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SOFTWARE DEFECT PREDICTION WITH A PERSONALIZATION
FOCUS AND CHALLENGES DURING DEPLOYMENT

SUMMARY

Organizations apply software quality assurance techniques (SQA) to deliver
high-quality products to their customers. Developing defect-free software holds a
critical role in SQA activities. The increasing usage of software systems and also
their rapidly evolving nature in terms of size and complexity raise the importance
of effectiveness in defect detection activities. Software defect prediction (SDP) is
a subfield of empirical software engineering that focuses on building automated and
effective ways of detecting defects in software systems. Many SDP models have been
proposed in two decades, and current state-of-the-art models mostly utilize artificial
intelligence (AI) and machine learning (ML) techniques, and product, process, and
people-related metrics which are collected from software repositories.

So far now, the people aspect of the SDP has been studied less compared to
the algorithm (i.e., ensembling or tuning machine learners) and data aspects (i.e.,
proposing new metrics). While the majority of people-focused studies incorporate
developer or team related metrics into SDP models, recently personalized SDP models
have been proposed. On the other hand, the majority of the SDP research so far now
focuses on building SDP models that produce high rates of prediction performance
values. Real case studies in industrial software projects and also the number of studies
that research the applicability of SDP models in practice are relatively few. However,
for an SPD solution to be successful and efficient, its applicability in real life is as
important as its prediction accuracy. This thesis focus on two main goals: 1) assessing
people factor in SDP to understand whether it helps to improve the prediction accuracy
of SDP models, and 2) prototyping an SDP solution for an industrial setting and
assessing its deployment performance.

First, we made an empirical analysis to understand the effect of community smell
patterns on the prediction of bug-prone software classes. The “community smell”
term is recently coined to describe the collaboration and communication flaws in
organizations. Our motivation in this part is based on the studies that show the
success of incorporating community factors, i.e., sociotechnical network metrics, into
prediction models to predict bug-prone software modules. Also, prior studies show
the statistical association of community smells with code smells (which are code
antipatterns) and report the predictive success of using code smell-related metrics in
the SDP problem.

We assess the contribution of community smells on the prediction of bug-prone classes
against the contribution of other state-of-the-art metrics (e.g., static code metrics) and
code smell metrics. Our analysis on ten open-source projects shows that community
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smells improve the prediction rates of baseline models by 3% in terms of area under
the curve (AUC), while the code smell intensity metric improves the prediction rates
by 17%. One reason for that is the existing ways of detecting community smell
patterns may not be rich in terms of capturing communication patterns of the team
since it only mines patterns through mailing archives of organizations. Another reason
is that the technical code flaws (code smell intensity metric) are more successful in
representing defect related information compared to community smells. Considering
the challenging situation in extracting community patterns and the higher success of
the code small intensity metric in SDP, we direct our research to focus on the code
development skills of developers and the personalized SDP approach.

Second, we investigate the personalized SDP models. The rationale behind the
personalized SDP approach is that different developers tend to have different
development patterns and consequently, their development may have different defect
patterns. In the personalized approach, there is an SDP model for each developer in
the team which is trained with the developer’s own development history solely and
its predictions target only the developer. Whereas in the traditional approach, there
is a single SDP model that is trained with the whole team’s development history, and
its predictions target anyone in the team. Prior studies report promising results on
the personalized SDP models. Still, their experimental setup is very limited in terms
of data, context, model validation, and further explorations on the characteristics that
affect the success of personalized models.

We conduct a comprehensive investigation of personalized change-level SDP on 222
developers from six open-source projects utilizing two state-of-the-art ML algorithms
and 13 process metrics collected from software code repositories that measure the
development activity from size, history, diffusion, and experience aspects. We evaluate
the model performance using rigorous validation setups, seven assessment criteria, and
statistical tests.

Our analysis shows that the personalized models (PM) predict defects better than
general models (GM), i.e., increase recall by up to 24% for the 83% of developers.
However, PM also increases the false alarms of GM by up to 12% for 77% of
developers. Moreover, PM is superior to GM for those developers who contribute
to the software modules that have been contributed by many prior developers. GM is
superior to PM for the more experienced developers. Further, the information gained
from various process metrics in prediction defects differs among individuals, but the
size aspect is the most important one in the whole team.

In the third part of the thesis, we build prototype personalized and general SDP models
for our partner from the telecommunication industry. By using the same empirical
setup that we use for the investigation of personalized models in open-source projects,
we observe that GM detects more defects than PM (i.e., 29% higher recall) in our
industrial case. However, PM gives 40% lower false alarms than GM, leading to a
lower code inspection cost than GM.

Moreover, we observe that utilizing multiple data sources such as semantic information
extracted from commit descriptions and latent features of development activity and
applying log filtering on metric values improve the recall of PM by up to 25% and
lowers GM'’s false alarms by up to 32%. Considering the industrial team’s perspective

XXil



on prediction success criteria, we pick a model to deploy that produces balanced recall
and false alarm rates: the GM model that utilizes the process and latent metrics and
log filtering. Also, we observe that the semantic metrics extracted from the commit
descriptions do not seem to contribute to the prediction of defects as much as process
and latent metrics.

In the fourth and last part of the thesis, we deploy the chosen SDP prototype into
our industrial partner’s real development environment and share our insights on the
deployment. Integrating SDP models into real development environments has several
challenges regarding performance validation, consistency, and data accuracy. The
offline research setups may not be convenient to observe the performance of SDP
models in real life since the online (real-life) data flow of software systems is different
than offline setups. For example, in real life, discovering bug-inducing commits
requires some time due to the bug life cycle, and this causes a data label noise in the
training sets of an online setup. Whereas, an offline dataset does not have that problem
since it utilizes a pre-collected batch dataset. Moreover, deployed SDP models need a
re-training (update) with the recent commits to provide consistency in their prediction
performance and to keep up with the non-stationary nature of the software.

We prose an online prediction setup to investigate the deployed prototype’s real-life
performance under two parameters: 1) a train-test (TT) gap, which is a time gap
between the train and test commits used to avoid learning from noisy data, and 2)
model update period (UP) to include the recent data into the model learning process.

Our empirical analysis shows that the offline performance of the SDP prototype reflects
its online performance after the first year of the project. Also, the online prediction
performance is significantly affected by the various TT gap and UP values, up to 37%
and 18% in terms of recall, respectively. In deployment, we set the TT gap to 8-month
and UP to 3-day, since those values are the most convenient ones according to the
online evaluation results in terms of prediction capability and consistency over time.

The thesis concludes that using the personalized SDP approach leads to promising
results in predicting defects. However, whether PM should be chosen over GM
depends on factors such as the ML algorithm used, the prediction performance
assessment criteria of the organization, and developers’ development characteristics.
Future research in personalized SDP may focus on profiling developers in a
transferable way instead of building a model for each software project. For example,
collecting developer activity from public repositories to create a profile or using
cross-project personalized models would be some options.

Moreover, our industrial experience provides good insights regarding the challenges
of applying SDP in an industrial context, from data collection to model deployment.
Practitioners should consider using online prediction setups and conducting a domain
analysis regarding the team’s practices and prediction success criteria and project
context (i.e., release cycle) before making deployment decisions to obtain good and
consistent prediction performance. Interpretability and usability of models hold a
crucial role in the future of SDP studies. More researchers are becoming interested in
such aspects of SDP models, i.e., developer perceptions of SDP tools and actionability
of prediction outputs.
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KISISELLESTIRME ODAKLI YAZILIM HATA
TAHMINI VE ENTEGRASYON ZORLUKLARI

OZET

Yazilim sistemlerinin hayatimizin hemen her alanindaki yeri giderek artarken,
hizli gelisen dogalar1 geregi tipik bir sistemin biyiikliigii ve karmasikligi da
zaman icerisinde hizla artabilmektedir. Dolayisi ile organizasyonlar tarafindan
uygulanan yazilim kalite giivencesi (YKG) aktivitelerinin karmagikli1 da artmaktadir.
Organizasyonlarin en 6nemli hedeflerinden biri kullanicilara hatasiz ve kaliteli bir
yazilim sunabilmektir. Bu kapsamda en ¢ok biitce ve zaman ayirdig1 aktivitelerden biri
yazilimdaki hatalarin giderilmesidir. I¢inde bulundugumuz yapay zeka (YZ) ¢aginda
yazilim mithendisligi alanindaki arastirmacilar yazilim hatalarinin tespitini otomatize
eden, akilli oneri sistemleri modellemeye odaklanmistir.

Bir yazilim hata tahmini (YHT) modeli tipik olarak, yazilim depolarindan projeye
dair ge¢mis kodlama ve hata aktivitelerinin oriintiilerini makine 6grenmesi (MO)
yontemleri ile 6grenir ve ekibin yeni gelistirdigi yazilim modiillerinin (6rn., yazilim
siifi, kod c¢evrimi) yazilim sisteminde bir hataya sebebiyet verme durumuna dair bir
tahminde bulunur. Bu modeller yazilim gelistirme ortaminin gelistirme, test ve kod
inceleme gibi agamalarina entegre edilerek ekibin riskli yazilim modiillerini daha kolay
tespit edebilmesi ve karar verme mekanizmasim desteklemek icin kullanilir. Ornegin
kod inceleme i¢in kisith siiresi olan bir ekip Oncelik stratejisini YHT modelinin
tahminlerine gore belirleyebilir.

Aragstirmacilar yaklagik 20 senedir farkli agilardan yaklagsarak YHT modellerinin daha
iyi tahmin performansina ulagsmasi icin ¢esitli yontemler 6nermektedirler. Bu yontem-
lerin ¢cogu probleme algoritmik (6rn., MO algoritmalarinin sonuclarini birlestirmek,
hiper-parametre kestirimi uygulamak) yada veri acisindan yaklagsmaktadir (6rn., yeni
oOlciitler 6nermek).

Yazilim siire¢lerinin ayrilmaz bir pargasi olan kisi faktoriinii modelleyen ¢aligmalar ise
nispeten daha az sayidadir. Kisi faktoriinii ele alan calismalar ise ikiye ayrilmaktadir.
Cogunlukta olan ilk tip ¢calismalar ekipteki yazilim gelistiricilerine dair bazi olgiitler
elde ederek model egitimi sirasinda kullanmigtir. Bu Olciitlerin arasinda bir yazilim
modiiliine katkida bulunan gelistirici sayisi, bir gelistiricinin odagi (aym1 anda
degisiklik yaptigr modiil sayisi), gelistiricinin tiimlesik gelistirme ortami ile olan
etkilesimi (ne kadar siire bir modiilde gezindigi) ve yazilim ekibinin birbirleri ile
olan sosyo-teknik etkilesimleri bulunmaktadir. Ikinci grup calismalar ise sayica ¢ok
az olmakla birlikte (sadece iki) kisisellestirilmis YHT modellerine odaklanmistir.
Kisisellestirilmis YHT modelleri kisi faktoriinii model egitimine dahil etmek yerine,
ekipteki her bir gelistirici i¢in ayr ve kigisel bir model kurmay1 kapsamaktadir.
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Bunlarin yani sira, literatiirdeki ¢aligmalarin cogu son yillara kadar yiiksek tahmin
performansli YTH modelleri kurmaya odaklanmistir. Fakat bir tahmin modelinin
basarili ve efektif olabilmesi icin tahmin modellerin hata tahmin dogruluklarinin yan1
sira gercek hayata uygulanabilirlikleri, tahmin performanslariin siirdiiriilebilirligi,
tahminlerin kullanict perspektifinden yararli ve giivenilir olmast da 6nemlidir. YHT
modellerinin pratik uygulanabilirligine ve gercek hayat senaryolarmma odaklanan
caligmalarin sayist azdir ve iiretilen YHT coziimlerinin gercek hayat senaryolarindaki
degerini degerlendirebilmek i¢in bu calismalara ihtiyac vardir.

Biz bu tezde iki ana amaca odaklandik: 1) kisi faktoriiniin YHT modellerinin tahmin
basarisina olan etkisi, ve 2) endiistriyel bir yazilim projesi icin bir YHT ¢oziimii
gelistirmek ve gercek gelistirmek ortamina entegre etmek.

Tezin ilk analizinde, topluluk kokularmin hata tahminine olan etkisini inceledik.
“Topluluk kokusu” ekibin dogru is birligi ve iletisim pratiklerini uygulamay1 erteledigi
durumlara ithafen ortaya atilmis bir kavramdir. Ornegin iki kisinin aym yazilim
modiiliinde caligmasi fakat aralarinda direk bir iletisim baglantis1 olmamasi durumu
bir topluluk kokusu olarak ele alinmaktadir. Ciinkii bu durum isin ¢ift yapilmasina ve
kod tekrari denilen istenmeyen bir duruma sebebiyet verebilmektedir. Ekipteki boyle
kusurlu iletisim ve etkilesim pratiklerinin ekstra masrafa ve gecikmeye yol acabildigi
gbzlemlenmisgtir. Ayrica onceki calismalar topluluk kokularinin, “kod kokusu™ terimi
ile tarif edilen kusurlu kodlama pratikleri ile aym1 yazilim modiillerinde olustuklarini
gostermistir. Dahas1 kod kokusu i¢eren yazilim siniflarinin hata icermeye daha meyilli
oldugu gosterilmistir. Bu duruma ve sosyo-teknik faktorleri YHT modellerine entegre
ederek bagarili tahmin performanslarina ulasan diger caligmalardan motivasyonumuzu
alarak biz de topluluk kokularinin YHT modellerine egitimine dahil ederek hatali
yazilim siniflarinin tahminine olan etkisini deneysel olarak inceledik.

Deneysel ¢alismamizda topluluk kokularinin hata tahminine olan katkis1 kod kokusu
Olciitlerinin katkis1 ile karsilastirilmistir.  Calismada temel model olarak ise son
teknoloji Ol¢iitleri (statik kod 6lciitleri, nesneye yonelimli dl¢iitler, bir dosyada calisan
gelistirici sayis1 ve gelistiricinin odagi) kullanan YHT modelleri baz alinmstir.
Sonuglar gostermistir ki egri altinda kalan alan kriterine gore topluluk kokular1 temel
modellerin hata tahminini basarisint %3, kod kokusu yogunlugu ol¢iitii ise %17
artirmaktadir.

Sonug olarak bu analizde topluluk kokularmi YHT model egitimine dahil etmenin
tahmin basarisini artirdig fakat kod kokusu yogunlugu 6lciitii kadar tahmine katkisinin
olmadig1 gbzlemlenmistir. Ayrica veri toplama asamasindaki deneyimlerimiz topluluk
kokularin1 6lgmenin diger metrikleri Olcmeye gore daha cok efor ve kaynak
gerektirdigini gosterdi. Mevcuttaki kullanilabilir araglar iletisim Oriintiilerini sadece
mail arsivlerinin analizi ile c¢ikarabilmektedir. Fakat her proje icin takimin mail
arsivlerine erigsim olmayabilmektedir. Hatta organizasyonel iletisim mail haricinde bir
ara¢ ile yapilabilmekte ve organizasyonun iletisim Oriintiilerini yakalamak miimkiin
olmayabilmektedir. Bu durum bizi topluluk kokularin1 model egitimine dahil etmek
yerine sadece koddan oOlciilen kod gelistirme becerileri bilgilerini kullanarak kisisel
modeller olusturmaya yonlendirmistir.

Tezin ikinci analizinde kisisellestirilmis YHT modellerinin hata tahmini performansina
olan katkisin1 genis kapsamli olarak inceledik. @ Bu analizimizin arkasindaki
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motivasyonlardan biri kisi odakli oneri yaklagimlarinin, arama motorlari, sosyal medya
siteleri, ve e-ticaret sistemleri gibi bir ¢ok sistemde basarili olmasi. Bir diger
motivasyonumuz ise ekipteki gelistiriciler kendilerine 6zgii gelistirme stillerine ve
deneyimlere sahip olabilmesi ve bu durumun farkli gelistiricilerin gelistirdigi yazilim
parcalarinin farkli hata oriintiilerine sahip olmasina sebep olabilmesidir.

Kigilerin farkli hata Oriintiilerine sahip olmasma dayanarak, daha basarili tahmin
skorlar1 saglayabilmek adina, kisisellestirilmis YHT modelleri ortaya atilmigtir. Fakat
onceki calismalar bir ¢ok acidan smirli kalmistir. Ornegin veri setlerinin kiiciik olmast,
alandaki son model Ol¢iitlerin ¢alismaya dahil edilmemis olmasi gibi sebeplerden
otiirli bulgularinin gecerliligi kisithdir. Biz bu tezde ise ¢ok daha zengin bir deneysel
ortam kurarak kisisel modelleri geleneksel modeller ile karsilagtirmali olarak etraflica
inceledik. Geleneksel yaklasim, tiim ekibin gecmis gelistirme aktiviteleri iizerinden
egitilmis ve ekipteki herkes tarafindan kullanilabilen tek bir YHT modeli gelistirmeyi
kapsamaktadir. Kisisellestirilmis yaklasim ise, ekipteki her bir gelistiriciye bireysel
bir YHT modeli kurulmasini ve modellerin sadece ilgili kisinin gecmis aktivitesi ile
egitilmesini kapsamaktadir.

Tezin bu bolimiinde gelistirilen YHT modelleri yazilim degisikligi seviyesinde
caligmaktadir. Degisiklik seviyesindeki YHT sistemlerinde, yazilimda bir gelistirme
yapilarak kod deposuna cevrim (commit) olarak gonderildiginde tahmin modeli
devreye girer ve ilgili gelistiriciye yaptig1 ¢cevrimin yazilim sistemine hata enjekte
ediyor olma ihtimaline dair geri bildirim verir. Bu tip YHT modellerinin avantajlari
ise yapilan degisiklik hafizada taze iken gelistiriciye aninda geri bildirim vermesidir.

Modellerin egitimi sirasinda yazilim depolarindan toplanmis gecmise doniik yazilim
cevrimleri (commit) ve bu cevrimlerin yazilima hata enjekte edip etmedigi bilgisi
kullanilmugtir. Ayrica, toplanan ¢evrimlerden yazilim gelistirme siirecini tarihsel (6rn.,
daha once bir kaynak kod dosyasinin kag¢ kere degistigi), boyutsal (6rn., kaynak kod
dosyasinda degistirilen kod satir sayis1), dagilimsal (6rn., ilgili ¢cevrimin ka¢ dosyayi
degistirdigi) ve gelistirici tecriibesi (rn., onceki ¢cevrimlerin sayisi) agisindan yansitan
13 adet ol¢iit egitimde kullanilmigtir. YHT modelleri bu alanda son teknoloji olan
Naive Bayes (NB) ve Random Forest (RF) algoritmalar1 ve 10-kath ¢apraz-dogrulama
teknigi kullanarak egitilmistir. Egitilen modellerin performans degerleri literatiirde iy1
bilinen yedi farkl kriter ile 6l¢iilmiistiir: hata yakalama olasilig1, yanlis alarm olasiligi,
kesinlik, F1-skoru, egri altinda kalan alan, Matthews korelasyon katsayis1 ve Brier
Skoru.

Alt1 adet acik kaynak kodlu projenin toplam 222 gelistiricisi iizerinde yapilan analiz
gosterdi kisisellestirilmis modellerin hata yakalama olasiligi, geleneksel modellerinki
ile kargilagtirllinca gelistiricilerin cogunlugu (222 kisiden 184’i) i¢in %23’e kadar
artirmaktadir. Aymi zamanda, geleneksel yerine kisisel yaklasim tercih etmek 174
gelistirici i¢in yanlig alarm olasilifin1 %12’ye kadar artirmigtir.

geleneksel modelden daha basarili olmasina yada tam tersine vesile olan gelistirme
karakteristiklerini incelemistir. Sonuglara gore, daha once cok fazla gelistiricinin
tizerinde caligtifi yazilim modiillerinde katkida bulunan gelistiricilerin hatalarini
kisisel model daha iyi tahmin etmekte iken, projedeki tecriibesi fazla olan gelistiricilere
geleneksek model daha dogru tahminler iiretmistir.
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Bununla birlikte, hata tahmininde onemli olan Olgiitlerin kisiden kisiye ne ol¢iide
degistigi incelenmistir. Sonuglara gore, farkli kisiler icin egitilmis kisisel modeller
tecritbe, dagilim, ve tarihsel olciitlerden farkli oranlarda yararlanmaktadirlar. Fakat
yine de biiyiik cogunlugu i¢in en 6nemli 6l¢iit bir ¢cevrimdeki eklenen satir sayisidir.

Tezin t¢iincii analizinde ise kisisellestirilmis YHT yaklagsimini bir akademi-sanayi
is birligi projesinde birlikte calistigimiz sanayi partnerimizin secilmis bir yazilim
projesi kapsaminda degerlendirdik. Bu secilmis projeden elde edebildigimiz alti
gelistirici verisi lizerinde kurulan kisisel ve geleneksel modellerin karsilagtiriimasi
gosterdi ki, geleneksel modeller hata yakalama olasilig1 agisindan daha basarililar
(%29 daha yiiksek). Fakat aym zamanda kisisel modellere gore daha cok yanlis
alarm iiretmektedirler (%40 daha yiiksek). Yiiksek yanlis alarm degerleri gelistiricileri
gereksiz yere uyararak daha fazla kod inceleme eforuna sebep olabilmektedirler.

Endiistriyel projeye ait veri kiimesinin kii¢iik ve tipik olarak giiriiltii icermesi sebebiyle
cesitli istatistiksel yaklagimlar araciligi ile mevcuttaki veri kaynaklarindan daha ¢ok
bilgi 6lcmenin YHT modellerine katkist olup olmayacagi incelenmistir. Matris
ayristirma ile elde edilen gizli dl¢iitlerin e8itime dahil edilmesi ve logaritmik filtrele-
menin Olgiitler iizerinde kullanilmasi geleneksel modellerin yanlig alarm degerlerini
%32 degerinde diisiirmiistiir. Bunlara ek olarak kod cevrim agiklamalarindan elde
edilen semantik bilgilerin de egitime eklenmesi kisisel modellerin hata yakalama
olasiligini %25 artirmistir.

Ayn1 zamanda dl¢iitlerin kigisel ve geleneksel modellerin hata tahminine olan katkilari
incelenmis ve iki yaklasim icin de benzer katkilara sahip olduklar1 gbézlemlenmistir.
En ¢ok yazilim siireci Olgiitleri katkida bulunurken, gizli Olgiitler ikincil 6neme
sahiptir. Semantik oOl¢iitlerin ise hata tahminine digerleri kadar katkida bulunmadig:
gozlemlenmistir.

Analizler gostermistir ki kisisel modeller geleneksellere iistiin gelebilmekte iken,
pratikte hangi yaklasimin tercih edilecegi, gelistiricinin yazilim gelistirme karakter-
istigi, performans 6l¢me kriterleri bircok faktore baghdir. Hatta gelistiricinin ekibe
yeni katilmasi ve/veya kendisine bir tahmin modeli kurulabilecek kadar gelistirme
gecmigine sahip olmamasi da literatiirde soguk baslangic problemi olarak bilinen,
tercihi zorunlu olarak geleneksel modele yonlendirecek bir durumdur. Bu durum bize
modellerin arastirma ortamindaki ulastig1 basar1 degerleri kadar uygulanabilirliginin
de 6nemli oldugunu gostermistir.

Tezin dordiincii ve son analizinde ise endiistriyel partnerimizin projesi icin
prototiplenen YHT c¢o6ziimiiniin gercek gelistirme ortamina entegre edilmesine
odaklanmis ve buna dair tecriibelerimiz paylasilmistir. Akilli modelleri gergek hayata
entegre etmenin bir arastirma ortaminda model prototiplemeye kiyasla kendine has
bambaska zorluklar1 vardir. Bu yiizden ¢evrimigi bir degerlendirme ortami kurularak
modelin tahmin performansinin gercek hayata uygun bir analizinin yapilmasi ve
modelin kullanigliliginin degerlendirilmesi 6nem kazanmaktadir.

Model prototipleme yapilan arastirma ortaminda (cevrimdigt ortam) kullanilan
onceden toplamilmis veri kiimesinde hataya sebebiyet veren kod c¢evrim bilgileri
halihazirda mevcuttur ve modelin egitimi icin direk erisilebilmektedir. Fakat gercek
gelistirme ortaminda hayatta (¢evrimigi ortam) anda yapilan kod cevrimlerinin hataya
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sebebiyet verip vermedigi bilgisi gecikmeli (se¢ilen proje bazinda ortalama yedi ay)
olarak elde edilmektedir ve veride giiriiltilye sebebiyet vermektedir. Bu gecikme kod
degisikligi bazinda dizayn edilen YHT modellerinde yazilim hata yasam dongiisiinden
kaynaklanan tipik bir durumdur.

Gergcek gelistirme ortamina entegre edilen YHT modelinin siirdiiriilebilir  bir
tahmin performansina sahip olmasi dnemlidir. Bu sebeple yazilim projelerinin
hizli degisen ve gelisen yapisina ayak uydurarak son gelistirme aktiviteleri ile
yeniden egitilerek giincellenmek zorundadir.  Ayrica model egitim/giincelleme
sirasinda egitim kiimesindeki giiriiltiilii verinin (heniiz tespit edilmemis fakat hataya
sebebiyet veren kod cevrimleri) tahmin performansina etkisinin minimize edilmesi
gerekmektedir. Modelin egitiminde kullanilan kod cevrimleri ile hataya meyilleri
tahmin edilecek cevrimler arasinda zamansal bir aralik birakmak modelin giiriiltiilii
veriden 6grenmesine kars1 alinan tipik bir yontemdir.

Biz bu c¢alismada, modelin gercek hayattaki performansini simiile etmek icin
bir ¢evrimici tahmin ortami tasarladik. Oncelikle cevrimdisi tahmin ortamindaki
(prototipleme ortami) performans degerlendirmelerimizin ¢evrimi¢i tahmin ortamin-
daki (gercek hayattaki) performanslarini yakalayip yakalayamayacagim arastirdik.
Sonuglar gosterdi ki, modelin ¢evrimici degerlendirme performansi projenin
ilk senesinde diisilkken sonrasinda cevrimdisi performansi ile benzer degerlere
ulasiyorlar. Bu da cevrimdisi degerlendirme tekniginin modelin gercek hayattaki
potansiyel performansini yansitabildigini gostermektedir.

Daha sonra cevrimici tahmin dizaynimizi kullanarak entegre edilecek modelin
giincellenirken kullandi81 egitim kiimesi ile hataya meyilleri tahmin edilecek kod
cevrimleri arasinda birakilan farkli uzunluktaki zaman araliklarinin ve farklt model
giincelleme periyotlarinin tahmin performansina etkisini arastirdik. Sonuclarimiza
gore, modelin egitimi sirasinda egitim ve tahmin kod c¢evrimleri arasinda birakilan
zaman araliZt modelin hata yakalama olasiigint %37’ye kadar etkilemektedir.
Modelin giincelleme periyodunu ayarlamak ise hata yakalama olasiligin1 %18’e kadar
etkilemektedir. Bu sonuclara gore, sekiz aylik bir egitim-tahmin kiimesi zaman
boslugu kullanimi ile modelin ii¢ giinde bir giincellenmesi en basarili ve istikrarh
performans degerlerini iireten durumdur ve modelin entegrasyon ayarlar1 bu sekilde
yapilmugtir.

Ayrica tahmin ¢iktilarinin daha anlagilir ve aksiyon alinabilir olmasi i¢in bir kod
cevriminin yazilima hata enjekte etme olasiligina ek olarak ilgili kod ¢evriminden
hesaplanan olgiitler de (6rn., ¢evrimden etkilenen kod dosyasi sayisi) kullaniciya
sunulmustur.

Bu tezdeki analizler gostermistir ki kisisellestirilmis YHT modellerinin gelecegi parlak
olmakla birlikte, performanslarin1 etkileyen faktorler iizerinden daha cok analize
ihtiyac vardir. Ayrica gelecek calismalar transfer edilebilir profiller olusturmaya ve
benzer Ozelliklerine gore segmentlenmis gelistiricilere 6zel grup modelleri gelistirm-
eye odaklanabilir. Diger taraftan YHT modellerinin pratige uygulanabilirligi ve
tahmin sonuglarinin yorumlanabilirligi 6nemlidir. Bir yazilim projesine YHT modeli
gelistirilirken ¢evrimic¢i bir degerlendirme ortaminin kurulmasini desteklemekteyiz.
Ayrica projenin yapisina, takimin gelistirme aliskanliklarina ve tahmin modelinden
beklentilerine dikkat edilmeli.
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1. INTRODUCTION

Software systems have become essential parts of our modern society, and they continue
diffusing into many parts of our lives [1]. Assuring and maintaining the quality of such
systems are critical needs of today’s organizations. However, the fast evolving nature
of software and their increasing size and complexity complicate the software quality
assurance (SQA) activities of organizations (i.e., planning, software testing, defeating

bugs) [2,3].

Meanwhile, SQA practices of development teams and researchers also evolve to “keep
up with the fast pace” of software development [2]. In the era of artificial intelligence
(AD) and machine learning (ML), both academic and business communities have
proposed and integrated many intelligent systems into the software development life
cycle (SDLC) [4]. Such intelligent models provide insights and recommendations to
people on software products and processes to make SQA activities more effective in
terms of budget and time [5]. Automatic code generation [6], bug fixing [7], test case
generation [8], and bug triage detection tools [9] are a few samples of such intelligent

models.

Software defect prediction (SDP) has become a well-established field of study for
decades and it has still been one of the focus areas of empirical software engineering
community for SQA. Intelligent defect predictors enable the detection of defect-prone
(i.e., buggy or fault-prone) software modules in a more robust and quicker way when
compared to manual inspection [10,11]. Shull et al. [12] report that manual inspection
of source codes can catch nearly 60% of the bugs, whereas the proposed SDP models
could perform around 70% in terms of the probability of bug detection [13]. Moreover,
these models help to reduce the effort spent on code inspection: 35% of all predicted
defect prone code changes could be identified by spending only the 20% of the total

inspection effort. Organizations are highly interested in SDP models since they prefer



to deliver higher quality products to their customers while reducing the development

and maintenance effort.

1.1 An Overall View of SDP Models

A typical SDP model is trained with AI/ML algorithms by utilizing a set of software
metrics collected from software archives to provide development team feedback on the
defect-proneness of software modules [14]. Figure 1.1 shows the typical process of

SDP model building.
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Figure 1.1 : An overview of a typical model building methodology.

The first step of building an SDP model is data collection. Depending on the prediction
level, i.e., code change-level or software file or class or method level, a set of historical
metrics are collected from software archives. Collected metrics represent valuable
information regarding the software product (i.e., the complexity of source code [15]),
the process (i.e., the many times a software module is changed priorly [16]), or the
people involved in the development (i.e., the number of developers contributed to
a software module [17]). The most commonly used software archives for metric
collection are source code versioning and bug tracking tools. But information sources
are not limited to these, another example is the use of mail archives to capture

community communication patterns (see Chapter 2).

The majority of SDP studies utilize supervised learning strategies to train predictors
[11]. Therefore, in addition to the metrics extracted from software modules, the
bug-proneness information of those software modules is also required during SDP
model training. A bug-prone software module means that the module includes a

bug and in the case of software changes, a change is accepted as bug-inducing if it



injects a bug into the software system. Bug-proneness of a module is often represented
with a binary label, i.e., bug-prone or clean, however, there are studies that utilize the
severity of bugs a module includes [18]. Predictions that an SDP model make is also
either at binary level or various severity levels depending on the used bug-proneness

information during training.

Defect predictors could be designed to make prediction at different levels of software
modules. A software module is often a method, class, file, package, or software
change (commit). The choice of the prediction level (software module) of an SDP
model depends on the project context, data availability or programming language [19].
Recently, an increasing rate of studies focuses on software change-level SDP, which
is also called “just-in-time” SDP by researchers, e.g., in [20]. Using a change-level
prediction model allows a developer to receive feedback on her/his changes in a much
shorter time when compared to a file or class level prediction model. An advantage
of this quick feedback is that developers could review their code when the change is
still fresh in their minds [16]. The prediction models that we designed in this thesis
also make predictions at change-level. Further knowledge on change-level SDP could
be found in the following chapters, particularly Sections 3.2 and 5.2.1 report literature

review on change-level studies.

The next step after data collection is often applying some AI/ML techniques to
pre-process data, i.e., data sampling, and to build/train SDP models. A common
challenge in SDP studies is the imbalanced nature of datasets due to fewer defect-prone
software modules compared to clean (non-defective) modules. Therefore, a typical
SDP dataset is pre-processed by applying data sampling techniques to balance the
number of data instances belongs to clean and defect-prone categories. Many ML
algorithms have been used to train an SDP model. Widely used and well performed
algorithms in SDP field are Logistic Regression [21,22], Naive Bayes [13,23] and tree

based algorithms such as Decision Tree and Random Forest [24]-[26].

Typical model validation strategies commonly used in SDP studies are cross-validation
[27] and time-sensitive strategies [28]. In a cross-validation strategy, the dataset is

split into k subsets, and each one of the k subset is used as test set once, and while



the other kK — 1 subsets are used as training set. On the other hand, time-sensitive
validation strategies consider the temporality of software code changes, whereas the
cross-validation strategy does not. Therefore, a time-sensitive strategy is more realistic
since it is designed to predict defects in the future software modules (at time ¢ + 1) by
learning from the historical defect information of prior changes on software modules
(until time #). Furthermore, online validation strategies are proposed for change-level
SDP that mimic the real-life data flow in a more realistic way compared to other model
validation strategies [29]. One of those is called online prediction which is also a
time-sensitive learning strategy, but it also considers the actual labels of the training
instances determined based on the real-life discovery time of defects. More discussion

and knowledge regarding validation approaches are reported in Chapters 3 and 5.

1.2 Modeling People in SDP

People are one of the most important factors of software development as it is a
human-intensive engineering discipline, in which the final product quality and the
implementation of processes are heavily dependent on prior experience, knowledge

and skills of teams.

So far now, SDP studies have incorporated people factor into the SDP model training
process in various ways. One way of modeling people in SDP is measuring developer
related information to be used during model training as an indicator of defect proneness
of a software module. The most used developer metrics in the field are the number of
different developers that modified the code files [17] and the developer experience on
software modules [30]. Also, there are more sophisticated metrics, e.g., Posnett et
al. [31] suggest using developer focus on software modules. The focus of a developer
is computed over the distribution of the developer’s contribution to the modules that
the developer modifies. Lee et al. [32] use micro-interactions of developers with the
Integrated Development Environment (IDE), such as the time/duration a module is
browsed by the developer, to predict defects. Calikli et al. [33] analyze the relationship
of confirmation bias of developers with the injected defects. The authors support the
fact that a tester may have a tendency to make the code successfully execute rather than

to look for a strategic approach to make it fail.



Considering that the socio-technical structure of the organizations has an effect on the
quality of the developed software product, some studies suggest to use socio-technical
metrics to predict defects [22,34]. Recently, “Community smell” term is coined by
Tamburri et al. [35] to describe the community flaws occurred in organizations due
to missing communication and collaboration links. Community flaws may cause
inconvenience in development activities such as duplication of work piece or extra

cost in development. More explanation on this is in Chapter 2.

Another way of modeling people in SDP is building personalized models. Personalized
SDP studies include people factor into the model building strategy and propose

separate prediction models for each developer in the team.

1.2.1 Personalized models

Developers in software development teams can represent different development
characteristics, i.e., different commit frequencies, different level of experience in the
project or on specific software modules, and hence the defect injection patterns of these

developers also have different patterns [17,36].

Recommendation systems in other fields, e.g., search engines [37], social media
platforms [38], customize their outputs based on users’ characteristics such as prior
preferences. Thus, these businesses provide more personal and satisfying results for

their customers [39].

SDP field also incorporates personalization into the prediction models to provide more
accurate and satisfying feedback to developers on their code changes. The rationale is
that developers have different defect patterns and personalized models would capture
defects more accurately. Jiang et al. [36] propose personalized SDP models that learn
from each developer’s own historical development activity, while traditional models
learn from the whole team’s development. The personalized SDP approach builds
separate SDP models for everyone in the team, if development change history is

available, instead of using a single general model as in the traditional approach.



1.3 Applicability of SDP into Practice

Studies building recommendation systems emphasize the differences between offline
and online evaluations [40,41]. The offline evaluation refers to the research
environment where some prototypes are built with various algorithms and model
building approaches, and assessed using a pre-collected (offline) dataset. In contrast,
online evaluation refers to training and assessment of the models in a real-life
environment that includes real users and data. The majority of the SDP studies work
in offline setups to focus on the prediction performance of model prototypes. Offline
studies often adopt new ways of model learning by utilizing various statistical and ML
approaches [11] or knowledge extraction ways from data [18]. Using offline setups is
an effective and easy-to-use way to compare and assess various prediction models.
However, the practical applicability of the SDP models and the interpretability of
recommendations are as important as the models’ prediction performance [42]. SDP
studies that focus on the practical usability of proposed models are relatively few, but
there is an increasing interest in adopting SDP models into the real-life development
environment [29,43]-[46]. These studies have aspects such as prediction performance
of SDP models in a real development environment and the consistency of prediction

accuracy, interpretability of prediction outputs, and industrial domain challenges.

The behavior of prediction models may not be similar in research and real-life
environments since both have different data characteristics. The studies in an offline
environment often use pre-collected and labeled data, whereas the real-life data
requires more careful investigation from the perspective of SDP. For instance, the
discovery of bug-inducing software changes requires more time in a real development
environment [29]. This delay causes a label noise in online environments, which is not
an issue in an offline setup as it uses a batch dataset. Tan et al. [29] propose using an
online prediction setup to simulate the real life data flow of the software systems in

order to assess the model’s prediction accuracy more realistically.

Considering the perspective of real users is the second crucial factor for software
recommendation systems [40]. Since an SDP model aims to support development

teams during SQA activities, the prediction outputs should be trustable, interpretable,



and actionable [29,46]. To address that, studies in the SDP field focus on enriching the
output with informative clues such as the metric values of commits and the importance

of metrics presented to developers to support the code reviewing process [29,46].

Another challenge regarding the practical applicability of SDP models is the
assessment of models in different domains. The number of reported SDP studies focus
on industrial contexts is relatively low compared to the number of studies conducted
in open-source projects [2]. The reason for that is that open-source projects are
publicly and freely available to researchers, whereas industrial software projects are
not accessible easily. Conducting research in an industrial context often requires
collaboration with a company. While datasets of some industry case studies are shared
in public software data repositories [47], many companies do not share their dataset

due to confidentially reasons [2].

Nevertheless, conducting research in industrial domains is very valuable since it
provides assessing the generality of research findings and the practical applicability
of produced models into the cases that involve real customers [2,48]. SDP studies
focusing on various industrial domains, e.g., communication [29], e-commerce [44],
automotive [43], maritime [45], are significant resources for both researchers and

practitioners to comprehend the real development environments.

1.4 Purpose of the Thesis

In this thesis, we have two main goals: 1) assessing the people factor in SDP to
understand whether it helps to improve the prediction accuracy of SDP models and
2) prototyping an SDP solution for an industrial setting and assessing its deployment
performance. In this section, we explain these two goals in detail, respectively, with

the motivation behind them.

Studies in the SDP field have so far investigated this modeling problem in two ways,
oriented around the algorithm or the data . While some focus on the algorithm aspect
to improve the accuracy of prediction models, i.e., incorporating various AI/ML and
statistical approaches [11], some other studies focus on the data aspect to enrich the

knowledge extracted from software data [18].



Menzies et al. discuss the “ceiling effect” on the performance of SDP models [49]:
performance of SDP models that utilize the static code attributes has reached a ceiling,
and researchers need to enrich the information gathered from data to improve the
performance of SDP models. Also, Lessmann et al. [50] show that 17 out of 22
ML algorithms widely used by the SDP researchers report statistically the same
performance in predicting defects. Both of these findings imply that future studies
need more focus on enhancing information collected from the elements of software

development, i.e., product, process, and people, to build more accurate SDP models.

SDP studies have focused on product and process metrics for a long time [19]. Studies
also state tuning the parameters of ML algorithms and focusing on specific defect types
[27,51] to improve the prediction accuracy of prediction models [52]. However, despite
being one of the key factors in development, the people aspect in SDP has been studied
relatively little. As we mentioned in Section 1.2, while the majority of people-focused
SDP studies work on people metrics, i.e., measuring people development patterns
to incorporate them as features into the model learning process, only two ( [36]
and [53]) focus on personalized SDP models, i.e., building separate models for each
team member. Therefore, we incorporate the people aspect in SDP and investigate
the effect of people aspect on the prediction performance. We modeled people in two
ways: 1) incorporate the socio-technical factors into the model learning process of an

SDP model, 2) build separate models for developers using the personalized approach.

First, we assess the effect of socio-technical factors, more specifically the “community
smells” on the prediction of defect-prone software classes. “Community smell” is a
term that was recently coined in the software engineering community and indicates
the communication and development flaws that occur in software organizations [54].
For example, if two people appear to be working on the same software module but
do not communicate directly to each other, this situation is categorized as the “lone
wolf* community smell. This smell type may cause duplication of a workpiece
due to missing communication between them and extra development cost to the
organization in the long term [55]. Community smells are the state-of-the-art measures
that represent more accurately the socio-technical dynamics of organizations [54]

compared to prior socio-technical network analysis methods [22]. Prior studies also



show that community smells highly occur along with the code smells in a project [55]
since the former one indicates community flaws and the latter one indicates the coding
flaws that occur in a project. While there is not any empirical evidence on the effect
of community smells on the prediction of defect-prone modules, a prior study shows
that code smells are one of the good indicators of the defective software classes [56].
Therefore, based on this finding, we aim to explore whether the community smells

could be used to predict defective software classes.

Second, we explore the personalized approach that builds separate models for each
developer in the team instead of building a single typical, general model that targets
all team members. Since a personalized model of a developer solely learns from
the developer’s own development history, its output filters the irrelevant information
from the other developers’ development history. Prior studies [36,53] show the
success of personalized SDP in terms of defect prediction capability, but they have
limited experimental setups. For example, they assess only 100 commits from 10
developers, do not utilize the state-of-the-art process metrics, and only evaluates the
proposed models in open-source projects. Therefore, we extensively investigate the
performance of personalized change-level SDP models using six open-source, and one
industrial project, state-of-the-art process metrics and AI/ML approaches, and seven
model assessment metrics. Further, we investigate the development characteristics
related to the superiority of the personalized models over general models or vice
versa. Moreover, we analyze the contribution of metrics on the prediction of defects
to understand whether the importance of metrics changes for different developers and

different prediction model types (i.e., personalized and general).

So far now, very few studies have reported the deployment of a change-level SDP
prototype into an industrial context [29,44] as we also mention earlier in Section
1.3. Therefore, in this thesis, we focus on the integration of an SDP solution into
the software engineering pipeline of an industrial project in communication domain.
We analyze the factors that should be considered in deployment of change-level SDP
models in order to provide consistently successful and useful recommendations to
developers. To accomplish that, we built SDP prototypes including personalized and

traditional change-level SDP models for a chosen project of Ericsson, Turkey. After



choosing a successful prototype model using an offline evaluation setup, we deployed
the prototype into the real development pipeline of Ericsson, Turkey. However, during
the deployment phase, we had some challenges and concerns relating to applicability,
model performance, label noise [29], and model update cycle. Hence, in this thesis,
we investigate whether the personalized approach could be successfully applied to an
industrial setting. Further, we propose an online prediction methodology to observe the
real life performance of deployed model by simulating different levels of label noise

and model update cycles.

1.5 Structure of the Thesis

Chapter 2 analyzes the impact of community smells on the prediction of defect-prone
software classes. Specifically, it is aimed to observe the contribution of community
smells in comparison with the other state-of-the-art metrics used to predict

defect-prone software classes, e.g., code smell intensity, number of developers.

Chapter 3 reports a comprehensive investigation of personalized SDP models against
traditional models on open-source projects. This chapter further analyzes the
development characteristics that lead to the superiority and inferiority of personalized
models compared to the traditional approach. Also, the importance of process metrics

in defect prediction is analyzed for team members over their personalized SDP models.

Chapter 4 investigates the personalized SDP models against traditional models in
an industrial setting. Also, the effect of combining information from various data
sources such as commit messages and using AI/ML techniques on prediction accuracy
is explored. Further, the importance of metrics for both personalized and traditional

approaches are analyzed.

Chapter 5 reports the deployment experience and challenges in an industrial
setting. Particularly, an online prediction setup is proposed to simulate the real-life
performance of the SDP model under various levels of label noise and values of the

model update period.

Chapter 6 concludes the thesis, shares the final remarks and future research directions.
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2. AN EMPIRICAL STUDY ON THE EFFECT OF COMMUNITY SMELLS
ON BUG PREDICTION!

2.1 Introduction

Detecting and fixing bug-prone modules in software systems is an essential part of
the maintenance process. Predicting the residual bugs in the software before its release
prevents companies from additional costs [22]. A variety of metrics and methodologies
has been proposed to improve the performance of the bug prediction models. Some of
these models utilize static code metrics [57], process metrics, [58], social network
metrics [59], network metrics [60], developer metrics [61], code smell metrics and

antipatterns [62].

Code smells are the symptoms of design flaws in software systems [63]. Poor design
choices prior to code development, i.e., antipatterns, may propagate to failures which
require extra refactoring and bug-fixing effort [62]. Researchers show that classes
associated with antipatterns or code smells are more likely to be involved in bug
fixing changes than other classes [62,64]. Taba et al. [65] propose a set of antipattern
metrics, e.g., antipattern complexity and antipattern re-currency length, in addition
to the structural metrics, e.g., lines of code, churn, and the number of methods, to
predict software bugs. Later, [56] incorporate the code smell intensity metric (i.e., the
severity of code smells) into antipattern metrics to compare their performances with the
state-of-the-art bug prediction models. Both of the proposed code-smell related metrics
(antipattern, code smell intensity) improve the performance of the state-of-the-art bug

prediction models [56,66].

Software development is a collaborative activity including both individual effort and
cooperative work among the developers through synchronization and communication.
Researchers propose ways to define the organizational and social structures of

software engineering, and their effects on problem solving and welfare of development

I'This chapter is based on the paper “Eken, B., Palma, F., Ayse, B., & Ayse, T. (2021). An empirical
study on the effect of community smells on bug prediction. Software Quality Journal, 29(1), 159-194.”.
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communities [67]. One approach to model collaborations among the developers is
proposed in [59] to assign the issues to the related developers. In another study, [22]
utilize social and technical networks to predict failures in software systems. Other
metrics representing the developers of this cooperative work are based on, for example,
the number of developers worked on a software module [17], the scattering of the code
changes produced by developers [68], or contextual experience based on historical

changes [61].

Tamburri et al. [35] define a term called ‘community smell’ to explain social and
organizational antipatterns, and propose ways to mitigate these smells based on
their observations in industry. Analogous to code smells leading to technical debt,
community smells are defined as measures of socio-technical debt [35]. Later,
Magnoni [69] and Giarola [55] extended an existing socio-technical network analysis
tool CodeFace [70] to measure community smells in software teams, and Giarola [55]
points out that code smells and community smells tend to co-exist in the software
systems. In fact, both terms measure the technical debt in software development
through different aspects. A recent approach shows that the community smells

influence the intensity of code smells more than other community-related metrics [71].

Although significant associations between code smells and community smells are
identified [55], and community smells are modelled to predict code smell intensity
of the source code [71], there has been so far no study investigating the effect of
community smells on the bug-proneness of software modules. Tamburri et al. [35]
mention that “both forces should be reckoned with together during the software
process”. Since code smells and code smell intensity are proven to be successful
indicators of bugs in software systems [62,64] compared to the state-of-the-art process
metrics [56], we aim to investigate if community smells, as they are found closely
associated to code smells [55,71], would also successfully identify bugs in the software
systems. We base our research on the prior works [55,56,71], and extend those works

by building bug prediction models with community smells.

12



Our key contributions in this study include:

* We conducted an empirical analysis to examine the effects of community smells
on bug-proneness of software classes. Palomba et al. [56] report that code smell
intensity is the best indicator of bugs compared to several baseline models. In
this study, we take this best performing metric set and its associated model from
Palomba et al’s study [56] and compare it against the models that we build
with community smell metrics to investigate their explanatory power to predict

bug-prone classes.

Our results show that the code smell intensity metric and community smells are the
most contributing ones for bug prediction depending on the dataset characteristics
and smelly class ratios. Also, a combination of code and community smell metrics

does not necessarily contribute to the prediction of bug-prone classes.

* We have built new datasets consisting of two parts: (1) ReplicatedDB which is an
extended version of the dataset used by Paloma et al. [56] by incorporating three
community smells and six code smells for seven open-source projects from the
original dataset, and linking those to the rest of the metrics and bugs at class level;
and (2) CollectedDB that includes three additional open-source projects used in
Palomba et al.’s study [71], and Giarola’s study [55] to enrich our datasets. We
extracted similar metrics that ReplicatedDB have, and linked those with bugs at
the class level. Finally, they have become very comprehensive datasets including
static code attributes [72], number of developer metrics [73], churn [74], scattering
metrics [68], code smell intensity [75], code smells and community smells [55], and

bugs. Both datasets are available online with a replication package of our study [76].

2.1.1 Structure of the chapter

The rest of the chapter is organized as follows: Section 2.2 discusses the bug
prediction and community smells-related studies in the literature. Section 2.3 explains
our methodology to answer all the research questions, including the validation
strategies, algorithms, and performance measures. Section 2.4 shows the results of the

experiments while Section 2.5 provides an in-depth discussion on the results. Section
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2.6 discusses the threats to the validity of the experiments, and, finally, Section 2.7

concludes the paper.

2.2 Related Work

We organize related work as follows: Section 2.2.1 gives an overview of the bug
prediction studies; more specifically, on the metrics that are found as the best indicators
of bugs in these models. Later in Section 2.2.2, we discuss the social aspects
of software development, their usage on bug prediction studies, community smells

introduced by Tamburri et al. [35] and related studies on community smells.

2.2.1 Literature on bug prediction

In the field of software engineering, bug prediction has been widely studied by both
researchers and practitioners through offline or field studies. Existing bug prediction
models utilizing static code metrics perform well with a probability of detection rate
between 70% and 80% [57,77]. Studies in the literature approach bug prediction in
different ways. Many techniques for data collection, metric extraction and aggregation,
and training methodologies are investigated. We briefly report the studies from those
aspects in this section. We suggest readers refer to systematic literature reviews (SLRs)
that synthesize the current evidence in the bug prediction literature and discuss the
studies in terms of algorithms, metrics, model construction methodology in more detail

[11,14,18].

The static code metrics, object-oriented metrics, call-graph based dependency metrics
[78], process metrics [77,79], network metrics [60] are very popularly used input
features in bug prediction studies. According to the SLRs on bug prediction [14,18],
there is not a single set of metrics that fits for any project and/or any modeling
technique to build an accurate bug prediction model. There are other data-oriented
solutions, e.g., Turhan et al. [80] analyze the effect of using cross-project or
mixed-project data to predict bugs, whereas Zhang et al. [81] observe different types
of aggregations at class/module-level metrics while building bug prediction models at
file-level. Tsakiltsidis et al. [S1], and Tosun et al. [27], on the other hand, focus on a

specific type of bugs to improve the usefulness of predictions.
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Some studies focus on the algorithm, and methodology aspects, e.g., Lessmann et al.
[50] analyze the performances of different machine learners on bug prediction models,
whereas Fu et al. [52] analyze the effect of parameter tuning on the performance of
bug prediction. Other studies also apply different model validation techniques when

measuring the performance of bug prediction models [82].

Fowler [83] introduced the term code smell as the symptoms of design flaws (e.g.,
duplicate code) in software. Studies report that code smells have high survivability
[63], and, in general, very few smells are removed from a project, so they tend to
increase over time [84]. Developers tend to postpone removing code smells [85] to
avoid modification on the systems [86], or they do not perceive code smells as a critical
problem [87]. The studies on bug prediction, on the other hand, show how critical
these code smells are in terms of their bug-introducing patterns. For example, Khomh
et al. [62] analyze four open-source systems and report that classes having poor design
choices, namely antipatterns, are more likely to be involved in bug fixing changes than
other classes. Palomba et al. [64] also confirm that classes involved in code smells are
more prone to contain bugs in 30 open-source systems. Tabe et al. [65] use antipattern
information (e.g., the average number of antipatterns) in addition to the traditional
metrics to predict bugs, and state that the models built with antipattern metrics can

increase the prediction performance up to 12.5% in terms of F-measure.

Following the work of Taba et al. [65] and Palomba et al. [56] we include code smell
intensity metric into four different state-of-the-art bug prediction models (baselines),
each of which utilizes Structural, Basic Code Change, Developer, and Developer
Changes Based metrics, respectively. They also added antipattern metrics into
these baselines and compare the predictive power of code smell intensity against
the antipattern and baseline metrics on bug prediction. Their analyses show that
the code smell intensity significantly improves the F-measure of the four baseline
models. More specifically, when the code smell intensity is added into the Developer
baseline model, the performance increases up to 21% in terms of F-measure. The best
performing baseline model, on the other hand, is Developer Changes Based with 69%
F-measure. Antipattern metrics, on the other hand, slightly improve the performance of

the baseline models. Nevertheless, a combination of the baseline metrics, antipattern
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metrics, and code smell intensity gives the best prediction performance. In another
study, Soltanifar et al. [66] propose to build a defect prediction model using code smells
metrics, churn metrics, and a combination of them. The authors conclude that those
models with code smell metrics mostly outperform the ones that are trained with churn

metrics only.

2.2.2 Literature on people aspect and community smells

The people aspect incorporated into bug prediction models is represented through
developer-related metrics, e.g., the number of developers contributing to software
modules [17], the focus of a developer on a software module [68], or developer’s
confirmation bias levels [33]. Lately, personalized bug prediction models are
introduced to train specialized models for each developer by using the selected
developer’s historical development activity only [88]. Recent approaches to model
people aspect also propose metrics capturing developer experience [61], developers’

review activities, and their involvement in the review process [89].

Studies in the literature also model the social aspect of software development. For
example, Bird et al. [22] propose socio-technical networks to predict the bugs in
Windows Vista, their prediction performance improve 5% in terms of recall. Calikli
et al. [90] model software team interactions to improve software quality management.
Later, Tamburri et al. [35] investigate social debt in software engineering, describing
as “not quite right development community, which we postpone making right”. The
authors discuss that socio-technical structures and decisions of software organizations
may cause additional costs or delays in software development activities. They
define a set of community smells, and propose a tool called CodeFace4Smells
to automatically reflect the socio-technical issues [55,91]. Empirical analysis on
open-source communities points out the diffuseness of community smells [91] and how
developers perceive those as relevant issues regarding software evolution. Lately, two
novel approaches are proposed to capture eight common types of community smells
(e.g., “sharing villainy” which caused by poor quality information exchange within
the team) in software projects by utilizing social network, community, geographic

dispersion, formality, and truck number properties [92,93]. A machine learning-based
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approach by Almarimi et al. [93] achieved a detection performance of 94% in terms of
AUC. There are other studies focus on community smells: Catolino et al. [94] found
that women’s presence in teams tends to reduce the amount of community smells,
Catolino et al. [95] suggests a guideline on refactoring techniques for community

smells, e.g., restructuring the team, creating a communication plan for team members.

Palomba et al. [71] further study the relationship between the community
smells, socio-technical congruence, and code smell intensity, and report that
community-related factors contribute to the intensity of code smells. Studies on the
relationship between code and community smells inspire us to further investigate the
community smells, and the extent to which community smells contribute to predicting
bugs. As code smells and other social aspects of software development are shown to be
good indicators of software bugs, we think that community smells would likely explain
software bugs. Based on the findings of Palomba et al. [56,71] and Giarola [55], we aim
to investigate the explanatory power of community smells on software bugs, compared
to the best performing metrics, code smells and code smell intensity. We want to assess
whether community smells are as good indicators of bugs as code smell related metrics

and other process metrics.

2.3 Methodology

We have three research questions (RQs) to empirically investigate the effect of
community smell-related information on the prediction of bug-prone classes. Our
empirical analyses are conducted on two datasets consisting of different open-source
software projects. We selected those projects from prior works [55,56,71] that our
study is inspired by. Unfortunately, accessing all the projects’ repositories and
messaging logs was not possible, and thus, we ended up having a total of 10 projects
in our datasets. More details on the datasets are reported in Section 2.3.1. Our RQs are

formulated as follows:

RQ1: 7o what extent does the community smell contribute to the prediction of

bug-prone code components?
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Our main goal is to analyze the contribution of community smells in predicting
bug-prone classes. To do this, we include the community smells into the four baseline
bug prediction models using process metrics, similar to those built by Palomba et
al. [56]. We assess the impact of community smell information on bug prediction

performance compared to the process metrics.

RQ2: To what extent does the proposed model contribute to the bug prediction when

compared to a state-of-the-art model built using code smell related metrics?

Based on the findings of Palomba et al. [56], the best performing metric for bug
prediction is code smell intensity. Therefore, we aim to compare the performance of
a baseline model with community smells and with code smell related metrics. We use
both code smell metrics extracted via CodeFace4Smells tool and code smell intensity
metric calculated according to Fontana et al. [75], and incorporated those into the
baseline models. Then we assess their performance against the model using baseline

metrics and community smells.

RQ3: To what extent do the combined smell-related information contribute to the bug

prediction when compared to the best contributing one?

We aim to assess the combined ability of community smells and code smell-related
information in predicting bug-prone classes. We build the models with the most
contributing metric group found in the prior research question for each dataset and

combine these models with the rest of the metric groups.

An overview of our research methodology to answer our research questions is depicted
in Figure 2.1. We summarize the steps shown in the figure below before explaining

those in the subsequent sections in detail:

* Data collection: We utilize two datasets in our research: (1) the one used by
Palomba et al. [56] that we extend by including the community and code smells and
refer in this study as ReplicatedDB, and (2) the one used Palomba et al. [71] that we
extend by collecting community smells, code smells, code smell intensity, and the
structural metrics. We name this dataset CollectedDB. Section 2.3.1 provides more

details on data collection.
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Figure 2.1 : Overview of our research methodology.

* Model building and analysis: We build seven bug-prediction models utilizing
different combinations of the metrics to answer our three RQs. These seven models
utilize baseline metrics, and a combination of baseline and community and code
smell-related metrics depending on the RQs. For RQI1, two models are reported
utilizing baseline metrics and baseline+community smell metrics. For RQ2, two
more models are reported utilizing baseline metrics+code smell related information.
For RQ3, models using combinations of community smells and code smell-related
information are reported. This model building and analysis step is also depicted
in Algorithm 1 (Section 2.3.2). Models are compared to each other by using

Scott-Knott ESD test to confirm the statistical significance of the contribution of
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community smells on the prediction of buggy software classes compared to those

of the process metrics or code smell related metrics.

2.3.1 Datasets used in this study

We have two datasets to answer our RQs, namely ReplicatedDB and CollectedDB
[76]. The ReplicatedDB is an extension of the dataset provided in [56], while the
CollectedDB consists of newly collected software projects, particularly for this study.
The projects are selected based on the work by Palomba et al. [71], but due to the
fact that authors did not share their full dataset, we crawled the data for this work. In
this section, we give the details of the data collection process and discuss the metric

extraction process in Section 2.3.1.1.

The first dataset — ReplicatedDB — is an extended version of the seven projects used
in the study by Palomba et al. [56]. The original dataset used by Palomba et al. [56]
is composed of class-level bug information, the state-of-the-art structural metrics [72],
number of developers [74], code churn [73], developer scattering metrics [68], and
a code smell intensity metric collected from a total of 34 releases of 11 open-source

projects.

We have extended this dataset by adding community smells and code smells. To extract
the community smells and code smells, we executed the CodeFace4Smells tool [55]
on the selected open-source projects. The CodeFace4Smells tool generates developer
collaboration and communication networks of the software projects by using mailing
lists and source code repositories. Generated developer networks are used to perform
the social and technical analyses of the software projects, and later, the tool generates
an output in the form of classes with community and code smell information. The
tool gives the community and code smell information as a binary value (0 or 1 for the
absence or presence of smells) for each class. After gathering the projects’ class-level
community and code smells, we matched this information with the classes listed in the

original dataset [56] using the class names and the release information of the projects.

The original dataset from Palomba et al. [56] contains the earlier releases of the

projects between the years 2000-2008. The CodeFace4Smells tool could not give
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an output for the initial few releases of the projects because they do not have a
collaboration and communication history. Also, the source code repository or mailing
list of some projects were not reachable. As a result, our extended bug prediction
dataset ReplicatedDB contains fewer projects and releases than those listed in the study
of Palomba et al. [56]. The final ReplicatedDB contains an extended version of a total

of 16 releases of the seven open-source projects with more metrics.

The second dataset — CollectedDB —is newly constructed for this study by also utilizing
the CodeFace4Smells tool. CollectedDB contains three open-source projects, namely
Cayenne, Eclipse-CXF, and Mahout. All of these projects were selected based on the
‘Known Projects’ list of Giarola’s study [55], 1.e., CodeFace4Smells tool was able to
extract the code and community smells successfully for these projects in the earlier
study. For these three projects, the CodeFace4Smells tool created three-month time
windows for the years between 2013-2016 and computed these smells at the class level.
We then aggregated these three-month subsets to form a single dataset for each project.
We removed the classes that contain no smells from the CollectedDB to avoid bias
during analysis. We also collected structural metrics for the CollectedDB by utilizing

the Ckjm tool [96] to create a baseline model for this dataset.

The number of classes, number of community and code smells that each project has
also reported in Table 2.1 and 2.2. We created this new CollectedDB dataset because
the projects in ReplicatedDB contains a limited number of classes with respect to the
community smells and other code smells. From Table 2.1 and 2.2 we can observe that
the maximum number of classes associated with any smell type in ReplicatedDB is
92 with Missing Link (ML) community smell. In CollectedDB, there exist up to 238
classes associated with this community smell, and up to 800 classes associated with

any of the code smells.

2.3.1.1 Metrics

Both the ReplicatedDB and CollectedDB contain code and community smell metrics,
code smell intensity, and structural metrics. In addition to those metrics, ReplicatedDB
also contains churn, developer metric, and scattering metrics. The descriptions of the

full list of metrics are provided in Table 2.3. The last two columns show which dataset
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Table 2.1 : Properties of the datasets used in this study.

Dataset Project Releases Total Bug-prone
classes classes

Ant 1.3-1.6 943 184
Ivy 2 352 40
Log4j 1.1-1.2 298 223

ReplicatedDB Lucene 2.0-2.4 750 437
Velocity 1.5-1.6.1 443 176
Synapse 1.2 251 86
Xerces 1.2-1.4.4 1,222 353
Cayenne 2013-2016 518 312

CollectedDB CXF 2013-2016 1,222 530
Mahout 2013-2016 322 48

contains the corresponding metrics set. We include all metrics sets from the original
data taken from Palomba et al.’s study [56]. However, we intend to mainly analyze
the effect of code and community smell related metrics on bug prediction. Structural,
churn, developer, and scattering metrics are the state-of-the-art features that used in
the bug prediction modelling and we kept them in the dataset to create our baseline

models.

The output of the CodeFace4Smells tool is the list of classes in the selected projects
with a binary code and community smell information, i.e., O indicates a class does
not have the specified smell while 1 refers to the presence of the specified smell.
These outputs are used as the code and community smell metrics when building the
models. Based on the definitions in Giarola’s study [55], a brief description of code

and community smells considered in our study are presented below.

¢ Code smells:
— Class Data should be Private (CDP) occurs when a class has more than 10
public variables, it is considered to be involved in CDP smell.

— Complex Class (CC), if the McCabe Cyclomatic Complexity of a class is

above 200, the class is considered to be involved in CC smell.

— Functional Decomposition (FD) may occur when a class is intended to be

object-oriented and implemented by non-object-oriented developers.
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— God Class (GC) occurs when a class is large and depends on the data stored

in surrounding data classes.

— Spaghetti Code (SC) may occur when a class is implemented in the way of

procedural thinking.

— Long Method (LM), if a class has one or more methods with more then 100
lines and more then two input parameters, it is considered to be involved in

LM smell.
e Community smells:

— Organizational Silo (OS) is a software development pattern in an organization
where the developers collaborate with others but do not communicate within

the analyzed communication channel.

— Radio Silence (RS) is a pattern such as there is unique knowledge and

information brokers toward different sub-communities.

— Missing Links (ML) is a pattern where there is a collaboration between

developers and there is a lack of communication between collaborators.

ReplicatedDB has already had the code smell intensity metric. In this study, we
calculated the code smell intensity for the CollectedDB based on the code smell
intensity calculations provided by Fontana et al. [75]. Firstly, we determine the 10%,
25%, 50%, 75%, and 90% quartiles for the values of each structural metric extracted
with the Ckjm tool [72]. Secondly, we find the minimum value of the quartile that
corresponds to each structural metric. Thirdly, we take the average of the determined
values for each structural metric and set it as a code smell intensity metric. The code
smell intensity metric is only calculated for the classes containing code smells. If a

class does not contain any code smell, we take its code smell intensity as zero (0).

2.3.2 Model building and analysis

We conducted our empirical analysis by assessing the performance of the class-level
bug predictors that incorporate the community smells into a set of state-of-the-art

baseline models and comparing them with the other models built with the
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state-of-the-art metrics as well as code smell related metrics. The performance of
the models is statistically compared to each other based on the related RQ. Our

methodology is shown as pseudocode in Algorithm 1.

Algorithm 1 Pseudocode for answering RQs.

Projects1 = (Ant, Ivy, Log4j, Lucene, Synapse, Velocity, Xerces)
Projects2 = (Cayenne, Eclipse-CXF, Mahout)
Learners = (Simple Logistic, Multilayer Perceptron, ADTree, Naive Bayes, Decision Table, Logistic Regression)

ModelsForReplicatedDB = (Baseline (RQ1), +CommSmells (RQ1), +CodeSmells (RQ2), +Codelnt (RQ?2),
+CommSmells+Codelnt (RO3), CodeSmells+Codelnt (RO3), +CommSmells+CodeSmells+Codelnt (RQ3))

ModelsForCollectedDB = (Baseline (RQl), +CommSmells (RQ1), +CodeSmells (RQ2), +Codelnt (RQ?2),
+CommSmells+CodeSmells (RQ3), +CommSmells+Codelnt (RQ3), +CommSmells+CodeSmells+Codelnt (RQ3))

StatisticalTests = (Scott-Knott ESD)
N=3
M=10
for projectData in Replicated DB do
for m in ModelsForReplicatedDB do
projectDatd’ = apply m to projectData
fori=1toM do
projectDatad"” = randomize the order of projectDatd’
S = generate N folds from projectData”
fori=1to N do
trainSet = S[j]
testSet = S — S|}
for [ in Learners do
model = apply 1 on trainSet
predictions += apply model on festSet
end for
end for
recall, pf, f —measure, auc = calculate from predictions
end for
end for
for s to StatisticalTests do
apply s to the recall, pf, f —measure, auc of all models of both datasets
end for
end for
for projectData in Collected DB do
for m in ModelsForCollectedDB do
projectData’ = apply m to projectData
fori=1toMdo
projectData” = randomize the order of projectData’
S = generate N folds from projectData”
fori=1toN do
trainSet = S|}
testSet = S — S|}
for [ in Learners do
model = apply 1 on trainSet
predictions += apply model on testSet
end for
end for
recall, pf, f —measure, auc = calculate from predictions
end for
end for
for s to StatisticalTests do
apply s to the recall, pf, f —measure, auc of all models of both datasets
end for
end for

The models were implemented using six machine learning algorithms, i.e., Simple

Logistic, Multilayer Perceptron, ADTree, Naive Bayes, Decision Table (based on an
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ordered set of rules generated by decision trees [97]), and Logistic Regression. We
chose these algorithms since they were also used in the previous research by Palomba
et al. [56] and shown to be successful at predicting class-level bug proneness. We
implement the same algorithms of the prior work to avoid potential effects of the

experimental setup on the findings.

For each dataset, we assess the performance of seven bug prediction models listed
in Table 2.4, then compared the performances with each other, with respect to their
associated RQs. For ReplicatedDB, this comparison is repeated for each of the four
baselines built for structural metrics, churn, number of developers, and scattering
metric (see Table 2.3). For CollectedDB, the comparison is made against one baseline

built with the structural metrics.

Table 2.4 : List of bug prediction models built in this study.

Model abbreviation Metrics included into the model

Baseline* Structural, churn, developer, scattering

+CommSmells Baseline + Community Smells

+CodeSmells Baseline + Code Smells

+Codelnt Baseline + Code Smell Intensity

+CommSmells+CodeSmells Baseline + Comm. Smells + Code Smells

+CommSmells+Codelnt Baseline + Comm. Smells + Code Smell
Intensity

+Codelnt+CodeSmells Baseline + Code Smell Intensity + Code
Smells

+CommSmells+Codelnt+CodeSmells Baseline + Comm. Smells + Code Smell

Int. + Code Smells
*There is only one Baseline model for the CollectedDB that contains the structural
metrics while there are four different Baseline models for the ReplicatedDB that utilizes only
one of the structural, churn, developer, and scattering metrics respectively.

In RQ1, we compare two bug prediction models listed in Table 2.4: Baseline vs.
+CommSmells. The + CommSmells model includes community smells in addition to
the Baseline model’s metric sets, while the Baseline only includes one of the structural

metrics, churn, number of developers, or scattering metric.

In RQ2, we build and assess the performance of three bug prediction models listed in
Table 2.4: +CommSmells, +CodeSmells, and +Codelnt. The +CodeSmells model
includes the Baseline model’s metric set and the code smells, while the +Codelnt

model includes the Baseline model’s metric set and the code smell intensity metric.
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In RQ3, we would like to assess the effect of the combined smell-related models
against the best performing model in RQ2. According to the results of RQ2, the
best performing model changes among datasets. In particular, it is +Codelnt for
ReplicatedDB, while the +CommSmells is the best performing metric set for Col-
lectedDB. Therefore, in RQ3, for ReplicatedDB, we analyze the effect of combining
the code smell intensity metric with community smells (+CommSmells+Codelnt),
code smells (+CodeSmells+Codelnt), and both community and code smells
(+CommSmells+CodeSmells+Codelnt) on the prediction of bug-prone classes. For
CollectedDB, we analyze the effect of combining community smells with code smell
intensity (+CommSmells+Codelnt), code smells (+CommSmells+CodeSmells), and
both code smells and their intensity (+CommSmells+CodeSmells+Codelnt) on the

prediction of bug-prone classes.

All of the bug prediction models listed in Table 2.4 are trained and tested by following
a within-project strategy: We train and evaluate the models for each project aggregated
over all releases. With this, we have seven bug prediction models (see Table 2.4) for
each project listed in ReplicatedDB and CollectedDB. While building and evaluating
the bug prediction models, 10 repetitions of 3-fold cross-validation are applied. Firstly,
we take a project from the datasets and randomize the order of the instances to avoid
sampling bias [98] before building and evaluating a model. Secondly, we split the
data into three folds and take one fold as the test set and the remaining two folds as
the training set. Then we build a model using the selected training set and evaluate
the model on the remaining test set. We collect the prediction results of the repeated
cross-validation steps. The reason that we set the fold number as three when applying
the cross-validation technique is the low ratios of buggy and smelly class instances
(see Table 2.1 and 2.2). If we set a higher fold number, some training sets might have
almost no smelly instances or very few buggy instances, and in turn, there may not be

enough samples to learn from for the predictors.

We evaluate all the models in terms of the probability of detection (pd or recall),
probability of false alarm (pf), F-measure, and the AUC (Area Under The ROC
-Receiver Operating Characteristics- Curve). The recall, pf, and F-measure values

are calculated from the confusion matrix of the prediction results. A simple confusion
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matrix for the bug prediction is given in Table 2.5 and the calculation formulas of
the recall, pf, and F-measure are provided in Table 2.6. The recall measures the
ratio of correctly predicted bug-prone classes to the actual bug-prone classes. The
pf measures the ratio of incorrectly predicted bug-prone classes to the actual clean
(not buggy) classes. The F-measure is the harmonic mean of the recall and precision
values. The precision measures the ratio of the actual bug-prone classes to predicted as
bug-prone classes. Precision measurement is not used in our model assessment step,

but its calculation formula is provided in Table 2.6 for information purposes.

Table 2.5 : Confusion matrix for bug prediction problem.

Actually bug-prone Actually clean
Predicted as bug-prone TP (True Positive) FP (False Positive)
Predicted as clean FN (False Negative) TN (True Negative)

Table 2.6 : The equations for recall (or pd), pf, precision, and F-measure.

Accuracy measures Formula
TP

Recall (or pd) TPLEN
Pf _rP

FPATN
Precision ..

ol PEFP

Fl'measure X precision Xreca

precision+recall

The performance results of the proposed bug prediction models are compared with
each other to analyze the contribution of each smell related metric type in terms
of recall, pf, F-measure, and AUC values. To perform statistical tests among the
bug prediction models, we aggregated a model’s performance (in terms of recall,
pf, F-measure, and AUC individually) over all the projects and machine learning
algorithms. The aggregated performances of prediction models are compared with
each other by applying Scott-Knott Effect Size Difference (ESD) test [99] implemented
by Tantithamthavorn et al. [82]. The results of different projects and algorithms are

further discussed in Section 2.5.

2.4 Results

This section presents the results obtained through the experiments to answer RQl,

RQ2, and RQ3. Performances of prediction models associated with each RQ are
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reported as boxplots in terms of recall, pf, F-measure, and AUC. The names of
the prediction models are shown along the y-axis of each group of box plots. The
performances are aggregated over six machine learning algorithms used during training
and for all projects within each dataset. Scott-Knott ESD analysis for the prediction
models built for each RQ is provided in our online appendix [76], as well as the
performance plots of the predictors. The detailed analysis of the algorithms and

projects are reported in Section 2.5.

2.4.1 RQ1: To what extent does the community smell contribute to the prediction

of bug-prone code components?

First, the performances of Baseline and +CommSmells are aggregated over all the
baselines and the datasets and reported in Figure 2.2. Then, the performances of the
predictors are reported separately for ReplicatedDB and CollectedDB in Figures 2.3,
and 2.4, respectively. Note that in this paper, we only report the performance of one
out of four baselines of ReplicatedDB (number of developers), and report the other

baselines in our online appendix since it would take too much space in the paper.
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Figure 2.2 : Performances of the bug prediction models built to answer RQ1. The
performance values are aggregated over both datasets.

Overall performance results in Figure 2.2 show that Baseline and +CommSmells
models perform closely to each other. Both models achieve a recall of ~38%, pf
of ~7%, F-measure of ~51%, and AUC of ~65%. According to Figures 2.3, and 2.4,
the models achieve different performances among the two datasets. While the median

recall values of the predictors built for CollectedDB are around 75%, the median recall
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Figure 2.3 : Performances of the bug prediction models built to answer RQ1, for
ReplicatedDB, with the baseline model utilizes number of developers metric.
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Figure 2.4 : Performances of the bug prediction models built to answer RQ1, for
CollectedDB, with the baseline model utilizes structural metrics.
values of the predictors built for ReplicatedDB are between 20% (with the number of

developers) and 39% (with the structural metrics).

The +CommSmells model outperforms three out of four baselines of ReplicatedDB
(number of developers, churn, scattering), and the baseline of CollectedDB by
improving the recall between 2% and 6%, and AUC between 1% and 3%. However,
according to the Scott-Knott ESD comparison results, there are no significant
differences among the Baseline and +CommSmells in terms of recall, pf, and
F-measure. The contribution of community smells on bug prediction is statistically

significant only in terms of AUC.

The reason that we cannot observe the contribution of community smells on Baseline

models might be class distributions with respect to community smells and bugs. To
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check that, we compute the ratio of classes associated with community smells over the
total number of classes, and the bug-prone classes associated with community smells.
In ReplicatedDB up to 7% of classes have one type of community smell, and among
those, 38% are bug-prone. In other words, only 26% of classes in ReplicatedDB are
both bug-prone and have community smells. In CollectedDB only 15% of classes are
both bug-prone and have community smells. These relatively low ratios might be the
reason for not observing the contribution of community smells. Having a model with
a combined set of metrics may improve performance. We further assess this effect in

RQ3.

Summary on RQ1: +CommSmells model statistically outperforms the Baseline
in terms of AUC, while it performs statistically the same as Baseline in terms of
recall, pf and F-measure.

2.4.2 RQ2: To what extent does the proposed model contribute to the bug
prediction when compared to a state-of-the-art model built using code smell

related metrics?

Similar to answering RQ1, at first, the performances of the predictors built for all the
baselines of two datasets (ReplicatedDB, CollectedDB) are aggregated and reported as
boxplots in Figure 2.5. Then, the performances of the predictors reported separately
for one baseline of ReplicatedDB (number of developers), and CollectedDB in Figures

2.6, and 2.7, respectively.
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Figure 2.5 : Performances of the bug prediction models built to answer RQ2.
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Figure 2.6 : Performances of the bug prediction models built to answer RQ2, for
ReplicatedDB, with the baseline model utilizes number of developers metric.

recall pf

Baseline + Community Smells B D:| - 1t D] """ 1
Baseline + Code Smells [ ——— D:| -] 1t l:l] """" 1
Baseline + Code Smell Intensity e [I:| - 1 }Elj{

o ~ < © © o 0.0 0.2 0.4 0.6 0.8 1.0
(=} [=} (<] [S] [S) —
F-measure AUC

Baseline + Community Smells B e — [Ij{ 1 f U] -
Baseline + Code Smells } """""" [I:| - { 1 } """ [I] - {
Baseline + Code Smell Intensity B D:| | 1 I — [Ij -

0.0 0.2 0.4 0.6 0.8 1.0

N
<]

0.4

0.6
0.8
1.0

Figure 2.7 : Performances of the bug prediction models built to answer RQ2, for
CollectedDB, with the baseline model utilizes structural metrics.
According to the overall performance results in Figure 2.5, the +Codelnt model
achieves a higher performance in terms of recall, pf, F-measure, and AUC when
compared to +CodeSmells and + CommSmells. A recall of 43%, 39%, and 37%, pf
of 4%, 12%, and 11%, F-measure of 54%, 49%, and 48%, and AUC of 82%, 69%, and
68% are shown in the figures for +Codelnt, + CodeSmells, and + CommSmells models,

respectively.

For ReplicatedDB, adding code smells into the baseline models seems to improve
the performance more than community smells. According to Scott-Knott ESD
tests, +Codelnt outperforms the + CommSmells and +CodeSmells in terms of recall,
pf, F-measure, and AUC for all baseline models of ReplicatedDB. However, for

CollectedDB, +CommSmells achieves 5% higher recall than +CodeSmells and
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+Codelnt, and 2% higher AUC. Only the difference in terms of AUC is statistically

significant, according to the Scott-Knott ESD test.

Similar to the performance values in RQ1, the bug prediction models in RQ2 achieve
different performances among the datasets. While the median recall values of the
predictors built for CollectedDB are between 70% and 75%, the median recall values

of the predictors built for ReplicatedDB are between 20% and 69%.

As shown in Figure 2.7, we could not observe the contribution of code smell intensity
metric in the models for CollectedDB. This might be related to the ratio of classes
associated with code smell intensity. In ReplicatedDB 60% - 73% of classes are
associated with code smell intensity. On the other hand, in CollectedDB, almost all
classes (99%) are associated with code smell intensity. Therefore, this metric seems to

have no distinguishing effect on predicting bug-prone classes in CollectedDB.

Summary on RQ2: Community smells contribute to the bug prediction
performance for CollectedDB in terms of AUC only, while code smell intensity
improves the bug prediction performance of the ReplicatedDB in terms of recall,
pf, F-measure, and AUC, when compared to other smell-related metrics.

2.4.3 RQ3: To what extent do the combined smell-related information contribute

to the bug prediction when compared to the best contributing one?

We report the performance of +Codelnt, + Codelnt+CodeSmells,

+Codelnt+CommSmells, and +Codelnt+CodeSmells+CommSmells for all the base-
line models of ReplicatedDB in Figures 2.8, 2.9, 2.10, and 2.11. The performance
of the combined models on ReplicatedDB has different conclusions with regard
to the baseline metrics, as in other RQs. For the baseline models with the
number of developers and scattering metric, the combined models are higher
than +Codelnt in terms of recall and F-measure. On the contrary, for the
baseline model with the churn metric, combining smell-related metrics with the
+Codelnt model decreases the recall and F-measure. According to the Scott-Knott
ESD tests, these differences among the performances of the prediction models
with churn, scattering and number of developers metric sets are not statistically

significant in terms of recall, F-measure and AUC. In terms of pf, +Codelnt
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outperforms the combined prediction models when the baselines are built with churn,
scattering and the number of developers. When the baseline model is built with
structural metrics, +Codelnt, +Codelnt+CodeSmells, +Codelnt+CommSmells, and

+Codelnt+CodeSmells+CommSmells perform statistically the same.

For CollectedDB, the performance of + CommSmells and the combined models seem
to be the same in terms of recall, pf, F-measure, and AUC, which are 75%, 14%,
77%, and 88% respectively. Thus, including code smell related information into the

+CommSmells model does not improve the performance for CollectedDB.
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Figure 2.8 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes structural metrics.
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Figure 2.9 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes churn metric.

Moreover, incorporating combined smell-related metrics into different baselines leads
to different findings. Using more smell-related metrics increases the performance val-

ues for the number of developers, churn, and scattering baselines. However, it does not
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Figure 2.10 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes number of developers metric.
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Figure 2.11 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes scattering metric.
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Figure 2.12 : Performances of the bug prediction models built to answer RQ3, for
CollectedDB, with the baseline model utilizes structural metrics.

change the performance values for the baselines that utilize structural metrics. For ex-
ample, for ReplicatedDB, the median recall of +Codelnt+CodeSmells+CommSmells

is higher than the +Codelnt (86% and 67% respectively) when the baselines are built
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with the number of developers metric. However for the baselines built with structural
metrics, the median recall of +Codelnt+CodeSmells+CommSmells and +Codelnt is
the same (60%) for ReplicatedDB, whereas the median recall of +CommSmells and

+Codelnt+CodeSmells+CommSmells is the same for CollectedDB (75%).

Summary on RQ3: Combining smell-related information to build bug
prediction models does not improve the performance of the models using the
best contributing metric set.

2.5 Discussion

In this section we discuss our findings with regard to the projects in the two datasets,
individual learners’ performance, and the validation strategy used. Furthermore, we
build and assess the models using community-aware metrics only, such as number of
developers, scattering, and community smells. We also discuss the contribution of the

other community-aware metrics on bug prediction models proposed in the literature.

2.5.1 Project-wise assessment of bug prediction models

Bug prediction models built for the ReplicatedDB and CollectedDB show different
results in terms of the best performing metrics: The model utilizing code smell
intensity information (i.e., +Codelnt) has a higher accuracy for ReplicatedDB,
whereas the model utilizing community smells information (i.e., + CommSmells has
a higher accuracy for CollectedDB. Furthermore, the overall performance values of
the predictors built on the two datasets differ significantly: The median recall rates
achieved for ReplicatedDB are between 20% and 69%, whereas they are between 68%
and 80% for CollectedDB.

Section 2.4 reports the aggregated performance results of the bug prediction models
for the open-source projects in ReplicatedDB and CollectedDB. Here, we also report
the performances of the bug prediction models built individually on every project, and
whether these findings are consistent with those reported for the associated datasets.
Project-wise analysis, available in our online appendix [76], shows that bug prediction
performance of the models also vary among different projects. For example, while the

seven prediction models built for Xerces in ReplicatedDB perform between 30% and
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57%, they perform 86% for Log4j in terms of F-measure. It seems the low prediction
performance is related to the low ratio of the number of bug-prone classes over the total
number of classes, i.e., the bug-prone class ratio of Xerces is 0.29 while the bug-prone
class ratio of Log4j is 0.58. The seven models built for Velocity perform around 60%
in terms of AUC, while the seven models built for the other projects of ReplicatedDB
perform between ~60% and ~90%. The prediction performance of the models built
for the projects in CollectedDB are similar to each other, i.e., the seven models built
for the Cayenne, Eclipse-Cxf, and Mahout projects perform within the range of 67%

and 89%, in terms of F-measure, and ~90% in terms of AUC.

Moreover, we observe that the best performing metric sets are different in the
project-specific models. We group the models according to Scott-Knott ESD test
results, and compute the number of times each group outperforms the other groups in
terms of F-measure and AUC. Figures 2.13 and 2.14 report the statistics for all projects
in ReplicatedDB and CollectedDB, respectively. Values inside the cells represent (in
percent) the number of times the corresponding model outperforms the others. Darker
gray in the figures indicates that the corresponding model outperforms the majority
of the models. Lighter gray means the less superiority of the corresponding model
over other models. White, on the other hand, shows the models with no statistical

superiority over the others.

ReplicatedDB CollectedDB

Ant Ivy Lucene Log4j Velocity Synapse Xerces|Cayenne Cxf Mahout
Baseline 50 333 0 0 50 333 0 0 0 0
+CommSmells 0 333 0 0 50 0 0 0 50 0
+CodeSmells 0 0 0 0 0 0 0 0 50
+Codelnt 50 50 50l 667 50 0 0 0
+CommSmells+CodeSmells - - - - - 0 50 50
+CommSmells+Codelnt 50 50 50 50 0 50 0
+Codelnt+CodeSmells 50 50 50 50 - - -
+CommSmells+Codelnt+CodeSmells 50 50 50 50 0 50 50

Figure 2.13 : The ranking of models with respect to the number of times they are
superior than the others (in percent) among all the projects, in terms of F-measure.

From the figures we observe that + CommSmells beats 33% to 50% of the models
in three out of ten projects (Ivy, Velocity, and Eclipse-Cxf) in terms of F-measure.
+CommSmells significantly better than 25% to 50% of the models for the seven out
of ten projects (Ant, Ivy, Lucene, and Xerces, Eclipse-Cxf, and Mahout) in terms of

AUC. These ratios confirm our findings RQ1: The contribution of community smells
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ReplicatedDB CollectedDB

Ant Ivy Lucene Log4j Velocity Synapse Xerces|Cayenne Cxf Mahout
Baseline 0 0 0 0 0 0 0 0 0 0
+CommSmells 25 50 333 0 0 25 25 0 50 50
+CodeSmells 50 25 33,3 0 0 0 25 0 0 0
+Codelnt 50 50 50 50 0 0 0
+CommSmells+CodeSmells - - - - 0 50 50
+CommSmells+Codelnt 50 50 0 50 50
+Codelnt+CodeSmells 50 50 - - -
+CommSmells+Codelnt+CodeSmells 50 0 50 50

Figure 2.14 : The ranking of models with respect to the number of times they are
superior than the others (in percent) among all the projects, in terms of AUC.
on bug prediction is more visible in terms of AUC. +Codelnt shows similar ratios both
in F-measure and AUC. This model beats at least 50% of the other models in seven out
of ten projects. +Codelnt shows a greater success than + CommSmells when we assess
project-wise statistics. The combined models also have high ratios both in F-measure
and AUC among the majority of the projects. However, they cannot outperform the
best performing models in project-specific models. This also confirms our findings in
RQ3. Overall, project-wise analysis shows the contribution of code smell intensity on
bug predictors compared to the process metrics and the other smell-related metrics.
Community smells also outperforms at least one out of four groups of models, but it

seems the contribution of community smells is dependent on the selected project.

2.5.2 Analysis of the models with different learners

We applied six different machine learning algorithms (i.e., Simple Logistic, Multilayer
Perceptron, ADTree, Naive Bayes, Decision Table, and Logistic Regression) to build
our bug prediction models. The results reported in Section 2.4 present the aggregated
performances of six different machine learning algorithms. However, aggregated
performances may be sensitive to low/high performing algorithms, and it restricts us
to see the results of the best performing algorithms with respect to the selected metrics
sets. Thus, we also report the performances of the algorithms on bug prediction
in this section. The performances of the models are reported in terms of median
F-measure and AUC in Table 2.7, according to the six machine learners. The results

are aggregated performance of the models built on both datasets.
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We highlight the performance of the statistically best-performing model (according the

Scott-Knot ESD tests) in bold in the table.

Results in Table 2.7 show that Decision Table and ADTree perform considerably well
regardless of the extent of the knowledge enriched in the prediction model. They
even performed well just with the Baseline model with an F-measure rate around
57% and an AUC rate around 67%, or for the model enriched with all available
knowledge (+Codelnt+CodeSmells+CommSmells) F-measure rate around 98% and
AUC rate around 95%. This could be because the ADTree combines the simplicity of
a single decision tree with the effectiveness of boosting, robustness, and handling of
irrelevant attributes. Multilayer Perceptron also performs statistically the same with
ADTree and Decision Table for Baseline, + CommSmells, and +CodeSmells models in

terms of F-measure with a rate around 56%.

The Logistic Regression, Naive Bayes, and Simple Logistic are not useful learners for
bug prediction as ADTree, Decision Table, and Multilayer Perceptron in our setting.
The reason for that could be, for example, while using the Logistic Regression on high
dimensional datasets, the model could over-fit the training set. Thus the model may
not be able to predict well enough on the test set. Also, using Logistic Regression, it is
challenging to capture complex relationships. Besides, for Naive Bayes, each feature
should make an independent and equal contribution to the outcome, which might not
meet most of the time in our study. Another reason could be we had significantly
smaller sets of classes labeled as buggy. However, in Naive Bayes, the training data
should represent the population well. More specifically, with no class label occurrences
and a particular attribute value, the posterior probability will be zero. Thus, it is
possible if the training data is not representative of the population Naive Bayes may
not work well. Although, in some cases, Naive Bayes has higher AUC, i.e., when a

Baseline model is enriched with community smells, and code smells.

Our conclusions reported in Section 2.4 do not change if the performance results
of best performing learners, i.e., ADTree, are considered only, except for RQl1, i.e.,
+CommSmells statistically outperforms Baseline in terms of recall in addition to AUC.

The Scott-Knott comparisons of bug predictors built with different machine learning
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algorithms and their performance measures, in terms of recall, pf, F-measure, and

AUC, are also provided in detail in our online Appendix [76].

2.5.3 Validation strategies of the models

In Section 2.4, the performance of the bug predictors are trained by following a
within project strategy: We combined all releases’ data of a project and applied
cross-validation to build and assess bug prediction models. There are other validation
strategies used in software bug prediction, such as within-release and cross-release.
In within-release, a model is built and assessed on a single release. In cross-release,
a model is built for a release n using the prior releases’ data (1 to (n— 1)/"). The
selection of validation strategy is also considered to have an effect on the findings
[100]. Hence, we conduct additional experiments to observe the performance of the

models trained according to within-release and cross-release strategies.

Figures 2.15 and 2.16 report the performance of the predictors built for the
ReplicatedDB according to within-release and cross-release strategies, respectively.
Since the data collection process of CollectedDB is not conducted according to a

release strategy, this analysis could be performed for ReplicatedDB only.

We analyze the performance of within-release and cross-release reported here, in

comparison with the performance of within-project reported in Section 2.4.

The box plots show that within-project and within-release strategies perform very
similar to each other. The performance of the seven bug prediction models slightly
increase in terms of recall (between 3% and 8%) when they are trained with
a within-release strategy. In cross-release strategy, we also observe an increase
on the recall values (between 2% and 6%) of the Baseline, +CommSmells, and
+CodeSmells models compared to the other validation strategies. However, applying a
cross-release strategy has an adverse effect on the +Codelnt, +Codelnt+CodeSmells,
+Codelnt+CommSmells, and +Codelnt+CommSmells+CodeSmells models, 1i.e.,

recall values of those models decrease between 12% and 25%.

The metric that affects the results seem to be the code smell intensity metric. Statistical

tests on the seven bug prediction models with the three validation strategies also
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Figure 2.15 : Performances of bug prediction models trained with within-release
technique on the ReplicatedDB dataset.

supports that claim. Incorporating the code smell intensity information into the
other metrics does not statistically improve the prediction performance when the
cross-release strategy is used, whereas it statistically improves the performance when
a within-release or within-project strategy is used. This shows us the importance of

validation strategy applied in interpretation of the findings.

2.5.4 Comparing models with community-aware metrics

In this section, we compare the performance of a model that only utilizes community
smells with the performances of community-aware baseline models built in this study.
Later, we report a comparison of our models with the state-of-the-art models in bug

prediction literature using community-aware metrics.

2.5.4.1 Community-aware baseline models

In Figure 2.17, we compare the community smell-aware model with the two baselines,

e.g., the number of developers and scattering metric. Both of these baselines
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Figure 2.16 : Performances of bug prediction models trained with cross-release
technique on the ReplicatedDB dataset.
utilize metrics illustrating developer activities. Although these metrics do not cover
the collaborations between developers or social interactions, they are used in bug
prediction studies to illustrate the effect of people aspect [68,74]. Hence, we would
like to check if community smells as a baseline can produce comparable performance

with those community-aware metrics.

Overall, the model utilizing the community smells only perform poorly than the models
utilizing the other community-aware metrics, in terms of recall, F-measure, and AUC.
The scattering baseline gives statistically the best performance in terms of AUC,
while the number of developers baseline gives statistically the best performance in
terms of F-measure. Both perform statistically the same in terms of recall. In terms
of pf, scattering and community smells models performs statistically the same, and

outperform the number of developers model.

The model utilizing only community smells does not outperform the other models
for all the machine learning algorithms we applied. This could be due to the low

ratio of community smell-prone classes in ReplicatedDB dataset. CollectedDB dataset
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Figure 2.17 : Performance comparison among the community-aware baselines on the
ReplicatedDB dataset.

does not have scattering and developer metrics, i.e., only structural metrics form the

baseline. Thus, we are not able to perform a similar comparison for CollectedDB.

At this point, it is observable that the community smell-aware model performs higher

when accompanied by other process metrics, such as structural, churn, developer, and

scattering metrics.

2.5.4.2 The state-of-the-art models using community-aware metrics

In this section, we show a comparison of the results of our study with the
state-of-the-art community-aware metrics used for bug prediction. Table 2.8
reports the results of the studies that report bug predictors using community-aware
metrics.  The metric sets used in those models, classifiers, performance of
the best performing model, and the improvement gained by incorporating the

community-aware information in prediction model are provided in the table.

Nagappan et al. [79], Bird et al. [22], Bell et al. [74], and Di Nucci et al. [68]
incorporate the community-aware information into their baseline models. Their studies
report up to 56% improvement depending on the projects, leading to recall rates
between 64 - 81%, when the community-aware metrics are included. Soltanifar et

al. [89], and Kinm1 and Tosun [61] build a combined model using community-aware
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metrics and other state-of-the-art metric sets, e.g., process metrics. Both studies report

a recall rate around 75%.

The studies listed in Table 2.8 utilize various community-aware information,
i.e., socio-technical networks, organizational structure, number of developers who
previously changed a code module, developer’s focus on a software component,
and developer’s experience on a software module. All those studies report
improvement in bug prediction. In this study, we contribute to the bug prediction
literature by investigating the effect of community smells, which is another type
of community-aware metrics, on the prediction of bug-prone software classes. Our
findings show that adding community smells into Baseline and +Codelnt improves the

bug prediction performance from 71% to 75%, and from 62% to 68%, respectively.

2.5.5 Practical implications

Our study brings a novelty into socio-technical relationships observed for bug
prediction. Community smells capture both communication and collaboration patterns
between the developer communities. Knowing these patterns would not only help the
communities improve their work, but also gives insights on bug-proneness of their
codes. Our results conclude that incorporating community smells into the models built
with process metrics may give better bug prediction performance. However, we could
not observe this in many projects. Although community smells are associated with
code smells and code smell intensity in earlier works [55,71] , the latter metric seems
to be the best indicator of bugs for many projects. Code smell intensity incorporated
into process metrics could be considered as the first choice for practitioners who aim

to build bug prediction models.

We further inspect the predictions made by the model that incorporates the community
smells and the model that includes code smell intensity metric into the baseline metrics,
and the development and communication history of software projects used in our
experimentation. Our goal is to gain insight on the cases in which the community

smells would be useful or not on the prediction of bug-prone classes.
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Our observation on the predictions made by +CommSmells and +Codelnt, show
that 74% of the total software classes are correctly classified as buggy or clean by
both +CommSmells and +Codelnt, whereas 22% of the total software classes are
misclassified by both models. Also, the cases that only one model (i.e., + CommSmells)
make correct prediction when the other (i.e., +Codelnt) cannot are 2% of all data
instances, for each model. Most software classes that cannot be correctly labeled with
+Codelnt have zero code smell intensity values. Those incorrectly classified classes
by +CommSmells are not associated with a community smell, except a few instances.
Therefore, we think the limitations of the existing tools used to capture community

smells of a software project play a crucial role in the success of + CommSmells.

The findings on community smells could be influenced by how they are measured
in prior studies [55,71] as well as in this work. It is a big challenge to capture
communication and collaboration patterns in developer communities. The existing
tool CodeFace4Smell assumes that the communication is handled via mailing lists,
and the collaboration is found in the co-changed modules in commit logs. In
practice, communication channels in the projects might not be accessible or they
may be distributed along different systems. For example, Log4j releases used in our
experimentation only have development history until 2002 and ten developers have
been contributed to the project until that year. The lower number of contributors
may be the cause of lower number of community smells [54]. On the other
hand, the Eclipse-CXF development team seems to use IRC communication logs,
whereas the team of Ivy uses another forum in addition to their mailing lists. Using
multiple resources to communicate with teammates makes it difficult to capture the
communication patterns. Considering that, CodeFace4Smells is limited to extract the
communication patterns for the projects, and improvements on the community smell

detection strategies, specifically for capturing communication patterns, are necessary.

2.6 Threats to Validity

In this section, we discuss the threats to the validity of our study by following the
guidelines reported by Yin [101]. Construct validity refers to the relation between

theory and observations that might be jeopardized through measurement errors. We
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tried to eliminate measurement bias by following previously published papers on

community smells and their calculation process via the CodeFace4Smell tool.

We face various challenges during the collection of our datasets and metrics. One
challenge is reaching the necessary information for some projects, i.e., mailing
lists, and source code repository, to extract community and code smells. Historical
collaboration and communication information of some projects we took from Palomba
et al.’s study [56] is not available since those projects are old (between the years
2000 and 2008). Also, the first releases of projects in Palomba et al.’s study [56] are
not included in our dataset since they do not have collaboration and communication
history. Therefore, we eliminate those releases and projects whose mailing list and/or
source code repository is not available in order to avoid potential construct validity
threats to our empirical findings. A configuration file is constructed for each project
in ReplicatedDB by listing the commit id associated with all releases of a project
included in our dataset. We double-checked the release dates of the projects from
the projects’ websites and source code repositories before associating with a commit
id. We also ensure that the time interval between releases is at least three months
since it 1s considered to be sufficient time to capture the development of community
patterns [102]. We match the output of CodeFace4Smell with the classes in the
original dataset of Palomba et al.’s study [56] linking releases and the software class
names. We eliminate unmatched class names between the original dataset and the
CodeFace4Smells tool results to form the final version of the ReplicatedDB. The final
version of the ReplicatedDB contains 16 releases of the seven open-source systems.

Configuration files used for ReplicatedDB are included in our online appendix.

Configuration files of the CollectedDB are taken from a prior study [69] whose authors
propose a database that contains a list of open-source projects with their corresponding
configuration files, downloadable links to the related source code repository and
mailing lists. The configuration file of a project lists 13 snapshots of the project with
three-month time intervals. We chose three open-source projects from the list to build
CollectedDB. Later, we extracted the structural metrics by using the Ckjm tool, which
uses the compiled Java codes to extract the static code attributes. We eliminate those

software classes that we cannot extract the metrics for, due to compilation errors.
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Conclusion validity refer to the relation between the treatments and the outcomes.
To minimize the threats to the conclusion validity, we perform several adjustments
on experimental design: The prediction models are built using six different machine
learning algorithms — Simple Logistic, Multilayer Perceptron, ADTree, Naive Bayes,
Decision Table, and Logistic Regression. Validation of the models is carried by
applying a 3-fold cross-validation technique. Before each repetition, the dataset is
randomized to avoid data order bias. All prediction models built in our experimentation
are evaluated in terms of recall, pf, F-measure, and AUC. We used these evaluation
metrics because they are widely used in literature, e.g., [56]. We applied the
Scott-Knott Effect Size Difference (ESD) test to conduct a statistical comparison
among the performances of the prediction models [82]. The findings are also confirmed
among the two datasets containing ten projects in different sizes, bug ratios and smelly
class ratios. We observe that the conclusions are subject to change depending on the
project, performance measure or the validation strategy used. We report our findings

accordingly.

Internal validity is related to the factors that are not considered during the
experimentation but may affect the conclusion of the study. Some of these might be
related to the metrics used from the prior study’s dataset, or measurement procedures.
Tools and techniques used to extract the metrics may impact the performance of bug
prediction models built. We relied on the metric sets of the original dataset taken
from our base study [56]. The baseline metrics are popularly accepted and used in
prior bug prediction studies. We also relied on the CodeFace4Smells tool for detecting
code and community smells from the given projects [55]. It is still possible that the
community smells would be different among classes if a different tool was utilized.
However, the current state-of-the-art tool for detecting those is CodeFace4Smells, and
based on our analysis on extracted metrics, it sufficiently captures the collaboration and
communication patterns among the developers. The methodology is carefully defined
according to our RQs, and only the comparisons between the models are conducted to

answer these RQs.

External validity deals with the generalization of the outcomes of the experimentation.

Our analysis made on ten open-source projects that are widely used in the related
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literature, e.g., ReplicatedDB contains datasets from Promise repository [47], and
CollectedDB projects are used in [55]. To minimize the threat to the external validity
of our findings, we analyze the contribution of community smells on bug prediction on
these two datasets including multiple open-source projects. The findings confirm that
dataset characteristics significantly affect the conclusions. While our experimentation
covers the widely used metrics and open-source projects, further investigation can be

done for industrial projects to generalize the results.

2.7 Conclusion

In this chapter, we empirically analyze the effect of community smells on
bug-proneness of software classes by comparing the findings against the other metrics,
1.e. process metrics, code smells and code smell intensity, used in bug prediction
literature. During this research, two datasets are constructed and shared online
with the community: (1) ReplicatedDB is a new bug prediction dataset constructed
by collecting community and code smells related information of classes of seven
open-source systems and (2) CollectedDB provides class-level code and community
smells information of six open-source systems [76]. Bug prediction models are built
on both datasets to investigate the contribution of including community smells into
state-of-the-art metric sets, e.g., structural metrics [72], number of developers [74],
code churn [73], developer scattering metrics [68], in comparison with the other

smell-related metrics, i.e., code smells [103] and code smell intensity [56].

The performance of the bug prediction models indicates that community smells
contribute to the prediction of bug-prone classes on both datasets (statistically
improved AUC by up to 3%), while it does not contribute as much as code smell
intensity metric: For ReplicatedDB, +Codelnt outperforms +CommSmells by up to
17% in terms of AUC. Our experimental findings show that community smells and
code smell intensity are good indicators of bug-prone modules depending on the
project characteristics and experiment validation strategies. This support the findings
of Palomba et al.’s study [56] on the success of code smell intensity on the prediction
of bug-prone software classes. However it does not always hold for all kinds of

projects. Both smells represent different aspects of technical and communication
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flaws, and should be observed together. In other words, technical flaws encountered
during the design and development of the software, and communication flaws of the
software development team significantly affect the bug-proneness of software classes.
Measuring those kinds of flaws by utilizing proposed metrics and tools in the literature
[55,56] and combining them into bug predictors, lead to build more successful bug

predictors.

Measuring community smells requires a serious effort, even if there is a readily
available tool, i.e., CodeFace4Smells, to detect smells. Detection of community smells
involves the analysis of communication and collaboration patterns of the development
team. Capturing collaboration patterns is easier than capturing communication patterns
since it requires access to the source code repository, while capturing communication
patterns requires access to the communication channel. Most open-source projects
have a structured communication channel like mailing lists, but not every organization
has a documented communication channel in real life. Furthermore, a communication
channel, i.e., mailing archives, may not represent all communication lines between
the organization members. Therefore, we conclude that modeling people factors for
software recommendation systems is a very challenging task. Also, our experimental
findings indicate that community factors are not good indicators of bug-prone software
classes as other metrics measured from source code, i.e., code smell intensity. These
lead us to assess people factors in defect prediction models from another aspect.
Instead of utilizing community factors as an information source during the model
training, it would be better to employ individual development skills of the team by
building personalized models for each of them. Therefore, in the next two chapters,

we investigate the personalized defect prediction approach.
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3. INVESTIGATING THE PERFORMANCE OF PERSONALIZED MODELS
FOR SOFTWARE DEFECT PREDICTION?

3.1 Introduction

Studies on software defect prediction (SDP) propose automated tools that mine
historical development data from version control systems, source code bases and issue
management systems and identify development patterns to recommend defect-prone
modules in software systems. For more than two decades in empirical software
engineering, researchers are building SDP models using different datasets, different
input features, and different algorithms to catch more bugs compared to manual code
review and other bug detection activities performed by the development teams [10,11].
The recommendations given by SDP models to assist developers are discovered to

improve the quality of the produced software [104,105].

Software systems produced by different developers tend to have distinguishing
defect patterns [17] since each developer has unique characteristics regarding their
development styles, experience, and defect proneness of the code they produce.
Developers’ profiles and their way of working can be quantified through a set of
features, including but not limited to years of experience, age, gender, collaboration
with other developers, commit activity, quality of the code produced, and bug
resolution activity. Some of these features have previously been used as developer
metrics in SDP studies. For example, the number of developers that changed a code
module [106] is included in the prediction models to incorporate the developer aspect
into defect prediction. In another study, developer focus is quantified and included into
the defect prediction models [107]. Gender is also studied in bug prediction to assess

the effect of gender on introducing smells [94].

Recommendation systems targeting other businesses, e.g., e-commerce websites,

search engines, and social media platforms utilize users’ features such as search history

2This chapter is based on the papen, B., Tosun, A. (2021). Investigating the performance of
personalized models for software defect prediction. Journal of Systems and Software, 181, 111038.”.
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or locations to give customized and more useful search results or advertisements
[37,38]. The software engineering field also adopts the techniques used in
recommendation systems to improve the process of software systems [40], e.g., a
recommendation system to decide which source code modules need to be modified
[5]. Recently, instead of quantifying developers’ characteristics as a set of metrics,
personalized defect predictors have been built separately for each developer by
utilizing the corresponding developer’s change history only [36,53,88]. While general
defect prediction models utilize the whole change history produced by the team, a
personalized model utilizes less data during training compared to a traditional model.
Moreover, predictions made by these personalized SDP models target the relevant
developer only. By making developer-specific predictions, researchers aim to improve

the usability and accuracy of defect prediction tools.

The personalized SDP models proposed so far (e.g., [36,53]) give promising results in
terms of defect detection rates. These models lead to investigate fewer files modified
by a selected developer only, and still catch more defects than the general models. The
conclusions drawn from these early personalized models are hard to generalize due to
certain assumptions made in their methodology. In particular, the personalized model
findings are limited in terms of reported performance measures, the used metrics, and
model construction strategies. First, the proposed models in the literature could reach
up to 7% increase in F1-measure and 8% increase in recall, however, the effect sizes of
these performance values and individual personalized models’ performance were not
discussed in detail. Second, well-known metrics that characterize bugs in SDP, e.g.,
lines of code, code changes, or the number of developers, were not used while building
personalized models, but the source codes were transformed into characteristic word
vectors. Third, developer selection and data collection strategies are ad-hoc, i.e.,
100 commits from 10 developers were used for model building. Considering that
SDP models still lack generalizability in different contexts, the results suffer from
external validity of their prediction performance [108]. We believe the need for further

investigation on the benefits and the general applicability of personalization in SDP.

In this study, we aim to investigate the performance of personalized SDP models

compared to those of traditional approaches in an empirical setup on six open-source
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software projects: Gimp, Maven-2, Perl, PostgreSQL, Rails, Rhino [27]. We utilize
change-level defect prediction datasets of those projects, each has 9 to 26 years of
development history and embody the state-of-the-art process metrics [30,109]-[113].
Our study extends and contributes to the previous work on personalized defect

predictors in the following aspects:

1. We investigate a total of 222 developers over six large-scale open source projects,
and build personalized models for each of these selected developers. In RQI1
(Section 3.3), we analyze the performance of personalized models against the
traditional approaches, namely a general model (GM) and a general model for a
selected set of developers (SM). The developer selection strategy that we follow is
based on previous discussions on the size of training data in SDP [100], and data

availability in recommendation systems [114].

2. To increase the conclusion validity of our empirical analyses, we evaluate our
proposed models with respect to seven performance measures, namely probability
of detection, probability of false alarm, precision, F1-measure, Area Under ROC
Curve, Matthews Correlation Coefficient, and Brier score. We also utilize additional
assessment techniques, such as effect size calculation and Nemenyi’s test, for model
comparisons. Our findings are based on statistically significant differences with

medium to large effect size only.

3. We conduct an empirical analysis on the development characteristics of individual
developers with respect to 1) the number of commits made by the developers, 2)
the ratio of bug-inducing commits to the total commits of the developers, and 3) the
process metric values. We would like to understand whether these characteristics
reflect when personalized models are superior over traditional models, or vice versa

(RQ2 in Section 3.3).

4. We conduct a feature analysis using Information Gain on the process metrics used
to predict defects in a personalized model, and assess the distinguishing features

among personalized models (RQ3 in Section 3.3).
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Empirical analyses on 222 developers of six open-source projects show that
personalized defect prediction models improve the traditional models’ probability of
detection rates up to 24% for 83% of the analyzed developers. Even though overall
results show the superiority of the personalized approach, personalized models do
not improve the prediction performance for every developer per se. We observe that
the developers whose traditional model outperforms the personalized model have a
higher experience (i.e., more contribution as commits) on their projects. On the other
hand, the personalized models are more successful than the traditional models for those
developers who contribute to the files that were modified by many developers. Also,
the importance rank of the process metrics differs among 222 developers, except the
fact that the size metrics (i.e., added lines of code) are the most important ones for the
majority of developers. Finally, the performance of the personalized model highly
depends on the selected machine learning algorithms and performance assessment

criteria.

3.1.1 Structure of the chapter

Section 3.2 reports the related work on personalized defect prediction literature.
In Section 3.3, we report the experimentation conducted in this study in detail.
Section 3.4 discusses the results of the experimentation conducted to answer our
research questions, while Section 3.5 discusses the outcome of our experimentation
from various aspects (e.g., machine learning algorithms applied, model validation
techniques). In Section 3.6 threats to the validity of our findings are discussed. Section

3.7 summarizes the key take-away messages and reports future research directions.

3.2 Related Work

In this section, we report several change-level defect prediction approaches over the
history of SDP models. In the subsections below, we explain the evolution of SDP
models with respect to using people related metrics, and discuss prior studies that

propose personalized SDP models.

SDP models are designed to make predictions at different granularity levels, e.g., file,

class, method, and code change level [105]. A change-level SDP model makes it easier

56



to find the responsible developer for a bug-prone software entity [16]. Majority of the
change-level SDP studies in the literature utilize developer experience, history of the
changed files, diffusion of code changes, and size of changes [16,27,30,115]. Mockus
et al. [30] propose models that predict the high risky (being prone to failure) initial
maintenance requests (IMR) that contain multiple software changes. Their analysis
on a large scale telecommunication system shows that the number of subsystems
modified, and developer experience are found to be indicators of these high risky
changes. Similarly, Shihab et al. [115] also use change-level software metrics, such
as the time when the change is made, the purpose of change (bug fix or not) in addition
to size, history, and experience metrics to predict risky changes. They show that the
developer experience, number of added lines, bug-proneness of the modified files,
number of bugs, and the number of bug reports linked to a change are found to be

good indicators of a change’s risk-proneness.

Sliwerski et al. [116] propose a method called SZZ to locate fix-inducing changes
of software development by using the software archives and bug reporting systems.
The SZZ algorithm contributes to the SDP field by providing a new data source to
researchers and practitioners of the field: bug-inducing changes [2]. Later, Kim et
al. [117] classify the code changes as bug-inducing or clean. Their prediction model
utilizes textual features of the modified file and directory names, and change metadata
information (i.e., commit hour, commit day), complexity metrics of the modified files
in addition to the size metrics. Kamei et al. [16] utilize diffusion, size, history, purpose,
and developer experience metrics to predict bug-inducing changes of six open-source
and five commercial software projects. Their empirical assessment demonstrates a
reduction in the code review effort (i.e., 35% of all predicted bug-inducing changes
could be identified by spending 20% of the total effort) using the prediction model and
arecall of 64%.

Researchers have so far approached the SDP problem from different perspectives, i.e.,
from modeling the algorithm and validation techniques to enriching the data, and to
modeling the people. Various statistical and machine learning techniques are utilized
[11,105], i.e., Logistic Regression (LR), Naive Bayes (NB), and Random Forest (RF)

algorithms are widely used and performed quite well on predicting defects. Some
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studies focus on assessing the experimental setup to depict the data more accurately,
i.e., investigating other model validation techniques [82], algorithm tuning [52], data
pre-processing approaches [118], enriching the data by adding new metrics, and new
class types [27,51]. Recently, SDP models that make predictions at a fine-granularity
level are proposed, such as predicting bug-prone files [28] or code lines [119,120] in

software changes.

More recent studies consider the effect of developers on defect proneness of software
modules [17,31,32,106,121]. As people are the third essential unit in software
development, in addition to product and process, researchers investigate software
developers to model their development behavior, interactions among each other
through the modified source code modules, and other communication channels.
Besides, new studies are putting the whole focus on the developers, and propose
personalized SDP models that aim to give customized prediction results to each
developer in a team [36,53]. Customized feedback is provided by separately-built
models for each developer instead of including developer metrics into general SDP
models. Below, we report studies that use developer metrics to build defect prediction
models in Section 3.2.1, and build personalized defect prediction models in Section

3.2.2.

3.2.1 Defect prediction using developer metrics

Schréter et al. [121] report differences in the bug density of source code files developed
by different developers. According to their study, specific developers more likely
generate bugs than others, and this reflects the complexity of the code rather than a
competency between developers. Later works study the relationship between the defect
density of code modules and the experience of the developer. The more experienced
developers develop more complex code because more risky, larger and thus more
complex tasks are assigned to more experienced developers [122,123]. Further, the
results of Eyolfson et al.’s study [124] show that more experienced developers tend
to introduce fewer bugs. Rahman and Devanbu [125] report that there is no clear

correlation between bugginess of the code and the developers’ overall experience on

58



the project. On the other hand, their study states that a developer’s experience on one

file is more important than the developer’s overall experience on the project.

The number of developers who worked on a software module is popularly used as one
of the metrics in SDP models [17,74,106,110]. A study by Ostrand et al. [17] reports
that including the number of developers who modified a code module into the predictor
makes a modest improvement in the performance of defect prediction. Matsumoto et
al. [110] indicate that developers’ defect injection rates vary, and modules edited by

many developers contain more defects.

Posnett et al. [31] proposed developer focus to refer to the activity of a developer.
The authors measured the focus of a specific developer to a specific module, and
concluded that more focused developers would cause fewer defects. Di Nucci et al.
[107] extended the focus metrics by adding a distance measure between the modules.
The smaller the distance between the modules means that the modules are more related
to each other. The proposed model outperforms their baselines including the study of

Posnett et al. [31].

Lee et al. [32] proposed a metric set that models the developers’ interaction behaviour
at a micro-level. Micro interaction metrics are collected from Mylyn, such as browsing
and editing times of code files, frequencies and edited file information. They concluded
that micro interaction metrics improved the prediction performance when they were
used with source code and change history metrics. Also reported in [32], the number
of developers that edited a file in the history, the number of edit events observed for a

file, and the number of selections of a file are relatively good predictors.

Calikli et al. [33] also modeled developers in terms of their confirmation bias levels
to identify their relationships with the post-release defects. For instance, testers may
exhibit confirmatory behavior in the form of a tendency to make the code run rather

than employing a strategic approach to make it fail.

3.2.2 Personalized defect prediction

Bettenburg et al. [126] claim that software engineering data contains a large amount

of variability and models built with a global context are often irrelevant and less
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successful than models built with a local context. They applied Multivariate Adaptive
Regression Splines (MARS) [127] which is a global model that considers the local
regions in the data. Their results show that the MARS approach outperforms the

traditional global approach in defect prediction.

We identified two studies proposing personalized SDP models [36,53]. These
personalized models are built at change-level rather than file/method level since the
ownership can be defined easier on a code change than a file. A file may be modified by
several developers, and hence, a defect in a file may be the consequence of these code

changes, whereas a code change is only associated with a single developer [16,27].

Jiang et al. [36] propose change-level personalized SDP models for six different
open-source projects, namely Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene and
Jackrabbit. They identified 10 developers who contributed the most to these projects.
Then, 100 consecutive commits of each developer were collected and used for building
the personalized prediction models separately, while a total of 1000 commits of all 10
developers are used for building the traditional, general prediction model. In addition
to the personalized and general SDP models, a weighted model which combines
different developers’ data, and a meta-classifier which ensembles the predictions of
general and personalized approaches are built. They employed Alternating Decision
Tree (ADTree), Naive Bayes (NB) and Logistic Regression (LR) algorithms to build

their models.

Jiang et al. [36] built their models utilizing characteristic vectors that represent the
syntactic structure of the changed source codes in a commit, and bag-of-words for
both commit messages and source code. Moreover, commit hour and day, cumulative
change and bug-inducing change counts, source code file/path names, and file age were
the other input metrics. Their results indicate that the F1-measure of the personalized
model was 1 to 6% more than the traditional (general) model among six projects.
Besides, when the top 20% of defective lines of code are inspected, a personalized

approach could detect up to 155 more defects than a traditional approach.

Xia et al. [53] propose an alternative personalized approach that utilizes other

developers’ commit history, as other developers’ commit history could be useful to
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predict the defects of a specific developer. That idea is similar to the weighted
personalized approach in [36], but instead of randomly selecting the other developers’
data to build a training set, other developers’ change data was included in the training
set utilizing a genetic algorithm. The authors in [5S3] experimented on the same datasets
used by Jiang et al. [36] and filtered the same number of developers (10) and the same
number of commits (100 each). They also used the same metric set used in Jiang et
al.’s study [36]. The results reveal that their proposed personalized solution could reach
up to 13% higher F1-measure than the traditional models and detect up to 245 more

defects than the previously built models in [36].

Early personalized approaches for SDP [36,53] report that personalized defect
predictors could reach up to 13% higher F1-measure rates than the general models. On
the other hand, the recall values reported in [36] are not very high, between 39% and
74%, compared to the previously reported defect predictors [105], while the precision
values reflect that false alarm rates may also be higher. Their data selection and
developer selection techniques are strict, i.e., only 10 developers and 100 commits
from those developers were chosen to build the personalized models. Furthermore,
the general models built in [36,53] only utilized the selected developers’ commits
whereas the non-selected developers’ development history are not included in the
general SDP models. To further understand the intrinsic characteristic of personalized
approaches we need to observe the results of personalized approaches under different
circumstances. Thus, in this study, we aim to investigate the performance of
personalized defect predictors with a different experimental setup regarding data sets,

metrics, model construction and additional performance measures.

3.3 Experimental Setup

In this study, our objectives are to build personalized defect predictors using
individual code changes of developers, to assess the models’ performance against
the traditional models, and to understand the factors that may have an effect on the
performance of personalized predictors. We would like to evaluate the usefulness of
the personalized approach by setting up an improved empirical setup that conforms to

the state-of-the-art change-level SDP. We believe that the findings of this study would
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contribute to software practitioners while deciding whether the personalized approach
in the context of SDP can be worth building. We define three research questions (RQs)

as follows:

RQ1: How does a personalized SDP approach perform compared to traditional

SDP approaches?

RQ2: To what extent do development characteristics have an effect on the

superiority of PM?

RQ3: How does the importance of metrics used for defect prediction differ among

personalized models?

Please note that for RQ2, we define development characteristics over commit activities
of developers: 1) number of commits of a developer, 2) ratio of bug-inducing commits
to the total number of commits of a developer, 3) metric (Table 3.1) values of the
commits of a developer, and 4) the importance rank of the metrics for a developer.
More details on the methodology of each of our research questions are reported in

Section 3.3.2.

3.3.1 Dataset details

We conducted our research on six datasets containing historical commit information of
six open-source projects, namely Gimp, Maven-2, Perl, PostgreSQL, Rails and Rhino.
This dataset is collected in a prior study whose steps are described in [27]. The dataset
contains five types of metrics at commit (change) level; the size, history, experience,
diffusion and purpose related metrics, and bug-inducing commits were extracted from
the commit histories of the six projects. The full list of metrics is given in Table 3.1.
The Size metrics represent the amount of change during a commit. The History metrics
represent the number of developers that changed the modified files in a commit, the
change history of the modified files in a commit and the average time interval between
a commit and the last change time of modified files in the commit. The Experience
metrics are calculated based on prior commits of the developer who made the commit.

The higher the number of previous commits of the developer, the higher the value of
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experience metrics. The Diffusion metrics represent how a change is spread across
source files. These metrics are calculated by counting the number of modified files,
subsystems, directories in a commit and calculating the entropy of each commit. The
Purpose dimension involves a single metric named as FIX that represents whether the
purpose of a commit is bug-fixing or not (binary). The detailed explanations of the
metrics can also be found in the previous work [27]. We think the selected projects
represent rich information in terms of their development periods (e.g., from 1987 till
2013 for Perl) and the extracted metrics. The dataset contains 13 well-known process
metrics which measure the commits through various aspects. Previous studies also
report that the process metrics extracted from the software projects contain rich and
useful information for defect prediction models, and these perform better than code
metrics [16,27,108]. Therefore, we chose this dataset to make a better comparison of
our approach with the prior studies in terms of prediction performance as well as to
increase the replicability of our methodology on publicly available projects. Building
a new dataset was not the focus of our study. Instead, we selected an existing dataset

that has already been validated in the context of change-level SDP studies.

Table 3.1 : Software metrics used in this study.

Metric Description

Size Lines of code added in a commit (ADD)
Lines of code deleted in a commit (DEL)

History Number of developers had changed the modified files
(NDEV)

Number of prior changes to modified files (NPC)
The average time interval between the last and the current
change (AGE)
Experience  Experience of the developer (EXP)
Recent experience of the developer (REXP)
Experience of the developer on a subsystem (SEXP)
Diffusion Number of modified files (NF)
Number of modified subsystems (NS)
Number of modified directories (ND)
Entropy: distribution of modified code across each file
(ENT)
Purpose Is the purpose of a commit to fix a bug? (FIX)
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The date range of the commits, the number of total and bug-inducing commits, and the
number of total developers for all the projects are given in Table 3.2. Besides, it also

reports our developer selection statistics which we mention in the next section.

3.3.2 Our methodology

We share the same initial goal with Jiang et al. [36] of building personalized defect
predictors, but our methodology differs in many aspects: Selecting the developers to
be modeled for personalized prediction, the data sampling approach, the algorithms
applied, and the performance assessment methods. We focus on an empirical
evaluation of personalized models with traditional models on different open-source
projects as the prior study, but also we analyzed whether the importance of metrics used
for prediction differs across developers and whether the development characteristics

(i.e., developer experience) affect the performance of the personalized approach.

All of these aspects are explained below. Figure 3.1 illustrates the steps of model
building.

Repeat for each software project

- JALL =5399 o . Repeat for each selected developer

commits . Lo R T T T R T T T T o e " T T T T T T T T TN
of 33 developers N ! Repeat for each fold

I

y / “a
ya \ I PRyt st _ _ _ TR _ _ _ <\
\ ' . ~ '

| . N

/ Maven-2

Train (apply under-sampling) Evaluate

4411 commits

of 5 developers Shuffle and split

'
i Dev-2 commits into 10 folds H PM
(repeat 10 times) '

b2 ‘ ‘ b2 ‘
9/10 110

D1 = 2296 commits, ( D2 = 983 commits
of Dev-1 of Dev-2

V«"‘ S '_H —

SM +

v

D3 = 868 commits) (D4 = 137 commits)
of Dev-3 \ of Dev-4

D5 = 127 commits
of Dev-5

Figure 3.1 : An overview of the model building methodology.

3.3.2.1 Developer selection

We pick a specific number of developers from each project to build their corresponding
personalized defect prediction models. Our aim is to select as many developers as
possible while keeping a sufficient number of total and bug-inducing commits that
belong to each developer for building specialized defect predictors. Indeed, a good
amount of data is needed to build a successful predictor [128]. Although we cannot

make a generalized comment on the number of data instances used during the training
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of a machine learning model, a prior study [100] in our field report that using 100 data

instances would be enough to learn for an adequate defect predictor.

Cold-start problem is also another common problem in personal recommendation
systems, and it occurs when there is not available knowledge or data to make a
recommendation [39,40], i.e., making a recommendation for a not yet rated movie
or a new user in a movie recommendation system [114]. In our context, we face the
cold-start problem in situations such as when 1) a developer might have not any prior
commit, i.e., she has joined to the software team and/or just started to contribute to
the software project, 2) a developer might have not any enough prior commits and/or
bug-inducing commits to build a personalized model for her even though she is an
active contributor to the project (i.e., 49% of all developers over six projects have only
one commit, and a developer from Rails has 87 commits but only two of them are

bug-inducing).

Considering all these, we select the developers among all the contributing developers
whose total number of commits and bug-inducing commits are at least 45 and 10,
respectively. When we apply an under-sampling (Section 3.3.2.3) on training data
with 10-fold cross-validation, the number of total commits for a developer in his/her
training set would be at least 18 (9 of 10 bug-inducing commits and 9 of 35 clean
commits). This number can be quite low to train a machine learner, so we also check
the prediction performance of personalized models for those developers with very few

data instances. We further discuss this in Section 3.6.

We ended up having a total number of 222 developers over six projects. Since the
developer selection criterion is applied to each project separately, the selected number
of developers differs among the projects, e.g., 87 in Perl and 5 in Maven-2. Still, we

cover the majority of the commits, i.e., 87% of the total commits over six projects.

Table 3.2 reports the dataset details regarding developer selection process: (i) the
number of selected developers for each project, (ii) total number of commits made
by all the selected developers, (iii) total number of bug-inducing commits made by all

the selected developers, (iv) range of the number of commits made by each selected
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developer, (v) range of the ratio of bug-inducing commits to all commits of each

selected developer.

The reported numbers confirm that the Pareto principle is valid in software projects
[129]: the majority of the commits are made by the minority of the developers. The
percentage of the selected developers over all developers ranges between 2% to 71%,
whereas the percentage of the number of commits of those selected developers over
all commits ranges between 70% and 99% for six projects. 49% of all developers
over six projects contributed to the project with only a single commit. Moreover, the
numbers show that the bug-inducing commit ratios over the total commits of a selected

developer range between 0.02 and 0.8.

3.3.2.2 Model construction

Three different SDP models are built for the selected 222 developers by using
two different machine learning algorithms, namely Naive Bayes (NB) and Random
Forest (RF). These algorithms have been known as popular and well-performing in
defect prediction [50,105]. So, we utilized these two algorithms using a 10x10-fold
cross-validation technique to build our prediction models. Our models are designed to

provide predictions at change level.

Personalized model (PM): We propose a personalized defect prediction model for
each selected developer in six projects. A personalized model includes only the
corresponding developer’s commit history to training, and it is intended to make

predictions only for the relevant developer at the commit level.

General model (GM): We build a general defect prediction model for each of the six
open-source projects. A general model incorporates all commit history of the projects
into the training set to build a single model which corresponds to the traditional defect
predictors in the literature so far. This general model provides recommendations at the

commit level to every contributor in the selected projects’ software teams.

General model for a set of developers (SM): We also build additional general models
for these projects by narrowing down the whole commit history to the commits of

the most active developers instead of utilizing all developers’ commit history. This
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approach is inspired by the general model proposed in the personalized SDP study [36].
We include this model into our empirical analyses to compare our findings with the

prior study.

We apply 10-fold cross-validation to evaluate PM, SM, and GM models by following
prior studies on change-level defect prediction [16,20,27,130]—[132], and the prior
personalized SDP study [36]. Recently, studies discuss the effect of dividing the
commit data into 10 folds, without considering the time dependencies between the
commits, on the performance of SDP models [28,29]. Empirical studies applying
different strategies for change-level SDP (e.g., [20,130]), on the other hand, conclude
that the findings of the selected strategies are consistent. The performance differences
between the strategies are also relatively small. In particular, studies suggest that
the conclusions about model performance can change when a different time period is
utilized for training [133], or when a time-sensitive validation strategy is chosen [29].
We are aware of this issue, and hence, we further discuss the effects of applying
cross-validation on the findings in Section 3.5. However, for the sake of comparability
with the prior personalized models (e.g., [36]), we report, in the Results Section, the
statistics based on 10-fold cross-validation. Furthermore, our objective in this study is
not to generalize our conclusions regarding the performance of PMs or to report the
best performance of PMs, but to compare those with traditional models. Hence, we use
the same experimental setup for GM, SM and PM models throughout this study. All
the experiments are repeated 10 times by shuffling the data before training-test split in

order to avoid data order bias [19].

Please note that the test folds are kept the same across all models’ performance
evaluation in order to conduct a fair comparison among GM, SM and PM models.
During each fold, PM, SM, and GM models share the same test set which corresponds
to the commits of a developer associated with the selected fold and the project
as illustrated in Figure 3.1. On the other hand, the training set varies among the
models, i.e., it is filtered based on the criteria of the model. Figure 3.1 illustrates
the methodology for the three selected developers of Rhino, but the same procedure is

applied for the selected developers in every project in this study.
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3.3.2.3 Under-sampling on training data

In order to handle the popular problem of imbalanced class distribution in SDP
datasets (e.g., [16,80,100]), we apply under-sampling technique on the majority class
by randomly selecting the majority class instances until the size of the minority
(bug-inducing) and majority class instances is the same. Note that we do not
apply sampling on test data. We further discuss its effects by comparing against a

no-sampling strategy and another sampling technique in Section 3.5.

3.3.2.4 Evaluation of RQ1

Performance of the prediction models are evaluated in terms of probability of detection
(pd, also called recall), probability of false alarm (pf), precision, F1-measure, area
under the ROC curve (AUC), Matthews Correlation Coefficient (MCC) and Brier
score. Pd, pf, precision, F1-measure and MCC are calculated from a typical confusion
matrix (see Table 3.3). Explanations of these evaluation metrics and their formulas are
given in Table 3.4. Pd, pf, F1-measure, AUC are well-known measures and reported in
defect prediction studies, whereas MCC and Brier score are recently used in empirical
software engineering studies [56,134]. We report and assess the models against all
these measures as we should look for a trade-off between these to conclude whether a

classifier is accurate and useful in predicting defects.

Table 3.3 : The confusion matrix for the defect prediction problem.

Actually defected Actually clean
Predicted as defected TP (True positive) FP (False positive)
Predicted as clean FN (False negative) TN (True negative)

To answer our RQ1, we compare the performance of PM with those of the traditional
models (SM and GM). Pairwise comparisons between the three models are made using
the Nemenyi significance test [135], and the model whose performance evaluation
metrics are significantly different from the others is identified (according to p < 0.05).
Effect sizes of the comparisons are measured via Cohen’s d using corrected Hedges’
g [136]. Measuring effect size is a simple way to quantify the difference between the

performance values of the pairs of SDP models under comparison. The |d| < 0.2 is
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interpreted as negligible, |d| < 0.5 interpreted as small, |d| < 0.8 interpreted as
medium, otherwise corresponds to large effect size. Comparisons with negligible and
small effect sizes are not considered when we derive our conclusions, since larger data

might be needed to claim a strong difference between the models’ performance.

3.3.2.5 Evaluation of RQ2

We think that the development characteristics such as the ratio of bug-inducing
commits to the total number of commits of a developer, the total number of commits
of a developer, the size, history, and diffusion of the developers’ changes, and the
developers’ experience might have an impact on the performance of PM. To understand
the effect of these data characteristics on PM performance, we split 222 developers into

three groups based on their success on PM:

1. PM > SM/GM: The developers whose PM model’s performance is significantly
better than that of SM or GM or both.

2. PM < SM/GM: The developers whose PM model’s performance is significantly
worse than that of both SM and GM.

3. PM = SM/GM: The developers whose PM model’s performance is statistically not
different from that of SM and GM.

We form these groups according to the Nemenyi pairwise tests conducted on all the
performance evaluation metrics (pd, pf, precision, F1, AUC, MCC and BScore) in
RQ1, and according to the test results with medium to large effect sizes. Then we
compare the development characteristics across the three groups. For each group, the
characteristic to be analyzed, e.g., number of commits of a developer, is aggregated
over all developers in that group. Then, the aggregated values of the three groups
are compared with each other by applying the Mann-Whitney U Test [140]. Later,
the effect sizes of comparisons are measured via Cohen’s d using corrected Hedges’

g [136].
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3.3.2.6 Evaluation of RQ3

Our motivation for RQ3 is to assess if a) PM models utilize a common metric set to
predict bug-inducing changes of the corresponding developers, or b) each PM model
has its own, unique metric set that provides the highest amount of information to
predict bug-inducing changes for the corresponding developer. We applied Information
Gain (InfoGain) feature ranking technique [141] on the personal commit data of each
of the 222 developers in order to analyze the effect of each process metric (Table 3.1)
on the prediction of bug-inducing changes for that developer. The metrics are ranked
according to the information provided for bug prediction, and later, the rank values of
each metric are compared to each other by using Scott-Knott ESD test to analyze if

rank values of each metric are statistically different or the same among the developers.

3.4 Results

Empirical results conducted on six projects to answer our RQs are reported and

discussed in this section.

3.4.1 RQ1l: How does a personalized SDP approach perform compared to
traditional SDP approaches? (PM vs. SM and PM vs. GM)

In this section, we discuss the findings of PM versus traditional models, namely SM
and GM, by considering the algorithms’ performance (NB and RF) individually. Later,
we discuss the performance values of PM on an individual basis. As explained in our
methodology, PM is trained using historical code changes of the selected developer
only, whereas GM and SM are trained using all or a subset of the change history of
the project respectively. Overall, we observe that the personalized SDP models are
better at predicting bug-inducing changes compared to the traditional models. A more

detailed discussion is provided below

There are two comparisons, namely PM vs. SM and PM vs. GM, based on the
performance achieved with two machine learning algorithms applied (NB, RF), and
based on seven performance evaluation metrics (pd, pf, precision, F1-measure, AUC,

MCC and Brier Score). The winner model of each comparison according to the
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Nemenyi test is given in the corresponding cells in Table 3.5. The sign in the

table means that the two models performed statistically the same.

Table 3.5 : Win/Loss results of the comparisons between PM and SM, and PM and
GM. Bold cells indicate medium to large effect sizes.

NB RF
PM vs. SM PM vs. GM PM vs. SM PM vs. GM

Pd PM PM SM GM
Pf SM GM SM GM
Prec. SM GM SM GM
F1 PM PM SM GM
AUC PM PM SM GM
MCC PM PM SM -

Brier PM PM SM GM

The performance of PM, SM and GM aggregated over six projects are also provided
as boxplots in Figure 3.2. The results of the models built with the NB algorithm are
shown on top of the figure, while the results of the models built with the RF algorithm
are given at the bottom of the figure. From left to right, the boxplots correspond to pd,

pf, precision, F1-measure, AUC, MCC and Brier Score values.
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Figure 3.2 : Performance of PM, SM and GM.

According to the reported performance of the SDP models built with the NB algorithm
in Figure 3.2 and the performance comparisons in Table 3.5, PM outperforms both of
the traditional models in terms of pd, F1, AUC, MCC and Brier Score. Although PM
increases the pd value, it also increases the pf value for 77% of the developers. The
increase in pf also triggers a decrease in precision and hence PM cannot win over the
traditional models in terms of pf and precision. The effect sizes of the comparisons

between PM and the traditional models are large, around 1.3, 0.9, 1.0 in terms of pd,
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pf and F1 respectively. For the rest of the evaluation metrics, the effect sizes of the

comparisons are small or negligible.

According to the performance with the RF algorithm in Figure 3.2 and statistical test
comparisons in Table 3.5, PM under-performs than SM and GM in terms of all model
assessment metrics. The measured effect sizes of the comparisons between PM and

traditional models, on the other hand, are negligible to small (0.1 to 0.3).

Personalized models in detail: The performance of PM models for 222 selected
developers vary between 10 and 100% in terms of pd according to the results reported
in Figure 3.2. This figure also shows us that while prediction performance of PMs for
some developers are very low, others are high in terms of pd. Here, we investigate the
PM performance of developers in detail. PM significantly differs from the traditional
models in terms of pd, pf, and F1 when NB is utilized. These differences have large
effect sizes, and hence here, we report the performance of PM versus SM/GM using

NB algorithm and in terms of pd, pf and F1.

Listing the performance results of all of the 222 developers in this paper would take
too much space. Thus, we chose nine developers with the best, worst and medium
performing PM models, and report their PM, SM and GM model performance in Figure
3.3. The full list is available in [142].

Each developer’s ID, the project name that the developer contributed are given on
the left of the figure>. The total number of commits done by the developers and
their bug-inducing commit ratio are also given respectively under their aliases. Each
PM boxplot in Figure 3.3 has a specific colour that represents if the PM wins over
the traditional models (SM and GM) according to Nemenyi pairwise tests. If PM
outperforms at least one of the traditional models, the corresponding boxplot is
coloured in blue, while it is red if SM and/or GM outperforms PM. If the personalized

and traditional models perform the same, the boxplot is coloured in black.

Figure 3.3 shows that the individual PM performance could reach very high median
values in terms of pd, e.g., 85% for Dev-4 and 92% for Dev-51 from Rails. On the other

hand, PM models could not detect more than 11% of the defects for some developers,

3Developer names are replaced with aliases within each project due to privacy
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Figure 3.3 : PM performance of a sample of developers (blue color indicates
superiority of PM over traditionals, red color indicates inferiority of PM, whereas
black color indicates the equality of models).

e.g., Dev-13 from Gimp. PM, SM and GM perform the same for the other developers,
e.g., Dev-34 from Perl and Dev-4 from PostgreSQL in terms of pd.

Besides, among all the 222 developers, there is not any developer whose PM results
are better than the SM and/or GM in terms of all performance measures. While a
developer’s PM performance is better than at least one of the traditional models in
terms of pd, it may not be better in terms of pf. For example, in Figure 3.3, PM
for Dev-6 from Gimp significantly outperforms the traditional models in pd, but the
traditional models outperform the personalized approach in terms of pf. This trade-off
can be observed in all the developers’ PM versus SM/GM comparisons. Thus, we
believe the decision of the type of SDP model to be used for a developer seems to be

highly dependent on the prioritized performance metric.

Building a PM is more convenient for majority of the developers contributed
to six open-source projects: PM outperforms the traditional models in terms of
predicting defects (pd) and Fl1-measure, while PM produces higher false alarm
rates (pf) than traditional models.
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3.4.2 RQ2: To what extent do development characteristics have an effect on the

superiority of PM?

To understand what factors lead to the success of PMs in predicting bug-inducing
changes, we would like to analyze development characteristics in detail. As explained
in our methodology, we first identify development characteristics in terms of the size
and bug-proneness of the development activity, and process metrics used as input
features of our model. Later, we formed the groups of developers considering the
performance of PM versus SM and GM. The number of developers that belongs to
each group is reported in Table 3.6. We know from our findings in RQ1 that PM
outperforms traditional models in terms of pd and F1 when NB is applied, whereas
PM is worse in terms of pf. Therefore, the groups are formed according to pd, pf
and F1 separately. The first group illustrates that there are 184 developers and 169
developers whose PMs are the best when pd and F1 values are compared, respectively.
For 172 developers, PMs perform the worst in terms of pf. Once the groups are formed,
we analyze the significant differences in terms of development characteristics among

these groups.

Table 3.6 : Number of developers belong to each group.

PM >SM/GM PM <SM/GM PM = SM/GM

pd 184 17 21
pf 28 172 22
F1 169 17 36

First of all, we compare the total number of commits of the developers across the
three groups. Figure 3.4 shows the boxplots of the total number of commits made
by the developers associated to the three groups. Pairwise comparisons among the
three groups are conducted with Nemenyi tests in terms of pd, pf and F1. The tests
show that the total number of commits made by the developers in the second group,
where SMs or GMs win over PMs, is significantly different and larger than those of
developers in the other groups. The effect size of this finding is medium to large. We
observe many developers in the second group, 1.e., four developers from PostgreSQL,
three developers from Rails, and one developer from Gimp, who are among the top

contributors to their project. The number of changes made by those developers are
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in the range of 53 - 12755 (average is 2060). In such a case, it seems the traditional

models perform better than PMs.
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Figure 3.4 : Number of commits of developers belonging to each group.

Second, we compare the ratio of bug-inducing commits to the total number of commits
of developers that belong to each group. Figure 3.5 shows the boxplots of the ratios
of bug-inducing commits over total commits of developers associated to the three
groups. According to the boxplots, the third group of developers, where PM, SM and
GM performs statistically the same, has a lower ratio of bug-inducing commits when
compared to the other groups of developers with a medium to large effect sizes. The
difference among the first and the second group of developers has small and negligible
effect sizes. Therefore, we conclude that bug-inducing commit ratio of developers does

not seem to have an effect on which model (PM or traditional) performs better.
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Figure 3.5 : Bug-inducing commit ratios of developers belong to each group.

Third, we investigate if there are differences or similarities among the contributions

made by developer groups in terms of 13 process metrics listed in Table 3.1. We
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aggregated the changes of developers within each group, and compared the values of
each metric calculated from these changes among the groups. Results show that there
are differences in five out of 13 metric values calculated from the changes among the
three groups: NDEV, NPC, EXP, REXP, and SEXP. In Figure 3.6, we only report the

values of these five metrics calculated for the three groups.

According to Figure 3.6, traditional SDP models perform better than PMs for the
developers who have higher EXP, REXP, and SEXP values. This finding is consistent
with our analysis on the first development characteristics, i.e., number of commits
made by a developer. Combining both, we can argue that the traditional models
perform better than PMs for those developers who have more experience on the project
(contributed as the bulk of commits). On the other hand, PMs is better than the
traditional models when the associated developers contribute to the modules which are
modified by many developers (higher NDEV). Furthermore, when developers commit
to modules which are modified many times (higher NPC) the difference between the
PM and traditional models has a larger effect size. However, the winning model might

change with respect to the performance measure.

We would like to highlight the fact that the findings regarding the developer
group-based analysis also have similar patterns when the analysis setup is extended
by including the performance results measured by other model assessment metrics and

when the RF algorithm is used.

s B

The development characteristics significantly reflect under which settings PM
performs better than SM and/or GM. PM is a more successful approach for
predicting defects of the developers that contribute to the modules that have been
changed by more developers. When a developer is among the most experienced
developers in a project, PM underperforms compared to SM and/or GM.

3.4.3 RQ3: How does the importance of metrics used for defect prediction differ

among personalized models?

The heat map in Figure 3.7 reports InfoGain results for all 222 selected developers’
changes across all six projects. The columns represent the process metrics, whereas

the rows represent the ranks one to thirteen. Values in cells represent “how many
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Figure 3.6 : Metric values of developers belong to each group.

times a metric is ranked as the first (or second to thirteenth) during an InfoGain
evaluation?”. The bigger values are represented with darker gray, whereas the smaller
values are represented with a lighter gray. Figure 3.8 also reports the comparison of

metric ranks based on Scott-Knott tests: The metrics that belong to the same group




are represented with the same color. The lower the rank of a metric in this figure, the

higher its contribution to the prediction model.
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Figure 3.7 : Ranks of metrics based on InfoGain over each PM.
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Figure 3.8 : Statistical comparison of the metric ranks.

Apart from the size metrics, Figure 3.7 shows that each PM gains different amount of

information from different metrics. When we look at the Scott-Knott ESD clustering

in Figure 3.8, we observe that the highest ranked metric is the added lines of code
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in a commit (ADD). ADD is ranked as the first for 119 out of 222 developers. The
subsystem experience (SEXP) is the second best metric and followed by the experience
(EXP), the purpose (FIX) and the recent experience (REXP) metrics. The diffusion
metrics, NF in particular, also appear in higher ranks than the history metrics (NPC,

NDEYV, and AGE).

Please note that we perform similar analyses on GM and SM, and observe that the
experience dimension is more important when predicting defects with PM compared
to SM and GM. In contrast, the diffusion dimension is more important in predicting
defects with SM and GM. Particularly, the mean ranks of SEXP, EXP and REXP
metrics are between five and six (Figure 3.8), while those metrics are ranked around
six to 11 for SM and GM. In terms of the diffusion dimension, ENT, NS, NF, and
ND metrics are one to two ranks higher in SM and GM compared to PM. Another
important observation is that FIX becomes the last dimension in SM and GM models,

whereas it is ranked as the third important dimension for PM models.

PMs differ from each other in terms of the amount of information gained from
the experience, diffusion and history metric dimensions respectively. According
to the majority of PMs, the process metric representing the number of added
lines is the most contributing one to the performance.

3.5 Discussion

Empirical results demonstrate that the selection of which SDP model (i.e. PM or GM)
to use in real life may depend on several factors, such as machine learning algorithms,
performance metrics and validation strategies. In this section, we discuss how all of
these factors might affect the performance of the proposed personalized SDP models,
and compare our findings with the prior personalized models in the literature. We also

discuss the applicability of the PMs in industrial settings.

3.5.1 NB versus RF

Figure 3.2 given in Section 3.4.1 indicate that the performance values of an SDP
model vary depending on the machine learning algorithms utilized during training. For

example, the range of median of pd values across all three models is 0.19 - 0.43 when
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models are built with NB, whereas the median pd values obtained with RF algorithm

are 0.5 for all three models.

Pairwise statistical comparison between RF and NB for each of the three models points
out that RF is better at predicting defects in terms of Fl-measure, AUC, MCC, and
Brier Score than NB. In terms of pd, PM performs statistically the same when it is
built with NB or RF, whereas SM and GM perform better when they are built with
RF. Although statistical tests on the models’ performance values suggest that RF must
be chosen over NB for answering our research questions, the effects of the models’

performance differences are not large enough in the case of RF.

Both machine learning algorithms are widely used by the SDP researchers. A recent
benchmark on the performance of defect predictors reports that RF may perform better
according to one measure, namely H-measure [143], but the best performing classifier
significantly depends on the project. The authors suggest that instead of utilizing
a complex learning algorithm like RF, using a simpler one like NB would be more
convenient. Based on the literature and our analyses, we also suggest using a simpler
algorithm like NB since it reports significant differences with larger effect sizes in the

context of PM versus traditional models.

3.5.2 Recall (pd) versus false alarm rate (pf)

The personalized approach often increases pd rates while it also increases pf rates,
according to the performance values given in Figure 3.2. It is different than the
common pattern observed in data-oriented SDP studies, e.g. using cross-company or
cross-project data to predict defects [100]. Prior studies show that using other projects’
data (global context) increases both recall and pf compared to using a project’s data
only (local context). But here in our context, using a developer-specific data increases
both recall and pf compared to using all developers’ commit data. On the other
hand, when we look at the false alarm rates of PM model, it has a median around
20%. Having a false alarm rate of 20% is acceptable among many state-of-the-art
defect predictors, considering that it achieves a better recall rates. Thus personalized
approaches in SDP might be preferable over the traditional approaches as the former

gives a better prediction performance.
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False alarm rate (pf) of an SDP model is an important measure that should be evaluated
according to the context. We believe the false alarm rates should be considered in terms
of two perspectives, namely project and people perspective. Earlier studies discuss
the project perspective [13,105] and state that in a safety-critical or a mission-critical
software project, developers would prefer to have a model with high pd rates with
the cost of high false alarms. However, a more cost-effective SDP solution would be
to have fewer false alarms with the cost of low pd rates. Similarly, the developer’s
personal choice and/or development methodologies used by the team may affect the
choice of having high pf or low pd rates. A developer may dislike the situation
of frequent false alarm triggers, or even true positives if she chooses to review her
code regularly, and detects the defects by herself instead of following the output of
a commit-level defect predictor. In that case, only the bug-inducing commits that
have a high probability should be given as recommendations to the developers using
traditional models. This would in turn reduce the pd rates but eliminates potential false
alarms significantly. On the other hand, a person who wants to explore all potential

issues may prefer to use PM with the cost of false alarms.

Please note that, we chose seven performance measures to report the prediction
performance of the three types of models in this study. We picked the most commonly
used ones, namely pd, pf, precision, F1 and AUC, to make a fair comparison of our
models’ performance with the related studies. We also report other two measures,
namely MCC and Brier Score, that are proposed to avoid biased assessment of
Fl-measure [144]. Unfortunately, the statistical pairwise comparisons among the
models with respect to the measures, precision, AUC, MCC and Brier Score report
small to negligible effect sizes. Thus, the conclusions derived from those performance
measures in particular could be biased due to sample size or other data characteristics.
It is our future goal to investigate ways to increase the effect sizes of the significance

test outcomes for MCC and Brier Score.

3.5.3 Data sampling

During our empirical analysis, we applied random under-sampling on the training data

to balance the number of data instances that belong to different classes. We observe
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that under-sampling significantly improves the prediction performance of PM, SM
and GM by 5% in terms of pd compared to a no-sampling strategy when models are
built with NB. In addition to under-sampling, we also applied another well-known
and successful data balancing technique from the literature, i.e., Synthetic Minority
Oversampling Technique (SMOTE) [145]. Both SMOTE and under-sampling produce
very similarly performing PMs, i.e., a median of 44% in terms of pd. Although SM
and GM using SMOTE achieves 13% higher pd values compared to the no-sampling
strategy, our test results on the superiority of PM over SM and GM do not change. In
our online appendix [142], we share the prediction performance obtained by applying

under-sampling, SMOTE, and no-sampling.

SMOTE does not lead to a better prediction performance for PM when compared
to the under-sampling technique. In fact, applying SMOTE takes longer time than
applying under-sampling, as the former technique creates synthetic data instances of
the minority class using the k-nearest neighbor technique on data instances [145].
Under-sampling, on the other hand, simply selects random data instances from the
majority class until the sample sizes of both classes are equal. Due to its simplicity
and performance, random under-sampling gives us more advantage over SMOTE. We
choose the under-sampling as our data sampling technique and report our performance

results obtained with under-sampling in the paper.

3.5.4 Model validation strategy

We conduct our empirical analysis on personalized SDP models using 10-fold
cross-validation strategy. We discuss our rationale behind this in Section 3.3.2.
Cross-validation technique has been widely used in SDP literature to evaluate the
performance of the change-level defect predictors [16,20,27,130]-[132], as well as
the personalized defect predictors [36,53]. A study by Falessi et al. [146] also
reports that the majority of the SDP studies (61%) uses k-fold-cross-validation,
while a very few of them (9%) are validated by considering release-based data
splitting. Recent studies argue that a time-sensitive approach that preserves the
temporal order of commit activities, i.e., learning from past commits to make defect

predictions on future commits, would resemble real-life scenarios. Thus, several
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studies adopt the time-sensitive approach to their training and validation steps of
the SDP models [20,28,29,130]. Two studies compare change-level SDP models by
using both time-aware validation and cross-validation strategies [20,130]. Their results
demonstrate that both strategies yield similar performance, and their conclusions
are consistent among different settings. The ongoing discussion on the validation
methodologies of defect predictors remarks that the conclusions derived from the

experimentation should be limited within the experimentation context [133,146].

We believe both cross-validation and time-sensitive validation strategies are required to
draw more generalized conclusions on the personalized SDP. The former is important
to be consistent with the earlier studies in the field, whereas the latter is important
in order to understand the practical applicability of personalized defect predictors.
Due to the ongoing discussion on the validation strategy in the SDP field, we would
also like to investigate the performance of the personalized models against traditional
models (RQ1) in a time-sensitive validation strategy. In this subsection, we report the

experimental setup for this analysis and its results.

A typical time-sensitive model construction makes a prediction on a commit at time ¢,
by learning from the commits before time . Considering that, new train-test data pairs
are generated with a sliding window technique. For each developer (d), we stratify
all his/her commits into time splits (dy,dy, ...d,). Instead of having a fixed length time
splits, i.e., six-month, we follow a strategy that produces consistent number of commits
in each time split. Stratifying the data with a fixed length time window produces data
subsets having no bug-inducing instances. Therefore, we ensure that our splits include
at least 10 bug-inducing commits and 10 clean commits. This way, we maximize
the number of selected developers and their commits. While one time split (d,) of a
developer becomes a test set, all the commits of that developer prior to that split (dy to
dy,—1) constitute the train set of PM. All commits of all developers between the splits
do and d,,_ constitute of the training set of GM, whereas all commits of the selected
developers between the splits dy and d,,_ constitute of the training set of SM. Similar
to our setup in Figure 3.1, we keep the test set the same among three SDP models
(PM, SM, and GM). The developer selection criteria and under-sampling on training

are also applied similarly. However, due to the time-sensitive stratification strategy, we
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can build PMs for 179 out of 222 developers. We report the performance of PM, SM,
and GM trained with NB using a time-sensitive validation strategy in Figure 3.9.
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Figure 3.9 : Performance of PM, SM and GM using a time-sensitive validation
strategy.

Findings on the personalized SDP approach are similar among both model validation
approaches. We observe that median performance values of models are consistent with
those models trained with NB in Figure 3.2. The superiority of PM over traditional
models is also observed when predictors are evaluated in a time-sensitive validation
setup. According to pd and F1, PM significantly outperforms the traditional models,
but PM also produces higher false alarm rates, and hence both traditional models
significantly outperform PM in terms of pf and precision. The statistical comparisons
between PM and traditional models has large effect sizes in terms of pd (1.2), pf (0.8)

and F1 (0.9), and small effect sizes for precision (0.2).

It might be possible to reach different conclusions on PM by changing the
time-sensitive model validation strategy, i.e., stratifying data with fixed length time
intervals and/or changing the training set size. Therefore, our results are open to
discussion. Besides the model validation strategy, development characteristics of
projects would also affect the conclusions on PM. For instance, in our experimentation,
the contributors of a project and their contribution amount to the project changes over
time. Fluctuation of the developers involved in the training of general models slightly
reduces the prediction performance of general models. Although our results support
the applicability of personalized defect prediction over the traditional approach in
real life, further analysis and discussion are necessary. We consider applying other
time-sensitive data stratification strategies as future research directions for assessing

the success of PM in real-life settings.
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3.5.5 Further insights on PM combined with the prior studies

As we report in Section 3.2.2 there are two studies on personalized SDP models
[36,53]. Xia et al. [53] complements the work by Jiang et al. [36] by following the
same methodology except the algorithm. The improved PM model in [53] achieves an
average of 64% recall and 63% F1-measure over 60 developers. The prior studies
and ours follow a completely different experimental design: We utilize different
open-source projects except PostgreSQL, different machine learning techniques and
process metrics to build personalized our PM and traditional models. Therefore, we
cannot report here a one-to-one comparison between the earlier PM models and our
proposed PM models. Even though both studies and ours share one open-source
project, namely PostgreSQL, the time period of the collected data, the selected
developers as well as the sampled data to train the PM models might not be the same.
We are, in fact, covering a larger period of commit activity in our work. Our PM
models report a median of 40% recall and 40% F1-measure, when NB is utilized,
and 50% F1-measure, when RF is utilized, over 222 developers. We have lower PM
performance in our context, and we think this might be due to incorporating more
commits and developers into our PMs. However, our conclusions have a large effect
size (RQ.1), and they support the success of PMs for defect prediction over traditional
models. Furthermore, we did not restrict the commit size during training set of PM
models, which, we have seen, has a major effect on the performance of PM against the
traditional models (RQ2). We further provide insights on development characteristics,
and discuss under which circumstances PM could reach a better prediction than a

traditional model.

Furthermore, prior studies propose collective personalized models to improve the
prediction performance of PM and state the superiority the collective models over
PM. There are multiple collective models used by the prior studies. One of the
methods is leveraging a collective training set in which half of the commits belongs
to an individual, while the other half of the commits are taken from other developers’
[36]. Another method is making an ensemble of the predictions of personalized and
traditional models [36]. Xia et al. [53] also use genetic algorithms to create training

sets by collecting various amount of commits from various developers.
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Although our focus in this study is to assess PM against traditional models (SM and
GM), we also set up collective models to validate their success in our context. Similar
to Jiang et al. [36], we built a weighted personalized model (WPM) that utilizes a
collective training set that 50% of the training commits belong to a developer, whereas
the other 50% belong to other developers. We also built an ensemble model called
PM+ that combines predictions of PM, SM, GM and WPM using the majority voting
technique. WPM and PM produce very similar performance values and their statistical
difference has small or negligible effect sizes. Depending on the algorithm, the
superiority of PM+ or PM changes. When models are built with NB, PM outperforms
the PM+ in terms of pd, whereas PM+ outperforms PM in terms of pf and Brier Score.
On the contrary, when models are built with RF, we observe that PM+ outperform
PM in terms of pd and F1 with the cost of higher pf values. These conclusions have
medium to large effect sizes only. We conclude that an ensemble of PM, SM, GM and
WPM models may perform better than PM when they are built with NB, and better
than all when they are built with RE. Although the prior studies also support the usage
of collective models (especially the ensemble approaches) over the personalized or
traditional models, our empirical analysis highlights the importance of the selected
performance measures on the final conclusion. The collective models’ performance

plots are available in our online appendix [142].

3.5.6 Effort-aware performance assessment:

Both prior personalized defect prediction studies [36,53] and the state-of-the-art
change-level defect prediction studies [16,130,132] utilize an effort-aware perfor-
mance assessment for their prediction models. Therefore, we also assess our prediction

models’ performances using an effort-aware measurement.

Effort-aware performance criterion basically assesses how much bug-inducing changes
could be detected by inspecting only 20% of the total lines of code (LOC) during the
review of changes predicted as bug-inducing. We calculated a benefit-cost ratio for
each commit in the test set using the formula P(c)/E ffort(c) [16]. P(c) is a binary
value that represents the prediction made for commit ¢ by a defect predictor (i.e., PM):

1 means (c¢) is bug-inducing, 0 means c is clean. E ffort(c) is the total number of
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changed lines (added and deleted) in the commit c. Then, we rank the commits in
the test set based on their benefit-cost ratio in descending order. Later, we count the
number of bug-inducing commits that could be detected when only 20% of the total
effort is spent on code inspection (when the commits are inspected in descending order

of their benefit-cost ratio).

Our effort-aware performance assessment shows that PM catches more bug-inducing
commits than SM and GM when only 20% of the total code inspection effort is
spent. While 30% of the total bug-inducing commits could be detected with PM, SM
detects and GM detects 16% of the total bug-inducing commits over six projects. Our
effort-aware performance results also support the prior studies’ findings on PM against
the traditional approaches. While prior studies report that the bug-inducing commit
detection rates are increased by 12% ( [36]) and by 21% ( [53]) when PM is chosen

over the traditional models, we observe an increase by 14%.

3.5.7 Applicability to industrial settings

Building SDP models for the industry has several challenges, some of which are data
availability for training, imbalanced bug-inducing versus not buggy commits, and input
features [77,147]. Deploying these models to industrial settings, on the other hand, has
other challenges, such as training data size, training/update period, and changes in the
development team. Personalized SDP models would be affected more than traditional
models from the data availability during training and changes in the development
team. For example, lack of commit history for a developer or lack of bug-inducing
commits in a developer’s commit history would prevent the developer from utilizing a
personalized approach which was trained and customized for her. In such a scenario,
only traditional models can provide recommendations to the developer until a sufficient
amount of training data with two classes is collected. Another challenge of deploying
personalized SDP models is related to the changes in the development team. During
offline studies on historical data, we do not encounter cases when a new developer
starts making commits, or when a senior developer stops contributing to the project.
We aggregate all the commits, group those according to the developer who made these

commits, and train personalized models for each developer. On the other hand, in a
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real-life scenario, some developers leave the project, whereas some join the project
in the middle of the development process. Therefore, there is a high possibility
that some of the developers in the selected project would not have commit history
for building a personalized model, while there would be former developers whose
previous commit data would no longer be useful to anybody. Hence, a mechanism
that utilizes the other developer’s data to build a mixed model, or an alternative
mechanism that switches between the general model and the personalized model for a
specific developer depending on the data availability could be useful. Also, grouping
developers based on their development similarities and building group-customized
models would be another solution to a cold-start problem. In this study, we report our
findings on open source projects by collecting their historical commit data. We are also
working with our industrial partner, for which we had already built SDP models [148],
to design personalized SDP models. We are currently working with them to address
some of the issues mentioned above as well as time-sensitive model validation strategy
mentioned in Section 3.5.4 in order to deploy such models into real-life industrial

settings.

3.6 Threats to Validity

Construct validity: The descriptive characteristics of the commits should be
quantified through a metric set to measure the defect proneness of the commits. The
metric set utilized in this study is widely used in change-level SDP studies in the
literature (e.g., [16,27,30,109]-[113,115]). The metrics quantify four different aspects
of the changes, namely size, history and diffusion of the commits, and experience of
the developers who made the commit. These aspects of the commits are measured
by multiple metrics to avoid mono-metric bias in modelling, e.g., history dimension
1s measured in terms of three metrics, as it can be seen in Table 3.1: The number of
developers who changed the modified files, the number of prior changes to modified
files, and the average time interval between the last and the current change. We did
not use complexity metrics or other object-oriented metrics used in the SDP literature
because recent benchmarking studies [108,143] show that process metrics extracted

from the code changes perform better than the other metrics on multiple projects.
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Bug-fixing and bug-inducing commits were previously identified in [27] by using SZZ,
and hence, we also used that dataset. The SZZ algorithm was used in the selected
six open-source projects to define which parts of the code introduced the defects.
The SZZ algorithm is frequently used in the literature to identify the bug-inducing
commits by linking those with bug-fixing commits [116]. Bug-fixing commits are
the locations where a bug is fixed, and fix locations are determined using the issue
tracking system used by the development team. Later, the SZZ algorithm uses
bug-fix-locations and traces back from bug-fix-locations to the previous commits to
identify the commit where the bug was first injected into the software product. We are
aware that there are still limitations of the SZZ algorithm, such as high false alarms,
lack of identifying causes of new code additions, and variations in implementations
by different researchers [149]. As prior research on SZZ [150,151] indicated that SZZ
implementations still need improvement to reduce the noise that causes mislabelled
changes. Fan et al. [151] empirically assessed the various SZZ implementations,
and they reported that the original SZZ approach [116] does not yield a significant
performance reduction in just-in-time defect prediction models due to the noise in the
change labels (bug-inducing or not). Therefore, we rely on the results of the SZZ

algorithm used to collect the projects’ data.

We try to cover as many developers as possible in our empirical analysis. Accordingly,
PMs built in this study are trained with various numbers of commits, i.e., between
45 and 12.755. Due to the under-sampling, training set sizes also vary from 18 to
8.000. Some PMs have very few data instances in their training sets, and it might
be possible to observe poorly performing PMs for those developers. We checked the
performance of those PMs built with very few data instances, i.e., between 18 and 100
commits, against the other PMs, which are trained with more than 100 commits. We
obtained a median of 0.5 pd rate for PMs in the first group (trained with less than 100
commits), whereas PMs in the second group (trained with more than 100 commits)
produce a median of 0.35 pd rate when NB is used. Moreover, 89% of PMs in the
first group statistically outperform SM and GM, while 75% of the PMs in the second
group outperform SM and GM. These findings also support our answer for RQ2 on the

commit counts of developers (Figure 3.4): PM underperforms compared to SM and/or
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GM for those developers who contributed to a project with higher number of commits.
A more strict developer selection procedure might be a primary choice considering that
a good amount of data is needed to build a successful predictor [128]. However, our

empirical analysis shows that we can build successful PMs with less than 100 commits.

Internal validity: In this study, we assume that each developer who contributed to
each project made his/her commits according to some development principles. One
of these assumptions is that developers linked their commits with the right issues in
the issue repository. Another assumption is that each developer only commits his/her
development codes. In some cases, the development of different developers may be
committed by the authorized personnel only. We did not collect the data set, however,
we double-checked the mentioned issues and ensured all were correctly addressed in

the prior studies using the same dataset.

We build a PM based on a developer’s commits including bug-inducing ones and
others, such as bug-fixing commits and other code changes. The author of a bug-fixing
commit may not be the developer who has introduced the bug into the software system.
Thus, a PM built for that developer does not include bug-fixing commit of another
developer. Further, a bug-fixing commit may contain changes related to legacy code,
i.e., the code is fixed due to a list of changes over the years, and the developer who fixed
is not responsible in this case. SZZ is used to trace back to all prior commits which are
made by the selected developers, and the data is added to their PMs respectively. Those
situations may affect the performance of the personalized SDP models. However, there
is not an accurate approach that can detect the exact reason and/or the source of the
bugs in the software system. We believe that utilizing information from the historical
aspect of the commits (i.e., number of prior changes to the modified files, number of
developers had changed the modified files) helps to partially capture the indicators of

above-mentioned situations [152].

Assessment of PM against traditional models is conducted on the commits of the
selected developers as we described in Figure 3.1. To assess personalized models,
we have to focus on a set of developers whose available commits are enough to build

PMs for them. Therefore, those developers’ commits with limited contributions are
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not included into the analysis we conducted to answer our RQs. However, we also
checked the prediction performance of both traditional models (SM and GM) on those
developers’ commits with the limited contribution, and obtained an average of 20% pd
with NB. This ratio is very close to the value reported for traditional models in Figure
3.2, and confirms that the even a state-of-the-art general model with all commits would

reach a similar performance for the selected open source projects.

External validity: We performed our analyses on a set of open-source projects.
Applying the proposed approach to different projects in industrial settings may not
yield the same results obtained in this study. We think the project characteristics is
an important factor that could affect the applicability and accuracy of the personalized
SDP approaches. For instance, when the contributions in a project are too scattered
among too many developers, PMs would perform better than traditional models. This
is because, developers having bulk commits do not dominate the project (e.g., Rails),
and each developer’s commits contain sufficient amount of data indicating defect
proneness. On the other hand, when the project has few developers responsible for
majority of the all commits (e.g., PostgreSQL), traditional models perform better.
Furthermore, the time period selected to collect the commits, the distribution of
commits over this time period and the number of active developers should be
considered during project selection. A similar conclusion is also reported in the latest
benchmark [143]. To further understand the personalization in the SDP field, we plan
to assess the performance of the proposed personalized SDP approach on a commercial

project in the future.

Conclusion validity: During our experimentation, we use well-known open-source
projects, model building and assessment techniques, and statistical tests (Section
3.3). The findings of our work are valid under the projects selected for this study,
the metrics used, the algorithms used, and the strategies followed during model
construction. To increase the conclusion validity of our research, we applied statistical
tests on the differences between models’ performance, and only base our conclusions
on the differences with medium to large effect sizes. This way, we believe that
we avoid potential bias related to sample size. The selected validation strategy,

10-fold cross-validation, might have influenced the results as it does not consider
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the temporality between changes. In Section 3.5, we elaborate on the validation
strategy in detail, discuss prior works that compare different strategies, and we
perform all empirical analyses regarding RQ1 with a time-sensitive data split strategy.
Time-sensitive results also confirm that PM models are significantly better than
traditional models for defect prediction, but we need more sample for large effect
sizes. As the dataset is already publicly available, our results can also be reproduced

and refuted in future studies.

3.7 Conclusion and Future Work

In this paper, we investigate the performance of personalized change-level software
defect predictors by defining three research questions (RQs). Our personalized
models (PM) achieve 24% higher probability of detection and 14% higher F1-measure
rates than the two traditional models used in our study (SM and GM) (RQ1).
Furthermore, we provide valuable insights for both researchers and practitioners
regarding the set of development characteristics which highlight the superiority of
PM over traditional models (RQ2). Furthermore, we investigate the common and the
best indicators of bugs across different PMs (RQ3). We derive our conclusions based
on a cross-validation setup built with NB algorithm, seven performance assessment
metrics and statistically significant differences with medium/high effect sizes, but we
also consider the experimental setup details that may affect our conclusions in our
discussions. Over 222 developers from six open-source projects, we summarize our

key take-away messages below:

- Even though the overall comparison between the performance of PM and traditional
models leads us to prefer PMs over SMs or GMs, PM may not be suitable for every
developer in a team. We observe that PMs built for most of the developers using
NB algorithm detect more bugs, but general approaches may still be more suitable

for the other developers.

- According to our empirical analysis, both traditional models (SM and GM) are more
successful than PM for those developers who dominate the project’s development

activity with many commits. Those developers whose PM is similar to or more
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successful than at least one traditional model have less experience than others in

software projects.

PMs would give better predictions than traditional models for the developers who
work on the software modules priorly modified by many developers. The group of
developers whose PM is significantly better than SM/GM has higher NDEV (the
number of developers had changed the modified files) metric values than the group

of developers whose PM is equal to or significantly worse than SM/GM.

Building a PM for a developer would need careful consideration on the process
metrics since our analysis shows that the best indicators of bug-inducing changes
differ among 222 PMs. Nevertheless, the number of added lines of code seems to
be the most successful indicators of bugs. The developer experience metrics and
the purpose metric are also the next successful indicators of bug-prone changes for

the majority PMs after the number of added lines of code.

The selection of PM over other models is also dependent on which performance
measure is selected/prioritized: a personalized model could be better in detecting
defects (pd) whereas it is worse in terms of false alarms (pf). Hence, the model
assessment should be made according to the selected/prioritized performance

measures.

PM looks promising on its adoption to real-life since PM also outperforms the
traditional models in a time-sensitive model validation setting, which resembles
the real-life by preserving the temporal order of data during training and prediction.
As we discussed in Section 3.5.4, further model validation scenarios are needed on
the time-sensitive evaluation of PM to make a generalized conclusion for real-life

applicability of PMs.

In this research, we provide more insights than prior studies on the performance of

personalized models. Still, we need to continue investigating the factors affecting

the performance of PM as future work. Although we did not cover the project

characteristics on the performance of PM, we think they are also important. For

example, the time period of collected commits and the distribution of the commits
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of developers through the project time period may be some of the factors affecting the
performance of personalized models. We have recently observed that a combination of
statistical and machine learning techniques to extract multi-dimensional information
from commit history would perform better than extracting a single aspect (processing
through code changes) [148]. We plan to understand the effect of such a combined
technique on the performance of personalized models. Plus, industrial case studies will
provide more insight on the applicability of personalized SDP models and the usability
of the personalized recommendations. Therefore, in the next chapter, we investigate

the personalized SDP approach in an industrial software project.
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4. INVESTIGATING THE PERFORMANCE OF PERSONALIZED MODELS
FOR AN INDUSTRIAL SETTING

4.1 Introduction

Personalized SDP models have been proposed and comprehensively investigated in
open-source domain by prior studies (see Chapter 3). Our prior research reported in
Chapter 3 show that personalized SDP approach improve prediction performance up to
24% in terms of recall in open-source projects. However, performances of personalized
models have never been analyzed in an industrial context. Conducting research in
industrial domains is very valuable since it provides assessing the generalizability of
research findings and practical applicability of the prototype models into the cases that
involves real customers [2,48]. Therefore, industrial software projects are significant

data resources for SDP researchers to understand the real-world environment.

However, research in industrial cases have its own challenges as well as those
encountered in empirical software engineering studies regardless of the context. On
the one hand, accessing an industrial project repository to collect data requires more
effort compared to accessing a publicly available repositories due to the confidentiality
policies of companies [3]. Even if a collaboration has been established between the
academic team and the company, the agreement is often limited to a single or a few
projects. On the other hand, empirical research on software engineering data could
be quite challenging due to noise [3]. Therefore, the scarce and noisy structure of the
data force researchers to extract as much information as possible from available data

sources through statistical and AI/ML techniques [148].

During this thesis, we had an industry and academia collaboration project with
Ericsson, Turkey. One of the objectives of this research project is investigating
personalized and general change-level defect prediction models for a chosen pilot
project of Ericsson, Turkey. We collected data from the chosen project, train SDP

prototypes for the company, and deploy a chosen prototype into the real development
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environment of the project. Even though we share the deployment experience in the
next chapter (Chapter 5), in this chapter, we focus on personalized model prototyping

phase.

We collect 1773 commits of 36 developers of the pilot project. Personalized defect
prediction models are built for six developers and their performances are assessed
against general models. During model training, we utilize multiple data sources, such
as semantic of commit messages, the state-of-the-art process metrics and the latent

features of them.

We ask three research questions in this chapter as follows:

RQ1: How does a personalized SDP approach perform compared to traditional

SDP approaches? (PM vs. SM and PM vs. GM)

RQ2: How can we improve the performance of defect predictors by utilizing the

available commit data through a combination of statistical approaches?

RQ3: How does the importance of metrics used for defect prediction differ among

PM, SM, and GM?

We borrow RQI from the research reported in Chapter 3. The aim in RQI is to
investigate the performance of PM against traditional models in the chosen industrial
project’s context. We borrow RQ2 from our prior research [148]. In RQ2, we aim
to assess the performance of PM, SM, and GM when they trained by utilizing a
combination of statistical approaches, i.e., topic modeling and matrix factorization.
RQ3 aims to observe how much the important metrics differ among different SDP

models.

Our empirical analysis show that traditional approaches are superior to the
personalized approach in a setting that utilizes only the state-of-the-art process metrics.
However, combining latent features of the process metrics and semantic features
extracted from commit messages, and applying log filtering leads PMs that achieves
similar performance with GM. Further, we observe that the most important metric
group for all SDP models is the process metrics, followed by latent features and

semantic features, respectively. Even though PMs’ performance could be improved
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with extra data sources and statistical approaches, its applicability into practice
depends on team related factors. In our case, for instance, cold start problem occurs
since the current contributors of the project have not had rich development history yet

and majority of data belongs to developers that left the organization.

4.2 Related Work

Some recent research use topic modeling technique to extract semantic information
from software repositories, and use the extracted semantic features to train SDP
models. For example, Nguyen et al. [153] and Chen et al. [154] analyze the correlation
between the hidden topic models of source codes and the defect proneness of the source
code. Nguyen et al.’s prediction model’s predictive power improved by 12% when
topic models of code are used instead of churn of code metrics. Barnett et al. [155]
extract topic models from description of software changes, and utilizing them to train

SDP models improve the explanatory power of the model up to 72%.

On the other hand, matrix factorization techniques also used to capture the underlying
hidden information from data. Utilizing matrix factorization in ML/AI tasks such as
pattern recognition [156], and recommendation systems [157] is more common than
SDP field. Studies use matrix factorization is relatively less, specifically, it used to

impute missing data [158] and to predict defect prone modules [159].

4.3 Collection of Dataset

We collect the historical development activity of a chosen pilot project of Ericsson,
Turkey. The historical development activity includes commits from various developers
belong to a five year time period. Our prior work reported in Chapter 3 guide us during
metric collection and data labeling. We extract state-of-the process metrics (see Table
3.1) of the collected commits, and label commits as bug-inducing or clean using the

SZ7 algorithm [116].

The collected dataset has gone through some cleaning and manual matching before
taking its final shape with the help of the industrial team. First, the commits that
belong to test modules of the project are filtered. Also, a set of commits that does

not involve real development are determined with the manual inspection of industrial
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team and those are eliminated from the dataset. Second, we realize that there are
some developers that has been contributed to the project with different usernames.
This causes the contribution of the same person in the software repository to appear
as if they belong to different people. Therefore, with the help of industrial team, we
identified the usernames that belongs to the same person and match them under a single
username. This step is crucial since we aim to build personalized models. Third,
industrial team manually identified some bug-fixing commits that are not obvious to
our eye. Correctly determining the bug-fixing commits is very crucial, since the SZZ
algorithm requires the bug-fixing commits as input to detect the bug-inducing commits.
Although the bug reporting and fixing activities often reported properly by the team,
exceptions can occur. Bugs may not be reported in the issue tracking system or bug id

may not be specified in the commit that fixes that bug.

The final dataset have a total number of 1773 commits, a total number of 392
bug-inducing commits, and a total number of 36 developers contributed to the project
between the years of 2013 and 2018. The details of the dataset are reported in Table
4.1. The table also contains information on developer selection, which is one of the

steps of the model building phase that is reported in detail in Section 4.4.4.

Table 4.1 : Details of the dataset.

Information Value
Time period of commits in years 2013 - 2018
Total number of commits 1.773
Total number of bug-inducing commits 392
Total number of developers 36
Number of selected developers 6
Total number of commits of

all selected developers 1.028
Total number of bug-inducing commits of

all selected developers 335
Range of commits of selected developers’ 68 - 343
Range of bug-inducing commit ratio

of selected developers’ (between 0 and 1) 0.28-04

The other details regarding data collection and project context, such as how SZZ

is executed over software repositories, development practices of the team, and the
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distribution of development activity over time, are reported in the next chapter that

reports our industrial deployment experience (Chapter 5).

4.4 Methodology

Our objective in this study is to analyze personalized models against traditional in an
industrial setting. Since our collected data is scarce, we utilized various approaches
to extract more information from the available data. We assess whether including
more information, i.e., latent and semantic features, into the model building process
improves the prediction performance of predictors. Further, we aim to understand
the importance of all feature groups used in the experiment to the prediction of

bug-inducing changes.

This section first reports our metric collection approaches in Sections 4.4.1, 4.4.2,
and 4.4.3, second depicts the model building process in Section 4.4.4, and third the

performance assessment of the built models in Section 4.4.5.

4.4.1 Base metric collection

The process metrics used in Chapter 3 and this chapter are the state-of-the-art metrics
that also used in other change-level SDP studies in the field [16,27]. In this chapter,
we call them as our “base metrics’ and take the models built using the base metrics s
our baseline models. Then, we add the other metrics, i.e., latent and semantic features,

to the base metrics to assess the contribution of new metrics to the baseline models.

Base metrics measures the development activity from size, history, diffusion, and
experience aspects. The full list of metrics is given in Table 3.1 in Chapter 3. The size
and diffusion aspects of a commit is directly calculated from the logged information
of commit by the software repository. Whereas, the history and experience metrics
for a commit are calculated tracing back through the all prior commits’ logs in the

repository.
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4.4.2 Latent feature extraction through matrix factorization

Non-negative matrix factorization (NNMF) [160] is a popular technique used
to capture hidden information of data and to represent information with fewer

dimensions, i.e., low rank representations [161].

In this study, we use NNMEF to extract latent information of development activity that
may not be captured by the base process metric sets listed in Table 3.1. First, we define
a matrix VeR!3 which includes the extracted base metric set of each commits in our
training set. While c is the number of commits in the training set, 13 is the number of
base metrics used in the experiment. Second, we aim to get a 5-rank approximation of
the V by factorizing it into two matrices WeR™ and HeR>*!3. W matrix is used as
latent features to train models. Third, we obtain a 5-rank approximation of the test set
in the form of the training set to use it in model validation phase. We multiply the test
set TeR™!3 (n is the number of commits in the test set) with the transpose of H to get

the latent features of the test set 7€R™,

4.4.3 Semantic feature collection through topic modeling

Topic modeling aim to capturing underlying concepts in data. Latent Dirichlet

Allocation (LDA) is a commonly used technique in topic modeling [162].

In our experiment, we use LDA to reveal the hidden concepts of software changes, i.e.,
we extract topic models of commit descriptions written by the developer of the commit.
First, we apply standard natural language pre-processing steps to use topic modeling
in a more effective way. Stop words (e.g., the, a, on) in commit messages are cleaned,
and all letters in messages converted to lowercase. Second, LDA is used to capture
topic models. LDA takes commit messages as inputs and creates a vocabulary from
all unique words used in the all commit messages. LDA assumes that each commit
message includes a mixture of hidden topics, while each topic includes a mixture of
the words in the vocabulary. Then, LDA generates a probability distribution for each
commit over a set of topics, and also a probability distribution for each topic over a

set of words. We extract 10 topic models, i.e., 10 dimensional probability distribution
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vectors, from each commit messages. Third, we use these 10 dimensional vectors

during the training of SDP models as the semantic features.

4.4.4 Model building

In the industrial setting, we use the same model building methodology as we used in

the open-source setting, which is reported in Chapter 3.

We start with picking developers that have sufficient number of commits to build a
personalized model for them. The developers in the team have few commits, i.e., the
half of the developers contributed to the project have a number of commits between
one and 23. Therefore, we cannot build a PM for all developers in the team, wince
we need good amount of data to train a prediction model [128]. In addition to have
sufficient number of commits, we need to have sufficient bug-inducing commits to
train a two-class SDP model. While some developers in the team contributed with
large amounts of commits, i.e., around 80, their commits induced a few bugs into
the software, i.e., one or two. For such developers, we cannot build a personalized
model. Considering all these, we pick developers that have at least 45 commits and 10
bug-inducing commits for the experiment. At the end of developer selection process,
we have pick a total number of six developers to build personalized models for them.
The total number of commits of these six selected developers is 1028 while the total
number of bug-inducing commits of the selected developers is 335. Moreover, the
number of individual commits of these six developers range from 68 to 343, while
their ratio of bug-inducing commits to their total individual commits range from 0.28

to 0.4. All these details regarding the selected developers are reported in Table 4.1.

After identifying a set of selected developers, we build three SDP models by applying
10-fold cross-validation: 1) personalized model (PM), 2) general model for the
selected set of developers (SM), and 3) general model (GM). As specified in Figure
3.1, we split each selected developer’s commits into 10 folds. We keep one fold of a
developer as the test set, and use the other nine folds as the training set when building
PM. We keep test folds the same when building PM, SM, and GM, to make a fair
performance assessment across the three SDP models. To construct SM, we combine

all selected developers’ commits as the training set and exclude the test fold of the
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developer to assess the performance of SM for that developer in particular. To construct
GM, we apply a similar methodology. We combine all developers’ commits, regardless
of whether they selected to build PM or not, into the training set of GM. We exclude the
developer’s test fold from the training set of GM to use it to as the test set to assess the
performance of GM for the developer. We repeat these process 10 times by shuffling

the data to avoid learning bias caused by data ordering [19].

Unlike the experiment conducted with open-source projects in Chapter 3, we do not
utilize the under-sampling technique in the industrial setting. The reason for that is
the size of industrial dataset, i.e., the selected developers has 19 to 96 bug-inducing
commits. Nevertheless, we try other data sampling techniques to balance the ratio
of bug-inducing and clean (non bug-inducing) commits. We apply over-sampling
and Synthetic Minority Oversampling Technique (SMOTE) [145] on the training sets
before building SDP models. Our analysis show that applying over-sampling and
SMOTE does not significantly improve the models’ performance in the Ericsson’s pilot

project’s context. Therefore, we build the models without applying data sampling.

One of our research objectives in this chapter is to analyze the effect of combining
different statistical approaches on the prediction performance of PM, SM, and GM.
Hence, we use three AI/ML and statistical approaches with different combinations
during model training to observe the effect of each on the models’ performance. 1)
We utilize latent features of development activity measured over base metrics using
NNMF, 2) we utilize semantic features measured over commits’ messages using topic
modeling technique, and 3) we apply log-filtering onto all features. Log-filtering
basically takes the logarithm of numeric feature values to make them evenly spread
across the distributions [163]. Log-filtering helps the prediction models to distinguish

differences among features during training.

We construct eight different models for each SDP model (PM, SM, and GM)
that utilize the statistical approaches with various combinations. Combinations of
approaches are listed in Table 4.2. The rows represent eight models, while columns
represent the approaches. If a model utilizes an approach, the corresponding cell

includes the “+” symbol. Abbreviations used in the model names represent the
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statistical approaches, i.e., “B” is used for base metrics, “LAT” is used for latent

features, “SMN” is used for semantic features, and “LogF” is used for log-filtering.

Table 4.2 : SDP models built various metric and data processing combinations.

Base Latent Semantic Log fil-
metrics features features tering
B +
B+LogF + +
B+LAT + +
B+LAT+LogF + + +
B+SMN + +
B+SMN+LogF + +
B+LAT+SMN + + +
B+LAT+SMN+LogF + + + +

We build a baseline model “B” (see the first row in Table 4.2) that only utilizes
the base metric set during model training. Then, we combine each statistical
approach with the baseline model separately and together to observe the effect
of approaches on the prediction performance. For example, “B+LogF” applies
log-filtering on baseline model “B” (see the second row in Table 4.2). Another
example, ‘B+LAT+SMN+LogF” utilizes base metrics, latent features, and semantic

features with log-filtering (see the last row in Table 4.2).
Similarly to the experiment conducted on open-source projects (Chapter 3), we also

use Naive Bayes (NB) and Random Forest (RF) algorithms in this experiment.

4.4.5 Performance evaluation

Assessment of the models’ performance is done using the same metrics as used in our
prior research reported in Chapter 3: probability of detection (pd), the probability of
false alarm (pf), precision, F-measure, area under receiver operating characteristics
(ROC) curve (AUC), and Matthew Correlation Coefficient (MCC). Explanations and

calculations of these metrics are reported in Table 3.4.

4.4.6 Methods to answer research questions

The experiment conducted to answer RQ1 follows the same structure we use in Section

3.3.2.4 of Chapter 3. In summary, we compare the PM against SM and GM and assess
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the comparison results using Nemenyi significance test [135] and Cohen’s d using

corrected Hedges’ g [136].

To answer RQ2, we build all eight models listed in Table 4.2 for PM, SM, and GM.
Then, for each SDP model (PM, SM, and GM), we compare eight models’ performance
values with each other. We use Scott-Knott ESD test [82] to assess the statistical

differences between the models.

To answer RQ3, we apply Information Gain (InfoGain) feature selection on the
“B+LAT+SMN” model. InfoGain ranks the features in the given model according
to their contributions to the prediction [141]. Based on InfoGain results, we rank the
three feature groups (base, latent, and semantic) the highest to lowest according to the
information gained by each feature group. We use the ranking results to analyze the

importance of feature groups for PM, SM, and GM.

4.5 Results

4.5.1 RQ1: How does a personalized SDP approach perform compared to
traditional SDP approaches? (PM vs. SM and PM vs. GM)

In this section, we report the comparison of PM with the two traditional models, SM
and GM. The performance values of three SDP models are aggregated over six selected
developers and reported as boxplots in Figure 4.1, while the statistical comparison of

PM with the traditional models is reported in Table 4.3.
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Figure 4.1 : Performance of PM, SM and GM.
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Each box in Figure 4.1 includes three boxplots that show the performance values of
PM, SM, and GM, respectively. The plots on the upper row show the performance
values when models are built with NB, while the plots at the bottom row show the
performance values when RF is used to train models. From left to right, plots report
performance values in terms of pd, pf, precision, F1-measure, AUC, MCC and Brier
Score.

Table 4.3 : Win/Loss results of the comparisons between PM and SM, and PM and
GM. Bold cells indicate medium to large effect sizes.

NB RF
PM vs. SM PM vs. GM PM vs. SM PM vs. GM
Pd SM GM SM GM
Pf PM PM PM PM
Prec. PM PM SM GM
F1 SM - SM GM
AUC - - SM GM
MCC PM PM SM GM
Brier SM GM SM GM

Table 4.3 reports two comparison namely PM vs. SM and PM vs. GM. These two
comparisons are repeated for the two machine learning algorithms (NB and RF), and
for seven model evaluation metrics (pd, pf, precision, F1-measure, AUC, MCC and
Brier Score). While rows represent each evaluation metric, columns represent model
pair and used algorithms. The winner model is reported in the corresponding cell of
the table. If the statistical comparison has medium or large effect size (|d| > 0.5), it
is highlighted with bold. The "-" sign means that the two models perform statistically

the same.

Figure 4.1 and Table 4.3 show that PM is not superior to SM and GM in the majority
of cases. Particularly, when predictors are built with NB, SM and GM outperform PM
in terms of pd, F1, and Brier Score. For example, PM produces 0.54 pd rate (median)
while GM produces 0.84. However, traditional models also produce much higher false
alarms (pf) than PM, i.e., PM’s pf rate is 0.3 median while SM’s and GM’s is around
0.77. The lower pf rate of PM makes it superior to the traditional models in terms of

pf, precision, and MCC.
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On the other hand, when RF algorithm is used, SM and GM outperform the PM in
terms of all seven model evaluation metrics. For example, PM produces 0.15 pd
(median) while GM produces 0.3 pd (median). Please note that, pd rates of all three
models are much lower, and practically not useful, when RF is used instead of NB

during model training.

We do not report an analysis regarding individual developer results as we do in
Chapter 3 to answer RQ1. There are very few selected developers in our industrial
setting compared to those during the experiments performed on open-source projects.
Therefore, the boxplots in Figure 4.1 already reflect the developers’ individual

performance.

Considering the best performing algorithm (NB), general models, SM and GM,
could detect more defects than PM (~0.83 versus 0.54 pd, respectively). On
the other hand, traditional models gives very high false alarms compared to
PM (~0.77 versus 0.3 pf, respectively). The lower pf rate of PM leads to a
lower code inspection cost compared to high pf rates of SM and GM which alert
developers on their changes redundantly.

4.5.2 RQ2: How can we improve the performance of defect predictors by utilizing

the available commit data through a combination of statistical approaches?

This section reports the comparison of SDP models trained with various feature
combinations and log filtering technique. Figure 4.2 and 4.3 show pd and pf rates
of PM, SM, and GM, when the models are built with eight feature combinations. Each
boxplot represents an SDP model listed in Table 4.2. In this section, we report results
in terms of pd and pf only. In the appendix, you may find the results in terms of

precision, F1, AUC, MCC, and Brier Score.

Results in Figure 4.2 and 4.3 show that using various data sources and data
preprocessing techniques could improve the prediction performance. Particularly,
including new features and applying log filtering always improve the prediction
performance of PM in our experiment in terms of pd, while it also increases the
pf rates. For example, combination of latent features, semantic features, and log

filtering (B+LAT+SMN+LogF) improves the pd rate of baseline (B) from 0.53 to 0.78
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Figure 4.2 : Performance (in terms of pd) of PM, SM and GM built with combination
of statistical approaches.

(median). However, there are still traditional models, i.e., GM with B+LAT+LogF,
that outperform the PM with B+LAT+SMN+LogF model in terms of pd. On the other
hand, PM with B+LAT+SMN+LogF produces higher pf rates (0.53) than the baseline

model (B) PM (0.3).

Using various combinations of features and applying log filtering often deteriorates
the traditional models’ performance in terms of pd (except a few cases for GM), but

also provides improvements on pf rates on the majority of models. For example, pd
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Figure 4.3 : Performance (in terms of pf) of PM, SM and GM built with combination
of statistical approaches.

rate of SM with baseline (B) reduces from 0.85 to 0.63 when log filtering is applied

(B+LogF), but pf rate of SM with baseline (B) decreases from 0.77 to 0.45 when log

filtering is applied (B+LogF).

Considering the balance between the pd and pf rates, the best performing model among
traditional models is GM with the base and latent features as well as log filtering

(B+LAT+LogF). GM with B+LAT+LogF model produces one of the best pd values

among all models (0.81). It performs statistically the same as GM with the baseline

110



(B) in terms of pd. Also, GM with B+LAT+LogF model reduces the baseline (B) GM’s
pf rate by 0.1.

Considering the Scott Knott ESD test results on all performance assessment criteria
over the models, PM with B+LAT+SMN+LogF model and GM with B+LAT+LogF
model are chosen as the best performing models. Both models utilize combination
of different features and log filtering to train successful models. While PM with
B+LAT+SMN+LogF performs better in terms of pf, precision, GM with B+LAT+LogF
performs better in terms of pd and Brier Score. In terms of F1, AUC, and MCC, these

two models are statistically the same.

As a conclusion, we pick GM with B+LAT+LogF model as the prototype to be
deployed into the real development setting of the pilot project due to the applicability
limitation of PM due to the developer turnover (see Section 4.7. Our industry partner
also prioritizes having higher pd rates since both of the best performing models

produce similarly high false alarms that need to be further challenged.

Combining various features and statistical approaches lead us build more
successful SDP models. More specifically, including latent features and
applying log filtering improve the baseline GM’s in terms of pf. While including
latent features and topic models of commit messages, and applying log filtering
technique improves the baseline PM’s performance in terms of pd, it also
increases false alarms.

4.5.3 RQ3: How does the importance of metrics used for defect prediction differ

among PM, SM, and GM?

This section reports the InfoGain results for PM, SM, GM and assess the importance
of metric groups for three SDP models. Table 4.4 shows the percentage of how many
times each metric group (base, latent, and semantic) ranked in top 10 for each SDP
model. The base metric group abbreviated as B, latents as LAT, and semantic metrics
abbreviated as SMN. Each row indicates a rank, while columns represents the SDP

models and metric groups.
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We apply the InfoGain on the model type that includes all metrics used in the
experiment, which is B+LAT+SMN. Output of InfoGain shows the contribution of
each metric on the prediction of bug-inducing software changes. We rank the output of
InfoGain for each SDP model, PM, SM, and GM. The most important metric for the
prediction is ranked first, and the second important metric ranked second and so on.
For each SDP model, and for each rank, we calculate what percentage of each group

of metrics appears in that rank. We conduct the analysis on the results for first 10 rank.

Results in Table 4.4 show that the base metrics’ contribution to PM performance
constitutes 53% of total contributions. The contribution of latent and semantic group
constitutes 33% and 14% of total contributions, respectively. The importance of base
metric set for PM especially stands out among the first ranked metrics: 93.3% of the

metrics that are ranked first are from the base metric group.

GM InfoGain results follow a similar pattern to those of PM. When the top 10 ranked
metrics are considered, 50% of total contributions come from base metrics, whereas
40% comes from latent, and 10% comes from semantic features. More specifically, the
importance of base metrics in the first rank is very high, i.e., 87% of the first ranked

metrics are base metrics.

SM results show that, when the top 10 ranked metrics are considered, the most
contributing metric group is the base metrics (62%) followed by latent (38%).
However, unlike the results of PM and GM, the latent group is the most important
group when the first rank is considered only, i.e., 75.7% of the first ranked metrics are

latent metrics. The semantic group does not appear in the top 10 list for SM.

7

The proportion of contribution of each metric group to the prediction of
bug-inducing changes slightly changes among PM, SM, and GM. The most
important metric group consist of base metrics for all three SDP models. The
latent group follows the base metrics and appears as the second important metric
group. Furthermore, the semantic group does not seem to contribute to the
prediction as much as the other metrics.
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4.6 Threats to Validity

The data is collected utilizing the state-of-the-art techniques in the field. The base
metrics of collected commits are calculated following the descriptions given in a prior

study [27]. The SZZ algorithm is used to label bug-inducing changes [116].

Furthermore, a manual review is conducted to ensure the data quality. We were aware
that SZZ is the state-of-the-art bug-inducing change technique that may produce false
alarms [151]. Also, the bug reporting practices of development team may cause a
noise in the marking process fixing changes. For example, the bug reports may not be
properly reported by the development team or the bug report id may not be reported in
the commit description when fixing a bug. All these cause a noise in the data labeling
process. Therefore, manual reviews of the data regarding these issues with the help
of industrial team help to reduce the noise in data. Also, the commits that does not
include changes regarding software development (i.e., test commits) are identified and

eliminated from the dataset before model building process.

Moreover, the SDP models are trained with well-known machine learning algorithms,
Naive Bayes and Random Forest. Also, we apply 10x10-fold cross-validation. We
repeat the model learning step 10 times after shuffling the data order each time to
avoid learning bias [19] and utilize a state-of-the-art model validation technique used
popularly in the field [16].Also, we validate our results using a time-sensitive model
validation setup which is recently preferred by the researchers in the community [133].
The SDP models’ performance are assessed with seven different well-known criteria
(see Table 3.4), and statistical tests, i.e., Nemenyi test [135] and Cohen’s d with

corrected Hedges’ g [136].

Suitable data pre-processing and feature extraction techniques are chosen from the
literature to incorporate into our study to improve the performance of SDP models.
Further, the SDP models are iterated with different number of semantic features in

topic modeling and latent features in NNMF, but we report the best cases.
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The findings in this study cannot be generalized to other projects, even though the
experiment covers the state-of-the-art process metrics and techniques. Nevertheless,

the results and challenges reported would guide other researchers in the community.

4.7 Concluding Remarks

In this chapter, 1) we investigate the performance of personalized model (PM)
against two traditional models (SM and GM) in an industrial setting, 2) we utilize
a combination of state-of-the-art process metrics, latent features of process metrics,
topic models of commit messages, and log-filtering to improve the prediction models’

performance, and 3) we analyze the importance of metric groups for PM, SM, and GM.

Our empirical analysis in the context of our industrial partner’s pilot project show that
SM and GM are able to detect more defects than PM, i.e., 0.83 vs. 0.54 probability of
detection (pd) rates. On the other hand, PM produces lower false alarms compared to

SM and GM, i.e., 0.3 vs. 0.77 pf rates.

Furthermore, applying log filtering, and utilizing extra information sources such as
latent features of development activity and topic models of commit messages could
improve the performance values of SDP models. Particularly, utilizing extra features
and techniques improves pd rates of PM by 0.23, while decreasing pf rates of
traditional models by 0.33. Considering the pd and pf rates and the balance between
them, PM utilizes all feature groups and log filtering (B+LAT+SMN+LogF), and GM
utilizes base metrics, semantic features and log filtering (B+LAT+LogF) models are

the best performing ones among all assessed models.

Moreover, we observe that the base metric set used in the experiment, i.e., the
state-of-the-art process metrics used in many change-level SDP studies [16,27], is the
most important metric group for prediction of bug-inducing changes regardless of the
model approach (i.e., personalized or traditional). The base metric set is followed
by the latent features of process metrics. Further, the using topic models of commit
messages does not contribute to the prediction performance as much as other metrics.
When considering the models’ performance and the extra calculation cost of topic

modeling, we focus on a model that utilizes the base and latent metrics for deployment.
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Even though our experiment shows that PM is capable of producing quite well
prediction performance values in the research setting, a successful application of
PM into practice could not be possible in the pilot project’s setting mainly due to
the cold-start problem [39,40]. The collected dataset includes a total number of 36
developers but only six contributors have sufficient development history to build a PM
for each. The team turnover for the chosen pilot project is also high. The majority of
those developers included in the dataset are not currently in the team. Furthermore, our
collected dataset does not include the activity of developers who currently and actively
work in the project. Therefore, PM cannot be built for developers who currently

contribute to the pilot project.

We would like to note that, we also repeat our analysis using a time-sensitive
experimental design, since the software change (commit) data has temporal properties.
The main criterion in a typical time-sensitive approach is training a model with past
data (i.e., commits before time ¢) while testing the trained model using the future
commits (i.e., after time 7). We use the same time-sensitive model validation approach
depicted in Section 3.5.4: sliding window technique with 6-month time windows is
used to build and test models. Our findings and answers to RQs have not changed when
the time-sensitive model validation is used instead of cross-validation. Traditional
models (SM and GM) better than PM in terms of pd, while PM is better than
traditionals in terms of pf. Also, using latent features in addition to the base metrics
and applying log filtering leads better performing prediction models, i.e., improves the

pd rates of PM by 0.3.

This study is the first one that investigates personalized defect prediction in an
industrial setting. Our findings show that the personalized approach is promising in
a research setting, but the applicability of personalized models is limited due to the
dynamically changing development team. We hope our research would be a guide to
the researchers and practitioners in the SDP field on the challenges of personalized

SDP models.
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S. DEPLOYMENT OF A CHANGE-LEVEL SOFTWARE DEFECT
PREDICTION SOLUTION INTO AN INDUSTRIAL SETTING*

5.1 Introduction

Software defect prediction (SDP) models support quality assurance activities of
software teams to reduce the maintenance cost and effort by identifying the
defect-prone modules of the software systems [19]. Recent SDP studies focus on
predicting the bug-proneness of software systems at the change-level different than
the conventional SDP models that predict bugs at a software entity level (i.e., software
class, file, or method) [16]. Change-level defect predictors highlight defect-proneness
of a software change immediately when a code change is committed to the software
repository. Predicting defect-prone changes is a more useful strategy than predicting
defects at a software entity (e.g., file) level since the former provides the possibility
of taking immediate actions on the bug-prone modules while the change details are
still fresh in developers’ minds [16]. Another popular usage of change-level SDP
models is prioritizing the software changes during the code review process in order
to reduce the code inspection effort [16,130,132,164]. It decreases the review time as
well as the amount of reviewed code by prioritizing bug-prone changes according to the

predictions and by directly linking the owner of the reviewed software changes [16].

Many change-level SDP models have so far been built in industrial contexts
[29,30,43,44,165]. Conducting studies in the industrial field is valuable in terms
of validating the findings obtained in theory in practice [48]. Still, the number of
industrial studies on change-level SDP models is quite low compared to the studies
using publicly available datasets and open-source software projects [2]. One of the
main reasons for this is the difficulty of accessing the commercial projects’ data

sources. This is not easy due to confidentiality reasons, while open-source projects’

“This chapter is based on the paper “Eken B., Tufan S., Tunaboylu A., Giiler T., Atar R., Tosun
A., 2021. Deployment of a change-level software defect prediction solution into an industrial setting.
Journal of Software: Evolution and Process, 33(11), e2381.”.
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archives are publicly available and consist of longer development histories. Kamei et
al. [2] point this out as a future challenge and suggest conducting more partnerships to

overcome it.

Although change-level SDP aims to support a practical software quality assurance
activity, academic studies often work in offline settings. To put it another way,
researchers are mostly interested in the theoretical challenges of the SDP by utilizing
historically collected batch data while they do not consider the real-life, e.g.,
online/dynamic, data flow. Recently, there is an increasing rate of studies that approach
the SDP problem from the practical applicability perspective [29,43]-[46]. Based on
these reported studies and our experience, the adoption of a change-level predictor into
a real development environment brings brand-new challenges. First and foremost, in a
real-life online setup, there is a temporal and active flow of commits, unlike the batch
structure of an offline setup. Thus, the existing model training and validation strategies
(i.e., cross-validation or a time-sensitive validation) do not reflect the reality of an
online environment [29,166]. On the other hand, the continuous structure of real-life
environments requires “keeping up with the fast pace of development” as Kamei et
al. state [2]. A deployed model requires a continuous update, since the development
environments may have shifting development characteristics in the long run [133,167].
Besides, during a real-life software development cycle, developers need some time
to identify bug-inducing changes [29]. Therefore, successful deployment of an SDP
model is not possible solely with the equipment, such as algorithms and input features,
and the experience gained through the offline research studies. It requires a carefully
designed integration and update mechanism to produce consistently ‘good’ prediction

performance over time.

This study shares our experience in deploying a change-level defect prediction model
into an industrial context. The prototypes we built in the offline setting for our
industrial partner have been published in our previous work [148]. Here, we focus
on the challenges faced in deploying the selected SDP prototype into the real-life
development life cycle, such as determining a suitable model re-training period, and
preventing the model from learning from noisy data, and producing consistently good

prediction performance over time. We completely revise our experimental design
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through an online defect prediction customized for our industrial partner. We assess the
performance of an online SDP model against its offline version and further investigate
the impact of training with potentially mislabeled (noisy) data and model update period

on the prediction performance.

Our contributions and related findings in this study are:

1. We design an online prediction approach that simulates the real-life commit activity
flow of the software project. The proposed online prediction approach trains
the SDP model by considering the actual labels of bug-inducing commits, which
are determined according to current observations at the time of prediction. The
online prediction uses two parameters, namely “train-test (TT) gap” and “update
period (UP)”. TT gap determines the length of the gap between the train and test
commits to avoid training with mislabeled commits. Besides, UP determines the
model update (re-training) period using new data. We are inspired by the online
prediction approach of Tan et al. [29], but our approach distinguishes from theirs
while determining the labels of bug-inducing commits in the training set and setting

the TT gaps and UP. We elaborate more on this in Section 5.4.1.

2. The SDP model’s performance in offline and online prediction settings shows that
both strategies produce similar performance depending on the available history
of the development activity and the amount of mislabeled commits used during

training.

3. We empirically analyze the effect of the TT gap on the prediction performance
by setting it to 11 different values, i.e., namely O-month to 10-months, during
online prediction. Whereas the existing studies [29,168] suggest a fixed time gap to
avoid learning from noisy labels. Our results indicate that keeping a suitable time
gap between the train and test commits would improve prediction performance,
by up to 37% in terms of probability of detection, by reducing the undiscovered

bug-inducing commit rates.

4. We empirically analyze the impact of model update frequency on the prediction

performance using nine different UP values, namely, between updating every day
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to every 120 days. The analysis over all TT gaps shows that the UP value would

affect the performance by up to 18% in terms of probability of detection.

5. We share our learned lessons regarding the deployment of our change-level SDP
solution in Section 5.8. We discuss the challenging aspects of the communication,
data collection, development habits, the software project structure, and the
interpretability of the produced predictions that potentially affect the applicability

and the usability of any SDP model in practice.

5.1.1 Structure of the chapter

Section 5.2 reports the related literature on change-level SDP, change-level SDP
studies conducted in industrial context, and on the model validation techniques applied
in change-level SDP studies. Section 5.3 describes the research, data collection,
and model prototyping phases. Section 5.4 reports challenges our SDP model
deployment experience and describes our online prediction methodology used during
our experimentation. Section 5.5 reports the research questions and our empirical setup
methodology. Section 5.6 shares the performance for the defined research questions
and discusses the achieved results. Section 5.7 discusses the threats to the validity of
the conducted empirical study. Section 5.8 reports additional lessons learned during

this industrial case study. Section 5.9 concludes the paper.

5.2 Related Work

Studies in the SDP field exploit data collected from various software development
units (people, product, and process [18,105]), and utilize various machine learning and
statistical approaches [11] to predict defective software modules in both open-source
and industrial projects. Besides, SDP models are designed to make predictions for
various software artifacts such as software class or method. According to the prior
studies’ classification on the SDP strategies [16,28], the long-term SDP models make
long-term predictions about the bug-proneness of a software entity, e.g., package,
file, class, method, whereas the short-term SDP studies focus on predicting the
bug-proneness of a software change to locate buggy parts of the software as soon as

possible by giving immediate feedback to developers. Just-in-time [16], change-level
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[29], commit-level and short-term refers to such SDP models that make prediction
at software change-level. Moreover, the prediction performance of the change-level
SDP models are often evaluated using two popular model validation strategies, namely

cross-validation and time-sensitive validation.

In the next subsections, we report the related work focusing on change-level SDP
prediction, more specifically those studies conducted in an industrial context and

different model validation approaches used in change-level SDP.

5.2.1 Change-level SDP studies

The earliest software change-level defect prediction is reported by Mockus et al. [169].
They define a set of software change measurements that measure a code modification
from size, diffusion, and developer expertise aspects in order to understand and
quantify the software changes. They predict the quality of changes in a large-scale
telecommunication system by using the proposed measurements. Later, Mockus
and Weiss [30] proposed a model that predicts the risky software changes at a
coarse-grained granularity in an industrial telecommunication system. Their model
identifies the high-risk initial maintenance requests (IMR) that contain multiple
software changes. Failure probabilities of the IMRs are predicted by utilizing the
size, diffusion, developer expertise, and the purpose (whether the change was a fix)
properties of a change. The number of subsystems modified and developer experience
are found to be indicators of these high-risk changes. Czerwonka et al. [165] share
their experiences with a tool named CRANE that analyzes the risk of software changes
during the development of Windows Vista. Shihab et al. [115] utilize change properties
such as developer experience, history of the changed files, the time when the change
is made, the size of the change, and the purpose of change (bug fix or not) to predict
the risky changes in an industrial context, similar to the work in [30], but at a finer
granularity. The number of added lines and chunks, bug-proneness of the modified
files, number of bugs, the number of bug reports linked to a change, and the developer

experience are found to be good indicators of a change’s risk-proneness.

The introduction of the SZZ algorithm [2] and the emergence of machine learning

techniques [11] led to many change-level SDP studies that utilize measures from
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historical bug-inducing changes to detect future bug-inducing changes. Kim et al.
[117] propose classifying the software changes as buggy or clean using the number of
added and deleted code lines, change metadata information (i.e., commit hour, commit
day), complexity metrics of the modified files (i.e., cyclomatic complexity), and textual
features of the modified file and directory names. They conducted their work on 12
open-source projects. Kamei et al. [16] empirically assess their just-in-time SDP for
six open-source projects and five commercial projects. Their prediction models utilize
the diffusion, size, history, purpose, and developer experience aspects of the change
and perform with an average recall of 64%. Their prediction model is able to reduce
code review effort, i.e., 35% of all predicted bug-inducing changes could be identified
by spending 20% of the total effort. The authors also report effort-aware performance
measures instead of traditional performance metrics only, such as recall, false-alarm
rate, Fl-measure [170]. Effort-aware performance is basically calculated as the
development team’s effort required to inspect code changes predicted as bug-inducing

[16,44,130,132,164,171].

There are also other studies that focus on applying alternative techniques for
change-level SDP in open-source projects. Tosun et al. [27] show that prioritizing
the prediction of high-impact bug-inducing changes improves the inspection effort by
4%. Other researchers propose predicting bug-inducing changes at a finer granularity
level, such as risky files [28] or code lines [120] in software changes. Kamei et
al. [172] utilize cross-project data to predict risky changes. Catalino et al. [173] apply
the change-level SDP on mobile software development context. Barnett et al. [155]
incorporate textual features of commit messages into the change-level SDP. Last but
not least, Yang et al. [174] and Hoang et al. [20] use deep learning for just-in-time
SDP.

5.2.2 Change-level SDP studies in industrial context

The majority of the reported change-level SDP studies are conducted on open-source
projects [20,27,28,36,53,155,172,174,175]. Fewer studies focus on the change-level

defect prediction in an industrial context [16,29,30,115,165].
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Kamei et al. [16] discuss the differences between industrial and open-source systems
over the characteristics of the bug-inducing changes. They found out that different
factors affect the prediction performance among different project domains, i.e., the
number of files changed, the information of whether or not the change fixes a bug,
and the average time interval since the previous change are important factors for

open-source projects, while the diffusion factors are important for industrial projects.

Tan et al. [29] apply the change-level SDP in practice with a Cisco project. Their
study focuses on data re-sampling techniques to cope with the low buggy rates in a
propriety software project. They also evaluate their change-level SDP model by using
an online prediction approach to overcome the incorrect performance results gathered
with cross-validation. We elaborate more on their online evaluation technique below
in this section. Their experience regarding the integration of the proposed SDP model

shows that prediction results need to be supported with explanations to be actionable.

Altinger et al. [43] report a performance tuning experience of a change-level SPD
model built for an automotive software project. They investigate the effect of data
balancing techniques and classification algorithms. Their study indicates re-sampling
techniques should be considered carefully, and the Naive Bayes algorithm yields a

good and stable performance.

Yan et al. [44] share their experience of effort-aware just-in-time defect identification
on 14 Alibaba projects. They select three supervised and two unsupervised
state-of-the-art SDP model building approaches to investigate them in the Alibaba
context. Their results show that the best performing approach is the ‘Classify Before
Sorting” approach proposed by Huang et al. [171]. Moreover, they indicate that the
importance of features in change-level defect prediction differs for open-source and
industrial projects. However, the diffusion features (i.e., the number of changed
files) are the most important ones for both types of software settings. Finally, their
investigation with the software development team shows that the deployed effort-aware
SDP tool helps developers to reduce their effort on code inspection while detecting the

buggy changes correctly 33% of the time.
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Kang et al. [45] build a change-level SDP model for the maritime industry and report
that their prediction model finds 56% of the total bug-inducing changes when 20% of
the total effort is spent. Their research points out that the maritime industry has high
post-release quality cost due to domain characteristics, i.e., bug-inducing changes most
likely occur again in the entire series of ships once they occur. Using a cost estimation
model that reflects the industry domain characteristics, Kang et al. [45] achieves a

reduction in the post-release quality cost by 37%.

A recent study by Khanan et al. [46] does not specifically focus on an industrial
context but focuses on the integration of change-level SDP into the real development
environment. They propose a framework that integrates into the GitHub development
workflow of a project. Their proposed application collects the commits and pull
requests of the project and trains an SDP model. When the SDP model is trained,
it provides prediction to the developer on the bug-proneness of a commit. Besides the
probability of being risky, the framework also reports the factors (i.e., metrics used
during model training, such as entropy of the change) related to a commit. Although
this study shows a real application of SDP models, the authors do not consider or report
a way for the future updates (re-training) of the integrated model, and the potential
noise in the labels of the dataset. In this study, we share the same focus on the
integration of a change-level SDP model but report potential challenges and provide

solutions and feedback to the developers.

5.2.3 Model validation approaches used in change-level SDP studies

Change-level SDP studies follow different model validation strategies that fall under
two main approaches: cross-validation and time-sensitive. Cross-validation is widely
used among researchers to evaluate their change-level SDP models [16,20,27,131,132].
A change-level SDP model predicts the bug-proneness of future changes by
utilizing prior changes in the software. Therefore, recent studies [28,29,133] use a
time-sensitive approach to train and assess the change-level defect predictors. They
criticize the appropriateness of using cross-validation while building a change-level
defect predictor. They argue that cross-validation ignores the temporal properties of

the data instances by shuffling and dividing them without considering this property.
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On the other hand, a couple of studies empirically assess their change-level SDP
models by using both cross-validation and time-sensitive validation strategies [20,130].
Their results demonstrate that both strategies yield similar performance, and the
conclusions are consistent among different strategies. Studies on machine learning also
discuss that cross-validation based training may fail to make successful predictions for
future data instances. However, it leads to more robust predictions than a time-sensitive

training [176].

Recently, Tan et al. [29] emphasize the limitations of using a time-sensitive approach
when training change-level SDP models. Prior change-level SDP experiments using
both cross-validation and time-sensitive approaches ignore the temporality in the
labeling process of bug-inducing changes. During an SDP model training, all
bug-inducing changes in the training data are assumed to be known. Also, all
bug-inducing changes in the test data are assumed to be known while evaluating the
proposed SDP model. However, in real life, some training instances may be bug-free
at time t, whereas they might be associated with a bug-fix later at time t+1. In other
words, prior studies might have used the mislabeled change information. Tan et al. [29]
apply “online machine learning” approach [177] to update the training data labels as
well as to extend the training data with new instances. The training label updates are

done based on the available information at the end of the specified test set.

Moreover, during their online prediction, they keep a gap between the training and the
test sets in order to avoid the potential mislabeled changes because it may take years to
discover a bug-inducing change [178]. We are inspired by Tan et al.’s online prediction
approach [29] during the deployment process of our defect prediction model. We
customize the train-test gap, test size and the model update strategy accordingly.
However, we observe that their approach requires an improvement on the labeling
strategy of training instances. In our online setup, we use the available information at
the beginning of the test set only, instead of utilizing future information for the training

data. More details are explained in Section 5.4.1.
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5.3 Research Background

We had a nationally funded research collaboration between Ericsson Turkey and
Software Modeling and Analysis Lab, Computer Engineering Department at Istanbul
Technical University during the years 2018-2020. Ericsson Turkey develops software
solutions for leading telecommunication companies in Turkey and exports their
software solutions to various continents in the world. Software quality and end-user
satisfaction are very important for the company, and to accomplish that, the teams
have been using several tools for testing, test automation and other verification and
validation activities. The company aims to reduce the cost of testing and code review
activities by integrating a defect prediction model into their software development
process. Therefore, we have been working on building and deploying customized
software defect prediction models according to the needs of developers in our research

collaboration.

The responsibilities of researchers in this project are to investigate the set of approaches
and techniques to deploy a successful defect predictor at software change-level for a
chosen software project of our industrial partner. During the early research phase of
the project, we collected historical development activity, extracted software process
metrics, and detected the bug-inducing commits to form the SDP dataset. Later, we
continued investigating techniques to build an SDP model by applying various machine
learning approaches. We report those experiences in a prior study of ours [148]. In
this paper, we would like to report our experiments on the deployment phase of our
research collaboration, and share our insights gained during this process. Although the
focus of this paper is the deployment phase of the chosen defect prediction model, we
also briefly summarize the earlier project phases to provide a solid background and to

report a step-by-step guide for the readers.

5.3.1 Dataset construction

We selected a pilot software project together with our industrial partner to build and
evaluate the SDP model prototypes. The practitioners describe the chosen pilot project
as an active project (since 2013) that has been sold to multiple customers, continuously

modified, refactored and enhanced according to the customer requests. The software
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team states that each new feature or feature improvement request of customers fully
occupies the team’s annual resources. The software system has a core module with
many features, and additional modules designed and customized according to customer
needs. The software development methodology is similar to a waterfall process, such
that feature requests are delivered in yearly releases, and there is a core team with
predefined roles and responsibilities. The team utilizes version control systems and
issue repositories, and puts emphasis on traceability of changes. The SDP solution we
built in this research collaboration learns from the development activity of all modules
in this pilot project, and provides feedback that addresses any code change in the whole

project.

We prepared a change-level SDP dataset by collecting the historical development
activity of the chosen software project. The prepared dataset contains a set of historical
software changes (commits), a binary label for each of those changes that represent
their defect-proneness (bug-inducing or clean), and a set of process metrics calculated

for each collected software change.

5.3.1.1 Collecting historical commits and identifying bug-inducing changes

Historical software development activities of the pilot project are gathered through
Git [179] source code repository. At the beginning, we collected the logs of a total
number of 3927 commits between November 2013 and May 2018. A single commit
log contains a commit hash, committer name, commit date, commit description, the
name of the changed files, the number of files changed, and the number of added and
deleted lines in each file. After discussing with the development team leaders, we
decided to filter some of the commits which do not contain an actual development
activity. 1694 automatic system commits and 164 merge commits are detected by
searching a set of keywords in the commit logs (e.g., merge for merge commits). 940
commits belonging to the test modules are also identified and filtered. Also, eight
bulk commits are detected manually by reviewing the commits’ logs based on their
number of files and number of modified lines. After cleaning the dataset from these
automatic system commits, merge commits, test related commits, and bulk commits,

we ended up having a total number of 1773 commits. Please note that a commit could
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be filtered due to being in multiple categories, i.e., it could be a test commit and an
automatic system commit. So, the number of filtered commits is fewer than the total

of automatic, merge, test, and bulk commits.

We implemented the SZZ algorithm [116] to find out bug-inducing changes in our
dataset. It is assumed that a bug is injected into the software by changing some
code line(s), and the introduced bug is fixed by changing those line(s) again. First,
the bug-fixing commits are determined using the bug reports stored in the issue
management and tracking system JIRA [180] used by the software development team.
A commit is marked as a fixing commit if its commit message mentions any issue ID
that corresponds to a bug report in JIRA. Second, for each detected bug-fixing commit,
we applied git diff command to query the modifications made by the bug-fixing
commit. Later, each code line deleted or modified by that bug-fixing commit is
searched down through the prior changes. The search process is conducted with git
log —until bug_report_date -S modified_line command. Whenever a prior commit is
matched with the searched code line, the matched commit is blamed for introducing
the bug. Since a bug must be introduced into the software before the related bug report
is created in JIRA, the SZZ algorithm only considers the prior software changes to
the date the bug was reported. Moreover, we assume comment lines or configuration
file modifications cannot be the cause of a bug. Therefore, we ignore the comment
lines and Maven (a project management tool [181]), configuration file changes while

searching back for the location of the commit where the bug is injected.

Bug-fixing commits were found by searching the issue key(s) of the bug reports in
the commit messages of the collected commits. 365 of 1998 issues reported in JIRA
between January 2014 and May 2018 were linked with the fixing commits. However,
in practice, a bug that occurred in a software system and/or fixed by the software
team may not always be reported properly. Sometimes, several development tasks
are completed with a single issue ID, even though some of those are done due to
a bug fix. To ensure the data correctness and capture all bug-fixing activities, the
development leaders who have expertise on the pilot project manually went through
the commits’ messages and content if necessary and marked additional bug-fixing

commits. 135 out of 394 bug-fixing commits were detected using manual investigation.
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With the profound knowledge of the development leaders on the project, we made sure
the bug-fixing commits are correctly specified for the pilot project through several

iterations on the dataset.

A commit can consist of modifications on many code files and lines, and hence,
more than one commit can be blamed for one bug-fix operation. Also, a bug-fixing
commit can fix more than one bug. There are many-to-many relationships between
bug-introducing commits and bug-fixing commits. In total, 394 bug-fixing commits

are linked to a total number of 296 bug-inducing commits identified via SZZ.

The final version of our dataset contains the development activity of 36 developers
made between November 2013 and May 2018, a total number of 1773 commits, and
296 bug-inducing commits. Figure 5.1 reports the distribution of bug-inducing and

clean (not bug-inducing) commits over time.

100

Type

l:‘ Bug-inducing

Clean

Number of commits
o
8

"

o o 2 P o o0 o0 o° o0 oM o5 o5 o o
y N y o < o < o <
RE oe® 4o RE oe® oF ! IS8 o o S o o o

Date

Figure 5.1 : A timeline of our SDP dataset that represents bug-inducing and clean
commits.

There are more commits and bug-inducing commits made in 2014 and at the beginning
of 2015 when compared to the lifetime of the project. The development team also
states that there was a productization for two customers from 2014 to 2015, and the
team later focused on improving and modifying the product. Therefore, the project’s
development activity was higher at the beginning. Later, the core requirements
decrease, but improvement requests increase over time, so do the bugs and fixes as well.

We don’t have any bug-inducing commits made after February 2017 in our dataset,
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even though the latest commits we collected go until May 2018. This is a natural
consequence of our bug-inducing commit detection mechanism. SZZ algorithm traces
back from the bug-fixing commits to find out the related bug-introducing commits.
Since we did not identify any bug-fixing commits at the later periods of the collected
data, bug-inducing commits could not also be traced back. This would eventually

affect the time period used to train and test our SDP model.

Please note that the statistics on the collected commits and the details on the process
metrics reported in this paper do not exactly match those reported in our prior
publication [148], since we filtered out some commits (i.e., test commits) after our
discussions with the development team. Also, the base metric set is updated when

transitioning the model from the prototyping to the deployment stage.

5.3.1.2 Base metric extraction

We extracted 12 process metrics from the collected commits in our dataset. These
process metrics measure software changes in four aspects; size, history, diffusion, and
the developer experience. The complete list of metrics and their descriptions are given

in Table 5.1.

Table 5.1 : Base metrics utilized in this study.

Metric Description (abbreviation)
Lines of Code added in a commit (ADD)
Size Lines of Code deleted in a commit (DEL)

Churn of commit: ADD + DEL (CHURN)
Number of modified files (NF)

Diffusion Number of modified directories (ND)

Entropy: distribution of modified code across each
file (ENT)

Number of developers had changed the modified files
(NDEV)

History Number of prior changes to modified files (NPC)
The average time interval between the last and the
current change (AGE)

Experience of developer (EXP)

Experience Recent experience of the developer (REXP)

Experience of developer the on a subsystem (SEXP)

130



We chose the metrics listed in Table 5.1 as our base metric set, since they are popularly

used, state-of-the-art metrics utilized in change-level SDP studies [30,109]-[113].

The Size metrics measure the number of lines of code added (ADD), deleted (DEL),
and changed (CHURN) in a single commit, and directly extracted from a commit’s log

kept by the version control system (Git).

The Diffusion metrics basically measure the distribution of a software change (commit)
across the modified file(s). Similar to the Size, the Diffusion aspect of a single commit
is also calculated directly from the commit’s log. NF is the number of files modified
in the commit, whereas ND is the unique number of directories where the modified
file(s) are located. The entropy of a commit (ENT) is calculated by utilizing the churn
(the number of total changed lines of code) of files modified in the commit by using

the formula in Equation 5.1.

NE file churn

ENT = Z prlog(px) where : py = (5.1)
k=1

commit churn

The History metrics measure the history of a commit through the modified file(s). We
traced back the modified file(s) across prior commits’ logs to calculate NDEV, NPC,
and AGE metrics. The formula used to calculate NDEV is NF/ (the number of unique
authors who previously changed the modified files). The formula used for NPC and

AGE metrics are given in Equation 5.2 and 5.3, respectively.

total number of prior commits on the modified files
NF

NPC =

(5.2)

Zyi number of days since the last commit f
NF

AGE = (5.3)

The Experience metrics measure the experience of the developer who made the change
(commit) using the contribution history of the developer. EXP metric is the count of
prior commits made by the developer, while the SEXP metric is the count of prior
commits that modifies the same subsystem(s) modified in the current commit. The
subsystem in which the modified file is located is identified by parsing the full name

of the file. For instance, the subsystem of a source code file “X/Y/Z/fileName.java” is

131



determined as “X”. REXP metric is calculated similarly to EXP metric, but the recent
commits of the developer have more importance than the older commits. A commit’s
importance is calculated using the formula given in Equation 5.4. The time difference
between the current commit and a prior commit is measured over three months time
intervals. Therefore, the importance of a prior commit decreases every three months

while going back through historically.

prior commitsy 1

REXP = Z
)4

(5.4)

1+ |p — current commity| %3

The calculations of the two process metrics (REXP and SEXP) listed in Table 5.1 are
adjusted according to the pilot project’s process and file structure. REXP metric is the
same as EXP, but it gives a higher weight to the recent commits of the developer. To
define ‘recent’ experience, we agreed with the development leads, based on the commit
distribution over time in our dataset (Figure 5.1), that it should be set to the last three
months. Besides, the number of subsystems (NS) metric is removed, and SEXP metric

is re-calculated to better represent the file/module structure of the software project.

5.3.2 Initial prototype SDP models

During the research phase of our project, we investigated various model building
approaches and techniques to propose a successful change-level defect prediction

model for our industrial partner’s pilot project.

We extracted additional metrics besides the base process metrics (Table 5.1) in order
to improve the prediction performance of the SDP models by utilizing various and
multiple data sources [148]. First, we extracted five new numeric latent features from
the 12 base metrics (Table 5.1) using non-negative matrix factorization (NNMF) [160]
in order to capture potentially hidden information. Second, we extracted semantic
features from the commits’ textual messages through topic modeling. However,
Information Gain (InfoGain) [141] analysis reported in our prior study [148] shows
us that the semantic features are not important as the base and latent metrics for
the prediction of bug-inducing changes in our dataset. Considering the additional

calculation effort of semantic metrics and their lower contribution to the performance
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of the defect prediction model, we proceeded to the deployment phase by utilizing only
the base metrics and latent metric sets. The technical details on the extraction of these

additional metrics can be found in our prior study [148].

We trained our SDP models using machine learning algorithms that are successful in
the SDP studies, namely Naive Bayes (NB), Random Forest (RF), Logistic Regression
(LR), XGBoost. The NB algorithm is more lightweight in terms of training and
prediction when compared to RF, LR, and XGBoost, and models built with NB produce
higher performance values in our context [148]. So, we chose to deploy the SDP model

built with NB.

We applied two different data filtering approaches before training the SDP models:
Log filtering and feature ranking. Selecting the top features using InfoGain gave
inconclusive results, whereas applying log filter to the metric values improved
the performance up to 20% when prediction models were trained with NB [148].
Therefore, we decided to apply only the log filtering approach on the final set of metrics

(base and latent factors).

We proposed various types of SDP models to our industrial partner; a personalized
model (PM), a general model (GM), and a selected general model (SM). Different
types of models use different train data, and their output has different targets. More
specifically, a PM is trained for each developer in the team to give recommendations to
the relevant developer only, by using the developers’ own commit history solely. The
GM model is a typical, traditional defect prediction model; it learns from the whole
teams’ commit history to give recommendations to any developer in the team on their
future commits. SM is a variant of the general model trained with a selected set of

developers’ (top contributors) development activity.

We chose the most promising approach in terms of prediction performance for
deployment; GM and SM. During the deployment, we observe that GM performs better
and is more robust than SM. GM utilizes more diverse data during training, whereas
SM utilizes a subset of commit history according to the selected developers for the

specified commit period. Accordingly, we deployed the GM as our primary prediction
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solution, whereas the SM is currently under beta testing in the company. In this study,

we only focus on the deployment and assessment of GM.

We assessed the performance of the model prototypes using two different validation
strategies: 1) K-fold cross-validation, and 2) Offline time-sensitive validation.
According to the results, we preferred to choose the offline time-sensitive approach

during prototyping.

Time-aware model training and validation approaches are suitable for such cases in
which data instances have temporal properties. We named our time-sensitive validation
approach as offline time-sensitive prediction during prototyping to emphasize its
difference from the online time-sensitive prediction approach used for deployment
in the rest of the paper. The offline prediction refers to training the model with
the commits taken from a prior time period using their ground truth class labels,
and predicting the commits in the next time period. In other words, ground truth
labels (bug-inducing or clean) of commits are known from the beginning of the model
evaluation, and the training and test sets are formed according to the times of the

commits only.

5.4 Deployment with an Online Prediction

Together with the development team of our industrial partner, we have decided
to integrate the SDP models chosen among the proposed prototypes into a test
development branch of the pilot software project. Using a test branch at the beginning
of the deployment gives us the opportunity of testing the integrated model and the
operation of our solutions by simulating the real development environment of the
company as accurately as possible. In later stages, the company aims to integrate the
SDP solution into their main development branch in order to use the solution prior to
their code review activities. The plan is to assist the code reviewers with the predictions

of the SDP model.

Initially, we integrated a set of pre-trained models into the development environment
of the pilot software project. The integrated SDP models are trained with the

commit activity we already collected at the beginning of our research. However,

134



the development team needs a sustainable solution that also learns from the recent
development activity. Therefore, we design a solution that collects the recent
commits of the project periodically and feeds the SDP model with the newly collected
information. The integrated solution collects the recent commits, and extracts the
process metrics (see Table 5.1) and latent features of those metrics. It also labels
the bug-inducing commits among the collected commits using the SZZ algorithm,
and re-trains the SDP model with all the historical information as well as the newly

collected commit activity.

At this point, we need to make two design decisions for the deployment: 1) how often
the SDP model should be updated (re-training), 2) what part of the commit data should
be used during the model update. The first decision matters because we aim to update
the deployed model frequently enough to learn from the recent software changes so
that we do not compromise on the prediction performance, while we should avoid too
frequent model update cycles. The second decision also matters because, in real life,
we do not know whether the incoming commits are actually bug-inducing or not until
a JIRA issue is associated with a bug-fix. So, the commits included into the training
must be accurately labeled. This way, we would mitigate the impact of misclassified

commits on the prediction performance.

We elaborate on these design decisions during an online prediction strategy we
proposed for our industrial partner. We use the online prediction strategy to understand
the real-life performance of the SDP model along with an empirical investigation on

these deployment decisions.

5.4.1 Online prediction

We evaluate the deployed SDP model with an online prediction because the offline
prediction used during prototyping does not reflect the structure of the real-life
development environment. The key point of an online prediction is that it simulates
the real-life data flow: it trains the prediction model with the available information
at a specified time [29,182]. However, the offline prediction, i.e., cross-validation or
offline time-sensitive approach, utilizes batch data containing the final, ground truth

information. Even though the offline time-sensitive approach takes into account the
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temporality of commits while splitting the data, it still introduces a measurement bias
regarding the labels of training data instances. In the offline time-sensitive approach,
we split data into many pieces over time: #q, f;, ..., t,. To make a prediction for the
commits at 7, the training set contains metrics reflecting the commits done until #,
whereas their class labels are not taken as the values are known at the time #;. On the
contrary, the actual class labels of the training instances, which may be found out after
tx, are fed into the model. Thus, even though the time splits help to feed the model
with consequence commits, their labels do not reflect the actual scenario. In real life,

the class labels of the commits must represent what we know at the time ;.

Furthermore, bug-inducing commits require some time to be detected based on the life
cycle of the bugs in a software system. The basic life cycle of a bug starts when a
bug is introduced into the system by a developer through a commit. Then, that bug
is discovered by a team member (often testers) and reported as an issue. Lastly, the
reported bug is fixed by a developer. Using SZZ, we are able to utilize the bug-fixing
commit to find the corresponding commits inducing that bug. Therefore, the bugs
could not be linked to their fixing and inducing commits until they are fixed. So,
in an online prediction strategy, some commits may look clean at any point in time,
although in later fixing commits, it may be found out that those commits were actually

bug-inducing.

Figure 5.2 shows the time required to fix a bug after it was injected into the selected
pilot project. This figure indicates that the time required to discover a bug is 103
days on average (approximately three and a half months) and a median of 195 days
(approximately six and a half months). Also, it goes up to 1325 days (approximately

three and a half years) to find out a bug-inducing commit associated to a fixing commit.

Since it takes time to detect changes that cause bug(s), i.e., 195 days (median),
keeping a temporal gap between the train and test data is reasonable regarding the
deployed model’s prediction performance. On the discovery of bug-inducing commits,
Cabral et al. [168] suggest that accepting the bug-fixing time duration as 90 days

is an appropriate choice in open-source systems. But, in this study, we want to
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experimentally find a convenient time gap that filters out the noisy training labels

during the model learning process for our selected project’s context.
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Figure 5.2 : A timeline of the time difference (in days) between the bug-inducing and
fixing commit pairs.

Figure 5.3 shows the overall design of our online prediction strategy against the offline
strategy. The train set in both prediction strategies involves the same commits in their
training set, but the labels of bug-inducing ones might be different. While the commit
labels are determined using the information known at the prediction time during the
online model training, the ground truth labels of the commits are used to train the SDP
model during the offline model training. We set the initial training set’s length to four
months, and it contains a total number of 166 commits for both prediction strategies.
Due to the difference in labeling mechanism, there are four bug-inducing commits
in the initial training set of the online prediction, whereas there are 33 bug-inducing
commits during the initial model training of the offline prediction. Moreover, we set a
gap called Train-Test (TT) Gap in the online strategy, whereas this gap does not exist in
the offline strategy. As we move to the next time frame (t+UP) in Figure 5.3, a portion
of the unused commits from the TT gap is added to the training set (assuming that their
labels are identified during the TT gap duration). The model is then re-trained using
these additional training data, and tested on a new test set. More details on TT gap and

UP parameters are given below.

Train-test (TT) gap: Due to the time required to discover bug-inducing changes in
the software, SDP models may learn from noisy data since there is a high chance that
some data instances utilized during training are very likely to be mislabeled as clean.

The training set inevitably contains noise to some extent, but we aim to reduce this rate
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Figure 5.3 : Demonstration of the online and offline prediction strategies.

of mislabeled instances in the training set. Therefore, in the deployment environment,

we exclude the potentially noisy data during the model re-training.

We use the online prediction strategy to decide how much data we should exclude
during model re-training. We define an unused time gap between the training and the
test set and call it TT gap that demonstrated in Figure 5.3 as TT Gap. Here, we aim to
keep a distance between the last training instance and the first test instance based on
the statistics observed in Figure 5.2. Setting the TT gap to an average of three and a
half months would be the first choice. However, we aim to observe the effect of various
lengths of the TT gap on the prediction performance to set the most convenient TT gap
for the deployed model. We executed the online prediction experiment multiple times
by setting the TT gap from zero (0) month to 10 months. Please note that, the metrics
of the commits in the test set are calculated considering the total number of all prior

commits.

Update period (UP): Another parameter we use in our online prediction design is the
update period, UP in short. The value of UP determines how frequently the model is
fed with new commits. UP parameter was also used by Tan et al. [29]. Figure 5.3
demonstrates three iterations of the online prediction. The first iteration of the online
prediction experiment runs at time #, the second iteration runs at time ¢t + UP, and the
third iteration runs at time ¢ + 2*UP. Suppose we set the UP to one day, that means
our SDP model is updated every day: the initial SDP model is built on time ¢, the first
model update is conducted one day later at time ¢ + / day, and so on. Consequently,

UP also determines the approximate amount of the new commits included into the
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training set during the model update, as well as the length of the test set. If the UP
is one day, that means our test set in every iteration contains the commits done on the
specified day only. Similar to TT gap parameter, we assess the effect of UP on the
prediction performance by setting UP to 1-day, 3-day, 5-day, 7-day, 10-day, 14-day,
30-day, 60-day, and 120-day.

We would like to mention that the online prediction strategy used by Tan et al. [29]
is also very similar to ours. Both designs keep a time gap between the training and
test sets to avoid the potential impact of mislabeled data instances (TT Gap in our
study) on the prediction performance, and uses a parameter to define the period of
the model update (UP in our study). The main difference between the two online
prediction designs is the labeling of the software changes (bug-inducing or clean). Tan
et al. [29] indicate that their online prediction determines the labels of the training
instances based on the information at the /ast commit of a test set. However, this
implies that the prior commits in the test set are predicted by a model trained with
future observations. Our approach, on the other hand, updates the labels of training
data instances based on the observations at the model update day, which corresponds
to the first commit in the test set. Therefore, we believe our design reflects the real-life

development environment more precisely.

5.5 Methodology

We focus on three research questions in this study to assess our design decisions during

SDP model deployment:

* RQ1: Does the performance of the proposed SDP model assessed with the offline
time-sensitive prediction strategy represent that with the online time-sensitive

prediction strategy?

* RQ2: To what extent does the train-test gap affect the performance of the deployed

model?

* RQ3: What impact has the update period of the proposed model on the prediction

performance?
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To answer our RQs, we setup an experimentation that contains multiple runs of
the online prediction described in Section 5.4.1. The online prediction takes two
parameters: TT gap and UP. Both parameters take various values in order to see
the effects of these parameters on the prediction performance. In total, the online
prediction strategy is assessed using 11 different TT gap values, namely O-month,
1-month, 2-month, 3-month, 4-month, 5-month, 6-month, 7-month, 8-month, 9-month,
and 10-month, and nine different UP values, namely 1-day, 3-day, 5-day, 7-day, 10-day,
14-day, 30-day, 60-day, and 120-day. In total, we investigate a total number of 99
(11 x 9) variations of the online prediction model. The results are used to address
all three RQs. Additionally, to answer RQ1, we used an offline prediction strategy
demonstrated in Figure 5.3. This offline prediction design is a variation of the offline
time-sensitive prediction approach we used during model prototyping. We include
a new parameter UP to the offline time-sensitive approach during prototyping, to be
able to make a fair comparison between the offline and online prediction approaches.
The offline prediction strategy is also assessed using nine different UP values: 1-day,
3-day, 5-day, 7-day, 10-day, 14-day, 30-day, 60-day, and 120-day. We assessed the
performance of the SDP model achieved with both prediction strategies using the

model assessment methods listed in Section 5.5.1.

Particularly in RQ1, our aim is to observe whether the performance of our SDP
model prototype in an offline training strategy reflects the potential performance of
a deployed model. To answer this RQ, we compare the prediction performance of the
proposed SDP model achieved between the online and offline prediction strategies.
Both strategies start building the initial SDP model with the first four months of
the development activity, then update the model through iterations based on the
UP parameter, by including new commits to the training set. Finally, we report
the performance achieved by both strategies, for various UP and TT gap values as
heatmaps in Section 5.6.1 (Figure 5.4). We want to note that the test set of the offline
and online experiments except the Online (0) may not contain the same commits. Here,
our aim is not to make a one-to-one statistical comparison of the offline experiment
with each online experiment. Instead, we want to understand whether the offline

validation strategy could represent the real-life prediction performance.
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In RQ2, we aim to observe the effect of various TT gap values on the prediction
performance of the SDP model to choose a convenient length for TT gap for the
deployment. We analyze the impact of various TT gap values using 1) performance
heatmaps reported in Figure 5.4 and 2) Scott Knott ESD analysis reported in Figure
5.6. During the Scott Knott ESD analysis, we aggregate the performance values of
online experiments over UP parameters. We only consider the identical commits across
the experiments with various TT gap values to fairly observe the effect of different TT

gaps. The results of these analysis methods are reported and discussed in Section 5.6.2.

In RQ3, we aim to identify the most suitable UP for deployment by analyzing the effect
of the various UP values on the prediction performance. For assessment, we conduct
Scott Knott ESD analysis whose findings are also reported in Figure 5.7 in Section
5.6.3. We aggregate the performance values of online experiments over all TT gaps

during the Scott Knott ESD analysis.

5.5.1 Model performance assessment

We assess our SDP models using six widely-used performance measures in the SDP
literature: Probability of detection (pd), probability of false alarm (pf), precision,
F-measure, Area Under receiver operating characteristics Curve (AUC), and Matthew
Correlation Coefficient (MCC). Pd, pf, precision, F-measure and MCC values can be
calculated by using the equations given in Table 5.3 over a confusion matrix [183]. A

sample confusion matrix is given in Table 5.2.

Table 5.2 : Confusion matrix for the defect prediction problem.

Actually bug-inducing Actually clean

Predicted as bug-inducing tp (true positive) fp (false positive)
Predicted as clean fn (false negative) tn (true negative)

Pd measures the ratio of the detected bug-inducing changes over all existing
bug-inducing changes in the dataset. Pf measures the number of bug-inducing changes
that are mistakenly classified as bug-inducing over all existing bug-inducing changes in
the dataset. The pd values of SDP models are expected to be high, while the pf values
are expected to be low [50]. Precision represents the ratio of actual bug-introducing

changes over all changes defected as bug-introducing, whereas FI-measure is the
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Table 5.3 : Equations for pd, pf, precision, F1-measure, and MCC.

Measures Formula
tp
pd tp+fn
pf fp
fpt—l—tn
. . p
recision —
precisio TP

2k precisionspd
F1-measure precision+pd

MCC tpxtn—fpxfn
\/(tp+fp)*(tp+fn)x(tn+fp)*(tn+fn)

harmonic mean of precision and pd. MCC measures how well a predictor makes binary
classification [137]. Its value ranges between 1 and -1. The value of 1 represents a
perfect classification, while -1 represents a completely wrong classification. AUC is a
measure of the area under the ROC curve, and used to judge the discrimination ability
of the predictor between classifying a commit as bug-inducing and not bug-inducing

[184].

Researchers pursue the ideal case (high pd and low pf) for an SDP model’s
performance. But in practice, reaching the ideal state is not easy. Because when
correctly classified bug-inducing changes increase, the false alarms, i.e., incorrectly
classified ones as bug-inducing, also increase. This trade-off has been discussed both
in machine learning [185,186] and software engineering domain [13,187]. Studies
state that teams would prefer a model with high pd rates with the cost of high false
alarms in a safety-critical or a mission-critical software project. On the other hand, a
more cost-effective SDP solution would be to have fewer false alarms with the cost
of low pd rates. Considering our industrial partner’s viewpoint, we focus on both pd
and pf when choosing the best model prototype among all the evaluated models. Our
industrial partner prefers considering the pd and pf equally during the assessment of
prototypes. Since our partner has a medium level of risk tolerance, we seek prototypes

with a high pd and an acceptable cost of pf rate for the final deployment.
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5.6 Results and Discussion

5.6.1 RQ1: Does the performance of the proposed SDP model assessed with
the offline time-sensitive prediction strategy represent that with the online

time-sensitive prediction strategy?

In Figure 5.4, we report the performance of the SDP model for both prediction
strategies (offline and online) as heatmaps. Each heatmap in the figure reports the
performances of the SDP model measured by one of the model assessment metrics we
used in our study (pd, pf, precision, F1, AUC, and MCC). The x-axis of a heatmap
corresponds to the experiments we conducted: an offline prediction experiment and
online prediction experiments with various TT gap values. The y-axis of a heatmap
corresponds to the UP values used in both online and offline predictions. Each cell in
a heatmap shows the prediction performance of the SDP model achieved with the TT
gap value (only if it is an online prediction) and a UP value combination. Cells with
darker grays represent higher performance values, whereas the lighter grays represent

lower values of performance.

For this research question, we do not aim to discuss the best TT gap or the best UP
value. We aim to observe how close we can reach to the model’s offline prediction
performance in real life as we change TT gap and UP parameters. Further, we do not
make a one-to-one statistical comparison of performance values obtained with offline
and online experiments. The structure of offline and online settings are different from
each other as reported in Section 5.4.1. Accordingly, the test sets utilized by online
experiments are different. Solely, the Offline and the Online (0) share the same test

set. We also elaborate on how we evaluate the results for RQ1 in Section 5.5.

Heatmaps show that our SDP model’s online prediction performance is initially lower
than the performance achieved during the offline evaluation. However, depending
on the TT gap and UP, the online prediction could achieve as good performance as
the offline prediction strategy. Particularly in the offline prediction setting, the SDP
model’s performance ranges between 65 - 76% pd, 52 - 56% pf, 33 - 38% precision,
40 - 48% F1, 60 - 67% AUC, and 0.10 - 0.18 MCC. In the online prediction, on the
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Figure 5.4 : Heatmaps of the performance achieved with the offline and online
prediction strategies using different TT gap and UP.
other hand, the performance ranges between 33 - 79% pd, 39 - 57% pf, 17 - 32%
precision, 27 - 45% F1, 42 - 67% AUC, and -0.06 - 0.21 MCC.

The online prediction reaches and sometimes exceeds the offline prediction
performance with larger TT gaps with respect to pd, AUC, and MCC. But an opposite
pattern exists with respect to precision and F1: The online prediction reaches offline
prediction performance mostly with smaller TT gaps. This is due to the natural
trade-off between hit rate (pd) and false alarm rate (pf) [185,187]. In the later RQs, we
would choose a model with the best TT and UP gap based on this trade-off. In terms
of pf, even the highest pf rates of the online setting (Online (3), Online (6), and Online
(7)) are lower than the pf rates obtained with the offline setting. This is a positive

finding regarding the potential review cost of the deployed model.

144



Regarding the UP parameter, the models, namely Offline and from Online (1) to Online
(7) perform similarly. Better prediction values are achieved with larger UP values, i.e.,
60-day or 120-day in terms of pd, precision, F1, AUC, and MCC, but also higher pf
rates are obtained. The models, namely Online (0), from Online (8) to Online (10),
achieves better performance when the SDP model is updated more frequently, i.e.,

every day or every 14 days.

5.6.1.1 Discussion on RQ1

We want to investigate further whether the predictions of offline and online approaches
are consistent or fluctuates over time. Therefore, we additionally analyze the results
by splitting the predicted commits into time frames and calculate the prediction
performance for those splits. Figure 5.5 reports the models’ performance over different
time splits as boxplots. A boxplot represents the aggregated performance values of the
corresponding time split over all UP values. The x-axis of the plots represents the
beginning date of the prediction split. Each time split consists of 120 days for ease
of calculation. Here, we only report the performance of the offline and some selected
online experiments, namely Online (0), Online (1), Online (4), Online (8), and Online

(9), to save publication space.

The performance analysis over different time periods of the project in Figure 5.5
shows that the prediction performance fluctuates over time regardless of the prediction
strategy (offline or online). Often the maximum and minimum performance values
are common over all experiments. For example, considering the pd values, all
experiments’ performance fluctuates over time and peaks around November 2015
(i.e., 94% for offline and 90% for online prediction) and March 2017 (i.e., 100%
for all experiments). Considering the pf values, most of the experiments produce
an increasing rate of pf over time. Considering the precision and F1 values, both
offline and online models are able to reach more than 60% rates at first, while they are
inconsistent with regard to the time period, e.g., from 65% to 36% to 54% in terms of

F1.

Online (0) and Online (1) experiments produce low performance at the beginning of the

project compared to the Offline. The reason for such lower performance with the online
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than the Offline model. The online prediction produces up to 76% pd rate with Online

(9), whereas Offline produces 63% pd rate.

The performance of the SDP model with the online prediction strategy is
lower at the first year of the project due to low bug-inducing commit ratios
in training. After the first year, the performance achieved with the online
prediction strategy reaches and exceeds the performance achieved with the
offline prediction strategy. Furthermore, adjusting the length of the TT gap and
the UP parameter helps to improve the performance with the online prediction
strategy.

5.6.2 RQ2: To what extent does the train-test gap affect the performance of the
deployed model?

Heatmaps in Figure 5.4 show us an overall view of how the prediction performance
changes with various TT gaps. From the overall results, we observe that the SDP
model performs better when the models are run with larger TT gaps, i.e., 10-month, in
terms of pd, AUC, and MCC, whereas the performance in terms of pf, precision and

F1 is better with the smaller TT gaps, i.e., 1-month.

This picture shows the natural trade-off that occurs between the pd, precision, and pf
in imbalanced datasets (the ratio of bug-inducing instances to total commits in our
training sets is between 14% - 33%) where the majority of instances belongs to the

clean commits. We have already mentioned this trade-off in Section 5.5.1.

The higher pd rates may cause lower precision and higher pf rates, which is not an
ideally expected performance from a predictor. In practice, finding a balance between
the benefits of different assessment metrics is required due to the low possibility of
reaching the theoretically ideal case (high pd, low pf). Eventually, this trade-off
depends on the company’s choice. We assess our SDP models considering the balance
between the pd, precision, and pf. We pick an SDP model that produces as good pd

rates as we obtained with the offline strategy, while it does not lead to a high pf rate.

Furthermore, we observe that TT gap impacts the prediction performance of the SDP
model. Adjusting the length of TT gap would improve the prediction performance by
37% in terms of pd (Online (0) vs. Online (5-6-7) with 120-day UP), 15% in terms of
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F1 (Online (0) vs. Online (1) with 120-day UP), and 22% in terms of AUC (Online (0)
vs. Online (1) with 120-day UP).

We statistically group the prediction performance achieved with various TT gaps by
applying the Scott Knott ESD analysis to observe whether the impact of different TT
gaps is statistically meaningful and which TT gap values produce the best performance.
Due to different TT gaps, different commits are involved in the test sets of different
online models. For example, when the TT gap parameter is set to 10-month, the
commits used during the prediction are the commits done between January 2015 and
May 2017. When the TT gap parameter is set to 1-month, the commits used during
the prediction are the commits done between April 2014 and May 2017. Therefore,
to make a fair comparison of the effect of various TT gap values on the prediction
performance, we analyze their predictions only on the commits at the intersection of

all test sets.

The Scott Knott ESD analysis is conducted in terms of pd, pf, precision, F1, AUC, and
MCC, and reported in six plots in Figure 5.6. While the x-axis of each plot represents
the TT gap values (zero (0) to 10 months), the y-axis of each plot represents the mean
performance values of the SDP model. The length of the vertical lines represents the
distribution of the performance values over various UP values, while the dot on each
line represents the mean value of the performance. Colors of the lines represent the
statistical grouping among the performance gathered with various TT gaps: if two or
more TT gap lines are the same color, that means there is not any statistical difference

among the performance gathered with those TT gap values.

Colors in Figure 5.6 show that there are at least six statistically different groups, e.g.,
in terms of F1, among the online models regarding the TT gap. The statistically best
performing SDP model is achieved when we keep a 1-month time gap between the
training and test sets, in terms of pd, F1, AUC, and MCC. However, our SDP model
also reaches its highest pf rate with the 1-month TT gap. Besides, the 8-month TT
gap produces a lower pf rate and the best precision. In terms of F1, AUC, and MCC
the 8-month TT gap is among the top three best performing models. Although the

8-month does not give the best pd (78%), considering the trade-off between pd and
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Figure 5.6 : Scott Knott ESD analysis of performance with different time gaps
between train and test sets.

other measures, 8-month is decided as the most convenient option for this industrial

context.

r )

Keeping a TT gap affects the prediction performance of the SDP model
differently. Some TT gap values degrade the performance, e.g., 5-months
in terms of pd, precision, F1, AUC, and MCC, whereas others improve the
performance, e.g., 8-month in terms of precision. Considering the performance
values and the trade-offs between model assessment measurements, we set the
TT gap to 8-month for the deployed SDP solution.

5.6.3 RQ3: What impact has the update period of the proposed model on the

prediction performance?

Performance values reported in heatmaps (Figure 5.4) show that the effect of the UP
value on the prediction performance would be 18% in terms of pd, i.e., Online (9)

produce 79% pd rate when UP is set to 14-day and 61% when UP is set to 120-day.

Figure 5.7 shows the Scott Knott ESD analysis for all the UP values. Similar to
the Scott Knott ESD analysis in RQ2, each plot in the figure shows the prediction

performance measured by a different performance assessment metric, i.e., pd. The
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x-axis of each plot represents the UP values, whereas the y-axis of each plot represents
the prediction performances of the proposed SDP model gathered by setting the UP
to a particular value. Please note that the prediction performance with each UP is

aggregated over all the TT gap values.
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Figure 5.7 : Scott Knott ESD analysis of performance using different update
frequencies.

The statistical groupings in Figure 5.7 show that the impact of the most UP values are
statistically different from each other in terms of pd, pf, and F1. On the contrary, most
of the UP values have the same impact on the prediction performance according to
the precision, AUC, and MCC results, i.e., updating the model every ten, seven, three,
one, 30, 90, or 120 days yields statistically the same performance in terms of precision.
Furthermore, setting the UP parameter to 14-day, 60-day, and 120-day provides quite
promising prediction results compared to the other UP values. Among those best
performing UP setups (14-day, 60-day, and 120-day), 14-day seems a better choice
than others since it is statistically one of the best performing model in five out of six
model assessment measures (66% pd, 23% precision, 35% F1, 60% AUC, 0.15 MCC).

At the same time, it provides a relatively lower pf rate (48%).
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5.6.3.1 Discussion on RQ3

Before setting a decision on UP for the deployment, we assess the effect of the UP
parameter on the prediction performance considering only the Online (8) model, since
we chose to set the TT gap as 8-month for the deployed model according to the results
of RQ2 (Section 5.6.2). When we consider the performance of the Online (8) model in
Figure 5.4, we observe that there are many UP values that give quite promising results.
In particular, setting UP to 3-day or 14-day reports similar performance with pf of
47-48%, precision of 23-22%, F1 of 34%, AUC 63-66%, and MCC of 0.19. However,
3-day UP gives significantly the best pd (81%) compared to 14-day (78%) according to
additional Scott Knott tests. When we also assess the performance of Online(8) with
UP values of 3-day and 14-day over different time splits, as we did for the TT gap
shown in Figure 5.5, we observe that 3-day has a better performance in the majority of
the splits. Considering the pd values corresponding to March 2015 split, while 14-day
UP produces 54% pd rate, 3-day UP produces 85% pd rate. Therefore, updating the
deployed model every three days is a more convenient choice when considering UP

and TT gaps.

Update period significantly affects the prediction performance of the online
SDP model. Adjusting the UP parameter provides a gain improvement of 18%
in terms of pd. Setting the UP parameter to 14-day leads to one of the best
performing models in terms of pd, precision, F1, AUC, and MCC. However,
when combined with our online model with an 8-month TT gap (in RQ2), 3-day
is the best UP value in terms of pd rates. Therefore, we decide to update the
deployed model every three days.

5.6.4 Effort-aware performance assessment

Effort-aware performance evaluation is another popular method to assess the
performance of change-level SDP models in the field [16,130,132]. The effort-aware
assessment basically reflects the total effort spent on code inspection during the code

review activities.

We conducted an effort-aware assessment of our prediction model using a similar
calculation to prior change-level SDP studies [16,130,132]. Effort-aware assessment

produces a value representing the percentage of total bug-inducing changes that could
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be detected by examining only 20% of the total lines of code (LOC) during the code
review. Accordingly, we first calculate the benefit-cost ratio for each commit in the
test set using the formula of P(c)/Effort(c). P(c) is the probability, between 0 and
1, which represents the bug proneness of a commit ¢. E ffort(c) is the total number
of changed lines (added and deleted) in the commit c¢. Second, we rank the commits
in the test set based on their calculated benefit-cost ratio values in descending order.
Third, we count the number of bug-inducing commits that could be detected when only
20% of the total effort is spent on code inspection (when the commits are inspected in

descending order of their benefit-cost ratio).

The effort-aware assessment is made for each offline and online experiment with
various TT gap and UP values. Figure 5.8 reports the effort-aware performance values
as a heatmap. The x-axis corresponds to the different experiments with various TT gap
values. The y-axis shows the UP values used in the experiments. Values in the heatmap
cells indicate the percentage of the total bug-inducing changes in the software could be

detected by examining only 20% of the total LOC for the corresponding experiment.
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Figure 5.8 : Effort-aware performance.

Values reported for the offline prediction in Figure 5.8 are between 58% and 64%.
While the values reported for online prediction are between 30% and 67%. Similar to

the results reported in Figure 5.4, Figure 5.8 also shows that the online prediction with
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lower values of TT gap (i.e., Online (0)) produces lower performance, while keeping

higher TT gaps (i.e., Online (8)) leads to improvement in prediction performance.

Furthermore, the values we pick for TT gap (i.e., 8-month) and UP (i.e., 3-day) for the
deployment is one of the best options according to the effort-aware assessment. We
are able to detect 55% of the bug-inducing changes with the Online (8) experiment
and 3-day UP. Also, a Scott Knott ESD analysis of the effort-aware assessment results
supports the findings obtained with the other assessment metrics reported in Sections
5.6.2 and 5.6.3. While 8-month becomes the second best TT gap statistically, 3-day is
the third best one among UP values. Please note that the overall statistical analysis is
not our only consideration for deployment decisions. We also consider the consistency
of prediction performance over time for picking a UP value, as we discussed in Section

5.6.3.1.

5.6.5 Sampling for class imbalance problem

SDP studies often suffer from the imbalanced nature of the collected datasets (e.g.,
[16,80,100]). Usually, the number of buggy data instances, i.e., commits, is much
lower than the number of clean instances. This situation may prevent building an
SDP model that successfully learns to classify future buggy instances with a good

performance.

Our collected dataset for this study also has an imbalanced nature. Accordingly, the
defected commits constitute 14% to 33% of the total commits in training sets. Due
to the imbalanced nature of our data, we want to observe if we could obtain better
prediction performance values if we balance the ratio of commits in our training sets.
We would like to note that, inspired by a recent study [168], we analyze the evolution
of the imbalanced ratio of training sets over time. Our longitudinal analysis shows that
after April 2014, the imbalanced ratio of the training sets is fixed to the range of 28%
- 33%. Accordingly, we apply two data sampling techniques that are commonly used
for improving the SDP performance: under-sampling and SMOTE (Synthetic Minority
Oversampling Technique (SMOTE) [145]). Under-sampling randomly removes clean
commits until the sample sizes of clean and bug-inducing commits are equal. On

the other hand, SMOTE creates synthetic bug-inducing commits while also randomly
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removing the clean ones. We report our prediction performance values obtained with

data sampling in our online Appendix [188].

The prediction results with the balanced training sets show that applying data sampling
affects our SDP model’s prediction performance inconclusively for some TT gap and
UP values. Data sampling does not provide an obvious advantage over no sampling in
our study. Also, none of the two sampling techniques increases the performance for
our deployed model. For these reasons, we did not change our sampling strategy for
our deployed setup. Particularly, under-sampling increases the pd rates by up to 48%
of SDP models trained with larger UPs, i.e., 90-day and 120-day. On the other hand,
under-sampling also causes a decrease, up to 26%, in the pd rates of some models
with small UPs. The cases with larger UP values have more imbalanced training
data compared to other cases with smaller UPs due to the lack of updating training
data for a longer time. Therefore, applying under-sampling on highly imbalanced
training sets improves the pd rates in our study. Nevertheless, under-sampling
significantly increases pf rates up to 65%, and these rates are not applicable in practice.
Since under-sampling increases both correct and wrong classification rates, prediction

performance according to other measurements, i.e., F1, does not change much.

On the other hand, SDP models trained by applying SMOTE produce lower pf rates,
i.e., 22%, which is the desired situation. But, using SMOTE during training is also
not our choice due to decreasing performance values in pd and F1. SDP models with

SMOTE produce up to 30% lower pd rates compared to models with no sampling.

5.7 Threats to Validity

Internal validity: During our data collection, we ensure that we correctly identified
the bug-inducing commits of the pilot project and cover all of them. We apply the
state-of-the-art methodology (SZZ) for determining the bug-inducing commits using
the issues only reported in ‘bug’ category in JIRA. Besides, the team lead at the
industrial side manually examined the commit messages to capture bug-fixing commits
that were not linked to any bug issue. Moreover, we filtered out the non-development

software changes from the collected dataset to ensure the data quality.

154



Construct validity: The proposed SDP model is built using the state-of-the-art process
metrics, which are listed in Table 5.1 and their latent features of them. Those process
metrics are widely used in SDP studies, accepted as good indicators of bugs at
change-level prediction models (i.e., [16,27]) and quantifies the software changes from
various aspects; size, history, diffusion, and experience of the committer. This metric
set was also assessed by the research team of our industrial partner in order to adjust
the metric set according to the structure of the pilot project. Moreover, we included
the latent features of the process metrics into the model building process in order
to capture potentially hidden, underlying information that the base metrics set may
not capture. Latent features are extracted using Non-negative Matrix Factorization
(NNMF) [160]. NNMEF is used to learn low-rank approximations of the given data,
and it is a well-known technique used for pattern recognition tasks [156] and building
recommendation systems [157]. SDP models reported in this study are built with
the NB algorithm, which is widely applied in many SDP studies and proved to be
successful [50]. Prototype SDP models built with NB also perform better than the

prototypes built with the RF and XGBoost algorithms.

Bug-inducing software changes are detected with the SZZ algorithm, which is the
state-of-the-art way to detect the bug-inducing changes of software. We implemented
the original version of SZZ [116]. SZZ detects buggy changes using a heuristic
approach, and hence it may cause mislabeled changes. Various implementations of
SZ7 are used by different researchers [149]. However, according to Fan et al. [151], the
original SZZ [116] does not yield a significant performance reduction in change-level
SDP due to the noise in the change labels. Nugroho et al. [189] also investigates two
different git diff commands, i.e., Myers and Histogram in SZZ and discuss that the
type of diff command might have an impact on the results of SZZ. We use the default
git diff command Myers. Moreover, we ensured the data quality by asking the team
at the industrial side to go through all the commits manually. It is our future research

direction to analyze different diff commands.

External validity: We use the online prediction strategy to assess the design decisions
required for the deployment of the SDP model. The deployment decisions we made

in our study are specific to the characteristics of the pilot project selected in this
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work. Thus, the findings cannot be generalized to other software projects, but the

methodology can be transferred to other settings when deploying an SDP prototype.

Conclusion validity: For comparing different models’ performance in Sections 5.6.2
and 5.6.3, we applied the Scott-Knott Effect Size Difference (ESD) test implemented
by Tantithamthavorn et al. [82]. This test provides a statistical comparison among
the performance achieved by different variations of the online prediction models.
We made sure the test sets are the same across different models’ assessments, and
report according to the statistically significant differences only. Moreover, we chose
well-known performance assessment measures widely used in SDP literature: pd, pf,

precision, F1, AUC, and MCC [105].

5.8 Lessons Learned

During our research, we learn that deploying a change-level SDP model into an
industrial context requires rethinking and redesigning the traditional techniques that
have so far been used in the SDP research. Besides, communication and understanding
the industrial perspective are keys of proposing and deploying an SDP solution to
an industrial team. In this section, we share our learned lessons from practicing
a change-level SDP model in an industrial context. Key points to take away from
our experience and key suggestions to build future change-level SDP models in our

industrial context are summarized in sub-sections.

5.8.1 Mind the difference between industrial and academic views

The perspectives of industrial and academic teams might be different from each other
in research partnerships [48]. Even though the software engineering research field
mostly focuses on practical problems, it is not always easy to look at the problem from
an industrial/practical perspective by academic researchers and vice versa. Here, we
share our experience that would help other researchers while practicing a change-level

SDP model in an industrial setting.

Deploying a consistently successful, user-friendly, and trustable SDP model is not
a smooth task. It requires the involvement of the industrial side during different

stages of the partnership, i.e., data collection to deployment, as situations might occur
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where context-specific information is needed, such as project and team development
structure. For instance, during the prototype assessment, the expectations from a
prediction model regarding its performance could be different between academia and
industry. While academia tends to value the prototypes that produce higher values of
performance values (i.e., pd), the industry might consider many other factors before
having a decision on a prototype. Instead of solely valuing the prototypes that produce
higher performance values, they also consider the time/cost of the model learning. For
instance, using a lightweight machine learning technique during the model training and
updating is very crucial from the industrial perspective. Also, as we report in Section
5.5.1, the trade-off between pd and pf rates is also considered carefully by the industry.
Practitioners would prefer a model that does not produce the best pd rate but have

acceptable false alarm levels.

The usability and interpretability of the prediction output are other factors that
academia and industry may have different perspectives. A researcher may find it more
appealing for the integrated SDP solution to list the prediction results from multiple
SDP prototypes, as she focuses on the continuous improvement of the SDP model.
However, in such a case, a practitioner in the development team would be confused by
seeing multiple prediction results for his/her changes. Therefore, for real-life practice,

synchronization of both perspectives is crucial.

The deployed prediction model should also “keep up with the fast pace of
development” [2]. Training a predictor and integrating it into the development cycle
may not lead to consistent prediction performance. The need for future updates in
the deployed solution may occur. Therefore, deployment is not a one-step task. It
requires multiple rounds of negotiations between academic and industrial teams to see
the needs of practitioners, and decide on the technical details. Active communication
is crucial for teams to be aware of the expectations of both sides. Regular meetings and
demonstrations of the current work as it matures are essential to be on the same page.
Those meetings allow us to receive the practitioners’ feedback on the functionalities
of the deployed solution, as well as helping practitioners to picture the capabilities and

limits of the SDP solution.
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Moreover, the cooperated company’s interest in the research and development
activities, and the interest and enthusiasm of team members on recent research trends
are other key factors that improve the communication and cooperation between the two
sides. More specifically, allocating resources such as equipment, working space, and

team members to support academics while working in the deployment are substantial.

5.8.2 Building an SDP solution requires full commitment of the industrial partner

During our research project, we faced several challenges from data collection
to deployment. Integrating a stable and sustainable SDP solution into practice
occasionally requires manual interventions and insights from experienced developers

of the software project.

The team at the industrial side helped our research during data collection by reviewing
the collected commits to assure the data quality. More particularly, they manually
marked the bug-fixing commits that cannot be linked automatically to the bug reports
collected from JIRA, checked SZZ results, and matched the multiple user accounts
used by a single developer during the development. We decided to filter bulk,
merge, and test module-related commits with the discussions at the meetings with the
industrial side. Another benefit of holding regular project meetings is that the expertise
of the developer team on the project provides us the early notice of the situations
that may cause problems. For example, at the very beginning of the research, we
realized that we collected the commits from some branches of the project instead of
all branches. Moreover, some project-specific challenges cannot be overcome without
the industrial team’s expertise, i.e., interpreting empty file names or file references to
external projects in the commit logs, accessing missing bug reports, matching multiple
usernames belongs to the same user, and differentiating the non-development commits.
Therefore, we think the development team of the software project, which is going to
use the SDP model, must be committed to be actively involved in every step of the
research project in order to monitor and give feedback to the research team. Otherwise,
the model built and assessed may resemble a prototype rather than a real recommender

system for the benefit of the developers.
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5.8.3 Context specific factors impact the performance of the deployed SDP model

The deployment related findings that we report in this study are specific to the
chosen pilot project’s context. Although our experience would be insightful for other
practitioners, each context requires its own analysis and consideration of the team’s

development practices.

The deployed SDP solution with a TT gap of 8 months and a UP of 3 days achieves
around 81% pd rate and 47% pf rate. However, the deployment design decisions has
a varying effect on the prediction performance, as our online models show. Avoiding
the model learning from the noisy (undiscovered bug-inducing commits) data (with a
TT gap) would improve the pd rate by 37%, while updating the prediction model with

recent development activity (with UP) affects the pd rate by 18% (see Figure 5.4).

We observe that not only the TT gap and UP parameter, but also other project
characteristics significantly change the performance of an SDP model. Considering
the project’s development intensity over time, i.e., number of daily commits, number
of active contributors at any time, or the average time required for fixing bugs would be
helpful to set up a successful SDP model in practice for a software project. In fact, the
characteristic of a software project follow different patterns at different times [133].
Therefore, the factors such as bug life cycle characteristics and the development
activity patterns also cause performance fluctuations over time splits. Our empirical
analysis shows that those fluctuations exist regardless of whether an online or offline
prediction is used (in Figure 5.5). For example, during 2014 - 2015 there are bulks
of bug-inducing and clean commits in the dataset (in Figure 5.1) because of active
development and testing process due to the initial productization. It is possible that
these bulk data cause the performance fluctuation of the SDP model. Such active
development and testing periods are inevitable since the team still receives large
requests from customers and increases the development activity by also increasing
the number of developers involved in the team. So, future fluctuations are also highly
possible in deployed model’s prediction performance. Therefore, the time gaps, update

frequencies, development activity and bug-fixing and bug-introducing patterns, and
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more contextual factors should also be considered in building a deployed model in any

industrial context.

5.8.4 Focus on user-centric evaluations

Until deployment, the prediction performance of the SDP models is evaluated with
respect to the correctness aspect [40], namely pd, pf, precision, F-measure, and MCC.
Besides evaluating the SDP models with those correctness measures, it is also critical
to evaluate a model from a user-centric point of view, i.e., the representation of the
prediction results should provide trustworthiness to the developers [40]. Previous
research also indicates the importance of producing the actionable prediction outputs

in order to gain the user’s trust in defect prediction solutions [29].

The proposed SDP solution is integrated into the development pipeline before the
code review process. The development team has a reviewer group that often involves
two or three developers. The essential aim of the deployed SDP solution is to assist
the reviewers during the code review process. The system, therefore, provides a
push-based notification after every commit. After a developer commits her changes,
the prediction model is triggered and produces a prediction output for her commit. The

code reviewers often use that feedback on the commits to assist their review process.

The leaders of the development team remark that they would prefer to see a bug
risk probability on the commits instead of giving a binary output that indicates the
committed changes are buggy or clean. Hence, we also provide the bug-proneness of
a commit with a probability value of the prediction output. In this way, the defect
predictor would turn into a system that supports developers during the code review

activity by giving soft feedback on the bug-proneness of their code changes.

Furthermore, the development team leaders also state the reviewer quality might affect
the usability of the prediction outputs. For example, the SDP model produces a
bug-prone commit alarm. But the reviewer might not be able to interpret the SDP
model’s prediction, i.e., she may be a newcomer and has not much expertise on the
project, which makes it harder to interpret the prediction outputs for the code review

process. Therefore, we focus on improving the interpretability of the prediction
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output to provide more actionable predictions. We enrich the prediction output
with by-products, e.g., process metrics calculated for the software changes. For the
development team, these by-products are considered as useful as the defect prediction
result itself. Since our SDP solution measures a software change from size, diffusion,
historical, and experience of the committer aspects, enhancing the prediction report
by including those metrics’ values leads developers to a better understanding of the

characteristics of the bug-prone change.

We integrated all types of SDP approaches (i.e., general model, personalized model,
and selected model) proposed during the prototyping phase (Section 5.3.2) into the
development environment. During the early stages of the deployment, while testing
the deployed SDP models, the team states that it is hard to examine the multiple
prediction results gathered from different SDP models, especially when any two
models’ predictions contradict with each other. Accordingly, the team prefers to see
only one SDP model’s prediction results, which is the general model’s prediction, and

others’ outputs are removed from the feedback.

As future work, the software team lead also wants to see an information dashboard that
shows the core developers who contribute the most to the project, historical changes’
and their bug-inducing probabilities, and the distributions of the process metrics over
these historical changes. The usefulness of the SDP solution would be higher if this

additional information is also provided to the developers.

5.8.5 Trust the algorithm choice in the offline setting

In our research project, we initially built prototypes utilizing various machine learning
algorithms: Naive Bayes (NB), Extreme Gradient Boosting (XGBoost), Random
Forest (RF) and Logistic Regression (LR). After assessing the built prototypes using
the offline model validation strategies (cross-validation and offline time-sensitive), we
picked the best performing classifier to use in the deployment phase. We use NB
during deployment since it provides 70% pd rate, while other classifiers provide pd
rate around 50%. Still, we could ask whether another classifier may perform better in

the online prediction setting than NB.
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Our online prediction experiments using XGBoost classifier show that XGBoost leads
our SDP model to perform similarly both in offline and online settings, which is
still lower than the performance values achieved with NB. Therefore, we suggest
SDP practitioners who want to decide between classifiers assess the classifiers’
performance with an offline evaluation and later stick to the best performing one in
the online scenario. It would be more practical to assess various classifiers using
a cross-validation approach rather than evaluating them in a more complex online

prediction design.

5.8.6 Deployment is a continuous development

Machine learning models also require maintenance and continuous development, as
well as a typical software product. It is not much possible to receive successful
outputs from the initially deployed prediction models forever because the development
activity pattern of the project may change. To sustain the stability and accuracy of
the SDP solution, an examination may be required periodically. For example, we
decide on a set of deployment design decisions for now, i.e., TT gap and UP. But
those design decisions might require reconsideration in the future due to the potential
change of development patterns over time. Moreover, other factors of the prediction
model may also need to be reconsidered in the future, such as process metrics (Table
5.1). For example, the committer’s recent experience (REXP) is calculated considering
the recent three months of development history. The calculation rule of the REXP
metric was decided by the team lead intuitively, considering the average contribution
history of developers. However, in the future, depending on the developer contribution
patterns, its calculation rule may require a re-consideration. Besides, we utilize all
the historical development activity from the beginning of the project until the TT gap.
However, the number of commits in the project’s history may be too many in the future
and may prevent the SDP model update itself in a considerable amount of time. In
fact, using all historical commits may cause a performance drop in the future, since the

characteristics of the recent commits may differentiate from the oldest commits [167].

Furthermore, we integrate additional SDP models to obtain a more successful SDP

solution in the long run. During the prototyping phase, we propose three different
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SDP approaches (Section 5.3.2) and pick the best performing one (GM) to deploy
in the real development environment while the other two models (SM and PM) are
still in the test phase. GM is more robust and provides more accurate results. The
development team wanted a consistent prediction model but also wanted to integrate
the other models into a test branch of the development environment since the other
models also have promising results, i.e., the personalized model performs quite well
for some developers. Hence, we integrated the SM and PM as beta models, as well
as integrated the mature one, GM, as the default model. As future work, we plan
prediction outputs of the SM and PM will be optional that can be on/off depending on

the choice of the code reviewer.

5.9 Conclusion

Applying software defect prediction (SDP) in practice is a challenging process.
Producing accurate, consistent, and useful predictions depends on many aspects such
as data availability, characteristics of the project, the development team habits, and
representation of the prediction output. This paper reports our experience in deploying
a change-level SDP model into our industrial partner’s software project. During
deployment, we investigate two factors that impact the prediction performance of
the deployed model: 1) The noise in training data due to the undiscovered, i.e.,
mislabeled, bug-inducing commits at the prediction model training time and 2) The
model update (re-train) period with new commits. We empirically analyze the impacts
of those factors on the prediction performance using an online prediction strategy
that simulates the real-life development life cycle, considering the actual labels of the
training instances at the model training time, filtering the time period from the training

set that potentially has noise, and updates the model periodically with new commits.

Our empirical analysis shows that keeping an unused time period between the training
and test commits impacts the prediction performance by 37% in terms of probability
of detection (pd). On the other hand, the update cycle of the SDP model impacts
the pd rate by 18%. We pick the best convenient combination of the investigated
factors considering the accuracy and the consistency of prediction performance for

deployment. Eventually, the deployed solution updates the predictor every three days
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by utilizing the commits done until eight months prior to model re-training time and
produces 73% pd and 47% pf rates. Furthermore, we observe that the SDP prototype
built with an offline prediction strategy represents the real-life prediction performance

of the predictor depending on deployment settings and the stage of the project.

We further elaborate on the lessons learned through this deployment process, consid-
ering the academic and industry perspectives, research and real-life environments, and
the interpretability, accuracy, trust aspects of a recommender system. We would like to
suggest to researchers who aim to practice change-level SDP in an industrial context
that it is crucial to understand the team and project environment for designing a better
prediction solution. Analyzing the application domain, i.e., the commit release cycle of
the project, development habits of the team, practitioners’ expectations from the SDP
model are also crucial for a consistently good deployment performance. Maintaining
transparent communication with the practitioners on the technical details, i.e., such as
classification algorithm and metrics used during the model training, and representation
of prediction outputs, leads to a satisfactory deployment. Also, from a technical point
of view, building a change-level SDP in an industrial context needs to be analyzed in
detail regarding the bug-fixing durations, labeling the data, and re-training the model

with new commit data.

As future work, we continue working with our industrial partner to address their needs
regarding the visualizations of the model outputs and byproducts, model usefulness,
and increase the trustworthiness of our model in developers’ eyes. In particular,
we would like to focus on the fluctuations of the model performance. A better
understanding of the reasons for fluctuations would help us to improve the accuracy
of the predictions. Furthermore, an adaptive SDP model that has an awareness of the
changing characteristics of the development life-cycle (i.e., number of daily changes)
and bug life-cycle (i.e., the time required to fix a bug) are other future directions of ours.
Besides, our assessment of recent de-noising techniques [190] to defeat the effect of
noisy labels on the prediction performance yields promising results. Hence, adopting

de-noising methods as an alternative to adjusting the TT gap is another plan.
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6. FINAL REMARKS

In this thesis, we empirically investigate the people factors in SDP and the applicability

of SDP models into an industrial setting. Thesis studies consist of four parts.

Specifically, in the first part (Chapter 2), our aim is to explore the effect of community
smells on the prediction of defects in software systems. Our findings on ten
open-source projects show that incorporating the community smell patterns of the team
into the model training phase contributes to the prediction of defect-prone software
classes. Performance values of base SDP models that utilize the state-of-the-art
metrics, i.e., static code metrics, the number of developers touched a class, code
churn, and the developer scattering. However, the other smell related metric, i.e., the
code smell intensity, which is found to occur together with the community smells,
improves the base models’ performance values more than the community smells. The
higher contribution of code smell intensity metric on the prediction of defective classes
and the higher calculation cost of community smells (i.e., requires communication
archives of the team) leads us to other ways of people modeling. Therefore, we direct
our research towards the personalized SDP approach, which does not require mining
communication channels such as mailing archives. Instead, personalized models are
built by utilizing metrics measured from the source code repositories that represent the

development skills of people, like code smell intensity metrics.

In the second part of the thesis (Chapter 3), we conduct an extensive investigation of
personalized approach SDP at change-level in six open-source projects. Our analysis
shows that personalized models are quite promising since they outperform the general
models for the majority of developers. However, there are factors that affect the choice
of personalized over general models, such as performance evaluation criteria, model

building algorithms, and development characteristics.

The third part of the thesis (Chapter 4) also reports the investigation of change-level

personalized models but in an industrial context. Analysis in the industrial context
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shows that a base personalized approach that utilizes only the state-of-the-art process
metrics is not superior to the general approach. However, personalized models
could reach the performance of general models when they utilize latents of process
metrics, topic models of commit messages, and log filtering. Although the prediction
performance values of personalized models reach quite well performances in the offline
research environment, deployment of personalized models into the real development
environment could not be realized due to the high turnover rates of the development

team.

The fourth part of the thesis (Chapter 5) focuses on the deployment of the general
SDP model proposed in Chapter 4 that utilizes the process and latent metrics, and the
log filtering approach. The deployment challenges regarding the differences between
offline and online environments lead us to completely redesign our model evaluation
approach to simulate the real development data flow. Our online model evaluation
shows that the model performance in an offline environment could represent the
real-life performance after the first year of the project. On the other hand, deployment
decisions such as keeping a time gap between the model train and prediction sets to
prevent learning the model from noisy data and the model update cycle have an effect
on the prediction performance. Moreover, we observe the importance of factors that

affect the trustability, usability, actionability of the prediction outputs.

6.1 Contributions of the Thesis

The people effect in SDP has been studied little compared to other aspects of prediction
models such as algorithms and data. Therefore, this thesis makes a rich contribution
to the field with a comprehensive investigation of people factors in SDP with a major

focus on personalized SDP models.

As far as we know, our initial analysis (Chapter 2) regarding socio-technical factors
and the predictability of bugs is the first research that incorporates the community
smell patterns into the SDP. The findings of this study provide insights to researchers
and practitioners on the predictive contribution of community smells in SDP compared
to the contribution of other state-of-the-art metrics. Also, another significant output of

this research is a publicly available SDP dataset [76] that includes community smell
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patterns of software classes as well as including other state-of-the-art metrics such as
code smell intensity and static code metrics. Moreover, we discuss the challenges of
the community smell detection process through the CodeFace4Smells tool [55] which
mines the software code repository and the mail archives of the organization. That
also would lead the community in their decisions regarding practicing the community

smells in their recommendation systems.

Furthermore, our research on the personalized SDP, reported in Chapter 3 and 4, is
very comprehensive compared to existing personalized SDP studies. Our empirical
setup includes a larger context compared to prior studies, i.e., 222 developers
from open-source and six developers from an industrial project, while prior studies
analyze only ten developers from open-source projects.Also, that means our study
is the first one that investigates the personalized SDP in an industrial context. In
addition to validating prior findings by demonstrating that the personalized SDP
could be successful over the traditional approaches, we also explore the development
characteristics that lead to the superiority of personalized models. Our analysis shows
that the improvement of SDP models with various data sources and statistical methods
can also support researchers and practitioners in situations where the available data is

scarce and noisy.

SDP studies that focus on practical applicability and/or industrial cases are relatively
few than those that focus on offline studies and/or open-source context. This thesis
does not just evaluate the personalized approach in an industrial context but also
reports the deployment experiences on an SDP solution designed for our industrial
partner (Chapter 5). Since the online, i.e., real life, software data includes noise due to
existence of bugs [29] and the deployed models entail re-training due to non-stationary
nature of software [191], we point out the impact of this noise and the model update
cycle on the real-life prediction performance using a rigorous online prediction design.
Further, we share our insights on the actionability and the explainability of the
prediction outputs and our industrial collaboration experience. Our research would
guide SDP practitioners in managing their deployment decisions and researchers in

performing research projects with the industry.
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6.2 Recommendations and Feature Work

Incorporating people, which is one of the important aspects of software development,
into SDP models is rewarding in defect detection performance depending on the
selected ML algorithm or developer’s development characteristics. While we are
suggesting practitioners to consider the personalized approach in their settings to
obtain higher detection rates, this field also needs more research regarding the
underlying factors that may affect the performance and applicability of personalized

SDP models.

One other future research direction for personalized models is profiling developers in
a transferable way. The current state-of-the-art personalized SDP models utilize only
the developer’s development activity in a single project that the SDP models are built
for. However, such an approach require training of a model for each software project
that the developer contributes. Instead of mining project-specific developer attributes
through their development history, creating a more general and transferable profiles
for developers would be in the future of the personalized SDP approaches. Collecting
developer data using their public software development profiles (like Github) or mining
their activities from open-source projects that they contribute would be some options
to create developer profiles. Building transferable developer profiles would overcome
the cold-start problem which occurs when a new developer is joined to the team
[5]. Besides utilizing public activities of developers, cross-project personalized SDP
models would be an in-company solution in such a case when a developer joins a new

project within the company.

Another future direction is to target groups of developers instead of targeting
individuals as in the personal approach, or the whole team as in the traditional
approach. Prior studies [36,53] and also this thesis (Section 3.5.5) already show the
success of collective personalized models that are built for a developer by learning from
other developers’ development activities in addition to the developer’s own history.
Besides, segmentation of customers according to their profiles by measuring their
interests, behaviors, geographic, demographic, and psychological data, and having

specific strategies to those segments are widely used applications in data analytics
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systems to gain business advantages [192,193]. The SDP field also would benefit from
the segmentation of developers according to their profiles to gain more accurate and
satisfying prediction results. There are different ways of grouping developers that are
open to research. For example, groups can be shaped according to the development
activity characteristics, e.g., developers’ experience in the project, or by patterns of

how developers’ different characteristics contribute to defect estimation.

As the software engineering community also state [194], domain analysis is very
crucial in the software data analytics. Therefore, for future studies, especially the ones
targeting practical application of software recommendation models, we recommend
validating prototypes using online prediction setups and examining the project’s
context, team’s expectations, perspective, and practices to comprehend the factors that
affect the model’s performance and usability. For example, during conducting data
mining and ML activities to build an SDP model, discussing the success criteria of
the organization is important, i.e., false alarms are more tolerable in mission-critical
systems [57]. Also, understanding the developers’ practices, perceptions, and the
continuous development structure of the organization is important to model useful and
proactive recommendation systems [2]. For example, the developers with different
roles or experiences have different preferences on using an SDP tool (i.e., more
experienced developers do not want to use a tool while testers are more willing to
use), on the success criteria of the tool (i.e., some can tolerate false alarms better than
others), and the development context that the tool should be integrated (i.e., integration

with IDE or code review tools) [195].

The rapid evolution of software systems would quickly increase the size and
complexity of the software, as well as make its maintenance activities complicated [2].
Therefore, obtaining a consistent prediction performance from an SDP tool over time
may be challenging. Further research on the non-stationary nature of the software and

the defect patterns is needed.

Predictive success of SDP models has been reported many times [50,98,108,143] and
it is still a major concern of the researchers. However, the different perceptions of

individuals make the interpretability of models more critical [42,196]. For example,
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developers want to see actionable outputs from SDP tools instead of receiving
just a binary prediction value (defected or clean) [197]. Therefore, recently, the
explainability of recommendation systems draw the required attention from the
software research community [198] as well as other communities that focus on building
AI/ML based solutions [199]. The state-of-the-art status in the explainability of SDP
models is enriching the output of models with the contribution rates of metrics to
the prediction to help developers to understand why the defect occurred, and also
highlighting the code lines that are blamed for the defective development to give
developers a start point for defect haunting [197]. Future of SDP studies may involve
integrating the domain knowledge into explainability of models [42]. For example,
tailoring the explanations in the prediction outputs according to the individual or
group characteristics would be helpful, i.e., new beginners may need more direction in

outputs.
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Figure A.1 : Performance (in terms of precision) of PM, SM and GM.
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Figure A.2 : Performance (in terms of F1) of PM, SM and GM.
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Figure A.3 : Performance (in terms of AUC) of PM, SM and GM.
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Figure A.4 : Performance (in terms of MCC) of PM, SM and GM.
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