 0.0000466i
Gradyanti
Gradyant inisi x*=n f(x*) =8.5212750e — 04 — 2.3192471e — 05i
Gradyant inisi + ¢izgi x*=n f(x*) =8.5756672e — 04 — 2.2281672¢ — 05i
arama
Gradyant inigi + BFGS x*=n f(x*) = 8.2455535e — 04 — 2.0687708e — 05i
Gradyant inisi + ¢izgi x*=n f(x*) = 8.4688794e — 04 — 2.1400829¢ — 05i
arama + BFGS

Goldstein Price test fonksiyonu, Gauss Newton eslenik gradyanti, gradyant inisi,
gradyant inisi ve ¢izgi arama, gradyant inisi ve BFGS ve gradyant inisi, ¢izgi arama
ve BFGS performans testleri yapilmistir. Goldstein Price test fonksiyonunda,
x* = (0,—1) girdi degerleri igin global minimum noktasi f(x*) = 3 tiir. Elde edilen
sonuglar 3 ‘e gore referans alinmis olup, Tablo 4.13.” de gosterilmistir. Sonuglara gore,
gradyant inisi yontemine kiyasla gradyant inisi ve ¢izgi arama yontemi global
minimuma daha uzakta kaldig1 gériilmiistiir. Ote yandan, gradyant inisi ve BFGS
yontemi ile gradyant inisi, BFGS ve ¢izgi arama yontemi karsilastirildiginda, gradyant
inisi, BFGS ve ¢izgi arama yontemi global minimuma daha iyi yakinsadigi

goriilmiistiir. Global minimum degerine, en iyi yakinsayan algoritmanin gradyant inisi
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ve ¢izgi arama oldugu gozlemlenirken, en uzaktan kalan algoritmanin Gauss Newton

eslenik gradyant1 oldugu goriilmiistiir.

Tablo 4.13. Goldstein Price test fonskiyonu i¢in elde edilen global minimum degerleri

Goldstein Price test x*=(0,-1) Global minimum f(x*) = 3
fonksiyonu

Gauss Newton Eslenik x*=n f(x*) = 6.0000909¢ + 02 + 1.0946718e — 02i
Gradyant1

Gradyant inisi x"=n f(x*) = 6.000e + 02 + 4.003e — 02i
Gradyant inisi + ¢izgi x*=n f(x*) = 6.000e + 02 + 3.999¢ — 02
arama

Gradyant inigi + BFGS x"=n f(x*) = 6.000e + 02 + 4.005e — 02i
Gradyant inisi + ¢izgi x"=n f(x*) = 6.000e + 02 + 4.004e — 02i
arama + BFGS

Rastrigin test fonksiyonu, Gauss Newton eslenik gradyanti, gradyant inisi, gradyant
inisi ve ¢izgi arama, gradyant inisi ve BFGS ve gradyant inisi, ¢izgi arama ve BFGS
optimizasyon algoritmalari i¢in girdi degerleri x* = n olarak verilmistir. Elde edilen
sonuglar Tablo 4.14.” de gosterilmistir. Tablo 4.14.’te verilen sonuglara gore, gradyant
inisi yontemine kiyasla gradyant inisi ve BFGS yontemi global minimuma
yakinsamasi agisindan daha iyi performans gostermistir. Benzer sekilde, gradyant inisi
ve ¢izgi arama yoOntemi ile gradyant inisi, BFGS ve c¢izgi arama yontemi
karsilagtirildiginda, gradyant inisi, BFGS ve ¢izgi arama yontemi global minimuma
daha iyi yakinsadigi goriilmiistiir. Global minimum degerine en uzakta algoritma,

Gauss Newton eslenik gradyantinda oldugu goriilmiistiir.

Tablo 4.14. Rastrigin test fonskiyonu i¢in elde edilen global minimum degerleri

Rastrigin test fonksiyonu x* = (0,0) Global minimum f(x*) =0
Gauss Newton Eslenik x*=n f(x*) = 0.0035400 — 0.0001346i
Gradyanti

Gradyant inisi x*=n f(x*) = 0.0030518 — 0.0000603i
Gradyant inigi + ¢izgi arama x*=n f(x*) = 0.0029297 — 0.0000584i
Gradyant inisi + BFGS x*=n f(x™) =0.0029297 — 0.0000495i
Gradyant inigi + ¢izgi arama + x*=n f(x*) = 0.0029297 — 0.0000560i

BFGS




69

Her bir optimizasyon algortimasi i¢in global minimum degerine x* = (0,0) girdi
degerlerinde ulasan dondiiriilmiis hiper ellipsoid test fonksiyonu test fonksiyonu
uygulanmistir. Dondiiriilmiis hiper elipsoid test fonskiyonu i¢in, her bir optimizasyon
algoritmasinin performans sonuglar1 Tablo 4.15.” de verilmistir. Elde edilen sonuglara
gore, gradyant inisi yoOntemi ile gradyant inisi ve ¢izgi arama yOntemi
karsilagtirildiginda, gradyant inisi yontemi daha iyi yakinsamistir. Benzer sekilde,
gradyant inigi ve BFGS yontemi ile gradyant inisi, BFGS ve ¢izgi karsilagtirildiginda,
gradyant inisi ve BFGS yontemi global minimuma daha iyi yakinsadigi goriilmiistiir.
Global minimum degerine, en iyi yakinsayan algoritmanin gradyant inisi ve BFGS
oldugu gozlemlenirken, en uzaktan kalan algoritmanin Gauss Newton eslenik

gradyant1 oldugu goriilmiistiir.

Tablo 4.15. Dondiirtilmiis hiper elipsoid test fonskiyonu i¢in elde edilen global minimum degerleri

Dondiiriilmiis hiper elipsoid test x* = (0,0) Global minimum f(x*) =0
fonksiyonu

Gauss Newton Eslenik x*=n f(x*) =0.0012983 — 0.0000272i
Gradyant1

Gradyant inisi x*=n f(x*) =0.0010691 — 0.0000105i
Gradyant inisi + ¢izgi arama x*=n f(x*) =0.0010774 — 0.0000104i
Gradyant inigi + BFGS x*=n f(x*) =0.0010463 — 0.0000070i
Gradyant inisi + ¢izgi arama + x*=n f(x*) =0.0010670 — 0.0000099i
BFGS

Griewank test fonskiyonu her bir optimizasyon algoritmasi {izerinde test edilmis olup
sonuglar Tablo 4.16.” da verilmistir. gradyant inisi yontemine global minimum
degerine en 1iyi yakinsayan algoritmanin gradyant inisi ve BFGS oldugu
gozlemlenirken, en uzaktan kalan algoritmanin Gauss Newton eslenik gradyanti

oldugu goriilmiistiir.
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Tablo 4.16. Griewank test fonskiyonu i¢in elde edilen global minimum degerleri

Griewank test fonksiyonu x* = (0,0) Global minimum f(x*) =0
Gauss Newton Eslenik x*=n f(x*) = 5.9604645e — 08
Gradyanti — 8.8982119¢ — 09i
Gradyant inisi x*=n f(x*) = 5.9604645e — 08

— 6.8929054e — 09i
Gradyant inisi + ¢izgi arama x*=n f(x*) = 5.9604645e — 08

— 6.8557449¢ — 09i
Gradyant inisi + BFGS x*=n f(x*) = 5.9604645e — 08

— 5.7322147e — 09i
Gradyant inisi + ¢izgi arama + x*=n f(x*) = 5.9604645e — 08
BFGS — 6.6710157e — 09i

Global minimum degerine x* = (0,0) girdi degerlerinde ulasan alti1 kamburlu test
fonksiyonu her bir optimizasyon algortimasi i¢in uygulanmistir. Tablo 4.17.’de verilen
deneysel sonuglar dogrultusunda, Global minimum degerine en iyi yakinsayan
algoritmanin gradyant inisi oldugu gozlemlenirken, en uzaktan kalan algoritmanin

Gauss Newton eslenik gradyanti oldugu goriilmiistiir.

Tablo 4.17. Altt kamburlu deve test fonskiyonu igin elde edilen global minimum degerleri

Alti kamburlu deve test x* = (0,0) Global minimum f(x*) =0
fonksiyonu

Gauss Newton Eslenik x*=n f(x*) = 7.6454629¢ — 09 — 1.4650421e — 08i
Gradyant1

Gradyant inigi x*=n f(x*) =7.0205268¢ — 09 — 1.3036177e — 08i
Gradyant inisi + ¢izgi x*=n f(x*) =7.0220625¢ — 09 — 1.3981854¢ — 08i
arama

Gradyant inisi + BFGS x*=n f(x*) =7.2077437¢ — 09 — 1.3759358e — 08i
Gradyant inisi + ¢izgi x*=n f(x*) = 7.0556458¢ — 09 — 1.3994807¢ — 08i
arama + BFGS

Her bir optimizasyon algortimasi i¢in Hartman 3 boyutlu test fonksiyonu uygulanmistir
ve global minimum noktasi olan f(x*) = —3.86278 degerine gore referans

alinmigstir. Tablo 4.18.’de verilen sonuglara gore, global minimum degerine en iyi
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yakinsayan algoritmanin gradyant inisi ve BFGS oldugu goézlemlenirken, en uzaktan

kalan algoritmanin gradyant inisi oldugu gortilmistiir.

Tablo 4.18. Hartman 3 boyutlu test fonskiyonu i¢in elde edilen global minimum degerleri

Hartman 3 boyutlu x* Global minimum f(x*) = —3.86278
test fonksiyonu = (0.114614,0.555649,0.852547)

Gauss Newton x*=n f(x*) = —0.0680446 — 0.0000235i
Eslenik Gradyanti

Gradyant inisi x*=n f(x*) = —0.0680412 — 0.0000175i
Gradyant inisi + x*=n f(x*) = —0.0680412 — 0.0000177i
cizgi arama

Gradyant inisi + x*=n f(x*) = —0.0680457 — 0.0000087i
BFGS

Gradyant inisi + x*=n f(x*) = —0.0680420 — 0.0000172i

¢izgi arama +

BFGS

4.4. Yeniden Yapilandirma Sonuclari

Ses hiz1 ve zayiflama profil goriintiilerinin yeniden yapilandirilmasi, Gauss-Newton
eslenik gradyanti ve gradyant inisi optimizasyon metotlar1 goriintii nitelikleri
bakimindan Sekil 4.22. ve 4.23.” de verilmistir. Daha iyi yeniden yapilandirma sonucu
elde etmek i¢in, fantom goriintiileri tolerans degeri 1e-08'e ulasana kadar optimize
edilmistir. Yeniden olusturulan goriintiiler iist siralarda hem ses hiz1 hem de zayiflama
icin goriilebilir. Alt kisimdaki profiller, goriintiideki pembe noktali ¢izgilerdeki
parametrelere yani piksellere odaklanir; burada kirmizi daireler yeniden olusturulan
profilleri temsil ederken, mavi ¢izgiler simiile edilmis referanslarini temsil eder.
Simiilasyondan Gauss-Newton eslenik gradyanti kullanilarak, standart sapma ses hizi
goriintiisii icin 0,00 m / s olarak elde edilirken, zayiflama goriintiisii i¢in %0,000 olarak
elde edilmistir. Ote yandan, gradyant inisi kullanarak yapilan simiilasyondan, standart
sapma ses hiz1 goriintiisii i¢in 0,00 m / s, zayiflama goriintiisii i¢in %0,000 olarak elde

edilmistir.
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Yeniden Yapilandiriimig Ses Hizi Goriintisii Yeniden Yapilandiriimig Zayiflama Goriintiisii
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Sekil 4.22. Goriintii fantomu 1 igin ses hiz1 ve zayiflama goériintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi
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Sekil 4.23. Goriintii fantomu 1 igin ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirtlmasi

Su, deri, yag, salgi bezi, tiimor iceren farkli tipteki dokulardan olusan fantom
gorlintiisii 2 i¢in yeniden yapilandirma sonuclar1 Sekil 4.24. ve Sekil 4.25.°de
gosterilmistir. Gauss-Newton eslenik gradyanti kullanilarak, standart sapma ses hizi

icin 0,00 m / s ve zayiflama igin %0,001 olarak elde edilmistir. Ote yandan, gradyant
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inisi kullanarak, standart sapma ses hizi i¢in 0,01 m / s ve zayiflama i¢in%0,001 olarak

elde edilmistir.
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Ses Hizi

Sekil 4.24.

Yeniden Yapilandiriimig Ses Hizi Goriintiisii

Ses Hizi

Sekil 4.25.

Yeniden Yapilandinlmig Zayiflama Goriintiisii

1520

0.99995
1500

09999
1480

Ses Hizi mis
z [mm]
Zayflama Fakiori

0.99985
1460

X [mm] X [mm]

Ses Hizi Gériintiisii Profili Zayiflama Gériintiisii Profili

152 Gergek yer dogrusu 1.00005 Gorgek yor dogrusu
O Yeniden yapiandima Yeniden yapiandima
1
1500
0.99995
2
1480 Eel
€ 09999
<
w
1460 | @ 0.99985
£
g 0.9998
1440 s
<)
L N
80 60 -0 20 0 2 4 60 80 80 60 40 20 0 20 4 60 80
X [mm] X [mm]

Goriintli fantomu 2 i¢in ses hiz1 ve zayiflama goriintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi.
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Goriintli fantomu 2 i¢in ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirtlmasi

Fantom goriintiisii 3 i¢in ses hizi ve zayiflama goriintiilerinin yeniden yapilandirma

sonuglar1 hem Gauss-Newton eslenik gradyantt hem de gradyant inisi i¢in sirasiyla

Sekil 4.26. ve Sekil 4.27.” de gosterilmektedir. Yeniden olusturulan goriintiiler hem ses
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hiz1 hem de zayiflama i¢in goriilebilir. Gauss-Newton eslenik gradyantt ile elde edilen
standart sapma ses hiz1 icin 0,01 m/s iken, zayiflama i¢in %0,001 olmustur. Ote
yandan, gradyant inisi i¢in simiilasyondan elde edilen standart sapma, ses hizi i¢in

0,01 m /s ve zayiflama i¢in %0,002'dir.
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Sekil 4.26. Goriintii fantomu 3 igin ses hiz1 ve zayiflama goriintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi.
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Sekil 4.27. Goriintii fantomu 3 igin ses hiz1 ve zayiflama goériintiilerinin gradyant inisi kullanarak yeniden
yapilandirilmasi

Gauss-Newton eslenik gradyanti ve gradyant inisi kullanilarak fantom goriintiisii 4 igin

hem ses hizi hem de zayiflama goriintiileri ve profillerinin yeniden yapilandirma
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sonuclart sirastyla Sekil 4.28. ve Sekil 4.29.'da gosterilmistir. Gauss-Newton eslenik
gradyant1 kullanilarak, simiilasyondan standart sapma ses hizi i¢in 0,01 m / s ve
zayiflama igin %0,001 olarak elde edilmistir. Ote yandan, gradyant inisi metotunu
kullanarak, simiilasyondan standart sapma ses hizi i¢in 0,01 m / s, zayiflama igin

%0,002 olarak elde edilmistir.
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Sekil 4.28. Goriintii fantomu 4 igin ses hiz1 ve zayiflama goériintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi.
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Sekil 4.29. Goriintii fantomu 4 igin ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirilmasi
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Gauss-Newton eslenik gradyant1 ve gradyant inisi kullanilarak fantom goriintiisii 5 i¢in
hem ses hiz1 hem de zayiflama goriintiileri ve profillerinin yeniden yapilandirma
sonuglart sirasiyla Sekil 4.30. ve Sekil 4.31.'de gosterilmistir. Gauss-Newton eslenik
gradyant1 kullanilarak, simiilasyondan standart sapma ses hiz1 i¢in 0,01 m / s ve
zayiflama igin %0,001 olarak elde edilmistir. Ote yandan, gradyant inisi metotunu
kullanarak, simiilasyondan standart sapma ses hizi i¢in 0,02 m / s, zayiflama i¢in

9%0,002 olarak elde edilmistir.
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Sekil 4.30. Goriintii fantomu 5 igin ses hiz1 ve zayiflama goériintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi.
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Sekil 4.31. Goriintii fantomu 5 igin ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirtlmasi
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Su, deri, yag, salg1 bezi, tiimor iceren farkli tipteki dokulardan olusan meme yapisinin
MRI taramasi gorlintlisii iizerinde yeniden yapilandirma sonuglart Sekil 4.32. ve
Sekil 4.33.’te gosterilmektedir. Gauss-Newton eslenik gradyanti kullanilarak, standart
sapma ses hizi icin 0.01 m /s ve zayiflama i¢in% 0.001 olarak elde edilirken, gradyant
inisi kullanarak, standart sapma ses hizi i¢in 0.01 m / s ve zayiflama i¢in % 0.002

olarak elde edilmistir.
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Sekil 4.32. MRI taramasi fantomu igin ses hiz1 ve zayiflama goriintiilerinin Gauss Newton eslenik gradyant
kullanarak yeniden yapilandirilmasi.
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Sekil 4.33. MRI taramasi fantomu igin ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirtlmasi
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Icerisinde farkli kontrast-¢oziiniirliik lezyonlar1 igeren test fantomu goriintiisii
lizerinde yeniden vyapilandirma sonuglart Sekil 4.34. ve Sekil 4.35. de
gosterilmektedir. Gauss-Newton eslenik gradyanti kullanilarak, standart sapma ses
hiz1 i¢in 0,01 m / s ve zayiflama i¢in %0,001 olarak elde edilirken, gradyant inisi
kullanarak, standart sapma ses hizi i¢in 0,02 m / s ve zayiflama icin % 0,002 olarak
elde edilmistir. Bununla birlikte gradyant inisinden elde edilen zayiflama goriintiileri
Gauss Newton eslenik gradyantinda elde edilen zayiflama goriintiileri kadar iyi
degildir. Bunun sebebi Gauss Newton eslenik gradyantini metodunun verimli bir
diizenlestirme yontemine sahip olmasidir. Altta yatan dogrusal olmayan problem kétii
durumdaysa (ill posed), dogrusallagtirilmis problemler kotiilesir ve diizenlestirme
(regularization) yontemlerine ihtiya¢c duyulur. Diizenlestirme, eslenik gradyanti
dogrusallastirilmis problemlerin normal denklemlere uygulanarak yapilmistir

(Althaus, 2016).
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Sekil 4.34. Test fantomu igin ses hiz1 ve zayiflama goriintiilerinin Gauss Newton eslenik gradyant kullanarak
yeniden yapilandirilmasi.
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Sekil 4.35. Test fantomu igin ses hiz1 ve zayiflama goriintiilerinin gradyant inisi kullanarak yeniden
yapilandirtlmasi



BOLUM 5. TARTISMA VE SONUC

Bu calismada BUT’da kullanilan ses hizi ve zayiflama goriintiilerinin yeniden
yapilandirilmasi i¢in gradyant inisi optimizasyon metodu uygulanmistir. Giiglii Wolfe
kosullarina dayanan c¢izgi arama yontemleri gradyant inisi metotuna eklenmistir.
Boylece her iterasyonda adim biiyiikliigii bu kosullara gore glincellenmistir. BFGS
metodu incelenmis ve gradyant inisi metoduna adapte edilmistir. Optimizasyon
performanslarin1 karsilagtirmak i¢in yedi farkli fantom goriintiisii tasarlanmistir.
Gradyant iniginin yakinsama davraniglari ve optimizasyon performanslari Gauss
Newton eslenik gradyanti, gradyant inisi ve ¢izgi arama, gradyant inisi ve BFGS ve
gradyant inisi, ¢izgi arama ve BFGS metotlar ile karsilastirilmigtir. Benchmark test
fonksiyonlart incelenmis bu optimizasyon yontemleri lizerinde test edilmistir. Son
olarak gradyant inisi ile yeniden yapilandirilan goriintii ile Gauss Newton eslenik
gradyant metotu ile yeniden yapilandirilan goriintii kaliteleri ses hizi ve zayiflama

profillerinin standart sapmalarina goére degerlendirilmistir.

Genel bir kural olarak, arastirmada uygulanan tiim algoritmalarda, uygun adim
bliytikliigiiniin kullanim1 yakinsama hizinda biiyiik bir etkiye sahiptir. Normalde adim
biiyiikliigii arttirnlldiginda, yakinsama orani daha hizli olmakla birlikte daha az
iterasyon sayis1 gerektirir. Bununla birlikte, adim biiyiikligii ¢ok biiyiik oldugunda,
yakinsama yerine raksama egilimi vardir, bu da agikca artan bir Amag fonksiyonuna
neden olur. Giiclii Wolfe kosullarina dayanan ¢izgi arama yontemi, uygun adim
boyutunu bulma konusunda umut vericidir. Gradyan inisi ile adapte edilmis ¢izgi
arama yontemi daha az iterasyonda minimuma yakinsamasina ragmen, her iterasyon
icin ekstra hesaplama siiresi gerektirir. Bunun sebebi uygun adim biiyiikliigiiniin
bulunmasi i¢in harcanan ekstra hesaplama stiresidir. Ayni sekilde BFGS yontemi ile
adapte edilen gradyant inigi yontemi iterasyon sayisinda azalma godzlemlenirken

hesaplama siiresinde artig gozlemlenmistir. Sonuglar, gradiyant inisi, ¢izgi arama ve
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BFGS yontemi iterasyon sayilar1 agisindan, test edilen tiim yontemler arasinda en iyi
yontem oldugunu gosterirken, Gauss Newton eslenik gradiyanti hesaplama siiresi
acisindan en hizli yontemdir.

Uygulanan bir¢ok yerel minimum noktalarina sahip cesitli Benchmark test
fonksiyonlar1 ile optimizasyon algoritmalar1 test edilmistir. Sonuglar, Benchmark
fonksiyonlarinda, Gauss Newton eslenik gradyant optimizasyon metotu yerel

minimuma en uzakta kalan algoritma oldugu gézlemlendi.

Yeniden yapilandirma sonuglarinda hem ses hizi hem de zayiflama goriintii
profillerinin standart sapmalar1 simiilasyondan karsilastirilmistir.  Zayiflama
goriintiilerinin ses hiz1 goriintiileri kadar iyi olmadig1 gozlemlenmistir. Bunun asil
sebebi kompleks deger parametrelerinin yeniden yapilandirmamizdir. Zayiflama
goriintiilerini hesaplanmasi, ses hizi gorlintiilerinin hesaplanmasindan (ill-posed)
problemin daha ciddi bir sekilde ortaya ¢ikan kismidir. Diger bir deyisle, zayiflama
goriintiilerin fark aralig1 ses hizi goriintiilerine goére ¢cok daha kiictiktiir (0,9998 -1).
Daha iyi zayiflama goriintiileri elde edebilmek i¢in, Amag¢ fonksiyonu igin tolerans
degeri kiiclik se¢ilmistir (1e-08). Gauss Newton eslenik gradyandaki gibi i¢ dongii
gerektirmeyen gradiyant inisi yontemindeki zayiflama goriintiilerinin diizenlestirme
teriminin olmamasindan dolayi, Gauss Newton eslenik gradiyantinda elde edilen

zayiflama goriintlisiine gore daha daginik kalmistir.

Sonug olarak ¢alismamizdan elde edilen 6nemli bulgular su sekilde 6zetlenebilir:

a. I¢c dongii gerektirmeyen gradyant inisi metodu arastirildi ve ses hizi ve
zayiflama goriintiileri yeniden yapilandirildi.

b. Cizgi arama yOntemleri gradyant inisi metoduna uygun adim biyiikligi
saglayarak iterasyon sayisinda 6nemli bir diisiis gosterdi. Ayn1 sekilde Hessian
matrisi giincellemeli BFGS metodu da iterasyon sayisinda diisiis gosterdi.
Fakat hesaplama stireleri agisindan ekstra siire gerektirmistir.

c. Benchmark optimizasyon test fonksiyonlari i¢in, gradyant inisi metodu, Gauss

Newton metoduna gore daha fazla global minimuma yakinsamigtir.
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d. Zayiflama goriintiilerinin yeniden yapilandirilmasi ses hizi goriintiilerine gore
daha zor oldugu gozlemlenmistir. Buna ek olarak Gauss Newton eslenik
gradyant metodunda diizenlestirme teriminin olmasi gradyant inisi metoduna

gore daha 1yi performans gostermistir.
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