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and encouragement throughout these years. He is not only a motivating advisor but

also removes tedious hierarchy between the Professor and the student. This makes you

feel free and removes the pressure on you, which makes it easier to research.

I would like to thank my Master thesis advisor Prof. Dr. Albert Levi for his

continuous guidance in my academic life. He and Prof. Dr. Ufuk Çağlayan also
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ABSTRACT

FILTERING BASED DEFENSE MECHANISMS AGAINST

DDOS ATTACKS FOR CORE NETWORKS

In this thesis, we present filtering based defense mechanisms against Distributed

Denial of Service (DDoS) attacks for core networks. Initially, several filtering techniques

are analyzed and their advantages and disadvantages are presented. A comparative

classification of these methods is provided for security analysts. Classification results

suggest that there are a few filtering methods that are both proactive and collabora-

tive. Proactivity provides prevention of attacks before it spreads whereas collaboration

enables getting knowledge about di↵erent points of the network and deciding filters

together. Thus, we proposed a proactive and collaborative model called ScoreForCore.

It is a statistical packet based defense mechanism that selects the most appropriate

attributes for current attack tra�c. Our results suggest that the success of the sys-

tem’s behavior on legal and attack packets increased considerably. This strategy is also

convenient for current emerging technology for core networks, called Software Defined

Networking (SDN). It has several problems related to security that are largely induced

by the centralized control paradigm. In that regard, DDoS attacks are specifically valid

for SDN environment. Several defense mechanisms in SDN environment are analyzed

and comparative classification is provided for rendering the current state of the art in

the literature. Then, our defense strategy is applied on SDN environment with capa-

ble switches. This mechanism’s(SDNScore) results suggest that it gives perfect results

for several known attacks and 84% success for an unknown attack. Since there is a

trade-o↵ between SDN paradigm and capable switches in SDNScore, we improved it

and proposed another model called Joint Entropy based Scoring for SDN (JESS) that

carries all burden to the controller and does not need capable switches. The results

suggest that it is an elegant defense method for SDN environment.
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ÖZET

ÇEKİRDEK AĞLARDA DDOS SALDIRILARINA KARŞI

FİLTRELEME TABANLI SAVUNMA MEKANİZMALARI

Bu tezde çekirdek ağlarda Dağılmış Hizmet Engelleme Saldırısı (DDoS)’na karşı

filtreleme bazlı savunma mekanizmaları geliştirilmiştir. İlk olarak, çeşitli filtreleme

teknikleri analiz edilmiş ve avantajları ve dezavantajları sunulmuştur. Güvenlik anal-

istleri için bu metotların karşılaştırılmalı sınıflandırılması yapılmıştır. Sınıflandırma

sonuçları, hem proaktif hem de işbirlikçi modellerin çok az sayıda olduğunu ortaya

koymuştur. Bir metodun proaktif olması saldırı yayılmadan engellemesini sağlarken,

işbirlikçi olması ağın farklı noktaları hakkında bilgi edinip filtrelere birlikte karar ver-

melerini sağlamaktadır. Biz de bu sebeple proaktif ve işbirlikçi bir model olan Score-

ForCore’u öne sürdük. Bu metot, anlık saldırı trafiği için en uygun öznitelikleri seçen,

istatistiksel, paket bazlı bir savunma mekanizmasıdır. Sonuçlarımıza göre bu mekaniz-

manın legal ve saldırı paketleri üzerindeki başarısı oldukça yüksek çıkmıştır. Öne

sürdüğümüz strateji, çekirdek ağlar için yeni gelişmekte olan Yazılım Tabanlı Ağ (YTA)

teknolojisi için de uygulanabilir. Bu sebeple, bu çalışmada ilk olarak YTA ortamında

literatürdeki en yeni gelişmeleri sunmak için çeşitli savunma mekanizmaları analiz

edilmiş ve karşılaştırmalı sınıflandırılması yapılmıştır. Daha sonra da, bizim savunma

stratejimiz, YTA ortamında kabiliyetli anahtarlayıcılarla uygulanmıştır. Bu mekanizma

(SDNScore), bilinen saldırılar için çok iyi sonuçlar vermiştir. Hatta bilinmeyen saldırılar

için bile 84% başarı göstermiştir. SDNScore modelinde kabiliyetli anahtarlayıcılar

ve YTA paradigması arasında bir seçim yapma durumu olduğu için, biz bu modeli

geliştirip, tüm yükü yönetici makinaya taşıyan ve kabiliyetli anahtarlayıcılara ihtiyaç

duymayan Joint Entropy Based Scoring on SDN (YTA için Ortaklaşa Entropi Tabanlı

Skorlama) isimli başka bir mekanizma daha öne sürdük. Sonuçlara göre bu mekanizma

YTA ortamı için güçlü bir savunma ortamı sağlamıştır.
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1. INTRODUCTION

Denial of Service (DoS) attacks have become a serious problem with the ubiqui-

tous proliferation of IP based systems. Although it was already known in the 1980s,

it became a predominant issue for network and information security in the last two

decades. In 1984, DoS attacks were defined as the case of “intruder preventing legit-

imate users to access shared resources by using almost all available services” [8]. In

other words, the simple strategy behind a DoS attack is to deny the use of system ser-

vices/resources to legitimate users and degrade system availability. The fundamental

mechanism for DoS attack execution is to send a flood of superfluous network tra�c

to the target so that it cannot respond to genuine requests for services or information.

If multiple sources are used by attacker(s), that type is called as Distributed Denial

of Service (DDoS) attack which is much more catastrophic than DoS [9]. Currently,

botnet tools available on the Internet provide attackers with massive DDoS resources

and a high level of anonymity against countermeasures. Other DoS attacks include the

physical destruction of computer hardware and the use of electromagnetic interference

designed to destroy unshielded electronics via current or voltage surges [10].

As a general phenomenon, the scale and size of DDoS attacks have been increasing

recently. According to Prolexic 2014-Q1 Global DDoS Global Attack Report [11],

compared to the same quarter one year ago, the total attacks increased 18 percent

as seen by Prolexic. Although average attack duration went down 24 percent, from

22.88 to 17.38 hours, average peak attack bandwidth increased 114 percent from 4.53

Gbps to 9.70 Gbps and peak packets-per-second rate went up by 87 percent from

10.60 Mpps to 19.80 Mpps. The increasing bandwidths for Internet end-points and

hyperconnectivity have also eased the practicality of these attack types. Moreover, the

proliferation of network systems has transformed previously uncharted territories such

as Software Defined Networking (SDN) into a part of the problem domain.
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Software Defined Networking (SDN) is a recent emerging technology which defines

a new design and management approach for networking [12]. The main property of

this paradigm is the separation of control and data planes. In traditional networks,

routers apply high level routing algorithms and decide where data packets should be

forwarded. In SDN, decision and forwarding functionalities are separated. Decision

process is provided by SDN controller whereas data forwarding is handled by switches.

Since decision algorithms do not run on network devices, simpler network devices can be

utilized rather than complicated routers [13]. Moreover, in traditional networks, each

router has its own security, link failure and forwarding mechanisms. If any of these

mechanisms needs to be updated, each network device should be handled individually.

However, one can manage all these issues at a central point in SDN architecture.

One of the vulnerabilities of SDN architecture regarding DDoS attacks is the

limited passive capabilities of switches. Since they send all packets with unknown IPs

to the controller, their medium becomes attractive for DDoS attacks. Moreover, they

do not possess su�cient resources for very large volumes of tra�c. On the controller

side, because of central management property, DDoS attack can cause catastrophic

results if the controller is saturated with attack tra�c. In the literature, there are

some works proposed for DDoS defense in SDN. However, it is still an immature area

since there is no dominant solution and all models have some drawbacks.

Broadly speaking, DDoS attacks are serious problems for both traditional and

recent networks. Thus, in this thesis we proposed a defense strategy that is applied on

both traditional network and SDN environment.

In this thesis, in Chapter 2 we review the related work of defense mechanisms

against DDoS attacks in traditional network and SDN environment.

Chapter 3 presents a comprehensive survey on filtering based defense mechanisms

against Distributed Denial of Service (DDoS) attacks in traditional networks annd SDN

environment. Firstly, several filtering techniques in traditional networks are analyzed

and their advantages and disadvantages are presented. In order to help network se-
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curity analysts choose the most appropriate mechanism according to their security

requirements, a comparative classification of these methods is provided. The relevant

research e↵orts are identified and discussed for rendering the current state of the art

in the literature. This classification will also help researchers to address weaknesses of

these filtering methods and thus mitigate DDoS attacks using more e↵ective defense

mechanisms. Then, filtering techniques in SDN environment are analyzed. Software

Defined Networking (SDN) is a pivotal technology emerging as a promising paradigm

for alleviating challenges of current as well as Future Internet. It relies on the fun-

damental idea of decoupling control and data planes in the network. This property

provides several advantages such as flexibility, simplification and lower costs. However,

it also brings along several drawbacks that are largely induced by the centralized control

paradigm. Security is one of the most significant challenges related to centralization.

In that regard, Distributed Denial of Service (DDoS) attacks are specifically valid for

SDN environment. This chapter presents a comprehensive survey on solutions against

DDoS attacks in SDN environment. Moreover, several mechanisms are analyzed and a

comparative classification is provided for rendering the current state of the art in the

literature. This analysis will help researchers to address weaknesses of these solutions

and thus mitigate such attacks using more e↵ective defense mechanisms.

In Chapter 4, we present a proactive and collaborative filtering based defense

mechanism against Distributed Denial of Service (DDoS) attacks. Proactivity provides

prevention of attacks before it spreads whereas collaboration enables getting knowledge

about di↵erent points of the network and deciding filters together. The proposed model

called ScoreForCore is a statistical mechanism that is inspired from another proactive

but individual model. The most distinctive property of our model is the selection of

the most appropriate attributes during current attack tra�c. We compared our results

with the existing model. Our results suggest that the success of system’s behavior on

legal and attack packets are increased considerably. In addition, most of the attack

packets are stonewalled near the source of the attack.
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In Chapter 5, we applied our strategy which is the selection of the most ap-

propriate attributes during current attack tra�c on SDN environment. We proposed

a hybrid mechanism where switches are not simply data forwarders in SDN environ-

ment. Instead, they can collect statistics and can decide if DDoS attack is in action.

Then they coordinate with the controller and decide on attack packets in cooperation.

SDNScore is a statistical and packet-based defense mechanism against DDoS attacks

in SDN environment. Since it has a statistical scoring method, it can detect not only

known but also unknown attacks. In addition, it does not drop all packets in a flow

which includes both attack and legal packets, but rather acts on attack packets using

packet-based analysis. During these analysis, since it chooses the most appropriate

attributes during current attack tra�c it gives high accuracy.

In Chapter 6, we utilized joint entropy calculation for DDoS detection and most

importantly for the selection of the most appropriate attributes during current attack

tra�c on SDN environment. Since there is a trade o↵ between SDN paradigm and

“capable” switches in SDNScore, we wanted to propose a more elegant model that

evades from this trade o↵. This model is called Joint Entropy Based Scoring Mechanism

in SDN environment (JESS). In JESS, most of the burden is on the controller. Switch

only generates a profile periodically for the pair determined as the most appropriate

attributes during current attack tra�c. Nominal and current profile generations for

every pair, joint entropy calculations and comparisons, score calculations and rule

generations are handled by the controller. Since it is a statistical model, it is not only

successful for known attacks but also unknown ones.

Finally, Chapter 7 concludes the thesis by summarizing our contributions and

giving future directions.
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2. RELATED WORK

In this chapter, initially we discuss related work of filtering based defense mech-

anisms against DDoS attacks. Then we present SDN specific defense solutions against

DDoS attacks.

2.1. Filtering Based DDoS Defense Mechanisms

In this section, several proposed filtering techniques in the literature are pre-

sented.

2.1.1. Ingress/Egress Filtering

RFC 2827 defines ingress and egress filtering mechanisms [1]. Ingress filtering

suggests filtering of incoming packets to a network whereas egress filtering suggests

filtering of outgoing packets from a network. As shown in Fig. 2.1, a network employs

ingress and egress filtering in its edge router. Since the router knows the specified

range, i.e. its address space, it does not allow any IP addresses out of 220.25.112.0/24.

Similarly, the router is aware of the network topology and has knowledge of all incoming

IP address borders. Therefore, it will block any incoming IP packets out of allowed

IP address range. This mechanism is proactive since it prevents DDoS attack packets

from entering the network. Moreover, it is an individual filtering mechanism since

it does not need to cooperate with other routers to decide on filters. It can be an

e↵ective countermeasure against IP spoofing [14]. However, it is not a comprehensive

solution. Because spoofed IP address can also be in the range of allowed IP addresses.

Additionally, various DDoS attacks do not need to use IP spoofing. They may use

compromised machines as zombies and utilize their valid IP addresses. In addition,

despite the fact that it can be a promising solution for leaf networks since they have

simple structure, it is not trivial for complex networks as it is not easy to get topological

information for IP ranges. Besides, it su↵ers a performance cost on checking ranges for

every packet. Finally, the network which contains the router will not have any direct
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SERVER

Address Space: 
220.25.112.0 / 24

INGRESS 
FILTERING

EGRESS 
FILTERING

ROUTER

Figure 2.1. Ingress/Egress Filtering [1]. Ingress and egress filters are installed at edge

routers. In this example configuration, egress filter does not allow any IP out of

220.25.112.0/24 range. Similarly, since incoming IP address space is known, ingress

filters do not allow any “alien” IP.

benefit from egress filtering since it prevents an attack whose victim is in another

network.

2.1.2. Route Based Distributed Packet Filtering (RDPF)

In [2], Route Based Distributed Packet Filtering (RDPF) mechanism is proposed.

It suggests a filtering model which considers route and network topology information

while generating filters. In this model, filters are installed on routers of Autonomous

Systems (ASs). ASs are networks that are under control of a single administration

mechanism such as universities, large organizations or companies. Each router gets

the routing information from BGP routing topology. This mechanism is explained

with an example in Fig. 2.2. ASs are depicted as nodes which have their own routers.

Edges indicate network communication between these nodes. Suppose that there is

an attacker in AS6 which spoofs IP address of AS1. The victim is AS3, which is the

destination node of DDoS packets of AS6. If RDPF is installed on AS5, it will block

the packets which have source address as AS1 and destination address as AS3. Since

AS5 knows the topology, it can conclude that these packets should go on path as AS1-

AS2-AS3 and should not pass on AS5. Thus, AS5 prevents the attack targeting AS3.

As it is a preventive mechanism, RDPF is proactive. In addition, it is an individual

filtering mechanism since it does not need any collaborative communication about

filters. Despite the fact that it needs communication for getting information about
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routing topology, that activity is specifically for the initialization phase. Routers do

not communicate after learning the topology and they do not need to collaborate for

filter decisions.

RDPF mechanism can be a promising solution against randomly spoofed IP ad-

dresses. However, it cannot prevent intelligently spoofed IP addresses. If IP address

of a valid AS is spoofed according to the network topology, RDPF cannot prevent

DDoS attack. In addition, this system has a limitation regarding topological changes

in dynamic environments such as ad hoc networks. For instance, if AS2 is out of order

for some reason, packets from AS1 to AS3 will follow the path as AS1-AS0-AS4-AS6-

AS5-AS3. Then in this case, RDPF in AS5 still blocks the packets since it thinks they

are attack packets although this time they are legitimate ones. Also, RDPF can only

be successful if it is deployed in a significant portion of Internet. In other words, it

exhibits the ”network e↵ect” where the benefit or utility of a mechanism or technology

is exponentially related to the number of adopters or proliferation. Furthermore, this

system needs to make some modifications on BGP messages. It is apparent that it is

not trivial to change common protocols that are currently in use. Besides, it deteri-

orates the performance of routers since each packet should be checked. Last but not

the least, this mechanism can only block spoofed packets while current DDoS attacks

mostly use zombies which do not need IP spoofing.

AS0 AS8AS10AS4

AS1

AS2

AS3 AS5

AS6 AS7

AS9

AT
TA
CK

SPOOFED IP DESTINATION AS RPDF MECHANISM

ATTACKER
SPOOF IP OF AS1 

Figure 2.2. Route Based Distributed Packet Filtering (RDPF) [2]. Attacker is at AS6

which spoofs AS1 and Victim is AS3. RDPF installed at AS5 will block packets from

AS1 to AS3 since that transmission is not possible in this topology.
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A
IP:109.110.251.*

C
IP:113.120.210.*

B
IP:115.110.220.*

E

D
IP:147.116.217.*

4

31

2

IP ADDRESSES EXPECTED LINK
109.110.251.*
113.120.210.*
115.110.220.*
147.116.217.*

1
2
3
4

ROUTER E’S FORWARDING 
TABLE

Figure 2.3. Source Address Validity Enforcement (SAVE) [3]. Router E generates

forwarding table from SAVE messages. This table contains expected IP ranges from

links 1, 2, 3 and 4.

2.1.3. Source Address Validity Enforcement (SAVE)

Li et al. propose a defense model called Source Address Validity Enforcement

(SAVE) [3] which solves the problem of dynamic changes for routing in RDPF [2]. In

this method, source location periodically sends messages with valid source addresses

to all destinations. This signaling enables routers to have knowledge of instant and

accurate paths, and accordingly IP ranges. As each router knows the expected IP

addresses, they prevent packets with addresses out of this range. Routers get infor-

mation of valid addresses from incoming tables. An example is depicted in Fig. 2.3.

In this network, Router E generates its forwarding table according to SAVE messages.

Expected ranges of IP addresses from Link 1, 2, 3 and 4 are also shown. If any path is

changed, update messages will alter the entries in the table. This model is proactive

since it prevents packets with invalid addresses. Also, it is individual as it does not

send filters to others or decide filters together. This method is more promising than

RDPF due to periodic updates of path information. However, similar to RDPF, it

cannot prevent attacks from intelligently spoofed addresses in valid ranges. Also, in

order to provide periodic updates, SAVE needs to change existing routing protocols,

which incurs high computational and communication costs.
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2.1.4. Hop Count Filtering (HCF)

Jin et al. propose Hop Count Filtering (HCF) mechanism against DDoS attacks

in [15]. This method is based on the idea of considering TTL values of packets. Initial

value of TTL is guessed, then current value is decreased from it. As a result, the

number of hops that a packet has traveled can be inferred. Guessing initial TTL value

is a trivial process since operating systems use a few TTL values which are so far from

each other. As hop count can be calculated, a mapping table is created for legitimate

IP addresses and their hop numbers. In this method, there are two states: alert and

action. Under normal condition, this mechanism stays in alert state in which TTL

behavior is monitored and any packet is discarded. When an attack is detected, HCF

mechanism switches to action state in which packets with abnormal hop counts are

discarded.

As intervention is carried out after DDoS detection, this mechanism is reactive. In

addition, it is an individual filtering mechanism since it does not need to collaborate to

decide on filters. HCF is a light-weight, simple and low-storage mechanism. However, it

is not an ultimate solution since an attacker can passively monitor and get IP address

of a legitimate user and learn about its hop count, and then create a packet with

these values. In addition, this model does not deal with dynamic IP addresses which

are massively used in today’s Internet. Besides, it does not give any solution for

NAT (Network Address Translation) devices where several users may get the same IP

address. Finally, if the path for a source IP is changed because of congestion or any

other reasons, its hop count will change and thus, packets of legitimate users may be

rejected.

2.1.5. PacketScore

PacketScore scheme [16] is a statistical filtering mechanism wherein each packet

is analyzed according to its attribute values and scores calculated according to these

attributes. A packet is announced as legitimate if its values are under a dynamic

score threshold when they are compared with a baseline profile. This baseline profile



11

is generated based on Bayesian Theorem [17]. This type of comparison was applied

in the detection of DDoS attacks whereas in this method it is utilized for real-time

packet filtering against DDoS attacks. It is an individual filtering mechanism since it

performs analysis on its own and then determines filters. Also, it is proactive since

it blocks according to a scoring approach. This filtering mechanism can di↵erentiate

between legitimate and attack packets via statistical analysis. Therefore, it can deal

with novel DDoS attack types. Moreover, it works well for non-spoofed attacks since

it does not solely have source address attribute, but also other attributes helping to

find attack packets. However, it still exhibits some drawbacks. Due to its statistical

approach it works well for large volume attacks while it cannot filter low volume attacks.

Also, PacketScore scheme needs a baseline profile with no attack phase. But it is not

trivial to find a quiet, i.e. attack-free, and su�ciently long period in today’s Internet.

2.1.6. Secure Overlay Services (SOS)

According to best of our knowledge, SOS [18] is the first model that is proactive

and cooperative. It suggests an onion-like model such that user packets are authenti-

cated in Secure Overlay Access Points which routes the tra�c through overlay nodes

to beacon nodes. Then, each beacon node forwards the packet to a secret node called

Secret Servlet which is known by limited number of entities in SOS architecture. Then

Secret Servlet sends the packet to the destination. Destination will only accept the

packets that are coming from the Secret Servlet. Otherwise, it will drop them. SOS

is a cooperative model since it is distributed over the network and filter decision is

obtained cooperatively. It is also proactive since it is constantly active. As far as this

mechanism simplifies the rules, it decreases the burden of filtering. However, as it does

not use any cryptography, it is easy to find the location of Secret Servlet. When an

attacker acquires this information, it can cripple the system easily [7]. Moreover, if a

passive attacker listens near the victim, he can easily learn the IP address of Secure

Servlet.
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2.1.7. Pushback

In [4], Mahajan et al. propose a scheme called Pushback which rate-limits the ag-

gregated tra�c from a congested router to the upstream counterparts. In this scheme,

congestion is detected locally at router level. The congestion signature is determined

and translated to a router filter. According to the level of this congestion, an appropri-

ate rate limit is determined locally. Then the congested router asks upstream routers

to rate-limit the tra�c. This pushback operation is propagated to upstream routers.

This is the first scheme that proposes collaborative strategy against DDoS attacks.

In Fig. 2.4, thick lines show aggregate tra�c, whereas dashed lines show pushback re-

quest. Each congested router asks only the upstream routers which send large amounts

of aggregate tra�c to rate-limit. This request will propagate until the source of conges-

tion. Pushback scheme is e↵ective if the attacker tra�c traverses a di↵erent path from

legitimate tra�c. Otherwise, legitimate tra�c will also be punished since it shares the

same link with the attack. Moreover, this technique has high cost since each router

along the path between attacker and victim is involved in propagation of information

signaling including rate limit. Besides, it does not block all tra�c from the attacker.

It only limits attack tra�c to a fair share. This scheme is cooperative and reactive as

it acts cooperatively after tra�c congestion.

2.1.8. Active Internet Tra�c Filtering (AITF)

Argyraki et al. propose a filtering mechanism called Active Internet Tra�c Fil-

tering (AITF) [5] which uses Route Record scheme to learn the traversing path of each

packet. The border routers of each AS paticipate in recording that path. Filters are

generated according to these paths. When a DDoS attack is detected, packets coming

from this path are desired to be blocked. Victim does not only think of himself, but

also tries to filter out the attack as close to its source as possible. In that way, the

attack will be prevented from spreading through the network. In order to provide this

structure, collaboration of various routers is necessary.
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Figure 2.4. Pushback [4]. Router 10 is the congested router. It requests Router 7 and

8 to rate-limit. Then, Router 7 sends request to Router 2 whereas Router 8 sends

request to Router 4 and 5. These pushback messages propagate upstream until the

source of tra�c.

VICTIM (V) VICTIM GATEWAY (VGW) ATTACKER GATEWAY (AGW)

EXCHANGE 
POINTS

ATTACKER (A)

Filter Send Filter Send Filter Send Stop Request

Figure 2.5. Active Internet Tra�c Filtering (AITF) [5]. Filter is sent from victim (V)

to its gateway (VGW). Then it is propagated to the attacker’s gateway (AGW) which

requests attacker (A) to stop sending tra�c.

If we analyze the network in Fig. 2.5, we can see that a packet sent from A (at-

tacker) to V (victim) will have the record route as {A, AGW, VGW, V} where VGW

and AGW are border gateways of victim and attacker, respectively. When an attack is

detected at victim V, it will generate a filter to stop the packets with this path. This

filter request is sent to the gateway of victim (VGW) and VGW blocks these packets

temporarily to protect its own AS. Then it forwards this request to the gateway of

attacker (AGW) in order to prevent spreading of attack through the network. Accord-

ingly, AGW initially requests the attacker to stop sending packets. If it still continues

to send, AGW filters all tra�c from the attacker A. The number of accepted filter

requests are limited in VGW and AGW since routers have limited capacity for filters.

Apparently, this mechanism is cooperative since it requires collaboration for filtering

and it is reactive as far as it responds after DDoS detection. Despite the fact that it is
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beneficial for preventing DDoS, it still has some drawbacks. First of all, Route Record

technique gives some burden in terms of packet length and packet processing. Since

packets travel several border gateway routers, they can cause unnecessary fragmenta-

tion which result in processing overhead. Additionally, AGW and VGW have limited

capacity for filters which can be abused by attackers by sending fake filters. Besides,

it requires significant changes in network infrastructure.

2.1.9. StopIt

Liu et al. propose a filtering mechanism called StopIt in [6]. This scheme involves

a closed control channel which means that each interacting pair knows the identities

of each other. Additionally, it allows any destination to stop attack tra�c from any

source. StopIt system architecture is depicted in Fig. 2.6. In this mechanism, each AS

has its own StopIt server that handles filter requests. In a typical flow, victim V installs

a filter to block attacker A. V sends a filter request to its access router (Rv). Rv sends

this request to its StopIt server. Then, AS3’s StopIt server sends this request to AS1’s

StopIt server. It communicates with the access router of attacker (Ra). Ra installs

this filter and sends StopIt request to the attacker. If the attacker does not halt, it

will be punished by Ra. Thin arrows in Fig. 2.6 show filter request exchanges between

known peers, whereas thick ones show the network tra�c flow. After filter installation,

the tra�c is blocked between A and Ra. This scheme uses Passport system to make

secure authentication [19]. Passport puts tokens on packets which allow ASs to verify

that source address is valid.

StopIt scheme is a cooperative and reactive approach. The most important ad-

vantage of StopIt system is the capability of on-the-fly filter installation during DDoS

attacks. Routers do not drop filter requests during attacks since StopIt servers deal

with filtering. However, this system requires configuration of routers and StopIt servers

to facilitate that they know each other and all hosts before communication. This de-

ployment process is not a trivial task since there are several ASs and each AS may

have thousands of nodes.
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Figure 2.6. StopIt [6]. Victim V sends filter to its access router (Rv) which

communicates with its StopIt server. Then StopIt server of AS3 communicates with

StopIt server of AS1 in order to reach attacker. StopIt server of AS1 communicates

with access router (Ra) which blocks tra�c after filter installation.

2.1.10. Probabilistic Filter Scheduling (PFS)

In [20], Seo et al. define a filter technique which deals with not only filtering

but also its scheduling and how to find best locations for filters. The proposed scheme

is called Probabilistic Filter Scheduling (PFS). It has four main phases. In Phase 1,

path identification is provided by using Probabilistic Packet Marking technique. A

filter router (FR) probabilistically writes its own IP address to IP header of packets.

In Phase 2, victim collects all markings and constructs marking values to request a

filter. In Phase 3, a filter router which receives several filter requests applies a filter

scheduling policy and chooses best k filters. Then, it sends these filters to upstream

routers. In Phase 4, as soon as the attack stops, the scores of corresponding filters are

decreased and these filters are revocated from filter routers.

PFS phases are depicted in Fig. 2.7(a). FRs 1, 2, 3 and 4 probabilistically mark

their addresses as 1, 2, 3 and 4. Large arrow shows more packets which are generated

by the attacker. The victim collects 1, 2, 3 and 4, and creates filters by combining these

markings. Then it sends filters to FR4. FR4 makes a filter scheduling and chooses best

k filters according to scores which are determined by frequency and recency. Filters

are propagated from FR4 to FR1 hop by hop. At the end of the attack, FR4 evicts

useless filters. PFS scheme propagates filters to optimal location closer to the attack.
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Also, it maximizes e↵ectiveness since it chooses best k filters according to frequency

and recency of filter requests. These filters are chosen according to the score S
n

(I)

which is calculated as:
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where S
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(I) is the score of the filter I at current time n. Parameter t denotes time

window whereas � is the penalty to decrease filter score in order to be used for filter

revocation in Phase 4. P
n

(I) is calculated as:
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where F is the weight of frequency and R is the weight of recency. Parameterm denotes

how many times the filter is used while t
c

and t
p

shows current and previous packet

arrival times related to the filter. This equation leads to a dynamic list of filters with

di↵erent scores, i.e. di↵erent suitability. Then best k filters are chosen from this list.

PFS scheme is cooperative since filters are decided and propagated in collabora-

tion. Also, it is reactive since it stops an attack after filter requests which follow the

detection of DDoS at victim side. PFS algorithm also induces some burden as over-

head. In addition, it requires a security agreement between routers to accept filters.

Also, it has marking overwriting since all nodes have fixed probabilistic packet mark-

ing. In order to improve this scheme, another approach called Adaptive Probabilistic

Filter Scheduling is proposed, which is discussed in the following part.

2.1.11. Adaptive Probabilistic Filter Scheduling (APFS)

In [21], Seo et al. improve their PFS scheme [20] and propose Adaptive Probabilis-

tic Filter Scheduling (APFS). It addresses filter scheduling problem by adaptive packet

marking. As it is mentioned in the previous section, path identification is provided by

using probabilistic packet marking. FR probabilistically marks its IP address to IP
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(b) Adaptive probabilistic filter scheduling (APFS) [21].

Figure 2.7. Probabilistic filter scheduling schemes.

header of a packet. In fixed marking, all filter routers have same marking probability

whereas in adaptive marking all filter routers mark according to their own adaptive

probability. This probability is specified by each router based on filtering e↵ectiveness.

Filtering e↵ectiveness is determined by three parameters:

(i) HOP : How many hops will it take to reach attacker from this FR?

(ii) RES : How many filters can this FR accept?

(iii) DEG : How many links does this FR have?

According to these factors, the victim will receive more filters from more e↵ective

FR(s) and it will choose such FR(s) in filter scheduling phase. In addition, it will

propagate the filter to that e↵ective router first which leads to blocking of DDoS

attack more rapidly. APFS modifies Phase 1 of PFS to consider the factor of filtering

e↵ectiveness. In PFS, most of the markings received by the victim are coming from

filter routers that are close to the victim, because victim side routers overwrite markings

that are coming from attacker side. Then, this marking overwriting will decrease the

e↵ectiveness of defense and cause hop-by-hop filtering. On the other hand, in APFS,

as attacker side’s marking probability is higher and most of the markings received by
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victim are coming from core filter routers. As depicted in Fig. 2.7(b), the most e↵ective

filter router will have higher probability which is FR3 in this case. This feature leads

to direct propagation of filters to this router which solves hop-by-hop filtering problem.

APFS is also a cooperative and reactive scheme similar to PFS.

2.2. Solutions Against DDoS Attacks in SDN Environment

In order to cope with several DDoS scenarios in SDN environment, several solu-

tions are proposed in the literature. In fact, it is a novel research topic that almost

all mechanisms are proposed in the last few years. In this section, several solutions

are analyzed to examine their properties. According to these properties, the defense

mechanisms are classified in several aspects in the next section.

Devoflow [22] is the first example that opposes dumb switches. It suggests that

short flows should be handled in switches while only larger flows are sent to the con-

troller. Their results show that Devoflow uses less table space and less communication

messages between controller and switch. It achieves less overhead by reducing the need

to transfer statistics for short flows and to invoke controller for their setup. The mo-

tivation is about improving performance under normal conditions and therefore does

not work for DDoS attacks specifically. However, their suggestion is strongly related

to defense mechanisms against DDoS attacks.

Avant Guard [23] is a framework to improve the security and resiliency against

DDoS and scanning attacks with greater involvement of switches. It introduces two

modules on switches: connection migration and actuating triggers. Connection migra-

tion proxies TCP SYN requests and classifies them. If these are regarded as legitimate,

they are authorized and migrated to the real target. This mechanism provides pro-

tection against SYN Flood attacks. Actuating triggers module perceives changes and

triggers an event. For instance, if enormous volume of requests is realized, it triggers

an event in the controller to insert a flow rule into the flow table. Then, flow rule instal-

lation is handled automatically and response time is reduced. The most conspicuous

side e↵ect of this mechanism is the performance penalty. Since it utilizes connection



19

migration, each flow needs to be classified. In addition, this module can only defend

against one type of DDoS attack (TCP SYN Flood).

Kokila et al.. [24] proposes a detection mechanism using Support Vector Machine

(SVM) Classifier. Their model deals with the attack scenario whose target is the system

resources of the controller. They have also tried several machine learning techniques

and their results suggest that SVM outperforms others. However, it takes more time

than the other techniques. In addition, this model only deals with detection, it does

not give any solution related to mitigation.

The communication between SDN controller and switches can also be the deci-

sive system component enabling attack impact. Scotch [25] is a mitigation method that

scales up SDN control plane using VSwitch based overlay. The authors made an exper-

iment to find where the real problem is in case of DDoS attacks or flash crowds. Their

results suggest that the bottleneck is the communication from switch to the controller.

For this reason, they try to increase the capacity of the communication from switch to

the controller. Their model suggests that when physical switch is overloaded, new flows

will be tunneled to multiple vSwitches. The most important drawback of this model

is that it does not have an actual detection mechanism. It acts same for flash crowds

and DDoS attacks. In addition, it drops packets when they exceed a threshold. This

means that legitimate packets cannot be preserved in case of flash crowd and DDoS

attacks.

Zaalouk et al. [26] proposed a detection and mitigation method for attacks. Their

model suggests that controller’s functions of monitoring and controlling should be de-

coupled. Communicating with switches for control messages and monitoring tra�c

on the network at the same time increase the overhead on the controller. They sug-

gest that some type of attacks can be resolved without having access to all packets in

the network. These are called “low resolution attacks” such as DDoS attacks, where

as others cannot be detected without accessing all packets such as ARP caching and

poisoning. In their architecture, there is an orchestrator who decides which modules

should be activated according to the suspicious attack types as low or high resolution.
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Then network monitor and controller modules are participated in detection and miti-

gation according to the commands of the orchestrator. In this model, after an attack

is detected it just rate-limits the tra�c, it does not completely stop attack tra�c. It

is not a desirable method for mitigation since the system is still occupied with attack

packets.

Another model that suggests splitting the the controller’s duties is presented

in [27]. Similar to [26], they decouple application monitoring and packet monitoring in

the controller. In addition to this separation, they also propose that packet controller

should be distributed for security and load balancing reasons. In case of a failure of the

main controller, the secondary controller takes charge and plays the same role as the

main one. They also suggest another hierarchical model in which controller is separated

in two levels consisting of a delegator and lower level controllers that perform specific

tasks that are assigned by the delegator. They do not mention about a detection

module and their model considers flash crowd and DDoS attack in the same manner

which is not desirable.

A feasible method is proposed in [28] for DDoS detection and mitigation in SDN.

This work suggests to add a table to the controller. This table stores source IP, number

of arrived packets coming from this IP and time-out. They determine nominal values for

number of connections and number of packets per connections from tra�cs of frequent

users. Then they suggest that DDoS attackers have less connections and less number

of packets than the nominal values. As far as the system detects a malicious tra�c, it

blocks this tra�c. This method does not work for high amounts of tra�c since their

assumption is that less tra�c comes from attackers. If an attacker uses botnets with

high tra�c amount it cannot cope with it.

Hsu et al. proposed a hash-based mechanism that operates in controller to in-

crease scalability of the network [29]. This work performs a hash based round-robin

scheduling in assigning the incoming packets in controller. In this model, controller

can still serve the switch even it has high amount of tra�c due to flash crowd or DDoS

attack. It is provided by the hash algorithm which distributes the tra�c coming from
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crowded switch to several queues in round robin. This model does not have a detection

mechanism. It acts same as flash crowd and DDoS attacks. This results in pointless

serve for DDoS attack packets in SDN controller.

Another model for controller protection against DDoS attack is suggested by

Lim . [30]. Since in SDN environment when the controller is incapacitated, the entire

SDN will be unavailable, their model suggests that the most essential aim of a defense

mechanism is providing controller’s work continuity in case of an attack. They leverage

a scheduling based scheme that contains most of the attack tra�c at attack ingress

switches so that SDN network as a whole can continue normal operation. If one switch

is infected by DDoS, normally controller cannot serve to other users. In order to

prevent this problem, they create di↵erent queues for each switch. Actually this model

realizes the opposite idea that was proposed in [29]. The aim of Hsu et al. is providing

scalability for the controller, whereas [30] aims the continuity of the controller’s work.

The conspicuous drawback of this work is that it considers flash crowd and DDoS attack

in the same manner. It does not have an actual detection mechanism. In addition,

since it does not have packet based analysis, it treats same legal and attack packets

coming from the same switch.

FlowFence mechanism against DDoS attacks is proposed in [31]. In this model,

switches monitor tra�c and detects congestion condition by monitoring the bandwidth

usage. When a congestion occurs, the switch notifies the controller. Then, the con-

troller requests statistics from every switch that sends flow to the congested link. It

classifies the flows and determines badly behaved ones which use more bandwidth.

Then, it sends commands to switches to rate-limit bad flows. Their results suggest

that it is a fast and simple solution that prevents starvation. However, this mechanism

is especially a rate-limit mechanism that does not stop an attack completely.

There are several works that utilized entropy in traditional networks, however

there are a few works in SDN. One of them is [32] that proposes an early detection of

DDoS Attacks against SDN Controllers. It runs on the controller. It has three main

processes for collecting flow statistics, anomaly detection and attack report. Flow
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properties are gathered in flow statistics process. Then, statistics are utilized in en-

tropy calculation and anomaly detection is provided by considering the entropy. In

this mechanism, entropy is calculated for destination IP address. If entropy decreases

under a threshold, DDoS is detected. It enables to determine the victim, but it is

not possible to dissociate the legal packets from the attack ones. Their work reduces

the frequency of data gathering process and communication overhead between con-

troller and switches. Their results demonstrate that attack detection can be provided

in early stages with high accuracy. However, this mechanism only provides detection

not mitigation. Another similar model is EBS in [33] that proposes an entropy-based

lightweight DDoS flooding attack detection model running in the OF edge switch. This

achieves a distributed anomaly detection in SDN and reduces the flow collection over-

load on the controller. However, there is a trade-o↵ of SDN paradigm vs. capable

switches in this model.

In [34], Dharma et al. presents their method for DDoS detection and mitigation.

Their method considers the time characteristics of DDoS attacks for detection and

investigates the pattern of time during DDoS attacks for prevention. Every packet

coming to the controller is inspected according to its destination address. If it is

not valid or unknown, it is analyzed by flow controller module that is loaded on the

controller. It stores that non-valid packet for further inspection. When the number of

non-valid packets increases significantly within a certain time, flow collector warns the

controller. Then the controller sends new rule to the switches to forward all non valid

packets to the flow controller. Flow collector clusters time pattern of DDoS attacks

and uses these patterns for prevention. They proposed this model but they did not

implement it yet. The problem of this work is about making their decisions by just

considering destination IP. If the attacker sends packets to a valid IP, their module will

not be activated and DDoS attack detection and prevention cannot be provided.

Katta et al. [35] presents a solution for the attack scenario related to the memory

of switches. Switches can allow limited number of entries in tables because of memory

scarcity. Update policy of these entries is essential in terms of DDoS attacks since

attack packets are also dropped or forward according to these entries. This work



23

proposes a rule update mechanism for switch tables. Their idea is not proposed for the

aim of DDoS attacks but their idea is valuable for DDoS mitigation.

In [36], Tri et al. presented their work that shows the impact of a DDoS attack

on SDN. Their results highlight the importance of managing the flow tables. They

propose some suggestions for this problem. Table entry replacement policies should

use multiple parameters such as number of packets of a flow entry, generation date of

a flow entry and utilization of a flow entry, rather than using just one parameter as

earliest expiration time. In addition, controller should have an intermediate module

which stores the flow entries temporarily and manages the replacement of flow entries.

These suggestions can be utilized as DDoS mitigation methods.
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3. ANALYSIS OF DDOS DEFENSE FILTERING

MECHANISMS

In Denial of Service attacks, all resources are wasted by the attacker and the use

of system services/resources to legitimate users is denied. If this attack is realized by

multiple sources, it is called Distributed Denial of Service (DDoS) attack. The first

documented DoS attack occurred in 1999 at University of Minnesota [37]. It blocked

the computer system for more than two days. In 2000, DDoS attacks occurred against

major Internet and media companies such as Yahoo, CNN, eBay and Amazon [38]. For

these ICT systems, only brief inaccessibility for a short period of time results in huge

financial and business losses [39]. For instance, in 2010 Mastercard, PayPal, Visa and

PostFinance’s websites were shut down with DDoS attacks due to their involvement in

banning of WikiLeaks donations [40]. DDoS is not only used for the aim of financial

and reputational damage, but also for political matters. There was a DDoS attack

on the White House Website in 2002 [41] and in 2009 media web sites were attacked

in Belarus because of a political issue between Georgia and Russia [42]. Similarly, in

2009 during Israel and Palestinian fight in Gaza, both sides attacked their websites by

utilizing DDoS [43]. Likewise, in 2013 during the Gezi Park resistance in Turkey, many

governmental websites were put out of service with DDoS attacks.

3.1. Research areas about DDoS

Due to the increasing size and widespread occurrence of DDoS attacks, DDoS

is a major research topic for academicians and practitioners. A potent network se-

curity strategy needs to consider DDoS attacks for supporting security e↵orts. The

initial phase of these e↵orts has focused on how to define and convey features and

types of DDoS [44–48]. There are also various works which focus on features, advan-

tages/disadvantages, and classification of the attack tools [45, 48]. DDoS attacks use

several tools for depleting the sources of victim systems. Some examples of these tools

are Trinoo [49], TFN [50], TFN2K [51], Stacheldraht [52], mstream [53], Shaft [54],
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Figure 3.1. Classification of DDoS attack studies.

Trinity [55], and Knight. In consideration of all these e↵orts, the main aim of DDoS

research is to facilitate defense capabilities and devise elements of a security infras-

tructure which can overcome DDoS attacks. In that regard, the basic defense toolkit

against DDoS includes the capability of detection and prevention. In order to see the

general view of research studies related to DDoS attacks, a classification scheme is

illustrated in Figure 3.1.

3.1.1. DDoS Detection Mechanisms

DDoS attacks generally use packets very similar to the packets of legitimate

users which makes it non-trivial to distinguish and detect DDoS attacks. Also, indis-

tinguishability results in false alarms which are termed as false positives. Accordingly,

a good detection technique should realize DDoS attacks quickly and have a low false

positive rate. Since a DDoS attack is a type of intrusion, early classification about

DDoS detection techniques was conceived under the topic of Intrusion Detection Sys-

tems (IDS). IDSs rely on two types of detection approaches, namely anomaly-based

and misuse (signature) detection based [48]. In anomaly-based detection, a normal be-

havior is learned from a su�ciently long training period and then abnormal deviation

is detected during operation. On the other hand, several exploits known a priori are

examined and pattern or signature of these exploits is determined in misuse detection.

If any similar pattern is detected, it is marked as an attack. However, it is known

that it is di�cult to determine a pattern or signature since attackers change type and
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Table 3.1. Classification of DDoS Detection Mechanisms [7]

Properties Models

Activity Profil-

ing (Statistical

techniques)

Profile of a tra�c flow is

provided by packet header

information. Entropy, Chi-

Square and Kolmogorov-

Smirnov techniques are uti-

lized to obtain distribution.

Entropy and Chi-Square

Based Statistical Detec-

tion [56], DDoS Detection

Method Using Clustering

Analysis [57], Kolmogorov-

Smirnov Based Statistical

Detection [58]

Wavelet

Analysis

Anomalies are detected by

analyzing signal in terms of

spectral components.

Signal Analysis of Network

Tra�c Anomalies [59], An

Improved Wavelet Analysis

Method for Detecting DDoS

Attacks [60]

Sequential

Change-

Point

Detection

Tra�c is analyzed as time

series and time statistics

show the change-point

caused by an attack.

CUSUM scheme is utilized

to find the change point.

Collaborative Detection of

DDoS Attacks over Multi-

ple Network Domains [61],

Change-Point Monitoring

for the Detection of DoS

Attacks [62]

Neural

Networks

Machine learning algo-

rithms and visualization

techniques are used to-

gether. For training, tra�c

attributes are utilized.

Then visualization tech-

niques are employed to

show an attack.

Radial Basis Function

Based DDoS Detection [63],

Learning Vector Quan-

tization based DDoS

Detection [64]
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content [65, 66]. For this reason, it is generally accepted that it is not e�cient to use

misuse detection for DDoS attacks [14].

In addition to the basic duality of anomaly vs. signature-based DDoS, other

classifications are also proposed for DDoS detection techniques. According to [67],

classification can be based on the idea of utilizing IP attributes of packets. IP-Attributes

based DDoS Detection can use attributes such as source IP address [68], Time-To-Live

(TTL) [69,70], distance [67] and combination of multiple attributes [71] such as protocol

type, packet size and server port number. Another type is called Tra�c Volume based

DDoS Detection which analyzes tra�c structure and tries to find anomalies according

to deviation from normal tra�c volume. Several works such as [72] and [73] can be

considered in that body of work.

In [74] and [75], DDoS detection techniques are classified based on algorithms

that are used for detection. According to this taxonomy, there are three groups: activ-

ity profiling (statistical techniques), sequential change-point and wavelet analysis. This

classification is extended by Beitollahi et al. in [7] to four groups with the addition

of neural networks. It is summarized in Table 3.1. In activity profiling, packet header

information is utilized to construct the profile of a tra�c flow. The elapsed time be-

tween similar consecutive packets having the same address and port numbers provides

average packet rate or so called activity level. Then, in order to detect an attack, this

reference model is compared with current tra�c via statistical techniques. If the tra�c

behaves di↵erently than this reference model, an attack is detected. In [56], entropy

and Chi-Square statistical techniques are used to obtain the statistical distribution of

features for flows. Based on these calculations, abnormal behavior of a flow is detected

by comparison to normal tra�c statistics. In [57], after entropy calculation, Lee et al.

use clustering techniques to identify anomalies in tra�c with respect to normal flows.

Considering features of tra�c, several variables are determined. These variables are

normalized to eliminate the e↵ect of di↵erence between their scales. Normalization is
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applied with this formula:

z =
x� x̄

s
(3.1)

where x is the value of each variable, x̄ is the mean of sample data set and s is the

sample standard deviation. Also, in order to measure dissimilarities between clusters,

Euclidean distance is utilized, which is:

D(x, y) =

vuut
nX

i=�1

(x
i

� y
i

)2 (3.2)

where x and y are two records that will be clustered and n is the number of vari-

ables. After calculating distance measures, cluster numbers are determined with Cubic

Clustering Criterion method [76]. In another work, instead of clustering, Kolmogorov-

Smirnov (KS) technique is utilized for computation of relevant statistical distribu-

tions [58].

In wavelet analysis methods [59, 60], physical layer is enrolled into analysis as

the physical layer signal is handled in terms of spectral components. Anomalies are

detected by analyzing the energy of the spectral window. In contrast, tra�c is analyzed

as time series in sequential change-point methods. Initially, tra�c data is filtered in

terms of address, port and protocol followed by a representation in time domain. Then

tra�c statistics pinpoint changes caused by an attack. If the attack started at time �,

the change in time domain will be at � or greater than �. In [61] and [62], a cumulative

sum (CUSUM) scheme is utilized to find that change-point. It monitors the deviation

of short-term behavior from the incumbent long-term behavior. If the cumulative

di↵erence is larger than a threshold, attack is detected. Finally, in neural network based

methods, visualization techniques are combined with machine learning algorithms in

order to detect DDoS. Tra�c attributes are used to train neural networks and then

visualization techniques are used to show existence of possible attacks. Several neural

network algorithms such as Radial Basis Function (RBF) [63] and Learning Vector

Quantization (LVQ) [64] are employed for these purposes.



29

3.1.2. DDoS Prevention Mechanisms

The main functions of intrusion prevention include identifying malicious activi-

ties, logging of information about them, actively preventing/blocking them, and report-

ing these incidents to security administrators. Intrusion prevention systems are placed

in-line and can take actions such as sending an alarm, dropping the malicious packets,

resetting the connection and/or blocking the tra�c from the o↵ending IP address [77].

Prevention mechanisms can be classified into two types as capability based and filtering

based [78]. In capability based mechanisms, sender must obtain explicit authorization

from receiver before he sends significant amount of tra�c [79].This authorization is

called capability. These mechanisms are analyzed in [79]. On the other hand, filter

based mechanisms use tra�c filtering which is a very e↵ective and widely employed

mechanism in intrusion prevention for network security. In this work, we deal with

filtering based methods since there is no comprehensive treatment that focuses on this

topic in the literature to the best of our knowledge. Our main goal is to construct an

exhaustive categorization of existing filtering methods and provide a detailed compar-

ison. Our work is also instrumental to understand these mechanisms and in choosing

the appropriate one for specific contexts and circumstances. In addition, it establishes

a baseline view to propose a new filtering method for prevention against DDoS attacks.

Firstly, analysis of filtering techniques are provided for traditional networks. Then, it

is provided for SDN environment.

3.2. Analysis of Filtering Techniques in Traditional Networks

Detection of DDoS (or any kind of network attack) is supposed to be succeeded by

a defense mechanism (countermeasure) for any concrete benefit. To this end, filtering

and elimination of “hostile” packets and flows is a very e↵ective DDoS countermeasure

to prevent system damage. A filter is essentially a rule which allows or prevents a

packet to enter the system [20]. They are generally installed on routers since they

allow or block packets before they enter a domain. These mechanisms are vital since

they intercept an attack posed to give harm to a large number of machines. In this

work, we analyze and classify filtering mechanisms to understand and compare pros
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and cons of these methods.

3.2.1. Classification of Filtering Techniques

(i) Collaboration Based Classification: Filtering mechanisms can be classified ac-

cording to the degree of collaboration. In some circumstances, machines or nodes

need to cooperate in order to learn and decide about filters. This type of filtering

is called cooperative filtering whereas others are called individual filtering.

• Cooperative Filtering: Cooperative filtering requires a trusted communi-

cation mechanism between collaborative machines. In this type, the most

important criterion is to communicate and decide on filters synchronously

during defense phase. Communication during initialization phases which is

utilized to get information about routing and network topology is not con-

sidered as an inclusion factor for this class. In other words, in cooperative

filtering mechanisms, machines need to communicate during filtering phase

not just for some preparatory information exchange such as Border Gate-

way Protocol (BGP), routing and IP tabling. These mechanisms interfere

with the attack quickly since it has dynamic communication on filtering

conditions and rapidly prevents the spreading of the attack in the network.

• Individual Filtering: Individual filtering supports a stand-alone network de-

vice. In other words, the filtering mechanism is installed and can be realized

on a single machine which decides and creates its own filters. It is easy to

deploy since it does not need to cooperate, communicate and trust other ma-

chines. In addition, response time against an attack is shorter since it does

not su↵er latency and communication overhead for cooperation. However,

it may be inadequate for large-scale multi-source-to-multi-point attacks.

(ii) Response Time Based Classification: Filtering mechanisms can also be classified

according to point-in-time of reaction. A filtering defense mechanism can be

active before or after DDoS attack starts. Similar classification is proposed by

Hakem et al. in [7]. However, it does not focus on filtering mechanisms. Instead, it

has classified all countermeasures against DDoS attacks in terms of reaction time.
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Table 3.2. Classification of Defense Mechanisms Against DDoS Attacks

INDIVIDUAL COOPERATIVE

PROACTIVE

Ingress/Eggress Filtering [1],

Route Based Packet Filtering

(RDPF) [2], Source Address Va-

lidity Enforcement(SAVE) [3],

PacketScore [16]

SOS [18]

REACTIVE Hop Count Filtering [15]

Pushback [4], Active Internet

Tra�c Filterinng (AITF) [5],

StopIt [6], Probabilistic Filter

Scheduling (PFS) [20], Adap-

tive Probabilistic Filter Schedul-

ing (APFS) [21]

From the filtering perspective, we can have proactive and reactive mechanisms.

• Proactive Filtering: Proactive filtering is a preventive mechanism which is

enrolled in action before DDoS attack starts. Since it is proactive, it needs

to be successful in estimation of incoming malicious packets. It may cause

some burden since it always has to be active for prevention. Thus, there is

a tradeo↵ between the burden of prevention mechanism and the impact of

DDoS attack.

• Reactive Filtering: Reactive filtering is enrolled in action after DDoS attack

is started. In this class, DDoS attack detection is the first step in order to

trigger the reactive system. Subsequently, reactive filtering participates in

the action(s) and prevents DDoS packets to spread through the network. It

does not incur extra burden like proactive schemes since it is only active

after attack detection.

According to the analysis of several techniques in Chapter 2, all models have their

own cons and pros, it is not possible to state that one of these mechanisms is a superior

solution for all DDoS attacks. For this reason, network administrators need to choose
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appropriate one(s) according to their requirements. In order to provide an easier way

to understand and decide, a fundamental classification of these methods is provided

in Table 3.2. According to this matrix, there are four main types of filtering based

defense mechanisms: individual+proactive filtering, cooperative+proactive filtering,

individual+reactive filtering and cooperative+reactive filtering.

Individual proactive filtering provides easy deployment and quick intervention

which interferes DDoS attacks before it impairs the network operation. However, it is

always active which results in extra burden on performance. If these beneficial prop-

erties are more important, Ingress/Eggress Filtering [1], Route Based Packet Filtering

(RDPF) [2], Source Address Validity Enforcement(SAVE) [3] and PacketScore [16]

mechanisms can be adopted. On the other hand, cooperative proactive filtering pro-

vides collaborative and preventive mechanisms.When this mechanism is deployed in

the network, it gives an opportunity to block a DDoS attack near the source before

it expands and a↵ects the entire network. Also, it is more accurate than individual

mechanisms since it decides on filters with more visibility and knowledge about the

network. However, according to the best of our knowledge, there is only one mecha-

nism SOS [18] that is both cooperative and proactive in the literature. This scenario

is challenging since cooperation should be accepted by all peers while no attack is in

e↵ect yet. Therefore, this topic deserves more e↵orts and contributions from security

research community.

Individual reactive filtering is active after DDoS attack detection and it pro-

vides easy deployment. If we need a mechanism which should be active only for short

duration, since we cannot tolerate extra burden and we cannot deploy it through the

network, then this type is preferable. Hop Count Filtering [15] provides such properties.

On the other hand, cooperative reactive filtering provides collaborative decision after

DDoS attack is detected. Pushback [4], Active Internet Tra�c Filtering (AITF) [5],

StopIt [6], Probabilistic Filter Scheduling (PFS) [20] and Adaptive Probabilistic Filter

Scheduling (APFS) [21] are active after detection and filters are propagated through

communicated machines. This topic is extensively explored in the literature for prac-

tical implementations.
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3.2.2. Attribute-based Comparison of Filtering Mechanisms

In this subsection, filtering mechanisms are compared according to four key di-

mensions, namely their deployment di�culty, communication overhead, scalability and

attack prevention e�ciency. This information is illustrated in Table 3.3.

Filtering mechanisms are deployed on routers which are not easy to access and

require a very high level of availability. Thus, more e↵ort is needed in order to de-

ploy these mechanisms. Deployment di�culty can be an important criterion in fil-

tering mechanism selection. It is relatively easy to deploy the following mechanisms:

Ingress/Eggress Filtering [52], RDPF [2], SAVE [3], Hop Count Filtering [15] and Pack-

etScore [16]; since only one machine is involved in the system. On the other hand, it is

hard to deploy SOS [18], Pushback [4], AITF [5], StopIt [6], PFS [20] and APFS [21]

since multiple network nodes and machines are involved in the process.

Communication overhead is another issue that needs to be considered while de-

ciding on appropriate filtering mechanisms. If a filter is constructed via communication

of several machines, it is more accurate at the the expense of communication overhead.

SOS [18], Pushback [4], AITF [5], StopIt [6], PFS [20] and APFS [21] mechanisms de-

cide on filters cooperatively and have higher communication overhead whereas others

do not su↵er from this burden.

Scalability is the ability of the network to grow in size and handle increasing

tra�c volumes while still performing at an adequate level of service quality. SOS [18],

Pushback [4], AITF [5], StopIt [6], PFS [20] and APFS [21] are more scalable since

they can respond to growing number of users and handle them since several machines

are utilized in the system. It would be more di�cult to tackle this situation with a

single machine as in the case for other mechanisms. The distributed nature of these

systems allows for di↵erent mitigation techniques against high tra�c loads.
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Finally, attack prevention e�ciency (APE) of a defense mechanism is another

important feature that needs to be evaluated by network security experts. Attack

packets occupy network infrastructure and waste system resources. Especially in DDoS

attacks, they prevent the system to work e�ciently since the number of packets is

very large. If they are stonewalled early in the network, the system performance will

improve. Thus, APE metric measures how early a network can get rid of attack packets.

It is formally illustrated as in (4.9) where AP is the total number of attack packets,

dis
i

shows the discard hop of attack packet i and p
i

shows the path length of attack

packet i.

APE = 1�
P

AP

i=1
disi
pi

AP
(3.3)

According to the APE definition and performance results, SOS [18], Pushback [4],

AITF [5], StopIt [6], PFS [20] and APFS [21] have high APE since they can stonewall

an attack near the source. This outcome is expected since they are more sophisticated

mechanisms at the expense of deployment complexity and communication overhead.

3.3. Analysis of Filtering Techniques in SDN Environment

The number of network devices connected to Internet is growing rapidly. It is

expected that there will be 1.4 devices per person in 2018 globally [13]. Not only the

usage of mobile devices but also newly emerging technologies such as Internet of Things

will also increase the connected network devices. Growing network sizes will result in

more complex networks and more challenging demands. Existing network technology

cannot manage to handle such complex networks.

In order to design future networks that can satisfy the needs of such complex

networks, several works have already been proposed and Software Defined Networking

(SDN) is considered as the most promising solution among others. SDN’s distinctive

property is the decoupling of data and control plane in network devices. In traditional

networks, routers apply all high level routing algorithms and decides where data packets
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should be forwarded. In SDN, decision and forwarding functions are separated. Hard

decision process is provided by SDN controller whereas data forwarding is handled

by switches. Since decision algorithms do not run on network devices, more simple

devices such as switches can be utilized rather than routers. The simplification of

network devices and central management are the most attractive properties for vendors.

Since they have thousands of network devices, they will have enormous reduction in

their costs. In addition, in traditional networks, each router has its own security, link

failure and forwarding mechanisms. If any of these mechanisms needs to be updated,

each network device should handle these tasks individually. However, in SDN you can

manage all these problems from a center. What used to take 18 months in traditional

networks, takes minutes in SDN [80].

Despite the fact that SDN has its obvious advantages as simplification and flex-

ibility in the network, there are some important challenges that worth considera-

tion [81]which can be listed such as reliability, scalability, latency and controller place-

ment. Despite the fact that SDN is an open door for new threats, there is a limited

industry and research community discussion on security issues of SDN [82].

SDN’s vulnerability for malicious users are derived from two inherent properties

of SDN: the ability to control the network by means of software and the centralization of

network intelligence in the controller [82]. These features results in several trust issues

and single-point management failures. In order to provide trust between applications

and controllers, and between controllers and network devices, authorization policies

and authentication mechanisms should be applied. One point management failure can

be provided by harming availability of SDN controller. One of the most common ways

that can be utilized for such attack is Distributed Denial of Service Attacks (DDoS).

The simple strategy behind a DoS attack is to deny the use of the system ser-

vices/resources to legitimate users and degrade the system availability. The fundamen-

tal mechanism for DoS attack execution is to send a flood of superfluous network tra�c

to the target so that it cannot respond to genuine requests for services or information.

If multiple sources are used by the attacker(s), that type is called as Distributed De-
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nial of Service (DDoS) attack which is much more catastrophic than DoS [83]. DDoS

attacks are also viable for SDN.

One of the vulnerabilities of SDN architecture regarding DDoS attacks is the

limited passive capabilities of switches. Since they send all packets with unknown IPs

to the controller, their medium becomes attractive for DDoS attacks. Moreover, they

do not possess su�cient resources for very large volumes of tra�c. On the controller

side, because of central management property, DDoS attack can cause catastrophic

results if the controller is saturated with attack tra�c.

In the literature, the initial relationships between SDN and DDoS were con-

structed for providing defense mechanisms against DDoS attacks by utilizing SDN [84].

However, it was realized that SDN has its own vulnerabilities that can attract DDoS

attacks and it needs security also for itself. For this reason, DDoS and SDN related

works can be categorized as SDN for security and security for SDN. Latter category

especially security against DDoS attacks in SDN environment is a more recent area.

There are some works proposed for DDoS defense in SDN. However, it is still an imma-

ture area since there is no outstanding solution and all solutions have some drawbacks.

According to the best of our knowledge, this will be the first comprehensive survey

that focuses on security for SDN in terms of DDoS attacks and classifies these works in

several aspects. Our main goal is to construct an illustrative categorization of existing

defense mechanisms in SDN and make it easier for network experts to choose a mecha-

nism for specific contexts and circumstances. In addition, we establish a baseline view

in order to propose a new defense mechanism against DDoS attacks on SDN.

3.3.1. DDoS attack scenarios on SDN

All types of DDoS attacks such as UDP , ICMP or TCP /SYN flooding attacks,

NTP amplification or ping of dead attacks are also viable in SDN environment. Since

SDN infrastructure suggests a centralized management for network flows, SDN is very

attractive for DDoS attackers. Network flow policy of SDN suggests that when a packet

comes from an unknown IP to a switch, it is forwarded to the controller. Then, the
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controller sends a flow rule to the switch for this IP. If attackers send a large number

of packets from several IPs, each packet will be forwarded to the controller. Then a

huge number of attack packets will use all available resources and make the system

unavailable for legal users. A simple topology for SDN is illustrated in Figure 3.2.

Some DDoS attack scenarios for SDN are scripted as follows.

• S1: Controller can be the target for the attack. Attacker can generate tra�c

with spoofed IP addresses. In this type, attacker(s) are under the switch SA who

needs to send all packets to the controller as they are coming from unknown IP.

Then the link between SA and the controller is congested.(Target: L1, Attacker:

A1)

• S2: Controller’s system resources can be the target for attackers. This time

attackers are under di↵erent switches managed by the same controller. Since the

attack tra�c is coming from several switches attack load is divided and it will be

more di�cult to detect it. (Target: C, Attacker: A1 and A2)

• S3: Switch memory can be the target for attackers. A switch have limited memory

and it needs to store a new entry for each flow from di↵erent IPs. When attacker

generates new flows, controller sends new entries. If attacker uses all available

table entries, the legal users’ tra�c from new IPs cannot be served. (Target: SA,

Attacker: A1)

• S4: A legal user under a switch can be the victim for an attacker (i.e. a server).

Attacker can be in the same switch or another switch. If the controller or the

switch cannot detect it, the server’s resources will be depleted. (Target:U1 ,

Attacker:A1 or A2)
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SA SB

U2

C

A2U1A1

L1 L2

Figure 3.2. A sample SDN topology with DDoS attackers

Compared to traditional networks, software-defined networks can become more

prone to DDoS attacks due to three inherent dynamics of attacks as seen in these

scenarios:

• Propagation of attacks: Simpler processing pipelines in switches compared to con-

ventional routers render SDN more prone to attack propagation. The controller

has to step up to hinder such dynamics.

• Aggregation of attacks: Attack tra�c in terms of payload and control tra�c

aggregates towards SDN controller.

• Widespread impact of attacks: A DDoS attack can rapidly a↵ect the entire net-

work by crippling controller(s). This phenomenon is boosted via two character-

istics described above.

While these aspects pose SDN DDoS attacks more challenging, they also provide

opportunities for potential defense approaches which are listed and described in the

next section.

3.3.2. Classifications of Solutions Against DDoS Attacks in SDN

Several solutions and their properties are displayed in the previous section. Since

all models have their own cons and pros, it is not possible to state that one of these

mechanisms is a superior solution for DDoS attacks. For this reason, network adminis-

trators need to choose appropriate one(s) according to their requirements. In order to
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network flows 

and their 
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Figure 3.3. Classification of solutions against DDoS Attacks in SDN

provide an easier way to analyse and decide, classifications of these methods in terms

of several aspects are provided in this section.

Solutions in the literature can be classified as if they are intrinsic or extrinsic. A

property that is inherited and essential are named as intrinsic whereas a property that

varies depending on exterior factors are called extrinsic. In our case, some solutions are

related to structural property of SDN environment, whereas others are mostly related

to the properties of the flows. For this reason, we propose to classify these mechanisms

as intrinsic and extrinsic solutions. This classification is illustrated in Fig 3.3.

Intrinsic solutions can be further categorized as table-entry based solutions, sche-

duling based solutions and architectural solutions. Table-entry based models propose

solutions related to the limited table size of switches. Each unknown IP address needs

a new entry in switch memory. This becomes a bottleneck during a DDoS attack which

has packets with di↵erent IP addresses. [35] and [36] suggests some solutions for this

problem.

Scheduling based solutions are implemented on the controller. These models

suggest that it is essential to protect controller since it is the core of the system in

SDN. In order to provide this property, their models deals with scheduling assignment

of tasks from switches. The approach in [29] provides scalability whereas [30] provides

isolation of the attack tra�c with the help of scheduling algorithms.
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Table 3.4. Classification of Solutions According to Defense Functionality and Switch

Intelligence

Solution Property Capable Switches Dumb Switches

Detection [33] [24] , [32]

Mitigation – [25], [27], [29], [30], [35], [36]

Detection & Mitigation [23], [31] [26], [28], [34]

Architectural solutions are related to the hierarchies and roles of network elements

for solutions against DDoS attacks. [26] and [27] suggest decoupling monitoring and

controlling properties of the controller. They also propose a master that manages these

modules of the controller.

Extrinsic solutions do not deal with network modules of SDN. Instead, their

solutions are related to the properties of the flows. Some researchers focus on identifying

the malicious flows in order to defend against DDoS attacks. These solutions can be

examined in two categories as statistical based solutions and machine learning based

solutions. [22], [23], [25], [28], [31], [32], [33], and [34] models are all statistical based

models which generate baseline profiles with some statistical values that are collected at

attack free period and attack packets are eliminated by comparing with these profiles.

Similarly, the machine learning based solution in [24] trains the mechanism with attack

free packets, then classifies attack packets with the help of machine learning algorithms.

Another classification of solutions is illustrated in Table 3.4. Some of these solu-

tions are dealing with detection, whereas some of them are only focused on mitigation,

whereas others provide both mitigation and detection. Network moderators can deter-

mine their needs and then choose any of these models in the corresponding category.

If they have enough resources, a system will be recommended to have both detection

and mitigation. Also administrators can make combination of detection and mitiga-

tion models if their needs cannot be provided with an existing detection and mitigation

model. Columns of Table 3.4 shows intelligence property of the switches in proposed

solutions. Some of the works in the literature suggest to bring some intelligence to SDN
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switches. The motivation for this approach is based on the idea of keeping flows in

the data plane as much as possible. When more flows are forwarded to the controller,

it is more prone to attacks by malicious users. If switches become more capable on

flow decisions, it will be safer for the controller. Facilitating switches with some minor

intelligence features does not compromise the main paradigm of SDN. However, the

system designer should be cautious for this trade o↵ of SDN paradigm vs. ”capable”

switches.

3.4. Chapter Summary

In this work, we present a comprehensive treatment on filtering based DDoS

defense mechanisms. First, we explain some properties of DDoS detection mechanisms.

Then we give overall description of several DDoS defense techniques and their analysis.

This work specifically proposes a classification approach for filtering techniques. They

can be classified according to their timing and collaborative properties. Regarding

temporal characteristics, they can be proactive or reactive according to defense action

time. Also, they can be individual or cooperative. Several filtering techniques are

analyzed in details and their trade-o↵s are presented. According to this classification,

it is realized that there is not much work which is both proactive and collaborative.

This type is important since it will prevent attack to expand near the source. In

addition, it will have more accurate filters, since it decides on filters cooperatively in

consideration of instant information of several parts of the network.

Moreover, we present a comprehensive treatment on solutions against DDoS on

SDN environment. First, we explain some DDoS attack scenarios that can be viable in

SDN environment. Then we give overall description of several DDoS defense techniques

and their analysis. This work specifically proposes classification of these solutions in

terms of several aspects. Initially, these solutions are categorized as intrinsic and

extrinsic. Intrinsic solutions have also sub categories as table-entry based solutions,

scheduling based solutions and architectural based solutions. Extrinsic solutions have

also sub categories as statistical based solutions and machine learning based solutions.

According to this classification, it is realized that there is not much work in machine
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learning based solutions. Since machine learning is a broad area, its techniques can

work up for SDN environment. Second classification focused on solutions as if they

provide detection, mitigation or both. The last classification presents which types of

switches are utilized in their model. In order to keep flows as much as possible in

data plane, some models suggest to give some intelligence to switches. These types use

capable switches whereas others use dumb switches.
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4. A STATISTICAL FILTERING DEFENSE

MECHANISM: ScoreForCore

In our previous work, we have analyzed and classified several filtering mecha-

nisms. Our classification is based on reaction time and collaboration. A mechanism

can be reactive or proactive in terms of reaction time where as it can be individual or

cooperative in terms of collaboration feature. Individual reactive filtering is active after

DDoS attack detection and it provides easy deployment. If we need a mechanism which

should be active only a small amount of time, since we cannot tolerate extra burden and

we cannot deploy it through the network, then this type will be preferable. Hop Count

Filtering [15] provides such properties. On the other hand, cooperative reactive filtering

provides collaborative decision after DDoS attack is detected. Pushback [4], Active In-

ternet Tra�c Filtering (AITF) [5], StopIt [6], Probabilistic Filter Scheduling (PFS) [20]

and Adaptive Probabilistic Filter Scheduling (APFS) [21] are active after DDoS attack

is detected and filters are propagated through the communicated machines. Individual

and proactive filtering provides easy deployment and quick intervention which inter-

feres DDoS attacks before it impairs the network operation. However, since it is always

active, it results in extra burden on performance. Ingress/Eggress Filtering [1], Route

Based Packet Filtering (RDPF) [2], Source Address Validity Enforcement(SAVE) [3],

PacketScore [16] are some examples of individual and proactive filtering. Coopera-

tive proactive filtering provides collaborative and preventive mechanisms. It provides

an ability of forestalling the attack packets before they expand. Also, it gives more

accurate decisions since they create filters cooperatively with more knowledge of the

network. Nevertheless, according to the best of our knowledge there are a few mecha-

nisms that are both cooperative and proactive in the literature. It can be challenging

since cooperation of all peers are needed while there is no attack. However, if it is pos-

sible to make it e�ciently and increase the accuracy significantly, peers will cooperate

willingly. Thus, we think that this type of filtering should be analyzed in details and

more models should be proposed. Our model ScoreForCore [85] is a cooperative and

proactive model that increases accuracy considerably.
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Table 4.1. Pair Nominal Profile (OPNP ) Example

TTL Value Destination Port Number Number of Packets

48 25 125

48 53 175

48 80 19

50 80 42

... ... ...

4.1. ScoreForCore Mechanism

As we deal with distributed systems while we are proposing a cooperative filtering

mechanism, we decided to work on an existing and promising individual+proactive

model called PacketScore [16]. This model suggests a scoring method based on Bayesian

Theorem [17]. Each packet’s score is calculated by considering its attributes. If its score

is less than a threshold it is regarded as attack packet and discarded, otherwise it is

forwarded. In our model, we utilize the same scoring method. Nevertheless, in our

model routers create profiles with the most appropriate attributes for current attack

which results in much more accuracy. In that sense, we need to consider the following

issues: profiling, comparison, collaboration, score calculation, threshold calculation and

selective discarding. These issues are explained in the following subsections.

4.1.1. Profiling

Each router generates nominal profiles during an attack-free period. It counts

number of packets that have the same attribute value. Following properties are consid-

ered as attributes: IP address, port number, protocol type, packet size, TTL value and

TCP flag. In order to create a pair attribute nominal profile, router chooses random

two attribute pairs named as OwnPairs to generate OwnPairList. At the end of this

period, each router has single nominal profiles SingleNP for each attribute and its

own pair nominal profiles OPNP s created considering OwnPairList. An example of

a nominal profile OPNP for a pair of attributes is illustrated in Table 4.1.
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Table 4.2. Single Nominal (SingleNP
protocol

) and Single Current SingleCP
protocol

Profiles of Protocol Attribute

Protocol Name Number of Packets

TCP 85

DNS 10

UDP 4

NTP 1

... ...

Protocol Name Number of Packets

TCP 185

DNS 17

UDP 8

NTP 1

... ...

Table 4.3. Single Nominal and Single Current Profiles of Packet Size Attribute

PacketSize Number of Packets

66 38

60 29

83 3

159 1

90 3

... ...

Packet Size Number of Packets

66 42

60 35

83 12

159 7

90 3

... ...

In an attack period, when a congestion is detected, packet based analysis are

activated. For each attribute, current number of packets is calculated and single current

profiles SingleCP s are generated.

4.1.2. Comparison

In order to calculate the score of a packet, current pair profile PCP and nominal

pair profile PNP are needed. In a router, the pair that will be utilized in current pro-

filing is called ScorePair whereas the current profile that is generated from ScorePair

is called PCP . The router should determine ScorePair in order to generate PCP .

The router’s aim is to determine ScorePair as the most appropriate attribute pair for

current attack. For this aim, the router compares single nominal profiles SingleNP s

with single current profiles SingleCP s that are generated in the previous step. The

examples of SingleNP and SingleCP s of protocol type and packet size attributes are

illustrated in Table 4.2 and 4.3.



47

In this step, the main aim is to determine the two specific attributes that have the

most deviation from the nominal profiles. Maximum deviation Dev
A

of an attribute

A can be determined by finding the maximum deviation of all values for A. For in-

stance an attribute A takes{a1, a2, a3, ..., an} values, then initially all deviations should

be determined for all values and maximum of these deviations can be found as follows

Dev
A

= MAX{dev
a1, deva2, deva3, ..., devan}. devan is the di↵erence between the num-

ber of packets with A = a
n

in current profile, npcp
an

, and the number of packets with

A = a
n

in nominal profile, npnp
an

. It can be formulated as dev
an

= npcp
an

� npnp
an

.

After maximum deviation Dev
A

is determined for each attribute, then the at-

tribute that have the largest deviation is chosen as Dev
MAX1 = MAX{Dev

A

, Dev
B

,

Dev
C

, ..., Dev
M

} in which M is the number of attributes, in our case it is 6. Subse-

quently, second largest deviation is chosen as Dev
MAX2 = MAX2{Dev

A

, Dev
B

, Dev
C

,

..., Dev
M

}. And lastly, the router generates suspicious pair from the attributes that

gives Dev
MAX1 and Dev

MAX2. This pair is chosen as the most probable signs for

ongoing attacks. Thus, it is called as SuspiciousPair.

An example of SingleNP and SingleCP of an attribute protocol type is illus-

trated in Table 4.2. The most deviation of protocol attribute is provided by TCP value

and Dev
Protocol

= 100. Similarly, Table 4.3 shows single profiles of packet size. The

most deviation of packet size is provided by 83 and Dev
PacketSize

= 9. All remaining

attributes are analyzed in a similar way and all deviations as Dev
ttl

, Dev
portNumber

,

Dev
IPnumber

and Dev
TCPFlag

are determined. Then, the two attributes that have the

most deviations regarded as SuspiciousPair. The router should find a way to access

suspicious pair nominal profile named as SPNP if its OwnPairList does not contain

the SuspiciousPair.

4.1.3. Collaboration

After SuspiciousPair is determined by the router, it checks if it has this pair.

If, this is the case, then it uses its OwnPair as ScorePair and OPNP as PNP . Also

it generates PCP according to this pair. Otherwise it needs to communicate with its
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N1

N3
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N’’221
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First Hop Neighbors N

Second Hop Neighbors N’
Third  Hop Neighbors N’’

Figure 4.1. Collaboration in ScoreForCore

neighbors. It will ask its neighbors for SuspiciousPair’s nominal profile SPNP . The

owner of the queried pair sends SPNP to the router, and then it is utilized as PNP .

Also, the router determines ScorePair as SuspiciousPair. Otherwise, the neighbors

ask their neighbors. In other words, second hop routers are utilized in order to access

SPNP of SuspiciousPair. If second hop neighbors does not have this pair, then

third hop routers are utilized. If SuspiciousPair cannot be accessed even in third hop

neighbors then the router have to use its OPNP as PNP and determine ScorePair

as its OwnPair. A sample braodcast messaging is illustrated in Figure 4.1. Router

R’s SuspiciousPair is owned by a third hop neighbor. These operations on Router R

can be expressed as in the following pseudo code.
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Ensure: SuspiciousPair is determined by R

if SuspiciousPair 2 OwnPairList
R

then

ScorePair
R

= OwnPair
R

and PNP
R

= OPNP
R

else if SuspiciousPair 2 OwnPairList
NR

for all NR 2 N then

ScorePair
R

= SuspiciousPair and PNP
R

= OPNP
NR

else if SuspiciousPair 2 OwnPairList
NR

0for all NR0 2 N 0 then

ScorePair
R

= SuspiciousPair and PNP
R

= OPNP
NR

0

else if SuspiciousPair 2 OwnPairList
NR

00for all NR00 2 N 00 then

ScorePair
R

= SuspiciousPair and PNP
R

= OPNP
NR

00

else

ScorePair
R

= OwnPair
R

and PNP
R

= OPNP
R

end if

Figure 4.2. Pseudo Code for Collaboration of ScoreForCore

In this pseudocode, subscript in each definition shows the router that owns this

property. For instance ScorePair
R

, OwnPair
R

, PNP
R

are all belong to Router R.

OPNP
R

, OPNP
NR

, OPNP
NR

0 and OPNP
NR

00 are the own pair nominal profiles of

Router R, NR, NR0 and NR00. Similarly, OwnPair
R

, OwnPair
NR

, OwnPair
NR

0 and

OwnPair
NR

00are the own pairs of R, NR, NR0 and NR00. NR is a router in R’s

neighbor list N whereas NR0 is a router in second hop neighbor list N 0. Similarly,

NR00 is a router in third hop neighbor list N 00.

At first glance, collaboration of the neighbors appears like pointless, since it gives

a communication burden for neighbor routers. But indeed, it is a win win negotiation,

since attack tra�c will be blocked near the source and neighbors’ resources will be

protected. For this reason, neighbors also want to collaborate with the router in trouble.

After ScorePair is determined by collaboration, the router starts to generate its

current pair profile PCP according to ScorePair.
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4.1.4. Score calculation

After the collaboration period, the routers have PNP and PCP tables according

to ScorePair. Each packet’s score is calculated considering PNP ’s corresponding

value. If ScorePair is determined as A and B, then packet p with the attributes

A = a
p

and B = b
p

will have the score S
p

as follows:

S
p

=
PCP(A=ap,B=bp)/TPCP

PNP(A=ap,B=bp,...)/TPNP
(4.1)

In (6.7), PCP(A=ap,B=bp) corresponds to the number of packets in current profile that

have the property of a
p

for attribute A and b
p

for attribute B. TPCP is the total

number of packets in current profile. Similarly, PNP(A=ap,B=bp) is the number of packets

in the nominal profile that have the property of a
p

for attribute A and b
p

for attribute

B. TPNP is the total number of packets in nominal profile.

4.1.5. Threshold calculation

The score of a packet needs to be compared with a threshold Th. All scores

are stored in a ScoreList and the threshold value Th is determined according to the

cumulative distribution of scores by using load shedding algorithm [86]. It is shown as

symbolically CDF (Th) = � whereas � is the ratio of tra�c that should be dropped.

The fraction of tra�c permitted to pass is 1� � = �

 

whereas � acceptable tra�c and

 is the total current incoming tra�c.

4.1.6. Selective discarding

Each packet’s score value is compared with the threshold. If it exceeds the thresh-

old, this packet is supposed to be malicious and discarded. Otherwise, it is forwarded

to the destination.
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Figure 4.3. Operations in ScoreForCore
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To sum up, all these operations are demonstrated in Figure 4.3. In this figure,

each router has three OPNPs and SuspiciousPair is requested from until third hop

neighbors. All the operations in each router can be itemized as follows:

• In an attack free period, SingleNP s are created for each attribute whereas

OPNP s are generated by considering randomly chosen OwnPairs.

• After congestion detected, SingleCP s are generated for each attribute.

• SingleCP s and SingleNP s are compared for each attribute and two attributes

that have the most deviation from nominal profiles are determined as Suspicious

Pair.

• The router itself S, its neighbors N , second hop neighbors N 0 and third hop

neighbors N 00 are queried for SuspiciousPair. If any of the routers in neighbor

list have the queried pair, it sends corresponding pair nominal profile to the

router. Then, ScorePair and PNP are determined by collaboration.

• PCP is generated according to ScorePair.

• Each packet’s score is calculated by considering PCP and PNP .

• If the score is under the threshold, it is forwarded otherwise it is discarded.

4.2. Dataset and Simulation Details

In this section, all the details about the dataset and simulations are presented.

4.2.1. Dataset

In our work, we need real data of Internet tra�c. We use real dataset from MAWI

Working Group Tra�c Archive [87]. MAWILab works on tra�c measurement analysis

in long-term on global Internet. It was started in 2002 and it is still collecting data

from Internet. The part of the data that we have used in our simulations are collected

on Jan 12, 2014. This data is utilized to generate nominal profile.
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Figure 4.4. Network Topology utilized in ScoreForCore simulations

4.2.2. Simulation Environment

We simulated our model ScoreForCore and existing model PacketScore [16], in

order to compare their performances. The simulation programs are written in C++.

Test environment is a 3.3 GHz Intel Core i5 processor with 4 GB memory.

4.2.3. Network Generation

In order to perform our simulation, we need to generate a network that is made

up of routers. Firstly, we have utilized a real topology that shows the backbones in

United States [88]. It is demonstrated in Figure 4.4. It is made up of 18 nodes and

average number of neighbors for each node is three.
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4.2.4. Attack Generation

According to the network topology in Figure 4.4, attack sources and the victim

can be scattered. Suppose that backbone router at Hartford is exposed to a DDoS

attack. Botnets are attacking from Seattle, St. Louis, Hawaii, San Jose and Atlanta.

Other backbone routers are also sending some legitimate tra�c to this victim. Legiti-

mate routers generate legitimate tra�c that have similar properties and similar amount

of tra�c to nominal profile packets. Nominal profile packets are created according to

the dataset. Attack nodes generate both legitimate and attack tra�c. In PacketScore

scheme [16], they made comparison in terms of time based vs. packet based period

determination. Their results suggest that packet number based intervals are more suit-

able. Because time-based window may not allow creating meaningful profiles since it

may not have as many as packets. In our simulations, for each period, 5000 legal,

50000 attack packets are generated. We perform attacks by creating new packets that

are similar to non-attack period’s tra�c. We simulate the following attacks:

• Generic Attack: All attributes are selected randomly in their ranges.

• TCP SYN Flood Attack : The protocol type of an attack packet is TCP and TCP

flag is set to SYN flag. Other attributes are randomized.

• SQL Slammer Worm Attack : The protocol type of all attack packets is UDP and

destination port is set to 1434. Also, packet size is between 371- 400 bytes. Other

attributes are randomized.

• DNS Amplification Attack : The protocol type of attack packets is DNS and

destination port is set to 53. Also, attack packet size is 60 bytes. Other attributes

are randomized.

• NTP Attack : The protocol type of attack packets is NTP and destination port is

set to 123. Also, attack packet size is 90 bytes. Other attributes are randomized.
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PRECISION= TP / (TP+FP)TP FP
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LEGAL ATTACK

FORWARDED

DROPPED NEGATIVE PREDICTIVE
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RECALL =
TP/ (TP+FN)

TRUE NEGATIVE RATE =
TN / (TN+FP)

Figure 4.5. Metrics utilized in ScoreForCore evaluation

4.3. Performance Evaluation

In this section we evaluate the performance of ScoreForCore. Firstly, we explain

our performance metrics, secondly analyze attribute distribution in the network topol-

ogy, then compare the results of ScoreForCore and PacketScore. At the end, technical

and empirical storage analysis are provided.

4.3.1. Performance Metrics

In pattern recognition and information retrieval, true positive (TP), true negative

(TN), false positive (FP) and false negative (FN) based binary classification metrics are

instrumental to measure system performance. Since DDoS attack packet identification

is also a binary classification problem, we utilize these metrics.

In our case, TP is the number of legal packets that are identified correctly by

the system and reach the destination safely. TN is the number of attack packets

dropped in the network and stonewalled to prevent reaching the destination. In that

vein, FN is the number of legal packets that are falsely discarded whereas FP is the

the number of attack packets that are falsely forwarded to the destination. Following

metrics calculated via these parameters are utilized in performance measurement:

• Precision (PN): What percentage of forwarded packets were legal?

PN =
TP

TP + FP
(4.2)
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• Recall (RL): What percentage of legal packets were forwarded to destination?

RL =
TP

TP + FN
(4.3)

• True Negative Rate (TNR): What percentage of attack packets were dropped?

TNR =
TN

TN + FP
(4.4)

• Negative Predictive Value (NPV): What percentage of dropped packets were at-

tack packets?

NPV =
TN

TN + FN
(4.5)

• Accuracy (ACC): What percentage of the decisions were correct?

ACC =
TP + TN

TP + TN + FP + FN
(4.6)

• F-measure (FM): This metric combines precision and recall. In other words, it

deals with the system’s success regarding legal packets. It is the harmonic mean

of precision and recall:

FM =
2⇥ PN ⇥RL

PN +RL
(4.7)

• F-measure Complement (FMC): As opposed to F-measure, this is dealing with

system’s success in attack packets. This metric combines true negative rate and

negative predictive value. It is the harmonic mean of these metrics.

FMC =
2 ⇤ TNR ⇤NPV

TNR +NPV
(4.8)
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• Attack Prevention E�ciency (APE): Attack packets are occupying network in

vain. Especially in DDoS attacks, since number of packets are huge, they prevent

the system to work e�ciently. If they are stonewalled early in a network, e�ciency

of the network will increase. Thus, attack prevention e�ciency measures how

early network can get rid o↵ attack packets. It is formally illustrated as in 4.9.

In this equation, AP is the total number of attack packets, whereas dis
i

shows

the discard hop of attack packet i and p
i

shows the path length of attack packet

i.

APE = 1�
P

AP

i=1
disi
pi

AP
(4.9)

4.3.2. Attribute Distribution Analysis in Network Topology

Since our model suggests selection of the most appropriate attribute pair, it is

important to be sure that most of the routers reach SuspiciousPair during an attack

tra�c. For this reason, before we start our simulations, we made some experiments in

order to see how many of the routers reach desired pair in how many hops. These are

illustrated in Table 4.4. In order to see all aspects, number of OPNP s for each router is

also varied. If the number of nominal profiles increases for each router, the probability

of reaching desired pair will also increase. This is strictly related to memory issue.

Adding a pair nominal profile is a↵ordable for a core router since we are not dealing

with tuple nominal profiles. These issues are explained in details in Section 4.3.4.

In this table, S shows the number of routers that have SuspiciousPair in their

OwnPairList whereas N stands for the number of routers that reach SuspiciousPair

in their first neighbors. Similarly, N 0 and N 00 is used for the number of routers that

reach SuspiciousPair in their second and third hop neighbors. NF shows the num-

ber of routers that cannot find SuspiciousPair in its neighbors. In MEMX-HOPY

experiments, each router has X number of nominal profiles and it is allowed to request

SuspiciousPair from at most Y hop neighbors. These results suggest that for the topol-

ogy in Figure 4.4, in MEM3-HOP3 experiment, all routers can reach SuspiciousPair

since NF = 0. In our simulations, in order to be sure that, all routers are selecting
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Table 4.4. Number of Routers reaching the SuspiciousPair

S N N 0 N 00 NF

MEM1-HOP1 1 1 0 0 16

MEM1-HOP2 1 4 6 0 7

MEM1-HOP3 1 4 5 4 4

MEM2-HOP1 2 3 0 0 13

MEM2-HOP2 2 4 5 0 7

MEM2-HOP3 2 5 5 4 2

MEM3-HOP1 3 8 0 0 7

MEM3-HOP2 3 5 4 0 6

MEM3-HOP3 3 10 4 1 0

the most appropriate pair for their analysis, we let routers to request the desired pair

profile from at most 3-hops neighbors and provide three OwnPair and OPNP tables

for each router.

4.3.3. Results

In this section, we demonstrate our performance results according to the metrics

explained above. In our simulations, PacketScore and ScoreForCore models are both

run on all routers in the network. In the following tables, SFC stands for ScoreForCore

model wheras PS stands for PackstScore model. Table 4.5 shows precision, recall and

F-measure results for all attack types. Table 4.6 illustrates true negative rate, negative

predictive value and F-measure complement results. Table 4.7 demonstrates accuracy

and attack prevention e�ciency values for PacketScore and ScoreForCore.

F-measure value shows the success of the system’s behavior on legal packets.

According to Table 4.5, for all attack types, ScoreForCore’s F-measure result is much

better than PacketScore’s F-measure result. Success of the system’s behavior on legal

packets can be interpreted as follows: If there is an attack, PacketScore is mostly

inclined to punish legal packets in addition to attack packets, whereas ScoreForCore

lets legal packets to reach to destination in massive attack environment. If we analyze
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Table 4.5. Precision,Recall and F-Measure Results of ScoreForCore
Attack
Types Model PN RL FM

Generic
Attack

PS:
SFC:

0.59
0.72

0.35
0.94

0.44
0.81

TCP-SYN Flood
Attack

PS:
SFC:

0.73
1

0.49
0.99

0.59
0.99

SQL Slammer
Worm Attack

PS:
SFC:

0.98
1

0.86
1

0.92
1

DNS Amplification
Attack

PS:
SFC:

0.84
1

0.55
0.98

0.67
0.99

NTP
Attack

PS:
SFC:

0.99
1

0.82
0.99

0.90
0.99

Table 4.6. True Negative Rate , Negative Predictive Value and F-Measure

Complement Results of ScoreForCore
Attack
Types Model TNR NPV FMC

Generic
Attack

PS:
SFC:

0.84
0.76

0.67
0.95

0.75
0.85

TCP-SYN Flood
Attack

PS:
SFC:

0.89
1

0.73
0.99

0.80
0.99

SQL Slammer
Worm Attack

PS:
SFC:

0.98
1

0.92
1

0.95
1

DNS Amplification
Attack

PS:
SFC:

0.93
1

0.76
0.98

0.84
0.99

NTP
Attack

PS:
SFC:

0.99
1

0.89
0.99

0.94
0.99

values in Table 4.5, we can remark that SFC gives perfect results for the known attacks.

Even for the unknown attack, named as Generic Attack, SFC overwhelmingly beats PS

since SFC chooses the most appropriate attribute whereas PS uses random attributes

for analysis.

Table 4.6 illustrates true negative rate, negative predictive value and F-measure com-

plement results for all attack types. F-measure complement value shows the success

of the system’s behavior on attack packets. For all attack types, ScoreForCore’s F-

measure complement value is better than PacketScore’s F-measure complement. For

known attacks SFC gives perfect results whereas for the unknown attack it manages

to give 85 % success on attack packets.
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Table 4.7. Accuracy and Attack Prevention E�ciency Results of ScoreForCore

Attack Types Model ACC APE

Generic Attack
PS:
SFC:

0.65
0.83

0.61
0.65

TCP-SYN Flood Attack
PS:
SFC:

0.73
0.99

0.84
0.97

SQL Slammer Worm Attack
PS:
SFC:

0.93
1

0.78
0.97

DNS Amplification Attack
PS:
SFC:

0.78
0.99

0.84
0.97

NTP Attack
PS:
SFC:

0.92
0.99

0.84
0.97

In Table 4.7, accuracy and attack prevention e�ciency results are demonstrated.

Accuracy values show the system’s accurate decisions on all packets. As it is obvious,

for all attack types ScoreForCore outperforms PacketScore. Since the most appropriate

attributes are considered in ScoreForCore, accurate decision number of the system

increased. Accuracy is perfect for known attacks in SFC, whereas it performs 83%

success for an unknown attack. In addition, attack prevention e�ciency results for

SFC is perfect for known attacks which means that almost all of the attack packets are

stonewalled near the source of the attack.

4.3.4. Storage Analysis

Since several profiles are generated in ScoreForCore, it is important to make

analysis of its storage requirement. Theoretical and empirical analysis are provided in

the following subsections.

(i) Theoretical: Storage requirement SR for a nominal profile can be formalized

as follows: SR = ES ⇤ NE in which ES is the size of an entry, NE is the

number of entries. Also ES can be formalized as ES = (NA + 1)X32 bits. NA

demonstrates the number of attributes in a profile. An entry in a single attribute

profile consists of an attribute value and the number of packets that have these

attributes. Thus for each entry 32-bit is used for the attribute value whereas the

other 32-bit is used for the corresponding number of packets. Then, each entry in

a single attribute profile needs 64 bits in other words ES = 64. Similarly, in pair
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attribute profile each entry needs ES = 96 bits. In order to find a theoretical

bound for SR, all packets are supposed to have di↵erent values for each packet,

then the number of entries are equal to NE = NPPNA whereas NPP is the

number of packets. Then, for a single attribute profile storage requirement is

SR = 64 ⇤ NPP bits whereas it is SR = 96 ⇤ NPP 2 bits for a pair attribute

profile. If the number of packets is considered as 5000, a single attribute profile

needs 40 KB, pair attribute profile needs 300 MB. These values are far more then

real storage since the number of entries are regarded as maximal.

During the above calculations we did not take into account that the attribute

can be an IP address and this can be an IPv6 address. In that case, a value

would not take 32bits , instead it will be 128 bits. If an 32-bit is used for the

corresponding number of packets, then ES = 128+32 = 160 bits for single profile

and ES = 128 + 32 + 32 = 192 bits for a pair profile that have IP addresses for

both attributes. Then SR = 160 ⇤NPP bits for a single profile where as it takes

SR = 192 ⇤NPP 2 bits for a pair profile. If the number of packets is considered

as 5000, a single attribute profile needs 100 KB, pair attribute profile needs 600

MB.
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Table 4.8. The Number of Di↵erent Values for Each Attribute

SourceIP DestPort
Protocol
Type TCP Flag TTL

Packet
Size

The Number of
Di↵erent
Values 324 80 7 8 59 67

(ii) Empirical: In order to show more realistic values, empirical results are provided

in this section. The real dataset that we have utilized in our simulations is

analyzed in terms of number of di↵erent values for each attribute. These values

are displayed in Table 4.8:

According to these values, the largest single attribute nominal profile needs SR =

64 ⇤ 324 which means approximately 2.5 KB whereas the largest pair attribute

profile requires SR = 96 ⇤ 324 ⇤ 80 in other words 311 KBs.

If IPv6 is used for all IP packets, then for a single profile 324 ⇤ 160 bits which is

approximately 6.8 KBs is needed. Similarly, a pair profile needs 324 ⇤ 80 ⇤ (128+

32+32) bits which is approximately 622 KB. These values are much less than the

theoretical results and can be a↵ordable easily by core routers. In our model SFC,

routers need to reach the most appropriate attribute pair for score calculation.

In order to increase the probability of access to SuspiciousPair, nominal profile

tables for routers can be increased. Each table increase corresponds to 311 KB

memory consumption. In our case, we have utilized three tables for each router.

4.4. Discussion

In order to provide collaboration, packet marking or communication techniques

can be utilized. Initially, we focused on packet marking techniques and generated a

cumulative scoring model. However, we noticed that for core routers the cost of mark-

ing packets is huge, since each packet requires checksum recalculations. In addition,

cumulative scoring does not always give accurate results since irrelevant attributes

are considered and they mislead the statistical analysis. Then, we decide to focus on

finding the most appropriate attribute pair and utilize communication for providing

collaboration.
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In ScoreForCore, each router needs to access the most appropriate attribute pair.

However, this condition depends on the number of neighbors for each router in the

topology. In order to increase the probability of access to the desired pair, request hop

and number of attribute pair for a router can be increased. Increasing request hop

results in increase in communication overhead whereas increasing number of attribute

pair for a router requires more storage space. Thus, ScoreForCore has memory and

communication overhead issues that needs to be considered. As it is illustrated in

Section 4.3.2, in order to be sure that most of the routers can access the most appro-

priate pairs this model should be deployed after some analysis in terms of memory and

hop. As it is mentioned in previous section, since pair attributes are utilized instead

of tuples, storage requirements is in KBs which can be a↵orded easily by core routers.

Besides, it does not give much burden on communication since additional hop means

an additional broadcast message and an answer, which is a piece of cake for a router.

4.5. Chapter Summary

In this work, we propose a proactive and cooperative filtering model against DDoS

attacks. This type of filtering provides an ability of preventing the attack packets before

they expand and gives more accurate decisions since they create filters together with

more knowledge of the network. The proposed model ScoreForCore is a statistical

based model that utilizes several attributes. It can protect against botnets since not

only IP address but also several attributes are considered. It can also protect against

unknown attacks since it makes statistical analysis and compares the current tra�c

with the nominal profile. The most distinctive property of this model is the selection

of the most appropriate attributes for current attack tra�c. This provides considerable

improvement in accuracy. We evaluate ScoreForCore according to precision, recall, f-

measure, f-measure complement, accuracy and attack prevention e�ciency metrics.

The results suggest that it gives perfect accuracy and attack prevention e�ciency for

several known attacks. Also, almost all known attack tra�c is stonewalled near the

source of the attack. Besides, it performs 80% accuracy for an unknown attack called

as generic attack. Our results are good enough to encourage other researchers to work
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on proactive and collaborative filtering mechanisms against DDoS attacks.

As a future work, we plan to make experiments in a real test-bed. This will make

our results more realistic. In addition, secure communication protocols can be pro-

vided for collaboration of backbones. Besides, choosing the most appropriate attribute

strategy can be applied for other statistical defense mechanisms. In addition, this

collaborative model can be applied to emerging Software Defined Networking (SDN)

technology. As it is stated in [89], SDN has a logical centralized controller that has

network-wide knowledge of the system and can analyze the tra�c patterns easily. Also,

it can update forwarding rules dynamically. For these reasons, SDN brings new op-

portunities to defeat against DDoS attacks in cloud computing environment. Besides,

according to [84, 90], a cooperative defense mechanism can be very e↵ective against

attacks.
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5. DEFENSE MECHANISM IN SDN ENVIRONMENT:

SDNScore

Software Defined Networking (SDN) is a recent emerging technology which defines

a new design and management approach for networking [12]. The main property of

this paradigm is the separation of control and data planes. In traditional networks,

routers apply high level routing algorithms and decide where data packets should be

forwarded. In SDN, decision and forwarding functionalities are separated. Decision

process is provided by SDN controller whereas data forwarding is handled by switches.

Since decision algorithms do not run on network devices, simpler network devices can be

utilized rather than complicated routers [13]. Moreover, in traditional networks, each

router has its own security, link failure and forwarding mechanisms. If any of these

mechanisms needs to be updated, each network device should be handled individually.

However, one can manage all these issues at a central point in SDN architecture.

Despite its advantages, SDN has several inherited challenges such as reliability,

scalability, latency, and controller placement [81]. Security can be counted as one of

the most vital problems [91]. In that regard, Denial of Service (DoS) attacks provide

a favorable way for attackers to damage security of these systems. The main agenda

of DoS attackers is to make network-resident services unavailable for legal users. An

attacker generates enormous number of attack packets and makes the system busy

such that it cannot serve the requests of legal users. If several machines participate in

this attack, it is called Distributed Denial of Service (DDoS) attack. It can be created

easily whereas it can be detected hardly since malicious packets show up as legal but

with very large quantities.

SDN environment is favorable for DDoS attacks since it is inherently managed by

the centralized controller [85]. When a packet comes to a switch from an unknown IP,

it is forwarded to the controller. Then, the controller sends a flow rule to the switch for

this IP. If attackers send a large number of packets from several IPs, each packet will
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be forwarded to the controller. Then a huge number of attack packets will consume all

available resources of the controller and make the system unavailable for legal users.

Besides, the same attack can also cripple the system by exploiting the table capacity

of switches. When a huge number of spoofed packets are received by the switch, its

memory will be totally occupied. Similarly, the link between switch-controller can

become unavailable because of the congestion by malicious tra�c. All these issues

pose SDN vulnerable for DDoS attacks and thus DDoS defense as a critical research

topic for SDN.

A critical characteristic of SDN architecture that nondeliberately serves DDoS

attacks is the limited passive capabilities of switches. Since they send all packets with

unknown IP addresses to the controller, their medium becomes attractive for DDoS

attacks. In addition, they do not have enough resources for very large volumes of

tra�c. In order to solve these problems, security-oriented intelligence can be integrated

to switches. That will help to keep tra�c in data plane as much as possible. Several

works have suggested this approach such as [22,23,31–33]. In our SDNScore model, we

also utilize switches with relevant processing and intelligence capabilities for security.

We them rationale behind SDN which is simpler and lower-cost network equipment

employed as the forwarding plane elements.

In the literature, there are some works proposed for DDoS defense in SDN. How-

ever, it is still an immature area since there is no dominant solution and all models have

some drawbacks. In this work, we propose a packet-based statistical defense mecha-

nism against DDoS attacks for SDN. We have been inspired by another packet based

model, PacketScore [16], for traditional networks. Our proposal can cope with not

only traditional attacks but also unknown new attacks. In order to make statistical

analysis, some properties are utilized in packet scoring. The main di↵erence of our

proposal from PacketScore is the selection of appropriate attributes for each attack.

This crucial property is provided by the support of the controller. Our results suggest

that it is an e↵ective method for DDoS defense in SDN.
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Figure 5.1. SDNScore architecture: switch and controller modules.

5.1. SDNScore Mechanism

SDNScore consists of four modules, profiler, actuator, comparator and scorer, to

be loaded on the switches and another module, PairProfiler, for the controller. These

components cooperate for DDoS detection and mitigation in SDN environment.

5.1.1. SDNScore Modules for Switches

Profiler generates nominal profiles in an attack-free period whereas actuator in-

spects tra�c and starts packet-based inspection if an attack is detected. Comparator

finds most appropriate pair for packet attributes and Scorer analyzes incoming pack-

ets and makes selective discarding according to that. These modules are illustrated in

Figure 5.1 and explained in the following subsections.

(i) Profiler: Each switch generates a nominal profile during an attack-free period.

It counts the number of packets that have the same attribute value. Following

properties are considered as attributes: source IP, destination IP, source port,

destination port, protocol type, packet size, TTL value and TCP flag. During

nominal profiling period, the profiler sends headers of all packets to the controller.

Accordingly, the controller generates pair nominal profiles for each combination.

At the end of this period, it has each pair nominal profile whereas the switches

have single nominal profiles. Pair profiles are not stored in the switches because it

would occupy a large amount of memory. A switch needs to store eight tables with

above mentioned attributes whereas the controller needs to store C(8, 2) = 28
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Table 5.1. Pair Nominal Profile Example

TTL Value Destination Port Number Number of Packets

48 25 125

48 53 175

48 80 19

50 80 42

... ... ...

tables. An example of nominal profile for a pair is presented in Table 6.1.

In addition to nominal profile generation, all profiling instructions that will be

held in packet inspection period are also provided by the profiler. When the ac-

tuator detects a congestion, it also informs profiler and starts to generate current

profiles. A current profile is generated during an attack period. Pair profiles

are needed during current tra�c analyses whereas single profiles are only used

for choosing the most appropriate attribute selection. Pair profiles are utilized

during all attack periods since they provide more detailed information about the

tra�c and enables more accurate decisions. The generated profiles are used by

the other modules.

(ii) Actuator: In normal conditions, flow-based network monitoring is provided in

switches. Actuator inspects bandwidth usage to determine surges. When tra�c

exceeds a bandwidth threshold, system monitoring is switched to packet-based

inspection, and comparator and profiler modules are activated. Packet based

inspection provides generation of new tables as single current profiles in profiler.

Since actuator monitors congestion consistently, when tra�c returns to normal

density and drops below the threshold, it informs other modules to switch to

stand-by state. Then Actuator stops packet inspection and the system continues

on flow-based monitoring.

(iii) Comparator: After congestion is detected, actuator activates this module. Since

current single profiles are generated by profiler, this module compares single nom-

inal profiles with single current profiles. It determines the two specific attributes

that have the most deviation from nominal profiles. These pairs are chosen as the

most probable signs for ongoing attacks. Thus, it is called as SuspiciousPair.
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Then comparator requests nominal profile of this pair from the controller. For

instance, if it detects that protocol type and destination port have more devia-

tion from nominal profile, the controller sends the nominal profile comprised of

protocol type and destination port values and corresponding number of packets.

Then it triggers scorer in order to start its work.

(iv) Scorer: This module is activated after all tables are generated. Scorer’s three

main responsibilities are as follows:

• Score calculation: Each packet’s score is calculated considering Suspicious

Pair’s corresponding value. If SuspiciousPair is determined as A and B,

then packet p with the attributes A = a
p

and B = b
p

will have the score S
p

as follows:

S
p

=
PNP(A=ap,B=bp)/TPNP

PCP(A=ap,B=bp,...)/TPCP
(5.1)

In (6.7), PNP(A=ap,B=bp) corresponds to the number of packets in nominal

profile that have the property of a
p

for attribute A and b
p

for attribute B.

Similarly, PCP(A=ap,B=bp) is the number of packets in the current profile

that have the property of a
p

for attribute A and b
p

for attribute B. TPCP

and TPNP are the total number of packets in the current profile and in the

nominal profile, respectively.

• Threshold calculation: The score of a packet needs to be compared with a

threshold Th. This threshold value is determined according to the cumula-

tive distribution of scores by using load shedding algorithm [86]. It is shown

symbolically as CDF (Th) = � whereas � is the ratio of tra�c that should

be dropped. The fraction of tra�c permitted to pass is 1� � = �

 

whereas

� acceptable tra�c and  is the total current incoming tra�c.

• Selective discarding: Each packet’s score value is compared with the thresh-

old. If it exceeds the threshold, this packet is supposed to be malicious and

discarded. Otherwise, it is forwarded to the destination.
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5.1.2. SDNScore Module for Controller: PairProfiler

The controller employs a module called PairProfiler in order to provide neces-

sary capabilities for SDNScore. In normal conditions, while there is no congestion,

switches send the packet flows that do not have an entry for these IP addresses to

the controller. The controller decides how it should be forwarded by executing several

routing algorithms. Then, it sends these rules to each switch and writes entries for

unknown IPs. In our proposal, it has additional duties before and after the attack

detection. PairProfiler ’s primary work is to create pair nominal profiles. While sin-

gle profiles are generated by the profiler, all the packets’ headers are also sent to the

controller. This can be a burden but it is needed only once in an attack-free period.

Period is determined by the number of packets arrived. In PacketScore scheme [16],

they made comparison in terms of time based vs. packet based period determination.

Their results suggest that packet number based intervals are more suitable. Because

time-based window may not allow creating meaningful profiles since it may not have

as many as packets. Since our model utilized the similar scoring technique in [16], we

choose packet based period determination. We also have utilized 5000 legal packets per

period similar to [16]. A switch needs to send TCP and IP header of the each packet.

If the controller and the switch communicates by using IPV6 on TCP, an empty packet

will need 24 bytes for Ethernet header, 40 bytes for IPV6 header and 40 bytes for TCP

header then it needs 104 bytes without the information. Since the switch also needs

to send all TCP and IP header information of the incoming packets, we need to add

this information length. If the incoming packet is an IPV6 and TCP packet then it

will be 40bytes+40bytes = 80bytes. Then totally, the length of a packet that contains

header information is 184 bytes. Since there are 5000 packets in a period, then it needs

184⇤5000 = 920KB as a communication overhead. Since it is needed in an attack free

period it is a piece of cake.

As far as, eight attributes are utilized in profiling and each pair combination is

generated as pair nominal profiles, C(8, 2) = 28 profiles are generated in the controller.
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After a congestion is detected by a switch and the comparator determines the

SuspiciousPair, it requests this pair nominal profile from the controller. Then, the

controller responds this request with the expected information.

5.2. Simulations and Performance Evaluation

We simulated our model SDNScore and existing model An Entropy-Based Dis-

tributed DDoS Detection Mechanism in Software-Defined Networking (EBS) [33], in

order to compare their performances. EBS model calculates entropy for destination

IP and detects the DDoS attack on edge switches. Since this is a statistical model

that runs on switches in SDN, we compared our proposal with this model. Network

topology and dataset, attack types, performance metrics and simulation results are

discussed in the following subsections.

5.2.1. Network Topology and Dataset

We simulated our SDNScore mechanism and EBS mechanism in C++. Test

environment is a 3.3 GHz Intel Core i5 processor with 4 GB memory. Since packet

based periods are utilized, 5000 packets are active in nominal profile generation whereas

during the DDoS attacks, 10 times of nominal tra�c is generated per period. Figure

6.2 depicts the topology used for experiments. There are two switches managed by

the controller. One switch has five legal users (L1- L5) and five attacker users (A1-

A5), whereas the other switch has the victim and two more hosts (H1,H2). These

five attackers are assumed to legal users in the past. Then they are attacked by a

malicious user and they generate a botnet to facilitate DDoS attacks. A real dataset

from MAWI Working Group Tra�c Archive [87] is utilized in tra�c generation. It is

a popular dataset used in literature [92–94]. MAWILab works on tra�c measurement

analysis in long-term on global Internet. It was started in 2002 and it is still collecting

data from Internet. The part of data that we have used in our simulations was collected

on Jan 12, 2014. This data is utilized to generate nominal profiles.
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Figure 5.2. Network topology used in SDNScore experiments.

5.2.2. Attack Types

In this topology, attack and legitimate nodes are connected to a switch. Legiti-

mate nodes generate legitimate tra�c that have similar properties and similar amount

of tra�c to nominal profile packets. Nominal profile packets are created according to

the dataset. Attack nodes generate both legitimate and attack tra�c. In our sim-

ulation, we perform attacks by creating new packets that are similar to non-attack

period’s tra�c. We simulate the following attacks:

• TCP SYN Flood Attack : The protocol type of an attack packet is TCP and TCP

flag is set to SYN Flag. Other attributes are randomized.

• SQL Slammer Worm Attack : The protocol type of all attack packets is UDP and

destination port is set to 1434. Also, packet size is between 371- 400 bytes. Other

attributes are randomized.

• DNS Amplification Attack : The protocol type of attack packets is DNS and

destination port is set to 53. Also, attack packet size is 60 bytes. Other attributes

are randomized.

• NTP Attack : The protocol type of attack packets is NTP and destination port is

set to 123. Also, attack packet size is 90 bytes. Other attributes are randomized.
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In addition to these known attacks, other attack types are analyzed to compare the

performance of our model and EBS for unknown attacks. These attacks are setup as

follows:

• Generic Attack : In this attack, attacker generates attack packets with the at-

tribute values that are selected randomly in their respective ranges.

• Generic Attack with Determined Attributes : Attacker chooses several attributes

and gives most common values for them whereas he gives random values for

other attributes. Choosing the most common values for determined attributes

gives the attacker ability to make attack packets similar to legal packets. This

approach makes the attacker more powerful and gives the ability to get through

the filtering mechanism of the victim. If the attacker chooses two attributes

it is named as Generic Attack with Determined Two Attributes (GAD-2A). For

instance, he chooses protocol type “TCP” and destination port “80”. Then, the

attack packets with these attributes can be mixed up with the legal packets.

Similarly, if the attacker chooses three and four attributes, it is denoted as GAD-

3A and GAD-4A, respectively.

5.2.3. Performance Metrics

In pattern recognition and information retrieval, true positive (TP), true negative

(TN), false positive (FP) and false negative (FN) based metrics for binary classification

are instrumental to measure system performance. Since DDoS attack packet identifi-

cation is also a binary classification problem, we utilize these metrics.

In our case, TP is the number of legal packets that are identified correctly by

the system and reach the destination safely. TN is the number of attack packets

dropped in the network and stonewalled to prevent reaching the destination. In that

vein, FP is the number of legal packets that are falsely discarded whereas FN is the

the number of attack packets that are falsely forwarded to the destination. Following

metrics calculated via these parameters are utilized in performance measurement:
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• Precision (PN): What percentage of the forwarded packets corresponds to legal

packets?

PN =
TP

TP + FP
(5.2)

• Recall (RL): What percentage of legal packets were forwarded to destination?

RL =
TP

TP + FN
(5.3)

• Accuracy (ACC): What percentage of the decisions were correct?

ACC =
TP + TN

TP + TN + FP + FN
(5.4)

• F-measure (FM): This metric combines precision and recall. In other words, it

deals with the system’s success regarding legal packets. It is the harmonic mean

of precision and recall:

FM =
2⇥ PN ⇥RL

PN +RL
(5.5)

5.2.4. Experimental Results

In this section, we demonstrate experimental results according to the metrics

explained in Section 6.2.6. Table 5.2 shows precision, recall, accuracy and F-measure

values. As far as EBS system determines the attacker according to the destination

IP attribute, when it finds the victim it drops all packets to this victim. Then, it

will drop all the attack packets including the legal ones. According to the results in

Table 5.2, SDNScore outperforms EBS for most of the metrics. For each attack type,

di↵erent attributes need to be considered. For TCP SYN Flood attack, protocol type

and TCP flag are the arbiters, whereas protocol type, destination port and packet size

are identifiers for DNS and NTP attacks. Protocol type and destination port are the

identifier pair for SQL Slammer Worm attack. Since SDNScore has the same pair for
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Table 5.2. Precision, Recall, Accuracy and F-Measure Results of SDNScore

Attack Type Model PN RL AY FM

TCP-SYN Flood Attack
EBS:

SDNScore:
0.57
0.98

1
1

0.75
0.99

0.73
0.99

SQL Slammer Worm Attack
EBS:

SDNScore:
0.58
1

1
1

0.79
1

0.72
1

DNS Attack
EBS:

SDNScore:
0.57
0.99

1
1

0.94
0.99

0.74
0.99

NTP Attack
EBS:

SDNScore:
0.56
0.99

1
1

0.93
0.99

0.75
0.99

DNS and NTP attack, their results are same for these attacks.

Precision and recall metrics represent the system performance for legal tra�c.

Since F-Measure is the harmonic mean of them, it also deals with the success of the

system on legal packets. Thus, SDNScore outperforms EBS as far as it does not care

about the legal packets that goes to the victim. The results suggest that F-Measure

values are about 70% for EBS whereas it is 99% for SDNScore. Accuracy metric

considers not only legal but also attack packets. The results suggest that SDNScore’s

decisions are nearly perfect for the attacks whereas EBS cannot catch SDNScore.

In order to compare the performance of our model and EBS for unknown attacks,

generic attack and generic attacks with deterministic attributes are performed. Preci-

sion, recall, F-Measure and accuracy results are shown in Table 5.3. In generic attack,

attacker chooses random values for each attribute. SDNScore mechanism gives mod-

erate results 84% accuracy as seen in Table 5.3. It gives 85% success on legal packets

whereas it lets some attack packets pass. On the other hand, EBS gives 84% accuracy

whereas it performs about 75% success on legal packets. In SDNScore, since all at-

tributes are chosen randomly, some packets’ corresponding values for SuspiciousPair

attribute is exactly same as legal packets and scores of these packets do not exceed the

threshold since there is not high amount of packets with these properties. Therefore,

these packets can manage to get over SDNScore.
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If an attacker becomes more intelligent and tries to generate attack packets more

similar to the legal ones, he or she can choose two attributes and give most popular

values for them. Other values are chosen randomly in that case. This corresponds to

the GAD-2A case. For instance, it makes attack packets with protocol type = “TCP”

and destination port = “80”. SDNScore results in perfect decision on attack packets

(FN =0) whereas it drops some legal packets and thus TN rate increases. Accordingly,

its precision value decreases considerably. In this case, SDNScore cannot cope with the

legal packets that have the same value with the attack packets. The legal TCP packets

that are sent to port 80 are given higher scores since there is high amount of packets

with these properties. As their score exceeds the threshold, they are marked as attack

packets.

If the attacker increases the determined number of attributes to three (GAD-3A)

and gives most popular values for these attributes, he tries to make his packets more

similar to legal ones. For instance, it generates attack packets with protocol type =

“TCP”, destination port = “80” and packet size = “60”. In this case, SDNScore gives

perfect results for attack packets whereas it increases the accurate decision performance

for legal packets. As the determined number of attributes increases, the number of

legal packets who have the determined properties decreases. Thus, the number of legal

packets who give higher scores than threshold decreases, accordingly F-measure value

increases.

If the number of determined attributes is increased to four, SDNScore gives ex-

actly the same result with three attributes. This is because the number of legal packets

who have the same values with attack packets for four attributes is almost equal to

the number of legal packets who have the same values with attack packets for three

attributes. For instance the number of legal packets with protocol type = “TCP”,

destination port = “80”, packet size = “60” and TCP flag =“SYN” are the same as

the number of legal packets with protocol type = ”TCP”, destination port = “80”

and packet size = “60”. That situation corresponds to the case of saturation where

information gain does not contribute to the performance gain anymore.
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Table 5.3. Precision, Recall, Accuracy and F-Measure Results of SDNScore for

Unknown Attacks

Attack Type Model PN RL AY FM

Generic Attack
EBS:

SDNScore:
0.57
0.99

1
0.75

0.75
0.84

0.73
0.85

GAD-2A
EBS:

SDNScore:
0.57
0.55

1
1

0.74
0.80

0.73
0.71

GAD-3A
EBS:

SDNScore:
0.57
0.81

1
1

0.75
0.98

0.73
0.90

GAD-4A
EBS:

SDNScore:
0.57
0.81

1
1

0.75
0.98

0.73
0.90

All these results suggest that SDNScore performs elegantly for unknown attacks.

Even in the conditions that the attacker generates packets that are very similar to legal

packets, our mechanism gives favorable results and increases the accuracy whereas EBS

results does not change and fall behind SDNScore.

5.3. Chapter Summary

In this work, a statistical defense mechanism is proposed against DDoS attacks

in SDN environment. Some intelligence is deployed on SDN switches to enable this

mechanism. SDNScore suggests to add four modules, namely Profiler, Actuator, Com-

parator and Scorer, to switches and one module named as PairProfiler to the controller.

It is a defense mechanism including detection and mitigation against DDoS attacks in

SDN environment. It is e↵ective against unknown attacks since it utilizes statistical

analysis and makes comparison with nominal tra�c. It determines most appropri-

ate attributes for current tra�c and provides considerable improvement in accuracy.

We compare SDNScore with an existing entropy based model (EBS) [33] according to

precision, recall, f-measure and accuracy metrics. The results suggest that SDNScore

outperforms EBS in all types of attacks. For known attacks, SDNScore gives perfect

results. Besides, it performs 84% accuracy for an unknown attack named as generic

attack. If the attacker generates more similar attack packets and tries to get over the

defense mechanism, SDNScore behaves elegantly and gives nearly perfect results as

high as 98% accuracy rate.
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As future work, we plan to perform experiments in a real setup. In addition, the

controller’s role can be enhanced for prevention. It can coordinate several switches for

preventing future attacks. Besides, it can combine statistics from several switches to

provide more accurate scoring.
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6. JOINT ENTROPY BASED SCORING MECHANISM

AGAINST DDOS ATTACKS IN SDN

ENVIRONMENT:JESS

Security can be counted as one of the most vital problems [91] in SDN envi-

ronment. In that regard, Denial of Service (DoS) attacks provide a favorable way for

attackers to damage security of these systems. SDN environment is favorable for DDoS

attacks since it is inherently managed by the centralized controller. When a packet

comes from an unknown IP to a switch, it is forwarded to the controller. Then, the

controller sends a flow rule to the switch for this IP. If the attackers send a large num-

ber of packets from several IPs, each packet will be forwarded to the controller. Then

a huge number of attack packets will consume all available resources of the controller

and make the system unavailable for legal users. Besides, the same attack can also

cripple the system by exploiting the table capacity of switches. When a huge number

of spoofed packets are received by the switch, its memory will be totally occupied.

Similarly, the link between switch-controller can become unavailable because of the

congestion by malicious tra�c. All these issues pose SDN vulnerable for DDoS attacks

and thus DDoS defense as a critical research topic for SDN.

Several works are proposed in the literature for DDoS Defense in SDN. Our pre-

vious work, SDNScore is a packet-based statistical model that needs capable switches.

In this mechanism, each packet is analyzed according to its attribute values and then

scores are calculated according to them similar to the work in PacketScore model [16].

In SDNScore, switches are not simply data forwarders. Instead, they can collect statis-

tics and decide if DDoS attack is in action. Then they coordinate with the controller

and decide on attack packets in cooperation. This model suggests to add four mod-

ules, namely profiler, actuator, comparator and scorer, to the switches and one module

named as pairprofiler to the controller. Facilitating switches with some minor intelli-

gence features does not compromise the main paradigm of SDN. However, the system

designer should be cautious for this tradeo↵ of SDN paradigm vs. “capable” switches.
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In order to get rid o↵ this trade-o↵ problem, we proposed a Joint-Entropy based de-

fense mechanism that carries all burden to the controller and does not need capable

switches.

Entropy shows the randomness in a data set. Since similar type of packets are

sent and occupied most of the tra�c during a DDoS attack, randomness decreases.

For this reason, entropy calculation is a good tool for DDoS detection. Since it has

statistical calculation, it does not give huge burden on performance unlike machine

learning algorithms. There are several works that utilized entropy in traditional net-

works such as [95–97], however there are a few works in SDN. One of them is [32]

that proposes an early detection of DDoS Attacks against SDN Controllers. It runs

on the controller. In this mechanism, entropy is calculated for destination IP address.

If entropy decreases under a threshold, DDoS is detected. It enables to determine the

victim, but it is not possible to dissociate the legal packets from the attack ones. An-

other similar model is [33] that proposes an entropy-based lightweight DDoS flooding

attack detection model running in the OF edge switch. This achieves a distributed

anomaly detection in SDN and reduces the flow collection overload on the controller.

However, there is a trade-o↵ of SDN paradigm vs. “capable” switches in this model.

Another work that utilizes entropy calculation is [98], that they proposes a detec-

tion and mitigation method. They reduced data gathering with sampling and utilized

entropy for anomaly detection. Then provide anomaly mitigation using OF. Their

model runs on the controller. Their mitigation strategy is to cut-o↵ all the flows to the

host under attack. However, this does not enable to protect the legal packets.

In our model called Joint Entropy based Scoring on SDN (JESS), we utilized joint-

entropy for both detection and mitigation. We did not only focused on destination IP

entropy but also all combinations of IP and TCP layer attributes. Several hosts under

a switch can be the victims at the same time, thus destination IP address does not

always give correct results. Thus, there is a need for analysis of di↵erent attributes in

di↵erentiating unknown attacks. For each type of attack, di↵erent attribute needs to

be considered. For instance in TCP SYN Flood attack, protocol type and TCP flag
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are the arbiters, whereas protocol type, destination port and packet size are identifiers

for SQL Slammer Worm, DNS and NTP attacks. In order to be ready for an unknown

attack, the model should not stick to an attribute. Appropriate attribute pair should

be selected for the current attack. For this reason, in our model joint-entropy is utilized

during the appropriate pair selection.

6.1. JESS Mechanism

Joint Entropy based Scoring on SDN mechanism has three main phases: nominal

stage, infant stage and lifelong stage. JESS mechanism creates nominal information

in a non-attack period named as nominal stage. When the bandwidth exceeds the

threshold, second phase called infant stage is come into play. In this phase, DDoS

attack is detected and some parameters are determined. Then the last phase named

as lifelong stage becomes active which defends the system during the attack. All these

stages are shown in Figure 6.1. The details are explained in the following subsections.

6.1.1. Nominal Stage

This stage consists of the preparation steps before the attack. JESS generates the

necessary data that will be used in an attack period. Nominal information is gathered

in an attack free period in order to be compared in the attack period to detect the

anomalies. The pair nominal profiles and joint entropies for each pair are the needed

information. Following subsections explain how these information are obtained.

(i) Nominal Pair Profile Generation: Each switch generates nominal profiles for each

pair attribute during an attack-free period. It counts the number of packets that

have the same attribute value. Following properties are considered as attributes:

source IP, destination IP, source port, destination port, protocol type, packet size,

TTL value and TCP flag. During this profiling period, the switch sends headers

of all the packets to the controller. Accordingly, the controller generates pair



82

SENDS PACKET 

HEADERS TO THE 

CONTROLLER

CREATES NOMINAL PAIR PROFILES 

CALCULATES NOMINAL JOINT 

ENTROPIES

NOMINAL STAGE 
STARTS

NOMINAL STAGE 
FINISHED

INFANT STAGE 
STARTS WHEN BW 

EXCEEDS THE 
THRESHOLD

SENDS PACKET 

HEADERS TO THE 

CONTROLLER

CREATES CURRENT PAIR PROFILES 

CALCULATES CURRENT JOINT 

ENTROPIES

COMPARES NOMINAL AND JOINT 

ENTROPIES

DETERMINES SUSPICIOUS PAIRLEARNS  SUSPICIOUS PAIR

LIFE LONG STAGE STARTS

GENERATES SPCP AND 

SENDS TO THE 

CONTROLLER 

CALCULATES SCORE FOR 

EACH PAIR 

GENERATES RULE TABLE

COMPARES CURRENT  

RULE TABLE WITH THE 

PREVIOUS RULE TABLE

GENERATES AND SENDS 

DIFFERENTIATED RULE 

TABLE TO THE SWITCH

UPDATES RULE TABLE 

ACCORDING TO THE 

DIFFERENTIATED RULE 

TABLE

SWITCH CONTROLLER

Exceeds ThJ

Not Exceeds ThJ

CONTROLS BW

Low

High
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Table 6.1. An Example of a Pair Nominal Profile for TTL Value & Destination Port

Attributes

TTL Value Destination Port Number Number of Packets

48 25 125

48 53 175

48 80 19

50 80 42

... ... ...

nominal profiles for each combination. An example of a nominal profile denoted

as NP for a pair is presented in Table 6.1.

(ii) Joint Entropy Calculation for Nominal Profiles: JESS utilizes joint-entropy in

DDoS detection and appropriate pair attribute selection. Since entropy shows

randomness in a data set, it is a good sign for DDoS detection. As far as similar

packets are sent in DDoS, entropy will decrease and DDoS can be detected. Joint-

entropy shows the amount of randomness we get when we observe more than one

attributes at the same time. In JESS, joint-entropy JENP is calculated for each

nominal pair profile and it is utilized in detection first. When the joint entropies of

the current profiles are compared with the joint entropies of the nominal profiles,

if the di↵erence of any of the pair exceeds a threshold, DDoS will be detected.

Then, the most di↵erentiated pair will be utilized as the appropriate pair for the

current attack.

A nominal profile for a pair attribute such as A and B is denoted as NP
A,B

. Joint

entropy of this nominal profile is calculated as follows:

JENP
A,B

= �
X

a

X

b

PN(A = a,B = b)log[PN(A = a,B = b)] (6.1)

PN(A = a,B = b) shows the probability of a packet to have the property of

A = a and B = b. This can be calculated as follows:

PN(A = a,B = b) = PNP(A=a,B=b)/TPNP (6.2)
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In this equation PNP(A=a,B=b) is the number of packets in a nominal profile

that have the property of a for attribute A and b for attribute B. Also TPNP

corresponds to the total number of packets in the nominal profile NP
A,B

.

At the end of this stage, nominal profiles and joint-entropies are ready to use in

case of an attack.

6.1.2. Infant Stage

When the bandwidth exceeds its nominal value, infant stage is activated. This

stage detects the attack and determines the most appropriate pair for profiling in

lifelong periods of the attack. Following steps are provided in this stage.

(i) Current Pair Profile Generation: Each switch generates current profiles for each

pair attribute during the attack period. It counts the number of packets that

have the same attribute value. During this profiling period, the switch sends the

headers of all the packets to the controller. Accordingly, the controller generates

pair nominal profiles for each combination.

(ii) Joint Entropy Calculation for Current Profiles: Joint entropy JPCP is calculated

for each pair in order to provide the comparison with JENP . Similar to the

JENP , JECP is calculated as follows:

JECP
A,B

= �
X

a

X

b

PC(A = a,B = b)log[PC(A = a,B = b)] (6.3)

where PC(A = a,B = b) is determined as follows:

PC(A = a,B = b) = PCP(A=a,B=b)/TPCP (6.4)

In this equation, PCP(A=a,B=b) is the number of packets in a current profile

that have the property of a for attribute A and b for attribute B. Also TPCP

corresponds to the total number of packets in the current profile CP
A,B

. In order
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to have the entropy value in between [0, 1], we normalized its value as follows:

NorJENP
A,B

= JENP
A,B

/log[TPNP ] (6.5)

In this thesis, all entropy values are normalized, so when we used joint entropy

JE, it means that it is normalized, in other words we did not need to add Nor

for indicating normalization.

(iii) Comparison: Whenever the joint entropies of current profiles are ready, they are

compared and DJ
A,B

for each pair is calculated. If any of the di↵erence exceeds

a threshold ThJ , then DDoS is detected.

DJ
A,B

= JECP
A,B

� JENP
A,B

(6.6)

After the DDoS detection, the maximum di↵erence

DJ
MAX

= MAX{DJ
A,B

, DJ
A,C

, DJ
A,D

, ..., DJ
B,C

, DJ
B,D

, ..., DJ
C,D

, ..., DJ
Y,Z

}

is determined and the pair who have the maximum di↵erence is detected as the

SuspiciousPair who are the most appropriate pair for mitigation of the current

attack tra�c. Controller sends a message to the switch to inform it about the

suspicious pair SuspiciousPair.

6.1.3. Lifelong Stage

After the SuspiciousPair is determined by the controller and the switch is in-

formed about it, infant stage is completed and the lifelong stage is initialized. Attack

tra�c is mitigated by dropping the attack packets whereas legal packets are protected.

This stage is active during the attack and it continues to mitigate until bandwidth

decreases to its nominal values. Following steps are realised in this stage.

(i) SuspiciousPair Profile Generation: Header’s of all packets are sent from switch to

the controller in previous two stages. This takes high amount of communication

burden on a switch. This burden is decreased in this phase. Since the switch
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knows the SuspiciousPair, it starts to generate current profile SPCP for the

SuspiciousPair. It does not send all packets’ headers, instead switch sends the

current profile SPCP to the controller at the end of each period.

Period is determined by the number of packets arrived. In PacketScore scheme

[16], they made comparison in terms of time based vs. packet based period

determination. Their results suggest that packet number based intervals are

more suitable. Because time-based window may not allow creating meaningful

profiles since it may not have as many as packets. Since our model utilized the

similar scoring technique in [16], we choose packet based period determination.

(ii) Score Calculation: After the collaboration period, the controller have the nominal

profile SPNP and current profile SPCP of the SuspiciousPair. Each entry of

CPNP is taken and its score S is calculated by considering its corresponding

value in SPNP . If SuspiciousPair is determined as A and B, then the entry

with attributes A = a and B = b will have the score S as follows:

S =
PCP(A=a,B=b)/TPCP

PNP(A=a,B=b,...)/TPNP
(6.7)

In (6.7), PCP(A=a,B=b) corresponds to the number of packets in current profile

that have the property of a for attribute A and b for attribute B. TPCP is the

total number of packets in current profile. Similarly, PNP(A=a,B=b) is the number

of packets in the nominal profile that have the property of a for attribute A and

b for attribute B. TPNP is the total number of packets in nominal profile. All

the scores are stored in a score table ST .

(iii) Threshold Determination: The score of a packet needs to be compared with a

threshold Th. All scores are stored in a score table ST and the current threshold

value Th
C

is determined according to the cumulative distribution of scores by

using load shedding algorithm [86]. It is shown as symbolically CDF (Th) = �

whereas � is the ratio of tra�c that should be dropped. The fraction of tra�c

permitted to pass is 1 � � = �

 

whereas � acceptable tra�c and  is the total

current incoming tra�c. As far as it will be a good property to decide on the
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Table 6.2. An Example of a Rule Table (RT
C

) for the SuspiciousPair TTL Value &

Destination Port Attributes

TTL Value Destination Port Number Number of Packets

48 25 PASS

48 53 PASS

48 80 DROP

50 80 PASS

... ... ...

threshold Th with not only the current but also the previous period’s Th
P

, Th

is calculated as follows:

Th = (Th
C

+ Th
P

)/2 (6.8)

(iv) Rule Generation: After the controller calculates the scores and the threshold, the

system is ready to generate the rules. Since the score of each entry in SPCP is

calculated, decision for DROP or PASS can be provided by comparison with the

threshold. If the score value exceeds the threshold, it is supposed to be malicious

and discarded. Otherwise, it is forwarded to the destination. A current rule

table RT
C

is generated for each entry in SPCP . An example of a rule table is

illustrated in‘Table 6.2

(v) Di↵erentiated Rule Determination: Di↵erentiated rules are determined by com-

paring the current rule table RT
C

and the previous rule table RT
P

. Same rules

that have the same decisions will not sent to the switch in vain. For instance,

RT
P

in Table 6.3 is compared with RT
C

in Table 6.2 and only the last two rules

of RT
C

are determined as di↵erentiated rules DifRT , since they are di↵erent

from the previous ones. Then, DifRT is sent to the controller.
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Table 6.3. RT
P

for the SuspiciousPair TTL Value & Destination Port Attributes

TTL Value Destination Port Number Number of Packets

48 25 PASS

48 53 PASS

48 80 PASS

50 80 DROP

... ... ...

To sum up, all these operations are demonstrated in Figure 6.1. In this figure,

there are three main stages:

• In an attack free period called Nominal Stage, a baseline information is generated

by creating nominal pair profiles for each attribute pair. During this period,

switch sends headers of all packets to the controller. At the end of the period,

when the nominal profiles are ready, their joint etropies of each pair are calculated.

• After a congestion is detected, infant stage is started. The switch starts to send

the headers of packets to the controller. Controller generates the current pair

profiles for each attribute pair and calculates the joint entropies. If any of the

di↵erence exceeds ThJ , DDoS attack is detected. Then, the pair who has the

maximum di↵erence is determined as the suspicious pair SuspiciousPair. This

information is sent to the switch.

• As far as the SuspiciousPair is determined, Lifelong stage is started. This stage

continues until the congestion is decreased. During a period in this stage, switch

creates current profile SPCP of SuspiciousPair and at the end of each period

it sends SPNP to the controller. Controller calculates score for each entry in

the profile and generates a score table. Then, a threshold Th
C

is determined by

load-shedding algorithm. Then Th is calculated by averaging Th
C

and previous

period’s threshold Th
P

. After that, a current rule table RT
C

is generated by

comparing the scores of each pair with Th. If the score is under the threshold,

it is forwarded otherwise it is discarded. Then, the current rule table RT
C

is

compared with the previous rule table RT
P

. Only the di↵erentiated rules DifRT

are sent to the switch since they have changed after the previous period. Then
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the switch updates its rule table according to DifRT .

6.2. Simulations and Performance Evaluation

We perform experiments via simulations for performance evaluation of JESS.

Dataset, simulation environment, network topology, attack types, performance metrics

and simulation results are discussed in the following subsections.

6.2.1. Dataset

In our work, we need a real data of Internet tra�c. We use real dataset from

MAWI Working Group Tra�c Archive [87]. MAWILab works on tra�c measurement

analysis in long-term on global Internet. It was started in 2002 and it is still collecting

data from Internet. The part of the data that we have used in our simulations are

collected on Jan 12, 2014. This data is utilized to generate nominal profile.

6.2.2. Simulation Environment

In order to evaluate our work, we utilized Mininet [99] as a network simulator. It

enables to create a realistic network topology and it is convenient for SDN environment.

It is compatible with OpenFlow and a controller Ryu [100]. The test environment is

Ubuntu 14.04.

6.2.3. Network Generation

Figure 6.2 depicts the topology used for experiments. There is a switch managed

by the controller.The switch has three hosts. One of the hosts is attacked by a malicious

user and it starts to generate DDoS attacks to the other host named as Victim under

the same switch. There is also one more host that is neither a victim nor an attacker

who generates legal communication.
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S1

HOST

VICTIM

CONTROLLER

ATTACKER

Figure 6.2. Network topology used in the experiments.

6.2.4. Packet Analysis in Mininet

In order to reach the attribute values for each packet we need to know the corre-

sponding values in each header. Source IP and destination IP addresses, TTL value,

packet size and protocol type information is obtained from IP header. Destination

port, source port and TCP flag attributes are obtained from the TCP header. The

corresponding names in headers for the attributes are provided in the following Table

6.4.

6.2.5. Attack Types

In this topology, attacker and legitimate nodes are connected to a switch. Legiti-

mate nodes generate legitimate tra�c that have similar properties and similar amount

of tra�c to the nominal profile packets. Nominal profile packets are created according

to the dataset. Attacker generate both legitimate and attack tra�c. In our simulation,
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Table 6.4. Attributes in Headers

Header Attribute Corresponding Name in header

IPv6 packet size payload length

IPv6 TTL hop limit

IPv6 protocol type next header

IPv6 source IP src

IPv6 destination IP dst

IPv4 packet size total length

IPv4 TTL ttl

IPv4 protocol type proto

IPv4 source IP src

IPv4 destination IP dst

TCP source port src port

TCP destination port dst port

TCP TCP flag bits

we perform attacks by creating the new packets that are similar to the nominal tra�c.

We simulate the following attacks:

• TCP SYN Flood Attack : The protocol type of an attack packet is TCP and TCP

flag is set to SYN Flag. Other attributes are randomized.

• DNS Amplification Attack : The protocol type of attack packets is DNS and

destination port is set to 53. Also, attack packet size is 60 bytes. Other attributes

are randomized.

• NTP Attack : The protocol type of attack packets is NTP and destination port is

set to 123. Also, attack packet size is 90 bytes. Other attributes are randomized.

• Generic Attack : All attributes are selected randomly in their ranges. This can

be stated as an unknown type of attack.

• Mixed Attack : TCP SYN Flood Attack, SQL Slammer Worm Attack, DNS Am-

plification Attack and NTP Attack are applied at the same time to a victim.
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6.2.6. Performance Metrics

In pattern recognition and information retrieval, true positive (TP ), true negative

(TN), false positive (FP ) and false negative (FN) based metrics for binary classifi-

cation are instrumental to measure system performance. Since DDoS attack packet

identification is also a binary classification problem, we utilize these metrics.

In our case, TP is the number of attack packets dropped in the network and

stonewalled to prevent reaching the destination whereas TN is the number of legal

packets that are identified correctly by the system and reach the destination safely. In

that vein, FP is the number of legal packets that are falsely discarded whereas FN is

the the number of attack packets that are falsely forwarded to the destination. Follow-

ing metrics calculated via these parameters are utilized in performance measurement:

FPR = FP/(FP + TN) (6.9)

False Positive Rate metric FPR deals with the success of the system on legal packets

and tries to calculate what percentage of the legal packets are dropped.

ACC = (TP + TN)/(TP + TN + FP + FN) (6.10)

Accuracy metric ACC deals with the success of the system and tries to calculate what

percentage of the decisions are correct.

6.2.7. Experimental Results

(i) During Di↵erent DDoS Attack Types: In this section, we demonstrate our per-

formance results according to the metrics explained above. In order to see the

performance of the system on legal packets FPR results are demonstrated in Fig-

ure 6.3. The lower values for FPR is better since it shows the ratio of the legal

packets that are discarded erroneously. In Figure 6.3(a), JESS’s performance is

measured against TCP SYN Flood and NTP attacks during 20 periods. Similarly,
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in Figure 6.3(b) JESS’s performance is measured against DNS Amplification and

Generic attacks. The results does not include the warm-up periods which con-

sists of nominal and infant stages. During these stages switches does not have

the updated rules yet, so it cannot start to filter according to JESS’s results.

Our mechanism starts to filter in life-long stage. Our results suggest that while

there is TCP SYN Flood attack, nearly all packets can reach to the victim safely.

There are a few small rises but they falls immediately which shows that legal

packets can be identified successfully by JESS. In only one period in TCP, it rises

to %40, the reason is that there are more packets who have the same property

with the attack packets. Then, the legal ones are also dropped. Similarly during

NTP and DNS attacks, in most of the periods all legal packets can reach to the

victim safely. During DNS attack, in one place, FPR increase rapidly, when we

analyze the legal packets of this period we see that there are more packets who

have the same properties with the attack packets. For instance, JESS selects

packet Size and destination port pair as SuspiciousPair. DNS attack packets

have the properties as destination
p

ort = 53andpacektSize = 60. Then all the

packets with this properties will be dropped. If there are more legal packets with

these properties in this period then, FPR increases. In order to decrease this

probability sliding window periods are utilized. It is explained in the following

subsection. The most distinctive result is obtained during Generic Attack. This

is a di�cult type for JESS, since it needs at least two fixed properties of an attack

in order to determine SuspiciousPair. However in generic attack, all attributes

are randomized and thus, JESS’s FPR rates are high during this attack.

Figure 6.4 shows the success of the system on both legal and attack packets. As it

can be interpreted that accuracy of JESS is perfect during TCP SYN Flood, NTP

attack and DNS Amplification attacks. JESS gives about 80% accuracy during

Generic attack. This shows that JESS performs 80% success even on unknown

attacks. Its performance on legal packets is not so great but it can di↵erentiate

attack packets easily and can drop it.
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(a) During TCP SYN Flood and NTP attacks
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(b) During DNS Amplification and Generic attacks

Figure 6.3. FPR performance of JESS during DDoS attacks
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Figure 6.4. Accuracy performance of JESS during TCP SYN Flood, NTP attack,

DNS Amplification and Generic attacks

Another attack type called Mixed attack is performed on di↵erent topology to

show it more clearly. Network topology in Figure 6.5 is used for mixed attack

experiment. All the attacker hosts apply di↵erent attacks on the victim. TCP

SYN Flood, DNS Amplification and NTP attack packets are send to the victim

simultaneously. Also the legal host tries to communicate with the victim. This

is one of the most di�cult type of attacks. The results are illustrated in Figure

6.6. During 14 periods FPR is under 10% . This means that more than 90%

of legal packets can manage to reach the victim. There are several peaks but it

is an expected result since the packet types are di↵erentiated. In addition, it is

a promising result since the system recovers itself after at most three periods.

In addition average ACC is 67% which is a decent performance against such a

di�cult type of attack.

(ii) With Sliding Window Periods: In JESS, packet based discrete periods are utilized

since time-based window may not allow creating meaningful profiles as reason of

it may not have as many as packets. The results in Figure 6.3(a) and 6.3(b),

there are some peaks that are more than % 20. Especially for TCP attack, it

may result in problems since the legal users cannot start a communication. In
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Figure 6.5. Network topology used in the mixed attack experiments of JESS
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Figure 6.6. Accuracy and FPR performance of JESS during Mixed Attack
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addition, as far as there is a slow start mechanism in TCP, when the legal user’s

machine cannot get an acknowledgement message, the system pulls the brake

at initial stage and will not manage to start connection. In order to get rid o↵

this problem, we decided to use sliding window periods. This will decrease the

peaks, since they consider not only the current but also the previous period’s

packets. However, in this case, JESS needs to store the headers of the packets.

In discrete periods, we did not need to store them. Because the properties are

processed to the nominal profile SPNP of the switch and it sends this profile to

the controller at the end of each period. But this time in sliding window periods,

we need to use some packets that came in the previous period, and we could

not update the profile since we do not know which packets properties belong to

which entry. For this reason, we need to store the headers of each packet until

they are not used anymore. At the end of each period, SPNP is created by

considering W number of headers of packets where W is the size of the sliding

window. Since in our simulations, each period has 1000 packets, our window size

is W = 1000. If the incoming packet is an IPV6 and TCP packet then it will

have 40bytes+40bytes = 80bytes header size. Then the needed extra storage for

a switch is 1000 ⇤ 80 = 80KBs. It is a↵ordable for current switches. In addition,

sliding number sld should be determined, to express how much of the new packets

are involved in the new period. In our simulations sld = 500. The results of FPR

with sliding windows during di↵erent attacks are illustrated in Figure 6.7. The

peaks of TCP and DNS is about 0.1 mostly, whereas the peaks are also below

0.15 for NTP. These results suggest that JESS gives elegant results with sliding

windows with the expense of 80KBs more in the switches.

(iii) During Di↵erent Attack Intensities: Performance results of JESS is analyzed

against di↵erent attack intensities. Figure 6.8(a) shows the FPR of JESS under

di↵erent rates of DDoS tra�c. The results shows that it gives about 10% FPR

during 10 times of nominal tra�c. However, it gives worse results for 5 and 2

times of nominal tra�c. It is easy to determine the legal packets when the ratio

of the attack tra�c to the nominal tra�c increases. It would be more di�cult

to di↵erentiate legal packets when the number of legal packets are equal to the
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Figure 6.7. FPR during TCP SYN Flood, NTP attack and DNS Amplification with

Sliding Windows

number of attack packets as in the case of x2 in Figure 6.8(a). However our model

JESS still gives promising ACC results for low densities. As it is illustrated in

Figure 6.8(b), it gives perfect result for 10 times. For x5 accuracy rate is about

90% percent whereas its average falls to % 70s for x2. Decrease in accuracy while

the attack tra�c rate increases is an expected solution. It is elegant that it gives

70% percent accuracy even for low densities. Detecting low volumes of attack is

a di�cult task, since it is similar to the normal tra�c. But, our results suggest

that JESS gives decent solutions even for low volumes.

6.2.8. Time Analysis

(i) Complexity: All the steps in JESS for controller and switch and their correspond-

ing time complexities are shown in Table 6.5.

According to the table all profile generations have O(N2) complexity because

these are generated from pair attributes and they have two dimensions. Sim-

ilarly rule table generation and comparison operations have O(N2) complexi-

ties because of their two dimensions. Switch has a few operations but as far
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Figure 6.8. Performance of JESS during di↵erent attack intensities
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Table 6.5. Time Complexity Analysis for steps in JESS

Place Operation Complexity

Controller Nominal Profiles Generation O(N2)

Controller Joint Entropy Calculation of Nominal Profiles O(N)

Controller Current Profiles Generation O(N2)

Controller Joint Entropy Calculation of Current Profiles O(N)

Controller Compare Joint Entropies O(N)

Switch Current Suspicious Pair Profile Generation O(N2)

Controller Score Table Generation O(N)

Controller Rule Table Generation O(N2)

Controller Rule Table Comparison O(N2)

Switch Update Rule Table O(N)

as SuspiciousPair’s current profile SPCP is generated in the switch, the time

complexity of our algorithm on both switch and controller is O(N2). This can be

improved by utilizing di↵erent types of data structures like dictionaries or hash

trees in order to decrease this complexity.

(ii) Processing: In our simulations we utilized packet based periods. Thus, the mech-

anism does not consider the time during the analysis. In this section, we provide

analysis if JESS’s periods are meaningful in terms of timing. How long does a

period correspond to and can a switch handle the packets processing or do they

need to wait?

For this analysis we utilized from the MAWI dataset. The average packet size is

about 500 bytes. Then, each period has 500 ⇤ 8 ⇤ 1000 = 4Mb if a period is 1000

packets long. An average switch’s speed is 600 Mbps, then a period’s packets

processing takes 0.06 seconds. If we analyse the dataset and look at the duration

between the first and 1000th packets arrival, this duration is 0.182 seconds. As

0.06 is much less than 0.18, the packets does not need to wait.
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6.2.9. Storage Analysis

Since most of the storage is provided by the controller, it is not a vital prob-

lem. Because high performance computers are utilized as the controller. Nevertheless,

we provide storage analysis for both the switch and the controller. Theoretical and

empirical analysis are provided in the previous chapter Section 4.3.4. Since similar

profiles are utilized in both models same values can be used. According to the em-

pirical results 311KB is needed for a pair profile. As far as there are 6 attributes,

there are
�
6
2

�
= 15 profiles for each current and nominal operations. Thus there is a

need for 311KB ⇤ 15 ⇤ 2 = 9, 3MB. If we consider IPv6 for destination and IP ad-

dresses, then the pairs who have IP addresses will have 622KB size, as it is mentioned

in 4.3.4. The number of profiles who have 622KB will be 5 whereas the remaining

have 311KB profiles for each current and nominal operations. Then there is a need for

((311KB ⇤ 10) + (622KB ⇤ 5)) ⇤ 2 is approximately 12.4 MB. This is a few burden for

a controller. Also, switch only needs a place for one profile of SuspiciousPair which

is 311KB or 622KB if IPv6 is used. These are also too small values even for a basic

switch.

6.2.10. Communication Analysis

Communication between the switch and the controller can be analyzed in terms

of stages. In Nominal Stage, switch needs to send TCP and IP header of each packet.

If the controller and the switch communicates by using IPV6 on TCP, an empty packet

will need 24 bytes for Ethernet header, 40 bytes for IPV6 header and 40 bytes for TCP

header then it needs 104 bytes without the information. Since the switch also needs to

send all TCP and IP header information of the incoming packets, we need to add this

information length. If the incoming packet is an IPV6 and TCP packet then it will be

40bytes+40bytes = 80bytes. Then totally, the length of a packet that contains header

information is 184 bytes. In our simulations, 100 packets were utilized in nominal

stage, then it takes 184bytes ⇤ 100 = 18, 4KB. Similarly, during the infant stage, all

header information is needed to sent to the controller. This time number of packets

increased ten times since DDoS attack is started. Then, it takes 184 ⇤ 1000 = 184KB
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communication during the infant stage. In the lifelong stage, at the end of each period

current profile of the SuspiciousPair should be sent to the controller. As far as a pair

profile takes about 311KB and its header lengths will be in bytes thus it takes about

311KBs. All the above analysis are done for IPV6 and TCP packets since they have

larger header sizes. If IPV4 is utilized header size will be 20 bytes instead of 40 bytes.

Similarly, for UDP packets header size will be 8 bytes instead of 40 bytes.

That is to say, all the calculated values for each stage are in KBs. Since the

Internet speed is in Mbps in an average place of the world, it is not even a burden for

the communication of a switch and the controller.

6.3. Discussions

An important issue is the need of di↵erent nominal profiles for di↵erent times

of day. This is also analyzed in [16]. Their analysis suggests that the tra�c profiles

are most similar among the tra�c at the same day, at the same time. In addition, a

tra�c profile is still very similar for a di↵erent time or day. They compared morning

and evening profiles and they suggest that it may be enough to keep one profile. But

still, it is possible to compare the stability of the profiles and if there is too much

di↵erence, it may be better to keep more than one profile for di↵erent times of a day.

However, it is obvious that maintaining di↵erent profiles per site and per time of day

would increase managerial overhead. Thus, there is a trade-o↵ between more accurate

profiling and managerial overhead. In our simulations, we suppose that profiles are

very similar during the day and one profile is utilized for the nominal tra�c.

Another issue is about period lengths. As far as we have utilized packet-based

periods, we need to determine how many packets there will be in a period. There

should be enough number of packets in a profile in order to have accurate information

about the network. But then, in the lifelong stage of JESS at the end of each period

current profile of SuspiciousPair is sent to the controller. For this reason, it should be

in a↵ordable sizes for a communication link which is under attack. In our experiments,

we have utilized from 1000 packets since they give enough information and its profile
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needs KBs while it is sent to the controller.

There is also another issue about attribute independency. We did not consider

dependent attributes while we are choosing the most appropriate attribute pair. But,

Some attributes are dependent. For instance a TCP will most probably have port 80.

Thus, our model chooses protocol and port number together as the most appropriate

pair. However, it would give better solution, if it considers dependency and does not

waste attributes in SuspiciousPairs for obviously dependent properties.

6.4. Chapter Summary

In this work, a statistical defense mechanism is proposed against DDoS attacks

in SDN environment. This model is the first model that utilizes joint entropy in

a defense mechanism against DDoS attacks. There are three stages in this model

called: nominal stage, infant stage and lifelong stage. In the nominal stage, nominal

pair profiles are generated and their joint entropies are calculated by the controller.

When the bandwidth exceeds the threshold, the infant stage is started. In this stage,

current profiles are generated and their joint entropies are calculated. Then, they are

compared with the nominal ones in order to detect the attack. If it is detected, then it

determines the SuspiciousPair. In the lifelong stage, switch generates current profile

of the SuspiciousPair and sends it to the controller at the end of each period. Then

the controller calculates scores and generates rules. Then the controller sends the

di↵erentiated rules to the switch. Since this is a statistical model, it is e↵ective against

not only known but also unknown attacks. The results suggest that, it gives perfect

results for several known attacks. Besides, it performs 80% success for an unknown

attack denoted as generic attack. It also performs 67% success for a mixed attack.

As future work, we plan to perform experiments in a real setup. In addition,

the controller’s role can be enhanced by combining statistics from several switches to

provide more accurate scoring. It can use these statistics for preventing the future

attacks.



104

7. CONCLUSION

In this thesis, filtering based defense mechanisms are focused for traditional net-

works and SDN environment. Initially, a comprehensive survey about filtering tech-

niques are presented. In order to ease choosing the most appropriate mechanism for the

needs, we specifically proposed a classification approach that classifies filtering mech-

anisms according to their timing and collaborative properties. They can be proactive

or reactive in terms of timing, whereas they can be individual or cooperative in terms

of collaboration property. Then, we focused on cooperative and proactive filtering and

proposed a mechanism called ScoreForCore. This model suggests the selection of the

most appropriate attributes during current attack tra�c. We implemented our model

and our results suggest that the success of system’s behavior on legal and attack pack-

ets are increased considerably. In addition, most of the attack packets are stonewalled

near the source of the attack. As our strategy is a flexible solution that can be appli-

cable for not only traditional networks but also future networks, we decided to apply

our strategy on SDN environment. Initially, some DDoS scenarios that can be viable

in SDN environment are presented. Also, analysis of defense mechanisms in SDN en-

vironment are presented. Then, our work proposes a classification of solutions against

DDoS attacks in SDN environment.

We applied our strategy which is the selection of the most appropriate attributes

during current attack tra�c in SDN environment. SDNScore mechanism is a hybrid

model in which switches are not simply data forwarders but also can decide on attack

packets in cooperation. It is a statistical and packet-based defense mechanism which

can detect not only known but also unknown attacks. In addition, it only drops attack

packets by preserving legal packets during an attack. Since this model uses capable

switches, it posses a trade-o↵ between SDN paradigm and capable switches. In order

to get rid o↵ this problem, we proposed another mechanism called Joint Entropy Based

Scoring for SDN (JESS)that transfers switch’s burden to the controller. Switch only

generates a current profile of a pair during the attack. This pair is determined by

comparing joint entropies of current and nominal profiles. Then rules are generated
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by the controller at the end of the calculation of scores for each value of the pair. The

experiments are simulated for several known and unknown attacks. The results suggest

that JESS mechanism performs great for several known attacks. Even for an unknown

attack type called generic attack it gives % 80 accuracy and % 70 accuracy for a mixed

attack.

As a future work, this model can be applied on real SDN environment in order to

see more realistic results. Besides, the strategy of the selection of the most appropriate

attributes can be applied on other statistical models in the literature. In addition, the

controller’s role can be enhanced for prevention. Controller can provide prevention by

combining statistics from several switches.
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