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OZET

B-SPLINE FONKSiYONLAR YARDIMIYLA SONLU ELEMANLAR
YONTEMININ BAZI UYGULAMALARI

KILING, Isil Ozge
Yiiksek Lisans Tezi, Matematik Anabilim Dal
Tez Damsmani: Do¢. Dr. Ahmet BOZ
Subat, 2021, 83 sayfa

Kismi tiirevli diferansiyel denklemler, lineer ve lineer olmayan kismi tiirevli
diferansiyel denklemler olarak iki sinifta incelenebilir. Uygulama alanlarina bagl olarak
da cesitleri kendi iglerinde artmaktadir (Debnath, 2011). Bu yiiksek lisans tezinde,
zamana ve konuma bagl bazi bir boyutlu lineer olmayan kismi tiirevli diferansiyel
denklemler i¢in niimerik ¢oziim arastirilacaktir. Model problem olarak, KdV Burgers,
Gardner, Adveksiyon-Difiizyon, MRLW denklemleri segilecektir. Coziimleri
arastirirken zaman ayristirmasi i¢in Crank-Nicolson yontemi, konum ayristirmasi igin
ise Galerkin yoOntemi c¢alisilacaktir. Bu nilimerik yontemler, model problemlere

uygulanacaktir.

IIk boliimde ileriki boliimlerde ihtiyag duyulacak bazi temel kavramlar
agiklanmustir. Ik olarak solitary dalgalar, soliton, hata normlari, sonlu farklar yontemi,
sonlu elemanlar yontemi, Galerkin yontemi ve kollokasyon yontemi tanitilmistir. Spline
fonksiyon kavrami anlatildiktan sonra kiibik B-spline ve genisletilmis kiibik B-spline
fonksiyonlar tanimlanmistir. Bu boliimiin sonunda, sonraki bdliimlerde sayisal ¢oziimii
arastirilacak olan KDV Burgers Denklemi, Gardner Denklemi, Adveksiyon - Difiizyon

Denklemi, Diizenlenmis Uzun Dalga Denklemi i¢in literatiir taramas1 yapilmistir.

Diger bolimlerde sirasiyla, KDV Burgers, Gardner, Adveksiyon - Difiizyon,
Diizenlenmis Uzun Dalga (MRLW) denklemlerinin genisletilmis kiibik B-spline
yontemiyle sayisal olarak ¢oziimleri incelenmistir. Her biri igin ikiser test problemi, tam

sonuglarla 6nerilen yontemi karsilagtirmak i¢in kullanilmistir.

Sonug bolimiinde genisletilmis kiibik B-spline yonteminin bu denklemlere

uygulanis1 hakkinda elde edilen sonuglar karsilastirilmistir.

Anahtar Kelimeler: Genisletilmis B-spline, KDV Burgers Denklemi, Gardner
Denklemi, Adveksiyon-Difiizyon Denklemi, Diizenlenmis Uzun Dalga

Denklemi.



ABSTRACT

SOME APPLICATIONS OF FINITE ELEMENT METHOD WITH B-SPLINE
FUNCTIONS

KILING, Isil Ozge
Master Thesis, Deparment of Mathematic
Supervisor: Do¢. Dr. Ahmet BOZ
February, 2021, 83 pages
Partial differential equations can be examined in two classes as linear and
nonlinear partial differential equations. Depending on the application areas, the varieties
are increasing in themselves. In this master thesis, the numerical solution will be
investigated for some one-dimensional nonlinear partial differential equations
depending on time and position. As the model problem, KdV Burgers, Gardner,
Advection-Diffusion, MRLW equations will be chosen. while researching solutions,
Crank-Nicolson method will be used for time parsing and Galerkin method will be used
for location parsing. These numerical methods will be applied to model problems. In the
first part, some basic concepts that will be needed in the following chapters are

explained.

Firstly, solitary waves, soliton, error norms, finite difference method, finite
element method, Galerkin method and collocation method are introduced. After
explaining the concept of spline function, cubic B-spline and expanded cubic B-spline
functions are defined. At the end of this chapter, literature review has been made for
KDVB Equation, Gardner Equation, Advection-Diffusion Equation, MRLW Equation,

whose numerical solution will be investigated in the following chapters.

In other chapters, numerical solutions of KDV Burgers, Gardner, Advection -
Diffusion, Modified Regularized Long Wave (MRLW) equations by expanded cubic B-
spline method, respectively, have been examined. Two test problems for each were used

to compare the proposed method with the exact results.

In the conslusion part, the results obtained about the application of the

expanded cubic B-spline method to these equations are compared.

Keywords: Extended B-spline, KDV Burgers Equation, Gardner Equation, Advection -
Diffusion Equation, Modified Regularized Long Wave Equation.
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GIRIS

Bu calismada zamana ve konuma bagli bazi bir boyutlu lineer olmayan kismi
tirevli diferansiyel denklemler icin niimerik ¢oziim arastirilacaktir. Model problem
olarak, KdV Burgers, Gardner, Adveksiyon-Difiizyon, MRLW denklemleri segilecektir.
Coziimleri arastirirken daha az hatayla sonuglar elde edebilmek igin zaman ve konum

ayristirmasi, Crank-Nicolson yontemi ve Galerkin yontemi kullanilarak yapilacaktir.

Ik béliimde solitary dalgalar, soliton, hata normlari, sonlu farklar yéntemi,
sonlu elemanlar yontemi, Galerkin yontemi ve kollokasyon yontemi tanitilmistir. Spline
fonksiyon kavrami anlatildiktan sonra kiibik B-spline ve genisletilmis kiibik B-spline
fonksiyonlar tanimlanmistir ve bu fonksiyonlarinin sinir sartlarindaki ¢6ziim kiimeleri
incelenmistir. Bu boliimiin sonunda, sonraki boliimlerde sayisal ¢ozliimii arastirilacak
olan KDV Burgers Denklemi, Gardner Denklemi, Adveksiyon - Difiizyon Denklemi,

Diizenlenmis Uzun Dalga Denklemi i¢in literatiir taramasi yapilmistir.

Diger boliimlerde sirasiyla, KDV Burgers, Gardner, Adveksiyon - Difiizyon,
Diizenlenmis Uzun Dalga (MRLW) denklemlerinin genisletilmis kiibik B-spline
yontemiyle sayisal olarak ¢6ziimleri incelenmistir. Zaman ayrisimi igin Crank-Nicolson
metodu kullanilmistir, konum ayrisimi i¢in ise kollokasyon metodu kullanilmistir Her
biri igin ikiser test problemi, tam sonuglarla Onerilen yontemi karsilastirmak igin
kullanilmistir. Farkli test problemleri ve farkli parametreler i¢cin elde edilen tiim
sonuglar incelendiginde genel olarak A” nin sifirdan farkli degerleri igin elde edilen hata
normlari, A = 0 durumundaki hata normu ile karsilastirilmistir. Boylece genisletilmis

kiibik B-spline yontemi ile kiibik B-spline yontemi kiyaslanmistir.

Sonug boliimiinde genisletilmis kiibik B-spline yonteminin bu denklemlere
uygulanis1 hakkinda elde edilen sonuglar karsilastirllmistir. Grafiklere bakildiginda
genisletilmis  kiibik B-spline yOnteminin dalganin hareketini 1yt modelledigi
gorilmistiir. Problemi ¢6zmedeki basarist agisindan bakildiginda benzer tipteki kismi
tiirevli diferansiyel denklemlerin sayisal ¢coziimleri arastirilirken genisletilmis kiibik B-

spline metodunun kullanilmas tavsiye edilir.



BIiRINCi BOLUM

TEMEL KAVRAMLAR



1.1. KULLANILAN DENKLEMLER VE YONTEMLER

Bu boéliimde, diger boliimlerde kullanilacak olan temel kavramlardan kisaca
bahsedilmistir. {lk olarak soliton-solitary dalgalar, hata normlari, sonlu farklar ve sonlu
elemanlar yontemleri 6zetlenmistir. Galerkin ve kollokasyon yontemleri hakkinda bilgi
verilmistir. B-Spline fonksiyonlardan kiibik B-Spline ve genisletilmis kiibik B-Spline
fonksiyonlar ¢oztimlenmistir. Tezde sayisal ¢oziimleri arastirilacak olan, KdV Burgers,

Gardner, Adveksiyon-Diflizyon, MRLW denklemleri literatiir taramasi ile tanitilmstir.

1.1.1. Solitary Dalgalar ve Soliton

Enerjinin tasinmasini saglayan ve bir ortamda veya boslukta yayilan
titresimlere dalga denir. Bilinen en yaygin dalga 6zelligi gosteren titresimler ses, 1sik,
atomun icindeki tanecik hareketleri ve suda ilerleyen yiizey dalgalaridir. En basit
dalgada bile titresimler, sabit bir frekans ve dalga boyu ile periyodik olarak salinim
yaparlar (Sekil 1.1).

Dralga bayu

Zaman

T - - - — —

Eir salimim

Frekans: Birim zamandaki sahmmlarn sayisi

Sekil 1.1: Basit bir dalga profili.

Ses dalgalar1 mekaniksel dalgalardir. Mekaniksel dalgalar yayilabilmek i¢in bir
ortama ihtiya¢ duyarlar bunun aksine elekromanyetik dalgalar bir ortama gereksinim
duymazlar boslukta bile ilerleyebilirler. Bir ortamdaki dalganin yayilmasi ortamin

ozelliklerine de baglidir (Crawford, 1968).



Dalgalar1 iki kisimda inceleyebiliriz bunlar; duran dalgalar ve ilerleyen
dalgalardir. Duran dalgalar, pozisyonu degismeyen dalgalardir. Bu dalgalar, dalganin
bulundugu ortamla dalganin hareket yoniiniin zit olmasi durumunda veya duragan
ortamda birbirine zit yonde hareket eden dalgalarin kesismesi sonucunda olusabilirler.
llerleyen dalgalar ise, bir noktadan baska noktaya madde tasimasi séz konusu

olmaksizin enerjinin yayilmast ile olusan dalgalardir.

Solitonlar lineer olmayan dalgalardir. Solitary dalga 6zelligine sahiptir yani
sekli ve hiz1 degismeden yayilan dalgalardir ayrica parcacik 6zelligine sahiptir yani
karsilikli carpigsmaya karsit kararhidir ve carpisma sonrasinda kendi Ozelliklerini

koruyabilirler (Wadati, 2001).

1.1.2. Hata Normlari

Coziimil yapilacak olan baslangic smir deger problemleri igin Onerilen
yontemin dogrulugunu ve gecerliligini kontrol etmek amaciyla hata normlar1 kullanilir.

L, ve L, olarak ifade edilen hata normlar1 asagidaki sekilde tanimlanir.

Lz = \/h27=0 |u]' r— Ujlz
Lo ="y — U

Burada u; baglangi¢ smir deger probleminin tam ¢dziimiinii, U;’de baslangig

siir deger probleminin niimerik ¢oziimiinii ifade eder.

1.1.3. Sonlu Farklar Yontemi

Fen ve miihendislik alanlarindaki fiziksel olaylar1 modelleyen problemler
genellikle diferansiyel denklem sistemleri ile ifade edilir. Bu denklem sistemleri; adi
diferansiyel denklem sistemleri veya kismi tiirevli diferansiyel denklem sistemleridir.
Bu denklem sistemlerinin sayisal ¢oziimlerinin olmadig1 ya da ¢6ziimlerin ¢ok karmasik
oldugu durumlarda, bu denklemleri ¢6zebilmek icin sayisal yontemler kullanilmaktadir.
Sonlu farklar ve sonlu elemanlar metotlar1 bu yontemlerden ikisidir (Dag, Irk, & Sari,
2013).

Sonlu farklar metodu bir diferansiyel denklemin tanim araligini, belirli sayidaki

alt araliklara ayirarak her bir boliinme noktasindaki tiirev degerleri yerine, sonlu fark



yaklasimlarinin  yazilmasidir. Bu yontemle diferansiyel denklem kolaylikla

¢oOziilebilecektir.

Bir bagimsiz degisken igeren ifadeler i¢in sonlu fark yaklasimlari, Taylor serisi

yardimiyla elde edilir. Sonlu fark yaklagimini elde etmek igin oncelikle [a, b] konum

araligi, N bir pozitif tamsay1, h = (b - a)/N olmak iizere
Xy =a+mh, m=0,1,.. N (1.2

formundaki bolinme noktalarina ayrilsin. Bu durumda, u(x) fonksiyonu ve tiirevleri
tanim aralig tizerinde siirekli olmak tizere, u(x,, + h) ve u(x,, — h) ifadelerinin x,,

noktasindaki Taylor seri agilimlari

u(xy, + h) = ulxy) + huy, (xp,) + uxx(xm) + uxxx(xm) + - 1.2)

Uy — h) = ulxy) — huy, (xp,) + uxx(xm) 3 uxxx(xm) + - (1.3)

olarak yazilabilir. Konuma gore birinci tiirev i¢in sonlu fark yaklagimi elde etmek

istenirse (1.2-1.3) esitliklerinden u, (x,,) teriminin ¢ekilmesi sonucunda

uQem+h)—u(xm)

h + uxx () + uxxx(xm) + - (1.4)

Uy (X)) =

u(xm)—ulxm—h)

() = 2o

F () = ot () + (1.5)

yazilabileceginden u ifadesinin x,, noktasindaki birinci tiirevi

(i) = SR 4 (1) 5 (ut), = 22204 O (), (1.6
ulxm)—ulxm—h) Um—Um-1
() = SRR 1 0(h) = (1), = “En 4 O(p), w7

formunda yaklagik olarak bulunabilir. (1.6-1.7) ile bulunan yaklasimlar sirasiyla ileri ve
geri fark yaklasimlar1 olarak adlandirilir. Her iki yaklasimda da goriildiigii gibi, seri
belli bir yerden kesilmistir. Dolayisiyla bu kesme islemi sebebiyle bir hata olusacaktir.
Olusan hatalar, serinin kesildigi yerden sonraki ilk terime gore degerlendirilir ve O(.)
ile gosterilir. Hatanin derecesi ne kadar yiiksek olursa yaklagim da genelde o kadar iyi
olacaktir. Eger hatanin derecesi ylikseltilmek istenirse (1.3) esitligi, (1.2) esitliginden

cikarilir ve diizenlenirse

u(xm+h)—u(x,—h)

2
- +0(h?),

Uy (xm) =



() = 2L 1 0(h?), (1.8)

formunda birinci tiirev i¢in merkezi fark yaklagimi da bulunabilir (Irk, 2007).
1.1.4. Sonlu Elemanlar Yontemi

Sonlu elemanlar yontemi fen ve miihendislik alanlarinda karsilasilan
problemlerin ¢oziimiinde sik¢a kullanilir, ayrica bu yontem kismi tiirevli diferansiyel
denklemlerin ve integral denklemlerin yaklasik ¢6ziimlerini bulmak i¢in de kullanilan
bir niimerik yontemdir. Bu yontem ile 1s1 transferi, akigkan akisi, yapisal analiz,
elektromanyetik potansiyel ve kitle tagimaciligi gibi alanlarda ortaya ¢ikan problemlerin

¢oziimleri arastirilabilir (Burnett, 1987).

Sonlu elemanlar yonteminde problemin ¢oziim bolgesi, alt bolgelerin birlesimi
olarak gosterilir. (Reddy, 1993), bu yontemi antik matematikgilerin Q sayisinin degerini
hesaplayabilmek i¢in kullandiklarin1 ve bu yontemle (1 sayisinin yaklasik 40 basamagini
dogru hesaplayabildiklerini anlatmistir. Bu hesaplamalar i¢in bir ¢gember sonlu sayida
kenarlar1 olan bir ¢okgen olarak gosterilmis ve bu ¢okgenin her bir kenar1 sonlu eleman

olarak ele alinmistir.

Sonlu elemanlar metodundaki amag karmasik bir problemi basite indirgeyerek
¢Ozlimii kolaylastirmaktir. Bunun i¢in problem, uygun sekilde seg¢ilen birgok alt
elemana boliiniir bu elemanlar “diiglim” adi verilen ve anlamli numaralandirilan
noktalarda problemin yapisina uygun olarak birlestirilince denklem takimlari elde edilir.
Bu islemden sonra, ifade edilmek istenen biiyiikliigiin bolge icerisinde degisimini
gosteren bir interpolasyon fonksiyonu belirlenir. Fonksiyon gercege yakin segildikge
¢oziime yaklasim iyi olur. Asil problem basit bir probleme indirgendiginden kesin
sonug yerine yaklasik bir sonug elde edilmektedir (Clough, 1960; Hillier & Lieberman,
1974; Hinton & Owen, 1977; Moaveni, 2003; Segerlind, 1976; Zienkiewicz & Morgan,
2006).

Sonlu elemanlar yonteminin integral formlar1 varyasyonel ve agirlikli rezidii
yontemleri olmak {izere iki farkli yoldan elde edilir. Varyasyonel yontemler genelde
fonksiyonel olarak bilinen 6zel bir integral bagintisinin maksimum veya minimumunu
olusturan noktasal parametreleri bulmay1 amaglar. Fonksiyonelin ekstremumunu iireten
¢Ozlim smir sartlari1 da saglar ancak bu fonksiyonelin bulunmasi bazen ¢ok zor
olmakta bazen de miimkiin olmamaktadir. Bu nedenle orjinal diferansiyel denklemden

integral formunun elde edildigi ¢esitli agirlikli rezidii yontemleri mevcuttur.
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L bir lineer diferansiyel operator, f(x) bilinen bir fonksiyon, u(x) aranan ¢6ziim ve (2

tanim bolgesi olmak tizere
Lu(x) = f(x), x € Q (2.1)

seklinde diferansiyel denklemin sayisal ¢oziimii i¢in agirliklt kalan metodu

kullanildiginda, aranan u(.) ifadesi yerine
u(x) =~ U(x) =X, a;0;(x) (2.2)

formundaki bir U(x) sonlu yaklasim seri toplami kullanilir. Burada ¢;(x), (j =
1,...,N) 0 bolgesi iizerinde tanimli fonksiyon kiimesidir. ¢;(.) fonksiyonlari
problem i¢in verilen sinir sartlarini saglayacak bigimde segilirler. a; ler ise belirlenmesi

gereken serbest parametrelerdir. U(.), (2.1) diferansiyel denkleminde yerine yazilirsa,

LU(x) — f(x) = R(®) (2.3)
olarak tammlanan R(x) kalani elde edilir. Bu yontem ile a; parametrelerinin

belirlenmesinde, R(x) kalami ile W; agirhk fonksiyonunun g¢arpimimin 2 bdolgesi

tizerinde integralinin sifir olmasi istenir. Dolayisiyla
fn W; (DR()dx =0, i=1,..,N (2.4)
olarak N bilinmeyenli N tane denklemden olusan bir denklem sistemi elde edilir.

Bu denklem sistemi ¢oziilerek a; parametreleri bulunur ve (2.2) esitliginde yerine

yazilirsa U (x) yaklasik ¢ozlimiine ulagilir.

1.1.5. Galerkin Yontemi

Galerkin yontemi bir varyasyon yontemi olup diferansiyel denklemlerin
yaklasik ¢oOziimlerinde kullanilmaktadir. Bir onceki alt boliimde tanimlanan (2.4)
esitligindeki W; agirlik fonksiyonu ¢; yaklasim fonksiyonuna esit alinirsa bu yontem
Galerkin yontemi olarak bilinir. Bu durumda eger konum araligi [a, b] olarak kabul
edilir ve (2.2) ¢oziimii (2.1) esitliginde yerine yazilarak esitligin her iki tarafi ¢;(x) ile

carpildiktan sonra integrali alinirsa

[ oL Y ajp;(0) — f(x)) dx = 0, i=1.2..,N (2.5)

elde edilir. Ulasilan denklem sistemi ise agik olarak N tane denklemden olusan



¢ = L(a0,00) = f(x)
olmak tizere

b b b
ay [, ¢1Q1dx + az [ 91Q2dx + -+ ay [ ¢1Qydx =0

b b b
ay [, 92Q1dx + az [ 92Qzdx + -+ ay [ ¢,Qndx =0 (2.6)

b b b
ay fa PnQ1dx + a; fa PnQrdx + -+ ay fa onQndx =0

formunda yazilabilir. Denklem sistemi kolaylikla ¢oziilerek aq,as,,..., a, bilinmeyen

katsayilar1 bulunabilir.

1.1.6. Kollokasyon Yoéntemi

Kollokasyon metodu, agirlikli kalan metodunun bir uygulamasidir. Bu metotta

W; agirlik fonksiyonlar yerine
W = 8(x — x) (2.7)
olacak sekilde Dirac Delta fonksiyonlar: segilir.

Dirac Delta fonksiyonlarii = 1,2,..., N i¢cin

[} 80— x)(L BN 50 (x) — £(x)) dx = (Llasi ()] — ()15 = 0 (2.8)

olacak sekilde onemli bir 6zellige sahiptir. Buradan N tane bagimsiz degisken ve N tane
denklemden olusan sistemden a,,a,,as,...,ay bilinmeyen katsayilar1 kolaylikla

bulunur.

1.1.7. Spline Fonksiyonlar

Ik olarak 1946 yilinda Schoenberg tarafindan tanitilmistir (Schoenberg, 1946).
Bununla birlikte spline fonksiyonlar ancak 1960 yilindan sonra matematiksel modellere

ve fiziksel problemlere uygulanmistir.

[a, b] araligimin bir pargalanmasi {lizerindeki tiim noktalar1 saglayan polinom
fonksiyonlarin derecesi, nokta sayisi arttikga artacaktir. Bununla birlikte [a, b] araligim
alt araliklara bolerek belirlenen alt araliklarda daha diisiik dereceden polinom
fonksiyonlar tanimlanabilir. Spline fonksiyon kavrami bu diisiinceden ortaya ¢ikmustir.

Dolayisiyla spline interpolasyon parcali polinom yaklagimidir. Yani verilen ¢6ziim



aralig1 sonlu sayida alt araliklara boliinerek her bir alt aralikta daha kiiciik dereceden

polinomlar yardimi ile yaklagimlar elde edilir. Spline fonksiyonlar,
a = xo < X1<...< XN_l < XN = b

sonlu pargalaniginin her bir [x,,, X;,+1] araliginda k. dereceden uygun polinomlar olup,

tanimlanan her alt aralikta (k — 1). mertebeden tiirevlenebilen siirekli fonksiyonlardir.
Spline fonksiyonlar1 asagidaki 6zelliklere sahiptir (Dogan, 2013) :

. Spline fonksiyonlar diizgiin fonksiyonlardir.

. Spline fonksiyonlar uygun bazlara sahip sonlu boyutlu lineer uzaylardir.

. Spline fonksiyonlarin tiirevleri ve integralleri kolay hesaplanabilen spline
fonksiyonlardir.

J Sayisal analizde ve yaklasim teorilerinde spline fonksiyonlarin kullanilmasi

durumunda matrisler ortaya ¢ikar. Bu matrislerin tersi kolayca alinabilir. Dolayisiyla
spline fonksiyonlar kullanildiginda elde edilen denklem sistemleri rahatlikla ¢oziilebilir.
J Yeteri kadar alt bolmelere ayrilmis [a, b] aralifi iizerinde tanimli her siirekli
fonksiyon; k. dereceden spline fonksiyonu ile iyi bir sekilde temsil edilebilir.

J Diisiik dereceden spline fonksiyonlar ¢cok esnektir ve polinomlardaki gibi salinim

sergilemezler.

1.1.8. B-Spline Fonksiyonlar
B-spline fonksiyonlar ayn1 dereceye sahip spline fonksiyonlar igin bir tabandir.
B-spline fonksiyonlarin olusturulacagi noktalarin bir kiimesi
KX <X <Xy < Xy <Xy <
lim,, 00 X = 00 = —=limy, e Xy = © (2.9)

olmak tizere calismamizda kullanacagimiz kiibik B-spline ve genisletilmis kiibik B-

spline fonksiyonlarini incelenmistir.

1.1.8.1. Kiibik B-Spline Fonksiyonlar

x;’ler [a, b] araligindaki boliinme noktalarinin koordinatlart olmak {tizere, x;

noktalarinda

E;(x) kiibik B-spline fonksiyonlar1
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[ (x=xi_5)3

h3 [xi—2, xi—1],
h3+3h%(x—x;_1)+3h(x—x;_1)?-3(x—x;_1)3
h3 [xi—lfxi]l
El(x) =< h343h%(xp1—%)+3h(xi4 1 —x)2 =3 (x4 —X)3
n3 [xi, Xi41],
(Xi42—%)3
s [Xi+1, Xis2],
0, diger durumlar
(2.10)

olarak tanimlanir (Prenter, 2008). Burada h = x,,,; — x,, dir. Kiibik B-spline
fonksiyonlar1 ile onlarin birinci ve ikinci mertebeden tiirevleri [x;_,, X;,,] araligi
disinda sifirdir.  Ayrica [x;, x;,,] arahg E;_;,E;,E;.; ve E;,, gibi (1.16)’da
tanimlanan ardigik dort kiibik B-spline fonksiyonlari tarafindan ortiiliir. E,,, (x) ve onun
ikinci mertebeye kadar olan E’;(x),E”;(x) tirevlerinin bolinme noktalarindaki

degerleri Tablo 1.1’ de goriilmektedir.

Tablo 1.1: Boliinme noktalarindaki kiibik B-spline degerleri.

Xi-2 Xi-1 Xi Xi+1 Xit2
E;i(x) 0 1 4 1 0
hE’;(x) 0 3 0 -3 0
h? E"i(x) 0 6 -12 6 0

Uy yaklagik ¢oziimii ise kiibik B-spline fonksiyonlar1 cinsinden
Uy, t) = 61 (D) E_1(x) + 8o(D)Eo(x) + - + Sy 41 () Eny1 (%) (2.11)

formunda yazilabilir. Bununla birlikte [x;, x;,] araligi, E;_,, E;, Ej+1 Ve E;,, gibi dort

tane B-spline tarafindan ortiildiigiinden U i¢in yaklagim ifadesi ve onun ilk iki tiirevi

Ui(x,t) = X5 Ej(0)8;(0) (2.12)
U's(x, 0) = T52 B (0)8;(1) (2.13)
U";(x, t) = X5 E"(x)6;(t) (2.14)

formunda ifade edilebilir.
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Dolayisiyla U; yaklagik ¢oziimii ve ikinci mertebeye kadar olan tlirevleri §

parametresine gore;

Ui = U(xi) = 61'—1 + 461 + 6i+1 y (215)
U'=U"(xy) = %(5”1 — 6i-1), (2.16)
U"=U" (%) = 355 (81 = 26 + 8is), (217

bi¢iminde yazilabilir.

1.1.8.2. Genisletilmis Kiibik B-Spline Fonksiyonlar

7, [a, b] lizerinde esit araliklara boliinsin.m: a = xy < x; < x, < -+ < x, = b,

h = bN;a olsun. Klasik kiibik B-spline fonksiyonlarin genisletilmis formu E; asagidaki

sekilde ifade edilir (3.1).

(4R(1-D)(x—x;_5)3+3A(x—x;_5)*)
inh‘* = [xi-2, xi—4]
((4-Dh*+12h3 (—x;_1)+6h? (2+2) (x—x_1)?~12h(x—x;-1)3-3A(x—x;-1)*)
A [xi—1, x;]
E;(x) =+ ((4—A)h4+12h3(xi+1—x)+6h2(2+ﬂ.)(xi+1—x)2—12h(xi+1—x)3—3A(xi+1—x)4)
2ant , [xi, xi44]
(4R(1-)(xi42—2)3+3A (x5 —2)*)
l+224h4 = ’ [Xi41) Xis2]
0, diger durumlar
(3.1)

Bunlar, ¢éziimde kullanilacak taban fonksiyonlardir. Burada reel A serbest parametredir.
Aslinda klasik kiibik B-spline fonksiyonlar genisletilmis kiibik B-spline fonksiyonlarda
A =0 alinmasi durumudur. Ortaya ¢ikan kiibik B-spline fonksiyonlar kiimesi
E;(x) [xg, xy] ’de tanimli taban fonksiyonlaridir. A serbest parametresi 0’dan farkli

secildiginde fonksiyonun sekli Sekil 2.1°deki gibi degisir.
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0.6+

044

0.2+

0.14

o

Sekil 2.1: A serbest parametresi 0’dan farkli segildiginde fonksiyonun sekli.

Kaynak: Ersoy, Korkmaz, Dag, 2017

A grid noktalarinda her genisletilmis kiibik B-spline fonksiyonun kendisi ve tiirev
degerleri Tablo 2.1°deki gibidir.

(4h(1-2) (x—x;_2)3 +3A(x—x;_5)*)
24h*

x yerine x;_, yazilirsa sonug 0 olur,

(ah(1-2) (x=2x;_2)3 +3A(x—x;_5)*)
24h*

. 4-2
x yerine x;_, yazilirsa sonug ey olur,

((4-Dh*+12h3 (x—x;_1)+6h2 (24 D) (x—x;_1)? 12 (x=x;_1)3~3A(x—x;_1)*)
24h*

. 21+16
x yerine x; yazilirsa sonug > olur,

4

((4=DR*+12h3 (x4 —20)+6h2 (242 (i1 =) 2 = 12R(X 141 ~2)3 34 (X141 -2)* )
24h*

. 4-2
X yerine x;,, yazilirsa sonug ey olur,

(4h(1-D) (x5 —x)3+3A(x 42— 2)%)
24h*

x yerine x;,, yazilirsa sonug 0 olur,

(12R(1-D) (x—x;_5)%+12A(x—x;—3)3)
24h*

x yerine x;_, yazilirsa sonug 0 olur,

(12R(1-D) (x—x;_5)%+12A(x—x;—3)3)
24h*

. 1
x yerine x;_; yazilirsa sonug o olur,

(12h3+12R% 2+ ) (x—x;_1) 1 —36h(x—x;_1)?—12A(x—x;_1)3)
24h4

x yerine x; yazilirsa sonug 0 olur,



(—12h3-122+ D) (xj4 1~ %) +36R (x4 1 —2) % +12A(x ;41 —x)3)
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24h*

(—12r(1-) (x4 2—2)%—12A(x ;15 —x)3)
24h*

(24n(1-2) (x—2x;_5) +36A(x—x;_3)?)
24h*

(24h(1-D)(x—2x;_5) +36A(x—x;_3)?)
24h4

(12h%2(2+A)—72h(x—x;_1 ) —36A(x—x;_1)?)
24h*

(122+)-72h(x;41—x) —36A(x; 1 —%)?)
24h*

(24n(1-2) (x4 —2) T +36A(x 4, —%)?)
24h*

. -1
x yerine x;, 1 yazilirsa sonug - olur,
x yerine x;,, yazilirsa sonug 0 olur,
x yerine x;_, yazilirsa sonug 0 olur,

. 241
x yerine x;_; yazilirsa sonug iz olur,

—-21—4
2h

— olur,

x yerine x; yazilirsa sonug

. 2+A
x Yyerine x;, 1 yazilirsa sonug hE olur,

x yerine x;, yazilirsa sonug 0 olur.

x; diigiim noktalarindaki E; (x) , E';(x) ve E"; (x) Tablo 2.1’de verilmistir.

Ei (X),

olusturur.

i=-1,..,N+1 [ab] kapali araliginda tanimli fonksiyonlar i¢in bir baz

Tablo 2.1: Boliinme noktalarindaki genisletilmis kiibik B-spline degerleri.

x Xi—2 Xi-1 Xi Xit+1 Xit+2
24E;(x) 0 4—-2 16 + 22 4—-2 0
2hE';(x) 0 1 0 -1 0

2h2E" ;(x) 0 2+ A —4—-22 2+2 0

Cozliim i¢in E;(x) genisletilmis B-spline fonksiyonunun ilk iki tiirevine ihtiya¢ vardir.

Denklemi konuma gore pargalayabilmek icin V(x,t) = U,(x,t) esitligi kullanilacak,

bu durumda elde edilecek denklem sistemi;

u, —v=0

(3.2)

U, yaklasik ¢6ziimii ise genisletilmis kiibik B-spline fonksiyonlar cinsinden daha 6nce

kiibik B-spline fonksiyonlarda oldugu gibi

U (x,t) = 6_1 (D) E_1(x) + 6o (£)Eg(x) + - + Sn41(£) Eyyq ()

(3.3)
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formunda yazilabilir. Bununla birlikte [x;, x;,,], aralig1 , E;_;, E;, E;+, Ve E;,, olarak

dort tane spline tarafindan ortiildiiglinden U igin yaklagim ifadesi ve ilk iki tiirevi

Ui, t) = £, B (08(8) (34)
Ui, t) = B3, B (08 () (35)
U (1) = L B ()8 (0) (3.6)

formunda ifade edilebilir. Dolayisiyla U; yaklasik ¢6ziimii ve ikinci mertebeye kadar

olan tiirevleri § parametresine gore

8+1 4-1

-1
Uy = U0q) =57 0ima + 50 + B (3.7)
U = U'(x) = 5 (81 = Si41), (38)
A
U"=U"(x;) = % (6i—1 — 26; + bi41), (3.9)

biciminde yazilabilir.

1.1.9. KdV Burgers Denklemi I¢in Literatiir Taramasi

KdVB denklemi (Ruderman, 1975)’de belirtildigi gibi plazma dalgalar1 veya
tim sistemlerin 6zvektorleri i¢in varlik ve yoklugu gibi farkli durumlarda ortaya
cikabilir. Viscosity ve eylemsizlik terimlerini igeren uzun yer ¢ekimi dalgalar1 KdVB
denkleminden esinlenilerek calisilmistir. Bampi ve Morra (1981) ¢alismasinda balans
denkleminin ¢oziimleri elde edilmistir. KdVB denklemi i¢in Jacobi Cosine
fonksiyonlar1 yardimiyla Weierstrass P fonksiyonu ¢6ziimii Kalinovski ve Grundland
(1981) calismasinda ifade edilmistir. Bu ¢aligmada 1. mertebeden kismi diferansiyel
denklemlerin homojen olmayan c¢oziimleri i¢in Reimann degiskenleri yardimiyla
¢ozlimleri de mevcuttur. (Brugarino & Pantano, 1983), degisken katsayili homojen

olmayan KdVB denklemlerinin Jacobi eliptic tip ¢6zlimiinii elde etmistir.

Birlesik KdVB denklemi igin baz1 hareketli solitary dalga ¢6ziimleri de (Parkes
& Duffy, 1997)’de verilmistir. KAVB denklemi i¢in belirli analitik ¢oziimler degisken
¢cozlimleri ve bazi teoremlerin ispatlart kullanilarak (Shu, 1987)’de ispat edilmistir.
Lineer yayilma ve lineer olmayan yayilmanin korunumlu olmayan teoremlerini igeren
genisletilmis KdVB denklemi igin ¢6ziimler (Gromov & Tyutin, 1997)’da incelenmistir.
(Malkov, 1996) Asynptotic hareketli dalga ¢6ziimlerini calismistir. KdVB denkleminin
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farkli degerler igin hareketli dalga ¢oziimleri a biskosite sabiti alinarak (Pego, Smereka,
& Weinstein, 1993)’de ifade edilmistir.

KdVB denkleminin bazi hiperbolik fonksiyonlarin kuvvetlerini iceren tam
¢oziimleri homojen denge teknigi ile (Wang M. , 1996)’de elde edilmistir. (Zhao, 2006)
hiperbolik fonksiyon metodu ile ve Wu, yeni tip solitary dalga i¢in emilasyon teknigi ile
KdVB denkleminin ¢oziimlerini incelemistir. KdVB denklemini uyumlu dalga
dontigiimleri yardimiyla adi diferansiyel denkleme doniistiirdiikten sonra katsayilari
hesaplanir ve tahmini ¢oziimdeki parametreler verilen denklemde yerine yazilir. Jiashi
(Yuanxi & Jiashi, 2005) siiperpozisyon metoduyla KdVB denklemi i¢in birgok solitary
dalga ¢oziimii gelistirilmistir. (Wazzan, 2007)’de ise KdVB denklemi igin Riccati
denklemine dayanan genisletilmis tanh fonksiyonu ile trigonometrik hiperbolik ve
kompleks fonksiyon igeren ¢oklu soliton ¢6ziimleri elde etmistir. (Soliman, 2006)
denklemin tanh-tip, coth-tip ve diizenlenmis genisletilmis tanh metodu ile tam
¢oziimlerini elde etmistir. (Wang, Liu, & Zhang, 2014)’de ise KdVB denklemi igin
G’/G agilimi kullanilarak tanh tip ¢6ziim elde edilmistir. (Kudryashov, 2009), ayni
zamanda Fisher denkleminin hareketli dalga ¢6ziimii ile KdVB denkleminin hareketli
dalga ¢6zlimiiniin ayn1 formda oldugunu gostermistir. KdVB gibi denklemlerin ¢6ziimii
i¢in bazi farkli niimerik teknikler de mevcuttur. Bunlardan bir tanesi Bubnov-Galerkin
B-spline sonlu elemanlar yontemi kullanilmasiyla elde edilen ¢ozimlerdir (Zaki,
2000a). Yine ayni denklem i¢in Kuintik B-spline fonksiyon yardimiyla kollokasyon
¢oziimleri yapilmistir (Zaki, 2000b). Ayrica periyodik baslangi¢c kosullarini igeren
KdVB denkleminin niimerik ¢6ziimii i¢in Lineer Galerkin-Fourier Spektral Teknigi
uygulanmistir (Lt & Lu, 2006). 4. Mertebeden Runge-Cutta yontemi ile Chebysheu
polinomlarinin tiirevlenmesine dayanan spektral kollokasyon metodu ile nitimerik
¢ozliimler ve baslangi¢ simir deger problemlerine uygulamalari (Khater, Temsah, &
Hassan, 2008)’de mevcuttur. Son olarak KdVB denkleminin (El-Danaf, 2008)
tarafindan yapilan kosulsuz kararli septik B-spline kollokasyon metodu incelenmeye

deger bir ¢alismadir.

1.1.10. Gardner Denklemi I¢in Literatiir Taramasi

Gardner denklemi integrallenebilir bir sistemdir ve Miura doniisiimii ile KdV
denklemine doniistir (Demler & Maltsev, 2011). Gardner denklemi negatif iyon akustik

plazma dalgalarinin yayilimini anlamak i¢in faydali bir modeldir (Ruderman, Talipova ,
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& Pelinovsky, 2008). Bu denklem bir boyutta plazma hareketi denklem sistemlerinden
elde edilir.

Gardner denklemi genis genlige sahip dalgalarin iyi tanimlanmasini saglar
(Kamchatnov, et al., 2013). Denklemin ¢oztiimiiniin siniflandirilmasinda lineer olmayan
terimlerin yapis1 ¢ok onemlidir. Ozellikle ¥ sabitinin isareti ¢dziimde Onemli rol
oynamaktadir. Gardner denkleminde ¢ ve ¥ aymi isaretli oldugunda kiyidaki dalgalarda
Ozel sekiller meydana gelir, bu da kararsizlik durumundan kaynaklanir (Grimshaw,
Pelinovsky, Taipova, & Sergeeva, 2010). Denkleme gii¢ terimi ilave edildiginde
denklem topografik yapida tabakali akiskanli modeller (Kamchatnov, et al., 2013). Bu
denklemle ilgili yapilmis bazi g¢alismalar su sekilde oOzetlenebilir; (Slyunyaev &
Pelinovski, 1999). Darboux doniisiimleri yardimiyla iki soliton dalga etkilesimi ¢oziimii
elde etmistir. Tanh metodu ile Gardner denkleminin hareketli ¢oztimleri elde edilmistir
(Hu, Tan, & Hu, 2016). Solition-Cnoidal ya da Solition-Periodik seklindeki dalgalarin
etkilesimlerin elde edilen c¢oziimler vardir. Riccati acilimini igeren baska ¢Oziim
metotlart da uygulanmistir (Wei-Feng, Sen-Yue, Jun, & Han-Wei, 2014). Hareket
integralleri de denklemin pertiirbe edilmis formu igin elde edilmistir (Jia-Ren, Liu-Xian,
& Guang-Hui, 2000). Tekil pertiirbe edilmis Gardner denklemi igin hareketli solitary
dalga ¢6ziimii mevcuttur (Bekir, 2009). Ayrica Gardner denkleminin farkli metotlarla
elde edilmis tam ¢oziimleri de mevcuttur. Tanh ve coth fonksiyonlarini igeren tanh
metodunun genisletilmis formu ile tam ¢oziimler elde edilmistir (Fu, Liu, & Liu, 2004).
Riccati denklemleri yardimiyla solitary dalga ve periyodik dalga coziimleri elde
edilmistir. Bazi solitary, periyodik, istel, kesirli ve komleks tip hareketli dalga
denklemleri i¢in G”/G yontemiyle tam ¢oziim ¢alismalar1 yapilmistir (L, Liu, & Niu,
2010); (Akbar, Hj, & Ali, 2012). Bu ¢6ziimlerin disinda bazi trigonometrik fonksiyon
¢oztimleri (Naher & Abdullah, 2012; Jawad, 2012; Taghizade & Neirameh, 2010)
hiperbolik fonksiyon ¢oziimleri (Wazwaz, 2007) ve diger bazi ¢dziimler (Nishiyama &
Noi, 2016) elde edilerek calisma haline getirilmistir. Gardner benzeri denklemlerin
niimerik ¢6ziimleri i¢in sonlu fark yontemleri (Rageh, Salem, & El-Salam, 2014),
smirlayicr taylor yaklasimi yontemleri (Rubin & Graves Jr , 1975), polinomsal kuintik
B-spline (Hamdi, Morse, Halphen, & Schiesser, 2011) ve farkli baslangi¢ sinir deger

problemlerinin ¢ézlimleri (Wazwaz, 2009) literatiirde mevcuttur.
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1.1.11. Adveksiyon - Difiizyon Denklemi I¢in Literatiir Taramasi

Gergek hayatta fizik ve miihendislik problemlerinin bircogu AD denklemi
yardimiyla modellenebilmektedir. AD denkleminin ¢6ziimii parametrelerin segimine
gore keskin davraniglar gosterebilmektedir. Bu nedenle niimerik ¢6ziimler dik
cozlimlerin modellenmesiyle ilgilenmektedir. Spline fonksiyonlar kullanilarak bugiine
kadar AD denkleminin birgok niimerik ¢6ziimii yapilmigtir (Ahmad, 2000). Siirekliligi
korumak i¢in B-spline fonksiyonlara serbest parametrelerin yaninda yiiksek mertebeli
terimler ilave edilir. Bu terimler pargali fonksiyonlar seklindeki genisletilmis B-spline
fonksiyonlardir. Farkli serbest parametrelerin kullanilmasiyla genisletilmis B-spline
fonksiyonlarin yapis1 degisir. ilave edilen terimlerin ve serbest parametrelerin
genisletilmis B-spline fonksiyona etkisi (Zoppou, Roberts, & Renka, 2000; Abd Hamid,
Abd Majid, & lzani, 2010) tartisilmustir.

Genisletilmis B-spline fonksiyonlar1 kullanarak Galerkin ve Crank-Nicolson
metotlarinin kombinasyonu ile AD denkleminin ¢éziimleri bulunur. Genisletilmis B-
spline fonksiyonlarin kismi tiirevli diferansiyel denklemlerin niimerik ¢oziimlerinde
literatiirde birka¢ ¢alisma gérmek miimkiindiir. (Dag, Irk, & Sari, 2013; Goh, Majid , &
Ismail, 2011; Irk, Dag, & Tombul, 2015).

1.1.12. Diizenlenmis Uzun Dalga Denklemi I¢in Literatiir Taramasi

Solitary ve soliton seklindeki dalgalar lineer olmayan dispersive dalga
denklemlerinin genel olarak her baslangic ve sinir kosulu i¢in analitik ¢ézimiinii
bulmak miimkiin degildir. Bu nedenle bu tiir denklemlerin ¢dziimleri i¢in niimerik
¢oziimler ele alinir. Lineer olmayan dispersive dalga denklemlerinden biri de MRLW
denklemleridir. Bu denklemin en 6nemli 6zelligi dalganin sekli degismeden tek yonde
sabit hizda dagilimin gerceklesmesidir. MRLW denklemi ve alternatif formu olan MEW

denklemleri i¢in niimerik ¢oziimlerin yapilmasi onerilmektedir.

MRLW denklemi sonlu farklar yontemiyle niimerik olarak c¢oziilmiistiir
(Khalifa, Raslan, & Alzubaidi, 2007). MQ, GA, IMQ ve IQ radial taban fonksiyonlari
kullanilarak niimerik ¢6ziim elde edilmistir (Dereli, 2012). MRLW denklemi igin
serbest diiglim noktalar1 teknigine dayanan kollokasyon metodu kullanilarak ¢oztimler
elde edilmistir (Mokhtari & Mohammadi, 2010). (Tirmizi, 2010; Khalifa, Raslan, &
Alzubaidi, 2008; Raslan & Hassan, 2009; Raslan, 2009) calismalarinda ise kuadratik,
kiibik, kuartik ve kuintik B-spline fonksiyonlar kullanilarak kollokasyon yontemiyle
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¢oziimler elde edilmistir. (Han & Liu , 2003), B-spline fonksiyonlarin
genellestirilmesiyle niimerik ¢oziimler elde etmistir. (Xu & Wang, 2008) 4., 5. ve 6.
dereceden genisletilmis B-spline fonksiyonlar ile ¢oziimler elde etmistir. Genisletilmis
B-spline fonksiyonlar igin klasik kiibik B-spline fonksiyonlara bir parametre daha ilave
edilir. Boylece klasik kiibik B-spline egrisi degisir. Diferansiyel denklemlerin
genisletilmis B-spline fonksiyonlarla niimerik ¢6ziimii klasik B-spline fonksiyonlarla
¢Ozlimii kadar yaygin degildir. Bu konu {izerine de yapilmis birka¢ calisma mevcuttur.
Ornegin 2. mertebeden homojen lineer diferansiyel denklemler (Abd Hamid, Majid, &
Ismail, 2011), lineer sinir deger problemi (Abd Hamid, Abd Majid, & Izani, 2010) ve 2.
mertebeden lineer sinir deger problemleri (Goh, Majid , & Ismail , 2010, October)
genisletilmis kiibik B-spline kollokasyon yontemi ile ¢oziilmiistiir. Genisletilmis kiibik
B-spline kollokasyon yontemi lokal olmayan baslangi¢ kosullarina sahip bir boyutlu 1s1
denklemi i¢in de ¢alisilmistir (Goh, Majid , & Ismail, 2011).



IKiNCi BOLUM
KdV BURGERS DENKLEMININ GENISLETIiLMIS KUBIK B-SPLINE
YONTEMI ILE SAYISAL COZUMU
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2.1. METODUN UYGULANMASI

Bu calismada KdVB denklemi i¢in bazi baglangic siir deger problemlerinin
klasik kiibik B-spline fonksiyonlarinin genisletilmesiyle olusan kollokasyon ¢oziimleri
incelenmistir. Denklemde 3. mertebeden tlirev igeren terim ile islem yapmak yerine
mertebeyi indirgemek i¢in denklem sistemi olusturulmustur. Bu sistemin zamana gore
parcalanmas1 Crank- Nicolson metoduyla gerceklestirilmistir. Iki baslangi¢ simir deger

problemi bir analitik ¢6ziim ve diger durumlar i¢in onerilen yontem uygulanmistir.

2.1.1. Sayisal Coziim
KdVB denklemini asagidaki formda ele alinir;
Up + Uty — Uy + UUyyy =0 a<x<bh 4.2)

Burada &,9 ve u , sifirdan farkli sekilde alinan reel katsayilardir. Bu caligmada
asagidaki sekilde tanimlanmis bazi baslangi¢ sinir deger problemlerini ele alacagiz. Bu

denkleme ait baslangi¢ kosulu t = 0 durumudur.
u(x,0) = f(x), a<x<bh (4.2)

ve sonlu ¢aligma bolgesi [a, b] olsun. Bu problem icin sinir kosullar1 asagidaki sekilde

segilsin.
u(a,t) = g1(t), u(b,t) = g»(t),

uy(a, t) = gs(t), Uy(b, 1) = ga(2), (4.3)
Urx(a, ) = gs(t), Uxx (b, 1) = go(1),

Uyrx (@, 1) = g7(2), Uyxx (b, ) = gg(1).

Burada g;(t),i =1,2,..,8, x bagimsiz fonksiyonlarmi1 belirtir. Bu kosullarda

fonksiyonun hem kendisi hem de tiirevi oldugu i¢in karisik sinir kosuludur.
7, [a, b] lizerinde esit araliklara boliinstin.
b—-a

ma=xy<x; <Xy <-<xp,=h, h=T olsun.

Klasik kiibik B-spline fonksiyonlarin genisletilmis formu E;, (3.1) seklinde ifade edilir.

(3.1) denklem sistemindeki fonksiyonlar ¢oziimde kullanilacak taban fonksiyonlardir.

Burada A reel serbest parametredir.
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U(x,t) ve V(x,t), u(x,t) ve v(x,t) 'nin yaklasik ¢oziimleri olsun. Bu yaklagsik

¢Ozlimler seriler cinsinden;

Ux,t) = %iZ7 8iEi(x)

V(xt) = %iC7 @i (%) (4.4)
seklinde ifade edilir. Burada E_(x), Ey(x), ..., Ey+1(x) bilinen fonksiyonlar. §; ve ¢;
ise hesaplanacak zamana bagli parametrelerdir.

Tablo 2.1 kullanilarak x; diigiim noktalarinda (4.4) ile verilen yaklasik
¢Oziimler ve bunlarin 1. ve 2. tiirevleri hesaplanacaktir. Boylece yaklasik ¢oziimler ve
tirevleri (4.5) seklinde ifade edilir. Kiibik B-spline kullanildigi igin ii¢ tane baz
fonksiyonu vardir. Katsayilar Tablo 2.1’den alinarak (4.5) esitlikleri olusur.

8+ 4-1
72 Ot g O

4-2

Up=U(x;,t) = — 61 +
! ! 1

U'=U'(x;,t) = 5(51'—1 — 8i41)

2+A1
2h2

Ui"=U"(x;,t) = =5 (8;—1 — 26; + 6;11), (4.5)

4-2 8+ 4-2
Vi =V(x;t) = 2 Picit 0t Piva

! ! 1
Vi'=V'(x;,t) = 7 (@iz1 = Pira),

" __ " 2+A
Vi"=V"(x;,t) = 25 (Pim1 = 20 + @is1)

(4.1) denklem sistemini konuma gore pargalayabilmek i¢in V(x,t) = U,(x,t) esitligi

kullanilir ve (4.6) denklem sistemi elde edilir.
Ug+elV =9V, +uV,, =0
U —V=0 (4.6)

Simdi bu denklem sistemi iizerinde Crank-Nicolson formiilii ve sonlu fark formiilii

yardimiyla isleme devam edilir.

SIF1487, oo _ SBHsD
O = —"—— Ve zamana gore tiirevi : O = o
U _ Un+1_Un
Y’

_ Vn+1+Vn
- 2

|4
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Uptiyyl
U, = -
wnyrtiy vy
uv —
V= 9 WA m"
X 2
_ V)™ 2+ (Vi)™
Vix =p—"————
UTL+1_Un (UV)n+1+(UV)n Vxn+1+Vxn Vxxn+1+Vxxn
I > -9 . +u . =0 4.7)

an+1+an Vn+1+VTl
2 2

=0

Burada U™ = U(x, (n + 1)At), (n + 1)-inci zaman adimindaki ¢oziimii gosterir.

U° > t = 0 = 0 anindaki ¢dziim

t"*1 = t" + 1 ve At zaman adimlaridir.

(4.7) denklem sistemi i¢in (UV)™* ve (UV)™ terimleri yerine (4.8) esitligi kullanilir.
(4.8) esitligi (4.7)’de yerine yazilirsa (4.9) esitligi elde edilir.

(UV)n+1 Un+1Vn + UnVn+1 UnVn (48)
anmntr=ynrvt
ynti_gn yntiynignyntt | Vax " 4V ™)

At +g( 2 )_19( 2 )-I—u( 2 )_0 (4.9)

an+1+an yn+izpn —0
2 2

Simdi (4.4) yaklasik ¢6ziimii ve tiirevleri (4.5), (4.9)’da kullanildiginda (4.10) ve (4.11)
elde edilir.

Un+1 n

At

2 + S(Un+1Vn UnVn+1) _ 19(Vxn+1 + V;cn) +H(Vxxn+1 1+ Vxxn) =0

V™ = L ve U™ = K alindiginda lineerlestirme gerceklesir.

() () o + () orm+ (S am = (5) ot = () or -

() a) o ((8) o - o+ (2) 6o — o)+ () 2 -
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207 + o) + (53) (01y — 207 + <Pl+1)> + el ((4 2 st + (22) a7+t +

() v (ort + (ot (2

- q = &2 B_l
17 24 27 12 17 2n

2
Vi1 = (= + L)y
2
Vs = (= + L) ay
Vins = eKay + 961 + uy,

Vinz =91 — uy1

Ving = —UY>
Vi1 = b1
Vimi1z = —az

K =a;6; 1+ a;6; + @16;41

) ‘P?++11>:0

2+ 4422
"= om Ve =~ g
Vinz = eKay — 91 + uyq

Vina = €Ka, + uy;
2
Vs = () @2

2
Vs = () @2
Vinio = —9B1 — uvy

Vimiz = —a1

L=a;¢0;i1+ap;, + a10;41

Bu kisaltmalar kullanildiginda ifadedeki her bir terim asagidaki gibi yazilabilir.

671+1

e (529) % = ot
Zlh) +u (%)) I = Va0

8+/'L 8+)L
(22) (2) + (22) L) o1+t = Vinsop™?

(@)

(ex (5

( =

(i Zf (-2) + ek (22)) o1 = Vs
() (‘*;j)) OFA: = Vina O
(u (i;j )+19( )) P = Vimsoist
(

(

(

At 5zn 1) = Vine6i*1

n — n
2h 2h2 >(pi—1 - Vm7§0i—1

G)(
(i o+ (33)
() (55)) 8t = Vaso?
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(“ (4;23)) Ol = Vinow!
((i) (%)) 841 = VineSit1

(19 (i) —u (%)) Pit1 = Vm109is1

Terimler tek tek yerine yazildiginda iterasyon i¢in aranan esitlik elde edilmis olur.

Vm15in—+11 + szfp?—+11 + Vm351n+1 + Vm4<p{l+1 + Vm16ir-l++11 + Vm5‘l’?+-lr11 = Vme0it1 +
Vm7(p?—1 + Vm86in + Vm9(pln + Vm66i7?|-1 + leo(p{l+1 (4-10)

Benzer sekilde islem kolayligi olmasi agisindan (4.9)’daki 2.denklem 2 ile garpilip
(4.5)’deki esitlikler (4.9)’da yerine yazilirsa (4.11) denklemi elde edilir.

(an+1 + an) _ (Vn+1 + Vn) =0
1 n+1 _ en+1y _ (L n o _ sn oy _ (4ZA) n+1 _ (8+A) n+1 _ (4ZA) n+1
(Zh) (6,57 —6i51) (Zh) (621 — 6i41) ( P4 ) Pi—q ( 12 )(Pl ( 24 ) Pit1
4-2 8+A4 4—-A
(57) ot = (55) ot - (5 ) ela =0
1) sn+1 L) en+1 _ (422 n+1 _ (844 n+1 _ (42A\ n+1 _ (L no_
(Zh) Oi-1 + (Zh) Oi+1 ( 24 ) Pi-1 ( 12 )‘pl ( 24 ) Pirr = (Zh) (6i2
4-2 8+A4 4-2
o) + (57) ol + (55 ) o +(57) ol
Denklem &;_1, ®i_1, i, @i, 8iy1, Qiy1 Siralamasiyla diizenli yazilirsa;
.3151'7l—+11 - a1g0{1_+11 + O5in+1 - az??ﬂ - ;81511}++11 - a1(P?++11 = —f16" + 4 +
06" + az@i" + B16i%1 + 1944
Vin11605 + Vinaa @ 4 067 + V1307 + Vi1 18750 — Vi 05 =
- m115l?1—1 - Vm12§0?—1 + O5in - Vm13§0? - Vm11511}+1 + Vm12‘Pzn+1 (4.11)

Burada (4.10) ve (4.11)’deki katsayilar asagidaki sekildedir. Boylece (4.10), (4.11)

denklem sistemi Ax"*1 = Bx™ seklinde asagidaki (4.12) matris formunda yazilabilir.

[ ml VmZ Vm3 Vm4 le VmS ]

| lel Vm12 0 Vm13 lel _Vm12 |

A= | Vin1 Vina Vinz Vina Vin1 Vins |

[ s Vi Ve 0 Vs Vo —lezJ
Vi Vina Vins

Ve (4.12)
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Vm6 Vm7 Vm8 Vm9 Vm6 leO
“VYmi1 _lez 0 “VYmi3 _lel lez
B = Vine Vinz Vine Ving Vine Vinio
~Vmi1 _Vm12 0 ~¥Yma13 _lel Vm12
l Vm6 Vm7 Vm8

(4.12) denklem sisteminde 2N + 2 denklem 2N + 6 bilinmeyen parametre ortaya

cikmaktadir. Bilinmeyen parametreler

n+1 _ n+l1 n+l en+l n+l n+1 n+1
X == (6_1 ,(p_l ;60 ;(pO )y N+1'(pN+1

Denklem sisteminin tek bir ¢dziimii olabilmesi i¢in
Ue(a,t) =0,U,(b,t) =0, Vi(a,t) =0, Ve(b,t) =0

Sinir kosullar1 yardimiyla &_4, ¢_1, Sy+1, @n+1 Parametreleri igin 6_y = 6;, ¢_1 =
¢4 , esitlikleri kullanilacaktir. Bu islem yapildiktan sonra sistem 2N + 2 lineer denklem
ve 2N + 2 bilinmeyenden olusan ¢oziilebilir bir sistem haline gelir. Esitligin sag tarafi
n-inci zaman adimi i¢in sadece bilinen parametrelerden olustugundan denklem
sisteminin n + 1 -inci adimdaki ¢6ziimi elde edilir. Bu tekrarlama bagintisinda

hesaplamaya baslayabilmek icin X° baslangi¢ vektoriine ihtiyag vardir.
dy = (6-1,60, -, 0N, On+1) Ve dy = (@-1, @0, ) On) PN+1)
Baslangic parametreleri asagidaki esitliklerden hesaplanir.

Uxx(a,0) = 0 = y162; +¥2688 + y167

U (%, 0) = ¥1821 + 7280 + V1651 = Uge(%,0),i = 1,..,N = 1
Uxx(D,0) = 0 = y18§_1 + ¥20n8 + V16841

Ve(a,0) = 0= @2 — ¢?

Ve(x;,0) = 0= f_; — @y = Ve(x;,0),i=1,..,N -1

V(b,0) =0 = 401(\)1—1 - 401(\)1+1

2.1.2. Test Problemleri

Bu bélimde KdVB denklemi icin baslangic sinir deger probleminin
niimerik ¢6ziimi incelenmistir. Genisletilmis B-spline kollokasyon metodundan

elde edilen sonuclarin dogrulugu grafik gosterimiyle, niimerik ve analitik ¢6ziimler
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arasindaki farkin 6l¢iilmesiyle ve maksimum hata normu ile elde edilen sonuclarin

karsilastirilmasiyla ifade edilmistir.

2.1.2.1. Birinci Test Problemi

KdVB denkleminin asagidaki formda verilen baslangi¢ sinir deger problemi ele

alinsin. Baslangic sarti;

692 9 1 9
u(x,0) = —Z-[1+ tanh (ﬁ) +3sech?(20)] (4.13)

ve sinir kosullari ise;

_ e a5 ) + L sech?(2 (q + 5
u(a,t) = - %1 +tanh(10# (a+ 2 £)) +3sech (fom (@ + 2 0)]

_ e 9 e r S ) 4 L coeh2( (4 60
u(b,t) = =2 [1+ tanh (10” (b+3 t)) +5sech? (G (b + 2 )]

seklinde olsun (Fan & Zhang, 1998). Belirtilen c¢alismada 06zel olarak € =1

secilmesiyle (4.14) formunda analitik ¢6ziim ele alinmistir.

692 9 692 1 9 692
u(x,t) = —Z-[1+ tanh (E (x + Et)) +3sech? (i (x + 2 )] (4.14)

Bu ¢6ziim, sabit, tanh bileseni ve sech bileseni olmak {izere ii¢ bilesenden olusur. Bu
bilesenler zaman ilerledik¢e x ekseni tizerindeki hareketli dalga durumunu gosterir.
Daha 6nce yapilan benzer ¢alismalarla karsilastirma yapabilmek igin sabit parametreler
ele alinacaktir. u =0.01,h = 0.5,At = 0.001 alinarak [—20,20] aralig1 {tzerinde
t = 1 zaman i¢in algoritma cahistirilir. 9 = 0,001, 0,005 ve 0,01 secildiginde dalganin
durumu Sekil 3.1 - 3.3 ile gosterilmistir. 9 dagilim parametresidir. 9 nin artig1 Burgers
tipindeki ¢oziimlerin ve dalgalarin daha dik hale gelmesini saglar. Her farkli durum i¢in
maksimum hata dagilimi Sekil 4.1-4.3 ile gosterilmistir. Her ti¢ durum igin hata dagilim

grafigi gostermektedir ki hata dalganin inise gectigi noktanin yakininda biiylimektedir.

Maksimum hata normu ile elde edilen sonuglar radial tabanli multi kuadratik
kollokasyon metodu (MQ), ters kuadratik (IQ) ve Gaus(GA) formu ile elde edilen

sonugclarla karsilastirilmis ve sonuglar Tablo 3.1’de verilmistir.
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Tablo 3.1: Maksimum hata normu ile elde edilen (MQ),(IQ) ve (GA) sonuglarinin

karsilastirilmasi
t A=0 A=-1969 |MQ MHaq & |GA (Hag & |IQ (Hag &
Uddin , 2009) Uddin , 2009) Uddin , 2009)
1 9.441x10™ 7.271 x10™ 6.822 x10” 7.913 x10° 4.077 x10”7
10 | 1.269 x10™ 9.509 x10™ 2.479 x10° 3.294 x10° 1.270 x10°

Yapilan hesaplamalarda € =1, 9 = 0.004, At = 0.001, h = 0.05 olarak alinmistir.
Tablodan goriilmektedir ki onerilen yontem ile elde edilen sonuglar 10711
hassasiyetindedir. Yani diger yontemlere gore daha az hatali sonuclar elde edildigi

goriilmektedir.

Sekil 3.1: 9 = 0.001 degeri i¢in t = 1 zamaninda dalganin durumu.

-0.002

-0.004

_ 0006
2

-0.008

-0.01

-0012

-0014
-20 -15 -10 -5 0 5 10 15 20

Sekil 3.2: 9 = 0.005 degeri i¢in t = 1 zamaninda dalganin durumu.



Sekil 3.3: 9 = 0.01 degeri i¢in £ = 1 zamaninda dalganin durumu.

10
%10
e

|Error|

|Error|

|Error|

0 L L f . .
-20 -15 -10 -5 0 5 10 15 20

Sekil 4.3: 9 = 0.01 degeri icin ¢ = 1 zamaninda maksimum hata dagilima.

28
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2.1.2.2. ikinci Test Problemi

Bu test probleminde 9 = 0 durumunda KdVB denklemini incelenir. Dagilim teriminin
elimine edilmesiyle KdVB denklemi KdV denklemine déniisiir. Onerilen metodun
dogrulugunu kontrol etmek i¢in baslangi¢ itmesi seklinde tanimlanan bir esitlige (4.15)

ihtiyag vardir.

|x|-25

u(x,0) = %[1 — tanh ] (4.15)

Coziim [—50,150] araliginda t = 800 zamanina kadar aranarak sonuclar elde edilir
(Gardner, Gardner, & Ali, 1989; Ersoy & Dag , 2015; Korkmaz, 2010). Uzun siiren bu
islemler sirasinda asagidaki korunum sabitlerinin ¢ok diisiik oldugu gézlemlenmektedir

(Korkmaz, 2010; Miura, Gardner, & Kruskal, 1968).
€=, ud, C, = [, utd,
+0o0 3 +00 2
Cs = [, & — = ud)d, Cy= [, =125 uud) + 725 ud)d,

A genisletme parametresinin farklt secimleri i¢in yukarida belirtilen Cy, Cy, C3,Cy
korunum sabitleri diferansiyel kuadratiir metoduna dayanan Cosine acilim metodu
(CDQ) ve Lagrange Polinomlar:1 (LPDQ) 4. Mertebeden Runge-Cutta yontemi ile
birlestirildiginde elde edilen sonuglar Tablo 3.2’de verilmistir. Tablo incelendiginde
farkli A degerleri ve farkli zamanlar i¢in C;, C,, C3, C, biiylikliiklerinde ¢ok az degisim

oldugu goriilmektedir.

Tablo 3.2: Farkli A degerleri ve farkli zamanlar i¢in €1, C5, C3, C4 biiyiikliiklerindeki degisim.

Metot A t C, c, Cs C,
0 50.000 45.000 42.301 40.442
Uygulanan Metot | 0 200 50.001 45.002 42.404 40.983
400 49.999 45.003 42.451 41.264
600 49.999 45.003 42.453 41.290
800 50.001 45.003 42.454 41.297
Uygulanan Metot | -1 200 50.000 44.870 34.523 9.396
400 50.000 44.785 29.485 -7.116
600 50.000 44.773 28.803 -8.721
800 50.000 44.771 28.705 -8.904




30

Tablo 3.2: Farkli A degerleri ve farkli zamanlar igin Cy, C,, C3, C, biiyiikliikklerindeki degisim

(Devam).
Uygulanan Metot | -0.5 200 50.000 44.957 39.748 30.237
400 50.000 44.928 38.050 24.631
600 50.000 44,924 37.811 24.061
800 50.000 44,923 37.776 23.991
Uygulanan Metot | -0.25 200 50.000 44,983 41.263 36.353
400 50.000 44,971 40.557 34.078
600 50.000 44,969 40.455 33.846
800 50.000 44,969 40.439 33.814
Uygulanan Metot | -0.125 200 50.000 44,969 40.439 33.814
400 50.000 44,988 41.567 37.900
600 50.000 44,987 41.519 37.804
800 50.000 44,987 41511 37.791
Uygulanan Metot 1 200 50.000 45.047 45.072 51.883
400 49.997 45.078 46.889 58.291
600 50.001 45.082 47.140 58.933
800 50.004 45.082 47.174 58.994
Uygulanan Metot 0.5 200 50.001 45.029 44.006 47.514
400 49.997 45.048 45.113 51.442
600 50.001 45.051 45.273 51.885
800 50.002 45.050 45.286 51.881
Uygulanan Metot | 0.25 200 50.001 45.017 43.294 44.606
400 49.999 45.028 43.930 46.907
600 49.999 45.029 44.016 47.144
800 50.000 45.029 44.031 47.186
Uygulanan Metot 0.5 200 50.000 44,957 39.748 30.237
400 50.000 44,928 38.050 24.631
600 50.000 44.924 37.811 24.061
800 50.000 44,923 37.776 23.991
Uygulanan Metot | 0.125 200 50.001 45.001 42.786 42.899
400 49.998 45.016 43.233 44,248
600 50.001 45.017 43.280 44,387
800 50.000 45.017 43.286 44,396
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Tablo 3.2: Farkli A degerleri ve farkli zamanlar igin Cy, C,, C3, C, biiyiikliikklerindeki degisim

(Devam).

CDQ (Korkmaz, 200 49.997 45.001 42.301 43.835
2010) 400 50.017 45.005 42.304 68.403

600 50.006 45.003 42.303 59.367

800 49,944 45.019 42.314 166.836

PDQ (Korkmaz, 200 49,984 45.001 42.301 40.442
2010) 400 49.985 45.001 42.301 40.442

600 49.977 45.001 42.301 40.442

800 49.965 45.000 42.301 40.442

2.2. SONUCLAR VE ONERILER

Ik olarak klasik polinomlardan olusan kiibik B-spline fonksiyonlarin
genigletilmis formu kollokasyon yontemine uygulanarak KdVB denkleminin
genisletilmis kiibik B-spline ¢dziimii incelenmistir. Onerilen ydntemin dogrulugunu ve
etkinligini gostermek i¢in iki baslangic sinir deger probleminin ¢éziimii incelenmistir.
Sonuglarin  dogrulugunu gostermek i¢in maksimum hata normu kullanilmstir.
Calismada elde edilen sonuglar daha 6nce yapilan bazi caligmalarla karsilastirildiginda
Onerilen metot ondalik kisminda en az iki basamak daha iyi sonu¢ vermektedir.
Genisletme parametresinin en iyi se¢imiyle kiibik B-spline fonksiyonlar yardimiyla
ileriye doniik caligmalar yapilabilir. Daha i1yi sonuglar iiretebilmek i¢in kullanilan

niimerik algoritma tizerinde farkli ¢alismalar yapilabilir.



UCUNCU BOLUM
GARDNER DENKLEMININ GENISLETIiLMIS KUBIK B-SPLINE YONTEMI
ILE SAYISAL COZUMU
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3.1. METODUN UYGULANMASI

Genisletilmis B-Spline polinomlar klasik B-spline polinomlarla elde edilen
sonuglarin iyilestirilmesine imkan saglar. En iyi genisletme parametresi sifir1 iceren bazi
araliklarin taranmasiyla elde edilir. Bu calismanin amaci bazi baslangic ve smir
degerleri yardimiyla Gardner denkleminin genisletilmis kiibik B-spline metoduyla
¢Oziimiinli incelemektir. Bazi analitik ¢alismalardan ¢ikarilan test problemleri

uygulanan yontemin etkinligini ve dogrulugunu gosterecektir.

3.1.1. Sayisal Coziim

Bu calismada birlestirilmis KdV ya da diizenlenmis KdV denklemi olarak da
bilinen Gardner denklemini ele alacagiz. Gardner denklemi asagidaki sekilde ifade
edilir;

Up + Uy, + U Uy + Uy = 0 (5.1)
Burada; u = u(x, t) ve ¢,9,u sabitlerdir.

Gardner denklemi kuadratik ve kiibik formda iki lineer olmayan terim igerir
(uu, kuadratik lineer olmayan, u?u, kiibik lineer olmayan). Bu calismada Gardner
denkleminin genisletilmis kiibik B-spline ¢6ziimleri incelenmistir. Kiibik B-spline
fonksiyonlar iki defa siirekli tiirevlenebilir oldugundan Gardner denkleminde
mertebenin indirgenmesini saglamak amaciyla v = u, parcalanmas1 yapilarak iki
denklemden olusan bir sistem elde edilir. Bu sistem de genisletilmis kiibik B-spline

kollokasyon yontemiyle ¢oziiliir.

U + Uy (eu + 9uU?) + Pllyyy = 0

v—u, =0 (5.2)
Bu probleme ait baslangi¢ degerleri;

u(x,0) = f(x) v(x,0) = f(x) (5.3)
ve homojen Neumann sinir kosullari;

u, (a,t) = 0, u, (b,t) = 0, (5.4)
Uxc(a,t) =0, Uxx(b,t) =0,

v (a,t) = 0, v, (b,t) = 0,
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vy (@, t) = 0, Uy (b, t) = 0,
m, [a, b] lizerinde esit araliklara boliinstin.
b—-a
ma=xy<x3 <xy,<--<x,=>b, h=T olsun.

Klasik kiibik B-spline fonksiyonlarin genisletilmis formu E;, (3.1) seklinde ifade edilir.

(3.1) denklem sistemindeki fonksiyonlar, ¢6ziimde kullanilacak taban fonksiyonlardir.

Burada reel A serbest parametredir.

4-2 841
Up=U(xt) = — 61 +—

4-2
6 + 5 0iv1
! ! 1
Ui" = U'(x3, 1) = 5 (8i-1 = 41,
n n 2 A
Uy"=U" (i, 1) = 55 (8im1 = 26 + 61), (5.5)

4-2 8+A1 4-2
Vi =V(x;,t) = 2 Pir1 TPt Piva s
! ! 1
Vi' =V'(x;,t) = - (@i-1 = @is1),

A\l " 2+)’
Vi"=V"(xi,t) = S5 (9im1 = 205 + @i41)

(5.2)’deki konuma gore parcalanmis sistemin integrallenmesiyle ve Crank-Nicolson

yonteminin uygulanmast ile asagidaki esitlikler elde edilir.

5n+1+5n 5n+1_é~n .
O = " Ve 8 = —#——" olmak iizere:
Un+1_Un Uu n+1+ UuU n U2U Tl+1+ U2U n V. Tl+1+V n
N +S( x) 2( x) _|_19( x) 2( x) 4o - S (5.6)

an+1+UxTL Vn+1+Vn _

=0
2 2

elde edilir. Burada n, esit At zaman adimina gore n-inci zamandaki ¢oztiimii ifade eder.
Denklemin lineer olmayan (UU,)™, (UU,)™?! ve (U?U,)™! terimleri asagidaki
sekilde kullanilir ve (5.6) denklem sisteminde yerine yazilirsa (5.7) denklem sistemi

elde edilir.
(UUH™ = U™ty + UYL - U
(VU™ = U™U,"

(UPUY™? = 20™ UM, + (U™, = 2(U™)2U,"
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Un+1_Un Un+1an+Unan+1_Unan+Unan
v + & > +

19 2Un+1Unan+(Un)2an+1_2(Un)2an+U2n an + l/L Vxxn+1+Vxle

2 2

=0 (5.7)

an+1+an Vn+1+V7’l
2 2

=0

(5.7)’deki esitliklerin her iki tarafini 2 ile garpilir.

n+1 n
2 Y = 7+ (UMD + UMUMY) + 9QUMTLUMNULM + (UM)2U,M —
(Un)zUx ) + U(]/;cxn+1 + V;cxn) =0 (5-8)

an+1 + an _ (Vn+1 + Vn) =0

lineerlestirme gereken yerlerde U™ = K ve U," = L kullanilir.

@) o + (o + (F)on - () o= (55) o0 -

(5 t) + en(57) o + () o + (57) o1 + e (55) o1 -

5D +9 (ZKL () omst + (&) or + (1) 6{1:11)) + oK (&) (ot -
o)) = OKL((SE) oy + (52 o7 + (S2) 6ma0) + m((52) (ot — 207+ +

+1)) + #((th) (it — 200" + 9i41)) =0

_4-2 _8+4 1 242 4422
O =—r @ =75 31—5 V1= 352 Y2 = 7752

2 peL+ 219KL) a, + (K + 9K2)B, Vimz = U1

I>|N

o=
3= (2 +eL +20KL) Vs = (1Y

- (Ai + el + 219KL) a, — (eK + 9KDB, Vine = (Ait + 19KL) @

2
Vs = (= + 9KL)
U =K = ;6| + a,6]" + a16] 4
U =L=a190{ 4 +a0f + a19f44

Bu kisaltmalar kullanildiginda ifadedeki her bir terim (5.8) denklem sisteminde yerine

yazilir.
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((ﬁ) a, + Lea; + B1eK + 2KL9a, + Kzﬁﬁl) S+ (uy) oMt + (( ) a, +
ayel + a2192KL) S — Quye™! + ((é) a, + Lea; — B1eK + 2KL9a, —
2 n+1 n+1 2
K 19ﬁl) 6iv1 + (ur)eis: = (( )a1 + KL19“1> — (uy)eiz, + ((E) a; +
KLﬁaz) 61" + QuyDel + ((ﬁ) a + KL19061> i+1— Wyt
ve (5.9)
4-2 8+1 4-2 1
(G et + () ot + (57) ot + () G5 = ot = (=55) G
4-2 8+1 4-2
ot = (5) ol = () o - (5) ok
elde edilir. (5.9) esitlikleri sadelestirildiginde asagidaki esitlik elde edilir.
<(( ) + Le + 2KL19) a; + (eK + Kzﬁ)ﬁ’l) S+ (uy) et + (((Ait) + L +

2KLO)ay ) 671 + (uy )l + ((( ) + Le + 2KL19) a, — (eK + K219)p’1> ST

(uyDely = (((A%) _KLﬁ)Cﬁ) 6it1 — (yDeit, + <<(A£t) + KLﬁ) az) 6" =

(uy2)oi + (((ﬁ) + KLﬁ)al) 6iv1 — Uy @it

ve (5.10)
B0 + ol + 087 4+ a4+ BiSTE + agol = BTy — g +
067 — az9i" — B16{%1 — a1941

Bu sistem matris formunda Ax™*! = Bx™ seklinde ifade edilir (5.11).

[le VmZ Vm3 Vm4 VmS VmZ ]
B o 0 a P aq
A=] - Vi Ve Vimz Viu Vs Vi
B 0 a; B1 a,
Vi Vinz  Vins
ve (5.11)
[Vm6 “Vm2 Vm7 “Vma Vm6 —Vm2 ]
B1 —ag 0 —a, —P1 —uy
B=|-- Ve —Vmz Vimz —Vma Ve —Vmo
B1 —ag 0 —a, P —a
Vm6 —Vin2 Vm7
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(5.11) sistemi 2N + 2 lineer denklem ve 2N + 6 bilinmeyenden olusur.
XM= (8070, 1 667 95t ) OREL PN

Bu sistemin tek ¢oziimiiniin olabilmesi i¢in ilave 4 sarta ihtiya¢ vardir.
Ue(a,t) =0, Uy(bt)=0, V(at)=0, V(bt)=0

Sinir  kosullarindan  6_1 =61, ¢_1 = @1,0y-1 = Ons1, Pn—1 = @n+1  cSitlikleri

kullanilarak ¢6ziilebilir bir sistem elde edilir.

Algoritmanin hesaplamaya baslayabilmesi i¢in & , ¢, i= —1,...,N + 1 baslangig

parametrelerinin Neuman sinir kosullar1 kullanilarak hesaplanmasi gerekir.
Uc(a,0) =0=5° — 679

U(x;,0) = y162 1 +v280 + 162, = U(x;,0),i =1,..,N—1

Uy(b,0) =0 = 51(\)/—1 - 61(\)I+1

Ve(a,0) = 0= @2 — ¢?

V(x;,0) =0 =y10)_1 + ¥20{ + V10041 = V(%,0),i =1,..,N -1

Ve(b,0) =0 = (P1(\)/—1 - (Pz(\)/+1

3.1.2. Test Problemleri

Bu béliimde Gardner denklemi i¢in baslangic sinir deger probleminin niimerik
¢oziimi ele alimmustir. Genisletilmis B-spline kollokasyon metodundan elde edilen
sonuglarin dogrulugu grafik gosterimiyle, niimerik ve analitik ¢oziimler arasindaki
farkin 6lciilmesiyle ve korunum kanunlarinin incelenmesiyle ifade edilmistir. Niimerik
¢ozlimdeki hatalarin Slgiimii igin maksimum hata normu diye tanimlanan (Ersoy

Hepson, Korkmaz, & Dag, 2017) asagidaki denklem sistemi kullanilir.
Leo(t) = [ulx;, t) — U(xj,t)]e = max lulu;, t) — Ulnl
Burada U(x;, t) ve u(x;, t) niimerik ve analitik ¢dzlimii ifade eder.

Gardner denklemi igin korunum biiyiikliikleri (5.12)’deki gibidir. Islem yapilirken

amacimiz bunlarin degismemesi veya degisimin ¢ok az olmasidir.

b 3 ut
~J, (%‘l'%_.u(l]x)z)dx (5.12)
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Ui3 19Ui4
év=0 (ET + 6 /"(Ux)lz) dx

t > 0 zamaninda bu biyiikliklerdeki degisim C(M,), C(E;) ve C(H;) olmak iizere
(5.13) seklindedir.

Burada M;, E; ve H,, t zamaninda dlgiilen biiyiikliiklerdir.

oo © 5 o U3  YU* 2
M= [__udx, E=[__u*dx, H=[ (G +———ulU)"dx
CM) = |72 C(B) = |75 C(H) = |7 (5.13)

3.1.2.1. Birinci Test Porblemi

[k niimerik &rnek olarak pozitif genlige sahip tek dalganin yayilimi incelenir.
Denklem parametreleri olarak € = 4,9 = —3, u = 1 alinir. (Nishiyama & Noi, 2016)
calismasina gore tam ¢ozliim:

2

12+3vTcosh(—S+2+2-)

u(x, t) =

seklinde ele alinir. t = 0 alinmastyla baslangi¢ degeri elde edilir.

Niimerik hesaplama i¢in [-20,30] aralig1 ele alinarak t = 5 zamanina kadar At = 0.1

icin hesaplama yapilir. Buna gore pozitif tek solitary dalga Sekil 5.1°de gosterilmistir.

U(x,t) 0.041

30 0
Sekil 5.1: At = 0.1 i¢in pozitif tek solitary dalga sekli.

Kaynak: Hepson, Korkmaz ve Dag, 2017
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Ortaya c¢ikan hata dagilimi ise A = 0 genisletme parametresi, At = 0.1 ayristirma
parametresi ve N = 100 aralik sayis1 alinarak t = 5 zamanina kadar calistirildiginda

ortaya ¢ikan durum Sekil 6.1°de gosterilmistir.

Ayni ayristirma parametreleri kullanilarak en 1yi genisletme parametresi A = —0.00840

icin hata dagilimi Sekil 6.2°de gosterilmistir.

x10°°

Hata

Sekil 6.1: 4 = 0, At = 0.1 ve N = 100 alinarak ortaya ¢ikan hata dagilimi.

5
25 X 10

Hata

Sekil 6.2: A = —0.00840, At = 0.1 ve N = 100 alinarak ortaya c¢ikan hata dagilima.

Farkli genisletme parametreleri kullanilarak elde edilen hata normlart Tablo

4.1°deki gibidir.
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Tablo 4.1: Farkli genisletme parametreleri kullanilarak elde edilen hata normlari.

N | L,(25)(A=0) Lo, (2.5) (gesitli 1) Lo, (5)(1 = 0) Lo (5) (cesitli A)
100 | 3.2726x10° | (1 = —0.00840)1.2330x 10~5 | 5.22606 x 105 2.2789x 1075
200 | 2.0537x10° | (1 =—0.00280)1.4819x 1075 | 1.91604x 1075 1.9119x 1075
300 | 1.4428x10° | (1 =-0.00094)1.2509x 1075 | 1.70403x 1075 1.6944 x 1075
400 | 1.4452x10° | (A =—0.00178)1.4440x 1075 | 1.61150x 1075 1.5872x 1075

Hesaplanan korunum sabitleri Tablo 4.2°de verilmistir.

Tablo 4.2: Farkli genisletme parametreleri kullanilarak hesaplanan korunum sabitleri.

N M, E, H, C(Ms) C(Es) C(Hs)
100 | 1.0445 0.0601 0.0040 5.4748 x 10°® 3.8176 x 10°® 1.5233 x 10°®
200 | 1.0445 0.0601 0.0040 3.2669 x 10°® 5.1126 x 10°® 1.7003 x 10°®
300 | 1.0445 0.0601 0.0040 2.4190 x 10”7 2.1767 x 10 2.8351 x 10
400 | 1.0445 0.0601 0.0040 1.3753x10° 2.0910 x 10 3.39390°

3.1.2.2. ikinci Test Problemi

Bu o6rnekte baslangic hareketiyle dalga iretimini incelenir. Asagidaki formda

Gardner denklemi ele alinir.

U + utly, + Uy + fllyy + € =0 (5.14)

Pozitif baglangic hareketinin iiretilmesinde 0’dan farkli reel € degerlerinin alinmasi

faydali olur.

(5.14) Gardner denkleminde ¢ =10, 9 = =3, u =1 parametreleriyle elde edilen
¢Oziim (5.15) ele alinirsa;

2 1
ulx,t) =="————
( ) 3 4+\/14cosh(§—§)

(5.15)
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Coziim algoritmas1 [—40,60] sonlu araliginda At = 0.01 alinarak t = 15 zamanina
kadar calistirllinca Sekil 7.1°de pozitif baslangic hareketine bakildiginda x =5
konumunda dalga yiiksekligi 0.4305 oldugu goriiliir.

U(x1)

40 -20 0 20 40 60
X

Sekil 7.1: t = 0 aninda dalga yiiksekligi.

Yayilma devam ettiginde t = 5 aninda dalga boyu 0.6568 olup konum x = 18.25dir
Sekil 7.2. Takip eden ilk solitary dalga bu zamanda gozlemlenmektedir.

0.7
—t=5
06

0.5

=04
X
203t
0.2
o1l J
0 - . . r——————
40 20 0 20 40 60

X

Sekil 7.2: t = 5 aninda dalga yiiksekligi.

Olusan ilk 3 dalga ise t = 10 aninda goriilmiistiir Sekil 7.3’deki gibidir.



[—t=10]

60

Sekil 7.3: t = 10 aninda dalga yiiksekligi.

42

t = 15 aninda ise dalga boyu 0.6941 olur Sekil 7.4. Olusan dalganin en yiiksek tepe

noktast x = 39 konumundaki korunum sabitlerinin baglangi¢ degeri ve mutlak

degiskenleri A = 0 i¢in Tablo 4.3’de verilmistir.

Tablo 4.3: Tepe noktadaki korunum sabitlerinin baslangi¢ degeri ve mutlak degiskenleri.

|[—t=15

-40 -20 0

20 40

X

-

61

Sekil 7.4: t = 15 aninda dalga yiiksekligi.

t M, E, H, C(M,5) C(E,5) C(H,5)

5 |5.2255 |1.5033 | 1.5994 |8.0719x10" | 3.0588x10° | 1.2886x 10"
10 | 5.2255 | 1.5033 | 1.5994 | 2.7652x10° | 4.1342x10° | 1.8485x 107
15 | 5.2255 | 1.5033 | 1.5994 | 7.0380x10° | 6.1132x 10" | 2.1571x 107
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3.2. SONUCLAR VE ONERILER

Bu caligmada bazi baslangic ve sinir deger problemleri Gardner denklemine
uygulanarak  genisletilmis  kiibik B-spline  kollokasyon yontemiyle ¢Oziimii
incelenmistir. ilk &rnekte analitik ve niimerik ¢dziim arasindaki fark, farkli ayristirma
parametreleri icin maksimum hata normu olarak hesaplanmistir. Elde edilen sonuglarin
grafikleri ve tablolar incelendiginde uygulanan yontemin gecerli ve giivenilir bir yontem
oldugu sdylenebilir. ikinci drnek igin onerilen algoritma oldukca basarili sonuglar
vermistir. Mutlak degiskenler ve korunum sabitleri beklenilen ve istenilen sonuglar

olarak karsimiza ¢ikmistir.



DORDUNCU BOLUM

ADVEKSIYON-DIFUZYON DENKLEMININ GENIiSLETIiLMIiS KUBIK B-
SPLINE YONTEMI iLE SAYISAL COZUMU
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4.1. METODUN UYGULANMASI

Bu c¢alismada genisletilmis kiibik B-spline fonksiyonlar kullanilarak
adveksiyon—difiizyon denkleminin (ADD) niimerik ¢oziimii incelenmistir. Genisletilmis
kiibik B- spline Galerkin metodunu uygulayabilmek i¢in konum pargalanmasina, Crank-
Nicolson metodu igin ise zaman parcalanmasina ihtiyag¢ duyulmustur. Metodun
dogrulugunun incelenmesi i¢in ise maksimum hata normu dikkate alinmistir. Uygulanan
yontemin dogrulugunu test etmek icin ise bazi klasik test problemleri incelenerek

karsilastirmalar yapilmistir.

4.1.1. Sayisal Coziim

Bir boyutlu tasima ve yayilma islemleriyle tanimlanan difiizyon denklemi

asagidaki sekilde ifade edilsin.

du du d?u
E-FSE—[iﬁ—O (61)

Burada u(x,t) fonksiyonu t zamaninda ve x konumunda ¢oziimii. €,u Sirasiyla
diizenli akis hizin1 ve sabit yayilma katsayisini ifade eden parametrelerdir. (6.1)

denklemi igin baslangi¢ ve sinir kosullari (6.2), (6.3) seklinde segilsin.

u(x,0) =up(x), 0<x<i (6.2)

u(x,t) = fo(t), u(i,t) = fi(t) yada p|; = E() (6.3)

Burada i ve E; parametreleri sirasiyla kanalin uzunlugu ve x = i sinirindaki akisi temsil

etmektedir. uy, fy, f; bilinen fonksiyonlardir.
Klasik kiibik B-spline fonksiyonlarin genisletilmis formu Ej;, (3.1) seklinde ifade edilir.

Genigsletilmis kiibik B-spline ¢6zliimii i¢in u analitik ¢oziimiine yaklagim olarak kabul
edilen U yaklasik ¢6ziimii (6.4) seklinde ifade edilir.

u(x )~U(x t) = XL 6; (D E; (x) (6.4)
Burada 6;(t) ifadeleri zamana baglh bilinmeyen parametrelerdir. Diigiim noktalarinda U
yaklagik ¢coziimii ve tiirev degerleri asagidaki sekilde tanimlanir.

4-2 8+1

4-2
Up = U(x;, t) = — =61 +—6i + 56141

! ! 1
Ui" = U'(x;, t) = 7 (8i-1 = 8i41),



46

U"=U"(x t) = 2% (811 — 28 + O141) (6.5)

[0,i] araligi tizerinde agirlik fonksiyonu olarak genisletilmis kiibik B-spline

fonksiyonlar1 se¢ersek Galerkin metodundan ADD i¢in asagidaki esitlik elde edilir.
Jy EiC0) (ui + e — pity) dx = 0 (6.6)

[ xx , xr41 ] alt elemant {izerinde (6.4) ve (6.6) esitlikleri tekrar yazilirsa (6.7) ve (6.8)
elde edilir. Burada §;(t) biyiiklikleri i = k — 1, ...,k + 2 eleman parametreleridir.
Eij(x), j=k-—1,..,k+2 bilinen sekil fonksiyonlaridir. Galerkin ayristirma

algoritmasina gére Uy, Uy, Uy, Yerine u;, u,, Uy, yazilirsa (6.9) elde edilir.
U® = Ep—1(x)6k-1(8) + Ex (x)6x (t) + Ej41 () 8k 41 (6) + Egy2(x) Sper2(2) (6.7)

Lo B0 (ue + €ty — pt) dx = 0 (6.8)

Xk
S (2 BiEudx) 8, + & (2 BiE'dx) 6 — u (f7° EE"dx ) 6, (6.9)

j=k—-1,.k+2; k=0,1K,N—1ve $ sembolii zamana gore tlirevi ifade eder.
(6.9) denklemindeki integraller (6.10) seklinde ifade edilirse P¢, R® ve S€ 4x4 boyutlu
eleman matrislerini temsil eder. Bu matrisler (6.9) denklem sisteminde yerine

yazildiginda (6.11) denklem sistemi olusur.
x X / X "
Pﬁ = kak+1 E]Eldx Rﬁ = kak+1 E]E idx Sjel = kak+1 E']E l-dx (610)

Pe§e + (eR® — uSe)se (6.11)
Burada 8¢ = (8i_1, ..., 0k42)" seklindedir. Tiim sistemdeki elemanlarin (6.11)’de
yerine yazilmasiyla asagidaki kiiresel sistem olusur.

P8+ (eR—uS)8 =0 (6.12)
Burada P, R ve S ‘ye karsilik gelen eleman matrisleri tarafindan ¢ogaltilarak P¢, R®, S¢

ve § = (6_q,...,0y41)" tiim eleman parametrelerini icerir.

Bilinmeyen parametreler § i¢in Crank-Nicolson metodunu kullaniriz.

5n+1_5n . 5n+1 _5n

2 ! At

Crank-Nicolson formiiliiniin kullanilmasiyla (6.12) esitligi asagidaki tekrarlama

bagintis1 haline gelir.
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P+ 3 (eR - us)| 5741 = [P = (eR — uS) | 67 (6.13)
Tekrarlama islemine baslamadan once Smir kosullarini (6.13) sistemine dahil edilirse,

5™ pe SR+1 sartlan sistemden elimine edilince asagidaki denklemler elde edilir.

8+4

4-1
u(0,t) = Z591 + ETY

-1
88 +=2689 = fo(®),

8+4

. 4-2 4-2
u(i,t) = —=6y-1 +—/ 6§ + -, 0n+1 = (0

Boylece septa kosegensel matrisi elde edilir.

(6.13) siteminin tekrarlanmas siirdiiriiliirse, 6° baslangic parametreleri elde edilir.

(6.2) baslangi¢ kosulu ve (6.3) sinir kosullar1 kullanilirsa;

u'(x9,0) = = (6_1 — 81)

s+ s + s, i=0,.,N (6.14)

24 12 24

u(x;,0) =

u'(xy,0) = % (On—1— On+1)

Matris denklemi (6.14) , Thomas algoritmasi ile ¢oziiliir. Boylece U yaklasik ¢oziimii,
(6.4)’deki seri ¢oziim formundaki degerler kullanilarak bilinmeyen & degerleri

hesaplanur.

4.1.2. Test Problemleri

Verilen algoritmanin dogrulugunu gdstermek icin iki test problemi uygulanir.

Islemlerde yapilan hata 6l¢iimiinde maksimum hata normu (L) kullanilir.

tam __

Lo, = ||utam _ unﬁmeriklloo — maxOSjSNlu] uﬂﬁmerikl (6.15)

]

Niimerik hesaplamalarda genisletilmis kiibik B-spline i¢inde gegen A degeri, test

problemlerinden en iyi sonucu elde edebilecek sekilde taranarak secilir. Test

problemlerinde gegen C,. , Courant sayisi C, = e% seklindedir.

4.1.2.1. Birinci Test Problemi

Birinci o6rnekte pu =0 alinarak & = 0,5m/s sabit hizda hesaplamalar
yapilmistir. Bu durumda analitik ¢6ziim (6.16) seklinde elde edilmistir (Gorgili, Dag ,
Dogan, & Irk, 2018).
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u(x, t) = 10exp(— 2—;2 (x — xo — €t)?) (6.16)

Burada p = 264m ve x, = 2km almmistir. (6.16)’den baslangi¢ degeri, t =0
alinmasiyla elde edilmistir. [0,9000] araliginin sinirlarinda (6.16) denkleminin degeri 0
olarak segilir. Sekil 8.1 t=9600 zamanindan sonraki baslangic dagilimini

gostermektedir.

Il ' \.'II
I =05 [ =9600s
8 [ | [ 1

0 00 4000 600 8000 %000

Sekil 8.1: t = 9600 zamanindan sonraki baslangi¢ dagilimi.

Tablo 5.1’de farkli Courant sayilari igin tiim belge iizerinde ortaya ¢ikan hatalar
gosterilmistir. Tabloya gore farkli courant sayilari i¢in uygulanan yontemin sonuglari
daha Once yapilan ¢aligsmalarla uyumlu oldugu goriilmektedir. A’nin farkli degerleri igin
C, = 0,25 ve t = 9600s alinarak elde edilen hata degerleri Tablo 5.2’de verilmistir.

Sekil 8.2°de ise uygulanan yontemin t = 9600°de mutlak hata dagilimi gosterilmistir.

Tablo 5.1: Farkli Courant sayilari i¢in tiim belge lizerinde ortaya ¢ikan hatalar.

C, h At yl ECBSGM | (Irk, Dag, & (Dag, Irk, &
Tombul, 2015) Tombul, 2006)
0.125 200 50 -0.568169 | 2.18E-1 1.29 5.18E-1
0.25 100 50 -0.142055 | 1.90E-1 3.25E-1 3.76E-1
0.50 50 50 -0.032925 | 1.90E-1 1.98E-1 3.73E-1
0.50 10 10 -0.027064 | 7.50E-3 7.51E-3
0.50 1 1 -0.027064 | 7.50E-5 7.50E-5

0.50 05 0.5 -0.498015 | 1.88E-5 1.88E-5
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Tablo 5.2: A’nin farkli degerleri i¢in Cr = 0,25 ve t = 9600s alinarak elde edilen hata
degerleri.

A ECBSGM
-10 0.9200226
-5 0.4351456
-1 0.1968777
-0.5 0.1908966
-0.14205 0.1896909
0 0.1898749
0.14205 0.1904208
0.5
1
5
10
02

o 015

=

I

~ 01}

o

5

2 005

% 2000 2000 6000 8000 9000

X

Sekil 8.2: t = 9600 zamanindaki mutlak hata dagilimu.

4.1.2.2. ikinci Test Problemi

Bu test probleminde adveksiyon ve diftizyonun her ikisini birlikte
incelenmistir. [0,9] aralig1 iizerinde bir boyutlu Adveksiyon-Difiizyon denkleminin
analitik ¢oziimii (6.17) ile verilmistir (Sankaranarayanan, Shankar, & Cheong, 1998).
Burada € hizi, u yayilma katsayisini ve x, baslangic Gaus itme merkezini gosterir

(Gorgiilii, Dag , Dogan, & Irk, 2018).

(x—xo—et)?

1
A P am ) (6.17)

u(x,t) =
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(6.17) denklemi igin baslangi¢ degerini t = 0 alarak sinir degerlerini ise u(0,t) =
u(9,t) =0 secerek hesaplama yapilir. At = 0.0125 Zaman admmi igin yapilan
hesaplamalarin sonuglar1 gosterilmistir. Bu hesaplamalarda u=0.005m?/s ve
€ =0.8m/s almmustir. Sekil 8.3 t =5 zamanma kadar olan farkli zamanlardaki
nliimerik ¢oziimleri gosterir. Sekil 8.4°de ise uygulanan yontem i¢in mutlak hata

dagilimi gosterilmistir.

0.8} =0 |

06 G

04r

0.2+

Sekil 8.3: t = 5 zamanina kadar olan farkli zamanlardaki niimerik ¢oziimler.

x 10

08

06

04r

Mutlak Hata

02

1] 2 4 6 8
X

Sekil 8.4: Uygulanan yontem i¢in mutlak hata dagilimu.

Uygulanan yontemle elde edilen sonuglar ile farkli yontemlerden elde edilen sonuglarin

karsilastirilmast Tablo 5.3’de verilmistir.



Tablo 5. 3: Farkli yontemlerle elde edilen sonuglarin karsilastirilmasi.
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Cr h A ECBSGM Metot 1 Metot 2
(Korkmaz & (Korkmaz &
Dag, 2012) Dag, 2012)
0.05 0.2 -0.238247 0.1326156 0.1253926 0.1361437
0.10 0.1 -0.238247 0.0042296 0.0069553 0.0145554
0.20 0.05 -0.200000 0.0008429 0.0012117 0.0002886
0.40 0.025 -0.106431 0.0008426 0.0003071 0.0000181

4.2. SONUCLAR VE ONERILER

Bu c¢alismada adveksiyon-difiizyon denkleminin ¢oziimi

icin yeni bir

algoritma Onerilmistir. Bu algoritma ile genisletilmis kiibik B-spline fonksiyonlar

yardimiyla iyi bilinen Galerkin sonlu elemanlar yontemi uygulanmistir. YOntemin

etkinligini gosterebilmek i¢in iki test problemiyle ¢alisilmistir. Elde edilen sonuglarin

diger sonuglarla karsilastirllmasindan anlagilmaktadir ki Onerilen metot iyi sonuglar

vermektedir.



BESINCi BOLUM

DUZENLENMIS UZUN DALGA DENKLEMININ (MRLW), GENISLETILMI$
KUBIK B-SPLINE YONTEMI ILE SAYISAL COZUMU
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5.1. METODUN UYGULANMASI

Bu calismada MRLW denkleminin niimerik ¢6zliimii i¢in kollokasyon metodu
ile ¢6zlimii incelenmistir. Kollokasyon metodu ile islem yapilirken genisletilmis kiibik
B-spline fonksiyonlardan yararlanilmistir. Uygulanan yontemin dogrulugunu gostermek
icin iki test problemi iizerinde calisilmistir. Bu test problemlerinden bir tanesi tek

solitary dalga yayilimi bir digeri ise solitary dalganin etkilesimi seklindedir.

5.1.1. Sayisal Coziim

Niimerik ¢6ziimii elde edilecek olan MRLW denklemi (7.1) seklindedir.
U+ Uy, + eU?Uy — Uy = 0 (7.2)
Bu denkleme ait baslangi¢ kosullar1 U — 0 ise x —» too .

Hesaplama yapabilmek i¢in [a, b] lizerinde fiziki sinir kosullari, yapay sinir kosullariyla

degistirilir. Bu yapay simir kosullari;

U(a, t) =Up; U(b,t) = Uy, (7.2)
Ue(a,0) =0; U, 0)=0

Ve baslangic kosullar1 U(x, 0) = f(x), x € (a, b) seklinde alinacaktir.

7, [a, b] izerinde esit araliklara boliinsiin.
ma=xy<x <X <~ <xy=b, h=2=2 olsun.
Klasik kiibik B-spline fonksiyonlarin genisletilmis formu Ej;, (3.1) seklinde ifade edilir.

E;(x), ¢oziimde kullanilacak taban fonksiyonlardir. Tablo 2.1 kullanilarak (7.3) esitligi
ile 1. ve 2. tiirevleri iceren (7.4) esitlikleri asagidaki sekilde ifade edilir.

4-1 8+1 4-1
U =U(x) = 751-_1 + ;—26i + Zé‘i.,.l ) (7.3)
/ ! 1
Ui' = U'(6) = = (81 = 81a), (7:4)
2+4
Uin:U"(xl,) = # (Si—l - 251_ + 5i+1),

MRLW denklemi igin Crank-Nicolson metodunun uygulanmasi ile U ¢dziimii zaman

parametreleri cinsinden (7.5) seklinde ifade edilir.

untl —yn 4 %[U}:H + UM + g(U2)"MUM 4 ¢(UDWR] — p(UKT—UR) =0 (7.5)
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(7.5) denklemindeki lineer olmayan terim e(U?)**1U2*1 yerine Taylor seri agilimi

yardimiyla asagidaki gibi yaklasik bir ifade yazilabilir.
(UZ)n+1 U)TCl+1 ~ (UZ)TL(U;’:I+1 + ZUnU;lUn-l-l _ Z(UZ)nUZCl

(7.4) esitliklerinin kullanilmasiyla MRLW denklemi i¢in tam bir ayristirma elde edilir
(7.6).

U= U S [URF 4 U+ e((UBMUR + 20MURU - (U UR)] -

pUHET-ULR) =0
((4241) 5n+1 + (%) 6in+1 + (4241) 517?11 N ( 24 ) Sln 1 (%) 61' (4241) 611}*1) +

At (5{1—+11 — 53:-11 + 8iq _ ‘Sln+1) UZ” (6n+1 — 5{5:-11) | 2UnUn (4 /1) 6n+1
2 2h 2h 2h 2h 2h 2h

(ot () o) - o (2 - 2)) - () (5 o -
(52) o+ (5) ant) - () (5ot - () o + (D)) | =0 7

4-1 8+A 24+ 241

a1=—24, d2=——12, ﬁlZ_thv ﬁZz_hz
_ 1 1
Yi= "5 Y2 = o5

Bu kisaltmalar kullanildiginda ifadedeki her bir terim asagidaki gibi yazilir. (7.7)

denklem sistemi elde edilir.

n+1 At 2m nyyn _ _ sn+1 nyn
6,75 (al +5 (v1 + €(U?"y, + 2U™URay)) ,uﬁl) = 0,1 (al(l + eAtU™UY) +
At
> (V1 + SUZn}’l) - .Uﬁ1)
5 (—ay — S eQUUD, + ufs) = 5 (—ap(1 + AteU™UR) + pfy)
St (al + % (v1 + e(U?"y,) + €2U™UPay) — ,uﬁl) = 6" (—ay (1 + AteU™MUR) +
©B2)

At At

=6ty (_al Y (V1 + S(Uznh)) + .Uﬁ1) = 0i1, (al + Py ()’1(1 + SUzn)/l)) - #ﬁl)

_5in(az +uB,) = ‘Sin(_az — upz)
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—% (—eu =5 (v2 + £(U?"y2)) + ) = 675y (1 + 5 (r2(1 +2(U?")) — By )
6751 (aa (1 + eAUUR) + 5 (vy + eUP"yy) — s )] + [67 (—a (1 +
AteUmUE) + uBy)] + 5741 (—ay (1 + AteU™UR) + )] = [0, (e +
2 (va(1+eU"yy)) = )| + 167 (—az — 1uBo)] + [67 (0 + 5 (v2(1 +
e(U™)) = )] (7.7)

Ortaya ¢ikan sistem N + 1 denklem ve N + 3 bilinmeyenden olustugundan denklemi
coziilebilir hale getirebilmek icin U(a,t) = U, , U(b,t) = Uy smr kosullarindan

6_1 ve 6y,q parametreleri elimine edilir.
4-2 8+1 4-2
6 =(57) W - (55) 60— (57) 00,
4-2 8+1 4-2
O = (57) Wa = (55) w-1 = (57) o)
6_1 ve Sy, parametrelerinin elimine edilmesiyle (N+1) x (N+1) boyutlu ¢6ziilebilir
bir denklem sistemi elde edilir.

(7.7) sisteminden iterasyon baglatabilmek igin &°;, &9,...,654, baslangig
parametrelerinin hesaplanmasina ihtiyag vardir. Bunun igin baslangi¢ kosulu ve 1.

tiirevi kullanilir.

Uy(x;,0) =U(x;,0), i=1,..,N
(Ux)n (x0,0) = U'(x0)

(Ux)n(xn, 0) = U'(xn)

Yukarida belirtilen kosullardan asagidaki tiggensel bant matris elde edilir.

—L1 L 150 -
2h 2h 0-1]r 0
(4-1) (8+1) (4-1) 50 11U (xe)
24 12 24

= (7.8)
(4-2) (8+1) (4-1)
24 12 24 oy | |UGen)
-— 0 — -61(\)l+1— - 0
2h 2h -
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5.1.2. Test Problemleri

Bu boliimde diizenlenmis RLW denklemi icin iki test problemi {izerinde

calisilmaktadir. Birinci test problemi igin maksimum hata normu (7.9) kullanilir.
Lo (t) = max |u(u;, t) — U} (7.9)

Uygulanan niimerik yontemin dogrulugunu gostermek igin ¢esitli korunum sabitleri
hesaplanarak sonuclar incelenir. Bu korunum sabitleri kiitle, momentum ve enerjiyi

temsil etmektedir ve asagidaki gibi hesaplanir.

0 h _
L= [ udu~ 255 t(Un = Unsi) (7.10)

oo h —
I, = f_m(uz + .u(ux)z)dx =3 %:lo(Umz + Um+12 + .u(Ux)12n+1)

0o 6 h _ 6 6
Is = [2,u* + == () dx = SN Un® + Uit == Ui — = (Un)iurn)

5.1.2.1. Birinci Test Problemi

Bu bolimde MRLW denklemi icin tek solitary dalga hareketi iizerinde

durulacaktir.

(7.1) denkleminin solitary dalga ¢6ziimii (7.11) seklindedir (Dag, Irk, & Sar1, 2013).

U(x,t) = \/%sech(k[x —xo — (c+ 1)t)) (7.12)

Burada k = ’u (CC+1) ‘dir. Bu ¢6ziim A = \/% solitary dalga biiyiikligiine sahip, x,

merkezli en yiliksek pozisyonlu ve ¢ + 1 hizli solitary dalgaya aittir. I;, I,, I3 korunum

sabitlerinin analitik degerleri agagidaki gibi hesaplanir.

A 2A%  2ukA?
11 = - IZ - -
k k 3

442
Iy = —— (A% — 3uk?)

Uy, = Uy = 0 baslangi¢ kosullariyla birliktee =6 ,u=1,C=1,X,=40veA =1
parametreleriyle solitary dalga yayilimi incelenir. Bu islem h = 0,2 ve At = 0,025
almarak 0 < x <100 bolgesi Tlizerinde yapilir ve daha oOnceki ¢alismalarla
karsilagtirilir. MRLW denkleminin niimerik ¢6ziimiinii bulabilmek i¢in problem, en iyi
A degerini bulmak amaciyla [—8,1] aralig1 iizerinde t = 10 zamanina kadar incelenir.

Bu isleme gore L, hata normuna ait veriler Sekil 9.1°de gosterilmistir.
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Sekil 9.1: —1 < A < 1 araliginda L, hata normu.

Sekilden goriilecegi gibi en diisiik mutlak hata A = —0,0089 i¢in elde edilmektedir. L.,

hata normu ve I;, I,, I3 korunum sabitlerinin degerleri Tablo 6.1’de verilmistir.

Tablo 6.1: L, hata normu ve I, I,, I3 korunum sabitlerinin degerleri.

Lo,X103 L L I

Uygulanan Metot

9.0618935 | 4.4428821 | 3.2997861 | 1.4141511

Uygulanan Metot (1 = —0.0089) | 0.7764 44428806 | 3.2997842 | 1.4141568

(Raslan, 2009) ¢alismasi

1.24757 4.445176 3.302476 1.417411

2008) ¢alismasi

(Khalifa, Raslan, & Alzubaidi, | 5.43718 4.44288 3.29983 1.41420

Tam Cozim

44428829 | 3.2998316 | 1.4142136

Onceki galismalara gore daha iyi sonuglar verdigi tablo6.1°den de agikga goriilmektedir.

5.1.2.2. ikinci Test Problemi

Bu boliimde MRLW denklemi i¢in iki pozitif solitary dalga etkilesimi lizerinde

durulacaktir. Bu denkleme ait t=0 anindaki analitik ¢6ziim (7.12)’de verilmistir (Dag,

Irk and Sar1, 2012).

U(x,0) = A, sech(k,[x — x1]) + Aysech(k,[x — x,]) (7.12)
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Burada 4; = \/%, k; = /M(Cjiﬂ) “dir. i = 1,2, ... x;, ¢;’ler keyfi parametrelerdir.

Hesaplama yapilacak bu g¢alismada parametreler e =6 , u=1, C; =1,
C,=1/4 , x;, =25, x, =55 olarak almip t =0 ’dan t = 60 ’a kadar [0,200]
bolgesinde At = 0,01 ve h = 0,1 i¢in yapilir. Bu parametreler biiyiikliikleri 1 ve 0,5
olan ve en yiiksek pozisyonlar1 x = 20 ve x = 50 ‘de alan iki solitary dalga igin

gecerlidir. I;, I,, I35 degiskenlerinin analitik degerleri asagidaki gibi hesaplanmustir.

I, = ——(k,A; + k;4;) = 7,955290304
kiks

I = =2 (kyAi2 + kyAy?) + 22 (ky koA + kyky2A,2) = 4,492401234
klkz k1k2

_ 4
™ 3kqkye

I3 (ek Ay* — 3uk k2 Ay% + ek, Ayt — 3uk,*k,A;%) = 1,526016961

Farkli zamanlarda iki solitary dalga etkilesimi Sekil 9.2’deki gibidir.

Sekil 9.2: Farkli zamanlarda iki solitary dalga etkilesimi.
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Sekilden de anlasilacagi gibi baslangicta x = 20 noktasinda 1 genligine sahip olan bir
dalga ile x = 50 noktasinda 0,5 genligine sahip baska bir dalga mevcuttur. Zaman
ilerledikce dalgalar birbiriyle iletisime girmektedir bunun sonucunda ¢ = 60 aninda
dalgalar birbirinden ayrilmis ve farkli yonlere hareket etmeye baslamistir. ¢ =
60 aninda 0,50444 genlige sahip kii¢iik dalga x = 120,5 konumuna yerlesmis 0,99989
genlige sahip bliylik dalga x = 143,7 konumuna yerlesmistir. I;, I, I;i¢in elde edilen
mutlak hata grafikleri Sekil 9.3 - 9.5’deki gibidir.



59

0.24 A= 00012
A=0
0.20
e
L |
0.16
0,12 -
1 I 1 I 1 1 I 1 I 1
10 20 30 40 50 60

25— A= —0.0012
| A=10
20 ST
_I
L 1
1
Vf
1.5 o
! -'I
B I
|I i
— I/
1.0 !
!l
i all'
4
0.5 b
J/
O 4
L p====
0] PR I T I T R
0 10 20 30 40 50 60

Sekil 9.4: I, icin elde edilen mutlak hata grafigi.
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Sekil 9.5: I5 i¢in elde edilen mutlak hata grafigi.
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5.2. SONUCLAR VE ONERILER

Bu ¢aligmada zamana bagli dogrusal olmayan kismi diferansiyel denklemlerin
sayisal ¢oziimlerini bulmak i¢in sayisal bir yontem olan genisletilmis kiibik B-spline'in
kullanim1 anlatilmistir. Boylece MRLW denkleminin sayisal ¢oziimlerini elde etmek
icin kollokasyon yontemi kullanilarak genigletilmis kiibik B-spline'in adaptasyonu
yapilir. Algoritmanin maliyeti genisletilmis kiibik B-spline kollokasyon yonteminde
kiibik B-spline siralama yontemi ile aynidir. Bu nedenle kolay ve ekonomik bir
yontemdir. MRLW denklemini kiibik B-spline kollokasyon yontemiyle ¢ozmektense
genisletilmis kiibik B-spline'in uygun kollokasyon yontemiyle ¢oziilmesi biraz daha iyi

sonugclar verir.
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SONUC

Bu calismada KdVB, Gardner, Adveksiyon — Difiizyon ve MRLW denklem
sistemlerinin sayisal ¢6ziimlerini arastirmak i¢in, genisletilmis kiibik B-Spline yontemi
kullanilmustir.

Birinci bolimde, sonraki bdliimlerde kullanilacak olan solitary dalgalar,
soliton, hata normlari, sonlu farklar ve sonlu elemanlar, Galerkin ve kollokasyon
yontemlerinin kullanimi tanitilmistir. Ayrica spline ve B-Spline fonksiyonlar tanitilmis
ve bunlarin alt bashgi olan kiibik B-spline ve genisletilmis kiibik B-spline
fonksiyonlarmin  smir sartlarindaki  ¢oziim kiimeleri formiillerle  gosterilerek
tablolagtirilmigtir. Birinci boliimde son olarak KdV Burgers, Gardner, Adveksiyon-
Difiizyon ve Diizenlemis Uzun Dalga Denklemleri tanimlanmis ve literariir taramasi
yapilarak bu denklemler hakkinda yapilan ¢alismalara yer verilmistir.

Diger botimlerde sirayla; KdV Burgers, Gardner, Adveksiyon-Diflizyon ve
Diizenlemis Uzun Dalga Denklemlerinin genisletilmis kiibik B-spline yontemiyle
sayisal ¢oziimil yapilmistir. Zaman ayrisimi i¢in Crank-Nicolson metodu kullanilmstir,
konum ayrigimi iginse kollokasyon metodu kullanilmistir. Elde edilen matriste denklem
sistemlerinin denklem ve bilinmeyen sayilarinin farkli oldugu goriilmiistiir. Denklemin
¢oziilebilmesi i¢in denklem sayilari ile bilinmeyen sayilari esit olmalidir. Bu
denklemlerin sinir sartlar1 kullanilarak, bazi bilinmeyenler elimine edilerek sistem
¢oziilebilir hale getirilir.

Niimerik ¢oziimlerin dogrulugu test problemleriyle kontrol edilmistir. Niimerik
coziimler serbest parametre olan A’ nin sifira esit oldugu ve sifirdan farkli oldugu
degerler i¢in ayr1 ayri hesaplanmis ve bulunan sonuglar karsilagtirilmistir. 4 =0
alindiginda yontemimiz kiibik B-spline yontemi ile ayni sonuglar vermektedir.
Dolayisiyla farkli test problemleri ve farkli parametreler i¢in elde edilen tiim sonuclar
incelendiginde genel olarak A’ nin sifirdan farkli degerleri i¢in elde edilen hata
normlarinin, A = 0 durumundakine gore daha kiiciik degerler aldigi, dolayisiyla
genisletilmis kiibik B-spline yonteminin, kiibik B-spline yontemine gore daha dogru
sonuglar verdigi goriilmiistiir. Analitik ve niimerik ¢oziimleri daha iyi kiyaslayabilmek
icin maksimum hata normu hesaplanmistir. Cizilen hata grafiklerine bakildiginda,
olusan maksimum hatanin o anda olusan dalganin tepe noktasina karsilik gelen konum

degeri civarinda olustugu gozlemlenmisti. Grafiklere bakildiginda soliton dalganin
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zaman igerisinde seklinde ciddi bir bozulma olmadan ilerledigi, yani genisletilmis kiibik
B-spline yonteminin dalganin hareketini iyi modelledigi goriilmiistiir.

Dogru sonuglar vermesi ve problemi ¢ozmedeki basarisi agisindan bakildiginda
benzer tipteki kismi tiirevli diferansiyel denklemlerin sayisal ¢oziimleri arastirilirken

genisletilmis kiibik B-spline metodunun kullanilmasi tavsiye edilir.
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