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KISMİ EN KÜÇÜK KARELER YÖNTEMİNİN SİMÜLASYON VERİLERİ 

İLE DİĞER YÖNTEMLERLE KARŞILAŞTIRILMASI 
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Yüksek Lisans Tezi 

Fen Bilimleri Enstitüsü 

İstatistik Anabilim Dalı 

Danışman: Doç.Dr. Atila GÖKTAŞ 

Ağustos 2017, 59 sayfa 

 

Çoklu bağlantı mevcut olduğunda tahmin edilen doğrusal regresyon modelinin anlamlı 

bağımsız değişkenlere ilişkin katsayıların testinde kullanılan t istatistikleri anlamsız 

olmaktadır. Bu sorunun giderilmesinde kullanılan çok sayıda tahmin yöntemi 

bulunmaktadır. Çalışmamızda, bağımsız değişkenler arasında çoklu bağlantıya sahip 

çok değişkenli normal dağılımdan üretilen verilere uygulanan “Kısmi En Küçük 

Kareler Tahmin Yöntemi (KEKK)”, “Ridge Regresyon (RR)” ve “Temel Bileşenler 

Regresyonu (TBR)” yöntemleri karşılaştırılmıştır. Simülasyon çalışmasında veriler, 

farklı ilişki düzeylerinde ( 0.0, 0.3, 0.5, 0.7, 0.9), örneklem büyüklükleri 30, 50, 100, 

200 ve 500 birimlik örneklemler için farklı değişken sayılarda çalışma 5000 kere 

tekrarlanmıştır. Elde edilen bu veriler kullanılarak üç farklı yöntem ile tahmin edilen 

regresyon modeli için Hata Kareler Ortalamaları (HKO) hesaplanmış, düşük olan 

HKO değerleri dikkate alınarak, hangi yöntemin hangi durumda daha verimli ve daha 

iyi sonuçlar verdiği araştırılmıştır. 

Simülasyon verileriyle elde edilen bulgulara göre örneklem büyüklüğünün azalması 

veya artması, tahmin yöntemleri üzerinde önemli bir etki yaratmaktadır. Her örneklem 

büyüklüğü veya her değişken sayısında anlamlı üstünlük sağlayan bir tahmin yöntemi 

yoktur. Her tahmin yöntemi örneklem büyüklüğü, bağımsız değişken sayısı veya çoklu 

bağlantının derecesinden etkilenmektedir. Ancak süper çoklu bağlantı sorununda, 

bağımsız değişken sayısı ne olursa olsun literatürün aksine (n<=200 için) TBR 

yönteminin diğer iki tahmin yöntemine göre daha iyi sonuçlar verdiği gözlenmiştir. 

 

Anahtar Kelimeler: Kısmi En Küçük Kareler, Ridge Regresyon, Temel Bileşenler 

Regresyon, Çoklu Bağlantı 
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ABSTRACT 

COMPARISON OF PARTIAL LEAST SQUARES PREDICTION AND 

OTHER PREDICTION METHODS WITH SIMULATED DATA 

 

İsmail BAĞCI 

 

Master of Science (M.Sc.) 
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Supervisor: Assoc. Prof. Dr. Atila GÖKTAŞ 

August 2017, 59 pages 

 

When there is multicollinearity, using t test statistics for testing the coefficients related 

to meaningful independent variable of predicted linear regression is meaningless.   To 

eliminate this problem there are great number of prediction methods used. In our study 

Partial Least Squares Prediction method (PLS), Ridge Regression (RR) and Principal 

Components Regression (PCR), which are applied to generated data with 

multicollinearity among independent variables existing in multiple independent 

variables from standard normal distribution, are compared. The study was repeated 

5000 times in simulation for data in different degree of multicollinearity levels (0.0, 

0.3, 0.5, 0.7, 0.9) and for different sample sizes 30, 50, 100, 200 and 500 unit samples. 

Three prediction regression methods were applied by the help of the gathered data and 

Error Mean Squares (EMS) of regression parameters were calculated. The lowest EMS 

was taken into consideration to determine which method was the most fructiferous and 

had the best results under different circumstances.  

According to findings gathered through the Simulated data, increase and decrease in 

the sample size creates important effect on the predicting methods.  There is not a 

prediction method that has a meaningful superiority to the others in every sample size 

or every variable number.  Each prediction method is affected by the size of the sample, 

number of independent variables or the degree of the multicollinearity. However in 

super multi connection problem, whatever the number of dependent variable is, in 

contrast to literature (for n<=200), it is observed that PCR method had better results 

compared to the other two prediction methods.  

  

Key Words: Least Squares, Ridge Regression, Principal Components Regression, 

Multicollinearity 
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1. GİRİŞ 

Doğrusal regresyonda, bir veya birkaç bağımsız değişkenin arasında ortaya çıkan 

anlamlı ilişki, çoklu bağlantı olarak adlandırılmaktadır.  

Regresyon analizi, bağımlı bir değişken (Yi) ile bir veya birden fazla bağımsız 

değişken (Xi) arasındaki nicel ilişkiyi tahmin etmek amacıyla kullanılan en yaygın 

istatistiksel uygulamadır. Bağımsız değişken sayısı 1 (bir) tane ise bu duruma basit 

regresyon, birden daha fazla değişken var ise çoklu regresyon olarak adlandırılır. 

Regresyon analizinin genel kullanım amaçları: 

a) Önceden ölçülebilen değerlerden yararlanarak, daha sonra ölçülecek ölçüm 

değerlerini, 

b) Kolay ölçümü yapılabilen veri setinden yararlanarak, ölçümü zor olan bir 

özelliğin değerlerini 

c) Düşük maliyete sahip ölçüm değerlerinden, yüksek maliyetli ölçüm 

değerlerini tahmin etmek şeklinde sıralanabilir (Huber ve Dutter, 1974). 

Regresyon analizinin yapılmasında gerekli bir takım varsayımları sağlaması 

koşuluyla en yaygın kullanılan yöntem, En Küçük Kareler (EKK) yöntemidir. Bu 

yöntem ile denklemin verdiği (teorik) Y değerleri ile ölçümlerden elde edilen (gerçek) 

X değerleri arasındaki farkların karelerinin toplamını küçültme fikrine 

dayanmaktadır. Elde edilen bu modelin güvenirliliği EKK yönteminin 

varsayımlarının sağlanmasına bağlıdır. İncelenen bağımsız değişkenler arasında çoklu 

bağlantı olması, EKK ile tahmin edilen regresyon parametrelerine ait katsayılar, 

sonuçların yanlış yorumlanmasına neden olabilir. 

Ridge regresyon, regresyon analizinde çoklu bağlantı olması durumunda parametre 

tahminleri üzerinde oluşacak olan olumsuz etkinin ortadan kaldırılmasını sağlamak 

amacıyla geliştirilen yanlı bir regresyon yöntemidir.  

Temel Bileşenler Regresyon ise aralarında korelasyon bulunan orijinal 

değişkenlerinden daha az sayıda ve bu değişkenlere ait doğrusal bileşenleri olan yeni 

değişkenler yardımı ile açıklayan bir regresyon yöntemidir. 



 
 

2 
 

Tarım, sosyo-ekonomi, tıp ve biyoloji gibi alanlarda elde edilen sonuçların gerekli 

varsayımlar dikkate alınmadan EKK yöntemi ile tahmin edilmesi yanlış sonuçlar 

ortaya çıkarabilmektedir. Bu durumda EKK yöntemi ile elde edilmiş geçerliliklerden 

şüphe edilmelidir (Alpar, 1997). Bu nedenle yapılan çalışmalarda istatistik alanında 

önemli bir ölçüt olan çoklu bağlantı varlığı ve çözüm tekniklerine gereken önem 

verilmemiştir.  

Bu çalışmada doğrusal regresyon modelinde yer alan açıklayıcı değişkenler arasında 

çoklu bağlantı varlığında yanlı tahmin yöntemlerinden “Kısmi En Küçük Kareler” 

yönteminin diğer yanlı tahmin yöntemler ile karşılaştırılması amaçlanmaktadır. 

Karşılaştırma analitik olarak yapılamadığından söz konusu karşılaştırma simülasyon 

verileri ile gerçekleştirilmiştir. Sonuç olarak bağımsız değişken sayısının çokluğunda 

yanlı tahmin yöntemleri arasında en iyi tahmin yönteminin “Kısmi En Küçük Kareler 

Yöntemi” olacağı beklenmektedir. 

 

  



 
 

3 
 

 

2. LİTERATÜR ÇALIŞMALARI 

En Küçük Kareler Yöntemi, çeşitli alanlarda herhangi bir uygulama ile elde edilmiş 

verileri modelleyen bir fonksiyon bulmaya çalışır. Genellikle bu kullanılan veri 

tablosuna tam anlamıyla uyan bir fonksiyon bulmak pek mümkün olmadığı için; veri 

tablosuna en uygun olabilecek fonksiyon belirlenmeye çalışılır. Bir veri tablosuna en 

uygun fonksiyonu bulma sürecine regresyon analizi denir. 

Doğrusal regresyon analizinde bağımsız değişkenler sabit, bağımlı değişken 

tesadüfidir. Değişkenler hatasız ölçülmekte, bağımsız ve bağımlı değişkenler arasında 

var olan ilişki doğrusal olduğu varsayılmaktadır. Ancak bu doğrusallık kriteri, modele 

ait parametreler için gereklidir. Bağımsız değişkenler arasında güçlü ilişkilerin var 

olmasına bağlantı (collinearity) veya çoklu doğrusal bağlantı (multicolinearity) olarak 

ifade edilmektedir. Bu, regresyon analizinde istenmeyen bir durumdur (Orhunbilge, 

2000: 240-251).  

Regresyon analizlerinde çoklu doğrusal bağlantının olması, çeşitli problemlere neden 

olmaktadır (Orhunbilge, 2000:240-251). Çoklu doğrusal bağlantı problemi, çoklu 

regresyon analizindeki her bir gözlem için, bağımsız değişkenlerden biri ya da birkaçı 

arasında, tam veya tama yakın doğrusal bir ilişki olması durumudur. Ancak 

uygulamaların hemen hemen tamamında bağımsız değişkenler arasında ilişki 

olmaması çok sık rastlanan bir durum değildir. Genellikle bağımsız değişkenler 

arasında oldukça düşük düzeyde bir ilişki vardır. Eğer ilişki doğrusal bir ilişki ise, 

çoklu doğrusal bağlantı vardır.  

Kidwell ve Brown (1982), çoklu bağlantı üzerine bir çalışma yapmıştır. Bu çalışmada 

RR yöntemine yönelik yapay veriler kullanmıştır. Elde edilen sonuçlar doğrultusunda, 

tahminleyicilerin ortogonal olmadığı durumda RR modelinin, en küçük kareler 

yöntemine göre daha farklı sonuçlar verdiği sonucuna varmıştır. 

Kurtuluş (2001) yapmış olduğu yüksek lisans tez çalışmasında, bağımsız değişkenler 

arasında çoklu bağlantı sorunun var olması durumunda, sorunun ortadan 

kaldırılmasına yönelik kullanılan RR yöntemi üzerinde çalışma yapmıştır. Bu yöntemi 

ile en küçük kareler yöntemini karşılaştırmıştır. RR metodunda k parametresinin elde 
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edilmesini sağlayan birkaç yöntemi tanıtmıştır. 

Ortabaş (2001) yaptığı yüksek lisans tez çalışmasında çoklu doğrusal bağlantı 

sorununu ortadan kaldırmaya yönelik olarak kullanılan temel bileşenler ve RR 

yöntemlerini ele almıştır. Çoklu bağlantı sorununu ortadan kaldırmaya yönelik 

kullanılan yöntemlerden yanlı regresyon yöntemleri ile hem çoklu doğrusal bağlantı 

yapısının açıklanabildiğini, hem de standart hatası daha küçük hata kareler ortalamalı 

tahminlerinin bulunabildiğini ifade etmiştir.  

Topçubaşı ve Billor (2003), yaptıkları çalışmada, açıklayıcı değişkenlerin doğrusal 

bağımlı olmaları durumunda, en küçük kareler tahmin edicisine alternatif olabilecek 

çeşitli yanlı tahmin modellerin bulunduğunu ve bu yanlı tahmin modellerinin çoğunu 

(genelleştirilmiş ridge, ridge, ana bileşenler, ondalıklı rank ve Stein kestiricisi) 

barındıran bir sınıf tanımlandığını ifade etmişlerdir. Çalışmalarında yanlı kestiricilerin 

bir kısmını içeren bu sınıf içerisine Liu ve genelleştirilmiş Liu kestiricileri de 

katmışlardır. 

Graham (2003) yapmış olduğu çalışmada ekolojik verilere uyguladığı çoklu regresyon 

analizlerinde, çoklu bağlantı sorunu ile karşılaşıldığını belirtmiştir. Çalışmasında 

gerçek ekolojik veriler kullanarak çoklu bağlantı sorununa karşılık farklı istatistiksel 

tekniklerin kullanımını göstermiştir. Bunun sonucu olarak, ekolojik verilerin çoklu 

regresyon modellerinde çoklu bağlantılı durumların açıklanmasını ve farklı 

yöntemlerin kullanılmasıyla modelin geçerliliğinin artırılabileceğini ifade etmiştir. 

Ergüneş (2004) yüksek lisans tez çalışmasında en küçük kareler yöntemi ile RR 

yöntemlerini karşılaştırarak çoklu bağlantı problemini anlatmış ve problemin ortadan 

kaldırılmasına yönelik Ridge Regresyon (RR) yönteminin kullanımını ele almıştır. 

Çoklu bağlantı sorunu bulunan bir örneğe En Küçük Kareler ve RR yöntemlerini 

uygulayarak, daha geçerli parametre tahmini yapmasından dolayı, RR yönteminin 

EKK yönteminin yerine kullanılmasını önermiştir. 

Albayrak (2005), yaptığı çalışmada beden ağırlığının tahmin edilmesinde RR ve 

Temel Bileşenler Regresyonun, En Küçük kareler yöntemine karşı etkin olup olmadığı 

araştırılmıştır. Aralarında yüksek çoklu doğrusal bağlantı bulunan bağımsız 

değişkenlere RR, TBR ve EKK yöntemleri uygulanmıştır. RR ve TBR yöntemlerinin 

EKK yöntemine göre daha düşük standart hatalı, durağan ve kurumsal beklentileri 

karşılayabilecek uygun tahminler sağlayacağı gözlenmiştir. 
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Karadavut ve ark. (2005) yaptıkları çalışmada nohut bitkisinin verimini etkileyen bazı 

karakterleri, ridge regresyon, en küçük kareler ve robust regresyon yöntemlerinden biri 

olan M-regresyon yöntemleri ile elde etmiş oldukları parametre tahminlerini 

karşılaştırmışlardır. Nohut bitkisinde tane ağırlığını etkileyen değişkenlere etki eden 

regresyon modelinde, ilk önce EKK yöntemini kullanarak parametreleri tahmin 

edilmiş, bağımsız değişkenler arasındaki çoklu bağlantı tespit edilerek RR yöntemi ile 

parametre tahminlerini elde etmişlerdir. Yine aynı veri grubuna M- regresyon 

yöntemini de uygulayarak, elde edilen parametre tahminleri ve analiz sonuçları 

karşılaştırılmıştır. Sonuç olarak, M regresyon yönteminin diğer yöntemlere göre daha 

uygun bir tahmin edici olduğu ve tercih edilebileceği ifade edilmiştir. 

Yolaçan ve ark. (2005) yaptıkları çalışmalarında çoklu bağlantı probleminin 

bulunduğu ekonomik verilere RR ve yapay sinir ağları algoritmalarını uygulamış, 

sonuçlarını karşılaştırmıştır. 

Çankaya ve ark. (2006) yapmış oldukları çalışmada, çoklu lineer regresyon modelinde 

parametre tahmin yöntemlerini karşılaştırmıştır. Parametre tahminlerinde aykırı değer 

ortaya çıktığında, en küçük medyan kareler yönteminin diğer yöntemlere göre en 

yüksek belirtme katsayısına sahip olduğunu ifade etmiştir. Aykırı değerlerin ve yüksek 

uç değerlerin etkilerinin araştırılması gerektiğini ifade etmişlerdir. 

Aktaş (2007) yaptığı çalışmada, çoklu regresyon analizinde karşılaşılan sorunlardan 

olan çoklu bağlantıyı belirleme tekniklerini ele almış ve enflasyon modeli için Liu 

kestiricisi ile bir uygulama yapmıştır. Liu kestiricisi ile çoklu bağlantı sorunun 

kaldırıldığı modele göre, bahsedilen dönemde enflasyon üzerinde en fazla USD ve 

para arzı değişkenlerinin etkili olduğu belirtilmiştir. 

Karakaş (2008) yüksek lisans tez çalışmasında çoklu doğrusal bağlantının nedenleri, 

teşhis yöntemleri ve istatistiksel sonuçlara varılması süreci üzerindeki etkileri 

incelemiştir. Özellikle Ridge ve Liu regresyon metodları başta olmak üzere, yanlı 

regresyon tahmincilerinin çoklu doğrusal bağlantı sorununu düzeltme yöntemi olarak 

değerlendirilmekte ve istatistiksel özellikleri incelenmektedir. Ridge ve Liu tip 

regresyon kullanılarak bir istihdam modelinin tahminini elde etmeye yönelik bir 

uygulama yapılmıştır. İstatistikte, yanlı regresyon tahmincilerine ait standart hataların 

hesaplanabilmesi için bir formülün bulunmadığını belirtmiştir. İşaretlerin uygunluğu 

ve parametrelerin anlamlılığı bakımından, Liu tip tahmincinin diğer iki tahminciden 

daha üstün olduğunu ifade etmiştir. 
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Çankaya ve arkadaşları (2009) yaptıkları çalışmalarında, Karayaka kuzularına ait bazı 

vücut ölçülerinden hesaplamış faktör analiz skorlarını, çoklu regresyon modelinde 

kullanarak, canlı ağırlığı tahmin etmek ve incelenen vücut ölçüleri arasındaki çoklu 

bağlantıyı ortadan kaldırmaya çalışmışlardır. Ondokuz Mayıs Üniversitesi Araştırma 

ve Uygulama Çiftliğinde yetiştirilen sütten kesime döneminde olan 101 adet Karayaka 

kuzusunun vücut ölçüleri (cidago ve sağrı yüksekliği, vücut uzunluğu, göğüs çevresi 

ve derinliği, orta ve arka sağrı genişliği, kürekler arası genişlik) ile canlı ağırlık 

ölçülerinden faydalanmışlardır. Tahmin eşitliğinde kullanılan cidago ve sağrı 

yükseklik değerlerinde çoklu bağlantı olduğu belirlenmiştir. Faktör analiziyle elde 

edilen faktör skorlarını kullanıp, çoklu bağlantı problemini ortadan kaldırdıklarını 

belirtmişlerdir. 

Pamukçu (2010) yaptığı yüksek lisans tez çalışmasında, sistolik kan basıncı değerini 

tahmin etmede RR ile En küçük kareler yöntemleri karşılaştırılmıştır. Buna yönelik 

olarak, sistolik kan basıncı ile bağımsız değişkenler arasındaki doğrusal ilişkinin 

tahmininde En küçük kareler regresyonu ve RR tekniklerinin göreceli tahmin 

geçerlilikleri karşılaştırılmıştır. Yapılan araştırmada, aralarında yüksek çoklu doğrusal 

bağlantı bulunan bağımsız değişkenler kullanılarak yapılan çalışmada, RR tekniğinin 

en küçük kareler regresyonuna göre daha uygun tahminler ortaya koyduğu 

belirlenmiştir. 

Topal ve arkadaşları (2010) araştırmalarında, farklı yaşlarda 91 adet sazan balığına ait 

çeşitli vücut ölçülerini kullanarak karkas ağırlıklarını tahminleyen bir model 

geliştirmeyi amaçlamışlardır. Elde edilen vücut ölçüleri arasında ortaya çıkan çoklu 

bağlantı sorununu ortadan kaldırmak için en küçük kareler regresyonu, RR ve temel 

bileşenler regresyon analiz yöntemleri kullanılmıştır. Elde edilen sonuçlara göre, çoklu 

doğrusal bağlantı sorununu ortadan kaldırmak için, en küçük kareler metodu yerine 

Ridge ve temel bileşenler regresyon yöntemlerinin kullanılmasının daha doğru 

olabileceği belirtilmiştir. 

Büyükuysal (2010) yaptığı yüksek lisans tez çalışmasında, çoklu doğrusal regresyon 

analizinde, bağımsız değişkenler arasındaki çoklu doğrusal bağıntı durumunda ortaya 

çıkan yanlılığı ortadan kaldırmak için en küçük kareler yöntemine alternatif olarak 

önerilen RR yöntemi üzerinde çalışılmıştır. En küçük kareler ve RR analizinden elde 

edilen sonuçları karşılaştırmıştır. İstanbul Tıp Fakültesi Hastanesine şişmanlık şikâyeti 

ile başvurmuş olan hastalardan rasgele seçilen 20 kişinin beden ağırlığı (kg), deri alanı 
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(cm2), uyluk kemiğinin çevresinin uzunluğu (cm) ve belden yukarı ölçülen kasların 

çevrelerinin uzunluğu (cm) değerleri elde edilerek, bu değerler ile hastaların vücut 

ağırlığıyla olan ilişkileri incelenmiştir. Analizler sonucunda, RR analiziyle elde edilen 

regresyon katsayılarının, en küçük kareler yöntemiyle elde edilen regresyon 

katsayılarına göre daha iyi sonuçlar verdiği gözlenmiştir. Elde edilen sonuçlar dikkate 

alınarak, çoklu doğrusal bağıntı halinde, RR analizinin en küçük kareler yöntemine 

göre daha doğru sonuçlar verdiği görülmüştür. Çoklu doğrusal bağıntı varlığında, RR 

analizinin kullanılmasını önermiştir. 

Rathert ve arkadaşları (2011) yaptıkları çalışmada, Japon bıldırcınlarında yumurta iç 

kalite özelliklerinin tahmin edilmesine yönelik olarak, en küçük kareler yöntemi ile 

temel bileşenler regresyon yöntemini karşılaştırmışlardır. Çalışma kapsamında 20-24 

haftalık yaşlarda olan Japon bıldırcınlarından toplanan yumurtaları kullanmışladır. 

Sonuç olarak, temel bileşenler regresyon yöntemi ile çoklu problemin ortadan 

kaldırıldığı ifade edilmiştir. 

Eker (2011) yaptığı yüksek lisans tez çalışmasında, çoklu regresyon analizinde 

bağımsız değişkenler arasında çoklu bağlantı sorununun var olması durumunda, çokça 

tercih edilen En Küçük Kareler (EKK) metodunun varsayımlarının savunulamaz 

olmasından dolayı, EKK yöntemi ile Ridge Regresyon (RR) ve Temel Bileşenler 

Regresyonu (TBR) yöntemlerini karşılaştırarak incelemiştir. Çalışmasında, Ondokuz 

Mayıs Üniversitesi Araştırma ve Uygulama Çiftliğinde yetiştirilen 85 Karkaya 

kuzusunun bazı vücut ölçüleri ile canlı ağırlık ölçülerini kullanmıştır. Bu 3 yöntemi 

değerlendirirken hata kareler ortalaması (HKO) ve parametrelerin önemliliğini (R2) 

kullanmıştır. Araştırmanın sonucunda, en düşük HKO değerinin ve en büyük R2 

değerlerinin RR modeli ile elde edilmiş olmasına rağmen, parametrelerin önem 

testlerine göre Temel Bileşenler Regresyon yönteminin daha tutarlı olduğunu ifade 

etmiştir.  

Mahesh ve arkadaşları (2014) yaptıkları çalışmalarında, farklı yerlerden ve ekin 

zamanlarında elde edilen Kanada buğdayının protein içerikleri ve sertlik değerleri ile 

ilgili tahminleri karşılaştırmışlardır. Bu karşılaştırma işlemleri için EKK ve TBR 

modelleme yöntemleri kullanılmıştır. Çalışmanın sonucunda EKK modelleri, protein 

içerikleri ve buğday sertliğini öngörmek için kullanılan TBR modellerinden daha iyi 

tahmin performans sergilediği sonucuna varılmıştır.  

Firinguetti ve arkadaşları (2016) yapmış oldukları çalışmada, çok parçalı doğrusallık 
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problemine yönelik kullanılan Kısmi En Küçük Kareler (KEKK) ile Ridge Regresyon 

(RR) yöntemlerini ele almışlardır. Performanslarını karşılaştırmak üzere yapılan 

simülasyon çalışması sonucunda, hata varyansının yüksek olduğu durumlarda Ridge 

Regresyon (RR) ‘un daha iyi performans sergilediği ve modelin daha fazla değişken 

içerdiği durumlarda Kısmi En Küçük Kareler (KEKK) tahmincisinin en iyi sonuçlara 

ulaştığını ifade etmişlerdir. 
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3. GENEL BİLGİLER 

Regresyon uygulamalarının pek çoğunda, bağımsız değişkenler arasında ilişki 

mevcuttur. Bazen bağımsız değişkenler arasındaki doğrusal ilişki çok kuvvetli olmakta 

ve bu tür durumlarda, regresyon modeli yardımıyla yapılacak yorumlar yanlış 

olabilmektedir. Aslında çoklu regresyon denklemi yorumlanırken, bağımsız 

değişkenler arasında kuvvetli bir ilişki olmaması durumuna bağlıdır. Bu durumun 

bozulması, bir diğer ifade ile bağımsız değişkenler arasında bir ya da daha fazla 

doğrusal bağıntının var olması çoklu bağlantı (multicollinearity) sorununu ortaya 

çıkarmaktadır (Alpar 2003). 

Çoklu bağlantı, bazı bağımsız değişkenler arasında yüksek oranda korelasyon olması 

durumudur. Birden çok bağımsız değişken bulunduran regresyon modellerinin pek 

çoğunda var olan bir durumdur. Çoklu bağlantı var olduğunda, tahminler yansız olsa 

bile, bağımsız değişkenlerin kuvvetli ilişkisinin değerlendirilmesi ve birlikte etkilerine 

ait sonuçlara güvenilemez. Temel olarak, eğer bağımsız değişkenler arasındaki 

korelasyon değeri 0.70’in üstünde ise, bir çoklu bağlantı sorununun olduğu belirtilir.  

Tam çoklu bağlantının varlığı, belirlenemeyen katsayıları ve tanımlanamayan standart 

hata ortaya çıkarmakla beraber, yüksek çoklu bağlantıda daha çok yüksek varyans ve 

kovaryanslar, geniş güven aralığı ve gerçekte önemsiz olduğu halde, yer aldığı 

denklemin önemli bulunduğu katsayılara neden olmaktadır. 

Regresyon modellerinde de bağımsız değişkenler arasındaki güçlü korelasyondan 

dolayı, çoklu bağlantı görülür. Çoklu bağlantının var olması, parametrelerin 

tahminlerinde varyans değerini büyütmektedir. Özellikle küçük ve orta büyüklükteki 

örnek genişliğine sahip modeller, güçlü bir şekilde istatistiksel olarak önemli 

bulunurken bağımsız değişkenlerin bireysel olarak önemini azaltır. Çoklu bağlantı, 

bağımlı ve bağımsız değişkenler arasındaki ilişki hakkında da yanlış sonuçların ortaya 

çıkmasına neden olabilir. 
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3.1. Çoklu Bağlantının Nedenleri 

Çoklu bağlantı sorunun ortaya çıkması, çok farklı nedenlerden dolayı olabilir. Bu 

nedeni belirlemek, bize çözüm için bazı ipuçları verebilir. Çoklu bağlantı sorunu, 

aşağıda verilen bir veya birkaç sebepten dolayı olabilir.  

3.1.1. Örnekleme yöntemi 

Verilerin elde ediliş şekli; araştırmacı isteyerek ya da istemeyerek bağımsız 

değişkenler uzayından bir alt uzayı örnekleme alması durumunda çoklu doğrusallığa 

sebep olur. Elde edilen modelin kendisinde çoklu doğrusal bağlantı var olmasa bile, 

bağımsız değişkenler içerisinden eksik ya da yetersiz bir alt kümenin seçilmesi 

nedeniyle bir çoklu bağlantı söz konusu olabilir. 

3.1.2. Aşırı tanımlanmış modeller 

Eğer bağımsız değişken sayısı, gözlem sayısından büyük ise modellerde çoklu 

doğrusal bağlantı ortaya çıkmaktadır. Genelde bu tür durumlarda çoklu bağlantının 

ortadan kalkması için, bazı değişkenleri modelden çıkarmak ya da gözlem sayısının 

artırılması gerekmektedir. 

3.1.3.  Model ve anakütle üzerindeki fiziksel kısıtlar  

Model ya da anakütle üzerinde kısıtlamalar yapmak, çoklu doğrusal bağlantıya neden 

olabilir. Örneğin elektrik tüketimi ile ilgili olarak,  yaşanılan evin büyüklüğü ve hane 

gelirinin elektrik tüketimi üzerindeki etkisinin araştırıldığı bir çalışma düşünelim. 

Bağımsız değişken olan evin büyüklüğü ile hane geliri arasında çoklu doğrusal 

bağlantı olduğu görülür. Çoklu doğrusal bağlantının nedeni, hane geliri yüksek 

ailelerin daha geniş evlerde oturuyor olduğu gerçeğidir. Bundan dolayı çoklu doğrusal 

bağlantının kaynağı, anakütlede var olan gerçek ilişkinin örneklemde de var olmasıdır.  
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3.2. Çoklu Doğrusal Bağlantı Probleminin Sonuçları 

Bağımsız değişkenler arasında var olan güçlü ilişkiler olması bağlantı (collinearity) ya 

da çoklu doğrusal bağlantı (multicolinearity) olarak adlandırılır. Bu, regresyon 

analizlerinde istenmeyen bir durumdur (Orhunbilge, 2000:240-251).  

Regresyon analizinde çoklu doğrusal bağlantı aşağıda belirtilen problemlere neden 

olur (Gujarati, 1995:319-399; Orhunbilge, 2000:240-251): 

1. Tam çoklu doğrusal bağlantının var olması, hem regresyon katsayılarının belirsiz, 

hem de bu katsayıların standart hatalarının sonsuz olmasını sağlayabilir. 

2. Çoklu doğrusal bağlantı durumunda regresyon katsayılarının varyans ve 

kovaryansları artış göstermektedir. 

3. Modelin R2 değeri yüksek çıkmasına rağmen, bağımsız değişkenlerden hiçbiri veya 

çok azı t testine göre anlamlı çıkmaktadır. 

4. Bağımsız değişkenler ile bağımlı değişkenin ilişkilerinin yönü kuramsal ve deneysel 

beklentilerle farklılık gösterebilir. 

Bağımsız değişkenler arasında bağıntı var ise, bazılarının modelden çıkarılması 

gerekebilir. Ama modelden yanlış değişkenin çıkarılması, modelin yanlış 

tanımlanmasına neden olabilir. Modele bağımsız değişkenleri dâhil edip çıkarmak gibi 

kullanabileceğimiz kurallar bulunmamaktadır. 

3.3. Çoklu Doğrusal Bağlantı Probleminin Çözümü 

Çoklu bağlantı sorunun ortadan kaldırılması, çoklu bağlantının nedenine, derecesine 

ve regresyon modelinin kullanım amacına bağlı olarak değişebilir. Bu sorunun ortadan 

kaldırılması için önerilen birçok yöntem vardır. Ancak gözlem sayısını arttırmak, 

modeli yeniden belirlemek ve küçük kareler yönteminden başka yanlı kestirim 

yöntemlerini kullanmak en genel yaklaşımlardandır. Çoklu bağlantıyı ortadan 

kaldırmak için izlenen diğer bir yol, değişken seçimidir. Ancak bu yöntemle, bağımlı 

değişkeni iyi açıklayan değişkenlerin çıkarılması durumunda, değişken seçimi iyi bir 

yol olmayabilmektedir. Bir diğer yöntem ise, birbiriyle ilişkili olan iki değişkenin 

yerine, bu iki değişkenin toplamının tek bir değişken olarak modele alınmasıdır. 

Çoklu doğrusal bağlantı problemlerinin çözüm yolları aşağıda verilmektedir. 
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1. Bir yada daha fazla bağımsız değişken modelden çıkartılabilir. Ancak bu yöntem, 

modeli yanlış tanımlattırabilir. 

2. Gözlemler arası farklar alınarak değişkenler dönüştürülebilir. Böyle bir yöntem 

sadece zaman serilerine uygulanabilirken, kesit verilerine uygulanamamaktadır. 

3. Bazı durumlarda yeni gözlem değerlerinin elde edilmesi, çoklu doğrusal bağlantı 

probleminin ortadan kalkmasına neden olabilir. Ancak, örneği büyütmek her zaman 

mümkün olmayabilir. 

4. Birbirleri ile ilişkili olan iki değişken yerine, bu iki değişkenin doğrusal birleşimi 

alınarak tek bir değişken alınabilir. 

5. Birbirinden bağımsız şekilde bileşenler türeten “Temel Bileşenler Regresyon 

Analizi” ya da “En Küçük Kareler” tekniğinin düzeltilmiş şekli olan ve yanlı 

standartlaştırılmış regresyon katsayılarını tahmin eden “Ridge Regresyon” teknikleri 

kullanılabilir. 

6. Temel bileşenler analizindeki gibi çoklu bağlantı ilişkisindeki bağımsız değişkenler 

yerine yeni bileşenler elde ederek kullanılmasına olanak veren KEKK yöntemi de 

kullanılmaktadır. TBR’den farkı bağımlı değişkeni de dikkate alarak bu bileşenler elde 

edilmektedir. 

3.4. Çoklu Bağlantıyı Belirleme Yöntemleri 

Daha önce yapılmış olan uygulamalarda, çoklu bağlantının ortaya çıkması yönünde 

bilgiler veren bazı durumlar saptanabilir. Modele bir bağımsız değişken eklenmesi 

veya çıkartılması, bir gözlemin değiştirilmesi durumlarında, regresyon katsayıları 

tahminlerinde önemli değişmeler bulunuyorsa çoklu doğrusal bağlantıdan kuşku 

duyulur. İşaretine ve büyüklüğe göre regresyon katsayılarının beklenenden farklı 

olması, regresyon katsayılarının istatistiksel olarak önemsiz çıkması, regresyon 

katsayıları tahminlerine ait güven aralıklarının geniş olması, çoklu bağlantı sorununun 

belirtilerindendir. Çoklu bağlantıyı belirlemeye yönelik birçok yöntem 

kullanılmaktadır. Bu yöntemler şunlardır: 
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3.4.1. Bağımsız değişkenler arasındaki belirleme katsayılarının belirlenmesi 

Çoklu bağlantı, bağımsız değişkenler arasındaki ilişkiden dolayı ortaya çıkmaktadır. 

İlişkinin derecesi, bağlantının derecesi hakkında karar verilebilir. Her bağımsız 

değişkenin, diğer bağımsız değişkenlerle arasındaki korelasyon katsayılarının karesi 

yani belirleme katsayısı değeri 1’e yakın çıktıkça, yüksek derecede çoklu bağlantı 

olduğu ifade edilir. 

3.4.2. Korelasyon matrisi ile belirlenmesi 

Bu yöntem, çoklu bağlantının ortaya çıkarılmasında kullanılan en yaygın ve basit 

yöntemdir. İki bağımsız değişken arasındaki korelasyon katsayısının mutlak değerinin 

1’e yakın olması, iki bağımsız değişkenin yakın doğrusal bağlantılı olduğunu ifade 

eder. Eğer ikiden fazla bağımsız değişken arasında bağımlılık varsa, bu durum 

korelasyon katsayılarına yansıyamayabilir.  

3.4.3. Varyans şişirme faktörünün kullanılması(variance inflation factor-vif) 

Bağımsız değişkenlere ait korelasyon matrisinin tersinin köşegen değerlerine Varyans 

Şişirme Değerleri denmektedir. 

Çoklu doğrusal bağlantının ortaya çıkarılmasında kullanılan en yaygın ve kullanışlı 

yöntemlerden birisi de varyans şişirme faktörü (VIF) değerlerinin yorumlanmasıdır. 

VIF= 
1

1-Rj
2                   (3.1)

Denklemde Rj
2değerinin sıfıra eşit olması durumunda VIFj değeri de 1 olacaktır. Rj

2 

değeri 1’e yaklaştığında ise VIFj değeri sonsuza yaklaşır. Bu durum, tam çoklu 

bağlantının gösterisidir. VIF değeri 10’dan büyük olursa, güçlü çoklu bağlantı olduğu 

ifade edilir. 

3.4.4. Özdeğer ve özvektörlerin incelenmesi 

Öz vektör, değişkenlerin doğrusal bileşenleri olarak tanımlanır. p adet değişken için p 

adet öz vektör vardır. Öz değer kavramı ise öz vektörlerce açıklanan varyans olarak 
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bilinmektedir. (X’X) matrisinin öz değerleri göz önüne alınarak çoklu bağlantının 

derecesi konusunda bilgi sahibi olunur. 

Sıfırdan farklı öz değerlerin sayısı (X’X) matrisinin rankına eşit olmaktadır. (X’X) 

matrisinin özdeğerlerinden bir tanesi sıfıra eşit olduğunda, matris tekil matris olarak 

ifade edilir. (X’X) matrisinin özdeğerlerden birinin sıfıra eşit ya da çok küçük (𝜆𝑗 <

0.001)  özdeğerlere sahip olması, veride doğrusal bağımlılık söz konusu olduğu 

anlamı taşır. 

3.4.5. Modele yeni bağımsız değişken eklenmesi  

Modele yeni bağımsız değişken eklendikten sonra, R2 değerinde önemli bir gelişme 

sağlanmazsa, çoklu doğrusal bağlantı probleminin ortaya çıktığı söylenebilir. 

3.5. Kısmi En Küçük Kareler Yöntemi (KEKK) 

Kısmi En Küçük Kareler yöntemi, 1960’lı yıllarda Helman Wold tarafından 

geliştirilen ve özellikle bağımsız değişken sayısının fazla ve örnek sayısının az olduğu 

durumlarda oldukça kullanışlı olan bir yöntemdir. KEKK regresyonu ile bağımsız 

değişkenler ile bağımlı değişkenler arasındaki doğrusal ilişki tanımlanmaktadır.  

KEKK yöntemiyle veri kümesinde yer alan bağımlı ve açıklayıcı değişkenler 

arasındaki kovaryansı en çoklayan bileşen sayısını bulmak amaçlanmaktadır. Bu 

yöntemde, analiz işlemleri yapılmadan önce bütün değişkenlerin birbirleri ile aynı 

önem sırasında olmaları için merkezileştirme, sonrasında ise ölçeklendirme işlemi 

yapılmaktadır. Merkezileştirme işlemi için, bağımlı ve açıklayıcı tüm değişkenlerden 

ortalama değerlerinin çıkartılması işlemi yapılır. Açıklayıcı değişkenlerin boyutunun 

indirgenmesi ile elde edilen gizli değişkenler, açıklayıcı değişkenlerin doğrusal 

birleşimidirler. Gizli değişkenler sayesinde bağımlı değişkenleri açıklayıcı değişkenler 

ile döndürme mümkün olmaktadır. Bunun dışında gizli değişkenler yeni açıklayıcı 

değişkenler olarak regresyon analizi için de kullanılmaktadırlar. 
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3.5.1. Kısmi en küçük kareler 

KEKK varsayımı, Ridge ve TBR varsayımlarındaki gibi değişkenlerin 

ölçeklendirilmesi yöntemi gibidir. Yorumlamanın daha kolay olabilmesi ve sayısal 

kararlığa varabilmek için, analiz yapmadan önce verinin merkezileştirilmesi önerilir. 

Ölçeklendirmeden önce ya da sonra, X ve Y’deki tüm değişkenlerden ortalamalarının 

farkı alınır. Bu sayede her bir değişkene aynı ağırlık, analizde aynı öncelikli önem 

verilmiş olunur. 

KEKK yöntemi ile Y değişkenlerini X1,…,Xp bağımsız değişkenleriyle döndürmek 

için , X değişkenleriyle benzer role sahip olan ve genellikle gizli değişkenler olarak  

tanımlanan yeni  bileşenler elde edilir. Bağımsız değişkenler matrisinin bir küme 

indirgenmiş doğrusal birleşimleriyle yer değiştirmesi yönünden ele alındığında KEKK 

ile TBR yöntemleri benzerlik taşırlar. KEKK ve TBR yöntemlerinde, Y 

değişkenleriyle döndürülebilecek bazı bileşenler bulmak adına, X değişkenlerinin 

sayısından daha az sayıda bileşen kullanılarak, regresyon probleminin boyutluluğu 

azaltılmaktadır. Her bir bileşen, X1,…,Xp ’nın doğrusal bir birleşimi demektir. KEKK 

ile TBR arasındaki temel fark, KEKK’ de temel bileşenler belirlenirken gözlenen 

bağımlı değişkenler önemli bir role sahip iken, TBR yönteminde ise temel bileşenler, 

bağımlı değişkenleri referans olarak kullanmaz. 

KEKK yöntemi, Temel Bileşenler Analizine benzer bir yol izleyerek X’in doğrusal 

ayrışımlarını verir (3.2). Burada Xrj şeklinde yazılan 𝑡𝑗 ‘ler, X’in doğrusal birleşimidir. 

p x 1 boyutlu olan pj’ler, yükler olarak tanımlanırlar. KEKK tahmin edicilerini 

bulabilmek için NIPALS ve SIMPLS adında algoritmalar kullanılır. Geleneksel olan 

NIPALS algoritmasında tj’ler Ej artık matrislerinin doğrusal birleşimleri elde edilir 

(3.3). 

X=t1p
1
' + t2p

2
' +…+tpp

p
' =∑ tjpj

' =TP'p

j=1                             (3.2) 

tj= Ej-1wj ,   Ej=X-∑ tıpı
'  , 

j

ı=1    E0=X            (3.3) 

Buradaki wj ‘ler birimdiktir. wjve 𝑟j, 𝑗 = 1,… , ℎ ağırlık kümeleri aynı uzayda 

bulunmaktadır.Tek değişkenli ve aynı zamanda çok değişkenli KEKK için birçok 

agoritmada ilk önce tj’nin doğrusal birleşimini hesaplayabilmek için wj veya rj’yi , 

i=1,…, h elde etmektir.Sonra ise X matrisini tj üzerinde döndürerek, pjbulunur. h adet 
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boyut elde edilip aşağıdaki ilişkiler yazılabilmektedir (Phatak ve De Jong, 1997; 

Yeniay ve Göktaş, 2002). 

Th = XRh                   (3.4) 

Ph=X'Th(Th
' Th)

-1
                  (3.5) 

Rh=Wh(Ph
' Wh)

-1
                  (3.6) 

Buradaki h alt kümesi, matrisin ilgili vektörlerin ilk h dizisinden oluşmaktadır. İki 

ağırlık vektörü kümesinin bir doğrusal dönüşüme bağlandığı 3.6. da gösterilmiştir. 3.4 

ve 3.5 eşitsizliklerine göre Ph
′Rh = Ih  olduğu görülmektedir. 

Yine, Rℎ
′ Ph ifadesinin Ih ‘a eşit olduğu görülmektedir: 

Rh
' P

h
=Rh

' X
'
Th(Th

' Th)
-1

=Th
' Th(Th

' Th)
-1

=Ih                (3.7) 

h adet boyut elde edildikten sonra KEKK ile elde edilen uygun değerler vektörü, 3.7 

eşitsizliğinde gösterildiği gibi gözlenen bağımlı değişkenlerin ilk h KEKK doğrusal 

birleşimleri olan 𝑇ℎ üzerindeki yansımasıdır. 

ŷ
KEKK

h
=Th(Th

' Th)
-1

Th
' y                   (3.8) 

Eşitsizliğinde Th yerine XRh, y yerine Xβ̂KEK konulduğunda; 

ŷ
KEKK

h
=XRh(Rh

' X'XRh)
-1

Rh
' X'Xβ̂

KEK
                 (3.9) 

elde edilir.3.9 ‘dan yola çıkarak; 

β̂
KEKK

h
=Rh(Rh

' X'XRh)
-1

Rh
' X'Xβ̂

KEK
              (3.10) 

elde edilir. 

Çok değişkenlide ŷKEKK
h  vektörü yerineŶKEKK

h  matrisi kullanılır. 3.9 ve 3.10 daki 

eşitsizliklerinde bulunan Rh, Rh ‘ın tekil olmayan bir dönüşümü sayesinde, sonucu 

değiştirmeden değişebilir. Mesela, Wh, Rh yerine kullanılabilir. 

β̂KEKK
h  ‘ın daha basit haline ulaşmak için şu yol izlenebilir: 3.5 teki Th ifadeleri yerine 

3.4 teki karşılığı yazıldığında; 
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Ph=X'XRh(Rh
' X'XRh)

-1
                 (3.11) 

elde edilir. Buradan 3.10 daki eşitsizlik ile; 

β̂
KEKK

h
=RhPh

' β̂
KEK

=Wh(Ph
' Wh)

-1
Ph

' β̂
KEK

              (3.12) 

elde edilir. Çok değişkenli durum için ise; 

B̂KEKK

h
=RhPh

' B̂KEK=Wh(Ph
' Wh)

-1
Ph

' B̂KEK             (3.13) 

şeklindedir. 

Wh(Ph
′Wh)

−1  matrisi bir izdüşüm matrisidir. Fakat bu matris simetrik olmadığından, 

eğik projektör olarak ifade edilir.3.12 de gösterilen h bileşeni için Kısmi En Küçük 

Kareler Regresyonu tahmin edicisi, Ph ‘a dik olan Phuzayı boyunca β̂KEK ‘nin Wh 

üzerine eğik izdüşümüdür. Kısmi En Küçük Kareler Regresyonunda yanın 

derecesi, β̂KEK dik izdüşümünün alındığı uzayın boyutu ile kontrol edilir. Boyut ne 

kadar küçük olursa, yan da o kadar büyük olur.  

3.6. Ridge Regression (RR) 

RR yöntemi, 1970 yılında Hoerl ve Kennard tarafından çoklu doğrusal bağlantı 

sorununu ortadan kaldırmak için geliştirilmiş bir yöntemdir. 

Ridge regresyon, X'X korelasyon matrisinin köşegen elemanlarına pozitif ve küçük k 

değerleri ekleyerek koşul sayısını küçültmeyi hedeflemektedir. RR yöntemi 

kullanılarak elde edilen tahminler, EKK yöntemine göre daha güvenilirdir. 

RR yöntemi; aşağıda belirtilen durumlar için önerilmektedir; 

a) Çoklu doğrusal regresyon modellerinde bağımsız değişkenlerin birbirleriyle ilişkili 

olması durumlarda EKK tahminine göre daha küçük varyanslı tahminlerin 

bulunmasında, 

b) Kuvvetli bir çoklu bağlantının olması durumunda, katsayılarda oluşan 

kararsızlıkların grafiksel olarak gösterilmesinde, 

c) Regresyondaki yanlılık karesi ile varyansı değiştirerek Hata Kareler Ortalamasını 

(HKO) azaltmak; 
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d) Bağımsız değişkenlerde oluşan çoklu bağlantıyı ortadan kaldırmaktır. 

Ridge regresyonun çözüm tekniği, basit en küçük kareler yöntemine benzer bir 

şekildedir. RR yönteminde, regresyon katsayı tahminlerini hesaplamadan önce 

standart formda yer alan değişkenlerden meydana gelen (X’X) matrisinin köşegen 

elemanlarına küçük ve pozitif bir sabitin eklenmesiyle gerçekleştirilir. Buna göre RR 

çözümü, 

β̂=(X´X + kI)-1 X´Y                (3.14)

şeklindedir. Burada k değeri, küçük pozitif sayısal bir değerdir. Bu değerin seçimi 

konusunda çok fazla çalışma yapılmaktadır. Optimum k değeri üzerinde henüz kesin 

bir çözüm yoktur. 

3.6.1. Ridge kestiricisinin en küçük kareler kestiricisi ile ilişkisi 

En küçük kareler kestiricisi, 

𝛽 ̂= (X´X )
-1

 X´Y                (3.15)

olarak belirlenmiştir. Buradan 

X´X 𝛽̂ =  X´Y                 (3.16)

olarak yazılabilir. Ridge kestiricisi, 

𝛽̂∗= (X´X + kI)-1 X´Y                 (3.17)

olarak verilmişti. X´Y yerine eşiti yazıldığında buradan 

𝛽̂∗= (X´X + kI)-1 X´X 𝛽̂                (3.18)

elde edilir. 

X´X matrisinin tersinin tersi kendi olduğundan, 

𝛽̂∗= (X´X + kI)-1 [(X´X)-1]-1 𝛽̂               (3.19)

yazılabilir. Her iki matris tekil olmadıklarından, 
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β̂
*
=[(X´X)

-1

 (X´X+ kI)−1 ]-1 β̂               (3.20)

yazılabilir. Buradan da, 

𝛽̂∗=[ (X´X)
-1

  X´X +  k (X´X)
-1

]
-1

 β̂               (3.21)

yazılabilir. Gerekli işlemlerden sonra, 

𝛽̂∗= [ I+ k (X´X)-1]-1 𝛽̂                (3.22)

olur.  

Z = [ I+ k (X´X)-1]-1                     (3.23)

olarak tanımlarsak, 

𝛽̂∗= Z 𝛽̂                  (3.24)

olarak yazılır. Bu eşitlik ridge kestiricisinin en küçük kareler kestiricinin bir dönüşümü 

olduğunu gösterir. 

Aynı zamanda 𝛽̂∗ boyu k ≠ 0 için 𝛽̂ ‘dan daha kısadır ve aşağıdaki şekilde gösterilir: 

β̂
*
´β̂

*
<β̂ ´ β̂                  (3.25)

3.6.2. Z ve W matrislerinin özellikleri 

Ridge kestiricisi 𝛽̂∗ = (X´X + kI)
-1

 X´Y olarak verilmişti. W matrisini, 

W= (X´X + kI)
-1

                (3.26)

şeklinde tanımlanınca, 

β̂
*
 = W X´Y                 (3.27)

olur. Z matrisini, 

Z = [ I+k(X´X)
-1

]
-1

                (3.28)

şeklinde tanımlanmıştı. Buradan, 
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W matrisinin özdeğerleri, 

𝜏𝑖(𝑤)  =  
1

𝜆𝑖+𝑘
                 (3.29)

dır. 

Z matrisinin özdeğerleri ise şöyledir: 

𝜏𝑖(𝑧)  =  
𝜆𝑖

𝜆𝑖+𝑘
                 (3.30)

Z matrisi aynı zamanda şu eşitliği de verir: 

Z= I – k(X´X+kI)
-1

= I- k W               (3.31)

3.6.3. Ridge kestiricisinin beklenen değeri 

E (β̂
*
 )= E[(Z β̂)]                (3.32)

= E [( I-kW) β̂)]                (3.33)

= E [( I-k(X´X +kI)
-1

) β̂)]               (3.34)

= E [β̂-k(X´X +kI)
-1

 β̂]                (3.35)

ʋi matrisin özdeğerine karşılık gelen özvektörler olmak üzere 𝛽̂* beklenen değeri; 

E(𝛽̂∗ )= β - k∑ (𝜆𝑖 + 𝑘)
−1𝑝

𝑖=1 ʋi ʋi′β              (3.36)

olarak ifade edilir. 

3.6.4. Ridge tahmin edicinin bazı özellikleri 

1. 𝛽̂(k), yarıçapı 𝛽̂(k)’ın uzunluğu olan orjin merkezli küre üzerindeki rezidü 

kareler toplamını minimum yapar. 

2. Rezidü kareler toplamı k’ın artan bir fonksiyonudur. 

3. 𝛽̂(k)’ 𝛽̂(k)< 𝛽̂’ 𝛽̂ ve k∞ 𝛽̂(k)’ 𝛽̂(k) 0 dır. 
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4. 1…𝑝,  X ' X özdeğerleri olmak üzere X'X+kI en büyük özdeğerinin en 

küçük özdeğere oranı (1 + 𝑘)/(𝑛 + 𝐼) olup k azalan bir fonksiyonudur. Bu oranın 

kareköküne X koşul sayısı denmektedir (Judge ve ark,1985). 

5. Ridge tahmin edici k= 0 için EKK tahmin edicisini verir. Ayrıca Ridge tahmin 

edici EKK tahmin edicinin bir lineer dönüşümü olarak da yazılabilir: 

𝛽̂(k) = (𝑋′ 𝑋 + 𝑘𝐼)−1𝑋′𝑦. 

6. Hoerl ve Kennard (1970) Ridge tahmin edicinin toplam varyansının k’ın sürekli 

monoton azalan bir fonksiyonu ve yanlılığın karesinin k’ın sürekli monoton artan bir 

fonksiyonu olduğunu göstermiştir. Bu nedenle varyanstaki azalma, yanlılığın 

karesindeki artıştan fazla olduğu müddetçe Ridge tahmin edicinin iyi bir teknik olduğu 

söylenir. 𝑆𝑘= (𝑋′ 𝑋 + 𝑘𝐼)  olsun. Bu durumda: 

E(𝛽̂(k)) = 𝑆𝑘
−1𝑋′𝑋β                (3.37)

BİAS (𝛽̂(k)β )= -k𝑆𝑘
−1β                (3.38)

Var (𝛽̂(k))= σ2 Sk
-1

X'X Sk
-1

 (3.39)

olduğundan Ridge tahmin edicinin matris hata kareler ortalaması 

MMSE (𝛽̂(k ) β)=  Sk
-1

(σ2X
'
X +k

2
ββ')S

k

-1
             (3.40) 

olur. 1…𝑝, 𝑋′𝑋 ‘in özdeğerleri olmak üzere skaler hata kareler ortalaması 

SMSE (𝛽̂(k ) β)= trMMSE (𝛽̂(k ) β)              (3.41)  

= ∑
𝜎2𝑖

(𝑖+𝑘)
2 + │𝑘

2𝑝
𝑖=1 𝛽′(𝑋′ 𝑋 + 𝑘𝐼)−2𝛽              (3.42) 

elde edilir. 
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7. Sabit k için lim
𝛽̂𝛽∞

𝑀𝑀𝑆𝐸 ﴾𝛽̂(𝑘 ) 𝛽 ﴿ = ∞ olduğundan 𝛽̂(𝑘 ) sınırsız riske sahip 

olmamaktadır(Özkale,2007). 

3.6.5. k’nın nokta tahmini yöntemi 

RR modeline ait olan k parametresinin belirlenmesi özdeğerlere dayalıdır. RR 

işleminin hangi noktada durağanlaştığını ya da özdeğer 1’e en yakın olduğu noktayı 

tespit etmek için, Ridge iz grafiği dikkate alınarak ya da k parametresinin değerinin 

bulunması ile tespit edilir. Çoğu araştırıcı k değerinin bulunması için farklı formüller 

önermiştir. Bunlar içerisinde özdeğere bağlı olarak k sabitinin belirlenmesinde koşul 

indeksinden faydalanarak, 

k ≤
𝜆𝑚𝑎𝑥−100𝜆𝑚𝑖𝑛

99
 , k≠0                (3.43) 

denklemi elde edilmiştir. Bu eşitlikten k parametresinin VBF değerini 1’e yakın 

yaptığı nokta belirlenebilir. Albayrak (2005)’ın Anderson (1998)’dan bildirdiğine 

göre, optimum k değerinin elde edilmesine yönelik kullanılan diğer kriterler arasında 

katsayıların kuramsal beklentilere uygunluğunu, durağanlığını, kabul edilebilir 

büyüklüğünü, makul hata kareleri toplamını ve minimum VBF ‘leri sağlayan k  sabiti 

yaklaşımları sayılabilir.  

RR 

EKK 

Yanlılığın karesi 

Varyans 

Şekil 3. 1.  𝜷̂(k )  ve 𝜷̂ SMSE’in k’ya Bağlı Grafiği(Hoerl ve Kennard,1970) 
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Ridge regresyon (RR) modelinde 𝑋′𝑋 matrisi korelasyon formunda olmak üzere 𝑋′𝑋 

matrisinin köşegen değerlerine küçük k değerlerinin (0 ≤ k ≤ 1) eklenmesiyle RR elde 

edilmektedir (Hoerl ve Kennard 1970). 

𝛽̂(k) = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑦, k ≥ 0               (3.44)  

Ridge tahmin edici, Hoerl ve Kennard (1970) tarafından aşağıda gibi elde edilmiştir. 

𝛽 rastgele bir tahmin edici iken, 𝛽 nın kareler toplamı, 𝛽 nın optimallik özelliğine göre 

S(𝛽) = (y-X𝛽)ꞌ(y-X𝛽)ꞌ 

=(y-X𝛽̂ )ꞌ(y-X𝛽̂)+ (𝛽̂-𝛽)ꞌXꞌ X(𝛽̂-𝛽)                                                               (3.45) 

=S(𝛽)+Ф(𝛽) 

olarak yazılabilir. 

Burada, (𝛽̂-𝛽)ꞌXꞌ X(𝛽̂-𝛽), 𝛽̂ yerine 𝛽 'nın olmasından kaynaklanan yanlılığın 

karesidir. 𝑋ꞌ 𝑋 kötü koşullu iken, , 𝛽̂ ile β arasındaki mesafe artmaktadır. Bu yüzden 

𝛽′𝛽 tahmin edicisinin mesafesinin toplamının verilen belli bir seviyesi için uzaklığın 

karesini minimum yapmamız gerekir. 

Ф > 0 hata kareler toplamı için verilen bir sabit iken;  

S(𝛽̂)+Ф(𝛽) koşulunu sağlayan tahmin edicilerin bir kümesi vardır{ 𝛽 ̃}.  

Bu kümede her zaman en küçük uzunluklu 𝛽 tahmini elde edilmek istenir. Diğer bir 

deyişle 1/k Lagrange çarpanı olmak üzere; 

{𝛽′𝛽 +
1

𝑘
 [(𝛽̂ − 𝛽)ꞌ 𝑋ꞌ 𝑋(𝛽̂ − 𝛽) − Ф0]}                                         (3.46) 

ifadesinin 𝛽 ve 1/k ya göre türevleri 

𝛽+
1

𝑘
(Xꞌ X) (𝛽 − 𝛽̂)=0                (3.47) 

ve  

Ф0=(𝛽̂ − 𝛽)′ Xꞌ X(𝛽̂-𝛽)                (3.48) 

normal denklemlerini verir. 
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3.7. Temel Bileşenler Regresyonu (TBR) 

Çoklu doğrusal bağlantıyı gidermeye yönelik olarak kullanılan yanlı tahmin 

edicilerden birisi de Temel Bileşenler tahmin edicisidir. Temel Bileşenler Analizi, ilk 

kez Hotelling (1933) tarafından kullanılmıştır. 

Temel Bileşenler Regresyonunda; aralarında yüksek korelasyon bulunan açıklayıcı 

değişkenlere Temel Bileşenler Analizi uygulanır. Bu analiz, bir boyut indirgeme 

yöntemi olmakla beraber, bu analiz sonucunda orijinal değişkenler arası varyansı en 

yüksek derecede verebilen ve birbirinden bağımsız daha az sayıda yeni değişkenler 

elde edilir. Bu yeni değişkenler, bileşen olarak adlandırılır. Bu bileşenlere ait skor 

değerleri, sonuç değişkenini açıklamak üzere kurulan regresyon modelinde kullanılır. 

Boyut indirgeme işlemi için bazen Temel Bileşenler Analizi yerine Faktör Analizi de 

yapılmaktadır. Faktör Analizi sonucunda elde edilen faktör skorları regresyon 

analizinde kullanılır.  

Temel Bileşenler Analizinde, n (gözlem sayısı) ve p (değişken sayısı) dan meydana 

gelen veri matrisi X’in p boyutlu uzaydaki durumuna göre, veri matrisi çok sayıda 

noktadan meydana gelen bir topluluk olarak ifade edilebilir. Bu matriste ham veri 

kullanılıyorsa, varyans-kovaryans matrisinden yararlanılır. Fakat standartlaştırılmış 

veri kullanılıyorsa korelasyon matrisinden yararlanılır. Farklı sonuçlar doğuran bu 2 

yoldan hangisinin seçileceği ise verilerin ölçü birimlerine bağlıdır. Eğer değişkenlerin 

ölçü birimleri aynı ise varyans-kovaryans matrisi, aynı değilse korelasyon matrisi 

kullanılmalıdır. 

Temel Bileşenler Analizi, bir değişkenler setinin varyans-kovaryans yapısını, yine bu 

değişkenlere ait doğrusal birleşimleri ile açıklayıp, boyut indirmesini ve 

yorumlanmasını sağlayan çok değişkenli bir istatistik yöntemidir. 

X = (

X11X12X13 ⋯    X1J ⋯ X1p

⋮ ⋱ ⋮
  Xn1Xn2Xn3 ⋯    XnJ ⋯ Xnp

) 

p adet tesadüfi değişkeni; 
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X1=

(

 
 
 

X11

X21

.

Xi1

.

Xn1)

 
 
 

, X2=

(

 
 
 

X12

X22

.

Xi2

.

Xn2)

 
 
 

,….,Xj=

(

 
 
 

X1j

X2j

.

Xij

.

Xnj)

 
 
 

,…,Xp=

(

 
 
 

X1p

X2p

.

Xip

.

Xnp)

 
 
 

 

 

şeklinde gösterilmektedir. Matematiksel anlamda temel bileşenler X1, X2, ….Xp 

değişkenlerinin doğrusal kombinasyonlarıdır. Geometrik olarak bu doğrusal bileşenler 

birbiriyle ilişkili koordinat eksenleri X1, X2, ….Xp olan orijinal sistemleri döndürerek 

birbirinden bağımsız yeni koordinat sisteminin oluşturulmasını amaçlamaktadır. Elde 

edilen yeni eksenler, maksimum değişkenliği içeren yönleri göstermesiyle beraber, 

aynı zamanda değişim yapısının daha basit ve daha az sayıda değişken ile 

açıklanmasına imkân vermektedir. X gözlem matrisinin birinci temel bileşenine ait 

olan denklem şu şekildedir; 

Y1= t11 X1  +  t21 X2   +… +tp1 Xp                                                            (3.49) 

Y1= t1
'
  olur. 

Buradan; 

t1
' = (t11,t21,…,tp1) ve X'=(X1,X2,…,Xp)                                                       (3.50) 

t’X = (t11 , t21 ,..., t p1)

(

 
 
 

X1

X2
.

.

XP)

 
 
 

                                                                                         (3.51) 

 

= t11 X 1 + t21 X 2  + ... + t p1 X p                                                                                           (3.52) 

şeklinde yazılabilir. X matrisinde bulunan p değişkenine ait doğrusal bileşenlerini 

bulmak için varyans-kovaryans matrisinin özdeğerleri ve özvektörleri kullanılır 

(Alpar, 1997; Ludwig ve Reynolds, 1988). Bahsedilen Varyans- kovaryans matrisini 

oluşturmaya yönelik olarak gerekli olan ortalamalar, varyans ve kovaryanslar aşağıda 

verilen denklemler yardımıyla hesaplanmaktadır (Shanmugan ve Johonson, 2007). 
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

𝑥̅𝑗 =
∑ 𝑥𝑖𝑗
𝑛
𝑖=1

𝑛
,  j = 1,2,..., p                                                            (3.53) 

sjj'=
∑ (xij-x̅.j)(xij

'-x̅
.j

')
n
i=1

n-1
  ,     j = 1,2,..., p i = 1,2,..., p                                (3.54) 

Yukarıdaki şekliyle hesaplanmış değerler ile oluşturulan varyans-kovaryans matrisi 

pxp boyutunda olmakta ve şu şekilde verilmiştir. 

 

s11 s12 s13… s1p 

 

 

S = 
s21 s22 s23… s2p 

 

 

s31 s32 s33… s3p 

 

 

Böylelikle  temel  bileşenlerin  doğrusal  denklemlerini  oluşturmak  için Y1   = t11 X 1  

+  t21 X 2   +.... +tp1 Xp eşitliğinde verilen birinci temel bileşenin varyansı verildiği gibi 

hesaplanmaktadır. 

Et1X t1X   E(t1 XX t1 )  t1St1                                                                  (3.55) 

Yine t1
' t1=1 kısıtlaması altında (t1

' t1-1)=0  olmaktadır. Lagrange fonksiyonu,  

(t1, 1 )  t1St1   1 (t1t1  1) ,                                                                          (3.56) 

 

bulunur. 

Buradan; 

(S- λ1 I)t1=0                                                                                                (3.57) 

elde edilmektedir. Buradaki 𝜆1 değeri, S matrisinin birinci bileşenine ait özdeğer; t1 

ise S matrisinin birinci özdeğerinden elde edilmiş özvektördür.  Söz konusu eşitliğin 
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solundaki ikinci terim için 𝑡1
′𝑡1 = 1 kısıtlama olması nedeniyle t = 0 başka çözüm 

olması, sadece birinci terimin determinantının sıfır olması ile mümkün olabilmektedir. 

(S- λ1 I)=0                                                                                                   (3.58) 

eşitliğini p özdeğeri için genelleştirir ve λ1 yerine λ  koyulduğunda, 

(S- λ I)=0 (3.55)                                                                                           (3.59) 

elde edilir. Bu eşitlik çözümlendiğinde λ ’ın p dereceden bir polinomu bulunur. Yine 

bu polinomun 1   2   ...  p   0 olacak şekilde toplam p adet kökü, diğer bir ifadeyle 

özdeğeri vardır. Bileşenlerin varyans değeri özdeğerlere eşit olduğundan ve 

özdeğerleri de büyükten küçüğe doğru sıralanması durumunda, birinci bileşenin 

varyansı en yüksek olmaktadır. Bu yüzden birinci bileşenin varyans değeri, toplam 

varyasyondaki en yüksek paya sahiptir. Hesaplanan p adet özdeğer için, yine p adet 

özvektör hesaplanmaktadır. Özvektörleri hesaplamadan önce, Ф0=﴾𝛽̂ − 𝛽﴿
′
 Xꞌ X﴾𝛽̂-𝛽 ﴿  

eşitliğinden hesaplanan her özdeğeri tek tek aynı eşitliğe koyarak matrisin eşleniği 

bulunursa; 

Eş(S- λ I)                                                                              

Eşlenik matris kofaktör matrisine eşit olmaktadır. 

K=Eş(S- λ I)                                                                                               (3.60) 

K, kofaktör matrisin boyutu p x p boyutta olup, sütunların birbirinin aynısı veya farklı 

olmasının yanında en önemli özelliği birbirine orantılı olmasıdır. Bu özellikten dolayı, 

her sütunun standartlaştırılmış özvektörlerin değerleri birbirine eşit olmaktadır. Bunun 

sonucu olarak, özvektörlerin standartlaştırılması işlemi yapılır. Birinci özvektörün 

standartlaştırılması ile ilgili denklem aşağıda şekildedir. 

ti1=
ki1

√∑ (ki1)
2p

i=0

,                             i = 1,2,3,..., p                                                (3.61) 

Eşitlikteki ki1 ifadesi K matrisinin i. satır elemanıdır. Elde edilen p adet 

standartlaştırılmış özvektör eşitlikte koyulursa; 
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Y1 = t1
' X= t11 X1+ t21X2 +… + t p1  X p    

Y2 = t2
' X= t12 X1+ t22X2 +… + tp2Xp  

 

Yp = tp
' X= t1p X1+ t2pX2+… + tppXp  

bileşenleri elde edilir. Standardize hale getirilmiş özvektörlerin kareleri toplamı 

1’dir. 

∑ (kij)
2p

i=1 =1,  i=1,2,…..,p                                                         (3.62) 

Bu şekilde, toplam varyasyondaki en büyük katkıyı sağlayan bileşen için bulunan 

standardize hale getirilmiş özvektör değerinin, 

tij
2,    i=1,2,…..,p 

şeklinde karesini alarak, birinci bileşende yeralan her değişkenin toplam varyasyona 

olan katkısı bulunur ve değişken sayısı, 

∑ ti1
2p

i=1 <0.95,  i=1,2,…..,p  

eşitliği ile bulunur. Aynı işlem diğer bileşenler yani özdeğerler için de yapılır. Y1 sonra 

bağımsız doğrusal bileşenler arasında en büyük varyansa ikinci bileşen sahiptir. 

Ayrıca, Y1 ile Y2 ‘in bağımsızlığı (𝑡1
′  𝑡2)  =  0, 

E(Y1 Y2) = E [(t1
'  X) (t2

'  X)’] 

= E (t1
'  XX’t2) 

= t1
'  St2 

= λ1t1
' t2  

= 0 

şeklinde ispat edilir. Bu 𝑌1 ve 𝑌2 istatistiksel anlamda hem bağımsız hem de dik olarak 

görünür.  

Temel bileşenler regresyonunda kullanılacak olan bileşenler, standardize hale 



 
 

29 
 

getirilmiş değişkenlerden ( 𝑍𝑖𝑗) ve temel bileşenlerde değişkenlerin ağırlıklarından 

( 𝑡𝑖𝑗 ) yararlanılarak bulunur.  

 Skj=t1kz1j+t2kz2j+…+tpkzpj 

Eşitlikte yer alan 𝑆𝑘𝑗 ifadesi, k-ıncı temel bileşendeki j-inci gözlem değeri için skor 

değerlerini ifade etmektedir. Bu skorların kullanılması ile temel bileşenler regresyon 

yöntemine dayalı model tahmini şu şekildedir: 

Ŷ=a+b1s1+b2s2 

Buradaki a ifadesi, regresyon sabitini, bi (i=1,2) ifadesi ise i-inci temel bileşen 

skorlarının regresyon katsayısını ifade etmektedir. 

3.7.1. Temel bileşen sayısının belirlenmesi 

Temel bileşenler analizinde bileşenler elde edildikten sonra, bileşen sayısının kaç 

olacağına karar vermek önemlidir. Buna yönelik olarak çok fazla yöntem 

geliştirilmiştir ve fakat en basit ve en çok kullanılan yöntem, toplam varyasyonun 

2/3’ünü geçinceye kadar  değerleri toplanarak bileşen sayısına karar verme 

yöntemidir. Rencher, (2002) ise açıklanan toplam varyasyon oranını % 80 olarak ifade 

etmiştir. Eğer bulunacak olan yeni bileşen sayısı k olarak ifade edilirse, bunun sayısı 

ve toplam varyasyondaki payı aşağıdaki denklem yardımıyla bulunur. 

∑ λi
k
i=1

∑ λi
p

i=1

=
2

3
,    k= 1,2,..., p 

Başka bir yöntem ise, çoklu lineer regresyon analizi için temel bileşenler analizi 

sonucunda seçilecek olan temel bileşen sayısı 1’den büyük özdeğerlerin sayısıdır. Bir 

diğer yöntem; temel bileşenlere ait çizilen grafiğe bakarak, grafiğin monotonlaşmaya 

başladığı noktayı temel bileşenlerin sayısı olarak belirmektir. 
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4. UYGULAMA 

4.1. Örnek Uygulama 

Örneklem büyüklüğü n=30, değişken sayısı x=7 ve ilişki düzeyi 𝜌 = 0.9 olarak 

belirlenmiş şekilde türetilmiş deneme sonucunda elde edilen veriler aşağıda 

verilmiştir. 

Çizelge 4. 1. n=30, x=7 ve ρ=0.9  iken elde edilen simülasyon sonuçları 

 Y X1 X2 X3 X4 X5 X6 X7 

1 -10.6599 -1.7004 -1.36334 -1.25266 -1.55361 -0.95063 -1.98978 -1.84709 

2 6.8852 0.53564 1.26376 1.00403 0.57264 0.45586 0.89183 1.10429 

3 1.3776 0.31484 -0.43723 -0.71063 0.08681 -0.27339 -0.02124 -0.11721 

4 -9.9437 -1.30236 -1.02924 -1.59775 -0.93113 -1.1617 -0.54371 -2.30794 

5 -0.3138 -0.74986 -0.92202 -0.2169 -0.39981 0.29124 0.18182 -0.1533 

6 -5.0700 -0.65366 -0.28755 -0.79842 -0.98458 -0.42364 -0.3635 -0.75852 

7 9.2272 1.05997 1.44330 1.20458 0.88500 0.89783 0.75137 1.32055 

8 3.9213 0.11613 -0.5156 -0.39962 0.51550 -0.28823 0.95717 -0.00126 

9 0.5928 0.06176 0.19200 -0.28336 -0.74934 0.81040 0.70119 0.00096 

10 4.3151 0.12243 0.41320 0.55354 0.38153 0.63010 0.08886 0.81078 

11 3.2708 0.29706 0.83681 0.11983 -0.06607 0.13988 0.78917 0.16158 

12 0.9139 0.39620 -0.18565 0.08462 -0.38977 -0.1779 0.28823 -0.02114 

13 12.2480 1.17196 1.50687 1.55514 1.30308 0.73669 1.88902 2.56991 

14 9.9170 1.02835 1.53527 1.09699 1.42754 0.25912 1.22168 1.34462 

15 -2.5537 -0.24405 -1.22008 -0.3577 -1.60832 0.72385 -0.5496 -0.87961 

16 -5.6884 -0.65175 -1.33859 -0.73308 -0.31816 -0.84728 -0.5682 -1.05105 

17 3.0740 -0.00466 0.22568 0.55109 0.14358 -0.03187 0.41968 0.54932 

18 8.0769 0.91446 1.7282 1.34058 1.42237 0.80692 1.28485 1.49444 

19 -6.1496 -0.75357 -1.16452 -1.04021 -0.90178 -0.77447 -0.53934 -0.70147 

20 22.7757 2.69416 2.60693 3.58822 3.25159 2.76456 2.81879 4.48173 

21 4.2781 0.51768 0.31862 0.64645 0.12951 -0.78084 1.24012 0.88277 

22 -1.2111 -0.3663 -0.68935 -0.32175 -0.67339 -0.37253 0.03112 -0.77221 

23 4.5969 0.86943 -0.13051 0.04046 1.02638 0.40562 0.26393 0.56452 

24 2.5851 0.14742 -0.67631 0.32616 0.67150 0.16087 0.28521 0.44968 

25 -7.0684 -1.01972 -1.31506 -0.68085 -0.68039 -1.85439 -0.31205 -2.09113 

26 7.8680 0.78790 1.23622 1.37808 0.7683 0.63056 1.66394 1.67637 

27 -1.2904 -0.42021 -0.64057 -0.41749 -0.71642 -0.03515 0.29127 -0.22439 

28 -2.6621 -1.24602 -0.55181 -0.16821 0.30807 -1.60857 -1.45214 -1.28372 

29 16.7458 1.37414 2.33942 1.15150 2.18070 2.5958 2.15190 2.72120 

30 10.8699 1.02324 1.52117 1.12785 1.08413 1.47739 0.85442 1.57515 
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Tahmin edilen regresyon denklemi 

ŶEKK = 1.119 + 1.533 X1+ 0.567 X2 + 0.736 X3 + 1.738 X4 +  

        0.924 X5 + 0.643 X6 + 1.080 X7 

HKOEKK =
(1-1.533)2+(1-0.567)2+⋯+(1-1.080)2

7
=0.175078 

Çizelge 4. 2. En Küçük Kareler Yöntemine Göre Regresyon Analiz Sonuçları 

Değişkenler Katsayılar 
Standart 

Hata 
T-Değeri P-Değeri VIF 

Sabit 1.119 0.276 4.06 0.001  

X1 1.533 0.832 1.84 0.079 12.13 

X2 0.567 0.503 1.13 0.272 6.89 

X3 0.736 0.708 1.04 0.31 11.2 

X4 1.738 0.504 3.45 0.002 5.99 

X5 0.924 0.479 1.93 0.067 4.85 

X6 0.643 0.574 1.12 0.275 6.78 

X7 1.08 0.807 1.34 0.194 28.3 

 

Çizelge 4. 3. EKK Sonucu Elde Edilen Çoklu Regresyon Varyans Analiz Sonuçları 

Kaynak 
Serbestlik 

Derecesi 

Kareler 

Toplamı 

Kareler 

Ortalaması 
F-Değeri P-Değeri 

Regresyon     7 1653.13 236.162 160.10 0.000 

  X1   1 5.00 5.004 3.39 0.079 

  X2   1 1.87 1.869 1.27 0.272 

  X3   1 1.59 1.593 1.08 0.310 

  X4   1 17.55 17.552 11.90 0.002 

  X5   1 5.49 5.494 3.72 0.067 

  X6   1 1.85 1.849 1.25 0.275 

  X7   1 2.64 2.642 1.79 0.194 

Hata   22 32.45 1.475   

Toplam 29 1685.58 Düzeltilmiş R Kare = 0.9746 

 

Çizelge 4.1. ‘deki veriler kullanıldığında KEKK yöntemi ile elde edilen model ve 

HKO ‘sı aşağıdaki gibi elde edilmiştir. 

ŶKEKK=1.08972+ 1.37404X1+ 0.709557X2+ 1.05466X3+ 1.71159X4+ 

 0.826148X5+ 0.755764X6+ 0.855327X7+e 
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HKOKEKK=
(1-1.37404)2+(1-0.709557)2+⋯+(1-0.855327)2

7
=0.120631 

Çizelge 4.1. ‘deki veriler kullanıldığında TBR yöntemi ile elde edilen model ve HKO 

‘sı aşağıdaki gibi elde edilmiştir. 

ŶTBR= 1.03187+ 0.839032X1+ 1.05727X2+ 1.01401X3+ 1.07609X4+  

0.639942X5+ 0.950688X6+ 1.37355X7+e 

HKOTBR =
(1-0.839032)2+(1-1.05727)2+⋯+(1-1.37355)2

7
=0.043827 

Çizelge 4.1. ‘deki veriler kullanıldığında RR yöntemi ile elde edilen model ve HKO 

‘sı aşağıdaki gibi elde edilmiştir. 

ŶRR= 1.06385+ 1.30472X1+ 0.612636X2+ 0.770036X3+ 1.63457X4+  

0.892892X5+ 0.727120X6+ 1.18392X7+e 

HKORR = 
(1-1.30472)2+(1-0.612636)2+⋯+(1-1.18392)2

7
=0.11689 

 

4.2. Simülasyon Sonuçları 

Bu çalışmada Minitab 16.0 programı ile ayrı ayrı 4, 7 ve 10 değişkenli, normal 

dağılıma uygun,  farklı ilişki düzeylerinde ve örneklem büyüklüklerinde doğrusal 

regresyon modelleri oluşturulmuştur.  Oluşturulan bu modellerin her birinin 

parametreye ilişkin HKO (Hata Kareler Ortalamaları) hesaplanmış ve ortalamaları 

alınmıştır. Elde edilen bu hata kareler ortalama değerleri dikkate alınarak Kısmi En 

küçük Kareler Yöntemi, Ridge Regresyon ve Temel Bileşenler Regresyonu 

yöntemlerinden hangisinin daha tercih edilebilir olduğu saptanmaya çalışılmıştır. 

Türetilen verilerle elden edilen HKO değerleri Çizelge 4.2’de sunulmuştur. 

 

Açıklayıcı değişkenler  (x) ; 
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xij=(1-ρ2)
1 2⁄

uij+ρ uip  

ile üretilmiştir. 
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Çizelge 4. 4. Değişken sayısı: 4-7-10, Örneklem Büyüklüğü:30-40-100-200-500, İlişki Düzeyi:0, 0.3, 0.5, 0.7, 0.9 iken 5000 denemede elde edilen ortalama HKO 

değerleri 

  n=30 n=50 n=100 n=200 n=500 

x
=

4
 

𝝆  KEKK TBR RR  𝝆 KEKK TBR RR 𝝆  KEKK TBR RR 𝝆  KEKK TBR RR 𝝆  KEKK TBR RR 

0 0.0423 0.4303 0.0349 0 0.0222 0.4283 0.0227 0 0.0121 0.3952 0.0109 0 0.00516 0.39876 0.00508 0 0.00178 0.39566 0.00184 

0.3 0.0380 0.1824 0.0378 0.3 0.0211 0.1386 0.0216 0.3 0.0108 0.1328 0.0104 0.3 0.00464 0.12587 0.00483 0.3 0.00232 0.1278 0.00202 

0.5 0.0440 0.127 0.047 0.5 0.0238 0.1022 0.0264 0.5 0.0116 0.0967 0.0129 0.5 0.00492 0.08982 0.0054 0.5 0.00219 0.08896 0.00238 

0.7 0.0538 0.0748 0.0591 0.7 0.0365 0.0746 0.0385 0.7 0.0206 0.0622 0.021 0.7 0.01167 0.05867 0.00942 0.7 0.00598 0.05653 0.00359 

0.9 0.1745 0.0662 0.1695 0.9 0.0786 0.0432 0.0843 0.9 0.0500 0.034 0.0491 0.9 0.02614 0.02884 0.0237 0.9 0.0136 0.02409 0.01109 

x
=

7
 

0 0.0673 0.6716 0.0477 0 0.0326 0.5923 0.0256 0 0.0125 0.5995 0.0113 0 0.00564 0.61701 0.00503 0 0.00209 0.58347 0.00199 

0.3 0.0431 0.2655 0.0421 0.3 0.0276 0.2055 0.0261 0.3 0.0137 0.1840 0.0107 0.3 0.00928 0.17067 0.00541 0.3 0.00415 0.15777 0.00207 

0.5 0.0407 0.1454 0.0556 0.5 0.0224 0.1225 0.0301 0.5 0.0127 0.1128 0.0157 0.5 0.0059 0.10184 0.00619 0.5 0.00284 0.10083 0.00285 

0.7 0.0534 0.0806 0.0835 0.7 0.0297 0.0693 0.0460 0.7 0.0187 0.0610 0.0233 0.7 0.00907 0.05818 0.01012 0.7 0.00417 0.0558 0.00406 

0.9 0.1237 0.0404 0.1767 0.9 0.0791 0.0339 0.1166 0.9 0.0426 0.0263 0.0543 0.9 0.02343 0.02195 0.0288 0.9 0.01193 0.01997 0.01156 

x
=

1
0
 

0 0.0957 0.7329 0.0543 0 0.0432 0.7429 0.0247 0 0.0169 0.7265 0.012 0 0.00627 0.71927 0.00527 0 0.00214 0.72321 0.00196 

0.3 0.0567 0.2868 0.0538 0.3 0.0342 0.2396 0.0250 0.3 0.0195 0.1974 0.0123 0.3 0.01203 0.17592 0.00601 0.3 0.00689 0.1668 0.00222 

0.5 0.0394 0.1451 0.0659 0.5 0.0254 0.1252 0.0347 0.5 0.0129 0.1093 0.0148 0.5 0.0074 0.10191 0.00727 0.5 0.00371 0.09617 0.00267 

0.7 0.043 0.076 0.0991 0.7 0.03 0.0651 0.0504 0.7 0.0153 0.0561 0.0223 0.7 0.00894 0.05304 0.01105 0.7 0.00379 0.05143 0.0044 

0.9 0.1089 0.0304 0.2185 0.9 0.0783 0.0267 0.1132 0.9 0.0409 0.0204 0.0602 0.9 0.02385 0.01825 0.03536 0.9 0.01091 0.01656 0.01306 
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Çizelgedeki sonuçlar incelendiğinde örneklem büyüklüğü ne olursa olsun ilişki düzeyi 

artıkça TBR ile elde edilen HKO değeri hep düşmektedir. 

n değişken sayısı artıkça kullanılan yöntem ne olursa olsun, elde edilen modellerin 

HKO değerleri düşmektedir. 

Değişken sayısı artıkça örneklem büyüklüğü ne olursa olsun yüksek ilişki düzeyi hariç 

tüm HKO değerlerinde artış gözlemlenmiştir. 

Literatürde KEKK yönteminin TBR yöntemine göre daha iyi olduğu ifade 

edilmektedir. Ancak yapılan çalışmada ve elde ettiğimiz bulgulara göre, her örneklem 

ve her ilişki düzeyi için bunun doğru olmadığı belirlenmiştir. 

  



 
 

36 
 

  n=30 için 

 
Şekil 4.1.A –  Değişken Sayısı=4  

 
Şekil 4.1.B – Değişken Sayısı=7 

 
Şekil 4.1.C  – Değişken Sayısı=10 

Şekil 4. 1. Örneklem Büyüklüğü:30 iken elde edilen HKO değerleri 
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Örneklem büyüklüğü n=30 ve 4 değişkenli regresyon modelinde (Şekil 4.1.A) 

bağımsız değişkenler arasında ilişki yokken, RR diğerlerine göre daha iyi sonuçlar 

vermiştir. Ancak KEKK yöntemi de RR modelinden çokta kötü sonuçlar vermemiştir. 

İlişki düzeyi 0.3 olduğunda,  TBR ‘nin HKO değeri düşmeye başlamıştır. Fakat yine 

de TBR yöntemi diğerlerine göre daha kötü sonuç vermiştir. İlişki düzeyi biraz daha 

artırıldığında (0.5), TBR nin HKO değeri anlamlı bir şekilde düşmesine rağmen, yine 

de diğerlerine göre daha kötü sonuçlar vermektedir. İlişki düzeyinin artmasıyla KEKK 

ile RR arasında bir denge olmaktadır. İlişki değeri 0.7 gibi bir ilişkide TBR diğerlerine 

yakın sonuçlar vermektedir. Fakat bağımsız değişkenler arasında çok yüksek bir 

ilişkinin olması durumunda TBR diğerlerine göre HKO bakımından daha anlamlı 

modeller tahmin etmektedir. Yine benzer şekilde örneklem büyüklüğü n=30 için hem 

7 değişkenli regresyon modelinde (Şekil 4.1.B), hem de 10 değişkenli regresyon 

modelinde (Şekil 4.1.C) aynı durumlar söz konusudur. 
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n=50 için 

 
Şekil 4.2.A – Değişken Sayısı=4 

 
Şekil 4.2..B – Değişken Sayısı=7 

 
Şekil 4.2.C – Değişken Sayısı=10 

Şekil 4. 2. Örneklem Büyüklüğü:50 iken elde edilen HKO değerleri 
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Örneklem büyüklüğü n=50 iken farklı değişken sayılarına ait regresyon modellerine 

ait elde edilen HKO değerleri Şekil 4.2. ‘de verilmiştir. 

Örneklem büyüklüğü n=50 ve 4 değişkenli regresyon modelinde (Şekil 4.2.A) 

bağımsız değişkenler arasında ilişki yokken, KEKK diğerlerine göre daha iyi sonuçlar 

vermiştir. Ancak RR yöntemi de KEKK modelinden çokta kötü sonuçlar vermemiştir. 

İlişki düzeyi 0.3 olduğunda,  TBR ‘nin HKO değeri düşmeye başlamıştır. Fakat yine 

de TBR yöntemi diğerlerine göre daha kötü sonuç vermiştir. İlişki düzeyi biraz daha 

artırıldığında (0.5), TBR ‘nin HKO değeri anlamlı bir şekilde düşmesine rağmen, yine 

de diğerlerine göre daha kötü sonuçlar vermektedir. İlişki değeri 0.7 gibi bir ilişkide 

TBR diğer yöntemlere yakın sonuçlar vermektedir. Fakat bağımsız değişkenler 

arasında çok yüksek bir ilişkinin olması durumunda TBR diğerlerine göre HKO 

bakımından daha anlamlı modeller tahmin etmektedir. 

Örneklem büyüklüğü n=50 ve 7 değişkenli regresyon modelinde (Şekil 4.2.B) 

bağımsız değişkenler arasında ilişki yokken, RR diğerlerine göre daha iyi sonuçlar 

vermiştir. İlişki düzeyi 0.3 iken RR yine daha sonuçlar verirken, KEKK yöntemi de 

yakın sonuçlar vermiştir. İlişki düzeyi 0.5 ve 0.7 olduğunda ise KEKK yöntemi daha 

iyi sonuçlar vermektedir. İlişki düzeyi arttıkça TBR ile elde edilen HKO değerleri 

anlamlı bir şekilde düşmektedir. Fakat ilişki düzeyi 0.9 olduğunda TBR yöntemi diğer 

2 yönteme göre daha iyi sonuçlar vermektedir. 

Örneklem büyüklüğü n=50 ve 10 değişkenli regresyon modelinde (Şekil 4.2.C) 

bağımsız değişkenler arasında ilişki yokken, RR diğerlerine göre daha iyi sonuçlar 

vermiştir. İlişki düzeyi 0.3 iken RR yine daha sonuçlar verirken, KEKK yöntemi de 

yakın sonuçlar vermiştir. İlişki düzeyi 0.5 ve 0.7 olduğunda ise KEKK yöntemi daha 

iyi sonuçlar vermektedir. İlişki düzeyi arttıkça TBR ile elde edilen HKO değerleri 

anlamlı bir şekilde düşmektedir. Fakat ilişki düzeyi 0.9 olduğunda TBR yöntemi diğer 

2 yönteme göre daha iyi sonuçlar vermiştir. 
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n=100 için 

 
Şekil 4.3.A – Değişken Sayısı=4 

 
Şekil 4.3.B  – Değişken Sayısı=7 

 
Şekil 4.3..C  – Değişken Sayısı=10 

Şekil 4. 3. Örneklem Büyüklüğü:100 iken elde edilen HKO değerleri 
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Örneklem büyüklüğü n=100 iken farklı değişken sayılarına ait regresyon modellerine 

ait elde edilen HKO değerleri Şekil 4.3. ‘te verilmiştir. 

Örneklem büyüklüğü n=100 ve 4 değişkenli regresyon modelinde (Şekil 4.3.A) 

bağımsız değişkenler arasında ilişki yokken, RR diğerlerine göre daha iyi sonuçlar 

vermiştir. Ancak KEKK yöntemi de iyi sonuçlar vermiştir. İlişki düzeyi 0,3 

olduğunda,  TBR ‘nin HKO değeri düşmeye başlamıştır. Fakat yine de TBR yöntemi 

diğerlerine göre daha kötü sonuç vermiştir. İlişki düzeyi biraz daha artırıldığında (0.5), 

TBR nin HKO değeri anlamlı bir şekilde düşmesine rağmen, yine de diğerlerine göre 

daha kötü sonuçlar vermektedir. Bu ilişki düzeyinde KEKK yöntemi daha iyi sonuçlar 

vermiştir. İlişki değeri 0.7 olduğunda KEKK ve RR yöntemleri daha iyi sonuçlar 

vermiştir. Fakat bağımsız değişkenler arasında çok yüksek bir ilişkinin olması 

durumunda TBR diğerlerine göre HKO bakımından daha anlamlı modeller tahmin 

etmektedir. 

Örneklem büyüklüğü n=100 ve 7 değişkenli regresyon modeline (Şekil 4.3.B) ait 

bağımsız değişkenlere ait ilişki düzeylerine ait verilere bakıldığında, elde edilen 

sonuçlar 4 değişkenliye ait sonuçlarla benzerlik göstermektedir. İlişki düzeyi 0 ve 0.3 

düzeyinde iken RR yöntemi, 0.5 ve 0.7 düzeyinde iken KEKK, 0.9 düzeyinde ise TBR 

yönteminin daha iyi olduğu görülmektedir. 

Örneklem büyüklüğü n=100 ve 10 değişkenli regresyon modeline (Şekil 4.3.C) ait 

bağımsız değişkenlere ait ilişki düzeylerine ait verilere bakıldığında, elde edilen 

sonuçlar 4 değişkenliye ait sonuçlarla benzerlik göstermektedir. İlişki düzeyi 0 ve 0.3 

düzeyinde iken RR yöntemi, 0.5 ve 0.7 düzeyinde iken KEKK, 0.9 düzeyinde ise TBR 

yönteminin daha iyi olduğu görülmektedir. 
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n=200 için 

 
Şekil 4.4.A – Değişken Sayısı=4 

 
Şekil 4.4.B  – Değişken Sayısı=7 

 
Şekil 4.4.C – Değişken Sayısı=10 

Şekil 4. 4. Örneklem Büyüklüğü:200 iken elde edilen HKO değerleri 
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Örneklem büyüklüğü n=200 iken farklı değişken sayılarına ait regresyon modellerine 

ait elde edilen HKO değerleri Şekil 4.4. ‘te verilmiştir. 

Örneklem büyüklüğü n=200 ve 4 değişkenli regresyon modelinde (Şekil 4.4.A) 

bağımsız değişkenler arasında ilişki yokken, RR diğerlerine göre daha iyi sonuçlar 

vermiştir. Ancak KEKK yöntemi de iyi sonuçlar vermiştir. İlişki düzeyi 0.3 

olduğunda,  KEKK yöntemi daha tercih edilebilir olmuş, TBR yönteminin de HKO 

değerinin düşmeye başladığı gözlenmiştir. Fakat yine de TBR yöntemi diğerlerine 

göre daha kötü sonuç vermiştir. İlişki düzeyi biraz daha artırıldığında (0.5), KEKK 

yöntemi diğerlerine göre daha iyi sonuçlar vermiştir. İlişki değeri hem 0.7 iken, hem 

de 0.9 iken RR yöntemi diğerlerine göre HKO bakımından daha anlamlı modeller 

tahmin etmektedir. 

Örneklem büyüklüğü n=200 ve 7 değişkenli regresyon modelinde (Şekil 4.4.B) 

bağımsız değişkenler arasında ilişki düzeyi 0.0 ve 0.3 iken RR yöntemi daha iyi 

sonuçlar vermiştir. İlişki düzeyi 0.5 ve 0.7 iken KEKK daha iyi sonuçlar vermiştir. 

Fakat yüksek düzeyli ilişki durumunda (0.9) ise TBR daha iyi bir yöntem olarak 

görülmüştür. 

Örneklem büyüklüğü n=200 ve 10 değişkenli regresyon modelinde (Şekil 4.4.C) 

bağımsız değişkenler arasında ilişki düzeyi 0.0 ve 0.3 iken RR yöntemi daha iyi 

sonuçlar vermiştir. İlişki düzeyi 0.5 ve 0.7 iken KEKK daha iyi sonuçlar vermiştir. 

Fakat yüksek düzeyli ilişki durumunda (0.9) ise TBR daha iyi bir yöntem olarak 

görülmüştür. 
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n=500 için 

 
Şekil 4.5.A – Değişken Sayısı=4 

 
Şekil 4.5.B – Değişken Sayısı=7 

 
Şekil 4.5.C– Değişken Sayısı=10 

Şekil 4. 5. Örneklem Büyüklüğü:500 iken elde edilen HKO değerleri 
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Örneklem büyüklüğü n=500 iken farklı değişken sayılarına ait regresyon modellerine 

ait elde edilen HKO değerleri Şekil 4.5. ‘te verilmiştir. 

Örneklem büyüklüğü n=500 ve 4 değişkenli regresyon modelinde (Şekil 4.5.A) 

bağımsız değişkenler arasında ilişki yokken, KEKK yöntemi diğerlerine göre daha iyi 

sonuçlar vermiştir. Ancak RR yöntemi de iyi sonuçlar vermiştir. İlişki düzeyi 0,3 

olduğunda,  TBR ‘nin HKO değeri düşmeye başlamıştır. Fakat yine de TBR yöntemi 

diğerlerine göre daha kötü sonuç vermiştir.0,3 ilişki düzeyinde en iyi sonuçlar RR ile 

elde edilmiştir.  İlişki düzeyi biraz daha artırıldığında (0,5), KEKK yöntemi diğerlerine 

göre daha iyi sonuçlar vermiştir. İlişki değeri hem 0,7 iken hem KEKK hem de RR 

metotları ile edilen HKO değerleri 0,5 ilişki düzeyine göre artmıştır. Yine de 0,7 

düzeyde en iyi sonuçlar RR ile elde edilmiştir. Bağımsız değişkenler arasında çok 

yüksek düzeyde ilişki olması durumunda yine RR yöntemi diğerlerine göre HKO 

bakımından daha anlamlı modeller tahmin etmektedir. 

Örneklem büyüklüğü n=500 ve 7 değişkenli regresyon modelinde (Şekil 4.5.B) tüm 

ilişki düzeylerinde RR yöntemi diğer 2 yönteme göre çok daha iyi sonuçlar vermiştir. 

Fakat KEKK yöntemi de oldukça yakın sonuçlar vermiştir. 

Örneklem büyüklüğü n=500 ve 10 değişkenli regresyon modelinde (Şekil 4.5.C) ilişki 

yokken ve ilişki düzeyleri düşük iken (0.3 ve 0.5) RR yöntemi daha iyi sonuçlar 

vermiştir. İlişki düzeyleri yüksek iken (0.7 ve 0.9) KEKK yöntemiyle daha iyi sonuçlar 

bulunmuştur.  

4 değişkene sahip bir modelde örneklem büyüklüğü n<=200 olduğu durumlarda ilişki 

düzeyi çok az iken KEKK ve RR metodları TBR ye göre daha iyi sonuçlar 

vermektedir.  Sadece ilişki düzeyi çok yüksek(0.9) olduğunda TBR yöntemi diğer 2 

yönteme göre daha iyi sonuçlar vermiştir. Örneklem büyüklüğü n>200 olduğunda yine 

düşük düzeyli ilişkilerde KEKK ve RR yöntemi, TBR ye göre çok iyi daha sonuçlar 

verirken, çok yüksek ilişki düzeyindeki durumlarda RR daha iyi sonuçlar verdiği 

görülmüştür. 

7 değişkene sahip regresyon modellerinde tüm örneklem büyüklüklerinde ilişki 

düzeyleri düşük iken (0.0 ve 0.3) RR yöntemi daha iyi sonuçlar vermiştir. İlişki düzeyi 

0.5 ve 0.7 iken n<=200 için KEKK yöntemi, n=500 iken RR yöntemi tercih edilebilir 

görülmüştür. İlişki düzeyi 0.9 için ise n<=200 için TBR, n=500 için ise RR daha 

verimli sonuçlar vermiştir. 
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10 değişkene sahip regresyon modellerinde ilişki düzeyleri 0.0 ve 0.3 iken tüm 

örneklem büyükleri için RR yöntemi daha iyi sonuçlar vermiştir. 0.5 ilişki düzeyine 

göre, n<=200 iken KEKK, n=500 için ise RR metodu daha sağlıklı sonuçlar vermiştir. 

0.7 ilişki düzeyinde tüm örneklem büyüklükleri için KEKK yöntemi daha iyi sonuçlar 

vermiştir. Çok yüksek ilişki düzeyinde (0.9) ise, n<=200 için TBR, n=500 için ise 

KEKK daha verimli sonuçlar vermiştir. 
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5. SONUÇLAR VE TARTIŞMA 

Yapılan çalışmada, çok değişkenli doğrusal regresyon (çoklu regresyon) modellerinde 

ortaya çıkan çoklu bağlantı sorununu çözmek için kullanılan yöntemlerden temel 

düzeyde KEKK, RR ve TBR yöntemleri karşılaştırılmıştır. Simülasyon ile elde edilen 

veri seti için, değişken sayıları, örneklem büyüklükleri ve ilişki düzeylerine göre bu 

yöntemlerin kendi aralarında hangisinin etkin sonuçlar verdiği farklılıklar 

gösterilmiştir. Özellikle, ilişki düzeylerinin belli derecelerinde, hangi yöntemin daha 

tercih edilebilir sorusuna yanıt verilebildiği gözlenmiştir. İlişki düzeyinin çok düşük 

olduğu (<=0.3) durumlarda RR yöntemi daha olumlu sonuçlar elde edilirken, orta 

düzeyde ilişkiye sahip durumlarda KEKK yöntemi daha iyi sonuçlar vermiştir. Sadece 

çok yüksek düzeydeki ilişki düzeylerde (0.9)  genel olarak TBR yöntemi diğer iki 

yönteme göre daha iyi sonuçlar vermiştir. 

Yine yapılan bu tez çalışmasında elde edilen bir başka bulguda şu şekildedir: 

Örneklem büyüklüğü yüksek olduğunda (n=500) RR regresyon daha iyi sonuçlar 

vermiştir. 

Literatürde yapılan çalışmaların pek çoğunda RR yönteminin diğer iki yönteme daha 

uygun tahminler yaptığı görülmüştür. Ergüneş (2004) yaptığı çalışmada RR ile KEKK 

yöntemlerini karşılaştırarak, daha etkin parametre tahmini yapması nedeniyle RR 

yönteminin KEKK yerine kullanılması gerektiği belirtmiştir. Albayrak (2005) 

çalışmasında RR, TBR ve KEKK yöntemlerini karşılaştırmış, RR ve TBR 

yöntemlerinin KEKK ‘ye göre daha uygun tahminler sağladığını ifade etmiştir. 

Pamukçu (2010), aralarında yüksek çoklu bağlantı bulunan bağımsız değişkenler 

kullanarak yaptığı çalışma sonucunda RR ‘nin KEKK yöntemine göre daha uygun 

tahminler ortaya koyduğu belirtmiştir. Bizim çalışmamızda ise yüksek düzeydeki ilişki 

durumlarında (n=500 hariç) TBR yönteminin daha sağlıklı sonuçlar verdiği 

gözlemlenmiştir. Eker (2011) KEKK, TBR ve RR yöntemlerini karşılaştırmış, en 

düşük HKO ve en büyük R2 değerlerini RR yöntemiyle elde etmiştir. Fakat 

parametrelerin önem testlerine göre TBR ‘nin daha tutarlı olduğu sonucunu elde 

etmiştir. 
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Araştırma sonucunda her üç yöntemin, hangi durumlarda daha sağlıklı ve seçilebilir 

olduğu ile ilgili net kararlara varılabilmiştir. Örneklem büyüklüğü, ilişki düzeyi ve 

değişken sayıları dikkate alınarak en uygun yöntem seçilebilir.  
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Ek A. Simülasyon Çalışması Kullanılan Kodlar 

 

 

Bu çalışmada,  simülasyon sonucu elde edilen tüm veriler, Minitab 16.0 programı için 

hazırlanmış kodlar ile elde edilmiştir. Daha sonra bu alanda benzeri çalışmalar yapmak 

isteyen araştırmacılar için kullanılmak üzere bu kodlar aşağıda verilmiştir. 

Değişken sayısı: 4 ve ilişki düzeyi: 0.5 için yazılan Minitab kodları: 

Random k400 c7-c10;                      

Normal 0 1.                                            

Random k400 c11;                      

Normal 0 1. 

let c3=((1-(k300*k300))**0,5)*c7+k300*c10   # ro değerinin k300 olarak 

belirlenmesi 

let c4=((1-(k300*k300))**0,5)*c8+k300*c10 

let c5=((1-(k300*k300))**0,5)*c9+k300*c10 

let c6=((1-(k300*k300))**0,5)*c10+k300*c10 

let c1=1+c3+c4+c5+c6+c11 

set c2 

1( 1:1/1 )k400    # k400 gözlem sayısını vermektedir. 

End.          

 

#PLS başlangıç 

PLS c1 = c3-c6;  

NComp 2; 

Coding 1; 

coefficients c19. 

let c22(k1)=mean((1-c19)**2) 

#PLS bitiş. 

 

#PCR 

copy c3-c6 m1 

trans m1 m2 

multi m2 m1 m3 

eigen m3 c26 m4. 

copy m4 c50-c53 

multi m1 m4 m5  
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copy m5 c28-c31 

regress c1 2 c28 c29; 

coefficients c49; 

constant;  

Brief 0. 

let c55(1)=c49(1) 

let c55(2)=c49(2)*c50(1)+c49(3)*c51(1) 

let c55(3)=c49(2)*c50(2)+c49(3)*c51(2) 

let c55(4)=c49(2)*c50(3)+c49(3)*c51(3) 

let c55(5)=c49(2)*c50(4)+c49(3)*c51(4) 

let c23(k1)=mean((1-c55)**2) 

#PCR bitiş. 

 

#Ridge başlangıç 

copy c2-c6 m1 

trans m1 m2 

multi m2 m1 m3 

set c47 

1( 1:1/1 )5     

End. 

Diagonal C47 m5. 

regress c1 4 c3-c6; 

coefficients c44; 

MSE k3; 

Constant; 

Brief 0. 

let k4=k3/(maximum(C44)) 

multi k4 m5 m5 

add m5 m3 m9 

inver m9 m6 

multi m2 c1 m4 

multi m6 m4 m7 

copy m7 c60 

let c24(k1)=mean((1-c60)**2) 

#Ridge bitiş. 
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let k1=k1+1 

Değişken sayısı: 7 ve ilişki düzeyi: 0.5 için yazılan Minitab kodları: 

Random k400 c10-c16;                      

Normal 0 1.                            # standart sapma değerinin k155 olarak 

belirlenmesi 

Random k400 c17;                      

Normal 0 1. 

let c3=((1-(k300*k300))**0,5)*c10+k300*c16   # ro değerinin k300 olarak 

belirlenmesi 

let c4=((1-(k300*k300))**0,5)*c11+k300*c16 

let c5=((1-(k300*k300))**0,5)*c12+k300*c16 

let c6=((1-(k300*k300))**0,5)*c13+k300*c16 

let c7=((1-(k300*k300))**0,5)*c14+k300*c16 

let c8=((1-(k300*k300))**0,5)*c15+k300*c16 

let c9=((1-(k300*k300))**0,5)*c16+k300*c16 

let c1=1+c3+c4+c5+c6+c7+c8+c9+c17 

set c2 

1( 1:1/1 )k400    # k400 gözlem sayısını vermektedir. 

End.          

 

#PLS başlangıç 

PLS c1 = c3-c9;  

NComp 2; 

Coding 1; 

coefficients c19. 

let c22(k1)=mean((1-c19)**2) 

#PLS bitiş. 

 

#PCR 

copy c3-c9 m1 

trans m1 m2 

multi m2 m1 m3 

eigen m3 c26 m4. 

copy m4 c60-c66 

multi m1 m4 m5  

copy m5 c28-c34 
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regress c1 2 c28 c29; 

coefficients c59; 

constant;  

Brief 0. 

let c68(1)=c59(1) 

let c68(2)=c59(2)*c60(1)+c59(3)*c61(1) 

let c68(3)=c59(2)*c60(2)+c59(3)*c61(2) 

let c68(4)=c59(2)*c60(3)+c59(3)*c61(3) 

let c68(5)=c59(2)*c60(4)+c59(3)*c61(4) 

let c68(6)=c59(2)*c60(5)+c59(3)*c61(5) 

let c68(7)=c59(2)*c60(6)+c59(3)*c61(6) 

let c68(8)=c59(2)*c60(7)+c59(3)*c61(7) 

let c23(k1)=mean((1-c68)**2) 

#PCR bitiş. 

 

#Ridge başlangıç 

copy c2-c9 m1 

trans m1 m2 

multi m2 m1 m3 

set c47 

1( 1:1/1 )8     

End. 

Diagonal C47 m5. 

regress c1 7 c3-c9; 

coefficients c44; 

MSE k3; 

Constant; 

Brief 0. 

let k4=k3/(maximum(C44)) 

multi k4 m5 m5 

add m5 m3 m9 

inver m9 m6 

multi m2 c1 m4 

multi m6 m4 m7 

copy m7 c70 
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let c24(k1)=mean((1-c70)**2) 

#Ridge bitiş. 

 

let k1=k1+1 

Değişken sayısı: 10 ve ilişki düzeyi: 0.5 için yazılan Minitab kodları: 

Random k400 c13-c22;                      

Normal 0 1.                  # standart sapma değerinin k155 olarak belirlenmesi 

Random k400 c23;                      

Normal 0 1. 

let c3=((1-(k300*k300))**0,5)*c13+k300*c22  # ro değerinin k300 olarak 

belirlenmesi 

let c4=((1-(k300*k300))**0,5)*c14+k300*c22 

let c5=((1-(k300*k300))**0,5)*c15+k300*c22 

let c6=((1-(k300*k300))**0,5)*c16+k300*c22 

let c7=((1-(k300*k300))**0,5)*c17+k300*c22 

let c8=((1-(k300*k300))**0,5)*c18+k300*c22 

let c9=((1-(k300*k300))**0,5)*c19+k300*c22 

let c10=((1-(k300*k300))**0,5)*c20+k300*c22 

let c11=((1-(k300*k300))**0,5)*c21+k300*c22 

let c12=((1-(k300*k300))**0,5)*c22+k300*c22 

let c1=1+c3+c4+c5+c6+c7+c8+c9+c10+c11+c12+c23 

set c2 

1( 1:1/1 )k400    # k400 gözlem sayısını vermektedir. 

End.          

 

#PLS başlangıç 

PLS c1 = c3-c12;  

NComp 2; 

Coding 1; 

coefficients c25. 

let c26(k1)=mean((1-c25)**2) 

#PLS bitiş. 

 

#PCR 

copy c3-c12 m1 
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trans m1 m2 

multi m2 m1 m3 

eigen m3 c32 m4. 

copy m4 c70-c79 

multi m1 m4 m5  

copy m5 c34-c43 

regress c1 2 c34 c35; 

coefficients c69; 

constant;  

Brief 0. 

let c81(1)=c69(1) 

let c81(2)=c69(2)*c70(1)+c69(3)*c71(1) 

let c81(3)=c69(2)*c70(2)+c69(3)*c71(2) 

let c81(4)=c69(2)*c70(3)+c69(3)*c71(3) 

let c81(5)=c69(2)*c70(4)+c69(3)*c71(4) 

let c81(6)=c69(2)*c70(5)+c69(3)*c71(5) 

let c81(7)=c69(2)*c70(6)+c69(3)*c71(6) 

let c81(8)=c69(2)*c70(7)+c69(3)*c71(7) 

let c81(9)=c69(2)*c70(8)+c69(3)*c71(8) 

let c81(10)=c69(2)*c70(9)+c69(3)*c71(9) 

let c81(11)=c69(2)*c70(10)+c69(3)*c71(10) 

let c27(k1)=mean((1-c81)**2) 

#PCR bitiş. 

 

#Ridge başlangıç 

copy c2-c12 m1 

trans m1 m2 

multi m2 m1 m3 

set c56 

1( 1:1/1 )11     

End. 

Diagonal C56 m5. 

regress c1 10 c3-c12; 

coefficients c53; 

MSE k3; 
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Constant; 

Brief 0. 

let k4=K3/(maximum(C53)) 

multi k4 m5 m5 

add m5 m3 m9 

inver m9 m6 

multi m2 c1 m4 

multi m6 m4 m7 

copy m7 c83 

let c28(k1)=mean((1-c83)**2) 

#Ridge bitiş. 

let k1=k1+1 
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