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GENERALIZED INVERSES OF MATRICES
AND APPLICATIONS TO CODING THEORY

ABSTRACT

This thesis deals with the application of generalized inverses of matrices over
finite fields and the method of least squares in linear codes. It is proven that if the
Moore-Penrose inverse of a generator matrix of a linear code exists, a unique word

approaching to a received word near the codewords of the code can be found.

Together with the introduction, this thesis consists of six chapters. In the first
chapter, historical development of generalized inverses is mentioned, shortly. In the
second chapter, existence, construction and characterization of generalized inverses
of matrices and their relation with linear systems are given. In the last section of
chapter two, minimal properties of generalized inverses are investigated. In the third
chapter, importantant properties of generalized inverses over finite fields, which are
used as our tool to get our results in the fifth chapter, are described. The fourth
chapter provides a brief description on error correcting codes and basic definitions in
coding theory. In the fifth chapter, the concept of generalized inverses over finite
fields and least square solutions applied to the codes. In the final chapter, the

conclusion of this dissertation is given.

Keywords: Inconsistent linear systems, least-squares solutions, generalized inverses,
Moore-Penrose inverses, linear codes, finite fields, error correcting codes, coding

theory.



MATRISLERIN GENELLESTIiRiLMiS TERSLERI VE KODLAMA
TEORISINE UYGULAMALARI

0z

Bu tez sonlu cisimler {izerindeki matrislerin genellestirilmis tersleri kavraminin ve
en kiiclik kareler metodunun dogrusal kodlara uygulanmasiyla ilgilidir. Bir dogrusal
kodun iirete¢ matrisinin Moore-Penrose tersi var oldugunda, kodun kod kelimeleri
yakininda elde edilmis olan kod kelimesine yaklasan tek bir kelime bulunabildigi

kanitlanmustir.

Tez giris bolimi ile altt boliimden olusmaktadir. Birinci boliimde kisaca
Genellestirilmis terslerin tarihsel gelisiminden bahsedilmistir. Ikinci béliimde
matrislerin genellestirilmis terslerinin varhigi, insasi, karakterizasyonu ve dogrusal
sistemlerle iligkileri verilmistir. Ikinci boliimiin sonunda, genellestirilmis terslerin
minimal 6zellikleri incelemistir. Uciincii boliimde sonlu cisimler iizerindeki
matrislerin besinci boliimdeki sonuglarimizi elde etmemiz i¢in arag¢ olacak 6nemli
Ozellikleri ifade edilmistir. Dordiincii boliim, hata diizelten kodlar ve kodlama
teorisindeki temel tanimlardan bahsetmektedir. Besinci boéliimde sonlu cisimler
tizerindeki matrislerin genellestirilmis tersleri ve en kiicliik kareler ¢oztimleri

dogrusal kodlara uygulanmistir. Son boliimde tezle ilgili sonuglar verilmistir.

Anahtar kelimeler: Tutarsiz dogrusal sistemler, en kii¢iik kareler ¢Oziimleri,
genellestirilmis tersler, Moore-Penrose tersleri, dogrusal kodlar, sonlu cisimler, hata

diizelten kodlar, kodlama teorisi.
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CHAPTER ONE
INTRODUCTION

The theory of Generalized Inverses of Matrices has been addressed from the fifties
for its numerous applications which include areas such as Markov chains, robotics,
differential equations. The first written work on the concept of a generalized inverse
seems to be the Fredholm (1903) on the generalized inverse of an integral operator.
He called a particular generalized inverse as pseudo inverse. The class of all pseudo
inverses was characterized by Hurwitz (1912). He used the finite dimensionality of the
null spaces of the Fredholm operators to given an algebraic construction. Generalized
inverses of differential operators studied by many authors. Moore (1920) formulated
the generalized inverse of a matrix in an algebraic setting but his first publication on
the subject appeared in 1920. Generalized inverses for operators were given by Murray
& Von Neumann (1936) and others. Big expansion of interest in the area came in the
1950s by the study of the least squares properties. Bjerhammar (1951), Bjerhammar
(1958) recognized these properties and he rediscovered Moore’s inverse, additionally
noted the relationship of generalized inverses to solutions of linear systems. Penrose
(1955) showed that the Moore’s inverse should satisfy the four equations and is unique.
This unique inverse is now called the Moore-Penrose inverse. Since then, many papers

on this subject have appeared.

The theory of generalized inverses has a potential for its wide applications,
especially generalized inverses of matrices over finite fields. This subject is studied
by many authors some of them are Fulton (1978), Pearl (1968) and Wu & Dawson
(1998a).

Finite fields play fundamental role in applications including error correcting codes
and Cryptography. For instance, Wu & Dawson (1998b) used generalized inverses in

public key cryptosystem design.

In this thesis, we investigate the conditions of existence of the Moore-Penrose

inverses over finite fields and the algebraic properties of them. We used these properties



of generalized inverses in error correction.



CHAPTER TWO
GENERALIZED INVERSES OF MATRICES

2.1 Existence and Construction of Generalized Inverses

2.1.1 Penrose Equations

Penrose (1955) showed that, for every finite matrix A (square or rectangular) of real
or complex elements, there is a unique matrix X satisfying the four equations; ( that

we call the Penrose equations)

AXA=A 2.1)
XAX =X (2.2)
(AX)* = AX (2.3)
(XA)* = XA (2.4)

where A* denotes the conjugate transpose of A. Because this unique generalized
inverse had previously been studied ( though defined in a different way) by Moore
(1920), Moore (1935), it is commonly known as the Moore-Penrose inverse, and is

often denoted by A™.

If A is nonsingular, it is clear that X = A~! trivially satisfies the four equations.
Since the Moore-Penrose inverse is known to be unique it follows that the Moore-

Penrose inverse of a nonsingular matrix is the same as the ordinary inverse.

Throught this thesis, we will deal with a number of different subsets of the set
offo ur Penrose equations, so we need a convenient notation for a generalized inverse
satisfying certain specified equations. Let C"*" and [R™*" ] denote the class of m x n

complex (real) matrices.

Definition 2.1.1. (Ben-Isracl & Greville, 2003, Definition 1) For any A € C"*", let



A{i, J,...,k} denote the set of matrices X € C"*" which satisfy equations (2.i), (2.j),..., (2.k)
from among the equations (2.1) — (2.4). A matrix X € A{i,j,....k} is called an

i,Jj,...,k—inverse of A, and also denoted by Ak,

2.1.2 Existence and Construction of {1}-Inverses

It is easy to construct a {1 }-inverse of the matrix R € C**" given by

R= (; . (2.5)

For any L € C*=")*("=7) 'the n x m matrix

S =
0 L

is a {1}-inverse of (2.5). If R is of full column (row) rank, the two lower (right-hand)

submatrices are interpreted as absent.

The construction of {1}-inverses for an arbitrary A € C™*" is simplified by
transforming A into a Hermite normal form, as shown in the following theorem, where

E is the product of elementary matrices and P is a permutation matrix.

Theorem 2.1.2. (Ben-Israel & Greville, 2003, Theorem 1) Let A € C"", and let E €

Cin*™ and P € C*" be such that

I, K
EAP = . (2.6)
0 0

Then for any L € Cl=r)xm=r) " the n x m matrix

I, K
X=P L (2.7)

0 0
is a {1}-inverse of A. The partitioned matrices in (2.6) and (2.7) must be suitably

interpreted in case r =m orr = n.



Proof. Rewriting (2.6) as
I K

0 0

A=E"! p! (2.8)

it is easily verified that any X given by (2.7) satisfies AXA = A.

In the trivial case of r = 0, when A is therefore m x n null matrix, any n X m matrix

is a {1}-inverse.

We note that since P and E are both nonsingular, the rank of X as given by (2.7) is
the rank of the partitioned matrix in the right member. In view of the form of the latter
matrix,

rankX = r+ rankL (2.9)

Since L is arbitrary, it follows that a {1}-inverse of A exists having any rank between r

and min{m,n}, inclusive.

This theorem shows that every finite matrix with elements in the complex field has

a {1}-inverse, and suggests how such an inverse can be constructed.

2.1.3 Properties of {1}-Inverses

Certain properties of {1}-inverse are given in Lemma 2.1.3. For a given matrix A,
we denote any {1}-inverse by AW Note that, in general, AW s not uniquely defined

matrix. For any scalar A we define A" by

AL i (W#£0
At = if (A #0) (2.10)

0, if(A=0)

Lemma 2.1.3. (Ben-Israel & Greville, 2003, Lemma 1) Let A € C"*", A € C. Then,

1. (Ah* e A*{1}.



2. If A is nonsingular, Al =71 uniquely.

3. APAW e M) {1}

4. rankAW) > rankA.

5. If S and T are nonsingular, T-'ANVS~1 € SAT{1}.

6. AAY and AVA are idempotent and have the same rank as A.

Proof. These are immediate consequences of the defining relation (2.1); (4) and the
latter part of (6) depend on the fact that the rank of a product of matrices does not

exceed the rank of any factor. 0

If an m x n matrix A is of full column rank, its {1 }-inverses are its left inverses. If

it is full row rank, its {1 }-inverses are its right inverses.

Lemma 2.1.4. (Ben-Israel & Greville, 2003, Lemma 2) Let A € C**". Then ,

1. AMA =1, if and only if r = n.

2. AA) =1, if and only if r = m.
Proof. (1) If : Let A € C"". Then n X n matrix AWA i, by Lemma 2.1.3(6),
idempotent and nonsingular. Multiplying (A(VA)2 = A(MA by (AMDA) ! gives A(DA =
I, .

Only if : AMA = I, = rankA\WA = n = rankA = n, by Lemma 2.1.3.(6).
(2) Similarly proved. U

2.1.4 Bases for the Range and Null Space of a Matrix

For any A € C"™*"* we denote by

RA)={yeC":y=Ax for some x¢c& C"}, therangeofA,



N(A) = {x € C": Ax = 0}, the null space of A .

A basis for R(A) is useful in many applications, such as, in the numerical computation

of the Moore-Penrose inverse.

The need for a basis of N(A) is illustrated by the fact that the general solution of the
linear inhomogeneous equation

Ax=>b

is the sum of any particular solution xo and the general solution of the homogeneous
equation

Ax=0

The latter general solution consists of all linear combinations of the elements of any

basis for N(A).

A further advantage of the Hermite normal form EA of A (and its column permuted

form EAP) is that from them bases for R(A), N(A), and R(A*) can be read off directly.

A basis for R(A) consists of the cith, cyth,...,c,th-columns of A. Let P; denote the
submatrix consisting of the first  columns of the permutation matrix P.Then, because

of the way in which these r columns of P were chosen

EAP, =
0

Now, AP is an m X r matrix, and is of rank r, since the right hand side of the above
is of rank r. But AP; is merely the submatrix of A consisting of the cith,coth,....c,th

columns. The columns of the n x (n — r) matrix



are a basis for N(A). Moreover it is evident that the first r rows of the Hermite normal
form of EA are linearly independent, and each is some linear combination of the rows

A. Thus they are basis for the space spanned by the rows of A. Consequently, if

G
EA =
0
then the columns of the n x r matrix
G =P r
K*

are a basis for R(A™).

2.1.5 Existence and Construction of {1,2}-Inverses

It was first noted by ? that the existence of a {1}-inverse of a matrix A implies the

existence of a {1,2}-inverse. This easily verified observation is stated as a lemma.

Lemma 2.1.5. (Ben-Israel & Greville, 2003, Lemma 3) Let Y,Z € A{1}, and let

X =YAZ

Then X € A{1,2}.

Since the matrices A and X occur symmetrically in (2.1) and (2.2), X € A{1,2} and
A € X{1,2} are equivalent statements, and in either case we can say that A and X are

{1,2}-inverses of each other.

From (2.1) and (2.2) and the fact that the rank of a product of matrices does not
exceed the rank of any factor, it follows at once that if A and X are {1,2}-inverses of
each other, they have the same rank. Less obvious is the fact, first noted by ?, that if X

is a {1}-inverse of A and of the same rank as A, itis a {1,2}-inverse of A.

Theorem 2.1.6. (Ben-Israel & Greville, 2003, Theorem 2) Given A and X € A{1,2} if
and only if rankX = rankA.



Proof. 1f : Clearly R(AX) C R(X). But rankXA = rankA by Lemma 2.1.3(6), and so,
if rankX = rankA, rank(XA) = rank(X). Thus,

XAY =X
for some Y. Premultiplication by A gives
AX = AXAY =AY
and therefore
XAX =X

Only if : This follows at once from (2.1) and (2.2). ]

Corollary 2.1.7. (Ben-Israel & Greville, 2003, Corollary 1) Any two of the following
three statement imply the third:
X € A{1}

X € A{2}

rankX = rankA

In view of Theorem 2.1.6, (2.9) shows that the {1}-inverse obtained from the

Hermite normal form is a {1,2}-inverse if we take L = 0. In other words,

is a {1,2}-inverse of A is E and O are nonsingular and satisfy (2.6).

2.1.6 Existence and Construction of {1,2,3}-, {1,2,4}- and {1,2,3,4}-Inverses

Urquhart (1968) has shown that the existence of a {1}-inverse of every finite matrix
with elements in C implies the existence of a {1,2,3}-inverse and a {1,2,4}-inverse

of every such matrix. However, in order to show the nonemptiness of A{1,2,3} and



A{1,2,4} for any given A, we shall utilize the {1}-inverse not of A itself but a related

matrix.

Lemma 2.1.8. (Ben-Israel & Greville, 2003, Lemma 4) For any finite matrix A,

rankAA* = rankA = rankA*A

Proof. If A € C"™*", both A and A*A have m rows. The rank of any m-rowed matrix is
equal to m minus the number of independent relations among its rows. To show that
rankAA* = rankA, it is sufficient, therefore, to show that every linear relation among
the rows of A holds for the corresponding rows of A*A, and vice versa. Any non trivial
linear relation among the rows of a matrix H is equivalent to the existence of a nonzero
row vector x* such that x*H = 0.

Now evidently,

XA=0=x"AA"=0
and conversely,
XAA*=0=0=x"AA"x = (A"X))'A'x=A"x=0= 0= ((A"X))" =x"A

Here we have used the fact that, for any column vector y of complex elements y*y is
the sum of squares of the absolute values of the elements, and this sum vanishes only

if every element is zero.

Applying this result to the matrix A* gives rankA*A = rankA*, and of course,
rankA* = rankA.

]

Corollary 2.1.9. (Ben-Israel & Greville, 2003, Corollary 2) For any finite matrix A,
R(AA*) =R(A) and N(AA*) = N(A).

Proof. This follows from Lemma 2.1.8. [

10



Theorem 2.1.10. (Ben-Israel & Greville, 2003, Theorem 3) For every finite matrix A
with complex elements,

Y = (A*A) VA% € A{1,2,3} 2.11)

and

Z =A*(AA)Y) € A{1,2,4} (2.12)

Proof. Applying Corollary 2.1.9 to A* gives
R(A™A) = R(AY)

and so,

A* = A*AU (2.13)

for some U. Taking conjugate transpose gives
A=U*A*A (2.14)

Consequently,

AYA = U*A*A(A*A)DA*A = U*A*A = A

Thus, Y € A{1}. But rankY > rankA by Lemma 2.1.3(4), and rankY < rankA* =
rankA by the definition of Y. Therefore

rankY = rankA
and by Theorem 2.1.6, Y € A{1,2}. Finally, (2.13) and (2.14) give
AY = U*A*A(A*A)VA*AU = U*A*AU
, which is clearly Hermitian. Thus (2.11) is established.

(2.12) is similarly proved. [

11



If we can establish the existence of a {1,2,3,4}-inverse, we will have demonstrated
the existence of an {i,j,...,k}-inverse for all possible choices of one, two or three
integers i, j,...,k from the set {1,2,3,4}. If a {1,2,3,4}-inverse exists, it is unique.

We know that it does exist, because it is the well-known Moore-Penrose inverse, A™.

Theorem 2.1.11. (Ben-Israel & Greville, 2003, Theorem 4) For any finite matrix A of
complex elements,

AAAALS = A F (2.15)

Proof. Let X denote the left hand side of (2.15). It follows from Lemma 2.1.5 that
X € A{1,2}. Moreover, (2.15) gives

AX = AA0) xA = A(l44
But both AA"3) and AU A are Hermitian, by the definition of A13) and A4 Thus
X € A{1,2,3,4}.

However, A{1,2,3,4} contains at most a single element. Therefore, it contains exactly

one element, which we denote by A™, and X =A™, ]

2.1.7 Full Rank Factorization

A non-null matrix that is not of full (column or row) rank can be expressed as
the product of a matrix of full column rank and a matrix of full row rank. Such

factorizations turn out to be a powerful tool in the study of generalized inverses.

Lemma 2.1.12. (Ben-Israel & Greville, 2003, Lemma 5) Let A € C"*", r > 0. Then

there exists matrices F € C!"*" and G € C*", such that

A=FG. (2.16)

Proof. Let F be any matrix whose columns are a basis for R(A). Then F € C'*.

The matrix G € C/*" is then uniquely determined by (2.16), since every column of

12



A is uniquely representable as a linear combination of the columns of F. Finally,
rankG = r, since

rankG > rankFG =r

The columns of F can, in particular, be chosen as any maximal linearly independent
set of columns of A. Also, G could be chosen first as any matrix whose rows are a basis

for the space spanned by the rows of A, then F is uniquely determined by (2.16).

We shall call a factorization (2.16) with properties stated in Lemma 2.1.12. a full-

rank factorization of A. ]

2.1.8 Explicit Formula for A

C.C. MacDuffee apparently was the first to point out, about 1959, that a full-rank
factorization of a matrix A leads to an explicit formula for its Moore-Penrose inverse,
A™T. However, he did so in private communications, there is no published work that

can be cited.

Theorem 2.1.13. (Ben-Israel & Greville, 2003, Theorem 5) If A € C""", r > 0, has a
full-rank factorization

A=FQG, 2.17)

then

AT =G*(F*AG*)"'F*. (2.18)

Proof. First, we must show that F*AG™ is nonsingular. By (2.17),

F*AG* = (F*F)(GG"), (2.19)

and both factors of the right member are r X r matrices. Also, by Lemma 2.1.8, both

are of rank r. Thus, F*AG" ,s the product of two nonsingular matrices, and therefore

13



nonsingular. Moreover, (2.19) gives
(F*AG*) ' = (GG*) Y (F*F) .
Denoting by X the right member of (2.18), we now have
X =G*(GG*) Y (F*F)"'F*, (2.20)

and this expression for X satisfies the Penrose equations (2.1)-(2.4). As A™ is the sole

element of A{1,2,3,4} (2.17) is therefore established.

2.1.9 An Algorithm for computing the Generalized Inverse of a matrix

To obtain the full rank factorization and the generalized inverse for any A € C"™*",

we can use the following algorithm; see (Campbell & Meyer, 2009, Algorithm 1.3.2) ,

1. Reduce A to row echelon form E4

2. Select the distinguished columns of A and place them as the columns in a matrix

F in the same order as they appear in A

3. Select the nonzero rows from E4 and place them as rows in a matrix G in the

same order as they appear in E4
4. Compute (GG*)~! and (F*F)~!
5. Compute At as AT = G*(GG*) "\ (F*F)~'F*

Remark 2.1.14. If E4 is the row echelon form for A and the unit vectors in E4 appear
in columns iy, iy, ..., i, then the correspoding columns of A are a basis for R(A). This

particular basis is called the distinguished columns of A.

14



Example 2.1.15. (Campbell & Meyer, 2009, Example 1.3.3) We will use this

algorithm to find A" where

1 2141

240 6 6
A=

1 20 33

2 406 6

1. Using elementary row operations we reduce A to its row echelon form

1 203 3
0011 =2
000O0 O
000O0 O

£
I

2. The first and third columns are distinguished. Thus

—
o o O

3. The matrix G is made up of the nonzero rows of E4 so that

1 203 3
0011 -2
23 -3 10 1 _ :
4. Now GG* = and F*F = . Calculating (GG*)™" and
-3 6 I 1
x\—1 )\ —1 1 6 3 x\—1 1 1 o s
(F*F)~ weget (GG*) ™" = 159 and (F*F)™" =3 5. Substituing
3 23 -1 10

15



the results of steps 2., 3., and 4., into the formula for A™ gives

27 6 3 6

54 12 6 12
207 —40 —-20 —40
288 =22 —11 =22
—333 98 49 98

G*(GG")™ (F'F) el

For more methods and algorithms to calculate A* see Campbell & Meyer (2009).
2.2 Linear Systems and Characterization of Generalized Inverses
2.2.1 Solutions of Linear Systems

The principal application of {1}-inverses is to the solution of Linear systems, where

they are used in much the same way as ordinary inverses in nonsingular case.

Theorem 2.2.1. Ben-Israel & Greville (2003) Let A € C™*", B € CP*4, C € C"™*4,
Then the matrix equation

AXB=D (2.21)

is consistent if and only if for some AW B,
AAYDBYB =D (2.22)
in which case the general solution is
X =AUDpBY +y —AAyBBY (2.23)

for arbitrary Y € C"*P,

Proof. If (2.22) holds, then X = AVDBW is a solution of (2.21). Conversely, if X is

16



any solution of (2.21), then
D =AXB =AAWAXBBYB = AAMDBBW.

Moreover, it follows from (2.22) and the definition of AWM and B that every matrix
X of the form (2.21) satisfies (1). On the other hand, let X be any solution of (2.20).
Then,

X =AWDpBY + x — Al axBB")

which is of the form (2.22). OJ

The following corollary is the characterization of the set A{1}.

Corollary 2.2.2. Ben-Israel & Greville (2003) Let A € C"™*", A € A{1}. Then

A{1} ={A0 +z-AWazAAW . z e C™my (2.24)

Proof. The set described in right hand side of (2.24) is obtained by writing ¥ =A(}) +Z
in the set of solutions of AXA = A as given by Theorem 2.2.1. [

Corollary 2.2.3. Ben-Israel & Greville (2003) Let A € C"™*", b € C™. Then the
equation

Ax=bh (2.25)

is consistent if and only if for some A
AAYD = b (2.26)
in which case the general solution of (2.25) is
x=AWp+ 1 -AaWA)Y (2.27)

for arbitrary y € C".

Theorem 2.2.4. Ben-Israel & Greville (2003) Let A € C"™*", X € C"*™. Then X €
A{1} if and only if for all b such that Ax = b is consistent, x = XD is a solution.
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Proof. If: Let a; denote the jth column of A. Then
Ax=a;
is consistent, and Xa; is a solution,
AXaj=a; (j€1l,n)

So,
AXA=A

Only if: This follows from (2.26). ]

2.2.2 Characterization of A{1,3} and A{1,4}

Theorem 2.2.5. Ben-Israel & Greville (2003) The set A{1,3} consists of all solutions

for X of
AX = AA(13) (2.28)

where A3 is an arbitrary element of A{1,3}.

Proof. 1f X satisfies (2.28), then clearly
AXA =AA1A = A

and , AX is Hermitian since AA(!?) is Hermitian by definition. Thus X € AlL3),

On the other hand, if X € A13) then,
AAUD) = AXAA1D) = (AX)*AAUS) = X A* (A3 A" = X*A* = AX

We have used Lemma 2.1.3.(1). ]
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Corollary 2.2.6. Ben-Israel & Greville (2003) Let A € C"*", A13) € A{1,3}. Then

A{1,3} = {A0) L 1AWz zecmmy (2.29)
Proof. Applying Theorem 2.2.1 to (2.28) and substituting Z +A13) fory gives (2.29).

]

Theorem 2.2.7. Ben-Israel & Greville (2003) The set A{1,4} consists of all solutions
for X of
XA =AY

where AU is an arbitrary element of A{1,4}.

Corollary 2.2.8. Ben-Israel & Greville (2003) Let A € C™*", AU € A{1,4}. Then

A{1,4} _ {A(1’4) _|_Y(I_AA(174)) . Ye (Cn><m}

2.2.3 Idempotent Matrices and Projectors

Some basic properties of Idempotent matrices are listed in the following Lemma.

Lemma 2.2.9. Ben-Israel & Greville (2003) Let E € C"*" be idempotent. Then,

1. E* and I — E are idempotent.

2. The eigenvalues of E are 0 and 1. The multiplicity of the eigenvalue 1 is rank E.
3. rankE = traceE

4. E(I-E)=(—-E)E=0

5. Ex=xifand only ifx € R(E)

6. E € E{1,2}

7. N(E)=R(I—E)
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Proof. Parts (a) to (f) are consequences of the definition of idempotency. (c) follows
from (b) and the fact that the trace of any square matrix is the sum of its eigenvalues
counting multiplicities. (g) is obtained by applying Corollary 2.2.3 to the equation
Ex=0. [

Lemma 2.2.10. Ben-Israel & Greville (2003) Let a square matrix have the full-rank
factorization

E=FG

Then E is idempotent if and only if GF = I.

Proof. If GF = I then
(FG)> =FGFG=FG (2.30)

On the other hand, since F is of full column rank and G is of full row rank,
FUF =G =1

by Lemma 1.2. Thus if (2.30) holds, GF = 1. (]

Let Pr y denote the transformation that carries any x € C" into its projection on L

along M. We shall call the transformation Py, s the projector on L along M.

It is well-known that every linear transformation from one finite-dimensional vector
space to another can be represented by a matrix, which is uniquely determined by the
linear transformation and by the choice of bases for the spaces involved. Suppose
that we have fixed the bases as the standard basis for any finite dimensional vector
space, there is one-to-one correspondence between C"*", m x n complex matrices
and L(C",C"), the space of linear transformations mapping x € C" into x € C™.
This correspondence permits using the same symbol, say A, to denote both the linear
transformation A € L(C",C") and its matrix representation A € C"*". Thus the
matrix-vector equation,

Ax=y
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can equally be regarded as a statement that the linear transformation A maps x into y.

In particular, linear transformations mapping C” into itself are represented by
the square matrices of order n. Next theorem shows that there is a one to one
correspondence between the idempotent matrices of order n and the projectors Py
where L ® M = C". Furthermore, for any two complementary subspaces L and M,

there is a method for computing Py

Theorem 2.2.11. Ben-Israel & Greville (2003) For every idempotent matrix E € C™*",

R(E) and N(E) are complementary subspaces with

Conversely, if L and M are complementary subspaces, there is a unique idempotent

Py pr such that R(Ppy) = Land N(Ppy) =M

Proof. Let E be idempotent of order n. Then it follows from Lemma 1(e) and 1(g) and
from the equation

x=Ex+(I—E)x (2.32)

the C" is the sum of R(E) and N(E). Moreover R(E) NN(E) = {0}, since
Ex=(I—E)yy=—=Ex=E*x=E(I-E)y=0

by Lemma 1(d). Thus R(E) and N(E) are complementary and (2.32) shows that for
every x, Ex is the projection of x on R(E) along N(E). This establishes (2.31).

On the other hand, let {x;,x2,...,x;} and {y1,y2,...,ym} be any two bases for L and

M, respectively. Then Py y; if it exists, is uniquely determined by

PL,Mxi = X; (i S l,l) (2.33)

PLmyi=0 (i€l,m)

Let X = [x1,x2,...,x;] denote the matrix whose columns are the vectors x;. Similarly,
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letY = [y1,y2,...,ym]- Then (2.30) is equivalent to

Py [XY] = [X0] (2.34)

Since [XY] is nonsingular, the unique solution of (2.34) is

Py = [XO][xY]"! (2.35)
Since (2.33) implies
PLuX0] = [XO)
Py, y as given by (2.35) is clearly idempotent. [

Corollary 2.2.12. Ben-Israel & Greville (2003) Let L and M be complementary

subspaces of C". Then for every x € C", the unique decomposition is given by

PL7MX =), (I i PL7M)X =z
If AY) € A{1}, we know that AA") and AV A are idempotent and R(AAU)) = R(A)
and N(AVA) = N(A). The next corollary is the consequence of these results.

Corollary 2.2.13. Ben-Israel & Greville (2003) If A and X are { 1,2 }-inverses of each
other, AX is the projector on R(A) along N(X), and XA is projector on R(X) along
N(A).

Theorem 2.2.14. Ben-Israel & Greville (2003) Let A € C"" with k distinct eigevalues

A, A2, ..., Ak. Then A is diagonable if and only if there exists projectors E|,E;, ..., E}

such that
EE;=0, if i#] (2.36)
k
L=YE (2.37)
1
k
A=) ME; (2.38)

Proof. 1f: For i € 1,k, let r; = rankE; and let X; € C"*"i be a matrix whose columns



are basis for R(E;). Let
X = [X1Xa... X
Then by Lemma 2.2.9(3), the number of columns of X is
k k k
Z ri= Z traceE; = trace Z E; =tracel, =n
i=1 i=1

i=1

by (2.37). Thus X is square of order n. By the definition of X;, there exists for each i a

Y; such that
E; = XY,
Let g
4l
Y-
y=|"
Yy
Then
k
XY =Y MEX;=XD (2.39)
i=1
where
D= diag(MIl s 7\2]2, ceey Xklk) (2.40)

I; is being used to denote the unit matrix of order r;. Since X is nonsingular, it follows
from (2.35) that A and D are similar.
Only if: If A is diagonable,

AX =XD (2.41)

where X is nonsingular, and D can be represented in the form (33). Let X be partitioned
by columns into Xi,X>,...,X} 1 conformity with the diagonal blocks of D, and for
i=1,2,...k, let

E;=1[0...0X0...0]Xx"!

In other words, E; = X;X !, where X; denotes the matrix obtained from X by replacing

all its columns except the the columns of X; by columns of zeros. It is easily verified
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that E; is idempotent, and (2.36), (2.37) hold.

ME; = [MX 1 MXo . MXJX ' =XDX 1 =A

-

1

1

by (2.41). The idempotent matrices E; are called its principal idempotents. Relation

(2.38) is called the spectral decomposition of A. [

2.2.4 Orthogonal Projections and Orthogonal Projectors

Given a vector x € C" and a subspace L of C”, there is in L a unique vector u, that
is closest to x in the sense that the distance ||x — u|| is smaller for u = u, than for any

other u € L. Here ||v|| denotes the Euclidean norm of the vector v,

IVl = +/(n,v) = +Vviv = + flwz
\/ =

where (v,w) denotes the standart inner product, defined for v,w € C" by

n
(vw) =w'v =Y W)y,
=1

The vector u, that is closest to x of all vectors in L is uniquely characterized by the fact

that x — u, is orthogonal to u,, we we can denote by
.X - th J_ ux

We call u, the orthogonal projection of x on L. The transformation that carries each
x € C" into its orthogonal projection on L we shall denote by P and shall call the
orthogonal projector on L. The orthogonal projector on L is the same as the projector

on L along L.

Being a particular case of the more general projector, the orthogonal projector is
representable by a square matrix, which, in this case, is not only idempotent but also

Hermitian.

24



To prove this we need the following relation

N(A) = R(A*)* (2.42)

Let L and M be complementary orthogonal subspaces of C" and consider the matrix
Pz’ - By Lemma 2.2.9.(1) it is idempotent therefore a projector by Theorem 2.2.11.
By the use of (2.42) and its dual

N(A*) =R(A)* (2.43)

it is found that,

R(P[ 1) =M, N(P[ ) =L"

Thus by Theorem 2.2.11.,
PZM - PML’LL (2'44)

Lemma 2.2.15. Ben-Israel & Greville (2003) Let C" = L& M. Then M = L* if and

only if Pp y is Hermitian.

Just as there is a one to one correspondence between projectors and idempotent
matrices, Lemma 2.2.15 shows that there is a one to one correspondence between

orthogonal projectors and Hermitian idempotents.

For any subspace L for which a basis is available, it is easy to construct the matrix
Pp.. The basis must first be orthonormalized. Let {x;, x>, ...x;} be an orthonormal basis

for L. Then
l
PL=) xx; (2.45)
j=1

(2.45) is the orthogonal projector on L and (2.35) reduces to (2.45) if M = L+

We recall that a square matrix A is called normal if it commutes with its conjugate
transpose

AAT =A"A
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It is well known that every normal matrix is diagonable. Also a normal matrix A has
the property that the eigenvalues of A* are the conjugates of those of A, and every
eigevector of A associated with the eigenvalue A is also an eigenvector of A* associated

with the eigenvalue A.

The following theorem relates normal matrices to orthogonal projectors.

Theorem 2.2.16. Ben-Israel & Greville (2003) Let A € C"™*" with k distinct eigevalues
AN, ...;h.  Then A is normal if and only if there exists orthogonal projectors

E\,E»,...,E} such that

EE;j=0, if i#] (2.46)
k
L=YE (2.47)
1
k
A=) ME; (2.48)

Proof. 1If: Let A be given by (2.48) where the principal idempotents are Hermitian.
Then

AA* = (f x,-E,-> <i 7C,~Ej> = i N[ E; = A*A

i=1 j=1 i=1
Only if: Since A is normal, it is diagonable; let Ey,E3,...,E; be its principal
idempotents. We must show that they are Hermitian. R(E;) the eigenspace of A
associated with the eigenvalue A; is the same as the eigenspace of A* associated with
. Because of (2.46), the null spaces corresponding principal idempotents of A and A*

are also the same.

Therefore, A and A* have the same principal idempotents, by Theorem 2.2.11.
Consequently,

k
A" =Y ME;

=

—

by Theorem 2.2.14. But taking conjugate transposes in (2.48) gives

k
A =Y ME;

i
i=1



and it is easily seen that the idempotents E;" satisfy (2.46) and (2.47). Since the spectral

decomposition is unique, we must have

Ei=E' i€l

]
2.3 Minimal Properties of Generalized Inverses
2.3.1 Least Squares Solutions of Inconsistent Linear Systems
For a given A € C™*"*, and b € C™, the linear system
Ax=0b (2.49)

is consistent, i.e., has a solution for x, if and only if » € R(A). Otherwise, the residual

vector

r=b—Ax (2.50)

is nonzero for all x € C" and it may desired to find to find an approximate solution of
(2.49), by which is meant a vector x making the residual vector (2.49) closest to zero
in some sense, i.e., minimizing some norm of (2.50). An approximate solution that is
often used is the least-squares solution of (2.49), defined as a vector x minimizing the
Euclidean norm of the residual vector, i.e., minimizing the sum of squares of moduli

of the residuals

Z ’ ri ’2: Z ‘ bl'— Z aijxj |2: Hb—AxH2 (2.51)
i=1 i=1 j=1

The following theorem shows that |[Ax — b|| is minimized by choosing x = Xb,
where X € A{1,3}, thus establishing a relation between the {1,3}-inverses and the
least squares solutions of Ax = b, characterizing each of these two concepts in terms

of the other.
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Theorem 2.3.1. Ben-Israel & Greville (2003) Let A € C™*", b € C™. Then ||Ax—b||
is smallest when x = A3)b, where A(L3) ¢ A{1,3}. Conversely, if X € C"*™ has the
Ax —D|| is smallest when x = Xb, then X € A{1,3}.

property that, for all b,
Proof.
b= (Pg(a) +PR(A)L) (2.52)
b —Ax = (Pg(a)b — Ax) + Pya~)b
1A% = B> = [|Ax — Proayb> + [| Py ar I (2.53)
(2.53) assumes its minimum value if and only if

which holds if x = AU3)p for any AU3) € A{1,3}, since by Theorem 2.2.11, and
Lemma 2.2.15.
AA(I’S) = PR(A)'

Conversely, if X is such that for all b, |[Ax — b|| is smallest when x = Xb, (2.54) gives
AXD = Pg(a)b for all b, and therefore

AX = Pria).

Thus, by Theorem 2.3, X € A{1,3}. O

Corollary 2.3.2. Ben-Israel & Greville (2003) A vector x is a least squares solution of
Ax = b if and only if
Ax = PR(A)b :AA(173)b.

Thus the general least squares solution is
x=AUp 4 (1, —A13A)y (2.55)

with AU3) € A{1,3} and arbitrary y € C".

28



It is important to note that the least-squares solution is unique only when A is of full

column rank. Otherwise, (2.55) is an infinite set of such solutions.
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CHAPTER THREE
GENERALIZED INVERSES OVER FINITE FIELDS

3.1 Some Properties of Finite Fields

Let p be a prime, g = p™ with m > 1. Denote by F, the finite field with g elements.
Let M,,«, be the set of all matrices over F, of order m x n. It is known that any

A € My corresponds uniquely to a linear mapping Ly from Fj/ to F" given by
Lax = Ax, Vx € F} (3.1)

In addition, A’, the transposed matrix of A, corresponds uniquely to a linear mapping

Ly from F" to F/ given by

Li(y)=ATy=0"4)",  VWeF (3.2)

Conversely, let L4 be a linear mapping from F to Fj", then there must exist an

unique matrix A € M,,x, such that (3.1) holds for every Fq”.

Definition 3.1.1. Wu & Dawson (1998a) Let V C F, x = (x1,x2,...x,) and y =

Y1,Y2,.---Yn be two vectors of F'. Then

n
<xyy>=xly=ylx= Zx,'y,- (modp)
i=1

is called the inner product of xand yand V- =y € Fj :<x,y >=0holds for every x € V

is called the orthogonal vector space of V.

Definition 3.1.2. Wu & Dawson (1998a) Let V be a vector subspace of F; Then Fq”

is said to be able to be decomposed into the direct orthogonal sum of V, denoted

Fl'=veov*
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if for any x € Fq", there exists a unique x; € V and a unique x; € V- such that x =

x1 +x>. In this case V= is called the orthogonal complement of V.

3.2 Ecxistence of Generalized Inverses over Finite Fields

Lemma 3.2.1. (Wu & Dawson, 1998a, Lemma 1) For any matrix A over an arbitrary

field, there exist a A{1,2} inverse.

Over the real number field there always exists a Moore-Penrose inverse for an

arbitrary matrix. However this is not the case over finite fields. For example the

1 0 11
matrix A = over the binary field has only four { 1,2 }-inverses, ,
0 0 00 00
00 0 0
, , . Only B= satisfies that AB is symmetric and none satisfies
1 0 11

that BA is symmetric as well.

Lemma 3.2.2. (Wu & Dawson, 1998a, Lemma 2) Let V be a vector subspace of F.
Then F/ can be decomposed into the orthogonal direct sum of V if and only if V.0 V=
0.

Lemma 3.2.3. (Wu & Dawson, 1998a, Lemma 3) Let A € M, «,, AL2) pe {1,2}-inverse
of A. Then we have
Ker(A2A) = Ker(A)

Im(AA?)) = Im(A)
rank(A) = rank(A(]’z)) = rank(A(l’z)A) = rank(AA(l’z))
Lemma 3.2.4. (Wu & Dawson, 1998a, Lemma 4) Let A € M, x,,. Then A is symmetric,
i.e, AT = A, if and only if for any x,y € F7 we have

<Ax,y >=<x,Ay >

Lemma 3.2.5. (Wu & Dawson, 1998a, Lemma 5) Let A € My, and A*> = A. Then A
is symmnetric if and only if

(Ker(A))* =Im(A)

31



Proof. Necessity: For x € Im(A) and y € Ker(A), since A is symmetric, by Lemma
3.2.4 we have

<Ax,y >=<x,Ay >=<x,0>=0

Thus Im(A) C (Ker(A))*. But dim(Ker(A)) + dim(Im(A)) = n, so (Ker(A))* =
Im(A).

Sufficiency : Suppose we have A?> = A and (Ker(A))* = Im(A). Let x;,x; € Fy.

Then they can be written as
x) =Ax;+ (I, —A)x xp=Axy+ (I, —A)xz
Note that (I, —A)x; € Ker(A) = (Im(A))*, i = 1,2.. We then have
< Axp,xy >=< Axy,Axy + (I, — A)xp >=< Ax,Axp >

In the same way it can be shown that < x1,Axy, >=< Ax|,Axy >. S0 A is symmetric.

]

Theorem 3.2.6. (Wu & Dawson, 1998a, Theorem 1) Let A € My, ,,. Then a necessary
and sufficient condition for the existence of a A{1,2}-inverse A, of A which satisfies

(A,A)T = (A,A) is that FJ has the following orthogonal direct sum decomposition :

F' = Ker(A) ® (Ker(A))* (3.3)

Proof. Necessity: Let A, be a A{1,2}-inverse of A which satisfies (A,A)7 = (4,A).
Then by Lemma 3.2.5 we have

(Ker(A,A)): = Im(A,A)

For any x € Ker(A;A) NIm(A;A), since x € Im(A,A), there exists y € F;' such that

x = A,Ay. Thus we have

AAx = AAA Ay = A Ay =X
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On the other hand, x € Ker(A,A) implies that A,Ax = 0, i.e, x = 0. Therefore
Ker(A,A)NIm(A;A) = 0 and hence F = Ker(A,A) +1m(A,A) = Ker(A,A) +Ker(AA)*.
By Lemma 3.2.3, we have (3.3).

Sufficiency: Assume the validity of (3.3). Denote by M = (Ker(A))* and N =

Ker(A). Then we can write
S={Ax:x € F}} ={Ax:x e M}

For any y € §, there must exist an x € M such that y = Ax. Moreover the existence of
x is unique, as otherwise we would have Ax; = Ax; for some x1,x> € M and x| —x; €
Ker(A) N Ker(A)*. This leads to a contradiction of Lemma 3.2.2. Since S is a vector
subspace of F", we denote by T its complement (not necessary orthogonal) subspace,
and any y € F;" can be written as y; + y2, where y; € S and y, € T. Now define
a mapping Lg from F," to F;' as follows: for an arbitrary y = y; +y> € F;", where
yi =Ax € Swithx € M and y, € T, Lg(y) = x. The linearity of Lp is as follows : Let
y =y1+y2 and z = z1 + 22 be two arbitrary vectors of F,", where y; = Axy ,21 = Ax,
v2,22 € T . By definition we have Lg(y+z) = x1 +x2 = Lp(y) + Lp(z). Thus Lg
corresponds uniquely to a matrix B € Myx,, such that for every y =y +y2 € F/",
By = x for some X € M such that y; = Ax. For any x € F/ this can be written as

x = xp + Xy, where xy € M and x5y € MN.
ABAx = ABAxy; = Axyy = Ax

Thus we get ABA = A. Forany y = y; +y2 € F), where yy =Ax € Sand y, € T, we
have BABy = BAx = x = BY. This shows that B is a {1,2}-inverse of A. By the initial

assumption and Ker(A) = Ker(BA) from Lemma 3.2.3 we have
F]' = Ker(BA) @ (Ker(BA))™ = Ker(BA) @ Im(BA)

Notice that (BA)?> = BA: by Lemma 3.2.5 we have (BA)” = BA. O

Theorem 3.2.7. (Wu & Dawson, 1998a, Theorem 2) Let A € M,,,«,,. Then a necessary
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and sufficient condition for the existence of a A{1,2}-inverse A, of A which satisfies

(A,A)T = (A,A) is that for any x € F)', ATx = 0 if and only if AA"x = 0.

Proof. By Theorem 1, a necessary and sufficient condition for the existence of a

A{1,2}-inverse A, of A which satisfies (4,4)7 = (A,A) is
— €
Fj = Ker(A) @ (Ker(A))
It is known that this decomposition is equivalent to
rank(A) = rank(AAT).

and the conclusion follows. ]

Theorem 3.2.8. (Wu & Dawson, 1998a, Theorem 3) Let A € My, ,,. Then a necessary
and sufficient condition for the existence of a A{1,2}-inverse A, of A which satisfies

(AA,)T = (AA,) is that FJ" has the following orthogonal direct sum decomposition :

FJ' =Im(A) @ (Im(A))* (3.4)

Proof. Necessity : Let A, be a A{1,2}-inverse of A which satisfies (A4,)T = (4A,).
Notice that the matrix A is a {1,2}-inverse of A, satisfying (A,A)T = (A4,A). By
Theorem 3.2.6 we have

F)" = Ker(A,) @ (Ker(A,)) "

For any y € Ker(A,) and Ax € Im(A), since (AA,)T = AA, we have
<Ax,y >=<AAAx,y >=< Ax,AA,y >=< Ax,0>=0

Thus Ker(A,) N (Im(A))*. dim(Ker(A,)) + dim(Im(A)) = m. This supplies that
Ker(A,) = Im(A)* So we have (3.4).

Sufficiency: Assume the validity of (3.4). Denote by S = Im(A) and T = (Im(A)™).

Any y € F;" can uniquely be written as y = ys + yr, where yg € S and yr € T. Now
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define a mapping Lp from F" to F,' which satisfies Lp(ys +yr) = x where yg = Ax €
S. Similar to the proof of Theorem 1 it can be proven that Lp is a linear mapping
corresponding uniquely to a matrix B € M, ,,. Moreover B is a {1,2}-inverse of A
and Im(AB) = {ABy :y € F)'} = {ABy:y € §}. For any y € T we have By =0, so
y € Ker(B). But dim(T) = dim(Ker(B)). T = Ker(B = Ker(AB)) and by Lemma
3.2.3 we have Ker(AB) = (Im(AB))T. By Lemma 3.2.5 and (AB)?> = AB we have
(AB)T = AB. O

Theorem 3.2.9. (Wu & Dawson, 1998a, Theorem 4) Let A € M, «,,. Then a necessary
and sufficient condition for the existence of a A{1,2}-inverse A, of A which satisfies

(AA,)T = (AA,) is that for any y € F', Ay = 0 if and only if AT Ay = 0.

Proof. Similar to the proof of Theorem 3.2.7. U

Theorem 3.2.10. (Wu & Dawson, 1998a, Theorem 5) Let A € M, ,,. Then a necessary
and sufficient condition for the existence of a Moore-Penrose inverse of A is that both

equaitons (3.3) and (3.4) holds simultaneously.

Proof. Necessity is obvious from Theorems 3.2.6 and 3.2.8. The sufficiency is as
follows. Denote by M = (Ker(A))*, N = Ker(A), S = Im(A), T = Im(A)*. Then
{Ax:x € F'} = {Ax:x € M}. Define a mapping L? : F," — F}' such that for any
y=ys+yr, where ys = Ax € Sand yr € T, Lg(y) = x. Then LB is linear corresponding

to a matrix B € M,,«,,. The constructed matrix B is a Moore-Penrose inverse of A. [J

Corollary 3.2.11. (Wu & Dawson, 1998a, Corollary 1) Let A € M, «,. We have,
1. A necessary and sufficient condition for the existence of a A{1,2}-inverse A, of A
satisfying (A,A)T = (A,A) is that rank(A) = rank(AAT).

2. A necessary and sufficient condition for the existence of a A{1,2}-inverse A, of A

satisfying (AA,)T = (AA,) is that rank(A) = rank(AT A).

3. A necessary and sufficient condition for the existence of a Moore-Penrose inverse

of A is that rank(A) = rank(AAT) = rank(ATA).
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CHAPTER FOUR
ERROR CORRECTING CODES

4.1 Introduction

When transferring or storing information there is always a risk of errors occuring in
the process. To increase the possibility of detecting and possibly correcting such errors,
one can add a certain redundance to the text carrying the information, for example, in

form of control digits. We shall now give two simple examples.

Example 4.1.1. Andersson (2015) Assume that a sender transmits a text which is
divided into a number of six digit binary words. Each such word consists of six digits
which each is either O or 1. To increase the possibility for a receiver to detect possible
errors, that might have occured during a transfer, to each word the sender can add the
seventh binary digit in a such way that in each seven digit word there always is an even
number of ones. If the receiver registers a word with an odd number of ones, then
he will know that an error has occured and can possibly ask the sender to repeat the

message.

Example 4.1.2. Andersson (2015) If the receiver in Example 4.1.1 does not have the
oppurtunity to ask for a repetition, the sender can proceed in a different way. Instead
of adding the seventh digit he can send every six digit word three times in a row. If the
three words are not identical when they reach the receiver, he will know that an error
has occured and could try to correct it at each place by choosing a digit that occurs at
the corresponding places in at least two of the received words. He can of course not be
completely sure that the erroneous word has been corrected, but if the probability for

more than one error to occur is low, then the chances are good.

One disadvantage of the method in Example 4.1.2 is that, compared with the
original text, the message with the error-correcting mechanism takes three times as
long to send. Hence it seems a worthwhile exercise to find more effective methods and
this is the purpose of the theory of error-correcting codes. This was started off by the

work of Shannon, Golay and Hamming at the end of the 1940s and has since evolved
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rapidly using ever more sophisticated mathematical methods. Here the theory of finite

fields plays a particularly important role.

For writing a text we must have an alphabet. This is a finie set ' of symbols called
letters. As is common in coding theory, we assume that F is a finite field. When
F = 7Z», as in the above examples, the code is said to be binary. A word is a finite
sequence x1xp...x, of letters. We shall here only deal with so called block codes.
This means that the words are all of the same length m and can therefore be seen as
elements in the vector space F"". When appropriate, we write the words as vectors

x = (x1,x2,...xy) in F™. A coding function E is an injective map
E:F"—F"

from F™ into a vector space F” of higher dimension i.e m < n. The image C = E(F™)
is what we call a code. To improve the possibility for detecting and correcting errors,
it is useful that the elements of the code C lie far apart from each other in F". This is
to minimize the probability that a sent codeword is received erroneously as a different

codeword.

Definition 4.1.3. Andersson (2015) The Hamming Distance d(x,y) between two
vectors x = (x1,...,X,) and y = (y1,...,y,) in F" is defined as the number of coordinates

i where x; # y;.

Example 4.1.4. Andersson (2015) In the space Zg the Hamming distance satisfies
d(10111,11001) =3 and in Zg we have d(1122,1220) = 2.

Definition 4.1.5. Andersson (2015) Let C be a code in F". Then we define its

separation d(C) as the least distance between two different words in the code i.e.

d(C) = min{d(x,y);x,y € C,x # y}

Theorem 4.1.6. Andersson (2015) Let C be a code with separation d(C).
(1)Ifd(C) > k+ 1 then C can detect up to k errors in each word.
(2)If d(C) > 2k + 1 then C can correct up to k errors in each word.
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Remark 4.1.7. The consequence of (2) is that if d(C) > 2k + 1 then, for each word
containing at most k errors, there exists a uniquely determined closest codeword. We
assume that the erroneous word is corrected by picking instead the closest word in
the code. For practical purposes, it is of great importance to find effective algorithms
correcting errors and the existence of such algorithms can be a strong argument for the
choice of a particular code. In the following we will focus on how to construct codes

with high separation and not on error-correcting algorithms.

Proof. (1)1f d(C) > k+ 1, then any two codewords are different at least k + 1 places.
A received word with at most k letters wrong cannot be a codeword and is therefore

detected as erroneous.

To prove (2) we assume that x is a received word different from a codeword y at most
k places. If z was another codeword with this property then the triangular inequality
gives d(y,z) < d(y,x) +d(x,z) < 2k. This contradicts the assumption that d(C) >

2k + 1. This means that we can correct x to y.

If we are interested in constructing a code C = E(F™) in F" with a given separation
6 = d(C), then there is a natural limit for which m we can choose. We shall now give

a theoretical estimate of the largest possible value of m.

Definition 4.1.8. Andersson (2015) For every non-negative integer » we define the

sphere S(x,r), witch centre x € F" and radius r, by
S(x,r)={y e F"d(x,y) <r}

Lemma 4.1.9. Andersson (2015) If F has q elements then the sphere S(x,r) contains

(g) + (Y) (g—1)+ (Z) (g—1)2+..+ (’Z) (q—1Y

exactly

words.
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Proof. The result follows from the fact that if 0 < j < r, then there exists (’;) (g—1)/

words which have exactly j coordinates different from x.

O

Theorem 4.1.10. Andersson (2015) Assume that F has q elements, that the code C in

F" contains M words and has separation 2k + 1. Then

M {(g) + ('I) (g—1)+ (’;) (g—1)2+...+ (Z) (q— 1)K] <q" @.1)

Proof. The spheres of radius k and centre in different codewords in C cannot intersect,
since d(C) = 2k + 1. Because the number of elements in F” is ¢", the result then

follows from Lemma 4.1.9.

Remark 4.1.11. If C = E(F™) then M = ¢™.

Remark 4.1.12. The inequality (4.1) is called the sphere packing bound or the
Hamming bound. In case of equality, the corresponding code C is said to be perfect.

For such a code, every word y in F" lies in exactly one sphere S(x,k) with x in C.

4.2 Linear Codes and Generating Matrices

Definition 4.2.1. Andersson (2015) A code C in F" is said to be linear if it is a linear

subspace of F”. If the dimension of C is m then it is called an [n,m] code.

Remark 4.2.2. That C is a linear subspace of F” means that every linear combination
of vectors in C is also contained in C. Then C is itself a vector space with the same

operations as F"', so the dimension of C is well-defined.

In practice, most error-correcting codes are linear or can be obtained from linear
ones. A great advantage of linear codes is that it is much easier to determine their

separation than in general case.

39



Remark 4.2.3. By the weight w(x) of a codeword x = (x1__,) in F" we mean the
number of coordinates in x that are different from zero. The weight w(C) of a linear

code C in F" is defined by

w(C) = min{w(x);x € C,x # 0}

Theorem 4.2.4. Andersson (2015) For a linear code C the separation d(C) is equal to
its weight w(C).

Proof. A linear code that contains the two words x and y also contains their difference
x —y. The result follows from the fact that the Hamming distance d(x,y) is equal to

the weight w(x —y). O

Remark 4.2.5. If we are interested in determining the separation for a general code
containing M words, then we must, in principle, determine M (M — 1)/2 different
Hamming distances, one of each pair in the code. For a linear code, it is enough to

calculate the weight of the M — 1 non-zero codewords.

Definition 4.2.6. Andersson (2015) A generator matrix for a linear [n,m] code C in F"

1s a m X n matrix G, with elements in F, such that its rows form a basis for C.

Example 4.2.7. Andersson (2015) Consider the following 3 x 7 matrix with elements

inF=Z3
I 111111

G=11122112
2121212

Buy substracting the first row from the second and adding the first to the third, we

obtain the matrix,
1 11 1111

0011001
02020220
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Multiplying the third row by 2 gives

1111111
0011001
0101010

Finally, subtracting both the second and the third row from the first yields

1002100
G=|oo11001
0101010

The rows of G generate the same subspace of F” as the rows of G, because we can
write the rows in one matrix as a linear combination of the rows of the other. The two
matrices G and G are therefore generator matrices for the same code C in F7. We now
observe that the first three columns of G are columns in the identity matrix of order 3.

If we interchange the second and the third columns of G we get

1 002100
0101001
0011010

This matrix generates a code C’ in F’ that is obtained from C by interchanging the

letters in position 2 and 3 for all words in C.

Definition 4.2.8. Andersson (2015) Two codes C and C’" in F" are said to be equivalent

if there exists a permutation T of the numbers 1, ..., such that

C' = {xn(l)xn(z)...xn(n);xlxz...xn S C}

Remark 4.2.9. If two codes C and C’ are equivalent then their separations are equal i.e.

d(C) = d(C").

Theorem 4.2.10. Andersson (2015) Every linear [n,m] code C is equivalent to a code
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with generator matrix of the form

[ |A]
where I, is the identity matrix of order m and A is an m X (n — m) matrix.

Definition 4.2.11. Andersson (2015) When a generator matrix for a linear code takes

the form as in Theorem 4.2.10 we say that it is of normal form.

Let G = (I,|A) be the generator matrix, of a linear [n,m| code C in F", of normal

form. If the elements in F"* and F" are seen as row matrices, then the map
F">x—xGeF"

gives a natural linear coding function. The first m letters in the word xG are given by x

in K™ and the last n — m letters ( control digits) by xA.

4.3 Control Matrices and Decoding

Definition 4.3.1. Andersson (2015) The scalar product < x,y > of two vectors x =

(x1,...x,) and y = (y1,...,yn) in F" is defined by
<X,y >=X1Y1+ ... +XnVn

Definition 4.3.2. Andersson (2015) The dual code C* of a linear code C in F" is a
linear code

Ct={yeF"<x,y>=0forallx € C}

Remark 4.3.3. As for subspaces in R", it is easy to show that if the code C in F" has
dimension 1, then the dual code C is of dimension n — m. For vector spaces F" over
a finite field F, it is not true in general that every vector in F”' can, in a unique way, be
written as the sum of a vector in C and a vector in C*- It can even happen that C = C.

In that case the code is said to be self-dual.
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Example 4.3.4. Andersson (2015) For the matrix

1 011
011 2

G =

the scalar product of the first row with itself is 3, the scalar product of the second row
with itself is 6, and the scalar product of the two rows is 3. This means that each scalar
product is 0 modulo 3. From this we see that the [4,2] code over Z3 with generator

matrix G is self dual.

Definition 4.3.5. Andersson (2015) A generator matrix for the dual code C* of C is

called a control matrix for C.

A word x € F" is contained in the code C if and only if the scalar product of x and
any row of a control matrix C is zero. In this way we can easily check if a word belongs

to the code or not.

If G is a generator matrix for an [n,m] code C and H is a control matrix for C, then
G is an m X n matrix and H is an (n —m) X n matrix of rank (n —m). The condition

that H is a control matrix for C can be written as

GH =0 (4.2)

where H' denotes the transpose of the matrix H. The content of equation (4.2) is

namely that the scalar product of the rows of G and the rows of H are zero.

Let us now assume that the generator matrix G is of normal form [/,,|A], where A is

an m X (n — m) matrix. If we then choose

H = [-A'|l,_ ]

then it is easily verified that condition (4.2) is satisfied. We now formulate this as the

following theorem.

Theorem 4.3.6. Andersson (2015) If a linear [n,m] code C has the generator matrix
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[Ln|A], then [—A"|L,_y] is a control matrix for C.

Remark 4.3.7. If the field F is Z,, then —A" = A’ so we can take [A’|I,_,,] as a control

matrix.

Example 4.3.8. Andersson (2015) The binary [5,2] code which has the generator

matrix
1 01 0 1
G =
01 011
has as control matrix
1 01 00O
H=101 010
1 1 0 0 1

The following theorem tells us how to determine the separation of a code from its

control matrix.

Theorem 4.3.9. Andersson (2015) A linear code C with the control matrix H has
separation G if and only if there exists G columns in H that are linearly dependent and

furthermore any 6 — 1 of the columns in H are linearly independent.

Proof. That 6 columns in H are linearly dependent means that there exists a word x of
weight at most & such that xH' = 0. The weight of such a word can never be less than
G, since 6 — 1 columns in H are always linearly independent. Hence w(C) = o and the

result follows from Theorem 4.2 .4. L]
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CHAPTER FIVE
LEAST SQUARES SOLUTIONS IN LINEAR CODES

Lemma 5.0.10. Let A be a square matrix of order n over a finite field K such that

A? = A. Then A is symmetric if and only if

Proof. Since A> = A, then A is with index 1. Then we have the direct sum
decomposition as follows

K" = R(A) & N(A).

If A is symmetric, then, N (A) = N (A") = (R(A))*. Therefore, we get the desired

result.

Conversely, let A% = A such that N (A) = (R(A))~. Since A> = A, we have N (A) =

R (I, —A). Therefore, Vx,y € K" we have the following decompositions
x=Ax+ (I, —A)x, y=Ay+ (I, —A) y.
Now,
(Ax,y) = (Ax,Ay+ (I, — A)y) = (Ax,Ay) + (Ax, (I, — A)y) = (Ax,Ay) +0 = (Ax,Ay).

Similarly we have (x,Ay) = (Ax,Ay). Consequently, (Ax,y) = (x,Ay). By Lemma
3.2.4, A is symmetric. 0

From Zekraoui (2011) we have the following useful Lemma.

Lemma 5.0.11. Let A be a m X n matrix over an arbitrary field K and let X be a {1,2}-
inverse of A. Then we have

1) (AX)? = AX and (XA)* = XA,

2)R(AX)=R(A),N(AX) =N (X),
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3) K" =R(X)®N(A),
4) K™ =R(A) &N (X).

The existence of the {1,2} —inverses of a matrix over a finite field is proved in Pearl

(1968), Fulton (1978).

From Lemma 5.0.10 and 5.0.11, we can deduce the following corollary.

Corollary 5.0.12. Let A be a m X n matrix over a finite field K. Then AL23Y oxists if
and only if K™ = R(A) @ (R (A))*~.

Proof. Suppose that A{1:23} exists. Then, from Lemma 5.0.11 we have

1
From Lemma 5.0.10 we have K = R <AA{1’273}) & (R (AA{LZS}))L. From 2) of
Lemma 5.0.11 we have R <AA{1’2’3}> = R(A). Then we get the desired result.

1
Let K™ = R(A) @ (R(A))*. From Pearl (1968), if X is a {1,2}- inverse of A such
that N (X) = (R(A))*, then from Lemma 5.0.11 we have

K" = R(A) ®N (X) = R(AX) & (R(AX))*.

Since (AX)* = AX, by Lemma 5.0.10, AX is symmetric. Consequently X isa {1,2,3}-

inverse of A. L]

In Section 2, the results about the least squares solutions were given. In Corollary

2.2.3, It has been showed that the general solutions of Ax = b are given by

x=Alp o (I—A{I}A) y,yeCn.

Also, in Corollary 2.3.2, it has been shown that r is minimized if and only
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if x = A3 for any {1,3}- inverses of A. Consequently, there is a one-to-one
correspondence between the least squares solutions of the equation Ax = b and the
{1,3}- inverses of A. It will be noted that if A is of full column rank, then the

least squares solution is unique. In fact, A3} is one of the left inverses of A. So,
1—-AU3A=0, and (A{1’3}A) =I*=Tandr (A{1>3}> —r(A). Hence A1} becomes
At234) — A+ (see Zekraoui (2011) , Lemme 1.5.1, page 23). Then, x = Ab.

5.1 Matter of Conditioning in Linear Codes

Let G be a generator matrix of a [n,k|-code C over a finite field K and let H be
a parity check matrix. Then we have G € My, (K),r(G) = k. So G' is of full
column rank and the [n,n — k]-code is the C- orthogonal of C according to the standard
inner product. However, the orthogonality over a finite field is not necessary the

complement.

In linear codes, G’ is a n X k matrix of rank k, i.e. G’ 1is of column rank, so if

(G ){1’3} exists, then it is a left inverse of G'. So, it is (G') " of G'. Therefore we have

K" =R(G)eN ((6)"), (5.1)

or equivalently r(G) = r(GG') = r(G'G) (See Wu & Dawson (1998a)). Since
R(G") =C, then N ((Gt)+> is the orthogonal code C+ = R (H').

Equation 5.1 becomes

K" :R(G’)éR (H"). (5.2)

Equation 5.2 gives us that for b € K",

b=(G")((G") b (5.3)

Now, for a message x € K*, we have G'x = b € C. If a received message is not in C,

47



it means b ¢ R(G"). Then the equality G'x = b is inconsistent, so it will be desirable to

find the codeword the nearest to . Then, from Equation 5.3, we have

b—Glx= ((Gf) ((Gf))+b—G’x) FH'Y. (5.4)

Since we have the orthogonal direct sum decomposition, Equation 5.4 gives the

following
wir (b= G'x) = w ((G') ((G) " b= G'x) +wp (H'D) > d+wp (H'D),  (5.5)

where wy (.) and d are the weight and the minimal Hamming distance respectively.
The minimizing of b — G'x for d in Equation 5.5 is equivalent that x is a solution of the
consistent equation

G'x=(G)((G")) b= (GTG)b. (5.6)

ie., wy <(Gt) (G) b— G’x) — 0. Then x = ((G"))" b is the unique least squares
solution of G’x = b. We should note that when Equation 5.2 is satisfied, the code and

its dual are complementary or equivalently r (G) = r (GG") = r (G'G).

In this case, a received word will be decode correctly to a word of the code. Hence

we reach our main result.

Theorem 5.1.1. Let G be a generator matrix of an [n,k| —linear code C over a finite
field K. Then, there is the unique word x € K* approaching a received word b near the
codewords of C if and only if Equation 5.2 (or equivalently r (G) = r (G'G) = r (GG"))

is satisfied. In this case, we have x = ((G*))"b.

It will be noted that G+ = G' (GG')™'. So the calculation of the Moore-Penrose

inverse of a matrix of full rank is not required and is not expensive.

The following example clarify the relation between the existence of the Moore-
Penrose inverse and the existence of the least squares solution, and hence it gives the

possibility of decoding of a received word to a word of the code correctly.
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1 20
Example 5.1.2. Let G = over F3, then the [3,2]-code C is

1 10

{(0,0,0),(1,2,0),(1,1,0),(2,1,0)(2,2,0),(2,0,0),(0,2,0),(0,1,0),(1,0,0)}.

Let b = (1,1,1). Then b ¢ C means that equality G'x = b is inconsistent. On the
2 00

other hand we have, G'G= |0 2 0|, r(G) =2=r(G'G). Then there exists the

0 00
1 0
. : 210
unique x = (G*) b = 1| =1(0,1)suchthatb—G'x=| 0 | =rand
220
1 1
Wy (r) = 1 minimum distance. Consequently the received word b will be decoded
1
correctly to G'x = | 1
0

The following example shows that if the Moore-Penrose inverse does not exist, then
the least squares solution is not unique when it still exists. In other words, a received

word b will not be decoded to a word of the code correctly.

Example 5.1.3. Let G = ( 1 21 ) over [F3, then the [3, 1]-code C is
C =4{(0,0,0),(1,2,1),(2,1,2)}.

Now, if we take b = (0,1,1), then b ¢ R (G) = C, so the equality G'x = b is inconsistent.
There are two words of the code ¢; = (1,2,1) and ¢, = (2,1,2) such that Wy (b —c¢1) =
Wy (b—cp) =2<3=d (i.e. b—c; and b — c; are with minimum distance), so the word
b will be decoded to cjor to cp. Now if we look for the conditions of the existence of

the least squares solutions and the existence the Moore-Penrose inverse of G, we find
1 21

that ¥ (G) =1=r(G'G)=r| 2 1 2 | #0=r(GG"). That is, the least squares

1 21
solution exists but not unique.
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CHAPTER SIX
CONCLUSION

In real and complex case the Moore-Penrose inverse exists and unique but in finite

fields we need extra conditions.

In finite fields, a necessary and sufficient condition for the existence of a Moore-

Penrose inverse of a matrix G is that rank(G) = rank(GG") = rank(G' G).

Suppose that G is a generator matrix of a [n,k]-linear code C over a finite field
K. When the condition above holds, we can find a unique codeword approaching a

received word, near the codewords of the code C.

If the Moore-Penrose inverse over a finite field does not exist, then the least squares
solution is not unique i.e a received word will not be decoded to a word of the code

correctly.
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