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Enstitü Müdürü
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Doktora tezi olarak hazırlanan bu çalışma dört bölümden oluşmaktadır. Birinci

bölüm diğer bölümlerin daha iyi anlaşılabilmesi için bazı temel kavramlara ayrıldı.

Diğer bölümler ise tezin orjinal kısımlarıdır. Birinci bölümde manifoldlar arasındaki

harmonik ve biharmonik dönüşümler, biharmonik altmanifoldlar, biharmonik eğriler,

semi-Riemann manifoldlar, Lorentzian hemen hemen parakontakt manifoldlar ve

altmanifoldlar ile ilgili temel tanım ve teoremler ele alındı.

İkinci bölüm Lorentzian para-Sasakian manifoldlar üzerindeki biharmonik eğriler

çalışıldı. Bu bölümde öncelikle n-boyutlu (n ≥ 4) konformal flat, kuasi-konformal

flat ve konformal simetrik Lorentzian para-Sasakian manifoldların Sn
1 (1)

birim Lorentzian küresine lokal olarak izometrik olduğu ifade edilerek 4-boyutlu

Lorentzian para-Sasakian manifoldlar üzerindeki spacelike ve timelike eğriler için

Frenet formülleri verildi. Daha sonra 4-boyutlu konformal flat, kuasi-konformal flat
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ve konformal simetrik Lorentzian para-Sasakian manifoldların sırasıyla, spacelike ve

timelike eğrileri için biharmonik denklemler elde edildi. Son olarak S4
1(1) Lorentzian

birim küresi üzerindeki spacelike ve timelike eğrilerin biharmonik olması için gerek

ve yeter şartlar incelenerek elde edilen biharmonik denklemlerin bazı özel durumlar

için çözümleri irdelendi ve bu tip eğrilerin varlığı araştırıldı.

Üçüncü bölümde Lorentzian hemen hemen parakontakt manifoldların invaryant,

non-invaryant hiperyüzeyleri ve Lorentzian para-Sasakian manifoldların biharmonik

hiperyüzeyleri incelendi. Bu bölümde ilk olarak hemen hemen parakontakt manifold-

ların, karakteristik vektör alanının hiperyüzeye ait olmaması durumunda non-invar-

yant hiperyüzeyleri ele alınarak bu tip hiperyüzeylerin hemen hemen parakontakt

yapıdan indirgenen bir hemen hemen çarpım yapısına sahip olduğu gösterildi. Daha

sonra afin kosimplektik ve normal hemen hemen parakontakt manifoldların invaryant

ve non-invaryant hiperyüzeyleri için bazı karakterizasyonlar verildi. Ayrıca Lorentzian

hemen hemen parakontakt manifoldların, karakteristik vektör alanının hiperyüzeye

ait olmaması durumunda non-invaryant hiperyüzeylerinin bir hemen hemen çarpım

metrik manifoldu olduğu gösterildi ve Lorentzian para-Sasakian manifoldların, bu

tip hiperyüzeylerinin ise bir lokal çarpım manifoldu olması için gerek ve yeter şartlar

elde edildi. Bu bölümde incelenen hiperyüzeylere örnekler verildikten sonra Lorentz

para-Sasakian manifoldların spacelike ve timelike hiperyüzeylerinin biharmonik olma-

sı için gerek ve yeter şartlar araştırıldı.

Dördüncü bölümde Lorentzian hemen hemen parakontakt manifoldların slant

ve semi-slant altmanifoldları tanıtılarak bu altmanifoldlara örnekler verildi. Özel

olarak manifoldun Lorentzian parakosimplektik ve Lorentzian para-Sasakian olması

durumunda semi-slant altmanifoldların tanımında yer alan distribüsyonların integral-

lenebilirlik şartları incelendi. Ayrıca Lorentzian parakosimplektik manifoldların

warped çarpım, warped çarpım semi-slant ve warped çarpım anti-slant altmanifoldları

ele alınarak bazı özel durumlarda bu altmanifoldların yokluğu ile ilgili sonuçlar elde

edildi. Bu bölümde son olarak Lorentzian para-Sasakian uzay formların biharmonik

altmanifoldları incelendi.

ANAHTAR KELİMELER: Harmonik dönüşüm, Biharmonik dönüşüm, Biharmo-



nik altmanifold, Lorentzian hemen hemen parakontakt manifold, Lorentzian parako-

simplektik manifold, Lorentzian para-Sasakian manifold, İnvaryant hiperyüzey, Non-

invaryant hiperyüzey, İnvaryant altmanifold, Anti-invaryant altmanifold, Slant altma-

nifold, Semi-slant altmanifold, Semi-invaryant altmanifold, Warped çarpım, Warped

çarpım semi-slant altmanifold, Warped çarpım anti-slant altmanifold.
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This study which is designed as a philosophy doctoral thesis covers four chapter.

In the first chapter we give some basic concepts such as harmonic and biharmonic

maps between Riemannian manifolds, nonexistence theorems for biharmonic subma-

nifolds, biharmonic curves, semi-Riemannian manifolds, Lorentzian almost paracon-

tact manifolds and their submanifolds for the rest of the thesis that readers can easily

understand. The other chapters are the original parts of this thesis.

The second chapter is devoted to the biharmonic curves in Lorentzian para-Sasa-

kian manifolds. In this chapter firstly by expressing the fact that n-dimensional

(n ≥ 4) conformal flat, quasi-conformal flat and conformal symmetric Lorentzian

para-Sasakian manifolds are locally isometric to Lorentzian unit sphere Sn
1 (1), we

give Frenet formulas for spacelike and timelike curves in 4-dimensional Lorentzian

para-Sasakian manifolds. After then we obtain biharmonic equations for spacelike
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and timelike curves in 4-dimensional conformal flat, quasi-conformal flat and confor-

mal symmetric Lorentzian para-Sasakian manifolds. Moreover, by investigating the

necessary and sufficient conditions for spacelike and timelike curves in a Lorentzian

sphere S4
1(1) to be biharmonic, we examine the solutions of the obtained biharmonic

equations in some special cases. So we show the existence of such curves.

In the third chapter we study the invariant and non-invariant hypersurfaces

of Lorentzian paracontact manifolds and biharmonic hypersurfaces of Lorentzian

para-Sasakian manifolds. We firstly investigate the non-invariant hypersurfaces of

almost paracontact manifolds when the characteristic vector field of the manifold

does not belong to the hypersurface and show that such hypersurfaces admit an

almost product structure induced by the almost paracontact structure of the ambient

manifold. After then some characterizations on the invariant and non-invariant

hypersurfaces of affinely cosymplectic and normal almost paracontact manifolds

are given. We prove that a non-invariant hypersurface of a Lorentzian almost

paracontact manifold with the characteristic vector field nowhere tangent to the

hypersurface is an almost product metric manifold. We also investigate the necessary

and sufficient conditions for a non-invariant hypersurface of a Lorentzian para-Sasa -

kian manifold with the characteristic vector field nowhere tangent to the hypersurface

to be locally product manifold. Moreover we give some examples for the hypersurfaces

which are studied in this chapter and study the biharmonic spacelike and timelike

hypersurfaces of Lorentzian para-Sasakian manifolds.

In the fourth chapter we introduce the slant and semi-slant submanifolds of

Lorentzian paracontact manifolds and give examples. In special we investigate the

integrability conditions for the distributions involved in the definition of a semi-slant

submanifold when the ambient manifold is a Lorentzian paracosymplectic manifold

and a Lorentzian para-Sasakian manifold, respectively. We also study the warped

product, warped product semi-slant and warped product anti-slant submanifolds

of Lorentzian paracosymplectic manifolds and give some nonexistence theorems for

such submanifolds in some special cases. In this chapter we finally investigate the

biharmonic submanifolds of Lorentzian para-Sasakian space forms.
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GİRİŞ 1

1 TEMEL KAVRAMLAR 12
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Biharmonik Eğriler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



3 LORENTZIAN HEMEN HEMEN PARAKONTAKT
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GİRİŞ

Biharmonik fonksiyonlar teorisi, yüz elli yıla yakındır, matematiğin ve fiziğin

farklı alanlarında çalışılan kapsamlı bir konudur. Biharmonik fonksiyonlar, 1862 de

Maxwell ve Airy tarafından fizikteki elastikiyet (elasticity) teorisinin bir matematiksel

modelini tanımlamak amacıyla çalışılmaya başlandı. Çok harmonik (Poly-harmonic)

fonksiyonlar teorisi ise daha sonraları E. Almansi, T. Levi-Civita ve M. Nicolescu

tarafından geliştirildi. Son zamanlarda R. Caddeo, L. Vanhecke ([1], [2]), L.Sario ve

daha pek çok araştırmacı [3] Riemann manifoldları üzerindeki biharmonik fonksiyon

ları inceleyerek konuyu diferensiyel geometri alanında geliştirdi ve tartışmaya açtı.

Temel olarak iki farklı araştırma alanına ayrılabilen biharmonik dönüşümler

teorisine olan ilgi son on yılda giderek arttı. Bir taraftan diferensiyel geometri bakış

açısıyla örnekler ve sınıflandırmalar inşa edilmesi dikkat çekerken; diğer taraftan

biharmonik dönüşümler dördüncü mertebeden güçlü bir eliptik semi-lineer kısmi di-

feransiyel denklemin çözümleri olduğundan kısmi diferansiyel denklemler açısından

da analitik yönüyle incelenmektedir.

Riemann manifoldları arasında tanımlanan diferensiyellenebilir bir ϕ : M → N

dönüşümü eğer E(ϕ) = 1
2

∫
M
|dϕ|2 vg ile verilen enerji fonksiyonelinin kritik noktası

ise harmonik dönüşüm olarak adlandırılır. Enerji için Euler-Lagrange denklemi

τ(ϕ) = iz∇dϕ ile tanımlanan tensiyon alanının sıfır olması ile karakterize edilir

[4].

Benzer bakış açısıyla bir (N, h) Riemann manifolduna tanımlanan Riemann

immersiyonların uzayı Imm(M,N) ile gösterilecek olursa, eğer bir ϕ : (M,ϕ∗h) →

(N, h) ∈ Imm(M,N) Riemann immersiyonu V (ϕ) = 1
2

∫
vϕ∗h hacim fonksiyonelinin

bir kritik noktası ise ϕ ye minimal dönüşüm denir. Hacim ile birleşen Euler-Lagrange

denklemi H ortalama eğrilik vektör alanının sıfır olması ile karakterize edilir [5].

Bir Riemann immersiyonun tensiyon alanı, ortalama eğrilik vektör alanına denktir.
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Dolayısıyla bir Riemann immersiyonun harmonik olması için gerek ve yeter şart

minimal olmasıdır [6]. Böylece minimal immersiyonları araştırmak için harmonik

Riemann immersiyonlar incelemek yeterlidir. Biharmonik dönüşümler ise harmonik

dönüşümlerin bir genelleştirmesi olarak J. Eells ve J. H. Sampson [6] tarafından

tanımlandı.

Harmonik dönüşümler ve minimal immersiyonlar için sırasıyla tensiyon alanının

ve ortalama eğrilik vektör alanının normlarının karelerinin integrali ile elde edilen

fonksiyoneller göz önüne alınarak aşağıdaki genellemeler yapılabilir [7]:

• Biharmonik dönüşümler, E2(ϕ) = 1
2

∫
M
|τ(ϕ)|2 vg ile tanımlanan bienerji

fonksiyonelinin kritik noktalarıdır.

• Willmore immersiyonları ise W (ϕ) =
∫

M2

(
|H|2 +K

)
vϕ∗h ile tanımlanan

Willmore fonksiyonelinin kritik noktalarıdır. Burada K, N Riemann manifoldunun

M2 altmanifolduna kısıtlanmış kesit eğriliğidir.

Yukarıda verilen varyasyonel problemler harmonik dönüşümlerin ve minimal

immersiyonların doğal genelleştirmeleri olsalar da biharmonik Riemann immersiyon

ları, Willmore immersiyonlarını kapsamaz. Böylece yapılan bu iki genelleme farklı

varyasyonel problemlerin ortaya çıkmasına yol açtı.

Biharmonik altmanifoldlar biharmonik dönüşümlerin özel bir halidir. Genel

olarak, eğer i : (M,ϕ∗h) → (N, h) izometrik immersiyonu biharmonik dönüşüm ise

M altmanifoldu N nin biharmonik altmanifoldu olarak adlandırılır. Farklı bir bakış

açısıyla B. Y. Chen [8], Öklidyen uzayın harmonik ortalama eğrilik vektör alanına

sahip altmanifoldlarını biharmonik altmanifoldlar olarak tanımladı ve Öklidyen uzayın

bütün biharmonik altmanifoldlarını sınıflandırmayı hedefledi. B. Y. Chen Öklidyen

uzayın biharmonik altmanifoldlarının minimal olduğunu ispatladı. Eğer biharmonik

dönüşümler tanımı, Öklidyen uzaya tanımlanan Riemann immersiyonlarına uygulanır

ise Chen’in biharmonik altmanifoldlar tanımına ulaşılır. Böylece biharmonik Riemann

immersiyonları Chen’in tanımladığı biharmonik altmanifoldların bir genellemesi olarak

düşünülebilir.

Riemann manifoldları arasındaki bir diferensiyellenebilir ϕ : M → N dönüşümü

nün bienerji fonksiyoneli için Euler-Lagrange denklemi 1986 yılında G. Y. Jiang

([4], [9]) tarafından τ2(ϕ) = −∆τ(ϕ) − RN(dϕ, τ(ϕ))dϕ = 0 şeklinde tanımlandı.
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Bu denklemden her harmonik dönüşümün biharmonik olacağı açıktır. Dolayısıyla

harmonik olmayan (özgün) biharmonik dönüşümler daha fazla ilgi çekmektedir.

Harmonik dönüşümler biharmonik olduğundan biharmonik dönüşümler teorisinin

en temel sorusu hangi şartlar altında biharmonik dönüşümlerin harmonik olacağıdır.

Bu probleme ilk genel cevap G. Y. Jiang tarafından verildi. G. Y. Jiang ([4], [9]),

bir ϕ : M → N biharmonik dönüşümü için eğer M kompakt, yönlendirilebilir ve N

nin Riemann eğriliği RiemN ≤ 0 ise ϕ dönüşümünün harmonik olacağını gösterdi.

C. Oniciuc [10], eğer M kompakt değilse G. Y. Jiang tarafından ortaya konulan

bu şartın ϕ nin bir Riemann immersiyon ve τ(ϕ) nin sabit olması ek şartlarıyla da

sağlanabileceğini ispatladı. Aynı çalışmada C. Oniciuc, boyut farkı 1 olduğu zaman

yani boyM = boy N − 1 iken yukarıdaki ifadelerde yer alan RiemN ≤ 0 eğrilik

şartının RiccN ≤ 0 olacak şekilde hafifletilebileceğini gösterdi.

Sabit c kesit eğriliğine sahip bir N(c) manifoldunun bir M altmanifoldu için

inclusion dönüşümünün tensiyon alanı τ(i) = mH ve bitensiyon alanı τ2(i) =

−m(∆H −mcH) şeklinde karakterize edilir [7]. Eğer c ≤ 0 ise N(c) manifoldunda

harmonik olmayan (özgün) biharmonik altmanifoldların varlığı ile ilgili ciddi kısıtla

malar sözkonusudur. EğerM kompakt iseM den N(c) ye tanımlı harmonik olmayan

(özgün) biharmonik Riemann immersiyonu yoktur. Bu durumda eğer M biharmonik

ise minimaldir ([4], [9]). Eğer M kompakt değil ve i : M → N(c) inclusion dönüşümü

harmonik olmayan (özgün) biharmonik dönüşüm ise |H| sabit olamaz [10]. c > 0

olması durumunda harmonik olmayan (özgün) kompakt biharmonik altmanifold

örnekleri mevcuttur.

N(c) Riemann manifoldunun biharmonik altmanifoldları çalışılırken izlenen en

önemli yol bitensiyon alanının normal ve teğet bileşenlerine ayrıştırılmasıdır. Bu

gerçekten hareketle 2001 yılında R. Caddeo, S. Montaldo ve C. Oniciuc ([11], [12])

i : M → N(c) inclusion dönüşümünün biharmonik denklemine ulaştılar. c = 0

için B. Y. Chen ([8], [13]) ve c < 0 için R. Caddeo, S. Montaldo ve C. Oniciuc

[12] tarafından 3-boyutlu bir manifoldun biharmonik M2 yüzeyinin minimal olduğu

ispatlandı.

N(c) = Rn için bazı kısmi sonuçlara ulaşılmış olsa da boy N > 3 ve c ≤ 0

için harmonik olmayan (özgün) biharmonik altmanifoldların var olup olmayacağı
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bilinmemektedir. N(c) = Rn için elde edilen bazı sonuçlar aşağıdaki gibidir:

• Rn deki her biharmonik eğri bir doğrunun açık bir parçasıdır [14].

• Rn deki sonlu tipli biharmonik altmanifoldlar minimaldir [14].

• Mm, Rn de bir pseudo-umbilik altmanifold olmak üzere eğer m 6= 4 ise

Mm nin biharmonik olması için gerek ve yeter şart minimal olmasıdır [14].

• R4 ün bir hiperyüzeyinin biharmonik olması için gerek ve yeter şart minimal

olmasıdır [15].

• Sn küresinin Rn+1 de biharmonik olan altmanifoldu yoktur [8].

• Mm, N(−1) de bir pseudo umbilik altmanifold olmak üzere m 6= 4 ise M

nin bir biharmonik altmanifold olması için gerek ve yeter şart minimal olmasıdır

[12].

Bu sonuçlar “Genelleştirilmiş Chen varsayımı” olarak adlandırılan “RiemN ≤ 0

olacak şekildeki bir N manifoldunun biharmonik altmanifoldları minimaldir” ifadesi

nin doğru olduğunu göstermektedir.

C. Oniciuc, 2002 yılında Riemann submersiyonlarının bitensiyon alanını hesapladı

ve Riemann immersiyonlar için elde edilen bazı yokluk teoremlerine benzer teoremleri

ispatladı [10].

Biharmonik dönüşümler ile ilgili ilk ve en kolay örnekler Riemann manifoldları

üzerinde tanımlı diferensiyellenebilir eğrilerin biharmonikliği incelenerek verildi. Geo-

deziklerin biharmonik eğriler olduğu açıktır. Dolayısıyla geodezik olmayan biharmonik

eğriler özgün biharmonik eğriler olarak adlandırılır. B. Y. Chen ve I. Ishikawa [16]

3-boyutlu Öklidyen uzayda özgün biharmonik eğrilerin yokluğunu ispatladılar ve

3-boyutlu Minkowski uzayın (özgün) biharmonik eğrilerini sınıflandırdılar. 3-boyutlu

Minkowski uzayın biharmonik eğrileri ile ilgili bir diğer çalışma da J. Inoguchi [17]

tarafından yapıldı. R. Caddeo, S. Montaldo ve P. Piu [18], bir yüzey üzerindeki

biharmonik eğrileri inceleyerek Gauss eğriliği pozitif olmayan bir yüzey üzerindeki

biharmonik eğrilerin yüzeyin geodezikleri olduğu sonucuna ulaştılar. [11] de ise

3-boyutlu birim küre S3 üzerindeki özgün biharmonik eğrilerin ya geodezik eğriliği 1

olan çemberler ya da Clifford minimal torsunun jeodezikleri olan helisler olduğu

ispatlandı. Daha sonra R. Caddeo, C. Oniciuc ve P. Piu [19], H3 Heisenberg

grubunun harmonik olmayan (özgün) biharmonik eğrisinin bir helis olduğunu göster-
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diler. Genelleştirilmiş Heisenberg grubunun harmonik olmayan (özgün) biharmonik

eğrilerinin sınıflandırılması ise D. Fetcu [20] tarafından yapıldı. A. Balmuş [21] ise

S3
ε Berger küresi üzerindeki biharmonik eğrilerin parametrik denklemini ifade etti.

Eğriliği sıfırdan küçük ve sıfır olan manifoldların harmonik olmayan (özgün)

biharmonik altmanifoldlarının yokluğu, bu alandaki çalışmaların eğriliği sıfırdan

büyük olan manifoldlar üzerinde yoğunlaşmasına sebep olmaktadır. Bu bağlamda

2001 yılında R. Caddeo, S. Montaldo ve C. Oniciuc S3 küresinin biharmonik altmani-

foldları için tam bir sınıflandırma yaptılar [11]. Bu çalışmadan sonra yine aynı

yazarlar tarafından Sn küresinin biharmonik altmanifoldları sınıflandırıldı [12]. Aslın-

da Sn küresinin harmonik olmayan (özgün) biharmonik altmanifoldlarına ilk örnek;

Sn1( 1√
2
) × Sn2( 1√

2
), n1 + n2 = n − 1, n1 6= n2, genelleştirilmiş Clifford torsudur

([4], [9]). Sn küresinin harmonik olmayan (özgün) biharmonik hiperyüzeyi için

bilinen yegane örnekler Sn−1( 1√
2
) küresi ve genelleştirilmiş Clifford torsudur. Boyut

farkının 1 den büyük olduğu durumlar örnek açısından daha zengindir. S4 ün

kapalı, yönlendirilebilir harmonik olmayan (özgün) biharmonik yüzeylerinin varlığı

[12] de ispatlandı. Bu durum S3 küresinin aksine S4 de pek çok harmonik olmayan

(özgün) biharmonik yüzeylerin varlığını gösterir. Buradan hareketle A. Balmuş ve

C. Oniciuc [22] S4 küresinin bir sabit ortalama eğrilikli yüzeyinin özgün biharmonik

olması için bu yüzeyin S3( 1√
2
) hiperküresinde minimal olmasının gerek ve yeter şart

olduğu sonucuna ulaştılar. [23] de generic Riemann manifoldlarının biharmonik

hiperyüzeyleri incelenerek genelleştirilmiş Chen varsayımının bir Einstein uzayın

total umbilik hiperyüzeyleri için de geçerli olduğu gösterildi. R. Caddeo, S. Montaldo

ve C. Oniciuc [24] tarafından 4-boyutlu uzay formların özgün biharmonik hiperyüzey-

leri ile ilgili tam bir sınıflandırma elde edildi.

Y. L. Ou [25] konformal biharmonik immersiyonları inceleyerek konformal bihar -

monik altmanifoldlar için bazı sonuçlar elde etti. Hiperbolik uzayların biharmonik

altmanifoldları ise [11], [12] ve [26] de ele alındı ve bazı karakterizasyonlara ulaşıldı.

Bilindiği gibi Sasakian uzay formlar, sabit kesit eğriliğine sahip Riemann manifold-

ların bir genelleştirmesi olarak göz önüne alınabilir. 3-boyutlu, basit bağlantılı bir

Sasakian uzay formu; SU(2) özel üniter grubuna, H3 Heisenberg grubuna veya

SL(2) nin evrensel örtü grubuna izomorftur [27]. Özel olarak sabit holomorfik kesit
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eğriliği 1 olan bir basit bağlantılı, 3-Sasakian uzay form S3 küresine izometriktir. Bu

nedenle Sasakian uzay formun biharmonik eğrileri ve altmanifoldlarının araştırılması

ilgi çekici hale geldi. J. Inoguchi [28], 3-boyutlu Sasakian uzay form üzerindeki

harmonik olmayan (özgün) biharmonik Legendre eğrilerini ve Hopf silindirlerini

sınıflandırdı. T. Sasahara ise Sasakian uzay formun harmonik olmayan (özgün)

biharmonik Legendre yüzeylerini sınıflandırarak esas uzayın 5-boyutlu birim küre

olması halinde bu Legendre yüzeyleri için tam gösterimler elde etti [29]. Ayrıca

C. Özgür ve M. M. Tripathi [30] tarafından bir α-Sasakian manifold üzerindeki bir

Legendre eğrisinin biharmonik olması için gerek ve yeter şartlar araştırıldı.

K. Arslan, R. Ezentaş, C. Murathan ve T. Sasahara ([31], [32]), kontakt manifold-

ların bir genelleştirilmesi olarak bilinen (κ, µ)-manifoldlarını ele alarak 3-boyutlu

(κ, µ)manifoldlarının biharmonik altmanifoldlarını ve Sasakian uzay formların bihar-

monik anti-invaryant altmanifoldlarını incelediler. [33] de ise Sasakian olmayan

(κ, µ)-manifoldların invaryant altmanifoldlarının total geodezik olduğu ispatlandı.

Buradan Sasakian olmayan (κ, µ)-manifoldların biharmonik invaryant altmanifoldla-

rının özgün olmayacağı sonucuna ulaşılır.

İyi bilinir ki bir (ϕ, ξ, η) hemen hemen kontakt yapısına sahip bir N2n+1 hemen

hemen kontakt manifoldu için N2n+1×R üzerinde J(X, f d
dt

) = (ϕX−fξ, η(X) d
dt

) ile

verilen bir hemen hemen kompleks J yapısı tanımlanabilir. Eğer J integrallenebilir

ise (ϕ, ξ, η) hemen hemen kontakt yapısına normaldir denir. Normal kontakt metrik

manifoldlar ise Sasakian manifoldlar olarak adlandırılır [34]. Böylece Sasakian mani -

foldlar, aslında Kaehler manifoldların boyutu tek olan manifoldlardaki bir benzeri

olarak göz önüne alınabilir. Dolayısıyla Sasakian manifoldlar üzerinde, biharmonik

altmanifoldlar için yapılan çalışmalar biharmonik altmanifoldlar teorisinin kompleks

manifoldlar üzerinde de çalışılabileceğini göstermektedir. Nitekim T. Sasahara [35]

de sabit ortalama eğrilikli kompleks uzay formlardaki biharmonik Lagrange yüzeyleri

sınıflandırdı. Özel olarak yine aynı çalışmada belirsiz kompleks Öklidyen düzlemin

ortalama eğrilik vektör alanı lightlike (null) olan Lorentz yüzeylerine yeni örnekler

verilerek, B. Y. Chen ve I. Ishikawa’ nın semi-Öklidyen uzayların lightlike ortalama

eğrilik vektör alanına sahip biharmonik yüzeyleri için yaptıkları sınıflandırma genişle-

tildi. Diğer taraftan W. Zhang [36] Hopf fibrasyonunu kullanarak kompleks projektif
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uzayda biharmonik reel hiperyüzeyleri ve Clifford torsu tipindeki biharmonik Lagran-

ge altmanifoldları inceleyerek S2n+1in biharmonik altmanifoldları için yeni örnekler

verdi.

Öklidyen uzaylar üzerinde harmonik olmayan (özgün) biharmonik altmanifoldla -

rın yokluğu ile ilgili elde edilen sonuçlara rağmen B. Y. Chen ve I. Ishikawa [13]

tarafından E4
t (t = 1, 2) semi-Öklidyen uzaylarında, sabit ortalama eğrilikli özgün

biharmonik spacelike yüzey örnekleri verildi. Yine aynı çalışmada semi-Öklidyen

uzayların lightlike (null) ortalama eğrilik vektör alanına sahip biharmonik yüzeyleri

ile sabit Gauss eğrilikli biharmonik yüzeyleri incelendi. I. Ishikawa ise [37] de E4
t

(t = 1, 2) semi-Öklidyen uzaylarında W -yüzeylerini tanıtarak düzlemsel normal

konneksiyona sahip biharmonik W -yüzeyleri için bir sınıflandırmaya ulaştı.

Semi-Öklidyen uzaylarda ise bazı durumlarda biharmoniklik harmonikliği yani

minimalliği gerektirmektedir. Örneğin [13] de E3
t (t = 1, 2) semi-Öklidyen uzaylarının

biharmonik yüzeylerinin minimal olduğu ispatlandı. Ayrıca F. Defever, G. Kaimaka-

mis ve V. Papantoniou tarafından 4-boyutlu semi-Öklidyen uzayın köşegenleştirilebi-

lir şekil operatörüne sahip bir nondejenere biharmonik hiperyüzeyinin minimal oldu -

ğu sonucuna ulaşıldı [38].

Semi-Riemann uzaylar özellikle de sabit eğrilikli olan de Sitter, Minkowski ve

anti de Sitter uzaylar genel görecelilik teorisinde önemli bir rol oynarlar. C. Ouyang

[39] ve H. Sun [40] semi-Riemann uzaylarda biharmonik altmanifoldları incelediler.

W. Zhang ise [41] de anti de Sitter uzayın özgün biharmonik hiperyüzeyleri ile ilgili

örnekler verdi.

Hemen hemen kontakt manifoldlara benzer şekilde hemen hemen parakontakt

manifoldlar I. Sato tarafından [42] da tanıtıldı. I. Sato tarafından verilen tanıma göre

hemen hemen parakontakt metrik yapıyı oluşturan metrik bir Riemann metriktir. T.

Adati ve K. Matsumoto [43], I. Sato tarafından tanımlanan hemen hemen parakontakt

manifoldların özel durumları olarak göz önüne alınabilecek olan para-Sasakian ve

özel para-Sasakian manifoldları tanımladılar ve bu manifoldların geometrisini çalıştı-

lar. 1989 yılında ise K. Matsumoto [44], Lorentzian hemen hemen parakontakt

manifoldlar ve bu manifoldların özel bir sınıfı olan Lorentzian para-Sasakian manifold

tanımını verdi. Hemen hemen parakontakt metrik manifoldları Lorentzian hemen
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hemen parakontakt manifoldlardan ayıran en temel özellik Lorentzian hemen hemen

parakontakt yapıyı oluşturan metriğin bir Lorentzian metrik ve bu yapının karakteris-

tik vektör alanının ise bir timelike vektör alanı olmasıdır. Yine K. Matsumoto

tarafından [44] de bir Lorentzian manifoldun bir Lorentzian parakontakt yapıya

sahip olması için gerekli bazı şartlar araştırıldı. I. Mihai ve R. Rosca [45] da K.

Matsumoto’dan bağımsız olarak Lorentzian para-Sasakian manifoldları tanımladılar

ve bu manifoldların pek çok özelliğini incelediler. Lorentzian hemen hemen parakon-

takt manifoldların bir diğer özel sınıfı olan Lorentzian parakosimplektik manifoldlar

ise [46] da tanıtıldı ve diferensiyellenebilir bir manifold üzerinde Lorentzian hemen

hemen parakontakt yapının bir tek olmadığı gösterildi.

Hemen hemen kontakt manifoldların hiperyüzeyleri D. E. Blair, G. D. Ludden

[47]; S. S. Eum [48]; S. I. Goldberg, K. Yano [49]; G. D. Ludden [50] ve daha birçok

matematikçi tarafından çalışıldı. Hemen hemen kontakt manifoldların non-invaryant

hiperyüzeyleri [49] da tanıtılarak hemen hemen kontakt manifoldların non-invaryant

hiperyüzeylerinin bir hemen hemen kompleks yapıya ve manifoldun kontakt formun-

dan indirgenen bir ayrık 1-forma sahip olduğu gösterildi. Yine aynı çalışmada hemen

hemen kontakt metrik manifoldların non-invaryant hiperyüzeyleri de araştırıldı.

T. Adati [51], I. Sato tarafından tanımlanan hemen hemen parakontakt manifold-

ların hiperyüzeylerini inceledi. Hemen hemen r-parakontakt Riemann manifoldların

hiperyüzeyleri ve özel olarak invaryant hiperyüzeyleri sırasıyla [52] ve [53] de ele

alındı. H. Gill ve K. K. Dube [54] hemen hemen r-parakontakt manifoldların

invaryant ve non-invaryant hiperyüzeylerini çalışarak bu hiperyüzeyler için bazı

karakterizasyonlar elde ettiler. Lorentzian hemen hemen parakontakt manifoldların

transversal hiperyüzeyleri [55] de ele alındı.

Lorentzian hemen hemen parakontakt manifoldların altmanifoldları pek çok mate-

matikçi tarafından çalışıldı. U. C. De ve A. K. Sengupta [56] Lorentzian hemen

hemen para-Sasakian manifoldların CR-altmanifoldlarını inceledi. Lorentzian para -

Sasakian manifoldların özgün semi-invaryant altmanifoldlarının yokluğu U. C. De

ve A. A. Shaikh [57] tarafından ispatlandı. B. Prasad [58] Lorentzian para-Sasakian

manifoldların semi-invaryant altmanifoldları üzerindeki distribüsyonların integrallene-

bilirlik şartlarını araştırdı. Lorentzian hemen hemen parakontakt ve Lorentzian
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parakosimplektik manifoldların semi-invaryant altmanifoldları ise sırasıyla [59] ve

[60] de M. M. Tripathi tarafından çalışıldı.

Kompleks diferensiyel geometride, bir altmanifold kompleks manifoldun kompleks

yapısı ile karakterize edilir. Eğer altmanifoldun tanjant uzayı kompleks yapı altında

invaryant ise bu altmanifold holomorfik (invaryant) altmanifold olarak adlandırılır.

Eğer altmanifoldun tanjant uzayının kompleks yapı altındaki görüntüsü normal

uzaya taşınıyorsa bu durumda altmanifolda tamamen reel (anti-invaryant) altmanifold

denir. 1978 yılında A. Bejancu [61] bir hemen hemen Hermityen manifoldun invaryant

ve anti-invaryant altmanifoldlarını içeren CR-altmanifoldlarını tanımladı. Daha

sonra bu kavram A. Bejancu ve N. Papaghiuc [62] tarafından hemen hemen kontakt

metrik manifoldlara genişletildi ve semi-invaryant altmanifoldlar olarak adlandırılan

yeni bir altmanifold sınıfı tanımlandı .

Diğer taraftan slant altmanifoldlar teorisi son yirmi yılda önemli bir gelişme

gösterdi. Kompleks geometride slant immersiyonlar 1990 yılında B. Y. Chen tarafın-

dan ([63], [64]) holomorfik ve tamamen reel altmanifoldların bir genelleştirmesi

olarak tanıtıldı. 1996 yılında A. Lotta [65] hemen hemen kontakt manifoldların slant

altmanifoldları kavramını ortaya attı. K-Kontakt ve Sasakian manifoldların slant

altmanifoldları J. L. Cabrerizo, A. Carriazo, L.M. Fernandez ve M. Fernandez ([66],

[67]) tarafından çalışıldı. Kenmotsu manifoldların slant altmanifoldları da [68] ve [69]

da incelendi. N. Papaghiuc [70] ise özgün CR-altmanifoldları ve slant altmanifoldları

özel bir alt sınıf olarak kabul eden semi-slant altmanifoldlar sınıfını tanıttı ve Kaehler

manifoldların semi-slant altmanifoldlarını inceledi. Lokal Riemann çarpım manifold-

ların semi-slant altmanifoldları H. Li ve X. Li [71] tarafından çalışıldı. Semi-slant

manifoldların kontakt versiyonu [72] da çalışıldı. M. Atçeken [73] hemen hemen

parakontakt Riemann manifoldların semi-slant altmanifoldlarını inceleyerek bazı

karakterizasyonlar elde etti.

Warped çarpım manifoldları 1969 yılında R. L. Bishop ve B. O’Neill [74] tarafından

tanıtıldı ve daha sonra pek çok matematikçi ve fizikçi tarafından çalışıldı. Bu

manifoldlar Riemann çarpım manifoldlarının bir genelleştirmesi olarak göz önüne

alınabilir. B. Y. Chen ([75], [76]) Kaehler manifoldların warped çarpım CR-altmani -

foldlarını araştırarak CR-warped çarpım kavramını ortaya attı. Daha sonra I. Hasega-
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wa ve I. Mihai [77] Sasakian manifoldların kontakt CR-warped çarpım altmanifoldla-

rını inceledi. Semi-slant altmanifoldlar CR-altmanifoldların bir genelleştirmesi olarak

düşünülebileceğinden warped çarpım semi-slant altmanifoldlar sınıfı daha genel ve

geometrik açıdan oldukça önemli bir sınıftır. Çünkü manifoldlar üzerinde tanımlı her

yapı warped çarpım semi-slant altmanifold tanımlamaya izin vermeyebilir. B. Şahin

[78] Kahler manifoldların warped çarpım semi-slant altmanifoldlarının yokluğunu

gösterdi. M. Atçeken [79] de lokal Riemann çarpım manifoldların warped çarpım

semi-slant altmanifoldlarını inceledi. Ayrıca Kenmotsu manifoldlarda özgün warped

çarpım semi-slant altmanifoldların yokluğu yine M. Atçeken [80] tarafından ispatlandı.

Kosimplektik manifoldların bazı tipteki warped çarpım semi-slant altmanifoldlarının

yokluğu da [81] de gösterildi.

Doktora tezi olarak hazırlanan bu çalışma dört bölümden oluşmaktadır. Birinci

bölümde, sonraki bölümlerin daha iyi bir şekilde anlaşılabilmesi için biharmonik

dönüşümler, semi-Riemann manifoldlar ve Lorentzian hemen hemen parakontakt

manifoldlar ile ilgili tanım ve teoremler sunuldu.

Tezin orjinal bölümleri ikinci, üçüncü ve dördüncü bölümlerdir. İkinci bölümde

4-boyutlu Lorentzian para-Sasakian manifoldlar üzerindeki özgün biharmonik space-

like ve özgün biharmonik timelike eğriler çalışıldı. Bu bölüm dört kısımdan oluşmak -

tadır. İkinci bölümün ilk kısmı M. Tarafdar ve A. Bhattacharyya [82] tarafından

ispatlanan ve konformal flat, quasi konformal flat, konformal simetrik n-boyutlu

Lorentzian para-Sasakian manifoldların Sn
1 (1) Lorentzian birim küresine lokal olarak

izometrik olduğunu ifade eden bazı teoremlere ayrıldı. İkinci kısımda Minkowski

uzaylarda tanımlı eğriler için J. Walrave [83] tarafından verilen Frenet formüllerine

benzer şekilde 4-boyutlu Lorentzian para-Sasakian manifoldlar üzerinde yay-paramet-

resi ile parametrelendirilmiş nondejenere eğriler için Frenet formüllerine yer verildi.

İkinci bölümün orjinal olan kısmının başladığı üçüncü kısımda konformal flat, quasi

konformal flat ve konformal simetrik 4-boyutlu Lorentzian para-Sasakian manifoldla-

rın sabit 1 eğriliğine sahip olduğu gerçeğinden hareketle bu manifoldların spacelike

ve timelike eğrileri için biharmonik denklemler elde edildi. Dördüncü kısımda ise

konformal flat, quasi konformal flat ve konformal simetrik 4-boyutlu Lorentzian

para-Sasakian manifoldların S4
1(1) Lorentzian birim küresine lokal olarak izometrik

10



olduğu göz önüne alınarak S4
1(1) Lorentzian birim küresinin özgün biharmonik eğrileri

incelenerek bazı karakterizasyonlar elde edildi.

Üçüncü bölümde hemen hemen parakontakt manifoldların, Lorentzian hemen

hemen parakontakt manifoldların ve Lorentzian para-Sasakian manifoldların hiperyü-

zeyleri çalışıldı. Bu bölüm beş kısımdan oluşmaktadır. Üçüncü bölümün ilk kısmında

karakteristik vektör alanı hiperyüzeye ait değil iken hemen hemen parakontakt

manifoldların non-invaryant hiperyüzeyleri incelenerek bu hiperyüzeylerin bir hemen

hemen çarpım yapısına sahip oldukları gösterildi. İkinci kısımda afin kosimplektik

ve normal hemen hemen parakontakt manifoldların hiperyüzeyleri çalışıldı. Üçüncü

kısımda Lorentzian para-Sasakian manifoldların non-invaryant ve invaryant hiperyü-

zeyleri incelendi. Dördüncü kısımda önceki kısımlarda tanıtılan hiperyüzeylere örnek-

ler verildi. Son kısımda ise Lorentzian para-Sasakian manifoldların sırasıyla biharmo-

nik spacelike ve biharmonik timelike hiperyüzeyleri incelenerek bu hiperyüzeylerin

özgün biharmonik olması için gerek ve yeter şartlar araştırıldı.

Dördüncü bölümde Lorentzian hemen hemen parakontakt manifoldların, Lorentz-

ian parakosimplektik manifoldların ve Lorentzian para-Sasakian manifoldların altma-

nifoldları çalışıldı. Bu bölüm dört kısıma ayrıldı. Dördüncü bölümün ilk kısmında

Lorentzian hemen hemen parakontakt manifoldların slant altmanifoldları tanıtılarak

örnekler verildi. İkinci kısımda Lorentzian hemen hemen parakontakt manifoldların

semi-slant altmanifoldları incelendi ve özel olarak Lorentzian parakosimplektik ve

Lorentzian para-Sasakian manifoldların semi-slant altmanifoldları ile ilgili bazı karak-

terizasyonlar elde edildi. Üçüncü kısımda Lorentzian parakosimplektik manifoldların

warped çarpım, warped çarpım semi-invaryant , warped çarpım semi-slant ve warped

çarpım anti-slant alt manifoldları çalışıldı. Dördüncü kısım ise Lorentzian para-Sasa-

kian uzay formların biharmonik altmanifoldlarına ayrıldı.
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BÖLÜM 1

TEMEL KAVRAMLAR

Bu bölüm üç kısımdan oluşmaktadır. İlk kısımda biharmonik dönüşümler, ikinci

kısımda semi-Riemann manifoldlar ve son kısımda ise Lorentzian hemen hemen

parakontakt manifoldlar ile ilgili temel tanım ve teoremlere yer verildi.

1.1 Biharmonik Dönüşümler

Bu kısımda ilk önce Riemann manifoldları arasındaki harmonik ve biharmonik dönü-

şümler için temel tanımlar verilerek bazı özellikleri incelenecektir. Daha sonra

özgün (harmonik olmayan) biharmonik dönüşümlerin yokluğu ile ilgili teoremlere

ve biharmonik eğrilere yer verilecektir.

1.1.1 Riemann manifoldları arasındaki harmonik ve

biharmonik dönüşümler

Tanım 1.1.1. W , M ve N , C∞ manifoldlar olmak üzere

ϕ : M → N

bir C∞ dönüşüm olsun. Bir W → N vektör demetinin pull-back demeti

ϕ−1W →M

ile gösterilir ve x ∈M için bu demet

(ϕ−1W )x = Wϕ(x) (1.1.1)

ile tanımlanan liflere sahiptir. W → N vektör demeti üzerindeki konneksiyon ∇W

ise ϕ−1W →M pull-back demeti üzerindeki konneksiyon ∇ϕ ile gösterilen ve

∇ϕ : Γ(TM)× Γ(ϕ−1W ) → Γ(ϕ−1W )

(X,ϕ∗σ) → ∇ϕ
X(ϕ∗σ) = ∇W

dϕ(X)σ (1.1.2)
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ile tanımlanan tek lineer konneksiyondur. ∇ϕ konneksiyonuna pull-back konneksiyon

denir. Burada

ϕ∗σ = σ ◦ ϕ

dir [84].

M = (M, g) ve N = (N, h) Riemann manifoldları ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ nin türev dönüşümü dϕ,

T ∗M ⊗ ϕ−1TN = Hom(TM,ϕ−1TN) →M

vektör demetinin bir kesiti olarak düşünülebilir. Hom(TM,ϕ−1TN) → M vektör

demeti, M manifoldu üzerindeki ∇M Levi-Civita konneksiyonu ve ∇ϕ pull-back

konneksiyonundan indirgenen∇ konneksiyonuna sahiptir. ∇ konneksiyonunun dϕ ∈

Γ(T ∗M ⊗ ϕ−1TN) kesitine uygulanmasıyla ϕ dönüşümünün

T ∗M ⊗ T ∗M ⊗ ϕ−1TN →M

vektör demetinin bir kesiti olan ikinci temel formuna ulaşılır [84].

Tanım 1.1.2. (M, g) ve (N, h) Riemann manifoldları ve

ϕ : M → N

bir C∞ dönüşüm olsun. Bu durumda ϕ dönüşümünün ikinci temel formu, dϕ ∈

Γ(T ∗M ⊗ ϕ−1TN) olmak üzere ∇dϕ ile gösterilir ve X, Y ∈ Γ(TM) için

∇dϕ : Γ(TM)× Γ(TM) → Γ(ϕ−1TN)

(X,Y ) → ∇dϕ(X,Y )

∇dϕ(X, Y ) = (∇Xdϕ)(Y ) = ∇ϕ
Xdϕ(Y )− dϕ(∇M

X Y ) (1.1.3)

şeklinde tanımlanır [84].
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{x1, ..., xm} ve {y1, ..., yn}, sırasıyla, (M, g) ve (N, h) Riemann manifoldları üzerin-

deki lokal koordinat sistemleri olsun. Bu durumda

(∇dϕ)ij = ∇dϕ(
∂

∂xi
,
∂

∂xj
) = ϕγ

;ij

∂

∂yγ
(1.1.4)

yazılabilir. Burada

ϕγ
;ij = (

∂ 2ϕγ

∂ xi∂ xj
− Γk

ij

∂ ϕγ

∂ xk
+ Lγ

αβ

∂ ϕα

∂ xi

∂ ϕβ

∂ xj
)

olup Γk
ij ve Lγ

αβ, sırasıyla M ve N deki Christoffel sembollerini ve “;” de ikinci

mertebeden kovaryant kısmı türevi göstermektedir [84].

Önerme 1.1.1. M , N Riemann manifoldları ve ϕ : (M, g) → (N, h) bir C∞

dönüşüm olsun. Bu durumda ϕ nin ikinci temel formu simetriktir [84].

Örnek 1.1.1. (Altmanifoldlar) (M, g), (N, h) Riemann manifoldları ve

ϕ : M → N

bir izometrik immersiyon olsun. ϕ−1TN pull-back demeti teğet ve normal demetinin

direkt toplamı olarak

ϕ−1TN = τM ⊕ VM , X = XT +X⊥ (1.1.5)

biçiminde yazılabilir. dϕ türev dönüşümünün, TM ile TM nin dϕ altında ϕ−1TN

pull-back demetindeki görüntüsü olan τM yi özdeşleştirdiği düşünülürse X,Y ∈

Γ(TM) için

∇ϕ
X(dϕ(Y )) = ∇N

XY

eşitliğine ulaşılır. Bu durumda dϕ(∇M
X Y ) , ∇N

XY nin tanjant bileşeni ve ∇dϕ(X, Y )

ise ∇N
XY nin normal bileşenidir. Böylece ∇dϕ(X, Y ), N deki ϕ(M) immersed

altmanifoldunun B(X,Y ) ile gösterilen ikinci temel formu olur. Dolayısıyla bir ϕ

izometrik immersiyonun ikinci temel formunun, N deki ϕ(M) immersed altmanifoldu-

nun ikinci temel formuna eşit olduğu görülür [84].

Tanım 1.1.3. (Mm, g) , (Nn, h) Riemann manifoldları ve

ϕ : Mm → Nn
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bir C∞ dönüşüm olsun. ϕ nin tensiyon alanı τ(ϕ) ∈ Γ(ϕ−1TN) ile gösterilir ve

τ(ϕ) = div dϕ = −d∗dϕ = iz∇dϕ =
m∑

i=1

∇dϕ(ei, ei) (1.1.6)

şeklinde tanımlanır. Burada {e1, ..., em}, M üzerinde bir ortonormal bazdır [84].

Önerme 1.1.2. (M, g), (N, h) Riemann manifoldları , {x1, ..., xm} ve {y1, ..., yn}

sırasıyla M ve N üzerinde lokal koordinat sistemleri olsun. Bu durumda bir

ϕ : M → N , C∞ dönüşümünün tensiyon alanının lokal koordinatlardaki ifadesi

τ(ϕ)γ = gijϕγ
;ij

= gij(
∂ 2ϕγ

∂ xi∂ xj
− Γk

ij

∂ ϕγ

∂ xk
+ Lγ

αβ

∂ ϕα

∂ xi

∂ ϕβ

∂ xj
) (1.1.7)

= ∆Mϕγ + g(gradϕα, gradϕα)Lγ
αβ (1.1.8)

olmak üzere

τ(ϕ) = τ(ϕ)γ(
∂

∂ yγ
)

biçimindedir. Burada ∆M , M üzerindeki Laplasyan ve Γk
ij ve Lγ

αβ, sırasıyla M ve

N deki Christoffel sembolleridir [84].

Eğer {x1, ..., xm} ve {y1, ..., yn} sırasıyla x ∈ M ve ϕ(x) ∈ N noktalarındaki

normal koordinatlar ise x noktasında M nin Christoffel sembolleri, ϕ(x) noktasında

da N nin Christoffel sembolleri sıfır olacağından ϕ dönüşümünün x noktasındaki

tensiyon alanı

τ(ϕ)γ
x =

m∑
i=1

∂2 ϕγ

(∂ xi)2
= (∆ϕγ)(x) (1.1.9)

ile ifade edilir.

Tanım 1.1.4. M ve N sırasıyla m ve n boyutlu Riemann manifoldları , x ∈M ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ nin enerji yoğunluğu e(ϕ) ile gösterilen ve

e(ϕ) : M → [0,∞)

x → e(ϕ)x =
1

2
|dϕx|2 (1.1.10)
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şeklinde tanımlanan bir C∞ fonksiyondur. Burada {e1, ..., em}, TxM tanjant uzayı

için bir ortonormal baz ve |dϕx|2,

|dϕx|2 =
m∑

i=1

h(dϕx(ei), dϕx(ei)) (1.1.11)

ile tanımlanan Hilbert-Schmidt normudur [84].

Tanım 1.1.5. (M, g) ve (N, h) Riemann manifoldları; D, M de bir kompakt bölge

ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ nin enerji integrali, ϕ nin enerji yoğunluğunun integrali

olarak tanımlanır ve E(ϕ;D) ile gösterilir. Yani

E(ϕ;D) =

∫
D

e(ϕ) vg =
1

2

∫
D

|dϕ|2 vg (1.1.12)

dir [84].

E(ϕ;D) ≥ 0 dır ve E(ϕ;D) = 0 olması için gerek ve yeter şart ϕ nin D üzerinde

sabit olmasıdır. Eğer M manifoldu kompakt ise E(ϕ;M) yerine E(ϕ) gösterimi

kullanılır. Enerji integrali sadece g ve h metriklerine bağlıdır.

Tanım 1.1.6. (M, g) ve (N, h) Riemann manifoldları ve

C∞(M,N) = {ϕ|ϕ : M → N ,ϕ bir C∞ dönüşüm}

kümesini gözönüne alalım. ϕ ∈ C∞(M,N) dönüşümü kompakt bir D bölgesi üzerinde

E( . ;D) : C∞(M,N) → R

ile tanımlanan enerji fonksiyonelinin kritik noktası ise ϕ ye harmoniktir denir [84].

Tanım 1.1.7. M , N Riemann manifoldları ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ nin bir C∞ varyasyonu, ε > 0 olmak üzere

ϕ : M × (−ε, ε) → N

(x, t) → ϕt(x)

biçiminde tanımlanır öyle ki ϕ0 = ϕ dir [84].
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{ϕt}, C∞ olarak sadece bir t ∈ (−ε, ε) parametresine bağlı C∞ dönüşümlerin bir

ailesi olarak düşünülebilir [84].

Tanım 1.1.8. M , N Riemann manifoldları

ϕ : M → N

bir C∞ dönüşüm ve x ∈ M olsun. ∀x ∈ M için t → ϕt(x) dönüşümü ϕ(x) ∈ N

noktasından geçen bir C∞ eğri tanımlar. Bu eğrinin

v(x) =
∂ ϕt(x)

∂ t
|t=0 ∈ Tϕ(x)N (1.1.13)

ile tanımlanan ve ϕ−1TN pull-back demetinin bir kesiti olan hız vektörüne ϕt nin

varyasyon vektör alanı denir [84].

Tersine ϕ−1TN pull-back demetinin bir kesiti olan v için ϕ nin

ϕt(x) = expϕ(x)(tv(x))

ile tanımlı bir tek olmayan {ϕt} ailesi vardır [84].

Tanım 1.1.9. M , N Riemann manifoldları ve D, M nin kompakt bir altkümesi

olsun. Bu durumda ϕ : M → N , C∞ dönüşümünün bir C∞ {ϕt} varyasyonu ∀t

için M\D̊ üzerinde ϕt = ϕ şartını sağlıyorsa {ϕt} varyasyonu D içinde desteklenir

denir. Burada D̊ ile D nin içi gösterilmektedir [84].

Tanım (1.1.6) yı bir başka şekilde aşağıdaki gibi vermek mümkündür:

Tanım 1.1.10. (M, g) ve (N, h) Riemann manifoldları olsun. Bu durumda

ϕ : M → N

C∞ dönüşümü M nin bütün D kompakt bölgeleri ve D içinde desteklenen bütün C∞

{ϕt} varyasyonları için
d

dt
E(ϕt;D)|t=0 = 0 (1.1.14)

şartını sağlıyorsa ϕ ye bir harmonik dönüşüm denir [84].
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Tanım 1.1.11. (M, g), (N, h) Riemann manifoldları , x ∈M ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ−1TN pull-back demeti üzerindeki pull-back metrik < , >

ile gösterilir ve v, w ∈ Γ(ϕ−1TN) olmak üzere x ∈M noktasında

< v,w >x= hϕ(x)(v(x), w(x))

şeklinde tanımlanır [84].

Önerme 1.1.3. (Enerjinin Birinci Varyasyonu) ϕ : M → N , Riemann

manifoldları arasında tanımlanan bir C∞ dönüşüm ve {ϕt}, ϕ nin D ⊂M kompakt

bölgesi içinde desteklenen bir C∞ varyasyonu olsun. Bu durumda < , >, ϕ−1TN

pull-back demeti üzerindeki pull-back metrik olmak üzere

d

dt
E(ϕt;D)|t=0 = −

∫
D

< v, τ(ϕ) > vg (1.1.15)

dir. Burada x ∈ D ve v(x), {ϕt} nin

v(x) =
∂ ϕt(x)

∂ t
|t=0

ile tanımlanan varyasyon vektör alanıdır [84].

Teorem 1.1.1. M , N Riemann manifoldları, ϕ : M → N bir C∞ dönüşüm ve D,

M nin bir kompakt altkümesi olsun. Bu durumda ϕ nin harmonik olması için gerek

ve yeter şart τ(ϕ) = 0 olmasıdır [84].

Tanım 1.1.12. M , N Riemann manifoldları ve ϕ : M → N bir harmonik dönüşüm

olsun. Bu durumda τ(ϕ) = 0 denklemi harmonik denklem veya tensiyon alanı

denklemi olarak adlandırılır [84].

Tanım 1.1.13. M , N Riemann manifoldları ve

ϕ : M → N

bir izometrik immersiyon olsun. ϕ nin ortalama eğriliği (veya N deki ϕ(M) immersed

altmanifoldunun ortalama eğriliği) µM ile gösterilir ve

µM =
1

m
iz B =

m∑
i=1

B(ei, ei) (1.1.16)
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şeklinde tanımlanır. Burada {e1, ..., em}, M de bir ortonormal baz ve B, ϕ(M)

altmanifoldunun ikinci temel formudur [84].

Önerme 1.1.4. M , N Riemann manifoldları ve

ϕ : M → N

bir izometrik immersiyon olsun. Bu durumda

τ(ϕ) = iz B = (boyM)µM (1.1.17)

dir. Öyleyse bir izometrik immersiyonun harmonik olması için gerek ve yeter şart

bu izometrik immersiyonun minimal olmasıdır [84].

Örnek 1.1.2. (Geodezikler)

M , 1-boyutlu ve N , n-boyutlu Riemann manifoldları olsun. Bu durumda

ϕ : M → Nn

C∞ dönüşümü bir parametrik eğri olarak düşünülebilir. N üzerindeki {y1, ..., yn}

koordinat dönüşümleri için γ = 1, ..., n olmak üzere (1.1.7) eşitliğinden

τ(ϕ) = τ(ϕ)γ ∂

∂ yγ

= (
d2ϕγ

dt2
+ Lγ

αβ

dϕα

dt

dϕβ

dt
)
∂

∂ yγ

bulunur. Böylece R nin bir açık altkümesinden veya S1 den keyfi bir Riemann

manifolduna tanımlanan bir C∞ dönüşümün harmonik olması için gerek ve yeter

şart bu dönüşümün yay uzunluğunun bir katı ile parametrelendirilmiş bir geodezik

olmasıdır sonucuna ulaşılır [84].

Tanım 1.1.14. M , N Riemann manifoldları ve

ϕ : M → N

bir C∞ dönüşüm olsun. ϕ nin tensiyon alanı

τ(ϕ) = iz∇dϕ
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olmak üzere D ⊆M kompakt bölgesi için ϕ nin bienerji integrali

E2(ϕ) =
1

2

∫
D

|τ(ϕ)|2 vg (1.1.18)

ile tanımlanır [7].

Önerme 1.1.5. (Bienerjinin Birinci Varyasyonu)M , N Riemann manifoldları,

ϕ : (M, g) → (N, h) bir C∞ dönüşüm ve {ϕt}, ϕ nin D ⊂ M kompakt altkümesi

içinde desteklenen bir C∞ varyasyonu olsun. Bu durumda < , >, ϕ−1TN pull-back

demeti üzerindeki pull-back metrik ve ∆ϕ = −iz (∇ϕ∇ϕ −∇ϕ
∇), ϕ−1(TN) pull-back

demetinin kesitleri üzerindeki Laplasyan olmak üzere

d

dt
E2(ϕt;D)|t=0 =

∫
D

< τ2(ϕ), v > vg (1.1.19)

dir. Burada x ∈ D için v(x), {ϕt} nin varyasyon vektör alanı; RN , N manifoldu

üzerinde RN(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] ile tanımlı eğrilik operatörü ve

τ2(ϕ) = −∆ϕ(τ(ϕ))− iz RN(dϕ(−), τ(ϕ))dϕ(−)

dir [7].

İspat. D, M nin kompakt bir altkümesi; {ϕt}, ϕ nin D içinde desteklenen bir

C∞ varyasyonu ve v ∈ Γ(ϕ−1TN) bir varyasyon vektör alanı olsun. M üzerindeki

{e1, ..., em} lokal ortonormal çatısını gözönüne alalım.

φ : M × (−ε, ε) → N

(x, t) → φ(x, t) = ϕt(x)

fonksiyonunu ve

E = φ−1TN →M × (−ε, ε)

vektör demetini tanımlayalım. E demeti üzerindeki pull-back konneksiyon ∇φ ile

gösterilsin. M manifoldu üzerindeki bir X vektör alanı M × (−ε, ε) üzerinde bir

vektör alanı olarak düşünülebileceğinden

[
∂

∂ t
,X] = 0 (1.1.20)
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olur. ei,
∂
∂ t
∈ Γ(TM) için Önerme 1.1.1 ve (1.1.20) eşitliğinden

∇φ
∂

∂ t

dφ(ei)−∇φ
ei
dφ(

∂

∂ t
)− dφ([

∂

∂ t
, ei]) = 0

ve

∇φ
∂

∂ t

dφ(ei) = ∇φ
ei
dφ(

∂

∂ t
) (1.1.21)

yazılabilir. (1.1.21) eşitliğinin her iki tarafının ei yönündeki türevi alınırsa

∇φ
ei
∇φ

∂
∂ t

dφ(ei) = ∇φ
ei
∇φ

ei
dφ(

∂

∂ t
) (1.1.22)

elde edilir. Ayrıca yine (1.1.21) eşitliğinden

∇φ
∂

∂ t

dφ(∇M
ei
ei) = ∇φ

∇M
ei

ei

∂φ

∂t
(1.1.23)

yazılabilir. Diğer taraftan

d

dt
E2(ϕt;D)|t=0 =

1

2

d

dt

∫
D

< τ(ϕt), τ(ϕt) > vg|t=0

=

∫
D

< ∇φ
∂
∂t

τ(ϕt), τ(ϕt) > vg|t=0

=

∫
D

<
m∑

i=1

∇φ
∂
∂t

{∇φ
ei
(dϕt(ei))− dϕt(∇M

ei
ei)}, τ(ϕt) > vg|t=0

=

∫
D

<
m∑

i=1

∇φ
∂
∂t

∇φ
ei
(dϕt(ei)), τ(ϕt) > vg|t=0

−
∫

D

<
m∑

i=1

∇φ
∂
∂t

dϕt(∇M
ei
ei), τ(ϕt) > vg|t=0 (1.1.24)

dir.

RN(
∂φ

∂t
, dφ(ei))dφ(ei) = ∇N

∂φ
∂t

∇N
dφ(ei)

dφ(ei)−∇N
dφ(ei)

∇N
∂φ
∂t

dφ(ei)−∇N
[ ∂φ

∂t
,dφ(ei)]

dφ(ei)

= ∇φ
∂
∂t

∇φ
ei
dφ(ei)−∇φ

ei
∇φ

∂
∂t

dφ(ei)

olduğundan

RN(
∂φ

∂t
, dφ(ei))dφ(ei) +∇φ

ei
∇φ

∂
∂t

dφ(ei) = ∇φ
∂
∂t

∇φ
ei
dφ(ei) (1.1.25)

eşitliğine ulaşılır. Böylece (1.1.22), (1.1.23 ), (1.1.25) eşitlikleri (1.1.24) denkleminde
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yerine yazılacak olursa

d

dt
E2(ϕt;D)|t=0 =

∫
D

{<
m∑

i=1

{∇φ
ei
∇φ

ei
dφ(

∂

∂t
)−∇φ

∇M
ei

ei

∂φ

∂t
}, τ(ϕt) >

+ <

m∑
i=1

RN(
∂φ

∂t
, dφ(ei))dφ(ei), τ(ϕt) >} vg|t=0

=

∫
D

<
m∑

i=1

{(∇φ)2(ei, ei)
∂φ

∂t
+RN(

∂φ

∂t
, dφ(ei))dφ(ei)}, τ(ϕt) > vg|t=0

=

∫
D

< −∆τ(ϕ)− izRN(dϕ(−), τ(ϕ))dϕ(−), v > vg

=

∫
D

< τ2(ϕ), v > vg

elde edilir ve ispat tamamlanır.

Tanım 1.1.15. (Bitensiyon Alanı)

M ve N Riemann manifoldları, ϕ : (M, g) → (N, h) bir C∞ dönüşüm olsun. ϕ nin

bitensiyon alanı τ2(ϕ) ile gösterilir ve

τ2(ϕ) = −∆ϕ(τ(ϕ))− iz RN(dϕ(−), τ(ϕ))dϕ(−) (1.1.26)

şeklinde tanımlanır [7].

Tanım 1.1.16. (Biharmonik Denklem ve Biharmonik Dönüşüm)

M , N Riemann manifoldları ve ϕ : (M, g) → (N, h) bir C∞ dönüşüm olsun. Bu

durumda

τ2(ϕ) = −∆ϕ(τ(ϕ))− iz RN(dϕ(−), τ(ϕ))dϕ(−) = 0 (1.1.27)

eşitliğine ϕ dönüşümünün biharmonik denklemi ve τ2(ϕ) = 0 denklemini sağlayan ϕ

dönüşümüne de biharmonik dönüşüm denir [7].

Böylece her harmonik dönüşümün biharmonik olacağı açıktır. Ancak tersi her

zaman doğru değildir. Dolayısıyla harmonik olmayan (non-harmonik) biharmonik

dönüşümler özel bir öneme sahiptir. Böyle dönüşümleri özgün biharmonik dönüşümler

olarak adlandıracağız. (N, h) manifoldunun bir semi-Riemannian manifold olması

durumunda da ϕ : (M, g) → (N, h) dönüşümünün bienerjisi ve biharmonik denklemi

yukarıda verilen şekilde tanımlanır [84].
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M kompakt manifold olmak üzere ϕ : (Mm, g) → Rn dönüşümünü gözönüne

alalım. Bu durumda {x1, x2, ..., xm} ve {y1, y2, ..., yn} sırasıyla M ve Rn üzerindeki

koordinat sistemleri olmak üzere ϕ nin tensiyon alanı

τ(ϕ) = τ(ϕ)γ ∂

∂yγ

= gij(
∂2ϕγ

∂xi∂xj
− Γk

ij

∂ϕγ

∂xk
)
∂

∂yγ

= ∆M(ϕγ)
∂

∂yγ

= ∆M(ϕ) (1.1.28)

dir. Buradan

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2vg =
1

2

∫
M

< τ(ϕ), τ(ϕ) > vg

=
1

2

∫
M

< ∆M(ϕ),∆M(ϕ) > vg =
1

2

∫
M

|∆M(ϕ)|2vg (1.1.29)

elde edilir. ϕ dönüşümünün bir X ∈ χ(Rn) vektör alanı yönündeki 1-parametreli

ϕt = ϕ+ tX varyasyonunu gözönüne alırsak

d

dt
E2(ϕt)|t=0 =

1

2

d

dt

∫
M

< ∆M(ϕt),∆
M(ϕt) > vg|t=0

=

∫
M

< ∇ ∂
∂t

∆M(ϕt),∆
M(ϕt) > vg|t=0

=

∫
M

< ∆X,∆M(ϕ) > vg

=

∫
M

< X,∆2(ϕ) > vg (1.1.30)

olur. Böylece ϕ : (Mm, g) → Rn dönüşümünün biharmonik olması için gerek ve yeter

şart ∆2(ϕ) = 0 eşitliğinin sağlanmasıdır. Ek olarak ϕ : (Mm, g) → Rn dönüşümü

bir izometrik immersiyon ise H ortalama eğrilik vektörü olmak üzere

∆(ϕ) = −mH (1.1.31)

Beltrami denklemi kullanılırsa “ϕ : (M, g) → Rn dönüşümünün biharmonik olması

için gerek ve yeter şart ∆H = 0 olmasıdır ” sonucuna ulaşılır. ∆H = 0 ise M ye

biharmonik altmanifold denir [7].
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i : M → Rn kanonik izdüşüm dönüşümünü göz önüne alalım. H, M nin ortalama

eğrilik vektörü olmak üzere

∆H = ∆(− 1

m
∆i) = − 1

m
∆2i = − 1

m
τ2(i) (1.1.32)

olduğundan M nin Rn Öklidyen uzayının bir biharmonik altmanifoldu olması için

gerek ve yeter şart τ2(i) = 0 yani i : M → Rn izometrik immersiyonun biharmonik

dönüşüm olmasıdır. Bir izometrik immersiyonun minimal olması için gerek ve yeter

şart bu dönüşümün harmonik olmasıdır [84]. Dolayısıyla aşikar olarak minimal

altmanifoldlar biharmoniktir.

1.1.2 Yokluk teoremleri

Bu kısımda biharmonik dönüşümlerin harmonik olduğu yani özgün (harmonik olmayan)

biharmonik dönüşümlerin tanımlanamadığı durumlar incelenecektir.

Teorem 1.1.2. ϕ : (M, g) → (N, h) bir C∞ dönüşüm olsun. Eğer M kompakt,

yönlendirilebilir ve RiemN ≤ 0 ise ϕ nin biharmonik olması için gerek ve yeter şart

harmonik olmasıdır [10].

İspat. ϕ : (M, g) → (N, h) dönüşümünün tensiyon alanı τ(ϕ) olmak üzere

1

2
∆|τ(ϕ)|2 =

1

2
∆ < τ(ϕ), τ(ϕ) >

= −1

2

m∑
i=1

∇d(< τ(ϕ), τ(ϕ) >)(ei, ei)

= −1

2

m∑
i=1

{∇ϕ
ei
d(< τ(ϕ), τ(ϕ) >)(ei)− d(< τ(ϕ), τ(ϕ) >)(∇M

ei
ei)}

= −1

2

m∑
i=1

{∇ϕ
ei
(ei(< τ(ϕ), τ(ϕ) >))− (∇M

ei
ei)(< τ(ϕ), τ(ϕ) >)}

yazılır. Buradan

1

2
∆|τ(ϕ)|2 = −

m∑
i=1

{∇ϕ
ei
(< ∇ϕ

ei
τ(ϕ), τ(ϕ) >)− < ∇ϕ

∇M
ei

ei
τ(ϕ), τ(ϕ) >}

= −
m∑

i=1

{< ∇ϕ
ei
∇ϕ

ei
τ(ϕ), τ(ϕ) > − < ∇ϕ

∇M
ei

ei
τ(ϕ), τ(ϕ) >}

−
m∑

i=1

< ∇ϕ
ei
τ(ϕ),∇ϕ

ei
τ(ϕ) >

= < ∆τ(ϕ), τ(ϕ) > −|dτ(ϕ)|2 (1.1.33)
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elde edilir. ϕ biharmonik ise

∆τ(ϕ) = izRN(τ(ϕ), dϕ(−))dϕ(−) (1.1.34)

yazılabilir. Böylece (1.1.34) eşitliği (1.1.33) de yerine yazılırsa

1

2
∆|τ(ϕ)|2 =< izRN(τ(ϕ), dϕ(−))dϕ(−), τ(ϕ) > −|dτ(ϕ)|2 ≤ 0 (1.1.35)

elde edilir. M kompakt olduğundan maksimum prensibine göre |τ(ϕ)|2 sabittir.

Dolayısıyla (1.1.35) eşitliğinden dτ(ϕ) = 0 bulunur. Ayrıca

div < dϕ, τ(ϕ) >= |τ(ϕ)|2+ < dϕ, dτ(ϕ) > (1.1.36)

özdeşliği ve Divergens Teoremi gözönüne alınırsa τ(ϕ) = 0 bulunur. Bu da ϕ nin

bir harmonik dönüşüm olduğunu gösterir ve ispat tamamlanmış olur.

M manifoldu kompakt ve yönlendirilebilir değil ise aşağıdaki önerme verilebilir:

Önerme 1.1.6. ϕ : (M, g) → (N, h) dönüşümü |τ(ϕ)| sabit olacak şekilde bir

Riemann immersiyon ve RiemN ≤ 0 olsun. Bu durumda ϕ nin biharmonik olması

için gerek ve yeter şart harmonik olmasıdır [10].

İspat. ϕ bir biharmonik dönüşüm olsun. |τ(ϕ)| =sbt. ve RiemN ≤ 0 olduğundan

1

2
∆|τ(ϕ)|2 =< izRN(τ(ϕ), dϕ(−))dϕ(−), τ(ϕ) > −|dτ(ϕ)|2 ≤ 0

yazılabilir. Böylece dτ(ϕ) = 0 olur. Riemann immersiyonlar için geçerli olan

−|τ(ϕ)|2 =< dϕ, dτ(ϕ) > (1.1.37)

eşitliği kullanılırsa ϕ bir harmonik dönüşüm olur. Böylece ispat tamamlanır.

Önerme 1.1.6 daki RiemN ≤ 0 eğrilik şartı yerine ek boyut 1 olduğunda RiccN ≤

0 şartı alınabilir:

Teorem 1.1.3. M kompakt, yönlendirilebilir bir Riemann manifoldu olmak üzere

ϕ : (Mm, g) → (Nn, h) dönüşümü bir Riemann immersiyon, RiccN ≤ 0 ve m = n−1

olsun. Bu durumda ϕ nin biharmonik olması için gerek ve yeter şart harmonik

olmasıdır [10].
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İspat. ϕ bir Riemann immersiyon ve {e1, e2, ..., em}, M nin bir ortonormal bazı

olsun. Bu durumda

izRN(dϕ(−), τ(ϕ))dϕ(−) =
m∑

i=1

RN(dϕ(ei), τ(ϕ))dϕ(ei)

= −RiccN(τ(ϕ)) (1.1.38)

dir. ϕ bir biharmonik dönüşüm olsun. Böylece

1

2
∆|τ(ϕ)|2 = < izRN(τ(ϕ), dϕ(−))dϕ(−), τ(ϕ) > −|dτ(ϕ)|2

= <
m∑

i=1

(−RN(dϕ(ei), τ(ϕ))dϕ(ei)), τ(ϕ) > −|dτ(ϕ)|2

= < RiccN(τ(ϕ)), τ(ϕ) > −|dτ(ϕ)|2 ≤ 0 (1.1.39)

olduğundan ve maksimum prensibinden dτ(ϕ) = 0 elde edilir. ϕ bir Riemann

immersiyon olduğundan

−|τ(ϕ)|2 =< dϕ, dτ(ϕ) >

eşitliği kullanılarak ispat tamamlanır.

Önerme 1.1.7. ϕ : (Mm, g) → (Nn, h) dönüşümü |τ(ϕ)| = sbt. olacak şekilde bir

Riemann immersiyon olsun. RiccN ≤ 0 ve m = n− 1 ise ϕ nin biharmonik olması

için gerek ve yeter şart harmonik olmasıdır [10].

1.1.3 Biharmonik eğriler

Bu kısımda Riemann manifoldları üzerinde tanımlı bir eğrinin biharmonik denklemi

verilecektir.

I ⊆ R olmak üzere γ : I → (M, g) bir izometrik immersiyon olsun. γ(I) görüntü

kümesi M de bir eğrinin görüntüsüdür. γ eğrisi yay parametresi ile verilsin. Bu

durumda γ eğrisinin tensiyon alanı γ̇ = dγ
ds

= T olmak üzere

τ(γ) = ∇γ̇ γ̇ (1.1.40)

dır. Böylece bitensiyon alanı

τ2(γ) = −∆τ(γ)− izRM(dγ, τ(γ))dγ

= iz(∇γ∇γ −∇γ
∇)τ(γ)− izRM(dγ, τ(γ))dγ
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şeklinde yazılabilir. Buradan

τ2(γ) = ∇γ
d
dt

∇γ
d
dt

τ(γ) +∇γ

∇ d
dt

d
dt

τ(γ)− izRM(dγ, τ(γ))dγ

= ∇M
dγ( d

dt
)
∇M

dγ( d
dt

)
τ(γ) +∇M

dγ(∇ d
dt

d
dt

)
τ(γ)− izRM(dγ, τ(γ))dγ

= ∇M
dγ
dt

∇M
dγ
dt

τ(γ)− izRM(dγ, τ(γ))dγ

= ∇2
γ̇τ(γ)− izRM(dγ, τ(γ))dγ (1.1.41)

olur ve γ eğrisinin biharmonik denklemi

∇2
γ̇τ(γ)− izRM(dγ, τ(γ))dγ = 0 (1.1.42)

şeklindedir [18]. (1.1.42) denkleminden her harmonik eğrinin biharmonik olacağı

açıkça görülmektedir. Ancak bunun tersi her zaman doğru değildir. Ayrıca R nin

bir açık aralığından veya S1 den tanımlanan bir dönüşümün harmonik olması için

gerek ve yeter şart bu dönüşümün yay uzunluğunun bir katı ile parametrelendirilmiş

bir geodezik olmasıdır [84]. Böylece geodezikler biharmonik eğrilerin bir alt sınıfını

oluşturur. Bu durum biharmonik eğrilerin sınıfını geodeziklerden daha geniş hale

getirir. Dolayısıyla özgün (geodezik olmayan) biharmonik eğriler oldukça önemlidir.

1.2 Semi-Riemann Manifoldlar

Bu kısımda semi-Riemann manifoldlar için temel tanımlar ve örnekler verilerek

warped çarpım manifoldları ve doubly warped çarpım manifoldları sunulacaktır.

Tanım 1.2.1. V bir sonlu boyutlu vektör uzayı olsun. V üzerinde tanımlanan bir

simetrik bilineer b : V × V → R fonksiyonuna bilineer form denir [85].

Tanım 1.2.2. V sonlu boyutlu bir vektör uzayı ve b de V üzerinde bir bilineer form

olsun. Eğer

(i) her v 6= 0 vektörü için b(v, v) < 0 (≤ 0) ise b ye negatif tanımlıdır (negatif

yarı-tanımlıdır )

(ii) her v 6= 0 vektörü için b(v, v) > 0 (≥ 0) ise b ye pozitif tanımlıdır (pozitif

yarı-tanımlıdır )
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(iii) v ∈ V ve her w ∈ V için b(v, w) = 0 ⇔ v = 0 ise b ye nondejeneredir

denir [86].

b, V üzerinde bir bilineer form ise W ⊂ V alt uzayı için b nin W ye kısıtlanmışı

olan b|W de bir bilineer formdur [86].

Tanım 1.2.3. V sonlu boyutlu vektör uzayı üzerinde simetrik, nondejenere olan bir

g bilineer formuna skaler çarpım ve (V, g) ikilisine de skaler çarpım uzayı denir [86].

g bilineer formu nondejenere ise v ∈ V için q(v) = g(v, v) şeklinde tanımlanan q

kuadratik formuna indefinittir (belirsizdir) denir [86].

Örnek 1.2.1. R2 de u = (u1, u2), v = (v1, v2) olmak üzere

g : R2 ×R2 → R

(u, v) → g(u, v) = −u1v1 + u2v2

şeklinde tanımlanan dönüşüm bir skaler çarpımdır. Böylece q(u) = −u2
1+u

2
2 kuadratik

formu da indefinit (belirsiz) olur [86].

Tanım 1.2.4. V üzerinde bir simetrik bilineer form verildiğinde boy V = m olmak

üzere V nin bir {e1, e2, ..., em} bazı vardır öyleki p, q ≥ 0 tamsayıları için

g(ei, ej) = 0, (i 6= j)

ve

g(ei, ej) =


−1, (1 ≤ i ≤ p)

1, (p+ 1 ≤ i ≤ p+ q)

0, (p+ q + 1 ≤ i ≤ m)}

dir. Bu durumda g bilineer formuna (p, q) işaretlidir denir [84].

g bilineer formunun nondejenere olması için gerek ve yeter şart

p+ q = boy V

olmasıdır. Pozitif ve negatif tanımlı iç çarpımlar nondejeneredir ve sırasıyla (0,m)

ve (m, 0) işaretlidirler [84].
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Tanım 1.2.5. M bir C∞ manifold ve boy M = n olsun. M üzerinde C∞, (p, q)

tipinde, simetrik, 2-kovaryant tensör alanına bir semi-Riemann metrik denir ve g

ile gösterilir. Yani g,

�2T ∗M ≡ Sp{v � w ≡ 1

2
(v ⊗ w + w ⊗ v) : v, w ∈ Γ(TM)}

ile tanımlanan ve simetrik kare olarak adlandırılan vektör demetinin bir C∞ kesitidir

öyle ki g, M nin her noktasındaki tanjant uzayı üzerinde sabit (p, q) işaretli bir

nondejenere iç çarpım tanımlar. Böylece q = n− p olur.

(0, n) işaretli bir semi-Riemann metrik bir Riemann metriğidir. (1, n−1) işaretli

bir semi-Riemann metrik ise bir Lorentz metrik olarak adlandırılır [84].

(p, n− p) işaretli bir n-boyutlu semi-Riemann manifoldu M
n

p ile göstereceğiz.

Örnek 1.2.2. (Semi-Öklidyen Uzaylar)

Rn, n-boyutlu bir Öklidyen uzay olsun. (p, n− p) işaretli

g = gx = −dx2
1 − dx2

2 − ...− dx2
p + dx2

p+1 + ...+ dx2
n

semi-Riemann metriğine sahip Rn Öklidyen uzayına semi-Öklidyen uzay denir ve

Rn
p ile gösterilir. Böylece v = (v1, v2, ..., vn) ve w = (w1, w2, ..., wn) olmak üzere

g(v, w) = −v1w1 − v2w2 − ...− vpwp + vp+1wp+1 + ...+ vnwn

şeklindedir. p = 1 ise Rn
1 uzayı n-boyutlu Lorentz uzay olarak adlandırılır [84].

Örnek 1.2.3. (Pseudo-Küreler)

n ≥ 2 ve 0 ≤ p ≤ n− 1 için

Sn−1
p = {x ∈ Rn

p : −x2
1 − x2

2 − ...− x2
p + x2

p+1 + ...+ x2
n = 1}

C∞ hiperyüzeyini gözönüne alalım. ∀x ∈ Sn−1
p için Sn−1

p hiperyüzeyinin TxS
n−1
p

tanjant uzayı

{v ∈ Rn :< x, v >= 0}

kümesi ile tanımlanır. Böylece x, g metriğine göre TxS
n−1
p tanjant uzayına diktir.

< x, x >= 1 > 0 olduğundan g nin Sn−1
p e kısıtlanmışı olan metrik Sn−1

p hiperyüzeyine
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(p, n− p− 1) işaretli bir semi-Riemann manifold yapısı kazandırır. n ≥ 3 için Sn−1
p

semi-Riemann manifolduna pseudo-küre denir. Özel olarak (S4
1 , g) pseudo-küresi

deSitter space-time olarak adlandırılır [84].

Örnek 1.2.4. (Pseudo-hiperbolik Uzay)

Hn−1
p−1 = {x ∈ Rn

p : −x2
1 − x2

2 − ...− x2
p + x2

p+1 + ...+ x2
n = −1}

bir C∞ hiperyüzey olsun. Sn−1
p de olduğu gibi x ∈ Hn−1

p−1 , g metriğine göre TxH
n−1
p−1

tanjant uzayına diktir. < x, x >= −1 < 0 olduğundan g nin Hn−1
p−1 e kısıtlanmışı

olan metrik Hn−1
p−1 hiperyüzeyine (p − 1, n − p) işaretli bir semi-Riemann manifold

yapısı kazandırır. n ≥ 3 ve 1 ≤ p ≤ n için Hn−1
p−1 semi-Riemann manifolduna

pseudo-hiperbolik küre denir. (H4
1 , g) pseudo-küresi anti de Sitter space-time olarak

adlandırılır [84].

Örnek 1.2.5.

Cn−1
p = {x ∈ Rn

p : −x2
1 − x2

2 − ...− x2
p + x2

p+1 + ...+ x2
n = 0}

bir C∞ hiperyüzey olsun. Bu durumda Cn−1
p,∗ = Cn−1

p \{0} olmak üzere Rn
p üzerindeki

g metriğinin TxC
n−1
p,∗ tanjant uzaylarına kısıtlanmışı dejeneredir [84].

Tanım 1.2.6. (M
n
, g) bir semi-Riemann manifold olsun. v ∈ TxM olmak üzere

(i) g(v, v) < 0 ise v ye timelike vektör

(ii) g(v, v) > 0 ise v ye spacelike vektör

(iii) 0 6= v için g(v, v) = 0 ise v ye null (lightlike) vektör

denir. Sıfır vektörü spacelike vektör olarak kabul edilir. x ∈ M noktasında TxM

tanjant uzayının null vektörlerinin oluşturduğu küme null (light) koni olarak adlandı-

rılır [86].

Örnek 1.2.6. (Minkowski Uzay)

4-boyutlu Minkowski uzayı önemli bir Lorentz manifoldudur. M , 4-boyutlu Minkowski

uzay olsun. v ∈ Γ(TM 4) olsun. v nin ilk bileşeni pozitif ise future pointing, negatif
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ise past pointing olarak adlandırılır. T0M
4 tanjant uzayını M 4 ile özdeşleştirecek

olursak timelike vektörlerin H3
0 de, spacelike vektörlerin S3

1 de ve null vektörlerin de

C3
1,∗ de bulunduğu görülür [84].

Örnek 1.2.7. (Schwarzchild Space-time)

n > 0 ve R1 = (R, dt2) olsun. g S2
, S2 küresi üzerindeki standart metrik ve (t, r) ∈

R× (2n,∞) olmak üzere

g = −(1− 2n

r
)dt2 + (1− 2n

r
)dr2 + r2gS2

metriğine sahip manifolda Schwarzchild space-time denir. Böylece Schwarzchild

space-time (R1 × (2n,∞))×r2 S2 warped çarpımıdır [84].

Tanım 1.2.7. (Einstein Manifold) (M n, g) bir semi-Riemann manifold olsun.

Eğer

RicM = (
ScalM

n
)g

ise M ye bir Einstein manifold ve g ye de bir Einstein metrik denir. Burada RicM ,

M nin Ricci eğriliğini ve ScalM de M nin skaler eğriliğini göstermektedir [84].

Sabit kesit eğriliğine sahip bir (semi-)Riemann manifold bir Einstein manifoldudur

[84].

Tanım 1.2.8. M bir semi-Riemann manifold ve p ∈M olsun. Bu durumda p ∈M

noktasında TpM nin bir altuzayı W olmak üzere ∀w ∈ W için g(v, w) = 0 olacak

şekilde bir 0 6= v ∈ W vektörü var ise W ye dejenere alt uzay denir [86].

Sıfır alt uzayı nondejeneredir. TpM nin bir W altuzayının nondejenere olması

için gerek ve yeter şart g|W indirgenmiş metrik tensörünün nondejenere olmasıdır

[86].

Önerme 1.2.1. Bir V Lorentz uzayının W alt uzayının nondejenere olması için

gerek ve yeter şart V = W ⊕W⊥yazılabilmesidir [86].

Özel olarak (W⊥)⊥ = W olduğundan W nin dejenere olması için gerek ve yeter

şart W⊥ alt uzayının dejenere olmasıdır.
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Örnek 1.2.8. (M 4, g) 4-boyutlu Minkowski uzay olsun. p ∈M için

W = Sp{v1 = (1, 1, 0, 0), v2 = (0, 0, 1, 1)} ⊂ TpM

alt uzayını gözönüne alalım. W bir dejenere alt uzaydır. Ayrıca

W⊥ = Sp{v′1 = (1, 1, 0, 0), v
′

2 = (0, 0, 1,−1)}

olduğundan W ∩W⊥ 6= {0} dır. Böylece V = W ⊕W⊥ şeklinde yazılamaz [84].

Tanım 1.2.9. V n-boyutlu bir vektör uzayı ve V nin bir bazı {e1, e2, ..., en} olsun.

V üzerinde tanımlı 2-kovaryant metrik tensörü için g(ei, ei) = −1 olacak şekildeki

ei (1 ≤ i ≤ n) ortonormal baz vektörlerinin sayısına g metrik tensörünün indeksi

denir [86].

Önerme 1.2.2. V n-boyutlu bir vektör uzayı ve g de V üzerinde tanımlı 2-kovaryant

metrik tensör olsun. Bu durumda g nin indeksi V nin ortonormal baz seçiminden

bağımsızdır ve g|W , negatif tanımlı olacak şekildeki V nin en büyük W alt uzayının

boyutuna eşittir [86].

Örnek 1.2.9. x = (x1, x2, x3) ve y = (y1, y2, y3) olmak üzere

g : R3 ×R3 → R

(x, y) → g(x, y) = x1y1 + x2y2 − x3y3

şeklinde tanımlanan g metrik tensörünün indeksi 1 dir. R3 de g nin negatif tanımlı

olduğu en büyük alt uzay W = Sp{(0, 0, 1)} dir ve W nondejeneredir. Böylece

W⊥ = Sp{(1, 0, 0), (0, 1, 0)} de nondejenere ve R3
1 = W ⊕W⊥ olur .

Tanım 1.2.10. M n
p ve M m

ν sırasıyla p indeksli ve ν indeksli semi-Riemann manifold-

lar olsun. Bu durumda

f : Mm
ν →M

n

p

dönüşümü bir izometrik immersiyon (rank f = m) ise M m
ν manifolduna M n

p nin

bir semi-Riemann altmanifoldu denir. Özel olarak ν = 1 ise M m
ν manifolduna M n

p

nin bir Lorentz altmanifoldu denir [86].
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Tanım 1.2.11. M bir semi-Riemann manifold ve p ∈ M olsun. W , TpM tanjant

uzayının bir alt uzayı olmak üzere ∀v, w ∈ W için g(v, w) = 0 ise W ye total null

veya total izotropik uzay denir. 1-boyutlu null alt uzay bir null veya karakteristik

doğrultu olarak adlandırılır [84].

Sıfır uzayından farklı tüm null uzaylar dejeneredir. Dejenere olma özelliği alt

uzayın dik tümleyeni için de korunur. Ancak bir null uzayın dik tümleyeni null

olmak zorunda değildir.

Örnek 1.2.10. M 3-boyutlu Minkowski uzay olsun. p ∈M için W = Sp{(1, 1, 0)} ⊂

TpM alt uzayı nulldur ve dolayısıyla dejeneredir. Ancak W⊥ = Sp{(1, 1, 0), (0, 0, 1)}

dejenere olmasına karşın null değildir [84].

(p, q) işaretli bir semi-Riemann manifold için bir null alt uzayın maksimum

boyutu min{p, q} dur [84].

Tanım 1.2.12. M bir semi-Riemann manifold olsun. M üzerindeki bir eğrinin

veya M nin bir altmanifoldunun bütün teğet uzayları null ise eğriye null eğri, alt

manifolda da null altmanifold denir [84].

Tanım 1.2.13. (B, gB) ve (F, gF ) semi-Riemann manifoldlar ve f > 0, (B, gB)

üzerinde bir diferensiyellenebilir fonksiyon olsun. Bu durumda

g = π∗(gB) + (f ◦ π)2σ∗(gF ) (1.2.1)

ile tanımlanan g metriğine sahip B×F çarpım manifolduna warped çarpım manifoldu

denir ve B ×f F ile gösterilir. Burada

π : B × F → B ve σ : B × F → F

dönüşümleri sırasıyla (B, gB) ve (F, gF ) semi-Riemann manifoldları üzerine kanonik

izdüşümlerdir [86].

Açık olarak (1.2.1) den bir (p, q) ∈ B×fF noktasındaki herX,Y ∈ Γ(T (B×fF ))

için

g(X, Y ) = gB(π∗X, π∗Y ) + f 2(π(x))gF (σ∗X, σ∗Y ),

yazılabilir. Eğer f fonksiyonu sabit değil ise B ×f F warped çarpım manifolduna

özgün (proper) warped çarpım manifoldu denir [86].
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Lemma 1.2.1. M = B ×f F bir warped çarpım manifoldu olsun. Eğer X, Y ∈

Γ(TB) ve U, V ∈ Γ(TF ) ise bu durumda aşağıdaki ifadeler sağlanır :

(i) ∇XY ∈ Γ(TB),

(ii) ∇XU = ∇UX = X(ln f)U,

(iii) ∇UV = ∇F
UV −

g(U,V )
f

gradf .

Burada ∇ ve ∇F , sırasıyla M ve F üzerindeki Levi-Civita konneksiyonlarıdır [86].

Sonuç 1.2.1. M = B×f F bir warped çarpım manifoldu olsun. Bu durumda B, M

de bir total geodezik altmanifold ve F, M de bir total umbilik altmanifolddur [86].

Bu sonuca göre bir warped çarpım manifoldu, birinci çarpanın total geodezik

ikinci çarpanın total umbilik olması ile karakterize edilir.

Sonuç 1.2.2. (B, gB) ve (F, gF ) semi-Riemann manifoldlar olsun. b ve f , sırasıyla

(B, gB) ve (F, gF ) üzerinde pozitif, diferensiyellenebilir fonksiyonlar olmak üzere

g = (f ◦ σ)2π∗(gB) + (b ◦ π)2σ∗(gF ) (1.2.2)

ile tanımlanan g metriğine sahip B × F çarpım manifolduna doubly warped çarpım

manifoldu denir ve fB×bF ile gösterilir. Burada π : B×F → B ve σ : B×F → F

dönüşümleri sırasıyla (B, gB) ve (F, gF ) semi-Riemann manifoldları üzerine kanonik

izdüşümlerdir [87].

Doubly warped çarpım manifoldları, warped çarpım manifoldlarının bir genelleş-

tirmesi olarak tanımlanmıştır.

Eğer b ve f fonksiyonu sabit değil ise fB×bF doubly warped çarpım manifolduna

özgün (proper) doubly warped çarpım manifoldu denir [87].

Lemma 1.2.2. M = fB ×b F bir doubly warped çarpım manifoldu olsun. Bu

durumda X ∈ Γ(TB) ve U ∈ Γ(TF ) için

∇XU = U(ln f)X +X(ln b)U (1.2.3)

dur [87].

Sonuç 1.2.3. M = fB×bF bir doubly warped çarpım manifoldu olsun. Bu durumda

B ve F, M de total umbilik altmanifoldlardır [87].
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1.3 Lorentzian Hemen Hemen Parakontakt Manifoldlar

ve Altmanifoldları

Bu kısımda Lorentzian hemen hemen parakontakt manifoldlar tanıtılarak en temel

özellikleri verilecektir.

Tanım 1.3.1. M bir n-boyutlu diferensiyellenebilir manifold olsun. Eğer M üze-

rinde ϕ (1,1) tipinde bir tensör alanı, ξ bir vektör alanı ve η bir 1-form olmak üzere

η(ξ) = −1, (1.3.1)

ϕ2 = I + η ⊗ ξ (1.3.2)

şartlarını sağlayan bir (ϕ, ξ, η) üçlüsü varsa M ye bir hemen hemen parakontakt

manifold ve (ϕ, ξ, η) üçlüsüne de M üzerinde bir hemen hemen parakontakt yapı

denir. Burada I, TM üzerindeki birim dönüşüm ve ⊗ tensör çarpımıdır [44].

Önerme 1.3.1. M, bir (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip n-boyutlu

hemen hemen parakontakt manifold olsun. Bu durumda

ϕξ = 0, (1.3.3)

η ◦ ϕ = 0, (1.3.4)

rank(ϕ) = n− 1 (1.3.5)

dir [44].

İspat. (1.3.1) ve (1.3.2) den

ϕ2ξ = ξ + η(ξ)ξ

= ξ − ξ

= 0 (1.3.6)

olur. Böylece ya ϕξ = 0 veya ϕξ, ϕ nin 0 karakteristik değerine karşılık gelen aşikar

olmayan karakteristik vektördür. (1.3.2) ve (1.3.6) dan

0 = ϕ2ϕξ = ϕξ + η(ϕξ)ξ
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yani

ϕξ = −η(ϕξ)ξ (1.3.7)

elde edilir. Eğer ϕξ, ϕ nin 0 karakteristik değerine karşılık gelen aşikar olmayan

karakteristik vektör ise

η(ϕξ) 6= 0

dır. (1.3.7) eşitliğinin her iki tarafına ϕ uygulanırsa

0 = ϕ2ξ = −η(ϕξ)ϕξ = (η(ϕξ))2 ξ 6= 0

bulunur ki bu bir çelişkidir. Dolayısıyla ϕξ = 0 olmak zorundadır. ϕξ = 0 olduğu

için (1.3.2) den herhangi bir X ∈ Γ(TM) vektör alanı için

η(ϕX)ξ = −ϕ2ϕX + ϕX

= −ϕ
(
ϕ2X

)
+ ϕX

= −ϕ (X + η(X)ξ) + ϕX

= −η(X)ϕξ

= 0

elde edilir. Buradan η ◦ ϕ = 0 olduğu görülür. Sonuç olarak M üzerinde ϕξ = 0 ve

ξ 6= 0 olduğundan rank(ϕ) < n dir. Eğer bir ξ′ vektör alanı ϕξ′ = 0 şartını sağlayan

bir diğer vektör alanı ise (1.3.2) den

0 = ξ′ + η(ξ′)ξ

dir. Böylece ξ′ = −η(ξ′)ξ olarak yazılır. Yani ξ′, ξ doğrultusundadır. Dolayısıyla

rank(ϕ) = n− 1 olur. Bu ise ispatı tamamlar.

Lemma 1.3.1. M bir diferensiyellenebilir manifold, ξ ve η da η(ξ) = −1 şartını

sağlayan sırasıyla bir kontravaryant ve bir kovaryant vektör alanı olsun. Eğer M

üzerinde ξ vektör alanını timelike yapacak bir Lorentz metrik varsa bu durumda

η(X) = h(X, ξ) (1.3.8)

olacak şekilde bir h Lorentz metriği vardır [44].
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İspat. Bir M diferensiyellenebilir manifoldu üzerinde η(ξ) = −1 olacak şekilde ξ

vektör alanını ve η 1 -formunu alalım. f nin f(ξ, ξ) = −1 şartını sağlayan Lorentz

metriği olduğunu düşünelim. Bu metriği kullanarak herhangi X, Y ∈ Γ(TM) vektör

alanları için

h(Y,X) = f(Y + η(Y )ξ,X + η(X)ξ)− η(X)η(Y ) (1.3.9)

şeklinde yeni bir h metriği tanımlayalım. Bu durumda eğer X ve Y vektör alanları

f metriğine göre ξ ye dik ise X ve Y vektör alanları f metriğine göre spacelike

vektörlerdir. Böylece h(Y,X) = f(Y,X) olur. Bu da (1.3.9) ile tanımlanan h

metriğinin (1.3.8) şartını sağlayan bir Lorentz metrik olduğunu gösterir.

Lemma 1.3.1 kullanılarak aşağıdaki önerme verilebilir:

Önerme 1.3.2. M , bir (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip n-boyutlu

bir manifold olsun. Bu durumda M hemen hemen parakontakt manifoldu her X,

Y ∈ Γ(TM) için

η(X) = g(X, ξ)

ve

g(ϕX,ϕY ) = g(X, Y ) + η(X)η(Y )

olacak şekilde bir g Lorentz metriğine sahiptir [44] .

İspat. Lemma 1.3.1 deki h metriğini kullanarak M manifoldu üzerinde yeni bir g

metriğini

g(X, Y ) =
1

2
{h(X, Y ) + h(ϕX,ϕY )− η(X)η(Y )} , X, Y ∈ Γ(TM)

şeklinde tanımlayalım. Bu durumda g bir Lorentz metriktir ve

g(ϕX,ϕY ) =
1

2

{
h(ϕX,ϕY ) + h(ϕ2X,ϕ2Y )− η(ϕX)η(ϕY )

}
=

1

2
{h(ϕX,ϕY ) + h(X + η(X)ξ, Y + η(Y )ξ)}

=
1

2
{h(ϕX,ϕY ) + h(X, Y ) + 2η(X)η(Y ) + η(X)η(Y )h(ξ, ξ)}

=
1

2
{h(ϕX,ϕY ) + h(X, Y ) + η(X)η(Y )}

= g(X,Y ) + η(X)η(Y )

sonucuna ulaşılır. Böylece ispat tamamlanır.
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Önerme 1.3.2 de iddia edilen g Lorentz metriği bir tek olmak zorunda değildir.

Tanım 1.3.2. M , bir (ϕ, ξ, η) hemen hemen parakontakt yapısı ile birlikte n-boyutlu

bir hemen hemen parakontakt manifold olsun. Eğer M herhangi X, Y ∈ Γ(TM)

vektör alanları için

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ) (1.3.10)

olacak şekilde bir g Lorentz metriğine sahip ise M ye bir Lorentzian hemen hemen

parakontakt manifold ve (ϕ, ξ, η, g) dörtlüsüne de M üzerinde bir Lorentzian hemen

hemen parakontakt yapı denir [44].

Eğer (1.3.10) eşitliğinde Y yerine ξ alınırsa

0 = g(ϕX,ϕξ) = g(X, ξ) + η(X)η(ξ)

yazılır. Buradan (1.3.1) ve (1.3.3) göz önüne alınarak

g(X, ξ) = η(X) (1.3.11)

elde edilir. (1.3.1) ve (1.3.11) dan karakteristik vektör alanı olarak adlandırılan ξ

vektör alanının bir timelike vektör olduğu açıkça görülmektedir.

Tanım 1.3.3. M , (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip

n-boyutlu bir manifold olsun. Bu durumda M üzerinde

Φ(X, Y ) = g(X,ϕY ), ∀X, Y ∈ Γ(TM) (1.3.12)

şeklinde tanımlanan Φ, 2-formuna (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt

yapısının temel 2-formu denir ([44], [88]).

(1.3.10) eşitliğinde Y yerine ϕY yazılırsa (1.3.4) den

g(ϕX,ϕ2Y ) = g(X,ϕY )

elde edilir. (1.3.2), son eşitlikte kullanılırsa

g(ϕX, Y + η(Y )ξ) = g(X,ϕY )

g(ϕX, Y ) + η(Y )g(ϕX, ξ) = g(X,ϕY ) (1.3.13)
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olur. Böylece (1.3.11) dan

g(ϕX, Y ) = g(X,ϕY ), ∀X, Y ∈ Γ(TM) (1.3.14)

elde edilir ki bu da Φ temel 2-formunun simetrik olduğunu verir. Ayrıca

Φ(X, Y ) = (∇Xη)Y , ∀X, Y ∈ Γ(TM) (1.3.15)

dir.

Önerme 1.3.3. (M,ϕ, ξ, η, g), n-boyutlu bir Lorentzian hemen hemen parakontakt

manifold ve ∇ da M üzerinde Levi-Civita konneksiyon olsun. Bu durumda ∀X, Y, Z ∈

Γ(TM) vektör alanları için

(∇XΦ) (Y, Z) = g(Y, (∇Xϕ)Z) = (∇XΦ) (Z, Y ) (1.3.16)

dir [44].

İspat. ∀X, Y, Z ∈ Γ(TM) vektör alanları için

(∇XΦ) (Y, Z) = ∇XΦ (Y, Z)− Φ (∇XY, Z)− Φ (Y,∇XZ)

eşitliğinden faydalanarak

(∇XΦ) (Y, Z) = Xg(Y, ϕZ)− g(∇XY, ϕZ)− g(Y, ϕ (∇XZ))

= g (∇XY, ϕZ) + g (Y,∇XϕZ)− g(∇XY, ϕZ)− g(Y, ϕ (∇XZ))

= g (Y,∇XϕZ − ϕ (∇XZ))

= g(Y, (∇Xϕ)Z)

elde edilir. Ayrıca Φ nin simetrik olduğu göz önüne alınarak (∇XΦ) (Y, Z) =

(∇XΦ) (Z, Y ) olduğu kolayca görülür. Böylece ispat tamamlanır.

Teorem 1.3.1. M bir n-boyutlu Lorentzian hemen hemen parakontakt manifold

olsun. Bu durumda M üzerindeki Lorentzian hemen hemen parakontakt yapı bir tek

değildir [46].

İspat. M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısı ile birlikte bir

Lorentzian hemen hemen parakontakt manifold olsun. ξ′,M üzerinde ξ doğrultusunda
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olmayan sıfırdan farklı bir vektör alanı olsun. Bu durumda singüler olmayan (1, 1)

tipinde bir µ tensör alanı vardır öyle ki

µξ′ = ξ

dir. Eğer

µϕ′X = ϕµX ve η′(X) = η (µX)

olacak şekilde bir ϕ′ tensör alanı ve η′ 1-formu tanımlanırsa

µ (ϕ′)
2
X = ϕµϕ′X = ϕ2µX = µX + η (µX) ξ = µ (X + η′(X)ξ′)

yani

(ϕ′)
2
X = X + η′(X)ξ′

elde edilir. Şimdi

g′(X, Y ) = g(µX, µY )

olacak şekilde bir g′ metrik tensörünü tanımlayalım. Bu durumda

g′(ϕ′X,ϕ′Y ) = g(µϕ′X,µϕ′Y ) = g′(X,Y ) + η′(X)η′(Y )

ve

g′(X, ξ′) = g(µX, µξ′) = g(µX, ξ) = η(µX) = η′(X)

olur. Böylece ispat tamamlanır.

Tanım 1.3.4. M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eğer ∀X,Y ∈

Γ(TM) için

Φ(X, Y ) =
1

2
((∇Xη)Y + (∇Y η)X) (1.3.17)

şartı sağlanıyor ise M ye Lorentzian parakontakt manifold (kısaca, LP-manifold)

denir [44].

Lemma 1.3.2. (M,ϕ, ξ, η, g) bir Lorentzian parakontakt manifold olsun. Eğer η

1-formu kapalı ise ∀X, Y, Z ∈ Γ(TM) için

(∇XΦ) (ξ, ξ) = 0

40



ve

(∇ZΦ) (ϕY, ϕX) = −[(∇ZΦ) (Y,X)− {g(Y, Z) + η(Z)η(Y )}η(X)

−{g(X,Z) + η(Z)η(X)}η(Y )]

dir.

Tanım 1.3.5. M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eğer ∀X, Y, Z ∈

Γ(TM) için

(∇Xϕ)Y = g(ϕX,ϕY )ξ + η(Y )ϕ2X (1.3.18)

veya denk olarak

(∇Xϕ)Y = η(Y )X + g(X,Y )ξ + 2η(X)η(Y )ξ (1.3.19)

veya denk olarak

(∇XΦ) (Y, Z) = g(X, Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) (1.3.20)

şartı sağlanıyor ise M ye Lorentzian para-Sasakian manifold (kısaca, LP-Sasakian

manifold) denir [44].

(M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ise η 1-formu kapalıdır ve

∀X ∈ Γ(TM) için

∇Xξ = ϕX (1.3.21)

dir [44].

Önerme 1.3.4. (M, g) bir Lorentzian manifold; ξ, M üzerinde bir birim timelike

vektör alanı ve η da M üzerinde ξ ile birleşen bir 1-form olsun. Bu durumda η

1-formu kapalı ve

(∇X∇Y η)Z = g(X, Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) (1.3.22)

şartı sağlanıyor ise M üzerinde bir Lorentzian para-Sasakian yapı vardır [44].
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Tanım 1.3.6. (M, g) bir Lorentzian manifold olsun. Eğer M üzerinde

Φ(X, Y ) = (∇Xη)Y = ε(g(X, Y ) + η(X)η(Y )), ε2 = 1 (1.3.23)

olacak şekilde bir ξ timelike vektör alanı ve ξ ile birleşen bir η 1-formu var ise M

ye Lorentzian özel para-Sasakian manifold denir [44].

Açıktır ki bir Lorentzian özel para-Sasakian manifold aynı zamanda bir Lorentzian

para-Sasakian manifolddur. Ancak tersi her zaman doğru değildir. Diğer taraftan

(1, 1)-tensör alanı ϕ nın karakteristik değerleri -1, 0 ve 1 dir. (1.3.3) den 0 karakteristik

değerine karşılık gelen karakteristik vektör sayısı 1 dir. k ve l sırasıyla -1 ve 1

karakteristik değerlerine karşılık gelen karakteristik vektör sayılarını göstermek üzere

iz (ϕ) = l − k olur. Böylece, eğer (iz (ϕ))2 = (n− 1)2 ise ya l = 0 ya da k = 0 dır.

Bu durumda, (ϕ, ξ, η, g) yapısına aşikar Lorentzian para-Sasakian yapı denir [89].

Tanım 1.3.7. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold olsun. S, M

nin Ricci tensör alanı olmak üzere eğer

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), ∀X, Y ∈ Γ(TM) (1.3.24)

ise M ye η-Einstein manifold denir. Burada; a ve b M üzerinde fonksiyonlardır

[90].

(M,ϕ, ξ, η, g), n-boyutlu bir η-Einstein Lorentzian para-Sasakian manifold ise M

nin Ricci tensör alanı ∀X, Y ∈ Γ(TM) için

S(X, Y ) = (
r

n− 1
− 1)g(X, Y ) + (

r

n− 1
− n)η(X)η(Y ) (1.3.25)

ile verilir. Burada r, M manifoldunun skaler eğriliğidir [90].

Lemma 1.3.3. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ve boy M = n

olsun. Bu durumda herhangi X, Y, Z ∈ Γ(TM) vektör alanları için aşağıdakiler
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sağlanır ([91], [90]):

g(R(X, Y )Z, ξ) = η (R(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ) (1.3.26)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X (1.3.27)

R(ξ,X)ξ = X + η(X)ξ (1.3.28)

R(X, Y )ξ = η(Y )X − η(X)Y (1.3.29)

S(X, ξ) = (n− 1)η(X) (1.3.30)

S(ϕX,ϕY ) = S(X, Y ) + (n− 1)η(X)η(Y ) (1.3.31)

dir. Burada; R ve S sırasıyla M üzerindeki Riemann eğrilik tensör alanı ve Ricci

tensör alanını göstermektedir.

(M, g), n-boyutlu bir Lorentzian manifold olsun. p ∈ M olmak üzere TpM

tanjant uzayının 2-boyutlu lineer alt uzayı bir düzlem kesiti olarak adlandırılır.

Düzlem kesiti E olmak üzere eğer her V ∈ E için g(U, V ) 6= 0 olacak şekilde

bir U ∈ E vektörü varsa E düzlem kesiti non-dejeneredir denir. Eğer U ve V

non-dejenere E düzlem kesiti için bir baz ise

g(U,U)g(V, V )− (g(U, V ))2 6= 0

dır. {U, V } bazına sahip, p ∈M noktasındaki bir non-dejenere düzlem kesiti E nin

kesit eğriliği K(p, E) ile gösterilir ve

K(p, E) = − g(R(V, U)V, U)

g(U,U)g(V, V )− (g(U, V ))2 (1.3.32)

şeklinde tanımlanır. Burada R, Riemann eğrilik tensör alanıdır [86]. Diğer taraftan

eğer non-dejenere düzlem kesiti E bir spacelike ve bir timelike vektör tarafından

geriliyor ise E bir timelike düzlem kesiti olarak adlandırılır [92].

Teorem 1.3.2. (M,ϕ, ξ, η, g), boyM = n, bir Lorentzian para-Sasakian manifold

olsun. Bu durumda M nin ξ karakteristik vektör alanı ve bir V spacelike vektör

alanı tarafından gerilen 2-boyutlu her lineer alt uzayının kesit eğriliği 1 dir [44].

İspat. n-boyutlu bir (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunu göz önüne

alalım. M nin ξ karakteristik vektör alanı ve bir V spacelike vektör alanı tarafından
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gerilen 2-boyutlu bir lineer alt uzayı E olsun. Bu durumda E timelikedır ve E nin

K(p, E) kesit eğriliği

K(p, E) = − g(R(ξ, V )ξ, V )

g(ξ, ξ)g(V, V )− (g(ξ, V ))2

=
g(R(ξ, V )ξ, V )

g(V, V ) + (η(V ))2 (1.3.33)

olur. (1.3.28), (1.3.33) de yerine yazılırsa

K(p, E) = 1

bulunur ve ispat tamamlanır.

Teorem 1.3.3. (M, g) n-boyutlu bir Lorentzian manifold olsun. Eğer [44]:

(i) M üzerinde bir ξ timelike vektör alanı vardır.

(ii) ξ karakteristik vektör alanı ile birleşen η 1-formu kapalıdır.

(iii) Lξ∇ξ = 0 dır. (Burada Lξ, ξ vektör alanına göre Lie türevini göstermektedir.)

(iv) ξ karakteristik vektör alanını ihtiva eden timelike d üzlemler için M nin her

noktasında kesit eğriliği 1 dir.

şartları sağlanıyorsa bu durumda M bir Lorentzian parakontakt yapıya sahiptir .

Tanım 1.3.8. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold olsun. Eğer M

sabit eğrilikli ise M ye Lorentzian para-Sasakian uzay form denir [93].

Önerme 1.3.5. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian uzay form olsun. Bu

durumda M nin eğriliği 1 dir [93].

İspat. (M,ϕ, ξ, η, g), sabit κ eğrilikli bir Lorentzian para-Sasakian uzay form olsun.

Bu durumda her X, Y, Z ∈ Γ(TM) için M nin Riemann eğrilik tensörü

R(X, Y )Z = κ{g(Y, Z)X − g(X,Z)Y } (1.3.34)

şeklinde yazılır. Bu son eşitlikte Y = ξ alınır ve (1.3.27), (1.3.29) kullanılırsa

−g(X,Z)ξ + η(Z)X = κ{η(Z)X − g(X,Z)ξ}

elde edilir ki bu κ = 1 olduğunu verir.
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Teorem 1.3.4. Her Lorentzian para-Sasakian uzay form bir aşikar Lorentzian özel

para-Sasakian uzay formdur [93].

Tanım 1.3.9. M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eğer

∇ϕ = 0 (1.3.35)

ise M ye Lorentzian parakosimplektik manifold denir [46].

Tanım 1.3.10. M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eğer

(∇Xϕ)X = 0, ∀X ∈ Γ(TM) (1.3.36)

ise M ye Lorentzian nearly parakosimplektik manifold denir [46].

(M,ϕ, ξ, η, g) bir Lorentzian parakosimplektik manifold ise ∀X ∈ Γ(TM) için

∇Xξ = 0 olduğu kolaylıkla görülebilir.

Teorem 1.3.5. (M,ϕ, ξ, η, g) bir Lorentzian nearly parakosimplektik manifold olsun.

Bu durumda

∇Xξ = 0, ∀X ∈ Γ(TM) (1.3.37)

dir [46].

İspat. (M,ϕ, ξ, η, g) bir Lorentzian nearly parakosimplektik manifold olsun. Bu

durumda (1.3.36) den

(∇XΦ) (Y, Z) = (∇Y Φ) (X,Z) = 0 (1.3.38)

olur. (1.3.12) ve (1.3.38) göz önüne alınırsa

(∇Xη) (ϕY ) + (∇Y η) (ϕX) = 0 (1.3.39)

elde edilir. (1.3.38) eşitliğinde X yerine ξ yazılır ve (1.3.39) kullanılırsa ispat

tamamlanır.
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M, (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip n-boyutlu bir hemen hemen

parakontakt manifold olsun. M × R çarpım manifoldunu gözönüne alalım. Bu

durumda M × R de bir vektör alanı (X, f d
dt

) ile verilir. Burada X ∈ Γ(TM); t, R

nin koordinatı ve f de M ×R üzerinde bir fonksiyondur. M ×R nin tanjant uzayı

üzerinde

J(X, f
d

dt
) =

(
ϕX − fξ, η(X)

d

dt

)
(1.3.40)

olacak şekilde bir J lineer dönüşümünü tanımlayalım. (1.3.1), (1.3.2) ve (1.3.3)

eşitliklerinden

J2(X, f
d

dt
) = J

(
ϕX − fξ, η(X)

d

dt

)
=

(
ϕ (ϕX − fξ)− η(X)ξ, η (ϕX − fξ)

d

dt

)
=

(
ϕ2X − fϕξ − η(X)ξ, (η (ϕX)− fη(ξ))

d

dt

)
=

(
X, f

d

dt

)
elde edilir. Bu durumda J2 = I olduğundan J , M × R üzerinde bir hemen hemen

çarpım yapısıdır. Eğer J hemen hemen çarpım yapısıM×R üzerinde integrallenebilir

ise (ϕ, ξ, η) hemen hemen parakontakt yapısına normaldir denir [94]. J nin Nijenhuis

tensör alanı [J, J ] ile gösterilir ve her X, Y ∈ Γ(TM) için

[J, J ] (X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X, Y ] , X, Y ∈ Γ(TM)

ile tanımlanır. J nin integrallenebilir olması için gerek ve yeter şart J nin Nijenhuis

tensör alanının sıfır olmasıdır. Böylece (ϕ, ξ, η) hemen hemen parakontakt yapısının

normal olması için gerek ve yeter şart

[ϕ, ϕ] + dη ⊗ ξ = 0

şartının sağlanmasıdır. Burada [ϕ, ϕ], ϕ nin Nijenhuis tensör alanını göstermektedir

ve her X, Y ∈ Γ(TM) için

[ϕ, ϕ] (X, Y ) = [ϕX,ϕY ]− ϕ [ϕX, Y ]− ϕ [X,ϕY ] + ϕ2 [X, Y ]

dir [94].
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(M,ϕ, ξ, η, g), boyM = n, bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir non-dejenere altmanifoldu olsun. M manifoldundan M altmanifol-

duna i : M → M immersiyonu yardımıyla indirgenen metriği de g ile gösterelim.

∇, M üzerindeki Levi-Civita konneksiyonu ve ∇ da M üzerindeki indirgenmiş

konneksiyon olmak üzere ∀X, Y ∈ Γ(TM) i çin

∇XY = ∇XY +B(X, Y ) (1.3.41)

dir. Burada B

B : Γ(TM)× Γ(TM) → Γ(T⊥M)

ile tanımlı normal demet değerli simetrik bilineer formdur. (1.3.41) denklemine

Gauss formülü ve B ya M nin ikinci temel formu denir. Şimdi X ∈ Γ(TM) ve

N ∈ Γ(T⊥M) için ∇XN nin teğet ve normal kısımlarını sırasıyla −ANX ve ∇⊥
XN

ile gösterelim. Bu durumda

∇XN = −ANX +∇⊥
XN (1.3.42)

yazılabilir. Burada AN lineer operatörüne normal kesite göre Weingarten temel

tensörü ve (1.3.42) denklemine de Weingarten formülü denir. (1.3.41) ve (1.3.42)

denklemleri kullanılarak ∀X, Y ∈ Γ(TM), N ∈ Γ(T⊥M) için

g(B(X,Y ), N) = g(ANX, Y ) (1.3.43)

elde edilir. Böylece B simetrik ve lineer olduğundan AN de simetrik ve lineerdir. B

tensörünün kovaryant türevi

(∇XB) (Y, Z) = ∇⊥
XB(Y, Z)−B(∇XY, Z)−B(Y,∇XZ) (1.3.44)

dir [86].

Teorem 1.3.6. (M,ϕ, ξ, η, g) bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir non-dejenere altmanifoldu olsun. R ve R sırasıyla M ve M nin

Riemann eğrilik tensör alanları olmak üzere ∀X, Y, Z,W ∈ Γ(TM) için

g(R(X, Y )Z,W ) = g(R(X, Y )Z,W )− g(B(X,W ), B(Y, Z))

+g(B(Y,W ), B(X,Z)) (1.3.45)

dir. (1.3.45) denklemine Gauss denklemi denir [86].
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Her ∀X, Y, Z ∈ Γ(TM) için R(X, Y )Z nin normal bileşeni
(
R(X, Y )Z

)⊥
olmak

üzere (
R(X,Y )Z

)⊥
= (∇XB) (Y, Z)− (∇YB) (X,Z) (1.3.46)

dir. (1.3.46) denklemine Codazzi denklemi denir [86].

Sonuç 1.3.1. M, (M,ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt manifoldunun

bir non-dejenere altmanifoldu olsun. Eğer U ve V vekt örleri M nin bir non-dejenere

teğet düzlemi için bir baz oluşturuyor ise

K(U, V ) = K(U, V ) +
g(B(U,U), B(V, V ))− g(B(U, V ), B(U, V ))

g(U,U)g(V, V )− (g(U, V ))2

dir. Burada K ve K sırasıyla M ve M nin kesit eğrilikleridir [86].

Tanım 1.3.11. (M,ϕ, ξ, η, g), n-boyutlu bir Lorentzian hemen hemen parakontakt

manifold ve M de M nin m-boyutlu bir non-dejenere altmanifoldu olsun. Herhangi

bir p ∈M noktasında TpM nin bir ortonormal bazı {e1, e2, ..., em} olmak üzere

µp =
1

m

m∑
i=1

εiB(ei, ei)

şeklinde tanımlı µp vektörüne p ∈ M noktasında M nin ortalama eğrilik vektörü

denir. Eğer µ = 0 ise M ye minimal altmanifold denir [86].

Tanım 1.3.12. (M,ϕ, ξ, η, g), n-boyutlu bir Lorentzian hemen hemen parakontakt

manifold ve M de M nin bir non-dejenere altmanifoldu olsun. Eğer B = 0 ise M

ye total geodezik altmanifold denir [86].

Tanım 1.3.13. (M,ϕ, ξ, η, g), n-boyutlu bir Lorentzian hemen hemen parakontakt

manifold ve M de M nin bir non-dejenere altmanifoldu olsun. Her X, Y ∈ Γ(TM)

için

B(X, Y ) = g(X, Y )µ

ise M ye total umbilik altmanifold denir [86].
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BÖLÜM 2

LORENTZIAN PARA-SASAKIAN

MANİFOLDLARIN

BİHARMONİK EĞRİLERİ

4-boyutlu konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian

para-Sasakian manifoldlardaki spacelike ve timelike eğrilerin özgün biharmonik eğri

olmaları için gerek ve yeter şartların araştırıldığı bu bölüm dört kısımdan oluşmakta

dır. İlk kısımda konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian

para-Sasakian manifoldlar tanıtılarak bu manifoldların bazı özelliklerine yer verildi.

İkinci kısımda 4-boyutlu bir Lorentzian manifoldu üzerinde spacelike ve timelike

eğrilerin Frenet çatıları incelendi. Üçüncü kısımda, 4-boyutlu konformal flat, quasi -

konformal flat ve konformal simetrik Lorentzian para-Sasakian manifoldlar üzerinde

tanımlanan spacelike ve timelike eğrilerin biharmonik denklemleri elde edilerek özgün

biharmonik eğri olmaları için gerek ve yeter şartlar araştırıldı. Son kısımda ise, S4
1(1)

Lorentzian küresi üzerindeki özgün biharmonik eğriler tanıtıldı ve bu eğrilerin bazı

karakterizasyonlarına yer verildi.

2.1 Konformal Flat, Quasi-Konformal Flat ve Konformal

Simetrik Lorentzian Para-Sasakian Manifoldlar

Bu kısımda konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian

para-Sasakian manifoldların tanımları ve bazı özellikleri verilecektir.

Tanım 2.1.1. M bir Lorentzian para-Sasakian manifold olsun. M üzerinde konformal

eğrilik tensörü C ile gösterilir ve ∀X, Y ∈ Γ(TM) için

C(X, Y )Z = R(X, Y )Z − 1

(n− 2)
{g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

−S(X,Z)Y }+
r

(n− 1)(n− 2)
{g(Y, Z)X − g(X,Z)Y }, (2.1.1)
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şeklinde tanımlanır. Burada R, Riemann eğrilik tensörünü; S, Ricci tensör alanını;

Q, Ricci operatörünü ve r de skaler eğriliği göstermektedir [95].

Tanım 2.1.2. M bir Lorentzian para-Sasakian manifold ve C de M üzerinde konformal

eğrilik tensörü olsun. Eğer C = 0 ise M ye konformal flat manifold denir [95].

Tanım 2.1.3. M bir Lorentzian para-Sasakian manifold ve C de M üzerinde konformal

eğrilik tensörü olsun. Eğer ∇C = 0 ise M ye konformal simetrik manifold denir

[96].

Teorem 2.1.1. M bir konformal flat Lorentzian para-Sasakian manifold olsun. Bu

durumda M, Sn
1 (1) Lorentzian küresi ile lokal olarak izometriktir [82].

İspat. M bir konformal flat Lorentzian para-Sasakian manifold olsun. Bu durumda

C = 0 dır. Riemann Christoffel eğrilik tensörü

8R(X, Y, Z,W ) = g(R(X, Y )Z,W ), ∀X,Y, Z,W ∈ Γ(TM)

olmak üzere (2.1.1) eşitliğinden

8R(X, Y, Z,W ) =
1

(n− 2)
{g(Y, Z)S(X,W )− g(X,Z)S(Y,W )

+S(Y, Z)g(X,W )− S(X,Z)g(Y,W )}

− r

(n− 1)(n− 2)
(g(Y, Z)g(X,W ))

+
r

(n− 1)(n− 2)
(g(X,Z)g(Y,W )) (2.1.2)

yazılabilir. (2.1.2) de W yerine ξ alınır, (1.3.26), (1.3.11) ve (1.3.30) eşitlikleri

kullanılırsa

g(Y, Z)η(X)− g(X,Z)η(Y ) =
1

(n− 2)
{g(Y, Z)S(X, ξ)− g(X,Z)S(Y, ξ)

+S(Y, Z)g(X, ξ)− S(X,Z)g(Y, ξ)}

− r

(n− 1)(n− 2)
g(Y, Z)g(X, ξ)

+
r

(n− 1)(n− 2)
g(X,Z)g(Y, ξ)

olur. Bu son eşitlik düzenlenirse
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g(Y, Z)η(X)− g(X,Z)η(Y ) =
1

(n− 2)
{(n− 1)g(Y, Z)η(X)

−(n− 1)g(X,Z)η(Y )

+S(Y, Z)η(X)− S(X,Z)η(Y )} (2.1.3)

− r

(n− 1)(n− 2)
g(Y, Z)η(X)

+
r

(n− 1)(n− 2)
g(X,Z)η(Y )

elde edilir. Burada X yerine ξ alınarak (2.1.3) den

−g(Y, Z)− η(Z)η(Y ) =
1

(n− 2)
{−(n− 1)g(Y, Z)− (n− 1)η(Y )η(Z)

−S(Y, Z)− (n− 1)η(Y )η(Z)}

− r

(n− 1)(n− 2)
{−g(Y, Z)− η(Y )η(Z)} (2.1.4)

eşitliğine ulaşılır. Bu son eşitlikten

S(Y, Z) =

(
r

n− 1
− 1

)
g(Y, Z) +

(
r

n− 1
− n

)
η(Y )η(Z) (2.1.5)

elde edilir. (2.1.5), (2.1.2) de yerine yazılırsa

8R(X,Y, Z,W ) =
1

(n− 2)
[

(
r

n− 1
− 2

)
{g(Y, Z)g(X,W )− g(X,Z)g(Y,W )}

+

(
r

n− 1
− n

)
{g(Y, Z)η(X)η(W ) + g(X,W )η(Y )η(Z)

−g(X,Z)η(Y )η(W )− g(Y,W )η(X)η(Z)}] (2.1.6)

bulunur. Şimdi (2.1.5) ve (1.3.12) yi göz önüne alarak S nin X vektör alanı boyunca

kovaryant türevini hesaplayalım:

(∇XS)(Y, Z) = ∇XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ)

=
dr(X)

n− 1
{g(Y, Z) + η(Y )η(Z)}

+

(
r

n− 1
− n

)
{[η(∇XZ) + g(Z,ϕX)]η(Y )

+[η(∇XY ) + g(Y, ϕX)]η(Z)}

+

(
r

n− 1
− 1

)
{g(∇XY, Z) + g(Y,∇XZ)}

−
(

r

n− 1
− 1

)
g(∇XY, Z)−

(
r

n− 1
− n

)
η(∇XY )η(Z)

−
(

r

n− 1
− 1

)
g(Y,∇XZ)−

(
r

n− 1
− n

)
η(∇XZ)η(Y )
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olur. Buradan

(∇XS)(Y, Z) =
dr(X)

n− 1
{g(Y, Z) + η(Y )η(Z)}

+

(
r

n− 1
− n

)
{Φ(X,Z)η(Y ) + Φ(X, Y )η(Z)} (2.1.7)

bulunur. Böylece

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
dr(X)

n− 1
{g(Y, Z) + η(Y )η(Z)}

−dr(Y )

n− 1
{g(X,Z) + η(X)η(Z)}

+

(
r

n− 1
− n

)
Φ(X,Z)η(Y )

−
(

r

n− 1
− n

)
Φ(Y, Z)η(X) (2.1.8)

eşitliğine ulaşılır.

Diğer taraftan (∇WC)(X, Y )Z = 0 olduğundan div C = 0 dır. Buradan

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1

2(n− 1)
{g(Y, Z)dr(X)− g(X,Z)dr(Y )} (2.1.9)

elde edilir. (2.1.8) ve (2.1.9) eşitlikleri karşılaştırılırsa

r = n(n− 1) (2.1.10)

bulunur. (2.1.10), (2.1.6) de yerine yazılarak

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y

elde edilir ve böylece ispat tamamlanır.

Tanım 2.1.4. M bir Lorentzian para-Sasakian manifold olsun. M üzerinde ∀X, Y, Z ∈

Γ(TM) için

C̃(X, Y )Z = aR(X, Y )Z + b{S(Y, Z)X − S(X,Z)Y

+g(Y, Z)QX − g(X,Z)QY }

− r
n

(
a

n− 1
+ 2b

)
{g(Y, Z)X − g(X,Z)Y } (2.1.11)

şeklinde tanımlanan C̃ tensör alanına quasi-konformal eğrilik tensör alanı denir.

Burada a ve b, ab 6= 0 şartını sağlayan sabitleri; R, Riemann eğrilik tensörünü; S,

Ricci tensör alanını; Q, Ricci operatörünü ve r de skaler eğriliği göstermektedir [97].
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Tanım 2.1.5. M bir Lorentzian para-Sasakian manifold ve C̃ da M üzerinde konformal

eğrilik tensörü olsun. Eğer C̃ = 0 ise M ye quasi-konformal flat manifold denir [97].

Teorem 2.1.2. M bir quasi-konformal flat Lorentzian para-Sasakian manifold olsun.

Bu durumda M, Sn
1 (1) Lorentzian küresi ile lokal olarak izometriktir [82].

İspat. M bir quasi-konformal flat Lorentzian para-Sasakian manifold olsun. Bu

durumda (2.1.11) eşitliğinden

8R(X, Y, Z,W ) = − b
a
{S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+g(Y, Z)S(X,W )− g(X,Z)S(Y,W )} (2.1.12)

+
r

an

(
a

n− 1
+ 2b

)
{g(Y, Z)g(X,W )

−g(X,Z)g(Y,W )}

yazılır. (2.1.12) eşitliğindeW yerine ξ alınır, (1.3.26), (1.3.11) ve (1.3.30) kullanılırsa

g(Y, Z)η(X)− g(X,Z)η(Y ) = − b
a
{S(Y, Z)η(X)− S(X,Z)η(Y )

+(n− 1)g(Y, Z)η(X)

−(n− 1)g(X,Z)η(Y )} (2.1.13)

+
r

an

(
a

n− 1
+ 2b

)
{g(Y, Z)η(X)

−g(X,Z)η(Y )}

elde edilir. Buradan X = ξ seçilerek

−g(Y, Z)− η(Z)η(Y ) = − b
a
{−S(Y, Z)− (n− 1)η(Y )η(Z)

−(n− 1)g(Y, Z)− (n− 1)η(Y )η(Z)}

+
r

an

(
a

n− 1
+ 2b

)
(−g(Y, Z)− η(Y )η(Z))}

olur. Böylece bu son eşitlikten

S(Y, Z) =

(
r

bn

(
a

n− 1
+ 2b

)
− (n− 1)− a

b

)
g(Y, Z)

+

(
r

bn

(
a

n− 1
+ 2b

)
− 2(n− 1)− a

b

)
η(Y )η(Z) (2.1.14)
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olduğu kolaylıkla görülür. (2.1.14), (2.1.12) de yerine yazılırsa

8R(X, Y, Z,W ) = − b
a

(
r

bn

(
a

n− 1
+ 2b

)
− (n− 1)− 2

)
{g(Y, Z)g(X,W )

−g(X,Z)g(Y,W )}

− b
a

[(
r

n

(
a

n− 1
+ 2b

)
− 2(n− 1)− a

b

)]
{η(Y )η(Z)g(X,W )

−η(X)η(Z)g(Y,W )

+η(X)η(W )g(Y, Z)− η(Y )η(W )g(X,Z)} (2.1.15)

elde edilir. Şimdi (2.1.14) ve (1.3.12) yi göz önüne alarak S nin X vektör alanı

boyunca kovaryant türevini hesaplayalım:

(∇XS)(Y, Z) =
dr(X)

bn
{g(Y, Z) + η(Y )η(Z)}

+

(
r

bn

(
a

n− 1
+ 2b

)
− 2(n− 1)− a

b

)
{Φ(X, Y )η(Z)

+Φ(X,Z)η(Y )} (2.1.16)

olur. Buradan

(∇XS)(Y, Z) − (∇Y S)(X,Z)

=
dr(X)

bn
{g(Y, Z) + η(Y )η(Z)}

−dr(Y )

n
{g(X,Z) + η(X)η(Z)} (2.1.17)

+

(
r

bn

(
a

n− 1
+ 2b

)
− 2(n− 1)− a

b

)
Φ(X,Z)η(Y )

−
(
r

bn

(
a

n− 1
+ 2b

)
− 2(n− 1)− a

b

)
Φ(Y, Z)η(X)

dir. Diğer taraftan (∇W C̃)(X, Y )Z = 0 olduğundan (2.1.17) eşitliği de gözönüne

alınarak

r = n(n− 1) (2.1.18)

bulunur. (2.1.18), (2.1.15) da yerine yazılarak

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y

elde edilir ve ispat tamamlanır.

Şimdi R(X,Y ).C = 0 şartını sağlayan Lorentzian para-Sasakian manifoldları

inceleyelim:
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Tanım 2.1.6. (M, g), n-boyutlu (n ≥ 4) bir diferensiyellenebilir manifold olsun.

Bu durumda M manifoldu üzerinde R ve C sırasıyla Riemann eğrilik tensör alanı

ve konformal eğrilik tensör alanı olmak üzere R .C tensör alanı ∀X, Y, Z,W,U ∈

Γ(TM)

(R(X, Y ) . C)(Z,W,U) = R(X, Y )C(Z,W )U − C(R(X, Y )Z,W )U

−C(Z,R(X, Y )W )U (2.1.19)

−C(Z,W )R(X, Y )U

ile tanımlanır [98].

Teorem 2.1.3. M , n-boyutlu (n ≥ 4) bir Lorentzian para-Sasakian manifold olsun.

Eğer M üzerinde ∀X, Y ∈ Γ(TM) için R(X, Y ) . C = 0 ise M, Sn
1 (1) Lorentzian

küresi ile lokal olarak izometriktir [82].

İspat. (1.3.11), (1.3.27) ve (1.3.30) kullanılarak (2.1.1) den ∀X,Y, Z ∈ Γ(TM) için

η(C(X, Y )Z) =
1

n− 2
[

(
r

n− 1
− 1

)
{g(Y, Z)η(X)− g(X,Z)η(Y )}

−{S(Y, Z)η(X)− S(X,Z)η(Y )}] (2.1.20)

elde edilir. (2.1.20) eşitliğinde Z yerine ξ alınır, (1.3.11) ve (1.3.30) kullanılırsa

η(C(X, Y )ξ) = 0 (2.1.21)

bulunur. (2.1.20) eşitliğinde bu kez X yerine ξ alınırsa

η(C(ξ, Y )Z) =
1

n− 2
[{S(Y, Z)− (n− 1)η(Y )η(Z)}

−
(

r

n− 1
− 1

)
{g(Y, Z) + η(Y )η(Z)}] (2.1.22)

olur. M üzerinde R(X, Y ).C = 0 olduğundan (2.1.19) den

0 = g(R(ξ, Y )C(U, V )W, ξ)− g(C(R(ξ, Y )U, V )W, ξ)

−g(C(U,R(ξ, Y )V )W, ξ)− g(C(U, V )R(ξ, Y )W, ξ) (2.1.23)

olduğu görülür.
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(1.3.11) ve (1.3.27) eşitlikleri gözönüne alınarak

0 = − 8C(U, V,W, Y )− η(Y )η(C(U, V )W )− g(Y, U)η(C(ξ, V )W )

+η(U)η(C(Y, V )W )− g(Y, V )η(C(U, ξ)W ) + η(V )η(C(U, Y )W )

−g(Y,W )η(C(U, V )ξ) + η(W )η(C(U, V )Y ) (2.1.24)

elde edilir. Burada 8C(U, V,W, Y ) = g(C(U, V )W,Y ) dir. (2.1.24) eşitliğinde U

yerine Y yazılırsa

0 = − 8C(U, V,W,U)− η(U)η(C(U, V )W )− g(U,U)η(C(ξ, V )W )

+η(U)η(C(U, V )W )− g(U, V )η(C(U, ξ)W ) + η(V )η(C(U,U)W )

−g(U,W )η(C(U, V )ξ) + η(W )η(C(U, V )U) (2.1.25)

bulunur.

Şimdi p ∈ M noktasındaki TPM tanjant uzayının bir {e1, e2, ..., en} ortonormal

bazını göz önüne alalım. Bu durumda (2.1.25) da U = ei yazılır ve 1 den n ye kadar

i üzerinden toplam alınırsa

η(C(ξ, V )W ) = 0 (2.1.26)

eşitliğine ulaşılır. (2.1.21) ve (2.1.26) kullanılarak (2.1.24) den

0 = − 8C(U, V,W, Y )− η(Y )η(C(U, V )W ) + η(U)η(C(Y, V )W )

+η(V )η(C(U, Y )W ) + η(W )η(C(U, V )Y ) (2.1.27)

elde edilir.

Eğer (2.1.20), (2.1.27) de kullanılırsa

0 = − 8C(U, V,W, Y ) + η(W )
1

n− 2
[

(
r

n− 1
− 1

)
{η(U)g(V, Y )

−η(V )g(U, Y )} − {η(U)S(V, Y )− η(V )S(U, Y )}] (2.1.28)

bulunur.

(2.1.26) ve (2.1.22) den

S(Y, Z) =

(
r

n− 1
− 1

)
g(Y, Z) +

(
r

n− 1
− n

)
η(Y )η(Z)
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olur. Bu son eşitlik kullanılarak (2.1.28) eşitliğinden

0 = 8C(U, V,W, Y )

elde edililir ki bu daM manifoldunun konformal flat olduğunu verir. Böylece Teorem

2.1.1 gözönüne alınarak ispat tamamlanır.

Konformal simetrik manifoldlar üzerinde ∇C = 0 olduğundan R(X, Y ) . C = 0

, ∀X, Y ∈ Γ(TM), eşitliği sağlanır. Bu durumda Teorem 2.1.1 ve Teorem 2.1.3 göz

önüne alınarak aşağıdaki sonuca ulaşılır:

Sonuç 2.1.1. M, n-boyutlu (n ≥ 4) bir konformal simetrik Lorentzian para-Sasakian

manifold olsun. Bu durumda M, Sn
1 (1) Lorentzian küresi ile lokal olarak izometriktir

[82].

Teorem 2.1.1, Teorem 2.1.2 ve Teorem 2.1.3 den aşağıdaki sonuca ulaşılır:

Sonuç 2.1.2. M bir n-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ise ∀X, Y, Z ∈ Γ(TM) için

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y (2.1.29)

dir. Burada R, M nin Riemann eğrilik tensör alanıdır.

2.2 4-boyutlu Lorentzian Para-Sasakian Manifoldlar

Üzerindeki Spacelike ve Timelike Eğriler

Bu kısımda Minkowski uzaylarda tanımlı eğriler için [83] de yer alan Frenet formülleri

kullanılarak, 4-boyutlu Lorentzian para-Sasakian manifoldlar üzerinde yay-parametresi

ile parametrelendirilmiş null (lightlike) olmayan bir γ : I → M eğrisi için Frenet

formülleri verilecektir.

Tanım 2.2.1. M bir semi-Riemann manifold ve γ : I → M da M üzerinde bir

diferensiyellenebilir eğri olsun. Eğer γ eğrisinin hız vektörü γ′(s), ∀s ∈ I, sırasıyla

spacelike, timelike veya null (lightlike) ise γ eğrisine sırasıyla spacelike, timelike veya

null (lightlike) eğri denir [86].
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M bir 4-boyutlu Lorentzian para-Sasakian manifold ve γ : I →M da yay-paramet-

resi ile parametrelendirilmiş null (lightlike) olmayan bir eğri olsun. T, N, B1 ve B2,

sırasıyla γ eğrisinin teğet, normal, birinci binormal ve ikinci binormal vektör alanını

göstermek üzere, γ boyunca M manifoldu üzerinde Frenet çatısını

{T,N,B1, B2}

olarak alalım. Şimdi γ : I →M eğrisinin Frenet formüllerini inceleyelim [83]:

I.Durum : γ : I → M eğrisi bir spacelike eğri olsun. Bu durumda T bir

spacelike vektör olduğundanN veB1 vektör alanlarının casual karakterleri göz önüne

alınarak γ nın Frenet formülleri için aşağıdaki durumlar söz konusudur:

i) N ve B1 spacelike ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

−k1 0 k2 0

0 −k2 0 k3

0 0 k3 0




T

N

B1

B2

 (2.2.1)

dir. Burada T, N, B1 ve B2

g(T, T ) = g(N,N) = g(B1, B1) = 1, g(B2, B2) = −1, (2.2.2)

şartalarını sağlayan ortogonal vektör alanlarıdır.

ii) N spacelike ve B1 timelike ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

−k1 0 k2 0

0 k2 0 k3

0 0 k3 0




T

N

B1

B2

 (2.2.3)

dir. Burada T, N, B1 ve B2

g(T, T ) = g(N,N) = g(B2, B2) = 1, g(B1, B1) = −1, (2.2.4)

şartalarını sağlayan ortogonal vektör alanlarıdır.
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iii) N spacelike ve B1 null ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

−k1 0 k2 0

0 0 k3 0

0 k2 0 −k3




T

N

B1

B2

 (2.2.5)

dir. Burada T, N, B1 ve B2

g(T, T ) = g(N,N) = 1, g(B2, B2) = g(B1, B1) = 0, g(B1, B2) = 1 (2.2.6)

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, (2.2.7)

şartalarını sağlayan vektör alanlarıdır.

iv) N timelike ve B1 spacelike ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

k1 0 k2 0

0 k2 0 k3

0 0 −k3 0




T

N

B1

B2

 (2.2.8)

dir. Burada T, N, B1 ve B2

g(T, T ) = g(B1, B1) = g(B2, B2) = 1, g(N,N) = −1, (2.2.9)

şartalarını sağlayan ortogonal vektör alanlarıdır.

v) N null ve B1 spacelike ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

0 0 k2 0

0 k3 0 −k2

−k1 0 −k3 0




T

N

B1

B2

 (2.2.10)

dir. Bu durumda k1 sadece iki değer alır: eğer γ bir geodezik eğri ise k1 = 0, aksi

halde k1 = 1 dir. Burada T, N, B1 ve B2

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0, (2.2.11)
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g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(N,B2) = 1(2.2.12)

şartalarını sağlayan vektör alanlarıdır.

vi) N null ve B2 spacelike ise
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

0 0 0 k2

−k1 0 0 k3

0 −k3 −k2 0




T

N

B1

B2

 (2.2.13)

dir. Bu durumda da k1 sadece iki değer alır: eğer γ bir geodezik eğri ise k1 = 0, aksi

halde k1 = 1 dir. Burada T, N, B1 ve B2

g(T, T ) = g(B2, B2) = 1, g(N,N) = g(B1, B1) = 0, (2.2.14)

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(N,B1) = 1(2.2.15)

şartalarını sağlayan vektör alanlarıdır.

II.Durum : γ : I →M eğrisi bir timelike eğri olsun. Bu durumda T bir timelike

vektör olduğundan γ nın Frenet formülleri
∇TT

∇TN

∇TB1

∇TB2

 =


0 k1 0 0

k1 0 k2 0

0 −k2 0 k3

0 0 −k3 0




T

N

B1

B2

 (2.2.16)

dir. Burada T, N, B1 ve B2

g(N,N) = g(B1, B1) = g(B2, B2) = 1, g(T, T ) = −1, (2.2.17)

şartalarını sağlayan ortogonal vektör alanlarıdır.

2.3 4-boyutlu Konformal Flat, Quasi-Konformal Flat

ve Konformal Simetrik Lorentzian Para-Sasakian

Manifoldlar Üzerindeki Biharmonik Eğriler

Bu kısımda 4-boyutlu bir konformal flat, quasi-konformal flat veya konformal simetrik

Lorentzian para-Sasakian manifold üzerindeki null (lightlike) olmayan eğrilerin özgün
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biharmonik eğri olmaları için gerek ve yeter şartlar araştırılarak bu eğrilerin biharmonik

denklemleri verilecektir.

Teorem 2.3.1. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I → M da M üzerinde ikinci

binormali timelike olan yay-parametresi ile parametrelendirilmiş bir spacelike eğri

olsun. Bu durumda γ : I → M eğrisinin özgün (has) biharmonik eğri olması için

gerek ve yeter şart γ : I → M eğrisinin k1 = 1 olacak şekilde bir çember veya

k2
1 + k2

2 = 1 olacak şekilde bir helis olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I →M eğrisinin yay-paramet-

resi ile verilen bir spacelike eğri ve γ eğrisi boyunca M ye teğet olan {T,N,B1, B2}

ortonormal Frenet çatısının da

g(T, T ) = g(N,N) = g(B1, B1) = 1, g(B2, B2) = −1

şartlarını sağladığını düşünelim. Bu durumda T = γ′(s) bir spacelike vektördür.

N, ∇TT doğrultusunda birim spacelike vektör alanı, B1 ve B2 de sırasıyla birim

spacelike ve birim timelike vektör alanları olmak üzere γ eğrisi boyunca M ye teğet

olan {T,N,B1, B2} ortonormal Frenet çatısını göz önüne alalım. Bu durumda (2.2.1)

ile verilen Frenet formülleri ve (2.1.29) kullanılarak γ : I → M eğrisinin bitensiyon

alanı

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (−k1T + k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (−k1T + k2B1)

+k1 (−k′1T − k1∇TT + k′2B1 + k2∇TB1)− k1R(T,N)T

= k′′1N − 2k′1k1T + 2k′1k2B1 − k′1k1T − k3
1N + k1k

′
2B1

+k1k2(−k2N + k3B2)− k1(−N)
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olur. Bu son eşitlik düzenlenirse γ eğrisinin biharmonik denklemi

τ2(γ) = (−3k′1k1)T +
(
k′′1 − k3

1 − k1k
2
2 + k1

)
N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0

elde edilir. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I →M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek

ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′1k1 = 0, (2.3.1)

k′′1 − k1(k
2
1 + k2

2 − 1) = 0, (2.3.2)

2k′1k2 + k1k
′
2 = 0, (2.3.3)

k1k2k3 = 0 (2.3.4)

denklemlerini sağlamasıdır. Eğer (2.3.1)-(2.3.4) denklemlerinin γ : I →M eğrisi bir

geodezik olmayacak şekildeki çözümleri incelenirse

k1 = sabit 6= 0,

k2 = sabit,

k2
1 + k2

2 = 1,

k2k3 = 0

elde edilir ki bu da ispatı tamamlar.

Teorem 2.3.2. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I → M da M üzerinde birinci

binormali timelike olan yay-parametresi ile parametrelendirilmiş bir spacelike eğri

olsun. Bu durumda γ : I → M eğrisinin özgün (has) biharmonik eğri olması için

gerek ve yeter şart γ : I → M eğrisinin k1 = 1 olacak şekilde bir çember veya

k2
1 − k2

2 = 1 olacak şekilde bir helis olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I → M , yay-parametresi
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ile verilen bir spacelike eğri olsun. Bu durumda T = γ′(s) bir spacelike vektördür.

γ : I →M eğrisinin ortonormal Frenet çatısı {T,N,B1, B2} olmak üzere B1 timelike

olduğundan N, ∇TT doğrultusunda bir spacelike vektör alanı ve B2 de bir spacelike

vektör alanıdır. Bu durumda (2.2.3) ile verilen Frenet formülleri ve (2.1.29) kullanıla-

rak bienerjinin Euler-Lagrange denklemi

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (−k1T + k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (−k1T + k2B1)

+k1 (−k′1T − k1∇TT + k′2B1 + k2∇TB1)− k1R(T,N)T

= k′′1N − 2k′1k1T + 2k′1k2B1 − k′1k1T − k3
1N + k1k

′
2B1

+k1k2(k2N + k3B2)− k1(−N)

= (−3k′1k1)T +
(
k′′1 − k3

1 + k1k
2
2 + k1

)
N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0

olur. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I → M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek

ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′1k1 = 0, (2.3.5)

k′′1 − k1(k
2
1 − k2

2 − 1) = 0, (2.3.6)

2k′1k2 + k1k
′
2 = 0, (2.3.7)

k1k2k3 = 0 (2.3.8)

denklemlerini sağlamasıdır. Eğer (2.3.5)-(2.3.8) denklemlerinin γ : I →M eğrisi bir

geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri incelenirse

k1 = sabit 6= 0,

k2 = sabit,
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k2
1 − k2

2 = 1,

k2k3 = 0

elde edilir. Böylece ispat tamamlanır.

Teorem 2.3.3. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I →M da M üzerinde yay-paramet-

resi ile parametrelendirilmiş bir spacelike eğri olsun. N bir spacelike vektör ve B1

bir null (lightlike) vektör olmak üzere γ eğrisi boyunca M ye teğet olan Frenet çatısı

da {T,N,B1, B2} olsun. Bu durumda γ : I → M eğrisinin özgün (has) biharmonik

eğri olması için gerek ve yeter şart

(i) k1 = 1

ve

(ii) k2 = 0 veya ln k2(s) = −
∫
k3(s) ds

olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I → M , yay-parametresi ile

verilen bir spacelike eğri olsun. M üzerinde γ eğrisi boyunca hareketli {T,N,B1, B2}

Frenet çatısının

g(T, T ) = g(N,N) = 1, g(B1, B1) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(N,B2) = 0, g(B1, B2) = 1

şartlarını sağladığını düşünelim. (2.2.5) kullanılarak γ eğrisinin bitension alanı

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (−k1T + k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (−k1T + k2B1)

+k1 (−k′1T − k1∇TT + k′2B1 + k2∇TB1)− k1R(T,N)T
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olur. Bu son eşitlikten γ eğrisinin biharmonik denklemi

τ2(γ) = (−3k′1k1)T +
(
k′′1 − k3

1 + k1

)
N

+ (2k′1k2 + k1k
′
2 + k1k2k3)B1

= 0

şeklinde elde edilir. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I → M

eğrisinin i.yinci eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik

olması için gerek ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′1k1 = 0, (2.3.9)

k′′1 − k3
1 + k1 = 0, (2.3.10)

2k′1k2 + k1k
′
2 + k1k2k3 = 0, (2.3.11)

denklemlerini sağlamasıdır. Eğer (2.3.9)-(2.3.11) denklemlerinin γ : I → M eğrisi

bir geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri incelenirse

k1 = 1

ve

k′2 + k2k3 = 0 (2.3.12)

bulunur. (2.3.12) den k2 = 0 veya ln k2(s) = −
∫
k3(s) ds elde edilir ki bu da ispatı

tamamlar.

Teorem 2.3.4. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I → M da M üzerinde birim

normal vektör alanı timelike olan yay-parametresi ile parametrelendirilmiş bir spacelike

eğri olsun. Bu durumda γ : I → M eğrisinin biharmonik eğri olması için gerek ve

yeter şart bir geodezik olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I →M , birim normal vektör

alanı timelike olan yay-parametresi ile parametrelendirilmiş bir spacelike eğri olsun.

Öyleyse T = γ′(s) bir spacelike vektördür ve γ eğrisi boyunca M ye teğet olan
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{T,N,B1, B2} ortonormal Frenet çatısı g(T, T ) = g(B1, B1) = g(B2, B2) = 1,

g(N,N) = −1 şartlarını sağlar. Bu durumda (2.2.8) ile verilen Frenet formülleri

ve (2.1.29) kullanılarak γ : I →M eğrisinin biharmonik denklemi

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (k1T + k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (k1T + k2B1)

+k1 (k′1T + k1∇TT + k′2B1 + k2∇TB1)− k1R(T,N)T

= k′′1N + 2k′1k1T + 2k′1k2B1 + k′1k1T + k3
1N + k1k

′
2B1

+k1k2(k2N + k3B2)− k1(−N)

= (3k′1k1)T +
(
k′′1 + k3

1 + k1k
2
2 + k1

)
N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0

olur. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I → M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek

ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′1k1 = 0, (2.3.13)

k′′1 + k1(k
2
1 + k2

2 + 1) = 0, (2.3.14)

2k′1k2 + k1k
′
2 = 0, (2.3.15)

k1k2k3 = 0 (2.3.16)

denklemlerini sağlamasıdır. Eğer (2.3.13)-(2.3.16) denklemlerinin γ : I → M eğrisi

bir geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri incelenirse

k1 = sabit 6= 0,

k2 = sabit,

k2
1 + k2

2 = −1,

k2k3 = 0
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elde edilir. Halbuki k2
1 + k2

2 = −1 olması mümkün değildir. Öyleyse γ : I → M

eğrisi geodezik olmak zorundadır. Böylece ispat tamamlanır.

Teorem 2.3.5. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I →M da M üzerinde yay-paramet-

resi ile parametrelendirilmiş bir spacelike eğri olsun. N bir null (lightlike) vektör ve

B1 bir spacelike vektör olmak üzere γ eğrisi boyunca M ye teğet olan Frenet çatısı

da {T,N,B1, B2} olsun. Bu durumda γ : I → M eğrisinin biharmonik eğri olması

için gerek ve yeter şart bir geodezik olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I → M , yay-parametresi ile

verilen bir spacelike eğri olsun. M üzerinde γ eğrisi boyunca hareketli {T,N,B1, B2}

Frenet çatısının

g(T, T ) = g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0, g(N,B2) = 1

şartlarını sağladığını düşünelim. (2.2.10) kullanılarak

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (k2B1) + k1 (k′2B1 + k2∇TB1)− k1R(T,N)T

= k′′1N + 2k′1k2B1 + k1k
′
2B1

+k1k2(k3N − k2B2)− k1(−N)

= (k′′1 + k1k2k3 + k1)N + (2k′1k2 + k1k
′
2)B1 + (k1k

2
2)B2

= 0

elde edilir. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I →M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek
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ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′′1 + k1k2k3 + k1 = 0, (2.3.17)

2k′1k2 + k1k
′
2 = 0, (2.3.18)

k1k
2
2 = 0, (2.3.19)

denklemlerini sağlamasıdır. Diğer taraftan γ : I → M, normal vektör alanı null

(lightlike) olan bir spacelike eğri olduğundan birinci eğriliği k1, γ : I → M bir

geodezik iken 0 diğer tüm durumlarda ise 1 dir. Eğer yukarıdaki denklemlerin

γ : I → M eğrisi bir geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri

incelenirse k1 = 1 olacağından (2.3.17) den k2k3 + 1 = 0 ve (2.3.19) dan k2 = 0 elde

edilir. Halbuki bu bir çelişkidir. Dolayısıyla k1 = 0 yani γ : I → M bir geodezik

olmak zorundadır.

Teorem 2.3.6. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I →M da M üzerinde yay-paramet-

resi ile parametrelendirilmiş bir spacelike eğri olsun. N bir null (lightlike) vektör ve

B2 bir spacelike vektör olmak üzere γ eğrisi boyunca M ye teğet olan Frenet çatısı

da {T,N,B1, B2} olsun. Bu durumda γ : I → M eğrisinin biharmonik eğri olması

için gerek ve yeter şart bir geodezik olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I → M , yay-parametresi ile

verilen bir spacelike eğri olsun. M üzerinde γ eğrisi boyunca hareketli {T,N,B1, B2}

Frenet çatısının

g(T, T ) = g(B2, B2) = 1, g(N,N) = g(B1, B1) = 0,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B2) = g(B1, B2) = 0, g(N,B1) = 1

şartlarını sağladığını düşünelim. (2.2.13) kullanılarak γ eğrisi için bienerjinin Euler-

Lagrange denklemi
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τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + 2k′1 (k2B2) + k1 (k′2B2 + k2∇TB2)− k1R(T,N)T

= k′′1N + 2k′1k2B2 + k1k
′
2B2

+k1k2(−k3N − k2B1)− k1(−N)

= (k′′1 − k1k2k3 + k1)N +
(
−k1k

2
2

)
B1 + (2k′1k2 + k1k

′
2)B2

= 0

bulunur. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I → M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek

ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′′1 − k1k2k3 + k1 = 0, (2.3.20)

k1k
2
2 = 0, (2.3.21)

2k′1k2 + k1k
′
2 = 0, (2.3.22)

denklemlerini sağlamasıdır. Diğer taraftan γ : I → M, normal vektör alanı null

(lightlike) olan bir spacelike eğri olduğundan birinci eğriliği k1, γ : I → M bir

geodezik iken 0 diğer tüm durumlarda ise 1 dir. Eğer yukarıdaki denklemlerin

γ : I → M eğrisi bir geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri

incelenirse k1 = 1 olacağından (2.3.20) den k2k3 + 1 = 0 ve (2.3.21) dan k2 = 0 elde

edilir. Halbuki bu bir çelişkidir. Dolayısıyla k1 = 0 yani γ : I → M bir geodezik

olmak zorundadır.

Şimdi 4-boyutlu konformal flat, quasi-konformal flat veya konformal simetrik

Lorentzian para-Sasakian manifold üzerindeki bir timelike eğrinin özgün (has) bihar -

monik olması için gerek ve yeter şartları inceleyelim:

Teorem 2.3.7. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold ve γ : I →M da M üzerinde yay-paramet-

resi ile parametrelendirilmiş bir timelike eğri olsun. Bu durumda γ : I → M
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eğrisinin biharmonik eğri olması için gerek ve yeter şart γ : I →M eğrisinin k1 = 1

olacak şekilde bir çember veya k2
1 − k2

2 = 1 olacak şekilde bir helis olmasıdır.

İspat. (M,φ, ξ, η), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. γ : I → M , yay-parametresi ile

verilen bir timelike eğri olsun. Öyleyse T = γ′(s) bir timelike vektördür ve γ eğrisi

boyunca M ye teğet olan {T,N,B1, B2} ortonormal Frenet çatısı g(T, T ) = −1,

g(N,N) = g(B1, B1) = g(B2, B2) = 1 şartlarını sağlar. (2.2.16) eşitliği kullanılarak

γ eğrisinin biharmonik denklemi

τ2(γ) = ∇3
TT −R(T,∇TT )T

= ∇T∇T (k1N)−R(T, k1N)T

= ∇T (k′1N + k1∇TN)− k1R(T,N)T

= k′′1N + k′1∇TN + k′1∇TN + k1∇T (k1T + k2B1)− k1R(T,N)T

= k′′1N + 2k′1 (k1T + k2B1)

+k1 (k′1T + k1∇TT + k′2B1 + k2∇TB1)− k1R(T,N)T

= k′′1N + 2k′1k1T + 2k′1k2B1 + k′1k1T + k3
1N + k1k

′
2B1

+k1k2(−k2N + k3B2)− k1(N)

= (3k′1k1)T +
(
k′′1 + k3

1 − k1k
2
2 − k1

)
N

+ (2k′1k2 + k1k
′
2)B1 + (k1k2k3)B2

= 0

elde edilir. Burada ki : I → R, (i = 1, 2, 3), fonksiyonları γ : I →M eğrisinin i.yinci

eğrilik fonksiyonlarıdır. Böylece γ : I → M eğrisinin biharmonik olması için gerek

ve yeter şart ki : I → R, (i = 1, 2, 3), i.yinci eğrilik fonksiyonlarının

k′1k1 = 0, (2.3.23)

k′′1 + k1(k
2
1 − k2

2 − 1) = 0, (2.3.24)

2k′1k2 + k1k
′
2 = 0, (2.3.25)

k1k2k3 = 0 (2.3.26)

denklemlerini sağlamasıdır. Eğer (2.3.5)-(2.3.8) denklemlerinin γ : I →M eğrisi bir
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geodezik olmayacak şekildeki (yani k1 6= 0 için) çözümleri incelenirse

k1 = sabit 6= 0,

k2 = sabit,

k2
1 − k2

2 = 1,

k2k3 = 0

elde edilir. Böylece ispat tamamlanır.

2.4 S4
1(1) Lorentz Birim Küresi Üzerindeki

Biharmonik Eğriler

(M,φ, ξ, η), bir n-boyutlu (n > 3) konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. Teorem 2.1.1, Teorem 2.1.2 ve

Sonuç 2.1.1 den M manifoldu Sn
1 (1) Lorentz birim küresine lokal olarak izometriktir.

Bu gerçeği ve kısım 2.3 de verdiğimiz teoremleri kullanarak, bu kısımda S4
1(1)

Lorentz birim küresi üzerindeki geodezik olmayan biharmonik eğriler için bazı karak-

terizasyonlar verilecektir. Ayrıca S4
1(1) Lorentz birim küresi üzerindeki null olmayan

bir eğrinin aslında 4. mertebeden bir diferansiyel denklem olan biharmonik denklemi

çözülerek bazı sınıflandırmalar ve bazı özel özgün biharmonik eğriler elde edilecektir.

〈, 〉 = −dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

olmak üzere 〈, 〉 metriğine sahip 5-boyutlu Minkowski uzay (R5
1, 〈, 〉) olsun. Bu

durumda S4
1(1) Lorentz birim küresi, R5

1 Minkowski uzayında

S4
1(1) = {p ∈ R5

1 : 〈p, p〉 = 1} (2.4.1)

ile tanımlanan bir hiperkuadriktir.

γ : I → S4
1(1), yay-parametresi ile parametrelendirilmiş null (lightlike) olmayan

bir eğri ve ∇ da S4
1(1) Lorentz birim küresi üzerinde γ eğrisi boyunca kovaryant

türev olsun. Bu durumda γ eğrisi boyunca bir X vektör alanı için γ ′(s) = T (s)

olmak üzere

∇TX = X ′ + 〈T,X〉 γ (2.4.2)
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dir. Ayrıca S4
1(1) Lorentz birim küresi, skaler eğriliği 1 olan bir Lorentzian uzay

form olduğundan ∀X, Y, Z ∈ Γ(T (S4
1(1))) için

R(X, Y )Z = 〈Y, Z〉X − 〈X,Z〉Y

yazılır. Burada R, S4
1(1) Lorentz birim küresi üzerindeki Riemann eğrilik tensör

alanıdır.

Önerme 2.4.1. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir biharmonik spacelike eğri; {T,N,B1, B2}, N ve B1 spacelike vektör

alanları olmak üzere S4
1(1) Lorentz birim küresi üzerinde γ eğrisi boyunca ortonormal

Frenet çatısı olsun. Bu durumda

γ(IV ) + 2γ′′ + (1− k2
1)γ = 0 (2.4.3)

dır. Burada k1 : I → R, γ eğrisinin birinci eğrilik fonksiyonudur.

İspat. γ : I → S4
1(1), normal vektör alanı N ve binormal vektör alanı B1 spacelike

olan yay-parametresi ile parametrelendirilmiş geodezik olmayan bir biharmonik space-

like eğri olsun. Bu durumda (2.2.1) kullanılarak

∇2
TN = ∇T (∇TN)

= ∇T (−k1T + k2B1)

= −k1∇TT + k2∇TB1

= −k1(k1N) + k2(−k2N + k3B2)

= −(k2
1 + k2

2)N + (k2k3)B2

= −N (2.4.4)

bulunur. Ayrıca (2.2.1) ve (2.4.2) den

∇2
TN = ∇T (∇TN) = ∇T (N ′ + 〈T,N〉 γ)

= ∇TN
′ = N ′′ + 〈T,N ′〉 γ

= N ′′ + 〈T,∇TN − 〈T,N〉 γ〉 γ

= N ′′ + 〈T,∇TN〉 γ

= N ′′ + 〈T,−k1T + k2B1〉 γ

= N ′′ − k1γ (2.4.5)
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elde edilir. (2.4.4) ve (2.4.5) eşitliklerinden

−N = N ′′ − k1γ (2.4.6)

dir. Diğer taraftan S4
1(1) üzerindeki Gauss denkleminden faydalanarak

∇TT = T ′ + 〈T, T 〉 γ = γ′′ + γ (2.4.7)

olduğu kolayca görülebilir. Bu son eşitlikten

N =
1

k1

(γ′′ + γ) (2.4.8)

olur. Böylece (2.4.8), (2.4.6) eşitliğinde kullanılırsa ispat tamamlanmış olur.

Önerme 2.4.1 göz önüne alınırsa, S4
1(1) Lorentz birim küresi üzerinde tanımlı,

normal vektör alanı ve binormal vektör alanı spacelike olan özgün (has) biharmonik

spacelike eğrileri bulmak için (2.4.3) ile verilen diferansiyel denklemin çözümleri

incelenmelidir. Böylece aşağıdaki teoreme ulaşılır:

Teorem 2.4.1. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir biharmonik spacelike eğri; {T,N,B1, B2}, N ve B1 spacelike vektör

alanları olmak üzere S4
1(1) Lorentz birim küresi üzerinde γ eğrisi boyunca ortonormal

Frenet çatısı olsun. Bu durumda aşağıdaki iki durum söz konusudur:

(i) γ : I → S4
1(1) eğrisi yarıçapı 1√

2
olan bir çemberdir.

(ii) γ : I → S4
1(1), γ(s) =

(
0, cos(as)√

2
, sin(as)√

2
, cos(bs)√

2
, sin(bs)√

2

)
dir. Burada k1 : I → R, γ eğrisinin birinci eğrilik fonksiyonu, a =

√
1− k1 ve

b =
√

1 + k1 dir.

İspat. γ : I → S4
1(1), normal vektör alanı N ve binormal vektör alanı B1 spacelike

olan yay-parametresi ile parametrelendirilmiş bir özgün (has) biharmonik spacelike

eğri olsun. k1 ile γ : I → S4
1(1) eğrisinin birinci eğrilik fonksiyonunu gösterelim.

(i) Eğer k1 = 1 ise (2.4.3) ile verilen diferansiyel denklem

γ(IV ) + 2γ′′ = 0 (2.4.9)
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diferansiyel denklemine dönüşür. (2.4.9) diferansiyel denkleminin karakteristik denkle-

mi

m4 + 2m2 = 0

olur. Bu karakteristik denklemin kökleri

m1 = m2 = 0, m3 = i
√

2 ve m4 = −i
√

2

şeklindedir. Böylece (2.4.9) diferansiyel denkleminin genel çözümü

γ(s) = c1 + c2s+ c3 cos(
√

2s) + c4 sin(
√

2s) (2.4.10)

dir. Burada c1, c2, c3 ve c4 birbirine dik sabit vektörlerdir. |γ| = 1 ve |γ′| = 1

olduğundan

c2 = 0 ve |c1|2 = |c3|2 = |c4|2 =
1

2
(2.4.11)

bulunur. Öyleyse (2.4.10) ve(2.4.11) eşitliklerinden −d2
1 + d2

2 + d2
3 = 1

2
olmak üzere

γ(s) =

(
d1,

cos(
√

2s)√
2

,
sin(

√
2s)√

2
, d2, d3

)
elde edilir ki bu da γ : I → S4

1(1) eğrisinin yarıçapı 1√
2

olan bir çember olduğunu

gösterir.

(ii) Eğer 0 < k1 < 1 ise (2.4.3) ile verilen diferansiyel denklemin karakteristik

denklemi

m4 + 2m2 + k2
2 = 0 (2.4.12)

olur. m2 = t dersek (2.4.12) denklemi

t2 + 2t2 + k2
2 = 0 (2.4.13)

denklemine indirgenir. (2.4.13) denkleminin diskriminantı ∆ = 4(1−k2
2) olduğundan

bu denklemin kökleri t1 ve t2 olmak üzere

t1 = −1 + k1, (t1 < 0) ,

t2 = −1− k1, (t2 < 0)

dir. Buradan m2 = t olduğu göz önüne alınırsa (2.4.12) karakteristik denkleminin

kökleri

m1 = −i
√

1− k1, m2 = i
√

1− k1, m3 = −i
√

1 + k1 ve m4 = i
√

1 + k1
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bulunur. Böylece
√

1− k1 = a ve
√

1 + k1 = b olmak üzere (2.4.3) diferansiyel

denkleminin genel çözümü

γ(s) = c1 cos(as) + c2 sin(as) + c3 cos(bs) + c4 sin(bs) (2.4.14)

olur. Burada c1, c2, c3 ve c4 birbirine dik sabit vektörlerdir. |γ| = 1 ve |γ′| = 1

olduğundan

|c1|2 = |c2|2 = |c3|2 = |c4|2 =
1

2
(2.4.15)

elde edilir. Öyleyse (2.4.14) ve(2.4.15) eşitliklerinden

γ(s) =

(
0,

cos(as)√
2

,
sin(as)√

2
,
cos(bs)√

2
,
sin(bs)√

2

)
elde edilir ki bu da ispatı tamamlar.

Önerme 2.4.2. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir biharmonik spacelike eğri; {T,N,B1, B2}, N bir spacelike vektör alanı

ve B1 bir timelike vektör alanı olmak üzere S4
1(1) Lorentz birim küresi üzerinde γ

eğrisi boyunca ortonormal Frenet çatısı olsun. Bu durumda

γ(IV ) + 2γ′′ + (1− k2
1)γ = 0 (2.4.16)

dır. Burada k1 : I → R, γ eğrisinin birinci eğrilik fonksiyonudur.

İspat. γ : I → S4
1(1), normal vektör alanı N spacelike ve binormal vektör alanı

B1 timelike vektör olan yay-parametresi ile parametrelendirilmiş bir özgün (has)

biharmonik spacelike eğri olsun. Bu durumda (2.2.3) kullanılarak

∇2
TN = ∇T (∇TN) = ∇T (−k1T + k2B1)

= −k1∇TT + k2∇TB1 = −k1(k1N) + k2(k2N + k3B2)

= −(k2
1 − k2

2)N + (k2k3)B2 = −N

bulunur. Ayrıca (2.2.3) ve (2.4.2) den

∇2
TN = ∇T (∇TN) = ∇T (N ′ + 〈T,N〉 γ)

= ∇TN
′ = N ′′ + 〈T,N ′〉 γ

= N ′′ + 〈T,∇TN − 〈T,N〉 γ〉 γ = N ′′ + 〈T,∇TN〉 γ

= N ′′ + 〈T,−k1T + k2B1〉 γ

= N ′′ − k1γ
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elde edilir. Bu son iki eşitlikten

−N = N ′′ − k1γ (2.4.17)

olur. Diğer taraftan S4
1(1) üzerindeki Gauss denkleminden faydalanarak

∇TT = T ′ + 〈T, T 〉 γ = γ′′ + γ

olduğu kolayca görülebilir. Buradan

N =
1

k1

(γ′′ + γ) (2.4.18)

bulunur. Böylece (2.4.18), (2.4.17) eşitliğinde kullanılırsa ispat tamamlanmış olur.

Şimdi (2.4.16) diferansiyel denkleminin çözümlerini inceleyelim:

(i) Eğer k1 = 1 ise (2.4.16) ile verilen diferansiyel denklem (2.4.9) diferansiyel

denklemine indirgeneceğinden bu diferansiyel denklemin çözümü olan γ : I → S4
1(1)

eğrisi yarıçapı 1√
2

olan bir çemberdir.

(ii) Eğer k1 > 1 ise (2.4.16) ile verilen diferansiyel denklemin karakteristik

denklemi

m4 + 2m2 − k2
2 = 0 (2.4.19)

olur. m2 = t dersek (2.4.19) denklemi

t2 + 2t2 − k2
2 = 0 (2.4.20)

denklemine indirgenir. (2.4.20) denkleminin diskriminantı ∆ = 4(1+k2
2) olduğundan

bu denklemin kökleri t1 ve t2 olmak üzere

t1 = −1 + k1, (t1 > 0)

t2 = −1− k1, (t2 < 0)

dir. Buradan m2 = t olduğu göz önüne alınırsa (2.4.19) karakteristik denkleminin

kökleri

m1 =
√
k1 − 1, m2 = −

√
k1 − 1, m3 = −i

√
1 + k1 ve m4 = i

√
1 + k1
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şeklindedir. Böylece
√
k1 − 1 = a ve

√
1 + k1 = b olmak üzere (2.4.16) diferansiyel

denkleminin genel çözümü

γ(s) = c1e
as + c2e

−as + c3 cos(bs) + c4 sin(bs) (2.4.21)

olur. Şimdi |γ| = 1 ve |γ′| = 1 olacak şekilde c1, c2, c3 ve c4 sabit vektörlerini

belirleyerek (2.4.16) diferansiyel denkleminin özel bir çözümünü bulalım:

|γ|2 = 〈γ(s), γ(s)〉

= 〈c1, c1〉 e2as + 〈c1, c2〉+ 〈c1, c3〉 eas cos(bs) + 〈c1, c4〉 eas sin(bs)

+ 〈c2, c1〉+ 〈c2, c2〉 e−2as + 〈c2, c3〉 e−as cos(bs) + 〈c2, c4〉 e−as sin(bs)

+ 〈c3, c1〉 eas cos(bs) + 〈c3, c2〉 e−as cos(bs)

+ 〈c3, c3〉 cos2(bs) + 〈c3, c4〉 cos(bs) sin(bs)

+ 〈c4, c1〉 eas sin(bs) + 〈c4, c2〉 e−as sin(bs)

+ 〈c4, c3〉 sin(bs) cos(bs) + 〈c4, c4〉 sin2(bs) (2.4.22)

ve

|γ′|2 = 〈γ′(s), γ′(s)〉

= < ac1e
as − ac2e

−as − bc3 sin(bs) + bc4 cos(bs),

ac1e
as − ac2e

−as − bc3 sin(bs) + bc4 cos(bs) >

= a2 〈c1, c1〉 e2as − a2 〈c1, c2〉 − ab 〈c1, c3〉 eas sin(bs)

+ab 〈c1, c4〉 eas cos(bs)− a2 〈c2, c1〉+ a2 〈c2, c2〉 e−2as

+ab 〈c2, c3〉 e−as sin(bs)− ab 〈c2, c4〉 e−as cos(bs)

−ab 〈c3, c1〉 eas sin(bs) + ab 〈c3, c2〉 e−as sin(bs)

+b2 〈c3, c3〉 sin2(bs)− b2 〈c3, c4〉 sin(bs) cos(bs)

+ab 〈c4, c1〉 eas cos(bs)− ab 〈c4, c2〉 e−as cos(bs)

−b2 〈c4, c3〉 cos(bs) sin(bs) + b2 〈c4, c4〉 cos2(bs) (2.4.23)
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olduğundan c1, c2, c3 ve c4 sabit vektörleri

〈c1, c1〉 = 〈c2, c2〉 = 0,

〈c3, c3〉 = 〈c4, c4〉 =
3

b2
=

1

2
,

〈c1, c2〉 =
1

a2
=

1

4
, (2.4.24)

〈c1, c3〉 = 〈c1, c4〉 = 0

〈c2, c3〉 = 〈c2, c4〉 = 0

〈c3, c4〉 = 0

olacak şekilde

c1 = (1, 0, 0, 0, 1), c2 =

(
−1,

√
7

4
, 0, 0,−3

4

)
,

c3 =

(
0, 0,

1

2
,
1

2
, 0

)
, c4 =

(
−
√

7√
2
,

1√
2
, 0, 0,−

√
7√
2

)

şeklinde seçilebilir. Bu durumda gerçekten |γ|2 = 1 ve |γ′|2 = 1 olur. Öyleyse

(2.4.16) diferansiyel denkleminin özel bir çözümü k1 = 5 ve k2 = 2
√

6 eğriliklerine

sahip

γ(s) = (e2s − e−2s −
√

7√
2

sin(
√

6s),

√
7

4
e−2s +

1√
2

sin(
√

6s),

1

2
cos(

√
6s),

1

2
cos(

√
6s), e2s − 3

4
e−2s −

√
7√
2

sin(
√

6s))

ile verilen bir helistir. Bu helis, S4
1(1) Lorentzian birim küresi üzerinde, normal

vektör alanı spacelike ve binormal vektör alanı timelike olan yay-parametresi ile

parametrelendirilmiş bir özgün (has) biharmonik spacelike eğridir.

Önerme 2.4.3. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir spacelike eğri; {T,N,B1, B2}, N bir spacelike vektör alanı ve B1 bir

null (lightlike) vektör alanı olmak üzere S4
1(1) Lorentz birim küresi üzerinde γ eğrisi

boyunca bir Frenet çatısı olsun. Bu durumda

γ(IV ) + 2γ′′ = 0 (2.4.25)

dır.
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İspat. γ : I → S4
1(1), normal vektör alanı N spacelike ve binormal vektör alanı B1

nıll (lightlike) vektör olan yay-parametresi ile parametrelendirilmiş bir özgün (has)

biharmonik spacelike eğri olsun. Bu durumda (2.2.5) kullanılarak

∇2
TN = ∇T (∇TN)

= ∇T (−k1T + k2B1)

= −k1∇TT + k2∇TB1

= −k1(k1N) + k2(k3B1)

= −(k2
1)N + (k2k3)B1

= −N

bulunur. Ayrıca (2.2.3) ve (2.4.2) den

∇2
TN = ∇T (∇TN) = ∇T (N ′ + 〈T,N〉 γ)

= ∇TN
′ = N ′′ + 〈T,N ′〉 γ

= N ′′ + 〈T,∇TN − 〈T,N〉 γ〉 γ

= N ′′ + 〈T,∇TN〉 γ

= N ′′ + 〈T,−k1T + k2B1〉 γ

= N ′′ − k1γ

= N ′′ − γ

elde edilir. Bu son iki eşitlikten

−N = N ′′ − γ (2.4.26)

olur. Diğer taraftan S4
1(1) üzerindeki Gauss denkleminden faydalanarak

∇TT = T ′ + 〈T, T 〉 γ = γ′′ + γ

olduğu kolayca görülebilir. Buradan

N = γ′′ + γ (2.4.27)

bulunur. Böylece (2.4.27), (2.4.26) eşitliğinde kullanılırsa ispat tamamlanmış olur.
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Teorem 2.4.2. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir biharmonik spacelike eğri; {T,N,B1, B2}, N bir spacelike vektör alanı

ve B1 bir null (lightlike) vektör alanı olmak üzere S4
1(1) Lorentz birim küresi üzerinde

γ eğrisi boyunca bir Frenet çatısı olsun. Bu durumda γ : I → S4
1(1) eğrisi yarıçapı

1√
2

olan bir çemberdir.

İspat. (2.4.25) ile verilen diferansiyel denklemin çözümü, Teorem 2.4.1 (i) nin ispatın-

da kullanılan yöntem izlenerek aynı şekilde elde edilir.

Şimdi S4
1(1) Lorentzian küresi üzerinde yay-parametresi ile parametrelendirilmiş

geodezik olmayan bir biharmonik timelike eğri için aşağıdaki karakterizasyonu verelim:

Önerme 2.4.4. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik

olmayan bir biharmonik timelike eğri olsun. Bu durumda

γ(IV ) − 2γ′′ + (1− k2
1)γ = 0 (2.4.28)

dır. Burada k1 : I → R, γ eğrisinin birinci eğrilik fonksiyonudur.

İspat. γ : I → S4
1(1) yay-parametresi ile parametrelendirilmiş geodezik olmayan bir

biharmonik timelike eğri olsun. Bu durumda (2.2.16) ile verilen Frenet denklemleri

kullanılarak

∇2
TN = ∇T (∇TN)

= ∇T (k1T + k2B1)

= k1∇TT + k2∇TB1

= k1(k1N) + k2(−k2N + k3B2)

= (k2
1 − k2

2)N + (k2k3)B1

= N

80



bulunur. Ayrıca (2.2.16) ve (2.4.2) den

∇2
TN = ∇T (∇TN) = ∇T (N ′ + 〈T,N〉 γ)

= ∇TN
′ = N ′′ + 〈T,N ′〉 γ

= N ′′ + 〈T,∇TN − 〈T,N〉 γ〉 γ

= N ′′ + 〈T,∇TN〉 γ

= N ′′ + 〈T,−k1T + k2B1〉 γ

= N ′′ + k1γ

elde edilir. Bu son iki eşitlikten

N = N ′′ + k1γ (2.4.29)

olur. Diğer taraftan S4
1(1) üzerindeki Gauss denkleminden faydalanarak

∇TT = T ′ + 〈T, T 〉 γ = γ′′ − γ

olduğu kolayca görülebilir. Buradan

N =
1

k1

(γ′′ − γ) (2.4.30)

bulunur. Böylece (2.4.30), (2.4.29) eşitliğinde kullanılırsa ispat tamamlanmış olur.

Bu kısımda son olarak (2.4.28) diferansiyel denkleminin çözümlerini inceleyelim:

(i) Eğer k1 = 1 ise (2.4.28) ile verilen diferansiyel denklem

γ(IV ) − 2γ′′ = 0 (2.4.31)

diferansiyel denklemine dönüşür. (2.4.31) diferansiyel denkleminin karakteristik

denklemi

m4 − 2m2 = 0

olur. Bu karakteristik denklemin kökleri

m1 = m2 = 0, m3 =
√

2 ve m4 = −
√

2
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şeklindedir. Böylece (2.4.28) diferansiyel denkleminin genel çözümü

γ(s) = c1 + c2s+ c3e
−
√

2s + c4e
√

2s (2.4.32)

dir. Burada c1, c2, c3 ve c4 sabit vektörlerdir. |γ|2 = 1 ve |γ′|2 = 1 olduğundan

〈c1, c1〉 =
1

2
,

〈c2, c2〉 = 〈c3, c3〉 = 〈c4, c4〉 = 0,

〈c1, c2〉 = 〈c1, c3〉 = 〈c1, c4〉 = 0, (2.4.33)

〈c2, c3〉 = 〈c2, c4〉 = 0,

〈c3, c4〉 =
1

4

olacak şekilde

c1 = (
1√
2
, 0, 0, 0, 1), c2 = (0, 0, 0, 0, 0) ,

c3 =

(
−1,

1√
2
, 0, 0,− 1√

2

)
, c4 =

(
1,−

√
2

4
,

1

2
√

2
,
1

2
,

1√
2

)

şeklinde seçilebilir. Öyleyse (2.4.31) diferansiyel denkleminin özel bir çözümü

γ(s) =

(
1√
2
− e−

√
2s + e

√
2s,
e−

√
2s

√
2
− e

√
2s

2
√

2
,
e
√

2s

2
√

2
,
e
√

2s

2
, 1− e−

√
2s

√
2

+
e
√

2s

2
√

2

)

olur.

(ii) Eğer k1 > 1 ise (2.4.28) ile verilen diferansiyel denklemin karakteristik

denklemi

m4 − 2m2 − k2
2 = 0 (2.4.34)

olur. m2 = t dersek (2.4.34) denklemi

t2 − 2t− k2
2 = 0 (2.4.35)

denklemine indirgenir. (2.4.35) denkleminin diskriminantı ∆ = 4(1+k2
2) olduğundan

bu denklemin kökleri t1 ve t2 olmak üzere

t1 = 1 + k1, (t1 > 0)

t2 = 1− k1, (t2 < 0)
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dir. Buradan m2 = t olduğu göz önüne alınırsa (2.4.34) karakteristik denkleminin

kökleri

m1 =
√

1 + k1, m2 = −
√

1 + k1, m3 = −i
√
k1 − 1 ve m4 = i

√
k1 − 1

şeklindedir. Böylece
√

1 + k1 = a ve
√
k1 − 1 = b olmak üzere (2.4.28) diferansiyel

denkleminin genel çözümü

γ(s) = c1e
as + c2e

−as + c3 cos(bs) + c4 sin(bs) (2.4.36)

olur. Böylece |γ|2 = 1 ve |γ′|2 = 1 olacak şekilde c1, c2, c3 ve c4 sabit vektörlerini

belirleyerek (2.4.28) diferansiyel denkleminin özel bir çözümünü bulalım:

c1, c2, c3, c4 sabit vektörleri a = 2, b =
√

2 ve

〈c1, c1〉 = 〈c2, c2〉 = 0,

〈c3, c3〉 = 〈c4, c4〉 =
1

2
,

〈c1, c2〉 =
1

4
, (2.4.37)

〈c1, c3〉 = 〈c1, c4〉 = 0

〈c2, c3〉 = 〈c2, c4〉 = 0

〈c3, c4〉 = 0

olmak üzere

c1 = (1, 0, 0, 0, 1), c2 =

(
−1,

√
7

4
, 0, 0,−3

4

)
,

c3 =

(
0, 0,

1

2
,
1

2
, 0

)
, c4 =

(
−
√

7√
2
,

1√
2
, 0, 0,−

√
7√
2

)
şeklinde seçilebilir. Bu durumda gerçekten |γ|2 = 1 ve |γ′|2 = 1 olur. Öyleyse

(2.4.28) diferansiyel denkleminin özel bir çözümü k1 = 3 ve k2 = 2
√

2 eğriliklerine

sahip

γ(s) = (e2s − e−2s −
√

7√
2

sin(
√

2s),

√
7

4
e−2s +

1√
2

sin(
√

2s),

1

2
cos(

√
2s),

1

2
cos(

√
2s), e2s − 3

4
e−2s −

√
7√
2

sin(
√

2s))

ile verilen bir helistir. Bu helis, S4
1(1) Lorentzian birim küresi üzerinde yay-parametre-

si ile parametrelendirilmiş bir özgün (has) biharmonik timelike eğridir.
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BÖLÜM 3

LORENTZIAN HEMEN HEMEN

PARAKONTAKT

MANİFOLDLARIN HİPERYÜZEYLERİ

Bu bölüm beş kısımdan oluşmaktadır. İlk kısımda bir
(
M,ϕ, ξ, η

)
hemen hemen

parakontakt manifoldunun ξ /∈ Γ(TM) olacak şekildeki non-invaryantM hiperyüzey-

leri incelenerek bu hiperyüzeylerinM deki hemen hemen parakontakt yapıdan indirge-

nen bir hemen hemen çarpım yapısına sahip oldukları gösterildi. İkinci kısım afin

kosimplektik hemen hemen parakontakt manifoldların ve normal hemen hemen para -

kontakt manifoldların hiperyüzeylerine ayrıldı. Üçüncü kısımda bir
(
M,ϕ, ξ, η, g

)
Lorentzian hemen hemen parakontakt manifoldunun ve özel olarak Lorentzian para -

Sasakian manifoldunun sırasıyla, ξ /∈ Γ(TM) olacak şekildeki non-invaryant hiperyü-

zeyleri ve ξ ∈ Γ(TM) olacak şekildeki invaryant hiperyüzeyleri araştırıldı. Dördüncü

kısımda, bir önceki kısımda karakterize edilen hiperyüzeyler için örnekler verildi. Son

kısımda ise Lorentzian para-Sasakian manifoldlarının sırasıyla, spacelike ve timelike

hiperyüzeylerinin özgün biharmonik olması için gerek ve yeter şartlar incelendi.

3.1 Hemen Hemen Parakontakt Manifoldların

Non-İnvaryant Hiperyüzeyleri

Bu kısımda bir hemen hemen parakontakt manifoldun, karakteristik vektör alanı

hiperyüzeye ait olmayacak şekildeki non-invaryant hiperyüzeylerinin bir hemen hemen

çarpım yapısına sahip olduğu gösterilerek bu tipteki hiperyüzeylerin bir lokal çarpım

manifoldu olması için gerek şartlar araştırılacaktır. Ayrıca esas manifold üzerindeki

hemen hemen parakontakt yapının normal olması ile non-invaryant hiperyüzey üzerine

indirgenen hemen hemen çarpım yapısının integrallenebilirliği arasındaki ilişki verile -

cektir.
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M, (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip n-boyutlu bir hemen hemen

parakontakt manifold ve M de M nin bir hiperyüzeyi olsun.

i : M →M

bir immersiyon olmak üzere her p ∈M için ξi(p) vektörünün M hiperyüzeyinin teğet

hiperdüzlemine ait olmadığını düşünelim. Bu durumda herhangi bir X ∈ Γ(TM)

için

ϕi∗X = i∗JX + α(X)ξ (3.1.1)

yazılabilir. Burada J, (1,1)-tipinde bir tensör alanı, α bir 1-form ve i∗, i : M → M

immersiyonunun türev dönüşümüdür. Eğer α 6= 0 ise M ye M nin bir non-invaryant

hiperyüzeyi denir. Diğer taraftan eğer α = 0 ise M ye M nin bir invaryant

hiperyüzeyi denir [49].

Teorem 3.1.1. (M,ϕ, ξ, η), boyM = n, bir hemen hemen parakontakt manifold ve

M de M nin ξ /∈ Γ(TM) olacak şekilde bir non-invaryant hiperyüzeyi olsun. Bu

durumda M üzerinde bir hemen hemen çarpım yapısı vardır.

İspat. M , (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip n-boyutlu bir manifold

ve M de M nin bir non-invaryant hiperyüzeyi olsun. ξ /∈ Γ(TM) alalım. (3.1.1)

eşitliğinin her iki tarafına ϕ uygulanır ve (1.3.1)-(1.3.4) kullanılırsa her X ∈ Γ(TM)

için

ϕ2(i∗X) = ϕ (i∗JX) + α(X)ϕξ

i∗X + η (i∗X) ξ = i∗
(
J2X

)
+ α(JX)ξ (3.1.2)

elde edilir. (3.1.2) den

J2X = X (3.1.3)

ve

α(JX) = η (i∗X) = i∗ (η (X)) (3.1.4)

bulunur. Burada i∗, i∗ türev dönüşümünün dual dönüşümüdür. (3.1.3) den J nin M

üzerinde bir hemen hemen çarpım yapısı olduğu görülür. Böylece ispat tamamlanır.
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M hemen hemen parakontakt manifoldunun bir M hiperyüzeyi üzerinde

Cα(X) = α(JX), X ∈ Γ(TM) (3.1.5)

şeklinde bir Cα 1-formu tanımlayalım. Bu durumda (3.1.4) den

Cα = i∗η (3.1.6)

yazılabilir. Böylece M hiperyüzeyi α = 0 iken ϕ altında invaryant kalır.

Şimdi M hemen hemen parakontakt manifoldu üzerinde bir ∇ simetrik afin

konneksiyonu gözönüne alalım. Bu durumda ∀X, Y ∈ Γ(TM) için

∇i∗Xi∗Y = i∗∇XY + h(X, Y )ξ (3.1.7)

olacak şekildeM üzerinde ξ afin normaline göre bir∇ afin konneksiyonu tanımlanabi-

lir. Burada h, M üzerinde (0,2)-tipinde simetrik bir tensör alanıdır ve M nin ξ ye

göre ikinci temel formu olarak adlandırılır.

M hemen hemen parakontakt manifoldu üzerindeki (ϕ, ξ, η) hemen hemen parakon-

takt yapısı normal olsun. Bu durumda ∀X, Y ∈ Γ(TM) için

S
(
X, Y

)
= [ϕX,ϕY ]− ϕ

[
ϕX, Y

]
− ϕ

[
X,ϕY

]
+ϕ2

[
X, Y

]
+ dη

(
X, Y

)
ξ (3.1.8)

ile tanımlanan M nin (1,2)-tipindeki S torsiyon alanı sıfırdır. (3.1.8) eşitliğinde

Y = ξ alınırsa

Lξϕ = 0 ve Lξη = 0 (3.1.9)

elde edilir. Burada Lξ, ξ karakteristik vektör alanına göre Lie türev operatörüdür.

(3.1.8) eşitliğinden

S
(
X, Y

)
= ∇ϕX

(
ϕY
)
−∇ϕY

(
ϕX
)
− ϕ

(
∇ϕXY −∇Y

(
ϕX
))

−ϕ
(
∇XϕY −∇ϕYX

)
+ ϕ2

(
∇XY −∇YX

)
+
(
∇Xη(Y )−∇Y η(X)− η

([
X, Y

]))
ξ (3.1.10)

veya

S
(
X, Y

)
=

(
∇ϕXϕ

)
Y −

(
∇ϕY ϕ

)
X + ϕ

(
∇Y ϕ

)
X − ϕ

(
∇Xϕ

)
Y

+
[(
∇Xη

)
Y −

(
∇Y η

)
X
]
ξ (3.1.11)
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yazılabilir. X,Y ∈ Γ(TM) olmak üzere (3.1.11) eşitliğinde X = i∗X ve Y = i∗Y

alalım. Buradan (3.1.1) ve (3.1.7) kullanılarak

S(i∗X, i∗Y ) = (∇i∗JX+α(X)ξϕ)i∗Y − (∇i∗JY +α(Y )ξϕ)i∗X

+ϕ(∇i∗Y ϕ)i∗X − ϕ(∇i∗Xϕ)i∗Y + ((∇i∗Xη)i∗Y − (∇i∗Y η)i∗X)ξ

= (∇i∗JXϕ+ α(X)∇ξϕ)i∗Y − (∇i∗JY ϕ+ α(Y )∇ξϕ)i∗X

+ϕ(∇i∗Y ϕ)i∗X − ϕ(∇i∗Xϕ)i∗Y + ((∇i∗Xη)i∗Y − (∇i∗Y η)i∗X)ξ

= ∇i∗JXϕ(i∗Y )− ϕ(∇i∗JXi∗Y ) + α(X)∇ξϕ(i∗Y )− α(X)ϕ(∇ξi∗Y )

−∇i∗JY ϕ(i∗X) + ϕ(∇i∗JY i∗X)− α(Y )∇ξϕ(i∗X) + α(Y )ϕ(∇ξi∗X)

+ϕ(∇i∗Y ϕ(i∗X)− ϕ(∇i∗Y i∗X)−∇i∗Xϕ(i∗Y ) + ϕ(∇i∗Xi∗Y ))

+[∇i∗Xη(i∗Y )− η(∇i∗Xi∗Y )−∇i∗Y η(i∗X) + η(∇i∗Y i∗X)]ξ

= ∇i∗JX(i∗JY + α(Y )ξ)− ϕ(i∗∇JXY + h(JX, Y )ξ)

−∇i∗JY (i∗JX + α(X)ξ) + ϕ(i∗∇JYX + h(JY,X)ξ)

+α(X)(∇ξϕ)i∗Y − α(Y )(∇ξϕ)i∗X

+ϕ[∇i∗Y (i∗JX + α(X)ξ)− ϕ(i∗∇XY + h(X, Y )ξ)]

−ϕ[∇i∗X(i∗JY + α(Y )ξ)− ϕ(i∗∇YX + h(Y,X)ξ)]

+[∇i∗X((α ◦ J)Y )− η(i∗∇XY + h(X, Y )ξ)]ξ

−[∇i∗Y ((α ◦ J)X)− η(i∗∇YX + h(Y,X)ξ)]ξ

elde edilir. Buradan

S(i∗X, i∗Y ) = i∗∇JXJY +∇JX(α(Y ))ξ + α(Y )∇ϕi∗X−α(X)ξξ

−i∗J∇JXY − α(∇JXY )ξ + α(X)(∇ξϕ)i∗Y

−i∗∇JY JX −∇JY (α(X))ξ − α(X)∇ϕi∗Y−α(Y )ξξ

+i∗J∇JYX + α(∇JYX)ξ − α(Y )(∇ξϕ)i∗X

+i∗J(∇Y JX) + α(∇Y JX)ξ + α(X)ϕ(∇i∗Y ξ)− i∗∇XY

−i∗J(∇XJY )− α(∇XJY )ξ − α(Y )ϕ(∇i∗Xξ) + i∗∇YX

+[∇X((α ◦ J)Y )−∇Y ((α ◦ J)X)]ξ

−2[η(i∗∇XY )− η(i∗∇YX)]ξ.
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bulunur. Bu son eşitliği yeniden düzenlersek

S(i∗X, i∗Y ) = i∗{∇JXJY −∇JY JX − J(∇JXY −∇Y JX)

−J(∇XJY −∇JYX)− (∇YX −∇XY )}

+(∇ξϕ+ ϕ∇ξ − (∇ξ)ϕ)(α(X)i∗Y − α(Y )i∗X)

+{∇JX(α(Y ))−∇JY (α(X))− α(∇JXY ) + α(∇JYX)

−α(∇XJY ) + α(∇Y JX) +∇X((α ◦ j)Y )−∇Y ((α ◦ j)X)}ξ

−2[η(i∗(∇XY −∇YX)]ξ

= i∗{[JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]}

+Lξϕ{α(X)i∗Y − α(Y )i∗X}

+{(∇JXα)Y − (∇JY α)X + (∇Xα)(JY )− (∇Y α)(JX)}ξ

−2[η(i∗(∇XY −∇YX)]ξ

= i∗[J, J ](X, Y ) + Lξϕ{α(X)i∗Y − α(Y )i∗X}

+{dα(JX, Y ) + dα(X, JY )− 2i∗η([X, Y ])}ξ (3.1.12)

olur.

Teorem 3.1.2. (M,ϕ, ξ, η) bir normal hemen hemen parakontakt manifold ve M de

M nin ξ /∈ Γ(TM) olacak şekilde bir non-invaryant hiperyüzeyi olsun. Bu durumda

M hiperyüzeyi diferensiyeli

dα(JX, Y ) + dα(X, JY ) = 2Cα ([X, Y ]) , ∀X, Y ∈ Γ(TM) (3.1.13)

şartını sağlayan bir α = C−1i∗η 1-formuna sahip lokal çarpım manifoldudur.

İspat. M hemen hemen parakontakt manifoldu üzerindeki (ϕ, ξ, η) hemen hemen

parakontakt yapısı normal olsun. Bu durumda M nin (1,2)-tipindeki S torsiyon

alanı sıfır olacağından (3.1.9) ve (3.1.12) eşitliğinden

0 = i∗[J, J ](X, Y ) + {dα(JX, Y ) + dα(X, JY )− 2i∗η([X, Y ])}ξ (3.1.14)

olur. Bu son eşitliğin teğet ve normal kısımları göz önüne alınırsa

dα(JX, Y ) + dα(X, JY ) = 2i∗η([X, Y ]) = 2Cα ([X,Y ]) , ∀X, Y ∈ Γ(TM)

olduğu görülür. Böylece ispat tamamlanır.
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Sonuç 3.1.1. (M,ϕ, ξ, η) bir normal hemen hemen parakontakt manifold ve M de

M nin ξ /∈ Γ(TM) olacak şekilde bir invaryant hiperyüzeyi olsun. Bu durumda M

nin hemen hemen çarpım yapısı J integrallenebilirdir.

İspat. M hemen hemen parakontakt manifoldu üzerindeki (ϕ, ξ, η) hemen hemen

parakontakt yapısı normal ve M de M nin ξ /∈ Γ(TM) olacak şekilde bir invaryant

hiperyüzeyi ise α = 0 olacağından (3.1.14) den ∀X, Y ∈ Γ(TM) için

0 = i∗[J, J ](X, Y )

elde edilir. Öyleyse J hemen hemen çarpım yapısının Nijenhuis tensör alanı [J, J ] =

0 yani J integrallenebilirdir. Böylece ispat tamamlanır.

Teorem 3.1.3. (M,ϕ, ξ, η) bir hemen hemen parakontakt manifold ve ξ, (ϕ, ξ, η)

hemen hemen parakontakt yapısının bir infinitesimal otomorfizmi olsun. Eğer M

nin her non-invaryant hiperyüzeyi için indirgenmiş hemen hemen çarpım yapısı

integrallenebilir ve (3.1.13) sağlanıyor ise M normaldir.

İspat. ξ, M üzerindeki (ϕ, ξ, η) hemen hemen parakontakt yapısının bir infinitesimal

otomorfizmi ise

Lξϕ = 0 (3.1.15)

dır. Diğer taraftanM nin herhangi birM non-invaryant hiperyüzeyi için indirgenmiş

hemen hemen çarpım yapısı integrallenebilir ise

[J, J ] = 0 (3.1.16)

olur. Böylece (3.1.15), (3.1.16) ve (3.1.13) den ispat tamamlanır.

3.2 Afin Kosimplektik ve Normal Hemen Hemen

Parakontakt Manifoldların İnvaryant ve

Non-İnvaryant Hiperyüzeyleri

Bu kısımda afin kosimplektik hemen hemen parakontakt manifoldlarn karakteristik

vektör alanı hiperyüzeye ait olmayacak şekildeki non-invaryant hiperyüzeylerinin
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total flat olduğu gösterilecektir. Ayrıca normal hemen hemen parakontakt manifoldla-

rın aynı tipteki hiperyüzeyleri için bazı karakterizasyonlar verilecektir.

M, (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip bir hemen hemen parakontakt

manifold ve ∇ de M nin simetrik afin konneksiyonu olsun. M nin ξ /∈ Γ(TM) olacak

şekildeki bir non-invaryant M hiperyüzeyi üzerindeki indirgenmiş konneksiyonu ∇

ile gösterelim. Eğer herhangi X, Y ∈ Γ(TM) vektör alanları için

(∇Xi∗)Y = ∇i∗Xi∗Y − i∗ (∇XY ) (3.2.1)

yazılırsa Gauss ve Weingarten formülleri sırasıyla

(∇Xi∗)Y = h(X, Y )ξ, h(X,Y ) = h(Y,X) (3.2.2)

ve

∇i∗Xξ = −i∗AX + w(X)ξ (3.2.3)

şeklinde ifade edilir. Burada w, M nin afin normal demeti üzerindeki konneksiyonu

veren 1-formdur. (3.1.1), (3.2.2) ve (3.2.3) eşitlikleri kullanılarak(
∇i∗Xϕ

)
i∗Y = ∇i∗Xϕi∗Y − ϕ

(
∇i∗Xi∗Y

)
= ∇i∗X (i∗JY + α(Y )ξ)− ϕ (i∗∇XY + h(X, Y )ξ)

= ∇i∗Xi∗JY + (i∗X) (α(Y )) ξ + α(Y )∇i∗Xξ

−i∗J (∇XY )− α (∇XY ) ξ

= i∗∇XJY + h(X, JY )ξ + (i∗X) (α(Y )) ξ

+α(Y ) (−i∗AX + w(X)ξ)− i∗J (∇XY )− α (∇XY ) ξ

= i∗ (∇XJY − J (∇XY )) + h(X, JY )ξ + (i∗X) (α(Y )) ξ

−α(Y ) (i∗AX) + α(Y )w(X)ξ − α (∇XY ) ξ

= i∗ ((∇XJ)Y − α(Y )AX) (3.2.4)

+ (h(X, JY ) + (∇Xα)Y + α(Y )w(X)) ξ

elde edilir. Böylece aşağıdaki iki durumu inceleyebiliriz:

I.Durum: M bir afin kosimplektik hemen hemen parakontakt manifold olsun.

Bu durumda

∇ϕ = 0 ve ∇η = 0 (3.2.5)
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olacağından (3.1.11) dan M üzerindeki (ϕ, ξ, η) hemen hemen parakontakt yapısının

normal olduğu kolaylıkla görülür. (1.3.1)-(1.3.2) den X ∈ Γ(TM) ve Y ∈ Γ(TM)

vektör alanları için (
∇i∗Xϕ

)
Y = ∇i∗XϕY − ϕ

(
∇i∗XY

)
dir. Bu son eşitlikte Y yerine ξ alınırsa ∇ϕ = 0 olduğundan

ϕ
(
∇i∗Xξ

)
= 0 (3.2.6)

bulunur. Diğer taraftan(
∇i∗Xη

)
Y = i∗X

(
η
(
Y
))
− η

(
∇i∗XY

)
ifadesinde Y yerine ξ alınırsa ∇η = 0 olduğundan

η
(
∇i∗Xξ

)
= 0 (3.2.7)

elde edilir. (3.2.6) eşitliğinin her iki tarafına ϕ uygulanır ve (3.2.7) eşitliği göz önüne

alınırsa

0 = ∇i∗Xξ

olur. Böylece (3.2.3) Weingarten denkleminden

AX = 0 ve w(X) = 0 (3.2.8)

elde edilir. (3.2.8), (3.2.4) eşitliğinde yerine yazılırsa

∇J = 0, (3.2.9)

(∇Xα)Y = −h(X, JY ) (3.2.10)

bulunur.

II.Durum: M, ϕ = ∇ξ şartını sağlayan bir normal hemen hemen parakontakt

manifold olsun. Bu durumda (3.1.1) ve (3.2.3) den her X ∈ Γ(TM) için

ϕi∗X = ∇i∗Xξ

i∗JX + α(X)ξ = −i∗AX + w(X)ξ (3.2.11)

elde edilir. (3.2.11) eşitliğinin teğet ve normal kısımları eşitlenirse

JX = −AX ve α(X) = w(X)
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bulunur. Böylece

J = −A, (3.2.12)

α = w (3.2.13)

olur.

Eğer her X ∈ Γ(TM) için AX = 0 ise (3.2.3) den ∇i∗Xξ ile ξ karakteristik vektör

alanının lineer bağımlı olduğu görülür. Dolayısıyla afin normaller M hiperyüzeyi

boyunca paralel olur. Bu durumda M hiperyüzeyi total flat olarak adlandırılır.

Önerme 3.2.1. M, (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip bir afin kosimp-

lektik hemen hemen parakontakt manifold ve M, M nin ξ /∈ Γ(TM) olacak şekildeki

bir non-invaryant hiperyüzeyi olsun. Bu durumda M hiperyüzeyi total flattir ve

∇J = 0,

(∇Xα)Y = −h(X, JY ),

w = 0

dır.

Eğer M hiperyüzeyi invaryant ise α = 0 olacağından aşağıdaki sonuca ulaşılır:

Sonuç 3.2.1. M, (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip bir afin kosimp-

lektik hemen hemen parakontakt manifold ve M, M nin ξ /∈ Γ(TM) olacak şekildeki

bir invaryant hiperyüzeyi olsun. Bu durumda

∇J = 0,

h = 0,

w = 0

dır.

Önerme 3.2.2. M, ϕ = ∇ξ şartını sağlayan bir normal hemen hemen parakontakt

manifold ve M de M nin ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi

olsun. Bu durumda

J = −A, α = w

dır.
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3.3 Lorentzian Hemen Hemen Parakontakt Manifoldların

İnvaryant ve Non-İnvaryant Hiperyüzeyleri

Bu kısımda Lorentzian hemen hemen parakontakt manifoldların karakteristik vektör

alanı hiperyüzeye ait olmayacak şekildeki non-invaryant hiperyüzeylerinin hemen

hemen çarpım metrik manifoldu olduğu gösterilerek esas manifold ile hiperyüzeyin

temel 2-formları arasındaki ilişki incelenecektir. Ayrıca Lorentzian para-Sasakian

manifoldların aynı tipteki non-invaryant hiperyüzeyleri için bazı karakterizasyonlar

verilerek bu hiperyüzeylerin lokal çarpım yapısına sahip olması için gerek ve yeter

şartlar araştırılacaktır. Son olarak, Lorentzian hemen hemen parakontakt manifold -

ların karakteristik vektör alanını teğette kabul eden invaryant hiperyüzeylerinin

Lorentzian hemen hemen parakontakt manifoldlar olduğu ve Lorentzian para-Sasakian

manifoldların aynı tipteki invaryant hiperyüzeylerinin ise Lorentzian para-Sasakian

yapıya sahip olduğu gösterilecektir.

M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısına sahip bir Lorentzian

hemen hemen parakontakt manifold olsun. M, M nin bir hiperyüzeyi olmak üzere

M üzerine indirgenmiş metriği g ile gösterelim.

Önerme 3.3.1. (M,J, α, g), (M,ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt

manifoldunun ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi olsun. Bu

durumda (M,J, α, g) non-invaryant hiperyüzeyi üzerinde

G = g + α⊗ α (3.3.1)

olacak şekilde bir G hemen hemen çarpım metriği vardır.

İspat. (1.3.14) eşitliğinden her X, Y ∈ Γ(TM) için

g (ϕi∗X, i∗Y ) = g (i∗X,ϕi∗Y ) (3.3.2)

yazılabilir. (3.1.1), (3.3.2) da yerine yazılırsa

g (i∗JX + α(X)ξ, i∗Y ) = g (i∗X, i∗JY + α(Y )ξ)

g (i∗JX, i∗Y ) + α(X)g (ξ, i∗Y ) = g (i∗X, i∗JY ) + α(Y )g (i∗X, ξ)

g (i∗JX, i∗Y ) + α(X)η(i∗Y ) = g (i∗X, i∗JY ) + α(Y )η(i∗X) (3.3.3)
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elde edilir. g, M hiperyüzeyi üzerinde indirgenmiş metrik yani i∗g = g olduğundan

g(i∗X, i∗Y ) = g(X, Y ) (3.3.4)

dir. Böylece (3.1.6) ve (3.3.4) den

g (JX, Y ) + α(X)Cα(Y ) = g (X, JY ) + α(Y )Cα(X)

yani

(g + α⊗ α) (JX, Y ) = (g + α⊗ α) (X, JY )

olur. Eğer

G = g + α⊗ α

denilirse

G (JX, Y ) = G (X, JY ) , ∀X,Y ∈ Γ(TM)

elde edilir. Böylece ispat tamamlanır.

Sonuç 3.3.1. (M,ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt manifoldunun

ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi bir hemen hemen çarpım

metrik manifoldudur.

Şimdi (M,ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt manifoldunun temel

2-formu Φ ve M nin (M,J,G) hiperyüzeyinin

Ω(X,Y ) = G(JX, Y ), ∀X, Y ∈ Γ(TM) (3.3.5)

ile tanımlanan Ω temel 2-formu arasındaki ilişkiyi inceleyelim:

Lemma 3.3.1. (M,J, α,G), (M,ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt

manifoldunun ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi olsun. Φ

ve Ω sırasıyla M ve M nin temel 2-formları olmak üzere

i∗Φ = Ω− Cα ∧ α (3.3.6)

dır.
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İspat. M ve M nin temel 2-formları sırasıyla Φ ve Ω olsun. (3.1.1), (3.1.6) ve (3.3.1)

kullanılarak her X,Y ∈ Γ(TM) için

i∗Φ(X, Y ) = Φ (i∗X, i∗Y )

= g (ϕi∗X, i∗Y )

= g (i∗JX + α(X)ξ, i∗Y )

= g (i∗JX, i∗Y ) + α(X)g (ξ, i∗Y )

= g (JX, Y ) + α(X)η (i∗Y )

= G (JX, Y )− α(JX)α(Y ) + α(X)α(JY )

= G (JX, Y )− Cα(X)α(Y ) + α(X)Cα(Y )

= Ω(X, Y )− (Cα ∧ α) (X, Y )

elde edilir. Böylece ispat tamamlanır.

Teorem 3.3.1. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ve (M,J, α,G)

de M nin ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi olsun. Bu

durumda

J = −A (3.3.7)

α = w (3.3.8)

dır.

İspat. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold olduğundan ∀X ∈ Γ(TM)

için

∇i∗Xξ = ϕi∗X

dir. Bu durumda (3.1.1) ve (3.2.3) den

−i∗AX + w(X)ξ = i∗JX + α(X)ξ

olur. Son eşitlikte teğet ve normal kısımlar göz önüne alınırsa

J = −A ve α = w

elde edilir. Böylece ispat tamamlanır.
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Teorem 3.3.2. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ve (M,J, α,G)

de M nin ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi olsun. Bu

durumda ∀X, Y ∈ Γ(TM) için

(a) (∇XJ)Y = α(Y )JX − Cα(Y )X,

(b) g (i∗X, i∗Y ) + 2Cα(X)Cα(Y ) = h(X, JY ) + (∇Xα)Y + α(X)α(Y )

dir.

İspat. (M,J, α,G), (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun ξ /∈ Γ(TM)

olacak şekildeki bir non-invaryant hiperyüzeyi olduğundan (3.2.4) eşitliğinde (3.3.7)

ve (3.3.8) yerine yazılırsa

(
∇i∗Xϕ

)
i∗Y = [i∗(∇XJ)Y + α(Y )i∗JX]

+ [h(X, JY ) + (∇Xα)Y + α(X)α(Y )] ξ (3.3.9)

elde edilir. Diğer taraftan (1.3.19) den

(
∇i∗Xϕ

)
i∗Y = g (i∗X, i∗Y ) ξ + η (i∗Y ) i∗X + 2η (i∗X) η (i∗Y ) ξ (3.3.10)

yazılabilir. Böylece (3.1.6) göz önüne alınarak (3.3.9) ve (3.3.10) eşitliklerinden

i∗ [(∇XJ)Y + α(Y )JX] = i∗ [Cα(Y )X]

ve

h(X, JY ) + (∇Xα)Y + α(X)α(Y ) = g (i∗X, i∗Y ) + 2Cα(X)Cα(Y )

elde edilir ki bu da ispatı tamamlar.

Teorem 3.3.2 den aşağıdaki sonuca ulaşılır:

Sonuç 3.3.2. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ve (M,J, α,G)

de M nin ξ /∈ Γ(TM) olacak şekildeki bir non-invaryant hiperyüzeyi olsun. Bu

durumda M nin bir lokal çarpım manifoldu olması için gerek ve yeter şart ∀X, Y ∈

Γ(TM) için

α(Y )JX = Cα(Y )X (3.3.11)

olmasıdır.
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Şimdi (M,ϕ, ξ, η) bir hemen hemen parakontakt manifold ve M de M nin ξ ∈

Γ(TM) olacak şekildeki bir invaryant hiperyüzeyi olsun. Bu durumdaM hiperyüzeyi

üzerinde (1,1)-tipinde bir tensör alanı ψ olmak üzere herhangi birX ∈ Γ(TM) vektör

alanı için

ϕi∗X = i∗ψX (3.3.12)

yazılabilir. (3.3.12) eşitliğinin her iki tarafına ϕ uygulanırsa

i∗ψ
2X = ϕ2i∗X = i∗X + η(i∗X)ξ (3.3.13)

elde edilir. Eğer

ξ = i∗ξ
∗ (3.3.14)

ve

η(i∗X) = η∗(X) (3.3.15)

gösterimleri kullanılırsa (3.3.13) den

ψ2X = X + η∗(X)ξ∗ (3.3.16)

bulunur. Buna ek olarak

η∗(ψX) = η(i∗ψX) = η (ϕi∗X) = 0, (3.3.17)

η∗(ξ∗) = η(i∗ξ
∗) = η (ξ) = −1 (3.3.18)

dir. Ayrıca

i∗ψξ
∗ = ϕi∗ξ

∗ = ϕξ = 0

olduğundan

ψξ∗ = 0 (3.3.19)

olur. Böylece aşağıdaki teorem verilebilir:

Önerme 3.3.2. (M,ϕ, ξ, η) bir hemen hemen parakontakt manifold ve M de M

nin ξ ∈ Γ(TM) olacak şekildeki bir invaryant hiperyüzeyi olsun. Bu durumda M

hiperyüzeyi (ψ, ξ∗, η∗) hemen hemen parakontakt yapısına sahip bir hemen hemen

parakontakt manifolddur.
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Teorem 3.3.3. (M,ϕ, ξ, η) bir hemen hemen parakontakt manifold ve M de M nin

ξ ∈ Γ(TM) olacak şekildeki bir invaryant hiperyüzeyi olsun. Bu durumda M normal

ise M de normaldir.

İspat. (3.1.8) eşitliğinden (3.3.12), (3.3.14) ve (3.3.15) kullanılarak ∀X, Y ∈ Γ(TM)

için

S(i∗X, i∗Y ) = [ϕ, ϕ](i∗X, i∗Y ) + dη(i∗X, i∗Y )ξ

= [ϕi∗X,ϕi∗Y ]− ϕ[ϕi∗X, i∗Y ]− ϕ[i∗X,ϕi∗Y ]

+ϕ2[i∗X, i∗Y ] +
[
(∇i∗Xη)i∗Y − (∇i∗Y η)i∗X

]
ξ

= [i∗ψX, i∗ψY ]− ϕ [i∗ψX, i∗Y ]− ϕ[i∗X, i∗ψY ] + ϕ2[i∗X, i∗Y ]

+[(i∗X) (η(i∗Y ))− η(∇i∗Xi∗Y )− (i∗Y ) (η(i∗X)) + η(∇i∗Y i∗X)]ξ

= i∗[ψX,ψY ]− ϕi∗ [ψX, Y ]− ϕi∗ [X,ψY ] + ϕ2i∗[X, Y ]

+[(i∗X) (η(i∗Y ))− η(i∗∇XY + h(X, Y )ξ)]ξ

−[(i∗Y ) (η(i∗X))− η(i∗∇YX + h(Y,X)ξ)]ξ

yazılır. Buradan

S(i∗X, i∗Y ) = i∗[ψX,ψY ]− i∗ψ [ψX, Y ]− i∗ψ [X,ψY ] + i∗ψ
2[X,Y ]

+[(i∗X) (η∗(Y ))− (i∗Y ) (η∗(X))− η∗([X, Y ])]i∗ξ
∗

= i∗ {[ψ, ψ] (X, Y ) + dη∗(X, Y )ξ∗} (3.3.20)

elde edilir. M normal ise S = 0 olacağından

[ψ, ψ] (X, Y ) + dη∗(X, Y )ξ∗ = 0 (3.3.21)

olur ki bu da M nin normal olduğunu verir. Böylece ispat tamamlanmış olur.

Teorem 3.3.4. (M,ϕ, ξ, η, g) bir Lorentzian hemen hemen parakontakt manifold

ve M de M nin ξ ∈ Γ(TM) olacak şekildeki bir invaryant hiperyüzeyi olsun. Bu

durumda M bir Lorentzian hemen hemen parakontakt manifolddur.

İspat. Teorem 3.3.2 den (M,ϕ, ξ, η) hemen hemen parakontakt manifoldunun ξ ∈

Γ(TM) olacak şekildeki birM invaryant hiperyüzeyi (ψ, ξ∗, η∗) hemen hemen parakon-
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takt yapısına sahip bir hemen hemen parakontakt manifolddur. M hiperyüzeyi

üzerine indirgenmiş metrik g∗ = i∗g olsun. Bu durumda

g∗ (ξ∗, ξ∗) = g (i∗ξ
∗, i∗ξ

∗) = g (ξ, ξ) = −1

dir. Diğer taraftan ∀X,Y ∈ Γ(TM) için

g∗ (ψX,ψY ) = g (i∗ψX, i∗ψY ) = g (ϕi∗X,ϕi∗Y ) (3.3.22)

olur. M bir Lorentzian hemen hemen paracontakt manifold olduğundan (1.3.10)

eşitliği göz önüne alınarak (3.3.22) den

g∗ (ψX,ψY ) = g (i∗X, i∗Y ) + η (i∗X) η (i∗Y )

= g∗ (X, Y ) + η∗(X)η∗(Y ) (3.3.23)

elde edilir ki bu da ispatı tamamlar.

Teorem 3.3.5. (M,ϕ, ξ, η, g) bir Lorentzian para-Sasakian manifold ve M de M

nin ξ ∈ Γ(TM) olacak şekildeki bir invaryant hiperyüzeyi olsun. Bu durumda M bir

Lorentzian para-Sasakian manifolddur.

İspat. M bir Lorentzian para-Sasakian manifold olsun. Bu durumda ∇, M nin

Levi-Civita konneksiyonu olmak üzere ∀X ∈ Γ(TM) için

∇i∗Xξ = ϕi∗X

dir. (3.3.12) ve (3.3.14) den

∇i∗Xi∗ξ
∗ = i∗ψX (3.3.24)

olur. Böylece Gauss denklemi kullanılarak (3.3.24) eşitliği

i∗∇Xξ
∗ + h(X, ξ∗)N = i∗ψX (3.3.25)

şeklinde yazılabilir. ∇, M hiperyüzeyi üzerindeki indirgenmiş konneksiyon ve N de

M nin bir normal vektör alanıdır. (3.3.25) ün teğet ve normal kısımları eşitlenirse

∇Xξ
∗ = ψX, (3.3.26)

h(X, ξ∗) = 0 (3.3.27)
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elde edilir. Ayrıca M bir Lorentzian para-Sasakian manifold olduğundan (1.3.19)

den (
∇i∗Xϕ

)
i∗Y = g (i∗X, i∗Y ) ξ + η (i∗Y ) i∗X + 2η (i∗X) η (i∗Y ) ξ

= i∗g (X, Y ) i∗ξ
∗ + η∗(Y )i∗X + 2η∗(X)η∗(Y )i∗ξ

∗

= i∗ [g∗ (X, Y ) ξ∗ + η∗(Y )X + 2η∗(X)η∗(Y )ξ∗] (3.3.28)

dir. Diğer taraftan Gauss denklemi ve (3.3.12) dan(
∇i∗Xϕ

)
i∗Y = ∇i∗Xϕi∗Y − ϕ

(
∇i∗Xi∗Y

)
= ∇i∗Xi∗ψY − ϕ (i∗∇XY + h(X, Y )N)

= i∗∇XψY + h(X,ψY )N − i∗ψ∇XY − h(X,Y )ϕN

= i∗ (∇XψY − ψ∇XY ) + h(X,ψY )N − h(X, Y )ϕN (3.3.29)

bulunur. (3.3.28) ve (3.3.29) göz önüne alınırsa

(∇Xψ)Y = g∗ (X, Y ) ξ∗ + η∗(Y )X + 2η∗(X)η∗(Y )ξ∗ (3.3.30)

elde edilir. (3.3.26) ve (3.3.30) den M nin bir Lorentzian para-Sasakian manifold

olduğu görülür. Böylece ispat tamamlanır.

3.4 Örnekler

Bu kısımda önceki kısımlarda tanıtılan hiperyüzeyler için örnekler verilecektir.

Örnek 3.4.1. M, (x, y, z, t, s) koordinat sistemi ile verilen 5-boyutlu bir reel uzay

olsun. M üzerinde

η = ds− dx− dz , ξ = − ∂

∂s
,

ϕ

(
∂

∂x

)
= − ∂

∂x
− ∂

∂s
, ϕ

(
∂

∂y

)
= − ∂

∂y
,

ϕ

(
∂

∂z

)
= − ∂

∂z
− ∂

∂s
, ϕ

(
∂

∂t

)
= − ∂

∂t
, ϕ

(
∂

∂s

)
= 0 ,

olacak şekilde bir ϕ (1, 1)-tensör alanını, ξ vektör alanını ve η 1-formunu tanımlayalım.

Bu durumda

η(ξ) = (ds− dx− dz)

(
− ∂

∂s

)
= −1 (3.4.1)
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dir. Herhangi bir X = a1
∂
∂x

+ a2
∂
∂y

+ a3
∂
∂z

+ a4
∂
∂t

+ a5
∂
∂s
∈ Γ

(
TM

)
vektör alanı için

η(X) = (ds− dx− dz)
(
X
)

= a5 − a1 − a3

olduğundan

ϕ2(X) = ϕ(ϕ(X))

= ϕ

(
ϕ

(
a1

∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z
+ a4

∂

∂t
+ a5

∂

∂s

))
= ϕ

(
a1

(
− ∂

∂x
− ∂

∂s

)
+ a2

(
− ∂

∂y

)
+ a3

(
− ∂

∂z
− ∂

∂s

)
+ a4

(
− ∂

∂t

))
= −a1

(
− ∂

∂x
− ∂

∂s

)
− a2

(
− ∂

∂y

)
− a3

(
− ∂

∂z
− ∂

∂s

)
− a4

(
− ∂

∂t

)
= a1

∂

∂x
+ a2

∂

∂y
+ a3

∂

∂z
+ a4

∂

∂t
+ (a1 + a3)

∂

∂s

= X + η(X)ξ (3.4.2)

elde edilir. Ayrıca

(η ◦ ϕ)
(
X
)

= η
(
ϕ(X)

)
= η

(
−a1

∂

∂x
− a2

∂

∂y
− a3

∂

∂z
− a4

∂

∂t
− (a1 + a3)

∂

∂s

)
= (ds− dx− dz)

(
−a1

∂

∂x
− a2

∂

∂y
− a3

∂

∂z
− a4

∂

∂t
− (a1 + a3)

∂

∂s

)
= −(a1 + a3) + a1 + a3

= 0 (3.4.3)

ve

ϕξ = ϕ

(
∂

∂s

)
= 0 (3.4.4)

dır. Böylece (3.4.1)-(3.4.4) den (ϕ, ξ, η) üçlüsü M üzerinde bir hemen hemen parakon-

takt yapı olur. (ϕ, ξ, η) hemen hemen parakontakt yapısına sahip M manifoldu da

bir hemen hemen parakontakt manifolddur. M nin s = x denklemi ile verilen M1

hiperyüzeyini ve i : M1 → M immersiyonunu göz önüne alalım. Bu durumda

u1 = (1, 0, 0, 0, 1), u2 = (0, 1, 0, 0, 0), u3 = (0, 0, 1, 0, 0), u4 = (0, 0, 0, 1, 0)

olmak üzere Γ (TM1) = Sp{u1, u2, u3, u4} dir. Buradan herhangi bir p ∈M1 noktası

için ξi(p) karakteristik vektör alanının M1 in teğet hiperdüzlemine ait olmadığı kolaylıkla
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görülür. fi ∈ C∞(M1, R), 1 ≤ i ≤ 4, fonksiyonları için bir X ∈ Γ (TM1) vektör

alanı

X ≡ i∗X = f1u1 + f2u2 + f3u3 + f4u4

şeklinde yazılabilir. Böylece

ϕi∗X = −f1u1 − f2u2 − f3u3 − f4u4 + f3ξ (3.4.5)

elde edilir. (3.4.5), M1 in M hemen hemen parakontakt manifoldunun ξ /∈ Γ (TM1)

olacak şekildeki bir non-invaryant hiperyüzeyi olduğunu gösterir.

Şimdi M nin x = y denklemi ile verilen M2 hiperyüzeyini ve i : M2 → M

immersiyonunu göz önüne alalım. Bu durumda

v1 = (1, 1, 0, 0, 0), v2 = (0, 0, 1, 0, 0), v3 = (0, 0, 0, 1, 0), v4 = (0, 0, 0, 0, 1)

olmak üzere Γ (TM2) = Sp{v1, v2, v3, v4} dir. v4 = −ξ olduğundan herhangi bir

p ∈ M1 noktası için ξi(p) karakteristik vektör alanı M2 nin teğet hiperdüzlemine

aittir. Buradan hi ∈ C∞(M2, R), 1 ≤ i ≤ 4, , fonksiyonları için bir Y ∈ Γ (TM2)

vektör alanı

Y ≡ i∗Y = h1v1 + h2v2 + h3v3 + h4v4

şeklinde yazılabilir. Böylece

ϕi∗Y = −h1v1 − h2v2 − h3v3 + (h1 + h2)ξ (3.4.6)

elde edilir. (3.4.6), M2 nin M hemen hemen parakontakt manifoldunun ξ ∈ Γ (TM1)

olacak şekildeki bir invaryant hiperyüzeyi olduğunu gösterir.

Örnek 3.4.2. (x, y, z, t, s) koordinat sistemi ile verilen 5-boyutlu bir M reel uzayı

üzerinde

η = ds− dx , ξ = − ∂

∂s
,

ϕ

(
∂

∂x

)
=

∂

∂x
+

∂

∂s
, ϕ

(
∂

∂y

)
=

∂

∂y
,

ϕ

(
∂

∂z

)
=

∂

∂z
, ϕ

(
∂

∂t

)
=

∂

∂t
, ϕ

(
∂

∂s

)
= 0 ,
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olacak şekilde bir ϕ (1, 1)-tensör alanını, ξ vektör alanını ve η 1-formunu tanımlayalım.

Bu durumda (ϕ, ξ, η) üçlüsünün M üzerinde bir hemen hemen parakontakt yapı

olduğu kolaylıkla görülebilir.

M nin s = x denklemi ile verilen M hiperyüzeyini ve i : M →M immersiyonunu

göz önüne alalım. Bu durumda

u1 = (1, 0, 0, 0, 1), u2 = (0, 1, 0, 0, 0), u3 = (0, 0, 1, 0, 0), u4 = (0, 0, 0, 1, 0)

olmak üzere Γ (TM) = Sp{u1, u2, u3, u4} dir. Herhangi bir p ∈ M noktası için ξi(p)

karakteristik vektör alanının M nin teğet hiperdüzlemine ait olmayacağı açıktır. Ek

olarak

ϕu1 = u1, ϕu2 = u2, ϕu3 = u3, ϕu4 = u4

olduğundan M , M hemen hemen parakontakt manifoldunun ξ /∈ Γ (TM) olacak

şekildeki bir invaryant hiperyüzeyidir.

Örnek 3.4.3. M, (x, y, z) koordinat sistemi ile verilen 3-boyutlu bir reel uzay olsun.

M üzerinde

η = dz , ξ = − ∂

∂z
,

ϕ

(
∂

∂x

)
= − ∂

∂x
, ϕ

(
∂

∂y

)
= − ∂

∂y
, ϕ

(
∂

∂z

)
= 0,

g = (dx)2 + (dy)2 − η ⊗ η

olsun. Bu durumda (ϕ, ξ, η, g) dörtlüsü ile birlikte M bir Lorentzian hemen hemen

parakontakt manifold olur. M nin x = arcsin y denklemi ile verilen M yüzeyini

ve i : M → M immersiyonunu göz önüne alalım. Bu durumda M yüzeyinin teğet

düzlemi

u1 = (1,
√

1− y2, 0), u2 = (0, 0, 1)

tarafından gerilir. ξ = − u2 olduğundan herhangi bir p ∈ M noktası için ξi(p)

karakteristik vektör alanı M nin teğet düzlemine aittir. M yüzeyininin normal vektör

alanı

N = (
√

1− y2,−1, 0)

dir. fi ∈ C∞(M1, R), 1 ≤ i ≤ 2, fonksiyonları için herhangi bir X ∈ Γ (TM) vektör

alanı

X ≡ i∗X = f1u1 + f2u2 ∈ Γ (TM)
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şeklinde yazılabilir.

ϕi∗X = −f1u1

olduğundan M , M Lorentzian hemen hemen parakontakt manifoldunun ξ ∈ Γ (TM)

olacak şekildeki bir invaryant yüzeyidir.

Örnek 3.4.4. M, (x, y, z) koordinat sistemi ile verilen 3-boyutlu bir reel uzay olsun.

M üzerinde

η = dz, ξ = − ∂

∂z
,

ϕ(
∂

∂x
) =

∂

∂x
, ϕ(

∂

∂y
) = − ∂

∂y
, ϕ(

∂

∂z
) = 0 ,

g = e−2z(dx)2 + e2z(dy)2 − (dz)2

tanımlayalım. Bu durumda (ϕ, ξ, η, g) dörtlüsü ile birlikte M bir Lorentzian para-Sasa-

kian manifold olur. M nin z = x+y denklemi ile verilen M1 yüzeyini ve i : M1 →M

immersiyonunu göz önüne alalım. Bu durumda

u1 = (1, 0, 1), u2 = (0, 1, 1),

olmak üzere Γ (TM1) = Sp{u1, u2} dir. M1 yüzeyininin normal vektör alanı

N = (e2(x+y), e2(x+y), 1)

dir. ξ karakteristik vektör alanı

ξ = − 1

e2(x+y) + e−2(x+y) − 1
((e2(x+y))u1 + (e−2(x+y))u2 −N)

olarak yazılabileceğinden herhangi bir p ∈ M1 noktası için ξi(p) /∈ Ti(p)M1 dir. M1

üzerindeki reel değerli diferensiyellenebilir f1, f2 fonksiyonları için bir X ∈ Γ (TM1)

vektör alanı X ≡ i∗X = f1u1 + f2u2 şeklinde ifade edilebilir. Böylece

ϕi∗X = f1u1 − f2u2 + (f1 − f2)ξ

elde edilir. Buradan

i∗JX = f1u1 − f2u2

ve

α(X) = f1 − f2
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bulunur. Burada J, M1 yüzeyi üzerinde bir hemen hemen çarpım yapısıdır. Böylece

M1, M Lorentzian para-Sasakian manifoldunun ξ /∈ Γ (TM1) olacak şekildeki bir

non-invaryant yüzeyidir.

Şimdi M nin x = arctan y denklemi ile verilen M2 yüzeyini ve i : M2 → M

immersiyonunu göz önüne alalım. Bu durumda{
v1 = (

1

1 + y2
, 1, 0), v2 = (0, 0, 1)

}
kümesi M2 yüzeyinin teğet düzlemi için bir lokal bazdır. Böylece ξ karakteristik

vektör alanının M2 nin teğet düzlemine ait olduğu açıktır. M2 nin normal vektör

alanı

N = (e2z,− 1

1 + y2
e−2z, 0)

dır. Herhangi bir i∗Y ≡ Y = γ1v1 + γ2v2 ∈ Γ (TM2) için

ϕi∗Y = −γ1(v1 −
2(1 + y2)

(1 + y2)2e2z − e−2z
N)

olduğundan M2, M Lorentzian hemen hemen parakontakt manifoldunun ξ ∈ Γ (TM2)

olacak şekildeki bir non-invaryant yüzeyidir.

3.5 Lorentzian Para-Sasakian Manifoldların Biharmonik

Hiperyüzeyleri

Bu kısımda Lorentzian para-Sasakian manifoldların spacelike ve timelike hiperyüzey-

lerinin biharmonik olması için gerek ve yeter şartlar araştırılacaktır. Sabit ortalama

eğrilikli Lorentz para-Sasakian manifoldların biharmonik spacelike hiperyüzeyleri ile

Lorentz para-Sasakian manifoldların total umbilik biharmonik spacelike hiperyüzey -

leri incelenecektir. Ayrıca özel olarak Lorentzian para-Sasakian manifoldların sırası

ile Ricci flat ve η-Einstein olması durumunda timelike hiperyüzeylerinin biharmonik-

liği ile ilgili bazı karakterizasyonlar verilecektir.

(M,φ, ξ, η, g), (m + 1)-boyutlu bir Lorentzian para-Sasakian manifold ve M ,

M nin bir hiperyüzeyi olsun. Bu durumda M hiperyüzeyinin birim normal vektör

alanı N olmak üzere (1.3.41) ve (1.3.42) Gauss-Weingarten formüllerinden ∀X, Y ∈
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Γ(TM) için

B(X, Y ) = εg(∇XY,N)N = −εg(Y,∇XN)N = εg(ANX, Y )N (3.5.1)

ve

g(ANX, Y ) = g(B(X, Y ), N) = g(b(X,Y )N,N) = εb(X, Y ), (3.5.2)

yazılabilir. Burada ε = g(N,N) dir.

3.5.1 Lorentzian para-Sasakian manifoldların biharmonik

spacelike hiperyüzeyleri

Teorem 3.5.1. (M,ϕ, ξ, η, g), (m+ 1)-boyutlu bir Lorentzian para-Sasakian manifold;

M , M nin bir hiperyüzeyi ve Ψ : M → M bir izometrik immersiyon olsun. ξ

karakteristik vektör alanı M hiperyüzeyinin birim normal vektör alanı olmak üzere

M spacelike hiperyüzeyinin biharmonik olması için gerek ve yeter şart

∆H − 2mH = 0,

2A(gradH)− m
2

(gradH2) = 0
(3.5.3)

olmasıdır. Burada A, M hiperyüzeyinin birim normal vetör alanı ξ ye göre Weingarten

temel tensörü (şekil operatörü) ve H, M hiperyüzeyinin ortalama eğrilik vektörü

µ = Hξ olacak şekildeki ortalama eğrilik fonksiyonudur.

İspat. M , (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun ξ ∈ Γ
(
T⊥M

)
olacak şekildeki bir hiperyüzeyi ve Ψ : M →M bir izometrik immersiyon olsun.

{dΨ(e1), ..., dΨ(em), ξ}

M nin bir lokal ortonormal çatısı olmak üzere M hiperyüzeyinin bir {e1, ..., em} lokal

ortonormal çatısını göz önüne alalım. Pull-back konneksiyon tanımını kullanarak

∀X ∈ Γ (TM) , W ∈ Γ (Ψ−1TM) için dΨ(X) ile X vektör alanını ve ∇Ψ
XW ile ∇XW

yı özdeş kılabiliriz. M hiperyüzeyinin ortalama eğrilik vektörü µ = Hξ olmak üzere
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Ψ izometrik immersiyonunun tensiyon alanı

τ(ψ) =
m∑

i=1

∇dΨ (ei, ei)

=
m∑

i=1

B (ei, ei)

= (boyM)µ

= mHξ (3.5.4)

şeklindedir. Buradan (3.5.4) kullanılarak Ψ nin bitensiyon alanı

τ2(Ψ) =
m∑

i=1

{∇Ψ
ei
∇Ψ

ei
τ(Ψ)−∇Ψ

∇eiei
τ(Ψ)−R(dΨ(ei), τ(Ψ))dΨ(ei)}

=
m∑

i=1

{∇Ψ
ei
∇Ψ

ei
(mHξ)−∇Ψ

∇eiei
(mHξ)−R(dΨ(ei),mHξ)dΨ(ei)}

=
m∑

i=1

{∇ei
∇ei

(mHξ)−∇∇eiei
(mHξ)−R(dΨ(ei),mHξ)dΨ(ei)}

= m
m∑

i=1

{∇ei

(
ei(H)ξ +H∇ei

ξ
)
− (∇ei

ei) (H)ξ −H∇∇eiei
ξ

−HR(dΨ(ei), ξ)dΨ(ei)}

= m
m∑

i=1

{eiei(H)ξ + 2ei(H)∇ei
ξ +H∇ei

∇ei
ξ

− (∇ei
ei) (H)ξ −H∇∇eiei

ξ −HR(dΨ(ei), ξ)dΨ(ei)}

= −m(∆H)ξ −mH∆Ψξ − 2mA(gradH)

+mH
n∑

i=1

R(ξ, dΨ(ei))dΨ(ei). (3.5.5)

bulunur. M bir Lorentzian para-Sasakian manifold olduğundan (1.3.27) dan

R(ξ, dΨ(ei))dΨ(ei) = mξ (3.5.6)

olur. (3.5.6), (3.5.5) de yerine yazılırsa

τ2(Ψ) = −m(∆H)ξ −mH∆Ψξ − 2mA(gradH) +m2Hξ (3.5.7)

elde edilir. τ2(Ψ) yi teğet ve normal kısımlarına ayırmak için ∆Ψξ nin teğet ve

107



normal kısımlarını belirlemek yeterli olacaktır. (1.3.21) den

g(∆Ψξ, ξ) = −
m∑

i=1

g(∇ei
∇ei

ξ −∇∇eiei
ξ, ξ)

= −
m∑

i=1

g(∇ei
∇ei

ξ, ξ)

=
m∑

i=1

g(∇ei
ξ,∇ei

ξ),

=
m∑

i=1

g(φei, φei). (3.5.8)

bulunur. Bu son eşitlikte (1.3.10) göz önüne alınarak ∆Ψξ nin normal kısmı(
∆Ψξ

)⊥
= −g(∆Ψξ, ξ)ξ

= −
m∑

i=1

g(∇ei
ξ,∇ei

ξ)ξ

= −mξ. (3.5.9)

olur. ∆Ψξ nin teğet kısmı ise(
∆Ψξ

)ᵀ
= −

m∑
i,k=1

g(∇ei
∇ei

ξ −∇∇eiei
ξ, ek)ek

=
m∑

i,k=1

g(∇ei
Aei − A(∇ei

ei), ek)ek

=
m∑

i,k=1

{eig(Aei, ek)− g(Aei,∇ei
ek)− g(A(∇ei

ei), ek)}ek

=
m∑

i,k=1

{−eib(ei, ek) + b(ei,∇ei
ek) + b(∇ei

ei, ek)}ek

= −
m∑

i,k=1

{∇ei
b(ek, ei)}ek. (3.5.10)

dır. Diğer taraftan Codazzi-Mainardi denkleminden

∇ei
b(ek, ei)−∇ek

b(ei, ei) =
(
R(ei, ek)ei

)⊥
= −g(R(ei, ek)ei, ξ)

= S(ξ, ek). (3.5.11)

yazılabilir. S(ξ, ek) = 0 olduğundan (3.5.11) eşitliği

∇ei
b(ek, ei) = ∇ek

b(ei, ei) (3.5.12)
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olduğunu gösterir. Eğer (3.5.12) eşitliği (3.5.10) da yerine yazılırsa(
∆Ψξ

)ᵀ
= −mgradH (3.5.13)

bulunur. Buradan (3.5.9) ve (3.5.13) eşitlikleri göz önüne alınarak τ2(Ψ) nin teğet

ve normal kısımları

(τ2(ψ))ᵀ = −2A(gradH) +
m

2
(gradH2),

(τ2(ψ))⊥ = −m(∆H) + 2m2H.

elde edilir. Böylece ispat tamamlanır.

Teorem 3.5.1 den aşağıdaki sonuçlar verilebilir.

Sonuç 3.5.1. Sabit ortalama eğrilikli bir Lorentzian para-Sasakian manifoldun bir

spacelike hiperyüzeyinin biharmonik olması için gerek ve yeter şart minimal olmasıdır.

İspat. M , (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun sabit ortalama

eğrilikli bir spacelike hiperyüzeyi olsun. Bu durumda H sabittir. Öyleyse (3.5.3)

dan M nin bir biharmonik spacelike hiperyüzey olması için gerek ve yeter şart H = 0

olmasıdır. Böylece ispat tamamlanır.

Örnek 3.5.1. (x, y, z) koordinat sistemi ile verilen 3-boyutlu M = R3 reel uzayı

üzerinde

η = dz , ξ = − ∂

∂z
,

φ

(
∂

∂x

)
=

∂

∂x
, φ

(
∂

∂y

)
= − ∂

∂y
, φ

(
∂

∂z

)
= 0 , (3.5.14)

g = e−2z (dx)2 + e2z (dy)2 − (dz)2 .

olacak şekilde bir φ (1, 1)-tensör alanını, ξ vektör alanını, η 1-formunu ve g Lorentzian

metriğini tanımlayalım. Bu durumda M , (φ, ξ, η, g) Lorentzian para-Sasakian yapsna

sahip bir Lorentzian para-Sasakian manifold olur.

Şimdi c > 0 bir sabit sayı olmak üzere M nin z = c ile verilen yüzeyini gözönüne

alalım. Bu durumda Ψ : M →M izometrik immersiyonu

Ψ(x, y) = (x, y, c)
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ile tanımlanabilir. M üzerindeki g metriğinden M yüzeyi üzerine indirgenen metrik

g olmak üzere g nin bileşenleri

g11 = g(
∂

∂x
,
∂

∂x
) = g

(
dΨ

(
∂

∂x

)
, dΨ

(
∂

∂x

))
◦Ψ = e−2z,

g12 = g(
∂

∂x
,
∂

∂y
) = g

(
dΨ

(
∂

∂x

)
, dΨ

(
∂

∂y

))
◦Ψ = 0, (3.5.15)

g22 = g(
∂

∂y
,
∂

∂y
) = g

(
dΨ

(
∂

∂y

)
, dΨ

(
∂

∂y

))
◦Ψ = e2z.

dir. Ayrca

f1 = ez ∂

∂x
, f2 = e−z ∂

∂y
, f3 =

∂

∂z
(3.5.16)

olmak üzere {f1, f2, f3}, M nin bir ortonormal çatısını oluşturur. Burada ξ = −f3,

M nin birim normal vektör alanıdır. Böylece M , M Lorentzian para-Sasakian

manifoldunun bir spacelike hiperyüzeyi olur.

Diğer taraftan

[f1, f2] = 0, [f1, f3] = −ezf1, [f2, f3] = −e−zf2, (3.5.17)

ve M nin ∇ Levi-Civita konneksiyonunun bileşenleri

∇f1f1 = −f3, ∇f1f2 = 0, ∇f1f3 = −f1

∇f2f1 = 0, ∇f2f2 = f3, ∇f2f3 = −f2

∇f3f1 = 0, ∇f3f2 = 0, ∇f3f3 = 0.

(3.5.18)

olduğundan M yüzeyinin ikinci temel formunun bileşenleri

b(f1, f1) = −g(∇f1f1, ξ) = −1,

b(f1, f2) = −g(∇f1f2, ξ) = 0, (3.5.19)

b(f2, f2) = −g(∇f2f2, ξ) = 1.

bulunur. Buradan M nin ortalama eğriliğ H olmak üzere (3.5.19) dan

H =
1

2
[b(f1, f1) + b(f2, f2)] = 0,

elde edilir. Böylece, (φ, ξ, η, g) Lorentzian para-Sasakian yapıya sahip üst yarı uzay,

minimal dolayısıyla biharmonik olan z = c düzlemleri tarafından foliate edilir

(yapraklandırılır).
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Sonuç 3.5.2. Harmonik ortalama eğrilikli bir Lorentzian para-Sasakian manifoldun

bir spacelike hiperyüzeyinin biharmonik olması için gerek ve yeter şart minimal

olmasıdır.

İspat. M , (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun harmonik ortalama

eğrilikli bir spacelike hiperyüzeyi olsun. Bu durumda ∆H = 0 dır. Öyleyse (3.5.3)

dan M nin bir biharmonik spacelike hiperyüzey olması için gerek ve yeter şart H = 0

olmasıdır. Böylece ispat tamamlanır.

Sonuç 3.5.3. M , (m+1)-boyutlu (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldu-

nun ∆H = λH, λ ∈ R, şartını sağlayan bir spacelike hiperyüzeyi olsun. Bu durumda

M nin biharmonik olması için gerek ve yeter şart

A(gradH) =
m

4
(gradH2) (3.5.20)

olmasıdır.

İspat. M , (m + 1)-boyutlu (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun

∆H = λH, λ ∈ R, şartını sağlayan bir spacelike hiperyüzeyi olsun. Bu durumda

(3.5.3) dan ispat tamamlanır.

Teorem 3.5.2. M , (m+1)-boyutlu (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldu-

nun bir total umbilik biharmonik spacelike hiperyüzeyi olsun. Bu durumda M sabit

ortalama eğriliğine sahiptir.

İspat. M , (M,ϕ, ξ, η, g) Lorentzian para-Sasakian manifoldunun bir total umbilik

biharmonik hiperyüzeyi ve Ψ : M →M bir izometrik immersiyon olsun. M nin bir

lokal ortonormal çatısı {dΨ(e1), ..., dΨ(em), ξ} olmak üzere M hiperyüzeyinin bir

{e1, ..., em} lokal ortonormal çatısını göz önüne alalım. ∀X ∈ Γ (TM) için dΨ(X) ile

X vektör alanı özdeş olarak düşünülebilir. Böylece M nin bir {e1, e2, ..., em, ξ} lokal

ortonormal çatısı için λi, (1 ≤ i ≤ m), ei doğrultusundaki asli eğrilikler olmak üzere

Aei = λiei dir. M total umbilik olduğundan herhangi bir p ∈M noktasındaki bütün

asli eğrilikler aynı bir λ(p) sayısına eşittir. (3.5.1) eşitliğinde N yerine ξ karakteristik
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vektör alanı alınırsa

H = − 1

m

m∑
i=1

g(B(ei, ei), ξ)

= − 1

m

m∑
i=1

g(Aei, ei)

= − 1

m

m∑
i=1

g(λei, ei)

= −λ. (3.5.21)

Diğer taraftan (3.5.21) den

A(gradH) = −1

2
gradλ2. (3.5.22)

bulunur. Buradan (3.5.3), (3.5.21) and (3.5.22) eşitlikleri göz önüne alınarak

∆λ− 2mλ = 0,

(2 +m)gradλ2 = 0,

elde edilir. Böylece ispat tamamlanır.

3.5.2 Lorentzian para-Sasakian manifoldların biharmonik

timelike hiperyüzeyleri

(M,φ, ξ, η, g), (m+ 1)-boyutlu bir Lorentzian para-Sasakian manifold ve M, M nin

ξ ∈ Γ(TM) olacak şekildeki bir hiperyüzeyi olsun. Bu durumda M hiperyüzeyinin

birim normal vektör alanı N olmak üzere N spacelike olduğundan M , M nin bir

timelike hiperyüzeyi olur. Ψ : M →M izometrik immersiyonunun tensiyon alanı

τ(Ψ) = mµ,

dür. Burada µ ve H sırasıyla M hiperyüzeyinin ortalama eğrilik vektör alanı ve

ortalama eğrilik fonksiyonu olmak üzere µ = HN dir.

Teorem 3.5.3. (M,φ, ξ, η, g), (m+1)-boyutlu bir Lorentzian para-Sasakian manifold

ve M, M nin bir timelike hiperyüzeyi olsun. Bu durumda M nin biharmonik olması

için gerek ve yeter şart

m
2
(gradH2) + 2A(gradH)− 2H(Q(N))ᵀ = 0,

∆H +H |A|2 −H(S(N,N)) = 0
(3.5.23)
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olmasıdır. Burada S, M Lorentzian para-Sasakian manifoldunun Ricci eğriliği;

Q, M Lorentzian para-Sasakian manifoldunun ∀X, Y ∈ Γ(TM) için g(QX, Y ) =

S(X, Y ) ile tanımlanan Ricci operatörü ve A, M hiperyüzeyinin N birim normal

vektör alanına göre Weingarten temel tensörü (şekil operatörü) dür.

İspat. M, (m + 1)-boyutlu (M,φ, ξ, η, g) Lorentzian para-Sasakian manifoldunun

bir timelike hiperyüzeyi; N , M hiperyüzeyinin birim normal vektör alanı ve Ψ :

M → M bir izometrik immersiyon olsun. M nin bir {e1, e2, ..., em−1, em = ξ}

ortonormal bazını alalım. M hiperyüzeyinin ortalama eğrilik vektörü µ = HN

olmak üzere Ψ : M →M izometrik immersiyonunun tensiyon alanı

τ(Ψ) =
m∑

i=1

∇dΨ (ei, ei) =
m∑

i=1

B (ei, ei) = (boyM)µ = mHN (3.5.24)

dir. Bu durumda Ψ : M →M izometrik immersiyonunun bitensiyon alanı

τ2(Ψ) =
m∑

i=1

εi{∇Ψ
ei
∇Ψ

ei
τ(Ψ)−∇Ψ

∇eiei
τ(Ψ)−R(dΨ(ei), τ(Ψ))dΨ(ei)}

=
m∑

i=1

εi{∇Ψ
ei
∇Ψ

ei
(mHN)−∇Ψ

∇eiei
(mHN)−R(dΨ(ei),mHN)dΨ(ei)}

=
m∑

i=1

εi{∇ei
∇ei

(nHN)−∇∇eiei
(nHN)−R(dΨ(ei),mHN)dΨ(ei)}

= m
m∑

i=1

εi{∇ei

(
ei(H)N +H∇ei

N
)
− (∇ei

ei) (H)N −H∇∇eiei
N

−HR(dΨ(ei), N)dΨ(ei)}

=
m∑

i=1

εi{eiei(H)N + 2ei(H)∇ei
N +H∇ei

∇ei
N

− (∇ei
ei) (H)N −H∇∇eiei

N −HR(dΨ(ei), N)dΨ(ei)}

olur. Buradan

τ2(Ψ) = −m(∆H)N −mH∆ΨN − 2mA(gradH)

−mH

{
m−1∑
i=1

R(dΨ(ei), N)dΨ(ei)−R(dΨ(ξ), N)dΨ(ξ)

}
(3.5.25)

olur. Şimdi τ2(Ψ) nin teğet ve normal bileşenlerini bulmak için öncelikle (3.5.25)

deki ∆ΨN nin ve eğrilik tensör alanı R yi içeren son iki terimin teğet ve normal
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bileşenlerini belirleyelim:

(
∆ΨN

)ᵀ
= −

m∑
i,k=1

g(∇ei
∇ei

N −∇∇eiei
N, ek)ek

=
m∑

i,k=1

g(∇ei
Aei − A(∇ei

ei), ek)ek

=
m∑

i,k=1

{eig(Aei, ek)− g(Aei,∇ei
ek)− g(A(∇ei

ei), ek)}ek

=
m∑

i,k=1

{eib(ei, ek)− b(ei,∇ei
ek)− b(∇ei

ei, ek)}ek

=
m∑

i,k=1

{∇ei
b(ek, ei)}ek, (3.5.26)

dir. Codazzi-Mainardi denkleminden

∇ei
b(ek, ei)−∇ek

b(ei, ei) =
(
R(ei, ek)ei

)⊥
= g(R(ei, ek)ei, N)

= −S(N, ek). (3.5.27)

yazılır. Buradan

∇ei
b(ek, ei) = ∇ek

b(ei, ei)− S(N, ek). (3.5.28)

elde edilir. (3.5.28), (3.5.26) da yerine yazılırsa ∆ΨN nin teğet bileşeni

(
∆ΨN

)ᵀ
=

m∑
i,k=1

{∇ek
b(ei, ei)− S(N, ek)}ek

= m(gradH)− (Q(N))ᵀ. (3.5.29)

bulunur. ∆ΨN nin normal bileşeni ise

(∆ΨN)⊥ = g(∆ΨN,N)

= −
m∑

i=1

{εig(∇ei
∇ei

N −∇∇eiei
N,N)}

=
m∑

i=1

{εig(∇ei
N,∇ei

N)}

= |A|2 , (3.5.30)

olur. Burada εi = g(ei, ei), 1 ≤ i ≤ m, dir.
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Diğer taraftan

−
m−1∑
k=1

S(N, ek)ek =
m−1∑
i,k=1

g(R(dΨ(ei), N)dΨ(ei), ek)ek

−
m−1∑
i=1

g(R(dΨ(ei), N)dΨ(ei), ξ)ξ

= (Q(N))ᵀ (3.5.31)

ve
m−1∑
i=1

g(R(dΨ(ei), N)dΨ(ei), N) = −S(N,N) + 1 (3.5.32)

olduğundan (3.5.25) de eğrilik tensör alanı R yi içeren dördüncü terimin teğet ve

normal bileşenleri sırasıyla (Q(N))ᵀ ve −S(N,N) + 1 dir. Ayrıca 1.3.28 dan

R(dΨ(ξ), N)dΨ(ξ) = N (3.5.33)

dir. Buradan (3.5.29)-(3.5.33) eşitlikleri göz önüne alınarak τ2(Ψ) nin teğet ve

normal bileşenleri sırasıyla

(τ2(Ψ))ᵀ = −m
[m

2
(gradH2) + 2A(gradH)− 2H(Q(N))ᵀ

]
,

(τ2(Ψ))⊥ = −m
[
(∆H) +H |A|2 −HS(N,N)

]
olur. Böylece ispat tamamlanır.

Teorem 3.5.3 den aşağıdaki sonuçlara ulaşılır.

Sonuç 3.5.4. (M,φ, ξ, η, g), (m+1)-boyutlu bir Lorentzian para-Sasakian manifold

ve M, M nin sabit ortalama eğrilikli bir timelike hiperyüzeyi olsun. Bu durumda M

nin biharmonik olması için gerek ve yeter şart ya minimal ya da

(Q(N))ᵀ = 0 ve S(N,N) = |A|2 (3.5.34)

olmasıdır. Özel olarak, M Lorentzian para-Sasakian manifoldu pozitif olmayan Ricci

eğriliğine sahip ise bu durumda M nin biharmonik olması için gerek ve yeter şart

minimal olmasıdır.
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İspat. M, M Lorentzian para-Sasakian manifoldunun sabit ortalama eğrilikli bir

timelike hiperyüzeyi olsun. Bu durumda (3.5.23) den M nin biharmonik olması için

gerek ve yeter şart

H(Q(N))ᵀ = 0 ve H
(
|A|2 − S(N,N)

)
= 0

olmasıdır. Böylece ya H = 0 ya da (Q(N))ᵀ = 0 ve |A|2 − S(N,N) = 0 olur ki bu

da ispatı tamamlar.

Örnek 3.5.2. (x, y, z) koordinat sistemi ile verilen 3-boyutlu M = R3 reel uzayını ve

M üzerinde Örnek 3.5.1 de tanımlanan Lorentzian para-Sasakian yapısını gözönüne

alalım. M de M nin

x = f(y)

ile verilen bir yüzeyi olsun. Bu durumda{
f1 =

(
f ′√

e−2z(f ′)2 + e2z
,

1√
4e−2z(f ′)2 + e2z

, 0

)
, f2 = (0, 0, 1)

}
(3.5.35)

olmak üzere {f1, f2} kümesi M yüzeyi için bir ortonormal baz sistemidir. M nin

birim normal vektör alanı ise

N =

(
e2z√

(f ′)2e−2z + e2z
,

−f ′e−2z√
(f ′)2e−2z + e2z

, 0

)
(3.5.36)

ile verilebilir. f2 = −ξ olduğundan M , M Lorentzian para-Sasakian manifoldunun

bir timelike yüzeyi olur.

Diğer taraftan ∇, M nin Levi-Civita konneksiyonu olmak üzere ∇ nin bileşenleri

∇ ∂
∂x

∂
∂x

= −e−2z ∂
∂z
, ∇ ∂

∂x

∂
∂y

= 0, ∇ ∂
∂x

∂
∂z

= − ∂
∂x
,

∇ ∂
∂y

∂
∂x

= 0, ∇ ∂
∂y

∂
∂y

= e2z ∂
∂z
, ∇ ∂

∂y

∂
∂z

= ∂
∂y
,

∇ ∂
∂z

∂
∂x

= − ∂
∂x
, ∇ ∂

∂z

∂
∂y

= ∂
∂y
, ∇ ∂

∂z

∂
∂z

= 0.

(3.5.37)
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bulunur. Buradan (3.5.37) kullanılarak

∇f1f1 = ∇(
f ′√

e−2z(f ′)2+e2z
∂

∂x
+ 1√

e−2z(f ′)2+e2z
∂

∂y

)
(

f ′√
e−2z(f ′)2 + e2z

∂

∂x

)

+∇(
f ′√

e−2z(f ′)2+e2z
∂

∂x
+ 1√

e−2z(f ′)2+e2z
∂

∂y

)
(

1√
e−2z(f ′)2 + e2z

∂

∂y

)

=
− (f ′)2 e−2z

(e−2z(f ′)2 + e2z)

∂

∂z
+

1√
e−2z(f ′)2 + e2z

∂

∂y
(

f ′√
e−2z(f ′)2 + e2z

)
∂

∂x

+
1√

e−2z(f ′)2 + e2z

∂

∂y
(

1√
e−2z(f ′)2 + e2z

)
∂

∂y

+
e2z

(e−2z(f ′)2 + e2z)

∂

∂z

=
f ′′e2z

(e−2z(f ′)2 + e2z)
3
2

∂

∂x
− f ′′f ′e−2z

(e−2z(f ′)2 + e2z)
3
2

∂

∂y
(3.5.38)

+
e2z − (f ′)2 e−2z

(e−2z(f ′)2 + e2z)

∂

∂z

ve

∇f2f2 = 0. (3.5.39)

elde edilir. Böylece N , M nin birim normal vektör alanı olduğundan M yüzeyinin

ikinci temel formunun bileşenleri

b(f1, f1) = g(∇f1f1, N) =
f ′′

(e−2z(f ′)2 + e2z)
, (3.5.40)

b(f2, f2) = g(∇f2f2, N) = 0. (3.5.41)

bulunur. (3.5.40) ve (3.5.41) den M nin ortalama eğriliği

H =
f ′′

2 (e−2z(f ′)2 + e2z)
(3.5.42)

olur. Böylece M nin minimal dolayısıyla biharmonik olması için gerek ve yeter şart

c, d sıfırdan farklı sabit sayılar olmak üzere

f(y) = cy + d,

olmasıdır.

Sonuç 3.5.5. Ricci flat bir Lorentzian para-Sasakian manifoldun sabit ortalama

eğrilikli bir timelike hiperyüzeyinin biharmonik olması için gerek ve yeter şart minimal

olmasıdır.
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İspat. M bir Ricci flat Lorentzian para-Sasakian manifold ve M , M nin sabit

ortalama eğrilikli bir timelike hiperyüzeyi olsun. Bu durumda (3.5.23) den M

nin biharmonik olması için gerek ve yeter şart H = 0 olmasıdır. Böylece ispat

tamamlanır.

Sonuç 3.5.6. (M,φ, ξ, η, g), (m+1)-boyutlu bir η-Einstein Lorentzian para-Sasakian

manifold ve M de M nin bir timelike hiperyüzeyi olsun. Bu durumda M nin

biharmonik olması için gerek ve yeter şart

m
2
(gradH2) + 2A(gradH) = 0,

(∆H) +H |A|2 −H( r
m
− 1) = 0,

(3.5.43)

olmasıdır. Burada r, M nin skaler eğriliğidir. Özel olarak, eğer 0 6= H =sabit ise

bu durumda M nin bir has (özgün) biharmonik hiperyüzey olması için gerek ve yeter

şart

|A|2 =
r

m
− 1 (3.5.44)

olmasıdır.

İspat. M (m+ 1)-boyutlu bir η-Einstein Lorentzian para-Sasakian manifold olsun.

Bu durumda (1.3.25) den

S(N,N) =
r

m
− 1. (3.5.45)

bulunur. Diğer taraftan (3.5.31) den

(Q(N))ᵀ = 0 (3.5.46)

dir. Buradan (3.5.45) and (3.5.46), (3.5.23) de yerine yazılarak (3.5.43) elde edilir.

Özel olarak eğer 0 6= H =sabit ise gradH = 0 ve ∆H = 0 olacağından ispat

tamamlanır.

Teorem 3.5.4. (M,φ, ξ, η, g) sabit kesit eğriliğine sahip (m+1)-boyutlu bir Lorentzian

para-Sasakian manifold ve M de M nin bir timelike hiperyüzeyi olsun. Bu durumda

M nin biharmonik olması için gerek ve yeter şart

m
2
(gradH2) + 2A(gradH) = 0,

(∆H) +H |A|2 −mH = 0
(3.5.47)
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olmasıdır. Özel olarak eğer M bir belirsiz uzay form ve M de M nin sabit ortalama

eğrilikli bir timelike hiperyüzeyi ise M nin bir has (özgün) biharmonik hiperyüzey

olası için gerek ve yeter şart

|A|2 = m (3.5.48)

olmasıdır.

İspat. M, sabit C kesit eğriliğine sahip (m+1)-boyutlu bir Lorentzian para-Sasakian

manifold olsun. Bu durumda ∀X, Y ∈ Γ(TM) için

S(X, Y ) = mg(X, Y )

dir. Buradan M , skaler eğriliği

r = m(m+ 1) (3.5.49)

olan bir η-Einstein manifold olur. Böylece Sonuç 3.5.6 den ispat tamamlanır.

Önerme 3.5.1. (M,φ, ξ, η, g), (m+1)-boyutlu (boy M > 2) bir η-Einstein Lorentzian

para-Sasakian manifold olsun. M nin total umbilik biharmonik timelike hiperyüzeyi

sabit ortalama eğriliklidir.

İspat. M bir η-Einstein Lorentzian para-Sasakian manifold; M, M nin bir total

umbilik biharmonik timelike hiperyüzeyi ve N de M nin birim normal vektör alanı

olsun. M total umbilik hiperyüzey olduğundan bir λ ∈ C∞(M,R) fonksiyonu için

A = λI dır. Bu durumda M nin bir ortonormal bazı {e1, e2, ..., em−1, em = ξ} olmak

üzere

H =
1

m

m−1∑
i=1

εig(B(ei, ei), N)

=
1

m

m−1∑
i=1

g(Aei, ei)

=
1

m

m−1∑
i=1

g(λei, ei)

=
m− 1

m
λ (3.5.50)

bulunur. Buradan

A(gradH) =
m− 1

2m
gradλ2. (3.5.51)
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olduğu görülür. Diğer taraftan

|A|2 = mλ2. (3.5.52)

dir. (3.5.50), (3.5.51) ve (3.5.52), (3.5.43) da yerine yazılırsa

(m2−1
2m

)gradλ2 = 0,

∆λ+mλ3 − ( r
m
− 1)λ = 0.

(3.5.53)

elde edilir. Buradan ya λ = 0 ve böylece H = 0, ya da λ = ± 1
m

√
r −m = sabit

olur. Böylece ispat tamamlanır.

Teorem 3.5.1 den r < m için aşağıdaki sonuç verilebilir:

Sonuç 3.5.7. (M,φ, ξ, η, g), (m+1)-boyutlu (boy M > 2) bir η-Einstein Lorentzian

para-Sasakian manifold ve r < m olsun. Bu durumda M nin bir total umbilik

timelike hiperyüzeyinin biharmonik olması için gerek ve yeter şart minimal olmasıdır.

Önerme 3.5.2. Ricci flat bir Lorentzian para-Sasakian manifoldun total umbilik bir

biharmonik timelike hiperyüzeyi minimaldir.

İspat. M , (m + 1)-boyutlu (boy M > 2) bir Ricci flat Lorentzian para-Sasakian

manifold ve M, M nin bir total umbilik biharmonik timelike hiperyüzeyi olsun.

(3.5.50), (3.5.51) ve (3.5.52), (3.5.23) de yerine yazılırsa

(m2−1
2m

)gradλ2 = 0,

(m− 1)( 1
m

∆λ+ λ3) = 0.
(3.5.54)

elde edilir. M biharmonik ve m > 1 olduğundan (3.5.54) denklem sisteminden

λ = 0, yani H = 0 bulunur. Böylece ispat tamamlanır.
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BÖLÜM 4

LORENTZIAN HEMEN HEMEN

PARAKONTAKT

MANİFOLDLARIN ALTMANİFOLDLARI

Bu bölüm dört kısımdan oluşmaktadır. İlk kısımda Lorentzian hemen hemen parakon-

takt manifoldların slant (eğik) altmanifoldları tanıtılarak örnekler verildi. İkinci

kısımda Lorentzian hemen hemen parakontakt manifoldların semi-slant altmanifoldla-

rı incelendi. Ayrıca bu kısımda özel olarak manifoldun Lorentzian parakosimplektik

ve Lorentzian para-Sasakian olması durumunda semi-slant altmanifoldların tanımında

yer alan distribüsyonların integrallenebilirlik şartları araştırıldı. Üçüncü kısım Lorentz-

ian parakosimplektik manifoldların warped (çapraşık) çarpım, semi-invaryant warped

çarpım, semi-slant warped çarpım ve anti-slant warped çarpım altmanifoldlarına

ayrıldı. Son kısımda ise Lorentzian para-Sasakian manifoldların biharmonik altmani -

foldları incelendi.

4.1 Lorentzian Hemen Hemen Parakontakt Manifoldların

Slant Altmanifoldları

Bu kısımda Lorentzian hemen hemen parakontakt manifoldların slant altmanifoldları

tanıtılarak bu manifoldların, sırasıyla karakteristik vektör alanını teğetinde ve norma -

linde kabul eden altmanifoldlarının slant olması için gerek ve yeter şartlar araştırılacak-

tır.

M, (ϕ, ξ, g) Lorentzian hemen hemen parakontakt yapısına sahip bir Lorentzian

almost parakontakt manifold ve i : M →M bir izometrik immersiyon olmak üzereM

de M nin bir altmanifoldu olsun. M Lorentzian almost parakontakt manifoldundan

M altmanifoldu üzerine indirgenmiş metriği de g ile gösterelim. Herhangi bir X ∈
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Γ (TM) için fX ve wX sırasıyla ϕX in teğet ve normal bileşleri olmak üzere

ϕX = fX + wX (4.1.1)

yazılabilir. Benzer şekilde herhangi bir N ∈ Γ
(
T⊥M

)
için

ϕN = BN + CN (4.1.2)

yazılabilir. BuradaBN ve CN sırasıyla ϕN in teğet ve normal bileşenlerini göstermek-

tedir.

Tanım 4.1.1.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Bu durumda eğer

i) w = 0 yani ϕX = fX ∈ Γ (TM), ∀X ∈ Γ (TM) , ise M ye M nin invaryant

altmanifoldu,

ii) f = 0 yani ϕX = wX ∈ Γ
(
T⊥M

)
, ∀X ∈ Γ (TM) , ise M ye M nin anti-invaryant

altmanifoldu

denir.

Tanım 4.1.2.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Bu durumda eğer M üzerinde

i) TM = D1 ⊕D2,

ii) D1 distribüsyonu invaryant, yani ϕD1 = D1,

iii) D2 distribüsyonu anti-invaryant, yani ϕD2 ⊂ T⊥M

olacak şekilde ortogonal D1 ve D2 distribüsyonları var ise M ye M nin semi-invaryant

altmanifoldu denir.

Lemma 4.1.1.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda ∀X,Y ∈ Γ (TM) için

g(fX, Y ) = g(X, fY ) (4.1.3)

dir.
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Şimdi
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M de

M nin ξ ∈ Γ(TM) olacak şekildeki bir altmanifoldu olsun. Bu durumda D, TM

tanjant demetinde ξ karakteristik vektör alanının gerdiği distribüsyona ortogonal

bir distribüsyon olmak üzere

TM = D ⊕ 〈ξ〉 (4.1.4)

yazılabilir.

Tanım 4.1.3.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin ξ ∈ Γ(TM) olacak şekildeki bir altmanifoldu olsun. Herhangi bir p ∈ M

noktasında ξp nin bir katı olmayan 0 6= X ∈ Γ(TM) için ϕX ile TpM tanjant

uzayı arasındaki θ(X) açısı sabit yani p ∈ M noktasının ve X ∈ Γ(TM) − Sp{ξp}

vektörünün seçilişinden bağımsız ise M ye M nin slant altmanifoldu denir. θ açısına

ise M slant altmanifoldunun slant açısı denir.

ϕξ = 0 olduğundan θ açısı aynı zamanda ϕX ile Dp arasındaki açıdır. İnvaryant

ve anti-invaryant altmanifoldlar sırasıyla θ = 0 ve θ = π
2

slant açısına sahip slant

altmanifoldlardır. İnvaryant ve anti-invaryant olmayan slant altmanifoldlara özgün

slant altmanifoldlar denir.

Örnek 4.1.1. (x1, x2, y1, y2, y3, y4, t) koordinat sistemi ile verilen 7-boyutlu bir M

reel uzayı üzerinde

η = dt , ξ = − ∂

∂t
,

ϕ

(
∂

∂xi

)
=

∂

∂xi

, (i = 1, 2)

ϕ

(
∂

∂yj

)
= − ∂

∂yj

, (j = 1, 2, 3, 4)

ϕ

(
∂

∂t

)
= 0,

g = (dxi)
2 + (dyj)

2 − η ⊗ η

olacak şekilde bir ϕ (1, 1)-tensör alanını, ξ vektör alanını, η 1-formunu ve g Lorentzian

metriğini tanımlayalım. Bu durumda i = 1, 2 ve j = 1, 2, 3, 4 olmak üzere

X = ai
∂

∂xi

+ bj
∂

∂yj

+ c
∂

∂t
∈ Γ(TM)

Y = di
∂

∂xi

+ ej
∂

∂yj

+ f
∂

∂t
∈ Γ(TM)
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için

η(ξ) = −1 = g(ξ, ξ),

η (X) = c = g(X, ξ),

ϕ2(X) = ϕ

(
ϕ

(
ai

∂

∂xi

+ bj
∂

∂yj

+ c
∂

∂t

))
= ϕ

(
ai

∂

∂xi

− bj
∂

∂yj

)
= ai

∂

∂xi

+ bj
∂

∂yj

+ c
∂

∂t
− c

∂

∂t

= X + η (X) ξ,

(η ◦ ϕ) (X) = 0,

dir. Diğer taraftan

g(ϕX,ϕY ) = g(ai
∂

∂xi

− bj
∂

∂yj

, di
∂

∂xi

− ej
∂

∂yj

)

= aidi + bjej

= g(X, Y ) + η (X) η (Y )

olduğundan (ϕ, ξ, η, g) dörtlüsü M üzerinde bir Lorentzian hemen hemen parakontakt

yapı olur. Böylece M, (ϕ, ξ, η, g) Lorentzian hemen hemen parakontakt yapısı ile

birlikte bir Lorentzian hemen hemen parakontakt manifolddur.

Şimdi M Lorentzian hemen hemen parakontakt manifoldunun u, v ∈
(
0, π

2

)
ve

0 6= k =sabit olmak üzere

Ω(u, v) = (u, v,−k sinu,−k sin v, k cosu, k cos v, u+ v)

dönüşümü ile verilen M altmanifoldunu gözönüne alalım. Bu durumda

X = Ωu(u, v) = (1, 0,−k cosu, 0,−k sinu, 0, 1)

Y = Ωv(u, v) = (0, 1, 0,−k cos v, 0,−k sin v, 1)

olmak üzere {X, Y } kümesi M altmanifoldunun tanjant demeti TM için bir ortogonal

bazdır. Diğer taraftan

ϕX = (1, 0, k cosu, 0, k sinu, 0, 0)

ϕY = (0, 1, 0, k cos v, 0, k sin v, 0)
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olduğundan M , M nin

θ = cos−1

(
1− k2√

(1 + k2) (2 + k2)

)
(4.1.5)

slant açısına sahip bir slant altmanifoldudur.

Şimdi, Lorentzian hemen hemen parakontakt manifoldların slant altmanifoldları

ile ilgili önemli bir karakterizasyonu vereceğiz:

Teorem 4.1.1.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda

i) eğer ξ ∈ Γ(TM) ise M nin bir slant altmanifold olması için gerek ve yeter şart

f 2 = λ(I + η ⊗ ξ) (4.1.6)

olacak şekilde bir λ ∈ [0, 1] sabit sayısının var olmasıdır.

ii) eğer ξ ∈ Γ(T⊥M) ise M nin bir slant altmanifold olması için gerek ve yeter şart

f 2 = λI (4.1.7)

olacak şekilde bir λ ∈ [0, 1] sabit sayısının var olmasıdır.

İspat. (i) M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun bir

altmanifoldu olsun. ξ ∈ Γ(TM) ve M nin bir slant altmanifold olduğunu kabul

edelim. θ, M nin slant açısı olmak üzere herhangi bir X ∈ Γ(TM) için

cos θ(X) =
‖fX‖
‖ϕX‖

(4.1.8)

yazılabilir. (4.1.3), (4.1.8), (1.3.14) ve (1.3.2) kullanılarak her X ∈ Γ(TM) için

g(f 2X,X) = g(fX, fX)

= cos2 θ(X)g(ϕX,ϕX)

= cos2 θ(X)g(ϕ2X,X)

= cos2 θ(X)g(X + η(X)ξ,X) (4.1.9)
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olur. Böylece

f 2X = cos2 θ(X)(X + η(X)ξ), X ∈ Γ(TM) (4.1.10)

elde edilir. (4.1.10) da λ = cos2 θ ∈ [0, 1] olarak alınırsa (4.1.6) eşitliğine ulaşılır.

Tersine λ ∈ [0, 1] bir sabit olmak üzere (4.1.6) eşitliğinin sağlandığını kabul

edelim. (4.1.1), (4.1.3), (4.1.6) ve (1.3.10) den her X ∈ Γ(TM) için

cos θ(X) =
g(ϕX, fX)

‖ϕX‖ ‖fX‖

=
g(X, f2X)

‖ϕX‖ ‖fX‖

=
λ g(X,X + η(X)ξ)

‖ϕX‖ ‖fX‖

=
λ (g(X,X) + η(X)η(X))

‖ϕX‖ ‖fX‖

=
λ g(ϕX,ϕX)

‖ϕX‖ ‖fX‖

dir. Buradan

cos θ(X) =
λ ‖ϕX‖
‖fX‖

(4.1.11)

bulunur. (4.1.8) ve (4.1.11) göz önüne alınırsa

cos2 θ(X) = λ (4.1.12)

elde edilir. Böylece θ(X) sabit ve dolayısıyla M bir slant altmanifold olur.

(ii) ξ ∈ Γ(T⊥M) olsun. Bu durumda η(X) = 0 olduğundan M bir slant

altmanifold ise (4.1.10) dan (4.1.7) elde edilir. Tersine (4.1.7) sağlanıyor ise (4.1.12)

denM nin bir slant altmanifold olacağı kolaylıkla görülür. Böylece ispat tamamlanır.

Sonuç 4.1.1.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin ξ ∈ Γ(TM) olacak şekildeki bir slant altmanifoldu olsun. Bu durumda θ,

M nin slant açısı olmak üzere her X,Y ∈ Γ(TM) için

g(fX, fY ) = cos2 θ{g(X, Y ) + η(X)η(Y )} (4.1.13)

g(wX,wY ) = sin2 θ{g(X, Y ) + η(X)η(Y )} (4.1.14)

dir.
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İspat. Teorem 4.1.1 ve (4.1.3) den

g(fX, fY ) = g(f 2X, Y )

= g(cos2 θ(X)(X + η(X)ξ), Y )

yazılabilir. Bu son eşitlikte (1.3.11) kullanılırsa (4.1.13) elde edilir.

Diğer taraftan (1.3.10), (4.1.1) ve (4.1.13) den

g(ϕX,ϕY ) = g(fX + wX, fX + wX)

g(X, Y ) + η(X)η(Y ) = g(fX, fX) + g(wX,wX)

g(X, Y ) + η(X)η(Y ) = cos2 θ{g(X, Y ) + η(X)η(Y )}+ g(wX,wX)

elde edilir ki bu da ispatı tamamlar.

M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun bir altmani-

foldu olsun. Bu durumda herhangi bir X ∈ Γ(TM) için (1.3.1), (1.3.2), (4.1.1) ve

(4.1.2) den

X + η(X)ξ = f 2X + wfX +BwX + CwX (4.1.15)

yazılır. Eğer ξ ∈ Γ(TM) ise (4.1.15) eşitliğinin teğet ve normal kısımları birbirine

eşitlenerek

I + η ⊗ ξ = f 2 +Bw (4.1.16)

wf + Cw = 0 (4.1.17)

elde edilir. Diğer taraftan eğer ξ ∈ Γ(T⊥M) ise η(X) = 0 olacağından yine (4.1.15)

eşitliğinin teğet ve normal kısımları birbirine eşitlenerek

I = f 2 +Bw (4.1.18)

wf + Cw = 0 (4.1.19)

bulunur. Böylece aşağıdaki sonucu verebiliriz.

Teorem 4.1.2.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda
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i) eğer ξ ∈ Γ(TM) ise M nin bir slant altmanifold olması için gerek ve yeter şart

Bw = µ(I + η ⊗ ξ) (4.1.20)

olacak şekilde bir µ ∈ [0, 1] sabit sayısının var olmasıdır.

ii) eğer ξ ∈ Γ(T⊥M) ise M nin bir slant altmanifold olması için gerek ve yeter şart

Bw = µI (4.1.21)

olacak şekilde bir µ ∈ [0, 1] sabit sayısının var olmasıdır.

İspat. M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun bir

altmanifoldu olsun. ξ ∈ Γ(TM) olduğunu kabul edelim. Teorem 4.1.1 (i) şıkkı

göz önüne alınarak (4.1.6) eşitliği (4.1.16) da yerine yazılırsa

Bw = (1− λ)(I + η ⊗ ξ)

elde edilir. λ = cos2 θ olduğundan µ = 1− λ olarak seçilir ise µ = sin2 θ ∈ [0, 1] olur

ve (4.1.20) eşitliğine ulaşılır.

Diğer taraftan ξ ∈ Γ(T⊥M) ise Teorem 4.1.1 (ii) ve (4.1.18) den

Bw = (1− λ)I

bulunur. µ = 1− λ olarak seçilir ise (4.1.21) elde edilir. Böylece ispat tamamlanır.

4.2 Lorentzian Hemen Hemen Parakontakt Manifoldların

Semi-Slant Altmanifoldları

Bu kısımda Lorentzian hemen hemen parakontakt manifoldların semi-slant altmani-

foldları tantılarak bu manifoldların altmanifoldlarının semi-slant olması için bazı

karakterizasyonlar verilecektir. Ayrıca esas manifoldun Lorentzian parakosimplektik

ve Lorentzian para-Sasakian manifold olması durumunda semi-slant altmanifold

tanımında yer alan distribüsyonların integrallenebilirliği incelenecektir.
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Tanım 4.2.1.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve D

de M üzerinde bir diferensiyellenebilir distribüsyon olsun. Eğer ∀p ∈ M noktası

ve 0 6= X ∈ Γ(Dp) vektörü için ϕX ile Dp arasındaki θp açısı sabit yani p ∈ M

noktasının ve X ∈ Γ(Dp) vektörünün seçilişinden bağımsız ise D ye M nin bir slant

distribüsyonu denir. θp açısına ise Dp slant distribüsyonunun slant açısı denir.

M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun bir altmani-

foldu veD,M üzerinde bir diferensiyellenebilir distribüsyon olsun. D distribüsyonuna

M üzerinde ortogonal olan distribüsyonu D⊥ ile gösterelim. P1 ve P2 sırasıyla D ve

D⊥ üzerindeki ortogonal projeksiyonlar olmak üzere ∀X ∈ Γ(TM) için

ϕX = P1fX + P2fX + wX (4.2.1)

yazılabilir. Böylece aşağıdaki teoremi verebiliriz.

Teorem 4.2.1. M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun

bir altmanifoldu ve D, M üzerinde ξ ∈ Γ(D) olacak şekilde bir diferensiyellenebilir

distribüsyon olsun. Bu durumda D nin bir slant distribüsyon olması için gerek ve

yeter şart

(P1f )2 = λ(I + η ⊗ ξ) (4.2.2)

olacak şekilde bir λ ∈ [0, 1] sabit sayısının var olmasıdır. Ayrıca, eğer θ açısı D

slant distribüsyonunun slant açısı ise λ = cos2 θ dır.

İspat. Kabul edelim kiD,M üzerinde ξ ∈ Γ(D) olacak şekilde bir slant distribüsyon

olsun. ∀X ∈ Γ(D) için (4.2.1) den

cos θ(X) =
g(ϕX,P1fX)

‖ϕX‖ ‖P1fX‖

=
‖P1fX‖
‖ϕX‖

bulunur. Buradan

‖P1fX‖ = cos θ(X) ‖ϕX‖ (4.2.3)
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yazılabilir. (4.2.1), (4.2.3) ve (1.3.1) kullanılarak

g(X, (P1f )2X) = g(P1fX, P1fX)

= cos2 θ(X) g(ϕX,ϕX)

= cos2 θ(X) g(X,ϕ2X)

= cos2 θ(X) g(X,X + η(X)ξ), ∀X ∈ Γ(D)

elde edilir. Böylece

(P1f )2X = cos2 θ(X) (X + η(X)ξ), ∀X ∈ Γ(D)

olur. λ = cos2 θ olarak seçilir ise (4.2.2) eşitliğine ulaşılır.

Tersine (4.2.2) eşitliği sağlanacak şekilde bir λ ∈ [0, 1] sabit sayısının var olduğunu

düşünelim. Bu durumda ϕ nin simetrik olduğu göz önüne alınarak herhangi bir

X ∈ Γ(D) için

cos θ(X) =
g(ϕX,P1fX)

‖ϕX‖ ‖P1fX‖

=
g(X,ϕP1fX)

‖ϕX‖ ‖P1fX‖

=
g(X, (P1f )2X)

‖ϕX‖ ‖P1fX‖

=
λ g(X,X + η(X)ξ)

‖ϕX‖ ‖P1fX‖

yazılabilir. Bu son eşitlikte (1.3.1) yerine yazılırsa

cos θ(X) =
λ ‖ϕX‖
‖P1fX‖

elde edilir. Diğer taraftan cos θ(X) = ‖P1fX‖
‖ϕX‖ olduğundan λ = cos2 θ bulunur. Bu

da θ nın sabit ve dolayısıyla D nin bir slant distribüsyon olduğunu gösterir. Böylece

ispat tamamlanır.

Sonuç 4.2.1. M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun

bir altmanifoldu ve D, M üzerinde ξ ∈ Γ(T⊥M) olacak şekilde bir diferensiyellenebilir

distribüsyon olsun. Bu durumda D nin bir slant distribüsyon olması için gerek ve

yeter şart

(P1f )2 = λ I (4.2.4)

130



olacak şekilde bir λ ∈ [0, 1] sabit sayısının var olmasıdır. Ayrıca, eğer θ açısı D

slant distribüsyonunun slant açısı ise λ = cos2 θ dır.

Teorem 4.2.2. M ,
(
M,ϕ, ξ, g

)
Lorentzian hemen hemen parakontakt manifoldunun

bir altmanifoldu ve D, M üzerinde bir diferensiyellenebilir distribüsyon olsun. Bu

durumda M nin bir slant altmanifold olması için gerek ve yeter şart D nin M ile

aynı slant açıya sahip bir slant distribüsyon olmasıdır.

İspat. Kabul edelim ki M , θ slant açısına sahip bir slant altmanifold olsun. ∀X ∈

Γ(D) için θ(X) = θD(X) olacağından D distribüsyonu M ile aynı slant açıya sahip

bir slant distribüsyondur.

Tersine D, M üzerinde bir slant distribüsyon olsun. Bu durumda herhangi bir

X ∈ Γ(TM)− Sp{ξ} için

cos θ(X) =
g(fX, ϕX)

‖fX‖ ‖ϕX‖

=
g(fX, fX)

‖fX‖ ‖ϕX‖

=
‖fX‖
‖ϕX‖

dir. Buradan ‖ϕX‖ =
√
‖X‖2 + (η(X))2 olduğundan

cos θ(X) =
‖fX‖√

‖X‖2 + (η(X))2

(4.2.5)

bulunur. Diğer taraftan P , ϕ nin D üzerindeki ortogonal projeksiyonunu göstermek

üzere X − η(X)ξ ∈ Γ(D) için

cos θD(X) =
g(Pf(X − η(X)ξ), ϕ(X − η(X)ξ))

‖Pf(X − η(X)ξ)‖ ‖ϕ(X − η(X)ξ)‖

=
g(Pf(X − η(X)ξ), Pf(X − η(X)ξ))

‖Pf(X − η(X)ξ)‖ ‖ϕ(X − η(X)ξ)‖

=
‖P (X − η(X)ξ)‖
‖ϕ(X − η(X)ξ)‖

(4.2.6)

dir. M Lorentzian hemen hemen parakontakt manifoldu üzerinde

P (X − η(X)ξ) = fX
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ve

‖ϕ(X − η(X)ξ)‖ =
√
g(ϕ(X − η(X)ξ), ϕ(X − η(X)ξ))

=
√
g(X − η(X)ξ, ϕ2(X − η(X)ξ))

=
√
g(X − η(X)ξ,X + η(X)ξ)

=

√
‖X‖2 + (η(X))2

olduğundan (4.2.5) ve (4.2.6) den

cos θD(X) = cos θ(X)

elde edilir. Böylece M bir slant altmanifold olur ve ispat tamamlanır.

Semi-invaryant altmanifoldların bir genelleştirmesi olarak bir Lorentzian hemen

hemen parakontakt manifoldun semi-slant altmanifoldları aşağıdaki gibi tanımlanabilir.

Tanım 4.2.2.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Eğer M üzerinde

i) TM = D1 ⊕D2 ⊕ Sp{ξ},

ii) D1 distribüsyonu invaryant, yani ϕD1 = D1,

iii) D2 distribüsyonu θ 6= 0, π
2

slant açısına sahip slant distribüsyon

olacak şekilde ortogonal D1 ve D2 distribüsyonları var ise M ye M nin semi-slant

altmanifoldu denir. Bu durumda D2 slant distribüsyonunun θ slant açısına M

semi-slant altmanifoldunun slant açısı denir.

Semi-slant altmanifoldların invaryant ve anti-invaryant distribüsyonları sırasıyla

θ = 0 ve θ = π
2

slant açılı slant distribüsyonlardır. Semi-invaryant altmanifoldlar,

semi-slant altmanifoldların özel bir halidir.

M bir semi-slant altmanifold ve boy Di = di, (i = 1, 2), olsun. Bu durumda eğer

(i) d2 = 0 ise M bir invaryant altmanifold,

(ii) d1 = 0 ve θ = π
2

ise M bir anti-invaryant altmanifold,
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(iii) d1 = 0 ve θ 6= 0, π
2

ise M bir özgün slant altmanifold,

(iv) d1.d2 6= 0 ve θ 6= 0, π
2

ise M bir özgün semi-slant altmanifold

olur.

Örnek 4.2.1. (x1, ..., x9) koordinat sistemi ile verilen 9-boyutlu M = R9 reel uzayını

gözönüne alalım. ej = ∂
∂xj

, 1 ≤ j ≤ 9, olmak üzere M nin standart bazı {e1, ..., e9}

olsun. M üzerinde bir ϕ (1, 1)-tensör alanını, ξ vektör alanını, η 1-formunu ve g

Lorentzian metriğini

ξ = e9 , η = − dx9,

ϕe1 = e2, ϕe2 = e1, ϕe3 = e8,

ϕe4 = cos v e5 − sin v e6,

ϕe5 = cos v e4 − sin v e7,

ϕe6 = − sin v e4 + cos v e7,

ϕe7 = sin v e5 + cos v e6,

ϕe8 = e3, ϕe9 = 0,

g = (dx1)
2 + ...+ (dx8)

2 − η ⊗ η

şeklinde tanımlayalım. Bu durumda (ϕ, ξ, η, g) dörtlüsü M üzerinde bir Lorentzian

hemen hemen parakontakt yapı olur.

Şimdi M Lorentzian hemen hemen parakontakt manifoldunun

M = {x = (x1, ..., x9) ∈ R9 : x3, x6, x7, x8 = 0}

ile tanımlanan M altmanifoldunu gözönüne alalım. Bu durumda

D1 = Sp{e1, e2} ve D2 = Sp{e4, e5}

olarak alınırsa, D1 distribüsyonun bir invaryant distribüsyon ve D2 distribüsyonunun

da θ = v slant açısına sahip bir slant distribüsyon olduğu görülür. Öyleyse

TM = D1 ⊕D2 ⊕ Sp{ξ}

şeklinde yazılabilir. Böylece M , M Lorentzian hemen hemen parakontakt manifoldu-

nun bir semi-slant altmanifoldu olur.
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Şimdi,
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve M de

M nin bir semi-slant altmanifoldu olsun. Di, (i = 1, 2), distribüsyonu üzerindeki

projeksiyonu Pi, (i = 1, 2), ile gösterelim. Bu durumda herhangi bir X ∈ Γ(TM)

için

X = P1X + P2X + η(X)ξ (4.2.7)

ve

ϕX = fP1X + fP2X + wP2X (4.2.8)

yazılabilir. Burada

ϕP1X = fP1X ve wP1X = 0 (4.2.9)

olur. Özel olarak, (4.2.8) ve (4.2.9) dan

fX = ϕP1X + fP2X (4.2.10)

olduğu görülür.

(4.1.13) eşitliğinde Y yerine P1Y alınır ve η(P1Y ) = 0 olduğu kullanılırsa

g(fX, fP1Y ) = cos2 θ g(X,P1Y ), X, Y ∈ Γ(TM) (4.2.11)

elde edilir. Benzer şekilde (4.1.14) eşitliğinde Y yerine P2Y alınır ve η(P2Y ) = 0

olduğu göz önüne alınırsa

g(wX,wP2Y ) = sin2 θ g(X,P2Y ), X, Y ∈ Γ(TM) (4.2.12)

olur.

Lorentzian hemen hemen parakontakt manifoldların semi-slant altmanifoldlarının

karakterizasyonu için aşağıdaki teorem verilebilir.

Teorem 4.2.3.
(
M,ϕ, ξ, g

)
bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda M nin bir semi-slant altmanifold

olması için gerek ve yeter şart

(i) D′ = {X | f 2X = λX }, M üzerinde bir distribüsyon

(ii) D′ distribüsyonuna ortogonal olan her X ∈ Γ(TM) için wX = 0
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olacak şekilde bir λ ∈ [0, 1) sabit sayısının var olmasıdır. Ayrıca, eğer M nin slant

açısı θ ise λ = cos2 θ dır.

İspat. Kabul edelim ki M bir semi-slant altmanifold ve λ = cos2 θ olsun. Herhangi

bir X ∈ Γ(D′) için eğer X ∈ Γ(D1) ise

X = ϕ2X − η(X)ξ = ϕ2X = (fP1)
2X = λX

elde edilir. Buradan λ = 1 olur ki bu λ ∈ [0, 1) kabulü ile çelişir. Dolayısıyla

D′ ⊆ D2 dir. Diğer taraftan, D2 bir slant distribüsyon olduğundan herhangi bir

X ∈ Γ(D2) için

f 2X = (fP2)
2X = λX

yazılabilir. Böylece D2 ⊆ D′ olduğu görülür. Dolayısıyla D′ = D2 yani D′, M

üzerinde bir distribüsyon olur. Ayrıca, D′ = D2 ve D2 bir slant distribüsyon

olduğundan D′ distribüsyonuna ortogonal olan her X ∈ Γ(TM) için wX = 0 olacağı

kolaylıkla görülmektedir.

Tersine D′ = D⊥ olacak şekilde TM = D⊕D⊥⊕Sp{ξ} olduğunu kabul edelim.

(ii) deki hipotezden dolayı fD ⊆ D dir. ϕ simetrik ve X ∈ Γ(D⊥), Y ∈ Γ(D) için

wY = 0 olduğundan

g(ϕX, Y ) = g(X,ϕY ) = g(X, fY ) = 0

dır. Böylece ϕX ∈ Γ(D⊥) yani D⊥ bir invaryant distribüsyon olur. Böylece ispat

tamamlanır.

Şimdi semi-slant altmanifold tanımında verilen distribüsyonların integrallenebilir-

lik şartlarını inceleyelim.

Teorem 4.2.4.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Bu durumda

(i) D1 distribüsyonunun integrallenebilir olması için gerek ve yeter şart X, Y ∈

Γ(D1) için

h(X, fY ) = h(fX, Y ) (4.2.13)

olmasıdır.
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(ii) D2 distribüsyonunun integrallenebilir olması için gerek ve yeter şart X, Y ∈

Γ(D2) için

P1(∇X fP2Y −∇Y fP2X) = P1(AwP2Y X − AwP2X Y ) (4.2.14)

olmasıdır.

İspat.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold olduğundan ∀X, Y ∈

Γ(TM) için

∇X ϕY = ϕ∇X Y (4.2.15)

dir.

(i) (4.2.15) eşitliğinde Gauss-Weingarten formülü, (4.1.1), (4.1.2) ve (4.2.8) kulla-

nılarak ∀X, Y ∈ Γ(D1)

∇X ϕY = ϕ∇X Y

∇X (fY + wY ) = ϕ(∇X Y + h(X, Y ))

∇X fY + h(X, fY ) = f ∇X Y + w∇X Y

+Bh(X, Y ) + Ch(X,Y ) (4.2.16)

∇X fY + h(X, fY ) = f P1∇X Y + f P2∇X Y

+Bh(X, Y ) + wP2∇X Y (4.2.17)

+Ch(X, Y )

bulunur. Bu son eşitlikte normal kısımlar birbirine eşitlenirse

h(X, fY ) = wP2∇X Y + Ch(X, Y ) (4.2.18)

elde edilir. (4.2.18) de X ile Y yi yer değiştirerek

h(fX, Y ) = wP2∇Y X + Ch(Y,X) (4.2.19)

yazılabilir. h simetrik olduğundan (4.2.18) ve (4.2.19) den

h(X, fY )− h(fX, Y ) = wP2[X, Y ], ∀X, Y ∈ Γ(D1) (4.2.20)

elde edilir.
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Kabul edelim ki D1 distribüsyonu integrallenebilir olsun. Bu durumda ∀X, Y ∈

Γ(D1) için [X, Y ] ∈ Γ(D1) olacağından wP2[X, Y ] = 0 dır. Böylece (4.2.20) dan

(4.2.13) eşitliğine ulaşılır.

Tersine ∀X, Y ∈ Γ(D1) için h(X, fY ) = h(fX, Y ) ise wP2[X,Y ] = 0 olur.

Buradan da P2[X, Y ] = 0 yani [X, Y ] ∈ Γ(D1) olduğu görülür. Öyleyse D1 distribüs-

yonu integrallenebilirdir.

(ii) ∀X, Y ∈ Γ(TM) için (4.2.8) ve Gauss-Weingarten formülünden

∇X ϕY = ∇X(ϕP1Y + f P2Y + wP2 Y )

= ∇X ϕP1Y +∇X f P2Y +∇X wP2 Y

= ∇X ϕP1Y + h(X,ϕP1Y ) +∇X f P2Y + h(X, f P2Y )

−AwP2YX +∇⊥
X wP2Y (4.2.21)

elde edilir. Diğer taraftan

ϕ∇X Y = ϕ(∇X Y + h(X,Y ))

= f ∇X Y + w∇X Y +Bh(X, Y ) + Ch(X, Y ) (4.2.22)

dir. (4.2.21) ve (4.2.22), (4.2.15) de yerine yazılırsa ∀X, Y ∈ Γ(D2) için

∇X f P2Y + h(X, f P2Y )− AwP2YX +∇⊥
X wP2Y

= f ∇X Y + w∇X Y +Bh(X,Y ) + Ch(X, Y ) (4.2.23)

bulunur. Bu son eşitlikte X ile Y nin rollerini değiştirerek

∇Y f P2X + h(Y, f P2X)− AwP2XY +∇⊥
Y wP2X

= f ∇Y X + w∇Y X +Bh(Y,X) + Ch(Y,X) (4.2.24)

yazılır. (4.2.23) ve (4.2.24) eşitlikleri taraf tarafa çıkarılırsa

f [X, Y ] + w [X,Y ] = ∇X f P2Y −∇Y f P2X + AwP2XY − AwP2YX

+∇⊥
X wP2Y −∇⊥

Y wP2X (4.2.25)

elde edilir. (4.2.25) ün teğet kısımları eşitlenirse

f [X, Y ] = ∇X f P2Y −∇Y f P2X + AwP2XY − AwP2YX
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bulunur. Buradan

P1f [X, Y ] = P1{∇X f P2Y −∇Y f P2X } − P1{AwP2YX − AwP2XY } (4.2.26)

yazılabilir.

Şimdi, kabul edelim ki D2 distribüsyonu integrallenebilir olsun. Bu durumda

∀X, Y ∈ Γ(D2) için [X, Y ] ∈ Γ(D2) olacağından P1f [X, Y ] = 0 dır. Böylece (4.2.26)

dan (4.2.14) eşitliğine ulaşılır.

Tersine (4.2.14) eşitliği sağlanıyorsa P1f [X, Y ] = 0. Buradan da [X, Y ] ∈

Γ(D2) yani D2 distribüsyonunun integrallenebilir olduğu görülür. Böylece ispat

tamamlanır.

Teorem 4.2.5.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir mixed-geodezik semi-slant altmanifoldu olsun. Bu durumda D1 distribüsyonu-

nun integrallenebilir olması için gerek ve yeter şart X ∈ Γ(D1) ve N ∈ Γ(T⊥M)

için

ϕANX = ANϕX (4.2.27)

olmasıdır.

İspat. M , M nin bir mixed-geodezik semi-slant altmanifoldu olduğundan herhangi

bir X ∈ Γ(D1), Y ∈ Γ(D2) ve N ∈ Γ(T⊥M) için

g(ANX,Y ) = g(h(X, Y ), N) = 0

dır. Bu ise ANX in D2 de bileşeni olmadığını gösterir. Böylece

g(ϕANX, Y ) = g(ANX,ϕY ) = g(h(X,ϕY ), N) (4.2.28)

ve

g(ANϕX, Y ) = g(h(ϕX, Y ), N) (4.2.29)

yazılabilir. Buradan her X, Y ∈ Γ(D1) için

g(ϕANX − ANϕX, Y ) = g(h(X,ϕY )− h(ϕX, Y ), N)

elde edilir. Böylece Teorem 4.2.4 (i) ve bu son eşitlikten D1 in integrallenebilir

olması için gerek ve yeter şart

ϕANX − ANϕX = 0, X ∈ Γ(D1), N ∈ Γ(T⊥M)
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olmasıdır. Böylece ispat tamamlanır.(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold veM deM nin bir semi-slant

altmanifoldu olmak üzere (4.2.15) eşitliğinde Gauss-Weingarten formülü, (4.1.1) ve

(4.1.2) kullanılarak ∀X, Y ∈ Γ(TM) için

(∇X f)Y = AwYX +Bh(X, Y ) (4.2.30)

ve

(∇X w)Y = Ch(X, Y )− h(X, fY ) (4.2.31)

elde edilir. Burada f ve w nın kovaryant türevleri

(∇X f)Y = ∇X fY − f ∇X Y

(∇X w)Y = ∇⊥
X wY − w∇X Y

ile tanımlanır.

f nin paralel olması yani∇ f = 0 olması Lorentzian parakosimplektik manifoldlar

üzerinde ayrı bir öneme sahiptir. Şimdi bu durumu karakterize edecek şekilde

aşağıdaki teoremi verebiliriz.

Teorem 4.2.6.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Eğer ∇ f = 0 ise bu durumda D1 ve D2

distribüsyonları integrallenebilir ve bu distribüsyonların integral altmanifoldları M

de total geodeziktir.

İspat. ∇X f = 0 ise (4.2.30) dan herhangi bir Y ∈ Γ(D1) ve X ∈ Γ(TM) için

Bh(X,Y ) = 0 (4.2.32)

bulunur. Böylece (1.3.14), (4.1.2) ve (4.2.32) den Y ∈ Γ(D1) ve X,Z ∈ Γ(TM) için

0 = g(Bh(X, Y ), Z) = g(ϕh(X,Y ), Z) = g(h(X, Y ), ϕZ)

elde edilir. Buradan

g(h(X,Y ), wP2Z) = 0 (4.2.33)
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ve

g(ϕh(X, Y ), wP2Z) = 0 (4.2.34)

olur. Böylece M nin bir Lorentzian parakosimplektik manifold olduğu ve (4.2.33)

eşitliği göz önüne alınarak

0 = g(ϕh(X, Y ), wP2∇X Y )

= g(∇X ϕY − ϕ∇X Y + h(X,ϕY ), wP2∇X Y )

= −g(ϕ∇X Y,wP2∇X Y ) + g(h(X,ϕY ), wP2∇X Y )

= −g(wP2∇X Y,wP2∇X Y ) (4.2.35)

yazılabilir. Bu son eşitlikte (4.1.14) kullanılarak

0 = −g(wP2∇X Y,wP2∇X Y )

= − sin2 θ{g(P2∇X Y, P2∇X Y ) + (η(P2∇X Y ))2}

elde edilir. Bu ise P2∇X Y = 0 yani ∇X Y ∈ Γ(D1) olduğunu gösterir.

Şimdi Y ∈ Γ(D1) ve V ∈ Γ(D2) alalım. D1 ve D2 ortogonal distribüsyonlar

olduğundan herhangi bir Z ∈ Γ(TM) için g(Y,∇ZV ) = 0, ∀Y ∈ Γ(D1), yani

∇ZV ∈ Γ(D2) olur. Bu da D2 nin integrallenebilir olduğunu gösterir. Böylece

ispat tamamlanır.

Lemma 4.2.1.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Bu durumda i 6= j olmak üzere M nin bir

Di-Dj-geodezik altmanifold olması için gerek ve yeter şart N ∈ Γ(T⊥M) için

ANX ∈ Γ(Di ⊕ Sp{ξ}), X ∈ Γ(Di ⊕ Sp{ξ}), i = 1, 2 (4.2.36)

olmasıdır.

İspat. Kabul edelim ki M bir D1-D2-geodezik altmanifold olsun. Bu durumda

X ∈ Γ(D1), Y ∈ Γ(D2) ve N ∈ Γ(T⊥M) için

g(ANX, Y ) = g(h(X,Y ), N) = 0 (4.2.37)

elde edilir. Öyleyse X ∈ Γ(D1) için ANX ∈ Γ(D1 ⊕ Sp{ξ}) dir. h simetrik

olduğundan benzer şekilde Y ∈ Γ(D2) için ANY ∈ Γ(D2 ⊕ Sp{ξ}) bulunur.
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Tersine i = 1, 2 ve X ∈ Γ(Di ⊕ Sp{ξ}) için ANX ∈ Γ(Di ⊕ Sp{ξ}) ise (4.2.37)

den M nin bir Di-Dj-geodezik altmanifold olduğu kolaylıkla görülür. Böylece ispat

tamamlanır.

Teorem 4.2.7.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Eğer ∇w = 0 ise bu durumda M bir mixed

geodezik altmanifolddur. Ayrıca;

(i) eğer X, Y ∈ Γ(D1) ise M bir D1-geodezik altmanifold veya h(X, Y ), C2 nin

karakteristik değeri 1 olan bir karakteristik vektörüdür.

(ii) eğer X, Y ∈ Γ(D2) ise M bir D2-geodezik altmanifold veya h(X,Y ), C2 nin

karakteristik değeri cos2 θ olan bir karakteristik vektörüdür.

İspat. Eğer ∇w = 0 ise (4.2.31) dan

Ch(X, Y ) = h(X, fY ), X, Y ∈ Γ(TM)

yazılır. Buradan D1 in invaryant ve D2 nin θ slant açısına sahip slant distribüsyon

olduğu göz önüne alınarak X ∈ Γ(D1), Y ∈ Γ(D2) için

C2h(X, Y ) = Ch(X, fY ) = h(X, f2Y )

= h(X, cos2 θ(Y + η(Y )ξ))

= cos2 θh(X, Y ) (4.2.38)

ve

C2h(X, Y ) = C2h(Y,X) = Ch(Y, fX)

= h(Y, f 2X) = h(Y,X) = h(X, Y ) (4.2.39)

elde edilir. (4.2.38) ve (4.2.39) dan

sin2 θh(X, Y ) = 0

bulunur. Bu ise h(X, Y ) = 0, X ∈ Γ(D1), Y ∈ Γ(D2), olduğunu gösterir. Böylece

M bir mixed geodezik semi-slant altmanifold olur.

141



Benzer şekilde ∀X, Y ∈ Γ(D1) için

C2h(X, Y ) = h(X, Y )

ve ∀X, Y ∈ Γ(D2) için

C2h(X, Y ) = cos2 θh(X, Y )

dir. Böylece ispat tamamlanır.

Teorem 4.2.8.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Bu durumda M nin bir semi-slant çarpım

altmanifoldu olması için gerek ve yeter şart ∀Z ∈ Γ(TM), X ∈ Γ(D1) için

Bh(X, Y ) = 0 ve h(Z, fX) = Ch(Z,X) (4.2.40)

olmasıdır.

İspat. M , M nin bir semi-slant çarpım altmanifoldu ise D1 ve D2, M de total

geodezik distribüsyonlardır. Z ∈ Γ(TM) ve X ∈ Γ(D1) olsun. Bu durumda (4.2.30)

dan

Bh(X,Z) = 0

olur. Diğer taraftan Teorem 4.2.6 den

(∇Z w)X = ∇⊥
Z wX − w(∇ZX) = 0 (4.2.41)

dır. Böylece (4.2.31) dan

h(Z, fX) = Ch(Z,X)

elde edilir.

Tersine (4.2.40) eşitliğinin sağlandığını kabul edelim. Öyleyse (4.2.31) ve (4.2.41)

den

0 = (∇Z w)X = −w(∇ZX), Z ∈ Γ(TM), X ∈ Γ(D1)

elde edilir. Bu ise ∇ZX ∈ Γ(D1) olduğunu gösterir. D2, D1 e ortogonal olduğundan

Z ∈ Γ(TM), Y ∈ Γ(D2) için ∇ZY ∈ Γ(D2) dir. Böylece ispat tamamlanır.
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Sonuç 4.2.2.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. ∇w = 0 olması için gerek ve yeter şart

∀Z ∈ Γ(TM), N ∈ Γ(T⊥M) için

ACNZ = AN fZ (4.2.42)

olmasıdır.

İspat. (4.2.31) ve (1.3.14) dan ∀X,Z ∈ Γ(TM), N ∈ Γ(T⊥M) için

g((∇X w)Z,N) = g(Ch(X,Z)− h(X, fZ), N)

= g(Ch(X,Z), N)− g(h(X, fZ), N)

= g(ϕh(X,Z), N)− g(h(X, fZ), N)

= g(h(X,Z), ϕN)− g(h(X, fZ), N)

= g(h(X,Z), CN)− g(h(X, fZ), N)

elde edilir. Bu son eşitlikte (1.3.43) kullanılırsa

g((∇X w)Z,N) = g(ACNZ − AN fZ,X)

bulunur. Böylece ispat tamamlanır.

Sonuç 4.2.3.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. ∇ f = 0 olması için gerek ve yeter şart

∀Y, Z ∈ Γ(TM) için

AwP2YZ = −AwP2ZY (4.2.43)

olmasıdır.

İspat. (4.2.30) ve (1.3.14) dan ∀X, Y, Z ∈ Γ(TM) için

g((∇X f)Y, Z) = g(AwYX +Bh(X, Y ), Z)

= g(AwP2YX,Z) + g(h(X, Y ), wP2Z)

= g(AwP2Y X,Z) + g(AwP2Z X,Y )

elde edilir. Buradan A Weingarten dönüşümü simetrik olduğundan

g((∇X f)Y, Z) = g(X,AwP2YZ + AwP2ZY )

yazılabilir. Böylece ispat tamamlanır.
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Şimdi,
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin bir

semi-slant altmanifoldu olsun. Semi-slant altmanifold tanımında yer alan distribüsyon-

ların integrallenebilirliğini incelemek için, oldukça kullanışlı olan bazı eşitlikleri

verelim.

Lemma 4.2.2.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin

bir semi-slant altmanifoldu olsun. Bu durumda ∀X, Y ∈ Γ(TM) için

P1(∇X ϕP1Y ) + P1(∇X f P2Y ) = ϕP1∇X Y + P1AwP2YX + η(Y )P1X (4.2.44)

P2(∇X ϕP1Y ) + P2(∇X f P2Y ) = fP2∇X Y + P2AwP2YX

+Bh(X, Y ) + η(Y )P2X (4.2.45)

η(∇X ϕP1Y ) + η(∇X f P2Y ) = η(AwP2YX) + g(X, Y ) + 3η(X)η(Y ) (4.2.46)

h(X,ϕP1Y ) + h(X, f P2Y ) +∇⊥
X wP2Y = wP2∇XY + Ch(X,Y ) (4.2.47)

dir.

İspat.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold olduğundan (1.3.19) de

Gauss formülü, (4.2.8) ve (4.1.2) kullanılarak

∇X ϕY = ϕ∇X Y + (g(X,Y ) + 2η(X)η(Y ))ξ + η(Y )X

= ϕ∇X Y + ϕh(X, Y ) + (g(X, Y ) + 2η(X)η(Y ))ξ + η(Y )X

= ϕP1∇X Y + fP2∇X Y + wP2∇X Y +Bh(X, Y ) + Ch(X, Y )

+(g(X, Y ) + 2η(X)η(Y ))ξ + η(Y )X (4.2.48)

bulunur. (4.2.48) ve (4.2.21) den

ϕP1∇X Y + fP2∇X Y + wP2∇X Y +Bh(X, Y ) + Ch(X, Y )

+(g(X,Y ) + 2η(X)η(Y ))ξ + η(Y )X

= ∇X ϕP1Y + h(X,ϕP1Y ) +∇X f P2Y + h(X, f P2Y )

−AwP2YX +∇⊥
X wP2Y

elde edilir. Buradan (4.2.7) kullanılarak
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ϕP1∇X Y + fP2∇X Y + wP2∇X Y +Bh(X, Y ) + Ch(X, Y )

+(g(X,Y ) + 2η(X)η(Y ))ξ + η(Y )(P1X + P2X + η(X)ξ)

= P1(∇X ϕP1Y ) + P2(∇X ϕP1Y ) + η(∇X ϕP1Y )ξ

+P1(∇X f P2Y ) + P2(∇X f P2Y ) + η(∇X f P2Y )ξ

−P1(AwP2YX)− P2(AwP2YX)− η(AwP2YX)ξ

+∇⊥
X wP2Y + h(X,ϕP1Y ) + h(X, f P2Y )

yazılır. Bu son eşitlikte sırasıyla D1, D2, Sp{ξ} ve T⊥M deki bileşenler birbirine

eşitlenirse ispat tamamlanır.

Teorem 4.2.9.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin

bir semi-slant altmanifoldu olsun. Bu durumda

(i) D1 distribüsyonunun integrallenebilir olması için gerek ve yeter şart X, Y ∈

Γ(D1) için

h(X,ϕY ) = h(ϕX, Y ) (4.2.49)

olmasıdır.

(ii) D2 distribüsyonunun integrallenebilir olması için gerek ve yeter şart X, Y ∈

Γ(D2) için

P1(∇X fY −∇Y fX) = P1(AwY X − AwX Y ) (4.2.50)

olmasıdır.

İspat. (i) X, Y ∈ Γ(D1) olsun. g(X, ξ) = 0 ve g(Y, ξ) = 0 olduğundan (1.3.21) göz

önüne alınarak

g(∇YX, ξ) = −g(X,∇Y ξ) = −g(Y, ϕX) (4.2.51)

ve

g(∇XY, ξ) = −g(Y,∇Xξ) = −g(Y, ϕX) (4.2.52)

elde edilir. (4.2.51), (4.2.52) ve (1.3.14) den

g([X, Y ], ξ) = −g(Y, ϕX) + g(Y, ϕX) = 0
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bulunur. Öyleyse [X,Y ] /∈ Sp{ξ} olur. Diğer taraftan X, Y ∈ Γ(D1) için (4.2.47)

den

h(X,ϕY ) = wP2∇XY + Ch(X, Y )

yazılır. Benzer şekilde

h(Y, ϕX) = wP2∇YX + Ch(Y,X)

dir. Bu iki eşitlikten

h(X,ϕY )− h(Y, ϕX) = wP2[X, Y ] (4.2.53)

elde edilir.

Kabul edelim ki D1 distribüsyonu integrallenebilir olsun. Bu durumda X, Y ∈

Γ(D1) için P2[X, Y ] = 0 olacağından (4.2.49) elde edilir.

TersineX,Y ∈ Γ(D1) için h(X,ϕY ) = h(Y, ϕX) iseM bir semi-slant altmanifold

olduğundan (4.2.53) den P2[X, Y ] = 0 yani D1 distribüsyonu integrallenebilirdir.

(ii) X, Y ∈ Γ(D2) için (i) şıkkındaki ispata benze şekilde [X, Y ] /∈ Sp{ξ} olduğu

kolaylıkla görülebilir. Diğer taraftan (4.2.44) den ∀X,Y ∈ Γ(D2) için

P1(∇X f P2Y ) = ϕP1∇X Y + P1AwP2YX

dir. Burada X ile Y nin rolleri değiştirilirse

P1(∇Y f P2X) = ϕP1∇Y X + P1AwP2XY

olur. Bu son iki eşitlikten

P1(∇X fY −∇Y fX)− P1(AwYX − AwXY ) = ϕP1[X, Y ] (4.2.54)

elde edilir.

Kabul edelim ki D2 distribüsyonu integrallenebilir olsun. Bu durumda X, Y ∈

Γ(D2) için [X, Y ] ∈ Γ(D2) olacağından P1[X,Y ] = 0 dır. Buradan (4.2.50) eşitliğine

ulaşılır.

Tersine (4.2.50) eşitliği sağlanıyor ise ϕP1[X, Y ] = 0, X, Y ∈ Γ(D2), olur ki bu da

D2 distribüsyonunun integrallenebilir olduğunu gösterir. Böylece ispat tamamlanır.
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Önerme 4.2.1.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin

bir semi-slant altmanifoldu olsun. Bu durumda

[X, ξ] ∈ Γ(D1), X ∈ Γ(D1) (4.2.55)

ve

[Y, ξ] ∈ Γ(D2), Y ∈ Γ(D2) (4.2.56)

dir.

İspat.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold olduğundan (1.3.19) eşitliği

X ∈ Γ(D1) için

∇ξϕX = ϕ∇ξX (4.2.57)

olur. Burada Gauss formülü kullanılarak

h(ϕX, ξ) = 0 ve h(X, ξ) = 0, X ∈ Γ(D1)

bulunur. Öyleyse (4.2.57) dan

∇ξϕX = ϕ∇ξX

elde edilir. Böylece herhangi birX ∈ Γ(D1) için∇ξX ∈ Γ(D1) olduğu görülür. Diğer

taraftan D1 ve D2 ortogonal distribüsyonlar olduğundan herhangi bir Y ∈ Γ(D2)

için ∇ξY ∈ Γ(D2) dir. Böylece ispat tamamlanır.

Teorem 4.2.9 ve Önerme 4.2.1 den aşağıdaki sonuçlara ulaşılır:

Sonuç 4.2.4.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin bir

semi-slant altmanifoldu olsun. Bu durumda D1⊕Sp{ξ} distribüsyonunun integrallene-

bilir olması için gerek ve yeter şart X, Y ∈ Γ(D1) için

h(X,ϕY ) = h(ϕX, Y )

olmasıdır.

Sonuç 4.2.5.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian manifold ve M de M nin bir

semi-slant altmanifoldu olsun. Bu durumda D2⊕Sp{ξ} distribüsyonunun integrallene-

bilir olması için gerek ve yeter şart X, Y ∈ Γ(D2) için

(∇X fY −∇Y fX − AwY X + AwX Y ) ∈ Γ(D2)

olmasıdır.
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4.3 Lorentzian Parakosimplektik Manifoldların

Warped Çarpım Altmanifoldları

Bu kısımda öncelikle Lorentzian parakosimplektik manifoldların warped çarpım altma-

nifoldlarının bazı özel durumlar için yokluğu gösterilecektir. Daha sonra Lorentzian

parakosimplektik manifoldların semi-invaryant warped çarpım altmanifoldları tanıtı-

larak bir örnek verildikten sonra bu altmanifoldların tanımında yer alan distribüsyon-

ların integrallenebilirliği araştırılacaktır. Ayrıca bu kısımda Lorentzian parakosimp-

lektik manifoldların semi-slant warped çarpım altmanifoldları ve anti-slant warped

çarpım altmanifoldları ile ilgili bazı yokluk teoremleri verilecektir.

Lemma 4.3.1. M ,
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun bir altma-

nifoldu olsun. Bu durumda ∀X ∈ Γ(TM) için

∇X ξ = 0, (4.3.1)

h(X, ξ) = 0 (4.3.2)

dır.

İspat. M bir Lorentzian parakosimplektik manifold olduğundan ∇ϕ = 0 eşitliği

göz önüne alınırsa ∀X ∈ Γ(TM) için

∇X ξ = 0 (4.3.3)

dır. Buradan Gauss formülü kullanılarak (4.3.1) ve (4.3.2) elde edilir. Böylece ispat

tamamlanır.

Teorem 4.3.1.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M =f2

N1 ×f1 N2 de M nin bir doubly warped çarpım altmanifoldu olsun. Bu durumda,

eğer

(i) ξ ∈ Γ(TN1) ise f2 sabittir.

(ii) ξ ∈ Γ(TN2) ise f1 sabittir.
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İspat. (i) ξ ∈ Γ(TN1) olduğunu kabul edelim. Bu durumda Z ∈ Γ(TN2) için

Lemma 1.2.2 ve (4.3.1) den

ξ(ln f1)Z + Z(ln f2)ξ = 0

yazılır. Bu ise Z(ln f2) = 0, ∀Z ∈ Γ(TN2), yani f2 nin sabit olduğunu gösterir.

(ii) ξ ∈ Γ(TN2) olsun. Öyleyse X ∈ Γ(TN1) olmak üzere Lemma 1.2.2 ve (4.3.1)

göz önüne alınarak

X(ln f1)ξ + ξ(ln f2)X = 0

elde edilir. Böylece X(ln f1) = 0, ∀X ∈ Γ(TN1), yani f1 sabit olur ve ispat

tamamlanır.

Böylece aşağıdaki sonucu verebiliriz:

Sonuç 4.3.1.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TN2)

olacak şekilde bir M = N1 ×f̃ N2 warped çarpım altmanifoldu yoktur.(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TN1) olacak şekilde

bir M = N1×f̃ N2 warped çarpım altmanifoldunu incelemek için öncelikle aşağıdaki

lemma verilebilir:

Lemma 4.3.2. M = N1×f̃N2 ,
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldu-

nun ξ ∈ Γ(TN1) olacak şekilde bir warped çarpım altmanifoldu olsun. Bu durumda

∀X, Y ∈ Γ(TN1) ve ∀Z,W ∈ Γ(TN2) için

ξ(ln f̃) = 0, (4.3.4)

AwZ X = −Bh(X,Z), (4.3.5)

g(h(X, Y ), wZ) = −g(h(X,Z), wY ), (4.3.6)

g(h(X,W ), wZ) = −g(h(X,Z), wW ), (4.3.7)

dir.

İspat.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifold olduğundan (4.3.1) ve

Lemma 1.2.1 den kolaylıkla (4.3.4) eşitliğine ulaşılır. Benzer şekilde Lemma 1.2.1
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gözönüne alınarak (4.2.16) dan

X(ln f̃)fZ + h(X, fZ)− AwZX +∇⊥
X wZ = X(ln f̃)fZ + w∇X Z

+Bh(X,Z) + Ch(X,Z)

h(X, fZ)− AwZX +∇⊥
X wZ = Bh(X,Z) + Ch(X,Z) (4.3.8)

yazılır. (4.3.8) in teğet kısımları birbirine eşitlenerek (4.3.5) elde edilir. (4.3.5)

eşitliğinin her iki tarafı sırasıyla Y ∈ Γ(TN1) ve W ∈ Γ(TN2) ile iç çarpıma tabi

tutulursa

−g(AwZX, Y ) = g(Bh(X,Z), Y )

−g(h(X, Y ), wZ) = g(h(X,Z), ϕY )

ve

−g(AwZX,W ) = g(Bh(X,Z),W )

−g(h(X,W ), wZ) = g(h(X,Z), ϕW )

bulunur. Buradan sırasıyla (4.3.6) ve (4.3.7) eşitlikleri elde edilir. Böylece ispat

tamamlanır.

Teorem 4.3.2.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TM⊥)

olacak şekilde bir M =f2 N1 ×f1 N2 doubly warped çarpım altmanifoldu yoktur.

İspat. ξ ∈ Γ(TM⊥) olduğunu kabul edelim. Bu durumda her X ∈ Γ(TM) için

η(X) = 0 olduğu açıktır. Öyleyse X, Y ∈ Γ(TN1) ve Z ∈ Γ(TN2) için Lemma 1.2.1,

(1.3.41) ve (1.3.10) eşitlikleri kullanılarak

g(∇ZX, Y ) = g(∇XZ, Y )

= g(∇XZ, Y )

= g(ϕ∇XZ,ϕY )− η(∇XZ)η(Y )

= g(ϕ∇XZ,ϕY )

= g(∇X ϕZ, ϕY ) (4.3.9)

bulunur. Diğer taraftan

g(ϕZ, ϕY ) = g(Y, Z) = 0
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olduğundan

g(∇X ϕZ, ϕY ) = −g(ϕZ,∇X ϕY )

= −g(ϕZ, ϕ∇X Y )

= −g(Z,∇X Y )

= −g(Z,∇X Y )

dir. X, Y ∈ Γ(TN1) için ∇X Y ∈ Γ(TN1) olduğundan

g(∇X ϕZ, ϕY ) = −g(Z,∇X Y ) = 0 (4.3.10)

elde edilir. (4.3.9) ve (4.3.10) dan

g(∇ZX, Y ) = 0

olur. Buradan Lemma 1.2.1 göz önüne alınarak

Z(ln f2)g(X, Y ) = 0, ∀X, Y ∈ Γ(TN1), Z ∈ Γ(TN2),

bulunur. Böylece f2 nin bir sabit fonksiyon olduğu görülür ve ispat tamamlanır.

Teorem 4.3.3.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M = MT×f̃

M⊥ de M nin ξ ∈ Γ(TM⊥) olacak şekilde bir semi-invaryant warped çarpımaltmani-

foldu olsun. Bu durumda M bir alışılmış belirsiz çarpım manifoldudur.

İspat. ξ ∈ Γ(TM⊥) olduğunu kabul edelim. Bu durumda her X ∈ Γ(TM) için

η(X) = 0 dır. Öyleyse X ∈ Γ(TMT ) ve Z,W ∈ Γ(TM⊥) için Lemma 1.2.1, (1.3.41)

ve (1.3.10) kullanılarak

g(∇XZ,W ) = g(∇ZX,W ) = g(∇ZX,W )

= g(ϕ∇ZX,ϕW )− η(∇ZX)η(W )

= g(ϕ∇ZX,ϕW )

bulunur. BuradanM bir Lorentzian parakosimplektik manifold olduğundan (1.3.41),
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(1.3.42), (1.3.10) ve (1.3.43) eşitlikleri göz önüne alınarak

X(ln f̃)g(Z,W ) = g(∇Z ϕX,ϕW ) = g(h(Z,ϕX), ϕW )

= g(∇ϕX Z,ϕW ) = g(∇ϕX ϕZ,W )

= −g(AϕZ ϕX,W ) = −g(h(ϕX,W ), ϕZ)

= −g(∇W ϕX,ϕZ) = −g(ϕ∇WX,ϕZ)

= −g(∇WX,Z) = −g(∇XW,Z)

= −X(ln f̃)g(W,Z)

elde edilir. Bu ise

2X(ln f̃)g(W,Z) = 0

olduğunu verir. Yani f̃ fonksiyonu sabittir. Böylece ispat tamamlanır.

Teorem 4.3.4.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M = MT×f̃

M⊥ de M nin ξ ∈ Γ(TM⊥) olacak şekilde bir semi-invaryant warped çarpımaltmani-

foldu olsun. Bu durumda M bir alışılmış belirsiz çarpım manifoldudur.

İspat. ξ ∈ Γ(TM⊥) ve X ∈ Γ(TMT ) olsun. Lemma 1.2.1 göz önüne alınarak (4.3.1)

den

∇X ξ = ∇ξX = X(ln f̃)ξ = 0

elde edilir. Böylece X(ln f̃) = 0 bulunur ve ispat tamamlanır.

Örnek 4.3.1. (xi, yj, t) koordinat sistemi ile verilen 5-boyutlu bir M reel uzayı

üzerinde

η = dt , ξ = − ∂

∂t
,

ϕ

(
∂

∂xi

)
=

∂

∂xi

, (1 ≤ i ≤ 2)

ϕ

(
∂

∂yj

)
= − ∂

∂yj

, (1 ≤ j ≤ 2)

ϕ

(
∂

∂t

)
= 0,

g = (dxi)
2 + (dyj)

2 − η ⊗ η
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olacak şekilde bir ϕ (1, 1)-tensör alanını, ξ vektör alanını, η 1-formunu ve g Lorentzian

metriğini tanımlayalım. Bu durumda (ϕ, ξ, η, g) dörtlüsü M üzerinde bir Lorentzian

hemen hemen parakontakt yapı olur. Böylece M, (ϕ, ξ, η, g) Lorentzian hemen hemen

parakontakt yapısı ile birlikte bir Lorentzian hemen hemen parakontakt manifolddur.

Şimdi M Lorentzian hemen hemen parakontakt manifoldunun

Ω(v, θ, β, u) = (v cos θ, v sin θ, v cos β, v sin β,
√

2u)

dönüşümü ile verilen M altmanifoldunu gözönüne alalım. Bu durumda

W1 = (cos θ, sin θ, cos β, sin β, 0),

W2 = (−v sin θ, v cos θ, 0, 0, 0),

W3 = (0, 0,−v sin β, v cos β, 0),

W4 = (0, 0, 0, 0,
√

2),

olmak üzere Sp {W1,W2,W3,W4} = TM dir. Diğer taraftan

ϕW1 = (cos θ, sin θ,− cos β,− sin β, 0)

ϕW2 = (−v sin θ, v cos θ, 0, 0, 0)

ϕW3 = (0, 0, v sin β,−v cos β, 0)

ϕW4 = (0, 0, 0, 0, 0)

olduğundan

D1 = Span{W2,W3} ve D2 = Span{W1,W4}

olarak alınırsa, sırasıyla invaryant ve anti-invaryant D1 ve D2 distribüsyonları elde

edilir. Böylece M , M nin bir semi-invaryant altmanifoldu olur. Ayrıca, M üzerine
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indirgenmiş metriğin bileşenleri

g11 = g(W1,W1) = 2

g12 = g21 = g(W1,W2) = 0

g13 = g31 = g(W1,W3) = 0

g14 = g41 = g(W1,W4) = 0

g22 = g(W2,W2) = v2

g23 = g32 = g(W2,W3) = 0

g24 = g42 = g(W2,W4) = 0

g33 = g(W3,W3) = v2

g34 = g43 = g(W3,W4) = 0

g44 = g(W4,W4) = −2

şeklindedir. Buradan

g =


2 0 0 0

0 v2 0 0

0 0 v2 0

0 0 0 −2


yani

g = 2(dv2 − du2) + v2(dθ2 + dβ2) = 2gN⊥ + v2gN>

elde edilir. Böylece M , M nin f̃ = v2 warped çarpım fonksiyonuna sahip bir

semi-invaryant warped çarpımaltmanifoldu olur.

Teorem 4.3.5.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M = M⊥×f̃

MT de M nin bir semi-invaryant warped çarpımaltmanifoldu olsun. Bu durumda

invaryant D1 distribüsyonu ve anti-invaryant D2 distribüsyonu daima integrallenebi-

lirdir.

İspat. Lemma 1.2.1 göz önüne alınarak (4.2.17) dan X ∈ Γ(D2), U ∈ Γ(D1) için

∇X ϕU = ϕ∇X U

∇X fU + h(X, fU) = f ∇X U + w∇X U +Bh(U,X) + Ch(U,X)

X(ln f̃)fU + h(X, fU) = X(ln f̃)fU +Bh(U,X) + Ch(U,X) (4.3.11)
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yazılabilir. (4.3.11) in teğet ve normal kısımları birbirine eşitlenirse

Bh(X,U) = 0 (4.3.12)

ve

h(X, fU) = Ch(X,U) (4.3.13)

elde edilir. (4.2.30) ve (4.3.12) den

AwXU = −X(ln f̃)fU (4.3.14)

dir.

D2 distribüsyonuM de total geodezik veM de anti-invaryant olduğundan Gauss-

Weingarten formülleri kullanılarak X, Y ∈ Γ(D2) için

∇X ϕY = ϕ∇X Y

∇X wY = ϕ∇X Y + ϕh(X, Y )

−AwY X +∇⊥
X wY = f∇X Y + w∇X Y +Bh(X, Y ) + C(X,Y ) (4.3.15)

yazılır. (4.3.15) in normal kısımları birbirine eşitlenirse

AwY X = −Bh(X, Y ) (4.3.16)

elde edilir. (4.3.16) da X ile Y nin rollerini değiştirirsek h simetrik olduğundan

AwY X = AwX Y (4.3.17)

bulunur. Ayrıca, her Z ∈ Γ(TM) için Gauss formülü, (1.3.14) veA şekil operatörünün

self adjoint olduğu göz önüne alınarak

g(AwX Y, Z) = g(h(Y, Z), wX)

= g(∇ZY, ϕX)

= g(∇Z ϕY,X)

= −g(AwY Z,X)

= −g(AwY X,Z) (4.3.18)

olur. (4.3.16), (4.3.17) ve (4.3.18) den

AwX Y = 0 ve Bh(X, Y ) = 0 (4.3.19)
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bulunur.

Diğer taraftan U, V ∈ Γ(D1) için

∇U ϕV = ϕ∇U V

∇U fV = ϕ∇UV + ϕh(U, V )

h(U, fV ) +∇U fV = ϕ

(
∇′

UV − g(U, V )
gradf̃

f̃

)
+Bh(U, V ) + Ch(U, V )

h(U, fV ) +∇U fV = f(∇′
UV )− g(U, V )w

(
gradf̃

f̃

)
+Bh(U, V ) + Ch(U, V )

olduğundan bu son eşitliğin teğet ve normal kısımlarının eşitliğinden

∇′
UfV − g(fV, U)

gradf̃

f̃
= f(∇′

UV ) +Bh(U, V ) (4.3.20)

ve

h(U, fV ) = −g(U, V )w

(
gradf̃

f̃

)
+ Ch(U, V ) (4.3.21)

elde edilir. Buradan

h(U, fV ) = h(V, fU) (4.3.22)

olduğu kolaylıkla görülebilir.

Son olarak (4.2.31) dan

w([V, U ]) = w(∇VU −∇UV )

= ∇⊥
VwU − (∇Vw)U −∇⊥

UwV + (∇Uw)V

= (∇Uw)V − (∇Vw)U

= Ch(U, V )− h(U, fV )− Ch(V, U) + h(V, fU) (4.3.23)

yazılır. (4.3.23) de (4.3.22) yerine yazılır ve h nın simetrik olduğu göz önüe alınırsa

w([V, U ]) = 0, U, V ∈ Γ(D1)

elde edilir. Bu ise U, V ∈ Γ(D1) için [V, U ] ∈ Γ(D1) olduğunu yaniD1 in integrallene-

bilir olduğunu verir.
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Benzer şekilde (4.2.30) dan ∀X, Y ∈ Γ(D2) için

f([X, Y ]) = f(∇XY −∇XY )

= ∇X fY − (∇X f)Y −∇Y fX + (∇Y f)X

= (∇Y f)X − (∇X f)Y

= AwXY +Bh(Y,X)− AwYX −Bh(X, Y )

= 0

bulunur. Öyleyse X, Y ∈ Γ(D2) için [X, Y ] ∈ Γ(D2) yani D2 integrallenebilirdir.

Böylece ispat tamamlanır.

Teorem 4.3.6.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir altmanifoldu olsun. Bu durumda M nin bir semi-invaryant altmanifold

olması için gerek ve yeter şart wf = 0 olmasıdır.

Teorem 4.3.7.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-invaryant altmanifoldu olsun. Bu durumda M nin bir semi-invaryant

warped çarpım altmanifoldu olması için gerek ve yeter şart M nin şekil operatörünün

W (µ) = 0, W ∈ Γ(D), olacak şekildeki bir µ fonksiyonu için

AϕX U = −X(µ)ϕU, X ∈ Γ(D2), U ∈ Γ(D1)

olmasıdır. Burada µ, her W ∈ Γ(D1) için W (µ) = 0 şartını sağlayan N üzerinde

bir fonksiyondur.

İspat. Kabul edelim kiM = M⊥×f̃MT ,M nin bir semi-invaryant warped çarpımaltmanifoldu

olsun. Bu durumda (4.3.14) den X ∈ Γ(D2) ve U ∈ Γ(D1) için

AϕX U = −X(ln f̃)ϕU

dir. Burada µ = ln f̃ olmak üzere W ∈ Γ(D1) için W (µ) = 0 olur.

Tersine M nin M nin bir semi-invaryant altmanifoldu olduğunu kabul edelim. µ,

M üzerinde ∀W ∈ Γ(D1) için W (µ) = 0 olacak şekilde bir fonksiyon ve X ∈ Γ(D2)

ve U ∈ Γ(D1) için

AϕX U = −X(µ)ϕU
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olsun. Bu durumdaM bir Lorentzian parakosimplektik manifold olduğundan (4.3.19)

dan X, Y ∈ Γ(D2) ve V ∈ Γ(D1) için

g(∇XY, ϕV ) = g(∇XY, ϕV ) = g(∇XϕY, V ) = −g(AϕYX,V ) = 0

bulunur. Böylece D2 distribüsyonu M de total geodezik olur. Benzer şekilde (4.3.14)

den

g(∇UV,X) = g(∇UV,X) = −g(V,∇UX)

= −g(ϕV,∇U ϕX)

= −g(ϕV,∇U wX)

= g(AwX U,ϕV )

= −g(X(µ)ϕU, ϕV )

= −X(µ)g(U, V )

elde edilir. Burada µ = 1

f̃
dir. Semi-invaryant M altmanifoldunun D1 distribüsyonu

daima integrallenebilir ve ∀W ∈ Γ(TM>) için W (µ) = 0 olduğundan D1 distribüsyo-

nu M de total umbiliktir ve ortalama eğrilik vektör alanı paraleldir. Böylece MT

ve M⊥ sırasıyla D1 ve D2 distribüsyonlarının integral manifoldları olmak üzere

semi-invaryant M altmanifoldu M⊥ ×f̃ MT şeklinde bir warped çarpım olur.

4.3.1 Lorentzian parakosimplektik manifoldların

semi-slant warped çarpım altmanifoldları(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M nin bir semi-slant

warped çarpım altmanifoldu olsun. Bu durumda N>, M nin bir invaryant ve Nθ

da M nin bir özgün slant altmanifoldu olmak üzere Sonuç (4.3.1) den M nin ξ ∈

Γ(TNθ) ise N>×f̃ Nθ semi-slant warped çarpım altmanifoldunun ve ξ ∈ Γ(TN>) ise

Nθ×f̃ N> semi-slant warped çarpım altmanifoldunun var olmadığı görülür. Böylece

M nin bir semi-slant warped çarpım altmanifoldu için sadece aşağıdaki iki durum

söz konusudur:

(i) ξ ∈ Γ(TNT ) olmak üzere M = N> ×f̃ Nθ

(ii) ξ ∈ Γ(TNθ) olmak üzere M = Nθ ×f̃ N>
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Şimdi bu durumları inceleyelim:

Teorem 4.3.8.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TN>)

olacak şekilde bir M = N> ×f̃ Nθ özgün semi-slant warped çarpım altmanifoldu

yoktur.

İspat. Kabul edelim ki
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve

M = N> ×f̃ Nθ da ξ ∈ Γ(TN>) olacak şekilde M nin bir özgün semi-slant warped

çarpım altmanifoldu olsun. X ∈ Γ(TN>) ve Z ∈ Γ(TNθ) alalım. Bu durumda

(1.3.35), (1.3.41), (1.3.42), (4.1.1), (4.1.2) ve Lemma 1.2.1 den

∇Z ϕX = ϕ∇Z X

∇Z fX = ϕ∇Z X + ϕh(Z,X)

fX(ln f̃)Z + h(Z, fX) = X(ln f̃)fZ +X(ln f̃)wZ

+Bh(Z,X) + Ch(Z,X) (4.3.24)

elde edilir. (4.3.24) in teğet ve normal kısımları birbirine eşitlenirse

fX(ln f̃)Z = X(ln f̃)fZ +Bh(Z,X) (4.3.25)

ve

h(Z, fX) = X(ln f̃)wZ + Ch(Z,X) (4.3.26)

bulunur.

Diğer taraftan (4.3.7) den

g(h(X,Z), wZ) = 0

dır. Buradan

0 = g(h(X,Z), ϕZ) = g(ϕh(X,Z), Z) = g(Bh(X,Z), Z)

yazılabilir. Öyleyse

Bh(X,Z) ∈ Γ(TN>) (4.3.27)

dir.
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(4.3.25) den

fX(ln f̃)g(Z, fZ) = X(ln f̃)g(fZ, fZ) + g(Bh(Z,X), fZ)

yazılabilir. Burada (4.1.13) ve (4.3.27) kullanılarak

fX(ln f̃)g(Z, fZ) = cos2 θ X(ln f̃)g(Z,Z) (4.3.28)

elde edilir. Ancak Lemma 1.2.1 gözönüne alınarak

X(ln f̃)g(Z,Z) = g(∇Z X,Z) = g(∇Z X,Z)

= −g(X,∇Z Z)

= −g(ϕX,ϕ∇Z Z) + η(X)η(∇Z Z)

= −g(ϕX,∇Z ϕZ)

= −g(ϕX,∇Z fZ − AwZZ)

= −g(fX,∇Z fZ) + g(fX,AwZZ)

= g(fX, g(Z, fZ)grad ln f̃) + g(h(fX,Z), wZ)

= fX(ln f̃)g(Z, fZ)

bulunur. Bu son eşitlik (4.3.28) de yerine yazılırsa

X(ln f̃)g(Z,Z) = (cos2 θ)X(ln f̃)g(Z,Z)

yani (
sin2 θ

)
X(ln f̃) ‖Z‖2 = 0

olur. Bu ise θ = 0 veya X(ln f̃) = 0 olduğunu gösterir. Nθ bir özgün slant

altmanifold olduğundan θ 6= 0 dır. DolayısıylaX(ln f̃) = 0 olur ve ispat tamamlanır.

Teorem 4.3.9.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TNθ)

olacak şekilde bir M = Nθ ×f̃ N> özgün semi-slant warped çarpım altmanifoldu

yoktur.

İspat.
(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M = Nθ ×f̃ N> de

ξ ∈ Γ(TNθ) olacak şekilde M nin bir özgün semi-slant warped çarpım altmanifoldu
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olsun. X ∈ Γ(TN>) ve Z ∈ Γ(TNθ) olmak üzere

∇Z X = ∇X Z = Z(ln f̃)X (4.3.29)

yazılır. M bir Lorentzian parakosimplektik manifold olduğundan (4.3.1) den

ξ(ln f̃) = 0 (4.3.30)

elde edilir. g(X,Z) = 0 eşitliği ve Gauss formülünden

g(∇X X,Z) = g(∇X X,Z) = −g(X,∇XZ) = −Z(ln f̃)g(X,X) (4.3.31)

dir. Ancak (1.3.10) den

g(∇X X,Z) = g(ϕ∇X X,ϕZ)− η(∇X X)η(Z)

dir. Bu son eşitlikte Gauss denklemi ve (4.3.30) kullanılırsa

g(∇X X,Z) = g(∇X ϕX,ϕZ)

= g(∇X ϕX, fZ) + g(h(X,ϕX), wZ) (4.3.32)

bulunur. (4.3.31) ve (4.3.32) dan

g(h(X, fX), wZ)− (fZ)(ln f̃)g(X, fX) = −Z(ln f̃)g(X,X) (4.3.33)

yazılır.

Diğer taraftan X ∈ Γ(TN>) ve Z ∈ Γ(TNθ) için (1.3.35), (1.3.41), (1.3.42),

(4.1.1), (4.1.2) ve Lemma 1.2.1 den

∇Z ϕX = ϕ∇Z X

∇Z fX = ϕ∇Z X + h(Z,X)

Z(ln f̃)fX + h(Z, fX) = Z(ln f̃)fX +Bh(Z,X) + Ch(Z,X)

h(Z, fX) = Bh(Z,X) + Ch(Z,X) (4.3.34)

dir. (4.3.34) in teğet ve normal kısımlarının eşitliğinden

Bh(Z,X) = 0 (4.3.35)
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ve

h(Z, fX) = Ch(Z,X) (4.3.36)

elde edilir. Benzer şekilde

∇X ϕZ = ϕ∇X Z

∇X fZ +∇X wZ = ϕ∇X Z + ϕh(X,Z)

∇X fZ + h(X, fZ)− AwZ X +∇⊥
X wZ = f∇X Z + w∇X Z

+Bh(Z,X) + Ch(Z,X)

fZ(ln f̃)X + h(X, fZ)− AwZ X +∇⊥
X wZ = Z(ln f̃)fX

+Bh(Z,X) + Ch(Z,X)

dir. Bu son eşitlikte teğet kısımlar birbirine eşitlenir ve (4.3.35) kullanılırsa

fZ(ln f̃)X − AwZ X = Z(ln f̃)fX (4.3.37)

olur. Böylece (4.3.37) ve (4.1.13) den

g(h(X, fX), wZ) = fZ(ln f̃)g(X, fX)− Z(ln f̃)g(fX, fX)

= fZ(ln f̃)g(X, fX)− (cos2 θ)Z(ln f̃)g(X,X) (4.3.38)

elde edilir. (4.3.38), (4.3.33) da yerine yazılırsa

Z(ln f̃)g(X,X) = (cos2 θ)Z(ln f̃)g(X,X)

yani (
sin2 θ

)
Z(ln f̃) ‖X‖2 = 0

olur. Bu ise θ = 0 veya Z(ln f̃) = 0 olduğunu gösterir. Nθ bir özgün slant altmanifold

olduğundan θ 6= 0 dır. Dolayısıyla Z(ln f̃) = 0 olur ve ispat tamamlanır.

4.3.2 Lorentzian parakosimplektik manifoldların

anti-slant warped çarpım altmanifoldları(
M,ϕ, ξ, g

)
bir Lorentzian parakosimplektik manifold ve M de M nin bir anti-slant

warped çarpım altmanifoldu olsun. Bu durumda N⊥, M nin bir anti-invaryant ve
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Nθ da M nin bir özgün slant altmanifoldu olmak üzere Sonuç (4.3.1) den M nin ξ ∈

Γ(TNθ) ise N⊥×f̃ Nθ anti-slant warped çarpım altmanifoldunun ve ξ ∈ Γ(TN⊥) ise

Nθ ×f̃ N⊥ anti-slant warped çarpım altmanifoldunun var olmadığı görülür. Böylece

M nin bir anti-slant warped çarpım altmanifoldu için sadece aşağıdaki iki durum

söz konusudur:

(i) ξ ∈ Γ(TN⊥) olmak üzere M = N⊥ ×f̃ Nθ.

(ii) ξ ∈ Γ(TNθ) olmak üzere M = Nθ ×f̃ N⊥.

Şimdi bu durumları inceleyelim:

Teorem 4.3.10.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TN⊥)

olacak şekilde bir M = N⊥ ×f̃ Nθ özgün anti-slant warped çarpım altmanifoldu

yoktur.

İspat. Kabul edelim ki; M = N⊥×f̃Nθ, M Lorentzian parakosimplektik manifoldu-

nun ξ ∈ Γ(TN⊥)olacak şekilde bir özgün anti-slant warped çarpım altmanifoldu ve

X ∈ Γ(TN⊥), Z ∈ Γ(TNθ) olsun. Bu durumda Lemma 1.2.1, (1.3.10), (1.3.35),

(1.3.41), (1.3.42), (4.1.1) ve (4.1.2) den

X(ln f̃)g(Z,Z) = g(∇Z X,Z) = g(∇Z X,Z)

= −g(X,∇Z Z)

= −g(ϕX,ϕ∇Z Z) + η(X)η(∇Z Z)

= −g(ϕX,∇Z ϕZ)

= −g(ϕX, h(Z, fZ) +∇⊥
ZwZ)

yazılabilir. Burada N⊥ in anti-invaryant olduğu gözönüne alınarak

X(ln f̃)g(Z,Z) = −g(wX, h(Z, fZ))− g(wX,∇⊥
ZwZ) (4.3.39)

bulunur. Diğer taraftan

∇Z ϕZ = ϕ∇Z Z
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olduğundan Gauss-Weingarten formülleri, (4.1.1), (4.1.2) ve Lemma 1.2.1 kullanılarak

∇Z fZ +∇Z wZ = ϕ∇Z Z + ϕh(Z,Z)

∇Z fZ + h(Z, fZ)− AwZZ +∇⊥
Z wZ = ϕ(∇Nθ

Z Z − g(Z,Z)grad ln f̃)

+Bh(Z,Z) + Ch(Z,Z)

∇Z fZ + h(Z, fZ)− AwZZ +∇⊥
Z wZ = f ∇Nθ

Z Z + w∇Nθ
Z Z

−g(Z,Z)w(grad ln f̃) (4.3.40)

+Bh(Z,Z) + Ch(Z,Z)

elde edilir. (4.3.40) nin normal kısmı alınırsa

h(Z, fZ) +∇⊥
Z wZ = w∇Nθ

Z Z − g(Z,Z)w(grad ln f̃) + Ch(Z,Z) (4.3.41)

bulunur. Buradan

g(∇⊥
Z wZ,wX) = −g(h(Z, fZ), wX) + g(w∇Nθ

Z Z,wX)

−g(Z,Z)g(w(grad ln f̃), wX) + g(Ch(Z,Z), wX)

yazılabilir. (4.1.14) ve (1.3.10) den

g(∇⊥
Z wZ,wX) = −g(h(Z, fZ), wX)− (sin2 θ)X(ln f̃)g(Z,Z)

+g(ϕh(Z,Z), ϕX)

= −g(h(Z, fZ), wX)− (sin2 θ)X(ln f̃)g(Z,Z)

+g(h(Z,Z), X) + η(h(Z,Z))η(X)

= −g(h(Z, fZ), wX)− (sin2 θ)X(ln f̃)g(Z,Z) (4.3.42)

elde edilir. (4.3.42), (4.3.39) de yerine yazılarak

X(ln f̃)g(Z,Z) = (sin2 θ)X(ln f̃)g(Z,Z)

yani

(cos2 θ)X(ln f̃) ‖Z‖2 = 0

bulunur. Öyleyse θ = π
2

veya X(ln f̃) = 0 dır. Nθ bir özgün slant altmanifold

olduğundan θ 6= π
2

dir. Dolayısıyla X(ln f̃) = 0, ∀X ∈ Γ(TN⊥), olmak zorundadır.

Bu ise f̃ nin sabit olduğunu verir ve ispat tamamlanır.
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Teorem 4.3.11.
(
M,ϕ, ξ, g

)
Lorentzian parakosimplektik manifoldunun ξ ∈ Γ(TNθ)

olacak şekilde bir M = Nθ ×f̃ N⊥ özgün anti-slant warped çarpım altmanifoldu

yoktur.

İspat. Kabul edelim ki M Lorentzian parakosimplektik manifold ve M = N⊥×f̃ Nθ

deM nin ξ ∈ Γ(TNθ) olacak şekilde bir özgün anti-slant warped çarpım altmanifoldu

olsun. X ∈ Γ(TN⊥), Z ∈ Γ(TNθ) alalım. Bu durumda Gauss-Weingarten formülleri,

(4.1.1), (4.1.2) ve Lemma 1.2.1 kullanılarak

∇X ϕZ = ϕ∇X Z

∇X fZ +∇X wZ = ϕ∇X Z + ϕh(X,Z)

∇X fZ + h(X, fZ)− AwZ X +∇⊥
X wZ = f∇X Z + w∇X Z

+Bh(Z,X) + Ch(Z,X)

fZ(ln f̃)X + h(X, fZ)− AwZ X +∇⊥
X wZ = Z(ln f̃)wX +Bh(Z,X)

+Ch(Z,X) (4.3.43)

elde edilir. (4.3.43) in normal kısımları birbirine eşitlenirse

h(X, fZ) +∇⊥
X wZ = Z(ln f̃)wX + Ch(Z,X) (4.3.44)

bulunur. Öyleyse (4.3.7) den

g(∇⊥
X wZ,wX) = Z(ln f̃)g(wX,wX) + g(Ch(Z,X), wX) (4.3.45)

yazılabilir.

Benzer şekilde

∇Z ϕX = ϕ∇Z X

∇Z wX = ϕ∇Z X + h(Z,X)

−AwX Z +∇⊥
Z wX = Z(ln f̃)wX +Bh(Z,X) + Ch(Z,X) (4.3.46)

dir. Bu son eşitliğin normal kısımları birbirine eşitlenirse

∇⊥
Z wX = Z(ln f̃)wX + Ch(Z,X) (4.3.47)
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olur. Böylece (4.3.7), (4.3.44) ve (4.3.47) dan

g(∇⊥
X wZ,wX) = g(∇⊥

Z wX,wX)

elde edilir. Buradan N⊥ in anti-invaryant olduğu gözönüne alınarak Lemma 1.2.1,

(1.3.10) ve (1.3.35) den

g(∇⊥
X wZ,wX) = g(∇⊥

Z wX,wX) = g(∇Z wX,wX)

= g(∇Z ϕX,ϕX) = g(ϕ∇Z X,ϕX)

= g(∇Z X,X) + η(∇Z X)η(X)

= Z(ln f̃)g(X,X) (4.3.48)

bulunur. (4.3.48), (4.3.45) da yerine yazılırsa

Z(ln f̃)g(X,X) = Z(ln f̃)g(wX,wX) + g(Ch(Z,X), wX)

olur. Burada (1.3.10) ve (4.1.14) kullanılarak

Z(ln f̃)g(X,X) =
(
sin2 θ

)
Z(ln f̃)g(X,X) + g(ϕh(Z,X), ϕX)

=
(
sin2 θ

)
Z(ln f̃)g(X,X)

+g(h(Z,X), X) + η(h(Z,X))η(X)

=
(
sin2 θ

)
Z(ln f̃)g(X,X)

yani

(cos2 θ)Z(ln f̃) ‖X‖2 = 0

bulunur. Öyleyse θ = π
2

veya Z(ln f̃) = 0 dır. Nθ bir özgün slant altmanifold

olduğundan θ 6= π
2

dir. Dolayısıyla Z(ln f̃) = 0, ∀Z ∈ Γ(TNθ), dır. Bu ise f̃ nin

sabit olduğunu verir ve ispat tamamlanır.
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4.4 Lorentzian Para-Sasakian Manifoldların biharmonik

Altmanifoldları

Bu kısımda Lorentzian para-Sasakian uzay formların Biharmonik altmanifoldları

için bazı karakterizasyonlar verilecektir.

Teorem 4.4.1.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian uzay form ve M de M

nin m-boyutlu bir altmanifoldu olsun. M nin bir biharmonik altmanifold olması için

gerek ve yeter şart  2 iz A∇⊥
(−)

H (−) + m
2
grad(|H|2) = 0

−∆⊥H + iz B(−, AH−)−mH = 0
(4.4.1)

şartlarının sağlanmasıdır. Burada B ve H sırasıyla M altmanifoldunun ikinci temel

formunu ve ortalama eğrilik vektör alanını göstermektedir.

İspat. M ninm−boyutlu birM altmanifoldunu ve i : M →M izometrik immersiyo-

nunu göz önüne alalım. (1.1.17) eşitliği kullanılarak i izometrik immersiyonunun

tensiyon alanı

τ(i) = mH

şeklinde yazılır. {Xj}m
j=1, p ∈ M noktasında M altmanifoldunun bir lokal geodezik

çatısı olmak üzere (1.1.27) den i izometrik immersiyonunun bitensiyon alanı

τ2(i) = −∆(τ(i))− iz RM(di(−), τ(i))di(−)

=
m∑

j=1

εj

{
∇i

Xj
∇i

Xj
τ(i)−∇i

∇M
Xj Xj

τ(i)
}

−
m∑

j=1

εjR(di(Xj), τ(i))di(Xj)

= m

{
m∑

j=1

εj ∇Xj
∇Xj

H −
m∑

j=1

εjR(Xj, H)Xj

}
(4.4.2)

bulunur. M bir Lorentzian para-Sasakian uzay form olduğundan

R(Xj, H)Xj = g(H,Xj)Xj − g(Xj, Xj)H = −H (4.4.3)
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dır. Bu son eşitlik ve Gauss-Weingarten formülleri kullanılarak (4.4.2) den

τ2(i) = m

{
m∑

j=1

εj ∇Xj

(
−AH Xj +∇⊥

Xj
H
)

+mH

}

= m
m∑

j=1

εj

(
−∇Xj

AH Xj −B(Xj, AH Xj)

−A∇⊥Xj
H Xj +∇⊥

Xj
∇⊥

Xj
H
)

+m2H

= −m
(
∆⊥H + iz B(−, AH(−))

+ iz A∇⊥
(−)

H (−) + iz∇(−)AH (−)−mH
)

(4.4.4)

elde edilir. Şimdi iz∇(−)AH (−) ifadesini hesaplayalım:

iz∇(−)AH (−) =
m∑

j=1

εj

(
∇Xj

AH Xj

)
=

m∑
j,k=1

εj ∇Xj
(εkg(AH Xj, Xk)Xk)

=
m∑

j,k=1

εj Xj(εkg(AH Xj, Xk))Xk

=
m∑

j,k=1

εj Xj (εkg(B(Xj, Xk), H))Xk

=
m∑

j,k=1

εj Xj

(
εkg(∇Xk

Xj, H
)
)Xk

=
m∑

j,k=1

εj {εk

[
g(∇Xj

∇Xk
Xj, H)Xk)

+g(∇Xk
Xj,∇Xj

H)Xk

]
}

=
m∑

j,k=1

εj {εk

[
g(∇Xj

∇Xk
Xj, H)Xk)

+g(B(Xj, Xk),∇⊥
Xj
H)Xk

]
}

=
m∑

j,k=1

εj {εk

[
g(∇Xj

∇Xk
Xj, H)Xk)

+g(B(Xj, Xk),∇⊥
Xj
H)Xk

]
}

=
m∑

j,k=1

εj {εk

[
g(∇Xk

∇Xj
Xj, H)Xk)

+g(R(Xj, Xk)Xj, H)Xk)
]
} (4.4.5)

+
m∑

j,k=1

εj

{
εkg(A∇⊥Xj

H Xj, Xk)Xk

}
.

168



Burada Gauss formülü kullanılarak
m∑

j,k=1

εj

{
εkg(∇Xk

∇Xj
Xj, H)Xk)

}
=

m∑
j,k=1

εj

{
εkg(∇Xk

(
∇Xj

Xj +B(Xj, Xj)
)
, H)Xk)

}
=

m∑
j,k=1

εj

{
εk g(∇Xk

B(Xj, Xj), H)Xk

}
= m

m∑
k=1

εk g(∇Xk
H,H)Xk

=
m

2

m∑
k=1

εk Xk (g(H,H))Xk

=
m

2

m∑
k=1

εk g(grad |H|2 , Xk)Xk

=
m

2
grad |H|2 (4.4.6)

bulunur. Ayrıca M bir Lorentzian para-Sasakian uzay form olduğundan

m∑
j,k=1

εj

{
εk g(R(Xj, Xk)Xj, H)Xk

}
=

m∑
j,k=1

εj {εk g(g(Xk, Xj)Xj − g(Xj, Xj)Xk, H)Xk}

= 0 (4.4.7)

dır. (4.4.6) ve (4.4.7) eşitlikleri (4.4.5) de yerine yazılırsa

iz∇(−)AH (−) =
m

2
grad

(
|H|2

)
+ iz A∇⊥

(−)
H (−) (4.4.8)

elde edilir. Böylece (4.4.4) ve (4.4.8) den

τ2(i) = −m
(
∆⊥H + iz B(−, AH(−)) + 2 iz A∇⊥

(−)
H (−) +

m

2
grad

(
|H|2

)
−mH

)
olur. Bu durumda τ2(i) bitensiyon alanının teğet ve normal bileşenleri sırasıyla (τ2(i))

> = −m
(
2 iz A∇⊥

(−)
H (−) + m

2
grad

(
|H|2

))
(τ2(i))

⊥ = −m
(
∆⊥H − iz B(−, AH(−))−mH

) (4.4.9)

şeklindedir. M nin bir biharmonik altmanifold olması için gerek ve yeter şart τ2(i) =

0 olmasıdır. Öyleyse (4.4.9) den (4.4.1) biharmonik denklemine ulaşılır ve ispat

tamamlanır.
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Sonuç 4.4.1.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian uzay form ve M de M nin

∇⊥H = 0 olacak şekilde m-boyutlu bir altmanifoldu olsun. Bu durumda M nin bir

biharmonik altmanifold olması için gerek ve yeter şart

iz B(−, AH(−)) = mH (4.4.10)

olmasıdır.

İspat. ∇⊥H = 0 ise ∆⊥H = 0 ve grad |H|2 = 0 dır. Öyleyse (4.4.1) biharmonik

denklemi (4.4.10) eşitliğine indirgenir ve ispat tamamlanır.

Teorem 4.4.2.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian uzay form ve M de M nin

boy M = m 6= 4 olacak şekilde bir pseudo-umbilik altmanifoldu olsun. Bu durumda

M nin bir biharmonik altmanifold olması için gerek ve yeter şart

|H|2 = sabit ve ∆⊥H = m
(
|H|2 − 1

)
H

olmasıdır.

İspat. M bir pseudo-umbilik altmanifold olduğundan

AH = |H|2 I (4.4.11)

dır. Buradan {Xj}m
j=1, p ∈ M noktasında M altmanifoldunun bir lokal geodezik

çatısı olmak üzere (4.4.8) ve (4.4.11) den

iz A∇⊥
(−)

H (−) =
m∑

j=1

εj

(
∇Xj

AH Xj

)
− m

2
grad

(
|H|2

)
=

m∑
j=1

εj

(
∇Xj

(
|H|2 Xj

))
− m

2
grad

(
|H|2

)
=

m∑
j=1

εj

(
Xj

(
|H|2)Xj

))
− m

2
grad

(
|H|2

)
= grad

(
|H|2

)
− m

2
grad

(
|H|2

)
=

(
1− m

2

)
grad

(
|H|2

)
(4.4.12)
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elde edilir. Diğer taraftan (4.4.11) den

iz B(−, AH−) =
m∑

j=1

εj B(Xj, AH Xj)

= |H|2
m∑

j=1

εj B(Xj, Xj)

= m |H|2H (4.4.13)

olur. (4.4.12) ve (4.4.13), (4.4.1) biharmonik denkleminde yerine yazılırsa 2
(
1− m

2

)
grad

(
|H|2

)
+ m

2
grad(|H|2) = 0

−∆⊥H +m |H|2H −mH = 0

yani  (4−m) grad
(
|H|2

)
= 0

−∆⊥H +m
(
|H|2 − 1

)
H = 0

(4.4.14)

elde edilir. m 6= 4 olduğundan (4.4.14) den grad
(
|H|2

)
= 0 yani |H|2 =sabit ve

∆⊥H = m
(
|H|2 − 1

)
H olur. Böylece ispat tamamlanır.

Sonuç 4.4.2.
(
M,ϕ, ξ, g

)
bir Lorentzian para-Sasakian uzay form ve M de M nin

ortalama eğrilik vektör alanı paralel olan bir pseudo-umbilik altmanifoldu olsun. Bu

durumda M nin minimal olmayan bir biharmonik altmanifold olması için gerek ve

yeter şart |H|2 = 1 olmasıdır.

İspat. Eğer M altmanifoldunun ortalama eğrilik vektör alanı paralel ise ∇⊥H =

0 dır. Öyleyse Sonuç (4.4.1) den M nin bir biharmonik altmanifold olması için

gerek ve yeter şart (4.4.10) eşitliğinin sağlanmasıdır. Bu durumda {Xj}m
j=1, p ∈ M

noktasında M altmanifoldunun bir lokal geodezik çatısı olmak üzere (4.4.10) dan

m∑
j=1

εj B(Xj, AH Xj) = mH (4.4.15)

yazılır. Diğer taraftan M bir pseudo-umbilik altmanifold olduğundan (4.4.11),

(4.4.15) da yerine yazılarak

mH
(
|H|2 − 1

)
= 0

elde edilir. Böylece ispat tamamlanır.
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