
KARADENİZ TECHNICAL UNIVERSITY 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 
 

 

 

 

 

 

 

 

COMPUTER ENGINEERING GRADUATE PROGRAM 

 

 

 

 

 
DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE POSSIBLE 

STATES OF FINAL TABLES OF SPORT COMPETITIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOCTORATE THESIS 

 

 

 

 

 

 
 

Mouslem DAMKHI 

 

 

 

 

 

 

 
 

FEBRUARY 2021 
TRABZON 



 

 
 

KARADENİZ TECHNICAL UNIVERSITY 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 
 

 

COMPUTER ENGINEERING GRADUATE PROGRAM 

 

 

 

 
DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE 

POSSIBLE STATES OF FINAL TABLES OF SPORT COMPETITIONS 

 

 

 

 

 

 
Mouslem DAMKHI 

 
 
 

This thesis is accepted to give the degree of 

DOCTOR OF PHILOSOPHY 

By 

The Graduate School of Natural and Applied Sciences at 

Karadeniz Technical University 
 

The Date of Submission 

The Date of Examination 

:  30 / 12 /2020 

:  09 / 02 /2021 

 

 

 

Thesis Supervisor  : Assoc. Prof. Dr. Hüseyin PEHLİVAN 

 
 

 

 

 

 

 

 

 

 

 

 

Trabzon 2021 



 

 

FOREWORD 

 

 

 
First and foremost, all the praises be to Allah for providing me strength to have this 

work done. All the esteem and appreciation to my gracious parents for their unconditional 

and unlimited support and solidarity. 

I would like to express my deepest gratitude to my advisor Assoc. Prof. Dr. Hüseyin 

PEHLİVAN for his intellectual guidance and kind help given to me during the period of 

this study. Also, I am grateful to Prof. Dr. Mustafa ULUTAŞ and Asst. Prof. Dr. İbrahim 

SAVRAN for their valuable feedback. 

Last but not least, special thanks to Mr. Abdallah SACI and Mr. Boudjemaa 

ROUDANE for their encouragement. 

 

 

 

Mouslem DAMKHI 

Trabzon 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III 



THESIS STATEMENT 
 

 

 

 
 

I declare that, this PhD thesis, I have submitted with the title "Design and 

Optimization of a General Algorithm to Calculate Possible States of Final Tables of Sport 

Competitions" has been completed under the guidance of my PhD supervisor Assoc. 

Prof. Dr. Hüseyin PEHLİVAN. All the data used in this thesis are obtained by simulation 

and experimental works done as parts of this work in our research labs. All referred 

information used in thesis has been indicated in the text and cited in reference list. I have 

obeyed all research and ethical rules during my research and I accept all responsibility if 

proven otherwise. 09/02/2021 

 

 

 

 

 
Mouslem DAMKHI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

IV 



TABLE OF CONTENTS 
 

 

 

 
 

Page No 

FOREWORD. ...................................................................................................................... III 

THESIS STATEMENT ....................................................................................................... IV 

TABLE OF CONTENTS ..................................................................................................... V 

SUMMARY. ....................................................................................................................... XI 

ÖZET ................................................................................................................................. XII 

LIST OF FIGURES .......................................................................................................... XIII 

LIST OF TABLES ........................................................................................................... XVI 

LIST OF ABBREVIATIONS ........................................................................................... XX 

1. GENERAL INFORMATION ............................................................................... 1 

1.1. Introduction ........................................................................................................... 1 

1.2. Literature Review .................................................................................................. 3 

1.3. Scope and Purpose of the Thesis ........................................................................... 6 

1.4. Tournaments Systems ............................................................................................ 7 

1.4.1. Single-Elimination Tournament ............................................................................ 7 

1.4.2. Double-Elimination Tournament ........................................................................... 8 

1.4.3. Round-Robin Tournament ................................................................................... 10 

1.4.4. Swiss-System Tournament .................................................................................. 10 

1.4.5. McMahon-System Tournament ........................................................................... 11 

1.4.6. Scheveningen-System Tournament ..................................................................... 12 

1.4.7. McIntyre-System Tournament ............................................................................. 12 

1.5. Round-Robin Tournament ................................................................................... 13 

1.5.1. Definition ............................................................................................................. 13 

1.5.2. The Use of Round-Robin Tournaments............................................................... 13 

1.5.3. Advantages and Disadvantages ........................................................................... 14 

1.6. Graphs ................................................................................................................. 15 

1.6.1. Definition ............................................................................................................. 15 

1.6.2. Graph Theory ...................................................................................................... 16 

1.6.3. Graph Representations ........................................................................................ 17 

1.6.3.1. Matrix of Adjacency ............................................................................................ 17 

V 



TABLE OF CONTENTS 

 

1.6.3.2. Lists of Adjacency ............................................................................................... 18 

1.6.4. Partial Graph and Sub-Graph .............................................................................. 19 

1.6.5. Degrees ................................................................................................................ 20 

1.6.5.1. Degree of a Vertex ............................................................................................... 20 

1.6.5.2. Degree of a Graph ................................................................................................ 20 

1.6.6. Some Types of Graphs ........................................................................................ 20 

1.6.6.1. Undirected Graph ................................................................................................ 20 

1.6.6.2. Directed Graph .................................................................................................... 20 

1.6.6.3. Mixed Graph ........................................................................................................ 21 

1.6.6.4. Simple Graph ....................................................................................................... 22 

1.6.6.5. Multigraph ........................................................................................................... 22 

1.6.6.6. Regular Graph ...................................................................................................... 22 

1.6.6.7. Finite Graph ......................................................................................................... 23 

1.6.6.8. Complete Graph ................................................................................................... 23 

1.6.6.9. Tree Graph ........................................................................................................... 23 

1.6.7. Graphs Coloring .................................................................................................. 24 

1.6.7.1. Vertices Coloring ................................................................................................. 24 

1.6.7.2. Edges Coloring .................................................................................................... 25 

1.7. Round-Robin Tournament in Graph Theory ....................................................... 26 

1.8. Round-Robin Tournament Table ......................................................................... 27 

1.8.1. Ranking ................................................................................................................ 27 

1.8.1.1. Standard Competition Ranking (1224) ................................................................ 27 

1.8.1.2. Modified Competition Ranking (1334) ............................................................... 28 

1.8.1.3. Dense Ranking (1223) ......................................................................................... 28 

1.8.1.4. Ordinal Ranking (1234) ....................................................................................... 28 

1.8.1.5. Fractional Ranking (1 2.5 2.5 4) .......................................................................... 29 

1.8.2. Games Results Table ........................................................................................... 29 

1.8.3. Sport Tournament Table ...................................................................................... 30 

1.8.3.1. Wins, Draws / Ties and Losses (WDL) ................................................................ 31 

1.8.3.2. Wins and Losses (WL) ......................................................................................... 32 

1.8.3.3. Wins X, Y, and Losses (WXYL)............................................................................ 33 

1.8.3.4. Wins, Losses, Ties / Draws and No Result (WLTNr) .......................................... 34 

1.9. Parallel Computing .............................................................................................. 34 

VI 



TABLE OF CONTENTS 

 

1.9.1. Overview ............................................................................................................. 34 

1.9.2. Flynn's Taxonomy ............................................................................................... 35 

1.9.2.1. Single Instruction on Single Data (SISD) ............................................................ 35 

1.9.2.2. Multiple Instructions on Single Data (MISD) ..................................................... 36 

1.9.2.3. Single Instruction on Multiple Data (SIMD) ....................................................... 36 

1.9.2.4. Multiple Instructions on Multiple Data (MIMD) ................................................ 37 

1.9.3. Threads ................................................................................................................ 38 

1.9.4. Programming Languages and Threads ................................................................ 39 

1.10. Algorithmic Complexity ...................................................................................... 39 

1.10.1. Complexity Analysis ........................................................................................... 39 

1.10.2. Asymptotic Algorithmic Complexity .................................................................. 39 

1.10.3. Big O Notation..................................................................................................... 40 

1.10.4. Properties of Big O .............................................................................................. 41 

1.10.5. A Simple Example of Big O ................................................................................ 41 

1.10.6. Algorithmic Complexity Types ........................................................................... 41 

1.10.7. Complexity Classes ............................................................................................. 43 

1.10.8. P and NP Classes ................................................................................................. 43 

1.10.9. Reduction ............................................................................................................. 44 

1.10.10. NP-Hard and NP-Complete Classes .................................................................... 44 

1.10.11. An Applied Example (Clique Problem)............................................................... 44 

2. THE ACHIEVED WORK ................................................................................... 47 

2.1. Introduction ......................................................................................................... 47 

2.2. Classification of Game Results ............................................................................ 49 

2.3. General Concepts of a Final Tournament Table .................................................. 50 

2.3.1. Played Games ...................................................................................................... 50 

2.3.2. Possible Game Results ........................................................................................ 51 

2.3.3. Total Number of Points ....................................................................................... 54 

2.3.4. Set of the Possible Games Results ....................................................................... 55 

2.3.5. Game Result Cases .............................................................................................. 59 

2.3.6. Uniform States ..................................................................................................... 63 

2.4. Graph Representation .......................................................................................... 67 

2.5. Determination of Game Results ........................................................................... 71 

2.6. Enumeration of Final Table States ...................................................................... 81 

VII 



TABLE OF CONTENTS 

 

2.6.1. Backward Algorithm ........................................................................................... 81 

2.6.2. Forward Algorithm .............................................................................................. 87 

2.7. Search Space Analysis ......................................................................................... 95 

2.7.1. Uniform Final States With Minimum Number of Points .................................... 96 

2.7.1.1. C2 Is Not Empty .................................................................................................. 96 

2.7.1.2. C2 Is Empty ......................................................................................................... 97 

2.7.2. Uniform Final States with Maximum Number of Points ..................................... 98 

2.7.2.1. C2 Is Not Empty .................................................................................................. 98 

2.7.2.2. C2 Is Empty ......................................................................................................... 99 

2.7.3. Minimum Final Points of a kth Participant ........................................................ 100 

2.7.4. Maximum Final Points of a kth Participant ....................................................... 102 

2.7.5. Interval of Points of a kth Participant ................................................................ 104 

2.8. Optimization of Final Table States .................................................................... 106 

2.8.1. Optimized Backward Algorithm........................................................................ 106 

2.8.2. Optimized Forward Algorithm .......................................................................... 108 

2.9. Multi-threaded Optimization of Final Table States ........................................... 111 

2.9.1. Multi-threaded Optimized Backward Algorithm ............................................... 111 

2.9.2. Multi-threaded Optimized Forward Algorithm ................................................. 114 

3. COMPLEXITY ANALYSIS ............................................................................. 117 

3.1. Introduction ....................................................................................................... 117 

3.2. Blind Search Algorithm for Enumerating The Final Table States ..................... 117 

3.2.1. Time Complexity ............................................................................................... 117 

3.2.1.1. T1(n, m) .............................................................................................................. 118 

3.2.1.2. T2(n, m) .............................................................................................................. 119 

3.2.1.3. T3(n, m) .............................................................................................................. 119 

3.2.1.4. T(n, m) ............................................................................................................... 120 

3.2.2. Space Complexity .............................................................................................. 121 

3.3. Backward Algorithm ......................................................................................... 121 

3.3.1. Time Complexity ............................................................................................... 121 

3.3.1.1. T3(n, m) .............................................................................................................. 122 

3.3.1.2. T4(n, m) .............................................................................................................. 122 

3.3.1.3. T5(n, m) .............................................................................................................. 123 

3.3.1.4. T(n, m) ............................................................................................................... 124 

VIII 



TABLE OF CONTENTS 

 

3.3.2. Space Complexity .............................................................................................. 125 

3.4. Optimized Backward Algorithm........................................................................ 126 

3.4.1. Time Complexity ............................................................................................... 126 

3.4.2. Space Complexity .............................................................................................. 127 

3.5. Multi-threaded Optimized Backward Algorithm ............................................... 128 

3.5.1. Time Complexity ............................................................................................... 128 

3.5.2. Space Complexity .............................................................................................. 128 

3.6. Blind Search Algorithm for generating a tournament graph .............................. 129 

3.6.1. Time Complexity ............................................................................................... 129 

3.6.2. Space Complexity .............................................................................................. 130 

3.7. Forward Algorithm ............................................................................................ 131 

3.7.1. Time Complexity ............................................................................................... 131 

3.7.1.1. T2(n, m) .............................................................................................................. 132 

3.7.1.2. T3(n, m) .............................................................................................................. 132 

3.7.1.3. T(n, m) ............................................................................................................... 133 

3.7.2. Space Complexity .............................................................................................. 133 

3.8. Optimized Forward Algorithm .......................................................................... 134 

3.8.1. Time Complexity ............................................................................................... 134 

3.8.2. Space Complexity .............................................................................................. 136 

3.9. Multi-threaded Optimized Forward Algorithm ................................................. 136 

3.9.1. Time Complexity ............................................................................................... 136 

3.9.2. Space Complexity .............................................................................................. 136 

3.10. The Complexity Classes of Our Problem .......................................................... 137 

3.10.1. The Class P ........................................................................................................ 137 

3.10.2. The Class NP ..................................................................................................... 137 

3.10.3. The Class NP-hard ............................................................................................. 138 

3.10.4. The Class NP-complete ..................................................................................... 139 

4. EXPERIMENTAL RESULTS AND DISCUSSION ........................................ 140 

4.1. Introduction ....................................................................................................... 140 

4.2. Backward Algorithm ......................................................................................... 140 

4.2.1. The Case of WDL .................................................................................................. 140 

4.2.2. The Case of WL............................................................................................................... 143 

4.2.3. The Case of WXYL ............................................................................................. 145 

IX 



TABLE OF CONTENTS 

 

4.2.4. The Case of WLTNr ............................................................................................... 146 

4.3. Forward Algorithm ............................................................................................ 147 

4.3.1. The Case of WDL .................................................................................................. 147 

4.3.2. The Case of WL............................................................................................................... 150 

4.3.3. The Case of WXYL ............................................................................................. 151 

4.3.4. The Case of WLTNr ............................................................................................... 152 

4.4. Backward Algorithm Versus Forward Algorithm ............................................. 153 

4.5. Optimized Backward Algorithm........................................................................ 155 

4.5.1. The Case of WDL .................................................................................................. 155 

4.5.2. The Case of WL............................................................................................................... 157 

4.5.3. The Case of WXYL ............................................................................................. 159 

4.5.4. The Case of WLTNr ........................................................................................... 160 

4.6. Backward Algorithm Versus Optimized Backward Algorithm ......................... 160 

4.7. Optimized Forward Algorithm .......................................................................... 164 

4.7.1. The Case of WDL .................................................................................................. 164 

4.7.2. The Case of WL............................................................................................................... 166 

4.7.3. The Case of WXYL ............................................................................................. 168 

4.7.4. The Case of WLTNr ............................................................................................... 169 

4.8. Forward Algorithm Versus Optimized Forward Algorithm .............................. 170 

4.9. Optimized Backward Algorithm Versus Optimized Forward Algorithm .......... 171 

4.10. Multi-threaded Optimized Backward Algorithm ............................................... 173 

3.11. Multi-threaded Optimized Forward Algorithm ................................................. 177 

5. CONCLUSIONS AND RECOMMENDATIONS ............................................ 181 

6. REFERENCES .................................................................................................. 186 

CURRICULM VITAE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
X 



 

PhD Thesis  

SUMMARY 

DESIGN AND OPTIMIZATION OF A GENERAL ALGORITHM TO CALCULATE 

POSSIBLE STATES OF FINAL TABLES OF SPORT COMPETITIONS 

Mouslem DAMKHI 

Karadeniz Technical University 

The Graduate School of Natural and Applied Sciences 
Computer Engineering Graduate Program 

Supervisor: Assoc. Prof. Hüseyin PEHLİVAN 

2021, 198 Pages 

 

The final positions in a particular single round-robin tournament can play a crucial role in 

the distribution of the participants’ revenue, which would significantly influence the incomes of 

the tournament participants. So it would be of utmost importance to predict the final position of a 

participant at the end of a tournament. Determination of the possible states of a single round-robin 

final tournament table can provide a convenient way to ascertain what table data would be 

adequate to reach the desired position of a participant. 

 

In this thesis, to generate the possible states of a final tournament table, backward and 

forward approaches were proposed. The backward approach starts by generating a state of a final 

tournament table and ends with trying to build a tournament graph based on it, while the forward 

approach starts by generation a tournament graph and ends with concluding its corresponding 

state of tournament final table, in which the state is taken into account as a valid one if the 

participants’ points are in descending order and the state is not previously found. 

 

General constraints related to the participants’ points and their standings are proposed in 

this thesis to optimize the search space of each approach. Each participant holds a position in the 

final tournament table with which it is possible to determine its highest and lowest numbers of 

points. Optimized search spaces for each of the forward and backward approaches are proposed 

based on the highest and lowest possible numbers of points of the participants. To enhance the 

execution time of each approach, the performance of the used machine is exploited by 

implementing multi-threading based parallelization of the proposed optimized approaches. 

 

 
 

Key Words: Single Round-Robin Tournaments, Tournament Table, Final Tournament Table 

State, Game Results, Graph, Enumeration, Combinatorics, Optimization, Multi- 

Threading 
 

 

 

 

 

XI 



 

Doktora Tezi 

ÖZET 

SPOR YARIŞMALARININ NİHAİ TABLO DURUMLARININ HESAPLANMASI İÇİN 

GENEL BİR ALGORİTMANIN TASARIMI VE OPTİMİZASYONU 

 

Mouslem DAMKHI 

 
Karadeniz Teknik Üniversitesi 

Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 

Danışman: Doç. Dr. Hüseyin PEHLİVAN 

2021, 198 Sayfa 

 

Belirli bir tekil dairesel sıralı turnuvadaki son pozisyonlar, turnuva katılımcılarının 

kazançlarını önemli ölçüde etkileyecek olan katılımcı paylarının dağılımında önemli bir rol 

oynayabilmektedir. Bu yüzden bir katılımcının bir turnuvanın sonundaki nihai pozisyonunu 

tahmin etmek son derece önemlidir. Tekil dairesel sıralı bir nihai turnuva tablosunun olası 

durumlarının belirlenmesi, bir katılımcının arzu edilen bir pozisyona ulaşması için hangi tablo 

verisinin yeterli olacağını saptamada uygun bir yol sağlayabilmektedir. 

 

Bu tezde, bir turnuva tablosunun olası son durumlarını üretmek için geri yönlü ve ileri 

yönlü yaklaşımlar önerilmiştir. Geri yönlü yaklaşım, bir nihai turnuva tablosunun bir durumunu 

üreterek başlar ve buna dayanarak bir turnuva grafı oluşturmaya çalışır. İleri yönlü yaklaşım, bir 

turnuva grafının oluşturulmasıyla başlar ve ardından bu grafın karşılığı olan nihai urnuva tablosu 

durumunu belirler. Tablonun bu durumu, katılımcı puanları azalan sıradaysa ve daha once 

hesaplanan durumlar arasında bulunmuyorsa, geçerli durum olarak kabul edilir. 

 

Bu tezde, her bir yaklaşımın arama uzayını optimize etmek için katılımcıların puanları ve 

oyun performansları ile ilgili genel kısıtlamalar önerilmiştir. Her katılımcının nihai turnuva 

tablosundaki pozisyonu, onun kazanabileceği en yüksek ve en düşük puanları belirlemeyi 

mümkün kılmaktadır. Katılımcı puanlarının en yüksek ve en düşük münkün sayılarına dayanarak 

ileri yönlü ve geri yönlü yaklaşımların her biri için optimize edilmiş arama uzayları önerilmiştir. 

Her bir yaklaşımın çalışma zamanını iyileştirmek için, önerilen yaklaşımların çoklu iş parçacığı 

tabanlı paralelleştirmelerini gerçekleyerek, kullanılan makinenin performansı yükseltilmiştir. 

 

 
 

Anahtar Kelimeler: Tekil Dairesel Sıralı Turnuvalar, Turnuva Tablosu, Turnuva Tablosunun 

Nihai Durumu, Oyun Sonuçları, Graf, Sayım, Kombinatorik, 

Optimizasyon, Çoklu İş Parçacığı Kullanımı 
 

 

 

 

 

XII 



 

 

 
 

LIST OF FIGURES 

 

 

Page No 

Figure 1.1. An example of a single-elimination tournament bracket .............................. 8 

Figure 1.2. An example of a double-elimination tournament bracket ............................. 9 

Figure 1.3. An example of a graph ................................................................................ 16 

Figure 1.4. The problem of the seven Königsberg bridges ............................................ 17 

Figure 1.5. The graphical Representation of the problem of the seven Königsberg 

bridges ........................................................................................................ 17 

Figure 1.6. A partial graph from the graph shown in Figure 1.3 ................................... 19 

Figure 1.7. A sub-graph from the graph shown in Figure 1.3 ....................................... 19 

Figure 1.8. An example of a directed graph .................................................................. 21 

Figure 1.9. An example of a mixed graph ..................................................................... 21 

Figure 1.10. An example of a regular graph .................................................................... 22 

Figure 1.11. An example of a complete graph with 4 vertices ........................................ 23 

Figure 1.12. An example of a tree graph ......................................................................... 24 

Figure 1.13. A vertices colored version of the graph in Figure 1.3 ................................. 25 

Figure 1.14. A colored G’ graph based on the graph in Figure 1.3 ................................. 26 

Figure 1.15. An edges colored version of the graph in Figure 1.3 .................................. 26 

Figure 1.16. A representation of the architecture SISD ................................................... 36 

Figure 1.17. A representation of the architecture MISD ................................................. 36 

Figure 1.18. A representation of the architecture SIMD ................................................. 37 

Figure 1.19. A representation of the architecture MIMD ................................................ 38 

Figure 1.20. An example of Big O notation .................................................................... 40 

Figure 1.21. The graphical representation of the functions commonly used in the 

asymptotic algorithmic complexity ............................................................ 42 

Figure 1.22. P and NP classes under the assumption that P≠NP ...................................... 43 

Figure 1.23. P, NP, NP-hard and NP-complete  classes under the assumption that 

P≠NP........................................................................................................... 44 
Figure 1.24. A graph with a clique of size 4 ................................................................... 45 

Figure 1.25. Transforming   = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x3) into a graph .............. 46 

Figure 2.1. The control flow diagram of the backward approach.................................. 48 

Figure 2.2. The control flow diagram of the forward approach .................................... 48 

Figure 2.3. The corresponding tree of S(4, 2)................................................................ 56 

XIII 



 

Figure 2.4. The corresponding tree of S(4, 3)................................................................ 57 

Figure 2.5. The tournament graph of Group A in the 2014 FIBA World Cup .............. 68 

Figure 2.6. The tournament graph Group B in the 2018 FIFA World Cup ................... 68 

Figure 2.7. The tournament graph of Group A in the ice hockey 2018 Olympic 

Winter  Games, Men’s Tournament ........................................................... 69 

Figure 2.8. The tournament graph of Group B in the 2008 ICC World Cricket League 

Division Five .............................................................................................. 70 

Figure 2.9. A tournament graph corresponding to the data of Table 2.16..................... 71 

Figure 2.10. The tournament graph of the data in Table 2.17 ......................................... 72 

Figure 2.11. First possible tournament graph of Group 3 in 1962 FIFA World Cup ...... 73 

Figure 2.12. Second possible tournament graph of Group 3 in 1962 FIFA World Cup . 74 

Figure 2.13. Generation of the tournament graph in Figure 2.10 through the steps 

numbered in Table 2.19 .............................................................................. 75 

Figure 2.14. Generation of the tournament graph in Figure 2.11 through the steps 

numbered in Table 2.21 .............................................................................. 77 

Figure 2.15. Generation of the tournament graph in Figure 2.11 through the steps 

numbered in Table 2.21 .............................................................................. 78 

Figure 2.16. Generation of the tournament graph based on Table 2.16, through the 

steps numbered in Table 2.22 ..................................................................... 80 

Figure 2.17. The graphs for the case when A wins all of its games ................................ 88 

Figure 2.18. The graphs for the case when A wins against B and draws against C ......... 88 

Figure 2.19. The graphs for the case when A wins against B and loses against C .......... 89 

Figure 2.20. The graphs for the case when A draws against B and wins against C ......... 89 

Figure 2.21. The graphs for the case when A draws all of its games ............................... 89 

Figure 2.22. The graphs for the case when A draws against B and loses against C ........ 90 

Figure 2.23. The graphs for the case when A loses against B and wins against C .......... 90 

Figure 2.24. The graphs for the case when A loses against B and draws against C ........ 90 

Figure 2.25. The graphs for the case when A loses all of its games ................................ 91 
Figure 2.26. Representation of the valid states in Table 2.25 as a forest ......................... 93 

Figure 3.1. Transforming   = x1 ∧ x2 ∧ x3 into a graph .............................................. 138 

Figure 4.1. The percentage decrease in the execution time of the backward algorithm 
versus the forward algorithm .................................................................... 155 

Figure 4.2. The percentage decrease of the generated invalid states in the optimized 

backward algorithm compared to the backward algorithm ....................... 161 

Figure 4.3. The execution time decrease in the optimized backward algorithm 

comparing to the backward algorithm ...................................................... 164 

XIV 



 

Figure 4.4. The execution time decrease in the optimized forward algorithm compared 

to the forward algorithm ........................................................................... 170 

Figure 4.5. The percentage decrease in execution time for the optimized backward 

algorithm against the optimized forward algorithm ................................. 172 

Figure 4.6. The percentage decrease in the execution time for the multi-threaded 

optimized backward algorithm compared to the optimized backward 

algorithm ................................................................................................... 177 

Figure 4.7. The decrease in the execution time for multi-threaded optimized forward 

algorithm compared to the forward algorithm .......................................... 180 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

XV 



 

 

 

LIST OF TABLES 

Page No 

Table 1.1. The corresponding game results table of the graph shown in Figure 1.8... 30 

Table 1.2. The concluded tournament table from Table 1.1 ........................................ 30 

Table 1.3. The standard form of a football/handball round-robin tournament table... 31 

Table 1.4. The standard form of a basketball round-robin tournament table ............... 32 

Table 1.5. The standard form of a volleyball round-robin tournament table ............... 33 

Table 1.6. The standard form of an ice hockey round-robin tournament table ............ 33 

Table 1.7. The standard form of a cricket round-robin tournament table .................... 34 

Table 1.8. Flynn's taxonomy........................................................................................ 35 

Table 2.1. The sets C1 and C2 for the tournament tables given in Section 1.8.3 ......... 50 

Table 2.2. The final table of group B in the 2018 FIFA World Cup ........................... 52 

Table 2.3. Application of Eq. (2.11) for the final tournament tables given in Section 

1.8.3 ............................................................................................................ 52 

Table 2.4. The final table of Group A in the 2014 FIBA Basketball World Cup ........ 53 

Table 2.5. Application of Eq. (2.14) for the final tournament tables given in Section 

1.8.3 ............................................................................................................ 54 

Table 2.6. Application of Eq. (2.23) for the final tournament tables presented in 

Section 1.8.3 ............................................................................................... 58 

Table 2.7. Possible result cases in a 4-participant  tournament  with game results of 

WL ........................................................................................................................ 59 

Table 2.8. Possible result cases in a 4-participant tournament with game results  of 

WDL ................................................................................................................ 60 

Table 2.9. Possible result cases in a 4-participants tournament with game results  of 

WXYL and WLTNr .......................................................................................... 61 

Table 2.10. Application of Eq. (2.24) in the case of the tournament tables presented in 

Section 1.8.3 ............................................................................................... 62 

Table 2.11. The possible uniform states of football, rugby, handball and chess final 

tournament tables ........................................................................................ 64 

Table 2.12. The possible uniform states of cricket final tournament table .................... 65 

Table 2.13. The possible uniform states of the final tournament table T1 ..................... 65 

Table 2.14. The possible uniform states of the final tables in the case of basketball, 

ice hockey, curling and T2 .......................................................................... 66 

Table 2.15. Application of Eq. (2.27), (2.28) and (2.29) for the sports tournaments 

presented in Section 1.8.3 ........................................................................... 67 

XVI 



 

Table 2.16. A state of the final table of a tournament T1 between 4 participants .......... 71 

Table 2.17. The final tournament table of Group E in the 2006 FIFA World Cup ....... 72 

Table 2.18. The game results of the tournament graph in Figure 2.10 .......................... 73 

Table 2.19. Generation steps of a tournament graph for the data of Table 2.17 ............ 74 

Table 2.20. Possible results for the games of Italy ........................................................ 76 

Table 2.21. The steps followed to obtain the graphs in Figures 2.11 and 2.12 ............. 77 

Table 2.22. The steps followed to obtain the graph in Figure 2.16 ............................... 79 

Table 2.23. A state generated by the blind search algorithm which does not respect 

any of Eq. (2.9), (2.10), (2.14) and (2.17) .................................................. 83 

Table 2.24. The steps followed to obtain a tournament graph for the state represented 

by Table 2.23 .............................................................................................. 84 

Table 2.25. The corresponding state of each tournament graph shown in Figures 2.17, 

2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25 ........................................ 92 

Table 2.26. The uniform final states with the minimum number of points in the case 

of the sports presented in Section 1.8.3, where C2 is not empty ................. 97 

Table 2.27. The uniform final states with the minimum number of points in the case 

of the sports tournaments presented in Section 1.8.3, where C2 is empty 
and n is odd ................................................................................................. 98 

Table 2.28. The uniform final states with the maximum number of points in the case 

of the sports tournaments given in Section 1.8.3, where C2 is not empty.. 99 

Table 2.29. The uniform final states with maximum number of points in the case of 

the sports tournaments  given  in  Section  1.8.3, where C2 is empty and n 
is odd .......................................................................................................... 99 

Table 2.30. min(Phigh(k)), min(Plow(k)) and min(Pts(k)) in the case of sports 

tournaments given in Section 1.8.3 .......................................................... 102 

Table 2.31. max(Phigh(k)), max(Plow(k)) and max(Pts(k)) in the case of the sports 

tournaments given in Section 1.8.3 .......................................................... 104 

Table 2.32. The optimized search space of WDL based on Eq. (2.49) of a 4-team 

football tournament ................................................................................... 105 

Table 2.33. The  final   table   of   a   football   tournament   of   4  teams  where 

max(Pts(2)) > Pts(1) ................................................................................. 106 

Table 2.34. The  final  table  of  an   ice  hockey tournament  of 4-teams where 

Pts(1) > max(Pts(2)) ................................................................................. 106 

Table 2.35. The steps of generating the final table states of a 3-team football 

tournament, using the optimized forward algorithm................................. 111 

Table 4.1. Results of the backward algorithm for football tournaments .................... 141 

Table 4.2. Results of the backward algorithm for rugby and handball tournaments. 141 

Table 4.3. Results of the backward algorithm for chess tournaments ....................... 142 

XVII 



 

Table 4.4. Results of the backward algorithm for lacrosse tournaments ................... 144 

Table 4.5. Results of the backward algorithm for basketball, volleyball and tennis 

tournaments .............................................................................................. 144 

Table 4.6. Results  of  the backward  algorithm  for ice hockey and  curling 

tournaments .............................................................................................. 145 

Table 4.7. Results of the backward algorithm for cricket tournaments ..................... 146 

Table 4.8. Results of the forward algorithm for football tournaments ....................... 148 

Table 4.9. Results of the forward algorithm for rugby and handball tournaments ... 148 

Table 4.10. Results of the forward algorithm for chess tournaments .......................... 149 

Table 4.11. Results of the forward algorithm for lacrosse tournaments ...................... 150 

Table 4.12. Results of the forward algorithm for basketball, volleyball and tennis 

tournaments .............................................................................................. 151 

Table 4.13. Results  of  the forward  algorithm  for ice hockey and  curling 

tournaments .............................................................................................. 152 

Table 4.14. Results of the forward algorithm for cricket tournaments ........................ 152 

Table 4.15. The comparisons of the execution time in the backward algorithm against 

the forward algorithm ............................................................................... 154 

Table 4.16. Results of the optimized backward algorithm for football tournaments .. 156 

Table 4.17. Results of the optimized backward algorithm for rugby and handball 

tournaments .............................................................................................. 156 

Table 4.18. Results of the optimized backward algorithm for chess tournaments ...... 157 

Table 4.19. Results of the optimized backward algorithm for lacrosse tournaments.. 158 

Table 4.20. Results of the optimized backward algorithm for basketball, volleyball 

and tennis tournaments ............................................................................. 158 

Table 4.21. Results of the optimized backward algorithm for ice hockey and curling 

tournaments .............................................................................................. 159 

Table 4.22. Results of the optimized backward algorithm for cricket tournaments .... 160 

Table 4.23. The number of the invalid states in the backward algorithm against the 

optimized backward algorithm ................................................................. 162 

Table 4.24. The execution time in the backward algorithm against the optimized 

backward algorithm .................................................................................. 163 

Table 4.25. Results of the optimized forward algorithm for football tournaments...... 165 

Table 4.26. Results of the optimized forward algorithm for rugby and handball 

tournaments .............................................................................................. 166 

Table 4.27. Results of the optimized forward algorithm for chess tournaments ......... 166 

Table 4.28. Results of the optimized forward algorithm for lacrosse tournaments ..... 167 

XVIII 



 

Table 4.29. Results of the optimized forward algorithm for basketball, volleyball and 

tennis tournaments .................................................................................... 168 

Table 4.30. Results of the optimized forward algorithm for ice hockey and curling 

tournaments .............................................................................................. 168 

Table 4.31. Results of the optimized forward algorithm for cricket tournaments ....... 169 

Table 4.32. The execution time for the forward algorithm against the optimized 

forward algorithm ..................................................................................... 171 

Table 4.33. The execution time for the optimized backward algorithm against the 

optimized forward algorithm .................................................................... 173 

Table 4.34.  The value selected for n in the case of each sports discipline in the 

performed tests to determine the optimum number of threads ................ 174 

Table 4.35.  The taken duration in seconds by the multi-threaded optimized backward 

algorithm in each performed test to determine the optimum number of 

threads ....................................................................................................... 175 

Table 4.36. The execution  times  of the  multi-threaded  optimized  backward 

algorithm ................................................................................................... 176 

Table 4.37. The percentage decrease in the execution time for the multi-threaded 

optimized backward algorithm compared to the optimized backward 

algorithm ................................................................................................... 176 

Table 4.38.  The duration in seconds taken by the multi-threaded optimized forward 

algorithm in each performed test to determine the optimum number of 

threads. ...................................................................................................... 178 

Table 4.39. The execution times of the multi-threaded optimized forward algorithm 179 

Table 4.40. The percentage decrease in the execution time of the multi-threaded 

optimized  forward  algorithm  compared  to  the  optimized forward 

algorithm ................................................................................................... 180 

Table 5.1. The time complexities of the proposed algorithms for the presented kind 

of sports .................................................................................................... 182 

Table 5.2. The memory space complexities of the proposed algorithms for the 

presented kind of sports ............................................................................ 183 

Table 5.3. The results of the proposed algorithms for n=6 ........................................ 184 
 

 

 

 

 

 

 

 

 

 

 

 

XIX 



 

 

 

LIST OF ABBREVIATIONS 

 

 

A Set of undirected edges or arrows 

AFG Afghanistan 

BHS Bahamas 

BRA Brazil 

BRC Number of blind selections to find the possible tournament graphs 

BWA Botswana 

c Color 

CAF Confederation of African Football 

CAN Canada 

CNF Conjunctive Normal Form 

CPU Central Processing Unit 

CSK Czechoslovakia 

CZE Czech Republic 

C1 Game results which are related to each other 

C2 Game results which are not related to other game results 

D Drawn games 

d(v) Degree of a vertex 

E Set of edges 

EGY Egypt 

ESP Spain 

FIBA The International Basketball Federation 

FIFA Fédération Internationale de Football Association (English: 

International Federation of Association Football) 

FRA France 

G Graph 

g Number of games 

GA Goals Against 

GD Goals Differences 

GF Goals For 

GHA Ghana 
 

XX 



 

 

 

gP Number of the games played by a participant 

GPU Graphics Processing Unit 

GR The total of game results 

ICC International Cricket Council 

IRI Islamic Republic of Iran 

ITA Italy 

JDK Java Development Kit 

JEY Jersey 

JPN Japan 

k Rank or degree 

KOR South Korea 

L Lost games 

Ls Lists of adjacency 

M Matrix of adjacency 

MAR Morocco 

MEX Mexico 

MIMD Multiple Instructions on Multiple Data 

MISD Multiple Instructions on Single Data 

n Number of participants 

NB Number of the generated states by a backward blind search algorithm 

NP Nondeterministic polynomial time 

NR Games with no results 

NRC Number of result cases 

O Big O notation 

OTL Overtime lost games 

OTW Overtime won games 

P Polynomial time 

P Game points 

PA Points Against 

PD Points Differences 

PF Points For 

Phigh The number of earned points from a high sub-tournament 
 

XXI 



 

 

 

Plow The number of earned points from a low sub-tournament 

POR Portugal 

Pts Total number of points 

q Size of C1 

R Game result 

r Size of C2 

RAM Random Access Memories 

S Set of possible game results 

SA Scores Against 

SAT Boolean Satisfiability Problem 

SD Scores Differences 

SF Scores  For 

SIMD Single Instruction on Multiple Data 

SISD Single Instruction on Single Data 

SGP Singapore 

SL Lost sets 

SOL Shoot-out Lost games 

SOW Shoot-out Won games 

SRB Serbia 

SU Set of the possible values of uniform states 

SUI Switzerland 

SW Won sets 

T Tied games 

T1 Tournament 1 

T2 Tournament 2 

T(n, m) Time complexity 

UEFA Union of European Football Associations 

USA The United States of America 

V Set of vertices or nodes 

VFL The Victorian Football League 

W Won games 

X Shoot-out or overtime won games 
 

XXII 



 

 

 

Y Shoot-out or overtime lost games 

$(n, m) Memory space complexity 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XXIII 



 

 

1. GENERAL INFORMATION 

 

 

1.1. Introduction 

 

 

Mankind has shown great interest in sports since the prehistoric ages [1, 2]. The 

early civilizations have developed similar interest [3, 4], organizing many sporting events 

such as Olympic, Pythian, Nemean and Isthmian Games in ancient Greece [5, 6], and 

Ludi, Actia and Sebasta Games in the Roman Empire [7]. The industrial and scientific 

revolution and the mass production in the modern era have increased leisure-time [8], 

which provides enough time for people to actively participate in sports and follow the 

sporting events [9]. Thanks to the evolution of global media and communications, 

sporting activities have gained popularity among human race in the entire world [10]. 

Nowadays, sport is directly linked to economic interests [11], where the sport 

system is based on economic foundations that meet the need to fund the activities, 

programs and equipment [12, 13]. Also, the sport system creates several professional jobs 

[14, 15] and generates profits through advertisement [16, 17]. Since the 1980s, the 

relationship between sport and economy has evolved into a form of industry [18], where 

it has become one of the pillars of national economies [19]. Today's global sports industry 

which includes sporting kits and equipment, infrastructure construction, live sports 

events, and licensed products is worth up to 620 billion US dollars [20]. Within this 

economic relationship, the media plays an important role as a partner in this industry and 

one of its most important sources of success [21]. For example, the rights sales incomes 

of the Summer Olympic Games broadcasting between the years 1980 and 2008 were 

estimated at 1.715 billion US dollars [22]. 

The most used formats of tournaments in the sporting events are single elimination 

(or knockout), total points series (or aggregate) and round-robin. In a single-elimination 

tournament, the loser is disqualified from the championship immediately after losing a 

game, while the winner qualifies to the next level [23]. In the total points series 

tournament where two teams oppose each other twice, each game is played on their 

respective home field then the winner is determined by the cumulative results of the two 

games [24]. Meanwhile, round-robin is a format of tournament in which every participant 

https://en.wikipedia.org/wiki/Nemean_Games
https://en.wikipedia.org/wiki/Isthmian_Games


2 
 

 

 

plays against all the other participants once [25] or twice [26] (often called double round- 

robin). 

Combinatorics is one of the branches of mathematics that studies finite discrete 

structures and countable sets [27, 28]. In this way, it includes the counting of elements in 

groups [29], determining if they meet the required criteria [30], as well as studying the 

construction and analysis of the organisms that meet these criteria. Graph theory is one of 

the fields of combinatorics that studies graphs [31], which are abstract models of network 

drawings that link objects. These models are constituted by nodes and links between these 

nodes. The links between the nodes are called edges which may be directed or undirected 

[32]. In the context of graph theory, a round-robin tournament is a complete graph where 

each node represents a participant and each edge between a pair of nodes represents a 

game result [33]. 

The final positions in a particular tournament can play a crucial role in the 

distribution of the participants’ revenue that comes from TV networks [34], 

advertisements [35] and so on. Thereby it would significantly influence the incomes of 

the tournament participants. So it would be of vital importance to predict  the  final 

position of a participant at the end of a round-robin tournament. The calculation of the 

possible states of a round-robin final tournament table can provide a convenient way to 

determine what table data would be adequate to reach the desired position for a 

participant. 

To calculate the states of the final table of any round-robin tournament, we propose 

two approaches. The first one initially generates possible states and then checks if it is 

possible to construct tournament graphs based on them. The second one creates the 

tournament graphs and then derives their corresponding final state of the tournament 

table. To improve the results of each approach, we implement a two-step optimization 

strategy. Firstly, we optimize the search space based on the lowest and highest possible 

number of points that can be gained by each participant. Then, we use a multi-threading 

based parallelization technique to exploit the performance of the computer system on 

which the approaches are evaluated. In addition, we analyze and discuss both time and 

memory space complexities of the proposed approaches. Based on the results of this 

analysis, we define the related complexity class for the problem of determining the 

possible final states of a tournament table. 



3 
 

 
 

1.2. Literature Review 

 

 

The big popularity of sports events such as the Olympic Games and the world 

championships of different sports like football, cricket and basketball attracted the 

researchers, thereby making them conduct several researches related to sports. Some of 

the works that have been done are presented later on in this section. 

Among the interesting studies in sports are the ones which focus on the round-robin 

tournaments scheduling. Carlsson et. al. [36] proposed a model to perform a double 

round-robin tournament scheduling in a single step, where a traditional double round- 

robin format was extended with divisional single round-robin tournaments. Also, the 

study took into account a constraint programming model that characterizes the general 

double round-robin plus divisional single round-robin format. Pérez-Cáceres and Riff 

[37] solved travelling double round-robin tournament problem by proposing an algorithm 

which uses the team’s home/away patterns based moves. Suksompong [38] came up with 

a new method to generate schedules for the asynchronous round-robin tournaments 

whether the number of teams is even or odd, where he considered three measures of a 

schedule that concern the quality and fairness of a tournament. 

Some models have been developed to provide automated scheduling for several 

sports. These models can handle the issues that concern generating various types of 

leagues and tournaments, games venues selection and assigning referees to games. Atan 

and Hüseyinoǧlu [39] treated the problem of simultaneously generating a game schedule 

and assigning main referees to football games, where they proposed a mixed integer 

linear program formulation for the problem by incorporating specific rules in the Turkish 

league. Because of the computational difficulties in solving the problem, it was 

approached using a genetic algorithm. Westphal [40] discussed a new approach to solve 

the problem of finding an optimal schedule for the German Basketball League, where 

time and place requirements were taken into account during the study. Kyngas and Nurmi 

[41] presented a successful solution method to schedule the Finnish first division ice 

hockey league based on another method used to schedule the Finnish major ice hockey 

league. The new method was a combination of local search heuristics and evolutionary 

methods. 

Typical examples of these developed models are graphs [42], round-robin 

tournament [43, 44], travelling tournament problem [45] and playoff/first place 

elimination  [46].  Januario  et.  al.  [42]  for  example  considered  some  basic  sports 

https://scholar.google.com/citations?user=frcIsB8AAAAJ&amp;hl=en&amp;oi=sra


4 
 

 

 

scheduling problems and introduced the notions of graph theory which are needed to 

build adequate models, where they showed how edge coloring can be used to construct 

schedules for sports leagues. Briskorn and Drexl [43] developed a branch-and-price 

approach to find optimal solutions for the scheduling of double round-robin tournament, 

where the approach seeks to generate schedules having the minimum number of breaks 

and minimizing the sum of the cost of arranged matches. 

On the other hand, Croce and Oliveri [44] presented a solution to derive feasible 

schedules for round-robin tournament (the Italian Major Football League) with respecting 

the cable televisions’ requirements. Goerigk and Westphal [45] presented an integer 

programming and local search heuristics hybrid approach to solve the problem of 

scheduling travelling tournaments, where this approach passes phases until the optimized 

scheduling is found. Kern and Paulusma [46] determined the complexity of whether a 

particular team in a tournament still has a chance to win the competition, where the 

number of competition's outcomes is arbitrary. The proposed model also includes 

competitions that are asymmetric in the sense that away playing teams possibly have an 

advantage than home playing teams. 

The scheduling methods are usually based on approaches such as integer 

programming [47, 48], simulated annealing [49] and branch-and-bound [50]. Alarcón et. 

al. [47] used in their study the integer linear programming to address the referees 

scheduling problem in the First Division of the Chilean professional football league, 

where they considered balance in the number of matches each referee must officiate, the 

frequency of each referee being assigned to a given team, the distance each referee must 

travel throughout a season, and the appropriate pairings of referee experience or skill 

category with the importance of the matches. 

Larson et. al. [48] presented an integrated constraint programming model  that 

allows performing the scheduling of the top Swedish handball league in a single step, 

where the focus was particular to identify implied and symmetry-breaking constraints that 

reduce the computational complexity significantly. After that, an integer programming 

approach was used to assign actual teams to the numbers in the template in a manner that 

satisfies various constraints. Lim et. al. [49] made an optimized research based on the 

study of Easton et. al. [51], where they divided the search space and used simulated 

annealing instead of integer programming to search a timetable space and hill-climbing to 

explore a team assignment space for the travelling tournament problem. Bartsch et. al. 

[50] took into account the case of Austrian and German Football Leagues to generate a 



5 
 

 

 

regular season schedule, where they developed some branch-and-bound based algorithms 

which yield reasonable schedules quickly for both leagues. 

Some other previous researches have focused on tournament environments from 

different perspectives. Eggar [52] for example addressed the number of individual players 

with a sufficiently high average of wins when teams play a table tennis tournament. 

McSherry [53] investigated the issue of inferring the numbers of wins, draws and losses 

of teams from their points in the final table of a sports tournament. In another research, 

Charon and Hudry [54] described the principles of an exact branch-and-bound search 

with a Lagrangean relaxation based method, which was designed to solve the linear 

ordering problem for any weighted tournament. Also, Hemasinha [55] presented an 

algorithm to generate score sequences of all tournaments up to a given size based on the 

Havel-Hakimi [56, 57] criterion that checks whether or not a given sequence of integers is 

the score sequence of a graph. In another context, Duckworth and Lewis [58] described a 

method to set revised target scores. The method was based on the number of runs and 

number of wickets fallen for the team batting second, once a limited-overs cricket match 

has been forcibly shortened after it has commenced. 

Nabiyev and Pehlivan [59] described a tournament scoring problem which is 

concerned with the construction of valid initial states according to some given final state 

and constraints, where it can easily be generalized to incorporate various sports 

disciplines played in both tournament and league environments. Pehlivan and Nabiyev 

[60] also dealt with the issue of determining the scores of all matches involved in a 

football tournament, where the table data is firstly used to compute the possible results of 

all played matches, then possible scores of the matches are computed based on the results 

as well as the total number of scored and conceded goals. In another study, Damkhi and 

Pehlivan [61] explored all possible results of the games involved in a tournament, based 

on the generation of the complete graphs which match the data in its final table. The 

approach was evaluated by applying it to the table data of a qualifying group from 

previous FIFA World Cup Group Stages. In addition, the results was presented with 

respect to some particular data in the final tables of the tournaments contested by up to 

ten teams. 

Concerning the determination of the final states of football tournaments, Damkhi 

and Pehlivan [62, 63] proposed two different methods. The first method [62] focuses on 

generating all possible final states based on the results of a blind search algorithm. Since 

most of the states generated by a blind search algorithm are inconsistent (i.e. invalid 



6 
 

 

 

states), an efficient algorithm was proposed to filter out such invalid states. The second 

method [63] describes a point-based algorithm to generate all possible final states that can 

take place in a football tournament with some number of teams. The algorithm attempts 

to determine the possible final W, D and L values of the teams using their sums of points. 

The determination of the states of the final tournament table provides an elegant 

way to ascertain which participant’s table data guarantees a particular position. This 

thesis focuses on generating the possible final states of round-robin tournaments tables of 

any sport discipline according to the number of participants. To achieve that, two 

approaches are developed, where the first approach generates every possible state and 

seeks to prove their validity through the construction of a tournament graph based on each 

generated state. The state is considered as a valid one in this approach only if it can 

construct at least one tournament graph. The second approach is based on building every 

possible tournament graph and concluding the equivalent state of the final tournament 

table from each generated graph. The state is considered to be valid in this approach only 

if it was not previously calculated. To optimize the relevant search space for both of the 

proposed approaches, general constraints related to the points of the participants and their 

standings are proposed. In addition to optimizing the search spaces, a multi-threading 

based parallelization technique is implemented to enhance the performance of each 

approach. 

 

 

1.3. Scope and Purpose of the Thesis 

 

 

It is of utmost importance for the competitors of a sport tournament to predict what 

ensures they obtain some dominant position at the end of the tournament. The generation 

of the states of a final tournament table provides a convenient way to determine what 

game results would be adequate for a team/player to reach a desired position. Every state 

of a final tournament table may be generated mentally or manually when the number of 

tournament participants is small. Conversely, as the number of the participants gets 

bigger, the number of the states of a final tournament table gets bigger too, and generating 

them will be quite hard if not impossible. 

Round-robin tournament is one of many real problems that can be translated to 

graphs, where each participant can be represented with a node, while the result of a game 

between two participants can be represented with an edge. Graph theory is considered as 



7 
 

 

 

a mathematical field which often needs the use of algorithms. In this thesis, to generate 

the states of the final table of any round-robin tournament, two algorithms which are 

based on two different principles are proposed. The first approach is called the backward 

approach. In this approach, the states are initially generated, then checked if it is possible 

to construct tournament graphs based on them. We name the second approach as the 

forward approach. This approach starts with the generation of a tournament graph and 

ends with deriving its corresponding state of the tournament final table. 

To improve the results of the proposed approaches, the study also concerns the 

implementation of a two-step optimization strategy. The first step is to optimize the 

search space based on the lowest and highest possible number of points that can be gained 

by each participant. The second step is to exploit the performance of the computer system 

on which the approaches are evaluated, using a multi-threading based parallelization 

technique. In addition, both time and memory space complexities of the proposed 

approaches are analyzed and discussed. Based on the results of this analysis, the 

complexity class of our problem is defined. 

 

 

1.4. Tournaments Systems 

 

 

A tournament is an organized form of competitions. The tournaments are organized 

in different systems, depending on certain contextual parameters including the number of 

participants and the duration of the tournament. The most commonly used tournament 

systems are summarized below. 

 

 

1.4.1. Single-Elimination Tournament 

 

 

A single-elimination or knockout tournament is a tournament where the loser of 

each game is eliminated from the tournament immediately [64]. However, the loser may 

not be eliminated from the competition in some cases, where extra games are added such 

as third place [65]. Each winner progresses to the next round until the final game, whose 

winner becomes the tournament champion. Usually, the number of games in a single- 

elimination tournament is equal to the number of participants. 

In a single-elimination tournament, the games are progressive such as the quarter- 

final, followed by the semifinals and third place, and lastly the final. The process is 



8 
 

 

 

formed according to the number of participants, which is often a power of 2 (i.e., 4, 8, 16, 

32 etc.). Occasionally, there are also competitions among the losers of the quarter-final 

matches to determine the fifth to the eighth positions (this usually occurs in the Olympic 

Games [66]). Figure 1.1 shows an example of a single-elimination tournament bracket. 

 

 

 

 

Figure 1.1. An example of a single-elimination tournament 

bracket 

 

 

Competitors can be randomly assigned [67], however, seeding (i.e., classifying the 

teams to categories depending on their ranking [68]) is often used to avoid situations like 

a possibility of a draw which leads to the elimination of the big participants from the 

competition. Brackets are set so that the participants with the first and second ranking 

cannot meet before the final round, and none of the first four can meet before the semi- 

finals [68]. If no ranking is used, the tournament is called a random single-elimination (or 

knockout) tournament [69]. In some cases [67], the qualified participants are reseeded 

before playing the next stage, so that the highest qualified seed plays against the lowest 

seed. 

 

 

1.4.2. Double-Elimination Tournament 

 

 

A double-elimination tournament is a competition in which the participants are 

eliminated when they lose two games [70, 71]. This type of tournament allows fewer 

surprises than in a single-elimination tournament. A double-elimination tournament is 

divided into two parts [71]: the primary tournament (or tournament of the winners) and 

the secondary tournament (or tournament of the losers). 



9 
 

 

 

At the end of each round, the winners continue the primary tournament as in a 

knockout competition, while the losers join the secondary tournament and compete to 

stay in the competition, where a second defeat leads to the elimination. Compared to a 

team that wins all of its games before reaching the final, a team that loses its first game 

still has the chance to win the tournament by playing two more games. The final game 

opposes the winner of the primary tournament to the winner of the secondary tournament. 

When the winner of the primary tournament wins the final game, the number of 

games in a double-elimination tournament would be two less than twice the number of the 

participants. For example, when the number of teams is eight, the number of games 

would be fourteen. If the winner of the secondary tournament wins the final, a second 

game takes place to respect the principle of the tournament (i.e., the participants or teams 

are  only  eliminated  when  they  lose  two  games)  and  to  avoid  the  elimination  of  a 

participant with only a loss [72]. So, the number of games in this case would be one less 

than twice the number of the participants. For example, when the number of teams is 

eight, the number of games would be fifteen. 

This type of tournament is used for some sports like beach volleyball competitions 

[73], water volleyball [74] and baseball competitions [75]. Figure 2.2 shows an example 

of a double-elimination tournament bracket. 

 

 

 
 

Figure 1.2. An example of a double-elimination tournament bracket 



10 
 

 
 

1.4.3. Round-Robin Tournament 

 

 

A round-robin tournament is a tournaments system in which a team/player faces 

each of the other teams/players once or twice, where the winner is determined by the 

number of wins or the total points accumulated during the played games. The round-robin 

tournament is discussed in more details in Section 1.5. 

 

 

1.4.4. Swiss-System Tournament 

 

 

The Swiss-system tournament is a type of tournament commonly used in chess 

competitions [76]. This type of tournament was used for the first time at the Swiss Chess 

Championship in Zurich in 1895 [77], since then it was named "Swiss-System". This is a 

matching method for organizing tournaments with a large number of players in a reduced 

number of games. It is widely used for open chess tournaments [78], as well as in amateur 

level competitions [79]. 

To determine the winner of a competition, the fairest and simplest solution is when 

each participant plays against all the others. This method is inapplicable in a reasonable 

time since the number of participants is high. The knockout form is a way to designate a 

winner by limiting encounters. The disadvantage in this instance is the early elimination 

of candidates who could claim victory. The Swiss-system allows the championship 

formula to be maintained by limiting the duration of the competition, where the 

participants play the same number of games and the matching criteria make it possible to 

obtain a logical ranking with fairly good reliability. 

The principle of the Swiss tournament is to order the players according to their rank, 

after that, each player in the first half of the standings plays a match against a player in 

the second half. For example, when there are 8 players, number 1 faces number 5, number 

2 faces number 6 and so on. In the next round, each player will be opposed to the player 

who has done so far as well/bad as him. The tournament continues after a predefined 

number of rounds. Some adjustments may be done to assure that no two players oppose 

each other twice. After the last round, the players are ranked according to their score, 

where in case of a tie, they can be determined by the sum of the scores of their opponents 

or by another system determined in advance. In the case where the game is not 

symmetrical (such as chess where color is an important criterion or in football where 



11 
 

 

 

playing at home or away is not neutral), this criterion must be taken into account and an 

alternation must be realized. 

Compared to a knockout system, the Swiss system has the implicit advantage of 

eliminating no one. This means that a player who starts such a tournament knows in 

advance how many rounds he will play, regardless of his results. The Swiss-system does 

not always end in the thrilling climate of a knockout tournament final. Sometimes, a 

player quickly takes such an advantage that he is guaranteed to win the tournament even 

if he loses his last game [80]. 

 

 
1.4.5. McMahon-System Tournament 

 

 

The McMahon system is a tournament system which is based on the Swiss-system. 

The system is named after the computer scientist Lee E. McMahon [81]. This system is 

widely used for Go [81] competitions. As in the Swiss-system, in each round, the 

individual games are drawn in such a way that, if possible, participants with the same 

number of points meet each other. It differs from the Swiss-system by the fact that the 

players get some extra points before the beginning of the competition, where these points 

are based on the players' playing strength. This increases the chances of the high ranked 

participants to win the competition. The overall result of the tournament is obtained from 

the scores after the last round. 

The advantage of this system is that it offers the possibility to determine an 

unequivocal winner in tournaments with many participants and a limited number of 

rounds, where it gives everyone the chance to play against players of suitable strength. 

Also, it requires fewer rounds to find a winner and avoids extreme confrontations (i.e., 

very strong players versus very weak players) in the first round. 

Various criteria must be met in a McMahon-System tournament. Among these 

criteria, we mention, for example: the encounter between two participants should not take 

place a second time, a balanced ratio of games in black and white in games like Chess and 

Go, and avoiding matches between players from the same city in the national tournament. 



12 
 

 
 

1.4.6. Scheveningen-System Tournament 

 

 

The Scheveningen-system refers to a tournament form which may be used in 

competitions between two teams [82]. This competition was named after the 

Scheveningen district since it was first used in an international competition which was 

held there in 1923 between Europe's best chess players and the Dutch masters [83]. 

Scheveningen system is somewhat similar to the round-robin system, where each player 

of a team plays against all the players of the other team. This form of matches would take 

place over several days within the tournament time. Both individual and team's results are 

taken into account in this system, where the individual score is based on the score earned 

by each player, while the team result is based on the total number of scores of players in 

each team. 

The traditional Russian competition "Nutcracker Generation Tournament" adopts 

this system of tournaments, where more experienced juniors play against young Russian 

Grandmasters [84]. Another example is the Scheveningen competition of Saint Louis in 

2011 between young American chess players and the world's best female chess players 

(Kings vs. Queens tournament) [85]. 

 

 

1.4.7. McIntyre-System Tournament 

 

 

The McIntyre-system is a system of playoff which gives the chance to teams or 

participants to qualify to higher tournaments. The Australian K.G. McIntyre developed 

this system in 1931 for the VFL (the Victorian Football League) [86]. The McIntyre- 

system is used mainly in the Commonwealth countries, where several versions of the 

McIntyre-system were used by the Australian National Rugby League at different times 

[87, 88]. Also, the post-season in the Australian Football League is conducted using the 

McIntyre System [88]. 

The McIntyre-system passed through several updates and optimizations, where it 

was given many names depending on which updates. From the different versions of The 

McIntyre-system, there is Page–McIntyre system, where the participants are ranked based 

on their results of a round-robin tournament, and then the top 4 teams compete for the 

title based on a single-elimination or double-elimination tournament. Also,  there are 



13 
 

 

 

McIntyre final five, six and eight systems, where five, six or eight top participants from 

the round-robin stage are taken into account instead of four. 

 

 
1.5. Round-Robin Tournament 

 

 

1.5.1. Definition 

 

 

A round-robin tournament is a type of tournament in which participants play the 

same number of games against each other. The term round-robin is derived from the 

French term "ruban" which means "ribbon". With the time, the term became "robin" [89]. 

In a single round-robin tournament, all participants are opposed once during the 

competition. This type of tournaments is adopted during several events of many kinds of 

sports. As an example, we recall FIFA World Cups, UEFA European Championships, and 

Wrestling Olympic tournaments [90]. In sports where there are many games in each 

season, it is common for the championship to take place in two tournaments (i.e., double 

round-robin tournament), as is the case of football leagues [91] and College Basketball 

Conferences [92]. The final ranking of the participants is usually based on the number of 

gained points from the played games. 

 

 

1.5.2. The Use of Round-Robin Tournaments 

 

 

The tournaments in a round-robin fashion are widely used by many sports during 

different events. Double round-robin tournaments are usually used in sports events with a 

big number of participants like football leagues. Most of the football leagues around the 

world adopt this system, where every team plays against the other team twice, one game 

at home and the other away. Also, the double round-robin tournaments are used in the 

qualifications to the major tournaments like continental tournaments (e.g., UEFA, CAF, 

etc.) and the FIFA World Cup. This system is not exclusive to football events, as it is also 

used by other sports such as Chess [86]. The World Chess Championship which was held 

in 2005 [93] consisted of eight players which competed in a double round-robin 

tournament, where each player played against the others twice, one game as white and the 

other as black. 



14 
 

 

 

The single round-robin tournaments are frequently used in the group stages within a 

wider competition like the cases of the FIFA World Cup [94], CAF Africa Cup of Nations 

[95] and UEFA European Football Championship [96]. In addition to football, the single 

round-robin system was used by other sports like rugby during the 2010 Rugby Union 

ITM Cup in New Zealand [97] and the 2007 ICC Cricket World Cup [98]. 

 

 

1.5.3. Advantages and Disadvantages 

 

 

From the theoretical side, the round-robin is the most accurate way to identify the 

champion from a known and determined number of participants, where each participant 

has the same chances as all other participants. Unlike the knockout tournament that 

determines the progress of the participants based on a single game, the round-robin 

tournament gives chances to redress the defeated games by the next games. 

However, it also implies that the games which take place towards the end of the 

competition are sometimes opposed by participants who still compete for a prize to others 

who have nothing to gain. This asymmetry is detrimental to fairness since the motivation 

of the opponent is not the same at the beginning and the end of the competition. At the 

first chess tournament, held in London in July 1851, a prize was only awarded for first 

place, so that many players did not dispute all their games [99]. Because of that, at the 

London 1862 Chess Tournament, a prize was planned for the first six participants at the 

end of the tournament [100]. On the other hand, in the case of a qualifying tournament for 

another more important event, a participant that is already qualified for the next stage 

may try to reserve its/his forces or even deliberately lose if this defeat contributes to the 

promotion of a weaker future opponent, or it will help a friend opponent to qualify for an 

upper stage. Such a situation happened in what became known as the disgrace Gijon 

[101] during 1982 FIFA World Cup, where West Germany and Austria set up the result 

of the game between them to advance to next stage and eliminate Algeria on goal 

difference. 

When the round-robin tournament is used as a qualifying round within a larger 

tournament, some participants ensure their qualification to the upper stage, but they lose 

some games intentionally to avoid playing against specific participants in the next stage, 

such as stronger participants or participants from the same country. For example, four 

pairs of women's doubles badminton in the Olympics of 2012 were disqualified after 



15 
 

 

 

qualifying for the next round for attempting to lose in the round-robin stage to avoid 

playing against higher ranked opponents [102]. 

Round-robin tournaments can be too long compared to other types of tournaments, 

for that a scheduling process may be necessary. The round-robin tournament requires a 

number of rounds that equals to one less than the number of participants if it is even, and 

equals to the number of participants if it is odd, unlike the knockout tournament where 

half of the participants are eliminated after each round. For example, an 8-teams round- 

robin tournament requires 7 rounds, where each round contains 4 games, which means a 

total of 28 games, while an 8-teams knockout tournament can be computed just in 3 

rounds with a total of 8 games (i.e., taking the third place game into account). 

Usually, there is no spectacular final game in a round-robin tournament. The final 

game is rarely between two participants which seek for the first standing. A notable 

instance of such a final was between Arsenal and Liverpool in the season of 1988/1989 of 

the Premier League competition [103]. Another disadvantage of round-robin tournaments 

appears especially in the small round-robin tournaments. For example, in a round-robin 

between three participants A, B and C, when A defeats B, B defeats C, and C defeats A, 

there will be no possibility to define the winner since all the participants have the same 

final results (i.e., one win and one loss). In this case, a tie-breaker is needed to separate 

the teams like the difference between the scored and received goals in the football 

tournaments [98]. This case was faced when all the teams of the Group E of 1994 FIFA 

World ended the group stage with one win, one draw, and one loss [104]. 

 

 

1.6. Graphs 

 

 

1.6.1. Definition 

 
 

There are several variations in the definition of graphs in graph theory. In general, a 

graph G is a pair G = (V, E) formed of a set V of vertices, nodes or points and a set E of 

edges or lines which are associated with subsets with two elements of V. Other meanings 

for the term graph come from another interpretation of the set of edges. In a broader 

sense, E is a set with an incident relation that associates two vertices from V with each 

edge from E, where these vertices are considered as the edge’s extremities. An example 

of a graph is shown in Figure 1.3. 



16 
 

 

 

 
 

Figure 1.3. An example of a graph 

 

 

Sets V and E are generally assumed to be finite. Moreover, V is often assumed as 

not empty, but E can be an empty set. The size of a graph depends on the number of its 

vertices or the number of its edges. The degree or valence of a vertex is the number of 

edges connected to that vertex. In a graph G, the vertices vi and vj are said to be adjacent 

if there is an edge between them. For example, the vertices v1 and v2 in Figure 1.3 are 

adjacent because they are related to each other by the edge e1. 

 

 

1.6.2. Graph Theory 

 

 

Graph theory is the mathematical, algorithmic and computer science discipline that 

studies graphs, which are abstract models of network drawings linking objects. These 

models are constituted by the data of nodes or vertices, and of links between these nodes 

(or edges). The developed algorithms to solve problems concerning the graph theory have 

many applications in all domains related to the notion of network (such as: social 

networks, computer networks, telecommunications, etc.) and in many other domains 

related to the concept of a graph. 

A large number of theorems have helped to establish this subject among 

mathematicians, which makes it a perennial branch of discrete mathematics. Graph theory 

originates initially by an article of the Swiss mathematician Leonhard Euler, which was 

presented at the St. Petersburg Academy in 1735 and published in 1741 [105]. This article 

dealt with the problem of the seven Königsberg bridges (see Figure 1.4). The problem 

was to find a path which starts from a given point and gets back to the same point, where 

it passes once and only once through each of the seven bridges in the city of Königsberg. 

Euler represented the problem with the graph shown in Figure 1.5. 



17 
 

 

 

 
 

Figure 1.4. The problem of the seven Königsberg bridges 
 

 

 
 

Figure 1.5. The graphical representation of the problem of 

the seven Königsberg bridges 

 

 

1.6.3. Graph Representations 

 

 

1.6.3.1. Matrix of Adjacency 

 

 

Let G = (V, E) be a graph where the vertices in V are numbered from 1 to n. In this 

case, we can say that G is a graph of order n. The adjacency matrix representation of G 

consists of a Boolean matrix M of size n × n (i.e., a square matrix) such that M [i] [j] = 1 

if (vi, vj) ∈ E, and M [i] [j] = 0 if not. In the case of non-oriented graphs, the matrix is 
symmetrical with respect to its descending diagonal (i.e., M [i] [j]  = M [i] [j]). In this 

way, only the upper triangular component of the adjacency matrix can be memorized. 



18 
 

 

 

There is a unique adjacency matrix for each graph, i.e. an adjacency matrix of a graph is 

an adjacency matrix of no other graph. The equivalent matrix of adjacency of the graph 

shown in Figure 1.3 is as follows: 

 

 

 

 

 

 

The test of the existence of an edge with an adjacency matrix representation is 

immediate, where it is enough to check directly the corresponding element in the matrix. 

On the other hand, knowing the degree of a vertex requires the browsing of a whole row 

or a whole column of the matrix. In a more general way, browsing the set of edges 

requires the checking the whole matrix. 

 

 
1.6.3.2. Lists of Adjacency 

 

 

We can also represent a graph by giving for each of its vertices the list of vertices to 

which it is adjacent. Let G = (V, E) be a graph of order n. We suppose that the vertices of 

V are numbered from 1 to n. The adjacency list representation of G consists of a table T of 
n lists, one for each vertex of V. For each vertex vi ∈ V, the adjacency list T [vi] is a list of all vertices vj such that there exists an edge (vi, vj) ∈ E. The vertices of each adjacency list 
are usually listed in an arbitrary order. In the case of non-oriented graphs, for each edge 

(vi, vj), vj will belong to the list of T [vi], and also vi will belong to the list of T [vj]. The 

list of adjacency of the shown graph in Figure 1.3 is as follows: T = [{v2, v3, v4}, {v1, v3}, 

{v1, v2}, {v1, v5}, {v4}]. 

There is no faster way than to traverse the adjacency list of T[vi] until finding vj to 

test the existence of an edge (vi, vj) with an adjacency list representation. On the other 

hand, the calculation of the degree of a vertex, or the access to all the successors of a 

vertex is very effective in this case, where it is enough to browse the adjacency list 

associated with the vertex. In a more general way, browsing the set of edges requires the 

traversal of all adjacency lists. Contrarily, the computation of the predecessors of a vertex 

is not easy with this representation, where it requires the traversal of all the lists of 

adjacency of T. 

 0 1 1 1 0 

1 0 1 0 0 
M = 1 1 0 0 0 

 1 0 0 0 1 

 0 0 0 1 0 

 



19 
 

 
 

1.6.4. Partial Graph and Sub-Graph 

 

 

Let G = (V, E) be a graph. The graph G’ = (V, E’) is a partial graph of G, if E’ is 

included in E. In other words, we obtain G’ by removing one or more edges from the 

graph G. Figure 1.6 shows a partial graph from the graph shown in Figure 1.3. Compared 

to the graph in Figure 1.3, the graph in Figure 1.6 does not include the edge e4 but it 

contains the same vertexes. 
In another hand, the graph G’ = (V’, E’) is called a sub-graph of G, if V’ is included 

in V and E’ is included in E, where the extremities of each e’ ∊ E’ must be included in V’. 
In other words, we obtain G’ by removing one or more vertices from graph G, as well as 

all the edges incident to these vertices. Figure 1.7 shows a sub-graph from the graph in 

shown Figure 1.3. Compared to the graph in Figure 1.3, the graph in Figure 1.7 neither 

include the vertex v5 nor the edge e5 which is connected to it. 

 

 

 

 

Figure 1.6. A partial graph from the graph shown in Figure 1.3 
 

 

 
 

Figure 1.7. A sub-graph from the graph shown in Figure 1.3 



20 
 

 
 

1.6.5. Degrees 

 

 

1.6.5.1. Degree of a Vertex 

 

 

We denote the degree of vertex v as d(v), which is the number of edges connected to 

this vertex (a loop on a vertex counts double). For example, in the graph of Figure 1.3, 

d(v1)=3, d(v2)=2, d(v3)=2, d(v4)=2 and d(v5)=1. In a simple graph (i.e., a graph without 

loops and multiple edges), we can also define the degree of a vertex as the number of its 

neighbors (i.e., the size of his neighborhood). The sum of degrees of vertices in a graph is 

twice the number of edges. In the graph shown in Figure 1.3, for example, the graph 

contains 5 vertices and the total degree of d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 10. 

 
 

1.6.5.2. Degree of a Graph 

 

 

The degree of a graph is the maximum degree of all its vertices. For example, the 

degree of the graph shown in Figure 1.3 is max(d(v1), d(v2), d(v3), d(v4), d(v5)) which is 

d(v1) = 3. A graph whose all vertices have the same degree is said to be regular. If the 

common degree is k, then we say that the graph is k-regular. 

 

 
1.6.6. Some Types of Graphs 

 

 

1.6.6.1. Undirected Graph 

 

 

An undirected graph is a graph whose edges have no orientations. The maximum 

number of edges in an undirected graph with n vertices is n(n-1)/2. The previously 

represented graphs in Figures 1.3, 1.5, 1.6 and 1.7 are undirected. 

 

 
1.6.6.2. Directed Graph 

 

 

A directed graph is a graph whose edges have orientations. The edges of a directed 

graph  can  be  called  arcs  or  arrows  or  directed  edges. Such  a  graph  is  defined  as 

G = (V, A), where V is the set of vertices or nodes, and A is the set of directed edges (or 

arcs). An edge (vi, vj) is considered as oriented from vi  to vj, where vi  is the origin or 



21 
 

 

 

beginning of the edge, and vj is its end. The vertex vj is a successor of vi, and vi is a 

predecessor of vj. An example of a directed graph is shown in Figure 1.8. The edge a1 or 

(v1, v2) is oriented from v1 to v2, where v1 is the beginning of the edge, and v2 is its end. 

The vertex v1 is a successor of v2, and v1 is a predecessor of v2. 

 

 

 
 

Figure 1.8. An example of a directed graph 

 

 

1.6.6.3. Mixed Graph 

 

 

A mixed graph is a graph composed of undirected edges as in undirected graphs, 

and directed ones as in directed graphs. Such a graph is defined as G = (V, E, A) with V as 

the set of vertices or nodes, E as the set of the undirected edges, and A is the set of the 

directed edges (or arcs). Figure 1.9 shows an example of a mixed graph. 

 

 

 
 

Figure 1.9. An example of a mixed graph 



22 
 

 
 

1.6.6.4. Simple Graph 

 

 

A simple graph is a graph with no multiple edges and no loops. In a simple graph, 

each edge is a pair of distinct vertices, and each pair of distinct vertices represents a 

unique edge. The graphs previously shown in Figures 1.3, 1.5, 1.7, 1.8, 1.9 are simple. 

 

 

1.6.6.5. Multigraph 

 

 

Multigraph is a graph that consists of a finite set of vertices and edges that connect 

two vertices or a vertex with itself, which means that unlike the simple graph, a 

multigraph is a graph with multiple edges and/or loops. A multigraph can be undirected, 

directed, or mixed. The representative graph of the problem of the seven Königsberg 

bridges (see Figure 1.5) is considered as a multigraph because there are two edges 

between the vertices 1 and 2, and two other edges between the vertices 2 and 4. 

 

 

1.6.6.6. Regular Graph 

 

 

A regular graph is a graph where all vertices have the same number of neighbors, 

that is, the same degree. A regular graph whose vertices are of degree k is called a k-

regular graph or regular graph of degree k. A 0-regular graph is a set of disconnected 

vertices, while a 1-regular graph has an even number of vertices, where each vertex is 

connected only with another vertex. Figure 1.10 shows an example of a regular graph (3- 

regular). 

 

 

 
 

Figure 1.10. An example of a regular graph 



23 
 

 
 

1.6.6.7. Finite Graph 

 

 

A finite graph is a graph whose set of its vertices is finite. In the opposite case, the 

graph is called an infinite graph. Most often, the graphs considered tacitly to be finite 

without explicitly saying so. 

 

 

1.6.6.8. Complete Graph 

 

 

A complete graph is a finite simple graph whose all vertices are adjacent, which 

means that any pair of its vertices is connected by an edge. A complete graph with n 

nodes is an (n-1)-regular graph, where each node is connected with the other n-1 nodes. 

The number of edges of a complete graph with n node equals to n(n-1)/2. Figure 1.11 

shows an example of a complete graph with 4 nodes. 

 

 

 
 

Figure 1.11. An example of a complete graph with 4 vertices 

 

 

1.6.6.9. Tree Graph 

 

 

A tree graph is an undirected graph with shape that evokes the ramification of the 

branches of a tree. There are two types of vertices in a tree, leaves whose degree is 1 and 

internal vertices whose degree is greater than 1. A set of trees is called a forest. A finite 

tree is a graph whose number of vertices exceeds the number of edges by exactly one 

unit. A vertex v is chosen in a tree to be root if there is a path from v to all the other 

vertices. Figure 1.12 shows an example of a tree graph where the vertex v1 is its root, and 

the vertices v5, v6 and v7 are its leaves. 



24 
 

 

 

 
 

Figure 1.12. An example of a tree graph 

 

 

1.6.7. Graphs Coloring 

 

 

1.6.7.1. Vertices Coloring 

 

 

Let G = (V, E) be a graph. A subset S of V is a stable if it contains only non-adjacent 

vertices two by two. In the graph shown Figure 1.3 for example, {v1, v5} form a stable, as 

well as {v2, v4}, {v2, v5}, {v3, v4} and {v3, v5}. The coloring of the vertices of a graph 

involves assigning a color to all the vertices of the graph so that two adjacent vertices do 

not have the same color. A coloring with k colors is, therefore, a partition of the set of 

vertices in k stable. Coloring a vertex is just a way to differentiate between that vertex and 

its neighbors, which means that it is not necessarily that the vertices must be drawn with 

colors, but they can be represented with other means such as drawing them with different 

line dashes or labeling them with specific characters. 

On the graph shown in Figure 1.13, three colors (denoted c1, c2 and c3) are needed to 

color the vertices so that two adjacent vertices have different colors. We thus have three 

stables: {v1, v5}, {v2, v4} and {v3}. Figure 1.13 shows a vertices cultured version of the 

graph in Figure 1.3. The coloring of a graph is not necessarily unique. For example in the 

graph shown in Figure 1.13, vertices v2 and v5 could be colored in the same color, and 

also v3 and v5, while v1 can take the remaining color. 

The vertices of a simple graph can be colored using at most four colors so that all 

edges have different colors. This conjecture was formulated for the first time by the South 

African mathematician Francis Guthrie in 1852 [106]. It was then a question of coloring 

geography map where each state is represented with a vertex, while edges represent the 

borders between the states. The proof of this theorem was not ascertained until 1976, 



25 
 

 

 

thanks to Kenneth Appel and Wolfgang Haken [107]. The graphs coloring is used to 

solve some problems of incompatibility issues such as the problems of frequency 

allocation [108], scheduling [109, 110], and parallelism [111]. 

 

 

 
 

Figure  1.13.  A  vertices  colored  version  of  the  graph  in 

Figure 1.3 

 

 

1.6.7.2. Edges Coloring 

 

 

The coloring of graph edges involves assigning a color to every edge, in which two 

adjacent edges do not take the same color. The problem of vertices coloring can be 

adapted to edges coloring. In this circumstance, we will not deal with a graph G itself, but 

we deal with an alternative graph noted G’, where each edge of G = (V, E) is equivalent to 

a vertex of G’ = (E, E’), and two vertices of G’ are connected by an edge if the two 

corresponding edges of G are adjacent. The principles of the vertices coloring can be used 

to color the vertices of G’. Figure 1.14 shows a colored G’ graph based on the represented 

graph in Figure 1.3. Once the coloring of G’ is done, every edge in G will be colored with 

the same color as its corresponding vertices in G’. Figure 1.15 shows an edges colored 

version of the graph in Figure 1.3 based on the graph in Figure 1.14. 



26 
 

 

 

 
 

Figure 1.14. A colored  G’ graph based on the graph in 

Figure 1.3 
 

 

 
 

Figure  1.15.  An  edges  colored  version  of  the  graph  in 

Figure 1.3 

 

 

1.7. Round-Robin Tournament in Graph Theory 

 

 

From a graph theory perspective, a round-robin tournament is a complete directed 

graph. In other words, a graph G = (V, A) is called tournament graph if it is a graph such 

that between any node (or vertex) x and any other  vertex  y,  there exists a directed edge 

a = (x, y). 

The tournament graph represents the results of a tournament in which each 

participant, x and y confronts each other once and only once, where the encounter ends in 

either x wins or y wins. In this case, the nodes represent the participants while the edges 

represent the results of the played games. The directions of the edges are from the winner 

to the loser. 



27 
 

 
 

1.8. Round-Robin Tournament Table 

 

 

1.8.1. Ranking 

 

 

A ranking or standing is a relationship between a set of elements such that, for one 

or more criteria, the first one has a value greater than the second, this in turn greater than 

the third and so on, allowing two or more different elements to have the same position. 

The order is reflected by assigning to each element an ordinal, which is usually a positive 

integer. In this way, to provide a simpler and easier way to understand classification that 

replaces more complex information that can include multiple criteria, detailed 

measurements can be reduced to a sequence of ordinal numbers. 

In many sports, individuals or teams are given rankings. In football for example, 

national teams are classified in the FIFA World Ranking [112]. In the Olympic Games, 

each country is classified based on gold, silver and bronze medal in the Olympic medal 

classifications [113]. In ice hockey, national teams are classified in the IIHF World 

Ranking [114]. With the same principle, the participants of sports competitions such as 

football leagues and qualifications are ranked based on their number of points in the final 

competition table. 

In a situation, where two or more participants are having the same ranking (i.e., the 

same ordinal numbers), one of the following classifications will be taken into account. 

 

 
1.8.1.1. Standard Competition Ranking (1224) 

 

 

In this case, when an ordinal number appears more than once during ranking the 

participants of a competition, the k participants with the same number will have the same 

ranking r, while the ranking of the participant below will be r+k. That means if two (or 

more) participants tie for a position, the positions of all those classified below them are 

not affected. For example, if A is ranked before B and C (which both have the same 

ordinal number), which are ranked before D, then A is ranked the first, B and C are ranked 

second while D is ranked fourth. In this case, no participant would be ranked third and 

this position would remain as a gap. 



28 
 

 
 

1.8.1.2. Modified Competition Ranking (1334) 

 

 

Unlike the previous case, when some participants have the same ranking, the gap in 

the ranking is left before them. In this case, the k participants with the same ordinal 

number will have the same ranking r, while the ranking of the participant below will be 

r+1, where r equals to the ranking of the participant before plus k (which is the number of 

participants with the same ordinal number). As in the previous case, this classification 

means that if two (or more) participants tie for a position, the position of all those 

classified below them are not affected. As an example, when a participant A is ranked 

before B and C which both have the same ordinal number and ranked before D, then A is 

ranked as the first, both B and C are ranked as third, and D as fourth of the classification. 

In this case, no participant would be ranked as second and this position would remain as a 

gap. 

 

 

1.8.1.3. Dense Ranking (1223) 

 

 

In this kind of ranking, the same rank is assigned to the participants with the same 

ordinal number, where the next participant receives immediately the next rank. In this 

case, there is no gap in the ranking, where the k participants with the same ordinal number 

will have the same ranking r, while the ranking of the participant below will be r+1. 

Therefore, in a competition between 4 participants, if a participant A is ranked the first, 

and participants B and C which have the same rank are both ranked after A and ahead of 

D, then B and C share the second rank, and D is the third. 

 

 

1.8.1.4. Ordinal Ranking (1234) 

 

 

All the participants of a competition in this case receive different ranks. In the event 

when two or more participants have the same ordinal number, the assignment of their 

ranks may be arbitrarily, but it is usually preferable to use a system that is arbitrary but 

coherent, such as one that uses the alphabetical order of the participants’ names. In some 

competitions, when two or more participants share an ordinal number, other criteria are 

taken into account to determine the ranks of the participants (i.e., tie-breaking criteria) 

[115]. These criteria are ranked, in such that whenever there is a tie situation the next 



29 
 

 

 

criterion (i.e., the one ranked below) will be considered [116]. With this strategy, if A is 

ranked before B and C (which both have the same rank), which are ranked ahead of D, 

then A is the first, and D is ranked the fourth, while depending on the used criteria to 

break the tie situation, either B is ranked as the second and C as the third, or C is ranked 

as the second and B as the third. 

 

 

1.8.1.5. Fractional Ranking (1 2.5 2.5 4) 

 

 

In this classification, there will be an upper gap and a lower gap in a competition 

where two or more participants have the same ordinal number. Thus, their rank would be 

the average of the ranks of the upper and lower participants, which means that the rank 

would be exactly in the middle. Therefore, if a participant A is ahead of B and C which 

are sharing the same ordinal number and both ranked ahead of D, then A is ranked as the 

first, D obtains the fourth position, and the rank of each of B and C would be the average 

of the first and the fourth positions (i.e., (1+4) / 2 = 2.5). 

 

 

1.8.2. Games Results Table 

 

 

The game results table of a round-robin tournament is a table which represents the 

results of each participant against the others in the form of a matrix. The form of this table 

is somehow similar to the matrix of adjacency which is discussed earlier in Section 

1.6.3.1. For that, this table can be considered as another way to represent a tournament 

graph. Supposing that the graph shown in Figure 1.8 is a tournament graph between 3 

participants (i.e., v1, v2 and v3), Table 1.1 represents the corresponding game results table 

with the graph in Figure 1.8, where the edges a1, a2 and a3 mean that v1 won against v2, v1 

won against v3 and v2 won against v3 respectively. In Table 1.1, a won game is 

represented with 1 while a lost game is represented with 2. 

In general, let G = (V, A) be a tournament graph of order n. We suppose that the 

vertices (or nodes) of V are numbered from 1 to n. The matrix of game results which 

represent G consists of a matrix M of size n × n, where M [i] [j] contains the result of the 

game between the participants i and j. Since  a  participant i  cannot  play against  itself, 

M [i] [i] = 0. The information in the game results (i.e., the results of each participant 



30 
 

 

 

against the others) is used to determine the standing of the participants at the end of the 

tournament. 

 

 

Table 1.1. The corresponding game results table of the graph 

shown in Figure 1.8 
 
 

Participants v1 v2 v3 

v1 0 1 1 

v2 2 0 1 

v3 2 2 0 

 

 

1.8.3. Sport Tournament Table 

 

 

A sport tournament table is a list that shows how successful a participant is 

compared to other participants. Such tables are usually published in newspapers and other 

media like websites. The tournament table shows at least the names of the participants 

and their number of the achieved points or the winning percentage. However, the 

numbers of played games, wins, losses, draws (ties), scored goals, allowed goals, and 

goals difference of each participant are shown in many tournament tables. The 

information of the tournament table is a translation of the game results tables.  For 

example Table 1.2 represents the tournament table which is derived from the game results 

presented in Table 1.1. 

 

 

Table 1.2. The concluded tournament table from Table 1.1 
 
 

Participants Wins Loses 

v1 2 0 

v2 1 1 

v3 0 2 

 

 

The participants in a tournament table are ranked from the best to the worst based 

on a set of criteria such as the number of the gained points, winning percentage, scored 



31 
 

 

 

goals, received goals, etc. The participants’ ranks can be used to determine the winner, 

the promoted, or the relegated participant. The structure of tournament tables differs 

according to the evaluation method and set rules of each sport. Generally, the number of 

points is taken into account as a criterion to rank the participants. The number of points of 

each participant is calculated based on its/his game results. In some sports, to rank a 

participant, the winning percentage is taken instead. 

Some formats of the round-robin tournament tables, which are commonly adopted 

for the big events of different kinds of sports, can be categorized to the following classes 

based on the possible results of games: 

 

 

1.8.3.1. Wins, Draws / Ties and Losses (WDL) 

 

 

A tournament table with this format mainly contains the columns for each of the 

participants, the number of wins (W), the number of draws (D), the number of losses (L) 

and the number of points (Pts). Beside these columns, the tournament tables of sports like 

football [117] and handball [118] also contain other columns related to the goals for (GF), 

goals against (GA), and goals differences (GD). The information in the Pts column (i.e., 

number of points) is the main criterion to rank the participants, where the participants are 

ranked based on the descending order of their numbers of points. The following table 

presents the form of a football/handball round-robin tournament table: 

 

 

Table 1.3. The standard form of a football/handball round-robin tournament 

table 
 
 

Teams W D L GF GA GD Pts 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

 

 

The term scores is used instead of goals in some sports tournaments like in Kabaddi 

[119]. The Kabaddi tournament table contains the same columns as the previous cases 

except for the GF, GA and GD columns, which are changed to be SF, SA, and SD (i.e., 

scores for, scores against, and scores differences respectively) [120]. In the same way, 



32 
 

 

 

rugby uses the term points instead of goals, where its tournament table contains the PF, 

PA, and PD columns instead of GF, GA and GD [121]. 

In regards to the total number of points, there are three systems that are followed by 

the addressed kind of sports in this class of tournament tables. The first system is used in 

football tournaments where each team earns three points for every win (i.e., PW=3) and a 

single point for each draw (i.e., PD=1), while it earns nothing in the case of a loss (i.e., 

PL=0). The second system is used by most of the other kind of sports. It differs from the 

first system because the participant earns two points only instead of three in the case of a 

win (i.e., PW=2). Unlike the other two systems, the adopted point system in the chess 

tournaments states that a player earns a single point in the case of a win (i.e., PW=1), and a 

half of point in the case of a draw (i.e., PD=1/2). 

 

 

1.8.3.2. Wins and Losses (WL) 

 

 

The tournament table of this class does not include D column, which means the 

participants will either win or lose their games. The basketball tournament table, for 

example, contains the same columns as the rugby table except for the D column [122]. 

Table 1.4 presents the form of a basketball round-robin tournament table. 

 

 

Table 1.4. The standard form of a basketball round-robin tournament table 
 
 

Teams W L PF PA PD Pts 

. . . . . . . 

. . . . . . . 

. . . . . . . 

 

 

In regards to the volleyball round-robin tournaments, in addition to the W, L and Pts 

columns, the tournament table includes the columns for each of the number of the won 

sets (SW), the lost sets (SL), and the sets ratio. Also, the table contains columns for the 

total of the scored points (PF), the points against (PA), and the points’ ratio [123]. Table 

1.5 presents the form of a volleyball round-robin tournament table. 

The total number of points in this class of tournament tables is calculated by giving 

the participant two points for a won game (i.e., PW=2) and one point for a lost game (i.e., 



33 
 

 

 

PL=1). The number of points is not always the main criterion to rank the participants. For 

instance, in some kinds of sports tournaments such as lacrosse, the tournament table does 

not include the column Pts, and instead the number of the won games (i.e., the value of 

the column W) is taken into account [124]. 

 

 

Table 1.5. The standard form of a volleyball round-robin tournament table 
 
 

 
Teams 

 
W 

 
L 

 
Pts 

Sets points 

SW SL ratio PF PA ratio 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

 

 

1.8.3.3. Wins X, Y, and Losses (WXYL) 

 

 

This class includes the sport tournament tables which have no column D and contain 

two other columns related to each other, in the same way as the W and L columns. We 

generalize the names of these columns by symbolizing them by X and Y. In this case, 

when two participants A and B play against each other, if A ends the game in X, the result 

for B must be Y. In ice hockey [125], the tournament table is much like the football 

tournaments table except that the D column is replaced with the columns of the overtime 

wins (OTW) and overtime losses (OTL) as X and Y respectively. The evaluation system to 

calculate the total number of points of each participant gives three points to the winner 

(i.e., PW=3), two points to the overtime winner (i.e., POTW=2), a point to the overtime loser 

(i.e., POTL=1), and none to the looser (i.e., PL=0). The following table presents the form of 

an ice hockey round-robin tournament table: 

 

 

Table 1.6. The standard form of an ice hockey round-robin tournament table 
 

 

Teams W OTW OTL L GF GA GD Pts 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 



34 
 

 

 

As X and Y columns, the curling round-robin tournaments table [126] contains the 

shoot-out wins (SOW) and shoot-out losses (SOL) columns respectively. These columns 

(i.e., SOW and SOL) are related to each other in the same way as OTW and OTL, as 

presented in ice hockey tournaments table. The point system in this case is similar to that 

of ice hockey, where each participant is given three points for a won game, two points for 

a shoot-out won game (i.e., PSOW=2), one point for a shoot-out lost game (i.e., PSOL=1), 

and none for a lost game. 

 

 
1.8.3.4. Wins, Losses, Ties / Draws and No Result (WLTNr) 

 

 

This case occurs in the cricket round-robin tournaments [127], where the 

tournament table contains the W, L, T and NR columns. The team is awarded two points 

for a won game (i.e., PW=2), one point for a tied game (i.e., PT=1) or a game with no 

result (i.e., PNR=1), and none for a lost game (i.e., PL=0). Table 1.7 presents the form of a 

cricket round-robin tournament table. 

 

 
Table 1.7. The standard form of a cricket round-robin tournament table 

 
 

Teams W L T NR Pts 

. . . . . . 

. . . . . . 

. . . . . . 

 

 

1.9. Parallel Computing 

 

 

1.9.1. Overview 

 

 

In computer engineering, parallel computing consists of implementing digital 

electronic architectures to make it possible to process information simultaneously, as well 

as the specialized algorithms for this process. These techniques aim to carry out the 

greatest number of operations in the shortest possible time. The processing speed which is 

linked to the increase in the frequency of processors eventually reached its limits. To 

solve this dilemma, multi-core processors have been created for the computers since the 



35 
 

 

 

mid-2000s [128], which made it possible to process several instructions simultaneously 

within the same component. These architectures can be made effective by using new 

methods for programming the various tasks. Such methods were initially developed to be 

used on supercomputers, which were at one time the only machines with many processors 

[129, 130]. After that, multi-core processors became more and more readily used by 

software developers due to the ubiquity of such architectures. 

Certain types of calculations lend themselves particularly well to parallelization, 

such as: fluid dynamics [131], weather predictions [132], modeling and simulation of 

problems of larger dimensions [133, 134], information processing and data mining [135, 

136], decryption of messages [137], password research [138], image processing [139], 

and computer generated imaging [140]. 

 

 

1.9.2. Flynn's Taxonomy 

 

 

Flynn's taxonomy [141] was proposed by the American Michael J. Flynn in 1966, 

which is one of the first created systems to classify computers. Programs and 

architectures are classified according to the type of organization of the data flow and the 

instructions flow. The four models of this classification are shown in Table 1.8. 

 

 

Table 1.8. Flynn's taxonomy 
 
 

 Single instruction Multiple instructions 

Single data SISD MISD 

Multiple data SIMD MIMD 

 

 

1.9.2.1. Single Instruction on Single Data (SISD) 

 

 

Single instruction on single data (shortly called SISD) is a term designating a 

hardware architecture in which a single processor executes a single instruction flow on 

data residing in a single memory. This means that there is no parallelization in this case. 

Figure 1.16 shows a representation of this architecture. 



36 
 

 

 

 
 

Figure 1.16. A representation of the architecture SISD 

 

 

1.9.2.2. Multiple Instructions on Single Data (MISD) 

 

 

Multiple instructions on single data (shortly called MISD) are an architecture which 

designates a mode of operation of computers equipped with various arithmetic and logical 

units operating in parallel. In this model, the same data is processed by several processors 

in parallel. This model can be used in digital signal processing [142] and treating graphics 

algorithms [143]. The architecture MISD is represented by Figure 1.17. 

 

 

 
 

Figure 1.17. A representation of the architecture MISD 

 

 

1.9.2.3. Single Instruction on Multiple Data (SIMD) 

 

 

Single instruction on multiple data (shortly called SIMD) is an architecture which 

designates a mode of operation of computers with parallelism. In this mode, the same 



37 
 

 

 

instruction is applied simultaneously to multiple data to produce multiple results. The 

SIMD model is particularly well suited for treatments whose structure is very regular, as 

is the case for matrix calculation. Generally, applications that take advantage of SIMD 

architectures are those that use a lot of arrays, matrices, or similar data structures [144]. 

Figure 1.18 shows a representation of this architecture. 

 

 

 
 

Figure 1.18. A representation of the architecture SIMD 

 

 
1.9.2.4. Multiple Instructions on Multiple Data (MIMD) 

 

 

Multiple instructions on multiple data (shortly called MIMD) are an architecture 

which designates multi-processor machines where each processor executes its code 

asynchronously and independently. To ensure data consistency in this architecture, it is 

often necessary to synchronize the processors with each other. Besides the newer work of 

networks of workstations, this architecture includes traditional multiprocessors (multicore 

and multi-threaded) [145]. A representation of this architecture is shown in Figure 1.19. 



38 
 

 

 

 
 

Figure 1.19. A representation of the architecture MIMD 
 

 

1.9.3. Threads 

 

 

A thread is a sequence of programmed instructions that can be handled separately 

by a scheduler, which is usually part of the operating system. A thread is similar to a 

process because both represent the execution of a set of machine language instructions. 

From the user's point of view, these executions seem to take place in parallel. However, 

each process has its own virtual memory [146] and all threads can share a common virtual 

memory [147]. In most of cases, programs which use threads are faster than classically 

structured programs, especially on machines with multiple processors. The main cost of 

using the threads is caused by switching the context of the threads [148]. 

Threads based programming (or multi-threading programming) is more rigorous 

than sequential programming, and access to certain shared resources must be restricted by 

the program itself. It is therefore compulsory to set up synchronization mechanisms like, 

for example, using semaphores [149], while keeping in mind that the use of 

synchronization can lead to deadlock [150] situations if it is poorly used. 

The complexity of programs with threads is also significantly greater than that of 

the sequential programs [151]. This increased complexity, when poorly managed during 

the design or implementation phase of a program, can lead to some problems such as 

mutual exclusion [152]. 



39 
 

 
 

1.9.4. Programming Languages and Threads 

 

 

Some programming languages, such as Smalltalk [153] and some Java 

implementations [154] include support for threads implemented in user space (such as 

green threads), regardless of the capabilities of the host operating system. Most languages 

(like: Java, C#, C++, Ruby, etc.) use language extensions or libraries to directly use the 

operating system's multi-threading services. 

Languages like Haskell use a hybrid system halfway between the two approaches 

[155]. Note that, for performance reasons depending on needs, most languages allow the 

use of native threads or green threads. Other languages, such as Ada, implement 

multitasking independent of the operating system without actually using the concept of 

thread [156]. 

Some other programming languages and extensions like OpenCL and Cuda try to 

fully abstract the concept of concurrency and threading from the developer, where they 

are designed to use GPU for sequential parallelism, without requiring concurrency or 

threads. 

 

 

1.10. Algorithmic Complexity 

 

 

1.10.1. Complexity Analysis 

 

 

In computer science, the complexity analysis of a given algorithm consists of the 

formal study of the necessary resources' costs to execute this algorithm (usually execution 

time and memory space). The formal study provides a theoretical estimation for the 

required resources to solve the related computational problem. Most algorithms are 

designed to work with inputs of arbitrary sizes. In general, the complexity of an algorithm 

depends on the sizes and values of its inputs, the number of computer steps required to 

process it and the occupied memory space. 

 

 

1.10.2. Asymptotic Algorithmic Complexity 

 

 

Asymptotic algorithmic complexity is the use of asymptotic analysis to estimate the 

complexity of algorithms and computational problems. The term “complexity” in the field 



40 
 

 

of algorithmic information theory mainly refers to the asymptotic complexity. It is often 

associated with the use of “Big O” notation, which is the upper limit of the asymptotic 

complexity of an algorithm or problem (for example O(n
2
)). 

Calculating the number of operations performed by an algorithm and the required 

memory size may be impossible because of factors like the values of the inputs, the 

number of the iterations, the fulfillment of the conditions and the depth of the recursivity, 

etc. Therefore, using the concept of Big O to give an approximation of the number of 

operations and the memory size of an algorithm is more practical. 

 

 
1.10.3. Big O Notation 

 

 

Supposing that f and g are two functions, we say that f is of the order of g, if there 

exists a constant α and an integer n0 such that: f(n) ≤ α*g(n) for all n n0. In this case, f 

can be denoted as: f(n) = O(g(n)). Figure 1.20 shows an example of Big O notation, where 

f (n) = O(g(n)) as there exists α = 1 and n0 = 8 such that f(n) ≤ g(n) whenever n ≥ 8. 

 

 

 

 
Figure 1.20. An example of Big O notation 

 

 

The Big O notation can be extended to the case where the function f depends on 

multiple variables. For example let f and g be positive functions of two variables; we can 

say that f(n, m) = O(g(n, m)) if there exists a constant α and two integers n0 and m0 such 

that: f(n, m) ≤ α*g(n, m) for all n ≥ n0 and m ≥ m0. 



41 
 

 
 

1.10.4. Properties of Big O 

 
 

 The constants are not important. E.g., O(c*n
k
) = O(n

k
), O(c) = O(1), where c is a 

constant. 

 Lower order terms are negligible. E.g., O(c0  + c1*n + c2*n
2 

+ … + ck*n
k
) = 

O(ck*n
k
) = O(n

k
), where c0, c1, c2, …, ck are constants. 

 Sum of functions: O(f) + O(g) = O(f  + g). 

 Product of functions: O(f) * O(g) = O(f * g). 

 Reflexivity:   f = O(f). 

 Transitivity: if f = O(g) and g = O(h) then f = O(h). 

 

 

1.10.5. A Simple Example of Big O 

 

 

Let us consider the following algorithm which calculates a sum of squares: 

 

 
Inputs: n 
Output: sum 
1: sum ← 0 

2: for i ← 1 to n do 
3:  sum ← sum + i*i 

 

 

We can calculate the time complexity T(n) and the memory space complexity $(n) 

for this algorithm such that t1, t2, t3, t4, and t5 are respectively the execution times of the 

assigning, incrementing, testing, addition, and multiplication, and s is the necessary 

memory space to store an integer. In this case: 

T(n) = t1 + t1 + n*(t3+t5+t4+t1+t2) = 2*t1 + n*∑5
    = c *n + c = O(n) 

 
S(n) = 3*s = c3 = O(1) 

 

 
1.10.6. Algorithmic Complexity Types 

 =1   i 1 2 

Let T(n) be the maximum execution time of an algorithm for a data of size n. In the 

following we present a list of the functions commonly used in the asymptotic algorithmic 

complexity: 



42 
 

 

 T(n) = O(1) (constant time): The execution time is independent of the size of 

data to be processed. 

 T(n) = O(log(n)) (logarithmic time): We generally encounter such complexity 

when the algorithm breaks a big problem into several small ones, so that the 

resolution of only one of these problems leads to the solution of the big problem. 

 T(n) = O(n*log(n)): The algorithm splits the problem into several smaller sub- 

problems which are solved independently. Solving all of these smaller problems 

solves the original one. 

 T(n) = O(n) (linear time): This complexity is generally obtained when the 

algorithm performs in a constant time on each input data. 

 T(n) = O(n
2
) (quadratic time): This appears in particular when the algorithm 

considers all the pairs of data among the n inputs (e.g., two nested loops). 

 T(n) = O(c
n
) (exponential time): It is often the result of a brute search for a 

solution. 

The graphical representations of these functions are illustrated in the following 

figure: 

 

 

 
 

Figure 1.21. The graphical representation of the functions commonly used in the 

asymptotic algorithmic complexity 



43 
 

 
 

1.10.7. Complexity Classes 

 

 

In theoretical computer science, and more precisely in complexity theory, a 

complexity class is a set of algorithmic problems whose resolution requires converging 

amounts of a certain resource (mostly time or memory space). A hierarchy of complexity 

classes is formed with less powerful classes being completely contained in the higher 

complexity classes [157]. Formal methods can be used to relate these classes. 

 

 

1.10.8. P and NP Classes 

 

 

We say that a problem is in P if it can be solved in a polynomial time with respect to 

the size of the input; i.e., if O(f(n)) is the complexity of a problem with an input of size n, 

f(n) must be a polynomial function (e.g., O(n), O(n
2
), O(n

3
), ...). On the other hand, if the 

problem fails to be solved in a polynomial time, but the validity of its output can be 

verified in a polynomial time, we say that the problem is in the NP class. For a problem 

that cannot currently be solved in a polynomial time, we cannot simply claim that it is 

impossible to solve that problem in a polynomial time, but a polynomial solution for it 

may be found in the future. So, we can refer to NP as the class of the problems that are 

solved in a non-deterministic polynomial time [158]. 

The relationship between the classes P and NP can be defined that P is a subset of 

NP [159], but there is no proof yet that P = NP. Although P ≠ NP is not yet proved, 

however, most computer scientists believe it [160]. Figure 1.22 represents P and NP 

classes under the assumption that P ≠ NP. 

 

 

 
 

Figure 1.22. P and NP classes under the assumption that 

P≠NP 



44 
 

 
 

1.10.9. Reduction 

 

 

In computability and complexity theory, the reduction is an algorithm that 

transforms a problem into another one. This algorithm is used to show that a problem is at 

least as difficult as another one [161]; i.e., if a problem A can be reduced to (or 

transformed into) a problem B, and A is difficult, then B is at least as difficult. In some 

cases, a reduction can also be used to show that a problem is easy [161]; i.e., if a problem 

A can be reduced to B, and A is easy, then B is at least as easy. The reduction is called 

polynomial when a problem A can be reduced to be B within a polynomial time [159]. 

 

 

1.10.10. NP-Hard and NP-Complete Classes 

 

 

A problem is belong the class NP-hard if any problem of the class NP can be 

reduced to it in a polynomial reduction. To prove that a problem B is NP-hard, instead of 

reducing all the problems of the class NP to it, it would be enough to select a problem A 

which is known to be NP-hard and reduce it to B in a polynomial time [161]. 

If a problem is in NP and NP-hard classes, this implies that it is an NP-complete 

problem [161, 159]. Figure 1.22 represents each of P, NP, NP-hard and NP-complete 

classes under the assumption that P ≠ NP. 

 

 

 
 

Figure 1.23. P, NP, NP-hard and NP-complete classes under the assumption 

that P ≠ NP 

 

 

1.10.11. An Applied Example (Clique Problem) 

 

 

In this example, we present the proof that the clique problem is an NP-complete 

problem. The clique problem is the problem of determining the maximum sized complete 



45 
 

 

 

sub-graph of a specific graph. For example, the represented graph in Figure 1.24 contains 

a clique of size 4 (i.e., the complete sub-graph consisting of the nodes 1, 2, 3 and 4). 

 

 

 

 

Figure 1.24. A graph with a clique of size 4 

 

 

The clique problem has an exponential time complexity [163] (i.e., non- 

deterministic polynomial time). On the opposite side, verifying that a graph with n nodes 

contains a clique of size k can be done in polynomial time [162]. So, based on what is 

explained in Section 1.10.8, we can say that the clique problem is an NP problem and not 

a P problem. 

Based on Section 1.10.10, in order to prove that the clique problem is an NP-hard 

problem, we have to select a known NP-hard problem and reduce it to the clique problem. 

Boolean satisfiability problem (shortly SAT) is an NP-complete problem [164] (i.e., NP- 

hard) that can be reduced to a clique problem. The SAT problem is a decision problem, 

which, given a propositional logic formula, determines whether there is an assignment of 

variables that makes the formula true. For example, given the following conjunctive 
normal form (shortly CNF):   = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x3), the values x1=1, x2=1 and x3=0 satisfies   (i.e.,   = 1). Each of (x1  ∨ x2), (¬x1  ∨ ¬x2) and (x1  ∨ x3) is called a clause. To reduce the represented SAT problem by   to a clique  problem,   must be represented  by  a  graph.  To  transform     into  a  graph,  the  following  rules  must  be respected [162]: 

 For CNF = C1 ∧ C2 ∧ ... ∧ Cn, where each Ci  = Li,1  ∨ Li,2  ∨ ... ∨ Li,m, we place 
each Li,j as a node. 

 There would be an edge between every two nodes unless they are from the same 

clause or one is the negation of the other. 



46 
 

 

For a CNF with n number of Li,j, transforming it into a graph requires a time 

complexity of O(n
2
). Thus, we can say that the reduction is done in polynomial time. By 

applying the transformation rules on  , we get the represented graph in Figure 1.25. 
The resulted graph from a CNF with k clauses contains at least a clique of size k as 

the clique with the maximum size. We can see that the graph in Figure 1.25 contains 3 

cliques of size 3. When we represent each node of those cliques with 1 (i.e, a true value), 
  must be satisfied. For example, the represented clique by x1 of C1, ¬x2 of C2, and x3 of C3 implies that x1=1, x2=0 and x3=1. In this case,   = (1 ∨ 0) ∧ (0 ∨ 1) ∧ (1 ∨ 1) = 1. 

 

 

 
Figure 1.25. Transforming   = (x1  ∨ x2) ∧ (¬x1  ∨ ¬x2) ∧ (x1  ∨  x3) 

into a graph 
 

 
Since a CNF problem is reduced into a clique problem in polynomial time and CNF 

problem is an NP-hard problem, we can say that the clique problem is an NP-hard 

problem. Given that the clique problem is an NP problem, we can also say that it is an 

NP-complete problem. 



 

 

2. THE ACHIEVED WORK 

 

2.1. Introduction 

 
 

The study presented in this thesis aims to determine and enumerate all the possible 

states of the final tables for single round-robin tournaments. A table state obviously 

corresponds to a set of data components residing in that table, varying in range and 

number of values among different sports disciplines. Therefore, an analysis of the final 

table data is made for some popular sports disciplines such as football and basketball. 

Each participant in a sports tournament has a final position based upon their standings 

related to game results. The measure of standings differs according to sports disciplines. 

They are basically associated with the values such as W, D and L in the case of football, 

W and L in the case of basketball, W, OTW, OTL, and L in the case of ice hockey, and W, 

L, T, and NR in the case of the cricket. Firstly, we generalize tournament graphs to 

contain different sports disciplines, which are previously presented in Section 1.8.3. Then 

two result-based approaches are described to enumerate the possible states of a final 

tournament table. 

The first approach generates every possible state and seeks to prove its validity, 

trying to construct a tournament graph based on that state. In this approach, the state is 

taken into account as a valid state only if at least one tournament graph can be sought. 

The second approach is based on the generation of every possible tournament graph, from 

which then its corresponding state is derived. In this approach, the state is taken into 

account only if it is not already found. To optimize the search space of both approaches, 

some general constraints are proposed in terms of the standings and points of the 

participants. Besides, a multi-threading based parallelization technique is implemented to 

enhance the performance of the approaches, assigning their non-overlapping operations to 

different threads. 

Since the first approach starts by generating a state of a final tournament table and 

ends with trying to build a tournament graph based on it, we call it the backward 

generating approach. Similarly, as the second approach starts by generation a tournament 

graph and ends with concluding its corresponding state of tournament final table, we call 

it the forward generation approach. The control flow diagram of each approach is shown 

in Figure 2.1 and Figure 2.2. 



48 
 

 

 

 

 
 

Figure  2.1.  The  control  flow  diagram  of  the  backward 

approach 
 

 

 
 

Figure  2.2.  The  control  flow  diagram  of  the  forward 

approach 



49 
 

 
 

2.2. Classification of Game Results 

 

 

As seen in Section 1.8.3, there are some dependencies among the table columns that 

hold game results. The result of a game can affect the data on more than one column. 

Considering the relationship of the columns to each other, we define two sets that contain 

game results; namely C1 and C2. 

The set C1 holds game results which can change the data on at least two columns of 

the tournament table. Let R1 and R2 denote two distinct game results. When a participant 

A plays against another participant B, the result of the game is differently interpreted for 

two teams. If the game is ended in R1 for A, the result for B will be R2. An example of 

such game results is W (Wins) and L (Losses); that is, the fact that a team A wins against 

another team B means that B loses the game. The game results are held as pairs of 

{R1, R2} in C1, expressing that, if R1 is related to R2, neither R1 nor R2 can be related to 

other possible game results. For example, in the case of the ice hockey table, W is related 

to L and OTW is related to OTL, but W is not related to either OTW or to OTL, and as 

well as L. Thus, C1 can be represented as {{W, L},{OTW, OTL}}, which leads to the 

general form in Eq. (2.1). 

 

C1={{R1, R2},{ R3, R4}, ..., {R2q-1, R2q}}, where q = |C1| (2.1) 

 
 

The other set C2 contains game results which are related to the data on only one 

column of the tournament table. Let R denote a game result. When a participant A plays 

against B, the game is ended in R for both A and B. A typical example of such game 

results is D (Draws). Given cricket tournaments, C2 can be represented as {T, NR}. 

However, C2 can also be empty, as in the case of basketball tournament tables. In general, 

the set C2 is written in the general form given by Eq. (2.2). 

 
C2={R2q+1, R2q+2, ..., R2q+r-1, R2q+r}, where q = |C1| and r = |C2| (2.2) 

 
 

Table 2.1 shows the sets C1 and C2 for the tournament tables of some sports 

disciplines given in Section 1.8.3. 



50 
 

 

 

Table 2.1. The sets C1 and C2 for the tournament tables given in Section 1.8.3 
 
 

Sports Game Results C1 C2 

Football, rugby, 

handball, chess 
W, D and L {{W, L}} {D} 

Basketball, volleyball, 

tennis, lacrosse 
W and L {{W, L}} {} 

Ice hockey W, OTW, OTL and L {{W, L}, {OTW, OTL}} {} 

Curling W, SOW, SOL and L {{W, L}, {SOW, SOL}} {} 

Cricket W, L, T and NR {{W, L}} {T, NR} 

 

 

2.3. General Concepts of a Final Tournament Table 

 

 

2.3.1. Played Games 

 

 

In a round-robin tournament, every participant plays against all other participants. In 

general, the number of games played by a participant in a tournament between n 

participants is given by Eq. (2.3). 

 

gP = n - 1 (2.3) 

 
 

It is clear that the set of all the played games consists of possible ways to select two 

participants from the set of all participants without taking the order into account. Hence, 

the total number of the games which is played by the end of the tournament can be 

obtained based on Eq. (2.4). 

 

g = C(n, 2) = n!/2!(n - 2)!  = n(n -1)/2 (2.4) 

 

 

Let us consider a tournament with n = 4 participants of A, B, C and D. In this case, a 

participant (for example, A) plays a total of n - 1 = 3 games against the others (i.e., B, C 

and  D).  The tournament  contains  a  total  of   6   games   represented   by  the   set 

Sg(4) = {{A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}}. 



51 
 

 =1 

 
 

2.3.2. Possible Game Results 

 

 

Tournament tables hold some properties associated with the values of game results. 

In a tournament table, the total number of game results from the set C2 would be even, 

and the sum of the first elements of each pair from the set C1 would be equal to the sum 

of the second elements. This follows from the fact that each game in a tournament 

contributes either two to an element in C2 or one to each element of a pair in C1. 

In a final football tournament table, for example, each game in the tournament 

contributes either two to the total number of draws or one to the total number of wins and 

one to the total number of losses. For 1 ≤ k ≤ n, we denote by W(k), D(k) and L(k) 

respectively the numbers of the won, drawn, and lost games by team T(k). Thus, the 

relations between the football game results can be formalized by: 

 

0 ≤ W(k), D(k), L(k)  ≤ n - 1 (2.5) 
 

 
  

 =1  (k)] ≡ 0 mod 2 (2.6) 
  

 =1  (k) = ∑   (k) (2.7) 

Each of relations (2.5), (2.6) and (2.7) can be generalized to cover tournament tables 

of other sports as follows: 

 

0 ≤ R1(k), R2(k), ..., R2q+r(k) ≤ n -1 (2.8) 
 
 

[∑    (k)] ≡ 0 mod 2, where R  ∊ 
C 

(2.9) 

 =1      j j 2 

∑    (k) = 
∑  

  (k), where {R , 

R 

} ∊ C (2.10) 

 =1     i  =1     

i+1 

i i+1 1 

In a final tournament table, the sum of corresponding values of the game results for 

each participant is equal to the number of the games played by each participant gP. I.e.: 

gP = ∑2 
   (k) +  ∑2 + 

   (k), where 1 ≤ k ≤ n (2.11) 

 =1     i  =2 +1     j 

[∑ 

∑ 



52 
 

 

 

Table 2.2 shows the final table of Group B in the 2018 FIFA World Cup [165]. 

There are four teams playing against each other in a single round-robin tournament, 

where each team played 3 games. In Table 2.2, gP equals to the sum of W, D and L for 

each team at any position k, i.e.: gP = 1+2+0 = 1+2+0 = 1+1+1 = 0+1+2 = 3. 

 
 

Table 2.2. The final table of group B in the 2018 FIFA World Cup 
 
 

Team W D L Pts 

Spain 1 2 0 5 

Portugal 1 2 0 5 

Iran 1 1 1 4 

Morocco 0 1 2 1 

 

 

Table  2.3  shows  the  application  of  Eq.  (2.11)  for  the  final  tournament  tables 

presented in Section 1.8.3: 

 

 

Table 2.3. Application of Eq. (2.11) for the final tournament tables given in Section 1.8.3 
 
 

Sports C1 C2 gp 

Football, rugby, 

handball, chess 
{{W, L}} {D} W(k) + L(k) + D(k) 

Basketball, volleyball, 

tennis, lacrosse 
{{W, L}} {} W(k) + L(k) 

 

Ice hockey 
{{W, L}, 

{OTW, OTL}} 

 

{} 
 

W(k) + L(k) + OTW(k) + OTL(k) 

 

Curling 
{{W, L}, 

{SOW, SOL}} 

 

{} 
 

W(k) + L(k) + SOW(k) + SOL(k) 

Cricket {{W, L}} {T, NR} W(k) + L(k) + T(k) + NR(k) 

 

 

Table 2.4 shows the final table of Group A in the 2014 FIBA Basketball World Cup 

[166]. Six teams are participating in this group, where each team played 5 games. The 

total number of the played games g can be calculated based on the values of W and L 

using the following relation: 



53 
 

 =1 

 =1  =1  =1 

 

  

 =1  (k) = ∑   (k), where 1 ≤ k ≤ n (2.12) 

By applying Eq. (2.12) on the data of Table 2.4 we find that: g = 5+4+3+2+1+0 = 

0+1+2+3+4+5 = 15. 

 

 

Table 2.4. The final table of Group A in the 2014 FIBA Basketball 

World Cup 
 
 

Team W L Pts 

Spain 5 0 10 

Brazil 4 1 9 

France 3 2 8 

Serbia 2 4 7 

Iran 1 4 6 

Egypt 0 5 5 

 

 

Since C2 = {} for basketball tournaments, we cannot rely on Eq. (2.12) to calculate 

g, for example, for the case of football. The total number of the played games in Table 2.2 

can be calculated based on the values of W, D and L by the following relation: 

 
  

 =1  (k)] + [∑   (k)]/2 = [∑   (k)] + [∑   (k)]/2, 

where 1 ≤ k ≤ n (2.13) 
 

 

By applying Eq. (2.13) on the data of Table 2.2 we find that: g = (1+1+1+0) + 

(2+2+1+1)/2 = (0+0+1+2) + (2+2+1+1)/2 = 6. 

To write a more general relation than Eq. (2.13) which can cover all the cases of 

final sports tournament tables, we assume that there is an n-participant tournament, where 

C1 and C2 contain q pairs and r elements, respectively. Thus, the general relation can be 

given as follows: 

 
g = 
[∑  

∑ 
 

  

(k)] + 
[∑  

∑ 
 

  

(k)]/2 

 =1  =1 
2u-1 

 =1  =1    2q+v 
= [∑  ∑      (k)] + 

[∑  
∑  

  

(k)]/2 (2.14) 

 =1  =1     2u  =1 

g = ∑ 

g = [∑ 



54 
 

 =1    2q+v 



55 
 

 

 

Table  2.5  shows  the  application  of  Eq.  (2.14)  for  the  final  tournament  tables 

presented in Section 1.8.3: 

 

 

Table 2.5. Application of Eq. (2.14) for the final tournament tables given in Section 1.8.3 
 
 

Sports C1 C2 g 

Football, rugby, 

handball, chess 

 

{{W, L}} 
 

{D} 

[∑   (k)] + [∑   (k)]/2 = 
 =1  =1 

[∑   (k)] + [∑   (k)]/2 

 =1  =1 

Basketball, volleyball, 

tennis, lacrosse 
{{W, L}} {} 

[∑   (k)] = [∑   (k)] 

 =1  =1 

 

Ice hockey 
{{W, L}, 

{OTW, OTL}} 

 

{} 

[∑   (k)] + [∑      (k)]  = 
 =1  =1 
[∑   (k)] + [∑      (k)] 

 =1  =1 

 

Curling 
{{W, L}, 

{SOW, SOL}} 

 

{} 

[∑   (k)] + [∑      (k)]  = 
 =1  =1 
[∑   (k)] + [∑      (k)] 

 =1  =1 

 

Cricket 

 

{{W, L}} 

 

{T, NR} 

[∑   (k)] + [[∑   (k)] + 
 =1  =1 

[∑     (k)]]/2 = [∑   (k)] + 
 =1  =1 

[[∑   (k)] + [∑    (k)]]/2 

 =1  =1 

 

 

2.3.3. Total Number of Points 

 

 

The participants of a sport tournament get a specific number of points for each 

game result. In the case of football tournaments, for example, a team at the kth position of 

the final table gets 3 points for a won game, 1 point for a drawn game, and none for a lost 

game. In this case, the total number of points, P(k), gained by a team at the kth position is 

calculated based on the following relation: 

 

Pts(k) = 3W(k) + D(k), where 1 ≤ k ≤ n (2.15) 

 

 

To generalize Eq. (2.15), we suppose that Pi is the number of points which is gained 

from a game in Ri, where 1 ≤ i ≤ 2q+r. In this case, Eq. (2.15) can be generalized as 

follows: 

Pts(k) = ∑2 +    (k)*P , where 1 ≤ k ≤ n (2.16) 

 =1 i i 



56 
 

 

 

Additionally, the total points scored by a participant at the kth position must be 

greater or equal to those scored by the next participant (i.e., the one at the (k+1)th 

position), resulting in the following relation must be valid: 

 

Pts(k) ≥ Pts(k+1), where 1 ≤ k ≤ n - 1 (2.17) 

 

 

There is a case when the number of the won games is taken into account as the main 

metric to rank the participants as in the sport of lacrosse, which is shown in Section 

1.8.3.2. In this circumstance, the number of the games, W(k), won by every participant is 

considered as the number of points, Pts(k). 

 

 
2.3.4. Set of the Possible Games Results 

 

 

For a 4-team round-robin basketball tournament, the general set of the possible W 

and L values (WL) that might be gained by a team is SWL(4) = {(3, 0), (2, 1), (0, 2), 

(0, 3)}. In this case, there are 4 possible values for WL. Generally, the set SWL(n) can be 

generated as follows: 

SWL(n) = {(w, l) | ∀ w ϵ {0, 1, ... , n - 1}, ∀ l ϵ {0, 1, ... , n - 1}, 

w + l = n - 1} (2.18) 
 

 

In a round-robin football tournament with 4 teams, the general set of the possible 

W, D and L values (WDL) that might be gained by a  team will  be SWDL(4) = {(3, 0, 0), 

(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}. In this 

case, there are ten possible values for WDL. In general, SWDL(n) can be generated as 

follows: 

SWDL(n) = {(w, d, l) | ∀ w ϵ {0, 1, ... , n - 1}, ∀ d ϵ {0, 1, ... , n - 1}, 

∀ l ϵ {0, 1, ... , n - 1}, w + l = n - 1} (2.19) 

For a tournament with n teams and a number of possible game results equals to 

2q+r, the set S(n, 2q+r) can be generated as follows: 



57 
 

 

S(n, 2q+r) = {{r1, r2, ..., r2q+r} | ∀ r1 ϵ {0, 1, ... , n - 1}, 

∀ r2 ϵ {0, 1, ... , n - 1}, ..., (2.20) 

∀ r2q+r ϵ {0, 1, ... , n - 1}, 
r1 + r2 + ...+ r2q+r = n - 1} 

 

 
We suppose that the columns of possible game results are positioned in the final 

tournament table as (R1, R2, …, R2q+r). In this way, the elements in the set S can be 

determined through some simple arithmetic operations. For example, the first element of 

S corresponds to the one with R1 = n-1 and Ri = 0, where 2 ≤ i ≤ 2q+r; that is, the first 

element has the form (n-1, 0, ..., 0). Based on the first element of S, the other elements 

can be generated, which will have the form (n-1-j, j, 0, ..., 0), where 1 ≤ j ≤ n-1. To 

differentiate between the elements, we suppose that the first element is at layer 1, while 

the elements generated from this one are at layer 2. The elements of layer 2 can be used to 

generate the elements of another layer (layer 3) with the same principle, where R2 and R3 

will be taken into account instead of R1 and R2. By applying the same process on each 

new layer, all the elements of S will be generated up to layer 2q+r. 

The process of generating the elements of S can be represented by a tree data 

structure, where the root node of the tree contains the element at layer 1 and the leaves 

contain the elements of layer 2q+r. Figure 2.3 shows the corresponding tree of the set 

S(4, 2), while Figure 2.4 represents the corresponding tree of S(4, 3). 

 

 

 
 

Figure 2.3. The corresponding tree of S(4, 2) 



58 
 

 =1 

 =1 

 

 

 
 

Figure 2.4. The corresponding tree of S(4, 3) 

 

 

The number of the elements of S can be calculated via the number of the nodes of 

its corresponding tree. It is obvious that the number of the nodes in the tree presented in 

Figure 2.3 is 4, which means that |S(4, 2)| = 4. The value of |S(4, 2)| can be calculated 

from the fact that there is only one node in layer 1 (root), and 3 branches are outgoing 

from that node, where each branch leads to a leaf. In this case |S(n, 2)| can be written as: 

 

|S(n, 2)| = 1 + n - 1 = 1 + ∑ −1  

1 

(2.21) 

When the number of game results is greater than two, Eq. (2.21) will not be of 

much practical use, and there will be a need to use a recursive function to cover all the 

possible nodes. Such a recursive function must involve two parameters, where one of 

them indicates the number of layer (i.e. tree depth), which is also an index to a game 

result in the final tournament table. The other parameter indicates the value of the game 

result which is currently handled. Let us suppose that a function f calculates the number 

of all the nodes which can be generated based on a specific node in a specific layer. At a 

layer l, where the value of Rl is rl, the number of the nodes that can be generated based on 

the related node can be calculated using the function f as follows: 

 

f(l, rl) = 1 +  ∑    (l+1, v) 

f(2q+r, x) = 1, where 1 ≤ x ≤ n-1 (2.22) 
 
 

To calculate the number of the elements in a set S(n, 2q+r) of an n-participant 

tournament table with 2q+r possible game results, it will be enough to call the function f 

with  the  related  parameters  to  the  root  (l=1 and rl=n-1).  In  this  case,  we  can  write 

|S(n, 2q+r)| as: 



59 
 

 

 

|S(n, 2q+r)| = f(1, n-1) (2.23) 

 

 

The number of the nodes in the tree given in Figure 2.4 (|S(4, 3)|) can be calculated 

using Eq. (2.23) as follows: 

|S(4, 3)| = f(1, 3) 

f(1, 3) = 1 + f(2, 1) + f(2, 2) + f(2, 3) 

f(2, 1) = 1+ f(3, 1) 

f(2, 2) = 1+ f(3, 1) + f(3, 2) 

f(2, 3) = 1+ f(3, 1) + f(3, 2) + f(3, 3) 

f(3, 1) = f(3, 2) = f(3, 3) = 1 

f(2, 1) = 1 + 1 = 2 

f(2, 2) = 1+ 1 + 1 = 3 

f(2, 3) = 1+ 1 + 1 + 1 = 4 

|S(4, 3)| = f(1, 3) = 1 + 2 + 3 + 4 = 10 

Table  2.6  shows  the  application  of  Eq.  (2.23)  for  the  final  tournament  tables 

presented in Section 1.8.3: 

 

 

Table 2.6. Application of Eq. (2.23) for the final tournament tables presented in Section 

1.8.3 
 
 

Sports C1 C2 |S(n, 2q+r)| 

Football, rugby, 

handball, chess 

 

{{W, L}} 
 

{D} 

|S(n, 3)| =  ∑    = 

 =1 
n(n+1)/2 

Basketball, volleyball, 

tennis, lacrosse 
{{W, L}} {} 

|S(n, 2)| =  ∑  1 = n 

 =1 

 

Ice hockey 

 

{{W, L}, 

{OTW, OTL}} 

 

{} 

  
|S(n, 4)| = ∑ ∑    = 

 =1 
 =1   

∑ [j(j+1)/2] 

 =1 

 

Curling 

 

{{W, L}, 

{SOW, SOL}} 

 

{} 

  
|S(n, 4)| = ∑ ∑    = 

 =1 
 =1   

∑ [j(j+1)/2] 

 =1 

 

Cricket 

 

{{W, L}} 

 

{T, NR} 

  
|S(n, 4)| = ∑ ∑    = 

 =1 
 =1   

∑ [j(j+1)/2] 

 =1 



60 
 

 
 

2.3.5. Game Result Cases 

 

 

In a tournament, a single game can have 2q+r different results, namely R1, R2, ... 

R2q+r, where q is the number of the pairs of C1 and r is the number of the elements of C2. 

We call each result case a possible result of played games. In a tournament of n 

participants, each participant can achieve one of (2q+r)
n−1 

different result cases. Given a 

football tournament with n = 4 teams, for a single team, the set of the possible result cases 

would contain 3
4−1 

= 27 different result cases. 

Tables 2.7 and 2.8 show respectively the possible result cases which can be 

achieved by a participant playing 3 games in the case of tournament tables with WL and 

WDL game results, while Table 2.9 shows the possible result cases which can be achieved 

by a participant playing the same number of games in the case of tournament tables with 

WXYL and WLTNr game results. In the case of  WL,  for example, the  result case of 

(1, 1, 2) means that the first and the second games end in a win, and the last game ends in 

a loss, while the result case of (1, 3, 2) in the case of WDL means that the first game ends 

in a win, the second ends in a draw, and the last one ends in a loss. The resulting case of 

(4, 1, 3) in the case of WLTNr means that the first game ends with no results, the second 

game ends in a win, and the last one ends in a tie, while the same result case in the case of 

WXYL means that the first game ends in Y (OTL or SOL), the second one ends in a win, 

and the last ends in X (OTW or SOW). 

 

 

Table 2.7. Possible result cases in a 4-participant tournament with 

game results of WL 
 
 

WL Result cases 

(3, 0) (1, 1, 1) 

(2, 1) (1, 1, 2), (1, 2, 1), (2, 1, 1) 

(1, 2) (1, 2, 2), (2, 1, 2), (2, 2, 1) 

(0, 2) (2, 2, 2) 



61 
 

 

 

Table 2.8. Possible result cases in a 4-participant tournament with game results 

of WDL 
 
 

WDL Result cases 

(3, 0, 0) (1, 1, 1) 

(2, 1, 0) (1, 1, 3), (1, 3, 1), (3, 1, 1) 

(2, 0, 1) (1, 1, 2), (1, 2, 1), (2, 1, 1) 

(1, 2, 0) (1, 3, 3), (3, 1, 3), (3, 3, 1) 

(1, 1, 1) (1, 3, 2), (1, 2, 3), (3, 1, 2), (3, 2, 1), (2, 1, 3), (2, 3, 1) 

(1, 0, 2) (1, 2, 2), (2, 1, 2), (2, 2, 1) 

(0, 3, 0) (3, 3, 3) 

(0, 2, 1) (3, 3, 2), (3, 2, 3), (2, 3, 3) 

(0, 1, 2) (3, 2, 2), (2, 3, 2), (2, 2, 3) 

(0, 0, 3) (2, 2, 2) 



62 
 

 

 

Table 2.9. Possible result cases in a 4-participants tournament with game results   of 

WXYL and WLTNr 
 
 

WXYL / WLTNr 
Result cases in the case of 

WXYL 

Result cases in the case of 

WLTNr 

(3, 0, 0, 0) (1, 1, 1) (1, 1, 1) 

(2, 1, 0, 0) (1, 1, 3), (1, 3, 1), (3, 1, 1) (1, 1, 2), (1, 2, 1), (2, 1, 1) 

(2, 0, 1, 0) (1, 1, 4), (1, 4, 1), (4, 1, 1) (1, 1, 3), (1, 3, 1), (3, 1, 1) 

(2, 0, 0, 1) (1, 1, 2), (1, 2, 1), (2, 1, 1) (1, 1, 4), (1, 4, 1), (4, 1, 1) 

(1, 2, 0, 0) (1, 3, 3), (3, 1, 3), (3, 3, 1) (1, 2, 2), (2, 1, 2), (2, 2, 1) 

(1, 1, 1, 0) 
(1, 3, 4), (1, 4, 3), (3, 1, 4), 

(3, 4, 1), (4, 1, 3), (4, 3, 1) 

(1, 3, 2), (1, 2, 3), (3, 1, 2), 

(3, 2, 1), (2, 1, 3), (2, 3, 1) 

(1, 1, 0, 1) 
(1, 3, 2), (1, 2, 3), (3, 1, 2), 

(3, 2, 1), (2, 1, 3), (2, 3, 1) 

(1, 4, 2), (1, 2, 4), (4, 1, 2), 

(4, 2, 1), (2, 1, 4), (2, 4, 1) 

(1, 0, 2, 0) (1, 4, 4), (4, 1, 4), (4, 4, 1) (1, 3, 3), (3, 1, 3), (3, 3, 1) 

(1, 0, 1, 1) 
(1, 4, 2), (1, 2, 4), (4, 1, 2), 

(4, 2, 1), (2, 1, 4), (2, 4, 1) 

(1, 3, 4), (1, 4, 3), (3, 1, 4), 

(3, 4, 1), (4, 1, 3), (4, 3, 1) 

(1, 0, 0, 2) (1, 2, 2), (2, 1, 2), (2, 2, 1) (1, 4, 4), (4, 1, 4), (4, 4, 1) 

(0, 3, 0, 0) (3, 3, 3) (2, 2, 2) 

(0, 2, 1, 0) (3, 3, 4), (3, 4, 3), (4, 3, 3) (3, 2, 2), (2, 3, 2), (2, 2, 3) 

(0, 2, 0, 1) (3, 3, 2), (3, 2, 3), (2, 3, 3) (4, 2, 2), (2, 4, 2), (2, 2, 4) 

(0, 1, 2, 0) (3, 4, 4), (4, 3, 4), (4, 4, 3) (3, 3, 2), (3, 2, 3), (2, 3, 3) 

(0, 1, 1, 1) 
(3, 4, 2), (3, 2, 4), (4, 3, 2), 

(4, 2, 3), (2, 3, 4), (2, 4, 3) 

(3, 2, 4), (3, 4, 2), (4, 3, 2), 

(4, 2, 3), (2, 3, 4), (2, 4, 3) 

(0, 1, 0, 2) (3, 2, 2), (2, 3, 2), (2, 2, 3) (4, 4, 2), (4, 2, 4), (2, 4, 4) 

(0, 0, 3, 0) (4, 4, 4) (3, 3, 3) 

(0, 0, 2, 1) (4, 4, 2), (4, 2, 4), (2, 4, 4) (3, 3, 4), (3, 4, 3), (4, 3, 3) 

(0, 0, 1, 2) (4, 2, 2), (2, 4, 2), (2, 2, 4) (3, 4, 4), (4, 3, 4), (4, 4, 3) 

(0, 0, 0, 3) (2, 2, 2) (4, 4, 4) 

 

 

It is quite possible that a single game result can be generated by many different 

result cases. As seen in Table 2.7, there are 1 or 3 result cases for a single value of WL, 

while in Tables 2.8 and 2.9, there are 1, 3 or 6 result cases for a single value of WDL, 



63 
 

 

 

WXYL or WLTNr. The number of the result cases based on a particular one of possible 

game results for a kth participant playing n-1 games is simply given by: 

 

NRC(k) = (R1+R2+ ... +R2q+r)!/(R1! R2! ... R2q+r!) 

= (n-1)!/(R1! R2! ... R2q+r!) (2.24) 

 
 

Table 2.10 shows the application of Eq. (2.24) for the tournament tables presented 

in Section 1.8.3: 

 

 

Table 2.10. Application of Eq. (2.24) in the case of the tournament tables presented in 

Section 1.8.3 
 
 

Sports C1 C2 NRC(k) 

Football, rugby, 

handball, chess 
{{W, L}} {D} (n-1)!/(W! L! D!) 

Basketball, volleyball, 

tennis, lacrosse 
{{W, L}} {} (n-1)!/(W! L!) 

 

Ice hockey 
{{W, L}, 

{OTW, OTL}} 

 

{} 
 

(n-1)!/(W! L! OTW! OTL!) 

 

Curling 
{{W, L}, 

{SOW, SOL}} 

 

{} 
 

(n-1)!/(W! L! SOW! SOL!) 

Cricket {{W, L}} {T, NR} (n-1)!/( W! L! T! NR!) 

 

 

As one can see, result cases are considerably different from the values of R1, R2, ..., 

R2q+r, although both can consist of the same digits. A result case refers to one possible 

result of each played game, while the values of R1, R2, ..., R2q+r represent the number of 

games which was ended in R1, R2, ..., R2q+r. So, the size of a result case (i.e., the number 

of its digits) equals to the number of the played games. 

The notion of result case helps to estimate the maximum size of the search space for 

the problem of finding all possible tournaments graphs, and therefore the tables of the 

games results. Let us firstly investigate the cases in which there occurs the maximum 

number of result cases. In a tournament with n participants, each participant plays totally 

n-1 games which end up with one of result cases counted by Eq. (2.24). The values of 

(R1, R2, ..., R2q+r) obviously vary within the range of (n-1, 0, ..., 0) to (0, 0, ..., n-1), 



64 
 

 

 

possibly generating different numbers of result cases. From Eq. (2.24) we observe that the 

largest number of the result cases would occur when R1, R2, ..., R2q+r values take the same 

or very close values. For example, for n = 10, a team in a football tournament with the 

WDL value of (3, 3, 3) would cause the maximum number of 9!/(3!3!3!) = 1680 result 

cases, while a team with WL value of (5, 4) or (4, 5) in a basketball tournament would 

cause the maximum number of 9!/(5!4!) = 9!/(4!5!) = 126 result cases. On the other hand, 

when all the games end in a result which belongs to C2 (i.e., R2q+1, R2q+2, ..., or R2q+r) the 

participants receive the same R1, R2, ..., R2q+r values. In this case there is only one result 

case for each participant. 

In order to find the possible tournament graphs, a blind search algorithm needs to 

select and evaluate all the result cases of the teams in the worst case. So the total number 

of the resulting selections can be computed by the relation: 

 
BRC(n) = 
∏ 

 

  (k) = 
N 

(1) * N (2) * ... * N (n) (2.25) 

 =0 RC RC RC RC 

However, given the fact that the result cases of the teams are tied to each other, after 

a result case of a team is selected, the number of the result case selections of  the 

remaining teams would be less. This implies that there is no need for iterations over all 

the elements in BRC(n) for obtaining the possible game results. 

 
 

2.3.6. Uniform Final States 
 

When the set C2 is not empty and all the games are ended in Rj, where Rj ∈ C2, all 
the  participants  will  have  the  same  values  of  game  results  that  lead  to  a  uniform 

distribution of WDLs at the final tournament table. Thus, they will have the same number 

of points. For example, in a football tournament, if all games are ended in a draw, all the 

n participating teams will have the same values of WDL, with the general form (0, n-1, 0). 

In actual fact, there are other cases in which each participant has the same values of 

R1, R2, ..., R2q+r. We define a uniform final state of the tournament table to be a state in 

which all the teams have the same values of R1, R2, ..., R2q+r. The set of such values in the 

case of a football tournament can be generated by: 

SUfootball(n) = {(x, n-2x-1, x) | ∀ x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}} (2.26) 



65 
 

 

 

To generalize Eq. (2.26) to be suitable for other sports where the set C2 is not 

empty, each component of a pair from C1 take the value x, and an element from C2 takes 

the value n-2x-1, while all the remaining elements of game results are zero. In this case 

the Eq. (2.26) can be written as: 

SU(n) = {{x, n-2x-1, x, 0, ... , 0} | ∀ x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}} (2.27) 

The number of the elements in the set SU (|SU|) can be calculated by using the 

following relation: 

 
 

|SU(n)| = r(q(n-3)/2+1)+q, where n is odd 

= r(q(n-2)/2+1), where n is even (2.28) 

 

 
Given that there is a tournament T1 with C1={{R1, R2}, {R3, R4}} and C2={R5, R6}, 

the order of the possible game results in the final tournament table is R1, R3, R5, R6, R4 and 

R2. The possible uniform final states of the tournament table in the case of football, rugby, 

handball and chess are shown in Tables 2.11. Table 2.12 presents the possible 

uniform states of the final table in the case of cricket tournaments, while Tables 2.13 

shows the uniform states of the final table of T1. The number of the participants, n, ranges 

between 2 and 8 in each tournament. 

 

 
Table 2.11. The possible uniform states of football, rugby, handball 

and chess final tournament tables 
 
 

n WDL 

2 (0, 1, 0) 

3 (0, 2, 0), (1, 0, 1) 

4 (0, 3, 0), (1, 1, 1) 

5 (0, 4, 0), (1, 2, 1), (2, 0, 2) 

6 (0, 5, 0), (1, 3, 1), (2, 1, 2) 

7 (0, 6, 0), (1, 4, 1), (2, 2, 2), (3, 0, 3) 

8 (0, 7, 0), (1, 5, 1), (2, 3, 2), (3, 1, 3) 



66 
 

 

 

Table 2.12. The possible uniform states of cricket final tournament table 
 
 

n WTLNR 

2 (0, 0, 1, 0), (0, 0, 0, 1) 

3 (0, 0, 2, 0), (1, 1, 0, 0), (0, 0, 0, 2) 

4 (0, 0, 3, 0), (1, 1, 1, 0), (0, 0, 0, 3), (1, 1, 0, 1) 

5 (0, 0, 4, 0), (1, 1, 2, 0), (2, 2, 0, 0), (0, 0, 0, 4), (1, 1, 0, 2) 

6 
(0, 0, 5, 0), (1, 1, 3, 0), (2, 2, 1, 0), (0, 0, 0, 5), (1, 1, 0, 3), 

(2, 2, 0, 1) 

7 
(0, 0, 6, 0), (1, 1, 4, 0), (2, 2, 2, 0), (3, 3, 0, 0), (0, 0, 0, 6), 

(1, 1, 0, 4), (2, 2, 0, 2) 

8 
(0, 0, 7, 0), (1, 1, 5, 0), (2, 2, 3, 0), (3, 3, 1, 0), (0, 0, 0, 7), 

(1, 1, 0, 5), (2, 2, 0, 3), (3, 3, 0, 1) 

 

 

Table 2.13. The possible uniform states of the final tournament table T1 

 
 

n R1R3R5R6R4R2 

2 (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0) 

3 (0, 0, 2, 0, 0, 0), (1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0), (0, 0, 0, 2, 0, 0) 

4 
(0, 0, 3, 0, 0, 0), (1, 0, 1, 0, 0, 1), (0, 1, 1, 0, 1, 0), (0, 0, 0, 3, 0, 0), 

(1, 0, 0, 1, 0, 1), (0, 1, 0, 1, 1, 0) 

5 
(0, 0, 4, 0, 0, 0), (1, 0, 2, 0, 0, 1), (2, 0, 0, 0, 0, 2), (0, 1, 2, 0, 1, 0), 

(0, 2, 0, 0, 2, 0), (0, 0, 0, 4, 0, 0), (1, 0, 0, 2, 0, 1), (0, 1, 0, 2, 1, 0) 

 
6 

(0, 0, 5, 0, 0, 0), (1, 0, 3, 0, 0, 1), (2, 0, 1, 0, 0, 2), (0, 1, 3, 0, 1, 0), 

(0, 2, 1, 0, 2, 0), (0, 0, 0, 5, 0, 0), (1, 0, 0, 3, 0, 1), (2, 0, 0, 1, 0, 2), 

(0, 1, 0, 3, 1, 0), (0, 2, 0, 1, 2, 0) 

 
7 

(0, 0, 6, 0, 0, 0), (1, 0, 4, 0, 0, 1), (2, 0, 2, 0, 0, 2), (3, 0, 0, 0, 0, 3), 

(0, 1, 4, 0, 1, 0), (0, 2, 2, 0, 2, 0), (0, 3, 0, 0, 3, 0), (0, 0, 0, 6, 0, 0), 

(1, 0, 0, 4, 0, 1), (2, 0, 0, 2, 0, 2), (0, 1, 0, 4, 1, 0), (0, 2, 0, 2, 2, 0) 

 

8 

(0, 0, 7, 0, 0, 0), (1, 0, 5, 0, 0, 1), (2, 0, 3, 0, 0, 2), (3, 0, 1, 0, 0, 3), 

(0, 1, 5, 0, 1, 0), (0, 2, 3, 0, 2, 0), (0, 3, 1, 0, 3, 0), (0, 0, 0, 7, 0, 0), 
(1, 0, 0, 5, 0, 1), (2, 0, 0, 3, 0, 2), (3, 0, 0, 1, 0, 3), (0, 1, 0, 5, 1, 0), 

(0, 2, 0, 3, 2, 0), (0, 3, 0, 1, 3, 0) 

 

 

When C2 is empty, comparing with the previous case, the number of states where all 

the participants have the same game results may be none or small. For example, in a 



67 
 

 

 

basketball tournament, |SU(n)| = 1 when n is odd (SU(n) = {(n-1)/2, (n-1)/2)}), while 

|SU(n)| = 0 when n is even. Also, in the case of ice hockey and curling, |SU(n)| = 2 when 

n is odd (SU(n) = {((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0))}, while also |SU(n)| = 0 

when n is even. When the set C2 is empty (r = 0), based on the Eq. (2.28), the number of 

the uniform final states equals to 0 when n is even, while it equals to q when n is odd. In 

this case, the set of the game results which form the possible uniform tournament tables 

can be represented as: 

 

SU(n) = {{n/2, n/2, 0, ... , 0} | n is odd} (2.29) 

 

 

Given that there is a tournament T2 with C1={{R1, R2}, {R3, R4}, {R5, R6}} and 

C2={}, the order of the possible game results in the final tournament table is R1, R3, R5, 

R6, R4, and R2. The possible uniform states of the final tables in the case of basketball, ice 

hockey, curling and T2 are shown in Table 2.14, where the number of teams, n, ranges 

between 2 and 8. 

 

 
Table 2.14. The possible uniform states of the final tables in the case of basketball, ice 

hockey, curling and T2 

 
 

 

n 
Basketball 

(WL) 

Ice hockey and curling 

(WXYL) 

T2 

(R1R3R5R6R4R2) 

2 None None None 

 

3 
 

(1, 1) 
 

(1, 0, 0, 1), (0, 1, 1, 0) 
(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0), 

(0, 0, 1, 1, 0, 0) 

4 None None None 

 

5 
 

(2, 2) 
 

(2, 0, 0, 2), (0, 2, 2, 0) 
(2, 0, 0, 0, 0, 2), (0, 2, 0, 0, 2, 0), 

(0, 0, 2, 2, 0, 0) 

6 None None None 

 

7 
 

(3, 3) 
 

(3, 0, 0, 3), (0, 3, 3, 0) 
(3, 0, 0, 0, 0, 3), (0, 3, 0, 0, 3, 0), 

(0, 0, 3, 3, 0, 0) 

8 None None None 



68 
 

 

 

Table 2.15 shows the application of Eq. (2.27), (2.28) and (2.29) for the sports 

tournaments presented in Section 1.8.3. 

 

 

Table  2.15.  Application  of  Eq.  (2.27),  (2.28)  and  (2.29)  for  the  sports  tournaments 

presented in Section 1.8.3 
 
 

Sports SU(n) |SU(n)| 

Football, rugby, 

handball, chess {(x, n-2x-1, x) | ∀ x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}} ⌈n/2⌉ 

Basketball, volleyball, 

tennis, lacrosse 

 

{((n-1)/2, (n-1)/2)} 
n is odd: 1 

n is even: 0 

 

Ice hockey, Curling 
 

{((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0)} 
n is odd: 2 

n is even: 0 

Cricket 
{(x, x, n-2x-1, 0) | ∀ x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}}∪ 

{(x, x, 0, n-2x-1) | ∀ x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}} 2*⌈n/2⌉ 

 

 

2.4. Graph Representation 

 

 

The round-robin tournament graph is defined as a directed graph in Section 1.7, 

where its nodes present the participants, while its edges represent the game results 

between every two participants. The edges are directed from the winner participant to the 

loser one. The graphs are perfectly suitable for tournaments with each game result of 

either a win or a loss, which, for example, can be clearly seen in the representation of 

basketball tournaments. The tournament graph of Group A in the 2014 FIBA Basketball 

World Cup [166] is shown in Figure 2.5, where the group contains the teams of Spain 

(ESP), Brazil (BRA), France (FRA), Serbia (SRB), Iran (IRI), and Egypt (EGY). Note 

that the final tournament table in Table 2.4 can be easily obtained from the tournament 

graph in Figure 2.5. 

The set C2 is empty in the case of the final table of basketball tournaments, but it is 

not in other sports, which means that a directed tournament graph is not applicable to 

define game results of any sports tournament. For example, in the case of a round-robin 

football tournament, where C2={D}, it is not possible to define a drawn game with a 

directed edge. 



69 
 

 

 

 
 

Figure 2.5. The tournament graph of Group A in the 2014 FIBA 

World Cup 

 

 

In this section, we propose another definition for the tournament graph, where in 

addition to the representation of the won/lost games with directed edges, the drawn games 

will be represented with undirected ones. Figure 2.6 shows the tournament graph of 

Group B in the 2018 FIFA World Cup [165], participated in by Spain (ESP), Portugal 

(POR), Iran (IRI), and Morocco (MAR). The tournament graph of this tournament is 

shown in Figure 2.6, which represents the data in the final tournament table given in 

Table 2.2. 

 

 

 
 

Figure 2.6. The tournament graph Group B in the 2018 FIFA 

World Cup 



70 
 

 

 

The set C1 in the case of football and basketball contains a single pair of game 

results (i.e., {W, L}), but in other cases such as ice hockey and curling, C1 contains more 

than a single pair. Given an ice hockey tournament, when a team A ends the game with an 

OTW, the other team B automatically ends its game with an OTL. It means that this result 

can be represented by the graph with a directed edge going from A to B. 

The problem with such a representation is that it will not be possible to distinguish 

between the edges which represent the results of W/L and the ones which represent the 

results of OTW/OTL. As a solution to this problem, we propose to color the edges of the 

graph, where a possible game result in each pair from C1  is given a specific color. As 

mentioned in Section 1.6.7, coloring an edge is just a manner to distinguish between that 

edge and the other edges, which means that the edges can be represented in other ways 

such as drawing them with different line dashes, or labeling them with specific characters. 

Figure 2.7 shows the tournament graph of Group A of the ice hockey 2018 Olympic 

Winter  Games,  Men’s  Tournament  [167],  participated  in  by  Czech  (CZE),  Canada 

(CAN), Switzerland (SUI), and South Korea (KOR), where a result of W/L is represented 

with a continued edge, while a result of OTW/OTL is represented with a discontinued 

edge. 
 

 

 

 
 

Figure 2.7. The tournament graph of Group A in the ice hockey 

2018 Olympic Winter Games, Men’s Tournament 

 

 

Similarly, when C2 contains more than one game result as in the tournaments of 

cricket, the related results can be represented with colored edges. Figure 2.8 shows the 

tournament graph of Group B in the 2008 ICC World Cricket League Division Five 



71 
 

 

 

[168], participated in by Jersey (JEY), Afghanistan (AFG), Singapore (SGP), Botswana 

(BWA), Japan (JPN) and Bahamas (BHS), where a result of T is represented with 

continued edge, while a result of NR is represented with discontinued edge. 

 

 

 
 

Figure 2.8. The tournament graph of Group B in the 2008 ICC 

World Cricket League Division Five 

 

 

In the tournament T1 which was addressed in the previous section, remember that 

C1 contains two pairs and C2 contains two elements; that is, the possible game results are 

C1={{R1, R2}, {R3, R4}} and C2={R5, R6}. Figure 2.9 illustrates a tournament graph which 

corresponds to the data of Table 2.16, representing a state of the final table of T1 between 

the participants A, B, C and D. In the graph, a result of R1/R2 is shown with a continued 

directed edge and a result of R3/R4 is shown with a discontinued directed edge, while a 

result of R5 is shown with a continued undirected edge and a result of R6 is shown with a 

discontinued undirected edge. 



72 
 

 

 

Table 2.16. A state of the final table of a tournament T1  between 4 

participants 
 
 

Participants R1 R3 R5 R6 R4 R2 

A 2 1 0 0 0 0 

B 0 1 1 0 1 0 

C 0 0 1 1 0 1 

D 0 0 0 1 1 1 

 

 

 

 
 

Figure 2.9. A tournament graph corresponding to the data of 

Table 2.16 

 

 

2.5. Determination of Game Results 

 

 

We describe, in this section, how to determine the game results based on a 

tournament final table. The tournaments of football and some other sports hold similar 

final tables that make it easier to calculate a possible result of a game. Unlike sports 

events like basketball tournaments, C2 is not empty in a football tournament. Besides, on 

the contrary to other sports like cricket, the number of game results in the final table of a 

football tournament is lesser. Let us start with the problem of determining game results 

using the tournament final table of Group E in the 2006 FIFA World Cup [169] which is 

shown in Table 2.17. The group contains the teams Italy (ITA), Ghana (GHA), Czech 

Republic (CZE) and United States (USA). 



73 
 

 

 

Table 2.17. The final tournament table of Group E in the 2006 

FIFA World Cup 
 
 

Teams W D L 

ITA 2 1 0 

GHA 2 0 1 

CZE 1 0 2 

USA 0 1 2 

 

 

Based on the WDL values of each team, we aim to determine the tournament graphs 

which lead to the game results. Since C1 contains one pair (W, L) and C2 contains one 

element (D), there will not be a necessity for the edge coloring. In Table 2.17, the related 

data to Italy and the United States provides a convenient starting point of the manual 

solution, because both of them have one draw. Since the other teams have no draw, that 

means Italy must have drawn with the United States. The fact that Italy has two wins 

means that it must have won its remaining two games against Ghana and Czech. Now that 

Ghana lost against Italy, it must have won its remaining games against Czech and The 

United States. As losing against Italy and Ghana, Czech’s remaining game must be 

against the United States, which must be ended in a win. Figure 2.10 presents the 

tournament graph of this case, while Table 2.18 shows the game results, where 1, 2 and 3 

represent a win, loss and draw, respectively. 

 

 

 
 

Figure 2.10. The tournament graph of the data in Table 2.17 



74 
 

 

 

Table 2.18. The game results of the tournament graph in Figure 

2.10 
 
 

Teams ITA GHA CZE USA 

ITA 0 1 1 3 

GHA 2 0 1 1 

CZE 2 2 0 1 

USA 3 2 2 0 

 

 

For the final tournament table shown in Table 2.17, there is only one possible 

tournament graph. However, this might not be the case all the time. To illustrate the 

situation, we modify the WDL values of Ghana and the United States to be (1, 1, 1) and 

(1, 0, 2), respectively. In the FIFA World Cup history, this modified state occurred in 

Group 3 in the 1962 World Cup [170], participated in by Brazil (BRA), Czechoslovakia 

(CSK), Mexico (MEX) and Spain (ESP). In this case, there are two possible tournament 

graphs which are shown in Figures 11 and 12. 

 

 

 
 

Figure 2.11. First possible tournament graph of Group 3 in 1962 

FIFA World Cup 



75 
 

 

 

 
 

Figure 2.12. Second possible tournament graph of Group 3 in 

1962 FIFA World Cup 

 

 

The tournament final table shows only the number of game results, but not which 

other teams it wins against and draws with. In a group with four participants, it may be 

easy to find the game results of teams. However, this gets more difficult when the number 

of participants increases, which makes manual solution methods inapplicable. Table 2.19 

illustrates how to select the edges in the football tournament graph and their directions 

based on the data in Table 2.17. Figure 2.13 shows the obtained tournament graph as 

described in Figure 2.10, where the edges are numbered based on the steps in which they 

are selected during the process in Table 2.19. 

 

 

Table 2.19. Generation steps of a tournament graph for the data of Table 2.17 
 
 

Step ITA GHA CZE USA Game Edge 

1 (2, 1, 0) (2, 0, 1) (1, 0, 2) (0, 1, 2) ITA-GHA - 

2 (2, 1, 0) (2, 0, 1) (1, 0, 2) (0, 1, 2) ITA- CZE - 

3 (2, 1, 0) (2, 0, 1) (1, 0, 2) (0, 1, 2) ITA-USA Undirected 

4 (2, 0, 0) (2, 0, 1) (1, 0, 2) (0, 0, 2) ITA-GHA From ITA to GHA 

5 (1, 0, 0) (2, 0, 0) (1, 0, 2) (0, 0, 2) ITA-CZE From ITA to CZE 

6 (0, 0, 0) (2, 0, 0) (1, 0, 1) (0, 0, 2) GHA-CZE From GHA to CZE 

7 (0, 0, 0) (1, 0, 0) (1, 0, 0) (0, 0, 2) GHA-USA From GHA to USA 

8 (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 1) CZE-USA From CZE to USA 

9 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) - - 



75 
 

 

Figure 2.13. Generation of the tournament graph in Figure 2.10 

through the steps numbered in Table 2.19 

 

 

In Table 2.19, the edge between each two-node is selected by comparing the WDL 

values of the related teams. The related digits of the WDL values from which the edge 

selection is made are underlined at each step. According to the ascending order of the 

related W, D and L values for each team, the edge selections are conducted. The draw of 

Italy, for example, is first sought, because its value of D equals to 1. Only the United 

States among the other teams has a D value which is not 0. For that, an undirected edge is 

selected to connect the representative node of Italy to the one of the United States. To 

show the consequences of the selection, the relevant WDL values are gradually reduced 

after a valid edge selection is made. At step 4, for example, concerning the selected edge 

for the game between Italy and Ghana, a win is taken out of the WDL value of Italy and a 

loss is taken out of the WDL value of Ghana. 

As discussed in Section 2.3.5, the possible partitions of WDL values in the 

tournament table for a kth team determines the maximum number of the selection of its 

edges (see Eq. (2.24)). The edge selection also depends on the result of the games played 

with the other teams. For example, As Table 2.20 shows, the number of possible 

selections for Italy is: NRC(ITA) = 3!/(2!1!0!) = 3, but the fact that only the United States 

has a draw allows a unique selection for the game result of Italy. 



76 
 

 

 

Table 2.20. Possible results for the games of Italy 
 
 

Games Case 1 Case 2 Case 3 

ITA- GHA 1 1 3 

ITA-CZE 1 3 1 

ITA-USA 3 1 1 

 

 

Given the WDL values of all the teams in Table 2.17, according to Eq. (2.25), the 

total number of edge selections would blindly be: 

BRC(4) = NRC(ITA)∗NRC(GHA)∗NRC(CZE)∗NRC(USA) = 3∗3∗3∗3 = 81 
By starting with the team whose NRC  value is minimum, and selecting the results 

based on the ascending order of its game results, the number of the selections can be kept 

smaller. Since the teams in Table 2.17 have the same NRC value, the process can start 

arbitrarily with any team. For example, when the result of the game ITA-USA is selected 

as a draw, only NRC(ITA) = 2!/(2!0!0!) = 1 possible selection remains for the results of the 

remaining games of Italy (ITA-GHA and ITA-CZE). The same occurs for the United 

States, where there is only NRC(US) = 2!/(0!0!2!) = 1 selection for the results of the two 

remaining games (USA-GHA and USA-CZE). Thus, the actual number of the edge 

selections would be much less than 81. 

With the same principle applied in Table 2.19, Table 2.21 shows how to obtain the 

tournament graphs in Figures 2.11 and 2.12. It can be seen in Table 2.21 that the value of 

W for Czechoslovakia after step 3 (steps 4A and 4B) equals to 1, and the value of L for 

both Mexico and Spain is equal to 1, which means that Czechoslovakia could win against 

Spain or win against Mexico. After taking both of these scenarios into account, the 

resulting tournament graphs are shown in Figures. 2.14 and 2.15, respectively. 



77 
 

 

 

Table 2.21. The steps followed to obtain the graphs in Figures 2.11 and 2.12 
 

 

Step BRA CSK MEX ESP Game Edge 

1 (2, 1, 0) (1, 1, 1) (1, 0, 2) (1, 0, 2) BRA-CSK Undirected 

2 (2, 0, 0) (1, 0, 1) (1, 0, 2) (1, 0, 2) BRA-MEX From BRA to MEX 

3 (1, 0, 0) (1, 0, 1) (1, 0, 1) (1, 0, 2) BRA-ESP From BRA to ESP 

4A (0, 0, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1) CSK-MEX From CSK to MEX 

5A (0, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 1) CSK-ESP From ESP to CSK 

6A (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 1) MEX-ESP From MEX to ESP 

7A (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) - - 

4B (0, 0, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1) CSK-ESP From CZE to ESP 

5B (0, 0, 0) (0, 0, 1) (1, 0, 1) (1, 0, 0) CSK-MEX From MEX to CZE 

6B (0,0, 0) (0, 0, 0) (0, 0, 1) (1, 0, 0) MEX-ESP From ESP to MEX 

7B (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) - - 

 

 
 

 
 

Figure 2.14. Generation of the tournament graph in Figure 2.11 

through the steps numbered in Table 2.21 



78 
 

 

 

 

 

Figure 2.15. Generation of the tournament graph in Figure 2.11 

through the steps numbered in Table 2.21 

 

 

The same principle applied for the football tables can also be used for more 

complicated tournament tables. For example, we suppose that there are four participants 

are competing in a tournament of T1, which is presented in Section 2.3.6,  where 

C1={{R1, R2}, {R3, R4}}, C2={R5, R4}. In this case, coloring the edges is compulsory. The 

representative edges of the pair {R1, R2} and the element R5 are drawn in continued lines, 

while the representative edges of the pair {R3, R4} and the element R6 are drawn in dotted 

lines. Using a similar principle applied in Tables 2.19 and 2.21, Table 2.22 illustrates the 

way to obtain the possible tournament graphs based on the data of Table 2.16. At step 4B 

the process reaches a situation where the value of R1 for A is equal to 1, but there is no 

other participant with R2>0 except D, but an edge between A and D was previously 

selected in step 1B, subsequently making it impossible to reach a tournament graph from 

step 4B. The tournament graph obtained through the steps numbered in Table 2.22 is 

shown in Figure 2.16, labeling each edge with their related steps. 



79 
 

 

 

Table 2.22. The steps followed to obtain the graph in Figure 2.16 
 
 

Step A B C D Game Edge 

1A 
(2, 1, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 1, 0) 

(0, 0, 1, 

1, 0, 1) 

(0, 0, 0, 

1, 1, 1) 
A-B Dotted from A to B 

2A 
(2, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 0, 0) 

(0, 0, 1, 

1, 0, 1) 

(0, 0, 0, 

1, 1, 1) 
A-C Continued from A to C 

3A 
(1, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 0, 0) 

(0, 0, 1, 

1, 0, 0) 

(0, 0, 0, 

1, 1, 1) 
A-D Continued from A to D 

4A 
(0, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 0, 0) 

(0, 0, 1, 

1, 0, 0) 

(0, 0, 0, 

1, 1, 0) 
- - 

5A 
(0, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 0, 0) 

(0, 0, 1, 

1, 0, 0) 

(0, 0, 0, 

1, 1, 0) 
B-D Dotted from B to D 

6A 
(0, 0, 0, 

0, 0, 0) 

(0, 0, 1, 

0, 0,0 ) 

(0, 0, 1, 

1, 0, 0) 

(0, 0, 0, 

1, 0, 0) 
B-C Continued undirected 

7A 
(0, 0, 0, 

0, 0, 0) 

(0, 0, 0, 

0, 0, 0) 

(0, 0, 0, 

1, 0, 0) 

(0, 0, 0, 

1, 0, 0) 
C-D Dotted undirected 

8A 
(0, 0, 0, 

0, 0,0 ) 

(0, 0, 0, 

0, 0, 0) 

(0, 0, 0, 

0, 0, 0) 

(0, 0, 0, 

0, 0, 0) 
- - 

1B 
(2, 1, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 1, 0) 

(0, 0, 1, 

1, 0, 1) 

(0, 0, 0, 

1, 1, 1) 
A-D Dotted from A to D 

2B 
(2, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 1, 0) 

(0, 0, 1, 

1, 0, 1) 

(0, 0, 0, 

1, 0, 1) 
A-B - 

3B 
(2, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 1, 0) 

(0, 0, 1, 

1, 0, 1) 

(0, 0, 0, 

1, 0, 1) 
A-C Continued from A to C 

4B 
(1, 0, 0, 

0, 0, 0) 

(0, 1, 1, 

0, 1, 0) 

(0, 0, 1, 

1, 0, 0) 

(0, 0, 0, 

1, 0, 1) 
- - 



80 
 

 

 

 
 

Figure 2.16. Generation of the tournament graph based on Table 

2.16, through the steps numbered in Table 2.22 

 

 

As  proposed  by  Damkhi  and  Pehlivan  [61],  the  following  algorithm  shows  a 

generalized pseudo-code which describes the proposed approach: 

 

Algorithm for determining game results 

Inputs: 

n: number of participants 

T: final tournament table 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 
 

Outputs: 

Gs[][n][n]: possible tournament graphs 
 

Static data structures: 

G[n][n]: tournament graph 
 

Main Procedure 

1: set all G[i][j] elements to 0 
2: trackingInds[2q+r] 

3: for i ← 1 to 2q+r do 
4:  trackingInds[i] ← 2 

5: graphSearch(1, trackingInds) 

Procedure: graphSearch(k, trackingInds_p[]) 
1: trackingInds[2q+r] 

2: trackingInds ← trackingInds_p 

3: find the non-zero minimum Ri value for kth participant and 
set an index variable (minInd) to the position of Ri in T, or 

-1 if all is 0 

4: if minInd ≠ −1 then 5: minIndp 

6: if Ri ∈  C2 then 



81 
 

 

 

7: minIndp ← minInd 

8: else 

9: minIndp ← the index of the pair of Ri in T 

10: for i ← trackingInds[minInd] to n do 

11: if T[i][minIndp] > 0 and G[k][i] = 0 then 
12:  T[k][minInd]-- 

13: T[i][minIndp]-- 

14: G[k][i] ← minInd 

15: G[i][k] ← minIndp 

16: trackingInds[minInd] ← i + 1 

17: graphSearch(k, trackingInds) 

18: G[k][i] ← 0 

19: G[i][k] ← 0 

20: T[k][minInd]++ 

21: T[i][minIndp]++ 

22: else 

23: if k = n then 

24: if T elements are all 0 then 
25:  insert G into Gs 

26: else 

27: set all the elements of trackingInds to k+2 
28: graphSearch(k+1, trackingInds) 

 

In the algorithm, if the participants at a lower position than k cannot satisfy the non- 

zero minimum of the values R1, R2, ..., R2q+r belonging to the kth participant, the values 

R1, R2, ..., R2q+r for the kth participant would never be zeros, and therefore the participant 

at the (k+1)th position would not be considered. When the initial data of the tournament 

final table are not valid (for example, if it does not satisfy Eq. (2.11)), there would be a 

team which cannot have the resulting R1, R2, ..., R2q+r values of zeros as the algorithm 

runs, which means that the condition of the procedure graphSearch at line 24 would never 

be satisfied and thus there will not be a game result to be added into G. To traverse 

through all game results, where all the results are unique, the algorithm backtracks with 

the restoration of both T and G to their previous state through the loop at line 10 of the 

procedure graphSearch (lines 18, 19, 20 and 21). 

 

 
2.6. Enumeration of Final Table States 

 

 

2.6.1. Backward Algorithm 

 

 

This algorithm aims to generate the possible states of the final table of a single 

round-robin tournament between n participants. The generation of the states in this 

instance is based on the elements of the set S which is previously defined by Eq. (2.20). 



82 
 

 

 

To enumerate the states of a tournament final table, based on the set S, the number of 

states that a blind search algorithm must evaluate would be related to the number of the 

participants and the number of the elements of S (see Eq. (2.23)). It follows the number of 

states which must be blindly evaluated would be: 

 
NB(n, 2q+r) = (|S(n, 2q+r)|)

n 
(2.30) 

 

The following algorithm shows the pseudo-code which describes the blind search 

algorithm: 

 

Blind Search Algorithm for enumerating the final table states 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Output: 

Ts[][n][2q+r]: states of the final tournament table 

Static variables and data structures: 

N: number of elements of the set S(n, 2q+r) 

S[N][2q+r]: set S(n, 2q+r) 

T[n][2q+r]: tournament table 

Main Procedure 

1: calculate N based on Eq. (2.23) 
2: calculate S based on Eq. (2.20) 

3: stateGenerator(1) 

Procedure: stateGenerator(k) 
1: if k ≤ n then 

2:   for i ← 1 to N do 

3: for j ← 1 to 2q+r do 

4: T[k][j] ← S[i][j] 

5: stateGenerator(k+1) 

6: else 

7:   insert T into Ts 

 

Most of the states generated by the blind search algorithm for a tournament final 

table do not satisfy Eq. (2.9), (2.10), (2.14) or (2.17). For example, in the case of a 

football tournament between 4 teams, the state presented in Table 2.23 is generated by the 

blind search algorithm but it does not respect any of those relations. To generate the states 



83 
 

 

 

of a tournament final table, only the valid states must be taken into account, where the 

validity of each generated state must be checked. 

 

 

Table 2.23. A state generated by the blind search algorithm 

which does not respect any of Eq. (2.9), (2.10), 

(2.14) and (2.17) 
 
 

Teams W D L 

A 2 1 0 

B 0 0 3 

C 1 1 1 

D 0 1 2 

 

 

To filter the states generated by the blind search algorithm, we propose to use a 

state validity checker to evaluate the feasibility of the states. The state validity checker is 

an adapted version of the algorithm which is previously proposed in Section 2.5 to 

determine the game results. It seeks to reach a tournament graph based on a specific state 

of a tournament final table. In case of a state leading to more than one graph, the process 

of seeking a graph will be ended as soon as the algorithm finds the first graph. Given 

Table 2.21, it will end at step 7A. 

If a state of a tournament final table is not valid, the algorithms will be ended after 

trying all the possibilities to find a tournament graph. Table 2.24 shows the steps involved 

in trying to find a tournament graph based on the state presented in Table 2.23. 



84 
 

 

 

Table  2.24.  The  steps  followed  to  obtain  a  tournament  graph  for  the  state 

represented by Table 2.23 
 
 

Step A B C D Game Edge 

1A (2, 1, 0) (0, 0, 3) (1, 1, 1) (0, 1, 2) A-C Undirected 

2A (2, 0, 0) (0, 0, 3) (1, 0, 1) (0, 1, 2) A-B From A to B 

3A (1, 0, 0) (0, 0, 2) (1, 0, 1) (0, 1, 2) A-D From A to D 

4A (0, 0, 0) (0, 0, 2) (1, 0, 1) (0, 1, 1) B-C From C to B 

5A (0, 0, 0) (0, 0, 1) (0, 0, 1) (0, 1, 1) - - 

1B (2, 1, 0) (0, 0, 3) (1, 1, 1) (0, 1, 2) A-D Undirected 

2B (2, 0, 0) (0, 0, 3) (1, 1, 1) (0, 0, 2) A-B From A to B 

3B (1, 0, 0) (0, 0, 2) (1, 1, 1) (0, 0, 2) A-C From A to C 

4B (0, 0, 0) (0, 0, 2) (1, 1, 0) (0, 0, 2) B-C From C to B 

5B (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 0, 2) B-D - 

 

 

At steps 5A and 5B the process reaches a situation where the value of L for the 

participant B is equal to 1 but all the W values of the other teams are zeros. In this case, 

we can say that the algorithm forms just partial graphs based on the current state of the 

tournament final table, but not a tournament graph, and therefore, the state is not valid. 

As proposed by Damkhi and Pehlivan [62], the following algorithm shows the 

pseudo-code which contains the proposed filter: 

 

Algorithm for validating states 

Inputs: 

n: number of participants 

T: final tournament table 

C1: game results which are related to each other 

q: the size of C1 

C2: game results which are not related to other game results 

r: the size of C2 

Outputs: 

true or false 

Static data structures: 
T[n][2q+r]: tournament table 
G[n][n]: tournament graph 

Main Procedure: stateChecker(T_p) 
1: set all G[i][j] elements to 0 



85 
 

 

 

2: set all the elements of T_p into T 

3: trackingInds[2q+r]   
4: for i ← 1 to 2q+r do 
5:  trackingInds[i] ← 2 

6: return isStateValid(1, trackingInds) 

Procedure: isStateValid(k, trackingInds_p[]) 
1: valid ← false 

2: trackingInds[2q+r] 

3: trackingInds ← trackingInds_p 

4: find the non-zero minimum Ri value for kth participant and 
set an index variable (minInd) to the position of Ri in T, or 

-1 if all is 0 

5: if minInd ≠ −1 then 6: minIndp 
7: if Ri ∈  C2 then   
8:  minIndp ← minInd 

9: else 

10: minIndp ← the index of the pair of Ri in T 

11: for i ← trackingInds[minInd] to n do 

12: if T[i][minIndp] > 0 and G[k][i] = 0 then 
13:  T[k][minInd]-- 

14: T[i][minIndp]-- 

15: G[k][i] ← minInd 

16: G[i][k] ← minIndp 

17: trackingInds[minInd] ← i + 1 

18: valid ← isStateValid(k, trackingInds) 
19: if valid = true then 

20: go to 33 

21: else 

22: G[k][i] ← 0 

23: G[i][k] ← 0 

24: T[k][minInd]++ 

25: T[i][minIndp]++ 

26: else 

27: if k = n then 

28: if T elements are all 0 then 
29:  valid ← true 

30: else 

31: set all the elements of trackingInds to k+2 
32: valid ← isStateValid(k+1, trackingInds)    
33: return valid 

 

 

The main difference of the state validation algorithm from the game result 

determination algorithm is that, instead of building all the tournament graphs, it returns a 

Boolean value as soon as it finds a tournament graph. In other words, through a recursive 

call to the procedure isStateValid (see line 18), if a tournament graph is detected, the 

process is ended and a value of true is returned through line 33. In the case that the 

procedure does not return a value of true, each of arrays G and T turns back into their 



86 
 

 

 

previous states just before line 13 through the lines 22, 23, 24, and 25, and the algorithm 

continues to find a tournament graph through the loop at line 11. 

The integration of the state validating algorithm with the blind search algorithm 

leads to the backward state generation approach, shortly called the backward algorithm. 

The algorithm first generates the states of a tournament final table, and backwardly 

checks them to determine if at least one tournament graph can be constructed for each of 

them. In this way, checking the blindly generated states via the validating algorithm, we 

generate all the valid final table states of sport tournaments. The backward algorithm is 

given below. 

 

Backward approach algorithm for enumerating the states of a tournament final table: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Outputs: 

Ts[][n][2q+r]: states of the final tournament table 

Static variables and data structures: 

N: the number of elements of the set S(n, 2q+r) 

S[N][2q+r]: the set S(n, 2q+r) 

T[n][2q+r]: tournament table 

Main Procedure 

1: calculate N based on Eq. (2.23) 
2: calculate S based on Eq. (2.20) 

3: stateGenerator(1) 

Procedure: stateGenerator(k) 
1: if k ≤ n then 

2:   for i ← 1 to N do 

3: for j ← 1 to 2q+r do 

4: T[k][j] ← S[i][j] 

5: stateGenerator(k+1) 

6: else 

7: if the points of the teams are in a descending order then 
8:  valid ← stateChecker(T) 

9: if valid = true then 
10:  insert T into Ts 

 

 

Instead of saving the state directly as it is done in the blind search algorithm, the 

participants’ points are checked if they are in a descending order, then the state generated 



87 
 

 

 

by the above algorithm is checked by the procedure stateChecker (see line 8), and is not 

saved unless their validity is agreed upon. 

 

 
2.6.2. Forward Algorithm 

 

 

Unlike the backward approach, this approach seeks to enumerate the states of a 

tournament final table by building every possible tournament graph, then converting them 

to the corresponding states. From the perspective of a tournament participant, a game can 

result in an R1, R2, ... or R2q+r. Since the total of the played games, g, is equal to n(n-1)/2 

(see Eq. (2.4)), the total of game results (i.e., tournament graphs) that can occur during a 

round-robin tournament with n participants would be: 

 
GR(n) = (2q+r)

n(n-1)/2 
(2.31) 

 

Eq. (2.31) determines the number of graphs that can be generated by a blind search 

algorithm. The following pseudo-code represents such a blind search algorithm which 

generates all the possible tournament graphs: 

 

Blind Search Algorithm for generating a tournament graph 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Output: 

Gs[][n][n]: possible tournament graphs 

Static data structure: 

G[n][n]: tournament graph 

Main Procedure 

1: set all the elements of G to 0 
2: graphGenerator(1, 2) 

Procedure: graphGenerator(k, j) 
1: for i ← 1 to 2q+r do 2: G[k][j] ← i 
3: if {Ri, Ri+1} ∈  C1 then 
4:  G[j][k] ← i+1 

5: else if {Ri-1, Ri} ∈  C1 then 
6: G[j][k] ← i-1 



88 
 

 

 

7: else 

8: G[j][k] ← i 

9: if j+1 ≤ n then 

10: graphGenerator(k, j+1) 

11: else 

12: if k+1 < n then 

13: graphGenerator(k+1, k+2) 

14: else 

15: insert G into Gs 

 

Let us suppose that there is a football tournament between 3 teams (A, B and C), 

where A appears the first in the final table, while B does the second, and C does the last. 

The graphs of the tournament which can be generated by the blind search algorithm 

would be 3
3
=27. Figures 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25 illustrate 

the process of how to generate all the possible graphs of this tournament. 

 

 

 
 

Figure 2.17. The graphs for the case when A wins all of its games 
 

 
 

 
 

Figure 2.18. The graphs for the case when A wins against B and draws against C 



89 
 

 

 

 
 

Figure 2.19. The graphs for the case when A wins against B and loses against C 
 

 

 
 

Figure 2.20. The graphs for the case when A draws against B and wins against C 
 

 

 
 

Figure 2.21. The graphs for the case when A draws all of its games 



90 
 

 

Figure 2.22. The graphs for the case when A draws against B and loses against C 
 

 

 
 

Figure 2.23. The graphs for the case when A loses against B and wins against C 
 

 

 
 

Figure 2.24. The graphs for the case when A loses against B and draws against C 



91 
 

 

 

 
 

Figure 2.25. The graphs for the case when A loses all of its games 

 

 

Table 2.25 shows the corresponding state of each tournament graph illustrated in 

Figures 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25. As seen in Table 2.25, only 

the graphs (a) and (b) from Figure 2.17, (a) from Figure 2.18, (a) from Figure 2.19, (a) 

and (b) from Figure 2.20, (b) from Figure 2.21, and (c) from Figure 2.23 lead to 

descending ordered states. This requires a check on the order of the resulting states before 

saving them. Besides, as it is discussed in Section 2.5, a state of a tournament final table 

could be resulted from many different tournament graphs, which explains why the graphs 

(a) from Figure 2.19 and (c) from Figure 2.23 led to the same table state. 



92 
 

 

 

Table 2.25. The corresponding state of each tournament graph shown in Figures 2.17, 

2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25 
 
 

Figure-Graph State Status Reason 

2.17-(a) ((2, 0, 0), (1, 0, 1), (0, 0, 2)) Accepted - 

2.17-(b) ((2, 0, 0), (0, 1, 1), (0, 1, 1)) Accepted - 

2.17-(c) ((2, 0, 0), (0, 0, 2), (1, 0, 1)) Not accepted Pts(2) < Pts(3) 

2.18-(a) ((1, 1, 0), (1, 0, 1), (0, 1, 1)) Accepted - 

2.18-(b) ((1, 1, 0), (0, 1, 1), (0, 2, 0)) Not accepted Pts(2) < Pts(3) 

2.18-(c) ((1, 1, 0), (0, 0, 2), (1, 1, 0)) Not accepted Pts(2) < Pts(3) 

2.19-(a) ((1, 0, 1), (1, 0, 1), (1, 0, 1)) Accepted - 

2.19-(b) ((1, 0, 1), (0, 1, 1), (1, 1, 0)) Not accepted Pts(2) < Pts(3) 

2.19-(c) ((1, 0, 1), (0, 0, 2), (2, 0, 0)) Not accepted Pts(1) < Pts(3) 

2.20-(a) ((1, 1, 0), (1, 1, 0), (0, 0, 2)) Accepted - 

2.20-(b) ((1, 1, 0), (0, 2, 0), (0, 1, 1)) Accepted - 

2.20-(c) ((1, 1, 0), (0, 1, 1), (1, 0, 1)) Not accepted Pts(2) < Pts(3) 

2.21-(a) ((0, 2, 0), (1, 1, 0), (0, 1, 1)) Not accepted Pts(1) < Pts(2) 

2.21-(b) ((0, 2, 0), (0, 2, 0), (0, 2, 0)) Accepted - 

2.21-(c) ((0, 2, 0), (0, 1, 1), (1, 1, 0)) Not accepted Pts(1) < Pts(3) 

2.22-(a) ((0, 1, 1), (1, 1, 0), (1, 0, 1)) Not accepted Pts(1) < Pts(2) 

2.22-(b) ((0, 1, 1), (0, 2, 0), (1, 1, 0)) Not accepted Pts(1) < Pts(2) 

2.22-(c) ((0, 1, 1), (0, 1, 1), (2, 0, 0)) Not accepted Pts(1) < Pts(3) 

2.23-(a) ((1, 0, 1), (2, 0, 0), (0, 0, 2)) Not accepted Pts(1) < Pts(2) 

2.23-(b) ((1, 0, 1), (1, 1, 0), (0, 1, 1)) Not accepted Pts(1) < Pts(2) 

2.23-(c) ((1, 0, 1), (1, 0, 1), (1, 0, 1)) Accepted - 

2.24-(a) ((1, 1, 1), (2, 0, 0), (0, 1, 1)) Not accepted Pts(1) < Pts(2) 

2.24-(b) ((1, 1, 1), (1, 1, 0), (0, 2, 0)) Not accepted Pts(1) < Pts(2) 

2.24-(c) ((0, 1, 1), (1, 0, 1), (1, 1, 0)) Not accepted Pts(1) < Pts(2) 

2.25-(a) ((0, 0, 2), (2, 0, 0), (1, 0, 1)) Not accepted Pts(1) < Pts(2) 

2.25-(b) ((0, 0, 2), (1, 1, 0), (1, 1, 0)) Not accepted Pts(1) < Pts(2) 

2.25-(c) ((0, 0, 2), (1, 0, 1), (2, 0, 0)) Not accepted Pts(1) < Pts(2) 



93 
 

 

 

The possible duplicates of some resulting states require a check on the existence of 

every generated state. The simplest way to check the duplicate of a state is to store the 

states in an array, where a new state will be stored in that array only if it is not identical to 

any of the previously saved states. The use of the array trivially affects the performance 

when the number of the states is small. But as the number of tournament participants gets 

bigger, there occur so many states that increase the size of the array, which makes it time- 

consuming to compare a particular state to the others. 

As a solution to this problem, we propose to save the states in a forest (i.e., a 

collection of trees) instead of a classic array, where the root of each tree from the forest 

would contain the R1, R2, ..., R2q+r values which can be taken by the first participant of the 

tournament (i.e. R1(1), R2(1), ..., R2q+r(1)). The states with the same values of R1(1), R2(1), 

... , R2q+r(1) would be saved in the same tree. A state consists of all the nodes occurred in 

a path from a root to one of its leaves. The states which share the same values of R1(k), 

R2(k), ..., R2q+r(k) automatically share the path from the root to the node at a kth layer. 

Thus the number of the states of a tournament final table equals to the total number of 

leaves in all the trees of the forest. Figure 2.26 shows how the valid states listed in Table 

2.25 can be represented as a forest. 
 

 

 

 

 
Figure 2.26. Representation of the valid states in Table 2.25 as a forest 

 

 
Given the use of an array, when the state ((1, 0, 1), (1, 0, 1), (1, 0, 1)) (from the 

graph (c) in Figure 2.23) is generated, the array would have already contained seven 

states including the duplicate ones which were generated from the graph (a) in Figure 

2.19. This state would be located at the fourth cell of the array, while, in the case of using 

a forest, the same state would be located at the third tree as seen in Figure 2.26. Similarly, 

when the state ((0, 2, 0), (0, 2, 0), (0, 2, 0)) from the graph (b) in Figure 2.21 is generated, 



94 
 

 

 

the array would have already contained a total of six other states. Thus the newly 

generated state would be compared with all the states contained in the array. In the case 

of using a forest, it would adequate to check the roots of the current trees to see if the 

state is not saved before. 

In relation to the comparisons, saving the states in a forest instead of an array 

requires the less number of iterations to check the existence of a generated state. This 

decrease in the iterations may not seem effective when the number of states is small. In 

contrast, when the number of states gets bigger, saving them in the form of a forest will 

have a significant effect on the necessary time to determine whether the generated states 

are duplicated or not. The following algorithm shows the pseudo-code for a blind search 

based algorithm which implements the forward approach: 

 

Forward approach algorithm for enumerating the states of a tournament final table: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Output: 

Ts[][n][2q+r]: states of the final tournament table 

Static data structures: 
G[n][n]: tournament graph 
T[n][2q+r]: tournament table 

 

Main Procedure 

1: set all the elements of G to 0 

2: graphGenerator(1, 2) 

Procedure: graphGenerator(k, j) 
1: for i ← 1 to 2q+r do 2: G[k][j] ← i 
3: if {Ri, Ri+1} ∈  C1 then 
4:  G[j][k] ← i+1 

5: else if {Ri-1, Ri} ∈  C1 then 
6: G[j][k] ← i-1 
7: else 

8: G[j][k] ← i 

9: if j+1 ≤ n then 

10: graphGenerator(k, j+1) 

11: else 

12: if k+1 < n then 

13: graphGenerator(k+1, k+2) 

14: else 

15: save the equivalent state of G into T 



95 
 

 

 

16: calculate the number of points for each participant 
17: if the participants’ points are in a descending order then 
18: if T ∉  Ts then   
19:  insert T into Ts 

 

The algorithm directly focuses on the states of the tournament final table (see line 

15), instead of the tournament graphs where, after generating a graph, its data is 

converted to the corresponding state of the tournament table. Following line 15, the points 

of the participants are calculated and verified whether they are in descending order or not 

(lines 16 and 17). If the points are not in descending order, the state will be ignored. 

Otherwise, it will be checked in line 18 and then be saved if it does not exist. 

 

 

2.7. Search Space Analysis 

 

 

In round-robin sport tournaments, for a particular position, there are highest and 

lowest numbers of points a participant can gain. Each participant holds a position in the 

final table with which it is possible to determine its highest and lowest numbers of points. 

The determination of the highest and lowest points of a participant helps the optimization 

of the search spaces for the proposed approaches. 

During the generation of the states in the backward approach, if the point of a 

participant at a certain position does not range between a minimum number or a 

maximum number of points that are necessary for that position, the algorithm will not 

continue generating that state and thus its feasibility will not be checked. Similarly, in the 

case of the forward approach, if the game results of a participant at a specific position do 

not correspond to a point in the relevant range of possible points for that position, the 

process of generating the graph will stop, and the algorithm moves to the generation of 

the next graph. 

To determine the minimum and maximum numbers of points which can be gained 

by a participant at the kth position of a single round-robin tournament, the uniform final 

tables, where all the participants obtain the same number of points, must be analyzed. For 

the uniform final tables, the minimum and maximum numbers of points are based mainly 

upon possible game results held in the sets C1 and C2 (see Section 2.3.6). 



96 
 

 
 

2.7.1. Uniform Final States With Minimum Number of Points 

 

 

2.7.1.1. C2 Is Not Empty 

 
 

Suppose that there is a single round-robin tournament between n participants, where 

C2 is not empty. A uniform state of the tournament final table is formed based on the 

columns Ri, Ri+1, and Rj of game results, where {Ri, Ri+1} is a pair from C1, Rj is an 

element from C2, i ϵ {1, 3, ..., 2q-1}, and j ϵ {2q+1, 2q+2, ..., 2q+r}. Let us consider Pi, 

Pi+1 and Pj as the number of points which can be gained by a participant from the games 

ending in Ri, Ri+1 and Rj, respectively. In the case of a uniform state of the final table, the 

total number of points which is gained by every participant would be: 

Pts(k) = Pi*x + Pj*(n-2x-1) + Pi+1*x, where x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋} (2.32) 

which can be simplified to: 

Pts(k) = (Pi+Pi+1)x + Pj(n-2x-1), where x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋} (2.33) 

Since each of x and n-2x-1 is positive, Pts(k) reaches its minimum value when Pj 

becomes the minimum point of the elements in C2, and Pi  + Pi+1  becomes the minimum 

point of the pairs in C1. 

For the tournament T1 which is previously presented in Section 2.3.6, let us suppose 

that P1=7, P2=0, P3=5, P4=1, P5=3, and P6=2 are the points which a participant gains from 

the games ending in R1, R2, R3, R4, R5, or R6 respectively. Given that the order of the 

possible results of the games in the final table of T1 is R1, R3, R5, R6, R4 and R2, if the final 

table of T1 has a uniform state, then the final data of all the participants would have one of 

the following forms: (x, 0, n-2x-1, 0, 0, x), (0, x, n-2x-1, 0, x, 0), (x, 0, 0, n-2x-1, 0, x), or 

(0, x, 0, n-2x-1, x, 0), where x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋}. Since min(P1+P2, P3+P4) = P3+P4 

and min(P5, P6) = P6, the rows of the uniform state with minimum number of points 

would have the form (0, x, 0, n-2x-1, x, 0). 

To find the values of x which minimizes the number of points in a uniform state of a 

final table, Eq. (2.33) can be written as follows: 



97 
 

 

Pts(k) = x(Pi+Pi+1-2Pj) + Pj(n-1), where x ϵ {0, 1, 2, ..., ⌊(n-1)/2⌋} (2.34) 

The value of x which minimizes the value of Pts(k) depends on the larger value of 

Pi+Pi+1 and 2Pj. If Pi+Pi+1 > 2Pj, in order for the uniform state to reach the minimum 

number of points, x must be minimum (i.e. 0), while if Pi+Pi+1 < 2Pj, for the uniform state 

to reach the minimum number of points, x must be maximum (i.e. ⌊(n-1)/2⌋). 
In the tournament systems which are presented in Section 1.8.3, we observe that all 

of them respect the constraint: 

∀ i ∊ {1... q} ∧ ∀ j ∊ {2q... 2q+r} → Pi + Pi+1 ≥ 2Pj (2.35) 

With respect to the constraint (2.35), we can say that a uniform final state reaches 

its minimum number of points when x = 0. By applying this principle on the tournament 

T1, we find that the rows of the uniform state with the minimum number of points would 

have the form (0, 0, 0, n-1, 0, 0). Table 2.26 shows the uniform states with the minimum 

number of points, in the case of the tournament tables addressed in Section 1.8.3, where 

C2 is not empty. 

 
 

Table 2.26. The uniform final states with the minimum number of points in the 

case of the sports presented in Section 1.8.3, where C2 is not empty 
 
 

Sports Game Results 

Football, rugby, handball, chess (0, n-1, 0) 

Cricket (0, 0, n-1, 0), (0, 0, 0, n-1) 

 

 

2.7.1.2. C2 Is Empty 

 
 

As discussed in Section 2.3.6, when C2 is empty, a uniform state of a tournament 

final table can be formed only when the number of participants, n, is odd. The uniform 

states in this instance are formed based on the game results Ri, Ri+1 where {Ri, Ri+1} is a 

pair from C1, and i ϵ {1, 3, ..., 2q-1}. Supposing that Pi and Pi+1 are the numbers of points 

of each of Ri and Ri+1, respectively, the number of the total points which is gained by 

every participant can be calculated as follows: 



98 
 

 

 

Pts(k) = Pi(n-1)/2 + Pi+1(n-1)/2 = (Pi+Pi+1)(n-1)/2 (2.36) 

 
 

Since the value of (n-1)/2 is positive,  Pts(k) reaches its minimum value when 

Pi+Pi+1 become the minimum point of the pairs in C1. 

For the tournament T2 which is previously presented in Section 2.3.6, let us suppose 

that P1=7, P2=0, P3=5, P4=1, P5=3, and P6=2 are the points which a participant gains from 

the games ending in R1, R2, R3, R4, R5, or R6 respectively. Given that the order of the 

possible results of the games in the final table of T2 is R1, R3, R5, R6, R4 and R2, and n is 

odd, if the final table of T2 has a uniform state, then the final data of all participants would 

have one of the following forms: ((n-1)/2, 0, 0, 0, 0, (n-1)/2), (0, (n-1)/2, 0, 0, (n-1)/2, 0), 

or (0, 0, (n-1)/2, (n-1)/2, 0, 0). Since min(P1+P2, P3+P4, P5+P6) = P5+P6, the rows of the 

uniform  state  with  the   minimum   number   of   points   would   have   the   form 

(0, 0, (n-1)/2, (n-1)/2, 0, 0). Table 2.27 shows the uniform final states with the minimum 

number of points in the case of the sports tournaments given in Section 1.8.3, where C2 is 

empty and n is odd. 

 

 
Table 2.27. The uniform final states with the minimum number of points in the case of the 

sports tournaments presented in Section 1.8.3, where C2 is empty and n is odd 
 
 

Sports Game Results 

Basketball, volleyball, tennis,  lacrosse ((n-1)/2, (n-1)/2) 

Ice hockey, Curling ((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0) 

 

 

2.7.2. Uniform Final States With Maximum Number of Points 

 

 

2.7.2.1. C2 Is Not Empty 

 
 

Since each of x and n-2x-1 in Eq. (2.33) are positive, Pts(k) reaches its maximum 

value when Pj becomes the maximum point of the elements in C2, and Pi+Pi+1 becomes 

the maximum point of the pairs in C1. In this case, for the tournament T1, since 

max(P1+P2, P3+P4) = P1+P2 and max(P5, P6) = P5, to obtain a final state with the 

maximum number of points,  the  final  data  of  all  participants  must  have  the  form 

(x, 0, n-2x-1, 0, 0, x). 



99 
 

 

 
By respecting the Eq. (2.35), a uniform final state reaches its maximum number of 

points when x = ⌊(n-1)/2⌋. By applying this principle on the tournament T1, the rows of 
the  uniform  final  state  with  the  maximum  number  of  points  would  have  the  form 

(⌊(n-1)/2⌋, 0, n-2⌊(n-1)/2⌋-1, 0, 0, ⌊(n-1)/2⌋). Table 2.28 shows the uniform final states 
with the maximum number of points in the case of the sports tournaments given in 

Section 1.8.3, where C2 is not empty. 

 

 
Table 2.28. The uniform final states with the maximum number of points in the case 

of the sports tournaments given in Section 1.8.3, where C2 is not empty 
 
 

Sports Game Results 

Football, rugby, handball, chess (⌊(n-1)/2⌋, n-2⌊(n-1)/2⌋-1, ⌊(n-1)/2⌋) 
 

Cricket 
(⌊(n-1)/2⌋, ⌊(n-1)/2⌋, n-2⌊(n-1)/2⌋-1, 0), 

(⌊(n-1)/2⌋, ⌊(n-1)/2⌋, 0, n-2⌊(n-1)/2⌋-1) 

 

 

2.7.2.2. C2 Is Empty 

 
 

Since the value of (n-1)/2 in Eq. (2.36) is positive, Pts(k) reaches its maximum 

value when Pi+Pi+1 becomes the maximum point of the pairs in C1. In this case, for the 

tournament T2 between an odd number of participants, n, max(P1+P2, P3+P4, P5+P6) = 

P1+P2, which means that the rows of the uniform state in the final table of T2 with the 

maximum number of points would have the form ((n-1)/2, 0, 0, 0, 0, (n-1)/2). Table 2.29 

shows the uniform final states with the maximum number of points in the case of the 

sports tournaments addressed in Section 1.8.3, where the set C2 is empty and the value of 

n is odd. 

 

 
Table 2.29. The uniform final states with the maximum number of points in the case of 

the sports tournaments given in Section 1.8.3, where C2 is empty and n is odd 
 
 

Sports Game Results 

Basketball, volleyball, tennis,  lacrosse ((n-1)/2, (n-1)/2) 

Ice hockey, Curling ((n-1)/2, 0, 0, (n-1)/2), (0, (n-1)/2, (n-1)/2, 0) 



100 
 

 
 

2.7.3. Minimum Final Points of a kth Participant 

 

 

To determine the minimum number of points that can be earned by a participant at a 

kth position, the final points of the participant must be considered separately depending 

on the results of its games against the other participants at the higher and lower positions 

in the final table. We split the tournament into two sub-tournaments, where the graph of 

each sub-tournament is considered as a sub-graph of the overall tournament. By 

combining these sub-graphs we get the graph of the overall tournament. In a tournament 

between n participants, there are k-1 participants at higher positions than k, and n-k 

participants at lower positions. Thus, the resulting two sub-tournaments would be a sub- 

tournament between the first k participants, and another one between the last n-k+1 

participants. 

For a kth participant to get a minimum number of points, all its games against the 

participants at the higher positions must end in Ri+1, where i ϵ {1, 3, ..., 2q-1}. The 

number  of  points  which  can   be   gained   from   a   game   that   ends   in   Ri+1   is 

Pi+1 = min(P2, P4, ..., P2q). If Phigh denotes the number of points which a participant can 

gain from the higher sub-tournament, the minimum number of points which can be gained 

by a kth participant from this sub-tournament would be: 

 

min(Phigh(k)) = (k-1) min(P2, P4, ..., P2q) (2.37) 

 
 

Moreover, since the kth participant appears the first in the sub-tournament with the 

participants at the lower positions than k, this sub-tournament must have a uniform state 

of the final table with a minimum number of points, which gets involved in discussing 

three particular scenarios. The first scenario takes place when C2 is not empty. In this 

case, as in previously discussed in Section 2.7.1.1, the state of the final table is uniform 

with a minimum number of points when the games of all participants end in Rj, where 

Rj ϵ C2 and the number of the points which is gained from a game that ends in Rj is 

Pj = min(P2q+1, P2q+2, ..., P2q+r). If Plow denotes the number of points obtained from the 

lower sub-tournament, the minimum number of points which can be gained by a kth 

participant from this sub-tournament would be: 

 

min(Plow(k)) = (n-k) min(P2q+1, P2q+2, ..., P2q+r), where C2 ≠ {} (2.38) 



101 
 

 

 

The second scenario occurs when C2 is empty and n-k is even. In this scenario 

based on the issue discussed in Section 2.7.1.2, each participant earns a number of points 

obtained by (Pi+Pi+1)*(n-k)/2, where (Ri, Ri+1) is a pair from C1, i ϵ {1,3,..., 2q-1}, Pi and 

Pi+1 are the points gained from a game ending  in  Ri  and  Ri+1  respectively,  and 

Pi+Pi+1 = min(P1+P2, P3+P4, ..., P2q-1+P2q). The minimum number of points that a kth 

participant can earn from this sub-tournament would be: 

 

min(Plow(k)) = ((n-k)/2) min(P1+P2, P3+P4, ..., P2q-1+P2q), 

where C2 = {} and n-k is even (2.39) 

 
 

The last scenario occurs when C2 is empty and n-k is odd. In this scenario, it will 

not be possible to form a uniform state of the final table (see Section 2.3.6). The closest 

table state to a uniform one can be determined by dividing the participants into two 

halves. For the first  half of the  n-k+1 participants in the lower sub-tournament, the 

⌊(n-k)/2⌋ games end in Ri, the ⌊(n-k)/2⌋ games end in Ri+1  and a single game ends in Rl, 

where the participant playing the single game gains Pl  = min(P1, P3, ..., P2q-1). For the 

second half of the participants, the ⌊(n-k)/2⌋ games end in Ri, the ⌊(n-k)/2⌋ games end in 

Ri+1 and a single game ends in Rl+1, where {Rl, Rl+1}∊ C1. Thus, the minimum number of 

points  which  can  be  gained  by  a  kth  participant  from  this  sub-tournament  can  be 

calculated as follows: 

min(Plow(k)) = ⌊(n-k)/2⌋ min(P1+P2, P3+P4, ..., P2q-1+P2q) + 

min(P1, P3, ..., P2q-1), where C2 = {} and n-k is odd (2.40) 
 
 

Eq. (2.39) and Eq. (2.40) can be combined into a single one like: 

min(Plow(k)) = ⌊(n-k)/2⌋ min(P1+P2, P3+P4, ..., P2q-1+P2q) + 

(n-k-2⌊(n-k)/2⌋) min(P1,  P3, ..., P2q-1), where C2 = {} (2.41) 

After calculating each of min(Phigh(k)) and min(Plow(k)), the minimum number of 

points which can be gained by a participant at the kth position can be given by: 

 

min(Pts(k)) = min(Phigh(k)) + min(Plow(k)) (2.42) 



102 
 

 

 

Table 2.30 presents each of min(Phigh(k)), min(Plow(k)) and min(Pts(k)) in the case 

of the sports tournaments presented in Section 1.8.3. 

 

 
Table 2.30. min(Phigh(k)), min(Plow(k)) and min(Pts(k)) in the case of sports tournaments 

given in Section 1.8.3 
 
 

Sports min(Phigh(k)) min(Plow(k)) min(Pts(k)) 

Football, rugby, handball 0 n-k n-k 

Chess 0 (n-k)/2 (n-k)/2 

Basketball, volleyball, tennis k-1 2(n-k)-⌊(n-k)/2⌋ 2n-k-⌊(n-k)/2⌋-1 

lacrosse 0 n-k-⌊(n-k)/2⌋ n-k-⌊(n-k)/2⌋ 

Ice hockey, Curling 0 2(n-k)-⌊(n-k)/2⌋ 2(n-k)-⌊(n-k)/2⌋ 

Cricket 0 n-k n-k 

 

 

2.7.4. Maximum Final Points of a kth Participant 

 

 

Similar to the principle of determining the minimum number of points for a kth 

tournament participant, the maximum number of points must be considered separately 

depending on the results of its games against the other participants at the higher and lower 

positions in the tournament table. 

For a kth participant to get a maximum number of points, all its games against the 

participants at the lower positions must end in Ri, where i ϵ {1, 3, ..., 2q-1} and the 

number of points gained from a game that ends in Ri is Pi=max(P1, P3, ..., P2q-1). We can 

represent the maximum number of points which can be gained by a kth participant from 

this sub-tournament as: 

 

max(Plow(k)) = (n-k) max(P1, P3, ..., P2q-1) (2.43) 

 
 

Moreover, since the kth participant appears the last in the sub-tournament with the 

participants at the higher positions than k, this sub-tournament must have a uniform state 

of the final table with a maximum number of points, which gets involved in discussing 

three particular scenarios. 



103 
 

 

 

The first scenario takes place when C2 is not empty. Let us suppose that Pi, Pi+1 and 

Pj are the number of points which a participant can gain from a game that ends in Ri, Ri+1 

or Rj respectively, where {Ri, Ri+1} ϵ C1 and Rj ϵ C2. In this case, as in previously 

discussed in Section 2.7.2.1, the state of the final table is uniform with a maximum 

number of points when the ⌊(k-1)/2⌋ games end in Ri, the ⌊(k-1)/2⌋ games end in Ri+1 and 

k-2⌊(k-1)/2⌋-1   games   end   in   Rj,   where   Pj    =   max(P2q+1,   P2q+2,   ...,   P2q+r),   and 
Pi+Pi+1= max(P1+P2, P3+P4, ..., P2q-1+P2q). The maximum number of points which can be 

gained by a kth participant from this sub-tournament in this instance would be: 

max(Phigh(k)) = ⌊(k-1)/2⌋ max(P1+P2, P3+P4, ..., P2q-1+P2q) 

+ (k-2⌊(k-1)/2⌋-1) max(P2q+1, P2q+2, ..., P2q+r), where C2 ≠ {} (2.44) 

The second scenario occurs when C2 is empty and k-1 is even. In this scenario based 

on the issue discussed in Section 2.7.2.2, each participant earns a number of points 

obtained by (Pi+Pi+1)*(n-k)/2, where {Ri, Ri+1} ϵ C1, i ϵ {1, 3,..., 2q-1}, and 

Pi+Pi+1=max(P1+P2, P3+P4, ..., P2q-1+P2q). The maximum number of points that a kth 

participant can earn from this sub-tournament would be: 

 

max(Phigh(k)) = ((k-1)/2) max(P1+P2, P3+P4, ..., P2q-1+P2q), 

where C2 = {} and k-1 is even (2.45) 

 
 

The third scenario occurs when C2 is empty and k-1 is odd. In this scenario, as 

explained in Section 2.3.6, it will not be possible to form a uniform state of the final table. 

The closest table state to a uniform one can be determined by dividing the participants 

into two halves. For the second half of the participants, the ⌊(k-1)/2⌋ games end in Ri, the 

⌊(k-1)/2⌋ games end in Ri+1  and the remaining game ends in Rl+1, where the participant 

playing the latter game gains Pl+1  = max(P2, P4, ..., P2q). For the first half of the kth 

participants in the upper sub-tournament, the ⌊(k-1)/2⌋  games end in Ri, the ⌊(k-1)/2⌋ 
games end in Ri+1, and one game ends in Rl, where {Rl, Rl+1} ϵ C1. Thus, the maximum 

number of points which can be gained by a kth participant from this sub-tournament can 

be calculated as follows: 



104 
 

 

max(Phigh(k)) = ⌊(k-1)/2⌋ max(P1+P2, P3+P4, ..., P2q-1+P2q) 

+ max(P2, P4, ..., P2q), where C2 = {} and k-1 is odd (2.46) 
 
 

Eq. (2.45) and Eq. (2.46) can be combined into a single one like 

max(Phigh(k)) = ⌊(k-1)/2⌋ max(P1+P2, P3+P4, ..., P2q-1+P2q) 

+ (k-2⌊(k-1)/2⌋-1) max(P2, P4, ..., P2q), where C2 = {} (2.47) 

After calculating each of max(Plow(k)) and max(Phigh(k)), the maximum number of 

points which can be gained by a participant at the kth position can be given by: 

 

max(Pts(k)) = max(Phigh(k)) + max(Plow(k)) (2.48) 

 
 

Table 2.31 presents each of max(Phigh(k)), max(Plow(k)) and max(Pts(k)) in the case 

of sports tournaments presented in Section 1.8.3. 

 

 
Table  2.31.  max(Phigh(k)),  max(Plow(k))  and  max(Pts(k))  in  the  case  of  the  sports 

tournaments given in Section 1.8.3 
 
 

Sports max(Phigh(k)) max(Plow(k)) max(Pts(k)) 

Football ⌊(k-1)/2⌋+k-1 3(n-k) 3n-2k+⌊(k-1)/2⌋-1 

Rugby, handball k-1 2(n-k) 2n-k-1 

Chess (k-1)/2 n-k n-(k+1)/2 

Basketball, volleyball, tennis ⌊(k-1)/2⌋+k-1 2(n-k) 2n-k+⌊(k-1)/2⌋-1 

lacrosse ⌊(k-1)/2⌋ n-k n-k+⌊(k-1)/2⌋ 

Ice hockey, Curling ⌊(k-1)/2⌋+k-1 3(n-k) 3n-2k+⌊(k-1)/2⌋-1 

Cricket k-1 2(n-k) 2n-k-1 

 

 

2.7.5. Interval of Points of a kth Participant 

 

 

The relations max(Pts(k)) and min(Pts(k)) help that the interval of Pts(k) can be 

written as follows: 



105 
 

 

 

min(Pts(k)) ≤ Pts(k) ≤ max(Pts(k)), where 1 < k ≤ n (2.49) 

 

 

Based on Eq. (2.49), Table 2.32 presents the optimized search space of WDL values 

which can be obtained by each team in a 4-team football tournament, where the WDL 

values that a team at the kth position can have are marked by X. In the case of the 

backward approach, the number of states which must be evaluated based on this 

optimized search space is 6*7*7*7=1764, which is less than 1/5 of the states evaluated 

with the blind search algorithm (10
4 

states). 

 

 
Table 2.32. The optimized search space of WDL based on Eq. (2.49) of a 4-team 

football tournament 
 
 

 

WDL 

(3, (2, (2, (1, (1, (0, (1, (0, (0, (0, 

0, 1, 0, 2, 1, 3, 0, 2, 1, 0, 

0) 0) 1) 0) 1) 0) 2) 1) 2) 3) 

Pts 

k 
9 7 6 5 4 3 3 2 1 0 

1 X X X X X X - - - - 

2 - X X X X X X X - - 

3 - - X X X X X X X - 

4 - - - - X X X X X X 

 

 

Together with the relation Pts(k) ≤ max(Pts(k)), Eq. (2.17) must also be respected. 

Table 2.33 presents the final table of a football tournament of 4 teams, where the 

maximum number of points gained by the team at the second position (7 points) is bigger 

than the number of points gained by the first team (6 points). Table 2.34 presents the final 

table of an ice hockey tournament of 4-teams, where the maximum gained number of 

points for the team at the second position (7 points) is lower than the number of points for 

the first team (8 points). These two cases prove that max(Pts(k)) might be bigger or 

smaller than Pts(k-1), which means that Pts(k) must satisfy the following relation: 

 

Pts(k) ≤ min(max(Pts(k)), Pts(k-1)) (2.50) 



106 
 

 

 

By taking Eq. (2.50) into account, the interval of Pts(k) can be represented as 

follows: 

 

min(Pts(k)) ≤ Pts(k) ≤ min(max(Pts(k)), Pts(k-1)), where 1 < k ≤ n (2.51) 

 

 
Table 2.33.  The final  table of a football  tournament of 4 

teams where max(Pts(2)) > Pts(1) 
 
 

Teams W D L 

A 2 0 1 

B 1 2 0 

C 1 1 1 

D 0 1 2 

 

 

Table 2.34. The final table of an ice hockey tournament of 4 teams 

where Pts(1) > max(Pts(2)) 
 
 

Teams W OTW OTL L 

A 2 1 0 0 

B 2 0 1 0 

C 0 1 0 2 

D 0 0 1 2 

 

 

2.8. Optimization of Final Table States 

 

 

2.8.1. Optimized Backward Algorithm 

 

 

In this section, the backward algorithm that is presented in Section 2.6.1 is 

optimized, where we respect Eq. (2.51). Instead of the selection of every value in the set S 

for every participant (see Section 2.3.4), the participants will be given only the possible 

numbers of points in accordance with their positions in the final table. 

Before the optimized algorithm starts the generation of the states of a tournament 

final table, as well as the minimum  and maximum number of points which can be 



107 
 

 

 

succeeded by each participant, the set S is constructed together with the total number of 

points of each element in that set, contained in the set PS. Afterwards, the sets S and PS 

are sorted in the descending order of the elements of PS. The optimized backward 

algorithm to enumerate the states of a final table can be organized as follows: 

 

Optimized backward algorithm for enumerating the states of a tournament final table: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Outputs: 

Ts[][n][2q+r]: states of final tournament table 

Static variables and data structures: 

N: number of elements of the set S(n, 2q+r) 

S[N][2q+r]: the set S(n, 2q+r) 

T[n][2q+r]: tournament table 

PS[N]: number of points of each element of S 
minP[n]: possible minimum points of each participant 
maxP[n]: possible maximum points of each participant 

 

Main Procedure 

1: calculate N based on Eq. (2.23) 
2: calculate S based on Eq. (2.20) 

3: PS ← number of points of each element from S 

4: sort the elements of S and PS depending on the descending 
order of the elements of PS 

5: minP ← minimum number of points which can be gained by 

each participant // based on Eq. (2.42) 

6: maxP ← maximum number of points which can be gained by 

each participant // based on Eq. (2.48) 

7: stateGenerator(1, 1) 

Procedure: stateGenerator(k, i_p) 
1: if k ≤ n then 

2: i ← i_p 

3: while PS[i] > maxP[k] do 
4:  i++ 

5: while i ≤ N and PS[i] ≥ minP[k] do 
6:  for j ← 1 to 2q+r do 

7: T[k][j] ← S[i][j] 

8: i2 ← minimum index to PS where PS[i]=PS[i2] 
9: stateGenerator(k+1, i2) 

10: i++ 

11: else 

12: valid ← stateChecker(T) 
13: if valid = true then 
14:  insert T into Ts 



108 
 

 

 

Compared to the previous version of the algorithm (see Section 2.6.1), the 

procedure stateGenerator takes two parameters rather than one; namely the position of a 

participant and the index of the element selected from S for that participant. Note that i 

with the initial value i_p is an index to the elements of both S and PS (see line 2 of 

stateGenerator). If PS[i] > maxP[k], i keeps being incremented by 1 until the condition is 

false (see lines 3 and 4 of stateGenerator) and then the certain elements of S are assigned 

to T. This ensures that the number of the corresponding points of the elements assigned 

from S to T is less or equal to both max(Pts(k)) and Pts(k-1). The condition at line 5 of the 

procedure stateGenerator ensures that the elements from S keep being assigned to T, 

where i keep being increased by 1 (line 10) until the algorithm reaches an element from S 

with the number of points less or equal to min(Pts(k)). Thus, Eq. (2.51) would  be 

satisfied. 

By passing i2 (which holds the minimum index to PS where PS[i]=PS[i2]) as a 

parameter during the recursive call to the procedure stateGenerator at line 9, we ensure 

selecting every possible element of S with the same number of points for the next 

participant at the position (k+1). By sorting the elements of both S and PS in the 

descending order of the elements of PS, we ensure that the states are generated in the 

descending order of their corresponding points. So, there is no need to check whether the 

points of the teams are in descending order or not. In this way, the task performed at line 

2 of the previous version of the algorithm is eliminated (see Section 2.6.1). 

 

 

2.8.2. Optimized Forward Algorithm 

 

 

In this section, the forward algorithm that is presented in Section 2.6.2 is optimized, 

taking Eq. (2.51) into account. In this case, the algorithm generates the edges of each 

node representing a different participant in which the total number of their corresponding 

points is between min(Pts(k)) and min(max(Pts(k)), Pts(k-1)) rather than any value of 

Pts(k). 

Before the optimized algorithm starts the generation of the states of a tournament 

final table, with the same principle as the optimized backward algorithm, the minimum 

and maximum number of points which can be gained by each participant must be 

calculated. The pseudo-code of the optimized forward algorithm to enumerate the states 

of a final table is given below. 



109 
 

 

 

Optimized forward algorithm for enumerating the states of a tournament final table: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game results 

r: size of C2 

Output: 

Ts[][n][2q+r]: states of final tournament table 

Static data structures: 
G[n][n]: tournament graph 
T[n][2q+r]: tournament table 

minP[n]: possible minimum points of each participant 
maxP[n]: possible maximum points of each participant 
Pts[n]: number of points of each participant 

Main Procedure 

1: set all the elements of G to 0 

2: minP ← minimum number of points which can be gained by 

each participant // based on formula (2.42) 

3: maxP ← maximum number of points which can be gained by 

each participant // based on formula (2.48) 
4: graphGenerator(1, 2) 

Procedure: graphGenerator(k, j) 
1: for i ← 1 to 2q+r do 2: G[k][j] ← i 
3: if {Ri, Ri+1} ∈  C1 then 
4:  G[j][k] ← i+1 

5: else if {Ri-1, Ri} ∈  C1 then 
6: G[j][k] ← i-1 
7: else 

8: G[j][k] ← i 

9: if j+1 ≤ n then 

10: graphGenerator(k, j+1) 

11: else 

12: Pts[k] ← number of points of a kth participant 
13: if Pts[k] ≥ minP[k] then 

14: if (k > 1 and Pts[k] ≤ min(maxP[k], Pts[k-1])) or k = 1 
then 

15: if k+1 < n then 

16: graphGenerator(k+1, k+2) 

17: else 

18: Pts[n] ← total number of points of the n-th 
participant 

19: if Pts[n] ≤ min(maxP[n], Pts[n-1]) then 
20:  T ← the equivalent state of G 

21: if T ∉  Ts then 
22: insert T into Ts 
 

In the algorithm, after generating the edges of each node k and before performing 

the same task for the next node k+1, the total points must be checked whether it respects 



110 
 

 

 

Eq. (2.51) or not. As it is illustrated in lines 13 and 14 of the procedure graphGenerator, 

since the first node is not connected to a preceding one, the total number of its points is 

compared with min(Pts(1)) only, while the points of the other nodes except the last one 

are checked whether they are between min(max(Pts(k)), Pts(k-1)) and min(Pts(k)) or not. 

Since all the edges of the last node are generated during the manipulation of the 

previous nodes, the procedure graphGenerator is not called to process that node. After 

completing the generation of the graph, a special test on the number of the corresponding 

points of the last node will be done. This node (the nth node) will never have the number 

of points less than 0 (i.e., held by min(Pts(n)) and so the number of its points will be 

compared only with min(max(Pts(n)), Pts(n-1)). This is illustrated in line 19 of the 

procedure graphGenerator. 

After generating the edges of a kth node, if the number of its points does not respect 

Eq. (2.51), the following nodes will not be processed, and the graphs produced from the 

current sub-graph would be ignored. This is clearly shown in the case of each of Figures 

2.22, 2.24 and 2.25. That is, after constructing the partial graph based on the generation of 

the edges of the first node, the number of its points would be less than the minimum 

points that it can gain, and therefore neither the graphs (a), (b) nor (c) in each figure 

would be generated. 

A node will never have a number of points higher than the one of its previous nodes, 

because the number of the corresponding points of any node k is compared with 

min(max(Pts(k)), Pts(k-1)). So, there is no need to check the order of the points in the 

nodes after completing the generation of each graph. 

Table 2.35 shows the steps of generating the final states of a football tournament 

using the optimized forward algorithm, where the tournament is involved by 3 teams. 



111 
 

 

 

Table 2.35. The steps of generating the final table states of a 3-team football tournament, 

using the optimized forward algorithm 
 
 

Figure-Graph State Status Reason 

2.17-(a) ((2, 0, 0), (1, 0, 1), (0, 0, 2)) Accepted - 

2.17- (b) ((2, 0, 0), (0, 1, 1), (0, 1, 1)) Accepted - 

2.17-(c) ((2, 0, 0), (0, 0, 2), (1, 0, 1)) Not accepted Pts(2) < min(Pts(2)) 

2.18-(a) ((1, 1, 0), (1, 0, 1), (0, 1, 1)) Accepted - 

2.18-(b) ((1, 1, 0), (0, 1, 1), (0, 2, 0)) Not accepted Pts(2) < Pts(3) 

2.18-(c) ((1, 1, 0), (0, 0, 2), (1, 1, 0)) Not accepted Pts(2) < min(Pts(2)) 

2.19-(a) ((1, 0, 1), (1, 0, 1), (1, 0, 1)) Accepted - 

2.19-(b) ((1, 0, 1), (0, 1, 1), (1, 1, 0)) Not accepted Pts(2) < Pts(3) 

2.19-(c) ((1, 0, 1), (0, 0, 2), (2, 0, 0)) Not accepted Pts(2) < min(Pts(2)) 

2.20-(a) ((1, 1, 0), (1, 1, 0), (0, 0, 2)) Accepted - 

2.20-(b) ((1, 1, 0), (0, 2, 0), (0, 1, 1)) Accepted - 

2.2-(c) ((1, 1, 0), (0, 1, 1), (1, 0, 1)) Not accepted Pts(2) < Pts(3) 

2.21-(a) ((0, 2, 0), (1, 1, 0), (0, 1, 1)) Not accepted Pts(1) < Pts(2) 

2.21-(b) ((0, 2, 0), (0, 2, 0), (0, 2, 0)) Accepted - 

2.21-(c) ((0, 2, 0), (0, 1, 1), (1, 1, 0)) Not accepted Pts(2) < Pts(3) 

2.22 - Not accepted Pts(1) < min(Pts(1)) 

2.23-(a) ((1, 0, 1), (2, 0, 0), (0, 0, 2)) Not accepted Pts(1) < Pts(2) 

2.23-(b) ((1, 0, 1), (1, 1, 0), (0, 1, 1)) Not accepted Pts(1) < P(2) 

2.23-(c) ((1, 0, 1), (1, 0, 1), (1, 0, 1)) Not accepted Already exists 

2.24 - Not accepted Pts(1) < min(Pts(1)) 

2.25 - Not accepted Pts(1) < min(Pts(1)) 

 

 

2.9. Multi-threaded Optimization of Final Table States 

 

 

2.9.1. Multi-threaded Optimized Backward Algorithm 

 

 

In this section, the optimized backward algorithm that is presented in Section 2.8.1 

is internally accelerated using multi-threading, instead of a single thread of execution. If a 

machine contains multiple processors, multi-threaded programs usually run on that 

machine  faster  than  the  classically  structured  programs.  However,  the  threading 



112 
 

 

 

mechanism also has some certain disadvantages; for example, changing the context of 

threads and sharing critical resources cost some time, which has a negative effect on the 

execution time of the program. Therefore, not to degrade the algorithm performance, the 

optimum number of threads that allows the algorithm to exploit the maximum 

performance of the relevant machine must be determined. 

The number of cores in the used machine is usually taken into account as the 

optimum number of threads, but this may not be always the right choice [171]. The 

relationship between the number of threads, the number of available cores, and the 

resulting speedups for multi-threaded programs is a complicated relationship [172]. This 

is due to the fact that other factors influence the performance other than the number of the 

threads [173], such as the thread context switch rate, the bandwidth utility, the thread 

migration rate, and the characteristics of the program itself. The overlapping of these 

factors makes estimating the optimum number of threads theoretically a challenging issue 

[174], where a change in any factor may affect the maximum performance,  which 

requires adjusting the number of threads. It is possible to iteratively determine the 

optimum number of threads for a specific program [172, 175] through testing and 

comparing the performance of different numbers of threads. In this way, the right number 

of threads can be chosen, which gives the results in the shortest amount of time. 

The multi-threaded optimized backward algorithm to generate the states of a 

tournament final table is presented below. 

 

Multi-threaded optimized backward algorithm for enumerating the final states: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game 
results 

r: size of C2 

ThrLim: limit of threads that can run simultaneously 

 

Outputs: 

Ts[][n][2q+r]: states of final tournament table 

Static variables and data structures: 

N: number of elements of the set S(n, 2q+r) 

S[N][2q+r]: set S(n, 2q+r) 

PS[N]: the number of points of each element of S 
minP[n]: possible minimum points of each participant 
maxP[n]: possible maximum points of each participant 
thrNbr: number of the running threads 



113 
 

 

 

Main Procedure 

1: calculate N based on formula (2.23) 
2: calculate S based on formula (2.20) 

3: PS ← number of points of each element from S 

4: sort the elements of S and PS depending on the descending 
order of the elements of PS 

5: minP ← minimum number of points which can be gained by 

each participant // based on formula (2.42) 

6: maxP ← maximum number of points which can be gained by 

each participant // based on formula (2.48) 
7: T[n][2q+r] // tournament table 

8: thrNbr ← 1 

9: stateGenerator(1, 1, T) 

Procedure: stateGenerator(k, i_p, T_p) 
1: T ← T_p 

2: if k ≤ n then 
3:  i ← i_p 

4: while PS[i] > maxP[k] do 
5:  i++ 

6: while i ≤ N and PS[i] ≥ minP[k] do 
7:  T[k] ← S[i] 

8: i2 ← minimum index to PS where PS[i]=PS[i2] 
9: if thrNbr < thrLim then 

10: thrNbr++ 

11: new thread: 

12: stateGenerator(k+1, i2, T) 

13: thrNbr-- 

14: else 

15:  stateGenerator(k+1, i2, T) 
16: i++ 

17: else 

18: valid ← stateChecker(T) 
19: if valid = true then 
20:  insert T into Ts 

 

In the algorithm, in addition to the position of a participant and the index of the 

element selected from S for that participant, the current state of the tournament table (T) is 

passed as a parameter. Since T is passed as a parameter during each call to the procedure 

stateGenerator, there is no need to declare it as a global data structure, which is locally 

defined in the procedure Main (line 7). 

The variable thrNbr initially holds a value of 1, which represents the main thread. 

Before the procedure stateGenerator is called recursively, a check is performed on the 

number of the running threads (see line 9). If it is less than the optimum number (denoted 

by thrLim), thrNbr will be increased by 1 and the procedure will be called in a separate 

thread (see line 11). After creating a new thread for the call to stateGenerator, the current 

thread continues its execution in parallel and deals with the next iteration of the loop at 

line 6. The value of thrNbr will be decreased after the end of each thread. In the case 



114 
 

 

 

when the number of the running threads is equal to the optimum number of threads (i.e., 

thrLim=thrNbr), the recursive call to stateGenerator will be invoked sequentially by the 

same thread (i.e., the current thread). 

Compared with the single-threaded version of the algorithm, the table T is passed as 

a parameter at each call to stateGenerator, instead of declaring it as a global variable. This 

is because the consideration of table T as a global variable allows it to be updated by 

many threads at the same time, which may affect the obtained results. Since each element 

of Ts (the possible states of the tournament final table) and thrNbr are global variables, 

they can be updated by each thread. Thus, they are treated as critical resources, and a 

synchronization mechanism is implemented to control access to them. 

 

 

2.9.2. Multi-threaded Optimized Forward Algorithm 

 

 

In this section, the optimized forward algorithm that is presented in Section 2.8.2 is 

internally accelerated using multi-threading, instead of a single thread of execution. In 

order to exploit the maximum performance of the relevant machine, the optimum number 

of threads must be determined. As previously explained in Section 2.9.1, the optimum 

number of threads can be determined iteratively by testing and comparing the 

performance of different numbers of threads. The multi-threaded optimized forward 

algorithm to generate the states of a tournament final table is described below. 

 

Multi-threaded optimized forward algorithm for enumerating the final states: 

Inputs: 

n: number of participants 

C1: game results which are related to each other 

q: size of C1 

C2: game results which are not related to other game 
results 

r: size of C2 

thrLim: limit of threads that can run simultaneously 
Output: 

Ts[][n][2q+r]: states of the final tournament table 

Static data structures: 

minP[n]: possible minimum points of each participant 
maxP[n]: possible maximum points of each participant 
thrNbr: number of the running threads 

 

Main Procedure: 

1: minP ← minimum number of points which can be gained by 

each participant // based on formula (2.42) 



115 
 

 

 

2: maxP ← maximum number of points which can be gained by 

each participant // based on formula (2.48) 
3: G[n][n] // tournament graph 

4: Pts[k] // number of points of each participant 
5: thrNbr ← 1 

6: graphGenerator(1, 2, G, Pts) 

Procedure: graphGenerator(k, j, G_p, Pts_p) 
1: G ← G_p 

2: for i ← 1 to 2q+r do 
3:  G[k][j] ← i 

4: if {Ri, Ri+1} ∈  C1 then 
5: G[j][k] ← i+1 

6: else if {Ri-1, Ri} ∈  C1 then 
7: G[j][k] ← i-1 
8: else 

9: G[j][k] ← i 

10: if j+1 ≤ n then 

11: if thrNbr < thrLim then 
12:  thrNbr++ 

13: new thread: 

14: graphGenerator(k, j+1, G, Pts_p) 

15: thrNbr-- 

16: else 

17:  graphGenerator(k, j+1, G, Pts_p) 
18: else 

19: Pts ← Pts_p 

20: Pts[k] ← total number of points of a kth participant 
21: if Pts[k] ≥ minP[k] then 

22: if (k > 1 and Pts[k] ≤ min(maxP[k], Pts[k-1])) or k = 1 
then 

23: if k+1 < n then 

24: if thrNbr < thrLim then 
25:  thrNbr++ 

26: new thread: 

27: graphGenerator(k+1, k+2, G, Pts) 

28: thrNbr-- 

29: else 

30:  graphGenerator(k+1, k+2, G, Pts) 
31: else 

32: Pts[n] ← total number of points of the n-th 
participant 

33: if Pts[n] ≤ min(maxP[n], Pts[n-1]) then 
34:  T[n][2q+r] // tournament table 35: T ← the equivalent state of G 
36: if T ∉  Ts then   
37:  insert T into Ts 

 

In the algorithm, in addition to the indices of a participant (i.e., k) and its opponent 

(i.e., j) in the graph G, the procedure graphGenerator takes two more parameters, which 

are the tournament graph (i.e., G) and the number of points of each participant (i.e., Pts). 



116 
 

 

 

Since G and P are passed as parameters, there is no need to declare them as global data 

structures, which are locally defined in the procedure Main (lines 3 and 4). 

The variable thrNbr takes 1 as an initial value, which represents the main thread. 

Whenever the procedure graphGenerator is called recursively, the number of the running 

threads is checked (lines 11 and 24). If it is less than the optimum number of threads 

(denoted by thrLim), thrNbr will be increased by 1 and the procedure will be called in a 

separate thread (lines 14 and 27). After creating a new thread for the call to the procedure 

graphGenerator, the current thread deals with the execution of the next iteration of the 

loop at line 2 in parallel. The value of thrNbr will be decreased after the end of each 

thread. In the case when the number of the running threads is equal to the optimum 

number of threads (i.e., thrLim=thrNbr), the recursive call to the procedure 

stateGenerator will be invoked sequentially within the current thread. 

Compared with the single-threaded version of the algorithm given in Section 2.8.2, 

instead of declaring G and Pts as global variables, they are passed as parameters at each 

call to the procedure stateGenerator. This is because the consideration of the tables G and 

Pts as global variables allows all the threads to update them at the same time, which may 

affect the obtained results. Since each element of Ts (the total states of the tournament 

final table) and thrNbr are global variables, they can be updated by many threads 

simultaneously. Thus, they are treated as critical resources, and a synchronization 

mechanism is implemented to control access to them. 



 

 

 

3. COMPLEXITY ANALYSIS 

 

3.1. Introduction 

 

 

In this chapter, we analyze and discuss the complexities of the proposed approaches 

to provide a theoretical estimation for their required resources. During the analysis, we 

consider as resources each of the execution time and the memory space. The complexities 

of the proposed approaches mainly depend on the number of participants and the number 

of possible game results. 

Both of the backward and forward approaches are based on blind search algorithms. 

To simplify the time/space complexity calculation of each approach, we first calculate the 

complexities of the blind search algorithms. After analyzing and discussing the 

complexities of the backward and forward algorithms, their optimized versions are 

analyzed. Next, we analyze the parallelized versions of the approaches. In this stage, in 

addition to the numbers of participants and possible game results, the optimum number of 

threads that can be executed in parallel in the used machine is taken into account as an 

influencing factor in the complexity calculation. Last and not least, based on the results of 

this analysis, the complexity class of the addressed problem (i.e., determining all the 

states of a tournament table) is defined. 

 

 

3.2. Blind Search Algorithm for Enumerating The Final Table States 

 

 

In Section 2.6.1, we have showed that the principle of the backward algorithm is 

directly related to the one of the blind search algorithm for enumerating the final table 

states. Thus, for simplicity, we calculate the complexity of the blind search algorithm 

before the complexity analysis of the backward approach. 

 

 

3.2.1. Time Complexity 

 

 

Let T(n, m) be the time complexity of the blind search algorithm for n participants 

and m possible game results (m = 2q+r). As shown in Section 2.6.1, the main procedure 



118 
 

 

 

of the blind search algorithm contains 3 lines. The total time complexity of the algorithm 

is   the   sum   of   the   complexities   of    these    lines.    So,    we    can    write: 

T(n, m) = T1(n, m) + T2(n, m) + T3(n, m), where T1, T2 and T3 are respectively the time 

complexities of lines 1, 2 and 3. 

 

 
3.2.1.1. T1(n, m) 

 
 

Line 1 calculates the number, N, of possible game results (see Section 2.3.2) based 

on Eq. (2.23). This line can be represented by the following sub-algorithm: 

 

Inputs: n, m 

Output: N 

1: N ← 0 

2: calculateN(n-1, m) 

Procedure: calculateN(r, d) 
1: N++ 

2: if d > 1 then 

3:   for i ← 1 to r do 

4: calculateN(i, d-1) 

 

 

T1(n, m) is equivalent to the complexity F1(n-1, m) of the procedure calculateN. 

Supposing that a = n-1. F1(a, m) can be represented by the following recursive relation: 

F1(x, 1) = O(1), where 1 ≤ x ≤ a 
F1(a, m) = 
∑  

  (i, m-1) 

 =1     1 

To simplify the calculations, we consider the following function called G1 instead of 

F1, where G1(a, m) ≥ F1(a, m). Thus, if a closed formal solution exists for G1, we will 

have an upper bound on F1. G1(a, m) is defined as follows: 

G1(a, 1) = O(1) 

G1(a, m) = a*G1(a, m-1) = a
2
*G1(a, m-2) = a

3
*G1(a, m-3) = a

i
*G1(a, m-i) 

For i = m-1: 

G1(a, m) = a
m-1

*G1(a, 1) = O(a
m-1

) 

Since G1(a, m) ≥ F1(a, m) and G1(a, m) = O(a
m-1

), this means that 

F1(a, m) = O(a
m-1

). Since T1(n, m) = F1(a, m), we can say that T1(n, m) = O(a
m-1

). When 

we substitute a for its value (i.e., n-1), T1(n, m) = O((n-1)
m-1

) = O(n
m-1

). 



119 
 

 =1 

 
 

3.2.1.2. T2(n, m) 

 
 

After calculating T1(n, m), we calculate the complexity of line 2 from the main 

procedure of the blind search algorithm (i.e., T2(n, m)). Line 2 calculates the elements of 

the set S (set of the possible game results) based on Eq. (2.20). This line can be 

represented by the following sub-algorithm: 

 

Inputs: n, m 

Output: S[N][m] 

Static data structure: s[m] 
1: calculateS(1) 

Procedure: calculateS(j) 
1: for k ← 0 to n-1 do 
2:  s[j] ← k 

3: if j+1 ≤ m then 
4:  calculateS(j+1) 

5: else 

6: if  ∑   [p] = m then 
7: add s into S 

 
T2(n, m) is equivalent to the complexity the procedure calculateS. In line 6, the sub- 

algorithm is calculating the sum of the array s which has the size m. Line 7 adds the 

content of the array s into the last row of the two dimensional array S of the size N x m. It 

is clear that the complexity of each of lines 6 and 7 is O(m). Thus, T2(n, m) can be 

represented by the following recurrence relation. 

T2(n, 1) = n*O(m) = O(n*m) 

T2(n, m) = n*T2(n, m-1) = n
2
*T2(n, m-2) = n

3
*T2(n, m-3) = n

i
*T2(n, m-i) 

For i = m-1: 

T2(n, m) = n
m-1

*T2(n, 1) = O(m*n
m
) 

 

 
3.2.1.3. T3(n, m) 

 
 

T3(n, m) is the complexity of the procedure stateGenerator. In lines 3 and 4 of 

stateGenerator we assign a row from the array S (of the size N x m) to the array T (of the 

size n x m), which causes this part of the algorithm to have a complexity of O(m). Line 7 

of the same procedure consists of assigning the values of the array T to the array Ts 

(which is an array of arrays of the size n x m), which causes line 7 to have a complexity 

of O(n*m). T3(n, m) can be represented by the following recurrence relation. 



120 
 

 =1 

 

 

T3(0, m) = O(n*m) 

T3(n, m) = N*[O(m) + T3(n-1, m)] 

= N*O(m) + N*T3(n-1, m) 

= N*O(m) + N
2
*O(m) + N

2
*T3(n-2, m) 

= N*O(m) + N
2
*O(m) + N

3
*O(m) + N

3
*T3(n-3, m) 

= N*O(m) + N
2
*O(m) + N

3
*O(m) + … + N

i
*O(m) + N

i
*T3(n-i, m) 

For i = n: 

T3(n, m) = N*O(m) + N
2
*O(m) + N

3
*O(m) + … + N

n
*O(m) + N

n
*T3(0, m) 

= O(m)*∑   i 
+ N

n
*O(n*m) 

= O(m)*[(N
n+1 

- 1)/(N - 1)] - O(m) + N
n
*O(n*m) 

Based on the proposed sub-algorithm in Section 3.2.1.1 which calculates the value 

of N, we can say that n
m-1 

is an upper bound of the number N. By substituting N with n
m-1 

we get: 

T3(n, m) = O(m)*[(n
(m-1)*(n+1) 

- 1)/(n
m-1 

- 1)]) + n
(m-1)*n

*O(n*m) 

= O(m)*O(n(m-1)*(n+1) / nm-1) + n(m-1)*n*O(n*m) 

= O(m)*O(n
(m-1)*n

) + n
(m-1)*n

*O(n*m) 

= O(n
(m-1)*n

)*[O(m) + *O(n*m)] 

= O(n
(m-1)*n

)*O(n*m) 

= O(m*nn*m-n+1) 

 

 
3.2.1.4. T(n, m) 

 

 

After calculating each of T1(n, m), T2(n, m) and T3(n, m), T(n, m) would be the sum 

of these values. So, we can write: 

T(n, m) = T1(n, m) + T2(n, m) + T3(n, m) 

= O(n
m-1

) + O(m*n
m
) + O(m*n

n*m-n+1
) 

= O(m*nn*m-n+1) 

This means that the complexity of the blind search algorithm mainly depends on the 

complexity of the procedure stateGenerator. 



121 
 

 
 

3.2.2. Space Complexity 

 

 

To calculate the memory space complexity of the blind search algorithm, we 

distinguish the data structures whose sizes are related to n and/or m. We can note that the 

sizes of each of the arrays S, T and Ts are related to n and m. S and T are declared as 

abstract data structures, while Ts is the output of our algorithm. Unlike S and T whose 

sizes are predefined, the final size of Ts becomes known only at the end of the algorithm 

when all the generated states are saved into it. The memory space complexity $(n, m) in 

this situation equals the sum of the resultant complexities by each of S, T and Ts. The 

space complexities of S and T are equal respectively to O(N*m) and O(n*m). The 

complexity of Ts (denoted as $1(n, m)) can be defined as follows: 

$1(0, m) = O(n*m) 

$1(n, m) = N*$1(n-1, m) = N
2
*$1(n-2, m) = N

3
*$1(n-3, m) = N

i
*$1(n-i, m) 

When i = n: 

$1(n, m) = N
n
*$1(0, m) = N

n
*O(n*m) 

By  substituting  N  with  an  upper  bound  of  n
m-1

,  $1(n,  m)  would  be  equal  to 

O(m*n
n*m-n+1

). After calculating $1(n, m), $(n, m) will be as follows: 

$(n, m) = O(N*m) + O(n*m) + O(m*n
n*m-n+1

) 

= O(m*n
m-1

) + O(m*n
n*m

) + O(m*n
n*m-n+1

) 

= O(m*nn*m-n+1) 

As seen above, the space complexity mainly depends on the occupied space by Ts 

(i.e., the generated states), and neither of S or T have an effect on it. 

 

 

3.3. Backward Algorithm 

 

 

3.3.1. Time Complexity 

 

 

The only difference between the blind search algorithm and the backward algorithm 

is that the generated states are not saved unless their validities are agreed by the 

procedure stateChecker. This difference does not affect the complexities T1(n, m) and 

T2(n, m) (see Sections 3.2.1.1 and 3.2.1.2), but it may affect T3(n, m) (see Section 3.2.1.3). 

So, to calculate T(n, m) for this algorithm, we have to recalculate T3(n, m). 



122 
 

 =1 

 
 

3.3.1.1. T3(n, m) 

 
 

Since the number of the valid states is unknown, we suppose that the worst case of 

the execution time occurs when every generated case is valid. This means that every 

generated state is checked by the procedure stateChecker and saved into Ts. It is obvious 

that the test at line 7 has the complexity of O(n). To calculate T3(n, m) for this case, we 

suppose that T4(n, m) is the complexity of stateChecker. T3(n, m) in this case is 

represented as: 

T3(0, m) = O(n) + T4(n, m) + O(n*m) = T4(n, m) + O(n*m) 

T3(n, m) = N*[O(m) + T3(n-1, m)] 

= N*O(m) + N
2
*O(m) + … + N

n
*O(m) + N

n
*T3(0, m) 

= O(m)*∑   i 
+ N

n
*[T4(n, m) + O(n*m)] 

= O(m)*[(N
n+1 

- 1)/(N - 1)] - O(m) + N
n
*T4(n, m) + N

n
*O(n*m) 

By substituting N with an upper bound of n
m-1

, we get: 

T3(n, m) = O(m)*[(n
(m-1)*(n+1) 

- 1)/(n
m-1 

- 1)] + n
(m-1)*n

*T4(n, m) + n
(m-1)*n

*O(n*m) 

= O(m)*O(n
(m-1)*(n+1) 

/ n
m-1

) + n
(m-1)*n

*T4(n, m) + n
(m-1)*n

*O(n*m) 

= O(m)*O(n
(m-1)*n

) + n
(m-1)*n

*T4(n, m) + n
(m-1)*n

*O(n*m) 

= O(n
(m-1)*n

)*[O(m) + *O(n*m)] + n
(m-1)*n

*T4(n, m) 

= O(n
(m-1)*n

)*O(n*m) + n
(m-1)*n

*T4(n, m) 

= O(m*n
n*m-n+1

) + n
n*m-n

*T4(n, m) 

Here, to be able to calculate T3(n, m), we have to calculate T4(n, m) (i.e., the 

complexity of the procedure stateChecker). 

 

 
3.3.1.2. T4(n, m) 

 
 

It is clear that the complexity of line 1 in stateChecker is O(n
2
). Also, the resultant 

complexity from the lines 3 and 4 is O(m). If we denote the complexity of the procedure 

isStateValid (called at line 5) by T5(n, m), T4(n, m) can be written as follows: 

T4(n, m) = O(n
2
) + O(m) + T5(n, m) 

To be able to calculate T4(n, m), we have to calculate T5(n, m) (i.e., the complexity 

of the procedure isStateValid). 



123 
 

 =0 

 
 

3.3.1.3. T5(n, m) 

 
 

Each of lines 4 and 10 of the procedure isStateValid has the complexity of O(m), 

while line 7 has the complexity of O(r). Since m=2q+r, we can say that O(m) is an upper 

bound of O(r). The complexity of line 28 can be represented by O(n*m), while the 

complexity   of   line   31   can   be   represented   by    O(m).    We    suppose    that 

T5(n, m) = F5(n, n, m). The complexity of the procedure isStateValid is defined by the 

following recurrence relation: 

F5(1, 1, m) = O(n*m) 

F5(1, x, m) = O(m) + F5(x-1, x-1, m) 

F5(n, n, m) = O(m) + a*F5(n-1, n, m), where a = n-1 

= O(m) + a*O(m) + a
2
*F5(n-2, n, m) 

= O(m) + a*O(m) + a
2
*O(m) + a

3
*F5(n-3, n, m) 

= O(m) + a*O(m) + … + a
i-1

*O(m) + a
i
*F5(n-i, n, m) 

When i = n-1: 
F5(n, n, m) = O(m) + a*O(m) + … + a

n-2
*O(m) + a

n-1
*F5(1, n, m) 

= O(m)*∑ −2  i 
+ a

n-1
*F5(1, n, m) 

= O(m)*[(a
n-1 

- 1)/(a - 1)] + a
n-1

*[O(m) + F5(n-1, n-1, m)] 

By substituting a with n-1, we get: 

F5(n, n, m) = O[m*(n-1)
n-2

] + (n-1)
n-1

*[O(m) + F5(n-1, n-1, m)] 

= O[m*(n-1)
n-2

] + O[m*(n-1)
n-1

] + (n-1)
n-1

*F5(n-1, n-1, m) 

= O[m*(n-1)
n-1

] + (n-1)
n-1

*F5(n-1, n-1, m) 

= O[m*(n-1)
n-1

] + (n-1)
n-1

*[O(m*(n-2)
n-2

) + (n-2)
n-2

*F5(n-2, n-2, m)] 

= O[m*(n-1)
n-1

] + O[m*(n-1)
n-1

*(n-2)
n-2

] + 

(n-1)
n-1

*(n-2)
n-2

*[O(m*(n-3)
n-3

) + (n-3)
n-3

*F5(n-3, n-3, m)] 

= O[m*(n-1)
n-1

] + O[m*(n-1)
n-1

*(n-2)
n-2

] + 

O[m*(n-1)
n-1

*(n-2)
n-2

*(n-3)
n-3

] + 

(n-1)
n-1

*(n-2)
n-2

*(n-3)
n-3

*F5(n-3, n-3, m) 

= O[m*(n-1)
n-1

] + O[m*(n-1)
n-1

*(n-2)
n-2

] + … + 

O[m*(n-1)
n-1

*(n-2)
n-2

*…*(n-i)
n-i

] + 

(n-1)
n-1

*(n-2)
n-2

*…*(n-i)
n-i

*F5(n-i, n-i, m) 

For i=n-1, 

F5(n, n, m) = O[m*(n-1)
n-1

] + O[m*(n-1)
n-1

*(n-2)
n-2

] + … + 



124 
 

 

O[m*(n-1)
n-1

*(n-2)
n-2

*…*2
2
*1

1
] + 

(n-1)
n-1

*(n-2)
n-2

*…*2
2
*1

1
*F5(1, 1, m) 

= O(m) * 

∑ −1
 

∏  (n-j)
n-j 

+ F5(1, 1, m) * ∏ −1(n-k)
n-k

 

 =1  =1  =1 
= O(m) * 
∑ −1

 ∏  (n-j)
n-j 

+ O(n*m) * ∏ −1(n-k)
n-k

 

 =1  =1  =1 

To simplify the calculations, we solve the following function called G5  instead of 

F5, where G5(n, n, m) ≥ F5(n, n, m). Thus, if a closed formal solution exists for G5, we 

will have an upper bound on F5. G5(n, n, m) is defined as follows: 

G5(n, n, m) = O(m) * ∑ −1
 ∏ −1(n-1)

n-1  
+ O(n*m) * ∏ −1(n-1)

n-1
 

 =1  =1  =1 

= O(m)*(n-1)*(n-1)
(n-1)*(n-1) 

+ O(n*m)*(n-1)
(n-1)*(n-1)

 

= O[(n-1)
(n-1)*(n-1)

] * O[m*(n-1) + m*n] 

= O(n
(n-1)*(n-1)

) * O(m*n) 

= O(m*n(n-1)*(n-1)+1) 

Since G5(n, n, m) ≥ F5(n, n, m) and F5(n, n, m) = T5(n, m), we can write 

T5(n, m) = F5(n, n, m) = O(m*n
(n-1)*(n-1)+1

) 

 
 

3.3.1.4. T(n, m) 

 

 

After calculating T5(n, m), we have all the required values to determine T(n, m), 

which can be calculated as follows: 

T(n, m) = T1(n, m) + T2(n, m) + T3(n, m) 

= O(n
m-1

) + O(n
m
*m) + O(m*n

n*m-n+1
) + n

n*m-n
*T4(n, m) 

= O(n
m-1

) + O(n
m
*m) + O(m*n

n*m-n+1
) + n

n*m-n
*[O(n

2
) + O(m) + T5(n, m)] 

= O(n
m-1

) + O(n
m
*m) + O(m*n

n*m-n+1
) + 

n
n*m-n

*[O(n
2
) + O(m) + O(m*n

(n-1)*(n-1)+1
)] 

= O(m*nn*m-n+1) + nn*m-n*[O(m*n(n-1)*(n-1)+1)] 

= nn*m-n*[O(m*n) + O(m*n(n-1)*(n-1)+1)] 

= nn*m-n*O(m*n(n-1)*(n-1)+1) 

= O(m*nn*(n+m-3)+2) 

If we compare the complexity of the backward algorithm with the one of the blind 

search algorithm (i.e., O(m*n
n*m-n+1

)), we find that the complexity of this case is bigger. 

This leads to the conclusion that checking every generated state (by calling the procedure 

stateChecker) has a remarkable effect on the execution time. 



125 
 

 =1 

 
 

3.3.2. Space Complexity 

 

 

The difference between the space complexity calculations of the backward 

algorithm and the blind search algorithm is that the procedure stateChecker of the 

backward algorithm has some data structures related to n and/or m, which must be taken 

into account. These data structures are the static 2 dimensional arrays T and G which 

result in the complexities of O(n*m) and O(n
2
) respectively, and the local array 

trackingInds which results in a complexity of O(m). Supposing that $2(n, m) is the 

complexity  of  stateChecker,  the  space  complexity  of   the   backward   algorithm 

(i.e., $(n, m)) would be like: $(n, m) = O(m*n
n*m-n+1

) + $2(n, m). 

The procedure stateChecker calls the recursive procedure isStateValid. Supposing 

that $3(n, m) is the complexity of isStateValid, $2(n, m) can be defined as: 

$2(n, m) = O(n*m) + O(n
2
) + O(m) + $3(n, m) 

= O(n*m) + O(n
2
) + $3(n, m) 

The procedure isStateValid declares its own local array trackingInds every single 

recursive call. To calculate the resultant complexity of this procedure we have to define 

the maximum depth of the recursive calls. The maximum depth can be defined as follows: 

d = ∑ −1  -i = n*(n+1)/2 
So, $3(n, m) can be represented as: 

$3(n, m) = [n*(n+1)/2] * O(m) 

= O(n*m/2) * O(n+1) 

= O(m*n
2
). 

After calculating $3(n, m), $2(n, m) would be like: 

$2(n, m) = O(n*m) + O(n
2
) + O(m*n

2
) 

= O(m*n
2
). 

After having the value of $2(n, m), $(n, m) would be: 

$(n, m) = O(m*n
n*m-n+1

) + O(m*n
2
) 

= O(m*n
n*m-n+1

). 

The space complexity remains the same in this case compared to the case of the 

blind search algorithm. This can be explained by the fact that the required memory space 

for the deepest recursive calls of the procedure isStateValid does not have a big effect on 

the memory space as the process of generating the final states does. The value of $(n, m) 

represents the complexity of this algorithm for the worst case, i.e. all the generated states 



126 
 

 

 

are saved, but this is not what really happens. We have just supposed that every generated 

state is saved because there is no practical way to determine the number of the generated 

states based on n and m. So the real complexity would be smaller than O(m*n
n*m-n+1

), 

which is still an upper bound for it. 

 

 
3.4. Optimized Backward Algorithm 

 

 

3.4.1. Time Complexity 

 

 

This algorithm differs from the previous one by taking into account some 

restrictions related to the maximum and minimum number of points that can be earned by 

a participant. These restrictions are applied during selecting the elements from the set S, 

which is then to be assigned to the tournament table. Applying the restrictions requires 

information related to the maximum and minimum number of points for each participant, 

which implies the need of preparing some new data structure before calling the procedure 

stateGenerator at line 7 of the main procedure. 

The first required data structure is the array PS which contains the number of points 

for each element from S (see line 3). The process of calculating PS has a complexity of 

O(N*m) = O(m*n
m-1

). In addition to calculating PS it needs to be sorted in a descending 

order. In the same time we sort the elements of S according to their related elements in 

PS. To achieve this, we propose the following sub-algorithm which is based on the 

selection sort algorithm: 

 

Inputs: PS[N], S[N][m] 

Output: PS[N], S[N][m] 
1: c, ind 

2: for i ← 1 to N-1 do 
3:  ind ← 0 

4:   for j ← i+1 to N do 

5: if PS[i] < PS[j] then 
6:  ind ← j 

7:   if ind ≠ 0 then 

8: c ← PS[i] 

9: PS[i] ← PS[ind] 

10: PS[ind] ← c 

11: for j ← 1 to m do 
12:  c ← P[i][j] 

13: P[i][j] ← P[ind][j] 

14: P[ind][j] ← c 



127 
 

 =1 

 

 

Supposing that T6(n, m) is the complexity of this sub-algorithm, T6(n, m) can be 

represented as: 

T6(n, m) = ∑ −1   + N - 1 
= (N

2
-N)/2 + N - 1 

= O(N
2
-N) + O(N) 

= O(N
2
) 

By substituting N with an upper bound of n
m-1 

we get T6(n, m) = O(n
2*m-2

). 

Lines 5 and 6 of the optimized backward algorithm calculate the minimum and 

maximum number of points that can be gained by each participant. Each of these lines 

generates a complexity of O(n). T(n, m) in this case would be like: 

T(n, m) = O(n
m-1

) + O(m*n
m
) + O(m*n

m-1
) + O(n

2*m-2
) + 2*O(n) + T3(n, m) 

= O(n
2*m-2

) + T3(n, m) 

The backward algorithm uses a “for” loop to assign all the possible values of the set 

S to a specific participant in table T (see line 2 of the procedure stateGenerator). On the 

other hand, the optimized backward algorithm uses a “while” loop at line 4 to assign just 

the elements from S whose points respect the conditions. Since there is no useful way 

(i.e., based on n and m) to determine the number of elements from the set S which respect 

the points’ range for a specific position of T, we are obligated to calculate the complexity 

for the worst case. The worst case would be considering all the elements of the set S, 

which means that we would be treating the backward algorithm again. This implies that 

the complexity T3(n, m) of the procedure stateGenerator for this case would also be equal 

to O(m*n
n*(n+m-3)+2

). Although this value is greater than the real value, it is still an upper 

bound for T3(n, m). Thus, T(n, m) would be: 

T(n, m) = O(n2*m-2) + O(m*nn*(n+m-3)+2) = O(m*nn*(n+m-3)+2) 

As seen from the final value of T(n, m), the complexities of the achieved 

calculations by the main procedure (i.e., the lines from 1 to 6) do not affect the final 

complexity, where T(n, m) is still directly related to T3(n, m) (the complexity of the 

procedure stateGenerator). 

 

 
3.4.2. Space Complexity 

 

 

The optimized backward algorithm keeps the same data structures appeared in the 

backward algorithm. In addition, there are some other data structures declared. These new 



128 
 

 

 

data structures are the static array PS which has a size of N, and the static arrays minP and 

maxP which have the size n. The calculated complexities of PS, minP and maxP are 

O(n
m-1

), O(n) and O(n) respectively. The value of $(n, m) for this case would be the value 

of $(n, m) in the case of the backward algorithm plus the sum of the resultant 

complexities caused by the new declared data structures. So, we can write: 

$(n, m) = O(m*n
n*m-n+1

) + O(n
m-1

) + 2*O(n)  = O(m*n
n*m-n+1

) 

The space complexity remains the same in this case compared to the previous one. 

This can be explained by the fact that the new data structures have no effect on the 

complexity of the optimized backward algorithm, and $(n, m) still depends on the size of 

Ts (i.e., a 3-dimensional array which contains all the generated states). 

 

 

3.5. Multi-threaded Optimized Backward Algorithm 

 

 

3.5.1. Time Complexity 

 

 

Compared to the sequential optimized backward algorithm, the multi-threaded 

algorithm has no difference in terms of fundamental processes. The only difference is 

that, in the multi-threaded version, a recursive call of the procedure stateGenerator is 

called in a new thread (parallel) whenever the number of the current threads (i.e., thrNbr) 

is less than the threads’ limit (i.e., thrLim). To express the complexity of the multi- 

threaded  algorithm,  we  have  to  take  thrLim  into  account  as  a  new  parameter.  The 

complexity of T(n, m, thrLim) would be T(n, m)/thrLim = O[(m*n
n*(n+m-3)+2

)/thrLim]. 

 

 
3.5.2. Space Complexity 

 

 

The complexity $(n, m) is related to Ts in all the previous cases. This is due to the 

fact that Ts is the largest data structure in all the previous algorithms, which makes its 

resulting complexity dominant during the calculation of $(n, m). Ts also exists in this 

algorithm version, where it results in the same complexity (i.e., O(m*n
n*m-n+1

)). The 

difference in this algorithm compared to the sequential one is that the array T is not 

declared as static, but as a local array of each of the main procedure and the procedure 

stateGenerator. To calculate the resultant complexity for the procedure stateGenerator in 

this situation, we have to define the maximum depth of its recursive calls. The maximum 



129 
 

 =1 

 =1 

 

depth equals to ∑ −1  -i = n*(n+1)/2. So, the resultant complexity would be  equal to 

[n*(n+1)/2]*O(n*m) = O(m*n
3
). 

Since the recursive calls of stateGenerator are directly related to the maximum 

number of threads (thrLim), there is a possibility that each thread reaches the maximum 

depth of the recursive calls of stateGenerator (i.e., a worst case), which means that a 

number of [n*(n+1)/2]*thrLim of T arrays may be declared. In this situation, the 

complexity   related   to   T   would   be   equal   to   O(thrLim*m*n
3
).   The   complexity 

$(n, m, thrLim) of the multithreaded algorithm would be represented as follows: 

$(n, m, thrLim) = O(m*n
n*m-n+1

) + O(thrLim*m*n
3
). 

 

 
3.6. Blind Search Algorithm for generating a tournament graph 

 

 

We have explained in Section 2.6.2 how the principle of the forward algorithm is 

directly related to the principle of the blind search algorithm for generating a tournament 

graph. Thus, for simplicity, we calculate the complexity of the blind search algorithm 

before the complexity analysis of the forward approach. 

 

 

3.6.1. Time Complexity 

 

 

We suppose that T(n, m) is the time complexity of the blind search algorithm for n 

participants and m possible game results (m = 2q+r). In Section 2.6.2, the first line of the 

Main procedure of the blind search algorithm sets all the elements of a 2-dimensional 

array (i.e., G) to 0. Since G has a size of n x n, this makes the complexity of line 1 equal 

to O(n
2
). Line 2 of the same procedure is a call to the procedure graphGenerator. If we 

suppose that T1(n, m) represents the complexity of graphGenerator, T(n, m) would be 

represented as: T(n, m) = O(n
2
) + T1(n, m). To determine T(n, m), T1(n, m) must be 

calculated. 

Each of lines 3 and 5 of graphGenerator results in a complexity of O(q). Since 

m > q, O(m) can be considered as an upper bound of the complexities of lines 3 and 5. 

Besides, line 15 of the same procedure results in a complexity of O(n
2
). To calculate 

T1(n, m), we have to define the depth that the recursive calls of the procedure 

graphGenerator may reach. The depth d may be defined as: 

d = ∑ −1  -i = n*(n-1)/2 



130 
 

 =1 

 

 

We suppose that F1(n, m, d) = T1(n, m), where F1(n, m, d) can be represented by the 

following recurrence relation: 

F1(n, m, 1) = m*[2*O(m) + O(n
2
)] = O(m

2
) + O(m*n

2
) 

F1(n, m, d) = m*[2*O(m) + F1(n, m, d-1)] 

= m*O(m) + m*F1(n, m, d-1) 

= m*O(m) + m
2
*O(m) + m

2
*F1(n, m, d-2) 

= m*O(m) + m
2
*O(m) + … + m

i
*O(m) + m

i
*F1(n, m, d-i) 

For i = d-1: 
F1(n, m, d) = m*O(m) + m

2
*O(m) + … + m

d-1
*O(m) + m

d-1
*F1(n, m, 1) 

= O(m)*∑ −1   i 
+ m

d-1
*O(m

2
) + m

d-1
*O(m*n

2
) 

= O(m)*[(m
d
-1)/(m-1)] - O(m) + m

d-1
*O(m

2
) + m

d-1
*O(m*n

2
) 

= O(m*m
d-1

) + m
d-1

*O(m
2
) + m

d-1
*O(m*n

2
) 

= O(m
d
) + O(m

d
*n

2
) 

= O(m
d
*n

2
) 

When we substitute d with n(n-1)/2: T1(n, m) = O(m
n*(n-1)/2

*n
2
). After calculating 

T1(n, m), T(n, m) would be like: 

T(n, m) = O(n
2
) + O(n

2
*m

n*(n-1)/2
) = O(n

2
*m

n*(n-1)/2
). 

As seen above, T(n, m) = T1(n, m). This means that the complexity of the blind 

search algorithm mainly depends on the complexity of the procedure graphGenerator. 

 

 
3.6.2. Space Complexity 

 

 

To calculate the memory space complexity of the blind search algorithm, we 

distinguish the data structure whose sizes are related to n and/or m. The size of both the 

arrays G and Gs are related to n. G is declared as an abstract data structure, while Gs is 

the output of the algorithm. The size of G is predefined (n x n), while the size of Gs 

becomes known at the end of the algorithm when all the generated graphs are saved into 

it. Denoting the memory space complexity as $(n, m), we can say that $(n, m) equals the 

sum of the of the complexities of G and Gs. Knowing that the complexity of G is O(n
2
), 

and supposing that $1(n, m) is the complexity of Gs, $(n, m) would be written as: 

$(n, m) = O(n
2
) + $1(n, m) 

Supposing that $1(n, m) = F1(n, m, d), where d is the maximum depth of the 

recursivity of graphGenerator (i.e., n(n-1)/2). F1(n, m, d) can be defined as follows: 



131 
 

 

F1(n, m, 1) = m*O(n
2
) 

F1(n, m, d) = m*F1(n, m, d-1) = m
2
*F1(n, m, d-2) = m

i
*F1(n, m, d-i) 

For i = d-1: 

F1(n, m, d) = m
d-1

*F1(n, m, 1) = m
d
*O(n

2
) 

When we substitute d with n(n-1)/2: $1(n, m) = O(n
2
*m

n(n-1)/2
). 

$(n, m) in this case would be like: 

$(n, m) = O(n
2
) + O(n

2
*m

n(n-1)/2
) = O(n

2
*m

n(n-1)/2
) 

As seen above, the space complexity mainly depends on the space occupied by Gs 

(i.e., the generated graphs), and the size of G has no effect on it. 

 

 

3.7. Forward Algorithm 

 

 

3.7.1. Time Complexity 

 

 

The difference between the blind search algorithm and the forward algorithm is that, 

instead of saving a generated tournament graph, it is converted to a tournament table and 

then saved if the participants’ points are in a descending order. This difference may affect 

the complexity of the procedure graphGenerator. Line 15 of graphGenerator in this case 

converts the data of G to a final tournament table state (i.e., T). We denote the complexity 

of this line as T2(n, m). Line 16 calculates the gained number of points by each participant 

of T. This line results in a complexity of O(n*m). In line 17, the procedure checks 

whether the calculated points in line 16 are in a descending order or not. The resultant 

complexity from this line would be equal to O(n). The generated state would not be saved 

unless its current occurrence is checked (see line 18). We denote the complexity of this 

process as T3(n, m). The last line of the procedure saves the contents of T into Ts (an array 

which contains all the generated states). This line results in a complexity of O(n*m). 

Supposing that T(n, m) is the complexity of the forward algorithm.  T(n, m) is 

represented as: T(n, m) = O(n
2
) + T1(n, m). 

We suppose that T1(n, m) = F1(n, m, d) is the complexity of the procedure 

graphGenerator, where d is the depth that the recursive calls of the procedure 

graphGenerator may reach (i.e., n*(n-1)/2). F1(n, m, d) would be represented as follows: 

F1(n, m, 1) = m*[O(n*m) + O(n) + O(n*m) + T2(n, m) + T3(n, m)] 

= m*[O(n*m) + T2(n, m) + T3(n, m)] 



132 
 

 =1 

 

 
F1(n, m, d) = m*[2*O(m) + F1(n, m, d-1)] 

= O(m)*∑ −1   i 
+ m

d-1
*F1(n, m, 1) 

= O(m
d
) + m

d
*[O(n*m) + T2(n, m) + T3(n, m)] 

To continue calculating F1(n, m, d) (i.e., T(n, m)), each of T2(n, m) and T3(n, m) 

must be calculated. 

 

 
3.7.1.1. T2(n, m) 

 
 

Line 15 of the procedure graphGenerator saves the corresponding state of G into T. 

This line can be represented by the following sub-algorithm: 

 

Input: G[n][n] 

Output: T[n][m] 
1: i, ind 

2: for k ← 1 to n do 
3:  for j ← 1 to n do 
4:   if k ≠ j then 

5: i ← G[k][j] 

6: ind ← the position of Ri in T 

7: T[k][ind]++ 

 

 

Line 6 of this sub-algorithm results in a complexity of O(m). The process of this line 

is repeated (n-1)
2 

times, which generates a total complexity (i.e., T2(n, m)) of O(m*n
2
). 

 

3.7.1.2. T3(n, m) 

 
 

Line 18 of the procedure graphGenerator verifies whether the generated tournament 

table state (i.e., T) has been calculated before or not. Line 18 can be illustrated by the 

following sub-algorithm: 

 

Input: T[n][m], Ts[][n][m] 
Output: true or false 

1: found ← false 

2: for i ← 1 to the size of Ts do 
3:  if found = false then 

4:  found ← compare(T, Ts[i]) 
5: else 

6: return found 

Procedure: compare(T1[][],T2[][]) 



133 
 

 

 

2: for i ← 1 to n do 
3:  for j ← 1 to m do 

4: if T1[i][j] ≠ T2[i][j] then 
4:  return false 

1: return true 

 

It is clear that the procedure compare has the complexity O(n*m). To calculate 

T3(n, m), the size of Ts which is required for the loop at line 2 must be defined. At the 

start of the forward algorithm, Ts would be empty and its number of elements grows up as 

far as the process approaches its end. The number of the current generated states is taken 

as a worst case for the number of the loop iterations at line 2. Since there is no possible 

way to determine the number of the generated states at a specific moment, we consider an 

upper value to be the worst case of the iterations of the loop at line 2. We suppose that 

each generated graph results in a valid tournament state. The number of the generated 

graphs, in this case, would be m
n*(n-1)/2

. Considering this number of iterations at line 2 

makes T3(n, m) equal to  m
n*(n-1)/2

*O(n*m) = O(n*m
[n*(n-1)/2]+1

). 

 

 
3.7.1.3. T(n, m) 

 

 

After calculating T2(n, m) and T3(n, m), F1(n, m) would be like: 

F1(n, m, d) = O(m
d
) + m

d
*[O(n*m) + O(m*n

2
) + O(n*m

[n*(n-1)/2]+1
)] 

= md*O(n*m[n*(n-1)/2]+1) 

Substituting d with n(n-1)/2, we get T1(n, m) = O(n*m
n*(n-1)+1

). After calculating 

T1(n, m), T(n, m) would be O(n
2
) + O(n*m

n*(n-1)+1
) = O(n*m

n*(n-1)+1
). 

As seen above, T(n, m) = T1(n, m). This means that the complexity of the forward 

algorithm mainly depends on the complexity of the procedure graphGenerator. If we 

compare the complexity of the forward algorithm with the one of the blind search 

algorithm (i.e., O(n
2
*m

n*(n-1)/2
)), we find that the complexity of this case is larger. This 

leads to the conclusion that checking the existence of every generated state (at line 18 of 

the procedure graphGenerator) has a remarkable effect on the execution time. 

 

 
3.7.2. Space Complexity 

 

 

The difference between the space complexity calculations of the forward algorithm 

and the blind search algorithm is that, instead of using Gs to save the generated graphs, 



134 
 

 

 

we use Ts to save the generated states. In addition to the array G, the forward algorithm 

uses the array T which contains the state obtained from the data of G. G and T have 

respectively the sizes n x n and n x m, and result in the complexities of O(n
2
) and O(n*m) 

respectively. Supposing that $1(n, m) is the memory space complexity of Ts and $(n, m) is 

the total space complexity of the forward algorithm, $(n, m) would be written as: 

$(n, m) = O(n
2
) + O(n*m) + $1(n, m) 

Supposing that $1(n, m) = F1(n, m, d), where d is the maximum depth of the 

recursivity of graphGenerator (i.e., n(n-1)/2). F1(n, m, d) can be defined as follows: 

F1(n, m, 1) = m*O(n*m) 

F1(n, m, d) = m*F1(n, m, d-1) = m
2
*F1(n, m, d-2) = m

i
*F1(n, m, d-i) 

For i = d-1: 

F1(n, m, d) = m
d-1

*F1(n, m, 1) = m
d
*O(n*m) 

Substituting d with n(n-1)/2: $1(n, m) = O(n*m
[n(n-1)/2]+1

). 

$(n, m) in this case would be like: 

$(n, m) = O(n
2
) + O(n*m) + O(n*m

[n(n-1)/2]+1
) = O(n*m

[n(n-1)/2]+1
) 

The space complexity mainly depends on the occupied space by Ts (i.e., the 

generated final states of the tournament table), and neither of the sizes of G or T has an 

effect on it. $(n, m) represents the complexity of this algorithm for the worst case, i.e., all 

the generated graphs are converted to valid states, but this is not what really happens. We 

have supposed that every generated state is saved because there is no practical way to 

determine the number of the generated states based on n and m. So, the real complexity 

would be less than O(n*m
[n(n-1)/2]+1

), but this value is still an upper bound. 

 
 

3.8. Optimized Forward Algorithm 

 

 

3.8.1. Time Complexity 

 

 

The optimized forward algorithm differs from the forward algorithm by taking into 

account restrictions related to the maximum and minimum number of points that can be 

gained by each participant. Respecting these restrictions is checked after generating all 

the game results (i.e., the related graph edges) of a specific participant (see lines 13, 14 

and 19 of the procedure graphGenerator). To check the point restrictions, information 

related to the maximum and minimum number of points of each participant is required. 



135 
 

 =1 

 

 

This implies the need of preparing some new data structures (maxP at line 3 and minP at 

line 2) before calling the procedure graphGenerator at line 4 of the main procedure. Each 

of these lines generates a complexity of O(n). Supposing that T1(n, m) is the resultant 

complexity by the procedure gaphGenerator, T(n, m) in this case would be 

T(n, m) = O(n
2
) + 2*O(n) + T1(n, m) 

= O(n
2
) + T1(n, m) 

To calculate T1(n, m), we determine the worst case of the procedure gaphGenerator. 

Since there is no useful way to know how many iterations of the loop at line 1 satisfy the 

conditions at lines 13, 14 and 19 (i.e., the maximum and minimum point restrictions), we 

consider that the conditions are satisfied in every iteration. Each of lines 12 and 18 of the 

procedure graphGenerator has a complexity of O(m). As seen in Section 3.7.1, the 

complexities of each of lines 3, 5, 20, 21 and 22 of graphGenerator are respectively equal 

to   O(m),   O(m),   O(m*n
2
),   O(n*m

[n*(n-1)/2+1]
)   and   O(n*m).   We    suppose    that 

T1(n, m) = F1(n, m, d) is the complexity of the procedure graphGenerator, where d is the 

depth that the recursive calls of the procedure graphGenerator may reach (i.e., n*(n-1)/2). 

F1(n, m, d) would be represented as follows. 

F1(n, m, 1) = m*[O(m) + O(m*n
2
) + O(n*m

[n*(n-1)/2+1]
) + O(n*m)] 

= m*O(n*m[n*(n-1)/2+1]) 

F1(n, m, d) = m*[3*O(m) + F1(n, m, d-1)] 

= O(m)*∑ −1   i 
+ m

d-1
*F1(n, m, 1) 

= O(m
d
) + m

d
*[O(n*m

[n*(n-1)/2+1]
)] 

= md*O(n*m[n*(n-1)/2]+1) 

Substituting d with n(n-1)/2, we get T1(n, m) = O(n*m
n*(n-1)+1

). After calculating 

T1(n, m), T(n, m) would be T(n, m) = O(n
2
) + O(n*m

n*(n-1)+1
) = O(n*m

n*(n-1)+1
). As seen 

from the final value of T(n, m), the complexities of the new achieved calculations by the 

main procedure (i.e., the line 2 and 3) do not affect the final complexity, where T(n, m) is 

still directly related to T3(n, m) (the complexity of the procedure stateGenerator). Besides, 

the complexity of the optimized forward is the same as the one of the previous algorithm. 

The reason for this is the consideration that the conditions at lines 13, 14 and 19 are 

always satisfied. 



136 
 

 =1 

 
 

3.8.2. Space Complexity 

 

 

In addition to the considered data structures in the previous algorithm (see Section 

3.6.3), in this version of the algorithm three new arrays are taken into account (i.e., minP, 

maxP and Pts), where each of them has a space complexity of O(n). The space 

complexity $(n, m) of this case would be like 

$(n, m) = O(n
2
) + O(n*m) + O(n*m

[n(n-1)/2]+1
) + 3*O(n)= O(n*m

[n*(n-1)/2]+1
) 

The space complexity remains the same in this case compared to the previous one. 

This can be explained by the fact that the new data structures have no effect on the 

complexity of the optimized forward algorithm, and $(n, m) is still depending on the size 

of Ts. 

 

 

3.9. Multi-threaded Optimized Forward Algorithm 

 

 

3.9.1. Time Complexity 

 

 

Compared to the sequential optimized forward algorithm, the multi-threaded 

algorithm has no difference in terms of fundamental processes. The only remarkable 

difference is that, in the multi-threaded version, a recursive call of the procedure 

graphGenerator is invoked in a new thread (parallel) whenever the number of the current 

threads is less than the threads’ limit (i.e., thrLim > thrNbr). To represent the complexity 

of the multi-threaded algorithm, we have to take thrLim into account as a new parameter. 

The complexity T(n, m, thrLim) would be T(n, m)/thrLim = O[(n*m
n*(n-1)+1

)/thrLim]. 

 
 

3.9.2. Space Complexity 

 

 

The difference in this algorithm compared to the sequential one is that the neither of 

G, Pts or T are declared as static, but G, Pts are declared as local arrays in each of the 

main procedure and the procedure graphGenerator, and T is declared as a local array in 

the deepest recursive call of the procedure graphGenerator. G, T and Pts have 

respectively the space complexities of O(n
2
), O(n*m) and O(n). To calculate the resultant 

complexity by the procedure graphGenerator, we have to define the maximum depth of its 

recursive calls. The maximum depth equals to ∑ −1  -i = n*(n+1)/2. So, the  resultant 



137 
 

 

complexity by graphGenerator would be equal to [n*(n+1)/2]*[O(n
2
) + O(n)] + O(n*m) = 

O(n
4
) + O(m*n). 

Since the recursive calls of stateGenerator are directly related to the maximum 

number of threads (i.e., thrLim), there is a possibility that each thread reaches the 

maximum depth of the recursive calls of graphGenerator (i.e., a worst case). In this 

situation, the complexity related to G, T and Pts would be equal to O[thrLim*(n
4
+m*n)]. 

The complexity $(n, m, thrLim) of the multithreaded algorithm would be represented as 

follows. 

$(n, m, thrLim) = O(n*m
[n*(n-1)/2]+1

) + O[thrLim*(n
4
+m*n)] 

 

 
3.10. The Complexity Classes of Our Problem 

 

 

3.10.1. The Class P 

 

 

According to the calculated complexities in Sections 3.3, 3.4, 3.5, 3.7, 3.8 and 3.9, 

the problem of determining the final states of a tournament table has a non-deterministic 

polynomial complexity for each of the backward and forward approaches, in addition to 

their optimized and parallelized versions. So we can say that the problem does not belong 

to the class P. 

 

 

3.10.2. The Class NP 

 

 

We have showed in Section 3.10.1 that the problem has a non-deterministic 

polynomial complexity. To say that the problem belongs to class NP, its output (i.e., the 

generated states) must be able to be verified in a polynomial time. To verify whether a 

state generated by any of the proposed algorithms is valid or not, the participants’ points 

must be in a descending order, and the state must result in a tournament graph. 

It is obvious that checking the order of the participants has a complexity of O(n*m). 

The verification of whether a tournament graph can be constructed based on a specific 

state or not is the task that is performed by the procedure stateChecker (see Algorithm for 

validating states at Section 2.6.1). The complexity of this procedure is calculated above 

(see Sections 3.3.1.2 and 3.3.1.3), which is equal to O(m*n
(n-1)*(n-1)+1

). The required time 



138 
 

 

 

to check a generated state is not polynomial, which leads us to say that the problem does 

not belong to the NP class. 

 

 
3.10.3. The Class NP-hard 

 

 

We have mentioned in Section 2.6.2 (see Table 2.25) that a tournament graph can be 

transformed to a tournament table. It is possible to say that transforming a tournament 

graph into a tournament table is an operation of reduction (see Section 1.10.9). This 

reduction can easily be done in a polynomial time (i.e., O(n*m)), which means that if we 

prove that the problem of determining a complete graph is an NP-hard problem, the 

problem of determining a state of a tournament table will automatically be an NP-hard 

problem. 

Based on Section 1.10.10, to prove that the problem of determining if a graph is 

complete is an NP-hard problem, we select a known NP-hard problem and reduce it to our 

problem (i.e., complete graph problem). Since we already know that SAT (i.e., Boolean 

satisfiability problem) is an NP-hard problem (see Section 1.10.11), we reduce it to a 

complete  graph  problem.  Given  the  following  CNF  (i.e.,  conjunctive  normal  form): 

  = x1  ∧ x2  ∧ x3, the values x1=1, x2=1 and x3=1 satisfies   (i.e.,   = 1).   contains 3 

clauses: C1 = L1,1 = x1, C2 = L2,1 = x2 and C3 = L3,1 = x3. To reduce the represented SAT 

problem by   to a complete graph problem, we apply the presented rules in the example 

given in Section 1.10.11. 

Transforming a CNF with n clauses, where each clause contains a single Li,j (i.e., 

Li,1), into a graph requires a time complexity of O(n
2
). Thus, we can say that the reduction 

is done in polynomial time. By applying the transformation rules on   , we get  the 
represented graph in Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1. Transforming   = x1 ∧ x2 ∧ x3 into a graph 



139 
 

 

 

The resultant graph from a CNF with n clauses contains n nodes (i.e, a complete 

graph). As we can see, the graph in Figure 3.1 is a complete one with 3 nodes. When we 
represent each node in the graph with 1 (i.e, a true value),   must be satisfied. In  this case, when x1=1, x2=1 and x3=1,   = 1 ∧ 1 ∧ 1 = 1. Since we reduced a CNF problem into 
a complete graph problem in a polynomial time and the CNF problem is an NP-hard 

problem, we can say that the complete graph problem is an NP-hard problem. In 

accordance with the discussion at the beginning of this section, we can also say that the 

problem of determining a state of a tournament table belongs to the class NP-hard. Since 

the problem of calculating the possible states of final tables of sport competitions consists 

of determining all the states of a tournament table, we can say that the problem also 

belongs to the class NP-hard. 

 

 

3.10.4. The Class NP-complete 

 

 

We have showed above that the problem of calculating the tournament table states 

belongs to the class NP-hard, but it does not belong to the NP class. Thus, we can say that 

the problem does not belong to the class NP-complete. 



 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1. Introduction 

 

 

Each of the proposed approaches (i.e., backward and forward), their optimized 

versions, and their multi-threaded optimized versions are programmed in the Java 

programming language. The source code of the approaches is compiled using Java 

Development Kit (JDK) 11, and the compiled code is run on Windows 7 Ultimate 64-bit 

operating system. 

The experiments are performed for some distinct sets of single round-robin 

tournaments in several sports disciplines, which can have different numbers of teams and 

different organizations of final tables. During the experiments, in addition to the number 

of the generated states and the execution time, some other parameters related to the 

algorithms are measured for each final table. 

The machine from which the experimental results are obtained is equipped with an 

Intel (R) Core (TM) i3-M330 2.13 GHz CPU with 4 cores, 6 GB of RAM and a Corsair 

(R) CSSD-F115GB2-A ATA hard drive device. 

 

 

4.2. Backward Algorithm 

 

 

4.2.1. The Case of WDL 

 

 

Table 4.1 presents the results of the backward algorithm in the case of football 

tournaments, in which each played game can end in a win (W), draw (D) or lose (L), and 

each team gains 3 points for a win (i.e., PW=3), a point for a draw (i.e., PD=1) and no 

point for a loss (i.e., PL=0). Besides the number of the possible states of the final table for 

each tournament, the presented results include the number of the checked invalid states 

and the execution time, where the number of teams ranges between 2 and 7 teams. 

As explained in Section 2.6.1, the validity of every state generated by the backward 

algorithm is checked by the procedure stateChecker of the algorithm. For n=7, the process 

of checking the large number of the generated states for validity explains why it takes so 

much time to determine all the possible states. The backward algorithm fails to reach the 



141 
 

 

 

relevant results for a tournament with 8 teams. Eq. (2.30) tells that there would be 

2821109907456 states (a total of valid and invalid ones) for n=8, which is about 208 

times more than the states generated for n=7. This large number of states is evidently the 

main reason for the failure. 

 

 

Table 4.1. Results of the backward algorithm for football tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 7 9 1 millisecond 

3 7 209 216 2 milliseconds 

4 40 9960 10000 22 milliseconds 

5 404 758971 759375 1 second 

6 6317 85759804 85766121 3 minutes 

7 131288 13492797224 13492928512 284 hours 

 

 

Table 4.2 presents the results of the same algorithm in the case of sports 

tournaments such as rugby and handball, where the team gains a point for a drawn game 

and 2 points (instead of 3 points as in the case of football) for a won game. 

 

 

Table 4.2. Results of the backward algorithm for rugby and handball tournaments 
 

 

n Valid states Invalid states Total of states Execution time 

2 2 7 9 1 millisecond 

3 7 209 216 2 milliseconds 

4 49 9951 10000 24 milliseconds 

5 571 758804 759375 1 second 

6 9981 85756140 85766121 3 minutes 

7 223964 13492704548 13492928512 279 hours 

 

 

Comparing the numbers of the valid states in Table 4.1, it can be easily seen that 

there occur the larger numbers of the states by starting with n=4 in Table 4.2. The reason 

behind this is that the use of a different point system (i.e., rewarding PW=2 points for a 



142 
 

 

 

won game) affects the number of the corresponding points of the elements in the set S 

(see Eq. (2.20)). Speaking clearly, this point system lets some distinct WDL values result 

in the same number of points, while their corresponding points may be different in the 

previous system. For example, in the case of n=4, the number of points gained from a 

WDL value of (1, 1, 1) equals to 4 points when PW=3, while it equals to 3 points when 

PW=2. Thus, when PW=2, if a team A has a WDL value of (1, 1, 1) and another team B has 

the  value  (0,  3,  0),  A   appears   before   B   in   the   final   table   with   the   state 

((2, 1, 0), (1, 1, 1), (0, 3, 0), (0, 1, 2)), or after B in the final table with the state 

((2, 1, 0), (0, 3, 0), (1, 1, 1), (0, 1, 2)). However, when PW=3, the latter state is considered 

as an invalid one, which explains why the number of valid states in Table 4.2 is larger 

than in Table 4.1. 

There is a significant difference in the execution time of the valid states given for 

n=7 in Tables 4.1 and 4.2. A state is considered to be valid if a tournament graph can be 

constructed based on that state, while a state is said to be invalid if no graph can be found 

for that state after trying all the possible ways of building it up. So it often takes more 

time to identify an invalid state than a valid one. This is justified by the fact that the 

backward algorithm spends less time to determine each of the valid states for n=7, 

although there is a larger number of them in Table 4.2 than in Table 4.1. The advantage in 

term of the execution time which the case of PW=2 has over the case of PW=3 is only valid 

when n=7, since both algorithms cannot generate all the states for n>7. 

Table 4.3 presents the results of the backward algorithm for chess tournaments, 

where the participant gains 1 point for a won game (i.e., PW=1) and half a point for a draw 

(i.e., PD=1/2). 

 
 

Table 4.3. Results of the backward algorithm for chess tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 7 9 1 millisecond 

3 7 209 216 3 milliseconds 

4 49 9951 10000 25 milliseconds 

5 571 758804 759375 1 second 

6 9981 85756140 85766121 3 minutes 

7 223964 13492704548 13492928512 280 hours 



143 
 

 

 

As seen in both Table 4.2 and Table 4.3, there are the same numbers of valid and 

invalid states. This arises due to the fact that the values of PW and PD for a chess 

tournament are exactly half of those for a rugby or handball tournament. The partition of 

the points gained from each game on the same number maintains the differences between 

the points of the participants, thereby allowing them to keep various positions in the final 

table. For example, in the point system with PW=2 and PD=1, there is one point difference 

between the participants in the state ((1, 1, 0), (1, 0, 1), (0, 1, 1)), as the gained points are 

3, 2 and 1 respectively. Given the point system with PW=1 and PD=1/2, the gained points 

would be 3/2, 1 and 1/2 respectively, where the difference between the points changes in 

the ratio of two to one. 

Although the numbers of the valid and invalid states are the same in Tables 4.2 and 

4.3, the time execution differs only for n=7. This difference is likely because of the 

disparity of the CPU temperature during both tests [176-178], which have been performed 

in different environments with different weather conditions. 

 

 

4.2.2. The Case of WL 

 

 

Table 4.4 presents the results of the backward algorithm when the final table 

contains W and L columns only, where PW=1 and PL=0. The most noticeable sport in this 

tournament system is lacrosse. The results are obtained for the number of participating 

teams between 2 and 10. 

The algorithm can calculate the number of the states up to n=10. The reason for this 

possibility is due to less  table  columns  holding  game  results.  As  expressed  by 

Eq. (2. 23), |S(n, 2q+r)| is calculated based on the function f which has a direct relation 

with the number of the result-related columns (see Eq. (2.22)). As the number of these 

columns (i.e., 2q+r) gets smaller, the recursive calls to the function f becomes less, 

leading to a smaller number of the elements of the set S (i.e., |S|). In this situation, the 

number of the states generated via a blind search algorithm will be less, which means that 

less time will be spent on calling the procedure stateChecker to verify their validity. 

The results presented in Table 4.5 are obtained by the backward algorithm when the 

final table contains only W and L as the result columns, with PW=2 and PL=1 respectively. 

The most noticeable sport tournaments of this system are basketball, volleyball and 

tennis. The number of participating teams in this scenario ranges between 2 and 10. 



144 
 

 

 

Table 4.4. Results of the backward algorithm for lacrosse tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 1 3 4 0.4 millisecond 

3 2 25 27 1 millisecond 

4 4 252 256 2 milliseconds 

5 9 3116 3125 3 milliseconds 

6 22 46634 46656 18 milliseconds 

7 59 823484 823543 2 seconds 

8 167 16777049 16777216 57 seconds 

9 490 387419999 387420489 34 minutes 

10 1486 9999998514 10000000000 288 hours 

 

 

Table 4.5. Results of the backward algorithm for basketball, volleyball and tennis 

tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 1 3 4 0.4 millisecond 

3 2 25 27 1 millisecond 

4 4 252 256 2 milliseconds 

5 9 3116 3125 3 milliseconds 

6 22 46634 46656 17 milliseconds 

7 59 823484 823543 2 seconds 

8 167 16777049 16777216 57 seconds 

9 490 387419999 387420489 34 minutes 

10 1486 9999998514 10000000000 290 hours 

 

 

Although the results presented in Tables 4.4 and 4.5 are calculated through two 

different point systems, the numbers of valid and invalid states are the same. This is due 

to one point difference between the values of PW and PL in both cases. Adding the same 

number of points to each of PW and PL for all the participating teams maintains the same 

differences in their total number of points, thus ensuring that the participants keep the 



145 
 

 

 

same positions in the final table. For example, based on the point system with PW=1 and 

PL=0, the participants in the state ((3, 0), (2, 1), (1, 2), (0, 3)) gain a total number of 

points 3, 2, 1 and 0 respectively. In the point system with PW=2 and PL=1, the participants 

gain a total number of points 6, 5, 4 and 3 respectively. The difference in the total number 

of points between each two participants is still the same (i.e., 1 point) in both cases. 

Tables 4.4 and 4.5 show the same results for n=10, but the execution times are 

different (i.e., a difference of 2 hours). As explained at the end of Section 4.2.1, these 

differences usually appear when the execution time is big, which create a big possibility 

that the tests are performed under different weather conditions. This may subsequently 

affect the CPU performance, thus creating contrast in the execution times. 

 

 

4.2.3. The Case of WXYL 

 

 

Table 4.6 shows the results of the same algorithm for the final tournament tables 

that include W, X, Y and L as the columns of game results. Such final tables occur in the 

case of ice hockey and curling tournaments. X is a unification symbol for the OTW 

column in ice hockey table and the SOW column in curling table, while Y is used as a 

unification symbol for the OTL column in ice hockey table and the SOL column in curling 

table. Each participant gains 3 points for a won game (i.e., PW=3), 2 points for an X 

(i.e., PX=2), a point for a Y (i.e., PY=1) and none for a lost game (i.e., PL=0). The results of 

the backward algorithm are presented for the number of participants ranging between 2 

and 6. 

 

 

Table  4.6.  Results  of  the  backward  algorithm  for  ice  hockey  and  curling 

tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 14 16 1 millisecond 

3 14 986 1000 6 milliseconds 

4 239 159761 160000 228 milliseconds 

5 8650 52513225 52521875 136 seconds 

6 571990 30840407466 30840979456 95 hours 



146 
 

 

 

The algorithm, in this case, calculates the results up to n=6 only. Unlike the case 

where the tournament table includes only 2 game results (see Section 4.2.2), the reason 

behind the inability of the algorithm to calculate the results for n>6 is due to the 

increment in the number of the possible game results, which subsequently makes the 

number of the states generated by a blind search algorithm become bigger. As expressed 

by Eq. (2.22), when the number of game results (i.e., 2q+r) increases there will be more 

recursive calls of the function f, which increases the number of elements of the set S 

(i.e., |S|), and therefore the number of the generated states based on a blind search 

algorithm will be increased as well, which requires spending more time to call the 

procedure stateChecker. 

 

 

4.2.4. The Case of WLTNr 

 

 

As in the previous case, the final tournament table in this instance also contains 4 

columns of game results (i.e., W, L, T and NR). This case is usually seen in the cricket 

tournaments, where PW=2, PL=0, PT=1 and PNR=1. Table 4.7 shows the results of the 

backward algorithm for this case, where the number of participants ranges between 2 and 

6. 

 

 

Table 4.7. Results of the backward algorithm for cricket tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 3 13 16 1 millisecond 

3 20 980 1000 6 milliseconds 

4 393 159607 160000 217 milliseconds 

5 18400 52503475 52521875 131 seconds 

6 1769907 30839209549 30840979456 92 hours 

 

 

Although the tournaments has the same number of the columns (i.e., 4 columns) 

related to game results, the results given in Tables 4.6 and 4.7 are different. This arises 

due to the difference in the nature of the columns. As in the previous case, the columns 

form the pairs which belong to the class C1 (i.e., C1={{W, L}, {X, Y}}), but in this case 



147 
 

 

 

only W and L form a pair which belongs to C1 (i.e., C1={{W, L}}), while each of T and 

NR belongs to C2 (i.e., C2={T, NR}). Besides, the values in W column are different, as a 

result of PW=2. As expressed by Section 4.2.1, these differences have an effect on the 

number of points of the elements of the set S, thereby making the number of 

corresponding points of some elements equal. This reason makes some states, which are 

invalid in the previous case (i.e., WXYL), valid in this case (i.e., WLTNr). 

The big difference between the valid states in Tables 4.6 and 4.7 for n=6 makes the 

execution times different. Given that the procedure stateChecker spends more time to 

check an invalid state than a valid state and there are bigger numbers of valid states for 

n=5 and n=6 in Table 4.7 compared to Table 4.6, these explain why the backward 

algorithm spends less time to calculate the results in the case of WLTNr in relation to 

WXYL. 

 

 

4.3. Forward Algorithm 

 

 

4.3.1. The Case of WDL 

 

 

Table 4.8 presents the results of the forward algorithm in the case of football 

tournaments, where each game can end in a win (W), a draw (D) or a loss (L), and each 

team gains 3 points for a win (i.e., PW=3), 1 point for a draw (i.e., PD=1) and no point for 

a loss (i.e., PL=0). Besides the number of the valid states of the final tournament tables, 

the presented results include the number of the repeated valid and invalid states as well as 

the execution time. The tests are carried out on a set of tournaments with the number of 

teams ranging between 2 and 7. 

Comparing the execution times for n=6 and n=7, a large number of the states 

checked for n=7 justifies the increase in the required execution time as a result of the 

order of team points and existing states. The algorithm fails to reach the relevant results 

for a tournament with 8 teams. Since the algorithm is based on a blind search one, 

according to Eq. (2.31), the number of the generated states (the total of valid, repeated 

and invalid ones) for n=8 would be equal to 22876792454961. Such a big number of the 

states compared with those for n=7 (which is 2186 times less) explains the failure of the 

algorithm to calculate the results related to an 8-team tournament. 



148 
 

 

 

Table 4.8. Results of the forward algorithm for football tournaments 
 
 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution 

time 

2 2 0 1 3 0.4 millisecond 

3 7 1 19 27 1 milliseconds 

4 40 23 666 729 9 milliseconds 

5 404 851 57794 59049 61 milliseconds 

6 6317 61410 14281180 14348907 12 seconds 

7 131288 9675877 10450546038 10460353203 158 minutes 

 

 
 

Table 4.9 presents the results of the same algorithm for sports tournaments such as 

rugby and handball, where the team gains 1 point for a drawn game and 2 points instead 

of 3 for a won game. 

 

 

Table 4.9. Results of the forward algorithm for rugby and handball tournaments 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 1 3 0.4 millisecond 

3 7 1 19 27 1 milliseconds 

4 49 26 654 729 13 milliseconds 

5 571 1184 57294 59049 73 milliseconds 

6 9981 103321 14235605 14348907 13 seconds 

7 223964 18754047 10441375192 10460353203 165 minutes 

 

 

Given the numbers of the valid states in Tables 4.8 and 4.9, it can be observed that 

the numbers get bigger in Table 4.9 from n=4 on. As previously explained in Section 

4.2.1, the reason for the increase in the number of the valid states in Table 4.9 is due to 

the point grading system, where PW=2 is used instead of PW=3. It subsequently affects the 

corresponding points of some elements of set S, thereby making the number of 

corresponding points of some elements the same (see Section 4.2.1). Therefore, some 



149 
 

 

 

states which are not previously considered to be valid for PW=3 are considered to be valid 

in this case. 

When the points of participants are in descending order in a calculated state, the 

state is considered as a valid one and checked by comparison with previous ones before it 

is saved, which will cause an increase in the execution time. Due to this reason, the big 

difference in the numbers of the valid states (whether they are repeated or not) for n=7 

between Tables 4.8 and 4.9 makes the execution times bigger in Table 4.9. For n>3, it is 

easy to see that the number of the valid states in Table 4.9 is always bigger than the 

number of those in Table 4.8. This explains the failure of the algorithm to calculate the 

number of states with PW=2 for n=8. 

Table 4.10 presents the results of the forward algorithm in the case of tournaments 

such as chess, where each participant gains 1 point for a won game and half a point for a 

drawn game. 

 

 

Table 4.10. Results of the forward algorithm for chess tournaments 
 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 1 3 0.4 millisecond 

3 7 1 19 27 1 milliseconds 

4 49 26 654 729 13 milliseconds 

5 571 1184 57294 59049 73 milliseconds 

6 9981 103321 14235605 14348907 13 seconds 

7 223964 18754047 10441375192 10460353203 165 minutes 

 

 

Tables 4.9 is exactly identical to Table 4.10, which occurs since the values of PW 

and PD in this case are exactly half of the values in the previous case. This maintains the 

differences in the total number of the points gained by the participants who therefore 

retain the same positions in the final table of the tournament. 



150 
 

 
 

4.3.2. The Case of WL 

 

 

Table 4.11 shows the results of the forward algorithm in the case of lacrosse, where 

the final tournament table includes only the W and L columns (with the exclusion of D 

column), as well as the point system of PW=1 and PL=0. The number of teams in this 

situation ranges from 2 to 9. 

The algorithm can calculate the results up to n=9, as justified by Eq. (2.31)). As the 

number of the possible game results (i.e., 2q+r) gets smaller (in this regard, 2), the 

number of the tournament graphs GR(n) generated by the blind search algorithm 

decreases. This means that the execution time required to generate all the states based on 

the forward algorithm will be less for 2q+r=2 than for 2q+r=3. 

 

 

Table 4.11. Results of the forward algorithm for lacrosse tournaments 
 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 1 0 1 2 0.3 millisecond 

3 2 1 5 8 1 millisecond 

4 4 5 55 64 2 milliseconds 

5 9 52 963 1024 4 milliseconds 

6 22 507 32239 32768 16 milliseconds 

7 59 11500 2085593 2097152 3 seconds 

8 167 358666 268076623 268435456 6 minutes 

9 490 24647272 68694828974 68719476736 27 hours 

 

 

The results in the case of tournament tables of basketball, volleyball and tennis are 

presented in Table 4.12, where the final tournament table includes only the W and L 

columns, as well as the point system of PW=2 and PL=1. 

Although there are differences between their values of PW and PL, Tables 4.11 and 

4.12 have the same data. This similarity is due to the increase in the values of both PW and 

PL by one point in the case of Table 4.12. As explained in the backward algorithm (see 

Section 4.2.2), one point added to each of PW and PL for all the participants makes them 



151 
 

 

 

maintain the same differences in their total number of points, thus the same positions in 

the final table. 

 

 

Table 4.12. Results of the forward algorithm for basketball, volleyball and tennis 

tournaments 
 
 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution 

time 

2 1 0 1 2 0.3 millisecond 

3 2 1 5 8 1 millisecond 

4 4 5 55 64 2 milliseconds 

5 9 52 963 1024 4 milliseconds 

6 22 507 32239 32768 17 milliseconds 

7 59 11500 2085593 2097152 3 seconds 

8 167 358666 268076623 268435456 6 minutes 

9 490 24647272 68694828974 68719476736 27 hours 

 

 

4.3.3. The Case of WXYL 

 

 

Table 4.13 shows the results of the forward algorithm in the case of ice hockey and 

curling tournaments where the final table includes 4 columns related to game results (i.e., 

W, X, Y and L), as well as the point system of PW=3, PX=2, PY=1 and PL=0. The presented 

results are obtained for a number of teams ranging between 2 and 6. 

As shown in Eq. (2.31), any increase in the number of game results (i.e., 2q+r) 

increases the number of tournament graphs GR(n) which can be generated by the blind 

search algorithm, thereby increases the execution time to calculate all the possible states. 

For n=7, based on Eq. (2.31), the forward algorithm must generate a total number of 

4398046511104 states. This large number of states is apparently the main reason for the 

algorithm’s failure to calculate all the states. 



152 
 

 

 

Table 4.13. Results of the forward algorithm for ice hockey and curling tournaments 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 2 4 0.4 millisecond 

3 14 2 48 64 3 milliseconds 

4 239 87 3770 4096 34 milliseconds 

5 8650 14190 1025736 1048576 59 seconds 

6 571990 4908802 1068261032 1073741824 15 minutes 

 

 

4.3.4. The Case of WLTNr 

 

 

Table 4.14 presents the results of the forward algorithm in the case of cricket, where 

the tournament table contains 4 columns of game results (i.e., W, L, T and NR). The point 

system of the tournament has the rewarding values of PW=2, PL=0, PT=1, and PNR=1. The 

number of teams (n) in Table 4.14 ranges between 2 and 6. 

 

 

Table 4.14. Results of the forward algorithm for cricket tournaments 
 
 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 3 0 1 4 0.6 millisecond 

3 20 1 43 64 4 milliseconds 

4 393 106 3597 4096 44 milliseconds 

5 18400 20171 1010005 1048576 63 seconds 

6 1769907 9317482 1062654435 1073741824 16 minutes 

 

 

Although the tournament tables in the case of WXYL and WLTNr have the same 

columns of game results (i.e., 4 ones), the diversity of their corresponding sets C1 and C2 

makes the results of Tables 4.13 and 4.14 different. The difference between the valid 

states for n=5 and n=6 in Tables 4.13 and 4.14 also makes the execution times different. 

Since the algorithm generates more valid states in this case than in the case of WXYL, it 

spends  more  time  in  checking  their  existence  among  previously  calculated  ones. 



153 
 

 

 

Accordingly, it is expected that the number of the valid states in the case of WLTNr will 

also be more than that of WXYL for n=7. Thus the execution time will be huge, which 

explains why the algorithm fails to calculate the the related results. 

 

 

4.4. Backward Algorithm Versus Forward Algorithm 

 

 

Comparing the results of the backward and forward algorithms, both algorithms 

generate the same number of valid states of the final tournament tables for each tested 

case, except for the case of n=10 in Table 4.4 with respect to Table 4.11 and in Table 4.5 

with respect to Table 4.12. However, the forward algorithm failed to calculate the results 

in each of Tables 4.11 and 4.12, while the backward algorithm is able to calculate them 

(see Tables 4.4 and 4.5). The execution times to calculate the results are not the same, as 

the forward algorithm is better compared to the backward algorithm for 2q+r > 2, while 

the backward algorithm is better for 2q+r = 2. 

Table 4.15 shows a comparison between the execution times those are larger or 

equal 1 second for both algorithms (i.e., backward and forward), as Figure 4.1 shows a 

graphical representation of the decreased percentage in the execution time for these cases. 

The values of the percentage decrease in the execution time presented in Table 4.15 

prove the efficacy of the forward algorithm against the backward algorithm for 2q+r > 2. 

In addition to the ability of the backward algorithm to calculate the results for n=10, it 

also shows better performance than the forward algorithm for 2q+r = 2. 



154 
 

 

 

Table 4.15. The comparisons of the execution time in the backward algorithm against 

the forward algorithm 
 
 

 

Tables 

 

n 

 

Backward 

 

Forward 
Decreased 

percentage (%) 

 
 

4.1 vs. 4.8 

5 1 second 61 milliseconds 93.9 

6 3 minutes 12 seconds 93.333 

7 284 hours 158 minutes 99.072 

 
 

4.2 vs. 4.9 

5 1 second 73 milliseconds 92.7 

6 3 minutes 13 seconds 92.777 

7 279 hours 165 minutes 99.014 

 
 

4.3 vs. 4.10 

5 1 second 73 milliseconds 92.7 

6 3 minutes 13 seconds 92.777 

7 280 hours 165 minutes 99.017 

4.4 vs. 4.11 

and 

4.5 vs. 4.12 

7 2 seconds 3 seconds 33.333 

8 57 seconds 6 minutes 84.166 

9 34 minutes 27 hours 97.901 

 
4.6 vs. 4.13 

5 136 seconds 59 seconds 56.617 

6 95 hours 15 minutes 99.736 

 
4.7 vs. 4.14 

5 131 seconds 63 seconds 51.908 

6 92 hours 16 minutes 99.71 



155 
 

 

 

 
 

Figure 4.1. The percentage decrease in the execution time of the backward algorithm 

versus the forward algorithm 

 

 

4.5. Optimized Backward Algorithm 

 

 

4.5.1. The Case of WDL 

 

 

Table 4.16 presents the results of the optimized backward algorithm for football 

tournaments, which have the point system of PW=3, PD=1 and PL=0. The results include 

the possible states of the final tournament tables, the number of the checked invalid states 

and the execution time of each case, where the number of the participants ranges between 

2 and 8. 

Comparing the cases of n=7 to n=8, the large number of the states (a total of valid 

and invalid ones) checked by the procedure stateChecker for the latter case explains the 

large difference in the execution time. The number of generated states increases by 

approximately 3155%, which subsequently increases the execution time by about 

77233%. 

Table 4.17 presents the results of the same algorithm for sports like rugby and 

handball, which have the point system of PW=2, PD=1 and PL=0. The results are obtained 

for the number of participants that ranges between 2 and 8. 



156 
 

 

 

Table 4.16. Results of the optimized backward algorithm for football tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 2 4 1 millisecond 

3 7 33 40 2 milliseconds 

4 40 583 623 10 milliseconds 

5 404 11904 12308 96 milliseconds 

6 6317 279595 285912 2 seconds 

7 131288 7991894 8123182 9 minutes 

8 3366444 261107702 264474146 116 hours 

 

 

Table 4.17. Results of the optimized backward algorithm for rugby and handball 

tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 2 4 1 millisecond 

3 7 41 48 2 milliseconds 

4 49 675 724 12 milliseconds 

5 571 15208 15779 126 milliseconds 

6 9981 391337 401318 4 seconds 

7 223964 12324568 12548532 17 minutes 

8 6286424 436034441 442320865 189 hours 

 

 

By comparing the numbers of the generated states (a total of valid and invalid ones) 

in Tables 4.16 and 4.17, it is observed that these numbers are larger in Table 4.17 starting 

from n=3 on. As previously explained in Section 4.2.1, the reason for this increase is 

attributed to the points awarded after a won game (i.e., 2 instead of 3), making the 

number of points of the participants approach each other and increasing the possibility 

that the generated states comply with Eq. (2.17) (i.e., Pts(k) ≥ Pts(k+1)). The difference 

between the generated states in Tables 4.16 and 4.17 creates a significant one in the 

execution times starting from n=6 on, where the execution time is increased in Table 4.17 

from 70% to 100%. 



157 
 

 

 

Table 4.18 consists of the results of the optimized backward algorithm for chess 

tournaments, where the participant gains 1 point for a won game (i.e., PW=1) and half a 

point for a drawn game (i.e., PD=1/2). The results are given for the number of participants 

which ranges between 2 and 8. 

 

 
Table 4.18. Results of the optimized backward algorithm for chess tournaments 

 
 

n Valid states Invalid states Total of states Execution time 

2 2 2 4 1 millisecond 

3 7 41 48 2 milliseconds 

4 49 674 723 12 milliseconds 

5 571 15208 15779 132 milliseconds 

6 9981 391337 401318 4 seconds 

7 223964 12324568 12548532 18 minutes 

8 6286424 436034441 442320865 193 hours 

 

 

Tables 4.17 and 4.18 present the same numbers of the generated states (i.e., valid 

and invalid ones). This arises due to the values of both PW and PD in this occasion being 

exactly the half of the previous case, which makes the differences in the number of points 

between the participants stable. Despite the same numbers of generated states in Tables 

4.17 and 4.18, there are some differences in the execution times for n=7 and n=8. The 

same situation is previously encountered in Section 4.2.1, where it is explained that when 

similar tests are performed in different environments with different weather conditions, 

their results may be different. 

 

 

4.5.2. The Case of WL 

 

 

Table 4.19 shows the results of the optimized backward algorithm for sports such as 

lacrosse, where the tournament tables contain only the W and L columns. The values of 

PW and PL are 1 and 0 respectively. The results are given for the number of participants 

which ranges between 2 and 10. 



158 
 

 

 

Table 4.19. Results of the optimized backward algorithm for lacrosse tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 1 0 1 0.4 millisecond 

3 2 2 3 1 millisecond 

4 4 8 12 2 milliseconds 

5 9 36 45 3 milliseconds 

6 22 139 161 15 milliseconds 

7 59 547 606 143 milliseconds 

8 167 2102 2269 14 seconds 

9 490 8139 8629 23 minutes 

10 1486 31395 32881 16 hours 

 

 

Table 4.20 presents the results of the optimized backward algorithm in the case of 

sports like basketball, volleyball and tennis, where the tournament table includes W and L 

columns of game results, and each participant gains 2 points for a win (i.e., PW=2) and 1 

point for a loss (i.e., PL=1). The presented results are valid for the number of participants 

between 2 and 10. 

 

 

Table 4.20. Results of the optimized backward algorithm for basketball, volleyball 

and tennis tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 1 0 1 0.4 millisecond 

3 2 2 3 1 millisecond 

4 4 8 12 2 milliseconds 

5 9 36 45 3 milliseconds 

6 22 139 161 16 milliseconds 

7 59 547 606 167 milliseconds 

8 167 2102 2269 15 seconds 

9 490 8139 8629 23 minutes 

10 1486 31395 32881 16 hours 



159 
 

 

 

Although the results presented by Tables 4.19 and 4.20 are based on different values 

of PW and PL, we observe that they have the same numbers of the generated states. This 

occurs as a result of 1 point added to each of PW and PL for all the participants of the 

tournaments evaluated in Table 4.20. Thus, the differences between the points of the 

participants remain the same and the participants maintain the same positions in the final 

table. 

 

 
4.5.3. The Case of WXYL 

 

 

Table 4.21 shows the results of the optimized backward algorithm for tournament 

tables with W, X (OTW or SOW), Y (OTL or SOL) and L columns, such as ice hockey and 

curling, where the values of PW, PX, PY and PL are 3, 2, 1 and 0 respectively. The results 

are given for participants ranging from 2 to 7. 

 

Table 4.21. Results of the optimized backward algorithm for ice hockey and curling 

tournaments 
 
 

n Valid states Invalid states Total of states Execution time 

2 2 2 4 1 millisecond 

3 14 154 168 4 milliseconds 

4 239 8522 8761 62 milliseconds 

5 8650 833081 841731 2 seconds 

6 571990 108045570 108617560 18 minutes 

7 61551170 19969829838 20031381008 316 hours 

 

 

Compared to the previous cases where there are 2 and 3 columns of game results, 

the optimized backward algorithm cannot get the results for more than 7 participants. The 

reason is that, as the number of the columns (in this case, 4 ones) related to game results 

increases, the number of the generated states also increases, which requires more time to 

process them by the procedure stateChecker. 



160 
 

 
 

4.5.4. The Case of WLTNr 

 

 

Table 4.22 shows the results of the optimized backward algorithm for cricket 

tournaments, where the final table contains 4 columns (i.e., W, L, T and NR), based on the 

point system of PW=2, PL=0, PT=1 and PNR=1. The presented results are for the number of 

teams which ranges between 2 and 7. 

 

 
Table 4.22. Results of the optimized backward algorithm for cricket tournaments 

 
 

n Valid states Invalid states Total of states Execution time 

2 3 6 9 1 millisecond 

3 20 260 280 5 milliseconds 

4 393 15687 16080 71 milliseconds 

5 18400 1560772 1579172 5 seconds 

6 1769907 223658929 225428836 38 minutes 

7 267636358 45230865354 45498501712 748 hours 

 

 

The difference in the nature of the columns and their corresponding points in the 

case of Tables 4.21 and 4.22 makes the algorithm generate different results. Starting from 

n=5 on, the difference in the execution times is due to the large difference in the number 

of the generated states. This arises because, when there are more generated states, there 

are more calls to the procedure stateChecker, costing more time. 

 

 

4.6. Backward Algorithm Versus Optimized Backward Algorithm 

 

 

Given the above results of the backward algorithm and the optimized backward 

algorithm, it can be observed that both algorithms generate the same numbers of the valid 

states of the final tournament tables for the tested cases. The case is not the same when 

the algorithms are applied to the invalid state; that is, the numbers significantly decrease 

after the application of the optimized backward algorithm. Table 4.23 shows a 

comparison between the numbers of the generated invalid states, while Figure 4.2 shows 



161 
 

 

 

a graphical representation of the decreased percentage in generating the invalid states for 

each the tested cases. 

 

 

 
 

Figure 4.2. The percentage decrease of the generated invalid states in the optimized 

backward algorithm compared to the backward algorithm 

 

 

The values of the percentage decrease in Table 4.23 prove the efficacy of the 

optimized backward algorithm against the backward algorithm, reducing the number of 

invalid states from 53.846% to 100%. This also explains the reason for the optimization 

in the execution time, especially when the number of the participants is large. The 

optimizations of the execution times those are larger or equal 1 second are presented in 

Table 2.24, while Figure 4.3 shows a graphical representation of the decrease percentage 

in the execution time for these cases. 



162 
 

 

 

Table 4.23. The number of the invalid states in the backward algorithm against the 

optimized backward algorithm 
 
 

Tables n Backward Optimized backward Decrease percentage (%) 

 

 

 
 

4.1 vs. 4.16 

2 7 2 71.428 

3 209 33 84.21 

4 9960 583 94.146 

5 758971 11904 98.431 

6 85759804 279595 99.673 

7 13492797224 7991894 99.94 

 

 

4.2 vs. 4.17 

and 

4.3 vs. 4.18 

2 7 2 71.428 

3 209 41 80.382 

4 9951 675 93.216 

5 758804 15208 97.995 

6 85756140 391337 99.543 

7 13492704548 12324568 99.908 

 

 

 

 

 
4.4 vs. 4.19 

and 

4.5 vs. 4.20 

2 3 0 100 

3 25 2 92 

4 252 8 96.825 

5 3116 36 98.844 

6 46634 139 99.701 

7 823484 547 99.933 

8 16777049 2102 99.987 

9 387419999 8139 99.997 

10 9999998514 31395 99.999 

 

 

 
4.6 vs. 4.21 

2 14 2 85.71 

3 986 154 84.381 

4 159761 8522 94.665 

5 52513225 833081 98.413 

6 30840407466 108045570 99.649 

 

 

 
4.7 vs. 4.22 

2 13 6 53.846 

3 980 260 73.469 

4 159607 15687 90.171 

5 52503475 1560772 97.027 

6 30839209549 223658929 99.274 



163 
 

 

 

Table  4.24.  The  execution  time  in  the  backward  algorithm  against  the  optimized 

backward algorithm 
 
 

Tables n Backward Optimized backward Time optimization (%) 

 
 

4.1 vs. 4.16 

5 1 second 96 milliseconds 90.4 

6 3 minutes 2 second 98.888 

7 284 hours 9 minutes 99.947 

 
 

4.2 vs. 4.17 

5 1 second 126 milliseconds 87.4 

6 3 minutes 5 second 97.222 

7 279 hours 17 minutes 99.898 

 
 

4.3 vs. 4.18 

5 1 second 132 milliseconds 86.8 

6 3 minutes 5 second 97.222 

7 280 hours 18 minutes 99.892 

 

 

4.4 vs. 4.19 

7 2 second 143 milliseconds 92.85 

8 57 second 14 second 75.438 

9 34 minutes 23 minutes 32.352 

10 288 hours 16 hours 94.444 

 

 

4.5 vs. 4.20 

7 2 second 167 milliseconds 91.65 

8 57 second 15 second 73.684 

9 34 minutes 23 minutes 32.352 

10 290 hours 16 hours 94.482 

 
4.6 vs. 4.21 

5 136 second 2 second 98.529 

6 95 hours 18 minutes 99.684 

 
4.7 vs. 4.22 

5 131 second 5 second 96.183 

6 92 hours 38 minutes 99.311 



164 
 

 

 

 
 

Figure  4.3.  The  execution  time  decrease  in  the  optimized  backward  algorithm 

comparing to the backward algorithm 

 

 

The reduction in the number of the invalid states enables the optimized backward 

algorithm to calculate the results of tournaments with a higher number of participants. It 

is not possible to calculate the related results of these tournaments via the backward 

algorithm, like the case of n=8 in Tables 4.16, 4.17 and 4.18, and n=7 in Tables 4.21 and 

4.22. 

 

 

4.7. Optimized Forward Algorithm 

 

 

4.7.1. The Case of WDL 

 

 

Table 4.25 presents the results of the optimized forward algorithm for sports 

tournament tables with W, D and L columns, such as football, where PW=3, PD=1 and 

PL=0. In addition to the values of the execution time, the results shown in Table 4.25 



165 
 

 

 

include the numbers of the generated valid states, the repeated valid states, and the invalid 

states. The number of participating teams ranges between 2 and 8. 

 

 

Table 4.25. Results of the optimized forward algorithm for football tournaments 
 
 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution 

time 

2 2 0 0 2 1 millisecond 

3 7 1 0 8 2 milliseconds 

4 40 23 0 63 8 milliseconds 

5 404 851 0 1255 58 milliseconds 

6 6317 61410 0 67727 1 second 

7 131288 9675877 0 9807165 5 minutes 

8 3366444 3863316144 0 3866682588 238 hours 

 

 

The optimized forward algorithm eliminates the generation of the invalid states. As 

the value of n increases, the number of the repeated states whose existence is checked 

also increases, affecting the execution time. This explains the big difference in the 

execution time between the cases of n=7 and n=8. 

Table 4.26 presents the results of the same algorithm for sports with PW=2, PD=1 

and PL=0 such as rugby and handball. Gaining 2 points instead of 3 after a won game 

ensures that some states, which are not considered to be valid for PW=3, are considered to 

be valid for PW=2. For this reason, the numbers of the generated states (a total of valid 

and repeated ones) are larger in Table 4.26 compared to Table 4.25, starting from n=4 on. 

For n=8, the significant difference in the execution times in Tables 4.25 and 4.26 (which 

is 313 hours) is due to the large difference in the total of the generated states in Tables 

4.26, where the existence of 4963135241 additional states is checked. 

Table 4.27 shows the results of the optimized forward algorithm for chess 

tournaments, where the participants earn 1 point for a won game and half a point for a 

drawn game. The results in Tables 4.26 and 4.27 are similar except for some differences 

in the execution time, which are largely caused by the tests being performed in different 

environments under different weather conditions. The reason for the number similarities 

in Tables 4.26 and 4.27 is due to the values of PW  and PD  (i.e., 1 and 1/2 respectively) 



166 
 

 

 

which are exactly half of the values in the previous case (i.e., PW=2 and PD=1), thereby 

differences in total points of the participants remain the same, with no change in their 

positions in the final table. 

 

 

Table  4.26.  Results  of  the  optimized  forward  algorithm  for  rugby  and  handball 

tournaments 
 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 0 2 1 millisecond 

3 7 1 0 8 2 milliseconds 

4 49 26 0 75 10 milliseconds 

5 571 1184 0 1755 68 milliseconds 

6 9981 103321 0 113302 2 seconds 

7 223964 18754047 0 18978011 9 minutes 

8 6286424 8823531405 0 8829817829 551 hours 

 

 

Table 4.27. Results of the optimized forward algorithm for chess tournaments 
 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 0 2 1 millisecond 

3 7 1 0 8 2 milliseconds 

4 49 26 0 75 10 milliseconds 

5 571 1184 0 1755 68 milliseconds 

6 9981 103321 0 113302 2 seconds 

7 223964 18754047 0 18978011 10 minutes 

8 6286424 8823531405 0 8829817829 563 hours 

 

 

4.7.2. The Case of WL 

 

 

Table  4.28  shows  the  results  of  the  optimized  forward  algorithm  for  lacrosse 

tournaments, where the table contains W and L columns and the point system of PW=1 and 



167 
 

 

 

PL=0. The presented results are given for tournaments with the number of participants 

between 2 and 10. Since the optimized forward algorithm does not generate invalid states, 

the execution time is reduced compared to the forward algorithm, thus providing the 

possibility of calculating the results with 10 participants. 

 

 

Table 4.28. Results of the optimized forward algorithm for lacrosse tournaments 
 
 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 1 0 0 1 0.3 millisecond 

3 2 1 0 3 0.8 millisecond 

4 4 5 0 9 1 milliseconds 

5 9 52 0 61 3 milliseconds 

6 22 507 0 529 13 milliseconds 

7 59 11500 0 11559 139 milliseconds 

8 167 358666 0 358833 10 seconds 

9 490 24647272 0 24647762 26 minutes 

10 1486 2666134835 0 2666136321 196 hours 

 

 

The results of the optimized forward algorithm for sports such as basketball, 

volleyball and tennis are presented in Table 4.29, where each participant gains 2 points 

for a win (i.e., PW=2) and 1 point for a loss (i.e., PL=1). 

Although the results presented Tables 4.28 and 4.29 are based on the different 

values of PW and PL, we can see that they have the same numbers of valid and repeated 

states. This is due to the fact that adding 1 point to each of PW and PL for all the 

participants maintains the same differences in their total number of points, thus staying in 

the same positions in the final table. However, there is a difference in the execution time 

for n=8. 



168 
 

 

 

Table 4.29. Results of the optimized forward algorithm for basketball, volleyball and 

tennis tournaments 

 

n 
Valid 

states 

Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 1 0 0 1 0.3 millisecond 

3 2 1 0 3 0.8 millisecond 

4 4 5 0 9 1 milliseconds 

5 9 52 0 61 3 milliseconds 

6 22 507 0 529 13 milliseconds 

7 59 11500 0 11559 141 milliseconds 

8 167 358666 0 358833 10 seconds 

9 490 24647272 0 24647762 26 minutes 

10 1486 2666134835 0 2666136321 201 hours 

 

 

4.7.3. The Case of WXYL 

 

 

Table 4.30 shows the results of the optimized forward algorithm for ice hockey and 

curling tournaments. The tournament table has 4 columns of possible game results (i.e., 

W, X, Y and L), where PW=3, PX=2, PY=1, and PL=0. The results are given for the number 

of participants between 2 and 7. 

 

Table 4.30. Results of  the optimized forward algorithm for ice hockey and curling 

tournaments 
 
 

 

n 
Valid states Repeated 

states 

Invalid 

states 

Total of 

states 

Execution time 

2 2 0 0 2 1 millisecond 

3 14 2 0 16 3 milliseconds 

4 239 87 0 326 34 milliseconds 

5 8650 14190 0 22840 316 milliseconds 

6 571990 4908802 0 5480792 106 seconds 

7 61551170 381554986 0 443106156 63 hours 



169 
 

 

 

Compared to the cases where there are 2 and 3 columns of game results, the 

optimized forward algorithm cannot calculate the results for more than 7 participants. 

This is due to the increase in the number of the columns related to game results (in this 

case, 4 ones). As the number of the columns increases, the number of generated states 

also increases and thus additional time will be spent on checking the existence of the 

generated states. 

 

 

4.7.4. The Case of WLTNr 

 

 

Table 4.31 presents the results of the optimized forward algorithm for cricket 

tournaments. The tournament table contains 4 columns of game results (i.e., W, L, T and 

NR), where PW=2, PL=0, PT=1 and PNR=1. The number of teams (n) ranges between 2 and 

6. 

 

 

Table 4.31. Results of the optimized forward algorithm for cricket tournaments 
 
 

 

n 
Valid states Repeated 

states 

Invalid 

states 

Total of 

states 

Execution 

time 

2 3 0 0 3 1 millisecond 

3 20 1 0 21 4 milliseconds 

4 393 106 0 499 44 milliseconds 

5 18400 20171 0 38571 1 second 

6 1769907 9317482 0 11087389 144 seconds 

 

 

The difference in the nature of the columns and their corresponding points in the 

cases presented Tables 4.30 and 4.31 causes the algorithm to generate different results. 

The large difference in the number of the generated states starting from n=5 in Tables 

4.30 and 4.31 makes the execution times different. This is due to the generation of more 

valid states, which requires extra time to check their status (i.e., already generated or not). 

The size of memory required to save the valid states in the case of n=7 exceeds the one 

provided by the used machine, which results in the failure of the optimized forward 

algorithm to generate all the states. 



170 
 

 
 

4.8. Forward Algorithm Versus Optimized Forward Algorithm 

 

 

Given the above results of the forward and the optimized forward algorithms, for 

each tested case, it can be observed that both algorithms generate the same numbers of 

valid and repeated valid states of the final tournament table. However, the optimized 

algorithm eliminates the generation of the invalid states, which has a positive effect on 

the required execution time to generate all the possible states. 

The effect of optimization on the execution times those are larger or equal 1 second 

is presented in Table 4.32, while Figure 4.4 shows its graphical presentation. Eliminating 

the generation of the invalid states allows the optimized forward algorithm to calculate 

the results of tournaments that cannot be calculated by the forward algorithm, such as the 

cases of n=8 for WDL (see Tables 4.25, 4.26 and 4.27), n=10 for WL (see Tables 4.28 and 

4.29) and n=7 for WXYL (see Table 4.30). 

 

 

 
 

Figure 4.4. The execution time decrease in the optimized forward algorithm compared to 

the forward algorithm 



171 
 

 

 

Table 4.32. The execution time for the forward algorithm against the optimized forward 

algorithm 
 
 

Tables n Forward Optimized Forward Time optimization (%) 

 
4.8 vs. 4.25 

6 12 seconds 1 second 91.666 

7 158 minutes 5 minutes 96.835 

 
4.9 vs. 4.26 

6 13 seconds 2 seconds 84.615 

7 165 minutes 9 minutes 94.545 

 
4.10 vs. 4.27 

6 13 seconds 2 seconds 84.615 

7 165 minutes 10 minutes 93.939 

 
 

4.11 vs. 4.28 

7 3 seconds 139 milliseconds 95.366 

8 6 minutes 10 seconds 97.222 

9 27 hours 26 minutes 98.395 

 
 

4.12 vs. 4.29 

7 3 seconds 141 milliseconds 95.3 

8 6 minutes 10 seconds 97.222 

9 27 hours 26 minutes 98.395 

 
4.13 vs. 4.30 

5 59 seconds 316 milliseconds 99.464 

6 15 minutes 106 seconds 88.222 

 
4.14 vs. 4.31 

5 63 seconds 1 second 98.412 

6 16 minutes 144 seconds 85 

 

 

The percentage values of the time optimization in Table 4.32 prove the efficacy of 

the optimized forward algorithm against the forward algorithm, where the optimized 

forward algorithm reduces the execution time from 84.615% to 99.464%, which explains 

the importance of eliminating the generation of the invalid states. 

 

 
4.9. Optimized Backward Algorithm Versus Optimized Forward Algorithm 

 

 

Compared the results of optimized backward and optimized forward algorithms, 

both algorithms generate the same numbers of possible states of the final tournament 

table for each tested case, except for n=7 in the case of WLTNr, where the optimized 

forward algorithm cannot calculate the results, while the optimized backward algorithm 



172 
 

 

 

can calculate them (see Table 4.22). In terms of the execution time, the optimized forward 

algorithm performs better compared to the backward algorithm in the case of n<8, the 

reverse is the case for n>8. In the case of n=8, the optimized forward algorithm performs 

better for 2q+r=2. In contrast, for 2q+r=3, the optimized backward algorithm performs 

better. 

Table 4.33 shows a comparison of the execution times those are larger or equal 1 

second between the optimized backward and the optimized forward algorithms, while 

Figure 4.5 shows a graphical representation of the percentage decrease in execution time 

for these cases. 

The values of the percentage decrease in execution time presented in Table 4.33 

shows the efficacy of the optimized forward algorithm against the optimized backward 

for n<8, while the backward algorithm is more efficient for n>8. Given n=8, the execution 

times are better for 2q+r=2 in the case of the optimized forward algorithm, while for 

2q+r=3, the execution times are better in the case of the optimized backward algorithm. 

 

 

 
 

Figure 4.5.  The percentage  decrease  in  execution  time  for  the  optimized  backward 

algorithm against the optimized forward algorithm 



173 
 

 

 

Table  4.33.  The  execution  time  for  the  optimized  backward  algorithm  against  the 

optimized forward algorithm 
 
 

 

Tables 

 

n 
Optimized 

Backward 

Optimized 

Forward 

Decrease percentage 

(%) 

 
 

4.16 vs. 4.25 

6 2 seconds 1 second 50 

7 9 minutes 5 minutes 44.444 

8 116 hours 238 hours 51.26 

 
 

4.17 vs. 4.26 

6 5 seconds 2 seconds 60 

7 17 minutes 9 minutes 47.058 

8 189 hours 551 hours 65.698 

 
 

4.18 vs. 4.27 

6 5 seconds 2 seconds 60 

7 18 minutes 10 minutes 44.444 

8 193 hours 563 hours 65.719 

 
 

4.19 vs. 4.28 

8 14 seconds 10 seconds 28.571 

9 23 minutes 26 minutes 11.538 

10 16 hours 196 hours 91.836 

 
 

4.20 vs. 4.29 

8 15 seconds 10 seconds 33.333 

9 23 minutes 26 minutes 11.538 

10 16 hours 204 hours 92.156 

 
 

4.21 vs. 4.30 

5 2 seconds 316 milliseconds 84.2 

6 18 minutes 106 seconds 90.185 

7 316 hours 63 hours 80.063 

 
4.22 vs. 4.31 

5 5 seconds 1 second 80 

6 38 minutes 144 seconds 93.684 

 

 

4.10. Multi-threaded Optimized Backward Algorithm 

 

 

To exploit the maximum performance of the used machine for testing, the optimum 

number of threads must be determined. As explained in Section 2.9.1, to determine this 

number, we iteratively test the multi-threaded optimized backward algorithm for the 

previously presented sports, where the value of thrLim (the limit of threads that can run 



174 
 

 

 

simultaneously) ranges between 1 and 20 threads. The tests are done on tournaments with 

the particular numbers of participants which can easily allow the observation of the 

differences in the execution time. In the other words, the execution time of each test must 

not be as small as the difference between the tested cases cannot be observed, and must 

not be as large as the results of all the tests cannot be obtained. Table 4.34 shows the 

value selected for n in the case of each sports discipline in the performed tests. 

 

 

Table  4.34.  The  value  selected  for  n  in  the  case  of  each  sports  discipline  in  the 

performed tests to determine the optimum number of threads 
 

 

 

Football 

 

Chess 

 
Rugby and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

 

Ice hockey 

and curling 

 

Cricket 

7 7 7 9 9 6 6 

 

 

Table 4.35 presents the duration in seconds taken by the multi-threaded backward 

algorithm in each performed test. When the value of thrLim equals 10, the performance of 

the multi-threaded optimized backward algorithm reaches its maximum for all the 

presented sports disciplines in Section 1.8.3, even though the used machine contains 4 

cores. 

Considering 10 threads, which are the optimum number of threads that can be run in 

parallel in the machine used for testing, Table 4.36 presents the required execution times 

to get the results of the multi-threaded optimized backward algorithm for the previously 

presented types of sports tournament tables. 

Table 4.37 shows a comparison between the execution times those are larger or 

equal 1 second for the optimized backward algorithm against the multi-threaded 

optimized backward algorithm, while Figure 4.6 shows a graphical representation of the 

percentage decrease in the execution time for the different cases. 



175 
 

 

 

Table 4.35. The duration in seconds taken by the multi-threaded optimized backward 

algorithm in each performed test to determine the optimum number of threads 
 

 

 

thrLim 

 

Football 

 

Chess 

Rugby 

and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

Ice hockey 

and 

curling 

 

Cricket 

1 554 1107 1031 1418 1382 1107 2280 

2 513 1029 990 1353 1319 1082 2236 

3 495 995 922 1282 1266 1062 2211 

4 460 954 908 1182 1168 1030 2192 

5 437 896 847 1116 1113 1023 2175 

6 410 868 826 989 1038 976 2171 

7 391 821 765 920 973 962 2163 

8 370 753 744 843 912 964 2128 

9 329 713 692 798 871 969 2116 

10 312 678 663 784 817 941 2084 

11 320 696 701 816 838 962 2114 

12 341 740 730 879 906 964 2161 

13 357 767 739 941 960 1012 2216 

14 374 813 762 984 986 1023 2241 

15 403 860 807 1046 1034 1021 2253 

16 423 886 829 1086 1124 1083 2280 

17 452 922 865 1147 1199 1093 2303 

18 473 965 879 1187 1243 1132 2354 

19 489 989 924 1256 1295 1161 2381 

20 506 1042 952 1309 1363 1236 2438 



176 
 

 

 

Table 4.36. The execution times of the multi-threaded optimized backward algorithm 
 
 

 

n 

 

Football 

 

Chess 

Rugby 

and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

Ice hockey 

and 

curling 

 

Cricket 

2 2 ms 2 ms 2 ms 2 ms 2 ms 2 ms 3 ms 

3 8 ms 8 ms 8 ms 4 ms 4 ms 11 ms 16 ms 

4 21 ms 25 ms 25 ms 6 ms 6 ms 97 ms 152 ms 

5 182 ms 214 ms 211 ms 12 ms 12 ms 6 s 10 s 

6 2 s 3 s 3 s 33 ms 33 ms 16 m 35 m 

7 5 m 11 m 11 m 309 ms 307 ms 243 h 628 h 

8 76 h 125 h 124 h 12 s 13 s - - 

9 - - - 13 m 13 m - - 

10 - - - 13 h 13 h - - 

 

 

Table 4.37. The percentage decrease in the execution time for the multi-threaded 

optimized backward algorithm compared to the optimized backward 

algorithm 
 
 

 
n 

 
Football 

 
Chess 

Rugby 

and 

handball 

 
Lacrosse 

Basketball, 

volleyball 

and tennis 

Ice hockey 

and 

curling 

 
Cricket 

5 - - - - - -200 -100 

6 50 25 25 - - 11.111 7.894 

7 44.444 38.888 38.888 - - 23.101 16.042 

8 59.788 35.233 35.751 14.285 13.333 - - 

9 - - - 43.478 43.478 - - 

10 - - - 18.75 18.75 - - 



177 
 

 

 

 
 

Figure 4.6. The percentage decrease in the execution time for the multi-threaded 

optimized backward algorithm compared to the optimized backward 

algorithm 

 

 

Except for the cases of ice hockey, curling and cricket (i.e., 2q+r=4) for n=5, the 

multi-threaded optimized backward algorithm has a positive effect on the execution time, 

where it is reduced from 7.894% to 59.788%. The worst case of the multi-threading 

appears for n=5 in the case of WXYL and WLTNr, where the algorithm become slower 

(from 100% to 200%). The difference in the execution times for these cases does not have 

much effect on the speed of calculation (not more than 5 seconds) compared to other 

cases where the execution times exceed hundreds of hours. 

 

 
4.11. Multi-threaded Optimized Forward Algorithm 

 

 

To determine the optimum number of threads for this case, we perform a set of tests 

on the multi-threaded optimized forward algorithm with the same principle addressed in 

Section 4.10. Table 4.38 presents the necessary execution time of the multi-threaded 

forward algorithm in seconds for each performed test. The same case comes into 

existence when the value of thrLim equals 10 and the performance of the multi-threaded 



178 
 

 

 

optimized forward algorithm reaches its maximum for all the presented sports disciplines 

in Section 1.8.3, even though the used machine contains 4 cores. 

 

 

Table  4.38.  The  duration  in  seconds  taken  by  the  multi-threaded  optimized  forward 

algorithm in each performed test to determine the optimum number of threads 
 

 

 

thrLim 

 

Football 

 

Chess 

Rugby 

and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

Ice hockey 

And 

curling 

 

Cricket 

1 292 624 537 1592 1574 106 144 

2 275 562 516 1457 1420 100 143 

3 248 531 475 1262 1306 104 139 

4 244 487 434 1187 1172 89 136 

5 215 458 413 1052 1068 87 144 

6 209 398 392 947 883 78 131 

7 185 365 384 762 720 72 129 

8 159 323 303 637 636 69 124 

9 147 282 269 424 458 59 122 

10 143 251 258 377 369 56 122 

11 158 262 280 460 398 71 124 

12 166 315 296 520 510 97 142 

13 184 346 324 637 670 103 164 

14 219 387 337 696 791 128 178 

15 241 434 359 784 871 134 201 

16 272 482 381 828 952 146 206 

17 292 511 424 985 1022 152 220 

18 325 539 446 1032 1173 171 224 

19 337 584 458 1139 1303 197 238 

20 359 637 481 1246 1374 213 263 

 

 

Considering 10 threads, which are the optimum number of threads that can be run in 

parallel in the machine used for testing, Table 4.39 presents the necessary execution times 



179 
 

 

 

to get the results of the multi-threaded optimized forward algorithm for the previously 

presented sports. 

 

 

Table 4.39. The execution times of the multi-threaded optimized forward algorithm 
 
 

 

n 

 

Football 

 

Chess 

Rugby 

and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

Ice hockey 

and 

curling 

 

Cricket 

2 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 

3 3 ms 3 ms 3 ms 2 ms 2 ms 6 ms 7 ms 

4 19 ms 21 ms 21 ms 7 ms 7 ms 48 ms 63 ms 

5 118 ms 134 ms 141 ms 19 ms 20 ms 1 s 1 s 

6 1 s 1 s 1 s 37 ms 36 ms 56 s 122 s 

7 2 m 4 m 4 m 278 ms 283 ms 51 h - 

8 112 h 363 h 367 h 5 s 5 s - - 

9 - - - 6 m 6 m - - 

10 - - - 86 h 87 h - - 

 

 

Table 4.40 shows a comparison between the execution times those are larger or 

equal 1 second for optimized backward against the multi-threaded optimized backward 

algorithm, while Figure 4.7 shows a graphical representation of the percentage decrease 

in the execution time for these cases. 

It can be observed from Table 4.40 and Figure 4.7 that the multi-threaded optimized 

backward algorithm has a positive effect on the execution time in most of the tested cases, 

where the optimization of the execution time is between 0% and 76.923%. 



180 
 

 

 

Table  4.40.  The  percentage  decrease  in  the  execution  time  of  the  multi-threaded 

optimized forward algorithm compared to the optimized forward algorithm 
 
 

 

n 

 

Football 

 

Chess 

Rugby 

and 

handball 

 

Lacrosse 

Basketball, 

volleyball 

and tennis 

 

Ice hockey 

and curling 

 

Cricket 

5 - - - - - - 0 

6 0 50 50 - - 47.169 15.277 

7 60 60 55.555 - - 19.047 - 

8 52.941 35.523 33.393 50 50 - - 

9 - - - 76.923 76.923 - - 

10 - - - 56.122 56.716 - - 

 

 

 
 

Figure 4.7. The decrease in the execution time for multi-threaded optimized forward 

algorithm compared to the forward algorithm 



 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 
This study seeks to enumerate the possible states of the final table of single round- 

robin sports tournaments with respect to the number of participants (n). The columns of 

the tournament tables which are taken into account during the study are the ones related 

to the possible game results such as W, D and L in the case of football, and W and L in the 

case of basketball. The determination of the possible states of a round-robin final 

tournament table can provide a convenient way to ascertain what table data would be 

adequate for a participant to reach a desired position, which may play a crucial role in the 

distribution of the participants’ revenue. 

Backward and forward approaches are developed to enumerate the possible states of 

a final tournament table. The backward approach is based on generating every possible 

state and seeks to prove their validity by trying to construct a tournament graph for each 

generated state. The state is considered to be valid in this approach only if at least one 

tournament graph can be sought. The forward approach is based on building every 

possible tournament graph, from which then its corresponding state is derived. The state 

is taken into account as a valid one in this case only if the points of the participants appear 

in descending order and the state is not previously generated. 

Each participant holds a position in the tournament final table in which it is possible 

to determine its highest and lowest numbers of points that can be gained by them. To 

optimize the search space of both approaches, some general constraints are proposed in 

terms of the standings and points of the participants. A multi-threading based 

parallelization technique is implemented to enhance the performance of the approaches 

and to exploit the computation power of the used machine at the highest level, assigning 

their non-overlapping operations to different threads. 

Both time and memory space complexities of the proposed approaches are analyzed 

and discussed. Tables 5.1 and 5.2 represent the time/space complexities of the algorithms 

for the presented kind of sports. As seen in the tables, as the number of the possible game 

results (i.e., m=2q+r) increases, the time and space complexities of each algorithm 

increase too. It can also be seen that the time/space complexity of each version from the 

backward approach is larger than its counterpart from the forward approach. The values 

of all the presented time/space complexities in Tables 5.1 and 5.2 do not represent the 

actual time/space function of the algorithms, but they represent upper bounds for them. 



182 
 

 

 

Thus, we cannot judge based on the data of Tables 5.1 and 5.2 that the forward approach 

is better than the backward, but we can confirm that all the algorithms have exponential 

time/space complexities. 

 

 

Table 5.1. The time complexities of the proposed algorithms for the presented kind of 

sports 
 
 

Sports 
 
 

Algorithms 

 

Football, handball, 

rugby and chess 

 

Lacrosse, basketball, 

volleyball and tennis 

 
Ice hockey, curling 

and cricket 

Backward O(nn*n+2) O(nn*(n-1)+2) O(nn*(n+1)+2) 

Forward O(n*3n*(n-1)+1) O(n*2n*(n-1)+1) O(n*4n*(n-1)+1) 

Optimized 

backward 
O(nn*n+2) O(nn*(n-1)+2) O(nn*(n+1)+2) 

Optimized 

forward 
O(n*3n*(n-1)+1) O(n*2n*(n-1)+1) O(n*4n*(n-1)+1) 

Multi- 

threaded 

optimized 

backward 

 
O(n

n*n+2
/thrLim) 

 
O(n

n*(n-1)+2
/thrLim) 

 
O(n

n*(n+1)+2
/thrLim) 

Multi- 

threaded 

optimized 

forward 

 
O(n*3

n*(n-1)+1
/thrLim) 

 
O(n*2

n*(n-1)+1
/thrLim) 

 
O(n*4

n*(n-1)+1
/thrLim) 



183 
 

 

 

Table 5.2. The memory space complexities of the proposed algorithms for the presented 

kind of sports 
 
 

Sports 

Algorithms 

Football, handball, 

rugby and chess 

Lacrosse, basketball, 

volleyball and tennis 

Ice hockey, curling 

and cricket 

Backward O(n2*n+1) O(n
n+1

) O(n3*n+1) 

Forward O(n*3[n*(n-1)/2]+1) O(n*2[n*(n-1)/2]+1) O(n*4[n*(n-1)/2]+1) 

Optimized 

backward 
O(n2*n+1) O(n

n+1
) O(n3*n+1) 

Optimized forward O(n*3[n*(n-1)/2]+1) O(n*2[n*(n-1)/2]+1) O(n*4[n*(n-1)/2]+1) 

Multi-threaded 

optimized 

backward 

O(n2*n+1) + 

O(thrLim*n
3
) 

O(n
n+1

) + 

O(thrLim*n
3
) 

O(n3*n+1) + 

O(thrLim*n
3
) 

Multi-threaded 

optimized forward 
O(n*3[n*(n-1)/2]+1) + 

O(thrLim*n
4
) 

O(n*2[n*(n-1)/2]+1) + 

O(thrLim*n
4
) 

O(n*4[n*(n-1)/2]+1) + 

O(thrLim*n
4
) 

 

 

A final state of a tournament table cannot be verified in a polynomial time. A SAT 

problem is also reduceable into a problem of determining the final states of a tournament 

table in a polynomial time. Based on these facts and the complexities of the approaches, 

NP-hard is determined as a class for the problem. 

The results of the tests are presented and discussed, where the backward approach 

exhibits the better performance when the number of the columns related to possible game 

results equals to 2, while the forward approach is better when the number of the columns 

is greater than 2. The optimized version of each approach generates better results than the 

original one from which it is derived, where they are able to calculate the results of some 

cases that cannot be calculated via the original approaches. Besides, the results of the 

optimized forward approach are better than those of the optimized backward approach 

when the number of the participants is less than 8, while the performance of the optimized 

backward approach is better when the number of participants is more than 8. The multi- 

threading enhancements of the approaches show positive effects on the execution time in 

most of the tested cases. 

With the aim of comparing the developed algorithms with one another, their 

computing results of execution time are presented for a certain value of n in Table 5.3. 

We choose the value of n to be the one that can be tested by all the algorithms (i.e., n=6). 

The selection of this common value of n allows us to clearly see the superiority of the 



184 
 

 

 

algorithms on each other. Accordingly, the forward approach is better than the backward 

one in the cases of football, rugby, handball, chess, ice hockey, curling and cricket (i.e., 

the number of the columns is greater than 2). The optimized version of each algorithm 

takes less time than the original one from which it is derived for all the sports given in 

Table 5.3. Besides, the optimized forward algorithm requires less execution time than the 

optimized backward algorithm. The multi-threading enhancement of each algorithm 

shows a positive effect on the execution time when the number of the columns is greater 

than 2 except in the case of football, where the execution time remained the same. On the 

contrary, when the number of the columns equals 2 (i.e., the cases of lacrosse, basketball, 

volleyball and tennis), multi-threading shows a negative effect on the execution time. 

 

 

Table 5.3. The results of the proposed algorithms for n=6 
 
 

Algorithms 
 

Sports 

 
Backward 

 
Forward 

 

Optimized 

backward 

 

Optimized 

forward 

Multi- 

threaded 

optimized 

backward 

Multi- 

threaded 

optimized 

forward 

Football 3 m 12 s 2 s 1 s 2 s 1 s 

Rugby and 

handball 
3 m 13 s 4 s 2 s 3 s 1 s 

Chess 3 m 13 s 4 s 2 s 3 s 1 s 

Lacrosse 18 ms 16 ms 15 ms 13 ms 33 ms 37 ms 

Basketball, 

volleyball 

and tennis 

 

17 ms 

 

17 ms 

 

16 ms 

 

13 ms 

 

33 ms 

 

36 ms 

Ice hockey 

and curling 

 

95 h 
 

15 m 
 

18 m 
 

106 s 
 

16 m 
 

56 s 

Cricket 92 h 16 m 38 m 144 s 35 m 122 s 

 

 

The limitation encountered in this study is the generation of the possible states of 

single round-robin tournament final tables. Therefore, it is recommended that the related 

results are exploited to generate the possible final states of league tables (i.e., double 

round-robin tournaments) within the limits of the calculated ones. The determination of 

the possible states in this circumstance can be done by unifying every possible two states 

of a single round-robin tournament final table. Also, the results of this work can be 



185 
 

 

 

exploited to realize algorithms which determine the possibility that a participant can 

occupy a specific position on the final table based on its current results. 



 

6. REFERENCES 

 
1. Blanchard, K. and Cheska, A.T., The Anthropology of Sport: An Introduction, First 

Edition, Bergin & Garvey Publishers, South Hadley, 1985. 

 

2. Hoberman, J.M., Sport and Political Ideology, First Edition, University of Texas Press, 

Austin, 1984. 

 

3. Mechikoff, R.A., A History and Philosophy of Sport and Physical Education: From 

Ancient Civilization to the Modern World, Sixth Edition, The McGraw-Hill, New York, 

2014. 

 

4. Schrodt, B., Sports of the Byzantine Empire, Journal of Sport History, 8, 3 (1981) 40- 

59. 

 

5. Kyriazis, N. and Economou, E.M.L., Macroculture, sports and democracy in classical 

Greece, European Journal of Law and Economics, 40, 3 (2015) 431-455. 
 

6. Scambler,  G., Sport and society: History, power and culture, First Edition, McGraw- 

Hill, New York, 2005. 

 

7. McClelland,  J.,  Body  and  mind:  sport  in  Europe  from  the  Roman  Empire  to  the 

Renaissance, First Edition, Routledge, New York, 2007. 

 

8. McComb, D.G., Sports in World History, First Edition, Psychology Press, New York, 

2004. 

 

9. Lucas, J.A. and Smith, R.A., Saga of American sport, Lea & Febiger, U.S., 1978. 

 

10. Raney,  A.A.  and  Bryant,  J.,  Handbook  of  sports  and  media,  Lawrence  Erlbaum 

Associates Publisher, 2006. 

 

11. Eichberg, H., Olympic sport-neocolonization and alternatives, International review for 

the sociology of sport, 19, 1 (1984) 97-106. 
 

12. Thibault, L. and Harvey J., Fostering interorganizational linkages in the Canadian sport 

delivery system, Journal of sport management, 11, 1 (1997) 45-68. 
 

13. Thibault, L. and Babiak, K., Organizational changes in Canada's sport system: Toward 

an athlete-centred approach, European Sport Management Quartely, 5, 2 (2005) 105- 

132. 

 

14. Samuel, Y.T., An exploratory investigation of sport management students’ attraction to 

sport jobs, Int. J. Sport Management and Marketing, 4, 4 (2008) 323-337. 
 

15. Rosentraub, M.S., Swindell, D., Przybylski, M. and Mullins, D.R., Sport and 

Downtown Development Strategy If You Build It, Will Jobs Come?, Journal of Urban 

Affairs, 16, 3 (1994) 221-239. 



187 
 

 

 

16. Bjelica, D., Gardasevic, J., Vasiljevic, I. and Popovic, S., Ethical dilemmas of sport 

advertising, Sport Mont, 13, 3 (2016) 41-43. 
 

17. Jackson, S.J. and Andrews D.L., Sport, culture and advertising: identities, commodities 

and the politics of representation, Routledge, London, 2005. 

 

18. Collignon,  H.  and  Sultan,  N.,  Winning  in  the  Business  of  Sports,  AT  Kearney. 

https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a- 

f5f66890778b/WinningintheBusinessofSports.pdf 23 March 2020 

 

19. Russell, S., Barrios, D. and Andrews, M., Getting the Ball Rolling: Basis for Assessing 

the Sports Economy. 

http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_eco 

nomy.pdf 23 March 2020 

 

20. Collignon,  H.,  The  sports  market.  https://www.kearney.com/communications-media- 

technology/article?/a/the-sports-market 23 March 2020 

 

21. Stead D., Sport and the Media, Sport and society: A student introduction, (2003) 184- 

200. 

 

22. Gratton, C. and Solberg, H.A., The economics of sports broadcasting, First Edition, 

Routledge, New York, 2007. 

 

23. Marchand, E., On the comparison between standard and random knockout tournaments, 

Journal of the Royal Statistical Society, 51, 2 (2002) 169-178. 
 

24. Flores, R., Forrest, D., de Pablo, C. and Tena, J.D., What is a good result in the first leg 

of a two-legged football match?, European Journal of Operational Research, 247, 2 

(2015) 641-647. 

 

25. Harary, F. and Moser, L., The theory of round robin tournaments, The American 

Mathematical Monthly, 73, 3 (1966) 231-246. 
 

26. Russell, T. and Walsh, T., Manipulating tournaments in cup and round robin 

competitions, International Conference on Algorithmic Decision Theory, October 2009, 

Venice, 26-37. 

 

27. Van Cutsem, B., Combinatorial structures and structures for classification, 

Computational Statistics & Data Analysis, 23, 1 (1996) 169-188. 
 

28. Pemmaraju, S. and Skiena, S., Computational Discrete Mathematics: Combinatorics 

and Graph Theory with Mathematica, Cambridge university press, Cambridge, 2003. 

 

29. Goulden, I.P. and Jackson, D.M., Combinatorial enumeration, John Wiley & sons, New 

York, 1983. 

 

30. Polya, G., Tarjan, R.E. and Woods, D.R., Notes on introductory combinatorics, Fourth 

Edition, Springer Science, 2013. 

https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
https://cache.pressmailing.net/content/443f58fc-6bad-499f-9e9a-f5f66890778b/WinningintheBusinessofSports.pdf
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://growthlab.cid.harvard.edu/files/growthlab/files/cidwp_321_assessing_sports_economy.pdf%2023%20March%202020
http://www.kearney.com/communications-media-
http://www.kearney.com/communications-media-


188 
 

 

 

31. Bader, D.A., Agarwal, V., Madduri, K. and Kang, S., High performance combinatorial 

algorithm design on the Cell Broadband Engine processor, Parallel Computing, 33, 10- 

11 (2007) 720-740. 

 

32. West, D.B., Introduction to graph theory, Second Edition, Pearson Education, Inc., 

2001. 

 

33. Wallis, W.D., A tournament problem, The ANZIAM Journal, 24, 4 (1983) 289-291. 
 

34. Sæbø, O.S. and Hvattum, L.M., Modelling the financial contribution of soccer players 

to their clubs, Journal of Sports Analytics, 5, 1 (2019) 23-34. 
 

35. Southall, R.M., Nagel, M.S., Amis, J.M. and Southall, C., A method to March madness? 

Institutional logics and the 2006 National Collegiate Athletic Association Division I 

men’s basketball tournament, Journal of Sport Management, 22, 6 (2008) 677-700. 
 

36. Carlsson, M., Johansson, M. and Larson, J., Scheduling double round-robin 

tournaments with divisional play using constraint programming, European Journal of 

Operational Research, 259, 3 (2017) 1180-1190. 
 

37. Pérez-Cáceres, L., Riff, M.C., Solving scheduling tournament problems using a new 

version of CLONALG, Connection Science, 27, 1 (2015) 5-21. 
 

38. Suksompong,  W.,  Scheduling  asynchronous  round-robin  tournaments,  Operations 

Research Letters, 44, 1 (2016) 96-100. 
 

39. Atan, T. and Hüseyinoǧlu, O.P., Simultaneous scheduling of football games and 

referees using Turkish league data, International Transactions in Operational Research, 

24, 3 (2017) 465-484. 

 

40. Westphal, S., Scheduling the German basketball league, Interfaces, 44, 5 (2014) 498- 

508. 

 

41. Kyngäs, J. and Nurmi, K., Scheduling the Finnish 1st division ice hockey league, 

Proceedings of the Twenty-Second International FLAIRS Conference, May 2009, 

Sanibel Island, 195-200. 

 

42. Januario, T., Urrutia, S., Ribeiro, C.C. and De Werra, D., Edge coloring: A natural 

model for sports scheduling, European Journal of Operational Research, 254, 1 (2016) 

1-8. 

 

43. Briskorn, D. and Drexl, A., A branch-and-price algorithm for scheduling sport leagues, 

Journal of the Operational Research Society, 60, 1 (2009) 84-93. 
 

44. Della Croce, F. and Oliveri, D., Scheduling the Italian football league: An ILP-based 

approach, Computers & Operations Research,  33, 7 (2006) 1963-1974. 
 

45. Goerigk, M. and Westphal, S., A combined local search and integer programming 

approach to the traveling tournament problem, Annals of Operations Research, 239, 1 

(2016) 343-354. 



189 
 

 

 
 

46. Kern, W., and Paulusma, D., The computational complexity of the elimination problem 

in generalized sports competitions, Discrete Optimization, 1, 2 (2004) 205-214. 
 

47. Alarcón, F., Durán, G. and Guajardo M., Referee assignment in the Chilean football 

league using integer programming and patterns, International Transactions in 

Operational Research, 21, 3 (2014) 415-438. 
 

48. Larson, J., Johansson, M. and Carlsson, M., An integrated constraint programming 

approach to scheduling sports leagues with divisional and round-robin tournaments, 

International Conference on AI and OR Techniques in Constriant Programming for 

Combinatorial Optimization Problems, May 2014, Cork, 144-158. 

 

49. Lim, A., Rodrigues, B. and Zhang, X., A simulated annealing and hill-climbing 

algorithm for the traveling tournament problem, European Journal of Operational 

Research, 174, 3 (2006) 1459-1478. 
 

50. Bartsch, T., Drexl, A. and Kröger, S., Scheduling the professional soccer leagues of 

Austria and Germany, Computers & Operations Research, 33, 7 (2006) 1907-1937. 
 

51. Easton, K., Nemhauser, G. and Trick, M., The traveling tournament problem 

description and benchmarks, International Conference on Principles and Practice of 

Constraint Programming, November 2001, Paphos, 580-584. 

 

52. Eggar, M.H., A tournament problem, Discrete Mathematics, 263, 1-3 (2003) 281-288. 
 

53. McSherry,  D.,  Inferring  wins,  draws  and  losses  from  points  scored  in  a  sports 

tournament, Irish Math Soc Bull, 42, (1999) 48-53. 
 

54. Charon, I. and Hudry, O., A branch-and-bound algorithm to solve the linear ordering 

problem for weighted tournaments, Discrete Applied Mathematics, 154, 15 (2006) 

2097-2116. 

 

55. Hemasinha, R., An algorithm to generate tournament score sequences, Mathematical 

and computer modelling, 37, 4-3 (2003) 377-382. 
 

56. Havel, V., Poznámka o existenci konečných grafů, Časopis pro pěstování matematiky, 

80, 4 (1955) 477-480. 

 

57. Hakimi, S.L., On realizability of a set of integers as degrees of the vertices of a linear 

graph. I, Journal of the Society for Industrial and Applied Mathematics, 10, 3 (1962) 

496-506. 

 

58. Duckworth, F.C. and Lewis, A.J., A fair method for resetting the target in interrupted 

one-day cricket matches, Journal of the Operational Research Society, 49, 3 (1998) 220- 

227. 

 

59. Nabiyev, V.V. and Pehlivan, H., Tournament scoring problem, Applied mathematics 

and computation, 199, 1 (2008) 211-222. 



190 
 

 

 

60. Pehlivan,  H.  and  Nabiyev,  V.V.,  Score  calculation  from  final  tournament  tables, 

Computers & operations research, 36, 3 (2009) 936-950. 
 

61. Damkhi, M. and Pehlivan, H., Determining the results of tournament games using 

complete graphs generation, Computational and Applied Mathematics, 37, 5 (2018) 

6198-6211. 

 

62. Damkhi, M. and Pehlivan, H., Generation and Enumeration of Final Table States of 

Football Tournaments Using a Blind Adaptive Filtering Algorithm, International 

Journal of Computing, 7, 2 (2018) 22-28. 
 

63. Damkhi, M. and Pehlivan, H., A Point-Based Algorithm to Generate Final Table States 

of Football Tournaments, International Journal of Computing, 7, 3 (2018) 38-42. 
 

64. Horen,  J.  and  Riezman,  R.,  Comparing  draws  for  single  elimination  tournaments, 

Operations Research, 33, 2 (1985) 249-262. 
 

65. Byl, J., Organizing Successful Tournaments, Fourth Edition, Human Kinetics, Illinois, 

2013. 

 

66. France, R.C., Introduction to physical education and sport science, Delmar, Cengage 

Learning, New York, 2008. 

 

67. Scarf, P.A. and Yusof, M.M., A numerical study of tournament structure and seeding 

policy for the soccer World Cup Finals, Statistica Neerlandica, 65, 1 (2011) 43-57. 
 

68. Groh, C., Moldovanu, B.,  and Sela, A. and Sunde, U., Optimal seedings in elimination 

tournaments, Economic Theory, 49, 1 (2012) 59-80. 
 

69. Marchand, É., On the comparison between standard and random knockout tournaments, 

Journal of the Royal Statistical Society: Series D (The Statistician), 51, 2 (2002) 169- 

178. 

 

70. Glenn, W.A., A comparison of the effectiveness of tournaments, Biometrika, 47, 3-4 

(1960) 253-262. 

 

71. Edwards, C.T., Double-elimination tournaments: Counting and calculating, The 

American Statistician, 50, 1 (1996) 27-33. 
 

72. Stanton, I. and Williams, V.V., The structure, efficacy, and manipulation of double- 

elimination tournaments, Journal of Quantitative Analysis in Sports, 9, 4 (2013) 319- 

335. 

 

73. Glasson, S., Jeremiejczyk, B. and Clarke, S.R., Simulation of Women's Beach 

Volleyball Tournaments, ASOR BULLETIN, 20, 2 (2001) 2-7. 
 

74. Cosmo, L.L., The Practice of Water Volleyball as a Leisure and Fine Recreational 

Water Sport, Health Research, 1, 1 (2017) 1-15. 



191 
 

 

 

75. Smith,   J.C.,   Organization   of   a   college   baseball   tournament,   IMA   Journal   of 

Management Mathematics, 20, 2 (2009) 213-232. 
 

76. Csató L., Ranking by pairwise comparisons for Swiss-system tournaments, Central 

European Journal of Operations Research, 21, 4 (2013) 783-803. 
 

77. Van Hecke, T., Monte-Carlo simulation of chess tournament classification systems, 

APPLIED MATHEMATICS, 3, 4 (2013) 128-131. 
 

78. Csató  L.,  On  the  ranking  of  a  Swiss  system  chess  team  tournament,  Annals  of 

Operations Research, 254, 1-2, (2017) 17-36. 
 

79. Arlegi, R. and Dimitrov, D., Fair competition design. 

http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf 24 March 2020 

 

80. Csató, L., Ranking in Swiss system chess team tournaments. http://unipub.lib.uni- 

corvinus.hu/1830/1/cewp_201501.pdf 24 March 2020. 

 

81. Vuorinen, T., Enhancing Go tournament pairings in Europe, Master Thesis, Tampere 

University of Technology, Faculty of Computing and Electrical Engineering, Tampere, 

2010. 

 

82. Samothrakis, S., Perez, D., Lucas, S. and Rohlfshagen, P., Predicting dominance 

rankings for score-based games, IEEE Transactions on Computational Intelligence and 

AI in Games, 8, 1 (2014) 1-12. 
 

83. Hooper, D. and Whyld, K., The Oxford companion to chess, Second Edition, Oxford 

University Press, London, 1992. 

 

84. https://ruchess.ru/en/championship/detail/2015/nutcracker_2015/ Nutcracker 

Generation Tournament: Moscow. 24 March 2020. 

 

85. Crowther, M., Kings vs. Queens Tournament 2011. 

https://theweekinchess.com/chessnews/events/kings-vs.-queens-tournament-2011 24 

March 2020. 

 

86. https://trove.nla.gov.au/newspaper/article/182547662/20683097 Finals System 

Successful: Originator Explains the Reasons. 24 March 2020. 

 

87. Stewart, B., Games Are Not the Same: The Political Economy of Football in Australia, 

Melbourne University Press, Carlton, 2007. 

 

88. McLellan, C.P., Neuromuscular, Biochemical, Endocrine and Physiological Responses 

of Elite Rugby League Players to Competitive Match-Play, Doctoral Thesis, Bond 

University, Faculty of Health Sciences and Medicine, Robina, 2010. 

 

89. Fürnkranz, J., Round robin classification, Journal of Machine Learning Research, 2, 

(2002) 721-747. 

http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf%2024%20March%202020
http://www.gtcenter.org/Archive/2018/Conf/Dimitrov2839.pdf%2024%20March%202020
http://unipub.lib.uni-corvinus.hu/1830/1/cewp_201501.pdf%2024%20March%202020
http://unipub.lib.uni-corvinus.hu/1830/1/cewp_201501.pdf%2024%20March%202020


192 
 

 

 

90. Krumer, A. and Lechner, M., First in first win: Evidence on schedule effects in round- 

robin tournaments in mega-events, European Economic Review, 100, (2017) 412-427. 
 

91. Goossens, D. and Spieksma, F., Scheduling the Belgian soccer league, Interfaces, 39, 2 

(2009) 109-118. 

 

92. Zhang, H., Generating college conference basketball schedules by a SAT solver, 

Proceedings Of The Fifth International Symposium on the Theory and Applications of 

Satisfiability Testing, February 2002, Cincinnati, 281-291. 

 

93. https://en.chessbase.com/news/2005/fide10.pdf The 2005 World Chess Championship 

to be held 27 September - 16 October in San Luis, Argentina under the aegis of the 

Province of San Luis. 24 March 2020. 

 

94. Monks, J. and Husch, J., The impact of seeding, home continent, and hosting on FIFA 

World Cup results, Journal of Sports Economics, 10, 4 (2009) 391-408. 
 

95. Mahlangu, S., What to expect from biggest ever Africa Cup of Nations tournament. 

https://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations- 

tournament 24 March 2020. 

 

96. Berker, Y., Tie-breaking in round-robin soccer tournaments and its influence on the 

autonomy of relative rankings: UEFA vs. FIFA regulations, European Sport 

Management Quarterly, 14, 2 (2014) 194-210. 
 

97. Johnston, M. and Wright, M., Prior analysis and scheduling of the 2011 Rugby Union 

ITM Cup in New Zealand, Journal of the Operational Research Society, 65, 8 (2014) 

1292-1300. 

 

98. Petersen, C., Pyne, D.B., Portus, M.R., Cordy, J. and Dawson, B., Analysis of 

performance at the 2007 Cricket World Cup, International Journal of Performance 

Analysis in Sport, 8, 1 (2008) 1-8. 
 

99. https://zanchess.wordpress.com/2016/03/05/london-chess-club-tournament-1851-a- 

first-look/ London (1851) - London Chess Club Tournament - a first look. 24 March 

2020. 

 

100. https://zanchess.wordpress.com/2016/01/19/london-1862-preliminary-results-and-xtabs/ 

London (1862) – Preliminary results and xtabs. 24 March 2020. 

 

101. Schneider,  J., Schvartzman,  A.,  and  Weinberg,  S.M.,  Condorcet-consistent  and 

approximately strategyproof tournament rules, arXiv, (2016). 
 

102. Blair, K., The 2012 Olympic badminton scandal: Match-fixing, code of conduct 

documents, and women’s sport, The International Journal of the History of Sport, 35, 2- 

3 (2018) 264-276. 

 

103. Cowley, J., The Last Game: Love, Death, and Football, First Edition, Simon and 

Schuster, London, 2009. 

https://en.chessbase.com/news/2005/fide10.pdf
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-
http://www.enca.com/analysis/what-expect-biggest-ever-africa-cup-nations-


193 
 

 

104. https://www.fifa.com/worldcup/archive/usa1994/groups/ 1994 fifa world cup USA
TM

. 

24 March 2020. 

 

105. Assad, A.A., Leonhard Euler: A brief appreciation, Networks, 49, 3 (2007) 190-198. 
 

106. May, K.O., The origin of the four-color conjecture, Isis, 56, 3 (1965) 346-348. 
 

107. Appel, K. and Haken, W., Every planar map is four colorable, Bulletin of the American 

mathematical Society, 82, 5 (1976) 711-712. 
 

108. Riihijarvi, J., Petrova, M. and Mahonen, P., Frequency allocation for WLANs using 

graph colouring techniques, Second Annual Conference on Wireless On-demand 

Network Systems and Services, January 2005, St. Moritz, 216-222. 

 

109. Leighton, F.T., A graph coloring algorithm for large scheduling problems, Journal of 

research of the national bureau of standards, 84, 6 (1979) 489-506. 
 

110. Arkin, E.M. and Silverberg, E.B., Scheduling jobs with fixed start and end times, 

Discrete Applied Mathematics, 18, 1 (1987) 1-8. 
 

111. Zhang, W., Wang, G. and Wittenburg, L., Distributed stochastic search for constraint 

satisfaction and optimization: Parallelism, phase transitions and performance, 

Proceedings of AAAI Workshop on Probabilistic Approaches in Search, 2002, 53-59. 

 

112. Albert, J. and Koning, R.H., Statistical thinking in sports, Chapman & Hall/CRC, Boca 

Raton, 1985. 

 

113. Li, Y., Liang, L., Chen, Y. and Morita, H., Models for measuring and benchmarking 

Olympics achievements, Omega, 36, 6 (2008) 933-940. 
 

114. Tuominen, M., Stuart, M.J., Aubry, M., Kannus, P. and Parkkari, J., Injuries in men's 

international ice hockey: a 7-year study of the International Ice Hockey Federation 

Adult World Championship Tournaments and Olympic Winter Games, Br J Sports 

Med, 49, 1 (2015) 30-36. 
 

115. Lee,  I.,  The  American  Aversion  to  Ties  in  Sport  and  Intercollegiate  Wrestling's 

Labyrinthine Tiebreaker Rules, Sw. L. Rev., 47, (2017) 115-135. 
 

116. Berker, Y., Tie-breaking in round-robin soccer tournaments and its influence on the 

autonomy of relative rankings: UEFA vs. FIFA regulations, European Sport 

Management Quarterly, 14, 2 (2014) 194-210. 
 

117. Csató, L., Was Zidane honest or well-informed? How UEFA barely avoided a serious 

scandal. arXiv, (2017). 
 

118. Csató,  L.,  Tournaments  with  subsequent  group  stages  are  incentive  incompatible. 

https://mpra.ub.uni-muenchen.de/83269/1/MPRA_paper_83269.pdf 26 March 2020. 

 

119. Sidhu, H., Kabaddi: A Vigorous Game, Journal of Physical Education, Recreation & 

Dance, 57, 5 (1986) 75-77. 

http://www.fifa.com/worldcup/archive/usa1994/groups/
http://www.fifa.com/worldcup/archive/usa1994/groups/
https://mpra.ub.uni-muenchen.de/83269/1/MPRA_paper_83269.pdf
https://mpra.ub.uni-muenchen.de/83269/1/MPRA_paper_83269.pdf


194 
 

 

 
 

120. http://globalkabaddileague.co.in/ League Table. 25 March 2020. 

 

121. https://www.world.rugby/pnc/standings Pacific Nations Cup. 26 March 2020. 

 

122. http://www.fiba.basketball/basketballworldcup/2019/groups#|tab=event_round_1 

Standings: First Round. 26 March 2020. 

 

123. http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standi 

ngs.asp FIVB Men's World Cup 2007. 26 March 2020. 

 

124. http://www.worldlacrosse2014.com/nations/standings 2014 FIL World 

Lacrosse Championships. 26 March 2020. 

 

125. http://elite.wttstats.pointstreak.com/playoffstandings.html STANDINGS: Elite Ice 

Hockey League. 26 March 2020. 

126. https://howlingpixel.com/i-en/2018%E2%80%9319_Curling_World_Cup 2018–19 

Curling World Cup. 26 March 2020. 

 

127. https://www.cricketworldcup.com/standings ICC Cticket World Cup: England & Wales 

2019. 26 March 2020. 

 

128. https://www.computerhope.com/history/processor.htm Computer processor history. 26 

March 2020. 

 

129. Dennis, J.B., Data flow supercomputers, Computer, 11, (1980) 48-56. 
 

130. Kuck, D.J., Davidson, E.S., Lawrie, D.H. and Sameh, A.H., Parallel supercomputing 

today and the Cedar approach, Science, 231, 4741 (1986) 967-974. 
 

131. Aliabadi, S.K. and Tezduyar, T.E., Parallel fluid dynamics computations in aerospace 

applications, International Journal for Numerical Methods in Fluids, 21, 10 (1995) 783- 

805. 

 

132. Ihshaish, H., Cortés, A. and Senar, M.A., Parallel multi-level genetic ensemble for 

numerical weather prediction enhancement, Procedia Computer Science, 9, (2012) 276- 

285. 

 

133. Radeke, C.A., Glasser, B.J. and Khinast, J.G., Large-scale powder mixer simulations 

using massively parallel GPUarchitectures, Chemical Engineering Science, 65, 24 

(2010) 6435-6442. 

 

134. Yaun, G., Carothers, C.D. and Kalyanaraman, S., Large-scale tcp models using 

optimistic parallel simulation, Seventeenth Workshop on Parallel and Distributed 

Simulation, June 2003, California, 153-162. 

 

135. Zhao, W., Ma, H. and He, Q., Parallel k-means clustering based on mapreduce, IEEE 

International Conference on Cloud Computing, December 2009, Beijing, 674-679. 

http://globalkabaddileague.co.in/
https://www.world.rugby/pnc/standings
http://www.fiba.basketball/basketballworldcup/2019/groups#%7Ctab%3Devent_round_1
http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standings.asp
http://www.fivb.org/EN/volleyball/competitions/WorldCup/2007/Men/Standings/Standings.asp
http://www.worldlacrosse2014.com/nations/standings
http://elite.wttstats.pointstreak.com/playoffstandings.html
http://elite.wttstats.pointstreak.com/scoreboard.html?leagueid=2115&amp;seasonid=18468
http://elite.wttstats.pointstreak.com/scoreboard.html?leagueid=2115&amp;seasonid=18468
https://howlingpixel.com/i-en/2018%E2%80%9319_Curling_World_Cup
https://www.cricketworldcup.com/standings
https://www.computerhope.com/history/processor.htm


195 
 

 

 

136. Kargupta, H., Hamzaoglu, I. and Stafford, B., Scalable, Distributed Data Mining-An 

Agent Architecture. The Third International Conference on Knowledge Discovery and 

Data Mining, August 1997, California, 211-214. 

 

137. Tsoi, K.H., Lee, K.H. and Leong, P.H.W., A massively parallel RC4 key search engine. 

In Proceedings, 10th Annual IEEE Symposium on Field-Programmable Custom 

Computing Machines, April  2002, California, 13-21. 

 

138. Ge, L. and Wang, L., Research of password recovery method for RAR based on parallel 

random search, International Conference on Applications and Techniques in 

Information Security, November 2014, Melbourne, 211-218. 

 

139. Yang, Z., Zhu, Y. and Pu, Y., Parallel image processing based on CUDA, 2008 

International Conference on Computer Science and Software Engineering, December 

2008, Wuhan, Volume III: 198-201. 

 

140. Kwon, K.C., Park, C., Erdenebat, M.U., Jeong, J.S., Choi, J.H., Kim, N., Park, J.H., 

Lim, Y.T. and Yoo, K.H., High speed image space parallel processing for computer- 

generated integral imaging system, Optics express, 20, 2 (2012) 732-740. 
 

141. Flynn, M.J., Very high-speed computing systems. Proceedings of the IEEE, 54, 12 

(1966) 1901-1909. 

 

142. Catthoor, F. and De Man, H.J., Application-specific architectural methodologies for 

high-throughput digital signal and image processing, IEEE Transactions on Acoustics, 

Speech, and Signal Processing, 38, 2 (1990) 339-349. 
 

143. Schneider,  B.O.  and  Rossignac,  J.,  M-Buffer:  A  flexible  MISD  architecture  for 

advanced graphics, Computers & graphics, 19, 2 (1995) 239-246. 
 

144. Akpan, O.H., A New Method for Efficient Parallel Solution of Large Linear Systems on 

a SIMD Processor, PhD Thesis, Louisiana State University, The Department of 

Computer Science, Louisiana, 1994. 

 

145. Padua, D., Encyclopedia of parallel computing, Springer Science & Business Media, 

New York, 2011. 

 

146. Moore, K.E., Hill, M.D. and Wood, D.A., Thread-level  transactional  memory. 

Technical Report 1524, University of Wisconsin-Madison, Department of Computer 

Sciences. 2005. 

 

147. Appel, A.W. and Li, K., Virtual memory primitives for user programs, Proceedings of 

the fourth international conference on Architectural support for programming languages 

and operating systems. April 1991, California , 96-107. 

 

148. Fiske, S. and Dally, W.J., Thread prioritization: A thread scheduling mechanism for 

multiple-context parallel processors, Future Generation Computer Systems, 11, 6 

(1995) 503-518. 



196 
 

 

 

149. Tevanian, A., Black, D., Golub, D., Rashid, R., Cooper, E. and Young, M., Mach 

threads and the Unix kernel: the battle for control, Proceedings of the USENIX Summer 

Conference, June 1987, Phoenix, 53-68. 

 

150. DeMartini, C., Iosif, R. and Sisto, R., A deadlock detection tool for concurrent Java 

programs, Software: Practice and Experience, 29, 7 (1999) 577-603. 
 

151. Krinke, J., Static slicing of threaded programs, Proceedings of the 1998 ACM 

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and 

engineering, July 1998, Montreal, 35-42. 

 

152. Kleiman, S. and Eykholt, J., Interrupts as threads, ACM SIGOPS Operating Systems 

Review, 29, 2 (1995) 21-26. 
 

153. Polito, G., Ducasse, S., Fabresse, L. and Bouraqadi, N., Virtual smalltalk  images: 

Model and applications, 21th International Smalltalk Conference, September 2013, 

Annecy, 11-26. 

 

154. Sung, M., Kim, S., Park, S., Chang, N. and Shin, H., Comparative performance 

evaluation of Java threads for embedded applications: Linux Thread vs. Green 

Thread, Information processing letters, 84, 4 (2002) 221-225. 
 

155. Marlow, S., Jones, S.P. and Thaller, W., Extending the Haskell foreign function 

interface with concurrency, Proceedings of the 2004 ACM SIGPLAN workshop on 

Haskell, September 2004, Utah, 22-32. 

 

156. Stevenson, D.R., Algorithms for translating Ada multitasking, ACM SIGPLAN 

Notices, 15, 11 (1980) 166-175. 
 

157. Babai, L., Moran, S., Arthur-Merlin games: a randomized proof system, and a hierarchy 

of complexity classes, Journal of Computer and System Sciences, 36, 2 (1988) 254-276. 
 

158. Hasan, B.H.F., Saleh, M.S.M., Evaluating the effectiveness of mutation operators on 

the behavior of genetic algorithms applied to non-deterministic polynomial problems, 

Informatica, 35, 4 (2011) 513-518. 
 

159. Meek, J., P is a proper subset of NP, arXiv, (2008). 
 

160. Hemaspaandra, L.A., Sigact news complexity theory column 36. ACM SIGACT News, 

33, 2 (2002) 34-47. 

 

161. Cormen,  T.H.,  Leiserson,  C.E.,  Rivest,  R.L.,  Stein,  C.,  Introduction  to  algorithms, 

Second Edition, MIT press, London, 2009. 

 

162. Garey, M.R., Johnson, D.S., Computers and intractability, Vol. 174 , W.H. Freeman and 

Company. New York, 1979. 

 
163. Lavnikevich, N., On the Complexity of Maximum Clique Algorithms: usage of coloring 

heuristics leads to the Ω(2
0.2n

) algorithm running time lower bound, arXiv, 2013. 



197 
 

 

 

164. Tovey, C.A., A simplified NP-complete satisfiability problem, Discret. Appl. Math., 8, 

1 (1984) 85-89. 

 

165. https://www.fifa.com/worldcup/archive/russia2018/groups/   2018   FIFA   World   Cup 

Rusia
TM

. 26 March 2020. 
 

166. https://www.fiba.basketball/basketballworldcup/2014/groups#|tab=round_1 Final 

Standings. 26 March 2020. 

 

167. https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings- 

1.23174581 2018 Olympic men’s hockey standings. 26 March 2020. 

 

168. https://www.espncricinfo.com/table/series/8781/icc-world-cricket-league-division-five 

ICC World Cricket League Division Five Table – 2017. 26 March 2020. 

 

169. https://www.fifa.com/worldcup/archive/germany2006/groups/index.html 2006 FIFA 

World Cup Germany
TM

. 26 March 2020. 
 

170. https://www.fifa.com/worldcup/archive/chile1962/groups/index.html 1962 FIFA World 

Cup Chile
TM

. 26 March 2020. 
 

171. Suleman, M.A., Qureshi, M.K. and Patt, Y.N., Feedback-driven threading: power- 

efficient and high-performance execution of multi-threaded workloads on CMPs, ACM 

Sigplan Notices, 43, 3 (2008) 277-286. 
 

172. Pusukuri, K.K., Rajiv, G. and Laxmi, N.B., Thread reinforcer: Dynamically 

determining number of threads via OS level monitoring, 2011 IEEE International 

Symposium on Workload Characterization (IISWC), November 2011, Austin, 116-125. 

 

173. Ju, T., Wu, W., Chen, H., Zhu, Z. and Dong, X, Thread count prediction model: 

Dynamically adjusting threads for heterogeneous many-core systems, 2015 IEEE 21st 

International Conference on Parallel and Distributed Systems (ICPADS), December 

2015, Melbourne, 456-464. 

 

174. Cutillas-Lozano, L.G., José-Matías, C.L., and Domingo, G., The International 

Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012), 

March 2012, Salamanca, 33-40. 

 

175. Heirman, W., Carlson, T.E., Van Craeynest, K., Hur, I., Jaleel, A. and Eeckhout, L., 

Automatic SMT threading for OpenMP applications on the Intel Xeon Phi co-processor, 

Proceedings of the 4th International Workshop on Runtime and Operating Systems for 

Supercomputers, June 2014, Munich, 1-7. 

 

176. Kang, S., Choi, H.J., Kim, C.H., Chung, S.W., Kwon, D. and Na, J.C., Exploration of 

CPU/GPU co-execution: From the perspective of performance, energy, and 

temperature, Proceedings of the 2011 ACM Symposium on Research in Applied 

Computation, November 2011, Florida , 38-43. 

https://www.fifa.com/worldcup/archive/russia2018/groups/
https://www.fiba.basketball/basketballworldcup/2014/groups#%7Ctab%3Dround_1
https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings-1.23174581
https://www.timescolonist.com/olympics/2018-olympic-men-s-hockey-standings-1.23174581
https://www.espncricinfo.com/table/series/8781/icc-world-cricket-league-division-five
https://www.fifa.com/worldcup/archive/germany2006/groups/index.html
https://www.fifa.com/worldcup/archive/chile1962/groups/index.html


198 
 

 

 

177. Dadvar, P. and Skadron, K., Potential thermal security risks, Semiconductor Thermal 

Measurement and Management IEEE Twenty First Annual IEEE Symposium, March 

2005, California, 229-234. 

 

178. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S. and Tarjan, 

D., Temperature-aware microarchitecture: Modeling and implementation, ACM 

Transactions   on   Architecture   and   Code   Optimization, 1,   1   (2004)   94-125. 



 

 

CURRICULM VITAE 

 

 

Mouslem DAMKHI graduated from Mostefa Ben Boulaïd High School - Batna in 

2004. He got his B.Sc.E degree on Computer Science in 2009 form University of Batna - 

Algeria and M.Sc.E degree on Information Technology in 2012 from Northern University 

of Malaysia. In September of 2014, he started his Ph.D. education at Karadeniz 

Technical University - Turkey, Department of Computer Engineering. His research interests 

include Algorithmics and Operational Research. He has three publications listed below. 

 

1. Damkhi, M. and Pehlivan, H., Determining the results of tournament games using 

complete graphs generation, Computational and Applied Mathematics, 37, 5 (2018) 6198- 

6211. 

 

2. Damkhi, M. and Pehlivan, H., Generation and Enumeration of Final Table States of 

Football Tournaments Using a Blind Adaptive Filtering Algorithm, International Journal 

of Computing, 7, 2 (2018) 22-28. 

 

3. Damkhi, M. and Pehlivan, H., A Point-Based Algorithm to Generate Final Table States of 

Football Tournaments, International Journal of Computing, 7, 3 (2018) 38-42. 


