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SUMMARY 
 

 
Person Re-Identification (ReID) aims at retrieving the images of a query person 

from a large set of gallery images. It has been an attractive research field in computer 

vision due to the ever-increasing demand for camera networks in public spaces. In 

recent years, significant improvements have been observed in person ReID task in 

parallel with the developments in deep learning. However, due to the large discrepancy 

between the training/test distributions, the ReID models generally lack in generalizing 

to the test data, which is the phenomenon known as overfitting. 

In this thesis, we propose an ensemble method to increase the generalization 

capability of the ReID models. Ensemble models, which consist of multiple base 

learners whose decisions are combined in test time, deal with the overfitting problem 

effectively and increase the generalization capability. However, training an ensemble 

of deep networks is computationally inefficient. To overcome this difficulty, we create 

diverse and accurate base learners in a single network by designing a multi-branch 

architecture. Detailed analysis of the experiments on three benchmark datasets 

demonstrates the effectiveness of our approach, which outperforms the state-of-the-art 

approaches. We adapt the proposed approach to Binary Neural Networks. Our 

experiments show that the proposed approach improves the Binary Neural Networks 

in terms accuracy and training stability in image classification task and outperforms 

the conventional ensemble model by a large margin in person ReID, which indicates 

that our model is not only an ensemble model, but also an effective regularizer for deep 

networks. 
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ÖZET 
 

 
Kişi yeniden kimliklendirme (KYK), geniş bir veritabanından bir sorgu kişisine 

ait görüntüleri getirme problemidir. Halka açık alanlarda güvenlik kamera ağlarına 

talebin artmasından dolayı KYK problemini iyileştirmeyi amaçlayan çalışmalar da 

daha fazla rağbet görmeye başlamıştır. KYK problemi için geliştirilen modeler 

eğitim/test verisi arasındaki kişi farklılıkları ve değişen görüntüleme koşullarından 

dolayı test verisi üzerinde düşük performans gösterir. Bu şekilde test üzerinde düşük 

performans gösteren modellerin genelleştirme kapasitesi düşüktür ve bu probleme 

“overfitting” denir. 

Bu tez çalışmasında, KYK modellerinin genelleştirme kapasitesini artırmak 

amacıyla bir topluluk öğrenme yöntemi önerilmektedir. Topluluk öğrenme yöntemleri 

birçok temel öğrenicinin kararlarının birleştirilmesiyle oluşmaktadır ve bu modellerin 

genelleştirme kapasitesi temel öğrenicilere göre daha yüksektir. Ancak derin ağlardan 

oluşan bir topluluk öğrenme modeli geliştirmek pahalı bir yöntemdir. Bu zorluğu 

aşmak için bu çalışmada çok dallı bir derin ağ tasarımı yapılarak birçok temel 

öğrenicinin aynı derin ağ üzerinde eğitilmesi önerilmektedir. Literatürde çokça 

kullanılan üç adet veri kümesi üzerinde gerçekleştirilen deneyler ve bunların detaylı 

analizleri önerilen yöntemin var olan yöntemlerden daha iyi performans gösterdiğini 

ortaya koymaktadır. Önerilen yöntem ayrıca İkili Yapay Sinir Ağları’na uyarlanmıştır.  

Yapılan deneyler önerilen yöntemin görüntü sınıflandırma probleminde İkili Sinir 

Ağları’nı hem doğruluk hem de eğitim sırasında model kararlılığı açısından 

iyileştirdiğini, KYK’da ise topluluk öğrenicisi yöntemine göre çok daha iyi 

performans gösterdiğini ortaya koymaktadır. Bu sonuçlar önerilen yöntemin sadece 

verimli bir topluluk öğrenme yöntemi olmadığını, aynı zamanda derin ağlar için etkili 

bir regularizasyon yöntemi olduğunu da göstermektedir. 

 

 

 

 

 

Anahtar Kelimeler: Kişi Yeniden Kimliklendirme, Topluluk Öğrenme Modeli, 
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1. INTRODUCTION 

1.1. Person ReID and the Challenges 

The number of camera networks in public places is increasing dramatically 

because they are used for various purposes, such as security, surveillance, crowd 

analysis, and applications that involve human-robot interactions. In crime centers, the 

surveillance camera network is leveraged for tracking a suspect, while in airports and 

stations, it can be used for controlling and verifying the passenger transactions. 

Customer behavior can be monitored and analyzed in shopping centers. However, with 

human operators, detecting, tracking, or monitoring individuals in crowded areas for 

long durations is very laboring and inefficient. Also, the usage of these networks with 

a great variety of new purposes is emerging, which brings the requirement of automatic 

detection and identification of people. 

Automatically recognizing an individual who has previously been observed over 

a camera network is Person Re-Identification (ReID).  Figure 1.1 presents the process 

of a practical person ReID system [Web-1, 2020]. Given a query person image, the 

process involves extracting person bounding boxes from raw video frames captured 

from a camera network and retrieving the images of the query person.  

 

Figure 1.1: Person re-identification pipeline. 

Differently from previous work, which aim to identify a person using biometric 

information such as face and gait [Wang et al., 2003], [Boulgouris et al., 2005].  

Gheissari et al. [Gheissari et al., 2006] have first defined the appearance-based person 

ReID. The objective of appearance-based person ReID is recognizing a person who 
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has been observed within the same day, i.e., with the assumption of no changes in 

clothing. Since then, a considerable research effort has been made to improve the 

accuracy of this challenging task.  

In the real scenario, a person ReID system determines whether a query person is 

in the gallery set or not, which is a critical and complicated decision process. 

Therefore, the researchers have mostly focused on the less complicated closed-world 

scenario, which presumes that the query person is guaranteed to appear in the gallery 

set [Zhu et al., 2018]. Then, the ReID problem reduces to finding the most similar 

person in the gallery image.  

 Other challenges in person ReID are mainly due to severe illumination, 

viewpoint, and pose variances caused by diverse imaging conditions and 

misalignments in person bounding boxes due to detection errors. In case of occlusion, 

low camera resolution, and similar clothing styles of distinct individuals, it becomes 

even more difficult to distinguish different persons from the images. Figure 1.2 

illustrates some examples to these challenges from the widely used datasets. Despite 

these challenges, significant advances in the closed-world person ReID datasets have 

been obtained. The recently proposed techniques have surpassed human-level 

performance [Leng et al., 2019] on the relatively easy datasets, which are limited in 

their number of cameras and person identities. However, there are still many issues to 

be addressed for developing real-world person ReID systems. 

The pioneering work for person ReID leveraged hand-crafted features such as 

SURF [Hamdoun et al., 2008], HSV histograms [Farenzena et al., 2010] and SIFT 

[Pedagadi et al., 2013]. After Deep Convolutional Neural Networks (DCNN) won the 

large-scale image classification task [Krizhevsky et al., 2012], the approaches for 

person ReID task have fundamentally changed as other pattern recognition tasks. 

Significant progress in person ReID has been gained via deep learning, where the 

research efforts mainly vary in their design of deep CNN architecture and the objective 

function [Ahmed et al., 2015], [Chen et al., 2017]. 
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Figure 1.2: Major challenges in person re-identification.
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1.2. Deep Learning for Person ReID 

The pioneering work for deep person ReID designed custom and relatively 

shallow networks for metric learning [Li et al., 2014], [Yi et al., 2014], [Ahmed et al., 

2015]. After training very deep networks has become feasible [Simonyan Zisserman, 

2014], [He et al., 2016], [Ioffe and Szegedy, 2015] and large scale person ReID 

datasets have been released,  the trend has changed to adapting deeper models and 

using classification objective to fully utilize the label information [Xiao et al., 2016a], 

[Zheng et al., 2016]. Although training such deep models requires a long time, pre-

training on large scale image classification datasets enables faster training and 

relatively easy convergence [Geng et al., 2016], [Zheng et al., 2016], [Chen et al., 

2017].  

Person ReID literature can be reviewed from the perspective of the problematic 

part proposed to be solved. [Li et al., 2017a], [Zhao et al., 2017], [Zheng et al., 2018] 

aim to solve the misalignments in person bounding boxes. In order to capture the small 

details [Y. Chen et al., 2017], [Qian et al., 2017], [Qian et al., 2019] adapts multi-scale 

feature learning. Camera discrepancy presents another challenge for person ReID. 

[Zhong et al., 2018] proposes a data augmentation method and [Chen et al., 2018] 

handles camera correlations explicitly, to overcome this problem. In [Ye et al., 2016], 

the final ranking is refined by using similarity and dissimilarity ranking aggregations 

of two baseline models. A graph-matching framework is utilized to estimate cross-

camera labels in [Y. Huang et al., 2019]. [Shen et al., 2018] proposed using conditional 

random fields for obtaining a consistent similarity metric.  

Generally, deep learning research which leverages DCNN’s for person ReID 

presents mainly two main approaches to the problem: metric learning [Cheng et al., 

2016], [Chen et al., 2017b] and discriminative feature learning learning [W. Li et al., 

2017], [Chen et al., 2017a]. Both methods aim at obtaining a feature extraction 

network, which embeds the input images to an appropriate space where the test time 

ranking is performed in. However, the training objectives of these two approaches are 

fundamentally different, which are shown in Figure 1.3.  
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Figure 1.3: The two main training objectives used in deep person ReID models. 

The objective of the metric learning approach is to map the input images to an 

embedding space, where images of the same person are close to each other, while the 

distances between the images of different identities are away. The discriminative 

approach, on the other hand, aims at finding decision boundaries between person 

classes without concerning the distances between the instances.  

Figure 1.4 presents the schematic flow of these two approaches during the 

training and their typical test stage.  Metric learning and discriminative learning are 

illustrated in the upper and lower branches, respectively. Additional steps for each 

approach are shown in dashed boxes. In the training stage of metric learning, each 

training sample is prepared generally as a triplet, which consists of an anchor, a 

positive (same person), and a negative (different person) sample. Then, a margin-based 

loss function is employed on the output of the feature extraction network as 

 

ℒ(𝐼𝐴, 𝐼𝑃 , 𝐼𝑁) = max(0, ‖𝑓(𝐼𝐴) − 𝑓(𝐼𝑃)‖
2 − ‖𝑓(𝐼𝐴) − 𝑓(𝐼𝑁)‖

2 + 𝛼) (1.1) 

 

where 𝑓(⋅) is the feature extraction network, ‖⋅‖2is the Euclidean norm, 𝛼 is the 

desired margin between the positive and negative image representations, and 𝐼𝐴, 𝐼𝑃, 

and 𝐼𝑁 represents the images of the anchor, positive and negative persons, respectively. 

The metric learning approach is suitable for the test time ranking where the goal is to 

rank the gallery images with respect to their similarities to the query image. It is also 

advantageous in small scale datasets, since it increases the dataset size through triplet 

generation. However, there are some caveats for the training phase: the number of 
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triplets grows dramatically as the training data gets larger and most of the triplets add 

very little information as the training proceeds. Therefore, a considerable amount of  
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Figure 1.4: Training and testing stages in person ReID. 
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research has been dedicated to address the triplet generation problem [Balntas et al., 

2016], [Oh Song et al., 2016], while some others suggest modifying margin-based loss 

functions [Cheng et al., 2016], [Chen et al., 2017b], [Hermans et al., 2017]. 

In the discriminative approach, on the other hand, an additional (usually one-

layer) classification network is leveraged after the feature extraction network. Then, 

the network is trained to minimize the Cross-Entropy loss ℒ between the predictions 

of the classification layer and the actual class labels as 

 

ℒ(𝐼𝑖 , 𝑦𝑖] = −∑𝑦𝑖
𝑘

𝐶

𝑘

log(𝑓(𝐼𝑖]
𝑘) (1.2) 

 

where 𝑓(⋅) is the feature extraction network, 𝐼𝑖 is the image of the ith training image, 

and 𝑦𝑖 represents the actual probability that this image to be an instance of the k th 

person class. In contrast to metric learning, the training phase for this method is simple 

since the model does not require any laboring input preparation and converges 

relatively quickly. Besides, as opposed to the metric learning approach, it makes use 

of the full label information. The major drawback of discriminative models is that the 

training objective is not compatible with test time ranking. The classification network 

is discarded in test time, and the network is used as a feature extractor. More 

importantly, discriminative methods are biased to the training samples [Ranjan et al., 

2017] and may induce high model variance on the test data, which is known as 

overfitting.  

The critical point of overfitting is the well-known bias-variance dilemma pointed 

out by [Geman et al., 1992], in the early '90s. Briefly stated, the estimation error of a 

learning model can be decomposed into estimation bias and estimation variance. Bias 

represents how well the model predicts the actual values, while variance reflects how 

much the model is sensitive to specific sets of training data. There is a trade-off 

between the two terms. Therefore, the best model, which performs well on future data, 

should balance bias and variance. [Geman et al., 1992] also state that models that have 

a large number of parameters produce high variance (i.e., are more data-dependent). 

Bias and variance of the learning models are major subjects of statistics and especially 

of estimation theory. Differently from the statistics terminology, the machine learning 



 

9 

 

community frequently uses the term "overfitting" (or under-regularization)1 to indicate 

the problem of having high variance. Therefore, every effort for addressing the 

overfitting problem deals with reducing the variance while preserving the low bias.  

In order to decrease the effect of overfitting in deep networks, many 

regularization methods have been proposed, which have a crucial role in the 

impressive performance of these models. The regularization techniques such as weight 

decay, dropout, data augmentation and pre-training on large-scale image classification 

datasets are indispensable for obtaining a reasonable performance not only for person 

ReID, but also for other tasks.  

Person ReID is more prone to overfitting due to two reasons: First, person ReID 

datasets are in relatively modest sizes, which hinders model generalization. The 

number of identities and cameras are very limited in the existing datasets compared to 

other tasks. Therefore, there is a large domain gap among person ReID datasets. 

Second, the training and test identities do not overlap; that is, the trained model is used 

to identify unseen person identities, which causes drastic performance drop during the 

test. As a result, for practical person ReID systems, developing effective regularization 

methods is of crucial importance. 

1.3. Contributions 

This thesis aims to design a novel regularization method for Person ReID. To 

this end, we utilize from ensemble learning, a well-known technique for improving the 

generalization capacity. Basically, ensemble learning is combining the decisions of 

multiple different and accurate base learners trained for the same task to make a final 

inference (e.g., classification). Our aim is to aggregate the performance of deep 

networks with the generalization ability of ensemble learning to build a novel 

regularization method for deep person ReID models.. However, training multiple deep 

networks as the base learners is inefficient. The present study proposes a simple yet 

effective ensemble model that is end-to-end trainable and adds negligible 

computational cost during both the training and inference times.  

 

1 We use overfitting and under-regularization interchangeably throughout the 

thesis. 



 

10 

 

Our contributions are: 

 

• We provide a comprehensive survey of existing person ReID models 

categorized by their regularization schemes; 

• We propose an end-to-end ensemble learning method for discriminative 

person ReID models to reduce the effects of overfitting; 

• We obtain accurate and diverse base learners so that when their individual 

feature representations are combined in test time, they improve Rank-1 and mean 

average precision (mAP) scores by a large margin. We achieve state-of-the-art 

results on several large-scale benchmark datasets; 

• Our approach is very efficient in both training and inference times compared 

to the conventional ensemble methods; 

• We avoid the custom design of network architecture specialized to ReID. The 

proposed method requires minimal changes in DenseNet architecture and is not 

task-specific; 

• Our method is applicable to other tasks as a general regularization method. 

We experimentally show that application of the proposed approach to Binary 

Neural Networks improves the test accuracy, training stability, and robustness 

to input perturbations. 

 

The rest of this thesis is structured as follows: In Section 2, we provide a 

background for regularization in learning systems and review its applications in person 

ReID literature. In Section 3, we discuss the ensemble learning methods that are widely 

used. Person ReID datasets, the evaluation metrics, and a baseline model are given in 

Section 4. Also, we propose the evaluation of the baseline model on the three widely 

used benchmark datasets. In Section 5, the proposed end-to-end ensemble learning 

method is introduced, which addresses the overfitting in discriminative person ReID 

models effectively. To demonstrate its generalizability, we adopt the proposed model 

to Binary Neural Networks and share some initial findings in Section 6. Lastly, 

conclusions and possible further research directions are given in Section 7. 
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2. REGULARIZATION AND ITS APPLICATIONS 

IN PERSON REID 

Regularization has always been an essential constituent in learning models to 

improve the test time performance. Besides the general techniques which aim to 

control the model complexity, there are many other task-specific regularization 

methods based on data augmentation, multi-tasking, and objective function design. In 

this section, we first provide a background for regularization, and then give a broad 

review of regularization techniques applied in deep person ReID models. 

2.1. Regularization 

In statistical decision theory, a learning network approximates a function from a 

set of representative observations [Barron and Barron, 1988], [Vapnik, 1999]. Given 

a set of observations 𝑋 from an unknown distribution 𝑝 and an approximating function 

𝑓(·), the learning process corresponds to minimizing the empirical risk ℛ(·), which is 

the expectation of the loss function ℒ  specified for the task: 

 

 ℛ(𝑓(·)) = 𝔼𝑋∼𝑝[ℒ(𝑓(·),X)]. (2.1) 

 

Given a neural network architecture,𝑓(·), the empirical risk is minimized via 

optimizing the network parameters 𝑤: 

 

 w∗ = arg𝑚𝑖𝑛
w∈W

ℛ(𝑓(w)) (2.2) 

 

where corresponds to set of all possible values for network parameters. However, it is 

not guaranteed that the function 𝑓(w*) minimize the generalization error, which is the 

expected risk over 𝑝, the real distribution [Guyon et al., 1992]. Moreover, if 𝑓(w*) 

has a high complexity, it may overfit to the observed examples and perform poorly on 

the unseen data points, a phenomenon called bias-variance dilemma [Geman et al., 

1992]. Therefore, finding the optimal trade-off between the high bias of a model which 

is too inflexible and the high variance of a model with too much freedom is of crucial 
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importance for model generalization generalization [Geman et al., 1992], [Bishop, 

1995]. 

Regularization techniques are used for imposing further smoothness constraints 

on the approximating functions to balance this trade-off [Girosi  and Poggio, 1995]. 

Generally, the model is penalized using a regularization term, which is a function of 

model complexity. Then, the regularized risk is defined as 

 

 ℛ𝑟𝑒𝑔 = ℛ + 𝜆𝜙(𝑓) (2.3) 

 

where 𝜆 is the regularization weight. 

The most widely used regularization technique is weight decay, which 

constraints the growth of weights with L2 norm penalty term as 𝜙(𝑓) = ‖w‖2
2 . Lasso 

is another technique that uses L1 norm penalty term𝜙(𝑓) = ‖w‖.  Weight decay 

avoids weights to become too large, thus results in a smoother decision boundary. On 

the other hand, Lasso performs feature selection by promoting sparse representations. 

However, regularization techniques are not limited with these general techniques of 

controlling model complexity. Goodfellow et al. [Goodfellow, Ian and Bengio, Yoshua 

and Courville, 2016] defines the term regularization as  “any modification we make to 

a learning algorithm that is intended to reduce its generalization error but not its 

training error”. Dropout, batch normalization, and data augmentation are only a few of 

the general regularization methods which have become vital components in training 

deep neural networks. A taxonomy of regularization methods in deep networks and a 

comprehensive review can be found in [Kukačka et al., 2017]. 

Besides the general regularization techniques which are incorporated in the 

optimization or the training procedure, many regularization methods can be designed 

depending on the task in hand. In fact, based on the above-mentioned definition of 

Goodfellow et al. [Goodfellow et al., 2016], every method improving test time 

performance can be considered as a regularization technique.  When it comes to deep 

person ReID models, considering the fact that almost all of the current state-of-the-art 

methods employs similar backbone architectures and follow a training procedure with 

the same optimizers and hyper-parameters, it is the regularization scheme which 

differentiates the research attempts from each other. Although researchers propose 
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solutions from different perspectives, most of the recent methods can be categorized 

into a set of regularization schemes. In the next section, we review the regularization 

techniques used in deep person ReID models, which constitute the mainstream of the 

current approaches.  

 

2.2. Regularization for Person ReID 

2.2.1. Regularization via Data 

Data augmentation is an essential step for improving generalization in deep models. 

Besides basic data augmentation used in most ReID models such as random horizontal 

flipping and random cropping, there exists more advanced techniques for data-based 

regularization such as transfer learning from auxiliary tasks or datasets, data 

augmentation by randomly erasing part of the images, combining multiple datasets for 

the same task and data augmentation via unlabeled images. Below, we briefly review the 

usage of these methods for person ReID.  

2.2.1.1. Transfer Learning 

In machine learning, transferring learned information from a source dataset or task 

to another is called transfer learning. In deep neural networks this is generally 

accomplished by re-using part of a network pre-trained for an auxiliary task and 

finetuning its weights by retraining it for the new task. Transfer learning is the most 

widely used technique to increase the generalization ability of deep architectures not only 

for person ReID but also for other vision [Sermanet et al., 2014] and machine learning 

tasks [Yang et al., 2017].  

In most state-of-the-art person ReID methods, instead of designing custom 

networks and training them from scratch, the general-purpose architectures pre-trained 

on large scale image dataset (i.e., ImageNet [J. Deng et al., 2009]) are used, such as 

ResNets [He et al., 2016] and DenseNets [Huang et al., 2017]. Generally, deep ReID 

methods re-train these networks by changing the task-specific classification layers with 

an appropriately designed layer which is randomly initialized [Geng et al., 2016].  In order 
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not to lose the learned information (i.e., weight values) and allow smooth adaptation to 

the new task, a much smaller learning rate is used in these pretrained layers. Small 

datasets, however, cannot generalize well even with knowledge transfer from ImageNet 

dataset. In order to deal with the large domain gap, [Geng et al., 2016], a two-step 

finetuning with an additional auxiliary dataset is suggested. Specifically, the ImageNet 

pretrained network is first finetuned with a large scale ReID dataset and the resulting 

network is finetuned on the small-scale target dataset.  

A potential means for transferring knowledge to the ReID task is employing off-

the-shelf architectures trained for some related tasks, such as human body part detectors 

or semantic parsers. One of the first attempts which incorporate human body part 

detection for feature extraction is [H. Zhao et al., 2017], which employs Region Proposal 

Network trained on MPII human pose dataset [Andriluka et al., 2014]. The designed 

network localizes the seven human body parts and competitively fuses the respective 

feature vectors. [J. Guo et al., 2019] detects human body parts using a human parsing 

model trained on Look-Into-Person [Liang et al.,, 2018] dataset. [Zheng et al., 2019] 

proposes PoseBox for pedestrian alignment, which performs pose estimation using 

Convolutional Pose Machines followed by affine transformation. To minimize the effects 

of pose estimation errors, they design a CNN which discriminates identities based on the 

original feature, PoseBox output and the confidence score of the pose estimation. 

2.2.1.2. Data Augmentation via Intentional Occlusion 

One of the major difficulties in person ReID arises from occlusion. Surveillance 

systems are generally used in crowded places such as airports, shopping centers, and 

public squares, which causes the detected person images to be highly occluded by other 

persons or static objects [Zhuo et al., 2018]. Therefore, many methods have been offered 

which augment the training data with intentionally occluded images in order to prevent 

overfitting and to enable invariance to occlusion.  

One of such methods is Random Erasing data augmentation, which randomly 

selects a rectangle region and erases its pixels with random values [Zhong et al., 2017].  

Its effectiveness is shown on object detection, classification, and person ReID.  Random 

erasing data augmentation is used almost all of the current state-of-the-art methods [Wang 

et al., 2018], [Shen et al., 2018]. 
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Another method aims to discover the critical image regions where a trained model 

presents sensitivity to occlusion [Huang et al., 2018]. Then, they generate adversarially 

occluded images and retrain the model with both the original and the occluded images to 

obtain a more generalizable model.  

Instead of directly augmenting data using the raw images independently, [Dai et al., 

2019] proposes another augmentation technique, which is performed on the feature maps 

extracted in the deeper layers of the network. This simple method drops the same regions 

of the feature maps of all images in a single batch, which enforces the network to search 

for alternative discriminative parts.  

2.2.1.3. GAN-based Methods 

Data augmentation using GANs is used with different purposes in person ReID: for 

example improving the performance in the supervised learning setting, creating an 

artificial, labeled dataset in the unsupervised setting, and incrementing the available data 

in semi-supervised data. Below we review the GAN-based methods in person ReID under 

these three learning settings. 

Supervised Setting: One of the pioneering work which leverage GAN's in person ReID is 

[Zheng et al., 2017], which uses the GAN generated images “in vitro”. Specifically, they 

generate new unlabeled images from target dataset using GAN and later label these 

images with a uniform label distribution to obtain the augmented training data. Zhong et 

al. [Zhong et al., 2018] proposed to augment the training data by translating images to 

other camera styles within the target dataset using CycleGAN [Zhu et al., 2017]. They 

aim to eliminate the noise introduced by the artificial images using label smoothing 

regularization [Szegedy et al., 2016] while labeling the generated images. In the 

supervised setting, GAN's are also leveraged for pose invariance within the same dataset. 

In [Qian et al., 2018], GAN is conditioned on both the input image and one of eight 

canonical poses to pose-normalize the training images. [Ge et al., 2018] designs a siamese 

architecture which receives an image pair with different poses and employs a GAN for 

creating an image pair with the identical input target pose. The objective is to represent 

only the person identity in the generated images. Another method [Liu et al., 2018] 

extracts various human poses from MARS dataset and generates pose translated images 

for the target dataset. To preserve the person identities, they further guide the generator 
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by integrating an off-the-shelf person identity discriminator. Low resolution of input 

images is another problem in ReID. To address this problem, [Wang et al., 2018] proposes 

employing Super-Resolution GAN (SRGAN) in a cascaded manner to obtain a scale-

adaptive model.  Zheng et al. [Z. Zheng et al., 2019] propose a unified model for image 

generation and ReID learning. Specifically, they separately encode the appearance and 

structure of the person and generate cross identity images using these codes. This 

alleviates the need for auxiliary datasets or target pose conditioning. Wei et al. [Wang et 

al., 2019] focus on multi-modal person ReID problem and claim that discrepancy between 

modalities can be reduced using a unified space. To this end, they exploit CycleGAN to 

convert the images from one modality to another, thus obtain multi-spectral images.  

Unsupervised Setting: A trained person ReID model must be adaptable to new datasets 

with minimal cost. However, there is a huge domain gap between the ReID datasets due 

to varying imaging conditions and person identity classes. Therefore, severe performance 

degradation is inevitable when the trained models are directly deployed in new domains. 

To bridge the domain gap between person ReID datasets, unsupervised domain adaptation 

(UDA) techniques leverage GAN's to translate images from the source domain to the 

target domain. Wei et al. [Wei et al., 2018] follow this approach and further design an 

identity loss function to preserve the person identities during the translation. To calculate 

the identity loss, they evaluate the foreground variations of the images before and after 

the translation. [Deng et al., 2018] utilizes CycleGAN [Zhu et al. 2017] for transferring 

images from the source to target dataset. They argue that the transferred images should 

be dissimilar to any of the target identities, which they call domain dissimilarity. They 

embed an appropriate contrastive loss to the objective function to meet the self-similarity 

and domain dissimilarity requirements.  

[ Liu et al., 2019] argues that different factors should be handled explicitly in image 

translation. They follow a divide-and-conquer approach and perform style-transferring of 

illumination, resolution and camera-view separately and design a selection network for 

adaptive fusion of the transferred images. [Zhou et al., 2019] proposes to style transfer 

images to each camera of the target domain. 

Semi-supervised Setting: The vast amount of available data together with the difficulty 

of obtaining label information has led many research studies to investigate the ways of 

utilizing from unlabeled data [Odena, 2016]. Unlabeled data is generally used to enhance 

the supervised learning process, which is called semi-supervised learning. Since deep 



 

17 

 

neural networks always improve with more data, a considerable amount of research has 

been dedicated to investigating the ways of improving the model performance employing 

a semi-supervised setting. 

In recent approaches for person ReID, the unlabeled dataset is generally obtained 

via Generative Adversarial Networks. The pioneering work is [Zheng et al., 2017], which 

produces unlabeled images to augment the training data for supervised learning. In order 

to label the generated images, they follow a similar approach to the well-known label 

smoothing regularization method and assign a uniform label distribution over the training 

classes. It is shown that unlabeled images improve the discriminative performance of the 

baseline model even if they are not assigned any specific class label. However, [Huang et 

al., 2019] claims that assigning a uniform label distribution to all of the generated images 

is misleading, since only certain real data from some classes are used in GAN to generate 

artificial data. Inspiring from pseudo-labeling [Lee, 2013], which assigns the dynamically 

predicted class probabilities to the unlabeled samples, [Huang et al., 2019] proposes a 

weighted pseudo labeling scheme for incorporating unlabeled images in the supervised 

training. [Ainam et al., 2019] argues that assigning uniformly distributed labels causes 

over-smoothing. They first cluster the training data and define a separate GAN for each 

cluster. Then, the generated images from these separate GANs are uniformly labeled with 

person identities that belong to the corresponding cluster. 

2.2.2. Regularization via Multi-tasking 

2.2.2.1. Part-based models 

The visual analysis of deep ReID models demonstrates that they mostly activate 

the most discriminative part of a person image [Fu et al., 2019], which is generally the 

upper body part [Yao et al., 2019], [Huang et al., 2018]. This behavior hinders the 

model from extracting visual cues from other parts of the images, such as head and 

feet. Obviously, this can easily degrade the test time performance in case of occlusion 

or uncertainty on this part of the images. In order to reinforce the deep model to 

consider diverse attentive features, part-based models generally design separate 

branches for different parts and use explicit supervision for each. The total part loss is 

calculated as: 
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 ℒ𝑃 =∑ℒ𝑖

𝑀

𝑖

 (2.4) 

 

where 𝑀 is the number of parts and ℒ𝑖is the loss for the 𝑖th part. Some methods use an 

additional global branch for further regularization, which is shown to be effective [F. 

Yang et al., 2019]. Then the total is calculated as  

 

 ℒ𝑇 = ℒ𝐺 + 𝜆ℒ𝑃 (2.5) 

 

where ℒ𝐺  is the loss of global branch and 𝜆 is the weight for the part loss. These 

models vary mostly in the strategy of partitioning the image into smaller regions. We 

review the part-based models regarding to their partitioning strategy.  

Pre-defined Partitioning: The simple method to extract local features is to partition the 

output feature maps of the backbone network into horizontal stripes and define 

multiple loss functions based on this partition. In [Li et al., 2017], feature vectors 

obtained from each part are fused for the classification layer. A separately supervised 

global branch together with the local part branch constitutes the multi-task framework. 

[Sun et al., 2018] supervise each branch separately instead of the fused feature vector, 

thus reinforce the network to extract discriminative features from each part. In [Yao et 

al., 2019] discriminative parts are automatically extracted and identification loss is 

adapted on both global and part feature vectors. [Wang et al., 2018] and [Fu et al., 

2019] follow a very similar approach and divide the person image into horizontal 

stripes with multiple granularity and extract discriminative features from each region. 

[Wang et al., 2018] also employs triplet loss, while [Fu et al., 2019] proposes using 

both average and max pooling layers to enhance the performance. [Sun et al., 2019], 

employs the same splitting approach for partial-ReID problem, where the images may 

contain partial observation of a pedestrian. The main objective is to learn visibility-

aware features to consider only the shared regions across images. They utilize self-

supervision mechanism for producing visibility scores for predefined regions, which 

are uniform splits of the holistic image. 

Although some ReID datasets have human annotated bounding boxes [Douglas 

and Tao, 2008] and [Hirzer et al., 2011a], in some recently released datasets the 

pedestrian bounding boxes are automatically detected [Zheng et al., 2016], [Wei et al., 
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2018], which is closer to the real scenario. The errors in the auto-detected bounding 

boxes and viewpoint/pose changes result in misalignment between person images [Suh 

et al., 2018]. As a result, the rough image partitioning method described above may 

result in inferior performance in case of severe occlusion. 

Dynamic Partitioning: In order to deal with the misalignment issue while extracting 

the part-based features, another line of research proposes to localize the human body 

part regions automatically. In [Miao et al., 2019], a human pose estimator is employed 

for detecting human landmarks. The architecture is composed of two parallel branches: 

a global branch which is guided by the detected landmarks and a fixed part-based 

branch. The feature vectors extracted for each landmark are combined via average 

pooling in the global branch and identification loss is used for both the global branch 

and predefined part branches. [Zhang et al., 2019] utilizes DensePose [Güler, et al., 

2018] model to segment the pedestrian images to surface-based body part regions, thus 

aligns the body part regions across images. However, the dense semantic 

representation of the pedestrian images can be erroneous due to lack of labeled data 

for person ReID. Therefore, the dense semantic alignment stream is used only during 

the training as a regulator for the main stream. The two streams are jointly optimized 

via combination of their local and global feature vectors. 

2.2.2.2. Multi-scale Models 

Adopting multi-scale structures to deep neural networks dates back to 2014 for 

many vision tasks, such as face verification [Sun et al., 2014], fine-grained image 

similarity learning [Wang et al., 2014] and depth estimation [Eigen et al., 2014] to 

name a few. One of the first multi-scale approaches is proposed by Chen et al. [Chen 

et al., 2017], who designs an end-to-end architecture for feature learning. More 

specifically, they propose a consensus learning strategy to co-train two networks, each 

working on different input scales. Inspired by knowledge distillation from neural nets 

[Hinton et al., 2015], the networks are guided by a larger one, which, in fact, is 

composed of their combination. This enables the combined network to compensate for 

the errors of individual networks. The requirement of separate networks for each scale 

avoids the model to be extended to more scales. Another method is proposed in [Qian 

et al., 2017], where each convolution layer consists of 4 streams of convolutional filters 
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each having different scales. The outputs of these streams are concatenated to be fed 

as input for the next layer. In the last layer, a soft attention mechanism is applied to 

weight the importance of different scales. A concurrent study is published by Li et al. 

[Li et al., 2017]. The most distinguishing aspect of this method is adopting Spatial 

Transformer Networks [Jaderberg et al., 2015] with some prior constraints to 

appropriately localize and transform the deformable human body parts. Then, they 

extract both local and global features via specially designed multi-scale context-aware 

network. They call their network context-aware because they stack multi-scale 

convolution outputs in each layer. Instead of using larger filter size, they employ 

dilated convolution to capture the context information. Except from  [Chen et al., 

2017], the above-mentioned methods generally design custom networks which are 

trained from scratch in a long time. 

More recent studies, on the other hand, can finetune pre-trained very deep 

networks on relatively large-scale person ReID datasets. [Wang et al., 2018] proposes 

to utilize from global feature vectors extracted from multiple resolutions along the 

convolutional blocks of the backbone network. The network is trained with a metric 

learning objective on both the feature vectors alone and their weighted combination, 

resulting in a multi-tasking architecture. In this way a scalable model is obtained which 

is capable of cutting the feature extraction process in early layers in case of resource 

constraints. [Chang et al., 2018] proposes a factorization network to model the latent 

discriminative person attributes at multiple network levels. In each level, a factor 

selection module determines the activation of certain factor modules, each 

representing the latent attributes. The final layer combines the global feature vector 

and the factor signature vectors from all levels to discriminate person identity. In this 

way, the decision is made by considering both the high-level semantic feature vector 

and latent attributes from all levels. The overall network is partially supervised for 

each training image since some of the factor modules are deactivated. Therefore, 

although the model is supervised on a single fused feature vector, we consider the 

proposed method under multi-tasking architectures. [Qian et al., 2019], improves their 

previously proposed model [Qian et al., 2017] in multiple ways. First, they employ an 

attention learning layer to weight discriminative features from different scales. For this 

purpose, they concatenate the filter maps from different scales and integrate a self-

attention module based on this multi-scale feature map.  
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2.2.2.3. Ensemble Models 

Ensemble models consist of multiple base learners which are accurate but 

diverse from each other. The combined decisions of diverse learners is known to 

improve the test time performance. In deep person ReID, many multi-branch part-

based methods are proposed (See 2.2.2.1), which mostly works in the same way as 

ensemble models. Apart from these part based approaches, one of the first studies in 

ensemble learning for person ReID is proposed by [Chen et al., 2017]. Although the 

main purpose is to extract scale-specific features, the proposed architecture is an 

ensemble of two base learners and is trained in an end-to-end manner. [Wang et al., 

2019] proposes a multi-branch architecture to obtain an efficient ensembling model 

from ResNet backbone. Specifically, after obtaining the high-level feature maps from 

the backbone network, they partition the feature map into horizontal stripes in multiple 

times each time with different number of parts, and supervise each branch separately. 

The test time ranking is performed on the fused features from different parts. Instead 

of splitting the images spatially, [Zhai et al., 2019] proposes channel-wise split of the 

feature maps. They integrate separate identity classifiers resulting a multi-branch 

architecture.  

 

2.2.3. Regularization via Loss Constraints 

The objective function is one of the most appropriate constituents in deep 

networks, which enables explicit regularization. In addition to the generic 

regularization terms, such as weight decay and Lasso, the nature of the task-based loss 

function itself can properly regularize the network. In this section, we review deep 

ReID models which propose new objective functions or improving the existing ones. 

2.2.3.1. Improved Triplet Loss 

Considering it as an image retrieval task, several attempts have been made to 

design objective functions for metric learning in person ReID. Since its introduction 

by Schroff et al. for face recognition [Schroff and Philbin, 2015], triplet loss is used 
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frequently for obtaining a metric space in person ReID [Su et al., 2016]. By adjusting 

the relative distances of images, the triplet loss aims to produce an embedding space 

where the images of the same identity class are closer to each other than the images of 

any other identity classes. To this end, the training data is prepared as triplets, where 

each triplet contains an anchor, a positive and a negative sample.  

 

ℒ(𝐼𝐴, 𝐼𝑃, 𝐼𝑁) = max(‖𝑓(𝐼𝐴) − 𝑓(𝐼𝑃)‖
2 − ‖𝑓(𝐼𝐴) − 𝑓(𝐼𝑁)‖

2 + 𝛼, 0) (2.6) 

 

The preparation of the training data as triplets results in a cubic increase in the 

training samples, which leads to a problem to be addressed: most of the triplets already 

satisfy the correct ordering and are not informative, resulting long training time with 

sub-optimal solutions. The limitations of the original triplet loss have promoted the 

researchers to improve its effectiveness and making it more applicable. In their 

prominent work, Hermans et al. [Hermans et al., 2017] proposed batch hard mining 

strategy. Unlike previous approaches which perform hard mining from the whole 

possible triplets, batch hard mining considers only the current mini-batch for the 

negative and positive pairs. In this way, it avoids risk of overfitting to the outliers, thus 

increase the generalization ability and overcome the computational overhead of 

conventional triplet mining strategy. 

A quadruplet loss is designed in [Chen et al., 2017b] to reduce the intra-class 

variation as a complementary approach to the triplet loss, which aims to increase the 

inter-class variations. To accomplish this, they sample quadruplets instead of triplets, 

and add a new constraint to the objective function which pushes away negative pairs 

from positive pairs w.r.t different probes. Therefore, the model learns the correct 

ordering with respect to multiple probes. [Xiao et al., 2017] embeds the hard batch 

sampling strategy of [Hermans et al., 2017] to the quadruplet loss, and mine hardest 

positive and hardest negative pair in each batch, without the restriction of using the 

same anchor for the negative pair. In this way, in each iteration, the bounds of two 

classes are pushed away. [Yuan et al., 2019] proposes an improved triplet loss function 

which makes use of all relationships in a triplet instead of calculating the loss w.r.t a 

single anchor. Zhang et al. [Zhang et al., 2019] proposed a training strategy for 

incremental margin loss. After training a base network with conventional triplet loss, 

they introduce feature shifts on top of mid-level blocks of the backbone network, 
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recursively. The mid-level feature shifts are trained with an increased margin loss, 

allowing a refinement on the feature vector.  

2.2.3.2. Improvements on Cross-Entropy Loss 

Cross-entropy loss is employed in person ReID in the discriminative approach, 

where the network aims at classifying the images to the correct person identities. Given 

an input image 𝑥𝑖 and its expected label distribution 𝑡𝑖the cross-entropy loss calculates 

the divergence between the predicted and the real class distributions: 

 

 ℒ(𝑥𝑖 , 𝑡) = −∑𝑡𝑖
𝑗

𝐾

𝑗=1

log(𝑝(𝑦𝑗|𝑥𝑖)) (2.7) 

 

where 𝐾 is the number of classes and 𝑝(𝑦𝑗|𝑥𝑖) represents the network output which is 

converted to a probability by the softmax function: 

 

 𝑝(𝑦𝑖|𝑥𝑖) =
exp(𝑦𝑖|𝑥𝑖)

∑ exp(𝑦𝑗|𝑥𝑖)
𝑗

 
(2.8) 

 

The discriminative approach makes use of full labels through this objective and 

generally performs well on large datasets.  

One of the modifications on the discriminative objective is called label 

smoothing regularization (LSR), which was proposed by Szegedy et al. [Szegedy et 

al., 2016] for large scale image classification. LSR avoids network from being too 

confident on its outputs by smoothing the ground-truth labels. The smoothed 

distribution is  

 

 𝑡
^
(𝑘|𝑥) = (1 − 𝜖)𝑡(𝑘|𝑥) + 𝜖

1

|𝐾|
 (2.9) 

 

where 𝜖 is the smoothing strength. For person ReID, a variant of LSR is first utilized 

in incorporating the GAN-generated images into training in [Zhong et al., 2018]. The 

cross-entropy loss for unlabeled samples are calculated based on a uniform target 

probability distribution, i.e, 𝑡𝑖
𝑗 =

1

|𝐾|
, ∀𝑗 ∈ 𝐾. LSR is now employed by many state-of-
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the-art ReID models as a generic regularization method [Liu et al.,2018], [Luo et al., 

2019], [Chung et al., 2019]. 

[Fan et al., 2019] point out softmax loss is biased towards weights and features 

having large norms. That is, 1) a sample with the same angular distance to two different 

classes tends to be classified into the class with the larger norm, and 2) the samples 

having a larger norm outputs a larger score, which they call weight and feature bias, 

respectively. Therefore, they propose defining the softmax loss on a sphere by 

normalizing both the weights and features, which reduces the uncertainty of decision 

process. They use a scale factor for controlling the temperature of the softmax function. 

A similar work is proposed by [Wojke and Bewley, 2018], which also normalizes the 

weights and features. [Wu et al., 2019] extends the angular loss to a view-point aware 

loss, where the distance calculation is done between the sample features and their 

identity and viewpoint centers, in a unified hyper-sphere. 

In [Wu et al., 2019], a softmax-like loss function is designed to learn a 

discriminative embedding for unlabeled images in a semi-supervised setting. Since the 

sample classes are not known, the learning objective is to increase the cosine similarity 

between distinct images. The proposed exclusive loss approximates this objective by 

calculating the softmax probabilities based on a projection matrix consisting of the 

normalized feature vectors, which is updated as the training proceeds. In [Lin et al., 

2020] the same approach is used for fully unsupervised training. In [Lin et al., 2020] a 

similar softmax-like function, called repelled loss, is designed which uses the sample-

to-cluster distance to measure the cluster membership probabilities in unsupervised 

learning of camera invariant features.    

[Ye et al., 2020] proposes a hard-aware instance re-weighting strategy for 

improving discrimination ability when the data contains noisy label. The re-weighting 

term uses the distance of the sample to its class center as a measure of hardness level. 
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3. ENSEMBLE LEARNING 

In this section, we first briefly explain ensemble learning as a regularization 

method. Then we review the most common ensembling techniques as well as give 

some recent applications to deep networks. 

3.1. Overview 

The estimation error of a learning model can be decomposed into bias and 

variance terms, as discussed in Section 1. In order to increase the generalization 

capability of the learning model, variance should be decreased. However, there is a 

trade-off between the two terms and reducing variance generally results in increased 

bias, which degrades the accuracy of the learning models. The problem of having high 

variance is called overfitting, which means the model has too much degrees of 

freedom, and over-fits to the data. The trade-off between the bias and variance terms 

make overfitting (under-regularization) problem is a challenging task. 

Ensembling has been one of the most effective approaches to tackle the under-

regularization issue [Meir, 1995], [Breiman, 1996b]. Ensembling is the process of 

training multiple base learners for the same task and combining their decisions in 

inference time. The base learners are trained either in parallel or sequential. If the base 

learners are accurate and diverse from each other, they make errors on separate parts 

of the test data, which provides error compensation. Therefore, the performance of the 

ensemble models strongly depends on the individual accuracy of the base learners and 

their diversity. As a result, many studies have been dedicated to increase model 

diversity without compromising accuracy [Opitz and Shavlik, 1996], [Granitto et al., 

2005], [Melville and Mooney, 2005].   

Many methods have been offered for enforcing diversity between base learners 

as well as for combining their decisions. Generally, the base learners vary in their 

algorithms, hyperparameters, input representations (modalities), training sets and sub-

problems to fulfill this requirement.  

There are multiple approaches in designing ensembles, namely bagging, 

boosting, mixture of experts, stacked generalization and cascading. The approaches 

mainly vary in their algorithm for combining models, training base learners and data 
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usage. In this section, we review these main approaches and give some example 

algorithms for each that are widely used. 

3.2. Bootstrap Aggregation (Bagging) 

Bootstrapping is a technique in statistics used for improving the standard error 

and confidence interval estimation. Basically, it produces new samples from a given 

sample by replacement and performs estimation based on the bootstrap samples.  

Bootstrap aggregation, or bagging in short, is an ensemble method which aggregates 

the decisions of base learners trained with different bootstrap replicates of a dataset 

[Breiman, 1996a]. Figure 3.1 presents the training procedure in Bagging, for training 

each base learner L, a different bootstrap sample is used.  

 

Figure 3.1: Training process in Bagging. 

Since the bootstrap samples are performed with replacement, some of the 

observations will occur more than once in the drawn sample while some others will 

not occur [McCue, 2006]. Specifically, each observation has the following probability 

of being selected for a bootstrap sample  

 

 1 − (1 −
1

𝑛
)𝑛 (3.1) 

 

where n is the sample size. For sufficiently large n, this converges to  
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 1 −
1

𝑒
≅ 0.63 (3.2) 

 

which means 37% of the observations will be missing in each sample.  

The combination of the base learners during inference can be performed in 

different ways. The most widely used methods for regression and classification are 

aggregating the averages over the outcomes of the base learners and majority vote, 

respectively.  

 

Figure 3.2: Inference process in Bagging. 

The performance of the bagging method vitally depends on the instability of the 

base learners used. If the learning algorithm is stable, and produce similar results for 

similar datasets, the base learners cannot cancel out the errors made by other learners. 

As a result, one cannot utilize from bootstrap samples to improve the prediction 

accuracy. However, if the base learnes are unstable that is, small changes in the dataset 

results in large variance in the predictions of the base learners, then the bootstrap 

samples are adventagous, and fulfill the diversity requirement of ensembling.  

Breiman points out that neural nets and decision trees are unstable predictors, 

while k-nearest neighbour models are stable [Breiman, 1996c]. Until the advances in 

deep neural networks, decision tree was a popular and effective model for bagging 

[Breiman, 1996a].  The most popular bagging model is Random Forests [Breiman, 

2001], which is based on bagging with decision trees. The difference is that random 

forests aim at reducing the correlation between the decision trees (base learners) by 
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introducing more randomness during training. Specifically, during each split, a random 

set of features are selected to be a candidate for split variable, which makes the trees 

different from each other.  

On the other hand, since deep neural networks are data hungry models, using 

63% of the original dataset degrades the performance of the base learners, thus increase 

the model bias. Although bagging helps in reducing the variance and provides more 

gain than other strategies, the overall accuracy is limited [Renda et al., 2019], 

[Lakshminarayanan et al., 2017]. [Lee et al., 2015] show that for deep networks, 

random initialization of the weights provides sufficient diversity, making the 

bootstrapping unnecessary. 

3.3. Boosting 

Boosting is a sequential process for eventually obtaining a more accurate 

classifier compared to a single classifier trained conventionally. [Schapire , 1990] is 

the first who proposed a boosting algorithm to convert a weak learner to an accurate 

one. Basically, a weak learner model is trained many times with different distributions 

from domain X, to obtain several different hypotheses. These hypotheses are combined 

by to obtain a single more accurate hypothesis. Later,  [Freund, 1995] proposed a more 

accurate boosting algorithm based on the Schapire’s model.  

 

 

 

Figure 3.3: Training process in AdaBoost algorithm. 

 

The most widely used boosting model, which is developed by Freund and 

Schapire [Freund and Schapire, 2005] is adaptive boosting, a.k.a. AdaBoost. Unlike 
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the previous algorithms, AdaBoost adjusts adaptively to the errors of the weak 

hypothesis. Specifically, in each iteration, the algorithm assigns new weights to the 

training examples based on the last hypothesis obtained (Figure 3.3). The weighting is 

done so that the observations misclassified by the preceding learner become more 

important. Figure 3.4 illustrates the inference process of AdaBoost. The resulting 

ensemble model is the weighted combination of all hypotheses where the weight of 

each hypothesis is directly proportional to its accuracy α.  

 

Figure 3.4: Inference process in AdaBoost algorithm. 

 

Gradient Boosting [Friedman, 2001] is a more advanced boosting model, which 

aims to minimize a loss function while building the ensemble. Decision trees are used 

as the weak learners in gradient boosting. The procedure involves calculating the loss 

function based on the current ensemble model and adding new tress until convergence. 

Minimizing the loss function with the new tree is accomplished by parameterizing it 

and updating the parameters during the training. There are other algorithms which 

bring some improvement over the original one, such as Stochastic Gradient Boosting 

[Friedman, 2002] and Regularized Gradient Boosting. In the former, each tree is 

trained with a random sub-sample of the dataset to decrease the base learner 

correlation, while the latter regularizes the trees to avoid overfitting. Another 

algorithm called Extreme Gradient Boosting (XGBoost) [Chen and Guestrin, 2016] 

makes substantial improvements in the efficiency, and provides a scalable model 

which makes it a popular alternative [Nielsen, 2016] . 
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3.4. Mixture of Experts 

Mixture of Experts (MoE) is an approach where each base learner is a neural 

network that specializes on a smaller region in the input space. To obtain this kind of 

specialization, a gating function makes soft partitions on the input space and defines 

these regions where the individual expert opinions are more confidential [Yuksel et 

al., 2012]. The gating function and the expert networks are trained jointly, as shown in 

Figure 3.5. 

 

 

Figure 3.5:  Mixture of Experts model. 

 

Initial work defined a loss function that strongly couples the experts [Jacobs and 

Jordan, 1993], which results in cooperation of the base experts and causes using many 

experts for each training instance. Later Jacobs et al. [Jacobs et al., 1991] proposes 

Adaptive Mixture of Experts, which uses a loss function explicitly promotes 

localization and decreases the interdependence of the experts. As a result, when the 

gating network and the local experts are trained jointly, the model tends to devote a 

single expert for each instance. 

Recently MoE model is adopted to deep neural networks in several ways. 

Shazeer [ 2019] proposed sparsely gated MoE layer for training large natural language 

processing data in recurrent networks.  Their model increases the network capacity 
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drastically while introducing minor extra computational consumption. Fu et al. [ 2018] 

designs a convolutional mixture of expert layer to assess the importance of features 

from different levels for scene parsing. In [Miech et al., 2018] Mixture of Embedding 

Expert model is proposed, which  enables learning from heterogeneous data. The 

proposed model is used for both text-to-video and video-to-text retrieval tasks.  

3.5. Stacked Generalization 

Stacked Generalization was originally proposed by [Wolpert, 1992] for either 

deducing the biases of single learners, or model combination in multiple learners. The 

approach is mainly based on by stacking two level of learners which are trained 

sequentially, which is is shown in Figure 3.6. In its form of model combination, a 

cross-validation process is followed to train the base models and the combiner model 

LC. Specifically, for each cross-validation step, the base learners are trained on the 

training data and their outputs for the validation examples are collected for training 

later the combine model LC. [Ting and Witten, 1999] have improved this method by 

using class probabilities of the base models instead of their single class prediction. 

 

Figure 3.6: Stacked Generalization. 

 

In deep learning, stacking is first used for greedy layer-wise training deep belief 

networks  and stacked autoencoders [Hinton et al., 2006], [Bengio et al., 2007]. More 

recently, many methods have been proposed based on stacking idea for addressing 
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task-specific problems. [Yu et al., 2015] designed a deep architecture for 

representation learning, where extreme learning machine is used as the building block 

of stacking. [Hu et al., 2016] used the stacked generalization philosophy to build a 

deep network from randomly fixed single-hidden-layer networks for unsupervised 

learning. In [Palangi et al., 2017], Convolutional Deep Stacking Networks is proposed 

to reconstruct sparse vectors in distributive compressive sensing. Stacked 

generalization is used for combining various forest change detection algorithms in 

[Healey et al., 2018].   

3.6. Cascading 

Cascading is a sequential approach for creating classifier ensembles, where the 

base learners have increasing complexity. The earlier, efficient classifiers are used for 

handling most of the instances where they are certain, and the rest is handled by the 

succeeding ones depending on their difficulty. This process substantially speeds up the 

inference process.  

Cascading has been introduced by [Alpaydin and Kaynak, 1998] to overcome 

the computational overhead of k-NN classifier in handwritten digit recognition. They 

cascade a parametric linear model and a k-NN classifier, where the large percentage 

of the digits are handled by the linear model and a the more expensive k-NN is used 

only for the remaining “exceptions”.  Later, Viola and Jones [Viola and Jones, 2001] 

proposed cascading of many boosted classifiers for object detection in their seminal 

work. The classifiers are trained in a way that when they detect a positive instance, the 

evaluation of the successive and more accurate classifier is triggered for spending more 

computation on the promising area. For increasing the complexity of the base learners, 

they adjust the threshold in AdaBoost algorithm. Wu et al. [Wu et al., 2004] improved 

the original method by using forward feature selection to construct the ensemble 

classifiers, which is more efficient.  
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Figure 3.7: Cascading classifiers. 

 

Cascading also helps reducing the computational time in deep networks, 

especially on real-time tasks.  Li et al. [Li et al., 2015] proposes cascading deep 

networks which processes the input image in different scales for fast face detection. 

Sabokrou et al. [Sabokrou et al., 2017] cascades two deep networks for early 

identification of simple normal patches in anomlay detection. In [Cai and Vasconcelos, 

2018], cascading is used in Region-based CNN for high-quality object detection,. The 

detectors are trained with increasing intersection over union thershold to be 

sequantially more selective against close false positives. 

3.7.  Deep ensemble learning 

Neural networks enable a great way for training ensemble models thanks to 

randomness in both their initializations and training algorithms (i.e. stochastic gradient 

descent). Differences in hyper-parameters, random initialization, and random selection 

of minibatches during the training often provide sufficient diversity between the base 

learners. 

Dropout technique [Srivastava et al., 2014] can be considered as one of the first 

attempts for deep ensemble learning. Although, there is no explicit networks trained 
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separately, by dropping some portion of the outputs, the technique allows to train a 

different architecture in each gradient step. Therefore, it is interpreted as an implicit 

model averaging method. This idea is generalized for other regularization techniques 

in [Singh et al., 2016]. In [Izmailov et al., 2018] multiple points along the trajectory of 

Stochastic Gradient Descent (SGD) is averaged to obtain a broader optima. These 

models exploit the ways of achieving more regularized models instead of combining 

diverse models during test time. Cyclic learning rate  is another way of obtaining 

ensemble of deep networks. [Huang et al., 2017] and [Garipov et al., 2018] utilize this 

schedule for taking snapshots of the weights in different local minima during training. 

These models are very efficient in training time because they train only a single model. 

During test time, however, they require k times more computation to combine the 

predictions of k models [Izmailov et al., 2018].  

Ensemble models require an increased computational cost compared to simple 

base learners. The computational cost of an ensemble model composed of deep neural 

networks hinders fats improvement on deep ensemble modeling. For this purpose, 

weight sharing is adapted in recently proposed methods. In [ Opitz et al., 2017] multiple 

classifiers are trained on the non-overlapping splits of the last embedding layer to obtain 

a more representative feature vector. To promote the diversity between the base learners, 

online gradient boosting strategy is introduced. Hard example mining on a cascaded 

network is proposed at different levels in [Yuan et al., 2017].  [Kim et al., 2018] suggests 

utilizing from multiple attention masks to obtain an ensemble model. [Guo et al., 2018] 

proposes special grouping of training data for composing ensembles. Despite their 

efficiency, these models require additional training strategies in order to obtain diverse 

base learners. 

3.8. Ensemble (or Multi-loss) Learning for Person ReID 

In order to improve the generalization capacity of deep networks, many methods 

have suggested jointly training multiple loss functions on a single network for person 

ReID [Chen et al., 2017a], [Li et al., 2017], [Li et al., 2017] and also for other tasks 

[Shi et al., 2018], [Zheng et al., 2018], [Xuan et al.,  2018], [Wang et al., 2019]. These 

approaches are analogous to the ensemble methods because they extract multiple 
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feature representations from different embedding spaces and combine them in test 

time. 

The local feature learning is a natural way for defining multiple loss functions 

for a deep person ReID model. In [Sun et al., 2018], the input image is split into 

horizontal stripes and different feature extraction and classification layers are 

appended on each branch. In [Zhao et al., 2017], separate loss functions are defined 

for human body part regions and their representations are concatenated during the test 

time. [Li et al., 2018] designs a harmonious attention module to use on both local and 

global branches to overcome the misalignments problem in person bounding boxes.  

More recently, [Zhai et al., 2019] adapted a multi branch network from non-

overlapping channel splits of feature maps to extract diverse global features. There are 

also methods that propose to extract multiple features from multiple scales without 

defining explicit loss function for different features [Chang et al., 2018]. Instead, they 

optimize a single global loss on the fused feature vector.  

 The alignment problem in person ReID is to find the matches between the body 

parts of two human images. The aim of [Li et al., 2018] is addressing the misalignment 

problem by jointly learning attention selection and feature representation. The 

approach of Li et al. [Li et al., 2018], uses a multi branch network for global and local 

feature representation. In contrast to our work, this approach requires a special network 

architecture design to incorporate soft pixel and hard regional attention mechanisms. 

Another work that focuses on the misalignment problem is [Zhao et al., 2017], which 

automatically detects human part regions. The feature vectors extracted from each part 

are concatenated, and a global triplet loss is defined over the concatenated feature 

vectors. [Wang et al., 2018] extract multiple features from different levels of the 

backbone network to enable scalable person ReID.  

 The objective of [Chang et al., 2018] is to factorize the visual appearance of the 

person image into latent discriminative factors, which works similarly to the attention 

mechanism. They employ a factor selection module in each layer that activates or 

deactivates the extracted features, which are fused at the end and are globally 

optimized. The methods optimizing a single loss on the fused feature vectors has the 

risk of promoting only the high-level discriminative features. Our multi-loss approach 

avoids this problem by optimizing each base learner explicitly.  
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The aim of [Wang et al., 2018] is to represent both local and global features in 

the image representation by partitioning the input image into multiple regions in a 

coarse-to-fine manner. The method requires ReID specific network design which 

considers human body structures such as head and shoulders, main body and the legs.  

It benefits from joint training of metric learning and discriminative learning since 

triplet loss is employed for each granularity and cross entropy loss is used for each 

part.  
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4. DATASETS, EVALUATION AND THE 

BASELINE MODEL 

In this section, we take a look at some of the existing datasets. Then, we revisit 

the metrics used for evaluating the person ReID models. Lastly, we define a baseline 

model, which the most recent study is based on. 

4.1. Datasets 

Collecting data for Person ReID is a laboring task. The procedure involves raw 

data collection, bounding box detection, and labeling [Leng et al., 2019]. Raw data 

collection is capturing the video data from a camera network, where cameras are 

placed in different places and have varying imaging conditions. Bounding box 

annotation is the task of identifying the image area where the person appears. Lastly, 

the detected bounding boxes are annotated with the correct identity, which should be 

consistent with the other images of the same person captured from different cameras. 

There are many datasets collected for image and video-based person ReID. Table 

4.1 lists the details of some ReID datasets according to their release time [Web-2, 

2020]. The number of identities and cameras represents the number of distinct persons 

and cameras, respectively. The number of images represents the total number of 

images for training and evaluation. The datasets having multi-shot property provides 

multiple images for the probe image, which can enhance the ReID performance. Those 

having the tracking traclets contain videos of both the probe and gallery sets. The initial 

datasets, which are limited in their number of cameras and identities, have bounding 

boxes annotated manually, while for some recent and more massive datasets bounding 

boxes were obtained via person detection and tracking algorithms [Leng et al., 2019]. 

Person ReID datasets have some difficulties, some of which are especially 

designed for simulating the real-world problem. For example, QMUL iLIDS [Zheng 

et al., 2009] is collected in an airport, so the images suffer from severe occlusion. 

MARS [Zheng et al., 2016] is a large scale video-based dataset and due to automatic 

bounding box detection, there are some distractors, which is more close to the real 

scenario. Similarly, MSMT17 [Wei et al., 2018] dataset aims to simulate the real 

scenario. Therefore, the videos were taken under various conditions, which presents 

complex scenes and backgrounds. There are some other datasets that are not listed in 

https://github.com/NEU-Gou/awesome-reid-dataset#eth1,2,3
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the table, such as Partial iLIDS, which is specifically designed for the partial ReID 

problem from iLIDS dataset. 

The pioneering work generally used small-scale ReID datasets such as VIPeR 

[Gray et al., 2007], QMUL iLIDS [Zheng et al., 2009],  GRID [Loy et al., 2010],  

3DPeS [Baltieri et al., 2011] and PRID2011 [Hirzer et al., 2011] with handcrafted 

features. In the second stage of person ReID literature, relatively shallow networks 

were carefully designed for person ReID. In this stage, the metric learning approach 

was advantageous, since it copes with the data scarcity by preparing the training data 

in pairs or triplets [Li et al., 2014], [Yi et al., 2014].  

 After very deep networks became trainable, large scale person ReID datasets 

were released and impressive results have been obtained on these datasets using only 

the classification loss, with the help of knowledge transfer from large scale image  

classification datasets [Zheng et al., 2016], [Zhai et al., 2019]. In Table 4.2, the number 

of person identities and images for query and gallery images are given for these larger 

datasets, which are also used for evaluating the proposed person ReID system in this 

thesis. 

4.2. Evaluation Protocol 

4.2.1. Cumulative Matching Characteristics 

The performance of person ReID methods are generally measured by 

Cumulative Matching Characteristics (CMC) curves. The CMC curve represents the 

number of correctly detected queries within the first 𝑛ranks. 

4.2.2. Mean Average Precision 

Mean Average Precision (mAP) is a metric used for evaluating information 

retrieval systems. Considering the large-scale person ReID as an image retrieval task, 

mean Average Precision (mAP) is used as another evaluation metric. In order to define 

Mean Average Precision, we first review precision at K and average precision scores.  
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Precision at K: Corresponds to the number of relevant results among the top K 

documents. For person ReID, this should be considered as the number of positive 

identities among the top K persons retrieved.  

Average Precision (AP): Represents the average of precision at different K values for 

a single query person.  

Mean Average Precision (mAP): The mean of the average precision values of a set of 

query images. 
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Table 4.1: Some person ReID datasets, ordered in release time. 

 

Dataset 
Release 

time 
# identities # cameras # images Label method Crop size 

Multi-

shot 

Tracking 

sequences 

VIPeR  2007 632 2 1K Hand 128X48     

QMUL iLIDS 2009 119 2 0.5K Hand Vary ✔  

GRID  2010 1025 8 1K Hand Vary     

3DPeS 2011 192 8 1K Hand Vary ✔   

PRID2011 2011 934 2 24K Hand 128X64 ✔ ✔ 

CUHK01 2012 971 2 3K Hand 160X60 ✔   

CUHK02 2013 1816 10(5 pairs) 7K Hand 160X60 ✔   

CUHK03 2014 1467 10(5 pairs) 13K Hand/DPM Vary ✔   

iLIDS-VID  2014 300 2 42K Hand Vary ✔ ✔ 

Shinpuhkan  2014 24 16 22K Hand 128X48 ✔ ✔ 

Market1501 2015 1501 6 32K Hand/DPM 128X64 ✔   

MARS 2016 1261 6 1100K DPM + GMMCP 256X128 ✔ ✔ 

DukeMTMC-reID  2017 1812 8 36K Hand Vary ✔   

DukeMTMC4ReID  2017 1852 8 46K Doppia Vary ✔   

MSMT17 2018 4101 15 126K Faster RCNN Vary ✔   

LPW 2018 2731 3, 4, 4 592K Detector + NN + Hand - ✔ ✔ 

https://github.com/NEU-Gou/awesome-reid-dataset#viper
https://github.com/NEU-Gou/awesome-reid-dataset#eth1,2,3
https://github.com/NEU-Gou/awesome-reid-dataset#grid
https://github.com/NEU-Gou/awesome-reid-dataset#3dpes
https://github.com/NEU-Gou/awesome-reid-dataset#prid2011
https://github.com/NEU-Gou/awesome-reid-dataset#cuhk01
https://github.com/NEU-Gou/awesome-reid-dataset#cuhk02
https://github.com/NEU-Gou/awesome-reid-dataset#cuhk03
https://github.com/NEU-Gou/awesome-reid-dataset#ilids-vid
https://github.com/NEU-Gou/awesome-reid-dataset#shinpuhkan-dataset
https://github.com/NEU-Gou/awesome-reid-dataset#market1501
https://github.com/NEU-Gou/awesome-reid-dataset#mars
https://github.com/NEU-Gou/awesome-reid-dataset#dukemtmc-reid/dukemtmc4reid
https://github.com/NEU-Gou/awesome-reid-dataset#dukemtmc-reid/dukemtmc4reid
https://github.com/NEU-Gou/awesome-reid-dataset#msmt17
https://github.com/NEU-Gou/awesome-reid-dataset#lpw
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4.2.3. Architecture 

In [Zheng et al., 2016], it has been shown that very deep networks pre-trained 

on Imagenet [Deng et al., 2009] produces state-of-the-art results when fine-tuned on 

large scale person ReID datasets with classification loss, which is called identity 

discriminative embedding (IDE) model. Considering that fine-tuning a deep network 

is much more efficient than training one from scratch, most researchers have adopted 

this approach in recent ReID models. Preliminary studies have suggested using 

GoogLeNet [Szegedy et al., 2015] as the backbone [Geng et al., 2016], while more 

recent studies generally employ versions of ResNet [He et al., 2016] or DenseNet 

[Huang et al., 2017]. We choose IDE model as the baseline in this thesis due to its 

remarkable performance. 

 

 

 

Figure 4.1: Baseline IDE model. 

 

In Figure 4.1, the baseline IDE model, which uses ResNet50 as the backbone is 

illustrated. Generally, the images are resized to 394128 and global average pooling is 

applied to the (2048×H×W) feature maps obtained at the end. Then, an optional 

generally 2048 length fully connected layer is appended. Lastly, another fully 

connected layer with length C is used, where C is the number of person identities. The 

network is trained with softmax loss. 
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4.3. Baseline Model 

In this section, we define a baseline model for person ReID in detail. First, we 

give the architecture design, which is based on the recent general-purpose deep 

networks. Then we review basic pre-processing and data augmentation methods used 

in most studies. Lastly, we report the scores of this baseline model on the widely used 

large-scale datasets.  

 

Table 4.2: Details on the datasets used in the experiments throughout this thesis. 

  Number of ID's Number of Images 

Dataset Training Test Training Query Gallery 

Market-1501 750 751 12,396 3,368 19,372 

DukeMTMTC-reid 702 702 17,661 2,228 16,522 

CUHK03-Labeled 767 700 7,368 1,400 5,328 

CUHK03-Detected 767 700 7,365 1,400 5,332 

MSMT17 1041 3060 32,621 11659 82,161 

 

4.3.1. Data Pre-Processing and Augmentation 

In order to utilize from a pre-trained network, the input images of the new dataset 

are normalized in consistent with the dataset used in pre-training. Therefore, the input 

images are normalized between [0,1] and mean subtracted with the ImageNet mean.  

The basic data augmentation for person ReID involves randomly cropping the 

input image and resizing to a certain image width and height. Also, the images are 

randomly flipped horizontally with 0.5 probability during training, which is found to 

be very effective. Another augmentation method is Random Erasing, which replaces a 

randomly selected rectangular area in the image with noise [Zhong et al., 2017]. The 

random erasing data augmentation is also applied with 0.5 probability to an area whose 

size is the half of the input image area. 

During testing, the query and gallery images are normalized and mean subtracted 

as for the training stage. After obtaining the embedding vectors, the images are 
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horizontally flipped and passed through the network again to obtain the embedding 

feature vector for the flipped images. The final ranking is performed based on the 

concatenation of these two embedding vectors, which compensates some of the errors 

due to vertical misalignments between the query and gallery images. 

4.3.2. Implementation Details 

In general, Adam [Kingma and Ba, 2015] is used as the optimizer. In order to 

finetune the network, the classification layer of the original network is thrown and 

fresh embedding and classification layers are appended. The learning rate is set to 0.1 

and 0.01 for the new and existing layers, respectively. Mini batch size is set to 32 and 

the network is trained 50 epochs in total, where the learning rates are decreased by a 

factor of 0.1 after 40 epochs. The training of IDE model on an NVIDIA GTX 1080 Ti 

requires 70 minutes on Market-1501 dataset.  

4.3.3. Results 

We evaluate the baseline model on the most widely used person ReID datasets 

given in Table 4.2.  The baseline model is compared to some previous work which 

uses Inception architecture [Szegedy et al., 2015] as the backbone in Table 4. RE 

stands for random erasing data augmentation [Zhong et al., 2017]. It improves the mAP 

and Rank-1 scores on all datasets. As shown in the table, ResNet50 gives superior 

performance on Inception architecture. Note that, the previous works do not use the 

standard IDE model and improve the baseline Inception model in some way, such as 

using multi-scale features or pose-sensitive embedding. The results indicate that the 

IDE model using ResNet50 or DenseNet121 as the backbone is a valid baseline.  

Therefore, this model is used as the baseline model in this thesis.
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Table 4.3: Comparison of the baseline IDE model with the state-of-the-art. 

 

 Method 
Market-1501 DukeMTMC-reid 

CUHK03-

Labeled 

CUHK03-

Detected 

R1 mAP R1 mAP R1 mAP R1 mAP 

Deep Transfer (CVPR) [Geng et al., 2016] 83.7 65.5 - - - - - - 

PSE (CVPR) [Sarfraz et al. 2018] 84.4 64.9 71.7 50.4 - - - - 

DPFL (ICCV) [Chen et al., 2017] 88.9 73.1 79.2 60.6 43.0 40.5 40.7 37.0 

ResNet50 88.0 70.9 77.9 58.9 48.1 43.6 45.2 41.1 

DenseNet121 88.2 71.7 79.5 61.8 49.7 46.0 50.1 46.5 

ResNet50+RE 90.7 76.7 82.5 66.6 56.4 52.2 55.9 49.9 

DenseNet121+RE 91.1 77.8 83.5 68.7 58.1 53.7 56.2 51.3 
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5. END-TO-END CNN ENSEMBLES  

5.1. Motivation  

Neural networks provide a natural diversity between the models, mainly due to 

their intrinsic randomness at initialization. Therefore, the same networks trained in 

parallel optimize to different locations and become sufficiently diverse without any 

explicit effort [Alpaydin, 1993].  Nevertheless, many methods have been offered to 

improve the diversity of neural networks [Liu and Yao, 1999]. 

The present study suggests an ensemble model for reducing the model variance 

in person ReID using deep networks. Overfitting is even more severe in this 

challenging task due to the discrepancy between the training and test distributions 

caused by different person identities and varying imaging conditions. Therefore, it is 

inevitable to lose performance when a single, overfitted model is used for feature 

extraction in test time.  To tackle this problem, we propose an ensemble learning model 

to extract diverse feature vectors to be combined in test time ranking. Each base learner 

extracts different and complementary information, improving the ranking accuracy. 

The proposed ensemble model is trained in an end-to-end manner, where the base 

learners share a considerable amount of costly convolution operations. As a result, an 

ensemble model that is efficient in both training and test time is obtained. 

The proposed model is evaluated on four benchmark datasets via several 

experiments. Analysis based on the experiments confirmed that our model is favorable 

in terms of ranking performance and computational resource consumption while 

outperforming state-of-the-art results. 

5.2. Problem Definition 

Given a 2D query person image 𝑞, the objective of the person ReID model is to 

rank a large set of gallery images G = {gi} with respect to their similarities to the query 

image, where |G| = M ∈ ℤ+and gi is the ith gallery image. Ideally, the ReID system is 

not aware of the query and gallery images before, and it is expected that the top-ranked 

images from the gallery set belong to the same person with the query image 𝑞. 

In order to calculate the similarity scores between the query and gallery images, 

a feature extraction model is required. In deep networks, the high-level semantic 
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feature extraction layer is used for this purpose. To this end, a training data X = {xi} 

consisting of N images of C distinct persons and their identity labels Y = {yi} are used 

to train a CNN, where |X| = |Y| = N ∈ ℤ+, C ∈ ℤ+, yi ∈ ℤ+,𝑦𝑖 ≤ 𝐶 , and 𝐶 ≤ 𝑁 

(usually 𝐶 << 𝑁 ). 

A classification network consists of two sequential networks. The first one is a 

feature extraction network that projects the given input image x of D pixels to an H 

dimensional embedding space, and we represent it by the function  

 

 ℎ(𝑥; 𝜃ℎ): ℝ
𝐷 → ℝ𝐻 (5.1) 

 

where 𝜃ℎ are the parameters of this function. The second one is usually a one-layer 

network, which is a function of ℎ(⋅) and produces C dimensional class probabilities 

from the H dimensional feature vectors. We represent this network by the function 

 

 𝑓(ℎ(⋅); 𝜃𝑓):ℝ
𝐻 → ℝ𝐶 (5.2) 

 

where 𝜃𝑓 represents the parameters of this network. The empirical risk of 𝑓(⋅) and  

ℎ(⋅) is defined as 

 

 ℛ(𝑓, ℎ) =∑ℒ

𝑁

𝑖

(𝑥𝑖 , 𝑦𝑖) (5.3) 

 

where ℒ(𝑥𝑖 , 𝑦𝑖) is the classification loss for the ith training example. A CNN classifier 

is trained by minimizing the cross-entropy, i.e., the divergence of the estimated and 

the actual class probability distributions. For simplicity, let 𝑓𝑖
𝑘 and 𝑦𝑖

𝑘 represent the 

estimated and actual probability of the ith training image to be an instance of the kth 

person class, respectively. The cross-entropy loss for this example is 

 

 ℒ(𝑥𝑖 , 𝑦𝑖) = −∑𝑦𝑖
𝑘

𝐶

𝑘

log(𝑓𝑖
𝑘) (5.4) 

 



 

47 

 

The goal of the optimization is to find the network parameters that best fits to 

the objective 

 

 𝜃𝑓
∗, 𝜃ℎ

∗ = arg 𝑚𝑖𝑛
𝜃𝑓,𝜃ℎ

ℛ(𝑓, ℎ) (5.5) 

 

The training data is composed of limited number of observations and is far from 

representing the real distribution. Aa a result, empirical risk minimization does not 

guarantee to minimize the generalization error, which is the expected risk over the real 

distribution [Guyon et al., 1992]. Moreover, if the model has a high complexity, it may 

overfit to the observed examples and perform poorly on test data. The discrepancy 

between the training/test distributions is more severe in person ReID task due to the 

differences in person identity classes. Therefore, reducing the model variance is of 

crucial importance in person ReID models. In the following section, we define our 

ensemble model which deals with this problem. 

5.3. The Proposed Method 

The traditional ensemble models train multiple base learners independently, 

which allows increasing diversity and accuracy of the individual learners. When it 

comes to deep networks, this approach suffers from inefficiency because deep 

networks require a massive amount of computational consumption during training. To 

overcome this difficulty, we propose a framework that trains multiple base learners in 

a single deep network in an end-to-end manner while most of the expensive 

convolution operations are shared. 

Figure 5.1 presents the proposed ensemble model, which is based on DenseNet. 

The low and mid-level blocks (Block 1, 2, and 3) of DenseNet are not modified. To 

embed multiple base learners in this backbone architecture, we integrate sub-networks 

on top of various layers in the last dense block (Dense Block 4). Each sub-network, 

together with the shared backbone architecture, composes a base learner. The structure 

of the sub-networks are illustrated by Figure 5.2.  In order not to lose the spatial 

information, the input feature maps are fed into an embedding layer without using any 

form of pooling.  We call this property of the proposed model as spatial-awareness. 
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Finally, a classification layer outputs the logits for the cross-entropy loss for this base 

learner. 

There are 2L base learners in the proposed model: the base learners 1 to L are 

obtained by integrating sub-networks after the channel-wise splits of the third block’s 

output, while the base learners L+1 to 2L are obtained by integrating sub-networks  



 

 

 

4
9
 

 

Figure 5.1: The architecture of the proposed system. 
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after each dense layer in the fourth dense block. Each base learner includes two 

sequential networks: the feature extraction network consists of the shared backbone 

and the embedding layer of its sub-network, and the classification network consists of 

only the classification layer. 

Similar to the classical method given in Section 5.2, the ℓ𝑡ℎ feature extraction 

network project the input images of the feature embedding space, where some of its 

parameters are now shared. Let the shared and non-shared parameters is represented 

by 𝜃ℎ
ℓ,𝑆

 and 𝜃ℎ
ℓ,𝑁

, respectively. Then, the feature extraction network is ℎℓ(𝑥; 𝜃ℎ
ℓ,𝑆, 𝜃ℎ

ℓ,𝑁). 

On the other hand, the  ℓ𝑡ℎ classification network has only non-shared parameters and 

can be represented by 𝑓ℓ(ℎℓ(𝑥); 𝜃𝑓
ℓ). The empirical risk defined in Equation 1 is then 

extended by the inclusion of the set of all feature extraction and classification networks 

in the ensemble model 

 

 ℛ𝑒(ℱ,ℋ) =∑ℒ𝑒

𝑁

𝑖

(𝑥𝑖 , 𝑦𝑖), (5.6) 

 

 

where ℱ = {𝑓1,…,𝑓2𝐿}, ℋ = {ℎ1,…,ℎ2𝐿}, and ℒ𝑒 is the ensemble loss for a single 

training sample. Let 𝑓ℓ,𝑖
𝑘  be the output of the ℓ𝑡ℎlearner for the 𝑖𝑡ℎ sample 𝑥𝑖 to be an 

instance of the 𝑘𝑡ℎ person class. Then, the ensemble cross entropy for this instance is  

 

 ℒ𝑒(𝑥𝑖 , 𝑦𝑖) = −∑∑𝑦𝑖
𝑘 log(𝑓ℓ,𝑖

𝑘 )

𝐶

𝑘

2𝐿

ℓ

 (5.7) 

 

The objective of the training is to estimate the parameters of all feature extraction 

and classification networks that minimize the empirical risk 

 

 𝜃𝐹
∗ , 𝜃𝐻

∗ = arg 𝑚𝑖𝑛
𝜃𝐹 ,𝜃𝐻

ℛ𝑒(ℱ,ℋ) ,  (5.8) 

 

where 𝜃𝐹 = {𝜃𝑓
1, 𝜃𝑓

2, … , 𝜃𝑓
2𝐿}  and  𝜃𝐻 = {𝜃ℎ

1, 𝜃ℎ
2, … , 𝜃ℎ

2𝐿} are the parameters of all 

feature extraction and classification networks, respectively. Joint optimization of these 

networks allows for end-to-end training of the base learners.  
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The efficiency of the ensemble models depends on the accuracy and diversity of 

the base learners. To fulfill these requirements, we benefit from DenseNet architecture.  

There are two primary sources of diversity in our model: random initialization of the 

non-shared parameters and the diverse input feature maps of the base learners. The 

random initialization of the parameters is an intrinsic property of the neural networks 

and different input feature maps add further variety.  Figure 5.3 shows the normalized 

input feature maps for a baseline classification model and the base learners of our 

model for some sample cases. The baseline model (second column) receives all of the 

feature maps, which are concentrated on the most discriminative part of the image. 

Base learners, on the other hand, receive information that focuses on diverse and 

complementary parts, as expected. 

 

 

Figure 5.2:  Structure of the sub-networks. 

 

To accomplish the accuracy objective, we utilize spatially aware base learners, 

via adopting full connections between the feature maps and the embedding layer. In 

other words, unlike most of the work, we do not employ any pooling mechanism on 

the produced feature maps to keep the spatial information of the features in the final 

representation. Generally, fully connected layers increase the number of parameters 

dramatically if the input and output dimensions are in high order. DenseNet 

architecture is suitable to overcome this difficulty thanks to its tiny layers (32) filters 

for Densenet121). Also, we use a small number of nodes in the embedding layer (512). 

As a result, we acquire spatially-aware base learners with minimal cost, which makes 

our end-to-end model computationally efficient. In Section 5.6.3, our analysis shows 

that the spatially-aware base learners of our model outperform most existing methods, 

individually. Unlike conventional ensemble models, our models is very 



 

52 

 

computationally very efficient thanks to the shared dense blocks which include most 

of the costly convolutional layers. More specifically, we observed that 98% of the 

FLoating-point OPerations (FLOPs) occur in these shared blocks. Our analysis in 

Section 5.6.4. shows that the proposed model increases the number of FLOPs by a 

small amount while performing on par with a conventional ensemble model that 

requires at least two times more FLOPs. 

 

Figure 5.3: Normalized convolution feature maps as input to different learners. 

 

5.4. Binary Hash Code Generation 

 Binary hash code generation is a technique used in Image Retrieval systems, 

where efficient distance calculation is crucial for rapid search in large databases. The 

feature vectors extracted from the query and the database images are quantized, and 

the distance calculation is done in Hamming space in the bit level.  

 Person ReID is a specific application of image retrieval, where efficiency is one 

of the critical issues. Therefore, real-world ReID systems should involve solutions for 

fast distance calculation also. However, many ReID models operate on real-valued 

feature representation and use Euclidean distance as the similarity measure. This issue 
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becomes even more problematic when feature vectors extracted from different stages 

are concatenated to form a one large feature vector.  

 The proposed end-to-end ensemble model produces feature vectors that are 8192 

in length. Therefore, an efficient distance calculation is also crucial for our approach. 

To address this issue, following many image retrieval models, we propose using tanh 

function as the activation function in the last layer of the feature extraction network. 

In this way, the feature vectors can be quantized into binary vectors in the inference 

time, and the distance calculation can be performed in Hamming space, i.e., in the bit 

level. 

5.5. Ranking with the Proposed Model 

At the end of the training, we obtain several base learners which discriminate 

person classes in separate embedding spaces. To extract representative feature vectors 

from the images of the unseen query and gallery persons, the classification networks 

of the base learners are ignored and only the feature extraction parts are used. 

Given a query image 𝑞, let the ℓ𝑡ℎ feature extractor function,  ℎℓ(𝑞, 𝜃𝐻
∗ ), produce 

feature vectors from its embedding layer. We combine the feature vectors of all the 

feature extractors. 

 

 ℋ(𝑞) = ℎ1(𝑞)|ℎ2(𝑞)|⋯ |ℎ2𝐿(𝑞) (5.9) 

 

where | represents the concatenation operation. We also calculate the feature vectors 

of each gallery image 𝑔𝑖as ℋ(𝑔𝑖) and sort the gallery images concerning their 

distances to the query image by a distance function 𝐷(𝑞, 𝑔𝑖). We use two types of 

distance calculation metrics in our experiments: Euclidean distance and Hamming 

distance. 

Generally, the distance between two vectors x, y ∈ ℝ𝑁  is calculated in Euclidean 

space as 

 

 𝐷𝐸(x,y) = √∑(𝑥𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

 (5.10) 
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which is inefficient for the 8192 length feature vectors of the proposed method. 

Therefore, we employ tanh as the activation function in the embedding layers to allow 

binary code generation for Hamming distance calculation. A real-valued feature vector 

x ∈ ℝ𝑁  is quantized into a binary vector as b = 𝑠𝑖𝑔𝑛(𝑥) ∈ ℝ𝑁  where 𝑠𝑖𝑔𝑛(·) is an 

element-wise operation 

 

 𝑠𝑖𝑔𝑛(𝑥) = {
+1, if 𝑥 ≥ 0
−1, if 𝑥 < 0

 
(5.11) 

 

Hamming distance between two binary vectors represents the number of bit 

positions where the two bits are different. Mathematically, Hamming distance between 

𝑥, 𝑦 ∈ {0,1}𝑁 is calculated as  

 

 𝐷𝐻(x,y) =∑𝟏

𝑁

𝑖=1

(𝑥𝑖 ≠ 𝑦𝑖) (5.12) 

 

where 𝟏[·] is the indicator function.  

It is worth noting that the designed ensemble model is scalable in terms of the 

number of base learners to be used in test time. Unlike many part-base models [Sun et 

al., 2018], which produces a tightly-coupled relationship between the feature 

extractors, the base learners in our model work independently as standalone feature 

extractors, and any of them can be ignored in return for a small performance loss. 

5.6. Experiments 

5.6.1. Implementation Details 

Our method is based on DenseNet121. We initialize the parameters using a pre-

trained model on Imagenet dataset. The images are resized to 384×128. For data 

augmentation, we use random horizontal flipping, random cropping and random 

erasing [Zhong et al., 2017]. In run time, the final feature representation is the sum of 

features extracted from both the original image and its flipped. The learning rate and 

batchsize is determined via experimenting on a baseline model, and set to 0.05 and 32, 
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respectively. We use the same settings for all experiments. The network is trained for 

50 epochs, where the learning rate is decayed by a factor of 0.1 after 40 epochs. 

Embedding layer size depends on the number of base learners so that he final feature 

representation is 8192 in length, i.e., 1024 for 8 (L=4), 512 for 16 (L=8), and 256 for 

32 (L=16) learners. The activation of the embedding layer is performed by non-linear 

tanh function.  

5.6.2. Comparison with the State-of-the-art 

The end-to-end ensemble model is compared with the state-of- the-art methods 

in this section. We use Market-1501 [Zheng et al. 2015], DukeMTMC-reid [Zheng et 

al. 2017], CUHK03 [Li et al. 2014] and MSMT17 datasets [Wei et al., 2018] to 

evaluate our approach.  

5.6.2.1. Market-1501 Dataset 

 Market-1501 dataset consists of 32,668 images of 1501 identities collected from 

6 cameras. 750 identities are reserved for evaluation and the rest is used for training. 

We use the same protocol with [Zheng et al., 2015] to evaluate our method.  

The comparison with the state-of- the-art methods is given in Table 5.1. The 

proposed model is the best in terms of mAP score. In Rank-1 accuracy, our method 

produces competitive performance with PCB+RPP [Sun et al., 2018b], which is a part-

based model including a ReID specific technique called refined part pooling.  

Another important observation from Table 5.1 is the performance of the 

proposed method in Hamming space. The feature vectors in our method are still very 

informative when quantized into binary values and has the advantage of fast distance 

computation in exchange for minimal performance loss in Rank-1 accuracy. Although 

the proposed method produces large feature vectors (8192 in length), is more efficient 

in Hamming space and still superior than most of the previous approaches. 

5.6.2.2. DukeMTMC-reid Dataset 

 This dataset is collected as a multi-target multi-camera pedestrian tracking 

dataset and consists of 85-minute videos from 8 cameras. A subset of this dataset is 
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prepared for image-based person ReID in [Zheng et al., 2017]. An evaluation protocol 

similar to Market-1501 is provided. Specifically, 17,661 images of 702 persons are 

used for training and 2228 images of 702 persons are used as query images which are 

searched among 16,522 gallery images. 

 

Table 5.1: Comparison with the state-of-the-art approaches in Market-15012. 

Method R-1 mAP 

 SVDNet+RE [Zhong et al., 2017]  87.08   71.31    

 Pose-Transfer*[ Liu et al., 2018] 87.65 68.92 

 DPFL [Chen et al., 2017]   88.90   73.10  

 DaRe+RE* [Wang et al., 2018] 89.00 76.00 

 Mid-level [Yu et al., 2017]  89.87   75.55  

 MLFN [Chang et al., 2018]  90.00    74.30   

 HA-CNN [Li et al., 2018]  91.20   75.70  

 DuATM [Si et al., 2018]  91.42   76.62  

 GP** [Almazan et al., 2018] 92.20 81.20 

 PCB [Sun, et al., 2018b]   92.40   77.30  

 MultiBranch [Zhai et al., 2018]   93.10    78.90   

 PCB+RPP [Sun, et al., 2018b] 93.80  81.60   

Ours_Ensemble (Euc.)   93.19   82.10  

Ours_Ensemble (Ham.)   93.13  82.19  

 In Table 5.2, our approach is compared to the most recent ReID methods 

evaluated on DukeMTMC-reid dataset. The end-to-end ensemble model show 

competitive performance with the previous work, including the multi-loss models. It 

is noticeable that Hamming space performance is better in mAP score compared to the 

Euclidean space. 

 

2 * and ** indicates DenseNet121/169 or ResNet101 is used as the backbone, 

respectively in all tables. 
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Table 5.2: Comparison with the state-of-the-art approaches in DukeMTMC-reid. 

Method R-1 mAP 

 Pose-Transfer* [Liu et al., 2018] 78.52 56.91 

 DPFL  [Chen et al., 2017] 79.20 60.60 

 SVDNet+RE [Zhong et al., 2017] 79.80 62.00 

 Mid-level [Yu et al., 2017] 80.43 63.88 

 DaRe+RE* [Wang et al., 2018] 80.20 64.50 

 HA-CNN [Li et al., 2018] 80.50 63.80 

 MLFN [Chang et al., 2018] 81.00 62.80 

 DuATM [Si et al., 2018]* 81.82 64.58 

 PCB B [ Sun et al., 2018] 81.90 65.30 

 PCB+RPP B [Sun et al., 2018] 83.30 69.20 

 MultiBranch [Zhai et al., 2019]   84.00 68.40 

 GP** [Almazan et al., 2018] 85.20 72.80 

 Ours_Ensemble (Euc.)  86.26 72.63 

 Ours_Ensemble (Ham.)  85.83 73.16 

5.6.2.3. CUHK03 Dataset 

CUHK03 dataset is a collection of 14,097 images of 1437 identities and has two 

versions based on the bounding box annotation procedure: manually labeled and 

automatically detected. In [Zhong et al., 2017], a new protocol similar to Market-1501 

and DukeMTMTC-reid datasets is suggested for this dataset. According to this setting, 

there are 767 and 700 identities in training and test sets, respectively and the same 

evaluation procedure is employed with Market-1501 and DukeMTMC-reid. 

The proposed method is compared to recent deep learning approaches in Table 

5.3. End-to-end ensemble model presents superior performance than the previous 

techniques and on both labeled and auto-detected bounding boxes. Rank-1 accuracy 

and mAP scores are increased by 5% in the labeled set, while in the auto-detected set 

we observe 4% and 2% increase, respectively.  

CUHK03 dataset presents the overfitting problem more obviously due to its 

relatively modest number of training images. Therefore, the proposed method's 
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advantage on the overfitting problem is shown more explicitly against other multi-loss 

approaches such as [Zhai et al., 2019] and [Sun et al., 2018]. 

 

Table 5.3: Comparison with the state-of-the-art on CUHK03 datasets. 

Method 
CUHK03-Labeled CUHK03-Detected 

R1 mAP R1 mAP 

Pose-Transfer* [Liu et al., 2018] 45.10 42.00 41.60 38.70 

DPFL [Chen et al., 2017] 43.00 40.50 40.70 37.00 

DaRe+RE* [Wang et al., 2018] 66.10 61.60 63.30 59.00 

MLFN [Chang et al., 2018] 54.70 49.20 52.80 47.80 

TriNet+RE [Zhong et al., 2017] 58.14 53.83 55.50 50.74 

HA-CNN [Li et al., 2018] 44.00 41.00 41.70 38.60 

PCB [Sun et al., 2018] - - 61.30 54.20 

MultiBranch [Zhai et al., 2019] - - 61.70 55.30 

PCB+RPP [Sun et al., 2018] - - 63.70 57.50 

Ours_Ensemble (Euc.)* 71.13 66.23 67.20 61.73 

Ours_Ensemble (Ham.)* 71.06 66.30 67.10 61.66 

5.6.2.4. MSMT17 Dataset 

 MSMT17 is a recently released dataset that includes severe variation in imaging 

conditions, thus more realistic. The proposed method is compared with the existing 

models in Table 5.4. End-to-end ensemble model outperforms the previous studies 

GoogleNet [Szegedy et al., 2015], PDC [Su et al., 2017] and GLAD [Wei et al., 2017], 

which are reported by the publishers of the dataset. Our model also performs 

comparably with DG-Net [Zheng et al., 2019]. These results indicate that our method 

can produce competitive results on such challenging datasets. 
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Table 5.4: Comparison with state-of-the-art methods on MSMT17 dataset. 

Method R-1 mAP 

GoogleNet [Szegedy et al., 2015] 47.6 23.0 

PDC [Su et al., 2017] 58.0 29.7 

GLAD [Wei et al., 2017] 61.4 34.0 

DG-Net [Zheng et al., 2019] 77.2 52.3 

ResNet50 IDE 66.5 38.9 

DenseNet121 IDE 70.8 44.2 

Ours (Euc.) 76.5 49.5 

Ours (Ham.) 75.9 50.1 

5.6.3. Further Analysis 

In this section, we analyze our proposed model in detail to demonstrate its 

effectiveness. Specifically, we report the performance of the base learners 

individually, compare them with a baseline Identity Discriminative Embedding (IDE) 

model [Zheng et al. 2016] , and confirm their participation in the overall performance. 

We use Densenet-121 pre-trained on ImageNet [Deng et al., 2009]  as the base 

network for baseline IDE model to perform a fair comparison with the proposed end-

to-end ensemble model. For the IDE model, we replace the ImageNet classification 

layer with two sequential layers: a 1024-length fully connected embedding layer and 

a classification layer is appended. Cross-entropy loss is used for the classification task. 

Dropout is employed after gAP and embedding layers to improve the generalization 

capability. In the inference time, the features extracted from gAP layer is used for 

similarity calculation, which produces better ranking scores than the embedding layer 

in our experiments.  

The component-based experiments for the proposed method are conducted on 

the three widely used ReID datasets, namely Market-1501, DukeMTMC-reid and 

CUHK03. The performances of the baseline model, individual base learners, and the 

ensemble model are presented in Table 5.5 in different configurations. Specifically, 

the upper and lower part of the table demonstrates the results without and with using 

Random Erasing (RE) data augmentation, respectively. The used distance metric 

file:///C:/Users/Ayşe/Desktop/Thesis/thesis%20tables.xlsx%23RANGE!_bookmark76
file:///C:/Users/Ayşe/Desktop/Thesis/thesis%20tables.xlsx%23RANGE!_bookmark77
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(Euclidean or Hamming) is also indicated in the table. The inferences we make from 

the table concerning different criteria is as follows: 

• Baseline performance: DenseNet121 pre-trained on ImageNet dataset 

presents a strong baseline for person ReID. Notably, it produces 88% Rank-

1 and 73% mAP scores on Market-1501 when random erasing is not used. On 

the other hand, ResNet50 baseline is reported as 85% and 65% in the 

literature. Adopting random erasing data augmentation further improves the 

baseline model and results in competitive performance with state-of-the-art 

techniques. One can infer that having fewer parameters than ResNet 

counterparts, DenseNets, are suitable for constituting the backbone 

architecture for person ReID. 

• Base learner performance: There are 2L=16 feature extraction networks in 

our best model. To evaluate each base learner's performance alone, we ignore 

the rest and calculate the similarity based on only the outputs of the current 

base learner.  The average performance of the base learners (Avg. Base) is 

reported in both Euclidean and Hamming spaces. We observe that average 

base learner performance is significantly better than the baseline model, 

particularly on the relatively small scale CUHK03 dataset. We argue that the 

remarkable improvements of the base learners are due to their spatially-

awareness. In most ReID models, the final feature maps produced by the 

backbone network are subject to pooling to provide feature transferability and 

reduce the feature vector size, which causes loss of information. On the other 

hand, our non-pooled version, which considers the spatial information 

through fully connected layers, outperforms the baseline model. To support 

this argument, we present the activation maps of test images that are input to 

embedding layers of the baseline model and our base learners in Figure 5.3. 

The baseline model focuses only on the most discriminative part, while the 

base learners can concentrate on other clues, which result in diversity among 

them as discussed below. It is also noteworthy that quantization results in 

inferior performance in Hamming space when the base learners are used 

individually, but they still improve the real-valued baseline on all datasets. 

• Base learner diversity: We observe further improvements over the individual 

models when the embedding features of different feature extraction networks 
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are combined. As shown in Table 5.5, our ensemble model (Ensemble) 

outperforms the individual feature extractors by a large margin, especially in 

the mAP score. These results imply that there is sufficient divergence between 

base learners, and they add complementary information to the feature 

representation, which is crucial for ranking. Note that ensembling the base 

learners provide much more improvement in Hamming space: more than 5% 

increase in mAP scores are obtained depending on the dataset. Although the 

individual feature extractors under-perform in Hamming space against 

Euclidean space, the ensemble performance is comparable with the 

performance in Euclidean space. To better demonstrate the effect of 

ensembling, we give the individual accuracy of each base learner and the 

cumulative ensemble performance on each dataset in Figure 5.4. From the 

figure, we can observe that deeper base learners (L=9 to 16) are generally 

likely to perform better. There exists diversity between learners, which causes 

both Rank-1 and mAP scores to increase when their features are combined. 

• Random Erasing: Comparing the corresponding rows in the upper and lower 

parts of Table 5.5, we can infer that the proposed method improves with the 

Random Erasing (RE) data augmentation. The data augmentation improves 

the scores of both the baseline and the individual learners of the ensemble. 

The improvement on individual learners results in increased ensemble 

performance on all datasets, which indicates that the proposed method is 

complementary to the random erasing data augmentation. 

5.6.4. Comparison with conventional ensemble 

 The proposed method creates an ensemble model from a single deep network in 

an efficient way by sharing a substantial amount of the model parameters among the 

base learners. A conventional approach, on the other hand, requires training multiple 

independent networks from scratch, which we call baseline ensemble. We compare the 

proposed model to the baseline ensemble model which consists of up to 9 IDE models 

trained separately, which produces 9 ∗ 1024=9216 length feature vectors in test time. 

Figure 5.5 presents the comparison of the proposed method with the baseline ensemble  

model on all datasets. In the top row, CMC curves of both ensemble models and their 
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base learners are given. The bottom row presents the Rank-1 accuracy as a function of 

model complexity, which is reflected by the number of FLOPs required for a single 

image in test time. As shown in the figure, the individual baseline model and our 

ensemble model requires 2.82 GFLOPs and 2.85 GFLOPs, respectively. On the other 

hand, the baseline ensemble model the number of FLOPs increases with the ensemble 

size (2.82 GFLOPs per base learner). 
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Table 5.5: Ablation studies of components of the proposed model. 

Method Metric 
Market-1501 DukeMTMC-reid CUHK03-Labeled CUHK03-Detected 

R1 mAP R1 mAP R1 mAP R1 mAP 

Baseline Euclidean 88.75 73.62 81.72 64.94 50.37 46.41 48.40 44.31 

Avg. Base Euclidean 90.79 77.45 83.73 68.18 63.94 57.94 60.06 54.31 

Avg. Base Hamming 89.41 75.23 82.10 65.67 60.50 54.33 57.27 51.05 

Ensemble Euclidean 91.93 79.50 84.83 70.33 67.20 61.90 62.93 57.56 

Ensemble Hamming 91.80 79.63 84.63 70.50 67.03 61.80 62.86 57.40 

Baseline+RE Euclidean 91.14 77.82 83.48 68.70 58.12 53.67 56.23 51.27 

Avg. Base+RE Euclidean 92.11 79.62 85.18 70.40 67.74 62.07 63.33 57.41 

Avg. Base+RE Hamming 90.90 77.22 83.51 68.10 64.64 58.56 60.28 53.88 

Ensemble+RE Euclidean 93.19 82.10 86.26 72.63 71.13 66.23 67.20 61.73 

Ensemble+RE Hamming 92.73 82.19 85.83 73.16 71.06 66.30 67.10 60.28 
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Figure 5.4: Base learner performances and cumulative ensemble performance. 
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As one can observe from the second row, for the large-scale datasets Market-

1501 and DukeMTMC-reid, our method outperforms the baseline model significantly 

even though it requires nearly equal number of FLOPs. The baseline ensemble method 

requires several times more CPU time to perform slightly better (+1% Rank-1 score) 

than our model. For the relatively modest CUHK03 dataset, on the other hand, our 

approach yields significantly better results than the baseline ensemble (4% and 2% 

improvement for the labeled and detected bounding boxes, respectively) despite using 

smaller number of FLOPs. Furthermore, the average base learner performance on this 

dataset is competitive with the baseline ensemble model. We obtain base learner scores 

of 67% vs 66% for the labeled and 63% vs 65% for the detected bounding boxes, 

respectively. This result indicates that, end-to-end training of base learners is not only 

an effective ensembling approach but also a regularization method, which improves 

the individual performances of the base learners. As shown in the bottom row of the 

third and the fourth columns, the baseline ensemble model cannot achieve the 

performance of the proposed method, regardless of the number of base learners. This 

indicates the importance of weight sharing on small datasets. When a single network 

is trained on small datasets, it may suffer from overfitting even with model 

combination. 
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Figure 5.5: Comparison with conventional ensemble.
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5.6.5. Hyper-Parameter Analysis and Ensemble of Ensembles 

There are two hyper-parameters that are additional to the standard baseline 

hyper-parameters: the ensemble size and the size of feature vectors. We analyze the 

effects of these hyper-parameters on Market-1501 dataset in  

Figure 5.6 left and right, respectively. The hyper-parameter ensemble size 

corresponds to the number of base learners and the feature vector size is the number 

of nodes in the embedding layer of each sub-networks. In order to fix the length of the 

final feature representation, we tune these hyper-parameters inter-dependently, e.g., 

for 8 learners the feature vector size is 1024. Note that, for feature vector size analysis, 

we fix our ensemble model to 16 learners and report the results accordingly. 

Figure 5.6 represents that our approach performs better than the baseline model 

(Table 4.3) for varying hyper-parameters, which indicates that the model is not 

sensitive to the hyper-parameters. Therefore, in case of computational constraints, the 

model can be switched to a more compact version by setting the embedding size and 

ensemble size as 64 and 16, respectively (i.e. 64×16=1024).  

 

Figure 5.6: Hyper-parameter analysis on Market-1501.  

To investigate whether our method further improves with model combination, 

we treat our ensemble model as a standalone base learner and create an ensemble of 

our model which we call ensemble of ensembles. It is noteworthy that due to the 

similar complexity of our model and that of the baseline model, ensemble of ensembles 
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is computationally comparable to the baseline ensemble model (2.82 vs 2.85 GFLOPs 

per learner). The comparison between our ensemble of ensembles model and the 

baseline ensemble is given in Figure 5.7 reporting mAP scores according to the 

ensemble size (thus the model complexity). As shown in the figure, our method still 

improves when used as a base learner and combined with other sister models. In 

addition, the ensemble of ensemble model performs superior to the conventional 

approach. This result shows that the proposed method is convenient as a base learner 

as itself compared to the baseline model and has more space to improve. 

 

Figure 5.7: Performance of ensemble of ensemble model. 

 

5.6.6. ResNet50 as the Backbone 

In this section, we investigate the effectiveness of the proposed model on the 

other backbones. To this end, we adapt it to the widely used ResNet50 architecture. 

Our method is based on DenseNet architecture, which produces compact feature maps 

(32 filters) after each convolution layer. Since these compact feature maps represent 

the whole image, they are very informative and discriminative enough to be used as 
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the inputs to the base classifiers. The embedding features trained in this way results in 

diverse and accurate base learners as shown above. 

Compared to the DenseNet, ResNet50 produces a huge number of feature maps 

(2048 filters) after the last bottleneck blocks. If we attempt to place base learners after 

these blocks, the number of required parameters would become too large. In order to 

apply the same model on the ResNet50 architecture, we partition the output channels 

of the bottleneck layers and place our base learners on top of these channels. The 

overall model is shown in Figure 5.8. As shown in the figure, ResNet50 has three 

bottleneck blocks whose output channels are split into multiple branches. At the end, 

spatially aware sub-networks (SN) are integrated on top of these channels. We 

partition each block's output into 8 and obtain 24 base learners in total. The sub-

networks have the same structure as the DenseNet model, which is shown in Figure 

5.2.  

We compare this model to the baseline and some representative state-of-the-art 

models in the upper part of Table 5.6. We report the baseline ResNet50 model which 

is the IDE model introduced before. Then, we apply Random Erasing data 

augmentation and our method as additional tricks on the baseline model. The results 

indicate that our model is complementary to Random Erasing data augmentation and 

further improves the performance. As shown in the table, our method still produces 

state-of-the-art scores for Market-1501 and DukeMTMC-reid datasets when ResNet50 

is used as the backbone. Moreover, it significantly outperforms the existing studies on 

the relatively small CUHK03 datasets and it achieves the second-best scores after our 

DenseNet model.  

We perform another experiment to investigate whether our method further 

improves a strong baseline which applies some tricks proposed in the literature [Luo 

et al., 2019], which they call Bag of Tricks. Therefore, we integrate our end-to-end 

ensemble model as a trick to this baseline model. The lower part of Table 5.6 presents 

the results. In the first row, the scores of the strong baseline proposed by [Luo et al., 

2019] is given. As shown in the bottom row of the table, our method further improves 

this baseline when applied as an additional trick. The improvement on CUHK03 

dataset is more noticeable. 

We also observe improvements in the training process. Specifically, our 

ensemble model converges faster and presents a smooth learning curve compared to 
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Bag of Tricks approach. Figure 5.9 presents the Rank-1 and mAP scores on all datasets 

during different training stages of both our model and the strong baseline model. Our 

model performs favorably and converges by 60K iterations, where the Bag of Tricks 

performs best after 120K iterations.
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Figure 5.8: Adaptation of the proposed model on ResNet50. 
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Table 5.6: Comparison with the state-of-the-art when ResNet50 is the backbone. 

Method 
Market-1501 DukeMTMC-reid CUHK03-Labeled CUHK03-Detected 

R-1 mAP R1 mAP R1 mAP R1 mAP 

DuATM* [Si et al., 2018] 91.42 76.62 81.82 64.58 - - - - 

GP** [Almazan et al., 2018] 92.20 81.20 85.20 72.80 - - - - 

PCB [Sun et al., 2018] 92.40 77.30 81.90 65.30 - - 61.30 54.20 

MultiBranch [Zhai et al., 2018] 93.10 78.90 84.00 68.40 - - 61.70 55.30 

PCB+RPP [ Sun et al., 2018] 93.80 81.60 83.30 69.20 - - 63.70 57.50 

ResNet50 88.03 70.93 77.90 58.87 48.07 43.57 45.17 41.07 

+RE 89.63 75.70 82.50 66.60 57.37 52.73 56.77 51.77 

+Ours 91.76 80.16 84.86 70.43 68.70 64.83 65.13 60.16 

Bag of Tricks [Luo et al., 2019] 94.50 86.05 86.69 76.49 71.23 69.59 68.21 66.41 

+Ours 93.92 86.11 87.44 77.23 75.63 73.95 72.50 70.49 
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Figure 5.9: The model performance in different training stages. 
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6. END-TO-END BNN ENSEMBLES 

In this section, we adapt our proposed ensemble model to Binary Neural 

Networks (BNNs). First, we give a brief background and overview of BNNs and 

explain our motivation for adapting the proposed model on this type of neural network. 

Then, we evaluate our model on image classification task using CIFAR10 dataset.  We 

report our initial results and inferences, and analyze our model’s performance on the 

classification task, its stability during training, and robustness to input perturbations. 

Then, we adopt our end-to-end BNN ensemble model for person ReID, and 

experimentally show that it outperforms conventional ensemble model by a large 

margin, which indicates that besides being an efficient ensemble model, the proposed 

approach has an intrinsic regularization effect. 

6.1. Motivation 

Deep neural networks are typically resource-intensive and require expensive 

GPU-based machines, which prevents their training and deployment on mobile and 

embedded devices [Guo et al., 2017], [Rastegari et al., 2016].  Network compression 

and quantization have been studied extensively to reduce the storage and memory 

space of deep networks  [Ullrich et al., 2017], [Luo et al., 2017], [Belagiannis et al., 

2019], [Tung and Mori, 2020]. Deep neural networks with low bitwidth [Zhou et al., 

2016] or binary weights [Courbariaux et al., 2015] have been proposed to reduce the 

computational consumption, and they show near the state-of-the-art performance of 

full-precision counterparts. 

Following the advances mentioned above, [Hubara et al., 2016] have 

successfully trained binary networks (BinaryNet), whose weights and activations both 

take only binary values during the forward pass. The binary neural networks have been 

evaluated on large scale image dataset in [Rastegari et al., 2016] for the first time. 

Besides the advantage of saving storage and memory space, BNN’s perform only 

bitwise operations at run-time, and when computing the gradients at train-time. It is 

shown that binarizing only the weights reduces the memory consumption by 32x, and 

binarizing both the weights and activations allows 58x faster convolutional operations 

[Rastegari et al., 2016]. This makes BNNs one of the most promising techniques in 

training and deploying DNN’s in low-end devices [Zhu et al., 2019]. However, there 
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is still much more room to improve the binary neural networks compared to full-

precision networks. 

In the present study, the improvement obtained in the Hamming space has 

encouraged us to evaluate the proposed ensemble model on the BNN’s. In Section 

5.6.3, we have shown that the proposed model outperforms the base learners more 

significantly when the feature extraction layer is trained with tanh activation function 

during training, and the features are quantized into binary values in run-time. The 

results indicate that quantization provides more diversity on the feature vectors, which 

enables error compensation in the run-time ranking. On the other hand, BNNs typically 

suffer from instability during training and have robustness issue in run-time due to 

quantization [Zhu et al., 2019]. Therefore, the proposed model is promising to be used 

as a regularizer in BNNs.  

6.2. Experiments on Image Classification 

In this section, the proposed model is adapted for image classification, and the 

initial findings are reported. We evaluate our method on CIFAR10 dataset using the 

Network in Network (NIN) architecture. We use the binarization method proposed by 

Rastegari et al. [Rastegari et al., 2016], [Web-3, 2020]. The adaptation of the proposed 

ensemble model is shown in Figure 6.1. We append multiple convolution and 

classification layers on top of the output of the Network in Network architecture, 

resulting in a multi-branch architecture, where each branch is a base learner. It is 

noteworthy that there is no weight-sharing between the branches to promote diversity, 

while the NIN backbone is shared. The outputs of the classification layers are 

combined by majority voting in test time.  

Our proposed model is closely related to the work of [Zhu et al., 2019], where 

they train multiple independent BNNs to obtain a BNN ensemble; that is, the weights 

of  NIN backbone are not shared between the base learners. They also provide several 

experimental analysis to demonstrate the main issues in BNNs. We mainly follow the 

same approach to investigate the effectiveness of our approach in BNNs. Since 

binarizing the first and last layers results in severe accuracy degradation, previous 

work adopted full-precision in the first and last layers. In this thesis study, we use two 

network experimental settings following [Zhu et al., 2019]: 1) All-Binary (AB), where 
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all layers are binarized, 2) Semi-Binary (SB), where all layers are binarized except the 

first and last layers.  

 

Figure 6.1: Adaptation of the proposed model to image classification. 

6.2.1. Classification Performance  

We compare our method with the BNN baseline for AB and SB setting in Table 

6.1. Our approach produces comparable scores with the baseline model in SB setting. 

The baseline model slightly outperforms our model when the learning rate is high (i.e., 

0.01), but they perform similarly for lower learning rates. On the other hand, our 

method improves the baseline model in AB setting consistently. In particular, it 

provides more than 2.5% improvement when the learning rate is high. These results 

are consistent with the inferences made in the Hamming space for ReID task. The 

proposed end-to-end ensemble model performs effectively in case of quantization. 
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Table 6.1: Comparison of our method with BNN baseline. 

 learning rate 

  0.01 0.001 0.0001 

AB 74.06 69.98 66.32 

Ours AB 76.78 71.89 67.82 

SB 83.46 81.51 75.87 

Ours SB 82.28 80.86 75.42 

6.2.2. Stability Analysis 

Following [Zhu et al., 2019], we also compare the stability of the networks by 

measuring the fluctuation of the test accuracy after training the networks for 300 

epochs. We continue to train for 20 epochs and measure the fluctuation on the test set 

after each epoch. However, there are many different experimental setups in the work 

of [Zhu et al., 2019], and it is not specified which one is used in the stability analysis. 

As a result, our baseline scores on the stability analysis are not compatible with their 

reported ones. Therefore, we compare our method with our baseline model.  

 

 

Figure 6.2 Stability comparison of our method with BNN baseline. 

As shown in Figure 6.2, BNNs suffer from high fluctuation even after a large 

number of training iterations, especially when All-Binary setting is used.  On the other 

hand, our method significantly improves the AB model in terms of training stability. 

Interestingly, the stability of the proposed model in AB setting is better than SB setting 
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on both baseline model and our model. These results imply that the proposed model is 

a strong regularizer for BNNs and provide sufficient diversity for the base learners in 

AB setting, which results in adequate error compensation. On the other hand, the 

proposed model has a negligible effect in SB setting, which indicates that it cannot 

fulfill the diversity requirement. Therefore, the proposed model needs further 

investigation on improving the base learner diversity in SB setting. 

6.2.3. Robustness Analysis 

Robustness is defined as the property that producing similar errors for the test 

and training samples if they are close to each other [Xu and Mannor, 2012]. In this 

section, we perform robustness analysis where we measure the sensitivity of the 

networks to input variations. To this end, following [Zhu et al., 2019], after obtaining 

the outputs for 250 test images, we inject input perturbation Δ𝑥 on each test image by 

a Gaussian noise with standard deviation 0.01, run a forward pass and measure the 

expected 𝑙2 norm of the change on the output distribution.  

 

 

Figure 6.3 Robustness comparison of our method with BNN baseline. 

We compare our model with BNN baseline for both AB and SB settings in 

Figure 6.3.  As expected, BNN baseline in All-Binary (AB) setting is significantly 

more sensitive to the input perturbations compared to SB setting. On the other hand, 
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we observe that our ensemble model addresses the sensitivity of the AB model 

effectively and accomplish to reduce the magnitude of the output variation 

considerably. Moreover, it improves the robustness of the BNNs in SB setting.  

The results of the experiments that are reported in this section indicate that the 

proposed end-to-end ensemble model is promising in improving the performance of  

BNNs in terms of accuracy, stability, and robustness. These results are consistent with 

very recent work of [Zhang et al., 2018], which shows that multi-branch architectures 

are less non-convex. However, we observe that simple adaptation of the proposed 

model into the SB model has no noticeable effect on the model accuracy and training 

stability, which needs further investigation. 

6.3. Experiments on Person ReID 

In this section, we adapt a deeper BNN model to evaluate the end-to-end BNN 

ensemble’s performance on person ReID. We compare our method with the BNN 

baseline as well as a conventional ensemble of this baseline. As the baseline model, 

we use Bi-RealNet [Liu et al., 2018], a binarized version of ResNet model which 

improves the previous BNN models on the large-scale image classification task by . 

We use ResNet18 model proposed in [Liu et al., 2018],  where all layers are binarized 

except the first and last layers. We append a spatially aware embedding layer before 

the classification layer for fair comparison with our model.  

To convert the baseline model to our end-to-end ensemble model, we follow the 

same method introduced in Section 5.6.6. Specifically, we append multiple spatially-

aware base learners on top of separate channel splits in the last ResNet block, which 

consists of 4 binary convolutional layers. The sub-networks for constructing the base 

learners are made up of a 1D binary convolutional layer, which serves as the feature 

extraction layer and a real-valued classification layer. During the inference, only the 

input layer requires real-valued operation because classification layer is not used.  

To compare our model with conventional ensemble model, we train 8 parallel 

baseline models and combine their feature extraction layer outputs. We use an 

embedding vector size of 1024, which ends up with a 8192 length feature vector. On 

the other hand, our best end-to-end ensemble model consists of 8×4=32 base learners 

each of which produces 128-bit feature vectors, resulting in a 4096-length feature 

vector. 
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Table 6.2: Comparison with classical ensemble of baseline BNN. 

Model R-1 mAP 

Baseline Avg. 51.22 24.57 

Baseline Ensemble 60.40 34.30 

Our Base Learner Avg. 53.65 28.57 

Our Ensemble 71.00 47.30 

We perform our experiments on Market1501 dataset. In Table 6.2, we compare 

our model with baseline BNN, and a conventional ensemble of this baseline model. 

Our average base learner performs better than the baseline model, which demonstrates 

that our model is an effective regularization technique. Moreover, our ensemble model 

surpasses the classical ensemble model by 11% in Rank-1 and 13% in mAP scores, 

which indicates that there is divergency between base learners. We also report the 

cumulative performance of our model with conventional ensemble model in Figure 

6.4. As shown in the figure, our model improves smoothly as opposed to the 

conventional model, which presents fluctuation due to bad performance of the baseline 

models. 

We perform an experiment to observe whether the performance improves if we 

embed more base learners into our model. Specifically, after each layer in the last 

ResNet block we partition the output feature maps into overlapping splits and append 

sub-networks after each split. We keep the embedding feature size and the input feature 

map size the same with the previous experiments  The results are given in Figure 6.5, 

which shows that the performance can be increased in this way by using up to 24 base 

learners. 

The experiments in this section have shown that our model, besides being a 

effective and efficient ensemble model, is a promising way of regularizing BNN 

models. 
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Figure 6.4: Cumulative performance of classical ensemble and our ensemble. 

 

Figure 6.5: Convergence in performance as the ensemble size increases. 
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7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

This thesis has aimed at finding novel regularization methods for person ReID 

problem. To this end, we designed an ensemble learning model of deep networks that 

consists of many diverse and accurate base learners. The computational overhead of 

training multiple deep networks is avoided by embedding multiple base learners in a 

single network. Specifically, a multi-branch architecture is designed by integrating 

individual sub-networks on top of different network stages. Each sub-network, 

together with the shared backbone architecture, constitutes a base learner. The base 

learners are trained jointly in an end-to-end manner, which ended up an efficient 

ensemble model. 

The detailed experiments demonstrate that the base learners are diverse and 

accurate enough so that they form a convenient ensemble model. We observe 

significant improvement in the ReID accuracy when the feature representations of 

multiple base learners are combined. As a result, the proposed model outperforms most 

state-of-the-art approaches on four benchmark dataset. Moreover, the impressive 

performance gain on the relatively small scale CUHK03 dataset indicates that the 

proposed model effectively addresses the overfitting problem. The analysis of the 

computational cost of the proposed model shows that our model adds a negligible 

number of FLOPs over the baseline model. Moreover, it is very efficient compared to 

the conventional ensemble model, which consists of multiple deep networks trained 

independently.  

We have also evaluated the performance in Hamming space to allow fast 

similarity calculation between the query and gallery images. The experiments 

demonstrate that our approach is much more effective in this space. Although the base 

learners are weaker compared to the full-precision embedding, their combination 

shows comparable performance, which indicates that there is sufficient diversity of 

between base learners.  

One of the most critical features of the proposed approach is its easy applicability 

to other problems. Since it has no ReID-specific sub-modules, and relies only on the 

backbone architecture, one can easily adapt the model for other tasks such as image 

classification or image retrieval. On the basis of its generability, and the comparable 
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performance in Hamming space, we have adapted our model into BNN’s for image 

classification task. Our initial experiments have shown that the proposed approach 

improves the performance of BNN’s in terms of accuracy and training stability when 

all weights and activation are binarized. We have also performed a sensitivity analysis 

to the input variations, where the experiments demonstrate that our model significantly 

improves the model robustness. 

Ensemble learning is a widely used method for regularizing the learning models 

and has a rich literature with many applications. The computational overhead of deep 

networks hinders designing ensemble of deep networks in a conventional way. 

Combining deep networks with ensemble learning has only recently started to emerge. 

Considering the challenges, we can expect more research effort to be made in the future 

for combining other ensembling techniques with deep learning and improving their 

performance in terms of accuracy and efficiency.

7.2. FUTURE WORK 

In this section, we first identify some future directions which may utilize from 

the proposed model to overcome some task-specific problems in person ReID, such as 

end-to-end or unsupervised ReID. These problems have attracted more attention in 

recent years, and the proposed model should be adapted accordingly to keep it up to 

date. Secondly, we propose some further research subjects from machine learning or 

computational perspectives regarding the proposed ensemble model.  

7.2.1. Task-Specific Problems 

A natural direction of future research is to improve the proposed model to 

overcome some specific problems in person ReID. Below, we review these significant 

issues, which are very attractive research topics in the ReID community. 

7.2.1.1. Open-Set ReID 

The person ReID models, which have shown a significant improvement in recent 

years, are mostly based on the closed-set scenario. In the closed-set scenario, it is 

assumed that a known set of people all appear in the view of each camera [Cancela, et 
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al., 2014]. This assumption implies that every probe person certainly exists in the 

gallery set, and the ultimate goal is, given a probe image, retrieving the most similar 

person from the gallery set [Liao et al., 2014]. The closed-set scenario considerably 

simplifies the ReID problem, in which the previous work has shown tremendous 

improvement.  

However, the above-mentioned assumption does not hold in the practical 

applications, such as searching a suspect in a video. In a real-world ReID system, the 

identities of people that appear in different cameras may or may not overlap. Thus, the 

probe person can or cannot match with a person in the gallery set. In other words, there 

are more possible outcomes in this unconstrained setting [Cancela et al., 2014], which 

makes the problem even more challenging. Therefore, a real-world person ReID 

problem can be decomposed into two sub-tasks: detection and identification. To deal 

with the large gallery sets, a practical model should first determine the videos in which 

the probe person appears (detection), and then retrieve the corresponding frames.  

The difficulty of the open-set scenario has led most researchers to deal with the 

simplified closed-set version. As a result of the significant improvement in the closed-

set scenario, the attention to the more challenging open-set scenario has increased in 

the ReID community [Leng et al., 2019].  

The open-set ReID problem requires making a hard decision (match/no match) 

during the detection process as opposed to the closed-set problem, where the final 

decision is based on the soft computation of similarity scores. Therefore, a strong 

decision-making process is required, which should not be solely relied on a single 

classifier. Ensemble models are very appropriate tools which can be utilized for 

improving the decision-making process in such problems. In order to deal with large 

video gallery sets, compact ensemble models with improved performance may provide 

significant performance gain. The proposed end-to-end ensemble model, which shares 

a substantial number of convolutional operations among the base learners can be 

adapted and improved to be used for decision making in the open-set person ReID 

problem.  
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7.2.1.2. End-to-End ReID 

A practical person ReID system takes the raw videos as input and performs 

person detection and tracking along with re-identification [Zheng et al., 2016]. It has 

been shown that integrating person detection and re-identification can improve model 

performance [Xu et al. , 2014]. Therefore, the proposed model can be adapted for joint 

learning of these two tasks. The base learners in an ensemble model may compensate 

for the mistakes of each other’s in bounding box detection, and this may further 

improve the ReID accuracy. 

7.2.1.3. Domain-Invariant or Unsupervised Person ReID 

A trained person ReID model must be transferable to new domains where there 

is no labeled training data because annotating data for each domain is impracticable. 

However, domain discrepancy causes a significant performance drop. Therefore, the 

generalization ability of the trained model is of crucial importance in ReID systems. 

Therefore, a considerable amount of research has been invested in unsupervised 

domain adaptation, where a trained model is adapted to a target domain via 

unsupervised training or a domain-invariant model is proposed which benefits from 

both labeled source domain and unlabeled target domains [Zhong et al., 2019], [Song 

et al., 2019]. One future research direction is to adapt our model to unsupervised 

domain adaptation. 

7.2.2. Further Directions 

In this section, we suggest some future research subjects to improve the model 

efficiency and effectiveness using tools from machine learning and deep learning 

research.  

7.2.2.1. More Ensemble Methods  

A potential research direction may aim to incorporate different ensembling 

approaches to improve the end-to-end training strategy in the proposed model. For 

example, to increase the base learner diversity, bagging is a widely used model, where 
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each base learner is trained with a variant of the training data, which is via sampling 

by replacement. In this way, each base learner slightly differs from the others without 

compromising from the accuracy. Another ensembling scheme that can be employed 

is boosting, where each base learner aims to compensate for the previous learner’s 

mistakes on training data. This is a more effective strategy for obtaining diverse base 

learners. These methods can be adapted in end-to-end CNN ensembles by calculating 

the loss of each base learner based on weighted training instances. 

7.2.2.2. Binary Neural Networks 

Binary Neural Networks (BNNs) is one of the most promising topics for training 

and deployment of deep models on low-end portable devices. A BNN uses only bitwise 

operations during the forward pass by quantizing the weights and activations to binary 

values and operates in full-precision during the calculation of gradients. This makes 

them very favorable compared to the full-precision networks, which are very 

expensive to train and test. BNNs theoretically enable 52x faster convolutional 

computation. 

Compression rate and accuracy present a trade-off in BNN’s. Nevertheless, 

many advances have been accomplished [Rastegari et al., 2016] . Recent research has 

shown that binary neural networks can be hardware accelerated [Conti et al., 2018], so 

the area is open to further improvements. [Zhu et al., 2019] have shown that 

ensembling is an effective strategy for obtaining accurate binary neural networks. This 

finding is consistent with our experimental results, which demonstrates that it is more 

enhancing to ensemble the binarized features than the high precision ones. Therefore, 

more research effort should be made on adapting the end-to-end ensemble approach 

for binary neural networks, which is a promising approach.  

7.2.2.3. New Problems 

The proposed end-to-end ensemble model increases the mAP and Rank-1 scores 

for person ReID, where the ultimate task is ranking. The results indicate that the 

proposed model can be adapted to related tasks such as image retrieval where the final 

goal is similarity ranking. 
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In this thesis, the proposed end-to-end ensemble model is adapted for image 

classification with BNN’s. The initial results are promising and show that our model 

improves the classification accuracy, robustness, and stability of the BNN’s. Future 

work should investigate the effects on large-scale image classification task, which 

suffers from severe overfitting 

We have further investigated whether the end-to-end ensemble model improves 

the image classification task and perform experiments on CIFAR-10. We observed 

some improvements in the training stability and convergence such as the ensemble 

model is more robust to hyper-parameter changes and converges faster, which is 

consistent with the recent research [Zhang et al., 2018]. However, the classification 

accuracy remained the same. This result implies that the base learners are not diverse 

enough to compensate for the mistakes of each other in the classification layer. 

Therefore, more research effort should be made to increase the base learner diversity 

while adapting the end-to-end ensemble model for other tasks.  
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