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SİMGELER VE KISALTMALAR DİZİNİ 

  : Ayar alanının genel ifadesi 
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ae 

  : Vierbein vektör alanı 

  : Eğriliğin genel ifadesi 
C

ABf   : Lie cebri yapı sabiti 

g   : Grup elemanı  

 g x
  : Uzay-zaman metriği 

H   : Kararlılık grubu  

i   : İç çarpım operatörü 

K   : Koset 

L   : Lagranjiyen 

vl   : Lie türevi operatörü 

M   : Manifold  

R   : Ricci skaler eğriliği  

R
  : Ricci eğrilik tensörü 

R


  : Riemann eğrilik tensörü 

S   : Eylem 

T


  : Simetrik enerji-momentum tensörü 

pT M   : M manifolduna p noktasından teğet tanjant uzayı 

U   : Grup elemanı 
AX   : Lie cebri üreticileri 

x   : Uzay-zaman koordinat parametresi 
   : Dirac gamma matrisleri ( 0,1,2,3  ) 


   : Christoffel sembolü 

   :   alanına göre varyasyon 

a

b   : Kronecker delta tensörü 

abcd   : Levi Civita tensörü 

ab   : Minkowski metriği 
   : Spinör uzayının koordinat parametresi 
ab   : Antisimetrik tensör uzayının koordinat parametresi 
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Φ(𝑥) : x parametresine bağlı herhangi bir skaler alan 

κ : Einstein sabiti 

Λ : Kozmolojik sabit 

ωab : Antisimetrik spin bağlantı tensörü 

∇𝜇 : Kovaryant türev 

   : Dış çarpım operatörü 

*   : Hodge dual operatörü 

   : Skaler çarpım operatörü 

   : Kısmi türev operatörü 

Kısaltmalar 

M(1,3) : Maxwell Grubu 

MW(1,3) : Maxwell-Weyl Grubu 

P(1,3) : Poincare Grubu 

sM(1,3)  : Süper Maxwell Grubu 

sMW(1,3)   : Süper Maxwell-Weyl Grubu 

SO(1,3) : Special Othogonal Group (Lorentz Grubu) 

sP(1,3)   : Süper Poincare Grubu 

sW(1,3)   : Süper Weyl Grubu 

U(1) : Üniter Faz Dönüşümü Simetrisi 
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MAXWELL VE SÜPER MAXWELL KÜTLEÇEKİM TEORİLERİ 

ÖZET  

Bu tezde Maxwell simetrisi temelinde genişletilmiş bir kütleçekim teorisinin 

oluşturulması üzerine çalışıldı. Maxwell-Weyl kütleçekim teorisinin ayar değişmez 

formülasyonu diferansiyel geometrik usûlle elde edildi ve süpersimetrik 

genelleştirmesi yapıldı. Elde edilen değişken bir kozmolojik terim ve buna ilave 

katkılar sayesinde Einstein-Cartan-Weyl alan denklemi genelleştirildi. Ayrıca N = 1 

ve D = 4 için ölçekleme dönüşümü altında da değişmez kalan yalın süper kütleçekim 

Lagranjiyenin Maxwell-Weyl süper cebrinden kaynaklanan eğriliklerin 

kullanılmasıyla elde edilebileceği gösterildi. 

 

Anahtar Kelimeler: Ayar Alan Teorisi, Diferansiyel Geometri, Genişletilmiş 

Kütleçekim Teorisi, Maxwell Simetrisi, Süpersimetri.  
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MAXWELL AND SUPER MAXWELL GRAVITY THEORIES 

ABSTRACT 

In this thesis, establishing an extended gravity theory based on Maxwell symmetry is 

studied. Gauge invariant formulation of Maxwell-Weyl gravity is obtained by 

differential geometric method and its supersymmetric generalisation is given. An 

extension of the Einstein-Cartan-Weyl field equation with a variable cosmological 

term and an additional source term is given. We also show that N = 1 and D = 4 the 

scale invariant pure supergravity Lagrangian can be obtained from the curvatures of 

the Maxwell-Weyl superalgebra. 

 

Keywords: Gauge Field Theory, Differential Geometry, Extended Theory of 

Gravity, Maxwell Symmetry, Supersymmetry.   
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GİRİŞ 

Geçtiğimiz asırda yapılan Standart Model ve Süpersimetri gibi devrimsel nitelikteki 

çalışmalar, simetrilerin fizikte ne kadar önemli bir etki alanı olduğunu gözler önüne 

sermiştir. Simetrilerin, kütleçekim teorileri ile ilişkilerini incelediğimizde ise, 1956 

yılı Utiyama’nın çalışması [1] öne çıkmaktadır. Utiyama bu çalışmasında Lorentz 

grubunu (SO(1,3)) yerel dönüşümler altında inceleyerek kütleçekim için Einstein 

alan denklemini elde etti. Bu sayede Utiyama uzay-zaman simetrilerinin yerel 

incelenmesiyle, diğer bir deyişle ayar teorisinin kurulmasıyla, bir kütleçekim 

teorisinin oluşturulabileceğini ilk olarak göstermiş oldu. Daha sonra 1961 yılında 

Kibble yaptığı çalışmada [2] Poincare simetrisini kullandı ve bunun sonucu olarak 

Einstein-Cartan teorisini elde etti. İlerleyen yıllarda benzer yöntemler diğer uzay-

zaman simetrilerine de (Weyl, DeSitter, Conformal…) [3-10] uygulanarak 

genelleştirilmiş kütleçekim modelleri elde edildi.  

Buradan anlaşılıyor ki, elimizde bir simetri varsa ayar teorisini kullanarak buradan 

fiziksel sonuçlar çıkartabiliriz ve bu fikirden hareketle diyebiliriz ki, var olan 

herhangi bir simetri üzerinde değişiklikler yaparak yeni etkileşme terimleri ve 

genelleştirilmiş yapılar elde edebiliriz. İleride daha detaylı vereceğimiz üzere 

süpersimetri ve süper kütleçekim teorileri, bu simetri genişletmesine güzel bir misal 

teşkil etmektedir.  

Simetri genişletmelerine diğer bir örnek ise Maxwell grubudur. Bu grup Poincare 

grubunun (P(1,3)) merkezi olmayan bir genişletmesidir ve artık momentum 

üreticileri abelyan değildir ve  a b abP ,P F  komutasyon ilişkisini sağlar. Burada abF  

Lorentz dönüşümü altında tensör gibi davranan bir üreticidir ve a,b 0,1,2,3  

değerlerini alır. Eğer bu simetri altında değişmez bir Lagranjiyen oluşturulursa, onun 

yüklü bir parçacığın sabit bir elektromanyetik alandaki hareket denklemlerini 

sağladığı görülecektir. Bu sonuca göre Poincare simetrisi kırılmış olup boş uzay-

zaman yerine elektromanyetik alanla doldurulmuş bir uzay-zaman elde edilmiştir ve 

abF  artık elektromanyetik gerilme tensörüne karşılık gelmektedir [11-13].  
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Maxwell cebrinin ismi ilk olarak Glashow’un çalışmasında [14] görülmektedir, 

burada nötron yıldızlarında oluşan aşırı güçlü manyetik alanın madde üzerindeki 

etkileri üzerinde durulmuştur, bunlar günümüzde magnetarlar olarak bilinmektedir. 

Bu cebir sistematik anlamda ilk olarak Schrader [11] tarafından incelenmiştir, diğer 

erken dönem çalışmalar için [12-17] makalelerine bakılabilir. 

2005 yılında Maxwell cebrinin, klasik biçiminin dışında farklı bir incelemesi Soroka 

[18] tarafından ortaya konmuştur. Burada komutasyon ilişkisi  a b abP ,P iZ  ile ifade 

edilmiş, yine aynı şekilde 
abZ  antisimetrik bir tensör üretici fakat yapısı 

ab abab
Z i i


  


 şeklindedir. Buradaki türev  cd c d c d

ab a b b a

1

2
       , 

c

abx 0   

şeklinde davranmaktadır. Eklenen yeni 
ab  parametresi sayesinde uzay-zamana 6 

serbestlik derecesi daha eklenmiştir ve oluşturulan arka plan alanı bu parametreye 

bağlıdır. Böylece bu tanımlamalardan sonra denilebilir ki, bilinen uzay-zaman 

gruplarının bu 
abZ  üreticisi ile genişletilmesine o grubun Maxwell genişletmesi ve 

ortaya çıkan yeni simetri de Maxwell simetrisi olarak adlandırılır.  

Bir Maxwell simetrisi elde etmek adına veya daha genel ifadeyle uzay-zaman 

gruplarının genişletilmesi için literatürde çeşitli yöntemler mevcuttur. (süper) 

Maxwell cebirlerini oluşturmasında şimdiye kadar expansion [19-25], S-expansion 

[26, 27] ve Chevalley–Eilenberg (CE) kohomoloji [28-30] yöntemleri kullanılmıştır. 

Bu üç yöntemin ortak özelliği, ele alınan grubun boyutunu arttırarak genişletmesidir. 

Literatürde bunların dışında contraction, deformation ve extension (kısa bilgi için 

[22-23]) adında üç yöntem daha vardır lakin bu yöntemlerde grubun boyutu sabit 

kalmaktadır, bu sebepten Maxwell simetrilerinin oluşturulmasında kullanılmaları 

uygun değildir. 

Ortaya çıkan bu yeni simetri sayesinde, süpersimetrinin tarihi gelişiminin bir neticesi 

olarak süper grupların (süper Poincare, süper Conformal …) ortaya çıktığı gibi, 

bilinen uzay-zaman gruplarının genişletilmesiyle Maxwell grupları ve süper Maxwell 

grupları ortaya çıkacak (Maxwell-Weyl, AdS-Maxwell …) ve bunları temel alan 

başta kütleçekim olmak üzere çeşitli teoriler kurulacaktır. Maxwell simetrisi bu 

yönüyle ileriye yönelik önemli bir potansiyel arzetmektedir. Bu motivasyon ile 
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Maxwell grubunun (M(1,3)), cebirsel incelemeleri [18, 29-33], süpercebirsel 

incelemeleri [24, 34-38], genelleştirilmiş kütleçekim [39-46] ve süper-kütleçekim 

[47-51] oluşturulması, Landau problemindeki düzlem dinamikleri ve yüksek spin 

alanlarıyla ilişkisi [51-54] üzerine pek çok çalışmalar yapılmıştır. 

Bu tezde, Maxwell ve süper Maxwell kütleçekim teorisine literatürde ilk olarak 

ölçekleme simetrisinin eklenmesiyle (süper) Maxwell-Weyl kütleçekim teorisi 

oluşturulması hedeflenmiştir. Bu gaye doğrultusunda, ilk bölümde kütleçekim ve 

ayar teorisi arasındaki ilişkiyi anlamak maksadıyla sırasıyla Genel Görelilik teorisi, 

diferansiyel geometri ve ayar teorisinin temel kavramlarını vereceğiz. Ayar teorisine 

uygulama olarak ise sırasıyla faz dönüşümü (U(1)) ve Lorentz simetrisi ele 

alınacaktır.  Bu bölüm genişletilmiş bir kütleçekim teorisinin oluşturulmasında 

kaynak oluşturacaktır. 

İkinci bölümde Süpersimetrinin tarihi gelişimi kısaca verilip süper Poincare cebrinin 

çizgisel olmayan gerçeklemesinin ardından ayar teorisi kurulup süper kütleçekim 

teorisi oluşturulacaktır.  

Son bölümde ise öncelikle literatürde bulunan M(1,3) ve süper Maxwell gruplarının 

(sM(1,3)) ayar teorisini seçtiğimiz notasyonda inceleyeceğiz. Ardından bu gruplara 

dilaton üreticisi katılarak elde edilen Maxwell-Weyl (MW(1,3)) ve süper Maxwell-

Weyl gruplarının (sMW(1,3)) ayar teorisini diferansiyel geometrik usûlle kurarak 

genelleştirilmiş kütleçekim teorilerini elde edeceğiz. Çalışmamızda yer alan 

neticelerin bir kısmı [41] içinde tartışılmıştır. Hesaplamalarda kullandığımız 

notasyon ve seçimler (Ek-A) ve (Ek-B)’de detaylı olarak verilmiştir. 
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1. KÜTLEÇEKİM, DİFERANSİYEL GEOMETRİ VE AYAR TEORİSİ 

1.1. Genel Görelilik Teorisi 

Bu bölümde, Maxwell kütleçekim teorisinin oluşturulmasında gerekli olan Einstein 

genel çekim teorisine [55-59] dair bazı temel kavramlara değinilecektir. 

1.1.1. Vierbein formalizmi 

Vierbein, tetrad veya Cartan formalizmi olarak adlandırılan bu usûl, Einstein genel 

çekim yasasının oluşturulmasında alternatif bir yol teşkil eder. Kullanılmasındaki 

temel gaye uygulamada çeşitli kolaylıklar sağlamasıdır. Misal olarak, matematik 

açısından bakıldığında içinde bulunduğumuz uzay zaman 4 boyutlu bir manifold 

olarak ele alınabilir. Aynı zamanda yerel ele alındığında ise Minkowski benzeri bir 

karakteristiğe sahiptir. İşte bu noktadan hareketle vierbein formalizmi eğri uzay 

zaman ve buna bağlı Minkowski uzayı arasındaki ilişkiyi daha kolay ifade 

etmesinden dolayı tercih edilmektedir. Şekil 1.1’de gösterildiği gibi, bir M manifoldu 

üzerindeki her bir P noktası için bir tanjant uzayı 
PT  tanımı yapılabilir. 

 

Şekil 1.1. M manifoldundaki p noktasında tanımlı 

Tp tanjant uzayı 

Bu 
PT  uzayında herhangi bir vektörü 

PV T  aşağıdaki şeklilde yazabiliriz, 

a

aV V e    (1.1) 
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Denklem (1.1)’deki 
ae  ifadesi tanjant uzayı 

PT ’nin baz vektör setidir ve, 

a ae      (1.2) 

yapısındadır. Her bir tanjant uzayı 
PT  için dual baz vektörleri içeren bir kotanjant 

uzayı 
*

PT  tanımlanabilir ve dual bazda bir vektör aşağıdaki gibi verilir, 

a

aV V e    (1.3) 

Burada  
1a

ae e


  dual baz vektörüdür ve aşağıdaki yapıdadır, 

a ae dx    (1.4) 

Bu vektörler 
a a

b be e    ifadesini sağlar. Tanjant uzayındaki baz vektörler ile eğri 

uzaydaki vektörler arasındaki ilişki,  

     a a ae e x e x e x dx 

      (1.5) 

     a a ae e x e x e x 

       (1.6) 

ile verilir. Burada  ae x  ile gösterilen 16 parametreli vektör alanı “vierbein alanı” 

veya kısaca “vierbein” olarak adlandırılır. Yunan indisleri , ,... 0,...,3     eğri uzay 

zamanına, Latin indisler a,b,... 0,...,3  ise tanjant uzay zamanına karşılık gelir. 

Sırasıyla “holonomik” ve “holonomik olmayan” indisler olarak adlandırılabilir. 

Vierbein vektörleri aşağıdaki dönüşümleri sağlar,  

     ab a bg x e x e x

      (1.7) 

      ab

a bg x e x e x       (1.8) 

burada g  ve ab  sırasıyla eğri uzay zaman metriği ve tanjant uzayında tanımlanan 

Minkowski metriğidir. Vierbein vektörünün tersi  
1

a

ae e




   şeklinde verilir ve 

çarpımları neticesinde Denklem (1.9) elde edilir. 
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a a b

b b a abe e , e g e  

        (1.9) 

Bu dual gösterimlerden yola çıkarak, 

a b

ab a b abg e e , g e e 

          (1.10) 

elde edilir. Yukarıdaki tanımların yardımıyla bir vierbein vektörünün determinantını 

aşağıdaki şekilde verebiliriz, 

ae | det e | | det g | | g |       (1.11) 

Vierbeinler sayesinde artık herhangi bir P uzay zaman noktasındaki bir vektörü hem 

tanjant uzayı (tetrad) bazında hem de eğri uzay zaman (koordinat) bazında aşağıdaki 

gibi ifade edebiliriz, 

a

aV V e V e

     (1.12) 

Ayrıca vektörler arası ilişki aşağıdaki şekilde verilir, 

a a

a a

b b

V e V

V e e V





 

 




   (1.13) 

1.1.2. Jeodezik denklemi ve Christoffel sembolü 

Eğri bir uzayda sonsuz küçük aralığın karesi aşağıdaki şekilde verilir, 

2ds g dx dx 

    (1.14) 

Bu uzayda Şekil 1.2’de gösterildiği gibi, bir P noktasından Q noktasına olan 

hareketin toplamı veya eylemi aşağıdaki şekilde yazılabilir, 

Q Q

P P

dx dx
S ds g d

d d

 

  
      (1.15) 
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Şekil 1.2. Bir S yüzeyinde tanımlı P ve Q noktaları arası yol 

Şimdi bu eylemin varyasyonunu alalım, 

Q

P

Q

P

Q 2

2

P

dx dx
S g d

d d

1 d dx dx dx d x
g 2g

2 d d d ddx dx
g

d d

dg1 dx dx dx d x
ds g 2 x 2g x

2 ds ds ds ds ds

g gdx dx dx dx

1 x ds ds x ds ds
ds

g2 dx dx

x ds ds

 



   

 
 



   
  

 

   
 

 

 




    
 

  
   

    

 

 
      

 

 
 
 













 

Q

2
P

2

Q 2

2

P

x
d x

2g
ds

1 dx dx d x
ds g g g g x

2 ds ds ds







  


      

 
 
 
 

 
 

 
         

 





  (1.16) 

ve S 0   ilkesini dikkate alırsak süslü parantez içeriğini g  ile çarptığımızda, 

 
2

2

d x 1 dx dx
g g g g 0

ds 2 ds ds

  


              (1.17) 

elde edilir. Burada aşağıdaki gibi bir tanım yapıldığında, 

 
1

g g g g
2

 

              (1.18) 
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Denklem (1.18) aşağıdaki şekli alır, 

2

2

d x dx dx
0

ds ds ds

  


     (1.19) 

Bu denklem jeodezik denklemidir ve 


  ifadesi ise Christoffel sembolü olarak 

adlandırılır. Christoffel sembolünün genel koordinat dönüşümü altındaki değişimine 

bakıldığında, 

 
2x x x x x

x x x x x x

    
 

      

    
   

     
   (1.20) 

eşitliği elde edilir. Bu eşitlik bize 


  sembolünün tensör yapısında olmadığını 

göstermektedir. Yapılan hesaplamalarda, T  

      olarak da ifade edilen 

burulma (torsion) tensörünün sıfır olduğu düşünülmüştür. T 0

   durumu için 

sembolün genel ifadesi aşağıdaki şekilde gösterilebilir, 

 
1

g g g g T T T
2

 

                   (1.21) 

1.1.3. Paralel öteleme ve kovaryant türev 

Herhangi bir  f x  fonksiyonunun türevi aşağıdaki şekilde verilebilir, 

 
     

x 0

f x f x x f x
f x lim

x x

   



  
 

     
    

   

  (1.22) 

Lakin yukarıdaki tanımı vektör alanlar için ele aldığımızda, vektörlerin farklı 

noktalarda farklı dönüşümlere sahip olmalarından veya diğer bir deyişle farklı 

noktalarda tanımlanmış vektörlerin farkının veya toplamının bir vektör oluşturmadığı 

bilindiğinden dolayı kullanışlı olmadığı açıkça görülmektedir. Vektör alanlar ile 

çalışmak için türev üzerinde bazı değişiklikler yapmak durumundayız. Bu sebepten 

dolayı paralel öteleme işlemini tanımlamamız gerekmektedir. 
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Şekil 1.3. Bir vektörün eğri boyunca paralel ötelenmesi 

V  kontravaryant bir vektör alanı olsun. Şekil 1.3 dikkate alındığında  V P
 ile 

 V Q
 arası ilişki, 

       
 V P

V Q V P V P V P x
x



    




    


  (1.23) 

ile verilir. Burada      V P V Q V P     , farklı iki noktada tanımlanmış vektör 

alanlarının bileşenlerinin farkı olduğundan dolayı bir vektör değildir. Bu durumu 

daha iyi kavramak maksadıyla Şekil 1.4’e baktığımızda vektörün kesik çizgiler ile 

gösterilen bileşenlerinin değiştiği açıkça görülmektedir.  

 

Şekil 1.4. Düz uzayda kutupsal koordinatlarda 

bir vektörün paralel ötelenmesi [55] 
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Şimdi öyle bir   işlemi tanımlayalım ki düz uzay dikkate alındığında Q  noktasında 

 V P
 vektörüne paralel bir  V Q

 vektörü oluştursun, 

     V Q V P V P        (1.24) 

Aynı şekilde  V P  ifadesi de bir vektörü temsil etmeyeceği için  V P  

ifadesini de, 

 V P G V x   

       (1.25) 

şeklinde kullanacağız. Yukarıdaki ifadede G

 ,  V P
 vektör alanının Q  

noktasına paralel olarak taşınması ile alakalı alanlar arası ilişkiyi temsil eder, “Afin 

bağlantı” olarak adlandırılır ve dört boyutlu uzay için 64 adet katsayı içerir. Şimdi 

birisi paralel taşınmış  V Q
 diğeri ise ele alınan eğriye teğet taşınmış  V Q

 iki 

vektörün farkına bakalım, 

             

     

 

V Q V Q V P V P V P V P

V P V P V P G V x

V P
G V x

x

     

     





  



      

       

  
   

  

  (1.26) 

Bu ifade aynı noktadaki vektör alanların farkını ihtiva ettiğinden dolayı bir 

kontravaryant vektörü temsil etmektedir. Yaptığımız bu işlem; afin uzayda bir 

vektörün paralel ötelenmesi işlemi olarak adlandırılmaktadır. Denklem (1.26) dikkate 

alındığında aşağıdaki türev tanımlanabilir, 

   
x 0

V P V P
V lim

x

V G V



 



 
 

  

 

    
   

  

  

   (1.27) 

Bu türev “kovaryant türev” olarak adlandırılır ve vektörlerin tanımından da 

anlaşılacağı üzere tensörel bir yapıdadır. Şimdi G

  afin bağlantısının dönüşüm 

kurallarını bulalım. Bir vektörün genel koordinat dönüşümü altında,  



11 

 

x
V V

x


 




 


   (1.28) 

şeklinde dönüştüğünü göz önüne aldığımızda Denklem (1.27) ifadesinin, 

   
x x x x x x

V V V G V
x x x x x x x

     
    

        

      
    

      
  (1.29) 

biçiminde dönüşmesi beklenir. Ayrıca son denklemi aşağıdaki şekilde yazabiliriz, 

   

 

 
2

V V V G V

x x x
V G V

x x x x

x x x x x
V V G V

x x x x x x x

    

   

  
  

   

    
   

      

          

     
  
    

      
  
      

  (1.30) 

Burada Denklem (1.29) ile Denklem (1.30) birbirlerine denk ifadelerdir dolayısıyla 

aşağıdaki ifade yazılabilir, 

 
2x x x x x

G V G V V
x x x x x x

    
    

      

    
 

     
  (1.31) 

düzenlendiğinde,  

 
2x x x x x x

G G
x x x x x x x

     
 

       

     
 
      

  (1.32) 

veya, 

 
2x x x x x

G G
x x x x x x

    
 

      

    
 
     

  (1.33) 

elde edilir. Bu değişim Denklem (1.20) ifadesi ile verilen Christoffel sembolünün 

değişimine denktir. O halde G

  ifadesi yerine Christoffel sembolü 


  

kullanılırsa kovaryant türev aşağıdaki şekilde yazılabilir, 

V V V   

         (1.34) 
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Bu türev sırasıyla kovaryant vektör ve rankı 2 tensörlere uygulandığında genel olarak 

aşağıdaki yapılar elde edilir, 

V V V

            (1.35) 

V V V V

V V V V

V V V V

     

   

     

       

 

       

    

    

    

   (1.36) 

Bir misal olarak kovaryant türevi Christoffel sembolüne uyguladığımızda aşağıdaki 

ifadeye ulaşılır, 

       

                      (1.37) 

Bütün bu işlemlerden hareketle diyebiliriz ki tanımladığımız kovaryant türev; seçilen 

uzayda bir P noktasında tanımlanmış bir vektörü aynı uzayda Q noktasına, ilk 

durumuna göre paralel taşınmasını sağlayan matematiksel niceliktir. 

1.1.4. Afin bağlantı spin bağlantı ilişkisi 

Tanjant uzayında tanımlanmış tensörler, Lorentz simetrisi altında ele alındığında 

kovaryant türevlerde afin bağlantı yerine “spin bağlantı” denilen ve 
a

b  ile 

gösterilen katsayılar kullanılır. Misal olarak, 

a a a b

b

b

a a a b

V V V

V V V

  

  

   

   
   (1.38) 

eşitlikleri verilebilir. Her iki durumda da yapı değişmemektedir. Yukarıdaki 

denklemin ilk ifadesi aşağıdaki şekilde yazılabilir, 

 

 

 

a a

a a

a a

a a a a

a a b a a a b a

b b

V e V

e V e V

e V e V V

e V V e V e V

V V e e e e V



  

 

   

   

    

   

      

 

         

 

  

   

      

        

  (1.39) 
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Elde edilen son ifade, Denklem (1.38) ile mukayese edildiğinde üçüncü terimin sıfır 

olacağı görülür, böylece vierbein vektörünün kovaryant türevi aşağıdaki şekilde elde 

edilir, 

a a a b a

be e e e

               (1.40) 

Şimdi V  skaleri üzerinden bu iki bağlantı arası ilişkiyi inceleyelim. Afin bağlantı 

için bu ifade, 

   V V dx V V dx     

              (1.41) 

şeklinde yazılabilir. Keza aynı ifadeyi vierbeinleri de kullanarak spin bağlantı ile 

yazdığımızda, 

   

  
 

  

a a a b

a b a

a a b

b a

a a a b

a b

a b a

a a b

V V dx V V dx

e V e V dx e

e e V e V e V dx

V e e e e V dx

 

  

   

    

    

      

    

     

       

   

     

      

  (1.42) 

elde edilir. Bu noktada Denklem (1.41) ve Denklem (1.42) karşılaştırıldığında ise, 

a b a

a a be e e e  

            (1.43) 

ile,  

a a a

b b be e e e  

            (1.44) 

ilişkileri açık bir şekilde elde edilir. Eğer Denklem (1.44) ifadesini 
be  ile çarpar ve 

düzenleme yaparsak aşağıdaki eşitliğe ulaşılır, 

a a b a

be e e 0

             (1.45) 
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Denklem (1.45) aynı zamanda Denklem (1.40)’da verilen 
ae   türevine eşittir, 

dolayısıyla burada 
ae 0    şartı sağlanır ve bu şart “tetrad postülası” olarak 

adlandırılır. Bu postüladan yola çıkarak, 

 a b

ab

a b a b a b

ab ab ab

g e e

e e e e e e

0

    

        

  

       



  (1.46) 

neticesine ulaşılır, bu ise uzayın “metrik uyumlu” olması olarak bilinir. 

1.1.5. Eğrilik tensörü 

Bir uzayda bir iP  başlangıç noktasından sP  varış noktasına giden sonsuz küçük iki 

farklı yol düşünelim. Şekil 1.5’te gösterildiği gibi, ilk yol için V
 vektörü önce 1Q  

sonra sP  noktasına, ikinci yol için ise önce 2Q  sonra sP  noktasına gidilecektir. 

Buradan birinci yolun takibi V    , ikici yolun takibi de ise V     sayesinde 

gerçekleşir. Bu iki ifade bir vektörü başlangıç konumundan farklı bir noktaya ve 

farklı yollardan paralel taşınmasını temsil eder.  

 

Şekil 1.5. Bir vektörünün sonsuz küçük bir çevrimde 

paralel ötelenmesi 

Son durumda taşınan vektörlerin β2 farkı , V  
     ile ifade edilir. Eğer uzay düz 

ise taşınan vektörlerin farkının sıfır olması gerekir. Lakin uzayda eğrilik varsa durum 

farklıdır ve bu fark beklendiği üzere uzaydaki eğrilik ile doğrudan ilişkilidir. Bu 

ilişki Denklem (1.47)’deki şekilde tanımlanır, 
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, V V V R V

          
            (1.47) 

Burada R

  Riemann-Christoffel eğrilik tensörü olarak adlandırılır. Eğer 

R 0

   ise uzay düzdür, aksi durumda ise bir eğrilik söz konusudur. Yukarıdaki 

komutasyon kontravaryant tensöre uygulandığında , V R V  

  
      şeklinde 

yazılır. Şimdi bu tensörün yapısının nasıl olması gerektiğine bakalım, bu işlem için 

öncelikle V     ifadesini hesaplayalım,   

       

   

 

V V V V

V V V V

V V

V V V V V

V V

 

           

  

         

 

    

    

              

  

     

        

       
  

    

           
  

     

  (1.48) 

ve benzer şekilde, 

 
V V V V V

V
V V

    

              

     

     

           
    

     

  (1.49) 

elde edilir. Bulunan bu ifadeler Denklem (1.47)’de yerine yazılırsa, 

 , V V     

           
                (1.50) 

ve buradan eğrilik tensörü aşağıdaki şekilde elde edilir; 

R      

                   (1.51) 

Eğrilik tensörünü spin bağlantı ile ifade etmek istediğimizde ya doğrudan spin 

bağlantıya bağlı kovaryant türevin komütasyonuna bakılır ya da Denklem (1.51) 

içerisinde Denklem (1.43)’de verilen dönüşüm kullanılır. Neticede aşağıdaki ifade 

elde edilir, 

 b a a c

a [ ] b [ c ] bR e e 

             (1.52) 
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Riemann-Christoffel tensörünün indislerinde yapılan değişimler ile farklı özelliklere 

sahip ifadeler elde edilebilir. Örneğin R g R

    biçiminde yazıldığında 

aşağıda verilen özellikleri sağlar,  

R R

R R

R R

R R R 0

R R R 0

 

 

 

  

     

 

 



  

   

   (1.53) 

burada son ifade Bianchi özdeşliği olarak adlandırılır. Ricci tensör ifadesi ise,  

R R g R 

  

     

       

 

        
  (1.54) 

şeklindedir. Burada Denklem (1.37) dikkate alındığında Ricci tensörü aşağıdaki 

şekilde yazılabilir, 

R  

           (1.55) 

ve bu nicelik “Palatini özdeşliği” olarak bilinir. Ricci skaler veya skaler eğrilik ise, 

R g R

    (1.56) 

biçiminde tanımlanır. Ricci tensör ve skaleri kullanılarak Einstein tensörü aşağıdaki 

şekilde yazılır, 

1
G R g R

2
       (1.57) 

1.1.6. Einstein alan denklemi 

Serbest kütleçekim alanını ifade eden Einstein-Hilbert eylemi ve madde kaynağını 

içeren eylem aşağıdaki şekilde yazılabilir, 

 4 4 4

EH Kütle m m

1 1
S S S d x gR d x gL d x g R 2 L

2 2
         

      (1.58) 
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Denklem (1.58)’de mL  kütle terimi, 
48 Gc    olmak üzere Einstein sabitidir, G  

kütleçekim sabiti, c  ise ışığın vakumdaki hızıdır. Bu eylemde metrik tensör g
 

dinamik bir değişken olduğundan, varyasyon ilkesi gereği, 
gS 0   olması gerekir. 

Bu sayede metrik tensöre göre hareket denklemi elde edilmiş olur. Şimdi bu 

varyasyonu uygulayalım, 

  4

g m

1
S d x gg R g g R gg R 2 gL

2

  

              
 

  (1.59) 

burada 
1

g gg g
2



      , Denklem (1.55) ve g 0    eşitlikleri 

kullanıldığında aşağıdaki ifade elde edilir, 

 

 

m

4

g

gL1 2
g g R g R1 2 ggS d x

2

gg gg



  

   

  

        
        
      
 

   (1.60) 

Burada son parantezli terim bir tam türev yapısında olduğundan dolayı ihmal edilir 

ve Einstein alan denklemi aşağıdaki şekilde elde edilir, 

1
G R g R T

2
          (1.61) 

Burada T
 enerji-momentum tensörüdür ve aşağıdaki şekilde gösterilir, 

 mgL2
T

gg
 

 



   (1.62) 

1.2. Diferansiyel Geometri 

Diferansiyel geometrik yöntem, ele alınan teoriye bir yenilik katmamasına rağmen, 

formüllerin daha basit yazılmasına yardımcı olmakta ve bunun yanında yapılan 

işlemlerde de pek çok kolaylık sağlamaktadır. Bu bölüm dış cebir ve Diferansiyel 

geometriye kısa bir giriş mahiyetinde olup takip eden konular için temel 

oluşturacaktır.  
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1.2.1. Formlar, dış çarpım ve dış türev 

Bir M manifoldu üzerinde tanımlı V vektör uzayı için 
   p

V  ifadesi p-form’ların 

veya p dereceli diferansiyel formların vektör uzayı olarak tanımlanır. Örneğin 

   p
V  yapısında bir p-form aşağıdaki şekilde yazılabilir,  

p1

1 p,...,

1
dx ... dx

p!



        (1.63) 

burada “  ” işareti “dış çarpım” (wedge product) ve “d” işlemcisi “dış türev” olarak 

adlandırılır bunlara ek olarak x  ise 0-form uzay-zaman vektörüdür. Şimdi sırasıyla 

bu ifadeleri açıklayalım. Dış çarpım aşağıda gösterildiği gibi, 

           p q p q
: V V V


         (1.64) 

bir p-form ile bir q-form yapısındaki değişkenleri belli kurallar altında işleme tabi 

tutup bir  p q  form elde etmeye yarayan bir işlemci olarak ele alınır. Örneğin 

 f f x  herhangi bir fonksiyon ve  ,   ve    ifadelerini sırasıyla p, q ve r form 

olarak ele alalım. Bu durumda dış çarpımın bazı özelliklerini aşağıdaki biçimde 

gösterebiliriz, 

 

   

 

     

p q
1

c d c d


   

    

     

       

   (1.65) 

  p q1

1 p p 1 p q

p q

... ...

1
dx ... dx

p!q!



 

 

              (1.66) 

Son ifadeden anlaşılacağı gibi   değişkeni  p q  form yapısındadır. Dış türev ise, 

aşağıda gösterildiği gibi bir p-formu,  p 1  forma dönüştüren bir işlemci olarak 

tanımlanabilir, 

       p p 1
d : V V


      (1.67) 
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Verilen bir p-form ’ya dış türev uygulandığında, 

 
p1

1 p[ ... ]

1
d dx dx ... dx

p 1



       


  (1.68) 

genel ifadesi elde edilir. Burada antisimetirk açılım 
[ ]A B A B A B        şeklinde 

ifade edilir (Ek-A). Dış türev sırasıyla 0-form  ’ye ve 1-form A’ya uygulanırsa, 

d dx

       (1.69) 

 
1

dA A dx dx A A dx dx
2

   

              (1.70) 

eşitlikleri elde edilir. Eğer F dA  şeklinde bir 2-form tanımlanır ve dF  ifadesi 

aranırsa 
[ ] 0     olduğundan aşağıdaki ifade elde edilir, 

2

[ ]

dF d A d dA

1
A dx dx dx

2

0

  

  

  

    



   (1.71) 

Bu neticeye göre 
2d d d 0    genellemesi yapılır. Bunlara ek olarak ,   ve   

sırasıyla p, q ve r form olsun burada dış türev aşağıdaki özelliklere sahiptir, 

 
        

            

pp q

p p qp q r

d d d

d d 1 d

d d 1 d 1 d


   

       

           

  (1.72) 

Verilen formlarının komutasyon ilişkisi, 

     
p q

, 1 ,


          (1.73) 

eşitliği ile gösterilir ve Jacobi özdeşliği ise aşağıdaki şekilde ele alınır, 

   
 

   
 

 
r p q p r q

, , 1 , , 1 , , 0
 

                          (1.74) 
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1.2.2. Dual eşlenik 

Hodge dual (*) olarak da adlandırılan bu işlemci 
       p D p

* : V V


    şeklinde 

tanımlanır ve D boyutlu bir uzayda p-form yapısındaki bir değişkene uygulandığında 

 D p  form yapısına dönüştürür. Örneğin 
   p

A V  üzerine uygulandığında, 

 

 
1 p p 1

1 p p 1 D

...p D

... ...

1
*A A dx ... dx

D p !





  

      


  (1.75) 

elde edilir. Burada bütünüyle antisimetrik 
1 D...   tensörü Levi-Civita sembolü 

1 D...   

ifadesi ile ilişkilidir, 

1 D 1 D

1 D 1 D

... ...

... ...

1
| g | ,

| g |

   

           (1.76) 

yukarıdaki ifadede  g det g  şeklinde tanımlanır. Bu antisimetrik tensörün bazı 

özellikleri aşağıda verilmiştir, 

    1 p1 D

1 p p 1 D 1 p

D 1 ......

... ... ...1 D p !


   

             (1.77) 

 1 D

1 D

D 1...

... 1 D!
 

        (1.78) 

Ayrıca bu tensör ile ilişkili olarak, 

1 D 1 D 1 D... ...D Ddx ... dx | g | d x d x,
     
        (1.79) 

yazılabilir. Bu temelden hareketle, 

 

 

1 D 1 D

1 D 1 D

...D

... ...

D 1 D

D 1 D

1 1
*1 dx ... dx g dx

D! D!

1
1 D! g dx

D!

1 g dx

   

   





      

 

 

  (1.80) 

          1 p

1 p

...p p p p

...A *B B *A p! *1 A B
 

       (1.81) 
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 
 1 p p 1 D

1 D

...

...

1
d*A g A dx dx ... dx

D p

   

       


  (1.82) 

    
   p D p D 1p p

* *A 1 A
  

     (1.83) 

denklemleri elde edilir. D 4  için sırasıyla 0, 1, 2 form olan , A, F  alanlarına 

Hodge dual işlemcisi uygulandığında aşağıdaki ifadeler elde edilir, 

 

 

 

0 4

4

1

2

1 1
* dx dx dx dx g d x

4! 4!

gd x

1 1
*A A dx dx dx A g dx dx dx

3! 3!

1 1
*F F dx dx F g dx dx

2! 2!

    

 

       

 

     

 

          

  

        

      

  (1.84) 

Hodge dual işlemcisini 1-form 
a ae e dx

  baz vektörüne uyguladığımızda, 

a a bcd bcd

bcd a abcd

c d d

ab abcd abc abcd abcd abcd

a abcd

a abcd

1 1
*e e , *e e

3! 3!

1
*e e e , *e e , *e

2!

1
e *e e 4*1

3!

   

      

   

  (1.85) 

eşitlikleri elde edilir. Burada 1 n 1 na ,...,a a a
e e ... e    olarak tanımlanır ve D 4  için 

Denklem (1.11), Denklem (1.79) ve  a b c d abcdV V V V det V

       tanımı 

kullanıldığında aşağıdaki ifade elde edilir,  

a b c d a b c d

abcd 4

e e e e e e e e dx dx dx dx

g d x

   

         

  
  (1.86) 

Hodge dual, integral içerisinde kullandığımızda ise aşağdaki yapı elde edilir, 

   

 

 

1 p 1 D

1 p 1 p p 1 D

1 p

1 p

...p p

... ... ...

D 1 ...D

...

1
A *B A B dx ... dx

D p !

1 p! d x g A B



   

     

  

 

    


 

 



  (1.87) 
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Örneğin D 4  için    0 0
S D *D     biçiminde bir eyleme uygulandığında, 

       
a0 0 4

a
D *D D D gd x           (1.88) 

ifadesine ulaşılır. Burada D dış kovaryant türevdir. Benzer şekilde Dirac eylemi için 

kullanıldığında ise, 

 

 

Dirac

4

S i* d m*1

d x g i m



      

      




   (1.89) 

elde edilir. Burada   0-form, d  1-form ve  a

a* * e    3-form yapısındadır, 

bunlara ek olarak a  Dirac gamma matrisleri ve a ae e dx

  1-form yapısında ve ae 
  

ise vierbein’dir. Dirac lagrangian yoğunluğu ise aşağıdaki şekildedir, 

 DiracL i m

        (1.90) 

1.2.3. İç çarpım ve Lie türevi 

İç çarpım veya iç türev, verilen bir p-form 
 p

  ve bir vektör alan V’nin belli kurallar 

altında birleşerek  p 1  form 
 p 1

  oluşturması olarak tanımlanır ve aşağıdaki 

şekilde gösterilebilir, 

       p p 1

Vi : V V


      (1.91) 

Örneğin 
   p

V  yapısında bir p-form olmak üzere, iç çarpım Vi   aşağıdaki 

şekilde ifade edilir, 

 
p2

2 pV ,...,

1
i V dx ... dx

p 1 !



    


   (1.92) 

Bu işlemin bazı özellikleri aşağıda verilmiştir, 

1.    0

Vi f 0, f V    

2.      1

Vi h h,V h V , h V     
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3.  Vi dx dx V V      

4.            
p p q

V V Vi i 1 i , V , V          

5.  
1 2

2

V V Vi 0, i ,i 0   

6.      pa

V abcde...bcde...
i T V T , T V    

7.  Vi * * V   

Eğer burada vektör alanı olarak ae 
 vierbein seçersek, bu bazda iç çarpım a ae

i i


  

şeklinde gösterilir ve 4 boyutta aşağıdaki ifadeler elde edilir, 

 

   

   

 

a

a

a b ab

a a

b b

a a

b c b c

a a

b c d b c d

a a

c a b c a b a c b

i e 4

i *1 *e , e i *1 g *1

i *e * e e

i * e e * e e e

i * e e e * e e e e

i e *e i e *e e i *e



  

 

   

     

    

   (1.93) 

Bunlara ek olarak iç türevin, dış türev ile ilişkileri göz önüne alındığında aşağıdaki 

ifadeler yazılabilir, 

       V V V VV,
l d,i , i l , i , l ,d 0
      (1.94) 

Burada Vl  Lie türevi olarak adlandırılır. Bu türevin bir p-forma etkisi ise 

 V V Vl d i i d     şeklindedir ve Cartan özdeşliği olarak bilinir. Lie türevinin 

önemli bir özelliği ise S L   şeklinde verilen bir eylemin genel koordinat 

dönüşümleri (diffeomorphism) altındaki değişiminin bulunmasında kolaylık 

sağlamasıdır. Örneğin 
al S S 0    olduğu dikkate alındığında, 

   a a al S i dL d i L 0      (1.95) 

elde edilir. Burada Lagranjiyen L, N boyutta bir N-form olduğu dikkate alındığında, 

ilk terim N 1  form olduğu için integrale bir katkısı olmayacaktır. İkinci terim ise 

tam türev yapısında olduğu için ihmal edilir. Böylece eşitlik sağlanmış olur. 
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1.3. Ayar Teorisi 

Genel görelilik teorisinin 1915 yılında ortaya çıkmasıyla birlikte kütleçekimin artık 

uzay-zamanın geometrisiyle alakalı olduğu görüşü baskın geldi. Kütleçekime 

getirilen bu yeni bakış açısı sayesinde ayar teorisiyle alakalı olarak Weyl’in 1929 

[60], Yang ve Mills’in 1954 [61] ve Utiyama’nın 1956’da [1] yaptığı çalışmalar 

ortaya çıkmıştır. 1960’larda başta Kibble [2] olmak üzere yapılan diğer çalışmalar 

gösterdi ki Minkowski uzayında ele alınan P(1,3) kütleçekim ile yakın ilişkiye 

sahiptir ve bu grubun ayar teorisi uzay-zamanda Riemann-Cartan geometrisini ortaya 

çıkarmaktadır. Buradan anlaşıldı ki diğer uzay-zaman gruplarının veya daha geniş 

simetrilerin de kullanılmasıyla kütleçekim teorisini genelleştirmek ayar teorisi ile 

mümkündür.   

Bu fikir sayesinde, bilinen uzay-zaman simetrisini Maxwell simetrisi ile 

genelleştirdiğimizde, genişletilmiş bir kütleçekim teorisinin ve bazı yeni 

etkileşimlerin ortaya çıkması beklenmektedir. Burada, sonraki bölümlerde 

yapacağımız işlemlere temel oluşturması için kısaca ayar teorisinin bazı temel 

kavramları verilecek ve sırasıyla  U 1  ve SO(1,3) grupları üzerinde iki adet 

uygulama yapacağız. 

1.3.1. Global ve yerel değişmezlik 

Elimizde n parametreli bir Lie grubu olduğunu varsayalım, bu grubun üreticileri arası 

komütasyon ilişkisi aşağıdaki şekilde olsun, 

  C

A B AB CX ,X if X    (1.96) 

Burada 
AX  grubun üreticileri, C C

AB BAf f   yapı sabitleridir, A,B,... 1,..., N  

değerlerini alır ve N üretici sayısını gösterir. Global dönüşüm altında bir   alanı, 

A
Ai X

U e
        (1.97) 

gibi dönüşür. Son ifadenin dış türevi aşağıdaki şekilde elde edilir, 

 d d U Ud        (1.98) 
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Kütlesiz Dirac Lagranjiyenini 
DiracL i * d     bu global simetri dönüşümünü 

incelediğimizde, 

 1

Dirac

1

L i * d i U * d U

i U * dU





           

     1

Dirac

i U U* d

i * d L

    

     

  (1.99) 

değişmez kaldığı görülmektedir. Eğer ilgili simetriyi yerel dönüşüm  A A x    

altında incelersek 
 A

Ai x X
U e


  için, 

 d d U dU Ud         (1.100) 

elde edilir. Aynı şekilde Dirac Lagranjiyenine uyguladığımızda, 

 1

Dirac

1

Dirac

L i * d i U * d U

L i U * dU





           

     
   (1.101) 

elde edilir. Burada açıkça görülebilir ki yerel simetri dönüşümü altında ilgili 

Lagranjiyen değişmez kalmamaktadır. Bu durumun üstesinden gelebilmek için 

“kovaryant türev” olarak adlandırılan yeni bir türev operatörü tanımlanır, 

D d ig     (1.102) 

ve bu kovaryant türev aşağıdaki özelliğe sahiptir, 

     1 2 1 2 1 2D D D          (1.103) 

Burada A

AX  “ayar potansiyeli” veya “ayar alanı” olarak adlandırılır g ise 

etkileşim sabitidir. Şimdi ilgili A ayar alanının özelliklerini bulalım. Aradığımız 

dönüşüm Denklem (1.98)’e benzer şekilde aşağıdaki gibidir, 

 D UD Ud igU          (1.104) 

yukarıdaki ifadenin sol tarafını açık bir şekilde yazdığımızda ise Denklem (1.105) 

elde edilir, 
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   D d ig U dU Ud ig U              (1.105) 

Son iki ifadenin sağ taraflarının eşit olduğunu düşünürsek, 

dU Ud ig U Ud igU         (1.106) 

ve  1d UU 0   olduğunu hesaba katarak düzenlediğimizde, 

1 1 1 1

1

i i
dUU U U UdU U U

g g

i
UDU

g

   



     

 

  (1.107) 

Ulaşılan son netice ’nın dönüşüm kuralını göstermektedir.  ayar potansiyelinin 

ilgili simetri altında sonsuz küçük değişiminin bulmak için 
A

Ai X
U e


  ifadesi yerine 

yazılır ve Backer-Campbell-Haussdorf formüllerinden (Ek-C) yararlanıldığında, 

 
A A

A Ai X i X

A A

A A

i
e d ig e

g

1
d X i X ,

g

     

       

   (1.108) 

elde edilir ve     ifadesinden hareketle, 

 

A A

A A

A

A

1
d X ,i X

g

i
D i X

g

       

 

   (1.109) 

Bu neticeyi basitleştirmek adına   A

Ax X    kullanılırsa aşağıdaki yapı elde edilir, 

 
1

d i ,
g

         (1.110) 

Bulunan bu niceliklerin yardımıyla Denklem (1.104) ifadesini Denklem (1.111)’deki 

gibi ispat edebiliriz, 
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   

 

1 1i
D d ig U dU Ud ig UdU U U U

g

dU Ud dU igU

U d ig

UD

               
 

       

  

 

  (1.111) 

Böylece kütlesiz Dirac Lagranjiyeni kovaryant dış türev ile DiracL i * D      

şeklinde yazılabilir. Yerel dönüşümler altında değişmezliği ise,  

  1

Dirac

Dirac

L i * D i U * UD

i * D L

          

     
   (1.112) 

şeklinde gösterilebilir. 

Tanımlanan kovaryant türevin karesi ise bizi aşağıdaki gösterildiği şekilde 2-form 

eğriliklere ulaştıracaktır, 

   

 

 

2

2 2

D D D d ig d ig

d igd ig d g

ig d ig

ig

        

       

   

 

  (1.113) 

Burada  eğriliği temsil etmektedir ve 1-formlar arası  
1

,
2

     ifadesi 

kullanılırsa, 

 
ig

d ig d ,
2

        (1.114) 

elde edilir. Eğer A

AX  ifadesi yukarıdaki denklemde yerine yazılırsa aşağıdaki 

ifadeye ulaşılır, 

   

A

A

A B C

A B C

A A B C

BC A

X d ig

ig
d X X ,X

2

g
d f X

2

   

  

 
   
 

   (1.115) 
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Neticede her bir üreticiye karşılık gelen eğriliği aşağıdaki şekilde yazabiliriz, 

A A A B C

BC

g
d f

2
      (1.116) 

Elde edilen eğriliklerin ele alınan simetri altındaki sonsuz küçük değişimini Denklem 

(1.107) ve Denklem (1.114) yardımıyla aşağıdaki şekilde bulabiliriz, 

 

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1

1

d ig

i i i
d U U UdU ig U U UdU U U UdU

g g g

i
dU U Ud U U dU dUdU

g

i
igU U U dU UdU U U UdU UdU

g

U d ig U

U U

     

   

     





     

     
          

     

 
   

 
  
     
  

  



  (1.117) 

Burada sonsuz küçük grup elemanı    A
Ai x X i x

U e e
 

   ifadeleri yerine yazılırsa, 

 i ie e i ,          (1.118) 

elde edilir. Netice itibariyle eğriliklerin bir simetri dönüşümü altındaki sonsuz küçük 

değişimi aşağıdaki ifade yardımıyla bulunabilir, 

 i ,      (1.119) 

Şimdi sırasıyla ilki uzay-zaman indisleri ile diğeri ise tanjant uzayının indisleri ile iki 

uygulama yapalım. 

1.3.2. U(1) ayar teorisi 

Bu bölümde yerel  U 1  faz dönüşümü simetrisinin altında aşağıda verilen Dirac 

Lagranjiyenini inceleyeceğiz,  

 DiracL i m

        (1.120) 
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Sonuçları daha detaylı görebilmek için uzay zaman indislerini kullanacağız.  U 1  

simetrisinin üreticisi 1 olup, herhangi bir grup elemanı 
 i x

U e


 olarak ele 

alındığında bir   alanının değişimi aşağıdaki şekilde verilebilir, 

 i x
U e

        (1.121) 

Bu grup için bir önceki bölümde verilen temelden yola çıkarak yerel dönüşümler 

altında değişmez kalan Dirac Lagranjiyenini aşağıdaki gibi yazabiliriz, 

 DiracL i D m

       (1.122) 

burada kovaryant türev aşağıdaki şekilde tanımlanır, 

 D iqA        (1.123) 

ve q etkileşim sabitidir. Ortaya atılan A
 ayar alanının sonlu ve sonsuz küçük 

değişimi sırasıyla Denklem (1.107) ve Denklem (1.110) dikkate alındığında 

aşağıdaki biçimi alır, 

1i 1
A UD U , A

q q



   
           (1.124) 

Bu sayede Denklem (1.122)’deki Lagranjiyenin yerel dönüşüm altındaki 

değişmezliği rahatlıkla gösterilebilir. Ortaya atılan A
 ayar alanından kaynaklanan 

eğrilikler Denklem (1.114) ile ve bunların  U 1  simetrisi altında sonsuz küçük 

değişimi ise Denklem (1.119) ile aşağıdaki gibi bulunabilir, 

F A A , F 0             (1.125) 

Kovaryant türevleri kullanarak başka bir önemli ifadeyi elde edebiliriz. Kovaryant 

türevleri Jacobi özdeşliklerinde yerine yazdığımızda, 

D , D ,D D , D ,D D , D ,D 0        
                      

  (1.126) 

elde edilir ve bu işlemin sonucunda Denklem (1.127) elde edilir, 
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D F D F D F 0           (1.127) 

Ayrıca F  ayar değişmez bir ifade olduğu için kovaryant türevi sıradan türev ile 

değiştirebiliriz, 

F F F 0            (1.128) 

Yukarıdaki netice Bianchi özdeşlikleri olarak adlandırılır ve F  eğriliğinin Denklem 

(1.125)’deki gibi vektör alanlar yardımıyla ifade edilebileceğini göstermektedir. 

Burada A
 vektör potansiyelini elektromanyetik vektör potansiyel, F  eğriliğini 

elektromanyetik gerilme tensörü ve q etkileşme sabitini de elektrik yükü olarak ele 

aldığımızda ulaşılan teorinin elektrodinamiği içerdiğini görebiliriz. Buradan 

hareketle Denklem (1.125) dikkate alındığında aşağıdaki Lagranjiyen yazılabilir, 

A

1
L F F

4



     (1.129) 

ve Dirac Lagranjiyeninin  DiracL i D m

     olduğu hesaba katılırsa toplam 

Lagranjiyen 
Toplam Dirac AL L L   biçiminde yazılabilir, 

   
2

Toplam

1
L A A i q A m

4

 

                  (1.130) 

Bu sayede yerel  U 1  simetrisi altında değişmez kalan ve vektörel alanlarla 

fermiyon alanlarının etkileştiği bir teori elde edilmiş olur. Bu Lagranjiyene ait 

hareket denklemleri bulunmak istenirse ayar alanlarına göre varyasyon alınır. A
 

ayar alanına göre varyasyon ile aşağıdaki sonuç elde edilir, 

 

 

 

   

A Toplam

1
L F F i q A m

4

1
A A F q A

2

A F A q

A F A F q 0

  

  

    

 

  

 

  

   

 
           

 

        

     

        

  (1.131) 
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Son ifadede ilk terim tam türev olduğu için integralde ihmal edilir, ikinci terim ise 

aşağıdaki hareket denklemini verir, 

F q J

          (1.132) 

Son denklem homojen olmayan Maxwell denklemlerine karşılık gelmektedir, J  ise 

akımı ifade eder. Benzer şekilde   alanına göre varyasyon alınırsa, 

 i m q A 

           (1.133) 

hareket denklemi elde edilir ve bu ifade yüklü bir fermiyonun dinamiğini tanımlar. 

1.3.3. Lorentz değişmezliği 

SO(1,3) Lorentz grubu için herhangi bir grup elmanı, 

 ab
ab

i
x M

2U e
 

    (1.134) 

ile verilir. Burada    ab bax x    antisimetrik “spin bağlantı” veya “Lorentz 

bağlantı” olarak adlandırılır, ab baM M   ise bu gruba ait üreticidir ve diferansiyel 

gösterimi aşağıdaki şekildedir, 

 ab a b b aM i x x       (1.135) 

Bu üretici aşağıdaki komutasyon ilişkisini sağlar, 

   ab cd ad bc bc ad ac bd bd acM ,M i M M M M       (1.136) 

SO(1,3) için ayar teorisine aşağıdaki gibi bir kovaryant türev tanımlayarak 

başlayalım,  

ab

ab

i
D d i d M

2
        (1.137) 

Burada ab

ab

1
M

2
    yapısındadır ve  ab x  ise ayar alanıdır. 
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Tanımlanan ayar alanının Lorentz simetrisi altındaki değişimini, Denklem (1.110) ve 

sonsuz küçük parametreli    ab

ab

1
x x M

2
     sonsuz küçük parametreli bir ayar 

üreticisi kullanıldığında, 

 

 

 

ab ab cd

ab ab cd

ab ab cd

ab ad bc bc ad ac bd bd ac

ab [a cb]

c ab

d i ,

1 1 1
d M i M , M

2 2 2

1
d M M M M M

2

1
d M

2

     

   
           

   

       

      

  (1.138) 

elde edilir ve bu netice ile değişimin genel ifadesinin ab

ab

1
M

2
     yapısında 

olduğu göz önüne alındığında aşağıdaki biçimde bulabiliriz, 

ab ab [a cb] ab

cd D            (1.139) 

Bu gruba ait eğrilikleri Denklem (1.114) yardımıyla aşağıdaki şekilde bulabiliriz, 

 

 

 

ab ab cd

ab ab cd

ab ab cd

ab ad bc bc ad ac bd bd ac

ab a cb

c ab

i
d ,

2

1 i 1 1
d M M , M

2 2 2 2

1 1
d M M M M M

2 8

1
d M

2

 

 
        

 

         

    

  (1.140) 

Burada A ab

A ab

1
X R M

2
    ifadesinden yararlandığımızda, 

ab ab a cb

cR d       (1.141) 

2-form Lorentz eğriliği elde edilir ve bu eşitliğin Denklem (1.52)’ye denk olduğu 

gösterilebilir. Yerel Lorentz dönüşümü altında bu eğriliğin varyasyonunu ise 

Denklem (1.119) yardımıyla Denklem (1.142)’deki şekilde bulabiliriz, 
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 

 

ab cd

ab cd

ab cd

ad bc

[a cb]

c ab

1 1
i , i M , R M

2 2

R M

1
R M

2

 
       

 

  

  

   (1.142) 

Elde edilen son ifade ab

ab

1
R M

2
     denklemi ile karşılaştırıldığında, 

ab [a cb]

cR R      (1.143) 

elde edilir. Şimdi bir uygulama olarak Einstein-Hilbert eylemini dikkate alalım, 

 ab ab c d

a b abcd

1 1
S R * e e R e e

2 4
        

     (1.144) 

burada   Einstein sabiti,  a ae x e dx

  1-form vierbein vektörlerini temsil 

etmektedir ve Lorentz simetrisi altındaki dönüşümü  a a b

be e

   şeklindedir. Eğer 

a

b  parametresinin sonsuz küçük açılımını a a a

b b b     dikkate alırsak,  

a a b

be e      (1.145) 

elde edilir. İlgili eylemin yerel Lorentz değişmezliği aşağıdaki şekilde gösterilebilir, 

 

ab c d ab c d

abcd abcd

ab c d ab c d

abcd abcd

[a eb] c d ab c e d

abcd e abcd e

ab c d e

abcd e

e e e e ab c d

a ebcd b aecd c abed d abce

R e e R e e1
S

4 R e e R e e

R e e R e e1

4 R e e

1
R e e

4

        
               

         
         

              


 







e ab c d

e abcd

1
R e e

4

0

   






  (1.146) 

Burada 
abcd 0   ve  ab x  parametresinin antisimetrik özelliğinden faydalanılarak 

elde edilen Denklem (1.147) kullanılmıştır, 
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 e e e e e

a ebcd b aecd c abed d abce e abcd 0              (1.147) 

Hareket denklemleri için S 0   temel alınarak sırasıyla ayar alanlarına göre 

varyasyonlara bakılır. İlk olarak  ab x  ayar alanına göre varyasyon alınırsa, 

   

ab c d

abcd

ab c d

abcd

ab c d ab c d

abcd abcd

S R e e

D e e

D e e 2 De e

0

     

    

          









  (1.148) 

elde edilir. Burada D Lorentz kovaryant türevdir (Ek-A). İlk terim tam türev 

olduğundan ihmal edilirse aşağıdaki hareket denklemi elde edilir, 

c d

abcdDe e 0      (1.149) 

Bu denklemin sağlanabilmesi için burulma (torsion) tensörü 
c cF De 0   olması 

gerektiği açıkça görülmektedir. İkinci olarak  ae x  alanına göre varyasyon alınırsa, 

 c ab d

e abcdS 2 e R e 0          (1.150) 

ve bu neticeden hareketle, 

ab d

abcdR e 0      (1.151) 

hareket denklemi elde edilir. Bu denklem kullanılarak Einstein alan denklemini elde 

edebiliriz. Bunun için öncelikle denklemi sağ taraftan 
ve  ile çarpalım, 

ab d v

abcdR e e 0       (1.152) 

Son ifade üzerinde Denklem (1.86) kullanılıp açık bir şekilde yazıldığnda Denklem 

(1.153) elde edilir, 
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 

ab d v ab e f d v

abcd abcd ef

ab efdv 4 ab efvd 4

abcd ef ef abcd

ab v av ab v

ab c ac ba c 4

vb av vb

bc ca cb

v v 4

c c

1
R e e R e e e e

2

1 1
R gd x R gd x

2 2

R R R1
gd x

2 R R R

1
2 R R gd x

2

 
        

 

        

    
      

 
     

 

  (1.153) 

Bu ifade uzay-zaman indisleri ile yazılıp Denklem (1.152) ile karşılarştırıldığında 

aşağıdaki ifade elde edilir, 

1
G R R 0

2

  

         (1.154) 

Bu eşitlik Denklem (1.57)’de belirtildiği gibi Einstein tensörü olarak adlandırılır. 

Benzer şekilde Einstein-Hilbert eylemi kozmolojik sabit ve kütle terimini içerecek 

şekilde aşağıdaki gibi yazılabilir, 

ab c d a b c d

abcd abcd m

1
S R e e e e e e 4 L *1

4 2

 
            

  
   (1.155) 

Burada   kozmolojik sabit ve mL  ise kütle terimidir. Uzay zaman koordinatlarında 

yazılmak istendiğinde, 

 4

m

1
S d x g R 6 2 L

2
    

 
   (1.156) 

biçimiyle ifade elde edilir. Son eylemin metriğe göre varyasyonu alındığında 

kozmolojik terimi içeren Einstein alan denklemi aşağıdaki şekilde elde edilir, 

1
R g R 3 g T

2
           (1.157) 

Burada T
 enerji-momentum tensörüdür (Ek-Ç). 
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2. SÜPERSİMETRİ VE SÜPER KÜTLEÇEKİM TEORİSİ 

2.1. Süpersimetri 

Parçacık fiziği açısından ele alındığında ise süpersimetri, bozon ve fermiyonların 

birbirlerne dönüştüğü genişletilmiş bir uzay-zaman simetrisi olarak ele alınabilir. 

Bilinen süpersimetrinin ortaya çıkışı için komütatör ve anti komütatörlerin aynı 

cebirde ilk olarak kullanıldığı Neveu’nun [62] makalesine gidilebilir. Burada 

Virasora cebrinin bir boyutta “süper” genişletilmesi yapılmıştı. Bu çalışmadan kısa 

bir süre sonra 4 boyutta Poincare cebrinin süper genişletilmesi yapıldı. Bu konudaki 

önemli çalışmalar ise tarihi sırasıyla Golfand ve Likhtman [63], Volkov ve Akulov 

[64, 65], Wess ve Zumino [66] olarak verilebilir. Bu çalışmaların ardından 1975 

yılında Fayet’in çalışmasıyla [67] zayıf ve elektromanyetik etkileşmenin 

süpersimetrik teorisi elde edildi. 1976 da ise Feedman’ın makalesi [68] ile birlikte 4 

boyutta minimal süpersimetri ve Genel Görelilik teorisinin birleşimi olan süper 

kütleçekimi keşfedildi. Süpersimetri ve süper kütleçekim teorisi hakkında detaylı 

bilgi için [69-73] kaynaklarına başvurulabilir. 

2.1.1. Süper Poincare grubu 

Burada süper Poincare grubunu sP(1,3) ele alacağız. Süper cebrin oluşturulmasında 

Majorana formalizmi seçilmiştir. Bu grubun üreticileri  A a abX P ,M ,Q  

şeklindedir ve bilinen P(1,3)’na ek olarak ilave bir spinör üretici Q  içermektedir. 

Burada spinör indislerini temsil eden Yunan harfleri , ,... 0,...,3    değerlerini 

alırlar. sP(1,3)’nun komütasyon ilişkileri Denklem (2.1)’deki şekilde verilir, 

   

   

   

 

ab cd ad bc bc ad ac bd bd ac

ab c bc a ac b

c

c

ab ab

M ,M i M M M M

M ,P i P P

Q ,Q 2 C P ,

1
M ,Q Q

2

  

 

    

  

 

    

  (2.1) 
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Grup elemanı ise, 

 
ab

a ab
a

i
M

ix P i Q 2g x, , e e e



 


      (2.2) 

şeklinde yazılabilir. Burada      a abx x , x , x   ilişkili üreticilere karşılık gelen 

sonlu parametrelerdir. Bu parametrelerin sP(1,3)  altında sonsuz küçük değişimlerini 

bulmak için koset dönüşümlerinden faydalanacağız. K  bir koset olmak üzere bu 

kosetin dönüşümü  K'H g a, ,u K   şeklinde verilir. Burada      a aba x , x , u x  

sonsuz küçük parametrelerdir ve H  kararlılık grubunu temsil etmektedir. Koset 

aşağıdaki şekilde seçilir, 

 
 

 

a
aix P i Qg x, ,

K x, e e
H


 

  


   (2.3) 

Burada  
ab

ab

i
M

2H e
 

   şeklinde SO(1,3) olarak tercih edilmiştir. Bu noktadan 

hareketle gerekli işlemler yapıldığında aşağıdaki neticeler elde edilir, 

a a a b a

bx a u x i         (2.4) 

 ab

ab

i
u

4

          (2.5) 

ab abu     (2.6) 

Burada bir spinörün yük eşleniği TC    şeklinde tanımlanır ve yük eşleniği 

matrisi 0C   şeklindedir ayrıca süpersimetriye dair detaylı notasyon bilgileri (Ek-

B)’de yer almaktadır. İlk iki varyasyon kullanılarak üreticilerin diferansiyel 

gösterimleri bulunabilir. Bunun için varyasyonlar, bir skaler alanın sonsuz küçük 

değişimi    x, x x,      olan ifadede yerine yazılır ve Denklem (2.7)

’de gösterildiği şekilde Taylor serisine açılır, 
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   

 

 
  

 
 

a a a

a a a b a ab

b ab

a a b a

b a

a a

ab

ab

x , x x ,

i
x a u x i ,  u

4

a u x i C

x , x ,
i

u
4

  

 

 


 





      

 
             

 

       
 

      
         
  

  (2.7) 

Burada      x, x, x,        temel alınarak düzenleme yapıldığında, 

 
   

   
 

a a

a a

a a

ab

a b b a ab

ia i i i C

x , x ,
i 1

u i x x
2 2

 

 
 





             
     

           
  

  (2.8) 

elde edilir. Buna ek olarak skaler alanın sonsuz küçük grup dönüşümü altındaki 

varyasyonu, 

a ab

a ab

i
ia P i Q M

2





 
       

 
   (2.9) 

şeklindedir. Bu ifade ile Denklem (2.8) karşılaştırıldığında üreticilerin diferansiyel 

gösterimleri aşağıdaki şekilde elde edilir, 

a aP i     (2.10) 

  b

bQ i i C  
         (2.11) 

   ab a b b a ab

i
M i x x

2





 
        

 
   (2.12) 

2.2. Süper Kütleçekim Teorisi 

Bu bölümde sP(1,3)’nun ayar teorisi oluşturulup süper kütleçekim teorisine 

ulaşılacaktır. 
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2.2.1. Süper Poincare grubunun ayar teorisi 

Grubun yerel incelemesi için kovaryant türevin genel ifadesinin D d i   olduğu 

dikkate alınır. Burada 1-form ayar potansiyellerini  A a abe , ,     şeklinde 

parametrize ettiğimizde aşağıdaki şekilde yazabiliriz,    

A a ab

A a ab

1
X e P Q M

2



        (2.13) 

Burada 1-form ayar alanları sırasıyla 
a ae e dx

  vierbein, dx  

   gravitino 

alanı ve 
ab ab dx

   spin bağlantıdır. Belirlenen bu ayar alanlarının 

varyasyonlarını aşağıdaki gibi, 

       a ab

a ab

1
x y x P x Q x M

2



        (2.14) 

sonsuz küçük parametrelere sahip bir yardımcı alan ve Denklem (1.110) yardımıyla 

Denklem (2.15)’deki gibi bulabiliriz, 

 

   

 

 

a ab c cd

a ab c cd

d a b c [a cb]

a d c b c ab

ab ab

ab ab

a

a

a c a c a [a cb]

c c a c ab

ab

ab

d i ,

1 1
d i y P M Q ,e P M Q

2 2

i
i y P i e P M

2

1 1
d i Q Q

4 4

2 P

i
i y e 2i P M

2
d i

i
i

4

 

 

 

 

     

 
           

 

 
      

 
 

            
 
   
 
 

        

   

     ab

ab

i
Q

4

 



 
  
 

       
   

  (2.15) 

Son ifade a ab

a ab

1
e P Q M ,

2



       ile karşılaştırıldığında 1-form ayar 

alanlarının varyasyonu Denklem (2.16)’daki şekliyle elde edilir, 
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   

a a a b a b a

b b

ab ab [a cb]

c

ab ab

ab ab

e dy y e 2i

d

i i
d

4 4

  

        

     

           

  (2.16) 

2-form eğrilikler için genel ifade aşağıdaki gibi verilir, 

A a ab

A a ab

1
X F P Q R M

2



       (2.17) 

Burada Denklem (1.114) kullanıldığında, 

 

   

 

 

a ab c cd

a ab c cd

ab c ab cd

ab c ab cd

ab

ab

a c a cb

c a c ab

ab a

ab a

a a

i
d ,

2

i 1 1
d e P M Q ,e P M Q

2 2 2

1
e M ,P M ,Mi

4d
2

M ,Q Q ,Q

2i e P i M
i

d 1
2 Q 2 P

2

de

 

 

  

  





 

 
        

 

 
     

   
       

      
  
         
 





 

   

b a

b a

ab a cb ab

c ab ab

e i P

1 i
d M d Q

2 4





    
 
  
            

  
  (2.18) 

elde edilir ve buradan 2-form eğriliklerin açık ifadelerine ulaşılır, 

 

a a a b a a a

b

ab

ab

ab ab a cb ab

c

F de e i De i

i
d D

4

R d D

  

           

         

     

  (2.19) 

Son ifadeler sırasıyla süper torsion (burulma) tensörü, spinör eğrilik, Riemann eğrilik 

tensörleridir ve bunlar öteleme, süpersimetri ve Lorentz simetrilerinden 

kaynaklanmaktadır. Bu eğriliklerin ilgili grup yerel ayar dönüşümü altında sonsuz 

küçük değişimi Denklem (1.119) ve Denklem (2.14) yardımıyla Denklem (2.20)’deki 

şekilde bulunabilir, 
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 

   

 

  

 

a ab c cd

a ab c cd

d a b c [a cb]

a d c b c ab

ab ab

ab ab

a

a

a c a c a [a cb]

c c a c ab

ab

ab

i ,

1 1
i y P M Q ,F P R M Q

2 2

i
iR y P i F P R M

2

1 1
i Q R Q

4 4

2 C P

i
i R y F 2i C P R M

2
i

i
i

4

 

 

  

  

 



 







  

 
       

 

 
    

 
 

        
 
    
 
 

       



    ab

ab

i
R Q

4

 



 
 
 

  
     

  

  (2.20) 

Bu netice A a ab

A a ab

1
X F P Q R M

2



         ile karşılaştırıldığında, 

 

   

a a b a b a

b b

ab [a cb]

c

ab ab

ab ab

F F R y 2i

R R

i i
R

4 4

 

      

   

        

   (2.21) 

elde edilir. Bianchi özdeşlikleri ise aşağıdaki şekilde bulunabilir, 

    
    

a a a b a

b

a b a a

b

a b a

b

DF D de e iD C

R e i C C

R e 2i

 



   

 

       

          

    

  (2.22) 

     

 

     

 

ab ab

ab ab

ab

ab

ab ab ab

ab ab ab

ab

ab

i i
d d

4 4
D

1 i
d

2 4

i i i
d d d

4 4 4

i
R

4

  






   





  
            

  
   

              

    
                   

    

   

  (2.23) 
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   

 

ab ab a cb b ca

c c

ab a cb a cb c db

c c d

b ca c da

c d

2 ab a cb a cb a cb

c c c

a cb db b ca b c da

c c c d

DR dR R R

d d d

d

d d d d

d

0

    

         
  

      

           
  

          



  (2.24) 

2.2.2. N = 1 ve D = 4 süper kütleçekimi 

Bu temelden hareketle N 1  ve D 4  için Lagranjiyenin genel ifadesi aşağıdaki 

şekilde yazılabilir, 

ab c d c

abcd c 5S R e e e          (2.25) 

Burada ilk terim bilinen Einstein-Hilbert Lagranjiyeni diğer terim ise Rarita-

Schwinger alanıdır ve ,   sabittir. İlgili katsayılar Lagranjiyenin istenilen simetri 

altında değişmezliğine bakılarak belirlenebilir. Einstein-Hilbert Lagranjiyeninin 

değişmezliği Denklem (1.146)’da gösterilmiştir, Rarita-Schwinger alanının Lorentz 

değişmezliği ise Denklem (2.26)’daki şekilde gösterilebilir,  

 

 

c c c

Lorenz RS c 5 c 5 c 5

ab c c b

ab c 5 b c 5

c ab

c 5 ab

ab c c b

ab c 5 b c 5

c b c b

b c 5 b c 5

S e e e

i
e e

4

i
e

4

i
e , e

4

e e

0

                

  
            

  
   

              

             

            











  (2.26) 

Görüldüğü gibi iki terim bağımsız olarak Lorentz değişmez olduğundan dolayı 

katsayıların bir önemi yoktur. Şimdi eylemin süpersimetri dönüşümü altındaki 

davranışına bakalım,  
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   

   
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   

             

             
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 

  
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  





  (2.27) 

Son ifadede sırasıyla A ve B terimlerini inceleyelim, 

 

 

c

c 5

c 2 c c

c 5 c 5 c 5

c ab c c

c 5 c 5 ab c 5

A D D e

D D e D e D D De
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D D e R e D De

4

     

             


             

  (2.28) 

c c

c 5 c 5
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B 2i D 2i D 0               (2.29) 

Bulunan nicelikler eylemde yerine yazıldığında Denklem (2.30) elde edilir, 
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c 5 c 5 ab

ab c d ab c

abcd c 5 ab

C

c ab c

c 5 c 5 ab

D

i
4i R e R e

4
S

i
D De R e

4

i
4i R e R e

4

i
D De R e

4



 
           

   
              

   


         




          



 
 
  
 
 
 
  



  (2.30) 

Şimdi C ve D terimlerini sırasıyla inceleyelim, 

  

ab cd r ab m cd

r abcd abcd m

ab cr d dr c cdmn

abcd 5 n r

ab c d cdmn ab

abcd abcd 5 n r

i
C i R e R e

4 2 8

R i e
8

i R e R e
4 8

  
           

 


            

 
            

  (2.31) 
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ab cd n

n abcd

ab c d cdmn ab

abcd abcd 5 n r

i
D i R e

4 2

i R e R e
4 8

  
     

 

 
          

  (2.32) 

Bu iki terim 
c c      ve 5 n 5 n        dikkate alınarak toplandığında, 

ab c d

abcdC D i R e
2


        (2.33) 

elde edilir ve eylemde yerine yazılırsa aşağıdaki nihai netice elde edilir, 

ab c d ab c d

abcd abcd

susy c

c 5

E

4i R e i R e
2

S
D De

 
        

   
    
  

   (2.34) 

Burada 8     seçilirse ilk iki terim birbirini götüreceği açıkça görülmektedir. 

Üçüncü terim ise, klasik torsion 
a aT De 0   veya süper torsion 

aF 0  şartlarında 

sıfıra gitmektedir. Örneğin son şartı ele alırsak 
a aDe i    elde edilir ve E 

teriminde yerine yazıldığında, 

a a

c 5 c 5

a

c 5

a

c 5

0

E i D i D

i D

i D 0

            

      

       

  (2.35) 

İfadesine ulaşılır. Böylece katsayılar arası ilişki, Lagranjiyenin süpersimetri 

dönüşümü altında değişmezliği ile gösterilmiş olur. Lagranjiyen 
1

4
  


 için tekrar 

yazıldığında aşağıdaki şekli alır, 

ab c d c

abcd c 5

1
S R e e 8 e D

4
          

 
  (2.36) 

Bu ifade aynı zamanda yalın süper kütleçekim Lagranjiyeni olarak bilinir. Hareket 

denklemleri için S 0   temel alınarak sırasıyla ayar alanlarına göre varyasyonlara 

bakılır. Einstein-Hilbert terimine ait hareket denklemlerini daha önce bulmuştuk. Bu 
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sebepten sadece Rarita-Schwinger teriminden gelen katkılara bakacağız. İlk olarak 

ab  ayar alanına göre varyasyon alınırsa, 

 

c c ab

RS c 5 c 5 ab

ab c

c ab 5

i
S 8 e D 8 e

4

2 i e

0



 
                  

 

       



 

   (2.37) 

elde edilir. Bu netice ile Denklem (1.149) dikkate alındığında aşağıdaki hareket 

denklemi elde edilir, 

c d c

abcd c ab 5De e i e 0            (2.38) 

Son denklem açıldığında, 

  

c d k k cd

abcd k ab 5 k abcd

ck d dk c cdkr

abcd k 5 r

d c cdkr

abcd abcd k 5 r

0

c d

abcd

i
De e i e i e

2

1
e i

2

1
i e e

2

i e

 
                  

 

            

            

    

  (2.39) 

eşitliğine ulaşılır. Burada sol ve sağ taraf karşılaştırıldığında, 

c cDe i      (2.40) 

ifadesi elde edilir. Bu ifade sayesinde süper burulma tensörü 
aF 0  olur ve 

Lagranjiyenin değişmezlik şartına uygundur. İkinci olarak 
ae  ayar potansiyeline göre 

varyasyon alınırsa, 

 c c

e RS c 5 c 5S 8 e D 2 e 4 D

0

              



    (2.41) 

ve bu netice Denklem (1.151) ile birlikte ele alındığında,  

ab d

abcd c 5R e 4 D 0           (2.42) 
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hareket denklemi elde edilir. Bu denklem kullanılarak Einstein alan denkleminin 

genelleştirilmiş halini elde edebiliriz. Bunun için Denklem (1.153)’deki neticeye 

ilave olarak ikinci terimi sağ taraftan 
ve  ile çarpalım, 

v a b d v

c 5 a c 5 b d

abdv 4

a c 5 [b d]

4 D e 4 D e e e e

2 D gd x

           

      
  (2.43) 

şeklinde yazılabilir. Bu netice uzay-zaman indislerine geçirilip Denklem (1.154) ile 

birlikte yazıldığında, 

 

5 [ ]

1
R R D

2

T

  

     





       

 

   (2.44) 

ifadesi elde edilir. Bu eşitlik Einstein alan denkleminin genelleştirilmiş halidir. 

Burada  T



  enerji momentum tensörü olarak ele alınabilir.  

Son olarak 
  ayar potansiyeline göre varyasyona bakılırsa, 

 c

c 5S 8 e D 0           (2.45) 

Böylece son hareket denklemi aşağıdaki şekilde bulunur, 

c

c 5e D 0        (2.46) 

Bu denklem sağ taraftan 
de  ile çarpılıp açılırsa, 

c d c d

c 5 c 5

a b c d

c 5 a b

abcd 4

c 5 [a b]

e D e D e e

D e e e e

1
D d x

2

         

       

    

  (2.47) 

elde edilir ve uzay-zaman indislerinde tekrar yazılırsa aşağıdaki genel ifade elde 

edilir, 

 5 [ ]D 0

           (2.48) 
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3. MAXWELL SİMETRİSİ VE KÜTLEÇEKİM TEORİSİ 

3.1. Maxwell Cebri 

Poincare cebrinin antisimetrik bir 
abZ  üreticisi ile genişletilmiş hali olan M(1,3)’ün 

sıfır olmayan komutasyon bağıntıları, 

   

 

   

   

ab cd ad bc bc ad ac bd bd ac

a b ab

ab c bc a ac b

ab cd ad bc bc ad ac bd bd ac

M ,M i M M M M

P ,P iZ

M ,P i P P

M , Z i Z Z Z Z

    



  

    

  (3.1) 

ve grup elemanı ise, 

 
ab

a ab ab
a ab

i
M

ix P i Z 2g x, , e e e
 


      (3.2) 

şeklinde yazılabilir. Burada      a ab abx x , x , x   ilgili üreticilere karşılık gelen 

sonlu parametrelerdir. Bu parametrelerin M(1,3) altında sonsuz küçük değişimlerini 

bulmak için koset dönüşümlerinden faydalanacağız. K  bir koset olmak üzere bu 

kosetin dönüşümü      K ' x , ,... H g a, ,u K x, ,...      şeklinde verilir. Burada 

     a ab aba x , x , u x  sonsuz küçük parametrelerdir ve H  kararlılık grubunu temsil 

etmektedir. Koset aşağıdaki şekilde seçilir, 

 
a ab

a abix P i Zg
K x, e e

H


      (3.3) 

Burada 
ab

ab

i
M

2H e
 

  şeklinde SO(1,3) olarak tercih edilmiştir. Bu noktadan hareketle 

Denklem (3.4)’deki neticeler elde edilir, 
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a a a b

b

ab ab [a cb] [a b]

c

ab ab

x a u x

1
u a x

4

u

  

     

 

   (3.4) 

İlk iki varyasyon kullanılarak üreticilerin diferansiyel gösterimleri bulunabilir. 

Bunun için varyasyonlar bir skaler alanın değişimi    x, x x,      

üzerinde uygulanır ve Taylor serisine açılır, 

   

 
 

 

a ab a a ab ab

a a a c ab ab [a b] [a cb]

c c

a a c

c a

a ab a ab

ab [a b] [a cb]

c ab

x , x x ,

1
x a u x , a x u

4

a u x

x , x ,1
a x u

4

      

 
          

 

    
 

       
      
  

  (3.5) 

Burada      x, x, x,        temel alınarak düzenleme yapıldığında, 

 
 

  
 

a b ab

a ab ab

b c c

a a b b a a bc b ac

1
ia i x i i

2
x, x,

i
u i x x 2 2

2

   
        
       

 
          
 

  (3.6) 

elde edilir. Buna ek olarak skaler alanın sonsuz küçük grup dönüşümü altındaki 

varyasyonu, 

a ab ab

a ab ab

i
ia P i Z M

2

 
       

 
   (3.7) 

şeklindedir. Bu ifade ile Denklem (3.6) ile karşılaştırıldığında üreticilerin 

diferansiyel gösterimleri Denklem (3.8)’deki yapıda elde edilir, 

  

b

a a ab

ab ab

c c

ab a b b a a bc b ac

1
P i x

2

Z i

M i x x 2

 
    

 

 

        

   (3.8) 
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3.1.1. Maxwell cebrinin ayar teorisi 

Bu bölümde Maxwell cebrinin ayar teorisini oluşturacağız. Ayar teorisi için öncelikle 

bir (x)  ayar alanı tanımlanır,  

a ab ab

a ab ab

1
e P B Z M

2
      (3.9) 

Burada  ae x  vielbein,  ab x  spin bağlantısı,  abB x  antisimetrik üreticiye 

karşılık gelen ayar alanıdır. Bu alanların, sonsuz küçük ayar dönüşümü altındaki 

değişimi Denklem (1.110)’da verilen, 

 d i ,        (3.10) 

formülü ile bulunur. Burada  x
 
ayar üreticisi olup aşağıdaki gibi tanımlanır, 

       a ab ab

a ab ab

1
x y x P x Z x M

2
      (3.11) 

Burada      a ab aby x , x , x   sonsuz küçük parametrelerdir. Son iki eşitlik 

kullanıldığında ayar alanlarının değişimi aşağıdaki şekilde elde edilir, 

a a a b a b

b b

ab ab [a cb] [a cb] [a b]

c c

ab ab [a cb]

c

e dy y e ,

1
B d B e y ,

2

d .

     

        

     

  (3.12) 

Bu gruba ait 2-form eğrilikler A a ab ab

A a ab ab

1
X F P F Z R M

2
     şeklinde 

tanımlanır ve Denklem (1.114) kullanıldığında eğrilikler aşağıdaki biçimde elde 

edilir, 

a a a b

  b

ab ab [a cb] a b

c

ab ab a cb

c

F de e

1
F dB B e e

2

R d

  

    

   

  (3.13) 
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Denklem (3.13)’deki ifadeler sırasıyla burulma tensörü, Maxwell eğriliği ve 

Riemann eğrilik tensörüdür. Bunların sonsuz küçük ayar dönüşümü altındaki 

değişimini bulmak için Denklem (1.119) kullanıldığında aşağıdaki denklemler elde 

edilir, 

a a b a b

 b   b

ab [a cb] [a cb] [a b]

  c c

ab [a cb]

c

F R y F

1
F R F y F

2

R R

    

     

  

  (3.14) 

Lorentz kovaryant dış türev kullanıldığında Bianchi özdeşlikleri aşağıdaki şekilde 

bulunabilir, 

a a b

b

ab [a cb] [a b]

c

ab

DF R e

1
DF R B F e

2

DR 0

 

   



   (3.15) 

Bu temelden hareketle M(1,3) için kütleçekim eylemini oluşturmaya başlayabiliriz. 

Eğriliklerin sadece Lorentz simetrisi altındaki değişimleri dikkate alındığında, 

a a b

  b

ab [a cb]

c

ab [a cb]

c

F F

F F

R R

  

  

  

 

 (3.16) 

elde edilir. Buradan hareketle aşağıdaki şekilde bir birleşimi (ötelenmiş eğrilik) 

yazabiliriz, 

ab ab abR 2 F      (3.17) 

Bu eğriliğin, Denklem (3.16)’daki ilgili ifadeler kullanıldığında aşağıdaki dönüşüme 

sahip olduğu açıkça görülmektedir, 

ab [a cb]

c      (3.18) 

Bu ötelenmiş eğrilikten yararlanıldığında yerel Lorentz dönüşümü altında değişmez 

kalan bir eylem Denklem (3.19)’daki şekilde yazılabilir, 
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ab cd

abcd

ab cd ab cd ab cd

abcd abcd abcd

1 1
S *

4 8

1 1
R R R F F F

8 2 2

    
 


        

  

 



  (3.19) 

burada   Einstein sabiti ve   herhangi bir sabittir ve (*) Hodge dual işlemine 

karşılık gelmektedir. Yerel Maxwell dönüşümleri altında değişmezlik ise Lie türevi 

ile doğrudan gösterilebilir; 

 L L LdiffS l di i d          (3.20) 

Burada ilk terim tam türev olduğundan yüzey terimi olarak ihmal edilebilir, ikinci 

terim ise 5-form olduğundan 4 boyutlu uzay-zamanda etkisi olmayacaktır. Bu sayede 

diffS 0   olur. 

Şimdi hareket denklemlerini bulabiliriz. Eylemin  ab x  spin bağlantıya göre 

değişimini alırsak aşağıdaki ifade elde edilir, 

ab [a cb]

cDF B 0      (3.21) 

Eylemin  ae x ’ye göre değişimini alırsak, 

ab d

abcd e 0      (3.22) 

eşitliğine ulaşılır.  abB x ’ye göre değişimi alırsak, 

abD 0    (3.23) 

elde edilir. Böylece hareket denklemlerini elde etmiş olduk. Bu denklemlerin 

birbirlerini sağladıkları gösterilebilir. Denklem (3.22) sayesinde, 

a a

b b

1
0

2

 
   

 
   (3.24) 

elde edilir. Burada tanjant uzayı indislerinden uzay-zaman indislerine geçiş yapılır ve 

denklem açılırsa Denklem (3.25) elde edilir,  
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 
1

R R 3 2 T B
2

  

   
          (3.25) 

Burada, yukarıdaki ifadeyi Denklem (1.157) ile karşılaştırdığımızda kolaylıkla 

görülecektir ki eşitliğin sol tarafında bulunan  3 

  terimi kozmolojik sabit ile 

ilişkilidir, buna ilaveten  abB x  alanına karşılık gelen enerji-momentum tensörü 

aşağıdaki şekilde verilir, 

   ab ab

a b [ ] a b [ ]

1
T B e e D B e e D B

2

     

    
     (3.26) 

3.2. Süper Maxwell Cebri  

Süper Maxwell cebri [47] seçtiğimiz notasyona göre Denklem (3.27)’deki yapıda 

verilir, 

   

 

   

   

 

   

   

   

ab cd ad bc bc ad ac bd bd ac

a b ab

ab c bc a ac b

ab cd ad bc bc ad ac bd bd ac

a a

c

c

cd

cd

ab ab ab ab

M ,M i M M M M

P ,P iZ

M ,P i P P

M , Z i Z Z Z Z

P ,Q i

Q ,Q 2 C P

i
Q , C Z

2

1 1
M ,Q Q , M ,

2 2



  

  

  

  

    



  

    

      

 

   

           

  (3.27) 

Bu gruba ait herhangi bir grup elemanı aşağıdaki şekilde yazılabilir, 

ab
a ab ab

a ab

i
M

ix P i Z i Q i 2g e e e e e
 

 
 

   
    (3.28) 

3.2.1. Süper Maxwell cebrinin ayar teorisi 

Ayar teorisine geldiğimizde ise, bunun için öncelikle Denklem (3.29)’daki gibi bir 1-

form  ayar alanı ortaya atılır, 
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a ab ab

a ab ab

1
e P B Z Q M

2

 

          (3.29) 

Burada a ab abe , A , , ,     sırasıyla 
a ab abP , Z , Q , , M   üreticilerine karşılık 

gelen ayar alanlarıdır. Bu alanların sonsuz küçük ayar dönüşümü altındaki 

değişimleri Denklem (1.110) ve aşağıda verilen,  

  a ab ab

a ab ab

1
x y P Z Q v M

2

 

           (3.30) 

sonsuz küçük ayar üreticisi yardımıyla aşağıdaki biçimde bulunabilir, 

 

   

   

       

a a a b a b a

b b

ab ab [a cb] [a cb] [a b] ab ab

c c

ab ab [a cb]

c

ab ab

ab ab

ab ab c c

ab ab c c

e dy y e 2i

1 1 1
B d B e y v

2 2 2

d

i i
d

4 4

i i
dv v y e

4 4

  

    

        

              

     

           

               

 (3.31) 

2-form Eğrilikleri Denklem (1.114) ifadesi yardımı ile bulabiliriz. Burada eğriliklerin 

genel ifadesi, 

a ab ab

a ab ab

1
F P F Z Q R M

2

 

         (3.32) 

kullanılırsa eğrilikler aşağıdaki şekilde elde edilir, 

 

 

 

   

a a a b a

b

ab ab [a cb] a b ab

c

ab ab a cb

c

ab

ab

ab a

ab a

F de e i

1 1
F dB B e e

2 2

R d

i
d

4

i
d e

4

 

  

     

       

   

      

         

 (3.33) 

Son iki eğriliğin kompleks eşlenikleri Denklem (3.34)’deki şekilde yazılabilir, 
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 a

a

D ,

D e

 


 

  

     
  (3.34) 

Burada D  Lorentz kovaryant dış türevdir. Eğriliklerin sonsuz küçük ayar dönüşümü 

altındaki değişimini bulmak için Denklem (1.119) ifadesi kullanıldığında Denklem 

(3.35)’deki varyasyonlar elde edilir, 

 

   

   

       

a a b a b a

b b

ab [a cb] [a cb] [a b] ab ab

c c

ab [a cb]

c

ab ab

ab ab

ab ab c c

ab ab c c

F F R y 2i

1 1 1
F F R y F v

2 2 2

R R

i i
R

4 4

i i
R v y F

4 4

 

   

      

           

  

        

             

  (3.35) 

Her bir eğrilik için Bianchi özdeşlikleri de aşağıdaki şekilde bulunabilir, 

 

 

   

 

     

a a b a

b

[a cb] [a b] ab

c
ab

ab [a b]

ab

ab

ab

ab a a

ab a a

DF R e i

1 1
R B F e

2 2
DF

1 1
e

2 2

DR 0

i
D R

4

i
D R F e

4



  

    

 
       

  
        
  



    

           

  (3.36) 

Bulunan eğrilikler kullanılarak süper Maxwell ayar dönüşümleri altında değişmez 

kalan bir Lagranjiyen, Azcárraga’nın [47] makalesi dikkate alınarak, aşağıdaki 

şekilde yazıldı, 

ab cd

abcd 5

1
S R F 4 .

2
     

 
   (3.37) 

Bu Lagranjiyendeki terimler açıldığında Denklem (3.38) elde edilir, 
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 

   

 

ab cd ab c d ab cd

abcd abcd abcd

a

5 a 5

ab c d a ab cd

abcd a 5 abcd

ab cd

abcd 5

1 1
R DB R e e R1

S 2 2
2

4D 4 e

1
R e e 8 e D D R B

1 2

12
R 4D

2

 
           

  
          

 
              

  
         

  





  (3.38) 

Buradaki son terim üzerinde Denklem (3.36)’daki dördüncü Bianchi özdeşliği ve 

cd

5 ab abcd

i

2
      eşitliği kullanıldığında, 

 

   

   

5 5 5

ab

5 5 ab

ab cd

5 abcd

4D D 4 4 D

D 4 iR

1
D 4 R

2

        

       

       

  (3.39) 

elde edilir. Bu ifade Denklem (3.38)’de yerine yazılır ve tam türevler ihmal edilirse 

eylem aşağıdaki biçimi alır,  

ab c d a

abcd a 5

1
S R e e 8 e D

4
          

 
  (3.40) 

Böylece Denklem (2.36)‘de verilen D 4  için minimal süper kütleçekim 

Lagranjiyenini Maxwell simetrisi yardımıyla elde etmiş oluruz. Buradan anlaşılıyor 

ki süper Maxwell simetrisi süper kütleçekim Lagranjiyenine alternatif bir yol olarak 

karşımıza çıkmaktadır ve Maxwell simetrisi saklı bir simetri olarak teoride yer 

almaktadır. 

3.3. Maxwell-Weyl Cebri  

P(1,3)’na ölçekleme simetrisinin ilave edilmesiyle elde edilen Weyl grubu (W(1,3)) 

sırasıyla  A a abX P ,D,M  üreticilerinden oluşmaktadır. Burada D ölçekleme 

simetrisini temsil etmektedir. Bu grubun sıfır olmayan komütasyon ilişkileri 

Denklem (3.41)’deki gibidir, 
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   

   

 

ab cd ad bc bc ad ac bd bd ac

ab c bc a ac b

a a

M ,M i M M M M

M ,P i P P

P ,D iP

    

  



 (3.41) 

Bu gruba ait herhangi bir grup elemanı, 

 
ab

a ab
a

i
M

ix P i D 2g x, , e e e
 

      (3.42) 

Şeklinde seçilebilir ve üreticilerinin diferansiyel gösterimleri aşağıdaki biçimde 

verilir, 

 

 

ab a b b a

a a

M i x x

P i

D i x

   

 

 

  (3.43) 

Weyl cebrinin antisimetrik bir 
abZ  üreticisi ile genişletilmiş hali olan MW(1,3)’nun 

sıfır olmayan komutasyon bağıntıları, 

   

 

   

   

   

ab cd ad bc bc ad ac bd bd ac

a b ab

ab c bc a ac b

ab cd ad bc bc ad ac bd bd ac

a a ab ab

M ,M i M M M M

P ,P iZ

M ,P i P P

M , Z i Z Z Z Z

P ,D iP , Z ,D 2iZ

    



  

    

 

  (3.44) 

ve grup elemanı ise aşağıdaki biçimdedir, 

 
ab

a ab ab
a ab

i
M

ix P i Z i D 2g x, , e e e e
 

       (3.45) 

Grup elemanındaki sırasıyla        a ab abx x , x , x , x    ifadeleri, ilgili üreticilere 

karşılık gelen sonlu parametrelerdir. Bu parametrelerin MW(1,3) altında sonsuz 

küçük değişimlerini bulmak için koset dönüşümlerinden faydalanacağız. K  bir koset 

olmak üzere bu kosetin parametrelerinin dönüşümü  K 'H g a, , ,u K    şeklinde 

verilir. Burada        a ab aba x , x , x , u x   sonsuz küçük parametrelerdir ve H  

kararlılık grubunu temsil etmektedir. Koset aşağıdaki şekilde seçilir, 
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 
  a ab

a abix P i Z i D
g x, , ,

K x, , e e e
H

 
  

       (3.46) 

Burada 
ab

ab

i
M

2H e
 

  şeklinde tercih edilmiştir. Bu noktadan hareketle aşağıdaki 

neticeler elde edilir, 

a a a b a

b

ab ab [a cb] ab [a b]

c

ab ab

x a u x x

1
u 2 a x

4

u

   

       

  

 

   (3.47) 

İlk iki varyasyon kullanılarak üreticilerin diferansiyel gösterimleri bulunabilir. 

Bunun için varyasyonlar bir skaler alanın değişimi    x, x x,      

üzerinde uygulanır ve Taylor serisine açılır, 

   

 
 

 

a ab a a ab ab

a a a c a ab ab [a b] [a cb] ab

c c

a a c a

c a

a ab a ab

ab [a b] [a cb] ab

c ab

x , x x ,

1
x a u x x , a x u 2

4

a u x x

x , x ,1
a x u 2

4

      

 
             

 

     
 

       
        
  

  (3.48) 

Burada      x, x, x,        temel alınarak düzenleme yapıldığında, 

 
    

  
 

a b ab

a ab ab

b c c

a a b b a a bc b ac

1
ia i x i i i i x 2

2
x, x,

i
u i x x 2 2

2

   
             
       

 
          
 

  (3.49) 

elde edilir. Buna ek olarak skaler alanın sonsuz küçük grup dönüşümü altındaki 

varyasyonu Denklem (3.50)’deki şekilde yazılabilir, 

   a ab ab

a ab ab

i
x, ia P i Z i D M x,

2

 
           

 
  (3.50) 
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Bu ifade ile Denklem (3.49) mukayese edildiğinde üreticilerin diferansiyel 

gösterimleri aşağıdaki şekilde elde edilir, 

 

  

b

a a ab

ab ab

a ab

a ab

c c

ab a b b a a bc b ac

1
P i x

2

Z i

D i x 2

M i x x 2

 
    

 

 

    

        

   (3.51) 

3.3.1. Maxwell-Weyl cebrinin ayar teorisi 

Weyl ayar teorisi Charap, Omote, Kasuya ve diğer pek çok bilim insanının [5-7, 10, 

74 ,75] çalışmalarında detaylı verilmiştir. Bu bölümde MW(1,3)’nun ayar teorisini 

oluşturacağız. Ayar teorisi için öncelikle bir (x)
 ayar alanı tanımlanır,  

a ab ab

a ab ab

1
e P B Z D M

2
           (3.52) 

Burada  ae x
 vielbein,  ab x  spin bağlantısı,  abB x

 antisimetrik üreticiye 

karşılık gelen ayar alanı,  x  ölçekleme üreticisine karşılık gelen ayar alanıdır. Bu 

alanların, sonsuz küçük ayar dönüşümü altındaki değişimi, Denklem (1.110) ile,  

         a ab ab

a ab ab

1
x y x P x Z x D x M

2
       (3.53) 

şeklinde bir sonsuz küçük ayar üreticisi tanımlanarak aşağıdaki biçimde bulunabilir, 

a a a b a a b a

b b

ab ab [a cb] ab [a cb] ab [a b]

c c

ab ab [a cb]

c

e y y e e y

1
B 2 B B e y

2

     

      

 

  

       

            

   

     

 (3.54) 

Bu gruba ait 2-form eğrilikleri A a ab ab1
A a ab ab2

X F P F Z FD R M      biçiminde 

tanımlayabiliriz ve Denklem (1.114) yardımıyla aşağıdaki şekilde bulabiliriz, 
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a a a b a

  b

ab ab [a cb] ab a b

c

ab ab a cb

c

F de e e

1
F dB B 2 B e e

2

f d

R d

   

      

 

   

 (3.55) 

Eğrilikleri uzay-zaman indisleri ile ifade edersek, 

a a a b a

[ ] [ b ] [ ]

ab ab [a cb] ab a b

[ ] [ |c ] [ ] [ ]

[ ]

ab ab a cb

[ ] [ |c ]

F e e e

1
F B B 2 B e e

2

f

R

      

        

  

    

   

     

  

    

  (3.56) 

elde edilir. Bunların sonsuz küçük ayar dönüşümü altındaki değişimini ise Denklem 

(1.119)  ve a ab ab1
a ab ab2

F P F Z f D R M         tanımı yardımıyla Denklem (3.57)

’deki şekilde bulunabilir, 

a a a b a a b

 b   b

ab ab [a cb] [a b] ab [a cb]

  c c

ab [a cb]

c

F y f R y F F

1
F 2 F R y F 2 F F

2

f 0

R R

    

     



 

      

         

 

  

 (3.57) 

Bu bölümde Lorentz-Weyl kovaryant türevi (Ek-A) kullanacağız. Böylece Bianchi 

özdeşlikleri aşağıdaki şekilde bulunabilir, 

a a b a

b

ab [a cb] ab [a b]

c

ab

F R e f e

1
F R B 2f B F e

2

R 0

   

     



   (3.58) 

Şimdi kütleçekim Lagranjiyenini Denklem (3.55)’deki eğrilikler yardımıyla 

oluşturmaya çalışacağız. Ayar değişmez bir Lagranjiyen yazabilmek için ölçekleme 

dönüşümüne ve bunun eyleme etkisine dikkat etmek gerekir. Ölçekleme simetrisini 

yerelleştirmek bizi Weyl ayar teorisine götürmektedir. Burada önemli bir nokta, 

metriğin ölçekleme simetrisini altında sonsuz küçük değişiminin, 
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     g x 2 x g x ,       (3.59) 

biçiminde olmasıdır. Metriğin bu şekilde değişmesi, bizi eğriliklerden oluşturulmak 

istenen eylem konusunda sınırlamaktadır. Denklem (3.59), metrik tensörün Weyl 

ağırlığının iki  w g 2    olduğunu ifade etmektedir. Buna ek olarak,  w g 2    

ve  w g 4    olduğu gösterilebilir. Denklem (3.54) ve Denklem (3.57)’den 

doğrudan anlaşılabilir ki a ab abe , B , ,      ve a ab abF , F , f , R   
 ifadelerinin Weyl 

ağırlıkları sırasıyla 1, 2, 0, 0 ve 1, 2, 0, 0’dır. 

Serbest kütleçekimsel eylemin genel ifadesi aşağıdaki biçimdedir, 

4

f fS d xe    (3.60) 

ve bu son yapı, eylemin toplam Weyl ağırlığının sıfır olmasını gerektirir. Lakin ele 

aldığımız durumda    w g w e 4     olduğundan  fw 4   olması gerekir. 

Buna göre  w R 2   olduğundan eylem içerisinde R’ye göre lineer bir yapı 

gözlenemez. Tutarlı bir kütleçekim teorisi ortaya koymak için Weyl [76] eylem 

içerisinde kuadratik eğrilik terimlerini kullanmıştır. Buradan da açıkça görülüyor ki, 

4

EH

1
S d xeR

2


 
  (3.61) 

Einstein-Hilbert eylemi tek başına değişmezlik için uygun değildir, fakat Brans ve 

Dicke’nin [77] girişini yaptığı ve Dirac, Agnese ve Dereli’nin [78-80] 

detaylandırdığı şekilde R’yi öyle bir skaler alanla çarpalım ki bu çarpımın Weyl 

ağırlığı (-4) olsun. Bu sayede R’ye göre lineer bir eylem yazabiliriz. Biz burada 

Dirac’ın yaklaşımını kullanacağız. Ölçekleme dönüşümü altındaki varyasyonu 

aşağıdaki şekilde olan bir skaler alan ortaya atlıldığında, 

   x x      (3.62) 

Bu  x  alanının Weyl ağırlığı (-1) olur ve 
2R  gibi bir ifadenin Weyl ağırlığına 

bakıldığında  2w R 4    elde edilir. Bu sayede değişmezlik şartı sağlanır. Diğer 
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taraftan, diferansiyel formlarda ise genel eylem S L   şeklinde yazılır ve buradan 

anlaşılır ki Lagranjiyenin Weyl ağırlığı  w L 0  olmak zorundadır. Örneğin 

Einstein-Hilbert eylemi diferansiyel formlarda, 

ab c d

EH abcd

1
S R e e

4
    

 
   (3.63) 

şeklinde verilir ve ölçekleme dönüşümü altındaki varyasyonu alındığında aşağıdaki 

ifade elde edilir,  

ab c d

weyl EH abcd

ab c d

abcd

1
S R e e

2

1
R e e 0

2

      


     






   (3.64) 

Son denklemde açıkça görülmektedir ki değişmezlik sağlanmamaktadır. Lakin 

Lagranjiyen Denklem (3.62)’deki dönüşüme sahip bir  x  alanı yardımıyla 

aşağıdaki şekilde yazıldığında, 

2 ab c d

abcd

1
S R e e

4
     

 
   (3.65) 

ve değişmezliğe bakıldığında, 

 

 

2 ab c d ab c d

weyl abcd abcd

2 ab c d ab c d

abcd abcd

1
S R e e 2 R e e

4

1
2 R e e 2 R e e

4

0

          


          






   (3.66) 

elde edilir ve böylece değişmezlik sağlanmış olur. Bu temelden hareketle MW(1,3) 

için kütleçekim eylemini oluşturmaya başlayabiliriz. Lagranjiyeni diferansiyel 

formlarda oluşturacağımızdan dolayı Weyl ağırlığı sıfır olan ifadeler işimizi 

kolaylaştıracaktır, bu sebeple Denklem (3.67)’deki birleşimi (değiştirilmiş eğrilik) 

yazabiliriz, 

ab ab 2 abR 2 F      (3.67) 
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Burada  abw 0 ’dır. Bu birleşim sayesinde Lagranjiyenin serbest kütleçekimsel 

kısmını aşağıdaki şekilde yazabiliriz, 

ab cd

f abcd

ab cd 2 ab cd 4 ab cd

abcd abcd abcd

1 1
L *

4 8

1 1
R R R F F F

8 2 2

    
 


          

  

  (3.68) 

burada   ve   sabittir ve Lagranjiyenin Weyl ağırlığının sıfır olduğu açıkça 

görülmektedir. Ortaya atılan skaler alan bizi Lagranjiyen içerisinde ona ait bir kinetik 

terim yazmaya zorlar. Lagranjiyen içerisinde bir bütünlük olması için  x  skaler 

alanının kendisiyle etkileştiğini de varsayarak 4

4


  terimini ekleyebiliriz. Bu sayede 

vakum için toplam Lagranjiyeni aşağıdaki şekilde yazabiliriz, 

L 4

0

1
f *f * *1

2 4


         (3.69) 

Şimdi toplam eylemi aşağıdaki şeklinde yazabiliriz, 

L Lf 0

ab cd 2 ab cd 4 ab cd

abcd abcd abcd

4

S

1 1
R R R F F F

8 2 2

1
f *f * *1

2 4

 

 
             

  
      

  




  (3.70) 

Denklem (3.57)’deki eğriliklerin sadece Lorentz ve ölçekleme simetrisi altındaki 

dönüşümleri dikkate alındığında aşağıdaki ifadeler elde edilir, 

a a a b

  b

ab ab [a cb]

c

ab [a cb]

c

F F F

F 2 F F

f 0

R R

  

  



 

    

    

 

  
 

 (3.71) 

Buradan hareketle değiştirilmiş eğrilik olan 
ab

’nin sonsuz küçük değişimi 

Denklem (3.72)’deki yapıda olması gerekir, 
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ab [a cb]

c      (3.72) 

Değiştirilmiş eğriliğin değişimi     olmasını zorunlu kılar. Bu sayede eylemin 

serbest kısmı ayar değişmez kalmaktadır. Vakum tarafı ise kendi biçimi ile ayar 

değişmez yapıdadır. Yerel Maxwell-Weyl dönüşümleri altında değişmezlik ise Lie 

türevi ile doğrudan gösterilebilir. 

Şimdi hareket denklemlerini bulabiliriz. Bunun için S 0   temel alınarak sırasıyla 

ab a ab, e , B ,   ayar alanlarına ve  x  alanına göre varyasyon alınırsa aşağıdaki 

hareket denklemleri elde edilir (Ek-D), 

 2 ab 2 [a cb]

cF B 0       (3.73) 

 
2

bc d c

abcd a c a

4
b bc d

ab abcd a

e * * e e

0
1 1

f e *f f e f *e
2 2 2

 
            

 
           

  (3.74) 

 2 ab 0     (3.75) 

2
ab cd

abcd

1
B *f * 0

2


      


   (3.76) 

ab cd 3

abcd F * *1 0

    


   (3.77) 

Bu denklemlerin birbirlerini sağladıkları gösterilebilir. Denklem (3.74) sayesinde 

ölçekleme alanına bağlı kozmolojik terimi içeren alan denklemi aşağıdaki şekilde 

elde edilir (Ek-E), 

     2 2 21 1
R R 3 2 T B T T f

2 2

     

     

 
           

 
  (3.78) 

Burada alanların açık ifadesi ise Denklem (3.79)’daki gibi verilir, 
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   

 

 

ab ab

a b [ ] a b [ ]

4

1
T B e e B e e B

2

1
T

2 2

1
T f f f f f

4

     

    

   

  

   

  

  

 
        

 

  

  (3.79) 

Bu son denklemler ilgili alanlara bağlı enerji momentum tensörlerine karşılık gelir. 

Burada önceki (süper) Maxwell gruplarına kıyasla en önemli farklılık kozmolojik 

terimin  23 

   şeklinde  x  alanının bir fonksiyonu şeklinde gelmesidir. 

3.4. Süper Maxwell-Weyl Cebri 

Süper Maxwell-Weyl cebri [34] makalesindeki cebrin seçtiğimiz notasyona 

uyarlanmasıyla aşağıdaki şekilde elde edilmiştir, 

   

 

   

   

   

   

     

 

ab cd ad bc bc ad ac bd bd ac

a b ab

ab c bc a ac b

ab cd ad bc bc ad ac bd bd ac

a a ab ab

c

c

cd

a a cd

ab ab ab

M ,M i M M M M

P ,P iZ

M ,P i P P

M , Z i Z Z Z Z

P ,D iP , Z ,D 2iZ

Q ,Q 2 C P

i
P ,Q i , Q , C Z

2

1
M ,Q Q , M ,

2

  



    

 

    



  

    

 

 

          

         

   

ab

1

2

i 3
D,Q Q , D, i

2 2



   

  

     
  (3.80) 

Bu gruba ait grup elemanı aşağıdaki şekilde yazılabilir, 

ab
a ab ab

a ab

i
M

ix P i Z i Q i i D 2g e e e e e e
 

 
 

        (3.81) 

3.4.1. Süper Maxwell-Weyl cebrinin ayar teorisi 

Ayar teorisi için 1-form  ayar alanı Denklem (3.82)’deki gibi yazılır, 
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a ab ab

a ab ab

1
e P D B Z Q M

2

 

           (3.82) 

Burada a ab abe , , B , , ,      alanları sırasıyla 
a ab abP , D, Z , Q , , M   

üreticilerine karşılık gelen ayar alanlarıdır. Bu alanların tanjant uzayında sonsuz 

küçük ayar dönüşümü altındaki değişimi Denklem (1.110) ile,  

  a ab ab

a ab ab

1
x y P D Z Q v M

2

 

            (3.83) 

şeklinde tanımlanan sonsuz küçük bir ayar üreticisi yardımıyla aşağıdaki biçimde 

bulunabilir, 

 

   

   

 

a a a b a a b a a

b b

ab [a cb] ab [a cb] ab [a b]

c c
ab

ab ab

ab ab [a cb]

c

ab ab

ab ab

ab

ab

e dy y y e e 2i

1
d 2 B 2 B e y

2
B

1 1
v

2 2

d

d

i 1 i 1
d

4 2 4 2

i 3
dv v

4

    





          

 
           

   
       
 

   

     

               

    

 

 

   

ab

ab

c c

c c

i
v

2 4

3
y e

2



 

 
     

 
         
 

 (3.84) 

Bu gruba ait 2-form eğrilikler a ab ab

a ab ab

1
F P fD F Z Q R M

2

 

         

biçiminde tanımlanır ve ilgili formüller yardımıyla aşağıdaki şekilde bulunur, 

 

 

 

   

a a a b a a

b

ab ab [a cb] ab a b ab

c
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F de e e i
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F dB B 2 B e e

2 2

R d , f d

i 1
d

4 2

i 3
d e

4 2

  

   

      

         

     

        

           

 (3.85) 
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Eğriliklerin sonsuz küçük ayar dönüşümü altındaki değişimini ise Denklem (1.119)  

yardımıyla aşağıdaki şekilde bulunabilir, 

 

   

   

   
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i 3 i
R v

4 2 4

3
v f y

2

   

 





        

 
         

   
      
  

 

  

            

       

 

     c

c cF
 

 
  
 
    
  

  (3.86) 

Lorentz-Weyl kovaryant dış türevi kullanıldığında Bianchi özdeşlikleri Denklem 

(3.87)’deki şekilde bulundu, 
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 

   

      

 
         

  
       
  





      

            

  (3.87) 

Yukarıda bulunan nicelikler ve bir önceki bölümde verdiğimiz temelden hareketle 

kullanılarak aşağıdaki gibi bir Lagranjiyen yazıldı, 

 
2

ab cd 4

abcd 5

1 1
S R F 4 f *f * *1

2 4 2 4

 
           

   (3.88) 
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Bu Lagranjiyen 0   sMW(1,3) dönüşümü altında değişmez kaldığı (Ek-F)’de 

gösterilmiştir. Buradan hareketle ilgili Lagranjiyen aşağıdaki şekilde yazılabilir, 

 
2

ab c d a 4

abcd a 5

1
S R e e 8 e f *f *1

4 4 4

 
              

   (3.89) 

Şimdi hareket denklemlerini bulabiliriz. Bunun için S 0   temel alınarak sırasıyla 

ab a, e , ,    ayar alanlarına ve  x  alanına göre varyasyon alınırsa aşağıdaki 

hareket denklemleri elde edilir, 

c d c

abcd c ab 5e e i e 0            (3.90) 

 
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abcd a 5

4
b bc d

ab abcd a

R e 4

0
1 1

f e *f f e f *e
2 2 2

 
       

 
 

          

  (3.91) 

2
a

a 5

1
e *f 0

2


      


   (3.92) 

c

c 5e 0        (3.93) 

 ab c d a 2

abcd a 5R e e 8 e 2 *1 0              (3.94) 

Bunlara ilave olarak Denklem (3.91) sayesinde aşağıdaki ifade elde edilir, 

     21 1
R R T T T f

2 2

    

    

 
       

 
  (3.95) 

Bu eşitlik Denklem (2.44)’ın ölçekleme simetrisi dönüşümü altında genişletilmiş 

halidir. Burada enerji-momentum tensörlerinin açık şekli aşağıdaki gibidir,  
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5 [ ]
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
   

  

   (3.96) 
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4. SONUÇLAR VE ÖNERİLER 

Maxwell simetrisi üzerine, 2005 yılında Soroka’nın çalışmasından [18] itibaren 

şimdiye kadar genişletilmiş kütleçekim teorileri ve bunların süpersimetrik 

genellemeleri, kozmolojik sabit, karanlık enerji, yüksek spinli alanların da içinde 

bulunduğu geniş bir yelpazede çalışmalar yapıldı. Burada yazarlar ağırlıklı olarak, 

anti de Sitter grubunda olduğu gibi Maxwell simetrisinin de doğal neticesi olan, 

kozmolojik sabit üzerinde durdu. Karanlık enerjinin açıklanmasında kozmolojik 

sabitin kuvvetli bir aday [81, 82] olması da bu simetrinin önemini giderek 

arttırmaktadır. 

Diğer bir önemli alan ise Maxwell simetrisinin komutatif olmayan geometri ile 

ilişkisidir. Örneğin  a b abP ,P iZ  eşitliğinin, Minkowski uzay-zamanında komutatif 

olmayan geometriyi temsil eden  a b abx , x i   [83, 84] ifadesine kanonik olarak eş 

olduğu düşünüldüğünde Maxwell simetrisinin komutatif olmayan geometri ile ilişkisi 

kurulur ve dolayısıyla kuantum kütleçekiminin [85] cebirsel bir yaklaşımı elde 

edilmiş olur. Buradan da anlaşılır ki bu simetri ileride komutatif olmayan alan 

teorisinde de [86] önemli bir yere sahip olacaktır.  

Bu tezde Maxwell-Weyl ve Süper Maxwell-Weyl cebirlerinin doğrusal olmayan 

gerçeklemeleri ve ayar teorileri incelendi. Bu inceleme neticesinde ilgili gruplara ait 

eğrilikler, genelleştirilmiş kütleçekim Lagranjiyeni ve hareket denklemleri elde 

edildi.  

MW(1,3) için, tanımladığımız ötelenmiş eğrilik sayesinde  x  alanına bağlı 

değişken kozmolojik terimi içeren Einstein-Cartan-Weyl alan denkleminin 

genelleştirilmiş halini ve buna ilave kaynak terimler elde ettik. Bu kaynak terimler, 

enerji-momentum tensörü olarak tanımlandı ve neticede görüldü ki, teoriye dilatonun 

eklenmesi kozmolojik sabite ve enerji-momentum tensörüne katkılar getirmiştir. Son 

durumda kozmolojik sabit terimi, Maxwell simetrisinden kaynaklanan arka plan 

alanında bir dinamik değişken olarak karşımıza çıkmıştır. Kozmolojik sabit ve 
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karanlık enerjinin birbiri ile yakın alakalı olduğu bilindiğinden dolayı, bu durum bizi 

elde edilen enerji-momentum tensörünün bütününün veya bir kısmının karanlık 

enerji olarak yorumlanmasına götürebilir. Bir başka deyişle karanlık enerji Maxwell 

simetrisinden kaynaklanan  abB x  ayar alanı ile ilişkili olabilir. 

sMW(1,3) simetrisinin incelenmesinde ise öncelikle literatürde bulunan bu cebir [34] 

seçtiğimiz notasyona uyarlandı. Kurulan ayar teorisinden elde edilen eğrilikler 

sayesinde sMW(1,3) simetrisi altında değişmez kalan bir Lagranjiyen elde edildi. 

Keza bu Lagranjiyenin ölçekleme simetrisi altında değişmez kalan yalın süper 

kütleçekim Lagranjiyenine dönüştüğü gözlendi. Bu netice bize sMW(1,3)  

simetrisinin süper kütleçekim teorisinin oluşturulmasında alternatif bir yol olacağını 

göstermiştir. 

Bu iki çalışma sayesinde sırasıyla [39] ve [47] makalelerindeki neticelerin 

genelleştirilmiş halleri elde edildi. Böylece Maxwell kütleçekim teorisine literatürde 

ilk defa olarak ölçekleme simetrisinin eklenmesiyle Maxwell-Weyl kütleçekim 

teorisi elde edildi ve olan çalışmalar bir adım öteye taşınmış oldu.  

Özetle bütün bu çalışmalar bize gösterdi ki Maxwell simetrisi gelecekte, başta 

kozmolojik sabit, karanlık enerji ve kuantum kütleçekimi olmak üzere fiziğin pek 

çok alanında oldukça mühim bir yere sahip olacaktır. 
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Ek-A: NOTASYON VE BAZI TEMEL FORMÜLLER 

Tez boyunca 4 boyut için düz uzay metriği aşağıdaki şekilde kullanılmıştır, 

 ab diag , , ,         (4.1) 

Levi-Civita sembolü ve bazı özellikleri 

Levi-Civita sembolü 0123

0123 1, 1      şeklinde seçildi. Kovaryant ve 

kontravaryant indisleri arası geçiş ise aşağıdaki şeklilde verilir, 

g g g g g 

           (4.2) 

Yukarıdaki ifadeden anlaşılacağı üzere bu sembol bir tensör yoğunluğuna karşılık 

gelir. Eğer aşağıdaki gibi bir tanım yapılırsa, 

, g
g




 


     


   (4.3) 

bütünüyle antisimetrik olan bir tensör elde edilir. D boyut için genel ifade ve D 4  

için bazı uygulamalar aşağıda verilmiştir, 

 

 

   

 

1 D

1 D

D 1...

...

abce e

abcd d

abef ef e f f e

abcd cd c d c d

e f r f r e f r f r

a b c c b b a c c aefrd efr

abcd abc
e f r f r

c a b b a

efrs efrs

abcd abcd

1 D!

4!

3!

2! 2!

1!

 

 





   

   

    

          

           
       

      

   

  (4.4) 

Burada 1 n

1 n

...

...

 

   nicelikleri aşağıdaki gibi tanımlanır, 

1 1

1 n

1 n

1 n

n n

1 n

...

...

...

det ... . ...

...

 

 

 

 

 

 

  
 

   
   
 

   (4.5) 
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Tensör notasyonu ve indislerin kullanımı 

Tensör indislerinde simetrik ve anti simetrik gösterim aşağıdaki şekildedir, 

[ ] ( )A B A B A B , A B A B A B                 (4.6) 

İndis ayıracı  |  kullanıldığında ise aşağıdaki şekilde yazılır, 

[ | ]A B A B A B          (4.7) 

Tez boyunca kullanılan indisler aksi belirtilmedikçe sonraki sayfadaki şekilde 

kullanılmıştır, 

• A,B,C,... 0,1,..., N : Üretici indisleri, burada N grubun üretici sayısıdır 

• a,b,c,... 0,1,2,3 : Tanjant uzayı indisleri 

• , , ,... 0,1,2,3    : Koordinat veya spinör indisleri 

Kovaryant türev 

Kovaryant türev ( V
: vektör), 

V V V , V V V    

                  (4.8) 

Lorentz kovaryant dış türev (
aV : 1-form vektör,  : 1-form spinör), 

a a a b b

b a a a bDV dV V , DV dV V        (4.9) 

   ab ab

ab ab

i i
D d , D d

4 4

                    (4.10) 

Lorentz-Weyl kovaryant dış türev, (
aV : 1-form vektör,  : 1-form spinör),  

 

   

a a a b a

b

ab

ab

V dV V w V V

i
d w

4

  

    

         
  (4.11) 

Burada  w .  ilgili alana bağlı Weyl ağırlığıdır.   
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Komütasyon, anti komutasyon bağıntıları ve Jakobi özdeşlikleri, 

Komutasyon ve anti komutasyon ifadeleri aşağıdaki şekilde tanımlanır, 

   A,B AB BA, A,B AB BA       (4.12) 

F fermiyon ve B bozonik değişken olmak üzere Jacobi özdeşliğinin genel ifadesi, 

           c cg g g g g g

c c c1 B F F 1 F F B 1 F B F 0   

             (4.13) 

şeklindedir. Burada bozonik 
a,b,...g 0  ve fermiyonik 

, ,...g 1    değerlerine sahip 

olduğu dikkate alındığında aşağıdaki nicelikler elde edilir, 

     

 

      

     

a b c b c a c a b

a b b a a b

a a a

B , B ,B B , B ,B B , B ,B 0

B , B ,F B , F ,B F , B ,B 0

B , F ,F F , F ,B F , B ,F 0

F , F ,F F , F ,F F , F ,F 0

  

     

        

            

                  

       

            

  (4.14) 

A p-form, B q-form ve C r-form bozonik değişken olmak üzere sırasıyla komutasyon 

bağıntısı ve Jacobi özdeşliği aşağıdaki şekilde yazılır, 

     
pq

A,B 1 B,A      (4.15) 

   
 

   
 

 
r p q p r q

A,B ,C 1 C,A ,B 1 B,C ,A 0
 

                 (4.16) 

Maxwell parametresi ve türevinin bazı özellikleri 

ab

ab ab

ab

,
 

   
 

   (4.17) 

 

   

cd cd c d c d

ab ab a b b a

cd c

a ab

c

a cd a cd ab

1
,

2

0, x 0

, 0, , 0, , x 0

           

    

         

  (4.18) 
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Ek-B: DIRAC GAMMA MATRİSLERİ VE SPİNÖRLERİN BAZI 

ÖZELLİKLERİ 

Pauli spin matrisleri 

1 x 2 y 3 z

0 1 0 i 1 0
, ,

1 0 i 0 0 1

     
                

     
  (4.19) 

Dirac gamma matrisleri 

Majorana gösterimi ile Dirac gamma matrisleri ve bazı özellikleri aşağıdaki 

şekildedir, 

2 3 2 1

0 1 2 3

2 3 2 i

0 i 0 0 i 0
, , ,

0 0 i 0 0 i

           
              

          
  (4.20) 

2

5 0 1 2 3

5 2

0
i

0

 
          

 
   (4.21) 

   5, 2 , , 0             (4.22) 

5

5

i i
, , , 0,

2 2

    

 
                    (4.23) 

5

0 1 2 3 5

[ ] 5

i

i

i

4!

         



     

    

             

             

       

   (4.24) 

   ab cd ac bd ad bc ad bc bc ad ac bd bd ac abcd 5i i                     (4.25) 

 

 

5

5

i

i

      



      



          

          
   (4.26) 

   5, 2 , , 2i        


                 (4.27) 
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 

   5

, 2i

, 2 i

         

      

            

         
  (4.28) 

Burada Lorenz grubu üreticisi 
ab ab

1
M

2
   şeklinde seçildiğinde aşağıdaki 

komutasyon ilişkisini sağladığı görülecektir, 

   ab cd ad bc bc ad ac bd bd acM ,M i M M M M       (4.29) 

Yük eşleniği matrisi 

Yük eşleniği matrisi 
0C   yapısındadır ve buna ait bazı özellikleri aşağıdaki 

şekildedir, 

T 1 † 2 †C C C C, C 1, CC 1         (4.30) 

   

T 1 T 1

T T
5 5 1 5 5 1

C C , C C

C C , C C

 

   

   

       

       
   (4.31) 

       

       

T T

TT

5 5 5 5

C C , C C

C C , C C

   

 

     

         

  (4.32) 

   
( )

C C 0

  
      (4.33) 

Bu temelden hareketle, bir spinörün komplex eşleniği 
TC    şeklinde kullanıldı. 

Spinörlerin bazı özellikleri 

Süpersimetrinin oluşturulmasında kullanılan fermiyonik uzayın koordinat 

parametresi 
  ve ilgili türevin 

  özellikleri aşağıdaki biçimdedir, 

, 

 



 
   

 
   (4.34) 
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 , , , 2

, , ,

    

      

 

    

               

            

  (4.35) 

Burada 
     şeklinde antisimetrik bir tensördür. Spinör türevinin   ve   

spinör değişkenlerine etkisi aşağıdaki şekildedir, 

        

               (4.36) 

Spinör değişkenlerin bazı özellikler aşağıdaki şekildedir, 

, ,

       

        
   (4.37) 

5 5 5 5

, 0

, 0

,

  

  

 

       

       

           

   (4.38) 

Eğer   ve   spinörleri sırasıyla p ve q-form yapısında ise, 

 
p q

1


             (4.39) 

ifadesinin dikkate alınması gerekir. 
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Ek-C: BAKER-CAMPBELL-HAUSDORFF FORMÜLÜ VE İLGİLİ BAZI 

AÇILIMLAR 

Baker-Campell-Hausdorff formülü, 

   

   

    

1 1
2 12

A B 1 1
12 24

1
720

A B A,B A, A,B

e e exp B, A,B B, A, A,B

A,B ,B ,B ,B B,A ,A ,A ,A ...

 
      

 
           

 
                      

  (4.40) 

Hadamard formülü, 

     

     

A A 1 1
2! 3!

A A 1 1
2! 3!

e Be B A,B A, A,B A, A, A,B ...

e Be B B,A B,A ,A B,A ,A ,A ...





            

            

  (4.41) 

Zassenhaus açılımı, 

 
      

      

32 tt
32

4t
24

2 B, A,B A, A,BA,BtA tB

t A B

A,B ,A ,A 3 A,B ,A ,B 3 A,B ,B ,B

e e e e
e

e ...


       



                     

 
 
 
 

  (4.42)  

 
 

 

exp s BA B A

exp s BA B A

A,B sY ise,

e e e e

e e e e







   (4.43) 

        A,BA B B Ae e e e e  A,B 0 ve A, A,B B, A,B 0 ise            (4.44) 

Diğer açılımlar, 

 

      

A B A A A

1 1
2! 3!

e e e exp e Be

exp B A,B A, A,B A, A, A,B ...

 

            

  (4.45) 

   

   

   

cA cA 1 1
2! 3!

cA cA 1 1
2! 3!

cA cA 1 1
a a a a2! 3!

e de cdA cA,cdA cA, cA,cdA ...

e e c A cA,c A cA, cA,c A ...

e e c A cA,c A cA, cA,c A ...







     

         

         

  (4.46) 
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Ek-Ç: TANJANT UZAYINDAN KOORDİNAT UZAYINA GEÇİŞ VE 

KOZMOLOJİK SABİTİ İÇEREN EINSTEIN ALAN DENKLEMİ 

Einsten-Hilbert eylemi, kozmolojik terim ve kütle terimi ile aşağıdaki şekilde 

yazılabilir, 

EH Kozm Kütle

ab c d a b c d

abcd abcd m

ab c d a b c d

abcd abcd m

S S S S

1
R e e e e e e L *1

4 8

1
R e e e e e e 4 L *1

4 2

  


          

 

 
            

  

  



  (4.47) 

Şimdi yukarıdaki eylemi uzay-zaman indislerinde yazalım. Einstein-Hilbert terimi,  

ab ab e f ab e f

ef ef a b

1
R R e e , R R

2
        (4.48) 

a b c d abcd 4e e e e g d x         (4.49) 

 abef e f f e

abcd c d c d2!           (4.50) 

denklemleri yardımıyla uzay zaman indislerinde aşağıdaki şekilde elde edilir, 

 

  

ab c d ab e f c d

EH abcd abcd ef

ab efcd 4

abcd ef

ab e f e f 4

ef a b b a

4

1 1 1
S R e e R e e e e

4 4 2

1
R gd x

8

1
R 2 gd x

8

1
R gd x

2

 
           

   

    


        


 


 







  (4.51) 

Kozmolojik terim Denklem (4.49) ve abcd

abcd 4!     ifadesi sayesinde aşağıdaki 

yapıda yazılabilir, 

a b c d abcd 4

Kozm abcd abcd

4

S e e e e gd x
8 8

3
gd x

 
        

 


  



 



  (4.52) 
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Kütle terimi ise 4*1 gd x    eşitliği yardımıyla aşağıdaki gibi yazılabilir, 

4

Kütle m mS L *1 L gd x        (4.53) 

Denklem (4.51), Denklem (4.52) ve Denklem (4.53) sonuçlar bir araya getirildiğinde 

toplam eylem aşağıdaki şekilde elde edilir, 

 4

m

1
S d x g R 6 2 L

2
    

 
   (4.54) 

Einstein alan denklemi, 
gS 0   şartı ve 

1
g gg g

2



       eşitliği dikkate 

alınarak eylemin metriğe göre varyasyonu alındığında, 

  

    

 

4

g m

4

m

m4

1
S d x g g R 6 2 L

2

1
d x g g R 6 g g R 2 gL

2

gL1 1 2
d x g g R g R 3 g

2 2 gg





 

 



   

       


          


   
       

   







  (4.55) 

aşağıdaki şekilde elde edilir, 

1
R g R 3 g T

2
           (4.56) 

Burada T
 enerji-momentum veya enerji-stres tensörü olarak adlandırılır ve 

aşağıdaki şekilde ifade edilir, 

 mgL2
T

gg
 

 



   (4.57) 
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Ek-D: MAXWELL-WEYL HAREKET DENKLEMLERİ

İşlem karmaşıklıklarından kurtulmak için Denklem (3.70)’deki eylem üzerinde 

aşağıdaki gibi bir isimlendirme yapılır, 

ab cd 4

abcd

B C DA

1 1 1
S f *f * *1

8 4 2 4


        

   (4.58) 

Hareket denklemleri için ayar alanlarına ve  x  alanına göre varyasyon alacağız. 

ab  ayar alanına göre varyasyon aşağıdaki şekildedir, 

 

 

  

ab cd

abcd

ab 2 [a eb] cd

abcd e

ab cd 2 ab [c ed]

abcd abcd e

ab 2 cd 2 [c ed]

abcd e

1
A

4

1
2 B

4

1 1
.... B

4 2

1
F B

2

    


       


          
 

      


  (4.59) 

B 0, C 0, D 0           (4.60) 

ae  ayar alanına göre varyasyon için iç çarpım ile ilgili bazı ifadeler aşağıdaki 

şekildedir, 

 

a

e a

a b a b

e b b

a ab

e b

ab abc

e c

*1 e *e

*e e * e e e i *e

*e e *e

*e e *e



   

      

   

   

   (4.61) 

Ayrıca 1 p

1 p

...

...*G G *e
 

   olmak üzere, bu ifadenin 
ae  alanına göre varyasyonu 

aşağıdaki şekilde verilir, 

e *G e i *G

       (4.62) 

Bu temelden hareketle ilgili Lagranjiyenin 
ae  ayar alanına göre varyasyon ile takip 

eden sayfadaki denklemler elde edilir, 
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ab cd

e abcd

2 [a b] cd

abcd

2 a b cd

abcd

1
A

4

1 1
e e

2 2

1
e e

2

    


 
       

  

      


   (4.63) 

 

 

c c

e c c

c ab ab

c ab c ab

c a b a b ab

ab c c ab c

c a b a b ab

ab c c abc

c

1 1 1
B f *f e i f *f f e i *f

4 4 4

1 1 1
e i f e *f f i f *e

4 2 2

1 1 1
e f i e e e i e *f f f *e

4 2 2

1 1 1
e f e e *f f f *e

4 2 2

1
e

4

 
             

 

    
          

    

 
          

 

 
          

 

   b ab

cb abc

c b ab d

cb abcd

1
f e *f f f *e

2

1 1
e f e *f f e f

4 2

 
    
 

 
        

 

  (4.64) 

 

  

 

c c

e c c

c

c c

c b b

c b c b

c b b

c b c b

c a

c a c

1 1 1
C * e i * e i *

2 2 2

1
e i * i *

2

1
e i e * i * e

2

1
e * i *e

2

1
e * * e e

2

 
               

 

      

      

         

         

  (4.65) 

4

e

4 a b c d

abcd

4 c a b d

abcd

c 4

c

D *1
4

1
e e e e

4 4!

1
e e e e

4 3!

e *e
4

 
    

 

  
        

  

  
       

 

 
    

 

   (4.66) 
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abB  ayar alanına göre varyasyon neticesinde aşağıdaki ifadeler elde edilir, 

 

   

ab cd 2 ab cd

B abcd abcd

2 ab 2 cd

abcd

1 1
A B

4 2

1
.... B

2

         
 

      


  (4.67) 

B B BB 0, C 0, D 0         (4.68) 

  ayar alanına göre varyasyon ile aşağıdaki ifadeler elde edilir, 

 ab cd 2 ab cd

abcd abcd

1 1
A B

4
         

 
  (4.69) 

 

   

 

1 1
B f *f * *

4 4

1 1
* * *

4 2

1
*

2



 
          

 

       

  
1

*f
2

 

  (4.70) 

 

1 1 1
C * * *

2 2 2

1 1
* * *

2 2

*



 
              

 

           

  

  (4.71) 

eD 0     (4.72) 

  alanına göre varyasyon aşağıdaki şekilde elde edilir,  

ab cd ab cd

abcd abcd

1 1
A F

4


 
        

  
  (4.73) 

B 0     (4.74) 

 
1

C * * *
2



 
             

 
*    (4.75) 
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 4 3D *1 *1
4



 
       

 
   (4.76) 

Bulunan ifadeler toparlandığında hareket denklemleri sırasıyla aşağıdaki şekildedir, 

 2 cd 2 [c ed]

eF B 0       (4.77) 

 
2

ab d a

abcd c a c

b ab d 4

cb abcd c

e * * e e

0
1 1

f e *f f e f *e
2 2 2

 
             

  
        

  

  (4.78) 

 2 cd 0     (4.79) 

2
ab cd

abcd

1
B *f * 0

2


      


   (4.80) 

ab cd 3

abcd F * *1 0

    


   (4.81) 

 

 

 

 

  



90 

 

Ek-E: MAXWELL-WEYL GENİŞLETİLMİŞ EINSTEIN ALAN DENKLEMİ

Denklem (3.70)’te belirtilen Maxwell-Weyl Lagranjiyeninin  ae x  alanına göre 

varyasyonundan elde edilen Denklem (3.74) üzerinde aşağıdaki gibi isimlendirme 

yapılır, 

 
2

ab d a

abcd c a c

E2
E1

b ab d 4

cb abcd c

E4E3

e * * e e

0
1 1

f e *f f e f *e
2 2 2

 
           

 
 

 
           

  

  (4.82) 

Yukarıdaki bütün parçalar sağdan 
ve  ile çarpılır ve Denklem (1.86), Denklem (4.4) 

ve Hodge dual operatörünün bazı özellikleri kullanıldığında sırasıyla aşağıdaki 

neticeler elde edilir,  

 

2
v ab d v

abcd

2
ab e f d v

abcd ef

2
ab efvd 4

ef abcd

2
v v 4

c c

E1 e e e

e e e e

gd x

2 1
gd x

2


     




     




   


  
    

  

   (4.83) 

  

   

 

 

 

v a v

c a c

r a b v

c r b a c

r s t u a b g h v

c rstu b acgh

r stuv a bghv 4

c rstu b acgh

v v b 4

c c b

E2 e * * e e e

1
* e e * e e e

2

1 1
e e e e e e e

3! 2

1 1
gd x

3! 2

1
2 gd

2

       

 
        
 

 
            
 

 
          
 

 
       

 
x

  (4.84) 
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v b ab d v

cb abcd

b mn ab d r s v

cb mn abcd rs

b mn ab d r s v

cb mn abcd rs

mn b r s ab

cb mnrs abcd

1 1
E3 e f e *f f e f e

2 2

1 1 1 1
f e * f e f e f e e e

2 2 2 2

1 1 1
f e f *e f f e e e e

2 2 4

1 1 1 1
f f e e e f f

2 2 2 4

 
        

 

    
           

    

 
        

 

 
       

 

 

   

d r s v

rs

mn b r s v ab d r s v

cb mnrs abcd rs

mn brsv ab rsvd 4

cb mnrs rs abcd

mn b v b v

cb m n n m

r s v s v r s v s v

a b c c b b a c c a
ab

rs

e e e e

1 1 1
f f e e e e f f e e e e

2 4 4

1 1 1
f f f f gd x

2 4 4

1
f f

2
1

12
f f

4

 
   

 

 
           

 

 
        

 

     

           


  

4

r s v s v

c a b b a

bv ab v av 4

cb ab c ac

bv ab v 4

cb ab c

gd x

1 1
f f f f f f gd x

2 2

1
f f f f gd x

4

 
 
 

   
  
        

 
       

 

 
    
 

  (4.85) 

 

v 4 v 4 a b d v

c abcd

4 abdv 4 v 4

abcd c

4 v 4

c

1
E4 e *e e e e e e

2 2 3!

1 1
3! gd x

2 3! 2 3!

gd x
2

   
          

 

    
          

   


   

  (4.86) 

Bu neticeler Denklem (4.82)’de yerine yazılır ve düzenlenirse aşağıdaki yapı elde 

edilir, 

a a c 4

b b c

a a 2

b b

ac a cd

cb b cd

2
21

2 2 1
f f f f

4



   
      

   
      

        

  (4.87) 
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Bu son ifadeyi uzay-zaman indisleri ile yazabilmek için 
abF  eğriliğine ait ifadeleri 

aşağıdaki şekilde bulabiliriz, 

ab ab

a b

1
F e e F F dx dx

2

    

      (4.88) 

Şeklinde yazabiliriz, ayrıca aynı ifade aşağıdaki biçimde yazılabilir, 

 

ab ab a b

a b a b

ab a b

a b [ ] [ ]

ab

a b [ ]

1
e e F e e B e e

2

1 1
e e B e e dx dx

2 4

1 1
e e B dx dx

2 2

   

   

   

       

     

 
   

 

 
   

 

 
       

 

  (4.89) 

Ve son iki netice karşılaştırılırsa aşağıdaki ifadeler elde edilir, 

 ab

a b [ ]

1
F e e B

2

      

              (4.90) 

 ab

a b [ ]

ab

a b [ ]

1
F F e e B

2

3
e e B

2

       

       

  

  

      

  

  (4.91) 

ab

a b [ ]F F e e B 6  

        (4.92) 

Denklem (4.87)’nin sol tarafı ab ab 2 abR 2 F    dikkate alınarak açıldığında 

Denklem (4.93)’teki ifade elde edilir, 

 

2

ab

a b [ ]
2 2

ab

a b [ ]

1 1 1
R R 2 F F

2 2 2

e e B
1

R R 3 2 1
2 e e B

2

     

     

 

 
  

     

  

 
         

 

 
 

         
  
 

  (4.93) 

Denklem (4.93), Denklem (4.87)’de yerine yazıldığında ise Denklem (4.94) elde 

edilir, 
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     2 2 21 1
R R 3 2 T B T T f

2 2

     

     

 
           

 
  (4.94) 

Buradaki alanların açık ifadesi ise aşağıdaki şekildedir, 

   

 

 

ab ab

a b [ ] a b [ ]

4

1
T B e e B e e B

2

1
T

2 2

1
T f f f f f

4

     

    

   

  

   

  

  

 
        

 

  

  (4.95) 
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Ek-F: SÜPER MAXWELL WEYL LAGRANJİYENİ 

Aşağıda verildiği gibi Denklem (3.88)’de sadece paranez içindeki terimleri dikkate 

alacağız. 

2 ab cd 2

abcd 5

1
S R F 4

2
       

 
   (4.96) 

Bu Lagranjiyendeki terimleri açarsak, 

 

   

 

2 ab cd 2 ab c d 2 ab cd

abcd abcd abcd

2 2 a

5 a 5

2 ab c d a 2 ab cd

abcd a 5 abcd

2 ab cd 2 ab cd 2

abcd abcd 5

1 1
R B R e e R1

S 2 2
2

4 4 e

1
R e e 8 e R B

1 2

12
R B R 4

2

 
              

  
            

 
              

 
              












  (4.97) 

elde edilir. Buradaki son terimi Denklem (3.87)‘deki beşinci Bianchi özdeşliği ve 

cd

5 ab abcd

i

2
      eşitliğini kullandığımızda aşağıdaki gibi açabiliriz, 

 

   

   

2 2 2 2

5 5 5 5

2 2 2 ab

5 5 5 ab

2 2 2 ab cd

5 5 abcd

4 4 4 4

4 4 i R

1
4 4 R

2

               

             

             

  (4.98) 

Bu ifade Denklem (4.97)’de yerine yazılır ve tam türevler ihmal edilirse eylem 

aşağıdaki biçimi alır,  

 

 

2 ab c d a

abcd a 5

ab cd

abcd 5

R e e 8 e1
S

4 2 R B 4

           
   

         
   (4.99) 

Burada süper kütleçekiminin anlatıldığı bölümdeki işlemler dikkate alındığında 

yukarıdaki Lagranjiyenin 0   şartında sMW(1,3) grubunun yerel dönüşümleri 

altında değişmez kaldığı görülecektir. 
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