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ABSTRACT

Metamaterials have gained considerable interest in the RF and optics community
due to their unusual properties not available in nature. However, despite their proven
potential in theory and some practical realizations, metamaterials are restricted to some
known geometry or physical compositions such as the SRR structure. This is largely due
to the natural limit imposed by intuitive design efforts and or practical realization
challenges. A formal efficient framework allowing for the design of non-intuitive
structures does not exist. Similar to metamaterials, artificial composite designs in
literature prompt for the possibility of unique material combinations possibly in three
dimensions leading to desired electromagnetic behavior such as non-reciprocality. Formal
design optimization can explore unknown design degrees of freedom. However, large
scale design optimization problems such as volumetric material explorations are
computationally very expensive and demand high resources. This drawback can be
surpassed by introducing surrogate modeling techniques into the platform as
demonstrated in literature. To address this issue, in this thesis, we present an efficient
design optimization framework for electromagnetic applications. The framework is based
on integrating design optimization techniques with various surrogate modeling tools. The
goal is to identify the device structure, both material and conductor in three dimensions,
in an automated and efficient manner subject to some performance and size constraints.
For the synthesis module, gradient-based optimizers such as Sequential Quadratic
Programming (SQP) and global optimizers such as Genetic Algorithms are both utilized.
As the analysis module, full wave electromagnetic wave analyzers, such as the HFSS,
and a hybrid FE-BI based electromagnetic solver (FSDA) are integrated to the optimizers.
The design framework is primarily based on interfacing the analysis tools with various
surrogate based models and linking it to the chosen optimization tool. The proposed
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framework is modular, hence allows for various combinations of synthesis and analysis
modules within different surrogate based models.

To allow for considerable speed-ups of the automated design process proposed
here, automated and adaptive Design of Experiment (DOE) scheme is employed and
various surrogate models are compared within the design framework with respect to their
performance. Multiple surrogate modeling techniques are investigated such as Kriging,
Polynomial, RBF (Radial Basis Functions), Artificial Neural Networks (ANN), Support
Vector Machines (SVM), etc. Results suggest that the ANN surrogate model based design
framework allows for large number of design variables and an effective exploration of
the global large scale design space while RBF, SVM and Kriging are also successful at
capturing resonance behavior. Multi-objective optimization method called Normal-
Boundary Intersection (NBI) is integrated our framework. The resulting framework is
suitable for the design of volumetric material compositions of applications such as an
ultra-wide bandwidth SATCOM antenna and plasmonic nano-antennas. Future work
comprises the determination of the artificial material structure following a two step
procedure: The effective medium of the antenna is to be determined using the proposed
surrogate based design optimization framework. This should allow for extending the
capabilities of the proposed framework to the design of the microstructure of
metamaterials utilizing inverse topology optimization. The freedom to explore all
possible design degrees of freedom and the possibility to design for the material itself are
expected to open up entirely new breakthroughs in microwave and optical applications.



RF ve Optik Uygulamalara Yonelik Hizhh Bir Tasarim Optimizasyon Sistemi
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meta modeller, mikro serit antenler, nano antenler, genetic algoritmalar, yapay sinir
aglari

Metamalzemeler doga otesi sergiledikeri Ozellikleriyle, RF ve optik cevrelerde
biiyiik ilgi uyandirmistir. Ancak, teoride ve bazi pratik uygulamalardaki potansiyeline
ragmen metamalzemeler sadece SRR yapilar1 gibi bazi geometri ve kompozitlerle sinirh
kalmistir. Bunun sebebi biiyiik dl¢iide sezgisel tasarim ¢abalarinin yetersizligi ve pratik
olarak gergeklestirilmelerindeki giicliiklerdir. Diisiinmeyle bulunamayacak derecede
kompleks yapilarin tasarlanmasina izin verecek formal ve etkili bir sistem
bulunmamaktadir. Literatiirde yapay kompozit tasarimlar da metamalzemelere benzer
olarak istenen elektromanyetik davranisi sergileyecek (6rnegin non-reciprocality) essiz
malzeme kombinasyonlarinin varligi olasiligii kuvvetlendiriyorlar. Formal Tasarim
Optimizasyonu, bilinmeyen dizayn serbestlik derecelerini kesfedebilir. Ancak hacimsel
malzeme belirlerme gibi biiylik 6l¢ekli tasarim optimizasyonu problemleri yiiksek islemci
zaman1 gerektirmektedirler. Bu darbogaz, literatiirde belirtildigi gibi tasarim
optimizasyonu sistemine vekil modelleme tekniklerinin entegre edilmesiyle asilabilir. Bu
problemi ¢6zmek amaciyla, bu tezde elektromanyetik uygulamalar i¢in hizl bir tasarim
optimizasyonu sistemi gelistirilmistir.

Sistem, tasarim optimizasyonu tekniklerinin, ¢esitli vekil modelleme yéntemlerinin
birlestirilmesiyle gergeklesir. Amacimiz, tasarlanan cihazin yapisiny, ii¢ boyutta malzeme
ve iletken dagilimini, otomatik ve etkili bir sekilde, bazi performans ve boyut kriterlerine
sadik kalarak bulmaktir. Sentez modiilii olarak, tiirev tabanli optimizasyon algoritmalari,
ornegin Sequential Quadratic Programming (SQP), ve global optimizsyon algoritmalari,
ornegin Genetik Algoritmalar, kullanilmistir. Analiz modiilii olarak da tam dalga
elektromanyetik dalga analizorti, HFSS ve hibrit sonlu eleman-sinir integrali metoduna
dayanan elektromanyetik ¢oziimleyici (FSDA), optimizasyon algoritmalarina entegre
edilmistir.

Tasarim sistemi Oncelikli olarak analiz modiilii ile c¢esitli vekil modellerin
arayiizlerinin olusturulmasi, sonrasinda da bu arayiizlerin segilen optimizasyon
algoritmastyla birlestirilmesine dayanir. Onerilen sistem modiiler olup, cesitli sentez ve
analiz modillerinin farkli vekil sistemlerle ¢calismasina izin verir.
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Bu ¢alismada 6nerilen, otomatik tasarim sisteminde dnemli derecede hizlandirmay1
miimkiin kilmak i¢in, otomatik ve adaptif deney tasarimlar1 olusturulmus ve ¢esitli vekil
modeller, tasarim optimizasyonu sisteminde, performanslarina gore degerlendirilmistir.
ANN, RBF, SVM, Kriging, Rational gibi c¢esitli vekil modelleme yontemleri
incelenmistir. Sonuglar gdstermektedir ki ANN vekil modeliyle c¢alisan tasarim
optimizasyonu ¢ok sayida tasarim degiskeninin incelenmesine ve global yiiksek 6lgekteki
tasarim uzayinin kesfine izin vermektedir. Ayrica RBF, SVM ve Kriging metotlar1 da
ANN kadar olmasa da resonans davranisini modellemede basarilidirlar. Cok amagh
optimizsayon methodu Normal-Sinir Kesisimi (NBI), tasarim optimizasyonu
sistememize entegre edilmistir. Ortaya c¢ikan sistem, hacimsel malzeme
komposizyonlariyla yapilan ultra genis bandgenisligine sahip SATCOM antenlerinin ve
plasmonik nano antenlerin tasarimina uygundur. Gelecekteki ¢alismalarimizda, yapay
malzemenin yapisi iki adimda belirlenecektir: Oncelikle onerilen vekil tabanl tasarim
optimizyonu sistemi kullanilarak antenin efektif malzemesi bulunacaktir. Boylece,
metamalzemenin mikroyapisinin ters-homojenizasyon ile belirlenmesini saglayacak
diizeye kadar onerilen sistemin yeteneklerinin gelistirilmesine izin verilecektir. Tiim
tasarim degiskenlerini kesfetme Ozgiirligii ve malzeme igin tasarim yapabilme
olasiliginin kendisi bile mikrodalga ve optik uygulamalar icin ¢igir acacak gelismelere

gebedir.
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1 INTRODUCTION

1.1  Engineered Novel Materials

“Engineers are starting to play God a bit.
We have been able to invent and implement novel materials
and devices where we tell the materials
how to behave.”
—TFederico CAPASSO

Engineered materials, such as metamaterials, new composites, electromagnetic
bandgap, and periodic structures [1] have attracted considerable interest in recent years
due to their remarkable and unique electromagnetic behavior. These new materials shown
in Fig 1.1 may lead to the development of novel devices such as miniature antennas with
high bandwidth and gain, optical antennas with superior properties, a perfect lens, capable
of imaging objects with resolution much smaller than the wavelength of light, ultra-

compact optical circuits, and cloaking devices leading to invisibility.

Fig. 1.1. Metamaterial, PBG in nature, Cloaking (From left to Right) [73-75]

As a result, an extensive literature on the theory and application of artificially
modified materials exists. Already photonic crystals have been utilized in RF applications
due to their extraordinary propagation characteristics [2], [3]. More recently,
computations using double-negative materials [4], [5] and photonic crystals [6] illustrate



that extraordinary gain can be achieved when small dipoles are placed inside other exotic
materials that exhibit resonance at specific frequencies. Of importance is that recent
investigations of material loading demonstrate that substantial improvements in antenna
performance can be attained by loading bulk materials such as ferrites or by simply

grading the material subject to specific design objectives [7].

Ceramics with multitone materials have also been used for miniaturization [8] and
pliable polymers [9] possibly with ceramics or ferrite power loading offer new
possibilities in three dimensional (3D) volumetric antenna design and multilayer printed
structures, including 3D electronics. Metamaterials are used for variable bandwidth EM

devices, electrically small resonant antennas, novel antennas and lenses [10].

Among the most exciting new applications for 3D low-loss metamaterials are those
based on transformation optics [11], [12] and [13], including hyper-lenses that enable

sub-wavelength far-field resolution [14], and designs for optical cloaking [15]

1.2 Design Optimization

Despite the novelty that new materials are promising, there are challenges and
limitations when it comes to their design and practical realization. However,
sophistication in formal design and fabrication techniques has allowed a major change in
the way that these materials are realized. Using a computational model integrated with
mathematical optimization techniques, many design candidates can be evaluated in a
fraction of time required by real world experiments. Optimization is the science of finding
the best and it has found many applications by finding good solutions to real world
problems. However, many of these efforts assume that the objective function can be
expressed algebraically and in explicit form. This means that the evaluation of the
function is quick when a new set of variables is introduced. Furthermore, it is often
necessary to differentiate the function, which guides algorithms towards the local
optimum. However, most of the time engineering designs are so complex that their
performance can only be evaluated by running a computational model. Most of the time,
this model is created by numerical methods for finding approximate solutions of partial
differential equations (PDE) as well as integral equations such as a finite element model.
As new design variables are introduced to the synthesis module which basically consists
of an appropriate optimization algorithm, it is necessary to run the model at each iteration
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of the design cycle. Furthermore, if the optimizer is a local technique relying on gradients
of the objective function, these are most of the time to be calculated using finite difference
approximations. Therefore, the bottleneck of almost all design optimization efforts is the

cost associated with running the computational model repetitive times.

1.3 Surrogate Modeling

Large scale design optimization problems such as volumetric material explorations
are computationally very expensive and demand high resources. One way of surpassing
this drawback is by introducing surrogate modeling technigues into the platform as has
been demonstrated in literature. Surrogate models are fast-running approximate
substitutes of complex and time-consuming computer simulations of the exact model.
Surrogate models are also known as response surface models (RSM), metamodels or
emulators. They mimic the complex behavior of the underlying simulation model and

they are model specific.

The principal motivation behind using surrogate models is associated with the
prohibitive computational cost in running simulations for a large number of times during
an iterative design cycle [16]. One model evaluation may take many minutes, hours, days
or even weeks [17]. Nevertheless, one could argue that in order to obtain an accurate
global surrogate one still needs to perform numerous simulations, thus running into the
same problem. However, this is not the case since: (1) building a global surrogate is a
one-time, up-front investment (assuming the problem stays the same), (2) distributed
computing can speed-up the evaluation time, and (3) adaptive modeling and adaptive
sampling (sequential design) can drastically decrease the required number of data points
to produce a good model [18]. Hence, the goal in this thesis is to investigate surrogate
based models comparatively for the material based design of electromagnetic devices,

such as antennas.



1.4 Previous Work

1.4.1 Design Optimization for EM Design

Over the recent years, there has been strong interest in design optimization for
electromagnetic (EM) applications [19]-[22]. These studies include mostly size and
shape optimization rather than material optimization. Shape optimization is more
common than size optimization, however, volumetric design would provide for greater
design possibility. To take full advantage of volumetric variations in EM design we need
an optimization framework that can simultaneously choose the best geometric and
topological configuration while taking into consideration geometry as well as material
composition. Such methods are called topology optimizations. It is reasonable to expect
that designs resulting from topology optimization have novel configurations with higher
performance as compared with designs resulting by size and shape optimizations as
demonstrated in [23], [31] Since the paper by Bendsoe and Kikuchi in 1988 [24], topology
optimization has expanded, successfully being applied to many practical engineering
problems [25], [26]. This method has been widely accepted in industry/university as a
potential design tool [27]. In EM, there have been various studies on the topology
optimization of electrical devices [28], [29]. These have primarily dealt with problem-
specific or semi-analytic tools for magneto-static applications. Recent formulations of
topology design optimization problems allows for creating novel configurations through
the integration of design optimization tools with robust finite element-boundary integral
(FE-BI) [30] methods suitable for general EM problems [31-32]. The latter removes
limitations on geometry and material distribution and also it incorporates fast O(N)
solvers for rapid solution of large scale design problems. The general framework is given
in Fig. 1.2. Accurate results employing the simulator have already been obtained for
scattering and radiation by cavities, slots, and multilayer patch antennas and frequency
selective surfaces, demonstrating the method’s capability. However, these studies have
been both limited to local optimization techniques and dielectric material variation only
or global design search studies with restricted design space such as few material design

blocks within symmetric material distributions.



Return Loss (dB)

Initial standard h )
material Optimized Graded Design Fabricated Design

Fig. 1.2 Previous successes in topology optimization [23].

1.4.2 Surrogate Modeling

Numerical simulation and analysis is used extensively in electromagnetics
community for design of new devices. Despite the never ending growth of computing
power and technology, the computational cost of complex high-fidelity engineering
analyses and simulations maintains pace. There have been recent attempts to deal with
this challenge. Recently, response surface techniques are used to model input and output
relations of a given system to replace the conventional numerical analysis tool with a
functional representation of the performance surface [33-35]. The intention is to minimize
the computational time. Response surface techniques are applied to EM designs such as
electromagnetic actuators [36]. Fast numerical EM methods are applied for
electromagnetic modeling and simulation [37-39]. For example, patch antennas are
designed with kriging and divided rectangles (DIRECT) method by E. S. Siah [40].
Lately, space mapping (SM) concept is introduced which exploits coarse models (usually
computationally fast circuit-based models) to align with fine models (typically CPU
intensive full-wave EM simulations) [41-48]. Other methods for speeding up the
reanalysis are employed such as singular-value decomposition, which drastically reduces
the order of the eigen-value problem. By inspection of the singular values, the accuracy
level of the procedure may be controlled. The technique is applied to the analysis of open
and closed waveguides with arbitrary cross section, lossy conductors, and anisotropic

dielectric layers [49]. Recently, a framework is constructed where modeler and simulator
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interact through a distributed environment, (using established grid computing techniques)
thus decreasing model generation and simulation turnaround time [50].

Different surrogate modeling methods such as Polynomials, Multiquadrics [51],
Kriging and Artificial Neural Networks (ANNSs) [52] are among approximation schemes
or surrogate modeling techniques that exist in literature. The ‘virtual’ objective function
they provide can be called by the optimization algorithm within a design optimization
cycle. Many Response Surface Methods and combinations thereof are documented
recently coupling especially the aforementioned approximation techniques with
stochastic algorithms. Some methods are based on extrapolating local information [53]
while others are solution technique dependent such as Chebyshev interpolations applied
to enhance the efficiency of the moment matching technique [54]

Several factors exist in choosing the most appropriate surrogate model. These include
the complexity and functional characteristics of the analysis model to be replaced and the
effort in determining the surrogate model. In this thesis we compare the performance of
different surrogate models in approximating the frequency response of electromagnetic
devices to make that choice easier for similar design optimization studies. Mostly used
surrogate models are polynomials, Radial Basis Functions (RBF), Kriging, Neural
Networks and Support Vector Machines (SVM).

Polynomial models, [55-57] seem to be one of the natural choices for resonance
based surrogate-modeling of electromagnetic devices since transfer functions of EM
devices can in principle be represented by a rational function in the frequency domain.
Polynomial models are fairly easy to implement, clear on parameter sensitivity, and cheap
to work with but are usually less accurate than the Kriging model [40]. However,
polynomial functions do not interpolate the sample points and are limited by the chosen
function type. Similarly, RBF methods [58-59] are very popular for scattered data
interpolation. They try to approximate available data a sample by a linear combination of
translates of a single basis function. The main advantage, compared to polynomial
models, is that they can handle huge amounts of data points. On the other hand,
computations involving RBF quickly become infeasible as the dimension of the input
space increases. Unlike rational functions they lack a theoretical connection with the
physical problem at hand, so one would expect less favorable results when using RBF for
surrogate modeling. Similarly, the RBF based surrogate models especially the multi-
quadric RBF are easy to construct and can interpolate sample points at the same time. The

advantage of the RBF is a provable non-singularity of the resulting linear problem, which
6



makes RBFs especially useful in the model construction where multi-parametric models
are involved. Regarding Kriging, more accurate models especially for nonlinear problems
are usually obtained but these models are difficult to obtain and use, because global
optimization is needed to identify the maximum likelihood estimators. Kriging is also
flexible in either interpolating the sample points or filtering noisy data. Successful
implementations exist in literature for a limited number of design variables [40]. Neural
networks, on the other hand, are widely used in the field of statistics to automatically
build models describing complex relations between input and output with a low
computational cost. The basic principle of neural networks is to create an approximation
of a complex function by combining simple elementary functions. In addition, it is known
that Kriging and RBF are more sensitive to numerical noise than polynomial models.
Finally, support vector machines (SVMs) are a set of related supervised learning methods
used for classification and regression. They belong to a family of generalized linear
classifiers. A special property of SVMs is that they simultaneously minimize the
empirical classification error and maximize the geometric margin; hence they are also

known as maximum margin classifiers.

1.5 Contribution and Overview of the Thesis

As the variety of examples in the literature shows, perfect combination of materials
is unique and extremely difficult to determine without optimization. To address this issue,
in this thesis we develop a surrogate model assisted design optimization framework
integrating FEM based analysis tools with optimization techniques suitable for designing
RF devices made of artificial magneto-dielectrics. Previous optimization studies on
metamaterials indicate that properly designed dielectrics or a combination of different
materials can lead to designs which have greater bandwidth and small size [10], [11].
Nevertheless, the focus has been on dielectric composites with two or more constituent
ceramic mixtures relying on local optimization methods or global design search studies
with restricted design capability. Here, our goal is to propose an efficient framework
suitable to optimize the metamaterial profile fully, possibly with dielectric shades
combined with magnetic materials to improve antenna performance such as
miniaturization, bandwidth and efficiency within global design search studies. The need

for design, preferably design optimization is pertinent to the competing physics of these
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metrics. Instead of the more traditional approaches of optimizing the shape or geometry
of the antenna with numerical FEA based analysis tools, here we investigate the
possibility to replace the FEA based model within material based designs and inverse
topology optimization methods that could lead to non-intuitive magneto-dielectric
substrates. When compared with more conventional optimization, where the topology of
the device is assumed a priori and remains fixed, topology optimization offers much more
degrees of freedom and allows the exploration of 3D artificial magneto-dielectric
composites. Consequently, it is reasonable to expect that resulting designs have novel
configurations with much higher performance. In Chapter 2, the resulting framework is
applied to the design of a micro-strip patch antenna and optical plasmonic nano-antenna
design. The proposed design framework effectively combines surrogate based models of
FEA with optimization techniques and should allow for increased flexibility in geometry
and material specifications across three dimensions for electromagnetic applications.
Chapter 3 discusses surrogate models for EM design. To allow for considerable speed-
ups of the versatile automated design process proposed here, automated and adaptive
Design of Experiment (DOE) scheme is employed over the design domain and various
surrogate models are compared within the design framework with respect to their
performance. Multiple surrogate modeling techniques are investigated such as Artificial
Neural Networks (ANN), Radial Basis Functions (RBF), Support Vector Machines
(SVM), Kriging, and Rational Model. In Chapter 4, surrogate models are integrated into
proposed design optimization framework. Results show that the hybridized surrogate
model based design framework allows for large number of design variables and suggests
the effective and global exploration of the large-scale design space. Micro-strip patch
antenna is optimized for bandwidth using surrogate model assisted design optimization
framework. Antenna design is a topic of great importance in EM community and involves
the selection of several physical parameters to satisfy multiple stringent performance
specifications such as optimal gain, pattern performance, bandwidth, VSWR, etc. To
address this issue, multi-objectivity is successfully integrated into the proposed

framework for possibly bandwidth and gain improvements of a patch antenna.

Future work comprises the extension of the framework capabilities to the design of
the microstructure of metamaterials utilizing inverse topology optimization. The
possibility to explore all possible design degrees of freedom for the material itself is

expected to open up entirely new possibilities in microwave and optical applications.



In short, the contributions of the thesis can be summarized as follows:

e An efficient multi-objective surrogate model assisted design optimization
framework for RF and optical applications is developed.

e Proposed framework is applied to several designs including multi-layer

microstrip patch antennas and optical plasmonic nano-antennas.
e Several surrogate model techniques are compared for EM design.

e Asa result of developed framework, 80% CPU time saving is succeeded
for large scale design optimization problems.



2 THEORETICAL BACKGROUND

2.1 Design Optimization

Generally design problems whether carried out intuitively or via optimization can
be classified into size, shape, and topology optimization, where the design variables are
proportions, boundaries, and topology of a component, respectively. Optimization is the
process of maximizing or minimizing a desired objective function while satisfying a set
of constraints. A design optimization cycle typically consists of a synthesis module and
an analysis module. The synthesis module contains a specific optimization algorithm and
the analysis module computes the objective function and its derivatives, if a sensitivity
analysis is required by the chosen optimizer. Most optimization algorithms are iterative
methods and have their own way of searching towards the optimum solution. Specifically
for antenna design optimization problems, the desired performance characteristics are
described and formulated in terms of an objective function, such as bandwidth, beam
angle, frequency response, efficiency or similar. The analysis module usually consists of
a finite element analysis code, since the antenna structure and boundaries are complex for
deriving a closed-form solution satisfying Maxwell’s equations.

Mathematically, an optimization problem can be defined as follows:

Minimize: f(x, p)
Subject to: g(x, p) < 0 (2.1)
h(x,p)=0

Wherex ex € R™,f: R®* > R,h: R"and g : R™ — R®. Here (2.1), x is the
design variable vector in the design space x, the vector p contains certain parameters with
values fixed during optimization. f(x, p) is the objective function, the g (x, p) vector is a
set of inequality constraints and h(x, p) denotes the equality constraints. The set of x that

satisfy all constraints is called the feasible region.

In the most general form, the above formulation is a constrained nonlinear

programming (NLP) problem. Optimization problems can be classified in several ways
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such as constrained or unconstrained problems, integer or real-valued programming
problems, and component or system design optimization problems, etc. Most well known
classification is to differentiate them whether or not they rely in the evaluation of

gradients as gradient based/local or global/heuristic techniques and are discussed next.

2.2 Gradient Based Optimization Techniques

It is fair to say that these techniques usually require less number of iterations when
compared with global techniques and hence are faster. These algorithms make use of first
and generally the second derivative of the objective and constraint functions and use this
information to locate the optimum. One disadvantage is their dependence on the starting
point of the search. At that point the user is responsible of making a clever guess and
defining a good starting point to find the optimum point. Their biggest disadvantage is
getting stuck at a local optimum unless certain conditions such as convexity are not
satisfied. At each n" step of a gradient based optimization algorithm a new iterate Xk+1
will be suggested based on the previous iterate Xk, a move step ax and a search direction

sk as follows:

Xk+1 = Xk + A Sk (22)

The iteration goes on until a specific convergence criterion is met such as the
difference of successive iterates dropping below a small number . Another common

termination criteria is the Karush-Kuhn-Tucker norm such as:

IVfic + MVhi + 1 Vgill < € (2.3)

Classical gradient based methods for unconstrained non-linear programming
problems include: Cauchy, conjugate gradient and quasi-Newton methods. Among the
most popular one Sequential Quadratic Programming will stand out as a successful
technique to effectively solve problems with nonlinear constraints and is employed in the

design framework as the local optimization technique.
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2.2.1 Sequential Quadratic Programming (SQP)

SQP is based on the idea of reducing the complexity of the problem by sequentially
solving less complex quadratic sub-problems with gradient methods. As the complexity
of the original problem is reduced this method is expected to be faster to solve the original
non-linear problem. For a given optimization problem as:

Minimize f (x)
Subject to h(x) = 0 (2.4)
gxp)=<0

Where f(x) is the nonlinegar objective function, g(x) is the nonlinear constraints,

and h(x) is the vector of linear equality constraints.

Again the iteration stops when an optimum is reached in the standard gradient based
optimization setting and follows below steps:
1) Initialize the system.
2) Solve the problem stated in (2.4).

3) Minimize a merit function along sk by performing a line search to determine the
step length ax
4) Set Xk+1 = Xk + akSk

5) Check for termination, go to step 2 if not finished.

In the proposed framework the SQP algorithm in MATLAB has been used.
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2.3 Heuristic Methods

Gradient based techniques as described above for SQP are highly likely to
converge to a local optimum depending on the characteristics of the optimization problem
and the choice of the initial design point. In contrary, heuristic methods do not rely on
local information such as the gradient and hence have the capability to search for global
optima. Basically heuristic methods scan on a larger design space with increased
boundary, and in return rely mostly on many more computations, hence suffer usually
from slow convergence and impractical design time spans. This computational burden is
even more pronounced for design problems with high number of design variables such as
topology design efforts of frequency based electromagnetic problems. Most
common design optimization studies within the electromagnetic community have been
restricted to the use of heuristic methods such as the genetic algorithm to parametric
design studies. Basic principles of GA’s will be introduced next. Applications of GA’s
exist in a wide range of application portfolio ranging from the high speed integrated
circuit to the simulations of the electromagnetic materials. There is no guarantee that it
always converges but practical applications suggest that it is usually quite successful in

dealing with complex design problems.

2.3.1 Genetic Algorithms

Genetic Algorithm (GA) is a robust intelligent optimization algorithm that gives
the global optima without the need for the derivative properties of the function with the
usage of a system that mimics the behavior of the nature population’s genetics and
evolution.

In a genetic algorithm every species represents a variable in the problem. The
algorithm seeks for the fittest of the individuals by combining the individuals from each
species with each other randomly. The algorithm continues to choose the individuals to
breed until it finds the fittest in the population. Once it locates the fittest in one population
it continues to breed the populations until it finds the fittest in the subsequent population.
This process of mixing individuals is similar to the process of crossover in nature.

In a standard GA setting, the user chooses certain parameters such as the size of

the initial population, mutation ratio, and crossover ratio. The reason for the need of the
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mutation is to introduce diversity and prevent the design candidates to be too much
‘alike’, i.e., distributed homogenously within the population which reduces the quality of
the search and hence the results of the algorithm. So, at some generations, the individuals
are changed/renewed to prevent too similar design candidates. The fitness criterion is also

defined by the user, which itself is a challenging task for any optimization model.

A new generation is started each time until a termination condition has been

reached. Termination criteria include:

e A ssolution is found that satisfies minimum criteria,

e Fixed number of generations reached;

e Allocated budget (computation time) is reached:;

e The highest ranking solution’s fitness is reaching or has reached a plateau such
that successive iterations no longer produce better results;

e Manual inspection;

e Combinations of the above.

In general, although GA is very capable of providing good solutions to difficult
problems, they offer no guarantee of global optimality in finite time. They are very

sensitive to tuning parameters and they don’t eliminate risk of premature convergence.

2.4 Analysis Tools

Complex structures such as patch antennas require to be solved via numerical tools
such as with finite element analysis. The finite element analysis is a numerical technique
for finding approximate solutions of partial differential and integral equations. The
solution approach is based either on eliminating the differential equation completely
(steady state problems) or rendering the PDE into an approximating system of ordinary
differential equations (ODE), which are then solved using numerical techniques such as
Euler's method and Runge-Kutta etc.

In our studies we used two FEM based analysis tools: FSDA (Fast Spectral Domain
Algorithm) and HFSS (High Frequency Structure Simulator).
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2.4.1 Fast Spectral Domain Algorithm (FSDA)

FSDA is used to analyze electromagnetic scattering and radiation characteristics
of infinite periodic planar antenna arrays and frequency selective surface (FSS:
metallic/resistive patch or slot elements), as illustrated in Fig. 2.1, or frequency selective
volume (FSV: metallic or dielectric block inclusions) configurations, with an arbitrary
number of FSS/FSV layers, or combination of both antenna arrays and FSS/FSV
configurations. The code is capable of dealing with commensurate as well as non-

commensurate structures.

N N

Fig. 2-1 Metallic/resistive patch or slot elements

The hybrid finite element/boundary integral (FE/BI) method is used for field
calculation. The finite element formulation is employed within the volumetric part and
the boundary integral is used for terminating the mesh. The code works with prismatic
elements (right-angled) in the FE-sector and triangular elements in the Bl-surface. First,
the code generates triangular surface meshes with all geometrical adaptability for the
individual layers while the volumetric FE mesh is grown along the depth of the volume.
The code has the option to deal with metal-backed periodic configurations and with
periodic configurations which are open at the top as well as at the bottom surface of the
FE-mesh. In the first case, the Bl is applied only on the top surface whereas in the latter,
the Bl-method is used to terminate both surfaces.

To model the infinite array problem, the periodicity condition for the fields in the
infinite periodic array is employed using only one unit cell of the array. That is, within
the FE-model of this unit cell, the periodic boundary condition (PBC) is enforced on the

vertical walls of the mesh and on the boundary edges of the Bl-surfaces where also an
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appropriate periodic Green’s function (PGF) must be used. For modeling non-
commensurate structures, the individual layer periodicities are decoupled. Of course, this
is only an approximate model but its accuracy can arbitrarily be improved by grouping
several cells in the individual layers [60].

In this study, the FE-BI based code is integrated within the proposed design
framework using a Matlab interface and applied to 3 layer micro-strip patch antenna for

bandwidth optimization.

2.4.2 High Frequency Structure Simulator (HFSS)

Fig. 2-2 A graphic from HFSS program.

HFSS is the industry-standard software to analyze electromagnetic structures. It
utilizes 3D full-wave Finite Element Method (FEM) to compute the electrical behavior
of high-frequency and high-speed components. With HFSS, network parameters (S, Y,
Z) can be extracted, 3D electromagnetic fields can be visualized, broadband SPICE
models can be generated, and optimize design performance. The software is widely used
for the design of on-chip embedded passives, PCB interconnects, antennas,
RF/microwave components, and high frequency IC packages. HFSS characterizes the
electrical performance of components and evaluates signal quality, including
transmission path losses, reflection loss due to impedance mismatches, parasitic coupling,
and radiation.

The graphic interface of HFSS allows designing various kinds of geometric shapes,
1D, 2D, or 3D from its drawing tools. It also gives the opportunity to create different
kinds of analysis on the same model without any interaction with each other. [61].

HFSS software is an easy to use one, especially the combined usage of it with the

Matlab toolbox gives the users the chance to work on a variety of fields. As it uses
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Microsoft Graphical User Interface for windows the designer can see his exact design in
three dimensions. It also gives the freedom to calculate performance metrics for a wide
range of frequencies which makes it suitable especially for antenna designs and high
speed integrated circuits. Moreover, adaptive meshing is possible for complex geometries
which make it suitable for iterative based design studies. These features and the
convenient script recording feature are among reasons HFSS has been chosen as the
primary analysis model for the proposed design optimization framework. It is used for
the design of plasmonic nano-antennas, micro-strip patch antennas, and surrogate model
comparisons in this thesis.

The main idea of HFSS scripting is based on the ability of recording design steps
into a script file and that script file can be converted into a Matlab file. That gives the user
the opportunity to work on Matlab, call HFSS from Matlab and do the design steps
automatically. In the script the user can assign variable names to some critical settings
like the frequency sweep range, permeability, permeability of a user designed material
and that makes it quite easy to call the necessary files and each time evaluate the antenna
for a different design setting. Also the results can be exported to an external environment
like a text file and they can be read by Matlab to be fed into optimization module which

is discussed next.
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3 FEABASED AUTOMATED DESIGN OF ANTENNAS

3.1 FSDA based Design Optimization Framework

In this section the basic structure of the proposed design framework is summarized.
The modular structure of a standard design framework for material based design efforts
Is shown in Fig. 3.1. The analysis tool within the framework is the commercial Ansoft
HFSS package. Since design optimization requires successively changing design
variables at each iteration, an API is needed to integrate HFSS with the framework. After
an intensive search, an appropriate HFSS-Matlab API library, we found a suitable library.
To demonstrate the framework as the first example a patch antenna is programmed thru
HFSS tutorial and results are validated with HFSS GUI. Afterwards, the optimization
module such as GA/SQP and the analysis module HFSS are linked to each other. This
forms the design optimization cycle. Initial efforts to apply the gradient-based
optimization to a design example were not successful primarily due to slowness of HFSS,
hence sensitivities could not be evaluated with enough accuracy in a feasible time. This
motivated the use of HFSS based reduced models and details of the model reduction

strategies and its use in the design framework are discussed in the third and forth chapters.
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Fig. 3-1 Matlab based design optimization framework

3.2 Design Example 1

3.2.1 Magneto-Dielectric Optimization of a Multilayer Patch Antenna

In this section we demonstrate a parametric design optimization study for magneto-
dielectrics substrates using the proposed design optimization framework. The goal is to
determine optimal values of the permittivity and permeability of each magneto-dielectric
layer supporting a probe fed patch antenna subject to high bandwidth and size constraints.
Main motivation is to use resulting optimal values as objective metrics to be attained
subsequently via inverse homogenization as discussed earlier. Among future goals is to
determine the microstructure of each layer subject to effective material properties
resulting from the pre-design phase presented here. Chosen microstrip patch antenna
consists of 3 magneto-dielectric layers. Geometrical details are shown in Fig. 3.2. The
allowable permittivity and permeability range is [1-25]. The objective function is chosen
as f(x) = min[max(|s11/i)] where i=1,...,Nfreq, X iS the design vector and s11 is the return

loss. Design specifications are shown in master table (Table 3.1).

Fig. 3-2 Multi-layer patch antenna geometry.

The antenna is analyzed via full wave FE-BI tools to compute return loss (S11) values.
The optimization scheme chosen here is Sequential Quadratic Programming. Target is to
19



attain bandwidth performance enhancements by changing the material properties of the
dielectric layers. Their optimum composition will be found subsequently via inverse
topology optimization. From this point of view, the magneto-dielectric layers here can be

treated as effective material properties.

Master Table/ Symbol |Descriiption |LB |UB [Iminal | Unat

Desciaption value

Design varible-1 | =({1) Eps L1 0 1003 Eim

Design varible-2 | =(2) Mu 11 0 10013 TIRLE-

Design varible-3 | =(3) Eps L: 0 1003 Fim

Design varible-4 | z(4) Mu L2 0 10013 phl/ A2

Design varible-5 | x(5) Eps_ L3 i 100 |3 Fitn

Design varible-6 | x(6) Mu L3 0 1003 uh/ A<

Parameter 1 WL Antenna size |na |na |[(2.3,23) |cm

Parameter 2 Ps Patch size na [na [(1.3,1.3) |cm

Parameter 3 PP Patch na |na |(0.6,06) |cm
postion

Parameter 4 NL Mumber of |na |(na |3 cin
layers

[Parameter 5 PP Probe na |na [(1.9,1.3) |cm

position

Parameter 6 PC Probe current|{na |na |1 Amper

Objective J 511 na |na [0 db

Table 3.1: Master table of antenna design.

The optimal values of their properties resulting in the ‘best’ bandwidth performance
subject to the chosen optimization model are evaluated using a SQP algorithm and the
full wave analysis tool (Fig. 3.3). Initial design refers to a homogeneous dielectric

substrate with € = 3 and p = 3. Operating frequency range is chosen as 0.5 GHz - 3 GHz
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sampled with 0.1 GHz intervals. Optimization results are shown in Fig. 3.4 and 3.5.
Convergence was reached in about 35 iterations. As apparent, the initial design structure
doesn’t have a resonance in the desired working frequency range, whereas the optimal
design delivers a -5dB bandwidth. With the attained improvement with only 6 design
variables and pre-chosen antenna geometry, the results clearly demonstrate the positive
effect of artificial magneto-dielectric substrates on the bandwidth of the micro-strip patch
antenna. A design search considering the conducting patch as well, i.e. the integration of
the conductivity of each layer should allow for much wider bandwidth. It is also noted
that the chosen objective function is not favoring matched performance but rather just
bandwidth. A more suitable objective function could be employed to aim for well
matched behavior. The next step could be to feed the resulting € and p values (€1=8,
M1=2.45, 2=5.8, h2=15.9, €3 12.5, u3=2.6) into the inverse topology optimization scheme

to explore the layer microstructure that can deliver desired effective material properties.
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Fig. 3-3 Design optimization framework
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Fig. 3-5 Initial vs. optimized bandwidth performance

The resulting bandwidth although much higher than the initial design could
correspond to a local optimum value hence allow for further bandwidth improvements.
To arrive at global optimal design solutions possibly via a two-step large scale design
optimization approach subject to performance metrics calculated at sampled frequency
points, heuristic search routines need to be employed. The proposed framework is flexible
enough to be solved via evolutionary optimization techniques to address this issue, if
appropriate speed-up techniques are adopted. These techniques are discussed in the next
chapter.
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3.3 Design Example:

3.3.1 Optimization of a Nano-plasmonic Antenna

Nano-optical applications, such as scanning near-field optical microscopy [62]
and data storage [63], require intense optical spots beyond the diffraction limit. Nano-
antennas [64-65] can obtain very small optical spots, but their ability to obtain optical
spots beyond the diffraction limit is not sufficient for practical applications. In addition
to a very small optical spot, a hano-antenna should provide high transmission efficiency
for practical applications. The transmission efficiency of a nano-antenna determines the
data transfer rate of storage devices and scan times of near-field optical microscopes.
Therefore, the efficiency of nano-antennas should be optimized for potential utilization
in practical applications. Optimization of nano-antennas is crucial for understanding their
potential and limitations for emerging plasmonic applications. A brute-force optimization
study of these structures is not practical due to large number of parameters. There is a
need for a systematic optimization of these structures.

In this study, the proposed design framework is used to optimize nano-antennas.

3.3.1.1 Dipole and bow-tie plasmonic nano-antennas

An antenna is composed of metallic parts. For example, the dipole antenna shown
in Fig. 3.6(a) is composed of two metallic rods separated by a distance, G. Similarly, a
bow-tie antenna shown in Fig. 3.6(b) is composed of two triangular metallic pieces, which

are also separated by a distance, G.
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Fig. 3-6 A schematic illustration of a (a) dipole and (b) bow-tie antenna, and their
dimensions. The antennas are illuminated with incident electromagnetic radiation

shown with E.
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Fig. 3-7 The intensity as a function of wavelength and antenna length for: T= 50, W= 50,
and G= 20 nm.

For the purpose of exploration of the design domain, some simulations are done.
The incident wavelength is varied from 400nm to 2000 nm by intervals of 50 nm, At each
wavelength, antenna length is changed. The intensity at the center of the gap, |[E(x=0, y=0,
z=0)[?, is calculated for each wavelength and antenna length. By recording the intensity
over the rectangular grid shown in Fig. 3.7, the surface graphs are formed. A constant
power value of 1 mW is chosen. The power calculations are based on a focused beam
model. More information can be found in Handbook of optical constants of solids by E.D.
Palik, 1998

3.4 HFSS based Design Optimization Framework

The surface plasmon resonances of nano-antennas depend on parameters related
to the shape and composition of the nano-antenna. Complete understanding of surface
plasmon resonances of nano-optical systems requires a complete and detailed
understanding of possibly many more design parameters, geometries, and material

properties. The large number of parameters involved in studying functional plasmonic
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devices with a brute force numerical parameter simulation is not feasible. To design novel
nano-optical transducers a modeling based automated design optimization framework is

necessary.
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Fig. 3.8 Design optimization framework for nano-antenna design

The design framework is formed by integrating a commercial electromagnetic
analysis tool Ansoft HFSS with MATLAB’s optimization toolbox. Specifically, two
different optimization tools are integrated on a MATLAB based scripting interface to
iteratively search for optimum geometric parameters of a dipole and bowtie antenna:
sequential quadratic programming (SQP) and genetic algorithm (GA). The optimization
model consists of maximizing the field intensity |E(x=0, y=0, z=0)|? subject to bound
constraints of [20, 450] and [400, 2000] for geometric length and wavelength,
respectively. Convergence is achieved in about less than 20 iterations and 10 generations
for the SQP and GA framework, respectively. Optimization parameters in the GA setting
include 10 individuals, Gaussian Mutation and Roulette Wheel Selection. Optimal lengths
for dipole antennas are obtained via SQP, plotted with respect to wavelength, and
compared to results obtained via the brute-force simulation in Fig. 3.9. There is an overall
agreement except for optimal lengths at wavelengths close to bound constraints. The
discrepancies are attributed to two main reasons: Inaccurate brute-force predictions of
maximum field intensity of finite sampled frequency points and as expected with gradient
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based optimization tools, results show that SQP’s performance in locating the optimum
solution depends on the chosen initial design with especially when the intensity is a multi-
modal function. The GA based optimization framework seems to overcome this issue in
the expense of computational time. Optimal results for the bow-tie antenna length
converged to 140 nm at 900 nm, and to a dipole length of 286 nm at 1764 nm for a two
variable optimization study via the GA framework while the SQP was unable to converge
for the latter. Initial results seem to be promising in providing the capability of exploring
nano-structures with several design parameters. The electric field performance is likely
to result in more complicated response functions. Future work includes expanding the
framework to hybridize both optimization tools in combining the advantages of global
and local optimization tools and to expand the framework to multi-objective design

optimization problems.
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Fig. 3.9 Comparison of the optimization result for a dipole antenna using the SQP
method and brute-force simulations.

Design optimization framework is also applied to the case where the power is taken
to be constant, and wavelength and rod length are allowed to change. GAs has been
chosen as the optimization algorithm. Length is allowed to vary in a range of 10-300 nm
and frequency is allowed to vary in a range of 150-750 Thz. Results are satisfactory and
shown in Fig 3.10.
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Fig.. 3.10 GA result of constant power nano-antenna optimization

Bowtie Antenna is optimized with the proposed framework using GA as optimizer.
GA converged to Lopt: 190 [nm] in 550 function calls finding global optimum (Fig 3.11),
SQP converged to Lopt: 250 [nm] in ~20 function calls (converged prematurely).
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Fig. 3.11 Bowtie nano-antenna optimization with GAs
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4 SURROGATE MODELING BASED DESIGN OPTIMIZATION

4.1 Introduction

Large scale design optimization problem often involve a broad design space and
computationally expensive simulations. Many detailed FEM based analysis tools are
available for use in the latter stages of EM design, but they are extremely expensive for
exploring broad design regions. One solution has been to simplify the computational cost
of analysis models by reducing the finite elements model, or increasing the step length
within frequency sweeps to obtain approximate simulation results. Thereby, accuracy is
sacrificed and computational time is reduced. However, exploring large design domains
and performing design optimization based on repetitive approximate simulations could
be still costly. To overcome this computational challenge, surrogate models are created
to provide rapid approximations of more expensive finite element based models.
Previous studies as discussed in Chapter 2, showed that large scale design optimization
problems such as multilayer patch antennas and nano-antenna based design optimization,
require large amount of computational resources.

Creating surrogate models for EM design requires following specific set of actions.
First, finite element method (FEM) based computer experiments are performed, chosen
in specific patterns called experimental designs [66,67] in which the design variables
cover a chosen range of values. Using chosen analysis module, design’s performance is
simulated at chosen sample points. The responses and input values are evaluated
statistically to create functional relationships between input variables and performance
functions of the design. These functional relationships are called surrogate/meta- models.
These surrogate models can be used to explore the design domain, linked to an
optimization framework and used to replace the analysis tool and guide the optimization
process.

There is a wide variety of methods available for surrogate modeling [68]. Among
them are artificial neural networks ANN, radial basis functions (RBF), kriging, Support
vector machines (SVM) and polynomials. Success of surrogate modeling is determined
by several factors such as the choice of the surrogate modeling method, used error

measure, the experimental design used to select data points, the size of the design space
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or range of explored values of design variables, the accuracy of the simulation at each
data point and the numbers of data points available to compute the surrogate model. In
this work, we will explore ANN , Kriging, RBF and SVM methods for modeling
Electromagnetic behavior based on the error value of the built metamodel also

qualitatively since over-fitting is a know issue with metamodels.

4.1.1 Sampling Design Space via Design of Experiments (DOE)

For the purpose of developing an accurate approximation of the design domain, the
sampling from domain must be based on an intelligent scheme. The accuracy of the
approximation model and the duration for obtaining it is determined by the chosen
sampling scheme so it would be wise to use an effective one.

Design of Experiment (DoE) is a structured, organized method that is used to
determine the relationship between the input factors affecting a system and the output of
that system. This method was first developed in the 1920s and 1930, by Sir Ronald A.
Fisher who is a renowned mathematician and geneticist.

Design of Experiment involves designing a set of experiments, in which all relevant
design variables are varied systematically. When the results of these experiments are
analyzed, they help to explore the design domain, the variables that most influence the
results, and those that do not, as well as details such as the existence of interactions and
synergies between factors. In our study, we will use DOE for surrogate modeling. There
are various DOE techniques such as Central Composite Design (CCD), Latin Hypercube
Design, Orthogonal Arrays, etc. Here, latin hypercube design is used: Latin Hypercube
Design method is one of the cleverest way of searching in an n dimensional design space
An experimental design consisting of n trials, and for which each factor has n distinct

levels.

4.1.2 Generation of Surrogate Models

Our goal is to compare various surrogate modeling methods for their suitability
within a versatile design optimization framework developed for electromagnetic
applications. The ultimate design optimization framework is based on integrating hybrid

design optimization techniques with various surrogate modeling tools towards the goal of
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designing volumetric material and conductor variations of complex electromagnetic
devices. The framework will be utilized to identify the novel device structure from
scratch, both its material and conductor variation in three dimensions, in an automated
and efficient manner subject to some performance and size constraints. For the synthesis
module, gradient-based optimizers such as SQP and global optimizers such as Genetic
Algorithms are both utilized. As the analysis module, full wave electromagnetic wave
solvers, both a commercial EM simulator, Ansoft HFSS, and an in-house hybrid FE-BI
based analysis tool are utilized. The design framework is primarily based on interfacing
the analysis tools with various surrogate based models and linking it to the optimization

tools.

4
0.106___ €1 M1

Fig. 4-1 Antenna Model of the Surrogate Model (Dimensions are in cm)

To investigate the performance of aforementioned surrogate models on the same
design problem, surrogate models are applied to approximate the return loss response of
a simple patch antenna with a magneto-dielectric substrate as shown in Fig. 4.1. The
antenna is analyzed via Ansoft HFSS v11 to compute its frequency based return 1oss (S11)
response. The permittivity and frequency are chosen as design variables. Permittivity of
the substrate is allowed to vary 1-16. Frequency band of operation is specified to be
between 1-2.5 GHz. The permeability is chosen to be a fixed parameter with a value of p
= 2. The reason of the choice of permittivity and frequency as design variables is to
evaluate the fitted surface as qualitatively. Because it is well known that for one layer
patch antenna, resonance frequency follows a special trend as permittivity changes. The
geometry and probe position is hold fixed as parameters, not to effect the resonance
frequency which is our guide towards evaluating the models accuracy qualitatively.

To allow for considerable speed-ups, an adaptive DOE scheme is integrated in an

automated fashion to the surrogate modeling tools. The performances of five different
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models are compared within the same framework: Kriging, Polynomial, RBF (Radial
Basis Functions), Artificial Neural Networks (ANN), and Support Vector Machines
(SVM). Each surrogate model is constructed based on the outputs of the EM simulator
for a limited number of intelligently chosen data points based on the DOE scheme. More
specifically, surrogate models are created by integrating a commercial high frequency
analysis tool, Ansoft HFSS with a MATLAB programming environment to automate the
experiments which a DOE scheme requires. HFSS simulates the exact electromagnetic
response of the device and the Latin Hypercube Method is used as the DOE scheme. It
systematically investigates the system where a series of structured tests are designed in
which planned changes are made to the input variables of the system. For the purpose of
generating surrogate models, Surrogate Modeling Toolbox (SUMO) [72] is integrated
with our automated DOE platform. In addition to the DOE scheme, adaptive sampling
which is based on the combination of the accuracy of the model measured by root relative
square error and density of the samples in the design domain is used with the goal of
producing models with improved quality provided by SUMO.As a model validation
metric, validation set (80% of sampling for training, 20% of sampling for validation) is
used. Quality is measured in terms of error function which is defined as root relative

square error (RRSE) calculated by

E = [MPE (4.1)

Variance

Where MSE is Mean Square Error. MSE measures the average of the square of the
error. Variance is one measure of statistical dispersion, averaging the squared distance of
its possible values from the expected value. Error measure is set to 0.1. The less this value
is, the better the model. However due to fast convergence it is set to be 0.1. The default
value in SUMO is 0.05.
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4.2 Surrogate Modeling Techniques

In this chapter we investigate five specific surrogate modeling techniques for their
performance in speeding up the materials based antenna design problem exhibiting
resonance behavior.

Each surrogate model has its own advantage and disadvantages. A quick
comparison of each model can be found at Fig. 4.2. Artificial Neural Networks (ANN) is
known to have the capability to model any nonlinear behavior. It requires low storage
space. However ANN needs a lot of training examples. There are also over-fitting
challenges related to the model. Support Vector Machines (SVM) is based on
computational learning. Many training samples are required to obtain the model. SVM
deals with multi-dimensional problems easily. Radial Basis Functions (RBF) is scale
independent. There are many tuning variables and models success depends on the initial
model. Polynomial fitting is simple and practical. It uses least squares. There are some
boundary condition challenges related to it. Kriging is a rough approximation. Its theory
depends on hyper dimensional least squares. It is independent of the RSM type. There are

some strong assumptions related to it.

Surrogate Models

Poly Kriging

_______ Am e e e e ==y e ——— -— -y
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Fig. 4-2 Features of used Surrogate Modeling Techniques
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In this chapter theories behind each surrogate model is expressed and the

application results are given.
4.2.1 Artificial Neural Networks (ANNS)

Artificial neural networks (ANNS), are information processing systems inspired
by the ability of the human brain to learn from observations and to generalize by
abstraction [80]. ANNs can be trained to learn any arbitrary nonlinear input—output
relationships from corresponding data. ANNs are used in applications such as pattern
recognition, speech processing, and control systems. Recently, ANNs have been applied
to obtain surrogate modeling approximations for design process requiring
computationally costly simulations. Neural networks are first trained to model the
response of the EM design. Costly simulations can then be replaced with these trained
networks which will provide fast answers. Neural networks are efficient alternatives to
conventional methods such as numerical modeling methods, which could be
computationally expensive, or analytical methods, which are difficult or impossible to
obtain for complex devices, or empirical models, whose range and accuracy could be
limited.

A typical neural network structure has two basic components: processing elements
(neurons) and interconnections (links/synapses) between them. Every link has a
corresponding weight parameter (Fig 4.3). Each neuron receives stimulus from the
neurons it is connected to, processes the input and returns an output as a response.

MLP is the most popular neural-network structure. In the MLP neural network,
neurons are grouped into layers. The first and the last layers are called input and output
layers, respectively, and the remaining layers are called hidden layers. Suppose the total
number of layers is L. The first layer is the input layer, the [th layer is the output layer,
and layers 2 to L -1 are hidden layers. Let the number of neurons in the Ith layer be N}, [ =

1,2,3....,L . Let w;; represent the weight of the link between the jth neuron of the [ —
1th layer and the ith neuron of he [th layer. Let x; represent the ith external input to the
MLP and z; be the output of the th neuron of the th layer. There is an additional weight
parameter for each neuron (w/,) representing the bias for the ith neuron of the [th layer.

As such, of the MLP includes w{;,j=0,1,2,.....N_y,i=1,2,3,N, andl=

N
2,3,....Li.e;w= [Wlo Wi Wi e e WA N,



Layer L
(Qutput layer)

Layar L-1
{Hidden layear)

Layar 2
[Hidden layer)
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TJ {Input layear)
Xy

Fig. 4-3 MLP ANN structure [80]

The weight parameters are real numbers and initialized before training. During
training, they are changed (updated) iteratively in a systematic manner. Once the training
is completed, the vector remains fixed.

In the MLP network, each neuron processes the inputs received from other neurons.
The input is processed by a function called the activation function in the neuron and
output is transferred to the other connected neurons. As an example, every neuron in the
I th layer receives input from the neurons of the (I — 1)th layer, i.e,, z;~" 2571, .,z 1,
A typical lth neuron in the Ilth layer multiplies the input by the corresponding weight

parameter and then adds the products to produce a weighted sum ;.

Ni_ _
Vil = Zj:lol Wilijl ! (4.2)

To create bias, which is done by the parameter w},, a fictitious neuron in the (I — 1

)th layer whose output is z5™*

=1 is assumed to exist. The weighted sum is used to
activate the neuron’s activation function to produce the final output of the neuron z; =
1. This output will be the input to neurons in the (I + 1 )th layer. There are several
activation functions such as sigmoid, arc-tangent, hyperbolic-tangent function, etc. All

these are smooth switch functions that are bounded, continuous, monotonic, and
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continuously differentiable. The most commonly used hidden layer neuron activation
function is the sigmoid function which is given by:

1

o(y)= Tten (4.3)

Input neurons use a relay activation function and simply relay the external input to
the hidden layer neurons, i.e z} = x;,i = 1,2,3,...n. In the case of obtaining neural
networks for EM applications, where the purpose is to model continuous electrical
parameters, a linear activation function can be used for output neurons. An output neuron

computation is given by

ovk) =yt = Tl whzf ! (4.4)

Given the inputs and the weights, feed forward computation is a process used to
compute the outputs. Feed forward computation is used both during neural-network
training and during the usage of the resulted model. Firstly, external inputs are fed into
first layer and the outputs from the input layer are fed to the hidden neurons of the second
layer. Following this pattern, the outputs of the L — 1th layer are fed to the output layer
(i.e., the L th layer). During feed forward computation, ANN weights w remain fixed.
The feed forward computation is given by:

zt=x =123 e, Nyn=N;
Ni_q
zi=o z whizi T i =1,2,3, e N
Jj=0 (4.5)
[=23.. L
y, = zFi=1,2, N, m
= NL

ANN’s weight parameters (W) are initialized to provide a good starting point for
training which is done thru optimization. The widely used strategy for MLP weight
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initialization is to initialize the weights with small random values (e.qg., in the range [-0.5,
0.5)).

The training data consists of sample pairs {(x,dy) and k € T, } where x; and d;
are vectors representing the inputs and desired outputs of the neural network. We define

neural-network training error as:

Z(W) =% z ilyj(xk,w) - djklz (4.6)

keTy j=1

Where is dj the jth element of d; and dis the jth neural-network output for input
xy.The purpose of neural-network training is to minimize the error function E;,.(w).

Since E;-(w) is a nonlinear function of the weight parameters w, iterative
algorithms are often used to explore the w-space. Optimization algorithm starts with a
initial value of w and then iteratively updates it. Gradient-based optimization algorithms

update w based on error informationEr,-(w) and error gradient information%. The

next point in w-space is determined by a step down from the current point along a search

direction vector h, i.e. Wpext = Wpow + Mh . Here, Aw = nh is called the weight

update also known as the learning rate. For example, the back propagation (BP) training

algorithm updates w along the negative direction of the gradient of training error as w =
dErr(w)

wW—n(——)-
A block diagram representation of the ANN training algorithm can be found in Fig.
4.4,
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Fig. 4-4 Flowchart of ANN Training[80]

4.2.1.1 Modeling Results with ANN

In our study, 3 layered MLP structure and 300 epochs are used. Initial weights are
chosen to be in a range of [-0.8 - 0.8]. As transfer functions, hyperbolic tangent sigmoid
transfer function and linear transfer functions are used. Genetic algorithms are used for
the optimizing the weights to minimize the model error. For this purpose Matlab GADS
is used. Population size and maximum generations are determined to be 10. Crossover
fraction is chosen to be 0.7 and eliteCount is chosen as 1. StallGenLimit value is 4 and
StallTimeLimit is unbounded. Mutation is employed in GAs. More information about
these options can be found in Matlab GADS documentation.

3 layers with 300 neurons ANN is employed in this study. As learning rules,
Bayesian regulation backpropagation (trainbr), Levenberg-Marquardt backpropagation
(trainlm) and scaled conjugate gradient backpropagation(trainscg) are used. 80% percent
of samples are used for training, and remaining 20% are used for validation. The error
measure is defined as root relative square error (RRSE) which is calculated by (4.1). Error
measure is set to 0.1. ANN is found out to be the best modeler in our comparative study
based on capturing the nonlinear behavior of the antenna but lacks speed. Choosing
frequency and permittivity as the design variables, use of ANN with parameter settings

above resulted in the surface in Figue 4.5.
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Plot of output using ANNModel
(built with 345 samples)
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Fig. 4-5 Result of ANN modeling with 2 variables.

After obtaining satisfying surrogate modeling results, to explore the dependence of
the framework and surrogate based models we increased the complexity of our model. In
this study we ANN modeling in a domain consisting of 3 variables was peformed. Chosen
variables correspond to permittivities of both layers supporting the patch antenna shown
in Fig. 4.6, and its operating frequency. The parameter settings were successful due to the
models capability in capturing the resonance trend. The model captured the resonance in
4 dimensional space (Fig 4.7), however model’s error measure did not converge to 0.1
value in feasible time. Due to some computational resource problems, the model

simulations had to be stopped prematurely before reaching convergence.
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Fig. 4.6 Two layer patch antenna

Plot of output using ANNModel
(built with 1690 samples)
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Fig. 4.7 ANN modeling with three variables

4.2.2 Kriging

Kriging is a method of curve fitting that was first reported in 1951 during mine
searching for gold in South Africa by D.G. Krige. That system is mainly based on
prediction a data point when the values around the data are known. During the 80’s this
topic again received attention from statisticians interested in creating effective
metamodels for computer experiments [76]. The method then took form as a popular
technique called Design and Analysis of Computer Experiments (DACE).

Most of the other metamodeling routines are based on the assumption that the
metamodel is of the specific form: y = f(x)+€. where f(x) is the the assumed basis
function and € is 11D Gaussian random error with mean zero. Kriging does not make this
assumption. In kriging, € is a function of x and the driver of kriging algorithm is this error

measure. So the general form of kriging metamodel is as follows:

y(x) = BTf(x) +z(x) (4.7)
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Where f =[fi(x) .. fu()]TandB=[B1 .. Bl
The matrix f corresponds to the various terms in the polynomial (including cross
terms) and denotes the regression parameters. The term z(x) refers to the functional
departure of the predictor from the mean B7 f (x)with the following properties which are

given as:

E[z(x)] =0

Cov[z(x),z(w)] = 62 R(x,w)

R11 es Rln 4 8
R=|: =~ (4.8)
R, .. R,
d
k
Rij = R(x;,x;) = nexp{—9k|xi —x; | P }
k=1

where R is the Spatial Correlation Factor matrix. The product correlation rule for R is the
most widely used form of the covariance matrix [76]. Here, Gaussian correlation function
is used. The parametersand 0 < 8, 0 < p < 2 determine the level of correlation and the
smoothness of the correlating functions. One important characteristic of R is that
R(x,x) = 1 and all other terms are between 0 (when the points are far apart) and 1(when

the points are equal).

Let’s define the form of the kriging predictor. The n x 1 correlation vector r and

functional matrix be defined as follows:

r(x) =[R(x1,x) R(x3,x) .. R(x,,x)]"
fT(x1) (49)
F=| :
fT(xn)
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Where. x is any point in the domain and n is the number of sampled points. The objective
is to find the best set of parameters that define the Best Linear Unbiased Predictor (BLUP)
for the main function by minimizing the expected value

of squared error across the domain. This simply turns out to be a constrained convex

optimization problem which can be solved with Lagrangian relaxation method [77].

The BLUP is the form y(x) = c(x)T S .where c is a vector function of x defining the
predictor’s behavior. BLUP is found by minimizing the expected value of error given by
E(c(x)TS — y(x))? . Assuming the predictor is unbiased i.e FTc, = f(x), the problem

is simplified to:

Minimize (c(x)To2 R)c(x) + 02 — 2¢c(x)To2 r

—AFTe(x)" = f(x)] (4.10)

By taking partial derivatives w.r.t ¢(x)T and the Lagrange multipliers, 4, the solution is

then reduced to solving a system of linear equations:

K [zl ] = [0_2{5(?)] where K= [2 GETR (4.11)

, Where
And the final form of the BLUP is given by

yx) = fTCOB+r" (R (S—F'B) (4.12)
Where B = (FFTR™1 F)"1FTR™1 §
The variance of the predictor is given by:

5 =2 f1-10 7w w [F ]

~o2(1—-1T ()R r(x)) (4.13)
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The form of the predictor is developed above, and now the parameters need to be
determined. Parameters p and 6 are found using maximum likelihood method. This

problem is in the below form:

Maximize -—= [nIn(? ) + In det (R)]

(4.14)
Subjectto:0< 8, 0<p <2

This form turns out to be a constrained convex optimization problem which can be solved

using SQP, intrior point solvers or heuristic methods such as GAs.
4.2.2.1 Modeling Results with Kriging

In the sumo toolbox that was used during the simulation process spline, exponential,
linear and Gaussian correlation functions were available to use. Our simulations used
mostly the Gaussian one which has a more common usage compared to the others. The
fitted kriging metamodel is given in Fig. 4.8. As Matlab kriging options, regpoly1 is used
for regression Function and corrgauss is used as correlation function. Lower theta bound
is -5 and upper bound is 3. Polynomial regression is chosen and Gaussian correlation is
used in this work. Model hyper-parameters are found by genetic algorithms. Population
size and maximum generations is determined to be 10. As population type doubleVector
is used. Elite count value is 1, Crossover fraction is 0.7, stallGenLimit value is 4 and
StallTimeLimit value is infinity. As crossover function heuristic method is used. More

information about these options can be found in Matlab GADS documentation.
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Plot of output using KrigingModel
(built with 164 samples)
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Fig. 4.8 Modeling Result with Kriging
4.2.3 Radial Basis Functions (RBF)

A radial basis approximation takes the form:

S(x) = Z y;o(lx—il), x € R4
i€l

(4.15)

Where ¢: [0,00) — R is a fixed univariate function and the coefficients (y;);; are

real numbers.

The weighted multiples also can be chosen following different strategies. One of

them is an iterative process that is known linear least squares, which is a method of fitting

a curve from known values by minimizing the distance to the fitted curve. GA is used in

our studies to determine the weights.
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RBF basis functions:

e Gaussian
o(r) = exp(—pr?), For some >0 (4.16)
e Multiquadratic
o(r) = \/r?+ B2 Forsome >0 (4.17)
e Polyharmonic spline:
o(r)=r¥k=135.. (4.18)
Thin plate spline (a special polyharmonic spline)
o(r)= r?Inr (4.19)

4.2.3.1 Modeling Results with RBF

For the hyperparameter estimation GAs has been used. Population size is chosed to
be 15. Crossover Fraction value is 0.7, Maximum generation number is 10, and Elite
Count is 1. Mutation is allowed in the population. More information about these options
can be found in Malab GADS toolbox documentation

Bounds for the shape parameters for basis functions such as Gaussian function,
multiquadratic function and exponential function are between 0.1 and 5 in logarithmic
scale.

Modeling results are satisfactory and shown is Fig. 4.9, run is faster than ANN
however RBF is more sensitive to sample distribution over domain which means the
tendency of resulting in different models for different runs with different samples is
higher.
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Plot of output using RBFModel
(built with 274 samples)
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Fig. 4.9 Result of modeling with RBF
4.2.4 Support Vectors Machines (SVM)

Support Vector Machines is a system of data fitting, prediction that is based on
statistical learning theory which is a machine learning method. Statistical Learning
Theory is based on making predictions about the data, observing the results and making
new guesses based on these results. [69]

Support Vector Machine can find the optimal hyper plane that is bound to some
constraints. Finding the optimal plane problem can be reduced to a dual problem using

Lagrange Optimal Methods, which can be represented as:

n

1 n
Max Q(a) = Z -3 Cayy; (xixj) (4.19)
- =1

Where ai is the Lagrange Multipliers,
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When the problem above is solved the optimal classification is obtained as follows:

f(x) = sgn((wx) +b) = sgn{z a;y;(x;x) + b} (4.20)
i=1

Here if the Kernel function of the domain is used the inner product in the first problem

(xix;j) can be replaced by K(xix;) and the problem can be rewritten as:

n
n

1
Max Q(a) = Z -5 a;a;y;y; K(xix;) (4.21)
- ij=1
And the optimal classification can be rewritten as:
n
f(x) = sgn((wx) + b) = sgn{z a;y;K(x;x) + b} (4.22)
i=1

In this case the problem is reduced to linearly separable cases and the machine which

does this process is called the SVM

4.2.4.1 Modeling Results with SVM

Kernel Parameter bounds are chosen to be in the range of [-4,4]. Regression
Parameter bounds are [-5,5]. Nu is chosen 0.01. SVM is slower than RBF but faster than
ANN. It is less sensitive than kriging to sample distribution. Hyper-parameters are found
with GAs. For this purpose Matlab GADS is used. Population size and maximum
generations are determined to be 10. Crossover fraction is chosen to be 0.7 and eliteCount
is chosen as 1. StallGenLimit value is 4 and StallTimeLimit is unbounded. Mutation is
employed in GAs. More information about these options can be found in Matlab GADS

documentation.

46



Plot of output using SVMModel
(built with 344 samples)
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Fig. 4.10 Modeling with SVM
4.2.5 Rational Model

Rational functions are natural choices for modeling resonance behaviors of
Electro-Magnetic devices since the input and outputs of these devices can be represented
in the rational way based on the transfer function. A typical property of these rational
functions is that they are both rational and orthogonal which means they can be written
as the ratio two different polynomial functions. Orthogonal functions are generally can

be shown as:

<fg>= [ Fe.g@dx =0 4.23)

Here 7~ is used to denote the complex conjugate of the functions.

Rational Model can be based on mainly three different well defined functions

which are Power, Legendre and Chebyshev.

Legendre functions can be generally described as the solutions to the Legendre’s

differential equations.

4{(1 — X o Py}

- + n(n+ DP,x) = 0 (4.24)
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Here P, can be described as:

d
@n+ DR = —[Prvs = Poa (0] (4.25)

Here it can be seen that the function is recursive, also generally the function is

convergent to some value when limit is taken.

Chebyshev rational functions are another type of functions that are used as basis functions

for rational genetic models. An example for that type of functions of degree n:

Ra() = T ) (4.2

Here Tn denotes a Chebyshev function of first kind which can be represented in the

recurrence relations:
Tn+1(X) = ZXTn(X) - Tn—l(X) (4-27)
Here the function is again both rational and orthogonal as that was the case in the
Legendre functions.

Using different basis functions and settings several runs have been done, but due to
some problems with fitting algorithm, results are not presented here.
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5 SURROGATE MODEL ASSISTED MULTI-OBJECTIVE DESIGN
OPTIMIZATION-A PRELIMINARY STUDY

5.1 Surrogate Model Based Design Optimization Framework

Addressing large scale design optimization problems in a feasible time using costly
simulations for analysis is almost impossible. There are two ways to face this challenge:
1. Naive way is to increase the computational power limited by available computational
resources, and 2. Alternatively, to solve the problem by making re-analysis faster. The
main time consuming component of the design optimization framework is the
computational analysis tool. Surrogate models are fast-running approximate substitutes
of complex and time-consuming computer simulations of the exact model. They capture
the complex behavior of the underlying simulation model and they are model-specific.
Thus, integration of fast surrogate models into our design optimization framework should
allow for the solution of challenging EM design problems (Fig 5.1).

Design vector
START y »| SURROGATE
MODEL
Initial Design Variable
Change

Optimal
Design

Fig. 5-1 Integration of Surrogate Models into Design Optimization Framework
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The integrated design optimization framework is based on using hybrid design
optimization techniques with various surrogate modeling tools towards the goal of
designing volumetric material and conductor variations of complex electromagnetic
devices. The framework should allow from scratch identification of the novel device
structure, both its material and conductor variation in three dimensions, in an automated
and efficient manner subject to some performance and size constraints. For the synthesis
module, gradient-based optimizers such as Sequential Quadratic Programming (SQP) and
global optimizers such as Genetic Algorithms are both utilized to allow for known
advantages in terms of speed and global search capability, respectively. As the analysis
module, two full wave electromagnetic wave solvers, i.e. a commercial EM simulator,
Ansoft HFSS, and an in-house hybrid FE-BI based analysis tool are utilized. The design
framework is primarily based on interfacing the analysis tools with various surrogate

based models and linking it to the optimization tools.

5.2 Design Example 1: ANN model assisted Patch Antenna optimization

5.2.1 Design Model and Surrogate Model Parameters

Artificial Neural Networks was the most efficient and accurate surrogate model
among various techniques presented in chapter 3, hence ANN is used as the surrogate
model in this example. The design model of the chosen patch antenna is depicted in
Fig. 5.2.

4
0.106___ €1 M1

Fig. 5-2 Design Model of Patch Antenna

The permittivity of the layer is selected as the design variable [1-21] to investigate
dielectric material effects on the performance. HFSS is capable of simulating the
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electromagnetic response of the device. The Frequency range of operation is specified as
[0.7-9] GHz. The Latin Hypercube Method is used as the Design of Experiments (DOE)
scheme as the sampling strategy. For the purpose of generating surrogate models, SUMO
is integrated with our automated design platform within a MATLAB interface. In
addition to the DOE scheme, adaptive sampling which is based on the combination of the
accuracy of the model and density of the samples over the design domain is used with the
goal of producing models with improved quality provided by SUMO. As a model
validation metric, validation set with 80% of sampling used for training and 20% of
sampling used for validation is chosen for its efficiency. The error measure is defined as
RRSE. Error measure is set to 0.1 proven to be ‘good quality’ measure based on some
trial and error runs. With the above mentioned surrogate model parameters, first surrogate
model in Fig. 5.3 is obtained for the return loss response. This model is then used as the

analysis tool within the integrated design optimization framework.

Permittivity

Frequency

Fig. 5-3 ANN Model of Design Example in Fig. 4.2

For optimization purposes, GA is chosen for the global optimum search of the
permittivity of the substrate. Population size is chosen to be 10 and maximum generations
are set to 100. Mutation function is chosen as Gaussian which has a mean of value 1 and
its variance is -0.3. Crossover function option is chosen to be “intermediate”. Tournament

selection function is employed.
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5.3 Design Results

Based on the convergence history and the design results for the best individual value
with =15 shown in Fig. 5,4, the ANN surrogate model integrated design optimization
framework is successful. Based on a comparison with standard optimization effort without
surrogate models, ANN-GA assisted design leads to 80% CPU time savings. More
specifically, standard optimization with calls to the exact finite element based analysis code
takes 116 hours to converge while surrogate model assisted design optimization takes about
23 hours on a Dell Intel(R) Exon(TM) 3.2 GHz CPU with 8 GB RAM.

Best: -21.9672 Mean: -20.6096
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Fig. 5-4 GA Optimization History and Best Individual Value

Detailed time calculations are done for both cases. Standard optimization ( with
calls to original analysis code) takes 116 hours ( Time = 100 generation * 10 individual
* 7 min (per frequency sweep) = 7000 min = 116 hours). ANN Surrogate model assisted
optimization takes 23 hours (Time =700 samples *2 min (per single frequency) = 1400
min = 23 hours). It is seen that ANN-GA assisted design saves 80% CPU time.
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5.4 Multi-Objective Optimization Framework

Most real world problems are multi-objective in nature. They have several possibly
conflicting objectives to be satisfied at the same time. In this situation, instead of aiming
a single ‘best’ solution, optimization efforts concentrate on generating a set of good
solutions which incorporate the trade-offs of the objectives and design decision maker
can choose the solution based on his/her needs [71].

Multi-objective optimization more formally can be explained as follows [70]:

A vector of decision variables which satisfies constraints and optimizes a vector
function whose elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually in conflict with each
other. Hence, the term “optimizes” means finding such a solution which would give the

values of all the objective functions acceptable to the designer.

In mathematical form:

min (f)
minlfy fz . ful”
s.t. (5.1)
gx) <0
h(x) =0

xl<x<xu

Where fi is the i-th objective function, g and h are the inequality and equality constraints,
respectively, and x is the vector of design variables. The solution to the above problem is
a set of Pareto points. Pareto solutions are those for which improvement in one objective
can not occur without worsening of at least one other objective. In traditional
mathematical programming, we have one optimal solution whereas in multi-objective
optimization framework, there could be numerous solutions and the curve of solution

points is called the “Pareto Curve”.

A design point in objective space spanned by each objectives, f* is termed Pareto Optimal,
if another feasible design objective vector f does not exist such that f; < f;* for all

ie{1,2,..,n} and f;<ffor at least one index of je{1,2,..,n}
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Several solution methods have been proposed for the above problem in literature: Normal
Boundary Intersection (NBI) method, construction of a single aggregate objective
function (AOF), Normal Constraint (NC) method, Multi-objective Optimization
Evolutionary Algorithms (MOEA), and PGEN (Pareto surface generation for convex
multi-objective instances) are some well known strategies. In our work, we will integrate
NBI within our design optimization framework for its known advantage of providing the
designer with equally spaced Pareto solutions as a result of an easily adopted efficient

search algorithm. Short description of the method is given next.

5.4.1 Normal Boundary Intersection (NBI) Method

The normal-boundary intersection method uses a geometrically intuitive method to
produce an even spread of points on the Pareto surface applicable for all dimensions. NBI
can be combined with a Pareto filter to identify non-Pareto points on the boundaries of
the feasible region. NBI starts with finding the extreme values of each individual
objective. Then other points on the Pareto surface are found by solving a sequence of
single objective optimization problems. If the single objective problems are solved with
a gradient based optimization method such as SQP then we also need derivatives.
Gradients for complex systems such as patch antennas unless the analysis code is
transparent are calculated mostly with finite differences which will require running vast
amount of computer simulations for each variable. Also, the sub-problem solutions would
depend on initial points which might not result in the global optimum. Heuristic methods
such as GAs would as well require lots of costly simulations for the sake of an effective
design space coverage. This process is computationally very costly. Hence a simple
application of the NBI method via local optimization tools such as MATLAB’s SQP is

used in this work for the advantage of fast convergence.

5.4.2 Surrogate based Pre-Analysis Results

Our design efforts of patch antennas target large bandwidth and high gain performance.
For initial testing of the framework, the patch antenna model in Fig. 4.2 is considered.

The permittivity is chosen as a design variable and its range is determined to be within
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the bounds of [1-16]. Frequency range is specified to be between [1- 2.5] GHz, a common
telecommunication frequency range. For surrogate modeling of the bandwidth of the
patch antenna, ANN is used. GA is chosen for the hyper-parameter tuning of ANN model.
Latin hypercube design is employed for design of experiments (DOE) scheme. For
building the surrogate model of the gain performance, Radial Basis Functions are chosen
with the DOE and the same hyper-parameter settings as in the ANN assisted return loss
model. An HFSS script serving as the interface of the integrated framework is written for
the patch antenna design, then turned into a MATLAB function and integrated into
Surrogate Modeling Toolbox (SUMO). Error norm is determined to be less than 1% as in
earlier design cases. Surrogate models were constructed with 345 and 249 samples for

return loss and gain and are shown in Fig. 5.5 and Fig. 5.6, respectively.

After obtaining accurate surrogate models, these are used to perform optimization
with a GA to find each objectives functions’ global optimum. These values are then fed
into the NBI as the maximum point. Afterwards, the search for equally spaced points on
the Pareto surface are to be found by solving a sequence of single objective optimization
problems with tools such as sequential quadratic programming aided by finite
differencing. Since we have accurate surrogate models for gain and bandwidth, it is very
easy to obtain the middle points of the Pareto surface. Although the NBI framework has
set up and utilized in the design of multi objective metamodel assisted one layer patch
antenna, the algorithm didn't converge since there was no improvement in bandwidth due
to the nature of well known physical property where only one layer effective material

change does not affect bandwidth.
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Plot of output using ANNModel
(built with 345 samples)
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Fig. 5-5 Ann model of antenna return loss

Plot of gain using RBFModel
(built with 294 samples)

20

15
o
e ‘0’6_..“AQ., \“é‘!! s
=T ; ‘,““““““\‘\:}‘:‘: !
£ e ¢ AT A R e SO RS el
@ T e S RS S S
o :‘&“?‘WWW
‘ Kt
u ““‘“\:\“““‘:\:“\\‘a‘\:\‘“\“\‘\\
5 TR
“‘\\\

25

Permittivity o

frequency

Fig. 5-6 RBF model of antenna gain
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6 CONCLUSIONS AND FUTURE WORK

Formal design optimization can explore the ultimate optimal design in untouched
design regions spanned by unknown degrees of freedom. However, large scale design
optimization problems such as volumetric material explorations are computationally very
expensive and demand high resources. To address this issue, in this thesis, we present an
efficient design optimization framework for electromagnetic applications. The
framework is based on integrating design optimization techniques with various surrogate
modeling tools. The resulting framework is applied to the design of a micro-strip patch
antenna using FSDA as analysis tool and SQP as synthesis tool. Considerable bandwidth
improvement is achieved in working frequency range. Following this study, HFSS is
integrated into optimization platform and the resulting framework is applied for the
design of optical plasmonic nano-antenna. In this study, the interaction of light with
plasmonic nano-antennas is investigated. An extensive study is performed to investigate
the effect of the geometric and material properties of nano-antennas on the transmission
efficiency. A modeling based automated design optimization framework is also
developed. The results of the optimization framework are compared with those of the
brute-force simulations. In these two design practices, it is observed that large scale
design optimization problems took a large amount of time so that optimization study
turned out being infeasible. To allow for considerable speed-ups of the versatile
automated design process proposed here, automated and adaptive Design of Experiment
(DOE) scheme is employed over the design domain and various surrogate models are
compared within the design framework with respect to their performance. Multiple
surrogate modeling techniques are investigated such as Artificial Neural Networks
(ANN), Radial Basis Functions (RBF), Support Vector Machines (SVM) and Kriging.
Results based on investigations show that ANN and RBF are more promising in terms of
capturing the overall resonance behavior of the patch antenna when compared with
Kriging and SVM. ANN is integrated into proposed design optimization framework.
Results showed that the hybridized surrogate model based design framework allows for
large number of design variables and suggests the effective and global exploration of the
large-scale design space. Micro-strip patch antenna is optimized for bandwidth using

surrogate model assisted design optimization framework. Based on a comparison with
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standard optimization effort without surrogate models, ANN-GA assisted design leads to
80% CPU time savings. Following this, a multi-objective surrogate model assisted design
optimization framework is constructed and applied to the design of a patch antenna
subject to maximum bandwidth and gain criteria. It is noted that this preliminary study
focused on the substrate material effect on bandwidth and gain only for initial testing of
the framework and easy interpretation purposes. However, bandwidth improvements of
antennas, as is well known, are possible through other standard ways such as addition of
radiating elements, material grating via layers with different magneto-dielectric
properties, or resistive cards, modification of feed type and location and conductor shape
and substrate thickness modifications. Their incorporation would naturally imply higher
dimensionality of the design problem and surrogate model, hence, would call for larger
computational resources and further investigations. Since the computational resources
and time budget for this work were limited, this framework is applied to a simple one
layer patch antenna example with a focus on the material substrate as the single variable.
However, the framework due to its modular structure and flexible user interface should
be capable of addressing other design problems with more degrees of freedom such as the
2-layer 3 variable surrogate model as investigated in Chapter 3. Major future work
comprises further studies to apply this framework to design problems with more degrees
of freedom and integrating this framework with inverse topology optimization problems
addressing more challenging EM design problems giving rise to unique devices with

increased design degrees of freedom.
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