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ÖZET 

 

B-SPLİNE FONKSİYONLAR YARDIMIYLA SONLU ELEMANLAR 

YÖNTEMİNİN BAZI UYGULAMALARI 

 

KILINÇ, Işıl Özge 

Yüksek Lisans Tezi, Matematik Anabilim Dalı 

Tez Danışmanı: Doç. Dr. Ahmet BOZ 

Şubat, 2021, 83 sayfa 

 

Kısmi türevli diferansiyel denklemler, lineer ve lineer olmayan kısmi türevli 

diferansiyel denklemler olarak iki sınıfta incelenebilir. Uygulama alanlarına bağlı olarak 

da çeşitleri kendi içlerinde artmaktadır (Debnath, 2011). Bu yüksek lisans tezinde, 

zamana ve konuma bağlı bazı bir boyutlu lineer olmayan kısmi türevli diferansiyel 

denklemler için nümerik çözüm araştırılacaktır. Model problem olarak, KdV Burgers, 

Gardner, Adveksiyon-Difüzyon, MRLW denklemleri seçilecektir. Çözümleri 

araştırırken zaman ayrıştırması için Crank-Nicolson yöntemi, konum ayrıştırması için 

ise Galerkin yöntemi çalışılacaktır. Bu nümerik yöntemler, model problemlere 

uygulanacaktır. 

İlk bölümde ileriki bölümlerde ihtiyaç duyulacak bazı temel kavramlar 

açıklanmıştır. İlk olarak solitary dalgalar, soliton,  hata normları, sonlu farklar yöntemi, 

sonlu elemanlar yöntemi, Galerkin yöntemi ve kollokasyon yöntemi tanıtılmıştır. Spline 

fonksiyon kavramı anlatıldıktan sonra kübik B-spline ve genişletilmiş kübik B-spline 

fonksiyonlar tanımlanmıştır. Bu bölümün sonunda, sonraki bölümlerde sayısal çözümü 

araştırılacak olan KDV Burgers Denklemi, Gardner Denklemi, Adveksiyon - Difüzyon 

Denklemi, Düzenlenmiş Uzun Dalga Denklemi için literatür taraması yapılmıştır. 

Diğer bölümlerde sırasıyla, KDV Burgers, Gardner, Adveksiyon - Difüzyon, 

Düzenlenmiş Uzun Dalga (MRLW) denklemlerinin genişletilmiş kübik B-spline 

yöntemiyle sayısal olarak çözümleri incelenmiştir. Her biri için ikişer test problemi, tam 

sonuçlarla önerilen yöntemi karşılaştırmak için kullanılmıştır. 

Sonuç bölümünde genişletilmiş kübik B-spline yönteminin bu denklemlere 

uygulanışı hakkında elde edilen sonuçlar karşılaştırılmıştır. 

Anahtar Kelimeler: Genişletilmiş B-spline, KDV Burgers Denklemi, Gardner 

Denklemi, Adveksiyon-Difüzyon Denklemi, Düzenlenmiş Uzun Dalga 

Denklemi. 
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ABSTRACT 

 

SOME APPLICATIONS OF FINITE ELEMENT METHOD WITH B-SPLINE 

FUNCTIONS 

 

KILINÇ, Işıl Özge 

Master Thesis, Deparment of Mathematic 

Supervisor: Doç. Dr. Ahmet BOZ 

February, 2021, 83 pages 

Partial differential equations can be examined in two classes as linear and 

nonlinear partial differential equations. Depending on the application areas, the varieties 

are increasing in themselves. In this master thesis, the numerical solution will be 

investigated for some one-dimensional nonlinear partial differential equations 

depending on time and position. As the model problem, KdV Burgers, Gardner, 

Advection-Diffusion, MRLW equations will be chosen. while researching solutions, 

Crank-Nicolson method will be used for time parsing and Galerkin method will be used 

for location parsing. These numerical methods will be applied to model problems. In the 

first part, some basic concepts that will be needed in the following chapters are 

explained.  

Firstly, solitary waves, soliton, error norms, finite difference method, finite 

element method, Galerkin method and collocation method are introduced. After 

explaining the concept of spline function, cubic B-spline and expanded cubic B-spline 

functions are defined. At the end of this chapter, literature review has been made for 

KDVB Equation, Gardner Equation, Advection-Diffusion Equation, MRLW Equation, 

whose numerical solution will be investigated in the following chapters. 

In other chapters, numerical solutions of KDV Burgers, Gardner, Advection - 

Diffusion, Modified Regularized Long Wave (MRLW) equations by expanded cubic B-

spline method, respectively, have been examined. Two test problems for each were used 

to compare the proposed method with the exact results. 

In the conslusion part, the results obtained about the application of the 

expanded cubic B-spline method to these equations are compared. 

Keywords: Extended B-spline, KDV Burgers Equation, Gardner Equation, Advection - 

Diffusion Equation, Modified Regularized Long Wave Equation. 
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GİRİŞ 

Bu çalışmada zamana ve konuma bağlı bazı bir boyutlu lineer olmayan kısmi 

türevli diferansiyel denklemler için nümerik çözüm araştırılacaktır. Model problem 

olarak, KdV Burgers, Gardner, Adveksiyon-Difüzyon, MRLW denklemleri seçilecektir. 

Çözümleri araştırırken daha az hatayla sonuçlar elde edebilmek için zaman ve konum 

ayrıştırması, Crank-Nicolson yöntemi ve Galerkin yöntemi kullanılarak yapılacaktır. 

İlk bölümde solitary dalgalar, soliton,  hata normları, sonlu farklar yöntemi, 

sonlu elemanlar yöntemi, Galerkin yöntemi ve kollokasyon yöntemi tanıtılmıştır. Spline 

fonksiyon kavramı anlatıldıktan sonra kübik B-spline ve genişletilmiş kübik B-spline 

fonksiyonlar tanımlanmıştır ve bu fonksiyonlarının sınır şartlarındaki çözüm kümeleri 

incelenmiştir. Bu bölümün sonunda, sonraki bölümlerde sayısal çözümü araştırılacak 

olan KDV Burgers Denklemi, Gardner Denklemi, Adveksiyon - Difüzyon Denklemi, 

Düzenlenmiş Uzun Dalga Denklemi için literatür taraması yapılmıştır. 

Diğer bölümlerde sırasıyla, KDV Burgers, Gardner, Adveksiyon - Difüzyon, 

Düzenlenmiş Uzun Dalga (MRLW) denklemlerinin genişletilmiş kübik B-spline 

yöntemiyle sayısal olarak çözümleri incelenmiştir. Zaman ayrışımı için Crank-Nicolson 

metodu kullanılmıştır, konum ayrışımı için ise kollokasyon metodu kullanılmıştır Her 

biri için ikişer test problemi, tam sonuçlarla önerilen yöntemi karşılaştırmak için 

kullanılmıştır. Farklı test problemleri ve farklı parametreler için elde edilen tüm 

sonuçlar incelendiğinde genel olarak 𝜆’ nın sıfırdan farklı değerleri için elde edilen hata 

normları, 𝜆 = 0 durumundaki hata normu ile karşılaştırılmıştır. Böylece genişletilmiş 

kübik B-spline yöntemi ile kübik B-spline yöntemi kıyaslanmıştır.  

 Sonuç bölümünde genişletilmiş kübik B-spline yönteminin bu denklemlere 

uygulanışı hakkında elde edilen sonuçlar karşılaştırılmıştır. Grafiklere bakıldığında 

genişletilmiş kübik B-spline yönteminin dalganın hareketini iyi modellediği 

görülmüştür. Problemi çözmedeki başarısı açısından bakıldığında benzer tipteki kısmi 

türevli diferansiyel denklemlerin sayısal çözümleri araştırılırken genişletilmiş kübik B-

spline metodunun kullanılması tavsiye edilir. 
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TEMEL KAVRAMLAR
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1.1. KULLANILAN DENKLEMLER VE YÖNTEMLER 

Bu bölümde, diğer bölümlerde kullanılacak olan temel kavramlardan kısaca 

bahsedilmiştir. İlk olarak soliton-solitary dalgalar, hata normları, sonlu farklar ve sonlu 

elemanlar yöntemleri özetlenmiştir. Galerkin ve kollokasyon yöntemleri hakkında bilgi 

verilmiştir. B-Spline fonksiyonlardan kübik B-Spline ve genişletilmiş kübik B-Spline 

fonksiyonlar çözümlenmiştir. Tezde sayısal çözümleri araştırılacak olan, KdV Burgers, 

Gardner, Adveksiyon-Difüzyon, MRLW denklemleri literatür taraması ile tanıtılmıştır. 

 

1.1.1. Solitary Dalgalar ve Soliton 

Enerjinin taşınmasını sağlayan ve bir ortamda veya boşlukta yayılan 

titreşimlere dalga denir. Bilinen en yaygın dalga özelliği gösteren titreşimler ses, ışık, 

atomun içindeki tanecik hareketleri ve suda ilerleyen yüzey dalgalarıdır. En basit 

dalgada bile titreşimler, sabit bir frekans ve dalga boyu ile periyodik olarak salınım 

yaparlar (Şekil 1.1). 

 

 

Şekil 1.1: Basit bir dalga profili. 

Ses dalgaları mekaniksel dalgalardır. Mekaniksel dalgalar yayılabilmek için bir 

ortama ihtiyaç duyarlar bunun aksine elekromanyetik dalgalar bir ortama gereksinim 

duymazlar boşlukta bile ilerleyebilirler. Bir ortamdaki dalganın yayılması ortamın 

özelliklerine de bağlıdır (Crawford, 1968). 
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Dalgaları iki kısımda inceleyebiliriz bunlar; duran dalgalar ve ilerleyen 

dalgalardır. Duran dalgalar, pozisyonu değişmeyen dalgalardır. Bu dalgalar, dalganın 

bulunduğu ortamla dalganın hareket yönünün zıt olması durumunda veya durağan 

ortamda birbirine zıt yönde hareket eden dalgaların kesişmesi sonucunda oluşabilirler. 

İlerleyen dalgalar ise, bir noktadan başka noktaya madde taşıması söz konusu 

olmaksızın enerjinin yayılması ile oluşan dalgalardır. 

Solitonlar lineer olmayan dalgalardır. Solitary dalga özelliğine sahiptir yani 

şekli ve hızı değişmeden yayılan dalgalardır ayrıca parçacık özelliğine sahiptir yani 

karşılıklı çarpışmaya karşı kararlıdır ve çarpışma sonrasında kendi özelliklerini 

koruyabilirler (Wadati, 2001). 

 

1.1.2. Hata Normları 

Çözümü yapılacak olan başlangıç sınır değer problemleri için önerilen 

yöntemin doğruluğunu ve geçerliliğini kontrol etmek amacıyla hata normları kullanılır. 

𝐿2 ve 𝐿∞ olarak ifade edilen hata normları aşağıdaki şekilde tanımlanır. 

𝐿2 = √ℎ∑ |𝑢𝑗 − 𝑈𝑗|
2𝑁

𝐽=0   

𝐿∞ = |𝑢𝑗 − 𝑈𝑗|𝑗
𝑚𝑎𝑘𝑠   

Burada 𝑢𝑗  başlangıç sınır değer probleminin tam çözümünü, 𝑈𝑗 ’de başlangıç 

sınır değer probleminin nümerik çözümünü ifade eder.  

 

1.1.3. Sonlu Farklar Yöntemi 

Fen ve mühendislik alanlarındaki fiziksel olayları modelleyen problemler 

genellikle diferansiyel denklem sistemleri ile ifade edilir. Bu denklem sistemleri; adi 

diferansiyel denklem sistemleri veya kısmi türevli diferansiyel denklem sistemleridir. 

Bu denklem sistemlerinin sayısal çözümlerinin olmadığı ya da çözümlerin çok karmaşık 

olduğu durumlarda, bu denklemleri çözebilmek için sayısal yöntemler kullanılmaktadır. 

Sonlu farklar ve sonlu elemanlar metotları bu yöntemlerden ikisidir (Dağ, Irk, & Sarı, 

2013). 

Sonlu farklar metodu bir diferansiyel denklemin tanım aralığını, belirli sayıdaki 

alt aralıklara ayırarak her bir bölünme noktasındaki türev değerleri yerine, sonlu fark 
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yaklaşımlarının yazılmasıdır. Bu yöntemle diferansiyel denklem kolaylıkla 

çözülebilecektir. 

Bir bağımsız değişken içeren ifadeler için sonlu fark yaklaşımları, Taylor serisi 

yardımıyla elde edilir. Sonlu fark yaklaşımını elde etmek için öncelikle [𝑎, 𝑏] konum 

aralığı, 𝑁 bir pozitif tamsayı, ℎ = (𝑏 –  𝑎)/𝑁 olmak üzere 

𝑥𝑚 = 𝑎 +𝑚ℎ,   𝑚 = 0,1, … ,𝑁           (1.1) 

formundaki bölünme noktalarına ayrılsın. Bu durumda, 𝑢(𝑥) fonksiyonu ve türevleri 

tanım aralığı üzerinde sürekli olmak üzere, 𝑢(𝑥𝑚  +  ℎ) ve 𝑢(𝑥𝑚 −  ℎ) ifadelerinin 𝑥𝑚   

noktasındaki Taylor seri açılımları 

𝑢(𝑥𝑚 + ℎ) = 𝑢(𝑥𝑚) + ℎ𝑢𝑥(𝑥𝑚) +
ℎ2

2!
𝑢𝑥𝑥(𝑥𝑚) +

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑥𝑚) + ⋯,    (1.2) 

𝑢(𝑥𝑚 − ℎ) = 𝑢(𝑥𝑚) − ℎ𝑢𝑥(𝑥𝑚) +
ℎ2

2!
𝑢𝑥𝑥(𝑥𝑚) −

ℎ3

3!
𝑢𝑥𝑥𝑥(𝑥𝑚) + ⋯,    (1.3) 

olarak yazılabilir. Konuma göre birinci türev için sonlu fark yaklaşımı elde etmek 

istenirse (1.2-1.3) eşitliklerinden 𝑢𝑥(𝑥𝑚) teriminin çekilmesi sonucunda 

𝑢𝑥(𝑥𝑚) =
𝑢(𝑥𝑚+ℎ)−𝑢(𝑥𝑚)

ℎ
+

ℎ

2!
𝑢𝑥𝑥(𝑥𝑚) +

ℎ2

3!
𝑢𝑥𝑥𝑥(𝑥𝑚) + ⋯,    (1.4) 

𝑢𝑥(𝑥𝑚) =
𝑢(𝑥𝑚)−𝑢(𝑥𝑚−ℎ)

ℎ
+

ℎ

2!
𝑢𝑥𝑥(𝑥𝑚) −

ℎ2

3!
𝑢𝑥𝑥𝑥(𝑥𝑚) + ⋯,    (1.5) 

yazılabileceğinden 𝑢 ifadesinin 𝑥𝑚 noktasındaki birinci türevi  

𝑢𝑥(𝑥𝑚) =
𝑢(𝑥𝑚+ℎ)−𝑢(𝑥𝑚)

ℎ
+𝑂(ℎ) ⇒ (𝑢𝑥)𝑚 =

𝑢𝑚+1−𝑢𝑚

ℎ
+ 𝑂(ℎ),     (1.6) 

𝑢𝑥(𝑥𝑚) =
𝑢(𝑥𝑚)−𝑢(𝑥𝑚−ℎ)

ℎ
+𝑂(ℎ) ⇒ (𝑢𝑥)𝑚 =

𝑢𝑚−𝑢𝑚−1

ℎ
+ 𝑂(ℎ),     (1.7) 

formunda yaklaşık olarak bulunabilir. (1.6-1.7) ile bulunan yaklaşımlar sırasıyla ileri ve 

geri fark yaklaşımları olarak adlandırılır. Her iki yaklaşımda da görüldüğü gibi, seri 

belli bir yerden kesilmiştir. Dolayısıyla bu kesme işlemi sebebiyle bir hata oluşacaktır. 

Oluşan hatalar, serinin kesildiği yerden sonraki ilk terime göre değerlendirilir ve 𝑂(. ) 

ile gösterilir. Hatanın derecesi ne kadar yüksek olursa yaklaşım da genelde o kadar iyi 

olacaktır. Eğer hatanın derecesi yükseltilmek istenirse (1.3) eşitliği, (1.2) eşitliğinden 

çıkarılır ve düzenlenirse 

𝑢𝑥(𝑥𝑚) =
𝑢(𝑥𝑚+ℎ)−𝑢(𝑥𝑚−ℎ)

2ℎ
+ 𝑂(ℎ2),  
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(𝑢𝑥)𝑚 =
𝑢𝑚+1−𝑢𝑚−1

2ℎ
+ 𝑂(ℎ2),          (1.8) 

formunda birinci türev için merkezi fark yaklaşımı da bulunabilir (Irk, 2007). 

1.1.4. Sonlu Elemanlar Yöntemi 

Sonlu elemanlar yöntemi fen ve mühendislik alanlarında karşılaşılan 

problemlerin çözümünde sıkça kullanılır, ayrıca bu yöntem kısmi türevli diferansiyel 

denklemlerin ve integral denklemlerin yaklaşık çözümlerini bulmak için de kullanılan 

bir nümerik yöntemdir. Bu yöntem ile ısı transferi, akışkan akışı, yapısal analiz, 

elektromanyetik potansiyel ve kitle taşımacılığı gibi alanlarda ortaya çıkan problemlerin 

çözümleri araştırılabilir (Burnett, 1987). 

Sonlu elemanlar yönteminde problemin çözüm bölgesi, alt bölgelerin birleşimi 

olarak gösterilir. (Reddy, 1993), bu yöntemi antik matematikçilerin Ω sayısının değerini 

hesaplayabilmek için kullandıklarını ve bu yöntemle Ω sayısının yaklaşık 40 basamağını 

doğru hesaplayabildiklerini anlatmıştır. Bu hesaplamalar için bir çember sonlu sayıda 

kenarları olan bir çokgen olarak gösterilmiş ve bu çokgenin her bir kenarı sonlu eleman 

olarak ele alınmıştır. 

Sonlu elemanlar metodundaki amaç karmaşık bir problemi basite indirgeyerek 

çözümü kolaylaştırmaktır. Bunun için problem, uygun şekilde seçilen birçok alt 

elemana bölünür bu elemanlar “düğüm” adı verilen ve anlamlı numaralandırılan 

noktalarda problemin yapısına uygun olarak birleştirilince denklem takımları elde edilir. 

Bu işlemden sonra, ifade edilmek istenen büyüklüğün bölge içerisinde değişimini 

gösteren bir interpolasyon fonksiyonu belirlenir. Fonksiyon gerçeğe yakın seçildikçe 

çözüme yaklaşım iyi olur. Asıl problem basit bir probleme indirgendiğinden kesin 

sonuç yerine yaklaşık bir sonuç elde edilmektedir (Clough, 1960; Hillier & Lieberman, 

1974; Hinton & Owen, 1977; Moaveni, 2003; Segerlind, 1976; Zienkiewicz & Morgan, 

2006). 

Sonlu elemanlar yönteminin integral formları varyasyonel ve ağırlıklı rezidü 

yöntemleri olmak üzere iki farklı yoldan elde edilir. Varyasyonel yöntemler genelde 

fonksiyonel olarak bilinen özel bir integral bağıntısının maksimum veya minimumunu 

oluşturan noktasal parametreleri bulmayı amaçlar. Fonksiyonelin ekstremumunu üreten 

çözüm sınır şartlarını da sağlar ancak bu fonksiyonelin bulunması bazen çok zor 

olmakta bazen de mümkün olmamaktadır. Bu nedenle orjinal diferansiyel denklemden 

integral formunun elde edildiği çeşitli ağırlıklı rezidü yöntemleri mevcuttur.  
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𝐿 bir lineer diferansiyel operatör, 𝑓(𝑥) bilinen bir fonksiyon, 𝑢(𝑥) aranan çözüm ve 𝛺 

tanım bölgesi olmak üzere 

𝐿𝑢(𝑥) =  𝑓(𝑥),      𝑥 ∈  𝛺           (2.1) 

şeklinde diferansiyel denklemin sayısal çözümü için ağırlıklı kalan metodu 

kullanıldığında, aranan 𝑢(. ) ifadesi yerine 

𝑢(𝑥) ≈ 𝑈(𝑥) = ∑ 𝑎𝑗𝜑𝑗(𝑥)
𝑁
𝑖=1          (2.2) 

formundaki bir 𝑈(𝑥)  sonlu yaklaşım seri toplamı kullanılır. Burada  𝜑𝑗(𝑥),   (𝑗 =

 1, . . . , 𝑁)   𝛺  bölgesi üzerinde tanımlı fonksiyon kümesidir. 𝜑𝑗(. )  fonksiyonları 

problem için verilen sınır şartlarını sağlayacak biçimde seçilirler. 𝑎𝑗 ler ise belirlenmesi 

gereken serbest parametrelerdir. 𝑈(. ), (2.1) diferansiyel denkleminde yerine yazılırsa, 

𝐿𝑈(𝑥)  −  𝑓(𝑥)  =  𝑅(𝑥)           (2.3) 

olarak tanımlanan 𝑅(𝑥)  kalanı elde edilir. Bu yöntem ile 𝑎 𝑗  parametrelerinin 

belirlenmesinde, 𝑅(𝑥)  kalanı ile 𝑊𝑖   ağırlık fonksiyonunun çarpımının 𝛺  bölgesi 

üzerinde integralinin sıfır olması istenir. Dolayısıyla 

∫ 𝑊𝑖Ω
(. )𝑅(. )𝑑𝑥 = 0,           𝑖 = 1,… ,𝑁        (2.4) 

olarak 𝑁 bilinmeyenli 𝑁 tane denklemden oluşan bir denklem sistemi elde edilir. 

Bu denklem sistemi çözülerek 𝑎𝑗  parametreleri bulunur ve (2.2) eşitliğinde yerine 

yazılırsa 𝑈(𝑥) yaklaşık çözümüne ulaşılır. 

 

1.1.5. Galerkin Yöntemi 

Galerkin yöntemi bir varyasyon yöntemi olup diferansiyel denklemlerin 

yaklaşık çözümlerinde kullanılmaktadır. Bir önceki alt bölümde tanımlanan (2.4) 

eşitliğindeki 𝑊𝑖  ağırlık fonksiyonu 𝜑𝑖  yaklaşım fonksiyonuna eşit alınırsa bu yöntem 

Galerkin yöntemi olarak bilinir. Bu durumda eğer konum aralığı  [𝑎, 𝑏] olarak kabul 

edilir ve (2.2) çözümü (2.1) eşitliğinde yerine yazılarak eşitliğin her iki tarafı 𝜑𝑖(𝑥)  ile 

çarpıldıktan sonra integrali alınırsa 

∫ 𝜑𝑖(𝐿 ∑ 𝑎𝑗𝜑𝑗(𝑥) − 𝑓(𝑥)
𝑁
𝑗=1 )

𝑏

𝑎
𝑑𝑥 = 0,             𝑖 = 1,2, … ,𝑁     (2.5) 

elde edilir. Ulaşılan denklem sistemi ise açık olarak 𝑁 tane denklemden oluşan 
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𝜑𝑖 = 𝐿 (𝑎𝑗𝜑𝑗(𝑥)) − 𝑓(𝑥)  

olmak üzere 

𝑎1 ∫ 𝜑1𝑄1𝑑𝑥
𝑏

𝑎
+ 𝑎2 ∫ 𝜑1𝑄2𝑑𝑥

𝑏

𝑎
+⋯+ 𝑎𝑁 ∫ 𝜑1𝑄𝑁𝑑𝑥

𝑏

𝑎
= 0  

𝑎1 ∫ 𝜑2𝑄1𝑑𝑥
𝑏

𝑎
+ 𝑎2 ∫ 𝜑2𝑄2𝑑𝑥

𝑏

𝑎
+⋯+ 𝑎𝑁 ∫ 𝜑2𝑄𝑁𝑑𝑥

𝑏

𝑎
= 0     (2.6) 

… 

𝑎1 ∫ 𝜑𝑁𝑄1𝑑𝑥
𝑏

𝑎
+ 𝑎2 ∫ 𝜑𝑁𝑄2𝑑𝑥

𝑏

𝑎
+⋯+ 𝑎𝑁 ∫ 𝜑𝑁𝑄𝑁𝑑𝑥

𝑏

𝑎
= 0  

formunda yazılabilir. Denklem sistemi kolaylıkla çözülerek 𝑎1, 𝑎2, . . . , 𝑎𝑛  bilinmeyen 

katsayıları bulunabilir. 

 

1.1.6. Kollokasyon Yöntemi 

Kollokasyon metodu, ağırlıklı kalan metodunun bir uygulamasıdır. Bu metotta 

𝑊𝑖 ağırlık fonksiyonları yerine 

𝑊𝑖  =  𝛿(𝑥 −  𝑥𝑖)                 (2.7) 

olacak şekilde Dirac Delta fonksiyonları seçilir.  

Dirac Delta fonksiyonları 𝑖 =  1, 2, . . . , 𝑁 için 

∫ 𝛿(𝑥 − 𝑥𝑖)(𝐿 ∑ 𝑎𝑗𝜑𝑗(𝑥) − 𝑓(𝑥)
𝑁
𝑗=1 )

𝑏

𝑎
𝑑𝑥 = (𝐿[𝑎𝑖𝜑𝑖(𝑥)] − 𝑓(𝑥))|𝑎

𝑏 = 0  (2.8) 

olacak şekilde önemli bir özelliğe sahiptir. Buradan N tane bağımsız değişken ve 𝑁 tane 

denklemden oluşan sistemden 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁  bilinmeyen katsayıları kolaylıkla 

bulunur. 

 

1.1.7. Spline Fonksiyonlar 

İlk olarak 1946 yılında Schoenberg tarafından tanıtılmıştır (Schoenberg, 1946). 

Bununla birlikte spline fonksiyonlar ancak 1960 yılından sonra matematiksel modellere 

ve fiziksel problemlere uygulanmıştır.  

[𝑎, 𝑏] aralığının bir parçalanması üzerindeki tüm noktaları sağlayan polinom 

fonksiyonların derecesi, nokta sayısı arttıkça artacaktır. Bununla birlikte [𝑎, 𝑏] aralığını 

alt aralıklara bölerek belirlenen alt aralıklarda daha düşük dereceden polinom 

fonksiyonlar tanımlanabilir. Spline fonksiyon kavramı bu düşünceden ortaya çıkmıştır. 

Dolayısıyla spline interpolasyon parçalı polinom yaklaşımıdır. Yani verilen çözüm 
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aralığı sonlu sayıda alt aralıklara bölünerek her bir alt aralıkta daha küçük dereceden 

polinomlar yardımı ile yaklaşımlar elde edilir. Spline fonksiyonlar, 

𝑎 =  𝑥0  <  𝑥1 < . . . <  𝑥𝑁−1  <  𝑥𝑁  =  𝑏  

sonlu parçalanışının her bir [𝑥𝑚, 𝑥𝑚+1] aralığında 𝑘. dereceden uygun polinomlar olup, 

tanımlanan her alt aralıkta (𝑘 −  1). mertebeden türevlenebilen sürekli fonksiyonlardır. 

Spline fonksiyonları aşağıdaki özelliklere sahiptir (Doğan, 2013) : 

• Spline fonksiyonlar düzgün fonksiyonlardır. 

• Spline fonksiyonlar uygun bazlara sahip sonlu boyutlu lineer uzaylardır. 

• Spline fonksiyonların türevleri ve integralleri kolay hesaplanabilen spline 

fonksiyonlardır. 

• Sayısal analizde ve yaklaşım teorilerinde spline fonksiyonların kullanılması 

durumunda matrisler ortaya çıkar. Bu matrislerin tersi kolayca alınabilir. Dolayısıyla 

spline fonksiyonlar kullanıldığında elde edilen denklem sistemleri rahatlıkla çözülebilir. 

• Yeteri kadar alt bölmelere ayrılmış [𝑎, 𝑏]  aralığı üzerinde tanımlı her sürekli 

fonksiyon; 𝑘. dereceden spline fonksiyonu ile iyi bir şekilde temsil edilebilir. 

• Düşük dereceden spline fonksiyonlar çok esnektir ve polinomlardaki gibi salınım 

sergilemezler. 

 

1.1.8. B-Spline Fonksiyonlar 

B-spline fonksiyonlar aynı dereceye sahip spline fonksiyonlar için bir tabandır. 

B-spline fonksiyonların oluşturulacağı noktaların bir kümesi 

. . . < 𝑥−2 < 𝑥−1 < 𝑥0  <  𝑥1 < 𝑥2 < . ..      

lim𝑚→∞ 𝑥𝑚 =  ∞ =  −lim𝑚→∞ 𝑥𝑚 =  ∞       (2.9)  

olmak üzere çalışmamızda kullanacağımız kübik B-spline ve genişletilmiş kübik B-

spline fonksiyonlarını incelenmiştir. 

 

1.1.8.1. Kübik B-Spline Fonksiyonlar 

𝑥𝑖 ’ler [𝑎, 𝑏] aralığındaki bölünme noktalarının koordinatları olmak üzere, 𝑥𝑖 

noktalarında 

𝐸𝑖(𝑥) kübik B-spline fonksiyonları 
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𝐸𝑖(𝑥) = 

{
 
 
 

 
 
 

(𝑥−𝑥𝑖−2)
3 

ℎ3
                                                                                                [𝑥𝑖−2, 𝑥𝑖−1],

ℎ3+3ℎ2(𝑥−𝑥𝑖−1)+3ℎ(𝑥−𝑥𝑖−1)
2−3(𝑥−𝑥𝑖−1)

3

ℎ3
                                                   [𝑥𝑖−1, 𝑥𝑖],

ℎ3+3ℎ2(𝑥𝑖+1−𝑥)+3ℎ(𝑥𝑖+1−𝑥)
2−3(𝑥𝑖+1−𝑥)

3

ℎ3
                                                   [𝑥𝑖 , 𝑥𝑖+1],

(𝑥𝑖+2−𝑥)
3

ℎ3
                                                                                                 [𝑥𝑖+1, 𝑥𝑖+2],

0,                                                                                                       𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟

 

(2.10) 

olarak tanımlanır (Prenter, 2008). Burada ℎ =  𝑥𝑚+1 − 𝑥𝑚 dir. Kübik B-spline 

fonksiyonları ile onların birinci ve ikinci mertebeden türevleri [𝑥𝑖−2, 𝑥𝑖+2]  aralığı 

dışında sıfırdır. Ayrıca [𝑥𝑖 , 𝑥𝑖+1] aralığı 𝐸𝑖−1 , 𝐸𝑖 , 𝐸𝑖+1  ve  𝐸𝑖+2  gibi (1.16)’da 

tanımlanan ardışık dört kübik B-spline fonksiyonları tarafından örtülür. 𝐸𝑚(𝑥) ve onun 

ikinci mertebeye kadar olan 𝐸’ 𝑖(𝑥), 𝐸”𝑖(𝑥)  türevlerinin bölünme noktalarındaki 

değerleri Tablo 1.1’ de görülmektedir. 

 

Tablo 1.1: Bölünme noktalarındaki kübik B-spline değerleri. 

 𝑥𝑖−2 𝑥𝑖−1  𝑥𝑖  𝑥𝑖+1  𝑥𝑖+2 

𝐸𝑖(𝑥) 0 1 4 1 0 

ℎ 𝐸’𝑖(𝑥) 0 3 0 −3 0 

ℎ2 𝐸"𝑖(𝑥) 0 6 −12 6 0 

 

𝑈𝑁 yaklaşık çözümü ise kübik B-spline fonksiyonları cinsinden 

𝑈𝑁(𝑥, 𝑡) = 𝛿−1(𝑡)𝐸−1(𝑥) + 𝛿0(𝑡)𝐸0(𝑥) + ⋯+ 𝛿𝑁+1(𝑡)𝐸𝑁+1(𝑥)           (2.11) 

formunda yazılabilir. Bununla birlikte [𝑥𝑖, 𝑥𝑖+1] aralığı, 𝐸𝑖−1, 𝐸𝑖,  𝐸𝑖+1 ve 𝐸𝑖+2  gibi dört 

tane B-spline tarafından örtüldüğünden 𝑈 için yaklaşım ifadesi ve onun ilk iki türevi 

𝑈𝑖(𝑥, 𝑡) = ∑ 𝐸𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1                  (2.12) 

𝑈′𝑖(𝑥, 𝑡) = ∑ 𝐸′𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1                  (2.13) 

𝑈"𝑖(𝑥, 𝑡) = ∑ 𝐸"𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1                 (2.14) 

formunda ifade edilebilir.  
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Dolayısıyla 𝑈𝑖  yaklaşık çözümü ve ikinci mertebeye kadar olan türevleri 𝛿 

parametresine göre; 

𝑈𝑖 = 𝑈(𝑥𝑖) = 𝛿𝑖−1 + 4𝛿𝑖 + 𝛿𝑖+1 ,                (2.15) 

𝑈𝑖′ = 𝑈′(𝑥𝑖) =
3

ℎ
(𝛿𝑖+1 − 𝛿𝑖−1),                (2.16) 

𝑈𝑖"=U"(𝑥𝑖) =
6

ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1),               (2.17) 

biçiminde yazılabilir. 

 

1.1.8.2. Genişletilmiş Kübik B-Spline Fonksiyonlar 

𝜋, [𝑎, 𝑏] üzerinde eşit aralıklara bölünsün.𝜋: 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏,  

ℎ =
𝑏−𝑎

𝑁
   olsun. Klasik kübik B-spline fonksiyonların genişletilmiş formu 𝐸𝑖 aşağıdaki 

şekilde ifade edilir (3.1).  

𝐸𝑖(𝑥) =

{
 
 
 
 

 
 
 
 

(4ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
3+3𝜆(𝑥−𝑥𝑖−2)

4)

24ℎ4
,                                                                                               [𝑥𝑖−2, 𝑥𝑖−1]

((4−𝜆)ℎ4+12ℎ3(𝑥−𝑥𝑖−1)+6ℎ
2(2+𝜆)(𝑥−𝑥𝑖−1)

2−12ℎ(𝑥−𝑥𝑖−1)
3−3𝜆(𝑥−𝑥𝑖−1)

4)

24ℎ4
,                                    [𝑥𝑖−1, 𝑥𝑖]

((4−𝜆)ℎ4+12ℎ3(𝑥𝑖+1−𝑥)+6ℎ
2(2+𝜆)(𝑥𝑖+1−𝑥)

2−12ℎ(𝑥𝑖+1−𝑥)
3−3𝜆(𝑥𝑖+1−𝑥)

4)

24ℎ4
,                                    [𝑥𝑖 , 𝑥𝑖+1]

(4ℎ(1−𝜆)(𝑥𝑖+2−𝑥)
3+3𝜆(𝑥𝑖+2−𝑥)

4)

24ℎ4
,                                                                                               [𝑥𝑖+1, 𝑥𝑖+2]

0,                                                                                                                                          𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟

  

              (3.1) 

Bunlar, çözümde kullanılacak taban fonksiyonlardır. Burada reel 𝜆 serbest parametredir. 

Aslında klasik kübik B-spline fonksiyonlar genişletilmiş kübik B-spline fonksiyonlarda 

𝜆 = 0  alınması durumudur. Ortaya çıkan kübik B-spline fonksiyonlar kümesi   

𝐸𝑖(𝑥) [𝑥0, 𝑥𝑁] ’de tanımlı taban fonksiyonlarıdır.  𝜆  serbest parametresi 0’dan farklı 

seçildiğinde fonksiyonun şekli Şekil 2.1’deki gibi değişir. 
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Şekil 2.1: 𝝀 serbest parametresi 0’dan farklı seçildiğinde fonksiyonun şekli. 

Kaynak: Ersoy, Korkmaz, Dağ, 2017 

 

𝜆  grid noktalarında her genişletilmiş kübik B-spline fonksiyonun kendisi ve türev 

değerleri Tablo 2.1’deki gibidir. 

(4ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
3+3𝜆(𝑥−𝑥𝑖−2)

4)

24ℎ4
      𝑥 yerine 𝑥𝑖−2  yazılırsa sonuç 0 olur, 

(4ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
3+3𝜆(𝑥−𝑥𝑖−2)

4)

24ℎ4
     𝑥 yerine 𝑥𝑖−1  yazılırsa sonuç 

4−𝜆

24
 olur, 

((4−𝜆)ℎ4+12ℎ3(𝑥−𝑥𝑖−1)+6ℎ
2(2+𝜆)(𝑥−𝑥𝑖−1)

2−12ℎ(𝑥−𝑥𝑖−1)
3−3𝜆(𝑥−𝑥𝑖−1)

4)

24ℎ4
      

𝑥 yerine 𝑥𝑖  yazılırsa sonuç 
2𝜆+16

24
  olur, 

((4−𝜆)ℎ4+12ℎ3(𝑥𝑖+1−𝑥)+6ℎ
2(2+𝜆)(𝑥𝑖+1−𝑥)

2−12ℎ(𝑥𝑖+1−𝑥)
3−3𝜆(𝑥𝑖+1−𝑥)

4)

24ℎ4
  

𝑥 yerine 𝑥𝑖+1  yazılırsa sonuç 
4−𝜆

24
  olur, 

(4ℎ(1−𝜆)(𝑥𝑖+2−𝑥)
3+3𝜆(𝑥𝑖+2−𝑥)

4)

24ℎ4
         𝑥 yerine 𝑥𝑖+2  yazılırsa sonuç 0 olur, 

(12ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
2+12𝜆(𝑥−𝑥𝑖−2)

3)

24ℎ4
       𝑥 yerine 𝑥𝑖−2  yazılırsa sonuç 0 olur, 

(12ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
2+12𝜆(𝑥−𝑥𝑖−2)

3)

24ℎ4
    𝑥 yerine 𝑥𝑖−1  yazılırsa sonuç 

1

2ℎ
  olur, 

(12ℎ3+12ℎ2(2+𝜆)(𝑥−𝑥𝑖−1)
1−36ℎ(𝑥−𝑥𝑖−1)

2−12𝜆(𝑥−𝑥𝑖−1)
3)

24ℎ4
 𝑥 yerine 𝑥𝑖  yazılırsa sonuç 0 olur, 
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(−12ℎ3−12(2+𝜆)(𝑥𝑖+1−𝑥)
1+36ℎ(𝑥𝑖+1−𝑥)

2+12𝜆(𝑥𝑖+1−𝑥)
3)

24ℎ4
   𝑥 yerine 𝑥𝑖+1 yazılırsa sonuç 

−1

2ℎ
 olur, 

(−12ℎ(1−𝜆)(𝑥𝑖+2−𝑥)
2−12𝜆(𝑥𝑖+2−𝑥)

3)

24ℎ4
    𝑥 yerine 𝑥𝑖+2 yazılırsa sonuç 0 olur, 

(24ℎ(1−𝜆)(𝑥−𝑥𝑖−2)
1+36𝜆(𝑥−𝑥𝑖−2)

2)

24ℎ4
    𝑥 yerine 𝑥𝑖−2 yazılırsa sonuç 0 olur, 

 
(24ℎ(1−𝜆)(𝑥−𝑥𝑖−2)

1+36𝜆(𝑥−𝑥𝑖−2)
2)

24ℎ4
   𝑥 yerine 𝑥𝑖−1 yazılırsa sonuç 

2+𝜆

2ℎ2
 olur, 

 
(12ℎ2(2+𝜆)−72ℎ(𝑥−𝑥𝑖−1)

1−36𝜆(𝑥−𝑥𝑖−1)
2)

24ℎ4
  𝑥 yerine 𝑥𝑖 yazılırsa sonuç 

−2𝜆−4

2ℎ2
 olur, 

(12(2+𝜆)−72ℎ(𝑥𝑖+1−𝑥)
1−36𝜆(𝑥𝑖+1−𝑥)

2)

24ℎ4
     𝑥 yerine 𝑥𝑖+1 yazılırsa sonuç 

2+𝜆

2ℎ2
  olur, 

(24ℎ(1−𝜆)(𝑥𝑖+2−𝑥)
1+36𝜆(𝑥𝑖+2−𝑥)

2)

24ℎ4
         𝑥 yerine 𝑥𝑖+2 yazılırsa sonuç 0 olur. 

𝑥1 düğüm noktalarındaki 𝐸𝑖 (x) , 𝐸
′
𝑖(𝑥) ve 𝐸′′𝑖 (𝑥)   Tablo 2.1’de verilmiştir. 

𝐸𝑖 (x),  𝑖 = −1,… ,𝑁 + 1  [𝑎, 𝑏]  kapalı aralığında tanımlı fonksiyonlar için bir baz 

oluşturur. 

 

Tablo 2.1: Bölünme noktalarındaki genişletilmiş kübik B-spline değerleri. 

𝑥 𝑥𝑖−2  𝑥𝑖−1  𝑥𝑖  𝑥𝑖+1  𝑥𝑖+2  

24𝐸𝑖(𝑥) 0 4 − 𝜆 16 + 2𝜆 4 − 𝜆 0 

2ℎ𝐸′𝑖(𝑥) 0 1 0 −1 0 

2ℎ2𝐸′′𝑖(𝑥) 0 2 + 𝜆 −4 − 2𝜆 2 + 𝜆 0 

 

Çözüm için 𝐸𝑖(𝑥) genişletilmiş B-spline fonksiyonunun ilk iki türevine ihtiyaç vardır. 

Denklemi konuma göre parçalayabilmek için 𝑉(𝑥, 𝑡) =  𝑈𝑥(𝑥, 𝑡) eşitliği kullanılacak, 

bu durumda elde edilecek denklem sistemi; 

𝑢𝑥 − 𝑣 = 0             (3.2)  

𝑈𝑥 yaklaşık çözümü ise genişletilmiş kübik B-spline fonksiyonlar cinsinden daha önce 

kübik B-spline fonksiyonlarda olduğu gibi 

𝑈𝑥(𝑥, 𝑡) = 𝛿−1(𝑡)𝐸−1(𝑥) + 𝛿0(𝑡)𝐸0(𝑥) + ⋯+ 𝛿𝑁+1(𝑡)𝐸𝑁+1(𝑥)    (3.3) 
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formunda yazılabilir. Bununla birlikte [𝑥𝑖, 𝑥𝑖+1], aralığı , 𝐸𝑖−1, 𝐸𝑖, 𝐸𝑖+1 ve 𝐸𝑖+2 olarak 

dört tane spline tarafından örtüldüğünden 𝑈 için yaklaşım ifadesi ve ilk iki türevi 

𝑈𝑖(𝑥, 𝑡) = ∑ 𝐸𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1           (3.4) 

𝑈′𝑖(𝑥, 𝑡) = ∑ 𝐸′𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1           (3.5) 

𝑈"𝑖(𝑥, 𝑡) = ∑ 𝐸"𝑗(𝑥)𝛿𝑗(𝑡)
𝑖+2
𝑗=𝑖−1          (3.6) 

formunda ifade edilebilir. Dolayısıyla 𝑈𝑖  yaklaşık çözümü ve ikinci mertebeye kadar 

olan türevleri 𝛿 parametresine göre 

𝑈𝑖 = 𝑈(𝑥𝑖) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 ,       (3.7) 

𝑈𝑖′ = 𝑈′(𝑥𝑖) =
1

2ℎ
(𝛿𝑖−1 − 𝛿𝑖+1),         (3.8) 

𝑈𝑖" = 𝑈"(𝑥𝑖) =
2+𝜆

2ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1),        (3.9) 

biçiminde yazılabilir.  

 

1.1.9. KdV Burgers Denklemi İçin Literatür Taraması  

KdVB denklemi (Ruderman, 1975)’de belirtildiği gibi plazma dalgaları veya 

tüm sistemlerin özvektörleri için varlık ve yokluğu gibi farklı durumlarda ortaya 

çıkabilir. Viscosity ve eylemsizlik terimlerini içeren uzun yer çekimi dalgaları KdVB 

denkleminden esinlenilerek çalışılmıştır. Bampi ve Morra (1981) çalışmasında balans 

denkleminin çözümleri elde edilmiştir. KdVB denklemi için Jacobi Cosine 

fonksiyonları yardımıyla Weierstrass P fonksiyonu çözümü Kalinovski ve Grundland 

(1981) çalışmasında ifade edilmiştir. Bu çalışmada 1. mertebeden kısmi diferansiyel 

denklemlerin homojen olmayan çözümleri için Reimann değişkenleri yardımıyla 

çözümleri de mevcuttur. (Brugarino & Pantano, 1983), değişken katsayılı homojen 

olmayan KdVB denklemlerinin Jacobi eliptic tip çözümünü elde etmiştir. 

Birleşik KdVB denklemi için bazı hareketli solitary dalga çözümleri de (Parkes 

& Duffy, 1997)’de verilmiştir. KdVB denklemi için belirli analitik çözümler değişken 

çözümleri ve bazı teoremlerin ispatları kullanılarak (Shu, 1987)’de ispat edilmiştir. 

Lineer yayılma ve lineer olmayan yayılmanın korunumlu olmayan teoremlerini içeren 

genişletilmiş KdVB denklemi için çözümler (Gromov & Tyutin, 1997)’da incelenmiştir. 

(Malkov, 1996) Asynptotic hareketli dalga çözümlerini çalışmıştır. KdVB denkleminin 
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farklı değerler için hareketli dalga çözümleri 𝛼 biskosite sabiti alınarak (Pego, Smereka, 

& Weinstein, 1993)’de ifade edilmiştir. 

KdVB denkleminin bazı hiperbolik fonksiyonların kuvvetlerini içeren tam 

çözümleri homojen denge tekniği ile (Wang M. , 1996)’de elde edilmiştir. (Zhao, 2006) 

hiperbolik fonksiyon metodu ile ve Wu, yeni tip solitary dalga için emilasyon tekniği ile 

KdVB denkleminin çözümlerini incelemiştir. KdVB denklemini uyumlu dalga 

dönüşümleri yardımıyla adi diferansiyel denkleme dönüştürdükten sonra katsayıları 

hesaplanır ve tahmini çözümdeki parametreler verilen denklemde yerine yazılır. Jiashi 

(Yuanxi & Jiashi, 2005) süperpozisyon metoduyla KdVB denklemi için birçok solitary 

dalga çözümü geliştirilmiştir. (Wazzan, 2007)’de ise KdVB denklemi için Riccati 

denklemine dayanan genişletilmiş tanh fonksiyonu ile trigonometrik hiperbolik ve 

kompleks fonksiyon içeren çoklu soliton çözümleri elde etmiştir. (Soliman, 2006) 

denklemin tanh-tip, coth-tip ve düzenlenmiş genişletilmiş tanh metodu ile tam 

çözümlerini elde etmiştir. (Wang, Liu, & Zhang, 2014)’de ise KdVB denklemi için 

𝐺’/𝐺  açılımı kullanılarak 𝑡𝑎𝑛ℎ  tip çözüm elde edilmiştir. (Kudryashov, 2009), aynı 

zamanda Fisher denkleminin hareketli dalga çözümü ile KdVB denkleminin hareketli 

dalga çözümünün aynı formda olduğunu göstermiştir. KdVB gibi denklemlerin çözümü 

için bazı farklı nümerik teknikler de mevcuttur. Bunlardan bir tanesi Bubnov-Galerkin 

B-spline sonlu elemanlar yöntemi kullanılmasıyla elde edilen çözümlerdir (Zaki, 

2000a). Yine aynı denklem için Kuintik B-spline fonksiyon yardımıyla kollokasyon 

çözümleri yapılmıştır (Zaki, 2000b). Ayrıca periyodik başlangıç koşullarını içeren 

KdVB denkleminin nümerik çözümü için Lineer Galerkin-Fourier Spektral Tekniği 

uygulanmıştır (Lü & Lu, 2006). 4. Mertebeden Runge-Cutta yöntemi ile Chebysheu 

polinomlarının türevlenmesine dayanan spektral kollokasyon metodu ile nümerik 

çözümler ve başlangıç sınır değer problemlerine uygulamaları (Khater, Temsah, & 

Hassan, 2008)’de mevcuttur. Son olarak KdVB denkleminin (El-Danaf, 2008) 

tarafından yapılan koşulsuz kararlı septik B-spline kollokasyon metodu incelenmeye 

değer bir çalışmadır. 

 

1.1.10. Gardner Denklemi İçin Literatür Taraması 

Gardner denklemi integrallenebilir bir sistemdir ve Miura dönüşümü ile KdV 

denklemine dönüşür (Demler & Maltsev, 2011). Gardner denklemi negatif iyon akustik 

plazma dalgalarının yayılımını anlamak için faydalı bir modeldir (Ruderman, Talipova , 
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& Pelinovsky, 2008). Bu denklem bir boyutta plazma hareketi denklem sistemlerinden 

elde edilir.  

Gardner denklemi geniş genliğe sahip dalgaların iyi tanımlanmasını sağlar 

(Kamchatnov, et al., 2013). Denklemin çözümünün sınıflandırılmasında lineer olmayan 

terimlerin yapısı çok önemlidir. Özellikle 𝜗  sabitinin işareti çözümde önemli rol 

oynamaktadır. Gardner denkleminde 𝜀 ve 𝜗 aynı işaretli olduğunda kıyıdaki dalgalarda 

özel şekiller meydana gelir, bu da kararsızlık durumundan kaynaklanır (Grimshaw, 

Pelinovsky, Taipova, & Sergeeva, 2010). Denkleme güç terimi ilave edildiğinde 

denklem topografik yapıda tabakalı akışkanlı modeller (Kamchatnov, et al., 2013). Bu 

denklemle ilgili yapılmış bazı çalışmalar şu şekilde özetlenebilir; (Slyunyaev & 

Pelinovski, 1999). Darboux dönüşümleri yardımıyla iki soliton dalga etkileşimi çözümü 

elde etmiştir. Tanh metodu ile Gardner denkleminin hareketli çözümleri elde edilmiştir 

(Hu, Tan, & Hu, 2016). Solition-Cnoidal ya da Solition-Periodik şeklindeki dalgaların 

etkileşimlerin elde edilen çözümler vardır. Riccati açılımını içeren başka çözüm 

metotları da uygulanmıştır (Wei-Feng, Sen-Yue, Jun, & Han-Wei, 2014). Hareket 

integralleri de denklemin pertürbe edilmiş formu için elde edilmiştir (Jia-Ren, Liu-Xian, 

& Guang-Hui, 2000). Tekil pertürbe edilmiş Gardner denklemi için hareketli solitary 

dalga çözümü mevcuttur (Bekir, 2009). Ayrıca Gardner denkleminin farklı metotlarla 

elde edilmiş tam çözümleri de mevcuttur. Tanh ve coth fonksiyonlarını içeren tanh 

metodunun genişletilmiş formu ile tam çözümler elde edilmiştir (Fu, Liu, & Liu, 2004). 

Riccati denklemleri yardımıyla solitary dalga ve periyodik dalga çözümleri elde 

edilmiştir. Bazı solitary, periyodik, üstel, kesirli ve komleks tip hareketli dalga 

denklemleri için 𝐺”/𝐺 yöntemiyle tam çözüm çalışmaları yapılmıştır (Lü, Liu, & Niu, 

2010); (Akbar, Hj, & Ali, 2012). Bu çözümlerin dışında bazı trigonometrik fonksiyon 

çözümleri (Naher & Abdullah, 2012; Jawad, 2012; Taghizade & Neirameh, 2010) 

hiperbolik fonksiyon çözümleri (Wazwaz, 2007) ve diğer bazı çözümler (Nishiyama & 

Noi, 2016) elde edilerek çalışma haline getirilmiştir. Gardner benzeri denklemlerin 

nümerik çözümleri için sonlu fark yöntemleri (Rageh, Salem, & El-Salam, 2014), 

sınırlayıcı taylor yaklaşımı yöntemleri (Rubin & Graves Jr , 1975), polinomsal kuintik 

B-spline (Hamdi, Morse, Halphen, & Schiesser, 2011) ve farklı başlangıç sınır değer 

problemlerinin çözümleri (Wazwaz, 2009) literatürde mevcuttur. 
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1.1.11. Adveksiyon - Difüzyon Denklemi İçin Literatür Taraması 

Gerçek hayatta fizik ve mühendislik problemlerinin birçoğu AD denklemi 

yardımıyla modellenebilmektedir. AD denkleminin çözümü parametrelerin seçimine 

göre keskin davranışlar gösterebilmektedir. Bu nedenle nümerik çözümler dik 

çözümlerin modellenmesiyle ilgilenmektedir. Spline fonksiyonlar kullanılarak bugüne 

kadar AD denkleminin birçok nümerik çözümü yapılmıştır (Ahmad, 2000). Sürekliliği 

korumak için B-spline fonksiyonlara serbest parametrelerin yanında yüksek mertebeli 

terimler ilave edilir. Bu terimler parçalı fonksiyonlar şeklindeki genişletilmiş B-spline 

fonksiyonlardır. Farklı serbest parametrelerin kullanılmasıyla genişletilmiş B-spline 

fonksiyonların yapısı değişir. İlave edilen terimlerin ve serbest parametrelerin 

genişletilmiş B-spline fonksiyona etkisi (Zoppou, Roberts, & Renka, 2000; Abd Hamid, 

Abd Majid, & Izani, 2010) tartışılmıştır. 

Genişletilmiş B-spline fonksiyonları kullanarak Galerkin ve Crank-Nicolson 

metotlarının kombinasyonu ile AD denkleminin çözümleri bulunur. Genişletilmiş B-

spline fonksiyonların kısmi türevli diferansiyel denklemlerin nümerik çözümlerinde 

literatürde birkaç çalışma görmek mümkündür. (Dağ, Irk, & Sarı, 2013; Goh, Majid , & 

Ismail, 2011; Irk, Dağ, & Tombul, 2015). 

 

1.1.12. Düzenlenmiş Uzun Dalga Denklemi İçin Literatür Taraması 

Solitary ve soliton şeklindeki dalgalar lineer olmayan dispersive dalga 

denklemlerinin genel olarak her başlangıç ve sınır koşulu için analitik çözümünü 

bulmak mümkün değildir. Bu nedenle bu tür denklemlerin çözümleri için nümerik 

çözümler ele alınır. Lineer olmayan dispersive dalga denklemlerinden biri de MRLW 

denklemleridir. Bu denklemin en önemli özelliği dalganın şekli değişmeden tek yönde 

sabit hızda dağılımın gerçekleşmesidir. MRLW denklemi ve alternatif formu olan MEW 

denklemleri için nümerik çözümlerin yapılması önerilmektedir.  

MRLW denklemi sonlu farklar yöntemiyle nümerik olarak çözülmüştür 

(Khalifa, Raslan, & Alzubaidi, 2007). MQ, GA, IMQ ve IQ radial taban fonksiyonları 

kullanılarak nümerik çözüm elde edilmiştir (Dereli, 2012). MRLW denklemi için 

serbest düğüm noktaları tekniğine dayanan kollokasyon metodu kullanılarak çözümler 

elde edilmiştir (Mokhtari & Mohammadi, 2010). (Tirmizi, 2010; Khalifa, Raslan, & 

Alzubaidi, 2008; Raslan & Hassan, 2009; Raslan, 2009) çalışmalarında ise kuadratik, 

kübik, kuartik ve kuintik B-spline fonksiyonlar kullanılarak kollokasyon yöntemiyle 
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çözümler elde edilmiştir. (Han & Liu , 2003), B-spline fonksiyonların 

genelleştirilmesiyle nümerik çözümler elde etmiştir. (Xu & Wang, 2008) 4., 5. ve 6. 

dereceden genişletilmiş B-spline fonksiyonlar ile çözümler elde etmiştir. Genişletilmiş 

B-spline fonksiyonlar için klasik kübik B-spline fonksiyonlara bir parametre daha ilave 

edilir. Böylece klasik kübik B-spline eğrisi değişir. Diferansiyel denklemlerin 

genişletilmiş B-spline fonksiyonlarla nümerik çözümü klasik B-spline fonksiyonlarla 

çözümü kadar yaygın değildir. Bu konu üzerine de yapılmış birkaç çalışma mevcuttur.  

Örneğin 2. mertebeden homojen lineer diferansiyel denklemler (Abd Hamid, Majid, & 

Ismail, 2011), lineer sınır değer problemi (Abd Hamid, Abd Majid, & Izani, 2010) ve 2. 

mertebeden lineer sınır değer problemleri (Goh, Majid , & Ismail , 2010, October) 

genişletilmiş kübik B-spline kollokasyon yöntemi ile çözülmüştür. Genişletilmiş kübik 

B-spline kollokasyon yöntemi lokal olmayan başlangıç koşullarına sahip bir boyutlu ısı 

denklemi için de çalışılmıştır (Goh, Majid , & Ismail, 2011). 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

İKİNCİ BÖLÜM 

KdV BURGERS DENKLEMİNİN GENİŞLETİLMİŞ KÜBİK B-SPLİNE 

YÖNTEMİ İLE SAYISAL ÇÖZÜMÜ
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2.1. METODUN UYGULANMASI 

Bu çalışmada KdVB denklemi için bazı başlangıç sınır değer problemlerinin 

klasik kübik B-spline fonksiyonlarının genişletilmesiyle oluşan kollokasyon çözümleri 

incelenmiştir. Denklemde 3. mertebeden türev içeren terim ile işlem yapmak yerine 

mertebeyi indirgemek için denklem sistemi oluşturulmuştur. Bu sistemin zamana göre 

parçalanması Crank- Nicolson metoduyla gerçekleştirilmiştir. İki başlangıç sınır değer 

problemi bir analitik çözüm ve diğer durumlar için önerilen yöntem uygulanmıştır. 

 

2.1.1. Sayısal Çözüm 

KdVB denklemini aşağıdaki formda ele alınır; 

 𝑢𝑡 + 𝜀𝑢𝑢𝑥 − 𝜗𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 0                   𝑎 ≤ 𝑥 ≤ 𝑏     (4.1) 

Burada 𝜀, 𝜗 𝑣𝑒 𝜇 , sıfırdan farklı şekilde alınan reel katsayılardır. Bu çalışmada 

aşağıdaki şekilde tanımlanmış bazı başlangıç sınır değer problemlerini ele alacağız. Bu 

denkleme ait başlangıç koşulu 𝑡 = 0 durumudur. 

𝑢(𝑥, 0) = 𝑓(𝑥),            𝑎 ≤ 𝑥 ≤ 𝑏         (4.2) 

ve sonlu çalışma bölgesi [𝑎, 𝑏] olsun. Bu problem için sınır koşulları aşağıdaki şekilde 

seçilsin. 

𝑢(𝑎, 𝑡) = 𝑔1(𝑡),     𝑢(𝑏, 𝑡) = 𝑔2(𝑡),  

𝑢𝑥(𝑎, 𝑡) = 𝑔3(𝑡),     𝑢𝑥(𝑏, 𝑡) = 𝑔4(𝑡),     (4.3) 

𝑢𝑥𝑥(𝑎, 𝑡) = 𝑔5(𝑡),    𝑢𝑥𝑥(𝑏, 𝑡) = 𝑔6(𝑡),  

𝑢𝑥𝑥𝑥(𝑎, 𝑡) = 𝑔7(𝑡),    𝑢𝑥𝑥𝑥(𝑏, 𝑡) = 𝑔8(𝑡). 

Burada 𝑔𝑖(𝑡), 𝑖 = 1,2, … ,8 , 𝑥 bağımsız fonksiyonlarını belirtir. Bu koşullarda 

fonksiyonun hem kendisi hem de türevi olduğu için karışık sınır koşuludur. 

𝜋, [𝑎, 𝑏] üzerinde eşit aralıklara bölünsün. 

𝜋: 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏,     ℎ =
𝑏−𝑎

𝑁
   olsun. 

Klasik kübik B-spline fonksiyonların genişletilmiş formu 𝐸𝑖, (3.1) şeklinde ifade edilir. 

(3.1) denklem sistemindeki fonksiyonlar çözümde kullanılacak taban fonksiyonlardır. 

Burada 𝜆 reel serbest parametredir. 
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𝑈(𝑥, 𝑡)  ve 𝑉(𝑥, 𝑡), 𝑢(𝑥, 𝑡)  ve 𝑣(𝑥, 𝑡) ’nin yaklaşık çözümleri olsun. Bu yaklaşık 

çözümler seriler cinsinden; 

𝑈(𝑥, 𝑡) =  ∑ 𝛿𝑖𝐸𝑖(𝑥)
𝑁+1
𝑖=−1   

𝑉(𝑥, 𝑡) =  ∑ 𝜑𝑖𝐸𝑖(𝑥)
𝑁+1
𝑖=−1            (4.4) 

şeklinde ifade edilir. Burada 𝐸−1(𝑥), 𝐸0(𝑥), … , 𝐸𝑁+1(𝑥) bilinen fonksiyonlar. 𝛿𝑖  ve 𝜑𝑖 

ise hesaplanacak zamana bağlı parametrelerdir. 

Tablo 2.1 kullanılarak 𝑥𝑖  düğüm noktalarında (4.4) ile verilen yaklaşık 

çözümler ve bunların 1. ve 2. türevleri hesaplanacaktır. Böylece yaklaşık çözümler ve 

türevleri (4.5) şeklinde ifade edilir. Kübik B-spline kullanıldığı için üç tane baz 

fonksiyonu vardır. Katsayılar Tablo 2.1’den alınarak (4.5) eşitlikleri oluşur.  

𝑈𝑖 = 𝑈(𝑥𝑖, 𝑡) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 , 

𝑈𝑖′ = 𝑈′(𝑥𝑖, 𝑡) =
1

2ℎ
(𝛿𝑖−1 − 𝛿𝑖+1), 

𝑈𝑖" = 𝑈"(𝑥𝑖, 𝑡) =
2+𝜆

2ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1),       (4.5) 

𝑉𝑖 = 𝑉(𝑥𝑖, 𝑡) =
4−𝜆

24
𝜑𝑖−1 +

8+𝜆

12
𝜑𝑖 +

4−𝜆

24
𝜑𝑖+1 , 

𝑉𝑖′ = 𝑉′(𝑥𝑖, 𝑡) =
1

2ℎ
(𝜑𝑖−1 − 𝜑𝑖+1), 

𝑉𝑖" = 𝑉"(𝑥𝑖, 𝑡) =
2+𝜆

2ℎ2
(𝜑𝑖−1 − 2𝜑𝑖 + 𝜑𝑖+1)  

(4.1) denklem sistemini konuma göre parçalayabilmek için 𝑉(𝑥, 𝑡) = 𝑈𝑥(𝑥, 𝑡) eşitliği 

kullanılır ve (4.6) denklem sistemi elde edilir. 

𝑈𝑡 + 𝜀𝑈𝑉 − 𝜗𝑉𝑥 + 𝜇𝑉𝑥𝑥 = 0     

𝑈𝑥 − 𝑉 = 0              (4.6) 

Şimdi bu denklem sistemi üzerinde Crank-Nicolson formülü ve sonlu fark formülü 

yardımıyla işleme devam edilir. 

𝛿𝑚 =
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛

2
  ve zamana göre türevi : 𝛿𝑚

0 =
𝛿𝑚
𝑛+1−𝛿𝑚

𝑛

∆𝑡
    

𝑈𝑡 =
𝑈𝑛+1−𝑈𝑛

∆𝑡
      

𝑉 =
𝑉𝑛+1+𝑉𝑛

2
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𝑈𝑥 =
𝑈𝑥
𝑛+1+𝑈𝑥

𝑛

2
      

𝑈𝑉 = 𝜀
(𝑈𝑉)𝑛+1+(𝑈𝑉)𝑛

2
      

𝑉𝑥 = 𝜗
(𝑉𝑥)

𝑛+1+(𝑉𝑥)
𝑛

2
  

𝑉𝑥𝑥 = 𝜇
(𝑉𝑥𝑥)

𝑛+1+(𝑉𝑥𝑥)
𝑛

2
  

𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀

(𝑈𝑉)𝑛+1+(𝑈𝑉)𝑛

2
− 𝜗

𝑉𝑥
𝑛+1+𝑉𝑥

𝑛

2
+ 𝜇

𝑉𝑥𝑥
𝑛+1+𝑉𝑥𝑥

𝑛

2
= 0     (4.7) 

𝑈𝑥
𝑛+1+𝑈𝑥

𝑛

2
−
𝑉𝑛+1+𝑉𝑛

2
= 0  

Burada 𝑈𝑛+1 = 𝑈(𝑥, (𝑛 + 1)∆𝑡), (𝑛 + 1)-inci zaman adımındaki çözümü gösterir. 

𝑈0 → 𝑡 = 0 → 0 anındaki çözüm 

𝑡𝑛+1 = 𝑡𝑛 + 1 ve ∆𝑡 zaman adımlarıdır.  

(4.7) denklem sistemi için (𝑈𝑉)𝑛+1 ve (𝑈𝑉)𝑛 terimleri yerine (4.8) eşitliği kullanılır. 

(4.8) eşitliği (4.7)’de yerine yazılırsa (4.9) eşitliği elde edilir.  

(𝑈𝑉)𝑛+1 = 𝑈𝑛+1𝑉𝑛 + 𝑈𝑛𝑉𝑛+1 − 𝑈𝑛𝑉𝑛    (4.8) 

(𝑈𝑉)𝑛 = 𝑈𝑛𝑉𝑛  

𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀 (

𝑈𝑛+1𝑉𝑛+𝑈𝑛𝑉𝑛+1

2
) − 𝜗 (

𝑉𝑥
𝑛+1+𝑉𝑥

𝑛

2
) + 𝜇 (

𝑉𝑥𝑥
𝑛+1+𝑉𝑥𝑥

𝑛

2
) = 0            (4.9) 

𝑈𝑥
𝑛+1+𝑈𝑥

𝑛

2
−
𝑉𝑛+1+𝑉𝑛

2
= 0  

Şimdi (4.4) yaklaşık çözümü ve türevleri (4.5), (4.9)’da kullanıldığında (4.10) ve (4.11) 

elde edilir.  

2
𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀(𝑈𝑛+1𝑉𝑛 + 𝑈𝑛𝑉𝑛+1) − 𝜗(𝑉𝑥

𝑛+1 + 𝑉𝑥
𝑛) + 𝜇(𝑉𝑥𝑥

𝑛+1 + 𝑉𝑥𝑥
𝑛) = 0  

𝑉𝑛 = 𝐿 ve 𝑈𝑛 = 𝐾 alındığında lineerleştirme gerçekleşir. 

(
2

∆𝑡
) ((

4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1 − (
4−𝜆

24
) 𝛿𝑖−1

𝑛 − (
8+𝜆

12
) 𝛿𝑖

𝑛 −

(
4−𝜆

24
) 𝛿𝑖+1

𝑛 ) − 𝜗 ((
1

2ℎ
) (𝜑𝑖−1

𝑛+1 − 𝜑𝑖+1
𝑛+1) + (

1

2ℎ
) (𝜑𝑖−1

𝑛 − 𝜑𝑖+1
𝑛 )) + 𝜇 ((

2+𝜆

2ℎ2
) (𝜑𝑖−1

𝑛+1 −
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2𝜑𝑖
𝑛+1 + 𝜑𝑖+1

𝑛+1) + (
2+𝜆

2ℎ2
) (𝜑𝑖−1

𝑛 − 2𝜑𝑖
𝑛 + 𝜑𝑖+1

𝑛 )) + 𝜀𝐿 ((
4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 +

(
4−𝜆

24
) 𝛿𝑖+1

𝑛+1) + 𝜀𝐾((
4−𝜆

24
)𝜑𝑖−1

𝑛+1 + (
8+𝜆

12
)𝜑𝑖

𝑛+1 + (
4−𝜆

24
)𝜑𝑖+1

𝑛+1)=0 

𝛼1 =
4−𝜆

24
    𝛼2 =

8+𝜆

12
    𝛽1 =

1

2ℎ
    𝛾1 =

2+𝜆

2ℎ2
    𝛾2 = −

4+2𝜆

2ℎ2
  

𝑉𝑚1 = (
2

∆𝑡
+ 𝜀𝐿) 𝛼1        𝑉𝑚2 = 𝜀𝐾𝛼1 − 𝜗𝛽1 + 𝜇𝛾1  

𝑉𝑚3 = (
2

∆𝑡
+ 𝜀𝐿) 𝛼2        𝑉𝑚4 = 𝜀𝐾𝛼2 + 𝜇𝛾2  

𝑉𝑚5 = 𝜀𝐾𝛼1 + 𝜗𝛽1 + 𝜇𝛾1       𝑉𝑚6 = (
2

∆𝑡
) 𝛼1  

𝑉𝑚7 = 𝜗𝛽1 − 𝜇𝛾1        𝑉𝑚8 = (
2

∆𝑡
) 𝛼2  

𝑉𝑚9 = −𝜇𝛾2         𝑉𝑚10 = −𝜗𝛽1 − 𝜇𝛾1  

𝑉𝑚11 = 𝛽1          𝑉𝑚12 = −𝛼1  

𝑉𝑚13 = −𝛼2  

𝐾 = 𝛼1𝛿𝑖−1 + 𝛼2𝛿𝑖 + 𝛼1𝛿𝑖+1            𝐿 = 𝛼1𝜑𝑖−1 + 𝛼2𝜑𝑖 + 𝛼1𝜑𝑖+1  

Bu kısaltmalar kullanıldığında ifadedeki her bir terim aşağıdaki gibi yazılabilir. 

((
2

∆𝑡
) (

4−𝜆

24
) + 𝜀𝐿 (

4−𝜆

24
)) 𝛿𝑖−1

𝑛+1 = 𝑉𝑚1𝛿𝑖−1
𝑛+1   

(𝜀𝐾 (
4−𝜆

24
) − 𝜗 (

1

2ℎ
) + 𝜇 (

2+𝜆

2ℎ2
))𝜑𝑖−1

𝑛+1 = 𝑉𝑚2𝜑𝑖−1
𝑛+1   

((
8+𝜆

12
) (

2

∆𝑡
) + (

8+𝜆

12
) 𝜀𝐿) 𝛿𝑖

𝑛+1 = 𝑉𝑚3𝛿𝑖
𝑛+1   

(𝜇 (
2+𝜆

2ℎ2
) (−2) + 𝜀𝐾 (

8+𝜆

12
))𝜑𝑖

𝑛+1 = 𝑉𝑚4𝜑𝑖
𝑛+1   

((
2

∆𝑡
) (

4−𝜆

24
) + 𝜀𝐿 (

4−𝜆

24
)) 𝛿𝑖+1

𝑛+1 = 𝑉𝑚1𝛿𝑖+1
𝑛+1   

(𝜇 (
2+𝜆

2ℎ2
) + 𝜀𝐾 (

4−𝜆

24
) + 𝜗 (

1

2ℎ
))𝜑𝑖+1

𝑛+1 = 𝑉𝑚5𝜑𝑖+1
𝑛+1  

((
2

∆𝑡
) (

4−𝜆

24
) 𝛿𝑖−1

𝑛 ) = 𝑉𝑚6𝛿𝑖−1
𝑛   

((
1

2ℎ
) 𝜗 + (

2+𝜆

2ℎ2
) 𝜇)𝜑𝑖−1

𝑛 = 𝑉𝑚7𝜑𝑖−1
𝑛   

((
2

∆𝑡
) (

8+𝜆

12
)) 𝛿𝑖

𝑛 = 𝑉𝑚8𝛿𝑖
𝑛  
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(𝜇 (
4+2𝜆

2ℎ2
))𝜑𝑖

𝑛 = 𝑉𝑚9𝜑𝑖
𝑛  

((
2

∆𝑡
) (

4−𝜆

24
)) 𝛿𝑖+1

𝑛 = 𝑉𝑚6𝛿𝑖−1
𝑛   

(𝜗 (
1

2ℎ
) − 𝜇 (

2+𝜆

2ℎ2
))𝜑𝑖+1

𝑛 = 𝑉𝑚10𝜑𝑖+1
𝑛   

Terimler tek tek yerine yazıldığında iterasyon için aranan eşitlik elde edilmiş olur. 

𝑉𝑚1𝛿𝑖−1
𝑛+1 + 𝑉𝑚2𝜑𝑖−1

𝑛+1 + 𝑉𝑚3𝛿𝑖
𝑛+1 + 𝑉𝑚4𝜑𝑖

𝑛+1 + 𝑉𝑚1𝛿𝑖+1
𝑛+1 + 𝑉𝑚5𝜑𝑖+1

𝑛+1 = 𝑉𝑚6𝛿𝑖−1
𝑛 +

𝑉𝑚7𝜑𝑖−1
𝑛 + 𝑉𝑚8𝛿𝑖

𝑛 + 𝑉𝑚9𝜑𝑖
𝑛 + 𝑉𝑚6𝛿𝑖+1

𝑛 + 𝑉𝑚10𝜑𝑖+1
𝑛              (4.10) 

Benzer şekilde işlem kolaylığı olması açısından (4.9)’daki 2.denklem 2 ile çarpılıp 

(4.5)’deki eşitlikler (4.9)’da yerine yazılırsa (4.11) denklemi elde edilir. 

(𝑈𝑥
𝑛+1 + 𝑈𝑥

𝑛) − (𝑉𝑛+1 + 𝑉𝑛) = 0  

(
1

2ℎ
) (𝛿𝑖−1

𝑛+1 − 𝛿𝑖+1
𝑛+1) − (

1

2ℎ
) (𝛿𝑖−1

𝑛 − 𝛿𝑖+1
𝑛 ) − (

4−𝜆

24
)𝜑𝑖−1

𝑛+1 − (
8+𝜆

12
)𝜑𝑖

𝑛+1 − (
4−𝜆

24
)𝜑𝑖+1

𝑛+1 −

(
4−𝜆

24
)𝜑𝑖−1

𝑛 − (
8+𝜆

12
)𝜑𝑖

𝑛 − (
4−𝜆

24
)𝜑𝑖+1

𝑛 = 0  

(
1

2ℎ
) 𝛿𝑖−1

𝑛+1 + (
1

2ℎ
) 𝛿𝑖+1

𝑛+1 − (
4−𝜆

24
)𝜑𝑖−1

𝑛+1 − (
8+𝜆

12
)𝜑𝑖

𝑛+1 − (
4−𝜆

24
)𝜑𝑖+1

𝑛+1 = (
1

2ℎ
) (𝛿𝑖−1

𝑛 −

𝛿𝑖+1
𝑛 ) + (

4−𝜆

24
)𝜑𝑖−1

𝑛 + (
8+𝜆

12
)𝜑𝑖

𝑛 + (
4−𝜆

24
)𝜑𝑖+1

𝑛   

Denklem 𝛿𝑖−1,  𝜑𝑖−1,  𝛿𝑖 ,  𝜑𝑖, 𝛿𝑖+1, 𝜑𝑖+1 sıralamasıyla düzenli yazılırsa; 

𝛽1𝛿𝑖−1
𝑛+1 − 𝛼1𝜑𝑖−1

𝑛+1 + 0𝛿𝑖
𝑛+1 − 𝛼2𝜑𝑖

𝑛+1 − 𝛽1𝛿𝑖+1
𝑛+1 − 𝛼1𝜑𝑖+1

𝑛+1 = −𝛽1𝛿𝑖−1
𝑛 + 𝛼1𝜑𝑖−1

𝑛 +

0𝛿𝑖
𝑛 + 𝛼2𝜑𝑖

𝑛 + 𝛽1𝛿𝑖+1
𝑛 + 𝛼1𝜑𝑖+1

𝑛   

𝑉𝑚11𝛿𝑖−1
𝑛+1 + 𝑉𝑚12𝜑𝑖−1

𝑛+1 + 0𝛿𝑖
𝑛+1 + 𝑉𝑚13𝜑𝑖

𝑛+1 + 𝑉𝑚11𝛿𝑖+1
𝑛+1 − 𝑉𝑚12𝜑𝑖+1

𝑛+1 =

−𝑉𝑚11𝛿𝑖−1
𝑛 − 𝑉𝑚12𝜑𝑖−1

𝑛 + 0𝛿𝑖
𝑛 − 𝑉𝑚13𝜑𝑖

𝑛 − 𝑉𝑚11𝛿𝑖+1
𝑛 + 𝑉𝑚12𝜑𝑖+1

𝑛                    (4.11) 

Burada (4.10) ve (4.11)’deki katsayılar aşağıdaki şekildedir. Böylece (4.10), (4.11) 

denklem sistemi 𝐴𝑥𝑛+1 = 𝐵𝑥𝑛  şeklinde aşağıdaki (4.12) matris formunda yazılabilir. 

𝐴 =

[
 
 
 
 
𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 𝑉𝑚4 𝑉𝑚1 𝑉𝑚5
𝑉𝑚11 𝑉𝑚12 0 𝑉𝑚13 𝑉𝑚11 −𝑉𝑚12
⋯ ⋯ 𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 𝑉𝑚4 𝑉𝑚1 𝑉𝑚5
⋯ ⋯ 𝑉𝑚11 𝑉𝑚12 0 𝑉𝑚13 𝑉𝑚11 −𝑉𝑚12
⋯ ⋯ ⋯ ⋯ 𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 ⋯ ]

 
 
 
 

  

Ve                      (4.12) 
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𝐵 =

[
 
 
 
 
𝑉𝑚6 𝑉𝑚7 𝑉𝑚8 𝑉𝑚9 𝑉𝑚6 𝑉𝑚10
−𝑉𝑚11 −𝑉𝑚12 0 −𝑉𝑚13 −𝑉𝑚11 𝑉𝑚12
⋯ ⋯ 𝑉𝑚6 𝑉𝑚7 𝑉𝑚8 𝑉𝑚9 𝑉𝑚6 𝑉𝑚10
⋯ ⋯ −𝑉𝑚11 −𝑉𝑚12 0 −𝑉𝑚13 −𝑉𝑚11 𝑉𝑚12
⋯ ⋯ ⋯ ⋯ 𝑉𝑚6 𝑉𝑚7 𝑉𝑚8 ⋯ ]

 
 
 
 

  

(4.12) denklem sisteminde 2𝑁 + 2  denklem 2𝑁 + 6  bilinmeyen parametre ortaya 

çıkmaktadır. Bilinmeyen parametreler  

𝑋𝑛+1 = (𝛿−1
𝑛+1, 𝜑−1

𝑛+1, 𝛿0
𝑛+1, 𝜑0

𝑛+1, … , 𝛿𝑁+1
𝑛+1, 𝜑𝑁+1

𝑛+1)  

Denklem sisteminin tek bir çözümü olabilmesi için  

𝑈𝑥(𝑎, 𝑡) = 0, 𝑈𝑥(𝑏, 𝑡) = 0, 𝑉𝑥(𝑎, 𝑡) = 0, 𝑉𝑥(𝑏, 𝑡) = 0  

Sınır koşulları yardımıyla  𝛿−1,  𝜑−1,  𝛿𝑁+1,  𝜑𝑁+1 parametreleri için 𝛿−1 = 𝛿1 ,  𝜑−1 =

𝜑1 , eşitlikleri kullanılacaktır. Bu işlem yapıldıktan sonra sistem 2𝑁 + 2 lineer denklem 

ve 2𝑁 + 2 bilinmeyenden oluşan çözülebilir bir sistem haline gelir. Eşitliğin sağ tarafı 

n-inci zaman adımı için sadece bilinen parametrelerden oluştuğundan denklem 

sisteminin 𝑛 + 1 -inci adımdaki çözümü elde edilir. Bu tekrarlama bağıntısında 

hesaplamaya başlayabilmek için 𝑋0 başlangıç vektörüne ihtiyaç vardır. 

𝑑1 = (𝛿−1, 𝛿0, … , 𝛿𝑁 , 𝛿𝑁+1)  ve  𝑑2 = (𝜑−1, 𝜑0, … , 𝜑𝑁 , 𝜑𝑁+1)  

Başlangıç parametreleri aşağıdaki eşitliklerden hesaplanır. 

𝑈𝑥𝑥(𝑎, 0) = 0 = 𝛾1𝛿−1
0 + 𝛾2𝛿0

0 + 𝛾1𝛿1
0  

𝑈𝑥𝑥(𝑥𝑖, 0) = 𝛾1𝛿𝑖−1
0 + 𝛾2𝛿𝑖

0 + 𝛾1𝛿𝑖+1
0 = 𝑈𝑥𝑥(𝑥𝑖, 0), 𝑖 = 1,… ,𝑁 − 1  

𝑈𝑥𝑥(𝑏, 0) = 0 = 𝛾1𝛿𝑁−1
0 + 𝛾2𝛿𝑁

0 + 𝛾1𝛿𝑁+1
0   

𝑉𝑥(𝑎, 0) = 0 = 𝜑−1
0 − 𝜑1

0  

𝑉𝑥(𝑥𝑖, 0) = 0 = 𝜑𝑖−1
0 − 𝜑𝑖+1

0 =  𝑉𝑥(𝑥𝑖 , 0), 𝑖 = 1,… ,𝑁 − 1  

𝑉𝑥(𝑏, 0) = 0 = 𝜑𝑁−1
0 − 𝜑𝑁+1

0   

 

2.1.2. Test Problemleri 

Bu bölümde KdVB denklemi için başlangıç sınır değer probleminin 

nümerik çözümü incelenmiştir. Genişletilmiş B-spline kollokasyon metodundan 

elde edilen sonuçların doğruluğu grafik gösterimiyle, nümerik ve analitik çözümler 
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arasındaki farkın ölçülmesiyle ve maksimum hata normu ile elde edilen sonuçların 

karşılaştırılmasıyla ifade edilmiştir.  

 

2.1.2.1. Birinci Test Problemi 

KdVB denkleminin aşağıdaki formda verilen başlangıç sınır değer problemi ele 

alınsın. Başlangıç şartı; 

𝑢(𝑥, 0) = −
6𝜗2

25𝜇
[1 + tanh (

𝜗𝑥

10𝜇
) +

1

2
𝑠𝑒𝑐ℎ2(

𝜗𝑥

10𝜇
)]              (4.13) 

ve sınır koşulları ise; 

𝑢(𝑎, 𝑡) = −
6𝜗2

25𝜇
[1 + tanh (

𝜗

10𝜇
(𝑎 +

6𝜗2

25𝜇
𝑡)) +

1

2
𝑠𝑒𝑐ℎ2(

𝜗

10𝜇
(𝑎 +

6𝜗2

25𝜇
𝑡))]  

𝑢(𝑏, 𝑡) = −
6𝜗2

25𝜇
[1 + tanh (

𝜗

10𝜇
(𝑏 +

6𝜗2

25𝜇
𝑡)) +

1

2
𝑠𝑒𝑐ℎ2(

𝜗

10𝜇
(𝑏 +

6𝜗2

25𝜇
𝑡))]  

şeklinde olsun (Fan & Zhang, 1998). Belirtilen çalışmada özel olarak Ɛ = 1 

seçilmesiyle (4.14) formunda analitik çözüm ele alınmıştır. 

𝑢(𝑥, 𝑡) = −
6𝜗2

25𝜇
[1 + tanh (

𝜗

10𝜇
(𝑥 +

6𝜗2

25𝜇
𝑡)) +

1

2
𝑠𝑒𝑐ℎ2(

𝜗

10𝜇
(𝑥 +

6𝜗2

25𝜇
𝑡))]          (4.14) 

Bu çözüm, sabit, 𝑡𝑎𝑛ℎ bileşeni ve 𝑠𝑒𝑐ℎ bileşeni olmak üzere üç bileşenden oluşur. Bu 

bileşenler zaman ilerledikçe 𝑥  ekseni üzerindeki hareketli dalga durumunu gösterir. 

Daha önce yapılan benzer çalışmalarla karşılaştırma yapabilmek için sabit parametreler 

ele alınacaktır.  𝜇 = 0.01 , ℎ = 0.5 , ∆𝑡 = 0.001  alınarak [−20,20]  aralığı üzerinde 

𝑡 = 1 zamanı için algoritma çalıştırılır. 𝜗 = 0,001, 0,005 ve 0,01 seçildiğinde dalganın 

durumu Şekil 3.1 - 3.3 ile gösterilmiştir. 𝜗 dağılım parametresidir. 𝜗’nin artışı Burgers 

tipindeki çözümlerin ve dalgaların daha dik hale gelmesini sağlar. Her farklı durum için 

maksimum hata dağılımı Şekil 4.1-4.3 ile gösterilmiştir. Her üç durum için hata dağılım 

grafiği göstermektedir ki hata dalganın inişe geçtiği noktanın yakınında büyümektedir. 

Maksimum hata normu ile elde edilen sonuçlar radial tabanlı multi kuadratik 

kollokasyon metodu (MQ),  ters kuadratik (IQ) ve Gaus(GA) formu ile elde edilen 

sonuçlarla karşılaştırılmış ve sonuçlar Tablo 3.1’de verilmiştir.  
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Tablo 3.1: Maksimum hata normu ile elde edilen (MQ),(IQ) ve (GA) sonuçlarının 

karşılaştırılması 

𝑡 𝜆 = 0 𝜆 = −1.969 𝑀𝑄  (Haq & 

Uddin , 2009) 

𝐺𝐴  (Haq & 

Uddin , 2009) 

𝐼𝑄  (Haq & 

Uddin , 2009) 

1 9.441x10
-11

 7.271 x10
-11

 6.822 x10
-9

 7.913 x10
-9

 4.077 x10
-7

 

10 1.269 x10
-10

 9.509 x10
-11

 2.479 x10
-8

 3.294 x10
-6

 1.270 x10
-6

 

 

Yapılan hesaplamalarda  𝜀 = 1, 𝜗 = 0.004, Δ𝑡 = 0.001, ℎ = 0.05  olarak alınmıştır. 

Tablodan görülmektedir ki önerilen yöntem ile elde edilen sonuçlar 10−11 

hassasiyetindedir. Yani diğer yöntemlere göre daha az hatalı sonuçlar elde edildiği 

görülmektedir. 

 

Şekil 3.1: 𝝑 =  𝟎. 𝟎𝟎𝟏 değeri için 𝒕 = 𝟏 zamanında dalganın durumu. 

 

 

Şekil 3.2: 𝝑 =  𝟎. 𝟎𝟎𝟓 değeri için 𝒕 = 𝟏 zamanında dalganın durumu. 
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Şekil 3.3: 𝝑 =  𝟎. 𝟎𝟏 değeri için 𝒕 = 𝟏 zamanında dalganın durumu. 

 

 

Şekil 4.1: 𝝑 =  𝟎. 𝟎𝟎𝟏 değeri için 𝒕 = 𝟏 zamanında maksimum hata dağılımı. 

 

 

Şekil 4.2: 𝝑 =  𝟎. 𝟎𝟎𝟓 değeri için 𝒕 = 𝟏 zamanında maksimum hata dağılımı. 

 

 

Şekil 4.3: 𝝑 =  𝟎. 𝟎𝟏 değeri için 𝒕 = 𝟏 zamanında maksimum hata dağılımı. 
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2.1.2.2. İkinci Test Problemi 

Bu test probleminde 𝜗 = 0 durumunda KdVB denklemini incelenir. Dağılım teriminin 

elimine edilmesiyle KdVB denklemi KdV denklemine dönüşür. Önerilen metodun 

doğruluğunu kontrol etmek için başlangıç itmesi şeklinde tanımlanan bir eşitliğe (4.15) 

ihtiyaç vardır.  

𝑢(𝑥, 0) =
1

2
[1 − 𝑡𝑎𝑛ℎ

|𝑥|−25

5
]                 (4.15) 

Çözüm [−50,150]  aralığında 𝑡 = 800  zamanına kadar aranarak sonuçlar elde edilir 

(Gardner, Gardner, & Ali, 1989; Ersoy & Dağ , 2015; Korkmaz, 2010). Uzun süren bu 

işlemler sırasında aşağıdaki korunum sabitlerinin çok düşük olduğu gözlemlenmektedir 

(Korkmaz, 2010; Miura, Gardner, & Kruskal, 1968). 

𝐶1 = ∫ 𝑢𝑑𝑥
+∞

−∞
       𝐶2 = ∫ 𝑢2𝑑𝑥

+∞

−∞
  

𝐶3 = ∫ (𝑢3 −
3𝜇

𝜀
(𝑢𝑥

2))𝑑𝑥
+∞

−∞
     𝐶4 = ∫ (𝑢4 − 12

𝜇

𝜀
(𝑢𝑢𝑥

2) + 7.2
𝜇2

𝜀2
𝑢𝑥𝑥
2 )𝑑𝑥

+∞

−∞
  

 𝜆  genişletme parametresinin farklı seçimleri için yukarıda belirtilen 𝐶1, 𝐶2, 𝐶3, 𝐶4 

korunum sabitleri diferansiyel kuadratür metoduna dayanan Cosine açılım metodu 

(CDQ) ve Lagrange Polinomları (LPDQ) 4. Mertebeden Runge-Cutta yöntemi ile 

birleştirildiğinde elde edilen sonuçlar Tablo 3.2’de verilmiştir. Tablo incelendiğinde 

farklı 𝜆 değerleri ve farklı zamanlar için 𝐶1, 𝐶2, 𝐶3, 𝐶4 büyüklüklerinde çok az değişim 

olduğu görülmektedir. 

 

Tablo 3.2: Farklı λ değerleri ve farklı zamanlar için 𝑪𝟏, 𝑪𝟐, 𝑪𝟑, 𝑪𝟒 büyüklüklerindeki değişim. 

Metot 𝜆 𝑡 𝐶1 𝐶2 𝐶3 𝐶4 

  0 50.000 45.000 42.301 40.442 

Uygulanan Metot 0 200 

400 

600 

800 

50.001 

49.999 

49.999 

50.001 

45.002 

45.003 

45.003 

45.003 

42.404 

42.451 

42.453 

42.454 

40.983 

41.264 

41.290 

41.297 

Uygulanan Metot -1 200 

400 

600 

800 

50.000 

50.000 

50.000 

50.000 

44.870 

44.785 

44.773 

44.771 

34.523 

29.485 

28.803 

28.705 

9.396 

-7.116 

-8.721 

-8.904 



30 
 

Tablo 3.2: Farklı 𝜆 değerleri ve farklı zamanlar için 𝐶1, 𝐶2, 𝐶3, 𝐶4  büyüklüklerindeki değişim 

(Devam). 

Uygulanan Metot -0.5 200 

400 

600 

800 

50.000 

50.000 

50.000 

50.000 

44.957 

44.928 

44.924 

44.923 

39.748 

38.050 

37.811 

37.776 

30.237 

24.631 

24.061 

23.991 

Uygulanan Metot -0.25 200 

400 

600 

800 

50.000 

50.000 

50.000 

50.000 

44.983 

44.971 

44.969 

44.969 

41.263 

40.557 

40.455 

40.439 

36.353 

34.078 

33.846 

33.814 

Uygulanan Metot -0.125 200 

400 

600 

800 

50.000 

50.000 

50.000 

50.000 

44.969 

44.988 

44.987 

44.987 

40.439 

41.567 

41.519 

41.511 

33.814 

37.900 

37.804 

37.791 

Uygulanan Metot 1 200 

400 

600 

800 

50.000 

49.997 

50.001 

50.004 

45.047 

45.078 

45.082 

45.082 

45.072 

46.889 

47.140 

47.174 

51.883 

58.291 

58.933 

58.994 

Uygulanan Metot 0.5 200 

400 

600 

800 

50.001 

49.997 

50.001 

50.002 

45.029 

45.048 

45.051 

45.050 

44.006 

45.113 

45.273 

45.286 

47.514 

51.442 

51.885 

51.881 

Uygulanan Metot 0.25 200 

400 

600 

800 

50.001 

49.999 

49.999 

50.000 

45.017 

45.028 

45.029 

45.029 

43.294 

43.930 

44.016 

44.031 

44.606 

46.907 

47.144 

47.186 

Uygulanan Metot 0.5 200 

400 

600 

800 

50.000 

50.000 

50.000 

50.000 

44.957 

44.928 

44.924 

44.923 

39.748 

38.050 

37.811 

37.776 

30.237 

24.631 

24.061 

23.991 

Uygulanan Metot 0.125 200 

400 

600 

800 

50.001 

49.998 

50.001 

50.000 

45.001 

45.016 

45.017 

45.017 

42.786 

43.233 

43.280 

43.286 

42.899 

44.248 

44.387 

44.396 
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Tablo 3.2: Farklı 𝜆 değerleri ve farklı zamanlar için 𝐶1, 𝐶2, 𝐶3, 𝐶4  büyüklüklerindeki değişim 

(Devam). 

CDQ (Korkmaz, 

2010) 

 200 

400 

600 

800 

49.997 

50.017 

50.006 

49.944 

45.001 

45.005 

45.003 

45.019 

42.301 

42.304 

42.303 

42.314 

43.835 

68.403 

59.367 

166.836 

PDQ  (Korkmaz, 

2010) 

 200 

400 

600 

800 

49.984 

49.985 

49.977 

49.965 

45.001 

45.001 

45.001 

45.000 

42.301 

42.301 

42.301 

42.301 

40.442 

40.442 

40.442 

40.442 

 

 

2.2. SONUÇLAR VE ÖNERİLER 

İlk olarak klasik polinomlardan oluşan kübik B-spline fonksiyonların 

genişletilmiş formu kollokasyon yöntemine uygulanarak KdVB denkleminin 

genişletilmiş kübik B-spline çözümü incelenmiştir. Önerilen yöntemin doğruluğunu ve 

etkinliğini göstermek için iki başlangıç sınır değer probleminin çözümü incelenmiştir. 

Sonuçların doğruluğunu göstermek için maksimum hata normu kullanılmıştır. 

Çalışmada elde edilen sonuçlar daha önce yapılan bazı çalışmalarla karşılaştırıldığında 

önerilen metot ondalık kısmında en az iki basamak daha iyi sonuç vermektedir. 

Genişletme parametresinin en iyi seçimiyle kübik B-spline fonksiyonlar yardımıyla 

ileriye dönük çalışmalar yapılabilir. Daha iyi sonuçlar üretebilmek için kullanılan 

nümerik algoritma üzerinde farklı çalışmalar yapılabilir.  

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ÜÇÜNCÜ BÖLÜM 

GARDNER DENKLEMİNİN GENİŞLETİLMİŞ KÜBİK B-SPLİNE YÖNTEMİ 

İLE SAYISAL ÇÖZÜMÜ 
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3.1. METODUN UYGULANMASI 

Genişletilmiş B-Spline polinomlar klasik B-spline polinomlarla elde edilen 

sonuçların iyileştirilmesine imkan sağlar. En iyi genişletme parametresi sıfırı içeren bazı 

aralıkların taranmasıyla elde edilir. Bu çalışmanın amacı bazı başlangıç ve sınır 

değerleri yardımıyla Gardner denkleminin genişletilmiş kübik B-spline metoduyla 

çözümünü incelemektir. Bazı analitik çalışmalardan çıkarılan test problemleri 

uygulanan yöntemin etkinliğini ve doğruluğunu gösterecektir. 

 

3.1.1. Sayısal Çözüm 

Bu çalışmada birleştirilmiş KdV ya da düzenlenmiş KdV denklemi olarak da 

bilinen Gardner denklemini ele alacağız. Gardner denklemi aşağıdaki şekilde ifade 

edilir; 

𝑢𝑡 + 𝜀𝑢𝑢𝑥 + 𝜗𝑢
2𝑢𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 0              (5.1) 

Burada; 𝑢 = 𝑢(𝑥, 𝑡) ve  𝜀, 𝜗, 𝜇 sabitlerdir. 

Gardner denklemi kuadratik ve kübik formda iki lineer olmayan terim içerir 

(𝑢𝑢𝑥  kuadratik lineer olmayan, 𝑢2𝑢𝑥  kübik lineer olmayan). Bu çalışmada Gardner 

denkleminin genişletilmiş kübik B-spline çözümleri incelenmiştir. Kübik B-spline 

fonksiyonlar iki defa sürekli türevlenebilir olduğundan Gardner denkleminde 

mertebenin indirgenmesini sağlamak amacıyla 𝑣 = 𝑢𝑥  parçalanması yapılarak iki 

denklemden oluşan bir sistem elde edilir. Bu sistem de genişletilmiş kübik B-spline 

kollokasyon yöntemiyle çözülür. 

𝑢𝑡 + 𝑢𝑥(𝜀𝑢 + 𝜗𝑢
2) + 𝜇𝑢𝑥𝑥𝑥 = 0      

𝑣 − 𝑢𝑥 = 0             (5.2) 

Bu probleme ait başlangıç değerleri; 

𝑢(𝑥, 0) = 𝑓(𝑥)   𝑣(𝑥, 0) = 𝑓(𝑥)        (5.3) 

ve homojen Neumann sınır koşulları; 

𝑢𝑥 (𝑎, 𝑡)  =  0,   𝑢𝑥  (𝑏, 𝑡)  =  0,       (5.4) 

𝑢𝑥𝑥(𝑎, 𝑡)  =  0,   𝑢𝑥𝑥(𝑏, 𝑡)  =  0, 

𝑣𝑥 (𝑎, 𝑡)  =  0,   𝑣𝑥  (𝑏, 𝑡)  =  0, 
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𝑣𝑥𝑥 (𝑎, 𝑡)  =  0,   𝑣𝑥𝑥  (𝑏, 𝑡)  =  0, 

𝜋, [𝑎, 𝑏] üzerinde eşit aralıklara bölünsün. 

𝜋: 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏,     ℎ =
𝑏−𝑎

𝑁
   olsun. 

Klasik kübik B-spline fonksiyonların genişletilmiş formu 𝐸𝑖, (3.1) şeklinde ifade edilir. 

(3.1) denklem sistemindeki fonksiyonlar, çözümde kullanılacak taban fonksiyonlardır. 

Burada reel  𝜆 serbest parametredir. 

𝑈𝑖 = 𝑈(𝑥𝑖, 𝑡) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 , 

𝑈𝑖′ = 𝑈′(𝑥𝑖, 𝑡) =
1

2ℎ
(𝛿𝑖−1 − 𝛿𝑖+1), 

𝑈𝑖"=U"(𝑥𝑖 , 𝑡) =
2+𝜆

2ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1),       (5.5) 

𝑉𝑖 = 𝑉(𝑥𝑖, 𝑡) =
4−𝜆

24
𝜑𝑖−1 +

8+𝜆

12
𝜑𝑖 +

4−𝜆

24
𝜑𝑖+1 , 

𝑉𝑖′ = 𝑉′(𝑥𝑖, 𝑡) =
1

2ℎ
(𝜑𝑖−1 − 𝜑𝑖+1), 

𝑉𝑖"=V"(𝑥𝑖, 𝑡) =
2+𝜆

2ℎ2
(𝜑𝑖−1 − 2𝜑𝑖 +𝜑𝑖+1)  

(5.2)’deki konuma göre parçalanmış sistemin integrallenmesiyle ve Crank-Nicolson 

yönteminin uygulanması ile aşağıdaki eşitlikler elde edilir. 

𝛿𝑚 =
𝛿𝑚
𝑛+1+𝛿𝑚

𝑛

2
  ve  𝛿𝑚

0 =
𝛿𝑚
𝑛+1−𝛿𝑚

𝑛

∆𝑡
  olmak üzere: 

𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀

(𝑈𝑈𝑥)
𝑛+1+(𝑈𝑈𝑥)

𝑛

2
+ 𝜗

(𝑈2𝑈𝑥)
𝑛+1+(𝑈2𝑈𝑥)

𝑛

2
+ 𝜇

𝑉𝑥𝑥
𝑛+1+𝑉𝑥𝑥

𝑛

2
= 0   (5.6) 

𝑈𝑥
𝑛+1+𝑈𝑥

𝑛

2
−
𝑉𝑛+1+𝑉𝑛

2
= 0  

elde edilir. Burada 𝑛, eşit ∆𝑡 zaman adımına göre 𝑛-inci zamandaki çözümü ifade eder. 

Denklemin lineer olmayan (𝑈𝑈𝑥)
𝑛 ,  (𝑈𝑈𝑥)

𝑛+1  ve (𝑈2𝑈𝑥)
𝑛+1  terimleri aşağıdaki 

şekilde kullanılır ve (5.6) denklem sisteminde yerine yazılırsa (5.7) denklem sistemi 

elde edilir. 

(𝑈𝑈𝑥)
𝑛+1 = 𝑈𝑛+1𝑈𝑥

𝑛 + 𝑈𝑛𝑈𝑥
𝑛+1 − 𝑈𝑛𝑈𝑥

𝑛 ,      

(𝑈𝑈𝑥)
𝑛  = 𝑈𝑛𝑈𝑥

𝑛  

(𝑈2𝑈𝑥)
𝑛+1 = 2𝑈𝑛+1𝑈𝑛𝑈𝑥

𝑛 + (𝑈𝑛)2𝑈𝑥
𝑛+1 − 2(𝑈𝑛)2𝑈𝑥

𝑛  
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𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀

𝑈𝑛+1𝑈𝑥
𝑛+𝑈𝑛𝑈𝑥

𝑛+1−𝑈𝑛𝑈𝑥
𝑛+𝑈𝑛𝑈𝑥

𝑛

2
+

𝜗
2𝑈𝑛+1𝑈𝑛𝑈𝑥

𝑛+(𝑈𝑛)2𝑈𝑥
𝑛+1−2(𝑈𝑛)2𝑈𝑥

𝑛+𝑈2𝑛 𝑈𝑥
𝑛

2
+ 𝜇

𝑉𝑥𝑥
𝑛+1+𝑉𝑥𝑥

𝑛

2
= 0      (5.7) 

𝑈𝑥
𝑛+1+𝑈𝑥

𝑛

2
−
𝑉𝑛+1+𝑉𝑛

2
= 0  

(5.7)’deki eşitliklerin her iki tarafını 2 ile çarpılır. 

2
𝑈𝑛+1−𝑈𝑛

∆𝑡
+ 𝜀(𝑈𝑛+1𝑈𝑥

𝑛 + 𝑈𝑛𝑈𝑥
𝑛+1) + 𝜗(2𝑈𝑛+1𝑈𝑛𝑈𝑥

𝑛 + (𝑈𝑛)2𝑈𝑥
𝑛+1 −

(𝑈𝑛)2𝑈𝑥
𝑛) + 𝜇(𝑉𝑥𝑥

𝑛+1 + 𝑉𝑥𝑥
𝑛) = 0           (5.8) 

𝑈𝑥
𝑛+1 + 𝑈𝑥

𝑛 − (𝑉𝑛+1 + 𝑉𝑛) = 0  

lineerleştirme gereken yerlerde 𝑈𝑛 = 𝐾   ve   𝑈𝑥
𝑛 = 𝐿 kullanılır. 

(
2

∆𝑡
) ((

4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1 − (
4−𝜆

24
) 𝛿𝑖−1

𝑛 − (
8+𝜆

12
) 𝛿𝑖

𝑛 −

(
4−𝜆

24
) 𝛿𝑖+1

𝑛 ) + 𝜀𝐿((
4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1) + 𝜀𝐾((
1

2ℎ
) (𝛿𝑖−1

𝑛+1 −

𝛿𝑖+1
𝑛+1)) + 𝜗 (2𝐾𝐿 ((

4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1)) + 𝜗𝐾2 ((
1

2ℎ
) (𝛿𝑖−1

𝑛+1 −

𝛿𝑖+1
𝑛+1)) − 𝜗𝐾𝐿((

4−𝜆

24
) 𝛿𝑖−1

𝑛 + (
8+𝜆

12
) 𝛿𝑖

𝑛 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛 )) + 𝜇((
2+𝜆

2ℎ2
) (𝜑𝑖−1

𝑛+1 − 2𝜑𝑖
𝑛+1 +

𝜑𝑖+1
𝑛+1)) + 𝜇((

2+𝜆

2ℎ2
) (𝜑𝑖−1

𝑛 − 2𝜑𝑖
𝑛 + 𝜑𝑖+1

𝑛 )) = 0  

𝛼1 =
4−𝜆

24
   𝛼2 =

8+𝜆

12
    𝛽1 =

1

2ℎ
    𝛾1 =

2+𝜆

2ℎ2
    𝛾2 = −

4+2𝜆

2ℎ2
 

𝑉𝑚1 = (
2

∆𝑡
+ 𝜀𝐿 + 2𝜗𝐾𝐿)𝛼1 + (𝜀𝐾 + 𝜗𝐾

2)𝛽1   𝑉𝑚2 = 𝜇𝛾1  

𝑉𝑚3 = (
2

∆𝑡
+ 𝜀𝐿 + 2𝜗𝐾𝐿)𝛼2      𝑉𝑚4 = 𝜇𝛾2  

𝑉𝑚5 = (
2

∆𝑡
+ 𝜀𝐿 + 2𝜗𝐾𝐿)𝛼2  − (𝜀𝐾 + 𝜗𝐾

2)𝛽1   𝑉𝑚6 = (
2

∆𝑡
+ 𝜗𝐾𝐿)𝛼1  

𝑉𝑚7 = (
2

∆𝑡
+ 𝜗𝐾𝐿)𝛼2  

𝑈𝑛 = 𝐾 = 𝛼1𝛿𝑖−1
𝑛 + 𝛼2𝛿𝑖

𝑛 + 𝛼1𝛿𝑖+1
𝑛   

𝑈𝑥
𝑛 = 𝐿 = 𝛼1𝜑𝑖−1

𝑛 + 𝛼2𝜑𝑖
𝑛 + 𝛼1𝜑𝑖+1

𝑛   

Bu kısaltmalar kullanıldığında ifadedeki her bir terim (5.8) denklem sisteminde yerine 

yazılır. 
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((
2

∆𝑡
)𝛼1 + 𝐿𝜀𝛼1 + 𝛽1𝜀𝐾 + 2𝐾𝐿𝜗𝛼1 + 𝐾

2𝜗𝛽1) 𝛿𝑖−1
𝑛+1 + (𝜇𝛾1)𝜑𝑖−1

𝑛+1 + ((
2

∆𝑡
) 𝛼2 +

𝛼2𝜀𝐿 + 𝛼2𝜗2𝐾𝐿) 𝛿𝑖
𝑛+1 − (2𝜇𝛾1)𝜑𝑖

𝑛+1 + ((
2

∆𝑡
) 𝛼1 + 𝐿𝜀𝛼1 − 𝛽1𝜀𝐾 + 2𝐾𝐿𝜗𝛼1 −

𝐾2𝜗𝛽1) 𝛿𝑖+1
𝑛+1 + (𝜇𝛾1)𝜑𝑖+1

𝑛+1 = ((
2

∆𝑡
) 𝛼1 + 𝐾𝐿𝜗𝛼1) 𝛿𝑖−1

𝑛 − (𝜇𝛾1)𝜑𝑖−1
𝑛 + ((

2

∆𝑡
)𝛼2 +

𝐾𝐿𝜗𝛼2) 𝛿𝑖
𝑛 + (2𝜇𝛾1)𝜑𝑖

𝑛 + ((
2

∆𝑡
) 𝛼1 + 𝐾𝐿𝜗𝛼1) 𝛿𝑖+1

𝑛 − (𝜇𝛾1)𝜑𝑖+1
𝑛   

ve              (5.9) 

−(
4−𝜆

24
)𝜑𝑖−1

𝑛+1 + (
8+𝜆

12
)𝜑𝑖

𝑛+1 + (
4−𝜆

24
)𝜑𝑖+1

𝑛+1 + (
1

2ℎ
) (𝛿𝑖−1

𝑛+1 − 𝛿𝑖+1
𝑛+1) = (−

1

2ℎ
) (𝛿𝑖−1

𝑛 −

𝛿𝑖+1
𝑛 ) − (

4−𝜆

24
)𝜑𝑖−1

𝑛 − (
8+𝜆

12
)𝜑𝑖

𝑛 − (
4−𝜆

24
)𝜑𝑖+1

𝑛    

elde edilir. (5.9) eşitlikleri sadeleştirildiğinde aşağıdaki eşitlik elde edilir. 

(((
2

∆𝑡
) + 𝐿𝜀 + 2𝐾𝐿𝜗) 𝛼1 + (𝜀𝐾 + 𝐾

2𝜗)𝛽1)𝛿𝑖−1
𝑛+1 + (𝜇𝛾1)𝜑𝑖−1

𝑛+1 + (((
2

∆𝑡
) + 𝜀𝐿 +

2𝐾𝐿𝜗)𝛼2) 𝛿𝑖
𝑛+1 + (𝜇𝛾2)𝜑𝑖

𝑛+1 + (((
2

∆𝑡
) + 𝐿𝜀 + 2𝐾𝐿𝜗)𝛼1 − (𝜀𝐾 + 𝐾

2𝜗)𝛽1)𝛿𝑖+1
𝑛+1 +

(𝜇𝛾1)𝜑𝑖+1
𝑛+1 = (((

2

∆𝑡
)−𝐾𝐿𝜗)𝛼1) 𝛿𝑖−1

𝑛 − (𝜇𝛾1)𝜑𝑖−1
𝑛 + (((

2

∆𝑡
) + 𝐾𝐿𝜗)𝛼2)𝛿𝑖

𝑛 −

(𝜇𝛾2)𝜑𝑖
𝑛 + (((

2

∆𝑡
) + 𝐾𝐿𝜗)𝛼1) 𝛿𝑖+1

𝑛 − (𝜇𝛾1)𝜑𝑖+1
𝑛          

ve                      (5.10)  

−𝛽1𝛿𝑖−1
𝑛+1 + 𝛼1𝜑𝑖−1

𝑛+1 + 0𝛿𝑖
𝑛+1 + 𝛼2𝜑𝑖

𝑛+1 + 𝛽1𝛿𝑖+1
𝑛+1 + 𝛼1𝜑𝑖+1

𝑛+1 = 𝛽1𝛿𝑖−1
𝑛 − 𝛼1𝜑𝑖−1

𝑛 +

0𝛿𝑖
𝑛 − 𝛼2𝜑𝑖

𝑛 − 𝛽1𝛿𝑖+1
𝑛 − 𝛼1𝜑𝑖+1

𝑛   

Bu sistem matris formunda 𝐴𝑥𝑛+1 = 𝐵𝑥𝑛 şeklinde ifade edilir (5.11). 

𝐴 =

[
 
 
 
 
𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 𝑉𝑚4 𝑉𝑚5 𝑉𝑚2
−𝛽1 𝛼1 0 𝛼2 𝛽1 𝛼1
⋯ ⋯ 𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 𝑉𝑚4 𝑉𝑚5 𝑉𝑚2
⋯ ⋯ −𝛽1 𝛼1 0 𝛼2 𝛽1 𝛼1
⋯ ⋯ ⋯ ⋯ 𝑉𝑚1 𝑉𝑚2 𝑉𝑚3 ⋯ ]

 
 
 
 

  

ve                      (5.11)   

𝐵 =

[
 
 
 
 
𝑉𝑚6 −𝑉𝑚2 𝑉𝑚7 −𝑉𝑚4 𝑉𝑚6 −𝑉𝑚2
𝛽1 −𝛼1 0 −𝛼2 −𝛽1 −𝛼1
⋯ ⋯ 𝑉𝑚6 −𝑉𝑚2 𝑉𝑚7 −𝑉𝑚4 𝑉𝑚6 −𝑉𝑚2
⋯ ⋯ 𝛽1 −𝛼1 0 −𝛼2 −𝛽1 −𝛼1
⋯ ⋯ ⋯ ⋯ 𝑉𝑚6 −𝑉𝑚2 𝑉𝑚7 ⋯ ]
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(5.11) sistemi 2𝑁 + 2 lineer denklem ve 2𝑁 + 6 bilinmeyenden oluşur. 

𝑋𝑛+1 = (𝛿−1
𝑛+1, 𝜑−1

𝑛+1, 𝛿0
𝑛+1, 𝜑0

𝑛+1, … , 𝛿𝑁+1
𝑛+1, 𝜑𝑁+1

𝑛+1)  

Bu sistemin tek çözümünün olabilmesi için ilave 4 şarta ihtiyaç vardır. 

𝑈𝑥(𝑎, 𝑡) = 0,    𝑈𝑥(𝑏, 𝑡) = 0,     𝑉𝑥(𝑎, 𝑡) = 0,    𝑉𝑥(𝑏, 𝑡) = 0  

Sınır koşullarından  𝛿−1 = 𝛿1 ,  𝜑−1 = 𝜑1 , 𝛿𝑁−1 = 𝛿𝑁+1 ,  𝜑𝑁−1 = 𝜑𝑁+1 eşitlikleri 

kullanılarak çözülebilir bir sistem elde edilir. 

Algoritmanın hesaplamaya başlayabilmesi için  𝛿𝑖
0  , 𝜑𝑖

0 ,    𝑖 = −1,… ,𝑁 + 1 başlangıç 

parametrelerinin Neuman sınır koşulları kullanılarak hesaplanması gerekir. 

𝑈𝑥(𝑎, 0) = 0 = 𝛿−1
0 − 𝛿1

0  

𝑈(𝑥𝑖, 0) = 𝛾1𝛿𝑖−1
0 + 𝛾2𝛿𝑖

0 + 𝛾1𝛿𝑖+1
0 = 𝑈(𝑥𝑖, 0), 𝑖 = 1, … , 𝑁 − 1  

𝑈𝑥(𝑏, 0) = 0 = 𝛿𝑁−1
0 − 𝛿𝑁+1

0   

𝑉𝑥(𝑎, 0) = 0 = 𝜑−1
0 − 𝜑1

0  

𝑉(𝑥𝑖, 0) = 0 = 𝛾1𝜑𝑖−1
0 + 𝛾2𝜑𝑖

0 + 𝛾1𝜑𝑖+1
0 =  𝑉(𝑥𝑖, 0), 𝑖 = 1,… ,𝑁 − 1  

𝑉𝑥(𝑏, 0) = 0 = 𝜑𝑁−1
0 − 𝜑𝑁+1

0   

 

3.1.2. Test Problemleri 

 Bu bölümde Gardner denklemi için başlangıç sınır değer probleminin nümerik 

çözümü ele alınmıştır. Genişletilmiş B-spline kollokasyon metodundan elde edilen 

sonuçların doğruluğu grafik gösterimiyle, nümerik ve analitik çözümler arasındaki 

farkın ölçülmesiyle ve korunum kanunlarının incelenmesiyle ifade edilmiştir. Nümerik 

çözümdeki hataların ölçümü için maksimum hata normu diye tanımlanan (Ersoy 

Hepson, Korkmaz, & Dağ, 2017) aşağıdaki denklem sistemi kullanılır. 

𝐿∞(𝑡) = |𝑢(𝑥𝑖 , 𝑡) − 𝑈(𝑥𝑖, 𝑡)|∞ = max |𝑢(𝑢𝑖, 𝑡) − 𝑈𝑖
𝑛|  

Burada 𝑈(𝑥𝑖, 𝑡) ve 𝑢(𝑥𝑖, 𝑡) nümerik ve analitik çözümü ifade eder. 

Gardner denklemi için korunum büyüklükleri (5.12)’deki gibidir. İşlem yapılırken 

amacımız bunların değişmemesi veya değişimin çok az olmasıdır. 

~∫ (
𝜀𝑈3

3
+
𝜗𝑈4

6
− 𝜇(𝑈𝑥)

2)
𝑏

𝑎
𝑑𝑥                 (5.12) 
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~∑ (
𝜀𝑈𝑖

3

3
+
𝜗𝑈𝑖

4

6
− 𝜇(𝑈𝑥)𝑖

2)𝑁
𝑖=0 𝑑𝑥  

𝑡 > 0  zamanında bu büyüklüklerdeki değişim 𝐶(𝑀𝑡), 𝐶(𝐸𝑡) ve  𝐶(𝐻𝑡)  olmak üzere 

(5.13) şeklindedir. 

Burada 𝑀𝑡, 𝐸𝑡  ve 𝐻𝑡 , 𝑡 zamanında ölçülen büyüklüklerdir. 

𝑀 = ∫ 𝑢𝑑𝑥
∞

−∞
 ,      𝐸 = ∫ 𝑢2𝑑𝑥 ,

∞

−∞
   𝐻 = ∫ (

𝜀𝑈3

3
+
𝜗𝑈4

6
− 𝜇(𝑈𝑥)

2)
∞

−∞
𝑑𝑥  

𝐶(𝑀𝑡) = |
𝑀𝑡−𝑀0

𝑀0
|         𝐶(𝐸𝑡) = |

𝐸𝑡−𝐸0

𝐸0
|    𝐶(𝐻𝑡) = |

𝐻𝑡−𝐻0

𝐻0
|          (5.13) 

 

3.1.2.1. Birinci Test Porblemi 

İlk nümerik örnek olarak pozitif genliğe sahip tek dalganın yayılımı incelenir. 

Denklem parametreleri olarak  𝜀 = 4 , 𝜗 = −3 , 𝜇 = 1 alınır. (Nishiyama & Noi, 2016) 

çalışmasına göre tam çözüm: 

𝑢(𝑥, 𝑡) =
2

12+3√14cosh (−
𝑥

3
+
5

3
+
𝑡

27
)
  

şeklinde ele alınır. 𝑡 = 0 alınmasıyla başlangıç değeri elde edilir.  

Nümerik hesaplama için [-20,30] aralığı ele alınarak 𝑡 = 5 zamanına kadar ∆𝑡 = 0.1 

için hesaplama yapılır. Buna göre pozitif tek solitary dalga Şekil 5.1’de gösterilmiştir. 

 
Şekil 5.1: ∆𝒕 = 𝟎. 𝟏 için pozitif tek solitary dalga şekli. 

Kaynak: Hepson, Korkmaz ve Dağ, 2017 
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Ortaya çıkan hata dağılımı ise 𝜆 = 0  genişletme parametresi, Δ𝑡 = 0.1  ayrıştırma 

parametresi ve 𝑁 = 100  aralık sayısı alınarak 𝑡 = 5  zamanına kadar çalıştırıldığında 

ortaya çıkan durum Şekil 6.1’de gösterilmiştir. 

Aynı ayrıştırma parametreleri kullanılarak en iyi genişletme parametresi 𝜆 = −0.00840 

için hata dağılımı Şekil 6.2’de gösterilmiştir.  

 

Şekil 6.1: 𝝀 = 𝟎, 𝜟𝒕 = 𝟎. 𝟏 ve 𝑵 = 𝟏𝟎𝟎 alınarak ortaya çıkan hata dağılımı. 

 

 

Şekil 6.2: 𝝀 = −𝟎.𝟎𝟎𝟖𝟒𝟎, 𝜟𝒕 = 𝟎. 𝟏 ve 𝑵 = 𝟏𝟎𝟎 alınarak ortaya çıkan hata dağılımı. 

 

Farklı genişletme parametreleri kullanılarak elde edilen hata normları Tablo 

4.1’deki gibidir.  

 

H
at

a 

H
at

a 
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Tablo 4.1: Farklı genişletme parametreleri kullanılarak elde edilen hata normları. 

𝑁 𝐿∞(2.5)(𝜆 = 0) 𝐿∞(2.5)(ç𝑒ş𝑖𝑡𝑙𝑖 𝜆) 𝐿∞(5)(𝜆 = 0) 𝐿∞(5)(ç𝑒ş𝑖𝑡𝑙𝑖 𝜆) 

100 3.2726 x 10
-5

 (𝜆 = −0.00840)1.2330 x 10−5 5.22606 x 10−5 2.2789 x 10−5 

200 2.0537 x 10
-5

 (𝜆 = −0.00280)1.4819 x 10−5 1.91604 x 10−5 1.9119 x 10−5 

300 1.4428 x 10
-5

 (𝜆 = −0.00094)1.2509 x 10−5 1.70403 x 10−5 1.6944 x 10−5 

400 1.4452 x 10
-5

 (𝜆 = −0.00178)1.4440 x 10−5 1.61150 x 10−5 1.5872x 10−5 

 

Hesaplanan korunum sabitleri Tablo 4.2’de verilmiştir. 

 

Tablo 4.2: Farklı genişletme parametreleri kullanılarak hesaplanan korunum sabitleri. 

𝑁 𝑀0 𝐸0 𝐻0 𝐶(𝑀5) 𝐶(𝐸5) 𝐶(𝐻5) 

100 1.0445 0.0601 0.0040 5.4748 x 10
-6 

3.8176 x 10
-8

 1.5233 x 10
-6

 

200 1.0445 0.0601 0.0040 3.2669 x 10
-6

 5.1126 x 10
-8

 1.7003 x 10
-6

 

300 1.0445 0.0601 0.0040 2.4190 x 10
-7

 2.1767 x 10
-8

 2.8351 x 10
-6

 

400 1.0445 0.0601 0.0040 1.3753 x 10
-6

 2.0910 x 10
-10

 3.3939 0-6
 

 

3.1.2.2. İkinci Test Problemi 

Bu örnekte başlangıç hareketiyle dalga üretimini incelenir. Aşağıdaki formda 

Gardner denklemi ele alınır. 

 𝑢𝑡 + 𝜀𝑢𝑢𝑥 + 𝜗𝑢
2𝑢𝑥 + 𝜇𝑢𝑥𝑥𝑥 + 𝜖 = 0                    (5.14) 

Pozitif başlangıç hareketinin üretilmesinde 0 ’dan farklı reel 𝜖  değerlerinin alınması 

faydalı olur. 

(5.14) Gardner denkleminde 𝜀 = 10 , 𝜗 = −3 , 𝜇 = 1  parametreleriyle elde edilen 

çözüm (5.15) ele alınırsa; 

𝑢(𝑥, 𝑡) =
2

3

1

4+√14cosh (
𝑥

3
−
5

3
)
                 (5.15) 
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Çözüm algoritması [−40,60]  sonlu aralığında ∆𝑡 = 0.01  alınarak 𝑡 = 15  zamanına 

kadar çalıştırılınca Şekil 7.1’de pozitif başlangıç hareketine bakıldığında 𝑥 = 5 

konumunda dalga yüksekliği 0.4305 olduğu görülür. 

 

 

Şekil 7.1: 𝒕 = 𝟎 anında dalga yüksekliği. 

 

Yayılma devam ettiğinde 𝑡 = 5 anında dalga boyu 0.6568 olup konum 𝑥 = 18.25’dir 

Şekil 7.2. Takip eden ilk solitary dalga bu zamanda gözlemlenmektedir. 

 

 

Şekil 7.2: 𝒕 = 𝟓 anında dalga yüksekliği. 

 

Oluşan ilk 3 dalga ise 𝑡 = 10 anında görülmüştür Şekil 7.3’deki gibidir. 
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Şekil 7.3: 𝒕 = 𝟏𝟎 anında dalga yüksekliği. 

     

𝑡 = 15 anında ise dalga boyu 0.6941 olur Şekil 7.4. Oluşan dalganın en yüksek tepe 

noktası 𝑥 = 39  konumundaki korunum sabitlerinin başlangıç değeri ve mutlak 

değişkenleri 𝜆 = 0 için Tablo 4.3’de verilmiştir. 

 

Şekil 7.4:  𝒕 = 𝟏𝟓 anında dalga yüksekliği. 

 

Tablo 4.3: Tepe noktadaki korunum sabitlerinin başlangıç değeri ve mutlak değişkenleri. 

𝑡 𝑀0 𝐸0 𝐻0 𝐶(𝑀15) 𝐶(𝐸15) 𝐶(𝐻15) 

5 5.2255 1.5033 1.5994 8.0719 x 10
-7 

3.0588 x 10
-5

 1.2886 x 10
-3

 

10 5.2255 1.5033 1.5994 2.7652 x 10
-6

 4.1342 x 10
-5

 1.8485 x 10
-3

 

15 5.2255 1.5033 1.5994 7.0380 x 10
-6

 6.1132 x 10
-4

 2.1571 x 10
-3
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3.2. SONUÇLAR VE ÖNERİLER 

Bu çalışmada bazı başlangıç ve sınır değer problemleri Gardner denklemine 

uygulanarak genişletilmiş kübik B-spline kollokasyon yöntemiyle çözümü 

incelenmiştir. İlk örnekte analitik ve nümerik çözüm arasındaki fark, farklı ayrıştırma 

parametreleri için maksimum hata normu olarak hesaplanmıştır. Elde edilen sonuçların 

grafikleri ve tablolar incelendiğinde uygulanan yöntemin geçerli ve güvenilir bir yöntem 

olduğu söylenebilir. İkinci örnek için önerilen algoritma oldukça başarılı sonuçlar 

vermiştir. Mutlak değişkenler ve korunum sabitleri beklenilen ve istenilen sonuçlar 

olarak karşımıza çıkmıştır. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DÖRDÜNCÜ BÖLÜM 

ADVEKSİYON-DİFÜZYON DENKLEMİNİN GENİŞLETİLMİŞ KÜBİK B-

SPLİNE YÖNTEMİ İLE SAYISAL ÇÖZÜMÜ
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4.1. METODUN UYGULANMASI 

Bu çalışmada genişletilmiş kübik B-spline fonksiyonlar kullanılarak 

adveksiyon–difüzyon denkleminin (ADD) nümerik çözümü incelenmiştir. Genişletilmiş 

kübik B- spline Galerkin metodunu uygulayabilmek için konum parçalanmasına, Crank- 

Nicolson metodu için ise zaman parçalanmasına ihtiyaç duyulmuştur. Metodun 

doğruluğunun incelenmesi için ise maksimum hata normu dikkate alınmıştır. Uygulanan 

yöntemin doğruluğunu test etmek için ise bazı klasik test problemleri incelenerek 

karşılaştırmalar yapılmıştır. 

 

4.1.1. Sayısal Çözüm 

Bir boyutlu taşıma ve yayılma işlemleriyle tanımlanan difüzyon denklemi 

aşağıdaki şekilde ifade edilsin.  

𝑑𝑢

𝑑𝑡
+ 𝜀

𝑑𝑢

𝑑𝑥
− 𝜇

𝑑2𝑢

𝑑𝑥2
= 0                           (6.1) 

Burada 𝑢(𝑥, 𝑡)  fonksiyonu 𝑡  zamanında ve 𝑥  konumunda çözümü. 𝜀 , 𝜇   Sırasıyla 

düzenli akış hızını ve sabit yayılma katsayısını ifade eden parametrelerdir. (6.1) 

denklemi için başlangıç ve sınır koşulları (6.2), (6.3) şeklinde seçilsin. 

𝑢(𝑥, 0) = 𝑢0(𝑥) ,    0 ≤ 𝑥 ≤ 𝑖         (6.2) 

𝑢(𝑥, 𝑡) = 𝑓0(𝑡) , 𝑢(𝑖, 𝑡) = 𝑓𝑖(𝑡)  ya da  𝜇
𝑑𝑢

𝑑𝑥
|𝑖 = 𝐸𝑖(𝑡)     (6.3) 

Burada 𝑖 ve 𝐸𝑖 parametreleri sırasıyla kanalın uzunluğu ve 𝑥 = 𝑖 sınırındaki akışı temsil 

etmektedir. 𝑢0, 𝑓0, 𝑓𝑖  bilinen fonksiyonlardır. 

Klasik kübik B-spline fonksiyonların genişletilmiş formu 𝐸𝑖, (3.1) şeklinde ifade edilir. 

Genişletilmiş kübik B-spline çözümü için 𝑢 analitik çözümüne yaklaşım olarak kabul 

edilen 𝑈 yaklaşık çözümü (6.4) şeklinde ifade edilir. 

u(x, t)~U(x, t) = ∑ 𝛿𝑖(𝑡)𝐸𝑖(𝑥)
𝑁+1
𝑖=−1          (6.4) 

Burada 𝛿𝑖(𝑡) ifadeleri zamana bağlı bilinmeyen parametrelerdir. Düğüm noktalarında 𝑈 

yaklaşık çözümü ve türev değerleri aşağıdaki şekilde tanımlanır. 

 𝑈𝑖 = 𝑈(𝑥𝑖, 𝑡) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 , 

𝑈𝑖′ = 𝑈′(𝑥𝑖, 𝑡) =
1

2ℎ
(𝛿𝑖−1 − 𝛿𝑖+1), 
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𝑈𝑖"=U"(𝑥𝑖 , 𝑡) =
2+𝜆

2ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1)        (6.5) 

[0, 𝑖]  aralığı üzerinde ağırlık fonksiyonu olarak genişletilmiş kübik B-spline 

fonksiyonları seçersek Galerkin metodundan ADD için aşağıdaki eşitlik elde edilir. 

∫ 𝐸𝑖(𝑥)(𝑢𝑖 + 𝜀𝑢𝑥 − 𝜇𝑢𝑥𝑥)
𝑖

0
𝑑𝑥 = 0          (6.6) 

[ 𝑥𝑘 , 𝑥𝑘+1 ] alt elemanı üzerinde (6.4) ve (6.6) eşitlikleri tekrar yazılırsa (6.7) ve (6.8) 

elde edilir. Burada 𝛿𝑖(𝑡)  büyüklükleri 𝑖 = 𝑘 − 1,… , 𝑘 + 2  eleman parametreleridir. 

𝐸𝑗(𝑥) ,   𝑗 = 𝑘 − 1,… , 𝑘 + 2  bilinen şekil fonksiyonlarıdır. Galerkin ayrıştırma 

algoritmasına göre 𝑈𝑡, 𝑈𝑥, 𝑈𝑥𝑥 yerine 𝑢𝑡 , 𝑢𝑥 , 𝑢𝑥𝑥   yazılırsa (6.9) elde edilir. 

𝑈𝑒 = 𝐸𝑘−1(𝑥)𝛿𝑘−1(𝑡) + 𝐸𝑘(𝑥)𝛿𝑘(𝑡) + 𝐸𝑘+1(𝑥)𝛿𝑘+1(𝑡) + 𝐸𝑘+2(𝑥) 𝛿𝑘+2(𝑡)  (6.7)  

∫ 𝐸𝑗(𝑥)(𝑢𝑡 + 𝜀𝑢𝑥 − 𝜇𝑢𝑥𝑥)
𝑥𝑘+1
𝑥𝑘

𝑑𝑥 = 0        (6.8) 

∑ {(∫ 𝐸𝑗𝐸𝑖𝑑𝑥
𝑥𝑘+1
𝑥𝑘

) 𝛿𝑖̇ + 𝜀 (∫ 𝐸𝑗𝐸′𝑖𝑑𝑥
𝑥𝑘+1
𝑥𝑘

) 𝛿𝑖 − 𝜇 (∫ 𝐸𝑗𝐸′′𝑖𝑑𝑥
𝑥𝑘+1
𝑥𝑘

) 𝛿𝑖}
𝑘+2
𝑖=𝑘−1           (6.9) 

𝑗 = 𝑘 − 1,… 𝑘 + 2 ;  𝑘 = 0, 1, 𝐾, 𝑁 − 1  ve 𝛿̇  sembolü zamana göre türevi ifade eder. 

(6.9) denklemindeki integraller (6.10) şeklinde ifade edilirse 𝑃𝑒 , 𝑅𝑒 ve 𝑆𝑒 4x4 boyutlu 

eleman matrislerini temsil eder. Bu matrisler (6.9) denklem sisteminde yerine 

yazıldığında (6.11) denklem sistemi oluşur. 

𝑃𝑗𝑖
𝑒 = ∫ 𝐸𝑗𝐸𝑖𝑑𝑥

𝑥𝑘+1
𝑥𝑘

              𝑅𝑗𝑖
𝑒 = ∫ 𝐸𝑗𝐸′𝑖𝑑𝑥

𝑥𝑘+1
𝑥𝑘

              𝑆𝑗𝑖
𝑒 = ∫ 𝐸𝑗𝐸′′𝑖𝑑𝑥

𝑥𝑘+1
𝑥𝑘

          (6.10) 

𝑃𝑒𝛿 𝑒̇ + (𝜀𝑅𝑒 − 𝜇𝑆𝑒)𝛿𝑒                  (6.11) 

Burada 𝛿𝑒 = (𝛿𝑘−1, … , 𝛿𝑘+2)
𝑇  şeklindedir. Tüm sistemdeki elemanların (6.11)’de 

yerine yazılmasıyla aşağıdaki küresel sistem oluşur. 

𝑃𝛿̇ + (𝜀𝑅 − 𝜇𝑆)𝛿 = 0                   (6.12) 

Burada P, R ve S ‘ye karşılık gelen eleman matrisleri tarafından çoğaltılarak 𝑃𝑒 ,  𝑅𝑒, 𝑆𝑒 

ve 𝛿 = (𝛿−1, … , 𝛿𝑁+1)
𝑇 tüm eleman parametrelerini içerir. 

Bilinmeyen parametreler 𝛿 için Crank-Nicolson metodunu kullanırız. 

𝛿 =
𝛿𝑛+1−𝛿𝑛

2
  ,                 𝛿̇ =

𝛿𝑛+1−𝛿𝑛

∆𝑡
    

Crank-Nicolson formülünün kullanılmasıyla (6.12) eşitliği aşağıdaki tekrarlama 

bağıntısı haline gelir. 
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[𝑃 +
∆𝑡

2
(𝜀𝑅 − 𝜇𝑆)] 𝛿𝑛+1 = [𝑃 −

∆𝑡

2
(𝜀𝑅 − 𝜇𝑆)] 𝛿𝑛              (6.13) 

Tekrarlama işlemine başlamadan önce sınır koşullarını (6.13) sistemine dahil edilirse, 

𝛿−1
𝑛+1    𝑣𝑒   𝛿𝑁+1

𝑛+1  şartları sistemden elimine edilince aşağıdaki denklemler elde edilir. 

𝑢(0, 𝑡) =
4−𝜆

24
𝛿−1
0 +

8+𝜆

12
𝛿0
0 +

4−𝜆

24
𝛿1
0 = 𝑓0(𝑡),  

𝑢(𝑖, 𝑡) =
4−𝜆

24
𝛿𝑁−1
𝑛 +

8+𝜆

12
𝛿𝑁
𝑛 +

4−𝜆

24
𝛿𝑁+1
𝑛 = 𝑓𝑖(𝑡)  

Böylece septa köşegensel matrisi elde edilir. 

(6.13) siteminin tekrarlanması sürdürülürse, 𝛿0 başlangıç parametreleri elde edilir. 

(6.2) başlangıç koşulu ve (6.3) sınır koşulları kullanılırsa; 

𝑢′(𝑥0, 0) =
1

2ℎ
(𝛿−1 − 𝛿1)                   

 𝑢(𝑥𝑖, 0) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 ,     𝑖 = 0,… ,𝑁             (6.14) 

𝑢'(𝑥𝑁 , 0) =
1

2ℎ
(𝛿𝑁−1 − 𝛿𝑁+1)  

Matris denklemi (6.14) , Thomas algoritması ile çözülür. Böylece 𝑈 yaklaşık çözümü, 

(6.4)’deki seri çözüm formundaki değerler kullanılarak bilinmeyen 𝛿  değerleri 

hesaplanır. 

 

4.1.2. Test Problemleri 

 Verilen algoritmanın doğruluğunu göstermek için iki test problemi uygulanır. 

İşlemlerde yapılan hata ölçümünde maksimum hata normu (𝐿∞) kullanılır. 

𝐿∞ = ||𝑢𝑡𝑎𝑚 − 𝑢𝑛ü𝑚𝑒𝑟𝑖𝑘||∞ = 𝑚𝑎𝑥0≤𝑗≤𝑁|𝑢𝑗
𝑡𝑎𝑚 − 𝑢𝑗

𝑛ü𝑚𝑒𝑟𝑖𝑘|            (6.15) 

Nümerik hesaplamalarda genişletilmiş kübik B-spline içinde geçen 𝜆  değeri, test 

problemlerinden en iyi sonucu elde edebilecek şekilde taranarak seçilir. Test 

problemlerinde geçen 𝐶𝑟 , Courant sayısı 𝐶𝑟 = 𝜀
∆𝑡

ℎ
    şeklindedir. 

 

4.1.2.1. Birinci Test Problemi 

Birinci örnekte 𝜇 = 0  alınarak 𝜀 = 0,5𝑚/𝑠 sabit hızda hesaplamalar 

yapılmıştır. Bu durumda analitik çözüm (6.16) şeklinde elde edilmiştir (Görgülü, Dağ , 

Doğan, & Irk, 2018). 
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𝑢(𝑥, 𝑡) = 10exp (−
1

2𝑝2
(𝑥 − 𝑥0 − 𝜀𝑡)

2)                (6.16) 

Burada 𝑝 = 264𝑚  ve 𝑥0 = 2𝑘𝑚  alınmıştır. (6.16)’den başlangıç değeri, 𝑡 = 0 

alınmasıyla elde edilmiştir. [0,9000] aralığının sınırlarında (6.16) denkleminin değeri 0 

olarak seçilir. Şekil 8.1 𝑡 = 9600  zamanından sonraki başlangıç dağılımını 

göstermektedir.  

 

Şekil 8.1: 𝒕 = 𝟗𝟔𝟎𝟎 zamanından sonraki başlangıç dağılımı. 

 

Tablo 5.1’de farklı Courant sayıları için tüm belge üzerinde ortaya çıkan hatalar 

gösterilmiştir. Tabloya göre farklı courant sayıları için uygulanan yöntemin sonuçları 

daha önce yapılan çalışmalarla uyumlu olduğu görülmektedir. 𝜆’nın farklı değerleri için 

𝐶𝑟 = 0,25 ve 𝑡 = 9600𝑠  alınarak elde edilen hata değerleri Tablo 5.2’de verilmiştir. 

Şekil 8.2’de ise uygulanan yöntemin 𝑡 = 9600’de mutlak hata dağılımı gösterilmiştir. 

 

Tablo 5.1: Farklı Courant sayıları için tüm belge üzerinde ortaya çıkan hatalar. 

𝐶𝑟 ℎ ∆𝑡 𝜆 ECBSGM (Irk, Dağ, & 

Tombul, 2015) 

(Dağ, Irk, & 

Tombul, 2006) 

0.125 200 50 -0.568169 2.18E-1 1.29 5.18E-1 

0.25 100 50 -0.142055 1.90E-1 3.25E-1 3.76E-1 

0.50 50 50 -0.032925 1.90E-1 1.98E-1 3.73E-1 

0.50 10 10 -0.027064 7.50E-3 7.51E-3  

0.50 1 1 -0.027064 7.50E-5 7.50E-5  

0.50 0.5 0.5 -0.498015 1.88E-5 1.88E-5  
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Tablo 5.2: λ’nın farklı değerleri için 𝑪𝒓 = 𝟎, 𝟐𝟓 ve 𝒕 = 𝟗𝟔𝟎𝟎𝒔 alınarak elde edilen hata 

değerleri. 

𝝀 ECBSGM 

-10 0.9200226 

-5 0.4351456 

-1 0.1968777 

-0.5 0.1908966 

-0.14205 0.1896909 

0 0.1898749 

0.14205 0.1904208 

0.5 … 

1  

5  

10  

 

 

Şekil 8.2: 𝒕 = 𝟗𝟔𝟎𝟎 zamanındaki mutlak hata dağılımı. 

 

4.1.2.2. İkinci Test Problemi 

Bu test probleminde adveksiyon ve difüzyonun her ikisini birlikte 

incelenmiştir. [0,9]  aralığı üzerinde bir boyutlu Adveksiyon-Difüzyon denkleminin 

analitik çözümü (6.17) ile verilmiştir (Sankaranarayanan, Shankar, & Cheong, 1998). 

Burada 𝜀  hızı, 𝜇  yayılma katsayısını ve 𝑥0  başlangıç Gaus itme merkezini gösterir 

(Görgülü, Dağ , Doğan, & Irk, 2018). 

𝑢(𝑥, 𝑡) =
1

√4𝑡+1
exp (−

(𝑥−𝑥0−𝜀𝑡)
2

𝜇√4𝑡+1
)                 (6.17) 

M
u

tl
a

k
 H

a
ta
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(6.17) denklemi için başlangıç değerini 𝑡 = 0  alarak sınır değerlerini ise 𝑢(0, 𝑡) =

𝑢(9, 𝑡) = 0  seçerek hesaplama yapılır. ∆𝑡 = 0.0125  Zaman adımı için yapılan 

hesaplamaların sonuçları gösterilmiştir. Bu hesaplamalarda    𝜇 = 0.005𝑚2/𝑠   ve  

Ɛ = 0.8𝑚/𝑠   alınmıştır. Şekil 8.3 𝑡 = 5  zamanına kadar olan farklı zamanlardaki 

nümerik çözümleri gösterir. Şekil 8.4’de ise uygulanan yöntem için mutlak hata 

dağılımı gösterilmiştir.  

 

Şekil 8.3: 𝒕 = 𝟓 zamanına kadar olan farklı zamanlardaki nümerik çözümler. 

 

 

Şekil 8.4: Uygulanan yöntem için mutlak hata dağılımı. 

 

Uygulanan yöntemle elde edilen sonuçlar ile farklı yöntemlerden elde edilen sonuçların 

karşılaştırılması Tablo 5.3’de verilmiştir. 

 

M
u

tl
a

k
 H

a
ta
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Tablo 5. 3: Farklı yöntemlerle elde edilen sonuçların karşılaştırılması. 

𝐶𝑟 ℎ 𝜆 ECBSGM Metot 1  

(Korkmaz & 

Dağ, 2012) 

Metot 2 

(Korkmaz & 

Dağ, 2012) 

0.05 0.2 -0.238247 0.1326156 0.1253926 0.1361437 

0.10 0.1 -0.238247 0.0042296 0.0069553 0.0145554 

0.20 0.05 -0.200000 0.0008429 0.0012117 0.0002886 

0.40 0.025 -0.106431 0.0008426 0.0003071 0.0000181 

 

4.2. SONUÇLAR VE ÖNERİLER 

Bu çalışmada adveksiyon-difüzyon denkleminin çözümü için yeni bir 

algoritma önerilmiştir. Bu algoritma ile genişletilmiş kübik B-spline fonksiyonlar 

yardımıyla iyi bilinen Galerkin sonlu elemanlar yöntemi uygulanmıştır. Yöntemin 

etkinliğini gösterebilmek için iki test problemiyle çalışılmıştır. Elde edilen sonuçların 

diğer sonuçlarla karşılaştırılmasından anlaşılmaktadır ki önerilen metot iyi sonuçlar 

vermektedir.



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BEŞİNCİ BÖLÜM 

DÜZENLENMİŞ UZUN DALGA DENKLEMİNİN (MRLW), GENİŞLETİLMİŞ 

KÜBİK B-SPLİNE YÖNTEMİ İLE SAYISAL ÇÖZÜMÜ
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5.1. METODUN UYGULANMASI 

Bu çalışmada MRLW denkleminin nümerik çözümü için kollokasyon metodu 

ile çözümü incelenmiştir. Kollokasyon metodu ile işlem yapılırken genişletilmiş kübik 

B-spline fonksiyonlardan yararlanılmıştır. Uygulanan yöntemin doğruluğunu göstermek 

için iki test problemi üzerinde çalışılmıştır. Bu test problemlerinden bir tanesi tek 

solitary dalga yayılımı bir diğeri ise solitary dalganın etkileşimi şeklindedir. 

 

5.1.1. Sayısal Çözüm 

Nümerik çözümü elde edilecek olan MRLW denklemi (7.1) şeklindedir. 

𝑈𝑡 + 𝑈𝑥 + 𝜀𝑈
2𝑈𝑥 − 𝜇𝑈𝑥𝑥𝑡 = 0          (7.1) 

Bu denkleme ait başlangıç koşulları 𝑈 → 0  ise 𝑥 → ±∞ . 

Hesaplama yapabilmek için [𝑎, 𝑏] üzerinde fiziki sınır koşulları, yapay sınır koşullarıyla 

değiştirilir. Bu yapay sınır koşulları; 

𝑈(𝑎, 𝑡) = 𝑈0 ;   𝑈(𝑏, 𝑡) = 𝑈𝑁 ,       (7.2) 

𝑈𝑥(𝑎, 0) = 0 ;   𝑈(𝑏, 0) = 0  

Ve başlangıç koşulları 𝑈(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ (𝑎, 𝑏) şeklinde alınacaktır. 

𝜋, [𝑎, 𝑏] üzerinde eşit aralıklara bölünsün. 

𝜋: 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏,     ℎ =
𝑏−𝑎

𝑁
   olsun. 

Klasik kübik B-spline fonksiyonların genişletilmiş formu 𝐸𝑖, (3.1) şeklinde ifade edilir. 

𝐸𝑖(𝑥), çözümde kullanılacak taban fonksiyonlardır. Tablo 2.1 kullanılarak (7.3) eşitliği 

ile 1. ve 2. türevleri içeren (7.4) eşitlikleri aşağıdaki şekilde ifade edilir. 

𝑈𝑖 = 𝑈(𝑥𝑖) =
4−𝜆

24
𝛿𝑖−1 +

8+𝜆

12
𝛿𝑖 +

4−𝜆

24
𝛿𝑖+1 ,       (7.3) 

𝑈𝑖′ = 𝑈′(𝑥𝑖) =
1

2ℎ
(𝛿𝑖−1 − 𝛿𝑖+1),         (7.4) 

𝑈𝑖"=U"(𝑥𝑖) =
2+𝜆

2ℎ2
(𝛿𝑖−1 − 2𝛿𝑖 + 𝛿𝑖+1),      

MRLW denklemi için Crank-Nicolson metodunun uygulanması ile 𝑈 çözümü zaman 

parametreleri cinsinden (7.5) şeklinde ifade edilir. 

𝑈𝑛+1 − 𝑈𝑛 +
∆𝑡

2
[𝑈𝑥

𝑛+1 + 𝑈𝑥
𝑛 + 𝜀(𝑈2)𝑛+1𝑈𝑥

𝑛+1 + 𝜀(𝑈2)𝑛𝑈𝑥
𝑛] − 𝜇(𝑈𝑥𝑥

𝑛+1 − 𝑈𝑥𝑥
𝑛 ) = 0  (7.5) 
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(7.5) denklemindeki lineer olmayan terim 𝜀(𝑈2)𝑛+1𝑈𝑥
𝑛+1  yerine Taylor seri açılımı 

yardımıyla aşağıdaki gibi yaklaşık bir ifade yazılabilir. 

(𝑈2)𝑛+1𝑈𝑥
𝑛+1 ≈ (𝑈2)𝑛(𝑈𝑥

𝑛+1 + 2𝑈𝑛𝑈𝑥
𝑛𝑈𝑛+1 − 2(𝑈2)𝑛𝑈𝑥

𝑛   

(7.4) eşitliklerinin kullanılmasıyla MRLW denklemi için tam bir ayrıştırma elde edilir 

(7.6). 

𝑈𝑛+1 − 𝑈𝑛 +
∆𝑡

2
[𝑈𝑥

𝑛+1 + 𝑈𝑥
𝑛 + 𝜀((𝑈2)𝑛(𝑈𝑥

𝑛+1 + 2𝑈𝑛𝑈𝑥
𝑛𝑈𝑛+1 − (𝑈2)𝑛𝑈𝑥

𝑛)] −

𝜇(𝑈𝑥𝑥
𝑛+1 − 𝑈𝑥𝑥

𝑛 ) = 0             

((
4−𝜆

24
) 𝛿𝑖−1

𝑛+1 + (
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1 − (
4−𝜆

24
) 𝛿𝑖−1

𝑛 − (
8+𝜆

12
) 𝛿𝑖

𝑛 − (
4−𝜆

24
) 𝛿𝑖+1

𝑛 ) +

∆𝑡

2
((

𝛿𝑖−1
𝑛+1

2ℎ
−
𝛿𝑖+1
𝑛+1

2ℎ
+
𝛿𝑖−1
𝑛

2ℎ
−
𝛿𝑖+1
𝑛

2ℎ
) + 𝜀 (𝑈2

𝑛
(
𝛿𝑖−1
𝑛+1

2ℎ
−
𝛿𝑖+1
𝑛+1

2ℎ
) + 2𝑈𝑛𝑈𝑥

𝑛 ((
4−𝜆

24
) 𝛿𝑖−1

𝑛+1 +

(
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1) − 𝑈2
𝑛
((

𝛿𝑖−1
𝑛

2ℎ
−
𝛿𝑖+1
𝑛

2ℎ
))) − 𝜇 ((

2+𝜆

2ℎ2
) ((

4−𝜆

24
) 𝛿𝑖−1

𝑛+1 −

(
8+𝜆

12
) 𝛿𝑖

𝑛+1 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛+1) − (
2+𝜆

2ℎ2
) ((

4−𝜆

24
) 𝛿𝑖−1

𝑛 − (
8+𝜆

12
) 𝛿𝑖

𝑛 + (
4−𝜆

24
) 𝛿𝑖+1

𝑛 ))) = 0  (7.6) 

𝛼1 =
4−𝜆

24
,     𝛼2 = −

8+𝜆

12
,    𝛽1 =

2+𝜆

2ℎ2
,     𝛽2 = −

2+𝜆

ℎ2
 

𝛾1 = −
1

2ℎ
,     𝛾2 =

1

2ℎ
, 

Bu kısaltmalar kullanıldığında ifadedeki her bir terim aşağıdaki gibi yazılır. (7.7) 

denklem sistemi elde edilir. 

𝛿𝑖−1
𝑛+1 (𝛼1 +

∆𝑡

2
(𝛾1 + 𝜀(𝑈

2𝑛𝛾1 + 2𝑈
𝑛𝑈𝑥

𝑛𝛼1)) − 𝜇𝛽1) = 𝛿𝑖−1
𝑛+1 (𝛼1(1 + 𝜀∆𝑡𝑈

𝑛𝑈𝑥
𝑛) +

∆𝑡

2
(𝛾1 + 𝜀𝑈

2𝑛𝛾1) − 𝜇𝛽1)  

𝛿𝑖
𝑛+1(−𝛼2 −

∆𝑡

2
𝜀(2𝑈𝑛𝑈𝑥

𝑛)𝛼2 + 𝜇𝛽2) = 𝛿𝑖
𝑛+1(−𝛼2(1 + ∆𝑡𝜀𝑈

𝑛𝑈𝑥
𝑛) + 𝜇𝛽2)  

𝛿𝑖+1
𝑛+1 (𝛼1 +

∆𝑡

2
(𝛾1 + 𝜀(𝑈

2𝑛𝛾1) + 𝜀2𝑈
𝑛𝑈𝑥

𝑛𝛼1) − 𝜇𝛽1) = 𝛿𝑖
𝑛+1(−𝛼2(1 + ∆𝑡𝜀𝑈

𝑛𝑈𝑥
𝑛) +

𝜇𝛽2)  

−𝛿𝑖−1
𝑛 (−𝛼1 −

∆𝑡

2
(𝛾1 + 𝜀(𝑈

2𝑛𝛾1)) + 𝜇𝛽1) = 𝛿𝑖−1
𝑛 (𝛼1 +

∆𝑡

2
(𝛾1(1 + 𝜀𝑈

2𝑛𝛾1)) − 𝜇𝛽1)   

−𝛿𝑖
𝑛(𝛼2 + 𝜇𝛽2) = 𝛿𝑖

𝑛(−𝛼2 − 𝜇𝛽2)   
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 −𝛿𝑖+1
𝑛 (−𝛼1 −

∆𝑡

2
(𝛾2 + 𝜀(𝑈

2𝑛𝛾2)) + 𝜇𝛽1) = 𝛿𝑖+1
𝑛 (𝛼1 +

∆𝑡

2
(𝛾2(1 + 𝜀(𝑈

2𝑛)) − 𝜇𝛽1)  

[𝛿𝑖−1
𝑛+1 (𝛼1(1 + 𝜀∆𝑡𝑈

𝑛𝑈𝑥
𝑛) +

∆𝑡

2
(𝛾1 + 𝜀𝑈

2𝑛𝛾1) − 𝜇𝛽1)] + [𝛿𝑖
𝑛+1(−𝛼2(1 +

∆𝑡𝜀𝑈𝑛𝑈𝑥
𝑛) + 𝜇𝛽2)] + [𝛿𝑖

𝑛+1(−𝛼2(1 + ∆𝑡𝜀𝑈
𝑛𝑈𝑥

𝑛) + 𝜇𝛽2)] = [𝛿𝑖−1
𝑛 (𝛼1 +

∆𝑡

2
(𝛾1(1 + 𝜀𝑈

2𝑛𝛾1)) − 𝜇𝛽1)] + [𝛿𝑖
𝑛(−𝛼2 − 𝜇𝛽2)] + [𝛿𝑖+1

𝑛 (𝛼1 +
∆𝑡

2
(𝛾2(1 +

𝜀(𝑈2
𝑛
)) − 𝜇𝛽1)]            (7.7) 

Ortaya çıkan sistem 𝑁 + 1 denklem ve 𝑁 + 3 bilinmeyenden oluştuğundan denklemi 

çözülebilir hale getirebilmek için 𝑈(𝑎, 𝑡) = 𝑈0  , 𝑈(𝑏, 𝑡) = 𝑈𝑁  sınır koşullarından 

𝛿−1  ve  𝛿𝑁+1 parametreleri elimine edilir. 

𝛿−1 = (
4−𝜆

24
) (𝑈0 − (

8+𝜆

12
) 𝛿0 − (

4−𝜆

24
) 𝛿1) , 

𝛿𝑁+1 = (
4−𝜆

24
) (𝑈𝑛 − (

8+𝜆

12
) 𝛿𝑁−1 − (

4−𝜆

24
) 𝛿𝑁)  

𝛿−1  ve 𝛿𝑁+1 parametrelerinin elimine edilmesiyle (N+1) x (N+1) boyutlu çözülebilir 

bir denklem sistemi elde edilir. 

(7.7) sisteminden iterasyon başlatabilmek için 𝛿−1
0 , 𝛿0

0, … , 𝛿𝑁+1
0  başlangıç 

parametrelerinin hesaplanmasına ihtiyaç vardır. Bunun için başlangıç koşulu ve 1. 

türevi kullanılır. 

𝑈𝑁(𝑥𝑖, 0) = 𝑈(𝑥𝑖 , 0) , 𝑖 = 1,… ,𝑁  

(𝑈𝑥)𝑁(𝑥0, 0) = 𝑈′(𝑥0)  

(𝑈𝑥)𝑁(𝑥𝑁, 0) = 𝑈′(𝑥𝑁)   

Yukarıda belirtilen koşullardan aşağıdaki üçgensel bant matris elde edilir. 

[
 
 
 
 
 
 
 −

1

2ℎ
0

1

2ℎ
(4−𝜆)

24

(8+𝜆)

12

(4−𝜆)

24

…
(4−𝜆)

24

(8+𝜆)

12

(4−𝜆)

24

−
1

2ℎ
0

1

2ℎ ]
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
𝛿−1
0

𝛿0
0

…
…
𝛿𝑁
0

𝛿𝑁+1
0 ]

 
 
 
 
 
 

=

[
 
 
 
 
 

0
𝑈(𝑥0)
…
…

𝑈(𝑥𝑁)
0 ]

 
 
 
 
 

   (7.8) 
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5.1.2. Test Problemleri 

Bu bölümde düzenlenmiş RLW denklemi için iki test problemi üzerinde 

çalışılmaktadır. Birinci test problemi için maksimum hata normu (7.9) kullanılır. 

  𝐿∞(𝑡) = max |𝑢(𝑢𝑖, 𝑡) − 𝑈𝑖
𝑛|          (7.9) 

Uygulanan nümerik yöntemin doğruluğunu göstermek için çeşitli korunum sabitleri 

hesaplanarak sonuçlar incelenir. Bu korunum sabitleri kütle, momentum ve enerjiyi 

temsil etmektedir ve aşağıdaki gibi hesaplanır. 

𝐼1 = ∫ 𝑢𝑑𝑢 ≈
ℎ

2
∑ (𝑈𝑚 − 𝑈𝑚+1)
𝑁−1
𝑚=0

∞

−∞
                 (7.10) 

𝐼2 = ∫ (𝑢2 + 𝜇(𝑢𝑥)
2)𝑑𝑥 ≈

ℎ

2
∑ (𝑈𝑚

2 + 𝑈𝑚+1
2 + 𝜇(𝑈𝑥)𝑚+1

2 )𝑁−1
𝑚=0

∞

−∞
  

𝐼3 = ∫ (𝑢4 +
6𝜇

𝜀
(𝑢𝑥)

2)𝑑𝑥 ≈
ℎ

2
∑ (𝑈𝑚

4 + 𝑈𝑚+1
4 −

6𝜇

𝜀
(𝑈𝑥)𝑚

2 −
6𝜇

𝜀
(𝑈𝑥)𝑚+1

2 )𝑁−1
𝑚=0

∞

−∞
  

 

5.1.2.1. Birinci Test Problemi 

Bu bölümde MRLW denklemi için tek solitary dalga hareketi üzerinde 

durulacaktır. 

(7.1) denkleminin solitary dalga çözümü (7.11) şeklindedir (Dağ, Irk, & Sarı, 2013).  

𝑈(𝑥, 𝑡) = √
6𝑐

𝜀
sech (𝑘[𝑥 − 𝑥0 − (𝑐 + 1)𝑡])               (7.11) 

Burada 𝑘 = √
𝑐

𝜇(𝑐+1)
 ‘dir. Bu çözüm 𝐴 = √

6𝑐

𝜀
 solitary dalga büyüklüğüne sahip,   𝑥0 

merkezli en yüksek pozisyonlu ve 𝑐 + 1 hızlı solitary dalgaya aittir. 𝐼1, 𝐼2, 𝐼3 korunum 

sabitlerinin analitik değerleri aşağıdaki gibi hesaplanır. 

𝐼1 =
𝜋𝐴

𝑘
    𝐼2 =

2𝐴2

𝑘
+
2𝜇𝑘𝐴2

3
    𝐼3 =

4𝐴2

3𝑘𝜀
(𝐴2𝜀 − 3𝜇𝑘2)  

𝑈0 = 𝑈𝑁 = 0 başlangıç koşullarıyla birlikte 𝜀 = 6 , 𝜇 = 1 , 𝐶 = 1 , 𝑋0 = 40 ve 𝐴 = 1 

parametreleriyle solitary dalga yayılımı incelenir. Bu işlem ℎ = 0,2  ve ∆𝑡 = 0,025 

alınarak 0 ≤ 𝑥 ≤ 100  bölgesi üzerinde yapılır ve daha önceki çalışmalarla 

karşılaştırılır. MRLW denkleminin nümerik çözümünü bulabilmek için problem, en iyi 

𝜆 değerini bulmak amacıyla [−8,1] aralığı üzerinde 𝑡 = 10 zamanına kadar incelenir. 

Bu işleme göre 𝐿∞ hata normuna ait veriler Şekil 9.1’de gösterilmiştir. 
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Şekil 9.1: −𝟏 ≤  𝝀 ≤ 𝟏 aralığında 𝑳∞ hata normu. 

 

Şekilden görüleceği gibi en düşük mutlak hata 𝜆 = −0,0089 için elde edilmektedir. 𝐿∞ 

hata normu ve 𝐼1, 𝐼2, 𝐼3 korunum sabitlerinin değerleri Tablo 6.1’de verilmiştir. 

 

Tablo 6.1: 𝑳∞ hata normu ve 𝑰𝟏, 𝑰𝟐, 𝑰𝟑 korunum sabitlerinin değerleri. 

 𝐿∞x103 𝐼1 𝐼2 𝐼3 

Uygulanan Metot 9.0618935 4.4428821 3.2997861 1.4141511 

Uygulanan Metot (𝜆 = −0.0089) 0.7764 4.4428806 3.2997842 1.4141568 

(Raslan, 2009) çalışması 1.24757 4.445176 3.302476 1.417411 

 (Khalifa, Raslan, & Alzubaidi, 

2008) çalışması 

5.43718 4.44288 3.29983 1.41420 

Tam Çözüm  4.4428829 3.2998316 1.4142136 

 

Önceki çalışmalara göre daha iyi sonuçlar verdiği tablo6.1’den de açıkça görülmektedir. 

  

5.1.2.2. İkinci Test Problemi 

Bu bölümde MRLW denklemi için iki pozitif solitary dalga etkileşimi üzerinde 

durulacaktır. Bu denkleme ait t=0 anındaki analitik çözüm (7.12)’de verilmiştir (Dağ, 

Irk and Sarı, 2012). 

 𝑈(𝑥, 0) = 𝐴1 sech(𝑘1[𝑥 − 𝑥1]) + 𝐴2𝑠𝑒𝑐ℎ(𝑘2[𝑥 − 𝑥2])            (7.12) 

M
u

tl
ak

 H
at

a 
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Burada 𝐴𝑖 = √
6𝑐

𝜀
,  𝑘𝑖 = √

𝑐𝑖

𝜇(𝑐1+1)
 ‘dir. 𝑖 = 1,2, …  𝑥𝑖,  𝑐𝑖’ler keyfi parametrelerdir. 

Hesaplama yapılacak bu çalışmada parametreler 𝜀 = 6  , 𝜇 = 1  , 𝐶1 = 1 , 

𝐶2 = 1/4  , 𝑥1 = 25 , 𝑥2 = 55  olarak alınıp 𝑡 = 0 ’dan 𝑡 = 60 ’a kadar [0,200] 

bölgesinde ∆𝑡 = 0,01 ve ℎ = 0,1 için yapılır. Bu parametreler büyüklükleri 1 ve 0,5 

olan ve en yüksek pozisyonları 𝑥 = 20  ve 𝑥 = 50  ‘de alan iki solitary dalga için 

geçerlidir. 𝐼1, 𝐼2, 𝐼3 değişkenlerinin analitik değerleri aşağıdaki gibi hesaplanmıştır. 

𝐼1 =
𝜋

𝑘1𝑘2
(𝑘2𝐴1 + 𝑘1𝐴1) ≅ 7,955290304           

𝐼2 =
2

𝑘1𝑘2
(𝑘2𝐴1

2 + 𝑘1𝐴2
2) +

2𝜇

𝑘1𝑘2
(𝑘1

2𝑘2𝐴1
2 + 𝑘1𝑘2

2𝐴2
2) ≅ 4,492401234  

𝐼3 =
4

3𝑘1𝑘2𝜀
(𝜀𝑘1𝐴2

4 − 3𝜇𝑘1𝑘2
2𝐴2

2 + 𝜀𝑘2𝐴1
4 − 3𝜇𝑘1

2𝑘2𝐴1
2) ≅ 1,526016961    

Farklı zamanlarda iki solitary dalga etkileşimi Şekil 9.2’deki gibidir. 

Şekil 9.2: Farklı zamanlarda iki solitary dalga etkileşimi. 

 

Şekilden de anlaşılacağı gibi başlangıçta 𝑥 = 20 noktasında 1 genliğine sahip olan bir 

dalga ile 𝑥 = 50  noktasında 0,5 genliğine sahip başka bir dalga mevcuttur. Zaman 

ilerledikçe dalgalar birbiriyle iletişime girmektedir bunun sonucunda 𝑡 = 60  anında 

dalgalar birbirinden ayrılmış ve farklı yönlere hareket etmeye başlamıştır. 𝑡 =

60 anında 0,50444 genliğe sahip küçük dalga 𝑥 = 120,5 konumuna yerleşmiş 0,99989 

genliğe sahip büyük dalga 𝑥 = 143,7 konumuna yerleşmiştir. 𝐼1, 𝐼2, 𝐼3 için elde edilen 

mutlak hata grafikleri Şekil 9.3 - 9.5’deki gibidir. 



59 

 

 

Şekil 9.3: 𝑰𝟏 için elde edilen mutlak hata grafiği. 

 

 

Şekil 9.4: 𝑰𝟐 için elde edilen mutlak hata grafiği. 

 

 

Şekil 9.5: 𝑰𝟑 için elde edilen mutlak hata grafiği. 
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5.2. SONUÇLAR VE ÖNERİLER 

Bu çalışmada zamana bağlı doğrusal olmayan kısmi diferansiyel denklemlerin 

sayısal çözümlerini bulmak için sayısal bir yöntem olan genişletilmiş kübik B-spline'ın 

kullanımı anlatılmıştır. Böylece MRLW denkleminin sayısal çözümlerini elde etmek 

için kollokasyon yöntemi kullanılarak genişletilmiş kübik B-spline'ın adaptasyonu 

yapılır. Algoritmanın maliyeti genişletilmiş kübik B-spline kollokasyon yönteminde 

kübik B-spline sıralama yöntemi ile aynıdır. Bu nedenle kolay ve ekonomik bir 

yöntemdir. MRLW denklemini kübik B-spline kollokasyon yöntemiyle çözmektense 

genişletilmiş kübik B-spline'ın uygun kollokasyon yöntemiyle çözülmesi biraz daha iyi 

sonuçlar verir. 
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SONUÇ 

 Bu çalışmada KdVB, Gardner, Adveksiyon – Difüzyon ve MRLW denklem 

sistemlerinin sayısal çözümlerini araştırmak için, genişletilmiş kübik B-Spline yöntemi 

kullanılmıştır. 

 Birinci bölümde, sonraki bölümlerde kullanılacak olan solitary dalgalar, 

soliton, hata normları, sonlu farklar ve sonlu elemanlar, Galerkin ve kollokasyon 

yöntemlerinin kullanımı tanıtılmıştır. Ayrıca spline ve B-spline fonksiyonlar tanıtılmış 

ve bunların alt başlığı olan kübik B-spline ve genişletilmiş kübik B-spline 

fonksiyonlarının sınır şartlarındaki çözüm kümeleri formüllerle gösterilerek 

tablolaştırılmıştır. Birinci bölümde son olarak KdV Burgers, Gardner, Adveksiyon-

Difüzyon ve Düzenlemiş Uzun Dalga Denklemleri tanımlanmış ve literarür taraması 

yapılarak bu denklemler hakkında yapılan çalışmalara yer verilmiştir. 

 Diğer böümlerde sırayla; KdV Burgers, Gardner, Adveksiyon-Difüzyon ve 

Düzenlemiş Uzun Dalga Denklemlerinin genişletilmiş kübik B-spline yöntemiyle 

sayısal çözümü yapılmıştır. Zaman ayrışımı için Crank-Nicolson metodu kullanılmıştır, 

konum ayrışımı içinse kollokasyon metodu kullanılmıştır. Elde edilen matriste denklem 

sistemlerinin denklem ve bilinmeyen sayılarının farklı olduğu görülmüştür. Denklemin 

çözülebilmesi için denklem sayıları ile bilinmeyen sayıları eşit olmalıdır. Bu 

denklemlerin sınır şartları kullanılarak, bazı bilinmeyenler elimine edilerek sistem 

çözülebilir hale getirilir. 

 Nümerik çözümlerin doğruluğu test problemleriyle kontrol edilmiştir. Nümerik 

çözümler serbest parametre olan 𝜆 ’ nın sıfıra eşit olduğu ve sıfırdan farklı olduğu 

değerler için ayrı ayrı hesaplanmış ve bulunan sonuçlar karşılaştırılmıştır. 𝜆 = 0 

alındığında yöntemimiz kübik B-spline yöntemi ile aynı sonuçlar vermektedir. 

Dolayısıyla farklı test problemleri ve farklı parametreler için elde edilen tüm sonuçlar 

incelendiğinde genel olarak 𝜆 ’ nın sıfırdan farklı değerleri için elde edilen hata 

normlarının, 𝜆 = 0  durumundakine göre daha küçük değerler aldığı, dolayısıyla 

genişletilmiş kübik B-spline yönteminin, kübik B-spline yöntemine göre daha doğru 

sonuçlar verdiği görülmüştür. Analitik ve nümerik çözümleri daha iyi kıyaslayabilmek 

için maksimum hata normu hesaplanmıştır. Çizilen hata grafiklerine bakıldığında, 

oluşan maksimum hatanın o anda oluşan dalganın tepe noktasına karşılık gelen konum 

değeri civarında oluştuğu gözlemlenmişti. Grafiklere bakıldığında soliton dalganın 
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zaman içerisinde şeklinde ciddi bir bozulma olmadan ilerlediği, yani genişletilmiş kübik 

B-spline yönteminin dalganın hareketini iyi modellediği görülmüştür. 

 Doğru sonuçlar vermesi ve problemi çözmedeki başarısı açısından bakıldığında 

benzer tipteki kısmi türevli diferansiyel denklemlerin sayısal çözümleri araştırılırken 

genişletilmiş kübik B-spline metodunun kullanılması tavsiye edilir. 
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