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ABSTRACT

NUMERICAL STUDY OF ORTHOGONAL
POLYNOMIALS FOR FRACTAL MEASURES

Ahmet Nihat Simsek
M.S. in Mathematics
Advisor: Alexander Goncharov
July 2016

In recent years, potential theory has an essential effect on approximation
theory and orthogonal polynomials. Basic concepts of the modern theory of
general orthogonal polynomials are described in terms of Potential Theory. One
of these concepts is the Widom factors which are the ratios of norms of extremal
polynomials to a certain degree of capacity of a set. While there is a theory of
Widom factors for finite gap case, very little is known for fractal sets, particularly
for supports of continuous singular measures. The motivation of our numerical
experiments is to get some ideas about how Widom factors behave on Cantor
type sets.

We consider weakly equilibrium Cantor sets, introduced by A.P. Goncharov
in [16], which are constructed by iteration of quadratic polynomials that change
from step to step depending on a sequence of parameters. Changes in these
parameters provide a Cantor set with several desired properties. We give an
algorithm to calculate recurrence coefficients of orthogonal polynomials for the
equilibrium measure of such sets. Our numerical experiments point out stability
of this algorithm.

Asymptotic behaviour of the recurrence coefficients and the zeros of orthogonal
polynomials for the equilibrium measure of four model Cantor sets are studied
via this algorithm. Then, several conjectures about asymptotic behaviour of
the recurrence coefficients, Widom factors, and zero spacings are proposed based
on these numerical experiments. These results are accepted for publication [1]
(jointly with G. Alpan and A.P. Goncharov).

Keywords: Cantor Sets, Parreau-Widom sets, Orthogonal Polynomials, Zero

spacing, Potential Theory, Widom Factors.
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OZET

FRAKTAL OLCUMLERIN ORTOGONAL
POLINOMLARININ NUMERIK QALISMASI

Ahmet Nihat Simsek
Matematik, Yiiksek Lisans
Tez Danigmani: Alexander Goncharov
Temmuz 2016

Son yillarda potansiyel teorisinin yaklasim teorisi ve interpolasyon iizerinde
temel etkileri olmugtur. Genel ortogonal polinomlarin modern teorisinin temel
kavramlar1 potansiyel teorisi acisindan tanimlanmigtir. Bu kavramlardan biri
de ekstremal polinomlarin normlarinin bir kiimenin belli bir derecesine orani
olan Widom faktorleridir. Widom faktorlerinin sonlu bogluk durumu igin teorisi
varken, fraktal kiimeler icin ¢ok az sey bilinmektedir, ozellikle de dayanag:
siirekli tekil ol¢gtimler i¢in. Numerik deneyimizin motivasyonu Cantor tipindeki
kiimelerde Widom faktorlerinin nasil davrandigi hakkinda bilgi edinmektir.

A.P. Goncharov tarafindan [16]'te tanitilan zayif dengeli Cantor kiimelerini
inceliyoruz. Bu kiimeler, adim adim bir dizi parametreye bagl olarak degisen
ikinci dereceden polinomlarin yinelenmesiyle elde edilmektedir. Bu parametrel-
erdeki degisimler gesitli istenilen 6zelliklere sahip Cantor kiimeleri saglamaktadir.
Bu tiir kiimelerin denge ol¢iimleriyle ilgili ortogonal polinomlarinin rekiirens kat-
sayilarini hesaplamak icin bir algoritma veriyoruz. Numerik deneylerimiz bu al-
goritmaya itimat edilebilecegini gostermektedir.

Dort model Cantor kiimenin denge olgiimleriyle ilgili ortogonal polinomlarin
rekiirens katsayilarin ve sifirlarinin asimptotik davraniglar1 bu algoritma ile in-
celenmigtir. Daha sonra rekiirens katsayilarin asimptotik davraniglari, Widom
faktorleri ve sifirlar arasindaki araliklar hakkinda cesitli sanilarda bulunulmusgtur.
Bu sonuglar yayin igin kabul edilmistir [1] (G. Alpan ve A. Goncharov ile ortak
caligmadir).

Anahtar sozcikler: Cantor Kiimeleri, Parreau-Widom Kiimeleri, Ortogonal Poli-

nomlar, Sfr Araliklar1, Potansiyel Teorisi, Widom Faktorleri.
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Chapter 1

Introduction

We present our numerical experiments and give the necessary preliminaries for
them. Motivation of our numerical experiments is to get a few ideas about how
Widom factors behave on Cantor type sets. For this purpose we consider a Cantor
set K () introduced by A. Goncharov in [16]. Construction and some properties
of K(v) are given. However, to that end we need to give some preliminary
information. Thus, we first start with elements of Potential Theory. Then, we
give some basic concepts of orthogonal polynomials on the real line. And finally

we introduce Widom factors and some of their properties.

In Chapter 2, we define some concepts from potential theory that we will use.
The term 'potential’ arise from the idea that forces in nature can be modelled
using potentials satisfing Laplace’s equation. Potential theory focuses on the
properties of harmonic functions. One of the main reasons, why potential theory
is useful, is that there is a direct connection between monic polynomials and
logarithmic potentials, that is, for any monic polynomial p(z) = (z—z1) - - - (z—2,)
we have log (ﬁ) = [log |ZT1w|d,u(cu) = UH(z), where p is the counting measure
on the zeros of polynomial p. And thanks to this, potential theory has a huge

impact on approximation theory and the theory of orthogonal polynomials.

We give necessary concepts from potential theory in three sections: Potential



and Energy, Equilibrium Measure and Capacity, Green’s Functions and Parreau-
Widom Sets. In the first section we introduce the core concepts of potential
theory, the logarithmic potential and logarithmic energy. In the following section
we talk about logarithmic capacity and equilibrium measure which arise from
minimal energy the idea that a charge placed on a conductor will be distributed
to minimize its total energy. Then, in the last section we give a relation be-
tween Green’s functions and capacity, which help us to calculate capacity. Also,
we briefly talk about regularity with respect to Dirichlet Problem and introduce
Parreau-Widom sets. Note that some Cantor sets are Parreau-Widom (for exam-
ples see [6] and [19]).

Chapter 3 is divided into two subsections: Orthogonal Polynomials on the Real
Line and Widom Factors. In the first section, we begin with the definition of the
orthogonal polynomials for a measure pu. Then, their fundamental properties,
recurrence relation and the Jacobi matrix H, rise from the sequences of the
recurrence coefficients. Then, we give a relation between eigenvectors of H, and
the zeros of associated orthogonal polynomials via Gauss-Jacobi quadrature and
we introduce Christoffel numbers which are used to determine our algorithm’s

reliability.

For the next section of Chapter 3, we introduce a relatively new concept, called
Widom factors, due to the fundamental paper by H. Widom in 1969 [35], where
Tl Loo () 1Qn (@)l 12 (k) . .

Cap )™ d —Cap®) for finite unions of smooth
Jordan curves and arcs. Also, we discuss some properties of Widom factors.

he considered the ratios

The last chapter begins with the construction of K (7). In the construction
we use a sequence v = (75)22;. Note that with different v one obtains different
K (7). Then, for the next section we talk about orthogonal polynomials on K (7)
and we provide the algorithm, we have used in our experiments, to calculate the

recurrence coefficients of H Followed by a section for some properties of

HK ()"
K(v), we note that, due to its construction K(v) is somewhat flexible, that it
presents many properties but we cover only the ones that suits our purposes. We
introduce there four models, i.e., different 4’s, used for our experiments and give

the properties of each model.



The rest of the last chapter sections are for our numerical results obtained in
[1], joint work of G. Alpan and A. Goncharov. In calculations of these types,
one must ensure whether the algorithm used is stable or not. We show that our
experiments point out numerical stability. Then, for the next section we propose
conjectures linking geometric properties of sets and on asymptotic behaviour
of recurrence coefficients. In the next section, we introduce a notion of almost
periodicity and analyze the Jacobi matrix of K () in this respect. In the following
section, we examine the Widom factors of K (7). Here, one of our conjectures
gives a possible relation between Parreau-Widom sets and Widom factors. And
we finish with spacing properties of orthogonal polynomials on K(v). This is
related with the recent paper by G. Alpan [2]. There is one more section for

figures done for easy access.



Chapter 2

Elements of Potential Theory

2.1 Potential and Energy

Edward B. Saff describes Potential Theory as an elegant blend of real and com-
plex analysis. It is important to state that Potential Theory had and still has
major impacts on Approximation Theory in recent years. As we will explain
partly, logarithmic potentials have a direct relation with polynomial and ratio-
nal functions. Some problems that Potential Theory resolved can be listed in
short tiles as: rate of polynomial approximation, asymptotic behaviour of zeros
of polynomials, fast decreasing polynomials, recurrence coefficients of orthogonal
polynomials, generalized Weierstrass problem, optimal point arrangements on the

sphere and rational approximation.

In this Chapter we followed [21], [25], [24] interchangeably to stay in our scope

of interest.

Let M be the collection of all finite Borel measures with compact support, and
given a compact set K, let M(K) be the collection of all finite Borel measures

on K. Also, let us denote the collection of all unit Borel measures on K with



M, (K). Note that the support of a Borel measure p is defined by
supp(p) = {z € C : Ve > 0 we have u(B(z,¢)) > 0}.

Definition 2.1.1. Let © € M. Then, the logarithmic potential of y defined as

the function

UH(z) ::/log ! du(w), (2.1)

|2 =l

where U : C — (—00, 0].

Let us give an example:

Example 2.1.2. Let K = {21,29,...,2x5} and pu(-) = Zf\;l 0., where N < oo
and for any i = 1,2,..., N, §;(F) = 1if z; € E and it is 0 otherwise. Then,

N
1 1
Uk(z)= | 1 d = 1 =
(©)= [ 1oa () %;ogh_%‘
:—Zlog\z—zz log|H

Definition 2.1.3. The logarithmic energy I(p) of a measure p from the collec-
tion M(K) is defined by

1) = [Ure //m (w)dp(2). (2:2)

Note that, I(u) takes values from (—o00, 00]. Then, see a trivial example:

Example 2.1.4. Let K = {z}2_, and u(E) = Y.~ 0., where N < oo and,
forany ¢ = 1,2,..., N, let 6;(F) = 1 if z; € F and 0 otherwise. From Example
2.1.2 we know that

al 1
# Z) = ZlOg |Z——Z|
i=1 ¢

Then, logarithmic energy of the measure p is

7j=1 i=1

Z

To finalize, observe that, setting ¢ = j we see that log‘ = 00. Therefore,

zi—7j]

logarithmic energy of u is oo.



2.2 Equilibrium Measure and Capacity

A charge placed on a conductor will be distributed to minimize its total energy,

which suggests:

Definition 2.2.1. Assume that there is a measure g € M,(K) such that
I(po) < oo. Then, there is a measure ux € M, (K) that satisfies

I(pxk) = Meﬁlﬁlf(K) I(p) = Vic. (2.3)

This measure is called equilibrium measure for K and Vi is called the minimal

energy of the set K.

Let us demonstrate the equilibrium measures for the interval [—1,1] and the
unit disc.

dx
/1 —2?

Example 2.2.2. Let K = [—1,1], then duyx = (the arcsine measure)

is the equilibrium measure for K.

1
1
UlE(z) = lo dx
(=) /_1 g|z—:1c|\/1—x2

:_/ z—cos@\de

which equals log 2 for z € [—1,1] and log2 — log |z + /22 — 1| otherwise. Also,

1

1
I(pk) = /U“K( Yk = log2 dx = log 2.

\/7

Example 2.2.3. For D we have up = d\,./27 (the normalized arclength mea-

sure) as the equilibrium measure.

02 = [ og (——dulw)

|2 = w|

= lo o,
/ BT el 619|

which equals 0 for |z| < 1 and log - r; otherwise. Moreover,

I(pmy =0

6



Definition 2.2.4. (p. 25 in [25]) For a compact set K C C, the logarithmic

capacity of K is defined as
Cap(K) := e "X, (2.4)

Moreover, the capacity of an arbitrary Borel set E defined as

Cap(FE) :=sup{Cap(K): K C E, K compact}. (2.5)

Note that, we may use just capacity to refer to logarithmic capacity. The

following theorem is for basic properties of Cap(FE) as a set function.

Theorem 2.2.5. For A and B, Borel subsets of C, we have that

i) if A C B, then Cap(A) < Cap(B),
ii) Ya, f € C we have Cap(aA + 3) = |a|Cap(A),
iii) Cap(A) = sup{Cap(K) : compact K C A},

w) if A is compact, then Cap(A) = Cap(0.A) (the exterior boundary of set A).

It is easy to see the following proposition by 2.4 and the definition of the

equilibrium measure.

Proposition 2.2.6. Let K C C be compact and has non-zero capacity. Then,

we have
1

Cap(K)

where g is the equilibrium measure for K.

I(px) =log

Let us give capacities of some basic cases. Remark that by Examples 2.2.2 and
2.2.3 we have I(ug) = log?2 for K = [~1,1] and I(ux) = 0 for K = D.

Example 2.2.7. Let K be a line segment and set its length as ¢. Then we have

Cap(K) = Capl(~5, 1) = 5Cap([-1,1]) = g = ©



Example 2.2.8. Take a closed ball B(r, zy) C C with radius r and center z.
Then,
Cap(B(r, z)) = r.Cap(D) = r.

Observe that Cap(-) is a monotone function. One might wonder the continuity

of Cap(+) for nested family of sets. We have the following theorem:

Theorem 2.2.9. (Theorem 5.1.3 in [21]) Let C D A} D Ay D A3 D ... for

compact A,,. Then, we have
Cap( Zo:lAn) = lim Cap(An)
n—oo
On the other hand, if we have Borel sets By C By C B3 C ... C C then,

Cap(Uy2B,) = lim Cap(B,).
n—oo

Now, we will give an important notion and some remarks about it.

Definition 2.2.10. In Potential Theory, a set is called polar if its capacity is

Zero.

Remark that polarity gives a concept of negligible sets in Potential Theory.

Remark 2.2.11. Any set that is a subset of a polar Borel set is polar. Then, it

is easy to see that the countable union of polar sets is polar.

Remark 2.2.12. By the definition of capacity, for a Borel set to be non-polar it
has to be the support of a positive measure that has finite minimal energy. And
a Borel set A is polar if and only if for each y € M(K) for every compact subset
K of A, logarithmic energy I(1) is infinite.

Now, we will introduce a notion called quasi-everywere to exclude the negli-

gible (polar) parts of a set.

Definition 2.2.13. We use quasi-everywere (g.e.) for a property to state that

this particular property holds everywhere on a set except on a set of zero capacity.

8



The following theorem gives conditions for existence and uniqueness of equi-

librium measures.

Theorem 2.2.14. (Theorem 3.53.2 and 3.7.6 in [21]) For every compact set K C
C there exists an equilibrium measure px € M(K). If, in addition, Cap(K) > 0,
then the equilibrium measure for K is unique and support of g is a subset of

exterior boundary of K.

Now, with the definition of polarity and the previous theorem in mind we will

give a lemma about the relation of capacity and equilibrium measure.

Lemma 2.2.15. (Lemma 1.2.7 in [23]) If we have a compact non-polar set K C
C, then

Cap(supp(px)) = Cap(K).

The following theorem is called Frostman Theorem and it is considered as the
fundamental theorem of potential theory due to its importance for determining

equilibrium measures via potential and energy.

Theorem 2.2.16. (Frostman Theorem)([24]) For a non-polar compact set K C

C and its equilibrium measure g, we have

o Uk (z) < I(ug) for all z € C.

o Utk (z) =I(ug) qe. on K.

In general, it is difficult to show the equilibrium measure for a given set.
However, sometimes the Frostman Theorem can be used for this purpose. It is
easy to see by Frostman Theorem that the measures used in Examples 2.2.2 and

2.2.3 are the equilibrium measures of respected sets.

2.3 Green’s Function and Parreau-Widom Set

As it can be seen from the examples, although Definition 2.2.4 is conceptually

useful, it is hard to calculate exactly the capacity of a set even in simple cases.

9



However, thanks to a relation between capacity and Green functions, we can

compute the capacities of compact sets.

Definition 2.3.1. (p. 53 in [25]) Suppose that Qx is the component of C\K
that contains co where K is non-polar and compact. Then, remark that K and
0k have the same equilibrium measure, also we have Cap(K) = Cap(0Qk) (see
Corallary 4.5 in [25]). Then, Green’s function gq, (z) of Qx with pole at oo is
defined uniquely with the following properties:

1) ga,(2) is nonnegative and harmonic on Qx\{oo},
i) ga,(z) =log|z| +logm as |z| — oo,

iii)  lm  gg,(2) =0 for q.e. t € 0.

z—t, tGQK

Note that since K is chosen of positive capacity the existence follows if we set

goe(2) = log — U (2). (2.6)

Cap(K)

Now, we will introduce another notion called regularity with respect to the
Dirichlet problem. Dirichlet Problem, basically, is to find a harmonic function on

a domain with given initial boundary values.

Definition 2.3.2. A point 2y € 0.K is called a regular point of the unbounded
component Qg of C\K, if gg, () is continuous at z. Otherwise, it is called

1rregular. This implies that z € 0Q is a regular point if and only if

9ok (Z) =0

which is equivalent to

1
UFK(z) = log —C’ap(K)

by Equation 2.6. And if every point of 0Qk is regular, then Qg is said to be
regular with respect to the Dirichlet problem.

Remark 2.3.3. ([25], p. 54) The set of all irregular points has capacity zero.

10



For further discussion on Green’s functions see [25] section 1.4.
Now, we will combine compactness, regularity and non-polarity to obtain an-
other notion called Parreau-Widom sets.

Definition 2.3.4. A compact, regular set K C R with positive logarithmic
capacity is called a Parreau — Widom set if ). g, (c;) < oo where {¢;} are

the critical points of gq, (2).

Remark 2.3.5. (see [36]) If a compact non-polar regular set K C R is a finite
union of closed disjoint intervals, then K is Parreau-Widom. Moreover, each gap
in between intervals contains one critical point of g, and gg, does not have any

other critical points.

And also note that a Parreau-Widom set has positive Lebesgue measure (see
[28]).

2.3.1 Smoothness of Green’s Functions

Definition 2.3.6. Let f be real or complex function on the Euclidean space. If
there exists a € (0,1] and 8 € (0,00) such that

[f(z) = f(y)] < Ble —yl®

for all z,y in the domain of f, then we say that f is Holder continuous of order

Q.

Then, note that, a Green’s function is said to be optimally smooth if K C R

it is Holder continuous of order 1/2. Now, let us show some basic examples.

Example 2.3.7. Let K = [—1, 1], then by 2.6 we have
gax(z) =log |z + V22 —1].
Then, for z =1+ 2 z > 0 we have

go(1+2) =log |l +z + Va2 + 2z| < log|1 + V3z + 3z/2| < V3z/2.

11



It is possible to show that go, (2) < v/3(dist(z, [~1,1]))/? for every z. Thus, go,

is Holder continuous of order 1/2.

Example 2.3.8. Take K = D. By (2.6) we have
gay (z) = log|z|
for € C\K and 0 otherwise. Then observe that,
gax (2) =log|z| <log(l+71) <r

for all z € B(1+r,0). Therefore, gq, is Hélder continuous of order 1.

12



Chapter 3

Orthogonal Polynomials on the
Real Line and Widom Factors

3.1 Orthogonal Polynomials On The Real Line

P. L. Chebyshev developed Orthogonal polynomials in 19th century from a study
of fractions. Since then the field has been pursued by many great mathematicians,
and as mentioned before, potential theory lead to major developments in this field

recently.
We followed [29] and [33] interchangeably in this section.

Let us begin with definition of orthonormal relation.

Definition 3.1.1. A set of functions ¢g(z), ¢1(x), ..., ¢n(x) from L?(u) is called

orthonormal if the relation

(6u(2),5(x)) = / 6u(2) 5 (2)dpu(x) = 3
holds for 7,7 =0,1,...,n.

Using this relation one can orthogonalize a set of linearly independent func-

tions. It is well known that for a set of real-valued and linearly independent

13



functions fo(z), fi(x), fo(x),. .. of the class L?(a) defined on (a,b) there exists an
orthonormal set ¢o(x), ¢1(x),. .., dn(z) such that

n

On(z) = Z Cnifi).

i=0

The process to obtain this orthonormal set from the set of linearly independent
functions is called Gram-Schmidt orthogonalization and the orthonormal set gen-
erated by this process is uniquely determined. Now, we apply this orthogonaliza-

tion process to {1,z, 2% ...} to obtain orthogonal polynomials:

Definition 3.1.2. Let the moments

- / ()

exist and be finite forn = 0,1, 2, .. .(They always exist and are finite for a measure
uw € M(K) where K C R). Then, apply Gram-Schmidt process to the set
{1, 2,22, ...} to get the polynomials qo(z; 11), ¢1 (w; 1), g2(z; 1), - . .. Note that these

polynomials satisfy

/ G (25 1) G (5 1) A () = O

where n,m = 0,1, 2, ..., the degree of ¢, is n and k,, > 0, the coefficient of 2" in
qn. Then, we call Q,(z; p) := M the n-th monic orthogonal polynomial for
K

u (and g, is the n-th orthonormal npolynomial for p).

Note that, |[z"*" — Qny1(@)||r2(s) is the projection of z™*! on the set

{1,z,2% ... 2"}

Now, we give some elementary properties of the zeros of orthogonal polynomi-

als.

Theorem 3.1.3. (/33], p. 7)The zeros of the orthogonal polynomials q,(x; 1) are
real, distinct and in (a,b) where a = inf supp(p) and b = sup supp(u).

Theorem 3.1.4. (Theorem 3.3.2 in [29]) Let the set {x1,xs...x,} be the zeros
of the orthogonal polynomial q,(x) such that they are enumerated in ascending

order. Form =1,...n — 1 every interval [x,,, Tmi1] there is exactly one zero of

Gn+1-

14



Theorem 3.1.5. (Theorem 3.3.3 in [29]) At least one zero of q;(x) lies in between

two zeros of qj(x) fori > j.

Remark that zeros of orthogonal polynomials generate the Gauss-Jacobi

quadrature:

Definition 3.1.6. (Lemma 0.2 in [33]) Let 7 < 22 < ... < x, be the zeros of
the polynomial g, (z; u). Then, for any polynomial p(x) of degree at most 2n — 1
there are positive real numbers A\, Ao, ..., \, called Christof fel numbers such

that

[ p@)iutz) =3~ xpla). (3.1)

Note that du(z) and n determine Christoffel numbers \; uniquely. In fact, we

have

—Kn41 Rn
Ay = = . 3.2
KnGn1 (23) @0 (25)  Fno1@n—1(2:) ), (2:) (3:2)

Now, we will give a recurrence relation which is a significant property of or-

thogonal polynomials on the real line.

Theorem 3.1.7. (Lemma 0.3 in [33]) Assume that q_1(x; 1) = 0 and qo(x; ) :=
1. For every three consecutive orthogonal polynomials we have the following re-

currence formula:

(T3 1) = Qi 1Gni1 (25 1) + bpya@n (x5 ) + angn-1(x; 1) n € No, (3.3)

where a,,b, are real constants such that a, > 0 and

b= [ @)duta).

Kn

an =
Rn—1

Here, (a,)22, and (b,)22, are called the recurrence (or Jacobi) coef ficients.
Then, observe that the relation evolves for monic orthogonal polynomials @, (x; 1)

defined in Definition 3.1.2 with distribution du(z) such that

QnJrl(x; M) = (.13 - and)QTL(Q:; :U/) - ai@nfl(‘x; u)v nc N07 (34)

where a, € R* and b, € R. Moreover, we have ||Qn(-; it)||r2(n) = @1 - - - ay since

Qn (5 )| L2y = K7,

Kn
Rn—1

and a, =
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Now, given this recurrence relation (3.4), we can introduce a Jacobi matrix of

order n. If we are given two sequences (a,)3>; and (b,)>°, where a, is positive
and b, is real for all n € N and both are bounded, then we can define the

corresponding Jacobi Matrix

b1 aq 0 0
aq bQ Q9 0

0 (05} b3 as

Remark that if p is the scalar valued spectral measure of H, for the cyclic
vector e = (1,0,...,0)7 (i.e, 2(N) can be spanned by {e, H,e, (H,)%e,...}), then
it has (a,)22, and (b,)22, as recurrence coefficients. Here, H, : (*(N) — (*(N)

is a self-adjoint bounded operator. For more on spectral theory of orthogonal

polynomials, see [27, 33].

Moreover, if we set

by ay
ar by as
Hyp = as : (3.6)
Qp—1
Ap—1 bn

then, by expanding det (H[j —al ) along the n-th row we have the following result:

Lemma 3.1.8. (p. 9 of [33]) The eigenvalues of the matriz H); are equal to
the zeros of the associated orthogonal polynomial q,(z;p). And a normalized

eigenvector v for the eigenvalue v = x,,, the m-th zero of q,(x; 1), is given by

V/SE;(QO(19n>7QI<th)7‘" 7qn—1(ahn))

where (A\y,)%_, are the Christoffel numbers.

Therefore, the monic orthogonal polynomials with respect to measure p can

be written as

Qn(z; ) = det (xI — H}}).
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3.2 Widom Factors

Definition 3.2.1. The polynomial 7}, (z) = 2" +. .. is called the n—th Chebyshev
polynomial of the first kind on K if

HTnHLoo(K) = min{HQnHLm(K) : Qn monic polynomial of degree n}

where K C R is an infinite compact set and ||.||z~(x) denotes the supremum

norm on K.

Remark 3.2.2. (Corollary 5.5.5 in [21]) Between the Chebyshev polynomial
T, (x) on the set K and the logarithmic capacity of that set there is a relation of
the form
. 1/n .
Jim (| T3] o 1) = Cap(K).
Definition 3.2.3. Let T, be the n-th Chebyshev polynomial on a non-polar

compact K C C. The n-th Widom Factor for the supremum norm on K is

defined as Tl
n||L>(K)
Wi (K) = ——Fr——.
) = (Cap(R))r

Let us give a couple of examples.

Example 3.2.4. For K = [—1,1] we have ||T, ||z x) = 2" (see [22]), and from
Chapter 2 we know that Cap(K) = 1/2. So,

A

(1/2)"

Example 3.2.5. For K = D we have ||T,||~(x) = 1( see [22]), and from Chapter
2 we know that Cap(K) = 1. Hence,

Wn(K) =

W (K) = 1.

Let us give an important remark

Proposition 3.2.6. Widom factor is invariant under dilation and translation for

any compact non-polar K C C, 1i.e.,
W, (aK + ) = W,(K)
where a > 0, g € C.
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Proof. 1t is easy to see that ||T, ||z (ax+8) = &"||Th||L (), and recall part (ii) of
Theorem 2.2.5; thus we have the desired equality. O

Recall that one of the main points of this research is to analyse the asymptotic
behaviour of Widom factors. By previous remark, Examples 3.2.4 and 3.2.5, we
have established that Widom factors of any disc or interval is a constant sequence.
But except for very few cases the limit of (W, (K))%, does not exist. And the
behaviour of the sequence is quite irregular for even simple cases. Thus, we con-
sider lower and upper estimates. We have the following theorem by Schiefermayr

for sets on the real line.

Theorem 3.2.7. [26]/For a compact non-polar set K C R we have
Wo(K)>2

for alln € N.

Note that, we have lim,, ,,, W,,(K) = 1 for any disc or circle (by Example
3.2.5). However, V. Totik showed that this is not true for the case when the

unbounded connected component 2 of C\K is not simply connected (see [35]).

Theorem 3.2.8. (Theorem 2 in [32]) For a compact set K C C let Qg denote
the unbounded connected component of C\K. If Qg is not simply connected, then
there is a € > 0 such that

Wh(K)>e+1

i

for some subsequence of (W, (K))s2

n=1-"

Now, observe that, Theorem 3.2.7 and Remark 3.2.2 imply the following

lemma:

Lemma 3.2.9.
lim (W, (K))Y/™ =1

n—o0

Hence, we have
1
—logW,(K)—0
n

as n — oo. That is, (W,)22, has subexponential growth.

18



Observe that, this lemma imposes a theoretical constraint on the growth rate
of W,,(K), i.e. liminf W, (K) > 1. Moreover, if we have a infinite and compact
set K which is union of disjoint closed intervals, there are several results (see
(30, 31, 32, 35]) saying that (W,,(K))22, is bounded. Now, recall that one goal of
this research to analyze Widom factors on Cantor sets, particularly, their bounds.

It is recently proven in [10] that there are some Cantor sets K such that the
Widom factor W,,(K) is bounded.
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Chapter 4

Weakly Equilibrium Cantor Sets

and Numerical Experiments

In this chapter we discuss our numerical experiments from [1], joint work of G.

Alpan, A. Goncharov, A. N. Simsek, as mentioned before.

4.1 Construction of Weakly Equilibrium Cantor
Sets

In this section, we give the construction of the Cantor set K () we used in our
numerical experiments that is introduced by A. Goncharov in [16]. Let us begin
by taking a sequence v = (7,)2,, where =, is in the interval (0,1/4) for all s.
Then, define r = (r,)%2, with 7y = 1 and r, := y,r2 ; for s € N. Now, let
Pi(z):=2—1 and Post1(x) := Pos(Pas(x) + 1) (4.1)
for s € Ny. For any choice of v = (v,)2, this recursive relation yields
Py(x) = z(x —1).

However, for s > 2 the polynomial P»s heavily depends on the sequence v, hence,

a different set of polynomials for different choices of . Then, for s =0,1,2,...
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consider the sets
Es = {z € R|Pys+1(x) < 0}.

Now, we define our set as

K(y) := ﬂ E.

Note that, Ey is equivalent to

s

{Epzs + 11 B (=1,1]) = Qlj,s el

Here, I, are closed basic intervals of the s-th level which are necessarily dis-
joint. Then, setting [;, as the length of I;,, we see that by Lemma 2 in [5],

maxi<;<as l; s — 0 as s — oo. Hence, K(7) is a Cantor set.

4.2 Orthogonal Polynomials On Weakly Equi-

librium Cantor Sets

Now that we have constructed our set, we can begin discussing orthogonal poly-
nomials on K(v). To that end in [5], G. Alpan and A. Goncharov gave some
important Theorems about orthogonal polynomials on K () and also an algo-

rithm to calculate the elements of the Jacobi matrix H B (-

Theorem 4.2.1. (Prop. 1in [16] and Thm. 2.1 in [5]) The polynomial Pys + %
is the Chebyshev polynomial for K(v) for all s =0,1,2,....

Theorem 4.2.2. (Theorem 2.4 [16]) For a non-polar compact set K let g be

its equilibrium measure. And let the normalized counting measures on the zeros
28

(x;)%, of the Chebyshev polynomial Pys + 5 beo, :=27" Z 0z, Then, o, — g
i=1
in weak star topology.

Lemma 4.2.3. (Lemma 2.5 in [5]) If s > n with s € N and n € Ny, we have

/ <P2n n %") doy = 0.
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Lemma 4.2.4. (Lemma 2.5 in [5]) Take indices (k;) such that 0 < ky < kg <
. <k, <s. Then,

Y /P2k1p2k2 - Poendog = /P2k1dgs---/P2kndas = (—l)nHrgi.

i=1

ZZ) / Ple + — .. <P2kn + %) dUs = 0.

Observe that, by Theorem 4.2.2, () can be used instead of o, in previous

two lemmas. Now, we have the following important theorem:

Theorem 4.2.5. (Theorem 2.8 in [5]) For all s € Ny, the 2°-th monic orthogonal
polynomial Qas(+; pix(y)) for the equilibrium measure of K(v) equals Pas + s

2
Then, by (4.1) we have (Corollary 2.9 in [5])
2
Qas+1 (5 HK(y)) = Q5 (-5 b (m) — (1 _275+1)ZS~ (4.2)
Then, by (4.2) for all s € Ny we have
1Q2 (5 1) 122 (per)) = V(1= 27541) 12 /4. (4.3)

We already know that the diagonal elements, the b,’s of H are equal to

KK (7))
1/2 by Section 4 in [5]. For the outdiagonal elements, a,, by Theorem 4.3 in [5]

we can calculate (a,)$; recursively; here is the algorithm:

ay = || Q1 (';/'LK(’V)) ||L2(uxm)’ (4.4)
Q2 (';/JK(W)) ||L2(P«K(~/))
az = : (4.5)
Q1 (';NK(W)) HLQ(MKM)
If n+1=2%>2 then
1@ (';“K(W)) Il 2
Gt = i) (46)

|| Q251 ('5 ”K(w)) HL2(HK(7)) "lgs—14q t Ags—149 -+ (s
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If n4+1=2%2k+1) for some s € N and k € N, then

| Q2 (';ﬂK(’Y)) Hia(quQ - a§s+1k T agsﬂk_QSH
Any1 = 3 3 s (47)
Aas(2k+1)—1 """ Qostipyr
If n+1=(2k+1) for k € N then
Uny1 = \/HQl (5 r () ||iQ(uKm) — . (4.8)

To see how we used this algorithm in Matlab see Codes, Appendix A.

4.3 Properties of Weakly Equilibrium Cantor
Sets

We will now give some properties of K (7).

Theorem 4.3.1. (see [5]) If v¢ < 1/6 Vs € N, then K(v) has zero Lebesque

measure, and fig () 15 purely singular continuous and liminf a, = 0 for pg ().

We use the following theorem to determine whether the corresponding Green’s

function is optimally smooth or not:

Theorem 4.3.2. (see [6]) ga,.,, is optimally smooth (Hélder continuous with
exponent 1/2) if and only if Y-, (1 — 4vs) < oo.

Parreau-Widom characterization for K(v):

Theorem 4.3.3. (see [6]) K(v) is a Parreau-Widom set if and only if
Yo VI =4y < o0,

Upper bound characterization for Widom-Hilbert factor (W2 (px(,)) which is
a special case of Widom factors) for K (7):
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Theorem 4.3.4. (see [7]) If > "= (1 —4r,) < oo, then there is Cy, > 0 such that
for all n € N we have

) _ 1Qn (5 1)) ||L2(MK<7)) ay - ay
Cn 2 Wbk o)) = =G ®m)" ~ CapEG))

Capacity of K(v):

Theorem 4.3.5. (see [16]) Cap(K (7)) = exp (3 pe; 2 ¥ log i), which implies
that K(v) is non-polar if and only if

> 27" log (1/7,) < 0.
n=1

How to obtain the zeros of the 2°-th monic orthogonal polynomial for px(.:

Theorem 4.3.6. (sce [2]) Let vi1(t) = 1/2—(1/2)y/T =271 + 27t and veq(t) =
1 —v141(t). For each n > 1, let vy ,(t) = /1 — 27, + 27,t and vy, (t) = —v1,(t).
Then the zero set of QQos (-; #K(w)) is {vi10...00;, 5(0)}ieqr,oy for all s € N.

Theorem 4.3.7. (see [2]) We have supp(pix(y)) = esssupp(pk(y)) = K(v). If

K() = 0.1\ (e d)

where ¢; # dj for all i,j € N, then pr)([0,e]) C {m2™"},nen, where e; €
(¢i,d;). Moreover for each m € N and n € N with m2™™ < 1, there is an i € N
such that pg ([0, e]) = m27".

4.4 Models

Now, having some idea about K (v) we will give the models we used for numerical
experiments and the properties of those models briefly.

We use the following four models for our numerical experiments:
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I (3) = 1/4 — (50 + )~
2 (1) = 1/4 — (50 + 5) 2
3 (7) = 1/4 — (50 4 5) /4
4: (ys) =1/4—1/50

And each of them represent different properties:

i) Model 1 represents as an example where K () is Parreau-Widom.

ii) Model 2 gives a non-Parreau-Widom set with a fast growth of 7 and gq K

optimally smooth.

iii) Model 3 gives a non-Parreau-Widom set with a relatively slow growth of ~

but still with go, =~ optimally smooth.

iv) Model 4 produces a set which is neither Parreau-Widom nor with Green’s

function for its complement optimally smooth.

4.5 Numerical Stability of Algorithm

We need to show that our algorithm points out numerical stability. To that end,
we need to compare zeros and Christoffel numbers obtained by our algorithm
and their theoretical values. By using the following remark we have compared
the eigenvalues of Hi;m to zeros obtained by Theorem 4.3.6. Recall Lemma
3.1.8; the eigenvalues of Hﬁ;m are equal to the zeros of Qan (. fi()).

Let {v7}72; be the set of eigenvalues of HY and {2}, be the set of zeros

of Qan(.; i (y)) (Where zeros are enumerated in ascending order). Then, setting
27’!4
El = 2_”(2 lvg — x}|) we have Figure 4.1.

n
k=1
Before we can draw Figure 4.2 we need two remarks.
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Remark 4.5.1. (see [15]) The squares of the eigenvectors’ first components give

the Christoffel numbers corresponding to Qan (-; fix(+))-

Remark 4.5.2. (see Theorem 1.3.5 in [27]) The Christoffel numbers correspond-
ing to Qon(.; ti(y)) are exactly equal to 27"

Now, let {v*}?”, be the set of squared first components of normalized eigen-
2774

vectors of Hﬁ;( Then, setting E? := 2_"(2 127" — v}/]) we have the Figure

"
=1
4.2. Thus, as it can be seen from Figure 4.1 and 4.2, our Algorithm is reliable

with small errors. These values can be compared with Figure 4.2 in [18].

4.6 First Observations

Now that we have established that we can rely on our algorithm up to a small
error, we can begin our analysis. Our numerical experiments (we found the
minimum via the code in Appendix A) suggests that min;e;  ona; = agn for
n < 14. Therefore, we make the following conjecture:

Conjecture 4.6.1. For k) we have {min }ai = aon and, in particular,
i€{1,...,2"

liminf ags = liminf a,,.
S5—00 n—oo

Also, remark that by (4.4) and (4.8) we have maxa,, = a;.

neN
Before we continue let us give a remark about Parreau-Widom sets.

Remark 4.6.2. For Parreau-Widom K we have liminf a, > 0 where a,’s are

outdiagonal elements of H,, (see Remark 4.8 in [5]).

Now, consider Theorem 4.3.3 and the previous remark. Then, we have
liminf a, > 0 for pg(y) if > ooq /T —4vs < co. In addition, by previous remark
and [13], if liminfa, = 0, where a,’s are outdiagonal elements of H,, ,, then

K(7) has zero Lebesgue measure. In this respect, we have computed the ratio
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P 1= a‘”il forn =1,...,13 to find for which of our models we have lim inf a,, = 0
27L

(see Figures 4.3 and 4.4). And, note that, we assume that Conjecture 4.6.1 is

correct.

For the first model, p, is very close to 1, however, this is expected since for

this model liminf a,, > 0 since it is Parreau-Widom. For the rest of the models,

13
n=1

as: liminfa, = 0 unless Y oo, /1 — 47, < co. Hence, the following conjecture:

it seems that (p,),>; behaves like a constant. Thus, this experiment can be read

Conjecture 4.6.3. K(v) is of positive Lebesque measure if and only if
Z /1 —4vys < oo if and only if liminf a, > 0.
s=1

4.7 Almost Periodicity

Definition 4.7.1. A sequence a = ()2 with «, € C for all n is called
almost periodic if the set {a = (Qpym)S>_, : m € Z} is precompact in £>(Z).
And a one-sided sequence is called almost periodic if it is the restriction of a

two-sided almost periodic sequence to natural numbers.

However, they are essentially the same objects since every one-sided almost pe-

riodic sequence has a unique extension to a two-sided almost periodic sequence(see
5.13 in [27]).

Now, we extend this notion to the Jacobi matrix H,,.

Definition 4.7.2. A Jacobi matrix H, is called almost periodic if the recurrence

coefficients (a,)52, and (b,)5°, for the measure p are almost periodic.

Definition 4.7.3. We call a sequence = (3,,)%; asymptotically almost periodic
if there exists an almost periodic sequence o = ()2 such that lim,, (v, —

Bn) = 0. Note that if it exists, a is unique and called the almost periodic limit.

In this section, we shift our focus to a more interesting problem: Is Hyp.

almost periodic or, at least, asymptotically almost periodic? Before we begin our
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analysis, first note that, K () is a generalized Julia set for infs s > 0 ([8]). And
Jacobi matrix of an equilibrium measure for Julia sets is almost periodic (see
8, 36]), so we suspect that it is almost periodic or at least asymptotically almost
periodic. Here, a Julia set (named after Gaston Julia(1893-1978)) can be defined

as:

Definition 4.7.4. ([33], p. 35 or see [9]) Take the monic polynomial Q(z) =
2" 4+ - and let Q(2) = @Qm-1(Q(2)) to be its m-th iterate with Qy(z) = z.
Then, the Julia set for the polynomial @ is

J:={2€C:Qunz)=zand |Q,(2)] > 1}.

Lemma 4.7.5. (see [9]) We have the following properties for a Julia set J for a

monic polynomial Q):

i) J is compact,

i) J #0,
i) J is completely invariant (Q(J) = Q = Q1(J)),
i) Cap(J) =1,

v) supp(ps) = J.

We refer the reader to [9] for more about Julia sets. Now, recall that b, = 1/2
for all n € N; hence, it is periodic. So, we need to analyse (a,)32, for periodicity.

We need a few definitions for this.

Definition 4.7.6. Suppose that p is a measure with infinite compact support and
also suppose that w, be the normalized counting measure on the zeros of @, (+; u).
Then, if there exists a measure w such that w, — w (here the convergence is
weak star convergence: [ fdw, — [ fdw for a continuous function f ), we call
w density of states (DOS) measure for H,. Moreover, integrated density of
states (IDS) is defined as the integral [*_ dw.

By Theorem 1.7 and 1.12 in [27] and by [34] we have the following for H,,

K(v)*
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Remark 4.7.7. Density of states of H,, , is puk(). This implies that if one
chooses x € (¢;,d;) (see Theorem 4.3.7) (choosing = from a gap of supp(pk(+))),
then IDS is ffoo ditg(y) = m2~" and m2™" < 1. Moreover, for any m,n € N if
m2~™ < 1, then there exists a gap (¢, d) where IDS is m27".

Note that, in the previous remark, a bounded component of R\ K is what we

mean by a gap of a compact set K C R. Now, we need one more definition.

Definition 4.7.8. We define the frequency module M(«) of an almost periodic
sequence o = ()92 as the Z-module of the real numbers modulo 1 generated
by
1 )
{0 : lim Nozne%me # 0}.

n—oo

Remark 4.7.9. We have several results/properties for frequency module:

i) M(«) is countable.

ii) a can be written as a uniform limit of Fourier series, where frequencies

chosen from M («).

iii) Frequency module 9(H) of a Jacobi matrix H is generated by M(a) and
M(b) where a = (a,)02, and b = (b,)>2, coefficients of H.

iv) For an almost periodic Jacobi matrix H the values of IDS in gaps are from
M(H) (see Theorme II1.1 in [12]).

v) DOS measure of an asymptotically almost periodic Jacobi matrix is the

same as its almost periodic limit (see Theorem 2.4 in [14]).

Definition 4.7.10. For N € N the discrete Fourier transform & = (a,)_, of
(cp)N_, is defined by

N
an = Z Oénef2(kfl)i7r(n71)/N
n=1
where k =1,2,..., N.

We computed the discrete Fourier transform (,)2-, for the first 2!* recurrence

coefficients a,,. Note that, for every model the frequencies run from 0 to 1. Also,
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we normalized [a]? by dividing it by Ziil |an|*. We plotted this normalized
power spectrum (see Figure 4.5) without the big peak at 0.

For all models, the spectrum yield a small number of peaks compared to 24
frequencies which points out almost periodicity of a,’s. In here, we consider only
model 1 but we have similar pictures for other models. The highest peaks are
at 0.5,0.25,0.75,0.375,0.625,0.4375, 0.5625,0.125,0.875,0.3125 which are of the
form m2~" where n < 4. Note that these frequencies are exactly the values of
IDS for H

hi(y N the gaps. Note that they appear earlier in the construction

of the weakly equilibrium Cantor set. Thus, we have the following conjecture

naturally:

Conjecture 4.7.11. For any v, (a,)52, for Hy,. ., is asymptotically almost peri-
odic where the almost periodic limit has frequency module equal to {m2™" },, neqno}

modulo 1.

4.8 Widom Factors

We examine Widom Factors for K(v) in this section. We have the following

relation between sequences with subexponetial growth and Widom factors:

Remark 4.8.1. (Theorem 4.4 in [17]) For each sequence (c,)32; of positive real
numbers such that lim,,_ . % logc, = 0, there is a Cantor set K(7) such that
W, (K (7)) > ¢, for all n € N.

Note that, for a unit Borel measure with infinite compact support on R we

have
Qn (s s 2200y < N TnllL2urey < I Tnllzoo sy, (4.9)

where @), is the n-th monic polynomial for ug. Also, by [21, 27|, if a non-
polar compact K C R is regular, then supp(ug) = K (recall Lemma 2.2.15;
if we lift the regularity condition for K, instead of the last equality we have
Cap(supp(uk)) = Cap(K)). Now, recall the definition of Widom-Hilbert factors
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from Theorem 4.3.4: the n-th Widom-Hilbert factor for p is defined as

2 L HQn(-;M)HLQ(u)
Walt) = {Cap(supp())y™ #10)

Then, observe that by Equation 4.9 we have

W) < Wa(K). (4.11)

Also, by [10] when K C R is Parreau-Widom, we have lim inf a,, > 0. It would
be interesting to find (if any exists) a non-Parreau-Widom set on the real line such
that it is regular and sequence of Widom factors is bounded. To see this problem
in a different way observe that Equation (4.11) lead us to a weaker problem: Is
there a non-Parreau-Widom but regular set K C R such that (W2(ug))Se, is
bounded? Therefore, we will examine the behaviour of (W2 (g (y)))o2; for non-
Parreau-Widom K (7). For this, first consider that for 7, < 1/6 for all k € N
(W2(pr ()22, is unbounded (see [5]). Recall that none of our models satisfy

this, so let us continue with another remark (by [5]) to begin our analysis.

Remark 4.8.2. For any v we have W2 (i) > v/2 for all n € Ny.

Thus, we have

)Cap(K(v)) > \/ﬁCap(K(v)) '

on Qa9on

W22"71<1U’K(7)) = Ws, (r () (4.12)

Assuming Conjectures 4.6.1 and 4.6.3 are true; for non-Parreau-Widom
K(v) we have liminf, ,, asn = 0. This implies that by (4.12), we have

lim sup,,_, Wgn,l(u;(w)) = oo if liminf,,_, as» = 0. Hence, we conjecture:

o0

Conjecture 4.8.3. K(7v) is a Parreau-Widom set if and only if (W,f (MK(W)))
is bounded if and only if (W, (K (7)))2, is bounded.

n=1

n=1

Now, let K be a union of finitely many compact non-degenerate intervals on R
and w be the Radon-Nikodym derivative of i with respect to the Lebesgue meea-
sure on the line. Then px satisfies the Szegé condition: [, w(z)logw(x)dx >
—o0. This implies by Corollary 6.7 in [11] that (W2(ux))°, is asymptotically

n=1
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almost periodic. Note that, g satisfies the Szegd condition if K is a Parreau-
Widom set(see [20]).

In Figure 4.7, we plotted the Widom-Hilbert factors for Model 1 until n = 22
and apparently

lim sup(Wy; (7)) # sup(Wy; (suxc,)).

Then, we plotted (Figure 4.6) the power spectrum for (W2(ug, )2, where
we normalized |[W?2|? by dividing it by Ziﬁwz(mﬁﬂ Again, frequen-
cies run from 0 to 1 and we omitted the big peak at 0. Like the previ-
ous power spectrum there are only a few peaks which is an important indi-
cator of almost periodicity as mentioned before. The highest ten peaks are
at 0.5,0.00006103515625, 0.25,0.75,0.125, 0.875,0.375, 0.625, 0.0625, 0.9375, how-
ever, they are quite different from the power spectrum for a,,; which may indicate

that almost periodic limit has a different frequency module.

If Conjecture 4.8.3 is correct, then the sequence of Widom-Hilbert factors
(Wﬁ (/‘K(v))):}:l is unbounded and cannot be asymptotically almost periodic if

K(7) is not Parreau-Widom. Therefore, we conjecture:

Conjecture 4.8.4. (WEL (MK(W)))Zil 1s asymptotically almost periodic if and only
if K(7y) is Parreau-Widom. If K(v) is Parreau- Widom then the frequency module
of the almost periodic limit includes the module generated by {m27"}. nefno}

modulo 1.

4.9 Spacing Propeties of Orthogonal Polynomi-

als

In this section we give some spacing properties of orthogonal polynomials. For
a given v, define Z,(u) := {z : ¢,(x;u) = 0} for all n € N and enumerate its

elements z in ascending order for ¢ = 1,...,n. And also define

My (p) = inf{lz —y| : 2,y € Z,(n) and = # y}.
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In [2], G. Alpan studied the behaviour of (M, (ux()))sZ,, that is, the global
behaviour of the spacing of zeros. We will give our numerical study (from [1]) on

the local behaviour of the zeros.

Here, we will only discuss Model 1 since for other cases the results are similar.
Let us define

Sév = |x§; - ifé\;—ﬂ

for N =23,2* ..., 2 where n = 1,..., N. Then, we computed

N
Ry = maX{S—?v n,m=1,...,N/2}
for N =232 ... 2" As also can be seen from Figure 4.8 these ratios (Rgx )ity

increase fast which indicates that (Ryr)52, is unbounded.

N

S,
We also plotted ﬁ (see Figure 4.9) where N = 2'4 and ¢t = 2, t = 26. And

these ratios seem to converge fast.

Now, we will give our last conjecture but it won’t contain the case when vy <

gl 8l=

for all k € N i.e., the case when + is small. The reason is that for a v with v, <
for all k € Nand > 7, v = M < co we have, by Lemma 6 in [16],

S?k < exp(16 M)y -+ Y1

for all £ > 1. Also, by Lemmas 4 and 6 in [16], we have

& 7
SZ > g% U Yk—1,

hence, we get Rox < 2exp(16M), ie., (Ron)22, is bounded.

Conjecture 4.9.1. For each v = (V)52 with infyye > 0, (Rgx)52, is an un-
bounded sequence. If t = 2 for some k € N, there is a co € R depending on k

such that
S2"
I
noo S77

= Cp.
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4.10 Figures
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Figure 4.1: Errors associated with eigenvalues.
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Figure 4.3: The values of outdiagonal elements of Jacobi matrices at the indices
of the form 2°.
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Appendix A

Codes

We used following code to do our numerical experiments via MATLAB.

format longEng

N = 2714;
GL = 100;
RL = 30;
Z=2"14;

G = zeros (0,GL);
for i=1:GL
G(i)=1/4 — 1/50;

end

R = zeros(0,RL);

R(1) = 1;

for i=2:RL

B = zeros(0,RL);
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for i=1:RL
B(i) = (1-2+G(1i))*((R(1))"2)/4;

end
CSum = (log(G(1l)))/2;
for i=2:30

CSum = CSum+ (log(G(i)))/(271);
end

C = exp(CSum) ;

A
A(l) = sqgrt(B(1));
A(2) = sqrt(B(2)/B(1));

zeros (0, N) ;

Io2 = zeros(0,24);
To2(1) = 2;
for i=3:N
s=0;
while mod(i/ (27s),2)==
s =s + 1;
end
A(i)=1;

for k=1: (2" (j—1))
((A(1))/A(i=27 (J—1)+1-k)) » ((G(s—=3+1)) "2) /A(i-2" (J—1) +1-k);

o=
=
1

A(i) = sqrt ((A(i))*(1—2%G(s+1))/4);

elseif mod (i, 2)==1

A(i) = sqgrt(B(1)—(A(i-1))"2);
else

o1 = 1;

for j=1:s
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for k=1:(2"(j-1))
t =1;
T = tx(A(i-2"(3-1)+1-k));
0l = Ol ((G(s—J+1))"2)/(t"2);
end
end
01 = Ol (1—2xG(s+1))/4;

02 = (A(i—2"s));
for j=1:(2"s-1)
02 = 02%A(i—(2"s)—7) /A (1i—7);

end

A(i) = sqgrt(01—(02)"2);
end

end

J=zeros (Z) ;
for n=1:%7
J(n,n)=0;
end
for n=2:%7
J(n,n—1)=A(n—-1);
J(n—1,n)=J(n,n-1);
end

[V,D]=eig (J);

[D,I]=sort (diag(D));
V=V(:,1I);
xw=[D A(1,2)*V(Ll,:)'."2];

0=0;
for i=1:Z7
Q = Q+xw(i,2);
end
0=1/Q;

E=xw*xQ;

Y=zeros (Z,1);
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for i=1:Z7
Y(1)=1/7;
end
ERROR1=0;
for i=1:%7
ERROR1 = ERROR1l+abs (Y (i)—E(i,2));
end

ERROR1=ERROR1*1/7Z;

06=[sqrt (1—2+G(log2(Z))),l—sqgrt (1—2xG(log2(Z)))1;
oS5=zeros (1,4);
for i=1:1092(Z2)—-2;
05=[sqrt (1—2%G (log2 (2)—1i) +2%G (1log2 (Z) —1) 06) , 1—sqrt (1—2*G (log2 (Z) —1)
+2%G(log2 (Z2)—1) x06) ];
06=05;
o5=zeros (1,2 (i+2));
05=05-0.5;
end
o5=sort ([1/2—((1/2) *sqrt (1—2+G (1) +2xG (1) x06)) ,1/2+((1/2)*xsqrt (1—2xG (1)
+2xG(1)*06))1);
ERROR2=0;
for i=1:2
ERROR2=ERROR2+abs (05 (i)—D (1)) ;
end
ERROR2=ERROR2* (1/7) ;

W = zeros (0,Nx2);
W(l) = A(1)/C;
for i=2:N
W(i) = W(i-1)*(A(1)/C);

end
W2 = zeros (0,20);
for i=1:13
W2 (i) = W((271)-1);
end
[kl,Wn_max] = find (W==max (W(:)));
[k2,Wn_min] = find(W==min (W(:)));
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[11,nmax] = find(A==max(A(:)));
[12, n.min] = find(A==min(A(:)));

T = zeros (0,23);
for i=1:12
T(i) = A(Io2(i+1))/A(Io2(1));



