
ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

SOFTWARE DEFECT PREDICTION WITH A PERSONALIZATION
FOCUS AND CHALLENGES DURING DEPLOYMENT

Ph.D. THESIS

Beyza EKEN

Department of Computer Engineering

Computer Engineering Programme

JANUARY 2022

ISTANBUL TECHNICAL UNIVERSITY ⋆ GRADUATE SCHOOL

SOFTWARE DEFECT PREDICTION WITH A PERSONALIZATION
FOCUS AND CHALLENGES DURING DEPLOYMENT

Ph.D. THESIS

Beyza EKEN
(504142523)

Department of Computer Engineering

Computer Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Ayşe TOSUN KÜHN

JANUARY 2022

İSTANBUL TEKNİK ÜNİVERSİTESİ ⋆ LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

KİŞİSELLEŞTİRME ODAKLI YAZILIM HATA
TAHMİNİ VE ENTEGRASYON ZORLUKLARI

DOKTORA TEZİ

Beyza EKEN
(504142523)

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Dr. Öğr. Üyesi Ayşe TOSUN KÜHN

OCAK 2022

Beyza EKEN, a Ph.D. student of ITU Graduate School student ID 504142523 suc-
cessfully defended the thesis entitled “SOFTWARE DEFECT PREDICTION WITH
A PERSONALIZATION FOCUS AND CHALLENGES DURING DEPLOYMENT
”, which he/she prepared after fulfilling the requirements specified in the associated
legislations, before the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Ayşe TOSUN KÜHN
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Yusuf YASLAN
Istanbul Technical University

Assoc. Prof. Dr. Gülfem ALPTEKİN
Galatasaray University

Assoc. Prof. Dr. Feza BUZLUCA
Istanbul Technical University

Assoc. Prof. Dr. Hasan SÖZER
Özyeğin University

Date of Submission : 23 December 2021
Date of Defense : 21 January 2022

v

vi

To my family,

vii

viii

FOREWORD

First and foremost, I would like to thank my supervisor, Dr. Ayşe TOSUN, for being a
helpful, supportive, and insightful mentor during my Ph.D. journey. It was a wonderful
experience to work with a supervisor who always involves in her students’ studies
wholeheartedly and with her never ending motivation. I am also happy to be a part
of the Software Modeling and Analysis research group that has very kind and brilliant
people.

I also would like to thank my thesis committee members Dr. Gülfem ALPTEKİN and
Dr. Yusuf YASLAN for their time and guidance during my thesis. I am also grateful
to Dr. Ayşe BENER and Dr. Francis PALMA for their supervision and collaboration
during my visit to Ryerson University, Canada.

This thesis was supported in part by the Scientific Projects Unit of Istanbul Technical
University (Grant No: MOA-2019-42321), Scientific and Technological Research
Council of Turkey (TUBITAK) and Ericsson Turkey (Grant no: 5170048), Mevlana
Exchange Programme (Grant No: 258) by Council of Higher Education of Turkey
(YÖK), and Collaborative Research and Development (Grant No: CRDPJ 499518-16)
from NSERC, Canada. I also would like to thank Ass. Prof. Emad SHIBAB and Ass.
Prof. Yasukata KAMEI for creating and sharing the dataset I used in part of my thesis.

Finally, I would like to thank my mother, father, and brothers for being there with their
support during my academic studies and my entire life as well. It is so comforting and
encouraging to know that my family walks with me through the challenging roads of
life.

January 2022 Beyza EKEN
(Computer Engineer)

ix

x

TABLE OF CONTENTS

Page
FOREWORD . ix
TABLE OF CONTENTS . xiii
ABBREVIATIONS. xv
LIST OF TABLES . xvii
LIST OF FIGURES . xx
SUMMARY . xxi
ÖZET . xxv
1. INTRODUCTION . 1

1.1 An Overall View of SDP Models . 2
1.2 Modeling People in SDP . 4

1.2.1 Personalized models . 5
1.3 Applicability of SDP into Practice . 6
1.4 Purpose of the Thesis . 7
1.5 Structure of the Thesis . 10

2. AN EMPIRICAL STUDY ON THE EFFECT OF COMMUNITY
SMELLS ON BUG PREDICTION . 11

2.1 Introduction . 11
2.1.1 Structure of the chapter . 13

2.2 Related Work . 14
2.2.1 Literature on bug prediction . 14
2.2.2 Literature on people aspect and community smells . 16

2.3 Methodology . 17
2.3.1 Datasets used in this study . 20

2.3.1.1 Metrics . 21
2.3.2 Model building and analysis . 25

2.4 Results . 29
2.4.1 RQ1: To what extent does the community smell contribute to the

prediction of bug-prone code components? . 30
2.4.2 RQ2: To what extent does the proposed model contribute to the

bug prediction when compared to a state-of-the-art model built using
code smell related metrics? . 32

2.4.3 RQ3: To what extent do the combined smell-related information
contribute to the bug prediction when compared to the best
contributing one? . 34

2.5 Discussion . 37
2.5.1 Project-wise assessment of bug prediction models . 37
2.5.2 Analysis of the models with different learners. 39
2.5.3 Validation strategies of the models . 42
2.5.4 Comparing models with community-aware metrics . 43

2.5.4.1 Community-aware baseline models . 43
2.5.4.2 The state-of-the-art models using community-aware metrics 45

2.5.5 Practical implications . 46
2.6 Threats to Validity . 48
2.7 Conclusion . 51

3. INVESTIGATING THE PERFORMANCE OF PERSONALIZED
MODELS FOR SOFTWARE DEFECT PREDICTION . 53

xi

3.1 Introduction . 53
3.1.1 Structure of the chapter . 56

3.2 Related Work . 56
3.2.1 Defect prediction using developer metrics . 58
3.2.2 Personalized defect prediction . 59

3.3 Experimental Setup . 61
3.3.1 Dataset details . 62
3.3.2 Our methodology. 64

3.3.2.1 Developer selection. 64
3.3.2.2 Model construction . 67
3.3.2.3 Under-sampling on training data . 69
3.3.2.4 Evaluation of RQ1. 69
3.3.2.5 Evaluation of RQ2. 71
3.3.2.6 Evaluation of RQ3. 72

3.4 Results . 72
3.4.1 RQ1: How does a personalized SDP approach perform compared to

traditional SDP approaches? (PM vs. SM and PM vs. GM) 72
3.4.2 RQ2: To what extent do development characteristics have an effect

on the superiority of PM? . 76
3.4.3 RQ3: How does the importance of metrics used for defect prediction

differ among personalized models? . 78
3.5 Discussion . 81

3.5.1 NB versus RF. 81
3.5.2 Recall (pd) versus false alarm rate (pf). 82
3.5.3 Data sampling . 83
3.5.4 Model validation strategy . 84
3.5.5 Further insights on PM combined with the prior studies 87
3.5.6 Effort-aware performance assessment: . 88
3.5.7 Applicability to industrial settings . 89

3.6 Threats to Validity . 90
3.7 Conclusion and Future Work . 94

4. INVESTIGATING THE PERFORMANCE OF PERSONALIZED
MODELS FOR AN INDUSTRIAL SETTING . 97

4.1 Introduction . 97
4.2 Related Work . 99
4.3 Collection of Dataset . 99
4.4 Methodology . 101

4.4.1 Base metric collection . 101
4.4.2 Latent feature extraction through matrix factorization 102
4.4.3 Semantic feature collection through topic modeling 102
4.4.4 Model building . 103
4.4.5 Performance evaluation . 105
4.4.6 Methods to answer research questions . 105

4.5 Results . 106
4.5.1 RQ1: How does a personalized SDP approach perform compared to

traditional SDP approaches? (PM vs. SM and PM vs. GM) 106
4.5.2 RQ2: How can we improve the performance of defect predictors

by utilizing the available commit data through a combination of
statistical approaches? . 108

4.5.3 RQ3: How does the importance of metrics used for defect prediction
differ among PM, SM, and GM? . 111

4.6 Threats to Validity . 114
4.7 Concluding Remarks . 115

xii

5. DEPLOYMENT OF A CHANGE-LEVEL SOFTWARE DEFECT
PREDICTION SOLUTION INTO AN INDUSTRIAL SETTING 117

5.1 Introduction . 117
5.1.1 Structure of the chapter . 120

5.2 Related Work . 120
5.2.1 Change-level SDP studies . 121
5.2.2 Change-level SDP studies in industrial context. 122
5.2.3 Model validation approaches used in change-level SDP studies 124

5.3 Research Background. 126
5.3.1 Dataset construction. 126

5.3.1.1 Collecting historical commits and identifying bug-inducing
changes. 127

5.3.1.2 Base metric extraction. 130
5.3.2 Initial prototype SDP models . 132

5.4 Deployment with an Online Prediction . 134
5.4.1 Online prediction . 135

5.5 Methodology . 139
5.5.1 Model performance assessment . 141

5.6 Results and Discussion . 143
5.6.1 RQ1: Does the performance of the proposed SDP model assessed

with the offline time-sensitive prediction strategy represent that with
the online time-sensitive prediction strategy?. 143

5.6.1.1 Discussion on RQ1 . 145
5.6.2 RQ2: To what extent does the train-test gap affect the performance

of the deployed model? . 147
5.6.3 RQ3: What impact has the update period of the proposed model on

the prediction performance? . 149
5.6.3.1 Discussion on RQ3 . 151

5.6.4 Effort-aware performance assessment. 151
5.6.5 Sampling for class imbalance problem. 153

5.7 Threats to Validity . 154
5.8 Lessons Learned . 156

5.8.1 Mind the difference between industrial and academic views 156
5.8.2 Building an SDP solution requires full commitment of the industrial

partner . 158
5.8.3 Context specific factors impact the performance of the deployed

SDP model. 159
5.8.4 Focus on user-centric evaluations . 160
5.8.5 Trust the algorithm choice in the offline setting . 161
5.8.6 Deployment is a continuous development . 162

5.9 Conclusion . 163
6. FINAL REMARKS . 165

6.1 Contributions of the Thesis . 166
6.2 Recommendations and Feature Work . 168

REFERENCES . 171
APPENDICES . 187

APPENDIX A : Performances of SDP models reported in Chapter 4 for RQ2 . . 189
CURRICULUM VITAE . 195

xiii

xiv

ABBREVIATIONS

SQA : Software Quality Assurance
AI : Artificial Intelligence
ML : Machine Learning
SDLC : Software Development Life Cycle
SDP : Software Defect Prediction
IDE : Integrated Development Environment
RQ : Research Question
SLR : Systematic Literature Review
CDP : Class Data should be Private
CC : Complex Class
FD : Functional Decomposition
GC : God Class
SC : Spaghetti Code
LM : Long Method
OS : Organizational Silo
RS : Radio Silence
ML : Missing Links
PM : Personalized Model
SM : Selected General Model
GM : General Model
LR : Logistic Regression
NB : Naive Bayes
RF : Random Forest
ADTree : Alternating Decision Tree
ESD : Effect Size Difference
pd : Probability of detection
pf : Probability of false alarm
ROC : Receiver Operating Characteristic
AUC : Area Under ROC Curve
MCC : Matthews Correlation Coefficient
BScore : Brier Score
LOC : Lines of Code
ADD : LOC added in a commit
DEL : LOC deleted in a commit
CHURN : Churn of commit
NF : Number of modified files
ND : Number of modified directories
ENT : Entropy
NDEV : Number of developers had changed the modified files
NPC : Number of prior changes to modified file
AGE : The average time interval between the last and the current change

xv

EXP : Experience of developer
REXP : Recent experience of the developer
SEXP : Experience of developer the on a subsystem
NNMF : Non-negative matrix factorization
LDA : Latent Dirichlet Allocation
SMOTE : Synthetic Minority Oversampling Technique
InfoGain : Information Gain
TT Gap : Train-Test Gap
UP : Update Period

xvi

LIST OF TABLES

Page

Table 2.1 : Properties of the datasets used in this study. 22
Table 2.2 : Number of code and community smells associated with software

classes.. 23
Table 2.3 : Metrics and their descriptions. 24
Table 2.4 : List of bug prediction models built in this study. 27
Table 2.5 : Confusion matrix for bug prediction problem. 29
Table 2.6 : The equations for recall (or pd), pf, precision, and F-measure.. 29
Table 2.7 : Bug prediction performance of the six machine learning algorithms. . 40
Table 2.8 : Comparison of performance and methodology with the

community-aware state-of-the-art studies. 47
Table 3.1 : Software metrics used in this study. 63
Table 3.2 : Details of the dataset. 65
Table 3.3 : The confusion matrix for the defect prediction problem. 69
Table 3.4 : The equations and explanations of performance metrics used in this

study. 70
Table 3.5 : Win/Loss results of the comparisons between PM and SM, and PM

and GM. Bold cells indicate medium to large effect sizes. 73
Table 3.6 : Number of developers belong to each group. 76
Table 4.1 : Details of the dataset. 100
Table 4.2 : SDP models built various metric and data processing combinations. . 105
Table 4.3 : Win/Loss results of the comparisons between PM and SM, and PM

and GM. Bold cells indicate medium to large effect sizes. 107
Table 4.4 : Information gained from different metric groups in the first 10 rank. . 112
Table 5.1 : Base metrics utilized in this study. 130
Table 5.2 : Confusion matrix for the defect prediction problem. 141
Table 5.3 : Equations for pd, pf, precision, F1-measure, and MCC. 142

xvii

xviii

LIST OF FIGURES

Page

Figure 1.1 : An overview of a typical model building methodology. 2
Figure 2.1 : Overview of our research methodology. 19
Figure 2.2 : Performances of the bug prediction models built to answer RQ1.

The performance values are aggregated over both datasets. 30
Figure 2.3 : Performances of the bug prediction models built to answer RQ1,

for ReplicatedDB, with the baseline model utilizes number of
developers metric. 31

Figure 2.4 : Performances of the bug prediction models built to answer RQ1,
for CollectedDB, with the baseline model utilizes structural metrics. 31

Figure 2.5 : Performances of the bug prediction models built to answer RQ2. . . . 32
Figure 2.6 : Performances of the bug prediction models built to answer RQ2,

for ReplicatedDB, with the baseline model utilizes number of
developers metric. 33

Figure 2.7 : Performances of the bug prediction models built to answer RQ2,
for CollectedDB, with the baseline model utilizes structural metrics. 33

Figure 2.8 : Performances of the bug prediction models built to answer RQ3,
for ReplicatedDB, with the baseline model utilizes structural metrics. 35

Figure 2.9 : Performances of the bug prediction models built to answer RQ3,
for ReplicatedDB, with the baseline model utilizes churn metric. . . . 35

Figure 2.10 :Performances of the bug prediction models built to answer RQ3,
for ReplicatedDB, with the baseline model utilizes number of
developers metric. 36

Figure 2.11 :Performances of the bug prediction models built to answer RQ3,
for ReplicatedDB, with the baseline model utilizes scattering metric. 36

Figure 2.12 :Performances of the bug prediction models built to answer RQ3,
for CollectedDB, with the baseline model utilizes structural metrics. 36

Figure 2.13 :The ranking of models with respect to the number of times they
are superior than the others (in percent) among all the projects, in
terms of F-measure. 38

Figure 2.14 :The ranking of models with respect to the number of times they
are superior than the others (in percent) among all the projects, in
terms of AUC. 39

Figure 2.15 :Performances of bug prediction models trained with within-release
technique on the ReplicatedDB dataset. 43

Figure 2.16 :Performances of bug prediction models trained with cross-release
technique on the ReplicatedDB dataset. 44

Figure 2.17 :Performance comparison among the community-aware baselines
on the ReplicatedDB dataset. 45

xix

Figure 3.1 : An overview of the model building methodology. 64
Figure 3.2 : Performance of PM, SM and GM. 73
Figure 3.3 : PM performance of a sample of developers (blue color indicates

superiority of PM over traditionals, red color indicates inferiority
of PM, whereas black color indicates the equality of models).. 75

Figure 3.4 : Number of commits of developers belonging to each group. 77
Figure 3.5 : Bug-inducing commit ratios of developers belong to each group. . . . 77
Figure 3.6 : Metric values of developers belong to each group. 79
Figure 3.7 : Ranks of metrics based on InfoGain over each PM. 80
Figure 3.8 : Statistical comparison of the metric ranks. 80
Figure 3.9 : Performance of PM, SM and GM using a time-sensitive validation

strategy. 86
Figure 4.1 : Performance of PM, SM and GM. 106
Figure 4.2 : Performance (in terms of pd) of PM, SM and GM built with

combination of statistical approaches. 109
Figure 4.3 : Performance (in terms of pf) of PM, SM and GM built with

combination of statistical approaches. 110
Figure 5.1 : A timeline of our SDP dataset that represents bug-inducing and

clean commits. 129
Figure 5.2 : A timeline of the time difference (in days) between the

bug-inducing and fixing commit pairs. 137
Figure 5.3 : Demonstration of the online and offline prediction strategies. 138
Figure 5.4 : Heatmaps of the performance achieved with the offline and online

prediction strategies using different TT gap and UP. 144
Figure 5.5 : Performance of the offline and online experiments over time. 146
Figure 5.6 : Scott Knott ESD analysis of performance with different time gaps

between train and test sets. 149
Figure 5.7 : Scott Knott ESD analysis of performance using different update

frequencies. 150
Figure 5.8 : Effort-aware performance. 152
Figure A.1 : Performance (in terms of precision) of PM, SM and GM. 189
Figure A.2 : Performance (in terms of F1) of PM, SM and GM. 190
Figure A.3 : Performance (in terms of AUC) of PM, SM and GM. 191
Figure A.4 : Performance (in terms of MCC) of PM, SM and GM. 192
Figure A.5 : Performance (in terms of BScore) of PM, SM and GM. 193

xx

SOFTWARE DEFECT PREDICTION WITH A PERSONALIZATION
FOCUS AND CHALLENGES DURING DEPLOYMENT

SUMMARY

Organizations apply software quality assurance techniques (SQA) to deliver
high-quality products to their customers. Developing defect-free software holds a
critical role in SQA activities. The increasing usage of software systems and also
their rapidly evolving nature in terms of size and complexity raise the importance
of effectiveness in defect detection activities. Software defect prediction (SDP) is
a subfield of empirical software engineering that focuses on building automated and
effective ways of detecting defects in software systems. Many SDP models have been
proposed in two decades, and current state-of-the-art models mostly utilize artificial
intelligence (AI) and machine learning (ML) techniques, and product, process, and
people-related metrics which are collected from software repositories.

So far now, the people aspect of the SDP has been studied less compared to
the algorithm (i.e., ensembling or tuning machine learners) and data aspects (i.e.,
proposing new metrics). While the majority of people-focused studies incorporate
developer or team related metrics into SDP models, recently personalized SDP models
have been proposed. On the other hand, the majority of the SDP research so far now
focuses on building SDP models that produce high rates of prediction performance
values. Real case studies in industrial software projects and also the number of studies
that research the applicability of SDP models in practice are relatively few. However,
for an SPD solution to be successful and efficient, its applicability in real life is as
important as its prediction accuracy. This thesis focus on two main goals: 1) assessing
people factor in SDP to understand whether it helps to improve the prediction accuracy
of SDP models, and 2) prototyping an SDP solution for an industrial setting and
assessing its deployment performance.

First, we made an empirical analysis to understand the effect of community smell
patterns on the prediction of bug-prone software classes. The “community smell”
term is recently coined to describe the collaboration and communication flaws in
organizations. Our motivation in this part is based on the studies that show the
success of incorporating community factors, i.e., sociotechnical network metrics, into
prediction models to predict bug-prone software modules. Also, prior studies show
the statistical association of community smells with code smells (which are code
antipatterns) and report the predictive success of using code smell-related metrics in
the SDP problem.

We assess the contribution of community smells on the prediction of bug-prone classes
against the contribution of other state-of-the-art metrics (e.g., static code metrics) and
code smell metrics. Our analysis on ten open-source projects shows that community

xxi

smells improve the prediction rates of baseline models by 3% in terms of area under
the curve (AUC), while the code smell intensity metric improves the prediction rates
by 17%. One reason for that is the existing ways of detecting community smell
patterns may not be rich in terms of capturing communication patterns of the team
since it only mines patterns through mailing archives of organizations. Another reason
is that the technical code flaws (code smell intensity metric) are more successful in
representing defect related information compared to community smells. Considering
the challenging situation in extracting community patterns and the higher success of
the code small intensity metric in SDP, we direct our research to focus on the code
development skills of developers and the personalized SDP approach.

Second, we investigate the personalized SDP models. The rationale behind the
personalized SDP approach is that different developers tend to have different
development patterns and consequently, their development may have different defect
patterns. In the personalized approach, there is an SDP model for each developer in
the team which is trained with the developer’s own development history solely and
its predictions target only the developer. Whereas in the traditional approach, there
is a single SDP model that is trained with the whole team’s development history, and
its predictions target anyone in the team. Prior studies report promising results on
the personalized SDP models. Still, their experimental setup is very limited in terms
of data, context, model validation, and further explorations on the characteristics that
affect the success of personalized models.

We conduct a comprehensive investigation of personalized change-level SDP on 222
developers from six open-source projects utilizing two state-of-the-art ML algorithms
and 13 process metrics collected from software code repositories that measure the
development activity from size, history, diffusion, and experience aspects. We evaluate
the model performance using rigorous validation setups, seven assessment criteria, and
statistical tests.

Our analysis shows that the personalized models (PM) predict defects better than
general models (GM), i.e., increase recall by up to 24% for the 83% of developers.
However, PM also increases the false alarms of GM by up to 12% for 77% of
developers. Moreover, PM is superior to GM for those developers who contribute
to the software modules that have been contributed by many prior developers. GM is
superior to PM for the more experienced developers. Further, the information gained
from various process metrics in prediction defects differs among individuals, but the
size aspect is the most important one in the whole team.

In the third part of the thesis, we build prototype personalized and general SDP models
for our partner from the telecommunication industry. By using the same empirical
setup that we use for the investigation of personalized models in open-source projects,
we observe that GM detects more defects than PM (i.e., 29% higher recall) in our
industrial case. However, PM gives 40% lower false alarms than GM, leading to a
lower code inspection cost than GM.

Moreover, we observe that utilizing multiple data sources such as semantic information
extracted from commit descriptions and latent features of development activity and
applying log filtering on metric values improve the recall of PM by up to 25% and
lowers GM’s false alarms by up to 32%. Considering the industrial team’s perspective

xxii

on prediction success criteria, we pick a model to deploy that produces balanced recall
and false alarm rates: the GM model that utilizes the process and latent metrics and
log filtering. Also, we observe that the semantic metrics extracted from the commit
descriptions do not seem to contribute to the prediction of defects as much as process
and latent metrics.

In the fourth and last part of the thesis, we deploy the chosen SDP prototype into
our industrial partner’s real development environment and share our insights on the
deployment. Integrating SDP models into real development environments has several
challenges regarding performance validation, consistency, and data accuracy. The
offline research setups may not be convenient to observe the performance of SDP
models in real life since the online (real-life) data flow of software systems is different
than offline setups. For example, in real life, discovering bug-inducing commits
requires some time due to the bug life cycle, and this causes a data label noise in the
training sets of an online setup. Whereas, an offline dataset does not have that problem
since it utilizes a pre-collected batch dataset. Moreover, deployed SDP models need a
re-training (update) with the recent commits to provide consistency in their prediction
performance and to keep up with the non-stationary nature of the software.

We prose an online prediction setup to investigate the deployed prototype’s real-life
performance under two parameters: 1) a train-test (TT) gap, which is a time gap
between the train and test commits used to avoid learning from noisy data, and 2)
model update period (UP) to include the recent data into the model learning process.

Our empirical analysis shows that the offline performance of the SDP prototype reflects
its online performance after the first year of the project. Also, the online prediction
performance is significantly affected by the various TT gap and UP values, up to 37%
and 18% in terms of recall, respectively. In deployment, we set the TT gap to 8-month
and UP to 3-day, since those values are the most convenient ones according to the
online evaluation results in terms of prediction capability and consistency over time.

The thesis concludes that using the personalized SDP approach leads to promising
results in predicting defects. However, whether PM should be chosen over GM
depends on factors such as the ML algorithm used, the prediction performance
assessment criteria of the organization, and developers’ development characteristics.
Future research in personalized SDP may focus on profiling developers in a
transferable way instead of building a model for each software project. For example,
collecting developer activity from public repositories to create a profile or using
cross-project personalized models would be some options.

Moreover, our industrial experience provides good insights regarding the challenges
of applying SDP in an industrial context, from data collection to model deployment.
Practitioners should consider using online prediction setups and conducting a domain
analysis regarding the team’s practices and prediction success criteria and project
context (i.e., release cycle) before making deployment decisions to obtain good and
consistent prediction performance. Interpretability and usability of models hold a
crucial role in the future of SDP studies. More researchers are becoming interested in
such aspects of SDP models, i.e., developer perceptions of SDP tools and actionability
of prediction outputs.

xxiii

xxiv

KİŞİSELLEŞTİRME ODAKLI YAZILIM HATA
TAHMİNİ VE ENTEGRASYON ZORLUKLARI

ÖZET

Yazılım sistemlerinin hayatımızın hemen her alanındaki yeri giderek artarken,
hızlı gelişen doğaları gereği tipik bir sistemin büyüklüğü ve karmaşıklığı da
zaman içerisinde hızla artabilmektedir. Dolayısı ile organizasyonlar tarafından
uygulanan yazılım kalite güvencesi (YKG) aktivitelerinin karmaşıklığı da artmaktadır.
Organizasyonların en önemli hedeflerinden biri kullanıcılara hatasız ve kaliteli bir
yazılım sunabilmektir. Bu kapsamda en çok bütçe ve zaman ayırdığı aktivitelerden biri
yazılımdaki hataların giderilmesidir. İçinde bulunduğumuz yapay zeka (YZ) çağında
yazılım mühendisliği alanındaki araştırmacılar yazılım hatalarının tespitini otomatize
eden, akıllı öneri sistemleri modellemeye odaklanmıştır.

Bir yazılım hata tahmini (YHT) modeli tipik olarak, yazılım depolarından projeye
dair geçmiş kodlama ve hata aktivitelerinin örüntülerini makine öğrenmesi (MÖ)
yöntemleri ile öğrenir ve ekibin yeni geliştirdiği yazılım modüllerinin (örn., yazılım
sınıfı, kod çevrimi) yazılım sisteminde bir hataya sebebiyet verme durumuna dair bir
tahminde bulunur. Bu modeller yazılım geliştirme ortamının geliştirme, test ve kod
inceleme gibi aşamalarına entegre edilerek ekibin riskli yazılım modüllerini daha kolay
tespit edebilmesi ve karar verme mekanizmasını desteklemek için kullanılır. Örneğin
kod inceleme için kısıtlı süresi olan bir ekip öncelik stratejisini YHT modelinin
tahminlerine göre belirleyebilir.

Araştırmacılar yaklaşık 20 senedir farklı açılardan yaklaşarak YHT modellerinin daha
iyi tahmin performansına ulaşması için çeşitli yöntemler önermektedirler. Bu yöntem-
lerin çoğu probleme algoritmik (örn., MÖ algoritmalarının sonuçlarını birleştirmek,
hiper-parametre kestirimi uygulamak) yada veri açısından yaklaşmaktadır (örn., yeni
ölçütler önermek).

Yazılım süreçlerinin ayrılmaz bir parçası olan kişi faktörünü modelleyen çalışmalar ise
nispeten daha az sayıdadır. Kişi faktörünü ele alan çalışmalar ise ikiye ayrılmaktadır.
Çoğunlukta olan ilk tip çalışmalar ekipteki yazılım geliştiricilerine dair bazı ölçütler
elde ederek model eğitimi sırasında kullanmıştır. Bu ölçütlerin arasında bir yazılım
modülüne katkıda bulunan geliştirici sayısı, bir geliştiricinin odağı (aynı anda
değişiklik yaptığı modül sayısı), geliştiricinin tümleşik geliştirme ortamı ile olan
etkileşimi (ne kadar süre bir modülde gezindiği) ve yazılım ekibinin birbirleri ile
olan sosyo-teknik etkileşimleri bulunmaktadır. İkinci grup çalışmalar ise sayıca çok
az olmakla birlikte (sadece iki) kişiselleştirilmiş YHT modellerine odaklanmıştır.
Kişiselleştirilmiş YHT modelleri kişi faktörünü model eğitimine dahil etmek yerine,
ekipteki her bir geliştirici için ayrı ve kişisel bir model kurmayı kapsamaktadır.

xxv

Bunların yanı sıra, literatürdeki çalışmaların çoğu son yıllara kadar yüksek tahmin
performanslı YTH modelleri kurmaya odaklanmıştır. Fakat bir tahmin modelinin
başarılı ve efektif olabilmesi için tahmin modellerin hata tahmin doğruluklarının yanı
sıra gerçek hayata uygulanabilirlikleri, tahmin performanslarının sürdürülebilirliği,
tahminlerin kullanıcı perspektifinden yararlı ve güvenilir olması da önemlidir. YHT
modellerinin pratik uygulanabilirliğine ve gerçek hayat senaryolarına odaklanan
çalışmaların sayısı azdır ve üretilen YHT çözümlerinin gerçek hayat senaryolarındaki
değerini değerlendirebilmek için bu çalışmalara ihtiyaç vardır.

Biz bu tezde iki ana amaca odaklandık: 1) kişi faktörünün YHT modellerinin tahmin
başarısına olan etkisi, ve 2) endüstriyel bir yazılım projesi için bir YHT çözümü
geliştirmek ve gerçek geliştirmek ortamına entegre etmek.

Tezin ilk analizinde, topluluk kokularının hata tahminine olan etkisini inceledik.
“Topluluk kokusu” ekibin doğru iş birliği ve iletişim pratiklerini uygulamayı ertelediği
durumlara ithafen ortaya atılmış bir kavramdır. Örneğin iki kişinin aynı yazılım
modülünde çalışması fakat aralarında direk bir iletişim bağlantısı olmaması durumu
bir topluluk kokusu olarak ele alınmaktadır. Çünkü bu durum işin çift yapılmasına ve
kod tekrarı denilen istenmeyen bir duruma sebebiyet verebilmektedir. Ekipteki böyle
kusurlu iletişim ve etkileşim pratiklerinin ekstra masrafa ve gecikmeye yol açabildiği
gözlemlenmiştir. Ayrıca önceki çalışmalar topluluk kokularının, “kod kokusu” terimi
ile tarif edilen kusurlu kodlama pratikleri ile aynı yazılım modüllerinde oluştuklarını
göstermiştir. Dahası kod kokusu içeren yazılım sınıflarının hata içermeye daha meyilli
olduğu gösterilmiştir. Bu duruma ve sosyo-teknik faktörleri YHT modellerine entegre
ederek başarılı tahmin performanslarına ulaşan diğer çalışmalardan motivasyonumuzu
alarak biz de topluluk kokularının YHT modellerine eğitimine dahil ederek hatalı
yazılım sınıflarının tahminine olan etkisini deneysel olarak inceledik.

Deneysel çalışmamızda topluluk kokularının hata tahminine olan katkısı kod kokusu
ölçütlerinin katkısı ile karşılaştırılmıştır. Çalışmada temel model olarak ise son
teknoloji ölçütleri (statik kod ölçütleri, nesneye yönelimli ölçütler, bir dosyada çalışan
geliştirici sayısı ve geliştiricinin odağı) kullanan YHT modelleri baz alınmıştır.
Sonuçlar göstermiştir ki eğri altında kalan alan kriterine göre topluluk kokuları temel
modellerin hata tahminini başarısını %3, kod kokusu yoğunluğu ölçütü ise %17
artırmaktadır.

Sonuç olarak bu analizde topluluk kokularını YHT model eğitimine dahil etmenin
tahmin başarısını artırdığı fakat kod kokusu yoğunluğu ölçütü kadar tahmine katkısının
olmadığı gözlemlenmiştir. Ayrıca veri toplama aşamasındaki deneyimlerimiz topluluk
kokularını ölçmenin diğer metrikleri ölçmeye göre daha çok efor ve kaynak
gerektirdiğini gösterdi. Mevcuttaki kullanılabilir araçlar iletişim örüntülerini sadece
mail arşivlerinin analizi ile çıkarabilmektedir. Fakat her proje için takımın mail
arşivlerine erişim olmayabilmektedir. Hatta organizasyonel iletişim mail haricinde bir
araç ile yapılabilmekte ve organizasyonun iletişim örüntülerini yakalamak mümkün
olmayabilmektedir. Bu durum bizi topluluk kokularını model eğitimine dahil etmek
yerine sadece koddan ölçülen kod geliştirme becerileri bilgilerini kullanarak kişisel
modeller oluşturmaya yönlendirmiştir.

Tezin ikinci analizinde kişiselleştirilmiş YHT modellerinin hata tahmini performansına
olan katkısını geniş kapsamlı olarak inceledik. Bu analizimizin arkasındaki

xxvi

motivasyonlardan biri kişi odaklı öneri yaklaşımlarının, arama motorları, sosyal medya
siteleri, ve e-ticaret sistemleri gibi bir çok sistemde başarılı olması. Bir diğer
motivasyonumuz ise ekipteki geliştiriciler kendilerine özgü geliştirme stillerine ve
deneyimlere sahip olabilmesi ve bu durumun farklı geliştiricilerin geliştirdiği yazılım
parçalarının farklı hata örüntülerine sahip olmasına sebep olabilmesidir.

Kişilerin farklı hata örüntülerine sahip olmasına dayanarak, daha başarılı tahmin
skorları sağlayabilmek adına, kişiselleştirilmiş YHT modelleri ortaya atılmıştır. Fakat
önceki çalışmalar bir çok açıdan sınırlı kalmıştır. Örneğin veri setlerinin küçük olması,
alandaki son model ölçütlerin çalışmaya dahil edilmemiş olması gibi sebeplerden
ötürü bulgularının geçerliliği kısıtlıdır. Biz bu tezde ise çok daha zengin bir deneysel
ortam kurarak kişisel modelleri geleneksel modeller ile karşılaştırmalı olarak etraflıca
inceledik. Geleneksel yaklaşım, tüm ekibin geçmiş geliştirme aktiviteleri üzerinden
eğitilmiş ve ekipteki herkes tarafından kullanılabilen tek bir YHT modeli geliştirmeyi
kapsamaktadır. Kişiselleştirilmiş yaklaşım ise, ekipteki her bir geliştiriciye bireysel
bir YHT modeli kurulmasını ve modellerin sadece ilgili kişinin geçmiş aktivitesi ile
eğitilmesini kapsamaktadır.

Tezin bu bölümünde geliştirilen YHT modelleri yazılım değişikliği seviyesinde
çalışmaktadır. Değişiklik seviyesindeki YHT sistemlerinde, yazılımda bir geliştirme
yapılarak kod deposuna çevrim (commit) olarak gönderildiğinde tahmin modeli
devreye girer ve ilgili geliştiriciye yaptığı çevrimin yazılım sistemine hata enjekte
ediyor olma ihtimaline dair geri bildirim verir. Bu tip YHT modellerinin avantajları
ise yapılan değişiklik hafızada taze iken geliştiriciye anında geri bildirim vermesidir.

Modellerin eğitimi sırasında yazılım depolarından toplanmış geçmişe dönük yazılım
çevrimleri (commit) ve bu çevrimlerin yazılıma hata enjekte edip etmediği bilgisi
kullanılmıştır. Ayrıca, toplanan çevrimlerden yazılım geliştirme sürecini tarihsel (örn.,
daha önce bir kaynak kod dosyasının kaç kere değiştiği), boyutsal (örn., kaynak kod
dosyasında değiştirilen kod satır sayısı), dağılımsal (örn., ilgili çevrimin kaç dosyayı
değiştirdiği) ve geliştirici tecrübesi (örn., önceki çevrimlerin sayısı) açısından yansıtan
13 adet ölçüt eğitimde kullanılmıştır. YHT modelleri bu alanda son teknoloji olan
Naive Bayes (NB) ve Random Forest (RF) algoritmaları ve 10-katlı çapraz-doğrulama
tekniği kullanarak eğitilmiştir. Eğitilen modellerin performans değerleri literatürde iyi
bilinen yedi farklı kriter ile ölçülmüştür: hata yakalama olasılığı, yanlış alarm olasılığı,
kesinlik, F1-skoru, eğri altında kalan alan, Matthews korelasyon katsayısı ve Brier
Skoru.

Altı adet açık kaynak kodlu projenin toplam 222 geliştiricisi üzerinde yapılan analiz
gösterdi kişiselleştirilmiş modellerin hata yakalama olasılığı, geleneksel modellerinki
ile karşılaştırılınca geliştiricilerin çoğunluğu (222 kişiden 184’ü) için %23’e kadar
artırmaktadır. Aynı zamanda, geleneksel yerine kişisel yaklaşım tercih etmek 174
geliştirici için yanlış alarm olasılığını %12’ye kadar artırmıştır.

Önceki çalışmalardan farklı olarak bu çalışma, bir geliştirici için kişisel modelin
geleneksel modelden daha başarılı olmasına yada tam tersine vesile olan geliştirme
karakteristiklerini incelemiştir. Sonuçlara göre, daha önce çok fazla geliştiricinin
üzerinde çalıştığı yazılım modüllerinde katkıda bulunan geliştiricilerin hatalarını
kişisel model daha iyi tahmin etmekte iken, projedeki tecrübesi fazla olan geliştiricilere
geleneksek model daha doğru tahminler üretmiştir.

xxvii

Bununla birlikte, hata tahmininde önemli olan ölçütlerin kişiden kişiye ne ölçüde
değiştiği incelenmiştir. Sonuçlara göre, farklı kişiler için eğitilmiş kişisel modeller
tecrübe, dağılım, ve tarihsel ölçütlerden farklı oranlarda yararlanmaktadırlar. Fakat
yine de büyük çoğunluğu için en önemli ölçüt bir çevrimdeki eklenen satır sayısıdır.

Tezin üçüncü analizinde ise kişiselleştirilmiş YHT yaklaşımını bir akademi-sanayi
iş birliği projesinde birlikte çalıştığımız sanayi partnerimizin seçilmiş bir yazılım
projesi kapsamında değerlendirdik. Bu seçilmiş projeden elde edebildiğimiz altı
geliştirici verisi üzerinde kurulan kişisel ve geleneksel modellerin karşılaştırılması
gösterdi ki, geleneksel modeller hata yakalama olasılığı açısından daha başarılılar
(%29 daha yüksek). Fakat aynı zamanda kişisel modellere göre daha çok yanlış
alarm üretmektedirler (%40 daha yüksek). Yüksek yanlış alarm değerleri geliştiricileri
gereksiz yere uyararak daha fazla kod inceleme eforuna sebep olabilmektedirler.

Endüstriyel projeye ait veri kümesinin küçük ve tipik olarak gürültü içermesi sebebiyle
çeşitli istatistiksel yaklaşımlar aracılığı ile mevcuttaki veri kaynaklarından daha çok
bilgi ölçmenin YHT modellerine katkısı olup olmayacağı incelenmiştir. Matris
ayrıştırma ile elde edilen gizli ölçütlerin eğitime dahil edilmesi ve logaritmik filtrele-
menin ölçütler üzerinde kullanılması geleneksel modellerin yanlış alarm değerlerini
%32 değerinde düşürmüştür. Bunlara ek olarak kod çevrim açıklamalarından elde
edilen semantik bilgilerin de eğitime eklenmesi kişisel modellerin hata yakalama
olasılığını %25 artırmıştır.

Aynı zamanda ölçütlerin kişisel ve geleneksel modellerin hata tahminine olan katkıları
incelenmiş ve iki yaklaşım için de benzer katkılara sahip oldukları gözlemlenmiştir.
En çok yazılım süreci ölçütleri katkıda bulunurken, gizli ölçütler ikincil öneme
sahiptir. Semantik ölçütlerin ise hata tahminine diğerleri kadar katkıda bulunmadığı
gözlemlenmiştir.

Analizler göstermiştir ki kişisel modeller geleneksellere üstün gelebilmekte iken,
pratikte hangi yaklaşımın tercih edileceği, geliştiricinin yazılım geliştirme karakter-
istiği, performans ölçme kriterleri birçok faktöre bağlıdır. Hatta geliştiricinin ekibe
yeni katılması ve/veya kendisine bir tahmin modeli kurulabilecek kadar geliştirme
geçmişine sahip olmaması da literatürde soğuk başlangıç problemi olarak bilinen,
tercihi zorunlu olarak geleneksel modele yönlendirecek bir durumdur. Bu durum bize
modellerin araştırma ortamındaki ulaştığı başarı değerleri kadar uygulanabilirliğinin
de önemli olduğunu göstermiştir.

Tezin dördüncü ve son analizinde ise endüstriyel partnerimizin projesi için
prototiplenen YHT çözümünün gerçek geliştirme ortamına entegre edilmesine
odaklanmış ve buna dair tecrübelerimiz paylaşılmıştır. Akıllı modelleri gerçek hayata
entegre etmenin bir araştırma ortamında model prototiplemeye kıyasla kendine has
bambaşka zorlukları vardır. Bu yüzden çevrimiçi bir değerlendirme ortamı kurularak
modelin tahmin performansının gerçek hayata uygun bir analizinin yapılması ve
modelin kullanışlılığının değerlendirilmesi önem kazanmaktadır.

Model prototipleme yapılan araştırma ortamında (çevrimdışı ortam) kullanılan
önceden toplanılmış veri kümesinde hataya sebebiyet veren kod çevrim bilgileri
halihazırda mevcuttur ve modelin eğitimi için direk erişilebilmektedir. Fakat gerçek
geliştirme ortamında hayatta (çevrimiçi ortam) anda yapılan kod çevrimlerinin hataya

xxviii

sebebiyet verip vermediği bilgisi gecikmeli (seçilen proje bazında ortalama yedi ay)
olarak elde edilmektedir ve veride gürültüye sebebiyet vermektedir. Bu gecikme kod
değişikliği bazında dizayn edilen YHT modellerinde yazılım hata yaşam döngüsünden
kaynaklanan tipik bir durumdur.

Gerçek geliştirme ortamına entegre edilen YHT modelinin sürdürülebilir bir
tahmin performansına sahip olması önemlidir. Bu sebeple yazılım projelerinin
hızlı değişen ve gelişen yapısına ayak uydurarak son geliştirme aktiviteleri ile
yeniden eğitilerek güncellenmek zorundadır. Ayrıca model eğitim/güncelleme
sırasında eğitim kümesindeki gürültülü verinin (henüz tespit edilmemiş fakat hataya
sebebiyet veren kod çevrimleri) tahmin performansına etkisinin minimize edilmesi
gerekmektedir. Modelin eğitiminde kullanılan kod çevrimleri ile hataya meyilleri
tahmin edilecek çevrimler arasında zamansal bir aralık bırakmak modelin gürültülü
veriden öğrenmesine karşı alınan tipik bir yöntemdir.

Biz bu çalışmada, modelin gerçek hayattaki performansını simüle etmek için
bir çevrimiçi tahmin ortamı tasarladık. Öncelikle çevrimdışı tahmin ortamındaki
(prototipleme ortamı) performans değerlendirmelerimizin çevrimiçi tahmin ortamın-
daki (gerçek hayattaki) performanslarını yakalayıp yakalayamayacağını araştırdık.
Sonuçlar gösterdi ki, modelin çevrimiçi değerlendirme performansı projenin
ilk senesinde düşükken sonrasında çevrimdışı performansı ile benzer değerlere
ulaşıyorlar. Bu da çevrimdışı değerlendirme tekniğinin modelin gerçek hayattaki
potansiyel performansını yansıtabildiğini göstermektedir.

Daha sonra çevrimiçi tahmin dizaynımızı kullanarak entegre edilecek modelin
güncellenirken kullandığı eğitim kümesi ile hataya meyilleri tahmin edilecek kod
çevrimleri arasında bırakılan farklı uzunluktaki zaman aralıklarının ve farklı model
güncelleme periyotlarının tahmin performansına etkisini araştırdık. Sonuçlarımıza
göre, modelin eğitimi sırasında eğitim ve tahmin kod çevrimleri arasında bırakılan
zaman aralığı modelin hata yakalama olasılığını %37’ye kadar etkilemektedir.
Modelin güncelleme periyodunu ayarlamak ise hata yakalama olasılığını %18’e kadar
etkilemektedir. Bu sonuçlara göre, sekiz aylık bir eğitim-tahmin kümesi zaman
boşluğu kullanımı ile modelin üç günde bir güncellenmesi en başarılı ve istikrarlı
performans değerlerini üreten durumdur ve modelin entegrasyon ayarları bu şekilde
yapılmıştır.

Ayrıca tahmin çıktılarının daha anlaşılır ve aksiyon alınabilir olması için bir kod
çevriminin yazılıma hata enjekte etme olasılığına ek olarak ilgili kod çevriminden
hesaplanan ölçütler de (örn., çevrimden etkilenen kod dosyası sayısı) kullanıcıya
sunulmuştur.

Bu tezdeki analizler göstermiştir ki kişiselleştirilmiş YHT modellerinin geleceği parlak
olmakla birlikte, performanslarını etkileyen faktörler üzerinden daha çok analize
ihtiyaç vardır. Ayrıca gelecek çalışmalar transfer edilebilir profiller oluşturmaya ve
benzer özelliklerine göre segmentlenmiş geliştiricilere özel grup modelleri geliştirm-
eye odaklanabilir. Diğer taraftan YHT modellerinin pratiğe uygulanabilirliği ve
tahmin sonuçlarının yorumlanabilirliği önemlidir. Bir yazılım projesine YHT modeli
geliştirilirken çevrimiçi bir değerlendirme ortamının kurulmasını desteklemekteyiz.
Ayrıca projenin yapısına, takımın geliştirme alışkanlıklarına ve tahmin modelinden
beklentilerine dikkat edilmeli.

xxix

xxx

1. INTRODUCTION

Software systems have become essential parts of our modern society, and they continue

diffusing into many parts of our lives [1]. Assuring and maintaining the quality of such

systems are critical needs of today’s organizations. However, the fast evolving nature

of software and their increasing size and complexity complicate the software quality

assurance (SQA) activities of organizations (i.e., planning, software testing, defeating

bugs) [2,3].

Meanwhile, SQA practices of development teams and researchers also evolve to “keep

up with the fast pace” of software development [2]. In the era of artificial intelligence

(AI) and machine learning (ML), both academic and business communities have

proposed and integrated many intelligent systems into the software development life

cycle (SDLC) [4]. Such intelligent models provide insights and recommendations to

people on software products and processes to make SQA activities more effective in

terms of budget and time [5]. Automatic code generation [6], bug fixing [7], test case

generation [8], and bug triage detection tools [9] are a few samples of such intelligent

models.

Software defect prediction (SDP) has become a well-established field of study for

decades and it has still been one of the focus areas of empirical software engineering

community for SQA. Intelligent defect predictors enable the detection of defect-prone

(i.e., buggy or fault-prone) software modules in a more robust and quicker way when

compared to manual inspection [10,11]. Shull et al. [12] report that manual inspection

of source codes can catch nearly 60% of the bugs, whereas the proposed SDP models

could perform around 70% in terms of the probability of bug detection [13]. Moreover,

these models help to reduce the effort spent on code inspection: 35% of all predicted

defect prone code changes could be identified by spending only the 20% of the total

inspection effort. Organizations are highly interested in SDP models since they prefer

1

to deliver higher quality products to their customers while reducing the development

and maintenance effort.

1.1 An Overall View of SDP Models

A typical SDP model is trained with AI/ML algorithms by utilizing a set of software

metrics collected from software archives to provide development team feedback on the

defect-proneness of software modules [14]. Figure 1.1 shows the typical process of

SDP model building.

Software archives

e.g., version control system,

issue tracking system,

mail archives

Data instances
(e.g., software modules)

1 10 3 6 0,4 : Buggy

2 5 9 14 0,3 : Buggy

3 100 5 10 0,5 : Clean

Defect prediction dataset

. . .

Metrics (e.g., lines of code added)

and bug (e.g., buggy or clean)

collection

Train set

Test set

Data pre-processing

and model training

Defect

prediction

 model

Prediction on the

bug-proneness of new instances

Figure 1.1 : An overview of a typical model building methodology.

The first step of building an SDP model is data collection. Depending on the prediction

level, i.e., code change-level or software file or class or method level, a set of historical

metrics are collected from software archives. Collected metrics represent valuable

information regarding the software product (i.e., the complexity of source code [15]),

the process (i.e., the many times a software module is changed priorly [16]), or the

people involved in the development (i.e., the number of developers contributed to

a software module [17]). The most commonly used software archives for metric

collection are source code versioning and bug tracking tools. But information sources

are not limited to these, another example is the use of mail archives to capture

community communication patterns (see Chapter 2).

The majority of SDP studies utilize supervised learning strategies to train predictors

[11]. Therefore, in addition to the metrics extracted from software modules, the

bug-proneness information of those software modules is also required during SDP

model training. A bug-prone software module means that the module includes a

bug and in the case of software changes, a change is accepted as bug-inducing if it

2

injects a bug into the software system. Bug-proneness of a module is often represented

with a binary label, i.e., bug-prone or clean, however, there are studies that utilize the

severity of bugs a module includes [18]. Predictions that an SDP model make is also

either at binary level or various severity levels depending on the used bug-proneness

information during training.

Defect predictors could be designed to make prediction at different levels of software

modules. A software module is often a method, class, file, package, or software

change (commit). The choice of the prediction level (software module) of an SDP

model depends on the project context, data availability or programming language [19].

Recently, an increasing rate of studies focuses on software change-level SDP, which

is also called “just-in-time” SDP by researchers, e.g., in [20]. Using a change-level

prediction model allows a developer to receive feedback on her/his changes in a much

shorter time when compared to a file or class level prediction model. An advantage

of this quick feedback is that developers could review their code when the change is

still fresh in their minds [16]. The prediction models that we designed in this thesis

also make predictions at change-level. Further knowledge on change-level SDP could

be found in the following chapters, particularly Sections 3.2 and 5.2.1 report literature

review on change-level studies.

The next step after data collection is often applying some AI/ML techniques to

pre-process data, i.e., data sampling, and to build/train SDP models. A common

challenge in SDP studies is the imbalanced nature of datasets due to fewer defect-prone

software modules compared to clean (non-defective) modules. Therefore, a typical

SDP dataset is pre-processed by applying data sampling techniques to balance the

number of data instances belongs to clean and defect-prone categories. Many ML

algorithms have been used to train an SDP model. Widely used and well performed

algorithms in SDP field are Logistic Regression [21,22], Naive Bayes [13,23] and tree

based algorithms such as Decision Tree and Random Forest [24]–[26].

Typical model validation strategies commonly used in SDP studies are cross-validation

[27] and time-sensitive strategies [28]. In a cross-validation strategy, the dataset is

split into k subsets, and each one of the k subset is used as test set once, and while

3

the other k − 1 subsets are used as training set. On the other hand, time-sensitive

validation strategies consider the temporality of software code changes, whereas the

cross-validation strategy does not. Therefore, a time-sensitive strategy is more realistic

since it is designed to predict defects in the future software modules (at time t +1) by

learning from the historical defect information of prior changes on software modules

(until time t). Furthermore, online validation strategies are proposed for change-level

SDP that mimic the real-life data flow in a more realistic way compared to other model

validation strategies [29]. One of those is called online prediction which is also a

time-sensitive learning strategy, but it also considers the actual labels of the training

instances determined based on the real-life discovery time of defects. More discussion

and knowledge regarding validation approaches are reported in Chapters 3 and 5.

1.2 Modeling People in SDP

People are one of the most important factors of software development as it is a

human-intensive engineering discipline, in which the final product quality and the

implementation of processes are heavily dependent on prior experience, knowledge

and skills of teams.

So far now, SDP studies have incorporated people factor into the SDP model training

process in various ways. One way of modeling people in SDP is measuring developer

related information to be used during model training as an indicator of defect proneness

of a software module. The most used developer metrics in the field are the number of

different developers that modified the code files [17] and the developer experience on

software modules [30]. Also, there are more sophisticated metrics, e.g., Posnett et

al. [31] suggest using developer focus on software modules. The focus of a developer

is computed over the distribution of the developer’s contribution to the modules that

the developer modifies. Lee et al. [32] use micro-interactions of developers with the

Integrated Development Environment (IDE), such as the time/duration a module is

browsed by the developer, to predict defects. Çalıklı et al. [33] analyze the relationship

of confirmation bias of developers with the injected defects. The authors support the

fact that a tester may have a tendency to make the code successfully execute rather than

to look for a strategic approach to make it fail.

4

Considering that the socio-technical structure of the organizations has an effect on the

quality of the developed software product, some studies suggest to use socio-technical

metrics to predict defects [22,34]. Recently, “Community smell” term is coined by

Tamburri et al. [35] to describe the community flaws occurred in organizations due

to missing communication and collaboration links. Community flaws may cause

inconvenience in development activities such as duplication of work piece or extra

cost in development. More explanation on this is in Chapter 2.

Another way of modeling people in SDP is building personalized models. Personalized

SDP studies include people factor into the model building strategy and propose

separate prediction models for each developer in the team.

1.2.1 Personalized models

Developers in software development teams can represent different development

characteristics, i.e., different commit frequencies, different level of experience in the

project or on specific software modules, and hence the defect injection patterns of these

developers also have different patterns [17,36].

Recommendation systems in other fields, e.g., search engines [37], social media

platforms [38], customize their outputs based on users’ characteristics such as prior

preferences. Thus, these businesses provide more personal and satisfying results for

their customers [39].

SDP field also incorporates personalization into the prediction models to provide more

accurate and satisfying feedback to developers on their code changes. The rationale is

that developers have different defect patterns and personalized models would capture

defects more accurately. Jiang et al. [36] propose personalized SDP models that learn

from each developer’s own historical development activity, while traditional models

learn from the whole team’s development. The personalized SDP approach builds

separate SDP models for everyone in the team, if development change history is

available, instead of using a single general model as in the traditional approach.

5

1.3 Applicability of SDP into Practice

Studies building recommendation systems emphasize the differences between offline

and online evaluations [40,41]. The offline evaluation refers to the research

environment where some prototypes are built with various algorithms and model

building approaches, and assessed using a pre-collected (offline) dataset. In contrast,

online evaluation refers to training and assessment of the models in a real-life

environment that includes real users and data. The majority of the SDP studies work

in offline setups to focus on the prediction performance of model prototypes. Offline

studies often adopt new ways of model learning by utilizing various statistical and ML

approaches [11] or knowledge extraction ways from data [18]. Using offline setups is

an effective and easy-to-use way to compare and assess various prediction models.

However, the practical applicability of the SDP models and the interpretability of

recommendations are as important as the models’ prediction performance [42]. SDP

studies that focus on the practical usability of proposed models are relatively few, but

there is an increasing interest in adopting SDP models into the real-life development

environment [29,43]–[46]. These studies have aspects such as prediction performance

of SDP models in a real development environment and the consistency of prediction

accuracy, interpretability of prediction outputs, and industrial domain challenges.

The behavior of prediction models may not be similar in research and real-life

environments since both have different data characteristics. The studies in an offline

environment often use pre-collected and labeled data, whereas the real-life data

requires more careful investigation from the perspective of SDP. For instance, the

discovery of bug-inducing software changes requires more time in a real development

environment [29]. This delay causes a label noise in online environments, which is not

an issue in an offline setup as it uses a batch dataset. Tan et al. [29] propose using an

online prediction setup to simulate the real life data flow of the software systems in

order to assess the model’s prediction accuracy more realistically.

Considering the perspective of real users is the second crucial factor for software

recommendation systems [40]. Since an SDP model aims to support development

teams during SQA activities, the prediction outputs should be trustable, interpretable,

6

and actionable [29,46]. To address that, studies in the SDP field focus on enriching the

output with informative clues such as the metric values of commits and the importance

of metrics presented to developers to support the code reviewing process [29,46].

Another challenge regarding the practical applicability of SDP models is the

assessment of models in different domains. The number of reported SDP studies focus

on industrial contexts is relatively low compared to the number of studies conducted

in open-source projects [2]. The reason for that is that open-source projects are

publicly and freely available to researchers, whereas industrial software projects are

not accessible easily. Conducting research in an industrial context often requires

collaboration with a company. While datasets of some industry case studies are shared

in public software data repositories [47], many companies do not share their dataset

due to confidentially reasons [2].

Nevertheless, conducting research in industrial domains is very valuable since it

provides assessing the generality of research findings and the practical applicability

of produced models into the cases that involve real customers [2,48]. SDP studies

focusing on various industrial domains, e.g., communication [29], e-commerce [44],

automotive [43], maritime [45], are significant resources for both researchers and

practitioners to comprehend the real development environments.

1.4 Purpose of the Thesis

In this thesis, we have two main goals: 1) assessing the people factor in SDP to

understand whether it helps to improve the prediction accuracy of SDP models and

2) prototyping an SDP solution for an industrial setting and assessing its deployment

performance. In this section, we explain these two goals in detail, respectively, with

the motivation behind them.

Studies in the SDP field have so far investigated this modeling problem in two ways,

oriented around the algorithm or the data . While some focus on the algorithm aspect

to improve the accuracy of prediction models, i.e., incorporating various AI/ML and

statistical approaches [11], some other studies focus on the data aspect to enrich the

knowledge extracted from software data [18].

7

Menzies et al. discuss the “ceiling effect” on the performance of SDP models [49]:

performance of SDP models that utilize the static code attributes has reached a ceiling,

and researchers need to enrich the information gathered from data to improve the

performance of SDP models. Also, Lessmann et al. [50] show that 17 out of 22

ML algorithms widely used by the SDP researchers report statistically the same

performance in predicting defects. Both of these findings imply that future studies

need more focus on enhancing information collected from the elements of software

development, i.e., product, process, and people, to build more accurate SDP models.

SDP studies have focused on product and process metrics for a long time [19]. Studies

also state tuning the parameters of ML algorithms and focusing on specific defect types

[27,51] to improve the prediction accuracy of prediction models [52]. However, despite

being one of the key factors in development, the people aspect in SDP has been studied

relatively little. As we mentioned in Section 1.2, while the majority of people-focused

SDP studies work on people metrics, i.e., measuring people development patterns

to incorporate them as features into the model learning process, only two ([36]

and [53]) focus on personalized SDP models, i.e., building separate models for each

team member. Therefore, we incorporate the people aspect in SDP and investigate

the effect of people aspect on the prediction performance. We modeled people in two

ways: 1) incorporate the socio-technical factors into the model learning process of an

SDP model, 2) build separate models for developers using the personalized approach.

First, we assess the effect of socio-technical factors, more specifically the “community

smells” on the prediction of defect-prone software classes. “Community smell” is a

term that was recently coined in the software engineering community and indicates

the communication and development flaws that occur in software organizations [54].

For example, if two people appear to be working on the same software module but

do not communicate directly to each other, this situation is categorized as the ”lone

wolf“ community smell. This smell type may cause duplication of a workpiece

due to missing communication between them and extra development cost to the

organization in the long term [55]. Community smells are the state-of-the-art measures

that represent more accurately the socio-technical dynamics of organizations [54]

compared to prior socio-technical network analysis methods [22]. Prior studies also

8

show that community smells highly occur along with the code smells in a project [55]

since the former one indicates community flaws and the latter one indicates the coding

flaws that occur in a project. While there is not any empirical evidence on the effect

of community smells on the prediction of defect-prone modules, a prior study shows

that code smells are one of the good indicators of the defective software classes [56].

Therefore, based on this finding, we aim to explore whether the community smells

could be used to predict defective software classes.

Second, we explore the personalized approach that builds separate models for each

developer in the team instead of building a single typical, general model that targets

all team members. Since a personalized model of a developer solely learns from

the developer’s own development history, its output filters the irrelevant information

from the other developers’ development history. Prior studies [36,53] show the

success of personalized SDP in terms of defect prediction capability, but they have

limited experimental setups. For example, they assess only 100 commits from 10

developers, do not utilize the state-of-the-art process metrics, and only evaluates the

proposed models in open-source projects. Therefore, we extensively investigate the

performance of personalized change-level SDP models using six open-source, and one

industrial project, state-of-the-art process metrics and AI/ML approaches, and seven

model assessment metrics. Further, we investigate the development characteristics

related to the superiority of the personalized models over general models or vice

versa. Moreover, we analyze the contribution of metrics on the prediction of defects

to understand whether the importance of metrics changes for different developers and

different prediction model types (i.e., personalized and general).

So far now, very few studies have reported the deployment of a change-level SDP

prototype into an industrial context [29,44] as we also mention earlier in Section

1.3. Therefore, in this thesis, we focus on the integration of an SDP solution into

the software engineering pipeline of an industrial project in communication domain.

We analyze the factors that should be considered in deployment of change-level SDP

models in order to provide consistently successful and useful recommendations to

developers. To accomplish that, we built SDP prototypes including personalized and

traditional change-level SDP models for a chosen project of Ericsson, Turkey. After

9

choosing a successful prototype model using an offline evaluation setup, we deployed

the prototype into the real development pipeline of Ericsson, Turkey. However, during

the deployment phase, we had some challenges and concerns relating to applicability,

model performance, label noise [29], and model update cycle. Hence, in this thesis,

we investigate whether the personalized approach could be successfully applied to an

industrial setting. Further, we propose an online prediction methodology to observe the

real life performance of deployed model by simulating different levels of label noise

and model update cycles.

1.5 Structure of the Thesis

Chapter 2 analyzes the impact of community smells on the prediction of defect-prone

software classes. Specifically, it is aimed to observe the contribution of community

smells in comparison with the other state-of-the-art metrics used to predict

defect-prone software classes, e.g., code smell intensity, number of developers.

Chapter 3 reports a comprehensive investigation of personalized SDP models against

traditional models on open-source projects. This chapter further analyzes the

development characteristics that lead to the superiority and inferiority of personalized

models compared to the traditional approach. Also, the importance of process metrics

in defect prediction is analyzed for team members over their personalized SDP models.

Chapter 4 investigates the personalized SDP models against traditional models in

an industrial setting. Also, the effect of combining information from various data

sources such as commit messages and using AI/ML techniques on prediction accuracy

is explored. Further, the importance of metrics for both personalized and traditional

approaches are analyzed.

Chapter 5 reports the deployment experience and challenges in an industrial

setting. Particularly, an online prediction setup is proposed to simulate the real-life

performance of the SDP model under various levels of label noise and values of the

model update period.

Chapter 6 concludes the thesis, shares the final remarks and future research directions.

10

2. AN EMPIRICAL STUDY ON THE EFFECT OF COMMUNITY SMELLS
ON BUG PREDICTION1

2.1 Introduction

Detecting and fixing bug-prone modules in software systems is an essential part of

the maintenance process. Predicting the residual bugs in the software before its release

prevents companies from additional costs [22]. A variety of metrics and methodologies

has been proposed to improve the performance of the bug prediction models. Some of

these models utilize static code metrics [57], process metrics, [58], social network

metrics [59], network metrics [60], developer metrics [61], code smell metrics and

antipatterns [62].

Code smells are the symptoms of design flaws in software systems [63]. Poor design

choices prior to code development, i.e., antipatterns, may propagate to failures which

require extra refactoring and bug-fixing effort [62]. Researchers show that classes

associated with antipatterns or code smells are more likely to be involved in bug

fixing changes than other classes [62,64]. Taba et al. [65] propose a set of antipattern

metrics, e.g., antipattern complexity and antipattern re-currency length, in addition

to the structural metrics, e.g., lines of code, churn, and the number of methods, to

predict software bugs. Later, [56] incorporate the code smell intensity metric (i.e., the

severity of code smells) into antipattern metrics to compare their performances with the

state-of-the-art bug prediction models. Both of the proposed code-smell related metrics

(antipattern, code smell intensity) improve the performance of the state-of-the-art bug

prediction models [56,66].

Software development is a collaborative activity including both individual effort and

cooperative work among the developers through synchronization and communication.

Researchers propose ways to define the organizational and social structures of

software engineering, and their effects on problem solving and welfare of development

1This chapter is based on the paper “Eken, B., Palma, F., Ayşe, B., & Ayşe, T. (2021). An empirical
study on the effect of community smells on bug prediction. Software Quality Journal, 29(1), 159-194.”.

11

communities [67]. One approach to model collaborations among the developers is

proposed in [59] to assign the issues to the related developers. In another study, [22]

utilize social and technical networks to predict failures in software systems. Other

metrics representing the developers of this cooperative work are based on, for example,

the number of developers worked on a software module [17], the scattering of the code

changes produced by developers [68], or contextual experience based on historical

changes [61].

Tamburri et al. [35] define a term called ‘community smell’ to explain social and

organizational antipatterns, and propose ways to mitigate these smells based on

their observations in industry. Analogous to code smells leading to technical debt,

community smells are defined as measures of socio-technical debt [35]. Later,

Magnoni [69] and Giarola [55] extended an existing socio-technical network analysis

tool CodeFace [70] to measure community smells in software teams, and Giarola [55]

points out that code smells and community smells tend to co-exist in the software

systems. In fact, both terms measure the technical debt in software development

through different aspects. A recent approach shows that the community smells

influence the intensity of code smells more than other community-related metrics [71].

Although significant associations between code smells and community smells are

identified [55], and community smells are modelled to predict code smell intensity

of the source code [71], there has been so far no study investigating the effect of

community smells on the bug-proneness of software modules. Tamburri et al. [35]

mention that “both forces should be reckoned with together during the software

process”. Since code smells and code smell intensity are proven to be successful

indicators of bugs in software systems [62,64] compared to the state-of-the-art process

metrics [56], we aim to investigate if community smells, as they are found closely

associated to code smells [55,71], would also successfully identify bugs in the software

systems. We base our research on the prior works [55,56,71], and extend those works

by building bug prediction models with community smells.

12

Our key contributions in this study include:

• We conducted an empirical analysis to examine the effects of community smells

on bug-proneness of software classes. Palomba et al. [56] report that code smell

intensity is the best indicator of bugs compared to several baseline models. In

this study, we take this best performing metric set and its associated model from

Palomba et al.’s study [56] and compare it against the models that we build

with community smell metrics to investigate their explanatory power to predict

bug-prone classes.

Our results show that the code smell intensity metric and community smells are the

most contributing ones for bug prediction depending on the dataset characteristics

and smelly class ratios. Also, a combination of code and community smell metrics

does not necessarily contribute to the prediction of bug-prone classes.

• We have built new datasets consisting of two parts: (1) ReplicatedDB which is an

extended version of the dataset used by Paloma et al. [56] by incorporating three

community smells and six code smells for seven open-source projects from the

original dataset, and linking those to the rest of the metrics and bugs at class level;

and (2) CollectedDB that includes three additional open-source projects used in

Palomba et al.’s study [71], and Giarola’s study [55] to enrich our datasets. We

extracted similar metrics that ReplicatedDB have, and linked those with bugs at

the class level. Finally, they have become very comprehensive datasets including

static code attributes [72], number of developer metrics [73], churn [74], scattering

metrics [68], code smell intensity [75], code smells and community smells [55], and

bugs. Both datasets are available online with a replication package of our study [76].

2.1.1 Structure of the chapter

The rest of the chapter is organized as follows: Section 2.2 discusses the bug

prediction and community smells-related studies in the literature. Section 2.3 explains

our methodology to answer all the research questions, including the validation

strategies, algorithms, and performance measures. Section 2.4 shows the results of the

experiments while Section 2.5 provides an in-depth discussion on the results. Section

13

2.6 discusses the threats to the validity of the experiments, and, finally, Section 2.7

concludes the paper.

2.2 Related Work

We organize related work as follows: Section 2.2.1 gives an overview of the bug

prediction studies; more specifically, on the metrics that are found as the best indicators

of bugs in these models. Later in Section 2.2.2, we discuss the social aspects

of software development, their usage on bug prediction studies, community smells

introduced by Tamburri et al. [35] and related studies on community smells.

2.2.1 Literature on bug prediction

In the field of software engineering, bug prediction has been widely studied by both

researchers and practitioners through offline or field studies. Existing bug prediction

models utilizing static code metrics perform well with a probability of detection rate

between 70% and 80% [57,77]. Studies in the literature approach bug prediction in

different ways. Many techniques for data collection, metric extraction and aggregation,

and training methodologies are investigated. We briefly report the studies from those

aspects in this section. We suggest readers refer to systematic literature reviews (SLRs)

that synthesize the current evidence in the bug prediction literature and discuss the

studies in terms of algorithms, metrics, model construction methodology in more detail

[11,14,18].

The static code metrics, object-oriented metrics, call-graph based dependency metrics

[78], process metrics [77,79], network metrics [60] are very popularly used input

features in bug prediction studies. According to the SLRs on bug prediction [14,18],

there is not a single set of metrics that fits for any project and/or any modeling

technique to build an accurate bug prediction model. There are other data-oriented

solutions, e.g., Turhan et al. [80] analyze the effect of using cross-project or

mixed-project data to predict bugs, whereas Zhang et al. [81] observe different types

of aggregations at class/module-level metrics while building bug prediction models at

file-level. Tsakiltsidis et al. [51], and Tosun et al. [27], on the other hand, focus on a

specific type of bugs to improve the usefulness of predictions.

14

Some studies focus on the algorithm, and methodology aspects, e.g., Lessmann et al.

[50] analyze the performances of different machine learners on bug prediction models,

whereas Fu et al. [52] analyze the effect of parameter tuning on the performance of

bug prediction. Other studies also apply different model validation techniques when

measuring the performance of bug prediction models [82].

Fowler [83] introduced the term code smell as the symptoms of design flaws (e.g.,

duplicate code) in software. Studies report that code smells have high survivability

[63], and, in general, very few smells are removed from a project, so they tend to

increase over time [84]. Developers tend to postpone removing code smells [85] to

avoid modification on the systems [86], or they do not perceive code smells as a critical

problem [87]. The studies on bug prediction, on the other hand, show how critical

these code smells are in terms of their bug-introducing patterns. For example, Khomh

et al. [62] analyze four open-source systems and report that classes having poor design

choices, namely antipatterns, are more likely to be involved in bug fixing changes than

other classes. Palomba et al. [64] also confirm that classes involved in code smells are

more prone to contain bugs in 30 open-source systems. Tabe et al. [65] use antipattern

information (e.g., the average number of antipatterns) in addition to the traditional

metrics to predict bugs, and state that the models built with antipattern metrics can

increase the prediction performance up to 12.5% in terms of F-measure.

Following the work of Taba et al. [65] and Palomba et al. [56] we include code smell

intensity metric into four different state-of-the-art bug prediction models (baselines),

each of which utilizes Structural, Basic Code Change, Developer, and Developer

Changes Based metrics, respectively. They also added antipattern metrics into

these baselines and compare the predictive power of code smell intensity against

the antipattern and baseline metrics on bug prediction. Their analyses show that

the code smell intensity significantly improves the F-measure of the four baseline

models. More specifically, when the code smell intensity is added into the Developer

baseline model, the performance increases up to 21% in terms of F-measure. The best

performing baseline model, on the other hand, is Developer Changes Based with 69%

F-measure. Antipattern metrics, on the other hand, slightly improve the performance of

the baseline models. Nevertheless, a combination of the baseline metrics, antipattern

15

metrics, and code smell intensity gives the best prediction performance. In another

study, Soltanifar et al. [66] propose to build a defect prediction model using code smells

metrics, churn metrics, and a combination of them. The authors conclude that those

models with code smell metrics mostly outperform the ones that are trained with churn

metrics only.

2.2.2 Literature on people aspect and community smells

The people aspect incorporated into bug prediction models is represented through

developer-related metrics, e.g., the number of developers contributing to software

modules [17], the focus of a developer on a software module [68], or developer’s

confirmation bias levels [33]. Lately, personalized bug prediction models are

introduced to train specialized models for each developer by using the selected

developer’s historical development activity only [88]. Recent approaches to model

people aspect also propose metrics capturing developer experience [61], developers’

review activities, and their involvement in the review process [89].

Studies in the literature also model the social aspect of software development. For

example, Bird et al. [22] propose socio-technical networks to predict the bugs in

Windows Vista, their prediction performance improve 5% in terms of recall. Çalıklı

et al. [90] model software team interactions to improve software quality management.

Later, Tamburri et al. [35] investigate social debt in software engineering, describing

as “not quite right development community, which we postpone making right”. The

authors discuss that socio-technical structures and decisions of software organizations

may cause additional costs or delays in software development activities. They

define a set of community smells, and propose a tool called CodeFace4Smells

to automatically reflect the socio-technical issues [55,91]. Empirical analysis on

open-source communities points out the diffuseness of community smells [91] and how

developers perceive those as relevant issues regarding software evolution. Lately, two

novel approaches are proposed to capture eight common types of community smells

(e.g., “sharing villainy” which caused by poor quality information exchange within

the team) in software projects by utilizing social network, community, geographic

dispersion, formality, and truck number properties [92,93]. A machine learning-based

16

approach by Almarimi et al. [93] achieved a detection performance of 94% in terms of

AUC. There are other studies focus on community smells: Catolino et al. [94] found

that women’s presence in teams tends to reduce the amount of community smells,

Catolino et al. [95] suggests a guideline on refactoring techniques for community

smells, e.g., restructuring the team, creating a communication plan for team members.

Palomba et al. [71] further study the relationship between the community

smells, socio-technical congruence, and code smell intensity, and report that

community-related factors contribute to the intensity of code smells. Studies on the

relationship between code and community smells inspire us to further investigate the

community smells, and the extent to which community smells contribute to predicting

bugs. As code smells and other social aspects of software development are shown to be

good indicators of software bugs, we think that community smells would likely explain

software bugs. Based on the findings of Palomba et al. [56,71] and Giarola [55], we aim

to investigate the explanatory power of community smells on software bugs, compared

to the best performing metrics, code smells and code smell intensity. We want to assess

whether community smells are as good indicators of bugs as code smell related metrics

and other process metrics.

2.3 Methodology

We have three research questions (RQs) to empirically investigate the effect of

community smell-related information on the prediction of bug-prone classes. Our

empirical analyses are conducted on two datasets consisting of different open-source

software projects. We selected those projects from prior works [55,56,71] that our

study is inspired by. Unfortunately, accessing all the projects’ repositories and

messaging logs was not possible, and thus, we ended up having a total of 10 projects

in our datasets. More details on the datasets are reported in Section 2.3.1. Our RQs are

formulated as follows:

RQ1: To what extent does the community smell contribute to the prediction of

bug-prone code components?

17

Our main goal is to analyze the contribution of community smells in predicting

bug-prone classes. To do this, we include the community smells into the four baseline

bug prediction models using process metrics, similar to those built by Palomba et

al. [56]. We assess the impact of community smell information on bug prediction

performance compared to the process metrics.

RQ2: To what extent does the proposed model contribute to the bug prediction when

compared to a state-of-the-art model built using code smell related metrics?

Based on the findings of Palomba et al. [56], the best performing metric for bug

prediction is code smell intensity. Therefore, we aim to compare the performance of

a baseline model with community smells and with code smell related metrics. We use

both code smell metrics extracted via CodeFace4Smells tool and code smell intensity

metric calculated according to Fontana et al. [75], and incorporated those into the

baseline models. Then we assess their performance against the model using baseline

metrics and community smells.

RQ3: To what extent do the combined smell-related information contribute to the bug

prediction when compared to the best contributing one?

We aim to assess the combined ability of community smells and code smell-related

information in predicting bug-prone classes. We build the models with the most

contributing metric group found in the prior research question for each dataset and

combine these models with the rest of the metric groups.

An overview of our research methodology to answer our research questions is depicted

in Figure 2.1. We summarize the steps shown in the figure below before explaining

those in the subsequent sections in detail:

• Data collection: We utilize two datasets in our research: (1) the one used by

Palomba et al. [56] that we extend by including the community and code smells and

refer in this study as ReplicatedDB, and (2) the one used Palomba et al. [71] that we

extend by collecting community smells, code smells, code smell intensity, and the

structural metrics. We name this dataset CollectedDB. Section 2.3.1 provides more

details on data collection.

18

Bug dataset
[Palomba et al., 2017]

ReplicatedDB

Extended by including new
metrics into the chosen
seven open-source projects:
- Community smells
- Code smells

Codeface4smells tool

Various feature
combination models to

answer RQ1, RQ2 and RQ3
(check Algorithm 1)

Bug prediction models
(k-fold cross validation)

Statistical comparison of
different prediction models

(Scott-Knott ESD)

CollectedDB

Extracting metrics for three
new open-source projects:
- Community smells
- Code smells
- Code smell intensity
- Structural metricsCodeface4smells and CKJM tools

Data collection

Model building and analysis

Figure 2.1 : Overview of our research methodology.

• Model building and analysis: We build seven bug-prediction models utilizing

different combinations of the metrics to answer our three RQs. These seven models

utilize baseline metrics, and a combination of baseline and community and code

smell-related metrics depending on the RQs. For RQ1, two models are reported

utilizing baseline metrics and baseline+community smell metrics. For RQ2, two

more models are reported utilizing baseline metrics+code smell related information.

For RQ3, models using combinations of community smells and code smell-related

information are reported. This model building and analysis step is also depicted

in Algorithm 1 (Section 2.3.2). Models are compared to each other by using

Scott-Knott ESD test to confirm the statistical significance of the contribution of

19

community smells on the prediction of buggy software classes compared to those

of the process metrics or code smell related metrics.

2.3.1 Datasets used in this study

We have two datasets to answer our RQs, namely ReplicatedDB and CollectedDB

[76]. The ReplicatedDB is an extension of the dataset provided in [56], while the

CollectedDB consists of newly collected software projects, particularly for this study.

The projects are selected based on the work by Palomba et al. [71], but due to the

fact that authors did not share their full dataset, we crawled the data for this work. In

this section, we give the details of the data collection process and discuss the metric

extraction process in Section 2.3.1.1.

The first dataset – ReplicatedDB – is an extended version of the seven projects used

in the study by Palomba et al. [56]. The original dataset used by Palomba et al. [56]

is composed of class-level bug information, the state-of-the-art structural metrics [72],

number of developers [74], code churn [73], developer scattering metrics [68], and

a code smell intensity metric collected from a total of 34 releases of 11 open-source

projects.

We have extended this dataset by adding community smells and code smells. To extract

the community smells and code smells, we executed the CodeFace4Smells tool [55]

on the selected open-source projects. The CodeFace4Smells tool generates developer

collaboration and communication networks of the software projects by using mailing

lists and source code repositories. Generated developer networks are used to perform

the social and technical analyses of the software projects, and later, the tool generates

an output in the form of classes with community and code smell information. The

tool gives the community and code smell information as a binary value (0 or 1 for the

absence or presence of smells) for each class. After gathering the projects’ class-level

community and code smells, we matched this information with the classes listed in the

original dataset [56] using the class names and the release information of the projects.

The original dataset from Palomba et al. [56] contains the earlier releases of the

projects between the years 2000-2008. The CodeFace4Smells tool could not give

20

an output for the initial few releases of the projects because they do not have a

collaboration and communication history. Also, the source code repository or mailing

list of some projects were not reachable. As a result, our extended bug prediction

dataset ReplicatedDB contains fewer projects and releases than those listed in the study

of Palomba et al. [56]. The final ReplicatedDB contains an extended version of a total

of 16 releases of the seven open-source projects with more metrics.

The second dataset – CollectedDB – is newly constructed for this study by also utilizing

the CodeFace4Smells tool. CollectedDB contains three open-source projects, namely

Cayenne, Eclipse-CXF, and Mahout. All of these projects were selected based on the

‘Known Projects’ list of Giarola’s study [55], i.e., CodeFace4Smells tool was able to

extract the code and community smells successfully for these projects in the earlier

study. For these three projects, the CodeFace4Smells tool created three-month time

windows for the years between 2013-2016 and computed these smells at the class level.

We then aggregated these three-month subsets to form a single dataset for each project.

We removed the classes that contain no smells from the CollectedDB to avoid bias

during analysis. We also collected structural metrics for the CollectedDB by utilizing

the Ckjm tool [96] to create a baseline model for this dataset.

The number of classes, number of community and code smells that each project has

also reported in Table 2.1 and 2.2. We created this new CollectedDB dataset because

the projects in ReplicatedDB contains a limited number of classes with respect to the

community smells and other code smells. From Table 2.1 and 2.2 we can observe that

the maximum number of classes associated with any smell type in ReplicatedDB is

92 with Missing Link (ML) community smell. In CollectedDB, there exist up to 238

classes associated with this community smell, and up to 800 classes associated with

any of the code smells.

2.3.1.1 Metrics

Both the ReplicatedDB and CollectedDB contain code and community smell metrics,

code smell intensity, and structural metrics. In addition to those metrics, ReplicatedDB

also contains churn, developer metric, and scattering metrics. The descriptions of the

full list of metrics are provided in Table 2.3. The last two columns show which dataset

21

Table 2.1 : Properties of the datasets used in this study.

Dataset Project Releases Total Bug-prone
classes classes

ReplicatedDB

Ant 1.3-1.6 943 184
Ivy 2 352 40
Log4j 1.1-1.2 298 223
Lucene 2.0-2.4 750 437
Velocity 1.5-1.6.1 443 176
Synapse 1.2 251 86
Xerces 1.2-1.4.4 1,222 353

CollectedDB
Cayenne 2013-2016 518 312
CXF 2013-2016 1,222 530
Mahout 2013-2016 322 48

contains the corresponding metrics set. We include all metrics sets from the original

data taken from Palomba et al.’s study [56]. However, we intend to mainly analyze

the effect of code and community smell related metrics on bug prediction. Structural,

churn, developer, and scattering metrics are the state-of-the-art features that used in

the bug prediction modelling and we kept them in the dataset to create our baseline

models.

The output of the CodeFace4Smells tool is the list of classes in the selected projects

with a binary code and community smell information, i.e., 0 indicates a class does

not have the specified smell while 1 refers to the presence of the specified smell.

These outputs are used as the code and community smell metrics when building the

models. Based on the definitions in Giarola’s study [55], a brief description of code

and community smells considered in our study are presented below.

• Code smells:

– Class Data should be Private (CDP) occurs when a class has more than 10

public variables, it is considered to be involved in CDP smell.

– Complex Class (CC), if the McCabe Cyclomatic Complexity of a class is

above 200, the class is considered to be involved in CC smell.

– Functional Decomposition (FD) may occur when a class is intended to be

object-oriented and implemented by non-object-oriented developers.

22

Ta
bl

e
2.

2
:N

um
be

ro
fc

od
e

an
d

co
m

m
un

ity
sm

el
ls

as
so

ci
at

ed
w

ith
so

ft
w

ar
e

cl
as

se
s.

Pr
oj

ec
t

C
od

e
Sm

el
ls

C
om

m
un

ity
Sm

el
ls

C
D

P
C

C
FD

G
C

SC
L

M
O

S
R

S
M

L
A

nt
6

2
0

58
46

19
24

49
49

Iv
y

1
3

1
9

10
6

8
15

15
L

og
4j

4
1

0
4

3
2

3
8

8
L

uc
en

e
4

8
0

22
19

8
2

15
17

V
el

oc
ity

2
5

0
6

6
2

3
4

4
Sy

na
ps

e
3

0
0

2
2

11
6

14
14

X
er

ce
s

21
19

0
81

68
52

59
73

92
C

ay
en

ne
16

8
58

12
32

0
16

8
66

65
3

76
C

X
F

26
2

19
3

33
82

1
53

4
27

4
27

11
9

23
8

M
ah

ou
t

97
24

12
15

8
71

67
19

16
29

23

Ta
bl

e
2.

3
:M

et
ri

cs
an

d
th

ei
rd

es
cr

ip
tio

ns
.

N
am

e
D

es
cr

ip
tio

ns
R

ep
lic

at
ed

D
B

C
ol

le
ct

ed
D

B
St

ru
ct

ur
al

m
et

ri
cs

Si
ze

,c
om

pl
ex

ity
an

d
ob

je
ct

-o
ri

en
te

d
m

et
ri

cs
[7

2]
X

X
C

hu
rn

E
nt

ro
py

of
ch

an
ge

s
of

a
gi

ve
n

tim
e

pe
ri

od
[7

3]
X

D
ev

el
op

er
N

um
be

ro
fd

ev
el

op
er

s
w

or
ke

d
on

a
cl

as
s

[7
4]

X
Sc

at
te

ri
ng

Sc
at

te
ri

ng
of

de
ve

lo
pe

rs
’

de
ve

lo
pm

en
t

on
th

e
co

de
m

od
ul

es
[6

8]
X

C
od

e
sm

el
li

nt
en

si
ty

in
de

x
A

nu
m

er
ic

va
lu

e
th

at
m

ea
su

re
s

ho
w

m
uc

h
a

cl
as

s
in

cl
ud

ed
in

to
co

de
sm

el
ls

X
X

C
od

e
sm

el
ls

E
xt

ra
ct

ed
vi

a
C

od
eF

ac
e4

Sm
el

ls
[5

5]
X

X
C

om
m

un
ity

sm
el

ls
E

xt
ra

ct
ed

vi
a

C
od

eF
ac

e4
Sm

el
ls

[5
5]

X
X

24

– God Class (GC) occurs when a class is large and depends on the data stored

in surrounding data classes.

– Spaghetti Code (SC) may occur when a class is implemented in the way of

procedural thinking.

– Long Method (LM), if a class has one or more methods with more then 100

lines and more then two input parameters, it is considered to be involved in

LM smell.

• Community smells:

– Organizational Silo (OS) is a software development pattern in an organization

where the developers collaborate with others but do not communicate within

the analyzed communication channel.

– Radio Silence (RS) is a pattern such as there is unique knowledge and

information brokers toward different sub-communities.

– Missing Links (ML) is a pattern where there is a collaboration between

developers and there is a lack of communication between collaborators.

ReplicatedDB has already had the code smell intensity metric. In this study, we

calculated the code smell intensity for the CollectedDB based on the code smell

intensity calculations provided by Fontana et al. [75]. Firstly, we determine the 10%,

25%, 50%, 75%, and 90% quartiles for the values of each structural metric extracted

with the Ckjm tool [72]. Secondly, we find the minimum value of the quartile that

corresponds to each structural metric. Thirdly, we take the average of the determined

values for each structural metric and set it as a code smell intensity metric. The code

smell intensity metric is only calculated for the classes containing code smells. If a

class does not contain any code smell, we take its code smell intensity as zero (0).

2.3.2 Model building and analysis

We conducted our empirical analysis by assessing the performance of the class-level

bug predictors that incorporate the community smells into a set of state-of-the-art

baseline models and comparing them with the other models built with the

25

state-of-the-art metrics as well as code smell related metrics. The performance of

the models is statistically compared to each other based on the related RQ. Our

methodology is shown as pseudocode in Algorithm 1.

Algorithm 1 Pseudocode for answering RQs.
Projects1 = (Ant, Ivy, Log4j, Lucene, Synapse, Velocity, Xerces)
Projects2 = (Cayenne, Eclipse-CXF, Mahout)
Learners = (Simple Logistic, Multilayer Perceptron, ADTree, Naive Bayes, Decision Table, Logistic Regression)

ModelsForReplicatedDB = (Baseline (RQ1), +CommSmells (RQ1), +CodeSmells (RQ2), +CodeInt (RQ2),
+CommSmells+CodeInt (RO3), CodeSmells+CodeInt (RO3), +CommSmells+CodeSmells+CodeInt (RQ3))

ModelsForCollectedDB = (Baseline (RQ1), +CommSmells (RQ1), +CodeSmells (RQ2), +CodeInt (RQ2),
+CommSmells+CodeSmells (RQ3), +CommSmells+CodeInt (RQ3), +CommSmells+CodeSmells+CodeInt (RQ3))

StatisticalTests = (Scott-Knott ESD)
N = 3
M = 10
for pro jectData in ReplicatedDB do

for m in ModelsForReplicatedDB do
pro jectData′ = apply m to pro jectData
for i = 1 to M do

pro jectData′′ = randomize the order of pro jectData′

S = generate N folds from pro jectData′′

for i = 1 to N do
trainSet = S[j]
testSet = S−S[j]
for l in Learners do

model = apply l on trainSet
predictions += apply model on testSet

end for
end for
recall, p f , f −measure, auc = calculate from predictions

end for
end for
for s to StatisticalTests do

apply s to the recall, p f , f −measure, auc of all models of both datasets
end for

end for
for pro jectData in CollectedDB do

for m in ModelsForCollectedDB do
pro jectData′ = apply m to pro jectData
for i = 1 to M do

pro jectData′′ = randomize the order of pro jectData′

S = generate N folds from pro jectData′′

for i = 1 to N do
trainSet = S[j]
testSet = S−S[j]
for l in Learners do

model = apply l on trainSet
predictions += apply model on testSet

end for
end for
recall, p f , f −measure, auc = calculate from predictions

end for
end for
for s to StatisticalTests do

apply s to the recall, p f , f −measure, auc of all models of both datasets
end for

end for

The models were implemented using six machine learning algorithms, i.e., Simple

Logistic, Multilayer Perceptron, ADTree, Naive Bayes, Decision Table (based on an

26

ordered set of rules generated by decision trees [97]), and Logistic Regression. We

chose these algorithms since they were also used in the previous research by Palomba

et al. [56] and shown to be successful at predicting class-level bug proneness. We

implement the same algorithms of the prior work to avoid potential effects of the

experimental setup on the findings.

For each dataset, we assess the performance of seven bug prediction models listed

in Table 2.4, then compared the performances with each other, with respect to their

associated RQs. For ReplicatedDB, this comparison is repeated for each of the four

baselines built for structural metrics, churn, number of developers, and scattering

metric (see Table 2.3). For CollectedDB, the comparison is made against one baseline

built with the structural metrics.

Table 2.4 : List of bug prediction models built in this study.

Model abbreviation Metrics included into the model

Baseline* Structural, churn, developer, scattering
+CommSmells Baseline + Community Smells
+CodeSmells Baseline + Code Smells
+CodeInt Baseline + Code Smell Intensity
+CommSmells+CodeSmells Baseline + Comm. Smells + Code Smells
+CommSmells+CodeInt Baseline + Comm. Smells + Code Smell

Intensity
+CodeInt+CodeSmells Baseline + Code Smell Intensity + Code

Smells
+CommSmells+CodeInt+CodeSmells Baseline + Comm. Smells + Code Smell

Int. + Code Smells
*There is only one Baseline model for the CollectedDB that contains the structural
metrics while there are four different Baseline models for the ReplicatedDB that utilizes only
one of the structural, churn, developer, and scattering metrics respectively.

In RQ1, we compare two bug prediction models listed in Table 2.4: Baseline vs.

+CommSmells. The +CommSmells model includes community smells in addition to

the Baseline model’s metric sets, while the Baseline only includes one of the structural

metrics, churn, number of developers, or scattering metric.

In RQ2, we build and assess the performance of three bug prediction models listed in

Table 2.4: +CommSmells, +CodeSmells, and +CodeInt. The +CodeSmells model

includes the Baseline model’s metric set and the code smells, while the +CodeInt

model includes the Baseline model’s metric set and the code smell intensity metric.

27

In RQ3, we would like to assess the effect of the combined smell-related models

against the best performing model in RQ2. According to the results of RQ2, the

best performing model changes among datasets. In particular, it is +CodeInt for

ReplicatedDB, while the +CommSmells is the best performing metric set for Col-

lectedDB. Therefore, in RQ3, for ReplicatedDB, we analyze the effect of combining

the code smell intensity metric with community smells (+CommSmells+CodeInt),

code smells (+CodeSmells+CodeInt), and both community and code smells

(+CommSmells+CodeSmells+CodeInt) on the prediction of bug-prone classes. For

CollectedDB, we analyze the effect of combining community smells with code smell

intensity (+CommSmells+CodeInt), code smells (+CommSmells+CodeSmells), and

both code smells and their intensity (+CommSmells+CodeSmells+CodeInt) on the

prediction of bug-prone classes.

All of the bug prediction models listed in Table 2.4 are trained and tested by following

a within-project strategy: We train and evaluate the models for each project aggregated

over all releases. With this, we have seven bug prediction models (see Table 2.4) for

each project listed in ReplicatedDB and CollectedDB. While building and evaluating

the bug prediction models, 10 repetitions of 3-fold cross-validation are applied. Firstly,

we take a project from the datasets and randomize the order of the instances to avoid

sampling bias [98] before building and evaluating a model. Secondly, we split the

data into three folds and take one fold as the test set and the remaining two folds as

the training set. Then we build a model using the selected training set and evaluate

the model on the remaining test set. We collect the prediction results of the repeated

cross-validation steps. The reason that we set the fold number as three when applying

the cross-validation technique is the low ratios of buggy and smelly class instances

(see Table 2.1 and 2.2). If we set a higher fold number, some training sets might have

almost no smelly instances or very few buggy instances, and in turn, there may not be

enough samples to learn from for the predictors.

We evaluate all the models in terms of the probability of detection (pd or recall),

probability of false alarm (pf), F-measure, and the AUC (Area Under The ROC

-Receiver Operating Characteristics- Curve). The recall, pf, and F-measure values

are calculated from the confusion matrix of the prediction results. A simple confusion

28

matrix for the bug prediction is given in Table 2.5 and the calculation formulas of

the recall, pf, and F-measure are provided in Table 2.6. The recall measures the

ratio of correctly predicted bug-prone classes to the actual bug-prone classes. The

pf measures the ratio of incorrectly predicted bug-prone classes to the actual clean

(not buggy) classes. The F-measure is the harmonic mean of the recall and precision

values. The precision measures the ratio of the actual bug-prone classes to predicted as

bug-prone classes. Precision measurement is not used in our model assessment step,

but its calculation formula is provided in Table 2.6 for information purposes.

Table 2.5 : Confusion matrix for bug prediction problem.

Actually bug-prone Actually clean

Predicted as bug-prone TP (True Positive) FP (False Positive)
Predicted as clean FN (False Negative) TN (True Negative)

Table 2.6 : The equations for recall (or pd), pf, precision, and F-measure.

Accuracy measures Formula

Recall (or pd) T P
T P+FN

Pf FP
FP+T N

Precision T P
T P+FP

F1-measure 2×precision×recall
precision+recall

The performance results of the proposed bug prediction models are compared with

each other to analyze the contribution of each smell related metric type in terms

of recall, pf, F-measure, and AUC values. To perform statistical tests among the

bug prediction models, we aggregated a model’s performance (in terms of recall,

pf, F-measure, and AUC individually) over all the projects and machine learning

algorithms. The aggregated performances of prediction models are compared with

each other by applying Scott-Knott Effect Size Difference (ESD) test [99] implemented

by Tantithamthavorn et al. [82]. The results of different projects and algorithms are

further discussed in Section 2.5.

2.4 Results

This section presents the results obtained through the experiments to answer RQ1,

RQ2, and RQ3. Performances of prediction models associated with each RQ are

29

reported as boxplots in terms of recall, pf, F-measure, and AUC. The names of

the prediction models are shown along the y-axis of each group of box plots. The

performances are aggregated over six machine learning algorithms used during training

and for all projects within each dataset. Scott-Knott ESD analysis for the prediction

models built for each RQ is provided in our online appendix [76], as well as the

performance plots of the predictors. The detailed analysis of the algorithms and

projects are reported in Section 2.5.

2.4.1 RQ1: To what extent does the community smell contribute to the prediction

of bug-prone code components?

First, the performances of Baseline and +CommSmells are aggregated over all the

baselines and the datasets and reported in Figure 2.2. Then, the performances of the

predictors are reported separately for ReplicatedDB and CollectedDB in Figures 2.3,

and 2.4, respectively. Note that in this paper, we only report the performance of one

out of four baselines of ReplicatedDB (number of developers), and report the other

baselines in our online appendix since it would take too much space in the paper.

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●● ●●●● ●●●● ●●●●●●● ●●● ●●●●●●●●●● ●● ●●● ●●●●●●●● ●●●● ●●●●●● ●●●●● ● ●●● ●●●●●●●●●●●●●● ●●●● ●●●● ●●●●● ● ● ●● ● ●●●●●●●●●●● ●●● ● ●● ●

●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●● ●●●● ● ●● ●● ●●●●●●●●●● ●●●●● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.2 : Performances of the bug prediction models built to answer RQ1. The
performance values are aggregated over both datasets.

Overall performance results in Figure 2.2 show that Baseline and +CommSmells

models perform closely to each other. Both models achieve a recall of ∼38%, pf

of ∼7%, F-measure of ∼51%, and AUC of ∼65%. According to Figures 2.3, and 2.4,

the models achieve different performances among the two datasets. While the median

recall values of the predictors built for CollectedDB are around 75%, the median recall

30

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.3 : Performances of the bug prediction models built to answer RQ1, for
ReplicatedDB, with the baseline model utilizes number of developers metric.

● ● ●

● ●

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

●

●

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.4 : Performances of the bug prediction models built to answer RQ1, for
CollectedDB, with the baseline model utilizes structural metrics.

values of the predictors built for ReplicatedDB are between 20% (with the number of

developers) and 39% (with the structural metrics).

The +CommSmells model outperforms three out of four baselines of ReplicatedDB

(number of developers, churn, scattering), and the baseline of CollectedDB by

improving the recall between 2% and 6%, and AUC between 1% and 3%. However,

according to the Scott-Knott ESD comparison results, there are no significant

differences among the Baseline and +CommSmells in terms of recall, pf, and

F-measure. The contribution of community smells on bug prediction is statistically

significant only in terms of AUC.

The reason that we cannot observe the contribution of community smells on Baseline

models might be class distributions with respect to community smells and bugs. To

31

check that, we compute the ratio of classes associated with community smells over the

total number of classes, and the bug-prone classes associated with community smells.

In ReplicatedDB up to 7% of classes have one type of community smell, and among

those, 38% are bug-prone. In other words, only 26% of classes in ReplicatedDB are

both bug-prone and have community smells. In CollectedDB only 15% of classes are

both bug-prone and have community smells. These relatively low ratios might be the

reason for not observing the contribution of community smells. Having a model with

a combined set of metrics may improve performance. We further assess this effect in

RQ3.

Summary on RQ1: +CommSmells model statistically outperforms the Baseline
in terms of AUC, while it performs statistically the same as Baseline in terms of
recall, pf and F-measure.

2.4.2 RQ2: To what extent does the proposed model contribute to the bug

prediction when compared to a state-of-the-art model built using code smell

related metrics?

Similar to answering RQ1, at first, the performances of the predictors built for all the

baselines of two datasets (ReplicatedDB, CollectedDB) are aggregated and reported as

boxplots in Figure 2.5. Then, the performances of the predictors reported separately

for one baseline of ReplicatedDB (number of developers), and CollectedDB in Figures

2.6, and 2.7, respectively.

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

●●● ● ●●● ●●●●● ●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●● ● ●●●

●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.5 : Performances of the bug prediction models built to answer RQ2.

32

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

● ●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

●●●●●●● ●● ●●●●●●Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.6 : Performances of the bug prediction models built to answer RQ2, for
ReplicatedDB, with the baseline model utilizes number of developers metric.

●

● ● ●

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

●

●

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.7 : Performances of the bug prediction models built to answer RQ2, for
CollectedDB, with the baseline model utilizes structural metrics.

According to the overall performance results in Figure 2.5, the +CodeInt model

achieves a higher performance in terms of recall, pf, F-measure, and AUC when

compared to +CodeSmells and +CommSmells. A recall of 43%, 39%, and 37%, pf

of 4%, 12%, and 11%, F-measure of 54%, 49%, and 48%, and AUC of 82%, 69%, and

68% are shown in the figures for +CodeInt, +CodeSmells, and +CommSmells models,

respectively.

For ReplicatedDB, adding code smells into the baseline models seems to improve

the performance more than community smells. According to Scott-Knott ESD

tests, +CodeInt outperforms the +CommSmells and +CodeSmells in terms of recall,

pf, F-measure, and AUC for all baseline models of ReplicatedDB. However, for

CollectedDB, +CommSmells achieves 5% higher recall than +CodeSmells and

33

+CodeInt, and 2% higher AUC. Only the difference in terms of AUC is statistically

significant, according to the Scott-Knott ESD test.

Similar to the performance values in RQ1, the bug prediction models in RQ2 achieve

different performances among the datasets. While the median recall values of the

predictors built for CollectedDB are between 70% and 75%, the median recall values

of the predictors built for ReplicatedDB are between 20% and 69%.

As shown in Figure 2.7, we could not observe the contribution of code smell intensity

metric in the models for CollectedDB. This might be related to the ratio of classes

associated with code smell intensity. In ReplicatedDB 60% - 73% of classes are

associated with code smell intensity. On the other hand, in CollectedDB, almost all

classes (99%) are associated with code smell intensity. Therefore, this metric seems to

have no distinguishing effect on predicting bug-prone classes in CollectedDB.

Summary on RQ2: Community smells contribute to the bug prediction
performance for CollectedDB in terms of AUC only, while code smell intensity
improves the bug prediction performance of the ReplicatedDB in terms of recall,
pf, F-measure, and AUC, when compared to other smell-related metrics.

2.4.3 RQ3: To what extent do the combined smell-related information contribute

to the bug prediction when compared to the best contributing one?

We report the performance of +CodeInt, +CodeInt+CodeSmells,

+CodeInt+CommSmells, and +CodeInt+CodeSmells+CommSmells for all the base-

line models of ReplicatedDB in Figures 2.8, 2.9, 2.10, and 2.11. The performance

of the combined models on ReplicatedDB has different conclusions with regard

to the baseline metrics, as in other RQs. For the baseline models with the

number of developers and scattering metric, the combined models are higher

than +CodeInt in terms of recall and F-measure. On the contrary, for the

baseline model with the churn metric, combining smell-related metrics with the

+CodeInt model decreases the recall and F-measure. According to the Scott-Knott

ESD tests, these differences among the performances of the prediction models

with churn, scattering and number of developers metric sets are not statistically

significant in terms of recall, F-measure and AUC. In terms of pf, +CodeInt

34

outperforms the combined prediction models when the baselines are built with churn,

scattering and the number of developers. When the baseline model is built with

structural metrics, +CodeInt, +CodeInt+CodeSmells, +CodeInt+CommSmells, and

+CodeInt+CodeSmells+CommSmells perform statistically the same.

For CollectedDB, the performance of +CommSmells and the combined models seem

to be the same in terms of recall, pf, F-measure, and AUC, which are 75%, 14%,

77%, and 88% respectively. Thus, including code smell related information into the

+CommSmells model does not improve the performance for CollectedDB.

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

● ● ● ●● ●●●● ● ●● ●● ● ●●●● ● ●

● ● ●●● ●●●●● ●● ●● ● ●●●● ● ●

●● ● ● ●● ●●●● ● ●● ●● ● ●●●● ● ●

● ● ●● ●●●● ● ●● ● ●● ● ●●●● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.8 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes structural metrics.

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

●● ●●● ● ●●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●●●●●●●●●● ● ●● ●●●●●●●●

● ●●●● ●●● ●●● ●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●

● ●●● ●●●● ●●● ●●●● ●●● ●● ●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●●●●●●

● ●●● ● ●●●●●● ●●● ●● ●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ● ●●● ●● ●● ●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.9 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes churn metric.

Moreover, incorporating combined smell-related metrics into different baselines leads

to different findings. Using more smell-related metrics increases the performance val-

ues for the number of developers, churn, and scattering baselines. However, it does not

35

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●

● ●●●● ●●●●● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●

● ●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●

● ●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

●● ●●●●

●●●● ● ● ●●●● ●●●●●

●●●●●●● ●

●●●●●●● ●● ●●●●●●

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.10 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes number of developers metric.

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

●●● ●●●● ● ●●●● ●● ●●●● ●● ●●●●●●● ● ●● ●●● ●●●●●●●● ●● ●●●●●●

● ●● ● ●●● ● ●●● ●●●● ●● ●●● ● ●●●●●●● ●● ● ●● ●●● ●●●●●●●● ●● ●● ●●●● ●●●●● ●●

● ●● ●●●● ● ●●● ●●● ●● ●●● ● ●●●● ●● ●●● ● ●● ●●● ●●●●●●●● ●● ●●●●●●●● ●●

● ● ●●● ●● ● ●●● ●●●● ● ●●●●●●● ●● ●●● ●● ● ●●●● ●● ● ●●●●●●●●●●●● ● ●● ●●● ●●●●●●● ● ●● ●● ●●● ● ●●●● ●●● ●● ●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

● ●

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.11 : Performances of the bug prediction models built to answer RQ3, for
ReplicatedDB, with the baseline model utilizes scattering metric.

●

●

● ● ●

Baseline + Community Smells + Code Smells + Code Smell Intensity

Baseline + Community Smells + Code Smell Intensity

Baseline + Community Smells + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

●

●

●

Baseline + Community Smells + Code Smells + Code Smell Intensity

Baseline + Community Smells + Code Smell Intensity

Baseline + Community Smells + Code Smells

Baseline + Community Smells

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●● ●●

●● ●

●●● ●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.12 : Performances of the bug prediction models built to answer RQ3, for
CollectedDB, with the baseline model utilizes structural metrics.

change the performance values for the baselines that utilize structural metrics. For ex-

ample, for ReplicatedDB, the median recall of +CodeInt+CodeSmells+CommSmells

is higher than the +CodeInt (86% and 67% respectively) when the baselines are built

36

with the number of developers metric. However for the baselines built with structural

metrics, the median recall of +CodeInt+CodeSmells+CommSmells and +CodeInt is

the same (60%) for ReplicatedDB, whereas the median recall of +CommSmells and

+CodeInt+CodeSmells+CommSmells is the same for CollectedDB (75%).

Summary on RQ3: Combining smell-related information to build bug
prediction models does not improve the performance of the models using the
best contributing metric set.

2.5 Discussion

In this section we discuss our findings with regard to the projects in the two datasets,

individual learners’ performance, and the validation strategy used. Furthermore, we

build and assess the models using community-aware metrics only, such as number of

developers, scattering, and community smells. We also discuss the contribution of the

other community-aware metrics on bug prediction models proposed in the literature.

2.5.1 Project-wise assessment of bug prediction models

Bug prediction models built for the ReplicatedDB and CollectedDB show different

results in terms of the best performing metrics: The model utilizing code smell

intensity information (i.e., +CodeInt) has a higher accuracy for ReplicatedDB,

whereas the model utilizing community smells information (i.e., +CommSmells has

a higher accuracy for CollectedDB. Furthermore, the overall performance values of

the predictors built on the two datasets differ significantly: The median recall rates

achieved for ReplicatedDB are between 20% and 69%, whereas they are between 68%

and 80% for CollectedDB.

Section 2.4 reports the aggregated performance results of the bug prediction models

for the open-source projects in ReplicatedDB and CollectedDB. Here, we also report

the performances of the bug prediction models built individually on every project, and

whether these findings are consistent with those reported for the associated datasets.

Project-wise analysis, available in our online appendix [76], shows that bug prediction

performance of the models also vary among different projects. For example, while the

seven prediction models built for Xerces in ReplicatedDB perform between 30% and

37

57%, they perform 86% for Log4j in terms of F-measure. It seems the low prediction

performance is related to the low ratio of the number of bug-prone classes over the total

number of classes, i.e., the bug-prone class ratio of Xerces is 0.29 while the bug-prone

class ratio of Log4j is 0.58. The seven models built for Velocity perform around 60%

in terms of AUC, while the seven models built for the other projects of ReplicatedDB

perform between ∼60% and ∼90%. The prediction performance of the models built

for the projects in CollectedDB are similar to each other, i.e., the seven models built

for the Cayenne, Eclipse-Cxf, and Mahout projects perform within the range of 67%

and 89%, in terms of F-measure, and ∼90% in terms of AUC.

Moreover, we observe that the best performing metric sets are different in the

project-specific models. We group the models according to Scott-Knott ESD test

results, and compute the number of times each group outperforms the other groups in

terms of F-measure and AUC. Figures 2.13 and 2.14 report the statistics for all projects

in ReplicatedDB and CollectedDB, respectively. Values inside the cells represent (in

percent) the number of times the corresponding model outperforms the others. Darker

gray in the figures indicates that the corresponding model outperforms the majority

of the models. Lighter gray means the less superiority of the corresponding model

over other models. White, on the other hand, shows the models with no statistical

superiority over the others.

Ant Ivy Lucene Log4j Velocity Synapse Xerces Cayenne Cxf Mahout
Baseline 50 33,3 0 0 50 33,3 0 0 0 0
+CommSmells 0 33,3 0 0 50 0 0 0 50 0
+CodeSmells 25 0 0 0 0 0 0 0 0 50
+CodeInt 75 66,7 50 50 50 66,7 50 0 0 0
+CommSmells+CodeSmells - - - - - - - 0 50 50
+CommSmells+CodeInt 75 66,7 50 50 50 66,7 50 0 50 0
+CodeInt+CodeSmells 75 66,7 50 50 50 66,7 50 - - -
+CommSmells+CodeInt+CodeSmells 75 66,7 50 50 50 66,7 50 0 50 50

ReplicatedDB CollectedDB

Figure 2.13 : The ranking of models with respect to the number of times they are
superior than the others (in percent) among all the projects, in terms of F-measure.

From the figures we observe that +CommSmells beats 33% to 50% of the models

in three out of ten projects (Ivy, Velocity, and Eclipse-Cxf) in terms of F-measure.

+CommSmells significantly better than 25% to 50% of the models for the seven out

of ten projects (Ant, Ivy, Lucene, and Xerces, Eclipse-Cxf, and Mahout) in terms of

AUC. These ratios confirm our findings RQ1: The contribution of community smells

38

Ant Ivy Lucene Log4j Velocity Synapse Xerces Cayenne Cxf Mahout
Baseline 0 0 0 0 0 0 0 0 0 0
+CommSmells 25 50 33,3 0 0 25 25 0 50 50
+CodeSmells 50 25 33,3 0 0 0 25 0 0 0
+CodeInt 75 75 66,7 50 50 50 50 0 0 0
+CommSmells+CodeSmells - - - - - - - 0 50 50
+CommSmells+CodeInt 75 75 66,7 50 50 75 75 0 50 50
+CodeInt+CodeSmells 75 75 66,7 50 50 75 75 - - -
+CommSmells+CodeInt+CodeSmells 75 75 66,7 50 50 75 75 0 50 50

ReplicatedDB CollectedDB

Figure 2.14 : The ranking of models with respect to the number of times they are
superior than the others (in percent) among all the projects, in terms of AUC.

on bug prediction is more visible in terms of AUC. +CodeInt shows similar ratios both

in F-measure and AUC. This model beats at least 50% of the other models in seven out

of ten projects. +CodeInt shows a greater success than +CommSmells when we assess

project-wise statistics. The combined models also have high ratios both in F-measure

and AUC among the majority of the projects. However, they cannot outperform the

best performing models in project-specific models. This also confirms our findings in

RQ3. Overall, project-wise analysis shows the contribution of code smell intensity on

bug predictors compared to the process metrics and the other smell-related metrics.

Community smells also outperforms at least one out of four groups of models, but it

seems the contribution of community smells is dependent on the selected project.

2.5.2 Analysis of the models with different learners

We applied six different machine learning algorithms (i.e., Simple Logistic, Multilayer

Perceptron, ADTree, Naive Bayes, Decision Table, and Logistic Regression) to build

our bug prediction models. The results reported in Section 2.4 present the aggregated

performances of six different machine learning algorithms. However, aggregated

performances may be sensitive to low/high performing algorithms, and it restricts us

to see the results of the best performing algorithms with respect to the selected metrics

sets. Thus, we also report the performances of the algorithms on bug prediction

in this section. The performances of the models are reported in terms of median

F-measure and AUC in Table 2.7, according to the six machine learners. The results

are aggregated performance of the models built on both datasets.

39

Ta
bl

e
2.

7
:B

ug
pr

ed
ic

tio
n

pe
rf

or
m

an
ce

of
th

e
si

x
m

ac
hi

ne
le

ar
ni

ng
al

go
ri

th
m

s.

M
od

el
ty

pe
M

et
ri

c
SL

M
P

A
D

T
N

B
L

R
D

T
B

as
el

in
e

f-
m

ea
su

re
0.

48
0.

55
0.

55
0.

49
0.

48
0.

57
au

c
0.

62
0.

65
0.

65
0.

65
0.

65
0.

62
+C

om
m

Sm
el

ls
f-

m
ea

su
re

0.
43

0.
56

0.
54

0.
48

0.
43

0.
53

au
c

0.
64

0.
67

0.
67

0.
68

0.
67

0.
64

+C
od

eS
m

el
ls

f-
m

ea
su

re
0.

41
0.

52
0.

54
0.

49
0.

42
0.

53
au

c
0.

63
0.

66
0.

67
0.

69
0.

66
0.

64
+C

od
eI

nt
f-

m
ea

su
re

0.
57

0.
71

0.
97

0.
54

0.
58

0.
98

au
c

0.
67

0.
8

0.
95

0.
81

0.
68

0.
94

+C
om

m
Sm

el
ls

+C
od

eS
m

el
ls

f-
m

ea
su

re
0.

70
0.

89
0.

79
0.

67
0.

77
0.

84
au

c
0.

86
0.

93
0.

94
0.

8
0.

88
0.

93
+C

om
m

Sm
el

ls
+C

od
eI

nt
f-

m
ea

su
re

0.
57

0.
75

0.
97

0.
54

0.
58

0.
98

au
c

0.
67

0.
84

0.
95

0.
8

0.
69

0.
94

+C
od

eI
nt

+C
om

m
Sm

el
ls

f-
m

ea
su

re
0.

56
0.

74
0.

98
0.

54
0.

55
0.

98
au

c
0.

64
0.

84
0.

95
0.

8
0.

67
0.

94
+C

od
eI

nt
+C

od
eS

m
el

ls
f-

m
ea

su
re

0.
58

0.
75

0.
97

0.
55

0.
57

0.
98

+C
om

m
Sm

el
ls

au
c

0.
67

0.
85

0.
95

0.
8

0.
68

0.
94

SL
:S

im
pl

e
L

og
is

tic
,M

P:
M

ul
til

ay
er

Pe
rc

ep
tr

on
,A

D
T:

A
D

Tr
ee

,N
B

:N
ai

ve
B

ay
es

L
R

:L
og

is
tic

R
eg

re
ss

io
n,

D
T:

D
ec

is
io

n
Ta

bl
e

40

We highlight the performance of the statistically best-performing model (according the

Scott-Knot ESD tests) in bold in the table.

Results in Table 2.7 show that Decision Table and ADTree perform considerably well

regardless of the extent of the knowledge enriched in the prediction model. They

even performed well just with the Baseline model with an F-measure rate around

57% and an AUC rate around 67%, or for the model enriched with all available

knowledge (+CodeInt+CodeSmells+CommSmells) F-measure rate around 98% and

AUC rate around 95%. This could be because the ADTree combines the simplicity of

a single decision tree with the effectiveness of boosting, robustness, and handling of

irrelevant attributes. Multilayer Perceptron also performs statistically the same with

ADTree and Decision Table for Baseline, +CommSmells, and +CodeSmells models in

terms of F-measure with a rate around 56%.

The Logistic Regression, Naive Bayes, and Simple Logistic are not useful learners for

bug prediction as ADTree, Decision Table, and Multilayer Perceptron in our setting.

The reason for that could be, for example, while using the Logistic Regression on high

dimensional datasets, the model could over-fit the training set. Thus the model may

not be able to predict well enough on the test set. Also, using Logistic Regression, it is

challenging to capture complex relationships. Besides, for Naive Bayes, each feature

should make an independent and equal contribution to the outcome, which might not

meet most of the time in our study. Another reason could be we had significantly

smaller sets of classes labeled as buggy. However, in Naive Bayes, the training data

should represent the population well. More specifically, with no class label occurrences

and a particular attribute value, the posterior probability will be zero. Thus, it is

possible if the training data is not representative of the population Naive Bayes may

not work well. Although, in some cases, Naive Bayes has higher AUC, i.e., when a

Baseline model is enriched with community smells, and code smells.

Our conclusions reported in Section 2.4 do not change if the performance results

of best performing learners, i.e., ADTree, are considered only, except for RQ1, i.e.,

+CommSmells statistically outperforms Baseline in terms of recall in addition to AUC.

The Scott-Knott comparisons of bug predictors built with different machine learning

41

algorithms and their performance measures, in terms of recall, pf, F-measure, and

AUC, are also provided in detail in our online Appendix [76].

2.5.3 Validation strategies of the models

In Section 2.4, the performance of the bug predictors are trained by following a

within project strategy: We combined all releases’ data of a project and applied

cross-validation to build and assess bug prediction models. There are other validation

strategies used in software bug prediction, such as within-release and cross-release.

In within-release, a model is built and assessed on a single release. In cross-release,

a model is built for a release n using the prior releases’ data (1st to (n− 1)th). The

selection of validation strategy is also considered to have an effect on the findings

[100]. Hence, we conduct additional experiments to observe the performance of the

models trained according to within-release and cross-release strategies.

Figures 2.15 and 2.16 report the performance of the predictors built for the

ReplicatedDB according to within-release and cross-release strategies, respectively.

Since the data collection process of CollectedDB is not conducted according to a

release strategy, this analysis could be performed for ReplicatedDB only.

We analyze the performance of within-release and cross-release reported here, in

comparison with the performance of within-project reported in Section 2.4.

The box plots show that within-project and within-release strategies perform very

similar to each other. The performance of the seven bug prediction models slightly

increase in terms of recall (between 3% and 8%) when they are trained with

a within-release strategy. In cross-release strategy, we also observe an increase

on the recall values (between 2% and 6%) of the Baseline, +CommSmells, and

+CodeSmells models compared to the other validation strategies. However, applying a

cross-release strategy has an adverse effect on the +CodeInt, +CodeInt+CodeSmells,

+CodeInt+CommSmells, and +CodeInt+CommSmells+CodeSmells models, i.e.,

recall values of those models decrease between 12% and 25%.

The metric that affects the results seem to be the code smell intensity metric. Statistical

tests on the seven bug prediction models with the three validation strategies also

42

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

●●●● ●●●●●●● ●●●● ●●● ●● ●● ●● ●●● ●●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●● ● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●● ●● ● ●● ●● ●●●●●● ● ●●●●● ● ●● ● ●●●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●● ●●●●● ●● ● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●● ●●● ●●●● ●●● ●●●●●●●●●● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●●● ●● ●●●●● ●●● ●● ●●●●●●●●●●●●● ●●●●●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●●● ●●● ● ●●●● ● ●● ●● ●●● ●●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●● ●● ●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ● ●●● ● ● ●●●●● ●●●●●●● ●● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●● ●● ● ●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●● ●●● ● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●●● ● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●● ●●● ●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ● ●● ●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●● ●●● ● ●●● ●● ●● ●● ●●● ●●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●● ●● ●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●● ● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●● ●● ●● ●●● ●●●●● ● ●●●●●● ●●●●●● ● ●●●● ●● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●● ●●●●● ●● ● ●● ●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●● ●●● ●●●● ●●● ●●●●●●●●●● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●●●●●●●●●●● ●●●●●● ●● ●● ● ●● ●● ●●● ●● ●● ●● ● ●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●●● ●●● ● ●●● ●● ●● ●● ●●● ●●●●●●● ●●●●● ●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ● ●● ●● ● ●● ●●●●●● ● ●●●●● ●●●●●●● ●● ●● ● ●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●●●● ● ●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●● ●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●● ●●● ● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●●● ● ●●● ●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●● ● ●● ●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●● ●● ●●●● ● ●● ●●

●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●●● ● ●● ●● ●

●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●● ●●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.15 : Performances of bug prediction models trained with within-release
technique on the ReplicatedDB dataset.

supports that claim. Incorporating the code smell intensity information into the

other metrics does not statistically improve the prediction performance when the

cross-release strategy is used, whereas it statistically improves the performance when

a within-release or within-project strategy is used. This shows us the importance of

validation strategy applied in interpretation of the findings.

2.5.4 Comparing models with community-aware metrics

In this section, we compare the performance of a model that only utilizes community

smells with the performances of community-aware baseline models built in this study.

Later, we report a comparison of our models with the state-of-the-art models in bug

prediction literature using community-aware metrics.

2.5.4.1 Community-aware baseline models

In Figure 2.17, we compare the community smell-aware model with the two baselines,

e.g., the number of developers and scattering metric. Both of these baselines

43

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

Baseline + Code Smell Intensity + Code Smells + Community Smells

Baseline + Code Smell Intensity + Community Smells

Baseline + Code Smell Intensity + Code Smells

Baseline + Code Smell Intensity

Baseline + Code Smells

Baseline + Community Smells

Baseline

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.16 : Performances of bug prediction models trained with cross-release
technique on the ReplicatedDB dataset.

utilize metrics illustrating developer activities. Although these metrics do not cover

the collaborations between developers or social interactions, they are used in bug

prediction studies to illustrate the effect of people aspect [68,74]. Hence, we would

like to check if community smells as a baseline can produce comparable performance

with those community-aware metrics.

Overall, the model utilizing the community smells only perform poorly than the models

utilizing the other community-aware metrics, in terms of recall, F-measure, and AUC.

The scattering baseline gives statistically the best performance in terms of AUC,

while the number of developers baseline gives statistically the best performance in

terms of F-measure. Both perform statistically the same in terms of recall. In terms

of pf, scattering and community smells models performs statistically the same, and

outperform the number of developers model.

The model utilizing only community smells does not outperform the other models

for all the machine learning algorithms we applied. This could be due to the low

ratio of community smell-prone classes in ReplicatedDB dataset. CollectedDB dataset

44

Comm. Smells

Scattering

Number of dev.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

recall

0.0 0.2 0.4 0.6 0.8 1.0

pf

Comm. Smells

Scattering

Number of dev.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F−measure

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

AUC

Figure 2.17 : Performance comparison among the community-aware baselines on the
ReplicatedDB dataset.

does not have scattering and developer metrics, i.e., only structural metrics form the

baseline. Thus, we are not able to perform a similar comparison for CollectedDB.

At this point, it is observable that the community smell-aware model performs higher

when accompanied by other process metrics, such as structural, churn, developer, and

scattering metrics.

2.5.4.2 The state-of-the-art models using community-aware metrics

In this section, we show a comparison of the results of our study with the

state-of-the-art community-aware metrics used for bug prediction. Table 2.8

reports the results of the studies that report bug predictors using community-aware

metrics. The metric sets used in those models, classifiers, performance of

the best performing model, and the improvement gained by incorporating the

community-aware information in prediction model are provided in the table.

Nagappan et al. [79], Bird et al. [22], Bell et al. [74], and Di Nucci et al. [68]

incorporate the community-aware information into their baseline models. Their studies

report up to 56% improvement depending on the projects, leading to recall rates

between 64 - 81%, when the community-aware metrics are included. Soltanifar et

al. [89], and Kını and Tosun [61] build a combined model using community-aware

45

metrics and other state-of-the-art metric sets, e.g., process metrics. Both studies report

a recall rate around 75%.

The studies listed in Table 2.8 utilize various community-aware information,

i.e., socio-technical networks, organizational structure, number of developers who

previously changed a code module, developer’s focus on a software component,

and developer’s experience on a software module. All those studies report

improvement in bug prediction. In this study, we contribute to the bug prediction

literature by investigating the effect of community smells, which is another type

of community-aware metrics, on the prediction of bug-prone software classes. Our

findings show that adding community smells into Baseline and +CodeInt improves the

bug prediction performance from 71% to 75%, and from 62% to 68%, respectively.

2.5.5 Practical implications

Our study brings a novelty into socio-technical relationships observed for bug

prediction. Community smells capture both communication and collaboration patterns

between the developer communities. Knowing these patterns would not only help the

communities improve their work, but also gives insights on bug-proneness of their

codes. Our results conclude that incorporating community smells into the models built

with process metrics may give better bug prediction performance. However, we could

not observe this in many projects. Although community smells are associated with

code smells and code smell intensity in earlier works [55,71] , the latter metric seems

to be the best indicator of bugs for many projects. Code smell intensity incorporated

into process metrics could be considered as the first choice for practitioners who aim

to build bug prediction models.

We further inspect the predictions made by the model that incorporates the community

smells and the model that includes code smell intensity metric into the baseline metrics,

and the development and communication history of software projects used in our

experimentation. Our goal is to gain insight on the cases in which the community

smells would be useful or not on the prediction of bug-prone classes.

46

Ta
bl

e
2.

8
:C

om
pa

ri
so

n
of

pe
rf

or
m

an
ce

an
d

m
et

ho
do

lo
gy

w
ith

th
e

co
m

m
un

ity
-a

w
ar

e
st

at
e-

of
-t

he
-a

rt
st

ud
ie

s.

St
ud

ie
s

Su
bj

ec
t

C
om

m
un

ity
-a

w
ar

e
O

th
er

m
et

ri
cs

C
la

ss
ifi

er
(s

)
Pe

rf
or

m
an

ce
Im

pr
ov

em
en

t
Sy

st
em

s
M

et
ri

cs
U

se
d

U
se

d
U

se
d

(R
ec

al
l)

(R
ec

al
l)

[7
9]

W
in

do
w

s
V

is
ta

O
rg

an
iz

at
io

na
ls

tr
uc

tu
re

C
od

e
ch

ur
n,

co
m

pl
ex

ity
,d

e-
pe

nd
en

cy
m

et
ri

cs
St

ep
-w

is
e

re
gr

es
si

on
,

Pr
in

-
ci

pl
e

C
om

po
ne

nt
A

na
ly

si
s

(P
C

A
)

84
%

5-
30

%

[2
2]

W
in

do
w

s
V

is
ta

,
E

cl
ip

se
(6

re
le

as
es

)
D

ev
el

op
er

co
nt

ri
bu

tio
n

ne
t-

w
or

k,
so

ci
o-

te
ch

ni
ca

l
ne

t-
w

or
k

co
m

po
ne

nt
de

pe
nd

en
cy

ne
t-

w
or

k
L

og
is

tic
re

gr
es

si
on

87
%

4-
17

%

[7
4]

Se
ve

n
in

du
st

ri
al

sy
st

em
N

um
be

ro
fd

ev
el

op
er

s
-

N
eg

at
iv

e
B

in
om

ia
l

R
eg

re
s-

si
on

-
*1

3%

[3
1]

7
A

pa
ch

e
pr

oj
ec

ts
D

ev
el

op
er

’s
fo

cu
s

-
N

eg
at

iv
e

B
in

om
ia

l
R

eg
re

s-
si

on
**

64
%

-

[8
9]

M
oz

ill
a

C
or

e
m

od
ul

e
N

um
be

r
of

de
ve

lo
pe

rs
&

in
te

ra
ct

io
n

of
de

ve
lo

pe
rs

Pr
od

uc
t&

pr
oc

es
s

m
et

ri
cs

L
og

is
tic

R
eg

re
ss

io
n,

N
ai

ve
B

ay
es

,B
ay

es
ia

n
N

et
w

or
k

76
%

-

[6
1]

2
op

en
-s

ou
rc

e
sy

st
em

s
Pe

ri
od

ic
de

ve
lo

pe
r

ex
pe

ri
-

en
ce

m
et

ri
cs

C
od

e
ch

ur
n

D
ec

is
io

n
Tr

ee
&

R
an

do
m

Fo
re

st
75

%
-

[6
8]

26
A

pa
ch

e
pr

oj
ec

ts
D

ev
el

op
er

’s
sc

at
te

ri
ng

N
um

be
r

of
de

ve
lo

pe
rs

&
co

de
ch

ur
n

&
st

at
ic

co
de

m
et

ri
cs

&
de

ve
lo

pe
r’

s
fo

cu
s

D
ec

is
io

n
Ta

bl
e

M
aj

or
ity

81
%

4-
56

%

O
ur

st
ud

y
10

op
en

-s
ou

rc
e

sy
st

em
s

C
om

m
un

ity
sm

el
ls

St
ru

ct
ur

al
,

ch
ur

n,
nu

m
be

r
of

de
ve

lo
pe

rs
,

de
ve

lo
pe

r’
s

sc
at

te
ri

ng

A
D

Tr
ee

,
D

ec
is

io
n

Tr
ee

,
N

ai
ve

B
ay

es
,e

tc
.

75
%

6%

*1
3%

im
pr

ov
em

en
to

f[
74

]m
od

el
s

is
re

po
rt

ed
in

te
rm

s
of

fa
ul

t-
pe

rc
en

til
e

av
er

ag
e

**
[3

1]
do

es
no

tp
ro

vi
de

pr
ed

ic
tio

n
m

od
el

,t
he

pe
rf

or
m

an
ce

va
lu

e
fo

rt
he

bu
g

pr
ed

ic
tio

n
m

od
el

th
at

ut
ili

ze
s

th
e

de
ve

lo
pe

r’
s

fo
cu

s
is

re
po

rt
ed

by
[6

8]
.

47

Our observation on the predictions made by +CommSmells and +CodeInt, show

that 74% of the total software classes are correctly classified as buggy or clean by

both +CommSmells and +CodeInt, whereas 22% of the total software classes are

misclassified by both models. Also, the cases that only one model (i.e., +CommSmells)

make correct prediction when the other (i.e., +CodeInt) cannot are 2% of all data

instances, for each model. Most software classes that cannot be correctly labeled with

+CodeInt have zero code smell intensity values. Those incorrectly classified classes

by +CommSmells are not associated with a community smell, except a few instances.

Therefore, we think the limitations of the existing tools used to capture community

smells of a software project play a crucial role in the success of +CommSmells.

The findings on community smells could be influenced by how they are measured

in prior studies [55,71] as well as in this work. It is a big challenge to capture

communication and collaboration patterns in developer communities. The existing

tool CodeFace4Smell assumes that the communication is handled via mailing lists,

and the collaboration is found in the co-changed modules in commit logs. In

practice, communication channels in the projects might not be accessible or they

may be distributed along different systems. For example, Log4j releases used in our

experimentation only have development history until 2002 and ten developers have

been contributed to the project until that year. The lower number of contributors

may be the cause of lower number of community smells [54]. On the other

hand, the Eclipse-CXF development team seems to use IRC communication logs,

whereas the team of Ivy uses another forum in addition to their mailing lists. Using

multiple resources to communicate with teammates makes it difficult to capture the

communication patterns. Considering that, CodeFace4Smells is limited to extract the

communication patterns for the projects, and improvements on the community smell

detection strategies, specifically for capturing communication patterns, are necessary.

2.6 Threats to Validity

In this section, we discuss the threats to the validity of our study by following the

guidelines reported by Yin [101]. Construct validity refers to the relation between

theory and observations that might be jeopardized through measurement errors. We

48

tried to eliminate measurement bias by following previously published papers on

community smells and their calculation process via the CodeFace4Smell tool.

We face various challenges during the collection of our datasets and metrics. One

challenge is reaching the necessary information for some projects, i.e., mailing

lists, and source code repository, to extract community and code smells. Historical

collaboration and communication information of some projects we took from Palomba

et al.’s study [56] is not available since those projects are old (between the years

2000 and 2008). Also, the first releases of projects in Palomba et al.’s study [56] are

not included in our dataset since they do not have collaboration and communication

history. Therefore, we eliminate those releases and projects whose mailing list and/or

source code repository is not available in order to avoid potential construct validity

threats to our empirical findings. A configuration file is constructed for each project

in ReplicatedDB by listing the commit id associated with all releases of a project

included in our dataset. We double-checked the release dates of the projects from

the projects’ websites and source code repositories before associating with a commit

id. We also ensure that the time interval between releases is at least three months

since it is considered to be sufficient time to capture the development of community

patterns [102]. We match the output of CodeFace4Smell with the classes in the

original dataset of Palomba et al.’s study [56] linking releases and the software class

names. We eliminate unmatched class names between the original dataset and the

CodeFace4Smells tool results to form the final version of the ReplicatedDB. The final

version of the ReplicatedDB contains 16 releases of the seven open-source systems.

Configuration files used for ReplicatedDB are included in our online appendix.

Configuration files of the CollectedDB are taken from a prior study [69] whose authors

propose a database that contains a list of open-source projects with their corresponding

configuration files, downloadable links to the related source code repository and

mailing lists. The configuration file of a project lists 13 snapshots of the project with

three-month time intervals. We chose three open-source projects from the list to build

CollectedDB. Later, we extracted the structural metrics by using the Ckjm tool, which

uses the compiled Java codes to extract the static code attributes. We eliminate those

software classes that we cannot extract the metrics for, due to compilation errors.

49

Conclusion validity refer to the relation between the treatments and the outcomes.

To minimize the threats to the conclusion validity, we perform several adjustments

on experimental design: The prediction models are built using six different machine

learning algorithms – Simple Logistic, Multilayer Perceptron, ADTree, Naive Bayes,

Decision Table, and Logistic Regression. Validation of the models is carried by

applying a 3-fold cross-validation technique. Before each repetition, the dataset is

randomized to avoid data order bias. All prediction models built in our experimentation

are evaluated in terms of recall, pf, F-measure, and AUC. We used these evaluation

metrics because they are widely used in literature, e.g., [56]. We applied the

Scott-Knott Effect Size Difference (ESD) test to conduct a statistical comparison

among the performances of the prediction models [82]. The findings are also confirmed

among the two datasets containing ten projects in different sizes, bug ratios and smelly

class ratios. We observe that the conclusions are subject to change depending on the

project, performance measure or the validation strategy used. We report our findings

accordingly.

Internal validity is related to the factors that are not considered during the

experimentation but may affect the conclusion of the study. Some of these might be

related to the metrics used from the prior study’s dataset, or measurement procedures.

Tools and techniques used to extract the metrics may impact the performance of bug

prediction models built. We relied on the metric sets of the original dataset taken

from our base study [56]. The baseline metrics are popularly accepted and used in

prior bug prediction studies. We also relied on the CodeFace4Smells tool for detecting

code and community smells from the given projects [55]. It is still possible that the

community smells would be different among classes if a different tool was utilized.

However, the current state-of-the-art tool for detecting those is CodeFace4Smells, and

based on our analysis on extracted metrics, it sufficiently captures the collaboration and

communication patterns among the developers. The methodology is carefully defined

according to our RQs, and only the comparisons between the models are conducted to

answer these RQs.

External validity deals with the generalization of the outcomes of the experimentation.

Our analysis made on ten open-source projects that are widely used in the related

50

literature, e.g., ReplicatedDB contains datasets from Promise repository [47], and

CollectedDB projects are used in [55]. To minimize the threat to the external validity

of our findings, we analyze the contribution of community smells on bug prediction on

these two datasets including multiple open-source projects. The findings confirm that

dataset characteristics significantly affect the conclusions. While our experimentation

covers the widely used metrics and open-source projects, further investigation can be

done for industrial projects to generalize the results.

2.7 Conclusion

In this chapter, we empirically analyze the effect of community smells on

bug-proneness of software classes by comparing the findings against the other metrics,

i.e. process metrics, code smells and code smell intensity, used in bug prediction

literature. During this research, two datasets are constructed and shared online

with the community: (1) ReplicatedDB is a new bug prediction dataset constructed

by collecting community and code smells related information of classes of seven

open-source systems and (2) CollectedDB provides class-level code and community

smells information of six open-source systems [76]. Bug prediction models are built

on both datasets to investigate the contribution of including community smells into

state-of-the-art metric sets, e.g., structural metrics [72], number of developers [74],

code churn [73], developer scattering metrics [68], in comparison with the other

smell-related metrics, i.e., code smells [103] and code smell intensity [56].

The performance of the bug prediction models indicates that community smells

contribute to the prediction of bug-prone classes on both datasets (statistically

improved AUC by up to 3%), while it does not contribute as much as code smell

intensity metric: For ReplicatedDB, +CodeInt outperforms +CommSmells by up to

17% in terms of AUC. Our experimental findings show that community smells and

code smell intensity are good indicators of bug-prone modules depending on the

project characteristics and experiment validation strategies. This support the findings

of Palomba et al.’s study [56] on the success of code smell intensity on the prediction

of bug-prone software classes. However it does not always hold for all kinds of

projects. Both smells represent different aspects of technical and communication

51

flaws, and should be observed together. In other words, technical flaws encountered

during the design and development of the software, and communication flaws of the

software development team significantly affect the bug-proneness of software classes.

Measuring those kinds of flaws by utilizing proposed metrics and tools in the literature

[55,56] and combining them into bug predictors, lead to build more successful bug

predictors.

Measuring community smells requires a serious effort, even if there is a readily

available tool, i.e., CodeFace4Smells, to detect smells. Detection of community smells

involves the analysis of communication and collaboration patterns of the development

team. Capturing collaboration patterns is easier than capturing communication patterns

since it requires access to the source code repository, while capturing communication

patterns requires access to the communication channel. Most open-source projects

have a structured communication channel like mailing lists, but not every organization

has a documented communication channel in real life. Furthermore, a communication

channel, i.e., mailing archives, may not represent all communication lines between

the organization members. Therefore, we conclude that modeling people factors for

software recommendation systems is a very challenging task. Also, our experimental

findings indicate that community factors are not good indicators of bug-prone software

classes as other metrics measured from source code, i.e., code smell intensity. These

lead us to assess people factors in defect prediction models from another aspect.

Instead of utilizing community factors as an information source during the model

training, it would be better to employ individual development skills of the team by

building personalized models for each of them. Therefore, in the next two chapters,

we investigate the personalized defect prediction approach.

52

3. INVESTIGATING THE PERFORMANCE OF PERSONALIZED MODELS
FOR SOFTWARE DEFECT PREDICTION2

3.1 Introduction

Studies on software defect prediction (SDP) propose automated tools that mine

historical development data from version control systems, source code bases and issue

management systems and identify development patterns to recommend defect-prone

modules in software systems. For more than two decades in empirical software

engineering, researchers are building SDP models using different datasets, different

input features, and different algorithms to catch more bugs compared to manual code

review and other bug detection activities performed by the development teams [10,11].

The recommendations given by SDP models to assist developers are discovered to

improve the quality of the produced software [104,105].

Software systems produced by different developers tend to have distinguishing

defect patterns [17] since each developer has unique characteristics regarding their

development styles, experience, and defect proneness of the code they produce.

Developers’ profiles and their way of working can be quantified through a set of

features, including but not limited to years of experience, age, gender, collaboration

with other developers, commit activity, quality of the code produced, and bug

resolution activity. Some of these features have previously been used as developer

metrics in SDP studies. For example, the number of developers that changed a code

module [106] is included in the prediction models to incorporate the developer aspect

into defect prediction. In another study, developer focus is quantified and included into

the defect prediction models [107]. Gender is also studied in bug prediction to assess

the effect of gender on introducing smells [94].

Recommendation systems targeting other businesses, e.g., e-commerce websites,

search engines, and social media platforms utilize users’ features such as search history

2This chapter is based on the papen, B., Tosun, A. (2021). Investigating the performance of
personalized models for software defect prediction. Journal of Systems and Software, 181, 111038.”.

53

or locations to give customized and more useful search results or advertisements

[37,38]. The software engineering field also adopts the techniques used in

recommendation systems to improve the process of software systems [40], e.g., a

recommendation system to decide which source code modules need to be modified

[5]. Recently, instead of quantifying developers’ characteristics as a set of metrics,

personalized defect predictors have been built separately for each developer by

utilizing the corresponding developer’s change history only [36,53,88]. While general

defect prediction models utilize the whole change history produced by the team, a

personalized model utilizes less data during training compared to a traditional model.

Moreover, predictions made by these personalized SDP models target the relevant

developer only. By making developer-specific predictions, researchers aim to improve

the usability and accuracy of defect prediction tools.

The personalized SDP models proposed so far (e.g., [36,53]) give promising results in

terms of defect detection rates. These models lead to investigate fewer files modified

by a selected developer only, and still catch more defects than the general models. The

conclusions drawn from these early personalized models are hard to generalize due to

certain assumptions made in their methodology. In particular, the personalized model

findings are limited in terms of reported performance measures, the used metrics, and

model construction strategies. First, the proposed models in the literature could reach

up to 7% increase in F1-measure and 8% increase in recall, however, the effect sizes of

these performance values and individual personalized models’ performance were not

discussed in detail. Second, well-known metrics that characterize bugs in SDP, e.g.,

lines of code, code changes, or the number of developers, were not used while building

personalized models, but the source codes were transformed into characteristic word

vectors. Third, developer selection and data collection strategies are ad-hoc, i.e.,

100 commits from 10 developers were used for model building. Considering that

SDP models still lack generalizability in different contexts, the results suffer from

external validity of their prediction performance [108]. We believe the need for further

investigation on the benefits and the general applicability of personalization in SDP.

In this study, we aim to investigate the performance of personalized SDP models

compared to those of traditional approaches in an empirical setup on six open-source

54

software projects: Gimp, Maven-2, Perl, PostgreSQL, Rails, Rhino [27]. We utilize

change-level defect prediction datasets of those projects, each has 9 to 26 years of

development history and embody the state-of-the-art process metrics [30,109]–[113].

Our study extends and contributes to the previous work on personalized defect

predictors in the following aspects:

1. We investigate a total of 222 developers over six large-scale open source projects,

and build personalized models for each of these selected developers. In RQ1

(Section 3.3), we analyze the performance of personalized models against the

traditional approaches, namely a general model (GM) and a general model for a

selected set of developers (SM). The developer selection strategy that we follow is

based on previous discussions on the size of training data in SDP [100], and data

availability in recommendation systems [114].

2. To increase the conclusion validity of our empirical analyses, we evaluate our

proposed models with respect to seven performance measures, namely probability

of detection, probability of false alarm, precision, F1-measure, Area Under ROC

Curve, Matthews Correlation Coefficient, and Brier score. We also utilize additional

assessment techniques, such as effect size calculation and Nemenyi’s test, for model

comparisons. Our findings are based on statistically significant differences with

medium to large effect size only.

3. We conduct an empirical analysis on the development characteristics of individual

developers with respect to 1) the number of commits made by the developers, 2)

the ratio of bug-inducing commits to the total commits of the developers, and 3) the

process metric values. We would like to understand whether these characteristics

reflect when personalized models are superior over traditional models, or vice versa

(RQ2 in Section 3.3).

4. We conduct a feature analysis using Information Gain on the process metrics used

to predict defects in a personalized model, and assess the distinguishing features

among personalized models (RQ3 in Section 3.3).

55

Empirical analyses on 222 developers of six open-source projects show that

personalized defect prediction models improve the traditional models’ probability of

detection rates up to 24% for 83% of the analyzed developers. Even though overall

results show the superiority of the personalized approach, personalized models do

not improve the prediction performance for every developer per se. We observe that

the developers whose traditional model outperforms the personalized model have a

higher experience (i.e., more contribution as commits) on their projects. On the other

hand, the personalized models are more successful than the traditional models for those

developers who contribute to the files that were modified by many developers. Also,

the importance rank of the process metrics differs among 222 developers, except the

fact that the size metrics (i.e., added lines of code) are the most important ones for the

majority of developers. Finally, the performance of the personalized model highly

depends on the selected machine learning algorithms and performance assessment

criteria.

3.1.1 Structure of the chapter

Section 3.2 reports the related work on personalized defect prediction literature.

In Section 3.3, we report the experimentation conducted in this study in detail.

Section 3.4 discusses the results of the experimentation conducted to answer our

research questions, while Section 3.5 discusses the outcome of our experimentation

from various aspects (e.g., machine learning algorithms applied, model validation

techniques). In Section 3.6 threats to the validity of our findings are discussed. Section

3.7 summarizes the key take-away messages and reports future research directions.

3.2 Related Work

In this section, we report several change-level defect prediction approaches over the

history of SDP models. In the subsections below, we explain the evolution of SDP

models with respect to using people related metrics, and discuss prior studies that

propose personalized SDP models.

SDP models are designed to make predictions at different granularity levels, e.g., file,

class, method, and code change level [105]. A change-level SDP model makes it easier

56

to find the responsible developer for a bug-prone software entity [16]. Majority of the

change-level SDP studies in the literature utilize developer experience, history of the

changed files, diffusion of code changes, and size of changes [16,27,30,115]. Mockus

et al. [30] propose models that predict the high risky (being prone to failure) initial

maintenance requests (IMR) that contain multiple software changes. Their analysis

on a large scale telecommunication system shows that the number of subsystems

modified, and developer experience are found to be indicators of these high risky

changes. Similarly, Shihab et al. [115] also use change-level software metrics, such

as the time when the change is made, the purpose of change (bug fix or not) in addition

to size, history, and experience metrics to predict risky changes. They show that the

developer experience, number of added lines, bug-proneness of the modified files,

number of bugs, and the number of bug reports linked to a change are found to be

good indicators of a change’s risk-proneness.

Sliwerski et al. [116] propose a method called SZZ to locate fix-inducing changes

of software development by using the software archives and bug reporting systems.

The SZZ algorithm contributes to the SDP field by providing a new data source to

researchers and practitioners of the field: bug-inducing changes [2]. Later, Kim et

al. [117] classify the code changes as bug-inducing or clean. Their prediction model

utilizes textual features of the modified file and directory names, and change metadata

information (i.e., commit hour, commit day), complexity metrics of the modified files

in addition to the size metrics. Kamei et al. [16] utilize diffusion, size, history, purpose,

and developer experience metrics to predict bug-inducing changes of six open-source

and five commercial software projects. Their empirical assessment demonstrates a

reduction in the code review effort (i.e., 35% of all predicted bug-inducing changes

could be identified by spending 20% of the total effort) using the prediction model and

a recall of 64%.

Researchers have so far approached the SDP problem from different perspectives, i.e.,

from modeling the algorithm and validation techniques to enriching the data, and to

modeling the people. Various statistical and machine learning techniques are utilized

[11,105], i.e., Logistic Regression (LR), Naive Bayes (NB), and Random Forest (RF)

algorithms are widely used and performed quite well on predicting defects. Some

57

studies focus on assessing the experimental setup to depict the data more accurately,

i.e., investigating other model validation techniques [82], algorithm tuning [52], data

pre-processing approaches [118], enriching the data by adding new metrics, and new

class types [27,51]. Recently, SDP models that make predictions at a fine-granularity

level are proposed, such as predicting bug-prone files [28] or code lines [119,120] in

software changes.

More recent studies consider the effect of developers on defect proneness of software

modules [17,31,32,106,121]. As people are the third essential unit in software

development, in addition to product and process, researchers investigate software

developers to model their development behavior, interactions among each other

through the modified source code modules, and other communication channels.

Besides, new studies are putting the whole focus on the developers, and propose

personalized SDP models that aim to give customized prediction results to each

developer in a team [36,53]. Customized feedback is provided by separately-built

models for each developer instead of including developer metrics into general SDP

models. Below, we report studies that use developer metrics to build defect prediction

models in Section 3.2.1, and build personalized defect prediction models in Section

3.2.2.

3.2.1 Defect prediction using developer metrics

Schröter et al. [121] report differences in the bug density of source code files developed

by different developers. According to their study, specific developers more likely

generate bugs than others, and this reflects the complexity of the code rather than a

competency between developers. Later works study the relationship between the defect

density of code modules and the experience of the developer. The more experienced

developers develop more complex code because more risky, larger and thus more

complex tasks are assigned to more experienced developers [122,123]. Further, the

results of Eyolfson et al.’s study [124] show that more experienced developers tend

to introduce fewer bugs. Rahman and Devanbu [125] report that there is no clear

correlation between bugginess of the code and the developers’ overall experience on

58

the project. On the other hand, their study states that a developer’s experience on one

file is more important than the developer’s overall experience on the project.

The number of developers who worked on a software module is popularly used as one

of the metrics in SDP models [17,74,106,110]. A study by Ostrand et al. [17] reports

that including the number of developers who modified a code module into the predictor

makes a modest improvement in the performance of defect prediction. Matsumoto et

al. [110] indicate that developers’ defect injection rates vary, and modules edited by

many developers contain more defects.

Posnett et al. [31] proposed developer focus to refer to the activity of a developer.

The authors measured the focus of a specific developer to a specific module, and

concluded that more focused developers would cause fewer defects. Di Nucci et al.

[107] extended the focus metrics by adding a distance measure between the modules.

The smaller the distance between the modules means that the modules are more related

to each other. The proposed model outperforms their baselines including the study of

Posnett et al. [31].

Lee et al. [32] proposed a metric set that models the developers’ interaction behaviour

at a micro-level. Micro interaction metrics are collected from Mylyn, such as browsing

and editing times of code files, frequencies and edited file information. They concluded

that micro interaction metrics improved the prediction performance when they were

used with source code and change history metrics. Also reported in [32], the number

of developers that edited a file in the history, the number of edit events observed for a

file, and the number of selections of a file are relatively good predictors.

Calikli et al. [33] also modeled developers in terms of their confirmation bias levels

to identify their relationships with the post-release defects. For instance, testers may

exhibit confirmatory behavior in the form of a tendency to make the code run rather

than employing a strategic approach to make it fail.

3.2.2 Personalized defect prediction

Bettenburg et al. [126] claim that software engineering data contains a large amount

of variability and models built with a global context are often irrelevant and less

59

successful than models built with a local context. They applied Multivariate Adaptive

Regression Splines (MARS) [127] which is a global model that considers the local

regions in the data. Their results show that the MARS approach outperforms the

traditional global approach in defect prediction.

We identified two studies proposing personalized SDP models [36,53]. These

personalized models are built at change-level rather than file/method level since the

ownership can be defined easier on a code change than a file. A file may be modified by

several developers, and hence, a defect in a file may be the consequence of these code

changes, whereas a code change is only associated with a single developer [16,27].

Jiang et al. [36] propose change-level personalized SDP models for six different

open-source projects, namely Linux kernel, PostgreSQL, Xorg, Eclipse, Lucene and

Jackrabbit. They identified 10 developers who contributed the most to these projects.

Then, 100 consecutive commits of each developer were collected and used for building

the personalized prediction models separately, while a total of 1000 commits of all 10

developers are used for building the traditional, general prediction model. In addition

to the personalized and general SDP models, a weighted model which combines

different developers’ data, and a meta-classifier which ensembles the predictions of

general and personalized approaches are built. They employed Alternating Decision

Tree (ADTree), Naive Bayes (NB) and Logistic Regression (LR) algorithms to build

their models.

Jiang et al. [36] built their models utilizing characteristic vectors that represent the

syntactic structure of the changed source codes in a commit, and bag-of-words for

both commit messages and source code. Moreover, commit hour and day, cumulative

change and bug-inducing change counts, source code file/path names, and file age were

the other input metrics. Their results indicate that the F1-measure of the personalized

model was 1 to 6% more than the traditional (general) model among six projects.

Besides, when the top 20% of defective lines of code are inspected, a personalized

approach could detect up to 155 more defects than a traditional approach.

Xia et al. [53] propose an alternative personalized approach that utilizes other

developers’ commit history, as other developers’ commit history could be useful to

60

predict the defects of a specific developer. That idea is similar to the weighted

personalized approach in [36], but instead of randomly selecting the other developers’

data to build a training set, other developers’ change data was included in the training

set utilizing a genetic algorithm. The authors in [53] experimented on the same datasets

used by Jiang et al. [36] and filtered the same number of developers (10) and the same

number of commits (100 each). They also used the same metric set used in Jiang et

al.’s study [36]. The results reveal that their proposed personalized solution could reach

up to 13% higher F1-measure than the traditional models and detect up to 245 more

defects than the previously built models in [36].

Early personalized approaches for SDP [36,53] report that personalized defect

predictors could reach up to 13% higher F1-measure rates than the general models. On

the other hand, the recall values reported in [36] are not very high, between 39% and

74%, compared to the previously reported defect predictors [105], while the precision

values reflect that false alarm rates may also be higher. Their data selection and

developer selection techniques are strict, i.e., only 10 developers and 100 commits

from those developers were chosen to build the personalized models. Furthermore,

the general models built in [36,53] only utilized the selected developers’ commits

whereas the non-selected developers’ development history are not included in the

general SDP models. To further understand the intrinsic characteristic of personalized

approaches we need to observe the results of personalized approaches under different

circumstances. Thus, in this study, we aim to investigate the performance of

personalized defect predictors with a different experimental setup regarding data sets,

metrics, model construction and additional performance measures.

3.3 Experimental Setup

In this study, our objectives are to build personalized defect predictors using

individual code changes of developers, to assess the models’ performance against

the traditional models, and to understand the factors that may have an effect on the

performance of personalized predictors. We would like to evaluate the usefulness of

the personalized approach by setting up an improved empirical setup that conforms to

the state-of-the-art change-level SDP. We believe that the findings of this study would

61

contribute to software practitioners while deciding whether the personalized approach

in the context of SDP can be worth building. We define three research questions (RQs)

as follows:

RQ1: How does a personalized SDP approach perform compared to traditional

SDP approaches?

RQ2: To what extent do development characteristics have an effect on the

superiority of PM?

RQ3: How does the importance of metrics used for defect prediction differ among

personalized models?

Please note that for RQ2, we define development characteristics over commit activities

of developers: 1) number of commits of a developer, 2) ratio of bug-inducing commits

to the total number of commits of a developer, 3) metric (Table 3.1) values of the

commits of a developer, and 4) the importance rank of the metrics for a developer.

More details on the methodology of each of our research questions are reported in

Section 3.3.2.

3.3.1 Dataset details

We conducted our research on six datasets containing historical commit information of

six open-source projects, namely Gimp, Maven-2, Perl, PostgreSQL, Rails and Rhino.

This dataset is collected in a prior study whose steps are described in [27]. The dataset

contains five types of metrics at commit (change) level; the size, history, experience,

diffusion and purpose related metrics, and bug-inducing commits were extracted from

the commit histories of the six projects. The full list of metrics is given in Table 3.1.

The Size metrics represent the amount of change during a commit. The History metrics

represent the number of developers that changed the modified files in a commit, the

change history of the modified files in a commit and the average time interval between

a commit and the last change time of modified files in the commit. The Experience

metrics are calculated based on prior commits of the developer who made the commit.

The higher the number of previous commits of the developer, the higher the value of

62

experience metrics. The Diffusion metrics represent how a change is spread across

source files. These metrics are calculated by counting the number of modified files,

subsystems, directories in a commit and calculating the entropy of each commit. The

Purpose dimension involves a single metric named as FIX that represents whether the

purpose of a commit is bug-fixing or not (binary). The detailed explanations of the

metrics can also be found in the previous work [27]. We think the selected projects

represent rich information in terms of their development periods (e.g., from 1987 till

2013 for Perl) and the extracted metrics. The dataset contains 13 well-known process

metrics which measure the commits through various aspects. Previous studies also

report that the process metrics extracted from the software projects contain rich and

useful information for defect prediction models, and these perform better than code

metrics [16,27,108]. Therefore, we chose this dataset to make a better comparison of

our approach with the prior studies in terms of prediction performance as well as to

increase the replicability of our methodology on publicly available projects. Building

a new dataset was not the focus of our study. Instead, we selected an existing dataset

that has already been validated in the context of change-level SDP studies.

Table 3.1 : Software metrics used in this study.

Metric Description

Size Lines of code added in a commit (ADD)
Lines of code deleted in a commit (DEL)

History Number of developers had changed the modified files
(NDEV)
Number of prior changes to modified files (NPC)
The average time interval between the last and the current
change (AGE)

Experience Experience of the developer (EXP)
Recent experience of the developer (REXP)
Experience of the developer on a subsystem (SEXP)

Diffusion Number of modified files (NF)
Number of modified subsystems (NS)
Number of modified directories (ND)
Entropy: distribution of modified code across each file
(ENT)

Purpose Is the purpose of a commit to fix a bug? (FIX)

63

The date range of the commits, the number of total and bug-inducing commits, and the

number of total developers for all the projects are given in Table 3.2. Besides, it also

reports our developer selection statistics which we mention in the next section.

3.3.2 Our methodology

We share the same initial goal with Jiang et al. [36] of building personalized defect

predictors, but our methodology differs in many aspects: Selecting the developers to

be modeled for personalized prediction, the data sampling approach, the algorithms

applied, and the performance assessment methods. We focus on an empirical

evaluation of personalized models with traditional models on different open-source

projects as the prior study, but also we analyzed whether the importance of metrics used

for prediction differs across developers and whether the development characteristics

(i.e., developer experience) affect the performance of the personalized approach.

All of these aspects are explained below. Figure 3.1 illustrates the steps of model

building.

ALL = 5399
commits

of 33 developers

4411 commits
of 5 developers Shuffle and split

Dev-2 commits into 10 folds
(repeat 10 times)

Repeat for each software project

Maven-2

D1 = 2296 commits
of Dev-1

PM

SM

GM

Train (apply under-sampling) Evaluate

D2
9/10

-

1/101/101/101/101/10
1/101/101/10

1/10 1/10
+

ALL

D2 = 983 commits
of Dev-2

D3 = 868 commits
of Dev-3

D2
1/10

D2
1/10

D2
1/10

D2
9/10

D2
9/10D5 = 127 commits

of Dev-5

D4 = 137 commits
of Dev-4

D5 D4 D3 D1

Repeat for each selected developer

Repeat for each fold

Figure 3.1 : An overview of the model building methodology.

3.3.2.1 Developer selection

We pick a specific number of developers from each project to build their corresponding

personalized defect prediction models. Our aim is to select as many developers as

possible while keeping a sufficient number of total and bug-inducing commits that

belong to each developer for building specialized defect predictors. Indeed, a good

amount of data is needed to build a successful predictor [128]. Although we cannot

make a generalized comment on the number of data instances used during the training

64

Ta
bl

e
3.

2
:D

et
ai

ls
of

th
e

da
ta

se
t.

G
im

p
M

av
en

-2
Pe

rl
Po

st
gr

eS
Q

L
R

ai
ls

R
hi

no
Ti

m
e

pe
ri

od
of

co
m

m
its

in
ye

ar
s

19
97

-2
01

3
20

03
-2

01
2

19
87

-2
01

3
19

96
-2

01
3

20
04

-2
01

3
19

99
-2

01
3

To
ta

ln
um

be
ro

fc
om

m
its

32
.8

75
5.

39
9

50
.4

85
35

.0
05

32
.8

66
2.

95
5

To
ta

ln
um

be
ro

fb
ug

-i
nd

uc
in

g
co

m
-

m
its

11
.9

40
55

1
12

.1
72

13
.5

11
6.

22
4

1.
29

1

To
ta

ln
um

be
ro

fd
ev

el
op

er
s

49
9

33
11

16
38

22
87

35
St

at
is

tic
s

re
ga

rd
in

g
de

ve
lo

pe
r

se
-

le
ct

io
n

N
um

be
ro

fs
el

ec
te

d
de

ve
lo

pe
rs

51
5

87
27

45
7

To
ta

ln
um

be
ro

fc
om

m
its

of
al

ls
el

ec
te

d
de

ve
lo

pe
rs

28
.2

86
4.

41
1

45
.8

76
34

.8
48

22
.5

92
2.

80
1

To
ta

ln
um

be
ro

fb
ug

-i
nd

uc
in

g
co

m
-

m
its

of
al

ls
el

ec
te

d
de

ve
lo

pe
rs

11
.0

57
51

4
10

.9
54

13
.4

91
5.

22
3

1.
25

4
R

an
ge

of
co

m
m

its
of

se
le

ct
ed

de
-

ve
lo

pe
rs

’
45

-9
.2

22
12

7
-2

.2
96

47
-7

.8
50

47
-1

2.
75

5
53

-3
.3

14
77

-1
.0

95

R
an

ge
of

bu
g-

in
du

ci
ng

co
m

m
it

ra
-

tio of
se

le
ct

ed
de

ve
lo

pe
rs

’
(b

et
w

ee
n

0
an

d
1)

0.
08

-0
.8

0.
05

-0
.2

0.
05

-0
.6

5
0.

13
-0

.8
0.

02
-0

.5
3

0.
17

-0
.6

2

65

of a machine learning model, a prior study [100] in our field report that using 100 data

instances would be enough to learn for an adequate defect predictor.

Cold-start problem is also another common problem in personal recommendation

systems, and it occurs when there is not available knowledge or data to make a

recommendation [39,40], i.e., making a recommendation for a not yet rated movie

or a new user in a movie recommendation system [114]. In our context, we face the

cold-start problem in situations such as when 1) a developer might have not any prior

commit, i.e., she has joined to the software team and/or just started to contribute to

the software project, 2) a developer might have not any enough prior commits and/or

bug-inducing commits to build a personalized model for her even though she is an

active contributor to the project (i.e., 49% of all developers over six projects have only

one commit, and a developer from Rails has 87 commits but only two of them are

bug-inducing).

Considering all these, we select the developers among all the contributing developers

whose total number of commits and bug-inducing commits are at least 45 and 10,

respectively. When we apply an under-sampling (Section 3.3.2.3) on training data

with 10-fold cross-validation, the number of total commits for a developer in his/her

training set would be at least 18 (9 of 10 bug-inducing commits and 9 of 35 clean

commits). This number can be quite low to train a machine learner, so we also check

the prediction performance of personalized models for those developers with very few

data instances. We further discuss this in Section 3.6.

We ended up having a total number of 222 developers over six projects. Since the

developer selection criterion is applied to each project separately, the selected number

of developers differs among the projects, e.g., 87 in Perl and 5 in Maven-2. Still, we

cover the majority of the commits, i.e., 87% of the total commits over six projects.

Table 3.2 reports the dataset details regarding developer selection process: (i) the

number of selected developers for each project, (ii) total number of commits made

by all the selected developers, (iii) total number of bug-inducing commits made by all

the selected developers, (iv) range of the number of commits made by each selected

66

developer, (v) range of the ratio of bug-inducing commits to all commits of each

selected developer.

The reported numbers confirm that the Pareto principle is valid in software projects

[129]: the majority of the commits are made by the minority of the developers. The

percentage of the selected developers over all developers ranges between 2% to 71%,

whereas the percentage of the number of commits of those selected developers over

all commits ranges between 70% and 99% for six projects. 49% of all developers

over six projects contributed to the project with only a single commit. Moreover, the

numbers show that the bug-inducing commit ratios over the total commits of a selected

developer range between 0.02 and 0.8.

3.3.2.2 Model construction

Three different SDP models are built for the selected 222 developers by using

two different machine learning algorithms, namely Naive Bayes (NB) and Random

Forest (RF). These algorithms have been known as popular and well-performing in

defect prediction [50,105]. So, we utilized these two algorithms using a 10x10-fold

cross-validation technique to build our prediction models. Our models are designed to

provide predictions at change level.

Personalized model (PM): We propose a personalized defect prediction model for

each selected developer in six projects. A personalized model includes only the

corresponding developer’s commit history to training, and it is intended to make

predictions only for the relevant developer at the commit level.

General model (GM): We build a general defect prediction model for each of the six

open-source projects. A general model incorporates all commit history of the projects

into the training set to build a single model which corresponds to the traditional defect

predictors in the literature so far. This general model provides recommendations at the

commit level to every contributor in the selected projects’ software teams.

General model for a set of developers (SM): We also build additional general models

for these projects by narrowing down the whole commit history to the commits of

the most active developers instead of utilizing all developers’ commit history. This

67

approach is inspired by the general model proposed in the personalized SDP study [36].

We include this model into our empirical analyses to compare our findings with the

prior study.

We apply 10-fold cross-validation to evaluate PM, SM, and GM models by following

prior studies on change-level defect prediction [16,20,27,130]–[132], and the prior

personalized SDP study [36]. Recently, studies discuss the effect of dividing the

commit data into 10 folds, without considering the time dependencies between the

commits, on the performance of SDP models [28,29]. Empirical studies applying

different strategies for change-level SDP (e.g., [20,130]), on the other hand, conclude

that the findings of the selected strategies are consistent. The performance differences

between the strategies are also relatively small. In particular, studies suggest that

the conclusions about model performance can change when a different time period is

utilized for training [133], or when a time-sensitive validation strategy is chosen [29].

We are aware of this issue, and hence, we further discuss the effects of applying

cross-validation on the findings in Section 3.5. However, for the sake of comparability

with the prior personalized models (e.g., [36]), we report, in the Results Section, the

statistics based on 10-fold cross-validation. Furthermore, our objective in this study is

not to generalize our conclusions regarding the performance of PMs or to report the

best performance of PMs, but to compare those with traditional models. Hence, we use

the same experimental setup for GM, SM and PM models throughout this study. All

the experiments are repeated 10 times by shuffling the data before training-test split in

order to avoid data order bias [19].

Please note that the test folds are kept the same across all models’ performance

evaluation in order to conduct a fair comparison among GM, SM and PM models.

During each fold, PM, SM, and GM models share the same test set which corresponds

to the commits of a developer associated with the selected fold and the project

as illustrated in Figure 3.1. On the other hand, the training set varies among the

models, i.e., it is filtered based on the criteria of the model. Figure 3.1 illustrates

the methodology for the three selected developers of Rhino, but the same procedure is

applied for the selected developers in every project in this study.

68

3.3.2.3 Under-sampling on training data

In order to handle the popular problem of imbalanced class distribution in SDP

datasets (e.g., [16,80,100]), we apply under-sampling technique on the majority class

by randomly selecting the majority class instances until the size of the minority

(bug-inducing) and majority class instances is the same. Note that we do not

apply sampling on test data. We further discuss its effects by comparing against a

no-sampling strategy and another sampling technique in Section 3.5.

3.3.2.4 Evaluation of RQ1

Performance of the prediction models are evaluated in terms of probability of detection

(pd, also called recall), probability of false alarm (pf), precision, F1-measure, area

under the ROC curve (AUC), Matthews Correlation Coefficient (MCC) and Brier

score. Pd, pf, precision, F1-measure and MCC are calculated from a typical confusion

matrix (see Table 3.3). Explanations of these evaluation metrics and their formulas are

given in Table 3.4. Pd, pf, F1-measure, AUC are well-known measures and reported in

defect prediction studies, whereas MCC and Brier score are recently used in empirical

software engineering studies [56,134]. We report and assess the models against all

these measures as we should look for a trade-off between these to conclude whether a

classifier is accurate and useful in predicting defects.

Table 3.3 : The confusion matrix for the defect prediction problem.

Actually defected Actually clean

Predicted as defected TP (True positive) FP (False positive)
Predicted as clean FN (False negative) TN (True negative)

To answer our RQ1, we compare the performance of PM with those of the traditional

models (SM and GM). Pairwise comparisons between the three models are made using

the Nemenyi significance test [135], and the model whose performance evaluation

metrics are significantly different from the others is identified (according to p < 0.05).

Effect sizes of the comparisons are measured via Cohen’s d using corrected Hedges’

g [136]. Measuring effect size is a simple way to quantify the difference between the

performance values of the pairs of SDP models under comparison. The |d|< 0.2 is

69

Ta
bl

e
3.

4
:T

he
eq

ua
tio

ns
an

d
ex

pl
an

at
io

ns
of

pe
rf

or
m

an
ce

m
et

ri
cs

us
ed

in
th

is
st

ud
y.

N
am

e(
s)

D
es

cr
ip

tio
n

Fo
rm

ul
a

Pr
ob

ab
ili

ty
of

de
te

ct
io

n
(p

d)
R

ec
al

l
R

at
io

of
co

rr
ec

tly
pr

ed
ic

te
d

de
fe

ct
ed

m
od

ul
es

to
ac

tu
al

ly
de

fe
ct

ed
m

od
ul

es

T
P

T
P
+

F
N

Pr
ob

ab
ili

ty
of

fa
ls

e
al

ar
m

(p
f)

R
at

io
of

in
co

rr
ec

tly
no

n-
de

fe
ct

ed
m

od
ul

es
to

ac
tu

al
ly

no
n-

de
fe

ct
ed

m
od

ul
es

F
P

F
P
+

T
N

Pr
ec

is
io

n
R

at
io

of
th

e
ac

tu
al

ly
de

fe
ct

ed
m

od
ul

es
to

pr
ed

ic
te

d
as

de
fe

ct
ed

T
P

T
P
+

F
P

F1
-m

ea
su

re
H

ar
m

on
ic

m
ea

n
of

th
e

pr
ec

is
io

n
an

d
re

ca
ll

2∗
pr

ec
is

io
n∗

re
ca

ll
pr

ec
is

io
n+

re
ca

ll

M
at

th
ew

s
co

rr
el

at
io

n
co

ef
fic

ie
nt

(M
C

C
)

H
ow

w
el

la
de

fe
ct

pr
ed

ic
to

r
m

ak
es

a
bi

na
ry

cl
as

si
fic

at
io

n
as

bu
g-

in
du

ci
ng

co
m

m
it

or
no

t[
13

7]
(t

he
va

lu
e

of
1

re
pr

es
en

ts
pe

rf
ec

tc
la

ss
ifi

ca
tio

n
w

hi
le

-1
re

pr
es

en
ts

a
co

m
pl

et
el

y
w

ro
ng

cl
as

si
fic

at
io

n)

T
P
∗T

N
−

F
P
∗F

N
√

(T
P
+

F
P
)∗
(T

P
+

F
N
)∗
(T

N
+

F
P
)∗
(T

N
+

F
N
)

B
ri

er
sc

or
e

T
he

ac
cu

ra
cy

of
pr

ed
ic

tio
ns

ba
se

d
on

th
e

pr
ed

ic
tio

n
pr

ob
ab

ili
tie

s
[1

38
,1

39
]

(N
:

nu
m

be
r

of
co

m
m

its
in

th
e

va
lid

at
io

n
se

t,
p i

:
th

e
pr

ob
ab

ili
ty

of
th

e
pr

ed
ic

tio
n

m
ad

e
by

th
e

SD
P

m
od

el
,a

i:
ac

tu
al

ou
tc

om
e

of
th

e
co

m
m

it
(1

if
it

is
a

bu
g-

in
du

ci
ng

co
m

m
it,

0
ot

he
rw

is
e)

)

1 N
∑

N i=
1(

p i
−

a i
)2

A
re

a
un

de
rc

ur
ve

(A
U

C
)

H
ow

m
uc

h
th

e
pr

ed
ic

to
ri

sc
ap

ab
le

of
di

st
in

gu
is

hi
ng

be
tw

ee
n

cl
as

si
fy

in
g

a
co

m
m

it
as

bu
g-

in
du

ci
ng

an
d

no
n-

bu
g-

in
du

ci
ng

-

70

interpreted as negligible, |d| < 0.5 interpreted as small, |d| < 0.8 interpreted as

medium, otherwise corresponds to large effect size. Comparisons with negligible and

small effect sizes are not considered when we derive our conclusions, since larger data

might be needed to claim a strong difference between the models’ performance.

3.3.2.5 Evaluation of RQ2

We think that the development characteristics such as the ratio of bug-inducing

commits to the total number of commits of a developer, the total number of commits

of a developer, the size, history, and diffusion of the developers’ changes, and the

developers’ experience might have an impact on the performance of PM. To understand

the effect of these data characteristics on PM performance, we split 222 developers into

three groups based on their success on PM:

1. PM > SM/GM: The developers whose PM model’s performance is significantly

better than that of SM or GM or both.

2. PM < SM/GM: The developers whose PM model’s performance is significantly

worse than that of both SM and GM.

3. PM = SM/GM: The developers whose PM model’s performance is statistically not

different from that of SM and GM.

We form these groups according to the Nemenyi pairwise tests conducted on all the

performance evaluation metrics (pd, pf, precision, F1, AUC, MCC and BScore) in

RQ1, and according to the test results with medium to large effect sizes. Then we

compare the development characteristics across the three groups. For each group, the

characteristic to be analyzed, e.g., number of commits of a developer, is aggregated

over all developers in that group. Then, the aggregated values of the three groups

are compared with each other by applying the Mann-Whitney U Test [140]. Later,

the effect sizes of comparisons are measured via Cohen’s d using corrected Hedges’

g [136].

71

3.3.2.6 Evaluation of RQ3

Our motivation for RQ3 is to assess if a) PM models utilize a common metric set to

predict bug-inducing changes of the corresponding developers, or b) each PM model

has its own, unique metric set that provides the highest amount of information to

predict bug-inducing changes for the corresponding developer. We applied Information

Gain (InfoGain) feature ranking technique [141] on the personal commit data of each

of the 222 developers in order to analyze the effect of each process metric (Table 3.1)

on the prediction of bug-inducing changes for that developer. The metrics are ranked

according to the information provided for bug prediction, and later, the rank values of

each metric are compared to each other by using Scott-Knott ESD test to analyze if

rank values of each metric are statistically different or the same among the developers.

3.4 Results

Empirical results conducted on six projects to answer our RQs are reported and

discussed in this section.

3.4.1 RQ1: How does a personalized SDP approach perform compared to

traditional SDP approaches? (PM vs. SM and PM vs. GM)

In this section, we discuss the findings of PM versus traditional models, namely SM

and GM, by considering the algorithms’ performance (NB and RF) individually. Later,

we discuss the performance values of PM on an individual basis. As explained in our

methodology, PM is trained using historical code changes of the selected developer

only, whereas GM and SM are trained using all or a subset of the change history of

the project respectively. Overall, we observe that the personalized SDP models are

better at predicting bug-inducing changes compared to the traditional models. A more

detailed discussion is provided below

There are two comparisons, namely PM vs. SM and PM vs. GM, based on the

performance achieved with two machine learning algorithms applied (NB, RF), and

based on seven performance evaluation metrics (pd, pf, precision, F1-measure, AUC,

MCC and Brier Score). The winner model of each comparison according to the

72

Nemenyi test is given in the corresponding cells in Table 3.5. The "-" sign in the

table means that the two models performed statistically the same.

Table 3.5 : Win/Loss results of the comparisons between PM and SM, and PM and
GM. Bold cells indicate medium to large effect sizes.

NB RF
PM vs. SM PM vs. GM PM vs. SM PM vs. GM

Pd PM PM SM GM
Pf SM GM SM GM
Prec. SM GM SM GM
F1 PM PM SM GM
AUC PM PM SM GM
MCC PM PM SM -
Brier PM PM SM GM

The performance of PM, SM and GM aggregated over six projects are also provided

as boxplots in Figure 3.2. The results of the models built with the NB algorithm are

shown on top of the figure, while the results of the models built with the RF algorithm

are given at the bottom of the figure. From left to right, the boxplots correspond to pd,

pf, precision, F1-measure, AUC, MCC and Brier Score values.

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
ai

ve
 B

ay
es

pd

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pf

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

precision

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC

PM SM GM

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

MCC

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BScore

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
an

do
m

 F
or

es
t

pd

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pf

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

precision

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC

PM SM GM

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

MCC

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BScore

Figure 3.2 : Performance of PM, SM and GM.

According to the reported performance of the SDP models built with the NB algorithm

in Figure 3.2 and the performance comparisons in Table 3.5, PM outperforms both of

the traditional models in terms of pd, F1, AUC, MCC and Brier Score. Although PM

increases the pd value, it also increases the pf value for 77% of the developers. The

increase in pf also triggers a decrease in precision and hence PM cannot win over the

traditional models in terms of pf and precision. The effect sizes of the comparisons

between PM and the traditional models are large, around 1.3, 0.9, 1.0 in terms of pd,

73

pf and F1 respectively. For the rest of the evaluation metrics, the effect sizes of the

comparisons are small or negligible.

According to the performance with the RF algorithm in Figure 3.2 and statistical test

comparisons in Table 3.5, PM under-performs than SM and GM in terms of all model

assessment metrics. The measured effect sizes of the comparisons between PM and

traditional models, on the other hand, are negligible to small (0.1 to 0.3).

Personalized models in detail: The performance of PM models for 222 selected

developers vary between 10 and 100% in terms of pd according to the results reported

in Figure 3.2. This figure also shows us that while prediction performance of PMs for

some developers are very low, others are high in terms of pd. Here, we investigate the

PM performance of developers in detail. PM significantly differs from the traditional

models in terms of pd, pf, and F1 when NB is utilized. These differences have large

effect sizes, and hence here, we report the performance of PM versus SM/GM using

NB algorithm and in terms of pd, pf and F1.

Listing the performance results of all of the 222 developers in this paper would take

too much space. Thus, we chose nine developers with the best, worst and medium

performing PM models, and report their PM, SM and GM model performance in Figure

3.3. The full list is available in [142].

Each developer’s ID, the project name that the developer contributed are given on

the left of the figure3. The total number of commits done by the developers and

their bug-inducing commit ratio are also given respectively under their aliases. Each

PM boxplot in Figure 3.3 has a specific colour that represents if the PM wins over

the traditional models (SM and GM) according to Nemenyi pairwise tests. If PM

outperforms at least one of the traditional models, the corresponding boxplot is

coloured in blue, while it is red if SM and/or GM outperforms PM. If the personalized

and traditional models perform the same, the boxplot is coloured in black.

Figure 3.3 shows that the individual PM performance could reach very high median

values in terms of pd, e.g., 85% for Dev-4 and 92% for Dev-51 from Rails. On the other

hand, PM models could not detect more than 11% of the defects for some developers,

3Developer names are replaced with aliases within each project due to privacy

74

Dev_6 / Gimp
478 / 0.47

Dev_13 / Gimp
251 / 0.43

Dev_3 / Maven2
868 / 0.2

Dev_6 / Perl
2791 / 0.38

Dev_34 / Perl
244 / 0.22

Dev_4 / PostgreSql
1483 / 0.16

Dev_4 / Rails
1490 / 0.25

Dev_51 / Rails
79 / 0.24

Dev_2 / Rhino
880 / 0.39

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pd

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pf

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1

Figure 3.3 : PM performance of a sample of developers (blue color indicates
superiority of PM over traditionals, red color indicates inferiority of PM, whereas

black color indicates the equality of models).

e.g., Dev-13 from Gimp. PM, SM and GM perform the same for the other developers,

e.g., Dev-34 from Perl and Dev-4 from PostgreSQL in terms of pd.

Besides, among all the 222 developers, there is not any developer whose PM results

are better than the SM and/or GM in terms of all performance measures. While a

developer’s PM performance is better than at least one of the traditional models in

terms of pd, it may not be better in terms of pf. For example, in Figure 3.3, PM

for Dev-6 from Gimp significantly outperforms the traditional models in pd, but the

traditional models outperform the personalized approach in terms of pf. This trade-off

can be observed in all the developers’ PM versus SM/GM comparisons. Thus, we

believe the decision of the type of SDP model to be used for a developer seems to be

highly dependent on the prioritized performance metric.

Building a PM is more convenient for majority of the developers contributed
to six open-source projects: PM outperforms the traditional models in terms of
predicting defects (pd) and F1-measure, while PM produces higher false alarm
rates (pf) than traditional models.

75

3.4.2 RQ2: To what extent do development characteristics have an effect on the

superiority of PM?

To understand what factors lead to the success of PMs in predicting bug-inducing

changes, we would like to analyze development characteristics in detail. As explained

in our methodology, we first identify development characteristics in terms of the size

and bug-proneness of the development activity, and process metrics used as input

features of our model. Later, we formed the groups of developers considering the

performance of PM versus SM and GM. The number of developers that belongs to

each group is reported in Table 3.6. We know from our findings in RQ1 that PM

outperforms traditional models in terms of pd and F1 when NB is applied, whereas

PM is worse in terms of pf. Therefore, the groups are formed according to pd, pf

and F1 separately. The first group illustrates that there are 184 developers and 169

developers whose PMs are the best when pd and F1 values are compared, respectively.

For 172 developers, PMs perform the worst in terms of pf. Once the groups are formed,

we analyze the significant differences in terms of development characteristics among

these groups.

Table 3.6 : Number of developers belong to each group.

PM >SM/GM PM <SM/GM PM = SM/GM

pd 184 17 21
pf 28 172 22
F1 169 17 36

First of all, we compare the total number of commits of the developers across the

three groups. Figure 3.4 shows the boxplots of the total number of commits made

by the developers associated to the three groups. Pairwise comparisons among the

three groups are conducted with Nemenyi tests in terms of pd, pf and F1. The tests

show that the total number of commits made by the developers in the second group,

where SMs or GMs win over PMs, is significantly different and larger than those of

developers in the other groups. The effect size of this finding is medium to large. We

observe many developers in the second group, i.e., four developers from PostgreSQL,

three developers from Rails, and one developer from Gimp, who are among the top

contributors to their project. The number of changes made by those developers are

76

in the range of 53 - 12755 (average is 2060). In such a case, it seems the traditional

models perform better than PMs.

0
40

0
10

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

pd

0
40

0
10

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

pf

0
40

0
10

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

F1

Figure 3.4 : Number of commits of developers belonging to each group.

Second, we compare the ratio of bug-inducing commits to the total number of commits

of developers that belong to each group. Figure 3.5 shows the boxplots of the ratios

of bug-inducing commits over total commits of developers associated to the three

groups. According to the boxplots, the third group of developers, where PM, SM and

GM performs statistically the same, has a lower ratio of bug-inducing commits when

compared to the other groups of developers with a medium to large effect sizes. The

difference among the first and the second group of developers has small and negligible

effect sizes. Therefore, we conclude that bug-inducing commit ratio of developers does

not seem to have an effect on which model (PM or traditional) performs better.

0.
0

0.
3

0.
6

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

pd

0.
0

0.
3

0.
6

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

pf

0.
0

0.
4

0.
8

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

F1

Figure 3.5 : Bug-inducing commit ratios of developers belong to each group.

Third, we investigate if there are differences or similarities among the contributions

made by developer groups in terms of 13 process metrics listed in Table 3.1. We

77

aggregated the changes of developers within each group, and compared the values of

each metric calculated from these changes among the groups. Results show that there

are differences in five out of 13 metric values calculated from the changes among the

three groups: NDEV, NPC, EXP, REXP, and SEXP. In Figure 3.6, we only report the

values of these five metrics calculated for the three groups.

According to Figure 3.6, traditional SDP models perform better than PMs for the

developers who have higher EXP, REXP, and SEXP values. This finding is consistent

with our analysis on the first development characteristics, i.e., number of commits

made by a developer. Combining both, we can argue that the traditional models

perform better than PMs for those developers who have more experience on the project

(contributed as the bulk of commits). On the other hand, PMs is better than the

traditional models when the associated developers contribute to the modules which are

modified by many developers (higher NDEV). Furthermore, when developers commit

to modules which are modified many times (higher NPC) the difference between the

PM and traditional models has a larger effect size. However, the winning model might

change with respect to the performance measure.

We would like to highlight the fact that the findings regarding the developer

group-based analysis also have similar patterns when the analysis setup is extended

by including the performance results measured by other model assessment metrics and

when the RF algorithm is used.

The development characteristics significantly reflect under which settings PM
performs better than SM and/or GM. PM is a more successful approach for
predicting defects of the developers that contribute to the modules that have been
changed by more developers. When a developer is among the most experienced
developers in a project, PM underperforms compared to SM and/or GM.

3.4.3 RQ3: How does the importance of metrics used for defect prediction differ

among personalized models?

The heat map in Figure 3.7 reports InfoGain results for all 222 selected developers’

changes across all six projects. The columns represent the process metrics, whereas

the rows represent the ranks one to thirteen. Values in cells represent “how many

78

0
20

50

pd

N
D

E
V

0
40

pf

0
40

10
0

F1

0
60

0
12

00

N
P

C

0
40

0
80

0

0
20

00
50

00

0
60

00

E
X

P

0
60

00

0
60

00

0
15

00

R
E

X
P

0
15

00

0
15

00

0
40

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

S
E

X
P

0
30

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

0
40

00

PM > SM/G
M

PM < SM/G
M

PM = SM/G
M

Figure 3.6 : Metric values of developers belong to each group.

times a metric is ranked as the first (or second to thirteenth) during an InfoGain

evaluation?”. The bigger values are represented with darker gray, whereas the smaller

values are represented with a lighter gray. Figure 3.8 also reports the comparison of

metric ranks based on Scott-Knott tests: The metrics that belong to the same group

79

are represented with the same color. The lower the rank of a metric in this figure, the

higher its contribution to the prediction model.

+119 +20 +24 +5 +0 +3 +3 +5 +1 +5 +20 +7 +10

+32 +40 +31 +10 +11 +2 +22 +5 +0 +5 +19 +15 +30

+11 +11 +28 +19 +12 +8 +29 +1 +1 +7 +16 +35 +44

+9 +16 +14 +15 +16 +10 +18 +9 +2 +6 +32 +34 +41

+2 +12 +13 +25 +23 +10 +11 +14 +4 +36 +33 +26 +13

+2 +6 +24 +9 +13 +12 +13 +8 +36 +40 +29 +12 +18

+2 +9 +15 +14 +6 +6 +8 +41 +35 +35 +10 +15 +26

+0 +4 +12 +6 +10 +4 +39 +42 +32 +16 +13 +22 +22

+0 +1 +15 +2 +4 +39 +42 +36 +17 +14 +20 +19 +13

+1 +2 +7 +3 +38 +47 +25 +16 +14 +31 +13 +22 +3

+0 +0 +18 +38 +45 +32 +8 +12 +31 +21 +11 +5 +1

+0 +41 +10 +46 +31 +18 +3 +20 +38 +5 +3 +6 +1

+44 +60 +11 +30 +13 +31 +1 +13 +11 +1 +3 +4 +0

A
D

D

D
E

L

F
IX

E
N

T

N
D

N
S

N
F

N
D

E
V

A
G

E

N
P

C

E
X

P

R
E

X
P

S
E

X
P

Rank−13

Rank−12

Rank−11

Rank−10

Rank−9

Rank−8

Rank−7

Rank−6

Rank−5

Rank−4

Rank−3

Rank−2

Rank−1

+0

+13

+27

+40

+53

+67

+80

+93

+107

+120

Figure 3.7 : Ranks of metrics based on InfoGain over each PM.

R
an

k

0.
0

3.
2

6.
5

9.
8

13
.0

A
D

D

S
E

X
P

E
X

P

F
IX

R
E

X
P

N
F

N
P

C

D
E

L

N
D

E
V

E
N

T

N
D

A
G

E

N
S

Metrics

Figure 3.8 : Statistical comparison of the metric ranks.

Apart from the size metrics, Figure 3.7 shows that each PM gains different amount of

information from different metrics. When we look at the Scott-Knott ESD clustering

in Figure 3.8, we observe that the highest ranked metric is the added lines of code

80

in a commit (ADD). ADD is ranked as the first for 119 out of 222 developers. The

subsystem experience (SEXP) is the second best metric and followed by the experience

(EXP), the purpose (FIX) and the recent experience (REXP) metrics. The diffusion

metrics, NF in particular, also appear in higher ranks than the history metrics (NPC,

NDEV, and AGE).

Please note that we perform similar analyses on GM and SM, and observe that the

experience dimension is more important when predicting defects with PM compared

to SM and GM. In contrast, the diffusion dimension is more important in predicting

defects with SM and GM. Particularly, the mean ranks of SEXP, EXP and REXP

metrics are between five and six (Figure 3.8), while those metrics are ranked around

six to 11 for SM and GM. In terms of the diffusion dimension, ENT, NS, NF, and

ND metrics are one to two ranks higher in SM and GM compared to PM. Another

important observation is that FIX becomes the last dimension in SM and GM models,

whereas it is ranked as the third important dimension for PM models.

PMs differ from each other in terms of the amount of information gained from
the experience, diffusion and history metric dimensions respectively. According
to the majority of PMs, the process metric representing the number of added
lines is the most contributing one to the performance.

3.5 Discussion

Empirical results demonstrate that the selection of which SDP model (i.e. PM or GM)

to use in real life may depend on several factors, such as machine learning algorithms,

performance metrics and validation strategies. In this section, we discuss how all of

these factors might affect the performance of the proposed personalized SDP models,

and compare our findings with the prior personalized models in the literature. We also

discuss the applicability of the PMs in industrial settings.

3.5.1 NB versus RF

Figure 3.2 given in Section 3.4.1 indicate that the performance values of an SDP

model vary depending on the machine learning algorithms utilized during training. For

example, the range of median of pd values across all three models is 0.19 - 0.43 when

81

models are built with NB, whereas the median pd values obtained with RF algorithm

are 0.5 for all three models.

Pairwise statistical comparison between RF and NB for each of the three models points

out that RF is better at predicting defects in terms of F1-measure, AUC, MCC, and

Brier Score than NB. In terms of pd, PM performs statistically the same when it is

built with NB or RF, whereas SM and GM perform better when they are built with

RF. Although statistical tests on the models’ performance values suggest that RF must

be chosen over NB for answering our research questions, the effects of the models’

performance differences are not large enough in the case of RF.

Both machine learning algorithms are widely used by the SDP researchers. A recent

benchmark on the performance of defect predictors reports that RF may perform better

according to one measure, namely H-measure [143], but the best performing classifier

significantly depends on the project. The authors suggest that instead of utilizing

a complex learning algorithm like RF, using a simpler one like NB would be more

convenient. Based on the literature and our analyses, we also suggest using a simpler

algorithm like NB since it reports significant differences with larger effect sizes in the

context of PM versus traditional models.

3.5.2 Recall (pd) versus false alarm rate (pf)

The personalized approach often increases pd rates while it also increases pf rates,

according to the performance values given in Figure 3.2. It is different than the

common pattern observed in data-oriented SDP studies, e.g. using cross-company or

cross-project data to predict defects [100]. Prior studies show that using other projects’

data (global context) increases both recall and pf compared to using a project’s data

only (local context). But here in our context, using a developer-specific data increases

both recall and pf compared to using all developers’ commit data. On the other

hand, when we look at the false alarm rates of PM model, it has a median around

20%. Having a false alarm rate of 20% is acceptable among many state-of-the-art

defect predictors, considering that it achieves a better recall rates. Thus personalized

approaches in SDP might be preferable over the traditional approaches as the former

gives a better prediction performance.

82

False alarm rate (pf) of an SDP model is an important measure that should be evaluated

according to the context. We believe the false alarm rates should be considered in terms

of two perspectives, namely project and people perspective. Earlier studies discuss

the project perspective [13,105] and state that in a safety-critical or a mission-critical

software project, developers would prefer to have a model with high pd rates with

the cost of high false alarms. However, a more cost-effective SDP solution would be

to have fewer false alarms with the cost of low pd rates. Similarly, the developer’s

personal choice and/or development methodologies used by the team may affect the

choice of having high pf or low pd rates. A developer may dislike the situation

of frequent false alarm triggers, or even true positives if she chooses to review her

code regularly, and detects the defects by herself instead of following the output of

a commit-level defect predictor. In that case, only the bug-inducing commits that

have a high probability should be given as recommendations to the developers using

traditional models. This would in turn reduce the pd rates but eliminates potential false

alarms significantly. On the other hand, a person who wants to explore all potential

issues may prefer to use PM with the cost of false alarms.

Please note that, we chose seven performance measures to report the prediction

performance of the three types of models in this study. We picked the most commonly

used ones, namely pd, pf, precision, F1 and AUC, to make a fair comparison of our

models’ performance with the related studies. We also report other two measures,

namely MCC and Brier Score, that are proposed to avoid biased assessment of

F1-measure [144]. Unfortunately, the statistical pairwise comparisons among the

models with respect to the measures, precision, AUC, MCC and Brier Score report

small to negligible effect sizes. Thus, the conclusions derived from those performance

measures in particular could be biased due to sample size or other data characteristics.

It is our future goal to investigate ways to increase the effect sizes of the significance

test outcomes for MCC and Brier Score.

3.5.3 Data sampling

During our empirical analysis, we applied random under-sampling on the training data

to balance the number of data instances that belong to different classes. We observe

83

that under-sampling significantly improves the prediction performance of PM, SM

and GM by 5% in terms of pd compared to a no-sampling strategy when models are

built with NB. In addition to under-sampling, we also applied another well-known

and successful data balancing technique from the literature, i.e., Synthetic Minority

Oversampling Technique (SMOTE) [145]. Both SMOTE and under-sampling produce

very similarly performing PMs, i.e., a median of 44% in terms of pd. Although SM

and GM using SMOTE achieves 13% higher pd values compared to the no-sampling

strategy, our test results on the superiority of PM over SM and GM do not change. In

our online appendix [142], we share the prediction performance obtained by applying

under-sampling, SMOTE, and no-sampling.

SMOTE does not lead to a better prediction performance for PM when compared

to the under-sampling technique. In fact, applying SMOTE takes longer time than

applying under-sampling, as the former technique creates synthetic data instances of

the minority class using the k-nearest neighbor technique on data instances [145].

Under-sampling, on the other hand, simply selects random data instances from the

majority class until the sample sizes of both classes are equal. Due to its simplicity

and performance, random under-sampling gives us more advantage over SMOTE. We

choose the under-sampling as our data sampling technique and report our performance

results obtained with under-sampling in the paper.

3.5.4 Model validation strategy

We conduct our empirical analysis on personalized SDP models using 10-fold

cross-validation strategy. We discuss our rationale behind this in Section 3.3.2.

Cross-validation technique has been widely used in SDP literature to evaluate the

performance of the change-level defect predictors [16,20,27,130]–[132], as well as

the personalized defect predictors [36,53]. A study by Falessi et al. [146] also

reports that the majority of the SDP studies (61%) uses k-fold-cross-validation,

while a very few of them (9%) are validated by considering release-based data

splitting. Recent studies argue that a time-sensitive approach that preserves the

temporal order of commit activities, i.e., learning from past commits to make defect

predictions on future commits, would resemble real-life scenarios. Thus, several

84

studies adopt the time-sensitive approach to their training and validation steps of

the SDP models [20,28,29,130]. Two studies compare change-level SDP models by

using both time-aware validation and cross-validation strategies [20,130]. Their results

demonstrate that both strategies yield similar performance, and their conclusions

are consistent among different settings. The ongoing discussion on the validation

methodologies of defect predictors remarks that the conclusions derived from the

experimentation should be limited within the experimentation context [133,146].

We believe both cross-validation and time-sensitive validation strategies are required to

draw more generalized conclusions on the personalized SDP. The former is important

to be consistent with the earlier studies in the field, whereas the latter is important

in order to understand the practical applicability of personalized defect predictors.

Due to the ongoing discussion on the validation strategy in the SDP field, we would

also like to investigate the performance of the personalized models against traditional

models (RQ1) in a time-sensitive validation strategy. In this subsection, we report the

experimental setup for this analysis and its results.

A typical time-sensitive model construction makes a prediction on a commit at time t,

by learning from the commits before time t. Considering that, new train-test data pairs

are generated with a sliding window technique. For each developer (d), we stratify

all his/her commits into time splits (d0,d1, ...dn). Instead of having a fixed length time

splits, i.e., six-month, we follow a strategy that produces consistent number of commits

in each time split. Stratifying the data with a fixed length time window produces data

subsets having no bug-inducing instances. Therefore, we ensure that our splits include

at least 10 bug-inducing commits and 10 clean commits. This way, we maximize

the number of selected developers and their commits. While one time split (dn) of a

developer becomes a test set, all the commits of that developer prior to that split (d0 to

dn−1) constitute the train set of PM. All commits of all developers between the splits

d0 and dn−1 constitute of the training set of GM, whereas all commits of the selected

developers between the splits d0 and dn−1 constitute of the training set of SM. Similar

to our setup in Figure 3.1, we keep the test set the same among three SDP models

(PM, SM, and GM). The developer selection criteria and under-sampling on training

are also applied similarly. However, due to the time-sensitive stratification strategy, we

85

can build PMs for 179 out of 222 developers. We report the performance of PM, SM,

and GM trained with NB using a time-sensitive validation strategy in Figure 3.9.

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pd

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pf

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

precision

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC

PM SM GM

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

MCC

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BScore

Figure 3.9 : Performance of PM, SM and GM using a time-sensitive validation
strategy.

Findings on the personalized SDP approach are similar among both model validation

approaches. We observe that median performance values of models are consistent with

those models trained with NB in Figure 3.2. The superiority of PM over traditional

models is also observed when predictors are evaluated in a time-sensitive validation

setup. According to pd and F1, PM significantly outperforms the traditional models,

but PM also produces higher false alarm rates, and hence both traditional models

significantly outperform PM in terms of pf and precision. The statistical comparisons

between PM and traditional models has large effect sizes in terms of pd (1.2), pf (0.8)

and F1 (0.9), and small effect sizes for precision (0.2).

It might be possible to reach different conclusions on PM by changing the

time-sensitive model validation strategy, i.e., stratifying data with fixed length time

intervals and/or changing the training set size. Therefore, our results are open to

discussion. Besides the model validation strategy, development characteristics of

projects would also affect the conclusions on PM. For instance, in our experimentation,

the contributors of a project and their contribution amount to the project changes over

time. Fluctuation of the developers involved in the training of general models slightly

reduces the prediction performance of general models. Although our results support

the applicability of personalized defect prediction over the traditional approach in

real life, further analysis and discussion are necessary. We consider applying other

time-sensitive data stratification strategies as future research directions for assessing

the success of PM in real-life settings.

86

3.5.5 Further insights on PM combined with the prior studies

As we report in Section 3.2.2 there are two studies on personalized SDP models

[36,53]. Xia et al. [53] complements the work by Jiang et al. [36] by following the

same methodology except the algorithm. The improved PM model in [53] achieves an

average of 64% recall and 63% F1-measure over 60 developers. The prior studies

and ours follow a completely different experimental design: We utilize different

open-source projects except PostgreSQL, different machine learning techniques and

process metrics to build personalized our PM and traditional models. Therefore, we

cannot report here a one-to-one comparison between the earlier PM models and our

proposed PM models. Even though both studies and ours share one open-source

project, namely PostgreSQL, the time period of the collected data, the selected

developers as well as the sampled data to train the PM models might not be the same.

We are, in fact, covering a larger period of commit activity in our work. Our PM

models report a median of 40% recall and 40% F1-measure, when NB is utilized,

and 50% F1-measure, when RF is utilized, over 222 developers. We have lower PM

performance in our context, and we think this might be due to incorporating more

commits and developers into our PMs. However, our conclusions have a large effect

size (RQ.1), and they support the success of PMs for defect prediction over traditional

models. Furthermore, we did not restrict the commit size during training set of PM

models, which, we have seen, has a major effect on the performance of PM against the

traditional models (RQ2). We further provide insights on development characteristics,

and discuss under which circumstances PM could reach a better prediction than a

traditional model.

Furthermore, prior studies propose collective personalized models to improve the

prediction performance of PM and state the superiority the collective models over

PM. There are multiple collective models used by the prior studies. One of the

methods is leveraging a collective training set in which half of the commits belongs

to an individual, while the other half of the commits are taken from other developers’

[36]. Another method is making an ensemble of the predictions of personalized and

traditional models [36]. Xia et al. [53] also use genetic algorithms to create training

sets by collecting various amount of commits from various developers.

87

Although our focus in this study is to assess PM against traditional models (SM and

GM), we also set up collective models to validate their success in our context. Similar

to Jiang et al. [36], we built a weighted personalized model (WPM) that utilizes a

collective training set that 50% of the training commits belong to a developer, whereas

the other 50% belong to other developers. We also built an ensemble model called

PM+ that combines predictions of PM, SM, GM and WPM using the majority voting

technique. WPM and PM produce very similar performance values and their statistical

difference has small or negligible effect sizes. Depending on the algorithm, the

superiority of PM+ or PM changes. When models are built with NB, PM outperforms

the PM+ in terms of pd, whereas PM+ outperforms PM in terms of pf and Brier Score.

On the contrary, when models are built with RF, we observe that PM+ outperform

PM in terms of pd and F1 with the cost of higher pf values. These conclusions have

medium to large effect sizes only. We conclude that an ensemble of PM, SM, GM and

WPM models may perform better than PM when they are built with NB, and better

than all when they are built with RF. Although the prior studies also support the usage

of collective models (especially the ensemble approaches) over the personalized or

traditional models, our empirical analysis highlights the importance of the selected

performance measures on the final conclusion. The collective models’ performance

plots are available in our online appendix [142].

3.5.6 Effort-aware performance assessment:

Both prior personalized defect prediction studies [36,53] and the state-of-the-art

change-level defect prediction studies [16,130,132] utilize an effort-aware perfor-

mance assessment for their prediction models. Therefore, we also assess our prediction

models’ performances using an effort-aware measurement.

Effort-aware performance criterion basically assesses how much bug-inducing changes

could be detected by inspecting only 20% of the total lines of code (LOC) during the

review of changes predicted as bug-inducing. We calculated a benefit-cost ratio for

each commit in the test set using the formula P(c)/E f f ort(c) [16]. P(c) is a binary

value that represents the prediction made for commit c by a defect predictor (i.e., PM):

1 means (c) is bug-inducing, 0 means c is clean. E f f ort(c) is the total number of

88

changed lines (added and deleted) in the commit c. Then, we rank the commits in

the test set based on their benefit-cost ratio in descending order. Later, we count the

number of bug-inducing commits that could be detected when only 20% of the total

effort is spent on code inspection (when the commits are inspected in descending order

of their benefit-cost ratio).

Our effort-aware performance assessment shows that PM catches more bug-inducing

commits than SM and GM when only 20% of the total code inspection effort is

spent. While 30% of the total bug-inducing commits could be detected with PM, SM

detects and GM detects 16% of the total bug-inducing commits over six projects. Our

effort-aware performance results also support the prior studies’ findings on PM against

the traditional approaches. While prior studies report that the bug-inducing commit

detection rates are increased by 12% ([36]) and by 21% ([53]) when PM is chosen

over the traditional models, we observe an increase by 14%.

3.5.7 Applicability to industrial settings

Building SDP models for the industry has several challenges, some of which are data

availability for training, imbalanced bug-inducing versus not buggy commits, and input

features [77,147]. Deploying these models to industrial settings, on the other hand, has

other challenges, such as training data size, training/update period, and changes in the

development team. Personalized SDP models would be affected more than traditional

models from the data availability during training and changes in the development

team. For example, lack of commit history for a developer or lack of bug-inducing

commits in a developer’s commit history would prevent the developer from utilizing a

personalized approach which was trained and customized for her. In such a scenario,

only traditional models can provide recommendations to the developer until a sufficient

amount of training data with two classes is collected. Another challenge of deploying

personalized SDP models is related to the changes in the development team. During

offline studies on historical data, we do not encounter cases when a new developer

starts making commits, or when a senior developer stops contributing to the project.

We aggregate all the commits, group those according to the developer who made these

commits, and train personalized models for each developer. On the other hand, in a

89

real-life scenario, some developers leave the project, whereas some join the project

in the middle of the development process. Therefore, there is a high possibility

that some of the developers in the selected project would not have commit history

for building a personalized model, while there would be former developers whose

previous commit data would no longer be useful to anybody. Hence, a mechanism

that utilizes the other developer’s data to build a mixed model, or an alternative

mechanism that switches between the general model and the personalized model for a

specific developer depending on the data availability could be useful. Also, grouping

developers based on their development similarities and building group-customized

models would be another solution to a cold-start problem. In this study, we report our

findings on open source projects by collecting their historical commit data. We are also

working with our industrial partner, for which we had already built SDP models [148],

to design personalized SDP models. We are currently working with them to address

some of the issues mentioned above as well as time-sensitive model validation strategy

mentioned in Section 3.5.4 in order to deploy such models into real-life industrial

settings.

3.6 Threats to Validity

Construct validity: The descriptive characteristics of the commits should be

quantified through a metric set to measure the defect proneness of the commits. The

metric set utilized in this study is widely used in change-level SDP studies in the

literature (e.g., [16,27,30,109]–[113,115]). The metrics quantify four different aspects

of the changes, namely size, history and diffusion of the commits, and experience of

the developers who made the commit. These aspects of the commits are measured

by multiple metrics to avoid mono-metric bias in modelling, e.g., history dimension

is measured in terms of three metrics, as it can be seen in Table 3.1: The number of

developers who changed the modified files, the number of prior changes to modified

files, and the average time interval between the last and the current change. We did

not use complexity metrics or other object-oriented metrics used in the SDP literature

because recent benchmarking studies [108,143] show that process metrics extracted

from the code changes perform better than the other metrics on multiple projects.

90

Bug-fixing and bug-inducing commits were previously identified in [27] by using SZZ,

and hence, we also used that dataset. The SZZ algorithm was used in the selected

six open-source projects to define which parts of the code introduced the defects.

The SZZ algorithm is frequently used in the literature to identify the bug-inducing

commits by linking those with bug-fixing commits [116]. Bug-fixing commits are

the locations where a bug is fixed, and fix locations are determined using the issue

tracking system used by the development team. Later, the SZZ algorithm uses

bug-fix-locations and traces back from bug-fix-locations to the previous commits to

identify the commit where the bug was first injected into the software product. We are

aware that there are still limitations of the SZZ algorithm, such as high false alarms,

lack of identifying causes of new code additions, and variations in implementations

by different researchers [149]. As prior research on SZZ [150,151] indicated that SZZ

implementations still need improvement to reduce the noise that causes mislabelled

changes. Fan et al. [151] empirically assessed the various SZZ implementations,

and they reported that the original SZZ approach [116] does not yield a significant

performance reduction in just-in-time defect prediction models due to the noise in the

change labels (bug-inducing or not). Therefore, we rely on the results of the SZZ

algorithm used to collect the projects’ data.

We try to cover as many developers as possible in our empirical analysis. Accordingly,

PMs built in this study are trained with various numbers of commits, i.e., between

45 and 12.755. Due to the under-sampling, training set sizes also vary from 18 to

8.000. Some PMs have very few data instances in their training sets, and it might

be possible to observe poorly performing PMs for those developers. We checked the

performance of those PMs built with very few data instances, i.e., between 18 and 100

commits, against the other PMs, which are trained with more than 100 commits. We

obtained a median of 0.5 pd rate for PMs in the first group (trained with less than 100

commits), whereas PMs in the second group (trained with more than 100 commits)

produce a median of 0.35 pd rate when NB is used. Moreover, 89% of PMs in the

first group statistically outperform SM and GM, while 75% of the PMs in the second

group outperform SM and GM. These findings also support our answer for RQ2 on the

commit counts of developers (Figure 3.4): PM underperforms compared to SM and/or

91

GM for those developers who contributed to a project with higher number of commits.

A more strict developer selection procedure might be a primary choice considering that

a good amount of data is needed to build a successful predictor [128]. However, our

empirical analysis shows that we can build successful PMs with less than 100 commits.

Internal validity: In this study, we assume that each developer who contributed to

each project made his/her commits according to some development principles. One

of these assumptions is that developers linked their commits with the right issues in

the issue repository. Another assumption is that each developer only commits his/her

development codes. In some cases, the development of different developers may be

committed by the authorized personnel only. We did not collect the data set, however,

we double-checked the mentioned issues and ensured all were correctly addressed in

the prior studies using the same dataset.

We build a PM based on a developer’s commits including bug-inducing ones and

others, such as bug-fixing commits and other code changes. The author of a bug-fixing

commit may not be the developer who has introduced the bug into the software system.

Thus, a PM built for that developer does not include bug-fixing commit of another

developer. Further, a bug-fixing commit may contain changes related to legacy code,

i.e., the code is fixed due to a list of changes over the years, and the developer who fixed

is not responsible in this case. SZZ is used to trace back to all prior commits which are

made by the selected developers, and the data is added to their PMs respectively. Those

situations may affect the performance of the personalized SDP models. However, there

is not an accurate approach that can detect the exact reason and/or the source of the

bugs in the software system. We believe that utilizing information from the historical

aspect of the commits (i.e., number of prior changes to the modified files, number of

developers had changed the modified files) helps to partially capture the indicators of

above-mentioned situations [152].

Assessment of PM against traditional models is conducted on the commits of the

selected developers as we described in Figure 3.1. To assess personalized models,

we have to focus on a set of developers whose available commits are enough to build

PMs for them. Therefore, those developers’ commits with limited contributions are

92

not included into the analysis we conducted to answer our RQs. However, we also

checked the prediction performance of both traditional models (SM and GM) on those

developers’ commits with the limited contribution, and obtained an average of 20% pd

with NB. This ratio is very close to the value reported for traditional models in Figure

3.2, and confirms that the even a state-of-the-art general model with all commits would

reach a similar performance for the selected open source projects.

External validity: We performed our analyses on a set of open-source projects.

Applying the proposed approach to different projects in industrial settings may not

yield the same results obtained in this study. We think the project characteristics is

an important factor that could affect the applicability and accuracy of the personalized

SDP approaches. For instance, when the contributions in a project are too scattered

among too many developers, PMs would perform better than traditional models. This

is because, developers having bulk commits do not dominate the project (e.g., Rails),

and each developer’s commits contain sufficient amount of data indicating defect

proneness. On the other hand, when the project has few developers responsible for

majority of the all commits (e.g., PostgreSQL), traditional models perform better.

Furthermore, the time period selected to collect the commits, the distribution of

commits over this time period and the number of active developers should be

considered during project selection. A similar conclusion is also reported in the latest

benchmark [143]. To further understand the personalization in the SDP field, we plan

to assess the performance of the proposed personalized SDP approach on a commercial

project in the future.

Conclusion validity: During our experimentation, we use well-known open-source

projects, model building and assessment techniques, and statistical tests (Section

3.3). The findings of our work are valid under the projects selected for this study,

the metrics used, the algorithms used, and the strategies followed during model

construction. To increase the conclusion validity of our research, we applied statistical

tests on the differences between models’ performance, and only base our conclusions

on the differences with medium to large effect sizes. This way, we believe that

we avoid potential bias related to sample size. The selected validation strategy,

10-fold cross-validation, might have influenced the results as it does not consider

93

the temporality between changes. In Section 3.5, we elaborate on the validation

strategy in detail, discuss prior works that compare different strategies, and we

perform all empirical analyses regarding RQ1 with a time-sensitive data split strategy.

Time-sensitive results also confirm that PM models are significantly better than

traditional models for defect prediction, but we need more sample for large effect

sizes. As the dataset is already publicly available, our results can also be reproduced

and refuted in future studies.

3.7 Conclusion and Future Work

In this paper, we investigate the performance of personalized change-level software

defect predictors by defining three research questions (RQs). Our personalized

models (PM) achieve 24% higher probability of detection and 14% higher F1-measure

rates than the two traditional models used in our study (SM and GM) (RQ1).

Furthermore, we provide valuable insights for both researchers and practitioners

regarding the set of development characteristics which highlight the superiority of

PM over traditional models (RQ2). Furthermore, we investigate the common and the

best indicators of bugs across different PMs (RQ3). We derive our conclusions based

on a cross-validation setup built with NB algorithm, seven performance assessment

metrics and statistically significant differences with medium/high effect sizes, but we

also consider the experimental setup details that may affect our conclusions in our

discussions. Over 222 developers from six open-source projects, we summarize our

key take-away messages below:

- Even though the overall comparison between the performance of PM and traditional

models leads us to prefer PMs over SMs or GMs, PM may not be suitable for every

developer in a team. We observe that PMs built for most of the developers using

NB algorithm detect more bugs, but general approaches may still be more suitable

for the other developers.

- According to our empirical analysis, both traditional models (SM and GM) are more

successful than PM for those developers who dominate the project’s development

activity with many commits. Those developers whose PM is similar to or more

94

successful than at least one traditional model have less experience than others in

software projects.

- PMs would give better predictions than traditional models for the developers who

work on the software modules priorly modified by many developers. The group of

developers whose PM is significantly better than SM/GM has higher NDEV (the

number of developers had changed the modified files) metric values than the group

of developers whose PM is equal to or significantly worse than SM/GM.

- Building a PM for a developer would need careful consideration on the process

metrics since our analysis shows that the best indicators of bug-inducing changes

differ among 222 PMs. Nevertheless, the number of added lines of code seems to

be the most successful indicators of bugs. The developer experience metrics and

the purpose metric are also the next successful indicators of bug-prone changes for

the majority PMs after the number of added lines of code.

- The selection of PM over other models is also dependent on which performance

measure is selected/prioritized: a personalized model could be better in detecting

defects (pd) whereas it is worse in terms of false alarms (pf). Hence, the model

assessment should be made according to the selected/prioritized performance

measures.

- PM looks promising on its adoption to real-life since PM also outperforms the

traditional models in a time-sensitive model validation setting, which resembles

the real-life by preserving the temporal order of data during training and prediction.

As we discussed in Section 3.5.4, further model validation scenarios are needed on

the time-sensitive evaluation of PM to make a generalized conclusion for real-life

applicability of PMs.

In this research, we provide more insights than prior studies on the performance of

personalized models. Still, we need to continue investigating the factors affecting

the performance of PM as future work. Although we did not cover the project

characteristics on the performance of PM, we think they are also important. For

example, the time period of collected commits and the distribution of the commits

95

of developers through the project time period may be some of the factors affecting the

performance of personalized models. We have recently observed that a combination of

statistical and machine learning techniques to extract multi-dimensional information

from commit history would perform better than extracting a single aspect (processing

through code changes) [148]. We plan to understand the effect of such a combined

technique on the performance of personalized models. Plus, industrial case studies will

provide more insight on the applicability of personalized SDP models and the usability

of the personalized recommendations. Therefore, in the next chapter, we investigate

the personalized SDP approach in an industrial software project.

96

4. INVESTIGATING THE PERFORMANCE OF PERSONALIZED MODELS
FOR AN INDUSTRIAL SETTING

4.1 Introduction

Personalized SDP models have been proposed and comprehensively investigated in

open-source domain by prior studies (see Chapter 3). Our prior research reported in

Chapter 3 show that personalized SDP approach improve prediction performance up to

24% in terms of recall in open-source projects. However, performances of personalized

models have never been analyzed in an industrial context. Conducting research in

industrial domains is very valuable since it provides assessing the generalizability of

research findings and practical applicability of the prototype models into the cases that

involves real customers [2,48]. Therefore, industrial software projects are significant

data resources for SDP researchers to understand the real-world environment.

However, research in industrial cases have its own challenges as well as those

encountered in empirical software engineering studies regardless of the context. On

the one hand, accessing an industrial project repository to collect data requires more

effort compared to accessing a publicly available repositories due to the confidentiality

policies of companies [3]. Even if a collaboration has been established between the

academic team and the company, the agreement is often limited to a single or a few

projects. On the other hand, empirical research on software engineering data could

be quite challenging due to noise [3]. Therefore, the scarce and noisy structure of the

data force researchers to extract as much information as possible from available data

sources through statistical and AI/ML techniques [148].

During this thesis, we had an industry and academia collaboration project with

Ericsson, Turkey. One of the objectives of this research project is investigating

personalized and general change-level defect prediction models for a chosen pilot

project of Ericsson, Turkey. We collected data from the chosen project, train SDP

prototypes for the company, and deploy a chosen prototype into the real development

97

environment of the project. Even though we share the deployment experience in the

next chapter (Chapter 5), in this chapter, we focus on personalized model prototyping

phase.

We collect 1773 commits of 36 developers of the pilot project. Personalized defect

prediction models are built for six developers and their performances are assessed

against general models. During model training, we utilize multiple data sources, such

as semantic of commit messages, the state-of-the-art process metrics and the latent

features of them.

We ask three research questions in this chapter as follows:

RQ1: How does a personalized SDP approach perform compared to traditional

SDP approaches? (PM vs. SM and PM vs. GM)

RQ2: How can we improve the performance of defect predictors by utilizing the

available commit data through a combination of statistical approaches?

RQ3: How does the importance of metrics used for defect prediction differ among

PM, SM, and GM?

We borrow RQ1 from the research reported in Chapter 3. The aim in RQ1 is to

investigate the performance of PM against traditional models in the chosen industrial

project’s context. We borrow RQ2 from our prior research [148]. In RQ2, we aim

to assess the performance of PM, SM, and GM when they trained by utilizing a

combination of statistical approaches, i.e., topic modeling and matrix factorization.

RQ3 aims to observe how much the important metrics differ among different SDP

models.

Our empirical analysis show that traditional approaches are superior to the

personalized approach in a setting that utilizes only the state-of-the-art process metrics.

However, combining latent features of the process metrics and semantic features

extracted from commit messages, and applying log filtering leads PMs that achieves

similar performance with GM. Further, we observe that the most important metric

group for all SDP models is the process metrics, followed by latent features and

semantic features, respectively. Even though PMs’ performance could be improved

98

with extra data sources and statistical approaches, its applicability into practice

depends on team related factors. In our case, for instance, cold start problem occurs

since the current contributors of the project have not had rich development history yet

and majority of data belongs to developers that left the organization.

4.2 Related Work

Some recent research use topic modeling technique to extract semantic information

from software repositories, and use the extracted semantic features to train SDP

models. For example, Nguyen et al. [153] and Chen et al. [154] analyze the correlation

between the hidden topic models of source codes and the defect proneness of the source

code. Nguyen et al.’s prediction model’s predictive power improved by 12% when

topic models of code are used instead of churn of code metrics. Barnett et al. [155]

extract topic models from description of software changes, and utilizing them to train

SDP models improve the explanatory power of the model up to 72%.

On the other hand, matrix factorization techniques also used to capture the underlying

hidden information from data. Utilizing matrix factorization in ML/AI tasks such as

pattern recognition [156], and recommendation systems [157] is more common than

SDP field. Studies use matrix factorization is relatively less, specifically, it used to

impute missing data [158] and to predict defect prone modules [159].

4.3 Collection of Dataset

We collect the historical development activity of a chosen pilot project of Ericsson,

Turkey. The historical development activity includes commits from various developers

belong to a five year time period. Our prior work reported in Chapter 3 guide us during

metric collection and data labeling. We extract state-of-the process metrics (see Table

3.1) of the collected commits, and label commits as bug-inducing or clean using the

SZZ algorithm [116].

The collected dataset has gone through some cleaning and manual matching before

taking its final shape with the help of the industrial team. First, the commits that

belong to test modules of the project are filtered. Also, a set of commits that does

not involve real development are determined with the manual inspection of industrial

99

team and those are eliminated from the dataset. Second, we realize that there are

some developers that has been contributed to the project with different usernames.

This causes the contribution of the same person in the software repository to appear

as if they belong to different people. Therefore, with the help of industrial team, we

identified the usernames that belongs to the same person and match them under a single

username. This step is crucial since we aim to build personalized models. Third,

industrial team manually identified some bug-fixing commits that are not obvious to

our eye. Correctly determining the bug-fixing commits is very crucial, since the SZZ

algorithm requires the bug-fixing commits as input to detect the bug-inducing commits.

Although the bug reporting and fixing activities often reported properly by the team,

exceptions can occur. Bugs may not be reported in the issue tracking system or bug id

may not be specified in the commit that fixes that bug.

The final dataset have a total number of 1773 commits, a total number of 392

bug-inducing commits, and a total number of 36 developers contributed to the project

between the years of 2013 and 2018. The details of the dataset are reported in Table

4.1. The table also contains information on developer selection, which is one of the

steps of the model building phase that is reported in detail in Section 4.4.4.

Table 4.1 : Details of the dataset.

Information Value

Time period of commits in years 2013 - 2018
Total number of commits 1.773
Total number of bug-inducing commits 392
Total number of developers 36
Number of selected developers 6
Total number of commits of
all selected developers 1.028
Total number of bug-inducing commits of
all selected developers 335
Range of commits of selected developers’ 68 - 343
Range of bug-inducing commit ratio
of selected developers’ (between 0 and 1) 0.28 - 0.4

The other details regarding data collection and project context, such as how SZZ

is executed over software repositories, development practices of the team, and the

100

distribution of development activity over time, are reported in the next chapter that

reports our industrial deployment experience (Chapter 5).

4.4 Methodology

Our objective in this study is to analyze personalized models against traditional in an

industrial setting. Since our collected data is scarce, we utilized various approaches

to extract more information from the available data. We assess whether including

more information, i.e., latent and semantic features, into the model building process

improves the prediction performance of predictors. Further, we aim to understand

the importance of all feature groups used in the experiment to the prediction of

bug-inducing changes.

This section first reports our metric collection approaches in Sections 4.4.1, 4.4.2,

and 4.4.3, second depicts the model building process in Section 4.4.4, and third the

performance assessment of the built models in Section 4.4.5.

4.4.1 Base metric collection

The process metrics used in Chapter 3 and this chapter are the state-of-the-art metrics

that also used in other change-level SDP studies in the field [16,27]. In this chapter,

we call them as our “base metrics’ and take the models built using the base metrics s

our baseline models. Then, we add the other metrics, i.e., latent and semantic features,

to the base metrics to assess the contribution of new metrics to the baseline models.

Base metrics measures the development activity from size, history, diffusion, and

experience aspects. The full list of metrics is given in Table 3.1 in Chapter 3. The size

and diffusion aspects of a commit is directly calculated from the logged information

of commit by the software repository. Whereas, the history and experience metrics

for a commit are calculated tracing back through the all prior commits’ logs in the

repository.

101

4.4.2 Latent feature extraction through matrix factorization

Non-negative matrix factorization (NNMF) [160] is a popular technique used

to capture hidden information of data and to represent information with fewer

dimensions, i.e., low rank representations [161].

In this study, we use NNMF to extract latent information of development activity that

may not be captured by the base process metric sets listed in Table 3.1. First, we define

a matrix V εRcx13 which includes the extracted base metric set of each commits in our

training set. While c is the number of commits in the training set, 13 is the number of

base metrics used in the experiment. Second, we aim to get a 5-rank approximation of

the V by factorizing it into two matrices WεRcx5 and HεR5x13. W matrix is used as

latent features to train models. Third, we obtain a 5-rank approximation of the test set

in the form of the training set to use it in model validation phase. We multiply the test

set T εRnx13 (n is the number of commits in the test set) with the transpose of H to get

the latent features of the test set T εRnx5.

4.4.3 Semantic feature collection through topic modeling

Topic modeling aim to capturing underlying concepts in data. Latent Dirichlet

Allocation (LDA) is a commonly used technique in topic modeling [162].

In our experiment, we use LDA to reveal the hidden concepts of software changes, i.e.,

we extract topic models of commit descriptions written by the developer of the commit.

First, we apply standard natural language pre-processing steps to use topic modeling

in a more effective way. Stop words (e.g., the, a, on) in commit messages are cleaned,

and all letters in messages converted to lowercase. Second, LDA is used to capture

topic models. LDA takes commit messages as inputs and creates a vocabulary from

all unique words used in the all commit messages. LDA assumes that each commit

message includes a mixture of hidden topics, while each topic includes a mixture of

the words in the vocabulary. Then, LDA generates a probability distribution for each

commit over a set of topics, and also a probability distribution for each topic over a

set of words. We extract 10 topic models, i.e., 10 dimensional probability distribution

102

vectors, from each commit messages. Third, we use these 10 dimensional vectors

during the training of SDP models as the semantic features.

4.4.4 Model building

In the industrial setting, we use the same model building methodology as we used in

the open-source setting, which is reported in Chapter 3.

We start with picking developers that have sufficient number of commits to build a

personalized model for them. The developers in the team have few commits, i.e., the

half of the developers contributed to the project have a number of commits between

one and 23. Therefore, we cannot build a PM for all developers in the team, wince

we need good amount of data to train a prediction model [128]. In addition to have

sufficient number of commits, we need to have sufficient bug-inducing commits to

train a two-class SDP model. While some developers in the team contributed with

large amounts of commits, i.e., around 80, their commits induced a few bugs into

the software, i.e., one or two. For such developers, we cannot build a personalized

model. Considering all these, we pick developers that have at least 45 commits and 10

bug-inducing commits for the experiment. At the end of developer selection process,

we have pick a total number of six developers to build personalized models for them.

The total number of commits of these six selected developers is 1028 while the total

number of bug-inducing commits of the selected developers is 335. Moreover, the

number of individual commits of these six developers range from 68 to 343, while

their ratio of bug-inducing commits to their total individual commits range from 0.28

to 0.4. All these details regarding the selected developers are reported in Table 4.1.

After identifying a set of selected developers, we build three SDP models by applying

10-fold cross-validation: 1) personalized model (PM), 2) general model for the

selected set of developers (SM), and 3) general model (GM). As specified in Figure

3.1, we split each selected developer’s commits into 10 folds. We keep one fold of a

developer as the test set, and use the other nine folds as the training set when building

PM. We keep test folds the same when building PM, SM, and GM, to make a fair

performance assessment across the three SDP models. To construct SM, we combine

all selected developers’ commits as the training set and exclude the test fold of the

103

developer to assess the performance of SM for that developer in particular. To construct

GM, we apply a similar methodology. We combine all developers’ commits, regardless

of whether they selected to build PM or not, into the training set of GM. We exclude the

developer’s test fold from the training set of GM to use it to as the test set to assess the

performance of GM for the developer. We repeat these process 10 times by shuffling

the data to avoid learning bias caused by data ordering [19].

Unlike the experiment conducted with open-source projects in Chapter 3, we do not

utilize the under-sampling technique in the industrial setting. The reason for that is

the size of industrial dataset, i.e., the selected developers has 19 to 96 bug-inducing

commits. Nevertheless, we try other data sampling techniques to balance the ratio

of bug-inducing and clean (non bug-inducing) commits. We apply over-sampling

and Synthetic Minority Oversampling Technique (SMOTE) [145] on the training sets

before building SDP models. Our analysis show that applying over-sampling and

SMOTE does not significantly improve the models’ performance in the Ericsson’s pilot

project’s context. Therefore, we build the models without applying data sampling.

One of our research objectives in this chapter is to analyze the effect of combining

different statistical approaches on the prediction performance of PM, SM, and GM.

Hence, we use three AI/ML and statistical approaches with different combinations

during model training to observe the effect of each on the models’ performance. 1)

We utilize latent features of development activity measured over base metrics using

NNMF, 2) we utilize semantic features measured over commits’ messages using topic

modeling technique, and 3) we apply log-filtering onto all features. Log-filtering

basically takes the logarithm of numeric feature values to make them evenly spread

across the distributions [163]. Log-filtering helps the prediction models to distinguish

differences among features during training.

We construct eight different models for each SDP model (PM, SM, and GM)

that utilize the statistical approaches with various combinations. Combinations of

approaches are listed in Table 4.2. The rows represent eight models, while columns

represent the approaches. If a model utilizes an approach, the corresponding cell

includes the “+” symbol. Abbreviations used in the model names represent the

104

statistical approaches, i.e., “B” is used for base metrics, “LAT” is used for latent

features, “SMN” is used for semantic features, and “LogF” is used for log-filtering.

Table 4.2 : SDP models built various metric and data processing combinations.

Base
metrics

Latent
features

Semantic
features

Log fil-
tering

B +
B+LogF + +
B+LAT + +
B+LAT+LogF + + +
B+SMN + +
B+SMN+LogF + +
B+LAT+SMN + + +
B+LAT+SMN+LogF + + + +

We build a baseline model “B” (see the first row in Table 4.2) that only utilizes

the base metric set during model training. Then, we combine each statistical

approach with the baseline model separately and together to observe the effect

of approaches on the prediction performance. For example, “B+LogF” applies

log-filtering on baseline model “B” (see the second row in Table 4.2). Another

example, ‘B+LAT+SMN+LogF” utilizes base metrics, latent features, and semantic

features with log-filtering (see the last row in Table 4.2).

Similarly to the experiment conducted on open-source projects (Chapter 3), we also

use Naive Bayes (NB) and Random Forest (RF) algorithms in this experiment.

4.4.5 Performance evaluation

Assessment of the models’ performance is done using the same metrics as used in our

prior research reported in Chapter 3: probability of detection (pd), the probability of

false alarm (pf), precision, F-measure, area under receiver operating characteristics

(ROC) curve (AUC), and Matthew Correlation Coefficient (MCC). Explanations and

calculations of these metrics are reported in Table 3.4.

4.4.6 Methods to answer research questions

The experiment conducted to answer RQ1 follows the same structure we use in Section

3.3.2.4 of Chapter 3. In summary, we compare the PM against SM and GM and assess

105

the comparison results using Nemenyi significance test [135] and Cohen’s d using

corrected Hedges’ g [136].

To answer RQ2, we build all eight models listed in Table 4.2 for PM, SM, and GM.

Then, for each SDP model (PM, SM, and GM), we compare eight models’ performance

values with each other. We use Scott-Knott ESD test [82] to assess the statistical

differences between the models.

To answer RQ3, we apply Information Gain (InfoGain) feature selection on the

“B+LAT+SMN” model. InfoGain ranks the features in the given model according

to their contributions to the prediction [141]. Based on InfoGain results, we rank the

three feature groups (base, latent, and semantic) the highest to lowest according to the

information gained by each feature group. We use the ranking results to analyze the

importance of feature groups for PM, SM, and GM.

4.5 Results

4.5.1 RQ1: How does a personalized SDP approach perform compared to

traditional SDP approaches? (PM vs. SM and PM vs. GM)

In this section, we report the comparison of PM with the two traditional models, SM

and GM. The performance values of three SDP models are aggregated over six selected

developers and reported as boxplots in Figure 4.1, while the statistical comparison of

PM with the traditional models is reported in Table 4.3.

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 p
d

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 p
f

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 p
re

ci
si

on

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 F
1

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 A
U

C

PM SM GM

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

N
B

 M
C

C

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
B

 B
S

co
re

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 p
d

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 p
f

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 p
re

ci
si

on

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 F
1

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 A
U

C

PM SM GM

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

R
F

 M
C

C

PM SM GM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
F

 B
S

co
re

Figure 4.1 : Performance of PM, SM and GM.

106

Each box in Figure 4.1 includes three boxplots that show the performance values of

PM, SM, and GM, respectively. The plots on the upper row show the performance

values when models are built with NB, while the plots at the bottom row show the

performance values when RF is used to train models. From left to right, plots report

performance values in terms of pd, pf, precision, F1-measure, AUC, MCC and Brier

Score.

Table 4.3 : Win/Loss results of the comparisons between PM and SM, and PM and
GM. Bold cells indicate medium to large effect sizes.

NB RF
PM vs. SM PM vs. GM PM vs. SM PM vs. GM

Pd SM GM SM GM
Pf PM PM PM PM
Prec. PM PM SM GM
F1 SM - SM GM
AUC - - SM GM
MCC PM PM SM GM
Brier SM GM SM GM

Table 4.3 reports two comparison namely PM vs. SM and PM vs. GM. These two

comparisons are repeated for the two machine learning algorithms (NB and RF), and

for seven model evaluation metrics (pd, pf, precision, F1-measure, AUC, MCC and

Brier Score). While rows represent each evaluation metric, columns represent model

pair and used algorithms. The winner model is reported in the corresponding cell of

the table. If the statistical comparison has medium or large effect size (|d| > 0.5), it

is highlighted with bold. The "-" sign means that the two models perform statistically

the same.

Figure 4.1 and Table 4.3 show that PM is not superior to SM and GM in the majority

of cases. Particularly, when predictors are built with NB, SM and GM outperform PM

in terms of pd, F1, and Brier Score. For example, PM produces 0.54 pd rate (median)

while GM produces 0.84. However, traditional models also produce much higher false

alarms (pf) than PM, i.e., PM’s pf rate is 0.3 median while SM’s and GM’s is around

0.77. The lower pf rate of PM makes it superior to the traditional models in terms of

pf, precision, and MCC.

107

On the other hand, when RF algorithm is used, SM and GM outperform the PM in

terms of all seven model evaluation metrics. For example, PM produces 0.15 pd

(median) while GM produces 0.3 pd (median). Please note that, pd rates of all three

models are much lower, and practically not useful, when RF is used instead of NB

during model training.

We do not report an analysis regarding individual developer results as we do in

Chapter 3 to answer RQ1. There are very few selected developers in our industrial

setting compared to those during the experiments performed on open-source projects.

Therefore, the boxplots in Figure 4.1 already reflect the developers’ individual

performance.

Considering the best performing algorithm (NB), general models, SM and GM,
could detect more defects than PM (∼0.83 versus 0.54 pd, respectively). On
the other hand, traditional models gives very high false alarms compared to
PM (∼0.77 versus 0.3 pf, respectively). The lower pf rate of PM leads to a
lower code inspection cost compared to high pf rates of SM and GM which alert
developers on their changes redundantly.

4.5.2 RQ2: How can we improve the performance of defect predictors by utilizing

the available commit data through a combination of statistical approaches?

This section reports the comparison of SDP models trained with various feature

combinations and log filtering technique. Figure 4.2 and 4.3 show pd and pf rates

of PM, SM, and GM, when the models are built with eight feature combinations. Each

boxplot represents an SDP model listed in Table 4.2. In this section, we report results

in terms of pd and pf only. In the appendix, you may find the results in terms of

precision, F1, AUC, MCC, and Brier Score.

Results in Figure 4.2 and 4.3 show that using various data sources and data

preprocessing techniques could improve the prediction performance. Particularly,

including new features and applying log filtering always improve the prediction

performance of PM in our experiment in terms of pd, while it also increases the

pf rates. For example, combination of latent features, semantic features, and log

filtering (B+LAT+SMN+LogF) improves the pd rate of baseline (B) from 0.53 to 0.78

108

0.0

0.2

0.4

0.6

0.8

1.0

P
M

pd

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure 4.2 : Performance (in terms of pd) of PM, SM and GM built with combination
of statistical approaches.

(median). However, there are still traditional models, i.e., GM with B+LAT+LogF,

that outperform the PM with B+LAT+SMN+LogF model in terms of pd. On the other

hand, PM with B+LAT+SMN+LogF produces higher pf rates (0.53) than the baseline

model (B) PM (0.3).

Using various combinations of features and applying log filtering often deteriorates

the traditional models’ performance in terms of pd (except a few cases for GM), but

also provides improvements on pf rates on the majority of models. For example, pd

109

0.0

0.2

0.4

0.6

0.8

1.0

P
M

pf

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure 4.3 : Performance (in terms of pf) of PM, SM and GM built with combination
of statistical approaches.

rate of SM with baseline (B) reduces from 0.85 to 0.63 when log filtering is applied

(B+LogF), but pf rate of SM with baseline (B) decreases from 0.77 to 0.45 when log

filtering is applied (B+LogF).

Considering the balance between the pd and pf rates, the best performing model among

traditional models is GM with the base and latent features as well as log filtering

(B+LAT+LogF). GM with B+LAT+LogF model produces one of the best pd values

among all models (0.81). It performs statistically the same as GM with the baseline

110

(B) in terms of pd. Also, GM with B+LAT+LogF model reduces the baseline (B) GM’s

pf rate by 0.1.

Considering the Scott Knott ESD test results on all performance assessment criteria

over the models, PM with B+LAT+SMN+LogF model and GM with B+LAT+LogF

model are chosen as the best performing models. Both models utilize combination

of different features and log filtering to train successful models. While PM with

B+LAT+SMN+LogF performs better in terms of pf, precision, GM with B+LAT+LogF

performs better in terms of pd and Brier Score. In terms of F1, AUC, and MCC, these

two models are statistically the same.

As a conclusion, we pick GM with B+LAT+LogF model as the prototype to be

deployed into the real development setting of the pilot project due to the applicability

limitation of PM due to the developer turnover (see Section 4.7. Our industry partner

also prioritizes having higher pd rates since both of the best performing models

produce similarly high false alarms that need to be further challenged.

Combining various features and statistical approaches lead us build more
successful SDP models. More specifically, including latent features and
applying log filtering improve the baseline GM’s in terms of pf. While including
latent features and topic models of commit messages, and applying log filtering
technique improves the baseline PM’s performance in terms of pd, it also
increases false alarms.

4.5.3 RQ3: How does the importance of metrics used for defect prediction differ

among PM, SM, and GM?

This section reports the InfoGain results for PM, SM, GM and assess the importance

of metric groups for three SDP models. Table 4.4 shows the percentage of how many

times each metric group (base, latent, and semantic) ranked in top 10 for each SDP

model. The base metric group abbreviated as B, latents as LAT, and semantic metrics

abbreviated as SMN. Each row indicates a rank, while columns represents the SDP

models and metric groups.

111

Ta
bl

e
4.

4
:I

nf
or

m
at

io
n

ga
in

ed
fr

om
di

ff
er

en
tm

et
ri

c
gr

ou
ps

in
th

e
fir

st
10

ra
nk

.

PM
SM

G
M

B
L

A
T

SM
N

B
L

A
T

SM
N

B
L

A
T

SM
N

1s
t

93
,3

6,
7

0,
0

24
,3

75
,7

0,
0

87
,0

13
,0

0,
0

2n
d

77
,3

22
,7

0,
0

62
,0

38
,0

0,
0

23
,3

69
,7

7,
0

3r
d

52
,7

46
,0

1,
0

48
,0

52
,0

0,
0

39
,0

50
,7

10
,3

4t
h

48
,0

51
,3

0,
7

66
,7

33
,3

0,
0

56
,3

38
,7

5,
0

5t
h

18
,3

54
,7

0,
0

65
,3

34
,7

0,
0

65
,3

24
,7

10
,0

6t
h

49
,0

49
,3

1,
3

61
,0

39
,0

0,
0

65
,0

26
,7

8,
3

7t
h

48
,0

41
,3

10
,7

70
,3

29
,7

0,
0

45
,3

29
,0

25
,7

8t
h

45
,3

20
,0

34
,7

72
,0

23
,3

0,
0

33
,0

44
,3

22
,7

9t
h

45
,3

13
,0

41
,0

65
,3

19
,0

1,
0

44
,0

49
,3

6,
7

10
th

38
,7

17
,3

42
,3

52
,3

10
,7

0,
0

45
,7

51
,7

2,
7

To
ta

l
0,

53
0,

33
0,

14
0,

62
0,

38
0,

00
0,

50
0,

40
0,

10

11
2

We apply the InfoGain on the model type that includes all metrics used in the

experiment, which is B+LAT+SMN. Output of InfoGain shows the contribution of

each metric on the prediction of bug-inducing software changes. We rank the output of

InfoGain for each SDP model, PM, SM, and GM. The most important metric for the

prediction is ranked first, and the second important metric ranked second and so on.

For each SDP model, and for each rank, we calculate what percentage of each group

of metrics appears in that rank. We conduct the analysis on the results for first 10 rank.

Results in Table 4.4 show that the base metrics’ contribution to PM performance

constitutes 53% of total contributions. The contribution of latent and semantic group

constitutes 33% and 14% of total contributions, respectively. The importance of base

metric set for PM especially stands out among the first ranked metrics: 93.3% of the

metrics that are ranked first are from the base metric group.

GM InfoGain results follow a similar pattern to those of PM. When the top 10 ranked

metrics are considered, 50% of total contributions come from base metrics, whereas

40% comes from latent, and 10% comes from semantic features. More specifically, the

importance of base metrics in the first rank is very high, i.e., 87% of the first ranked

metrics are base metrics.

SM results show that, when the top 10 ranked metrics are considered, the most

contributing metric group is the base metrics (62%) followed by latent (38%).

However, unlike the results of PM and GM, the latent group is the most important

group when the first rank is considered only, i.e., 75.7% of the first ranked metrics are

latent metrics. The semantic group does not appear in the top 10 list for SM.

The proportion of contribution of each metric group to the prediction of
bug-inducing changes slightly changes among PM, SM, and GM. The most
important metric group consist of base metrics for all three SDP models. The
latent group follows the base metrics and appears as the second important metric
group. Furthermore, the semantic group does not seem to contribute to the
prediction as much as the other metrics.

113

4.6 Threats to Validity

The data is collected utilizing the state-of-the-art techniques in the field. The base

metrics of collected commits are calculated following the descriptions given in a prior

study [27]. The SZZ algorithm is used to label bug-inducing changes [116].

Furthermore, a manual review is conducted to ensure the data quality. We were aware

that SZZ is the state-of-the-art bug-inducing change technique that may produce false

alarms [151]. Also, the bug reporting practices of development team may cause a

noise in the marking process fixing changes. For example, the bug reports may not be

properly reported by the development team or the bug report id may not be reported in

the commit description when fixing a bug. All these cause a noise in the data labeling

process. Therefore, manual reviews of the data regarding these issues with the help

of industrial team help to reduce the noise in data. Also, the commits that does not

include changes regarding software development (i.e., test commits) are identified and

eliminated from the dataset before model building process.

Moreover, the SDP models are trained with well-known machine learning algorithms,

Naive Bayes and Random Forest. Also, we apply 10x10-fold cross-validation. We

repeat the model learning step 10 times after shuffling the data order each time to

avoid learning bias [19] and utilize a state-of-the-art model validation technique used

popularly in the field [16].Also, we validate our results using a time-sensitive model

validation setup which is recently preferred by the researchers in the community [133].

The SDP models’ performance are assessed with seven different well-known criteria

(see Table 3.4), and statistical tests, i.e., Nemenyi test [135] and Cohen’s d with

corrected Hedges’ g [136].

Suitable data pre-processing and feature extraction techniques are chosen from the

literature to incorporate into our study to improve the performance of SDP models.

Further, the SDP models are iterated with different number of semantic features in

topic modeling and latent features in NNMF, but we report the best cases.

114

The findings in this study cannot be generalized to other projects, even though the

experiment covers the state-of-the-art process metrics and techniques. Nevertheless,

the results and challenges reported would guide other researchers in the community.

4.7 Concluding Remarks

In this chapter, 1) we investigate the performance of personalized model (PM)

against two traditional models (SM and GM) in an industrial setting, 2) we utilize

a combination of state-of-the-art process metrics, latent features of process metrics,

topic models of commit messages, and log-filtering to improve the prediction models’

performance, and 3) we analyze the importance of metric groups for PM, SM, and GM.

Our empirical analysis in the context of our industrial partner’s pilot project show that

SM and GM are able to detect more defects than PM, i.e., 0.83 vs. 0.54 probability of

detection (pd) rates. On the other hand, PM produces lower false alarms compared to

SM and GM, i.e., 0.3 vs. 0.77 pf rates.

Furthermore, applying log filtering, and utilizing extra information sources such as

latent features of development activity and topic models of commit messages could

improve the performance values of SDP models. Particularly, utilizing extra features

and techniques improves pd rates of PM by 0.23, while decreasing pf rates of

traditional models by 0.33. Considering the pd and pf rates and the balance between

them, PM utilizes all feature groups and log filtering (B+LAT+SMN+LogF), and GM

utilizes base metrics, semantic features and log filtering (B+LAT+LogF) models are

the best performing ones among all assessed models.

Moreover, we observe that the base metric set used in the experiment, i.e., the

state-of-the-art process metrics used in many change-level SDP studies [16,27], is the

most important metric group for prediction of bug-inducing changes regardless of the

model approach (i.e., personalized or traditional). The base metric set is followed

by the latent features of process metrics. Further, the using topic models of commit

messages does not contribute to the prediction performance as much as other metrics.

When considering the models’ performance and the extra calculation cost of topic

modeling, we focus on a model that utilizes the base and latent metrics for deployment.

115

Even though our experiment shows that PM is capable of producing quite well

prediction performance values in the research setting, a successful application of

PM into practice could not be possible in the pilot project’s setting mainly due to

the cold-start problem [39,40]. The collected dataset includes a total number of 36

developers but only six contributors have sufficient development history to build a PM

for each. The team turnover for the chosen pilot project is also high. The majority of

those developers included in the dataset are not currently in the team. Furthermore, our

collected dataset does not include the activity of developers who currently and actively

work in the project. Therefore, PM cannot be built for developers who currently

contribute to the pilot project.

We would like to note that, we also repeat our analysis using a time-sensitive

experimental design, since the software change (commit) data has temporal properties.

The main criterion in a typical time-sensitive approach is training a model with past

data (i.e., commits before time t) while testing the trained model using the future

commits (i.e., after time t). We use the same time-sensitive model validation approach

depicted in Section 3.5.4: sliding window technique with 6-month time windows is

used to build and test models. Our findings and answers to RQs have not changed when

the time-sensitive model validation is used instead of cross-validation. Traditional

models (SM and GM) better than PM in terms of pd, while PM is better than

traditionals in terms of pf. Also, using latent features in addition to the base metrics

and applying log filtering leads better performing prediction models, i.e., improves the

pd rates of PM by 0.3.

This study is the first one that investigates personalized defect prediction in an

industrial setting. Our findings show that the personalized approach is promising in

a research setting, but the applicability of personalized models is limited due to the

dynamically changing development team. We hope our research would be a guide to

the researchers and practitioners in the SDP field on the challenges of personalized

SDP models.

116

5. DEPLOYMENT OF A CHANGE-LEVEL SOFTWARE DEFECT
PREDICTION SOLUTION INTO AN INDUSTRIAL SETTING4

5.1 Introduction

Software defect prediction (SDP) models support quality assurance activities of

software teams to reduce the maintenance cost and effort by identifying the

defect-prone modules of the software systems [19]. Recent SDP studies focus on

predicting the bug-proneness of software systems at the change-level different than

the conventional SDP models that predict bugs at a software entity level (i.e., software

class, file, or method) [16]. Change-level defect predictors highlight defect-proneness

of a software change immediately when a code change is committed to the software

repository. Predicting defect-prone changes is a more useful strategy than predicting

defects at a software entity (e.g., file) level since the former provides the possibility

of taking immediate actions on the bug-prone modules while the change details are

still fresh in developers’ minds [16]. Another popular usage of change-level SDP

models is prioritizing the software changes during the code review process in order

to reduce the code inspection effort [16,130,132,164]. It decreases the review time as

well as the amount of reviewed code by prioritizing bug-prone changes according to the

predictions and by directly linking the owner of the reviewed software changes [16].

Many change-level SDP models have so far been built in industrial contexts

[29,30,43,44,165]. Conducting studies in the industrial field is valuable in terms

of validating the findings obtained in theory in practice [48]. Still, the number of

industrial studies on change-level SDP models is quite low compared to the studies

using publicly available datasets and open-source software projects [2]. One of the

main reasons for this is the difficulty of accessing the commercial projects’ data

sources. This is not easy due to confidentiality reasons, while open-source projects’

4This chapter is based on the paper “Eken B., Tufan S., Tunaboylu A., Güler T., Atar R., Tosun
A., 2021. Deployment of a change-level software defect prediction solution into an industrial setting.
Journal of Software: Evolution and Process, 33(11), e2381.”.

117

archives are publicly available and consist of longer development histories. Kamei et

al. [2] point this out as a future challenge and suggest conducting more partnerships to

overcome it.

Although change-level SDP aims to support a practical software quality assurance

activity, academic studies often work in offline settings. To put it another way,

researchers are mostly interested in the theoretical challenges of the SDP by utilizing

historically collected batch data while they do not consider the real-life, e.g.,

online/dynamic, data flow. Recently, there is an increasing rate of studies that approach

the SDP problem from the practical applicability perspective [29,43]–[46]. Based on

these reported studies and our experience, the adoption of a change-level predictor into

a real development environment brings brand-new challenges. First and foremost, in a

real-life online setup, there is a temporal and active flow of commits, unlike the batch

structure of an offline setup. Thus, the existing model training and validation strategies

(i.e., cross-validation or a time-sensitive validation) do not reflect the reality of an

online environment [29,166]. On the other hand, the continuous structure of real-life

environments requires “keeping up with the fast pace of development” as Kamei et

al. state [2]. A deployed model requires a continuous update, since the development

environments may have shifting development characteristics in the long run [133,167].

Besides, during a real-life software development cycle, developers need some time

to identify bug-inducing changes [29]. Therefore, successful deployment of an SDP

model is not possible solely with the equipment, such as algorithms and input features,

and the experience gained through the offline research studies. It requires a carefully

designed integration and update mechanism to produce consistently ‘good’ prediction

performance over time.

This study shares our experience in deploying a change-level defect prediction model

into an industrial context. The prototypes we built in the offline setting for our

industrial partner have been published in our previous work [148]. Here, we focus

on the challenges faced in deploying the selected SDP prototype into the real-life

development life cycle, such as determining a suitable model re-training period, and

preventing the model from learning from noisy data, and producing consistently good

prediction performance over time. We completely revise our experimental design

118

through an online defect prediction customized for our industrial partner. We assess the

performance of an online SDP model against its offline version and further investigate

the impact of training with potentially mislabeled (noisy) data and model update period

on the prediction performance.

Our contributions and related findings in this study are:

1. We design an online prediction approach that simulates the real-life commit activity

flow of the software project. The proposed online prediction approach trains

the SDP model by considering the actual labels of bug-inducing commits, which

are determined according to current observations at the time of prediction. The

online prediction uses two parameters, namely “train-test (TT) gap” and “update

period (UP)”. TT gap determines the length of the gap between the train and test

commits to avoid training with mislabeled commits. Besides, UP determines the

model update (re-training) period using new data. We are inspired by the online

prediction approach of Tan et al. [29], but our approach distinguishes from theirs

while determining the labels of bug-inducing commits in the training set and setting

the TT gaps and UP. We elaborate more on this in Section 5.4.1.

2. The SDP model’s performance in offline and online prediction settings shows that

both strategies produce similar performance depending on the available history

of the development activity and the amount of mislabeled commits used during

training.

3. We empirically analyze the effect of the TT gap on the prediction performance

by setting it to 11 different values, i.e., namely 0-month to 10-months, during

online prediction. Whereas the existing studies [29,168] suggest a fixed time gap to

avoid learning from noisy labels. Our results indicate that keeping a suitable time

gap between the train and test commits would improve prediction performance,

by up to 37% in terms of probability of detection, by reducing the undiscovered

bug-inducing commit rates.

4. We empirically analyze the impact of model update frequency on the prediction

performance using nine different UP values, namely, between updating every day

119

to every 120 days. The analysis over all TT gaps shows that the UP value would

affect the performance by up to 18% in terms of probability of detection.

5. We share our learned lessons regarding the deployment of our change-level SDP

solution in Section 5.8. We discuss the challenging aspects of the communication,

data collection, development habits, the software project structure, and the

interpretability of the produced predictions that potentially affect the applicability

and the usability of any SDP model in practice.

5.1.1 Structure of the chapter

Section 5.2 reports the related literature on change-level SDP, change-level SDP

studies conducted in industrial context, and on the model validation techniques applied

in change-level SDP studies. Section 5.3 describes the research, data collection,

and model prototyping phases. Section 5.4 reports challenges our SDP model

deployment experience and describes our online prediction methodology used during

our experimentation. Section 5.5 reports the research questions and our empirical setup

methodology. Section 5.6 shares the performance for the defined research questions

and discusses the achieved results. Section 5.7 discusses the threats to the validity of

the conducted empirical study. Section 5.8 reports additional lessons learned during

this industrial case study. Section 5.9 concludes the paper.

5.2 Related Work

Studies in the SDP field exploit data collected from various software development

units (people, product, and process [18,105]), and utilize various machine learning and

statistical approaches [11] to predict defective software modules in both open-source

and industrial projects. Besides, SDP models are designed to make predictions for

various software artifacts such as software class or method. According to the prior

studies’ classification on the SDP strategies [16,28], the long-term SDP models make

long-term predictions about the bug-proneness of a software entity, e.g., package,

file, class, method, whereas the short-term SDP studies focus on predicting the

bug-proneness of a software change to locate buggy parts of the software as soon as

possible by giving immediate feedback to developers. Just-in-time [16], change-level

120

[29], commit-level and short-term refers to such SDP models that make prediction

at software change-level. Moreover, the prediction performance of the change-level

SDP models are often evaluated using two popular model validation strategies, namely

cross-validation and time-sensitive validation.

In the next subsections, we report the related work focusing on change-level SDP

prediction, more specifically those studies conducted in an industrial context and

different model validation approaches used in change-level SDP.

5.2.1 Change-level SDP studies

The earliest software change-level defect prediction is reported by Mockus et al. [169].

They define a set of software change measurements that measure a code modification

from size, diffusion, and developer expertise aspects in order to understand and

quantify the software changes. They predict the quality of changes in a large-scale

telecommunication system by using the proposed measurements. Later, Mockus

and Weiss [30] proposed a model that predicts the risky software changes at a

coarse-grained granularity in an industrial telecommunication system. Their model

identifies the high-risk initial maintenance requests (IMR) that contain multiple

software changes. Failure probabilities of the IMRs are predicted by utilizing the

size, diffusion, developer expertise, and the purpose (whether the change was a fix)

properties of a change. The number of subsystems modified and developer experience

are found to be indicators of these high-risk changes. Czerwonka et al. [165] share

their experiences with a tool named CRANE that analyzes the risk of software changes

during the development of Windows Vista. Shihab et al. [115] utilize change properties

such as developer experience, history of the changed files, the time when the change

is made, the size of the change, and the purpose of change (bug fix or not) to predict

the risky changes in an industrial context, similar to the work in [30], but at a finer

granularity. The number of added lines and chunks, bug-proneness of the modified

files, number of bugs, the number of bug reports linked to a change, and the developer

experience are found to be good indicators of a change’s risk-proneness.

The introduction of the SZZ algorithm [2] and the emergence of machine learning

techniques [11] led to many change-level SDP studies that utilize measures from

121

historical bug-inducing changes to detect future bug-inducing changes. Kim et al.

[117] propose classifying the software changes as buggy or clean using the number of

added and deleted code lines, change metadata information (i.e., commit hour, commit

day), complexity metrics of the modified files (i.e., cyclomatic complexity), and textual

features of the modified file and directory names. They conducted their work on 12

open-source projects. Kamei et al. [16] empirically assess their just-in-time SDP for

six open-source projects and five commercial projects. Their prediction models utilize

the diffusion, size, history, purpose, and developer experience aspects of the change

and perform with an average recall of 64%. Their prediction model is able to reduce

code review effort, i.e., 35% of all predicted bug-inducing changes could be identified

by spending 20% of the total effort. The authors also report effort-aware performance

measures instead of traditional performance metrics only, such as recall, false-alarm

rate, F1-measure [170]. Effort-aware performance is basically calculated as the

development team’s effort required to inspect code changes predicted as bug-inducing

[16,44,130,132,164,171].

There are also other studies that focus on applying alternative techniques for

change-level SDP in open-source projects. Tosun et al. [27] show that prioritizing

the prediction of high-impact bug-inducing changes improves the inspection effort by

4%. Other researchers propose predicting bug-inducing changes at a finer granularity

level, such as risky files [28] or code lines [120] in software changes. Kamei et

al. [172] utilize cross-project data to predict risky changes. Catalino et al. [173] apply

the change-level SDP on mobile software development context. Barnett et al. [155]

incorporate textual features of commit messages into the change-level SDP. Last but

not least, Yang et al. [174] and Hoang et al. [20] use deep learning for just-in-time

SDP.

5.2.2 Change-level SDP studies in industrial context

The majority of the reported change-level SDP studies are conducted on open-source

projects [20,27,28,36,53,155,172,174,175]. Fewer studies focus on the change-level

defect prediction in an industrial context [16,29,30,115,165].

122

Kamei et al. [16] discuss the differences between industrial and open-source systems

over the characteristics of the bug-inducing changes. They found out that different

factors affect the prediction performance among different project domains, i.e., the

number of files changed, the information of whether or not the change fixes a bug,

and the average time interval since the previous change are important factors for

open-source projects, while the diffusion factors are important for industrial projects.

Tan et al. [29] apply the change-level SDP in practice with a Cisco project. Their

study focuses on data re-sampling techniques to cope with the low buggy rates in a

propriety software project. They also evaluate their change-level SDP model by using

an online prediction approach to overcome the incorrect performance results gathered

with cross-validation. We elaborate more on their online evaluation technique below

in this section. Their experience regarding the integration of the proposed SDP model

shows that prediction results need to be supported with explanations to be actionable.

Altinger et al. [43] report a performance tuning experience of a change-level SPD

model built for an automotive software project. They investigate the effect of data

balancing techniques and classification algorithms. Their study indicates re-sampling

techniques should be considered carefully, and the Naive Bayes algorithm yields a

good and stable performance.

Yan et al. [44] share their experience of effort-aware just-in-time defect identification

on 14 Alibaba projects. They select three supervised and two unsupervised

state-of-the-art SDP model building approaches to investigate them in the Alibaba

context. Their results show that the best performing approach is the ‘Classify Before

Sorting’ approach proposed by Huang et al. [171]. Moreover, they indicate that the

importance of features in change-level defect prediction differs for open-source and

industrial projects. However, the diffusion features (i.e., the number of changed

files) are the most important ones for both types of software settings. Finally, their

investigation with the software development team shows that the deployed effort-aware

SDP tool helps developers to reduce their effort on code inspection while detecting the

buggy changes correctly 33% of the time.

123

Kang et al. [45] build a change-level SDP model for the maritime industry and report

that their prediction model finds 56% of the total bug-inducing changes when 20% of

the total effort is spent. Their research points out that the maritime industry has high

post-release quality cost due to domain characteristics, i.e., bug-inducing changes most

likely occur again in the entire series of ships once they occur. Using a cost estimation

model that reflects the industry domain characteristics, Kang et al. [45] achieves a

reduction in the post-release quality cost by 37%.

A recent study by Khanan et al. [46] does not specifically focus on an industrial

context but focuses on the integration of change-level SDP into the real development

environment. They propose a framework that integrates into the GitHub development

workflow of a project. Their proposed application collects the commits and pull

requests of the project and trains an SDP model. When the SDP model is trained,

it provides prediction to the developer on the bug-proneness of a commit. Besides the

probability of being risky, the framework also reports the factors (i.e., metrics used

during model training, such as entropy of the change) related to a commit. Although

this study shows a real application of SDP models, the authors do not consider or report

a way for the future updates (re-training) of the integrated model, and the potential

noise in the labels of the dataset. In this study, we share the same focus on the

integration of a change-level SDP model but report potential challenges and provide

solutions and feedback to the developers.

5.2.3 Model validation approaches used in change-level SDP studies

Change-level SDP studies follow different model validation strategies that fall under

two main approaches: cross-validation and time-sensitive. Cross-validation is widely

used among researchers to evaluate their change-level SDP models [16,20,27,131,132].

A change-level SDP model predicts the bug-proneness of future changes by

utilizing prior changes in the software. Therefore, recent studies [28,29,133] use a

time-sensitive approach to train and assess the change-level defect predictors. They

criticize the appropriateness of using cross-validation while building a change-level

defect predictor. They argue that cross-validation ignores the temporal properties of

the data instances by shuffling and dividing them without considering this property.

124

On the other hand, a couple of studies empirically assess their change-level SDP

models by using both cross-validation and time-sensitive validation strategies [20,130].

Their results demonstrate that both strategies yield similar performance, and the

conclusions are consistent among different strategies. Studies on machine learning also

discuss that cross-validation based training may fail to make successful predictions for

future data instances. However, it leads to more robust predictions than a time-sensitive

training [176].

Recently, Tan et al. [29] emphasize the limitations of using a time-sensitive approach

when training change-level SDP models. Prior change-level SDP experiments using

both cross-validation and time-sensitive approaches ignore the temporality in the

labeling process of bug-inducing changes. During an SDP model training, all

bug-inducing changes in the training data are assumed to be known. Also, all

bug-inducing changes in the test data are assumed to be known while evaluating the

proposed SDP model. However, in real life, some training instances may be bug-free

at time t, whereas they might be associated with a bug-fix later at time t+1. In other

words, prior studies might have used the mislabeled change information. Tan et al. [29]

apply “online machine learning” approach [177] to update the training data labels as

well as to extend the training data with new instances. The training label updates are

done based on the available information at the end of the specified test set.

Moreover, during their online prediction, they keep a gap between the training and the

test sets in order to avoid the potential mislabeled changes because it may take years to

discover a bug-inducing change [178]. We are inspired by Tan et al.’s online prediction

approach [29] during the deployment process of our defect prediction model. We

customize the train-test gap, test size and the model update strategy accordingly.

However, we observe that their approach requires an improvement on the labeling

strategy of training instances. In our online setup, we use the available information at

the beginning of the test set only, instead of utilizing future information for the training

data. More details are explained in Section 5.4.1.

125

5.3 Research Background

We had a nationally funded research collaboration between Ericsson Turkey and

Software Modeling and Analysis Lab, Computer Engineering Department at Istanbul

Technical University during the years 2018-2020. Ericsson Turkey develops software

solutions for leading telecommunication companies in Turkey and exports their

software solutions to various continents in the world. Software quality and end-user

satisfaction are very important for the company, and to accomplish that, the teams

have been using several tools for testing, test automation and other verification and

validation activities. The company aims to reduce the cost of testing and code review

activities by integrating a defect prediction model into their software development

process. Therefore, we have been working on building and deploying customized

software defect prediction models according to the needs of developers in our research

collaboration.

The responsibilities of researchers in this project are to investigate the set of approaches

and techniques to deploy a successful defect predictor at software change-level for a

chosen software project of our industrial partner. During the early research phase of

the project, we collected historical development activity, extracted software process

metrics, and detected the bug-inducing commits to form the SDP dataset. Later, we

continued investigating techniques to build an SDP model by applying various machine

learning approaches. We report those experiences in a prior study of ours [148]. In

this paper, we would like to report our experiments on the deployment phase of our

research collaboration, and share our insights gained during this process. Although the

focus of this paper is the deployment phase of the chosen defect prediction model, we

also briefly summarize the earlier project phases to provide a solid background and to

report a step-by-step guide for the readers.

5.3.1 Dataset construction

We selected a pilot software project together with our industrial partner to build and

evaluate the SDP model prototypes. The practitioners describe the chosen pilot project

as an active project (since 2013) that has been sold to multiple customers, continuously

modified, refactored and enhanced according to the customer requests. The software

126

team states that each new feature or feature improvement request of customers fully

occupies the team’s annual resources. The software system has a core module with

many features, and additional modules designed and customized according to customer

needs. The software development methodology is similar to a waterfall process, such

that feature requests are delivered in yearly releases, and there is a core team with

predefined roles and responsibilities. The team utilizes version control systems and

issue repositories, and puts emphasis on traceability of changes. The SDP solution we

built in this research collaboration learns from the development activity of all modules

in this pilot project, and provides feedback that addresses any code change in the whole

project.

We prepared a change-level SDP dataset by collecting the historical development

activity of the chosen software project. The prepared dataset contains a set of historical

software changes (commits), a binary label for each of those changes that represent

their defect-proneness (bug-inducing or clean), and a set of process metrics calculated

for each collected software change.

5.3.1.1 Collecting historical commits and identifying bug-inducing changes

Historical software development activities of the pilot project are gathered through

Git [179] source code repository. At the beginning, we collected the logs of a total

number of 3927 commits between November 2013 and May 2018. A single commit

log contains a commit hash, committer name, commit date, commit description, the

name of the changed files, the number of files changed, and the number of added and

deleted lines in each file. After discussing with the development team leaders, we

decided to filter some of the commits which do not contain an actual development

activity. 1694 automatic system commits and 164 merge commits are detected by

searching a set of keywords in the commit logs (e.g., merge for merge commits). 940

commits belonging to the test modules are also identified and filtered. Also, eight

bulk commits are detected manually by reviewing the commits’ logs based on their

number of files and number of modified lines. After cleaning the dataset from these

automatic system commits, merge commits, test related commits, and bulk commits,

we ended up having a total number of 1773 commits. Please note that a commit could

127

be filtered due to being in multiple categories, i.e., it could be a test commit and an

automatic system commit. So, the number of filtered commits is fewer than the total

of automatic, merge, test, and bulk commits.

We implemented the SZZ algorithm [116] to find out bug-inducing changes in our

dataset. It is assumed that a bug is injected into the software by changing some

code line(s), and the introduced bug is fixed by changing those line(s) again. First,

the bug-fixing commits are determined using the bug reports stored in the issue

management and tracking system JIRA [180] used by the software development team.

A commit is marked as a fixing commit if its commit message mentions any issue ID

that corresponds to a bug report in JIRA. Second, for each detected bug-fixing commit,

we applied git diff command to query the modifications made by the bug-fixing

commit. Later, each code line deleted or modified by that bug-fixing commit is

searched down through the prior changes. The search process is conducted with git

log –until bug_report_date -S modified_line command. Whenever a prior commit is

matched with the searched code line, the matched commit is blamed for introducing

the bug. Since a bug must be introduced into the software before the related bug report

is created in JIRA, the SZZ algorithm only considers the prior software changes to

the date the bug was reported. Moreover, we assume comment lines or configuration

file modifications cannot be the cause of a bug. Therefore, we ignore the comment

lines and Maven (a project management tool [181]), configuration file changes while

searching back for the location of the commit where the bug is injected.

Bug-fixing commits were found by searching the issue key(s) of the bug reports in

the commit messages of the collected commits. 365 of 1998 issues reported in JIRA

between January 2014 and May 2018 were linked with the fixing commits. However,

in practice, a bug that occurred in a software system and/or fixed by the software

team may not always be reported properly. Sometimes, several development tasks

are completed with a single issue ID, even though some of those are done due to

a bug fix. To ensure the data correctness and capture all bug-fixing activities, the

development leaders who have expertise on the pilot project manually went through

the commits’ messages and content if necessary and marked additional bug-fixing

commits. 135 out of 394 bug-fixing commits were detected using manual investigation.

128

With the profound knowledge of the development leaders on the project, we made sure

the bug-fixing commits are correctly specified for the pilot project through several

iterations on the dataset.

A commit can consist of modifications on many code files and lines, and hence,

more than one commit can be blamed for one bug-fix operation. Also, a bug-fixing

commit can fix more than one bug. There are many-to-many relationships between

bug-introducing commits and bug-fixing commits. In total, 394 bug-fixing commits

are linked to a total number of 296 bug-inducing commits identified via SZZ.

The final version of our dataset contains the development activity of 36 developers

made between November 2013 and May 2018, a total number of 1773 commits, and

296 bug-inducing commits. Figure 5.1 reports the distribution of bug-inducing and

clean (not bug-inducing) commits over time.

0

25

50

75

100

Sep 2013

Jan 2014

May 2014

Sep 2014

Jan 2015

May 2015

Sep 2015

Dec 2015

Apr 2
016

Aug 2016

Dec 2016

Apr 2
017

Aug 2017

Dec 2017

Apr 2
018

Aug 2018

Date

N
um

be
r

of
 c

om
m

its

Type

Bug−inducing

Clean

Figure 5.1 : A timeline of our SDP dataset that represents bug-inducing and clean
commits.

There are more commits and bug-inducing commits made in 2014 and at the beginning

of 2015 when compared to the lifetime of the project. The development team also

states that there was a productization for two customers from 2014 to 2015, and the

team later focused on improving and modifying the product. Therefore, the project’s

development activity was higher at the beginning. Later, the core requirements

decrease, but improvement requests increase over time, so do the bugs and fixes as well.

We don’t have any bug-inducing commits made after February 2017 in our dataset,

129

even though the latest commits we collected go until May 2018. This is a natural

consequence of our bug-inducing commit detection mechanism. SZZ algorithm traces

back from the bug-fixing commits to find out the related bug-introducing commits.

Since we did not identify any bug-fixing commits at the later periods of the collected

data, bug-inducing commits could not also be traced back. This would eventually

affect the time period used to train and test our SDP model.

Please note that the statistics on the collected commits and the details on the process

metrics reported in this paper do not exactly match those reported in our prior

publication [148], since we filtered out some commits (i.e., test commits) after our

discussions with the development team. Also, the base metric set is updated when

transitioning the model from the prototyping to the deployment stage.

5.3.1.2 Base metric extraction

We extracted 12 process metrics from the collected commits in our dataset. These

process metrics measure software changes in four aspects; size, history, diffusion, and

the developer experience. The complete list of metrics and their descriptions are given

in Table 5.1.

Table 5.1 : Base metrics utilized in this study.

Metric Description (abbreviation)

Lines of Code added in a commit (ADD)
Size Lines of Code deleted in a commit (DEL)

Churn of commit: ADD + DEL (CHURN)
Number of modified files (NF)

Diffusion Number of modified directories (ND)
Entropy: distribution of modified code across each
file (ENT)
Number of developers had changed the modified files
(NDEV)

History Number of prior changes to modified files (NPC)
The average time interval between the last and the
current change (AGE)
Experience of developer (EXP)

Experience Recent experience of the developer (REXP)
Experience of developer the on a subsystem (SEXP)

130

We chose the metrics listed in Table 5.1 as our base metric set, since they are popularly

used, state-of-the-art metrics utilized in change-level SDP studies [30,109]–[113].

The Size metrics measure the number of lines of code added (ADD), deleted (DEL),

and changed (CHURN) in a single commit, and directly extracted from a commit’s log

kept by the version control system (Git).

The Diffusion metrics basically measure the distribution of a software change (commit)

across the modified file(s). Similar to the Size, the Diffusion aspect of a single commit

is also calculated directly from the commit’s log. NF is the number of files modified

in the commit, whereas ND is the unique number of directories where the modified

file(s) are located. The entropy of a commit (ENT) is calculated by utilizing the churn

(the number of total changed lines of code) of files modified in the commit by using

the formula in Equation 5.1.

ENT =
NF

∑
k=1

pklog(pk) where : pk =
f ile churn

commit churn
(5.1)

The History metrics measure the history of a commit through the modified file(s). We

traced back the modified file(s) across prior commits’ logs to calculate NDEV, NPC,

and AGE metrics. The formula used to calculate NDEV is NF/ (the number of unique

authors who previously changed the modified files). The formula used for NPC and

AGE metrics are given in Equation 5.2 and 5.3, respectively.

NPC =
total number o f prior commits on the modi f ied f iles

NF
(5.2)

AGE =
∑

NF
f=1 number o f days since the last commit f

NF
(5.3)

The Experience metrics measure the experience of the developer who made the change

(commit) using the contribution history of the developer. EXP metric is the count of

prior commits made by the developer, while the SEXP metric is the count of prior

commits that modifies the same subsystem(s) modified in the current commit. The

subsystem in which the modified file is located is identified by parsing the full name

of the file. For instance, the subsystem of a source code file “X/Y/Z/fileName.java” is

131

determined as “X”. REXP metric is calculated similarly to EXP metric, but the recent

commits of the developer have more importance than the older commits. A commit’s

importance is calculated using the formula given in Equation 5.4. The time difference

between the current commit and a prior commit is measured over three months time

intervals. Therefore, the importance of a prior commit decreases every three months

while going back through historically.

REXP =
prior commitsd

∑
p

1
1+ |p− current commitd| %3

(5.4)

The calculations of the two process metrics (REXP and SEXP) listed in Table 5.1 are

adjusted according to the pilot project’s process and file structure. REXP metric is the

same as EXP, but it gives a higher weight to the recent commits of the developer. To

define ‘recent’ experience, we agreed with the development leads, based on the commit

distribution over time in our dataset (Figure 5.1), that it should be set to the last three

months. Besides, the number of subsystems (NS) metric is removed, and SEXP metric

is re-calculated to better represent the file/module structure of the software project.

5.3.2 Initial prototype SDP models

During the research phase of our project, we investigated various model building

approaches and techniques to propose a successful change-level defect prediction

model for our industrial partner’s pilot project.

We extracted additional metrics besides the base process metrics (Table 5.1) in order

to improve the prediction performance of the SDP models by utilizing various and

multiple data sources [148]. First, we extracted five new numeric latent features from

the 12 base metrics (Table 5.1) using non-negative matrix factorization (NNMF) [160]

in order to capture potentially hidden information. Second, we extracted semantic

features from the commits’ textual messages through topic modeling. However,

Information Gain (InfoGain) [141] analysis reported in our prior study [148] shows

us that the semantic features are not important as the base and latent metrics for

the prediction of bug-inducing changes in our dataset. Considering the additional

calculation effort of semantic metrics and their lower contribution to the performance

132

of the defect prediction model, we proceeded to the deployment phase by utilizing only

the base metrics and latent metric sets. The technical details on the extraction of these

additional metrics can be found in our prior study [148].

We trained our SDP models using machine learning algorithms that are successful in

the SDP studies, namely Naive Bayes (NB), Random Forest (RF), Logistic Regression

(LR), XGBoost. The NB algorithm is more lightweight in terms of training and

prediction when compared to RF, LR, and XGBoost, and models built with NB produce

higher performance values in our context [148]. So, we chose to deploy the SDP model

built with NB.

We applied two different data filtering approaches before training the SDP models:

Log filtering and feature ranking. Selecting the top features using InfoGain gave

inconclusive results, whereas applying log filter to the metric values improved

the performance up to 20% when prediction models were trained with NB [148].

Therefore, we decided to apply only the log filtering approach on the final set of metrics

(base and latent factors).

We proposed various types of SDP models to our industrial partner; a personalized

model (PM), a general model (GM), and a selected general model (SM). Different

types of models use different train data, and their output has different targets. More

specifically, a PM is trained for each developer in the team to give recommendations to

the relevant developer only, by using the developers’ own commit history solely. The

GM model is a typical, traditional defect prediction model; it learns from the whole

teams’ commit history to give recommendations to any developer in the team on their

future commits. SM is a variant of the general model trained with a selected set of

developers’ (top contributors) development activity.

We chose the most promising approach in terms of prediction performance for

deployment; GM and SM. During the deployment, we observe that GM performs better

and is more robust than SM. GM utilizes more diverse data during training, whereas

SM utilizes a subset of commit history according to the selected developers for the

specified commit period. Accordingly, we deployed the GM as our primary prediction

133

solution, whereas the SM is currently under beta testing in the company. In this study,

we only focus on the deployment and assessment of GM.

We assessed the performance of the model prototypes using two different validation

strategies: 1) K-fold cross-validation, and 2) Offline time-sensitive validation.

According to the results, we preferred to choose the offline time-sensitive approach

during prototyping.

Time-aware model training and validation approaches are suitable for such cases in

which data instances have temporal properties. We named our time-sensitive validation

approach as offline time-sensitive prediction during prototyping to emphasize its

difference from the online time-sensitive prediction approach used for deployment

in the rest of the paper. The offline prediction refers to training the model with

the commits taken from a prior time period using their ground truth class labels,

and predicting the commits in the next time period. In other words, ground truth

labels (bug-inducing or clean) of commits are known from the beginning of the model

evaluation, and the training and test sets are formed according to the times of the

commits only.

5.4 Deployment with an Online Prediction

Together with the development team of our industrial partner, we have decided

to integrate the SDP models chosen among the proposed prototypes into a test

development branch of the pilot software project. Using a test branch at the beginning

of the deployment gives us the opportunity of testing the integrated model and the

operation of our solutions by simulating the real development environment of the

company as accurately as possible. In later stages, the company aims to integrate the

SDP solution into their main development branch in order to use the solution prior to

their code review activities. The plan is to assist the code reviewers with the predictions

of the SDP model.

Initially, we integrated a set of pre-trained models into the development environment

of the pilot software project. The integrated SDP models are trained with the

commit activity we already collected at the beginning of our research. However,

134

the development team needs a sustainable solution that also learns from the recent

development activity. Therefore, we design a solution that collects the recent

commits of the project periodically and feeds the SDP model with the newly collected

information. The integrated solution collects the recent commits, and extracts the

process metrics (see Table 5.1) and latent features of those metrics. It also labels

the bug-inducing commits among the collected commits using the SZZ algorithm,

and re-trains the SDP model with all the historical information as well as the newly

collected commit activity.

At this point, we need to make two design decisions for the deployment: 1) how often

the SDP model should be updated (re-training), 2) what part of the commit data should

be used during the model update. The first decision matters because we aim to update

the deployed model frequently enough to learn from the recent software changes so

that we do not compromise on the prediction performance, while we should avoid too

frequent model update cycles. The second decision also matters because, in real life,

we do not know whether the incoming commits are actually bug-inducing or not until

a JIRA issue is associated with a bug-fix. So, the commits included into the training

must be accurately labeled. This way, we would mitigate the impact of misclassified

commits on the prediction performance.

We elaborate on these design decisions during an online prediction strategy we

proposed for our industrial partner. We use the online prediction strategy to understand

the real-life performance of the SDP model along with an empirical investigation on

these deployment decisions.

5.4.1 Online prediction

We evaluate the deployed SDP model with an online prediction because the offline

prediction used during prototyping does not reflect the structure of the real-life

development environment. The key point of an online prediction is that it simulates

the real-life data flow: it trains the prediction model with the available information

at a specified time [29,182]. However, the offline prediction, i.e., cross-validation or

offline time-sensitive approach, utilizes batch data containing the final, ground truth

information. Even though the offline time-sensitive approach takes into account the

135

temporality of commits while splitting the data, it still introduces a measurement bias

regarding the labels of training data instances. In the offline time-sensitive approach,

we split data into many pieces over time: t1, t2, ..., tn. To make a prediction for the

commits at tk, the training set contains metrics reflecting the commits done until tk,

whereas their class labels are not taken as the values are known at the time tk. On the

contrary, the actual class labels of the training instances, which may be found out after

tk, are fed into the model. Thus, even though the time splits help to feed the model

with consequence commits, their labels do not reflect the actual scenario. In real life,

the class labels of the commits must represent what we know at the time tk.

Furthermore, bug-inducing commits require some time to be detected based on the life

cycle of the bugs in a software system. The basic life cycle of a bug starts when a

bug is introduced into the system by a developer through a commit. Then, that bug

is discovered by a team member (often testers) and reported as an issue. Lastly, the

reported bug is fixed by a developer. Using SZZ, we are able to utilize the bug-fixing

commit to find the corresponding commits inducing that bug. Therefore, the bugs

could not be linked to their fixing and inducing commits until they are fixed. So,

in an online prediction strategy, some commits may look clean at any point in time,

although in later fixing commits, it may be found out that those commits were actually

bug-inducing.

Figure 5.2 shows the time required to fix a bug after it was injected into the selected

pilot project. This figure indicates that the time required to discover a bug is 103

days on average (approximately three and a half months) and a median of 195 days

(approximately six and a half months). Also, it goes up to 1325 days (approximately

three and a half years) to find out a bug-inducing commit associated to a fixing commit.

Since it takes time to detect changes that cause bug(s), i.e., 195 days (median),

keeping a temporal gap between the train and test data is reasonable regarding the

deployed model’s prediction performance. On the discovery of bug-inducing commits,

Cabral et al. [168] suggest that accepting the bug-fixing time duration as 90 days

is an appropriate choice in open-source systems. But, in this study, we want to

136

experimentally find a convenient time gap that filters out the noisy training labels

during the model learning process for our selected project’s context.

0

500

1000

Jan 2014

May 2014

Sep 2014

Jan 2015

May 2015

Sep 2015

Dec 2015

Apr 2
016

Aug 2016

Dec 2016

Bug−inducing commits

D
ay

s
re

qu
ire

d
to

 fi
x

th
e

in
tr

od
uc

ed
 b

ug
s

Figure 5.2 : A timeline of the time difference (in days) between the bug-inducing and
fixing commit pairs.

Figure 5.3 shows the overall design of our online prediction strategy against the offline

strategy. The train set in both prediction strategies involves the same commits in their

training set, but the labels of bug-inducing ones might be different. While the commit

labels are determined using the information known at the prediction time during the

online model training, the ground truth labels of the commits are used to train the SDP

model during the offline model training. We set the initial training set’s length to four

months, and it contains a total number of 166 commits for both prediction strategies.

Due to the difference in labeling mechanism, there are four bug-inducing commits

in the initial training set of the online prediction, whereas there are 33 bug-inducing

commits during the initial model training of the offline prediction. Moreover, we set a

gap called Train-Test (TT) Gap in the online strategy, whereas this gap does not exist in

the offline strategy. As we move to the next time frame (t+UP) in Figure 5.3, a portion

of the unused commits from the TT gap is added to the training set (assuming that their

labels are identified during the TT gap duration). The model is then re-trained using

these additional training data, and tested on a new test set. More details on TT gap and

UP parameters are given below.

Train-test (TT) gap: Due to the time required to discover bug-inducing changes in

the software, SDP models may learn from noisy data since there is a high chance that

some data instances utilized during training are very likely to be mislabeled as clean.

The training set inevitably contains noise to some extent, but we aim to reduce this rate

137

Train set Test set

TT Gap = UP

time t

Train set Test set

TT Gap = UP

time t + UP

= UP

Train set Test set

TT Gap = UP

time t + 2 * UP

= UP

Train set Test set

= UP

time t

Train set Test set

= UP

time t + UP

= UP

Train set Test set

= UP

time t + 2 * UP

= UP

Commits are labeled based on the observation at the prediction time (beginning of the test set)

Commits are labeled with the ground truth labels

Figure 5.3 : Demonstration of the online and offline prediction strategies.

of mislabeled instances in the training set. Therefore, in the deployment environment,

we exclude the potentially noisy data during the model re-training.

We use the online prediction strategy to decide how much data we should exclude

during model re-training. We define an unused time gap between the training and the

test set and call it TT gap that demonstrated in Figure 5.3 as TT Gap. Here, we aim to

keep a distance between the last training instance and the first test instance based on

the statistics observed in Figure 5.2. Setting the TT gap to an average of three and a

half months would be the first choice. However, we aim to observe the effect of various

lengths of the TT gap on the prediction performance to set the most convenient TT gap

for the deployed model. We executed the online prediction experiment multiple times

by setting the TT gap from zero (0) month to 10 months. Please note that, the metrics

of the commits in the test set are calculated considering the total number of all prior

commits.

Update period (UP): Another parameter we use in our online prediction design is the

update period, UP in short. The value of UP determines how frequently the model is

fed with new commits. UP parameter was also used by Tan et al. [29]. Figure 5.3

demonstrates three iterations of the online prediction. The first iteration of the online

prediction experiment runs at time t, the second iteration runs at time t + UP, and the

third iteration runs at time t + 2*UP. Suppose we set the UP to one day, that means

our SDP model is updated every day: the initial SDP model is built on time t, the first

model update is conducted one day later at time t + 1 day, and so on. Consequently,

UP also determines the approximate amount of the new commits included into the

138

training set during the model update, as well as the length of the test set. If the UP

is one day, that means our test set in every iteration contains the commits done on the

specified day only. Similar to TT gap parameter, we assess the effect of UP on the

prediction performance by setting UP to 1-day, 3-day, 5-day, 7-day, 10-day, 14-day,

30-day, 60-day, and 120-day.

We would like to mention that the online prediction strategy used by Tan et al. [29]

is also very similar to ours. Both designs keep a time gap between the training and

test sets to avoid the potential impact of mislabeled data instances (TT Gap in our

study) on the prediction performance, and uses a parameter to define the period of

the model update (UP in our study). The main difference between the two online

prediction designs is the labeling of the software changes (bug-inducing or clean). Tan

et al. [29] indicate that their online prediction determines the labels of the training

instances based on the information at the last commit of a test set. However, this

implies that the prior commits in the test set are predicted by a model trained with

future observations. Our approach, on the other hand, updates the labels of training

data instances based on the observations at the model update day, which corresponds

to the first commit in the test set. Therefore, we believe our design reflects the real-life

development environment more precisely.

5.5 Methodology

We focus on three research questions in this study to assess our design decisions during

SDP model deployment:

• RQ1: Does the performance of the proposed SDP model assessed with the offline

time-sensitive prediction strategy represent that with the online time-sensitive

prediction strategy?

• RQ2: To what extent does the train-test gap affect the performance of the deployed

model?

• RQ3: What impact has the update period of the proposed model on the prediction

performance?

139

To answer our RQs, we setup an experimentation that contains multiple runs of

the online prediction described in Section 5.4.1. The online prediction takes two

parameters: TT gap and UP. Both parameters take various values in order to see

the effects of these parameters on the prediction performance. In total, the online

prediction strategy is assessed using 11 different TT gap values, namely 0-month,

1-month, 2-month, 3-month, 4-month, 5-month, 6-month, 7-month, 8-month, 9-month,

and 10-month, and nine different UP values, namely 1-day, 3-day, 5-day, 7-day, 10-day,

14-day, 30-day, 60-day, and 120-day. In total, we investigate a total number of 99

(11× 9) variations of the online prediction model. The results are used to address

all three RQs. Additionally, to answer RQ1, we used an offline prediction strategy

demonstrated in Figure 5.3. This offline prediction design is a variation of the offline

time-sensitive prediction approach we used during model prototyping. We include

a new parameter UP to the offline time-sensitive approach during prototyping, to be

able to make a fair comparison between the offline and online prediction approaches.

The offline prediction strategy is also assessed using nine different UP values: 1-day,

3-day, 5-day, 7-day, 10-day, 14-day, 30-day, 60-day, and 120-day. We assessed the

performance of the SDP model achieved with both prediction strategies using the

model assessment methods listed in Section 5.5.1.

Particularly in RQ1, our aim is to observe whether the performance of our SDP

model prototype in an offline training strategy reflects the potential performance of

a deployed model. To answer this RQ, we compare the prediction performance of the

proposed SDP model achieved between the online and offline prediction strategies.

Both strategies start building the initial SDP model with the first four months of

the development activity, then update the model through iterations based on the

UP parameter, by including new commits to the training set. Finally, we report

the performance achieved by both strategies, for various UP and TT gap values as

heatmaps in Section 5.6.1 (Figure 5.4). We want to note that the test set of the offline

and online experiments except the Online (0) may not contain the same commits. Here,

our aim is not to make a one-to-one statistical comparison of the offline experiment

with each online experiment. Instead, we want to understand whether the offline

validation strategy could represent the real-life prediction performance.

140

In RQ2, we aim to observe the effect of various TT gap values on the prediction

performance of the SDP model to choose a convenient length for TT gap for the

deployment. We analyze the impact of various TT gap values using 1) performance

heatmaps reported in Figure 5.4 and 2) Scott Knott ESD analysis reported in Figure

5.6. During the Scott Knott ESD analysis, we aggregate the performance values of

online experiments over UP parameters. We only consider the identical commits across

the experiments with various TT gap values to fairly observe the effect of different TT

gaps. The results of these analysis methods are reported and discussed in Section 5.6.2.

In RQ3, we aim to identify the most suitable UP for deployment by analyzing the effect

of the various UP values on the prediction performance. For assessment, we conduct

Scott Knott ESD analysis whose findings are also reported in Figure 5.7 in Section

5.6.3. We aggregate the performance values of online experiments over all TT gaps

during the Scott Knott ESD analysis.

5.5.1 Model performance assessment

We assess our SDP models using six widely-used performance measures in the SDP

literature: Probability of detection (pd), probability of false alarm (pf), precision,

F-measure, Area Under receiver operating characteristics Curve (AUC), and Matthew

Correlation Coefficient (MCC). Pd, pf, precision, F-measure and MCC values can be

calculated by using the equations given in Table 5.3 over a confusion matrix [183]. A

sample confusion matrix is given in Table 5.2.

Table 5.2 : Confusion matrix for the defect prediction problem.

Actually bug-inducing Actually clean

Predicted as bug-inducing tp (true positive) fp (false positive)
Predicted as clean fn (false negative) tn (true negative)

Pd measures the ratio of the detected bug-inducing changes over all existing

bug-inducing changes in the dataset. Pf measures the number of bug-inducing changes

that are mistakenly classified as bug-inducing over all existing bug-inducing changes in

the dataset. The pd values of SDP models are expected to be high, while the pf values

are expected to be low [50]. Precision represents the ratio of actual bug-introducing

changes over all changes defected as bug-introducing, whereas F1-measure is the

141

Table 5.3 : Equations for pd, pf, precision, F1-measure, and MCC.

Measures Formula

pd t p
t p+ f n

pf f p
f p+tn

precision t p
t p+ f p

F1-measure 2∗precision∗pd
precision+pd

MCC t p∗tn− f p∗ f n√
(t p+ f p)∗(t p+ f n)∗(tn+ f p)∗(tn+ f n)

harmonic mean of precision and pd. MCC measures how well a predictor makes binary

classification [137]. Its value ranges between 1 and -1. The value of 1 represents a

perfect classification, while -1 represents a completely wrong classification. AUC is a

measure of the area under the ROC curve, and used to judge the discrimination ability

of the predictor between classifying a commit as bug-inducing and not bug-inducing

[184].

Researchers pursue the ideal case (high pd and low pf) for an SDP model’s

performance. But in practice, reaching the ideal state is not easy. Because when

correctly classified bug-inducing changes increase, the false alarms, i.e., incorrectly

classified ones as bug-inducing, also increase. This trade-off has been discussed both

in machine learning [185,186] and software engineering domain [13,187]. Studies

state that teams would prefer a model with high pd rates with the cost of high false

alarms in a safety-critical or a mission-critical software project. On the other hand, a

more cost-effective SDP solution would be to have fewer false alarms with the cost

of low pd rates. Considering our industrial partner’s viewpoint, we focus on both pd

and pf when choosing the best model prototype among all the evaluated models. Our

industrial partner prefers considering the pd and pf equally during the assessment of

prototypes. Since our partner has a medium level of risk tolerance, we seek prototypes

with a high pd and an acceptable cost of pf rate for the final deployment.

142

5.6 Results and Discussion

5.6.1 RQ1: Does the performance of the proposed SDP model assessed with

the offline time-sensitive prediction strategy represent that with the online

time-sensitive prediction strategy?

In Figure 5.4, we report the performance of the SDP model for both prediction

strategies (offline and online) as heatmaps. Each heatmap in the figure reports the

performances of the SDP model measured by one of the model assessment metrics we

used in our study (pd, pf, precision, F1, AUC, and MCC). The x-axis of a heatmap

corresponds to the experiments we conducted: an offline prediction experiment and

online prediction experiments with various TT gap values. The y-axis of a heatmap

corresponds to the UP values used in both online and offline predictions. Each cell in

a heatmap shows the prediction performance of the SDP model achieved with the TT

gap value (only if it is an online prediction) and a UP value combination. Cells with

darker grays represent higher performance values, whereas the lighter grays represent

lower values of performance.

For this research question, we do not aim to discuss the best TT gap or the best UP

value. We aim to observe how close we can reach to the model’s offline prediction

performance in real life as we change TT gap and UP parameters. Further, we do not

make a one-to-one statistical comparison of performance values obtained with offline

and online experiments. The structure of offline and online settings are different from

each other as reported in Section 5.4.1. Accordingly, the test sets utilized by online

experiments are different. Solely, the Offline and the Online (0) share the same test

set. We also elaborate on how we evaluate the results for RQ1 in Section 5.5.

Heatmaps show that our SDP model’s online prediction performance is initially lower

than the performance achieved during the offline evaluation. However, depending

on the TT gap and UP, the online prediction could achieve as good performance as

the offline prediction strategy. Particularly in the offline prediction setting, the SDP

model’s performance ranges between 65 - 76% pd, 52 - 56% pf, 33 - 38% precision,

40 - 48% F1, 60 - 67% AUC, and 0.10 - 0.18 MCC. In the online prediction, on the

143

0.7 0.5 0.58 0.58 0.64 0.67 0.57 0.65 0.69 0.68 0.68 0.73

0.68 0.48 0.58 0.56 0.63 0.68 0.61 0.67 0.65 0.73 0.67 0.7

0.68 0.5 0.61 0.61 0.69 0.64 0.62 0.63 0.68 0.7 0.7 0.72

0.68 0.48 0.6 0.6 0.58 0.63 0.6 0.62 0.64 0.7 0.68 0.73

0.69 0.49 0.61 0.61 0.61 0.67 0.58 0.63 0.69 0.74 0.7 0.65

0.75 0.47 0.58 0.58 0.65 0.65 0.62 0.7 0.67 0.74 0.79 0.77

0.65 0.4 0.6 0.58 0.64 0.56 0.58 0.64 0.6 0.73 0.72 0.7

0.74 0.42 0.62 0.66 0.59 0.61 0.66 0.69 0.73 0.74 0.72 0.63

0.66 0.33 0.64 0.6 0.56 0.55 0.56 0.58 0.64 0.73 0.7 0.69

0.76 0.37 0.72 0.7 0.72 0.72 0.74 0.74 0.74 0.7 0.61 0.59

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.4

0.5

0.6

0.7

Performance

pd

0.56 0.45 0.48 0.49 0.53 0.5 0.49 0.49 0.53 0.47 0.49 0.5

0.54 0.44 0.46 0.49 0.53 0.48 0.47 0.52 0.52 0.47 0.5 0.5

0.54 0.43 0.48 0.49 0.51 0.5 0.49 0.49 0.53 0.5 0.51 0.52

0.55 0.44 0.45 0.47 0.53 0.47 0.47 0.51 0.52 0.48 0.49 0.49

0.56 0.44 0.48 0.49 0.49 0.5 0.47 0.49 0.51 0.49 0.51 0.52

0.54 0.42 0.47 0.5 0.53 0.47 0.49 0.53 0.53 0.48 0.5 0.5

0.54 0.42 0.46 0.46 0.48 0.46 0.45 0.48 0.52 0.48 0.51 0.48

0.55 0.41 0.45 0.47 0.47 0.48 0.5 0.53 0.52 0.52 0.51 0.47

0.52 0.39 0.49 0.46 0.44 0.43 0.43 0.45 0.5 0.51 0.51 0.48

0.56 0.4 0.51 0.52 0.53 0.54 0.53 0.57 0.56 0.52 0.52 0.5

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.40

0.45

0.50

0.55

Performance

pf

0.28 0.29 0.29 0.27 0.24 0.25 0.22 0.22 0.21 0.21 0.2 0.2

0.29 0.28 0.3 0.26 0.24 0.26 0.23 0.22 0.2 0.23 0.19 0.2

0.3 0.3 0.3 0.28 0.26 0.24 0.23 0.22 0.21 0.21 0.2 0.2

0.31 0.28 0.31 0.29 0.22 0.25 0.23 0.21 0.2 0.22 0.2 0.21

0.31 0.29 0.3 0.28 0.25 0.25 0.22 0.22 0.22 0.22 0.2 0.18

0.33 0.29 0.3 0.27 0.25 0.26 0.23 0.22 0.21 0.22 0.22 0.22

0.3 0.26 0.3 0.28 0.26 0.23 0.23 0.22 0.19 0.22 0.2 0.21

0.32 0.27 0.32 0.3 0.25 0.24 0.24 0.22 0.23 0.21 0.2 0.19

0.31 0.23 0.31 0.29 0.25 0.24 0.24 0.21 0.21 0.21 0.2 0.2

0.33 0.25 0.32 0.29 0.26 0.25 0.25 0.22 0.21 0.2 0.17 0.17

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.20

0.24

0.28

0.32

Performance

precision

0.4 0.36 0.39 0.37 0.35 0.36 0.31 0.33 0.33 0.33 0.31 0.32

0.41 0.36 0.4 0.35 0.35 0.38 0.34 0.33 0.31 0.34 0.3 0.31

0.42 0.37 0.4 0.38 0.38 0.35 0.34 0.32 0.32 0.32 0.31 0.31

0.42 0.35 0.41 0.39 0.32 0.36 0.33 0.31 0.31 0.33 0.31 0.33

0.42 0.36 0.41 0.38 0.36 0.37 0.32 0.32 0.33 0.34 0.31 0.28

0.46 0.36 0.39 0.36 0.36 0.37 0.34 0.33 0.32 0.34 0.35 0.34

0.41 0.31 0.4 0.38 0.37 0.33 0.33 0.33 0.29 0.34 0.32 0.32

0.45 0.33 0.42 0.41 0.35 0.35 0.35 0.33 0.35 0.33 0.31 0.29

0.42 0.27 0.41 0.39 0.35 0.33 0.33 0.31 0.31 0.33 0.31 0.32

0.46 0.3 0.45 0.41 0.38 0.37 0.37 0.34 0.33 0.31 0.27 0.27

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.30

0.35

0.40

0.45

Performance

F1

0.57 0.53 0.55 0.57 0.57 0.59 0.55 0.59 0.6 0.61 0.61 0.63

0.56 0.52 0.57 0.55 0.57 0.6 0.59 0.57 0.56 0.63 0.59 0.61

0.58 0.55 0.58 0.57 0.6 0.57 0.58 0.57 0.59 0.6 0.62 0.62

0.58 0.54 0.58 0.56 0.55 0.59 0.57 0.55 0.59 0.62 0.6 0.63

0.6 0.54 0.57 0.58 0.58 0.6 0.57 0.56 0.6 0.65 0.59 0.58

0.63 0.53 0.57 0.56 0.58 0.61 0.59 0.59 0.61 0.66 0.65 0.67

0.58 0.48 0.58 0.57 0.59 0.57 0.59 0.57 0.54 0.64 0.6 0.63

0.63 0.48 0.62 0.61 0.59 0.6 0.6 0.58 0.63 0.61 0.62 0.6

0.63 0.42 0.63 0.6 0.6 0.59 0.58 0.57 0.58 0.64 0.63 0.63

0.67 0.43 0.65 0.63 0.62 0.63 0.63 0.6 0.63 0.61 0.56 0.54

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.45

0.50

0.55

0.60

0.65

Performance

AUC

0.12 0.05 0.09 0.08 0.09 0.14 0.06 0.12 0.13 0.15 0.14 0.16

0.12 0.04 0.11 0.06 0.08 0.16 0.11 0.11 0.1 0.19 0.12 0.14

0.12 0.07 0.11 0.1 0.15 0.11 0.11 0.11 0.12 0.15 0.13 0.15

0.11 0.03 0.13 0.12 0.04 0.13 0.1 0.09 0.09 0.16 0.14 0.17

0.12 0.05 0.12 0.1 0.1 0.14 0.08 0.11 0.14 0.18 0.13 0.09

0.18 0.05 0.1 0.07 0.1 0.15 0.1 0.13 0.11 0.19 0.21 0.2

0.1 −0.02 0.12 0.1 0.13 0.08 0.11 0.12 0.06 0.19 0.15 0.16

0.17 0.01 0.15 0.16 0.1 0.11 0.13 0.12 0.16 0.16 0.15 0.11

0.12 −0.06 0.13 0.13 0.1 0.09 0.1 0.1 0.1 0.16 0.14 0.15

0.18 −0.03 0.19 0.16 0.15 0.14 0.16 0.13 0.14 0.13 0.06 0.06

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

−0.05

0.00

0.05

0.10

0.15

0.20

Performance

MCC

Figure 5.4 : Heatmaps of the performance achieved with the offline and online
prediction strategies using different TT gap and UP.

other hand, the performance ranges between 33 - 79% pd, 39 - 57% pf, 17 - 32%

precision, 27 - 45% F1, 42 - 67% AUC, and -0.06 - 0.21 MCC.

The online prediction reaches and sometimes exceeds the offline prediction

performance with larger TT gaps with respect to pd, AUC, and MCC. But an opposite

pattern exists with respect to precision and F1: The online prediction reaches offline

prediction performance mostly with smaller TT gaps. This is due to the natural

trade-off between hit rate (pd) and false alarm rate (pf) [185,187]. In the later RQs, we

would choose a model with the best TT and UP gap based on this trade-off. In terms

of pf, even the highest pf rates of the online setting (Online (3), Online (6), and Online

(7)) are lower than the pf rates obtained with the offline setting. This is a positive

finding regarding the potential review cost of the deployed model.

144

Regarding the UP parameter, the models, namely Offline and from Online (1) to Online

(7) perform similarly. Better prediction values are achieved with larger UP values, i.e.,

60-day or 120-day in terms of pd, precision, F1, AUC, and MCC, but also higher pf

rates are obtained. The models, namely Online (0), from Online (8) to Online (10),

achieves better performance when the SDP model is updated more frequently, i.e.,

every day or every 14 days.

5.6.1.1 Discussion on RQ1

We want to investigate further whether the predictions of offline and online approaches

are consistent or fluctuates over time. Therefore, we additionally analyze the results

by splitting the predicted commits into time frames and calculate the prediction

performance for those splits. Figure 5.5 reports the models’ performance over different

time splits as boxplots. A boxplot represents the aggregated performance values of the

corresponding time split over all UP values. The x-axis of the plots represents the

beginning date of the prediction split. Each time split consists of 120 days for ease

of calculation. Here, we only report the performance of the offline and some selected

online experiments, namely Online (0), Online (1), Online (4), Online (8), and Online

(9), to save publication space.

The performance analysis over different time periods of the project in Figure 5.5

shows that the prediction performance fluctuates over time regardless of the prediction

strategy (offline or online). Often the maximum and minimum performance values

are common over all experiments. For example, considering the pd values, all

experiments’ performance fluctuates over time and peaks around November 2015

(i.e., 94% for offline and 90% for online prediction) and March 2017 (i.e., 100%

for all experiments). Considering the pf values, most of the experiments produce

an increasing rate of pf over time. Considering the precision and F1 values, both

offline and online models are able to reach more than 60% rates at first, while they are

inconsistent with regard to the time period, e.g., from 65% to 36% to 54% in terms of

F1.

Online (0) and Online (1) experiments produce low performance at the beginning of the

project compared to the Offline. The reason for such lower performance with the online

145

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
ffl

in
e

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

(0
)

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

(1
)

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

(4
)

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

(8
)

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

O
nl

in
e

(9
)

pd

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

pf

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

precision

20
14

−
03

−
21

20
14

−
07

−
19

20
14

−
11

−
16

20
15

−
03

−
16

20
15

−
07

−
14

20
15

−
11

−
11

20
16

−
03

−
10

20
16

−
07

−
08

20
16

−
11

−
05

20
17

−
03

−
05

0.0

0.2

0.4

0.6

0.8

1.0

F1

Figure 5.5 : Performance of the offline and online experiments over time.

model at the beginning of the project could be the lack of discovered bug-inducing

commits in the training set. When available bug-inducing instances increase over time,

the performance of the online models get better over time. Later, around November

2014, the Online (1), Online (8), and Online (9) models produce better performance

146

than the Offline model. The online prediction produces up to 76% pd rate with Online

(9), whereas Offline produces 63% pd rate.

The performance of the SDP model with the online prediction strategy is
lower at the first year of the project due to low bug-inducing commit ratios
in training. After the first year, the performance achieved with the online
prediction strategy reaches and exceeds the performance achieved with the
offline prediction strategy. Furthermore, adjusting the length of the TT gap and
the UP parameter helps to improve the performance with the online prediction
strategy.

5.6.2 RQ2: To what extent does the train-test gap affect the performance of the

deployed model?

Heatmaps in Figure 5.4 show us an overall view of how the prediction performance

changes with various TT gaps. From the overall results, we observe that the SDP

model performs better when the models are run with larger TT gaps, i.e., 10-month, in

terms of pd, AUC, and MCC, whereas the performance in terms of pf, precision and

F1 is better with the smaller TT gaps, i.e., 1-month.

This picture shows the natural trade-off that occurs between the pd, precision, and pf

in imbalanced datasets (the ratio of bug-inducing instances to total commits in our

training sets is between 14% - 33%) where the majority of instances belongs to the

clean commits. We have already mentioned this trade-off in Section 5.5.1.

The higher pd rates may cause lower precision and higher pf rates, which is not an

ideally expected performance from a predictor. In practice, finding a balance between

the benefits of different assessment metrics is required due to the low possibility of

reaching the theoretically ideal case (high pd, low pf). Eventually, this trade-off

depends on the company’s choice. We assess our SDP models considering the balance

between the pd, precision, and pf. We pick an SDP model that produces as good pd

rates as we obtained with the offline strategy, while it does not lead to a high pf rate.

Furthermore, we observe that TT gap impacts the prediction performance of the SDP

model. Adjusting the length of TT gap would improve the prediction performance by

37% in terms of pd (Online (0) vs. Online (5-6-7) with 120-day UP), 15% in terms of

147

F1 (Online (0) vs. Online (1) with 120-day UP), and 22% in terms of AUC (Online (0)

vs. Online (1) with 120-day UP).

We statistically group the prediction performance achieved with various TT gaps by

applying the Scott Knott ESD analysis to observe whether the impact of different TT

gaps is statistically meaningful and which TT gap values produce the best performance.

Due to different TT gaps, different commits are involved in the test sets of different

online models. For example, when the TT gap parameter is set to 10-month, the

commits used during the prediction are the commits done between January 2015 and

May 2017. When the TT gap parameter is set to 1-month, the commits used during

the prediction are the commits done between April 2014 and May 2017. Therefore,

to make a fair comparison of the effect of various TT gap values on the prediction

performance, we analyze their predictions only on the commits at the intersection of

all test sets.

The Scott Knott ESD analysis is conducted in terms of pd, pf, precision, F1, AUC, and

MCC, and reported in six plots in Figure 5.6. While the x-axis of each plot represents

the TT gap values (zero (0) to 10 months), the y-axis of each plot represents the mean

performance values of the SDP model. The length of the vertical lines represents the

distribution of the performance values over various UP values, while the dot on each

line represents the mean value of the performance. Colors of the lines represent the

statistical grouping among the performance gathered with various TT gaps: if two or

more TT gap lines are the same color, that means there is not any statistical difference

among the performance gathered with those TT gap values.

Colors in Figure 5.6 show that there are at least six statistically different groups, e.g.,

in terms of F1, among the online models regarding the TT gap. The statistically best

performing SDP model is achieved when we keep a 1-month time gap between the

training and test sets, in terms of pd, F1, AUC, and MCC. However, our SDP model

also reaches its highest pf rate with the 1-month TT gap. Besides, the 8-month TT

gap produces a lower pf rate and the best precision. In terms of F1, AUC, and MCC

the 8-month TT gap is among the top three best performing models. Although the

8-month does not give the best pd (78%), considering the trade-off between pd and

148

M
ea

ns

0.
7

0.
8

1 0 3 4 6 8 2 7 10 5 9

pd

Train−test gaps (in months)

M
ea

ns

0.
5

1 0 3 2 4 6 7 5 8 10 9

pf

Train−test gaps (in months)

M
ea

ns 0.
2

8 1 0 10 9 6 4 3 7 5 2

precision

Train−test gaps (in months)

M
ea

ns

0.
3

1 8 0 4 6 10 9 3 7 2 5

F1

Train−test gaps (in months)

M
ea

ns

0.
6

0 1 4 8 3 10 9 7 2 6 5

AUC

Train−test gaps (in months)

M
ea

ns

0.
1

0.
2

1 0 8 4 6 3 10 9 7 2 5

MCC

Train−test gaps (in months)

Figure 5.6 : Scott Knott ESD analysis of performance with different time gaps
between train and test sets.

other measures, 8-month is decided as the most convenient option for this industrial

context.

Keeping a TT gap affects the prediction performance of the SDP model
differently. Some TT gap values degrade the performance, e.g., 5-months
in terms of pd, precision, F1, AUC, and MCC, whereas others improve the
performance, e.g., 8-month in terms of precision. Considering the performance
values and the trade-offs between model assessment measurements, we set the
TT gap to 8-month for the deployed SDP solution.

5.6.3 RQ3: What impact has the update period of the proposed model on the

prediction performance?

Performance values reported in heatmaps (Figure 5.4) show that the effect of the UP

value on the prediction performance would be 18% in terms of pd, i.e., Online (9)

produce 79% pd rate when UP is set to 14-day and 61% when UP is set to 120-day.

Figure 5.7 shows the Scott Knott ESD analysis for all the UP values. Similar to

the Scott Knott ESD analysis in RQ2, each plot in the figure shows the prediction

performance measured by a different performance assessment metric, i.e., pd. The

149

x-axis of each plot represents the UP values, whereas the y-axis of each plot represents

the prediction performances of the proposed SDP model gathered by setting the UP

to a particular value. Please note that the prediction performance with each UP is

aggregated over all the TT gap values.

M
ea

ns

0.
5

0.
6

0.
7

120 14 5 60 10 1 3 7 30 90

pd

Update periods (in days)

M
ea

ns 0.
5

120 5 1 14 10 3 60 7 30 90

pf

Update periods (in days)

M
ea

ns

0.
2

14 60 5 10 7 3 1 30 90 120

precision

Update periods (in days)

M
ea

ns

0.
3

0.
4

14 60 5 120 10 3 1 7 30 90

F1

Update periods (in days)

M
ea

ns 0.
6

14 60 120 90 5 10 1 7 3 30

AUC

Update periods (in days)

M
ea

ns

0.
1

14 60 5 120 10 3 1 7 30 90

MCC

Update periods (in days)

Figure 5.7 : Scott Knott ESD analysis of performance using different update
frequencies.

The statistical groupings in Figure 5.7 show that the impact of the most UP values are

statistically different from each other in terms of pd, pf, and F1. On the contrary, most

of the UP values have the same impact on the prediction performance according to

the precision, AUC, and MCC results, i.e., updating the model every ten, seven, three,

one, 30, 90, or 120 days yields statistically the same performance in terms of precision.

Furthermore, setting the UP parameter to 14-day, 60-day, and 120-day provides quite

promising prediction results compared to the other UP values. Among those best

performing UP setups (14-day, 60-day, and 120-day), 14-day seems a better choice

than others since it is statistically one of the best performing model in five out of six

model assessment measures (66% pd, 23% precision, 35% F1, 60% AUC, 0.15 MCC).

At the same time, it provides a relatively lower pf rate (48%).

150

5.6.3.1 Discussion on RQ3

Before setting a decision on UP for the deployment, we assess the effect of the UP

parameter on the prediction performance considering only the Online (8) model, since

we chose to set the TT gap as 8-month for the deployed model according to the results

of RQ2 (Section 5.6.2). When we consider the performance of the Online (8) model in

Figure 5.4, we observe that there are many UP values that give quite promising results.

In particular, setting UP to 3-day or 14-day reports similar performance with pf of

47-48%, precision of 23-22%, F1 of 34%, AUC 63-66%, and MCC of 0.19. However,

3-day UP gives significantly the best pd (81%) compared to 14-day (78%) according to

additional Scott Knott tests. When we also assess the performance of Online(8) with

UP values of 3-day and 14-day over different time splits, as we did for the TT gap

shown in Figure 5.5, we observe that 3-day has a better performance in the majority of

the splits. Considering the pd values corresponding to March 2015 split, while 14-day

UP produces 54% pd rate, 3-day UP produces 85% pd rate. Therefore, updating the

deployed model every three days is a more convenient choice when considering UP

and TT gaps.

Update period significantly affects the prediction performance of the online
SDP model. Adjusting the UP parameter provides a gain improvement of 18%
in terms of pd. Setting the UP parameter to 14-day leads to one of the best
performing models in terms of pd, precision, F1, AUC, and MCC. However,
when combined with our online model with an 8-month TT gap (in RQ2), 3-day
is the best UP value in terms of pd rates. Therefore, we decide to update the
deployed model every three days.

5.6.4 Effort-aware performance assessment

Effort-aware performance evaluation is another popular method to assess the

performance of change-level SDP models in the field [16,130,132]. The effort-aware

assessment basically reflects the total effort spent on code inspection during the code

review activities.

We conducted an effort-aware assessment of our prediction model using a similar

calculation to prior change-level SDP studies [16,130,132]. Effort-aware assessment

produces a value representing the percentage of total bug-inducing changes that could

151

be detected by examining only 20% of the total lines of code (LOC) during the code

review. Accordingly, we first calculate the benefit-cost ratio for each commit in the

test set using the formula of P(c)/E f f ort(c). P(c) is the probability, between 0 and

1, which represents the bug proneness of a commit c. E f f ort(c) is the total number

of changed lines (added and deleted) in the commit c. Second, we rank the commits

in the test set based on their calculated benefit-cost ratio values in descending order.

Third, we count the number of bug-inducing commits that could be detected when only

20% of the total effort is spent on code inspection (when the commits are inspected in

descending order of their benefit-cost ratio).

The effort-aware assessment is made for each offline and online experiment with

various TT gap and UP values. Figure 5.8 reports the effort-aware performance values

as a heatmap. The x-axis corresponds to the different experiments with various TT gap

values. The y-axis shows the UP values used in the experiments. Values in the heatmap

cells indicate the percentage of the total bug-inducing changes in the software could be

detected by examining only 20% of the total LOC for the corresponding experiment.

233 138 150 127 113 104 79 79 80 65 62 60

194 135 150 124 111 110 85 84 75 71 59 54

196 141 152 143 122 100 90 77 79 71 63 57

189 133 153 129 104 96 85 78 71 67 60 59

194 138 153 141 104 105 82 79 79 78 60 51

215 133 149 128 113 101 90 86 75 75 69 62

187 114 147 134 108 91 85 77 71 75 63 55

205 114 159 144 103 98 93 86 84 75 62 51

186 93 165 136 97 85 77 72 74 72 61 55

211 103 188 157 126 112 105 92 83 70 53 47

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

50

100

150

200

Performance

0.54 0.38 0.45 0.44 0.5 0.51 0.42 0.5 0.55 0.51 0.55 0.59

0.52 0.38 0.45 0.43 0.49 0.54 0.46 0.53 0.51 0.55 0.52 0.53

0.53 0.39 0.46 0.5 0.54 0.49 0.48 0.49 0.54 0.55 0.56 0.56

0.52 0.37 0.46 0.45 0.46 0.47 0.46 0.49 0.49 0.52 0.53 0.58

0.54 0.38 0.46 0.49 0.46 0.51 0.44 0.5 0.54 0.61 0.53 0.5

0.6 0.37 0.45 0.45 0.5 0.5 0.48 0.54 0.51 0.59 0.61 0.61

0.52 0.32 0.45 0.47 0.48 0.45 0.46 0.49 0.49 0.59 0.56 0.54

0.57 0.32 0.48 0.5 0.45 0.48 0.5 0.54 0.58 0.59 0.55 0.5

0.52 0.26 0.5 0.48 0.43 0.42 0.41 0.46 0.51 0.56 0.54 0.54

0.59 0.29 0.57 0.55 0.56 0.55 0.56 0.58 0.57 0.55 0.47 0.47

1 day

3 day

5 day

7 day

10 day

14 day

30 day

60 day

90 day

120 day

Offli
ne

Onli
ne

 (0
)

Onli
ne

 (1
)

Onli
ne

 (2
)

Onli
ne

 (3
)

Onli
ne

 (4
)

Onli
ne

 (5
)

Onli
ne

 (6
)

Onli
ne

 (7
)

Onli
ne

 (8
)

Onli
ne

 (9
)

Onli
ne

 (1
0)

Experiment

U
pd

at
e

pe
rio

d

0.3

0.4

0.5

0.6
Performance

Figure 5.8 : Effort-aware performance.

Values reported for the offline prediction in Figure 5.8 are between 58% and 64%.

While the values reported for online prediction are between 30% and 67%. Similar to

the results reported in Figure 5.4, Figure 5.8 also shows that the online prediction with

152

lower values of TT gap (i.e., Online (0)) produces lower performance, while keeping

higher TT gaps (i.e., Online (8)) leads to improvement in prediction performance.

Furthermore, the values we pick for TT gap (i.e., 8-month) and UP (i.e., 3-day) for the

deployment is one of the best options according to the effort-aware assessment. We

are able to detect 55% of the bug-inducing changes with the Online (8) experiment

and 3-day UP. Also, a Scott Knott ESD analysis of the effort-aware assessment results

supports the findings obtained with the other assessment metrics reported in Sections

5.6.2 and 5.6.3. While 8-month becomes the second best TT gap statistically, 3-day is

the third best one among UP values. Please note that the overall statistical analysis is

not our only consideration for deployment decisions. We also consider the consistency

of prediction performance over time for picking a UP value, as we discussed in Section

5.6.3.1.

5.6.5 Sampling for class imbalance problem

SDP studies often suffer from the imbalanced nature of the collected datasets (e.g.,

[16,80,100]). Usually, the number of buggy data instances, i.e., commits, is much

lower than the number of clean instances. This situation may prevent building an

SDP model that successfully learns to classify future buggy instances with a good

performance.

Our collected dataset for this study also has an imbalanced nature. Accordingly, the

defected commits constitute 14% to 33% of the total commits in training sets. Due

to the imbalanced nature of our data, we want to observe if we could obtain better

prediction performance values if we balance the ratio of commits in our training sets.

We would like to note that, inspired by a recent study [168], we analyze the evolution

of the imbalanced ratio of training sets over time. Our longitudinal analysis shows that

after April 2014, the imbalanced ratio of the training sets is fixed to the range of 28%

- 33%. Accordingly, we apply two data sampling techniques that are commonly used

for improving the SDP performance: under-sampling and SMOTE (Synthetic Minority

Oversampling Technique (SMOTE) [145]). Under-sampling randomly removes clean

commits until the sample sizes of clean and bug-inducing commits are equal. On

the other hand, SMOTE creates synthetic bug-inducing commits while also randomly

153

removing the clean ones. We report our prediction performance values obtained with

data sampling in our online Appendix [188].

The prediction results with the balanced training sets show that applying data sampling

affects our SDP model’s prediction performance inconclusively for some TT gap and

UP values. Data sampling does not provide an obvious advantage over no sampling in

our study. Also, none of the two sampling techniques increases the performance for

our deployed model. For these reasons, we did not change our sampling strategy for

our deployed setup. Particularly, under-sampling increases the pd rates by up to 48%

of SDP models trained with larger UPs, i.e., 90-day and 120-day. On the other hand,

under-sampling also causes a decrease, up to 26%, in the pd rates of some models

with small UPs. The cases with larger UP values have more imbalanced training

data compared to other cases with smaller UPs due to the lack of updating training

data for a longer time. Therefore, applying under-sampling on highly imbalanced

training sets improves the pd rates in our study. Nevertheless, under-sampling

significantly increases pf rates up to 65%, and these rates are not applicable in practice.

Since under-sampling increases both correct and wrong classification rates, prediction

performance according to other measurements, i.e., F1, does not change much.

On the other hand, SDP models trained by applying SMOTE produce lower pf rates,

i.e., 22%, which is the desired situation. But, using SMOTE during training is also

not our choice due to decreasing performance values in pd and F1. SDP models with

SMOTE produce up to 30% lower pd rates compared to models with no sampling.

5.7 Threats to Validity

Internal validity: During our data collection, we ensure that we correctly identified

the bug-inducing commits of the pilot project and cover all of them. We apply the

state-of-the-art methodology (SZZ) for determining the bug-inducing commits using

the issues only reported in ‘bug’ category in JIRA. Besides, the team lead at the

industrial side manually examined the commit messages to capture bug-fixing commits

that were not linked to any bug issue. Moreover, we filtered out the non-development

software changes from the collected dataset to ensure the data quality.

154

Construct validity: The proposed SDP model is built using the state-of-the-art process

metrics, which are listed in Table 5.1 and their latent features of them. Those process

metrics are widely used in SDP studies, accepted as good indicators of bugs at

change-level prediction models (i.e., [16,27]) and quantifies the software changes from

various aspects; size, history, diffusion, and experience of the committer. This metric

set was also assessed by the research team of our industrial partner in order to adjust

the metric set according to the structure of the pilot project. Moreover, we included

the latent features of the process metrics into the model building process in order

to capture potentially hidden, underlying information that the base metrics set may

not capture. Latent features are extracted using Non-negative Matrix Factorization

(NNMF) [160]. NNMF is used to learn low-rank approximations of the given data,

and it is a well-known technique used for pattern recognition tasks [156] and building

recommendation systems [157]. SDP models reported in this study are built with

the NB algorithm, which is widely applied in many SDP studies and proved to be

successful [50]. Prototype SDP models built with NB also perform better than the

prototypes built with the RF and XGBoost algorithms.

Bug-inducing software changes are detected with the SZZ algorithm, which is the

state-of-the-art way to detect the bug-inducing changes of software. We implemented

the original version of SZZ [116]. SZZ detects buggy changes using a heuristic

approach, and hence it may cause mislabeled changes. Various implementations of

SZZ are used by different researchers [149]. However, according to Fan et al. [151], the

original SZZ [116] does not yield a significant performance reduction in change-level

SDP due to the noise in the change labels. Nugroho et al. [189] also investigates two

different git diff commands, i.e., Myers and Histogram in SZZ and discuss that the

type of diff command might have an impact on the results of SZZ. We use the default

git diff command Myers. Moreover, we ensured the data quality by asking the team

at the industrial side to go through all the commits manually. It is our future research

direction to analyze different diff commands.

External validity: We use the online prediction strategy to assess the design decisions

required for the deployment of the SDP model. The deployment decisions we made

in our study are specific to the characteristics of the pilot project selected in this

155

work. Thus, the findings cannot be generalized to other software projects, but the

methodology can be transferred to other settings when deploying an SDP prototype.

Conclusion validity: For comparing different models’ performance in Sections 5.6.2

and 5.6.3, we applied the Scott-Knott Effect Size Difference (ESD) test implemented

by Tantithamthavorn et al. [82]. This test provides a statistical comparison among

the performance achieved by different variations of the online prediction models.

We made sure the test sets are the same across different models’ assessments, and

report according to the statistically significant differences only. Moreover, we chose

well-known performance assessment measures widely used in SDP literature: pd, pf,

precision, F1, AUC, and MCC [105].

5.8 Lessons Learned

During our research, we learn that deploying a change-level SDP model into an

industrial context requires rethinking and redesigning the traditional techniques that

have so far been used in the SDP research. Besides, communication and understanding

the industrial perspective are keys of proposing and deploying an SDP solution to

an industrial team. In this section, we share our learned lessons from practicing

a change-level SDP model in an industrial context. Key points to take away from

our experience and key suggestions to build future change-level SDP models in our

industrial context are summarized in sub-sections.

5.8.1 Mind the difference between industrial and academic views

The perspectives of industrial and academic teams might be different from each other

in research partnerships [48]. Even though the software engineering research field

mostly focuses on practical problems, it is not always easy to look at the problem from

an industrial/practical perspective by academic researchers and vice versa. Here, we

share our experience that would help other researchers while practicing a change-level

SDP model in an industrial setting.

Deploying a consistently successful, user-friendly, and trustable SDP model is not

a smooth task. It requires the involvement of the industrial side during different

stages of the partnership, i.e., data collection to deployment, as situations might occur

156

where context-specific information is needed, such as project and team development

structure. For instance, during the prototype assessment, the expectations from a

prediction model regarding its performance could be different between academia and

industry. While academia tends to value the prototypes that produce higher values of

performance values (i.e., pd), the industry might consider many other factors before

having a decision on a prototype. Instead of solely valuing the prototypes that produce

higher performance values, they also consider the time/cost of the model learning. For

instance, using a lightweight machine learning technique during the model training and

updating is very crucial from the industrial perspective. Also, as we report in Section

5.5.1, the trade-off between pd and pf rates is also considered carefully by the industry.

Practitioners would prefer a model that does not produce the best pd rate but have

acceptable false alarm levels.

The usability and interpretability of the prediction output are other factors that

academia and industry may have different perspectives. A researcher may find it more

appealing for the integrated SDP solution to list the prediction results from multiple

SDP prototypes, as she focuses on the continuous improvement of the SDP model.

However, in such a case, a practitioner in the development team would be confused by

seeing multiple prediction results for his/her changes. Therefore, for real-life practice,

synchronization of both perspectives is crucial.

The deployed prediction model should also “keep up with the fast pace of

development” [2]. Training a predictor and integrating it into the development cycle

may not lead to consistent prediction performance. The need for future updates in

the deployed solution may occur. Therefore, deployment is not a one-step task. It

requires multiple rounds of negotiations between academic and industrial teams to see

the needs of practitioners, and decide on the technical details. Active communication

is crucial for teams to be aware of the expectations of both sides. Regular meetings and

demonstrations of the current work as it matures are essential to be on the same page.

Those meetings allow us to receive the practitioners’ feedback on the functionalities

of the deployed solution, as well as helping practitioners to picture the capabilities and

limits of the SDP solution.

157

Moreover, the cooperated company’s interest in the research and development

activities, and the interest and enthusiasm of team members on recent research trends

are other key factors that improve the communication and cooperation between the two

sides. More specifically, allocating resources such as equipment, working space, and

team members to support academics while working in the deployment are substantial.

5.8.2 Building an SDP solution requires full commitment of the industrial partner

During our research project, we faced several challenges from data collection

to deployment. Integrating a stable and sustainable SDP solution into practice

occasionally requires manual interventions and insights from experienced developers

of the software project.

The team at the industrial side helped our research during data collection by reviewing

the collected commits to assure the data quality. More particularly, they manually

marked the bug-fixing commits that cannot be linked automatically to the bug reports

collected from JIRA, checked SZZ results, and matched the multiple user accounts

used by a single developer during the development. We decided to filter bulk,

merge, and test module-related commits with the discussions at the meetings with the

industrial side. Another benefit of holding regular project meetings is that the expertise

of the developer team on the project provides us the early notice of the situations

that may cause problems. For example, at the very beginning of the research, we

realized that we collected the commits from some branches of the project instead of

all branches. Moreover, some project-specific challenges cannot be overcome without

the industrial team’s expertise, i.e., interpreting empty file names or file references to

external projects in the commit logs, accessing missing bug reports, matching multiple

usernames belongs to the same user, and differentiating the non-development commits.

Therefore, we think the development team of the software project, which is going to

use the SDP model, must be committed to be actively involved in every step of the

research project in order to monitor and give feedback to the research team. Otherwise,

the model built and assessed may resemble a prototype rather than a real recommender

system for the benefit of the developers.

158

5.8.3 Context specific factors impact the performance of the deployed SDP model

The deployment related findings that we report in this study are specific to the

chosen pilot project’s context. Although our experience would be insightful for other

practitioners, each context requires its own analysis and consideration of the team’s

development practices.

The deployed SDP solution with a TT gap of 8 months and a UP of 3 days achieves

around 81% pd rate and 47% pf rate. However, the deployment design decisions has

a varying effect on the prediction performance, as our online models show. Avoiding

the model learning from the noisy (undiscovered bug-inducing commits) data (with a

TT gap) would improve the pd rate by 37%, while updating the prediction model with

recent development activity (with UP) affects the pd rate by 18% (see Figure 5.4).

We observe that not only the TT gap and UP parameter, but also other project

characteristics significantly change the performance of an SDP model. Considering

the project’s development intensity over time, i.e., number of daily commits, number

of active contributors at any time, or the average time required for fixing bugs would be

helpful to set up a successful SDP model in practice for a software project. In fact, the

characteristic of a software project follow different patterns at different times [133].

Therefore, the factors such as bug life cycle characteristics and the development

activity patterns also cause performance fluctuations over time splits. Our empirical

analysis shows that those fluctuations exist regardless of whether an online or offline

prediction is used (in Figure 5.5). For example, during 2014 - 2015 there are bulks

of bug-inducing and clean commits in the dataset (in Figure 5.1) because of active

development and testing process due to the initial productization. It is possible that

these bulk data cause the performance fluctuation of the SDP model. Such active

development and testing periods are inevitable since the team still receives large

requests from customers and increases the development activity by also increasing

the number of developers involved in the team. So, future fluctuations are also highly

possible in deployed model’s prediction performance. Therefore, the time gaps, update

frequencies, development activity and bug-fixing and bug-introducing patterns, and

159

more contextual factors should also be considered in building a deployed model in any

industrial context.

5.8.4 Focus on user-centric evaluations

Until deployment, the prediction performance of the SDP models is evaluated with

respect to the correctness aspect [40], namely pd, pf, precision, F-measure, and MCC.

Besides evaluating the SDP models with those correctness measures, it is also critical

to evaluate a model from a user-centric point of view, i.e., the representation of the

prediction results should provide trustworthiness to the developers [40]. Previous

research also indicates the importance of producing the actionable prediction outputs

in order to gain the user’s trust in defect prediction solutions [29].

The proposed SDP solution is integrated into the development pipeline before the

code review process. The development team has a reviewer group that often involves

two or three developers. The essential aim of the deployed SDP solution is to assist

the reviewers during the code review process. The system, therefore, provides a

push-based notification after every commit. After a developer commits her changes,

the prediction model is triggered and produces a prediction output for her commit. The

code reviewers often use that feedback on the commits to assist their review process.

The leaders of the development team remark that they would prefer to see a bug

risk probability on the commits instead of giving a binary output that indicates the

committed changes are buggy or clean. Hence, we also provide the bug-proneness of

a commit with a probability value of the prediction output. In this way, the defect

predictor would turn into a system that supports developers during the code review

activity by giving soft feedback on the bug-proneness of their code changes.

Furthermore, the development team leaders also state the reviewer quality might affect

the usability of the prediction outputs. For example, the SDP model produces a

bug-prone commit alarm. But the reviewer might not be able to interpret the SDP

model’s prediction, i.e., she may be a newcomer and has not much expertise on the

project, which makes it harder to interpret the prediction outputs for the code review

process. Therefore, we focus on improving the interpretability of the prediction

160

output to provide more actionable predictions. We enrich the prediction output

with by-products, e.g., process metrics calculated for the software changes. For the

development team, these by-products are considered as useful as the defect prediction

result itself. Since our SDP solution measures a software change from size, diffusion,

historical, and experience of the committer aspects, enhancing the prediction report

by including those metrics’ values leads developers to a better understanding of the

characteristics of the bug-prone change.

We integrated all types of SDP approaches (i.e., general model, personalized model,

and selected model) proposed during the prototyping phase (Section 5.3.2) into the

development environment. During the early stages of the deployment, while testing

the deployed SDP models, the team states that it is hard to examine the multiple

prediction results gathered from different SDP models, especially when any two

models’ predictions contradict with each other. Accordingly, the team prefers to see

only one SDP model’s prediction results, which is the general model’s prediction, and

others’ outputs are removed from the feedback.

As future work, the software team lead also wants to see an information dashboard that

shows the core developers who contribute the most to the project, historical changes’

and their bug-inducing probabilities, and the distributions of the process metrics over

these historical changes. The usefulness of the SDP solution would be higher if this

additional information is also provided to the developers.

5.8.5 Trust the algorithm choice in the offline setting

In our research project, we initially built prototypes utilizing various machine learning

algorithms: Naive Bayes (NB), Extreme Gradient Boosting (XGBoost), Random

Forest (RF) and Logistic Regression (LR). After assessing the built prototypes using

the offline model validation strategies (cross-validation and offline time-sensitive), we

picked the best performing classifier to use in the deployment phase. We use NB

during deployment since it provides 70% pd rate, while other classifiers provide pd

rate around 50%. Still, we could ask whether another classifier may perform better in

the online prediction setting than NB.

161

Our online prediction experiments using XGBoost classifier show that XGBoost leads

our SDP model to perform similarly both in offline and online settings, which is

still lower than the performance values achieved with NB. Therefore, we suggest

SDP practitioners who want to decide between classifiers assess the classifiers’

performance with an offline evaluation and later stick to the best performing one in

the online scenario. It would be more practical to assess various classifiers using

a cross-validation approach rather than evaluating them in a more complex online

prediction design.

5.8.6 Deployment is a continuous development

Machine learning models also require maintenance and continuous development, as

well as a typical software product. It is not much possible to receive successful

outputs from the initially deployed prediction models forever because the development

activity pattern of the project may change. To sustain the stability and accuracy of

the SDP solution, an examination may be required periodically. For example, we

decide on a set of deployment design decisions for now, i.e., TT gap and UP. But

those design decisions might require reconsideration in the future due to the potential

change of development patterns over time. Moreover, other factors of the prediction

model may also need to be reconsidered in the future, such as process metrics (Table

5.1). For example, the committer’s recent experience (REXP) is calculated considering

the recent three months of development history. The calculation rule of the REXP

metric was decided by the team lead intuitively, considering the average contribution

history of developers. However, in the future, depending on the developer contribution

patterns, its calculation rule may require a re-consideration. Besides, we utilize all

the historical development activity from the beginning of the project until the TT gap.

However, the number of commits in the project’s history may be too many in the future

and may prevent the SDP model update itself in a considerable amount of time. In

fact, using all historical commits may cause a performance drop in the future, since the

characteristics of the recent commits may differentiate from the oldest commits [167].

Furthermore, we integrate additional SDP models to obtain a more successful SDP

solution in the long run. During the prototyping phase, we propose three different

162

SDP approaches (Section 5.3.2) and pick the best performing one (GM) to deploy

in the real development environment while the other two models (SM and PM) are

still in the test phase. GM is more robust and provides more accurate results. The

development team wanted a consistent prediction model but also wanted to integrate

the other models into a test branch of the development environment since the other

models also have promising results, i.e., the personalized model performs quite well

for some developers. Hence, we integrated the SM and PM as beta models, as well

as integrated the mature one, GM, as the default model. As future work, we plan

prediction outputs of the SM and PM will be optional that can be on/off depending on

the choice of the code reviewer.

5.9 Conclusion

Applying software defect prediction (SDP) in practice is a challenging process.

Producing accurate, consistent, and useful predictions depends on many aspects such

as data availability, characteristics of the project, the development team habits, and

representation of the prediction output. This paper reports our experience in deploying

a change-level SDP model into our industrial partner’s software project. During

deployment, we investigate two factors that impact the prediction performance of

the deployed model: 1) The noise in training data due to the undiscovered, i.e.,

mislabeled, bug-inducing commits at the prediction model training time and 2) The

model update (re-train) period with new commits. We empirically analyze the impacts

of those factors on the prediction performance using an online prediction strategy

that simulates the real-life development life cycle, considering the actual labels of the

training instances at the model training time, filtering the time period from the training

set that potentially has noise, and updates the model periodically with new commits.

Our empirical analysis shows that keeping an unused time period between the training

and test commits impacts the prediction performance by 37% in terms of probability

of detection (pd). On the other hand, the update cycle of the SDP model impacts

the pd rate by 18%. We pick the best convenient combination of the investigated

factors considering the accuracy and the consistency of prediction performance for

deployment. Eventually, the deployed solution updates the predictor every three days

163

by utilizing the commits done until eight months prior to model re-training time and

produces 73% pd and 47% pf rates. Furthermore, we observe that the SDP prototype

built with an offline prediction strategy represents the real-life prediction performance

of the predictor depending on deployment settings and the stage of the project.

We further elaborate on the lessons learned through this deployment process, consid-

ering the academic and industry perspectives, research and real-life environments, and

the interpretability, accuracy, trust aspects of a recommender system. We would like to

suggest to researchers who aim to practice change-level SDP in an industrial context

that it is crucial to understand the team and project environment for designing a better

prediction solution. Analyzing the application domain, i.e., the commit release cycle of

the project, development habits of the team, practitioners’ expectations from the SDP

model are also crucial for a consistently good deployment performance. Maintaining

transparent communication with the practitioners on the technical details, i.e., such as

classification algorithm and metrics used during the model training, and representation

of prediction outputs, leads to a satisfactory deployment. Also, from a technical point

of view, building a change-level SDP in an industrial context needs to be analyzed in

detail regarding the bug-fixing durations, labeling the data, and re-training the model

with new commit data.

As future work, we continue working with our industrial partner to address their needs

regarding the visualizations of the model outputs and byproducts, model usefulness,

and increase the trustworthiness of our model in developers’ eyes. In particular,

we would like to focus on the fluctuations of the model performance. A better

understanding of the reasons for fluctuations would help us to improve the accuracy

of the predictions. Furthermore, an adaptive SDP model that has an awareness of the

changing characteristics of the development life-cycle (i.e., number of daily changes)

and bug life-cycle (i.e., the time required to fix a bug) are other future directions of ours.

Besides, our assessment of recent de-noising techniques [190] to defeat the effect of

noisy labels on the prediction performance yields promising results. Hence, adopting

de-noising methods as an alternative to adjusting the TT gap is another plan.

164

6. FINAL REMARKS

In this thesis, we empirically investigate the people factors in SDP and the applicability

of SDP models into an industrial setting. Thesis studies consist of four parts.

Specifically, in the first part (Chapter 2), our aim is to explore the effect of community

smells on the prediction of defects in software systems. Our findings on ten

open-source projects show that incorporating the community smell patterns of the team

into the model training phase contributes to the prediction of defect-prone software

classes. Performance values of base SDP models that utilize the state-of-the-art

metrics, i.e., static code metrics, the number of developers touched a class, code

churn, and the developer scattering. However, the other smell related metric, i.e., the

code smell intensity, which is found to occur together with the community smells,

improves the base models’ performance values more than the community smells. The

higher contribution of code smell intensity metric on the prediction of defective classes

and the higher calculation cost of community smells (i.e., requires communication

archives of the team) leads us to other ways of people modeling. Therefore, we direct

our research towards the personalized SDP approach, which does not require mining

communication channels such as mailing archives. Instead, personalized models are

built by utilizing metrics measured from the source code repositories that represent the

development skills of people, like code smell intensity metrics.

In the second part of the thesis (Chapter 3), we conduct an extensive investigation of

personalized approach SDP at change-level in six open-source projects. Our analysis

shows that personalized models are quite promising since they outperform the general

models for the majority of developers. However, there are factors that affect the choice

of personalized over general models, such as performance evaluation criteria, model

building algorithms, and development characteristics.

The third part of the thesis (Chapter 4) also reports the investigation of change-level

personalized models but in an industrial context. Analysis in the industrial context

165

shows that a base personalized approach that utilizes only the state-of-the-art process

metrics is not superior to the general approach. However, personalized models

could reach the performance of general models when they utilize latents of process

metrics, topic models of commit messages, and log filtering. Although the prediction

performance values of personalized models reach quite well performances in the offline

research environment, deployment of personalized models into the real development

environment could not be realized due to the high turnover rates of the development

team.

The fourth part of the thesis (Chapter 5) focuses on the deployment of the general

SDP model proposed in Chapter 4 that utilizes the process and latent metrics, and the

log filtering approach. The deployment challenges regarding the differences between

offline and online environments lead us to completely redesign our model evaluation

approach to simulate the real development data flow. Our online model evaluation

shows that the model performance in an offline environment could represent the

real-life performance after the first year of the project. On the other hand, deployment

decisions such as keeping a time gap between the model train and prediction sets to

prevent learning the model from noisy data and the model update cycle have an effect

on the prediction performance. Moreover, we observe the importance of factors that

affect the trustability, usability, actionability of the prediction outputs.

6.1 Contributions of the Thesis

The people effect in SDP has been studied little compared to other aspects of prediction

models such as algorithms and data. Therefore, this thesis makes a rich contribution

to the field with a comprehensive investigation of people factors in SDP with a major

focus on personalized SDP models.

As far as we know, our initial analysis (Chapter 2) regarding socio-technical factors

and the predictability of bugs is the first research that incorporates the community

smell patterns into the SDP. The findings of this study provide insights to researchers

and practitioners on the predictive contribution of community smells in SDP compared

to the contribution of other state-of-the-art metrics. Also, another significant output of

this research is a publicly available SDP dataset [76] that includes community smell

166

patterns of software classes as well as including other state-of-the-art metrics such as

code smell intensity and static code metrics. Moreover, we discuss the challenges of

the community smell detection process through the CodeFace4Smells tool [55] which

mines the software code repository and the mail archives of the organization. That

also would lead the community in their decisions regarding practicing the community

smells in their recommendation systems.

Furthermore, our research on the personalized SDP, reported in Chapter 3 and 4, is

very comprehensive compared to existing personalized SDP studies. Our empirical

setup includes a larger context compared to prior studies, i.e., 222 developers

from open-source and six developers from an industrial project, while prior studies

analyze only ten developers from open-source projects.Also, that means our study

is the first one that investigates the personalized SDP in an industrial context. In

addition to validating prior findings by demonstrating that the personalized SDP

could be successful over the traditional approaches, we also explore the development

characteristics that lead to the superiority of personalized models. Our analysis shows

that the improvement of SDP models with various data sources and statistical methods

can also support researchers and practitioners in situations where the available data is

scarce and noisy.

SDP studies that focus on practical applicability and/or industrial cases are relatively

few than those that focus on offline studies and/or open-source context. This thesis

does not just evaluate the personalized approach in an industrial context but also

reports the deployment experiences on an SDP solution designed for our industrial

partner (Chapter 5). Since the online, i.e., real life, software data includes noise due to

existence of bugs [29] and the deployed models entail re-training due to non-stationary

nature of software [191], we point out the impact of this noise and the model update

cycle on the real-life prediction performance using a rigorous online prediction design.

Further, we share our insights on the actionability and the explainability of the

prediction outputs and our industrial collaboration experience. Our research would

guide SDP practitioners in managing their deployment decisions and researchers in

performing research projects with the industry.

167

6.2 Recommendations and Feature Work

Incorporating people, which is one of the important aspects of software development,

into SDP models is rewarding in defect detection performance depending on the

selected ML algorithm or developer’s development characteristics. While we are

suggesting practitioners to consider the personalized approach in their settings to

obtain higher detection rates, this field also needs more research regarding the

underlying factors that may affect the performance and applicability of personalized

SDP models.

One other future research direction for personalized models is profiling developers in

a transferable way. The current state-of-the-art personalized SDP models utilize only

the developer’s development activity in a single project that the SDP models are built

for. However, such an approach require training of a model for each software project

that the developer contributes. Instead of mining project-specific developer attributes

through their development history, creating a more general and transferable profiles

for developers would be in the future of the personalized SDP approaches. Collecting

developer data using their public software development profiles (like Github) or mining

their activities from open-source projects that they contribute would be some options

to create developer profiles. Building transferable developer profiles would overcome

the cold-start problem which occurs when a new developer is joined to the team

[5]. Besides utilizing public activities of developers, cross-project personalized SDP

models would be an in-company solution in such a case when a developer joins a new

project within the company.

Another future direction is to target groups of developers instead of targeting

individuals as in the personal approach, or the whole team as in the traditional

approach. Prior studies [36,53] and also this thesis (Section 3.5.5) already show the

success of collective personalized models that are built for a developer by learning from

other developers’ development activities in addition to the developer’s own history.

Besides, segmentation of customers according to their profiles by measuring their

interests, behaviors, geographic, demographic, and psychological data, and having

specific strategies to those segments are widely used applications in data analytics

168

systems to gain business advantages [192,193]. The SDP field also would benefit from

the segmentation of developers according to their profiles to gain more accurate and

satisfying prediction results. There are different ways of grouping developers that are

open to research. For example, groups can be shaped according to the development

activity characteristics, e.g., developers’ experience in the project, or by patterns of

how developers’ different characteristics contribute to defect estimation.

As the software engineering community also state [194], domain analysis is very

crucial in the software data analytics. Therefore, for future studies, especially the ones

targeting practical application of software recommendation models, we recommend

validating prototypes using online prediction setups and examining the project’s

context, team’s expectations, perspective, and practices to comprehend the factors that

affect the model’s performance and usability. For example, during conducting data

mining and ML activities to build an SDP model, discussing the success criteria of

the organization is important, i.e., false alarms are more tolerable in mission-critical

systems [57]. Also, understanding the developers’ practices, perceptions, and the

continuous development structure of the organization is important to model useful and

proactive recommendation systems [2]. For example, the developers with different

roles or experiences have different preferences on using an SDP tool (i.e., more

experienced developers do not want to use a tool while testers are more willing to

use), on the success criteria of the tool (i.e., some can tolerate false alarms better than

others), and the development context that the tool should be integrated (i.e., integration

with IDE or code review tools) [195].

The rapid evolution of software systems would quickly increase the size and

complexity of the software, as well as make its maintenance activities complicated [2].

Therefore, obtaining a consistent prediction performance from an SDP tool over time

may be challenging. Further research on the non-stationary nature of the software and

the defect patterns is needed.

Predictive success of SDP models has been reported many times [50,98,108,143] and

it is still a major concern of the researchers. However, the different perceptions of

individuals make the interpretability of models more critical [42,196]. For example,

169

developers want to see actionable outputs from SDP tools instead of receiving

just a binary prediction value (defected or clean) [197]. Therefore, recently, the

explainability of recommendation systems draw the required attention from the

software research community [198] as well as other communities that focus on building

AI/ML based solutions [199]. The state-of-the-art status in the explainability of SDP

models is enriching the output of models with the contribution rates of metrics to

the prediction to help developers to understand why the defect occurred, and also

highlighting the code lines that are blamed for the defective development to give

developers a start point for defect haunting [197]. Future of SDP studies may involve

integrating the domain knowledge into explainability of models [42]. For example,

tailoring the explanations in the prediction outputs according to the individual or

group characteristics would be helpful, i.e., new beginners may need more direction in

outputs.

170

REFERENCES

[1] Tian, J. (2005). Software quality engineering: testing, quality assurance, and
quantifiable improvement, John Wiley & Sons.

[2] Kamei, Y. and Shihab, E. (2016). Defect prediction: Accomplishments and
future challenges, 2016 IEEE 23rd international conference on software
analysis, evolution, and reengineering (SANER), volume 5, IEEE,
pp.33–45.

[3] Malhotra, R. (2019). Empirical research in software engineering: concepts,
analysis, and applications, Chapman and Hall/CRC.

[4] Dsouza, M. (2018). 5 ways artificial intelligence is
upgrading software engineering, https://hub.packtpub.com/
5-ways-artificial-intelligence-is-upgrading-software-engineering, date
retrieved: 09.07.2019.

[5] Gasparic, M. and Janes, A. (2016). What recommendation systems for software
engineering recommend: A systematic literature review, Journal of
Systems and Software, 113, 101–113.

[6] Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E.,
McCarthy, J. and Tobin-Hochstadt, S. (2015). The racket manifesto, 1st
Summit on Advances in Programming Languages (SNAPL 2015), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Bader, J., Scott, A., Pradel, M. and Chandra, S. (2019). Getafix: Learning to fix
bugs automatically, Proceedings of the ACM on Programming Languages,
3(OOPSLA), 1–27.

[8] Ali, S., Briand, L.C., Hemmati, H. and Panesar-Walawege, R.K. (2009).
A systematic review of the application and empirical investigation
of search-based test case generation, IEEE Transactions on Software
Engineering, 36(6), 742–762.

[9] Catolino, G., Palomba, F., Zaidman, A. and Ferrucci, F. (2019). Not all bugs
are the same: Understanding, characterizing, and classifying bug types,
Journal of Systems and Software, 152, 165–181.

[10] Moser, R., Pedrycz, W. and Succi, G. (2008). A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction,
Proceedings of the 30th international conference on Software engineering,
ACM, pp.181–190.

171

[11] Malhotra, R. (2015). A systematic review of machine learning techniques for
software fault prediction, Applied Soft Computing, 27, 504–518.

[12] Shull, F., Basili, V., Boehm, B., Brown, A.W., Costa, P., Lindvall, M., Port, D.,
Rus, I., Tesoriero, R. and Zelkowitz, M. (2002). What we have learned
about fighting defects, Software Metrics, 2002. Proceedings. Eighth IEEE
Symposium on, IEEE, pp.249–258.

[13] Menzies, T., Greenwald, J. and Frank, A. (2007). Data mining static code
attributes to learn defect predictors, IEEE transactions on software
engineering, 33(1).

[14] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S. (2012). A systematic
literature review on fault prediction performance in software engineering,
IEEE Transactions on Software Engineering, 38(6), 1276–1304.

[15] McCabe, T.J. (1976). A complexity measure, IEEE Transactions on software
Engineering, (4), 308–320.

[16] Kamei, Y., Shihab, E., Adams, B., Hassan, A.E., Mockus, A., Sinha, A. and
Ubayashi, N. (2012). A large-scale empirical study of just-in-time quality
assurance, IEEE Transactions on Software Engineering, 39(6), 757–773.

[17] Ostrand, T.J., Weyuker, E.J. and Bell, R.M. (2010). Programmer-based fault
prediction, Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, pp.1–10.

[18] Radjenović, D., Heričko, M., Torkar, R. and Živkovič, A. (2013). Software
fault prediction metrics: A systematic literature review, Information and
software technology, 55(8), 1397–1418.

[19] Hall, G.A. and Munson, J.C. (2000). Software evolution: code delta and code
churn, Journal of Systems and Software, 54(2), 111–118.

[20] Hoang, T., Dam, H.K., Kamei, Y., Lo, D. and Ubayashi, N. (2019). DeepJIT:
an end-to-end deep learning framework for just-in-time defect prediction,
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), IEEE, pp.34–45.

[21] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K. and Murphy, B.
(2010). Change bursts as defect predictors, 2010 IEEE 21st international
symposium on software reliability engineering, IEEE, pp.309–318.

[22] Bird, C., Nagappan, N., Gall, H., Murphy, B. and Devanbu, P. (2009). Putting
it all together: Using socio-technical networks to predict failures, 2009
20th International Symposium on Software Reliability Engineering, IEEE,
pp.109–119.

[23] Caglayan, B., Bener, A. and Koch, S. (2009). Merits of using repository metrics
in defect prediction for open source projects, ICSE Workshop on Emerging
Trends in Free/Libre/Open Source Software Research and Development,
pp.31–36.

172

[24] Guo, L., Ma, Y., Cukic, B. and Singh, H. (2004). Robust prediction of
fault-proneness by random forests, 15th international symposium on
software reliability engineering, IEEE, pp.417–428.

[25] Khoshgoftaar, T.M., Allen, E.B., Jones, W.D. and Hudepohl, J. (1999).
Classification tree models of software quality over multiple releases,
Software Reliability Engineering, 1999. Proceedings. 10th International
Symposium on, IEEE, pp.116–125.

[26] Selby, R.W. and Porter, A.A. (1988). Learning from examples: generation
and evaluation of decision trees for software resource analysis, IEEE
Transactions on Software Engineering, 14(12), 1743–1757.

[27] Misirli, A.T., Shihab, E. and Kamei, Y. (2016). Studying high impact
fix-inducing changes, Empirical Software Engineering, 21(2), 605–641.

[28] Pascarella, L., Palomba, F. and Bacchelli, A. (2019). Fine-grained just-in-time
defect prediction, Journal of Systems and Software, 150, 22–36.

[29] Tan, M., Tan, L., Dara, S. and Mayeux, C. (2015). Online defect prediction for
imbalanced data, 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, IEEE, pp.99–108.

[30] Mockus, A. and Weiss, D.M. (2000). Predicting risk of software changes, Bell
Labs Technical Journal, 5(2), 169–180.

[31] Posnett, D., D’Souza, R., Devanbu, P. and Filkov, V. (2013). Dual ecological
measures of focus in software development, 2013 35th International
Conference on Software Engineering (ICSE), IEEE, pp.452–461.

[32] Lee, T., Nam, J., Han, D., Kim, S. and In, H.P. (2016). Developer Micro
Interaction Metrics for Software Defect Prediction, IEEE Transactions on
Software Engineering, 42(11), 1015–1035.

[33] Calikli, G. and Bener, A. (2015). Empirical analysis of factors affecting
confirmation bias levels of software engineers, Software Quality Journal,
23(4), 695–722.

[34] Zimmermann, T. and Nagappan, N. (2008). Predicting defects using network
analysis on dependency graphs, Proceedings of the 30th international
conference on Software engineering, pp.531–540.

[35] Tamburri, D.A., Kruchten, P., Lago, P. and Van Vliet, H. (2015). Social debt in
software engineering: insights from industry, Journal of Internet Services
and Applications, 6(1), 10.

[36] Jiang, T., Tan, L. and Kim, S. (2013). Personalized defect prediction, Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Confer-
ence on, IEEE, pp.279–289.

173

[37] Horling, B. and Kulick, M. (2009). Personalized Search for every-
one, Official Google Blog, https://googleblog.blogspot.com.tr/2009/12/
personalized-search-for-everyone.html, date retrieved: 29.08.2021.

[38] Tucker, C.E. (2014). Social networks, personalized advertising, and privacy
controls, Journal of marketing research, 51(5), 546–562.

[39] Aggarwal, C.C. et al. (2016). Recommender systems, volume 1, Springer.

[40] Avazpour, I., Pitakrat, T., Grunske, L. and Grundy, J. (2014). Dimensions
and metrics for evaluating recommendation systems, Recommendation
systems in software engineering, 245–273.

[41] Gomez-Uribe, C. (2012). Challenges and limitations in the offline and online
evaluation of recommender systems: A Netflix case study, Proceedings
of the Workshop on Recommendation Utility Evaluation: Beyond RMSE,
CEUR Workshop Proceedings, volume910, Citeseer, p. 1.

[42] Mori, T. and Uchihira, N. (2019). Balancing the trade-off between accuracy
and interpretability in software defect prediction, Empirical Software
Engineering, 24(2), 779–825.

[43] Altinger, H., Herbold, S., Schneemann, F., Grabowski, J. and Wotawa, F.
(2017). Performance tuning for automotive software fault prediction, 2017
IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, pp.526–530.

[44] Yan, M., Xia, X., Fan, Y., Lo, D., Hassan, A.E. and Zhang, X. (2020).
Effort-aware just-in-time defect identification in practice: a case study
at Alibaba, Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp.1308–1319.

[45] Kang, J., Ryu, D. and Baik, J. (2021). Predicting just-in-time software defects
to reduce post-release quality costs in the maritime industry, Software:
Practice and Experience, 51(4), 748–771.

[46] Khanan, C., Luewichana, W., Pruktharathikoon, K., Jiarpakdee, J.,
Tantithamthavorn, C., Choetkiertikul, M., Ragkhitwetsagul, C.
and Sunetnanta, T. (2020). JITBot: an explainable just-in-time
defect prediction bot, Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, pp.1336–1339.

[47] Sayyad Shirabad, J. and Menzies, T. (2005). The PROMISE Repository of
Software Engineering Databases., School of Information Technology
and Engineering, University of Ottawa, Canada, Retrieved from, http:
//promise.site.uottawa.ca/SERepository.

[48] Marijan, D. and Gotlieb, A. (2021). Industry-Academia research collaboration
in software engineering: The Certus model, Information and Software
Technology, 132, 106473.

174

[49] Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B. and Jiang, Y. (2008).
Implications of ceiling effects in defect predictors, Proceedings of the
4th international workshop on Predictor models in software engineering,
ACM, pp.47–54.

[50] Lessmann, S., Baesens, B., Mues, C. and Pietsch, S. (2008). Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings, IEEE Transactions on Software Engineering, 34(4),
485–496.

[51] Tsakiltsidis, S., Miranskyy, A. and Mazzawi, E. (2016). On automatic detection
of performance bugs, 2016 IEEE international symposium on software
reliability engineering workshops (ISSREW), IEEE, pp.132–139.

[52] Fu, W., Menzies, T. and Shen, X. (2016). Tuning for software analytics: Is it
really necessary?, Information and Software Technology, 76, 135–146.

[53] Xia, X., Lo, D., Wang, X. and Yang, X. (2016). Collective personalized
change classification with multiobjective search, IEEE Transactions on
Reliability, 65(4), 1810–1829.

[54] Tamburri, D.A.A., Palomba, F. and Kazman, R. (2019). Exploring community
smells in open-source: An automated approach, IEEE Transactions on
software Engineering.

[55] Giarola, F. (2018). Detecting code and community smells in open-source:
an automated approach, (Master’s Thesis). School of Industrial and
Information Engineering, Politecnico di Milano, Italy.

[56] Palomba, F., Zanoni, M., Fontana, F.A., De Lucia, A. and Oliveto, R.
(2017). Toward a smell-aware bug prediction model, IEEE Transactions
on Software Engineering, 45(2), 194–218.

[57] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y. and Bener, A. (2010).
Defect prediction from static code features: current results, limitations,
new approaches, Automated Software Engineering, 17(4), 375–407.

[58] Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D., Sen, A. and Bener,
A. (2017). The relationship between evolutionary coupling and defects
in large industrial software, Journal of Software: Evolution and Process,
29(4), e1842.

[59] Caglayan, B. (2014). An Issue Recommender Model Using the Developer
Collaboration Network, (Ph.D. Thesis). Boğaziçi Üniversitesi, Fen
Bilimleri Enstitüsü, İstanbul.

[60] Tosun, A., Turhan, B. and Bener, A. (2009). Validation of network measures as
indicators of defective modules in software systems, Proceedings of the
5th international conference on predictor models in software engineering,
ACM, p. 5.

175

[61] Kini, S.O. and Tosun, A. (2018). Periodic Developer Metrics in Software Defect
Prediction, 18th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2018, Madrid, Spain, September
23-24, 2018, pp.72–81.

[62] Khomh, F., Di Penta, M., Guéhéneuc, Y.G. and Antoniol, G. (2012). An
exploratory study of the impact of antipatterns on class change-and
fault-proneness, Empirical Software Engineering, 17(3), 243–275.

[63] Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A.
and Poshyvanyk, D. (2017). When and why your code starts to smell
bad (and whether the smells go away), IEEE Transactions on Software
Engineering, 43(11), 1063–1088.

[64] Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R. and De Lucia,
A. (2018). On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation, Empirical Software
Engineering, 23(3), 1188–1221.

[65] Taba, S.E.S., Khomh, F., Zou, Y., Hassan, A.E. and Nagappan, M. (2013).
Predicting bugs using antipatterns, Software Maintenance (ICSM), 2013
29th IEEE International Conference on, IEEE, pp.270–279.

[66] Soltanifar, B., Akbarinasaji, S., Caglayan, B., Bener, A.B., Filiz, A. and
Kramer, B.M. (2016). Software analytics in practice: A defect prediction
model using code smells, Proceedings of the 20th International Database
Engineering & Applications Symposium, pp.148–155.

[67] Tamburri, D.A., Lago, P. and Vliet, H.v. (2013). Organizational social structures
for software engineering, ACM Computing Surveys (CSUR), 46(1), 3.

[68] Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R. and De Lucia,
A. (2018). A developer centered bug prediction model, IEEE Transactions
on Software Engineering, 44(1), 5–24.

[69] Magnoni, S. (2016). An approach to measure community smells in software
development communities, (Master’s Thesis). School of Industrial and
Information Engineering, Politecnico di Milano, Italy.

[70] Mauerer, W. (2010). Codeface, http://siemens.github.io/codeface, date retrieved
29.08.2021.

[71] Palomba, F., Tamburri, D.A.A., Fontana, F.A., Oliveto, R., Zaidman, A. and
Serebrenik, A. (2018). Beyond technical aspects: How do community
smells influence the intensity of code smells?, IEEE transactions on
software engineering.

[72] Jureczko, M. and Madeyski, L. (2010). Towards identifying software project
clusters with regard to defect prediction, Proceedings of the 6th
International Conference on Predictive Models in Software Engineering,
ACM, p. 9.

176

[73] Hassan, A.E. (2009). Predicting faults using the complexity of code changes, Pro-
ceedings of the 31st International Conference on Software Engineering,
IEEE Computer Society, pp.78–88.

[74] Bell, R.M., Ostrand, T.J. and Weyuker, E.J. (2013). The limited impact
of individual developer data on software defect prediction, Empirical
Software Engineering, 18(3), 478–505.

[75] Fontana, F.A., Ferme, V., Zanoni, M. and Roveda, R. (2015). Towards a
prioritization of code debt: A code smell intensity index, 2015 IEEE
7th International Workshop on Managing Technical Debt (MTD), IEEE,
pp.16–24.

[76] Eken, B., Tosun, A., Palma, F. and Bener, A. (2019). An Empirical Study on
the Effect of Community Smells on Bug Prediction, https://figshare.com/
articles/BugDBzip/7749281, date retrieved 29.08.2021.

[77] Tosun, A., Bener, A., Turhan, B. and Menzies, T. (2010). Practical considerations
in deploying statistical methods for defect prediction: A case study
within the Turkish telecommunications industry, Information and Software
Technology, 52(11), 1242–1257.

[78] Turhan, B., Koçak, G. and Bener, A.B. (2009). Data mining source code for
locating software bugs: A case study in telecommunication industry,
Expert Syst. Appl., 36(6), 9986–9990, https://doi.org/10.1016/j.eswa.
2008.12.028.

[79] Nagappan, N., Murphy, B. and Basili, V. (2008). The influence of organizational
structure on software quality, Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on, IEEE, pp.521–530.

[80] Turhan, B., Mısırlı, A.T. and Bener, A. (2013). Empirical evaluation of the
effects of mixed project data on learning defect predictors, Information
and Software Technology, 55(6), 1101–1118.

[81] Zhang, F., Hassan, A.E., McIntosh, S. and Zou, Y. (2016). The use of summation
to aggregate software metrics hinders the performance of defect prediction
models, IEEE Transactions on Software Engineering, 43(5), 476–491.

[82] Tantithamthavorn, C., McIntosh, S., Hassan, A.E. and Matsumoto, K. (2016).
An empirical comparison of model validation techniques for defect
prediction models, IEEE Transactions on Software Engineering, 43(1),
1–18.

[83] Fowler, M. (2018). Refactoring: improving the design of existing code,
Addison-Wesley Professional.

[84] Chatzigeorgiou, A. and Manakos, A. (2010). Investigating the evolution of bad
smells in object-oriented code, International Conference on the Quality of
Information and Communications Technology, IEEE, pp.106–115.

177

[85] Peters, R. and Zaidman, A. (2012). Evaluating the lifespan of code smells using
software repository mining, Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, IEEE, pp.411–416.

[86] Arcoverde, R., Garcia, A. and Figueiredo, E. (2011). Understanding the
longevity of code smells: preliminary results of an explanatory survey,
Proceedings of the 4th Workshop on Refactoring Tools, ACM, pp.33–36.

[87] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R. and De Lucia, A. (2014).
Do they really smell bad? a study on developers’ perception of bad
code smells, Software maintenance and evolution (ICSME), 2014 IEEE
international conference on, IEEE, pp.101–110.

[88] Eken, B. (2018). Assessing personalized software defect predictors, Proceedings
of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, pp.488–491.

[89] Soltanifar, B., Erdem, A. and Bener, A. (2016). Predicting defectiveness
of software patches, Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
pp.1–10.

[90] Calikli, G., Bener, A.B., Caglayan, B. and Misirli, A.T. (2012). Modeling
Human Aspects to Enhance Software Quality Management, ICIS.

[91] Tamburri, D.A., Palomba, F. and Kazman, R. (2017). Exploring Community
Smells in Open-Source: An Automated Approach, IEEE Transactions on
Software Engineering, 14(8), 1–24.

[92] Almarimi, N., Ouni, A., Chouchen, M., Saidani, I. and Mkaouer,
M.W. (2020). On the Detection of Community Smells using Genetic
Programming-based Ensemble Classifier Chain, 15th IEEE/ACM Interna-
tional Conference on Global Software Engineering (ICGSE), pp.1–12.

[93] Almarimi, N., Ouni, A. and Mkaouer, M.W. (2020). Learning to detect
community smells in open source software projects, Knowledge-Based
Systems, 204, 106201.

[94] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A. and Ferrucci, F.
(2019). Gender diversity and women in software teams: How do they
affect community smells?, 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS),
IEEE, pp.11–20.

[95] Catolino, G., Palomba, F., Tamburri, D.A., Serebrenik, A. and Ferrucci, F.
(2020). Refactoring community smells in the wild: the practitioner’s field
manual, Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Society, pp.25–34.

[96] URL-1. https://www.spinellis.gr/sw/ckjm/doc/index.html, date retrieved:
03.02.2022.

178

[97] Kohavi, R. (1995). The Power of Decision Tables, 8th European Conference on
Machine Learning, Springer, pp.174–189.

[98] Hall, M.A. and Holmes, G. (2003). Benchmarking attribute selection techniques
for discrete class data mining, IEEE Transactions on Knowledge and Data
engineering, 15(6), 1437–1447.

[99] URL-2. https://cran.r-project.org/web/packages/ScottKnottESD/index.html, date
retrieved: 03.02.2022.

[100] Turhan, B., Menzies, T., Bener, A.B. and Di Stefano, J. (2009). On the relative
value of cross-company and within-company data for defect prediction,
Empirical Software Engineering, 14(5), 540–578.

[101] Yin, R.K. (2017). Case study research: Design and methods., SAGE
Publications, Incorporated.

[102] Meneely, A. and Williams, L. (2011). Socio-technical developer networks:
Should we trust our measurements?, Proceedings of the 33rd International
Conference on Software Engineering, ACM, pp.281–290.

[103] Palomba, F., Zanoni, M., Fontana, F.A., De Lucia, A. and Oliveto, R. (2016).
Smells like teen spirit: Improving bug prediction performance using the
intensity of code smells, 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp.244–255.

[104] Robillard, M., Walker, R. and Zimmermann, T. (2009). Recommendation
systems for software engineering, IEEE software, 27(4), 80–86.

[105] Hall, T., Beecham, S., Bowes, D., Gray, D. and Counsell, S. (2011).
A systematic literature review on fault prediction performance in
software engineering, IEEE Transactions on Software Engineering, 38(6),
1276–1304.

[106] Weyuker, E.J., Ostrand, T.J. and Bell, R.M. (2008). Do too many cooks spoil
the broth? Using the number of developers to enhance defect prediction
models, Empirical Software Engineering, 13(5), 539–559.

[107] Di Nucci, D., Palomba, F., De Rosa, G., Bavota, G., Oliveto, R. and De Lucia,
A. (2017). A developer centered bug prediction model, IEEE Transactions
on Software Engineering.

[108] D’Ambros, M., Lanza, M. and Robbes, R. (2012). Evaluating defect prediction
approaches: a benchmark and an extensive comparison, Empirical
Software Engineering, 17(4-5), 531–577.

[109] Graves, T.L., Karr, A.F., Marron, J.S. and Siy, H. (2000). Predicting fault
incidence using software change history, IEEE Transactions on software
engineering, 26(7), 653–661.

179

[110] Matsumoto, S., Kamei, Y., Monden, A., Matsumoto, K.i. and Nakamura, M.
(2010). An analysis of developer metrics for fault prediction, Proceedings
of the 6th International Conference on Predictive Models in Software
Engineering, ACM, p. 18.

[111] Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to predict
system defect density, Proceedings of the 27th international conference on
Software engineering, pp.284–292.

[112] D’Ambros, M., Lanza, M. and Robbes, R. (2010). An extensive comparison of
bug prediction approaches, 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), IEEE, pp.31–41.

[113] Nagappan, N., Ball, T. and Zeller, A. (2006). Mining metrics to predict
component failures, Proceedings of the 28th international conference on
Software engineering, pp.452–461.

[114] Schein, A.I., Popescul, A., Ungar, L.H. and Pennock, D.M. (2002).
Methods and metrics for cold-start recommendations, Proceedings of
the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pp.253–260.

[115] Shihab, E., Hassan, A.E., Adams, B. and Jiang, Z.M. (2012). An industrial
study on the risk of software changes, Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, pp.1–11.

[116] Śliwerski, J., Zimmermann, T. and Zeller, A. (2005). When do changes induce
fixes?, ACM sigsoft software engineering notes, 30(4), 1–5.

[117] Kim, S., Whitehead, E.J. and Zhang, Y. (2008). Classifying software changes:
Clean or buggy?, IEEE Transactions on software engineering, 34(2),
181–196.

[118] Jiang, Y., Cukic, B. and Menzies, T. (2008). Can data transformation help in the
detection of fault-prone modules?, Proceedings of the 2008 workshop on
Defects in large software systems, pp.16–20.

[119] Yan, M., Xia, X., Fan, Y., Hassan, A.E., Lo, D. and Li, S. (2020). Just-in-time
defect identification and localization: A two-phase framework, IEEE
Transactions on Software Engineering.

[120] Pornprasit, C. and Tantithamthavorn, C. (2021). JITLine: A Simpler, Better,
Faster, Finer-grained Just-In-Time Defect Prediction, arXiv preprint
arXiv:2103.07068.

[121] Schröter, A., Zimmermann, T., Premraj, R. and Zeller, A. (2006). If your bug
database could talk, Proceedings of the 5th international symposium on
empirical software engineering, volume 2, Citeseer, pp.18–20.

[122] Zeller, A. (2009). Why programs fail: a guide to systematic debugging, Elsevier.

180

[123] Tufano, M., Bavota, G., Poshyvanyk, D., Di Penta, M., Oliveto, R. and
De Lucia, A. (2017). An empirical study on developer-related factors
characterizing fix-inducing commits, Journal of Software: Evolution and
Process, 29(1), e1797.

[124] Eyolfson, J., Tan, L. and Lam, P. (2011). Do time of day and developer
experience affect commit bugginess?, Proceedings of the 8th Working
Conference on Mining Software Repositories, pp.153–162.

[125] Rahman, F. and Devanbu, P. (2011). Ownership, experience and defects: a
fine-grained study of authorship, Proceedings of the 33rd International
Conference on Software Engineering, pp.491–500.

[126] Bettenburg, N., Nagappan, M. and Hassan, A.E. (2012). Think locally,
act globally: Improving defect and effort prediction models, 2012 9th
IEEE Working Conference on Mining Software Repositories (MSR), IEEE,
pp.60–69.

[127] Friedman, J.H. (1991). Multivariate adaptive regression splines, The annals of
statistics, 1–67.

[128] Raudys, S.J., Jain, A.K. et al. (1991). Small sample size effects in
statistical pattern recognition: Recommendations for practitioners, IEEE
Transactions on pattern analysis and machine intelligence, 13(3),
252–264.

[129] Yamashita, K., McIntosh, S., Kamei, Y., Hassan, A.E. and Ubayashi,
N. (2015). Revisiting the applicability of the pareto principle to core
development teams in open source software projects, Proceedings of
the 14th International Workshop on Principles of Software Evolution,
pp.46–55.

[130] Yang, Y., Zhou, Y., Liu, J., Zhao, Y., Lu, H., Xu, L., Xu, B. and Leung, H.
(2016). Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models, Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp.157–168.

[131] Young, S., Abdou, T. and Bener, A. (2018). A replication study: just-in-time
defect prediction with ensemble learning, Proceedings of the 6th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering, pp.42–47.

[132] Qiao, L. and Wang, Y. (2019). Effort-aware and just-in-time defect prediction
with neural network, PloS one, 14(2).

[133] Bangash, A.A., Sahar, H., Hindle, A. and Ali, K. (2019). On the Time-Based
Conclusion Stability of Software Defect Prediction Models, arXiv preprint
arXiv:1911.06348.

181

[134] Tantithamthavorn, C., Hassan, A.E. and Matsumoto, K. (2018). The impact
of class rebalancing techniques on the performance and interpretation of
defect prediction models, IEEE Transactions on Software Engineering.

[135] Nemenyi, P. (1963). Distribution-free multiple comparisons, (Ph.D. Thesis).
Princeton University, Princeton, New Jersey.

[136] Kampenes, V.B., Dybå, T., Hannay, J.E. and Sjøberg, D.I. (2007). A systematic
review of effect size in software engineering experiments, Information and
Software Technology, 49(11-12), 1073–1086.

[137] Matthews, B.W. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme, Biochimica et Biophysica Acta
(BBA)-Protein Structure, 405(2), 442–451.

[138] Brier, G.W. (1950). Verification of forecasts expressed in terms of probability,
Monthly weather review, 78(1), 1–3.

[139] Rufibach, K. (2010). Use of Brier score to assess binary predictions, Journal of
Clinical Epidemiology, 63(8), 938–939.

[140] Conover, W.J. (1999). Practical nonparametric statistics, volume:350, john
wiley & sons.

[141] Quinlan, J.R. (1986). Induction of decision trees, Machine learning, 1(1),
81–106.

[142] URL-3. https://kovan.itu.edu.tr/index.php/s/cR4dJpn6nL8wvdb, date retrieved:
03.02.2022.

[143] Li, L., Lessmann, S. and Baesens, B. (2019). Evaluating software defect
prediction performance: an updated benchmarking study, arXiv preprint
arXiv:1901.01726.

[144] Yao, J. and Shepperd, M., (2020). Assessing software defection prediction
performance: why using the Matthews correlation coefficient matters,
Proceedings of the Evaluation and Assessment in Software Engineering,
pp.120–129.

[145] Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002).
SMOTE: synthetic minority over-sampling technique, Journal of artificial
intelligence research, 16, 321–357.

[146] Falessi, D., Huang, J., Narayana, L., Thai, J.F. and Turhan, B. (2018). On the
Need of Preserving Order of Data When Validating Within-Project Defect
Classifiers, arXiv preprint arXiv:1809.01510.

[147] Hryszko, J. and Madeyski, L. (2015). Bottlenecks in software defect prediction
implementation in industrial projects, Foundations of Computing and
Decision Sciences, 40(1), 17–33.

182

[148] Eken, B., Atar, R., Sertalp, S. and Tosun, A. (2019). Predicting Defects with
Latent and Semantic Features from Commit Logs in an Industrial Setting,
2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), IEEE, pp.98–105.

[149] Borg, M., Svensson, O., Berg, K. and Hansson, D. (2019). SZZ Unleashed: An
Open Implementation of the SZZ Algorithm - Featuring Example Usage in
a Study of Just-in-time Bug Prediction for the Jenkins Project, Proceedings
of the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation, MaLTeSQuE 2019, ACM,
pp.7–12.

[150] Da Costa, D.A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R. and Hassan,
A.E. (2016). A framework for evaluating the results of the szz approach
for identifying bug-introducing changes, IEEE Transactions on Software
Engineering, 43(7), 641–657.

[151] Fan, Y., Xia, X., da Costa, D.A., Lo, D., Hassan, A.E. and Li, S. (2019). The
Impact of Changes Mislabeled by SZZ on Just-in-Time Defect Prediction,
IEEE Transactions on Software Engineering.

[152] Arisholm, E. and Briand, L.C. (2006). Predicting fault-prone components in
a java legacy system, Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, ACM, pp.8–17.

[153] Nguyen, T.T., Nguyen, T.N. and Phuong, T.M. (2011). Topic-based defect
prediction (nier track), Proc. of 33rd Int. Conf. on Software Engineering,
pp.932–935.

[154] Chen, T.H., Thomas, S.W., Nagappan, M. and Hassan, A.E. (2012).
Explaining software defects using topic models, 9th IEEE Working
Conference on Mining Software Repositories (MSR), pp.189–198.

[155] Barnett, J.G., Gathuru, C.K., Soldano, L.S. and McIntosh, S. (2016). The
relationship between commit message detail and defect proneness in
Java projects on GitHub, Proc. of 13th Int. Conf. on Mining Software
Repositories, pp.496–499.

[156] Guillamet, D. and Vitrià, J. (2002). Non-negative matrix factorization
for face recognition, Catalonian Conference on Artificial Intelligence,
pp.336–344.

[157] Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems, IEEE Computer, (8), 30–37.

[158] Bozcan, Ö. and Bener, A.B. (2013). Handling missing attributes using
matrix factorization, 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), pp.49–55.

[159] Chang, R., Mu, X. and Zhang, L. (2011). Software defect prediction using
non-negative matrix factorization, Journal of Software, 6(11), 2114–2120.

183

[160] Lee, D.D. and Seung, H.S. (1999). Learning the parts of objects by non-negative
matrix factorization, Nature, 401(6755), 788.

[161] Zhang, J.S., Wang, C.P. and Yang, Y.Q. (2015). Learning latent features
by nonnegative matrix factorization combining similarity judgments,
Neurocomputing, 155, 43–52.

[162] Campbell, J.C., Hindle, A. and Stroulia, E. (2015). Latent Dirichlet allocation:
extracting topics from software engineering data, The art and science of
analyzing software data, Elsevier, pp.139–159.

[163] Menzies, T., Greenwald, J. and Frank, A. (2006). Data mining static code
attributes to learn defect predictors, IEEE Transactions on Software
Engineering, 33(1), 2–13.

[164] Yu, X., Bennin, K.E., Liu, J., Keung, J.W., Yin, X. and Xu, Z. (2019).
An empirical study of learning to rank techniques for effort-aware
defect prediction, 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, pp.298–309.

[165] Czerwonka, J., Das, R., Nagappan, N., Tarvo, A. and Teterev, A. (2011).
Crane: Failure prediction, change analysis and test prioritization in
practice–experiences from windows, 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation, IEEE,
pp.357–366.

[166] Tantithamthavorn, C. and Hassan, A.E. (2018). An experience report on defect
modelling in practice: Pitfalls and challenges, Proceedings of the 40th
International conference on software engineering: Software engineering
in practice, pp.286–295.

[167] McIntosh, S. and Kamei, Y. (2017). Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect prediction, IEEE
Transactions on Software Engineering, 44(5), 412–428.

[168] Cabral, G.G., Minku, L.L., Shihab, E. and Mujahid, S. (2019). Class
imbalance evolution and verification latency in just-in-time software
defect prediction, 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), IEEE, pp.666–676.

[169] Mockus, A., Eick, S.G., Graves, T.L. and Karr, A.F. (1999). On measurement
and analysis of software changes, IEEE Transactions on software
engineering, 20, 29.

[170] Ghotra, B., McIntosh, S. and Hassan, A.E. (2015). Revisiting the impact
of classification techniques on the performance of defect prediction
models, Proceedings of the 37th International Conference on Software
Engineering-Volume 1, IEEE Press, pp.789–800.

184

[171] Huang, Q., Xia, X. and Lo, D. (2019). Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction, Empirical Software
Engineering, 24(5), 2823–2862.

[172] Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N.
and Hassan, A.E. (2016). Studying just-in-time defect prediction using
cross-project models, Empirical Software Engineering, 21(5), 2072–2106.

[173] Catolino, G., Di Nucci, D. and Ferrucci, F. (2019). Cross-project just-in-time
bug prediction for mobile apps: An empirical assessment, 2019
IEEE/ACM 6th International Conference on Mobile Software Engineering
and Systems (MOBILESoft), IEEE, pp.99–110.

[174] Yang, X., Lo, D., Xia, X., Zhang, Y. and Sun, J. (2015). Deep learning for
just-in-time defect prediction, 2015 IEEE International Conference on
Software Quality, Reliability and Security, IEEE, pp.17–26.

[175] Yang, X., Yu, H., Fan, G., Shi, K. and Chen, L. (2019). Local versus
global models for just-in-time software defect prediction, Scientific
Programming, 2019.

[176] Bergmeir, C. and Benítez, J.M. (2012). On the use of cross-validation for time
series predictor evaluation, Information Sciences, 191, 192–213.

[177] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine
learning: From theory to algorithms, Cambridge university press.

[178] Kim, S. and Whitehead Jr, E.J. (2006). How long did it take to fix bugs?,
Proceedings of the 2006 international workshop on Mining software
repositories, pp.173–174.

[179] URL-4. https://git-scm.com/, date retrieved: 03.02.2022.

[180] URL-5. https://www.atlassian.com/software/jira, date retrieved: 03.02.2022.

[181] URL-6. https://maven.apache.org/, date retrieved: 03.02.2022.

[182] Murphy, K.P. (2012). Machine learning: a probabilistic perspective, MIT press.

[183] Alpaydin, E. (2009). Introduction to machine learning, MIT press.

[184] Hanley, J.A. and McNeil, B.J. (1982). The meaning and use of the area under a
receiver operating characteristic (ROC) curve., Radiology, 143(1), 29–36.

[185] Tharwat, A. (2020). Classification assessment methods, Applied Computing and
Informatics.

[186] Davis, J. and Goadrich, M. (2006). The relationship between Precision-Recall
and ROC curves, Proceedings of the 23rd international conference on
Machine learning, pp.233–240.

185

[187] Menzies, T., Dekhtyar, A., Distefano, J. and Greenwald, J. (2007). Problems
with Precision: A Response to" comments on’data mining static code
attributes to learn defect predictors’", IEEE Transactions on Software
Engineering, 33(9), 637–640.

[188] URL-7. https://github.com/beken/DeploymentIndustrial, date retrieved:
03.02.2022.

[189] Nugroho, Y.S., Hata, H. and Matsumoto, K. (2020). How different are different
diff algorithms in Git?, Empirical Software Engineering, 25(1), 790–823.

[190] Northcutt, C., Jiang, L. and Chuang, I. (2021). Confident learning: Estimating
uncertainty in dataset labels, Journal of Artificial Intelligence Research,
70, 1373–1411.

[191] Fenton, N.E. and Neil, M. (1999). A critique of software defect prediction
models, IEEE Transactions on software engineering, 25(5), 675–689.

[192] Nayebi, M. and Ruhe, G., (2015). Analytical product release planning, The Art
and Science of Analyzing Software Data, Elsevier, pp.555–589.

[193] Zhou, J., Wei, J. and Xu, B. (2021). Customer segmentation by web content
mining, Journal of Retailing and Consumer Services, 61, 102588.

[194] Menzies, T. and Zimmermann, T. (2018). Software Analytics: What’s Next?,
IEEE Software, 35(5), 64–70.

[195] Wan, Z., Xia, X., Hassan, A.E., Lo, D., Yin, J. and Yang, X. (2018).
Perceptions, expectations, and challenges in defect prediction, IEEE
Transactions on Software Engineering, 46(11), 1241–1266.

[196] Freitas, A.A. (2014). Comprehensible classification models: a position paper,
ACM SIGKDD explorations newsletter, 15(1), 1–10.

[197] Jiarpakdee, J., Tantithamthavorn, C. and Grundy, J. (2021). Practitioners’
Perceptions of the Goals and Visual Explanations of Defect Prediction
Models, arXiv preprint arXiv:2102.12007.

[198] Tantithamthavorn, C., Jiarpakdee, J. and Grundy, J. (2020). Explainable ai
for software engineering, arXiv preprint arXiv:2012.01614.

[199] Holzinger, A. (2018). From machine learning to explainable AI, 2018 world
symposium on digital intelligence for systems and machines (DISA), IEEE,
pp.55–66.

186

APPENDICES

APPENDIX A : Performances of SDP models reported in Chapter 4 for RQ2

187

188

APPENDIX A : Performances of SDP models reported in Chapter 4 for RQ2

0.0

0.2

0.4

0.6

0.8

1.0

P
M

precision

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure A.1 : Performance (in terms of precision) of PM, SM and GM.

189

0.0

0.2

0.4

0.6

0.8

1.0

P
M

F1

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure A.2 : Performance (in terms of F1) of PM, SM and GM.

190

0.0

0.2

0.4

0.6

0.8

1.0

P
M

AUC

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure A.3 : Performance (in terms of AUC) of PM, SM and GM.

191

0.0

0.2

0.4

0.6

0.8

1.0

P
M

MCC

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure A.4 : Performance (in terms of MCC) of PM, SM and GM.

192

0.0

0.2

0.4

0.6

0.8

1.0

P
M

BScore

0.0

0.2

0.4

0.6

0.8

1.0

S
M

B

B
+

Lo
gF

B
+

LA
T

B
+

LA
T

+
Lo

gF

B
+

S
M

N

B
+

S
M

N
+

Lo
gF

B
+

LA
T

+
S

M
N

B
+

LA
T

+
S

M
N

+
Lo

gF

0.0

0.2

0.4

0.6

0.8

1.0

G
M

Figure A.5 : Performance (in terms of BScore) of PM, SM and GM.

193

194

CURRICULUM VITAE

Name SURNAME: Beyza EKEN

EDUCATION:
• B.Sc.: 2011, Sakarya University, Faculty of Engineering, Department of Computer

Engineering

• M.Sc.: 2015, Istanbul Technical University, Graduate School of Science,
Engineering and Technology, Computer Engineering Program

PROFESSIONAL EXPERIENCE AND REWARDS:
• 2014 – Present, Research and teaching assistant at Computer Engineering

Department, Istanbul Technical University.

• September – December 2018, Visiting research student at Data Science Laboratory,
Ryerson University, Canada (Mevlana Exchange Program).

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:
• Eken, B., Palma, F., Başar, A. Tosun, A., 2021. An empirical study on the effect of

community smells on bug prediction. Software Quality Journal, 29(1), pp.159-194.

• Eken, B., Tosun, A., 2021. Investigating the performance of personalized models
for software defect prediction. Journal of Systems and Software, 181, p.111038.

• Eken B., Tufan S., Tunaboylu A., Güler T., Atar R., Tosun A., 2021. Deployment of
a change-level software defect prediction solution into an industrial setting. Journal
of Software: Evolution and Process, 33(11), e2381.

• Eken B., Atar R., Sertalp S. and Tosun A., 2019, November. Predicting
Defects with Latent and Semantic Features from Commit Logs in an Industrial
Setting. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW) (pp. 98-105). IEEE.

• Eken B., 2018, May. Assessing personalized software defect predictors. In
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceedings (pp. 488-491).

OTHER PUBLICATIONS, PRESENTATIONS AND PATENTS:
• Eren, K.K., Ozbey, C., Eken, B. and Tosun, A., 2020, March. Customer requests

matter: early stage software effort estimation using k-grams. In Proceedings of the
35th Annual ACM Symposium on Applied Computing (pp. 1540-1547).

195

