KARADENIZ TECHNICAL UNIVERSITY
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING GRADUATE PROGRAM

DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE POSSIBLE
STATES OF FINAL TABLES OF SPORT COMPETITIONS

DOCTORATE THESIS

Mouslem DAMKHI

FEBRUARY 2021
TRABZON

KARADENIZ TECHNICAL UNIVERSITY
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING GRADUATE PROGRAM

DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE

POSSIBLE STATES OF FINAL TABLES OF SPORT COMPETITIONS

Mouslem DAMKHI

This thesis is accepted to give the degree of
DOCTOR OF PHILOSOPHY
By
The Graduate School of Natural and Applied Sciences at
Karadeniz Technical University

The Date of Submission © 30/12 /2020
The Date of Examination : 09,02 2021

Thesis Supervisor : Assoc. Prof. Dr. Hiiseyin PEHLIVAN

Trabzon 2021

FOREWORD

First and foremost, all the praises be to Allah for providing me strength to have this
work done. All the esteem and appreciation to my gracious parents for their unconditional
and unlimited support and solidarity.

I would like to express my deepest gratitude to my advisor Assoc. Prof. Dr. Hiiseyin
PEHLIVAN for his intellectual guidance and kind help given to me during the period of
this study. Also, 1 am grateful to Prof. Dr. Mustafa ULUTAS and Asst. Prof. Dr. ibrahim
SAVRAN for their valuable feedback.

Last but not least, special thanks to Mr. Abdallah SACI and Mr. Boudjemaa
ROUDANE for their encouragement.

Mouslem DAMKHI
Trabzon 2021

THESIS STATEMENT

| declare that, this PhD thesis, | have submitted with the title "Design and
Optimization of a General Algorithm to Calculate Possible States of Final Tables of Sport
Competitions” has been completed under the guidance of my PhD supervisor Assoc.
Prof. Dr. Hiiseyin PEHLIVAN. All the data used in this thesis are obtained by simulation
and experimental works done as parts of this work in our research labs. All referred
information used in thesis has been indicated in the text and cited in reference list. | have
obeyed all research and ethical rules during my research and | accept all responsibility if
proven otherwise. 09/02/2021

Mouslem DAMKHI

TABLE OF CONTENTS

Page No
FOREWORD.......cotiiieititeiee sttt st s ettt s ettt eneabe e e ene e i
THESIS STATEMENT ...ttt e et e e e se e e anaeeenes v
TABLE OF CONTENTS ..ottt sttt \
SUMMARY . sttt e e e et e e a e e et e e et e e e na e e arreeareeeanes Xl
OZET oottt ettt ettt ettt Xl
LIST OF FIGURES ...ttt e e e e nnaeeenes X1
LIST OF TABLES ..ottt et XVI
LIST OF ABBREVIATIONSoooi ettt snae e XX
1. GENERAL INFORMATIONoootiiiiiiiesie e 1
1.1. Yoo 18T oo USSR TSUURSRRR 1
1.2. LITErature REVIBWveeiieeieieie ettt sttt 3
1.3. Scope and Purpose Of the TRESISc.uiiiiieerese e, 6
14, TOUMAMENTS SYSTEIMS......eiiiiiiieiiiieesiiie et sb e e s srb e e s srb e e s nseeeabeeens 7
1.4.1. Single-Elimination TOUMAMENTccoiiiiiiieieee e 7
1.4.2. Double-Elimination TOUMMAMENT.........cooviiieiiiisiseeee e 8
1.4.3. Round-RobiN TOUMAMENT........cuiiieiieieeeee e 10
14.4. SWiSS-SYStEM TOUINAMENTc..iiviiiiieciecie et 10
1.4.5. McMahon-System TOUMAMENT.......c..oiiiiiireiere e 11
1.4.6. Scheveningen-System TOUMMAMENTc..oovviiieiie e 12
1.4.7. Mcintyre-System TOUMEAMENT..........cooiiiiiiieiiei e 12
1.5. Round-Robin TOUM@MENT........c.oiiiiiieieee e s 13
1.5.1. 9] 1411 o SRRSO 13
1.5.2. The Use of Round-Robin TOUMMAmMENTS..........coiiiiiiiriiiieseeniesie e 13
1.5.3. Advantages and DiSadVantagesccceueirrierenenenieniseeie e 14
1.6. GrAPNS . 15
1.6.1. 9] 1411 o SRRSO 15
1.6.2. L€ o] oI N 1T o] VTSP T RS URR 16
1.6.3. Graph RepreSENtationsccccveieeieiieiieie et sre e 17
1.6.3.1. MatriX OF AQJACENCYccueiiiiiiiiiieitieie ettt 17

1.6.3.2.

1.6.4.
1.6.5.

1.6.5.1.
1.6.5.2.

1.6.6.

1.6.6.1.
1.6.6.2.
1.6.6.3.
1.6.6.4.
1.6.6.5.
1.6.6.6.
1.6.6.7.
1.6.6.8.
1.6.6.9.

1.6.7.

1.6.7.1.
1.6.7.2.

1.7.
1.8.
1.8.1.

1.8.1.1.
1.8.1.2.
1.8.1.3.
1.8.14.
1.8.15.

1.8.2.
1.8.3.

1.8.3.1.
1.8.3.2.
1.8.3.3.
1.8.3.4.

1.9.

Lists of Adjacency...TABLE-OF CONTENTS o rerreereriereeie e e eie e 18

Partial Graph and SUb-Graphcccooe i 19
DBOIEES ...t 20
DEGree OF @ VEIEX.....ciuieiiciieie ettt ettt e nne s 20
Degree 0f @ Graph.......c.ooiiiii e 20
Some TYPES OF GraphSccveiiiiieiic e 20
UNAIrected Graphoovoiiiee e 20
Directed Graphcooiiiiiice e 20
IMIXEA GIaPN ...t bbbt 21
Y1101 0] S T - o] USROS 22
MUIIGIAPN ... 22
REGUIAN Graph.........ccviiiiiecec e 22
FINITE Graphot 23
(000] o] 1= (=l €] 1o FO ST PR 23
THEE GraPN ...ttt 23
€] o] oS3 OF0] (0] 1o o SRR 24
VEITICES COIOMING. .. cuiiiiiiieiiiieie st 24
[0 [T O] (o] 1 oo USSR 25
Round-Robin Tournament in Graph Theory ... 26
Round-Robin Tournament Table..........cccooiiiiiiiiie s 27
RANKING. ... bbb 27
Standard Competition Ranking (1224)ccceveiieieeie i 27
Modified Competition Ranking (1334)cccociiiiiiiiinieieieee e 28
Dense RaNKING (L1223)vveiieiiie ettt 28
Ordinal RANKING (1234)ccuiiiiiiiiieieee e 28
Fractional Ranking (L 2.5 2.5 4) ...uiciiiiiii e 29
Games ReSUIS Tablec.oo i 29
Sport Tournament Table..........ooovioie e 30
Wins, Draws / Ties and LOSSES (WDL)......ccciuerieririinieiinieie e 31
WINS @NA LOSSES (MWL) ..cvvieiieiie ettt sttt 32
Wins X, Y, and LOSSES (WXYL)....civeieiieieeiesie e eiesee e e nnees 33
Wins, Losses, Ties / Draws and NO Result (WLTNI)ccoovvviiiienenieneeeeee e 34
Parallel COMPULINGccvviieiiee et ens 34

1.9.1.
1.9.2.
1.9.2.1.
1.9.2.2.
1.9.2.3.
1.9.24.
1.9.3.
1.9.4.
1.10.
1.10.1.
1.10.2.
1.10.3.
1.10.4.
1.10.5.
1.10.6.
1.10.7.
1.10.8.
1.10.9.
1.10.10.
1.10.11.

2.1.
2.2.
2.3.
2.3.1.
2.3.2.
2.3.3.
2.34.
2.3.5.
2.3.6.
2.4.
2.5.
2.6.

OVErvieWccccceeee... TABLE.OF CONTENTS - ee v 34

FIYNN'S TAXONOMY 1.ttt e et e te e esneesre e nnes 35
Single Instruction on Single Data (SISD).......ccccviiviiiniiiesiee e 35
Multiple Instructions on Single Data (MISD)ccccoceiiveiiiieiiciecc e 36
Single Instruction on Multiple Data (SIMD)ccccoiiiiiiiiiniieiee e 36
Multiple Instructions on Multiple Data (MIMD)ccccoovviieiiveveccc e 37
I 1 =310 USSR 38
Programming Languages and Threadsccccovvevieieiieve e 39
Algorithmic COMPIEXITYcveiiiiiiiiiisieee e 39
ComMPIEXILY ANAIYSIS ...cuviieiiiieeiece ettt 39
Asymptotic Algorithmic CoOmMPIEXItYcoeiiiiiiiiiiiee e 39
=] To @ I\ [o] =1 o] PSSR URPOSSRSP 40
PropertieS 0f Big Ocoiiiiiiiiiiii ittt 41
A Simple Example of Big O........cooveiiiiieiecece e 41
Algorithmic COmMPIEXITY TYPEScveiviriiiieiieie et 41
COMPIEXILY CIASSESecuviivieiieeiectie ittt be et sre et e nnesreere e 43
P and NP CIaSSESueeiieiieiieiieeie e iesee et stee et e e nae s e sneaneesneesneeneennes 43
REAUCTION. ... ettt nes 44
NP-Hard and NP-Complete CIaSSeSccoeiiiiiiriinirieiee s 44
An Applied Example (Clique Problem)..........ccccooveiiiieiieiecic e 44
THE ACHIEVED WORK ...ttt 47
INEFOAUCTION ...ttt n e 47
Classification of Game RESUILS..........cccvevviieiiee e 49
General Concepts of a Final Tournament Table.........c.ccccovviiiiiii e 50
PIAYEA GAIMES ...t bbbt 50
POSSIDIE GAME RESUILS ..o s 51
Total NUMBDEr OF POINES ..o 54
Set of the Possible Games RESUILS..........cooiriiiiiiie e 55
GAME RESUIT CASESvveuereeie ettt e e e ne e 59
UNITOIM STALES ...t 63
Graph RePreSENtatioNcveiveieiieiieie et e e e 67
Determination 0f Game RESUILS...........coviiriiiiiiieceee e 71
Enumeration of Final Table States ... 81

2.6.1.
2.6.2.
2.7.

2.7.1.

2.7.1.1.
2.7.1.2.

2.7.2.

2.7.2.1.
2.7.2.2.

2.7.3.
2.74.
2.7.5.
2.8.

2.8.1.
2.8.2.
2.9.

2.9.1.
2.9.2.

3.1
3.2.
3.2.1.

3.2.1.1.
3.2.1.2.
3.2.1.3.
3.2.1.4.

3.2.2.
3.3.
3.3.1.

3.3.1.1.
3.3.1.2.
3.3.1.3.
3.3.1.4.

Backward Algorithm TABLE.OF CONTENTS oo seeseenie e 81

Forward AlGOrtNm ..o 87
Search SPace ANAIYSIS........coiiiiiiiii e 95
Uniform Final States With Minimum Number of POintscccocvevvniniennn 96
C2 IS NOE EMPLY .o 96
C2 IS EMPLY o 97
Uniform Final States with Maximum Number of POINtS........c.ccccoovvvvviinivennnne, 98
C2 IS INOL EMPLY ..o 98
C2 IS EMPLY oo 99
Minimum Final Points of a kth Participant..............ccccceveieiiiie e, 100
Maximum Final Points of a kth Participantc.cccccveveiiieiiiie e, 102
Interval of Points of a kth Participantccccooiiiiiiiiiieee 104
Optimization of Final Table States.........cccccveveiieiiiiecice e 106
Optimized Backward AlQOrthm...........cccoooiiiiiiiiiieeee e 106
Optimized Forward AlGOrithmc.coiveiiiiiiiece e 108
Multi-threaded Optimization of Final Table StatesS............cceeveveviverveveiienenn, 111
Multi-threaded Optimized Backward Algorithm...........ccccooveiiiieiicie e, 111
Multi-threaded Optimized Forward Algorithm ..o, 114
COMPLEXITY ANALYSIS ..ottt 117
1] 0T L1 £ o SR 117
Blind Search Algorithm for Enumerating The Final Table States..................... 117
TIME COMPIEXITY ..o e 117
LTS 1) TSRS 118
L (TS 1) USSR 119
T3(I, M) bbb bbb 119
L (L) ISR 120
SPACE COMPIEXITY ...ttt bbbt 121
Backward AlQOrithm ... 121
TIME COMPIEXITY ... 121
LT (TS L) PSSR SS 122
Ta(1, M) e bbb 122
LT LTS 1) OSSR 123
L (L 1) SR 124

3.3.2.
3.4.
3.4.1.
3.4.2.
3.5.
3.5.1.
3.5.2.
3.6.
3.6.1.
3.6.2.
3.7.
3.7.1.
3.7.1.1.
3.7.1.2.
3.7.1.3.
3.7.2.
3.8.
3.8.1.
3.8.2.
3.9.
3.9.1.
3.9.2.
3.10.
3.10.1.
3.10.2.
3.10.3.
3.10.4.

4.1.
4.2.
4.2.1.
4.2.2.
4.2.3.

Space Complexity.... TABLE.-OF CONTENTS o reriereee e eeeseese e 125

Optimized Backward AlQOrithm...........ccooeiiiiiiecececeee e 126
TIME COMPIEXITY ..o 126
SPACE COMPIEXITY ...eevririeiieecie et e e sne s 127
Multi-threaded Optimized Backward AlQorithm.............ccccoeveniiininiicee, 128
TIME COMPIEXITYveiiicie et 128
SPACE COMPIEXITY ...ttt 128
Blind Search Algorithm for generating a tournament graph.............ccccceevvenee. 129
TIME COMPIEXITY ... 129
SPACE COMPIEXITY...eevieiieiieecieeie ettt sre s 130
Forward AlGOrithimccoiiiiii s 131
TIME COMPIEXILYeiiieieiic et 131
LI (LT 1) SO 132
Ta(n, o A W 132
T(n,m) 8 A . AR 133
SPACE COMPIEXILY...eouvieeiiitiiie ettt sae s 133
Optimized Forward AlGOrithim ..ot 134
TIME COMPIEXILYviiveiieieic e et 134
SPACE COMPIEXITY ...ttt 136
Multi-threaded Optimized Forward Algorithmc.cccoevveiiiie i, 136
TIME COMPIEXITY ..o e 136
SPACE COMPIEXILY ...eoviirieiticcie et 136
The Complexity Classes of Our Problem ... 137
THE CIASS P .. 137
THE ClaSS NP ...t enes 137
The Class NP-NAId.........c.coooiiiiiie s 138
The Class NP-COMPIELEcoovveiiiiiie e 139
EXPERIMENTAL RESULTS AND DISCUSSIONcccceeviieiieeciee e, 140
INEFOTUCTION ... e enes 140
Backward AlGOrithim ..o 140
The CaSe OF WL ..ot 140
THE CaSE OF WLt 143
The Case OF WXY L.ttt 145

4.2.4, The Case of WLTNIr. TABLE.-OF.CONTENTS oo erere it 146
4.3. Forward AlGOrtNmcuviiiiece e 147
4.3.1. THE CaSE OF WDL ...oeoueiiiieieieeeereese ettt 147
4.3.2. The CaSE OF WL....ooiiireieicireinceis et 150
4.3.3. The Case OF WXYL...uiiieiieie ittt 151
4.34. The Case OFf WLTNFcoeiriiieerte st 152
4.4. Backward Algorithm Versus Forward Algorithm ..., 153
4.5. Optimized Backward AlQOrithm...........ccoeiiiiiiiiie e 155
Tt R I 4 T OF - o) Y PSS 155
452, The CaSe OF WL...ooirrsicncneie s snsns 157
453, The CaSE OF WXYL....iiieiiiieiiiesieeie ettt 159
454, The Case OFf WLTNT ..cciiiiiiiiieie ettt 160
4.6. Backward Algorithm Versus Optimized Backward Algorithm..............cce..... 160
4.7. Optimized Forward AlGOrithmcc.ooiiiiiiii e 164
Ot I 4 TN O - o) Y S 164
A4.7.2. The CaSE OF WL ..ottt st nses 166
A4.7.3. The CaSE OF WXYL....ueiieiieieeiesieie ettt e et nnee e e 168
474, The Case OFf WLTNI ...t 169
4.8. Forward Algorithm Versus Optimized Forward Algorithmcccoevenne, 170
4.9. Optimized Backward Algorithm Versus Optimized Forward Algorithm.......... 171
4.10. Multi-threaded Optimized Backward AlQorithm.............ccoooeveniiiniiiceen, 173
3.11. Multi-threaded Optimized Forward Algorithm ..., 177
S. CONCLUSIONS AND RECOMMENDATIONScoooiiieeeeeee e, 181
6. REFERENCEScoi oottt 186
CURRICULM VITAE

PhD Thesis

SUMMARY

DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE
POSSIBLE STATES OF FINAL TABLES OF SPORT COMPETITIONS

Mouslem DAMKHI

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences

Computer Engineering Graduate Program
Supervisor: Assoc. Prof. Hiiseyin PEHLIVAN
2021, 198 Pages
The final positions in a particular single round-robin tournament can play a crucial role in
the distribution of the participants’ revenue, which would significantly influence the incomes of
the tournament participants. So it would be of utmost importance to predict the final position of a
participant at the end of a tournament. Determination of the possible states of a single round-robin
final tournament table can provide a convenient way to ascertain what table data would be

adequate to reach the desired position of a participant.

In this thesis, to generate the possible states of a final tournament table, backward and
forward approaches were proposed. The backward approach starts by generating a state of a final
tournament table and ends with trying to build a tournament graph based on it, while the forward
approach starts by generation a tournament graph and ends with concluding its corresponding
state of tournament final table, in which the state is taken into account as a valid one if the

participants’ points are in descending order and the state is not previously found.

General constraints related to the participants’ points and their standings are proposed in
this thesis to optimize the search space of each approach. Each participant holds a position in the
final tournament table with which it is possible to determine its highest and lowest numbers of
points. Optimized search spaces for each of the forward and backward approaches are proposed
based on the highest and lowest possible numbers of points of the participants. To enhance the
execution time of each approach, the performance of the used machine is exploited by

implementing multi-threading based parallelization of the proposed optimized approaches.

Key Words: Single Round-Robin Tournaments, Tournament Table, Final Tournament Table
State, Game Results, Graph, Enumeration, Combinatorics, Optimization, Multi-
Threading

Xl

Doktora Tezi

OZET

SPOR YARISMALARININ NiHAI TABLO DURUMLARININ HESAPLANMASI ICIN
GENEL BIR ALGORITMANIN TASARIMI VE OPTIMIZASYONU

Mouslem DAMKHI

Karadeniz Teknik Universitesi
Fen Bilimleri Enstitisii
Bilgisayar Miihendisligi Anabilim Dali
Danigman: Dog. Dr. Hiiseyin PEHLIVAN
2021, 198 Sayfa
Belirli bir tekil dairesel sirali turnuvadaki son pozisyonlar, turnuva katilimcilarinin
kazanglari1 6nemli Olgiide etkileyecek olan katilimer paylarinin dagiliminda 6nemli bir rol
oynayabilmektedir. Bu yilizden bir katilimcmin bir turnuvanmin sonundaki nihai pozisyonunu
tahmin etmek son derece 6nemlidir. Tekil dairesel sirali bir nihai turnuva tablosunun olasi
durumlarmin belirlenmesi, bir katilimcimin arzu edilen bir pozisyona ulasmasi i¢in hangi tablo

verisinin yeterli olacagini saptamada uygun bir yol saglayabilmektedir.

Bu tezde, bir turnuva tablosunun olasi son durumlarini tiretmek igin geri yonla ve ileri
yonlii yaklasimlar 6nerilmistir. Geri yonlii yaklasim, bir nihai turnuva tablosunun bir durumunu
iireterek baslar ve buna dayanarak bir turnuva grafi olusturmaya calisir. Ileri yonlii yaklasim, bir
turnuva grafinin olusturulmasiyla baslar ve ardindan bu grafin karsiligi olan nihai urnuva tablosu
durumunu belirler. Tablonun bu durumu, katilimci puanlar1 azalan siradaysa ve daha once

hesaplanan durumlar arasinda bulunmuyorsa, gegerli durum olarak kabul edilir.

Bu tezde, her bir yaklasimin arama uzayim optimize etmek i¢in katilimcilarin puanlar1 ve
oyun performanslar1 ile ilgili genel kisitlamalar onerilmistir. Her katilimemin nihai turnuva
tablosundaki pozisyonu, onun kazanabilecegi en yiiksek ve en diisiik puanlar1 belirlemeyi
miimkiin kilmaktadir. Katilime1 puanlarinin en yiiksek ve en diisiik miinkiin sayilarina dayanarak
ileri yonlii ve geri yonlii yaklagimlarin her biri icin optimize edilmis arama uzaylar1 6nerilmistir.
Her bir yaklasimin ¢alisma zamanimni iyilestirmek i¢in, Onerilen yaklagimlarin ¢oklu is pargacigi

tabanl paralellestirmelerini gergekleyerek, kullanilan makinenin performansi yiikseltilmistir.

Anahtar Kelimeler: Tekil Dairesel Sirali Turnuvalar, Turnuva Tablosu, Turnuva Tablosunun
Nihai Durumu, Oyun Sonuglari, Graf, Sayim, Kombinatorik,
Optimizasyon, Coklu Is Par¢acigi Kullanimi

Xl

Figure 1.1.
Figure 1.2.
Figure 1.3.
Figure 1.4.
Figure 1.5.

Figure 1.6.
Figure 1.7.
Figure 1.8.
Figure 1.9.

Figure 1.10.
Figure 1.11.
Figure 1.12.
Figure 1.13.
Figure 1.14.
Figure 1.15.
Figure 1.16.
Figure 1.17.
Figure 1.18.
Figure 1.109.
Figure 1.20.
Figure 1.21.

Figure 1.22.
Figure 1.23.

Figure 1.24.

Figure 1.25.

Figure 2.1.
Figure 2.2.

Figure 2.3.

LIST OF FIGURES

Page No

An example of a single-elimination tournament bracketccc.cccoevennne. 8
An example of a double-elimination tournament bracket...............c.cccoeuee.ee. 9
An example of @ graph ... 16
The problem of the seven Konigsberg bridges.........ccoocvvvviiieiiiiiinnieninnn, 17
The graphical Representation of the problem of the seven Konigsberg

0] [0 0 [= OSSO PSSRSO 17
A partial graph from the graph shown in Figure 1.3..........cccoooiiiiiiienn, 19
A sub-graph from the graph shown in Figure 1.3c.cccooviiieiieieiiennn, 19
An example of adirected graph ..o 21
An example of a mixed graph........cccoooveiieiiiic i 21
An example of a regular graph..........ccccooiiiiiniic e 22
An example of a complete graph with 4 vertices..........cccooevvvveiieie e, 23
An example of @ tree graph......ccooeiiiiiiiiie e 24
A vertices colored version of the graph in Figure 1.3.........ccccoevveiviiennn, 25
A colored G’ graph based on the graph in Figure 1.3...........cooovviiiiienenn, 26
An edges colored version of the graph in Figure 1.3c.cocoovveiiiieiiennn, 26
A representation of the architecture SISD..........ccccceviiieiiiiicecieceee e 36
A representation of the architecture MISDccccooeviiiiiicceece e, 36
A representation of the architecture SIMDcccccoovveiiiveieiieseee e, 37
A representation of the architecture MIMDcccoco i, 38
An example of Big O NOLatioNcccoiiiiiiiiiieeee e 40
The graphical representation of the functions commonly used in the
asymptotic algorithmic cComplexityccocovvviiiiiiii 42
P and NP classes under the assumption that PANPcccccccvivviiiiiiiiene 43
P, NP, NP-hard and NP-complete classes under the assumption that

PN P s 44
A graph with aclique 0f SIZE 4ooo i 45
Transforming ¢ = (X1 V X2) A (7X1 V =X2) A (X1 V X3) into a graph............... 46
The control flow diagram of the backward approach..............cccccoeverenen. 48
The control flow diagram of the forward approachcccccoceevveeiveennne, 48
The corresponding tre€ 0F S(4, 2)..cuvceeeere e 56

Xl

Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.

Figure 2.14.
Figure 2.15.
Figure 2.16.

Figure 2.17.
Figure 2.18.
Figure 2.19.
Figure 2.20.
Figure 2.21.
Figure 2.22.
Figure 2.23.
Figure 2.24.

Figure 2.25.
Figure 2.26.

Figure 3.1.
Figure 4.1.

Figure 4.2.

Figure 4.3.

The corresponding tree 0F S(4, 3)..cvvieiieie e 57

The tournament graph of Group A in the 2014 FIBA World Cup.............. 68
The tournament graph Group B in the 2018 FIFA World Cup................... 68
The tournament graph of Group A in the ice hockey 2018 Olympic

Winter Games, Men’s TOUMNAMENTcovviireninieieiesie s 69
The tournament graph of Group B in the 2008 ICC World Cricket League
DIVISION FIVE ..ottt 70
A tournament graph corresponding to the data of Table 2.16..................... 71
The tournament graph of the data in Table 2.17cccccoveeevveivcieciee, 72

First possible tournament graph of Group 3 in 1962 FIFA World Cup...... 73
Second possible tournament graph of Group 3 in 1962 FIFA World Cup.74
Generation of the tournament graph in Figure 2.10 through the steps

numbered in Table 2.19 ..o 75
Generation of the tournament graph in Figure 2.11 through the steps
numbered IN Table 2.21 ... 77
Generation of the tournament graph in Figure 2.11 through the steps
numbered iN Table 2.21 ..o 78
Generation of the tournament graph based on Table 2.16, through the

steps numbered in Table 2.22..........ccoov e 80
The graphs for the case when A wins all of its gamesccccccovevevvreenene. 88
The graphs for the case when A wins against B and draws against C.......... 88
The graphs for the case when A wins against B and loses against C 89
The graphs for the case when A draws against B and wins against C......... 89
The graphs for the case when A draws all of its games..............ccccceeveennee. 89
The graphs for the case when A draws against B and loses against C 90
The graphs for the case when A loses against B and wins against C 90
The graphs for the case when A loses against B and draws against C 90
The graphs for the case when A loses all of its games..........ccccccevveeieennne, 91
Representation of the valid states in Table 2.25 as a forest...........c.cccoeuee.ee. 93
Transforming ¢ = Xt A X2 A X3 INt0 @ graphccevveieiienieiiee e 138
The percentage decrease in the execution time of the backward algorithm
versus the forward algorithm ..., 155

The percentage decrease of the generated invalid states in the optimized
backward algorithm compared to the backward algorithm....................... 161

The execution time decrease in the optimized backward algorithm
comparing to the backward algorithmcccceeviiieiiiie e, 164

XV

Figure 4.4.
Figure 4.5.

Figure 4.6.

Figure 4.7.

The execution time decrease in the optimized forward algorithm compared
to the forward algorithmc.ccooiiiiiii e 170

The percentage decrease in execution time for the optimized backward
algorithm against the optimized forward algorithmcccccoeeieenen, 172

The percentage decrease in the execution time for the multi-threaded
optimized backward algorithm compared to the optimized backward
1[0 1121 o SRS 177

The decrease in the execution time for multi-threaded optimized forward
algorithm compared to the forward algorithm...........ccccceveiiiiiiieiiene, 180

XV

Table 1.1.
Table 1.2.
Table 1.3.
Table 1.4.
Table 1.5.
Table 1.6.
Table 1.7.
Table 1.8.
Table 2.1.
Table 2.2.
Table 2.3.

Table 2.4.
Table 2.5.

Table 2.6.

Table 2.7.

Table 2.8.

Table 2.9.

Table 2.10.

Table 2.11.

Table 2.12.
Table 2.13.
Table 2.14.

Table 2.15.

LIST OF TABLES

Page No
The corresponding game results table of the graph shown in Figure 1.8...30

The concluded tournament table from Table 1.1.....ccoovoooeeeeeeeeieeeece 30
The standard form of a football/handball round-robin tournament table... 31

The standard form of a basketball round-robin tournament table............... 32
The standard form of a volleyball round-robin tournament table............... 33
The standard form of an ice hockey round-robin tournament table............ 33
The standard form of a cricket round-robin tournament table.................... 34
FIYNN'S taXONOMYoviiiiiiiiiiiie e 35
The sets C1 and C; for the tournament tables given in Section 1.8.3 50
The final table of group B in the 2018 FIFA World Cup......cccccoeevvvveennne. 52
Application of Eq. (2.11) for the final tournament tables given in Section

1060 . A AR W AR W 52

The final table of Group A in the 2014 FIBA Basketball World Cup........ 53
Application of Eq. (2.14) for the final tournament tables given in Section

I T PSSRSO 54
Application of Eq. (2.23) for the final tournament tables presented in
SECHON 1.8.3 .. e s 58
Possible result cases in a 4-participant tournament with game results of
WL ettt a e 59
Possible result cases in a 4-participant tournament with game results of
WD 1.ttt n et nenene s 60
Possible result cases in a 4-participants tournament with game results of
WXYL QN0 WLTNT ¢ttt 61
Application of Eq. (2.24) in the case of the tournament tables presented in
SECHON L1.8.3 .. it nre s 62
The possible uniform states of football, rugby, handball and chess final
toUrNamMENt tabIES.oovee e 64
The possible uniform states of cricket final tournament table.................... 65
The possible uniform states of the final tournament table T1..........c.......... 65
The possible uniform states of the final tables in the case of basketball,

ice hockey, curling and T2oovoiiiiiecee e 66
Application of Eq. (2.27), (2.28) and (2.29) for the sports tournaments
presented IN SECLION 1.8.3......ooiiiieie e 67

XVI

Table 2.16.
Table 2.17.
Table 2.18.
Table 2.19.
Table 2.20.
Table 2.21.
Table 2.22.
Table 2.23.

Table 2.24.

Table 2.25.

Table 2.26.

Table 2.27.

Table 2.28.

Table 2.29.

Table 2.30.

Table 2.31.

Table 2.32.

Table 2.33.

Table 2.34.

Table 2.35.

Table 4.1.
Table 4.2.
Table 4.3.

A state of the final table of a tournament T1 between 4 participants........... 71
The final tournament table of Group E in the 2006 FIFA World Cup 72
The game results of the tournament graph in Figure 2.10............ccccveneeee. 73
Generation steps of a tournament graph for the data of Table 2.17............ 74
Possible results for the games of Italycccooveviiiiievicce e 76
The steps followed to obtain the graphs in Figures 2.11 and 2.12 77
The steps followed to obtain the graph in Figure 2.16cccccovevvenneee. 79
A state generated by the blind search algorithm which does not respect

any of Eq. (2.9), (2.10), (2.14) and (2.17) ..ecocveveieeieee e 83
The steps followed to obtain a tournament graph for the state represented
DY TaDIE 2.23 ... e 84
The corresponding state of each tournament graph shown in Figures 2.17,
2.18,2.19,2.20,2.21,2.22,2.23,2.24 and 2.25ccocceieiieeieeeeenn 92
The uniform final states with the minimum number of points in the case

of the sports presented in Section 1.8.3, where C; is not empty................. 97

The uniform final states with the minimum number of points in the case
of the sports tournaments presented in Section 1.8.3, where C; is empty
ANA N IS OAU.....eeeeee et nre s 98

The uniform final states with the maximum number of points in the case
of the sports tournaments given in Section 1.8.3, where C; is not empty.. 99

The uniform final states with maximum number of points in the case of
the sports tournaments given in Section 1.8.3, where C is empty and n

(1530 [0 OSSP 99
min(Phigh(K)), min(Piow(k)) and min(Pts(k)) in the case of sports
tournaments given in SECtion 1.8.3cccoieiievieie e 102
max(Phigh(K)), max(Piow(k)) and max(Pts(k)) in the case of the sports
tournaments given in SECtion 1.8.3ccocooviiiie i 104
The optimized search space of WDL based on Eq. (2.49) of a 4-team
foothall toUrNAMENL..........cooiieie s 105
The final table of a football tournament of 4 teams where
MaX(PLS(2)) > PIS(L) cueeieeeiiie et 106
The final table of an ice hockey tournament of 4-teams where
PES(1) > MAaX(PLS(2)) .eevveiiieiiieiieeiie ettt 106
The steps of generating the final table states of a 3-team football
tournament, using the optimized forward algorithm...........c.ccoooevinnnen, 111
Results of the backward algorithm for football tournaments.................... 141

Results of the backward algorithm for rugby and handball tournaments. 141
Results of the backward algorithm for chess tournaments 142

XVII

Table 4.4.
Table 4.5.

Table 4.6.

Table 4.7.
Table 4.8.
Table 4.9.

Table 4.10.
Table 4.11.
Table 4.12.

Table 4.13.

Table 4.14.
Table 4.15.

Table 4.16.
Table 4.17.

Table 4.18.
Table 4.19.
Table 4.20.

Table 4.21.

Table 4.22.
Table 4.23.

Table 4.24.

Table 4.25.
Table 4.26.

Table 4.27.
Table 4.28.

Results of the backward algorithm for lacrosse tournaments.................... 144
Results of the backward algorithm for basketball, volleyball and tennis

TOUMM@IMENTS ...t 144
Results of the backward algorithm for ice hockey and curling

TOUMMAIMENTS ...t 145
Results of the backward algorithm for cricket tournaments..................... 146
Results of the forward algorithm for football tournaments....................... 148

Results of the forward algorithm for rugby and handball tournaments ... 148

Results of the forward algorithm for chess tournaments.................c......... 149
Results of the forward algorithm for lacrosse tournaments.................... 150
Results of the forward algorithm for basketball, volleyball and tennis
EOUINAMENTS ...t e e 151
Results of the forward algorithm for ice hockey and curling
TOUMNAMBINTS ...ttt 152
Results of the forward algorithm for cricket tournaments........................ 152

The comparisons of the execution time in the backward algorithm against
the forward algorithm ..o 154

Results of the optimized backward algorithm for football tournaments.. 156

Results of the optimized backward algorithm for rugby and handball
TOUMMBIMENTS ...ttt 156

Results of the optimized backward algorithm for chess tournaments 157
Results of the optimized backward algorithm for lacrosse tournaments.. 158

Results of the optimized backward algorithm for basketball, volleyball
and tennis tOUMNAMENTEScviiieieiieceere e 158

Results of the optimized backward algorithm for ice hockey and curling
EOUMMBIMENTS ...ttt 159

Results of the optimized backward algorithm for cricket tournaments 160

The number of the invalid states in the backward algorithm against the
optimized backward algorithm ..., 162

The execution time in the backward algorithm against the optimized
backward algorithm ..o 163

Results of the optimized forward algorithm for football tournaments...... 165

Results of the optimized forward algorithm for rugby and handball
EOUMNAMENTS ...t 166

Results of the optimized forward algorithm for chess tournaments 166
Results of the optimized forward algorithm for lacrosse tournaments..... 167

XVIII

Table 4.29.

Table 4.30.

Table 4.31.
Table 4.32.

Table 4.33.

Table 4.34.

Table 4.35.

Table 4.36.

Table 4.37.

Table 4.38.

Table 4.39.
Table 4.40.

Table 5.1.

Table 5.2.

Table 5.3.

Results of the optimized forward algorithm for basketball, volleyball and
TENNIS TOUIMMAMENTS ...ttt nneas 168

Results of the optimized forward algorithm for ice hockey and curling
EOUMNAMENTS ... 168

Results of the optimized forward algorithm for cricket tournaments........ 169

The execution time for the forward algorithm against the optimized
forward algorithmccvoiiiccee e 171

The execution time for the optimized backward algorithm against the
optimized forward algorithmc.ccveiiic i, 173

The value selected for n in the case of each sports discipline in the
performed tests to determine the optimum number of threads 174

The taken duration in seconds by the multi-threaded optimized backward
algorithm in each performed test to determine the optimum number of

L1 =T T OSSPSR 175
The execution times of the multi-threaded optimized backward
AIGOTTTNML e 176

The percentage decrease in the execution time for the multi-threaded
optimized backward algorithm compared to the optimized backward
1[0 0] 11 2] o PSSRSO 176

The duration in seconds taken by the multi-threaded optimized forward
algorithm in each performed test to determine the optimum number of

The execution times of the multi-threaded optimized forward algorithm 179

The percentage decrease in the execution time of the multi-threaded
optimized forward algorithm compared to the optimized forward

1 (00 1121 o PSSP 180
The time complexities of the proposed algorithms for the presented kind

(0] 1S 010 TSSO PRPR 182
The memory space complexities of the proposed algorithms for the
presented Kind of SPOItS.......cccviviiiiiiiic e 183
The results of the proposed algorithms for N=6..............ccccceevvvverviinnnnn 184

XIX

AFG
BHS
BRA

Brc
BWA

CAF
CAN
CNF
CPU
CSK
CZE
C:
C

d(v)

EGY
ESP
FIBA
FIFA

FRA

GA
GD
GF
GHA

LIST OF ABBREVIATIONS

Set of undirected edges or arrows
Afghanistan
Bahamas

Brazil

Number of blind selections to find the possible tournament graphs

Botswana

Color

Confederation of African Football

Canada

Conjunctive Normal Form

Central Processing Unit

Czechoslovakia

Czech Republic

Game results which are related to each other
Game results which are not related to other game results
Drawn games

Degree of a vertex

Set of edges

Egypt

Spain

The International Basketball Federation
Fédération Internationale de Football Association
International Federation of Association Football)
France

Graph

Number of games

Goals Against

Goals Differences

Goals For

Ghana

XX

(English:

ge Number of the games played by a participant

GPU Graphics Processing Unit

GR The total of game results

ICC International Cricket Council

IRI Islamic Republic of Iran

ITA Italy

JDK Java Development Kit

JEY Jersey

JPN Japan

k Rank or degree

KOR South Korea

L Lost games

Ls Lists of adjacency

M Matrix of adjacency

MAR Morocco

MEX Mexico

MIMD Multiple Instructions on Multiple Data
MISD Multiple Instructions on Single Data
n Number of participants

NB Number of the generated states by a backward blind search algorithm
NP Nondeterministic polynomial time
NR Games with no results

Nrc Number of result cases

@) Big O notation

OTL Overtime lost games

oTW Overtime won games

P Polynomial time

P Game points

PA Points Against

PD Points Differences

PF Points For

Phigh The number of earned points from a high sub-tournament

XXI

Plow
POR
Pts

RAM

SA
SAT
SD
SF
SIMD
SISD
SGP
SL
SOL
SOwW
SRB
SU
SUl
SW

T1

T2

T(n, m)
UEFA
USA

VFL

The number of earned points from a low sub-tournament
Portugal

Total number of points

Size of C;

Game result

Size of C,

Random Access Memories

Set of possible game results

Scores Against

Boolean Satisfiability Problem
Scores Differences

Scores For

Single Instruction on Multiple Data
Single Instruction on Single Data
Singapore

Lost sets

Shoot-out Lost games

Shoot-out Won games

Serbia

Set of the possible values of uniform states
Switzerland

Won sets

Tied games

Tournament 1

Tournament 2

Time complexity

Union of European Football Associations
The United States of America

Set of vertices or nodes

The Victorian Football League
Won games

Shoot-out or overtime won games

XXII

Y Shoot-out or overtime lost games

$(n, m) Memory space complexity

XXM

1. GENERAL INFORMATION

1.1. Introduction

Mankind has shown great interest in sports since the prehistoric ages [1, 2]. The
early civilizations have developed similar interest [3, 4], organizing many sporting events
such as Olympic, Pythian, Nemean and Isthmian Games in ancient Greece [5, 6], and
Ludi, Actia and Sebasta Games in the Roman Empire [7]. The industrial and scientific
revolution and the mass production in the modern era have increased leisure-time [8],
which provides enough time for people to actively participate in sports and follow the
sporting events [9]. Thanks to the evolution of global media and communications,
sporting activities have gained popularity among human race in the entire world [10].

Nowadays, sport is directly linked to economic interests [11], where the sport
system is based on economic foundations that meet the need to fund the activities,
programs and equipment [12, 13]. Also, the sport system creates several professional jobs
[14, 15] and generates profits through advertisement [16, 17]. Since the 1980s, the
relationship between sport and economy has evolved into a form of industry [18], where
it has become one of the pillars of national economies [19]. Today's global sports industry
which includes sporting kits and equipment, infrastructure construction, live sports
events, and licensed products is worth up to 620 billion US dollars [20]. Within this
economic relationship, the media plays an important role as a partner in this industry and
one of its most important sources of success [21]. For example, the rights sales incomes
of the Summer Olympic Games broadcasting between the years 1980 and 2008 were
estimated at 1.715 billion US dollars [22].

The most used formats of tournaments in the sporting events are single elimination
(or knockout), total points series (or aggregate) and round-robin. In a single-elimination
tournament, the loser is disqualified from the championship immediately after losing a
game, while the winner qualifies to the next level [23]. In the total points series
tournament where two teams oppose each other twice, each game is played on their
respective home field then the winner is determined by the cumulative results of the two

games [24]. Meanwhile, round-robin is a format of tournament in which every participant

https://en.wikipedia.org/wiki/Nemean_Games
https://en.wikipedia.org/wiki/Isthmian_Games

plays against all the other participants once [25] or twice [26] (often called double round-
robin).

Combinatorics is one of the branches of mathematics that studies finite discrete
structures and countable sets [27, 28]. In this way, it includes the counting of elements in
groups [29], determining if they meet the required criteria [30], as well as studying the
construction and analysis of the organisms that meet these criteria. Graph theory is one of
the fields of combinatorics that studies graphs [31], which are abstract models of network
drawings that link objects. These models are constituted by nodes and links between these
nodes. The links between the nodes are called edges which may be directed or undirected
[32]. In the context of graph theory, a round-robin tournament is a complete graph where
each node represents a participant and each edge between a pair of nodes represents a
game result [33].

The final positions in a particular tournament can play a crucial role in the
distribution of the participants’ revenue that comes from TV networks [34],
advertisements [35] and so on. Thereby it would significantly influence the incomes of
the tournament participants. So it would be of vital importance to predict the final
position of a participant at the end of a round-robin tournament. The calculation of the
possible states of a round-robin final tournament table can provide a convenient way to
determine what table data would be adequate to reach the desired position for a
participant.

To calculate the states of the final table of any round-robin tournament, we propose
two approaches. The first one initially generates possible states and then checks if it is
possible to construct tournament graphs based on them. The second one creates the
tournament graphs and then derives their corresponding final state of the tournament
table. To improve the results of each approach, we implement a two-step optimization
strategy. Firstly, we optimize the search space based on the lowest and highest possible
number of points that can be gained by each participant. Then, we use a multi-threading
based parallelization technique to exploit the performance of the computer system on
which the approaches are evaluated. In addition, we analyze and discuss both time and
memory space complexities of the proposed approaches. Based on the results of this
analysis, we define the related complexity class for the problem of determining the

possible final states of a tournament table.

1.2. Literature Review

The big popularity of sports events such as the Olympic Games and the world
championships of different sports like football, cricket and basketball attracted the
researchers, thereby making them conduct several researches related to sports. Some of
the works that have been done are presented later on in this section.

Among the interesting studies in sports are the ones which focus on the round-robin
tournaments scheduling. Carlsson et. al. [36] proposed a model to perform a double
round-robin tournament scheduling in a single step, where a traditional double round-
robin format was extended with divisional single round-robin tournaments. Also, the
study took into account a constraint programming model that characterizes the general
double round-robin plus divisional single round-robin format. Pérez-Caceres and Riff
[37] solved travelling double round-robin tournament problem by proposing an algorithm
which uses the team’s home/away patterns based moves. Suksompong [38] came up with
a new method to generate schedules for the asynchronous round-robin tournaments
whether the number of teams is even or odd, where he considered three measures of a
schedule that concern the quality and fairness of a tournament.

Some models have been developed to provide automated scheduling for several
sports. These models can handle the issues that concern generating various types of
leagues and tournaments, games venues selection and assigning referees to games. Atan
and Hiiseyinoglu [39] treated the problem of simultaneously generating a game schedule
and assigning main referees to football games, where they proposed a mixed integer
linear program formulation for the problem by incorporating specific rules in the Turkish
league. Because of the computational difficulties in solving the problem, it was
approached using a genetic algorithm. Westphal [40] discussed a new approach to solve
the problem of finding an optimal schedule for the German Basketball League, where
time and place requirements were taken into account during the study. Kyngas and Nurmi
[41] presented a successful solution method to schedule the Finnish first division ice
hockey league based on another method used to schedule the Finnish major ice hockey
league. The new method was a combination of local search heuristics and evolutionary
methods.

Typical examples of these developed models are graphs [42], round-robin
tournament [43, 44], travelling tournament problem [45] and playoff/first place

elimination [46]. Januario et. al. [42] for example considered some basic sports

https://scholar.google.com/citations?user=frcIsB8AAAAJ&hl=en&oi=sra

scheduling problems and introduced the notions of graph theory which are needed to
build adequate models, where they showed how edge coloring can be used to construct
schedules for sports leagues. Briskorn and Drexl [43] developed a branch-and-price
approach to find optimal solutions for the scheduling of double round-robin tournament,
where the approach seeks to generate schedules having the minimum number of breaks
and minimizing the sum of the cost of arranged matches.

On the other hand, Croce and Oliveri [44] presented a solution to derive feasible
schedules for round-robin tournament (the Italian Major Football League) with respecting
the cable televisions’ requirements. Goerigk and Westphal [45] presented an integer
programming and local search heuristics hybrid approach to solve the problem of
scheduling travelling tournaments, where this approach passes phases until the optimized
scheduling is found. Kern and Paulusma [46] determined the complexity of whether a
particular team in a tournament still has a chance to win the competition, where the
number of competition's outcomes is arbitrary. The proposed model also includes
competitions that are asymmetric in the sense that away playing teams possibly have an
advantage than home playing teams.

The scheduling methods are usually based on approaches such as integer
programming [47, 48], simulated annealing [49] and branch-and-bound [50]. Alarcon et.
al. [47] used in their study the integer linear programming to address the referees
scheduling problem in the First Division of the Chilean professional football league,
where they considered balance in the number of matches each referee must officiate, the
frequency of each referee being assigned to a given team, the distance each referee must
travel throughout a season, and the appropriate pairings of referee experience or skill
category with the importance of the matches.

Larson et. al. [48] presented an integrated constraint programming model that
allows performing the scheduling of the top Swedish handball league in a single step,
where the focus was particular to identify implied and symmetry-breaking constraints that
reduce the computational complexity significantly. After that, an integer programming
approach was used to assign actual teams to the numbers in the template in a manner that
satisfies various constraints. Lim et. al. [49] made an optimized research based on the
study of Easton et. al. [51], where they divided the search space and used simulated
annealing instead of integer programming to search a timetable space and hill-climbing to
explore a team assignment space for the travelling tournament problem. Bartsch et. al.
[50] took into account the case of Austrian and German Football Leagues to generate a

regular season schedule, where they developed some branch-and-bound based algorithms
which yield reasonable schedules quickly for both leagues.

Some other previous researches have focused on tournament environments from
different perspectives. Eggar [52] for example addressed the number of individual players
with a sufficiently high average of wins when teams play a table tennis tournament.
McSherry [53] investigated the issue of inferring the numbers of wins, draws and losses
of teams from their points in the final table of a sports tournament. In another research,
Charon and Hudry [54] described the principles of an exact branch-and-bound search
with a Lagrangean relaxation based method, which was designed to solve the linear
ordering problem for any weighted tournament. Also, Hemasinha [55] presented an
algorithm to generate score sequences of all tournaments up to a given size based on the
Havel-Hakimi [56, 57] criterion that checks whether or not a given sequence of integers is
the score sequence of a graph. In another context, Duckworth and Lewis [58] described a
method to set revised target scores. The method was based on the number of runs and
number of wickets fallen for the team batting second, once a limited-overs cricket match
has been forcibly shortened after it has commenced.

Nabiyev and Pehlivan [59] described a tournament scoring problem which is
concerned with the construction of valid initial states according to some given final state
and constraints, where it can easily be generalized to incorporate various sports
disciplines played in both tournament and league environments. Pehlivan and Nabiyev
[60] also dealt with the issue of determining the scores of all matches involved in a
football tournament, where the table data is firstly used to compute the possible results of
all played matches, then possible scores of the matches are computed based on the results
as well as the total number of scored and conceded goals. In another study, Damkhi and
Pehlivan [61] explored all possible results of the games involved in a tournament, based
on the generation of the complete graphs which match the data in its final table. The
approach was evaluated by applying it to the table data of a qualifying group from
previous FIFA World Cup Group Stages. In addition, the results was presented with
respect to some particular data in the final tables of the tournaments contested by up to
ten teams.

Concerning the determination of the final states of football tournaments, Damkhi
and Pehlivan [62, 63] proposed two different methods. The first method [62] focuses on
generating all possible final states based on the results of a blind search algorithm. Since
most of the states generated by a blind search algorithm are inconsistent (i.e. invalid

states), an efficient algorithm was proposed to filter out such invalid states. The second
method [63] describes a point-based algorithm to generate all possible final states that can
take place in a football tournament with some number of teams. The algorithm attempts
to determine the possible final W, D and L values of the teams using their sums of points.
The determination of the states of the final tournament table provides an elegant
way to ascertain which participant’s table data guarantees a particular position. This
thesis focuses on generating the possible final states of round-robin tournaments tables of
any sport discipline according to the number of participants. To achieve that, two
approaches are developed, where the first approach generates every possible state and
seeks to prove their validity through the construction of a tournament graph based on each
generated state. The state is considered as a valid one in this approach only if it can
construct at least one tournament graph. The second approach is based on building every
possible tournament graph and concluding the equivalent state of the final tournament
table from each generated graph. The state is considered to be valid in this approach only
if it was not previously calculated. To optimize the relevant search space for both of the
proposed approaches, general constraints related to the points of the participants and their
standings are proposed. In addition to optimizing the search spaces, a multi-threading
based parallelization technique is implemented to enhance the performance of each

approach.

1.3. Scope and Purpose of the Thesis

It is of utmost importance for the competitors of a sport tournament to predict what
ensures they obtain some dominant position at the end of the tournament. The generation
of the states of a final tournament table provides a convenient way to determine what
game results would be adequate for a team/player to reach a desired position. Every state
of a final tournament table may be generated mentally or manually when the number of
tournament participants is small. Conversely, as the number of the participants gets
bigger, the number of the states of a final tournament table gets bigger too, and generating
them will be quite hard if not impossible.

Round-robin tournament is one of many real problems that can be translated to
graphs, where each participant can be represented with a node, while the result of a game

between two participants can be represented with an edge. Graph theory is considered as

a mathematical field which often needs the use of algorithms. In this thesis, to generate
the states of the final table of any round-robin tournament, two algorithms which are
based on two different principles are proposed. The first approach is called the backward
approach. In this approach, the states are initially generated, then checked if it is possible
to construct tournament graphs based on them. We name the second approach as the
forward approach. This approach starts with the generation of a tournament graph and
ends with deriving its corresponding state of the tournament final table.

To improve the results of the proposed approaches, the study also concerns the
implementation of a two-step optimization strategy. The first step is to optimize the
search space based on the lowest and highest possible number of points that can be gained
by each participant. The second step is to exploit the performance of the computer system
on which the approaches are evaluated, using a multi-threading based parallelization
technique. In addition, both time and memory space complexities of the proposed
approaches are analyzed and discussed. Based on the results of this analysis, the

complexity class of our problem is defined.

1.4. Tournaments Systems

A tournament is an organized form of competitions. The tournaments are organized
in different systems, depending on certain contextual parameters including the number of
participants and the duration of the tournament. The most commonly used tournament

systems are summarized below.

1.4.1. Single-Elimination Tournament

A single-elimination or knockout tournament is a tournament where the loser of
each game is eliminated from the tournament immediately [64]. However, the loser may
not be eliminated from the competition in some cases, where extra games are added such
as third place [65]. Each winner progresses to the next round until the final game, whose
winner becomes the tournament champion. Usually, the number of games in a single-
elimination tournament is equal to the number of participants.

In a single-elimination tournament, the games are progressive such as the quarter-

final, followed by the semifinals and third place, and lastly the final. The process is

formed according to the number of participants, which is often a power of 2 (i.e., 4, 8, 16,
32 etc.). Occasionally, there are also competitions among the losers of the quarter-final
matches to determine the fifth to the eighth positions (this usually occurs in the Olympic

Games [66]). Figure 1.1 shows an example of a single-elimination tournament bracket.

I GMmM Mo oo P

Figure 1.1. An example of a single-elimination tournament
bracket

Competitors can be randomly assigned [67], however, seeding (i.e., classifying the
teams to categories depending on their ranking [68]) is often used to avoid situations like
a possibility of a draw which leads to the elimination of the big participants from the
competition. Brackets are set so that the participants with the first and second ranking
cannot meet before the final round, and none of the first four can meet before the semi-
finals [68]. If no ranking is used, the tournament is called a random single-elimination (or
knockout) tournament [69]. In some cases [67], the qualified participants are reseeded
before playing the next stage, so that the highest qualified seed plays against the lowest
seed.

1.4.2. Double-Elimination Tournament

A double-elimination tournament is a competition in which the participants are
eliminated when they lose two games [70, 71]. This type of tournament allows fewer
surprises than in a single-elimination tournament. A double-elimination tournament is
divided into two parts [71]: the primary tournament (or tournament of the winners) and
the secondary tournament (or tournament of the losers).

At the end of each round, the winners continue the primary tournament as in a
knockout competition, while the losers join the secondary tournament and compete to
stay in the competition, where a second defeat leads to the elimination. Compared to a
team that wins all of its games before reaching the final, a team that loses its first game
still has the chance to win the tournament by playing two more games. The final game
opposes the winner of the primary tournament to the winner of the secondary tournament.

When the winner of the primary tournament wins the final game, the number of
games in a double-elimination tournament would be two less than twice the number of the
participants. For example, when the number of teams is eight, the number of games
would be fourteen. If the winner of the secondary tournament wins the final, a second
game takes place to respect the principle of the tournament (i.e., the participants or teams
are only eliminated when they lose two games) and to avoid the elimination of a
participant with only a loss [72]. So, the number of games in this case would be one less
than twice the number of the participants. For example, when the number of teams is
eight, the number of games would be fifteen.

This type of tournament is used for some sports like beach volleyball competitions
[73], water volleyball [74] and baseball competitions [75]. Figure 2.2 shows an example

of a double-elimination tournament bracket.

A
1
B
C 7
D 2
Winers' bracket 11
E
3
F
8
G a 14
H iy [P—
L8
L1 g 13 15
3
Loosers’ bracket N —— 12
L3 I
L4 10
LY

Figure 1.2. An example of a double-elimination tournament bracket

10

1.4.3. Round-Robin Tournament

A round-robin tournament is a tournaments system in which a team/player faces
each of the other teams/players once or twice, where the winner is determined by the
number of wins or the total points accumulated during the played games. The round-robin

tournament is discussed in more details in Section 1.5.

1.4.4. Swiss-System Tournament

The Swiss-system tournament is a type of tournament commonly used in chess
competitions [76]. This type of tournament was used for the first time at the Swiss Chess
Championship in Zurich in 1895 [77], since then it was named "Swiss-System". This is a
matching method for organizing tournaments with a large number of players in a reduced
number of games. It is widely used for open chess tournaments [78], as well as in amateur
level competitions [79].

To determine the winner of a competition, the fairest and simplest solution is when
each participant plays against all the others. This method is inapplicable in a reasonable
time since the number of participants is high. The knockout form is a way to designate a
winner by limiting encounters. The disadvantage in this instance is the early elimination
of candidates who could claim victory. The Swiss-system allows the championship
formula to be maintained by limiting the duration of the competition, where the
participants play the same number of games and the matching criteria make it possible to
obtain a logical ranking with fairly good reliability.

The principle of the Swiss tournament is to order the players according to their rank,
after that, each player in the first half of the standings plays a match against a player in
the second half. For example, when there are 8 players, number 1 faces number 5, number
2 faces number 6 and so on. In the next round, each player will be opposed to the player
who has done so far as well/bad as him. The tournament continues after a predefined
number of rounds. Some adjustments may be done to assure that no two players oppose
each other twice. After the last round, the players are ranked according to their score,
where in case of a tie, they can be determined by the sum of the scores of their opponents
or by another system determined in advance. In the case where the game is not

symmetrical (such as chess where color is an important criterion or in football where

11

playing at home or away is not neutral), this criterion must be taken into account and an
alternation must be realized.

Compared to a knockout system, the Swiss system has the implicit advantage of
eliminating no one. This means that a player who starts such a tournament knows in
advance how many rounds he will play, regardless of his results. The Swiss-system does
not always end in the thrilling climate of a knockout tournament final. Sometimes, a
player quickly takes such an advantage that he is guaranteed to win the tournament even

if he loses his last game [80].

1.4.5. McMahon-System Tournament

The McMahon system is a tournament system which is based on the Swiss-system.
The system is named after the computer scientist Lee E. McMahon [81]. This system is
widely used for Go [81] competitions. As in the Swiss-system, in each round, the
individual games are drawn in such a way that, if possible, participants with the same
number of points meet each other. It differs from the Swiss-system by the fact that the
players get some extra points before the beginning of the competition, where these points
are based on the players' playing strength. This increases the chances of the high ranked
participants to win the competition. The overall result of the tournament is obtained from
the scores after the last round.

The advantage of this system is that it offers the possibility to determine an
unequivocal winner in tournaments with many participants and a limited number of
rounds, where it gives everyone the chance to play against players of suitable strength.
Also, it requires fewer rounds to find a winner and avoids extreme confrontations (i.e.,
very strong players versus very weak players) in the first round.

Various criteria must be met in a McMahon-System tournament. Among these
criteria, we mention, for example: the encounter between two participants should not take
place a second time, a balanced ratio of games in black and white in games like Chess and
Go, and avoiding matches between players from the same city in the national tournament.

12

1.4.6. Scheveningen-System Tournament

The Scheveningen-system refers to a tournament form which may be used in
competitions between two teams [82]. This competition was named after the
Scheveningen district since it was first used in an international competition which was
held there in 1923 between Europe's best chess players and the Dutch masters [83].
Scheveningen system is somewhat similar to the round-robin system, where each player
of a team plays against all the players of the other team. This form of matches would take
place over several days within the tournament time. Both individual and team's results are
taken into account in this system, where the individual score is based on the score earned
by each player, while the team result is based on the total number of scores of players in
each team.

The traditional Russian competition "Nutcracker Generation Tournament” adopts
this system of tournaments, where more experienced juniors play against young Russian
Grandmasters [84]. Another example is the Scheveningen competition of Saint Louis in
2011 between young American chess players and the world's best female chess players
(Kings vs. Queens tournament) [85].

1.4.7. Mclntyre-System Tournament

The Mclintyre-system is a system of playoff which gives the chance to teams or
participants to qualify to higher tournaments. The Australian K.G. Mcintyre developed
this system in 1931 for the VFL (the Victorian Football League) [86]. The Mclintyre-
system is used mainly in the Commonwealth countries, where several versions of the
Mclintyre-system were used by the Australian National Rugby League at different times
[87, 88]. Also, the post-season in the Australian Football League is conducted using the
Mclintyre System [88].

The Mclintyre-system passed through several updates and optimizations, where it
was given many names depending on which updates. From the different versions of The
Mclintyre-system, there is Page—Mclntyre system, where the participants are ranked based
on their results of a round-robin tournament, and then the top 4 teams compete for the

title based on a single-elimination or double-elimination tournament. Also, there are

13

Mclntyre final five, six and eight systems, where five, six or eight top participants from
the round-robin stage are taken into account instead of four.

1.5. Round-Robin Tournament

1.5.1. Definition

A round-robin tournament is a type of tournament in which participants play the
same number of games against each other. The term round-robin is derived from the
French term "ruban” which means "ribbon". With the time, the term became "robin" [89].
In a single round-robin tournament, all participants are opposed once during the
competition. This type of tournaments is adopted during several events of many kinds of
sports. As an example, we recall FIFA World Cups, UEFA European Championships, and
Wrestling Olympic tournaments [90]. In sports where there are many games in each
season, it is common for the championship to take place in two tournaments (i.e., double
round-robin tournament), as is the case of football leagues [91] and College Basketball
Conferences [92]. The final ranking of the participants is usually based on the number of

gained points from the played games.

1.5.2. The Use of Round-Robin Tournaments

The tournaments in a round-robin fashion are widely used by many sports during
different events. Double round-robin tournaments are usually used in sports events with a
big number of participants like football leagues. Most of the football leagues around the
world adopt this system, where every team plays against the other team twice, one game
at home and the other away. Also, the double round-robin tournaments are used in the
qualifications to the major tournaments like continental tournaments (e.g., UEFA, CAF,
etc.) and the FIFA World Cup. This system is not exclusive to football events, as it is also
used by other sports such as Chess [86]. The World Chess Championship which was held
in 2005 [93] consisted of eight players which competed in a double round-robin
tournament, where each player played against the others twice, one game as white and the
other as black.

14

The single round-robin tournaments are frequently used in the group stages within a
wider competition like the cases of the FIFA World Cup [94], CAF Africa Cup of Nations
[95] and UEFA European Football Championship [96]. In addition to football, the single
round-robin system was used by other sports like rugby during the 2010 Rugby Union
ITM Cup in New Zealand [97] and the 2007 ICC Cricket World Cup [98].

1.5.3. Advantages and Disadvantages

From the theoretical side, the round-robin is the most accurate way to identify the
champion from a known and determined number of participants, where each participant
has the same chances as all other participants. Unlike the knockout tournament that
determines the progress of the participants based on a single game, the round-robin
tournament gives chances to redress the defeated games by the next games.

However, it also implies that the games which take place towards the end of the
competition are sometimes opposed by participants who still compete for a prize to others
who have nothing to gain. This asymmetry is detrimental to fairness since the motivation
of the opponent is not the same at the beginning and the end of the competition. At the
first chess tournament, held in London in July 1851, a prize was only awarded for first
place, so that many players did not dispute all their games [99]. Because of that, at the
London 1862 Chess Tournament, a prize was planned for the first six participants at the
end of the tournament [100]. On the other hand, in the case of a qualifying tournament for
another more important event, a participant that is already qualified for the next stage
may try to reserve its/his forces or even deliberately lose if this defeat contributes to the
promotion of a weaker future opponent, or it will help a friend opponent to qualify for an
upper stage. Such a situation happened in what became known as the disgrace Gijon
[101] during 1982 FIFA World Cup, where West Germany and Austria set up the result
of the game between them to advance to next stage and eliminate Algeria on goal
difference.

When the round-robin tournament is used as a qualifying round within a larger
tournament, some participants ensure their qualification to the upper stage, but they lose
some games intentionally to avoid playing against specific participants in the next stage,
such as stronger participants or participants from the same country. For example, four

pairs of women's doubles badminton in the Olympics of 2012 were disqualified after

15

qualifying for the next round for attempting to lose in the round-robin stage to avoid
playing against higher ranked opponents [102].

Round-robin tournaments can be too long compared to other types of tournaments,
for that a scheduling process may be necessary. The round-robin tournament requires a
number of rounds that equals to one less than the number of participants if it is even, and
equals to the number of participants if it is odd, unlike the knockout tournament where
half of the participants are eliminated after each round. For example, an 8-teams round-
robin tournament requires 7 rounds, where each round contains 4 games, which means a
total of 28 games, while an 8-teams knockout tournament can be computed just in 3
rounds with a total of 8 games (i.e., taking the third place game into account).

Usually, there is no spectacular final game in a round-robin tournament. The final
game is rarely between two participants which seek for the first standing. A notable
instance of such a final was between Arsenal and Liverpool in the season of 1988/1989 of
the Premier League competition [103]. Another disadvantage of round-robin tournaments
appears especially in the small round-robin tournaments. For example, in a round-robin
between three participants A, B and C, when A defeats B, B defeats C, and C defeats A,
there will be no possibility to define the winner since all the participants have the same
final results (i.e., one win and one loss). In this case, a tie-breaker is needed to separate
the teams like the difference between the scored and received goals in the football
tournaments [98]. This case was faced when all the teams of the Group E of 1994 FIFA

World ended the group stage with one win, one draw, and one loss [104].

1.6. Graphs

1.6.1. Definition

There are several variations in the definition of graphs in graph theory. In general, a
graph G is a pair G = (V, E) formed of a set V of vertices, nodes or points and a set E of
edges or lines which are associated with subsets with two elements of V. Other meanings
for the term graph come from another interpretation of the set of edges. In a broader
sense, E is a set with an incident relation that associates two vertices from V with each
edge from E, where these vertices are considered as the edge’s extremities. An example

of a graph is shown in Figure 1.3.

16

Figure 1.3. An example of a graph

Sets V and E are generally assumed to be finite. Moreover, V is often assumed as
not empty, but E can be an empty set. The size of a graph depends on the number of its
vertices or the number of its edges. The degree or valence of a vertex is the number of
edges connected to that vertex. In a graph G, the vertices v; and v; are said to be adjacent
if there is an edge between them. For example, the vertices vy and vz in Figure 1.3 are

adjacent because they are related to each other by the edge e;.

1.6.2. Graph Theory

Graph theory is the mathematical, algorithmic and computer science discipline that
studies graphs, which are abstract models of network drawings linking objects. These
models are constituted by the data of nodes or vertices, and of links between these nodes
(or edges). The developed algorithms to solve problems concerning the graph theory have
many applications in all domains related to the notion of network (such as: social
networks, computer networks, telecommunications, etc.) and in many other domains
related to the concept of a graph.

A large number of theorems have helped to establish this subject among
mathematicians, which makes it a perennial branch of discrete mathematics. Graph theory
originates initially by an article of the Swiss mathematician Leonhard Euler, which was
presented at the St. Petersburg Academy in 1735 and published in 1741 [105]. This article
dealt with the problem of the seven Konigsberg bridges (see Figure 1.4). The problem
was to find a path which starts from a given point and gets back to the same point, where
it passes once and only once through each of the seven bridges in the city of Konigsberg.

Euler represented the problem with the graph shown in Figure 1.5.

17

i

Figure 1.4. The problem of the seven Konigsberg bridges

Figure 1.5. The graphical representation of the problem of
the seven Konigsberg bridges

1.6.3. Graph Representations

1.6.3.1. Matrix of Adjacency

Let G = (V, E) be a graph where the vertices in V are numbered from 1 to n. In this
case, we can say that G is a graph of order n. The adjacency matrix representation of G

consists of a Boolean matrix M of size n x n (i.e., a square matrix) such that M [i] [j] = 1

if (vi, vj) € E, and M [i] [j] = O if not. In the case of non-oriented graphs, the matrix is
symmetrical with respect to its descending diagonal (i.e., M [i] [j1 = M [i] [j]). In this

way, only the upper triangular component of the adjacency matrix can be memorized.

18

There is a unique adjacency matrix for each graph, i.e. an adjacency matrix of a graph is
an adjacency matrix of no other graph. The equivalent matrix of adjacency of the graph

shown in Figure 1.3 is as follows:

01110
10100
M=]11000
10001
00010

The test of the existence of an edge with an adjacency matrix representation is
immediate, where it is enough to check directly the corresponding element in the matrix.
On the other hand, knowing the degree of a vertex requires the browsing of a whole row
or a whole column of the matrix. In a more general way, browsing the set of edges

requires the checking the whole matrix.

1.6.3.2. Lists of Adjacency

We can also represent a graph by giving for each of its vertices the list of vertices to
which it is adjacent. Let G = (V, E) be a graph of order n. We suppose that the vertices of
V are numbered from 1 to n. The adjacency list representation of G consists of a table T of

AI5E31R88 Y06 GARINRTR%OENiSEORPRAYY RUIEY,Y Y The NAEeROF HSEH duhizAd)shgl

are usually listed in an arbitrary order. In the case of non-oriented graphs, for each edge
(vi, vj), vj will belong to the list of T [vi], and also v; will belong to the list of T [vj]. The
list of adjacency of the shown graph in Figure 1.3 is as follows: T = [{vz, v3, va}, {v1, v3},
{v1, v}, {v1, vs}, {va}].

There is no faster way than to traverse the adjacency list of T[vi] until finding v; to
test the existence of an edge (vi, v;) with an adjacency list representation. On the other
hand, the calculation of the degree of a vertex, or the access to all the successors of a
vertex is very effective in this case, where it is enough to browse the adjacency list
associated with the vertex. In a more general way, browsing the set of edges requires the
traversal of all adjacency lists. Contrarily, the computation of the predecessors of a vertex
is not easy with this representation, where it requires the traversal of all the lists of
adjacency of T.

19

1.6.4. Partial Graph and Sub-Graph

Let G = (V, E) be a graph. The graph G’ = (V, E’) is a partial graph of G, if £’ is
included in E. In other words, we obtain G’ by removing one or more edges from the
graph G. Figure 1.6 shows a partial graph from the graph shown in Figure 1.3. Compared
to the graph in Figure 1.3, the graph in Figure 1.6 does not include the edge es but it

contains the same vertexes.

) In another hand, the graph G’ =(V’, E’) is called a sub-graph of G, if V’ is included
in V and E’ is included in E, where the extremities of each e’ € E’ must be included in V.
In other words, we obtain G’ by removing one or more vertices from graph G, as well as
all the edges incident to these vertices. Figure 1.7 shows a sub-graph from the graph in
shown Figure 1.3. Compared to the graph in Figure 1.3, the graph in Figure 1.7 neither

include the vertex vs nor the edge es which is connected to it.

Figure 1.7. A sub-graph from the graph shown in Figure 1.3

20

1.6.5. Degrees

1.6.5.1. Degree of a Vertex

We denote the degree of vertex v as d(v), which is the number of edges connected to
this vertex (a loop on a vertex counts double). For example, in the graph of Figure 1.3,
d(v1)=3, d(v2)=2, d(v3)=2, d(v4)=2 and d(vs)=1. In a simple graph (i.e., a graph without
loops and multiple edges), we can also define the degree of a vertex as the number of its
neighbors (i.e., the size of his neighborhood). The sum of degrees of vertices in a graph is
twice the number of edges. In the graph shown in Figure 1.3, for example, the graph
contains 5 vertices and the total degree of d(vy) + d(v2) + d(vs) + d(vs) + d(vs) = 10.

1.6.5.2. Degree of a Graph

The degree of a graph is the maximum degree of all its vertices. For example, the
degree of the graph shown in Figure 1.3 is max(d(vy), d(v2), d(vs), d(vs), d(vs)) which is
d(vi) = 3. A graph whose all vertices have the same degree is said to be regular. If the

common degree is k, then we say that the graph is k-regular.

1.6.6. Some Types of Graphs

1.6.6.1. Undirected Graph

An undirected graph is a graph whose edges have no orientations. The maximum
number of edges in an undirected graph with n vertices is n(n-1)/2. The previously

represented graphs in Figures 1.3, 1.5, 1.6 and 1.7 are undirected.

1.6.6.2. Directed Graph

A directed graph is a graph whose edges have orientations. The edges of a directed
graph can be called arcs or arrows or directed edges. Such a graph is defined as
G = (V, A), where V is the set of vertices or nodes, and A is the set of directed edges (or

arcs). An edge (vi, vj) is considered as oriented from v; to vj, where v; is the origin or

21

beginning of the edge, and vjis its end. The vertex vjis a successor of vi, and viis a
predecessor of vj. An example of a directed graph is shown in Figure 1.8. The edge a; or
(v1, v2) is oriented from v1 to vo, where v; is the beginning of the edge, and v is its end.
The vertex vy is a successor of vz, and vy is a predecessor of vz.

Figure 1.8. An example of a directed graph

1.6.6.3. Mixed Graph

A mixed graph is a graph composed of undirected edges as in undirected graphs,
and directed ones as in directed graphs. Such a graph is defined as G = (V, E, A) with V as
the set of vertices or nodes, E as the set of the undirected edges, and A is the set of the

directed edges (or arcs). Figure 1.9 shows an example of a mixed graph.

Figure 1.9. An example of a mixed graph

22

1.6.6.4. Simple Graph

A simple graph is a graph with no multiple edges and no loops. In a simple graph,
each edge is a pair of distinct vertices, and each pair of distinct vertices represents a

unique edge. The graphs previously shown in Figures 1.3, 1.5, 1.7, 1.8, 1.9 are simple.

1.6.6.5. Multigraph

Multigraph is a graph that consists of a finite set of vertices and edges that connect
two vertices or a vertex with itself, which means that unlike the simple graph, a
multigraph is a graph with multiple edges and/or loops. A multigraph can be undirected,
directed, or mixed. The representative graph of the problem of the seven Konigsberg
bridges (see Figure 1.5) is considered as a multigraph because there are two edges

between the vertices 1 and 2, and two other edges between the vertices 2 and 4.

1.6.6.6. Regular Graph

A regular graph is a graph where all vertices have the same number of neighbors,
that is, the same degree. A regular graph whose vertices are of degree k is called a k-
regular graph or regular graph of degree k. A O-regular graph is a set of disconnected
vertices, while a 1-regular graph has an even number of vertices, where each vertex is
connected only with another vertex. Figure 1.10 shows an example of a regular graph (3-

regular).

Figure 1.10. An example of a regular graph

23

1.6.6.7. Finite Graph

A finite graph is a graph whose set of its vertices is finite. In the opposite case, the
graph is called an infinite graph. Most often, the graphs considered tacitly to be finite

without explicitly saying so.

1.6.6.8. Complete Graph

A complete graph is a finite simple graph whose all vertices are adjacent, which
means that any pair of its vertices is connected by an edge. A complete graph with n
nodes is an (n-1)-regular graph, where each node is connected with the other n-1 nodes.
The number of edges of a complete graph with n node equals to n(n-1)/2. Figure 1.11

shows an example of a complete graph with 4 nodes.

Figure 1.11. An example of a complete graph with 4 vertices

1.6.6.9. Tree Graph

A tree graph is an undirected graph with shape that evokes the ramification of the
branches of a tree. There are two types of vertices in a tree, leaves whose degree is 1 and
internal vertices whose degree is greater than 1. A set of trees is called a forest. A finite
tree is a graph whose number of vertices exceeds the number of edges by exactly one
unit. A vertex v is chosen in a tree to be root if there is a path from v to all the other
vertices. Figure 1.12 shows an example of a tree graph where the vertex v1 is its root, and

the vertices vs, v and vy are its leaves.

Figure 1.12. An example of a tree graph

1.6.7. Graphs Coloring
1.6.7.1. Vertices Coloring

Let G = (V, E) be a graph. A subset S of V is a stable if it contains only non-adjacent
vertices two by two. In the graph shown Figure 1.3 for example, {vi, vs} form a stable, as
well as {v2, va}, {v2, vs}, {vs, va} and {vs, vs}. The coloring of the vertices of a graph
involves assigning a color to all the vertices of the graph so that two adjacent vertices do
not have the same color. A coloring with k colors is, therefore, a partition of the set of
vertices in k stable. Coloring a vertex is just a way to differentiate between that vertex and
its neighbors, which means that it is not necessarily that the vertices must be drawn with
colors, but they can be represented with other means such as drawing them with different
line dashes or labeling them with specific characters.

On the graph shown in Figure 1.13, three colors (denoted ¢y, ¢2 and c¢3) are needed to
color the vertices so that two adjacent vertices have different colors. We thus have three
stables: {v1, vs}, {v2, va} and {vs}. Figure 1.13 shows a vertices cultured version of the
graph in Figure 1.3. The coloring of a graph is not necessarily unique. For example in the
graph shown in Figure 1.13, vertices vz and vs could be colored in the same color, and
also vz and vs, while v; can take the remaining color.

The vertices of a simple graph can be colored using at most four colors so that all
edges have different colors. This conjecture was formulated for the first time by the South
African mathematician Francis Guthrie in 1852 [106]. It was then a question of coloring
geography map where each state is represented with a vertex, while edges represent the

borders between the states. The proof of this theorem was not ascertained until 1976,

25

thanks to Kenneth Appel and Wolfgang Haken [107]. The graphs coloring is used to
solve some problems of incompatibility issues such as the problems of frequency
allocation [108], scheduling [109, 110], and parallelism [111].

Figure 1.13. A vertices colored version of the graph in
Figure 1.3

1.6.7.2. Edges Coloring

The coloring of graph edges involves assigning a color to every edge, in which two
adjacent edges do not take the same color. The problem of vertices coloring can be
adapted to edges coloring. In this circumstance, we will not deal with a graph G itself, but
we deal with an alternative graph noted G’, where each edge of G = (V, E) is equivalent to
a vertex of G> = (E, E’), and two vertices of G’ are connected by an edge if the two
corresponding edges of G are adjacent. The principles of the vertices coloring can be used
to color the vertices of G’. Figure 1.14 shows a colored G’ graph based on the represented
graph in Figure 1.3. Once the coloring of G’ is done, every edge in G will be colored with
the same color as its corresponding vertices in G’. Figure 1.15 shows an edges colored

version of the graph in Figure 1.3 based on the graph in Figure 1.14.

3 C1

Figure 1.14. A colored G’ graph based on the graph in
Figure 1.3

Figure 1.15. An edges colored version of the graph in
Figure 1.3

1.7. Round-Robin Tournament in Graph Theory

From a graph theory perspective, a round-robin tournament is a complete directed
graph. In other words, a graph G = (V, A) is called tournament graph if it is a graph such
that between any node (or vertex) x and any other vertex y, there exists a directed edge
a=(xy).

The tournament graph represents the results of a tournament in which each
participant, x and y confronts each other once and only once, where the encounter ends in
either x wins or y wins. In this case, the nodes represent the participants while the edges
represent the results of the played games. The directions of the edges are from the winner

to the loser.

27

1.8. Round-Robin Tournament Table

1.8.1. Ranking

A ranking or standing is a relationship between a set of elements such that, for one
or more criteria, the first one has a value greater than the second, this in turn greater than
the third and so on, allowing two or more different elements to have the same position.
The order is reflected by assigning to each element an ordinal, which is usually a positive
integer. In this way, to provide a simpler and easier way to understand classification that
replaces more complex information that can include multiple criteria, detailed
measurements can be reduced to a sequence of ordinal numbers.

In many sports, individuals or teams are given rankings. In football for example,
national teams are classified in the FIFA World Ranking [112]. In the Olympic Games,
each country is classified based on gold, silver and bronze medal in the Olympic medal
classifications [113]. In ice hockey, national teams are classified in the IIHF World
Ranking [114]. With the same principle, the participants of sports competitions such as
football leagues and qualifications are ranked based on their number of points in the final
competition table.

In a situation, where two or more participants are having the same ranking (i.e., the

same ordinal numbers), one of the following classifications will be taken into account.

1.8.1.1. Standard Competition Ranking (1224)

In this case, when an ordinal number appears more than once during ranking the
participants of a competition, the k participants with the same number will have the same
ranking r, while the ranking of the participant below will be r+k. That means if two (or
more) participants tie for a position, the positions of all those classified below them are
not affected. For example, if A is ranked before B and C (which both have the same
ordinal number), which are ranked before D, then A is ranked the first, B and C are ranked
second while D is ranked fourth. In this case, no participant would be ranked third and

this position would remain as a gap.

28

1.8.1.2. Modified Competition Ranking (1334)

Unlike the previous case, when some participants have the same ranking, the gap in
the ranking is left before them. In this case, the k participants with the same ordinal
number will have the same ranking r, while the ranking of the participant below will be
r+1, where r equals to the ranking of the participant before plus k (which is the number of
participants with the same ordinal number). As in the previous case, this classification
means that if two (or more) participants tie for a position, the position of all those
classified below them are not affected. As an example, when a participant A is ranked
before B and C which both have the same ordinal number and ranked before D, then A is
ranked as the first, both B and C are ranked as third, and D as fourth of the classification.

In this case, no participant would be ranked as second and this position would remain as a

gap.

1.8.1.3. Dense Ranking (1223)

In this kind of ranking, the same rank is assigned to the participants with the same
ordinal number, where the next participant receives immediately the next rank. In this
case, there is no gap in the ranking, where the k participants with the same ordinal number
will have the same ranking r, while the ranking of the participant below will be r+1.
Therefore, in a competition between 4 participants, if a participant A is ranked the first,
and participants B and C which have the same rank are both ranked after A and ahead of
D, then B and C share the second rank, and D is the third.

1.8.1.4. Ordinal Ranking (1234)

All the participants of a competition in this case receive different ranks. In the event
when two or more participants have the same ordinal number, the assignment of their
ranks may be arbitrarily, but it is usually preferable to use a system that is arbitrary but
coherent, such as one that uses the alphabetical order of the participants’ names. In some
competitions, when two or more participants share an ordinal number, other criteria are
taken into account to determine the ranks of the participants (i.e., tie-breaking criteria)

[115]. These criteria are ranked, in such that whenever there is a tie situation the next

29

criterion (i.e., the one ranked below) will be considered [116]. With this strategy, if A is
ranked before B and C (which both have the same rank), which are ranked ahead of D,
then A is the first, and D is ranked the fourth, while depending on the used criteria to
break the tie situation, either B is ranked as the second and C as the third, or C is ranked

as the second and B as the third.

1.8.1.5. Fractional Ranking (1 2.5 2.5 4)

In this classification, there will be an upper gap and a lower gap in a competition
where two or more participants have the same ordinal number. Thus, their rank would be
the average of the ranks of the upper and lower participants, which means that the rank
would be exactly in the middle. Therefore, if a participant A is ahead of B and C which
are sharing the same ordinal number and both ranked ahead of D, then A is ranked as the
first, D obtains the fourth position, and the rank of each of B and C would be the average
of the first and the fourth positions (i.e., (1+4) /2 = 2.5).

1.8.2. Games Results Table

The game results table of a round-robin tournament is a table which represents the
results of each participant against the others in the form of a matrix. The form of this table
is somehow similar to the matrix of adjacency which is discussed earlier in Section
1.6.3.1. For that, this table can be considered as another way to represent a tournament
graph. Supposing that the graph shown in Figure 1.8 is a tournament graph between 3
participants (i.e., vi, v2 and v3), Table 1.1 represents the corresponding game results table
with the graph in Figure 1.8, where the edges a1, a2 and as mean that vi won against vz, v
won against v and v won against vs respectively. In Table 1.1, a won game is
represented with 1 while a lost game is represented with 2.

In general, let G = (V, A) be a tournament graph of order n. We suppose that the
vertices (or nodes) of V are numbered from 1 to n. The matrix of game results which
represent G consists of a matrix M of size n x n, where M [i] [j] contains the result of the
game between the participants i and j. Since a participant i cannot play against itself,

M [i] [i] = 0. The information in the game results (i.e., the results of each participant

30

against the others) is used to determine the standing of the participants at the end of the

tournament.

Table 1.1. The corresponding game results table of the graph
shown in Figure 1.8

Participants | w1 V2 V3
V1 0 1 1
Vo 2 0 1
V3 2 2 0

1.8.3. Sport Tournament Table

A sport tournament table is a list that shows how successful a participant is
compared to other participants. Such tables are usually published in newspapers and other
media like websites. The tournament table shows at least the names of the participants
and their number of the achieved points or the winning percentage. However, the
numbers of played games, wins, losses, draws (ties), scored goals, allowed goals, and
goals difference of each participant are shown in many tournament tables. The
information of the tournament table is a translation of the game results tables. For
example Table 1.2 represents the tournament table which is derived from the game results
presented in Table 1.1.

Table 1.2. The concluded tournament table from Table 1.1

The participants in a tournament table are ranked from the best to the worst based

on a set of criteria such as the number of the gained points, winning percentage, scored

Participants Wins Loses
Vi 2 0
V2 1 1
V3 0 2

31

goals, received goals, etc. The participants’ ranks can be used to determine the winner,
the promoted, or the relegated participant. The structure of tournament tables differs
according to the evaluation method and set rules of each sport. Generally, the number of
points is taken into account as a criterion to rank the participants. The number of points of
each participant is calculated based on its/his game results. In some sports, to rank a
participant, the winning percentage is taken instead.

Some formats of the round-robin tournament tables, which are commonly adopted
for the big events of different kinds of sports, can be categorized to the following classes

based on the possible results of games:

1.8.3.1. Wins, Draws / Ties and Losses (WDL)

A tournament table with this format mainly contains the columns for each of the
participants, the number of wins (W), the number of draws (D), the number of losses (L)
and the number of points (Pts). Beside these columns, the tournament tables of sports like
football [117] and handball [118] also contain other columns related to the goals for (GF),
goals against (GA), and goals differences (GD). The information in the Pts column (i.e.,
number of points) is the main criterion to rank the participants, where the participants are
ranked based on the descending order of their numbers of points. The following table

presents the form of a football/handball round-robin tournament table:

Table 1.3. The standard form of a football/handball round-robin tournament
table

Teams W D L GF GA GD Pts

The term scores is used instead of goals in some sports tournaments like in Kabaddi
[119]. The Kabaddi tournament table contains the same columns as the previous cases
except for the GF, GA and GD columns, which are changed to be SF, SA, and SD (i.e.,
scores for, scores against, and scores differences respectively) [120]. In the same way,

32

rugby uses the term points instead of goals, where its tournament table contains the PF,
PA, and PD columns instead of GF, GA and GD [121].

In regards to the total number of points, there are three systems that are followed by
the addressed kind of sports in this class of tournament tables. The first system is used in
football tournaments where each team earns three points for every win (i.e., Pw=3) and a
single point for each draw (i.e., Pp=1), while it earns nothing in the case of a loss (i.e.,
PL=0). The second system is used by most of the other kind of sports. It differs from the
first system because the participant earns two points only instead of three in the case of a
win (i.e., Pw=2). Unlike the other two systems, the adopted point system in the chess
tournaments states that a player earns a single point in the case of a win (i.e., Pw=1), and a

half of point in the case of a draw (i.e., Pp=1/2).

1.8.3.2. Wins and Losses (WL)

The tournament table of this class does not include D column, which means the
participants will either win or lose their games. The basketball tournament table, for
example, contains the same columns as the rugby table except for the D column [122].

Table 1.4 presents the form of a basketball round-robin tournament table.

Table 1.4. The standard form of a basketball round-robin tournament table

Teams W L PF PA PD Pts

In regards to the volleyball round-robin tournaments, in addition to the W, L and Pts
columns, the tournament table includes the columns for each of the number of the won
sets (SW), the lost sets (SL), and the sets ratio. Also, the table contains columns for the
total of the scored points (PF), the points against (PA), and the points’ ratio [123]. Table
1.5 presents the form of a volleyball round-robin tournament table.

The total number of points in this class of tournament tables is calculated by giving

the participant two points for a won game (i.e., Pw=2) and one point for a lost game (i.e.,

33

PL=1). The number of points is not always the main criterion to rank the participants. For
instance, in some kinds of sports tournaments such as lacrosse, the tournament table does
not include the column Pts, and instead the number of the won games (i.e., the value of

the column W) is taken into account [124].

Table 1.5. The standard form of a volleyball round-robin tournament table

Sets points
SwW SL ratio PF PA | ratio

Teams | W L | Pts

1.8.3.3. Wins X, Y, and Losses (WXYL)

This class includes the sport tournament tables which have no column D and contain
two other columns related to each other, in the same way as the W and L columns. We
generalize the names of these columns by symbolizing them by X and Y. In this case,
when two participants A and B play against each other, if A ends the game in X, the result
for B must be Y. In ice hockey [125], the tournament table is much like the football
tournaments table except that the D column is replaced with the columns of the overtime
wins (OTW) and overtime losses (OTL) as X and Y respectively. The evaluation system to
calculate the total number of points of each participant gives three points to the winner
(i.e., Pw=3), two points to the overtime winner (i.e., Porw=2), a point to the overtime loser
(i.e., Pott=1), and none to the looser (i.e., P.=0). The following table presents the form of

an ice hockey round-robin tournament table:

Table 1.6. The standard form of an ice hockey round-robin tournament table

Teams W OoTW OTL L GF GA GD Pts

34

As X and Y columns, the curling round-robin tournaments table [126] contains the
shoot-out wins (SOW) and shoot-out losses (SOL) columns respectively. These columns
(i.e., SOW and SOL) are related to each other in the same way as OTW and OTL, as
presented in ice hockey tournaments table. The point system in this case is similar to that
of ice hockey, where each participant is given three points for a won game, two points for
a shoot-out won game (i.e., Psow=2), one point for a shoot-out lost game (i.e., PsoL=1),

and none for a lost game.

1.8.3.4. Wins, Losses, Ties / Draws and No Result (WLTNTr)

This case occurs in the cricket round-robin tournaments [127], where the
tournament table contains the W, L, T and NR columns. The team is awarded two points
for a won game (i.e., Pw=2), one point for a tied game (i.e., Pr=1) or a game with no
result (i.e., Pnr=1), and none for a lost game (i.e., P.=0). Table 1.7 presents the form of a
cricket round-robin tournament table.

Table 1.7. The standard form of a cricket round-robin tournament table

Teams W L T NR Pts

1.9. Parallel Computing

1.9.1. Overview

In computer engineering, parallel computing consists of implementing digital
electronic architectures to make it possible to process information simultaneously, as well
as the specialized algorithms for this process. These techniques aim to carry out the
greatest number of operations in the shortest possible time. The processing speed which is
linked to the increase in the frequency of processors eventually reached its limits. To

solve this dilemma, multi-core processors have been created for the computers since the

35

mid-2000s [128], which made it possible to process several instructions simultaneously
within the same component. These architectures can be made effective by using new
methods for programming the various tasks. Such methods were initially developed to be
used on supercomputers, which were at one time the only machines with many processors
[129, 130]. After that, multi-core processors became more and more readily used by
software developers due to the ubiquity of such architectures.

Certain types of calculations lend themselves particularly well to parallelization,
such as: fluid dynamics [131], weather predictions [132], modeling and simulation of
problems of larger dimensions [133, 134], information processing and data mining [135,
136], decryption of messages [137], password research [138], image processing [139],

and computer generated imaging [140].

1.9.2. Flynn's Taxonomy

Flynn's taxonomy [141] was proposed by the American Michael J. Flynn in 1966,
which is one of the first created systems to classify computers. Programs and
architectures are classified according to the type of organization of the data flow and the

instructions flow. The four models of this classification are shown in Table 1.8.

Table 1.8. Flynn's taxonomy

Single instruction Multiple instructions
Single data SISD MISD
Multiple data SIMD MIMD

1.9.2.1. Single Instruction on Single Data (SISD)

Single instruction on single data (shortly called SISD) is a term designating a
hardware architecture in which a single processor executes a single instruction flow on
data residing in a single memory. This means that there is no parallelization in this case.

Figure 1.16 shows a representation of this architecture.

36

Instructions

CPU

Data
h 4

Figure 1.16. A representation of the architecture SISD

1.9.2.2. Multiple Instructions on Single Data (MISD)

Multiple instructions on single data (shortly called MISD) are an architecture which
designates a mode of operation of computers equipped with various arithmetic and logical
units operating in parallel. In this model, the same data is processed by several processors
in parallel. This model can be used in digital signal processing [142] and treating graphics

algorithms [143]. The architecture MISD is represented by Figure 1.17.

Instructions

S| cpPu
o | F—— cPu
E - W
> CPU
W
> cpu

Figure 1.17. A representation of the architecture MISD

1.9.2.3. Single Instruction on Multiple Data (SIMD)

Single instruction on multiple data (shortly called SIMD) is an architecture which

designates a mode of operation of computers with parallelism. In this mode, the same

37

instruction is applied simultaneously to multiple data to produce multiple results. The
SIMD model is particularly well suited for treatments whose structure is very regular, as
is the case for matrix calculation. Generally, applications that take advantage of SIMD
architectures are those that use a lot of arrays, matrices, or similar data structures [144].

Figure 1.18 shows a representation of this architecture.

Instructions

| CPU
o ——>] cpu
g \ 4
> CpU
v
> CpU

Figure 1.18. A representation of the architecture SIMD

1.9.2.4. Multiple Instructions on Multiple Data (MIMD)

Multiple instructions on multiple data (shortly called MIMD) are an architecture
which designates multi-processor machines where each processor executes its code
asynchronously and independently. To ensure data consistency in this architecture, it is
often necessary to synchronize the processors with each other. Besides the newer work of
networks of workstations, this architecture includes traditional multiprocessors (multicore

and multi-threaded) [145]. A representation of this architecture is shown in Figure 1.19.

38

Instructions

| CPU
o —3| cpPU
g v
> cpu
h 4
> cpu

Figure 1.19. A representation of the architecture MIMD

1.9.3. Threads

A thread is a sequence of programmed instructions that can be handled separately
by a scheduler, which is usually part of the operating system. A thread is similar to a
process because both represent the execution of a set of machine language instructions.
From the user's point of view, these executions seem to take place in parallel. However,
each process has its own virtual memory [146] and all threads can share a common virtual
memory [147]. In most of cases, programs which use threads are faster than classically
structured programs, especially on machines with multiple processors. The main cost of
using the threads is caused by switching the context of the threads [148].

Threads based programming (or multi-threading programming) is more rigorous
than sequential programming, and access to certain shared resources must be restricted by
the program itself. It is therefore compulsory to set up synchronization mechanisms like,
for example, using semaphores [149], while keeping in mind that the use of
synchronization can lead to deadlock [150] situations if it is poorly used.

The complexity of programs with threads is also significantly greater than that of
the sequential programs [151]. This increased complexity, when poorly managed during
the design or implementation phase of a program, can lead to some problems such as

mutual exclusion [152].

39

1.9.4. Programming Languages and Threads

Some programming languages, such as Smalltalk [153] and some Java
implementations [154] include support for threads implemented in user space (such as
green threads), regardless of the capabilities of the host operating system. Most languages
(like: Java, C#, C++, Ruby, etc.) use language extensions or libraries to directly use the
operating system's multi-threading services.

Languages like Haskell use a hybrid system halfway between the two approaches
[155]. Note that, for performance reasons depending on needs, most languages allow the
use of native threads or green threads. Other languages, such as Ada, implement
multitasking independent of the operating system without actually using the concept of
thread [156].

Some other programming languages and extensions like OpenCL and Cuda try to
fully abstract the concept of concurrency and threading from the developer, where they
are designed to use GPU for sequential parallelism, without requiring concurrency or
threads.

1.10. Algorithmic Complexity

1.10.1. Complexity Analysis

In computer science, the complexity analysis of a given algorithm consists of the
formal study of the necessary resources' costs to execute this algorithm (usually execution
time and memory space). The formal study provides a theoretical estimation for the
required resources to solve the related computational problem. Most algorithms are
designed to work with inputs of arbitrary sizes. In general, the complexity of an algorithm
depends on the sizes and values of its inputs, the number of computer steps required to

process it and the occupied memory space.

1.10.2. Asymptotic Algorithmic Complexity

Asymptotic algorithmic complexity is the use of asymptotic analysis to estimate the

complexity of algorithms and computational problems. The term “complexity” in the field

40

of algorithmic information theory mainly refers to the asymptotic complexity. It is often
associated with the use of “Big O” notation, which is the upper limit of the asymptotic
complexity of an algorithm or problem (for example O(n?)).

Calculating the number of operations performed by an algorithm and the required
memory size may be impossible because of factors like the values of the inputs, the
number of the iterations, the fulfillment of the conditions and the depth of the recursivity,
etc. Therefore, using the concept of Big O to give an approximation of the number of

operations and the memory size of an algorithm is more practical.

1.10.3. Big O Notation

Supposing that f and g are two functions, we say that f is of the order of g, if there
exists a constant « and an integer no such that: f(n) < a*g(n) for all n > no. In this case, f
can be denoted as: f(n) = O(g(n)). Figure 1.20 shows an example of Big O notation, where
f (n) = O(g(n)) as there exists « = 1 and no = 8 such that f(n) <g(n) whenever n > 8.

I N [N (N NN NN N NN 3
1 2 3 4 53 o 7 8 9 10 11 12

Figure 1.20. An example of Big O notation

The Big O notation can be extended to the case where the function f depends on
multiple variables. For example let f and g be positive functions of two variables; we can
say that f(n, m) = O(g(n, m)) if there exists a constant « and two integers no and mo such

that: f(n, m) <a*g(n, m) for all n >ne and m > m.

41

1.10.4. Properties of Big O

e The constants are not important. E.g., O(c*n*) = O(n®), O(c) = O(1), where c is a
constant.

e Lower order terms are negligible. E.g., O(Co + c1*n + c2*n® + ... + c*n*) =
O(ck*n*) = O(n*), where co, C1, G2, ..., Ck are constants.

e Sum of functions: O(f) + O(g) = O(f + Q).

e Product of functions: O(f) * O(g) = O(f * g).

o Reflexivity: f=0O(f).

o Transitivity: if f = O(g) and g = O(h) then f = O(h).

1.10.5. A Simple Example of Big O
Let us consider the following algorithm which calculates a sum of squares:

Inputs: n
Output: sum

1: sum <« 0
2: for 1 « 1 to n do
3: sum « sum + 1i*1

We can calculate the time complexity T(n) and the memory space complexity $(n)
for this algorithm such that ty, t2, t3, ts, and ts are respectively the execution times of the
assigning, incrementing, testing, addition, and multiplication, and s is the necessary
memory space to store an integer. In this case:

T(n) = t1 + tr + N*(taHs+tatti+t) = 2%t + n*Y> ¢ =c *n+c = O(n)

S(n) =3*s=c3=0(1) =1 i 1 2

1.10.6. Algorithmic Complexity Types

Let T(n) be the maximum execution time of an algorithm for a data of size n. In the
following we present a list of the functions commonly used in the asymptotic algorithmic

complexity:

42

e T(n) = O(1) (constant time): The execution time is independent of the size of
data to be processed.

e T(n) = O(log(n)) (logarithmic time): We generally encounter such complexity
when the algorithm breaks a big problem into several small ones, so that the
resolution of only one of these problems leads to the solution of the big problem.

e T(n) = O(n*log(n)): The algorithm splits the problem into several smaller sub-
problems which are solved independently. Solving all of these smaller problems
solves the original one.

e T(n) = O(n) (linear time): This complexity is generally obtained when the
algorithm performs in a constant time on each input data.

e T(n) = O(n®) (quadratic time): This appears in particular when the algorithm
considers all the pairs of data among the n inputs (e.g., two nested loops).

e T(n) = O(c") (exponential time): It is often the result of a brute search for a
solution.

The graphical representations of these functions are illustrated in the following

figure:

100000

10000

nloga(n)

1000

100

10 loga(n)

1 t t t } } } i

2 4 8 16 32 64 128 256

Figure 1.21. The graphical representation of the functions commonly used in the
asymptotic algorithmic complexity

43

1.10.7. Complexity Classes

In theoretical computer science, and more precisely in complexity theory, a
complexity class is a set of algorithmic problems whose resolution requires converging
amounts of a certain resource (mostly time or memory space). A hierarchy of complexity
classes is formed with less powerful classes being completely contained in the higher

complexity classes [157]. Formal methods can be used to relate these classes.

1.10.8. P and NP Classes

We say that a problem is in P if it can be solved in a polynomial time with respect to
the size of the input; i.e., if O(f(n)) is the complexity of a problem with an input of size n,
f(n) must be a polynomial function (e.g., O(n), O(n?), O(n®), ...). On the other hand, if the
problem fails to be solved in a polynomial time, but the validity of its output can be
verified in a polynomial time, we say that the problem is in the NP class. For a problem
that cannot currently be solved in a polynomial time, we cannot simply claim that it is
impossible to solve that problem in a polynomial time, but a polynomial solution for it
may be found in the future. So, we can refer to NP as the class of the problems that are
solved in a non-deterministic polynomial time [158].

The relationship between the classes P and NP can be defined that P is a subset of
NP [159], but there is no proof yet that P = NP. Although P # NP is not yet proved,
however, most computer scientists believe it [160]. Figure 1.22 represents P and NP
classes under the assumption that P # NP.

NP

Figure 1.22. P and NP classes under the assumption that
P#NP

44

1.10.9. Reduction

In computability and complexity theory, the reduction is an algorithm that
transforms a problem into another one. This algorithm is used to show that a problem is at
least as difficult as another one [161]; i.e., if a problem A can be reduced to (or
transformed into) a problem B, and A is difficult, then B is at least as difficult. In some
cases, a reduction can also be used to show that a problem is easy [161]; i.e., if a problem
A can be reduced to B, and A is easy, then B is at least as easy. The reduction is called

polynomial when a problem A can be reduced to be B within a polynomial time [159].

1.10.10. NP-Hard and NP-Complete Classes

A problem is belong the class NP-hard if any problem of the class NP can be
reduced to it in a polynomial reduction. To prove that a problem B is NP-hard, instead of
reducing all the problems of the class NP to it, it would be enough to select a problem A
which is known to be NP-hard and reduce it to B in a polynomial time [161].

If a problem is in NP and NP-hard classes, this implies that it is an NP-complete
problem [161, 159]. Figure 1.22 represents each of P, NP, NP-hard and NP-complete

classes under the assumption that P # NP.

NP-
NP complete

Figure 1.23. P, NP, NP-hard and NP-complete classes under the assumption
that P # NP

1.10.11. An Applied Example (Clique Problem)

In this example, we present the proof that the clique problem is an NP-complete
problem. The clique problem is the problem of determining the maximum sized complete

45

sub-graph of a specific graph. For example, the represented graph in Figure 1.24 contains
a clique of size 4 (i.e., the complete sub-graph consisting of the nodes 1, 2, 3 and 4).

N/

Figure 1.24. A graph with a clique of size 4

The cliqgue problem has an exponential time complexity [163] (i.e., non-
deterministic polynomial time). On the opposite side, verifying that a graph with n nodes
contains a clique of size k can be done in polynomial time [162]. So, based on what is
explained in Section 1.10.8, we can say that the clique problem is an NP problem and not
a P problem.

Based on Section 1.10.10, in order to prove that the clique problem is an NP-hard
problem, we have to select a known NP-hard problem and reduce it to the clique problem.
Boolean satisfiability problem (shortly SAT) is an NP-complete problem [164] (i.e., NP-
hard) that can be reduced to a clique problem. The SAT problem is a decision problem,
which, given a propositional logic formula, determines whether there is an assignment of

variables that makes the formula true. For example, given the following conjunctive

Egg%%d %?@%@?E@%%@ﬁ%ﬁ SR s e %&ﬁé il

e For CNF=Cy ACo A ... ACpy, where each Ci = Li1 V Li2 V ... V Lim, we place
each Li;jas anode.

e There would be an edge between every two nodes unless they are from the same
clause or one is the negation of the other.

46

For a CNF with n number of Lij, transforming it into a graph requires a time
complexity of O(n?). Thus, we can say that the reduction is done in polynomial time. By

applying the transformation rules on ¢, we get the represented graph in Figure 1.25.
The resulted graph from a CNF with k clauses contains at least a clique of size k as

the clique with the maximum size. We can see that the graph in Figure 1.25 contains 3

cliques of size 3. When we represent each node of those cliques with 1 (i.e, a true value),

or By ThiAisaHARER FONEXARIEKIDg RRERTEMES g PY ¥y A (v TR oG 3 28

Figure 1.25. J]g[%ngfé)rrarghng ¢ =1 VX)A XLV X)A (X1 V X3)

Since a CNF problem is reduced into a clique problem in polynomial time and CNF
problem is an NP-hard problem, we can say that the clique problem is an NP-hard
problem. Given that the clique problem is an NP problem, we can also say that it is an

NP-complete problem.

2. THE ACHIEVED WORK

2.1. Introduction

The study presented in this thesis aims to determine and enumerate all the possible
states of the final tables for single round-robin tournaments. A table state obviously
corresponds to a set of data components residing in that table, varying in range and
number of values among different sports disciplines. Therefore, an analysis of the final
table data is made for some popular sports disciplines such as football and basketball.
Each participant in a sports tournament has a final position based upon their standings
related to game results. The measure of standings differs according to sports disciplines.
They are basically associated with the values such as W, D and L in the case of football,
W and L in the case of basketball, W, OTW, OTL, and L in the case of ice hockey, and W,
L, T, and NR in the case of the cricket. Firstly, we generalize tournament graphs to
contain different sports disciplines, which are previously presented in Section 1.8.3. Then
two result-based approaches are described to enumerate the possible states of a final
tournament table.

The first approach generates every possible state and seeks to prove its validity,
trying to construct a tournament graph based on that state. In this approach, the state is
taken into account as a valid state only if at least one tournament graph can be sought.
The second approach is based on the generation of every possible tournament graph, from
which then its corresponding state is derived. In this approach, the state is taken into
account only if it is not already found. To optimize the search space of both approaches,
some general constraints are proposed in terms of the standings and points of the
participants. Besides, a multi-threading based parallelization technique is implemented to
enhance the performance of the approaches, assigning their non-overlapping operations to
different threads.

Since the first approach starts by generating a state of a final tournament table and
ends with trying to build a tournament graph based on it, we call it the backward
generating approach. Similarly, as the second approach starts by generation a tournament
graph and ends with concluding its corresponding state of tournament final table, we call
it the forward generation approach. The control flow diagram of each approach is shown
in Figure 2.1 and Figure 2.2.

48

Begin

{

State Generating |e

\ 2
Validity Checking

Valid

Yes

Save

End

Figure 2.1. The control flow diagram of the backward
approach

Begin

{0

Graph Generating jg—

v

State Concluding

No

s

Save

0

Figure 2.2. The control flow diagram of the forward
approach

49

2.2. Classification of Game Results

As seen in Section 1.8.3, there are some dependencies among the table columns that
hold game results. The result of a game can affect the data on more than one column.
Considering the relationship of the columns to each other, we define two sets that contain
game results; namely C; and Ca.

The set C1 holds game results which can change the data on at least two columns of
the tournament table. Let R: and R> denote two distinct game results. When a participant
A plays against another participant B, the result of the game is differently interpreted for
two teams. If the game is ended in Ry for A, the result for B will be R2. An example of
such game results is W (Wins) and L (Losses); that is, the fact that a team A wins against
another team B means that B loses the game. The game results are held as pairs of
{R1, R2} in Cy, expressing that, if Ry is related to Rz, neither Ry nor Rz can be related to
other possible game results. For example, in the case of the ice hockey table, W is related
to L and OTW s related to OTL, but W is not related to either OTW or to OTL, and as
well as L. Thus, Ci can be represented as {{W, L}, {OTW, OTL}}, which leads to the
general form in Eq. (2.1).

Ci={{R1, R:}.{ Rs, Ra}, ..., {Req1, Rag}}, where q = [y 2.1)

The other set C. contains game results which are related to the data on only one
column of the tournament table. Let R denote a game result. When a participant A plays
against B, the game is ended in R for both A and B. A typical example of such game
results is D (Draws). Given cricket tournaments, C> can be represented as {T, NR}.
However, C> can also be empty, as in the case of basketball tournament tables. In general,
the set C> is written in the general form given by Eq. (2.2).

Co={Rog+1, Rog+2, ..., Rag+r-1, Rog+r}, Where g = |C1| and r = |Cy (2.2)

Table 2.1 shows the sets C; and C; for the tournament tables of some sports
disciplines given in Section 1.8.3.

50

Table 2.1. The sets C1 and C» for the tournament tables given in Section 1.8.3

Sports Game Results Ci C2
Football, rugby,
handball, chess W, D and L W, L3} {D}
Basketball, volleyball,
tennis, lacrosse Wand L W, L3} {
Ice hockey W, OTW, OTLand L | {{W, L}, {OTW, OTL}} {}
Curling W, SOW, SOL and L | {{W, L}, {SOW, SOL}} {3
Cricket W, L, Tand NR {{Ww, L}} {T, NR}

2.3. General Concepts of a Final Tournament Table

2.3.1. Played Games

In a round-robin tournament, every participant plays against all other participants. In
general, the number of games played by a participant in a tournament between n
participants is given by Eq. (2.3).

gp=n-1 (2.3)

It is clear that the set of all the played games consists of possible ways to select two
participants from the set of all participants without taking the order into account. Hence,
the total number of the games which is played by the end of the tournament can be
obtained based on Eq. (2.4).

g=C(n, 2) = nl/2I(n-2)! =n(n-1)/2 (2.4)

Let us consider a tournament with n = 4 participants of A, B, C and D. In this case, a
participant (for example, A) plays a total of n - 1 = 3 games against the others (i.e., B, C

and D). The tournament contains a total of 6 games represented by the set

Sq(4) = {{A. B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}.

51

2.3.2. Possible Game Results

Tournament tables hold some properties associated with the values of game results.
In a tournament table, the total number of game results from the set C, would be even,
and the sum of the first elements of each pair from the set C: would be equal to the sum
of the second elements. This follows from the fact that each game in a tournament
contributes either two to an element in C; or one to each element of a pair in Cx.

In a final football tournament table, for example, each game in the tournament
contributes either two to the total number of draws or one to the total number of wins and
one to the total number of losses. For 1 < k < n, we denote by W(k), D(k) and L(k)
respectively the numbers of the won, drawn, and lost games by team T(k). Thus, the

relations between the football game results can be formalized by:

0 < W(K), D(K), L(k) <n-1 (2.5)
i

k=1D(K)] = 0 mod 2 (2.6)
s A

k)=S0 LK) 2.7)

Each of relations (2.5), (2.6) and (2.7) can be generalized to cover tournament tables

of other sports as follows:

0< Rl(k), Rz(k), ceey R2q+r(k) <n-1 (28)
" }é(k)] =0mod 2, where R € (2.9)
k=1 j i 2
' Rn(k) = }F“:’ (k), where {R, }eC (2.10)
Z i i+1 1
k=1 i k=1

i+1
In a final tournament table, the sum of corresponding values of the game results for

each participant is equal to the number of the games played by each participant ge. l.e.:

=% R(K) + T R (k), where1<k<n (2.11)

i=1 i j=2p+1]

52

Table 2.2 shows the final table of Group B in the 2018 FIFA World Cup [165].
There are four teams playing against each other in a single round-robin tournament,
where each team played 3 games. In Table 2.2, gp equals to the sum of W, D and L for
each team at any position k, i.e.: gp = 1+2+0 = 1+2+0 = 1+1+1 = 0+1+2 = 3.

Table 2.2. The final table of group B in the 2018 FIFA World Cup

Team w D L Pts
Spain 1 2 0 5
Portugal 1 2 0 5
Iran 1 1 1 4
Morocco 0 1 2 1

Table 2.3 shows the application of Eq. (2.11) for the final tournament tables

presented in Section 1.8.3:

Table 2.3. Application of Eq. (2.11) for the final tournament tables given in Section 1.8.3

Sports C1 C2 Op
hondball chee | WL} | () WK + LK + DK
Basketball, volleyball,
tennis, lacrosse W, L3} { W(k) + L(K)
Ice hockey W L}, {3 W(K) + L(k) + OTW(K) + OTL(K)
{OTW, OTL}}
Curling W Lk, {} W(K) + L(k) + SOW(K) + SOL(K)
{SOW, SOL}}
Cricket {W, L}} {T, NR} W(K) + L(k) + T(k) + NR(K)

Table 2.4 shows the final table of Group A in the 2014 FIBA Basketball World Cup
[166]. Six teams are participating in this group, where each team played 5 games. The
total number of the played games g can be calculated based on the values of W and L

using the following relation:

53

g=X k=1
k=1W(k)=>" L(k), where 1 <k<n (2.12)
By applying Eq. (2.12) on the data of Table 2.4 we find that: g = 5+4+3+2+1+0 =
0+1+2+3+4+5 = 15.

Table 2.4. The final table of Group A in the 2014 FIBA Basketball
World Cup

Team Pts

Spain

France

Serbia

Iran

w
5
Brazil 4
3
2
1
0

o~ BN, |O|TT
o1 | OO | N| | ©

Egypt

Since C = {} for basketball tournaments, we cannot rely on Eq. (2.12) to calculate
g, for example, for the case of football. The total number of the played games in Table 2.2

can be calculated based on the values of W, D and L by the following relation:

9= L2, (] + =1 D)1V2 = [XE=1 L(K)] + [XF=1 D(K))/2,
where 1 <k<n (2.13)

By applying Eq. (2.13) on the data of Table 2.2 we find that: g = (1+1+1+0) +
(2+2+1+1)/2 = (0+0+1+2) + (2+2+1+1)/2 = 6.

To write a more general relation than Eq. (2.13) which can cover all the cases of
final sports tournament tables, we assume that there is an n-participant tournament, where
C1 and C» contain q pairs and r elements, respectively. Thus, the general relation can be

given as follows:

Q[ng X" %kz)] + X" (k)]/2
R " R
SRS O S N O/ (2.14)

R

u=1 k=1 2u v=1

55

Table 2.5 shows the application of Eq. (2.14) for the final tournament tables
presented in Section 1.8.3:

Table 2.5. Application of Eq. (2.14) for the final tournament tables given in Section 1.8.3

Sports C1 C2 g
Z,_ WKIT L, _ DRIz =
Football, rugby, 71 =1
handball, chess W, L3} D} [fk=1L(k)] ' [2{::1 b2
Basketball, volleyball, X" wk] =" LK)]
tennis, lacrosse W, L3} { k=1 k=1
[_ WIKIF L, _ UITWIK] =
Hw, L}, LR+ DT OTL(K
Ice hockey {OTW, OTL}} {3 [’2k21 (k)] + [fkﬂ (k)]
27 _ WKITTLL,_ SUWEK =
. {{w, L}, L]+ D SOL(k
Curling comsoyy | © [’Ekzl () [szl (K]
lL'k‘_JNW(K)J + uL[’%ﬁl K+
: X" NRKI)/2= X" LK)+
Cricket {{W, L}} {T, NR} [[ﬁ:,—nl TM] + [3" kb w]Il/2
k=1 k=1

2.3.3. Total Number of Points

The participants of a sport tournament get a specific number of points for each
game result. In the case of football tournaments, for example, a team at the kth position of
the final table gets 3 points for a won game, 1 point for a drawn game, and none for a lost
game. In this case, the total number of points, P(k), gained by a team at the kth position is
calculated based on the following relation:

Pts(k) = 3W(k) + D(k), where 1 <k <n (2.15)

To generalize Eq. (2.15), we suppose that P; is the number of points which is gained
from a game in R, where 1 <i < 2g+r. In this case, Eq. (2.15) can be generalized as
follows:

Pts(k) = X**" R (k)*P , where 1 <k <n (2.16)

i=1 i i

56

Additionally, the total points scored by a participant at the kth position must be
greater or equal to those scored by the next participant (i.e., the one at the (k+1)th

position), resulting in the following relation must be valid:

Pts(k) > Pts(k+1), where 1 <k<n-1 (2.17)

There is a case when the number of the won games is taken into account as the main
metric to rank the participants as in the sport of lacrosse, which is shown in Section
1.8.3.2. In this circumstance, the number of the games, W(k), won by every participant is

considered as the number of points, Pts(k).

2.3.4. Set of the Possible Games Results

For a 4-team round-robin basketball tournament, the general set of the possible W
and L values (WL) that might be gained by a team is Sw.(4) = {(3, 0), (2, 1), (0, 2),
(0, 3)}. In this case, there are 4 possible values for WL. Generally, the set Swi.(n) can be

generated as follows:

Sw(n) =W, 1) [Ywe{0, 1, ...n-1} V1e{0,1, ... n-1}
w+l=n-1} (2.18)

In a round-robin football tournament with 4 teams, the general set of the possible
W, D and L values (WDL) that might be gained by a team will be Swo.(4) = {(3, 0, 0),
(2,1,0),(2,0,1),(1,2,0),(1,1,1),(1,0,2),(0,3,0),(0,2,1), (0,1, 2), (0,0, 3)}. Inthis
case, there are ten possible values for WDL. In general, SwoL(n) can be generated as

follows:

SwoL() = {w, d,) |vwe{0,1,..,n-1}, vde{0,1,..,n-1}

vie{0,1,..,n-1},w+l=n-1} (2.19)
For a tournament with n teams and a number of possible game results equals to

2qg+r, the set S(n, 2g+r) can be generated as follows:

57

S(n, 2g+r) = {{r1, r2, ..., ragwr} |V 11 € {0, 1, ..., n - 1},
Vre{0,1,..,n-1}, .., (2.20)

v r2q+r€{0, 1,..,n- 1},
rL+r2+ ..+ ryge=n-1}

We suppose that the columns of possible game results are positioned in the final
tournament table as (Ri, Rz, ..., Rog+r). In this way, the elements in the set S can be
determined through some simple arithmetic operations. For example, the first element of
S corresponds to the one with R1= n-1 and Ri= 0, where 2 < i < 2g+r; that is, the first
element has the form (n-1, O, ..., 0). Based on the first element of S, the other elements
can be generated, which will have the form (n-1-j,j, O, ..., 0), where 1 <j < n-1. To
differentiate between the elements, we suppose that the first element is at layer 1, while
the elements generated from this one are at layer 2. The elements of layer 2 can be used to
generate the elements of another layer (layer 3) with the same principle, where R2 and R
will be taken into account instead of Ry and R.. By applying the same process on each
new layer, all the elements of S will be generated up to layer 2g-+r.

The process of generating the elements of S can be represented by a tree data
structure, where the root node of the tree contains the element at layer 1 and the leaves
contain the elements of layer 2qg+r. Figure 2.3 shows the corresponding tree of the set

S(4, 2), while Figure 2.4 represents the corresponding tree of S(4, 3).

Layer 1 (3,0)

Layer2 (2,1) (1, 2) (0, 3)

Figure 2.3. The corresponding tree of S(4, 2)

58

Layer 1 (3,0,0)

Layer2 (2,1,0) (1,2,0) (0,3,0)

TN

Layer3 (2,0,1)(1,1,1) (1,0,2) (0,2,1) (0,1,2) (0,0,3)

Figure 2.4. The corresponding tree of S(4, 3)

The number of the elements of S can be calculated via the number of the nodes of
its corresponding tree. It is obvious that the number of the nodes in the tree presented in
Figure 2.3 is 4, which means that |S(4, 2)| = 4. The value of |S(4, 2)| can be calculated
from the fact that there is only one node in layer 1 (root), and 3 branches are outgoing
from that node, where each branch leads to a leaf. In this case |S(n, 2)| can be written as:

i=1 (2.21)
IS(n,2)|=1+n-1=1+ ¥

1

When the number of game results is greater than two, Eq. (2.21) will not be of
much practical use, and there will be a need to use a recursive function to cover all the
possible nodes. Such a recursive function must involve two parameters, where one of
them indicates the number of layer (i.e. tree depth), which is also an index to a game
result in the final tournament table. The other parameter indicates the value of the game
result which is currently handled. Let us suppose that a function f calculates the number
of all the nodes which can be generated based on a specific node in a specific layer. At a
layer |, where the value of Ry is 1, the number of the nodes that can be generated based on

the related node can be calculated using the function f as follows:

f(l,) =1+ Y% £(1+1,V)
f(2q+r, x) =1, where 1 <x<n-1 (2.22)

To calculate the number of the elements in a set S(n, 2q+r) of an n-participant
tournament table with 2q+r possible game results, it will be enough to call the function f
with the related parameters to the root (I=1 and r=n-1). In this case, we can write
IS(n, 2g+r)| as:

59

IS(n, 2g+r)| = (1, n-1) (2.23)

The number of the nodes in the tree given in Figure 2.4 (|S(4, 3)|) can be calculated
using Eq. (2.23) as follows:
IS(4, 3)| =f(1, 3)
f(1,3)=1+1(2,1) +1(2, 2) +1(2, 3)
f(2,1) =1+1(3, 1)
f(2,2)=1+1(3, 1) +1(3, 2)
f(2,3) = 1+ (3, 1) + f(3, 2) + (3, 3)
f(3,1)=1(3,2)=1(3,3) =1
f2,1)=1+1=2
f2,2)=1+1+1=3
f2,3)=1+1+1+1=4
IS(4,3)|=f(1,3)=1+2+3+4=10
Table 2.6 shows the application of Eq. (2.23) for the final tournament tables

presented in Section 1.8.3:

Table 2.6. Application of Eq. (2.23) for the final tournament tables presented in Section

1.8.3
Sports Ci Cz IS(n, 2q+r)|
PULS)T= Z -
Football, rugby, -
handball, chess {W. Ly (b} n(n+1)/2
Basketball, volleyball, S, 2)l= X" 1=n
tennis, lacrosse W, L} U i=1
sn.4)=3" ¥ _i=
Ice hocke WL}, {3 wo JTL
y {OTW, OTL}} 2 [G+1)/2]
j=1
s al=>" X i=
Curlin LW, L) {3 i
J {SOW, SOL}} 2 lG+1)/2]
j=1 .
s 4)=3" ¥ _i=
Cricket QWL [{UNRY | 5 7)
j=1

60

2.3.5. Game Result Cases

In a tournament, a single game can have 2g+r different results, namely R, Ro, ...
Rzg+r, Where q is the number of the pairs of Cy and r is the number of the elements of Co..
We call each result case a possible result of played games. In a tournament of n
participants, each participant can achieve one of (2g+r)"* different result cases. Given a
football tournament with n = 4 teams, for a single team, the set of the possible result cases
would contain 3*' = 27 different result cases.

Tables 2.7 and 2.8 show respectively the possible result cases which can be
achieved by a participant playing 3 games in the case of tournament tables with WL and
WDL game results, while Table 2.9 shows the possible result cases which can be achieved
by a participant playing the same number of games in the case of tournament tables with
WXYL and WLTNr game results. In the case of WL, for example, the result case of
(1, 1, 2) means that the first and the second games end in a win, and the last game ends in
a loss, while the result case of (1, 3, 2) in the case of WDL means that the first game ends
in a win, the second ends in a draw, and the last one ends in a loss. The resulting case of
(4, 1, 3) in the case of WLTNr means that the first game ends with no results, the second
game ends in a win, and the last one ends in a tie, while the same result case in the case of
WXYL means that the first game ends in Y (OTL or SOL), the second one ends in a win,
and the last ends in X (OTW or SOW).

Table 2.7. Possible result cases in a 4-participant tournament with
game results of WL

WL Result cases

(3,0) 1,1,1)

(2,1) 1,1,2),(1,2,1),(2,1,1)
1,2 1,2,2),(2,1,2),(2,2,1)
0, 2) (2,2,2)

61

Table 2.8. Possible result cases in a 4-participant tournament with game results

of WDL
WDL Result cases

(3,0,0) (1,1,1)

(2,1,0) (1,1,3),(1,3,1),(3,1,1)
(2,0,1) (1,1,2),(1,21),(2,1,1)
(1,2,0) 1,3,3),(3,1,3),(3,3,1)
(1,1,1) (1,3,2,(1,2,3),(3,1,2),(3,2,1),(2,1,3),(2,3,1)
(1,0,2) (1,2,2),(21,2), (22 1)
(0, 3,0) (3,3, 3)

0,2,1) (3,3,2),(3,2,3),(2,3,3)
0,1,2) (3,2,2),(2,3,2),(2,2,3)
(0,0, 3) 2,2, 2)

Table 2.9. Possible result cases in a 4-participants tournament with game results of

62

WXYL and WLTNr
WXYL / WLTNr Result cas\/vesxi$ IEhe case of | Result ca\s/ssL !I[thrhe case of
(3,0,0,0) 1,1,1) (1,1,1)
(2,1,0,0) (1,1,3),(1,3,1),(3,1,1) 1,1,2),(1,2,1),(21,1)
(2,0,1,0) (1,1,4),(1,4,1),4,1,1) (1,1,3),(2,3,1),(3,1,1)
(2,0,0,1) (1,1,2),(2,2,1),(2,1,1) (1,1,4),(2,4,1),4,1,1)
(1,2,0,0) (1,3,3),(3,1,3),(3,3,1) 1,2,2),(2,1,2),(2,2,1)
(1,1,1,0) (1,3,4),(2,4,3,(3, 1,4, | (1,3,2),(1,2,3),(3,1,2),
(3,4,1),(4,1,3),(4,3,1) (3,2,1),(2,1,3),(2,3,1)
(1,1,0,1) 1,3,2,(2,2,3),(3,1,2), | (1,4,2),(1,2,4),(4,1,2),
(3,2,1),(2,1,3),(2,3,1) 4,2,1),(2,1,4),(2,4,1)
(1,0,2,0) (1,4,4),4,1,4),4,4,1) (1,3,3,(3,1,3),(3,3,1)
(1,0, 1, 1) (1,4,2),(1,2,4),4,1,2), | (1,3,4),(1,4,73),(3,1,4),
4,2,1),(2,1,4),(2,4,1) (3,4,1),(4,1,3),(4,3,1)
(1,0,0,2) (1,2,2),(2,1,2),(,2,1) (1,4,4),(4,1,4),4,4,1)
(0, 3,0,0) (3,3,3) (2,2,2)
0,2,1,0) (3,3,4),(3,4,3),(4,3,3) (3,2,2),(2,3,2),(2,2,3)
0,2,0,1) (3,3,2),(3,23),(2,3,3) 4,2,2),(2,4,2),(2,2,4)
0,1,2,0) (3,4,4),(4,3,4),(4,4,3) (3,3,2),(3,2,3),(23,3)
©0,1,1,1) (3,4,2),(33,2,4),(4,3,2), | (3,2,4),(3,4,2),(4,3,2),
4,2,3),(2,3,4),(24,3) (4,2,3),(2,3,4),(24,3)
0,1,0,2) (3,2,2),(2,3,2),(2,2,3) (4,4,2),(4,2,4), (24,4
(0,0, 3, 0) (4, 4, 4) 3,3, 3)
0,0,2,1) 4,4,2),(4,2,4), (24,4 (3,3,4),(3,4,3),(43,3)
0,0,1,2) 4,2,2),(2,4,2),(2,2,4) (3,4,4),(4,3,4), (4,4,3)
(0,0,0,3) (2.2,2) (4,4, 4)

It is quite possible that a single game result can be generated by many different
result cases. As seen in Table 2.7, there are 1 or 3 result cases for a single value of WL,

while in Tables 2.8 and 2.9, there are 1, 3 or 6 result cases for a single value of WDL,

63

WXYL or WLTNr. The number of the result cases based on a particular one of possible
game results for a kth participant playing n-1 games is simply given by:

Nrc(K) = (R1+R2+ ... +R2g+r)//(R1! R2! ... Rog+r!)
= (n-1)Y/(R1! Ro! ... Rogir!) (2.24)

Table 2.10 shows the application of Eq. (2.24) for the tournament tables presented
in Section 1.8.3:

Table 2.10. Application of Eq. (2.24) in the case of the tournament tables presented in

Section 1.8.3
Sports C: C2 Nrc(k)
Football, rugby, {W, L1 {D} (n-1)Y/(W! L! DY)
handball, chess ’ R
Basketball, volleyball,
astein?s, I;/é)ro?s/ea W, L1} { (=LY W L)
Ice hockey W L}, {3 (n-1)Y/(W! L' OTW! OTL!)
{OTW, OTL}}
Curling W L, 3 | (n-1)Y(W! L! SOW! SOL!)
{SOW, SOL}}
Cricket Hw, L3 | {T.NR} | (n-1)Y/(W!L! TINRY)

As one can see, result cases are considerably different from the values of Ry, Ry, ...,
Rag+r, although both can consist of the same digits. A result case refers to one possible
result of each played game, while the values of R1, Ry, ..., Rag+r represent the number of
games which was ended in Ry, Rz, ..., Rog+r. SO, the size of a result case (i.e., the number
of its digits) equals to the number of the played games.

The notion of result case helps to estimate the maximum size of the search space for
the problem of finding all possible tournaments graphs, and therefore the tables of the
games results. Let us firstly investigate the cases in which there occurs the maximum
number of result cases. In a tournament with n participants, each participant plays totally
n-1 games which end up with one of result cases counted by Eq. (2.24). The values of

(R1, R2, ..., Rog+r) Obviously vary within the range of (n-1, O, ..., 0) to (O, O, ..., n-1),

64

possibly generating different numbers of result cases. From Eq. (2.24) we observe that the
largest number of the result cases would occur when Ry, Ry, ..., Rag+r Values take the same
or very close values. For example, for n = 10, a team in a football tournament with the
WDL value of (3, 3, 3) would cause the maximum number of 9!/(3!3!3!) = 1680 result
cases, while a team with WL value of (5, 4) or (4, 5) in a basketball tournament would
cause the maximum number of 9!/(5!41) = 91/(4151) = 126 result cases. On the other hand,
when all the games end in a result which belongs to C> (i.e., Rog+1, R2g+2, ..., OF Rog+r) the
participants receive the same Ry, Ry, ..., Rog+r Values. In this case there is only one result
case for each participant.

In order to find the possible tournament graphs, a blind search algorithm needs to
select and evaluate all the result cases of the teams in the worst case. So the total number

of the resulting selections can be computed by the relation:

Bre®= N 0= ON @ N) (2.25)

k=0 RC RC RC RC
However, given the fact that the result cases of the teams are tied to each other, after
a result case of a team is selected, the number of the result case selections of the
remaining teams would be less. This implies that there is no need for iterations over all

the elements in Brc(n) for obtaining the possible game results.

2.3.6. Uniform Final States

When the set_C> is not empty and all the %ames are ended in R;, where Rj € Cy, all
the participants will have the same values of game results that lead to a uniform

distribution of WDLs at the final tournament table. Thus, they will have the same number
of points. For example, in a football tournament, if all games are ended in a draw, all the
n participating teams will have the same values of WDL, with the general form (0, n-1, 0).

In actual fact, there are other cases in which each participant has the same values of
R1, Ro, ..., Rog+r. We define a uniform final state of the tournament table to be a state in
which all the teams have the same values of Ry, Ry, ..., Rg+r. The set of such values in the
case of a football tournament can be generated by:

SUfootball(n) = {(x, n-2x-1, xX) |V x {0, 1, 2, ..., |(n-1)/2]}} (2.26)

65

To generalize Eq. (2.26) to be suitable for other sports where the set C; is not
empty, each component of a pair from C; take the value x, and an element from C; takes
the value n-2x-1, while all the remaining elements of game results are zero. In this case
the EQ. (2.26) can be written as:

SU) = {{x, n-2x-1, %, 0, ..., 0} |V x € {0, 1, 2, ..., [(n-1)/2[}} (2.27)

The number of the elements in the set SU (J]SU|) can be calculated by using the

following relation:

|SU(n)| = r(g(n-3)/2+1)+q, where n is odd
=r(q(n-2)/2+1), where n is even (2.28)

Given that there is a tournament T1 with Ci1={{R1, R2}, {Rs, Ra}} and Co={Rs, Re},
the order of the possible game results in the final tournament table is Ry, R3, Rs, Re, R4 and
R2. The possible uniform final states of the tournament table in the case of football, rugby,
handball and chess are shown in Tables 2.11. Table 2.12 presents the possible
uniform states of the final table in the case of cricket tournaments, while Tables 2.13
shows the uniform states of the final table of T1. The number of the participants, n, ranges
between 2 and 8 in each tournament.

Table 2.11. The possible uniform states of football, rugby, handball
and chess final tournament tables

WDL
0,1, 0)
0,2,0), (1,0, 1)
©,3,0), (1,1, 1)
0, 4,0), (1,2, 1), (2,0, 2)
0,5,0), (1,3,1), (2, 1,2)
(0, 6,0), (1,4,1), (2,2,2), (3,0,3)
0,7,0), (1,5, 1), (2,3,2), (3,1, 3)

o | N ool Bl W[DNMN|D

66

Table 2.12. The possible uniform states of cricket final tournament table

WTLNR
(0,0, 1,0),(0,0,0, 1)
(0,0, 2,0), (1, 1,0,0), (0,0,0,2)
(0,0,3,0),(1,1,1,0),(0,0,0,3), (L 1,0, 1)
(0,0, 4,0), (1, 1,2 0), (22 0,0),(0,0,0,4), (11,0,2)

0,0,5,0),(1,1,3,0),(22,1,0),(0,0,0,5), (1, 1,0, 3),
(2,2,0,1)

(0,0,6,0), (1,1,4,0), (22 2,0),(3,3,0,0), 0,0,0, 6),
(1,1,0,4),(2,2,0,2

0,0,7,0),(1,1,5,0),(22,3,0),(3,3,1,0),(0,0,0, 7),
(1,1,0,5),(2,2,0,3),(3,3,0,1)

g b wW|[DN]|D

N—r

Table 2.13. The possible uniform states of the final tournament table T:

n R1R3RsReR4R2

2 (0,0,1,0,0,0),(0,0,0,1,0,0)

3 | (0,0,2,0,0,0),(1,0,0,0,0,1), (0 10,01, 0), (0,0,0, 2,0, 0)

4 ©,0,3,0,0,0),(,0,1,0,0,1),(0,1,1,0,1,0),(0,0,0,3,0,0),

(1,0,0,1,0,1),(0,1,0,1,1,0)

5 (01 01 4a Oa Oa 0)1 (11 01 21 01 01 1)a (21 01 01 01 01 2)1 (Ol 1) 2$ Oa 1$ O)a
0,2,0,0,2,0),(0,0,0,4,0,0),(1,0,0,2,0,1),(0,1,0,2,1,0)
0,0,5,0,0,0),(1,0,3,0,0,1),(2,0,1,0,0,2), (0,1, 3,0, 1, 0),

6 | (0,21,0,2,0)(0,0,0,5,0,0),(10,0,3,0,1), (20,0, 1,0,2),

0,1,0,3,1,0),(0,2,0,1,2,0)
(01 O! 61 O! O! 0)1 (11 01 41 01 01 1)1 (21 01 21 01 01 2)1 (31 Ol Oa Oa Oa 3)1

7 0,1,4,0,1,0),(,2,20,2,0),(,3,0,0,3,0),(0,0,0,6,0,0),
(1,0,0,4,0,1),(2,0,0,2,0,2),(0,1,0,4,1,0), (0,2,0,2,2,0)
(01 O! 71 O! O! 0)1 (11 01 51 01 01 1)1 (21 01 31 01 01 2)1 (31 Ol 1$ Oa Oa 3)1

8 0,1,50,1,0),(,23,020),(,3,1,0,3,0),(0,0,0,7,0,0),
(1,0,0,5,0,1), (2,0,0,3,0,2),(3,0,0,1,0,3), (0,1,0,5, 1, 0),

0,2,0,3,2,0),(0,3,0,1, 3,0)

When C; is empty, comparing with the previous case, the number of states where all
the participants have the same game results may be none or small. For example, in a

67

basketball tournament, |[SU(n)| = 1 when n is odd (SU(n) = {(n-1)/2, (n-1)/2)}), while
|SU(n)| = 0 when n is even. Also, in the case of ice hockey and curling, |[SU(n)| = 2 when
nis odd (SU(n) = {((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0))}, while also |[SU(n)| = 0
when n is even. When the set C» is empty (r = 0), based on the Eq. (2.28), the number of
the uniform final states equals to 0 when n is even, while it equals to g when n is odd. In
this case, the set of the game results which form the possible uniform tournament tables

can be represented as:

su(n) = {{n/2, n/2, 0, ..., O} | n is odd} (2.29)

Given that there is a tournament T> with Ci1={{R1, R2}, {Rs, R4}, {Rs, Re}} and
Co={}, the order of the possible game results in the final tournament table is R1, R3, Rs,
Re, Rs, and R2. The possible uniform states of the final tables in the case of basketball, ice
hockey, curling and T, are shown in Table 2.14, where the number of teams, n, ranges
between 2 and 8.

Table 2.14. The possible uniform states of the final tables in the case of basketball, ice
hockey, curling and T»

0 Basketball Ice hockey and curling T2
(WL) (WXYL) (R1R3R5R6R4R?)
2 None None None
1,0,0,0,0,1),(0,1,0,0, 1, 0),
3 1,1) (1,0,0,1),(0,1,1,0) ())
(0,0,1,1,0,0)
4 None None None
2,0,0,0,0,2),(0,2,0,0,2,0),
5 2, 2) (2,0,0,2),(0,2,2,0) ())
0,0,2,2,0,0)
6 None None None
3,0,0,0,0,3), (0, 3,0,0, 3,0),
7 (3,3) (3,0,0,3),(0,3,3,0) ())
0,0,3,3,0,0)
8 None None None

68

Table 2.15 shows the application of Eq. (2.27), (2.28) and (2.29) for the sports
tournaments presented in Section 1.8.3.

Table 2.15. Application of Eq. (2.27), (2.28) and (2.29) for the sports tournaments
presented in Section 1.8.3

Sports SU(n) |ISU(N)|
Football, rugby,
handball, chess {(x, n-2x-1, X) |V x € {0, 1, 2, ..., |(n-1)/2]}} [n/2]
Basketball, volleyball, nisodd: 1

{((n-1)/2, (n-1)/2)}

tennis, lacrosse niseven: 0
nis odd: 2

Ice hockey, Curli -1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0)

ce hockey, Curling | {(n-1)/2, 0,0, (n-1)/2), O, ("-1)/2, (12,0} | " -

{(x,x,n-2x-1,0) |V x € {0, 1, 2, ..., [(n-1)/2]}}U

Cio {(x,x,0,n-2x-1) |V x € {0, 1, 2, ..., |(n-1)/2]}} 2*[n/2]

2.4. Graph Representation

The round-robin tournament graph is defined as a directed graph in Section 1.7,
where its nodes present the participants, while its edges represent the game results
between every two participants. The edges are directed from the winner participant to the
loser one. The graphs are perfectly suitable for tournaments with each game result of
either a win or a loss, which, for example, can be clearly seen in the representation of
basketball tournaments. The tournament graph of Group A in the 2014 FIBA Basketball
World Cup [166] is shown in Figure 2.5, where the group contains the teams of Spain
(ESP), Brazil (BRA), France (FRA), Serbia (SRB), Iran (IRI), and Egypt (EGY). Note
that the final tournament table in Table 2.4 can be easily obtained from the tournament
graph in Figure 2.5.

The set C is empty in the case of the final table of basketball tournaments, but it is
not in other sports, which means that a directed tournament graph is not applicable to
define game results of any sports tournament. For example, in the case of a round-robin
football tournament, where C,={D}, it is not possible to define a drawn game with a
directed edge.

Figure 2.5. The tournament graph of Group A in the 2014 FIBA
World Cup

In this section, we propose another definition for the tournament graph, where in
addition to the representation of the won/lost games with directed edges, the drawn games
will be represented with undirected ones. Figure 2.6 shows the tournament graph of
Group B in the 2018 FIFA World Cup [165], participated in by Spain (ESP), Portugal
(POR), Iran (IRI), and Morocco (MAR). The tournament graph of this tournament is
shown in Figure 2.6, which represents the data in the final tournament table given in
Table 2.2.

Figure 2.6. The tournament graph Group B in the 2018 FIFA
World Cup

70

The set Ci in the case of football and basketball contains a single pair of game
results (i.e., {W, L}), but in other cases such as ice hockey and curling, C1 contains more
than a single pair. Given an ice hockey tournament, when a team A ends the game with an
OTW, the other team B automatically ends its game with an OTL. It means that this result
can be represented by the graph with a directed edge going from A to B.

The problem with such a representation is that it will not be possible to distinguish
between the edges which represent the results of W/L and the ones which represent the
results of OTW/OTL. As a solution to this problem, we propose to color the edges of the
graph, where a possible game result in each pair from C; is given a specific color. As
mentioned in Section 1.6.7, coloring an edge is just a manner to distinguish between that
edge and the other edges, which means that the edges can be represented in other ways
such as drawing them with different line dashes, or labeling them with specific characters.

Figure 2.7 shows the tournament graph of Group A of the ice hockey 2018 Olympic
Winter Games, Men’s Tournament [167], participated in by Czech (CZE), Canada
(CAN), Switzerland (SUI), and South Korea (KOR), where a result of W/L is represented
with a continued edge, while a result of OTW/OTL is represented with a discontinued

edge.

SuI

Figure 2.7. The tournament graph of Group A in the ice hockey
2018 Olympic Winter Games, Men’s Tournament

Similarly, when C; contains more than one game result as in the tournaments of
cricket, the related results can be represented with colored edges. Figure 2.8 shows the
tournament graph of Group B in the 2008 ICC World Cricket League Division Five

71

[168], participated in by Jersey (JEY), Afghanistan (AFG), Singapore (SGP), Botswana
(BWA), Japan (JPN) and Bahamas (BHS), where a result of T is represented with

continued edge, while a result of NR is represented with discontinued edge.

Figure 2.8. The tournament graph of Group B in the 2008 ICC
World Cricket League Division Five

In the tournament T1 which was addressed in the previous section, remember that
C: contains two pairs and C contains two elements; that is, the possible game results are
Ci={{R1, R2}, {Rs, Ra}} and Co={Rs, Re}. Figure 2.9 illustrates a tournament graph which
corresponds to the data of Table 2.16, representing a state of the final table of T1 between
the participants A, B, C and D. In the graph, a result of Ri/Rz is shown with a continued
directed edge and a result of Rs/R4is shown with a discontinued directed edge, while a
result of Rs is shown with a continued undirected edge and a result of Re is shown with a
discontinued undirected edge.

72

Table 2.16. A state of the final table of a tournament T: between 4
participants

Participants | Rt | R3 | Rs | Rs | Rsa | R
A 2 1 0 0 0 0
B 0 1 1 0 1 0
C 0 0 1 1 0 1
D 0 0 0 1 1 1

Figure 2.9. A tournament graph corresponding to the data of
Table 2.16

2.5. Determination of Game Results

We describe, in this section, how to determine the game results based on a
tournament final table. The tournaments of football and some other sports hold similar
final tables that make it easier to calculate a possible result of a game. Unlike sports
events like basketball tournaments, C> is not empty in a football tournament. Besides, on
the contrary to other sports like cricket, the number of game results in the final table of a
football tournament is lesser. Let us start with the problem of determining game results
using the tournament final table of Group E in the 2006 FIFA World Cup [169] which is
shown in Table 2.17. The group contains the teams Italy (ITA), Ghana (GHA), Czech
Republic (CZE) and United States (USA).

73

Table 2.17. The final tournament table of Group E in the 2006
FIFA World Cup

Teams wW D L
ITA 2 1 0
GHA 2 0 1
CZE 1 0 2
USA 0 1 2

Based on the WDL values of each team, we aim to determine the tournament graphs
which lead to the game results. Since C: contains one pair (W, L) and C; contains one
element (D), there will not be a necessity for the edge coloring. In Table 2.17, the related
data to Italy and the United States provides a convenient starting point of the manual
solution, because both of them have one draw. Since the other teams have no draw, that
means Italy must have drawn with the United States. The fact that Italy has two wins
means that it must have won its remaining two games against Ghana and Czech. Now that
Ghana lost against Italy, it must have won its remaining games against Czech and The
United States. As losing against Italy and Ghana, Czech’s remaining game must be
against the United States, which must be ended in a win. Figure 2.10 presents the
tournament graph of this case, while Table 2.18 shows the game results, where 1, 2 and 3

represent a win, loss and draw, respectively.

Figure 2.10. The tournament graph of the data in Table 2.17

74

Table 2.18. The game results of the tournament graph in Figure

2.10
Teams | ITA | GHA | CZE | USA
ITA 0 1 1 3
GHA 2 0 1 1
CZE 2 2 0 1
USA 3 2 2 0

For the final tournament table shown in Table 2.17, there is only one possible
tournament graph. However, this might not be the case all the time. To illustrate the
situation, we modify the WDL values of Ghana and the United States to be (1, 1, 1) and
(1, 0, 2), respectively. In the FIFA World Cup history, this modified state occurred in
Group 3 in the 1962 World Cup [170], participated in by Brazil (BRA), Czechoslovakia
(CSK), Mexico (MEX) and Spain (ESP). In this case, there are two possible tournament

graphs which are shown in Figures 11 and 12.

CSK

BRA

Figure 2.11. First possible tournament graph of Group 3 in 1962
FIFA World Cup

The tournament final table shows only the number of game results, but not which
other teams it wins against and draws with. In a group with four participants, it may be
easy to find the game results of teams. However, this gets more difficult when the number
of participants increases, which makes manual solution methods inapplicable. Table 2.19
illustrates how to select the edges in the football tournament graph and their directions
based on the data in Table 2.17. Figure 2.13 shows the obtained tournament graph as

described in Figure 2.10, where the edges are numbered based on the steps in which they

ESP

75

CSK

BRA

Figure 2.12. Second possible tournament graph of Group 3 in

1962 FIFA World Cup

are selected during the process in Table 2.19.

Table 2.19. Generation steps of a tournament graph for the data of Table 2.17

Step ITA GHA CZE USA Game Edge
1 (2210 | (01 | (102 | (0,1,2) | ITA-GHA -
2 (21,0 | (01 | (1,02 | (0,1,2) | ITA-CZE -
3 (21,0 | (01 | (102 | (0,1,2) | ITA-USA Undirected
4 1200 | (@01 |02 | (0,02 | ITA-GHA | From ITA to GHA
5 | (1,00 | (2,0,0) | (1,0,2) | (0,0,2) | ITA-CZE | From ITAto CZE
6 |(0,00) | (20,0 | (1,0,1) | (0,0,2) | GHA-CZE | From GHA to CZE
7 1(0,0,0) | (1,00) | (1,0,0) | (0,0,2) | GHA-USA | From GHA to USA
8 |(0,00) | (0,0,0) | (1,0,0) | (0,0,1) | CZE-USA | From CZE to USA
9 |(0,0,0) | (0,0,0) | (0,0,0) | (0,0,0) - -

75

Figure 2.13. Generation of the tournament graph in Figure 2.10
through the steps numbered in Table 2.19

In Table 2.19, the edge between each two-node is selected by comparing the WDL
values of the related teams. The related digits of the WDL values from which the edge
selection is made are underlined at each step. According to the ascending order of the
related W, D and L values for each team, the edge selections are conducted. The draw of
Italy, for example, is first sought, because its value of D equals to 1. Only the United
States among the other teams has a D value which is not 0. For that, an undirected edge is
selected to connect the representative node of Italy to the one of the United States. To
show the consequences of the selection, the relevant WDL values are gradually reduced
after a valid edge selection is made. At step 4, for example, concerning the selected edge
for the game between Italy and Ghana, a win is taken out of the WDL value of Italy and a
loss is taken out of the WDL value of Ghana.

As discussed in Section 2.3.5, the possible partitions of WDL values in the
tournament table for a kth team determines the maximum number of the selection of its
edges (see Eq. (2.24)). The edge selection also depends on the result of the games played
with the other teams. For example, As Table 2.20 shows, the number of possible
selections for Italy is: Nrc(ITA) = 3!/(21110!) = 3, but the fact that only the United States

has a draw allows a unique selection for the game result of Italy.

76

Table 2.20. Possible results for the games of Italy

Games Casel | Case2 | Case3
ITA- GHA 1 1 3
ITA-CZE 1 3 1
ITA-USA 3 1 1

Given the WDL values of all the teams in Table 2.17, according to Eq. (2.25), the
total number of edge selections would blindly be:

Brc(4) = Nrc(ITA)*Nrc(GHA)*Nrc(CZE)*Nrc(USA) = 3%3%3%3 = 81
By starting with the team whose Nrc value is minimum, and selecting the results

based on the ascending order of its game results, the number of the selections can be kept
smaller. Since the teams in Table 2.17 have the same Nrc value, the process can start
arbitrarily with any team. For example, when the result of the game ITA-USA is selected
as a draw, only Nrc(ITA) = 2!/(210!0!) = 1 possible selection remains for the results of the
remaining games of Italy (ITA-GHA and ITA-CZE). The same occurs for the United
States, where there is only Nrc(US) = 2!/(01012!1) = 1 selection for the results of the two
remaining games (USA-GHA and USA-CZE). Thus, the actual number of the edge
selections would be much less than 81.

With the same principle applied in Table 2.19, Table 2.21 shows how to obtain the
tournament graphs in Figures 2.11 and 2.12. It can be seen in Table 2.21 that the value of
W for Czechoslovakia after step 3 (steps 4aand 4g) equals to 1, and the value of L for
both Mexico and Spain is equal to 1, which means that Czechoslovakia could win against
Spain or win against Mexico. After taking both of these scenarios into account, the

resulting tournament graphs are shown in Figures. 2.14 and 2.15, respectively.

7

Table 2.21. The steps followed to obtain the graphs in Figures 2.11 and 2.12

Step BRA CSK MEX ESP Game Edge

1 (2,1,0 | (1,13,1) | (1,0,2) | (1,0,2) | BRA-CSK Undirected

2 (2,00 | (1,01) | (1,0,2) | (1,0,2) | BRA-MEX | From BRA to MEX
3 |(@0,0) | (0,1 | (1,01) | (1,0,2) | BRA-ESP | From BRA to ESP
4a | (0,0,0) | (1,0,1) | (1,0,1) | (1,0,1) | CSK-MEX | From CSK to MEX
50 | (0,0,0) | (0,0,1) | (1,0,0) | (1,0,1) | CSK-ESP | From ESP to CSK
6a | (0,0,0) | (0,0,0) | (1,0,0) | (0,0,1) | MEX-ESP | From MEX to ESP
7a | (0,0,0) | (0,0,0) | (0,0,0) | (0,0,0) - -

4 | (0,0,0) | (1,0,1) | (1,0,1) | (1,0,1) | CSK-ESP | From CZE to ESP
52 | (0,0,0) | (0,0,1) | (1,0,1) | (1,0,0) | CSK-MEX | From MEX to CZE
6 | (0,0,0) | (0,0,0) | (0,0,1) | (1,0,0) | MEX-ESP | From ESP to MEX
78 | (0,0,0) | (0,0,0) | (0,0,0) | (0,0,0) : -

Figure 2.14. Generation of the tournament graph in Figure 2.11
through the steps numbered in Table 2.21

78

Figure 2.15. Generation of the tournament graph in Figure 2.11
through the steps numbered in Table 2.21

The same principle applied for the football tables can also be used for more
complicated tournament tables. For example, we suppose that there are four participants
are competing in a tournament of Ti, which is presented in Section 2.3.6, where
Ci={{R1, R2}, {R3, Ra}}, Co={Rs, R4}. In this case, coloring the edges is compulsory. The
representative edges of the pair {R1, R2} and the element Rs are drawn in continued lines,
while the representative edges of the pair {Rs, R4} and the element Re are drawn in dotted
lines. Using a similar principle applied in Tables 2.19 and 2.21, Table 2.22 illustrates the
way to obtain the possible tournament graphs based on the data of Table 2.16. At step 4g
the process reaches a situation where the value of Ry for A is equal to 1, but there is no
other participant with R>>0 except D, but an edge between A and D was previously
selected in step 1g, subsequently making it impossible to reach a tournament graph from
step 4g. The tournament graph obtained through the steps numbered in Table 2.22 is
shown in Figure 2.16, labeling each edge with their related steps.

79

Table 2.22. The steps followed to obtain the graph in Figure 2.16

@) (@) - O
2] o o (@] Q o] (@] o
o -) o O D o =
= <C < - s o - <
e (=) (@) c S o
|mv m P e 1 m = m 1 m 1 fiy 1
w | « g R f= 3 = g
- bop) @ - L ge! = Iar)
<} 2 = D c a D =]
8|2 | 2 S| 2|8 5 =
c c c
o o o ()] @ a (@) o
@) &) O
@
E| @ Q Q : Q Q 0 : a @ Q _
moa < < < aa) o0 (@) < < <
OCQ |08 |coq|oc|oc|oc|og |95 |oq|og|oa|oa
a CH|CH|CH|CH|QPHI|Co|PCo|QCo|QCHI|QPCo|PCo|PCo
CHISH ||| (224|212 0 (24 (2|2 |2
Jo|da|d8|de|d8 | da|Ssa|da|da|da|dald8
CH|ISH ||| (2424|2024 (24|24 |2
“g|da|de|da|da|dg|Sa|sa|Yda|Ha|da|da
N TJH| 9o | o 1_,_0, 1_,_0, Co|lCo|lCo|TFTd | T || 4
Ss|Sc|Ss|Ss|Ss|Ss|Ss|Sc|Ss|So|Ss|Ss
So|cs|da|da|da|da|da|Sg | |da|da|Sa
do|ds|do|S5|Ss|Sc5|Sc|So|do |do |do | do
o
[5) < < < < < < < < m m m m
& — e\ ™ < T9) © N~ (o) — o~ ™ <

80

Figure 2.16. Generation of the tournament graph based on Table
2.16, through the steps numbered in Table 2.22

As proposed by Damkhi and Pehlivan [61], the following algorithm shows a
generalized pseudo-code which describes the proposed approach:

Algorithm for determining game results

Inputs:
n: number of participants
T: final tournament table
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Outputs:
Gs[][n]l[n]: possible tournament graphs

Static data structures:
G[n] [n]: tournament graph

Main Procedure

set all G[i][j] elements to O

trackingInds|[2qg+r]

for i « 1 to 2g+r do
trackingInds([i] < 2

graphSearch (1, trackingInds)

g w N

Procedure: graphSearch(k, trackingInds pl[])

1: trackingInds[2g+tr]

2: trackingInds « trackingInds p

3: find the non-zero minimum Ri value for kth participant and
set an index variable (minInd) to the position of Ri in T, or
-1 if all is O

8: ifm@ﬁ@%@ﬁ # -1 then

6: if Ri € C2 then

81

7 minIndp — minInd

8: else

9: minIndp < the index of the pair of Ri in T
10: for i « trackingInds[minInd] to n do

11: if T[i] [minIndp] > 0 and G[k][i] = 0 then
12: Tlk] [minInd]--

13: T[i] [minIndp]--

14: G[k][i] « minInd

15: G[i] [k] « minIndp

16: trackingInds[minInd] « i + 1

17: graphSearch (k, trackingInds)

18: Glk][i] « O

19: G[il[k] <« O

20: Tlk] [minInd]++

21: T[i] [minIndp]++

22: else

23: if k = n then

24 if T elements are all 0 then

25: insert G into Gs

26: else

27: set all the elements of trackingInds to k+2
28: graphSearch (k+1, trackingInds)

In the algorithm, if the participants at a lower position than k cannot satisfy the non-
zero minimum of the values Ry, Rz, ..., Rag+r belonging to the kth participant, the values
R1, Rz, ..., Rog+r for the kth participant would never be zeros, and therefore the participant
at the (k+1)th position would not be considered. When the initial data of the tournament
final table are not valid (for example, if it does not satisfy Eq. (2.11)), there would be a
team which cannot have the resulting Ri1, Ry, ..., Reg+r values of zeros as the algorithm
runs, which means that the condition of the procedure graphSearch at line 24 would never
be satisfied and thus there will not be a game result to be added into G. To traverse
through all game results, where all the results are unique, the algorithm backtracks with
the restoration of both T and G to their previous state through the loop at line 10 of the
procedure graphSearch (lines 18, 19, 20 and 21).

2.6. Enumeration of Final Table States
2.6.1. Backward Algorithm
This algorithm aims to generate the possible states of the final table of a single

round-robin tournament between n participants. The generation of the states in this
instance is based on the elements of the set S which is previously defined by Eq. (2.20).

82

To enumerate the states of a tournament final table, based on the set S, the number of
states that a blind search algorithm must evaluate would be related to the number of the
participants and the number of the elements of S (see Eq. (2.23)). It follows the number of
states which must be blindly evaluated would be:

NB(n, 2g+r) = (|S(n, 2g+r)))" (2.30)

The following algorithm shows the pseudo-code which describes the blind search
algorithm:

Blind Search Algorithm for enumerating the final table states

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Output:
Ts[]1[n][2gtr]: states of the final tournament table

Static variables and data structures:
N: number of elements of the set S(n, 2g+r)
S[N] [2g+r]: set S(n, 2g+tr)
T[n][2gt+r]: tournament table

Main Procedure

1: calculate N based on Eq. (2.23)
2: calculate S based on Eqgq. (2.20)
3: stateGenerator (1)

Procedure: stateGenerator (k)
1 if k £ n then

2 for i « 1 to N do

3: for 7 « 1 to 2gtr do
4: T[k1[J] <« S[i]1[7]
5: stateGenerator (k+1)
6 else

7 insert T into Ts

Most of the states generated by the blind search algorithm for a tournament final
table do not satisfy Eq. (2.9), (2.10), (2.14) or (2.17). For example, in the case of a
football tournament between 4 teams, the state presented in Table 2.23 is generated by the

blind search algorithm but it does not respect any of those relations. To generate the states

83

of a tournament final table, only the valid states must be taken into account, where the

validity of each generated state must be checked.

Table 2.23. A state generated by the blind search algorithm
which does not respect any of Eq. (2.9), (2.10),
(2.14) and (2.17)

Teams wW D L
A 2 1 0
B 0 0 3
C 1 1 1
D 0 1 2

To filter the states generated by the blind search algorithm, we propose to use a
state validity checker to evaluate the feasibility of the states. The state validity checker is
an adapted version of the algorithm which is previously proposed in Section 2.5 to
determine the game results. It seeks to reach a tournament graph based on a specific state
of a tournament final table. In case of a state leading to more than one graph, the process
of seeking a graph will be ended as soon as the algorithm finds the first graph. Given
Table 2.21, it will end at step 7a.

If a state of a tournament final table is not valid, the algorithms will be ended after
trying all the possibilities to find a tournament graph. Table 2.24 shows the steps involved

in trying to find a tournament graph based on the state presented in Table 2.23.

84

Table 2.24. The steps followed to obtain a tournament graph for the state
represented by Table 2.23

Step A B C D Game Edge

1n | (2,14,0) | (0,0,3) | (1,1,1) | (0,1,2) | A-C | Undirected
2a | (2,0,0) | (0,0,3) | (1,0,1) | (0,1,2) A-B | FromAtoB
3~ | (4,0,0) | (0,0,2 | (1,0,1) | (0,1,2) A-D | FromAtoD
45 | (0,0,0) | (0,0,2) | (1,0,1) | (0,1,1) B-C |FromCtoB
50~ | (0,0,0) | (0,0,1) | (0,0,1) | (0,1,1) - -

18 | (2,4,0) | (0,0,3) | (1,1,1) | (0,1,2) | A-D | Undirected
2 | (2,0,0) | (0,0,3) | (1,1,1) | (0,0,2) | A-B |FromAtoB
3 | (1,0,0) | (0,0,2) | (1,1,1) | (0,0,2) | A-C |FromAtoC
4 | (0,0,0) | (0,0,2) | (1,1,0) | (0,0,2) | B-C |FromCtoB
55 | (0,0,0) | (0,0,1) | (0,1,0) | (0,0,2) | B-D -

At steps 5a and 5g the process reaches a situation where the value of L for the
participant B is equal to 1 but all the W values of the other teams are zeros. In this case,
we can say that the algorithm forms just partial graphs based on the current state of the
tournament final table, but not a tournament graph, and therefore, the state is not valid.

As proposed by Damkhi and Pehlivan [62], the following algorithm shows the

pseudo-code which contains the proposed filter:

Algorithm for validating states

Inputs:
n: number of participants
T: final tournament table
Cl: game results which are related to each other
g: the size of C1
C2: game results which are not related to other game results
r: the size of C2

Outputs:
true or false

Static data structures:
T[n] [2g+r]: tournament table
G[n][n]: tournament graph

Main Procedure: stateChecker (T p)
1: set all G[i][7j] elements to O

o U1 b W DN

85

set all the elements of T p into T
trackingInds[2g+r]
for 1 « 1 to 2g+r do
trackingInds[i] « 2
return isStateValid(l, trackingInds)

Procedure: isStateValid(k, trackingInds pl[])

1:

DS N

© oCoJam

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:

valid « false

trackingInds|[2qg+r]

trackinglInds « trackingInds p

find the non-zero minimum Ri value for kth participant and
set an index variable (minInd) to the position of Ri in T, or
-1 if all is O

1fm@ﬁ@gag # —1 then

if Ri € C2 then
minIndp — minInd

else
minIndp « the index of the pair of Ri in T
for i « trackingInds[minInd] to n do
if T[i] [minIndp] > 0 and G[k][i] = 0 then
Tlk] [minInd]--
T[i] [minIndp]--
G[k][i] « minInd
G[i] [k] « minIndp
trackingInds[minInd] « i + 1
valid <« isStateValid(k, trackingInds)
if valid = true then

go to 33
else
Glk][i] « O
Gli][k] « O
Tlk] [minInd]++
T[i] [minIndp]++

else
if k = n then
if T elements are all 0 then
valid <« true
else
set all the elements of trackingInds to k+2
valid « isStateValid(k+1l, trackingInds)
return valid

The main difference of the state validation algorithm from the game result

determination algorithm is that, instead of building all the tournament graphs, it returns a

Boolean value as soon as it finds a tournament graph. In other words, through a recursive

call to the procedure isStateValid (see line 18), if a tournament graph is detected, the

process is ended and a value of true is returned through line 33. In the case that the

procedure does not return a value of true, each of arrays G and T turns back into their

86

previous states just before line 13 through the lines 22, 23, 24, and 25, and the algorithm
continues to find a tournament graph through the loop at line 11.

The integration of the state validating algorithm with the blind search algorithm
leads to the backward state generation approach, shortly called the backward algorithm.
The algorithm first generates the states of a tournament final table, and backwardly
checks them to determine if at least one tournament graph can be constructed for each of
them. In this way, checking the blindly generated states via the validating algorithm, we
generate all the valid final table states of sport tournaments. The backward algorithm is

given below.

Backward approach algorithm for enumerating the states of a tournament final table:

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Outputs:
Ts[]1[n][2gtr]: states of the final tournament table

Static variables and data structures:
N: the number of elements of the set S(n, 2gtr)
S[N] [2g+r]: the set S(n, 2gtr)
T[n][2g+r]: tournament table

Main Procedure

1: calculate N based on Eqgq. (2.23)
2: calculate S based on Eqgq. (2.20)
3: stateGenerator (1)

Procedure: stateGenerator (k)
if k £ n then
for i « 1 to N do
for 7 « 1 to 2g+r do
T(k] (] « S[1i][F]
stateGenerator (k+1)
else
if the points of the teams are in a descending order then
valid « stateChecker (T)
if valid = true then
0: insert T into Ts

R O 0 Jo Uk W N

Instead of saving the state directly as it is done in the blind search algorithm, the

participants’ points are checked if they are in a descending order, then the state generated

87

by the above algorithm is checked by the procedure stateChecker (see line 8), and is not
saved unless their validity is agreed upon.

2.6.2. Forward Algorithm

Unlike the backward approach, this approach seeks to enumerate the states of a
tournament final table by building every possible tournament graph, then converting them
to the corresponding states. From the perspective of a tournament participant, a game can
result in an Ry, Ry, ... or Rog+r. Since the total of the played games, g, is equal to n(n-1)/2
(see Eq. (2.4)), the total of game results (i.e., tournament graphs) that can occur during a

round-robin tournament with n participants would be:
GR(n) = (2g+r)"™” (2.31)
Eq. (2.31) determines the number of graphs that can be generated by a blind search
algorithm. The following pseudo-code represents such a blind search algorithm which

generates all the possible tournament graphs:

Blind Search Algorithm for generating a tournament graph

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Output:
Gs[] [n][n]: possible tournament graphs

Static data structure:
G[n] [n]: tournament graph

Main Procedure
1: set all the elements of G to O
2: graphGenerator(l, 2)

Procedure: graphGenerator (k, 7)

foé[%]‘f]} goi2q+r do
if {R', Riv1} € Cl1 then

else.if {Ri-1, Ri} € Cl then
GlF][k] « 1i-1

Ol WM

88

7: else

8: G[Jjl[k] « 1

9: if j+1 £ n then

10: graphGenerator (k, j+1)

11: else

12: if k+1 < n then

13: graphGenerator (k+1, k+2)
14: else

15: insert G into Gs

Let us suppose that there is a football tournament between 3 teams (A, B and C),
where A appears the first in the final table, while B does the second, and C does the last.
The graphs of the tournament which can be generated by the blind search algorithm

would be 3°=27. Figures 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25 illustrate

the process of how to generate all the possible graphs of this tournament.

A e

° (©

Figure 2.17. The graphs for the case when A wins all of its games

ﬁ .

° (c)

Figure 2.18. The graphs for the case when A wins against B and draws against C

0@ (a)

oYoRoINo¥orol'
oYoror

Figure 2.19. The graphs for the case when A wins against B and loses against C

oSo=ol

oYohoXNo¥ool
of¥o=ol!

Figure 2.20. The graphs for the case when A draws against B and wins against C

% (a)

oSohoYo¥o=ol
oSo™ol

Figure 2.21. The graphs for the case when A draws all of its games

90

Figure 2.22. The graphs for the case when A draws against B and loses against C

ﬁ (a)

o VIR R H
0 0 () ©

Figure 2.23. The graphs for the case when A loses against B and wins against C

oToe o

@)
‘°’

Figure 2.24. The graphs for the case when A loses against B and draws against C

91

@) (&) OOO i

Figure 2.25. The graphs for the case when A loses all of its games

Table 2.25 shows the corresponding state of each tournament graph illustrated in
Figures 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25. As seen in Table 2.25, only
the graphs (a) and (b) from Figure 2.17, (a) from Figure 2.18, (a) from Figure 2.19, (a)
and (b) from Figure 2.20, (b) from Figure 2.21, and (c) from Figure 2.23 lead to
descending ordered states. This requires a check on the order of the resulting states before
saving them. Besides, as it is discussed in Section 2.5, a state of a tournament final table
could be resulted from many different tournament graphs, which explains why the graphs
(a) from Figure 2.19 and (c) from Figure 2.23 led to the same table state.

Table 2.25. The corresponding state of each tournament graph shown in Figures 2.17,

92

2.18,2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25

Figure-Graph State Status Reason

2.17-(a) ((2,0,0),(1,0,1), (0,0, 2) Accepted

2.17-(b) ((2,0,0), (0,1, 1), (0, 1, 1)) Accepted

2.17-(c) ((2,0,0),(0,0,2),(1,0,1)) | Notaccepted | Pts(2) < Pts(3)
2.18-(a) ((1,1,0),(12,0,1),(0,1,1)) Accepted

2.18-(b) ((2,1,0),(0,1,1),(0,2,0)) | Notaccepted | Pts(2) <Pts(3)
2.18-(c) ((1,1,0),(0,0,2),(1,1,0) | Notaccepted | Pts(2) < Pts(3)
2.19-(a) ((1,0,1),(2,0,1),(2,0,2)) Accepted

2.19-(b) ((1,0,1),(0,1,1),(2,1,0)) | Notaccepted | Pts(2) < Pts(3)
2.19-(c) ((1,0,1),(0,0,2),(2,0,0) | Notaccepted | Pts(1) < Pts(3)
2.20-(a) ((1,1,0),(1,12,0),(0,0,2) Accepted

2.20-(b) ((1,1,0), (0,2, 0), (0, 1, 1)) Accepted

2.20-(c) ((2,1,0),(0,1,1),(1,0,1)) | Notaccepted | Pts(2) < Pts(3)
2.21-(a) ((0,2,0),(2,1,0),(0,1,1)) | Notaccepted | Pts(1) < Pts(2)
2.21-(b) ((0,2,0),(0,2,0),(0,2,0)) Accepted

2.21-(c) ((0,2,0),(0,1,1),(1,1,0) | Notaccepted | Pts(1) < Pts(3)
2.22-(a) ((0,1,1),(2,1,0),(1,0,1)) | Notaccepted | Pts(1) < Pts(2)
2.22-(b) ((0,1,1),(0,2,0),(1,1,0) | Notaccepted | Pts(1) < Pts(2)
2.22-(c) ((0,1,1),(0,1,1),(2,0,0)) | Notaccepted | Pts(1) < Pts(3)
2.23-(a) ((1,0,1),(2,0,0),(0,0,2)) | Notaccepted | Pts(1) <Pts(2)
2.23-(b) ((1,0,1),(2,1,0),(0,1,1)) | Notaccepted | Pts(1) <Pts(2)
2.23-(c) ((1,0,1),(2,0,1),(2,0,2)) Accepted

2.24-(a) ((1,1,1),(2,0,0),(0,1,1)) | Notaccepted | Pts(1) < Pts(2)
2.24-(b) ((1,1,1),(2,1,0),(0,2,0)) | Notaccepted | Pts(1) <Pts(2)
2.24-(c) ((0,1,1),(2,0,1),(1,1,0)) | Notaccepted | Pts(1) < Pts(2)
2.25-(a) ((0,0,2),(2,0,0),(1,0,1)) | Notaccepted | Pts(1) < Pts(2)
2.25-(b) ((0,0,2),(2,1,0),(1,1,0)) | Notaccepted | Pts(1) < Pts(2)
2.25-(c) ((0,0,2),(1,0,1),(2,0,0)) | Notaccepted | Pts(1) <Pts(2)

93

The possible duplicates of some resulting states require a check on the existence of
every generated state. The simplest way to check the duplicate of a state is to store the
states in an array, where a new state will be stored in that array only if it is not identical to
any of the previously saved states. The use of the array trivially affects the performance
when the number of the states is small. But as the number of tournament participants gets
bigger, there occur so many states that increase the size of the array, which makes it time-
consuming to compare a particular state to the others.

As a solution to this problem, we propose to save the states in a forest (i.e., a
collection of trees) instead of a classic array, where the root of each tree from the forest
would contain the Ry, Ry, ..., Rog+r Values which can be taken by the first participant of the
tournament (i.e. R1(1), Rz2(1), ..., R2g+r(1)). The states with the same values of R1(1), R2(1),
..., Rag+r(1) would be saved in the same tree. A state consists of all the nodes occurred in
a path from a root to one of its leaves. The states which share the same values of Ry(k),
R2(K), ..., Rag+r(K) automatically share the path from the root to the node at a kth layer.
Thus the number of the states of a tournament final table equals to the total number of
leaves in all the trees of the forest. Figure 2.26 shows how the valid states listed in Table

2.25 can be represented as a forest.

Layer 1 (2,0,0) (1,1,0) (1,0,1) (0,2,0)

/\ TN

Layer 2 (1,0,1) (0,1,1) (1,0,1) (1,1,0) (0,2,0) (1,0,1) (0,2,0)

Layer3 (0,0,2) (0,1,1) (0,1,1) (0,0,2) (0,1,1) (1,0,1) (0,2,0)

Figure 2.26. Representation of the valid states in Table 2.25 as a forest

Given the use of an array, when the state ((1, 0, 1), (1, 0, 1), (1, 0, 1)) (from the
graph (c) in Figure 2.23) is generated, the array would have already contained seven
states including the duplicate ones which were generated from the graph (a) in Figure
2.19. This state would be located at the fourth cell of the array, while, in the case of using
a forest, the same state would be located at the third tree as seen in Figure 2.26. Similarly,
when the state ((0, 2, 0), (0, 2, 0), (0, 2, 0)) from the graph (b) in Figure 2.21 is generated,

94

the array would have already contained a total of six other states. Thus the newly
generated state would be compared with all the states contained in the array. In the case
of using a forest, it would adequate to check the roots of the current trees to see if the
state is not saved before.

In relation to the comparisons, saving the states in a forest instead of an array
requires the less number of iterations to check the existence of a generated state. This
decrease in the iterations may not seem effective when the number of states is small. In
contrast, when the number of states gets bigger, saving them in the form of a forest will
have a significant effect on the necessary time to determine whether the generated states
are duplicated or not. The following algorithm shows the pseudo-code for a blind search

based algorithm which implements the forward approach:

Forward approach algorithm for enumerating the states of a tournament final table:

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Output:
Ts[][n][2gtr]: states of the final tournament table

Static data structures:
Gln][n]: tournament graph
T[n] [2g+r]: tournament table

Main Procedure
1l: set all the elements of G to O
2: graphGenerator(l, 2)

Procedure: graphGenerator (k, 7)

% foé[%]Tj} ;Oi2q+r do

3 if {R', Rix1} € Cl then

4 GLIV k] < i+1

5: else if {Ri-1, Ri} € Cl then
6: G[jl[k] < 1i-1

7 else

8: G[jl[k]l « 1

9: if j+1 £ n then

10: graphGenerator (k, j+1)
11: else

12: if k+1 < n then

13: graphGenerator (k+1, k+2)
14: else

15: save the equivalent state of G into T

95

16: calculate the number of points for each participant
17: ifofhe participants’ points are in a descending order
18: if T & Ts then

19: insert T into Ts

The algorithm directly focuses on the states of the tournament final table (see line
15), instead of the tournament graphs where, after generating a graph, its data is
converted to the corresponding state of the tournament table. Following line 15, the points
of the participants are calculated and verified whether they are in descending order or not
(lines 16 and 17). If the points are not in descending order, the state will be ignored.

Otherwise, it will be checked in line 18 and then be saved if it does not exist.

2.7. Search Space Analysis

In round-robin sport tournaments, for a particular position, there are highest and
lowest numbers of points a participant can gain. Each participant holds a position in the
final table with which it is possible to determine its highest and lowest numbers of points.
The determination of the highest and lowest points of a participant helps the optimization
of the search spaces for the proposed approaches.

During the generation of the states in the backward approach, if the point of a
participant at a certain position does not range between a minimum number or a
maximum number of points that are necessary for that position, the algorithm will not
continue generating that state and thus its feasibility will not be checked. Similarly, in the
case of the forward approach, if the game results of a participant at a specific position do
not correspond to a point in the relevant range of possible points for that position, the
process of generating the graph will stop, and the algorithm moves to the generation of
the next graph.

To determine the minimum and maximum numbers of points which can be gained
by a participant at the kth position of a single round-robin tournament, the uniform final
tables, where all the participants obtain the same number of points, must be analyzed. For
the uniform final tables, the minimum and maximum numbers of points are based mainly

upon possible game results held in the sets C1 and C» (see Section 2.3.6).

96

2.7.1. Uniform Final States With Minimum Number of Points

2.7.1.1. C> Is Not Empty

Suppose that there is a single round-robin tournament between n participants, where
Czis not empty. A uniform state of the tournament final table is formed based on the
columns R;, Ri+1, and R; of game results, where {Ri, Ri+1} is a pair from Cy, R;jis an
element from Co, i € {1, 3, ..., 20-1}, and j € {2q+1, 29+2, ..., 2q+r}. Let us consider P,
Pi+1 and P; as the number of points which can be gained by a participant from the games
ending in R, Ri+1 and R, respectively. In the case of a uniform state of the final table, the
total number of points which is gained by every participant would be:

Pts(k) = Pi*x + Pj*(n-2x-1) + Pi+1*x, where x € {0, 1, 2, ..., |(n-1)/2|} (2.32)

which can be simplified to:
Pts(k) = (Pi+Pi+1)x + Pj(n-2x-1), where x € {0, 1, 2, ..., [(n-1)/2]} (2.33)
Since each of x and n-2x-1 is positive, Pts(k) reaches its minimum value when P;

becomes the minimum point of the elements in C,, and P;i + Pi+1 becomes the minimum
point of the pairs in Cy.

For the tournament T1 which is previously presented in Section 2.3.6, let us suppose
that P1=7, P»>=0, P3=5, P4=1, Ps=3, and Ps=2 are the points which a participant gains from
the games ending in Ri, Rz, Rs, R4, Rs, or Re respectively. Given that the order of the
possible results of the games in the final table of T1 is Ry, R3, Rs, Re, Rs and Ry, if the final
table of Ty has a uniform state, then the final data of all the participants would have one of
the following forms: (x, 0, n-2x-1, 0, 0, x), (0, x, n-2x-1, 0, x, 0), (x, 0, 0, n-2x-1, 0O, x), or

(0, x, 0, n-2x-1, x, 0), where x € {0, 1, 2, ..., [(n-1)/2]}. Since min(P1+P2, P3+P4) = P3+P4
and min(Ps, Ps) = Ps, the rows of the uniform state with minimum number of points

would have the form (0, x, 0, n-2x-1, x, 0).
To find the values of x which minimizes the number of points in a uniform state of a

final table, Eq. (2.33) can be written as follows:

97

Pts(k) = x(Pi+Pi+1-2P;j) + Pj(n-1), where x € {0, 1, 2, ..., |(n-1)/2|} (2.34)
The value of x which minimizes the value of Pts(k) depends on the larger value of
Pi+Pi+1 and 2Pj. If Pi+Pi+1 > 2Pj, in order for the uniform state to reach the minimum

number of points, x must be minimum (i.e. 0), while if Pi+Pi+1 < 2Pj, for the uniform state

to reach the minimum number of points, x must be maximum (i.e. [(n-1)/2]).
In the tournament systems which are presented in Section 1.8.3, we observe that all

of them respect the constraint:
vie{l..q} AV]je{2q..29+r} — Pi+ Pi:1>2P; (2.35)
With respect to the constraint (2.35), we can say that a uniform final state reaches

its minimum number of points when x = 0. By applying this principle on the tournament
T1, we find that the rows of the uniform state with the minimum number of points would
have the form (0, 0, 0, n-1, 0, 0). Table 2.26 shows the uniform states with the minimum
number of points, in the case of the tournament tables addressed in Section 1.8.3, where

Cz is not empty.

Table 2.26. The uniform final states with the minimum number of points in the
case of the sports presented in Section 1.8.3, where C» is not empty

Sports Game Results
Football, rugby, handball, chess (0, n-1, 0)
Cricket (0,0,n-1,0), (0, 0,0, n-1)

2.7.1.2. C2 Is Empty

As discussed in Section 2.3.6, when C is empty, a uniform state of a tournament
final table can be formed only when the number of participants, n, is odd. The uniform
states in this instance are formed based on the game results Ri, Ri+1 where {Ri, Ri+1} is a
pair from Cy, and i € {1, 3, ..., 29-1}. Supposing that P; and Pj+1 are the numbers of points
of each of Riand Ri:+1, respectively, the number of the total points which is gained by
every participant can be calculated as follows:

98

Pts(k) = Pi(n-1)/2 + Pixy(n-1)/2 = (Pi+Pis1)(n-1)/2 (2.36)

Since the value of (n-1)/2 is positive, Pts(k) reaches its minimum value when
Pi+Pi+1 become the minimum point of the pairs in C.

For the tournament T2 which is previously presented in Section 2.3.6, let us suppose
that P1=7, P»>=0, P3=5, P4=1, Ps=3, and Ps=2 are the points which a participant gains from
the games ending in Ri, R2, Rs, R4, Rs, or Re respectively. Given that the order of the
possible results of the games in the final table of Tz is R1, R3, Rs, R, Rs and Rz, and n is
odd, if the final table of T has a uniform state, then the final data of all participants would
have one of the following forms: ((n-1)/2, 0, 0, O, 0, (n-1)/2), (0, (n-1)/2, 0, 0, (n-1)/2, 0),
or (0, 0, (n-1)/2, (n-1)/2, 0O, 0). Since min(P1+P2, P3+P4, Ps+Pg) = Ps+Ps, the rows of the
uniform state with the minimum number of points would have the form
(0, 0, (n-1)/2, (n-1)/2, 0, 0). Table 2.27 shows the uniform final states with the minimum
number of points in the case of the sports tournaments given in Section 1.8.3, where C; is
empty and n is odd.

Table 2.27. The uniform final states with the minimum number of points in the case of the
sports tournaments presented in Section 1.8.3, where C; is empty and n is odd

Sports Game Results
Basketball, volleyball, tennis, lacrosse ((n-1)/2, (n-1)/2)
Ice hockey, Curling ((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0)

2.7.2. Uniform Final States With Maximum Number of Points

2.7.2.1. C> Is Not Empty

Since each of x and n-2x-1 in Eq. (2.33) are positive, Pts(k) reaches its maximum
value when Pjbecomes the maximum point of the elements in C, and Pi+Pi+1 becomes
the maximum point of the pairs in Ci. In this case, for the tournament Ti, since
max(P1+P2, P3+Ps) = Pi1+P2and max(Ps, Pes) = Ps, to obtain a final state with the
maximum number of points, the final data of all participants must have the form
(x, 0, n-2x-1, 0, 0, x).

99

By respecting the Eq. (2.35), a uniform final state reaches its maximum number of
Pomts when x = ?n-l?/Zj. By applying this principle on the tournament Ti, the rows of
he uniform final state ‘with the maXimum number of points would have the form

(I(n-1)/2], 0, n-2|(n-1)/2]-1, 0O, O, [(n-1)/2]). Table 2.28 shows the uniform final states
with the maximum number of points in the case of the sports tournaments given in

Section 1.8.3, where C; is not empty.

Table 2.28. The uniform final states with the maximum number of points in the case
of the sports tournaments given in Section 1.8.3, where C; is not empty

Sports Game Results

Football, rugby, handball, chess ([(n-1)/2], n-2|(n-1)/2]-1, [(n-1)/2])
(1(n-1)/2], [(n-1)/2], n-2](n-1)/2]-1, 0),

(I(n-2)/2], |(n-1)/2], O, n-2|(n-1)/2]-1)

Cricket

2.7.2.2. C2 Is Empty

Since the value of (n-1)/2 in Eq. (2.36) is positive, Pts(k) reaches its maximum
value when Pi+Pj:+1 becomes the maximum point of the pairs in Cs. In this case, for the
tournament T, between an odd number of participants, n, max(P1+P2, P3+Ps, Ps+Pg) =
P1+P2, which means that the rows of the uniform state in the final table of T, with the
maximum number of points would have the form ((n-1)/2, 0, 0, 0, 0, (n-1)/2). Table 2.29
shows the uniform final states with the maximum number of points in the case of the
sports tournaments addressed in Section 1.8.3, where the set Cz is empty and the value of
n is odd.

Table 2.29. The uniform final states with the maximum number of points in the case of
the sports tournaments given in Section 1.8.3, where C> is empty and n is odd

Sports Game Results

Basketball, volleyball, tennis, lacrosse ((n-1)/2, (n-1)/2)
Ice hockey, Curling ((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0)

100

2.7.3. Minimum Final Points of a kth Participant

To determine the minimum number of points that can be earned by a participant at a
kth position, the final points of the participant must be considered separately depending
on the results of its games against the other participants at the higher and lower positions
in the final table. We split the tournament into two sub-tournaments, where the graph of
each sub-tournament is considered as a sub-graph of the overall tournament. By
combining these sub-graphs we get the graph of the overall tournament. In a tournament
between n participants, there are k-1 participants at higher positions than k, and n-k
participants at lower positions. Thus, the resulting two sub-tournaments would be a sub-
tournament between the first k participants, and another one between the last n-k+1
participants.

For a kth participant to get a minimum number of points, all its games against the
participants at the higher positions must end in Ri«1, where i € {1, 3, ..., 20-1}. The
number of points which can be gained from a game that ends in R+ Iis
Pi+1 = min(P2, Pa, ..., P2g). If Pnigh denotes the number of points which a participant can
gain from the higher sub-tournament, the minimum number of points which can be gained

by a kth participant from this sub-tournament would be:

min(Prign(K)) = (k-1) min(P2, Pa, ..., P2q) (2.37)

Moreover, since the kth participant appears the first in the sub-tournament with the
participants at the lower positions than k, this sub-tournament must have a uniform state
of the final table with a minimum number of points, which gets involved in discussing
three particular scenarios. The first scenario takes place when C;is not empty. In this
case, as in previously discussed in Section 2.7.1.1, the state of the final table is uniform
with a minimum number of points when the games of all participants end in R;, where
Rj € C2 and the number of the points which is gained from a game that ends in R;jis
Pj = min(Pag+1, P2g+2, ..., Pag+r). If Piow denotes the number of points obtained from the
lower sub-tournament, the minimum number of points which can be gained by a kth

participant from this sub-tournament would be:

min(Piow(K)) = (n-k) min(P2g+1, P2g+2, ..., P2g+r), where Cz # {} (2.38)

101

The second scenario occurs when Cz is empty and n-k is even. In this scenario
based on the issue discussed in Section 2.7.1.2, each participant earns a number of points
obtained by (Pi+Pi+1)*(n-k)/2, where (Ri, Ri+1) is a pair from Cy, i € {1,3,..., 29-1}, Pi and
Pi+1 are the points gained from a game ending in Ri and Ri+1 respectively, and
Pi+Pi+1 = min(P1+P2, P3+Ps, ..., P2q1tP2g). The minimum number of points that a kth
participant can earn from this sub-tournament would be:

min(Piow(k)) = ((n-k)/2) min(P1+P2, P3+P4, ..., P2g-1+P2g),
where C> = {} and n-k is even (2.39)

The last scenario occurs when Czis empty and n-k is odd. In this scenario, it will
not be possible to form a uniform state of the final table (see Section 2.3.6). The closest
table state to a uniform one can be determined by dividing the participants into two

halves. For the first half of the n-k+1 participants in the lower sub-tournament, the
| (n-k)/2] games end in R;, the |(n-k)/2] games end in Ri+1 and a single game ends in Ry,
where the participant playing the single game gains Py = min(P1, P3, ..., P2g1). For the

second half of the participants, the |(n-k)/2] games end in R;, the [(n-k)/2] games end in
Ri+1 and a single game ends in Ri+1, where {R, Ri+1}€ C1. Thus, the minimum number of
points which can be gained by a kth participant from this sub-tournament can be
calculated as follows:

min(Piow(K)) = [(n-k)/2] min(P1+P2, P3+Pg, ..., Pag-1+P2q) +
min(Py, P3, ..., P2g-1), where C2 = {} and n-k is odd (2.40)

Eqg. (2.39) and Eq. (2.40) can be combined into a single one like:

min(Piow(K)) = |(n-k)/2] min(P1+P2, P3+Pa4, ..., P2g-1+P2g) +

(n-k-2](n-k)/2]) min(P1, Ps, ..., P2g1), where Cz = {} (2.41)
After calculating each of min(Phigh(k)) and min(Piow(k)), the minimum number of
points which can be gained by a participant at the kth position can be given by:

min(Pts(k)) = min(Phigh(K)) + min(Piow(K)) (2.42)

102

Table 2.30 presents each of min(Pnigh(k)), min(Piow(k)) and min(Pts(k)) in the case
of the sports tournaments presented in Section 1.8.3.

Table 2.30. min(Pnigh(k)), min(Piow(k)) and min(Pts(k)) in the case of sports tournaments
given in Section 1.8.3

Sports mMiN(Phigh(K)) min(Piow(K)) min(Pts(k))
Football, rugby, handball 0 n-k n-k
Chess 0 (n-k)/2 (n-k)/2
Basketball, volleyball, tennis k-1 2(n-K)-](n-K)/2] 2n-k-|(n-k)/2]-1
lacrosse 0 n-k-](n-K)/2] n-k-](n-K)/2]
Ice hockey, Curling 0 2(n-k)-1(n-K)2] | 2(n-k)-|(n-k)/2]
Cricket 0 n-k n-k

2.7.4. Maximum Final Points of a kth Participant

Similar to the principle of determining the minimum number of points for a kth
tournament participant, the maximum number of points must be considered separately
depending on the results of its games against the other participants at the higher and lower
positions in the tournament table.

For a kth participant to get a maximum number of points, all its games against the
participants at the lower positions must end in Ri, where i € {1, 3, ..., 2g-1} and the
number of points gained from a game that ends in Ri is Pi=max(Pz, Ps, ..., P2¢1). We can
represent the maximum number of points which can be gained by a kth participant from
this sub-tournament as:

max(Piow(K)) = (n-k) max (P4, P3, ..., P2g-1) (2.43)

Moreover, since the kth participant appears the last in the sub-tournament with the
participants at the higher positions than Kk, this sub-tournament must have a uniform state
of the final table with a maximum number of points, which gets involved in discussing

three particular scenarios.

103

The first scenario takes place when C; is not empty. Let us suppose that P;, Pi+1 and
Pj are the number of points which a participant can gain from a game that ends in Rj, Ri+1
or R; respectively, where {Ri, Rix1} € Ci and Rj € C2. In this case, as in previously
discussed in Section 2.7.2.1, the state of the final table is uniform with a maximum

number of points when the |(k-1)/2] games end in R;, the |(k-1)/2] games end in Ri+1 and
k-2|(k-1)/2]-1 games end in R;, where P; = max(Pxg+1, P2q+2, .., Pagr), and

Pi+Pi+1= max(P1+P2, P3+Pa4, ..., P2q-1+P2q). The maximum number of points which can be
gained by a kth participant from this sub-tournament in this instance would be:

max(Phigh(K)) = [(k-1)/2] max(P1+P2, P3+Pa, ..., P2q-1+P2q)

+ (k-2[(k-1)/2]-1) max(P2qg+1, P2g+2, ..., P2g+r), where Co # {3} (2.44)

The second scenario occurs when Co is empty and k-1 is even. In this scenario based

on the issue discussed in Section 2.7.2.2, each participant earns a number of points
obtained by (Pi+Pi«1)*(n-k)/2, where {Ri, Ri+1} € Ci, 1 € {1, 3,.., 20-1}, and
Pi+Pirx1=max(P1+P2, P3+Pa, ..., P2q.1+P2q). The maximum number of points that a kth

participant can earn from this sub-tournament would be:

max(Phigh(K)) = ((k-1)/2) max(P1+P2, P3+Py, ..., P2g-1+P2g),
where C> = {} and k-1 is even (2.45)

The third scenario occurs when C; is empty and k-1 is odd. In this scenario, as
explained in Section 2.3.6, it will not be possible to form a uniform state of the final table.

The closest table state to a uniform one can be determined by dividing the participants

into two halves. For the second half of the participants, the |(k-1)/2] games end in R;, the

|(k-1)/2] games end in Ri+1 and the remaining game ends in Rj+1, where the participant

playing the latter game gains Pi+1 = max(P2, Pa, ..., P2g). For the first half of the kth
participants in the upper sub-tournament, the |(k-1)/2] games end in R;, the [(k-1)/2]
games end in Ri+1, and one game ends in R, where {Ri, Ri+1} € Ci1. Thus, the maximum
number of points which can be gained by a kth participant from this sub-tournament can
be calculated as follows:

104

max(Phign(k)) = |(k-1)/2] max(P1+P2, Ps+Ps, ..., Pag.1+Pa2q)
+ max(P2, Pa, ..., P2g), where C, = {} and k-1 is odd (2.46)

Eq. (2.45) and Eq. (2.46) can be combined into a single one like

max(Phigh(K)) = [(k-1)/2] max(P1+P2, P3+Pa, ..., P2q-1+P2q)

+ (k-2|(k-1)/2]-1) max(P2, Pa4, ..., P2q), where C, = {} (2.47)
After calculating each of max(Piow(k)) and max(Phigh(k)), the maximum number of
points which can be gained by a participant at the kth position can be given by:

max(Pts(k)) = max(Pnigh(k)) + max(Piow(K)) (2.48)

Table 2.31 presents each of max(Phigh(k)), max(Piw(k)) and max(Pts(k)) in the case
of sports tournaments presented in Section 1.8.3.

Table 2.31. max(Pnign(k)), max(Piow(k)) and max(Pts(k)) in the case of the sports
tournaments given in Section 1.8.3

Sports max(Phign(K)) max(Piow(K)) max(Pts(k))
Football |(k-1)/2)+k-1 3(n-k) 3n-2k+|(k-1)/2]-1
Rugby, handball k-1 2(n-k) 2n-k-1
Chess (k-1)/2 n-k n-(k+1)/2
Basketball, volleyball, tennis |(k-1)/2]+k-1 2(n-k) 2n-k+|(k-1)/2|-1
lacrosse |(k-1)/2] n-k n-k+|(k-1)/2]
Ice hockey, Curling | (k-1)/2]+k-1 3(n-k) 3n-2k+|(k-1)/2]-1
Cricket k-1 2(n-k) 2n-k-1

2.7.5. Interval of Points of a kth Participant

The relations max(Pts(k)) and min(Pts(k)) help that the interval of Pts(k) can be

written as follows:

105

min(Pts(k)) < Pts(k) < max(Pts(k)), where 1 <k <n (2.49)

Based on Eq. (2.49), Table 2.32 presents the optimized search space of WDL values
which can be obtained by each team in a 4-team football tournament, where the WDL
values that a team at the kth position can have are marked by X. In the case of the
backward approach, the number of states which must be evaluated based on this
optimized search space is 6*7*7*7=1764, which is less than 1/5 of the states evaluated
with the blind search algorithm (10* states).

Table 2.32. The optimized search space of WDL based on Eqg. (2.49) of a 4-team
football tournament

(37 (2’ (21 (1! (1! (01 (ll (Ol (Ol (Oa
woLl o |2 o |2 11|30 /|2/|1]o
vl nDlolylol2|nl2]ls3
) Ps 1 9 | 716|543 |3 |21]1]|0
1 | x I x| xIxIxIx-1-1T-7-
> | - Ix I xIxIxIxIxIx]-1-:
3 | - | - [x I x| xIxI x| x| x]|-
s | - - -1 - T xTxI x| x| x]|x

Together with the relation Pts(k) < max(Pts(k)), Eqg. (2.17) must also be respected.
Table 2.33 presents the final table of a football tournament of 4 teams, where the
maximum number of points gained by the team at the second position (7 points) is bigger
than the number of points gained by the first team (6 points). Table 2.34 presents the final
table of an ice hockey tournament of 4-teams, where the maximum gained number of
points for the team at the second position (7 points) is lower than the number of points for
the first team (8 points). These two cases prove that max(Pts(k)) might be bigger or

smaller than Pts(k-1), which means that Pts(k) must satisfy the following relation:

Pts(k) < min(max(Pts(k)), Pts(k-1)) (2.50)

106

By taking Eg. (2.50) into account, the interval of Pts(k) can be represented as

follows:

min(Pts(k)) < Pts(k) < min(max(Pts(k)), Pts(k-1)), where 1 <k <n (2.51)

Table 2.33. The final table of a football tournament of 4
teams where max(Pts(2)) > Pts(1)

Teams W D L
A 2 0 1
B 1 2 0
C 1 1 1
D 0 1 2

Table 2.34. The final table of an ice hockey tournament of 4 teams
where Pts(1) > max(Pts(2))

Teams W | OTW | OTL | L
A 2 1 0 0
B 2 0 1 0
C 0 1 0 2
D 0 0 1 2

2.8. Optimization of Final Table States

2.8.1. Optimized Backward Algorithm

In this section, the backward algorithm that is presented in Section 2.6.1 is
optimized, where we respect Eq. (2.51). Instead of the selection of every value in the set S
for every participant (see Section 2.3.4), the participants will be given only the possible
numbers of points in accordance with their positions in the final table.

Before the optimized algorithm starts the generation of the states of a tournament

final table, as well as the minimum and maximum number of points which can be

107

succeeded by each participant, the set S is constructed together with the total number of
points of each element in that set, contained in the set PS. Afterwards, the sets S and PS
are sorted in the descending order of the elements of PS. The optimized backward

algorithm to enumerate the states of a final table can be organized as follows:

Optimized backward algorithm for enumerating the states of a tournament final table:

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Outputs:
Ts[]1[n][2gtr]: states of final tournament table

Static variables and data structures:
N: number of elements of the set S(n, 2g+r)

S[N] [2g+r]: the set S(n, 2gtr)

T[n][2gt+r]: tournament table

PS[N] : number of points of each element of S
minP[n]: possible minimum points of each participant
maxP[n]: possible maximum points of each participant

Main Procedure

1: calculate N based on Eg. (2.23)

2: calculate S based on Eqg. (2.20)

3: PS « number of points of each element from S

4 sort the elements of S and PS depending on the descending
order of the elements of PS

5: minP « minimum number of points which can be gained by
each participant // based on Eg. (2.42)

6: maxP « maximum number of points which can be gained by
each participant // based on Eg. (2.48)

7: stateGenerator (1, 1)

Procedure: stateGenerator (k, i p)

1: 1if k £ n then
2: I« 1p
3: while PS[i] > maxP[k] do
4: i++
5: while i £ N and PS[1i] 2 minP[k] do
6: for 7 « 1 to 2g+r do
7: T[k][F] < S[i][F]
8: 12 « minimum index to PS where PS[i]=PS[i2]
9: stateGenerator (k+1, 1i2)
10: i++
11: else
12: valid — stateChecker (T)
if valid = true then

o
NV

insert T into Ts

108

Compared to the previous version of the algorithm (see Section 2.6.1), the
procedure stateGenerator takes two parameters rather than one; namely the position of a
participant and the index of the element selected from S for that participant. Note that i
with the initial value i_p is an index to the elements of both S and PS (see line 2 of
stateGenerator). If PS[i] > maxP[K], i keeps being incremented by 1 until the condition is
false (see lines 3 and 4 of stateGenerator) and then the certain elements of S are assigned
to T. This ensures that the number of the corresponding points of the elements assigned
from S to T is less or equal to both max(Pts(k)) and Pts(k-1). The condition at line 5 of the
procedure stateGenerator ensures that the elements from S keep being assigned to T,
where i keep being increased by 1 (line 10) until the algorithm reaches an element from S
with the number of points less or equal to min(Pts(k)). Thus, Eq. (2.51) would be
satisfied.

By passing i2 (which holds the minimum index to PS where PS[i]=PS[i2]) as a
parameter during the recursive call to the procedure stateGenerator at line 9, we ensure
selecting every possible element of S with the same number of points for the next
participant at the position (k+1). By sorting the elements of both S and PS in the
descending order of the elements of PS, we ensure that the states are generated in the
descending order of their corresponding points. So, there is no need to check whether the
points of the teams are in descending order or not. In this way, the task performed at line

2 of the previous version of the algorithm is eliminated (see Section 2.6.1).

2.8.2. Optimized Forward Algorithm

In this section, the forward algorithm that is presented in Section 2.6.2 is optimized,
taking Eqg. (2.51) into account. In this case, the algorithm generates the edges of each
node representing a different participant in which the total number of their corresponding
points is between min(Pts(k)) and min(max(Pts(k)), Pts(k-1)) rather than any value of
Pts(k).

Before the optimized algorithm starts the generation of the states of a tournament
final table, with the same principle as the optimized backward algorithm, the minimum
and maximum number of points which can be gained by each participant must be
calculated. The pseudo-code of the optimized forward algorithm to enumerate the states

of a final table is given below.

109

Optimized forward algorithm for enumerating the states of a tournament final table:

Inputs:
n: number of participants
Cl: game results which are related to each other
g: size of C1
C2: game results which are not related to other game results
r: size of C2

Output:
Ts[]1[n][2gtr]: states of final tournament table

Static data structures:

G[n] [n]: tournament graph

T[n] [2gtr]: tournament table

minP[n]: possible minimum points of each participant
maxP[n]: possible maximum points of each participant
Pts[n]: number of points of each participant

Main Procedure
1: set all the elements of G to O

2: minP « minimum number of points which can be gained by
each participant // based on formula (2.42)
3: maxP « maximum number of points which can be gained by

each participant // based on formula (2.48)
4: graphGenerator(l, 2)

Procedure: graphGenerator (k, 7)

é fOé[%]Tj} jgoiZq+r do

3 if {Rl, Riz1} € Cl1 then

Z GIF1 k] < i+1

5: else if {Ri-1, Ri} € Cl then

6: GlFl[k] « i-1

7 else

8: Gljl[k] « 1

9: if j+1 < n then

10: graphGenerator (k, j+1)

11: else

12: Pts[k] < number of points of a kth participant

13: 1if Pts[k] 2 minP[k] then

14: if (k > 1 and Pts[k] < min(maxP[k], Pts[k-1])) or k =1
then

15: if k+1 < n then

16: graphGenerator (k+1, k+2)

17: else

18: Pts[n] < total number of points of the n-th

participant

19: if Pts[n] £ min(maxP[n], Pts[n-1]) then

20: T « the equivalent state of G

21: if T € Ts then

22: insert T into Ts

In the algorithm, after generating the edges of each node k and before performing

the same task for the next node k+1, the total points must be checked whether it respects

110

Eq. (2.51) or not. As it is illustrated in lines 13 and 14 of the procedure graphGenerator,
since the first node is not connected to a preceding one, the total number of its points is
compared with min(Pts(1)) only, while the points of the other nodes except the last one
are checked whether they are between min(max(Pts(k)), Pts(k-1)) and min(Pts(k)) or not.

Since all the edges of the last node are generated during the manipulation of the
previous nodes, the procedure graphGenerator is not called to process that node. After
completing the generation of the graph, a special test on the number of the corresponding
points of the last node will be done. This node (the nth node) will never have the number
of points less than 0 (i.e., held by min(Pts(n)) and so the number of its points will be
compared only with min(max(Pts(n)), Pts(n-1)). This is illustrated in line 19 of the
procedure graphGenerator.

After generating the edges of a kth node, if the number of its points does not respect
Eq. (2.51), the following nodes will not be processed, and the graphs produced from the
current sub-graph would be ignored. This is clearly shown in the case of each of Figures
2.22,2.24 and 2.25. That is, after constructing the partial graph based on the generation of
the edges of the first node, the number of its points would be less than the minimum
points that it can gain, and therefore neither the graphs (a), (b) nor (c) in each figure
would be generated.

A node will never have a number of points higher than the one of its previous nodes,
because the number of the corresponding points of any node k is compared with
min(max(Pts(k)), Pts(k-1)). So, there is no need to check the order of the points in the
nodes after completing the generation of each graph.

Table 2.35 shows the steps of generating the final states of a football tournament

using the optimized forward algorithm, where the tournament is involved by 3 teams.

111

Table 2.35. The steps of generating the final table states of a 3-team football tournament,

using the optimized forward algorithm

Figure-Graph State Status Reason

2.17-(a) ((2,0,0),(1,0,1),(0,0,2) Accepted -

2.17- (b) ((2,0,0),(0,1,1),(0,1,1)) Accepted -

2.17-(c) ((2,0,0),(0,0,2),(1,0,1)) Not accepted Pts(2) < min(Pts(2))

2.18-(a) ((1,1,0),(1,0,1),(0,1,1)) Accepted -

2.18-(b) ((1,1,0),(0,1,1),(0,2,0)) Not accepted Pts(2) < Pts(3)

2.18-(c) ((1,1,0),(0,0,2),(1,1,0)) Not accepted Pts(2) < min(Pts(2))

2.19-(a) ((1,0,1),(1,0,1),(2,0,1)) Accepted -

2.19-(b) ((2,0,1),(0,1,1),(1,1,0) Not accepted Pts(2) < Pts(3)

2.19-(c) ((1,0,1),(0,0,2),(2,0,0)) Not accepted Pts(2) < min(Pts(2))

2.20-(a) ((1,1,0),(1,1,0),(0,0,2) Accepted -

2.20-(b) ((1,1,0),(0,2,0),(0,1,1)) Accepted -

2.2-(c) ((2,1,0),(0,1,1),(1,0,1) Not accepted Pts(2) < Pts(3)

2.21-(a) ((0,2,0),(1,1,0),(0,1,1)) Not accepted Pts(1) < Pts(2)

2.21-(b) (0, 2,0), (0, 2,0), (0, 2,0)) Accepted -

2.21-(c) ((0,2,0),(0,1,1),(1,1,0)) Not accepted Pts(2) < Pts(3)
2.22 - Not accepted Pts(1) < min(Pts(1))

2.23-(a) ((1,0,1),(2,0,0), (0,0, 2) Not accepted Pts(1) < Pts(2)

2.23-(b) ((4,0,1),(2,1,0),(0,1,1)) Not accepted Pts(1) < P(2)

2.23-(c) ((1,0,1),(1,0,1),(2,0,1)) Not accepted Already exists
2.24 - Not accepted Pts(1) < min(Pts(1))
2.25 - Not accepted Pts(1) < min(Pts(1))

2.9. Multi-threaded Optimization of Final Table States

2.9.1. Multi-threaded Optimized Backward Algorithm

In this section, the optimized backward algorithm that is presented in Section 2.8.1

is internally accelerated using multi-threading, instead of a single thread of execution. If a

machine contains multiple processors, multi-threaded programs usually run on that

machine faster than the classically structured programs. However, the threading

112

mechanism also has some certain disadvantages; for example, changing the context of
threads and sharing critical resources cost some time, which has a negative effect on the
execution time of the program. Therefore, not to degrade the algorithm performance, the
optimum number of threads that allows the algorithm to exploit the maximum
performance of the relevant machine must be determined.

The number of cores in the used machine is usually taken into account as the
optimum number of threads, but this may not be always the right choice [171]. The
relationship between the number of threads, the number of available cores, and the
resulting speedups for multi-threaded programs is a complicated relationship [172]. This
is due to the fact that other factors influence the performance other than the number of the
threads [173], such as the thread context switch rate, the bandwidth utility, the thread
migration rate, and the characteristics of the program itself. The overlapping of these
factors makes estimating the optimum number of threads theoretically a challenging issue
[174], where a change in any factor may affect the maximum performance, which
requires adjusting the number of threads. It is possible to iteratively determine the
optimum number of threads for a specific program [172, 175] through testing and
comparing the performance of different numbers of threads. In this way, the right number
of threads can be chosen, which gives the results in the shortest amount of time.

The multi-threaded optimized backward algorithm to generate the states of a

tournament final table is presented below.

Multi-threaded optimized backward algorithm for enumerating the final states:

Inputs:
n: number of participants
Cl: game results which are related to each other
q: size of C1
C2: game results which are not related to other game
results
r: size of C2

ThrLim: limit of threads that can run simultaneously

Outputs:
Ts[]1[n][2gtr]: states of final tournament table

Static variables and data structures:
N: number of elements of the set S(n, 2g+r)

S[N] [2gtr]: set S(n, 2g+tr)

PS[N]: the number of points of each element of S
minP[n]: possible minimum points of each participant
maxP[n]: possible maximum points of each participant

thrNbr: number of the running threads

113

Main Procedure

1: calculate N based on formula (2.23)

2: calculate S based on formula (2.20)

3: PS « number of points of each element from S

4 sort the elements of S and PS depending on the descending

order of the elements of PS

5: minP — minimum number of points which can be gained by
each participant // based on formula (2.42)

6: maxP — maximum number of points which can be gained by
each participant // based on formula (2.48)

7: T[n][2g+r] // tournament table

thrNbr « 1

9: stateGenerator (1, 1, T)

[e¢]

Procedure: stateGenerator(k, i p, T p)

1: T «— T_p

2: 1f k £ n then

3: 1« 1p

4: while PS[1i] > maxP[k] do

5: i++

6: while 1 £ N and PS[i] 2 minP[k] do
7 Tlk] « S[1i]

8: 12 « minimum index to PS where PS[i]=PS[i2]
9: if thrNbr < thrLim then

10: thrNbr++

11: new thread:

12: stateGenerator (k+1, 1i2, T)
13: thrNbr—-

14: else

15: stateGenerator (k+1, 12, T)

16: i++

17: else

18: valid « stateChecker (T)

19: if valid = true then

20: insert T into Ts

In the algorithm, in addition to the position of a participant and the index of the
element selected from S for that participant, the current state of the tournament table (T) is
passed as a parameter. Since T is passed as a parameter during each call to the procedure
stateGenerator, there is no need to declare it as a global data structure, which is locally
defined in the procedure Main (line 7).

The variable thrNbr initially holds a value of 1, which represents the main thread.
Before the procedure stateGenerator is called recursively, a check is performed on the
number of the running threads (see line 9). If it is less than the optimum number (denoted
by thrLim), thrNbr will be increased by 1 and the procedure will be called in a separate
thread (see line 11). After creating a new thread for the call to stateGenerator, the current
thread continues its execution in parallel and deals with the next iteration of the loop at

line 6. The value of thrNbr will be decreased after the end of each thread. In the case

114

when the number of the running threads is equal to the optimum number of threads (i.e.,
thrLim=thrNbr), the recursive call to stateGenerator will be invoked sequentially by the
same thread (i.e., the current thread).

Compared with the single-threaded version of the algorithm, the table T is passed as
a parameter at each call to stateGenerator, instead of declaring it as a global variable. This
is because the consideration of table T as a global variable allows it to be updated by
many threads at the same time, which may affect the obtained results. Since each element
of Ts (the possible states of the tournament final table) and thrNbr are global variables,
they can be updated by each thread. Thus, they are treated as critical resources, and a

synchronization mechanism is implemented to control access to them.

2.9.2. Multi-threaded Optimized Forward Algorithm

In this section, the optimized forward algorithm that is presented in Section 2.8.2 is
internally accelerated using multi-threading, instead of a single thread of execution. In
order to exploit the maximum performance of the relevant machine, the optimum number
of threads must be determined. As previously explained in Section 2.9.1, the optimum
number of threads can be determined iteratively by testing and comparing the
performance of different numbers of threads. The multi-threaded optimized forward
algorithm to generate the states of a tournament final table is described below.

Multi-threaded optimized forward algorithm for enumerating the final states:

Inputs:
n: number of participants
Cl: game results which are related to each other
q: size of C1
C2: game results which are not related to other game
results
r: size of C2

thrLim: limit of threads that can run simultaneously
Output:
Ts[][n][2gtr]: states of the final tournament table

Static data structures:
minP[n]: possible minimum points of each participant
maxP[n]: possible maximum points of each participant
thrNbr: number of the running threads

Main Procedure:
1: minP — minimum number of points which can be gained by
each participant // based on formula (2.42)

115

2: maxP « maximum number of points which can be gained by
each participant // based on formula (2.48)

3: G[n]l[n] // tournament graph

4: Pts[k] // number of points of each participant

5: thrNbr « 1

6: graphGenerator(l, 2, G, Pts)

Procedure: graphGenerator (k, j, G p, Pts p)

1 G~ Gp

2 for 1 « 1 to 2g+r do

3 Glkl[j] « 1

4. if {Ri, Ris1} € Cl then

5: GlFl[k] « i+l

6 else if {Ri-1, Ri} € Cl then

7 GlFllk] « i-1

8: else

9: GIJjl[k] « 1

10: if j+1 £ n then

11: if thrNbr < thrLim then

12: thrNbr++

13: new thread:

14: graphGenerator (k, j+1, G, Pts p)

15: thrNbr—-

16: else

17: graphGenerator (k, j+1, G, Pts p)

18: else

19: Pts « Pts p

20: Pts[k] < total number of points of a kth participant

21: if Pts[k] 2 minP[k] then

22: if (k > 1 and Pts[k] £ min(maxP[k], Pts[k-1])) or k =1
then

23: if k+1 < n then

24 if thrNbr < thrLim then

25: thrNbr++

26: new thread:

27 graphGenerator (k+1, k+2, G, Pts)

28: thrNbr—--

29: else

30: graphGenerator (k+1, kt+2, G, Pts)

31: else

32: Pts[n] « total number of points of the n-th

participant

33: if Pts[] £ min(maxP[n], Pts[n-1]) then

34: éﬁ@ré&mc{(/a%%n@%% babge

36: 1f T Ts then

37: 1nsert T into Ts

In the algorithm, in addition to the indices of a participant (i.e., k) and its opponent
(i.e., j) in the graph G, the procedure graphGenerator takes two more parameters, which

are the tournament graph (i.e., G) and the number of points of each participant (i.e., Pts).

116

Since G and P are passed as parameters, there is no need to declare them as global data
structures, which are locally defined in the procedure Main (lines 3 and 4).

The variable thrNbr takes 1 as an initial value, which represents the main thread.
Whenever the procedure graphGenerator is called recursively, the number of the running
threads is checked (lines 11 and 24). If it is less than the optimum number of threads
(denoted by thrLim), thrNbr will be increased by 1 and the procedure will be called in a
separate thread (lines 14 and 27). After creating a new thread for the call to the procedure
graphGenerator, the current thread deals with the execution of the next iteration of the
loop at line 2 in parallel. The value of thrNbr will be decreased after the end of each
thread. In the case when the number of the running threads is equal to the optimum
number of threads (i.e., thrLim=thrNbr), the recursive call to the procedure
stateGenerator will be invoked sequentially within the current thread.

Compared with the single-threaded version of the algorithm given in Section 2.8.2,
instead of declaring G and Pts as global variables, they are passed as parameters at each
call to the procedure stateGenerator. This is because the consideration of the tables G and
Pts as global variables allows all the threads to update them at the same time, which may
affect the obtained results. Since each element of Ts (the total states of the tournament
final table) and thrNbr are global variables, they can be updated by many threads
simultaneously. Thus, they are treated as critical resources, and a synchronization

mechanism is implemented to control access to them.

3. COMPLEXITY ANALYSIS

3.1. Introduction

In this chapter, we analyze and discuss the complexities of the proposed approaches
to provide a theoretical estimation for their required resources. During the analysis, we
consider as resources each of the execution time and the memory space. The complexities
of the proposed approaches mainly depend on the number of participants and the number
of possible game results.

Both of the backward and forward approaches are based on blind search algorithms.
To simplify the time/space complexity calculation of each approach, we first calculate the
complexities of the blind search algorithms. After analyzing and discussing the
complexities of the backward and forward algorithms, their optimized versions are
analyzed. Next, we analyze the parallelized versions of the approaches. In this stage, in
addition to the numbers of participants and possible game results, the optimum number of
threads that can be executed in parallel in the used machine is taken into account as an
influencing factor in the complexity calculation. Last and not least, based on the results of
this analysis, the complexity class of the addressed problem (i.e., determining all the

states of a tournament table) is defined.

3.2. Blind Search Algorithm for Enumerating The Final Table States

In Section 2.6.1, we have showed that the principle of the backward algorithm is
directly related to the one of the blind search algorithm for enumerating the final table
states. Thus, for simplicity, we calculate the complexity of the blind search algorithm
before the complexity analysis of the backward approach.

3.2.1. Time Complexity

Let T(n, m) be the time complexity of the blind search algorithm for n participants

and m possible game results (m = 2g+r). As shown in Section 2.6.1, the main procedure

118

of the blind search algorithm contains 3 lines. The total time complexity of the algorithm
is the sum of the complexities of these lines. So, we can write:
T(n, m) = Ta(n, m) + T2(n, m) + Ta(n, m), where Ty, T2and Tz are respectively the time

complexities of lines 1, 2 and 3.

3.2.1.1. Ta(n, m)

Line 1 calculates the number, N, of possible game results (see Section 2.3.2) based

on Eq. (2.23). This line can be represented by the following sub-algorithm:

Inputs: n, m

Output: N

1: N « 0

2: calculateN(n-1, m)

Procedure: calculateN(r, d)

1l: N++

2 if d > 1 then

3: for 1 « 1 to r do

4 calculateN (i, d-1)

T1(n, m) is equivalent to the complexity Fi(n-1, m) of the procedure calculateN.
Supposing that a = n-1. F1(a, m) can be represented by the following recursive relation:

Fi(x, 1) =0O(1), where 1 <x<a
Fi(a, m) = F (i, m-1)
Za

To simplify tirTelcallculations, we consider the following function called G; instead of
F1, where Gi(a, m) > Fi(a, m). Thus, if a closed formal solution exists for Gi, we will
have an upper bound on F1. Gi(a, m) is defined as follows:

Gi(a, 1) =0(2)

Gi(a, m) = a*Gy(a, m-1) = a**Gi(a, m-2) = a>*G(a, m-3) = a*Ga(a, m-i)

Fori=m-1:
Gi(a, m) = a"*Gy(a, 1) = O@™")
Since Gi(a, m) > Fi(a, m) and Gi(a, m) = O@™), this means that

Fi(a, m) = O(@™%). Since Ti(n, m) = Fi(a, m), we can say that Ti(n, m) = O(@™"). When
we substitute a for its value (i.e., n-1), Ta(n, m) = O((n-1)™) = O(n™™).

119

3.2.1.2. To(n, m)

After calculating T1(n, m), we calculate the complexity of line 2 from the main
procedure of the blind search algorithm (i.e., T2(n, m)). Line 2 calculates the elements of
the set S (set of the possible game results) based on Eq. (2.20). This line can be

represented by the following sub-algorithm:

Inputs: n, m

Output: S[N] [m]

Static data structure: s[m]
1: calculateS (1)

Procedure: calculateS(7)
1: for k « 0 to n-1 do
2 sljl < k

3 if j+1 £ m then

4: calculateS(j+1)

5: else

6 if Yp%15[p]l = m then
7 add s into S

T2(n, m) is equivalent to the complexity the procedure calculateS. In line 6, the sub-
algorithm is calculating the sum of the array s which has the size m. Line 7 adds the
content of the array s into the last row of the two dimensional array S of the size N x m. It
is clear that the complexity of each of lines 6 and 7 is O(m). Thus, T2(n, m) can be
represented by the following recurrence relation.

T2(n, 1) = n*O(m) = O(n*m)

Ta2(n, M) = n*T2(n, m-1) = n**Ta(n, m-2) = n**T2(n, m-3) = N"*T,(n, m-i)

Fori=m-1:

To(n, m) = N"*Ty(n, 1) = O(m*n™)

3.2.1.3. Ts(n, m)

Ta(n, m) is the complexity of the procedure stateGenerator. In lines 3 and 4 of
stateGenerator we assign a row from the array S (of the size N x m) to the array T (of the
size n x m), which causes this part of the algorithm to have a complexity of O(m). Line 7
of the same procedure consists of assigning the values of the array T to the array Ts
(which is an array of arrays of the size n x m), which causes line 7 to have a complexity

of O(n*m). Ts(n, m) can be represented by the following recurrence relation.

120

T3(0, m) = O(n*m)
Ts(n, m) = N*[O(m) + T3(n-1, m)]
= N*O(m) + N*T3(n-1, m)
= N*O(m) + N*O(m) + N**T3(n-2, m)
= N*O(m) + N>*O(m) + N**O(m) + N**T3(n-3, m)
= N*O(m) + N>*O(m) + N**O(m) + ... + N*O(m) + N'*T3(n-i, m)

Fori=n:

Ta(n, m) = N*O(m) + N>*O(m) + N**O(m) + ... + N™*O(m) + N"*T3(0, m)

= O(M)*Ti1 N' + N™O(n*m)
= O(M)*[(N"*! - 1)/(N - 1)] - O(m) + N™*O(n*m)

Based on the proposed sub-algorithm in Section 3.2.1.1 which calculates the value
of N, we can say that "™ is an upper bound of the number N. By substituting N with n™*
we get:

Ta(n, m) = O(M)*[(h™ V™D _ 1)/(n™? - 1)]) + n™D™*O(n*m)

= O(m)*O(nML* (D) j -1y 4 RM-D* N4 ()
= O(m)*O (™™ + nMD"M*O(n*m)

= O(n™™M*[O(m) + *O(n*m)]

= O(N™Y"™*O(n*m)

— O(m*nn*m—n+1)

3.2.1.4. T(n, m)

After calculating each of T1(n, m), T2(n, m) and T3(n, m), T(n, m) would be the sum
of these values. So, we can write:
T(n, m) =Ta(n, m) + T2(n, m) + T3(n, m)
= O(n™") + O(m*n™) + O(m*n™ ™™t
= O(m*n™ ™)
This means that the complexity of the blind search algorithm mainly depends on the

complexity of the procedure stateGenerator.

121

3.2.2. Space Complexity

To calculate the memory space complexity of the blind search algorithm, we
distinguish the data structures whose sizes are related to n and/or m. We can note that the
sizes of each of the arrays S, T and Ts are related to n and m. S and T are declared as
abstract data structures, while Ts is the output of our algorithm. Unlike S and T whose
sizes are predefined, the final size of Ts becomes known only at the end of the algorithm
when all the generated states are saved into it. The memory space complexity $(n, m) in
this situation equals the sum of the resultant complexities by each of S, T and Ts. The
space complexities of S and T are equal respectively to O(N*m) and O(n*m). The
complexity of Ts (denoted as $1(n, m)) can be defined as follows:

$1(0, m) = O(n*m)

$1(n, m) = N*$1(n-1, m) = N>*$3(n-2, m) = N**$3(n-3, m) = N*$;(n-i, m)

When i =n:

$1(n, m) = N"™*$;(0, m) = N™*O(n*m)

By substituting N with an upper bound of n™*, $i(n, m) would be equal to
O(m*n™™™), After calculating $1(n, m), $(n, m) will be as follows:

$(n, m) = O(N*m) + O(n*m) + O(m*n™ ™™

= O(m*n™) + O(m*n™™) + O(m*n"™ ™"
= O(m*n"™ ™™
As seen above, the space complexity mainly depends on the occupied space by Ts

(i.e., the generated states), and neither of S or T have an effect on it.

3.3. Backward Algorithm
3.3.1. Time Complexity

The only difference between the blind search algorithm and the backward algorithm
is that the generated states are not saved unless their validities are agreed by the
procedure stateChecker. This difference does not affect the complexities T1(n, m) and
T2(n, m) (see Sections 3.2.1.1 and 3.2.1.2), but it may affect Tz(n, m) (see Section 3.2.1.3).
So, to calculate T(n, m) for this algorithm, we have to recalculate Tz(n, m).

122

3.3.1.1. Ts(n, m)

Since the number of the valid states is unknown, we suppose that the worst case of
the execution time occurs when every generated case is valid. This means that every
generated state is checked by the procedure stateChecker and saved into Ts. It is obvious
that the test at line 7 has the complexity of O(n). To calculate T3(n, m) for this case, we
suppose that Ts(n, m) is the complexity of stateChecker. T3(h, m) in this case is
represented as:

T3(0, m) = O(n) + T4(n, m) + O(n*m) = T4(n, m) + O(n*m)

Ts(n, m) = N*[O(m) + T3(n-1, m)]

= N*O(m) + N*O(m) + ... + N"™*O(m) + N"*T3(0, m)
= O(M)*YE=1 N' + N™[T4(n, m) + O(n*m)]
= O(M)*[(N™™ - 1)/(N - 1)] - O(m) + N™*T4(n, m) + N"*O(n*m)
By substituting N with an upper bound of n™*, we get:
Ta(n, m) = O(M)*[(N™ V™D - 1)/(n™2 - 1)] + n™V™T,(n, m) + n™ D™ *O(n*m)
= O(m)*O (™D y gy 4 fOD* %, (0 m) + N+ (n*m)
= O(m)*O (™™ + n™V* T, m) + n™ D+ (n*m)
= O(N™Y™*[O(m) + *O(n*m)] + n™V™*T,(n, m)
= O(N™V"™M*O(n*m) + n™V™*T,(n, m)
= O(m*n™™™1) + n"™*T,(n, m)

Here, to be able to calculate T3(n, m), we have to calculate T4(n, m) (i.e., the

complexity of the procedure stateChecker).

3.3.1.2. T4(n, m)

It is clear that the complexity of line 1 in stateChecker is O(n?). Also, the resultant
complexity from the lines 3 and 4 is O(m). If we denote the complexity of the procedure
isStateValid (called at line 5) by Ts(n, m), T4(n, m) can be written as follows:

Ta(n, m) = O(n?) + O(m) + Ts(n, m)

To be able to calculate T4(n, m), we have to calculate Ts(n, m) (i.e., the complexity
of the procedure isStateValid).

123

3.3.1.3. Ts(n, m)

Each of lines 4 and 10 of the procedure isStateValid has the complexity of O(m),
while line 7 has the complexity of O(r). Since m=2q+r, we can say that O(m) is an upper
bound of O(r). The complexity of line 28 can be represented by O(n*m), while the
complexity of line 31 can be represented by O(m). We suppose that
Ts(n, m) = Fs(n, n, m). The complexity of the procedure isStateValid is defined by the
following recurrence relation:

Fs(1, 1, m) = O(n*m)

Fs(1, x, m) = O(m) + Fs(x-1, x-1, m)

Fs(n, n, m) = O(m) + a*Fs(n-1, n, m), where a = n-1

= O(m) + a*O(m) + a®*Fs(n-2, n, m)
= O(m) + a*O(m) + a’*O(m) + a>*Fs(n-3, n, m)
= O(m) + a*O(m) + ... + a"*O(m) + a*Fs(n-i, n, m)

When i =n-1:
Fs(n, n, m) = O(m) + a*O(m) + ... + a"?*O(m) + a"**Fs(1, n, m)

= 0o(M)*¥=% 4 + a"*Fs(1, n, m)
= o(m)*[(a"" - 1)/(a - 1)] + a"*[O(m) + Fs(n-1, n-1, m)]
By substituting a with n-1, we get:
Fs(n, n, m) = O[m*(n-1)"?] + (n-1)"**[O(m) + Fs(n-1, n-1, m)]
= O[m*(n-1)"?] + O[m*(n-1)""] + (n-1)"**Fs(n-1, n-1, m)
= O[m*(n-1)""] + (n-1)""*Fs(n-1, n-1, m)
= O[m*(n-1)""] + (n-1)"**[O(m*(n-2)"?) + (n-2)"?*Fs(n-2, n-2, m)]
= O[m*(n-1)"*] + O[m*(n-1)"**(n-2)"?] +
(n-1)"**(n-2)"2*[O(m*(n-3)™) + (n-3)"**Fs(n-3, n-3, m)]
= O[m*(n-1)"*] + O[m*(n-1)"**(n-2)"?] +
O[m*(n-1)"**(n-2)"?*(n-3)"] +
(n-1)"1*(n-2)"?*(n-3)"3*F5(n-3, n-3, m)
= O[m*(n-1)""] + O[m*(n-1)"**(n-2)"%] + ... +
O[m*(n-1)"**(n-2)"2* . *(n-i)™"] +
(n-1)"1*(n-2)"%* . *(n-i)"*Fs(n-i, n-i, m)
For i=n-1,
Fs(n, n, m) = O[m*(n-1)""] + O[m*(n-1)"**(n-2)"?] + ... +

124

O[m*(n-1)"**(n-2)"2* . *22*1] +
(n-1)"1*(n-2)"2% . #22*11xF5(1, 1, m)

=0(m)* i ()" +Fs(1, 1, m) > IR

Zn—l

j— * i=1]..:1 =\N-j * * n_:{€=1 n-

SR (M) + o(m) * 1" (n-k)™
i=1 j=1 k=1

To simplify the calculations, we solve the following function called Gs instead of
Fs, where Gs(n, n, m) > Fs(n, n, m). Thus, if a closed formal solution exists for Gs, we

will have an upper bound on Fs. Gs(n, n, m) is defined as follows:
Gs(n,n,m)=0(m) * ¥ [T" }(n-1)"* + O(n*m) * [T L(n-1)™*
i=1 j=1 k=1
— O(m)*(n_1)*(n_1)(n-l)*(n-l) + O(n*m)*(n_l)(ﬂ-l)*(ﬂ-l)

= O[(n-1)"V" V] * O[m*(n-1) + m*n]
= O(n(n-l)*(n-l)) * O(m*n)
= O(m*n(™D D+
Since Gs(n, n, m) > Fs(n, n, m) and Fs(n, n, m) = Ts(n, m), we can write

T5(n1 m) = F5(n1 n, m) — O(m*n(n-l)*(n-l)+1)

3.3.1.4. T(n, m)

After calculating Ts(n, m), we have all the required values to determine T(n, m),
which can be calculated as follows:
T(n, m) =Ta(n, m) + T2(n, m) + T3(n, m)
= O(n™™h) + O™ m) + O(M*n™ ™™y + N *T,(n, m)
= 0O(n™) + O(n™m) + O(mM*n™ ™) + "M *[O(n?) + O(m) + Ts(n, M)]
= 0(n™) + O(n™m) + O(m*n™ ™) +
N"MM*[O(n?%) + O(m) + O(m*n DD+
— O(m*nn*m-n+1) + nn*m-n*[O(m*n(n-l)*(n-1)+1)]
= "M [O(m*n) + O(M*n D -]
- nn*m-n*o(m*n(n-l)*(n-1)+1)
- O(m*nn*(n+m-3)+2)
If we compare the complexity of the backward algorithm with the one of the blind

search algorithm (i.e., O(m*n™™ "

)), we find that the complexity of this case is bigger.
This leads to the conclusion that checking every generated state (by calling the procedure

stateChecker) has a remarkable effect on the execution time.

125

3.3.2. Space Complexity

The difference between the space complexity calculations of the backward
algorithm and the blind search algorithm is that the procedure stateChecker of the
backward algorithm has some data structures related to n and/or m, which must be taken
into account. These data structures are the static 2 dimensional arrays T and G which
result in the complexities of O(n*m) and O(n® respectively, and the local array
trackingInds which results in a complexity of O(m). Supposing that $2(n, m) is the
complexity of stateChecker, the space complexity of the backward algorithm
(i.e., $(n, m)) would be like: $(n, m) = O(M*n™ ™™ + $,(n, m).

The procedure stateChecker calls the recursive procedure isStateValid. Supposing
that $3(n, m) is the complexity of isStateValid, $2(n, m) can be defined as:

$2(n, m) = O(n*m) + O(n?) + O(m) + $3(n, m)

= O(n*m) + O(n) + $3(n, m)

The procedure isStateValid declares its own local array trackinglnds every single
recursive call. To calculate the resultant complexity of this procedure we have to define
the maximum depth of the recursive calls. The maximum depth can be defined as follows:

d = Y™ nai = n*(n+1)/2
So, $3(n, m) can be represented as:

$3(n, m) = [n*(n+1)/2] * O(m)

= 0O(n*m/2) * O(n+1)

= O(m*n?).
After calculating $3(n, m), $2(n, m) would be like:
$2(n, m) = O(n*m) + O(n?) + O(m*n?)

= O(m*n?).
After having the value of $2(n, m), $(n, m) would be:
$(n, m) = O(m*n™ ™) + O(m*n?)

= O(m*n"™ ™",

The space complexity remains the same in this case compared to the case of the
blind search algorithm. This can be explained by the fact that the required memory space
for the deepest recursive calls of the procedure isStateValid does not have a big effect on
the memory space as the process of generating the final states does. The value of $(n, m)

represents the complexity of this algorithm for the worst case, i.e. all the generated states

126

are saved, but this is not what really happens. We have just supposed that every generated
state is saved because there is no practical way to determine the number of the generated

states based on n and m. So the real complexity would be smaller than O(m*n"™ ™"

which is still an upper bound for it.

3.4. Optimized Backward Algorithm
3.4.1. Time Complexity

This algorithm differs from the previous one by taking into account some
restrictions related to the maximum and minimum number of points that can be earned by
a participant. These restrictions are applied during selecting the elements from the set S,
which is then to be assigned to the tournament table. Applying the restrictions requires
information related to the maximum and minimum number of points for each participant,
which implies the need of preparing some new data structure before calling the procedure
stateGenerator at line 7 of the main procedure.

The first required data structure is the array PS which contains the number of points
for each element from S (see line 3). The process of calculating PS has a complexity of
O(N*m) = O(m*n™?). In addition to calculating PS it needs to be sorted in a descending
order. In the same time we sort the elements of S according to their related elements in
PS. To achieve this, we propose the following sub-algorithm which is based on the
selection sort algorithm:

Inputs: PS[N], SI[N][m]
Output: PS[N], SI[N] [m]

l: ¢, ind

2 for i « 1 to N-1 do

3 ind <« 0

4 for j « i+l to N do

5: if PS[i] < PS[j] then
6: ind « 7

7 if ind # 0 then

8: C « PS[1i]

9: PS[i] « PS[ind]

10: PS[ind] < c

11: for j « 1 to m do

12: Cc « P[i]1[7]

13: P[i][j] « Plind][7]
14: Plind] [j] <~ c

127

Supposing that Te(n, m) is the complexity of this sub-algorithm, Te(n, m) can be
represented as:

Te(n, m) = Y1 + N -1

= (N:N)/2+N-1
= O(N%N) + O(N)
= O(N?)

By substituting N with an upper bound of "™ we get Te(n, m) = O(n*™?).

Lines 5 and 6 of the optimized backward algorithm calculate the minimum and
maximum number of points that can be gained by each participant. Each of these lines
generates a complexity of O(n). T(n, m) in this case would be like:

T(n, m) = O("™) + O(M*n™) + O(M*n™™) + O(N*™?) + 2*O(n) + Ts(n, m)

= 0(n*™?) + Ta(n, m)

The backward algorithm uses a “for” loop to assign all the possible values of the set
S to a specific participant in table T (see line 2 of the procedure stateGenerator). On the
other hand, the optimized backward algorithm uses a “while” loop at line 4 to assign just
the elements from S whose points respect the conditions. Since there is no useful way
(i.e., based on n and m) to determine the number of elements from the set S which respect
the points’ range for a specific position of T, we are obligated to calculate the complexity
for the worst case. The worst case would be considering all the elements of the set S,
which means that we would be treating the backward algorithm again. This implies that
the complexity Ta(n, m) of the procedure stateGenerator for this case would also be equal
to O(m*n™™™3)*2) " Although this value is greater than the real value, it is still an upper
bound for Tz(n, m). Thus, T(n, m) would be:

T(n, m) = O(nz*m-z) + O(m*nn*(n+m-3)+2) — O(m*nn*(n+m-3)+2)

As seen from the final value of T(n, m), the complexities of the achieved
calculations by the main procedure (i.e., the lines from 1 to 6) do not affect the final
complexity, where T(n, m) is still directly related to T3(n, m) (the complexity of the

procedure stateGenerator).

3.4.2. Space Complexity

The optimized backward algorithm keeps the same data structures appeared in the
backward algorithm. In addition, there are some other data structures declared. These new

128

data structures are the static array PS which has a size of N, and the static arrays minP and
maxP which have the size n. The calculated complexities of PS, minP and maxP are
O(n™), O(n) and O(n) respectively. The value of $(n, m) for this case would be the value
of $(n, m) in the case of the backward algorithm plus the sum of the resultant
complexities caused by the new declared data structures. So, we can write:

$(n, m) = O(M*n" ™™ + O(n™) + 2*O(n) = O(m*n™"™")

The space complexity remains the same in this case compared to the previous one.
This can be explained by the fact that the new data structures have no effect on the
complexity of the optimized backward algorithm, and $(n, m) still depends on the size of
Ts (i.e., a 3-dimensional array which contains all the generated states).

3.5. Multi-threaded Optimized Backward Algorithm
3.5.1. Time Complexity

Compared to the sequential optimized backward algorithm, the multi-threaded
algorithm has no difference in terms of fundamental processes. The only difference is
that, in the multi-threaded version, a recursive call of the procedure stateGenerator is
called in a new thread (parallel) whenever the number of the current threads (i.e., thrNbr)
is less than the threads’ limit (i.e., thrLim). To express the complexity of the multi-
threaded algorithm, we have to take thrLim into account as a new parameter. The
complexity of T(n, m, thrLim) would be T(n, m)/thrLim = O[(m*n™ ™™ 3*2)fthrLim].

3.5.2. Space Complexity

The complexity $(n, m) is related to Ts in all the previous cases. This is due to the
fact that Ts is the largest data structure in all the previous algorithms, which makes its
resulting complexity dominant during the calculation of $(n, m). Ts also exists in this
algorithm version, where it results in the same complexity (i.e., O(m*n™™™%). The
difference in this algorithm compared to the sequential one is that the array T is not
declared as static, but as a local array of each of the main procedure and the procedure
stateGenerator. To calculate the resultant complexity for the procedure stateGenerator in

this situation, we have to define the maximum depth of its recursive calls. The maximum

129

depth equals to Y= n-i = n*(n+1)/2. So, the resultant complexity would be equal to
[n*(n+1)/2]*O(n*m) = O(m*n°).

Since the recursive calls of stateGenerator are directly related to the maximum
number of threads (thrLim), there is a possibility that each thread reaches the maximum
depth of the recursive calls of stateGenerator (i.e., a worst case), which means that a
number of [n*(n+1)/2]*thrLim of T arrays may be declared. In this situation, the
complexity related to T would be equal to O(thrLim*m*n®). The complexity
$(n, m, thrLim) of the multithreaded algorithm would be represented as follows:

$(n, m, thrLim) = O(m*n™™™1) + O(thrLim*m*n®).

3.6. Blind Search Algorithm for generating a tournament graph

We have explained in Section 2.6.2 how the principle of the forward algorithm is
directly related to the principle of the blind search algorithm for generating a tournament
graph. Thus, for simplicity, we calculate the complexity of the blind search algorithm

before the complexity analysis of the forward approach.

3.6.1. Time Complexity

We suppose that T(n, m) is the time complexity of the blind search algorithm for n
participants and m possible game results (m = 2g+r). In Section 2.6.2, the first line of the
Main procedure of the blind search algorithm sets all the elements of a 2-dimensional
array (i.e., G) to 0. Since G has a size of n x n, this makes the complexity of line 1 equal
to O(n%). Line 2 of the same procedure is a call to the procedure graphGenerator. If we
suppose that Ti(n, m) represents the complexity of graphGenerator, T(n, m) would be
represented as: T(n, m) = O(n®) + Ti(n, m). To determine T(n, m), Ti(n, m) must be
calculated.

Each of lines 3 and 5 of graphGenerator results in a complexity of O(q). Since
m > g, O(m) can be considered as an upper bound of the complexities of lines 3 and 5.
Besides, line 15 of the same procedure results in a complexity of O(n?). To calculate
Ti(n, m), we have to define the depth that the recursive calls of the procedure
graphGenerator may reach. The depth d may be defined as:

i=1
d = 3" I ni = n*(n-1)/2

130

We suppose that Fi(n, m, d) = T1(n, m), where F1(n, m, d) can be represented by the
following recurrence relation:
F1(n, m, 1) = m*[2*O(m) + O(n?)] = O(m?) + O(m*n?)
Fi(n, m, d) = m*[2*O(m) + F1(n, m, d-1)]
=m*O(m) + m*Fy(n, m, d-1)
=m*O(m) + m**O(m) + m**F(n, m, d-2)
= m*O(m) + m>*0O(m) + ... + m™*O(m) + m*Fy(n, m, d-i)

Fori=d-1:
Fi(n, m, d) = m*O(m) + m**O(m) + ... + m™*O(m) + m***F1(n, m, 1)

= O(my*Y*=T m' + m**O(m?) + m**O(m*n?)
= O(m)*[(m®-1)/(m-1)] - O(m) + m***O(m?) + m™*O(m*n?)
= o(m*m™) + m***O(m?) + m***O(m*n?)
= O(m?) + O(m®*n?)
= O(m**n?)
When we substitute d with n(n-1)/2: T1(n, m) = O(m™ ™22 After calculating
T1(n, m), T(n, m) would be like:
T(n, m) = O(n?) + O(n**m™ "D'2) = O(n?*m™"D2),
As seen above, T(n, m) = Ty(n, m). This means that the complexity of the blind
search algorithm mainly depends on the complexity of the procedure graphGenerator.

3.6.2. Space Complexity

To calculate the memory space complexity of the blind search algorithm, we
distinguish the data structure whose sizes are related to n and/or m. The size of both the
arrays G and Gs are related to n. G is declared as an abstract data structure, while Gs is
the output of the algorithm. The size of G is predefined (n x n), while the size of Gs
becomes known at the end of the algorithm when all the generated graphs are saved into
it. Denoting the memory space complexity as $(n, m), we can say that $(n, m) equals the
sum of the of the complexities of G and Gs. Knowing that the complexity of G is O(n?),
and supposing that $1(n, m) is the complexity of Gs, $(n, m) would be written as:

$(n, m) = O(n?) + $1(n, m)

Supposing that $1(n, m) = Fi(n, m, d), where d is the maximum depth of the
recursivity of graphGenerator (i.e., n(n-1)/2). F1(n, m, d) can be defined as follows:

131

Fi(n, m, 1) = m*O(n?

Fi(n, m, d) = m*Fi(n, m, d-1) = m**Fa(n, m, d-2) = m*Fa(n, m, d-i)

Fori=d-1:

Fi(n, m, d) = m*™*Fy(n, m, 1) = m*™*0(n?)

When we substitute d with n(n-1)/2: $1(n, m) = O(n*m" "2,

$(n, m) in this case would be like:

$(n, m) = O(n®) + O(N**m"™'2) = O(nZ*m" 1’2

As seen above, the space complexity mainly depends on the space occupied by Gs

(i.e., the generated graphs), and the size of G has no effect on it.

3.7. Forward Algorithm
3.7.1. Time Complexity

The difference between the blind search algorithm and the forward algorithm is that,
instead of saving a generated tournament graph, it is converted to a tournament table and
then saved if the participants’ points are in a descending order. This difference may affect
the complexity of the procedure graphGenerator. Line 15 of graphGenerator in this case
converts the data of G to a final tournament table state (i.e., T). We denote the complexity
of this line as T2(n, m). Line 16 calculates the gained number of points by each participant
of T. This line results in a complexity of O(n*m). In line 17, the procedure checks
whether the calculated points in line 16 are in a descending order or not. The resultant
complexity from this line would be equal to O(n). The generated state would not be saved
unless its current occurrence is checked (see line 18). We denote the complexity of this
process as Tz(n, m). The last line of the procedure saves the contents of T into Ts (an array
which contains all the generated states). This line results in a complexity of O(n*m).

Supposing that T(n, m) is the complexity of the forward algorithm. T(n, m) is
represented as: T(n, m) = O(n?) + Ta(n, m).

We suppose that Ti(n, m) = Fi(n, m, d) is the complexity of the procedure
graphGenerator, where d is the depth that the recursive calls of the procedure
graphGenerator may reach (i.e., n*(n-1)/2). F1(n, m, d) would be represented as follows:

Fi(n, m, 1) = m*[O(n*m) + O(n) + O(n*m) + T2(n, m) + T3(n, m)]

= m*[O(n*m) + T2(n, m) + T3(n, m)]

132

Fy(n, m, &) = mA[2°0(m) + Fa(n, m, c-D)]

= O(my*YE m' + m**Fy(n, m, 1)
= 0(m%) + m*[O(n*m) + T2(n, m) + Ta(n, m)]
To continue calculating Fi(n, m, d) (i.e., T(n, m)), each of T2(n, m) and T3(n, m)
must be calculated.

3.7.1.1. T2(n, m)

Line 15 of the procedure graphGenerator saves the corresponding state of G into T.

This line can be represented by the following sub-algorithm:

Input: G[n] [n]
Output: T[n] [m]
1: 1, ind

2 for k « 1 to n do

3 for 7 « 1 to n do

4: if k # j then

5: I« Glk][7]

6 ind « the position of R; in T
7 T[k] [ind]++

Line 6 of this sub-algorithm results in a complexity of O(m). The process of this line

is repeated (n-1)° times, which generates a total complexity (i.e., T2(n, m)) of O(m*n?).

3.7.1.2. Ts(n, m)

Line 18 of the procedure graphGenerator verifies whether the generated tournament
table state (i.e., T) has been calculated before or not. Line 18 can be illustrated by the

following sub-algorithm:

Input: Tl[n][m], Ts[]I[n][m]

Output: true or false

1: found « false

2 for i « 1 to the size of Ts do
3 if found = false then

4. found < compare (T, Ts[i])
5 else
6 return found

Procedure: compare(T1[][],T2[11[])

133

for i « 1 to n do
for 7 « 1 to m do
if T1[i][J] # T2[1i][j] then
return false
return true

[ER NNV

It is clear that the procedure compare has the complexity O(n*m). To calculate
Ta(n, m), the size of Ts which is required for the loop at line 2 must be defined. At the
start of the forward algorithm, Ts would be empty and its number of elements grows up as
far as the process approaches its end. The number of the current generated states is taken
as a worst case for the number of the loop iterations at line 2. Since there is no possible
way to determine the number of the generated states at a specific moment, we consider an
upper value to be the worst case of the iterations of the loop at line 2. We suppose that
each generated graph results in a valid tournament state. The number of the generated

n*(n-1)/2

graphs, in this case, would be m . Considering this number of iterations at line 2

makes Ta(n, m) equal to m™V2*0(n*m) = O(n*m!™ D21+

3.7.1.3.T(n, m)

After calculating T2(n, m) and Tz(n, m), F1(n, m) would be like:
Fi(n, m, d) = O(m®) + m**[O(n*m) + O(m*n?) + O(n*ml™ D2+
- md*o(n*m[n*(n—l)/2]+1)

Substituting d with n(n-1)/2, we get Ti(n, m) = O(n*m™ ™D After calculating
T1(n, m), T(n, m) would be O(n?) + O(n*m™ V*) = O(n*m™ D,

As seen above, T(n, m) = T1(n, m). This means that the complexity of the forward
algorithm mainly depends on the complexity of the procedure graphGenerator. If we
compare the complexity of the forward algorithm with the one of the blind search

algorithm (i.e., o(nZ*mn*(n-l)/z

)), we find that the complexity of this case is larger. This
leads to the conclusion that checking the existence of every generated state (at line 18 of

the procedure graphGenerator) has a remarkable effect on the execution time.

3.7.2. Space Complexity

The difference between the space complexity calculations of the forward algorithm

and the blind search algorithm is that, instead of using Gs to save the generated graphs,

134

we use Ts to save the generated states. In addition to the array G, the forward algorithm
uses the array T which contains the state obtained from the data of G. G and T have
respectively the sizes n x n and n x m, and result in the complexities of O(n?) and O(n*m)
respectively. Supposing that $:(n, m) is the memory space complexity of Ts and $(n, m) is
the total space complexity of the forward algorithm, $(n, m) would be written as:

$(n, m) = O(n?) +O(n*m) + $1(n, m)

Supposing that $1(n, m) = Fi(n, m, d), where d is the maximum depth of the
recursivity of graphGenerator (i.e., n(n-1)/2). F1(n, m, d) can be defined as follows:

Fi(n, m, 1) = m*O(n*m)

Fi(n, m, d) = m*Fi(n, m, d-1) = m**Fa(n, m, d-2) = m*Fa(n, m, d-i)

Fori=d-1:

Fi(n, m, d) = m**Fy(n, m, 1) = m™*O(n*m)

Substituting d with n(n-1)/2: $1(n, m) = O(n*m"D/2l*dy

$(n, m) in this case would be like:

$(n, m) = O(n®) + O(n*m) + O(n*m" D2y = o(nxmINO-LI21+1

The space complexity mainly depends on the occupied space by Ts (i.e., the
generated final states of the tournament table), and neither of the sizes of G or T has an
effect on it. $(n, m) represents the complexity of this algorithm for the worst case, i.e., all
the generated graphs are converted to valid states, but this is not what really happens. We
have supposed that every generated state is saved because there is no practical way to
determine the number of the generated states based on n and m. So, the real complexity

[n(n-1)/2]+1

would be less than O(n*m), but this value is still an upper bound.

3.8. Optimized Forward Algorithm
3.8.1. Time Complexity

The optimized forward algorithm differs from the forward algorithm by taking into
account restrictions related to the maximum and minimum number of points that can be
gained by each participant. Respecting these restrictions is checked after generating all
the game results (i.e., the related graph edges) of a specific participant (see lines 13, 14
and 19 of the procedure graphGenerator). To check the point restrictions, information

related to the maximum and minimum number of points of each participant is required.

135

This implies the need of preparing some new data structures (maxP at line 3 and minP at
line 2) before calling the procedure graphGenerator at line 4 of the main procedure. Each
of these lines generates a complexity of O(n). Supposing that T1(n, m) is the resultant
complexity by the procedure gaphGenerator, T(n, m) in this case would be

T(n, m) = O(n?) + 2*O(n) + T1(n, m)

= 0(n? + T1(n, m)

To calculate T1(n, m), we determine the worst case of the procedure gaphGenerator.
Since there is no useful way to know how many iterations of the loop at line 1 satisfy the
conditions at lines 13, 14 and 19 (i.e., the maximum and minimum point restrictions), we
consider that the conditions are satisfied in every iteration. Each of lines 12 and 18 of the
procedure graphGenerator has a complexity of O(m). As seen in Section 3.7.1, the
complexities of each of lines 3, 5, 20, 21 and 22 of graphGenerator are respectively equal
to O(m), O(m), O(m*n?), OM*m™VZ) and O(*m). We suppose that
T1(n, m) = Fy¢(n, m, d) is the complexity of the procedure graphGenerator, where d is the
depth that the recursive calls of the procedure graphGenerator may reach (i.e., n*(n-1)/2).
F1(n, m, d) would be represented as follows.

Fi(n, m, 1) = m*[O(m) + O(m*n?) + O(n*m™ V21 + O(n*m)]

— m*o(n*m[n*(n—l)/2+l])
Fi(n, m, d) = m*[3*O(m) + F1(n, m, d-1)]

= O(M)*TET m' + mT*Fy(n, m, 1)
— O(md) + md*[o(n*m[n*(n-l)/2+l])]

= MO (n*mlT -2y

Substituting d with n(n-1)/2, we get Ti(n, m) = O(n*m™ Y1) After calculating
Ti(n, m), T(n, m) would be T(n, m) = O(n?) + O(n*m™ D) = O(*m™ ™ D*1) As seen
from the final value of T(n, m), the complexities of the new achieved calculations by the
main procedure (i.e., the line 2 and 3) do not affect the final complexity, where T(n, m) is
still directly related to Ts(n, m) (the complexity of the procedure stateGenerator). Besides,
the complexity of the optimized forward is the same as the one of the previous algorithm.
The reason for this is the consideration that the conditions at lines 13, 14 and 19 are

always satisfied.

136

3.8.2. Space Complexity

In addition to the considered data structures in the previous algorithm (see Section
3.6.3), in this version of the algorithm three new arrays are taken into account (i.e., minP,
maxP and Pts), where each of them has a space complexity of O(n). The space
complexity $(n, m) of this case would be like

$(n, m) = O(n?) + O(n*m) + O(n*m"™ D21y 4 3x0O(n)= O(n*m™ /2y

The space complexity remains the same in this case compared to the previous one.
This can be explained by the fact that the new data structures have no effect on the
complexity of the optimized forward algorithm, and $(n, m) is still depending on the size
of Ts.

3.9. Multi-threaded Optimized Forward Algorithm
3.9.1. Time Complexity

Compared to the sequential optimized forward algorithm, the multi-threaded
algorithm has no difference in terms of fundamental processes. The only remarkable
difference is that, in the multi-threaded version, a recursive call of the procedure
graphGenerator is invoked in a new thread (parallel) whenever the number of the current
threads is less than the threads’ limit (i.e., thrLim > thrNbr). To represent the complexity
of the multi-threaded algorithm, we have to take thrLim into account as a new parameter.
The complexity T(n, m, thrLim) would be T(n, m)/thrLim = O[(n*m™ ™" /thrLim].

3.9.2. Space Complexity

The difference in this algorithm compared to the sequential one is that the neither of
G, Pts or T are declared as static, but G, Pts are declared as local arrays in each of the
main procedure and the procedure graphGenerator, and T is declared as a local array in
the deepest recursive call of the procedure graphGenerator. G, T and Pts have

respectively the space complexities of O(n?), O(n*m) and O(n). To calculate the resultant
complexity by the procedure graphGenerator, we have to define the maximum depth of its
i=1

recursive calls. The maximum depth equals to ¥" 'n-i = n*(n+1)/2. So, the resultant

137

complexity by graphGenerator would be equal to [n*(n+1)/2]*[O(n?) + O(n)] + O(n*m) =
O(n*) + O(m*n).

Since the recursive calls of stateGenerator are directly related to the maximum
number of threads (i.e., thrLim), there is a possibility that each thread reaches the
maximum depth of the recursive calls of graphGenerator (i.e., a worst case). In this
situation, the complexity related to G, T and Pts would be equal to O[thrLim*(n*+m*n)].
The complexity $(n, m, thrLim) of the multithreaded algorithm would be represented as
follows.

$(n, m, thrLim) = O(n*m™ Y2y 4 O[thrLim*(n*+m*n)]

3.10. The Complexity Classes of Our Problem
3.10.1. The Class P

According to the calculated complexities in Sections 3.3, 3.4, 3.5, 3.7, 3.8 and 3.9,
the problem of determining the final states of a tournament table has a non-deterministic
polynomial complexity for each of the backward and forward approaches, in addition to
their optimized and parallelized versions. So we can say that the problem does not belong

to the class P.

3.10.2. The Class NP

We have showed in Section 3.10.1 that the problem has a non-deterministic
polynomial complexity. To say that the problem belongs to class NP, its output (i.e., the
generated states) must be able to be verified in a polynomial time. To verify whether a
state generated by any of the proposed algorithms is valid or not, the participants’ points
must be in a descending order, and the state must result in a tournament graph.

It is obvious that checking the order of the participants has a complexity of O(n*m).
The verification of whether a tournament graph can be constructed based on a specific
state or not is the task that is performed by the procedure stateChecker (see Algorithm for
validating states at Section 2.6.1). The complexity of this procedure is calculated above
(see Sections 3.3.1.2 and 3.3.1.3), which is equal to O(m*n™* ™ D*1) The required time

138

to check a generated state is not polynomial, which leads us to say that the problem does
not belong to the NP class.

3.10.3. The Class NP-hard

We have mentioned in Section 2.6.2 (see Table 2.25) that a tournament graph can be
transformed to a tournament table. It is possible to say that transforming a tournament
graph into a tournament table is an operation of reduction (see Section 1.10.9). This
reduction can easily be done in a polynomial time (i.e., O(n*m)), which means that if we
prove that the problem of determining a complete graph is an NP-hard problem, the
problem of determining a state of a tournament table will automatically be an NP-hard
problem.

Based on Section 1.10.10, to prove that the problem of determining if a graph is
complete is an NP-hard problem, we select a known NP-hard problem and reduce it to our
problem (i.e., complete graph problem). Since we already know that SAT (i.e., Boolean
satisfiability problem) is an NP-hard problem (see Section 1.10.11), we reduce it to a

complete graph problem. Given the following CNF (i.e., conjunctive normal form):

¢ = X1 A X2 A X3, the values x1=1, xo=1 and xs=1 satisfies ¢ (i.e., ¢ = 1). ¢ contains 3

clauses: C1 = L11 = x1, C2= L21 = x2 and Cz = L3z = x3. To reduce the represented SAT
problem by ¢ to a complete graph problem, we apply the presented rules in the example
given in Section 1.10.11.

Transforming a CNF with n clauses, where each clause contains a single Li; (i.e.,
Li.1), into a graph requires a time complexity of O(n?). Thus, we can say that the reduction

is done in polynomial time. By applying the transformation rules on ¢, we get the
represented graph in Figure 3.1.

0 ¢ = X1 A X2 A X3 into a graph

139

The resultant graph from a CNF with n clauses contains n nodes (i.e, a complete
graph). As we can see, the graph in Figure 3.1 is a complete one with 3 nodes. When we

EeREESRARFAGE 11ode A thecgraphy Withaly (ke 2 TrugiNaluRl édiist Peratisfietid s

a complete graph problem in a polynomial time and the CNF problem is an NP-hard
problem, we can say that the complete graph problem is an NP-hard problem. In
accordance with the discussion at the beginning of this section, we can also say that the
problem of determining a state of a tournament table belongs to the class NP-hard. Since
the problem of calculating the possible states of final tables of sport competitions consists
of determining all the states of a tournament table, we can say that the problem also
belongs to the class NP-hard.

3.10.4. The Class NP-complete

We have showed above that the problem of calculating the tournament table states
belongs to the class NP-hard, but it does not belong to the NP class. Thus, we can say that
the problem does not belong to the class NP-complete.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Introduction

Each of the proposed approaches (i.e., backward and forward), their optimized
versions, and their multi-threaded optimized versions are programmed in the Java
programming language. The source code of the approaches is compiled using Java
Development Kit (JDK) 11, and the compiled code is run on Windows 7 Ultimate 64-bit
operating system.

The experiments are performed for some distinct sets of single round-robin
tournaments in several sports disciplines, which can have different numbers of teams and
different organizations of final tables. During the experiments, in addition to the number
of the generated states and the execution time, some other parameters related to the
algorithms are measured for each final table.

The machine from which the experimental results are obtained is equipped with an
Intel (R) Core (TM) i3-M330 2.13 GHz CPU with 4 cores, 6 GB of RAM and a Corsair
(R) CSSD-F115GB2-A ATA hard drive device.

4.2. Backward Algorithm

4.2.1. The Case of WDL

Table 4.1 presents the results of the backward algorithm in the case of football
tournaments, in which each played game can end in a win (W), draw (D) or lose (L), and
each team gains 3 points for a win (i.e., Pw=3), a point for a draw (i.e., Pp=1) and no
point for a loss (i.e., P.=0). Besides the number of the possible states of the final table for
each tournament, the presented results include the number of the checked invalid states
and the execution time, where the number of teams ranges between 2 and 7 teams.

As explained in Section 2.6.1, the validity of every state generated by the backward
algorithm is checked by the procedure stateChecker of the algorithm. For n=7, the process
of checking the large number of the generated states for validity explains why it takes so

much time to determine all the possible states. The backward algorithm fails to reach the

141

relevant results for a tournament with 8 teams. Eq. (2.30) tells that there would be
2821109907456 states (a total of valid and invalid ones) for n=8, which is about 208
times more than the states generated for n=7. This large number of states is evidently the

main reason for the failure.

Table 4.1. Results of the backward algorithm for football tournaments

n | Valid states | Invalid states | Total of states | Execution time
2 2 7 9 1 millisecond
3 7 209 216 2 milliseconds
4 40 9960 10000 22 milliseconds
5 404 758971 759375 1 second

6 6317 85759804 85766121 3 minutes

7 131288 13492797224 | 13492928512 284 hours

Table 4.2 presents the results of the same algorithm in the case of sports
tournaments such as rugby and handball, where the team gains a point for a drawn game

and 2 points (instead of 3 points as in the case of football) for a won game.

Table 4.2. Results of the backward algorithm for rugby and handball tournaments

n Valid states Invalid states | Total of states | Execution time
2 2 7 9 1 millisecond
3 7 209 216 2 milliseconds
4 49 9951 10000 24 milliseconds
5 571 758804 759375 1 second

6 9981 85756140 85766121 3 minutes

7 223964 13492704548 13492928512 279 hours

Comparing the numbers of the valid states in Table 4.1, it can be easily seen that
there occur the larger numbers of the states by starting with n=4 in Table 4.2. The reason

behind this is that the use of a different point system (i.e., rewarding Pw=2 points for a

142

won game) affects the number of the corresponding points of the elements in the set S
(see Eq. (2.20)). Speaking clearly, this point system lets some distinct WDL values result
in the same number of points, while their corresponding points may be different in the
previous system. For example, in the case of n=4, the number of points gained from a
WDL value of (1, 1, 1) equals to 4 points when Pw=3, while it equals to 3 points when
Pw=2. Thus, when Pw=2, if a team A has a WDL value of (1, 1, 1) and another team B has
the value (0, 3, 0), A appears before B in the final table with the state
(2, 1, 0), (1, 1, 1), (O, 3, 0), (0, 1, 2)), or after B in the final table with the state
((2,1,0),(0,3,0), (1,1, 1), (0, 1, 2)). However, when Pw=3, the latter state is considered
as an invalid one, which explains why the number of valid states in Table 4.2 is larger
than in Table 4.1.

There is a significant difference in the execution time of the valid states given for
n=7 in Tables 4.1 and 4.2. A state is considered to be valid if a tournament graph can be
constructed based on that state, while a state is said to be invalid if no graph can be found
for that state after trying all the possible ways of building it up. So it often takes more
time to identify an invalid state than a valid one. This is justified by the fact that the
backward algorithm spends less time to determine each of the valid states for n=7,
although there is a larger number of them in Table 4.2 than in Table 4.1. The advantage in
term of the execution time which the case of Pw=2 has over the case of Pw=3 is only valid
when n=7, since both algorithms cannot generate all the states for n>7.

Table 4.3 presents the results of the backward algorithm for chess tournaments,
where the participant gains 1 point for a won game (i.e., Pw=1) and half a point for a draw
(i.e., Pb=1/2).

Table 4.3. Results of the backward algorithm for chess tournaments

n Valid states | Invalid states | Total of states | Execution time
2 2 7 9 1 millisecond
3 7 209 216 3 milliseconds
4 49 9951 10000 25 milliseconds
5 571 758804 759375 1 second

6 9981 85756140 85766121 3 minutes

7 223964 13492704548 | 13492928512 280 hours

143

As seen in both Table 4.2 and Table 4.3, there are the same numbers of valid and
invalid states. This arises due to the fact that the values of Pw and Pp for a chess
tournament are exactly half of those for a rugby or handball tournament. The partition of
the points gained from each game on the same number maintains the differences between
the points of the participants, thereby allowing them to keep various positions in the final
table. For example, in the point system with Pw=2 and Pp=1, there is one point difference
between the participants in the state ((1, 1, 0), (1, 0, 1), (0, 1, 1)), as the gained points are
3, 2 and 1 respectively. Given the point system with Pw=1 and Pp=1/2, the gained points
would be 3/2, 1 and 1/2 respectively, where the difference between the points changes in
the ratio of two to one.

Although the numbers of the valid and invalid states are the same in Tables 4.2 and
4.3, the time execution differs only for n=7. This difference is likely because of the
disparity of the CPU temperature during both tests [176-178], which have been performed

in different environments with different weather conditions.

4.2.2. The Case of WL

Table 4.4 presents the results of the backward algorithm when the final table
contains W and L columns only, where Pw=1 and P =0. The most noticeable sport in this
tournament system is lacrosse. The results are obtained for the number of participating
teams between 2 and 10.

The algorithm can calculate the number of the states up to n=10. The reason for this
possibility is due to less table columns holding game results. As expressed by
Eq. (2. 23), |S(n, 2g+Tr)| is calculated based on the function f which has a direct relation
with the number of the result-related columns (see Eq. (2.22)). As the number of these
columns (i.e., 2g+r) gets smaller, the recursive calls to the function f becomes less,
leading to a smaller number of the elements of the set S (i.e., |S]). In this situation, the
number of the states generated via a blind search algorithm will be less, which means that
less time will be spent on calling the procedure stateChecker to verify their validity.

The results presented in Table 4.5 are obtained by the backward algorithm when the
final table contains only W and L as the result columns, with Pw=2 and PL=1 respectively.
The most noticeable sport tournaments of this system are basketball, volleyball and

tennis. The number of participating teams in this scenario ranges between 2 and 10.

144

Table 4.4. Results of the backward algorithm for lacrosse tournaments

n Valid states | Invalid states | Total of states | Execution time
2 1 3 4 0.4 millisecond
3 2 25 27 1 millisecond
4 4 252 256 2 milliseconds
5 9 3116 3125 3 milliseconds
6 22 46634 46656 18 milliseconds
7 59 823484 823543 2 seconds

8 167 16777049 16777216 57 seconds

9 490 387419999 387420489 34 minutes
10 1486 9999998514 10000000000 288 hours

Table 4.5. Results of the backward algorithm for basketball, volleyball and tennis

tournaments

n Valid states | Invalid states | Total of states | Execution time
2 1 3 4 0.4 millisecond
3 2 25 27 1 millisecond
4 4 252 256 2 milliseconds
5 9 3116 3125 3 milliseconds
6 22 46634 46656 17 milliseconds
7 59 823484 823543 2 seconds

8 167 16777049 16777216 57 seconds

9 490 387419999 387420489 34 minutes
10 1486 9999998514 10000000000 290 hours

Although the results presented in Tables 4.4 and 4.5 are calculated through two
different point systems, the numbers of valid and invalid states are the same. This is due
to one point difference between the values of Pw and Pv in both cases. Adding the same
number of points to each of Pw and P. for all the participating teams maintains the same

differences in their total number of points, thus ensuring that the participants keep the

145

same positions in the final table. For example, based on the point system with Pw=1 and
P.=0, the participants in the state ((3, 0), (2, 1), (1, 2), (0, 3)) gain a total number of
points 3, 2, 1 and O respectively. In the point system with Pw=2 and P_=1, the participants
gain a total number of points 6, 5, 4 and 3 respectively. The difference in the total number
of points between each two participants is still the same (i.e., 1 point) in both cases.

Tables 4.4 and 4.5 show the same results for n=10, but the execution times are
different (i.e., a difference of 2 hours). As explained at the end of Section 4.2.1, these
differences usually appear when the execution time is big, which create a big possibility
that the tests are performed under different weather conditions. This may subsequently

affect the CPU performance, thus creating contrast in the execution times.

4.2.3. The Case of WXYL

Table 4.6 shows the results of the same algorithm for the final tournament tables
that include W, X, Y and L as the columns of game results. Such final tables occur in the
case of ice hockey and curling tournaments. X is a unification symbol for the OTW
column in ice hockey table and the SOW column in curling table, while Y is used as a
unification symbol for the OTL column in ice hockey table and the SOL column in curling
table. Each participant gains 3 points for a won game (i.e., Pw=3), 2 points for an X
(i.e., Px=2), apoint fora Y (i.e., Py=1) and none for a lost game (i.e., P.=0). The results of
the backward algorithm are presented for the number of participants ranging between 2
and 6.

Table 4.6. Results of the backward algorithm for ice hockey and curling

tournaments
n Valid states | Invalid states | Total of states | Execution time
2 2 14 16 1 millisecond
3 14 986 1000 6 milliseconds
4 239 159761 160000 228 milliseconds
5 8650 52513225 52521875 136 seconds
6 571990 30840407466 | 30840979456 95 hours

146

The algorithm, in this case, calculates the results up to n=6 only. Unlike the case
where the tournament table includes only 2 game results (see Section 4.2.2), the reason
behind the inability of the algorithm to calculate the results for n>6 is due to the
increment in the number of the possible game results, which subsequently makes the
number of the states generated by a blind search algorithm become bigger. As expressed
by Eq. (2.22), when the number of game results (i.e., 2q+r) increases there will be more
recursive calls of the function f, which increases the number of elements of the set S
(i.e., |S|), and therefore the number of the generated states based on a blind search
algorithm will be increased as well, which requires spending more time to call the

procedure stateChecker.

4.2.4. The Case of WLTNr

As in the previous case, the final tournament table in this instance also contains 4
columns of game results (i.e., W, L, T and NR). This case is usually seen in the cricket
tournaments, where Pw=2, P.=0, Pt=1 and Pnr=1. Table 4.7 shows the results of the
backward algorithm for this case, where the number of participants ranges between 2 and
6.

Table 4.7. Results of the backward algorithm for cricket tournaments

n | Valid states | Invalid states | Total of states | Execution time
2 3 13 16 1 millisecond
3 20 980 1000 6 milliseconds
4 393 159607 160000 217 milliseconds
5 18400 52503475 52521875 131 seconds

6 1769907 30839209549 | 30840979456 92 hours

Although the tournaments has the same number of the columns (i.e., 4 columns)
related to game results, the results given in Tables 4.6 and 4.7 are different. This arises
due to the difference in the nature of the columns. As in the previous case, the columns
form the pairs which belong to the class C: (i.e., C:={{W, L}, {X, Y}}), but in this case

147

only W and L form a pair which belongs to Ci (i.e., C:={{W, L}}), while each of T and
NR belongs to C: (i.e., Co={T, NR}). Besides, the values in W column are different, as a
result of Pw=2. As expressed by Section 4.2.1, these differences have an effect on the
number of points of the elements of the set S, thereby making the number of
corresponding points of some elements equal. This reason makes some states, which are
invalid in the previous case (i.e., WXYL), valid in this case (i.e., WLTNT).

The big difference between the valid states in Tables 4.6 and 4.7 for n=6 makes the
execution times different. Given that the procedure stateChecker spends more time to
check an invalid state than a valid state and there are bigger numbers of valid states for
n=5 and n=6 in Table 4.7 compared to Table 4.6, these explain why the backward
algorithm spends less time to calculate the results in the case of WLTNr in relation to
WXYL.

4.3. Forward Algorithm

4.3.1. The Case of WDL

Table 4.8 presents the results of the forward algorithm in the case of football
tournaments, where each game can end in a win (W), a draw (D) or a loss (L), and each
team gains 3 points for a win (i.e., Pw=3), 1 point for a draw (i.e., Pp=1) and no point for
a loss (i.e., PL.=0). Besides the number of the valid states of the final tournament tables,
the presented results include the number of the repeated valid and invalid states as well as
the execution time. The tests are carried out on a set of tournaments with the number of
teams ranging between 2 and 7.

Comparing the execution times for n=6 and n=7, a large number of the states
checked for n=7 justifies the increase in the required execution time as a result of the
order of team points and existing states. The algorithm fails to reach the relevant results
for a tournament with 8 teams. Since the algorithm is based on a blind search one,
according to Eqg. (2.31), the number of the generated states (the total of valid, repeated
and invalid ones) for n=8 would be equal to 22876792454961. Such a big number of the
states compared with those for n=7 (which is 2186 times less) explains the failure of the

algorithm to calculate the results related to an 8-team tournament.

148

Table 4.8. Results of the forward algorithm for football tournaments

N Valid Repeated Invalid Total of Exe_cution
states states states states time

2 2 0 1 3 0.4 millisecond
3 7 1 19 27 1 milliseconds
4 40 23 666 729 9 milliseconds
5 404 851 57794 59049 61 milliseconds
6 6317 61410 14281180 14348907 12 seconds

7 131288 9675877 10450546038 | 10460353203 158 minutes

Table 4.9 presents the results of the same algorithm for sports tournaments such as
rugby and handball, where the team gains 1 point for a drawn game and 2 points instead
of 3 for a won game.

Table 4.9. Results of the forward algorithm for rugby and handball tournaments

N Valid Repeated Invalid Total of Execution time
states states states states
2 2 0 1 3 0.4 millisecond
3 7 1 19 27 1 milliseconds
4 49 26 654 729 13 milliseconds
5 571 1184 57294 59049 73 milliseconds
6 9981 103321 14235605 14348907 13 seconds
7 223964 18754047 | 10441375192 | 10460353203 165 minutes

Given the numbers of the valid states in Tables 4.8 and 4.9, it can be observed that
the numbers get bigger in Table 4.9 from n=4 on. As previously explained in Section
4.2.1, the reason for the increase in the number of the valid states in Table 4.9 is due to
the point grading system, where Pw=2 is used instead of Pw=3. It subsequently affects the
corresponding points of some elements of set S, thereby making the number of

corresponding points of some elements the same (see Section 4.2.1). Therefore, some

states which are not previously considered to be valid for Pw=3 are considered to be valid

in this case.

When the points of participants are in descending order in a calculated state, the
state is considered as a valid one and checked by comparison with previous ones before it
is saved, which will cause an increase in the execution time. Due to this reason, the big
difference in the numbers of the valid states (whether they are repeated or not) for n=7
between Tables 4.8 and 4.9 makes the execution times bigger in Table 4.9. For n>3, it is
easy to see that the number of the valid states in Table 4.9 is always bigger than the
number of those in Table 4.8. This explains the failure of the algorithm to calculate the
number of states with Pw=2 for n=8.

Table 4.10 presents the results of the forward algorithm in the case of tournaments

such as chess, where each participant gains 1 point for a won game and half a point for a

drawn game.

149

Table 4.10. Results of the forward algorithm for chess tournaments

n Valid | Repeated Invalid Total of Execution time
states states states states
2 2 0 1 3 0.4 millisecond
3 7 1 19 27 1 milliseconds
4 49 26 654 729 13 milliseconds
5 571 1184 57294 59049 73 milliseconds
6 9981 103321 14235605 14348907 13 seconds
7 223964 | 18754047 | 10441375192 | 10460353203 165 minutes

Tables 4.9 is exactly identical to Table 4.10, which occurs since the values of Pw
and Pp in this case are exactly half of the values in the previous case. This maintains the

differences in the total number of the points gained by the participants who therefore

retain the same positions in the final table of the tournament.

150

4.3.2. The Case of WL

Table 4.11 shows the results of the forward algorithm in the case of lacrosse, where
the final tournament table includes only the W and L columns (with the exclusion of D
column), as well as the point system of Pw=1 and P =0. The number of teams in this
situation ranges from 2 to 9.

The algorithm can calculate the results up to n=9, as justified by Eq. (2.31)). As the
number of the possible game results (i.e., 2q+r) gets smaller (in this regard, 2), the
number of the tournament graphs GR(n) generated by the blind search algorithm
decreases. This means that the execution time required to generate all the states based on

the forward algorithm will be less for 2q+r=2 than for 2q+r=3.

Table 4.11. Results of the forward algorithm for lacrosse tournaments

N Valid | Repeated Invalid Total of Execution time
states states states states

2 1 0 1 2 0.3 millisecond
3 2 1 5 8 1 millisecond
4 4 5 55 64 2 milliseconds
5 9 52 963 1024 4 milliseconds
6 22 507 32239 32768 16 milliseconds
7 59 11500 2085593 2097152 3 seconds

8 167 358666 268076623 | 268435456 6 minutes

9 490 24647272 | 68694828974 | 68719476736 27 hours

The results in the case of tournament tables of basketball, volleyball and tennis are
presented in Table 4.12, where the final tournament table includes only the W and L
columns, as well as the point system of Pw=2 and P_=1.

Although there are differences between their values of Pw and P, Tables 4.11 and
4.12 have the same data. This similarity is due to the increase in the values of both Pw and
PL by one point in the case of Table 4.12. As explained in the backward algorithm (see
Section 4.2.2), one point added to each of Pw and Py for all the participants makes them

151

maintain the same differences in their total number of points, thus the same positions in
the final table.

Table 4.12. Results of the forward algorithm for basketball, volleyball and tennis

tournaments
N Valid | Repeated Invalid Total of Exe_cution
states states states states time

2 1 0 1 2 0.3 millisecond
3 2 1 5 8 1 millisecond
4 4 5 55 64 2 milliseconds
5 9 52 963 1024 4 milliseconds
6 22 507 32239 32768 17 milliseconds
7 59 11500 2085593 2097152 3 seconds

8 167 358666 268076623 268435456 6 minutes

9 490 | 24647272 | 68694828974 | 68719476736 27 hours

4.3.3. The Case of WXYL

Table 4.13 shows the results of the forward algorithm in the case of ice hockey and
curling tournaments where the final table includes 4 columns related to game results (i.e.,
W, X, Y and L), as well as the point system of Pw=3, Px=2, Py=1 and P.=0. The presented
results are obtained for a number of teams ranging between 2 and 6.

As shown in Eq. (2.31), any increase in the number of game results (i.e., 2q+r)
increases the number of tournament graphs GR(n) which can be generated by the blind
search algorithm, thereby increases the execution time to calculate all the possible states.
For n=7, based on Eq. (2.31), the forward algorithm must generate a total number of
4398046511104 states. This large number of states is apparently the main reason for the
algorithm’s failure to calculate all the states.

152

Table 4.13. Results of the forward algorithm for ice hockey and curling tournaments

Valid Repeated Invalid Total of Execution time
n

states states states states
2 2 0 2 4 0.4 millisecond
3 14 2 48 64 3 milliseconds
4 239 87 3770 4096 34 milliseconds
5 8650 14190 1025736 1048576 59 seconds
6 571990 4908802 1068261032 | 1073741824 15 minutes

4.3.4. The Case of WLTNr

Table 4.14 presents the results of the forward algorithm in the case of cricket, where
the tournament table contains 4 columns of game results (i.e., W, L, T and NR). The point
system of the tournament has the rewarding values of Pw=2, P.=0, Pt=1, and Pnr=1. The
number of teams (n) in Table 4.14 ranges between 2 and 6.

Table 4.14. Results of the forward algorithm for cricket tournaments

Valid | Repeated Invalid Total of Execution time
n

states states states states
2 3 0 1 4 0.6 millisecond
3 20 1 43 64 4 milliseconds
4 393 106 3597 4096 44 milliseconds
5 18400 20171 1010005 1048576 63 seconds
6 | 1769907 | 9317482 | 1062654435 | 1073741824 16 minutes

Although the tournament tables in the case of WXYL and WLTNr have the same
columns of game results (i.e., 4 ones), the diversity of their corresponding sets C; and C>
makes the results of Tables 4.13 and 4.14 different. The difference between the valid
states for n=5 and n=6 in Tables 4.13 and 4.14 also makes the execution times different.
Since the algorithm generates more valid states in this case than in the case of WXYL, it

spends more time in checking their existence among previously calculated ones.

153

Accordingly, it is expected that the number of the valid states in the case of WLTNr will
also be more than that of WXYL for n=7. Thus the execution time will be huge, which

explains why the algorithm fails to calculate the the related results.

4.4. Backward Algorithm Versus Forward Algorithm

Comparing the results of the backward and forward algorithms, both algorithms
generate the same number of valid states of the final tournament tables for each tested
case, except for the case of n=10 in Table 4.4 with respect to Table 4.11 and in Table 4.5
with respect to Table 4.12. However, the forward algorithm failed to calculate the results
in each of Tables 4.11 and 4.12, while the backward algorithm is able to calculate them
(see Tables 4.4 and 4.5). The execution times to calculate the results are not the same, as
the forward algorithm is better compared to the backward algorithm for 2g+r > 2, while
the backward algorithm is better for 2g+r = 2.

Table 4.15 shows a comparison between the execution times those are larger or
equal 1 second for both algorithms (i.e., backward and forward), as Figure 4.1 shows a

graphical representation of the decreased percentage in the execution time for these cases.

The values of the percentage decrease in the execution time presented in Table 4.15
prove the efficacy of the forward algorithm against the backward algorithm for 2g+r > 2.
In addition to the ability of the backward algorithm to calculate the results for n=10, it

also shows better performance than the forward algorithm for 2g+r = 2.

Table 4.15. The comparisons of the execution time in the backward algorithm against

the forward algorithm

154

Decreased
Tables n Backward Forward
percentage (%o)
5 1 second 61 milliseconds 93.9
4.1vs.4.8 6 3 minutes 12 seconds 93.333
7 284 hours 158 minutes 99.072
5 1 second 73 milliseconds 92.7
42vs. 49 6 3 minutes 13 seconds 92.777
7 279 hours 165 minutes 99.014
5 1 second 73 milliseconds 92.7
4.3vs.4.10 6 3 minutes 13 seconds 92.777
7 280 hours 165 minutes 99.017
A4vs. 411 7 2 seconds 3 seconds 33.333
and 8 57 seconds 6 minutes 84.166
45vs. 4121 9 | 34 minutes 27 hours 97.901
5 136 seconds 59 seconds 56.617
46vs.4.13
6 95 hours 15 minutes 99.736
5 131 seconds 63 seconds 51.908
4.7vs. 4.14
6 92 hours 16 minutes 99.71

155

5] ¥ 5 B 7 5 & 7 e &8 g 5 1] 5 -} L

41vs4 8 42vs49 4.3vs 410 44vsd11 46vs 413 4Tws414 Tables
45vs412

g

s

&

&

(-]

B Foward Algorithm
. Backward Algonthm

Figure 4.1. The percentage decrease in the execution time of the backward algorithm
versus the forward algorithm

4.5. Optimized Backward Algorithm
4.5.1. The Case of WDL

Table 4.16 presents the results of the optimized backward algorithm for football
tournaments, which have the point system of Pw=3, Pp=1 and P.=0. The results include
the possible states of the final tournament tables, the number of the checked invalid states
and the execution time of each case, where the number of the participants ranges between
2 and 8.

Comparing the cases of n=7 to n=8, the large number of the states (a total of valid
and invalid ones) checked by the procedure stateChecker for the latter case explains the
large difference in the execution time. The number of generated states increases by
approximately 3155%, which subsequently increases the execution time by about
77233%.

Table 4.17 presents the results of the same algorithm for sports like rugby and
handball, which have the point system of Pw=2, Ppb=1 and P.=0. The results are obtained
for the number of participants that ranges between 2 and 8.

156

Table 4.16. Results of the optimized backward algorithm for football tournaments

n Valid states Invalid states | Total of states | Execution time
2 2 2 4 1 millisecond
3 7 33 40 2 milliseconds
4 40 583 623 10 milliseconds
5 404 11904 12308 96 milliseconds
6 6317 279595 285912 2 seconds

7 131288 7991894 8123182 9 minutes

8 3366444 261107702 264474146 116 hours

Table 4.17. Results of the optimized backward algorithm for rugby and handball

tournaments

n Valid states Invalid states | Total of states | Execution time
2 2 2 4 1 millisecond
3 7 41 48 2 milliseconds
4 49 675 724 12 milliseconds
5 571 15208 15779 126 milliseconds
6 9981 391337 401318 4 seconds

7 223964 12324568 12548532 17 minutes

8 6286424 436034441 442320865 189 hours

By comparing the numbers of the generated states (a total of valid and invalid ones)
in Tables 4.16 and 4.17, it is observed that these numbers are larger in Table 4.17 starting
from n=3 on. As previously explained in Section 4.2.1, the reason for this increase is
attributed to the points awarded after a won game (i.e., 2 instead of 3), making the
number of points of the participants approach each other and increasing the possibility
that the generated states comply with Eq. (2.17) (i.e., Pts(k) > Pts(k+1)). The difference
between the generated states in Tables 4.16 and 4.17 creates a significant one in the
execution times starting from n=6 on, where the execution time is increased in Table 4.17
from 70% to 100%.

157

Table 4.18 consists of the results of the optimized backward algorithm for chess
tournaments, where the participant gains 1 point for a won game (i.e., Pw=1) and half a
point for a drawn game (i.e., Pp=1/2). The results are given for the number of participants

which ranges between 2 and 8.

Table 4.18. Results of the optimized backward algorithm for chess tournaments

n Valid states | Invalid states | Total of states | Execution time
2 2 2 4 1 millisecond
3 7 41 48 2 milliseconds
4 49 674 723 12 milliseconds
5 571 15208 15779 132 milliseconds
6 9981 391337 401318 4 seconds

7 223964 12324568 12548532 18 minutes

8 6286424 436034441 442320865 193 hours

Tables 4.17 and 4.18 present the same numbers of the generated states (i.e., valid
and invalid ones). This arises due to the values of both Pw and Pp in this occasion being
exactly the half of the previous case, which makes the differences in the number of points
between the participants stable. Despite the same numbers of generated states in Tables
4.17 and 4.18, there are some differences in the execution times for n=7 and n=8. The
same situation is previously encountered in Section 4.2.1, where it is explained that when
similar tests are performed in different environments with different weather conditions,

their results may be different.

4.5.2. The Case of WL

Table 4.19 shows the results of the optimized backward algorithm for sports such as
lacrosse, where the tournament tables contain only the W and L columns. The values of
Pw and P_ are 1 and O respectively. The results are given for the number of participants

which ranges between 2 and 10.

158

Table 4.19. Results of the optimized backward algorithm for lacrosse tournaments

n Valid states | Invalid states | Total of states | Execution time
2 1 0 1 0.4 millisecond
3 2 2 3 1 millisecond
4 4 8 12 2 milliseconds
5 9 36 45 3 milliseconds
6 22 139 161 15 milliseconds
7 59 547 606 143 milliseconds
8 167 2102 2269 14 seconds

9 490 8139 8629 23 minutes
10 1486 31395 32881 16 hours

Table 4.20 presents the results of the optimized backward algorithm in the case of
sports like basketball, volleyball and tennis, where the tournament table includes W and L
columns of game results, and each participant gains 2 points for a win (i.e., Pw=2) and 1
point for a loss (i.e., P.=1). The presented results are valid for the number of participants

between 2 and 10.

Table 4.20. Results of the optimized backward algorithm for basketball, volleyball
and tennis tournaments

n | Valid states | Invalid states | Total of states | Execution time
2 1 0 1 0.4 millisecond
3 2 2 3 1 millisecond
4 4 8 12 2 milliseconds
5 9 36 45 3 milliseconds
6 22 139 161 16 milliseconds
7 59 547 606 167 milliseconds
8 167 2102 2269 15 seconds

9 490 8139 8629 23 minutes
10 1486 31395 32881 16 hours

159

Although the results presented by Tables 4.19 and 4.20 are based on different values
of Pw and P, we observe that they have the same numbers of the generated states. This
occurs as a result of 1 point added to each of Pwand P for all the participants of the
tournaments evaluated in Table 4.20. Thus, the differences between the points of the
participants remain the same and the participants maintain the same positions in the final
table.

4.5.3. The Case of WXYL

Table 4.21 shows the results of the optimized backward algorithm for tournament
tables with W, X (OTW or SOW), Y (OTL or SOL) and L columns, such as ice hockey and
curling, where the values of Pw, Px, Py and P. are 3, 2, 1 and O respectively. The results

are given for participants ranging from 2 to 7.

Table 4.21. Results of the optimized backward algorithm for ice hockey and curling

tournaments

n Valid states | Invalid states | Total of states | Execution time
2 2 2 4 1 millisecond
3 14 154 168 4 milliseconds
4 239 8522 8761 62 milliseconds
5 8650 833081 841731 2 seconds

6 571990 108045570 108617560 18 minutes

7 61551170 19969829838 | 20031381008 316 hours

Compared to the previous cases where there are 2 and 3 columns of game results,
the optimized backward algorithm cannot get the results for more than 7 participants. The
reason is that, as the number of the columns (in this case, 4 ones) related to game results
increases, the number of the generated states also increases, which requires more time to

process them by the procedure stateChecker.

160

45.4. The Case of WLTNr

Table 4.22 shows the results of the optimized backward algorithm for cricket
tournaments, where the final table contains 4 columns (i.e., W, L, T and NR), based on the
point system of Pw=2, P.=0, Pr=1 and Pnr=1. The presented results are for the number of
teams which ranges between 2 and 7.

Table 4.22. Results of the optimized backward algorithm for cricket tournaments

n Valid states Invalid states | Total of states | Execution time
2 3 6 9 1 millisecond
3 20 260 280 5 milliseconds
4 393 15687 16080 71 milliseconds
5 18400 1560772 1579172 5 seconds

6 1769907 223658929 225428836 38 minutes

7 267636358 45230865354 | 45498501712 748 hours

The difference in the nature of the columns and their corresponding points in the
case of Tables 4.21 and 4.22 makes the algorithm generate different results. Starting from
n=5 on, the difference in the execution times is due to the large difference in the number
of the generated states. This arises because, when there are more generated states, there
are more calls to the procedure stateChecker, costing more time.

4.6. Backward Algorithm Versus Optimized Backward Algorithm

Given the above results of the backward algorithm and the optimized backward
algorithm, it can be observed that both algorithms generate the same numbers of the valid
states of the final tournament tables for the tested cases. The case is not the same when
the algorithms are applied to the invalid state; that is, the numbers significantly decrease
after the application of the optimized backward algorithm. Table 4.23 shows a

comparison between the numbers of the generated invalid states, while Figure 4.2 shows

161

a graphical representation of the decreased percentage in generating the invalid states for
each the tested cases.

L)

100

0 4

B3 <+

a0 +

20 1
2 8 4 5 & 7 @ 3 4 5 6 7 1 3 4 5 8 7 8 9% 10 I 3 4 5 6 i 3 4 5 6 n
4.1vs 416 42vs417 4 dvsd19 46vsd.21 4Tvs 422 Tables

43vs 418 45vs4.20

Figure 4.2. The percentage decrease of the generated invalid states in the optimized
backward algorithm compared to the backward algorithm

The values of the percentage decrease in Table 4.23 prove the efficacy of the
optimized backward algorithm against the backward algorithm, reducing the number of
invalid states from 53.846% to 100%. This also explains the reason for the optimization
in the execution time, especially when the number of the participants is large. The
optimizations of the execution times those are larger or equal 1 second are presented in

Table 2.24, while Figure 4.3 shows a graphical representation of the decrease percentage
in the execution time for these cases.

162

Table 4.23. The number of the invalid states in the backward algorithm against the
optimized backward algorithm

Tables n Backward | Optimized backward | Decrease percentage (%)
2 7 2 71.428
3 209 33 84.21
41vs. 416 4 9960 583 94.146
5 758971 11904 98.431
6 85759804 279595 99.673
7 | 13492797224 7991894 99.94
2 7 2 71.428
3 209 41 80.382
G 9951 675 93.216
43 3:.d4.18 5 758804 15208 97.995
6 85756140 391337 99.543
7 | 13492704548 12324568 99.908
2 3 0 100
3 25 2 92
4 252 8 96.825
A4vs. 4.19 5 3116 36 98.844
and 6 46634 139 99.701
45vs. 420 7 823484 547 99.933
8 16777049 2102 99.987
9 387419999 8139 99.997
10 | 9999998514 31395 99.999
2 14 2 85.71
3 986 154 84.381
46vs. 421 | 4 159761 8522 94.665
5 52513225 833081 98.413
6 | 30840407466 108045570 99.649
2 13 6 53.846
3 980 260 73.469
47vs. 422 | 4 159607 15687 90.171
5 52503475 1560772 97.027
6 | 30839209549 223658929 99.274

163

Table 4.24. The execution time in the backward algorithm against the optimized
backward algorithm

Tables n Backward | Optimized backward | Time optimization (%)
5 1 second 96 milliseconds 90.4
41vs.416| 6 3 minutes 2 second 98.888
7 284 hours 9 minutes 99.947
5 1 second 126 milliseconds 87.4
4.2 vs. 4.17 6 3 minutes 5 second 97.222
7 279 hours 17 minutes 99.898
5 1 second 132 milliseconds 86.8
43vs.418| 6 3 minutes 5 second 97.222
7 280 hours 18 minutes 99.892
7 2 second 143 milliseconds 92.85
8 57 second 14 second 75.438
4.4vs.4.19
9 34 minutes 23 minutes 32.352
10 288 hours 16 hours 94.444
7 2 second 167 milliseconds 91.65
8 57 second 15 second 73.684
45vs. 4.20
9 34 minutes 23 minutes 32.352
10 290 hours 16 hours 94.482
5 136 second 2 second 98.529
46vs.4.21
6 95 hours 18 minutes 99.684
5 131 second 5 second 96.183
4.7 vs. 4.22
6 92 hours 38 minutes 99.311

164

100

a0
EQ
a0

o

'9- m
d_1'md_16 d_zvsu? d31.fsd.1E! d_dvsdig dS'u's

[
o

5 6 5 B M

46vs421 47Tvsd422 Tables

9 10
4.20

Figure 4.3. The execution time decrease in the optimized backward algorithm
comparing to the backward algorithm

The reduction in the number of the invalid states enables the optimized backward
algorithm to calculate the results of tournaments with a higher number of participants. It
is not possible to calculate the related results of these tournaments via the backward
algorithm, like the case of n=8 in Tables 4.16, 4.17 and 4.18, and n=7 in Tables 4.21 and
4.22.

4.7. Optimized Forward Algorithm
4.7.1. The Case of WDL
Table 4.25 presents the results of the optimized forward algorithm for sports

tournament tables with W, D and L columns, such as football, where Pw=3, Pp=1 and
P.=0. In addition to the values of the execution time, the results shown in Table 4.25

165

include the numbers of the generated valid states, the repeated valid states, and the invalid
states. The number of participating teams ranges between 2 and 8.

Table 4.25. Results of the optimized forward algorithm for football tournaments

N Valid Repeated Invalid Total of Exe_cution
states states states states time

2 2 0 0 2 1 millisecond

3 7 1 0 8 2 milliseconds

4 40 23 0 63 8 milliseconds

5 404 851 0 1255 58 milliseconds

6 6317 61410 0 67727 1 second

7 131288 9675877 0 9807165 5 minutes

8 3366444 | 3863316144 0 3866682588 238 hours

The optimized forward algorithm eliminates the generation of the invalid states. As
the value of n increases, the number of the repeated states whose existence is checked
also increases, affecting the execution time. This explains the big difference in the
execution time between the cases of n=7 and n=8.

Table 4.26 presents the results of the same algorithm for sports with Pw=2, Pp=1
and P.=0 such as rugby and handball. Gaining 2 points instead of 3 after a won game
ensures that some states, which are not considered to be valid for Pw=3, are considered to
be valid for Pw=2. For this reason, the numbers of the generated states (a total of valid
and repeated ones) are larger in Table 4.26 compared to Table 4.25, starting from n=4 on.
For n=8, the significant difference in the execution times in Tables 4.25 and 4.26 (which
is 313 hours) is due to the large difference in the total of the generated states in Tables
4.26, where the existence of 4963135241 additional states is checked.

Table 4.27 shows the results of the optimized forward algorithm for chess
tournaments, where the participants earn 1 point for a won game and half a point for a
drawn game. The results in Tables 4.26 and 4.27 are similar except for some differences
in the execution time, which are largely caused by the tests being performed in different
environments under different weather conditions. The reason for the number similarities

in Tables 4.26 and 4.27 is due to the values of Pw and Pp (i.e., 1 and 1/2 respectively)

166

which are exactly half of the values in the previous case (i.e., Pw=2 and Pp=1), thereby
differences in total points of the participants remain the same, with no change in their

positions in the final table.

Table 4.26. Results of the optimized forward algorithm for rugby and handball

tournaments
N Valid Repeated Invalid Total of | Execution time
states states states states

2 2 0 0 2 1 millisecond
3 7 1 0 8 2 milliseconds
4 49 26 0 75 10 milliseconds
5 571 1184 0 1755 68 milliseconds
6 9981 103321 0 113302 2 seconds

7 223964 18754047 0 18978011 9 minutes

8 6286424 8823531405 0 8829817829 551 hours

Table 4.27. Results of the optimized forward algorithm for chess tournaments

N Valid Repeated Invalid Total of Execution time
states states states states

2 2 0 0 2 1 millisecond

3 7 1 0 8 2 milliseconds
4 49 26 0 75 10 milliseconds
5 571 1184 0 1755 68 milliseconds
6 9981 103321 0 113302 2 seconds

7 223964 18754047 0 18978011 10 minutes

8 6286424 8823531405 0 8829817829 563 hours

4.7.2. The Case of WL

Table 4.28 shows the results of the optimized forward algorithm for lacrosse

tournaments, where the table contains W and L columns and the point system of Pw=1 and

167

PL=0. The presented results are given for tournaments with the number of participants
between 2 and 10. Since the optimized forward algorithm does not generate invalid states,

the execution time is reduced compared to the forward algorithm, thus providing the

possibility of calculating the results with 10 participants.

Table 4.28. Results of the optimized forward algorithm for lacrosse tournaments

N Valid Repeated Invalid Total of Execution time
states states states states

2 1 0 0 1 0.3 millisecond
3 2 1 0 3 0.8 millisecond
4 4 5 0 9 1 milliseconds
5 9 52 0 61 3 milliseconds
6 22 507 0 529 13 milliseconds
7 59 11500 0 11559 139 milliseconds
8 167 358666 0 358833 10 seconds

9 490 24647272 0 24647762 26 minutes
10 1486 2666134835 0 2666136321 196 hours

The results of the optimized forward algorithm for sports such as basketball,
volleyball and tennis are presented in Table 4.29, where each participant gains 2 points
for a win (i.e., Pw=2) and 1 point for a loss (i.e., P.=1).

Although the results presented Tables 4.28 and 4.29 are based on the different
values of Pw and P, we can see that they have the same numbers of valid and repeated
states. This is due to the fact that adding 1 point to each of Pw and P for all the
participants maintains the same differences in their total number of points, thus staying in
the same positions in the final table. However, there is a difference in the execution time

for n=8.

168

Table 4.29. Results of the optimized forward algorithm for basketball, volleyball and
tennis tournaments

N Valid Repeated Invalid Total of Execution time
states states states states

2 1 0 0 1 0.3 millisecond
3 2 1 0 3 0.8 millisecond
4 4 5 0 9 1 milliseconds
5 9 52 0 61 3 milliseconds
6 22 507 0 529 13 milliseconds
7 59 11500 0 11559 141 milliseconds
8 167 358666 0 358833 10 seconds

9 490 24647272 0 24647762 26 minutes
10 1486 2666134835 0 2666136321 201 hours

4.7.3. The Case of WXYL

Table 4.30 shows the results of the optimized forward algorithm for ice hockey and
curling tournaments. The tournament table has 4 columns of possible game results (i.e.,
W, X, Y and L), where Pw=3, Px=2, Py=1, and P.=0. The results are given for the number

of participants between 2 and 7.

Table 4.30. Results of the optimized forward algorithm for ice hockey and curling

tournaments

n Valid states Repeated Invalid Total of Execution time
states states states

2 2 0 0 2 1 millisecond
3 14 2 0 16 3 milliseconds
4 239 87 0 326 34 milliseconds
5 8650 14190 0 22840 316 milliseconds
6 571990 4908802 0 5480792 106 seconds
7 61551170 381554986 0 443106156 63 hours

169

Compared to the cases where there are 2 and 3 columns of game results, the
optimized forward algorithm cannot calculate the results for more than 7 participants.
This is due to the increase in the number of the columns related to game results (in this
case, 4 ones). As the number of the columns increases, the number of generated states
also increases and thus additional time will be spent on checking the existence of the
generated states.

4.7.4. The Case of WLTNr

Table 4.31 presents the results of the optimized forward algorithm for cricket
tournaments. The tournament table contains 4 columns of game results (i.e., W, L, T and
NR), where Pw=2, P.=0, Pr=1 and Pnr=1. The number of teams (n) ranges between 2 and
6.

Table 4.31. Results of the optimized forward algorithm for cricket tournaments

Valid states Repeated Invalid Total of Execution

n)
states states states time

2 3 0 0 3 1 millisecond
3 20 1 0 21 4 milliseconds
4 393 106 0 499 44 milliseconds
5 18400 20171 0 38571 1 second
6 1769907 9317482 0 11087389 | 144 seconds

The difference in the nature of the columns and their corresponding points in the
cases presented Tables 4.30 and 4.31 causes the algorithm to generate different results.
The large difference in the number of the generated states starting from n=5 in Tables
4.30 and 4.31 makes the execution times different. This is due to the generation of more
valid states, which requires extra time to check their status (i.e., already generated or not).
The size of memory required to save the valid states in the case of n=7 exceeds the one
provided by the used machine, which results in the failure of the optimized forward

algorithm to generate all the states.

170

4.8. Forward Algorithm Versus Optimized Forward Algorithm

Given the above results of the forward and the optimized forward algorithms, for
each tested case, it can be observed that both algorithms generate the same numbers of
valid and repeated valid states of the final tournament table. However, the optimized
algorithm eliminates the generation of the invalid states, which has a positive effect on
the required execution time to generate all the possible states.

The effect of optimization on the execution times those are larger or equal 1 second
is presented in Table 4.32, while Figure 4.4 shows its graphical presentation. Eliminating
the generation of the invalid states allows the optimized forward algorithm to calculate
the results of tournaments that cannot be calculated by the forward algorithm, such as the
cases of n=8 for WDL (see Tables 4.25, 4.26 and 4.27), n=10 for WL (see Tables 4.28 and
4.29) and n=7 for WXYL (see Table 4.30).

100

a8 .
[7 [] 7 [7 7 -] -] 7 8 9 5 L] L n

48vs 425 49vs426 410vs 427 411vs 428 412vs 429 413vs430 414vs431 Tables

w

w
w

g

Figure 4.4. The execution time decrease in the optimized forward algorithm compared to
the forward algorithm

171

Table 4.32. The execution time for the forward algorithm against the optimized forward

algorithm
Tables n Forward | Optimized Forward | Time optimization (%)

6 12 seconds 1 second 91.666
4.8vs. 4.25

7 158 minutes 5 minutes 96.835

6 13 seconds 2 seconds 84.615
49 vs. 4.26

7 165 minutes 9 minutes 94.545

6 13 seconds 2 seconds 84.615
410 vs. 4.27

7 165 minutes 10 minutes 93.939

7 3 seconds 139 milliseconds 95.366
411 vs. 4.28 8 6 minutes 10 seconds 97.222

9 27 hours 26 minutes 98.395

7 3 seconds 141 milliseconds 95.3
412 vs. 4.29 8 6 minutes 10 seconds 97.222

9 27 hours 26 minutes 98.395

5 59 seconds 316 milliseconds 99.464
4.13 vs. 4.30

6 15 minutes 106 seconds 88.222

5 63 seconds 1 second 98.412
414 vs. 4.31

6 16 minutes 144 seconds 85

The percentage values of the time optimization in Table 4.32 prove the efficacy of
the optimized forward algorithm against the forward algorithm, where the optimized
forward algorithm reduces the execution time from 84.615% to 99.464%, which explains

the importance of eliminating the generation of the invalid states.

4.9. Optimized Backward Algorithm Versus Optimized Forward Algorithm

Compared the results of optimized backward and optimized forward algorithms,
both algorithms generate the same numbers of possible states of the final tournament
table for each tested case, except for n=7 in the case of WLTNr, where the optimized
forward algorithm cannot calculate the results, while the optimized backward algorithm

172

can calculate them (see Table 4.22). In terms of the execution time, the optimized forward
algorithm performs better compared to the backward algorithm in the case of n<8, the
reverse is the case for n>8. In the case of n=8, the optimized forward algorithm performs
better for 2g+r=2. In contrast, for 2q+r=3, the optimized backward algorithm performs
better.

Table 4.33 shows a comparison of the execution times those are larger or equal 1
second between the optimized backward and the optimized forward algorithms, while
Figure 4.5 shows a graphical representation of the percentage decrease in execution time
for these cases.

The values of the percentage decrease in execution time presented in Table 4.33
shows the efficacy of the optimized forward algorithm against the optimized backward
for n<8, while the backward algorithm is more efficient for n>8. Given n=8, the execution
times are better for 2g+r=2 in the case of the optimized forward algorithm, while for

2g+r=3, the execution times are better in the case of the optimized backward algorithm.

%o

o ‘ ‘ ‘ I I I | ‘ | l I
& T & & 7 8 & 7 B 8 9 w B 9% 10 5 & 7 5 B]

416vs 425 41Twvs 426 4 18vs 427 4.19vs 4 28 4 20vs 429 421vs4.30 422vs431 Tables
B Forward Algorithm
B Backward Algornithm

&

&

o

Figure 4.5. The percentage decrease in execution time for the optimized backward
algorithm against the optimized forward algorithm

173

Table 4.33. The execution time for the optimized backward algorithm against the
optimized forward algorithm

Optimized Optimized Decrease percentage
Tables n Backward Forward (%)
6 2 seconds 1 second 50
416vs. 425 | 7 9 minutes 5 minutes 44.444
8 116 hours 238 hours 51.26
6 5 seconds 2 seconds 60
417vs. 426 | 7 17 minutes 9 minutes 47.058
8 189 hours 551 hours 65.698
6 5 seconds 2 seconds 60
418vs. 427 | 7 18 minutes 10 minutes 44.444
8 193 hours 563 hours 65.719
8 14 seconds 10 seconds 28.571
419vs.428 | 9 23 minutes 26 minutes 11.538
10 16 hours 196 hours 91.836
8 15 seconds 10 seconds 33.333
420vs. 429 | 9 23 minutes 26 minutes 11.538
10 16 hours 204 hours 92.156
5 2 seconds 316 milliseconds 84.2
421vs.430| 6 18 minutes 106 seconds 90.185
7 316 hours 63 hours 80.063
5 5 seconds 1 second 80
4.22 vs. 4.31
6 38 minutes 144 seconds 93.684

4.10. Multi-threaded Optimized Backward Algorithm

To exploit the maximum performance of the used machine for testing, the optimum
number of threads must be determined. As explained in Section 2.9.1, to determine this
number, we iteratively test the multi-threaded optimized backward algorithm for the

previously presented sports, where the value of thrLim (the limit of threads that can run

174

simultaneously) ranges between 1 and 20 threads. The tests are done on tournaments with
the particular numbers of participants which can easily allow the observation of the
differences in the execution time. In the other words, the execution time of each test must
not be as small as the difference between the tested cases cannot be observed, and must
not be as large as the results of all the tests cannot be obtained. Table 4.34 shows the
value selected for n in the case of each sports discipline in the performed tests.

Table 4.34. The value selected for n in the case of each sports discipline in the
performed tests to determine the optimum number of threads

Basketball, lce hocke
Football | Chess Rugby and Lacrosse | volleyball _ Y Cricket
handball | and curling
and tennis
7 7 7 9 9 6 6

Table 4.35 presents the duration in seconds taken by the multi-threaded backward
algorithm in each performed test. When the value of thrLim equals 10, the performance of
the multi-threaded optimized backward algorithm reaches its maximum for all the
presented sports disciplines in Section 1.8.3, even though the used machine contains 4
cores.

Considering 10 threads, which are the optimum number of threads that can be run in
parallel in the machine used for testing, Table 4.36 presents the required execution times
to get the results of the multi-threaded optimized backward algorithm for the previously
presented types of sports tournament tables.

Table 4.37 shows a comparison between the execution times those are larger or
equal 1 second for the optimized backward algorithm against the multi-threaded
optimized backward algorithm, while Figure 4.6 shows a graphical representation of the

percentage decrease in the execution time for the different cases.

175

Table 4.35. The duration in seconds taken by the multi-threaded optimized backward
algorithm in each performed test to determine the optimum number of threads

Rugby Basketball, | Ice hockey
thrLim | Football | Chess and Lacrosse | volleyball and Cricket
handball and tennis | curling
1 554 1107 1031 1418 1382 1107 2280
2 513 1029 990 1353 1319 1082 2236
3 495 995 922 1282 1266 1062 2211
4 460 954 908 1182 1168 1030 2192
5 437 896 847 1116 1113 1023 2175
6 410 868 826 989 1038 976 2171
7 391 821 765 920 973 962 2163
8 370 753 744 843 912 964 2128
9 329 713 692 798 871 969 2116
10 312 678 663 784 817 941 2084
11 320 696 701 816 838 962 2114
12 341 740 730 879 906 964 2161
13 357 767 739 941 960 1012 2216
14 374 813 762 984 986 1023 2241
15 403 860 807 1046 1034 1021 2253
16 423 886 829 1086 1124 1083 2280
17 452 922 865 1147 1199 1093 2303
18 473 965 879 1187 1243 1132 2354
19 489 989 924 1256 1295 1161 2381
20 506 1042 952 1309 1363 1236 2438

176

Table 4.36. The execution times of the multi-threaded optimized backward algorithm

Rugby Basketball, | Ice hockey

n | Football | Chess and Lacrosse | volleyball and Cricket

handball and tennis | curling
2 2ms 2ms 2ms 2ms 2ms 2ms 3 ms
3 8 ms 8 ms 8 ms 4 ms 4 ms 11 ms 16 ms
4 21 ms 25 ms 25 ms 6 ms 6 ms 97 ms 152 ms
5 182ms | 214ms | 211 ms 12 ms 12 ms 6s 10s
6 2s 3s 3s 33 ms 33 ms 16 m 35m
7 5m 11m 11m 309 ms 307 ms 243 h 628 h
8 76 h 125h 124 h 12 s 13s - -
9 - - - 13m 13m - -
10 - - - 13 h 13h - -

Table 4.37. The percentage decrease in the execution time for the multi-threaded
optimized backward algorithm compared to the optimized backward

algorithm
Rugby Basketball, | Ice hockey
n | Football | Chess and Lacrosse | volleyball and Cricket
handball and tennis | curling

5 - - - - - -200 -100

6 50 25 25 - - 11.111 7.894
7 44444 | 38.888 | 38.888 - - 23.101 16.042
8 59.788 | 35.233 | 35.751 14.285 13.333 - -

9 - - - 43.478 43.478 - -

10 - - - 18.75 18.75 - -

177

100
S0 | ‘
* T - : . :]
6 7 8 & ’ 8 & ’ 8 B 9 10 8 9 110 6 7 N 6 7 n
Footbal Chess Rugby Lacrosse Basketball hockey Cncket Sports
handball Volievball ring
Tenms
50
+100
150

Figure 4.6. The percentage decrease in the execution time for the multi-threaded
optimized backward algorithm compared to the optimized backward
algorithm

Except for the cases of ice hockey, curling and cricket (i.e., 2q+r=4) for n=5, the
multi-threaded optimized backward algorithm has a positive effect on the execution time,
where it is reduced from 7.894% to 59.788%. The worst case of the multi-threading
appears for n=5 in the case of WXYL and WLTNr, where the algorithm become slower
(from 100% to 200%). The difference in the execution times for these cases does not have
much effect on the speed of calculation (not more than 5 seconds) compared to other

cases where the execution times exceed hundreds of hours.

4.11. Multi-threaded Optimized Forward Algorithm

To determine the optimum number of threads for this case, we perform a set of tests
on the multi-threaded optimized forward algorithm with the same principle addressed in
Section 4.10. Table 4.38 presents the necessary execution time of the multi-threaded
forward algorithm in seconds for each performed test. The same case comes into

existence when the value of thrLim equals 10 and the performance of the multi-threaded

178

optimized forward algorithm reaches its maximum for all the presented sports disciplines

in Section 1.8.3, even though the used machine contains 4 cores.

Table 4.38. The duration in seconds taken by the multi-threaded optimized forward
algorithm in each performed test to determine the optimum number of threads

Rugby Basketball, | Ice hockey
thrLim | Football | Chess and Lacrosse | volleyball And Cricket
handball and tennis | curling
1 292 624 537 1592 1574 106 144
2 275 562 516 1457 1420 100 143
3 248 531 475 1262 1306 104 139
4 244 487 434 1187 1172 89 136
5 215 458 413 1052 1068 87 144
6 209 398 392 947 883 78 131
7 185 365 384 762 720 72 129
8 159 323 303 637 636 69 124
9 147 282 269 424 458 59 122
10 143 251 258 377 369 56 122
11 158 262 280 460 398 71 124
12 166 315 296 520 510 97 142
13 184 346 324 637 670 103 164
14 219 387 337 696 791 128 178
15 241 434 359 784 871 134 201
16 272 482 381 828 952 146 206
17 292 511 424 985 1022 152 220
18 325 539 446 1032 1173 171 224
19 337 584 458 1139 1303 197 238
20 359 637 481 1246 1374 213 263

Considering 10 threads, which are the optimum number of threads that can be run in

parallel in the machine used for testing, Table 4.39 presents the necessary execution times

179

to get the results of the multi-threaded optimized forward algorithm for the previously

presented sports.

Table 4.39. The execution times of the multi-threaded optimized forward algorithm

Rugby Basketball, | Ice hockey

n | Football | Chess and Lacrosse | volleyball and Cricket

handball and tennis | curling
2 1ms 1ms 1ms 1ms 1ms 1ms 1ms
3 3 ms 3 ms 3 ms 2ms 2ms 6 ms 7ms
4 19 ms 21 ms 21 ms 7ms 7ms 48 ms 63 ms
S) 118 ms | 134 ms | 141 ms 19 ms 20 ms 1s 1s
6 1s 1s 1s 37 ms 36 ms 56 s 122 s
7 2m 4m 4m 278 ms 283 ms 51h -
8 112 h 363 h 367 h 5S 5SS - -
9 - - - 6m 6 m - -
10 - - - 86 h 87h - -

Table 4.40 shows a comparison between the execution times those are larger or

equal 1 second for optimized backward against the multi-threaded optimized backward

algorithm, while Figure 4.7 shows a graphical representation of the percentage decrease

in the execution time for these cases.

It can be observed from Table 4.40 and Figure 4.7 that the multi-threaded optimized

backward algorithm has a positive effect on the execution time in most of the tested cases,

where the optimization of the execution time is between 0% and 76.923%.

180

Table 4.40. The percentage decrease in the execution time of the multi-threaded
optimized forward algorithm compared to the optimized forward algorithm

Rugby Basketball, 1ce hocke
n | Football | Chess and Lacrosse | volleyball and curliny Cricket
handball and tennis g
5 . - - . . . 0
6 0 50 50 - - 47.169 15.277
7 60 60 55.555 - - 19.047 -
8 | 52941 | 35523 | 33.393 50 50 - -
9 - - - 76.923 76.923 - -
10 - - - 56.122 56.716 - -
%
80
5] 7 B8 B 7 3 3] 7 8 B 9 10 B 9 10 I I B 7 I I 5 I B n
Football Chess Rugby Lacrosse Basketball lce hockey Cricket Tables
Handball yrollevball Curling
ennis

Figure 4.7. The decrease in the execution time for multi-threaded optimized forward
algorithm compared to the forward algorithm

5. CONCLUSIONS AND RECOMMENDATIONS

This study seeks to enumerate the possible states of the final table of single round-
robin sports tournaments with respect to the number of participants (n). The columns of
the tournament tables which are taken into account during the study are the ones related
to the possible game results such as W, D and L in the case of football, and W and L in the
case of basketball. The determination of the possible states of a round-robin final
tournament table can provide a convenient way to ascertain what table data would be
adequate for a participant to reach a desired position, which may play a crucial role in the
distribution of the participants’ revenue.

Backward and forward approaches are developed to enumerate the possible states of
a final tournament table. The backward approach is based on generating every possible
state and seeks to prove their validity by trying to construct a tournament graph for each
generated state. The state is considered to be valid in this approach only if at least one
tournament graph can be sought. The forward approach is based on building every
possible tournament graph, from which then its corresponding state is derived. The state
is taken into account as a valid one in this case only if the points of the participants appear
in descending order and the state is not previously generated.

Each participant holds a position in the tournament final table in which it is possible
to determine its highest and lowest numbers of points that can be gained by them. To
optimize the search space of both approaches, some general constraints are proposed in
terms of the standings and points of the participants. A multi-threading based
parallelization technique is implemented to enhance the performance of the approaches
and to exploit the computation power of the used machine at the highest level, assigning
their non-overlapping operations to different threads.

Both time and memory space complexities of the proposed approaches are analyzed
and discussed. Tables 5.1 and 5.2 represent the time/space complexities of the algorithms
for the presented kind of sports. As seen in the tables, as the number of the possible game
results (i.e., m=2q+r) increases, the time and space complexities of each algorithm
increase to0o. It can also be seen that the time/space complexity of each version from the
backward approach is larger than its counterpart from the forward approach. The values
of all the presented time/space complexities in Tables 5.1 and 5.2 do not represent the

actual time/space function of the algorithms, but they represent upper bounds for them.

182

Thus, we cannot judge based on the data of Tables 5.1 and 5.2 that the forward approach
is better than the backward, but we can confirm that all the algorithms have exponential

time/space complexities.

Table 5.1. The time complexities of the proposed algorithms for the presented kind of

sports
Sports
Football, handball, | Lacrosse, baskethall, | |ce hockey, curling
rugby and chess volleyball and tennis and cricket
Algorithms
Backward O(nn*n+2) O(nn*(n-1)+2) O(nn*(n+1)+2)
Forward O(n*3" -1y O(n*2M -+ O(n*4™ -1y
Optimized n*n+2 n*(n-1)+2 n*(n+1)+2
backward O(n™™) o) o)
Optimized KN *(n-1)+1 seoN*(n-1)+1 % N*(n-1)+1
forward O(n*3) O(n*2) O(n*4)
Multi-
threaded OM™™2thrLim) | O(M™™Y*ZthrLim) | O™ V*2thrLim)
optimized
backward
Multi-
threaded *a*(n-1)+1 . *o*(n-1)+1 ; *AN*(n-1)+1 i
optimized O(n*3 fthrLim) | O(n*2 fthrLim) | O(n*4 fthrLim)
forward

183

Table 5.2. The memory space complexities of the proposed algorithms for the presented
kind of sports

Sports Football, handball, | Lacrosse, basketball, | Ice hockey, curling
Algorithms rugby and chess | volleyball and tennis and cricket
Backward O(n?™h o™ O(n®™1)
Forward O(n*3M /2 O(n2lm /2 O(n4Im -1/
el | owy | ooy | oy
Optimized forward | O(n*3(™ -1z O(n*2[M(-1)/2+1y O(n*4Mmn-1)/2+1y
e Ry EA I G
backward O(thrLim*n%) O(thrLim*n®) O(t&rle n®)
Multi-threaded O(n*3M(-1/21+1 O(n* 2l (-Dr21+ O(n*4M0-121+1
optimized forward (thrle*n } (thrle*n f (thrle*n f

A final state of a tournament table cannot be verified in a polynomial time. A SAT
problem is also reduceable into a problem of determining the final states of a tournament
table in a polynomial time. Based on these facts and the complexities of the approaches,
NP-hard is determined as a class for the problem.

The results of the tests are presented and discussed, where the backward approach
exhibits the better performance when the number of the columns related to possible game
results equals to 2, while the forward approach is better when the number of the columns
is greater than 2. The optimized version of each approach generates better results than the
original one from which it is derived, where they are able to calculate the results of some
cases that cannot be calculated via the original approaches. Besides, the results of the
optimized forward approach are better than those of the optimized backward approach
when the number of the participants is less than 8, while the performance of the optimized
backward approach is better when the number of participants is more than 8. The multi-
threading enhancements of the approaches show positive effects on the execution time in
most of the tested cases.

With the aim of comparing the developed algorithms with one another, their
computing results of execution time are presented for a certain value of n in Table 5.3.
We choose the value of n to be the one that can be tested by all the algorithms (i.e., n=6).
The selection of this common value of n allows us to clearly see the superiority of the

184

algorithms on each other. Accordingly, the forward approach is better than the backward
one in the cases of football, rugby, handball, chess, ice hockey, curling and cricket (i.e.,
the number of the columns is greater than 2). The optimized version of each algorithm
takes less time than the original one from which it is derived for all the sports given in
Table 5.3. Besides, the optimized forward algorithm requires less execution time than the
optimized backward algorithm. The multi-threading enhancement of each algorithm
shows a positive effect on the execution time when the number of the columns is greater
than 2 except in the case of football, where the execution time remained the same. On the
contrary, when the number of the columns equals 2 (i.e., the cases of lacrosse, basketball,

volleyball and tennis), multi-threading shows a negative effect on the execution time.

Table 5.3. The results of the proposed algorithms for n=6

Igorithms Multi- Multi-
Backward | Forward Optimized | Optimized thr_ea(_jed thr_eagied
S backward | forward | optimized | optimized
ports backward | forward
Football 3m 12s 25S 1s 25S 1s
Rugby and
handball 3m 13s 4s 2 3s 1ls
Chess 3m 13s 4s 25S 35S 1s
Lacrosse 18 ms 16 ms 15 ms 13 ms 33 ms 37 ms
Basketball,
volleyball 17 ms 17 ms 16 ms 13 ms 33 ms 36 ms
and tennis
Ice hockey
) 95h 15m 18 m 106 s 16 m 56 s
and curling
Cricket 92 h 16 m 38m 144 s 35m 122 s

The limitation encountered in this study is the generation of the possible states of

single round-robin tournament final tables. Therefore, it is recommended that the related
results are exploited to generate the possible final states of league tables (i.e., double
round-robin tournaments) within the limits of the calculated ones. The determination of
the possible states in this circumstance can be done by unifying every possible two states

of a single round-robin tournament final table. Also, the results of this work can be

185

exploited to realize algorithms which determine the possibility that a participant can
occupy a specific position on the final table based on its current results.

10.

11.

12.

13.

14.

15.

6. REFERENCES

Blanchard, K. and Cheska, A.T., The Anthropology of Sport: An Introduction, First
Edition, Bergin & Garvey Publishers, South Hadley, 1985.

Hoberman, J.M., Sport and Political Ideology, First Edition, University of Texas Press,
Austin, 1984.

Mechikoff, R.A., A History and Philosophy of Sport and Physical Education: From
Ancient Civilization to the Modern World, Sixth Edition, The McGraw-Hill, New York,
2014.

Schrodt, B., Sports of the Byzantine Empire, Journal of Sport History, 8, 3 (1981) 40-
59.

Kyriazis, N. and Economou, E.M.L., Macroculture, sports and democracy in classical
Greece, European Journal of Law and Economics, 40, 3 (2015) 431-455.

Scambler, G., Sport and society: History, power and culture, First Edition, McGraw-
Hill, New York, 2005.

McClelland, J., Body and mind: sport in Europe from the Roman Empire to the
Renaissance, First Edition, Routledge, New York, 2007.

McComb, D.G., Sports in World History, First Edition, Psychology Press, New York,
2004.

Lucas, J.A. and Smith, R.A., Saga of American sport, Lea & Febiger, U.S., 1978.

Raney, A.A. and Bryant, J., Handbook of sports and media, Lawrence Erlbaum
Associates Publisher, 2006.

Eichberg, H., Olympic sport-neocolonization and alternatives, International review for
the sociology of sport, 19, 1 (1984) 97-106.

Thibault, L. and Harvey J., Fostering interorganizational linkages in the Canadian sport
delivery system, Journal of sport management, 11, 1 (1997) 45-68.

Thibault, L. and Babiak, K., Organizational changes in Canada's sport system: Toward
an athlete-centred approach, European Sport Management Quartely, 5, 2 (2005) 105-
132.

Samuel, Y.T., An exploratory investigation of sport management students’ attraction to
sport jobs, Int. J. Sport Management and Marketing, 4, 4 (2008) 323-337.

Rosentraub, M.S., Swindell, D., Przybylski, M. and Mullins, D.R., Sport and
Downtown Development Strategy If You Build It, Will Jobs Come?, Journal of Urban
Affairs, 16, 3 (1994) 221-239.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

187

Bjelica, D., Gardasevic, J., Vasiljevic, I. and Popovic, S., Ethical dilemmas of sport
advertising, Sport Mont, 13, 3 (2016) 41-43.

Jackson, S.J. and Andrews D.L., Sport, culture and advertising: identities, commodities
and the politics of representation, Routledge, London, 2005.

Collignon, H. and Sultan, N., Winning in the Business of Sports, AT Kearney.
https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-
f5f66890778b/WinningintheBusinessofSports.pdf 23 March 2020

Russell, S., Barrios, D. and Andrews, M., Getting the Ball Rolling: Basis for Assessing
the Sports Economy.
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321 assessing_sports_eco
nomy.pdf 23 March 2020

Collignon, H., The sports market. https://www.kearney.com/communications-media-
technology/article?/a/the-sports-market 23 March 2020

Stead D., Sport and the Media, Sport and society: A student introduction, (2003) 184-
200.

Gratton, C. and Solberg, H.A., The economics of sports broadcasting, First Edition,
Routledge, New York, 2007.

Marchand, E., On the comparison between standard and random knockout tournaments,
Journal of the Royal Statistical Society, 51, 2 (2002) 169-178.

Flores, R., Forrest, D., de Pablo, C. and Tena, J.D., What is a good result in the first leg
of a two-legged football match?, European Journal of Operational Research, 247, 2
(2015) 641-647.

Harary, F. and Moser, L., The theory of round robin tournaments, The American
Mathematical Monthly, 73, 3 (1966) 231-246.

Russell, T. and Walsh, T., Manipulating tournaments in cup and round robin
competitions, International Conference on Algorithmic Decision Theory, October 2009,
Venice, 26-37.

Van Cutsem, B., Combinatorial structures and structures for classification,
Computational Statistics & Data Analysis, 23, 1 (1996) 169-188.

Pemmaraju, S. and Skiena, S., Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica, Cambridge university press, Cambridge, 2003.

Goulden, I.P. and Jackson, D.M., Combinatorial enumeration, John Wiley & sons, New
York, 1983.

Polya, G., Tarjan, R.E. and Woods, D.R., Notes on introductory combinatorics, Fourth
Edition, Springer Science, 2013.

https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://www.kearney.com/communications-media-
http://www.kearney.com/communications-media-

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

188

Bader, D.A., Agarwal, V., Madduri, K. and Kang, S., High performance combinatorial
algorithm design on the Cell Broadband Engine processor, Parallel Computing, 33, 10-
11 (2007) 720-740.

West, D.B., Introduction to graph theory, Second Edition, Pearson Education, Inc.,
2001.

Wallis, W.D., A tournament problem, The ANZIAM Journal, 24, 4 (1983) 289-291.

Sabe, O.S. and Hvattum, L.M., Modelling the financial contribution of soccer players
to their clubs, Journal of Sports Analytics, 5, 1 (2019) 23-34.

Southall, R.M., Nagel, M.S., Amis, J.M. and Southall, C., A method to March madness?
Institutional logics and the 2006 National Collegiate Athletic Association Division |
men’s basketball tournament, Journal of Sport Management, 22, 6 (2008) 677-700.

Carlsson, M., Johansson, M. and Larson, J., Scheduling double round-robin
tournaments with divisional play using constraint programming, European Journal of
Operational Research, 259, 3 (2017) 1180-1190.

Pérez-Céaceres, L., Riff, M.C., Solving scheduling tournament problems using a new
version of CLONALG, Connection Science, 27, 1 (2015) 5-21.

Suksompong, W., Scheduling asynchronous round-robin tournaments, Operations
Research Letters, 44, 1 (2016) 96-100.

Atan, T. and Hiiseyinoglu, O.P., Simultaneous scheduling of football games and
referees using Turkish league data, International Transactions in Operational Research,
24, 3 (2017) 465-484.

Westphal, S., Scheduling the German basketball league, Interfaces, 44, 5 (2014) 498-
508.

Kyngis, J. and Nurmi, K., Scheduling the Finnish 1st division ice hockey league,
Proceedings of the Twenty-Second International FLAIRS Conference, May 2009,
Sanibel Island, 195-200.

Januario, T., Urrutia, S., Ribeiro, C.C. and De Werra, D., Edge coloring: A natural
model for sports scheduling, European Journal of Operational Research, 254, 1 (2016)
1-8.

Briskorn, D. and Drexl, A., A branch-and-price algorithm for scheduling sport leagues,
Journal of the Operational Research Society, 60, 1 (2009) 84-93.

Della Croce, F. and Oliveri, D., Scheduling the Italian football league: An ILP-based
approach, Computers & Operations Research, 33, 7 (2006) 1963-1974.

Goerigk, M. and Westphal, S., A combined local search and integer programming
approach to the traveling tournament problem, Annals of Operations Research, 239, 1
(2016) 343-354.

46.

47.

48.

49,

50.

51.

52.

53.

54,

55.

56.

S7.

58.

59.

189

Kern, W., and Paulusma, D., The computational complexity of the elimination problem
in generalized sports competitions, Discrete Optimization, 1, 2 (2004) 205-214.

Alarcon, F., Duran, G. and Guajardo M., Referee assignment in the Chilean football
league using integer programming and patterns, International Transactions in
Operational Research, 21, 3 (2014) 415-438.

Larson, J., Johansson, M. and Carlsson, M., An integrated constraint programming
approach to scheduling sports leagues with divisional and round-robin tournaments,
International Conference on Al and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, May 2014, Cork, 144-158.

Lim, A., Rodrigues, B. and Zhang, X., A simulated annealing and hill-climbing
algorithm for the traveling tournament problem, European Journal of Operational
Research, 174, 3 (2006) 1459-1478.

Bartsch, T., Drexl, A. and Kroger, S., Scheduling the professional soccer leagues of
Austria and Germany, Computers & Operations Research, 33, 7 (2006) 1907-1937.

Easton, K., Nemhauser, G. and Trick, M., The traveling tournament problem
description and benchmarks, International Conference on Principles and Practice of
Constraint Programming, November 2001, Paphos, 580-584.

Eggar, M.H., A tournament problem, Discrete Mathematics, 263, 1-3 (2003) 281-288.

McSherry, D., Inferring wins, draws and losses from points scored in a sports
tournament, Irish Math Soc Bull, 42, (1999) 48-53.

Charon, I. and Hudry, O., A branch-and-bound algorithm to solve the linear ordering
problem for weighted tournaments, Discrete Applied Mathematics, 154, 15 (2006)
2097-2116.

Hemasinha, R., An algorithm to generate tournament score sequences, Mathematical
and computer modelling, 37, 4-3 (2003) 377-382.

Havel, V., Poznamka 0 existenci kone¢nych grafi, Casopis pro péstovani matematiky,
80, 4 (1955) 477-480.

Hakimi, S.L., On realizability of a set of integers as degrees of the vertices of a linear
graph. I, Journal of the Society for Industrial and Applied Mathematics, 10, 3 (1962)
496-506.

Duckworth, F.C. and Lewis, A.J., A fair method for resetting the target in interrupted
one-day cricket matches, Journal of the Operational Research Society, 49, 3 (1998) 220-
227.

Nabiyev, V.V. and Pehlivan, H., Tournament scoring problem, Applied mathematics
and computation, 199, 1 (2008) 211-222.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

190

Pehlivan, H. and Nabiyev, V.V., Score calculation from final tournament tables,
Computers & operations research, 36, 3 (2009) 936-950.

Damkhi, M. and Pehlivan, H., Determining the results of tournament games using
complete graphs generation, Computational and Applied Mathematics, 37, 5 (2018)
6198-6211.

Damkhi, M. and Pehlivan, H., Generation and Enumeration of Final Table States of
Football Tournaments Using a Blind Adaptive Filtering Algorithm, International
Journal of Computing, 7, 2 (2018) 22-28.

Damkhi, M. and Pehlivan, H., A Point-Based Algorithm to Generate Final Table States
of Football Tournaments, International Journal of Computing, 7, 3 (2018) 38-42.

Horen, J. and Riezman, R., Comparing draws for single elimination tournaments,
Operations Research, 33, 2 (1985) 249-262.

Byl, J., Organizing Successful Tournaments, Fourth Edition, Human Kinetics, Illinois,
2013.

France, R.C., Introduction to physical education and sport science, Delmar, Cengage
Learning, New York, 2008.

Scarf, P.A. and Yusof, M.M., A numerical study of tournament structure and seeding
policy for the soccer World Cup Finals, Statistica Neerlandica, 65, 1 (2011) 43-57.

Groh, C., Moldovanu, B., and Sela, A. and Sunde, U., Optimal seedings in elimination
tournaments, Economic Theory, 49, 1 (2012) 59-80.

Marchand, E., On the comparison between standard and random knockout tournaments,
Journal of the Royal Statistical Society: Series D (The Statistician), 51, 2 (2002) 169-
178.

Glenn, W.A., A comparison of the effectiveness of tournaments, Biometrika, 47, 3-4
(1960) 253-262.

Edwards, C.T., Double-elimination tournaments: Counting and calculating, The
American Statistician, 50, 1 (1996) 27-33.

Stanton, I. and Williams, V.V., The structure, efficacy, and manipulation of double-
elimination tournaments, Journal of Quantitative Analysis in Sports, 9, 4 (2013) 319-
335.

Glasson, S., Jeremiejczyk, B. and Clarke, S.R., Simulation of Women's Beach
Volleyball Tournaments, ASOR BULLETIN, 20, 2 (2001) 2-7.

Cosmo, L.L., The Practice of Water Volleyball as a Leisure and Fine Recreational
Water Sport, Health Research, 1, 1 (2017) 1-15.

75.

76.

77,

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

191

Smith, J.C., Organization of a college baseball tournament, IMA Journal of
Management Mathematics, 20, 2 (2009) 213-232.

Csato L., Ranking by pairwise comparisons for Swiss-system tournaments, Central
European Journal of Operations Research, 21, 4 (2013) 783-803.

Van Hecke, T., Monte-Carlo simulation of chess tournament classification systems,
APPLIED MATHEMATICS, 3, 4 (2013) 128-131.

Csato L., On the ranking of a Swiss system chess team tournament, Annals of
Operations Research, 254, 1-2, (2017) 17-36.

Arleqgi, R. and Dimitrov, D., Fair competition design.
http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf 24 March 2020

Csatd, L., Ranking in Swiss system chess team tournaments. http://unipub.lib.uni-
corvinus.hu/1830/1/cewp_201501.pdf 24 March 2020.

Vuorinen, T., Enhancing Go tournament pairings in Europe, Master Thesis, Tampere
University of Technology, Faculty of Computing and Electrical Engineering, Tampere,
2010.

Samothrakis, S., Perez, D., Lucas, S. and Rohlfshagen, P., Predicting dominance
rankings for score-based games, IEEE Transactions on Computational Intelligence and
Alin Games, 8, 1 (2014) 1-12.

Hooper, D. and Whyld, K., The Oxford companion to chess, Second Edition, Oxford
University Press, London, 1992.

https://ruchess.ru/en/championship/detail/2015/nutcracker 2015/ Nutcracker
Generation Tournament: Moscow. 24 March 2020.

Crowther, M., Kings VS. Queens Tournament 2011.
https://theweekinchess.com/chessnews/events/kings-vs.-queens-tournament-2011 24
March 2020.

https://trove.nla.gov.au/newspaper/article/182547662/20683097 Finals System
Successful: Originator Explains the Reasons. 24 March 2020.

Stewart, B., Games Are Not the Same: The Political Economy of Football in Australia,
Melbourne University Press, Carlton, 2007.

McLellan, C.P., Neuromuscular, Biochemical, Endocrine and Physiological Responses
of Elite Rugby League Players to Competitive Match-Play, Doctoral Thesis, Bond
University, Faculty of Health Sciences and Medicine, Robina, 2010.

Fiirnkranz, J., Round robin classification, Journal of Machine Learning Research, 2,
(2002) 721-747.

http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf%2024%20March%202020
http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf%2024%20March%202020
http://unipub.lib.uni-corvinus.hu/1830/1/cewp_201501.pdf%2024%20March%202020
http://unipub.lib.uni-corvinus.hu/1830/1/cewp_201501.pdf%2024%20March%202020

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

192

Krumer, A. and Lechner, M., First in first win: Evidence on schedule effects in round-
robin tournaments in mega-events, European Economic Review, 100, (2017) 412-427.

Goossens, D. and Spieksma, F., Scheduling the Belgian soccer league, Interfaces, 39, 2
(2009) 109-118.

Zhang, H., Generating college conference basketball schedules by a SAT solver,
Proceedings Of The Fifth International Symposium on the Theory and Applications of
Satisfiability Testing, February 2002, Cincinnati, 281-291.

https://en.chessbase.com/news/2005/fide10.pdf The 2005 World Chess Championship
to be held 27 September - 16 October in San Luis, Argentina under the aegis of the
Province of San Luis. 24 March 2020.

Monks, J. and Husch, J., The impact of seeding, home continent, and hosting on FIFA
World Cup results, Journal of Sports Economics, 10, 4 (2009) 391-408.

Mahlangu, S., What to expect from biggest ever Africa Cup of Nations tournament.
https://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-
tournament 24 March 2020.

Berker, Y., Tie-breaking in round-robin soccer tournaments and its influence on the
autonomy of relative rankings: UEFA vs. FIFA regulations, European Sport
Management Quarterly, 14, 2 (2014) 194-210.

Johnston, M. and Wright, M., Prior analysis and scheduling of the 2011 Rugby Union
ITM Cup in New Zealand, Journal of the Operational Research Society, 65, 8 (2014)
1292-1300.

Petersen, C., Pyne, D.B., Portus, M.R., Cordy, J. and Dawson, B., Analysis of
performance at the 2007 Cricket World Cup, International Journal of Performance
Analysis in Sport, 8, 1 (2008) 1-8.

https://zanchess.wordpress.com/2016/03/05/london-chess-club-tournament-1851-a-
first-look/ London (1851) - London Chess Club Tournament - a first look. 24 March
2020.

https://zanchess.wordpress.com/2016/01/19/london-1862-preliminary-results-and-xtabs/
London (1862) — Preliminary results and xtabs. 24 March 2020.

Schneider, J., Schvartzman, A., and Weinberg, S.M., Condorcet-consistent and
approximately strategyproof tournament rules, arXiv, (2016).

Blair, K., The 2012 Olympic badminton scandal: Match-fixing, code of conduct
documents, and women’s sport, The International Journal of the History of Sport, 35, 2-
3 (2018) 264-276.

Cowley, J., The Last Game: Love, Death, and Football, First Edition, Simon and
Schuster, London, 20009.

https://en.chessbase.com/news/2005/fide10.pdf
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

193

https://www.fifa.com/worldcup/archive/usal994/groups/ 1994 fifa world cup USA™.
24 March 2020.

Assad, A.A., Leonhard Euler: A brief appreciation, Networks, 49, 3 (2007) 190-198.
May, K.O., The origin of the four-color conjecture, Isis, 56, 3 (1965) 346-348.

Appel, K. and Haken, W., Every planar map is four colorable, Bulletin of the American
mathematical Society, 82, 5 (1976) 711-712.

Riihijarvi, J., Petrova, M. and Mahonen, P., Frequency allocation for WLANS using
graph colouring techniques, Second Annual Conference on Wireless On-demand
Network Systems and Services, January 2005, St. Moritz, 216-222.

Leighton, F.T., A graph coloring algorithm for large scheduling problems, Journal of
research of the national bureau of standards, 84, 6 (1979) 489-506.

Arkin, E.M. and Silverberg, E.B., Scheduling jobs with fixed start and end times,
Discrete Applied Mathematics, 18, 1 (1987) 1-8.

Zhang, W., Wang, G. and Wittenburg, L., Distributed stochastic search for constraint
satisfaction and optimization: Parallelism, phase transitions and performance,
Proceedings of AAAI Workshop on Probabilistic Approaches in Search, 2002, 53-59.

Albert, J. and Koning, R.H., Statistical thinking in sports, Chapman & Hall/CRC, Boca
Raton, 1985.

Li, Y., Liang, L., Chen, Y. and Morita, H., Models for measuring and benchmarking
Olympics achievements, Omega, 36, 6 (2008) 933-940.

Tuominen, M., Stuart, M.J., Aubry, M., Kannus, P. and Parkkari, J., Injuries in men's
international ice hockey: a 7-year study of the International Ice Hockey Federation
Adult World Championship Tournaments and Olympic Winter Games, Br J Sports
Med, 49, 1 (2015) 30-36.

Lee, I, The American Aversion to Ties in Sport and Intercollegiate Wrestling's
Labyrinthine Tiebreaker Rules, Sw. L. Rev., 47, (2017) 115-135.

Berker, Y., Tie-breaking in round-robin soccer tournaments and its influence on the
autonomy of relative rankings: UEFA vs. FIFA regulations, European Sport
Management Quarterly, 14, 2 (2014) 194-210.

Csato, L., Was Zidane honest or well-informed? How UEFA barely avoided a serious
scandal. arXiv, (2017).

Csato, L., Tournaments with subsequent group stages are incentive incompatible.
https://mpra.ub.uni-muenchen.de/83269/1/MPRA _paper_83269.pdf 26 March 2020.

Sidhu, H., Kabaddi: A Vigorous Game, Journal of Physical Education, Recreation &
Dance, 57, 5 (1986) 75-77.

http://www.fifa.com/worldcup/archive/usa1994/groups/
http://www.fifa.com/worldcup/archive/usa1994/groups/
https://mpra.ub.uni-muenchen.de/83269/1/MPRA_paper_83269.pdf
https://mpra.ub.uni-muenchen.de/83269/1/MPRA_paper_83269.pdf

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

194

http://globalkabaddileague.co.in/ League Table. 25 March 2020.
https://www.world.rugby/pnc/standings Pacific Nations Cup. 26 March 2020.

http://www.fiba.basketball/basketballworldcup/2019/groups#|tab=event_round_1
Standings: First Round. 26 March 2020.

http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standi
ngs.asp FIVB Men's World Cup 2007. 26 March 2020.

http://www.worldlacrosse2014.com/nations/standings 2014 FIL World
Lacrosse Championships. 26 March 2020.

http://elite.wittstats.pointstreak.com/playoffstandings.html STANDINGS: Elite Ice
Hockey League. 26 March 2020.

https://howlingpixel.com/i-en/2018%E2%80%9319 Curling_World_Cup 2018-19
Curling World Cup. 26 March 2020.

https://www.cricketworldcup.com/standings ICC Cticket World Cup: England & Wales
2019. 26 March 2020.

https://www.computerhope.com/history/processor.ntm Computer processor history. 26
March 2020.

Dennis, J.B., Data flow supercomputers, Computer, 11, (1980) 48-56.

Kuck, D.J., Davidson, E.S., Lawrie, D.H. and Sameh, A.H., Parallel supercomputing
today and the Cedar approach, Science, 231, 4741 (1986) 967-974.

Aliabadi, S.K. and Tezduyar, T.E., Parallel fluid dynamics computations in aerospace
applications, International Journal for Numerical Methods in Fluids, 21, 10 (1995) 783-
805.

Ihshaish, H., Cortés, A. and Senar, M.A., Parallel multi-level genetic ensemble for
numerical weather prediction enhancement, Procedia Computer Science, 9, (2012) 276-
285.

Radeke, C.A., Glasser, B.J. and Khinast, J.G., Large-scale powder mixer simulations
using massively parallel GPUarchitectures, Chemical Engineering Science, 65, 24
(2010) 6435-6442.

Yaun, G., Carothers, C.D. and Kalyanaraman, S., Large-scale tcp models using
optimistic parallel simulation, Seventeenth Workshop on Parallel and Distributed
Simulation, June 2003, California, 153-162.

Zhao, W., Ma, H. and He, Q., Parallel k-means clustering based on mapreduce, IEEE
International Conference on Cloud Computing, December 2009, Beijing, 674-679.

http://globalkabaddileague.co.in/
https://www.world.rugby/pnc/standings
http://www.fiba.basketball/basketballworldcup/2019/groups#%7Ctab%3Devent_round_1
http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standings.asp
http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standings.asp
http://www.worldlacrosse2014.com/nations/standings
http://elite.wttstats.pointstreak.com/playoffstandings.html
http://elite.wttstats.pointstreak.com/scoreboard.html?leagueid=2115&seasonid=18468
http://elite.wttstats.pointstreak.com/scoreboard.html?leagueid=2115&seasonid=18468
https://howlingpixel.com/i-en/2018%E2%80%9319_Curling_World_Cup
https://www.cricketworldcup.com/standings
https://www.computerhope.com/history/processor.htm

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

146.

147.

148.

195

Kargupta, H., Hamzaoglu, I. and Stafford, B., Scalable, Distributed Data Mining-An
Agent Architecture. The Third International Conference on Knowledge Discovery and
Data Mining, August 1997, California, 211-214.

Tsoi, K.H., Lee, K.H. and Leong, P.H.W., A massively parallel RC4 key search engine.
In Proceedings, 10th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2002, California, 13-21.

Ge, L. and Wang, L., Research of password recovery method for RAR based on parallel
random search, International Conference on Applications and Techniques in
Information Security, November 2014, Melbourne, 211-218.

Yang, Z., Zhu, Y. and Pu, Y., Parallel image processing based on CUDA, 2008
International Conference on Computer Science and Software Engineering, December
2008, Wuhan, VVolume I11: 198-201.

Kwon, K.C., Park, C., Erdenebat, M.U., Jeong, J.S., Choi, J.H., Kim, N., Park, J.H.,
Lim, Y.T. and Yoo, K.H., High speed image space parallel processing for computer-
generated integral imaging system, Optics express, 20, 2 (2012) 732-740.

Flynn, M.J., Very high-speed computing systems. Proceedings of the IEEE, 54, 12
(1966) 1901-1909.

Catthoor, F. and De Man, H.J., Application-specific architectural methodologies for
high-throughput digital signal and image processing, IEEE Transactions on Acoustics,
Speech, and Signal Processing, 38, 2 (1990) 339-349.

Schneider, B.O. and Rossignac, J., M-Buffer: A flexible MISD architecture for
advanced graphics, Computers & graphics, 19, 2 (1995) 239-246.

Akpan, O.H., A New Method for Efficient Parallel Solution of Large Linear Systems on
a SIMD Processor, PhD Thesis, Louisiana State University, The Department of
Computer Science, Louisiana, 1994.

Padua, D., Encyclopedia of parallel computing, Springer Science & Business Media,
New York, 2011.

Moore, K.E., Hill, M.D. and Wood, D.A., Thread-level transactional memory.
Technical Report 1524, University of Wisconsin-Madison, Department of Computer
Sciences. 2005.

Appel, AW. and Li, K., Virtual memory primitives for user programs, Proceedings of
the fourth international conference on Architectural support for programming languages
and operating systems. April 1991, California , 96-107.

Fiske, S. and Dally, W.J., Thread prioritization: A thread scheduling mechanism for
multiple-context parallel processors, Future Generation Computer Systems, 11, 6
(1995) 503-518.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

196

Tevanian, A., Black, D., Golub, D., Rashid, R., Cooper, E. and Young, M., Mach
threads and the Unix kernel: the battle for control, Proceedings of the USENIX Summer
Conference, June 1987, Phoenix, 53-68.

DeMartini, C., losif, R. and Sisto, R., A deadlock detection tool for concurrent Java
programs, Software: Practice and Experience, 29, 7 (1999) 577-603.

Krinke, J., Static slicing of threaded programs, Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, July 1998, Montreal, 35-42.

Kleiman, S. and Eykholt, J., Interrupts as threads, ACM SIGOPS Operating Systems
Review, 29, 2 (1995) 21-26.

Polito, G., Ducasse, S., Fabresse, L. and Bouragadi, N., Virtual smalltalk images:
Model and applications, 21th International Smalltalk Conference, September 2013,
Annecy, 11-26.

Sung, M., Kim, S., Park, S., Chang, N. and Shin, H., Comparative performance
evaluation of Java threads for embedded applications: Linux Thread vs. Green
Thread, Information processing letters, 84, 4 (2002) 221-225.

Marlow, S., Jones, S.P. and Thaller, W., Extending the Haskell foreign function
interface with concurrency, Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, September 2004, Utah, 22-32.

Stevenson, D.R., Algorithms for translating Ada multitasking, ACM SIGPLAN
Notices, 15, 11 (1980) 166-175.

Babai, L., Moran, S., Arthur-Merlin games: a randomized proof system, and a hierarchy
of complexity classes, Journal of Computer and System Sciences, 36, 2 (1988) 254-276.

Hasan, B.H.F., Saleh, M.S.M., Evaluating the effectiveness of mutation operators on
the behavior of genetic algorithms applied to non-deterministic polynomial problems,
Informatica, 35, 4 (2011) 513-518.

Meek, J., P is a proper subset of NP, arXiv, (2008).

Hemaspaandra, L.A., Sigact news complexity theory column 36. ACM SIGACT News,
33, 2 (2002) 34-47.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to algorithms,
Second Edition, MIT press, London, 2009.

Garey, M.R., Johnson, D.S., Computers and intractability, VVol. 174 , W.H. Freeman and
Company. New York, 1979.

Lavnikevich, N., On the Complexity of Maximum Clique Algorithms: usage of coloring
heuristics leads to the Q(2°?") algorithm running time lower bound, arXiv, 2013.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

197

Tovey, C.A., A simplified NP-complete satisfiability problem, Discret. Appl. Math., 8,
1 (1984) 85-89.

https://www.fifa.com/worldcup/archive/russia2018/groups/ 2018 FIFA World Cup
Rusia™. 26 March 2020.

https://www.fiba.basketball/basketballworldcup/2014/groups#|tab=round_1 Final
Standings. 26 March 2020.

https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings-
1.23174581 2018 Olympic men’s hockey standings. 26 March 2020.

https://www.espncricinfo.com/table/series/8781/icc-world-cricket-league-division-five
ICC World Cricket League Division Five Table — 2017. 26 March 2020.

https://www.fifa.com/worldcup/archive/germany2006/groups/index.html 2006 FIFA
World Cup Germany™. 26 March 2020.

https://www.fifa.com/worldcup/archive/chile1962/groups/index.html 1962 FIFA World
Cup Chile™. 26 March 2020.

Suleman, M.A., Qureshi, M.K. and Patt, Y.N., Feedback-driven threading: power-
efficient and high-performance execution of multi-threaded workloads on CMPs, ACM
Sigplan Notices, 43, 3 (2008) 277-286.

Pusukuri, K.K., Rajiv, G. and Laxmi, N.B., Thread reinforcer: Dynamically
determining number of threads via OS level monitoring, 2011 IEEE International
Symposium on Workload Characterization (IISWC), November 2011, Austin, 116-125.

Ju, T., wu, W,, Chen, H., Zhu, Z. and Dong, X, Thread count prediction model:
Dynamically adjusting threads for heterogeneous many-core systems, 2015 IEEE 21st
International Conference on Parallel and Distributed Systems (ICPADS), December
2015, Melbourne, 456-464.

Cutillas-Lozano, L.G., José-Matias, C.L., and Domingo, G., The International
Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012),
March 2012, Salamanca, 33-40.

Heirman, W., Carlson, T.E., Van Craeynest, K., Hur, I., Jaleel, A. and Eeckhout, L.,
Automatic SMT threading for OpenMP applications on the Intel Xeon Phi co-processor,
Proceedings of the 4th International Workshop on Runtime and Operating Systems for
Supercomputers, June 2014, Munich, 1-7.

Kang, S., Choi, H.J., Kim, C.H., Chung, S.W., Kwon, D. and Na, J.C., Exploration of
CPU/GPU co-execution: From the perspective of performance, energy, and
temperature, Proceedings of the 2011 ACM Symposium on Research in Applied
Computation, November 2011, Florida , 38-43.

https://www.fifa.com/worldcup/archive/russia2018/groups/
https://www.fiba.basketball/basketballworldcup/2014/groups#%7Ctab%3Dround_1
https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings-1.23174581
https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings-1.23174581
https://www.espncricinfo.com/table/series/8781/icc-world-cricket-league-division-five
https://www.fifa.com/worldcup/archive/germany2006/groups/index.html
https://www.fifa.com/worldcup/archive/chile1962/groups/index.html

198

177. Dadvar, P. and Skadron, K., Potential thermal security risks, Semiconductor Thermal
Measurement and Management IEEE Twenty First Annual IEEE Symposium, March
2005, California, 229-234.

178. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S. and Tarjan,
D., Temperature-aware microarchitecture: Modeling and implementation, ACM
Transactions on Architecture and Code Optimization, 1, 1 (2004) 94-125.

CURRICULM VITAE

Mouslem DAMKHI graduated from Mostefa Ben Boulaid High School - Batna in
2004. He got his B.Sc.E degree on Computer Science in 2009 form University of Batna -
Algeria and M.Sc.E degree on Information Technology in 2012 from Northern University
of Malaysia. In September of 2014, he started his Ph.D. education at Karadeniz
Technical University - Turkey, Department of Computer Engineering. His research interests
include Algorithmics and Operational Research. He has three publications listed below.

1. Damkhi, M. and Pehlivan, H., Determining the results of tournament games using
complete graphs generation, Computational and Applied Mathematics, 37, 5 (2018) 6198-
6211.

2. Damkhi, M. and Pehlivan, H., Generation and Enumeration of Final Table States of

Football Tournaments Using a Blind Adaptive Filtering Algorithm, International Journal

of Computing, 7, 2 (2018) 22-28.

3. Damkhi, M. and Pehlivan, H., A Point-Based Algorithm to Generate Final Table States of
Football Tournaments, International Journal of Computing, 7, 3 (2018) 38-42.

