
T.C.

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

YAPAY SİNİR AĞLARININ ÇİZGE
VERİTABANLARI ÜZERİNDE

GERÇEKLEŞTİRİMİ

Doğa Barış ÖZDEMİR

Bilgisayar Mühendisliği Anabilim Dalı

ÇANAKKALE

T.C.

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

YAPAY SİNİR AĞLARININ ÇİZGE
VERİTABANLARI ÜZERİNDE

GERÇEKLEŞTİRİMİ

Doğa Barış ÖZDEMİR

Bilgisayar Mühendisliği Anabilim Dalı

Tezin Sunulduğu Tarih: 3/3/2021

Tez Danışmanı:

Dr. Öğr. Üyesi Ahmet Cumhur KINACI

Doç. Dr. İsim SOYİSİM

ÇANAKKALE

Doğa Barış ÖZDEMİR tarafından Dr. Öğr. Üyesi Ahmet Cumhur KINACI

yönetiminde hazırlanan ve 3/3/2021 tarihinde aşağıdaki juri karşısında sunulan “ Yapay

Sinir Ağlarının Çizge Veritabanları Üzerinde Gerçekleştirimi ” başlıklı çalışma,

Çanakkale Onsekiz Mart Üniversitesi Lisansüstü Eğitim Enstitüsü Bilgisayar

Mühendisliği Anabilim Dalı’nda YÜKSEK LİSANS TEZİ olarak oy birliği ile kabul

edilmiştir.

JÜRİ

Dr. Öğr. Üyesi Ahmet Cumhur KINACI .

Başkan

Doç. Dr. Suhap ŞAHİN .

Üye

Dr. Öğr. Üyesi Ali Murat TİRYAKİ .

Üye

Prof. Dr. Pelin KANTEN

Müdür

Lisansüstü Eğitim Enstitüsü

Sıra No:.......

Bu çalışma Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri

Koordinasyon Birimince Desteklenmiştir. Proje Numarası:...

ii

İNTİHAL (AŞIRMA) BEYAN SAYFASI

Bu tezde görsel, işitsel ve yazılı biçimde sunulan tüm bilgi ve sonuçların akademik ve

etik kurallara uyularak tarafımdan elde edildiğini, tez içinde yer alan ancak bu

çalışmaya özgü olmayan tüm sonuç ve bilgileri tezde kaynak göstererek belirttiğimi

beyan ederim.

Doğa Barış ÖZDEMİR

iii

TEŞEKKÜR

Bu tezin gerçekleştirilmesinde, çalışmam boyunca benden bir an olsun yardımlarını

esirgemeyen saygı değer danışman hocam Dr. Öğr. Üyesi Ahmet Cumhur KINACI, çalışma

süresince tüm zorlukları benimle göğüsleyen Selin HANEY’e ve hayatımın her evresinde

bana destek olan değerli aileme sonsuz teşekkürlerimi sunarım.

Doğa Barış ÖZDEMİR

Çanakkale, Mart 2021

iv

SİMGELER VE KISALTMALAR

YSA Yapay sinir ağı (Artificial Neural Network)

ESA Evrişimli sinir ağı (Convolutional Neural Network)

TSA Tekrarlayan sinir ağı (Recurrent Neural Network)

ZGY Zamanla geri yayılım (Backpropagation Through Time)

SVG Ölçeklenebilir vektör grafikleri (Scalable Vector Graphics)

GTBSA Geçitli tekrarlayan birimli sinir ağlı (Gated Recurrent Neural Network)

% Yüzde oranı

RDBMS İlişkisel veri tabanı sistemi (Relational Database Management System)

SQL Yapısal sorgu dili (Structured Query Language)

NoSQL Yapısal olmayan sorgu dili (Not Structrured Query Language)

Cypher Neo4j sorgu dili

JSON Javascript nesne gösterimi (Javascript Object Notation)

XOR Dışlamalı ya da (Exclusive or)

AND Ve mantık kapısı

H5 Hiyerarşik veri formatı

ReLu Düzeltilmiş doğrusal birim (Rectified Linear Unti)

OMH Ortalama mutlak hata

OHK Ortalama hata karesi

XaaS Hizmet olarak her şey (Everything As A Service)

v

ÖZET

YAPAY SİNİR AĞLARININ ÇİZGE VERİTABANLARI ÜZERİNDE

GERÇEKLEŞTİRİMİ

Doğa Barış ÖZDEMİR

Çanakkale Onsekiz Mart Üniversitesi

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans Tezi

Danışman: Dr. Öğr. Üyesi Ahmet Cumhur KINACI

3/3/2021, 70

Yapay sinir ağlarının gelişimi ve yaygınlaşan kullanımı nedeniyle kullanıcıların daha

kolay yönetilebilir süreçlere ihtiyacı ortaya çıkmıştır. Bu ihtiyaçlar eğitilmiş modellerin

paylaşılması, aktarılması ve tekrar kullanılması olarak özetlenebilir. Ayrıca modellerin

görsel olarak düzenlenebilmesi ve izlenebilmesi gereksinimi de ortaya çıkmıştır. Çalışmada

bu gereksinimlerin karşılanabilmesi için bir yazılım sistemi oluşturulmuştur. Önerilen

sistemin temelinde çizge veritabanlarının kullanılması tercih edilmiştir. Yapay sinir ağları

teknik olarak çizgeler ile ifade edilebilmektedir. Yapay sinir ağ mimarilerinin bu tarz bir

veritabanına aktarılması ve işletilmesi daha kolay olmaktadır. Çalışmada yapay sinir ağ

modelleri üzerinde birden çok araştırmacının iş birlikçi çalışabileceği bir yazılım

geliştirilmiştir. Modellerin saklanması ile eğitim ve test aşamalarının görselleştirilmesi

sağlanmıştır. Önerilen sistemde modellere versiyonlanma yeteneği kazandırılmıştır. Yaygın

kullanılan YSA kütüphanelerinin ortak olarak kullandığı model saklama biçimi olan H5

dosyalarının çizge veri tabanına aktarılması için yöntem oluşturulmuştur. Modeldeki

girdiler ve çıktılar dahil tüm veriler çizgede tutulabilmektedir. Bu sayede model ile verinin

aynı ortamda tutulması sağlanmıştır. Yapay sinir ağlarının hesaplama ihtiyaçları çoğunlukla

çizge veri tabanının sorgulama dili kullanılarak gerçekleştirilmiştir. Bu sayede veritabanı

dışında bağımlılıkların azaltılması hedeflenmiştir. Sorgu dilinin yetersiz olduğu noktalarda

ise arka yüz sunucularında bu işlemler tamamlanmıştır.

Anahtar sözcükler: Çizge veri tabanları, yapay sinir ağları, görselleştirme, veri

temsili

vi

ABSTRACT

IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS ON GRAPH

DATABASES

Doğa Barış ÖZDEMİR

Çanakkale Onsekiz Mart University

School of Graduate Studies

Master of Science Thesis in Computer Engineering

Advisor: Asst. Prof. Dr. Ahmet Cumhur KINACI

3/3/2021, 70

Due to the development and widespread use of artificial neural networks, users need

more manageable processes. These needs can be summarized as sharing, transferring and

reusing trained models. In addition, the need to be able to visually organize and monitor

models has emerged. In the study, a software system was created to meet these

requirements. It was preferred to use graph databases on the basis of the proposed system.

Artificial neural networks can be technically expressed with graphs. It is easier to transfer

and operate artificial neural network architectures to such a database. In the study, a

software has been developed for more than one researcher to work collaboratively on

artificial neural network models. By storing the models, training and testing phases were

visualized. In the proposed system, the models are equipped with the ability to be

versioned. A method was developed to transfer H5 files, which is the model storage format

commonly used by the widely used ANN libraries, to the graph database. All data,

including inputs and outputs in the model, can be kept on the graph. In this way, it is

ensured that the model and data are kept in the same environment. The computational needs

of artificial neural networks are mostly realized by using the query language of the graph

database. In this way, it is aimed to reduce dependencies outside the database. In cases

where the query language is insufficient, these operations have been completed on the

backend servers.

Keywords: Graph databases, artificial neural networks, visualization, data

representation

vii

Sayfa No

İÇİNDEKİLER

TEZ SINAVI SONUÇ FORMU... ii
İNTİHAL (AŞIRMA) BEYAN SAYFASI... iii
TEŞEKKÜR... iv
SİMGELER VE KISALTMALAR.. v
ÖZET ... vi
ABSTRACT... vii
ŞEKİLLER DİZİNİ ... x
TABLOLAR DİZİNİ ... xi
BÖLÜM 1
GİRİŞ ... 1
BÖLÜM 2
ÖNCEKİ ÇALIŞMALAR ... 3

2.1. Yapay Sinir Ağları ... 3
2.1.1. Yapay Sinir Ağ Modelleri .. 8
2.1.2. Öğrenme Algoritmaları.. 12
2.1.3. Maliyet Fonksiyonları.. 14
2.1.4. Optimizasyon Algoritmaları ... 16

2.2. Çizge Teoremi ... 20
2.3. Çizge Veri Tabanları... 22
2.4. Önceki Literatür Çalışmaları ... 24

2.4.1. Çizge Sinir Ağları ... 24
2.4.2. Problem Öğrenmede Çizgelerin Temsil Gücü .. 26
2.4.3. Veritabanlarında Saklanan Yapay Sinir Ağları.. 28

2.5. Yapay Sinir Ağı Kütüphaneleri.. 30
2.5.1. Tensorflow.. 30
2.5.2. Keras ... 33
2.5.3. PyTorch ... 34
2.5.4. Caffe.. 35

BÖLÜM 3
MATERYAL VE YÖNTEM .. 37

3.1. Çalışmada Kullanılan Teknolojilerin Belirlenmesi... 37
3.2. Geliştirilen Yazılım Çatısının Mimarisi .. 38
3.3. Model Oluşturma ... 40
3.4. Model Gözlemi.. 42
3.5. Model Aktarımı ... 45
3.6. Model Öğrenimi .. 46

viii

3.7. Model Çalıştırılması... 47
3.7.1. Bir Model İncelemesi Mnist El Yazısı Rakam Tanıma 49
3.7.2. Çizgelerde Örnek Bir Evrişim Hesaplaması ... 50

3.8. Model Versiyonlama .. 52
3.9. Öğrenim Aktarımı.. 52

BÖLÜM 4
ARAŞTIRMA BULGULARI VE TARTIŞMA... 54

4.1. Önerilen Yöntem Oluşturulurken Karşılaşılan Zorluklar 54
4.2. Model Gösterimi ile Elde Edilen Kazanımlar.. 55
4.3. Yaygın Kullanılan Kütüphaneler İle Sunulan Yazılımın Karşılaştırılması........... 56
4.4. Veritabanında Yapay Sinir Ağlarını Kullanan Çalışmalar İle Tez Çalışmasının

Karşılaştırılması... 58
4.5. Sunulan Yöntem ile Bir Modelin Tahminleme Süresinin Deneysel Olarak

Ölçülmesi.. 63
BÖLÜM 5
SONUÇ VE ÖNERİLER... 64
KAYNAKLAR... 66
EKLERİ ... I

Ek 1. Önerilen Yazılımın Diğer Görselleştirme Arayüzleri .. IV
Ek 2. H5 Model Yapısı ve Aktarımı .. V

ÖZGEÇMİŞ ... VI

ix

Sayfa No

ŞEKİLLER DİZİNİ

Şekil 1. Biyolojik sinir hücre elemanları .. 3
Şekil 2. Üç katmanlı temel yapay sinir ağı modeli .. 8
Şekil 3. Evrişimli sinir ağı örneği .. 11
Şekil 4. Maliyet fonksiyonunun YSA modelindeki yeri ... 14
Şekil 5. YSA model çıktılarının ortalama hata karesinde kullanılması 15
Şekil 6. Tahminlenen çıktıların ortalama hata karesi ve ortalama mutlak hata

fonksiyonlarındaki adım temsili .. 16
Şekil 7. Königsberg’in yedi köprü problemindeki köprüler ve adımlar 21
Şekil 8. Königsberg çizge temsilinde kullanılan etki ve yakınlık matrisleri.................. 22
Şekil 9. Veri tabanları ve veri temsil şekilleri.. 24
Şekil 10. Tensorboard ile statik çizge gösterimi .. 32
Şekil 11. Neo4j bağlantı sayısının performansa karşılık etkisinin Sql ile karşılaştırılması 38
Şekil 12. Geliştirilen yazılım çatısı bileşenleri ve aralarındaki iletişim.......................... 39
Şekil 13. Xor mantık kapısının yazılım üzerinden oluşturulmuş örneği 41
Şekil 14. Oluşturulan xor yapay sinir ağ modelinin cypher sorgusu çıktı ekranı 42
Şekil 15. Gözlemlenen ileri beslemeli yapay sinir ağı modelin görüntüsü 43
Şekil 16. Gözlemlenen ESA modelinin görüntüsü .. 43
Şekil 17. Gruplanmış ESA modelinin görüntüsü... 44
Şekil 18. Mnist modelinin gösterimi.. 44
Şekil 19. Gruplanmış Mnist modelinin gösterimi.. 45
Şekil 20. Model aktarım süreci ... 45
Şekil 21. AND YSA modelinin oluşturulması .. 46
Şekil 22. Eğitilmiş AND YSA modelinin eğitim takibi ve sonucu 47
Şekil 23. Hava şartlarına göre oyun oynama tahmini yapan YSA modelinin

tahminleme sonucu .. 49
Şekil 24. Mnist tahminlemesi için çizilen 4 rakamı ... 49
Şekil 25. Mnist yapay sinir ağının 4 rakamını tahminleme sonucu................................ 50
Şekil 26. Girdi katman hücresi üzerine evrişim uygulanması 51
Şekil 27. Geliştirilen yazılımda evrişim hesaplaması... 51
Şekil 28. Yapay sinir ağlarının çizgelerde üç farklı temsili... 55
Şekil 29. Hava koşulu ile oyun tahmini yapan modelin öğrenim aktarımı sonrası

düzenlenmesi .. 56
Şekil 30. Öğrenim aktarımı yapılan modelin düzenlendikten sonraki güncellenme ekranı 56
Şekil 31. Araştırmacının sisteme kayıt olma ekranı... II
Şekil 32. Araştırmacının sisteme giriş ekranı.. II
Şekil 33. Araştırmacıyı giriş yaptıktan sonra karşılayan ortak çalışma alanı III
Şekil 34. Düğüm düzenleme ekranı ... III
Şekil 35. İlişki düzenleme ekranı .. IV
Şekil 36. Öğrenim aktarım ekranı ... IV

x

Sayfa No

TABLOLAR DİZİNİ

Tablo 1. Üç girdili AND doğruluk tablosu.. 46
Tablo 2. Hava şartı oyun oynama veri seti .. 48
Tablo 3. Veritabanında Saklanan Yapay Sinir Ağları İle Önerilen Çizge Veritabanlı

Ağların Karşılaştırılması.. 62

xi

BÖLÜM 1
GİRİŞ

Yapay sinir ağları (YSA) yaygın olarak bir çok problemin çözümünde başarıyla

kullanılan bir makine öğrenmesi yöntemidir. Son on yılda derin öğrenme yaklaşımlarıyla

çok daha fazla katmana sahip ve çok daha fazla veri ile eğitilen ağ yapıları ortaya çıkmıştır.

Bu ağlar ne kadar fazla katmana sahipse ve ne kadar fazla veriyle eğitilecekse o oranda

hesaplama gereksinimine ihtiyaç duyarlar. Bir YSA modeli oluşturulduktan sonra bu

modelin paylaşılması ve saklanması amacıyla dosyalara kaydedilmesi genel kullanım

senaryosudur. Özellikle yüksek hesaplama maliyetiyle oluşturulmuş modellerin saklanması

ve tekrar kullanılabilmesi oldukça önemlidir. Bir YSA modelinin paylaşılması ve tekrar

kullanılması senaryolarında kabaca şu adımların tekrarlanması gerekir; dosyanın

aktarılması, dosyanın kod seviyesinde okunması, okunan dosyadan modelin çıktı

üretilebilecek yapıda belleğe aktarılması, yeni girdilerin modele verilip çıktıların alınması

ve üretilen çıktıların saklanması. Bu adımların gerçekleştirilmesi için teknik yoğun bir

çalışma yapılması ihtiyacı vardır. Ayrıca oluşturulmuş YSA modelinin yeni versiyonlarının

oluşturulması durumunda versiyonların yönetilmesi de ayrıca bir problem olarak ortaya

çıkabilmektedir.

Yukarıda bahsedilen durumların oluşmasının temel olarak nedeninin model ve verinin

farklı ortamlarda saklanması ve bu ikisinin buluşturulmasının ise çoğunlukla yazılım

geliştirme faliyetleri ile gerçekleştirilmesine bağlayabiliriz. Bu tez çalışmasında YSA

modelleri ile verilerin aynı ortamda olması sağlanarak modellerin veri ile doğrudan

beslenebilmesi ve çıktıların oluşturulmasını sağlayacak bir çözüm önerilmiştir. Bu çözüm

ayrıca modellerin versiyonlanması problemine de çözüm getirmektedir.

Literatürde yapay sinir ağlarının saklanması için ilk olarak nesne yönelimli

yaklaşımlar ile veritabanlarının kullanılması ön plana çıkmaktadır. İlk yapılan çalışmalar ile

yapay sinir ağları ilişkisel veritabanlarında tutularak veritabanı sorgularıyla işletilmesi

önerilmiştir (Schikuta ve diğerleri, 1996). İlişkisel veritabanlarında yapı değiştirildiğinde

saklanan tüm YSA modellerininin yapısının etkilenmesi, farklı YSA mimarilerinin

veritabanında tutulmasında zorluk yaratabilmektedir. İlişkisel olmayan veritabanlarında

YSA modelleri saklanarak ölçeklenebilir ve genelleştirilebilir bir saklama yöntemi

oluşturulabileceğinin üzerinde durulmaktadır (Schikuta ve Mann, 2013). Ayrıca model

oluşturabilmesi için görsel arayüz gerekliliği ortaya çıkmıştır.

Çözüm olarak sunulan sistemde veriler ile YSA modellerinin aynı veri tabanında

1

saklanması hedeflenmiştir. Aynı veritabanı içerisinde modeller çıktı üretmek için yine

veritabanındaki verileri kullanabilecektir. Modellerin çıktı üretmesi için gerekli olan

hesaplamalar veritabanı sisteminin desteklediği temel matematik operasyonlarının

kullanılmasıyla gerçekleştirilmeye çalışılmıştır.

Tez kapsamında önerilen çözüm yaklaşımının uygulanması için veritabanı sistemi

olarak bir çizge veritabanı olan Neo4j1 kullanılmıştır. Çizge veritabanlarının tercih

edilmesindeki önemli nedenlerden biri YSA modellerinin de çizge yapısında olmasıdır. Bu

sayede aktarım ve kullanım için çizge mantığının dışına çıkmaya gerek kalmamaktadır.

Aktarılan modellerin veritabanında eğitilmesi konusu bu tez kapsamında ele alınmamıştır.

Ayrıca YSA model süreçlerinde yüksek performanslı sonuçlar elde etmek bu çalışma

kapsamındaki hedeflerden biri olmamıştır.

Önerilen çözüm yaklaşımının gerçekleştirimi için model aktarımı ve işletimini

sağlayan bir uygulama arayüzü geliştirilmiştir. Önerilen uygulama ile YSA modelleri

kodlama yapmaya ihtiyaç duymadan görsel olarak gözlemlenebilmektedir. Araştırmacıların

model gözlem ve tahminleme süreçlerini beraber yürütebilmesi sağlanmıştır. Çizge

veritabanlarının verileri yapı bağımsız tutması sayesinde genelleştirilebilir bir YSA modeli

saklama ortamı sağlanmıştır. Öğrenim aktarımı yapılan modellerin görsel olarak

düzenlemesi yapılabilmektedir. Tahminleme sürecinin performansı hedeflerden biri olmasa

da yeterli hızda tahminleme sonucu elde edildiği gözlemlenmiştir.

İkinci bölümde yapay sinir ağları ve hesaplamaları, çizge teorisi ve çizge

veritabanları, yaygın kullanılan yapay sinir ağı yazılımları irdelenmiştir. Çizgelerin model

temsiline katkıları ve veritabanında yapay sinir ağlarının saklanmasıyla ilgili çalışmalar

incelenmiştir. Üçüncü bölümde çalışmada geliştirilen yazılım ile YSA süreçlerinin çizge

veritabanlarında gerçeklenmesi için izlenen yöntemlerden bahsedilmiştir. Yaygın kullanılan

modeller önerilen yöntem ile gerçeklenerek öne sürülen çizge veritabanlı yapay sinir ağları

kavramı desteklenmiştir. Dördüncü bölümde çizge veritabanlarında sinir ağlarının

gerçeklenirken dikkat edilmesi gereken durumlar ve sınırlar, yaygın kütüphaneler ile

karşılaştırmalar, önceki literatür çalışmalarında önerilen veritabanında model saklama

yöntemleri karşısında avantajları tartışılmıştır. Beşinci bölümde çalışma ile elde edilen

sonuçlar ve öneriler sunulmuştur.

1Neo4j Graph Platform, http://www.neo4j.org

2

BÖLÜM 2
ÖNCEKİ ÇALIŞMALAR

Bu bölümde yapay sinir ağ modelleri ve hesaplama fonksiyonları incelenmiştir. Çizge

teorisinin çıkışı, çizge veritabanlarının veritabanları arasındaki yeri anlatılmıştır.

Literatürdeki YSA saklama ve işleme üzerine yapılan çalışmalar ve örnek gösterilen

problemlere literatürdeki çözüm önerileri irdelenmiştir.

2.1. Yapay Sinir Ağları

İnsan sinir sisteminde veri akışının sağlanmasını ve işlenmesini sağlamak üzere sinir

hücreleri yani nöronlar, sinir hücrelerindeki bilgi girişlerinin toplanmasına yarayan

dendritler, sinir hücrelerinden çıktıları elde eden ve taşımayı gerçekleştiren aksonlar, sinir

hücreleri arasındaki bağları kuran ve ağırlıklarına göre iletim aktivasyonunu gerçekleştiren

sinapsların oluşturduğu yapılar yer almaktadır. Şekil 1’de biyolojik sinir hücresinin

elemanları gösterilmiştir. Yapay sinir ağları yapay sinir nöronlarından ve birbirleri

arasındaki bağlardan oluşmaktadır. Yapay sinir ağları nöronlarındaki ağırlık değerlerini

kullanarak ve gerektiğinde değiştirerek öğrenme gerçekleştirmeyi amaçlar.

Şekil 1. Biyolojik sinir hücre elemanları

Günümüzde sınıflandırma, kümeleme ve tahminleme problemlerinin çözümünde

etkin olarak yapay sinir ağları kullanılmaktadır. Yapay sinir ağları insan beyninin işleyişini

bilgisayar ortamında gerçeklemeye dayanmaktadır. Yapay sinir ağları çok çeşitli çalışma

alanlarında başarıyla uygulanan bir teknolojidir. Yapay sinir ağlarının geliştirilmesiyle

beynin bilgisayar ortamında temsili sağlanarak insanın yetenekleri olan öğrenme, taklit

3

etme, problem çözme yetilerini makinelerin de kazanması amaçlanmıştır. Yapay sinir ağları

biyolojik sinir yapısının işlevlerinden ve yapısından ilham alan matematiksel modellerdir.

Yapay sinir hücresi girdi, ağırlık, toplam fonksiyonu, aktivasyon fonksiyonu, çıktı

olmak üzere beş bölüm içermektedir. Girdi yapay sinir hücresini besleyen veri bölümüdür.

Veri girdisi olduğu gibi bir önceki katmanın çıktısı da olabilmektedir.

Ağırlıklar hücrenin girdi değerlerinin etkisini belirleyen değerlerdir. Sinir hücresine

birden çok girdi arasında hangi girdilerin daha önemli olduğu, model öğrenimi sırasında

atanan ve değiştirilen ağırlık değerlerinin tayiniyle belirlenir. Bir girdi daha büyük ağırlığa

sahip olduğunda bir önceki hücreyle bağlantının önemi artmaktadır. Ağırlıkların hangi sırada

ve örüntüde değiştirileceği yapay sinir ağı modelinin türüne göre değişiklik göstermektedir.

Toplam fonksiyonu, hücreye olan girdilerin kendi ağırlıklarla çarpılması her bir girdi

için elde edilen değerlerinin toplanması ile sapma değeri olan bias değerinin bu toplama

eklenmesi işleminin yapıldığı fonksiyondur. Sapma değeri olan bias değeri sinir hücresi

çıktılarında daha uygun sonuçlar elde etmek için ayarlanan bir değerdir. Toplam fonksiyonu

bir veri dizisi değil, sayı çıktısı oluşturmaktadır. Girdiler g1,g2, ..,gn, ağırlıklar a1,a2, ..,an,

çıktılar c1,c2, ..,cn olarak isimlendirildiğinde toplam fonksiyonu Denklem 2.1’de

gösterilmektedir.

n

∑
i=1

gi.ai (2.1)

Çıktı sinir hücresinin gerçekleştirdiği hesaplamaların sonucu olarak dışarıya verdiği

değer veya değerlerdir. Çıktı bulunduğu katmana göre başka bir hücrenin girdisi ya da

genel olarak YSA’nın çıktısı olabilmektedir. Genel olarak YSA girdiden veri alır,

ağırlıklarla çarpılır, çarpımlar toplanır, aktivasyon fonksiyonu çalıştırılır, ve çıktının üretimi

sağlanabilir. Bias değerinin eklenip eklenmemesi araştırmacıya ve modele bağlı değişkenlik

gösterir.

Aktivasyon fonksiyonu toplam fonksiyonundan sonra çalışarak ağın yapısına bağlı

olarak modeli geliştirenler tarafından hücrede işlenecek verilere, çözeceği probleme,

öğrenme algoritmasına göre seçilmektedir. Aktivasyon fonksiyonları sinir ağlarının

doğrusal çalışmasını engellemektedir. Öğrenmenin gerçekleşmesi için zorunlu olarak

kullanılması gerekmektedir. Sinir ağlarında katman sayıları arttırılarak doğrusallığın

azaltımı sağlanmaktadır. Sinir ağında katman sayısı arttıkça problem çözümünde daha az

doğrusallık ve daha doğru öğrenim gerçekleştirilebilmekte buna karşın işlem maliyeti

artmaktadır. Aktivasyon fonksiyonunun çıktıları pozitif sayılar olabileceği gibi negatif

sayılar da olabilmektedir. Matematiksel olarak, aktivasyon fonksiyonu türevi

4

hesaplamamızı sağlayan sürekli bir fonksiyondur. Nöronun aktive olup olmayacağını

belirler. En temel yapay sinir hücresi aktivasyon fonksiyonu olmadan, 0 ile 1 sonuçları

üreterek öğrenme gerçekleştiremez.

Aktivasyon fonksiyonları girdileri ve çıktı değerleri olarak bir eğri ile

görselleştirilebilmektedirler. Görselleştirildikleri eğriyi güncellerken eğime bağlı olarak

eğrinin hangi yönde ve ne kadar değiştirileceği türevi alınarak bulunur.

Sigmoid fonksiyonu girdileri [−∞;∞] aralığından alarak [0; 1] çıktıları üretmektedir.

Sigmoid fonksiyonunun matematiksel gösterimi Denklem 2.2’de yapılmıştır.

σ(x) =
1

1+ e−x (2.2)

Girdilerdeki en ufak değişiklik çıktılarda büyük değişikliklere yol açmaktadır.

Genellikle ikili sınıflandırmalarda çıktı katmanında kullanılır. Girdilerin tüm değerlerini,

değerler 0 ila 1 arasında olacak şekilde, birbirlerine göre oranlayarak çıktı üretir. Softmax

fonksiyonu Sigmoid’e göre girdilerin sınıflarda olma yüzdelerini hesaplar. Softmax’in

formülü Denklem 2.3’te gösterilmiştir.

F (Xi) =
Exp(Xi)

∑
k
j=0 Exp

(
x j
) (2.3)

Softmax birden çok girdiyi 0 ila 1 arasında toplamları 1 edecek şekilde oranlar, bu

oranlama ile girdilerin hedef çıktı sınıflarında yüzdesel olarak ne kadar yakın olduğu

çıktısını elde ettirir. Çok sınıflı sınıflandırma problemlerinde sıklıkla kullanılmaktadır.

Genellikle YSA’larda Softmax için ayrı bir katman oluşturulur. Hem Sigmoid hem de

Softmax formülünde üstel çarpanlar kullanıldığı için hesaplaması maliyetlidir. Sigmoid

fonksiyonunda işlevi yok olan gradyan problemiyle karşılaşılabilmektedir. İşlevi yok olan

gradyan problemi geri yayılım modellerinde gradyan hesaplarının sürekli daha sivrileşerek

ve küçülerek geriye yayılmasından dolayı tahminleme oranının düşmesidir.

Tanh fonksiyonu girdileri [−∞;∞] aralığından alarak [-1; 1] aralığında çıktılar

üretmektedir. Tanh fonksiyonu Denklem 2.4’teki şekilde formülize edilmektedir.

F(x) = tanh(x) (2.4)

Genellikle gizli katmanlardaki hücrelerde kullanılmaktadır. Çıktılar 0 değeri merkez

noktası belirlenerek üretilmektedir. Tanh, formülü gereği doğrusal değildir. Bu yüzden çok

katmanlı model mimarilerine uygundur. Gradyan değerlerini sonuçları çok daha Sigmoid’e

5

göre keskindir. Tanh aktivasyonunu uygulamak daha kolaydır, bu nedenle Sigmoid

fonksiyonu yerine genellikle tercih edilir. Tanh yinelenen sinir ağlarında (RNN) sonuçları

bir katmandan diğer katmana taşıma konusunda sıklıkla kullanılmaktadır. Tanh

fonksiyonunda işlevi yok olan gradyan problemiyle karşılaşılabilmektedir.

ReLu fonksiyonu [−∞;∞] girdileri alarak [0; max(x)] aralığında çıktılar üretmektedir.

Sigmoid ve Tanh fonksiyonlarına göre hesaplama maliyeti düşüktür. ReLu, Denklem 2.5’te

formülize edilmiştir.

F(x) = max(0,x) (2.5)

Gizli katmanda varsayılan olarak kullanılan aktivasyon fonksiyonudur. YSA’larda

nöron ölümü olarak adlandırılan bir probleme yol açabilmektedir. Nöron ölümü bir

hücrenin sürekli aynı değeri yani 0 sayısını vermesidir. Ölen nöron hesaplamada hiç bir rol

oynayamaz ve saf dışı kalır. Ölen ReLU nöronu tekrardan canlandırılamaz. Ölen nöronun

gradyanı 0’dır. 0 olan gradyanın, gradyan inişi de 0 olduğu için ağırlıklarını hiç bir zaman

güncellenememektedir bu nedenle ölü nöron olarak adlandırılmaktadır. Leaky ReLu, ölü

nöron sorununu çözmek için negatif girdilere pozitif gradyan uygulayarak nöronun

tekrardan canlandırılması için bir şans oluşturur. Leaky ReLu Denklem 2.6’daki şekilde

gösterilmektedir.

F(x) = max(0.1x,x) (2.6)

Sigmoid ve Tanh aktivasyonları da aynı sorunlardan etkilenmektedir. Ancak her zaman

için küçük bir gradyan değeri uzun süreli model öğrenimlerinde nöronların kurtarılmasında

etki gösterebilmektedir.

Maxout aktivasyonu, Leaky ReLu ve ReLu fonksiyonlarının genelleştirilmesiyle elde

edilmiştir. Maxout aktivasyonu Denklem 2.7’de gösterilmiştir.

F(x) = max
(
wT

1 x+b1,wT
2 x+b2

)
(2.7)

Maxout, ölen nöron problemini yaşamaz. ReLu’ya oranla iki katı parametre ihtiyacı

olduğundan, daha çok eğitime ihtiyaç duyar.

Yapay sinir ağları öğreticili ve öğreticisiz olmak üzere iki tür öğrenme yaklaşımına

ayrılmaktadır. Öğreticili modellerin eğitiminin gerçekleşmesi için öğrenilmesi istenen

problemin sonuçlarına hakim, modeli sonuçlarını bildiği veriler ile besleyecek bir

6

öğreticiye ihtiyaç duyar. Öğreticisiz öğrenme modeli ise bir öğreticiye ve sonuçlara

hakimiyete gerek olmadan, öğrenilmesi istenen durumdaki verilerin birbiri arasındaki

ilişkilerine ve maliyet hesaplarına dayanan öğrenme modelidir. Yapay sinir ağlarının

öğrenme gücü tıp, endüstri, biyoloji, ekonomi, mühendislik ve benzeri bir çok alanda

başarılı sonuçlar elde edilmesini sağlamıştır.

Yapay sinir ağları çok yönlülüğü ile insan beyninin öğrenme yapısını taklit ederek

teorik olarak her alanda çalıştırılabilmektedir. Yapay sinir ağlarının iki temel yetkinliği

vardır bunlardan ilki öğrenme algoritmasını oluşturması, ikincisi nöronlar arası bağlardaki

ağırlıkların tutulması ile öğrenilmiş bilgiler olarak kullanılmasıdır. Yapay sinir ağları aynı

anda bir çok bilgiyi paralel işleyebilmektedir, hızlı ve hataya toleranslıdır. Nöronlardaki

ağırlıkların değişimiyle ve yeniden eğitilmesiyle kazandığı uyum özelliğiyle durağan

olmayan alanlarda da işlem gerçekleştirebilmektedir. YSA doğrusal olmayan modelleri de

desteklemektedir. YSA’lar bu özellikleriyle karışık mühendislik problemlerinin

çözümlerinde sıklıkla kullanılmaktadır.

Yapay sinir ağları insan sinir ağlarını temel alan bir sanallaştırma temsili

gerçekleştirmektedir. Mcculloch ve Pitts (1943) yapay sinir ağının temellerini oluşturmuş

ve ilk ağın örneğini sunmuşlardır. Mcculloch ve Pitts (1943) ikili değerler olan binary

değerler ile öğrenmenin gerçekleştirilebileceğini öne sürmüşlerdir. Öne sürülen hücreye

gelen girdiler engelleyici ve uyarıcı olarak ikiye ayrılmaktadır ve girdiler eşik değerini

aştığında çıktının üretimi sağlanmaktadır. Hebb (1949), Mcculloch ve Pitts (1943)’in öne

sürdüğü bu model üzerinden modern makine öğrenmesinin ilk kurallarından birini ortaya

çıkarmıştır. Bu kural aynı model sonuçların elde edildiği girdiler arasındaki bağın

kuvvetlendirilmesi gerektiğini, farklı ise aradaki bağın zayıflatılması gerektiğini

savunmaktadır. Yeni ağırlık güncellemeleri çıktıların çarpımıyla ve eski ağırlığın

toplamıyla elde edilmektedir. Minsky ve Papert (1969) temelleri yeni atılan temel yapay

sinir ağlarına algılayıcı denilen yeni yaklaşımı kazandırarak, yapay sinir ağlarının her şeyi

öğrenemeyeceğini XOR mantık kapısını algılayıcının çözemeyeceği örneği ile ortaya

çıkarmıştır. Bu sebeple yapay sinir ağlarının geliştirilmesi on yıl boyunca askıya alınmıştır.

Teknolojinin gelişmesiyle, yeni öğrenme yöntemlerinin araştırılmasına başlanmış ve yeni

mimarilerin oluşturulmasıyla yapay sinir ağlarının etkinlikleri tekrardan gündeme

alınmıştır. Yapay sinir ağlarında yeni yöntemlerin ve uygulama alanlarının ortaya çıkışıyla

öğrenme optimizasyonu, veri temsilinin geliştirilmesi gibi konularda çalışmalar

yapılmaktadır. Yapılan çalışma kapsamında yapay sinir ağlarının temsili ve verilerinin

işlenmesi konularında halihazırda kullanılan yöntemler dışında bir yöntem öne sürülmüştür.

Sinir ağlarının temsilinde sinir ağı hücrelolteri düğümler, sinir hücreleri arasındaki

7

ilişkileri temsil eden sinapslar ise ilişkiler olarak nitelendirilmektedir. Yapay sinir ağı,

düğüm ve düğümler arası ilişkileri içeren katmanlardan oluşmaktadır. En temel yapay sinir

ağı yapısı giriş ve çıktı katmanı olarak iki katmanlı algılayıcı olan perseptrondur.

Günümüzde kullanılan yapay sinir ağları temel olarak üç katman içermektedir. Katmanlar

işlenecek verilerin oluşturduğu girdiler katmanı, işlemi yapacak hücrelerin oluşturduğu

gizli katman ve sonuç olarak çıktıları üretecek çıktı katmanıdır. Yapay sinir hücreleri

arasında ilişkiler tek yönlü veya çift yönlü olabilmektedir. Şekil 2’de örnek üç katmanlı bir

yapay sinir ağı modeli resmedilmiştir.

Şekil 2. Üç katmanlı temel yapay sinir ağı modeli

Yapay sinir ağları çözmekle ilgili oldukları sınıflandırma, kümeleme ve tahminleme

problemlerini istenen başarımla gerçeklemek için test verileriyle eğitilmelidir. Modeller

ilgili oldukları alanda girdileri ve çıktı sonuçları bilinen veya bilinmeyen test örnekleriyle

eğitilmelidir. Belirli bir mantık çerçevesinde oluşturulmuş verilere veri seti denmektedir.

Veri setlerini belirli oranlarda bölerek eğitim ve test veri setleri oluşturulmaktadır. Bu veri

setleri ile başarımlar istatistiksel olarak hesaplanarak modelin başarımı hakkında bilgi

edinilmektedir.

2.1.1. Yapay Sinir Ağ Modelleri

Yapay sinir hücrelerinin temel yapısı perseptron ya da diğer adıyla algılayıcıdır.

Perseptron, sinir ağlarında tek bir katmanın ismi olarak da adlandırılabilir. Perseptronların

çok katmanlı olmasıyla sinir ağı ortaya çıkmaktadır. Perseptron doğrusal ikili sınıflandırma

yapar. Öğreticili öğrenmede kullanılmaktadır. Perseptron girdi katmanı, ağırlık, sapma

diğer adıyla bias, toplam ve aktivasyon fonksiyonlarını içermektedir. Rosenblatt (1958)

tarafından öne sürülmüş perseptron, yani algılayıcı modeli, modern sinir ağlarının temelini

oluşturmuştur. Girdi katmanından alınan verilerin işlenip sonraki katmanlara

aktarılamasından dolayı ileri beslemeli ismini almıştır. Eğitilen sinir hücreleri hata

8

yayılımının sağlanması için geri yayılıma ihtiyaç duymaktadır. Teoride yeterince sinir

ağında yeterince gizli sinir hücresi olduğunda girdi ve çıktı arasındaki ilişkiyi bulabileceği

düşünülmektedir, ancak pratikte kullanım alanı çok sınırlıdır. Tek başına kullanılmalarından

ziyade yapay sinir ağının yapıtaşı olarak kullanımları yaygındır.

Minsky ve Papert (1969) yaptıkları çalışmada perseptron modelinin basit mantık

kapısı olan XOR mantık kapısını çözemediğini göstermişlerdir. Model eğitimi aşamasında

tekrar sayısının ve örnek veri kümesinin büyütülmesiyle ağırlık ve sapma değerlerinin

istenen sonuç değerlerine yaklaşması sağlanabilmektedir. Model parametrelerinin test

verilerinin arttırılmasıyla, genelleştirilebilir model paramaterleri elde edilerek perseptronun,

diğer bir adıyla algılayıcının, sınıflandırma başarımı artmaktadır. Girdiler g1,g2, ağırlıklar

a1,a2 çıktılar c1,c2 olarak isimlendirilmiştir. Verilen örnekte aktivasyon fonksiyonu

Sigmoid’dir. Çıktı toplam fonksiyonu Denklem 2.8’de gösterilmiştir.

C1 = A1.G1+A2.G2+b (2.8)

Girdi katmanından algılayıcıya veriler girerken ağırlıklarla çarpılır ve toplanır, sapma

değeri toplanır ve sonuç olarak aktivasyon fonksiyonuna aktarılarak çıktı sağlanır. Nöronun

öğrendiği değer Ç1 olarak adlandırılmaktadır. Nöronun ürettiği çıktı değeri ile çıktı

katmanından direkt sonucun elde edilmesi sağlanabileceği gibi başka bir nöronun girdisi

olarak da kullanılabilmektedir.

Evrişimli sinir ağları (ESA), görüntü girdi verileriyle, problemlerin üzerinde

bilgisayar görüsü alanında etkili olmasıyla başarı ve ivme kazanmış bir yapay sinir ağı

modelidir. Evrişim ya da diğer bir adıyla konvolüsyon matris çarpımında kullanılan

matematiksel bir işlemden gelmektedir. Bir ESA görüntüyü işlerken üç farklı yapı

kullanmaktadır. Üç rengin karışımıyla edilmiş görüntü verisi nöron seti, renkli görüntünün

üç katmanını kırmızı, yeşil ve mavi olarak üç ayrı görüntüyü oluşturarak analiz

edilmektedir. Önemli özellikleri tanımlamak için görsel her renk için birer birer analiz

edilmektedir. ESA mimarisinde bir katmandaki tüm nöronların bir sonraki katmandaki tüm

nöronlarla iletişim kurduğu tamamen bağlı sinir ağı yapısı kullandığı zamanlarda büyük

görüntüleri analiz etme konusunda yetersiz kalabilmektedir. Görüntüler büyüdükçe

hesaplama maaliyetleri artmaktadır. Bir ESA, bir katmandaki nöronların bir sonraki

katmandaki tüm nöronlara bağlanmadığı üç boyutlu bir yapı kullanır. Her katmanda, bir

nöron seti görüntünün küçük bir bölgesini veya özelliğini işlemektedir. Bu yapının nihai

çıktısı, olasılık çıktılarının olduğu bir vektör veya sayı dizisidir. ESA görüntüyü taramakta

ve tararken her adımda küçük bir bölümünün analizini yapmayı ve her özelliğin gerekli

9

sınıfa ait olasılıklarla bir özellik dizesi oluşturmayı içeren bir evrişim gerçekleştirmektedir.

Görüntülerin anlamlandırılabilmesi ve YSA modelleri ile öğrenilmesi için Cun ve

diğerleri (1990) evrişimli sinir ağlarının temelini el yazısı rakamların tanınması problemi

için geri beslemeli bir ağ modeli oluşturduklarında atmışlardır. Lecun, Bottou, Bengio ve

Haffner (1998) yılında yaptığı çalışma ile el yazısı rakam tanıma problemini artık ESA

olarak isimlendirdikleri önceki çalışmalarını temel alarak geliştirmişler ve derin

öğrenmenin temellerini oluşturmuşlardır. Yapılan çalışmalar ile derin öğrenme ağlarının

görsel veri problemi üzerinde gerçeklenmesiyle derin öğrenme, görsel verileri işleme

alanında yetkinlikler kazanmaktadır.

ESA’da temel olarak 5 katman tipi bulunmaktadır. Bu katmanlar evrişim

(Convolution) katmanı, doğrusal olmama (Non Linearity) katmanı, havuzlama (Pooling)

katmanı, düzleştirme (Flattening) katmanı ve tam bağlı (Fully-Connected) katmanıdır. Aynı

görevi üstlenen birden çok katman olabilmektedir. Convolution katmanı, görselin en önemli

özelliklerini çıkarmak için uygulanan bir katmandır. Non Linearity, katmanı konvolüsyon

işleminin ardından aktivasyon uygulama katmanıdır. Günümüzde ESA’larda en yaygınca

kullanılanı aktivasyon fonksiyonu ReLu’dur. Pooling katmanı, ağırlıkların azaltımıyla

ilgilenir, aynı görselin önemli özelliklerini daha küçük boyutlarda ifade etmek için

kullanılmaktadır. En önemli bilgileri korurken, her özelliğin boyutsallığını azaltma işini

havuzlama katmanı yapar. En popüler kullanılanı Max Pooling’tir. Flattening katmanı,

işlenen görsellerin yapay sinir ağının işleyeceği formata dönüştürülmesiyle ilgilidir. Fully

connected katmanı, ise YSA’nın bulunduğu katmandır. Öğrenim ve tahminleme işlemleri

bu katmanda gerçeklenir. En popüler ve kabul gören ESA’lar Simonyan ve Zisserman

(2014)’ın geliştirdiği VGGNet, Szegedy ve diğerleri (2015)’nin geliştirdiği GoogLeNet,

Krizhevsky, Sutskever ve Hinton (2012)’ın geliştirdiği AlexNet, Lecun ve diğerleri

(1998)’nin geliştirdiği LeNet’tir. ESA’da görüldüğü üzere verinin optimizasyonu ve temsili

çok büyük bir önem kazanmıştır. ESA’da öğrenim sürecindeki girdi verilerinin temsil

işlemleri görsellerin optimizasyonunda, yani daha öğrenme işleminin başlamasından

öncesine taşınmıştır. Bu yaklaşım da araştırmacılara veri temsilinin önemini

göstermektedir. Yüz tanıma, görüntülerde nesneleri tespit ve sınıflandırması, robot ve

otonom araçlarda bilgisayar görüsünü güçlendirmek, sahne tespiti, anlamsal çözümleme,

cümle sınıflandırması gibi bir çok alanda başarılı olarak kullanılmaktadır. Günümüzde en

çok kullanılan YSA modellerinden biridir. Şekil 3’te evrişimli sinir ağı modeli katmanları

ve akışları gösterilmiştir.

10

Şekil 3. Evrişimli sinir ağı örneği

Tekrarlayan Sinir Ağı (TSA), sinir ağlarının doğasından kaynaklanan ardışık girdi

verileriyle çalışmasında etkin rol oynamaktadır. Rumelhart, Hinton ve Wilson (1986)

geliştirdikleri model ile öğrenim sırasında elde edilen hataların geri besleme ile tekrar

tekrar ağırlık güncellemesinde kullanılmasını sağlamışlardır. TSA, ağ analizi veya yazılım

güvenliği gibi konularda, birbiri ardına zaman içinde sisteme girdisi olan metin, görsel

medya, ses veya birden farklı girdinin oluşmasında öğrenim gerçekleştirmek için yetkinliğe

sahiptir. Bir TSA ağı bir giriş dizisini kabul ederek, önceki girdilerin hatırlanmasını sağlar

ve her yeni girişle birlikte yeni bir öğrenme katmanı ekleyerek çalışır.

TSA, zaman içindeki girdi dizisinde çalışmaktadır. Örneğin, videodaki kareler veya

bir cümledeki kelimeler bu girdi dizisini oluşturabilmektedir. Sinir ağında her girdi için bir

sinir katmanı bulunur. TSA ağı öğrendiğinde, çok katmanlı bir geri dönüşüm biçimi olan

zamanla geri yayılım (ZGY) gerçekleştirmektedir. ZGY, en son zaman adımından, her bir

önceki adıma aşamalı olarak geri dönmek için her zaman bir nöron için en iyi ağırlıkları

bulmak için gradyan inişini kullanmakta ve aynı zamanda bilgi aktarımını yöneten optimal

ağırlıkları öğrenmek için de bir adımdan diğerine geçişlerde zincir kuralını kullanmaktadır.

Dil modellemesi ve yazı üretimi, konuşma algılama, görsel etiketleme, yazı verilerinde dil

çevirisi, zaman serileriyle çalışan problemlerde öğrenim gerçekleştirmek için TSA sıklıkla

kullanılmaktadır. Gizli katmanlardan elde edilen çıktılar hafıza sinirlerine iletildikten sonra

girdi katmanlarında hesaplamaya katılarak tekrarlama gerçekleştirilir. En çok bilinenleri

Elman ve Jordan ağlarıdır. Gizli hücreler h1,h2...,ht , çıktı hücreleri y1,y2...,yt , aktivasyon

fonksiyonları σ1,σ2...,σt , girdi hücreleri x1,x2...,xt , sapmalar b1,b2...,bt , ağırlıklar

W1,W2...,Wt , hafıza sinirleri U1,U2...,Ut olarak ifade edildiğinde TSA matematiksel olarak

Denklem 2.9 ve Denklem 2.10 denklemlerindeki şekilde formülize edilmektedir.

11

ht = σh (Whxt +Uhht−1 +bh) (2.9)

yt = σy (Wyht +by) (2.10)

Elman ağı hafıza hücreleri gizli katmanlar tarafından beslenmekte ve girdi

katmanlarını aktive olmasına göre beslemektedir. Jordan ağlarında hafıza hücreleri Elman

ağlarından farklı olarak çıktı katmanından beslenmektedir, tek farkı budur. Elman ve Jordan

ağlarında girdilerde ileri yayılımlı öğrenme kuralı uygulanmaktadır. Jordan (1989)

tarafından geliştirilen Jordan ağları ve Elman (1990) tarafından geliştirilen Elman ağları

aynı zamanda basit tekrarlayan ağlar olarak isimlendirilmektedir.

2.1.2. Öğrenme Algoritmaları

Yapay sinir ağlarında modellerin oluşturulmasında ve uygulanmasında, ilgili olacağı

veriler üzerinde bir öğrenme gerçekleştirme amacı bulunmaktadır. Verilerin bulunduğu

alana ve modeli oluşturan araştırmacının veriler üzerindeki hakimiyetine göre uygulanacak

yapay sinir ağına karar verilmektedir. Araştırmacı verileri öğrenim sonunda hangi sınıfa ait

olacağını işaretleyebilir bilgi düzeyine sahipse, öğreticili öğrenme yapılan sinir ağı

modelini tercih etmesi gerekirken, verilerin kendi arasındaki bağ hariç bilinmiyorsa ve sınıfı

işaretlenemiyorsa öğreticisiz öğrenme sağlayan sinir modellerini tercih etmelidir.

Öğreticisiz öğrenmede amaç, veriler arasında örüntüleri ve benzerlikleri yakalayan bir

model üretmektir. Öğreticisiz öğrenme sonucunda veriler kümelenmektedir. Öğreticili

öğrenme, sınıfları belirlenerek işaretlenmiş veriler ile oluşturulmuş bir sinir ağı modeli

ortaya çıkararak, bilinmeyen bir veri geldiğinde hangi sınıfa ait bir veri olduğunun çıktısını

vermek amacıyla sınıflandırma yapar. Öğreticili öğrenmede etiketlenmiş veriler sisteme

girilen bir verinin karşılığında hangi çıkış değerinin üretildiğinin bilindiği verilere

denmektedir. Çıktılar, veri dizileri olabilecekleri gibi sayı da olabilirler. Sınıflandırma ayrık

verileri tahmin etmek için kullanılmaktadır. Yayılım tabiri ise devamlı verilerin tahmininde

kullanılmaktadır. Öğreticili ve öğreticisiz öğrenme yöntemlerinin yanında, yarı öğreticili

öğrenme ve destekli öğrenme yöntemleri de bulunmaktadır.

Öğreticili öğrenme yapan sinir ağ modelleri, hem girdiler hem de çıktıların modelde

işaretlenmesi ve ağ üzerinde hatanın ve öğrenim ağırlıklarının yayılmasıyla çalışmaktadır.

Model eğitimi için işaretlenmiş ve derlenmiş verilere eğitim seti, eğitimin sonucunda

modelin başarımını ölçmek için işaretlenmiş verilere test veri seti denilmektedir. Görsel

üzerinden duygu durum analizi, obje tanıma, hareket ve mimik tanıma, metin sınıflandırma,

12

metinlerde duygu durum analizi gibi insan tarafından etiketlenebilen tüm veriler için

öğrenme, öğreticili öğrenme ile sınıflandırarak yapılabilmektedir. Öğreticili öğrenmede

öğrenmenin yapılabilmesi için etiketli verilerin, tahminleme modeli ve öğrenme yöntemi

olması yeterlidir. En çok kullanılan öğreticili öğrenme algoritmaları en yakın komşu, karar

ağaçları, doğrusal yayılım, destek vektör makinesi, Naive Bayes ve yapay sinir ağlarıdır.

Öğreticisiz öğrenmede problemi çözecek olan verilerde ilişkiler model tarafından

öğrenildikten sonra ilgili olduğu alanda araştırmacıya yeni bilgiler öğretmek üzere

çalışmaktadır. Problem uzayındaki verileri anlamlandırmak için sıkça kullanılan öğrenme

yöntemidir. Hiçbir etiket ve sınıfın bulunmasına gerek yoktur. Veri madenciliğinde sıklıkla

öğreticisiz öğrenmeye başvurulmaktadır. Kümeleme algoritmaları ve ilişki kurma

algoritmaları ve problem uzay verileri öğreticisiz öğrenme gerçekleştirilmesi için yeterlidir.

K-means sınıflandırma algoritmasına öğreticisiz öğrenmede sıklıkla başvurulmaktadır.

Yarı öğreticili öğrenme, etiketlenmiş veriler ile etiketlenmemiş verilerin bir arada

kullanılabileceği problem veri uzaylarında çalışmak amacıyla ortaya çıkartılmıştır. Veri

etiketlemek, maliyeti büyük bir işlemdir ve problem uzayına hakim bir uzman

gerektirmektedir. Verilerin çoğunluğunda etiketlerin bulunmadığı bir problem uzayında

uygulanması uygun olacaktır. Konuşma analizi, internet içerik sınıflandırması, DNA ve

protein dizesi sınıflandırması problemleri ihtiyaç duyulduğu alanların başında gelmektedir.

Destekli öğrenme yönteminde eğitim sırasında model değerlendirme sonucunu ajan

ya da destekçi olarak adlandırılan insana, verinin sınıf doğruluğunu kontrol etmesi için

vermektedir. Çıktısı elde edilen bu model ile öğrenmeye insan faktörü dahil olmaktadır.

Model, destekçiden alınan etiket ile model hem öğrenimini günceller hem de problemin

çözülmesi için destek olan kişiye olabildiğince tahmin doğruluğu yüksek sonuçlar çıkartır.

Destekli öğrenmede hata yapılmaması gereken durumlarda ve problem uzayının büyük

olduğu alanlarda kullanılmaktadır. Yinelemeli olarak her an kendini güncellemesi

gerekmektedir. Destekli öğrenme yöntemiyle oluşturulmuş modele örnek olarak bir

doktorun hastanın üzerindeki bulguları eğitimi istenilen seviyeye geldiği düşünülen modele

girmesi ile olası hastalıkların kendisine gösterilmesi ve doktorun tecrübesini kullanarak bu

hastalıkları onaylaması veya yanlış olduğunu modele iletmesi ile modelin daha iyi öğrenme

yapması gerektiğinin ortaya çıkması durumu verilebilir. Örnekte hata yapılmaması gereken

riski yüksek bir alan olan sağlıkta destekli öğrenmenin bir kullanım alanı olduğu

gösterilmiştir. Sınıflandırma yapmak üzere en iyileme yaklaşımı ile çalışmaktadır. Destekli

öğrenme yönteminde öğrenme adımlarının tekrarında Markov karar zinciri devreye

girmektedir. Modelin çıktısı ile destekçinin verdiği karar etiketleri Markov zincirinde

tutulmaktadır. Otonom ve yarı araçlar, robotik, belirli problem uzayına sahip oyunlar gibi

13

alanlarda sıklıkla kullanılmaktadır. Geçici fark öğrenmesi, mücadeleci ağ, pekiştirmeli

öğrenme Q-öğrenmesi en çok kullanılan yöntemlerdir.

2.1.3. Maliyet Fonksiyonları

Yapay sinir ağlarında problem uzayındaki verilerde öğrenim gerçekleştirildiğinde

elde edilen tahmin çıktılarının gerçekte olması gereken çıktılar arasındaki fark öğrenimin

doğruluğunu göstermektedir. Tahminlenen ile gerçekte olması gereken farkı hesaplayan

fonksiyona maliyet fonksiyonu ya da kayıp fonksiyonu denmektedir. Ağırlıklar maliyet

fonksiyonunu en aza indirmek üzere güncellenmektedir. Şekil 4’te maliyet fonksiyonunun

YSA modeli üzerindeki konumu gösterilmektedir.

Şekil 4. Maliyet fonksiyonunun YSA modelindeki yeri

Ortalama hata karesi diğer adlarıyla L2 veya Mean Squared Error maliyet fonksiyonu,

doğrusal geri yayılmada yaygınca kullanılan bir maliyet fonksiyonudur. Tahminlenen ile

gerçek çıktı arasındaki farkın karesinin alınmasıyla tüm veri kümesi için optimum hata

bulunmaya çalışılmaktadır. Modelin tahminlediği çıktı xi, gerçek çıktı x̃i, eleman sayısı n

olarak alındığında matematiksel olarak Denklem 2.11 şeklinde formulize edilmektedir.

OHK =
1
n

n

∑
i=1

(xi− x̃i)
2 (2.11)

Çıktıların farklarının karesi hesaplandığından sonuçlar hep pozitif çıkmaktadır. Şekil

5’te siyah noktalar YSA model çıktılarını temsil etmekte, yatay ve dikey eksenlerin

arasında çizilen çizgi gerçek çıktıların olması gerektiği değerleri, siyah noktalar ile gerçek

çıktı arasındaki kesikli çizgiler ise gerçek ile model çıktısı arasındaki farkı ifade etmektedir.

Örnek bir YSA modeli olduğu varsayılarak oluşturulan iki boyutlu koordinat sisteminde

14

tahminlenen çıktılar ve gerçekte olması gereken çıktılar gösterilerek ortalama hata karesinin

görselleştirilmektedir. Ortalama hata karesi ile maliyet hesaplarının dezavantajı, ortalama

hata karesiyle maliyet hesaplandığı için yanlış değerleri hesaplarken de hesap katsayısı

yüksek olacağından hata oranının yükselmesine sebep olabilmektedir.

Şekil 5. YSA model çıktılarının ortalama hata karesinde kullanılması

Ortalama mutlak hata diğer adlarıyla L1 veya Mean Absolute Error maliyet

fonksiyonu, doğrusal geri yayılmada kullanılan bir maliyet fonksiyonudur. Tahminlenen

YSA model çıktısı ile gerçek çıktının arasındaki farkın mutlak değerlerinin toplamıdır.

Tahminlenen çıktı ile gerçek çıktı arasındaki farkın hesaplanmasından dolayı ve yönleri

bulunmayan hatalar ölçüldüğü için ortalama hata büyüklüğü bulunmaktadır. Maliyet

fonksiyonunun çıktı değerleri pozitif değerlerdir. Modelin tahminlediği çıktı xi, gerçek çıktı

x̃i, eleman sayısı n olarak alındığında matematiksel olarak Denklem 2.12 şeklinde formulize

edilmektedir.

OMH =
∑

n
i=1 |xi− x̃i|

n
(2.12)

Hatalı değerlerin maliyetini hesaplarken OMH daha isabetli sonuçlar göstermektedir.

OHK’yi YSA modellerinde gerçeklemek daha pratiktir. OMH’nin OHK’ye göre gradyan

inişi öğrenme süreci boyunca aynı oranda olacağı için gerçek değeri atlama ihtimali

yüksektir, ancak hata değerlerinin maliyet sonucunu etkilemesi noktasında daha kararlı

sonuçlar vermektedir. OHK’nin gradyanı büyük maliyet çıktılarında yüksek, küçük maliyet

çıktılarında ise düşüktür, bu şekilde maliyeti en doğru yerinde hesaplamaya daha yatkındır.

Hatayı yüksek tutacak verilerin model öğrenmesinde rolü yüksek ise OHK’ne, hatayı

yükseltecek verilerin gerçekten de hata olması gerektiği bir öğrenme süreci modelleniyorsa

OMH seçilmelidir. Şekil 6’da ortalama hata karesi ve ortalama mutlak hata arasındaki fark

gösterilmektedir. Tahminlenen çıktılar yuvarlak ile gösterildiğinde, ortalama hata karesinin

çıktılarında ilk inişte, çıktılar arasındaki fark çok iken giderek azalmakta ve doğru sonuca

15

ilerlemekte iken, OMH’de her iniş arasındaki mesafe aynı olmakta ve beklenen gerçek çıktı

değeri olan 50 değerinin yakalanması zorlaşmaktadır.

Şekil 6. Tahminlenen çıktıların ortalama hata karesi ve ortalama mutlak hata
fonksiyonlarındaki adım temsili

Çapraz düzensizlik hatası, gerçek ile model çıktısında tahminlenen maliyet arasındaki

dağılımda olasılıksal farklılığı ölçerek dağılımların birbirine yakınlığı ya da uzaklığının

ölçülmesinde kullanılan bir maliyet fonksiyonudur. Modelin tahminlediği çıktı xi, gerçek

çıktı x̃i, dağılım fonksiyonu P() olarak tanımlandığında matematiksel olarak Denklem 2.13

ile formülize edilmektedir.

CDH =−∑
x

P(x) logP(x̃) (2.13)

Çok sınıflı sınıflandırıcılarda maliyet fonksiyonunu oluşturan çıktıların yayılımlarının

arasındaki düzensizlik farkına bakıyor olmak avantaj getirmektedir.

2.1.4. Optimizasyon Algoritmaları

Maliyet fonksiyonu ile hatası bulunan YSA modelindeki ağırlıkların ve sapmanın

sonucunda oluşan değerleri en optimize ve isabetli hale getirmek için ihtiyaç duyulan

algoritmalara optimizasyon algoritmaları ve fonksiyonları denilmektedir. Modelin

başarımının arttırılması için hesaplanan hatanın en aza indirilmesi gerekmektedir. Yapay

sinir ağında optimizasyon işlemi ileri beslemeyle ya da geri yayılım kullanılarak

yapılmaktadır. Maliyet fonksiyonuyla hesaplanan hata, hataları en aza indirecek şekilde

hesaplanırken model ağırlıklarını ve sapmayı değiştirmek için modelde bir önceki katmana

geri yayılım ile yayılmaktadır. Model ağırlıkları optimizasyon algoritması ile

güncellenmektedir. Optimizasyon fonksiyonları genellikle gradyanı, ağırlıklara göre

maliyet fonksiyonunun türevini hesaplar ve ağırlıklar hesaplanan gradyanın tersi yönünde

16

değiştirilir. Optimizasyon fonksiyonu modelde minimum kayıp fonksiyonuna ulaşana kadar

tekrar tekrar çalıştırılmaktadır. Optimizasyon algoritmaları aktivasyon fonksiyonu, maliyet

fonksiyonu ile beraber yapay sinir ağı modellerinin vazgeçilmez bir parçasıdır, isabetli

modellerin üretiminde önemli bir rol oynamaktadır. Optimizasyon algoritmaları, sabit

öğrenme hızlı algoritmalar ve uyarlanabilen öğrenme algoritmaları olarak iki başlık altında

incelenebilmektedir.

Sabit öğrenme hızlı algoritmalara yaygınca kullanılan rastgele gradyan iniş

algoritması örnek gösterilebilir. Bu algoritmalarda öğrenme hızı olarak bir hiper parametre

yani araştırmacının verdiği sabit bir parametre verilmesi gerekmektedir. Uygun bir öğrenme

hızını seçmek için araştırmacının bir çok deneme yaparak bu parametreyi en optimal

değerini bulması ve problem uzayına ve öğrenmesine hakim olması gerekmektedir. Küçük

bir öğrenme hızı seçildiğinde doğru çıktılara ulaşmak ve yakınsamak zorlaşacağı gibi büyük

bir öğrenme hızı seçildiğinde de doğru çıktılara ulaşamadan değeri teyet geçme durumu söz

konusu olabilmektedir. Küçük öğrenme hızı hiper parametresi seçildiğinde öğrenme yavaş

gerçekleşmektedir. Momentum kavramı da çıktının yerel minimumuna yaklaştıkça

öğrenme hızının belirlendiği bir hiper parametre olarak literatürde yer almaktadır.

Gradyan inişinin başarıya ulaşmasının zor olduğu kısım hiper parametrelerinin

önceden tanımlanmasının gerekliliği ve YSA modeline ve problemin veri uzayına bağlı

olarak değişken olmasıdır. Gradyan inişinde ağırlık ve sapma değerlerinin güncellemelerine

aynı öğrenme hızının uygulanması YSA modelinde önemsiz veya önemsiz olması gereken

değerlerde de aynı hız ile öğrenim sağlanması sorun oluşturabilmektedir. Problem

uzayındaki veriler az ise her parametrenin isabetli öğrenim için aynı hızda

güncellenmemesi istenebilmektedir.

Adadelta, Adagrad, Adam, RMSprop uyarlanabilir gradyan iniş algoritmalarıdır.

Rastgele gradyan inişinden farklı olarak uyarlanabilir öğrenme hızı ile çalışmaktadırlar.

Öğrenme hızının araştırmacı tarafından hiperparametrelerle belirlenmesi öğrenimi

uzatacağından maliyetli bir çalışma yöntemidir. Sezgisel yaklaşım sağlayan parametreler ile

uyarlanabilir optimizasyon algoritmalarıyla maliyet azaltılabileceği gibi isabet de

arttırılabilmektedir.

Gradyan iniş algoritması, tüm verilerin çıktılarını kullanarak gradyan hesabı yaparak

yerel minimum noktası bulunana kadar çıktı değerlerinin tersi yönde güncellenmesini

ağırlıkları ve sapmayı değiştirerek sağlamaktadır. Toplu gradyan inişi, rastgele gradyan

inişinin tek bir güncelleme yapmasından farklı olarak her eğitim adımında değer

güncellemeleri yaparak, daha hızlı sonuç elde etmeye yönelik çalışmaktadır.

Ağırlık, sapma ve aktivasyonlar için θ , öğrenme oranı ya da hızı için η , gradyan

17

öğrenme hızı için ∇θ , maliyet fonksiyonu için J, x’i eğitim örneği y’yi çıktı sınıfı olarak

temsil ederek ayrıldığında, her θ için hesaplanan parametre alınarak öğrenme hızı ve

maliyet ile çarpılarak değişimin bulunmasıyla rastgele gradyan inişi matematiksel olarak

Denklem 2.14 ile formulize edilmektedir.

θ = θ −η ·∇θ J(θ ;x,y) (2.14)

Rastgele gradyan inişi her adımda değerlerden bir tanesini rastgele seçerek

güncellediği için daha gürültülü sonuçlar elde etmektedir ve daha çok sayıda tekrar

gerekmektedir. Gürültü, yerel minimuma ulaşmak için izlenen akışta yeterli bir sürede

gerçekleştiği sürece önemli değildir. Hesaplama maliyeti nedeniyle rastgele gradyan inişi

toplu gradyan inişine göre daha yaygın kullanılmaktadır. Toplu gradyan inişinde her bir

adımda toplu olarak değerler güncellendiğinden bir sonraki adıma kadar tek bir yönde yerel

minimum yönünde iniş gösterilmekte iken, rastgele gradyan inişinde her adımda bir

rastgele değer güncellendiğinden daha yüksek sapmalar göstermektedir.

Mini-toplu gradyan inişi, toplu gradyan inişindeki gibi tüm değerleri kullanmak

yerine, eğitim setini b ile ifade edilen küçük boyutlu gruplara bölmektedir. Bu nedenle, her

bir yinelemede YSA model değerlerini güncellemek için mini-toplu b grupları

kullanılmaktadır. Rastgele gradyan inişinde olduğu gibi mini toplu gradyan inişinde de

sapmalar görülmektedir. Büyük veri değerleriyle çalışıldığında hesaplama maliyeti

açısından rastgele gradyan inişi, direkt olarak yerel minimuma ulaşılmak istenen

durumlarda toplu gradyan inişi, ikisinin de ortasında avantajlarını kullanmak adına mini

toplu gradyan inişi tercih edilmektedir.

Momentum gradyan inişinde adımlar arasındaki salınımı azaltmakta ve problem

uzayındaki tahmin verileri arasında çok büyük farkların olduğu durumlarda daha hızlı ve

isabetli sonuçlar almak için ortaya konulmuş bir yaklaşımdır. Momentum ile gradyan

inişinde modeldeki ağırlıklar güncellenirken hali hazırdaki optimizasyon adımındaki

gradyanını ve bir önceki gradyanı alarak minimuma ulaşma noktasına daha hızlı

yaklaşmaya yardımcı olmaktadır. Değer farklarının ani değiştiği problem uzaylarında

sonuca yaklaşma daha hızlı gerçekleşmektedir. Gradyan inişi Denklem 2.15 ile ifade

edilirse θ , θ = θ − vt şeklinde hesaplanarak bir önceki gradyan inişiyle momentum ile

hızlanarak minimuma yakınsamaktadır.

vt = γvt−1 +η∇J(θ ;x,y) (2.15)

18

Adagrad (Duchi, Hazan ve Singer, 2011) hiper parametreler ile öğrenim hızının

belirlenmesinde yaşanan sorunlara karşı, öğrenim hızının her problem uzayına uygun

uyarlanabilir hesaplanmasının maliyetini hafifletmek üzere ortaya konulmuştur.

Güncellenecek değer θ , öğrenme hızı η , sıfıra bölünme sorununu gidermek için ε , işlem

yapılacak matrisi belirtmek için I, t anındaki gradyan tahmini gt olarak alındığında

matematiksel olarak her bir Adagrad güncellemesinde kullanılan matematiksel formül

Denklem 2.16 ile ifade edilmektedir. T anındaki gradyan tahmini matematiksel olarak

Denklem 2.17 ile ifade edilmektedir. Gt gradyanların dış çarpımlarının toplamı matrisi ise

Denklem 2.18 ile formülize edilmektedir. Optimizasyon işlemi sonrasında, değer

güncellemesinde tam matris kullanılabilir olmasına rağmen, derin öğrenme gibi çok boyutlu

matrislerde maliyetlidir. Bu yüzden karekök ve matrisin köşegeninin kullanılmasıyla

hesaplama kolaylıkla yapılabilmektedir.

θt+1 = θt−
η√

εI +diag(Gt)
·gt (2.16)

gt =
1
n

n

∑
i=1

∇θL
(

x(i),y(i),θt

)
(2.17)

Gt =
t

∑
τ=1

gτg>τ (2.18)

Adagrad algoritması, öğrenme hızını çok boyutlu ve çok değerli modellerde hızlı

düşürmektedir ve seyrek değerli modellerde yavaş düşürmektedir. Öğrenme hızının çok

hızlı düştüğü durumlarda ve Adagrad’a bağlı olarak gradyanların kümülatif birikmesiyle,

öğrenme oranı çok hızlı sıfıra yakınsayabilmekte ve modelin öğrenemeyeceği bir durumda

kalmasına sebep olarak modelin başarımını etkileyebilmektedir.

RMSprop, ortalama karekök yayılımı anlamına gelmektedir. Adagrad’dan farkı,

gradyanların toplamını değil, üssel olarak azalan ortalama gradyanları ile çalışmasıdır.

RMSprop, Adagrad algoritmasının momentum ile çalışan yeni bir versiyonudur.

RMSprop’ta tüm geçmiş gradyanlarla değil, en son hesaplanan gradyanlarlarla hesaplama

gerçekleştirilmektedir. RMSprop’un öğrenme hızı Adagrad’tan yavaş değişmektedir.

Adagrad’tan yavaş değişen öğrenme hızına rağmen yerel minimuma yaklaşması daha hızlı

olmaktadır. Güncellenecek değer θ , öğrenme hızı η , sıfıra bölünme sorununu gidermek için

ε , t anındaki gradyan tahmini gt olarak alındığında RMSprop matematiksel olarak Denklem

2.19 ile ifade edilmektedir. Yeni parametre olan E, momentum γ şeklinde ifade edildiğinde,

Denklem 2.20 ile formülize edilmektedir.

19

θt+1,i = θt,i−
η√

ε +E [g2] t
∇J (θt,i) (2.19)

E
[
g2]

t = (1− γ)g2 + γE
[
g2]

t−1 (2.20)

Adagrad’dan farklı olarak RMSprop ile öğrenme hızı η’nın öğrenmeyi

gerçekleştiremeyecek kadar azalmasına engel olunmaktadır. RMSprop minimuma

erişmişken, moment’in aynı adım sayısında minimuma erişmede geride kalması söz

konusudur.

Adam (Kingma ve Ba, 2014), uyarlanabilir moment tahmininin kısaltması olarak,

gradyan inişlerinde önceki momentlerin karesinin ortalaması alınarak ve tahminlenerek

öğrenme hızlarını hesaplamaktadır. Adam, diğer optimizasyon algoritmalarıyla

karşılaştırılacak olursa en iyi performansı göstermektedir. Adam’da hem momentum hem

de uyarlanabilir öğrenme hızı ile daha hızlı yakınsama sağlamaktadır. Moment ve öğrenme

hızını uyarlayabilir yaparak moment ile RMSprop algoritmalarını içeren bir yaklaşımdır.

Adam öğrenme hızı η , sıfıra bölünme sorununun önüne geçmek için ε , önceki eğimlerin

üssel kareleri alınarak hesaplanmış değer için v kullanıldığında matematiksel olarak

Denklem 2.21 ile ifade edilmektedir.

θt+1 = θt−
η · m̂t√
v̂t + ε

(2.21)

2.2. Çizge Teoremi

Çizge teoremi Königsberg köprüleri problemini çözmek için ortaya atılmıştır ve daha

sonra matematiğin bir dalı haline gelmiştir. Çizge teoreminde durumlar birer düğüm ve

birbiri arasındaki ilişki ise çizgilerle temsil edilmektedir. Düğümler köşe, ilişkiler ise kenar

olarak adlandırılmaktadır. Königsberg şehrinde iki nehrin arasındaki köprüler yalnızca bir

kez geçilmesi şartıyla yürüyüş yapılabilirliğinin sorgulanması meşhur Königsberg köprüleri

problemini oluşturmaktadır. Eular problem temsilini nokta ve çizgilerle ifade ederek bir

çizgeye dönüştürmüştür. Eular, köprüleri yalnızca bir kez kullanarak böyle bir yürüyüş

gerçekleştirilemeyeceğini bulmuş ve çizgenin temel kurallarını oluşturmuştur. Çizgeler ile

matematiksel sistem ve modellerin topolojilerinin temsili güçlendirilmiştir. Şekil 7’de

Königsberg’in köprüleri sayılar ile ifade edilmiş ve ayak basılan yerler yani durumlar ise

harflerle ifade edilmiştir.

20

Şekil 7. Königsberg’in yedi köprü problemindeki köprüler ve adımlar

Çizgelerde ilişkiler çift yönlü olabileceği gibi tek yönlü de olabilmektedir. Şekil

2’deki temel yapay sinir ağının temsili, tek yönlü ilişkiler ile ifade edilen çizge ile

gerçekleştirilebilmektedir. Çizgelerde her bir köşenin derecesi vardır, dereceler sahip

oldukları kenar sayılarını ifade etmektedir. Örneğin Şekil 7’deki çizgede D köşesinin

derecesi üçtür. Eğer bir köşe kendine dönen bir kenara sahipse kenar döngü olarak

adlandırılır. Çizgelerde bir köşeden diğer köşeye ulaşmaya yürüyüş denmektedir. Örneğin

Şekil 7’de B köşesinden D köşesine sırasıyla 3 ve 4 kenarlarını izleyerek bir yürüyüş

yapılabilir.

Çizge üzerinde her kenarı içeren bir yürüyüş yapılırak aynı köşeye erişilebiliyorsa bu

çizgeye Eular çizgesi denmektedir. Yürüyüşün başladığı köşeden aynı köşeye dönerken her

köşenin kullanılmasına gerek yoksa bu çizgeye Hamilton çizgesi denmektedir. Çizgeler her

zaman tam bağlı olarak ifade edilmezler, bağlı çizge ve bir çok parçadan oluşan bağlantısız

çizgeler olmak üzere bağlarına göre iki çizge türü bulunmaktadır. Ağaç olarak adlandırılan

çizgeler döngü içermeyen köşe ve kenarlara sahip çizgelerdir. Çizgeleri matrislerle ifade

etmek mümkündür. Çizgeler yakınlık ve etki matrisleri olmak üzere iki matrisle ifade

edilebilmektedir. Yakınlık matrisi köşeler arasında direkt olarak kaç kenarın olduğunun

tutulduğu matristir. İki boyutlu yakınlık matrisinde, Şekil 7’deki çizgeyi ele alırsak dört

köşeden oluştuğu için 4’e 4’lük bir matris gösterimi yakınlığı ifade etmek için yeterlidir.

Yakınlık matrisi simetrik bir matristir. Şekil 7’deki çizgede A’yı 1, B’yi 2, C’yi 3, D’yi 4

kabul edersek, 1. köşe ile 2. köşe arasındaki yakınlık matrisi hücresindeki değer 2

olmalıdır. Yakınlık matrisi gibi etki matrisi de iki boyutludur. Etki matrisinde, yatay eksen

indeksine i dikey eksen indeksine j dersek, i köşeleri, j ise kenarları temsil etmektedir.

Dikey ve yatay kenar temsil isimlendirmesiyle birlikte Şekil 7’deki çizgenin etki matrisi 4’e

7’lik bir matristir. Şekil 7’deki çizgeyi etki matrisinde ifade edersek, i ekseni köşeleri j

ekseni ise kenarları temsil eder. Örneğin A köşesini temsilen i1, 1 kenarını temsilen j1

indislerindeki değer 1 olacaktır. Şekil 8’de Königsberg köprü problemindeki çizgenin

21

yakınlık ve etki matrisleri gösterilmiştir.

Şekil 8. Königsberg çizge temsilinde kullanılan etki ve yakınlık matrisleri

Yapılan çalışmada yapay sinir ağlarının veri temsilinin çizge teoremiyle

güçlendirilmesi amaçlanmıştır.

2.3. Çizge Veri Tabanları

Çizge veri tabanları, yer, kişi, nesne veya ilgili verileri köşeler olarak, verilerin

arasındaki ilişkileri kenarlar olarak niteleyen, çizge veri modelini kullanan NoSQL tabanlı

veri tabanlarıdır. NoSQL, sabit bir şema gerektirmeyen, birleşmeleri önleyen ve

ölçeklendirmesi kolay olan ilişkisel olmayan bir veri tabanı yönetim sistemidir. NoSQL veri

tabanı kullanmanın amacı, çok yönlü veri depolama ihtiyaçları olan dağıtılmış veri depoları

içindir. NoSQL, büyük veri, veri ilişkilerinin çok önemli olduğu ve gerçek zamanlı web

uygulamaları için kullanılır. Örneğin, Twitter, Facebook, Google gibi şirketler her gün

terabaytlarca kullanıcı verisi toplar ve topladığı bu büyük verilerin tutulması ve temsilinde

çizge veri tabanlarını kullanır. NoSQL veri tabanı "sadece SQL değil" anlamına gelecek

şekilde kısaltılmıştır. NoSQL konseptini ilk olarak Carlo Strozzi tarafından ortaya

koymuştur.

Geleneksel ilişkisel veri tabanları RDBSM olarak adlandırılmaktadır. İlişkisel veri

tabanları, verileri depolamak, almak ve değiştirmek üzere yapısal olması zorunlu olan SQL

sözdizimini kullanır. Bunun yerine, bir NoSQL veri tabanı sistemi, yapılandırılmış, yarı

yapılandırılmış, yapılandırılmamış ve çokbiçimli verileri depolayabilen çok çeşitli veri

tabanı teknolojilerini kapsar. NoSQL veri tabanlarında veri şemasının statik olmamasından

dolayı dökümanlar kolayca değiştirilebilir ve yeni alanlar kolayca eklenerek çıkartılabilir.

NoSQL veri tabanlarında büyük hacimde veriler tutabilir ve hızlı şekilde verilerin

işlenmesine olanak sağlar. NoSQL verileri tutma şeklinden dolayı kolayca ölçeklenebilirdir,

bu yüzden yüksek performanslı sunuculara ihtiyaç duymaz. NoSQL’in erişilebilirliği bir

veride hata yaşandığı taktirde işleme devam edebilmesinden dolayı RDBSM veri

tabanlarına oranla daha yüksektir. Çizge teoremiyle hatalı verinin işlenemeden de

22

aşılabilmesine olanak sağlayabilmektedir. Verileri anahtar değer olarak tuttuğundan ilişkisel

veri tabanlarına oranla daha hızlıdır.

NoSQL anahtar veri, döküman tabanlı, sütun tabanlı, çizge tabanlı olarak dörde

ayrılmaktadır. Çalışmada kullanılan veri tabanı olan Neo4j veri tabanı çizge tabanlı NoSQL

olarak geçmektedir. Neo4j’nin sorgulama dili Cypher olarak adlandırılmaktadır. Neo4j

Graph Platform (2007), günümüzde en çok kullanılan çizge veri tabanı olmuştur. Şekil 9’da

veri tabanları, araştırmacı, proje ve üniversite varlıkları ve arasındaki ilişkiler ele alınarak

gösterilmiştir. Şekil 9’da gösterilen anahtar-değer veri tabanları bir şemadan bağımsız

olarak temsil edecekleri varlığı bir anahtarla ifade ederek, değerlerine bu anahtar vasıtasıyla

erişimi sağlanması yöntemiyle çalışır. Veri ilişkilerini anahtarları aracılığıyla kurar ve

dinamik şema özelliğini bu şekilde kazanır. Derin ilişki aramalarında veya örüntü bulmada

düşük performans gösterir. İlişkisel veri tabanları varlıkların isimlerini tablolara atfeder ve

ilgili varlıkları tablolarda tutar. Tablolar varlık başına dinamik değildir. Tablolarda yapılan

bir değişiklik diğer tüm varlıklarda da bir özellikmiş gibi eklenir, bu nedenle dinamik bir

şemadan bahsetmek mümkün değildir. Varlık ilişkilerini tablo üzerinde tutulan benzersiz

anahtarlar ile diğer tablolara işaret ederek yapar. Derin ilişki ve örüntü aramalarında düşük

performans sergiler. Çizge veri tabanlarında varlık başına bir temsil olduğundan varlığın

birebir temsili ve ilişkilerinin temsili mümkündür. Varlıklar genel olarak isimlendirilmek ve

gruplanmak istediklerinde etiketler ile isimlendirilirler örneğin "ARAŞTIRMACI" bir

etikettir, aynı etikete sahip olan tüm varlıklar aynı özelliklere sahip olmak zorunda değildir.

Çizge veri tabanlarının bu yaklaşımıyla hayattaki bir çok temsil birebir

gerçeklenebilmektedir. Diğer veri tabanlarından farklı olarak çizge veri tabanlarında

ilişkiler de etiketlerle gruplanabilmekte ve istenilen varlıklar arasında anlamsal ilişkiler

temsil edilebilmektedir. Çizge veri tabanlarında ilişkilerde de veri tutulabilmektedir, bu

özelliğiyle YSA’lar gerçeklenirken katmanlar ve nöronlar arasındaki ilişkilerde yapılan

uygulanacak ağırlıklar ve katsayılar ilişkilerde de tutulabilir. Çalışmanın ilerleyen

kısımlarında ilişkilerde ve nöronlarda model verilerinin tutulmasının yaratacağı avantaj ve

dezavantajlar konusu işlenmiştir.

23

Şekil 9. Veri tabanları ve veri temsil şekilleri

2.4. Önceki Literatür Çalışmaları

Günümüzde çeşitli uygulamalarda çizge yapısı sıklıkla kullanılmaktadır.

Sınıflandırma konusunda çizge yapısı temsiliyle başarıya ulaşmış çalışmalar bulunmaktadır.

YSA verileri temsilleri gereği çizge yapılarında gösterilebilmektedir. Yapay sinir ağlarında

sinir hücreleri çizge veri tabanlarındaki düğümlerle ve yapay sinir hücrelerinin arasındaki

bağlar ise çizgi veri tabanlarındaki ilişkilerle ifade edilebilmektedir. Sosyal medya

verilerinde, nesneler ile nesneler arasındaki ilişkilerin yoğun önemde olduğu alanlarda,

karmaşık ağların, doğal ilişkilerinin tutulmasının önem arz ettiği durumlarda çizge veri

tabanlarının kullanımı oldukça yüksektir. Verinin belirli yapılar dışında tutulmasının gerekli

olduğu, yapı bağımsız veri tabanı çözümlerinde, çizge veri tabanlarının kullanımı önemli

bir yer tutmaktadır. Canlı ve sürekli değişiklik gösteren veri ortamında sınırlandırma

yapmak geçmişte olduğu gibi değişmez katı yapılardaki veri sınıflandırmalarından farklı ele

alınmalıdır. Günümüzde en popüler ve en büyük geliştirme topluluğuna sahip çizge veri

tabanı Neo4j’dir (Guia, Soares ve Bernardino, 2017).

2.4.1. Çizge Sinir Ağları

Literatürde YSA ve çizge konusunu birlikte ele alan çeşitli çalışmalar yapılmıştır.

Gori, Monfardini ve Scarselli (2005) kendi oluşturdukları çizge sinir ağları modelini

duyurmuş ve sinir ağlarının çizgeler üzerinde temsil edilebileceğini sunmuşlardır. Bu yeni

modelin geliştirilmesiyle çizge sinir ağ modelinin testi için örnek problemler

oluşturmuşlardır. Bu problemler bağlantı bazlı, sınıf bazlı problemler ve genel problemler

olarak üçe ayrılmaktadır. Yeni model çalışma problemlerinin hepsinde başarılı sonuçlar

elde etmiştir.

Bianchini, Gori ve Scarselli (2005) yaptıkları çalışmada sayfa değeri hesaplaması

probleminde çizge sinir ağlarını kullanarak hesaplamanın çok kolay ve anlaşılır olacağını

24

göstermişlerdir. İnternet sayfaları ve aralarındaki ilişkilerin doğal olarak çizgelerle ifade

edilebilmesinin ve değer hesabı yapılırken temsil gücünü ve işlem gücünü arttırdığını

gözlemlemişlerdir. Scarselli, Gori, Tsoi, Hagenbuchner ve Monfardini (2008) yeni bir çizge

sinir ağı modeli kavramını ortaya atmışlardır. Öklid uzayında çizgeleri işleyerek sinir ağının

gerçeklenebileceği ve öğreticili öğrenmeyi teorik olarak yapabileceği modeli öne

sürmüşlerdir. Ayrıca hesaplama maliyetini çıkartarak genelleştirilmesiyle alakalı çalışmalar

yapmışlardır. Bu yaklaşımlarıyla gizli katmanlardaki ilişkileri aydınlatmayı

amaçlamışlardır.

Scarselli, Gori, Tsoi, Hagenbuchner ve Monfardini (2009) çizge sinir ağı modeli

kavramını ortaya atarak ilk kez çizge veri temsilli yapay sinir ağlarını literatüre

kazandırmışlardır. Çizgelerin hem düğüm hem de arasında kurulabilecek ikili ya da tekli

bağlantıların öklid uzayında sinir ağlarını temsil edebileceğini ifade etmişlerdir. Yapılan

çalışma ile çizgeler üzerinde gerçeklenen yapay sinir ağlarının hesaplama maliyetleri ve

genelleştirme problemlerinin üstünde durmuşlardır. Yaptıkları çalışmada bilinmeyen

ilişkilere sahip çizgeler üzerinde hesaplama gerçekleştirilmesi, sosyal ağ gibi çevrimiçi ve

dinamik olan sürekli büyüyen çizgelerde sunulan modeli işlevsiz kılmaktadır. Yapılan

çalışmada statik çizge modelleriyle öğrenim gerçekleştirilmiştir. Yaptıkları çizge veri

temsili ile yapay sinir ağlarının gerçekleştirimi ile yaptığımız çalışmaya esin kaynağı

olmuşlardır. Gizli katmanlardaki belirsizliklere ışık tutma amacıyla sinir ağlarındaki veri

temsil ve işlemenin önemini vurgulamışlardır.

Grover ve Leskovec (2016) öğrenme algoritmalarını çizgelerde gerçekleyen,

genelleştirilebilir bir algoritma çatısı ortaya atmışlardır. Geliştirilen node2vec yöntemiyle

çizge düğümlerinde devamlı özellik öğrenmesini yapacak bir yöntem geliştirerek, yapay

sinir ağlarının çizge üzerinde gerçeklenebileceği konusunda katkıda bulunmuşlardır. Derin

öğrenmenin temel adımlarından olan devamlı özellik temsilleri ile çizgelerde derin öğrenme

gerçekleştirme yapılabilmesi için bir altyapı ortaya koymuşlardır.

Neuhaus ve Bunke (2004) yaptıkları çalışmada çizge tabanlı sınıflandırma

algoritmaları için maliyet düşürücü bir hesaplama yöntemi sunmuşlardır. Yaptıkları bu

çalışma ile çizge üzerinde sınıflandırma yapılırken düzenleme mesafesi hesaplarını

geliştirmişlerdir. Neuhaus ve Bunke (2005) yaptıkları çalışmada çizge üzerindeki

sınıflandırma çalışmalarını ele alarak parmak izi görsel özelliklerinin çıkarımını yaptıktan

sonra çizgeye aktararak oluşturdukları mesafe algoritmasıyla benzerliklerini ölçmüşler ve

sınıflandırma problemine çözüm geliştirmişlerdir. Çalışmada görsel özellik çıkarımlarının

ilişkili çizgede tutulmasıyla kazanılan temsil ve işlem gücünü sınıflandırmada

kullanmışlardır.

25

Kipf ve Welling (2016) yaptıkları çalışmada ESA ağlarının çizge üzerinde daha

verimli şekilde yarı öğreticili öğrenme gerçekleştirmişler ve gizli katmandaki temsilin

arttığına dikkat çekmişlerdir. Yaptıkları çalışma belirli modellere özgü olmakta, model

verileri bir veri tabanında veya serviste değil statik olarak tutulmakta ve işlenmektedir.

Yao ve Holder (2015) çizge sınıflandırması konusunda statik çizgelerde yapılan

sınıflandırma eksiklerine işaret edip, çizge verilerinin doğası gereği sürekli değişken

olduğuna dikkat çekmişlerdir. Sürekli büyüyen ve değişen büyük çizgelerde destek vektör

makinesi yöntemini Weisfeiler-Lehman yöntemiyle beraber kullanarak sınıflandırma

problemini çözmek için bir yaklaşım geliştirmişlerdir. Ayrıca çizgede yeni eklenen

düğümlerin daha yakın ve etkili komşularının tespitiyle daha iyi çalışan bir çizge

sınıflandırması yaklaşımı ortaya koymuşlardır. Çizge üzerinde sınıflandırma yapmanın

çizge büyüdükçe bellek limitine takılacağını bu yüzden tüm çizgenin her seferde

işlenemeyeceğine işaret etmişler ve en son işlenen veri yığınına göre artan sınıflandırma

yapmışlardır.

2.4.2. Problem Öğrenmede Çizgelerin Temsil Gücü

Görsellerde insan duruş tahminlemesi, çizgelerin ve sınıflandırmanın birlikte

kullanımının arttığı diğer bir konudur. Bu konuda Bergtholdt, Kappes, Schmidt ve Schnörr

(2010) bilgisayar görüsünde obje tespiti için çizgeleri kullanarak sınıflandırma yapmışlardır.

Görseller üzerinde insan duruşunun tespitinde vücut bölümlerini çizgeler üzerinde temsil

ettikten sonra üzerinde tahminleme ve sınıflandırma yapmışlar ve kullanılacağı alana göre

özelleşen dört model ortaya sunarak bir çatı geliştirmişlerdir. Bu çalışmada tam bağlı çizge

kullanımıyla gürültünün sistemdeki etkilerinin azaltımını göstermişler ve çizgenin görseller

üzerindeki temsil gücünün arttırılmasıyla sınıflandırmanın da verimini arttırmışlardır.

Görsellerdeki insan duruş tahminlemesinde ESA modelini ayrık çizgelerle oluşturan

Tompson, Jain, LeCun ve Bregler (2014) tahminleme probleminde başarım elde etmişlerdir.

Geliştirilen modelin tahminleme sonuçlarını gerçek zamana yakın elde etmesinden dolayı

çalışmanın farklı uygulama alanlarında kullanıma uygun olduğunu bildirmektedirler.

Ginde ve diğerleri (2018) büyük veri görselleştirmesinde ve tutulmasında Neo4j’yi

kullanmışlardır. Neo4jde tuttukları ve görselleştirdikleri bilimsel makalelerdeki yazar,

dergi, enstitü, ülke özellikleri çizge düğüm ve ilişkilerine çevirerek aralarındaki gizli

örüntüleri aydınlatmışlardır. Büyük verilerin anlamlı tutulmasında ve tahmin edilemeyen

ilişki örüntülerinin gözlemlenebilmesinde çizge temsili örnek gösterilebilir.

Nekhaev ve Demin (2017) derin sinir ağlarında makine öğrenimi yaparken gizli

katmanlardaki bilgilerin halihazırdaki temsil yöntemleriyle iyi anlaşılamadığını

26

vurgulamışlardır. Yaptığımız çalışmadan farklı olarak sinir ağlarının görselleştirilmesi ve

temsilinde ele aldıkları konu verinin tutulması değil, derin öğrenmedeki gizli katmanlarda

görsel özelliklerinin hangi nöronun ilgili olduğunun bulunmasıyla sağlamışlardır. Gizli

katmanlardaki nöronların anlaşılamamasını vurgulamışlar ve modellerin daha iyi

anlaşılması için bir yaklaşım ortaya koymuşlardır.

Bijari, Zare, Kebriaei ve Veisi (2020) metin madenciliğinde halihazırda kullanılan

geleneksel yapıların, ilişkilerin bulunmasında ve kurulmasında yeteri kadar etkili

çalışmadığını öne sürmüşlerdir. Cümle seviyesinde metin temsili yapan çizge tabanlı bir

model ortaya çıkarmışlardır. Derin sinir ağlarında bu model beslenerek duygu durum

sınıflandırması yapılması sağlanmıştır. Geleneksel metotlara göre karşılaştırma yaparak

başarılı sonuçlar elde etmişler ve modelin genelleşitirilebilir olduğunu öne sürmüşlerdir.

Veri setleri, model üzerinde herhangi ön eğitilmiş kelime kalıplarına ihtiyaç duymadan

çalışabilmektedir. Yapılan diğer çalışmalarda olduğu gibi araştırmacılar modeldeki gizli

karakteristikleri çizge temsili ile yakalayarak modelleri aydınlatılmasını sağlamışlardır.

Perozzi, Al-Rfou ve Skiena (2014) DeepWalk isimli bir model öne sürerek sosyal

ağlardaki ilişkileri çizge girdisiyle çalıştırarak öğrenim gerçekleştirmişlerdir. Çok sınıflı

sınıflandırma problemleri üzerinde modellerini gerçeklenerek öğrenme sağlamışlardır.

Çizge modelinin sınıflandırma problemlerindeki temsil gücünü ortaya koymuşlardır.

Sundukları modelin çevrimiçi veriler üzerinde öğrenme çalışılabileceğini göstermişlerdir.

Çizge modelinin öğrenim her tür veri ve alana uyarlanabileceğini öne sürmüşlerdir.

Zednik (2019) yaptığı çalışmada Humphreys (2009) yaptığı çalışmaya referans

vererek kara kutu problemini saydamlık üzerinden açıklamıştır. Saydamlık "Bir x

sisteminde çalışan ajanın t zamanında bağlı olduğu tüm varlıkların durumunu bilememesi"

olarak tanımlayan Humphreys’in bu çıkarımından yola çıkarak yapay sinir ağlarının

saydam olmadığı sonucuna varılabilmektedir. Saydamlığı sağlanamayan yapay sinir

ağlarının sadece çıktılar ve katmanlara bağlı sayılması ile problemi çözülen konuların tam

olarak modeller tarafından öğrenilemeyeceği sonucuna varılabilmektedir.

Frosst ve Hinton (2017) yaptıkları çalışma ile derin öğrenme ağlarını karar ağaçlarına

çevirerek derin ağ modellerinin temsillerini arttırmışlardır. Gizli katmanların anlaşılır hale

gelmesini sağlamışlardır. İlk gizli katman ile son gizli katmanda aktivasyon fonksiyon

çıktıları gözlemlenebilmekte olmasına rağmen, arada olabilecek onlarca gizli katmandaki

sonuçların gözlemlenemeyeceğini dile getirmişlerdir. İstatistiksel değerlendirmeler ile

yeterli başarımda sonuçlar elde etmenin derin ağların ve de insan beyninin öğrenme

mekaniğinin incelenmesini kısıtladığını öne sürmüşlerdir. Ortaya koydukları hafif karar

ağaçları dönüşümü ile veri üzerinde eğitilen bir derin sinir ağ modelinin genelleştirilmesine

27

göre daha genelleştirilebilir bir model elde ederek eğitim yaptıkları ağaç ile farklı alandaki

problemlerin çözüm başarımının daha yüksek olacağını ortaya koymuşlardır. Kurdukları

modeli eğitilmiş derin sinir ağı modellerin çevrimi ile kara kutu ve temsil problemini

çözmek üzere kurduklarından modeli sıfırdan oluşturmamışlardır. Bu tez çalışmasında

Frosst ve Hinton (2017) çalışmasıyla benzerlik olarak hali hazırda eğitilmiş ağların önerilen

sisteme aktarımı ve işlenebilmesi sağlanmaktadır. Tez çalışmasında farklı olarak sunulan

sistem üzerinde sinir ağını oluşturma ve modelin oluşturulmaya başlandığı andan itibaren

tutulmasında, işlenmesinde çizge temsilinin avantajlarının kullanılması sağlanmıştır. Karar

ağaçları, çizgelerin sonsuz döngü oluşturmayacak biçimdeki hallerine örnek olarak

gösterilebilmektedir.

Hamilton, Ying ve Leskovec (2017) GraphSAGE çalışmasını geliştirerek, çizgeler

üzerinde öğrenme yaparak genelleştirilebilir çıktılar vermeyi amaçlamışlardır. Çoğu aynı

problem uzayında yapılan çalışmanın genelleştirilemeyeceği ve belirli bir çizge üzerinde

öğrenme yaptığını öne sürmüşlerdir. GraphSAGE’nin öğrenme yapabilmesi için öğreneceği

çizgenin hali hazırda oluşturulmuş olması gerekmektedir. Çizge üzerindeki düğümler ve

komşulukları çıkararak özellik çıkarımları yapmakta, topladığı komşuluk bilgileri ile

çizgenin bağlamının ve düğümlerin etiketlerinin tahminlemesini yapmaktadır. Hiç

görülmemiş çizgelerde öğrendiği ilişkiler ile düğüm ve ilişki etiketlerini

tahminleyebilmektedir. Sunulan tezden farklı olarak sadece hali hazırda olan çizgeler ile

öğrenim gerçekleştirebilmektedir. Öğrenimini gerçekleştirdiği özelliklerden farklı

özelliklerdeki düğümler içeren çizgelerde çalışmamaktadır.

Hamilton (t.y.) çizge temsilli öğrenme çalışması ile çizge sinir ağı hakkında

literatürde bulunan tüm kaynakları toplayarak, derleme bir kitap oluşturmuştur. Hamilton

çalışmasını yaparken çizge sinir ağı alanında bir çok öncü gelişmenin olmasıyla gelişimi

hızlanan bir konu olduğuna dikkat çekerek hızlı gelişen literatürü tam olarak sunamadığını

belirtmiştir. Hamilton çizge temsilli öğrenmenin ilerletilebilmesi için ağlardaki derin

ilişkilerin anlaşılmasının yeni mimari ve çalışmaların artmasıyla olacağını öngörmektedir.

Çalışma alanını kapsamlı şekilde inceleyen Hamilton’ın çalışmasında yeni uygulama

alanları açacağını belirttiği çizge temsilli öğrenme ile tez çalışmamızda hedeflenen

kazanımlar ve hedefler öngörüleri doğrular niteliktedir.

2.4.3. Veritabanlarında Saklanan Yapay Sinir Ağları

Yapay sinir ağlarının teorideki birebir temsilini saklamak için veritabanları

kullanılmaktadır. Nesne yönelimli programlama prensibiyle çalışmasından dolayı ilişkisel

veritabanları ilk tercih edilen veritabanları olmuştur. Çalışmaların yapıldığı dönemde çizge

28

veritabanları bulunmamaktadır. Schikuta ve diğerleri (1996) önerdikleri NeuDb çalışması

ilişkisel veritabanında YSA saklayan ve işleyen ilk çalışmalardan biri olmuştur. Postgres

ilişkisel veritabanında YSA modelinin tutulması için SQL sorguları çalıştırılmaktadır.

Eğitim için veritabanı prosedür fonksiyonları çalıştırılmaktadır. Araştırmacı modelin eğitim

ve test sürecini gözlemleyememektedir. Veritabanında tutulan YSA’ların simüle edilerek

araştırmacıya gösterilme ihtiyacı oluşmuştur. Yahia ve Elsawi (t.y.) sundukları çalışma ile

YSA modellerini ve eğitim prosedürlerini ilişkisel veritabanında tutmuştur. NeuDb

çalışmasında olduğu gibi eğitim süreçlerini işleyecek kodlar veritabanı prosedürlerinde

tutulmaktadır. Yaptıkları çalışmada mantık kapılarını eğitecek bir önyüz programı

geliştirerek araştırmacıların kullanımına sunmuşlardır.

Schikuta, Brunner ve Schultes (1998b) YSA’ları MS Access ilişkisel veritabanında

tutmayı önererek araştırmacıların YSA eğitimlerini izleyebileceği NeuroAccess çalışmasını

duyurmuştur. Bu çalışmada eğitim prosedürleri statik olarak veritabanında tutulmaktadır.

Çalışmada eğitim sürecinin gözlemlenebileceği simülasyon yazılımı geliştirilmiştir.

Yazılım ile hata eğrisi, ağ yapısı, eğitim adımlarında elde edilen sonuçlar gösterilerek

araştırmacıların gözlemi sağlanmıştır. Schikuta ve Glantschnig (2007) yaptığı NeuroOracle

çalışması ile YSA modellerini ve eğitim süreçlerini Oracle veritabanlarında saklamıştır.

Önceki çalışmalarda olduğu üzere modelleri oluşturmak için veritabanı sorguları

yazılmalıdır. Yapay sinir ağlarını ayrıca bilgi tabanlı veritabanlarında tutan çalışmalar

mevcuttur (Schikuta, 2008). Uzman sistemlerde bilgi tabanları (knowledge-based)

veritabanları sıklıkla kullanılmaktadır. YSA’larda öğrenilen kurallar bilgi veritabanını

beslemektedir.

YSA’ların veritabanlarında tutulmasıyla araştırmacılar dosya dönüşümleri yapmadan

YSA’lara çevrimiçi erişebilmektedirler. YSA modeli oluşturmak eğitim ve testlerini

gerçekleştirmek için araştırmacılar genellikle kendi yazılımlarını geliştirmektedir.

Araştırmacıların kendi geliştirdikleri yazılımlar ile genelleştirilebilir bir YSA ortamı

oluşturmaktan uzaklaşılmaktadır. Schikuta (2002) geliştirdikleri NeuroWeb yazılımı ile

araştırmacıların yapay sinir ağlarını saklayan ve işleyen bir sunucuya bağlanarak sinir

ağlarını oluşturup eğitim yapabilecekleri ortamı oluşturmuşlardır. Bu çalışma ile yapay sinir

ağları ile ilgilenen herkesin araştırmacılar kadar konuya hakim olmadan da kendi ağlarını

deneyebileceği genelleştirilebilir ve geliştirilebilir yazılımların ilk adımlarını atmıştır.

Huqqani, Li, Beran ve Schikuta (2010) NeuroAccess çalışmasındaki temeller ile YSA

modeli oluşturma ve eğitim simulasyonunu bulut ortamında gerçekleyecek N2Cloud

yazılımını sunmuşlardır. Büyük endüstriyel uygulamalarda kullanılan ölçeklenebilirlik

sunan bulut sunucu ortamında YSA işlenerek eğitim hızları arttırılmaktadır. N2Cloud

29

kullanmak için araştırmacılar uygulama indirerek bulut ortamında YSA oluşturup

eğitebilmektedir. Schikuta ve Mann (2013) yaptıkları çalışma ile N2Cloud’tan farklı olarak

YSA’nın hem ilişkisel SQL veritabanlarında hem de NoSql döküman tabanlı veritabanında

tutulmasını ve işlenmesini sağlayan N2Sky yazılımını sunmuşlardır. Bu çalışma ile bulut

ortamında araştırmacıların YSA saklama ve eğitmede kaynak paylaşımı yaparak büyük

verisetleriyle talep üzerine (on-demand) çalışmasını sağamışlardır. N2Sky, YSA’ları

saklama ve işlemeyi XaaS servis mimarisinde gerçekleştirmektedir. N2Sky ile

araştırmacıların çalışma ortamları ve oluşturdukları YSA’lar kullanıcı üyelikleri ile

ayrılmaktadır. Yapay sinir ağlarını nesne yönelimli olmasına rağmen kodlama yapılmadan

oluşturulamamaktadır. YSA katman tasarımları ve bağları sorgularla

gerçekleştirilebilmektedir. YSA modellerinin dağıtımının yapılabilmesi için

genelleştirilebilir bir yapıya ihtiyaç duyulduğunu söylemişlerdir. Ontolojik olarak yapay

sinir ağlarının temsiline ihtiyaç duyulduğunu ve YSA’ları birebir ifade edebilecek saklama

yöntemlerinin gerektiğini gelecek çalışmalar için önermişlerdir.

2.5. Yapay Sinir Ağı Kütüphaneleri

Araştırmacılar yapay sinir ağlarını gerçekleyebilmesi için üst seviyeli diller ile çalışan

yardımcı kütüphane ve yazılım çatılarına ihtiyaç duymaktadırlar. Yapılan çalışmada

oluşturulan yazılım ile bu yardımcı kütüphaneler ve yazılım çatılarına alternatif olarak

farklı bir yöntem ortaya koymaktadır. Genel olarak kabul edilen ve yaygınca kullanılan

Keras, Tensorflow, PyTorch ve Caffe kütüphaneleri bu bölümde incelenmiştir.

2.5.1. Tensorflow

Tensorflow, Theano altyapısından oluşturulan Google’ın Google Brain Team ekibi

tarafından (Abadi ve diğerleri, 2015) sembolik matematiksel işlemleri gerçeklemek ve

yapay sinir ağlarının eğitim aşamalarında kullanılmak için geliştirdiği, sinir ağı araştırma ve

geliştirme aşamalarında kullanılan dünyaca en yaygın yazılım çatılarından biridir. Gmail,

Nvidia gibi veri yoğun işler yapan ürün ve şirketlerde kullanılmakta ve yeni araştırmalara

bağlı olarak sürekli güncellenmektedir.

Tensorflow çatısında Python, Javascript, Go, CSharp, Java gibi dillerde geliştirme

yapılabilmektedir. Python ile model geliştirme yapılması en yaygın kullanım şeklidir.

Tensorflow ile paralel ve küme hesaplaması yapılabilmektedir. Tensorflow yapay sinir ağı

modelleri statik olarak mobil cihazlarda çalıştırılabilmektedir. Tensorflow model eğitim,

test ve dizaynında araştırmacının kodlama diline ve kütüphaneye hakimiyetinin yüksek

olmasını gerektirmektedir. İnce ayarlamalar ve tüm model tasarımının iyi

30

gözlemlenebilmesi gerekmektedir.

Tensorflow ismi adındaki Tensör kelimesinden gelmektedir. Sayısal ifadeleri olması

gereken fiziksel veriler tensör olarak adlandırılır. Sıfırıncı dereceden tensör olan skalar

tensörler fiziksel ifadesi bir tek sayı ile ifade edilebilen tensör çeşididir. Fiziksel objenin ya

da enerjinin skalar tensör ile ifadesine 5 kilogram, 90 km/s, 30 Celcius derece gibi örnekler

verilebilir. Vektör tensörleri birinci derece tensörler olarak adlandırılmaktadır. Skalar

tensörlerin üstüne bir de yönü temsil etmek için kullanılmaktadır. Örneğin batı yönünde 90

km/s ifadesi vektör olarak temsil edilebilmektedir. Skalar tensörler sadece sayı ile, vektörler

sayı dizisi ile ifade edilmekte, üçüncü derece ve üstü tensörler ise sayı dizisi matrisi ile

ifade edilmektedir. Üçüncü derece ve üstü tensörlerin diğer tensörler gibi özel bir ismi

olmamakla birlikte, derecesi ile kullanımı yaygınca görünmektedir. Örneğin bilgisayar

ortamında bir resmi, RGB uzayında 3 farklı ikinci derece tensör matrisi ile veya üçüncü

derece bir tensör matrisi ile tanımlamak mümkündür. Tensorflow YSA model eğitimi

yapılacak verileri ve modeli tensörler ile tutmakta ve işlemektedir.

Tensorflow çatısı model eğitim metriklerinin takip edilebileceği bir web arayüzünden

oluşmaktadır. Tensorflow Cuda platformunu kullanarak Nvidia grafik kartları üzerinde YSA

model hesaplamalarını daha hızlı gerçekleştirmeyi sağlayabilmektedir. Grafik kartlarında

olduğu gibi işlemci üzerinde de model hesaplamaları yapılabilmektedir. Grafik kartı

üzerinde işlemlerin yapılabilmesi için Python, Python’un gelişmiş matematiksel işlemlerde

kullanılan kütüphanesi olan Anaconda, Nvidia grafik kartının Cuda’yı destekleyen

versiyonunun kurulması, Tensorflow kütüphanesinin grafik işlemleri için olan kütüphanesi

gerekmektedir. Nvidia grafik kartlarının hepsi Cuda’yı desteklememekte ve eski Cuda

sürümlerini destekleyen kartların yeni özelliklerden mahrum kalmasına yol açmaktadır.

Tensorflow derin öğrenme ile ilgili özelleşmiş şekilde kullanılmakta, farklı sinir ağ

modellerinde sınırlı destek vermektedir. Tüm özellikleri Python dili kullanılarak

çalıştırılabilmektedir. Tensorflow döngü içeren modellere destek vermemektedir, döngü

içeren YSA eğitim modellerinde kullanılamamasına yol açmaktadır.

Tensorflow’da modeller eğitilirken değişkenler, veri dizileri gibi üst ve soyut veriler

meta, ağırlıklar, sapmalar, gradyanlar ve diğer değer içeren veriler ckpt, modelin son hali

ise checkpoint isimli ayrı ayrı dosyalarda tutulmaktadır. Eğitimin herhangi bir anında

durması ya da hata alması durumunda, checkpoint adında modelin kontrol noktasını

kaydetmek gerekmektedir, yoksa model bozulabilir ya da veri kaybı yaşanabilir.

Tüm model H5 (The HDF Group, 2000) ve Tensorflow’un SavedModel

yöntemlerinden birisiyle çıktısı alınabilmektedir. Geliştirilen modelin son kullanım

alanında çalıştırabilecek halde dönüştürülebilmesi için donmuş bir modele dönüştürülerek

31

diskteki bir dosya halinde taşınır olabilmektedir. Eğitim boyunca toplanan performans ve

eğitim metrikleri log dosyalarında tutulmaktadır. Bu yaklaşım ile Tensorflow, eğitimin

bitmesi için tüm öğrenim boyunca devam etmesi gereken uzun bir süreçte eğitimin herhangi

bir zamanda durdurulması yaklaşımı yerine, kontrol noktaları ile modelin son durumu

koruma ve eğitim sonundaki çıktıları statik ve donmuş modeller olarak aktarma

prensipleriyle çalışmaktadır. YSA modeli yeterli doğruluğu ve isabetliliği gösterdiği

düşünülen durumda, SavedModel olarak adlandırılan yaklaşım ile modelin son halini

Protobuf binary dosyasında dışa aktarmaktadır.

Protobuf (Varda, 2008) diğer adıyla protokol tamponları yapısal verilerin tutulması

için bir yöntemdir. Protobuf, IDL arayüz tanımlama dili olarak tanımlanmakta ve farklı

dilde yazılmış programlar ve işletim sistemleri arasında anlaşılabilir ve dönüştürülebilir veri

taşımak için kullanılmaktadır. Protobuf uzak prosedür çağrılarında sıklıkla kullanılmaktadır.

Modelin tüm verilerini içeren byte akışının modelin kullanılacağı sistemde ve programlama

dilinde işlenme şeklini tanımlayarak çalışmaktadır.

Tensorflow’un diğer donmuş ya da eğitimi tamamlanmış model formatı olan H5

formatı ile çıktı alınabilmektedir. H5 büyük verilerde hiyerarşik veri formatı ile verilerin

tutulmasını sağlamaktadır. H5’te veriler dataset, group, attribute, type, property alanlarını

içererek meta veriler üzerinden herhangi bir işletim sisteminin dosya sistemindeki gibi

dosya yollarına bölünmektedir. Keras’ta ve Tensorflow’un mobil ve Javascript

kütüphanesinde üzere eğitimi tamamlanmış YSA modelleri H5 formatında çıktıyı

kullanabilmektedir. Şekil 10’da el yazısı tanıma veri seti üzerine eğitilmiş bir YSA

modelinin statik hesaplama çizgesi, Tensorboard üzerinde gösterilmektedir.

Şekil 10. Tensorboard ile statik çizge gösterimi

32

Tensorflow’da kodlama aşamasında model statik bir hesaplama çizgesi olarak

tanımlanmaktadır. Tensorflow’da tanımlanan çizge disk üzerinde dosyalarda tutulmaktadır.

Oluşturulan çizgelerin Tensorflow geliştirme ortamı dışında işlenmesi ve izlenmesinin

mümkün olmadığı çizgelerdir. Eğitimin yapıldığı sırada çizgelerdeki veriler ve ilişkilerdeki

veriler gözlemlenememektedir. Tensorflow TensorBoard adında eğitim metriklerinin

izlenebildiği, statik çizgenin görüntülenebildiği, histogram grafiklerine erişilebildiği ve ağ

içindeki veri dağılımını gözlemlemek adına dağıtım grafiklerinin bulunduğu bir yazılım

aracını içinde barındırmaktadır. Tensorflow’daki kod geliştirmeleri zamanda Google’ın

Colab adındaki grafik kartı destekli bulut servisinde yapılabilmekte ve

çalıştırılabilmektedir. Colab üzerinde birden çok araştırmacının beraber çalışacağı ortamda

eğitimi tamamlanmış donmuş modelin yüklemesi yapılması gerekmekte bu da gerçek dünya

problemlerinde gerçeklemesi zor bir çalışma ortamı oluşturmaktadır. Kod parçalarının

değiştirilmesi ve model üzerinde tekrardan işletilmesi ile her seferinde sıfırdan model

eğitimi yapılmaktadır. Sadece kodlama ile oluşturulabilir olan YSA katmanları işletilirken

tensörler olarak hesaplamalara katılmaktadır. YSA meta modeli eğitilmiş modelin çıktısı

verilmediği sürece saklanmamaktadır. Model topolojisinde ise katmanlar arasındaki

ilişkiler gözlemlenememektedir.

Tensorflow’un dezavantajları, muadili olan diğer yazılım çatılarından yavaş çalışması,

alt seviye kodlama gerektirdiği için araştırmacının Tensorflow’a hakimiyetinin fazla

olmasını gerektirmekte olması, sadece Nvidia grafik kartlarında model eğitimini

desteklemesi, tüm özelliklerinin kullanılabilir olması için Python yazılım diliyle

oluşturulmuş kütüphanesinin kullanılması zorunluluğu, model döngü desteğinin olmaması,

derin öğrenmede uzmanlaşmış ve odak noktası olarak çalışması ve daha basit modellerde

yeterince kullanım kolaylığı sağlamamasıdır.

2.5.2. Keras

Chollet ve diğerleri (2015) tarafından ONEIROS (Açık Uçlu Sinir Elektronik Akıllı

Robot İşletim Sistemi) projesi kapsamında geliştirilmiş ve geliştirilmeye devam eden sinir

ağı yazılım kütüphanesidir. Keras diğer yazılım kütüphaneleri gibi bağımsız şekilde kendi

yazılım ortamını oluşturmak yerine bir arayüz görevi görerek diğer yazılım

kütüphaneleriyle entegre çalışan bir arayüz sağlamaktadır. Keras sunduğu sanallaştırma

arayüzü ile Tensorflow, Microsoft Cognitive Toolkit, Theano, CNTK gibi yazılım

kütüphaneleriyle entegre çalışabilmektedir. Keras Tensorflow’un 2.0 versiyonuyla beraber

standart olarak kurulmakta ve çalışmaktadır.

Keras derin sinir ağlarının karmaşık ve yeni araştırmacıların derin öğrenmede

33

yaşayacakları zorluklar göz önüne alınarak geliştirilmiş yüksek seviyeli bir uygulama

geliştirme arayüzü sunmaktadır. Sinir ağı modellerinin araştırmacılar tarafından yüksek

seviyeli arayüz olan Keras ile gerçekleştirilmesiyle çalışmalarını daha hızlı ve sorunsuz

gerçeklemesini amaçlamaktadır. Python programlama diline destek vermektedir.

Keras kullanıcı dostu, genişletilmesi ve geliştirilmesi kolay, makinelere nazaran

insanların sinir ağlarını anlamasına odaklı prensipleri benimseyerek geliştirilmiştir. Sinir

katmanları, maliyet fonksiyonları, optimizasyonlar, başlangıç şemaları, aktivasyon

fonksiyonları, düzenleme şemaları gibi tek başına çalışabilecek Keras içindeki diğer

modüllerle bir bağı olmayan modüllerden oluşarak yeni bir model oluşturulurken ihtiyaç

duyulacak temel bileşenleri içermektedir. Sinir ağı öğrenimi konusunda Amazon, Apple,

Nvidia, Uber, Microsoft ve Google gibi firmalarda kullanılmakta ve geliştirilmektedir.

Keras alt seviye işlemler olan konvolüsyon işlemi, tensör işlemleri gibi işlemleri

kendi kütüphanesi içinde yapmamakta ve bağlı olduğu diğer yazılım kütüphanelerinde

yapılmasını sağlamaktadır. Keras’ın sanallaştırma ve yüksek seviyeli işlemlere destek

verme prensibinden dolayı araştırmacı alt seviye model değişiklikleri ve geliştirmeler

yapmak istediğinde Keras’ı kullanamamaktadır. Bu durumda araştırmacıların oluşturdukları

modellerde Tensorflow gibi alt seviye işlemlerin desteklendiği yazılım çatılarını

kullanmaları gerekmektedir. Keras Sequential ve Functional olmak üzere iki tür uygulama

geliştirme arayüzü sunmaktadır. Sequential arayüz ile doğrusal biçimde eklenecek sinir

katmanlarının oluşturulduğu arayüzle kısıtlı bir model geliştirme imkanı sunmaktadır.

Functional arayüz ile Sequantial’da olduğu gibi her katmanda tek bir girdi ve tek bir

çıktının olduğu kısıtlamadan kurtarılmıış, böylelikle esneklik kazanması amaçlanmaktadır.

Keras platformunda, Tensorflow’da olduğu gibi performans istatistiklerinin takip edileceği

ya da oluşturulan modelin görüntülenebileceği bir araç bulunmamaktadır. Model

görselleştirmesinin yapılamaması araştırmacının modeli görüntüleyememesini ve kara kutu

yapının korunmasını sağlamaktadır. Oluşturulan modellerdeki katmanlar girdi ve

çıktılarının tanımlanmasıyla çalışmakta ve çalışma anında işletilmektedir. Oluşturulan

modelin işlem sonucunda çıktısı alınmak isterse dosya olarak çıktı verebilmektedir.

Dolayısıyla işlem anında herhangi bir topoloji değişikliğinin desteklenmediği gibi, her

seferinde sıfırdan eğitime başlamak gereklidir.

2.5.3. PyTorch

Paszke ve diğerleri (2019) tarafından geliştirilen PyTorch projesi, Torch yazılım çatısı

tabanlı Facebook yapay zeka araştırma laboratuvarı tarafından desteklenen açık kaynak

kodlu bir makine öğrenme kütüphanesidir. Python programlama dilini temel alarak

34

geliştirilmesine rağmen C++ diliyle geliştirmeye de destek vermektedir. PyTorch

kütüphanesi tensörleri kullanarak grafik kartları ile sinir ağı hesaplamaları yapmaya destek

vermektedir. PyTorch Tensorflow ile çalışılırken tüm modelin tanımlanması gereken statik

hesaplama çizgesi yaklaşımı yerine dinamik hesaplama çizgesi yöntemiyle çalışmaktadır.

PyTorch ile oluşturulan model çizgesi kodlama yapılırken dinamik değiştirilmesi

sağlanmaktadır. Tensorflow’a göre geliştiren topluluk kitlesi az olması, yazılım çatısının

gelişmesini yavaşlatmaktadır. PyTorch’un Tensorboard gibi oluşturulan modelin takibinin

sağlanabileceği bir aracı bulunmamaktadır, oluşturulan sinir ağı modelinin

görselleştirilmesi desteklenmemektedir. Tensorflow ile son ürün aşamasında, büyük

projelerde kullanılacak dağıtıklaştırılabilecek modeller üretmek konusunda başarılı

modeller üretilmek amaçlanmaktayken, PyTorch ile geliştirmesi hızlı, örnek modeller

oluşturma konusunda özelleşmektedir.

PyTorch için model kaydetme örneğini kullanarak eğitimdeki verilerin değişme

kaydının sağlanması ile sinir ağlarının eğitiminin daha iyi anlaşılması ve kara kutu

yapısının önüne geçilmesi amaçlanmaktadır. Tensorflow’un statik çizge dosyası oluşturma

yapısında, eğitime devam edileceği zaman yeni katmanlar eklenecekse yeniden bir modelin

oluşturulması gerekmektedir ancak PyTorch’ta hali hazırda geliştirilmiş bir modele yeni bir

katman eklenebilmesine olanak sağlanmaktadır. Dinamik yapısı sayesinde kod hata

ayıklamalarında hataları bulmak çok daha kolay olmaktadır.

PyTorch işlemci ve grafik kartı tabanlı model hesaplama işlemleri için ayrı

kütüphaneler içererek ayırmakta ve çalışma ortamına göre odaklanmış ve kodlanmış

kütüphaneler içermesi ile verimli çalışmak üzere geliştirilmiş olduğunu göstermektedir.

PyTorch’un nn modülü kullanılarak katmanlar evrişim, pooling, tek boyutlu matrise çevrim

işlemlerini gerçekleştiren katmanlar tanımlandıktan sonra nn modülüyle kullanılması

gereken forward fonksiyonu ile katmanların nasıl bağlanacağı bileşke fonksiyon düzeniyle

birbiri içinde tanımlanmaktadır ve model iskeleti oluşturulmaktadır. Oluşturulan bu model

eğitim ve test için kullanılabilmektedir.

2.5.4. Caffe

Jia ve diğerleri (2014) tarafından geliştirilen Caffe bir derin öğrenme yazılım

kütüphanesidir. C++ programlama dilini temel alarak, Python ve MATLAB dilleri ile de

kullanılabilmektedir. Yoğunlukla görsel üzerine yoğunlaşmış öğrenme problemleri için

kullanılmaktadır ve grafik kartı ile hesaplama yapmaya destek vermektedir. Açık kaynak

kodlu olarak kullanıma sunulmaktadır ve topluluğu tarafından geliştirilmeye devam

etmektedir.

35

Caffe ile modeller tanımlanırken protobuf dosyaları olan prototxtler kullanılmaktadır.

YSA modelindeki katmanlar birbirileri arasındaki ilişkiler bir prototxt’de eğitim ve

performans parametreleri Solver adı verilen başka bir prototxt tanımlanmakta ve tüm model

yapısı oluşturma işlemleri dosyalar ile gerçekleştirilmektedir. Caffe’de araştırmacıların

katman içerisinde değişiklik yapabilmesinin bir yolu bulunmamaktadır. Prototxtler ile

tanımlanabilecek ve Caffe tarafından tanınacak alanlar dışında katmanlar içine müdahale

edilmesi zordur.

Caffe, son kullanım ortamında gerçek dünya verileriyle ve görsel verilerin yoğun

olduğu problem öğrenim alanlarında derin öğrenme işlemleri yapmak üzere yoğunlaşmıştır.

Bu nedenlerden dolayı esnekliği bulunmamaktadır. Tensorflow’daki Tensorboard gibi bir

aracı bulunmamakla beraber, dağıtık grafik kartı bulut servislerinde çalışmak için idealdir.

Araştırmacının yeni bir problem öğrenme alanı üzerinde çalışması yerine, büyük

organizasyonların büyük son kullanım verileriyle çalışması için uygun görülmektedir. Ayar

dosyaları ile çalışarak, programlama kodları ile çalışmaması sağlanarak grafik kartı destekli

bulut sunucularında ve mobil cihazlarda YSA modellerinin çalışmasını amaç edinmektedir.

Bulut servislerine verdiği destek sayesinde performansının yüksek olduğu ve endüstri

standartlarında çalışmaya yetecek hızda olduğu öne sürülmektedir. Eğitilmiş modellerin

çıktıları caffemodel ve solverstate adında iki dosyada alınabilmektedir. Caffemodel ile

modelin son durumu katmanlar arasındaki ağırlıklarla alınabilmektedir. Solverstate çıktısı

ile oluşturulan ikili dosya ile modelin eğitim sırasındaki son hali alınabilmekte ve daha

sonra eğitime devam edilebilmektedir. Araştırmacıların işbirlikçi çalışması playbook isimli

bir araç ile gerçekleştirilebilmektedir. Araştırmacılar önceden belirli metriklerle modelin

durumunu takip edebilmektedir. Kara kutu yapının incelenmesine yönelik herhangi bir araç

bulundurmamaktadır. Caffe’de örnek bir prototxt katmanı Json formatında

oluşturulduğunda "Type" alanında katmanın hangi tipte olduğu, bottom ve top

anahtarlarıyla da önce ve sonra gelen katmanın hangi katmanlar olduğu, katmanın tipine

göre de alacağı parametrelerin "convolution_param" anahtar ifadesiyle verilmesi

gerekmektedir. "convolution_param" anahtar ifadesinde kernel boyutları çıktı sayısı gibi

parametrelerin de katman tanımı yaparken verilmesi gereklidir.

36

BÖLÜM 3
MATERYAL VE YÖNTEM

Bu bölüm yapay sinir ağ modellerini çizge veritabanlarına aktarma ve saklamak için

önerilen yöntem ve yazılımın bileşenleri ve seçilen teknolojilerin seçilme nedenleri

içermektedir. YSA süreçlerindeki tahminleme, öğrenim aktarımı, yapay sinir ağı

tahminleme süreç gözlemi gibi örnek senaryoları gösterilmiştir.

3.1. Çalışmada Kullanılan Teknolojilerin Belirlenmesi

Birbirinden bağımsız çalışabilen yazılım bileşenleri bakış açısıyla geliştirilen yazılım

üç ana kısımdan oluşmaktadır.

• Kullanıcı ile çizge veri tabanı arasında bağı kuran ve kullanıcıların kimlik ve

yetkilendirme işlemlerinin kontrolünü sağlayan arka yüz servisi

• Kullanıcıların YSA modellerini dinamik olarak web arayüzü üzerinden

oluşturabildiği, testini, eğitimini ve son durumunu gözlemleyebildiği ön yüz servisi

• YSA modellerinin tüm verilerinin tutulduğu, işlemlerinin gerçekleştirildiği çizge veri

tabanı servisi

Şekil 12’de yazılımın üç temel parçası ve aralarındaki iletişim şeması

gösterilmektedir. Arka yüz sunucusunun farklı işletim sistemlerinde çalışmasını

desteklemek için çapraz platform desteği sunan .NET Core 2.2 teknolojisi ile CSharp dili

kullanılmıştır. Ön yüz sunucusunda sayfa yenilemeye gerek kalmadan dinamik veri akışına

izin veren Javascript ve Typescript dillerini kullanan Angular 8 kütüphanesi kullanılmıştır.

Ön yüz ile arka yüzün YSA modelleri için haberleşmesinde, çift yönlü sürekli veri akışına

izin veren soket iletişim kanalları kullanılmıştır.

YSA’larda hücre sayısından daha çok bu hücreler arasında bağlantılar bulunmaktadır.

Bir YSA modelinin çıktı üretebilmesi için tüm bu bağların işletilmesi gerekmektedir.

Hesaplama zamanını hücre sayısından daha çok bağ sayısı etkilemektedir. Tam bağlı

YSA’larda katman sayısı ve katmandaki hücre sayısı arttıkça bağlantı sayısı katlanarak

artmaktadır. Neo4j veritabanında bağlantı sayılarının katlanarak artması sorgu

performansını, ilişkisel veritabanlarındaki dramatik düşüş kadar değiştirmemektedir

(Holzschuher ve Peinl, 2013). Şekil 11’de bu çalışmadaki karşılaştırma sonuçları

gösterilmiştir. Neo4j sorgularının anlaşılırlığı ve kullanım kolaylığı da çizge veritabanı

seçiminde rol oynamıştır. Tasarlanan YSA’lar çizge olarak tasarlandığı şekliyle Neo4j’de

tutulabilmektedir. Bahsedilen özelliklerinin yanında çizge veri tabanları arasında en çok

kullanılan veritabanı olması ve geliştirici topluluğunun büyüklüğü nedeniyle Neo4j

37

YSA’ların saklanacağı veri tabanı olarak seçilmiştir.

Şekil 11. Neo4j bağlantı sayısının performansa karşılık etkisinin Sql ile karşılaştırılması

3.2. Geliştirilen Yazılım Çatısının Mimarisi

Çalışmada geliştirilen yazılım çatısında her bir yazılım bileşeninin tek başına ayakta

kalıp kendi sorumluluğunu gerçekleştirebilmesi amaçlanmıştır. Bu nedenle ön yüz

sunucusu, arka yüz sunucusu ve veri tabanları kendi başlarına çalışarak geliştirilen

ekosistemde sorumluluklarını yerine getirmektedir. Sistemin mimarisi oluşturulurken, açık

kaynak kodlu kütüphaneler, bireysel kullanımı ücretsiz yazılım çatıları tercih edilmiştir.

Şekil 12’de oluşturulan mimari ve arasındaki ilişkiler gösterilmiştir. Araştırmacılar

sadece önyüz servisiyle etkileşime girerek süreçleri tetiklemektedir. Önyüz sunucusu

kullanıcı girişini onayladıktan sonra YSA model görüntüleme işlemlerinde gerekli

yönlendirmeleri yaparak soket iletişimi ile çizge veri tabanının bolt protokolüyle

konuşmaktadır. Bolt protokolü Neo4j geliştiricileri tarafından oluşturulmuş veri tabanı ağ

protokolüdür. Bolt protokolüyle herhangi bir uygulama ile Neo4j veri tabanı arasında

iletişim kurulabilmektedir.

38

Şekil 12. Geliştirilen yazılım çatısı bileşenleri ve aralarındaki iletişim

Arkayüz sunucusu, Neo4j’de tutulan YSA modelleri ile kullanıcının etkileşimini

gerçekleştirmek üzere Model-View-Controller yazılım deseni ile model, gösterim ve

kontrolcü katmanlarından oluşmaktadır. Model katmanında, kullanıcıların giriş veri yapısı,

yapay sinir ağ bileşenlerinin yapısı, ön yüz ve veri tabanları ile iletişim halinde kullanılması

gereken tüm yapıların protokolleri yer almaktadır. Gösterim katmanı son kullanıcı

sayfalarının hazırlanmasından sorumludur. Kontrolcü katmanında çalışma mantıkları ve

akışlarının yönetilmesi sağlanmaktadır. Bu şekilde oluşturulmuş mimaride veri tabanı

sunucusu arka yüz ve ön yüz sunucularına bağlı kalmadan, oluşturulmuş sinir ağ

modellerinin saklanmasına ve incelenmesine olanak sağlamaktadır.

Neo4j2’nin kendi sorgulama dili olan Cypher diğer çizge veri tabanı sorgulama

dillerine göre çok daha açıklayıcı ve üst seviye sorgulama dilidir. Cypher’da sorgular

SQL’deki gibi tablo mantığında değil, objeler ile aralarındaki ilişkiler ile çizgenin işlem

yapılacak bölümünün ifadesi şeklindedir. Örneğin "(:dugum)" ifadesi düğüm etiketine sahip

bir düğümü ifade ederken, "-" çift yönlü bağlantı ifadesi, "->" tek yönlü bağlantı ifadesi gibi

olabildiğince kendini açıklayan ifadeler düğüm ile ilişkisi olan başka bir düğümü ya da

belirtilecek ise ilişkiyi işaret eden ifadelerdir. "[:iliski]" ifadesi düğümler arasında ilişki

etiketiyle bir ilişkinin sorgulanmasında kullanılmaktadır. Örneğin "MATCH

(n:Dugum)-[r:Iliski]->() RETURN n,r" Cypher sorgusuyla yukarıda bahsedilen ifadeler ile

2Önerilen yazılımda Neo4j’nin 3.5.16 versiyonu kullanılmıştır.

39

anlatılmış düğüm ilişki örüntüsünde eşleşen çizge getirilmektedir.

Çalışma kapsamında Neo4j’de tutulan çizgelerde YSA katmanları ve ilişkiler label

(etiketler), düğüm ve ilişkilerde tutulacak veriler property (özellikler) olarak ifade

edilmektedir. Çalışmada ele alınan YSA model türlerine bağlı olarak bağlı olarak yapay

sinir ağlarındaki hesaplama matris değerleri ilişkilerde ya da düğümlerin kendilerinde

tutulmaktadır. İlk yöntemde ilkel skaler veri tipleri ile hesaplamalar yapılacak YSA’larda

hesaplama değerleri hücre bağlantılarında tutulmaktadır. İkinci yöntemde ESA ağlarında

olduğu gibi bir boyutludan büyük hesaplama matrisleriyle işlemler yapılırken her katmanın

hesaplama matrisini temsil eden hücrelerde tutulmaktadır. Hücrelerde çok boyutlu matrisler

saklanmaktadır. Üçüncü yöntemde ise katmanlardaki hesaplama matrislerindeki her bir

hücre değeri hesaplama matrisindeki hücreyi temsil eden düğümlerde tutulmaktadır.

Neo4j yapılan çalışmada YSA model deposu olarak görev almakta ve modellerle

alakalı hesaplama işlemleri, tutulma işlemlerinin tamamı Neo4j üzerinde yapılmaktadır.

Çalışma gerçekleştirilirken ESA gibi büyük YSA’larda hesaplamalar yapılırken performans

kayıpları yaşandığı için, Neo4j veri tabanında "workspace" özelliği üzerinde index

tanımlanmıştır. Veriler yoğunlaştıkça Neo4j üzerindeki okuma hızlarının düşmemesi için

verilerin adreslendiği yerleri tutan index tanımı yapılması önerilmektedir. Index kullanımı

ile verilerin yerleri işaretlendiğinden Neo4j verileri disk üzerinde daha fazla yer

kaplayacaktır. Index eklendiğinde okuma hızı artarken yazma hızı yavaşlamaktadır.

Neo4j çizge veri tabanındaki sorguların hızını etkileyen bir diğer unsur ise Neo4j veri

tabanının, verileri disk üzerinden ya da ön bellekten sunmasıdır. Neo4j ilk kez çalıştırılıp

YSA modelleri üzerinden işlemler yapılmaya başlandığında daha yavaş çalışmakta,

kullanıldıkça hızlanmaktadır. Bunun nedeni Neo4j’nin ısınma denilen verileri çalışmaya

başladığı zaman disk üzerinden sunması, işlemler yapıldıkça bellek üzerinden sunmaya

başlamasıdır. Büyük YSA kümelerine ulaşılmaya başlandığında veri tabanında ısınma

işleminin yapay olarak uygulanması Neo4j tarafından önerilmektedir, böylece veri tabanı

çalışmaya başladığında YSA modelleri ön belleklenecek ve hızlı şekilde kullanıcıya işlem

yapması için sunulmaya başlanacaktır.

3.3. Model Oluşturma

Kullanıcılar site üzerinden sisteme giriş yaptıktan sonra ortak çalışma ekranı

üzerinden görsel olarak YSA modelini tasarlayabilmektedir. Yazılım üzerinde kodlama

yapılmadan sinir hücrelerini temsil eden düğümler ve düğümleri birbirleriyle tek ya da çift

yönlü bağlayan ilişkiler oluşturulabilmektedir. Düğümlerin bulunduğu katmanın

belirlenmesi etiketlerin (label) atanması ile yapılmaktadır. Örneğin girdi, gizli ve çıktı

40

katmanları başlıklarda belirtilmelidir. Düğümlerde ve ilişkilerde YSA başlangıç

parametreleri (ağırlıklar, bias vb.) model oluşturma aşamasında verilebilmektedir. Örneğin

mantık kapısı öğrenen bir YSA tasarlarken düğümlerde "data" özelliği tanımlanarak ikili

başlangıç değerleri verilebilirken ilişkilerde ise weight, kernel ve bias değerlerinin

başlangıç değerleri verilebilmektedir. Kernel dizisi bir evrişim filtresinin tamamını veya bir

parçasını temsil eden matristir. Hesaplamayı kolaylaştırmak için kernel matrisleri değişik

yapıda olabilmektedir. YSA modellerinin öğreniminde kullanılacak öğrenme oranı, eşik

değeri vb. öğrenme parametreleri bir düğümde tutularak YSA öğrenimini ilgilendiren

parametrelerin de çizgede tutulması sağlanmaktadır. Şekil 21’de öğrenim parametrelerinin

tutulması "setting" düğümünde gösterilmektedir. Şekil 13’te örnek bir XOR mantık kapısını

öğrenen YSA modelinin görsel olarak sistem üzerinden oluşturulmuş hali gösterilmektedir.

Şekil 13. Xor mantık kapısının yazılım üzerinden oluşturulmuş örneği

YSA modelleri tasarlanırken XML formatında tutulmaktadır. Tasarımı bitmiş olan

model sisteme kaydedilirken Cypher sorgu formatına çevrilmektedir. Şekil 14’te

tasarlanmış YSA’nın Cypher sorgu ekranı gösterilerek sisteme kaydedilmesi

sağlanmaktadır. Oluşturulmuş Cypher sorgusu herhangi bir Neo4j veri tabanında

çalıştırılarak modelin oluşturulması sağlanabilir.

Cypher sorgusu "CREATE" komutu ile yeni bir modelin oluşturulacağını ifade

etmektedir. Sorguda öncelikle düğümler sanal kimlik numaralarıyla beraber etiketleri yani

katmanları, içerdikleri özellikler yani hücre özellikleri tanımlanmaktadır. Sorgunun ikinci

bölümünde ise sanal kimlik numaralı düğümlerin arasındaki bağlantılar ifade edilmektedir.

Düğüm ve bağlantıların özellik alanında Json veri türünde diğer gerekli veriler

tanımlanmaktadır.

41

Şekil 14. Oluşturulan xor yapay sinir ağ modelinin cypher sorgusu çıktı ekranı

Tasarlanmış YSA’nın sisteme kaydedilmeden Neo4j simulatörüyle ön izlemesi

görüntülenebilmektedir. Böylece tasarımda oluşabilecek olası bir hatanın önüne

geçilebilmektedir.

3.4. Model Gözlemi

YSA modeli oluşturulduktan sonra geliştirilen yazılım üzerinden kullanıcılar

tarafından eş zamanlı olarak gözlemlenebilmektedir. YSA tahminleme, sınıflandırma ve

eğitim süreçleri görsel olarak tetiklenebilmekte ve izlenebilmektedir. YSA gözlemi

sırasında aşağıdaki işlemler kodlama yapmaya gerek olmadan gerçekleştirilebilmektedir.

• Test verileri girilerek tahminleme süreci başlatılabilir.

• Canlı izleme durdurularak modelin o anki durumu (ağırlıkları ve çıktı değeri) detaylı

incelenebilir.

• Öğrenim aktarımı gerçekleştirilebilir.

• YSA model versiyonlaması gerçekleştirilebilir.

• Modelin başlangıç durumundaki parametrelerine dönmesi sağlanabilir.

• YSA modeli silinebilir.

• Eğitim süreci başlatılabilir.

Şekil 15’te oluşturulan örnek bir modelin gözlem sırasındaki görüntüsü gösterilmiştir.

42

Şekil 15. Gözlemlenen ileri beslemeli yapay sinir ağı modelin görüntüsü

Küçük ağlarda canlı gösterim ve çizge veri tabanı sorgulaması fazla performansa

ihtiyaç duymadığından alan üzerinde Javascript desteğiyle yapılan SVG, yani ölçeklenebilir

vektör grafik çizimleri yeterli olmaktadır. Ancak evrişimli sinir ağları gibi onlarca ya da

yüzlerce katman ve ilişkiden oluşan ağların gösteriminde bu yöntem yetersiz kalmaktadır.

Bu yüzden WebGL (Leung ve Salga, 2010) tabanlı tarama ve grafik işleme yöntemi

kullanılmıştır. YSA izlemede iki yöntemle de izleme yapılabilmektedir.

Evrişimli sinir ağlarında YSA gözlemini örneklemek için MobileNet (Howard ve

diğerleri, 2017) modeli geliştirilen sisteme aktarılmıştır. MobileNet modeli mobil

cihazlarda nesne tespit problemini çözmek üzere eğitilmiş bir ESA modelidir. Şekil 16’da

çizge veri tabanına aktarılmış olan ESA modelinin gözlemi yapılmaktadır. MobileNet’in

görsel üzerinde nesne tespitini yapacağı evrişim ve filtre hesaplama matrisleri

katmanlardaki sinir hücrelerinde tutulmaktadır.

Şekil 16. Gözlemlenen ESA modelinin görüntüsü

YSA modelleri gözlemlenirken her düğümün görüntülenmesi her zaman istenen

yöntem olmayabilmektedir. Bu durumlarda ise, "Grupla" düğmesi ile düğümlerdeki

43

etiketler yani katman isimleri üzerinden gruplama yapılarak sadece katmanların

görüntülenmesi sağlanabilmektedir. Şekil 17’de gruplanmış ESA modelinin gösterimi

yapılmaktadır.

Şekil 17. Gruplanmış ESA modelinin görüntüsü

ESA gibi çok katmanı ve ilişkisi olan yapay sinir ağlarında kernel, bias, görüntülere

uygulanan gama, beta, moving variance, relu gibi işlem matrisleri çok büyük olabilmektedir.

Neo4j tek boyutlu diziler haricinde matris tutulmasına standart haliyle destek vermemektedir.

ESA’larda kullanılan işlem matrisleri ise çoğu zaman bir boyutlu dizilerden fazladır. Bu

nedenle ESA modellerinde düğümlerde veya ilişkilerde işlem matrislerini tutarken Json veri

tipinde veri tutma ile gerçekleştirilmiştir.

Şekil 18’de popüler olan Mnist el yazısı rakam tanıma veri seti için oluşturulan çok

katmanlı YSA modelinin ağırlıklar matrisindeki her bir hücrenin ayrı düğümde tutulmuş

hali gösterilmektedir.

Şekil 18. Mnist modelinin gösterimi

Şekil 19’da Mnist veri setinin eğitilmiş modelinin hesaplama aşamalarına göre

gruplanmış hali gösterilmektedir. Bu örnekte "input" girdi katmanına karşılık gelmektedir.

44

"kernel_0", "middleoutput_kernel_0", "bias_0", "middleoutput_bias_0" gizli katmanı ifade

etmektedir.

Şekil 19. Gruplanmış Mnist modelinin gösterimi

Model gözlemi yapılan sinir hücreleri ile düğümler arasındaki ilişkilerin kalınlıkları

tüm kernel sayıları içerisindeki oranlarına göre gösterilmiştir. Farklı özelliklere göre ilişkiyi

ifade eden çizginin kalınlığının ayarlanması mümkündür. İlişkinin ya da hücrenin üzerine

imleç ile gelindiğinde değeri gösterilmektedir. Şekil 23’te gözlem sırasındaki çizim

özellikleri gösterilmektedir.

3.5. Model Aktarımı

Model aktarımı, başka ortamlarda geliştirilmiş YSA modelinin birebir çizge

veritabanında oluşturulmasıdır. Geliştirilmiş modellerin saklanmasında H5 standartlaşmış

bir dosya biçimidir. Bu çalışmada H5 biçimindeki dosyaların çizge veritabanına aktarılması

gerçekleştirilmiştir. Model aktarıldıktan sonra geliştirilen yazılımın tüm özellikleri bu

model için kullanılabilir hale gelmektedir. Model aktarımını örneklemek için Bölüm 3.7’de

anlatılan hava durumu ile oyun oynama tahmini gerçekleştiren YSA modeli Keras çatısı

üzerinde eğitilmiş ve çizge veri tabanına aktarımı tamamlanmıştır.

Model aktarım sürecinde H5 model dosyaları önce Json işlenebilir formatına Python

kod parçacığıyla çevrilmekte daha sonra ise Json dosyası işlenerek Cypher sorgusuna

çevrilip çizge veri tabanına yazılmakta ve kullanıcıların çalışmasına sunulmaktadır. Şekil

20’de aktarım süreç adımları gösterilmektedir.

Şekil 20. Model aktarım süreci

45

3.6. Model Öğrenimi

Model öğrenimi oluşturulan veya aktarılan modelin girdi verileriyle eğitilmesini

anlatmaktadır. Geliştirilen yazılım ile eğitim yapılabilmektedir ancak performanslı bir

eğitim ortamı oluşturmak gibi bir amacı yoktur.

Model öğreniminde oyuncak problemlerden olan üç girdili AND mantık kapısını

öğrenen sinir ağı modeli oluşturulmuş ve öğrenme gerçekleştirilmiştir. Tablo 1’de üç girdili

AND kapısının doğruluk tablosu gösterilmektedir.

Tablo 1
Üç girdili AND doğruluk tablosu

Girdi 1 Girdi 2 Girdi 3 Çıktı

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Şekil 21’de AND öğrenimi gerçekleştiren çizge yapay sinir ağının oluşturulması

gösterilmektedir. Eşik değeri ve öğrenme oranı ayrı bir düğüm olarak tanımlanmaktadır. Bu

oluşturulan düğüm çizge veritabanında saklanıp istenilen modelle ilişkilendirilip

kullanılabilir. Girdi verileri ve beklenen değerler de çizge veritabanında tutulduğundan

doğrudan modele bağlanıp eğitim verisi olarak kullanılması sağlanabilmektedir. Örnek

model Perceptron öğrenmesi ile ağırlıkların güncellenmesi sağlanmaktadır.

Şekil 21. AND YSA modelinin oluşturulması

46

Şekil 22’de ortak çalışma sayfası üzerinden "and" modeli seçildikten sonra "Eğit"

düğmesine tıklanarak canlı şekilde takibi yapılan modelin 3 iterasyon sonrasında istenen

başarımı elde ederek durduğu gösterilmektedir. Düğümler arasındaki ağırlıkların

kalınlığının ölçütü "weight" parametresi olarak belirtilmiştir bu nedenle girdi ve gizli

düğüm arasındaki "0.2" değerli ilişkiler ince, gizli ve çıktı düğümü arasındaki ilişki kalın

olarak temsil edilmektedir.

Şekil 22. Eğitilmiş AND YSA modelinin eğitim takibi ve sonucu

3.7. Model Çalıştırılması

Model çalıştırılması eğitilmiş YSA modelinin girdiler gösterilerek çıktı üretmesini

sağlamaktır. Yapılan çalışmada örnek bir eğitilmiş model ile model çalıştırma denemesi

yapılmıştır. İleri beslemeli bir YSA modelinin çalıştırılarak doğru çıktılar üretmesi

beklenmektedir. Bu amaçla kullanılan oyuncak problemin veri seti Tablo 2’de

gösterilmiştir. Çıktılar evet, hayır şeklinde ikili olarak tanımlanmıştır. YSA modelinin

sayısal olarak verileri işleyebilmesi için hava koşullarının sayısal karşılıklarına ihtiyaç

duyulmaktadır. Hava durumu güneşli ise 1, kapalı ise 0, yağmurlu ise -1, rüzgar güçlü ise 1,

zayıf ise 0, nem normal ise 0, yüksek ise 1 şeklinde dönüştürülmüştür.

47

Tablo 2
Hava şartı oyun oynama veri seti

Hava Durumu Rüzgar Nem Oyun

Güneşli Zayıf Yüksek Hayır

Güneşli Güçlü Yüksek Hayır

Güneşli Güçlü Normal Evet

Güneşli Zayıf Yüksel Hayır

Güneşli Zayıf Normal Evet

Kapalı Zayıf Yüksek Evet

Kapalı Güçlü Normal Evet

Kapalı Güçlü Yüksek Evet

Kapalı Zayıf Normal Evet

Yağmurlu Zayıf Yüksek Evet

Yağmurlu Zayıf Normal Evet

Yağmurlu Güçlü Normal Hayır

Yağmurlu Zayıf Normal Evet

Yağmurlu Güçlü Yüksek Hayır

Yazılım çatısına aktarılmış olan hava şartlarına göre oyun oynama durumunu tahmin

eden eğitilmiş ileri beslemeli YSA modeli üç farklı hava durumunu ifade eden üç nöronu, üç

gizli nöronu, bir çıktı nöronunu içermektedir.

Yeni girdi verileriyle çıktı ürettirmek için test parametreleri arayüz üzerinden

girilerek modelin çalışması sağlanabilir. Örnek model ile kapalı hava durumu yani 0, zayıf

rüzgar yani 0, normal nem yani 0 değerleri girilerek model çalıştırılmıştır. Şekil 23’te

çalıştırılmış model 0.72 değerini üretmiştir Softmax fonksiyonu uygulayarak çıktı değerinin

beklenen çıktı değerlerine dönüşmesi sağlanır. Yani oyun oynanabilir çıktı değerine ulaşılır.

Gizli katmanda arasında Tanh aktivasyon fonksiyonu, çıktı katmanında Sigmoid aktivasyon

fonksiyonu kullanılmıştır.

48

Şekil 23. Hava şartlarına göre oyun oynama tahmini yapan YSA modelinin tahminleme
sonucu

3.7.1. Bir Model İncelemesi Mnist El Yazısı Rakam Tanıma

Mnist, LeCun ve Cortes (2010) tarafından 28 piksele 28 piksel gri skalada 60 bini

eğitim, 10 bini test el yazısı rakam görselinden oluşan veri setidir. Literatürde derin öğrenme

konusunda yapılan çalışmalarda sıklıkla kullanılmaktadır. Siyah beyaz skaladaki 20 piksele

20 piksel Nist veri setinin başarımını arttırmak üzere örtüşme önleme tekniği kullanılarak 28

piksele 28 piksellik görsellerin elde edilmesi ile Mnist veri seti oluşturulmuştur.

Bu bölümde incelenen evrişimli sinir ağında kullanılan örnek veriseti olan Mnist

verisetinin eğitimi Keras üzerinde gerçekleştirilmiştir. Aktivasyon fonksiyonu olarak Relu,

son adımda çok sınıflı sınıflandırıcılar için kullanılan Softmax aktivasyon fonksiyonu

eğitimde kullanılmıştır. Eğitilmiş model çizge veri tabanına aktarılırken H5 formatındaki

Keras model çıktısı öncelikle okunabilir Json formatına daha sonra Cypher sorgusuna

dönüştürülmüştür. Evrişim matris çarpımlarındaki her bir hücre bir düğüm olarak ifade

edilecek şekilde Cypher sorgusuna dönüştürülmüştür. YSA modelinin testleri geliştirilen

yazılım üzerinde, gri skaladaki 28 piksele 28 piksel alan üzerine çizim programları

yardımıyla çizilen rakamlarla yapılmıştır. Şekil 24’te tahminlemesi gerçekleştirilen çizim

programları üzerinden çizilen rakamlar gösterilmiştir.

Şekil 24. Mnist tahminlemesi için çizilen 4 rakamı

Çizilen rakam görselleri site üzerinden test parametresi sekmesi ile gelen dosya seç

bölümünden sisteme, 1’e 784’lük matris haline dönüştürülerek ve her bir piksel değeri gri

skalada çalışması için 255’e bölünerek normalize edildikten sonra arka yüz sunucusuna

49

gönderilmektedir. Aktarılan modelde kernel matrisini ifade eden 784 hücre üzerindeki

"data" değerleri ile çarpılarak bir sonraki hücredeki "data" alanına yazılmaktadır.

"middleoutput_kernel_0" hücresinde kernel matrisi ile çarpılmış görsel, bias değerleri ile

toplanarak "middleoutput_bias_0" hücresine aktarılmakta ve en küçük değerin bulunduğu

matris indisi modelin tahminlediği rakam olarak bulunmaktadır. Şekil 25’te tahminleme

sonucu yazılım üzerinden gösterilmektedir. Araştırmacı ilgilendiği nöron ve ilişkilerinde

model verilerini gözlemleyebilmektedir.

Şekil 25. Mnist yapay sinir ağının 4 rakamını tahminleme sonucu

3.7.2. Çizgelerde Örnek Bir Evrişim Hesaplaması

Evrişimli sinir ağlarında her katmanda bir ya da birden daha fazla hesaplama matrisi

bulunmaktadır. Bu katmanlar evrişim, havuzlama vb. matrisler içerebilmektedir. Birden çok

hesaplama matrisinin olduğu katmana filtre denilmektedir. Evrişim matrisleri genellikle bir

boyutludan fazla boyut içeren matrislerdir. Evrişim matrislerinde "stride" olarak

adlandırılan evrişim matrisinin girdi matrisi üzerinde her taramada kaç birim kaydırılacağı

parametresinin belirlenmesi gerekmektedir. Girdi matrisi üzerinde kenar özelliklerinin

öneminin kaybolmaması istenirse matrisin dört kenarına da belli sayıda sıfır değeri girilmesi

"padding" parametresinin belirlenmesiyle olmaktadır. "padding" değeri genellikle evrişim

matrisinin orta hücresinin, girdi matrisinin ilk hücresine gelecek şekilde belirlenmesiyle

ayarlanmaktadır. Evrişim hesaplaması sonucunda çıktı matrisinin boyutları girdi matrisinin

sütun ya da satır sayısı i, "padding" p, "stride" s, evrişim matrisinin sütun ya da satır sayısı k

olarak ifade edildiğinde Denklem 3.1’de göründüğü şekilde hesaplanmaktadır.

o =
i+2p− k

s
+1 (3.1)

Çalışmada kullanılan Neo4j özellik alanlarında temel veri tipleri olan "integer",

50

"float", "string", bir boyutlu dizi vb. değerleri saklamaya destek vermektedir. Çalışma

kapsamında bir boyuttan fazla boyut içeren matrisler Json veri türüne dönüştürülerek

düğümlerde tutulmaktadır. Bu sayede istenilen boyutta matrisin düğümlerde tutulması

sağlanmıştır.

Örnek bir 6x6 matris üzerinde "stride" değeri bir, "padding" değeri sıfır olan 3x3

evrişim matrisi ile bir evrişim hesaplaması yapılarak çıktıları Şekil 26’da gösterilmiştir.

Şekil 26. Girdi katman hücresi üzerine evrişim uygulanması

Geliştirilen yazılımda ele alınan evrişim örneğindeki girdi matrisi "input", evrişim

matrisi "kernel" ve çıktı matrisi "output" isimli düğümlerde tutulmaktadır. Evrişim

hesaplaması arka yüz sunucusunda yapılmaktadır. Şekil 27’de yazılım üzerinde evrişim

hesaplama çıktısı gösterilmektedir.

Şekil 27. Geliştirilen yazılımda evrişim hesaplaması

51

3.8. Model Versiyonlama

Yapay sinir ağlarında genellikle modelin en yüksek doğrulukta olduğu hali dosya

formatında saklanmaktadır. Ancak daha sonra modelin yeni veriler ile eğitilmesi veya aynı

modelin farklı öğrenme algoritması ve parametreleriyle eğitilmesi gibi durumlarda her bir

modelin ayrı bir versiyon olarak tutulması önem kazanmaktadır. Bu sayede modeller arası

karşılaştırma olanağı sağlanmış olur. YSA model eğitimi tek sefer gerçekleştirilecek bir

süreçten çok yinelenen bir süreç olarak değerlendirilmelidir.

Geliştirilen yazılım ile YSA modelleri çizgede tutulduğundan kullanıcı tarafından

belirlenen herhangi bir anda modelin bir versiyonu çizge veritabanında tutulabilmektedir.

Bu sayede geleneksel yöntemlerdeki dosya formatlı YSA’ların tekrar eğitim için gereken

dönüşüm ihtiyacı engellenmiştir. Model versiyonlarının aynı çizge ortamında bulunması

sağlanmaktadır. Böylece YSA’daki herhangi bir hata durumunda ya da performans

kaybında kullanıcının eski versiyona dönmesine olanak sağlanmıştır.

3.9. Öğrenim Aktarımı

Transfer öğrenimi diğer adıyla öğrenim aktarımı eğitilmiş bir YSA modelinde

edinilen öğrenimin yeni bir modele aktarılması veya bu öğrenimin kullanılmasıdır.

Öğrenim aktarımı ile geliştirilmiş bir modelin üzerine yeni sinir ağı katmanları eklenerek

farklı modeller oluşturulabilir. Bu sayede temel alınan modelin başarısı yeni model ile

geçilmeye çalışılır. Aynı problem tipinde eğitilmiş bir modelin bu şekilde kullanılması

zaman ve kaynak tasarrufu sağlar.

Popüler YSA yazılım kütüphaneleri ile büyük veri setleri üzerinde oluşturulmuş

modeller ince ayarlamalar yapılması için araştırmacılara sunulmaktadır. Bu modeller dosya

olarak tutulmaktadır. Bu model dosyalarının bilgisayarda kullanılabilir hale getirilmesi ve

değiştirilmesi süreci manuel olarak kodlama ile yapılabilmektedir. Öğrenim aktarımı

yapıldıktan sonra kullanıcının model katmanları hakkında derin bilgisi olmadan herhangi

bir katmanda değişikliği kodla yapmak zorunda olması pratikte zorluklara yol açmaktadır.

Donmuş modellerde sadece hesaplama için gerekli bilgi bulunmaktadır. Katman bilgisi ve

diğer üst bilgiler silinmiş olduğundan değişiklik yapmaya uygun değildir. Sadece ağırlık ve

hesaplama verileri değiştirilebilmektedir. Aktarılmış modellerin doğrudan

görselleştirilebilmesi sayesinde kullanıcılar model hakkında bilgi sahibi olabilmektedir.

Geliştirilen yöntem ile çizge YSA modelinin öğrenme aktarımı yeni oluşturulacak

modelin adı girilerek kodlamaya ihtiyaç duymadan yapılabilmektedir. Şekil 36’da arayüz

üzerinden öğrenim aktarımı süreci gösterilmektedir. Geliştirilen yazılım ile dışarıdan dosya

ile modelin aktarılması sağlanabilmektedir. Geliştirilen yöntem ile veritabanındaki

52

modeller dosya taşıma işlemine gerek olmadan doğrudan kullanılabilmektedir. Aktarım

yapıldıktan sonra yeni modelin yapısı kodlama yapmadan görsel olarak değiştirilmeye hazır

hale gelmektedir.

53

BÖLÜM 4
ARAŞTIRMA BULGULARI VE TARTIŞMA

4.1. Önerilen Yöntem Oluşturulurken Karşılaşılan Zorluklar

ESA modelleri çok boyutlu matrisler içerdiğinden Neo4j’nin özellik alanlarında

desteklenen bir veri tipi olmadığı için Json formatına çevrilerek tutulması sağlanmıştır. Bu

şekilde ESA modellerinin temsili Neo4j’de gerçeklenmiştir. Ancak Json halindeki matrisler

doğrudan hesaplama için kullanılamaz. Bu yüzden hesaplama aşamasında bazı durumlarda

veritabanında hesaplanabilir çizgeye dönüştürülmüştür. Bazı durumlarda da arka yüz

sunucusunda çalışacak şekilde matris veri tipine dönüştürülmüştür.

H5 dosya tiplerinde kaydedilen modellerin her bir katmanı bir veya birden fazla

matris olarak saklanmaktadır. Mnist veriseti üzerinde oluşturulan modeli aktarırken her bir

matris hücresinin bir düğüm olarak çizge veritabanında tutulması modelin

gözlemlenmesinde zorluklar yaşattığı tespit edilmiştir. Bu durumu çözmek için düğümlerin

gruplandırılarak gösterilmesi yöntemi seçilmiştir. Bu gruplar birebir bir katmanı ifade

etmeyebilir. Bir kaç grup birleşerek bir katmana karşılık gelebilmektedir. Bir diğer çözüm

olarak her bir matrisin bir düğüm olarak tutulması ile daha etkin görselleştirme

sağlanabilmiştir.

YSA’ların çizge veri tabanlarında temsili için üç farklı yöntem belirlenmiştir. İlk

yöntem YSA hücreleri üzerindeki verilerin (hücre girdisi ve aktivasyon fonksiyonu)

düğümlerde tanımlanan özellikler alanında tutulması şeklinde yapılmıştır. Sinir hücreleri

arasındaki bağlantı ağırlıkları düğümler arasındaki bağlantılarda (kenarlarda) tutulmuştur.

Örneğinde Bölüm 3.7’da bu yöntem gözlemlenebilmektedir. İkinci çok boyutlu matrislerle

hesaplamalar yapılan onlarca katmana sahip olabilen modellerde her bir hesaplama matrisi

bir düğüm olarak tutulmuştur. Bu durumda düğümler arasındaki bağlantılarda veri

tutulmamıştır. Örneğin Şekil 16’da bu yöntem gözlemlenebilmektedir. Bu yöntem ile

hücreler arasındaki hesaplama sonuçları sonraki düğüme girdi olarak aktarılmaktadır.

Üçüncü yöntemde hesaplama matrislerindeki her bir hücrenin bir düğüm olarak tutulması

sağlanmaktadır. Bu durumda düğüm bağlantılarında veri tutulmasına gerek yoktur. Örneğin

Şekil 18’de bu yöntem gösterilmektedir. Şekil 28’de soldan sağa birinci yöntemden üçüncü

yönteme örnekler gösterilmiştir.

54

Şekil 28. Yapay sinir ağlarının çizgelerde üç farklı temsili

İlk yöntem ile düğümler arasında iki sinir hücresinin, örneğin girdi ve kernel

hücrelerini ele alırsak, girdi hücresindeki veri ile ilişki üzerinde tutulan kernel değerlerinin

çarpım sonucunun kernel hücresinde yer alması sağlanabilmektedir. Çalışmada

incelenmemesine rağmen geri yayılımlı ağlar gerçeklendiğinde de, örnekten yola

çıkıldığında, kernelden girdiye ters yönlü ilişkiler üzerindeki hesaplama verileriyle geri

yayılım sonucu, girdi hücrelerine yazılabilecektir. Modellerin temsil ve sunumu açısından

ilk modelin kullanılması önerilmektedir. İkinci ve üçüncü yöntemler kendine has avantaj ve

dezavantaj takasları içermektedirler. Üçüncü yöntem temsili ve sunumu güçlendirirken

sistem kaynak gereksinimini arttırmakta, ikinci yöntemde ise kullanılan çizge veri

tabanında varsayılan olarak desteklenmemektedir.

Her tür YSA modelinin oluşturulabilmesi geliştirilen sistem üzerinden teorik olarak

mümkündür. Ancak bu çalışma kapsamında tüm öğrenme yöntemlerini ve YSA modelleri

gerçekleştirilmemiştir. Yapılabilirliğini göstermek adına örnek öğrenme yöntemleri ve

örnek modeller oluşturulmuştur. Önerilen yöntem ile model ve verinin aynı ortamda olması

sağlanarak literatüre katkı sağlamak amaçlanmıştır. Bu fikrin endüstriyel hayatta

gerçeklenmesine yardımcı olmak adına yaptığımız çalışma açık kaynak kodlu olarak

araştırmacılara sunulmuştur(Graph Based Neural Network, 2020)3.

4.2. Model Gösterimi ile Elde Edilen Kazanımlar

Geliştirilen sisteme aktarılan veya sistem üzerinde oluşturulan her model

görselleştirildiği ortamda üzerinde değişiklik yapılmasına da olanak sağlamaktadır. Bu

sayede modellerin değişik katmanlarının başka modellerin farklı katmanlarına bağlanması

gibi karmaşık işlemler görsel olarak yapılabilmektedir. Aynı şekilde veriler de modele girdi

olması için görsel olarak bağlanabilir. Bu sayede kullanıcıların oluşturdukları modellerin

3Graph Based Neural Network https://github.com/dogabaris/GraphBasedNeuralNetwork

55

girdi çıktı ilişkilerini rahatlıkla görmesi sağlanmaktadır. Modellere üst seviyede bakmaya

olanak verir. Geliştirilmiş modeller canlı olarak kullanılmak üzere kolaylıkla veriyle

buluşturularak sonuç üretebilmektedir. Bu sayede kodlama yapmaya ihtiyaç duyulmadan

bir modelin kullanılması sağlanmaktadır. Örnek bir modelin bu şekilde kullanılması Şekil

29’da ve Şekil 30’da gösterilmiştir.

Şekil 29. Hava koşulu ile oyun tahmini yapan modelin öğrenim aktarımı sonrası
düzenlenmesi

Şekil 30. Öğrenim aktarımı yapılan modelin düzenlendikten sonraki güncellenme ekranı

4.3. Yaygın Kullanılan Kütüphaneler İle Sunulan Yazılımın Karşılaştırılması

Bu bölümde Bölüm 2’de irdelenen yaygın kullanılan kütüphaneler olan Tensorflow,

Keras, PyTorch, Caffe kütüphaneleri ile tezde önerilen çizge veritabanlı yapay sinir ağlarının

özellikleri karşılaştırılmıştır.

Tensorflow, Keras ve Pytorch, Caffe kütüphanelerinde modeller sembolik hesaplama

56

çizgeleri olarak tanımlanmaktadır. Sembolik denilmesinin sebebi oluşturulan YSA

mimarilerinin bir yerde saklanmamasından ve tensörler olarak işletilmesinden

kaynaklanmaktadır. Hesaplama kelimesi ise çizgelerde nöronların ve bağlarının birebir

varlık olarak tanımlanmasının yapılmadan tensörlerde birer hesaplama elemanı olarak

kullanılmasından ileri gelmektedir. Bahsedilen kütüphanelerde tam bağlı YSA’lara odaklı

programlama arayüzleri sunulmuştur. Tam bağlı olmayan ağ katmanlarının doğrudan

oluşturulması desteklenmemektedir. Tez çalışmasında sunulan görsel arayüz oluşturucu ile

çizgelerde oluşturulan modellerin tam bağlı ya da kısmen bağlı mimarilerde çalışması

sağlanmıştır. Bir YSA modelinin birebir çizge olarak tutulması bu özelliği getirmiştir.

Tensorflow ve Keras statik hesaplama çizgelerini kullandığı için model mimarisinin

oluşturulmasından sonra kod üzerinde sembolik tanımlanan YSA modelinin öğrenim,

sınıflandırma ve tahminleme aşamaları devam ederken değişimine izin verilmemektedir.

Model topolojisi değiştiğinde öğrenimin yeniden başlaması gerekmektedir.

Pytorch, dinamik hesaplama çizgesi kullanmaktadır. Bu sayede model öğrenimi

sırasında hesaplama katmanları dinamik oluşturulmaktadır. Statik ve dinamik hesaplama

çizgelerini birbirinden ayıran temel fark statik hesaplama çizgelerinin öğrenim ve

hesaplamalardan önce tüm modeli tanımlaması, dinamik hesaplama çizgelerinin ise ilgili

katmanlar ve model yapılarının işletilme zamanları geldiğinde tanımlanmasıdır.

Çizge veritabanlı yapay sinir ağlarında ise öğrenim ve test aşamalarında model

mimarisi ve verileri veritabanındaki çizgelerde işlendiğinden her işlemde güncellemeler

yapılmakta ve saklanmaktadır. Böylece herhangi bir anda topoloji değişikliği ve parametre

değişikliği yapılmasını sağlayacak ortam oluşturulmuştur. Tez çalışmasında katman

çizgeleri öğrenim ve test aşamasında herhangi bir zamanda tanımlanabilir. Tüm süreçte

önce tanımlanarak öğrenim başlatıldıktan sonra herhangi bir zamanda tasarım değiştirilerek

işletilmeye devam edebilebilir.

Tez çalışmasında çevrim içi olarak YSA modellerine her an ulaşılabilmekte ve

işlemler gerçekleştirilebilmektedir. Eğitilmiş model dosyaya aktarılıp indirilmesi

gerekmektedir. İş birlikçi model geliştirme kısmen yapılmaktadır. Tezde sunulan yöntem ile

YSA süreç gözlemleri YSA topolojisi üzerinden neredeyse canlı olarak yapılabilmektedir.

Smilkov, Carter, Sculley, Viégas ve Wattenberg (2017) yaptıkları çalışma ile Tensorflow

modellerini canlı olarak manipüle edebilecekleri bir yöntem ortaya koyarak Playground

yazılımı geliştirmişlerdir. Böylece YSA uzmanı ve araştırmacısı olmayan kişilerin de YSA

süreçlerini hızla öğrenebilecekleri görsel etkileşimi Tensorflow altyapısıyla sunmuşlardır.

Tensorflow, Keras, Pytorch, Caffe ile geliştirilen YSA’larda öğrenim ve tahminleme

yapılırken katmanlar ve aralarındaki bağıntı ağırlıkları görüntülenememektedir. Geliştirilen

57

araçla eğitim sırasında bağlantıların ağırlık değerinin düşük veya yüksek olmasına göre

değişik şekillerde gösterimi yapılabilmektedir. Böylece oluşturulan modelde katmanlarda

bulunan hücre sayılarının gereğinden fazla olma durumu belirlenebilir. Eğitim başarısını

ölçen maliyet fonksiyonunun eğitim süresince değeri azalmadığı durumda eğer ağırlıkları

çok düşük değere sahip olan katmanlarda hücre sayısının fazla olduğu söylenebilir.

Sunulan tez çalışmasında YSA’ların tutulduğu çizge veritabanında yaygın

kütüphanelerden farklı olarak ekran kartı üzerinde hesaplamalar yapılmamaktadır. Büyük

veri setlerinde YSA eğitimleri yapılması gerektiğinde hesaplamaları grafik kartları üzerinde

gerçekleştirilmesi ileriki çalışmalarda yapılabilir.

4.4. Veritabanında Yapay Sinir Ağlarını Kullanan Çalışmalar İle Tez
Çalışmasının Karşılaştırılması

Yapay sinir ağlarının veritabanlarında saklanma fikri daha önce de düşünülmüş ve

gerçekleştirilmiştir. Daha önceki çalışmalarda genel olarak ilişkisel veritabanlarında meta

modelin ve işlem verilerinin tutulması ile YSA varlıkları nesne yönelimli olarak

saklanmaktadır. Bu yöntemle araştırmacılar geliştirdikleri model mimarilerini nesne

yönelimli olarak sisteme tanımlamaları gerekmektedir. Örneğin tek yönlü bağlantılar içeren

bir YSA mimarisini ilişkisel veritabanında tanımladıktan sonra çift yönlü bağlantılar içeren

yeni bir mimari için veritabanında yeniden tanımlama yapılması gerekmektedir. Model

mimarisinden bağımsız biçimde YSA varlıklarını birer veritabanı verisi olarak işlemek

genelleştirilebilir bir model saklama ortamı oluşturmaktadır. Bölüm 2.4.3’te

veritabanlarında saklanan ve işlenen YSA çalışmaları incelenmiştir.

NeuDB (Schikuta ve diğerleri, 1996) çalışmasında YSA varlıkları bir seferliğine tablo

olarak tanımlanmalıdır. Örneğin sinir ağ katmanları bir tabloda, katmanlardaki olası

bağlantıları ifade edebilecek bağlantılar bir tabloda, eğitim algoritmalarını işleyecek

parametreler başka bir tabloda tanımlanmalıdır. Birden çok ve birbirinden farklı YSA

modelini saklaması beklenen veritabanı, her modelde aynı özellikleri miras almak

zorundadır. Öngörülemeyen ya da yeni geliştirilecek bir model NeuDB ile

gerçekleştirileceğinde tablolarda yapılacak bir değişiklik tüm modelleri etkilemektedir. Her

YSA için ayrı tablolar ile modellerin saklanması yöntemi uygulanırsa süreç

genelleştirilebilir olmaktan çıkmaktadır. Nesne yönelimli tanımlama ile YSA modellerinin

genelleştirmek istenmesine karşın tablo tanımlarında değiştirilen özellikler tüm modelleri

etkilediğinden yönetmesi zor ve değişime kapalı bir yapı ortaya koymaktadır. İlişkisel

veritabanlarında model saklayan tüm çalışmalarda bu sorun mevcuttur. NeuDB’de model

oluşturulduktan sonra model mimarisi görsel olarak görüntülenememektedir. Eğitim ve

58

çalıştırma aşamasında modelde yapılan hesaplama sonuçları veritabanı üstünde

gözlemlenememektedir. YSA modeli oluşturmak, eğitmek ve test etmek için

araştırmacılara bir arayüz sağlanmamaktadır. Araştırmacılar modeli oluşturmak ve eğitmek

için veritabanı sorguları yazmak zorundadır.

NeuroOracle (Schikuta ve Glantschnig, 2007) çalışmasıyla NeuDB çalışmasındaki

yöntemi Oracle veritabanında gerçekleştirilmiştir. NeuroOracle’da da YSA varlıklarını

ifade eden nesneler bir kez tanımlanmalıdır. YSA modeli oluşturmak ve eğitmek için

veritabanı sorguları çalıştırılmak zorundadır. Araştırmacılara görsel bir arayüz

sunulmamakta ve eğitim süreçleri görsel olarak gözlemlenememektedir.

NeuroAccess (Schikuta, Brunner ve Schultes, 1998a) çalışmasında NeuDB’de ve

NeuroOracle’da gerekliliği vurgulanan bir ön yüz programı içermektedir. Bu çalışma ile

veritabanında tutulan yapay sinir ağlarının yapısı görselleştirilmekte, eğitimin her

adımındaki katman çıktıları liste şeklinde incelenebilmektedir. Ancak görsel olarak YSA

oluşturulamamaktadır. Schikuta (2002) yaptıkları NeuroWeb çalışmasıyla veritabanlarında

tutulan YSA’lara çevrimiçi erişim yöntemi sağlanmıştır. YSA’lara hem yerel bilgisayar

üzerinden hem de çevrimiçi olarak erişip eğitim gerçekleştirmek mümkündür. NeuroWeb

ile YSA oluşturulurken katmanlar kullanılmakta ve temsili olarak görselleştirilmektedir.

Katmandaki nöron sayıları ön yüzden değiştirilebilmektedir. Katman bağlantıları sadece

tam bağlı olabilmekte ve katman sayısı değiştirilememektedir. NeuroWeb çalışması ile

YSA konusuna hakim olmayan kişilerin dahi kolaylıkla YSA modeli oluşturabilmesinin

modellerin nesne yönelimli olarak veritabanlarında tutulması ile olacağına değinilmiştir.

N2Cloud (Huqqani ve diğerleri, 2010) çalışmasında YSA saklayan ve eğitimini

gerçekleştiren sunucuları bulut ortamında tutarak ölçeklenebilir ortam sağlamışlardır.

Böylece modelleri çevrime ihtiyaç duymadan paylaşabilmek mümkün olmuştur. N2Sky

(Schikuta ve Mann, 2013) çalışmasıyla ilişkisel veritabanlarındaki statik yapının dışında

büyük veride sıklıkla kullanılan NoSQL döküman veritabanı olan MongoDb kullanılmıştır.

Böylece genelleştirilebilir veri saklama şeklinin yapı bağımsız çalışması gerekliliğini

göstermişlerdir. Mongodb’de veriler yarı yapılandırılmıştır. İlişkisel veritabanlarındaki

tablolar Mongodb’de koleksiyonlara denk gelmektedir. Koleksiyon içindeki her bir veri

döküman olarak ifade edilmektedir. Koleksiyonlarda YSA varlıkları için özellikler ön

tanımlı olsa da farklı türde nöron verisi ve bağı içeren varlıklar saklanabilmektedir. Bu

yaklaşım YSA’lara ilişkisel veritabanlarından daha genelleştirilebilir bir saklama ortamı

sunmaktadır.

N2Sky (Schikuta ve Mann, 2013) ile araştırmacıların kendi üyeliklerine girerek

araştırma gruplarını ayırmıştır. Ancak tez çalışmasında önerilen sistemdeki gibi

59

araştırmacıların eğitim süreçlerini aynı anda görüntülemeye imkan vermemektedir. N2Sky

ile eğitim ve test süreçlerinin sonucu araştırma grubu tarafından görüntülenebilmektedir.

YSA süreçlerinde önemli bir yeri olan öğrenim aktarımına karşılaştırılan hiç bir

çalışmada değinilmemiştir. Önerilen yöntem ile hem versiyonlama hem de öğrenim

aktarımı yapılabilmektedir. Önerilen yöntem ile kodlama ya da sorgu yazmadan herhangi

bir anda modelin mimarisi, bağların ve nöronların özellikleri görsel olarak

değiştirilebilmektedir. Görsel model değişikliği yapılabilmesiyle nörondaki ve bağdaki

veriler kaybolmadan yeni mimari tasarlanabilmektedir. Tablo 3’te bu bölümde anlatılan

karşılaştırmalar özetlenerek sunulmuştur.

Tez çalışmasında oluşturulan araçlarda çizge veritabanı kullanılmaktadır. Çizgede

tasarlanan düğüm ya da ilişkilerde özellikler ve özellikte tutulacak veriler kullanıcıya

bırakılmıştır. Böylece çizgelerde tasarlanan YSA model varlıkları olan hücre ve

bağlantılarının zorunlu bir veri yapısı içermesi gerekliliği bulunmamaktadır. İlişkisel

veritabanlı çalışmalarda YSA model varlıklarının tüm özellikleri tanımlanarak

yapılandırılmaktadır. Bu tür YSA model saklaması yapmak statik veri yapısı olarak

adlandırılmaktadır. İlişkisel olmayan ve çizge veritabanlarında tutulan model varlıklarında

ise yapılandırma zorunlu değildir ve ilgili YSA model yapısı her an değiştirilebilmektedir.

Bu yüzden çizge veritabanlarında veri yapısı dinamiktir. Herhangi bir YSA modelinin

sistemde bulunan diğer modellerden farklı özellikler ve bağlantılar içerebilmesiyle farklı tür

YSA model süreçlerinin işletilmesi sağlanmıştır. Ancak kullanıcılar sistemde tanımlı

olmayan mimari tipinde bir model geliştireceklerinde eğitim ve test süreçlerinin bir kez

kodlanması gerekmektedir. Her çeşit YSA mimarisinde tahminleme ve öğretim teorik

olarak tez çalışmasında sunulan yöntem ile gerçekleştirebilmektedir. Önerilen yöntem ile

yeni bir mimari gerçekleştirileceğinde YSA modelini tekil tanımlayan bir özellik ve

katmanları ayırt edecek etiketler tanımlamak gereklidir. Önerilen yöntem ile diğer

çalışmaların aksine tüm model görsel olarak tasarlanabilmektedir, model oluşturmak için

veritabanı sorguları yazmaya gerek yoktur. Diğer çalışmalardan farklı olarak önerilen

yöntemde eğitim ve test sürecinde hesaplama sonuçları hücrelerde anlık olarak model

çizgesi üzerinden izlenebilmektedir. İlişkisel veritabanlarında çoktan çoka bağı olan

hücreler arasında fazladan bir tabloya ihtiyaç duyulmaktadır. Bu yöntem araştırmacının

veritabanındaki verilere bakarak gözlem yapmasını zorlaştırmaktadır. Çizge veritabanında

sorguların kendisi ve sonuçları doğal olarak görselleştirmeye yatkındır. Böylece gözlem

yaparken model varlıkları görsel olarak gözlemlenebilirken aynı zamanda hücrelerdeki

hesaplama sonuçları gözlemlenebilmektedir. Geliştirilen yöntem ile ön yüz sunucusu, arka

yüz sunucusu ve çizge veritabanı olarak üçe ayrılan önerilen sistem ile fazla yük alan

60

sunucu kaynakları arttırılarak hesaplama ölçeklenebilir hale getirilebilmektedir.

61

Ta
bl

o
3

V
er

ita
ba

nı
nd

a
Sa

kl
an

an
Y

ap
ay

Si
ni

rA
ğl

ar
ıİ

le
Ö

ne
ri

le
n

Ç
iz

ge
V

er
ita

ba
nl

ıA
ğl

ar
ın

K
ar

şı
la

şt
ır

ılm
as

ı

Ö
ze

lli
k

Ç
iz

ge
V

er
ita

ba
nl

ıY
SA

N
2S

ky
N

2C
lo

ud
N

eu
ro

W
eb

N
eu

ro
A

cc
es

s
N

eu
ro

O
ra

cl
e

N
eu

D
B

M
od

el
G

ör
se

lle
şt

ir
m

e
V

ar
K

at
m

an
Se

vi
ye

si
nd

e
Y

ok
V

ar
V

ar
Y

ok
Y

ok

M
od

el
Sa

kl
am

a
V

er
ita

ba
nı

Ç
iz

ge
İl

iş
ki

se
lv

e
İl

iş
ki

se
lO

lm
ay

an
İl

iş
ki

se
l

İl
iş

ki
se

l
İl

iş
ki

se
l

İl
iş

ki
se

l
İl

iş
ki

se
l

M
od

el
V

ar
lık

Y
ap

ıla
nd

ır
m

as
ı

D
in

am
ik

D
in

am
ik

St
at

ik
St

at
ik

St
at

ik
St

at
ik

St
at

ik

G
ör

se
lY

SA

M
od

el
iO

lu
şt

ur
m

a
V

ar
Y

ok
Y

ok
Y

ok
Y

ok
Y

ok
Y

ok

K
od

la
m

a
Y

ap
m

ad
an

Y
SA

M
od

el
iO

lu
şt

ur
m

a
V

ar
Y

ok
Y

ok
Y

ok
Y

ok
Y

ok
Y

ok

M
od

el
Sü

re
çl

er
in

i

G
öz

le
m

le
m

e
M

od
el

Ü
ze

ri
nd

en
M

et
ri

kl
er

le
M

et
ri

kl
er

le
M

et
ri

kl
er

le
M

et
ri

kl
er

le
M

et
ri

kl
er

le
Y

ok

H
es

ap
la

m
a

Ö
lç

ek
le

ne
bi

lir
liğ

i
A

rk
a

yü
z

su
nu

cu
su

ile
V

ar
V

ar
Y

ok
Y

ok
Y

ok
Y

ok

K
ul

la
nı

cı
Se

vi
ye

si
nd

e

E
ş

Z
am

an
lı

M
od

el
Ç

al
ış

tır
ılm

as
ı

V
ar

K
ıs

m
en

K
ıs

m
en

K
ıs

m
en

Y
ok

Y
ok

Y
ok

M
im

ar
iB

ağ
ım

sı
z

Y
SA

M
od

el
iO

lu
şt

ur
m

a
V

ar
V

ar
V

ar
V

ar
V

ar
V

ar
V

ar

M
od

el
A

kt
ar

ım
ı

V
ar

Y
ok

Y
ok

Y
ok

Y
ok

Y
ok

Y
ok

M
od

el
V

er
si

yo
nl

am
a

V
ar

Y
ok

Y
ok

Y
ok

Y
ok

Y
ok

Y
ok

M
od

el
le

ri
n

D
üz

en
le

nm
es

i
G

ör
se

l
K

od
la

m
ay

la
K

od
la

m
ay

la
K

od
la

m
ay

la
K

od
la

m
ay

la
K

od
la

m
ay

la
K

od
la

m
ay

la

62

4.5. Sunulan Yöntem ile Bir Modelin Tahminleme Süresinin Deneysel Olarak
Ölçülmesi

Çalışmanın öncelikli hedeflerinden birisi hesaplama performansı olmamasına karşın

YSA model süreçleri geliştirilen yazılım üzerinde gerçekleştirilirken kabul edilir sürelerde

sonuçlar üretmesi beklenmektedir. Bu bölümde kabul edilir sürede çıktı üretme denemeleri

deneysel olarak karşılaştırılmıştır. Bölüm 3.7.1’de incelenen ileri beslemeli görsel tanıma

modeli, geliştirilen yazılımda ve Keras üzerinde tahminleme çıktı üretme süreleri dikkate

alınarak gerçekleştirilmiştir.

Karşılaştırmalar Intel i7-7700HQ işlemcisine sahip ve 16 GB DDR4 bellekli, Nvidia

1050Ti ekran kartlı bir dizüstü bilgisayarda yapılmıştır. Tahminleme girdisi olarak 28

piksele 28 piksellik rakam görseli kullanılmıştır. Keras’ın 2.3.0 sürümü ile uyumlu ekran

kartı destekli Tensorflow kütüphanesinde arka arkaya yapılan on denemenin sonuçları elde

edilmiştir.

Keras ile olan denemelerde Tensorflow’un ekran kartı ile işlem yapan versiyon

kullanılmıştır. Kerasla yapılan her denemede, kod üzerinden modelin dönüşümleri

yapılarak Keras’a yüklenmesi, ekran kartına dağıtılması gerekmektedir. Önerilen yazılımda

YSA verisi üzerinde modelin tümünü kapsayacak bir dönüşüm işlemine gerek olmamakla

birlikte sadece hesaplamalar için işleme ihtiyaç bulunmaktadır.

Önerilen sistemde ilk sorgular önceki bölümlerde anlatılan ön ısıtma konusundan

dolayı yavaş çalışmakta ancak her sorgu geldiğinde daha hızlı cevaplar dönmeye

başlamaktadır. Keras tarafında ortalama korunmaktadır. Ekran kartının o anki yüküne göre

artmalar olmakla birlikte genel olarak ortalamaya yakın tahminleme sonuç zamanları elde

edilmektedir. Önerilen sistemde ön yüzden giden internet isteğinden tahminleme sonucu

elde edilene kadarki süre ölçümü yapılmıştır. Önerilen sistemde ekran kartı üzerinden

herhangi bir işlem yapılmamasına rağmen model çevrimi veya ekran kartına aktarımı için

dönüşüm ihtiyacı bulunmadığı için çok az bir fark ile hızlı sonuç ürettiği gözlemlenmiştir.

Deney sonucunda kabul edilebilir sürede tahminleme çıktısı üretilmiştir. Yapılan testlerin

sonucunda önerilen yazılımda en yavaş 3.76 saniyede, en hızlı ise 3.09 saniyede çıktı

üretilmiştir. Keras üzerinde gerçekleştirilen deneylerde en yavaş 3.66 saniyede, en hızlı ise

3.26 saniyede çıktı üretilmiştir.

63

BÖLÜM 5
SONUÇ VE ÖNERİLER

Tez çalışması ile yapay sinir ağlarını çizge veritabanlarında çalıştırmak için yeni bir

yöntem geliştirilmiştir. Geliştirilen bir yazılım ile araştırmacıların yapay sinir ağlarını

çizgelerle görsel olarak oluşturabilmeleri sağlanmıştır. Geliştirilen yazılım ile kullanıcılar

çizge veritabanında saklanan YSA modellerine çevrimiçi olarak her yerden

erişebilmektedir. Çizge veritabanında tutulan yapay sinir ağ modelleri kodlama gerekmeden

görsel olarak düzenlenebilmektedir. Sunulan yöntem ile modellerdeki eğitim ve test

süreçleri canlı olarak gözlemlenebilmektedir. Araştırma gruplarının aynı model üzerinde

ortaklaşa çalışabilmesi sağlanmıştır. Eğitimi tamamlanmış modelleri dosya formatlarına

dönüştürmeye gerek kalmadan paylaşmak mümkün hale getirilmiştir.

Yapay sinir ağı ile test ve eğitim yapılacak verilerin aynı ortamda olması sağlanmıştır.

Günümüzde veri saklarken sıklıkla kullanılan veritabanı verilerini veri seti olarak

kullanmak için ortam oluşturulmuştur. Önerilen yöntem ile yapay sinir ağları teoride

anlatıldığı şekilde birebir çizge veritabanında saklanmaktadır. Çizge veritabanlarında

saklanan yapay sinir ağları ile kodlama yapmadan ve dönüşüme ihtiyaç olmadan öğrenim

aktarımı yapılabilmektedir. Öğrenim aktarımı yapılmış modeller kodlama yapmadan görsel

olarak düzenlenebilmektedir. Böylece diğer yöntemlerdeki ön eğitimli modellere hakimiyet

zorunluluğu ve kodlamayla değişiklik yapmak zorunda olunmasının önüne geçilmiştir.

Yaygın kullanılan yapay sinir ağ yazılımlarında bazı eğitilmiş modelleri çizge

veritabanına aktarmak için bir yöntem oluşturulmuştur. Evrişimli sinir ağları önerilen

sisteme aktarılarak tahminleme gerçekleştirilmiştir. Model mimarisinden bağımsız biçimde

YSA varlıklarını birer çizge veritabanı verisi olarak işlenmesi ile genelleştirilebilir bir

model saklama ortamı oluşturulmuştur. Çizge veritabanlarında sinir ağlarını tutmak ilişkisel

veritabanlarında tutmaya göre daha esnek ve genelleştirilebilir olduğu sonucu elde

edilmiştir. Literatürde veritabanında yapay sinir ağları tutmayla ilgili çalışmalar yöntemin

gelişime açık yönlerinin olduğunu göstermektedir. Çalışmanın asıl amacı yapay sinir

ağlarını performanslı şekilde işletmek olmasa da yaygın kütüphanelerin performansında test

hesaplaması gerçekleştirebilmektedir. Tez kapsamında yapay sinir ağlarının çizge

veritabanlarında gerçeklenmesiyle genelleştirilebilir bir saklama ortamı oluşturulmuş ve

literatüre katkı sunulmuştur. Önerilen yazılım açık kaynak kodlu paylaşılarak geliştirmeye

açık haldedir. Önerilen yöntem ile çizge veritabanlı yapay sinir ağları olarak tanımlanan

yeni bir ekosisteminin ilk adımları atılmıştır.

Gelecek çalışmalarda çizge veritabanlarında saklanan yapay sinir ağlarındaki

64

hesaplamaların ekran kartlarında yapılmasıyla performans arttırılabilir. Genelleştirilebilir

yayılım algoritmaları çizge veritabanlarına uygulanarak çizge yapısının verimliliği

arttırılabilir. Gerçek hayat problemlerinden veri setleri çizge veritabanlarında oluşturularak

önerilen yöntemin büyük ve gürültülü veri setlerindeki yetkinliği karşılaştırılabilir.

65

KAYNAKLAR

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Erişim adresi:

https://www.tensorflow.org/ (Software available from tensorflow.org)

Bergtholdt, M., Kappes, J., Schmidt, S. ve Schnörr, C. (2010, 03). A study of parts-

based object class detection using complete graphs. International Journal of Computer

Vision, 87, 93-117. doi: 10.1007/s11263-009-0209-1

Bianchini, M., Gori, M. ve Scarselli, F. (2005). Inside pagerank. ACM Transactions on

Internet Technology (TOIT), 5(1), 92–128.

Bijari, K., Zare, H., Kebriaei, E. ve Veisi, H. (2020, Apr). Leveraging deep graph-based text

representation for sentiment polarity applications. Expert Systems with Applications,

144, 113090. Erişim adresi: http://dx.doi.org/10.1016/j.eswa.2019.113090 doi: 10

.1016/j.eswa.2019.113090

Chollet, F., et al. (2015). Keras. https://keras.io.

Cun, Y. L., Boser, B., Denker, J. S., Howard, R. E., Habbard, W., Jackel, L. D. ve Henderson,

D. (1990). Handwritten digit recognition with a back-propagation network. Advances

in neural information processing systems 2 (s. 396–404) içinde. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Duchi, J., Hazan, E. ve Singer, Y. (2011). Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121–

2159.

Elman, J. L. (1990). Finding structure in time. Cogn. Sci., 14(2), 179-211. Erişim adresi:

http://dblp.uni-trier.de/db/journals/cogsci/cogsci14.html#Elman90

Frosst, N., ve Hinton, G. (2017). Distilling a neural network into a soft decision tree.

Ginde, G., Saha, S., Mathur, A., Vamsi, H., Dey, S. R. ve Gambhire, S. S. (2018). Use of

nosql database and visualization techniques to analyze massive scholarly article data

from journals. arXiv preprint arXiv:1805.00390.

Gori, M., Monfardini, G. ve Scarselli, F. (2005). A new model for learning in graph

domains. Proceedings. 2005 ieee international joint conference on neural networks,

2005. (Cilt. 2, s. 729–734) içinde.

Graph based neural network. (2020). Erişim adresi: https://github.com/dogabaris/

GraphBasedNeuralNetwork

Grover, A., ve Leskovec, J. (2016). node2vec: Scalable feature learning for networks.

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

66

and data mining (s. 855–864) içinde.

Guia, J., Soares, V. G. ve Bernardino, J. (2017). Graph databases: Neo4j analysis. Iceis (1)

(s. 351–356) içinde.

Hamilton, W. L. (t.y.). Graph representation learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 14(3), 1-159.

Hamilton, W. L., Ying, R. ve Leskovec, J. (2017). Inductive representation learning on large

graphs. (s. 1025–1035) içinde. Red Hook, NY, USA: Curran Associates Inc.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York:

Wiley. Hardcover.

Holzschuher, F., ve Peinl, R. (2013). Performance of graph query languages: comparison

of cypher, gremlin and native access in neo4j. Proceedings of the joint edbt/icdt 2013

workshops (s. 195–204) içinde.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . . Adam,

H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications.

Humphreys, P. (2009, 08). The philosophical novelty of computer simulation methods.

Synthese, 169, 615-626. doi: 10.1007/s11229-008-9435-2

Huqqani, A. A., Li, X., Beran, P. P. ve Schikuta, E. (2010). N2cloud: Cloud based neural

network simulation application. The 2010 international joint conference on neural

networks (ijcnn) (s. 1–5) içinde.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . . . Darrell, T. (2014).

Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd

acm international conference on multimedia (s. 675–678) içinde. New York, NY, USA:

ACM. Erişim adresi: http://doi.acm.org/10.1145/2647868.2654889 doi: 10.1145/

2647868.2654889

Jordan, M. I. (1989). Serial order: A parallel, distributed processing approach. J. L. Elman

ve D. E. Rumelhart (Ed.), Advances in connectionist theory: Speech içinde. Hillsdale,

NJ: Erlbaum.

Kingma, D. P., ve Ba, J. (2014). Adam: A method for stochastic optimization. Erişim

adresi: http://arxiv.org/abs/1412.6980 (cite arxiv:1412.6980Comment: Published as

a conference paper at the 3rd International Conference for Learning Representations,

San Diego, 2015)

Kipf, T. N., ve Welling, M. (2016). Semi-supervised classification with graph convolutional

networks. CoRR, abs/1609.02907. Erişim adresi: http://arxiv.org/abs/1609.02907

Krizhevsky, A., Sutskever, I. ve Hinton, G. E. (2012). Imagenet classification with

67

deep convolutional neural networks. F. Pereira, C. J. C. Burges, L. Bottou ve

K. Q. Weinberger (Ed.), Advances in neural information processing systems 25 (s.

1097–1105) içinde. Curran Associates, Inc. Erişim adresi: http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Lecun, Y., Bottou, L., Bengio, Y. ve Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi: 10.1109/

5.726791

LeCun, Y., ve Cortes, C. (2010). MNIST handwritten digit database.

http://yann.lecun.com/exdb/mnist/. Erişim adresi[2016-01-14 14:24:11]:

http://yann.lecun.com/exdb/mnist/

Leung, C., ve Salga, A. (2010). Enabling webgl. Proceedings of the 19th international

conference on world wide web (s. 1369–1370) içinde. New York, NY, USA:

Association for Computing Machinery. Erişim adresi: https://doi.org/10.1145/

1772690.1772933 doi: 10.1145/1772690.1772933

Mcculloch, W., ve Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5, 127–147.

Minsky, M., ve Papert, S. (1969). Perceptrons: An introduction to computational geometry.

Cambridge, MA, USA: MIT Press.

Nekhaev, D., ve Demin, V. (2017, 01). Visualization of maximizing images with

deconvolutional optimization method for neurons in deep neural networks. Procedia

Computer Science, 119, 174-181. doi: 10.1016/j.procs.2017.11.174

Neo4j graph platform. (2007). Erişim adresi: http://www.neo4j.org/

Neuhaus, M., ve Bunke, H. (2004). A probabilistic approach to learning costs for graph

edit distance. Proceedings of the 17th international conference on pattern recognition,

2004. icpr 2004. (Cilt. 3, s. 389–393) içinde.

Neuhaus, M., ve Bunke, H. (2005). A graph matching based approach to fingerprint

classification using directional variance. Avbpa içinde.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S. (2019).

Pytorch: An imperative style, high-performance deep learning library. H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox ve R. Garnett (Ed.), Advances

in neural information processing systems 32 (s. 8024–8035) içinde. Curran Associates,

Inc. Erişim adresi: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style

-high-performance-deep-learning-library.pdf

Perozzi, B., Al-Rfou, R. ve Skiena, S. (2014). Deepwalk: Online learning of social

representations. Proceedings of the 20th acm sigkdd international conference on

68

knowledge discovery and data mining (s. 701–710) içinde.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6), 386-408.

Rumelhart, D. E., Hinton, G. E. ve Wilson, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323, 533-536.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. ve Monfardini, G. (2008). The graph

neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. ve Monfardini, G. (2009, January).

The graph neural network model. Trans. Neur. Netw., 20(1), 61–80. Erişim adresi:

https://doi.org/10.1109/TNN.2008.2005605 doi: 10.1109/TNN.2008.2005605

Schikuta, E. (2002). Neuroweb: an internet-based neural network simulator. 14th

ieee international conference on tools with artificial intelligence, 2002.(ictai 2002).

proceedings. (s. 407–412) içinde.

Schikuta, E. (2008). Neural networks and database systems. arXiv preprint

arXiv:0802.3582.

Schikuta, E., Brunner, C. ve Schultes, C. (1998a). The neuroaccess system. International

conference on artificial neural networks (s. 1183–1188) içinde.

Schikuta, E., Brunner, C. ve Schultes, C. (1998b). A relational neural network database

model. Nc (s. 937–943) içinde.

Schikuta, E., ve Glantschnig, P. (2007). Neurooracle: Integration of neural networks into

an object-relational database system. International symposium on neural networks (s.

1115–1124) içinde.

Schikuta, E., ve Mann, E. (2013). N2sky—neural networks as services in the clouds. The

2013 international joint conference on neural networks (ijcnn) (s. 1–8) içinde.

Schikuta, E., et al. (1996). Neudb’95: An sql based neural network environment. Progress

in neural information processing, proc. int. conf. on neural information processing,

iconip (Cilt. 96, s. 1033–1038) içinde.

Simonyan, K., ve Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. CoRR, abs/1409.1556. Erişim adresi: http://arxiv.org/abs/1409

.1556

Smilkov, D., Carter, S., Sculley, D., Viégas, F. B. ve Wattenberg, M. (2017). Direct-

manipulation visualization of deep networks. arXiv preprint arXiv:1708.03788.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.

(2015). Going deeper with convolutions. Computer vision and pattern recognition

(cvpr) içinde. Erişim adresi: http://arxiv.org/abs/1409.4842

69

The HDF Group. (2000). Hierarchical data format version 5. Erişim adresi: http://www

.hdfgroup.org/HDF5

Tompson, J., Jain, A., LeCun, Y. ve Bregler, C. (2014). Joint training of a convolutional

network and a graphical model for human pose estimation.

Varda, K. (2008, 6). Protocol buffers: Google’s data interchange format (Tech.

Rep.). Google. Erişim adresi: http://google-opensource.blogspot.com/2008/07/

protocol-buffers-googles-data.html

Yahia, M. E., ve Elsawi, A. M. (t.y.). Neural database model.

Yao, Y., ve Holder, L. B. (2015). Scalable classification for large dynamic networks. 2015

IEEE International Conference on Big Data (Big Data), 609-618.

Zednik, C. (2019, 12). Solving the black box problem: A normative framework for

explainable artificial intelligence. Philosophy and Technology. doi: 10.1007/s13347

-019-00382-7

70

EKLERİ

I

EK 1. Önerilen Yazılımın Diğer Görselleştirme Arayüzleri

Şekil 31’de araştırmacıların kayıt olma ekranında araştırmacıdan kullanıcı adı, ad, soyad,

parola bilgilerinin girilmesi istenmektedir.

Şekil 31. Araştırmacının sisteme kayıt olma ekranı

Bilgilerle kayıt olan kullanıcı Şekil 32’de kullanıcı adı ve parolası ile ortak çalışma

sistemine giriş yapabilmektedir. Örnek olarak, projenin hızlıca incelenebilmesi adına "test"

kullanıcı adı ve "test" parolasıyla kullanıcı oluşturulmuştur.

Şekil 32. Araştırmacının sisteme giriş ekranı

Şekil 33’te ortak çalışma ekranı gösterilmiştir. Site üzerinden ulaşılan bölümler temel

olarak bu şekilde 3 ana bölüme ayrılmaktadır. Beyaz alanda model düzenlemeleri ve

gösterimi görsel olarak yapılırken, sağ üstteki menüden model işlemleri, soldaki menüden

ise örnek modellerin sisteme aktarımı, yeni model oluşturulması, modellerin listelenmesi

yapılmaktadır.

II

Şekil 33. Araştırmacıyı giriş yaptıktan sonra karşılayan ortak çalışma alanı

Şekil 34’te düğüm düzenleme ekranı üzerinde örnek "Başlık", "Özellikler" parametrelerinin

girişi gösterilmiştir. "Kaydet" dendikten sonra görsel YSA oluşturucusu ilgili olan

nörondaki verileri değiştirmektedir.

Şekil 34. Düğüm düzenleme ekranı

Şekil 35’te "Tip" ve "Özellikler" parametrelerinin örnek girişleri gösterilmiştir. "Tip"

bölümü etiket olarak çalışmaktadır. "Özellikler" bölümünde benzersiz bir "workspace"

verisinin girilmesine ihtiyaç bulunmamaktadır. "Özellikler" bölümünde genellikle

ağırlıklar, sapma ve kernel değerleri yer almaktadır. Düğüm düzenle ekranıyla aynı

mantıkta nöronlar arasındaki ilişkilere çift tıklama yapılarak erişilmektedir.

III

Şekil 35. İlişki düzenleme ekranı

Şekil 36’da öğrenim aktarımı yapılacak yeni modelin workspace ismi sorulmakta ve hali

hazırdaki modelin bilgileri ile yeni model oluşturulmaktadır. Böylece yeni modelde

öğrenim aktarımı yapılmış olan modelin hem yapısı hem de öğrendiği parametreler

aktarılmış olmaktadır.

Şekil 36. Öğrenim aktarım ekranı

IV

EK 2. H5 Model Yapısı ve Aktarımı

H5 dosyaları "groups" ve "datasets", "root", "apiVersion" anahtar değerlerini içermektedir.

"groups" bölümü katmanların mimarisi, üst bilgileri ve birbirlerine olan bağlantılarını

içermektedir. "datasets" bölümü katmanlardaki işlem matrislerini ve katman verilerini

içermektedir. "root" bölümü YSA’nın başladığı düğümün GUID formatında kimlik bilgisini

içermektedir, bu bölüm kullanılarak YSA modelinin başladığı katmandan itibaren

ilerlenerek taraması yapılmakta ve Cypher sorgusuna çevrilmektedir. Cypher sorgusunda

olduğu gibi her katmanın kendine özel tekil GUID kimlik numaraları bulunmaktadır. YSA

model bağlantıları ağaç yapısına benzer şekilde tekillik sağlayan katmanlar arasında GUID

değerler ile yapılmaktadır. "groups" bölümünde YSA modelinin her katmanının adı

listelenmektedir ancak sırası her zaman doğru değildir. Sıra farkından dolayı Cypher

sorgusu oluşturulurken, "groups" alanındaki liste rehber liste olarak kullanılmakta ancak

YSA’yı ve ilişkilerini oluşturacak sorgu oluşturulurken, "root" alanından başlayarak bağlı

olduğu katmanların sırası ile geliştirilen yazılım çatısı ile çizge veri tabanında

oluşturulmaktadır.

V

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı : Doğa Barış Özdemir

Doğum Yeri :

Doğum Tarihi :

EĞİTİM DURUMU

Lisans Öğrenimi : Kocaeli Üniversitesi, Mühendislik Fakültesi, Bilgisayar

Mühendisliği Bölümü, 2017

Yüksek Lisans Öğrenimi : Çanakkale Onsekiz Mart Üniversitesi, Lisansüstü Eğitim

Enstitüsü, Bilgisayar Mühendisliği Anabilim Dalı, 2020

Bildiği Yabancı Diller : İngilizce

BİLİMSEL FAALİYETLERİ

a) Yayınlar

1) SCI

b) Bildiriler

1) Uluslararası

2) Ulusal

The Use of Graph Databases for Artificial Neural Networks, Çanakkale Onsekiz Mart

University Journal of Graduate School of Natural and Applied Sciences

Sıcaklık Nem Endeksi (SNI) Kullanılarak Arduino Tabanlı Düşük Maliyetli Bir Klima

Otomasyon Cihazının Tasarımı, Türk Tarım ve Doğa Bilimleri Dergisi

Görüntülerdeki Araba Nesnelerinin Belirlenmesi İçin Derin Öğrenme ile Bir Model

Eğitilmesi, Akademik Bilişim Konferansı 2018

Bir E-Burun Sisteminin Arduino Tabanlı Dönüşümünün Yapılması, 1st International

Congress on Agricultural Structures and Irrigation

İŞ DENEYİMİ

Çalıştığı Kurumlar ve Yıl : Argelog, 2017-2019

Shopi, 2019-2020

VI

Hepsiburada, 2020-Halen

İLETİŞİM

E-posta Adresi

ORCID :

VII

