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UŞAK, 2024



TEZ BİLDİRİMİ
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ÖZET

Birinci bölümde çalışmanın diğer kısımlarında kullanılacak temel tanımlar ve kavramlar ve-

rilmektedir. İkinci bölümde; metrik uzay, yakınsaklık, süreklilik, asimptotik düzenli dönü-

şüm, büzülme, b-metrik uzay gibi temel kavram ve örnekler sunulmuştur. Üçüncü bölümde

ise Metrik uzay yapısından daha geniş olan b- Metrik uzay yapısı altında bazı önemli sabit

nokta teoremlerinin genişlemeleri verilmiştir. Burada, sabit nokta teoremleri; asimptotik dü-

zenlilik ve Kompaktlık kavramları altında incelenmiş ve Asimptotik düzenli dönüşümler ile

ilgili farklı uygulamalar b-metrik uzaylarda sunulmuştur.
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SİMGELER VE KISALTMALAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
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SİMGELER ve KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda su-

nulmuştur.

Simge Açıklama

(X, d) X Uzayında d Metrik Uzayı

N Doğal Sayılar Kümesi

R Reel Sayılar Kümesi

F (T ) T nin Sabit noktalarının Kümesi

T : X → X T , X den X e bir dönüşüm

d(x, y) x ile y arası uzaklık

v



1. GİRİŞ

Uzunluk kavramı insanlık tarihiyle yaşıttır ve ilk kez Euclid tarafından doğru biçimde for-

müle edilmiştir. Esas olarak Euclidean Metrik; iki nokta arasındaki mesafeyi, bu noktaları

birleştiren düz bir çizgi parçasının uzunluğu olarak tanımlamaktadır.

Metrik Uzay kavramı ise aksiyomatik olarak ilk defa 1906 yılında Maurie Frechet tarafından

ortaya konulmuştur. Literatürde metriklerin çeşitli versiyonları, uyarlamaları ve genelleme-

leri mevcuttur. Örneğin 2-metrik, D-metrik, G-metrik, S-metrik, küme değerli metrik, bula-

nık metrik, simetrik metrik, quasi-metrik, partial metrik, b-metrik, ultrametrik, dislokasyonlu

metrik, modüler metrik, Hausdorff metrik, koni metrik, çarpımsal metrik gibi çok sayıda met-

rik türü bulunmaktadır.

Sabit nokta teorisi, belirli bir f dönüşümü için

f(x) = x

şeklindeki denklemlerin çözümünün varlığı ve tekliğini inceleyen bir alan olarak tanımlana-

bilir. Bu teori; Topoloji, Fonksiyonel Analiz, İstatistik, Diferansiyel Denklemler, Biyoloji ve

Mühendislik gibi birçok bilim dalında önemli uygulamalara sahiptir.

Birinci bölümde çalışmanın diğer kısımlarında kullanılacak temel tanımlar ve kavramlar ve-

rilecektir.

İkinci bölümde; metrik uzay, yakınsaklık, süreklilik, asimptotik düzenli dönüşüm, büzülme,

b-metrik uzay gibi temel kavram ve örnekler sunulmuştur.

Üçüncü bölümde ise b- Metrik uzay yapısı altında bazı önemli teoremlerin genişlemeleri ele

alınacaktır.

Bir (X, d) metrik uzayından kendisine tanımlı bir T dönüşümü, eğer X deki ∀x, y ve 0 ≤

a < 1 için;

d(Tx, Ty) ≤ ad(x, y)

koşulunu sağlıyorsa bu dönüşüme daralma ya da büzülme dönüşümü denir.
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Bu tanımdan bütün daralma dönüşümlerinin sürekli oldukları sonucu hemence çıkarılabile-

cektir. Ancak bunun tersi doğru değildir, yani sürekli dönüşümlerin daralma koşulunu sağ-

lamaları gerekmez. Bu noktada, tam metrik uzaylarda tanımlı her daralma dönüşümünün bir

sabit noktaya sahip olduğunu ve bu sabit noktanın tek olduğunu belirtmemiz gerekir. Bu so-

nuç bizi Banach daralma prensibi olarak bilinen meşhur teorem ile tanıştıracaktır.

Non-lineer analizdeki en ünlü teoremlerden birisi olan Banach daralma (contraction) pren-

sibi, 1922’de ortaya çıkmış ve sabit nokta teorisinin gelişimine önemli katkılarda bulun-

muştur. Bu tarihten sonra sabit nokta teorisi çeşitli yönlerden genişletilmeye başlanmıştır.

Büzülme dönüşümü prensibi; varlık ve teklik problemlerin çözümü için önemli bir araçtır.

Sabit nokta teorisiyle ilgili çalışmalara öncülük eden isimlerden bazıları; Kannan(1968), Re-

ich(1971), Ciric (1976), Matthews(1994), Fisher (1998), Berinde(2004), Suzuki(2008) gibi

matematikçilerdir.

Bu doğrultuda önemli bir dönüm noktası, 1974’ te Ciric ’ in ( Ciric, 2005) tanımladığı yeni

daralma kavramıdır ve bununla birlikte Banach daralma prensibinin genelleştirilmesinin bir

yönü başlamıştır. Bundan sonra, birçok araştırmacı bu özel yönde çalışarak yeni daralma ta-

nımlamaları altında Banach daralma (contraction) prensibinin daha geniş versiyonlarını elde

etmiştir.

V. Berinde tarafından tanımlanan zayıf daralma (weak contraction) (Berinde, 2007), kavramı

bunlardan biridir ve zayıf daralma kümesi literatürdeki quasi daralma (quasi contraction)

sınıfını kapsamaktadır. Berinde (Berinde, 2008), 2008 de bunu neredeyse daralma (almost

contraction) olarak yeniden adlandırmış ve bazı açık problemlere işaret etmiştir. Bu alanda

başka birçok genelleme de yapılmıştır. Bu çerçevede, B. Rhoades’in (Rhoades, 1977) ma-

kalesi büyük önem taşımaktadır. Bu çalışmada 25 farklı daralma dönüşümü listelenmiş ve

bunlar karşılaştırılmıştır.

Çalışmamızda, b-metrik uzaylarda tanımlı Kannan tipi dönüşümlerin çeşitli versiyonları için

sabit nokta teoremleri sunulacak ve klasik metrik uzaylardan bilinen bazı sonuçlar b-metrik

uzaylar için genelleştirilecektir.

b-metrik uzay kavramı oldukça yenidir. İlk defa Backhitin(1989) tarafından ortaya atılmakla

beraber, temel yapıları Czerwik(1993) ifade ve ispat etmiştir. Aydi, Boriceanu, Bata, Chug,

2



Du, Kir, Olaru, Olantinwa, Pacurar, Rao,Rashan ve Shi gibi matematikçiler b-metrik uzay

üzerine çalışmalar yapmışlardır.
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2. ÖNEMLİ TANIMLAR

Burada çalışmanın diğer kısımlarında kullanılacak temel tanımlar ve kavramlar verilecektir.

(Koçak, 2011)’ın, "Genel Topolojiye Giriş" ve (Rahimov, 2006) a ait "Topolojik Uzaylar"

isimli kitaplarından faydalanılmıştır.

Tanım 2.1. X boş olmayan bir küme ve d : X ×X → R bir fonksiyon olsun.

M1) ∀x, y ∈ X için d(x, y) ≥ 0 ve d(x, y) = 0 ⇐⇒ x = y,

M2) ∀x, y ∈ X için d(x, y) = d(y, x),

M3) ∀x, y, z ∈ X için d(x, y) ≤ d(x, z) + d(z, y),

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir metrik denir ve (X, d) ikilisine de Metrik

Uzay denir. Burada (2) ve (3) özelliklerinden ;

∀x, y ∈ X için 0 = d(x, x) ≤ d(x, y) + d(y, x) = d(x, y) + d(x, y) = 2.d(x, y),

olduğundan, d(x, y) ≥ 0 olur. Yani, metrik tanımında X uzayındaki her x ve y için

d(x, y) ≥ 0

ifadesi yazılmayabilir.

Not: Aslında metrik kavramı sadece aşağıdaki iki aksiyom kullanılarak da ifade edilebilir.

Diğer koşulların tamamı bu ikisi kullanılarak elde edilebilir.

x = y ⇐⇒ ρ(x, y) = 0 (kendine uzaklık)

ρ(x, y) ≤ ρ(x, z) + ρ(y, z),∀x, y, z ∈ X (üçgen eşitsizliği)

Örnek 2.1. X = Rn olmak üzere x = (x1, x2, ..., xn) ve y = (y1, y2, ..., yn) ∈ X için;

ρ∞(x, y) = max| xi − yi |

(i = 1, 2, ..., n) şeklinde tanımlanan ρ∞ : X ×X → R dönüşümü Rn üzerinde bir metriktir.

Çözüm:
4



x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ve z = (z1, z2, ..., zn) ∈ Rn olsun.

M1) (i = 1, 2, ..., n) ve | xi − yi |≥ 0 olduğundan;

ρ∞(x, y) = max| xi − yi | ≥ 0

olur. ρ∞(x, y) = 0 olması için gerek ve yeter şart (i = 1, 2, ..., n) için

| xi − yi |= 0

olmasıdır. Diğer taraftan | xi− yi |= 0 olması için gerek ve yeter koşul ise xi = yi olmasıdır.

Böylece; x = y olur. Yani; ρ∞(x, y) = 0 olması için gerek ve yeter koşul x = y olmasıdır.

M2) (i = 1, 2, ..., n) için | xi − yi |=| yi − xi | olduğundan ρ∞(x, y) = ρ∞(y, x) olur.

M3)

ρ∞(x, y) = max| xi − yi | =| xi0 − yi0 |

olsun. Böylece;

ρ∞(x, y) = | xi0 − yi0 |≤| xi0 − zi0 | + | zi0 − yi0 |

≤ max| xi − zi |+max| zi − yi |

≤ ρ∞(x, z) + ρ∞(z, y)

elde ederiz. Böylece ρ∞ bir metrik olur.

Örnek 2.2. X kümesinde bir ρ metriği verilmiş olsun. ∀x, y ∈ X için;

p(x, y) =
ρ(x, y)

1 + ρ(x, y)

biçiminde tanımlanan p fonksiyonu X üzerinde bir metriktir.

Çözüm:

M1) ∀x, y ∈ X için ρ(x, y) ≥ 0 olduğundan; p(x, y) ≥ 0 olur.

M2) ∀x, y ∈ X için ρ(x, y) = ρ(y, x) olduğundan;

p(x, y) =
ρ(x, y)

1 + ρ(x, y)
=

ρ(y, x)

1 + ρ(y, x)
= p(y, x)

5



olur.

M3) f(x) =
x

1+x
şeklinde tanımlı f : [0,∞) → R fonksiyonunu göz önüne alalım.

∀x ∈ [0,∞) için

f ′(x) =
x

(1 + x)2
≥ 0

olduğundan f fonksiyonu artandır. x, y, z ∈ X olsun. ρ metrik olduğundan ;

ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

olur. f artan olduğundan ;

f(ρ(x, z)) ≤ f(ρ(x, y) + ρ(y, z))

olur. Buradan;

ρ(x, z)

1 + ρ(x, z)
≤ ρ(x, y) + ρ(y, z)

1 + ρ(x, y) + ρ(y, z)

=
ρ(x, y)

1 + ρ(x, y) + ρ(y, z)
+

ρ(y, z)

1 + ρ(x, y) + ρ(y, z)

≤ ρ(x, y)

1 + ρ(x, y)
+

ρ(y, z)

1 + ρ(y, z)

olur. Böylece ,

p(x, z) ≤ p(x, y) + p(y, z)

elde edilir.

Tanım 2.2. X boş olmayan bir küme ve d : X ×X → R bir fonksiyon olsun.

(1) ∀x, y ∈ X için d(x, y) ≥ 0 ve x = y =⇒ d(x, y) = 0

(2) ∀x, y ∈ X için d(x, y) = d(y, x),

(3) ∀x, y, z ∈ X için d(x, y) ≤ d(x, z) + d(z, y),

şartları sağlanıyorsa d fonksiyonuna X üzerinde bir sözde metrik (Pseudo metric) ve (X, d)

ikilisine de Sözde Metrik Uzay denir.

Örnek 2.3. (X, d) bir metrik uzay olsun.∀x, y, z ∈ X için;

ρ(x, y) = min{1, d(x, y)}
6



olarak tanımlayalım. Bu durumda ρ(x, y), X uzayında bir sözde metrik olur. Çünkü, tanım

(2.2) şartlarından (1) ve (2) kolayca sağlanır. Ayrıca,

ρ(x, y) = min{1, d(x, y)} ≤ min{1, d(x, z) + d(z, y)}

≤ min{1, d(x, z)}+min{1, d(z, y)}

= ρ(x, z) + ρ(z, y)

olur. Böylece, (3) özelliği de gerçeklenir. Buradaki ρ(x, y) bir metrik olmayıp; Sözde Metrik-

tir.

Tanım 2.3. X boş olmayan bir küme olsun. p : X ×X → [0,∞) fonksiyonu her x, y, z ∈ X

için;

(1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),

(2) p(x, x) ≤ p(x, y),

(3) p(x, y) = p(y, x) ,

(4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z)

koşullarını sağlıyorsa p fonksiyonuna X kümesi üzerinde bir kısmi metrik (partial metric) ve

(X, d) ikilisine de bir kısmi metrik uzay denir .

Partial metrik uzay kavramı ilk kez (Matthews, 1992) Matthews, S.G. tarafından ortaya kon-

muş ve özellikle bilgisayar program döngülerinin sonsuza kadar devam etmemesini sağlamak

amacıyla kullanılmıştır. Partial metrik uzaylar klasik metrik uzaylardaki d(x, x) = 0 koşu-

lunun kaldırılması ile tanımlanmaktadır. Bu tür uzaylardaki ortak sabit noktanın varlığı ve

tekliğini garanti eden koşullar, T. Abdeljawad, E. Karapınar ve Kenan Tas tarafından sunul-

muştur (Abdeljawad ve ark., 2011), ve bu yayın partial metrik uzaylar alanında en fazla atıf

alan çalışmalardan birisi olmuştur.

Tanım 2.4. (X, d) Metrik uzayında {xn} dizisini alalım. ∀ϵ > 0 ve n ≥ n0 için d(xn, x) ≤ ϵ

olacak biçimde bir n0 doğal sayısı varsa {xn} dizisi x ∈ X noktasına yakınsar denir.

lim
n→∞

xn = x

ya da xn → x şeklinde gösterilir.
7



Tanım 2.5. X bir küme olsun. ∀f : N → X fonksiyonuna X de bir dizi denir. ∀n ∈ N için,

f(n) = xn ise bu dizi genellikle (xn) veya {xn} şeklinde gösterilir. ∀n ∈ N için xn değerine

dizinin n. terimi denir. ∀n ∈ N için xn = x ise {xn} dizisine x değerli sabit dizi denir. {x}

ile gösterilir.

Tanım 2.6. (X, d) Metrik uzayında {xn} dizisini alalım. nk < nk+1 olacak şekilde {xnk
}

dizisine {xn} dizisinin alt dizisi denir.

Tanım 2.7. (X, d) Metrik uzay olsun. {xn} dizisi yakınsak ise {xnk
} alt dizisi de aynı noktaya

yakınsar.

Sonlu boyutlu uzaylarda hangi metrik alınırsa alınsın yakınsaklık değişmez, fakat sonsuz

boyutlu uzaylarda bir metriğe göre yakınsak ise diğer metriğe göre yakınsak olmayabilir.

Bunu bir örnek ile gösterelim.

Örnek 2.4. C[0, 1] uzayını alalım. fn(t) = tn fonksiyonu ile d1 integral metriği ve d∞ max.

metriği ile yakınsaklığı araştıralım.

d1(fn, f) =

∫ 1

0

| fn(t)− f(t) | dt =

∫ 1

0

tn dt =
tn+1

n+ 1

∣∣∣∣1
0

=
1

n+ 1

böylece fn dizisi d1 metriğine göre yakınsak iken;

d∞(fn, f) = max
0≤t≤1

| fn(t)− f(t) |= max
0≤t≤1

{tn} ≠ 0

fn dizisi d∞ metriğine göre yakınsak olmadı. Yani; Sonsuz boyutlu uzayda metrik değişirse

yakınsak olup olmama durumu da değişmektedir.

Tanım 2.8. (X, d) Metrik Uzayında (xn) dizisini alalım. ∀ϵ > 0 ve m,n ≥ n0 için

d(xm, xn) ≤ ϵ olacak biçimde bir n0 doğal sayısı varsa (xn) dizisine Cauchy dizisi denir.

Eğer (X, d) Metrik Uzayında her Cauchy dizisi yakınsak ise (X, d) uzayına Tam Metrik

uzay denir.

Örnek 2.5. N uzayında d1(x, y) = |x − y| ve d2(x, y) = | 1
x
− 1

y
| metriklerini alalım. Bu

metriklerin Tam olup olmadığını inceleyelim.

(N, d1) uzayında her Cauchy dizisi sabittir. Bu nedenle dizi yakınsaktır. Yani (N, d1) uzayı
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tamdır.

{xn} dizisini xn = n olarak tanımlayalım. ∀ϵ > 0 için N = 1
ϵ
+1 kabul edelim. ∀m ≥ n ≥ N

için;

d2(xm, xn) = d2(m,n) = | 1
m

− 1

n
| < 1

m
< ϵ

olur. Kısacası {xn} dizisi (N, d2) uzayında Cauchy dizisi olur. Şimdi yakınsak olduğunu kabul

edelim. Yakınsaklığın tanımından, ∀ϵ ∈ (0, 1) ve n ≥ n0 için;

d2(xn, x) = d2(n, x) = | 1
n
− 1

x
| < ϵ

olur. Yani n → ∞ için 1
n
→ 1

x
yazılır. Sabit x sayısı için 1

x
= 0 olur. Bu ise çelişkidir. {xn}

dizisi (N, d2) uzayında yakınsak olmaz. Kısacası, (N, d2) uzayı Tam olmaz.

Örnek 2.6. Her (X, d) ayrık metrik uzayının tam olduğunu gösterelim. {xn} Cauchy dizisi

olsun. Bu durumda ϵ = 1
2

için bir n0 ∈ N sayısı m,n ≥ n0 özelliğindeki ∀m,n ∈ N için;

d(xn, xm) <
1

2

olacak şekilde vardır. Bu durumda n ≥ n0 özelliğinde ∀n ∈ N için;

d(xn, xn0) <
1

2

olur. Diğer taraftan d(xn, xn0) = 0 yada d(xn, xn0) = 1 olacağından n ≥ n0 özelliğindeki

∀n ∈ Niçin d(xn, xn0) = 0 olur. Bu durumda n ≥ n0 özelliğindeki ∀n ∈ N için xn = xn0

olur. Yani belli bir terimden sonra dizi sabittir. Dizi;

x1, x2, x3, ..., xn0−1 , xn0 , xn0 , xn0 , ...

şeklinde olur. Bu durumda dizi yakınsak ve limiti xn0 olur. O halde ayrık metrik uzay tamdır.

Tanım 2.9. (X, τ) topolojik uzay, x ∈ X ve A ⊂ X olsun. x ∈ U özelliğindeki her U açık

kümesinin A ve X \ A kümelerinin her ikisi ile ara kesiti boş değilse x noktasına A nın bir

yığılma noktası denir. Yani x ∈ U özelliğindeki her U açık kümesi için,

U ∩ A ̸= ∅ ve U ∩ (X \ A) ̸= ∅

ise x noktasına A nın yığılma noktası denir.
9



Örnek 2.7. c = {x = (x1, x2, ..., xk, ...) : ∃x0 ∈ R, limn→∞ xn = x0} uzayının

d(x, y) = supk|xk − yk| metriğine göre tam olduğunu gösterelim.

m = {x = (x1, x2, ...) : ∃x0 ∈ R, |xn| ≤ cx, n = 1, 2, 3, ...}

sınırlı diziler uzayı olmak üzere; (c, d) ⊂ (m, d) olduğu açıktır. Şimdi c den keyfi bir

x = (x1, x2, ..., xk, ...) elemanını alalım. Teorem (2.1) den

∃(xn) ⊂ (c, d) : xn → x yazarız. O halde ∀ϵ > 0 için ∃n0 doğal sayısı için;

n > n0 ; d(xn, x) ≤ ϵ

4

olur. ∀n için {xn
k} dizisi yakınsak olduğundan ∃n0 ∈ N : k,m ≥ n0için;

|xn
k − xn

m| <
ϵ

2

olur. O halde k, n ≥ n0 ve n ≥ N için;

|xk − xm| ≤ |xk − xn
k |+ |xn

k − xn
m|+ |xn

m − xm|

≤ 2.d(xn, x) + |xn
k − xn

m|

<
ϵ

2
+

ϵ

2
= ϵ

yani {xk} dizisi R uzayında bir Cauchy dizisi olur. R uzayı tam olduğundan bu dizi yakınsak

olur. Buradan x = (x1, x2, ..., xk, ...) ∈ c dir. Yani c = c̄ olduğunda; metrik uzayın kapalı alt

kümesi de tam olduğundan (c, d) uzayı tam olur.

Teorem 2.1. (X, d) Metrik uzayında x ∈ X olmak üzere, {xn} dizisini alalım. {xn} dizisinin

x noktasına yakınsak olması için gerek ve yeter şart x noktası {xn} dizisinin bir yığılma

noktası olmasıdır.

Kanıt. ⇒: {xn} dizisinin {xnk
} alt dizisi x noktasına yakınsasın. ϵ > 0 ve N ∈ N olsun.

{xnk
} dizisi x noktasına yakınsına yakınsadığından, bir N1 ∈ N sayısı nk ≥ N1 olacak

şekilde ∀n ∈ N için;

d(xnk
, x) < ϵ
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olacak şekilde nN ≥ max{N1, N} olsun. Böylece;

d(xN , x) < ϵ

olur. Tanımdan dolayı x noktası xn dizisinin yığınma noktası olur.

⇐ : x noktası {xn} dizisinin yığınma noktası olsun. Bu durumda; ∀ϵ > 0 ve N ∈ N için bir

n ∈ N sayısı;

d(xn, x) ≤ ϵ ve n ≥ N olacak şekilde vardır. n1 ∈ N sayısı n1 ≥ N ve

d(xn1 , x) ≤ 1

özelliğindeki en küçük doğal sayı olsun. n2 ∈ N sayısı n2 > n1 ve

d(xn2 , x) ≤
1

2

özelliğindeki en küçük doğal sayı olsun. n3 ∈ N sayısı n3 > n2 ve;

d(xn3 , x) ≤
1

3

özelliğindeki en küçük doğal sayı olsun. Bu şekilde devam edersek; ∀k ∈ N için {xn} dizisi-

nin

d(xnk
, x) ≤ 1

k

özelliğine sahip bir {xnk
} alt dizisi elde edilir.

0 ≤ lim
k→∞

d(xnk
, x) < lim

k→∞

1

k
= 0

olduğundan limk→∞ d(xnk
, x) = 0 olur. Böylece, {xnk

} alt dizisi x noktasına yakınsar. □

Tanım 2.10. (X, d1) ve (Y, d2) metrik uzaylar, f : (X, d1) → (Y, d2) olmak üzere, x0 ∈ X

olsun. ∀ϵ > 0 için d1(x, x0) ≤ δ olduğunda

d2(f(x0), f(x)) ≤ ϵ

olacak biçimde bir δ > 0 sayısı varsa f fonksiyonuna x0 noktasına süreklidir denir. Eğer f

fonksiyonu X’in her noktasında sürekli ise f ye sürekli fonksiyon denir.

Tanım 2.11. (X, d1) ve (Y, d2) metrik uzaylar, f : (X, d1) → (Y, d2) olmak üzere,
11



(1) ∀ϵ > 0 için bir δ > 0 sayısı d1(x, y) < δ eşitsizliğini sağlayan ∀x, y ∈ X için

d2(f(x), f(y)) < ϵ olacak şekilde f fonksiyonuna düzgün sürekli denir.

(2) ∀x, y ∈ X için d2(f(x), f(y)) < k.d1(x, y) olacak şekilde bir k > 0 sayısı varsa f

fonksiyonuna Lipschitz Süreklidir denir.

Örnek 2.8. (R, d) metrik uzay olsun. f(x) = ax+ b şeklinde tanımlı

f : (R, d) → (R, d)

fonksiyonunun Lipschitz sürekli olduğunu gösterelim.

ϵ > 0 olsun. d standart metrik olmak üzere;

d(f(x), f(y)) = |f(x)− f(y)| = |ax+ b− (ay + b)| = |a(x− y)|

= |a|.|x− y| = |a|.d(x, y) ≤ k.d(x, y)

k = |a| alırsak f fonksiyonu Lipschitz sürekli olur.

Tanım 2.12. (X, d) Metrik uzayında T : X → X olmak üzere,x ∈ Xiçin {xn} ∈ X için ;

T k−1(xn) → x =⇒ T k(xn) → T (x)

sağlanırsa; T ye k-sürekli dönüşüm denir.

Tanım 2.13. (X, d) metrik uzay ve ∅ ̸= A ⊂ X olsun. ∀x, y ∈ A için d(x, y) < r olacak

şekilde bir r > 0 sayısı varsa; A ’ya bu uzayda sınırlıdır denir.

Tanım 2.14. (X, d) metrik uzay ve A, X’in bir alt kümesi olsun. A nın her açık örtüsünün

sonlu bir alt örtüsü varsa A ya kompakt küme denir. X in her alt kümesinde kompakt ise

(X, d) ye Kompakt Metrik uzay denir. Kompakt Metrik uzayda her dizinin yakınsak bir alt

dizisi vardır.

Tanım 2.15. (X, d) metrik uzayından alınan her dizinin yakınsak bir alt dizisi varsa bu uzaya

dizisel kompakt uzay denir. Dizisel kompakt uzay tamdır.

Örnek 2.9. (R, τ) standart uzayının A = (0,∞) alt kümesinin kompaktlığını araştıralım.

∀n ∈ N için Un = (0, n) olsun.∀n ∈ N için (0, n) kümesi R de açık ve Un = (0, n) ∩ A
12



olduğundan Un ∈ τn olur. A = ∪Un olduğundan {Un : n ∈ N} kümesi A nın açık bir

örtüsüdür.

Bu örtünün {(0, n1), (0, n2), (0, n3), ..., (0, nm)} gibi sonlu alt örtüsünün olduğununu kabul

edelim.

n0 = max{ni = 1, 2, 3, ...,m} diyelim. Bu durumda;

A = (0, n1) ∪ (0, n2) ∪ ... ∪ (0, nm) = (0, n0)

olur. Bu ise (n0+1) ∈ A ve (n0+1) /∈ (0, n0) olduğundan bu bir çelişki olur. Yani (A, τ) uzayı

kompakt değildir. Böylece A kümesi R standart uzayının kompakt bir alt kümesi değildir.

Teorem 2.2. Her kompakt metrik uzay tamdır.

Tanım 2.16. X normlu uzayından alınan her Cauchy dizisi yakınsak ise bu uzaya Banach

Uzayı denir.
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2.1 Sabit Nokta Tanımı

Tanım 2.17. X boş olmayan bir küme olmak üzere, T : X → X dönüşümü verilsin. Eğer

T (x) = x olacak şekilde bir x ∈ X varsa, bu x değerine T nin sabit noktası denir. T nin tüm

sabit noktalarının kümesi F (T ) ile gösterilir.

Örnek 2.10. X = R ve T : R → R ve Tx = x+ 1 tanımlanırsa; F (T ) = ∅ olur.

Örnek 2.11. X = R ve T : R → R ve Tx = −x2 − 3x tanımlanırsa; F (T ) = {−4, 0}

bulunur.

Örnek 2.12. T : [1,∞) → [1,∞) ve Tx = 25
26
.(x+ 1

x
) tanımlanırsa; F (T ) = {5} bulunur.

Tanım 2.18. (X, d) metrik uzay f : X → X dönüşümü olsun. ∀x, y ∈ X için;

d(fx, fy) ≤ λd(x, y)

olacak şekilde λ > 0 varsa f ye Lipschitz dönüşümü denir. Her Lipschitz koşulunu sağlayan

fonksiyon süreklidir, ancak tersi her zaman doğru değildir.

Teorem 2.3. (X, d1) ve (Y, d2)iki metrik uzay olsun. T : X → Y fonksiyonu Lipschitz sürekli

ise düzgün süreklidir.

Kanıt. f fonksiyonu Lipschitz sürekli olduğundan ∀x, y ∈ X için;

d2(fx, fy) ≤ k.d1(x, y)

koşulunu sağlayacak biçimde bir k > 0 sayısı bulunur. δ = ϵ
k

seçelim. d1(x, y) < δ özelliğini

sağlayan ∀x, y ∈ X için;

d2(fx, fy) ≤ k.d1(x, y) < k.δ = ϵ

olur.Bu durumda f düzgün sürekli olur. □

Tanım 2.19. T : (X, d1) → (X, d2) dönüşümü, ∀x, y ∈ X ve λ ∈ (0, 1) olmak üzere,

d2(Tx, Ty) ≤ λd1(x, y)
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şartı sağlanırsa T ye daralma (büzülme) dönüşümü denir. Eğer λ = 1 ise T ye genişleme

olmayan dönüşüm denir.

Bu tanımdan bütün daralma dönüşümlerinin sürekli oldukları sonucu hemence çıkarılabile-

cektir. Ancak bunun tersi doğru olmaz. Yani sürekli dönüşümlerin daralma koşulunu sağla-

maları gerekmez.

Bu noktada, Bir tam metrik uzayda tanımlı her daralma dönüşümünün bir sabit noktaya sa-

hip olduğunu ve bu sabit noktanın tek olduğunu belirtmemiz gerekir. Bu sonuç bizi Banach

daralma prensibi olarak bilinen meşhur teorem ile tanıştıracaktır.

Tanım 2.20. (X, d) metrik uzay olmak üzere T : X → X dönüşümü, ∀x, y ∈ X ve

λ ∈ (0, 1)ve L ≥ 0 olmak üzere,

d(Tx, Ty) ≤ λd(x, y) + Ld(y, Tx)

şartı sağlanırsa T ye zayıf büzülme dönüşümü denir.

Teorem 2.4. T : [a, b] → [a, b] fonksiyonu türevlenebilir olsun. T nin bir büzülme dönüşümü

olması için gerek ve yeter şart ∀x ∈ [a, b] için | T ′(x) ≤ k | olacak şekilde 0 ≤ k < 1 olacak

şekilde bir k sayısının bulunmasıdır.

Kanıt. ( =⇒ :) T bir daralma (büzülme) dönüşümü olduğundan ∀x, y ∈ [a, b] için

| Tx− Ty |≤ k. | x− y |,

olacak şekilde 0 ≤ k < 1 olacak şekilde k sayısı vardır. x, x+∆x ∈ [a, b] alırsak;

| T (x+∆x)− Tx |≤ k. | (x+∆x)− x |= k. | ∆x |,

∆x ̸= 0 için;

| T (x+∆x)− Tx

∆x
|≤ k

olur. Buradan da;

| T ′(x) |= lim
∆x→0

| T (x+∆x)− Tx

∆x
|≤ k

elde edilir. Böylece ∀x ∈ [a, b] için | T ′(x) |≤ k elde edilir.

⇐) ∀x ∈ [a, b] için | T ′(x) |≤ k olacak şekilde 0 ≤ k < 1 olacak şekilde k sayısı var olsun.
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x ̸= y özelliğindeki ∀ ∈ [a, b] için Ortalama teoremi gereğince;

| T (x)− T (y) |
| x− y |

=| T ′(c) |,

olacak şekilde x < c < y olacak şekilde bir c noktası vardır.| T ′(x) |≤ k olduğundan,

| T (x)− T (y) |
| x− y |

=| T ′(c) |≤ k

olur. Böylece;

| Tx− Ty |≤ k. | x− y |,

bulunur. Bu da T nin bir büzülme dönüşümü olması demektir. □

Örnek 2.13. T : [1,∞) → [1,∞) olmak üzere Tx = 25
26
.(x+ 1

x
) tanımlayalım. Bu durumda

T bir büzülme dönüşümü olacaktır.

x > y olmak üzere x, y ∈ [1,∞) olsun.Bu durumda 1
x
− 1

y
< 0 olur.

d(T (x), T (y)) = | T (x)− T (y) |≤| 25
26

.(x+
1

x
)− 25

26
.(y +

1

y
) |

=
25

26
[| (x− y) + (

1

x
− 1

y
) |] ≤ 25

26
| x− y |

olur. Böylece, T dönüşümü bir büzülme dönüşümü olur.

Örnek 2.14. T : (X, d) → (X, d) büzülme dönüşümü olsun. ∀x ∈ X için {T n(x)} dizisinin

bir Cauchy dizisi olduğunu gösterelim.

x0 keyfi nokta olmak üzere, xn = Txn−1 = T n(x0) tanımlayalım.

∀n ∈ N için d(xn, xn+1) = d(Txn−1, Txn) ≤ K.d(xn−1, xn) olur. O halde ∀m,n ∈ N ve

m > n için,

d(xm, xn) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

≤ Knd(x0, x1) +Kn+1d(x0, x1) + ...+Km−1d(x0, x1)

= [Kn +Kn+1 + ...+Km−1].d(x0, x1)

=
Kn

1−K
.d(x0, x1)

olur. Bu da {xn} dizisinin Cauchy dizisi olduğunu verir.
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Teorem 2.5. (Banach Sabit Nokta Teoremi) (X, d) tam metrik uzay olsun. T : X → X

daralma dönüşümü tek bir sabit noktaya sahiptir. Yani; 0 < λ < 1 olmak üzere ∀x, y ∈ X

için;

d(Tx, Ty) ≤ λ. d(x, y) (2.1)

eşitsizliği sağlanıyorsa Tx0 = x0 olacak şekilde bir tek x0 ∈ X vardır.

Kanıt. x0 ∈ X keyfi bir nokta olmak üzere,

x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn = Txn−1 = T n−1x0,

şeklinde tanımlı {xn} dizisini göz önüne alalım. Bu durumda M < 1 olmak üzere ∀n ∈ N

için;

d(xn, xn+1) = d(Txn−1, Txn) ≤ M.d(xn−1, xn),

olur. Bunu m > n ve m,n ∈ N için yazarsak;

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

≤ Mn.d(x0, x1) +Mn+1.d(x0, x1) + ...+Mm−1.d(x0, x1)

= (Mn +Mn+1 + ...+Mm−1).d(x0, x1)

=
Mn

1−M
.d(x0, x1)

M < 1 olduğundan, d(xn, xm) = 0 olur. Bu bize {xn}) dizisinin Cauchy dizisi olduğunu

verir. X in tam olması nedeniyle limxn = z olacak biçimde bir z ∈ X vardır. Yine T nin

sürekli olmasından;

z = limxn+1 = limTxn = T limxn = Tz

olur. Bu da T ’nin sabit noktasının olduğunu gösterir. Şimdi de T nin bir başka w ∈ X sabit

noktası olduğunu kabul edelim.

0 < d(z, w) = d(Tz, Tw) ≤ M.d(z, w) < d(z, w)

bulunur. Bu ise M < 1 olduğundan çelişkidir. Yani T nin sabit noktası tektir. □
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Teorem 2.6. (X, d) tam metrik uzay ve T : X → X olmak üzere, ∀x, y ∈ X için

d(Tx, Ty) ≤ K.[d(x, Tx) + d(y, Ty)] (2.2)

eşitsizliği 0 < K ≤ 1/2 olmak üzere, Tx0 = x0 olacak şekilde bir tek x0 ∈ X varsa T

dönüşümüne Kannan dönüşümü adı verilir. (Gornicki, 2017)

Banach ve Kannan dönüşümünü sağlamadığı halde sabit noktası olan bir örnek verelim.

Örnek 2.15. X = [0, 1] ∪ [3
2
, 5
3
] uzayında d(x, y) =| x− y | uzaklık metriğini; T : X → X

Tx =

0, 0 ≤ x ≤ 1

1, 3
2
≤ x ≤ 5

3

olarak tanımlayalım. İlk olarak T nin Banach teoremini sağlayıp sağlamadığını inceleyelim;

x = 1 ve y = 3
2

alırsak,

d(Tx, Ty) =| Tx− Ty |=| T (1)− T (3
2
) |= 1 yerine yazarsak;

1 = d(Tx, Ty) ≤ λ. | x− y |= λ. | 1− 3

2
|= λ

2

olur ki λ ≥ 2 demektir. Yani T , Banach (2.1) teoremini sağlamaz. Şimdi Kannan teoremini

sağlayıp sağlamadığını kontrol edelim.

x = 0 ve y = 3
2

alırsak,

d(Tx, Ty) =| Tx− Ty |=| T (0)− T (3
2
) |= 1 olur.

1 = d(Tx, Ty) ≤ λ. | x− y |= K.[d(0, T (0)) + d(
3

2
, T (

3

2
)] = K[0 +

1

2
] =

K

2

olur ki; K ≥ 2 olur. K /∈ [0, 1
2
] bulunamadığından T dönüşümü Kannan teoremini (2.2)

sağlamaz. Fakat T (0) = 0 olduğundan x = 0 noktası sabit nokta olur.

Teorem 2.7. (X, d) tam metrik uzay T : X → X (2.2) şartını sağlayan bir dönüşüm olsun.

{T nx} dizisi v noktasına yakınsar ve T nin bir v ∈ X sabit noktası vardır.

Kanıt. Rutin işlemler ile kolayca kanıtlanabilir. □
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Tanım 2.21. (X, d) bir tam metrik uzay ve T : X → X bir fonksiyon olsun. Herhangi bir

x, y ∈ X, x ̸= y için;

d(Tx, Ty) < max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

ise T dönüşümüne bir Rhoades dönüşümü denir.

Teorem 2.8. (X, d) bir tam metrik uzay ve T : X → X bir Rhoades dönüşümü olsun. T nin

X de bir sabit noktaya sahip olması için gerekli ve yeterli koşul

Tmx = T nx

olacak şekilde m > n ≥ 0, m ve n tamsayıları ile bir x ∈ X noktasının var olmasıdır.

Metrik Sabit nokta teorisinde daralma dönüşümleri yapısı çerçevesinde 2002 yılına kadar

yapılmış olan çalışmaları içerisinde toplayan bir çalışma olarak (Kumar, 2002) doktora tezi

verilebilir. Bu çerçevede iki farklı dönüşümün ortak sabit noktalarının hangi koşullar altında

var olabileceği problemi çalışılmaya başlanmış ve uyumlu (compatible) dönüşüm kavramı

Jungck (Jungck, 1986) tarafından tanıtılmıştır. Konu ile ilgili olarak (Taş, K. ve ark., 1996)

çalışmasını önerebiliriz.

Diğer taraftan, birçok araştırmacı Banach daralma prensibini genişletirken aslında metrik

uzay olma koşullarının bir kısmının bu tür teoremleri elde etmekte hiç de gerekli olmadı-

ğını farketmiş ve uzayın yapısını zayıflatarak, değiştirerek de Banach daralma prensibini ge-

nişletmeyi başarmıştır. Bu doğrultuda yapılan genişlemelerin en önemlilerinden bazıları da

b-metrik uzaylar, partial metrik uzaylar üzerinedir. Bakhtin, (Bakhtin, 1989 ) b-metrik uzay

kavramını tanıttı, bu da Czerwik tarafından (Czerwik, 1993) genişletilmiştir.
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3. SABİT NOKTA TEOREMLERİ

3.1 b-Metrik Uzay

Tanım 3.1. X boş olmayan bir küme, db : X ×X → R+ olmak üzere, ∀x, y, z ∈ X için;

(1) db(x, y) = 0 ⇐⇒ x = y,

(2) db(x, y) = db(y, x),

(3) db(x, y) ≤ s.[db(x, z) + db(z, y)],

s ≥ 1 şartlarını sağlayan db fonksiyonuna X uzayında b-metrik, (X, db) ikilisine ise b-metrik uzay

denir (Czerwik, 1993).

Yukarıdaki tanımda s = 1 olduğu taktirde, Metrik uzay olur. Yani b-metrik uzaylar Metrik

uzayların genelleştirilmiş halidir.

Örnek 3.1. M = [0,∞) ve ρ : M × M → R+ alalım. p > 1 Reel sayı olmak üzere,

ρ(x, y) =| x− y |p şeklinde tanımlansın. ∀x, y, z ∈ M için u = x− z ve v = z − y alalım.

| x− y |p = | u+ v |p

≤ (| u | + | v |)p

≤ [2.max(| u |, | v |)]p

≤ 2p(| x− z |p + | z − y |p),

elde ederiz. Bu da ρ(x, y) ≤ 2p[ρ(x, z) + ρ(z, y)] demektir. Böylece; 2p katsayısı ile (M, ρ)

b−metrik uzay olur. Diğer taraftan ∀x > y > z alırsak;

| x− y |p=| u+ v |p> up + vp = (x− z)p + (z − y)p

elde edilir. Bu da ρ(x, y) > ρ(x, z) + ρ(z, y) demektir. Böylece, (M, ρ) metrik uzay olmaz.

Örnek 3.2. d : XxX → R+ olmak üzere X = {0, 1, 2} kümesini ,

d(2, 0) = d(0, 2) = m ≥ 2, d(1, 0) = d(0, 1) = d(2, 1) = d(1, 2) = 1 ve
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d(0, 0) = d(1, 1) = d(2, 2) = 0 olarak tanımlansın.

d fonksiyonu b-metrik tanımı olan tanım(3.1) şartını sağlar. Fakat;

d(2, 0) = m ve d(2, 1) + d(1, 0) = 1 + 1 = 2 değerleri üçgen eşitsizliğinde yerine yazarsak,

Yani;

d(2, 0) = m > d(2, 1) + d(1, 0)

olduğundan d fonksiyonu s = m/2 için X de b-metrik uzay olmasına rağmen, metrik uzay

olmaz (Aydi ve ark., 2012)

Örnek 3.3. 0 < p < 1 olmak üzere,

lp = {{xn}| ⊂ R :
∞∑
n=1

|xn|p < ∞}

uzayını alalım. {xn} = x ve {yn} = y olacak şekilde d : lp × lp → R fonksiyonu için

d(x, y) = (
∞∑
n=1

|xn − yn|p)
1
p

şeklinde tanımlayalım. lp uzayı bir b-metrik uzaydır.

Örnek 3.4. d : X ×X → R+ olsun. 0 < p < 1 olmak üzere,∫ 1

0
|x(t)|pdt < ∞ şeklinde tanımlı reel değerli x(t) fonksiyonlarının kümesi olsun. ∀x, y ∈

Lp için

d(x, y) = (

∫ 1

0

|x(t)− y(t)|pdt)
1
p

olur. Buradan (Lp, d) uzayı s = 2
1
p katsayısı ile b-metrik uzay olur (Berinde, 1993)

Örnek 3.5. d : X = N ∪ {∞} olmak üzere X ×X → R+ olacak şekilde,

d(x, y) =



0, m = n; ise

| 1
m
− 1

n
|, m ̸= n ve m,n çift

5, m ve n tek ise

2, diğer durumlarda;
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şeklinde tanımlansın. Tanım.3.1 da tanımlanan b-metrik şartlarından i) ve ii) şartlarını sağ-

ladığı kolayca görülür. x, y, z ∈ X ve s = 5
2

alırsak;

d(x, y) ≤ 5

2
[d(x, z) + d(z, y]

(X, d) b-metrik uzay olur. Fakat d fonksiyonu X de sürekli değildir ( Kamran ve ark., 2017).

Tanım 3.2. (X, d) b-metrik uzayında (xn) dizisini alalım. ∀ϵ > 0 ve n ≥ n0 için d(xn, x) ≤ ϵ

olacak biçimde bir n0 doğal sayısı varsa (xn) dizisi x ∈ X noktasına yakınsar denir (Bori-

ceanu, 2009)

Tanım 3.3. (X, d1) ve (Y, d2) b-metrik uzaylar, f : (X, d1) → (Y, d2) olmak üzere, x ∈ X

olsun. X kümesindan alınan herhangi bir {xn} dizisi x noktasına yakınsıyorken; Y metrik

uzayındaki {f(xn)} dizisi f(x) e yakınsıyor ise f fonksiyonuna dizisel süreklidir denir.

Teorem 3.1. (X, d) tam b-metrik uzay olsun. T : X → X olmak üzere, φ : R+ → R+ artan

fonksiyonu ∀t > 0 için limn→∞ φn(t) = 0 koşuluna uyan X uzayındaki her x, y için

d(Tx, Ty) ≤ φ d(x, y) (3.1)

eşitsizliği sağlanırsa; T nin u ∈ X olacak şekilde, bir tek sabit noktası vardır. Ayrıca; ∀t ∈ X

için,

lim
n→∞

φn(t) = 0

olur (Czerwik, 1993).

Kanıt. x ∈ X ve ϵ > 0 alalım. n ∈ N elemanı φn(t) < 4−1 yı sağlayacak şekilde bir doğal

sayı olsun. k ∈ N olmak üzere F = T n ve xk = F k(x) alalım. ∀x, y ∈ X ve α = φn olsun.

(3.1) ifadesini kullanırsak;

d(Fx, Fy) ≤ φn[d(x, y)] = αd(x, y) (3.2)

olur. k ∈ N için;

d(xk+1, xk) = d(F k(F (x), F k(x))) ≤ φkn(d(F (x), x)) = αk(d(F (x), x))
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son eşitsizlikte k → ∞ limit aldığımızda d(xk+1, xk) = 0 olur.

d(xk+1, xk) < ϵ.4−1 alalım. ∀z ∈ K(xk, ϵ) := {y ∈ X : d(xk, y) ≤ ϵ} olsun.

d(F (z), F (xk)) ≤ α[d(xk, z)] ≤ α(ϵ) = φn(ϵ) < ϵ.4−1,

d[F (xk), xk)] = 2(ϵ.4−1 + ϵ.4−1) = ϵ

F (z) ∈ K(xk, ϵ) olur. Bu ise F : K(xk, ϵ) → K(xk, ϵ) demektir. Şimdi m, s > k ve

xm, xs ∈ K(xk, ϵ) alırsak;

d(xm, xs) ≤ 4ϵ

elde edilir. Yani {xn} dizisi Cauchy dizisi olur.

(X, d) tam olduğundan xk → u biçiminde bir u ∈ X vardır. (3.2) eşitsizliğinden F sürekli

olduğundan,

u = lim
n→∞

xk+1 = lim
n→∞

F (xk+1) = F (u)

olur. Yani u noktası F nin sabit noktası olur.(3.1) eşitsizliğinen T dönüşümünün sabit noktası

tek olur.

Şimdi ∀x ∈ X ve ∀r = 0, 1, 2, 3, ..., (n− 1) için;

T nk+r(x) = F k[T r(x)] → u(n → ∞)

Böylece; ∀x ∈ X için m → ∞ limiti alınırsa, Tm(x) → u olur. □

Teorem 3.2. (X, d) tam b-metrik uzay olsun. s ≥ 1 sabit sayısı xn = Txn−1 = T nx0,

n = 1, 2, 3, ... olmak üzere, {xn} ⊂ X şeklinde alalım. T : X → X olmak üzere,µ ∈ [0, 1
2
)

ve her x, y ∈ X için

d(Tx, Ty) ≤ µ. [d(x, Tx) + d(y, Ty)] (3.3)

olduğunda x0 ∈ X olacak şekilde xn → x0 yakınsar ve x0 noktası T nin tek sabit noktası

olur (Kir, 2013).
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Kanıt. x0 ∈ X olmak üzere {xn} ⊂ X alt kümesini xn = Txn−1 = T nx0, n = 1, 2, 3, ...

iterasyonu ile tanımlayalım. (3.3) eşitsizliğini kullanırsak;

d(xn, xn+1) = d(Txn−1, Txn) ≤ µ[d(xn−1, xn) + d(xn, xn+1)]

yazılır. Gerekli düzenlemeleri yaparsak;

d(xn, xn+1) ≤ µ

1− µ
d(xn−1, xn)

≤ (
µ

1− µ
)nd(x0, x1)

Burada µ ∈ [0, 1
2
) olduğundan µ

1−µ
∈ [0, 1) olur. Böylece T büzülme dönüşümü olur. X tam

olduğundan {xn} dizisi x0 noktasına yakınsasın.

d(x0, Tx0) ≤ s [d(x0, xn) + d(xn, Tx0]

≤ s d(x0, xn) + s µ[d(xn−1, xn) + d(xn, Tx0)]

≤ s

1− s µ
d(x0, xn) +

s µ

1− s µ
d(xn, x0)

≤ s

1− s µ
d(x0, xn) +

s µ

1− s µ
(

µ

1− µ
)nd(x0, x1)

n → ∞ limit alırsak; limn→∞ d(x0, Tx0) = 0 olur. Böylece, x0 noktası T nin bir sabit

noktasıdır. Şimdi T nin bir başka sabit noktasının y0 daha varlığını kabul edelim.

0 < d(x0, y0) = d(Tx0, T y0) ≤ K.[d(x0, T y0) + d(y0, T y0)] = 0

olur. Bu ise çelişkidir. Böylece T nin sabit noktası tektir. □

Teorem 3.3. (X, d) tam b-metrik uzay olsun. xn = Txn−1 = T nx0, n = 1, 2, 3, ... olmak

üzere, {xn} ⊂ X şeklinde alalım. T : X → X olmak üzere,s.λ ∈ [0, 1
2
) ve her x, y ∈ X için

d(Tx, Ty) ≤ λ [d(x, Ty) + d(y, Tx)] (3.4)

olduğunda x0 ∈ X için xn → x0 yakınsar ve x0 noktası T nin tek sabit noktası olur (Kir,

2013).
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Kanıt. x0 ∈ X olmak üzere {xn} ⊂ X alt kümesini xn = Txn−1 = T nx0 iterasyonu ile

tanımlayalım. (3.4) eşitsizliğini kullanırsak;

d(xn, xn+1) = d(Txn−1, Txn)

≤ λ[d(xn−1, Txn) + d(xn, Txn−1)]

= λ[d(xn−1, xn+1) + d(xn, xn)]

≤ sλ[d(xn−1, xn) + d(xn, xn+1)]

yazılır. Gerekli düzenlemeleri yaparsak;

d(xn, xn+1) ≤
sλ

1− sλ
d(xn−1, xn)

Burada sλ ∈ [0, 1
2
) olduğundan sλ

1−sλ
∈ [0, 1) olur. Böylece T büzülme dönüşümü olur. X

tam olduğundan {xn} dizisi x0 noktasına yakınsasın.

d(x0, Tx0) ≤ s[d(x0, xn+1) + d(xn+1, Tx0)]

≤ sd(x0, xn+1) + s[d(Txn, Tx0)]

≤ sd(x0, xn+1) + sλ[d(x0, Txn) + d(xn, Tx0)]

n → ∞ limit alırsak; limn→∞ d(x0, Tx0) ≤ sλd(x0, Tx0) olur. Bu son eşitlik,

d(x0, Tx0) = 0 olması halinde geçerli olur. yani; Tx0 = x0 olur. Şimdi T nin y0 gibi başka

bir sabit noktasının varlığını kabul edelim.

d(x0, y0) = d(Tx0, T y0) ≤ λ[d(x0, T y0) + d(y0, Tx0)]

olur. Bu ise d(x0, y0) ≤ 2.λd(x0, y0) olur. Bu da x0 = y0 olduğundan, T nin tek sabit noktası

olur. □

Teorem 3.4. (X, d) Tam b-metrik uzay olsun. s ≥ 1 ,k ∈ [0, 1) ve k.s < 1 olacak şekilde

T : X → X büzülme dönüşümü olsun. T dönüşümünün bir tek sabit noktası vardır (Kamran,

2017).
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Tanım 3.4. (M, ρ), b − metrik uzay ve M de (xn) dizisi tanımlansın.{xn} dizisini Cauchy

dizisi olması için gerekli ve yeterli koşul ∀ϵ > 0 ve m,n ≥ n(ϵ) için ρ(xm, xn) ≤ ϵ olacak

biçimde bir n(ϵ) doğal sayısının var olmasıdır (Khan, 2017).

Tanım 3.5. (M, ρ), b−metrik uzay ve M de {xn} dizisi tanımlansın.{xn} dizisinin yakınsak

olması için gerek ve yeter şart ∀ϵ > 0 ve n ≥ n(ϵ) için ρ(xn, x) ≤ ϵ olacak biçimde bir x ∈ X

ve ϵ doğal sayısının var olmasıdır.

Tanım 3.6. (M, ρ), b − metrik uzay ve L ⊂ M olsun. L nin kompakt olması için gerek ve

yeter şart L nin elemanlarından oluşan her dizisinin yakınsak alt dizisinin var olmasıdır.

Tanım 3.7. (M, ρ), b−metrik uzay ve L ⊂ M olsun. L nin kapalı olması için gerek ve yeter

şart L deki her {xn} dizisinin x ∈ L elemanına yakınsamasıdır.

3.2 Asimptotik Düzenlilik

Banach uzaylarında doğrusal olmayan foksiyonel denklemlerin iterasyon yolu ile çözüle-

bilmeleri için Browder and Petryshyn tarafından (Browder ve Petryshyn, 1967) asimtotik

düzenlilik kavramı tanıtılmıştır.

Tanım 3.8. (M, ρ), b − metrik uzay ve T : X → X olmak üzere, her x, y ∈ X için {xn}

dizisini alalım.

lim
n→∞

ρ(xn, Txn) = 0

olursa; {xn} dizisine asimptotik T− düzenli dizi denir (Khan, 2017).

Eğer T : X → X bir daralma dönüşümü ise veya Kannan daralma koşulunu sağlıyorsa o

zaman asimtotik düzenli de olacaktır.

Örnek 3.6. M = [0,∞) ve ρ : M×M → R+ alalım.

ρ(x, y) =| x− y |p ve p ≥ 1 olmak üzere x ∈ M olacak şekilde alırsak (M, ρ) 2p katsayısıyla

b-metrik uzay olur. Tx = x
2

alalım ve {xn} dizisini n pozitif tamsayı olacak şekilde
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M metriğinde 0 a yakınsasın. Buradan;

lim
n→∞

ρ(xn, Txn) = lim
n→∞

| xn − Txn |p

= lim
n→∞

| xn −
xn

2
|p

= lim
n→∞

| xn

2
|p= 0

olduğundan; {xn} dizisi (M, ρ) uzayında Asimptotik T-düzenli dönüşüm olur.

Tanım 3.9. (M, ρ) b-metrik uzay, T : M → M olmak üzere, her x ∈ M için

lim
n→∞

d(T n+1x, T nx) = 0 (3.5)

olursa T ’ye asimptotik düzenli dönüşüm denir (Ciric, 2005).

Örnek 3.7. M = [0, 1] olmak üzere alışılmış metriği göz önüne alalım. T : M → M dönüşü-

münü

T0 = 1
2

ve 0 < x ≤ 1 için Tx = x
2

şeklinde tanımlayalım. sonra 0 < x < y ≤ 1 için;

|Tx− Ty| = 1

2
(y − x) <

1

2
(y + x) = |x− Tx|+ |y − Ty|

olur. Ayrıca 0 < x ≤ 1 için;

|T0− Tx| = 1

2
− x

2
<

1

2
+

x

2
= |0− T0|+ |x− Tx|

yazarız. Böylece, her x, y ∈ [0, 1] ve x ̸= y için;

|Tx− Ty| ≤ |x− Tx|+ |y − Ty|

doğal olarak T nin sabit noktası olan asimptotik düzenli dönüşüm olur (Gornicki, 2017).
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Örnek 3.8. M = [0,∞) ve ρ : M×M → R+ alalım.

ρ(x, y) =| x− y |p ve x ∈ M olacak şekilde Tx = x
2

tanımlansın.

lim
n→∞

ρ(T nx, T n+1x) = lim
n→∞

| T nx, T n+1x |p

= lim
n→∞

| x

2n
− x

2n+1
|p

= lim
n→∞

| x

2n+1
|p= 0

olduğundan; T dönüşümü, M nin tüm noktaları için Asimptotik düzenli dizi olur.

Örnek 3.9. M = {0} ∪ [1, 2] alışılmış metrik ile T : M → M dönüşümünü ;

Tx =

1, x = 0;

0, x ̸= 0;

olacak şekilde tanımlansın. Her x, y ∈ M için ,

d(Tx, Ty) ≤ 1

2
.[d(x, Tx) + d(y, Ty)]

eşitsizliği sağlanmasına rağmen T nin sabit noktası yoktur. Yani burada {Tx} dizisi yakınsak

değildir. Böylece T asimptotik düzenli dönüşüm olmaz.

(X, d) metrik uzayındaki bir {xn} dizisine n → ∞ için;

d(xn, xn+1) → 0

oluyorsa asimptotik düzenli dizi denir.

Gornicki, (Gornicki, 2019) makalesinde bir dizinin asimptotik düzenli olmasının bu dizi-

nin yakınsaklığını gerektirmediğini göstermiştir. J. Gornicki, yine bu makalesinde asimptotik

düzenli bir dizinin herhangi bir alt dizisinin de asimptotik düzenli olduğunu söyleyemeyece-

ğimizi örneklendirmiştir.

Teorem 3.5. (M, d) tam metrik uzay ve K < 1 olmak üzere, T : M → M (2.2) şartını

sağlayan asimptotik düzenli dönüşüm olsun. T nin bir v ∈ M sabit noktası vardır (Gornicki,

2017).
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Kanıt. x ∈ M ve xn = T nx tanımlayalım. m > n için asimptotik düzenlilik tanımını kulla-

nırsak;

d(T n+1x, Tm+1x) ≤ K.[d(T nx, T n+1x) + d(Tmx, Tm+1x)]

n → ∞ için limit alınırsa {T nx} dizisinin M de Cauchy dizisi olduğunu verir. M tam oldu-

ğundan v ∈ M olacak şekilde; limn→∞ T nx = v olur. Burada,

d(v, Tv) ≤ d(v, T n+1x) + d(T n+1x, Tv)

≤ d(v, T n+1x) +K[d(T n+1x, T nx) + d(v, Tv)]

elde edilir.

d(v, Tv) ≤ K

1−K
d(T nx, T n+1x) +

1

1−K
.d(T n+1x, v)

burada n → ∞ limiti alırsak; Tv = v elde ederiz. Böylece sabit nokta tektir. Dolayısıyla

∀x ∈ X için {T nx} dizisi v ye yakınsar. □

Teorem 3.6. (X, d) tam metrik uzay T : X → X asimptotik düzenli dönüşüm olsun. ∀x, y ∈

X için;

d(Tx, Ty) ≤ M.[d(x, Tx) + d(y, Ty) + d(x, y)] (3.6)

olacak şekilde M < 1 varsa, T nin bir tek sabit noktası vardır (Gornicki, 2017).

Kanıt. x ∈ X ve xn = T nx tanımlayalım.

d(T n+1x, Tm+1x) ≤ M.[d(T nx, T n+1x) + d(Tmx, Tm+1x) + d(T nx, Tmx)]

≤ 2M.[d(T nx, T n+1x) + d(Tmx, Tm+1x)]

+ M.d(T n+1x, Tm+1x)

buradan;

d(T n+1x, Tm+1x) ≤ 2M

1−M
.[d(T nx, T n+1x) + d(Tmx, Tm+1x)]
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n → ∞ alınırsa d(T n+1x, Tm+1x) ≤ 0 olur ki; {T nx} dizisinin X de Cauchy dizisi olduğunu

verir. Şimdi X tam olduğundan, v ∈ X olacak şekilde; limn→∞ T nx = v yazarız.

d(v, Tv) ≤ d(v, T n+1x)d(T n+1x, Tv)

≤ d(v, T n+1x) +M [d(T n+1x, T nx) + d(v, Tv) + d(T nx, v)]

burada gerekli düzenlemeleri yaparsak;

d(v, Tv) ≤ M

1−M
[d(T nx, T n+1x) + d(T nx, v)] +

1

1−M
.d(T n+1x, v)

burada n → ∞ limiti alırsak; Tv = v elde ederiz. Şimdi bu yakınsadığı noktanın birden fazla

olduğunu kabul edelim.u ve v gibi iki farklı nokta olsun. Böylece;

d(u, v) = d(Tu, Tv) ≤ M.[d(u, Tu) + d(v, Tv) + d(u, v)] = M.d(u, v)

olur ki; bu M ≥ 1 ile bir çelişki olur. v ∈ X noktası T dönüşümü altında X uzayının sabit

bir noktası olur. □

Teorem 3.7. (X, d) tam metrik uzay T : X → X asimptotik düzenli olsun. Her x, y ∈ X

için 0 ≤ M < 1 ve 0 ≤ K < ∞ olmak üzere;

d(Tx, Ty) ≤ M.d(x, y) +K[d(y, Ty) + d(x, Tx)] (3.7)

eşitsizliği sağlanıyorsa, T nin bir tek p ∈ X sabit noktası vardır. Ayrıca, her x ∈ X için

T nx → p noktasına yakınsar (Gornicki, 2019).

Kanıt. x0 ∈ X ve xn+1 = Txn(n = 0, 1, 2, ...) tanımlayalım.Herhangi bir n ve k > 0 olmak

üzere, (3.7) özelliğinde asimptotik düzenlilik ve üçgen eşitsizliğini kullanırsak;

d(xn+k, xn) ≤ d(xn+k, xn+k+1) + d(xn+k+1, xn+1) + d(xn+1, xn)

≤ d(xn+k, xn+k+1) +M.d(xn+k, xn)

+ K.[d(xn+k, xn+k+1) + d(xn, xn+1)] + d(xn+1, xn)
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gerekli düzenlemeleri yaparsak ve n → ∞ limit alımırsa,

(1−M).d(xn+k, xn) ≤ (K + 1).[d(xn+k, xn+k+1) + d(xn, xn+1)] → 0

elde edilir. {xn} dizisi X tam metrik uzayında, Cauchy dizisi olur. Uzay tam olduğundan

p ∈ X için xn → p olur. T sürekli ve xn+1 = Txn olduğundan;

limxn+1 = limTxn = T (limxn) = Tp

yazarız. Yani; Tp = p bize p noktasının sabit nokta olduğunu verir. Şimdi tekliği için başka

bir sabit nokta q noktası kabul edelim.

0 < d(p, q) = d(Tp, Tq) = M.d(p, q) +K[d(p, Tp) + d(q, T q)]

= M.d(p, q) < d(p, q)

olur ki; bu bir çelişki olur. Şimdi her p ∈ X için T nx → p noktasına yakınsadığını gösterelim.

d(T nx, p) = d(T nx, T np) = d(T nx, T n+1x) + d(T n+1x, T n+1p)

≤ d(T nx, T n+1x) +M.d(T nx, T np)

+ K.[d(T nx, T n+1x) + d(T np, T n+1p)]

yazılır. Gerekli düzenlemeler yapılırsa;

(1−M).d(T nx, p) ≤ (K + 1). d(T nx, T n+1x) → 0(n → 0)

Böylece, x ∈ X için T nx → p ye yakınsaklığını göstermiş olduk. □

Teorem 3.8. (X, d) tam metrik uzay ve bazı x0 ∈ X noktaları için T : X → X asimp-

totik düzenli olsun. Her x, y ∈ X için negatif olmayan αi = αi(x, y), (i = 1, 2, 3, 4, 5)

fonksiyonları keyfi seçilen K > 0 ve 0 < λ1 < 1, 0 < λ2 < 1 sabitleri

α1(x, y), α2(x, y) ≤ K (3.8)

α4(x, y) + α5(x, y) ≤ λ1 (3.9)
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α3(x, y) + 2α5(x, y) ≤ λ2 (3.10)

olmak üzere;

d(Tx, Ty) ≤ α1F1[min{d(x, Tx), d(y, Ty)}] + α2F2[d(x, Tx).d(y, Ty)

+α3d(x, y)] + α4[d(x, Tx) + d(y, Ty)] + α5[d(x, Ty) + d(y, Tx)] (3.11)

sağlansın. T , x0 ∈ X noktasında asimptotik düzenli olduğunda T nin tek sabit noktası vardır

(Ciric, 2005).

Kanıt. xn = T nx0 olmak üzere {xn} dizisinin Cauchy dizisi olduğunu gösterelim. dn =

d(xn, xn+1) olarak belirtelim.

αi = αi(xn, xm) olmak üzere, üçgen eşitsizliğini ve (3.11) özelliğini birlikte kullanırsak;

d(xn, xm) ≤ dn + d(Txn, Txm) + dm

≤ dn + dm + α1F1[min{dn, dm}] + α2F2dn.dm + α3d(xn, xm)

+ α4(dn + dm) + α5[d(xn, Txm) + d(xm, Txn)]

≤ (α3 + 2α5)d(xn, xm) + (1 + α4 + α5)(dn + dm)

+ α1F1[min(dn, dm)] + α2F2(dn.dm)

olur. Bu son eşitsizlikte (3.8),(3.9) ve (3.10) yi kullanırsak;

(1− λ2)d(xn, xm) ≤ (1 + λ1)(dn + dm) +KF1[min(dn, dm)] +KF2(dn.dm)

T asimptotik düzenli ve F1 ve F2, 0 noktasında sürekli olduğundan ve

m → ∞ alırsak;

(1− λ2) lim
n>m→∞

d(xn, xm) ≤ 0

bulunur ki bu nedenle {xn} dizisi Cauchy dir. X tam olduğundan bazı u ∈ X için limxn = u

yazarız. Şimdi u noktasının tek sabit nokta olduğunu gösterelim. d(Tu, u) > 0 olduğunu
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kabul edelim. αi = αi(xn, u) olmak üzere, (3.11) kabulünden;

d(u, Tu) ≤ d(u, Txn) + d(Txn, Tu)

≤ d(u, xn+1) + α1F1[min{dn, d(u, Tu)}] + α2F2[dn.d(u, Tu)]

+ α3d(xn, u) + α4[dn + d(u, Tu)] + α5[d(xn, Tu) + d(u, xn+1)]

elde ederiz. Üçgen eşitsizliğini yeniden kullanırsak;

d(u, Tu) ≤ (1 + α5)d(u, xn+1) + α1F1[min{dn, d(u, Tu)}]

+ α2F2[dn.d(u, Tu)] + (α3 + α5)d(xn, u) + α4dn

+ (α4 + α5)d(u, Tu)

(3.8),(3.9) ve (3.10) yi kullanırsak;

d(u, Tu) ≤ λ1d(u, Tu) + (1 + λ2)d(u, xn+1) + λ2d(u, xn)

+ KF1[min{dn, d(u, Tu)}] +KF2[dn.d(u, Tu)]

eşitsizliğinde limit alırsak;

d(u, Tu) ≤ λ1d(u, Tu) < d(u, Tu)

olur ki bu bir çelişkidir. Yani d(u, Tu) = 0 olmalıdır. Buradan da Tu = u elde edilir.

Şimdi T ’ nin tekliğini göstermek için u dan farklı başka bir v noktasının olduğunu kabul

edelim. αi = αi(u, v) olmak üzere;

d(u, v) = d(Tu, Tv)

≤ α1F1(0) + α2F2(0) + α3d(u, v) + α4.0 + 2α5d(u, v)

= (α3 + 2α5)d(u, v)

(3.10) den (1− λ2)d(u, v) ≤ 0 olur ki; bu da u = v demektir.
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Şimdi T nin u noktasında sürekli olduğunu gösterelim. Kabul edelim ki, xn → u = Tu

olsun. αi = αi(xn, u) olmak üzere, (3.10) den;

d(Txn, u) = d(Txn, Tu) ≤ α1F1(0) + α2F2(0) + α3d(xn, u)

+ α4.d(xn, Txn) + α5[d(xn, u) + d(Txn, u)]

≤ (α3 + α4 + α5)d(xn, u) + (α4 + α5)d(u, Txn)

elde edilir. (3.10) ve (3.8) i kullanırsak;

(1− λ1)d(Txn, u) ≤ (λ1 + λ2)d(xn, u)

olur. n → ∞ limit alırsak;

(1− λ1)limn→∞d(Txn, u) ≤ 0

olur ki; bu da limn→∞Txn = u demektir. □

3.3 Kompaktlık

Kompaktlık ile ilgili (Khan, 2017) ve (Namdeo ve ark., 1998) makalelerinden faydalanılmış-

tır.

Teorem 3.9. (M, ρ) kompakt metrik uzay ve T : M → M sürekli olsun. Her x, y ∈ X ve

x ̸= y için;

d(Tx, Ty) <
1

2
[d(x, Tx) + d(y, Ty)]

olduğunda T nin tek bir v ∈ M sabit noktası vardır. Ayrıca her bir x ∈ M için {T nx}

iterasyon dizisi v ye yakınsar (Gornicki, 2017).

Kanıt. Önce alışılmış metrik ile [0, 1] kümesinde T : [0, 1] → [0, 1] olmak üzere c ∈ [0, 1] ve

Tx = c tanımlayalım.

f : X → [0,∞) olmak üzere f(x) = ρ(x, Tx) sürekli fonksiyonunu alalım. Kompaktlıktan
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f(v) = inf{f(x) : x ∈ X} olacak şekilde v ∈ X noktası vardır. v ̸= Tv olsun. Bu durumda,

ρ(Tv, T 2v) <
1

2
[ρ(v, Tv) + ρ(Tv, T 2v)]

< ρ(v, Tv) (3.12)

olur. Buradan da;

f(Tv) = ρ(Tv, T 2v) < ρ(v, Tv) = f(v)

olur ki bu çelişkidir. Yani v = Tv olur. Şimdi v nin tekliğini gösterelim. Bir başka noktası u

olsun. Teoremde verilen eşitsizliği kullanırsak;

ρ(Tu, Tv) <
1

2
[ρ(u, Tu) + ρ(v, Tv)]

yazabiliriz. n → ∞ limit alırsak ρ(Tu, Tv) = 0 olur. Yani T nin tek noktası olur.

Şimdi x ∈ X olacak şekilde {xn = T nx} dizisini alalım. x = v aldığımızda n = 1, 2, ... için

xn = v olur. xn ̸= v alalım. Çünkü;

ρ(T n+1x, T nx) <
1

2
[ρ(T nx, T n+1x) + ρ(T n−1x, T nx)]

olduğundan;

ρ(T n+1x, T nx) < ρ(T nx, T n−1x) < ... < ρ(Tx, x)

olur. Negatif olmayan bn = ρ(T n+1x, T nx) dizisi azalmayandır. Böylece yakınsak olur.

b = lim
n→∞

bn ≥ 0

olsun. Bu varsayım b > 0 varsayımı ile çelişkiye yol açar. M kompakt olduğundan {T nx

dizisinin {T nix} alt dizisi i → ∞ için {T nix} → z ∈ M değerine yakınsar. Çünkü T sürekli

olduğundan ;

0 < b = lim
i→∞

ρ({T ni+1x, T nix) = ρ(Tz, z)

yani z ̸= v dir. Üstelik (3.12) eşitsizliğini kullanırsak;

0 < b = lim
i→∞

ρ({T ni+2x, T ni+1x) = ρ(T 2z, Tz) < ρ(Tz, z) = b
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olur ki; bu bir çelişki olur. Yani b = 0 olur.

ρ(T n+1x, v) = ρ(T n+1x, Tv) <
1

2
[ρ(T nx, T n+1x) + ρ(v, Tv)]

=
1

2
ρ(T nx, T n+1x) → b = 0

olduğundan n → ∞ limit alırsak limn→∞ ρ(T n+1x, v) = 0 olur. Böylece {T nx} dizisi ya-

kınsak olur. □

Teorem 3.10. (M, ρ) kompakt metrik uzay ve T : M → M sürekli olsun. x ̸= y olmak üzere

her x, y ∈ M ve A+B + C = 1 olacak şekilde A,B,C pozitif sayıları için;

ρ(Tx, Ty) < Aρ(x, Tx) +Bρ(y, Ty) + Cρ(x, y)

eşitsizliği sağlandığında T nin bir tek v ∈ M sabit noktası vardır. Ayrıca her bir x ∈ M için

{T nx} iterasyon dizisi v ye yakınsar (Gornicki, 2017).

Kanıt. İspatı yukarıdaki Teorem (3.9) daki gibi yapılabilir. □

Örnek 3.10. (X, d) Tam fakat kompakt olmayan metrik uzay ve T : X → X sürekli dönüşüm

olsun.x ̸= y olmak üzere ∀x, y ∈ X için;

d(Tx, Ty) <
1

2
[d(x, Tx) + d(y, Ty)]

olarak tanımlanırsa, T nin hiçbir sabit noktası yoktur.

Teorem 3.11. (M,ρ) Tam b-metrik uzay olsun. T : M → M dönüşümü s ≥ 1 ve ∀x, y ∈ M

ve αi(i = 1, 2, 3, 4, 5) negatif olmayan reel sayılar, max{(α1s+α4s
2), (α3s

3+α4s
3+α5} < 1

olmak üzere ,

ρ(Tx, Ty) ≤ α1ρ(x, Tx) + α2ρ(y, Ty) + α3ρ(x, Ty) + α4ρ(y, Tx) + α5ρ(x, y)

eşitsizliği sağlansın. M den alınan dizi asimptotik T-düzenli olduğunda T nin bir tane sabit

noktası olur (Khan,2017).
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Kanıt. M den asimptotik T-düzenli {xn} dizisini alalım.∀m,n ∈ N için;

ρ(xm, xn) ≤ s[ρ(xn, Txn) + ρ(Txn, xm)]

≤ s[ρ(xn, Txn) + sρ(Txn, Txm) + sρ(Txm, xm)]

≤ ρ(xn, Txn) + s2ρ(Txn, Txm) + s2ρ(Txm, xm)

≤ sρ(xn, Txn) + s2ρ(Txm, xm) + s2[α1ρ(xn, Txn) + α2ρ(xm, Txm)

+ α3ρ(xn, Txm) + α4ρ(xm, Txn) + α5ρ(xn, xm)]

≤ (s+ α1s
2 + α4s

3)ρ(xn, Txn) + (s2 + α2s
2 + α3s

3)ρ(xm, Txm)

+ (α3s
3 + α4s

3 + α5)ρ(xn, xm)

gerekli düzenlemeleri yaparsak,

ρ(xn, xm) ≤ { s+ α1s
2 + α4s

3

1− (α3s3 + α4s3 + α5)
}ρ(xn, Txn)

+ { s2 + α2s
2 + α3s

3

1− (α3s3 + α4s3 + α5)
}ρ(xm, Txm)

bulunur. n → ∞ limit alınırsa,

lim
n→∞

ρ(xn, xm) = 0

bulunur bu da bize {xn} dizisinin Cauchy dizisi olduğunu verir. M tam metrik uzay oldu-

ğundan {xn} dizisi yakınsak olur. z ∈ M için limn→∞ xn = z olur. Şimdi z noktasının T de

sabit nokta olduğunu gösterelim.

ρ(Tz, z) ≤ s[ρ(Tz, Txn) + ρ(Txn, z)]

≤ sρ(Tz, Txn) + s2ρ(Txn, xn) + s2ρ(xn, z)

≤ s[α1ρ(z, Tz) + α2ρ(xn, Txn) + α3ρ(z, Txn) + α4ρ(xn, T z)

+ α5ρ(z, xn)] + s2ρ(Txn, xn) + s2ρ(xn, z)

≤ α1sρ(z, Tz) + α2sρ(xn, Txn) + α3s
2ρ(z, xn)

+ α3s
2ρ(xn, Txn) + α4s

2ρ(xn, z) + α4s
2ρ(z, Tz)

+ α5sρ(z, xn) + s2ρ(Txn, xn) + s2ρ(xn, z)
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buradan gerekli sadeleştirmeleri yaparsak;

(1− α1s− α4s
2)ρ(Tz, z) ≤ (s2 + α2s+ α3s

2)ρ(xn, Txn)

+ (s2 + α3s
2 + α4s

2 + α5s)ρ(xn, z)

son olarak,

ρ(z, Tz) ≤ {(s
2 + α2s+ α3s

2)ρ(xn, Txn)

(1− α1s− α4s2)
ρ(xn, Txn)

+
(s2 + α3s

2 + α4s
2 + α5s)

(1− α1s− α4s2)
}ρ(xn, z)

T asimptotik T-düzenli olduğundan, n → ∞ limit aldığımızda

ρ(Tz, z) = 0

olur. Böylece z noktası T nin sabit noktası olur. Şimdi tekliğini gösterelim.z ̸= u olacak

şekilde farklı bir u değeri olsun.

ρ(z, u) = ρ(Tz, Tu)

≤ α1ρ(z, Tz) + α2ρ(u, Tu) + α3ρ(z, Tu) + α4ρ(u, Tz) + α5ρ(z, u)

Bu son eşitsizlikten, (1−α3−α4−α5)ρ(z, u) = 0 elde edilir. α3+α4+α5 ≤ 0 olduğundan

z = u eşitliği elde edilir. □

Teorem 3.12. (M, p), tam b-metrik uzay olsun. T : M → M dönüşümü s ≥ 1 olmak üzere;

p(Tx, Ty) ≤ α1p(x, Tx) + α2p(y, Ty) + α3p(x, Ty) + α4p(y, Tx) + α5p(x, y)

eşitsizliği, ∀x, y ∈ M ve αi(i = 1, 2, 3, 4, 5) negatif olmayan reel sayılar olmak üzere

max{(α1s + α4s
2), (α3 + α4 + α5} < 1 sağlansın. Eğer T dönüşümü M nin bazı x0 ∈ M

noktalarında asimptotik düzenli olduğunda T nin bir tane sabit noktası olur (Khan, 2017).
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Kanıt. x0 ∈ M noktası T dönüşümü altında asimptotik düzenli dönüşüm olsun. ∀m,n ∈ N

için {T nx0} dizisini alırsak;

ρ(Tmx0, T
nx0) ≤ α1p(T

m−1x0, T
mx0) + α2p(T

n−1x0, T
nx0)

+ α3p(T
m−1x0, T

nx0) + α4p(T
n−1x0, T

mx0)

+ α5p(T
m−1x0, T

n−1x0)

≤ α1p(T
m−1x0, T

mx0) + α2p(T
n−1x0, T

nx0)

+ α3sp(T
m−1x0, T

mx0) + α3sp(T
mx0, T

nx0)

+ α4sp(T
n−1x0, T

nx0) + α4sp(T
nx0, T

mx0)

+ α5sp(T
m−1x0, T

mx0) + α5s
2p(Tmx0, T

nx0)

+ α5s
2p(T nx0, T

n−1x0)

buradan düzenlemeleri yaptığımızda;

p(Tmx0, T
nx0) ≤ { α1 + α3s+ α5s

1− (α3s+ α4s+ α5s2)
}p(Tm−1x0, T

mx0)

+ { α2 + α4s+ α5s
2

1− (α3s+ α4s+ α5s2)
}p(T n−1x0, T

nx0)

olur. T , Asimptotik düzenli dönüşüm olduğundan n,m → ∞ için,

lim
m,n→∞

(T nx0, T
mx0) = 0

olur. Böylece {T nx0} Cauchy dizisi olur. M tam olduğundan z ∈ M için

lim
n→∞

T nx0 = 0 = z

bulunur.
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Şimdi z noktasının T dönüşümünün altında sabit nokta olduğunu gösterelim.

p(Tz, z) ≤ sp(Tz, T nx0) + sp(T nx0, z)

≤ α1sp(z, Tz) + α2sp(T
n−1x0, T

nx0) + α3sp(z, T
nx0)

+ α4sp(T
n−1x0, T z) + α5sp(z, T

n−1x0) + sp(z, T nx0)

≤ α1sp(z, Tz) + α2sp(T
n−1x0, T

nx0) + α3sp(z, T
nx0)

+ α4s
2p(T n−1x0, T

nx0) + α4s
2p(T nx0, T z)

+ α5s
2p(T nx0, z) + α5s

2p(T nx0, T
n−1x0) + sp(T nx0, z)

n → ∞ için limiti alalım o zaman {T n−1x0}dizisi {T nx0}dizisinin bir alt dizisi olduğundan,

p(Tz, z) ≤ α1sp(z, Tz) + α4s
2p(z, Tz)

buradan p(Tz, z) = 0 yani; Tz = z olur.Böylece z noktası T nin sabit noktası olur. Şimdi T

nin iki farklı noktasının olduğunu kabul edelim.u ̸= z olmak üzere;

p(z, u) = p(Tz, Tu) ≤ α1p(z, Tz) + α2p(u, Tu) + α3p(z, Tu)

+ α4p(u, Tz) + α5p(z, u)

eşitsizliğinden (1 − α3 − α4 − α5)ρ(z, u) = 0 olur. (α3 + α4 + α5) < 1 olduğundan z = u

olur. Böylece T nin bir tek sabit noktası olur. □
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3.4 GENELLEŞTİRMELER

Bu bölümde, Pakistan’da Uluslararası yayın yapan Open Journal of Mathematical Sciences

(OMS) dergisinde, b-metrik uzaylarda Asimptotik düzenlilik ile ilgili (Nagac ve Taş, 2024)

ın yayınlanan makalesindeki teoremler ve sonuçları verilecektir.

Teorem 3.13. (M, ρ) Tam b-metrik uzayı T : M → M Sürekli Asimptotik düzenli dönüşüm

olsun.∀x, y ∈ M için 0 ≤ M < 1 ve 0 ≤ K < ∞ olmak üzere;

ρ(Tx, Ty) ≤ M.ρ(x, y) +K[ρ(y, Ty) + ρ(x, Tx)] (3.13)

eşitsizliği sağlanıyorsa, T nin tek bir p ∈ M sabit noktası vardır. Ayrıca, her x ∈ M için

T nx → p noktasına yakınsar (Nagac ve Taş, 2024).

Kanıt. p ∈ M olmak üzere {xn} ⊂ M alt kümesini xn+1 = Txn = T n+1x0, n = 0, 1, 2, 3, ...

iterasyonu ile tanımlayalım. (3.13) eşitsizliğini kullanırsak;

ρ(xn+k, xn) ≤ s[ρ(xn+k, xn+k+1) + ρ(xn+k+1, xn)]

≤ s[ρ(xn+k, xn+k+1) + sρ(xn+k+1, xn+1) + sρ(xn+1, xn)]

= sρ(xn+k, xn+k+1) + s2ρ(xn+k+1, xn+1) + s2ρ(xn+1, xn)

≤ sρ(xn+k, xn+k+1) + s2ρ(xn+1, xn)

+ s2[Mρ(xn+k, xn) +K[ρ(xn, Txn) + ρ(xn+k, Txn+k)]],

gerekli düzenlemeleri yaptığımızda;

(1− s2M)ρ(xn+k, xn) ≤ s2K[ρ(xn, Txn) + ρ(xn+k, Txn+k)] → 0

yazılır. T Asimptotik düzenli dönüşüm olduğundan {xn} dizisi Cauchy dizisi olur. Uzay Tam

olduğundan xn → p olur. T sürekli ve xn+1 = Txn olduğundan;

lim
n→∞

xn+1 = lim
n→∞

Txn = T ( lim
n→∞

xn) = Tp
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yani p noktası sabit nokta olur. Şimdi p den başka bir q sabit noktasının olduğunu kabul

edelim.

ρ(p, q) = ρ(Tp, Tq) ≤ M.d(p, q) +K[ρ(p, Tp) + ρ(q, T q)]

son eşitsizlikte K nın içerisindeki ifadeler 0 a gittiğinden ve 0 ≤ M < 1 aldığımız için;

(1−M)ρ(Tp, Tq) ≤ 0

olur. Son eşitsizlik ρ(p, q) = 0 olduğunda doğru olur. Yani sabit nokta tekdir. □

Sonuç 3.14. (3.13) formülünde M = 0 aldığımız taktirde, Kannan Tipi Eşitsizliği elde ederiz.

Yani, ∀x, y ∈ M için ;

ρ(Tx, Ty) ≤ K[ρ(y, Ty) + ρ(x, Tx)]

olur.

Teorem 3.15. (M, ρ) Tam b-metrik uzayında , s ≥ 1 ve T : M → M Asimptotik düzenli

dönüşüm olsun. φ : R+ → R+ de fi = fi(x, y) Pozitif değerli fonksiyonları her x, y ∈ X

için, f1 + 2f3 < 1, sf1(x, y) < 1, sf3(x, y) < 1 olacak şekilde;

ρ(T x, T y) ≤ f1(x, y)ρ(x, y) + f2(x, y)φ(min{ρ(x, T x), ρ(y, T y)})

+ f3(x, y)[ρ(x, T y) + ρ(y, T x)]

eşitsizliği sağlıyorsa; M de T dönüşümünün bir tek noktası vardır (Nagac ve Tas, 2024).

Kanıt. xn = T nx0 = T xn−1 alalım. ϱn = ρ(xn, xn+1) olsun.

ρ(xn, xm) ≤ s[ρ(xn, xn+1) + ρ(xn+1, xm+1) + ρ(xm+1, xm)]

= s[ϱn + ρ(T xn, T xm) + ϱm]

≤ s(ϱn + ϱm) + s[f1ρ(xn, xm) + f2φ(min{ρ(xn, T xn), ρ(xm, T xm)})

+ f3{ρ(xn, T xm) + ρ(xm, T xn)}]

= sϱn + sϱm + sf1ρ(xn, xm) + sf2φ(min{ρ(xn, T xn), ρ(xm, T xm)})

+ sf3{ρ(xn, T xm) + ρ(xm, T xn)}

≤ s(ϱn + ϱm) + sf1ρ(xn, xm) + sf2φ(min{ϱn, ϱm}) + sf3(ϱn + ϱm)
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gerekli düzenlemeleri yaparsak,

(1− sf1)ρ(xn, xm) ≤ s(1 + f3)(ϱn + ϱm) + sf2φ(min{ϱn, ϱm})

yazarız. T asimptotik düzenli dönüşüm ve n > m için n,m → ∞, ϱn → 0, ϱm → 0

olduğundan, min{ϱn + sϱm} → 0 olur. Böylece

(1− sf1) lim ρ(xn, xm) ≤ 0, (1− sf1 > 0)

olur ki; bu {xn} dizisinin Cauchy dizisi olduğunu verir. Çünkü ∃u ∈ M için M nin tamlı-

ğından,

lim
n→∞

(xn) = u

olur. Şimdi u ∈ M nin T nin sabit noktası olduğunu gösterelim. Kabul edelim ki

ρ(u, T u) ̸= 0 olsun.

ρ(u, T u) ≤ s[ρ(u, T xn) + ρ(T xn, T u)]

≤ s[ρ(u, xn+1) + f1ρ(xn, u) + f2φ(min{ρ(xn, T xn), ρ(u, T u)})

+ f3(ρ(xn, T u) + ρ(u, T xn))]

gerekli düzenlemeler yapıldığında,

ρ(u, T u) ≤ s[ρ(u, xn+1) + f1ρ(xn, u) + f2φ[min{ϱn, ρ(u, T u)}]

+ f3(ρ(xn, T u) + ρ(u, xn+1)]

= ρ(u, xn+1)(s+ sf3) + sf2φ(min{ϱ, ρ(u, T u)})

+ sf1ρ(xn, u) + sf3ρ(u, T u)

yazarız. Buradan da;

(1− sf3)ρ(u, T u) ≤ 0

olur. Bu ise ρ(u, T u) = 0 demektir ve T u = u olur. Böylece, u ∈ M, T dönüşümünün bir

sabit noktası olur. Şimdi tekliğini gösterelim. u ve v; T u = u ve T v = v olacak şekilde iki
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noktası olsun. Yani;

ρ(u, v) = ρ(T u, T v) ≤ f1ρ(u, v) + f2φ(min ρ(u, T u), ρ(v, T v))

+ f3[ρ(u, T v) + ρ(v, T u)]

= f1ρ(u, v) + f2φ(0) + f3[ρ(u, v) + ρ(v, u)]

= (f1 + 2f3)ρ(u, v)

eşitsizliği düzenlersek, (1−f1−2f3)ρ(u, v) ≤ 0 yazarız. Yani; =⇒ ρ(u, v) = 0 =⇒ u = v

olur. İspatı tamamlamış oluruz. □

Şimdi b-metrik uzaylar için bu teoremin bir sonucu olarak aşağıdaki teoremi yazalım.

Sonuç 3.16. (M, ρ), 3.3 teoreminin şartlarını sağlasın. s ≥ 1 olmak üzere, ∀x, y ∈ M için

p+ 2r < 1, ps < 1 and rs < 1 ve φ(0) = 0 olsun.

T : M → M dönüşümü asimptotik düzenli dönüşümü aşağıdaki koşulları ayrı ayrı sağlasın.

(1) ρ(T x, T y) ≤ p ρ(x, y) + r. [ρ(x, Ty) + ϕ(y, Ty)]

(2) ρ(T x, T y) ≤ p ρ(x, y) + α(min{ρ(x, T x), ρ(y, T y)})2 + r [ρ(x, T y) + ρ(y, T x)]

(1) ya da (2) den herhangi biri sağlanırsa; M uzayı T altında sabit bir noktaya

sahiptir.

Kanıt. (1) Teorem (3.15) de f1(x, y) = ρ, f2(x, y) = 0, f3(x, y) = r yazılırsa elde edilir.

(2) Teorem (3.15) de f1(x, y) = p, f2(x, y) = α, f3(x, y) = r ve φ(t) = t2 yazılırsa elde

edilir. □
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3.5 SONUÇ ve TARTIŞMA

Birinci bölümde, sabit nokta ile ilgili yapılan çalışmalardan bahsedilmiştir. İkinci bölümde,

temel tanım ve kavramlar verilmiştir. Üçüncü bölümde, sabit nokta teoremi ile ilgili teorem-

ler verildi. Banach Büzülme teoremi sabit nokta prensibinin gelişmesinde önemli bir yere

sahiptir. Bu noktadan sonra sabit nokta teorisi çeşitli yönlerden gelişmeye başlamıştır. Son

bölümde paylaşılan teoremlerde; Banach daralma prensibi birçok bilim adamı tarafından de-

ğiştirilerek yeni formüller elde edilmiştir. Sabit nokta teoremi, asimptotik düzenlilik ve Kom-

patlık kavramları ile incelenerek teoremler ve genellemeler elde edilmiştir. Tez çalışmamızın

genelleştirmeler bölümünde, Metrik uzayların daha zayıf yapısı olan b-metrik uzaylarda çalı-

şılmış ve b-Metrik Uzaylarda Asimptotik düzenli dönüşümler altında Sabit noktası olabilme

Şartları değiştirilerek yeni formüller elde edilmiştir. Bu bulgularımız mevcut literatürdeki

sonuçları genişletmektedir. b-Metrik Uzaylarda, daha farklı ve ilginç genellemeler elde edi-

lebilir.
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Derece Eğitim Birimi Mezuniyet tarihi

Lisans 100. Yıl Üniversitesi Matematik Bölümü 2000
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