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ABSTRACT

Combinatorial designs, as a mathematical subject, has deep connections with the fields
such as combinatorics, graph theory, finite geometry, coding theory, cryptography and

number theory and has attracted many researches from different fields.

The combinatorial design found in the book Brhat Samhita, written by Varahamihira
around 587 BC, was used to produce perfume by selecting 4 items from 16 different
items with the help of a magic square. This is first known example of combinatorial
designs. Combinatorial designs are used in widely known Kirkman’s school girl problem.
In the widely accepted view, modern study of block designs began in 1936 with the

publication of an article by the statistician F. Yates.

In this thesis, firstly, we provide an introduction about combinatorial designs and their
properties. We will also introduce machine learning fundamentals that is required for
our problem. Then, the problem that is being solved to generate BIBDs, exact covering
problem will be mentioned. This NP-complete problem can be solved using Donald
Knuth’s Algorithm X. At this step, we will be explaining Algorithm X’s algorithm and
its implementation. Generated BIBDs will be used in neural networks, which have

been built manually to prevent overfitting in machine learning.

We are showing that it is possible to prevent overfitting in machine learning succesfully
by using a known pattern (BIBDs) in dropout. And finally, we will share our results
and compare them with widely known and used random dropout method. We will also

compare our results with no-regularization applied models.

Keywords : Combinatorial designs, neural networks, machine learning, overfitting,

dropout, deep learning



RESUME

Les désigns combinatoires, en tant que sujet mathématique, ont des liens profonds
avec des domaines tels que la combinatoire, la théorie des graphes, la géométrie finie,
la théorie du codage, la cryptographie et la théorie des nombres et ont attiré de

nombreuses recherches dans différents domaines.

Le premier exemple connu de conception combinatoire se trouve en Inde dans le
livre Brhat Samhita de Varahamihira, écrit vers 587 aprés JC, dans le but de faire
des parfums en utilisant 4 matiéres sélectionnées parmi 16 matiéres différentes en
utilisant un carré magique. Les conceptions combinatoires sont également utilisées
dans le probléme largement connu des écoliéres de Kirkman. Selon ’opinion largement
acceptée, I’étude moderne des conceptions de blocs a commencé avec la publication en

1936 d’un article du statisticien F. Yates.

Dans cette thése, tout d’abord, nous fournissons une introduction sur les conceptions
combinatoires et leurs propriétés. Nous présenterons également les principes de base
de I'apprentissage automatique nécessaires a notre probléme. Ensuite, le probléme qui
est résolu pour générer des BIBD, le probléme de couverture exact sera mentionné. Ce
probléme NP-complet peut étre résolu en utilisant 1’algorithme X de Donald Knuth. A
cette étape, nous expliquerons l'algorithme de I'algorithme X et son implémentation.
Les BIBD générés seront utilisés dans les réseaux de neurones construits manuellement

pour éviter le surajustement dans 'apprentissage automatique.

Nous montrons qu’il est possible avec succes d’éviter le surapprentissage en apprentissage
automatique en utilisant un modéle connu (BIBD) au lieu de 1’aléatoire dans le décrochage.
Enfin, nous partagerons nos résultats et les comparerons avec une méthode d’abandon
aléatoire largement connue et utilisée. Nous comparerons également nos résultats avec

des modéles appliqués sans régularisation.

Mots Clés : Les designs combinatoires, réseaux de neurones, ’apprentissage automatique,

le surajustement, dropout, 'apprentissage en profondeur



OZET

Bir matematik konusu olarak kombinatoryal tasarimlar, kombinatorik, grafik teorisi,
sonlu geometri, kodlama teorisi, kriptografi ve say1 teorisi gibi alanlarla derin baglantilara

sahiptir ve farkli alanlardan pek ¢ok aragtirmanin ilgisini ¢cekmistir.

Bilinen ilk kombinatoryal tasarim ¢rnegi Hindistan’da, sihirli bir kare kullanarak 16
farkli maddeden secilen 4 maddeyi kullanarak parfiim yapmak amaciyla MS 587 civarinda
yazilan, Varahamihira’nin Brhat Samhita kitabinda bulunur. Kombinatoryal tasarimlar,
yaygin olarak bilinen Kirkman’in okul kizi probleminde de kullanilmaktadir. Yaygin
kabul goren goriige gore, modern blok tasarim ¢aligmalari, 1936’da istatistik¢i F. Yates’in

yazdig1 bir makalenin yayinlanmasiyla baglamigtir.

Tezimize kombinatoryal tasarimlar1 anlatarak giris yapacagiz. Sonrasinda ise ¢ozmek
istedigimiz problemin tiiriinden, tam kaplama probleminden, bahsedecegiz. Bu problem
Donald Knuth’un X Algoritmasini kullanarak ¢oziilebiliyor. Dolayisiyla, daha sonrasinda

agir1 6grenmeyi sinir aglarinda onlemek i¢in kullanacagimiz dengeli tamamlanmamais

blok tasarimlari tam kaplama problemini ¢ézerek iiretecek olan algoritmadan ve agsamalarindan

bahsedecegiz.

Bu tezde, rastlantisallik yerine bilinen bir oriintiiyi (BIBD’leri) kullanarak makine
Ogreniminde agirt uyumu bagariyla onlemenin miimkiin oldugunu gosteriyoruz. Son
olarak, sonuclarimizi paylasacagiz ve bunlar1 yaygin olarak bilinen ve kullanilan rastgele
birakma yontemiyle karsilagtiracagiz. Ayrica sonuclarimizi, hicbir diizenleme uygulanmayan

modellerle de karsgilagtiracagiz.

Anahtar Kelimeler : Kombinatoryel tasarimlar, yapay sinir aglari, makine 6grenmesi,

agir1 6grenme, dropout, derin 6grenme



1 LITERATURE REVIEW

In this thesis, we will mostly be focusing on combinatorial objects "balanced incomplete
block designs" and artificial "neural networks". We will start from balanced incomplete
block designs side and try constructing a bridge between. Starting point of this research
was the desire to use existing combinatorial objects that we generated using Donald
Knuth’s Algorithm X in some way and the beleif we had in having better results using
dropout designs in test datasets than we do have with usual dropout methods. This
would provide less randomness and more explicability to our neural networks. The
method we will introduce can be applied to deep neural networks but in this thesis, we

kept neural networks small that is with maximum 7 layers.

We used various number of combinatorial design books while learning combinatorial
designs and its properties. I have taken and completed succesfully Design Theory 1
PhD course from Yildiz Technical University from Fatih Demirkale for this purpose.
Then we made a deep research about combinatorial designs’ applied areas and their
generation methods. We implemented Donald Knuth’s Algorithm X in a efficient way in
C++ to construct balanced incomplete block designs. We were able to generate 1.104.000

(13-4-1) BIBDs under 4-5 seconds using this algorithm.

We have written this thesis based on several papers’ claims about dropout designs that
they could be more efficient than random method. This thesis acts as a resource for
future research in this area. Since, the way we use balanced incomplete block designs

in this thesis was just only a way over other many ways.

Applying dropout designs to the neural networks in a different way was introduced in a
recent paper by Chisaki, Shoko and Fuji-Hara, Ryoh and Miyamoto, Nobuko. Although,
this paper remained too theoretical and it didn’t have implementations. The biggest
disadvantage of this method was the unique and large hidden layer sizes it required for

each different (v, k, \)-BIBD.



2 COMBINATORIAL DESIGNS

Combinatorial design theory is a theory that has been used in many different computational
fields related to the design and analysis of algorithms and hardware [2]. According to the
widely accepted view, the modern studies on block designs began with the publication
of an article by the statistician F. Yates in 1936. This article considered collections of
subsets of a set with certain balance properties. One of the examples touched in the

aforementioned article was :
Example 2.0.1. Let X = {x1, 9, w3, x4, 5, T} be 6-elements set and let A = {{xl, To,

'7;3}7 {x1;x27'r4}7 {x17$37x5}; {$17$47x6}) {l’l,l’5,x6}, {$2,[E3,I6}7 {$2,$4,$5}7 {.’])2,1‘57
xe}, {3, 24,25}, {x3, 24, 26} } be the set of blocks. Here, we have 10 3-subsets of 6

element set X such that :
1. each block contains an equal number of elements which is 3 (=k) and
2. each distinct pair of elements appears exactly in 2 (=)\) different blocks.
Second property is named balance of the design. Designs with this property called

balanced incomplete block designs (BIBD).

Definition 2.0.1. A BIBD is a collection of k-element subsets of a set X with v

elements, k < v, such that each distinct pair of elements of X appears exactly in A
different blocks. We will denote this balanced incomplete block design by (X, A) where
A is the set of blocks.

We can denote the number of blocks with the symbol b, and the block designs in short
(v, k, A). Therefore, the Example 2.0.1 is a (6,3,2)-BIBD.

Theorem 2.0.1. In a (v,k, \)-BIBD with b blocks each element occurs in r blocks

where

AMo—1)=rk-1) (2.1)

and

kb = vr (2.2)



Proof. Consider an element z € X where X is a v-set of (v, k, \)-BIBD. x have (v —1)
other pairs in X and z occurs A\ times as pair. Also x is repeated r times and it has
pairs with (k — 1) other elements in a block. Therefore, A(v — 1) = r(k — 1). Secondly,

each v element occurs r times and each block has k elements, hence vr = bk. O

Remark 2.0.1. No (11,6,2)-design can exist.

Proof. Theorem 2.0.1 is required for existance. Therefore a (11,6, 2)-design must satify

property 2.1 and 2.1 to exist but b = 44/6 is not an integer. O

Example 2.0.2. This example will be called as Fano Plane. The set of blocks A =

{{1.2,4}, {2,3,5}, {5.4,6}, {4,5,7}, {5,6,1}, {6,7,2}, {7,1,3}} forms a (7,3,1)-BIBD
which can be considered as composition of the seven lines. A block design with k = 3

and A = 1 s a Steiner triple system.

In 1853, six years after a lot of research on Kirkman’s paper about this subject, Steiner
raised the question of the existence of such designs in a geometric context. For this

reason, these (v,3,1) systems are called Steiner triple systems.

Definition 2.0.2. A Steiner triple system STS(v) of order v is a (v,3,1) design.
Lemma 2.0.2. An STS(v) can ezist only if v=1 or 3 (mod 6) [3].

Definition 2.0.3. A projective plane of order n is an (n®* +n+ 1,n+ 1,1) design for

n > 2.

Therefore, the Fano Plane example is a projective plane of order 2 and a STS(7).

2.1 Incidence Matrices

In this section, the block designs will be represented by incidence matrices. The use of

related matrices has greatly helped the study of block designs.

Definition 2.1.1. The incidence matriz of a BIBD is a b X v matriz A, where b and

v are the number of blocks and points respectively, such that A;; = 1 if the point j is

contained in ith block and 0 otherwise.



Example 2.1.1. For example, the incidence matriz of example of Yates (Example

2.0.1), can be expressed by the following incidence matriz :

111000
110100
101010
100101
100011 (23)
01 1001
010110
01 0011
001110
00110 1}

We can observe that rows correspond to the blocks and columns correspond to the
elements. In addition, the incidence matrix may vary depending on the order of the
blocks, but important features of the design will be independent of this. Example 2.1.1
is a (6,10,5,3,2) — BIBD.

Theorem 2.1.1. Let N be the incidence matriz of a (v, k, \) balanced incomplete block

design, then NTN = (r — \)I + \J where I is a v x v identity matriz and J is a v X v

matriz such that every entry is 1.

Proof. By definition, N is a b x v matrix. Then N7 N will be a v x v matrix. The entry
(4,7) of matrix B = NTN is going to be the scalar product of the ith and jth columns
of N.If i = j, b;; is going to be the amount of 1s in the 7th column, that is, the amount
of blocks containing the ith element ; therefore b; = r. If i # j, the scalar product will
be the sum of 1s corresponding to rows in where columns 4,7 both have 1; as a result,
b;; is giving quantity of blocks that contains 7’th and j’th elements together. That is,
bij = \. [

Theorem 2.1.2. Let (X, A) be a (v, k,\) design, then the number of blocks in A is

greater than or equal to the number of elements in X. In other words, b > v.

Proof. Suppose N is the incidence matrix of given (v, k, \) design. We will begin with

showing that N7 N is non-singular. That is, its determinant is non-zero. We will obtain



INTN| =X X 7

A A A r
(2.4)
r A A A
A—r r—2A
= A—r 0 r—=2A 0
A—r 0 0O - r=2A

if we substract the first row from each of the other rows. Now by adding the sum of all

other columns to the first column, we will obtain

r+(w—1Dx A AT
0 r—A
INTN| = 0 0 r—X -~ 0
(2.5)
0 0 0 r—A

={r+@w—-DXr—=N""=rk(lr— """

on using theorem (2.0.1). But k < v so by theorem (2.0.1), r > \, therefore [NTN| # 0.
But NTN is a v x v matrix, so the rank p(N?N) = v. Finally, since p(NTN) < p(N),
and since p(N) < b, v < p(N) <b. O

Example 2.1.2. There is not any (16,6,1) design existing since r — ==+ = 3, s0

b= = 8 <wv. Theorem (2.0.1) and Fisher’s inequality (Theorem 2.1.2) are required
for existance but they are not sufficient. (43,7,1) - design can be an example for this

since it satisfies all conditions of Theorem 2.0.1 and Theorem 2.1.2 but there’s no such
design [4]].

Definition 2.1.2. In a (v, k,\)-BIBD, if b = v, the design is said to be symmetric.

This is known as the extreme case of the Fisher inequality. The term symmetry does

not come from the visual structure of the incidence matrix of the design, but from the



establishment of symmetry between the blocks and elements, as exemplified in the next

theorem. The next theorem was proved for the first time in 1939 in Bose’s paper.

Theorem 2.1.3. If N is the incidence matriz of a symmetric design, then NNT =

NTN and every distinct pair of blocks intersect in \ elements.

Proof. Note that NJ = JN = kJ, so that NT.J = (JN)T = (kJ)T = kJ for J, matrix
of size v x v such that all entry is 1, and similarly, JN? = kJ. Also, J? = vJ. Use will

be made of the fact that a matrix commutes with its inverse. By equation (2.4),
A [A A A
(NT — [ =J) (N + —J):NTN—i—\/i(NTJ—JN)——J2
v v v v

=N'N -\ = (k- M.

(2.6)

Thus (1/(k—X))(N + \/%J) is the inverse of N7 — \/gJ and hence commutes with it.
Then,

A A
(k=M1 = (N+\/:])(NT— =)
v v
:NNT+\/§(JNT—NJ) - \/Eﬂ (27)
v v
= NNT - \J.
Hence NN = (k— A\ + AJ = NTN [5). O

One way to get a new, different design using old designs is to replace each of the design’s

blocks with its complement.

2.2 Constructing New Designs

Definition 2.2.1. Let D be a (v,b,7,k,\) — BIBD on a set X with v elements. Then

the complementary design D will have its blocks as complements X — B of the blocks
B of D.

Example 2.2.1. Consider Fano Plane example (Exzample 2.0.2), then

D = {{37 57 6’ 7}7 {17 47 67 7}’ {17 27 57 7}7 {]" 27 37 6}7 {27 3’ 47 7}7 {17 37 4’ 5}’ {27 47 57 6}}
(2.8)



is a (7,4,2) balanced incomplete block design.
Theorem 2.2.1. Suppose that D is a (v,b,r,k, \)-BIBD, then, D is a (v,b,b—r,v —

k,b—2r + \) design provided that b —2r + X > 0.

Proof. Tt is trivial that there are b blocks of size v — k in D. An element of X occurs
in a block of D for sure when it does not occur in the corresponding block of D ; so
it occurs in b — r blocks of D. Finally, the number of blocks of D containing = and y
is equal to the number of blocks of D that don’t contain x or y. This number can be

calculated as follows :

= b — (amount of blocks in D that contains x or y)

= b — (amount of blocks in D that contains x + contains y - contains both)

=b—(r+r—A)=b—2r+ A

O]
Corollary 2.2.2. D is symmetric (v,v — k,v — 2k + \) design if D is a symmetric

(v, k, \) design with v — 2k + X > 0.

Another way of obtaining new designs from old is throwing away all elements of one
block B from all blocks B € A where A is the set of blocks. The obtained design
will be called as residual design. The remaining blocks are all of size £ — A and by

theorem 1.1.3, any block of A intersects B in A elements, therefore we obtain a new

(v—Fk,v—1,rk— A, \) design.
Definition 2.2.2. Consider that (X, A) is a symmetric (v,k,\)-BIBD and let B € A.

Then
Res(X, A, B) = (X\B,{A\B: A€ A, A+ B})

15 called residual design obtained by deleting all points in a given block B.

We can obtain new design by deleting all the points not in a given block B and then
deleting B aswell. The obtained new (k,v — 1,k — 1, A\, A — 1) design will be called as

derived design.



Definition 2.2.3. Consider that (X, .A) is a symmetric (v, k, \)-BIBD, and let B € A.

Then

Der(X, A, B) — (B,{A/B . Ae A A+BY)
s called derived design obtained by deleting all the points not in a given block B and
then deleting B.

Theorem 2.2.3. Let (X, A) be a (v, k, \) symmetric BIBD. Let B be one of the blocks

of A. If the A > 2 condition is met, Der(X,A) becomes a (k,v—1,k—1,\,\—1) BIBD.
In addition, Res(X, A) becomes a (v—k,v—1,k,k—X\, \) BIBD if the condition k > \42

18 met.

Proof. Der(X, A, B) is a BIBD as long as k > A > 2 (k is the number of points in the
derived design, and the blocks have size ). Nonetheless, £ > X in any symmetric BIBD
since A(v — 1) = k(k — 1) is provided by Theorem 2.0.1 and v > k. So, this condition

is trivial.

Res(X, A, B) is a BIBD as long as v — k > k — A > 2 ((v — k) is the number of points
in a residual design and the blocks have size k — \). Starting to proof by showing that
v—Fk >k — \is true in a symmetric BIBD. Consider that v < 2k — X\; then we have
kE(k—1) = Auv —1) < X2k — X —1). This is identical to (k — A)(k — A — 1) < 0. But
k and X\ are integers, so this last inequality holds if and only if kK = A or k = A + 1.
We assumed that £ > X\ + 2, so there is a contradiction. Accordingly, the condition
v—k >k — X is satisfied. O

Example 2.2.2. (11,5,2) is a symmetric BIBD owing to the fact that b = v = 20. A

residual BIBD obtained from this symmetric design will be a (6,3,2) — BIBD and a
derived BIBD will be (5,2,1)-BIBD.

There are plenty of ways of obtaining new balanced incomplete blocks. Paper of S.S.

Shrikhande sheds light on this, introduces new

2.3 Isomorphisms of Designs

In this section, we will explain whenever two balanced incomplete block designs are

considered as isomorph block designs.



Definition 2.3.1. If there exists a one one-to-one mapping from the set of elements

of Dy to the set of elements of Dy, D and Dy are same or isomorphic where Dy and

Dy are two (v,b,r, k,\) designs. Otherwise Dy and Dy are different designs.

Example 2.3.1. The following (7,3,1) design :

D, ={{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}}

is isomorphic to the following (7-3-1) design Dy for the mapping 1 — 2,2 — 1,3 —
4,4 —7,5—-6,6—>3,7—5.

Dy ={{2,1,4},{2,6,7},{2,3,5},{1,7,3},{1,6,5},{4,7,5},{4,6,3}}.

We can also see this from incidence matrices aswell with changing row 1 with row 2,
row 3 with 4, 5 with 6, 6 with 3, 4 with 7, 7 with 5 of N,. What we obtain will be N,

incidence matriz of Do. Therefore Ni = N.



10

3 CONSTRUCTION OF BIBDS USING ALGORITHM X

In this chapter, starting from the exact cover problem, to Algorithm X, we will construct
our balanced incomplete block designs. First, we explain the exact cover problem,
then, we move into Algorithm X that acts like a tool at solving exact cover problems.

Afterwards, we explain our algorithm that uses Algorithm X to generate BIBDs.

3.1 Exact Cover Problem

Let B be the collection of subsets of set X then B’ € B is an exact cover of X if x
contained in exactly one subset of B’ for all z € X and SN S = for all 5,5 € B’
where S # 5" and union of subsets S of B’ is X.

Example 3.1.1. Let B = {A,B,C,D} and X = {1,2,3,4,5,6,7} such that

— A=1{1,2,3,4}
— B=1{1,2,3,6)
— C={4,5,7}
— D=1{5,6,7}

Then B' = {A,D} and B" = {B,C} are exact covers.

Now lets look into the following incidence matrice, finding exact covers of this matrice
would be answering the question, does this matrix have a set of rows containing exactly

one 1 in each column ?

0 1]
00
01 (3.1)
10
11
01

0 0
0 0
0 0
0 1
11
10

o O O O =
o O O = ==
O O R o= O O

This matrix has such a set (rows 2,4,7). This is a well-known hard problem that is

NP-complete even if each row contains a precisely certain amount of 1s.



11

3.2 Algorithm X

Before explaining Donald Knuth’s dancing links, we shall give definition of a doubly
linked list and a brief reasoning about why did we choose Algorithm X.

Why Algorithm X ?

Algorithm X with dancing links, called Algorithm DLX is working as fast as other
backtracking algorithms in small cases but when it comes to the large cases, Algorithm
X appears to run faster than other special-purpose backtracking algorithms (such as
Dijkstra’s or Hitotumatu and Noshita’s backtracking algorithms) because of its ordering
heuristic [7]. In our thesis, we generated (v,k,1) designs using Algorithm X and for
some BIBDs (like (15,3,1) or (13,4,1)), it was a large case. Therefore, we decided using

Algorithm X to have quicker solutions.

Also, the idea of (3.3) (putting = back to the doubly linked list with uncovering process)
was first introduced in 1979 by Hitotumatu and Noshita [8], who showed that it makes
Dijkstra’s well-known program for the N queens problem [9], pages 72-82| run nearly
twice as fast without making the program significantly more complicated. For further
efficiency considerations of Algorithm X and speed comparisons of algorithms, you may

see Donald Knuth’s dancing links paper.

Definition 3.2.1. In computer science, a doubly linked list is a linked data structure

consisting of a sequentially linked set of records called nodes. Each node contains three
fields : two link fields (references to previous and next nodes in the node array) and a
data field. The beginning and ending nodes’ previous and next links, respectively, point
to some kind of terminator, typically a node or null, to make traversal in the list easier.
And if there is only one node in the doubly linked list, then the list is circularly linked
with its only node [10)].

These previous and next node fields given in definition (3.2.1) will be represented with
L[z] and R|x] respectively where x is representing a node in doubly linked list in the

next section.
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3.2.1 Dancing Links

In this section, we will introduce Donald Knuth’s dancing links which are going to be

used later in Algorithm X [7].

Suppose z points to an element (node) of a doubly linked list ; let L[z] and R[z] point

to the predecessor and successor of that element. Then the operations :

L[R[z]] < L|x], R[L|x]] < R|x] (3.2)

remove x from the list. Also subsequent operations :

LIR[z]] < z, R[L[z]] + x (3.3)

will place x back into the list again. This process with pointers was called as "dancing

links" by Donald Knuth.

3.2.2 Solving an exact cover problem using Algorithm x

Algorithm X is simply a trial-and-error approach. Pseudo code of the algorithm for a

given matrix A of Os and 1s is as follows :

— If matrix A is empty, the problem is solved, we can terminate successfully.

Otherwise we choose a column, ¢ (deterministically).
— Choose a row, r, such that A[r,c] = 1 (nondeterministically).
— Include r in the partial solution.
— For each j such that Alr, j] =1,
— delete column j from matrix A.
— for each i such that Az, j] = 1,
— delete row ¢ from matrix A.

— Repeat this recursively on the reduced matrix A.
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3.2.3 The dance steps

To be able to apply Algorithm X, we will represent each 1 in matrix A as data
objects with five components. These components will be represented by the symbols
Liz], R[z|,U][z], D[z], C[z]. The rows of matrix A are circular lists that are connected
by two sides and with L and R components. On the other hand, the columns of the

matrix are lists that are connected at both ends and have U and D components.

List headers are part of a larger object called a column object. These column objects
have R, L, D,U,C components as well as N, S components. The S component points
to the number of 1s in the column object and we can use this to print the results. The

C component of each data object in A points to the mentioned column object.

The R and L components in the list headers connect all columns that are not yet covered
and should be covered. The circular lists resulting from this linking also contain the
custom column object called root, h, which acts as the main header for all other active

headers. D[h], C[h], U[h], S[h] and N[h] components are not used.

Donald Knuth’s non-deterministic algorithm for finding all exact covers, Algorithm
X, can now be initialized with the following search(k) function, which is a recursive
procedure initialized with a value of k=0. The pseudo code of search function is as

follows :

— If header’s right equals to header component, print the current solution and

return.
— Else, select a column object c.
— Cover the selected column c.

— Go down starting from selected column until returning back to the selected
column using the following : r < Dic|, D[D]c]], ..., while r # ¢, and for each

visited row, do the following :
— set Oy <7}
— for each j < R]r|, R[R[r]], ..., while j # r,

— cover column j



14

— search(k + 1);

— set 7 < Oy and ¢ < C|r];

— for each j < L[r], L[L[r]], ..., while j # r,
— uncover column j;

— Uncover column ¢ and return.

To print the current solution, we print the rows containing Oy, Oq, ..., O_1, where the

row containing data object O is printed by printing N[C[O]], N[C[R[O]]], N[C[R[R[O]]]]...-

To select a column object ¢, we can set ¢ < R[h], this will be giving left most uncovered

column. Or, as a second method, we can set s < inf and

— for each j <— R[h], R[R[h]], ..., while j # h,

— if S[j] < s, set ¢ < j and s < S[j].

After this process, ¢ will be a column with smallest number of 1s. To cover a column c,

— Set L[R[d]] + L[d and R[L[d] + RJd],
— For each i « D[], D[D[c]], ... while i # ¢,
— for each j « R[], R[R[i]], ..., while j # i,
— set U[D[j]] +- U[j], DIUj]] - D],
— and set S[C[j]] « S[C[] - 1.

Operations used here to remove objects in both the horizontal and vertical directions.

To uncover a column c,
— For each i = Ule), U[Ud]], ..., while i # ¢,
— for each j « L[i], L[L]], ..., while j # i,
— set S[C[j]] « S[[]] + 1,
— and set U[D[j]] <= j, D[U[j]] <= J.
— Set L[R|¢]] « ¢ and R[L[d]] ¢ c.

Notice that uncovering takes place in precisely reverse order of the covering operation.

These dancing link operations explained more detailed in Donald Knuth’s paper [7].
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3.3 Finding BIBDs using Algorithm X

In this chapter, we will use Algorithm X to find all possible (v, k, A\) BIBDs. To do this,

we will follow the steps :
— Building incidence matrix for given (v, k, ) to apply Algorithm X on.
— Apply Algorithm X to incidence matrix generated previously.

From now on, we take (v, k, 1) BIBDs as examples, that is, A = 1 cases.

3.4 Generation of the incidence matrix

We want to build the incidence matrix we need, naming [/, using the following steps :

— Generate all k-element combinations of (Z), these will be our rows.

— Generate all 2-element combinations of (;’), these will be our columns.

— Il the incidence matrix.

We will fill the incidence matrix I based on the following rule :

1 if column j is a subset of row i
1[i, j] = (3.4)
0 else

where 1 <i < () and 1 < j <(3).
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l0p0010100000000008080
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FIGURE 3.1 - Incidence matrix generated for parameters v =7,k =3

Example 3.4.1. Consider Fano Plane example, that is, v="T,k =3, = 1. For Fano

) of incidence matrix I will be :

7
3

Plane, all 3 element combinations (

7}7{37 57 6}7 {3) 47 7}7{3? 47

{ 1567104, 6, 71,04, 5, T1.04, 5, 61,03, 6, T}.{3, 5,

61,13, 4, 5}:{2, 6,

6}7 {27 47 5}7{27 37 7}7{27 37

3,42, 5, 1},{2, 5, 6},{2, 4, 17},{2, 4,
4}7{17 6’ 7}7{17 57 7}7{17 5} 6}?{17 47
5},{1, 3} 4},{1, 27 7};{1, 27 6}7{17 27

70{1, 4, 6},{1, 4, 5},{1, 3,
50.{1, 2, 4}.{1, 2, 3} }

6}.42, 3, 5}.{2, 3,

7}7{17 37 6}7{17 3}

) of I will be :

7
2

And the all 2 element combinations (

61, {4, 1114, 61,14, 5}.03, TH{3, 61,{3, 5}, {3, 4}, {2, T},{2, 6},{2,

{ 16, 11,45 11,05
5102, 402 311

2} }

AL 61AL 511 41,{1, 3),{1,

7}

)
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Therefore for example I[1,1] = 1 since {6,7} is a subset of {5,6,7} and so on. After

filling I completely, we will obtain incidence matrixz shown in Figure 2.1

3.5 Applying Algorithm X to the generated incidence matrix

In generated matrix I, each row contains exactly v 1s and the set of rows containing
exactly one 1 in each column will have b = w number of rows in it, which

is 7 for Fano Plane example. We have proven this formula in Chapter 2.

After obtaining the incidence matrix for given v, k, A, we simply apply Algorithm X to

it, starting with search(0). Each solution will contain b number of column ids.

Example 3.5.1. For Fano Plane example, if we apply Algorithm X to the incidence

matriz shown in Figure 2.1, we will have results shown in Figure 2.2.

alicsharp@DESKTOP-AGI9MAC: /ant/d/TEZ /kodla via_AlgorithmX/src$ ./a.out
18 3115 26 28 19

183125 16 18 29

114 27 9 26 19 32

114 27 25 18 18 33

124 17 9 16 29 32

12417 15 10 28 33

26 3113 26 2
263123161
212 27 7 26 20 32

2 12 27 23 18 18

22217 7 16 39

22 17 13 10 28 34
331132529 20

3 31 23 15 19 38

24 4 29 20 32

24 23 15 18 35

14 4 19 30 32

14 13 25 18 35

725 20 33

23 9 19 34

4 28 20 33

23 9 16 35

4 28 19 34

7 25 16 35

7 15 30 33

13 9 29 34

4 18 30 33

13 9 26 35

4 18 29 34

12 8 7 15 26 35

solutions found for (7,3,1) design.

o
o
o

A bbb

N
O NI NNNN

2
5
5
S
S
5
5
11

IS S Nl
e N e

NN
(A et

w
ol

FIGURE 3.2 — (7,3,1) BIBDs
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In Figure 2.2, each line in the output represent a solution, that is,

1 8 31 15 26 28 19 is first solution found. Also the numbers 1, 8, 31, 15, ... represent
row ids. That is for first solution, the set containing row 1, row 8, ...,row 28 and
row 19 contains exactly one 1 in each column. For first solution and for incidence
matrix generated as figure 2.1, the set containing rows {1,8,31,15,26,28,19} represent
the following BIBD :

(45,6,7},{3,4,7},{1,2, 7}, {2, 4,6}, {1,4,5}, {1, 3,6}, {2,3,5}}

where row 1 represent {5,6,7}, row 2 represent {3,4,7}, ..., row 19 represent {2,3,5}
respectively. Finding set of rows containing exactly one 1 in each column is equivalent
to solving linear equation /X = 1 where A = 1. The operations done above was for
case A=1. Then, for cases A>1, we shall solve the linear equation /X = X instead of

IX =1.
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4 DEEP NEURAL NETWORKS

In this chapter we will explain deep neural networks, starting from neural networks.

What are neural networks ?

Neural networks, also known as artificial neural networks are a subset of machine
learning. ANNs form the basis of deep learning algorithms. We are using similar figures
or terminologies while talking about human brains. Because, artificial neural networks’

structure and name are inspired by the human brain.

4.1 Perceptrons

To get started with neural networks, we can start with the most basic neuron called a
perceptron. The perceptron is the oldest neural network, created by Frank Rosenblatt
in 1958, inspired by earlier work by Warren McCulloch and Walter Pitts. Today, it is
more common to use other models of artificial neurons. Rosenblatt proposed a simple
rule to compute the output. He introduced weights, w1, w2, . . ., real numbers expressing
the importance of the respective inputs to the output. The neuron’s output, 0 or 1,
is determined by whether the weighted Zj w;x; is less than or greater than some

threshold value [I]. A perceptron takes several binary inputs, x1, 22, . . ., and produces

S
/&/

To explain in algebraic terms, output = 0if > jwjz; < the threshold and 1 otherwise.

a single binary output :

Threshold value may vary depending on the purpose.

0 if > ;wjz; < threshold
output =

1 if > wjz; > threshold.

Neural networks gives outputs similar to this are consisting of several such perceptrons.

These neural networks are called feedforward neural networks, or multi-layer perceptrons
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(MLPs). They are comprised of an input layer, a hidden layer or layers, and an output
layer [1].

4.2 Improving the way neural networks learn

There are several methods to make neural network learn better. In this thesis, we will

mention the regularization technique called dropout method.

4.2.1 Overfitting

The main purpose of learning is to gain the ability to make an accurate prediction on
test data, not on training data. Models that can make good predictions on training
data but not on test data are called overlearned models and this situation is called
"overfitting". Overfitting occurs when the model learns the details and noises in the
training data. Since an overlearning model can easily predict the training data, the
models are tested with test data consisting of different data from the training data.
Errors encountered in test data are called test errors and it is expected that as the
training errors decrease, the test errors should also decrease. This overfitting can be
prevented by randomly omitting some percentage of the feature detectors (neurons
in the hidden layers) on each training case. Also the "dropout" method gives big
improvements on many benchmark tasks and sets new records for speech and object

recognition [11].

4.2.2 Regularization Technique : Dropout

Dropout is a completely different technique from other regularization techniques. When
we look at L1 and L2 regularization techniques, we see that they are trying to change
the cost function [12]. However, unlike L1 and L2, the dropout technique changes the
neural network itself. Now, we will first explain the basics of the dropout technique

and then answer how it works [1].

Suppose we're trying to train following network :
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Suppose x are training inputs and y are expected outputs corresponding to these
inputs. In the absence of the dropout method, we would train this neural network with
forward and backward propagations without changing it, but this process is slightly
different when the dropout method is present. We start the training by randomly and
temporarily deleting a certain percentage of the hidden neurons in the network without
touching the neurons in the input and output layers. After doing this, we will get a
mesh similar to the one below. Note that the dropped neurons, that is the temporarily

deleted neurons, are still in the neural network as ghosts :

We propagate the input x forward through the neural network where we randomly left
some neurons earlier, and then we propagate the result back through the same neural
network. Then we update the appropriate weights and biases. Next, for next entry to
the neural network, we repeat the same process by first restoring the ghosted neurons,

then choosing a new random subset of hidden neurons to delete and so on.

Repeating this process multiple times will teach our network a set of weights and biases.
When we run the full network, more neurons will become active as the percentage of the

neurons we ghosted, so to compensate for this, we increase the weights of the neurons
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in the trained neural network by dividing the weights by the percentage of ghosts in

the neural network.

4.2.3 Random Dropout

In this section, we will try to clarify the random method in weight estimation. After
explaining random method, we will represent ghosted neural network by corresponding
incidence matrice. The process of selecting weights in neural network randomly is called
random dropoutl. Now let’s consider a small model with 5 nodes in the input layer and
3 nodes in the hidden layer as an example. Then, after taking our inputs (z1, e, T3, T4)

and x5, we can determine our outputs uy, us and uz with the following calculation :

T
(51 W11 Wi Wiz Wi4 Wis T2
U | — | W21 W22 W23 Wy W2s xs3 ( 4. 1)
Uus W31 W32 W3z Wszg W35 Ty

Ts

Let’s focus only on u; for now, to explain our topic more clearly. Then, the equality

for u; will be as follows :

U] = W11 + wiaxa + wW13T3 + WigTy + W15Ts + €

()

7

where €, is the margin of error. Now let’s call z;”’ variable x; of the jth input data, egj)
the margin of error of the jth input data, and ugj) the output determined by jth input

data [13].

Now assume that the weights w/,, wg) s w%) are randomly dropped out for each
input. Then we calculate our outputs ugl), u§2), ... for the input data as follows :
ulV R S SR Y D
u§2) x§2) xgz) W12 e§2)
u?’ = CBéS) xf’) wig | + 653) (4.2)
W14

W15
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The process above is a regression model with sparse data. That being so, it can be

demonstrated by the following incidence matrix.

Remark 4.2.1. Similar to the process done here, we will represent our neural networks

by incidence matrices in the following chapters. Representing our artificial neural networks
by incidence matrices will make it easier for us when we want to apply the block designs
to our neural networks in the next sections owing to the fact that block designs can also
be represented by corresponding incidence matrices. Incidence matrices are used in

many fields, such as here, in the representation of block designs and neural networks.

4.3 Deep Learning

The structure of artificial neural networks is suitable for many methods of deep learning.
Neural networks in which deep learning models are used are called deep neural networks.
The word deep comes from the fact that there are more hidden layers in between than
in a normal neural network. The number of hidden layers in deep neural networks can
even go up to 150. Thanks to the deep learning model, we can extract results directly
from the data and the manual feature extraction used in normal machine learning may

not be needed here.

Consider the following multi-layer neural network :

Layer 1
Layer 2
put Layer 3 Layer 4

Cutput

—
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FIGURE 4.1 — A NN With Multiple Layers [1]

There are weights w;; on connections between neurons, and these weights reveal the
importance of the input value. Initially, these weights are determined randomly. Input
values and output values are defined as z = [z1,29,...,2,], and U = [ug, ug, ..., U]
respectively. W is a matrix of m X n size, containing weights. The output values U =

[u1, ug, ..., U] are calculated based on the input data as follows :
U=aoWz+b) (4.3)

where b is the deviation value called bias and « is the activation function used in that
layer stage. The different layer stages are calculated in the same way and activation

functions may vary between stages of layers.
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5 BUILDING DROPOUT MODEL

In this section, we will first create our sample machine learning model that uses dropout
design regularization. Next, we’ll explain how we train this machine learning model and
how we predict new data. Also, while doing this, we will not forget to mention what

our dataset looks like.

5.1 Sample Problem to Apply Model

The next example problem is a classic one that can also be found in many machine
learning courses on the internet. The data used in our thesis was taken from a Coursera
lecture which is given by Prof. Andrew Ng [14]. You can enlarge the dataset for this
problem by generating more random values, or shrink it by subtracting some of its
values.

Problem Statement : Suppose you are hired by the Football Corporation as an Al
specialist and they ask you to suggest positions where your team keeper should throw
the ball so that players on your team can then head off. To do this, they provide you

with the following 2D training dataset saved from previous games :

08 K vy O
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e e® *. %'t *We0, ?
02 S 0 L0 %eeete e %0 0,0
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° 2 IO, M "’oo ¢ eq0 KB o
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oo L] () o
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FI1GURE 5.1 — Football field

The cells in Figure (5.1) correspond to the positions in which the players in the team

hit the ball with their heads after the goalkeeper of your team has taken a shot.

— If the dot is blue, your team’s player can hit the ball with his/her head.
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— Otherwise, we assume that he/she cannot hit.

Our goal : Using a deep learning model with dropout designs regularization method

to find the positions on the field where the goalkeeper should kick the ball.

To reach our goal, we will follow the steps given below :

— Achieving a good model by fine-tuning model parameters such as learning rate,
number of iterations, number of layers, or by changing model settings such as
changing the layer sizes used or the regularization technique used. Reaching a

good model goes through trial and error.

— Training our model using our train dataset. In our case, we will apply dropout

regularization technique at this stage to prevent overfitting.

— While applying dropout technique, we will use balanced incomplete block designs

instead of using random method.

— After updating our parameters W and b in training process, we will predict the

test data, which is seperated from training data.

— We will measure model’s accuracy in training and test sets to measure model’s

sSuccess.

In machine learning, building proper model for your train and test datasets, and for
your objective is essential. In our case, we will try applying (7,3,1)-BIBDs to our neural
network. And to do this, we will construct a deep neural network with seven hidden

layers. (See figure 5.2)

FIGURE 5.2 — Neural Network with Seven Hidden Layers

At the beginning, we are turning on all nodes. We will turn nodes off later depending
on the given block design’s structure. Consider that we will apply the following (7,3,1)-
BIBD to the neural network shown in figure 5.2 where (X, A), the set of elements and
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A={{1,2,5},{1,3,6},{1,4,7},{2,3,7},{2,4,6},{3,4,5},{5,6,7}}, the set of blocks.
This will make us to close 1st, 2nd and 5th nodes of first hidden layer, 1st, 3rd and 6th
of 2nd hidden layer ... and 5th, 6th, 7th nodes of the 7th hidden layer. After turning

those nodes off, we will have a neural network similar to the following :

- . o
] i > o
L - .
* C - .
Y : . .
. e . O .
. ™ O *

FIGURE 5.3 — Dropout Used Deep Neural Network

Turning off node in our neural network is done by giving them zero weight in that turn.

That is, incoming and outgoing weights to the colored nodes in figure 5.3 will be zero.

5.2 Training Model and Predicting New Input

We have a training data X of size (2,211). That is, there are 211 inputs and each input
is corresponding to a point (z,y) on the field. We are training our model for 30.000
iterations. At the beginning, before starting the iterations, we are initializing our core

parameters W and b. Then, each iteration has following steps :

— Apply forward propagation and return parameters U, A where U = Wx + b and

A = a(U) where « is the activation function used in that layer.

— Compute cost of current iteration by the following formula :
t= (3 (log(4) + ¥) + (log(1 — A) 5 (1 - V))) (5.1)
cost = — g g .

where operator * is used for element-wise multiplication, Y is test dataset and m

is Y's size, an integer.

— Run backward propagation.
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— Update parameters W and b using the following formula :
W =W —~(dW) (5.2)

and

b=0b—~db (5.3)

where v is learning rate and dW, db are gradients we calculated during backward

propagation.

The parameters W and b are being updated for number of iteration times. At the end
of iterations, our model is becoming ready to predict new data with its updated W and
b. In our network, RELU activation functions are used in hidden layers and sigmoid
activation function is used for our output layer since our output layer’s type is binary,
i.e., for given test point (x,y), is it a good place for the goalkeeper to shoot or not (i.e.

red or blue). Their formulas are as following :

1
sigmoid(z) = —; (5.4)
e
0 ifz<0
RELU(z) = ( 5.5)
z ifz>0

where 0 < sigmoid(z) < 1Vz € C.
Remark 5.2.1. Note that other activation functions could have been used in this neural

network’s hidden layers and output layer.
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6 COMPUTATIONAL STUDIES

In this chapter, two main computational studies, implementation of Algorithm X and
implementation of machine learning models will be explained. While explaining the

implementations, some computational details and codes will also be given.

6.1 Exact Cover Problem

Algorithm X was implemented to generate balanced incomplete block designs for given
parameters (v, k, A). This process was explained in chapter 3. Here computation speed
of the algorithm for several parameters will be shared. Algorithm is implemented in
C++ programming language. First, it was tested in Python but in Python, the time it
takes to solve exact cover problem was very long compared to what we could have in

C++ .

Remark 6.1.1. The BIBDs generated through algorithm may be isomorph to each

other. That is, they all are not distinct from each other. For example, all of 30 (7,3,1)-
BIBDs generated are isomorph to each other [15]. It is possible to prevent generating
isomorph BIBDs by integrating Nauty, graph isomorphism algorihm, into the algorithm
we built [16]. By this, we could simply avoid isomorph BIBDs. Secondly, algorithm’s

current version at GitHub is working for cases where A = 1.

We will generate 30-(7,3,1) BIBDs under 17ms.

alicsharp@DESKTOP-AG99MAC: /mnt/c/Users/ali.ozturk/c++_projects/BIBDs_via_AlgorithmX/src$ time g++ main.cpp Combinations.cpp IncidenceMatrix.cpp

real em2.572s
user Oml1.609s
sys 0mo.922s
alicsharp@DESKTOP-AG99MAC: /mnt/c/ ars/ali.ozturk/c++_project s_via_AlgorithmX/src$ time ./a.out

30 solutions found for (7,3,1) design.

real Omo.015s
user 6me.000s
sys omd.016s
alicsharp@DESKTOP-AG99MAC: /mnt/c/Users/ali.ozturk/c++_project s_via_AlgorithmX/src$ I

FIGURE 6.1 — (7,3,1) BIBD Algorithm Speed

These 30 (7,3,1) BIBDs are given in (Figure 3.2).
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1.108.000 (13,4,1)-BIBD can be generated with Algorithm X under 6 seconds. These
1.108.000 solutions can be found on project’s repository at GitHub.

alicsharp@DESKTOP-AG99MAC: /mnt/c/Users/ali.ozturk/c++_projects/BIBDs_via_AlgorithmX/src$ time g++ main.cpp

real Om2.525s

user Oml.531s

sys Oml1.000s

alicsharp@DESKTOP-AG99MAC: /mnt/c/Users/ali.ozturk/c++_projects/BIBDs_via_AlgorithmX/src$ time ./a.out
1.1088e+086 solutions found for (13,4,1) design.

real Omé.159s
user Omé.094s
sys OmB.031s
alicsharp@DESKTOP-AG99MAC: /mnt/c/Users/ali.ozturk/c++_projects/BIBDs_via_AlgorithmX/src$ I

FIGURE 6.2 — (13,4,1) BIBD Algorithm Speed

Further work can be done using this algorithm but for now, we will use the balanced

incomplete block designs we generated in our deep learning models.

6.2 Saving Solutions, Generated BIBDs

In this section, we explain how and when we do write to the text file that stores BIBDs.
After starting to the search process in Algorithm X, we are checking if header’s right
is equal to the header itself, because if this is the case, we found a solution there. So,
each time this happens while in search function, we are writing the found BIBD to the

text file.

6.2.1 Writing Process

The solution found will consist of b distinct column ids. In our case, while searching
for (7,3, 1)-designs, the solution will consist of b = 7 (we have proven this in Theorem
2.0.1) distinct column ids and these b = 7 column ids are integers between 1 and (;) =
35. We explained what column ids represent detailed in Chapter (3.5). At the start of
search function, we are checking if header’s right is header itself. If this is the case, we
are writing the column ids of the solution to the text file. Figure (3.2) is an example

of the column ids of the solutions.
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6.3 Machine Learning

In this section, dropout design model’s, random dropout model’s and model without
dropout’s results will be shared and dropout design model’s results will compared with
other dropout methods’ results. These computational work is done on sample dataset
which is explained in (5.1). We are training our models with same sample data X
of size (2,211). Learning rate(y) were 0.05 and 0.03 for 30.000 iterations in all these

simulations.

6.3.1 Model Without Dropout Regularization

In this subsection, we will be sharing our simulation results of model that has no
regularization technique applied. That is, our 7-hidden-layer deep neural network’s
nodes will be turned on always on each iterations. First, lets share its accuracies on

train and test datasets.

Rumn: run_Model

Accuracy: 0.990521327014218
0On the test set:

» 4 0On the train set:
2

= Accuracy: 0.92
=+ -—- 23.769002199172974 seconds ---
oo
= . , _
Process finished with exit code O
* &

FIGURE 6.3 — Model Without Dropout Regularization

We have 99% accuracy on train dataset where we have only 92% accuracy on test
dataset. This is called overfitting. This can be seen from the colored graph of train

data (Figure 6.4) aswell.
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-0.6 -0.4 -0.2 0.0 0.2 0.4

FIGURE 6.4 — Model Without Dropout Regularization - Figure 6.3’s Graph

We want to avoid having this result. It is always better to have better accuracy on test
dataset. To prevent this, as it is mentioned earlier, we will drop nodes in our 7-hidden

layered deep neural network as shown in Figure (5.3).

6.3.2 Model With Dropout Designs Regularization

In this subsection, we will be sharing our simulation results of model that has dropout
designs as regularization technique. That is, our 7-hidden-layer deep neural network’s
nodes will be turned off on each iteration based on given balanced incomplete block

design’s incidence matrix. First, lets share its accuracies on train and test datasets.
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Run: run_Model
p 4 Accuracy: 0.909952606635071
On the test set:
£y
Accuracy: 0.94
P --- 33.01512932777405 seconds ---
=4 Design used in this run: [[1, 2, 51, [1, 3, 61, [1, 4, 71, [2, 3, 71, [2, 4, 61, [3, 4, 51, [5, 6, 71]
1]
= . . .
Process finished with exit code 0

FIGURE 6.5 — Model With Dropout Designs Regularization

We have 90% accuracy on train dataset and we have 94% accuracy on test dataset. We
prevented overfitting in this simulation using the following (7,3,1)-BIBD or one of its

permutations on each iteration for 30.000 iterations.

{{1,2,5},{1,3,6},{1,4,7},{2,3,7},{2,4,6},{3,4,5},{5,6,7}}

The colored graph we are having in training dataset will be as following in this case :

FIGURE 6.6 — Model With Dropout Designs Regularization - Figure 6.5’s Graph

By this, we can see that preventing overfitting using BIBDs is possible, fast and efficient.
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6.3.3 Model With Random Dropout Regularization

In this subsection, we will be sharing our simulation results of model that has random
dropout method as regularization technique. That is, our 7-hidden-layer deep neural
network’s nodes will be turned off randomly on each iteration. First, lets share its

accuracies on train and test datasets.

Run: run_Model

0 On the train set:
F ol Accuracy: 0.9004739336492891
On the test set:

dl

Accuracy: 0.925
=+ --- 37.78864026069641 seconds ---
| 1]
= . , .
Process finished with exit code O
ol

FIGURE 6.7 — Model With Random Dropout Regularization

We have 90% accuracy on train dataset where we have 92.5% accuracy on test dataset.
We prevented overfitting using random method aswell but our success while using

dropout designs was higher with 94%.

6.4 Implementations

In this section, we share the codes that we used to generate balanced incomplete block

designs and to build our deep neural network.

6.4.1 Implementation of Algorithm X and BIBD Generation in C++

This section will cover C++ codes of Algorithm X and balanced incomplete block design

generation. We are writing generated block designs to a text file to read later in Python.
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6.4.1.1 Solving Exact Cover Problem Using Algorithm X

We are solving the Exact Cover Problem using the following implementation of Algorithm
X, which we explained detailed in Chapter 3. This implementation consists of two main

items :

— Node structure and

— AlgorithmX class.

First, we are defining our fundamental structure N. This node structure has five
components, D, C, U, R, L, that we explained detailed in Chapter 3. These components
are public attributes of the structure N. D,C U, R, L correspond to the N pointer
checkDown, ColumnNode, checkUp, checkRight and checkLeft respectively. In addition

to those attributes, N has integer attributes as row_ID, column_ID.

Second, we are defining necessary variables. The variable 1ist_header is explained
detailed in Chapter 3 and the variable boolMat is a matrix of size MAX_ROW x MAX_COL
such that all of its entries are either 1 or 0. MAX_ROW and MAX_CO1 set up as 1000
in the beginning of the algorithm but we are simply using only the part we need of
this 1000x1000 matrix. For example in (7,3,1), we do have 21 columns and 35 rows.
Therefore, here, we are using only 21x35 of this 1000x1000 matrix. For larger BIBDs,
the larger part of the matrix will be used and for BIBDs that we ’ll require more space

than 1000, this constant value should be enlarged.

Finally, we are defining AlgorithmX class, which is consisting of functions that are
required while solving exact cover problem. This algorithm starts with its member
function findSolutions. This function is taking a three integers starting point, number
of rows of incidence matrix, number of columns of incidence matrix and a taking a
2-dimensional matrix, incidence matrix. We are generating this incidence matrix in
the following section to give it as input to this function. The following is our C++:

implementation.

#ifndef BLOCK_DESIGNS_V_ALGORITHMX_ALGORITHMX_H
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#define BLOCK_DESIGNS_V_ALGORITHMX_ALGORITHMX_H
#define MAX_ROW 1000
#define MAX_COL 1000

#include <string>

struct N
{
public:
struct *checkLeft;
struct N *checkRight;

struct

N
N

struct N *checkUp;
N *checkDown;
N

struct *ColumnNode;
int row_ID;

int column_ID;

};
static double SOLUTION_COUNT = O;
static struct N *1list_header = new NQ);

static bool boolMat[MAX_ROW] [MAX_COL];
static struct N NodeMatrix[MAX_ROW] [MAX_COL];

static std::vector<struct N *> solutions;

class AlgorithMX{
public:
static void fillBoolMat(std::vector<std::vector<int>> arrays) {
std::vector<std::vector<int>>::iterator theRow;
std: :vector<int>::iterator theColumn;
int r = 0;
for (theRow = arrays.begin(); theRow != arrays.end(); theRow++) {
T++;
for (theColumn = theRow->begin(); theColumn != theRow->end(); theColumn++)
boolMat [r] [*theColumn - 1] = true;
};
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};
};

static int bringRight(int j, int theNRow, int theNCol){
return (j + 1) % theNCol;

static int bringLeft(int k, int theNRow, int theNCol)

{ return (k - 1 < 0) ? theNCol - 1 : k - 1; }

static int bringUp(int m, int theNRow, int theNCol)
{ return (m - 1 < 0) ? theNRow : m - 1; }

static int bringDown(int i, int theNRow, int theNCol)
{ return (i + 1) % (theNRow + 1); }

static void coverNode(struct N *targetNode)

{
struct N *theRow, *the_right_node;

struct N *colNode = targetNode->ColumnNode;

colNode->checkLeft->checkRight = colNode->checkRight;

colNode->checkRight->checkLeft = colNode->checkLeft;

for (theRow = colNode->checkDown; theRow !'= colNode; theRow

= theRow->checkDown){

for (the_right_node = theRow->checkRight; the_right_node != theRow;

the_right_node = the_right_node->checkRight) {

the_right_node->checkUp->checkDown = the_right_node->checkDown;

the_right_node->checkDown->checkUp = the_right_node->checkUp;

NodeMatrix[0] [the_right_node->column_ID].the_node_count -= 1;
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static void uncoverNode(struct N *targetNode) {

struct N *the_row_node, *the_left_node;

struct N *colNode = targetNode->ColumnNode;

for (the_row_node colNode->checkUp; the_row_node !'= colNode;

the_row_node = the_row_node->checkUp) {

for (the_left_node = the_row_node->checkLeft;
the_left_node != the_row_node;

the_left_node = the_left_node->checkLeft)

{
the_left_node->checkUp->checkDown = the_left_node;
the_left_node->checkDown->checkUp = the_left_node;
NodeMatrix[0] [the_left_node->column_ID] .the_node_count +=
+
}
colNode->checkLeft->checkRight = colNode;
colNode->checkRight->checkLeft = colNode;

static N *get_the_minimum_column() {
struct N *h = list_header;
struct N *min_col = h->checkRight;
h = h->checkRight->checkRight;
do {
if (h->the_node_count < min_col->the_node_count) {
min_col = h;
}
h = h->checkRight;
} while (h '= list_header);
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return min_col;

};

static void search(int k) {

struct N *the_row_node;

struct N *the_right_node;

struct N *the_left_node;

struct N *ColumnNode;

if (list_header->checkRight == list_header) {
SOLUTION_COUNT++;
write_solution_to_file(7, 3);

return;
column = get_the_minimum_column();
coverNode (column) ;
for (the_row_node = column->checkDown; the_row_node != column;
the_row_node = the_row_node->checkDown) {
solutions.push_back(the_row_node);
for (the_right_node = the_row_node->checkRight;
the_right_node != the_row_node;

the_right_node = the_right_node->checkRight)

coverNode (the_right_node) ;

search(k + 1);

solutions.pop_back();
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column = the_row_node->ColumnNode;
for (the_left_node = the_row_node->checkLeft; the_left_node != the_row_nod
the_left_node = the_left_node->checkLeft)

uncoverNode (the_left_node) ;

uncoverNode (column) ;

static N *makeToridolMatrix(int theNRow, int theNCol) {
for (int m = 0; m <= theNRow; m++) {
for (int n = 0; n < thelNCol; n++) {
if (boolMat[m][j1) {

int a, b;

if (m) NodeMatrix[O] [n].the_node_count += 1;

NodeMatrix[m] [n].ColumnNode = &NodeMatrix[0] [n];

NodeMatrix[m] [n] .row_ID = m;

NodeMatrix[m] [n].column_ID = n;

a = m;
b = n;

do { b = bringlLeft(b, theNRow, theNCol); } while (!boolMat[a][b] &&
b !'=n);

NodeMatrix[m] [j].checkLeft = &NodeMatrix[m] [b];

a = m;

b = n;

do { b = bringRight(b, theNRow, theNCol); } while (!boolMat[a][b] &%
b !=n);

NodeMatrix[m] [n].checkRight = &NodeMatrix[m] [b];
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a = m;

b = n;

do { a = bringUp(a, theNRow, theNCol); } while (!boolMat[al[b] &&
a'=m);

NodeMatrix[m] [n].checkUp = &NodeMatrix[a] [n];

a = m;

b = n;

do { a = bringDown(a, theNRow, theNCol); } while (!boolMat[a][b] &&
a'=m;

NodeMatrix[m] [n] .checkDown = &NodeMatrix[al[n];

list_header->checkRight = &NodeMatrix[0] [0];

list_header->checkLeft = &NodeMatrix[0] [theNCol - 1];

NodeMatrix[0] [0] .checkLeft = list_header;
NodeMatrix[0] [theNCol - 1].checkRight = list_header;

return list_header;

+

static void findSolutions(int starting_point, int nr, int nc,

const std::vector<std::vector<int>> &given_array)

int theNRow nr;

int theNCol

nc;

for (int m = 0; m <= theNRow; m++) {
for (int n = 0; n < theNCol; n++) {
if (m == 0) boolMat[m] [n] = true;
else boolMat[m] [n] = false;
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}
fillBoolMat (given_array) ;

makeToridolMatrix (theNRow, theNCol);

search(starting_point);

static void solve_design_problem(std::vector<int> vKlets) {

vKlets[0];
vKlets[1];

int v

int k

std::vector<std::vector<int>> pairs = Combinations::combs(v, 2);

std: :vector<std::vector<int>> combs Combinations::combs(v, k);
std::vector<std::vector<int>> Inc_Matrix =

IncidenceMatrix: :getIncidenceMatrix(combs, pairs);
std::vector<std::vector<int>> Design =

IncidenceMatrix: :getSets(Inc_Matrix);

findSolutions(0, combs.size(), pairs.size(), Design);

static void write_solution_to_file(int v, int k)

{
std::ofstream myFile;
myFile.open(std::to_string(v)+"_"+std::to_string(k)+"_1_BIBDs.txt",

std::ios_base::app);

std::vector<std::vector<int>> combs = Combinations::combs(v,k);

std::vector<struct N*>::iterator it;

for(it = solutions.begin(); it!=solutions.end(); it++) {
int val = (*it)->row_ID;
myFile << val << " ",

}

myFile << "\n";

myFile.close();
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6.4.1.2 Incidence Matrix Generation

Following combination function is used in process of generating the incidence matrix

that mentioned in Chapter 3.4.

#include <iostream>
#include "vector"
#include "algorithm"

#include "Combinations.h"

std: :vector<std::vector<int>> Combinations::combs(int n, int r) {

std: :vector<bool> v(n);
std::fill(v.end() - r, v.end(), true);
std::vector<std::vector<int>> sol;
do {

std: :vector<int> theRow;

for (int i = 0; i < n; ++i) {

if (v[il) A
theRow.push_back(i+1);

}
sol.push_back(theRow) ;
} while (std::next_permutation(v.begin(), v.end()));

return sol;

And then, we generate the incidence matrix mentioned in Chapter (3.4) using the

following :

#include "IncidenceMatrix.h"
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#include "vector"
#include "iostream"

#include "algorithm"

bool IncidenceMatrix::subset_check(

std::vector<int> subset_1,

const std::vector<int> &subset_2

) {

bool subset = true;

for(const int & i: subset_2){
if (!std::count(subset_1.begin(), subset_1.end(), 1))
subset = false;

IE

return subset;

std: :vector<std: :vector<int>>

IncidenceMatrix::getIncidenceMatrix

(
const std::vector<std::vector<int>> &klets,
const std::vector<std::vector<int>> &columns
)
{

std::vector<std::vector<int>> IncidenceArray;

for(int i=0; i<klets.size(); i++){
std::vector<int> temp_row;
for(int j=0; j< columns.size(); j++){
if (subset_check(klets[i],columns[j1)){

temp_row.push_back(true) ;

}

elseq{
temp_row.push_back(false);

}
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IncidenceArray.push_back(temp_row) ;

return IncidenceArray;

std::vector<std::vector<int>>
IncidenceMatrix: :getSets(std: :vector<std::vector<int>> incidence_matrix)
{
std::vector<std::vector<int>> sol;
for(auto & i : incidence_matrix){
std: :vector<int> theRow;
for(int j=0; j< i.size();j++){
ifGEDA
theRow.push_back(j+1);

}
sol.push_back(theRow) ;
}

return sol;

Finally, we call our source codes in the following main.cpp script :

#include <iostream>

#include '"vector"

#include "Combinations.h"
#include "IncidenceMatrix.h"
#include "fstream"

#include "AlgorithmX.h"

int main() {

std::vector<std::vector<int>> todo_list;
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/// Add values {v,k}s to todo_list to find {v,k,1}-designs.

todo_list.push_back({7,3});

// todo_list.push_back({13,4});

for(auto& todo:todo_list){
SOLUTION_COUNT = 0O;
AlgorithMX: :solve_design_problem(todo) ;
std::cout << SOLUTION_COUNT << " solutions found for "

<<"("<<todo[0]<<","<<todo[1]<<",1)"<<" design."<<std::endl;

return O;

After running main.cpp script, a text file that contains BIBDs will be created. We will

use the generated BIBDs in next section.

6.4.2 TImplementation of ML Model in Python

In this section, we share fundamental functions that we used while reading text file that
contains balanced incomplete block designs and then using them in machine learning
models. This process starts with running C++ script to generate required .txt file then

we read generated balanced incomplete block desings line by line in Python.

6.4.2.1 Construction of Model

In this section, we are sharing our neural network’s model. The following neural network
consist of seven hidden layers. As activation functions, RELU is used in the hidden
layers and Sigmoid is used in the output layer. There are three forward propagation

and backward propagation functions existing in the model. First one,

forward_propagation_with_random_dropout,
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refers to the forward propagation in neural network using random method. That is, we

are dropping out the neurons in hidden layers randomly. Second one,

forward_propagation_with_dropout_designs,

is referring to the forward propagation process that uses BIBDs while dropping out

neurons in the hidden layers. The third forward propagation function is referring to

the usual forward propagation technique where we don’t use any regularization method.

On the other hand, there are two backward propagation functions. First one,
backward_propagation_with_dropout,

refers to the backward propagation using dropout technique, other one refers to the

usual technique. Note that, a seperate 3rd function for BIBDs wasn’t needed here. Now

lets look into the Model’s definition :

import matplotlib.pyplot as pyplt

def Model(dataset_X, dataset_Y, model_parameters):

layers_dims = model_parameters["layer_dimensions"]

{}
[]

grads

costs

parameters = initialize_parameters(layers_dims)

for i in range(0, model_parameters["num_iters"]):
if model_parameters["use_random_dropout"]:
a_last, cache = forward_propagation_with_random_dropout (
dataset_X, parameters, model_parameters)
elif model_parameters["use_dropout_designs"]:
a_last, cache = forward_propagation_with_dropout_designs(
dataset_X, parameters, model_parameters)

else:
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a_last, cache = usual_forward_propagation(

dataset_X, parameters, model_parameters)

cost = compute_cost(a_last, dataset_Y)

#Backward propagation.
if model_parameters["use_random_dropout"]:
grads = backward_propagation_with_dropout(
dataset_X, dataset_Y, cache, model_parameters)
else:
grads = usual_backward_propagation(

dataset_X, dataset_Y, cache, model_parameters)

#We update parameters by the following update parameters function.
parameters = update_parameters(parameters,

grads, model_parameters["learning_rate'"])

#We may print loss or costs depending on given model parameters.
if model_parameters["print_cost"] and i %
model_parameters["print_cost_per"] == 0:

print("Cost after iteration {}: {}".format(i, cost))
if model_parameters["print_cost"] and i %
model_parameters["append_cost_per"] == 0:

costs.append(cost)

return parameters

6.4.2.2 Forward and Backward Propagations

In this section, we are sharing the forward and backward propagation functions that

we called in our Model.

Forward Propagation with Dropout Designs
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This function first takes weight and bias parameters. Then checks if we are applying
dropout designs technique, if this is the case, we are getting the design with its
isomorph permutations that we sent to the Model as parameter before starting it. We
are randomly choosing one of the isomorph (7,3,1) balanced incomplete block designs
and applying it to the matrix D called dropout matrix. D is of shape (v,211), i.e.
(7,211). First, we are initializing D with all entries as 1. Then we are closing its entries
depending on the BIBD we have randomly chosen. For example, if our chosen BIBD’s
first block is {1,2,4}, then we are closing 1st, 2nd and 4th rows of matrix D. In other
words, we are setting D[0], D[1] and D[3] to the 0.

After being done with dropout matrix D of each layer for 7 hidden layers, we are
calculating U and A by WX + b and «(U) respectively where « is the activation
function we are using on that layer. If we are in a hidden layer, we are multiplying A
with D entrywise to dropout our values. If dropout designs is not the case, this function

simply calculates U and A functions without multiplying it entry wise with D.

def forward_propagation_with_dropout_designs(X, parameters, model_params):
np.random. seed (model_params ["random_seed"])
methods = model_params["activation_functions_in_order"]
params = dict()
for i in range(l, len(methods) + 1):

params["W" + str(i)] = parameters["W" + str(i)]

params["b" + str(i)] = parameters["b" + str(i)]
dropout_exist = model_params["use_dropout_designs"] or model_params[

"use_random_dropout"]

if model_params["use_dropout_designs"]:

design = model_params['"design"]
isomorph_incidence_matrices = design.isomorph_designs_sack
d = random.choice(isomorph_incidence_matrices)
for i in range(l, len(methods)):

params["D" + str(i)] = np.ones((design.v, X.shape[1l]), dtype=int)
for i, block in enumerate(d):

for theRow in block:

params["D" + str(i + 1)][theRow-1] = 0
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for n, m in enumerate(methods):
if m == "relu":

if n ==

params["U" + str(n + 1)] = np.dot(params["W" + str(n + 1)],

X) + params["b" + str(n + 1)]

params["A" + str(n + 1)] = relu(params["U" + str(an + 1)])

else:

params["U" + str(n + 1)] = np.dot(params["W" + str(n + 1)],
params["A" + str(n)]) + params["b" + str(n + 1)]

params["A" + str(n + 1)] = relu(params["U" + str(n + 1)])

if dropout_exist and n != len(methods) - 1:
params["A" + str(n + 1)] = params["A" + str(n + 1)] *
params["D" + str(n + 1)]
params["A" + str(n + 1)] = params["A" + str(n + 1)] /
model_params ["keep_prob"]

elif m == "sigmoid" and n == len(methods) - 1:

if n ==

params["U" + str(n + 1)] = np.dot(params["W" + str(n + 1)],
1)]

sigmoid(params["U" + str(n + 1)])

+

X) + params["b" + str(n

params["A" + str(n + 1)]

else:

params["U" + str(n + 1)] = np.dot(params["W" + str(n + 1)],
params["A" + str(n)]) + params[
"o" + str(n + 1)]

params["A" + str(n + 1)] = sigmoid(params["U" + str(n + 1)])
cache = dict()
for key in params.keys(Q):

cachel[key] = params[key]

return params["A" + str(len(methods))], cache

Forward Propagation with Random Dropout
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The following is the forward propagation function with random dropout method.

def forward_propagation_with_random_dropout(X, parameters, model_params):

np.random.seed (1)

methods = model_params["activation_functions_in_order"]

params = dict()

for i in range(1l, len(methods) + 1):

params["W" + str(i)] = parameters["W" + str(i)]

params["b" + str(i)] = parameters["b" + str(i)]

for i, m in enumerate(methods):

if m == "relu":

if 1 ==

params["U" + str(i + 1)]

params["A" + str(i + 1)]

else:

params["U" + str(i + 1)]

"p" + str(i + 1)]

params["A" + str(i + 1)]

if dropout_exist

np.dot (params["W" + str(i + 1)1, X) +

relu(params["U" + str(i + 1)]1)

np.dot(params["W" + str(i + 1)], params

relu(params["U" + str(i + 1)1)

and i '= len(methods) - 1:

params["D" + str(i + 1)] = np.random.rand(params["A" + str(i + 1)]
params["A" + str(i + 1)].shape[1])
params["D" + str(i + 1)] = (params["D" + str(i + 1)] < model_paran
params["A" + str(i + 1)] = params["A" + str(i + 1)] * params["D" +
params["A" + str(i + 1)] = params["A" + str(i + 1)] / model_params
elif m == "sigmoid" and i == len(methods) - 1:
if 1 ==

params["U" + str(i + 1)]

params["A" + str(i + 1)]

else:

params["U" + str(i + 1)]

"p" + str(i + 1)]

params["A" + str(i + 1)]

np.dot (params["W" + str(i + 1)1, X) +

sigmoid(params["U" + str(i + 1)])

np.dot(params ["W" + str(i + 1)], params

sigmoid(params["U" + str(i + 1)])
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cache = dict()
for key in params.keys():

cache[key] = params[key]

return params["A" + str(len(methods))], cache

Backward Propagation With Dropout

In backward propagation functions, we are taking the ghosted (or non-ghosted if
dropout technique is not used) neural networks and calculating gradient parameters.
In addition to the usual backward propagation function, if dropout technique is being

used, then we are multiplying matrix dA with previously obtained dropout matrix D.

def backward_propagation_with_dropout_designs(X, Y, cache, model_params):
methods = model_params["activation_functions_in_order"]
gradients = dict()
s = X.shapel[1]
for n in range(len(methods), 0, -1):

if n == len(methods):

gradients["dU" + str(n)] = cache["A" + str(n)] - Y

gradients["dW" + str(n)] = 1. / s * np.dot(gradients[

"dU" + str(n)], cache["A" + str(n - 1)].T)

gradients["db" + str(n)] = 1. / s * np.sum(gradients[
"dU" + str(n)], axis=1, keepdims=True)
elif len(methods) > n > 1:
gradients["dA" + str(n)] = np.dot(cache["W" + str(n + 1)].T,

gradients["dU" + str(n + 1)])

gradients["dA" + str(n)] = gradnents["dA" + str(n)] x*

cache["D" + str(n)l]

gradients["dA" + str(n)] = gradients["dA" + str(n)] /
model_params ["keep_prob"]

gradients["dU" + str(n)] = np.multiply(gradients["dA" +
str(n)], np.int64(cache["A" + str(n)] > 0))

gradients["dW" + str(n)] = 1. / s * np.dot(gradients[
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"du" + str(n)], cache["A" + str(n - 1)].T)
gradients["db" + str(n)] = 1. / s * np.sum(gradients[
"dU" + str(n)], axis=1, keepdims=True)
elif i ==
gradients["dA" + str(n)] = np.dot(cache["W" + str(n + 1)].T,
gradients["dU" + str(n + 1)])

gradients["dA" + str(n)] = gradients["dA" + str(n)] x*

cache["D" + str(n)]

gradients["dA" + str(n)] = gradients["dA" + str(n)] /
model_params ["keep_prob"]

gradients["dU" + str(n)] = np.multiply(gradients["dA" +
str(n)], np.int64(cache["A" + str(n)] > 0))

gradients["dW" + str(n)] = 1. / s * np.dot(gradients[
"du" + str(n)], X.T)

gradients["db" + str(n)] = 1. / s * np.sum(gradients[
"dU" + str(n)], axis=1, keepdims=True)

return gradients

Usual Backward Propagation

The following is the usual backward propagation function where we don’t apply any

regularization technique.

def backward_propagation(X, Y, cache, model_params):
random.seed (model_params ["random_seed"])
methods = model_params["activation_functions_in_order"]
gradients = dict()
s = X.shape[1]
for i in range(len(methods), 0, -1):

if 1 == len(methods):

gradients["dU" + str(i)] = cache["A" + str(i)] - Y

gradients["dW" + str(i)] = 1. / s * np.dot(gradients["dU" + str(i)], c

gradients["db" + str(i)] = 1. / s * np.sum(gradients["dU" + str(i)], a

elif len(methods) > i > 1:

gradients["dA" + str(i)] = np.dot(cache["W" + str(i + 1)].T, gradients
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gradients["dU" + str(i)] = np.multiply(gradients["dA" + str(i)], np.in

gradients["dW" + str(i)] = 1. / s * np.dot(gradients["dU" + str(i)], c

gradients["db" + str(i)] = 1. / s * np.sum(gradients["dU" + str(i)], a

elif i ==

gradients["dA" + str(i)] = np.dot(cache["W" + str(i + 1)].T, gradients

gradients["dU" + str(i)] = np.multiply(gradients["dA" + str(i)], np.in

gradients["dW" + str(i)] = 1. / s * np.dot(gradients["dU" + str(i)], X

gradients["db" + str(i)] = 1. / s * np.sum(gradients["dU" + str(i)], a

return gradients

6.4.2.3 Dropout Designs Method

In this section, we share code of closing nodes in neural network and then we explain

the parameters we use in our model.

dropout_exist = model_params["use_dropout_designs"] or
model_params ["use_random_dropout"]
if model_params["use_dropout_designs"]:
design = model_params["design"]
isomorph_incidence_matrices = design.isomorph_designs_sack
d = random.choice(isomorph_incidence_matrices)
for i in range(l, len(methods)):
params["D" + str(i)] = np.ones((design.v, X.shapel[1l]),
dtype=int)
for i, block in enumerate(d):
for theRow in block:

params["D" + str(i + 1)][theRow-1] = 0

where modelparams—

model_parameters = {
"num_iters": 30000,
"keep_prob": 0.57,

"learning_rate": 0.05,
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"design": _7_3_1_Design,

"random_seed": random_seed,

"activation_functions_in_order": ["relu",'"relu",'"relu",'relu",
"relu","relu","relu", "sigmoid"],

"layer_dimensions": [train_X.shapelO], 7, 7, 7, 7, 7, 7, 7, 11,

"use_dropout_designs'": True,

"use_random_dropout": False,

"print_cost": True,

"print_cost_per'": 10000,

"append_cost_per": 1000,

is a Python dictionary that holds key features of Model and given to the Model at the
start of training. numaiters is an integer that determines number of iterations, keepprob
is used to scale weights of neurons in neural network after dropping them out using
dropout designs technique or random dropout technique. If we are applying random
dropout technique, in addition to this, keepprob will be the percentage of how many
neurons in the neural network will be kept. That is, if keepprob = 0.57 in random
dropout, this means we are keeping 57% of neurons of hidden layers in our deep neural

network. This is not the case while using dropout designs technique.

learning rate is our learning rate that we use to update our parameters W and b.

design is a Python class defined as :

class IterDesign:

def __init__(self, v, k, lamda):

self.v v

self.k k

self.lamda = lamda
self.design = None

self.isomorph_designs_sack = []

where sel f.design is randomly picked BIBD over other generated designs and somorph
designs sack is list of permutations of randomly picked BIBD in sel f.design. In (7,3,1)

case, isomorph designs sack consist of 7!=5040 elements. Before starting to the training



of model, we are sampling 2.000 (7,3,1) designs over 5040 randomly with

sample_incidence_matrices_indices = random.sample(iterations, 2000).

In dropout designs techinuqe, on each iteration, we choose one of those 2000 sampled
designs randomly and apply it to the neural network. randomseed is determined seed
for random functions to obtain stable results. activation functions in order is the list
of activation functions that are going to be used in each hidden layer and in the output

layer. layer dimensions are the sizes of each layer in neural network.



7 CONCLUSION

We started by giving brief introduction of balanced incomplete block designs. Then we
deep dived into the Algorithm X and Exact Cover Problems. We used these definitions

and algorithms on our machine learning models that we built later.

If we come to the comparison of techniques we applied, all calculation results given
in chapter 6 was done for same number of iterations, but as it can be seen from
figures, dropout designs technique finished earlier than random dropout technique
and gave better accuracy on test dataset. By this, it is possible to claim that using
dropout technique with BIBDs is as efficient as using random method. On the other
hand, implementing random method is a lot easier than implementing dropout designs
method. Because, random method can be applied to almost all deep neural network
models with ease but to apply BIBD to a model, model must be constructed thinking
selected BIBD.

In our simulations, we applied those methods to the deep neural network with 7 hidden
layers specifically because we wanted to use (7,3,1)-BIBDs. In order to apply a different
BIBD to the model, we would need to change model’s hidden layer count with layers
sizes (or change the way we train model). The difficulty and slowness of using large
networks makes it hard to avoid overfitting by pooling the predictions of many different

large neural networks at test time [17].

As a conclusion, building the correct model for your input size, regularization technique,
training size, test size, learning rate and number of iterations is essential to have a good
accuracy on predictions after training our model. Therefore dropout designs technique

might be inefficient where researchers want quick solutions.
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