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ABSTRACT 

 

Metamaterials have gained considerable interest in the RF and optics community 

due to their unusual properties not available in nature. However, despite their proven 

potential in theory and some practical realizations, metamaterials are restricted to some 

known geometry or physical compositions such as the SRR structure. This is largely due 

to the natural limit imposed by intuitive design efforts and or practical realization 

challenges. A formal efficient framework allowing for the design of non-intuitive 

structures does not exist. Similar to metamaterials, artificial composite designs in 

literature prompt for the possibility of unique material combinations possibly in three 

dimensions leading to desired electromagnetic behavior such as non-reciprocality. Formal 

design optimization can explore unknown design degrees of freedom.  However, large 

scale design optimization problems such as volumetric material explorations are 

computationally very expensive and demand high resources. This drawback can be 

surpassed by introducing surrogate modeling techniques into the platform as 

demonstrated in literature. To address this issue, in this thesis, we present an efficient 

design optimization framework for electromagnetic applications. The framework is based 

on integrating design optimization techniques with various surrogate modeling tools. The 

goal is to identify the device structure, both material and conductor in three dimensions, 

in an automated and efficient manner subject to some performance and size constraints. 

For the synthesis module, gradient-based optimizers such as Sequential Quadratic 

Programming (SQP) and global optimizers such as Genetic Algorithms are both utilized. 

As the analysis module, full wave electromagnetic wave analyzers, such as the HFSS, 

and a hybrid FE-BI based electromagnetic solver (FSDA) are integrated to the optimizers. 

The design framework is primarily based on interfacing the analysis tools with various 

surrogate based models and linking it to the chosen optimization tool. The proposed 
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framework is modular, hence allows for various combinations of synthesis and analysis 

modules within different surrogate based models.  

To allow for considerable speed-ups of the automated design process proposed 

here, automated and adaptive Design of Experiment (DOE) scheme is employed and 

various surrogate models are compared within the design framework with respect to their 

performance. Multiple surrogate modeling techniques are investigated such as Kriging, 

Polynomial, RBF (Radial Basis Functions), Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), etc. Results suggest that the ANN surrogate model based design 

framework allows for large number of design variables and an effective exploration of 

the global large scale design space while RBF, SVM and Kriging are also successful at 

capturing resonance behavior. Multi-objective optimization method called Normal-

Boundary Intersection (NBI) is integrated our framework. The resulting framework is 

suitable for the design of volumetric material compositions of applications such as an 

ultra-wide bandwidth SATCOM antenna and plasmonic nano-antennas. Future work 

comprises the determination of the artificial material structure following a two step 

procedure: The effective medium of the antenna is to be determined using the proposed 

surrogate based design optimization framework. This should allow for extending the 

capabilities of the proposed framework to the design of the microstructure of 

metamaterials utilizing inverse topology optimization. The freedom to explore all 

possible design degrees of freedom and the possibility to design for the material itself are 

expected to open up entirely new breakthroughs in microwave and optical applications. 
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Metamalzemeler doğa ötesi sergiledikeri özellikleriyle, RF ve optik çevrelerde 

büyük ilgi uyandırmıştır. Ancak, teoride ve bazı pratik uygulamalardaki potansiyeline 

rağmen metamalzemeler sadece SRR yapıları gibi bazı geometri ve kompozitlerle sınırlı 

kalmıştır.  Bunun sebebi büyük ölçüde sezgisel tasarım çabalarının yetersizliği ve pratik 

olarak gerçekleştirilmelerindeki güçlüklerdir. Düşünmeyle bulunamayacak derecede 

kompleks yapıların tasarlanmasına izin verecek formal ve etkili bir sistem 

bulunmamaktadır. Literatürde yapay kompozit tasarımlar da metamalzemelere benzer 

olarak istenen elektromanyetik davranışı sergileyecek (örneğin non-reciprocality) eşsiz 

malzeme kombinasyonlarının varlığı olasılığını kuvvetlendiriyorlar. Formal Tasarım 

Optimizasyonu, bilinmeyen dizayn serbestlik derecelerini keşfedebilir. Ancak hacimsel 

malzeme belirlerme gibi büyük ölçekli tasarım optimizasyonu problemleri yüksek işlemci 

zamanı gerektirmektedirler. Bu darboğaz, literatürde belirtildiği gibi tasarım 

optimizasyonu sistemine vekil modelleme tekniklerinin entegre edilmesiyle aşılabilir. Bu 

problemi çözmek amacıyla, bu tezde elektromanyetik uygulamalar için  hızlı bir tasarım 

optimizasyonu sistemi geliştirilmiştir.  

Sistem, tasarım optimizasyonu tekniklerinin, çeşitli vekil modelleme yöntemlerinin 

birleştirilmesiyle gerçekleşir. Amacımız, tasarlanan cihazın yapısını, üç boyutta malzeme 

ve iletken dağılımını, otomatik ve etkili bir şekilde, bazı performans ve boyut kriterlerine 

sadık kalarak bulmaktır. Sentez modülü olarak, türev tabanlı optimizasyon algoritmaları, 

örneğin Sequential Quadratic Programming (SQP),  ve global optimizsyon algoritmaları, 

örneğin Genetik Algoritmalar, kullanılmıştır. Analiz modülü olarak da tam dalga 

elektromanyetik dalga analizörü, HFSS ve hibrit sonlu eleman-sınır integrali metoduna 

dayanan elektromanyetik çözümleyici (FSDA), optimizasyon algoritmalarına entegre 

edilmiştir.  

Tasarım sistemi öncelikli olarak analiz modülü ile çeşitli vekil modellerin 

arayüzlerinin oluşturulması, sonrasında da bu arayüzlerin seçilen optimizasyon 

algoritmasıyla birleştirilmesine dayanır. Önerilen sistem modüler olup, çeşitli sentez ve 

analiz modüllerinin farklı vekil sistemlerle çalışmasına izin verir.  
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Bu çalışmada önerilen, otomatik tasarım sisteminde önemli derecede hızlandırmayı 

mümkün kılmak için, otomatik ve adaptif deney tasarımları oluşturulmuş ve çeşitli vekil 

modeller, tasarım optimizasyonu sisteminde, performanslarına göre değerlendirilmiştir. 

ANN, RBF, SVM, Kriging, Rational gibi çeşitli vekil modelleme yöntemleri 

incelenmiştir. Sonuçlar göstermektedir ki ANN vekil modeliyle çalışan tasarım 

optimizasyonu çok sayıda tasarım değişkeninin incelenmesine ve global yüksek ölçekteki 

tasarım uzayının keşfine izin vermektedir. Ayrıca RBF, SVM ve Kriging metotları da 

ANN kadar olmasa da resonans davranışını modellemede başarılıdırlar. Çok amaçlı 

optimizsayon methodu Normal-Sınır Kesişimi (NBI), tasarım optimizasyonu 

sistememize entegre edilmiştir. Ortaya çıkan sistem, hacimsel malzeme 

komposizyonlarıyla yapılan  ultra geniş bandgenişliğine sahip SATCOM antenlerinin ve 

plasmonik nano antenlerin tasarımına uygundur. Gelecekteki çalışmalarımızda, yapay 

malzemenin yapısı iki adımda belirlenecektir: Öncelikle önerilen vekil tabanlı tasarım 

optimizyonu sistemi kullanılarak antenin efektif malzemesi bulunacaktır. Böylece,  

metamalzemenin mikroyapısının ters-homojenizasyon ile belirlenmesini sağlayacak 

düzeye kadar önerilen sistemin yeteneklerinin geliştirilmesine izin verilecektir. Tüm 

tasarım değişkenlerini keşfetme özgürlüğü ve malzeme için tasarım yapabilme 

olasılığının kendisi bile mikrodalga ve optik uygulamalar için çığır açacak gelişmelere 

gebedir.  
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1 INTRODUCTION 

1.1  Engineered Novel Materials 

 “Engineers are starting to play God a bit.  

We have been able to invent and implement novel materials  

and devices where we tell the materials  

how to behave.” 

—Federico CAPASSO 

 

Engineered materials, such as metamaterials, new composites, electromagnetic 

bandgap, and periodic structures [1] have attracted considerable interest in recent years 

due to their remarkable and unique electromagnetic behavior. These new materials shown 

in Fig 1.1 may lead to the development of novel devices such as miniature antennas with 

high bandwidth and gain, optical antennas with superior properties, a perfect lens, capable 

of imaging objects with resolution much smaller than the wavelength of light, ultra-

compact optical circuits, and cloaking devices leading to invisibility. 

 

 

Fig. 1.1. Metamaterial, PBG in nature, Cloaking (From left to Right) [73-75] 

As a result, an extensive literature on the theory and application of artificially 

modified materials exists. Already photonic crystals have been utilized in RF applications 

due to their extraordinary propagation characteristics [2], [3]. More recently, 

computations using double-negative materials [4], [5] and photonic crystals [6] illustrate 



2 

 

that extraordinary gain can be achieved when small dipoles are placed inside other exotic 

materials that exhibit resonance at specific frequencies. Of importance is that recent 

investigations of material loading demonstrate that substantial improvements in antenna 

performance can be attained by loading bulk materials such as ferrites or by simply 

grading the material subject to specific design objectives [7].  

Ceramics with multitone materials have also been used for miniaturization [8] and 

pliable polymers [9] possibly with ceramics or ferrite power loading offer new 

possibilities in three dimensional (3D) volumetric antenna design and multilayer printed 

structures, including 3D electronics. Metamaterials are used for variable bandwidth EM 

devices, electrically small resonant antennas, novel antennas and lenses [10].      

Among the most exciting new applications for 3D low-loss metamaterials are those 

based on transformation optics [11], [12] and [13], including hyper-lenses that enable 

sub-wavelength far-field resolution [14], and designs for optical cloaking [15] 

1.2 Design Optimization 

Despite the novelty that new materials are promising, there are challenges and 

limitations when it comes to their design and practical realization. However, 

sophistication in formal design and fabrication techniques has allowed a major change in 

the way that these materials are realized. Using a computational model integrated with 

mathematical optimization techniques, many design candidates can be evaluated in a 

fraction of time required by real world experiments. Optimization is the science of finding 

the best and it has found many applications by finding good solutions to real world 

problems. However, many of these efforts assume that the objective function can be 

expressed algebraically and in explicit form. This means that the evaluation of the 

function is quick when a new set of variables is introduced. Furthermore, it is often 

necessary to differentiate the function, which guides algorithms towards the local 

optimum. However, most of the time engineering designs are so complex that their 

performance can only be evaluated by running a computational model. Most of the time, 

this model is created by numerical methods for finding approximate solutions of partial 

differential equations (PDE) as well as integral equations such as a finite element model. 

As new design variables are introduced to the synthesis module which basically consists 

of an appropriate optimization algorithm, it is necessary to run the model at each iteration 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8G3N-4S32NVK-1&_user=691258&_coverDate=05%2F31%2F2008&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info%28%23toc%2341799%232008%23999979998%23689837%23FLA%23display%23Volume%29&_cdi=41799&_sort=d&_docanchor=&_ct=6&_acct=C000038658&_version=1&_urlVersion=0&_userid=691258&md5=5756c63b61e2458da71a37b613e19921#bib38
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8G3N-4S32NVK-1&_user=691258&_coverDate=05%2F31%2F2008&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info%28%23toc%2341799%232008%23999979998%23689837%23FLA%23display%23Volume%29&_cdi=41799&_sort=d&_docanchor=&_ct=6&_acct=C000038658&_version=1&_urlVersion=0&_userid=691258&md5=5756c63b61e2458da71a37b613e19921#bib39
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8G3N-4S32NVK-1&_user=691258&_coverDate=05%2F31%2F2008&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info%28%23toc%2341799%232008%23999979998%23689837%23FLA%23display%23Volume%29&_cdi=41799&_sort=d&_docanchor=&_ct=6&_acct=C000038658&_version=1&_urlVersion=0&_userid=691258&md5=5756c63b61e2458da71a37b613e19921#bib40
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8G3N-4S32NVK-1&_user=691258&_coverDate=05%2F31%2F2008&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info%28%23toc%2341799%232008%23999979998%23689837%23FLA%23display%23Volume%29&_cdi=41799&_sort=d&_docanchor=&_ct=6&_acct=C000038658&_version=1&_urlVersion=0&_userid=691258&md5=5756c63b61e2458da71a37b613e19921#bib41
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8G3N-4S32NVK-1&_user=691258&_coverDate=05%2F31%2F2008&_rdoc=2&_fmt=high&_orig=browse&_srch=doc-info%28%23toc%2341799%232008%23999979998%23689837%23FLA%23display%23Volume%29&_cdi=41799&_sort=d&_docanchor=&_ct=6&_acct=C000038658&_version=1&_urlVersion=0&_userid=691258&md5=5756c63b61e2458da71a37b613e19921#bib38
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of the design cycle. Furthermore, if the optimizer is a local technique relying on gradients 

of the objective function, these are most of the time to be calculated using finite difference 

approximations. Therefore, the bottleneck of almost all design optimization efforts is the 

cost associated with running the computational model repetitive times. 

1.3 Surrogate Modeling 

Large scale design optimization problems such as volumetric material explorations 

are computationally very expensive and demand high resources. One way of surpassing 

this drawback is by introducing surrogate modeling techniques into the platform as has 

been demonstrated in literature. Surrogate models are fast-running approximate 

substitutes of complex and time-consuming computer simulations of the exact model. 

Surrogate models are also known as response surface models (RSM), metamodels or 

emulators. They mimic the complex behavior of the underlying simulation model and 

they are model specific. 

 

The principal motivation behind using surrogate models is associated with the 

prohibitive computational cost in running simulations for a large number of times during 

an iterative design cycle [16]. One model evaluation may take many minutes, hours, days 

or even weeks [17]. Nevertheless, one could argue that in order to obtain an accurate 

global surrogate one still needs to perform numerous simulations, thus running into the 

same problem. However, this is not the case since: (1) building a global surrogate is a 

one-time, up-front investment (assuming the problem stays the same), (2) distributed 

computing can speed-up the evaluation time, and (3) adaptive modeling and adaptive 

sampling (sequential design) can drastically decrease the required number of data points 

to produce a good model [18]. Hence, the goal in this thesis is to investigate surrogate 

based models comparatively for the material based design of electromagnetic devices, 

such as antennas. 
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1.4 Previous Work 

1.4.1 Design Optimization for EM Design 

Over the recent years, there has been strong interest in design optimization for 

electromagnetic (EM) applications [19]–[22].  These studies include mostly size and 

shape optimization rather than material optimization. Shape optimization is more 

common than size optimization, however, volumetric design would provide for greater 

design possibility. To take full advantage of volumetric variations in EM design we need 

an optimization framework that can simultaneously choose the best geometric and 

topological configuration while taking into consideration geometry as well as material 

composition. Such methods are called topology optimizations. It is reasonable to expect 

that designs resulting from topology optimization have novel configurations with higher 

performance as compared with designs resulting by size and shape optimizations as 

demonstrated in [23], [31] Since the paper by Bendsoe and Kikuchi in 1988 [24], topology 

optimization has expanded, successfully being applied to many practical engineering 

problems [25], [26]. This method has been widely accepted in industry/university as a 

potential design tool [27]. In EM, there have been various studies on the topology 

optimization of electrical devices [28], [29]. These have primarily dealt with problem-

specific or semi-analytic tools for magneto-static applications. Recent formulations of  

topology design optimization problems allows for creating novel configurations through 

the integration of design optimization tools with robust finite element-boundary integral 

(FE-BI) [30] methods suitable for general EM problems [31-32]. The latter removes 

limitations on geometry and material distribution and also it incorporates fast O(N) 

solvers for rapid solution of large scale design problems. The general framework is given 

in Fig. 1.2. Accurate results employing the simulator have already been obtained for 

scattering and radiation by cavities, slots, and multilayer patch antennas and frequency 

selective surfaces, demonstrating the method’s capability. However, these studies have 

been both limited to local optimization techniques and dielectric material variation only 

or global design search studies with restricted design space such as few material design 

blocks within symmetric material distributions. 
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Fig. 1.2 Previous successes in topology optimization [23]. 

1.4.2 Surrogate Modeling 

Numerical simulation and analysis is used extensively in electromagnetics 

community for design of new devices. Despite the never ending growth of computing 

power and technology, the computational cost of complex high-fidelity engineering 

analyses and simulations maintains pace. There have been recent attempts to deal with 

this challenge. Recently, response surface techniques are used to model input and output 

relations of a given system to replace the conventional numerical analysis tool with a 

functional representation of the performance surface [33-35]. The intention is to minimize 

the computational time. Response surface techniques are applied to EM designs such as 

electromagnetic actuators [36]. Fast numerical EM methods are applied for 

electromagnetic modeling and simulation [37-39]. For example, patch antennas are 

designed with kriging and divided rectangles (DIRECT) method by E. S. Siah [40]. 

Lately, space mapping (SM) concept is introduced which exploits coarse models (usually 

computationally fast circuit-based models) to align with fine models (typically CPU 

intensive full-wave EM simulations) [41-48]. Other methods for speeding up the 

reanalysis are employed such as singular-value decomposition, which drastically reduces 

the order of the eigen-value problem. By inspection of the singular values, the accuracy 

level of the procedure may be controlled. The technique is applied to the analysis of open 

and closed waveguides with arbitrary cross section, lossy conductors, and anisotropic 

dielectric layers [49]. Recently, a framework is constructed where modeler and simulator 
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interact through a distributed environment, (using established grid computing techniques) 

thus decreasing model generation and simulation turnaround time [50].  

Different surrogate modeling methods such as Polynomials, Multiquadrics [51], 

Kriging and Artificial Neural Networks (ANNs) [52] are among approximation schemes 

or surrogate modeling techniques that exist in literature.  The ‘virtual’ objective function 

they provide can be called by the optimization algorithm within a design optimization 

cycle.  Many Response Surface Methods and combinations thereof are documented 

recently coupling especially the aforementioned approximation techniques with 

stochastic algorithms.  Some methods are based on extrapolating local information [53] 

while others are solution technique dependent such as Chebyshev interpolations applied 

to enhance the efficiency of the moment matching technique [54]  

Several factors exist in choosing the most appropriate surrogate model. These include 

the complexity and functional characteristics of the analysis model to be replaced and the 

effort in determining the surrogate model. In this thesis we compare the performance of 

different surrogate models in approximating the frequency response of electromagnetic 

devices to make that choice easier for similar design optimization studies. Mostly used 

surrogate models are polynomials, Radial Basis Functions (RBF), Kriging, Neural 

Networks and Support Vector Machines (SVM).  

Polynomial models,   [55-57] seem to be one of the natural choices for resonance 

based surrogate-modeling of electromagnetic devices since transfer functions of EM 

devices can in principle be represented by a rational function in the frequency domain. 

Polynomial models are fairly easy to implement, clear on parameter sensitivity, and cheap 

to work with but are usually less accurate than the Kriging model [40]. However, 

polynomial functions do not interpolate the sample points and are limited by the chosen 

function type. Similarly, RBF methods [58-59] are very popular for scattered data 

interpolation. They try to approximate available data a sample by a linear combination of 

translates of a single basis function. The main advantage, compared to polynomial 

models, is that they can handle huge amounts of data points. On the other hand, 

computations involving RBF quickly become infeasible as the dimension of the input 

space increases. Unlike rational functions they lack a theoretical connection with the 

physical problem at hand, so one would expect less favorable results when using RBF for 

surrogate modeling. Similarly, the RBF based surrogate models especially the multi-

quadric RBF are easy to construct and can interpolate sample points at the same time. The 

advantage of the RBF is a provable non-singularity of the resulting linear problem, which 
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makes RBFs especially useful in the model construction where multi-parametric models 

are involved. Regarding Kriging, more accurate models especially for nonlinear problems 

are usually obtained but these models are difficult to obtain and use, because global 

optimization is needed to identify the maximum likelihood estimators. Kriging is also 

flexible in either interpolating the sample points or filtering noisy data. Successful 

implementations exist in literature for a limited number of design variables [40]. Neural 

networks, on the other hand, are widely used in the field of statistics to automatically 

build models describing complex relations between input and output with a low 

computational cost. The basic principle of neural networks is to create an approximation 

of a complex function by combining simple elementary functions. In addition, it is known 

that Kriging and RBF are more sensitive to numerical noise than polynomial models. 

Finally, support vector machines (SVMs) are a set of related supervised learning methods 

used for classification and regression. They belong to a family of generalized linear 

classifiers. A special property of SVMs is that they simultaneously minimize the 

empirical classification error and maximize the geometric margin; hence they are also 

known as maximum margin classifiers.  

1.5 Contribution and Overview of the Thesis 

As the variety of examples in the literature shows, perfect combination of materials 

is unique and extremely difficult to determine without optimization. To address this issue, 

in this thesis we develop a surrogate model assisted design optimization framework 

integrating FEM based analysis tools with optimization techniques suitable for designing 

RF devices made of artificial magneto-dielectrics. Previous optimization studies on 

metamaterials indicate that properly designed dielectrics or a combination of different 

materials can lead to designs which have greater bandwidth and small size [10], [11]. 

Nevertheless, the focus has been on dielectric composites with two or more constituent 

ceramic mixtures relying on local optimization methods or global design search studies 

with restricted design capability. Here, our goal is to propose an efficient framework 

suitable to optimize the metamaterial profile fully, possibly with dielectric shades 

combined with magnetic materials to improve antenna performance such as 

miniaturization, bandwidth and efficiency within global design search studies. The need 

for design, preferably design optimization is pertinent to the competing physics of these 

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
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metrics. Instead of the more traditional approaches of optimizing the shape or geometry 

of the antenna with numerical FEA based analysis tools, here we investigate the 

possibility to replace the FEA based model within material based designs and inverse 

topology optimization methods that could lead to non-intuitive magneto-dielectric 

substrates. When compared with more conventional optimization, where the topology of 

the device is assumed a priori and remains fixed, topology optimization offers much more 

degrees of freedom and allows the exploration of 3D artificial magneto-dielectric 

composites. Consequently, it is reasonable to expect that resulting designs have novel 

configurations with much higher performance. In Chapter 2, the resulting framework is 

applied to the design of a micro-strip patch antenna and optical plasmonic nano-antenna 

design. The proposed design framework effectively combines surrogate based models of 

FEA with optimization techniques and should allow for increased flexibility in geometry 

and material specifications across three dimensions for electromagnetic applications. 

Chapter 3 discusses surrogate models for EM design. To allow for considerable speed-

ups of the versatile automated design process proposed here, automated and adaptive 

Design of Experiment (DOE) scheme is employed over the design domain and various 

surrogate models are compared within the design framework with respect to their 

performance. Multiple surrogate modeling techniques are investigated such as Artificial 

Neural Networks (ANN), Radial Basis Functions (RBF), Support Vector Machines 

(SVM), Kriging, and Rational Model. In Chapter 4, surrogate models are integrated into 

proposed design optimization framework. Results show that the hybridized surrogate 

model based design framework allows for large number of design variables and suggests 

the effective and global exploration of the large-scale design space. Micro-strip patch 

antenna is optimized for bandwidth using surrogate model assisted design optimization 

framework. Antenna design is a topic of great importance in EM community and involves 

the selection of several physical parameters to satisfy multiple stringent performance 

specifications such as optimal gain, pattern performance, bandwidth, VSWR, etc. To 

address this issue, multi-objectivity is successfully integrated into the proposed 

framework for possibly bandwidth and gain improvements of a patch antenna.  

Future work comprises the extension of the framework capabilities to the design of 

the microstructure of metamaterials utilizing inverse topology optimization. The 

possibility to explore all possible design degrees of freedom for the material itself is 

expected to open up entirely new possibilities in microwave and optical applications.  
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In short, the contributions of the thesis can be summarized as follows: 

• An efficient multi-objective surrogate model assisted design optimization 

framework for RF and optical applications is developed.  

• Proposed framework is applied to several designs including multi-layer 

microstrip patch antennas and optical plasmonic nano-antennas. 

• Several surrogate model techniques are compared for EM design.  

• As a result of developed framework, 80% CPU time saving is succeeded 

for large scale design optimization problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

2 THEORETICAL BACKGROUND 

2.1 Design Optimization  

Generally design problems whether carried out intuitively or via optimization can 

be classified into size, shape, and topology optimization, where the design variables are 

proportions, boundaries, and topology of a component, respectively.  Optimization is the 

process of maximizing or minimizing a desired objective function while satisfying a set 

of constraints.   A design optimization cycle typically consists of a synthesis module and 

an analysis module.  The synthesis module contains a specific optimization algorithm and 

the analysis module computes the objective function and its derivatives, if a sensitivity 

analysis is required by the chosen optimizer.  Most optimization algorithms are iterative 

methods and have their own way of searching towards the optimum solution. Specifically 

for antenna design optimization problems, the desired performance characteristics are 

described and formulated in terms of an objective function, such as bandwidth, beam 

angle, frequency response, efficiency or similar. The analysis module usually consists of 

a finite element analysis code, since the antenna structure and boundaries are complex for 

deriving a closed-form solution satisfying Maxwell’s equations. 

Mathematically, an optimization problem can be defined as follows: 

  Minimize:  f (x, p) 

Subject to: g(x, p) ≤ 𝟎                

h (x, p) = 0 

(2.1)  

 

Where x ∈ 𝑥 ⊆  𝑅𝑛, 𝑓 ∶  𝑅𝑛  → 𝑅, ℎ ∶  𝑅𝑛 and 𝑔 ∶  𝑅𝑛  →  𝑅𝑠. Here (2.1), x is the 

design variable vector in the design space 𝒙, the vector p contains certain parameters with 

values fixed during optimization. f(x, p) is the objective function, the g (x, p) vector is a 

set of inequality constraints and h(x, p) denotes the equality constraints. The set of x that 

satisfy all constraints is called the feasible region. 

 

In the most general form, the above formulation is a constrained nonlinear 

programming (NLP) problem. Optimization problems can be classified in several ways 
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such as constrained or unconstrained problems, integer or real-valued programming 

problems, and component or system design optimization problems, etc. Most well known 

classification is to differentiate them whether or not they rely in the evaluation of 

gradients as gradient based/local or global/heuristic techniques and are discussed next. 

2.2 Gradient Based Optimization Techniques 

 It is fair to say that these techniques usually require less number of iterations when 

compared with global techniques and hence are faster. These algorithms make use of first 

and generally the second derivative of the objective and constraint functions and use this 

information to locate the optimum. One disadvantage is their dependence on the starting 

point of the search. At that point the user is responsible of making a clever guess and 

defining a good starting point to find the optimum point. Their biggest disadvantage is 

getting stuck at a local optimum unless certain conditions such as convexity are not 

satisfied. At each nth step of a gradient based optimization algorithm a new iterate xk+1 

will be suggested based on the previous iterate xk , a move step αk and a search direction 

sk as follows:  

  𝑋𝑘+1 = 𝑋𝑘 +  𝛼𝑘𝑠𝑘 (2.2)  

   

The iteration goes on until a specific convergence criterion is met such as the 

difference of successive iterates dropping below a small number 𝜀. Another common 

termination criteria is the Karush-Kuhn-Tucker norm such as: 

 

  ‖∇𝑓𝑘 +  λ𝑘
𝑇∇ℎ𝑘 + 𝜇𝑘

𝑇∇𝑔𝑘‖  ≤  𝜀 (2.3)  

 

Classical gradient based methods for unconstrained non-linear programming 

problems include: Cauchy, conjugate gradient and quasi-Newton methods. Among the 

most popular one Sequential Quadratic Programming will stand out as a successful 

technique to effectively solve problems with nonlinear constraints and is employed in the 

design framework as the local optimization technique.    
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2.2.1 Sequential Quadratic Programming (SQP) 

SQP is based on the idea of reducing the complexity of the problem by sequentially 

solving less complex quadratic sub-problems with gradient methods. As the complexity 

of the original problem is reduced this method is expected to be faster to solve the original 

non-linear problem. For a given optimization problem as: 

 

  Minimize f (x) 

Subject to h(x) = 0 

𝐠(𝐱, 𝐩) ≤ 𝟎  

(2.4)  

 

Where f(x) is the nonlineqar objective function, g(x) is the nonlinear constraints,  

and h(x) is the vector of linear equality constraints. 

 

Again the iteration stops when an optimum is reached in the standard gradient based 

optimization setting and follows below steps:  

 

1) Initialize the system. 

2) Solve the problem stated in (2.4). 

3) Minimize a merit function along sk by performing a line search to determine the 

step length 𝛼k  

4) Set xk+1  = xk + 𝛼ksk 

5) Check for termination, go to step 2 if not finished. 

 

In the proposed framework the SQP algorithm in MATLAB has been used.  
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2.3 Heuristic Methods 

 Gradient based techniques as described above for SQP are highly likely to 

converge to a local optimum depending on the characteristics of the optimization problem 

and the choice of the initial design point. In contrary, heuristic methods do not rely on 

local information such as the gradient and hence have the capability to search for global 

optima. Basically heuristic methods scan on a larger design space with increased 

boundary, and in return rely mostly on many more computations, hence suffer usually 

from slow convergence and impractical design time spans. This computational burden is 

even more pronounced for design problems with high number of design variables such as 

topology design efforts of frequency based electromagnetic problems. Most 

common design optimization studies within the electromagnetic community have been 

restricted to the use of heuristic methods such as the genetic algorithm to parametric 

design studies. Basic principles of GA’s will be introduced next. Applications of GA’s 

exist in a wide range of application portfolio ranging from the high speed integrated 

circuit to the simulations of the electromagnetic materials. There is no guarantee that it 

always converges but practical applications suggest that it is usually quite successful in 

dealing with complex design problems.  

2.3.1 Genetic Algorithms 

 Genetic Algorithm (GA) is a robust intelligent optimization algorithm that gives 

the global optima without the need for the derivative properties of the function with the 

usage of a system that mimics the behavior of the nature population’s genetics and 

evolution.  

 In a genetic algorithm every species represents a variable in the problem. The 

algorithm seeks for the fittest of the individuals by combining the individuals from each 

species with each other randomly. The algorithm continues to choose the individuals to 

breed until it finds the fittest in the population. Once it locates the fittest in one population 

it continues to breed the populations until it finds the fittest in the subsequent population. 

This process of mixing individuals is similar to the process of crossover in nature.  

In a standard GA setting, the user chooses certain parameters such as the size of 

the initial population, mutation   ratio, and crossover ratio. The reason for the need of the 
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mutation is to introduce diversity and prevent the design candidates to be too much 

‘alike’, i.e., distributed homogenously within the population which reduces the quality of 

the search and hence the results of the algorithm. So, at some generations, the individuals 

are changed/renewed to prevent too similar design candidates. The fitness criterion is also 

defined by the user, which itself is a challenging task for any optimization model.  

  

A new generation is started each time until a termination condition has been 

reached. Termination criteria include: 

• A solution is found that satisfies minimum criteria,  

• Fixed number of generations reached; 

• Allocated budget (computation time) is reached; 

• The highest ranking solution's fitness is reaching or has reached a plateau such 

that successive iterations no longer produce better results; 

• Manual inspection;  

• Combinations of the above. 

In general, although GA is very capable of providing good solutions to difficult 

problems, they offer no guarantee of global optimality in finite time. They are very 

sensitive to tuning parameters and they don`t eliminate risk of premature convergence.  

2.4 Analysis Tools 

Complex structures such as patch antennas require to be solved via numerical tools 

such as with finite element analysis. The finite element analysis is a numerical technique 

for finding approximate solutions of partial differential and integral equations. The 

solution approach is based either on eliminating the differential equation completely 

(steady state problems) or rendering the PDE into an approximating system of ordinary 

differential equations (ODE), which are then solved using numerical techniques such as 

Euler's method and Runge-Kutta etc. 

In our studies we used two FEM based analysis tools: FSDA (Fast Spectral Domain 

Algorithm) and HFSS (High Frequency Structure Simulator).  
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2.4.1 Fast Spectral Domain Algorithm (FSDA) 

FSDA is used to analyze electromagnetic scattering and radiation characteristics 

of infinite periodic planar antenna arrays and frequency selective surface (FSS: 

metallic/resistive patch or slot elements), as illustrated in Fig. 2.1, or frequency selective 

volume (FSV: metallic or dielectric block inclusions) configurations, with an arbitrary 

number of FSS/FSV layers, or combination of both antenna arrays and FSS/FSV 

configurations. The code is capable of dealing with commensurate as well as non-

commensurate structures.  

 

 

 

Fig. 2-1 Metallic/resistive patch or slot elements 

The hybrid finite element/boundary integral (FE/BI) method is used for field 

calculation. The finite element formulation is employed within the volumetric part and 

the boundary integral is used for terminating the mesh. The code works with prismatic 

elements (right-angled) in the FE-sector and triangular elements in the BI-surface. First, 

the code generates triangular surface meshes with all geometrical adaptability for the 

individual layers while the volumetric FE mesh is grown along the depth of the volume. 

The code has the option to deal with metal-backed periodic configurations and with 

periodic configurations which are open at the top as well as at the bottom surface of the 

FE-mesh. In the first case, the BI is applied only on the top surface whereas in the latter, 

the BI-method is used to terminate both surfaces.  

To model the infinite array problem, the periodicity condition for the fields in the 

infinite periodic array is employed using only one unit cell of the array. That is, within 

the FE-model of this unit cell, the periodic boundary condition (PBC) is enforced on the 

vertical walls of the mesh and on the boundary edges of the BI-surfaces where also an 
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appropriate periodic Green’s function (PGF) must be used. For modeling non-

commensurate structures, the individual layer periodicities are decoupled. Of course, this 

is only an approximate model but its accuracy can arbitrarily be improved by grouping 

several cells in the individual layers [60]. 

In this study, the FE-BI based code is integrated within the proposed design 

framework using a Matlab interface and applied to 3 layer micro-strip patch antenna for 

bandwidth optimization.  

2.4.2  High Frequency Structure Simulator (HFSS)  

 

Fig. 2-2 A graphic from HFSS program. 

HFSS is the industry-standard software to analyze electromagnetic structures. It 

utilizes 3D full-wave Finite Element Method (FEM) to compute the electrical behavior 

of high-frequency and high-speed components. With HFSS, network parameters (S, Y, 

Z) can be extracted, 3D electromagnetic fields can be visualized, broadband SPICE 

models can be generated, and optimize design performance. The software is widely used 

for the design of on-chip embedded passives, PCB interconnects, antennas, 

RF/microwave components, and high frequency IC packages.  HFSS characterizes the 

electrical performance of components and evaluates signal quality, including 

transmission path losses, reflection loss due to impedance mismatches, parasitic coupling, 

and radiation.  

The graphic interface of HFSS allows designing various kinds of geometric shapes, 

1D, 2D, or 3D from its drawing tools. It also gives the opportunity to create different 

kinds of analysis on the same model without any interaction with each other. [61]. 

HFSS software is an easy to use one, especially the combined usage of it with the 

Matlab toolbox gives the users the chance to work on a variety of fields. As it uses 
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Microsoft Graphical User Interface for windows the designer can see his exact design in 

three dimensions. It also gives the freedom to calculate performance metrics for a wide 

range of frequencies which makes it suitable especially for antenna designs and high 

speed integrated circuits. Moreover, adaptive meshing is possible for complex geometries 

which make it suitable for iterative based design studies. These features and the 

convenient script recording feature are among reasons HFSS has been chosen as the 

primary analysis model for the proposed design optimization framework. It is used for 

the design of plasmonic nano-antennas, micro-strip patch antennas, and surrogate model 

comparisons in this thesis.  

The main idea of HFSS scripting is based on the ability of recording design steps 

into a script file and that script file can be converted into a Matlab file. That gives the user 

the opportunity to work on Matlab, call HFSS from Matlab and do the design steps 

automatically. In the script the user can assign variable names to some critical settings 

like the frequency sweep range, permeability, permeability of a user designed material 

and that makes it quite easy to call the necessary files and each time evaluate the antenna 

for a different design setting. Also the results can be exported to an external environment 

like a text file and they can be read by Matlab to be fed into optimization module which 

is discussed next. 
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3 FEA BASED AUTOMATED DESIGN OF ANTENNAS  

3.1 FSDA based Design Optimization Framework 

In this section the basic structure of the proposed design framework is summarized. 

The modular structure of a standard design framework for material based design efforts 

is shown in Fig. 3.1. The analysis tool within the framework is the commercial Ansoft 

HFSS package. Since design optimization requires successively changing design 

variables at each iteration, an API is needed to integrate HFSS with the framework. After 

an intensive search, an appropriate HFSS-Matlab API library, we found a suitable library. 

To demonstrate the framework as the first example a patch antenna is programmed thru 

HFSS tutorial and results are validated with HFSS GUI. Afterwards, the optimization 

module such as GA/SQP and the analysis module HFSS are linked to each other. This 

forms the design optimization cycle. Initial efforts to apply the gradient-based 

optimization to a design example were not successful primarily due to slowness of HFSS, 

hence sensitivities could not be evaluated with enough accuracy in a feasible time. This 

motivated the use of HFSS based reduced models and details of the model reduction 

strategies and its use in the design framework are discussed in the third and forth chapters. 
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Fig. 3-1 Matlab based design optimization framework 

3.2  Design Example 1 

3.2.1 Magneto-Dielectric Optimization of a Multilayer Patch Antenna 

In this section we demonstrate a parametric design optimization study for magneto-

dielectrics substrates using the proposed design optimization framework. The goal is to 

determine optimal values of the permittivity and permeability of each magneto-dielectric 

layer supporting a probe fed patch antenna subject to high bandwidth and size constraints. 

Main motivation is to use resulting optimal values as objective metrics to be attained 

subsequently via inverse homogenization as discussed earlier. Among future goals is to 

determine the microstructure of each layer subject to effective material properties 

resulting from the pre-design phase presented here. Chosen microstrip patch antenna 

consists of 3 magneto-dielectric layers. Geometrical details are shown in Fig. 3.2. The 

allowable permittivity and permeability range is [1-25]. The objective function is chosen 

as f(x) = min[max(|s11|i)]  where i= 1,...,Nfreq ,  x is the design vector and s11  is the return 

loss. Design specifications are shown in master table (Table 3.1). 

Probe
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Layer 3
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Layer 1

Ground 

Plane

L= 2.5 cm
1.3

0.106

0.106

0.106

1.3

0.6
0.6

2.5

 

 

Fig. 3-2 Multi-layer patch antenna geometry. 

 

The antenna is analyzed via full wave FE-BI tools to compute return loss (S11) values. 

The optimization scheme chosen here is Sequential Quadratic Programming. Target is to 
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attain bandwidth performance enhancements by changing the material properties of the 

dielectric layers. Their optimum composition will be found subsequently via inverse 

topology optimization. From this point of view, the magneto-dielectric layers here can be 

treated as effective material properties. 

 

 

 

 

Table 3.1: Master table of antenna design. 

 

The optimal values of their properties resulting in the ‘best’ bandwidth performance 

subject to the chosen optimization model are evaluated using a SQP algorithm and the 

full wave analysis tool (Fig. 3.3).  Initial design refers to a homogeneous dielectric 

substrate with ε = 3 and µ = 3. Operating frequency range is chosen as 0.5 GHz - 3 GHz 
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sampled with 0.1 GHz intervals. Optimization results are shown in Fig. 3.4 and 3.5. 

Convergence was reached in about 35 iterations. As apparent, the initial design structure 

doesn’t have a resonance in the desired working frequency range, whereas the optimal 

design delivers a -5dB bandwidth. With the attained improvement with only 6 design 

variables and pre-chosen antenna geometry, the results clearly demonstrate the positive 

effect of artificial magneto-dielectric substrates on the bandwidth of the micro-strip patch 

antenna. A design search considering the conducting patch as well, i.e. the integration of 

the conductivity of each layer should allow for much wider bandwidth. It is also noted 

that the chosen objective function is not favoring matched performance but rather just 

bandwidth. A more suitable objective function could be employed to aim for well 

matched behavior. The next step could be to feed the resulting ε and µ values (ε1=8, 

µ1=2.45, ε2 =5.8, µ2 =15.9, ε3 12.5, µ3 =2.6) into the inverse topology optimization scheme 

to explore the layer microstructure that can deliver desired effective material properties. 

 

 

 

Fig. 3-3 Design optimization framework  
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Fig. 3-4 Optimization history  

 

Fig. 3-5 Initial vs. optimized bandwidth performance  

The resulting bandwidth although much higher than the initial design could 

correspond to a local optimum value hence allow for further bandwidth improvements. 

To arrive at global optimal design solutions possibly via a two-step large scale design 

optimization approach subject to performance metrics calculated at sampled frequency 

points, heuristic search routines need to be employed. The proposed framework is flexible 

enough to be solved via evolutionary optimization techniques to address this issue, if 

appropriate speed-up techniques are adopted. These techniques are discussed in the next 

chapter.  
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3.3 Design Example: 

3.3.1 Optimization of a Nano-plasmonic Antenna 

Nano-optical applications, such as scanning near-field optical microscopy [62] 

and data storage [63], require intense optical spots beyond the diffraction limit. Nano-

antennas [64-65] can obtain very small optical spots, but their ability to obtain optical 

spots beyond the diffraction limit is not sufficient for practical applications. In addition 

to a very small optical spot, a nano-antenna should provide high transmission efficiency 

for practical applications. The transmission efficiency of a nano-antenna determines the 

data transfer rate of storage devices and scan times of near-field optical microscopes. 

Therefore, the efficiency of nano-antennas should be optimized for potential utilization 

in practical applications. Optimization of nano-antennas is crucial for understanding their 

potential and limitations for emerging plasmonic applications. A brute-force optimization 

study of these structures is not practical due to large number of parameters. There is a 

need for a systematic optimization of these structures.  

In this study, the proposed design framework is used to optimize nano-antennas.  

3.3.1.1 Dipole and bow-tie plasmonic nano-antennas  

An antenna is composed of metallic parts. For example, the dipole antenna shown 

in Fig. 3.6(a) is composed of two metallic rods separated by a distance, G. Similarly, a 

bow-tie antenna shown in Fig. 3.6(b) is composed of two triangular metallic pieces, which 

are also separated by a distance, G.  
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Fig. 3-6 A schematic illustration of a (a) dipole and (b) bow-tie antenna, and their 

dimensions. The antennas are illuminated with incident electromagnetic radiation 

shown with E


. 

 

 

 

                

Fig. 3-7 The intensity as a function of wavelength and antenna length for: T= 50, W= 50, 

and G= 20 nm. 

For the purpose of exploration of the design domain, some simulations are done. 

The incident wavelength is varied from 400nm to 2000 nm by intervals of 50 nm, At each 

wavelength, antenna length is changed. The intensity at the center of the gap, |E(x=0, y=0, 

z=0)|2, is calculated for each wavelength and antenna length. By recording the intensity 

over the rectangular grid shown in Fig. 3.7, the surface graphs are formed. A constant 

power value of 1 mW is chosen. The power calculations are based on a focused beam 

model. More information can be found in Handbook of optical constants of solids by E.D. 

Palik, 1998  

3.4 HFSS based Design Optimization Framework  

The surface plasmon resonances of nano-antennas depend on parameters related 

to the shape and composition of the nano-antenna. Complete understanding of surface 

plasmon resonances of nano-optical systems requires a complete and detailed 

understanding of possibly many more design parameters, geometries, and material 

properties. The large number of parameters involved in studying functional plasmonic 
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devices with a brute force numerical parameter simulation is not feasible. To design novel 

nano-optical transducers a modeling based automated design optimization framework is 

necessary.  

 

Fig. 3.8 Design optimization framework for nano-antenna design 

The design framework is formed by integrating a commercial electromagnetic 

analysis tool Ansoft HFSS with MATLAB’s optimization toolbox. Specifically, two 

different optimization tools are integrated on a MATLAB based scripting interface to 

iteratively search for optimum geometric parameters of a dipole and bowtie antenna: 

sequential quadratic programming (SQP) and genetic algorithm (GA). The optimization 

model consists of maximizing the field intensity |E(x=0, y=0, z=0)|2 subject to bound 

constraints of [20, 450] and [400, 2000] for geometric length and wavelength, 

respectively. Convergence is achieved in about less than 20 iterations and 10 generations 

for the SQP and GA framework, respectively. Optimization parameters in the GA setting 

include 10 individuals, Gaussian Mutation and Roulette Wheel Selection. Optimal lengths 

for dipole antennas are obtained via SQP, plotted with respect to wavelength, and 

compared to results obtained via the brute-force simulation in Fig. 3.9. There is an overall 

agreement except for optimal lengths at wavelengths close to bound constraints. The 

discrepancies are attributed to two main reasons: Inaccurate brute-force predictions of 

maximum field intensity of finite sampled frequency points and as expected with gradient 
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based optimization tools, results show that SQP’s performance in locating the optimum 

solution depends on the chosen initial design with especially when the intensity is a multi-

modal function. The GA based optimization framework seems to overcome this issue in 

the expense of computational time. Optimal results for the bow-tie antenna length 

converged to 140 nm at 900 nm, and to a dipole length of 286 nm at 1764 nm for a two 

variable optimization study via the GA framework while the SQP was unable to converge 

for the latter. Initial results seem to be promising in providing the capability of exploring 

nano-structures with several design parameters. The electric field performance is likely 

to result in more complicated response functions. Future work includes expanding the 

framework to hybridize both optimization tools in combining the advantages of global 

and local optimization tools and to expand the framework to multi-objective design 

optimization problems.  

    

 

Fig. 3.9 Comparison of the optimization result for a dipole antenna using the SQP 

method and brute-force simulations. 

Design optimization framework is also applied to the case where the power is taken 

to be constant, and wavelength and rod length are allowed to change. GAs has been 

chosen as the optimization algorithm. Length is allowed to vary in a range of 10-300 nm 

and frequency is allowed to vary in a range of 150-750 Thz.  Results are satisfactory and 

shown in Fig 3.10. 
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Fig.. 3.10 GA result of constant power nano-antenna optimization 

 

Bowtie Antenna is optimized with the proposed framework using GA as optimizer. 

GA converged to Lopt: 190 [nm] in 550 function calls finding global optimum (Fig 3.11), 

SQP converged to Lopt: 250 [nm] in ~20 function calls (converged prematurely). 

 

 

 

Fig. 3.11 Bowtie nano-antenna optimization with GAs 
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4 SURROGATE MODELING BASED DESIGN OPTIMIZATION  

4.1 Introduction 

Large scale design optimization problem often involve a broad design space and 

computationally expensive simulations. Many detailed FEM based analysis tools are 

available for use in the latter stages of EM design, but they are extremely expensive for 

exploring broad design regions. One solution has been to simplify the computational cost 

of analysis models by reducing the finite elements model, or increasing the step length 

within frequency sweeps to obtain approximate simulation results. Thereby, accuracy is 

sacrificed and computational time is reduced. However, exploring large design domains 

and performing design optimization based on repetitive approximate simulations could 

be still costly. To overcome this computational challenge, surrogate models are created 

to provide rapid approximations of more expensive finite element based models.  

Previous studies as discussed in Chapter 2, showed that large scale design optimization 

problems such as multilayer patch antennas and nano-antenna based design optimization, 

require large amount of computational resources.  

Creating surrogate models for EM design requires following specific set of actions. 

First, finite element method (FEM) based computer experiments are performed, chosen 

in specific patterns called experimental designs [66,67] in which the design variables 

cover a chosen range of values. Using chosen analysis module, design’s performance is 

simulated at chosen sample points. The responses and input values are evaluated 

statistically to create functional relationships between input variables and performance 

functions of the design. These functional relationships are called surrogate/meta- models. 

These surrogate models can be used to explore the design domain, linked to an 

optimization framework and used to replace the analysis tool and guide the optimization 

process.  

There is a wide variety of methods available for surrogate modeling [68]. Among 

them are artificial neural networks ANN, radial basis functions (RBF), kriging, Support 

vector machines (SVM) and polynomials. Success of surrogate modeling is determined 

by several factors such as the choice of the surrogate modeling method, used error 

measure, the experimental design used to select data points, the size of the design space 
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or range of explored values of design variables, the accuracy of the simulation at each 

data point and the numbers of data points available to compute the surrogate model. In 

this work, we will explore ANN , Kriging, RBF and SVM methods for modeling 

Electromagnetic behavior based on the error value of the built metamodel also 

qualitatively since over-fitting is a know issue with metamodels.   

4.1.1 Sampling Design Space via Design of Experiments (DOE) 

For the purpose of developing an accurate approximation of the design domain, the 

sampling from domain must be based on an intelligent scheme. The accuracy of the 

approximation model and the duration for obtaining it is determined by the chosen 

sampling scheme so it would be wise to use an effective one. 

Design of Experiment (DoE) is a structured, organized method that is used to 

determine the relationship between the input factors affecting a system and the output of 

that system. This method was first developed in the 1920s and 1930, by Sir Ronald A. 

Fisher who is a renowned mathematician and geneticist. 

Design of Experiment involves designing a set of experiments, in which all relevant 

design variables are varied systematically. When the results of these experiments are 

analyzed, they help to explore the design domain, the variables that most influence the 

results, and those that do not, as well as details such as the existence of interactions and 

synergies between factors. In our study, we will use DOE for surrogate modeling. There 

are various DOE techniques such as Central Composite Design (CCD), Latin Hypercube 

Design, Orthogonal Arrays, etc. Here, latin hypercube design is used: Latin Hypercube 

Design method is one of the cleverest way of searching in an n dimensional design space 

An experimental design consisting of n trials, and for which each factor has n distinct 

levels.  

4.1.2 Generation of Surrogate Models 

Our goal is to compare various surrogate modeling methods for their suitability 

within a versatile design optimization framework developed for electromagnetic 

applications. The ultimate design optimization framework is based on integrating hybrid 

design optimization techniques with various surrogate modeling tools towards the goal of 
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designing volumetric material and conductor variations of complex electromagnetic 

devices. The framework will be utilized to identify the novel device structure from 

scratch, both its material and conductor variation in three dimensions, in an automated 

and efficient manner subject to some performance and size constraints. For the synthesis 

module, gradient-based optimizers such as SQP and global optimizers such as Genetic 

Algorithms are both utilized. As the analysis module, full wave electromagnetic wave 

solvers, both a commercial EM simulator, Ansoft HFSS, and an in-house hybrid FE-BI 

based analysis tool are utilized. The design framework is primarily based on interfacing 

the analysis tools with various surrogate based models and linking it to the optimization 

tools. 

 

Fig. 4-1 Antenna Model of the Surrogate Model (Dimensions are in cm) 

 To investigate the performance of aforementioned surrogate models on the same 

design problem, surrogate models are applied to approximate the return loss response of 

a simple patch antenna with a magneto-dielectric substrate as shown in Fig. 4.1. The 

antenna is analyzed via Ansoft HFSS v11 to compute its frequency based return loss (s11) 

response. The permittivity and frequency are chosen as design variables. Permittivity of 

the substrate is allowed to vary 1-16. Frequency band of operation is specified to be 

between 1-2.5 GHz. The permeability is chosen to be a fixed parameter with a value of µ 

= 2. The reason of the choice of permittivity and frequency as design variables is to 

evaluate the fitted surface as qualitatively. Because it is well known that for one layer 

patch antenna, resonance frequency follows a special trend as permittivity changes. The 

geometry and probe position is hold fixed as parameters, not to effect the resonance 

frequency which is our guide towards evaluating the models accuracy qualitatively.  

To allow for considerable speed-ups, an adaptive DOE scheme is integrated in an 

automated fashion to the surrogate modeling tools. The performances of five different 
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models are compared within the same framework: Kriging, Polynomial, RBF (Radial 

Basis Functions), Artificial Neural Networks (ANN), and Support Vector Machines 

(SVM). Each surrogate model is constructed based on the outputs of the EM simulator 

for a limited number of intelligently chosen data points based on the DOE scheme. More 

specifically, surrogate models are created by integrating a commercial high frequency 

analysis tool, Ansoft HFSS with a MATLAB programming environment to automate the 

experiments which a DOE scheme requires. HFSS simulates the exact electromagnetic 

response of the device and the Latin Hypercube Method is used as the DOE scheme. It 

systematically investigates the system where a series of structured tests are designed in 

which planned changes are made to the input variables of the system. For the purpose of 

generating surrogate models, Surrogate Modeling Toolbox (SUMO) [72] is integrated 

with our automated DOE platform.  In addition to the DOE scheme, adaptive sampling 

which is based on the combination of the accuracy of the model measured by root relative 

square error and density of the samples in the design domain is used with the goal of 

producing models with improved quality provided by SUMO.As a model validation 

metric, validation set (80% of sampling for training, 20% of sampling for validation) is 

used. Quality is measured in terms of error function which is defined as root relative 

square error (RRSE) calculated by 

 

  
𝐸 = √

𝑀𝐷𝐸

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
             (4.1)  

 

 Where MSE is Mean Square Error. MSE measures the average of the square of the 

error. Variance is one measure of statistical dispersion, averaging the squared distance of 

its possible values from the expected value. Error measure is set to 0.1. The less this value 

is, the better the model. However due to fast convergence it is set to be 0.1. The default 

value in SUMO is 0.05.  

 

 

http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Statistical_dispersion
http://en.wikipedia.org/wiki/Expected_value
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4.2 Surrogate Modeling Techniques 

In this chapter we investigate five specific surrogate modeling techniques for their 

performance in speeding up the materials based antenna design problem exhibiting 

resonance behavior. 

Each surrogate model has its own advantage and disadvantages. A quick 

comparison of each model can be found at Fig. 4.2. Artificial Neural Networks (ANN) is 

known to have the capability to model any nonlinear behavior. It requires low storage 

space. However ANN needs a lot of training examples. There are also over-fitting 

challenges related to the model. Support Vector Machines (SVM) is based on 

computational learning. Many training samples are required to obtain the model. SVM 

deals with multi-dimensional problems easily. Radial Basis Functions (RBF) is scale 

independent. There are many tuning variables and models success depends on the initial 

model. Polynomial fitting is simple and practical. It uses least squares. There are some 

boundary condition challenges related to it. Kriging is a rough approximation. Its theory 

depends on hyper dimensional least squares. It is independent of the RSM type. There are 

some strong assumptions related to it.  

 

 

Fig. 4-2 Features of used Surrogate Modeling Techniques 
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In this chapter theories behind each surrogate model is expressed and the 

application results are given.  

4.2.1 Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs), are information processing systems inspired 

by the ability of the human brain to learn from observations and to generalize by 

abstraction [80]. ANNs can be trained to learn any arbitrary nonlinear input–output 

relationships from corresponding data. ANNs are used in applications such as pattern 

recognition, speech processing, and control systems. Recently, ANNs have been applied 

to obtain surrogate modeling approximations for design process requiring 

computationally costly simulations. Neural networks are first trained to model the 

response of the EM design. Costly simulations can then be replaced with these trained 

networks which will provide fast answers. Neural networks are efficient alternatives to 

conventional methods such as numerical modeling methods, which could be 

computationally expensive, or analytical methods, which are difficult or impossible to 

obtain for complex devices, or empirical models, whose range and accuracy could be 

limited.  

A typical neural network structure has two basic components: processing elements 

(neurons) and interconnections (links/synapses) between them.  Every link has a 

corresponding weight parameter (Fig 4.3). Each neuron receives stimulus from the 

neurons it is connected to, processes the input and returns an output as a response.  

MLP is the most popular neural-network structure. In the MLP neural network, 

neurons are grouped into layers. The first and the last layers are called input and output 

layers, respectively, and the remaining layers are called hidden layers. Suppose the total 

number of layers is L. The first layer is the input layer, the 𝑙th layer is the output layer, 

and layers 2 to L -1 are hidden layers. Let the number of neurons in the 𝑙th layer be 𝑁𝑙, 𝑙 =

1, 2, 3 … . . , 𝐿 . Let 𝑤𝑖𝑗 represent the weight of the link between the 𝑗th neuron of the 𝑙 −

1th layer and the 𝑖th neuron of he 𝑙th layer. Let 𝑥𝑖 represent the  𝑖th external input to the 

MLP and  𝑧𝑖 be the output of the th neuron of the th layer. There is an additional weight 

parameter for each neuron (𝑤𝑖0
𝑙 ) representing the bias for the  𝑖th neuron of the  𝑙th layer. 

As such, of the MLP includes    𝑤𝑖𝑗
𝑙  , 𝑗 = 0, 1, 2, … … . 𝑁𝑙−1, 𝑖 = 1, 2, 3, 𝑁𝑙   𝑎𝑛𝑑 𝑙 =

2, 3, … . 𝐿, 𝑖. 𝑒. ; 𝑤 = [𝑤10
2  𝑤11

2 𝑤12
2 … … 𝑤𝑁𝑙𝑁𝐿−1

2 ]
𝑇
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Fig. 4-3 MLP ANN structure [80] 

The weight parameters are real numbers and initialized before training. During 

training, they are changed (updated) iteratively in a systematic manner. Once the training 

is completed, the vector remains fixed.  

In the MLP network, each neuron processes the inputs received from other neurons. 

The input is processed by a function called the activation function in the neuron and 

output is transferred to the other connected neurons. As an example, every neuron in the 

𝑙 th layer receives input from the neurons of the (𝑙 − 1)th layer, i.e., 𝑧𝑙
𝑙−1 𝑧2

𝑙−1 , … , 𝑧𝑁𝑙−1

𝑙−1  

A typical 𝑙th neuron in the 𝑙th layer multiplies the input by the corresponding weight 

parameter and then adds the products to produce a weighted sum 𝛾𝑖
𝑙. 

  𝛾𝑖
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 𝑧𝑗
𝑙−1𝑁𝑙−1

𝑗=0  (4.2)  

 

To create bias, which is done by the parameter 𝑤𝑖0
𝑙 , a fictitious neuron in the (𝑙 − 1 

)th layer whose output is 𝑧0
𝑙−1 = 1 is assumed to exist. The weighted sum is used to 

activate the neuron’s activation function to produce the final output of the neuron 𝑧𝑖
𝑙 =

1 . This output will be the input to neurons in the (𝑙 + 1 )th layer. There are several 

activation functions such as sigmoid, arc-tangent, hyperbolic-tangent function, etc. All 

these are smooth switch functions that are bounded, continuous, monotonic, and 
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continuously differentiable. The most commonly used hidden layer neuron activation 

function is the sigmoid function which is given by: 

 

  
𝜎 (𝛾) =

1

(1 + 𝑒−𝛾)
 (4.3)  

 

Input neurons use a relay activation function and simply relay the external input to 

the hidden layer neurons, i.e 𝑧𝑖
1 =  𝑥𝑖, 𝑖 = 1,2,3, … 𝑛. In the case of obtaining neural 

networks for EM applications, where the purpose is to model continuous electrical 

parameters, a linear activation function can be used for output neurons.  An output neuron 

computation is given by 

 

  𝜎(𝛾𝑖
𝐿) = 𝛾𝑖

𝐿 =  ∑ 𝑤𝑖𝑗
𝐿 𝑍𝐽

𝐿−1𝑁𝐿−1
𝑗=0  (4.4)  

 

 Given the inputs and the weights, feed forward computation is a process used to 

compute the outputs. Feed forward computation is used both during neural-network 

training and during the usage of the resulted model. Firstly, external inputs are fed into 

first layer and the outputs from the input layer are fed to the hidden neurons of the second 

layer. Following this pattern, the outputs of the 𝐿 − 1th layer are fed to the output layer 

(i.e., the L th layer). During feed forward computation, ANN weights w remain fixed. 

The feed forward computation is given by: 

 

  𝑧𝑖
𝑙 =  𝑥𝑖,     𝑖 = 1,2,3, … … … … … , 𝑁1, 𝑛 =  𝑁1 

𝑧𝑖
𝑙 =  𝜎 ( ∑ 𝑤𝑖𝑗

𝑙 𝑧𝑗
𝑙−1

𝑁𝑙−1

𝑗=0

) , 𝑖 = 1, 2, 3, … … … … … . . 𝑁𝑙; 

   𝑙 = 2,3 … … … … … … 𝐿. 

𝑦𝑖 =  𝑧𝑖
𝐿  𝑖 = 1, 2,    … … … … … … … … … … … … 𝑁𝐿   𝑚

=  𝑁𝐿 

(4.5)  

 

 

         ANN’s weight parameters (w) are initialized to provide a good starting point for 

training which is done thru optimization. The widely used strategy for MLP weight 
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initialization is to initialize the weights with small random values (e.g., in the range [-0.5, 

0.5]).  

The training data consists of sample pairs {(𝑥𝑘𝑑𝑘) 𝑎𝑛𝑑 𝑘 𝜖 𝑇𝑟 } where 𝑥𝑘 and 𝑑𝑘   

are vectors representing the inputs and desired outputs of the neural network. We define 

neural-network training error as: 

 

  

∑(𝒘) =
𝟏

2
𝑇𝑟

 ∑ ∑|𝑦𝑗(𝑥𝑘,𝑤) −  𝑑𝑗𝑘|
2

𝑚

𝑗=1

 

𝑘𝜖𝑇𝑟

 (4.6)  

 

Where is 𝑑𝑗𝑘the 𝑗th element of 𝑑𝑘 and 𝑑𝑗𝑘is the 𝑗th neural-network output for input 

𝑥𝑘.The purpose of neural-network training is to minimize the error function 𝐸𝑇𝑟(𝑤). 

Since 𝐸𝑇𝑟(𝑤)  is a nonlinear function of the weight parameters w, iterative 

algorithms are often used to explore the w-space. Optimization algorithm starts with a 

initial value of w and then iteratively updates it. Gradient-based optimization algorithms 

update w based on error information𝐸𝑇𝑟(𝑤) and error gradient information
𝑑𝐸𝑇𝑟(𝑤) 

𝑑𝒘
. The 

next point in w-space is determined by a step down from the current point along a search 

direction vector h, i.e.  wnext = wnow  +  𝜼ℎ . Here, ∆𝑤 = 𝜼ℎ  is called the weight 

update also known as the learning rate. For example, the back propagation (BP) training 

algorithm updates w along the negative direction of the gradient of training error as w = 

w – 𝜼(
𝑑𝐸𝑇𝑟(𝑤)

𝑑𝒘
).  

A block diagram representation of the ANN training algorithm can be found in Fig. 

4.4.  
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Fig. 4-4 Flowchart of ANN Training[80] 

4.2.1.1 Modeling Results with ANN 

In our study, 3 layered MLP structure and 300 epochs are used. Initial weights are 

chosen to be in a range of [-0.8 - 0.8]. As transfer functions, hyperbolic tangent sigmoid 

transfer function and linear transfer functions are used. Genetic algorithms are used for 

the optimizing the weights to minimize the model error. For this purpose Matlab GADS 

is used. Population size and maximum generations are determined to be 10. Crossover 

fraction is chosen to be 0.7 and eliteCount is chosen as 1. StallGenLimit value is 4 and 

StallTimeLimit is unbounded. Mutation is employed in GAs. More information about 

these options can be found in Matlab GADS documentation.  

3 layers with 300 neurons ANN is employed in this study. As learning rules, 

Bayesian regulation backpropagation (trainbr), Levenberg-Marquardt backpropagation 

(trainlm) and scaled conjugate gradient backpropagation(trainscg) are used. 80% percent 

of samples are used for training, and remaining 20% are used for validation. The error 

measure is defined as root relative square error (RRSE) which is calculated by (4.1). Error 

measure is set to 0.1. ANN is found out to be the best modeler in our comparative study 

based on capturing the nonlinear behavior of the antenna but lacks speed. Choosing 

frequency and permittivity as the design variables, use of ANN with parameter settings 

above resulted in the surface in Figue 4.5.   
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Fig. 4-5 Result of ANN modeling with 2 variables. 

 

After obtaining satisfying surrogate modeling results, to explore the dependence of 

the framework and surrogate based models we increased the complexity of our model. In 

this study we ANN modeling in a domain consisting of 3 variables was peformed. Chosen 

variables correspond to permittivities of both layers supporting the patch antenna shown 

in Fig. 4.6, and its operating frequency. The parameter settings were successful due to the 

models capability in capturing the resonance trend. The model captured the resonance in 

4 dimensional space (Fig 4.7), however model`s error measure did not converge to 0.1 

value in feasible time. Due to some computational resource problems, the model 

simulations had to be stopped prematurely before reaching convergence.  

 

    Permittivity     Frequency 
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Fig. 4.6 Two layer patch antenna 

 

  

Fig. 4.7 ANN modeling with three variables 

4.2.2 Kriging 

Kriging is a method of curve fitting that was first reported in 1951 during mine 

searching for gold in South Africa by D.G. Krige. That system is mainly based on 

prediction a data point when the values around the data are known. During the 80’s this 

topic again received attention from statisticians interested in creating effective 

metamodels for computer experiments [76].  The method then took form as a popular 

technique called Design and Analysis of Computer Experiments (DACE). 

Most of the other metamodeling routines are based on the assumption that the 

metamodel is of the specific form: 𝑦 = 𝑓(𝑥)+∈.  where 𝑓(𝑥) is the the assumed basis 

function and ∈ is IID Gaussian random error with mean zero. Kriging does not make this 

assumption. In kriging, ∈ is a function of x and the driver of kriging algorithm is this error 

measure. So the general form of kriging metamodel is as follows:  

 

  𝑦(𝒙) = 𝜷𝑇𝑓(𝒙) + 𝑧(𝒙) (4.7)  

ε frequency 

2

.5 
0 

S11 

    Frequency    Permittivity 
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 Where  𝒇 = [𝑓1(𝑥) … 𝑓𝑛(𝑥)]𝑇and 𝜷 = [𝛽1 … 𝛽𝑘]𝑇 

The matrix 𝒇 corresponds to the various terms in the polynomial (including cross 

terms) and denotes the regression parameters. The term 𝑧(𝒙) refers to the functional 

departure of the predictor from the mean 𝜷𝑇𝑓(𝒙)with the following properties which are 

given as: 

 

  𝐸[𝑧(𝒙)] = 0 

 

𝐶𝑜𝑣[𝑧(𝒙), 𝑧(𝒘)] = 𝜎𝑧  
2 𝑅(𝒙, 𝒘) 

 

𝑅 = [
𝑅11 … 𝑅1𝑛

⋮ ⋱ ⋮
𝑅𝑛1 … 𝑅𝑛𝑛

] 

 

𝑅𝑖𝑗 = 𝑅(𝑥𝑖 , 𝑥𝑗 ) = ∏ 𝑒𝑥𝑝 {−𝜃𝑘|𝑥𝑖 − 𝑥𝑗 | 
𝑝𝑘

}

𝑑

𝑘=1

 

(4.8)  

 

where 𝑅 is the Spatial Correlation Factor matrix. The product correlation rule for R is the 

most widely used form of the covariance matrix [76].  Here, Gaussian correlation function 

is used. The parameters and 0 < 𝜃,  0 ≤ 𝑝 ≤ 2 determine the level of correlation and the 

smoothness of the correlating functions. One important characteristic of 𝑅 is that 

𝑅(𝑥, 𝑥) = 1 and all other terms are between 0 (when the points are far apart) and 1(when 

the points are equal). 

 

Let`s define the form of the kriging predictor. The 𝑛 × 1 correlation vector 𝒓 and 

functional matrix be defined as follows: 

 

  

 

𝒓(𝑥) = [𝑅(𝒙𝟏 , 𝒙 ) 𝑅(𝒙𝟐 , 𝒙 ) … 𝑅(𝒙𝒏 , 𝒙 )]𝑇 

𝐹 = [
𝒇𝑻 (𝒙𝟏)

⋮
𝒇𝑻 (𝒙𝒏)

] 

(4.9)  
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Where.  𝒙  is any point in the domain and n is the number of sampled points. The objective 

is to find the best set of parameters that define the Best Linear Unbiased Predictor (BLUP) 

for the main function by minimizing the expected value 

of squared error across the domain. This simply turns out to be a constrained convex 

optimization problem which can be solved with Lagrangian relaxation method [77]. 

 

The BLUP is the form 𝑦(𝒙) = 𝒄(𝒙)𝑇 𝑆 .where c is a vector function of 𝑥  defining the 

predictor`s behavior. BLUP is found by minimizing the expected value of error given by 

 𝐸(𝒄(𝒙)𝑇𝑆 − 𝑦(𝑥))2 . Assuming the predictor is unbiased i.e 𝐹𝑇𝑐𝑥  = 𝑓(𝑥), the problem 

is simplified to:  

 

  Minimiz𝑒 (𝒄(𝒙)𝑇𝜎𝑧  
2 𝑅)𝑐(𝑥) + 𝜎𝑧  

2 − 2𝒄(𝒙)𝑇𝜎𝑧  
2 𝑟

− 𝜆[𝐹𝑇 𝒄(𝒙)𝑇 − 𝑓(𝑥)] 

 

(4.10)  

By taking partial derivatives w.r.t 𝒄(𝒙)𝑇 and the Lagrange multipliers, 𝜆, the solution is 

then reduced to solving a system of linear equations: 

 

  
𝑲 [

−𝜆
𝑐𝑥

] = [
−𝒇(𝒙)

𝜎𝑧  
2 𝒓(𝒙)

], where 𝐾 = [
0 𝑭𝑇

𝑭 𝜎𝑧  
2 𝑹

] (4.11)  

, where  

And the final form of the BLUP is given by 

 

  𝑦(𝑥) =  𝑓𝑇(𝑥)𝜷 + 𝒓𝑻 (𝒙)𝑹−𝟏  (𝑺 − 𝑭𝑻𝜷) (4.12)  

 

Where 𝜷 = (𝑭𝑇𝑹−𝟏  𝑭)−𝟏 𝑭𝑇𝑹−𝟏  𝑺 

 

The variance of the predictor is given by: 

 

  
𝜎𝑦  

2 (𝒙) =  𝜎𝑧  
2 {1 − [𝒇𝑻(𝑥) 𝒓𝑻 (𝒙)  ]𝐾−1 [

𝒇𝑻(𝒙)

𝒓(𝒙)
] }

≈ 𝜎𝑧  
2 (1 − 𝒓𝑻 (𝒙)𝑹−𝟏  𝒓(𝒙)) 

 

(4.13)  
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The form of the predictor is developed above, and now the parameters need to be 

determined. Parameters p and 𝜃 are found using maximum likelihood method. This 

problem is in the below form:  

 

  Maximize -−
1

2
[𝑛 ln(𝜎𝑧  

2 ) + ln det (𝑅)] 

Subject to: 0 < 𝜃,  0 ≤ 𝑝 ≤ 2 

(4.14)  

 

This form turns out to be a constrained convex optimization problem which can be solved 

using SQP,  intrior point solvers or heuristic methods such as GAs.  

4.2.2.1 Modeling Results with Kriging   

In the sumo toolbox that was used during the simulation process spline, exponential, 

linear and Gaussian correlation functions were available to use. Our simulations used 

mostly the Gaussian one which has a more common usage compared to the others. The 

fitted kriging metamodel is given in Fig. 4.8. As Matlab kriging options, regpoly1 is used 

for regression Function and corrgauss is used as correlation function. Lower theta bound 

is -5 and upper bound is 3. Polynomial regression is chosen and Gaussian correlation is 

used in this work. Model hyper-parameters are found by genetic algorithms. Population 

size and maximum generations is determined to be 10. As population type doubleVector 

is used. Elite count value is 1, Crossover fraction is 0.7, stallGenLimit value is 4 and 

StallTimeLimit value is infinity. As crossover function heuristic method is used.  More 

information about these options can be found in Matlab GADS documentation.  
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Fig. 4.8 Modeling Result with Kriging 

4.2.3 Radial Basis Functions (RBF) 

A radial basis approximation takes the form: 

 

  
𝑺(𝒙) =  ∑ 𝒚𝒊

 

𝒊 ∈𝑰
𝝈(∥ 𝒙 − 𝒊 ∥),    𝒙 ∈  𝑹𝒅 (4.15)  

 

Where φ: [0, ∞)  → R is a fixed univariate function and the coefficients (yi)𝑖𝜖𝐼 are 

real numbers.  

The weighted multiples also can be chosen following different strategies. One of 

them is an iterative process that is known linear least squares, which is a method of fitting 

a curve from known values by minimizing the distance to the fitted curve. GA  is used in 

our studies to determine the weights.  

 

 

 

 

Frequency Permittivity 
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RBF basis functions: 

 

• Gaussian 

  
       𝜎(𝑟) = exp(−𝛽𝑟2),  For some β > 0 

(4.16)  

 

• Multiquadratic 

              𝜎(𝑟) =  √𝑟2 + 𝛽2,   For some  β > 0 

 

(4.17)  

• Polyharmonic spline: 

      𝜎(𝑟) =  𝑟𝑘, 𝑘 = 1,3,5 ….  

 

(4.18)  

Thin plate spline (a special polyharmonic spline)      

 

   𝜎(𝑟) =  𝑟2 ln 𝑟 (4.19) 

4.2.3.1 Modeling Results with RBF 

For the hyperparameter estimation GAs has been used. Population size is chosed to 

be 15. Crossover Fraction value is 0.7, Maximum generation number is 10,  and Elite 

Count is 1. Mutation is allowed in the population. More information about these options 

can be found in Malab GADS toolbox documentation 

Bounds for the shape parameters for basis functions such as Gaussian function, 

multiquadratic function and exponential function are between 0.1 and 5 in logarithmic 

scale.   

Modeling results are satisfactory and shown is Fig. 4.9, run is faster than ANN 

however RBF is more sensitive to sample distribution over domain which means the 

tendency of resulting in different models for different runs with different samples  is 

higher.  

http://en.wikipedia.org/wiki/Polyharmonic_spline
http://en.wikipedia.org/wiki/Thin_plate_spline
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Fig. 4.9 Result of modeling with RBF 

4.2.4 Support Vectors Machines (SVM) 

Support Vector Machines is a system of data fitting, prediction that is based on 

statistical learning theory which is a machine learning method. Statistical Learning 

Theory is based on making predictions about the data, observing the results and making 

new guesses based on these results. [69] 

Support Vector Machine can find the optimal hyper plane that is bound to some 

constraints. Finding the optimal plane problem can be reduced to a dual problem using 

Lagrange Optimal Methods, which can be represented as: 

 

  

𝑀𝑎𝑥 𝑄(𝛼) =  ∑ 𝛼𝑖

𝑛

1

− 
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑖,𝑗=1
(𝑥𝑖𝑥𝑗) (4.19)  

 

Where αi is the Lagrange Multipliers, 

Frequency 
Permittivity 
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When the problem above is solved the optimal classification is obtained as follows: 

 

  

𝑓(𝑥) =  𝑠𝑔𝑛((𝑤𝑥) + 𝑏) =  𝑠𝑔𝑛{∑ 𝛼𝑖𝑦𝑖(𝑥𝑖𝑥) + 𝑏}

𝑛

𝑖=1

 (4.20)  

 

Here if the Kernel function of the domain is used the inner product in the first problem 

(xixj) can be replaced by K(xixj)  and the problem can be rewritten as: 

 

  

𝑀𝑎𝑥 𝑄(𝛼) =  ∑ 𝛼𝑖

𝑛

1

−  
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗

𝑛

𝑖,𝑗=1
𝐾(𝑥𝑖𝑥𝑗) (4.21)  

 

And the optimal classification can be rewritten as: 

  

𝑓(𝑥) =  𝑠𝑔𝑛((𝑤𝑥) + 𝑏) =  𝑠𝑔𝑛{∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖𝑥) + 𝑏}

𝑛

𝑖=1

 (4.22)  

In this case the problem is reduced to linearly separable cases and the machine which 

does this process is called the SVM  

4.2.4.1  Modeling Results with SVM 

Kernel Parameter bounds are chosen to be in the range of [-4,4]. Regression 

Parameter bounds are [-5,5]. Nu is chosen 0.01.  SVM is slower than RBF but faster than 

ANN. It is less sensitive than kriging to sample distribution. Hyper-parameters are found 

with GAs. For this purpose Matlab GADS is used. Population size and maximum 

generations are determined to be 10. Crossover fraction is chosen to be 0.7 and eliteCount 

is chosen as 1. StallGenLimit value is 4 and StallTimeLimit is unbounded. Mutation is 

employed in GAs. More information about these options can be found in Matlab GADS 

documentation. 
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Fig. 4.10 Modeling with SVM 

4.2.5 Rational Model 

Rational functions are natural choices for modeling resonance behaviors of 

Electro-Magnetic devices since the input and outputs of these devices can be represented 

in the rational way based on the transfer function. A typical property of these rational 

functions is that they are both rational and orthogonal which means they can be written 

as the ratio two different polynomial functions. Orthogonal functions are generally can 

be shown as: 

  
< 𝑓, 𝑔 > =  ∫ 𝑓∗(𝑥). 𝑔(𝑥)𝑑𝑥 = 0 (4.23)  

Here  is used to denote the complex conjugate of the functions. 

Rational Model can be based on mainly three different well defined functions 

which are Power, Legendre and Chebyshev.  

Legendre functions can be generally described as the solutions to the Legendre’s 

differential equations.  

  
d{(1 − x2 d

dx
Pn(x)}

d
+  n(n + 1)Pn(x) =  0 (4.24)  

Frequency Permittivity 
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Here Pn can be described as: 

  
(2𝑛 + 1)𝑃𝑛(𝑥) =  

𝑑

𝑑𝑥
[𝑃𝑛+1 −  𝑃𝑛−1(𝑥)] (4.25)  

 

Here it can be seen that the function is recursive, also generally the function is 

convergent to some value when limit is taken. 

Chebyshev rational functions are another type of functions that are used as basis functions 

for rational genetic models. An example for that type of functions of degree n: 

  
𝑅𝑛(𝑥) =  𝑇𝑛(

𝑥 − 1 

𝑥 + 1
) (4.26)  

 

Here Tn denotes a Chebyshev function of first kind which can be represented in the 

recurrence relations: 

  Tn+1(x) =  2xTn(x) − Tn−1(x) (4.27)  

 

Here the function is again both rational and orthogonal as that was the case in the 

Legendre functions.  

Using different basis functions and settings several runs have been done, but due to 

some problems with fitting algorithm, results are not presented here.  
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5 SURROGATE MODEL ASSISTED MULTI-OBJECTIVE DESIGN 

OPTIMIZATION-A PRELIMINARY STUDY   

5.1 Surrogate Model Based Design Optimization Framework 

 

Addressing large scale design optimization problems in a feasible time using costly 

simulations for analysis is almost impossible. There are two ways to face this challenge: 

1. Naïve way is to increase the computational power limited by available computational 

resources, and 2. Alternatively, to solve the problem by making re-analysis faster. The 

main time consuming component of the design optimization framework is the 

computational analysis tool. Surrogate models are fast-running approximate substitutes 

of complex and time-consuming computer simulations of the exact model. They capture 

the complex behavior of the underlying simulation model and they are model-specific. 

Thus, integration of fast surrogate models into our design optimization framework should 

allow for the solution of challenging EM design problems (Fig 5.1). 

 

 

 

Fig. 5-1 Integration of Surrogate Models into Design Optimization Framework 
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The integrated design optimization framework is based on using hybrid design 

optimization techniques with various surrogate modeling tools towards the goal of 

designing volumetric material and conductor variations of complex electromagnetic 

devices. The framework should allow from scratch identification of the novel device 

structure, both its material and conductor variation in three dimensions, in an automated 

and efficient manner subject to some performance and size constraints. For the synthesis 

module, gradient-based optimizers such as Sequential Quadratic Programming (SQP) and 

global optimizers such as Genetic Algorithms are both utilized to allow for known 

advantages in terms of speed and global search capability, respectively. As the analysis 

module, two full wave electromagnetic wave solvers, i.e. a commercial EM simulator, 

Ansoft HFSS, and an in-house hybrid FE-BI based analysis tool are utilized. The design 

framework is primarily based on interfacing the analysis tools with various surrogate 

based models and linking it to the optimization tools. 

5.2 Design Example 1: ANN model assisted Patch Antenna optimization 

5.2.1 Design Model and Surrogate Model Parameters 

Artificial Neural Networks was the most efficient and accurate surrogate model 

among various techniques presented in chapter 3, hence ANN is used as the surrogate 

model in this example. The design model of the chosen patch antenna is depicted in  

Fig. 5.2. 

 

Fig. 5-2 Design Model of Patch Antenna 

 The permittivity of the layer is selected as the design variable [1-21] to investigate 

dielectric material effects on the performance. HFSS is capable of simulating the 
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electromagnetic response of the device. The Frequency range of operation is specified as 

[0.7-9] GHz.  The Latin Hypercube Method is used as the Design of Experiments (DOE) 

scheme as the sampling strategy. For the purpose of generating surrogate models, SUMO 

is integrated with our automated design platform within a MATLAB interface.  In 

addition to the DOE scheme, adaptive sampling which is based on the combination of the 

accuracy of the model and density of the samples over the design domain is used with the 

goal of producing models with improved quality provided by SUMO. As a model 

validation metric, validation set with 80% of sampling used for training and 20% of 

sampling used for validation is chosen for its efficiency. The error measure is defined as 

RRSE. Error measure is set to 0.1 proven to be ‘good quality’ measure based on some 

trial and error runs. With the above mentioned surrogate model parameters, first surrogate 

model in Fig. 5.3 is obtained for the return loss response. This model is then used as the 

analysis tool within the integrated design optimization framework.  

 

 

Fig. 5-3 ANN Model of Design Example in Fig. 4.2 

For optimization purposes, GA is chosen for the global optimum search of the 

permittivity of the substrate. Population size is chosen to be 10 and maximum generations 

are set to 100. Mutation function is chosen as Gaussian which has a mean of value 1 and 

its variance is -0.3. Crossover function option is chosen to be “intermediate”. Tournament 

selection function is employed.  

Frequency 
Permittivity 
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5.3 Design Results 

Based on the convergence history and the design results for the best individual value 

with ε=15 shown in Fig. 5,4, the ANN surrogate model integrated design optimization 

framework is successful. Based on a comparison with standard optimization effort without 

surrogate models, ANN-GA assisted design leads to 80% CPU time savings. More 

specifically, standard optimization with calls to the exact finite element based analysis code 

takes 116 hours to converge while surrogate model assisted design optimization takes about 

23 hours on a Dell Intel(R) Exon(TM)  3.2 GHz CPU with 8 GB RAM. 

 

Fig. 5-4  GA Optimization History and Best Individual Value 

Detailed time calculations are done for both cases.  Standard optimization ( with 

calls to original analysis code) takes 116 hours ( Time = 100 generation * 10 individual 

* 7 min (per frequency sweep) = 7000 min = 116 hours). ANN Surrogate model assisted 

optimization takes 23 hours (Time =700 samples *2 min (per single frequency) = 1400 

min = 23 hours). It is seen that ANN-GA assisted design saves 80% CPU time. 
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5.4 Multi-Objective Optimization Framework 

Most real world problems are multi-objective in nature. They have several possibly 

conflicting objectives to be satisfied at the same time. In this situation, instead of aiming 

a single ‘best’ solution, optimization efforts concentrate on generating a set of good 

solutions which incorporate the trade-offs of the objectives and design decision maker 

can choose the solution based on his/her needs [71]. 

Multi-objective optimization more formally can be explained as follows [70]: 

A vector of decision variables which satisfies constraints and optimizes a vector 

function whose elements represent the objective functions. These functions form a 

mathematical description of performance criteria which are usually in conflict with each 

other. Hence, the term “optimizes” means finding such a solution which would give the 

values of all the objective functions acceptable to the designer.  

 

In mathematical form: 

   

min (𝑓) 

𝑚𝑖𝑛[𝑓1 𝑓2   … . 𝑓𝑛]𝑇 

                                     s.t. 

𝑔(𝑥) ≤ 0 

ℎ(𝑥) = 0 

𝑥𝑙 < 𝑥 < 𝑥𝑢 

(5.1)  

Where fi is the i-th objective function, g and h are the inequality and equality constraints, 

respectively, and x is the vector of design variables. The solution to the above problem is 

a set of Pareto points. Pareto solutions are those for which improvement in one objective 

can not occur without worsening of at least one other objective. In traditional 

mathematical programming, we have one optimal solution whereas in multi-objective 

optimization framework, there could be numerous solutions and the curve of solution 

points is called the “Pareto Curve”. 

A design point in objective space spanned by each objectives, f * is termed Pareto Optimal, 

if another feasible design objective vector f does not exist such that 𝑓𝑖 ≤ 𝑓𝑖
∗ for all 

𝑖𝜖{1,2, … , 𝑛} and 𝑓𝑗 ≤ 𝑓𝑗
∗for at least one index of 𝑗𝜖{1,2, … , 𝑛}. 
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Several solution methods have been proposed for the above problem in literature: Normal 

Boundary Intersection (NBI) method, construction of a single aggregate objective 

function (AOF), Normal Constraint (NC) method, Multi-objective Optimization 

Evolutionary Algorithms (MOEA), and PGEN (Pareto surface generation for convex 

multi-objective instances) are some well known strategies. In our work, we will integrate 

NBI within our design optimization framework for its known advantage of providing the 

designer with equally spaced Pareto solutions as a result of an easily adopted efficient 

search algorithm. Short description of the method is given next.  

5.4.1  Normal Boundary Intersection (NBI) Method 

The normal-boundary intersection method uses a geometrically intuitive method to 

produce an even spread of points on the Pareto surface applicable for all dimensions.  NBI 

can be combined with a Pareto filter to identify non-Pareto points on the boundaries of 

the feasible region. NBI starts with finding the extreme values of each individual 

objective. Then other points on the Pareto surface are found by solving a sequence of 

single objective optimization problems. If the single objective problems are solved with 

a gradient based optimization method such as SQP then we also need derivatives. 

Gradients for complex systems such as patch antennas unless the analysis code is 

transparent are calculated mostly with finite differences which will require running vast 

amount of computer simulations for each variable. Also, the sub-problem solutions would 

depend on initial points which might not result in the global optimum. Heuristic methods 

such as GAs would as well require lots of costly simulations for the sake of an effective 

design space coverage. This process is computationally very costly. Hence a simple 

application of the NBI method via local optimization tools such as MATLAB’s SQP is 

used in this work for the advantage of fast convergence. 

5.4.2 Surrogate based Pre-Analysis Results 

Our design efforts of patch antennas target large bandwidth and high gain performance. 

For initial testing of the framework, the patch antenna model in Fig. 4.2 is considered. 

The permittivity is chosen as a design variable and its range is determined to be within 
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the bounds of [1-16]. Frequency range is specified to be between [1- 2.5] GHz, a common 

telecommunication frequency range. For surrogate modeling of the bandwidth of the 

patch antenna, ANN is used. GA is chosen for the hyper-parameter tuning of ANN model. 

Latin hypercube design is employed for design of experiments (DOE) scheme. For 

building the surrogate model of the gain performance, Radial Basis Functions are chosen 

with the DOE and the same hyper-parameter settings as in the ANN assisted return loss 

model. An HFSS script serving as the interface of the integrated framework is written for 

the patch antenna design, then turned into a MATLAB function and integrated into 

Surrogate Modeling Toolbox (SUMO). Error norm is determined to be less than 1% as in 

earlier design cases. Surrogate models were constructed with 345 and 249 samples for 

return loss and gain and are shown in Fig. 5.5 and Fig. 5.6, respectively. 

After obtaining accurate surrogate models, these are used to perform optimization 

with a GA to find each objectives functions’ global optimum. These values are then fed 

into the NBI as the maximum point. Afterwards, the search for equally spaced points on 

the Pareto surface are to be found by solving a sequence of single objective optimization 

problems with tools such as sequential quadratic programming aided by finite 

differencing. Since we have accurate surrogate models for gain and bandwidth, it is very 

easy to obtain the middle points of the Pareto surface.  Although the NBI framework has 

set up and utilized in the design of multi objective metamodel assisted one layer patch 

antenna, the algorithm didn`t converge since there was no improvement in bandwidth due 

to the nature of well known physical property where only one layer effective material 

change does not affect bandwidth.  
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Fig. 5-5 Ann model of antenna return loss 

 

 

Fig. 5-6  RBF model of antenna gain 
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6 CONCLUSIONS AND FUTURE WORK 

Formal design optimization can explore the ultimate optimal design in untouched 

design regions spanned by unknown degrees of freedom. However, large scale design 

optimization problems such as volumetric material explorations are computationally very 

expensive and demand high resources. To address this issue, in this thesis, we present an 

efficient design optimization framework for electromagnetic applications. The 

framework is based on integrating design optimization techniques with various surrogate 

modeling tools. The resulting framework is applied to the design of a micro-strip patch 

antenna using FSDA as analysis tool and SQP as synthesis tool. Considerable bandwidth 

improvement is achieved in working frequency range. Following this study, HFSS is 

integrated into optimization platform and the resulting framework is applied for the 

design of optical plasmonic nano-antenna. In this study, the interaction of light with 

plasmonic nano-antennas is investigated. An extensive study is performed to investigate 

the effect of the geometric and material properties of nano-antennas on the transmission 

efficiency. A modeling based automated design optimization framework is also 

developed. The results of the optimization framework are compared with those of the 

brute-force simulations. In these two design practices, it is observed that large scale 

design optimization problems took a large amount of time so that optimization study 

turned out being infeasible. To allow for considerable speed-ups of the versatile 

automated design process proposed here, automated and adaptive Design of Experiment 

(DOE) scheme is employed over the design domain and various surrogate models are 

compared within the design framework with respect to their performance. Multiple 

surrogate modeling techniques are investigated such as Artificial Neural Networks 

(ANN), Radial Basis Functions (RBF), Support Vector Machines (SVM) and Kriging. 

Results based on investigations show that ANN and RBF are more promising in terms of 

capturing the overall resonance behavior of the patch antenna when compared with 

Kriging and SVM. ANN is integrated into proposed design optimization framework. 

Results showed that the hybridized surrogate model based design framework allows for 

large number of design variables and suggests the effective and global exploration of the 

large-scale design space. Micro-strip patch antenna is optimized for bandwidth using 

surrogate model assisted design optimization framework. Based on a comparison with 
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standard optimization effort without surrogate models, ANN-GA assisted design leads to 

80% CPU time savings. Following this,  a multi-objective surrogate model assisted design 

optimization framework is constructed and applied to the design of a patch antenna 

subject to maximum bandwidth and gain criteria. It is noted that this preliminary study 

focused on the substrate material effect on bandwidth and gain only for initial testing of 

the framework and easy interpretation purposes. However, bandwidth improvements of 

antennas, as is well known, are possible through other standard ways such as addition of 

radiating elements, material grating via layers with different magneto-dielectric 

properties, or resistive cards, modification of feed type and location and conductor shape 

and substrate thickness modifications. Their incorporation would naturally imply higher 

dimensionality of the design problem and surrogate model, hence, would call for larger 

computational resources and further investigations. Since the computational resources 

and time budget for this work were limited, this framework is applied to a simple one 

layer patch antenna example with a focus on the material substrate as the single variable. 

However, the framework due to its modular structure and flexible user interface should 

be capable of addressing other design problems with more degrees of freedom such as the 

2-layer 3 variable surrogate model as investigated in Chapter 3.  Major future work 

comprises further studies to apply this framework to design problems with more degrees 

of freedom and integrating this framework with inverse topology optimization problems 

addressing more challenging EM design problems giving rise to unique devices with 

increased design degrees of freedom.  
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