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Onur Sozu

Doktora Tezi olarak sundugum “Lorentzian Hemen Hemen Parakontakt Manifold-
larin Altmanifoldlar1 ve Biharmoniklikleri” baglikli bu ¢aligmanin bilimsel ahlak
ve geleneklere aykir1 diisecek bir yardima bagvurmaksizin tarafimdan yazildigini ve
yararlandigim biitiin kaynaklarin, hem metin i¢cinde hem de kaynakcada yontemine

uygun bicimde gosterilenlerden olustugunu belirtir, bunu onurumla dogrularim.
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Doktora tezi olarak hazirlanan bu ¢aligma dort boliimden olugmaktadir. Birinci
boliim diger boliimlerin daha iyi anlagilabilmesi i¢in baz1 temel kavramlara ayrildi.
Diger boliimler ise tezin orjinal kisimlaridir. Birinci béliimde manifoldlar arasindaki
harmonik ve biharmonik dontigiimler, biharmonik altmanifoldlar, biharmonik egriler,
semi-Riemann manifoldlar, Lorentzian hemen hemen parakontakt manifoldlar ve
altmanifoldlar ile ilgili temel tanim ve teoremler ele alindi.

Tkinci boliim Lorentzian para-Sasakian manifoldlar iizerindeki biharmonik egriler
caligildi. Bu boliimde 6ncelikle n-boyutlu (n > 4) konformal flat, kuasi-konformal
flat  ve konformal simetrik Lorentzian para-Sasakian manifoldlarim  S}(1)
birim Lorentzian kiiresine lokal olarak izometrik oldugu ifade edilerek 4-boyutlu
Lorentzian para-Sasakian manifoldlar iizerindeki spacelike ve timelike egriler icin

Frenet formiilleri verildi. Daha sonra 4-boyutlu konformal flat, kuasi-konformal flat



ve konformal simetrik Lorentzian para-Sasakian manifoldlarin sirasiyla, spacelike ve
timelike egrileri i¢in biharmonik denklemler elde edildi. Son olarak S{(1) Lorentzian
birim kiiresi tizerindeki spacelike ve timelike egrilerin biharmonik olmas: i¢in gerek
ve yeter sartlar incelenerek elde edilen biharmonik denklemlerin bazi 6zel durumlar
icin ¢oziimleri irdelendi ve bu tip egrilerin varhgi arastirildi.

Uciineii boliimde Lorentzian hemen hemen parakontakt manifoldlarm invaryant,
non-invaryant hiperytizeyleri ve Lorentzian para-Sasakian manifoldlarin biharmonik
hiperytizeyleri incelendi. Bu boliimde ilk olarak hemen hemen parakontakt manifold-
larin, karakteristik vektor alaninin hiperytizeye ait olmamasi durumunda non-invar-
yant hiperyiizeyleri ele alinarak bu tip hiperytizeylerin hemen hemen parakontakt
yapidan indirgenen bir hemen hemen carpim yapisina sahip oldugu gosterildi. Daha
sonra afin kosimplektik ve normal hemen hemen parakontakt manifoldlarin invaryant
ve non-invaryant hiperytizeyleri i¢in bazi karakterizasyonlar verildi. Ayrica Lorentzian
hemen hemen parakontakt manifoldlarin, karakteristik vektor alaninin hiperytizeye
ait olmamasi durumunda non-invaryant hiperyiizeylerinin bir hemen hemen ¢arpim
metrik manifoldu oldugu gosterildi ve Lorentzian para-Sasakian manifoldlarin, bu
tip hiperytizeylerinin ise bir lokal ¢arpim manifoldu olmasi i¢in gerek ve yeter sartlar
elde edildi. Bu boliimde incelenen hiperyiizeylere 6rnekler verildikten sonra Lorentz
para-Sasakian manifoldlarin spacelike ve timelike hiperyiizeylerinin biharmonik olma-
st i¢in gerek ve yeter sartlar aragtirildi.

Dordiincti boliimde Lorentzian hemen hemen parakontakt manifoldlarin slant
ve semi-slant altmanifoldlar1 tamtilarak bu altmanifoldlara érnekler verildi. Ozel
olarak manifoldun Lorentzian parakosimplektik ve Lorentzian para-Sasakian olmasi
durumunda semi-slant altmanifoldlarin taniminda yer alan distribiisyonlarin integral-
lenebilirlik sartlari incelendi. Ayrica Lorentzian parakosimplektik manifoldlarin
warped carpim, warped ¢arpim semi-slant ve warped ¢arpim anti-slant altmanifoldlari
ele alinarak bazi 6zel durumlarda bu altmanifoldlarin yoklugu ile ilgili sonuglar elde
edildi. Bu boliimde son olarak Lorentzian para-Sasakian uzay formlarin biharmonik

altmanifoldlar: incelendi.

ANAHTAR KELIMELER: Harmonik déniigiim, Biharmonik déniigiim, Biharmo-



nik altmanifold, Lorentzian hemen hemen parakontakt manifold, Lorentzian parako-
simplektik manifold, Lorentzian para-Sasakian manifold, invaryant hiperytizey, Non-
invaryant hiperyiizey, Invaryant altmanifold, Anti-invaryant altmanifold, Slant altma-
nifold, Semi-slant altmanifold, Semi-invaryant altmanifold, Warped ¢arpim, Warped

carpim semi-slant altmanifold, Warped ¢arpim anti-slant altmanifold.
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This study which is designed as a philosophy doctoral thesis covers four chapter.
In the first chapter we give some basic concepts such as harmonic and biharmonic
maps between Riemannian manifolds, nonexistence theorems for biharmonic subma-
nifolds, biharmonic curves, semi-Riemannian manifolds, Lorentzian almost paracon-
tact manifolds and their submanifolds for the rest of the thesis that readers can easily
understand. The other chapters are the original parts of this thesis.

The second chapter is devoted to the biharmonic curves in Lorentzian para-Sasa-
kian manifolds. In this chapter firstly by expressing the fact that n-dimensional
(n > 4) conformal flat, quasi-conformal flat and conformal symmetric Lorentzian
para-Sasakian manifolds are locally isometric to Lorentzian unit sphere S7(1), we
give Frenet formulas for spacelike and timelike curves in 4-dimensional Lorentzian

para-Sasakian manifolds. After then we obtain biharmonic equations for spacelike

v



and timelike curves in 4-dimensional conformal flat, quasi-conformal flat and confor-
mal symmetric Lorentzian para-Sasakian manifolds. Moreover, by investigating the
necessary and sufficient conditions for spacelike and timelike curves in a Lorentzian
sphere S} (1) to be biharmonic, we examine the solutions of the obtained biharmonic
equations in some special cases. So we show the existence of such curves.

In the third chapter we study the invariant and non-invariant hypersurfaces
of Lorentzian paracontact manifolds and biharmonic hypersurfaces of Lorentzian
para-Sasakian manifolds. We firstly investigate the non-invariant hypersurfaces of
almost paracontact manifolds when the characteristic vector field of the manifold
does not belong to the hypersurface and show that such hypersurfaces admit an
almost product structure induced by the almost paracontact structure of the ambient
manifold. After then some characterizations on the invariant and non-invariant
hypersurfaces of affinely cosymplectic and normal almost paracontact manifolds
are given. We prove that a non-invariant hypersurface of a Lorentzian almost
paracontact manifold with the characteristic vector field nowhere tangent to the
hypersurface is an almost product metric manifold. We also investigate the necessary
and sufficient conditions for a non-invariant hypersurface of a Lorentzian para-Sasa-
kian manifold with the characteristic vector field nowhere tangent to the hypersurface
to be locally product manifold. Moreover we give some examples for the hypersurfaces
which are studied in this chapter and study the biharmonic spacelike and timelike
hypersurfaces of Lorentzian para-Sasakian manifolds.

In the fourth chapter we introduce the slant and semi-slant submanifolds of
Lorentzian paracontact manifolds and give examples. In special we investigate the
integrability conditions for the distributions involved in the definition of a semi-slant
submanifold when the ambient manifold is a Lorentzian paracosymplectic manifold
and a Lorentzian para-Sasakian manifold, respectively. We also study the warped
product, warped product semi-slant and warped product anti-slant submanifolds
of Lorentzian paracosymplectic manifolds and give some nonexistence theorems for
such submanifolds in some special cases. In this chapter we finally investigate the

biharmonic submanifolds of Lorentzian para-Sasakian space forms.
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GIRIS

Biharmonik fonksiyonlar teorisi, ytz elli yila yakindir, matematigin ve fizigin
farkli alanlarinda caligilan kapsaml bir konudur. Biharmonik fonksiyonlar, 1862 de
Maxwell ve Airy tarafindan fizikteki elastikiyet (elasticity) teorisinin bir matematiksel
modelini tamimlamak amaciyla galigilmaya baglandi. Cok harmonik (Poly-harmonic)
fonksiyonlar teorisi ise daha sonralar1 E. Almansi, T. Levi-Civita ve M. Nicolescu
tarafindan geligtirildi. Son zamanlarda R. Caddeo, L. Vanhecke ([1], [2]), L.Sario ve
daha pek ¢ok aragtirmaci [3] Riemann manifoldlar tizerindeki biharmonik fonksiyon
lar1 inceleyerek konuyu diferensiyel geometri alaninda gelistirdi ve tartigmaya acti.

Temel olarak iki farkli arastirma alanina ayrilabilen biharmonik dontisiimler
teorisine olan ilgi son on yilda giderek artti. Bir taraftan diferensiyel geometri bakis
agisiyla ornekler ve siniflandirmalar insa edilmesi dikkat gekerken; diger taraftan
biharmonik doniigtimler dérdiincii mertebeden giiglii bir eliptik semi-lineer kismi di-
feransiyel denklemin ¢oziimleri oldugundan kismi diferansiyel denklemler acisindan
da analitik yoniiyle incelenmektedir.

Riemann manifoldlar1 arasinda tanimlanan diferensiyellenebilir bir ¢ : M — N
déniisimi eger E(p) = 3 [, |dg|” v, ile verilen enerji fonksiyonelinin kritik noktas:
ise harmonik doniigtim olarak adlandirilir. Enerji i¢cin Euler-Lagrange denklemi
T(¢) = iz Vdy ile tanimlanan tensiyon alaninin sifir olmasi ile karakterize edilir
[4].

Benzer bakig agisiyla bir (N, h) Riemann manifolduna tamimlanan Riemann
immersiyonlarin uzayr Imm(M, N) ile gosterilecek olursa, eger bir ¢ : (M, ¢*h) —
(N, h) € Imm(M, N') Riemann immersiyonu V(¢) = % [ v+, hacim fonksiyonelinin
bir kritik noktasi ise ¢ ye minimal dontigiim denir. Hacim ile birlesen Euler-Lagrange
denklemi H ortalama egrilik vektor alaninin sifir olmasi ile karakterize edilir [5].

Bir Riemann immersiyonun tensiyon alani, ortalama egrilik vektor alanina denktir.



Dolayisiyla bir Riemann immersiyonun harmonik olmasi i¢in gerek ve yeter sart
minimal olmasidir [6]. Bdylece minimal immersiyonlar1 aragtirmak i¢in harmonik
Riemann immersiyonlar incelemek yeterlidir. Biharmonik dontigiimler ise harmonik
dontigimlerin bir genellegtirmesi olarak J. Eells ve J. H. Sampson [6] tarafindan
tanimlandi.

Harmonik doniigimler ve minimal immersiyonlar i¢in sirasiyla tensiyon alaninin
ve ortalama egrilik vektor alaninin normlarinin karelerinin integrali ile elde edilen
fonksiyoneller goz 6ntine alinarak agsagidaki genellemeler yapilabilir [7]:

) Biharmonik doniisiimler, Es(p) = 1 [, 17(¢)[? v, ile tanimlanan bienerji
fonksiyonelinin kritik noktalaridir.

) Willmore immersiyonlar1 ise W () = [, (|H P+ K ) Vgep ile tanimlanan
Willmore fonksiyonelinin kritik noktalaridir. Burada K, N Riemann manifoldunun
M? altmanifolduna kisitlanmis kesit egriligidir.

Yukarida verilen varyasyonel problemler harmonik dontigiimlerin ve minimal
immersiyonlarin dogal genellestirmeleri olsalar da biharmonik Riemann immersiyon
lar1, Willmore immersiyonlarin1 kapsamaz. Boylece yapilan bu iki genelleme farkl
varyasyonel problemlerin ortaya ¢ikmasina yol acti.

Biharmonik altmanifoldlar biharmonik dontigtimlerin 6zel bir halidir. Genel
olarak, eger i : (M, p*h) — (N, h) izometrik immersiyonu biharmonik déntigiim ise
M altmanifoldu N nin biharmonik altmanifoldu olarak adlandirilir. Farkli bir bakig
acisiyla B. Y. Chen [8], Oklidyen uzaym harmonik ortalama egrilik vektor alanina
sahip altmanifoldlarim biharmonik altmanifoldlar olarak tanimladi ve Oklidyen uzaym
biitiin biharmonik altmanifoldlarim simiflandirmay: hedefledi. B. Y. Chen Oklidyen
uzayin biharmonik altmanifoldlarinin minimal oldugunu ispatladi. Eger biharmonik
doniigiimler tanimi, Oklidyen uzaya tammlanan Riemann immersiyonlarma uygulanir
ise Chen’in biharmonik altmanifoldlar tanimina ulagilir. Boylece biharmonik Riemann
immersiyonlar1 Chen’in tanimladigi biharmonik altmanifoldlarin bir genellemesi olarak
diigtintlebilir.

Riemann manifoldlar1 arasindaki bir diferensiyellenebilir ¢ : M — N doniigiimii
niin bienerji fonksiyoneli i¢in Euler-Lagrange denklemi 1986 yilinda G. Y. Jiang
([4], [9]) tarafindan 75(p) = —AT(p) — RN (dp, 7(¢))de = 0 seklinde tanmimlanda.



Bu denklemden her harmonik dontigiimiin biharmonik olacagi aciktir. Dolayisiyla
harmonik olmayan (6zgiin) biharmonik déntigiimler daha fazla ilgi ¢ekmektedir.

Harmonik dontigiimler biharmonik oldugundan biharmonik dontigtimler teorisinin
en temel sorusu hangi sartlar altinda biharmonik donitigiimlerin harmonik olacagidir.
Bu probleme ilk genel cevap G. Y. Jiang tarafindan verildi. G. Y. Jiang ([4], [9]),
bir ¢ : M — N biharmonik doniigiimii i¢in eger M kompakt, yonlendirilebilir ve N
nin Riemann egriligi Riem”™ < 0 ise ¢ doniisiimiiniin harmonik olacagimi gosterdi.
C. Oniciuc [10], eger M kompakt degilse G. Y. Jiang tarafindan ortaya konulan
bu sartin ¢ nin bir Riemann immersiyon ve 7(¢) nin sabit olmasi ek sartlariyla da
saglanabilecegini ispatladi. Ayni caligmada C. Oniciuc, boyut farki 1 oldugu zaman
yani boy M = boy N — 1 iken yukaridaki ifadelerde yer alan Riem” < 0 egrilik
sartmim Ricc™ < 0 olacak sekilde hafifletilebilecegini gosterdi.

Sabit ¢ kesit egriligine sahip bir N(¢) manifoldunun bir M altmanifoldu igin
inclusion doniiglimiiniin tensiyon alam 7(i) = mH ve bitensiyon alam (i) =
—m(AH — mcH) seklinde karakterize edilir [7]. Eger ¢ < 0 ise N(¢) manifoldunda
harmonik olmayan (6zgiin) biharmonik altmanifoldlarin varhig ile ilgili ciddi kisitla
malar sozkonusudur. Eger M kompakt ise M den N(c) ye tanimli harmonik olmayan
(6zglin) biharmonik Riemann immersiyonu yoktur. Bu durumda eger M biharmonik
ise minimaldir ([4], [9]). Eger M kompakt degil ve i : M — N(c) inclusion doniigtimii
harmonik olmayan (6zgiin) biharmonik doniigiim ise |H| sabit olamaz [10]. ¢ > 0
olmasi durumunda harmonik olmayan (6zgiin) kompakt biharmonik altmanifold
ornekleri mevcuttur.

N(c¢) Riemann manifoldunun biharmonik altmanifoldlar1 ¢aligihrken izlenen en
onemli yol bitensiyon alaninin normal ve teget bilegenlerine ayrigtirilmasidir. Bu
gergekten hareketle 2001 yilinda R. Caddeo, S. Montaldo ve C. Oniciuc ([11], [12])
i : M — N(c) inclusion doéniigiimiiniin biharmonik denklemine ulagtilar. ¢ = 0
icin B. Y. Chen ([8], [13]) ve ¢ < 0 i¢in R. Caddeo, S. Montaldo ve C. Oniciuc
[12] tarafindan 3-boyutlu bir manifoldun biharmonik M? yiizeyinin minimal oldugu
ispatlandi.

N(c) = R"™ igin bazi kismi sonuglara ulagilmig olsa da boy N > 3 ve ¢ < 0

icin harmonik olmayan (6zgiin) biharmonik altmanifoldlarin var olup olmayacag:



bilinmemektedir. N(c¢) = R™ i¢in elde edilen baz1 sonuglar agagidaki gibidir:

° R™ deki her biharmonik egri bir dogrunun agik bir pargasidir [14].

° R™ deki sonlu tipli biharmonik altmanifoldlar minimaldir [14].

° M™, R™ de bir pseudo-umbilik altmanifold olmak tizere eger m # 4 ise
M™ nin biharmonik olmasi igin gerek ve yeter sart minimal olmasidir [14].

° R*{in bir hiperyiizeyinin biharmonik olmas icin gerek ve yeter sart minimal
olmasidir [15].

o S™ kiiresinin R"*! de biharmonik olan altmanifoldu yoktur [8].

° M™, N(—1) de bir pseudo umbilik altmanifold olmak tizere m # 4 ise M
nin bir biharmonik altmanifold olmas: i¢in gerek ve yeter sart minimal olmasidir
[12].

Bu sonuclar “Genellestirilmis Chen varsaymm” olarak adlandirilan “Riem’ < 0
olacak sekildeki bir N manifoldunun biharmonik altmanifoldlar1 minimaldir” ifadesi
nin dogru oldugunu gostermektedir.

C. Oniciuc, 2002 yilinda Riemann submersiyonlarinin bitensiyon alanini hesapladi
ve Riemann immersiyonlar icin elde edilen bazi yokluk teoremlerine benzer teoremleri
ispatladi [10].

Biharmonik doniigiimler ile ilgili ilk ve en kolay ornekler Riemann manifoldlar:
tizerinde tanimh diferensiyellenebilir egrilerin biharmonikligi incelenerek verildi. Geo-
deziklerin biharmonik egriler oldugu agiktir. Dolayisiyla geodezik olmayan biharmonik
egriler 6zgiin biharmonik egriler olarak adlandirihr. B. Y. Chen ve I. Ishikawa [16]
3-boyutlu Oklidyen uzayda 6zgiin biharmonik egrilerin yoklugunu ispatladilar ve
3-boyutlu Minkowski uzayin (6zgiin) biharmonik egrilerini ssmflandirdilar. 3-boyutlu
Minkowski uzayin biharmonik egrileri ile ilgili bir diger ¢alisma da J. Inoguchi [17]
tarafindan yapildi. R. Caddeo, S. Montaldo ve P. Piu [18], bir yiizey iizerindeki
biharmonik egrileri inceleyerek Gauss egriligi pozitif olmayan bir yiizey tizerindeki
biharmonik egrilerin yiizeyin geodezikleri oldugu sonucuna ulagtilar. [11] de ise
3-boyutlu birim kiire S? {izerindeki 6zgiin biharmonik egrilerin ya geodezik egriligi 1
olan ¢emberler ya da Clifford minimal torsunun jeodezikleri olan helisler oldugu
ispatlandi. Daha sonra R. Caddeo, C. Oniciuc ve P. Piu [19], H3; Heisenberg

grubunun harmonik olmayan (6zgiin) biharmonik egrisinin bir helis oldugunu goster-



diler. Genellestirilmig Heisenberg grubunun harmonik olmayan (6zgiin) biharmonik
egrilerinin simiflandirilmasi ise D. Fetcu [20] tarafindan yapildi. A. Balmus [21] ise
S3 Berger kiiresi tizerindeki biharmonik egrilerin parametrik denklemini ifade etti.

Egriligi sifirdan kii¢iik ve sifir olan manifoldlarin harmonik olmayan (6zgiin)
biharmonik altmanifoldlarinin yoklugu, bu alandaki caligmalarin egriligi sifirdan
biiylik olan manifoldlar {izerinde yogunlagmasina sebep olmaktadir. Bu baglamda
2001 yilinda R. Caddeo, S. Montaldo ve C. Oniciuc S? kiiresinin biharmonik altmani-
foldlar i¢in tam bir smiflandirma yaptilar [11]. Bu ¢ahgmadan sonra yine aym
yazarlar tarafindan S™ kiiresinin biharmonik altmanifoldlar: ssmflandirildi [12]. Ashin-
da S™ kiiresinin harmonik olmayan (6zgiin) biharmonik altmanifoldlarima ilk 6rnek;
S”l(\%) X S”Q(\%), ny+ng = n — 1, ny # ng, genellestirilmig Clifford torsudur
([4], [9]). S™ kiiresinin harmonik olmayan (6zgiin) biharmonik hiperyiizeyi icin
bilinen yegane ornekler S™~1( \%) kiiresi ve genellegtirilmig Clifford torsudur. Boyut
farkinin 1 den biiyiik oldugu durumlar 6rnek acisindan daha zengindir. S* iin
kapali, yonlendirilebilir harmonik olmayan (6zgiin) biharmonik ytizeylerinin varlig
[12] de ispatlandi. Bu durum S?® kiiresinin aksine S* de pek ¢ok harmonik olmayan
(6zglin) biharmonik yiizeylerin varligim gosterir. Buradan hareketle A. Balmug ve
C. Oniciuc [22] S* kiiresinin bir sabit ortalama egrilikli yiizeyinin 6zgiin biharmonik
olmasi i¢in bu yiizeyin 53(\%) hiperkiiresinde minimal olmasinin gerek ve yeter sart
oldugu sonucuna ulagtilar. [23] de generic Riemann manifoldlarimin biharmonik
hiperytizeyleri incelenerek genellestirilmig Chen varsayiminin bir Einstein uzayin
total umbilik hiperyiizeyleri i¢in de gegerli oldugu gosterildi. R. Caddeo, S. Montaldo
ve C. Oniciuc [24] tarafindan 4-boyutlu uzay formlarm 6zgiin biharmonik hiperyiizey-
leri ile ilgili tam bir sitmiflandirma elde edildi.

Y. L. Ou [25] konformal biharmonik immersiyonlar: inceleyerek konformal bihar -
monik altmanifoldlar i¢in baz1 sonuglar elde etti. Hiperbolik uzaylarin biharmonik
altmanifoldlar ise [11], [12] ve [26] de ele alind1 ve baz1 karakterizasyonlara ulagild.

Bilindigi gibi Sasakian uzay formlar, sabit kesit egriligine sahip Riemann manifold-
larin bir genellestirmesi olarak goz oniine alinabilir. 3-boyutlu, basit baglantili bir
Sasakian uzay formu; SU(2) ozel iiniter grubuna, Hj Heisenberg grubuna veya

SL(2) nin evrensel értii grubuna izomorftur [27]. Ozel olarak sabit holomorfik kesit



egriligi 1 olan bir basit baglantili, 3-Sasakian uzay form S® kiiresine izometriktir. Bu
nedenle Sasakian uzay formun biharmonik egrileri ve altmanifoldlarinin aragtirilmasi
ilgi gekici hale geldi. J. Inoguchi [28], 3-boyutlu Sasakian uzay form iizerindeki
harmonik olmayan (6zgiin) biharmonik Legendre egrilerini ve Hopf silindirlerini
simiflandirdi.  T. Sasahara ise Sasakian uzay formun harmonik olmayan (6zgiin)
biharmonik Legendre ytizeylerini siniflandirarak esas uzayin 5-boyutlu birim kiire
olmasi halinde bu Legendre ylizeyleri i¢in tam gosterimler elde etti [29]. Ayrica
C. Ozgiir ve M. M. Tripathi [30] tarafindan bir a-Sasakian manifold iizerindeki bir
Legendre egrisinin biharmonik olmasi igin gerek ve yeter sartlar arastirildi.

K. Arslan, R. Ezentag, C. Murathan ve T. Sasahara ([31], [32]), kontakt manifold-
larin bir genellegtirilmesi olarak bilinen (k, x)-manifoldlarimi ele alarak 3-boyutlu
(k, p)manifoldlarinin biharmonik altmanifoldlarim ve Sasakian uzay formlarin bihar-
monik anti-invaryant altmanifoldlarmi incelediler. [33] de ise Sasakian olmayan
(K, pv)-manifoldlarim invaryant altmanifoldlarinin total geodezik oldugu ispatlandi.
Buradan Sasakian olmayan (r, ¢1)-manifoldlarin biharmonik invaryant altmanifoldla-
rinin 6zgiin olmayacagi sonucuna ulagilir.

Iyi bilinir ki bir (¢,&,m) hemen hemen kontakt yapisina sahip bir N2**! hemen
hemen kontakt manifoldu i¢in N?"*! x R iizerinde J(X, f4) = (oX — f§,n(X)4) ile
verilen bir hemen hemen kompleks J yapisi tanimlanabilir. Eger J integrallenebilir
ise (¢, &, n) hemen hemen kontakt yapisina normaldir denir. Normal kontakt metrik
manifoldlar ise Sasakian manifoldlar olarak adlandirilir [34]. Béylece Sasakian mani-
foldlar, aslinda Kaehler manifoldlarin boyutu tek olan manifoldlardaki bir benzeri
olarak goz ontline alinabilir. Dolayisiyla Sasakian manifoldlar iizerinde, biharmonik
altmanifoldlar i¢cin yapilan ¢aligmalar biharmonik altmanifoldlar teorisinin kompleks
manifoldlar {izerinde de ¢aligilabilecegini gostermektedir. Nitekim T. Sasahara [35]
de sabit ortalama egrilikli kompleks uzay formlardaki biharmonik Lagrange yiizeyleri
simflandirdi. Ozel olarak yine aym cahgmada belirsiz kompleks Oklidyen diizlemin
ortalama egrilik vektor alani lightlike (null) olan Lorentz yiizeylerine yeni 6rnekler
verilerek, B. Y. Chen ve I. Ishikawa’ nin semi-Oklidyen uzaylarm lightlike ortalama
egrilik vektor alanina sahip biharmonik ytizeyleri i¢in yaptiklar: ssmflandirma genigle-

tildi. Diger taraftan W. Zhang [36] Hopf fibrasyonunu kullanarak kompleks projektif



uzayda biharmonik reel hiperyiizeyleri ve Clifford torsu tipindeki biharmonik Lagran-
ge altmanifoldlar1 inceleyerek S?**lin biharmonik altmanifoldlar: icin yeni 6érnekler
verdi.

Oklidyen uzaylar {izerinde harmonik olmayan (6zgiin) biharmonik altmanifoldla -
rin yoklugu ile ilgili elde edilen sonuglara ragmen B. Y. Chen ve 1. Ishikawa [13]
tarafindan B (t = 1,2) semi-Oklidyen uzaylarinda, sabit ortalama egrilikli 6zgiin
biharmonik spacelike yiizey 6rnekleri verildi. Yine aym calismada semi-Oklidyen
uzaylarin lightlike (null) ortalama egrilik vektor alanina sahip biharmonik yiizeyleri
ile sabit Gauss egrilikli biharmonik yiizeyleri incelendi. I. Ishikawa ise [37] de E}
(t = 1,2) semi-Oklidyen uzaylarmda W-yiizeylerini tamitarak diizlemsel normal
konneksiyona sahip biharmonik W-ytizeyleri icin bir siniflandirmaya ulagti.

Semi-Oklidyen uzaylarda ise bazi durumlarda biharmoniklik harmonikligi yani
minimalligi gerektirmektedir. Ornegin [13] de E? (t = 1, 2) semi-Oklidyen uzaylarmin
biharmonik yiizeylerinin minimal oldugu ispatlandi. Ayrica F. Defever, G. Kaimaka-
mis ve V. Papantoniou tarafindan 4-boyutlu semi-Oklidyen uzayin kosegenlestirilebi-
lir gekil operatoriine sahip bir nondejenere biharmonik hiperyiizeyinin minimal oldu -
gu sonucuna ulagildi [38].

Semi-Riemann uzaylar ozellikle de sabit egrilikli olan de Sitter, Minkowski ve
anti de Sitter uzaylar genel gorecelilik teorisinde 6nemli bir rol oynarlar. C. Ouyang
[39] ve H. Sun [40] semi-Riemann uzaylarda biharmonik altmanifoldlar1 incelediler.
W. Zhang ise [41] de anti de Sitter uzayin 6zgiin biharmonik hiperyiizeyleri ile ilgili
ornekler verdi.

Hemen hemen kontakt manifoldlara benzer sekilde hemen hemen parakontakt
manifoldlar I. Sato tarafindan [42] da tamtildi. I. Sato tarafindan verilen tamma gore
hemen hemen parakontakt metrik yapiy1 olusturan metrik bir Riemann metriktir. T.
Adati ve K. Matsumoto [43], I. Sato tarafindan tanimlanan hemen hemen parakontakt
manifoldlarin 6zel durumlar1 olarak goz oniine alinabilecek olan para-Sasakian ve
ozel para-Sasakian manifoldlar: tanimladilar ve bu manifoldlarin geometrisini ¢aligti-
lar. 1989 yilinda ise K. Matsumoto [44], Lorentzian hemen hemen parakontakt
manifoldlar ve bu manifoldlarin 6zel bir siifi olan Lorentzian para-Sasakian manifold

tanimini verdi. Hemen hemen parakontakt metrik manifoldlar1 Lorentzian hemen



hemen parakontakt manifoldlardan ayiran en temel 6zellik Lorentzian hemen hemen
parakontakt yapiy1 olugturan metrigin bir Lorentzian metrik ve bu yapinin karakteris-
tik vektor alaninin ise bir timelike vektor alani olmasidir. Yine K. Matsumoto
tarafindan [44] de bir Lorentzian manifoldun bir Lorentzian parakontakt yapiya
sahip olmasi i¢in gerekli bazi gartlar aragtirildi. 1. Mihai ve R. Rosca [45] da K.
Matsumoto’dan bagimsiz olarak Lorentzian para-Sasakian manifoldlar: tanimladilar
ve bu manifoldlarin pek ¢ok 6zelligini incelediler. Lorentzian hemen hemen parakon-
takt manifoldlarin bir diger 6zel siifi olan Lorentzian parakosimplektik manifoldlar
ise [46] da tamtild ve diferensiyellenebilir bir manifold {izerinde Lorentzian hemen
hemen parakontakt yapinin bir tek olmadigr gosterildi.

Hemen hemen kontakt manifoldlarin hiperyiizeyleri D. E. Blair, G. D. Ludden
[47]; S. S. Eum [48]; S. . Goldberg, K. Yano [49]; G. D. Ludden [50] ve daha bir¢ok
matematikci tarafindan ¢alisildi. Hemen hemen kontakt manifoldlarin non-invaryant
hiperytizeyleri [49] da tamtilarak hemen hemen kontakt manifoldlarin non-invaryant
hiperytizeylerinin bir hemen hemen kompleks yapiya ve manifoldun kontakt formun-
dan indirgenen bir ayrik 1-forma sahip oldugu gosterildi. Yine ayni ¢aligmada hemen
hemen kontakt metrik manifoldlarin non-invaryant hiperyiizeyleri de aragtirildi.

T. Adati [51], I. Sato tarafindan tanmimlanan hemen hemen parakontakt manifold-
larin hiperyiizeylerini inceledi. Hemen hemen r-parakontakt Riemann manifoldlarin
hiperytizeyleri ve 6zel olarak invaryant hiperyiizeyleri sirasiyla [52] ve [53] de ele
alindi. H. Gill ve K. K. Dube [54] hemen hemen r-parakontakt manifoldlarin
invaryant ve non-invaryant hiperyiizeylerini ¢alisarak bu hiperytizeyler icin baz
karakterizasyonlar elde ettiler. Lorentzian hemen hemen parakontakt manifoldlarin
transversal hiperytizeyleri [55] de ele alindi.

Lorentzian hemen hemen parakontakt manifoldlarin altmanifoldlar: pek cok mate-
matik¢i tarafindan calisildi. U. C. De ve A. K. Sengupta [56] Lorentzian hemen
hemen para-Sasakian manifoldlarin CR~altmanifoldlarini inceledi. Lorentzian para-
Sasakian manifoldlarin 6zgiin semi-invaryant altmanifoldlarimin yoklugu U. C. De
ve A. A. Shaikh [57] tarafindan ispatlandi. B. Prasad [58] Lorentzian para-Sasakian
manifoldlarin semi-invaryant altmanifoldlar: tizerindeki distribiisyonlarin integrallene-

bilirlik sartlarimi aragtirdi. Lorentzian hemen hemen parakontakt ve Lorentzian



parakosimplektik manifoldlarin semi-invaryant altmanifoldlar: ise sirasiyla [59] ve
[60] de M. M. Tripathi tarafindan ¢aligild.

Kompleks diferensiyel geometride, bir altmanifold kompleks manifoldun kompleks
yapisi ile karakterize edilir. Eger altmanifoldun tanjant uzay: kompleks yap1 altinda
invaryant ise bu altmanifold holomorfik (invaryant) altmanifold olarak adlandirilir.
Eger altmanifoldun tanjant uzayimin kompleks yapi altindaki gortintiisii normal
uzaya tagimiyorsa bu durumda altmanifolda tamamen reel (anti-invaryant) altmanifold
denir. 1978 yilinda A. Bejancu [61] bir hemen hemen Hermityen manifoldun invaryant
ve anti-invaryant altmanifoldlarini iceren CR-altmanifoldlarini tanimladi. Daha
sonra bu kavram A. Bejancu ve N. Papaghiuc [62] tarafindan hemen hemen kontakt
metrik manifoldlara genigletildi ve semi-invaryant altmanifoldlar olarak adlandirilan
yeni bir altmanifold sinifi tanimlandi .

Diger taraftan slant altmanifoldlar teorisi son yirmi yilda 6nemli bir geligme
gosterdi. Kompleks geometride slant immersiyonlar 1990 yilinda B. Y. Chen tarafin-
dan ([63], [64]) holomorfik ve tamamen reel altmanifoldlarin bir genellegtirmesi
olarak tanitildi. 1996 yilinda A. Lotta [65] hemen hemen kontakt manifoldlarin slant
altmanifoldlar1 kavramini ortaya atti. K-Kontakt ve Sasakian manifoldlarin slant
altmanifoldlar1 J. L. Cabrerizo, A. Carriazo, L.M. Fernandez ve M. Fernandez ([66],
[67]) tarafindan ¢aligildi. Kenmotsu manifoldlarin slant altmanifoldlar: da [68] ve [69]
da incelendi. N. Papaghiuc [70] ise 6zgiin CR-altmanifoldlar1 ve slant altmanifoldlar:
ozel bir alt sinif olarak kabul eden semi-slant altmanifoldlar sinifini tanitt: ve Kaehler
manifoldlarin semi-slant altmanifoldlarini inceledi. Lokal Riemann ¢arpim manifold-
larm semi-slant altmanifoldlar1 H. Li ve X. Li [71] tarafindan calhsildi. Semi-slant
manifoldlari kontakt versiyonu [72] da calisildi. M. Atceken [73] hemen hemen
parakontakt Riemann manifoldlarin semi-slant altmanifoldlarini inceleyerek bazi
karakterizasyonlar elde etti.

Warped ¢arpim manifoldlar1 1969 yilinda R. L. Bishop ve B. O’Neill [74] tarafindan
tanitildi ve daha sonra pek c¢ok matematikci ve fizikci tarafindan cahisildi. Bu
manifoldlar Riemann carpim manifoldlarinin bir genellegtirmesi olarak goz ontine
almabilir. B.Y. Chen ([75], [76]) Kaehler manifoldlarin warped ¢arpim CR-altmani -

foldlarini aragtirarak CR-warped ¢arpim kavramini ortaya atti. Daha sonra I. Hasega-



wa ve I. Mihai [77] Sasakian manifoldlarin kontakt CR-warped garpim altmanifoldla-
rini inceledi. Semi-slant altmanifoldlar CR-altmanifoldlarin bir genellestirmesi olarak
diisiiniilebileceginden warped carpim semi-slant altmanifoldlar sinifi daha genel ve
geometrik acidan oldukga onemli bir simiftir. Clinkii manifoldlar tizerinde tanimli her
yap1l warped carpim semi-slant altmanifold tanimlamaya izin vermeyebilir. B. Sahin
[78] Kahler manifoldlarin warped garpim semi-slant altmanifoldlarinin yoklugunu
gosterdi. M. Atgeken [79] de lokal Riemann ¢arpim manifoldlarin warped garpim
semi-slant altmanifoldlarii inceledi. Ayrica Kenmotsu manifoldlarda ¢zgiin warped
¢arpim semi-slant altmanifoldlarin yoklugu yine M. Atceken [80] tarafindan ispatlanda.
Kosimplektik manifoldlarin bazi tipteki warped ¢arpim semi-slant altmanifoldlarinin
yoklugu da [81] de gosterildi.

Doktora tezi olarak hazirlanan bu galigma dort boliimden olugmaktadir. Birinci
boliimde, sonraki boliimlerin daha iyi bir sekilde anlagilabilmesi i¢in biharmonik
dontigtimler, semi-Riemann manifoldlar ve Lorentzian hemen hemen parakontakt
manifoldlar ile ilgili tanim ve teoremler sunuldu.

Tezin orjinal béliimleri ikinei, ti¢iineii ve dérdiineit boliimlerdir. Ikinei boliimde
4-boyutlu Lorentzian para-Sasakian manifoldlar tizerindeki 6zgiin biharmonik space-
like ve 0zgiin biharmonik timelike egriler ¢alisildi. Bu béliim dort kisitmdan olugmak -
tadir. Ikinci boliimiin ilk kismi M. Tarafdar ve A. Bhattacharyya [82] tarafindan
ispatlanan ve konformal flat, quasi konformal flat, konformal simetrik n-boyutlu
Lorentzian para-Sasakian manifoldlarin S} (1) Lorentzian birim kiiresine lokal olarak
izometrik oldugunu ifade eden bazi teoremlere ayrildi. Ikinci kisimda Minkowski
uzaylarda tanimli egriler igin J. Walrave [83] tarafindan verilen Frenet formiillerine
benzer sekilde 4-boyutlu Lorentzian para-Sasakian manifoldlar tizerinde yay-paramet-
resi ile parametrelendirilmis nondejenere egriler i¢in Frenet formiillerine yer verildi.
Ikinci béliimiin orjinal olan kismmin basladig: ficiineii kisimda konformal flat, quasi
konformal flat ve konformal simetrik 4-boyutlu Lorentzian para-Sasakian manifoldla-
rin sabit 1 egriligine sahip oldugu gergeginden hareketle bu manifoldlarin spacelike
ve timelike egrileri i¢cin biharmonik denklemler elde edildi. Dordiincii kisimda ise
konformal flat, quasi konformal flat ve konformal simetrik 4-boyutlu Lorentzian

para-Sasakian manifoldlarin S} (1) Lorentzian birim kiiresine lokal olarak izometrik
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oldugu goz 6niine alinarak S7(1) Lorentzian birim kiiresinin 6zgiin biharmonik egrileri
incelenerek bazi karakterizasyonlar elde edildi.

Uclineii boliimde hemen hemen parakontakt manifoldlarn, Lorentzian hemen
hemen parakontakt manifoldlarin ve Lorentzian para-Sasakian manifoldlarin hiperyt-
zeyleri calisildi. Bu boliim bes kisimdan olugmaktadir. Uciineii boliimiin ilk kisminda
karakteristik vektor alani hiperyiizeye ait degil iken hemen hemen parakontakt
manifoldlarin non-invaryant hiperytizeyleri incelenerek bu hiperyiizeylerin bir hemen
hemen carpim yapisina sahip olduklar gosterildi. Ikinci kisimda afin kosimplektik
ve normal hemen hemen parakontakt manifoldlarin hiperyiizeyleri caligildi. Ugiincii
kisimda Lorentzian para-Sasakian manifoldlarin non-invaryant ve invaryant hiperyii-
zeyleri incelendi. Dordiinci kisimda onceki kisimlarda tanitilan hiperytizeylere ornek-
ler verildi. Son kisimda ise Lorentzian para-Sasakian manifoldlarin sirasiyla biharmo-
nik spacelike ve biharmonik timelike hiperyiizeyleri incelenerek bu hiperytizeylerin
ozgin biharmonik olmasi i¢in gerek ve yeter sartlar aragtirildi.

Dordiincii boliimde Lorentzian hemen hemen parakontakt manifoldlarin, Lorentz-
ian parakosimplektik manifoldlarin ve Lorentzian para-Sasakian manifoldlarin altma-
nifoldlar1 ¢alisildi. Bu boliim dort kisima ayrildi. Dordiincti boliimiin ilk kisminda
Lorentzian hemen hemen parakontakt manifoldlarin slant altmanifoldlar: tanitilarak
ornekler verildi. Ikinci kisimda Lorentzian hemen hemen parakontakt manifoldlarm
semi-slant altmanifoldlari incelendi ve 6zel olarak Lorentzian parakosimplektik ve
Lorentzian para-Sasakian manifoldlarin semi-slant altmanifoldlari ile ilgili baz1 karak-
terizasyonlar elde edildi. Uciincii kisimda Lorentzian parakosimplektik manifoldlarin
warped carpim, warped carpim semi-invaryant , warped carpim semi-slant ve warped
carpim anti-slant alt manifoldlar: ¢caligildi. Dordiincti kisim ise Lorentzian para-Sasa-

kian uzay formlarin biharmonik altmanifoldlarina ayrildi.
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BOLUM 1
TEMEL KAVRAMLAR

Bu bolim ii¢ kisimdan olusmaktadir. Ik kisimda biharmonik déniigiimler, ikinci
kisimda semi-Riemann manifoldlar ve son kisimda ise Lorentzian hemen hemen

parakontakt manifoldlar ile ilgili temel tanim ve teoremlere yer verildi.

1.1 Biharmonik Doniisiimler

Bu kisimda ilk 6nce Riemann manifoldlar: arasindaki harmonik ve biharmonik doni-
siimler icin temel tanimlar verilerek bazi oOzellikleri incelenecektir. Daha sonra
ozgiin (harmonik olmayan) biharmonik déniigiimlerin yoklugu ile ilgili teoremlere

ve biharmonik egrilere yer verilecektir.

1.1.1 Riemann manifoldlar: arasindaki harmonik ve

biharmonik donitisiimler

Tanim 1.1.1. W, M ve N, C* manifoldlar olmak tzere
p: M — N
bir C* dontisum olsun. Bir W — N wvektor demetinin pull-back demeti
o'W — M
ile gosterilir ve x € M i¢in bu demet
(7' W)e = W (1.1.1)

ile tansmlanan liflere sahiptir. W — N wvektor demeti tizerindeki konneksiyon V"W

ise @ YW — M pull-back demeti tizerindeki konneksiyon V¥ ile gosterilen ve

VP T(TM) xT( 'W) — T(p'W)

(X, p%0) — Vf((cp*a):vc‘?;(x)a (1.1.2)
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ile tanimlanan tek lineer konneksiyondur. V¥ konneksiyonuna pull-back konneksiyon
denir. Burada

p'o=00p
dir [84)].
M = (M,g) ve N = (N, h) Riemann manifoldlar1 ve
p: M — N
bir C*° doniigiim olsun. ¢ nin tiirev dontisiimii de,
T*M ® ¢ 'TN = Hom(TM, o 'TN) — M

vektor demetinin bir kesiti olarak diigiiniilebilir. Hom(T M, 'TN) — M vektor
demeti, M manifoldu iizerindeki V¥ Levi-Civita konneksiyonu ve V¢ pull-back
konneksiyonundan indirgenen V konneksiyonuna sahiptir. V konneksiyonunun dp €

['(T*M ® ¢ 'TN) kesitine uygulanmasiyla ¢ doniigiimiiniin
T"M ® T*"M ® o 'TN — M
vektor demetinin bir kesiti olan ikinci temel formuna ulagilir [84].
Tamim 1.1.2. (M, g) ve (N, h) Riemann manifoldlar ve
p: M — N

bir C*° dontusum olsun. Bu durumda ¢ donisiminin ikinci temel formu, de €

L(T*M @ ¢~ 'T'N) olmak tizere Vdy ile gosterilir ve X, Y € T(TM) igin

Vdp : T(TM) x T(TM) — T(¢ 'TN)
(X,Y) — Vdo(X,Y)

Vdp(X,Y) = (Vxdp)(Y) = Vidp(Y) — dp(VYY) (1.1.3)

seklinde tanimlanar [84)].
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{z',...,x™} ve {y',...,y"}, srasiyla, (M, g) ve (N, h) Riemann manifoldlar: tizerin-

deki lokal koordinat sistemleri olsun. Bu durumda

o 0 0

(Vd(tD)ZJ Vdcp(axlﬁ axj) ¢;z] ayfy

(1.1.4)

yazilabilir. Burada

9% RO, 090y’

Py p— o, —
Vij (8xiaxﬂ' Y0k B9 i axj)

olup Ffj ve Llﬂ, sirastyla M ve N deki Christoffel sembollerini ve “” de ikinci

mertebeden kovaryant kismi tiirevi gostermektedir [84].

Onerme 1.1.1. M, N Riemann manifoldlar ve ¢ : (M,g) — (N,h) bir C

dontigtim olsun. Bu durumda ¢ nin ikinci temel formu simetriktir [84).

Ornek 1.1.1. (Altmanifoldlar) (M, g), (N,h) Riemann manifoldlar: ve
p: M — N

bir izometrik immersiyon olsun. @ *T'N pull-back demeti tejet ve normal demetinin

direkt toplama olarak
¢ 'TN=rMoVM , X=X"4+Xx*+ (1.1.5)

biciminde yazlabilir. dy tirev dontisiminin, TM ile TM nin dp altinda o= *TN
pull-back demetindeki gorintisiu olan TM yi ozdeslestirdigi dusiunilirse X,Y &
D(TM) igin

VE(dp(Y)) = VY

esitligine ulasilir. Bu durumda dp(VY) , VRY nin tanjant bileseni ve Vdp(X,Y)
ise VXY nin normal bilesenidir. Boylece Vdp(X,Y), N deki (M) immersed
altmanifoldunun B(X,Y") ile gosterilen ikinci temel formu olur. Dolayiswyla bir ¢
izometrik immersiyonun ikinci temel formunun, N deki (M) immersed altmanifoldu-

nun tkinci temel formuna esit oldugu gorilir [84)].
Tanim 1.1.3. (M™,g) , (N",h) Riemann manifoldlar ve
o: M™ — N"
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bir C* dondisim olsun. @ nin tensiyon alany 7(p) € T'(@ YT N) ile gosterilir ve
T(p) = divdp = —d*dp = iz Vdyp = f: Vdp(e;, e;) (1.1.6)
i=1
seklinde tanimlanir. Burada {eq,...,en}, M dzerinde bir ortonormal bazdir [84].
Onerme 1.1.2. (M,g), (N,h) Riemann manifoldlar: , {z*,...,2™} ve {y*,...,y"}

sraswyla M ve N tzerinde lokal koordinat sistemleri olsun. Bu durumda bir

w: M — N, C*® dontusuminin tensiyon alaminin lokal koordinatlardaki ifadesi

T(p) = 9“%0;;]'
0% 07 9™ P
= ¢ (—F— T} L)~ 1.1.7
g (axlazﬂ Y0k * B 9 g B:UJ) ( )
= AMpr 4 g(grad ¢®, grad ™)L 5 (1.1.8)

olmak tzere

0
oy
bicimindedir. Burada AM, M dizerindeki Laplasyan ve T’ f“'] ve Llﬂ, swraswyla M ve

N deki Christoffel sembolleridir [84].

7(p) = 7(»)(

Eger {z',...,2™} ve {y*,...,y"} swasiyla x € M ve ¢(z) € N noktalarmdaki
normal koordinatlar ise  noktasinda M nin Christoffel sembolleri, p(z) noktasinda
da N nin Christoffel sembolleri sifir olacagindan ¢ dontiglimiiniin  noktasindaki

tensiyon alani

=Y G = () (1.19)

ile ifade edilir.

Tanim 1.1.4. M ve N sirasiwyla m ve n boyutlu Riemann manifoldlar: , x € M ve
p: M — N
bir C™ déniisim olsun. ¢ nin enerji yogunlugu e(yp) ile gdsterilen ve
e(p) : M — [0,00)

1
v = e(p)e = Sldpal” (1.1.10)
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seklinde tanwmlanan bir C*° fonksiyondur. Burada {ei,...,en}, T M tanjant uzay

i¢in bir ortonormal baz ve |dp,|?,

’dSO:tP = Zh(d@x(ei),ds%(ei)) (1.1.11)

i=1

ile tanvmlanan Hilbert-Schmidt normudur [84).

Tanim 1.1.5. (M, g) ve (N, h) Riemann manifoldlar; D, M de bir kompakt bolge
ve

p: M — N

bir C'*° doniusium olsun. ¢ nin enerji integrali, ¢ nin enerji yogunlugunun integrali

olarak tanimlanar ve E(p; D) ile gosterilir. Yani
1
B(e:D) = [ elo), = [ ldou, (1112
D 2Jp

dir [84].

E(p; D) > 0 dir ve E(p; D) = 0 olmasi igin gerek ve yeter sart ¢ nin D iizerinde
sabit olmasidir. Eger M manifoldu kompakt ise E(p; M) yerine E(yp) gOsterimi

kullanilir. Enerji integrali sadece g ve h metriklerine baglidir.

Tanim 1.1.6. (M, g) ve (N,h) Riemann manifoldlar, ve
C*®(M,N) ={plg: M — N ,pbir C* donisim}
kiimesini gozonine alalim. o € C*°(M, N) donigimi kompakt bir D bélgesi tzerinde
E(.;D):C*(M,N)— R
ile tanmvmlanan enerji fonksiyonelinin kritik noktas: ise ¢ ye harmoniktir denir [84].
Tanim 1.1.7. M, N Riemann manifoldlar ve
p: M — N
bir C* dontsum olsun. ¢ nin bir C* varyasyonu, € > 0 olmak tizere
o: M x(—ee) — N
(z,t) — @ilx)

bigiminde tanimlanwr dyle ki oo = ¢ dir [84].
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{¢¢}, C™ olarak sadece bir t € (—¢, ) parametresine bagh C'* doéniigiimlerin bir

ailesi olarak diisliniilebilir [84].

Tanim 1.1.8. M, N Riemann manifoldlar
p: M — N

bir C* doniigim ve x € M olsun. Yx € M i¢in t — () donisimi p(xz) € N

noktasindan gecen bir C* egri tamvmlar. Bu egrinin

0

ile tanamlanan ve o~ 'T'N pull-back demetinin bir kesiti olan hiz vektéorine o, nin

varyasyon vektor alany denir [84).

Tersine ¢ TN pull-back demetinin bir kesiti olan v icin ¢ nin

pi() = expy ) (to(z))
ile tanimh bir tek olmayan {¢;} ailesi vardir [84].

Tanim 1.1.9. M, N Riemann manifoldlar, ve D, M nin kompakt bir altkimes:
olsun. Bu durumda ¢ : M — N, C* dénisiminin bir C* {p;} varyasyonu Vit
wcin M \D tzerinde oy = ¢ sartiny saghyorsa {@i} varyasyonu D i¢inde desteklenir
denir. Burada D ile D nin ici gosterilmektedir [84)].

Tanim (1.1.6) y1 bir bagka sekilde agagidaki gibi vermek miimkiindiir:

Tanim 1.1.10. (M, g) ve (N, h) Riemann manifoldlar: olsun. Bu durumda
p: M — N

C> dondisimiu M nin bitin D kompakt bolgeleri ve D i¢inde desteklenen bitin C'>
{¢i} varyasyonlar: igin
d

B (i D)l = 0 (1.1.14)

sartina saglyorsa ¢ ye bir harmonik donigim denir [84].
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Tanim 1.1.11. (M, g), (N, h) Riemann manifoldlar, , x € M ve
p: M — N

bir C> dondisiim olsun. @ 'T'N pull-back demeti tizerindeki pull-back metrik <, >

ile gosterilir ve v,w € T'(@ 'T'N) olmak tizere x € M noktasinda
<0 >,= Dy (0(a), w(x)
seklinde tanimlanar [84)].

Onerme 1.1.3. (Enerjinin Birinci Varyasyonu) ¢ : M — N, Riemann
manifoldlar: arasinda tanvmlanan bir C* donisim ve {¢:}, ¢ nin D C M kompakt
bolgesi icinde desteklenen bir C™ wvaryasyonu olsun. Bu durumda <, >, o 'TN

pull-back demeti tizerindeki pull-back metrik olmak tizere

d
EE(%;D)L&:O = —/ <v,7(p) > v, (1.1.15)
D

dir. Burada x € D ve v(x), {p:} nin

ofz) = 2200

ile tanemlanan varyasyon vektor alanider [84)].

Teorem 1.1.1. M, N Riemann manifoldlar, o : M — N bir C*° donisim ve D,
M nin bir kompakt altkimesi olsun. Bu durumda ¢ nin harmonik olmasi i¢in gerek

ve yeter sart T(p) = 0 olmasidir [84].

Tanim 1.1.12. M, N Riemann manifoldlar: ve o : M — N bir harmonik dontsium
olsun. Bu durumda 17(¢) = 0 denklemi harmonik denklem veya tensiyon alans

denklemi olarak adlandvrilur [84].

Tanim 1.1.13. M, N Riemann manifoldlar: ve
p: M — N

bir izometrik immersiyon olsun. ¢ nin ortalama egriligi (veya N deki (M) immersed

altmanifoldunun ortalama egriligi) p™ ile gosterilir ve

1 m
M_ _i2B= Ble;, e; 1.1.16
i = iz B =3Bl (1.116)
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seklinde tanwmlaniyr. Burada {e,...,en}, M de bir ortonormal baz ve B, (M)

altmanifoldunun ikinci temel formudur [84)].

Onerme 1.1.4. M, N Riemann manifoldlar, ve
p: M — N
bir izometrik immersiyon olsun. Bu durumda
7(p) = iz B = (boy M)u™ (1.1.17)

dir. Oyleyse bir izometrik immersiyonun harmonik olmasi i¢in gerek ve yeter sart

bu izometrik immersiyonun minimal olmasidur [84].

Ornek 1.1.2. (Geodezikler)

M, 1-boyutlu ve N, n-boyutlu Riemann manifoldlar: olsun. Bu durumda
o: M — N"

C* déniigiimii bir parametrik egri olarak disiniilebilir. N dizerindeki {y',...,y"}

koordinat donisimleri i¢in v = 1,...,n olmak dzere (1.1.7) esitliginden

0
— v Y
T(e) = 7(p) R
d*p? de®dp® 0
S A A S
dt? Wdt dt "oy

bulunur. Boylece R nin bir acik altkiimesinden veya S' den keyfi bir Riemann
manifolduna tanimlanan bir C* donidsumin harmonik olmasi i¢in gerek ve yeter
sart bu dontsumun yay uzunlugunun bir katy ile parametrelendirilmis bir geodezik

olmasidur sonucuna ulagilir [84).

Tanim 1.1.14. M, N Riemann manifoldlar: ve
p: M — N
bir C*° doniistim olsun. ¢ nin tensiyon alani

T(p) =iz Vdy
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olmak tizere D C M kompakt bolgesi i¢in ¢ nin bienerji integrali

Bale) = [ 1) o (11.18)

ile tansmlanar [7].

Onerme 1.1.5. (Bienerjinin Birinci Varyasyonu) M, N Riemann manifoldlar,
©: (M,g) — (N,h) bir C* dénisim ve {1}, ¢ nin D C M kompakt altkiimesi
icinde desteklenen bir C°° varyasyonu olsun. Bu durumda <, >, o 'T'N pull-back
demeti tzerindeki pull-back metrik ve A? = —iz (V¥V¥ — V), o 1 (T'N) pull-back

demetinin kesitleri uzerindek: Laplasyan olmak tizere

d

EEz(SOt;Dﬂt:o = / < 7a(p),v > Vg (1.1.19)
D

dir. Burada x € D igin v(z), {p;} nin varyasyon vektor alani; RN, N manifoldu

uzerinde RN(X,Y) = [Vx, Vy] — Vix,y] ile tanumlu egrilik operatori ve

() = —=A?(7(p)) — iz RN (dp(—), 7(¢))de(—)
dir [7].

Ispat. D, M nin kompakt bir altkiimesi; {¢+}, ¢ nin D iginde desteklenen bir
C* varyasyonu ve v € I'(¢ 'T'N) bir varyasyon vektor alani olsun. M iizerindeki

{e1,...,em} lokal ortonormal ¢atisini gézoniine alalim.

¢:Mx(—ee) — N

(l’,t) - Qb(x’t):@t(x)

fonksiyonunu ve

E=¢'TN — M x (—¢,¢)

vektor demetini tanimlayalim. E demeti iizerindeki pull-back konneksiyon V¢ ile
gosterilsin. M manifoldu {izerindeki bir X vektor alan1 M x (—¢,¢) lizerinde bir

vektor alani olarak diigiiniilebileceginden

0

5, X1=0 (1.1.20)
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olur. e;, % € I'(TM) icin Onerme 1.1.1 ve (1.1.20) esitliginden
0 0
¢ dole) — Ve d —d —e]) =
V% gb(eZ) Ve,- qb(at) gb([atvez]) O

ve

V‘%d(b(ei) = v;ﬁdd)(%) (1.1.21)

yazilabilir. (1.1.21) egitliginin her iki tarafinin e; yoniindeki tiirevi alinirsa

0
VeV, dole;) = VEVEdo(5) (1.1.22)
ot
elde edilir. Ayrica yine (1.1.21) esitliginden
0
V% dp(VMe;) = VL, _—¢ (1.1.23)
ER ' e % Ot
yazilabilir. Diger taraftan
d 1d
%Ez(%;Dﬂt:o Y . < 7(pe), T(p1) > vgli=o
= / < V%), m(0r) > Vgli=0
D ot
= [ <3 VLT — daV )} T(2) > vyl
D=
= [ <V Vidae) o) > lng
D =
_/ <3V dp( T e, T(@) > vylimo (1.1.24)
D =
dir.
99
RN(Ev d(b(el))d(b(el) = v%vﬁl\fb(el)dqﬁ(el) - vé\;(e,)v%d(b(el) o vf\%yd(ﬁ(ei)]dgb(ei)
= V% Vido(e:) — VIV, do(e:)
ot ot
oldugundan
0
RN(a—f, de(e;))dg(e;) + VeV dp(e;) = V% Ve dg(e;) (1.1.25)
ot ot

esitligine ulagilir. Boylece (1.1.22), (1.1.23 ), (1.1.25) esitlikleri (1.1.24) denkleminde
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yerine yazilacak olursa

%Eg(gpt;D)\t:o = /{< {V¢V¢ ( ) - V@Me ?;f} (o) >

+<ZRN L de(e))do(e:), T(0r) >} vglimo

- /D<Z{(V¢)2(ei,ei)%+RN( ¢ do(e;))do(es)}, T(¢r) > vgli=o
- /D < —A7(p) — 2R (dp(=), ()i (=) v > v,

= / < ma(p),v > v,
D

elde edilir ve ispat tamamlanir. O]

Tanim 1.1.15. (Bitensiyon Alani)
M ve N Riemann manifoldlari, ¢ : (M, g) — (N, h) bir C* déniigim olsun. ¢ nin

bitensiyon alani T9(p) ile gosterilir ve

7o) = —A%(7(p)) — iz RY (dp(=), 7(¢))deo(—) (1.1.26)
seklinde tanimlanr [7].

Tanim 1.1.16. (Biharmonik Denklem ve Biharmonik Dontsim)
M, N Riemann manifoldlars ve ¢ : (M,g) — (N, h) bir C* déniisim olsun. Bu

durumda
To(p) = =A% (7(p)) — iz RY (dp(—), () )dp(~) = 0 (1.1.27)
egitligine @ dontgiminin biharmonik denklemi ve m5(p) = 0 denklemini saglayan ¢

dondisimine de biharmonik donigim denir [7].

Boylece her harmonik doniisimin biharmonik olacagr aciktir. Ancak tersi her
zaman dogru degildir. Dolayisiyla harmonik olmayan (non-harmonik) biharmonik
donitigtimler 6zel bir oneme sahiptir. Boyle dontigiimleri 6zgiin biharmonik dontigtimler
olarak adlandiracagiz. (N, h) manifoldunun bir semi-Riemannian manifold olmasi
durumunda da ¢ : (M, g) — (N, h) doniigiimiiniin bienerjisi ve biharmonik denklemi

yukarida verilen gekilde tanimlanir [84].
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M kompakt manifold olmak tizere ¢ : (M™,g9) — R" doniigimiinii gdzoniine
alalim. Bu durumda {xy, zo, ...,z } ve {y1,y2, ..., yn } sirasiyla M ve R™ iizerindeki

koordinat sistemleri olmak tizere ¢ nin tensiyon alani

0
T(p) = T(%D)Wa—y7
Pl k&ﬂ) d
oxtoxI 9 Qak’ Oy

— gii(

0
— M vy~
AT (e )ay,y
= AM(p) (1.1.28)
dir. Buradan
1 ) 1
Esy(p) = 3/, IT(0)[Fvg = 3/, < 71(p), 7(p) > v,
1

- §/M<AM(90),AM(<,0)>Ug:%/M’AM(g0)’2vg (1.1.29)

elde edilir. ¢ déntigiimiiniin bir X € x(R") vektor alani yoniindeki 1-parametreli

v = @ + tX varyasyonunu gozoniine alirsak

d 1d

th2(80t)|t:0 2t /., < A% (1), A (p1) > vgli=o

= /<V(%AM(S0t)aAM(SOt)>Ug|t=0
M

_ / < AX, AV (g) > v,
M

= / < X, A%(p) > v, (1.1.30)

olur. Boylece ¢ : (M™, g) — R" déntigiimiiniin biharmonik olmasi igin gerek ve yeter
sart A?(p) = 0 esitliginin saglanmasidir. Ek olarak ¢ : (M™,g) — R" doniigiimii

bir izometrik immersiyon ise H ortalama egrilik vektorii olmak tizere
A(p) =—mH (1.1.31)

Beltrami denklemi kullanihrsa “p : (M, g) — R"™ dontigiimiintin biharmonik olmasi

Y

i¢gin gerek ve yeter sart AH = 0 olmasidir ” sonucuna ulagihir. AH = 0 ise M ye

biharmonik altmanifold denir [7].
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1 : M — R"™ kanonik izdiigiim dontistimiinii goz ontine alahm. H, M nin ortalama

egrilik vektorii olmak tizere

1 1 1

oldugundan M nin R" Oklidyen uzayinm bir biharmonik altmanifoldu olmasi icin
gerek ve yeter sart 79(i) = 0 yani i : M — R" izometrik immersiyonun biharmonik
doniigim olmasidir. Bir izometrik immersiyonun minimal olmasi i¢in gerek ve yeter
sart bu doniigimiin harmonik olmasidir [84]. Dolayisiyla agikar olarak minimal

altmanifoldlar biharmoniktir.

1.1.2 Yokluk teoremleri

Bu kisimda biharmonik dénitigtimlerin harmonik oldugu yani 6zgiin (harmonik olmayan)

biharmonik dontigiimlerin tanimlanamadigr durumlar incelenecektir.

Teorem 1.1.2. ¢ : (M,g) — (N,h) bir C* dénisim olsun. Eger M kompakt,
yonlendirilebilir ve Riem™ < 0 ise ¢ nin biharmonik olmasi icin gerek ve yeter sart

harmonik olmasidir [10].
Ispat. ¢ : (M, g) — (N, h) déniigiimiiniin tensiyon alam 7(p) olmak iizere

SARP = A <7(e)7(0) >
— —%ZVd(< (), () >) (e, €;)
— ——Z{V“’d<r 7(p) >)(e:) — d(< (), 7(0) >)(V2ey)}

= ~3 Z{Vﬁ-(ei(< 7(9), 7(9) >)) = (Vole) (< 7(9), 7(¢) >)}

yazilir. Buradan

FAT@I = = DAVE(E Vir)1(e) ) < Vey, (o). 7(6) =}
= —Z{< VEVET(9),T(9) > = < Vi, m(0): T(¢) >}

- Z < VEr(p), VET(9) >
=1

= < A7(p),7(p) > —|dT(p)|? (1.1.33)
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elde edilir. ¢ biharmonik ise

A7(p) = izRN(7(p), dp(—))dp(—) (1.1.34)

yazilabilir. Boylece (1.1.34) esitligi (1.1.33) de yerine yazilirsa

%NT(@D)!Q =< izR"(7(p),d(=))do(=), () > —|dr () < 0 (1.1.35)

elde edilir. M kompakt oldugundan maksimum prensibine gore |7(p)|* sabittir.

Dolayisiyla (1.1.35) esitliginden d7(p) = 0 bulunur. Ayrica
div < dip, 7() >= |7(0)]*+ < dp, d(p) > (1.1.36)

ozdesligi ve Divergens Teoremi gozoniine alimrsa 7(¢) = 0 bulunur. Bu da ¢ nin

bir harmonik dontisim oldugunu gosterir ve ispat tamamlanmig olur. O
M manifoldu kompakt ve yonlendirilebilir degil ise agagidaki onerme verilebilir:

Onerme 1.1.6. ¢ : (M,g) — (N,h) donisimi |7(p)| sabit olacak sekilde bir
Riemann immersiyon ve Riem” < 0 olsun. Bu durumda ¢ nin biharmonik olmas:

icin gerek ve yeter sart harmonik olmasidir [10].
Ispat. ¢ bir biharmonik déniigiim olsun. |7(p)| =sbt. ve Riem™ < 0 oldugundan
%AIT(M2 =< izR"(7(p),do(=))do(=), () > —ldr () < 0
yazilabilir. Boylece dr(p) = 0 olur. Riemann immersiyonlar i¢in gecerli olan
—|7(@)|? =< dp,dr(p) > (1.1.37)
esitligi kullanilirsa ¢ bir harmonik dontigtim olur. Boylece ispat tamamlanir. O]

Onerme 1.1.6 daki Riem® < 0 egrilik sart1 yerine ek boyut 1 oldugunda Ricc" <

0 sart1 alinabilir:

Teorem 1.1.3. M kompakt, yonlendirilebilir bir Riemann manifoldu olmak tizere
@ : (M™ g) — (N", h) doniigimii bir Riemann immersiyon, Ricc™ < 0vem =n—1
olsun. Bu durumda ¢ min biharmonik olmasy i¢in gerek ve yeter sart harmonik

olmasidar [10].
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Ispat. ¢ bir Riemann immersiyon ve {ey,es, ...,e,,}, M nin bir ortonormal bazi

olsun. Bu durumda

2R (dp(=), m(@)de(=) = Y RY(dp(e:), 7(p))dp(e:)
= —Ricc™(1(p)) (1.1.38)

dir. ¢ bir biharmonik doniigiim olsun. Bdoylece
1 .
FAT@IP = <izRY(7(¢), do(=))dp(=), 7(p) > —ldr(p)[*

- < Z(_RN(d(p(ei)a7—(90>>d90<€i>)77-(90) > —|dr ()]

i=1

= < Ricc™(1(p)), 7(0) > —|dr(¢)]* <0 (1.1.39)

oldugundan ve maksimum prensibinden dr(¢) = 0 elde edilir. ¢ bir Riemann

immersiyon oldugundan
—|r(@)]* =< dp,dr(p) >

egitligi kullanilarak ispat tamamlanir. O]

Onerme 1.1.7. ¢ : (M™, g) — (N™ h) déniigiimii |7(¢)| = sbt. olacak sekilde bir
Riemann immersiyon olsun. Ricc™ <0 ve m =n — 1 ise ¢ nin biharmonik olmas

icin gerek ve yeter sart harmonik olmasidir [10].

1.1.3 Biharmonik egriler

Bu kisimda Riemann manifoldlar: iizerinde tanimli bir egrinin biharmonik denklemi
verilecektir.
I C R olmak tizere v : [ — (M, g) bir izometrik immersiyon olsun. ~(I) goriintii
kiimesi M de bir egrinin goriintusidiir. 7 egrisi yay parametresi ile verilsin. Bu
dy

durumda ~ egrisinin tensiyon alanm 7 = 71 = T' olmak tizere

T(v) = Viv (1.1.40)

dir. Boylece bitensiyon alani

n(y) = —A7(y) —izRY(dv,7(7))dy
= 1z(V'V =V)r(v) — izRM (dry, 7(7y))dry
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seklinde yazilabilir. Buradan

n(y) = ViVit()+ Vg o7(y) —izRY(dy,7(3))dy

TN+ Vi, ay7(y) = izRY (dy, 7(7))dy

_ <>—¢zR (7 <d>w

t

= V%T(y) —izRM(dy, 7(7))dy (1.1.41)

:VM VM

olur ve 7 egrisinin biharmonik denklemi

V2r(y) —izRM(dy, 7(v))dy = 0 (1.1.42)

o

seklindedir [18]. (1.1.42) denkleminden her harmonik egrinin biharmonik olacag:
agikca goriilmektedir. Ancak bunun tersi her zaman dogru degildir. Ayrica R nin
bir acik araligimdan veya S' den tanimlanan bir doniisiimiin harmonik olmasi icin
gerek ve yeter sart bu dontiisiimiin yay uzunlugunun bir kati ile parametrelendirilmis
bir geodezik olmasidir [84]. Boylece geodezikler biharmonik egrilerin bir alt simifim
olugturur. Bu durum biharmonik egrilerin sinifin1 geodeziklerden daha genis hale

getirir. Dolayisiyla 6zgiin (geodezik olmayan) biharmonik egriler oldukca 6nemlidir.

1.2 Semi-Riemann Manifoldlar

Bu kisimda semi-Riemann manifoldlar i¢in temel tamimlar ve &rnekler verilerek

warped ¢arpim manifoldlar: ve doubly warped c¢arpim manifoldlar: sunulacaktir.

Tanim 1.2.1. V' bir sonlu boyutlu vektor uzayr olsun. V dizerinde tanimlanan bir

simetrik bilineer b : V x V' — R fonksiyonuna bilineer form denir [85].

Tanim 1.2.2. V sonlu boyutlu bir vektor uzayr ve b de V' iizerinde bir bilineer form

olsun. Eger

(1) her v # 0 wektori igin b(v,v) < 0 (< 0) ise b ye negatif tansmbdur (negatif

yari-tanimbidur )

(i) her v # 0 wvektori igin b(v,v) > 0 (> 0) ise b ye pozitif tanumbhdir (pozitif

yari-tanymbidur )
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(iii) v € V we her w € V igin b(v,w) = 0 < v =0 ise b ye nondejeneredir
denir [86].

b, V iizerinde bir bilineer form ise W C V alt uzay1 icin b nin W ye kisitlanmisi

olan b|y de bir bilineer formdur [86].

Tanim 1.2.3. V' sonlu boyutlu vektor uzay: uzerinde simetrik, nondejenere olan bir

g bilineer formuna skaler ¢carpim ve (V, g) ikilisine de skaler ¢arpvm uzayr denir [86].

g bilineer formu nondejenere ise v € V igin ¢(v) = g(v,v) seklinde tanimlanan ¢

kuadratik formuna indefinittir (belirsizdir) denir [86].
Ornek 1.2.1. R? de u = (uy, u),v = (v1,v2) olmak tizere
g:R*xR* - R
(u7 U) - g(u7 ’U) = —UV1 + U203

seklinde tanimlanan dontisim bir skaler carpimdir. Boylece q(u) = —u?+u3 kuadratik

formu da indefinit (belirsiz) olur [86].

Tanim 1.2.4. V dzerinde bir simetrik bilineer form verildiginde boy V- = m olmak

tizere V' nin bir {eq, es, ..., em} baz vardur oyleki p,q > 0 tamsaylar: i¢in
gleie5) =0, (i #j)

ve
-1, (1<i<p)

gleiej) =4 1, (p+1<i<p+q)
0, (p+q+1§i§m)}

dir. Bu durumda g bilineer formuna (p, q) isaretlidir denir [84].
g bilineer formunun nondejenere olmasi icin gerek ve yeter sart
p+q=boyV

olmasidir. Pozitif ve negatif tanimh ig ¢arpimlar nondejeneredir ve sirasiyla (0, m)

ve (m,0) isaretlidirler [84].
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Tanmim 1.2.5. M bir C* manifold ve boy M = n olsun. M dizerinde C*, (p,q)
tipinde, simetrik, 2-kovaryant tensor alanina bir semi-Riemann metrik denir ve g

ile gosterilir. Yani g,

O*T*M = Splveow=-(v@w+w®v):v,w e (TM)}

N —

ile tanamlanan ve simetrik kare olarak adlandirilan vektor demetinin bir C* kesitidir
oyle ki g, M nin her noktasindaki tanjant uzay iizerinde sabit (p,q) isaretli bir
nondejenere i¢ carpim tanimlar. Boylece g = n — p olur.

(0,n) isaretli bir semi-Riemann metrik bir Riemann metrigidir. (1,n—1) isaretli

bir semi-Riemann metrik ise bir Lorentz metrik olarak adlandvrilur [84].
(p,n — p) isaretli bir n-boyutlu semi-Riemann manifoldu HZ ile gosterecegiz.

Ornek 1.2.2. (Semi-Oklidyen Uzaylar)

R", n-boyutlu bir Oklidyen uzay olsun. (p,n — p) isaretli
g =gy = —daz? —dr) — ... — dxf, + dxf,ﬂ + . 4 d?
semi-Riemann metrigine sahip R" Oklidyen uzayma semi-Oklidyen uzay denir ve
Ry ile gosterilir. Boylece v = (v1,va, ..., v,) ve w = (wy, Wy, ..., wy) olmak iizere
g(v,w) = —vjW; — Vawy — ... — VW F Vpp1Wpi1 + ... + VW,

seklindedir. p =1 ise R} uzayr n-boyutlu Lorentz uzay olarak adlandurilir [84).

Ornek 1.2.3. (Pseudo-Kiireler)

n>2ve0<p<n-—1ic¢cmn

Syt={re Ry —at—ay— . —ap oy ot =1}

C> hiperyiizeyini gézonine alalim. Vr € Sg_l i Sg_l hiperytizeyinin TxS;;_l
tanjant uzay:

{veR":<z,v>=0}

kiimesi ile tanimlanwr. Boylece x, g metrigine gore TISI’}_1 tanjant uzayina diktir.

< x,x >=1> 0 oldugundan g nin S’;“l e kisitlanmase olan metrik Sgil hiperytizeyine
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(p,n —p—1) isaretli bir semi-Riemann manifold yapist kazandirir. n > 3 igin Sgil
semi-Riemann manifolduna pseudo-kiire denir. Ozel olarak (St,g) pseudo-kiiresi

deSitter space-time olarak adlandirilur [84].

Ornek 1.2.4. (Pseudo-hiperbolik Uzay)

Hg:f:{mERz:—xf—x%—...—x§+x2+1+,,,+xi:_1}

bir C* hiperyizey olsun. Sg_l de oldugu gibi x € Hg_’ll, g metrigine gore TIH;}_’ll
tanjant uzayina diktir. < x,x >= —1 < 0 oldugundan g nin Hg:ll e kisitlanmase
olan metrik H;L__ll hiperyiizeyine (p — 1,n — p) isaretli bir semi-Riemann manifold
yapsy kazandirir. n > 3 ve 1l < p < n i¢cin Hg__ll semi-Riemann manifolduna

pseudo-hiperbolik kiire denir. (H{,g) pseudo-kiresi anti de Sitter space-time olarak

adlandvrilur [84].

Ornek 1.2.5.

C;‘L—l:{xeRg—x%—l’%——$[2)+II2)+1++.T$L:0}

bir C*° hiperyiizey olsun. Bu durumda C’;};l = C}’,‘*l\{(]} olmak tizere Ry tzerindeki

g metriginin T, IC’;};l tanjant uzaylarina kisitlanmig dejeneredir [84).

Tanim 1.2.6. (M",g) bir semi-Riemann manifold olsun. v € T,M olmak iizere
(1) g(v,v) <0 ise v ye timelike vektor

(i) g(v,v) > 0 ise v ye spacelike vektor

(iii) 0 # v dgin g(v,v) = 0 ise v ye null (lightlike) vektir

denir. Sifir vektori spacelike vektor olarak kabul edilir. x € M noktasinda T,M
tanjant uzayinin null vektorlerinin olusturdugu kiime null (light) koni olarak adlandi-

rilur [86].

Ornek 1.2.6. (Minkowski Uzay)
4-boyutlu Minkowski uzay, Gnemli bir Lorentz manifoldudur. M, 4-boyutlu Minkowski

uzay olsun. v € T(TM*) olsun. v nin ilk bileseni pozitif ise future pointing, negatif
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ise past pointing olarak adlandiriir. TyM * tanjant uzayine M* ile dzdeslestirecek
olursak timelike vektorlerin H3 de, spacelike vektorlerin S3 de ve null vektorlerin de

C} ., de bulundugu gorilir [84].

Ornek 1.2.7. (Schwarzchild Space-time)
n >0 ve Ry = (R,dt?) olsun. ¢°°, S? kiiresi tizerindeki standart metrik ve (t,r) €

R x (2n,00) olmak tzere

2
L2

2
g=—( )dtQ—l—(l— —n)dr2+r2952
r

r

metrigine sahip manifolda Schwarzchild space-time denir. Boylece Schwarzchild

space-time (Ry x (2n,00)) X,2 S? warped ¢arpimadir [84].

Tanmim 1.2.7. (Einstein Manifold) (M™",g) bir semi-Riemann manifold olsun.

Eger

_ M
R _ (Scal

n)g

ise M ye bir Einstein manifold ve g ye de bir Einstein metrik denir. Burada RicM,

M nin Ricci egriligini ve Scal™ de M nin skaler egriligini gostermektedir [84].

Sabit kesit egriligine sahip bir (semi-)Riemann manifold bir Einstein manifoldudur

[84].

Tanim 1.2.8. M bir semi-Riemann manifold ve p € M olsun. Bu durumda p € M
noktasinda T,M nin bir altuzayy W olmak tizere Yw € W icin g(v,w) = 0 olacak

sekilde bir 0 # v € W wvektori var ise W ye dejenere alt uzay denir [86].

Sifir alt uzay1 nondejeneredir. TPM nin bir W altuzayinin nondejenere olmasi
icin gerek ve yeter sart gl indirgenmis metrik tensoriiniin nondejenere olmasidir

86).

Onerme 1.2.1. Bir V Lorentz uzayrnan W alt uzayinin nondejenere olmasi i¢in

gerek ve yeter sart V.= W @& Wtyazlabilmesidir [86].

Ozel olarak (WH)+ = W oldugundan W nin dejenere olmas icin gerek ve yeter

sart W+ alt uzaymim dejenere olmasidir.
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Ornek 1.2.8. (M*, g) 4-boyutlu Minkowski uzay olsun. p € M igin
W = Sp{v; = (1,1,0,0),v, = (0,0,1,1)} € T,M
alt uzayme gézonine alalim. W bir dejenere alt uzaydir. Ayrica
Wt = Sp{v; = (1,1,0,0),v, = (0,0,1,—1)}
oldugundan W N W=+ #£ {0} dur. Béylece V=W & W+ seklinde yazlamaz [84).

Tanim 1.2.9. V n-boyutlu bir vektor uzayr ve V' nin bir baz {ey,es, ..., e,} olsun.
V' dizerinde tanamly 2-kovaryant metrik tensori i¢in g(e;,e;) = —1 olacak sekildeki

e; (1 < i < n) ortonormal baz vektorlerinin sayisina g metrik tensérinin indeksi

denir [86].

Onerme 1.2.2. V n-boyutlu bir vektor uzayr ve g de V' iizerinde tanvmly 2-kovaryant
metrik tensor olsun. Bu durumda g nin indeksi V' nin ortonormal baz se¢iminden
bagimsizdur ve glw, negatif tanimly olacak sekildeki V- nin en biiyik W alt uzayinin

boyutuna egittir [86].
Ornek 1.2.9. & = (x1, 22, 23) ve y = (Y1, s, y3) olmak tizere

g:R*°x R — R
(r,y) — g(x,y) = 21y1 + T2Y2 — T3Y3

seklinde tanimlanan g metrik tensoriniin indeksi 1 dir. R® de g nin negatif taniml
oldugu en biyik alt uzay W = Sp{(0,0,1)} dir ve W nondejeneredir. Bdylece
W+ = Sp{(1,0,0),(0,1,0)} de nondejenere ve R =W & W+ olur .

Tanim 1.2.10. M; ve M 7" siraswyla p indeksli ve v indeksli semi- Riemann manifold-

lar olsun. Bu durumda

=N

foMr— M,

dontigtimi bir izometrik immersiyon (rank f =m) ise M7 manifolduna MZ nin
bir semi-Riemann altmanifoldu denir. Ozel olarak v = 1 ise M7 manifolduna M;}

nin bir Lorentz altmanifoldu denir [86].
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Tanim 1.2.11. M bir semi-Riemann manifold ve p € M olsun. W, TI,M tanjant
uzagrman bir alt uzayr olmak tizere Yv,w € W igin g(v,w) = 0 ise W ye total null

veya total izotropik uzay denir. 1-boyutlu null alt uzay bir null veya karakteristik

dogrultu olarak adlandirilir [84).

Sifir uzayindan farkli tiim null uzaylar dejeneredir. Dejenere olma ozelligi alt
uzayin dik tiimleyeni i¢in de korunur. Ancak bir null uzayin dik tiimleyeni null

olmak zorunda degildir.

Ornek 1.2.10. M 3-boyutlu Minkowski uzay olsun. p € M i¢in W = Sp{(1,1,0)} C
T,M alt uzay: nulldur ve dolayisiyla dejeneredir. Ancak W+ = Sp{(1,1,0),(0,0,1)}

dejenere olmasina karsin null degildir [84)].

(p,q) isaretli bir semi-Riemann manifold igin bir null alt uzaymm maksimum

boyutu min{p, ¢} dur [84].

Tanim 1.2.12. M bir semi-Riemann manifold olsun. M dizerindeki bir egrinin

veya M nin bir altmanifoldunun bitin teget uzaylart null ise egriye null egri, alt

manifolda da null altmanifold denir [84).

Tanim 1.2.13. (B, gg) ve (F,gr) semi-Riemann manifoldlar ve f > 0, (B, ¢gg)

tzerinde bir diferensiyellenebilir fonksiyon olsun. Bu durumda

g=1"(g8) + (f om)’0*(gr) (1.2.1)

ile tanamlanan g metrigine sahip Bx F' ¢carpim manifolduna warped ¢carpim manifoldu

denir ve B x ¢ I ile gosterilir. Burada
m:BXxF—-Buveo:BxF—F

dondisimleri suraswyla (B, gg) ve (F, gr) semi-Riemann manifoldlar: izerine kanonik
izdigimlerdir [86].
Agik olarak (1.2.1) den bir (p, ¢) € B x¢F noktasindaki her X,Y € I'(T(BxF))
icin
9(X.Y) = gp(m X, m.Y) + f*(r(2))gr(0.X, 0.Y),
yazilabilir. Eger f fonksiyonu sabit degil ise B x; F' warped ¢arpim manifolduna

ozgiin (proper) warped ¢arpim manifoldu denir [86].
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Lemma 1.2.1. M = B x; F bir warped ¢carpim manifoldu olsun. Eger X,Y €
I(TB) ve U,V € I(TF) ise bu durumda asaqidaki ifadeler saglanur :

(i) VxY e I(TB),

(i) VxU = VyX = X(In f)U,

(iti) VoV = VEV - L8 gradf.

Burada ¥V ve VT, siraswyla M ve F iizerindeki Levi-Civita konneksiyonlaridir [86].

Sonug 1.2.1. M = B x ¢ F' bir warped ¢arpim manifoldu olsun. Bu durumda B, M
de bir total geodezik altmanifold ve F, M de bir total umbilik altmanifolddur [86].

Bu sonuca gore bir warped carpim manifoldu, birinci ¢arpanin total geodezik

ikinci carpanin total umbilik olmasi ile karakterize edilir.

Sonug 1.2.2. (B, gg) ve (F, gr) semi-Riemann manifoldlar olsun. b ve f, sirasiyla

(B,gp) ve (F,gr) tzerinde pozitif, diferensiyellenebilir fonksiyonlar olmak iizere

g=(foo0)'n"(gp) + (bom)*o’(gr) (1.2.2)

ile tansmlanan g metrigine sahip B X F' ¢arpim manifolduna doubly warped ¢arpim
manifoldu denir ve ;B Xy, I ile gosterilir. Buradam™: BXxF — Bveoc: BxF — F
dontigiimleri siraswyla (B, gg) ve (F, gr) semi-Riemann manifoldlar: izerine kanonik

izdigimlerdir [87].

Doubly warped ¢arpim manifoldlari, warped carpim manifoldlarinin bir genelles-
tirmesi olarak tanimlanmigtir.
Eger b ve f fonksiyonu sabit degil ise ;B x;, F' doubly warped ¢arpim manifolduna

ozgiin (proper) doubly warped garpim manifoldu denir [87].

Lemma 1.2.2. M = (B x, F' bir doubly warped ¢arpim manifoldu olsun. Bu
durumda X € T'(TB) ve U € I'(TF) i¢in

ViU = U(ln /)X + X(Inb)U (1.2.3)
dur [87].

Sonug 1.2.3. M = ;B X, F bir doubly warped ¢arpim manifoldu olsun. Bu durumda
B ve F, M de total umbilik altmanifoldlardir [87].
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1.3 Lorentzian Hemen Hemen Parakontakt Manifoldlar
ve Altmanifoldlar:

Bu kisimda Lorentzian hemen hemen parakontakt manifoldlar tanitilarak en temel

ozellikleri verilecektir.

Tanim 1.3.1. M bir n-boyutlu diferensiyellenebilir manifold olsun. Eger M 1ize-

rinde ¢ (1,1) tipinde bir tensor alan, & bir vektor alani ve n bir 1-form olmak tizere

n€) = -1, (1.3.1)
¢’ = I+n®¢ (1.3.2)

sartlariny saglayan bir (p,&,n) d¢lisi varsa M ye bir hemen hemen parakontakt
manifold ve (¢,&,n) dglistine de M dzerinde bir hemen hemen parakontakt yapr

denir. Burada I, TM fizerindeki birim déniisim ve ® tensdr ¢arpvmadur [44).

Onerme 1.3.1. M, bir (p,&,m) hemen hemen parakontakt yapisina sahip n-boyutlu

hemen hemen parakontakt manifold olsun. Bu durumda

e = 0, (1.3.3)
noyw = 0, (1.3.4)
rank(e) = n—1 (1.3.5)

dir [44].

Ispat. (1.3.1) ve (1.3.2) den

= 0 (1.3.6)

olur. Boylece ya p& = 0 veya p€, ¢ nin 0 karakteristik degerine karsilik gelen asikar
olmayan karakteristik vektordiir. (1.3.2) ve (1.3.6) dan

0 = ¢*p¢ = o€+ n(p€)€
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yani
p§ = —n(pE)¢ (1.3.7)

elde edilir. Eger ¢&, ¢ nin 0 karakteristik degerine karsilik gelen agikar olmayan

karakteristik vektor ise
n(w€) # 0

dir. (1.3.7) esitliginin her iki tarafina ¢ uygulanirsa

0 =2 = —n(p&)p& = (n(p€))? £ #0

bulunur ki bu bir c¢eligkidir. Dolayisiyla @& = 0 olmak zorundadir. & = 0 oldugu
i¢in (1.3.2) den herhangi bir X € I'(T'M) vektor alan i¢in

NpX)E = —p*X +¢X
= —p(¢’X) + X
= —p (X +n(X)§) + X
= —n(X)eg

= 0

elde edilir. Buradan 7o ¢ = 0 oldugu gortiliir. Sonug olarak M tizerinde p& = 0 ve
¢ # 0 oldugundan rank(y) < n dir. Eger bir £’ vektor alan1 o’ = 0 sartin1 saglayan
bir diger vektor alani ise (1.3.2) den

0=2¢&+n(€)¢

dir. Boylece &' = —n(¢')¢ olarak yazilir. Yani &', ¢ dogrultusundadir. Dolayisiyla

rank(yp) = n — 1 olur. Bu ise ispati tamamlar. O

Lemma 1.3.1. M bir diferensiyellenebilir manifold, & ve n da n(§) = —1 sartim
saglayan siraswyla bir kontravaryant ve bir kovaryant vektor alani olsun. Eger M

uzerinde & vektor alanini timelike yapacak bir Lorentz metrik varsa bu durumda
n(X) = h(X,§) (1.3.8)

olacak sekilde bir h Lorentz metrigi vardur [44].
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ispat. Bir M diferensiyellenebilir manifoldu tizerinde 1(§) = —1 olacak gekilde ¢
vektor alanini ve 7 1 -formunu alahm. f nin f(£,£) = —1 sartim saglayan Lorentz
metrigi oldugunu diiglinelim. Bu metrigi kullanarak herhangi X, Y € T'(T' M) vektor
alanlar1 igin

WY, X) = fY +n(Y)§, X +n(X)€) —n(X)n(Y) (1.3.9)

seklinde yeni bir A metrigi tanimlayalim. Bu durumda eger X ve Y vektor alanlari
f metrigine gore & ye dik ise X ve Y vektor alanlari f metrigine gore spacelike
vektorlerdir. Boylece h(Y,X) = f(Y,X) olur. Bu da (1.3.9) ile tanimlanan h

metriginin (1.3.8) sartim saglayan bir Lorentz metrik oldugunu gosterir. O
Lemma 1.3.1 kullanilarak asagidaki onerme verilebilir:

Onerme 1.3.2. M, bir (p,&,m) hemen hemen parakontakt yapisina sahip n-boyutlu
bir manifold olsun. Bu durumda M hemen hemen parakontakt manifoldu her X,
Y e I(TM) igin

n(X) =g(X,¢)
ve

9(X, 0Y) = g(X,Y) +n(X)n(Y)
olacak sekilde bir g Lorentz metrigine sahiptir [44] .
Ispat. Lemma 1.3.1 deki h metrigini kullanarak M manifoldu tizerinde yeni bir g
metrigini
9X,Y) = S {h(X,Y) + h(pX, oY) —n(X)n(Y)}, XY € [(TM)
seklinde tanimlayalim. Bu durumda g bir Lorentz metriktir ve
g(pX.pY) = % {h(eX, 9Y) + ¢*X,0Y) = n(eX)n(»Y) }
= AP 0Y) R+ (X6 + (V)
= L {HEX,9¥) + O Y) 4 20(X)n(Y) + n(X)n(YR(E,€))
= S {h(eX, ) + (X, Y) + (X)n(¥))
= 9(X,Y) +n(X)n(Y)

sonucuna ulagilir. Boylece ispat tamamlanir. O]
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Onerme 1.3.2 de iddia edilen g Lorentz metrigi bir tek olmak zorunda degildir.

Tanim 1.3.2. M, bir (,&,n) hemen hemen parakontakt yapist ile birlikte n-boyutlu
bir hemen hemen parakontakt manifold olsun. Eger M herhangi X,Y € T'(TM)

vektor alanlar: i¢cin

g(pX,9Y) = g(X,Y) +n(X)n(Y) (1.3.10)

olacak sekilde bir g Lorentz metrigine sahip ise M ye bir Lorentzian hemen hemen
parakontakt manifold ve (¢,&,n, g) dortlisine de M dzerinde bir Lorentzian hemen

hemen parakontakt yapu denir [14].
Eger (1.3.10) esitliginde Y yerine £ alinirsa
0= g(pX, ) = g(X, &) +n(X)n(§)

yazilir. Buradan (1.3.1) ve (1.3.3) gbz Oniine alimarak

9(X, &) = n(X) (1.3.11)

elde edilir. (1.3.1) ve (1.3.11) dan karakteristik vektor alan olarak adlandirilan &

vektor alaninin bir timelike vektor oldugu agikga goriilmektedir.

Tanmim 1.3.3. M, (¢,&,n,9) Lorentzian hemen hemen parakontakt yapisina sahip

n-boyutlu bir manifold olsun. Bu durumda M dizerinde
O(X,Y) =g(X,pY), VX, Y e (TM) (1.3.12)

seklinde tanimlanan ®, 2-formuna (p,&,m,g) Lorentzian hemen hemen parakontakt

yaprsiman temel 2-formu denir ([44], [88]).
(1.3.10) esitliginde Y yerine Y yazlirsa (1.3.4) den
9(pX, ¢%Y) = g(X, ¢Y)

elde edilir. (1.3.2), son esitlikte kullanihirsa

g(eX, Y +n(Y)E) = g(X,¢Y)

g(eX,Y) +n(Y)g(eX,&) = g(X,¢Y) (1.3.13)
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olur. Boylece (1.3.11) dan
g(eX,Y)=g(X,pY), VXY el(TM) (1.3.14)
elde edilir ki bu da ® temel 2-formunun simetrik oldugunu verir. Ayrica
O(X,Y)=(Vxn)Y, VX,Y eT(TM) (1.3.15)
dir.

Onerme 1.3.3. (M, p,&,m,9), n-boyutlu bir Lorentzian hemen hemen parakontakt
manifold ve V da M tzerinde Levi-Civita konneksiyon olsun. Bu durumdaVX,Y,Z €
D(TM) vektor alanlar igin

(Vx®) (Y, 2) = gV, (Vxp) Z) = (Vx®) (Z,Y) (1.3.16)
dir [44].
Ispat. VX.,Y,Z € (T M) vektor alanlar: igin
(Vx®) (Y, 2) = Vx@ (Y, 2) = ®(VxY, Z) = (Y, VxZ)
esitliginden faydalanarak

(Vx®) (Y, Z2) = Xg(Y,0Z)—g9(VxY,pZ) —g(Y,¢(VxZ))
= g(VxY,pZ) +g(Y,VxpZ) = g(VxY,pZ) —g(Y,p (VxZ))
= g(YV,VxpZ — ¢ (VxZ))

= g(Y,(Vxp) 2)

elde edilir. Ayrica ® nin simetrik oldugu goz oniine almarak (Vx®)(Y,Z) =
(Vx®)(Z,Y) oldugu kolayca goriiliir. Boylece ispat tamamlanir. ]

Teorem 1.3.1. M bir n-boyutlu Lorentzian hemen hemen parakontakt manifold

olsun. Bu durumda M tzerindeki Lorentzian hemen hemen parakontakt yapr bir tek

degildir [46].

ispat. M, (p,&,1m,g) Lorentzian hemen hemen parakontakt yapisi ile birlikte bir

Lorentzian hemen hemen parakontakt manifold olsun. &', M tizerinde £ dogrultusunda
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olmayan sifirdan farkli bir vektor alani olsun. Bu durumda singiiler olmayan (1, 1)

tipinde bir p tensor alani vardir oyle ki
pg' = ¢

dir. Eger
pe'X = puX ve 17'(X)=n(uX)

olacak sekilde bir ¢’ tensor alani ve 1’ 1-formu tamimlanirsa

1) X = pup' X = p*uX = pX +n(pX) € = p(X +7'(X)¢)
yani
(@)X =X +1/(X)¢
elde edilir. Simdi
J(X,)Y) = g(pX,pY)

olacak sekilde bir ¢’ metrik tensoriinii tanmimlayalim. Bu durumda

g X, ¢Y) = glue' X, pe'Y) = ¢'(X,Y) +0'(X)n/'(Y)

ve
9(X,&) = g(uX, p) = g(pX, &) = n(nX) = n'(X)

olur. Boylece ispat tamamlanir. O
Tanim 1.3.4. M, (p,&,m,g) Lorentzian hemen hemen parakontakt yapisina sahip
n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eger VX,Y €
L(TM) igin

B(X.¥) = § (Vxn)Y + (Vyn) X) (1317)
sarty saglanmwyor ise M ye Lorentzian parakontakt manifold (kisaca, LP-manifold)

denir [44].

Lemma 1.3.2. (M, ¢,£,n,q) bir Lorentzian parakontakt manifold olsun. Eger n
1-formu kapaly ise VX,Y,Z € T(T M) i¢in

(Vx®)(£,6) =0
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ve

(Vz®) (oY, 0X) = —[(Vz2) (Y, X) —{9(Y,Z) + n(Z)n(Y)}n(X)
—{9(X, Z) + n(Z)n(X)in(Y)]
dir.
Tanim 1.3.5. M, (p,&,n,g) Lorentzian hemen hemen parakontakt yapisina sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. EgerVX,Y,Z €

L(TM) igin

(Vxe)Y = glpX, oY )E +n(Y)p* X (1.3.18)

veya denk olarak
(Vxp)Y =n(Y)X + g(X,Y)E+ 2n(X)n(Y)¢ (1.3.19)

veya denk olarak
(Vx®) (Y, Z) = g(X.Y)n(Z) + g(X, Z)n(Y) + 2n(X)n(Y)n(Z) (1.3.20)

sarty saglanwyor ise M ye Lorentzian para-Sasakian manifold (kisaca, LP-Sasakian

manifold) denir [44).

(M, p,&,1n,g) bir Lorentzian para-Sasakian manifold ise n 1-formu kapahdir ve
VX € I'(T'M) igin
Vxé =X (1.3.21)

dir [44].

Onerme 1.3.4. (M, g) bir Lorentzian manifold; &, M dizerinde bir birim timelike
vektor alany ve n da M tzerinde & ile birlesen bir 1-form olsun. Bu durumda n

1-formu kapalr ve
(VxVyn) Z = g(X,Y)n(Z) + g(X, Z)n(Y) + 2n(X)n(Y)n(Z) (1.3.22)

sarty saglanwyor ise M dizerinde bir Lorentzian para-Sasakian yapr vardir [44].
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Tanim 1.3.6. (M, g) bir Lorentzian manifold olsun. Eger M fizerinde
O(X,Y) = (Vxn)Y =e(g(X,Y) +n(X)n(Y)), & =1 (1.3.23)

olacak sekilde bir & timelike vektor alany ve & ile birlesen bir n 1-formu var ise M

ye Lorentzian ozel para-Sasakian manifold denir [44].

Agiktir ki bir Lorentzian 6zel para-Sasakian manifold ayn1 zamanda bir Lorentzian
para-Sasakian manifolddur. Ancak tersi her zaman dogru degildir. Diger taraftan
(1, 1)-tensor alani ¢ nin karakteristik degerleri-1, 0 ve 1 dir. (1.3.3) den 0 karakteristik
degerine karsilik gelen karakteristik vektor sayisi 1 dir. &k ve [ sirasiyla -1 ve 1
karakteristik degerlerine karsilik gelen karakteristik vektor sayilarini gostermek iizere
iz () = | — k olur. Boylece, eger (iz (¢))? = (n—1)%ise yal = 0 ya da k = 0 dur.
Bu durumda, (¢, &, 7, g) yapisina agikar Lorentzian para-Sasakian yap1 denir [89].

Tanim 1.3.7. (M, ¢,&,n,g) bir Lorentzian para-Sasakian manifold olsun. S, M

nin Ricci tensor alany olmak izere eger

S(X,Y) =ag(X,Y)+b(X)nY), VXY e I'(TM) (1.3.24)
1se M ye n-Finstein manifold denir. Burada; a ve b M Jizerinde fonksiyonlardir
[90].

(M, ,&,1,g), n-boyutlu bir n-Einstein Lorentzian para-Sasakian manifold ise M
nin Ricci tensor alam VX, Y € I'(T'M) i¢in

r

S(XY) = (——= = Dg(X,¥) +(

n — n—1

—n)n(X)n(Y) (1.3.25)

ile verilir. Burada r, M manifoldunun skaler egriligidir [90].

Lemma 1.3.3. (M, ¢,&,n,g) bir Lorentzian para-Sasakian manifold ve boy M =n
olsun. Bu durumda herhangi X,Y,Z € U(TM) wvektor alanlar i¢in asagidakiler
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saglanwr ([91], [90]):

G(RIX,Y)Z,6) = n(R(X,Y)Z) = g(¥, Z)n(X) — g(X, Z)n(Y) (1.3.26)
REX)Y = g(X,Y)E—n(Y)X (1.3.27)

R X)E = X +n(X)¢ (1.3.28)
RX,Y)¢ = n(Y)X —n(X)Y (1.3.29)
S(X.6) = (n—1n(X) (1.3.30)
S(pX,pY) = S(X,Y)+ (n—Dn(X)n(Y) (1.3.31)

dir. Burada; R ve S swraswyla M iizerindeki Riemann egrilik tensor alani ve Ricci

tensor alanmini gostermektedir.

(M, g), n-boyutlu bir Lorentzian manifold olsun. p € M olmak iizere T,M
tanjant uzaymin 2-boyutlu lineer alt uzayr bir diizlem kesiti olarak adlandirilir.
Diizlem kesiti FE olmak iizere eger her V' € E ig¢in g(U,V) # 0 olacak sekilde
bir U € FE vektorii varsa E diizlem kesiti non-dejeneredir denir. Eger U ve V

non-dejenere E diizlem kesiti i¢in bir baz ise
(U, 0)g(V, V) = (9(U,V))* #0

dir. {U,V} bazina sahip, p € M noktasindaki bir non-dejenere diizlem kesiti E nin
kesit egriligi K (p, ) ile gosterilir ve

K(p,E) = - gAYV UV, U) (1.3.32)
’ g(U,D)g(V,V) = (9(U,V)) h

seklinde tanmimlanir. Burada R, Riemann egrilik tensor alamdir [86]. Diger taraftan
eger non-dejenere diizlem kesiti £ bir spacelike ve bir timelike vektor tarafindan

geriliyor ise E bir timelike diizlem kesiti olarak adlandirilir [92].

Teorem 1.3.2. (M, p,&,n,9), boyM = n, bir Lorentzian para-Sasakian manifold
olsun. Bu durumda M nin & karakteristik vektor alany ve bir V' spacelike vektor

alany tarafindan gerilen 2-boyutlu her lineer alt uzayimn kesit egriligi 1 dir [44)].

ispat. n-boyutlu bir (M, ¢, £, n, g) Lorentzian para-Sasakian manifoldunu goz 6niine

alalim. M nin ¢ karakteristik vektor alani ve bir V' spacelike vektor alani tarafindan
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gerilen 2-boyutlu bir lineer alt uzay1 E olsun. Bu durumda F timelikedir ve E nin

K(p, E) kesit egriligi

Ko ) — o(R(EVIEV)
g(6,99(V,V) — (9(&. V)’
| REVIEY) s
gV, V) + (n(V))
olur. (1.3.28), (1.3.33) de yerine yazilirsa
Kp,E)=1
bulunur ve ispat tamamlanir. O

Teorem 1.3.3. (M, g) n-boyutlu bir Lorentzian manifold olsun. Eger [44]:

(1) M dizerinde bir & timelike vektor alany vardar.

(ii) & karakteristik vektdr alana ile birlesen n 1-formu kapalidor.

(iii) £VE =0 dwr. (Burada £¢, & vektor alanina gére Lie tirevini gostermektedir.)

(iv) & karakteristik vektor alanina ihtiva eden timelike d tzlemler igin M nin her

noktasinda kesit egriligi 1 dar.
sartlary saglanwyorsa bu durumda M bir Lorentzian parakontakt yapiya sahiptir .

Tanim 1.3.8. (M, ¢,&,n,9g) bir Lorentzian para-Sasakian manifold olsun. Eger M

sabit egrilikli ise M ye Lorentzian para-Sasakian uzay form denir [93].

Onerme 1.3.5. (M, p,&,m,9) bir Lorentzian para-Sasakian uzay form olsun. Bu
durumda M nin egriligi 1 dir [93].

ispat. (M, p,&,1,9), sabit k egrilikli bir Lorentzian para-Sasakian uzay form olsun.

Bu durumda her X,Y, Z € I'(T'M) i¢in M nin Riemann egrilik tensorii
RX,Y)Z =r{gY,2)X —g(X,2)Y} (1.3.34)
seklinde yazilir. Bu son egitlikte Y = & alinir ve (1.3.27), (1.3.29) kullanilirsa
—9(X, 2)6 +n(Z2)X = k{n(2)X — g(X, Z)¢}

elde edilir ki bu x = 1 oldugunu verir. O]
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Teorem 1.3.4. Her Lorentzian para-Sasakian uzay form bir asikar Lorentzian ozel

para-Sasakian uzay formdur [93].

Tanim 1.3.9. M, (p,&,n,g9) Lorentzian hemen hemen parakontakt yapisina sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eger
V=0 (1.3.35)
ise M ye Lorentzian parakosimplektik manifold denir [46].

Tanim 1.3.10. M, (p,&,n,g) Lorentzian hemen hemen parakontakt yapisina sahip

n-boyutlu bir Lorentzian hemen hemen parakontakt manifold olsun. Eger
(Vxe) X =0, VX el(TM) (1.3.36)
ise M ye Lorentzian nearly parakosimplektik manifold denir [46].

(M, p,&,1n,g) bir Lorentzian parakosimplektik manifold ise VX € T'(TM) i¢in
V x& = 0 oldugu kolaylikla goriilebilir.

Teorem 1.3.5. (M, ¢,&,n, g) bir Lorentzian nearly parakosimplektik manifold olsun.
Bu durumda

VyE=0, VX eTD(TM) (1.3.37)
dir [46].

ispat. (M, p,&,n,9) bir Lorentzian nearly parakosimplektik manifold olsun. Bu
durumda (1.3.36) den

(Vx®) (Y, 2) = (Vy®) (X, Z)=0 (1.3.38)
olur. (1.3.12) ve (1.3.38) g6z oniine alinirsa
(Vxn) (¢Y) + (Vyn) (¢X) =0 (1.3.39)

elde edilir. (1.3.38) esitliginde X yerine ¢ yazilir ve (1.3.39) kullanihirsa ispat

tamamlanir. ]
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M, (, €, 1) hemen hemen parakontakt yapisina sahip n-boyutlu bir hemen hemen
parakontakt manifold olsun. M x R carpim manifoldunu gozoniine alalim. Bu
durumda M x R de bir vektor alam (X, f4) ile verilir. Burada X € I'(TM); t, R
nin koordinat1 ve f de M x R iizerinde bir fonksiyondur. M x R nin tanjant uzay

uzerinde

d

106,15 = (X = fenx) ) (13.40)

olacak sekilde bir J lineer doniigiimiinii tanimlayalim. (1.3.1), (1.3.2) ve (1.3.3)

esitliklerinden

d d

(¢ (9X = &) = n(X)E,n (9X — fE) %)
- (¢2X — [ = n(X)E, (n (pX) — fn(§)) %)

- (+r8

elde edilir. Bu durumda J? = I oldugundan J, M x R iizerinde bir hemen hemen
carpim yapisidir. Eger J hemen hemen carpim yapisi M x R iizerinde integrallenebilir
ise (¢, £, n) hemen hemen parakontakt yapisina normaldir denir [94]. J nin Nijenhuis

tensor alani [J, J] ile gosterilir ve her X,Y € T'(T'M) igin
[(LJ(X,Y)=[JX,JY] - J[JX,)Y] - J[X,JY]|+ J*[X,Y], X,YeDl(TM)

ile tanimlanir. J nin integrallenebilir olmasi i¢in gerek ve yeter sart J nin Nijenhuis
tensor alaninin sifir olmasidir. Boylece (¢, £, 1) hemen hemen parakontakt yapisinin

normal olmasi i¢in gerek ve yeter sart

[, 0] +dn®&=0

sartinin saglanmasidir. Burada [, ¢], ¢ nin Nijenhuis tensor alanini gostermektedir

ve her X,Y € I'(TM) igin
[, 0] (X,Y) = [pX, Y] — 00X, Y] — 0 [X,0Y] + ¢ [X, Y]
dir [94].
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(M, p,€,m,9), boyM = n, bir Lorentzian hemen hemen parakontakt manifold ve
M de M nin bir non-dejenere altmanifoldu olsun. M manifoldundan A altmanifol-
duna i : M — M immersiyonu yardimiyla indirgenen metrigi de g ile gosterelim.
V, M iizerindeki Levi-Civita konneksiyonu ve V da M iizerindeki indirgenmis

konneksiyon olmak tizere VX,Y € I'(T'M) i ¢in
VxY =VxY + B(X,Y) (1.3.41)
dir. Burada B
B:T(TM) x T(TM) — T'(T*+M)

ile taniml normal demet degerli simetrik bilineer formdur. (1.3.41) denklemine
Gauss formilii ve B ya M nin ikinci temel formu denir. Simdi X € I'(T'M) ve
N € T(T+M) igin VxN nin teget ve normal kisimlarini sirasiyla —AyX ve Vi N

ile gosterelim. Bu durumda
VxN = —AxyX + VN (1.3.42)

yazilabilir. Burada Ay lineer operatoriine normal kesite gore Weingarten temel
tensorii ve (1.3.42) denklemine de Weingarten formiilii denir. (1.3.41) ve (1.3.42)
denklemleri kullamlarak VX, Y € T(TM), N € T(T+M) igin

9(B(X,Y),N) = g(AnX,Y) (1.3.43)

elde edilir. Boylece B simetrik ve lineer oldugundan Ay de simetrik ve lineerdir. B

tensortiniin kovaryant tiirevi
(VxB)(Y,Z) = VxB(Y,Z) = B(VxY,Z) = B(Y,VxZ) (1.3.44)
dir [86].

Teorem 1.3.6. (M, p, &, n, g) bir Lorentzian hemen hemen parakontakt manifold ve
M de M nin bir non-dejenere altmanifoldu olsun. R ve R swraswla M ve M nin

Riemann egrilik tensér alanlary olmak tizere VX,Y, Z, W € I'(T'M) i¢in

gR(X,Y)Z,W) = g(R(X,Y)Z,W)—g(B(X,W),B(Y, Z))
+9(B(Y, W), B(X, Z)) (1.3.45)

dir. (1.3.45) denklemine Gauss denklemi denir [86].
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Her VX,Y,Z € T(TM) i¢in R(X,Y)Z nin normal bileseni (R(X, Y)Z)L olmak
uzere

(R(X,Y)2)" = (VxB) (Y, Z) — (VyB) (X, 2) (1.3.46)

dir. (1.3.46) denklemine Codazzi denklemi denir [86].

Sonug 1.3.1. M, (M, ,£,n, g) Lorentzian hemen hemen parakontakt manifoldunun
bir non-dejenere altmanifoldu olsun. Eger U ve V vekt orleri M nin bir non-dejenere
teget duzlemi i¢in bir baz olusturuyor ise

F(U V) _ K(U V) + g(B(U7 U),B(V, V)) — g<B(U7 V)vB(U? V))
’ ’ g(U7 U)g(‘/, V) - (Q(Uv V))2

dir. Burada K ve K swraswla M ve M nin kesit egrilikleridir [S6].

Tamim 1.3.11. (M, ¢, £, 1, g), n-boyutlu bir Lorentzian hemen hemen parakontakt
manifold ve M de M nin m-boyutlu bir non-dejenere altmanifoldu olsun. Herhangi

bir p € M noktasinda T,M nin bir ortonormal baz {ey, es, ..., e} olmak tizere

1 m
:U’p = E 282'3(61', 61')

seklinde tanvmly p, vektorine p € M noktasinda M nin ortalama egrilik vektori

denir. Eger p =0 ise M ye minimal altmanifold denir [86].

Tanmim 1.3.12. (M, ¢, £, 1, g), n-boyutlu bir Lorentzian hemen hemen parakontakt
manifold ve M de M nin bir non-dejenere altmanifoldu olsun. Ejer B = 0 ise M

ye total geodezik altmanifold denir [86].

Tamim 1.3.13. (M, ¢, £, 1, g), n-boyutlu bir Lorentzian hemen hemen parakontakt
manifold ve M de M nin bir non-dejenere altmanifoldu olsun. Her X,Y € I'(TM)
¢m

B(X,Y) = g(X,Y)u

ise M ye total umbilik altmanifold denir [86].
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BOLUM 2

LORENTZIAN PARA-SASAKIAN
MANIFOLDLARIN
BIHARMONIK EGRILERI

4-boyutlu konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian
para-Sasakian manifoldlardaki spacelike ve timelike egrilerin 6zgiin biharmonik egri
olmalar i¢in gerek ve yeter sartlarin arastirildigi bu béliim dort kisimdan olugmakta
dir. Tk kisimda konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian
para-Sasakian manifoldlar tanitilarak bu manifoldlarin baz 6zelliklerine yer verildi.
Ikinci kisimda 4-boyutlu bir Lorentzian manifoldu tizerinde spacelike ve timelike
egrilerin Frenet catilari incelendi. Uciineii kisimda, 4-boyutlu konformal flat, quasi-
konformal flat ve konformal simetrik Lorentzian para-Sasakian manifoldlar tizerinde
tanimlanan spacelike ve timelike egrilerin biharmonik denklemleri elde edilerek 6zgiin
biharmonik egri olmalar1 i¢in gerek ve yeter sartlar aragtirildi. Son kisimda ise, S§(1)
Lorentzian kiiresi tizerindeki 6zgiin biharmonik egriler tanitildi ve bu egrilerin baz

karakterizasyonlarina yer verildi.

2.1 Konformal Flat, Quasi-Konformal Flat ve Konformal

Simetrik Lorentzian Para-Sasakian Manifoldlar

Bu kisimda konformal flat, quasi-konformal flat ve konformal simetrik Lorentzian

para-Sasakian manifoldlarin tanimlari ve baz 6zellikleri verilecektir.

Tanim 2.1.1. M bir Lorentzian para-Sasakian manifold olsun. M tizerinde konformal

egrilik tensori C ile gosterilir ve VX,Y € T(TM) igin

CXYZ = RX.Y)Z = g lal¥. 2)QX = (X, 2)QY +5(V. 2)X

~S(X,Z)Y} + (Y, 2)X — (X, Z)YY}, (2.1.1)

(n—1)(n—2)
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seklinde tamimlanir. Burada R, Riemann egrilik tensorini; S, Ricci tensor alanin,

Q, Ricci operatérini ve r de skaler egriligi gostermektedir [95].

Tanim 2.1.2. M bir Lorentzian para-Sasakian manifold ve C' de M tzerinde konformal

egrilik tensori olsun. Eger C =0 ise M ye konformal flat manifold denir [95].

Tanim 2.1.3. M bir Lorentzian para-Sasakian manifold ve C' de M tizerinde konformal

egrilik tensori olsun. Eger VC = 0 ise M ye konformal simetrik manifold denir
[96].

Teorem 2.1.1. M bir konformal flat Lorentzian para-Sasakian manifold olsun. Bu

durumda M, S7(1) Lorentzian kiresi ile lokal olarak izometriktir [82].

Ispat. M bir konformal flat Lorentzian para-Sasakian manifold olsun. Bu durumda

C = 0 dir. Riemann Christoffel egrilik tensorii
‘R(X,Y,Z,W) = g(R(X,Y)Z,W), VX,Y,Z,W € T(TM)

olmak iizere (2.1.1) esitliginden

‘R(X,Y, Z,W) = (n—i2>{g(Y, Z)S(X, W) — g(X, Z)S(Y, W)
+S(Y, Z)g(X, W) — S(X, Z)g(Y,W)}
=D =y WY 29X W)
D=2 (9(X, Z2)g(Y, W) (2.1.2)

yazilabilir. (2.1.2) de W yerine ¢ alir, (1.3.26), (1.3.11) ve (1.3.30) esitlikleri

kullanilirsa

oY Z3(X) = g(X. ZY) = g (oY Z)S(X.€) — g(X. 2)S(Y.6)

+S(Y, 2)g9(X, &) — S(X, Z)g(Y, &)}
Yn—2

: (Y, Z)g(X, €)

(n =D -2
T g 2ar.0

olur. Bu son egitlik diizenlenirse
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oY Z3(X) = (X Z(Y) = sl = Dal¥. Z)n(X)

—(n—1)g(X, Z)n(Y)

FS(Y, Z)p(X) — S(X, Z)n(Y)}  (2.1.3)

~o e =Y )
Dy A

elde edilir. Burada X yerine ¢ alinarak (2.1.3) den

(n_;){_(n —)g(Y, Z) — (n — )n(Y)n(Z)

—S(Y,Z) = (n = n(Y)n(2)}
- Dn—2) {=9(Y,2) =n(¥V)n(2)}  (2.1.4)

esitligine ulagilir. Bu son egitlikten

S(Y. 2) = (ﬁ—l)gaczw(

elde edilir. (2.1.5), (2.1.2) de yerine yazilirsa

RCY.ZW) = gl (g = 2) (oY 209X ) - (X, 2)g(Y. W)

—g(Y, Z) —=n(Z)n(Y) =

r

1~ n) n(Y)n(Z) (2.1.5)

n —

1
—9(X, Z)n(Y )n(W) — g(Y, W)n(X)n(2)}] (2.1.6)

4 (n% - n> {9(Y, Z)n(X)n(W) + g(X, W)n(Y)n(Z)

bulunur. §imdi (2.1.5) ve (1.3.12) yi gbz Oniine alarak S nin X vektor alan1 boyunca

kovaryant tiirevini hesaplayalim:
(VxS)Y,Z) = VxS(Y,Z2)—-S(VxY,Z)—-S(Y,VxZ)

= — {9V, Z) +n(Y)n(Z)}

n (ni = 1) {9(VxY,Z) +g(Y,VxZ)}
_ (ni = 1) 9(VxY,Z) - (ni - n) n(VxY)n(Z)
_ (n i = 1) g(Y,VxZ) — ( i — n) n(VxZ)n(Y)



olur. Buradan

(VxS)Y,2) = {9(Y, Z) +n(Y)n(2)}

bulunur. Boylece

U

(VxS).2) - (W)X, 2) = T gy 2) 4 vz}
dr(Y
n—1

=
(

~—

~—

{9(X, Z) +n(X)n(2)}

+

— n) O(X, Z)n(Y)

r

- n) (Y, Z)m(X)  (2.1.8)

n—1
esitligine ulagilir.

Diger taraftan (Vi C)(X,Y)Z = 0 oldugundan div C' = 0 dir. Buradan

(VxS)(Y, Z2) = (VyS)(X, Z) = {g(Y, Z2)dr(X) — g(X, Z)dr(Y)} (2.1.9)

2(n—1)
elde edilir. (2.1.8) ve (2.1.9) esitlikleri kargilagtirilirsa
r=n(n—1) (2.1.10)
bulunur. (2.1.10), (2.1.6) de yerine yazilarak
R(X,Y)Z = (Y, 2)X — ¢(X,2)Y
elde edilir ve boylece ispat tamamlanir. O]

Tanim 2.1.4. M bir Lorentzian para-Sasakian manifold olsun. M tizerindeVX,Y, Z €
L(TM) igin

C(X,Y)Z = aR(X,Y)Z+b{S(Y,2)X —S(X,2)Y
-z ( —+ 26) (Y, 2)X — g(X,Z)Y}  (2.1.11)

n \n-—

seklinde taniymlanan C tensor alamna quasi-konformal egrilik tensor alany denir.
Burada a ve b, ab # 0 sartiny saglayan sabitleri; R, Riemann egrilik tensorini; S,

Ricci tensér alanani; Q, Ricci operatérini ve r de skaler egriligi gostermektedir [97].
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Tanim 2.1.5. M bir Lorentzian para-Sasakian manifold ve C da M vizerinde konformal

egrilik tensori olsun. Eger C =0ise M ye quasi-konformal flat manifold denir [97].

Teorem 2.1.2. M bir quasi-konformal flat Lorentzian para-Sasakian manifold olsun.

Bu durumda M, ST(1) Lorentzian kiresi ile lokal olarak izometriktir [82].

ispat. M bir quasi-konformal flat Lorentzian para-Sasakian manifold olsun. Bu

durumda (2.1.11) egitliginden
RIX,Y,Z,W) = —2{S(v, 2)g(X. W) = S(X, Z)g(Y. W)
a
Y, Z)S(X, W) — (X, 2)S(Y. W)} (2.1.12)

+L( a +2b> {9(Y 2)g(X, W)

an \n—1
—g(X, Z).g(Y> W)}

yazilir. (2.1.12) esitliginde W yerine £ alir, (1.3.26), (1.3.11) ve (1.3.30) kullanilirsa

oV, Z)0(X) — 9(X, Zn(Y) = —{S(Y, Z)n(X) ~ S(X. Zn(Y)
+(n—1Dg(Y, Z)n(X)
—(n—1)g(X,Z)nY)} (2.1.13)
+— ( — +Qb> {g(Y, Z)n(X)

an \n —

—9(X, Z)n(Y)}

elde edilir. Buradan X = & secilerek

~g(¥.2) —n(Zn(¥) = ~2{=S(V,2) ~ (n~ (¥ }n(2)
—(n=1)g(Y,2) = (n = \)n(Y)n(Z)}
b () (ol 2) - a2

olur. Boylece bu son egitlikten

S(Y,Z) = <%( ? +2b>—(n—1)—%>g(Y,Z)

n—1

n (% ( L 25) —on—1) - %) n(Y(Z)  (2.1.14)

n—1
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oldugu kolaylikla goriiliir. (2.1.14), (2.1.12) de yerine yazilirsa

RIX,Y,Z,W) = —- (i ( + 2b> (n—1) ) {9(Y, Z)g(X, W)

+n(X)n(W)g(Y, Z) —n(Y)n(W)g(X, Z)} (2.1.15)

elde edilir. Simdi (2.1.14) ve (1.3.12) yi goz Oniine alarak S nin X vektor alam

boyunca kovaryant tiirevini hesaplayalim:

W) v.2) = Ty 2) 1 nmz))
+ (% (% v 2b) —n—1)— %) (B(X,Y)n(2)
LB(X, Z)n(Y)} (2.1.16)

olur. Buradan

(VxS)(Y, 2) — (VyS)(X, Z)

= v 2) v m(2))
) (00X, 2) + 0(2) 2117
. (% (n o Qb) ol 1)— %) DX, Z)n(Y)
_ (% (ni 1 Qb) —2(n—1) - %) (Y, Z)n(X)

dir. Diger taraftan (Vi C)(X,Y)Z = 0 oldugundan (2.1.17) esitligi de gozoniine
alinarak

r=n(n—1) (2.1.18)
bulunur. (2.1.18), (2.1.15) da yerine yazilarak
RX,)Y)Z =9V, Z2)X —g(X,2)Y
elde edilir ve ispat tamamlanir. O

Simdi R(X,Y).C = 0 sartim1 saglayan Lorentzian para-Sasakian manifoldlar

inceleyelim:
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Tanmim 2.1.6. (M, g), n-boyutlu (n > 4) bir diferensiyellenebilir manifold olsun.
Bu durumda M manifoldu tizerinde R ve C siraswyla Riemann egrilik tensor alana
ve konformal egrilik tensor alanit olmak tzere R.C' tensor alanys VX,Y, Z W, U €

T(TM)

(R(X,Y).C)Z,W,U) = R(X,Y)C(Z,W)U — C(R(X,Y)Z,W)U
—C(Z,R(X,Y)W)U (2.1.19)
—C(Z,W)R(X,Y)U

ile tanimlanar [98)].

Teorem 2.1.3. M, n-boyutlu (n > 4) bir Lorentzian para-Sasakian manifold olsun.
Eger M fdizerinde ¥X,Y € I'(T'M) i¢in R(X,Y).C = 0 ise M, S7'(1) Lorentzian

kiiresi ile lokal olarak izometriktir [82].

Ispat. (1.3.11), (1.3.27) ve (1.3.30) kullamlarak (2.1.1) den VXY, Z € T'(T'M) icin

nex,v)z) = [( " —1) {(Y. Z)0(X) — g(X. Z)n(Y)}

n—2\n—1

—{SY, Z2)n(X) = S(X, Z)n(Y)}] (2.1.20)
elde edilir. (2.1.20) esitliginde Z yerine £ ahmir, (1.3.11) ve (1.3.30) kullanihrsa
n(C(X,Y)§) =0 (2.1.21)
bulunur. (2.1.20) esitliginde bu kez X yerine £ alinirsa
WCEY)Z) = SV, 2) — (n = (¥ In(2)}

_( : _1) {9V, 2)+ 0V m(2)}]  (21.22)

n—1

olur. M tizerinde R(X,Y).C' = 0 oldugundan (2.1.19) den

0 = g(R(E&Y)CWUVIW,E) = g(C(R(E,Y)U, V)W, )

oldugu goriiliir.
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(1.3.11) ve (1.3.27) esitlikleri gézoniine alinarak

0 = = 'CUV,WY)=nY)nCUVIW) - g(Y,U)n(C(E, V)W)
+n(U)n(C(Y, V)W) — g(Y, V)n(CU, )W) +n(V)n(C(U,Y)W)
—g(Y, W)n(C(U,V)&) +n(W)n(C(U,V)Y) (2.1.24)

elde edilir. Burada ‘C(U,V,W)Y) = g(C(U,V)W,Y) dir. (2.1.24) esitliginde U

yerine Y yazilirsa

0 = ='CUV,W,U) =nU)n(CU V)W) = g(U,U)n(CE V)W)
+n(U)n(CU, V)W) = g(U,V)n(CU, W) +n(V)n(CU, U)W)
—g(U, W)n(C(U, V)E) +n(W)n(CU, V)U) (2.1.25)

bulunur.
Simdi p € M noktasindaki TpM tanjant uzaymin bir {eq, e, ..., €, } ortonormal
bazini géz 6niine alalhm. Bu durumda (2.1.25) da U = e; yazilir ve 1 den n ye kadar

1 Uzerinden toplam alinirsa

n(CE V)W) =0 (2.1.26)
esitligine ulagilir. (2.1.21) ve (2.1.26) kullanilarak (2.1.24) den
0 = ='CWUV.WY)=nY)n(CWUVIW)+nU)nCY, V)W)

+n(V)n(C(U,Y)W) +n(W)n(C(U,V)Y) (2.1.27)

elde edilir.
Eger (2.1.20), (2.1.27) de kullanilirsa

n—1
—n(V)g(U,Y)} = {n(U)S(V,Y) = n(V)S(U,Y)}] (2.1.28)

0 - —‘0<U,v,W,Y>+n<W>$[( ’ —1) n(U)g(V,Y)

bulunur.

(2.1.26) ve (2.1.22) den

r r

50.2) = (o = 1) a0 2) + (7 =) a0 0(2)
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olur. Bu son esitlik kullanilarak (2.1.28) esitliginden
0= ‘C(UV,WY)

elde edililir ki bu da M manifoldunun konformal flat oldugunu verir. Boylece Teorem

2.1.1 gozoniine alimarak ispat tamamlanir. [

Konformal simetrik manifoldlar iizerinde VC' = 0 oldugundan R(X,Y).C =0
, VXY € T(TM), esitligi saglanir. Bu durumda Teorem 2.1.1 ve Teorem 2.1.3 goz

ontine alinarak asagidaki sonuca ulagilir:

Sonug 2.1.1. M, n-boyutlu (n > 4) bir konformal simetrik Lorentzian para-Sasakian

manifold olsun. Bu durumda M, S7(1) Lorentzian kiiresi ile lokal olarak izometriktir

[82].
Teorem 2.1.1, Teorem 2.1.2 ve Teorem 2.1.3 den asagidaki sonuca ulasilir:

Sonug 2.1.2. M bir n-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold ise VXY, 7Z € T(TM) i¢in

R(X,Y)Z = g(Y,2)X — g(X, Z2)Y (2.1.29)

dir. Burada R, M nin Riemann egrilik tensor alanidor.

2.2 4-boyutlu Lorentzian Para-Sasakian Manifoldlar

Uzerindeki Spacelike ve Timelike Egriler

Bu kisimda Minkowski uzaylarda tanimh egriler i¢in [83] de yer alan Frenet formiilleri
kullanilarak, 4-boyutlu Lorentzian para-Sasakian manifoldlar iizerinde yay-parametresi

formulleri verilecektir.

Tanim 2.2.1. M bir semi-Riemann manifold ve v : I — M da M dzerinde bir
diferensiyellenebilir egri olsun. Eger v egrisinin hiz vektori '(s), Vs € I, siraswyla
spacelike, timelike veya null (lightlike) ise v egrisine siraswyla spacelike, timelike veya

null (lightlike) egri denir [86].
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M bir 4-boyutlu Lorentzian para-Sasakian manifold ve v : I — M da yay-paramet-
resi ile parametrelendirilmig null (lightlike) olmayan bir egri olsun. 7', N, By ve Bs,
sirasiyla v egrisinin teget, normal, birinci binormal ve ikinci binormal vektor alanini

gostermek tizere, v boyunca M manifoldu tlizerinde Frenet catisini
{T) N: B17 BQ}

olarak alalm. Simdi v : I — M egrisinin Frenet formiillerini inceleyelim [83]:

I.Durum : v : [ — M egrisi bir spacelike egri olsun. Bu durumda 7' bir
spacelike vektor oldugundan N ve B; vektor alanlarinin casual karakterleri goz ontine
alimarak v nin Frenet formiilleri i¢in asagidaki durumlar séz konusudur:

i) N ve B; spacelike ise

VT 0 kk 0 0 T
VN —k 0 ko O N
g = ' ? (2.2.1)
V1B, 0 —ky 0 ks By
VB, 0 0 k3 O By
dir. Burada T, N, By ve By
g(TaT) :g<N7N> :g(BlaBl) = 17 9(827BZ> = _17 (222>
sartalarini saglayan ortogonal vektor alanlaridir.
ii) N spacelike ve B; timelike ise
VT 0 k 0 O T
VN —ky 0 Kk O N
= ' ? (2.2.3)
VTBl 0 k’Q 0 k?g B1
VB, 0 0 k3 O By
dir. Burada T, N, By ve B,
g(TvT) :g<NaN> - g(BQaBZ) = 17 g(BlyBl> - _L (224>

sartalarini saglayan ortogonal vektor alanlaridir.
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iii) N spacelike ve By null ise

VT 0 k 0 0 T
VrN —ki 0 k 0 N
= ' ? (2.2.5)
VB 0 0 k3 O By
VB, 0 hky 0 —ks3 By
dir. Burada T, N, By ve By
9(T,T) = g(N,N) =1, g(Ba, By) = g(B1, B1) =0, g(B1, B2) = 1 (2.2.6)
g(T, N) = g(T7 Bl) = g(T7 BQ) = g(N7 Bl) = g<N7 BQ) =0, (2'2'7)
sartalarini saglayan vektor alanlaridir.
iv) N timelike ve B; spacelike ise
VT 0 k& 0 0 T
VrN kk 0 kK 0 N
SR I ? (2.2.8)
VTBl 0 /{32 0 k?g Bl
VTBQ 0 0 —]{33 0 BQ
dir. Burada T, N, By ve B,
g(T,T) :g<B1,B1) - g(B27BQ> - 17 g<N7N> - _]-7 (229>
sartalarini saglayan ortogonal vektor alanlaridir.
v) N null ve B; spacelike ise
VT 0 k& O 0 T
VrN 0 0 &k 0 N
= ? (2.2.10)
VB 0 k3 0 —k By
V1B, —k1 0 —k3 O By

dir. Bu durumda k; sadece iki deger alir: eger v bir geodezik egri ise k; = 0, aksi

halde k; = 1 dir. Burada T, N, By ve By

g(T, T) = g(Bl7Bl) =1,

29

g(N, N) = g(B27B2) =0,
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g(T, N) = g(T7 Bl) = g(T7 B2) = g(N7 Bl) = g<N’ BQ) =0, g(N7 BQ) = 1<2'2'12)

sartalarini saglayan vektor alanlaridir.

vi) N null ve B, spacelike ise

VT 0 k 0 0 T
VN 0o 0 0 k N
4 - 2 (2.2.13)
VB, k0 0 ks B,
VTBQ O —kg —/{72 0 B2

dir. Bu durumda da k; sadece iki deger alir: eger v bir geodezik egri ise k1 = 0, aksi

halde k; = 1 dir. Burada T, N, By ve By

g(T> T) = 9(32782) =1, g<N7 N) = g(BlaBl) =0, (2'2'14>

sartalarini saglayan vektor alanlaridir.
II.Durum : v : I — M egrisi bir timelike egri olsun. Bu durumda 7" bir timelike

vektor oldugundan v nin Frenet formiilleri

VT 0 K 0 0 T
VrN k 0 k 0 N
’ ' ? (2.2.16)
VT31 0 —]{?2 0 ]{73 Bl
VTBQ 0 0 —k’g 0 Bg
dir. Burada T, N, By ve By
g(N7N) :g(BlaBl) = g(B27B2>:17 g(T,T):—l, (2217)

sartalarini saglayan ortogonal vektor alanlaridir.

2.3 4-boyutlu Konformal Flat, Quasi-Konformal Flat
ve Konformal Simetrik Lorentzian Para-Sasakian

Manifoldlar Uzerindeki Biharmonik Egriler

Bu kisimda 4-boyutlu bir konformal flat, quasi-konformal flat veya konformal simetrik

Lorentzian para-Sasakian manifold iizerindeki null (lightlike) olmayan egrilerin 6zgiin
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biharmonik egri olmalar1 i¢in gerek ve yeter sartlar arastirilarak bu egrilerin biharmonik

denklemleri verilecektir.

Teorem 2.3.1. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold ve v : [ — M da M dizerinde ikinci
binormali timelike olan yay-parametresi ile parametrelendirilmis bir spacelike egri
olsun. Bu durumda ~y : I — M egrisinin 6zgin (has) biharmonik egri olmast i¢in
gerek ve yeter sart v : I — M egrisinin ky = 1 olacak sekilde bir ¢cember veya

k% + k2 =1 olacak sekilde bir helis olmasidar.

Ispat. (M, ¢, &, 1), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M egrisinin yay-paramet-
resi ile verilen bir spacelike egri ve ~y egrisi boyunca M ye teget olan {T, N, By, By}

ortonormal Frenet catisinin da
g(T7 T) = g(N’ N) = g(BlaBl> = 17 9(327BQ> =-1

sartlarin sagladigim diigiinelim. Bu durumda 7' = +/(s) bir spacelike vektordiir.
N, V7T dogrultusunda birim spacelike vektor alani, By ve By de sirasiyla birim
spacelike ve birim timelike vektor alanlar1 olmak tizere v egrisi boyunca M ye teget
olan {7, N, By, By} ortonormal Frenet gatisini goz éniine alalim. Bu durumda (2.2.1)
ile verilen Frenet formiilleri ve (2.1.29) kullanilarak v : I — M egrisinin bitensiyon

alam

n(y) = ViT — R(T,V:T)T

= VoVr(kiN) — R(T,k,N)T

= Vg (KN +kVN) -k R(T, N)T

= KN+ KNrN+ kNN + V(=T + ko By) — ki R(T, N)T

= Kk{N + 2k} (—kiT + k2 By)
ki (—K\T — ky VT + kyBy + koVpBy) — kyR(T,N)T

= K'N — 2KkyT + 2k ko By — K\ ki T — k3N + k1 kb By
+k1ky(—koN 4 k3Bs) — ki(—N)
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olur. Bu son esitlik diizenlenirse v egrisinin biharmonik denklemi

(y) = (=3kik)) T+ (k) — ki — kak3 + k1) N
+ (2]{5/1/{?2 + klk’/g) Bl + (k’1k’2k’3) B2
= 0
elde edilir. Burada k; : [ — R, (i = 1,2, 3), fonksiyonlar1 v : I — M egrisinin ¢.yinci

egrilik fonksiyonlaridir. Boylece v : [ — M egrisinin biharmonik olmasi i¢in gerek

ve yeter sart k; : [ — R, (i = 1,2,3), i.yinci egrilik fonksiyonlarmin

Kk, = 0, (2.3.1)

K — Ky (ki + k3 —1) = 0, (2.3.2)
2k ky + bk, = 0, (2.3.3)
kikoks = 0 (2.3.4)

denklemlerini saglamasidir. Eger (2.3.1)-(2.3.4) denklemlerinin v : I — M egrisi bir

geodezik olmayacak sekildeki ¢oziimleri incelenirse

ky = sabit # 0,

ke = sabit,
B4k = 1,
k’gk’g - 0
elde edilir ki bu da ispat1 tamamlar. O]

Teorem 2.3.2. M bir /-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold ve v : I — M da M Jizerinde birinci
binormali timelike olan yay-parametresi ile parametrelendirilmis bir spacelike egri
olsun. Bu durumda v : I — M egrisinin ézgin (has) biharmonik egri olmast i¢in
gerek ve yeter sart v : I — M egrisinin ki = 1 olacak sekilde bir ¢ember veya

k¥ — k3 =1 olacak sekilde bir helis olmasidar.

Ispat. (M, ¢, &, n), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal

simetrik Lorentzian para-Sasakian manifold olsun. ~ : [ — M, yay-parametresi
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ile verilen bir spacelike egri olsun. Bu durumda 7" = +/(s) bir spacelike vektordiir.
v : I — M egrisinin ortonormal Frenet gatis1 {T', N, By, By} olmak {izere B; timelike
oldugundan N, VT dogrultusunda bir spacelike vektor alani ve By de bir spacelike
vektor alanidir. Bu durumda (2.2.3) ile verilen Frenet formiilleri ve (2.1.29) kullanila-

rak bienerjinin Euler-Lagrange denklemi

n(y) = V3T — R(TI,VT)T
= V¢yVy(kiN)— R(T,kyN)T
= Vo (KN +kVrN)—kR(T,N)T
= K/N+ Kk VrN+ VN + V7 (kT + koBy) — ki R(T, N)T
= KN+ 2k} (—k:T + ko By)
+ky (KT — kyV1T + kb By + koVrBy) — ki R(T, N)T
= K/N — 2K kT + 2K\ ky By — K ki T — KN + k1 kb By
+k1ky(koN + k3Bs) — ky(—N)
= (=3K\k) T + (K} — k} + k1k3 + k1) N
+ (2k ko + k1kb) By + (k1koks) Bs
=0
olur. Burada k; : I — R, (i = 1,2,3), fonksiyonlar1 v : I — M egrisinin i.yinci
egrilik fonksiyonlaridir. Boylece v : I — M egrisinin biharmonik olmasi i¢in gerek

ve yeter sart k; : [ — R, (i =1,2,3), i.yinci egrilik fonksiyonlarimin

Kiky = 0, (2.3.5)

K —ki(ki—k3—1) = 0, (2.3.6)
2k ko + ki, = 0, (2.3.7)
kikoks = 0 (2.3.8)

denklemlerini saglamasidir. Eger (2.3.5)-(2.3.8) denklemlerinin v : I — M egrisi bir

geodezik olmayacak gekildeki (yani &y # 0 igin) ¢dziimleri incelenirse

ki = sabit # 0,

ke = sabit,
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-k = 1,

kigkg - O
elde edilir. Boylece ispat tamamlanir. O]

Teorem 2.3.3. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold vey : I — M da M tzerinde yay-paramet-
resi ile parametrelendirilmis bir spacelike egri olsun. N bir spacelike vektor ve By
bir null (lightlike) vektor olmak tizere v egrisi boyunca M ye teget olan Frenet ¢atis
da {T, N, By, Bo} olsun. Bu durumda ~y : I — M egrisinin 6zgin (has) biharmonik
egri olmast i¢in gerek ve yeter sart
ve

(i) ke =0 veya Inko(s) = — [ ks(s)ds
olmasudar.
ispat. (M, ¢, &, 1), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M, yay-parametresi ile
verilen bir spacelike egri olsun. M tizerinde y egrisi boyunca hareketli {T', N, By, By}
Frenet catisinin

g(TaT) = g(N7N):]-7 g(BlvBl):g(327BQ):07

g(T7 N) - g(T7 Bl) - g(T7 BQ) - g(N7 Bl) = g<N7 B2) = 07 g(BhBQ) =1
sartlarimi sagladigini diigiinelim. (2.2.5) kullanilarak 7 egrisinin bitension alani

m(y) = VAT — R(T,V:T)T
= V¢Vr(kN) — R(T, kyN)T
— Vi (KN +kVeN) — kR(T,N)T
— KN+ K VN + kEVoN + ki Ve (=k T + ko By) — kyR(T, N)T
= K{N +2k; (—k1T + k2 By)

thy (=T = ky VT + K, By + kN By) — ky R(T, N)T
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olur. Bu son esitlikten ~ egrisinin biharmonik denklemi

m(y) = (3kk) T+ (K — K+ k) N
+ (2K, Ky + kKl + Kikoks) By
=0

seklinde elde edilir. Burada k; : I — R, (i = 1,2,3), fonksiyonlarn1 v : [ — M
egrisinin ¢.yinci egrilik fonksiyonlaridir. Boéylece v : I — M egrisinin biharmonik

olmasi igin gerek ve yeter sart k; : I — R, (i = 1,2, 3), i.yinci egrilik fonksiyonlarinin

Kk = 0, (2.3.9)
E —ki+k = 0, (2.3.10)
2k ko + kikh + kikoks = 0, (2.3.11)

denklemlerini saglamasidir. Eger (2.3.9)-(2.3.11) denklemlerinin v : I — M egrisi

bir geodezik olmayacak sekildeki (yani k; # 0 i¢in) ¢oziimleri incelenirse
k=1

ve

k4 koks = 0 (2.3.12)

bulunur. (2.3.12) den ks = 0 veya Inko(s) = — [ ks(s) ds elde edilir ki bu da ispat1

tamamlar. 0

Teorem 2.3.4. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold ve v : I — M da M dizerinde birim
normal vektor alani timelike olan yay-parametresi ile parametrelendirilmis bir spacelike
egri olsun. Bu durumda v : I — M egrisinin biharmonik egri olmasi i¢in gerek ve

yeter sart bir geodezik olmasidar.

ispat. (M, ¢, &, 1), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M, birim normal vektor
alani timelike olan yay-parametresi ile parametrelendirilmis bir spacelike egri olsun.

Oyleyse T = +/(s) bir spacelike vektordiir ve ~ egrisi boyunca M ye teget olan
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{T, N, By, By} ortonormal Frenet catisi g(T,T) = g(By,B1) = ¢g(Bs,Bs) = 1,
g(N,N) = —1 gartlarim saglar. Bu durumda (2.2.8) ile verilen Frenet formiilleri

ve (2.1.29) kullanilarak ~ : I — M egrisinin biharmonik denklemi

n(y) = V3T — R(T,VT)T
= V¢Vr(kiN) — R(T,k;N)T
= V¢ (KN +kVyN) -k R(T,N)T
= KN+ EVrN +KNVrN+ iV (T + kBy) — ki R(T,N)T
= k{N + 2k} (kT + koBy)
+ki (BT + by VoT + kyBy + koV e By) — kyR(T, N)T
= KN + 2K,y T + 2k ko By + Kl T + K2 N + kyky By
+k1ko(koN + k3Bs) — ki (—N)
= (Bkik) T + (K + K} + k1k3 + ki) N
+ (2K ko + k1kb) By + (k1koks) Bs
=0
olur. Burada k; : I — R, (i = 1,2,3), fonksiyonlar1 v : I — M egrisinin .yinci
egrilik fonksiyonlaridir. Boylece v : [ — M egrisinin biharmonik olmasi igin gerek

ve yeter sart k; : [ — R, (1 = 1,2,3), i.yinci egrilik fonksiyonlarimin

Kk = 0, (2.3.13)

K 4+ k(K3 +k3+1) = 0, (2.3.14)
2kiky + ki, = 0, (2.3.15)
kikoks = 0 (2.3.16)

denklemlerini saglamasidir. Eger (2.3.13)-(2.3.16) denklemlerinin v : I — M egrisi

bir geodezik olmayacak gekildeki (yani k; # 0 igin) ¢oztimleri incelenirse

ki = sabit #£ 0,

ke = sabit,
k4K = -1,
]fg]{ig - 0



elde edilir. Halbuki k? + k3 = —1 olmas1 miimkiin degildir. Oyleyse v : I — M

egrisi geodezik olmak zorundadir. Boylece ispat tamamlanir. O]

Teorem 2.3.5. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold vey : I — M da M tizerinde yay-paramet-
resi ile parametrelendirilmis bir spacelike egri olsun. N bir null (lightlike) vektor ve
By bir spacelike vektor olmak tzere v egrisi boyunca M ye teget olan Frenet ¢atis
da {T, N, By, Bo} olsun. Bu durumda vy : I — M egrisinin biharmonik egri olmas:

i¢in gerek ve yeter sart bir geodezik olmasidar.

Ispat. (M, ¢, &, 1), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M, yay-parametresi ile
verilen bir spacelike egri olsun. M tizerinde v egrisi boyunca hareketli {T', N, By, By}

Frenet c¢atisinin

g(T7T) = g(BlaBl>:1a g(NaN) :g(B27B2):07

g(Ta N) = g(T> Bl) = g(T7 BQ) = g<N7 Bl) = g(BhBQ) = Oa g<N7 BQ) =1
sartlarii sagladigini diigiinelim. (2.2.10) kullanmilarak

m(y) = VAT — R(T,VoT)T
= ViVe(kyN) — R(T, kyN)T
= Vi (KN +kVeN) — kyR(T, N)T
= kN +KVoN +KVrN +k Ve (keBy) — ki R(T, N)T
= KIN + 2k, (kyBy) + ky (KyBy + kyVpBy) — kyR(T, N)T
= kYN + 2ki ko By + k1K By
+hyky(ksN — kyBy) — ki (—N)
= (K" + kykoks + k1) N + (2K, ks + k1K) By + (k1k2) By

= 0

elde edilir. Burada k; : [ — R, (i = 1,2, 3), fonksiyonlar1 v : I — M egrisinin 7.yinci

egrilik fonksiyonlaridir. Boylece v : [ — M egrisinin biharmonik olmasi igin gerek
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ve yeter sart k; : [ — R, (i = 1,2,3), i.yinci egrilik fonksiyonlarmin

ki + kiksks +ky = 0, (2.3.17)
2k ky + kikl, = 0, (2.3.18)
kik2 = 0, (2.3.19)

denklemlerini saglamasidir. Diger taraftan v : I — M, normal vektor alani null
(lightlike) olan bir spacelike egri oldugundan birinci egriligi ky, v : I — M bir
geodezik iken 0 diger tiim durumlarda ise 1 dir. Eger yukaridaki denklemlerin
v I — M egrisi bir geodezik olmayacak gekildeki (yani k; # 0 igin) ¢oziimleri
incelenirse k; = 1 olacagindan (2.3.17) den koks +1 = 0 ve (2.3.19) dan ks = 0 elde
edilir. Halbuki bu bir geligkidir. Dolayisiyla k; = 0 yani v : I — M bir geodezik

olmak zorundadair. O

Teorem 2.3.6. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold vey : I — M da M tizerinde yay-paramet-
resi ile parametrelendirilmis bir spacelike egri olsun. N bir null (lightlike) vektor ve
By bir spacelike vektor olmak tizere v egrisi boyunca M ye teget olan Frenet ¢atis
da {T, N, By, Bo} olsun. Bu durumda vy : I — M egrisinin biharmonik egri olmas:

icin gerek ve yeter sart bir geodezik olmasidur.

Ispat. (M, ¢, &, n), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M, yay-parametresi ile
verilen bir spacelike egri olsun. M tizerinde v egrisi boyunca hareketli {T, N, By, By}

Frenet catisiin

g(T7T) = g(B27BQ):17 g(NaN) 29(81,31)207

g(T,N) = g(T,By) =g(T,Bs) = g(N, Bs) = g(B1, B2) =0, g(N,B;) =1

sartlarii sagladigini diigiinelim. (2.2.13) kullamlarak ~ egrisi i¢in bienerjinin Euler-

Lagrange denklemi
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To(y) = VAT — R(T,V:T)T
= Vg (k{N +kVeN) — ki R(T,N)T
= kYN + 2k} (koBs) + ky (kyBa + koV 1 Bo) — kyR(T, N)T
= kYN + 2k}kyBy + k1K), B
+k1ko(—ksN — koBy) — k1 (—N)
= (kY — kikaks + k1) N + (—k:k3) By + (2k1ko + k1k}) Bo
=0
bulunur. Burada k; : [ — R, (i = 1,2,3), fonksiyonlar1 v : I — M egrisinin i.yinci

egrilik fonksiyonlaridir. Boylece v : I — M egrisinin biharmonik olmasi i¢in gerek

ve yeter sart k; : [ — R, (i = 1,2,3), i.yinci egrilik fonksiyonlarimin

k'i/—klkgk;g—l-kl = O, (2320)
kiki = 0, (2.3.21)
2k ko + kiky, = 0, (2.3.22)

denklemlerini saglamasidir. Diger taraftan v : I — M, normal vektor alani null
(lightlike) olan bir spacelike egri oldugundan birinci egriligi ky, v : [ — M bir
geodezik iken 0 diger tiim durumlarda ise 1 dir. Eger yukaridaki denklemlerin
v« I — M egrisi bir geodezik olmayacak sekildeki (yani k; # 0 igin) ¢oziimleri
incelenirse k; = 1 olacagindan (2.3.20) den koks +1 = 0 ve (2.3.21) dan ke = 0 elde
edilir. Halbuki bu bir geligkidir. Dolayisiyla k; = 0 yani v : I — M bir geodezik

olmak zorundadir. O

Simdi 4-boyutlu konformal flat, quasi-konformal flat veya konformal simetrik
Lorentzian para-Sasakian manifold {izerindeki bir timelike egrinin 6zgiin (has) bihar -

monik olmasi i¢in gerek ve yeter gartlar1 inceleyelim:

Teorem 2.3.7. M bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold vey : I — M da M tizerinde yay-paramet-

resi ile parametrelendirilmis bir timelike egri olsun. Bu durumda v @ I — M
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egrisinin btharmonik egri olmasi i¢in gerek ve yeter sart~v : I — M egrisinin ky = 1

olacak sekilde bir ¢cember veya k? — k2 = 1 olacak sekilde bir helis olmasidar.

Ispat. (M, ¢, €&, m), bir 4-boyutlu konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. v : I — M, yay-parametresi ile
verilen bir timelike egri olsun. Oyleyse T = +/ (s) bir timelike vektordiir ve 7 egrisi
boyunca M ye teget olan {T', N, By, By} ortonormal Frenet catis1 g(T,7T) = —1,
g(N,N) = g(By, By) = g(Ba, By) = 1 gartlarim saglar. (2.2.16) esitligi kullanilarak

~ egrisinin biharmonik denklemi

m(y) = VAT — R(T,VT)T

= V¢rVr(kiN) — R(T,kyN)T

= V¢ (KN +kVeN) — kR(T,N)T

= KN+ KVrN+EVrN+kVr (kT + keBy) — kyR(T, N)T

= kYN + 2k} (k1T + koBy)
+ky (KT + kyVoT + kyBy + koVrBy) — ki R(T, N)T

= KN + 2K kyT + 2k ko By + Ky T + KN + kykyBy
+kiko(—koN + k3Bs) — ki (V)

= (Bkik))T + (K + K} — kik3 — k) N
+ (2k1 ko + k1kb) By + (k1koks) By

=0

elde edilir. Burada k; : I — R, (i = 1,2,3), fonksiyonlar1 v : I — M egrisinin i.yinci

egrilik fonksiyonlaridir. Boylece v : I — M egrisinin biharmonik olmasi i¢in gerek

ve yeter sart k; : [ — R, (i =1,2,3), i.yinci egrilik fonksiyonlarimin

Kk = 0, (2.3.23)

K 4k (k2 — k2 —1) = 0, (2.3.24)
2kl ky + kikl = 0, (2.3.25)
kikoks = 0 (2.3.26)

denklemlerini saglamasidir. Eger (2.3.5)-(2.3.8) denklemlerinin 7 : I — M egrisi bir
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geodezik olmayacak sekildeki (yani k; # 0 igin) ¢oziimleri incelenirse

ky = sabit # 0,

ks = sabit,
k2 — ki = 1,
kgkg - 0
elde edilir. Boylece ispat tamamlanir. O]

2.4 S}(1) Lorentz Birim Kiiresi Uzerindeki

Biharmonik Egriler

(M, ¢, &, m), bir n-boyutlu (n > 3) konformal flat, quasi-konformal flat veya konformal
simetrik Lorentzian para-Sasakian manifold olsun. Teorem 2.1.1, Teorem 2.1.2 ve
Sonug 2.1.1 den M manifoldu S (1) Lorentz birim kiiresine lokal olarak izometriktir.
Bu gercegi ve kisim 2.3 de verdigimiz teoremleri kullanarak, bu kisimda Si(1)
Lorentz birim kiiresi iizerindeki geodezik olmayan biharmonik egriler i¢in bazi karak-
terizasyonlar verilecektir. Ayrica S7(1) Lorentz birim kiiresi izerindeki null olmayan
bir egrinin aslinda 4. mertebeden bir diferansiyel denklem olan biharmonik denklemi

¢oziilerek bazi siniflandirmalar ve bazi 6zel 6zgiin biharmonik egriler elde edilecektir.
(,) = —da} + da3 + da3 + da? + da?

olmak iizere (,) metrigine sahip 5-boyutlu Minkowski uzay (RS, (,)) olsun. Bu

durumda S}(1) Lorentz birim kiiresi, R} Minkowski uzayinda

Si()={peR;:(p.p)=1} (2.4.1)

ile tanmimlanan bir hiperkuadriktir.

v : I — S{(1), yay-parametresi ile parametrelendirilmig null (lightlike) olmayan
bir egri ve V da S}(1) Lorentz birim kiiresi iizerinde 7 egrisi boyunca kovaryant
tiirev olsun. Bu durumda v egrisi boyunca bir X vektor alani igin v/(s) = T'(s)

olmak tzere

VX = X' +(T,X)y (2.4.2)
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dir. Ayrica Sf(1) Lorentz birim kiiresi, skaler egriligi 1 olan bir Lorentzian uzay

form oldugundan VX,Y, Z € T'(T (S}(1))) igin
RX,Y)Z =Y, Z2)X — (X,2)Y

yazilir. Burada R, S{(1) Lorentz birim kiiresi iizerindeki Riemann egrilik tensor

alanidir.

Onerme 2.4.1. v+ I — S{(1) yay-parametresi ile parametrelendirilmis geodezik
olmayan bir biharmonik spacelike egri; {T, N, By, Bo}, N wve By spacelike vektir
alanlary olmak dizere ST(1) Lorentz birim kiresi tizerinde v egrisi boyunca ortonormal

Frenet ¢atisy olsun. Bu durumda

Y 429"+ (1= k)y =0 (2.4.3)
dvr. Burada ky : I — R, 7y egrisinin birinci egrilik fonksiyonudur.
Ispat. 7 : I — S(1), normal vektér alan1 N ve binormal vektor alam By spacelike
olan yay-parametresi ile parametrelendirilmis geodezik olmayan bir biharmonik space-
like egri olsun. Bu durumda (2.2.1) kullamlarak

ViN = Vy(VrN)

= Vo(—=kiT + k2By)

= —ki\V7T + kVrBy

= —ki(kiN) 4 ko(—koN + k3Bs)

= —(k{ + k)N + (kok3) By

= —N (2.4.4)

bulunur. Ayrica (2.2.1) ve (2.4.2) den

ViN = Vi(VrN)=Vr (N +(T,N)v)
— VrN' =N"+4(T,N')~
= N'"+(T,VeN —(T,N)~)~
= N'"+(T,VyN)~v
= N"4+(T,—ki;T + ko By) v

= N"—kyy (2.4.5)
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elde edilir. (2.4.4) ve (2.4.5) esitliklerinden
N =N"—kyy (2.4.6)
dir. Diger taraftan S} (1) tizerindeki Gauss denkleminden faydalanarak
VT =T + (T, T)y=~"+7~ (2.4.7)
oldugu kolayca gortilebilir. Bu son esitlikten

1 1
N = k—(’y +7) (2.4.8)
1

olur. Boylece (2.4.8), (2.4.6) esitliginde kullanilirsa ispat tamamlanmig olur. O

Onerme 2.4.1 goz 6niine almirsa, S#(1) Lorentz birim kiiresi iizerinde tanimli,
normal vektor alani ve binormal vektor alani spacelike olan 6zgiin (has) biharmonik
spacelike egrileri bulmak igin (2.4.3) ile verilen diferansiyel denklemin g¢oziimleri

incelenmelidir. Boylece agagidaki teoreme ulagilir:

Teorem 2.4.1. v : I — S}(1) yay-parametresi ile parametrelendirilmis geodezik
olmayan bir biharmonik spacelike egri; {T, N, By, By}, N ve By spacelike vektor
alanlary olmak tizere S{(1) Lorentz birim kiiresi tizerinde v egrisi boyunca ortonormal

Frenet catisy olsun. Bu durumda asagidaki ikt durum soz konusudur:

(1) v: I — S{(1) egrisi yaricapr \% olan bir cemberdir.

s cos(as) sin(as) cos(bs) sin(bs
(i) 71 1 — SH(1), A(s) = (0, 2lge), snlae) costhe) snf) )

dir. Burada ki : I — R, 7 egrisinin birinci egrilik fonksiyonu, a = /1 — ky ve

b=+1+Fk dir

Ispat. ~:1 — S%(1), normal vektér alam N ve binormal vektor alan By spacelike
olan yay-parametresi ile parametrelendirilmig bir 6zgiin (has) biharmonik spacelike
egri olsun. ky ile vy : I — S{(1) egrisinin birinci egrilik fonksiyonunu gosterelim.

(i) Eger k1 = 1 ise (2.4.3) ile verilen diferansiyel denklem

SV Lo — (2.4.9)
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diferansiyel denklemine donitigtir. (2.4.9) diferansiyel denkleminin karakteristik denkle-
mi

m* +2m? =0
olur. Bu karakteristik denklemin kokleri

my=mo =0, mg=1V2 ve m4:—i\/§

seklindedir. Boylece (2.4.9) diferansiyel denkleminin genel ¢oziimii

v(s) = ¢1 4 ¢25 + c3cos(V/2s) + ¢4 sin(v/2s) (2.4.10)
dir. Burada c;, ¢, c3 ve ¢4 birbirine dik sabit vektorlerdir. |y| = 1 ve |¢/| = 1
oldugundan
1
=0 ve ||’ =les]” = el = 5 (2.4.11)

bulunur. Oyleyse (2.4.10) ve(2.4.11) esitliklerinden —d? + d2 + d3 = + olmak tizere

B cos(v/2s) sin(v/2s)
’7(8) = <d1, \/5 s \/§ ,dg,dg)

elde edilir ki bu da v : I — S7(1) egrisinin yarigap 7 olan bir ¢ember oldugunu

gosterir.
(ii)) Eger 0 < k; < 1 ise (2.4.3) ile verilen diferansiyel denklemin karakteristik
denklemi

m*+2m* + k3 =0 (2.4.12)
olur. m? =t dersek (2.4.12) denklemi
2422+ k3 =0 (2.4.13)

denklemine indirgenir. (2.4.13) denkleminin diskriminant1 A = 4(1—k3) oldugundan

bu denklemin kokleri t; ve t5 olmak tizere

t1 = —1+l€1, (t1<0),

ty = —1—]{31, (t2<0)

dir. Buradan m? = t oldugu goz oniine alimirsa (2.4.12) karakteristik denkleminin

kokleri
mlz—i\/l—kl, mgzi\/l—k‘h mgz—i\/l‘i‘kl ve m4:i\/1+k1
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bulunur. Béylece /1 —Fk; = a ve v/1+k; = b olmak tizere (2.4.3) diferansiyel

denkleminin genel ¢oziimii

v(s) = ¢ cos(as) + e sin(as) + 3 cos(bs) + ¢4 sin(bs) (2.4.14)
olur. Burada ¢y, ¢, c3 ve ¢4 birbirine dik sabit vektorlerdir. |y| = 1 ve || = 1
oldugundan
1
el = leaf” = lesf* = Jeal* = 5 (2.4.15)

elde edilir. Oyleyse (2.4.14) ve(2.4.15) esitliklerinden

B cos(as) sin(as) cos(bs) sin(bs)
0= (0.2 5 )

elde edilir ki bu da ispat1 tamamlar. O]

Onerme 2.4.2. v+ I — S{(1) yay-parametresi ile parametrelendirilmis geodezik
olmayan bir biharmonik spacelike egri; {T, N, By, Bo}, N bir spacelike vektor alana
ve By bir timelike vektor alany olmak dizere Si(1) Lorentz birim kiiresi tizerinde
egrisi boyunca ortonormal Frenet catisy olsun. Bu durumda
AV 1oy 4 (1 —k)y =0 (2.4.16)
dwr. Burada ky : I — R, v egrisinin birinci egrilik fonksiyonudur.
ispat. v : I — St(1), normal vektér alami N spacelike ve binormal vektor alani
By timelike vektor olan yay-parametresi ile parametrelendirilmig bir 6zgiin (has)
biharmonik spacelike egri olsun. Bu durumda (2.2.3) kullanilarak
V%N = Vp(VeN) =Vp(—kiT + ko By)
- —k:lVTT -+ kQVTBl = —kl(k1N> -+ kg(ng + k’gBQ)
= —(k} — k)N + (kzks) By = —N
bulunur. Ayrica (2.2.3) ve (2.4.2) den
VAN = Vy(VeN) =V (N +(T,N)~)
= VyN' =N"+{(T,N')~
= N'+(I''VoN —(T,N)~y)y=N"+(T,VrN)~v
= N” + <7ﬁ7 —k‘lT + k’gBl> Y

= N,/—/{Zl’)/
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elde edilir. Bu son iki esitlikten
—N=N"—kv (2.4.17)
olur. Diger taraftan S7(1) tizerindeki Gauss denkleminden faydalanarak
VT =T + (T, T)y=+"+7~
oldugu kolayca goriilebilir. Buradan

1
N = ki”" +7) (2.4.18)

bulunur. Boylece (2.4.18), (2.4.17) egitliginde kullamlirsa ispat tamamlanmig olur.
O

Simdi (2.4.16) diferansiyel denkleminin ¢6ziimlerini inceleyelim:

(i) Eger k; = 1 ise (2.4.16) ile verilen diferansiyel denklem (2.4.9) diferansiyel
denklemine indirgeneceginden bu diferansiyel denklemin ¢oziimii olan v : I — S7(1)
egrisi yaricapi \/Li olan bir cemberdir.

(ii) Eger k1 > 1 ise (2.4.16) ile verilen diferansiyel denklemin karakteristik
denklemi

m* 4 2m? — k2 =0 (2.4.19)

olur. m? =t dersek (2.4.19) denklemi
2422 — k2 =0 (2.4.20)

denklemine indirgenir. (2.4.20) denkleminin diskriminant1 A = 4(1+k3) oldugundan

bu denklemin kokleri ¢; ve ¢ olmak tizere

t1 = —1+/{31, (t1>0)

ty = —1—]{?1, (t2<0)

dir. Buradan m? = t oldugu goz oniine alimirsa (2.4.19) karakteristik denkleminin

kokleri
miy=+Vki—1, meo=—Vki—1, mg=—i\/1+k ve my=i/1+k
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seklindedir. Boylece k3 — 1 = a ve /1 + k1 = b olmak tizere (2.4.16) diferansiyel

denkleminin genel ¢oziimii
Y(s) = 1™ 4 coe™* 4 c3 cos(bs) + ¢4 sin(bs) (2.4.21)

olur. Simdi |y| = 1 ve |y/| = 1 olacak sekilde ¢, ¢g,c3 ve ¢y sabit vektorlerini

belirleyerek (2.4.16) diferansiyel denkleminin &zel bir ¢6ztimiini bulahm:

P = (), 7(s))

*+ (e1, ca) + (e, c3) € cos(bs) + (c1, ¢4) € sin(bs)

+ (2, ca) €72 + (g, c3) €7 cos(bs) + {ca, c4) € sin(bs)
c3, 1) €% cos(bs) + (cs, c2) e~ cos(bs)

)

)

c3, €3) cos?(bs) + (c3, c4) cos(bs) sin(bs)

cs,c1) € sin(bs) + (ca, c3) e sin(bs)
)

¢y, c3) sin(bs) cos(bs) + {cy, c4) sin’(bs) (2.4.22)
ve

W = (3(),7(9))
= < acie® — acge” ™ — begsin(bs) + bey cos(bs),
acre® — acoe™* — beg sin(bs) + bey cos(bs) >

2as

= a®{c1,c1) e®™ —a® {c1,cy) — ab{cy, c3) e sin(bs)

+ab {c1, cq) € cos(bs) — a® (ca, c1) + a® (e, cp) €72
(Co, c3) e~ sin(bs) — ab (co, cq) €™ cos(bs)
—ab (cs, c1) €* sin(bs) + ab (cs, c2) e~ sin(bs)
+b? (3, c3) sin®(bs) — b? (c3, ¢4) sin(bs) cos(bs)

)
+ab (cy, c1) € cos(bs) — ab (cy, c2) e~ cos(bs)
)

—b? {cy, c3) cos(bs) sin(bs) + b (cy, c4) cos?(bs) (2.4.23)
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oldugundan ¢y, ¢9, c3 ve ¢4 sabit vektorleri

(cr,¢c1) = (co,09) =0,

(cs,c3) = (ca,¢q) = 5_2 =5,

) = % - i (2.4.24)
(c1,03) = (cr,ea) =0

(c2,c3) = (ca,ca) =0

(c3,ca) = 0

olacak sekilde

7 3
6 = (1,0,0,0,1), c2:<—1,§,0,0,—1>,

11 7 1 7
3 = <O’07_7_70>’ Cy = _£7_70707_£
272 V2 V2 V2

seklinde secilebilir. Bu durumda gercekten |y]> = 1 ve |/|> = 1 olur. Oyleyse
(2.4.16) diferansiyel denkleminin 6zel bir ¢oziimii k; = 5 ve ky = 2v/6 egriliklerine
sahip

2s — \/_ (\/_S) \/_ 723

v(s) = (e —e —TSIH sm(\/_s)

\/_
3 VT
—cos V6s cos Vs — Ze™® — T _sin(V6s
(V) g eos(vB). ¢ — T — Y sin(v6)
ile verilen bir helistir. Bu helis, S{(1) Lorentzian birim kiiresi iizerinde, normal

vektor alani spacelike ve binormal vektor alani timelike olan yay-parametresi ile

parametrelendirilmis bir 6zgiin (has) biharmonik spacelike egridir.

Onerme 2.4.3. v : I — S}{(1) yay-parametresi ile parametrelendirilmis geodezik
olmayan bir spacelike egri; {T, N, By, Bo}, N bir spacelike vektor alany ve By bir
null (lightlike) vektor alany olmak tizere St(1) Lorentz birim kiiresi tizerinde v egrisi

boyunca bir Frenet ¢atist olsun. Bu durumda
AIV) 494" =0 (2.4.25)

dur.
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Ispat. v: 1 — S1(1), normal vektor alam N spacelike ve binormal vektor alanm By
nill (lightlike) vektor olan yay-parametresi ile parametrelendirilmig bir 6zgiin (has)

biharmonik spacelike egri olsun. Bu durumda (2.2.5) kullanilarak
V2N = V¢(VrN)
- VT(—le + kQBl)
= —kiV7T + kyVrBy
- —kl(klN) —|- k’g(k’gBl)
= —(k})N + (koks) By
= —N
bulunur. Ayrica (2.2.3) ve (2.4.2) den
VAN = Vp(VeN) =V (N +(T,N)v)
= VyN' =N"+(T,N')~
= N"+(T.VoN —(T,N)7)~
= N'+(T,VrN)~y
= N// + <T, —le + k2B1> Y
— N// _ klﬁ)/
— Nl/ _ ’7
elde edilir. Bu son iki esitlikten
—N=N"—~ (2.4.26)
olur. Diger taraftan S}(1) iizerindeki Gauss denkleminden faydalanarak
VT =T +(T,T)y =+"+7
oldugu kolayca goriilebilir. Buradan

N=+"+~ (2.4.27)

bulunur. Boylece (2.4.27), (2.4.26) esitliginde kullamlirsa ispat tamamlanmig olur.
O
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Teorem 2.4.2. v : I — S}(1) yay-parametresi ile parametrelendirilmis geodezik
olmayan bir biharmonik spacelike egri; {T, N, By, Bo}, N bir spacelike vektor alan
ve By bir null (lightlike) vektér alan olmak tizere St(1) Lorentz birim kiiresi tizerinde

7y egrisi boyunca bir Frenet catisy olsun. Bu durumda v : I — St(1) egrisi yaricap

\/Li olan bir ¢emberdir.

Ispat. (2.4.25) ile verilen diferansiyel denklemin ¢oziimii, Teorem 2.4.1 (i) nin ispatin-

da kullanilan yontem izlenerek ayni gekilde elde edilir. ]

Simdi S} (1) Lorentzian kiiresi iizerinde yay-parametresi ile parametrelendirilmis

geodezik olmayan bir biharmonik timelike egri i¢in agagidaki karakterizasyonu verelim:

Onerme 2.4.4. v+ I — S{(1) yay-parametresi ile parametrelendirilmis geodezik

olmayan bir btharmonik timelike egri olsun. Bu durumda
AIV) — 29" 4 (1 = k})y =0 (2.4.28)
dwr. Burada ky : I — R, v egrisinin birinci egrilik fonksiyonudur.

ispat. v I — S{(1) yay-parametresi ile parametrelendirilmis geodezik olmayan bir
biharmonik timelike egri olsun. Bu durumda (2.2.16) ile verilen Frenet denklemleri

kullanilarak

V2N = Vq¢(VzrN)
= Vo(kiT + kyBy)
= VT + VB
= ky(kyN) + ko(=koN + ksB,)
= (K} = k3)N + (koks) B,
= N
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bulunur. Ayrica (2.2.16) ve (2.4.2) den
VEN = Vp(VrN) = Ve (N'+(T,N)7)
= VyN' =N"+(T,N)y
= N'"+(T,VyN — (T,N)~)~
= N"+(T,VoN)~y
= N"+(T,—ksT + ko B1) v

= N"+ kv
elde edilir. Bu son iki esitlikten
N = N"+ kv (2.4.29)
olur. Diger taraftan S7(1) tizerindeki Gauss denkleminden faydalanarak
Vil =T+ (T\T)y =" =~

oldugu kolayca goriilebilir. Buradan

1 1
N = . (" =) (2.4.30)
1

bulunur. Boylece (2.4.30), (2.4.29) egitliginde kullamlirsa ispat tamamlanmig olur.
[

Bu kisimda son olarak (2.4.28) diferansiyel denkleminin ¢6ziimlerini inceleyelim:

(i) Eger k1 = 1 ise (2.4.28) ile verilen diferansiyel denklem
AUV 2~ =0 (2.4.31)

diferansiyel denklemine dontigiir. (2.4.31) diferansiyel denkleminin karakteristik
denklemi

mt—2m? =0

olur. Bu karakteristik denklemin kokleri

my =meo =0, m3:\/§ ve m4:—\/§
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seklindedir. Boylece (2.4.28) diferansiyel denkleminin genel ¢oziimii
Y(s) = 1 + co8 + e3¢V + eV (2.4.32)

dir. Burada ¢, ¢z, ¢35 ve ¢4 sabit vektorlerdir. |y|> = 1 ve |¢/|° = 1 oldugundan

-~ N~

O

3,C3) = (Cq, Ca) =

c1,c3) = (c1,0q) = (2.4.33)

|
—
o
N
~

I
\.CD

Ca,

o~ o~ o~ o~ o~
o
[y
Q
N

~— ~— ~— ~— ~—
—~

A

olacak sekilde

70707071)7 Co = (070707070)a

1 1 V2 10101
C3 = _1a_7050a__ ) Cqy = ]-7__7_7_a_
V2 V2 4792727 4/2

seklinde secilebilir. Oyleyse (2.4.31) diferansiyel denkleminin 6zel bir ¢6ztimii

) [l iy e VT o
K ) V2 V222 2 V2 ave

olur.
(ii) Eger k1 > 1 ise (2.4.28) ile verilen diferansiyel denklemin karakteristik

denklemi

m* —2m? — k3 =0 (2.4.34)

olur. m? =t dersek (2.4.34) denklemi
t?—2t—k3=0 (2.4.35)

denklemine indirgenir. (2.4.35) denkleminin diskriminant1 A = 4(1+k3) oldugundan

bu denklemin kokleri t; ve t5 olmak tizere

1 = 1+k1, (t1>0>

ty = 1—]61, (t2<0)
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dir. Buradan m? = t oldugu goz oniine alimirsa (2.4.34) karakteristik denkleminin

kokleri

:\/1+k1, m2:—\/1+k1, mgz—i\/]fl—l ve m4:ivk1—1

seklindedir. Boylece v/1 + k1 = a ve k3 — 1 = b olmak iizere (2.4.28) diferansiyel

denkleminin genel ¢oziimii
Y(s) = c1€* + coe™* 4 c3 cos(bs) + ¢4 sin(bs) (2.4.36)

olur. Baylece [v]* = 1 ve |7/|* = 1 olacak sekilde ¢y, ¢o, ¢35 ve ¢4 sabit vektorlerini
belirleyerek (2.4.28) diferansiyel denkleminin 6zel bir ¢dziimiini bulalim:

¢1,Ca, C3, ¢4 sabit vektorleri a = 2, b = /2 ve

(cr,er) = (cane) =0,
(ene) = {ened =1,

(c1,00) = %1 (2.4.37)
(cr,e8) = (eryen) =0

(carcs) = (en,es) = 0

(cs.cx) = 0

olmak tlizere

4 4

- (230, e (Gannd)

seklinde secilebilir. Bu durumda gercekten |y|> = 1 ve |/|> = 1 olur. Oyleyse

7 3
¢ = (1,0,0,0,1), 02:< 1 \/_ 0,0, —),

(2.4.28) diferansiyel denkleminin 6zel bir ¢oziimii k1 = 3 ve ky = 2v/2 egriliklerine
sahip

2s - \/_ (\/_S) \/_ —2s

v(s) = (e* —e _TSm LSin(\/is),

\/§

—cos(\/_s) cos(\/_s) —% 2 _ %sin(\@s))

ile verilen bir helistir. Bu helis, S{(1) Lorentzian birim kiiresi iizerinde yay-parametre-

si ile parametrelendirilmig bir 6zgiin (has) biharmonik timelike egridir.
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BOLUM 3

LORENTZIAN HEMEN HEMEN
PARAKONTAKT

MANIFOLDLARIN HIPERYUZEYLERI

Bu boliim besg kisimdan olusmaktadir. Ik kisimda bir (H, v, & ,77) hemen hemen
parakontakt manifoldunun & ¢ I'(T'M) olacak sekildeki non-invaryant M hiperyiizey-
leri incelenerek bu hiperyiizeylerin M deki hemen hemen parakontakt yapidan indirge-
nen bir hemen hemen carpim yapisina sahip olduklar1 gosterildi. Ikinei kisim afin
kosimplektik hemen hemen parakontakt manifoldlarin ve normal hemen hemen para -
kontakt manifoldlarn hiperyiizeylerine ayrildi. Uciineii kisimda bir (M, v, &, n,g)
Lorentzian hemen hemen parakontakt manifoldunun ve 6zel olarak Lorentzian para -
Sasakian manifoldunun sirasiyla, £ ¢ I'(T'M) olacak sekildeki non-invaryant hiperyii-
zeyleri ve £ € T'(T'M) olacak sekildeki invaryant hiperyiizeyleri aragtirildi. Dérdiincii
kisimda, bir onceki kisimda karakterize edilen hiperytizeyler icin 6rnekler verildi. Son
kisimda ise Lorentzian para-Sasakian manifoldlarinin sirasiyla, spacelike ve timelike

hiperytizeylerinin 6zgiin biharmonik olmasi i¢in gerek ve yeter sartlar incelendi.

3.1 Hemen Hemen Parakontakt Manifoldlarin

Non-invaryant Hiperyiizeyleri

Bu kisimda bir hemen hemen parakontakt manifoldun, karakteristik vektor alani
hiperytizeye ait olmayacak sekildeki non-invaryant hiperytizeylerinin bir hemen hemen
carpim yapisina sahip oldugu gosterilerek bu tipteki hiperyiizeylerin bir lokal ¢arpim
manifoldu olmasi i¢in gerek sartlar arastirilacaktir. Ayrica esas manifold tizerindeki
hemen hemen parakontakt yapinin normal olmasi ile non-invaryant hiperytizey iizerine
indirgenen hemen hemen ¢arpim yapisinin integrallenebilirligi arasindaki iligki verile -

cektir.
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M, (, €, 1) hemen hemen parakontakt yapisina sahip n-boyutlu bir hemen hemen

parakontakt manifold ve M de M nin bir hiperyiizeyi olsun.
i M — M

bir immersiyon olmak tizere her p € M igin &,y vektortiniin M hiperytizeyinin teget
hiperdiizlemine ait olmadigim diigtinelim. Bu durumda herhangi bir X € I'(T'M)
icin

0i, X = i, JX + a(X)E (3.1.1)
yazilabilir. Burada J, (1,1)-tipinde bir tensor alani, o bir 1-form ve i,, i : M — M
immersiyonunun tiirev doniisiimiidiir. Eger o # 0 ise M ye M nin bir non-invaryant
hiperyiizeyi denir. Diger taraftan eger @« = 0 ise M ye M nin bir invaryant

hiperytizeyi denir [49].

Teorem 3.1.1. (M, ,£,1), boyM = n, bir hemen hemen parakontakt manifold ve
M de M nin € ¢ T(TM) olacak sekilde bir non-invaryant hiperyiizeyi olsun. Bu

durumda M dzerinde bir hemen hemen carpim yapist vardar.

Ispat. M, (¢, &,n) hemen hemen parakontakt yapisina sahip n-boyutlu bir manifold
ve M de M nin bir non-invaryant hiperyiizeyi olsun. ¢ ¢ ['(TM) alalm. (3.1.1)
esitliginin her iki tarafina ¢ uygulanir ve (1.3.1)-(1.3.4) kullanilirsa her X € I'(T'M)
icin
PX) = ¢ (i.JX) + a(X)ps
B X +n(X)E = i (JPX) + a(JX)E (3.1.2)
elde edilir. (3.1.2) den
JPX =X (3.1.3)

ve

a(JX) =0 (i.X) = i* (n (X)) (3.1.4)

bulunur. Burada ¢*, i, tlirev doniigtimiintin dual déntisiimiidiir. (3.1.3) den J nin M
tizerinde bir hemen hemen c¢arpim yapisi oldugu goriiliir. Boylece ispat tamamlanir.

O
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M hemen hemen parakontakt manifoldunun bir M hiperyiizeyi iizerinde
Ca(X)=a(JX), Xel(T'M) (3.1.5)
seklinde bir Ca 1-formu tammlayalim. Bu durumda (3.1.4) den
Ca=i'n (3.1.6)

yazilabilir. Boylece M hiperytizeyi a = 0 iken ¢ altinda invaryant kalir.
Simdi M hemen hemen parakontakt manifoldu iizerinde bir V simetrik afin

konneksiyonu gozoniine alalim. Bu durumda VX,Y € I'(T'M) igin

VixiY =i, VxY +h(X,Y)¢ (3.1.7)

olacak gekilde M iizerinde £ afin normaline gore bir V afin konneksiyonu tanimlanabi-
lir. Burada h, M iizerinde (0,2)-tipinde simetrik bir tensor alanidir ve M nin & ye
gore ikinci temel formu olarak adlandirilir.
M hemen hemen parakontakt manifoldu iizerindeki (¢, £, ) hemen hemen parakon-
takt yapist normal olsun. Bu durumda VX,Y € I'(T'M) icin
S(X.Y) = [pX,¢Y] - [pX,Y] - ¢ [X,¢Y]

+¢? [ X,Y] +dn (X,Y) ¢ (3.1.8)

ile tanimlanan M nin (1,2)-tipindeki S torsiyon alani sifirdir. (3.1.8) esitliginde

Y = ¢ ahmirsa

Lep=0 ve Len=0 (3.1.9)

elde edilir. Burada L,  karakteristik vektor alanina gore Lie tiirev operatoridiir.

(3.1.8) esitliginden

S(X.Y) = Vx (¢Y) =V (¢X) — ¢ (Vx¥ - Vi (¢X))

+(Vxn(Y) = Vyn(X) —n ([X,Y])) ¢ (3.1.10)
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yazilabilir. X,Y € I'(TM) olmak iizere (3.1.11) esitliginde X = i,X ve Y = i,V
alalim. Buradan (3.1.1) ve (3.1.7) kullanilarak

S X,0Y) = (Viuxiax)ep)in¥ = (Vigyiamep)ieX
+o(Viy@)inX — o(Vix)i.Y + (Vixn)i.Y — (Viyn)i.X)E
= (Viuxy + a(X)Vep)i.V = (Viye + a(Y)Vep)in X
+o(Viy0)in X — o(Vix@)iY + (Vi,xn)inY — (Viyn)i. X)E
= Visxp(iV) = ¢(Vixi.Y) + a(X)Vep(i.Y) — a(X)p(VeiY)
Vv @(ixX) + (Vi gyinX) — a(Y)Vep(in X) + a(Y)@(Vei X)
+o(Viyp(i.X) = o(Viyi. X) = Vi xp(i.Y) + ¢(Vi,xi.Y))
HVixn(iY) = n(Vixi.Y) = Viyn(i.X) +n(Viyi. X)§
= Vix(@JY +a(Y)§) — p(i.VixY + h(JX, Y)E)
Vi (I X + a(X)E) + (0. V v X + h(JY, X)E)
+a(X)(Vep)inY — a(Y)(Vep)in X
+o[Viy (i JX + a(X)€) = 9(i.VxY + h(X,Y)E)]
—¢[Vix(idY + a(Y)E) — ¢(i.Vy X + h(Y, X)§)]
HVix((@o J)Y) = n(i.VxY + h(X,Y)E)]E
~[Viv (o J)X) = n(i.Vy X + h(Y, X)€))¢

elde edilir. Buradan

S0 X, 1Y) = i.VyxJY + Vyx(a(Y)E + a(Y) Ve x-ax)eé

—i, IV xY — a(VxY)E + a(X)(Vep)iY
—i.Vyy JX = Vv (a(X))§ — a(X)Veiy—arie
+i, IV iy X + a(Vyy X)E — a(Y)(Vep)i X
+i,J (Vy JX) + a(Vy JX)E 4+ a(X)p(VivE) — i, VxY
—i,J(VxJY) —a(VxJY)¢ — a(Y)o(Vi,x€) +i.Vy X

+[Vx((ao J)Y) = Vy((ao J)X)|¢
) —

—2[n(i.VxY) = n(i.Vy X)JE.
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bulunur. Bu son esitligi yeniden diizenlersek

S(.X,0Y) = idVxJY =V JX — J(VsxY — VyJX)

_IH(VTY — Vo X) — (Vy X — VxY)}
+(Vep +¢VE ~ (VOp) (a(X)iY — a(Y)i, X)
HVix(aY)) = Voy(a(X)) — a(VyxY) + a(Vyy X)
—a(VxJY) +a(VyJX) + Vx((aej)Y) = Vy((ao j)X)}¢
—2[n(i.(VxY — Vy X)J¢

— G JX, JY] = JIX,Y] = JIX, JY] - [X, Y]}
+Lep{a(X)iY — a(Y)i. X}
H(Vixa)Y = (Voya) X + (Vxa)(JY) = (Vya)(JX)}E
—2[n(i.(VxY — VyX)J¢

= i[JJ](X,Y) 4+ Lepf{a(X)iY — a(Y)i X}
Hda(JX,Y) + da(X, JY) — 2in([X, Y]) ¢ (3.1.12)

olur.

Teorem 3.1.2. (M, ¢, &, 1) bir normal hemen hemen parakontakt manifold ve M de
M nin & ¢ T(TM) olacak sekilde bir non-invaryant hiperyiizeyi olsun. Bu durumda
M hiperyuzeyi diferensiyeli

da(JX,Y) +da(X,JY) =2Ca ([X,Y]), VX,Y eI(TM) (3.1.13)
sartim saglayan bir « = C~Yi*n 1-formuna sahip lokal ¢arpim manifoldudur.

Ispat. M hemen hemen parakontakt manifoldu {izerindeki (p,&,m) hemen hemen
parakontakt yapisi normal olsun. Bu durumda M nin (1,2)-tipindeki S torsiyon

alani sifir olacagindan (3.1.9) ve (3.1.12) esitliginden
0=1i[J, J|(X,Y) +{da(JX,Y) + da(X, JY) = 2i"n([ X, Y]) }¢ (3.1.14)
olur. Bu son egitligin teget ve normal kisimlar1 goz oniine alinirsa
da(JX,Y) +da(X,JY) =2i"p([X,Y]) =2Ca ([X,Y]), VX, Y el(TM)

oldugu goriiliir. Boylece ispat tamamlanir. O]
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Sonug 3.1.1. (M, p,&,n) bir normal hemen hemen parakontakt manifold ve M de
M nin € ¢ T(TM) olacak sekilde bir invaryant hiperyiizeyi olsun. Bu durumda M

nin hemen hemen ¢arpim yapisi J integrallenebilirdir.

ispat. M hemen hemen parakontakt manifoldu iizerindeki (i, &,7) hemen hemen
parakontakt yapisi normal ve M de M nin ¢ ¢ I'(T'M) olacak sekilde bir invaryant
hiperyiizeyi ise o = 0 olacagindan (3.1.14) den VX, Y € I'(T'M) i¢in

0 =4[/, J](X,Y)

elde edilir. Oyleyse J hemen hemen carpim yapisinn Nijenhuis tensor alan [J, J] =

0 yani J integrallenebilirdir. Boylece ispat tamamlanir. O

Teorem 3.1.3. (M, ,&,m) bir hemen hemen parakontakt manifold ve &, (¢,&,1m)
hemen hemen parakontakt yapisinan bir infinitesimal otomorfizmi olsun. Egjer M
nin her non-invaryant hiperyuzeyi i¢in indirgenmis hemen hemen c¢arpim yapist

integrallenebilir ve (3.1.13) saglanwyor ise M normaldir.

Ispat. &, M iizerindeki (¢, &, m) hemen hemen parakontakt yapisinin bir infinitesimal

otomorfizmi ise

Lep =0 (3.1.15)

dir. Diger taraftan M nin herhangi bir M non-invaryant hiperyiizeyi icin indirgenmis

hemen hemen carpim yapisi integrallenebilir ise
[J,J] =0 (3.1.16)

olur. Boylece (3.1.15), (3.1.16) ve (3.1.13) den ispat tamamlanir. O

3.2 Afin Kosimplektik ve Normal Hemen Hemen
Parakontakt Manifoldlarin invaryant ve

Non-invaryant Hiperyiizeyleri

Bu kisimda afin kosimplektik hemen hemen parakontakt manifoldlarn karakteristik

vektor alani hiperytizeye ait olmayacak gekildeki non-invaryant hiperytizeylerinin
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total flat oldugu gosterilecektir. Ayrica normal hemen hemen parakontakt manifoldla-
rin ayni tipteki hiperyiizeyleri i¢in bazi karakterizasyonlar verilecektir.

M, (¢, &, 1) hemen hemen parakontakt yapisina sahip bir hemen hemen parakontakt
manifold ve V de M nin simetrik afin konneksiyonu olsun. M nin & ¢ I'(T'M) olacak
sekildeki bir non-invaryant M hiperyiizeyi tizerindeki indirgenmis konneksiyonu V

ile gosterelim. Eger herhangi X, Y € I'(T'M) vektor alanlar igin
(Vxi,)Y =V, xi,Y —i, (VxY) (3.2.1)
yazilirsa Gauss ve Weingarten formiilleri sirasiyla
(Vxi)Y = h(X,Y)E, hX,Y)=h(Y,X) (3.2.2)

ve

Vixt = —i, AX + w(X)¢ (3.2.3)

seklinde ifade edilir. Burada w, M nin afin normal demeti tizerindeki konneksiyonu

veren 1-formdur. (3.1.1), (3.2.2) ve (3.2.3) egitlikleri kullanilarak

(Vixp) Y = Vixei.,V —¢ (Vi xiY)
= Vix (i.JY +a(Y)E) — ¢ (i,VxY + h(X,Y)E)
= VixiJY + (i.X) (oY) €+ a(Y)Vi,x¢
—1,.J (VxY) —a(VxY)¢
= L.VxJY +h(X,JY) + (i.X) (a(Y)) €
+a(Y) (—i, AX + w(X)E) — i (VxY) —a(VxY)E
= i (VxJY = J(VxY)) + h(X,JY)E + (i.X) (a(Y)) &
—a(Y) (1.AX) + a(Y)w(X)€ — a(VxY) ¢
= . (VxJ)Y —a(Y)AX) (3.2.4)
+(h(X,JY)+ (Vxa) Y + a(Y)w(X)) ¢
elde edilir. Boylece agagidaki iki durumu inceleyebiliriz:
IL.Durum: M bir afin kosimplektik hemen hemen parakontakt manifold olsun.

Bu durumda

V=0 ve Vn=0 (3.2.5)
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olacagindan (3.1.11) dan M fizerindeki (¢, £, 1) hemen hemen parakontakt yapisinin
normal oldugu kolaylikla goriiliir. (1.3.1)-(1.3.2) den X € I'(TM) ve Y € T(TM)
vektor alanlari igin

(vi*XSO) Y = vi*XSOY - ¥ (vi*X?>
dir. Bu son esitlikte Y yerine ¢ alimirsa Vo = 0 oldugundan

¢ (Vi.x€) =0 (3.2.6)

bulunur. Diger taraftan

(Vixn)Y =i.X (n(Y)) =1 (VixY)
ifadesinde Y yerine ¢ almirsa V) = 0 oldugundan

elde edilir. (3.2.6) esitliginin her iki tarafina ¢ uygulanir ve (3.2.7) esitligi géz 6niine
aliirsa

0=V,x¢

olur. Béylece (3.2.3) Weingarten denkleminden
AX =0 ve w(X)=0 (3.2.8)
elde edilir. (3.2.8), (3.2.4) esitliginde yerine yazilirsa

VJ = 0, (3.2.9)
(Vya)Y = —h(X,JY) (3.2.10)

bulunur.
IL.Durum: M, ¢ = V¢ sartin saglayan bir normal hemen hemen parakontakt

manifold olsun. Bu durumda (3.1.1) ve (3.2.3) den her X € I'(T'M) i¢in

gOi*X == 71*)(5

L JX Fa(X)E = —i AX +w(X)E (3.2.11)
elde edilir. (3.2.11) esitliginin teget ve normal kisimlar1 egitlenirse

JX =—-AX ve a(X)=w(X)
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bulunur. Boéylece

J = —A (3.2.12)
a = w (3.2.13)

olur.
Eger her X € T'(TM) icin AX = 0 ise (3.2.3) den V;, x¢ ile ¢ karakteristik vektor
alaninin lineer bagimlh oldugu goriiliir. Dolayisiyla afin normaller M hiperyiizeyi

boyunca paralel olur. Bu durumda M hiperyiizeyi total flat olarak adlandirilir.

Onerme 3.2.1. M, (¢, &,m) hemen hemen parakontakt yapisina sahip bir afin kosimp-
lektik hemen hemen parakontakt manifold ve M, M nin & ¢ T(TM) olacak sekildeki

bir non-invaryant hiperyiuzeyi olsun. Bu durumda M hiperytizey: total flattir ve

vVJ = 0,
(Vxa)Y = —h(X,JY),
w = 0

dar.
Eger M hiperyiizeyi invaryant ise a = 0 olacagindan asagidaki sonuca ulagilir:

Sonug 3.2.1. M, (p,&,n) hemen hemen parakontakt yapisina sahip bir afin kosimp-
lektik hemen hemen parakontakt manifold ve M, M nin & ¢ T(TM) olacak sekildeki

bir invaryant hiperyuzeyi olsun. Bu durumda

vVJ = 0,
h = 0,
w = 0

dar.

Onerme 3.2.2. M, ¢ = VE sartim saglayan bir normal hemen hemen parakontakt
manifold ve M de M nin & ¢ T(TM) olacak sekildeki bir non-invaryant hiperyiizeyi

olsun. Bu durumda

dur.
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3.3 Lorentzian Hemen Hemen Parakontakt Manifoldlarin

invaryant ve Non—invaryant Hiperyiizeyleri

Bu kisimda Lorentzian hemen hemen parakontakt manifoldlarin karakteristik vektor
alani hiperyiizeye ait olmayacak sekildeki non-invaryant hiperyiizeylerinin hemen
hemen ¢arpim metrik manifoldu oldugu gosterilerek esas manifold ile hiperyiizeyin
temel 2-formlari arasindaki iligki incelenecektir. Ayrica Lorentzian para-Sasakian
manifoldlarin ayni tipteki non-invaryant hiperyiizeyleri i¢in bazi karakterizasyonlar
verilerek bu hiperyiizeylerin lokal ¢arpim yapisina sahip olmasi i¢in gerek ve yeter
sartlar aragtirilacaktir. Son olarak, Lorentzian hemen hemen parakontakt manifold -
larin karakteristik vektor alanimi tegette kabul eden invaryant hiperytizeylerinin
Lorentzian hemen hemen parakontakt manifoldlar oldugu ve Lorentzian para-Sasakian
manifoldlarin ayni tipteki invaryant hiperytizeylerinin ise Lorentzian para-Sasakian
yapiya sahip oldugu gosterilecektir.

M, (¢, €, n,9) Lorentzian hemen hemen parakontakt yapisina sahip bir Lorentzian
hemen hemen parakontakt manifold olsun. M, M nin bir hiperyiizeyi olmak iizere

M tizerine indirgenmis metrigi g ile gosterelim.

Onerme 3.3.1. (M, J,a,g), (M,p,&,m,G) Lorentzian hemen hemen parakontakt
manifoldunun £ ¢ T'(TM) olacak sekildeki bir non-invaryant hiperyiizeyi olsun. Bu

durumda (M, J, «, g) non-invaryant hiperyizeyi iizerinde
G=g+ta®a (3.3.1)
olacak sekilde bir G hemen hemen carpim metrigi vardar.
Ispat. (1.3.14) esitliginden her X,Y € I'(TM) icin
7 (pi X, 1,.Y) =7 (i.X, pi,Y) (3.3.2)
yazilabilir. (3.1.1), (3.3.2) da yerine yazilirsa

G JX +a(X)E YY) = (X, i JY +a(Y)E)
G0, JX,0.Y) + a(X)7 (6,4Y) = g(i.X,.JY) +a(Y)g (i, X, €)
G0 JX,0Y) +a(X)n6Y) = g(i.X,i.JY)+aY)n6X)  (3.3.3)
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elde edilir. g, M hiperyiizeyi tizerinde indirgenmis metrik yani i*g = ¢g oldugundan
9(1.X,1,.Y) = g(X,Y) (3.3.4)
dir. Boylece (3.1.6) ve (3.3.4) den

g(JX,)Y)+a(X)Ca(Y)=9g(X,JY)+ a(Y)Ca(X)

yani
(g+a®a)(JX,Y)=(g+a®a)(X,JY)
olur. Eger
G=g+a®a
denilirse
GJX,)Y)=G(X,JY), VX Yel(TM)
elde edilir. Boylece ispat tamamlanir. O

Sonug 3.3.1. (M, ,&,1,9) Lorentzian hemen hemen parakontakt manifoldunun
£ ¢ T(TM) olacak sekildeki bir non-invaryant hiperyizeyi bir hemen hemen ¢arpim

metrik manifoldudur.

Simdi (M, ¢, &,n,g) Lorentzian hemen hemen parakontakt manifoldunun temel

2-formu ® ve M nin (M, J, G) hiperyiizeyinin
QX,)Y)=GUJX,)Y), VX, Yel(TM) (3.3.5)
ile tanimlanan €2 temel 2-formu arasindaki iligkiyi inceleyelim:

Lemma 3.3.1. (M, J,a,G), (M,p,&,m,9) Lorentzian hemen hemen parakontakt
manifoldunun § ¢ T'(TM) olacak sekildeki bir non-invaryant hiperyiizeyi olsun. @

ve Q siraswyla M ve M nin temel 2-formlar, olmak tizere
"o =0Q—-CaANa (3.3.6)

dar.
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Ispat. M ve M nin temel 2-formlar sirasiyla ® ve Q olsun. (3.1.1), (3.1.6) ve (3.3.1)
kullanilarak her X, Y € I'(T'M) igin

FO(X)Y) = (i, X,i.Y)
9 (pin X, i.Y)
G (i JX + a(X)E,1,Y)
= g(JX 1Y)+ a(X)g (£ 1Y)
9 (JX.Y) + a(X)n (i.Y)
= GJX,Y) - a(JX)a(Y) + a(X)a(JY)
= GJX,Y)—Ca(X)aY) + a(X)Ca(Y)
= QX,Y) - (Cana)(X,Y)

elde edilir. Boylece ispat tamamlanir. O]

Teorem 3.3.1. (M, ¢, &, n,9) bir Lorentzian para-Sasakian manifold ve (M, J, o, G)
de M nin & ¢ T(TM) olacak sekildeki bir non-invaryant hiperyiizeyi olsun. Bu

durumda

J = —A (3.3.7)

a = w (3.3.8)
dur.

Ispat. (M, ¢, &,m,9) bir Lorentzian para-Sasakian manifold oldugundan VX € I'(T'M)
icin
vi*Xg = Qi X
dir. Bu durumda (3.1.1) ve (3.2.3) den
L AX +w(X)E = i, JX + a(X)E
olur. Son esitlikte teget ve normal kisimlar géz 6niine alinirsa
J=—Avea=w

elde edilir. Boylece ispat tamamlanir. O]
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Teorem 3.3.2. (M, ¢, £, n,9) bir Lorentzian para-Sasakian manifold ve (M, J, o, G)
de M nin & ¢ T(TM) olacak sekildeki bir non-invaryant hiperyiizeyi olsun. Bu
durumda VX, Y € I'(T M) i¢in

(a) (Vx)Y =a(Y)JX —Ca(Y)X
(b) 7(i.X,5.Y) +2Ca(X)Ca(Y) =h(X,JY)+ (Vxa)Y + a(X)a(Y)
dir.

Ispat. (M, J, o, Q), (M, p,€,1,7) Lorentzian para-Sasakian manifoldunun ¢ ¢ I(T'M)
olacak sekildeki bir non-invaryant hiperytizeyi oldugundan (3.2.4) esitliginde (3.3.7)

ve (3.3.8) yerine yazilirsa

(Vixp)iY = [i.(VxJ)Y +a(Y)i JJX]
+ (X, JY) + (Vxa)Y +a(X)a(Y)] € (3.3.9)

elde edilir. Diger taraftan (1.3.19) den
(Vixp) .Y =7 (i X,i.Y) E+n (0.Y) i X + 2n (0.X) n (i,.Y) € (3.3.10)
yazilabilir. Boylece (3.1.6) goz 6niine almarak (3.3.9) ve (3.3.10) esitliklerinden
i [(Vx )Y +a(Y)JX] =i, [Ca(Y)X]

ve
hMX,JY)+ (Vxa)Y + a(X)a(Y) =7 (i.X,i.Y) + 2Ca(X)Ca(Y)
elde edilir ki bu da ispat1 tamamlar. O

Teorem 3.3.2 den agagidaki sonuca ulasilir:

Sonug 3.3.2. (M, ¢, &,1,9) bir Lorentzian para-Sasakian manifold ve (M, J, a, G)
de M nin & ¢ T(TM) olacak sekildeki bir non-invaryant hiperyiizeyi olsun. Bu
durumda M nin bir lokal ¢arpim manifoldu olmasi icin gerek ve yeter sart VX,Y €
L(TM) igin

a(Y)JX =Ca(Y)X (3.3.11)

olmasadar.
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Simdi (M, ¢, &,n) bir hemen hemen parakontakt manifold ve M de M nin ¢ €

['(T'M) olacak sekildeki bir invaryant hiperyiizeyi olsun. Bu durumda M hiperyiizeyi

tizerinde (1,1)-tipinde bir tensor alani ¢ olmak tizere herhangi bir X € I'(T'M) vektor

alani igin

w1 X = 1,0 X

yazilabilir. (3.3.12) egitliginin her iki tarafina ¢ uygulanirsa

i *X = 0%, X =i, X + (i, X)¢
elde edilir. Eger
=18
ve
(i X) = n*(X)
gosterimleri kullamlirsa (3.3.13) den

VX =X +0'(X)E

bulunur. Buna ek olarak

N (WX) = n(i.pX) = n(pi.X) =0,

n" (&%) =n(.g") =n(§) = -1
dir. Ayrica
W€ = il = =0
oldugundan
PE =0

olur. Boylece agagidaki teorem verilebilir:

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

Onerme 3.3.2. (M, p,€,m) bir hemen hemen parakontakt manifold ve M de M

nin & € T'(TM) olacak sekildeki bir invaryant hiperyiizeyi olsun. Bu durumda M

hiperyiizeyi (v, &*,n*) hemen hemen parakontakt yapisina sahip bir hemen hemen

parakontakt manifolddur.
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Teorem 3.3.3. (M, p,&,n) bir hemen hemen parakontakt manifold ve M de M nin
£ € T(TM) olacak sekildeki bir invaryant hiperyiizeyi olsun. Bu durumda M normal

1se M de normaldir.

Ispat. (3.1.8) esitliginden (3.3.12), (3.3.14) ve (3.3.15) kullamlarak VX, Y € ['(TM)
icin
S0, X, 1Y) = [p,0](i.X, 1Y) + dn(i, X, i,Y)E
= (i X, i Y] — olpi X, i Y] — @i X, pi.Y]
+? [0 X, .Y + [(Vixn)inY — (Viyn)i, X €
= [, X,i,0Y] — ¢ [i,0X,i,Y] — o[i,.X,i,0Y] + ©?[i,X,4,Y]
(6 X) (0(0.Y)) = n(Vixi.Y) = (i.Y) (0(6.X)) + 0(Viy i X)J€
= L[YX, Y] = pis [P X, Y] = i [X, Y] + %[ X, Y]
+[(:.X) (n(i.Y)) = n(i. VxY + h(X,Y)E)]€
—[(.Y) (n(0.X)) = n(i.Vy X + h(Y, X)§)]¢

yazilir. Buradan

SLX,0Y) = X 0Y] — it (X, Y] — b [X, Y] + 07X, Y]
FX) (" (V) = (1Y) (" () = 0" (X, Y])ing"
= {6, U (X,Y) + dy (X, Y)E) (3.3.20)

elde edilir. M normal ise S = 0 olacagindan
[, V] (X,Y) +dn"(X,Y)E" =0 (3.3.21)
olur ki bu da M nin normal oldugunu verir. Boylece ispat tamamlanmig olur. [

Teorem 3.3.4. (M, ,£,m,G) bir Lorentzian hemen hemen parakontakt manifold
ve M de M nin & € T(TM) olacak sekildeki bir invaryant hiperyiizeyi olsun. Bu

durumda M bir Lorentzian hemen hemen parakontakt manifolddur.

ispat. Teorem 3.3.2 den (M, ¢, &,n) hemen hemen parakontakt manifoldunun & €
['(T'M) olacak sekildeki bir M invaryant hiperyiizeyi (1, £*, 7*) hemen hemen parakon-
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takt yapisina sahip bir hemen hemen parakontakt manifolddur. M hiperyiizeyi

izerine indirgenmis metrik ¢* = ¢*g olsun. Bu durumda
9" (£ &) =79, i) =96, =-1
dir. Diger taraftan VX,Y € I'(T'M) i¢in
9" (WX, 0Y) =g (i X, i9Y) =g (pi.X, pi.Y) (3.3.22)

olur. M bir Lorentzian hemen hemen paracontakt manifold oldugundan (1.3.10)

esitligi gbz oniine alinarak (3.3.22) den

g (WX, 9Y) = g(i.X,i.Y) +n(i.X)n(i.Y)
= ¢ (X,)Y)+n"(X)n"(Y) (3.3.23)

elde edilir ki bu da ispat1 tamamlar. O]

Teorem 3.3.5. (M, p,&,1,G) bir Lorentzian para-Sasakian manifold ve M de M
nin & € I'(TM) olacak sekildeki bir invaryant hiperyizeyi olsun. Bu durumda M bir

Lorentzian para-Sasakian manifolddur.

ispat. M bir Lorentzian para-Sasakian manifold olsun. Bu durumda V, M nin

Levi-Civita konneksiyonu olmak iizere VX € I'(T'M) i¢in
Vi* Xf = gOi*X

dir. (3.3.12) ve (3.3.14) den
Vi xin& =i, 00X (3.3.24)

olur. Boylece Gauss denklemi kullanilarak (3.3.24) esitligi
Vx& +h(X, )N =i X (3.3.25)

seklinde yazilabilir. ¥V, M hiperyiizeyi iizerindeki indirgenmis konneksiyon ve N de

M nin bir normal vektér alamidir. (3.3.25) iin teget ve normal kisimlar: esitlenirse

Vx& = ¢X, (3.3.26)
h(X,€) = 0 (3.3.27)
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elde edilir. Ayrica M bir Lorentzian para-Sasakian manifold oldugundan (1.3.19)

den
(Vixp)iY = g(0.X,aY)E+n(0Y) i X + 20 (0.X)n (6.Y) €
= "g(X,Y) .+ 0" (V)i X + 20" (X)n* (V)i
= i [g" (XY)E+n (V)X + 20" (X)n"(YV)ET]  (3.3.28)

dir. Diger taraftan Gauss denklemi ve (3.3.12) dan

(Vixe) iV = VixeiY —¢ (Vi xi.Y)
= VixiY — o (i.VxY + h(X,Y)N)
= . Vx0Y + h(X,0Y)N — i, VxY — h(X,Y)oN
= i, (VxypY — VYY) + h(X,¥Y)N — h(X,Y)pN (3.3.29)

bulunur. (3.3.28) ve (3.3.29) goz Oniine alimirsa
(Vxd)Y =g (X, V)€ + (VX +27 (X (Ve (33.30)

elde edilir. (3.3.26) ve (3.3.30) den M nin bir Lorentzian para-Sasakian manifold

oldugu goriiliir. Boylece ispat tamamlanir. O]

3.4 Ornekler

Bu kisimda onceki kisimlarda tanitilan hiperytizeyler icin ornekler verilecektir.

Ornek 3.4.1. M, (x,y,2,t,5) koordinat sistemi ile verilen 5-boyutlu bir reel uzay

olsun. M tzerinde

oN__9 9 9\__9 9N _,
P\oz) T " a: as P\ot) T "o Plas) T

olacak sekilde bir ¢ (1,1)-tensor alanini, £ vektor alanini ve n 1-formunu tanimlayalim.

Bu durumda

n(€) = (ds — dz — d2) (— %) =1 (3.4.1)
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dir. Herhangi bir X = al(% + aga% + a;;% + a4% + %% el (TM) vektor alany i¢in

n(X) = (ds—dr —dz) (7)

= a5 —ap —as

oldugundan

0 0 0 0 0
- 9"<9‘3 <a18x+a28y+a382+a48t+a565)>
0 0 0 0 0 0
- ¢<a1(‘£—$)+a2(‘a—y)”3(‘&‘&)”4(—&))
0 0 0 0 0 0
- —“1<—£—%>—@(—a—y)—%(—@—a)—%(—a)

= a1—+a ﬁ—l—a ﬁ+a 2+(a +a)2
— Y oy oz Ttar TV T s
= X +n(X)¢ (3.4.2)
elde edilir. Ayrica
(mog) (X) = n(e(X))
— _ g 2_ 2_ 2_( + )2
- T\ TNy T Mgy, T Bar T Mg T\ T WGy
0 0 0 0 0
= (dS-d.’L'-dZ) (—al%—aga—y— 3$— 4815 (Gl‘i‘ag)%)
= —(a1+a3)+a1+a3
= 0 (3.4.3)
ve
&= 2 =0 (3.4.4)
SD _90 68 - o

dir. Béylece (3.4.1)-(3.4.4) den (o, &, m) tiglisii M iizerinde bir hemen hemen parakon-
takt yapr olur. (¢, &,m) hemen hemen parakontakt yapisina sahip M manifoldu da
bir hemen hemen parakontakt manifolddur. M nin s = x denklemi ile verilen M,

hiperyiizeyini ve i : My — M immersiyonunu ¢éz oniine alalim. Bu durumda
Uy = (170707071)7 Uy = <071707070)a Uz = (070717070)7 Uy = (070707170>

olmak tizere T (T'My) = Sp{uy, ug, us, us} dir. Buradan herhangi bir p € My noktas

i¢in §i(p) karakteristik vektor alaninan My in teget hiperdizlemine ait olmadigi kolaylikla
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gorilir. f; € C®(My,R), 1 < i < 4, fonksiyonlar: i¢in bir X € I'(T'My) vektor
alam

X =0u.X = fiug + fous + faus + fiuy

seklinde yazilabilir. Boylece

i X = —frur — faug — faug — faus + f3€ (3.4.5)

elde edilir. (3.4.5), My in M hemen hemen parakontakt manifoldunun & ¢ T (T M)
olacak sekildekr bir non-invaryant hiperyizeyi oldugunu gosterir.
Simdi M nin © = vy denklemi ile verilen My hiperyiizeyini ve i : My — M

immersiyonunu goz onune alalim. Bu durumda
vy = (1,1,0,0,0),v, = (0,0,1,0,0),v3 = (0,0,0,1,0),v4 = (0,0,0,0, 1)

olmak tizere ' (T'My) = Sp{vi,ve,vs,v4} dir. vy = —& oldugundan herhangi bir
p € M, noktast i¢in &) karakteristik vektor alany My nin teget hiperdizlemine
aittir. Buradan h; € C*(Msy, R), 1 < i < 4, , fonksiyonlar: i¢in bir Y € T (TMs)
vektor alany

Y =4.Y = hyvy + hovy + hgvs + hgvy
seklinde yazilabilir. Boylece
QDZ*Y = —hlvl — hQUQ — h3U3 + (hl + hg)f (346)

elde edilir. (3.4.6), My nin M hemen hemen parakontakt manifoldunun & € T (T M)

olacak sekildeki bir invaryant hiperyizeyi oldugunu gosterir.

Ornek 3.4.2. (z,y, z,t,5) koordinat sistemi ile verilen 5-boyutlu bir M reel uzay

uzerinde
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olacak sekilde bir ¢ (1,1)-tensdr alanina, £ vektor alanini ve n 1-formunu tanimlayalim.
Bu durumda (¢,€,m) ticlisinin M idizerinde bir hemen hemen parakontakt yap
oldugu kolaylkla gorilebilir.

M nin s = x denklemi ile verilen M hiperyiizeyini ve i : M — M immersiyonunu

oz ontune alalim. Bu durumda
u; = (1,0,0,0,1), wuy =1(0,1,0,0,0), us = (0,0,1,0,0), wuy =(0,0,0,1,0)

olmak tizere I' (T M) = Sp{ui, ug, us, us} dir. Herhangi bir p € M noktasy i¢in &)
karakteristik vektor alaninin M nin teget hiperdizlemine ait olmayacagr aciktir. Ek
olarak

YUy = Uy, PUuz = Uz, PU3 = U3z, PUL = Ugq
oldugundan M, M hemen hemen parakontakt manifoldunun ¢ ¢ T (TM) olacak

sekildeki bir invaryant hiperyizeyidir.

Ornek 3.4.3. M, (x,y, z) koordinat sistemi ile verilen 3-boyutlu bir reel uzay olsun.

M Jdizerinde

0

:d = — —
T] Z? 6 827

N0 (oy__ o _(0)_,
Spf)x_ﬁx’@@y_ay \o2)

g=(dz)*+ (dy)> —n®n

olsun. Bu durumda (p,&,m,9) dortlisii ile birlikte M bir Lorentzian hemen hemen
parakontakt manifold olur. M nin x = arcsiny denklemi ile verilen M yiizeyini

vei: M — M immersiyonunu goéz onine alalum. Bu durumda M yiizeyinin tedet

duzlems
Uy = (17 V 1- y270)7U2 = (0707 1)
tarafindan gerilir. § = — wug oldugundan herhangi bir p € M noktast i¢in &)

karakteristik vektor alany M nin teget dizlemine aittir. M ytzeyininin normal vektor

alana

N = (\/ 1_y27_170)
dir. f; € C®°(My, R), 1 <i <2, fonksiyonlari i¢in herhangi bir X € I' (T M) vektor
alana

X=X= f1u1 + f2U2 el (TM)
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seklinde yazilabilir.
QOZ*X = _.flul
oldugundan M, M Lorentzian hemen hemen parakontakt manifoldunun & € T' (T M)

olacak sekildeki bir invaryant yizeyidir.

Ornek 3.4.4. M, (x,y, ) koordinat sistemi ile verilen 3-boyutlu bir reel uzay olsun.

M dizerinde

B B ) 9 B
w(%) = a0 5,)= "3, 90(&)—0,
g = ¢ ¥(dz)’ +e*(dy)® — (dz)’

tanamlayalim. Bu durumda (p, €, n,g) dortlisii ile birlikte M bir Lorentzian para-Sasa-
kian manifold olur. M nin z = x4y denklemi ile verilen M, yiizeyini vei : My — M

immersiyonunu goz onune alalim. Bu durumda
wp = (1,0,1), wuy=(0,1,1),
olmak tizere I' (T My) = Sp{uy,us} dir. My yizeyininin normal vektor alana
N = (62(m+y), 2@ty 1)

dir. & karakteristik vektor alan

1

e2(@ty) 4 e—2(xty) — 1 ((GQ(Hy))ul * (e_Q(Hy))uQ -N)

fz_

olarak yazlabileceginden herhangi bir p € My noktasy igin &gy & Tip My dir. M,
tizerindeki reel degerli diferensiyellenebilir fi, fo fonksiyonlar: igin bir X € T' (T'My)
vektor alany X =i, X = fiug + fous seklinde ifade edilebilir. Boylece

9i. X = fiug — faua + (f1 — f2)§

elde edilir. Buradan

Z*JX = f1u1 — f2u2

ve

a(X) = fi— fo
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bulunur. Burada J, My yuzey: tizerinde bir hemen hemen carpym yapisidir. Boylece
M, M Lorentzian para-Sasakian manifoldunun & ¢ T (TM,) olacak sekildeki bir
non-invaryant yuzeyidir.

Simdi M nin x = arctany denklemi ile verilen M,y yiizeyini ve i : My — M

immersiyonunu goz onune alalim. Bu durumda

{vl (L 10), 0 = (0,0, 1)}

1+ 92’

kumesi My yizeyinin teget duzlemi icin bir lokal bazdir. Boylece & karakteristik
vektor alanimin My nin teget duzlemine ait oldugu acgiktir. My min normal vektor

alant

6_2Z, 0)
dur. Herhangi bir i,.,Y =Y = 01 4+ Yve € I'(T'M3) i¢in

2(1+9%)
1 + y2)262z _ e—2z

@iY = =y (v1 — ( N)

oldugundan My, M Lorentzian hemen hemen parakontakt manifoldunun & € T (T M)

olacak sekildeki bir non-invaryant yuzeyidir.

3.5 Lorentzian Para-Sasakian Manifoldlarin Biharmonik

Hiperyiizeyleri

Bu kisimda Lorentzian para-Sasakian manifoldlarin spacelike ve timelike hiperytizey-
lerinin biharmonik olmasi i¢in gerek ve yeter sartlar aragtirilacaktir. Sabit ortalama
egrilikli Lorentz para-Sasakian manifoldlarin biharmonik spacelike hiperytizeyleri ile
Lorentz para-Sasakian manifoldlarin total umbilik biharmonik spacelike hiperytizey -
leri incelenecektir. Ayrica 0zel olarak Lorentzian para-Sasakian manifoldlarin sirast
ile Ricci flat ve n-Einstein olmasi durumunda timelike hiperyiizeylerinin biharmonik-
ligi ile ilgili baz1 karakterizasyonlar verilecektir.

(M, ¢,£,1,5), (m + 1)-boyutlu bir Lorentzian para-Sasakian manifold ve M,
M nin bir hiperyiizeyi olsun. Bu durumda M hiperyiizeyinin birim normal vektor

alani N olmak iizere (1.3.41) ve (1.3.42) Gauss-Weingarten formiillerinden VX, Y €
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[(TM) igin
B(X,Y)=¢g(VxY,N)N = —cg(Y,VxN)N = cg(AxX,Y)N (3.5.1)
G(ANX,Y) =G(B(X,Y),N) =g(b(X,Y)N,N) = eb(X,Y), (3.5.2)

yazilabilir. Burada ¢ = g(N, N) dir.

3.5.1 Lorentzian para-Sasakian manifoldlarin biharmonik
spacelike hiperyuzeyleri

Teorem 3.5.1. (M, ¢,£,1,9), (m + 1)-boyutlu bir Lorentzian para-Sasakian manifold;
M, M nin bir hiperyiizeyi ve ¥ : M — M bir izometrik immersiyon olsun. &
karakteristik vektor alany M hiperyizeyinin birim normal vektor alant olmak tzere

M spacelike hiperyuizeyinin biharmonik olmasi icin gerek ve yeter sart

AH —2mH =0,

(3.5.3)
2A(gradH) — % (gradH?) = 0

olmasidir. Burada A, M hiperyiizeyinin birim normal vetor alani & ye gore Weingarten
temel tensori (sekil operatéri) ve H, M hiperyizeyinin ortalama egrilik vektori

= HE¢ olacak sekildeki ortalama egrilik fonksiyonudur.

Ispat. M, (M, p,€,m,9) Lorentzian para-Sasakian manifoldunun ¢ € T (TLM)

olacak sekildeki bir hiperyiizeyi ve ¥ : M — M bir izometrik immersiyon olsun.

{d¥(ey),...,d¥(en), &}

M nin bir lokal ortonormal catisi olmak iizere M hiperyiizeyinin bir {e1, ..., €,, } lokal
ortonormal gatisini géz oniine alalim. Pull-back konneksiyon tanimini kullanarak
VX e (TM), W € T (¥'TM) igin d¥(X) ile X vektor alanmi ve VYW ile Vx W

y1 ozdes kilabiliriz. M hiperytizeyinin ortalama egrilik vektori p = H& olmak iizere
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U izometrik immersiyonunun tensiyon alani

seklindedir.

(W)

() = Z Vd¥ (e, e;)

= Z B (ei, 61‘)
= (boyM)p
= mH¢ (3.5.4)

Buradan (3.5.4) kullamlarak ¥ nin bitensiyon alam

m

Z{Vivfﬁ( ) = V3,6, 7(¥) = R(d¥(e;), 7(¥))dP(e;) }
= Z{v“’vq’ (mHE) = VY, ., (mHE) — R(d¥(e;), mHE)dP (e;)}

1=1

— Z{Velve, (mHE) — Vv, o, (mHE) — R(d¥(e;), mHE)dV (e;) }

= mZ{v 61 5—|— HV 5) ( z) (H)§ - vaeiezf
—HR(d‘If(ez) §)dW(e;)}

- mZ{e ei(H)E + 2¢;(H)V . + HV,,V..€
- (Vei e;) (H)E — HVy, .6 — HR(d¥(e;),€)dV (e;)}

= —m(AH)E —mHAYE — 2mA(gradH)

+mH zn:}_z(g, dU(e;))dV(e;). (3.5.5)

=1

bulunur. M bir Lorentzian para-Sasakian manifold oldugundan (1.3.27) dan

R(€,d¥(e;))d¥(e;) = mé (3.5.6)

olur. (3.5.6), (3.5.5) de yerine yazilirsa

elde edilir.

(V) = —m(AH)E — mHAYE — 2mA(gradH) + m*HE (3.5.7)

(V) yi teget ve normal kisimlarima ayirmak icin AY¢ nin teget ve
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normal kisimlari belirlemek yeterli olacaktir. (1.3.21) den

-

E(quga g) = g(veiveig - vveieiga 5)

=1

(Ve Ve, €)

Eﬂs

Il
,_.

(veié-? veié)?

I
INAEN

1

7

= g(oe;, de;). (3.5.8)

=1

3

bulunur. Bu son esitlikte (1.3.10) goz oniine almarak AY¢ nin normal kismi

1 —
(A%)" = —g(A%,€)¢
= Z (Ve Ve £)E
= —mf. (3.5.9)
olur. AY¢ nin teget kism ise
(A‘I’f)T = — Z §<veiv€i€ — vveieif, ek)ek
ik=1
= Z (Ve Ae; — A(Ve,e:), ex)er
ik=1
= Z {eig(Aei, er) — g(Aei, Veer) — G(A(Ve,ei), er) ex
ik=1

= Z {—eib(e;, ex) + b(ei, Ve,er) + (Ve ex) bey

ik=1

= — Z{qu(ek,ei)}ek. (3.5.10)

ik=1

dir. Diger taraftan Codazzi-Mainardi denkleminden
Veb(eg, i) — Ve, blee) = (E(ei,ek)ei)L
= —g(R(ei ex)ei )
= S(& er). (3.5.11)
yazilabilir. S(¢,e;) = 0 oldugundan (3.5.11) esitligi

veib(eka 61') - vekb<€i7 ei) (3512)
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oldugunu gosterir. Eger (3.5.12) esitligi (3.5.10) da yerine yazilirsa
(AYE)" = —mgradH (3.5.13)

bulunur. Buradan (3.5.9) ve (3.5.13) esitlikleri g6z Oniine alinarak 7»(¥) nin teget

ve normal kisumlar

(2(¥))T = —2A(gradH) + %(gde%,
()t = —m(AH)+ 2m*H.
elde edilir. Boylece ispat tamamlanir. ]

Teorem 3.5.1 den agagidaki sonuclar verilebilir.

Sonug 3.5.1. Sabit ortalama egrilikli bir Lorentzian para-Sasakian manifoldun bir

spacelike hiperytizeyinin btharmonik olmasy i¢in gerek ve yeter sart minimal olmasidar.

Ispat. M, (M, p,€&,m,G) Lorentzian para-Sasakian manifoldunun sabit ortalama
egrilikli bir spacelike hiperyiizeyi olsun. Bu durumda H sabittir. Oyleyse (3.5.3)
dan M nin bir biharmonik spacelike hiperyiizey olmasi i¢in gerek ve yeter sart H = 0

olmasidir. Boylece ispat tamamlanir. O]

Ornek 3.5.1. (z,y, 2) koordinat sistemi ile verilen 3-boyutlu M = R® reel uzay

uzerinde

n=dz, E=——
0 0 0 0 0
()= *(@)=a o)=0 w6
7 = e 2 (dx)” + e¥ (dy)* — (dz)°.

olacak sekilde bir ¢ (1,1)-tensér alanana, & vektor alanina, n 1-formunu ve g Lorentzian
metrigini tanemlayalm. Bu durumda M, (¢,€,n,9) Lorentzian para-Sasakian yapsna

sahip bir Lorentzian para-Sasakian manifold olur.

Simdi ¢ > 0 bir sabit sayr olmak tizere M nin z = c ile verilen yiizeyini gozoniine

alalim. Bu durumda V : M — M izometrik immersiyonu

V(z,y) = (z,y,c)
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ile tanvmlanabilir. M izerindeki § metriginden M yiizeyi tlizerine indirgenen metrik

g olmak tuzere g nin bilesenler:

o 0 _ 0 0 9.
[V g(%,%) =9 (d\II (%) ,dW¥ (%)) oW =¢ %,
o 0 _ 0 0
o 0 0 0
= 95,2 ) =g (dV | =), d¥ | U= e*,
g22 g(ay,ay) g(d (8y>’d (ay )o e
dir. Ayrca
.0 Lo, D
fi=e B fa=e 8_y’ 3= B (3.5.16)
olmak tzere { f1, f2, f3}, M nin bir ortonormal ¢atisine olusturur. Burada E=—f3,

M nin birim normal vektér alamdwr. Béylece M, M Lorentzian para-Sasakian
manifoldunun bir spacelike hiperytizeyi olur.

Diger taraftan

i, ol =0, [fi, fsl = =€ f1,  [fo. f3] = —e 7 fa, (3.5.17)
ve M nin V Levi-Civita konneksiyonunun bilesenleri
vf1f1:_f37 vflf2:()7 v]61.]03:_.]61
vafl = 07 vfgf? - f37 vf2f3 - _fZ (3518)
vfsfl = 07 vf;g.f? = 07 vfgﬁ:’) =0.
oldugundan M yiizeyinin ikinci temel formunun bilesenleri
b(fl)fl) = _g(vﬁfl)é):_la
b(f17f2) = _g(vflf%g) - Oa (3519)
b(f27f2) = _g(vhf%g) =L

bulunur. Buradan M nin ortalama egrilig H olmak dzere (3.5.19) dan

H =

DO | —

[b(f1, f1) +b(f2, f2)] = 0,

elde edilir. Boylece, (¢,£,m,G) Lorentzian para-Sasakian yaprya sahip st yar uzay,

minimal dolayisiyla biharmonik olan z = ¢ duzlemleri tarafindan foliate edilir

(yapraklandiriler).
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Sonucg 3.5.2. Harmonik ortalama egrilikli bir Lorentzian para-Sasakian manifoldun
bir spacelike hiperyizeyinin biharmonik olmast i¢in gerek ve yeter sart minimal

olmasaidar.

ispat. M, (M, p, & n,5) Lorentzian para-Sasakian manifoldunun harmonik ortalama
egrilikli bir spacelike hiperyiizeyi olsun. Bu durumda AH = 0 dir. Oyleyse (3.5.3)
dan M nin bir biharmonik spacelike hiperyiizey olmasi icin gerek ve yeter sart H = 0

olmasidir. Boylece ispat tamamlanir. ]

Sonug 3.5.3. M, (m+1)-boyutlu (M, p,&,1,G) Lorentzian para-Sasakian manifoldu-
nun AH = A\H, A € R, sartint saglayan bir spacelike hiperyiizeyi olsun. Bu durumda

M nin biharmonik olmasi i¢in gerek ve yeter sart
m 2
A(gradH) = Z(gradH ) (3.5.20)
olmasudar.

Ispat. M, (m + 1)-boyutlu (M, ¢, &,1,g) Lorentzian para-Sasakian manifoldunun
AH = MAH, A € R, sartim1 saglayan bir spacelike hiperyiizeyi olsun. Bu durumda
(3.5.3) dan ispat tamamlanir. O

Teorem 3.5.2. M, (m+1)-boyutlu (M, ¢,&,n,G) Lorentzian para-Sasakian manifoldu-
nun bir total umbilik bitharmonik spacelike hiperyiizeyi olsun. Bu durumda M sabit

ortalama egriligine sahiptir.

ispat. M, (M, p,€&,n,g) Lorentzian para-Sasakian manifoldunun bir total umbilik
biharmonik hiperyiizeyi ve W : M — M bir izometrik immersiyon olsun. M nin bir
lokal ortonormal ¢atisi {dVU(e;),...,d¥(e,,), &} olmak tizere M hiperyiizeyinin bir
{e1, ..., em} lokal ortonormal gatisin goz éniine alahm. VX € I' (T'M) igin d¥(X) ile
X vektor alam 6zdes olarak diiiiniilebilir. Boylece M nin bir {ey, ea, ..., e, £} lokal
ortonormal ¢atisi igin \;, (1 <i < m), e; dogrultusundaki asli egrilikler olmak iizere
Ae; = \e; dir. M total umbilik oldugundan herhangi bir p € M noktasindaki biitiin

asli egrilikler ayni bir A(p) sayisina egittir. (3.5.1) esitliginde N yerine £ karakteristik
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vektor alani alinirsa

= A (3.5.21)
Diger taraftan (3.5.21) den
A@NMH):—%WWM? (3.5.22)
bulunur. Buradan (3.5.3), (3.5.21) and (3.5.22) esitlikleri gbz éniine alinarak

AN —2mA =0,
(2 +m)gradi* = 0,

elde edilir. Boylece ispat tamamlanir. O]

3.5.2 Lorentzian para-Sasakian manifoldlarin biharmonik
timelike hiperyiizeyleri

(M, ¢,€,1,9), (m+ 1)-boyutlu bir Lorentzian para-Sasakian manifold ve M, M nin
¢ € I'(T'M) olacak sekildeki bir hiperyiizeyi olsun. Bu durumda M hiperyiizeyinin
birim normal vektér alami N olmak iizere N spacelike oldugundan M, M nin bir

timelike hiperyiizeyi olur. ¥ : M — M izometrik immersiyonunun tensiyon alani
(V) = mp,

diir. Burada p ve H sirasiyla M hiperyiizeyinin ortalama egrilik vektor alani ve

ortalama egrilik fonksiyonu olmak tizere p = HN dir.

Teorem 3.5.3. (M, ¢,£¢,1,7), (m+1)-boyutlu bir Lorentzian para-Sasakian manifold
ve M, M nin bir timelike hiperyiizeyi olsun. Bu durumda M nin biharmonik olmas:

icin gerek ve yeter sart

2 (gradH?) 4+ 2A(gradH) — 2H(Q(N))T = 0,

_ (3.5.23)
AH + H|A? — H(S(N,N)) =0
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olmasidvr. Burada S, M Lorentzian para-Sasakian manifoldunun Ricci egriligi;
Q, M Lorentzian para-Sasakian manifoldunun ¥X,Y € T(TM) i¢in g(QX,Y) =

S(X,Y) ile tanimlanan Ricci operatori ve A, M hiperyizeyinin N birim normal

vektor alamina gore Weingarten temel tensori (sekil operatori) dir.

Ispat. M, (m + 1)-boyutlu (M, ¢,&,7m,9) Lorentzian para-Sasakian manifoldunun
bir timelike hiperyiizeyi; N, M hiperyiizeyinin birim normal vektor alani ve U :
M — M bir izometrik immersiyon olsun. M nin bir {e1,€9,.c,em_1,6m = &}
ortonormal bazini alalim. M hiperylizeyinin ortalama egrilik vektori y = HN

olmak tizere ¥ : M — M izometrik immersiyonunun tensiyon alani

T(¥) = Z VA (e;,e) = > Blei e;) = (boyM)p=mHN  (3.5.24)

=1

dir. Bu durumda ¥ : M — M izometrik immersiyonunun bitensiyon alani

NE

(0) = e Ve Ver(¥) = Vg, . 7(¥) — R(d¥(e;), 7(W))dW(e;)}

=1

NE

e{VeVY (mHN) — Ve . (mHN) — R(d¥(e;), mHN)dV(e;)}

1

-
Il

£i{Ve, Ve, (NHN) — vv%ei (nHN) — R(d%(e;), mHN)d¥(e;)}

M-

=1

= m f: ei{Ve, (ei(H)N + HV N) — (V&) (H)N — HVy, o, N
—;I_R(d\lf(ei), N)d¥(e;)}

= Y eifeei(H)N +2¢;(H)V,N + HV. V. N
i=1
- (Veiei) (H)N — vaeieiN — Hﬁ(d\IJ(eZ), N)d\IJ(eZ)}
olur. Buradan

7(U) = —m(AH)N —mHAYN —2mA(gradH)

—mH {mz R(dV(e;), N)d¥(e;) — R(d¥(§), N)d\I/(f)} (3.5.25)

olur. Simdi 75(V¥) nin teget ve normal bilegenlerini bulmak i¢in éncelikle (3.5.25)

deki AYN nin ve egrilik tensér alan1 R yi iceren son iki terimin teget ve normal
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bilegenlerini belirleyelim:

3

(A\IJN)T = - g(veiveiN - vveieiN, ek)ek
1

o~
I

i

§(7€1A6i — A(V.e€),er)er

I
[ .

i,k=1

= ) {ed(Aei, ex) — g(Aei, Veer) — G(A(Ve,e0), ex) ew

ik=1
m

= Z {eib(ei, ex) — b(es, Ve,er) — b(Ve,€4, ex) fe
i k=1

m

= Z {Veib(ek, ei)}€k7

ik=1

dir. Codazzi-Mainardi denkleminden

Veb(ex, i) — Ve, bleie) = (Tz(ei,ek)ei)L

= G(R(ej, er)ei, N)
= —§<N, ek).

yazilir. Buradan

Ve b(ex, i) = Ve, blei,e;) — S(N, e).
elde edilir. (3.5.28), (3.5.26) da yerine yazilirsa AY N nin teget bilegeni

(A\IIN)T = Z {VSkb<€i7 ei) - §<N7 6k)}ek

ik=1
= m(gradH) — (Q(N))T.
bulunur. A¥N nin normal bileseni ise
(AYN)* = g(A"N,N)

- _ Z{sig(veﬁew —Vv..e.N,N)}

i=1
= Z{gi§<v€iN7 veiN)}
i=1
= ‘A|2 )
olur. Burada ¢; = g(e;, €;), 1 < i < m, dir.
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Diger taraftan

—Y S(N,ep)e, = Z G(R(dU(e;), N)d¥(e;), ex)ex
S G (), N)d(e,), )¢

= (Q(N))T (3.5.31)

mzl R(d¥(e;), N)d¥(e;), N) = —S(N,N) + 1 (3.5.32)

oldugundan (3.5.25) de egrilik tensér alan1 R yi iceren dordiincii terimin teget ve

normal bilegenleri sirasiyla (Q(N))T ve —S(N, N) + 1 dir. Ayrica 1.3.28 dan
R(dU(€), N)dU(€) = N (3.5.33)

dir. Buradan (3.5.29)-(3.5.33) esitlikleri goz Oniine alinarak 75(¥) nin teget ve

normal bilesenleri sirasiyla

(W) = —m |5 (gradH?) + 2A(gradH) — 2H(@Q(N))T]
((U)" = —m [(AH) + H|A]?> — HS(N, N)}
olur. Boylece ispat tamamlanir. O]

Teorem 3.5.3 den agagidaki sonuglara ulasilir.

Sonug 3.5.4. (M, $,£,1,G), (m+1)-boyutlu bir Lorentzian para-Sasakian manifold
ve M, M nin sabit ortalama egrilikli bir timelike hiperyiizeyi olsun. Bu durumda M

nin btharmonik olmasi i¢in gerek ve yeter sart ya minimal ya da
(QIN)T=0 wve S(N,N)=|A]? (3.5.34)

olmasidir. Ozel olarak, M Lorentzian para-Sasakian manifoldu pozitif olmayan Ricci
egriligine sahip ise bu durumda M nin bitharmonik olmasi i¢in gerek ve yeter sart

manimal olmasidar.
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ispat. M, M Lorentzian para-Sasakian manifoldunun sabit ortalama egrilikli bir
timelike hiperytizeyi olsun. Bu durumda (3.5.23) den M nin biharmonik olmas i¢in

gerek ve yeter sart
H(Q(N)T=0 ve H(JA —S(N,N)) =0

olmasidir. Boylece ya H = 0 ya da (Q(N))T = 0 ve |A]* — S(N, N) = 0 olur ki bu

da ispat1 tamamlar. O

Ornek 3.5.2. (z,y, 2) koordinat sistemi ile verilen 3-boyutlu M = R® reel uzayin ve

M dizerinde Ornek 3.5.1 de tansmlanan Lorentzian para-Sasakian yapisine gozéniine

alalim. M de M nin
z = f(y)

ile verilen bir yizeyi olsun. Bu durumda

f 1
e ! 0, f2=1(0,0,1 3.5.3
{f (\/6—22(f1)2+62z JAe E(f)2 + 22 ) fa=( )} ( )

olmak tzere {f1, fo} kiimesi M yiizeyi i¢in bir ortonormal baz sistemidir. M nin

birim normal vektor alany ise

N = < et (3.5.36)
\/(fl)2€—2z ¥ 2z’ \/(f/)2€—2z 4 22’

ile verilebilir. fo = —& oldugundan M, M Lorentzian para-Sasakian manifoldunun

bir timelike yizeyr olur.

Diger taraftan NV, M nin Levi-Civita konneksiyonu olmak tizere ¥V nin bilesenleri

7z O 0z’ (%By 9z 0z ox’

Vo2 = Vol =20 ,90=2

Va%aw =0, V%ay = e, Va%az = oy (3.5.37)
T, 0 __8 T . 0_0  T,0 _

V%% oz’ V%By_ay’ v%az_o'
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bulunur. Buradan (3.5.37) kullaniarak

f ' 9
f! _
<\/e_22(.f’)2+e22 390 \/e 22(f/)2+€22 8y> (\/e 23 + 622 al’)

<

vf1f1 =

e ( 1 9 )
<\/572z(€:/>2+52z et \/ 2Z(f 2te2z ay> \/e—Qz 2 4 g2z dy
I 0 N 1 o2, /! x
(e (f1)?2 + ) 32 Ve ()24 e 0y \Je 2 (f)2 + e2 Ox
1 0 l )< 0
\/6—2,2 f/ + e2z ay \/6—22 + 2z ay
N 2z o
(e=22(f")2 + €22) O
f//GQz a f//f/e—2z a
= T — T (3.5.38)
(e=22(f")? + €27)? 0 (e=22(f")2 + €27)2 dy
2% _ (f/)2 e—2% 2
(6—2z(f/)2 + 622) 0z
ve
Vi, f2=0. (3.5.39)

elde edilir. Boylece N, M nin birim normal vektor alani oldugundan M yizeyinin

ikinci temel formunun bilesenleri

o £
o(fi, fr) = 9(Vpfi,N) = CER T (3.5.40)
b(fo, f2) = 9(Vpfo, N) = 0. (3.5.41)
bulunur. (3.5.40) ve (3.5.41) den M nin ortalama egriligi
H = - (3.5.42)

2 (672z(f/)2 + 622)
olur. Boylece M min minimal dolayisiyla biharmonik olmast icin gerek ve yeter sart

¢, d sifirdan farkl sabit saylar olmak tizere
fy) = cy +d,
olmasudar.

Sonug 3.5.5. Ricci flat bir Lorentzian para-Sasakian manifoldun sabit ortalama
egrilikli bir timelike hiperyuzeyinin biharmonik olmast i¢in gerek ve yeter sart minimal

olmasadar.
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ispat. M bir Ricci flat Lorentzian para-Sasakian manifold ve M, M nin sabit
ortalama egrilikli bir timelike hiperyiizeyi olsun. Bu durumda (3.5.23) den M
nin biharmonik olmas: i¢in gerek ve yeter sart H = 0 olmasidir. Boylece ispat

tamamlanir. O

Sonug 3.5.6. (M, ¢,£,1,9), (m-+1)-boyutlu bir n-Einstein Lorentzian para-Sasakian
manifold ve M de M nin bir timelike hiperyiizeyi olsun. Bu durumda M nin

biharmonik olmasi i¢in gerek ve yeter sart

2 (gradH?) + 2A(gradH) = 0,

) (3.5.43)
(AH)+ H|AP ~ H(L 1) =0,

olmasidir. Burada 7, M nin skaler egriligidir. Ozel olarak, eger 0 #+ H =sabit ise
bu durumda M nin bir has (6zgiin) biharmonik hiperyiizey olmasu i¢in gerek ve yeter
sart

AP = ——1 (3.5.44)

3=

olmasaidar.

ispat. M (m+ 1)-boyutlu bir 7-Einstein Lorentzian para-Sasakian manifold olsun.

Bu durumda (1.3.25) den

- T
N,N)=— -1 5.4
S(N,N) = = (3.5.45)
bulunur. Diger taraftan (3.5.31) den
(Q(N)T =0 (3.5.46)

dir. Buradan (3.5.45) and (3.5.46), (3.5.23) de yerine yazilarak (3.5.43) elde edilir.
Ozel olarak eger 0 # H =sabit ise gradH = 0 ve AH = 0 olacagindan ispat

tamamlanir. ]

Teorem 3.5.4. (M, ¢, &, n,G) sabit kesit egriligine sahip (m-+1)-boyutlu bir Lorentzian
para-Sasakian manifold ve M de M nin bir timelike hiperyiizeyi olsun. Bu durumda

M nin biharmonik olmasi i¢in gerek ve yeter sart

2(gradH?) + 2A(gradH) = 0,

) (3.5.47)
(AH)+ H|A> = mH =0
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olmasidir. Ozel olarak eder M bir belirsiz uzay form ve M de M nin sabit ortalama
egrilikli bir timelike hiperyizeyi ise M mnin bir has (6zgiin) biharmonik hiperyizey
olasi i¢in gerek ve yeter sart

A =m (3.5.48)

olmasadar.

ispat. M, sabit C kesit egriligine sahip (m-1)-boyutlu bir Lorentzian para-Sasakian
manifold olsun. Bu durumda VX, Y € I'(T'M) i¢in

S(X,Y)=mg(X,Y)
dir. Buradan M, skaler egriligi
F=m(m+1) (3.5.49)
olan bir n-Einstein manifold olur. Boylece Sonug 3.5.6 den ispat tamamlanir. O

Onerme 3.5.1. (M, ¢,&,1,9), (m~+1)-boyutlu (boy M > 2) birn-Einstein Lorentzian
para-Sasakian manifold olsun. M nin total umbilik biharmonik timelike hiperyiizeyi

sabit ortalama egriliklidir.

ispat. M Dbir n-Einstein Lorentzian para-Sasakian manifold; M, M nin bir total
umbilik biharmonik timelike hiperyiizeyi ve N de M nin birim normal vektor alani
olsun. M total umbilik hiperyiizey oldugundan bir A € C*°(M, R) fonksiyonu i¢in
A = M dir. Bu durumda M nin bir ortonormal baz {ey, eg, ..., €1, €, = £} olmak

uzere

= A (3.5.50)

bulunur. Buradan

~1
L grad?. (3.5.51)
m



oldugu goriiliir. Diger taraftan

|A]? = mA2. (3.5.52)
dir. (3.5.50), (3.5.51) ve (3.5.52), (3.5.43) da yerine yazilirsa

m2—1 2
rad\ = 0,
(g Jgrad (3.5.53)
AN+ mAP — (Z —1)A = 0.

elde edilir. Buradan ya A = 0 ve boylece H = 0, ya da A\ = :I:#\/F —m = sabit

olur. Boylece ispat tamamlanir. O]
Teorem 3.5.1 den ¥ < m igin agagidaki sonug verilebilir:

Sonug 3.5.7. (M, ¢,£,1,9), (m+1)-boyutlu (boy M > 2) bir n-Einstein Lorentzian
para-Sasakian manifold ve ¥ < m olsun. Bu durumda M nin bir total umbilik

timelike hiperyuzeyinin biharmonik olmasi icin gerek ve yeter sart minimal olmasidir.

Onerme 3.5.2. Ricci flat bir Lorentzian para-Sasakian manifoldun total umbilik bir

biharmonik timelike hiperyizeyi minimaldir.

Ispat. M, (m + 1)-boyutlu (boy M > 2) bir Ricci flat Lorentzian para-Sasakian
manifold ve M, M nin bir total umbilik biharmonik timelike hiperyiizeyi olsun.

(3.5.50), (3.5.51) ve (3.5.52), (3.5.23) de yerine yazilirsa

(" =L)grad\? = 0,

(3.5.54)
(m—1)(ZAX+ X?) = 0.

elde edilir. M biharmonik ve m > 1 oldugundan (3.5.54) denklem sisteminden

A =0, yani H = 0 bulunur. Boylece ispat tamamlanir. O]
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BOLUM 4

LORENTZIAN HEMEN HEMEN
PARAKONTAKT

MANIFOLDLARIN ALTMANIFOLDLARI

Bu boliim dért kisimdan olusmaktadir. Ilk kisimda Lorentzian hemen hemen parakon-
takt manifoldlarin slant (egik) altmanifoldlar: tanitilarak Grnekler verildi. Ikinci
kisimda Lorentzian hemen hemen parakontakt manifoldlarin semi-slant altmanifoldla-
r1 incelendi. Ayrica bu kisimda 6zel olarak manifoldun Lorentzian parakosimplektik
ve Lorentzian para-Sasakian olmasi durumunda semi-slant altmanifoldlarin taniminda
yer alan distribiisyonlarin integrallenebilirlik sartlar: aragtirildi. Uciineii kisim Lorentz-
ian parakosimplektik manifoldlarin warped (gaprasik) ¢arpim, semi-invaryant warped
carpim, semi-slant warped carpim ve anti-slant warped carpim altmanifoldlarina
ayrildi. Son kisimda ise Lorentzian para-Sasakian manifoldlarin biharmonik altmani -

foldlar1 incelendi.

4.1 Lorentzian Hemen Hemen Parakontakt Manifoldlarin

Slant Altmanifoldlar:

Bu kisimda Lorentzian hemen hemen parakontakt manifoldlarin slant altmanifoldlar:
tanitilarak bu manifoldlarin, sirasiyla karakteristik vektor alanini tegetinde ve norma -
linde kabul eden altmanifoldlarinin slant olmasi i¢in gerek ve yeter sartlar arastirilacak-
tir.

M, (p,&, g) Lorentzian hemen hemen parakontakt yapisina sahip bir Lorentzian
almost parakontakt manifold ve ¢ : M — M bir izometrik immersiyon olmak tizere M
de M nin bir altmanifoldu olsun. M Lorentzian almost parakontakt manifoldundan

M altmanifoldu tizerine indirgenmis metrigi de g ile gosterelim. Herhangi bir X €
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['(TM) i¢in fX ve wX sirasiyla ¢ X in teget ve normal bilegleri olmak tizere

X = fX +wX (4.1.1)
yazilabilir. Benzer sekilde herhangi bir N € I' (T M) igin

©N = BN +CN (4.1.2)

yazilabilir. Burada BN ve C'N sirasiyla @ N in teget ve normal bilegenlerini gostermek-

tedir.

Tanim 4.1.1. (M, 0, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Bu durumda ejer

i) w=0yani pX = fX € T(TM), VX € T(TM), ise M ye M nin invaryant

altmanifoldu,

ii) f=0yani X =wX €T (T*M),VX € I (T'M), ise M ye M nin anti-invaryant

altmanifoldu

denir.

Tanim 4.1.2. (M, v, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Bu durumda ejer M iizerinde
i) TM = D1 @ Do,

ii) Dy distribisyonu invaryant, yani 9Dy = Dy,

iii) D distribiisyonu anti-invaryant, yani ¢ Dy C T+M

olacak sekilde ortogonal Dy ve Dy distribisyonlar: var ise M ye M nin semi-invaryant

altmanifoldu denir.

Lemma 4.1.1. (M, ¢,§,g) bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda VX,Y € T (TM) i¢in
g(fX,Y) = g(X, [Y) (4.1.3)

dir.
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Simdi (M, ©, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M de
M nin ¢ € T(TM) olacak sekildeki bir altmanifoldu olsun. Bu durumda D, TM
tanjant demetinde ¢ karakteristik vektor alaninin gerdigi distribiisyona ortogonal
bir distribiisyon olmak tizere

TM =D& (€) (4.1.4)

yazilabilir.

Tanim 4.1.3. (M, ©, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M
de M nin & € T(TM) olacak sekildeki bir altmanifoldu olsun. Herhangi bir p € M
noktasinda &, nin bir katr olmayan 0 # X € I'(TM) i¢in X ile T,M tanjant
uzayr arasindaki 0(X) agise sabit yani p € M noktasimn ve X € I'(T'M) — Sp{¢,}
vektoriniin secilisinden bagimsiz ise M ye M nin slant altmanifoldu denir. 0 a¢isina

1se M slant altmanifoldunun slant agisy denir.

¢& = 0 oldugundan 6 agis1 ayn1 zamanda ¢ X ile D, arasindaki agidir. Invaryant
ve anti-invaryant altmanifoldlar sirasiyla 6 = 0 ve 6 = 7 slant agisina sahip slant
altmanifoldlardir. Invaryant ve anti-invaryant olmayan slant altmanifoldlara 6zgiin

slant altmanifoldlar denir.

Ornek 4.1.1. (w1, 22, Y1, Y2, Y3, Ya, t) koordinat sistemi ile verilen 7-boyutlu bir M

reel uzay uzerinde

Q

0 0 .
90( xz) - 8%’ (2_172)

so(ai) - -2 =123

9= (dz;)* + (dy;)* —n @7
olacak sekilde bir ¢ (1,1)-tensor alanin, £ vektor alanina, n 1-formunu ve g Lorentzian

metrigini tanimlayalim. Bu durumda i = 1,2 ve j = 1,2,3,4 olmak tzere

0 0 9,

X = aj=— +bj— +c—ecI(TM
azaxierjaijrcate( )
0 0 9,

Y = di— +e,— +f=— €€ (TM
d@a$i+6]ayj+fate (TM)
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¢m

Z@xi ]8% ot ot

= X+n(X)¢,
(noyp) (X) =0,
dir. Diger taraftan
0 0 0 0
X oY) = R A N
9(0 X, ¢Y) g(azaxi EYRLE eyayj)

= aidi + bjej

= 9(X,)Y)+n(X)n(Y)
oldugundan (p,&,n, g) dortlisi M tizerinde bir Lorentzian hemen hemen parakontakt
yapr olur. Bdylece M, (p,€,1m,9) Lorentzian hemen hemen parakontakt yapisi ile

birlikte bir Lorentzian hemen hemen parakontakt manifolddur.

Simdi M Lorentzian hemen hemen parakontakt manifoldunun wu,v € (O, %) ve

0 # k =sabit olmak tzere
Qu,v) = (u,v, —ksinu, —ksinv, k cos u, k cosv, u + v)
dontistima ile verilen M altmanifoldunu gozonine alalim. Bu durumda

X = Q. (u,v)=(1,0,—kcosu,0,—ksinu,0,1)

Y = Q,(u,v) =(0,1,0,—kcosv,0, —ksinwv, 1)

olmak tizere { X, Y} kiimesi M altmanifoldunun tanjant demeti T'M i¢in bir ortogonal

bazdwr. Diger taraftan

X = (1,0,kcosu,0,ksinu,0,0)

oY = (0,1,0,kcosv,0,ksinv,0)
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oldugundan M, M nin

_1 1 — k?
0 = cos <\/(1—|—k:2) (2+k2)> (4.1.5)

slant agisina sahip bir slant altmanifoldudur.

Simdi, Lorentzian hemen hemen parakontakt manifoldlarin slant altmanifoldlar:

ile ilgili onemli bir karakterizasyonu verecegiz:

Teorem 4.1.1. (M,gp,ﬁ,g) bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda
i) eger £ € T(TM) ise M nin bir slant altmanifold olmast i¢in gerek ve yeter sart
fP=MI+n®¢) (4.1.6)
olacak sekilde bir A € [0, 1] sabit saysinan var olmasidar.

ii) eger £ € T(T+M) ise M nin bir slant altmanifold olmasi icin gerek ve yeter sart
A=A (4.1.7)
olacak sekilde bir X € [0, 1] sabit sayisinan var olmasidar.

ispat. (i) M, (H, ©, &, g) Lorentzian hemen hemen parakontakt manifoldunun bir
altmanifoldu olsun. ¢ € I'(T'M) ve M nin bir slant altmanifold oldugunu kabul

edelim. #, M nin slant agis1 olmak tizere herhangi bir X € I'(T'M) igin

_ X

c0s 0 = 12K

(4.1.8)

yazilabilir. (4.1.3), (4.1.8), (1.3.14) ve (1.3.2) kullamlarak her X € I'(T'M) i¢in

g(f*X,X) = g(fX, fX)
= cos”0(X)g(pX, pX)
= cos?0(X)g(p*X, X)

= cos®O(X)g(X +n(X)E, X) (4.1.9)
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olur. Boylece
f2X = cos? 0(X)(X +n(X)E), X el(TM) (4.1.10)

elde edilir. (4.1.10) da A = cos® 6 € [0,1] olarak alimirsa (4.1.6) esitligine ulagihr.
Tersine A € [0, 1] bir sabit olmak tizere (4.1.6) esitliginin saglandigim kabul
edelim. (4.1.1), (4.1.3), (4.1.6) ve (1.3.10) den her X € I(T'M) icin

9(pX, fX)
[ X[ £ Xl
9(X, f?X)
[ X | [ £ X]]
Ag(X, X +n(X)§)
o X[ £ X]
A (9(X, X) +n(X)n(X))
[ X[ [ £ X]]
Ag(pX, pX)
X | £ X]]

cosf(X) =

dir. Buradan

A JlpX]|
COSG(X) = ﬁ

bulunur. (4.1.8) ve (4.1.11) gbz 6niine alinirsa

(4.1.11)

cos?0(X) = A (4.1.12)

elde edilir. Boylece 0(X) sabit ve dolayisiyla M bir slant altmanifold olur.

(ii) ¢ € T(T+M) olsun. Bu durumda n(X) = 0 oldugundan M bir slant
altmanifold ise (4.1.10) dan (4.1.7) elde edilir. Tersine (4.1.7) saglaniyor ise (4.1.12)
den M nin bir slant altmanifold olacagi kolaylikla gortiliir. Boylece ispat tamamlanir.

]

Sonug 4.1.1. (H, ©, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M
de M nin & € T(TM) olacak sekildeki bir slant altmanifoldu olsun. Bu durumda 0,
M nin slant a¢ist olmak tizere her X, Y € T'(T'M) i¢in

g(fX, fY) = cos’0{g(X,Y) +n(X)n(Y)} (4.1.13)
gwX,wY) = sin?#{g(X,Y) +n(X)n(Y)} (4.1.14)

dir.
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Ispat. Teorem 4.1.1 ve (4.1.3) den

g(f X, [Y) = g(f*X.Y)
= g(cos” O(X)(X +n(X)€),Y)

yazilabilir. Bu son egitlikte (1.3.11) kullanilirsa (4.1.13) elde edilir.
Diger taraftan (1.3.10), (4.1.1) ve (4.1.13) den

g(pX, oY) = g(fX +wX, fX+wX)
g(X,Y)+n(X)n(Y) = g(fX, fX)+ g(wX, wX)
g(X.Y)+n(X)n(Y) = cos’0{g(X,Y) +n(X)n(Y)} + g(wX, wX)

elde edilir ki bu da ispati tamamlar. O

M, (H, v, &, g) Lorentzian hemen hemen parakontakt manifoldunun bir altmani-
foldu olsun. Bu durumda herhangi bir X € I'(T'M) igin (1.3.1), (1.3.2), (4.1.1) ve
(4.1.2) den

X +n(X)=X+wfX + BwX + CwX (4.1.15)

yazilir. Eger £ € I'(T'M) ise (4.1.15) esitliginin teget ve normal kisimlar1 birbirine

esitlenerek

I+n®¢ = f°+Buw (4.1.16)

wf+Cw = 0 (4.1.17)

elde edilir. Diger taraftan eger £ € I'(T+M) ise n(X) = 0 olacagimdan yine (4.1.15)

esitliginin teget ve normal kisimlar1 birbirine egitlenerek

I = f*+ Buw (4.1.18)

wf+Cw = 0 (4.1.19)
bulunur. Béylece asagidaki sonucu verebiliriz.

Teorem 4.1.2. (M,go,{,g) bir Lorentzian hemen hemen parakontakt manifold ve

M de M nin bir altmanifoldu olsun. Bu durumda
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i) eger £ e T(TM) ise M nin bir slant altmanifold olmast i¢in gerek ve yeter sart
Bw=pul+n®¢) (4.1.20)
olacak sekilde bir p € [0, 1] sabit sayisinan var olmasidar.

ii) eger £ € T(T+M) ise M nin bir slant altmanifold olmasu i¢in gerek ve yeter sart
Bw = ul (4.1.21)
olacak sekilde bir p € [0, 1] sabit sayisinan var olmasidar.

ispat. M, (H,gp,f‘,g) Lorentzian hemen hemen parakontakt manifoldunun bir
altmanifoldu olsun. ¢ € I'(T'M) oldugunu kabul edelim. Teorem 4.1.1 (i) sikki
g6z Oniine alinarak (4.1.6) esitligi (4.1.16) da yerine yazilirsa

Buw=(1-MN{I+n®¢&)

elde edilir. A\ = cos? @ oldugundan p = 1 — X olarak secilir ise 1 = sin?# € [0, 1] olur
ve (4.1.20) esitligine ulagilir.
Diger taraftan £ € T'(T+M) ise Teorem 4.1.1 (ii) ve (4.1.18) den

Bw=(1-M\I

bulunur. @ =1 — X olarak segilir ise (4.1.21) elde edilir. Boylece ispat tamamlanir.

]

4.2 Lorentzian Hemen Hemen Parakontakt Manifoldlarin

Semi-Slant Altmanifoldlar:

Bu kisimda Lorentzian hemen hemen parakontakt manifoldlarin semi-slant altmani-
foldlar1 tantilarak bu manifoldlarin altmanifoldlarinin semi-slant olmasi ig¢in bazi
karakterizasyonlar verilecektir. Ayrica esas manifoldun Lorentzian parakosimplektik
ve Lorentzian para-Sasakian manifold olmasi durumunda semi-slant altmanifold

taniminda yer alan distribiisyonlarin integrallenebilirligi incelenecektir.
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Tanim 4.2.1. (M, ©, &, g) bir Lorentzian hemen hemen parakontakt manifold ve D
de M dizerinde bir diferensiyellenebilir distribiisyon olsun. Eger ¥p € M noktas:
ve 0 # X € I'(D,) vektori icin X ile D, arasindaki 0, agisy sabit yani p € M
noktasiman ve X € T'(D,) vektirimiin secilisinden bagimsiz ise D ye M nin bir slant

distribisyonu denir. 0, ag¢isina ise D, slant distribisyonunun slant agise denir.

M, (M, ©, &, g) Lorentzian hemen hemen parakontakt manifoldunun bir altmani-
foldu ve D, M 1izerinde bir diferensiyellenebilir distribiisyon olsun. D distribiisyonuna
M iizerinde ortogonal olan distribiisyonu D+ ile gosterelim. P; ve P, sirasiyla D ve

D+ {izerindeki ortogonal projeksiyonlar olmak iizere VX € I'(T'M) igin
yazilabilir. Boylece agagidaki teoremi verebiliriz.

Teorem 4.2.1. M, (M, 0, &, g) Lorentzian hemen hemen parakontakt manifoldunun
bir altmanifoldu ve D, M 7izerinde & € I'(D) olacak sekilde bir diferensiyellenebilir
distribisyon olsun. Bu durumda D nin bir slant distribisyon olmasi i¢in gerek ve
yeter sart

(Pf)y=XI+1n®¢) (4.2.2)

olacak sekilde bir A € [0,1] sabit sayisinin var olmasidir. Ayrica, eger 0 agist D

slant distribiisyonunun slant acisi ise X = cos? 6 dar.

Ispat. Kabul edelim ki D, M iizerinde & € ['(D) olacak sekilde bir slant distribiisyon
olsun. VX € I'(D) i¢in (4.2.1) den

cos 0(X)
[ X [P f X ]|
I[P f X
[ X ||
bulunur. Buradan
| PLfX] = cos0(X) [lpX]] (4.2.3)
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yazilabilir. (4.2.1), (4.2.3) ve (1.3.1) kullanilarak

9(X.(Pf)*X) = g(PifX, PfX)
= cos”0(X) g(p X, pX)
= cos’(X) g(X, ¢’ X)

= cos?0(X) g(X, X +n(X)E), VX eIl(D)
elde edilir. Boylece
(Pf)P’X =cos?0(X) (X +n(X)E), VX eT(D)

olur. A = cos? § olarak segilir ise (4.2.2) esitligine ulagilir.
Tersine (4.2.2) esitligi saglanacak sekilde bir A € [0, 1] sabit sayisinin var oldugunu
diisiinelim. Bu durumda ¢ nin simetrik oldugu goz ontine alinarak herhangi bir

X e I'(D) igin

9(pX, P fX)

leX |1 PLfX

g(X, SOPIfX>

le X[ PLfXl

g(X, (Plf)zX)

le X1 PfX]

Ag(X, X +n(X)E)
le X1 PLfX]

cos 0(X)

yazilabilir. Bu son egitlikte (1.3.1) yerine yazilirsa

A [pX]
cos0(X) = PX|

elde edilir. Diger taraftan cosf(X) = ”f;’;ﬁ” oldugundan A = cos? § bulunur. Bu

da € nin sabit ve dolayisiyla D nin bir slant distribiisyon oldugunu gosterir. Boylece

ispat tamamlanir. O

Sonug 4.2.1. M, (M, gp,f,g) Lorentzian hemen hemen parakontakt manifoldunun
bir altmanifoldu ve D, M fizerinde & € T'(T+M) olacak sekilde bir diferensiyellenebilir
distribiisyon olsun. Bu durumda D nin bir slant distribisyon olmasi i¢in gerek ve
yeter sart

(Pf)?=XI (4.2.4)
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olacak sekilde bir A € [0,1] sabit sayisinin var olmasidir. Ayrica, eger 0 agist D

slant distribiisyonunun slant acist ise X\ = cos® 0 dir.

Teorem 4.2.2. M, (M, ©, &, g) Lorentzian hemen hemen parakontakt manifoldunun
bir altmanifoldu ve D, M dizerinde bir diferensiyellenebilir distribiisyon olsun. Bu
durumda M nin bir slant altmanifold olmasi i¢in gerek ve yeter sart D nin M ile

ayn slant agrya sahip bir slant distribisyon olmasidar.

Ispat. Kabul edelim ki M, 6 slant acisina sahip bir slant altmanifold olsun. VX €
['(D) igin 0(X) = 0p(X) olacagindan D distribiisyonu M ile aym slant agiya sahip
bir slant distribtisyondur.

Tersine D, M tizerinde bir slant distribiisyon olsun. Bu durumda herhangi bir

X e I(TM) — Sp{¢} igin

9(fX,¢X)
0sX) = FxTTex]
g(FX, [X)
1FXT oX]
Xl
B

dir. Buradan || X || = \/HXH2 + (n(X))? oldugundan

X
cos (X I/ H (4.2.5)
¢ IXI + (n(X))?
bulunur. Diger taraftan P, ¢ nin D iizerindeki ortogonal projeksiyonunu gostermek

tizere X —n(X)¢ € I'(D) i¢in

g(PF(X — n(X)), p(X — n(X)E)
1PIX X0 (X —n(X)6)]
g(PI(X — (X)), PF(X — n(X)e)
1PAX —n(X)E) To(X —n(X)e)]
1PCX — n(x)0)]

X —n(X)e) (4.26)

dir. M Lorentzian hemen hemen parakontakt manifoldu tizerinde

cos Op(X) |

)
|

P(X —n(X)§) = fX
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ve

le(X —n(X)O = Vale(X —n(X)E), o(X —n(X)0))
= V(X —n(X)€, (X —n(X)E))
= V(X —n(X)¢, X +n(X)¢)
= VIXIE+ ()

oldugundan (4.2.5) ve (4.2.6) den
cosfp(X) = cosb(X)
elde edilir. Boylece M bir slant altmanifold olur ve ispat tamamlanir. O

Semi-invaryant altmanifoldlarin bir genellestirmesi olarak bir Lorentzian hemen

hemen parakontakt manifoldun semi-slant altmanifoldlar1 agagidaki gibi tanimlanabilir.

Tanim 4.2.2. (M, v, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M

de M nin bir altmanifoldu olsun. Ejer M iizerinde

i) TM = Dy ® Dy ® Sp{¢},

ii) Dy distribisyonu invaryant, yani 9Dy = Dy,

iii) Dy distribiisyonu 0 # 0, 5 slant agisina sahip slant distribisyon

olacak sekilde ortogonal Dy ve Dy distribisyonlar var ise M ye M nin semi-slant
altmanifoldu denir. Bu durumda Do slant distribisyonunun 6 slant agisina M

semi-slant altmanifoldunun slant agisy denir.

Semi-slant altmanifoldlarin invaryant ve anti-invaryant distribtisyonlar: sirasiyla
0 = 0 ve 0 = 7 slant agih slant distribiisyonlardir. Semi-invaryant altmanifoldlar,
semi-slant altmanifoldlarin 6zel bir halidir.

M bir semi-slant altmanifold ve boy D; = d;, (i = 1, 2), olsun. Bu durumda eger

(i) do = 01ise M bir invaryant altmanifold,

(ii) d; =0 ve 0 = § ise M bir anti-invaryant altmanifold,
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(iii) dy =0 ve 0 # 0, 5 ise M bir ézgiin slant altmanifold,
(iv) di.dy # 0 ve 8 # 0, T ise M bir 6zgiin semi-slant altmanifold
olur.

Ornek 4.2.1. (71, ..., z9) koordinat sistemi ile verilen 9-boyutlu M = R® reel uzayim

gozonine alalim. e; = %, 1 <7 <9, olmak tizere M nin standart baz {ei, ..., eq}
J

olsun. M dizerinde bir ¢ (1,1)-tensor alanwna, & vektér alanina, 1 1-formunu ve g

Lorentzian metrigini

52697 77:—d$9>

per = €3, Pey=€1, PE3 = €y,
pey, = Ccosve; — sinv eg,

pe; = Ccosvey — sinver,

peg = —sinvey + cosver,

pe; = sinves + coSv eg,

pes = é€s, Peg :07
g= (dx1)2 4+ ...+ (dx8)2 —nen

seklinde tanimlayalm. Bu durumda (¢,&,n,9) dértlisi M iizerinde bir Lorentzian
hemen hemen parakontakt yapr olur.

Simdi M Lorentzian hemen hemen parakontakt manifoldunun

M = {x = (21,...,29) € R® : 23, 1, 77,73 = 0}

ile tanwmlanan M altmanifoldunu gézonine alalim. Bu durumda
Dy = Sp{ei,es} wve Dy = Spley,es}

olarak alinirsa, Dy distribisyonun bir invaryant distribusyon ve Do distribiisyonunun

da 0 = v slant acisina sahip bir slant distribusyon oldugu goruliir. Oyleyse
TM = D1 7] DQ ¥ Sp{g}

seklinde yazlabilir. Boylece M, M Lorentzian hemen hemen parakontakt manifoldu-

nun bir semi-slant altmanifoldu olur.
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Simdi, (M, ®, &, g) bir Lorentzian hemen hemen parakontakt manifold ve M de
M nin bir semi-slant altmanifoldu olsun. D, (i = 1,2), distribiisyonu iizerindeki

projeksiyonu P;, (i = 1,2), ile gosterelim. Bu durumda herhangi bir X € I'(T'M)

icin
X=PX+PX+nX)~¢ (4.2.7)
ve
X = fPX + fRX +whPX (4.2.8)
yazilabilir. Burada
P X = fPX ve wP X =0 (4.2.9)

olur. Ozel olarak, (4.2.8) ve (4.2.9) dan
FX = 0P X + [PoX (4.2.10)

oldugu goriiliir.

(4.1.13) esitliginde Y yerine P,Y almur ve n(PY) = 0 oldugu kullanilirsa
g(fX, fPY) =cos’ 0 g(X, PY), XY e I(TM) (4.2.11)

elde edilir. Benzer gekilde (4.1.14) esitliginde Y yerine PY alimr ve n(PY) =0

oldugu goz oniine alinirsa
g(wX, wRY) = sin” 0 g(X, PY), X, Y e I(TM) (4.2.12)

olur.
Lorentzian hemen hemen parakontakt manifoldlarin semi-slant altmanifoldlarinin

karakterizasyonu igin asagidaki teorem verilebilir.

Teorem 4.2.3. (H,gp,ﬁ,g) bir Lorentzian hemen hemen parakontakt manifold ve
M de M nin bir altmanifoldu olsun. Bu durumda M nin bir semi-slant altmanifold

olmasy i¢in gerek ve yeter sart
(i) D'={X| f2°X =X}, M dizerinde bir distribiisyon

(ii) D’ distribiisyonuna ortogonal olan her X € T'(T'M) i¢in wX =0
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olacak sekilde bir A\ € [0,1) sabit saysin var olmasidir. Ayrica, eger M nin slant

acist 0 ise X = cos® 0 dir.

Ispat. Kabul edelim ki M bir semi-slant altmanifold ve A = cos? 6 olsun. Herhangi

bir X € I'(D') igin eger X € I'(D) ise
X =¢"X —n(X)§ =X = (fP)’X = AX

elde edilir. Buradan A = 1 olur ki bu A € [0,1) kabulii ile ¢eligir. Dolayisiyla
D' C D, dir. Diger taraftan, Dy bir slant distribiisyon oldugundan herhangi bir
X € I'(Ds) i¢in

2X = (fP)’X = )X
yazilabilir. Boylece Dy C D’ oldugu goriliir. Dolayisiyla D' = Dy yani D', M
tizerinde bir distribiisyon olur. Ayrica, D' = Dy ve Dy bir slant distribilisyon

oldugundan D’ distribiisyonuna ortogonal olan her X € I'(T'M) i¢in wX = 0 olacag:
kolaylikla goriilmektedir.

Tersine D' = D olacak sekilde TM = D @ D+ @ Sp{¢} oldugunu kabul edelim.
(i) deki hipotezden dolay1 fD C D dir. ¢ simetrik ve X € I'(D1), Y € T'(D) igin

wY = 0 oldugundan
9(eXY) = g(X, YY) = g(X, fY) =0

dir. Boylece ¢ X € I'(D*) yani D+ bir invaryant distribiisyon olur. Béylece ispat

tamamlanir. ]

Simdi semi-slant altmanifold taniminda verilen distribiisyonlarin integrallenebilir-

lik sartlarini inceleyelim.

Teorem 4.2.4. (H, ®, §,g) bir Lorentzian parakosimplektik manifold ve M de M

nin bir semi-slant altmanifoldu olsun. Bu durumda

(1) D; distribiisyonunun integrallenebilir olmast icin gerek ve yeter sart X,Y €
['(Dy) igin
MX,fY)=h(fX,Y) (4.2.13)

olmasadar.
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(ii) Dy distribisyonunun integrallenebilir olmasi igin gerek ve yeter sart X, Y €

['(Dy) i¢in
P(Vx fRY —Vy fPX) = Pi(Avp,y X — Aup,x Y) (4.2.14)
olmasadar.

Ispat. (M, v, &, g) bir Lorentzian parakosimplektik manifold oldugundan VX,Y €
[(TM) icgin
VxeY =¢VxY (4.2.15)

dir.
(i) (4.2.15) esitliginde Gauss-Weingarten formiilii, (4.1.1), (4.1.2) ve (4.2.8) kulla-
nilarak VX,Y € I'(D,)

VxeY = ¢VxY
Vx (fY +wY) = ¢(VxY +h(X,Y))
Vx fY+h(X,fY) = fVxY +wVxY
+Bh(X,Y) + Ch(X,Y) (4.2.16)
Vx fY+hX,fY) = fPVxY +fPVxY
+Bh(X,Y) + wP, VxY (4.2.17)
+Ch(X,Y)

bulunur. Bu son egitlikte normal kisimlar birbirine egitlenirse
MX, fY)=wPVxY +Ch(X,Y) (4.2.18)
elde edilir. (4.2.18) de X ile Y yi yer degistirerek
h(fX,Y)=wPVy X+ Ch(Y,X) (4.2.19)
yazilabilir. A simetrik oldugundan (4.2.18) ve (4.2.19) den
WX, fY) — h(fX,Y)=wPR[X,Y], VX,Y eT(D) (4.2.20)
elde edilir.
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Kabul edelim ki D, distribiisyonu integrallenebilir olsun. Bu durumda VX,Y &
I'(Dy) i¢in [X,Y] € I'(D;) olacagindan w P[X,Y] = 0 dir. Boylece (4.2.20) dan
(4.2.13) esitligine ulagilir.

Tersine VX,Y € T'(D;) i¢in h(X, fY) = h(fX,Y) ise wP[X,Y] = 0 olur.
Buradan da P,[X, Y] = 0 yani [X, Y] € I'(D;) oldugu goriiliir. Oyleyse D; distribiis-
yonu integrallenebilirdir.

(i) VX,Y e I'(TM) igin (4.2.8) ve Gauss-Weingarten formiiliinden

Vx oY = Vx(pPY + fRY +wPY)
= VxpPY +Vx fPY +VxuwhlY
= Vx@PY +hX,oPY)+Vx fPY + h(X, f BY)

— Awpy X + Vi wRY (4.2.21)
elde edilir. Diger taraftan

eVxY = o(VxY +h(X,Y))
— VXY +wVyY +Bh(X,Y)+Ch(X,Y)  (4.2.22)

dir. (4.2.21) ve (4.2.22), (4.2.15) de yerine yazilirsa VX, Y € ['(Ds) i¢in

Vx fPY +h(X, fPY) — Appy X + Vx wPY
= fVxY4+wVxY + Bh(X,Y)+Ch(X,Y) (4.2.23)

bulunur. Bu son egitlikte X ile Y nin rollerini degistirerek

Vy fPX + WY, f PX) — App,xY + Vy wP X
= fVyX+wVy X+ Bh(Y,X)+ Ch(Y, X) (4.2.24)

yazilir. (4.2.23) ve (4.2.24) esitlikleri taraf tarafa ¢ikarilirsa

FIX,Y]+w[X,)Y] = VxfRY —-Vy [fBX+ApxY —Aupy X

+Vx wPY — Vi wP,X (4.2.25)
elde edilir. (4.2.25) iin teget kisimlar esitlenirse

FIX,)Y|=Vx fRY —Vy fPX + Aup,xY — Aupr,y X
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bulunur. Buradan
PfX,)Y]|=P{Vx[fBRY —Vy fPX}—P{Aup,y X —Aup,xY } (4.2.26)

yazilabilir.

Simdi, kabul edelim ki D, distribiisyonu integrallenebilir olsun. Bu durumda
VX,Y € I'(Dy) icin [X, Y] € T'(D,) olacagindan P, f [X,Y] = 0 dir. Boylece (4.2.26)
dan (4.2.14) esitligine ulagilir.

Tersine (4.2.14) esitligi saglamiyorsa P f[X,Y] = 0. Buradan da [X,Y] €
['(Dy) yani Dy distribiisyonunun integrallenebilir oldugu goriiliir. Boylece ispat

tamamlanir. OJ

Teorem 4.2.5. (M,(p,&,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir mized-geodezik semi-slant altmanifoldu olsun. Bu durumda Dy distribisyonu-
nun integrallenebilir olmasy icin gerek ve yeter sart X € I'(Dy) ve N € T'(T+M)
¢mn

PANX = AnpX (4.2.27)

olmasidar.

Ispat. M, M nin bir mixed-geodezik semi-slant altmanifoldu oldugundan herhangi

bir X € I'(D;), Y € I'(Dy) ve N € I'(T+M) igin
9(ANX,Y) = g(h(X,Y),N) =0
dir. Buise Ay X in D, de bilegeni olmadigini gosterir. Boylece
9(PANX,Y) = g(AnX, ¢Y) = g(h(X, pY), N) (4.2.28)

ve

9(AneX,Y) = g(h(pX,Y), N) (4.2.29)
yazilabilir. Buradan her XY € I'(D;) igin
9(pANX — AneX,Y) = g(h(X,Y) — h(pX,Y), N)

elde edilir. Boylece Teorem 4.2.4 (i) ve bu son esitlikten D; in integrallenebilir

olmasi i¢in gerek ve yeter sart

PANX — AyoX =0, X eI'(Dy), N e I'(T+M)
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olmasidir. Boylece ispat tamamlanir. O]

(M, v, &, g) bir Lorentzian parakosimplektik manifold ve M de M nin bir semi-slant
altmanifoldu olmak {izere (4.2.15) esitliginde Gauss-Weingarten formiili, (4.1.1) ve

(4.1.2) kullanilarak VX, Y € I'(T'M) i¢in
(Vx f)Y = Ayy X + Bh(X,Y) (4.2.30)

ve

(Vxw)Y =Ch(X,Y) — h(X, fY) (4.2.31)
elde edilir. Burada f ve w nin kovaryant tiirevleri
(Vx )Y =Vx fY —fVxY

(Vxw)Y =VywY —wVxY

ile tanimlanir.
f nin paralel olmasi yani V f = 0 olmas1 Lorentzian parakosimplektik manifoldlar
tizerinde ayr1 bir oneme sahiptir. Simdi bu durumu karakterize edecek sekilde

asagidaki teoremi verebiliriz.

Teorem 4.2.6. (H, ®, §,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. Eger V f = 0 ise bu durumda Dy ve Dy
distribiisyonlar:y integrallenebilir ve bu distribusyonlarin integral altmanifoldlars M

de total geodeziktir.
Ispat. Vx f =0 ise (4.2.30) dan herhangi bir Y € I'(D;) ve X € I'(T'M) igin
Bh(X,Y)=0 (4.2.32)
bulunur. Béylece (1.3.14), (4.1.2) ve (4.2.32) den Y € I'(Dy) ve X, Z € I'(T' M) i¢in
0=g(Bh(X,Y),Z) = g(ph(X,Y), Z) = g(h(X,Y), p2)

elde edilir. Buradan

g(h(X,Y),wP,Z) = 0 (4.2.33)
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ve

g(ph(X,Y ), wPZ) =0 (4.2.34)
olur. Béylece M nin bir Lorentzian parakosimplektik manifold oldugu ve (4.2.33)
esitligi gbz Oniine alinarak
0 = g(eh(X,Y),wP,VxY)
= g(VxeY —oVxY +h(X,pY),wP,VxY)
= —g9(@Vx Y, wPVxY)+ g(h(X,9Y), whVxY)

= _g(wPQVX Y, UJPQVX Y) (4235)
yazilabilir. Bu son egitlikte (4.1.14) kullamlarak
0 = —g(whVxY, wP,VxY)
= —sin?0{g(PVxY,PBVxY)+ (n(RVxY))?}

elde edilir. Buise ,VxY =0 yani Vx Y € I'(D;) oldugunu gosterir.

Simdi Y € I'(Dy) ve V € I'(Dy) alahm. D; ve D, ortogonal distribiisyonlar
oldugundan herhangi bir Z € T'(TM) i¢in g(Y,VzV) = 0, VY € T'(Dy), yani
V;V € T'(D;y) olur. Bu da D nin integrallenebilir oldugunu gosterir. Boylece

ispat tamamlanir. O

Lemma 4.2.1. (M,gp,é,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. Bu durumda i # j olmak tzere M nin bir

D;-Dj-geodezik altmanifold olmasu igin gerek ve yeter sart N € T'(T+M) i¢in
olmasudar.

ispat. Kabul edelim ki M bir D;-Ds-geodezik altmanifold olsun. Bu durumda
X el(Dy),Y €(Dy) ve N € T(T+M) igin

G(ANX,Y) = g(h(X,Y),N) =0 (4.2.37)

elde edilir. Oyleyse X € T'(Dy) icin AyX € T(D; @ Sp{¢}) dir. h simetrik
oldugundan benzer sekilde Y € I'(D,) igin AyY € I'(Dy & Sp{¢{}) bulunur.
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Tersine i = 1,2 ve X € I'(D; @ Sp{¢}) i¢in ANX € T'(D; @ Sp{¢}) ise (4.2.37)
den M nin bir D;-Dj-geodezik altmanifold oldugu kolaylikla gortiliir. Boylece ispat

tamamlanir. ]

Teorem 4.2.7. (H,gp,f,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. Eger Vw = 0 ise bu durumda M bir mized

geodezik altmanifolddur. Ayrica;

(i) ejer X,Y € T'(Dy) ise M bir D;-geodezik altmanifold veya h(X,Y), C? nin

karakteristik degeri 1 olan bir karakteristik vektorudiir.

(ii) eger X,Y € T'(Dy) ise M bir Dy-geodezik altmanifold veya h(X,Y), C? nin

karakteristik degeri cos® 0 olan bir karakteristik vektoridiir.
Ispat. Eger Vw = 0 ise (4.2.31) dan
Ch(X,Y)=h(X, fY), X, Y eT(TM)

yazilir. Buradan D; in invaryant ve D, nin 6 slant acisina sahip slant distriblisyon

oldugu goz éniine alimarak X € I'(D;),Y € I'(Ds) igin

C?’h(X,Y) = Ch(X, fY)=h(X, )
= h(X,cos?0(Y +n(Y)E))
= cos’Oh(X,Y) (4.2.38)

ve

C?h(X,Y) = C*hn(Y,X)=Ch(Y, fX)
= h(Y,f?°X)=h(Y,X) = h(X,Y) (4.2.39)

elde edilir. (4.2.38) ve (4.2.39) dan
sin? 0h(X,Y) =0

bulunur. Buise h(X,Y) =0, X € I'(Dy),Y € ['(D,), oldugunu gosterir. Boylece

M bir mixed geodezik semi-slant altmanifold olur.
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Benzer gekilde VX,Y € I'(D,) i¢in
C?h(X,Y) = h(X,Y)
ve VX,Y € I'(D,) icin
C?’h(X,Y) = cos> Oh(X,Y)
dir. Boylece ispat tamamlanir. O]

Teorem 4.2.8. (H,(p,g,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. Bu durumda M nin bir semi-slant ¢arpim

altmanifoldu olmasu i¢in gerek ve yeter sart VZ € I'(TM), X € T'(Dy) igin
Bh(X,Y)=0 wve h(Z fX)=Ch(Z, X) (4.2.40)
olmasudar.

ispat. M, M nin bir semi-slant carpim altmanifoldu ise D; ve Do, M de total
geodezik distribiisyonlardir. Z € I'(T'M) ve X € I'(D;) olsun. Bu durumda (4.2.30)
dan

Bh(X,Z) =0
olur. Diger taraftan Teorem 4.2.6 den
(Vzw)X =ViwX —w(VzX) =0 (4.2.41)
dir. Boylece (4.2.31) dan
MZ, fX)=Ch(Z,X)

elde edilir.
Tersine (4.2.40) esitliginin saglandigim kabul edelim. Oyleyse (4.2.31) ve (4.2.41)
den

0= (Vzw)X =—w(VyX), ZeI(TM), X € (D)

elde edilir. Buise VzX € I'(D;) oldugunu gosterir. Do, D; e ortogonal oldugundan
Zel(T'M),Y eI'(D,) i¢in VY € I'(D,) dir. Béylece ispat tamamlanir. O
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Sonug 4.2.2. (M, gp,f,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. Vw = 0 olmast icin gerek ve yeter sart

VZ e I(TM), N € T(T+M) igin
AonZ = An fZ (4.2.42)
olmasudar.
Ispat. (4.2.31) ve (1.3.14) dan VX, Z € I(TM), N € I'(T*M) icin
9(Vxw)Z,N) = g(Ch(X,Z) - h(X, [Z),N)
= 9(Ch(X, Z),N) —g(h(X, fZ),

(
(
= 9(ph(X,Z2),N) = g(h(X, [ 2),
= g(MX, 2),oN
(

) —
= g(h(X, Z),CN) = g(h(X, f2),
elde edilir. Bu son esitlikte (1.3.43) kullanilirsa
9(Vxw)Z,N) = g(AcnZ — AN [Z, X)
bulunur. Boéylece ispat tamamlanir. O

Sonug 4.2.3. (M, g&,f,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-slant altmanifoldu olsun. V f = 0 olmasi i¢in gerek ve yeter sart
VY, Z e I'(TM) igin

AwpyZ = —Aup,zY (4.2.43)

olmasudar.
Ispat. (4.2.30) ve (1.3.14) dan VX,Y, Z € T(T'M) i¢in

9(Vx )Y, Z) = g(AwyX + Bh(X,Y), Z)
e g(Awp2yX,Z)+g(h(X,Y),wPQZ)

= g<Awp2Y X, Z) + g(Awpzz X, Y)
elde edilir. Buradan A Weingarten doniigiimii simetrik oldugundan
9(Vx 1Y, Z) = g( X, AuwryZ + Aup,zY)

yazilabilir. Boylece ispat tamamlanir. O]
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Simdi, (M, ®, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin bir
semi-slant altmanifoldu olsun. Semi-slant altmanifold taniminda yer alan distribiisyon-
larin integrallenebilirligini incelemek igin, oldukca kullanigh olan baz esitlikleri

verelim.

Lemma 4.2.2. (M, v, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin
bir semi-slant altmanifoldu olsun. Bu durumda VX,Y € T'(TM) ig¢in

Pl(VX QDP1Y) + PI(VX fPQY) == (,DPleY + PlAwp2yX + n(Y)PlX (4244)

Py(VxoPY)+ Py(Vx fPY) = fPVxY + PyAypy X
+BU(X,Y)+n(Y)P,X  (4.2.45)
N(Vx oPY) +n(Vx f PY) = n(Aup,y X) + g(X,Y) +3n(X)n(Y)  (4.2.46)
WX, pPY) + h(X, f P,Y) + Vi wPY = wP,VxY + Ch(X,Y) (4.2.47)
dir.

ispat. (M, gp,f,g) bir Lorentzian para-Sasakian manifold oldugundan (1.3.19) de
Gauss formiilii, (4.2.8) ve (4.1.2) kullamilarak

VxeY = oVxY + (9(X.Y)+2n(X)n(Y))E +n(Y)X
= pVxY +oh(X,Y) + (9(X,Y) + 2n(X)n(Y))§ +n(Y)X

He(X,Y) + 2n(X)n(Y))E +n(Y)X (4.2.48)
bulunur. (4.2.48) ve (4.2.21) den

pPIVxY + fPVxY + wPVx Y + Bh(X,Y) + Ch(X,Y)
+(g(X,Y) +2n(X)n(Y))§ +n(Y)X
= VxoPY +h(X,oPY)+ Vx f PBY + h(X, f PY)

—Aupp,y X + Vi wRY

elde edilir. Buradan (4.2.7) kullamlarak
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ePVxY + fPRVxY +wP,VxY + Bh(X,Y)+ Ch(X,Y)
+(9(X,Y) +2n(X)n(Y)E +n(Y) (21X + PX 4+ n(X)E)

= Pi(VxoPY)+ PB(VxePY)+n(VxpPY)E
+P(Vx fRY) + P(Vx fPY) +0(Vx f PY)E
—Pi(Awp,y X) — Po(Auwp,y X) — n(Awpy X)E
+Vx wPY 4+ h(X,oPY) + h(X, f PY)

yazilir. Bu son esitlikte sirastyla Dy, Dy, Sp{¢} ve T+M deki bilegenler birbirine

esitlenirse ispat tamamlanir. O]

Teorem 4.2.9. (W, v, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin

bir semi-slant altmanifoldu olsun. Bu durumda

(1) D; distribiisyonunun integrallenebilir olmasu igin gerek ve yeter sart X,Y €
['(Dy) igin
X, YY) = h(pX,Y) (4.2.49)

olmasidar.

(ii) Dy distribisyonunun integrallenebilir olmasi igin gerek ve yeter sart X,Y €
['(Ds) igin
P(Vx fY = Vy fX) =P (Ayy X —AuxY) (4.2.50)

olmasidar.

Ispat. (i) X,Y € I'(Dy) olsun. g(X,&) =0 ve g(Y,€) = 0 oldugundan (1.3.21) goz
ontine alimarak

9(VyX,€) = —g(X,Vy) = —g(Y, pX) (4.2.51)

ve

9(VxY,€) = —g(Y,Vx&) = —g(V, ¢X) (4.2.52)

elde edilir. (4.2.51), (4.2.52) ve (1.3.14) den
g([X,Y],§) = —g(V, 0 X) + g(Y, 9X) = 0

145



bulunur. Oyleyse [X,Y] ¢ Sp{¢} olur. Diger taraftan X Y € I'(D;) icin (4.2.47)
den

hMX,pY)=wPVxY +Ch(X,Y)

yazilir. Benzer sekilde
h(Y,pX) = wP,VyX + Ch(Y, X)
dir. Bu iki egitlikten
h(X, oY) — h(Y,pX) = whk[X,Y] (4.2.53)

elde edilir.

Kabul edelim ki D distribiisyonu integrallenebilir olsun. Bu durumda X,Y &
I'(Dy) igin P[X,Y] = 0 olacagindan (4.2.49) elde edilir.

Tersine X,Y € I'(Dy) icin h(X, YY) = h(Y, ¢X) ise M bir semi-slant altmanifold
oldugundan (4.2.53) den P,[X,Y] = 0 yani D; distribiisyonu integrallenebilirdir.

(ii) X,Y € I'(Dy) igin (i) sikkindaki ispata benze sekilde [X, Y] ¢ Sp{{} oldugu
kolaylikla goriilebilir. Diger taraftan (4.2.44) den VX,Y € T'(Ds) igin

P(Vx [RBY)=pPVxY + PlAypy X
dir. Burada X ile Y nin rolleri degistirilirse
P(Vy fPX)=pPVy X + P Ayp,xY
olur. Bu son iki egitlikten
P (Vx fY =Vy fX) = P(Aupw X — AuxY) = oP[X, Y] (4.2.54)

elde edilir.

Kabul edelim ki D, distribiisyonu integrallenebilir olsun. Bu durumda X,Y €
['(Dy) i¢in [X,Y] € T'(D3) olacagindan P;[X,Y] = 0 dir. Buradan (4.2.50) esitligine
ulagilir.

Tersine (4.2.50) esitligi saglaniyor ise p P, [X,Y] =0, X, Y € ['(Ds), olur ki bu da
D, distribiisyonunun integrallenebilir oldugunu gosterir. Boylece ispat tamamlanir.

]
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Onerme 4.2.1. (M, ©, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin

bir semi-slant altmanifoldu olsun. Bu durumda
(X, &] € T'(Dy), X e '(Dy) (4.2.55)

ve

Y, ¢] € T'(Dy), Y e I'(Ds) (4.2.56)
dir.

Ispat. (M, v, &, g) bir Lorentzian para-Sasakian manifold oldugundan (1.3.19) esitligi
X € I'(Dy) igin
VepX = oV X (4.2.57)

olur. Burada Gauss formiilii kullanilarak
hpX.,§) =0 ve  h(X,§ =0, X eI'(Dy)
bulunur. Oyleyse (4.2.57) dan
VepX = Ve X

elde edilir. Boylece herhangi bir X € I'(D;) i¢in VX € I'(D;) oldugu goriiliir. Diger
taraftan Dy ve Dy ortogonal distribiisyonlar oldugundan herhangi bir Y € I'(Dy)
icin V.Y € I'(Dy) dir. Béylece ispat tamamlanir. O

Teorem 4.2.9 ve Onerme 4.2.1 den agagidaki sonuclara ulagilir:

Sonucg 4.2.4. (M, v, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin bir
semi-slant altmanifoldu olsun. Bu durumda D1®Sp{&} distribisyonunun integrallene-

bilir olmasu i¢in gerek ve yeter sart X,Y € I'(Dy) i¢in
h(X,¢Y) = h(pX,Y)
olmasidar.

Sonucg 4.2.5. (M, ®, &, g) bir Lorentzian para-Sasakian manifold ve M de M nin bir
semi-slant altmanifoldu olsun. Bu durumda De@®Sp{&} distribisyonunun integrallene-

bilir olmasu i¢in gerek ve yeter sart X,Y € I'(Ds) i¢in
(Vx fY =Vy fX - Ay X+ AuxY) € I'(Ds)

olmasadar.
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4.3 Lorentzian Parakosimplektik Manifoldlarin

Warped Carpim Altmanifoldlar:
Bu kisimda 6ncelikle Lorentzian parakosimplektik manifoldlarin warped ¢arpim altma-
nifoldlarinin bazi 6zel durumlar icin yoklugu gosterilecektir. Daha sonra Lorentzian
parakosimplektik manifoldlarin semi-invaryant warped ¢arpim altmanifoldlar: taniti-
larak bir 6rnek verildikten sonra bu altmanifoldlarin taniminda yer alan distribiisyon-
larin integrallenebilirligi arastirilacaktir. Ayrica bu kisimda Lorentzian parakosimp-

lektik manifoldlarin semi-slant warped carpim altmanifoldlar: ve anti-slant warped

carpim altmanifoldlari ile ilgili baz1 yokluk teoremleri verilecektir.

Lemma 4.3.1. M, (M, ®, &, g) Lorentzian parakosimplektik manifoldunun bir altma-
nifoldu olsun. Bu durumda VX € T'(TM) i¢in

Vx§ = 0, (4.3.1)
h(X,&) = 0 (4.3.2)

dar.

Ispat. M bir Lorentzian parakosimplektik manifold oldugundan Vi = 0 esitligi
g6z oniine alinirsa VX € I'(T'M) igin

Vxé=0 (4.3.3)

dir. Buradan Gauss formiili kullanilarak (4.3.1) ve (4.3.2) elde edilir. Béylece ispat

tamamlanir. O

Teorem 4.3.1. (M, gp,g,g) bir Lorentzian parakosimplektik manifold ve M =y,
Ny x4 Ny de M nin bir doubly warped carpim altmanifoldu olsun. Bu durumda,

eger
(i) £ € I(T'Ny) ise fo sabittir.

(ii) £ € T(TN,) ise fi sabittir.

148



Ispat. (i) ¢ € I(TN;) oldugunu kabul edelim. Bu durumda Z € [(TN,) icin
Lemma 1.2.2 ve (4.3.1) den

E(nf1)Z + Z(In f)€ =0

yazilir. Buise Z(In fo) = 0, VZ € T'(T'N3), yani f> nin sabit oldugunu gosterir.
(ii) € € T(TN,) olsun. Oyleyse X € I'(T'Ny) olmak iizere Lemma 1.2.2 ve (4.3.1)

g6z oniine alinarak

X(Inf1)é+&(In f5) X =0
elde edilir. Boylece X(Inf;) = 0, VX € I'(T'Ny), yani f; sabit olur ve ispat
tamamlanir. O

Boylece agagidaki sonucu verebiliriz:

Sonug 4.3.1. (H, go,f,g) Lorentzian parakosimplektik manifoldunun & € T'(T Ny)
olacak sekilde bir M = Ny x}vNQ warped ¢arpim altmanifoldu yoktur.

(M, v, &, g) Lorentzian parakosimplektik manifoldunun £ € I'(T'Ny) olacak gekilde
bir M = Ny x fNQ warped carpim altmanifoldunu incelemek icin 6ncelikle asagidaki

lemma verilebilir:

Lemma 4.3.2. M = N; Xng , (M, 0, &, g) Lorentzian parakosimplektik manifoldu-
nun & € I'(T'Ny) olacak sekilde bir warped ¢arpym altmanifoldu olsun. Bu durumda
VX,Y € I(TNy) ve VZ,W € I'(T'Ns) i¢in

gnf) = o, (4.3.4)
Awz X = —Bh(X,Z), (4.3.5)
g(MX,Y),wZ) = —g(h(X,Z),wY), (4.3.6)
gh(X, W), wZ) = —g(h(X,Z),wW), (4.3.7)

dir.

ispat. (M, go,f,g) Lorentzian parakosimplektik manifold oldugundan (4.3.1) ve
Lemma 1.2.1 den kolayhkla (4.3.4) esitligine ulagilir. Benzer sekilde Lemma 1.2.1
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gozoniine almarak (4.2.16) dan

X AfZ+WX, f2) = AwzX +ViwZ = X(IWf)fZ+wVxZ
+Bh(X,Z) + Ch(X, Z)
WX, fZ) — AwzX +VywZ = Bh(X,Z)+Ch(X,Z) (43.8)
yazilir. (4.3.8) in teget kisimlar1 birbirine egitlenerek (4.3.5) elde edilir. (4.3.5)
esitliginin her iki tarafi sirasiyla Y € T'(T'N;) ve W € T'(T'N,) ile i¢ carpima tabi
tutulursa
—9(AuzX,Y) = g(Bh(X,2),Y)

ve

_g(AwZXaW) = g(Bh(X,Z),W)
—g(h(X,W),’wZ) = g(h<X7Z>’90W)

bulunur. Buradan sirasiyla (4.3.6) ve (4.3.7) esitlikleri elde edilir. Boylece ispat

tamamlanir. O

Teorem 4.3.2. (H, 0, &, g) bir Lorentzian parakosimplektik manifoldunun & € T'(TM*)

olacak sekilde bir M =g, N1 X, No doubly warped ¢carpim altmanifoldu yoktur.

Ispat. ¢ € I(TM™*) oldugunu kabul edelim. Bu durumda her X € T'(TM) icin
n(X) = 0 oldugu aciktir. Oyleyse X,Y € I'(T'N;) ve Z € T'(T'Ny) igin Lemma 1.2.1,
(1.3.41) ve (1.3.10) egitlikleri kullanilarak

g(vZXaY) = gVXZ7Y)

= 9(Vx@Z,¢Y) (4.3.9)

bulunur. Diger taraftan

9(pZ,0Y)=g(Y,Z) =0
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oldugundan

9(VxpZ, oY) = —g(0Z,VxpY)

dir. X,Y e I'(T'Vy) icin Vx Y € I'(T'Ny) oldugundan
9(VxpZ,oY)=—g(Z,VxY)=0 (4.3.10)
elde edilir. (4.3.9) ve (4.3.10) dan
g(VzX,Y)=0
olur. Buradan Lemma 1.2.1 g6z oniine alinarak
Z(In f3)g9(X,Y) =0, VX,Y € I(TNy), Z € I(TN>),
bulunur. Boylece fy nin bir sabit fonksiyon oldugu goriiliir ve ispat tamamlanir. []

Teorem 4.3.3. (M, 0, &, g) bir Lorentzian parakosimplektik manifold ve M = My X5
M, de M nin & € T(TM™) olacak sekilde bir semi-invaryant warped ¢arpimaltmani-

foldu olsun. Bu durumda M bir alisilmis belirsiz ¢carpim manifoldudur.

Ispat. ¢ € I(TM*) oldugunu kabul edelim. Bu durumda her X € T'(TM) icin
n(X) =0 dir. Oyleyse X € T'(TMy) ve Z,W € T(TM,) icin Lemma 1.2.1, (1.3.41)
ve (1.3.10) kullamlarak

g(VxZ,W) = g(VzX,W)=g(VzX,W)
= gV X, W) —n(VzX)n(W)
= g(pVzX, W)

bulunur. Buradan M bir Lorentzian parakosimplektik manifold oldugundan (1.3.41),
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(1.3.42), (1.3.10) ve (1.3.43) esitlikleri géz Oniine almarak

X(n gz, W) = g(VzeX,oW) = g(h(Z,0X), W)
= 9(Vex Z,oW) = g(Vox 9Z, W)
= —9(Apz e X, W) = —g(h(pX, W), 0Z)
= —g(Vw X, 0Z) = —g(oVwX, oZ)
= —g(VwX,Z) = —g(VxW, Z)

= —X(Inf)g(W,Z)

elde edilir. Bu ise

2X(In f)g(W,Z) =0

oldugunu verir. Yani ffonksiyonu sabittir. Boylece ispat tamamlanir. O]

Teorem 4.3.4. (H, v, &, g) bir Lorentzian parakosimplektik manifold ve M = Mrx 5
M, de M nin & € T(TM,) olacak sekilde bir semi-invaryant warped ¢arpimaltmani-

foldu olsun. Bu durumda M bir alisilmis belirsiz ¢carpim manifoldudur.

Ispat. £ e (T M,) ve X € I'(T'My) olsun. Lemma 1.2.1 goz éniine alnarak (4.3.1)

den

Vxé=VeX = X(Inflg =0

elde edilir. Boylece X (In f) = 0 bulunur ve ispat tamamlanir. O

Ornek 4.3.1. (z4,y;,t) koordinat sistemi ile verilen 5-boyutlu bir M reel uzay

uzerinde
0
n_dtv 5_ &7
0 0
— 1< <2

w(axi) T (1<i<2)

8) 0

— = —— 1<5<2
@(3% Y, ( )

g = (dz;)* + (dy;)> —n @7
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olacak sekilde bir ¢ (1,1)-tensdr alanin, £ vektor alaning, 1 1-formunu ve g Lorentzian
metrigini tanamlayalm. Bu durumda (o, &,n, g) dortlisii M dizerinde bir Lorentzian
hemen hemen parakontakt yaps olur. Béylece M, (p,€&,n, g) Lorentzian hemen hemen
parakontakt yapisi ile birlikte bir Lorentzian hemen hemen parakontakt manifolddur.

Simdi M Lorentzian hemen hemen parakontakt manifoldunun
Q(v,0,6,u) = (vcosh,vsinb, v cos 3, vsin 3, V2u)

dontistima ile verilen M altmanifoldunu gozonine alalim. Bu durumda

Wy, = (cosf,sinf,cosf3,sin j3,0),
Wy = (—wsinf,vcos6,0,0,0),

W3 = (0,0,—vsin 3, vcos3,0),
W, = (0,0,0,0,v?2),

olmak tizere Sp {Wy, Wy, W3, Wy} = TM dir. Diger taraftan

oW1 = (cosf,sinf,—cos 3, —sin 3, 0)

(
oWy = (—wvsinf,vcos6,0,0,0)
W3 = (0,0,vsin 3, —vcos 3,0)
(

oW, = (0,0,0,0,0)

oldugundan
Dy = Span{W,, W3} ve Dy = Span{W;, W,}

olarak alnirsa, siraswyla invaryant ve anti-invaryant Dy ve Do distribisyonlar: elde

edilir. Béylece M, M nin bir semi-invaryant altmanifoldu olur. Ayrica, M tizerine
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indirgenmis metrigin bilesenleri

g = g(Wi, W) =2

g2 = ga1=g(Wi,Ws) =0
g3 = g =g(Wi,W3) =0
Ga = gn =gWi,Wy) =0
g2 = g(Wa, W) = v?

93 = g2 =g(Wa, W3) =0
g = Ga2=g(Wo,Wy) =0
gz = g(Ws, W) =2°

931 = gaz=g(W3, Wy) =0

g = 9(W47W4) = -2

seklindedir. Buradan

2 0 0 O

0 v> 0 0
g =

0 0 > 0

0 0 0 -2

yani
g = 2(dv? — du®) + v*(d0* + dB*) = 2gn, + vgn,
elde edilir. Boylece M, M nin f = v% warped carpim fonksiyonuna sahip bir

semi-invaryant warped ¢arpimaltmanifoldu olur.

Teorem 4.3.5. (M, ©, &, g) bir Lorentzian parakosimplektik manifold ve M = M| X5
My de M nin bir semi-invaryant warped carpimaltmanifoldu olsun. Bu durumda
mvaryant Dy distribisyonu ve anti-invaryant Dy distribusyonu daima integrallenebi-
lirdir.
Ispat. Lemma 1.2.1 goz éniine almarak (4.2.17) dan X € I'(D,), U € I'(D;) icin
vx QOU = (,va U
Vx fU+h(X, fU) = fVxU+wVxU+ Bh(U,X)+ Ch(U, X)

X(In f)fU+ (X, fU) = X(Inf)fU+BhU,X)+Ch(U,X)  (4.3.11)
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yazilabilir. (4.3.11) in teget ve normal kisimlari birbirine esitlenirse
Bh(X,U)=0 (4.3.12)
ve
hX, fU) =Ch(X,U) (4.3.13)

elde edilir. (4.2.30) ve (4.3.12) den

AwxU = =X (In f)fU (4.3.14)

dir.
D, distribiisyonu M de total geodezik ve M de anti-invaryant oldugundan Gauss-

Weingarten formiilleri kullanilarak X, Y € T'(Dy) igin

ngOY = gonY
VxwY = ¢oVxY +h(X,Y)

~Apyy X +VywY = fVxY +wVxY + Bh(X,Y)+C(X,Y) (4.3.15)
yazilir. (4.3.15) in normal kisimlari birbirine esitlenirse
A,y X = —-Bh(X,Y) (4.3.16)
elde edilir. (4.3.16) da X ile Y nin rollerini degistirirsek h simetrik oldugundan
Apy X = Apx Y (4.3.17)

bulunur. Ayrica, her Z € I'(T'M) igin Gauss formiilii, (1.3.14) ve A sekil operatoriiniin

self adjoint oldugu goz oniine alinarak

9(Aux Y, Z) = g(h(Y,Z), wX)

= g(VzY,0X)
= 9(Vz¢Y,X)
= _g(AwY Z: X)
= g(Awy X, 2) (4.3.18)
olur. (4.3.16), (4.3.17) ve (4.3.18) den
ApxY =0 ve Bh(X,Y)=0 (4.3.19)
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bulunur.

Diger taraftan U,V € I'(Dy) igin

vUQOV = govUV
Vo fV = oVyV 4+ oh(U,V)

WU, fV)+Vy fV = ¢ (V’UV —g(U,V) 7 ) + Bh(U,V) + Ch(U,V)

WU, fV)+ Vo fV = F(VyV) = g(U, V)w (gr;df ) + Bh(U,V) + Ch(U, V)

oldugundan bu son esitligin teget ve normal kisimlarinin esitliginden

VLV — g(fV,U) gr;,df = f(V}V) + Bh(U,V) (4.3.20)
ve ~
WU, fV) = —g(U,V)w (g”}df> +Ch(U,V) (4.3.21)
elde edilir. Buradan
WU, fV) = h(V, fU) (4.3.22)

oldugu kolaylikla goriilebilir.
Son olarak (4.2.31) dan

w([V.U]) = w(VyU = VyV)
_ Vil — (Vyw)U — ViV + (Vow)V
= (Vow)V = (Vyw)U
— CHUV) = h(U, fV) — Ch(V.U) + h(V, fU)  (4.3.23)

yazilir. (4.3.23) de (4.3.22) yerine yazilir ve h nmin simetrik oldugu goz 6niie alinirsa
w([V,U]) =0, UV eI(D)

elde edilir. Buise U,V € I'(D,) i¢in [V, U] € I'(D;) oldugunu yani D; in integrallene-

bilir oldugunu verir.
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Benzer gekilde (4.2.30) dan VX, Y € I'(Ds) igin

FIXY]) = F(VxY = VxY)
= Vx fY = (Vx f)Y = Vy fX +(Vy [)X
= (Vv X = (Vx f)Y
— AuxY + BA(Y,X) — Ayy X — Bh(X,Y)

= 0

bulunur. Oyleyse X,Y € I'(D,) icin [X,Y] € I'(D,) yani D, integrallenebilirdir.

Boylece ispat tamamlanir. O

Teorem 4.3.6. (M, ©, 5,9) bir Lorentzian parakosimplektik manifold ve M de M
nin bir altmanifoldu olsun. Bu durumda M mnin bir semi-invaryant altmanifold

olmasy i¢in gerek ve yeter sart wf = 0 olmasidar.

Teorem 4.3.7. (M,(p,&,g) bir Lorentzian parakosimplektik manifold ve M de M
nin bir semi-invaryant altmanifoldu olsun. Bu durumda M nin bir semi-invaryant

warped ¢arpim altmanifoldu olmasi i¢in gerek ve yeter sart M nin sekil operatorinin

Wi(p) =0, W e I'(D), olacak sekildeki bir . fonksiyonu igin
Ach U= —X(/,L>QOU, X e F(Dg), U e F(Dl)

olmasidir. Burada p, her W € T'(Dy) igin W(u) = 0 sartine saglayan N dzerinde

bir fonksiyondur.

ispat. Kabul edelim ki M = M x #Mr, M nin bir semi-invaryant warped carpimaltmanifoldu
olsun. Bu durumda (4.3.14) den X € I'(D,) ve U € I'(D;) igin

A,x U =—-X(In f)pU

dir. Burada p = In f olmak iizere W € I'(D;) icin W () = 0 olur.
Tersine M nin M nin bir semi-invaryant altmanifoldu oldugunu kabul edelim. f,
M tizerinde VW € I'(Dy) i¢in W (u) = 0 olacak sekilde bir fonksiyon ve X € I'(D,)
ve U € I'(Dy) igin
Apx U = =X(p)eU
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olsun. Bu durumda M bir Lorentzian parakosimplektik manifold oldugundan (4.3.19)
dan XY € I'(D3) ve V € I'(Dy) i¢in

g(VxY,oV) =g(VxY,0V) = g(VxeY,V) = —g(Ay X, V) =0

bulunur. Boylece Dy distribiisyonu M de total geodezik olur. Benzer sekilde (4.3.14)

den

g(VoV, X) = g(VuV,X) = —g(V,VyX)
= —9(¢V, Vy X)
= —9(¢V, Vy wX)
= g(AuxU,¢V)
= —9(X(w)eU,¢V)
= —X(wg(U,V)

elde edilir. Burada u = % dir. Semi-invaryant M altmanifoldunun D; distribiisyonu
daima integrallenebilir ve VW € I'(T'M~) igin W () = 0 oldugundan D, distribiisyo-
nu M de total umbiliktir ve ortalama egrilik vektor alani paraleldir. Boylece My
ve M, sirasiyla Dy ve Dy distriblisyonlarinin integral manifoldlar1 olmak iizere

semi-invaryant M altmanifoldu M, X fMT seklinde bir warped ¢arpim olur. O]

4.3.1 Lorentzian parakosimplektik manifoldlarin

semi-slant warped carpim altmanifoldlar:

(M, ©, &, g) bir Lorentzian parakosimplektik manifold ve M de M nin bir semi-slant
warped carpim altmanifoldu olsun. Bu durumda N+, M nin bir invaryant ve N
da M nin bir 6zgiin slant altmanifoldu olmak iizere Sonug (4.3.1) den M nin & €
I'(T'Ny) ise Nt x 7 Ny semi-slant warped ¢arpim altmanifoldunun ve { € I'(T'N7) ise
Ny X fNT semi-slant warped ¢arpim altmanifoldunun var olmadigi gortiliir. Boylece
M nin bir semi-slant warped carpim altmanifoldu icin sadece asagidaki iki durum
s0z konusudur:

(i) £ € I(T'Nt) olmak iizere M = Nt X 7 Ny

(ii) € € I'(T'Ny) olmak iizere M = Ny X 7 Nt
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Simdi bu durumlar: inceleyelim:

Teorem 4.3.8. (M, ¢,¢,g) Lorentzian parakosimplektik manifoldunun & € I'(T'N)
olacak sekilde bir M = N+ X ¢ No ozgtin semi-slant warped carpim altmanifoldu

yoktur.

ispat. Kabul edelim ki (M, ®, &, g) bir Lorentzian parakosimplektik manifold ve
M = Nt x7 Ng da € I'(T'N7) olacak sekilde M nin bir 6zgiin semi-slant warped
carpim altmanifoldu olsun. X € I'(T'Nt) ve Z € I'(T'Ny) alalim. Bu durumda
(1.3.35), (1.3.41), (1.3.42), (4.1.1), (4.1.2) ve Lemma 1.2.1 den

vngX = gOsz
Vz[X = ¢VzX +¢h(Z,X)

FXMAHZ+h(Z,fX) = X(InfHfZ+X(nHHuz
+Bh(Z,X) + Ch(Z,X) (4.3.24)

elde edilir. (4.3.24) in teget ve normal kisimlar: birbirine esitlenirse

FX(nf)Z = X(In f)fZ + Bh(Z, X) (4.3.25)

ve

WZ, fX)=X(n flruZ + Ch(Z,X) (4.3.26)

bulunur.

Diger taraftan (4.3.7) den
g(h(X, Z),wZ) =0
dir. Buradan
0=9g(h(X, 2),9Z) = g(ph(X, Z), Z) = g(BMX, Z), Z)

yazilabilir. Oyleyse
Bh(X,Z) € I'(T'N¥) (4.3.27)

dir.
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(4.3.25) den

X0 f)g(Z, f2) = X(In f)g(fZ, [ Z) + 9(BMZ, X), [ Z)

yazilabilir. Burada (4.1.13) ve (4.3.27) kullamlarak

fX(Infg(Z,fZ) =cos*0 X(In f)g(Z, Z) (4.3.28)

elde edilir. Ancak Lemma 1.2.1 gozontine alinarak

X(nf)g(2,2) = 9(VzX,2)=9(VzX,2)
= —g(X,Vz2)

—9(¢X, ¢V Z) +n(X)n(Vz Z)

—9(¢X, V7 9Z)

= —g9(pX,Vz fZ - AyzZ)

= g(fX,9(Z, fZ)gradln f) + g(h(f X, Z),wZ)

= fX(Inf)g(Z fZ)

bulunur. Bu son esitlik (4.3.28) de yerine yazilirsa

X (In f)g(Z, Z) = (cos*6) X (In f)g(Z, Z)
yani
(sin?6) X(In f) |1 Z))* =0
olur. Bu ise § = 0 veya X(In f) = 0 oldugunu gosterir. Ny bir ozgiin slant

altmanifold oldugundan 6 # 0 dir. Dolayisiyla X (In f) = 0 olur ve ispat tamamlanir.
O

Teorem 4.3.9. (M, ©, &, g) Lorentzian parakosimplektik manifoldunun & € T'(T Ny)
olacak sekilde bir M = Ny X 7 N+ ozgin semi-slant warped c¢arpim altmanifoldu

yoktur.

ispat. (M, v, &, g) bir Lorentzian parakosimplektik manifold ve M = Ny X /;NT de

¢ € I'(T'Ny) olacak sekilde M nin bir 6zgiin semi-slant warped carpim altmanifoldu
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olsun. X € I'(T'Nt) ve Z € I'(T'Ny) olmak iizere

VzX=VxZ=ZInf)X (4.3.29)
yazilir. M bir Lorentzian parakosimplektik manifold oldugundan (4.3.1) den
E(nf)=0 (4.3.30)
elde edilir. g(X,Z) = 0 esitligi ve Gauss formiiliinden
9(VxX,Z)=g(Vx X,Z) = —g(X,VxZ) = —Z(In f)g(X,X)  (4.3.31)
dir. Ancak (1.3.10) den
9(Vx X, 2) = g(¢Vx X, 0Z) = 0(Vx X)n(Z)

dir. Bu son egitlikte Gauss denklemi ve (4.3.30) kullanilirsa

= g(VxoX,fZ)+ g(h(X,pX),wZ) (4.3.32)

bulunur. (4.3.31) ve (4.3.32) dan

g(W(X, fX),wZ) = (fZ)(In f)g(X, fX) = =Z(In f)g(X, X) (4.3.33)

yazilir.
Diger taraftan X € I(T'Nt) ve Z € T(TNy) icin (1.3.35), (1.3.41), (1.3.42),
(4.1.1), (4.1.2) ve Lemma 1.2.1 den

VZ<pX = (psz
VzfX = ¢oVzX+h(Z,X)

ZInH)fX +hZ, fX) = Z(Inf)fX + Bh(Z,X)+ Ch(Z, X)
WZ, fX) = Bh(Z,X)+Ch(Z,X) (4.3.34)

dir. (4.3.34) in teget ve normal kisimlarinin egitliginden

Bh(Z,X) =0 (4.3.35)
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ve

WZ, fX) = Ch(Z,X) (4.3.36)

elde edilir. Benzer sekilde

Vi w0/ = govx A
VxfZ+VxwZ = oVxZ+oh(X,Z)
Vx fZ+hX,fZ2) - Awz X +VywZ = fVxZ+wVxZ
+Bh(Z,X) + Ch(Z,X)

FZWHX +h(X,f2) = Awz X +ViwZ = Z(nf)fX
+Bh(Z, X) + Ch(Z, X)

dir. Bu son egitlikte teget kisimlar birbirine esitlenir ve (4.3.35) kullanilirsa

FZ X — Awz X = Z(In I f X (4.3.37)

olur. Boylece (4.3.37) ve (4.1.13) den

g(h(X, [X),wZ) = fZ(In lg(X, fX) = Z(In fg(fX, fX)

= fZ(Inf)g(X, fX) — (cos?0) Z(In f)g(X, X) (4.3.38)
elde edilir. (4.3.38), (4.3.33) da yerine yazilirsa
Z(In f)g(X,X) = (cos*0) Z(In f)g(X, X)

yani
(sin?6) Z(In f) | X[* =0

olur. Buise § = 0 veya Z(In f) = 0 oldugunu gosterir. Ny bir 6zgiin slant altmanifold

oldugundan 6 # 0 dir. Dolaysiyla Z(In f) = 0 olur ve ispat tamamlanir. O

4.3.2 Lorentzian parakosimplektik manifoldlarin

anti-slant warped carpim altmanifoldlari

(M, ©, &, g) bir Lorentzian parakosimplektik manifold ve M de M nin bir anti-slant

warped carpim altmanifoldu olsun. Bu durumda N, M nin bir anti-invaryant ve
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Ny da M nin bir 6zgiin slant altmanifoldu olmak iizere Sonuc (4.3.1) den M nin ¢ €
I'(T'Ny) ise N X 7 Ny anti-slant warped ¢arpim altmanifoldunun ve § € I'(T'NV, ) ise
Ny x Jf;N | anti-slant warped ¢arpim altmanifoldunun var olmadigi goriiliir. Boylece
M nin bir anti-slant warped carpim altmanifoldu icin sadece asagidaki iki durum
s0z konusudur:

(i) € €I(T'Ny) olmak tizere M = N X 7 Np.

(ii) € € I'(T'Ny) olmak iizere M = Ny X 7 N, .

Simdi bu durumlar: inceleyelim:

Teorem 4.3.10. (M, v, &, g) Lorentzian parakosimplektik manifoldunun & € T'(TN )
olacak sekilde bir M = N, X ¢ Ny ozgin anti-slant warped carpim altmanifoldu

yoktur.

ispat. Kabul edelim ki; M = N x #No, M Lorentzian parakosimplektik manifoldu-
nun ¢ € I'(T'N, )olacak sekilde bir ézgiin anti-slant warped ¢arpim altmanifoldu ve
X € I(TN,), Z € T(TNy) olsun. Bu durumda Lemma 1.2.1, (1.3.10), (1.3.35),
(1.3.41), (1.3.42), (4.1.1) ve (4.1.2) den

X(nf)g(2,2) = g(VzX.2Z)=9(VzX,Z)

= —9(X,Vz2)

= —9(0X, oV 2 Z) +n(X)n(V2 Z)
= —g(pX,Vz0Z)

= —9(pX,(Z,fZ) +VywZ)

yazilabilir. Burada N, in anti-invaryant oldugu gozoniine alinarak
X(Inf)g(2,2) = —g(wX, h(Z, fZ)) — g(wX,VwZ) (4.3.39)

bulunur. Diger taraftan

vz QOZ = gvaZ
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oldugundan Gauss-Weingarten formiilleri, (4.1.1), (4.1.2) ve Lemma 1.2.1 kullanilarak

V2 fZ+NzwZ = 9Nz Z+ph(Z,7Z)
V2fZ4WZ, fZ) — AwzZ +NhwZ = o(VY Z —g(Z, Z)gradln f)
+Bh(Z,Z) + Ch(Z, Z)
VofZ+WMZ, f2) = ApzZ +ViwZ = fVYZ+wVy Z
—g(Z, Z)w(gradn f) (4.3.40)
+Bh(Z,Z) + Ch(Z, Z)

elde edilir. (4.3.40) nin normal kismi alinirsa
WMZ, fZ)+ViwZ =wVye Z — g(Z, Z)w(gradln f) + Ch(Z, Z) (4.3.41)
bulunur. Buradan

g(ViwZ,wX) = —g(h(Z, fZ),wX) + gwVy* Z,wX)
—9(Z, Z)g(w(gradln f), wX) 4+ g(Ch(Z,7),wX)

yazilabilir. (4.1.14) ve (1.3.10) den

9(VzwZwX) = —g(h(Z, fZ),wX) - (sin*0) X (In f)g(Z, Z)
+9(ph(Z,2), o X)
= —g(MZ, £2),wX) = (sin® 0)X (In f)g(Z, Z)
+9(W(Z,2), X) +n(h(Z, Z))n(X)

(

= —g(WZ, f2),wX) — (sin® )X (In f)g(Z, Z) (4.3.42)
elde edilir. (4.3.42), (4.3.39) de yerine yazilarak

X(In f)g(Z, 2) = (sin? 0) X (In f)g(Z, 2)

yani
(cos” )X (In f) [|Z]]* = 0

bulunur. Oyleyse 6 = 7 veya X(In f) = 0 dir. Ny bir 6zgiin slant altmanifold

oldugundan 6 # 7 dir. Dolayisiyla X (In f) =0,VX € I'(TN,), olmak zorundadir.

Bu ise fvnin sabit oldugunu verir ve ispat tamamlanir. O]
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Teorem 4.3.11. (M, ©, &, g) Lorentzian parakosimplektik manifoldunun & € T'(T Ny)
olacak sekilde bir M = Ny X 7 N ozgin anti-slant warped carpim altmanifoldu

yoktur.

Ispat. Kabul edelim ki M Lorentzian parakosimplektik manifold ve M = N, x ng
de M nin & € T(T Ny) olacak sekilde bir 6zgiin anti-slant warped carpim altmanifoldu
olsun. X € I'(TNy), Z € T'(T'Ny) alalim. Bu durumda Gauss-Weingarten formdilleri,
(4.1.1), (4.1.2) ve Lemma 1.2.1 kullanilarak

vx QOZ = @vx Z
Vx fZ+VxwZ = oVxZ+ph(X,Z)
Vx fZ+WMX,fZ) - Apz X +VxwZ = fVxZ+wVxZ
+Bh(Z,X)+ Ch(Z,X)
FZ X + WX, fZ) — Awz X + Vi wZ = Z(In flHwX + Bh(Z, X)
+Ch(Z,X) (4.3.43)
elde edilir. (4.3.43) in normal kisimlar: birbirine esitlenirse
WX, fZ)+VywZ = Z(n fluX + Ch(Z, X) (4.3.44)
bulunur. Oyleyse (4.3.7) den

g(VexwZwX) = Z(n lgwX,wX) + g(Ch(Z, X),wX) (4.3.45)

yazilabilir.

Benzer sekilde

VZ QOX = (,szX

vaX = QDVZX—F]”L(Z,X)

~Awx Z+VzwX = Z(nf)wX + BhZ,X)+Ch(Z,X) (4.3.46)
dir. Bu son esitligin normal kisimlar: birbirine esitlenirse

ViwX = Z(In flwX + Ch(Z, X) (4.3.47)
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olur. Boylece (4.3.7), (4.3.44) ve (4.3.47) dan
9(VxwZwX) = g(VzwX,wX)

elde edilir. Buradan N, in anti-invaryant oldugu gozoniine alinarak Lemma 1.2.1,
(1.3.10) ve (1.3.35) den
g(VywZ,wX) = g(VzwX,wX)=g(VzuX,wX)
= 9(VzX,0X) =g(¢Vz X, 0X)
= 9(Vz X, X) +n(Vz X)n(X)
= Z(nf)g( X, X) (4.3.48)

bulunur. (4.3.48), (4.3.45) da yerine yazilirsa
Z(In flg( X, X) = Z(In flg(wX,wX) + g(Ch(Z,X), wX)
olur. Burada (1.3.10) ve (4.1.14) kullanilarak

Z(In flg(X,X) = (sin®6) Z(In f)g(X, X)
= (sin29) Z(In f)( X)

+9(h(Z, X), X) + n(h(Z, X))n(X)
= (sin’0) Z(In f)g(X, X)

+ g(ph(Z, X), pX)

yani
(cos® ) Z(In f) | X]|* = 0

™

bulunur. Oyleyse 0 = 7 veya Z(In f) = 0 dir. Ny bir 6zgiin slant altmanifold
oldugundan ¢ # 7 dir. Dolaysiyla Z(In f) =0,VZ € T'(TNy), dir. Bu ise fnin

sabit oldugunu verir ve ispat tamamlanir. O]
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4.4 Lorentzian Para-Sasakian Manifoldlarin biharmonik

Altmanifoldlar:

Bu kisimda Lorentzian para-Sasakian uzay formlarin Biharmonik altmanifoldlar:

i¢in baz1 karakterizasyonlar verilecektir.

Teorem 4.4.1. (M, gp,f,g) bir Lorentzian para-Sasakian uzay form ve M de M
nin m-boyutlu bir altmanifoldu olsun. M nin bir biharmonik altmanifold olmas: icin

gerek ve yeter sart

2iz Agy (=) + Fgrad(|H|*) =0

(4.4.1)
~ALYH +iz B(—, Ag—) —mH =0

sartlarinin saglanmasidir. Burada B ve H swraswyla M altmanifoldunun ikinci temel

formunu ve ortalama egrilik vektor alanini gostermektedir.

ispat. M nin m—boyutlu bir M altmanifoldunu vei : M — M izometrik immersiyo-
nunu goéz oniine alalim. (1.1.17) esitligi kullanilarak ¢ izometrik immersiyonunun
tensiyon alani

7(i) = mH

seklinde yazilir. {X j};‘n:p p € M noktasinda M altmanifoldunun bir lokal geodezik

catist olmak iizere (1.1.27) den i izometrik immersiyonunun bitensiyon alani

n(i) = —A(r(i)) =iz RY(di(=), 7(i))di(-)
_ Zgj{vg(j ()~ Viow 4,70 }

- Z e R(di(X;), 7(i))di(X;)
= m {zmj e;Vx,Vx, H — zmjgjﬁ(xj, H)Xj} (4.4.2)

bulunur. M bir Lorentzian para-Sasakian uzay form oldugundan

R(X;, H)X; = g(H, X;)X; — 9(X;, X;)H = —H (4.4.3)
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dir. Bu son egitlik ve Gauss-Weingarten formiilleri kullanilarak (4.4.2) den

m(i) = m{zgjvxj <—AHXj+V)l(j H) +mH}
j=1

mZej (-Vx, An X; — B(X;, Ap X;)
j=1

~Avs 5 X+ VEVE H) +m2H

—m (AH + iz B(—, Ay(-))

iz Ay (=) +i2V() An (=) - mH)

elde edilir. Simdi iz V(_) Ay (—) ifadesini hesaplayalim:

12 V(_) AH (—)

NE

1 G k=1

.
Il

-

e Xj(eng(An Xj, Xp)) X

S
o~
Il
—

vl

£ Xj (erg(B(Xj, Xi), H)) X

<
i
N

g5 X; (erg(Vx, X;, H)) Xy,

-

k=1

<

NE

€j {€k [g(vxjvxk ng H)Xk)

<
Eonl
Il

)

1
+9(Vx, X;, Vx,H) Xk}

Q

NE

ej{er [9(Vx, Vx, X;, H)Xy)
Jk=1
+9(B(X;, Xp), Vi, H) X |}

m

Z €j {€k [g(vxjvxk va H)Xk)
G k=1
+9(B(X;, Xp), VX, H) X |}

> e e [0(Tx, Ty, X, H)X)

G k=1
+9(

=

(X5, X)) X;, H)Xi)]}

-

+ D5 {ffkg(Av; HvaXk)Xk}'

ey
Il
—

Js
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Burada Gauss formiulu kullamilarak

m

> g {eno(Vx, Vi, X5, H)Xp) }

Jk=1

j,k=1

= >0 & {erol T B, X,), H)Xi)

J,k=1

:mZ&cg(vxk H,H)X)

k=1

m m
= EngXk (9(H, H)) X},
k=1

m m
=5 Z erg(grad |H|? , X)X,
k=1
= %gmd|H!2 (4.4.6)

bulunur. Ayrica M bir Lorentzian para-Sasakian uzay form oldugundan

m

> g {eng(R(X;, X)X, H) X}

J,k=1

= Z gj {ex 9(9( X, X;5) X5 — 9(Xj, X;5) Xy, H) Xy }
=1

~0 (4.4.7)
dir. (4.4.6) ve (4.4.7) esitlikleri (4.4.5) de yerine yazilirsa
izVyAp (=) = %grad (|H|2) +iz Av({) n (=) (4.4.8)
elde edilir. Boylece (4.4.4) ve (4.4.8) den
. L . . m 2
(i) = —m (A H+iz B(—, Ag(—)) + QZZAVt)H (—)+ 5gmd (]H| ) — mH)

olur. Bu durumda 75(7) bitensiyon alaninin teget ve normal bilegenleri sirasiyla

WT _ : N m 2
(12(7)) = —m (2 1z Av({>H( ) + Fgrad (|H] )) (4.4.9)
(7’2(2'))l =—-m (ALH —iz B(—, Ag(—)) — mH)
seklindedir. M nin bir biharmonik altmanifold olmasi i¢in gerek ve yeter sart 75(i) =

0 olmasidir. Oyleyse (4.4.9) den (4.4.1) biharmonik denklemine ulagilir ve ispat

tamamlanir. O
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Sonucg 4.4.1. (M, gp,g,g) bir Lorentzian para-Sasakian uzay form ve M de M nin
V+H = 0 olacak sekilde m-boyutlu bir altmanifoldu olsun. Bu durumda M nin bir

biharmonik altmanifold olmasi i¢in gerek ve yeter sart
iz B(—, Ay(—=)) =mH (4.4.10)
olmasudar.

Ispat. VIH = 0 ise AYH = 0 ve grad |H|” = 0 dir. Oyleyse (4.4.1) biharmonik

denklemi (4.4.10) esitligine indirgenir ve ispat tamamlanir. O]

Teorem 4.4.2. (M, v, &, g) bir Lorentzian para-Sasakian uzay form ve M de M nin
boy M = m # 4 olacak sekilde bir pseudo-umbilik altmanifoldu olsun. Bu durumda

M nin bir bitharmonik altmanifold olmas i¢in gerek ve yeter sart
|H|? = sabit ve A*H =m (|H’-1)H
olmasudar.
Ispat. M bir pseudo-umbilik altmanifold oldugundan
Ay =|HI’I (4.4.11)

dir. Buradan {X;}7",,
catist olmak iizere (4.4.8) ve (4.4.11) den

p € M noktasinda M altmanifoldunun bir lokal geodezik

iz Agr (=) = Zg] (Vx, Au X;) — gmd(|H|)

)

= 25] Vx, (|H)? ))——gmd(|H|)

- zej $(1H1%) X)) = G grad (1)
= grad (|H| ) - ggrad (|H|2)
_ (1 _ %) grad (|H|2) (4.4.12)
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elde edilir. Diger taraftan (4.4.11) den

iz B(—,Ag—) = Y & B(X;,AnX;)
j=1

= |H" ) & B(X;, X))
j=1
= m|H’H (4.4.13)
olur. (4.4.12) ve (4.4.13), (4.4.1) biharmonik denkleminde yerine yazilirsa

2 (1= %) grad (|H|") + Ggrad(|H[") = 0
~AH+m|H*H —mH =0
yani
4 —m)grad (|H?) =0
(4= m) grad (|HT) (4.4.14)
~AtH+m (|H?-1)H=0
elde edilir. m # 4 oldugundan (4.4.14) den grad (|H|’) = 0 yani |H|* =sabit ve
AtH=m (|H|2 — 1) H olur. Béylece ispat tamamlanr. O

Sonucg 4.4.2. (M, gp,g,g) bir Lorentzian para-Sasakian uzay form ve M de M nin
ortalama egrilik vektor alant paralel olan bir pseudo-umbilik altmanifoldu olsun. Bu
durumda M nin minimal olmayan bir biharmonik altmanifold olmasi i¢in gerek ve

yeter sart |H|> = 1 olmasidar-.

Ispat. Eger M altmanifoldunun ortalama egrilik vektor alam paralel ise VAH =
0 dir. Oyleyse Sonug (4.4.1) den M nin bir biharmonik altmanifold olmas: igin
gerek ve yeter sart (4.4.10) esitliginin saglanmasidir. Bu durumda {X j};.nzl, peM

noktasinda M altmanifoldunun bir lokal geodezik ¢atisi olmak tizere (4.4.10) dan
> & B(X;, Ay X;) =mH (4.4.15)
j=1

yazilir. Diger taraftan M bir pseudo-umbilik altmanifold oldugundan (4.4.11),
(4.4.15) da yerine yazilarak
mH (|H>—1) =0

elde edilir. Boylece ispat tamamlanir. ]
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