KOCAELI UNIVERSITESI
FEN BILIMLERI ENSTITUSU

FiZiK ANABILIM DALI

DOKTORA TEZI

MAXWELL VE SUPER MAXWELL KUTLECEKIM
TEORILERI

SALIiH KiBAROGLU

KOCAELI 2017



KOCAELI UNIiVERSITESI
FEN BIiLIMLERI ENSTITUSU

FiZiK
ANABILIM DALI

DOKTORA TEZIi

MAXWELL VE SUPER MAXWELL KUTLECEKIM

TEORILERI

SALIH KiBAROGLU

Yrd. Do¢. Dr. Oktay CEBECIiOGLU

Danisman, Kocaeli Universitesi
Doc. Dr. Jale Yilmazkaya SUNGU
Jiiri Uyesi, Kocaeli Universitesi
Doc. Dr. Ali DEMIR

Jiiri Uyesi, Kocaeli Universitesi
Dog¢. Dr. Mustafa ERKOVAN

Jiiri Uyesi, Sakarya Universitesi
Do¢. Dr. Cem Salih UN

Jiiri Uyesi, Uludag Universitesi

Tezin Savunuldugu Tarih:

19.06.2017

e
M A




ONSOZ VE TESEKKURLER

Bu calismada Maxwell simetrisine 6l¢ekleme simetrisinin eklenmesiyle olusan yeni
durum ve bunu temel alan genisletilmis kiitlegekim teorisinin olusturulmasi
incelendi. Literatiire ilave olarak Maxwell-Weyl kiitlegekim teorisi olusturuldu ve
bunun siipersimetrik genellestirmesi yapildi.

Oncelikle bana bu tezi yazma kuvvetini nasib eden Allah’a hamd ve siikrederim.
Ikinci olarak, diger peygamberler de dahil olmak {izere, son Resuliine salat-u selam
ederim.

Calisma siirecinde desteklerinden dolayr danisman hocam Yrd. Dog. Dr. Oktay
Cebecioglu ve Dog¢. Dr. Mustafa Erkovan’a tesekkiir ederim.

Tezin siipersimetri ile alakali kisimlari TUBITAK tarafindan 2015 yili 2. donem
2214-A “Yurt Dis1 Arastirma Burs Programi” kapsaminda desteklenmistir. Bu proje
Polonya’nin  Wroclaw Universitesi Teorik Fizik Enstitiisii’nde Prof. Dr. Jerzy
Kowalski-Glikman’in koordinatorliigiinde gergeklestirilmistir.

Haziran - 2017 Salih KIBAROGLU



ICINDEKILER

ONSOZ VE TESEKKURLER ........ccecovitiiiieiieieiissesessie et [
ICINDEKILER ..ottt ettt ettt s st en et i
SEKILLER DIZINI......oiiiiiiiiiiisicesicsee et ii
SIMGELER VE KISALTMALAR DIZINI .......coooiiiiiiiiiinsciececees iv
OZET oottt Vi
ABSTRACT ... vii
GIRIS ottt 1
1. KUTLECEKIM, DIFERANSIYEL GEOMETRI VE AYAR TEORISi................ 4
1.1. Genel GOTEllK T@OTIST. . .ccuveiureeiieiiiieiee st et 4
1.1.1. Vierbein formalizmi.........coocoiiiineii e 4

1.1.2. Jeodezik denklemi ve Christoffel sembolil.........ccccoeririiiiiiiiiciene. 6

1.1.3. Paralel oteleme ve kovaryant tireV ............coceveeiiniecnienineseese s 8

1.1.4. Afin baglant1 spin baglantt 1liKisi ........ccoccveriiiiiiniiiiiciic e 12

1.1.5. EGriliK t@NSOTT....ccivveiiiiriiiieiiieie et 14

1.1.6. Einstein alan denkIemi ..., 16

1.2. Diferansiyel GEOMELI .........cccuiiiiiiiieieierie e 17
1.2.1. Formlar, dig carpim ve di$ treV ......ccovvvvrriiiieiiiiiniiiee e siee e 18

1.2.2. DUal €S18MNIK. ....ccuiiiiiiiieiiieiie e 20

1.2.3. I¢ ¢arpim ve Lie tHIEVI ..ovvrveveereeecececerececececeeeeseecesseeeesesesssss s 22

1,30 AYAE TOTISI. ..ttt bbbttt bbbt b e 24
1.3.1. Global ve yerel degismezlik..........ccccooiiiiiiiiiiiiiiie 24

1.3.2. U(L) @YAI TEOMIST .euviviviiieiieieieie sttt 28

1.3.3. Lorentz deGiSmezIigi........cccovivviiiiiiiiiiiciie e 31

2. SUPERSIMETRI VE SUPER KUTLECEKIM TEORISI .......cccocovviiiiiirirennnn, 36
2.1, SUPEISTMELIT 1.t 36
2.1.1. Stiper Poincare grubu .........c.cveiieieiiieiieiisee e 36

2.2. Stiper KiitlegeKim TeOTISI......cciiiiiiiiiiiiiiie i 38
2.2.1. Stiper Poincare grubunun ayar tEOTIS ......cvvervrevereereeirenieseeeeseeneans 39

2.2.2. N=1 ve D =4 siiper kiitlegeKimi ..........ccocervvriiiiiniiiiiiiie 42

3. MAXWELL SIMETRISI VE KUTLECEKIM TEORISI .......ccccocovvviiriiiriinene, 47
3.1 MaXWEIT CeDII ... 47
3.1.1. Maxwell cebrinin ayar tEOrISi.......ccccurereririiieieeese e 49

3.2. Stiper Maxwell Cebri .......cccviiiiiiiiiiiiii e 52
3.2.1. Stiper Maxwell cebrinin ayar teOTIST ........cccververvireereeienienieeeeseenea 52

3.3. Maxwell-WeYl CeDIi.......cceiieiiee et 55
3.3.1. Maxwell-Weyl cebrinin ayar teOriSi..........ccvvrrriereneienesiseseeeee 58

3.4. Stiper Maxwell-Weyl CeDI ........ccooiiiiii 64
3.4.1. Siiper Maxwell-Weyl cebrinin ayar teorisi ..........cccocevverenvnvnieniieniennn, 64

4, SONUCLAR VE ONERILER ......cocooviiiiiiiiiieiieeeeeieeeeeeeteese s 68
KAYNAKLAR L.t bbb bbbt 70
EILER L. 76
KISISEL YAYIN VE ESERLER ......c.cocoiiiiiiiiiiiieieie ettt 95
(076 ) 10)1Y 1 153U 96



SEKILLER DiZiNi

Sekil 1.1. M manifoldundaki p noktasinda tanimli Tp tanjant uzayi..........ccccceveveennnnns 4
Sekil 1.2. Bir S yiizeyinde tanimli P ve Q noktalari arast yol............ccocceevviveiniinnnnn, 7
Sekil 1.3. Bir vektoriin egri boyunca paralel 6telenmesi .........ccvevvveeiiiieiiieeiiieesiinens 9
Sekil 1.4. Diiz uzayda kutupsal koordinatlarda bir vektoriin paralel 6telenmesi......... 9

Sekil 1.5. Bir vektoriiniin sonsuz kiigiik bir cevrimde paralel 6telenmesi.................. 14



SIMGELER VE KISALTMALAR DiZiNi

A : Ayar alaninin genel ifadesi

A,B,C... : Lie cebri iiretici indisleri (Biiyiik Latin harfleri)

a,b,c... : Tanjant uzay indisleri (Kiigiik Latin harfleri)

a, B, y... : Uzay-zaman veya spindr indisleri (Kii¢iik Yunan harfleri)

C : Yiik eslenigi matrisi

D : Lorentz kovaryant dis tiirev operatorii

D . Lorentz-Weyl kovaryant dis tiirev operatorii
d : D1g tiirev operatorii

ea

: Tanjant uzay1 baz vektorleri

e, : Vierbein vektor alani

F : Egriligin genel ifadesi

¢ : Lie cebri yap1 sabiti

g : Grup elemani

9, (x) : Uzay-zaman metrigi

H : Kararlilik grubu

i, : I¢ carpim operatorii

K : Koset

L : Lagranjiyen

I, . Lie tiirevi operatorii

M : Manifold

R : Ricci skaler egriligi

R, : Ricci egrilik tensorii

R%. : Riemann egrilik tensorii

S : Eylem

T : Simetrik enerji-momentum tensorii
M : M manifolduna p noktasindan teget tanjant uzayi
U : Grup elemani

XA : Lie cebri treticileri

x* : Uzay-zaman koordinat parametresi

a : Dirac gamma matrisleri (n=0,1,2,3)
. : Christoftel sembolii

3, : & alanina gore varyasyon

3%, : Kronecker delta tensorii

€ abed : Levi Civita tensorii

Na : Minkowski metrigi

0* : Spindr uzayinin koordinat parametresi
o* : Antisimetrik tensor uzayimin koordinat parametresi

iv



Kisaltmalar

M(1,3)
MW(1,3)
P(1,3)
sM(1,3)
sMW(1,3)
SO(1,3)
sP(1,3)
sW(1,3)
u@1)
W(1,3)

: X parametresine bagli herhangi bir skaler alan
: Einstein sabiti

: Kozmolojik sabit

: Antisimetrik spin baglanti tensorii

: Kovaryant tiirev

: D1§s carpim operatori

: Hodge dual operatorii

: Skaler ¢arpim operatorii

: Kismi tiirev operatorii

: Maxwell Grubu

: Maxwell-Weyl Grubu

: Poincare Grubu

: Stiper Maxwell Grubu

: Stiper Maxwell-Weyl Grubu

: Special Othogonal Group (Lorentz Grubu)
: Stiper Poincare Grubu

: Stiper Weyl Grubu

: Uniter Faz Déniisiimii Simetrisi

: Weyl Grubu



MAXWELL VE SUPER MAXWELL KUTLECEKIM TEORILERIi

OZET

Bu tezde Maxwell simetrisi temelinde genisletilmis bir kiitlegekim teorisinin
olusturulmasi iizerine ¢alisildi. Maxwell-Weyl kiitlegekim teorisinin ayar degismez
formiilasyonu diferansiyel geometrik usille elde edildi ve siipersimetrik
genellestirmesi yapildi. Elde edilen degisken bir kozmolojik terim ve buna ilave
katkilar sayesinde Einstein-Cartan-Weyl alan denklemi genellestirildi. Ayrica N = 1
ve D =4 i¢in dlgekleme doniisiimii altinda da degismez kalan yalin siiper kiitlegekim
Lagranjiyenin ~ Maxwell-Weyl  siiper cebrinden  kaynaklanan  egriliklerin
kullanilmasiyla elde edilebilecegi gosterildi.

Anahtar Kelimeler: Ayar Alan Teorisi, Diferansiyel Geometri, Genisletilmis
Kiitlegekim Teorisi, Maxwell Simetrisi, Stipersimetri.
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MAXWELL AND SUPER MAXWELL GRAVITY THEORIES
ABSTRACT

In this thesis, establishing an extended gravity theory based on Maxwell symmetry is
studied. Gauge invariant formulation of Maxwell-Weyl gravity is obtained by
differential geometric method and its supersymmetric generalisation is given. An
extension of the Einstein-Cartan-Weyl field equation with a variable cosmological
term and an additional source term is given. We also show that N = 1 and D = 4 the
scale invariant pure supergravity Lagrangian can be obtained from the curvatures of
the Maxwell-Weyl superalgebra.

Keywords: Gauge Field Theory, Differential Geometry, Extended Theory of
Gravity, Maxwell Symmetry, Supersymmetry.
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GIRIS

Gegtigimiz asirda yapilan Standart Model ve Siipersimetri gibi devrimsel nitelikteki
caligmalar, simetrilerin fizikte ne kadar 6nemli bir etki alan1 oldugunu gozler oniine
sermistir. Simetrilerin, kiitlecekim teorileri ile iligkilerini inceledigimizde ise, 1956
yilt Utiyama’nin ¢aligmasi [1] one ¢ikmaktadir. Utiyama bu calismasinda Lorentz
grubunu (SO(1,3)) yerel doniisiimler altinda inceleyerek kiitlegekim igin Einstein
alan denklemini elde etti. Bu sayede Utiyama uzay-zaman simetrilerinin yerel
incelenmesiyle, diger bir deyisle ayar teorisinin kurulmasiyla, bir kiitlecekim
teorisinin olusturulabilecegini ilk olarak gostermis oldu. Daha sonra 1961 yilinda
Kibble yaptig1 ¢alismada [2] Poincare simetrisini kulland1 ve bunun sonucu olarak
Einstein-Cartan teorisini elde etti. Ilerleyen yillarda benzer yontemler diger uzay-
zaman simetrilerine de (Weyl, DeSitter, Conformal...) [3-10] uygulanarak

genellestirilmis kiitlegekim modelleri elde edildi.

Buradan anlasiliyor ki, elimizde bir simetri varsa ayar teorisini kullanarak buradan
fiziksel sonuglar c¢ikartabiliriz ve bu fikirden hareketle diyebiliriz ki, var olan
herhangi bir simetri iizerinde degisiklikler yaparak yeni etkilesme terimleri ve
genellestirilmis yapilar elde edebiliriz. Ileride daha detayli verecegimiz iizere
stipersimetri ve siiper kiitlegekim teorileri, bu simetri genisletmesine giizel bir misal

teskil etmektedir.

Simetri genisletmelerine diger bir 6rnek ise Maxwell grubudur. Bu grup Poincare

grubunun (P(1,3)) merkezi olmayan bir genisletmesidir ve arttk momentum
tireticileri abelyan degildir ve [Pa, Pb] =F, komutasyon iliskisini saglar. Burada F,
Lorentz donlisiimii altinda tensér gibi davranan bir ireticidir ve a,b=0,1,2,3

degerlerini alir. Eger bu simetri altinda degismez bir Lagranjiyen olusturulursa, onun
yiiklii bir pargaci@in sabit bir elektromanyetik alandaki hareket denklemlerini
sagladig1 goriilecektir. Bu sonuca gore Poincare simetrisi kirilmis olup bos uzay-
zaman yerine elektromanyetik alanla doldurulmus bir uzay-zaman elde edilmistir ve

F,, artik elektromanyetik gerilme tensoriine karsilik gelmektedir [11-13].



Maxwell cebrinin ismi ilk olarak Glashow’un ¢alismasinda [14] goriilmektedir,
burada nétron yildizlarinda olusan asir1 giiclii manyetik alanin madde iizerindeki
etkileri tizerinde durulmustur, bunlar giiniimiizde magnetarlar olarak bilinmektedir.
Bu cebir sistematik anlamda ilk olarak Schrader [11] tarafindan incelenmistir, diger

erken donem calismalar i¢in [12-17] makalelerine bakilabilir.

2005 yilinda Maxwell cebrinin, klasik bi¢iminin disinda farkli bir incelemesi Soroka

[18] tarafindan ortaya konmustur. Burada komutasyon iliskisi [Pa, Pb] =iZ,, ile ifade

edilmis, yine aym sekilde Z antisimetrik bir tensér iretici fakat yapisi

ab

zabzi&biab:iaab scklindedir. Buradaki tiirev 00" =%(6;5;‘)—6§6§), 0,x° =0
seklinde davranmaktadir. Eklenen yeni ¢® parametresi sayesinde uzay-zamana 6

serbestlik derecesi daha eklenmistir ve olusturulan arka plan alan1 bu parametreye
baglidir. Boylece bu tanimlamalardan sonra denilebilir ki, bilinen uzay-zaman

gruplarimin bu Z_, {reticisi ile genisletilmesine o grubun Maxwell genisletmesi ve

ortaya ¢ikan yeni simetri de Maxwell simetrisi olarak adlandirilir.

Bir Maxwell simetrisi elde etmek adina veya daha genel ifadeyle uzay-zaman
gruplarin genisletilmesi igin literatliirde ¢esitli yontemler mevcuttur. (siiper)
Maxwell cebirlerini olusturmasinda simdiye kadar expansion [19-25], S-expansion
[26, 27] ve Chevalley—Eilenberg (CE) kohomoloji [28-30] yontemleri kullanilmistir.
Bu ii¢ yontemin ortak 6zelligi, ele alinan grubun boyutunu arttirarak genisletmesidir.
Literatiirde bunlarin disinda contraction, deformation ve extension (kisa bilgi icin
[22-23]) adinda ii¢ yontem daha vardir lakin bu yontemlerde grubun boyutu sabit
kalmaktadir, bu sebepten Maxwell simetrilerinin olusturulmasinda kullanilmalari

uygun degildir.

Ortaya ¢ikan bu yeni simetri sayesinde, siipersimetrinin tarihi gelisiminin bir neticesi
olarak siiper gruplarin (siiper Poincare, sliper Conformal ...) ortaya ¢iktig1 gibi,
bilinen uzay-zaman gruplarinin genisletilmesiyle Maxwell gruplar1 ve siiper Maxwell
gruplart ortaya ¢ikacak (Maxwell-Weyl, AdS-Maxwell ...) ve bunlar1 temel alan
basta kiitlecekim olmak tiizere ¢esitli teoriler kurulacaktir. Maxwell simetrisi bu

yoniiyle ileriye yonelik 6nemli bir potansiyel arzetmektedir. Bu motivasyon ile



Maxwell grubunun (M(1,3)), cebirsel incelemeleri [18, 29-33], siipercebirsel
incelemeleri [24, 34-38], genellestirilmis kiitlegekim [39-46] ve siiper-kiitlegekim
[47-51] olusturulmasi, Landau problemindeki diizlem dinamikleri ve yiiksek spin

alanlaryla iliskisi [51-54] iizerine pek ¢ok calismalar yapilmustir.

Bu tezde, Maxwell ve siiper Maxwell kiitlegekim teorisine literatiirde ilk olarak
Olgekleme simetrisinin eklenmesiyle (stiper) Maxwell-Weyl kiitlegekim teorisi
olusturulmasi hedeflenmistir. Bu gaye dogrultusunda, ilk boliimde kiitlecekim ve
ayar teorisi arasindaki iliskiyi anlamak maksadiyla sirasiyla Genel Gorelilik teorisi,
diferansiyel geometri ve ayar teorisinin temel kavramlarini verecegiz. Ayar teorisine
uygulama olarak ise sirasiyla faz doniisimii (U(1)) ve Lorentz simetrisi ele
alinacaktir. Bu bolim genisletilmis bir kiitlecekim teorisinin olusturulmasinda

kaynak olusturacaktir.

Ikinci béliimde Siipersimetrinin tarihi gelisimi kisaca verilip siiper Poincare cebrinin
cizgisel olmayan gerceklemesinin ardindan ayar teorisi kurulup siiper kiitlecekim

teorisi olusturulacaktir.

Son boliimde ise oncelikle literatiirde bulunan M(1,3) ve siiper Maxwell gruplarinin
(sM(1,3)) ayar teorisini sectigimiz notasyonda inceleyecegiz. Ardindan bu gruplara
dilaton iireticisi katilarak elde edilen Maxwell-Weyl (MW(1,3)) ve siiper Maxwell-
Weyl gruplarmin (SMW(1,3)) ayar teorisini diferansiyel geometrik ustille kurarak
genellestirilmis kiitlecekim teorilerini elde edecegiz. Calismamizda yer alan
neticelerin bir kismi [41] ig¢inde tartisilmistir. Hesaplamalarda kullandigimiz

notasyon ve se¢imler (EK-A) ve (Ek-B)’de detayli olarak verilmistir.



1. KUTLECEKIM, DIFERANSIYEL GEOMETRI VE AYAR TEORISi
1.1. Genel Gorelilik Teorisi

Bu boliimde, Maxwell kiitlegekim teorisinin olusturulmasinda gerekli olan Einstein

genel ¢ekim teorisine [55-59] dair bazi temel kavramlara deginilecektir.
1.1.1. Vierbein formalizmi

Vierbein, tetrad veya Cartan formalizmi olarak adlandirilan bu ustl, Einstein genel
¢cekim yasasinin olusturulmasinda alternatif bir yol teskil eder. Kullanilmasindaki
temel gaye uygulamada cesitli kolayliklar saglamasidir. Misal olarak, matematik
acisindan bakildiginda i¢inde bulundugumuz uzay zaman 4 boyutlu bir manifold
olarak ele alinabilir. Ayn1 zamanda yerel ele alindiginda ise Minkowski benzeri bir
karakteristige sahiptir. Iste bu noktadan hareketle vierbein formalizmi egri uzay
zaman ve buna bagli Minkowski uzayr arasindaki iliskiyi daha kolay ifade
etmesinden dolay tercih edilmektedir. Sekil 1.1°de gosterildigi gibi, bir M manifoldu

tizerindeki her bir P noktasi i¢in bir tanjant uzay1 T, tanimi yapilabilir.

M

Sekil 1.1. M manifoldundaki p noktasinda tanimh
Tp tanjant uzay1

Bu T, uzayinda herhangi bir vektorii V e T, asagidaki seklilde yazabiliriz,

V=V, (1.1)



Denklem (1.1)’deki e, ifadesi tanjant uzay:1 T, 'nin baz vektor setidir ve,

e =0 (1.2)

a a

yapisindadir. Her bir tanjant uzayr T, i¢in dual baz vektdrleri iceren bir kotanjant

uzayt T , tamimlanabilir ve dual bazda bir vektor asagidaki gibi verilir,

V=\Ve (1.3)

a

Burada e* = (ea )_l dual baz vektoriidiir ve asagidaki yapidadir,

e? =dx* (1.4)

Bu vektorler e’e, =38°, ifadesini saglar. Tanjant uzayindaki baz vektorler ile egri

uzaydaki vektorler arasindaki iliski,
e"=e(x)e"(x)=g, (x)dx" (1.5)

e, =", (x)e,(x)=¢",(x)d, (1.6)

a

ile verilir. Burada eua (X) ile gosterilen 16 parametreli vektor alani “vierbein alan1”

veya kisaca “vierbein” olarak adlandirilir. Yunan indisleri y,v,...=0,...,3 egri uzay
zamanina, Latin indisler a,b,...=0,...,3 ise tanjant uzay zamanina karsilik gelir.

Sirasiyla “holonomik” ve “holonomik olmayan” indisler olarak adlandirilabilir.

Vierbein vektorleri asagidaki doniisiimleri saglar,
" =g (€, ()", (1) @
g" (x)=e*, (x)e", (x)n® (1.8)

burada g* ve n® sirasiyla egri uzay zaman metrigi ve tanjant uzayinda tanimlanan

-1
Minkowski metrigidir. Vierbein vektoriiniin tersi €° =(eav) seklinde verilir ve

carpimlari neticesinde Denklem (1.9) elde edilir.

5



a

€ vevb = Bab’ e“a = gwnabevb (1.9)

Bu dual gosterimlerden yola ¢ikarak,
T‘Iab = g;,weuaevb’ guv = eauebvnab (110)

elde edilir. Yukaridaki tanimlarin yardimiyla bir vierbein vektoriiniin determinantini

asagidaki sekilde verebiliriz,

e=|dete’, |=,f| detg,, :\/m (1.12)

Vierbeinler sayesinde artik herhangi bir P uzay zaman noktasindaki bir vektorii hem
tanjant uzayi (tetrad) bazinda hem de egri uzay zaman (koordinat) bazinda asagidaki
gibi ifade edebiliriz,

V=V¥e, =V, (1.12)

Ayrica vektorler arasi iliski asagidaki sekilde verilir,

Vi =¢ V¥
. - (1.13)
Vv =e e" VH,
1.1.2. Jeodezik denklemi ve Christoffel sembolii
Egri bir uzayda sonsuz kiigiik araligin karesi agagidaki sekilde verilir,
2 v
ds® =g, dx"dx (1.14)

Bu uzayda Sekil 1.2°de gosterildigi gibi, bir P noktasindan Q noktasina olan

hareketin toplami1 veya eylemi asagidaki sekilde yazilabilir,

Q Q v
dx* dx
S=|ds= d 1.15

-,[ -,[ G di di ( )



Sekil 1.2. Bir S yiizeyinde taniml1 P ve Q noktalar1 aras1 yol

Simdi bu eylemin varyasyonunu alalim,

Q v
dx* dx
SSZSI G
dx* dx" dx" dox”
= I -89, -29,,
dx* dx” odh da odh da
% dn dn
1% dx* dx* dg,, dx* d2x*
=—|ds| -8 +2—1 X" +2 ox" 1.16
~F[ I s ds ds v g7 ] (1.16)
ag,, dx* dx° . ag,, dx* dx*
Q T Ay
zlfds ox' ds ds  ox" ds ds
3 ag,, dx* dx” d?x*
t T a9
ox" ds ds " ods
Q 2
dx* dx? d°x*
=—|ds 6 +049,+0 + X"
l{ Fup + 0,9, g)ddsgwdsz}é
ve 8S =0 ilkesini dikkate alirsak siislii parantez icerigini g° ile ¢arptigimizda,
d’x°® 1 . dx* dx”
F-’-Eg (—6Vgup+8pgw+8ugpv)¥¥= (117)
elde edilir. Burada asagidaki gibi bir tanim yapildiginda,
r, =lg“‘(—avgw +0,0,,+0,9,, ) (1.18)
2



Denklem (1.18) asagidaki sekli alir,

d’x°  _, dx"dx®

+ - = 1.19
ds? " ds ds (1.19)

Bu denklem jeodezik denklemidir ve I'° ifadesi ise Christoffel sembolii olarak

adlandirilir. Christoffel semboliiniin genel koordinat doniisiimii altindaki degisimine
bakildiginda,

v ox* Ox* ox° ox*  9°xP
l—!u :___rp + — 120
( Vé) ox® oxP ox* 7 oxP ox'ox® (1.20)

esitligi elde edilir. Bu esitlik bize '™ ; semboliiniin tensor yapisinda olmadigin

gostermektedir. Yapilan hesaplamalarda, T°, =" —I° olarak da ifade edilen

burulma (torsion) tensoriiniin sifir oldugu diistiniilmiistiir. TGW #0 durumu igin

semboliin genel ifadesi asagidaki sekilde gosterilebilir,

. A
F - _g (_a"gup +anHV +apgpv _Tppc _Tpp.c +T ) (121)

W o oup
1.1.3. Paralel oteleme ve kovaryant tiirev

Herhangi bir f(X) fonksiyonunun tiirevi asagidaki sekilde verilebilir,

a;(w):%: lim {f(x“+8x“)—f(x“)} (1.22)

Lakin yukaridaki tanimi vektor alanlar igin ele aldigimizda, vektorlerin farkli
noktalarda farkli doniisiimlere sahip olmalarindan veya diger bir deyisle farkl
noktalarda tanimlanmis vektorlerin farkinin veya toplaminin bir vektor olusturmadigi
bilindiginden dolayr kullanigli olmadig1 acgik¢a goriilmektedir. Vektor alanlar ile
calismak i¢in tiirev iizerinde bazi degisiklikler yapmak durumundayiz. Bu sebepten

dolay1 paralel 6teleme islemini tanimlamamiz gerekmektedir.



VSV
P

e

Paralel vektor

SV'-6 V"
~

Sekil 1.3. Bir vektoriin egri boyunca paralel 6telenmesi

V" kontravaryant bir vektor alani olsun. Sekil 1.3 dikkate alindiginda V" (P) ile

\Va (Q) arasi iliski,

oV*(P)

X" 1.23
o (1.23)

V*(Q)=V"(P)+8V*(P)=V*(P)+

ile verilir. Burada dV* (P) =V* (Q)—V“ (P), farkl1 iki noktada tanimlanmis vektor

alanlarmin bilesenlerinin farki oldugundan dolayr bir vektoér degildir. Bu durumu

daha i1yi kavramak maksadiyla Sekil 1.4’e baktigimizda vektoriin kesik cizgiler ile

PN

gosterilen bilesenlerinin degistigi acik¢a goriilmektedir.

/>f/¢>‘(/>\/ X

—

Sekil 1.4. Diiz uzayda kutupsal koordinatlarda
bir vektoriin paralel 6telenmesi [55]



Simdi dyle bir § islemi tanimlayalim ki diiz uzay dikkate alindiginda Q noktasinda

\V (P) vektdriine paralel bir V* (Q) vektorl olustursun,
V*(Q)=V*(P)+3V*(P) (1.24)

Ayni sekilde SV”(P) ifadesi de bir vektorii temsil etmeyecegi i¢in OV* (P)

ifadesini de,

3V*(P)=-G* V°5x° (1.25)

seklinde kullanacagiz. Yukaridaki ifadede G"_, V* (P) vektor alaninin Q

noktasina paralel olarak taginmasi ile alakali alanlar arasi iligkiyi temsil eder, “Afin

baglant1” olarak adlandirilir ve dort boyutlu uzay icin 64 adet katsay: icerir. Simdi
birisi paralel tagmmig V* (Q) digeri ise ele alman egriye teget tasmmis V" (Q) iki

vektoriin farkina bakalim,

VH(Q) =V (Q)={V*(P)+8V" (P)} ~{V" (P)+5V" (P)|
)-8V (P)=8V*(P)+G* V°8x° (1.26)

—5VH (P
n

= a\/—(P)+6“ ch SXG
ox° P

Bu ifade ayni noktadaki vektor alanlarin farkini ihtiva ettiginden dolayr bir
kontravaryant vektorii temsil etmektedir. Yaptigimiz bu islem; afin uzayda bir
vektoriin paralel 6telenmesi islemi olarak adlandirilmaktadir. Denklem (1.26) dikkate

alindiginda asagidaki tiirev tanimlanabilir,

v, V" = lim {SV“(PQ;VSV“(P)}

=0V +G*, VP

(1.27)

Bu tiirev “kovaryant tiirev”’ olarak adlandirilir ve vektorlerin tanimindan da
anlasilacag tizere tensorel bir yapidadir. $imdi G afin baglantisinin doniisiim

kurallarini bulalim. Bir vektdriin genel koordinat doniisiimii altinda,

10



(VA Vi (1.28)

seklinde doniistiiglinii g6z oniine aldigimizda Denklem (1.27) ifadesinin,

n c u c I c
_ ox¥ ox (VGVP):aX ox° 0 .,  OX"ox GP

(VVVH) \Y \ c \Y% A
OX? OX OX" ox” ox OX" 0OX

(1.29)

biciminde doniismesi beklenir. Ayrica son denklemi asagidaki sekilde yazabiliriz,

(VVH) =Vive =a v+ (Gr ) Ve
_x° 0 (ax“ ij ox”

_ + 2 (G ) v 1.30
ox¥ ox° | oxP axk( V") (1.30)

i c c 24,1 p '
_oxPox® 0 Vp+ax 0°X V"+8—XX(G“V)V”
oxP ox¥ ox° ox" Ox°oxP® OoX P

Burada Denklem (1.29) ile Denklem (1.30) birbirlerine denk ifadelerdir dolayisiyla
asagidaki ifade yazilabilir,

ox” ' OXM OX° . OX° 0"

87( HV") vi= ox” ox” WV ox" Ox°ox” Vi (131)
diizenlendiginde,

(c* )' _oxh oxt ox© G XX o°x" (1.32)

Whax® oxP ax¥ 7 ox® oxY ox°ox® '
veya,
r Ox* ox* OX° ox*  o*xP

G* =—— G+ - 1.33
( Vé) ox® oxP ox’ T OxP ox'ox® (1.33)

elde edilir. Bu degisim Denklem (1.20) ifadesi ile verilen Christoffel semboliiniin
degisimine denktir. O halde G, ifadesi yerine Christoffel sembolii I'*,

kullanilirsa kovaryant tiirev agagidaki sekilde yazilabilir,

AGETAVARS Y (1.34)
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Bu tiirev sirastyla kovaryant vektor ve ranki 2 tensorlere uygulandiginda genel olarak

asagidaki yapilar elde edilir,
V.V, =0V, -I" V, (1.35)

af _ af a B B o
v,V —8HV +I HpVp +I HpV P

VHVO‘B = 6“V°‘[3 + FaHprﬁ —FpuﬁVap (1.36)
vuVaB - auVaB _Fpuavpﬁ _Fpuﬁvap

Bir misal olarak kovaryant tiirevi Christoffel semboliine uyguladigimizda asagidaki

ifadeye ulasilir,
V. I =0, 10 T -T2 T -T2 (1.37)

Biitlin bu islemlerden hareketle diyebiliriz ki tanimladigimiz kovaryant tiirev; se¢ilen
uzayda bir P noktasinda tanimlanmis bir vektorii aym1 uzayda Q noktasina, ilk

durumuna gore paralel tasinmasini saglayan matematiksel niceliktir.
1.1.4. Afin baglanti spin baglanti iliskisi

Tanjant uzayinda tanimlanmis tensorler, Lorentz simetrisi altinda ele alindiginda
kovaryant tiirevlerde afin baglanti yerine “spin baglant’” denilen ve w”ab ile

gosterilen katsayilar kullanilir. Misal olarak,

a a a b
V.V =0, V' +V

VV. =0V -0V (1.38)
uva ura pavth

esitlikleri wverilebilir. Her iki durumda da yap1 degismemektedir. Yukaridaki
denklemin ilk ifadesi asagidaki sekilde yazilabilir,
V,Vi=V, (" V)
=V e V' +e' vV V°
=V,e° VvV +e (8,VP+T7, V") (1.39)
=V, e VP +0 V' -0 e* V*+e' I* V"

_ a a b a a a Ab a A p
=0,V +0, 4,V +(V e -0,e' —0e’, +e T )V

12



Elde edilen son ifade, Denklem (1.38) ile mukayese edildiginde ii¢iincii terimin sifir
olacag: goriliir, bdylece vierbein vektoriiniin kovaryant tlirevi asagidaki sekilde elde
edilir,

a a a Ab A a
Ve =0 +o/ e, I e, (1.40)

up

Simdi VV skaleri iizerinden bu iki baglant1 arasi iligkiyi inceleyelim. Afin baglanti

icin bu ifade,
WV =(V,V')dx"8, =(8,V" +I",, V" )dx*o, (1.41)

seklinde yazilabilir. Keza ayni ifadeyi vierbeinleri de kullanarak spin baglanti ile

yazdigimizda,

vV

n

Va)dx“é —(a Vit Vb)dx“é

(1.42)

(e

(v
{ eV )+l e, bV”}dxe d.
e’,(e,'0,V" +0,8, V" +0, €, V" )dx"d,

a v

(e
{0,V +(e, 0,8, +€,%, 0%, )V [ dxo,
elde edilir. Bu noktada Denklem (1.41) ve Denklem (1.42) karsilastirildiginda ise,
I, =e'oe’+e'e 0% (1.43)
ile,

a _ 5 ApqA TV A
) b_evebl"m—eba

n

e’ (1.44)

n

iliskileri agik bir sekilde elde edilir. Eger Denklem (1.44) ifadesini epb ile ¢arpar ve

diizenleme yaparsak asagidaki esitlige ulasilir,

0,8,"+ oapabepb -e, T =0 (1.45)
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Denklem (1.45) ayni zamanda Denklem (1.40)’da verilen Vuepa tiirevine esittir,
dolayistyla burada Vuep"" =0 sart1 saglanir ve bu sart “tetrad postiilasi” olarak
adlandirilir. Bu postiiladan yola ¢ikarak,

an b
vpgpc :vp. (ep ec T]«’:\b)

=Vv.e e, +eV.e n,+e’e’Vm, (1.46)
=0

neticesine ulasilir, bu ise uzayin “metrik uyumlu” olmasi olarak bilinir.

1.1.5. Egrilik tensorii

Bir uzayda bir P, baglangi¢ noktasindan P, varis noktasmna giden sonsuz kiigiik iki
farkli yol diisiinelim. Sekil 1.5’te gdsterildigi gibi, ilk yol i¢in V, vektdrii 6nce Q,
sonra P, noktasina, ikinci yol igin ise 6nce Q, sonra P, noktasina gidilecektir.
Buradan birinci yolun takibi V V V;, ikici yolun takibi de ise V V, V, sayesinde

gerceklesir. Bu iki ifade bir vektorii baslangic konumundan farkli bir noktaya ve

farkli yollardan paralel taginmasini temsil eder.

Ve Q

’

B2

Q,

Sekil 1.5. Bir vektoriiniin sonsuz kiigiik bir ¢evrimde
paralel Gtelenmesi

Son durumda taginan vektdrlerin B, farki [vu,vv]vﬁ ile ifade edilir. Eger uzay diiz

ise taginan vektorlerin farkinin sifir olmasi gerekir. Lakin uzayda egrilik varsa durum
farklidir ve bu fark beklendigi ilizere uzaydaki egrilik ile dogrudan iligkilidir. Bu
iliski Denklem (1.47)’deki sekilde tanimlanur,
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VoV, V=V, V.V, -V, V,V, =—R,\V, (1.47)

Buv T

Burada R“B“

\Y

Riemann-Christoffel egrilik tensorii olarak adlandirilir. Eger
R%;. =0 ise uzay diizdiir, aksi durumda ise bir egrilik soz konusudur. Yukaridaki

komutasyon kontravaryant tensére uygulandiginda [VH,VV]V“ = R"‘BWVB seklinde

yazilir. Simdi bu tensoriin yapisinin nasil olmasi gerektigine bakalim, bu islem igin

oncelikle V V V; ifadesini hesaplayalim,

v, (VVVB) =9, (VHVB ) -T°,, (vcvB ) -T°, (V. V)
i 0,(0,V, =TV, )-T°, (8,V, T ,V,) L4
—I°,(8,V, -V, )

0,0V, =0, V., ~T* 8V, ~T° 8.V, +I° IV,
T° 0V, +T°, [V,

up~v Yo

ve benzer sekilde,

0,0,V

vv(vuvﬁ):{ et

—I° 30, V, +T°, " [V,

up Yo a

-oI* V. -T* oV —-I'° oV, +I'° T* V
v v Yo uw~oc VB uv op } (149)

elde edilir. Bulunan bu ifadeler Denklem (1.47)’de yerine yazilirsa,

[V V, [V ==(-0,T% s+, =T, T +T°,, T )V, (1.50)

ve buradan egrilik tensorii asagidaki sekilde elde edilir;
RO‘BHV = auravﬁ —6Vl“°‘Hﬁ +1“°‘wlﬂ’vB —l""‘vcl“"HB (1.51)

Egrilik tensoriinii spin baglanti ile ifade etmek istedigimizde ya dogrudan spin
baglantiya bagli kovaryant tiirevin komiitasyonuna bakilir ya da Denklem (1.51)
igerisinde Denklem (1.43)’de verilen doniisiim kullanilir. Neticede asagidaki ifade

elde edilir,
a o b a a c
R puv = €263 (6[H03V] b T O, (O, b) (1.52)
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Riemann-Christoffel tensoriiniin indislerinde yapilan degisimler ile farkli 6zelliklere

sahip ifadeler elde edilebilir. Ornegin R =04, R%p  biciminde yazildiginda

v

asagida verilen Ozellikleri saglar,

apuv _Raﬁvp

ofuv _RB(wv

=R
+R

(1.53)

afuv pvof

apuv anvp T ROWBH =0

R +V R +V.R

o’ "Buvp p'tapvp B* Mpavp T

R
R
R
R
\% 0

burada son ifade Bianchi 6zdesligi olarak adlandirilir. Ricci tensor ifadesi ise,

R v Ra oV :gaGRc oV
) uzx (xu o c o c (154)
:aar vu_avr (xu+r (xcr vu_r vcsr op

seklindedir. Burada Denklem (1.37) dikkate alindiginda Ricci tensorii asagidaki
sekilde yazilabilir,

R,=V. %, -V.I'", (1.55)
ve bu nicelik “Palatini 6zdesligi” olarak bilinir. Ricci skaler veya skaler egrilik ise,

R=g"R,, (1.56)

bigiminde tanimlanir. Ricci tensor ve skaleri kullanilarak Einstein tensorii asagidaki

sekilde yazilir,
1
G, =R, —EQWR (1.57)

1.1.6. Einstein alan denklemi

Serbest kiitlegekim alanini ifade eden Einstein-Hilbert eylemi ve madde kaynagini

iceren eylem asagidaki sekilde yazilabilir,

S=S, +Suu =2—1Kjd4x\/§R - [d*xJ-oL, =2—1Kjd“xH(R ~2¢l,)  (L58)
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Denklem (1.58)’de L, kiitle terimi, k =8nGc™ olmak iizere Einstein sabitidir, G
kiitlegekim sabiti, ¢ ise 1518 vakumdaki hizidir. Bu eylemde metrik tensor g,
dinamik bir degisken oldugundan, varyasyon ilkesi geregi, 6,S=0 olmasi gerekir.

Bu sayede metrik tensore gore hareket denklemi elde edilmis olur. Simdi bu

varyasyonu uygulayalim,
5,5= i [d'x{6y=09"R,, +-950"R,, +-09"3R,, ~2k5(y-0L, )}  (1.59)

burada & —gz—%ﬁguﬁgw, Denklem (1.55) ve V,g,=0 esitlikleri

kullanildiginda asagidaki ifade elde edilir,

, 1 2K S(HLm)
ﬁsgu Ruv_EgpvR_ﬁ Sguv

+v,(JFgg"ar, ~J-gg"sr,

_ 1oy
sgs_ﬂjd X (1.60)

Burada son parantezli terim bir tam tiirev yapisinda oldugundan dolay1 ihmal edilir
ve Einstein alan denklemi asagidaki sekilde elde edilir,
pv

G, =R, —%gWR =xT,, (1.61)

Burada T, enerji-momentum tensoriidiir ve asagidaki sekilde gosterilir,

2 S(QLm)
uv_ﬁ S+

1.2. Diferansiyel Geometri

(1.62)

Diferansiyel geometrik yontem, ele alinan teoriye bir yenilik katmamasina ragmen,
formillerin daha basit yazilmasina yardimci olmakta ve bunun yaninda yapilan
islemlerde de pek cok kolaylik saglamaktadir. Bu boliim dis cebir ve Diferansiyel
geometriye kisa bir giris mahiyetinde olup takip eden konular igin temel

olusturacaktir.
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1.2.1. Formlar, dis carpim ve dis tiirev

Bir M manifoldu tizerinde tanimli V vektor uzay1 igin Q) (V) ifadesi p-form’larin
veya p dereceli diferansiyel formlarm vektdr uzayr olarak tanimlamr. Ornegin

we (V) yapisinda bir p-form asagidaki sekilde yazilabilir,
1 u
O=—o dx™ AL AdX™ (1.63)

burada “ A ” isareti “dis carpim” (wedge product) ve “d” islemcisi “dis tiirev”” olarak

adlandirilir bunlara ek olarak x* ise O-form uzay-zaman vektoridiir. Simdi sirasiyla

bu ifadeleri aciklayalim. Dis carpim asagida gosterildigi gibi,
A QP(V) x QY(V) - QP(v) (1.64)

bir p-form ile bir g-form yapisindaki degiskenleri belli kurallar altinda isleme tabi

tutup bir (p+q) form elde etmeye yarayan bir islemci olarak ele almir. Ornegin

f —f(x) herhangi bir fonksiyon ve o, p ve o ifadelerini sirasiyla p, q ve r form

olarak ele alalim. Bu durumda dis carpimin bazi 6zelliklerini asagidaki bigimde

gosterebiliriz,

anB=(-1)"BAra

(anp)rc=an(Bro)

.6
(OL+B)/\G=aAy+B/\G (1.65)
(ca+da)AB=c(anB)+d(anp)
P C g ARt B dX" A adx™e (1.66)

p |q l My Bp T HpigHpag

Son ifadeden anlasilacagi gibi y degiskeni (p+q) form yapisindadir. Dis tiirev ise,
asagida gosterildigi gibi bir p-formu, (p +1) forma doniistliren bir islemci olarak

tanimlanabilir,
d: QP (V) » QfY(v) (1.67)
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Verilen bir p-form o ’ya dis tiirev uygulandiginda,

dm:ﬁa[\’m}hm“p]dxv /\pr'l /\.“/\dxup (168)

genel ifadesi elde edilir. Burada antisimetirk agihm A, B, =A B, ~A B, seklinde

ifade edilir (Ek-A). Dis tiirev sirastyla 0-form ¢ "ye ve 1-form A’ya uygulanirsa,

d¢ =20, dax (1.69)
dA =0,A dx* Adx" = %(GHAV —0,A, )dx* Adx" (1.70)

esitlikleri elde edilir. Eger F=dA seklinde bir 2-form tanimlanir ve dF ifadesi

aranirsa 0p,0,; =0 oldugundan asagidaki ifade elde edilir,

dF=d*A=dAdA

:%8 0,,A, dx? Adx" Adx" (1.71)

[p~ul" v

=0

Bu neticeye gore d*=dAd=0 genellemesi yapilir. Bunlara ek olarak o, B ve o

strastyla p, q ve r form olsun burada dis tiirev asagidaki 6zelliklere sahiptir,

d(a+B)=da+dp
d(a® AB®)=(do) AB+(-1)° a A dp (1.72)

d(a(p) AR /\G(')) =(do)ABArc+(-1) andBArc+(-1)"" aABado
Verilen formlarmin komutasyon iligkisi,

[0 B]=~(-1)"[Bt] (1.73)

esitligi ile gosterilir ve Jacobi 6zdesligi ise asagidaki sekilde ele alinir,

[[e 8], ]+(-2) " [[5,a],B]+ (-1 [[B.0].o.]=0 (1.74)
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1.2.2. Dual eslenik

Hodge dual (*) olarak da adlandirilan bu islemci *: Q™ (V) — Q°® (V) seklinde
tamimlanir ve D boyutlu bir uzayda p-form yapisindaki bir degiskene uygulandiginda

(D-p) form yapisina doniistiiriir. Ornegin A € QP (V) iizerine uygulandiginda,

*A(P) _ 1 Py --Hp

p+l D
(D—p)! nHlWMPHPHHMDdx*l A AOX (1.75)

elde edilir. Burada bitiintiyle antisimetrik n,  — tensorii Levi-Civita semboli ¢,

ifadesi ile iliskilidir,

1
nlll---HD = | g |8ul...uD ; n“l-.-l-lD = ESM"'HD (176)

yukaridaki ifadede g= det(gw) seklinde tanimlanir. Bu antisimetrik tensoriin bazi

ozellikleri asagida verilmistir,

D-1

Moo = (1) (D=p)18™ " (L.77)
Mo =(-1)"" D! (1.78)
Ayrica bu tensor ile iligkili olarak,
dx™ A..adx™ =g - tod®x = ghtodPx, (1.79)
yazilabilir. Bu temelden hareketle,
* = i dx*™ dxte = i \/7de Hg--Hp

- D|nH1---HD Ae - D|nu1---uo |g| n

1 D-1

=2,(-1) D!,/|gfdx” (1.80)

=(-1)"" lglax®
AP *gP) _ B \*xAP) _ p!(*l) Aul---up Bt (1.81)
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H(A0) = (<2 AP (1.83)

denklemleri elde edilir. D=4 i¢in sirasiyla 0, 1, 2 form olan ¢, A, F alanlarina

Hodge dual islemcisi uygulandiginda asagidaki ifadeler elde edilir,

%) = %(wacdx“ AOX" AdX? AdX® = %(I)«/—gswpcs“v‘)"d‘lx

= —¢\-gd*x

1.84)
@ _ 1 v c _ 1 v c (
*AT = aA“lepch AOXP AdX? = aA“a/—gaprdx AOXP AdX
(2) _ 1 v c _ 1 Y c
Y = % F'M,pedX A dXT = o F 1/—gswmdxp Adx
Hodge dual islemcisini 1-form e* = eaudx” baz vektoriine uyguladigimizda,
ey = %‘o’abcdeC ne', e = Eapca€” *€bcd = Eabed (1.85)

1
e’ A%e, = gsabcdeat”d =4*1

a

esitlikleri elde edilir. Burada e™* =e* A...A€™ olarak tanimlanir ve D=4 igin

Denklem (1.11), Denklem (1.79) ve V* V’° V° Ve e =™ det(V) tanim

kullanildiginda asagidaki ifade elde edilir,

e® ne® ne ne =g e° e e dx Adx’ Adx® Adx®

_ Hgabcdd4x

Hodge dual, integral igerisinde kullandigimizda ise asagdaki yapi elde edilir,

(1.86)

1 Vi...V
A, BYrn, o dxM AL AdX
(D _ p)l I Hy-Hp 1--VpHps1--HD (187)

- (—1)D71 P !J'd[’x\/@AMmup Bt

21

J‘A(p) A*BP) —



Ornegin D=4 igin S= I D¢'” A*D¢'® bigiminde bir eyleme uygulandiginda,

D6 A*D§® =—[ (D), (D) -gd*x (1.88)

ifadesine ulasilir. Burada D dis kovaryant tiirevdir. Benzer sekilde Dirac eylemi igin

kullanildiginda ise,

Soie == W(i*y Ad+m*1)y

- J.d“x\/g\ﬂ(iy”éM - m)\y

(1.89)

elde edilir. Burada w O0-form, dy 1-form ve *y:*(yaea) 3-form yapisindadir,

bunlara ek olarak y, Dirac gamma matrisleri ve e* =e® dx" 1-form yapisinda ve €*

ise vierbein’dir. Dirac lagrangian yogunlugu ise asagidaki sekildedir,
I—Diratc = \_V(Iyuap + m)‘l/ (190)
1.2.3. i¢ carpim ve Lie tiirevi

I¢ carpim veya i tiirev, verilen bir p-form Q" ve bir vektdr alan Vnin belli kurallar
altinda birleserek (p—1) form 0" olusturmast olarak tammlanir ve agagidaki

sekilde gosterilebilir,

i, QP (V) - (V) (1.91)

Ornegin (DEQ(p)(V) yapisinda bir p-form olmak iizere, i¢ ¢arpim i, asagidaki

sekilde ifade edilir,

Dy, MpV‘)‘dx“z/\.../\dxHp (1.92)

Bu islemin baz1 6zellikleri asagida verilmistir,

1 i,f=0, feQ?(V)
2. igh=(h,V)=h(V), heq¥(v)
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3. iydx* =dx*(V)=V*
4. iv(aAB)=iv0L/\B+(—1)p0c/\iVB, oceQ(p)(V), BEQ(q)(V)
5.0,° =0, {iyi,}=0

6. (ivT) e =V T

7. iy *o=*(oAV)

TeQ? (V)

Eger burada vektor alani olarak e* vierbein secersek, bu bazda i¢ ¢arpim Iea“ =1,

seklinde gosterilir ve 4 boyutta asagidaki ifadeler elde edilir,

ie*=4
: a  :b ab
I,*1=*¢,, e'Al'*1=g7*1

i, *e” =*(e" re,)

a

i, (e net) =*(e* et ne,) (1.93)

i, *(e” net net)=*(e” ne’ ne ne, )

i° (ea /\*eb)z ie? A*e” —e* Ait*eb

Bunlara ek olarak i¢ tiirevin, dis tiirev ile iligkileri g6z oniine alindiginda asagidaki

ifadeler yazilabilir,
l, ={d,i,}, i[V,m]:[IV’im]' [l,.d]=0 (1.94)

Burada |, Lie tiirevi olarak adlandirilir. Bu tiirevin bir p-forma etkisi ise
lyo=d(iy®)+i,do seklindedir ve Cartan 6zdesligi olarak bilinir. Lie tiirevinin
onemli bir oOzelligi ise S:fL seklinde verilen bir eylemin genel koordinat

doniistimleri  (diffeomorphism) altindaki degisiminin bulunmasinda kolaylik

saglamasidir. Ornegin 1.S=8S=0 oldugu dikkate alindiginda,
1S= i, (dL)+d(i,L)=0 (1.95)

elde edilir. Burada Lagranjiyen L, N boyutta bir N-form oldugu dikkate alindiginda,
ilk terim N+1 form oldugu icin integrale bir katkis1 olmayacaktir. Ikinci terim ise

tam tiirev yapisinda oldugu i¢in ihmal edilir. Boylece esitlik saglanmis olur.
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1.3. Ayar Teorisi

Genel gorelilik teorisinin 1915 yilinda ortaya ¢ikmasiyla birlikte kiitlegekimin artik
uzay-zamanin geometrisiyle alakali oldugu goriisii baskin geldi. Kiitlegekime
getirilen bu yeni bakis acis1 sayesinde ayar teorisiyle alakali olarak Weyl’in 1929
[60], Yang ve Mills’in 1954 [61] ve Utiyama’nin 1956’da [1] yaptig1 ¢alismalar
ortaya ¢ikmistir. 1960°larda basta Kibble [2] olmak {izere yapilan diger ¢aligmalar
gosterdi ki Minkowski uzayinda ele alinan P(1,3) kiitlegekim ile yakin iliskiye
sahiptir ve bu grubun ayar teorisi uzay-zamanda Riemann-Cartan geometrisini ortaya
cikarmaktadir. Buradan anlagildi ki diger uzay-zaman gruplarinin veya daha genis
simetrilerin de kullanilmasiyla kiitlegekim teorisini genellestirmek ayar teorisi ile

mumkindir.

Bu fikir sayesinde, bilinen uzay-zaman simetrisini Maxwell simetrisi ile
genellestirdigimizde, genisletilmis bir kiitlegekim teorisinin  ve bazi yeni
etkilesimlerin ortaya ¢ikmasi beklenmektedir. Burada, sonraki bdliimlerde

yapacagimiz islemlere temel olusturmasi igin kisaca ayar teorisinin bazi temel
kavramlar1 verilecek ve sirasiyla U(l) ve SO(1,3) gruplar tizerinde iki adet

uygulama yapacagiz.
1.3.1. Global ve yerel degismezlik

Elimizde n parametreli bir Lie grubu oldugunu varsayalim, bu grubun iireticileri arasi

komiitasyon iligkisi asagidaki sekilde olsun,
[XA ’ XB] =ifps Xc (1.96)

Burada X, grubun iireticileri, fABc:—fBAC yap1 sabitleridir, A,B,...=1,...,N

degerlerini alir ve N iiretici sayisim1 gosterir. Global doniisiim altinda bir y alani,

v =Uy = eiEAXA\p (1.97)
gibi doniisiir. Son ifadenin dis tiirevi asagidaki sekilde elde edilir,
dy’=d(Uy)=Udy (1.98)
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Kiitlesiz Dirac Lagranjiyenini Ly, =iy*yAdy bu global simetri doniisiimiinii

inceledigimizde,

Lbie =10 *y Ady’ =ipU™ *y Ad(Uy)

= igUEyAdOy +igUU*y Ady (1.99)

= |\Tf*'Y A d‘V = LDirac

degismez kaldig1 gorillmektedir. Eger ilgili simetriyi yerel déniisim &" —>8A(X)

(X)Xa

altinda incelersek U =e" icin,

dy’' =d(Uy)=dUy + Udy (1.100)
elde edilir. Ayn1 sekilde Dirac Lagranjiyenine uyguladigimizda,

Lbiae = 10/ *y Ady' =1gU " *y Ad(Uy)

=L

(1.101)
+igU ™ *y AdUy

Dirac

elde edilir. Burada acik¢a goriilebilir ki yerel simetri dontisimii altinda ilgili
Lagranjiyen degismez kalmamaktadir. Bu durumun istesinden gelebilmek igin

“kovaryant tiirev” olarak adlandirilan yeni bir tiirev operatdrii tanimlanir,
D=d+igA (1.102)
ve bu kovaryant tiirev asagidaki 6zellige sahiptir,

D(\Vl\Vz): D(\Vl)\V2 +W1D(\|’2) (1.103)

Burada A =A"X, “ayar potansiyeli” veya “ayar alani” olarak adlandirilir g ise

etkilesim sabitidir. Simdi ilgili A ayar alaninin 6zelliklerini bulalim. Aradigimiz

doniistim Denklem (1.98)’e benzer sekilde asagidaki gibidir,
(Dy) = UDy = Udy +igUAy (1.104)

yukaridaki ifadenin sol tarafin1 agik bir sekilde yazdigimizda ise Denklem (1.105)
elde edilir,
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(Dy) =(d+igA") Uy = dUy + Udy +igA'Uy (1.105)
Son iki ifadenin sag taraflarinin esit oldugunu diisiiniirsek,
dUwy + Udy +igA'Uy = Udy +igUAy (1.106)

ve d ( UU_l) =0 oldugunu hesaba katarak diizenledigimizde,

A= édUUl +UAU™ = —é UdU ™ + UAU™

- 'ubu*
g

(1.107)

Ulasilan son netice A ’nin doniisiim kuralin1 géstermektedir. A ayar potansiyelinin

ilgili simetri altinda sonsuz kii¢iik degisiminin bulmak i¢in U= e ifadesi yerine

yazilir ve Backer-Campbell-Haussdorf formiillerinden (Ek-C) yararlanildiginda,

A= —éeim (d+igA)e ™

1 (1.108)
=—ZdMX, + A+[IAAX,, A
g
elde edilir ve 3A = A’'— A ifadesinden hareketle,
1 A A A
A =-=dA*X, [ A,iA"X, |
i g (1.109)
_ i A
=5 D(ir"X, )

Bu neticeyi basitlestirmek adina C(X) =A"X, kullanilirsa asagidaki yapi elde edilir,
1 .
SA:—adC—l[A,C] (1.110)

Bulunan bu niceliklerin yardimiyla Denklem (1.104) ifadesini Denklem (1.111)’deki
gibi ispat edebiliriz,
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(D\U)’ :(d +igA’) Uy = dU\|I+ Ud\|j+ |g(_é Udu—+ UAU_lj Uy

=dUy + Udy —dUy +igUAy (1.111)
=U(d+igA)y
=UDvy

Boylece kiitlesiz Dirac Lagranjiyeni kovaryant dis tirev ile L, =iy'*yA Dy

seklinde yazilabilir. Yerel dontisiimler altinda degismezligi ise,

L birec = i\TJ’*Y/\(D\U) =ipU™ *y AUDy (1.112)
= |\_|f*'Y A D\V = I—Dirac

seklinde gosterilebilir.

Tanimlanan kovaryant tiirevin karesi ise bizi asagidaki gosterildigi sekilde 2-form

egriliklere ulastiracaktir,

D’9=DADe=(d+igA)A(d+igA)e
=d’p+igd(Ag)+igA Adp—g°A A Ag
= ig(dAJrigA/\A)(p
=igFo

(1.113)

Burada F egriligi temsil etmektedir ve 1-formlar arasi OL/\B=%[OL,B] ifadesi

kullanilirsa,
F:dA+igAAA:dA+%[A,A] (1.114)

elde edilir. Eger A = A*X, ifadesi yukaridaki denklemde yerine yazilirsa asagidaki

ifadeye ulasilir,

F=F"X, =dA+igA A A

~ (dA%) X, +%AB AA[Xg, X, ] (1.115)
:(dAA —%fBCAAB /\ACJXA
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Neticede her bir iireticiye karsilik gelen egriligi asagidaki sekilde yazabiliriz,
FA — dA® —%fBCAAB AAC (1.116)

Elde edilen egriliklerin ele alinan simetri altindaki sonsuz kii¢lik degisimini Denklem
(1.107) ve Denklem (1.114) yardimiyla asagidaki sekilde bulabiliriz,
F'=dA"+igA" A A’

- d(UAU‘l L Udu-1]+ ig(UAU‘l L UdU‘le[UAU‘l L UdU‘lj
g g g

dUAU™ + UdAU™ — UAdU ™ — L dudu™

. d _ (1.117)
+igUA A AU + UAdU ™ + UdUUAU - L Udu*udu
g
=U(dA+igAnA)U™
=UFU™
Burada sonsuz kiigiik grup eleman1 U = e (% — g ifadeleri yerine yazilirsa,
F'=e“Fe ™ =F +i[(,F] (1.118)

elde edilir. Netice itibariyle egriliklerin bir simetri doniisiimii altindaki sonsuz kiigiik

degisimi asagidaki ifade yardimiyla bulunabilir,
OF = i[g,]F] (1.119)

Simdi sirasiyla ilki uzay-zaman indisleri ile digeri iSe tanjant uzaymin indisleri ile iki

uygulama yapalim.

1.3.2. U(1) ayar teorisi

Bu boliimde yerel U(l) faz doniisimi simetrisinin altinda asagida verilen Dirac

Lagranjiyenini inceleyecegiz,

Loie = 0(i7"0, +m)y (1.120)
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Sonuglar1 daha detayli gorebilmek i¢in uzay zaman indislerini kullanacagiz. U(l)

simetrisinin reticisi 1 olup, herhangi bir grup elemani U=e“®olarak ele

alindiginda bir y alanmin degisimi asagidaki sekilde verilebilir,

v’ = Uy =My (1.121)

Bu grup icin bir onceki boliimde verilen temelden yola ¢ikarak yerel doniistimler

altinda degismez kalan Dirac Lagranjiyenini asagidaki gibi yazabiliriz,

Lo = (iy"D, +m)y (1.122)
burada kovaryant tiirev agsagidaki sekilde tanimlanur,

D, =(0, +igA,) (1.123)

ve q etkilesim sabitidir. Ortaya atilan A, ayar alanimin sonlu ve sonsuz kiigiik

degisimi sirasiyla Denklem (1.107) ve Denklem (1.110) dikkate alindiginda

asagidaki bigimi alir,

i ] 1
A, =-ZUDU LOBA, == (1.124)

Bu sayede Denklem (1.122)’deki Lagranjiyenin yerel donilisim altindaki

degismezligi rahatlikla gosterilebilir. Ortaya atilan A ayar alanindan kaynaklanan

egrilikler Denklem (1.114) ile ve bunlarin U(l) simetrisi altinda sonsuz kiigiik

degisimi ise Denklem (1.119) ile asagidaki gibi bulunabilir,

F,=0,A -0A, &F, =0 (1.125)

pv

Kovaryant tiirevleri kullanarak baska bir 6nemli ifadeyi elde edebiliriz. Kovaryant

tiirevleri Jacobi 6zdesliklerinde yerine yazdigimizda,

[D,.[D..D,]]+]D,.[D,.D,]]+|D,.[D,.D,]]=0 (1.126)

elde edilir ve bu islemin sonucunda Denklem (1.127) elde edilir,
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D,F,+D,F,+D,F, =0 (1.127)

povp v opu

Ayrica F ayar degismez bir ifade oldugu i¢in kovaryant tirevi siradan tiirev ile
degistirebiliriz,
o,F,+o,F, +0F, =0 (1.128)

Yukaridaki netice Bianchi 6zdeslikleri olarak adlandirilir ve F egriliginin Denklem

(1.125)’deki gibi vektor alanlar yardimiyla ifade edilebilecegini gostermektedir.
Burada A vektdr potansiyelini elektromanyetik vektor potansiyel, F, egriligini
elektromanyetik gerilme tensorii ve q etkilesme sabitini de elektrik yiikii olarak ele

aldigimizda ulasilan teorinin elektrodinamigi igerdigini gorebiliriz. Buradan

hareketle Denklem (1.125) dikkate alindiginda asagidaki Lagranjiyen yazilabilir,

L, = _% F P (1.129)

ve Dirac Lagranjiyeninin L, .. :\Tl(iy“Du+m)\|l oldugu hesaba katilirsa toplam

Lagranjiyen L., = Ly +La bigiminde yazilabilir,
1 2 .
L roptam = —Z(auAv —0,A,) +(iv'o, —ay"A, +m)y (1.130)

Bu sayede yerel U(l) simetrisi altinda degismez kalan ve vektorel alanlarla

fermiyon alanlarinin etkilestigi bir teori elde edilmis olur. Bu Lagranjiyene ait

hareket denklemleri bulunmak istenirse ayar alanlarina gore varyasyon almir. A,

ayar alanina gore varyasyon ile asagidaki sonug elde edilir,

1 v —
S Lvopiam = 8{_Z F*F. ‘HV('Ypap —qy* A, + m)\lf}

1 v v it
=—§6(8”A —0"AY)F, —qyy*5A,y (1.131)

=—0"3A'F,, —8A, (ayr"y )
=0,(-8A"F,, ) -8A" (8"F,, +qy,y)=0
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Son ifadede ilk terim tam tlirev oldugu i¢in integralde ihmal edilir, ikinci terim ise

asagidaki hareket denklemini verir,
0'F, =quy,w=J, (1.132)

Son denklem homojen olmayan Maxwell denklemlerine karsilik gelmektedir, J, ise

akimi ifade eder. Benzer sekilde y alanina gore varyasyon alinirsa,

(iy'o, +m)y =ay' Ay (1.133)
hareket denklemi elde edilir ve bu ifade yiiklii bir fermiyonun dinamigini tanimlar.
1.3.3. Lorentz degismezligi

SO(1,3) Lorentz grubu igin herhangi bir grup elman,

— o™ ()M

U=e 2 (1.134)

ile verilir. Burada o™ (X)=-»"™(X) antisimetrik “spin baglanti” veya “Lorentz

baglant1” olarak adlandirilir, M, =—M,, ise bu gruba ait iireticidir ve diferansiyel

gosterimi asagidaki sekildedir,

M,, =i(X,0, —X,0,) (1.135)
Bu iiretici asagidaki komutasyon iligkisini saglar,

[My,, My | =1(MegMye + MMy =M My —MigM,) (1.136)

SO(1,3) i¢in ayar teorisine asagidaki gibi bir kovaryant tiirev tanimlayarak

baslayalim,

D:d+iA:d—%a)abMab (1.137)
Burada A = —%coabMab yapisindadir ve o (X) ise ayar alanidir.
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Tanimlanan ayar alaninin Lorentz simetrisi altindaki degisimini, Denklem (1.110) ve

sonsuz kiigiik parametreli {(x)= —%rab (x)M,, sonsuz kiigiik parametreli bir ayar

tireticisi kullanildiginda,

SA =—dC—i[AC]
=—d (—lrabMabj—i{—lmabMab,—lrmMcd}
2 2 2

_l ab__cd

_ZdtabMab—i_(D T (nadec+nbcMad_nachd_nbdMac)

_ _%(—drab — oM,

c

(1.138)

elde edilir ve bu netice ile degisimin genel ifadesinin 6A=—%6wabMab yapisinda

oldugu g6z dniine alindiginda asagidaki bi¢imde bulabiliriz,

So® = —dr® — @ P = _D® (1.139)

c

Bu gruba ait egrilikleri Denklem (1.114) yardimiyla asagidaki sekilde bulabiliriz,

F= dA+%[A,A]
:—%d(»abMab +L2{—%wabMab,—%w°ndd}
. . (1.140)
= _Edo‘)abMab _gmab /\(DCd (nadec +nbcMad _nachd _nbdMac)
= —%(dwab +o*, Ae® ) M.,
Burada F=F"X, = —% Ri"t’Mab ifadesinden yararlandigimizda,
R* =do® + o, Ao® (1.141)

2-form Lorentz egriligi elde edilir ve bu esitligin Denklem (1.52)’ye denk oldugu
gosterilebilir. Yerel Lorentz doniisimii altinda bu egriligin varyasyonunu ise

Denklem (1.119) yardimiyla Denklem (1.142)’deki sekilde bulabiliriz,
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o =[G F]=i| -3+ Ma - SRM |

=—1"R%(n, M (1.142)
ad" " 'bc
:_lr[acRCb]Mab
2

Elde edilen son ifade JFF = —%SRabMab denklemi ile karsilastirildiginda,

SR® =" R®! (1.143)

elde edilir. Simdi bir uygulama olarak Einstein-Hilbert eylemini dikkate alalim,

1 a 1 al c
Sz—EJ.R > A* (e, /\eb)=—ﬂjsabcdR NN (1.144)

burada « Einstein sabiti, e® (X):ea“dx“ 1-form vierbein vektorlerini temsil

etmektedir ve Lorentz simetrisi altindaki dontigiimii (ea) =A% e" seklindedir. Eger

A®, parametresinin sonsuz kiiciik agithmini A®, =8°, +1°, dikkate alirsak,
5e* =1°,e” (1.145)

elde edilir. Ilgili eylemin yerel Lorentz degismezligi asagidaki sekilde gosterilebilir,

0S=——

1 o 8e,R® ne’ne’+g, SR ne® nef
4¢

ab c d ab c d

+e,qRT A0 AR g, RT AT AGE
1 {eabcdr[aeReb] et nel+eg, R® ATt €8 /\ed]
A ab c d e
+e,4RT AT AT

1 e e e e ab [ d
:—4—j(r a€ebod T T b€aecd T T cCaved T T 4 )R NG (1.146)

K

abe abce

1
= ——IreesabcdRab NN
K

=0

Burada d¢e,, =0 ve ™ (X) parametresinin antisimetrik 6zelliginden faydalanilarak

elde edilen Denklem (1.147) kullanilmstir,

33



e e e e — 1€ —
(T aCebed T T b€aecd T T c€aved T T d€ance ) =T eCaed = 0 (1147)

Hareket denklemleri i¢in 6S=0 temel alinarak sirasiyla ayar alanlarmma gore

varyasyonlara bakilir. ilk olarak ®® (x) ayar alanina gore varyasyon alinirsa,

5,5 = [£4dR™ A€ A€

= Igabcd DSw™ Ae® A’ (1.148)
= I D(sabcd&oab NN ) +280" A (gabcd A De’ ne! )

=0

elde edilir. Burada D Lorentz kovaryant tiirevdir (Ek-A). Ilk terim tam tiirev

oldugundan ihmal edilirse asagidaki hareket denklemi elde edilir,

&, D" A€ =0 (1.149)

Bu denklemin saglanabilmesi igin burulma (torsion) tensorii F°=De=0 olmasi

gerektigi acik¢a goriilmektedir. Ikinci olarak € (x) alanma gére varyasyon alinirsa,
5,5 = [ 206° A(£4yR* ne’)=0 (1.150)
ve bu neticeden hareketle,

e R A6 =0 (1.151)

hareket denklemi elde edilir. Bu denklem kullanilarak Einstein alan denklemini elde

edebiliriz. Bunun i¢in dncelikle denklemi sag taraftan e” ile ¢arpalim,
EpaRT AE AR =0 (1.152)

Son ifade tizerinde Denklem (1.86) kullanilip agik bir sekilde yazildignda Denklem
(1.153) elde edilir,
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EpaR AT AR =€, [% R® .e° /\efJ/\ed ne'
_ ; adeRab efdv\/_d4 Rab ( adegefvd)ﬁd4X
1(Rabab6V _Rav _Rabba8v J d4

2 +vabc+Rav _ v

ofw-Lr) J—d4

(1.153)

Bu ifade uzay-zaman indisleri ile yazilip Denklem (1.152) ile karsilarstirildiginda
asagidaki ifade elde edilir,

G*, =R", —%B”QR =0 (1.154)

a

Bu esitlik Denklem (1.57)’de belirtildigi gibi Einstein tensorii olarak adlandirilir.
Benzer sekilde Einstein-Hilbert eylemi kozmolojik sabit ve kiitle terimini igerecek
sekilde asagidaki gibi yazilabilir,

S= —ij(sabcdRab NN —Asabcdea ne’ netne’ —dil *1] (1.155)
4k 2

Burada A kozmolojik sabit ve L ise kiitle terimidir. Uzay zaman koordinatlarinda

yazilmak istendiginde,
S=2i j d*xy[~g(R-6A—-2xL,,) (1.156)
K

bicimiyle ifade elde edilir. Son eylemin metrige gore varyasyonu alindiginda

kozmolojik terimi igeren Einstein alan denklemi asagidaki sekilde elde edilir,
1
R. —ngR +3Ag,, =xT,, (1.157)

Burada T, enerji-momentum tenséridiir (EK-C).
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2. SUPERSIMETRI VE SUPER KUTLECEKIM TEORISI
2.1. Siipersimetri

Parcacik fizigi acgisindan ele alindiinda ise siipersimetri, bozon ve fermiyonlarin
birbirlerne doniistiigli genisletilmis bir uzay-zaman simetrisi olarak ele alinabilir.
Bilinen siipersimetrinin ortaya ¢ikist icin komiitatdor ve anti komiitatorlerin ayni
cebirde ilk olarak kullanildigi Neveu’nun [62] makalesine gidilebilir. Burada
Virasora cebrinin bir boyutta “sliper” genisletilmesi yapilmisti. Bu ¢alismadan kisa
bir siire sonra 4 boyutta Poincare cebrinin siiper genisletilmesi yapildi. Bu konudaki
onemli ¢alismalar ise tarihi sirasiyla Golfand ve Likhtman [63], Volkov ve Akulov
[64, 65], Wess ve Zumino [66] olarak verilebilir. Bu c¢alismalarin ardindan 1975
yilinda Fayet’in calismasiyla [67] zayif ve elektromanyetik etkilesmenin
stipersimetrik teorisi elde edildi. 1976 da ise Feedman’in makalesi [68] ile birlikte 4
boyutta minimal siipersimetri ve Genel Gorelilik teorisinin birlesimi olan siiper
kiitlegekimi kesfedildi. Siipersimetri ve siiper kiitlecekim teorisi hakkinda detayli
bilgi i¢in [69-73] kaynaklarina basvurulabilir.

2.1.1. Siiper Poincare grubu

Burada siiper Poincare grubunu sP(1,3) ele alacagiz. Siiper cebrin olusturulmasinda

Majorana formalizmi se¢ilmistir. Bu grubun freticileri X, :{Pa,Mab,Qa}

seklindedir ve bilinen P(1,3)’na ek olarak ilave bir spinér iiretici Q, igcermektedir.
Burada spinor indislerini temsil eden Yunan harfleri «,f,...=0,...,3 degerlerini

alirlar. sP(1,3)’nun komiitasyon iliskileri Denklem (2.1)’deki sekilde verilir,

[

[ ]

1Q..Qf=2(Cr°) P, @.1)
I
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Grup elemant ise,

g (X, 0, w) _ P gi0"Qu g 2" Mo (2.2)
seklinde yazilabilir. Burada X*(X), 8% (x), »® (X) iliskili tireticilere karsilik gelen

sonlu parametrelerdir. Bu parametrelerin sP(1,3) altinda sonsuz kiigiik degisimlerini

bulmak i¢in koset doniisiimlerinden faydalanacagiz. K bir koset olmak {izere bu
kosetin dontigimi K'H = g(a, g, u) K seklinde verilir. Burada a* (X), g” (X), u® (X)

sonsuz kiigiik parametrelerdir ve H kararlilik grubunu temsil etmektedir. Koset

asagidaki sekilde secilir,

K(x,0)= g%5.9) (:(i))(” ) _gregire, (2.3)

Burada H(m)=e7wa Mo seklinde SO(1,3) olarak tercih edilmistir. Bu noktadan

hareketle gerekli islemler yapildiginda asagidaki neticeler elde edilir,

8x* =a* +u® x" —igy"0 (2.4)
56° =g —%uab (c,0)" (2.5)
(Dab — uab (2.6)

Burada bir spindriin yiik eslenigi ¢ =y'C seklinde tanimlanir ve yik eslenigi
matrisi C=1v, seklindedir ayrica siipersimetriye dair detayli notasyon bilgileri (EK-

B)’de yer almaktadir. ilk iki varyasyon kullamlarak {ireticilerin diferansiyel

gosterimleri bulunabilir. Bunun i¢in varyasyonlar, bir skaler alanin sonsuz kiiciik
degisimi d)'(X,G) =(D(X—6X,9—69) olan ifadede yerine yazilir ve Denklem (2.7)

’de gosterildigi sekilde Taylor serisine agilir,
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P'(x*,0") =@ (x" —8x*,0° —50°)
= qb(xf’1 —a* —u*, x" +igy®0, 0* —¢“ +%uab (cabe)“j .7)
(—aa —u?, X" +ig” (Cya)mB eﬁ)aa

+[—8°‘ + i u® (oabe)“jaa

=d(x*,0°)+ ®(x*,0%)

Burada 0@’ (X, 9) = d)'(x, 9) -® (X, 9) temel alinarak diizenleme yapildiginda,

ia[i(,)]+ie" [iaa +(or), eﬁaa}

—éuab {i (X,0p —X,0, ) — L

dD(x*,0%) =
( ) E(Gabe)aa

o

} ®(x*,0°) (2.8)
elde edilir. Buna ek olarak skaler alanin sonsuz kiigiik grup doniisiimii altindaki
varyasyonu,

3D = (iaf"Pa +ie”Q,, —%coabMab]CD (2.9)

seklindedir. Bu ifade ile Denklem (2.8) karsilastirildiginda {ireticilerin diferansiyel

gosterimleri agsagidaki sekilde elde edilir,

P, =i0, (2.10)
Q, =i {aa —i(vaG)qab} (2.11)
M., :i{(xaab —xbaa)%(cabe)“ aa} (2.12)

2.2. Siiper Kiitlecekim Teorisi

Bu bolimde sP(1,3)’nun ayar teorisi olusturulup siiper kiitlegekim teorisine

ulasilacaktir.
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2.2.1. Siiper Poincare grubunun ayar teorisi

Grubun yerel incelemesi i¢in kovaryant tiirevin genel ifadesinin D =d+iA oldugu

dikkate alimir. Burada 1-form ayar potansiyellerini AAz{ea,of‘b,w“} seklinde

parametrize ettigimizde asagidaki sekilde yazabiliriz,
A a o 1 ab
A=A"X,=¢€P,+vy Q“_Ew M., (2.13)

Burada 1-form ayar alanlari sirasiyla €* =e® dx* vierbein, y* =" dx* gravitino

alani ve o =mabudx“ spin baglantidir. Belirlenen bu ayar alanlarinin

varyasyonlarini asagidaki gibi,
a a 1 al
G(x)=y* (x)Pa+e* () Qu —5 1% (X) My (214)

sonsuz kiiglik parametrelere sahip bir yardimct alan ve Denklem (1.110) yardimiyla
Denklem (2.15)’deki gibi bulabiliriz,
6A=—d§+i[Q,A]
=—d i ap 1 abM o °p 1 ch p
=—dC+i|y a_ET b Fe’Q, e C_Ew a TWQ,
i’ y*P, —it° e°P, + %r[acme]Mab

_ . 1 ab o 1 ab o
=—dC+i{- 1" (0,9)" Q, + 0" (042)" Q, (2.15)

-2 (EYa‘V) Pa

i ((DacyC - Tacec + 2|§'ya\|j) Pa — IE m[aCTCb] M o
=—dl+i

. Grab (ov)" —%@ab (Gaba)ana

Son ifade 8A =8e°P, +dy“Q, —%S(DabMab, ile karsilagtirildiginda 1-form ayar

alanlariin varyasyonu Denklem (2.16)’daki sekliyle elde edilir,

39



5e* = —dy* —w?, y° +1°,e° — 2igy’y
8™ = —dt® — ol 7! (2.16)

Sy =—de” + io)ab (64)" —irab (cuv)"

2-form egrilikler i¢in genel ifade asagidaki gibi verilir,

F=F*X, =FP, +‘P°‘Qa—%RabMab (2.17)

Burada Denklem (1.114) kullanildiginda,

F=dA+%[A,A]

=dA+% e""Pa—%wabMab+W“Qu,e°Pc—%m°ndd+prp}

i —coab/\ec[l\/lab,PC]+%coabAde[Mab,Mcd]

2 +m"b[|\/|ab,Qp]\|lp -y {Qa,Qp}‘Ifa

soa c HRE! ch
—2i0°, AP+’ A" M,

1, . _.,
—5 0" A(0wy) Q, ~ 207" Ay,

(dea +', A€’ —igy? /\w) P,

1 al a cl o I al o
—E(dcob+oac/\(ob)Mab+(d\|/ —ZmbA(cab\v) an (2.18)

elde edilir ve buradan 2-form egriliklerin agik ifadelerine ulasilir,

F* =de* + ", Ae” =iy Ay'y = De* —iy Ay
¥ = dy* —icoab A(opy)" =Dy* (2.19)

R® = dw® + o, A ®® = De®

Son ifadeler sirastyla siiper torsion (burulma) tensorii, spinor egrilik, Riemann egrilik
tensorleridir ve bunlar Oteleme, siipersimetri ve Lorentz simetrilerinden
kaynaklanmaktadir. Bu egriliklerin ilgili grup yerel ayar doniisiimii altinda sonsuz
kiiciik degisimi Denklem (1.119) ve Denklem (2.14) yardimiyla Denklem (2.20)’deki
sekilde bulunabilir,
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SF =i[¢,F]

H a 1 al [e3 C 1 Cl
={y Pa—Er "M, +£°Q,,F PC—ER ndd+‘PPQP}

iR® y*P, —it®.F°P, +l21[""cR°b]|v|ab

o1 a 1_., a
=i —th(csab) p‘P"Qa+ZR " () ,€°Q,

(2.20)
90 a p
2 (Cy )GP‘P P,
H a C a c H a G i a Ci
| |(R Y- 420 (Of) W )Pa—ER[ I,
=i . .
(i, o i, o
H(ZT "(0w) P _ZR "(0) ; Sija
Bu netice SF = 8F*X, =8FP, +8¥“Q, —%SRabMab ile karsilastirildiginda,
SF" =1, F* Ry’ - 2i (&)
SR® = -RE ¢ (2.21)
5P =— L1 (5, W)+~ R® (0,¢)"
4 4
elde edilir. Bianchi 6zdeslikleri ise asagidaki sekilde bulunabilir,
DF* =D(de® + o, /\eb)—iD(\Vp Aler) w“)
—R* e’ —i(‘P" ACr) v -yt A(Cr) ‘P) (2.22)
pa pa

=R* Ae”-2iyy"¥

o I al a o I al o
d(‘P )—Zcob(cab) B/\[d\u —Zo)b/\(csab\y) ]
DY =1 _
+Ex/\(d\|/“—iwab/\(cab\|/)a]

i

= [d(dw“ —%coab A(Gabw)aj—zcoab (G )aB (dw“ —%coab Aopy)” ﬂ (2.23)

- —i R (o, Ay)"
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DR® =dR® +®’, AR® —°, AR
d(do;)ab +o, /\oo‘:b)+(x)a‘C /\(d(o°b + O A (odb)
- b ca c da
—® C/\(doa +0,A® )
{dzcoab +do’, Ao® -0’ Ado™ +0*, Ado® }

+0°, A0® A0® —0°, Ado® —0°, A%, Ao

(2.24)

=0
2.2.2. N =1 veD =4 siiper Kkiitlecekimi

Bu temelden hareketle N=1 ve D=4 i¢in Lagranjiyenin genel ifadesi asagidaki

sekilde yazilabilir,
S= J' 0E, R® A At +BY ALY Y AP (2.25)

Burada ilk terim bilinen Einstein-Hilbert Lagranjiyeni diger terim ise Rarita-
Schwinger alamidir ve a, B sabittir. Ilgili katsayilar Lagranjiyenin istenilen simetri
altinda degismezligine bakilarak belirlenebilir. Einstein-Hilbert Lagranjiyeninin
degismezligi Denklem (1.146)’da gosterilmistir, Rarita-Schwinger alaninin Lorentz
degismezligi ise Denklem (2.26)’daki sekilde gosterilebilir,

O\ orensSrs = BIS\T//\eCyCys AV +YASEY Y AY + Y ATy vs AP

Lorenz

i _
(Z wrab%jA €Y rs AW+ A (T8 )1ers AW

:BJ' |
I
i — ab,C — c b

:Bh"’” e [Ou Ve [1s AV U AT Y Y5 AW (2.26)

= BI -y A chebycy5 AV 4+ A rcbebycyS AY

=0

Gortildigi gibi iki terim bagimsiz olarak Lorentz degismez oldugundan dolay:
katsayilarin bir 6nemi yoktur. Simdi eylemin siipersimetri doniisiimii altindaki

davranisina bakalim,
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5 Se j{ZaaabcdRab A8 AeT+BOY AEY Vs A D\u}
v +BY A 8%y v ADy +Py A€y ys A DOy
208,,,R® A (Zi\lecs) ~e +B(-De)yys ADy A€ (2.27)
:J. ) A
+BYY.¥s A Dy A(2i5y°E )+ By s A D(-De) Ae

B

Son ifadede sirasiyla A ve B terimlerini inceleyelim,

A =—-BDgy_y; ADy ne°
= D(—BEycy5 ADy AE€° ) +PBey v, AD*y A€ +BDEy, ys A Dy A De° (2.28)

= D(~BEY.vs A Dy A€ ‘% R®EY Y50 AW AE° +BEYY; A Dy A De°

B =2iByy.vs A Dy Ayye=2iByy.vs Ay ADyye=0 (2.29)
%,—/

0

Bulunan nicelikler eylemde yerine yazildiginda Denklem (2.30) elde edilir,
dioe, R® Apy’ene’ - 1B R™ Y70, AW AE°

4
By S =

+B§YCY5 A D\If A De° _B\T]chs A (_i Rab (Gabg)aj/\ ¢

ip

diae, R Ayye A€ 4 R™ &Y Y50, AW AE°

_J' C
+Bey .y ADy A De + % R™ A Y, Ys0 € A €°

(2.30)

D

Simdi C ve D terimlerini sirastyla inceleyelim,

C=-i % R*gy, (l €pegO" j INTINCEE gsabcdRab§ymG°d AY AR,

2
= gsabcdRabE {i(n™y’ =n"y")+e

cdmn

yh,)yn}/\\u/\er (2.31)

: B b— d B d b—
:_IzgabcdRa Syc AYAE +§8abcd8C "R® EYsYn ANYAE
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'B al . i C n
DleR ° AVY, Esabcdcd ENE

(2.32)
=i " £aRT AP EAE! — gaabcdac‘jm” R® AYY.y,ENE,
Bu iki terim yy‘e =—gy"y ve yy.y,e=¢YsY, W dikkate alinarak toplandiginda,
o E ab — cC d
C+D_|28abcdR AYYENE (2.33)
elde edilir ve eylemde yerine yazilirsa asagidaki nihai netice elde edilir,
bioe, R® Ay e A€ +i %sabcdRab APY°E A€
BoyS= | (2.34)

+Bey,ys A Dy A De°

E

Burada =-8a segilirse ilk iki terim birbirini gotiirecegi agikga goriilmektedir.
Ucgiincii terim ise, klasik torsion T* =De* =0 veya siiper torsion F* =0 sartlarinda
sifiragitmektedir. Ornegin son sarti ele alirsak De* =iyy* Ay elde edilir ve E

teriminde yerine yazildiginda,

E =ixBey,v:Dy AWy* Av =ixBey v,y A DYy’ Ay
=ikBey. vy Ayy" A Dy (2.35)
=ikB Yy vsw ey ADy =0
—

0

Ifadesine ulasilir. Bdylece katsayilar arasi iliski, Lagranjiyenin siipersimetri
doniistimii altinda degismezligi ile gosterilmis olur. Lagranjiyen o = ™ i¢in tekrar

K
yazildiginda asagidaki sekli alir,

S =1 [5uR™ A" A€ B AV, 15 A Dy (2.36)
K

Bu ifade ayn1 zamanda yalin siiper kiitlecekim Lagranjiyeni olarak bilinir. Hareket
denklemleri igin 8S=0 temel alinarak sirasiyla ayar alanlarina gore varyasyonlara

bakilir. Einstein-Hilbert terimine ait hareket denklemlerini daha énce bulmustuk. Bu
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sebepten sadece Rarita-Schwinger teriminden gelen katkilara bakacagiz. Ilk olarak

b o
®® ayar alanina gore varyasyon almirsa,

8,Srs = | -8W A€V, ¥5 ABDY = [ 8 A€y 75 A (—iSwabcab A w)

= J'28(oab A (i\TJ AEY O Vs A \|/) (2.37)
=0

elde edilir. Bu netice ile Denklem (1.149) dikkate alindiginda asagidaki hareket

denklemi elde edilir,
EaoaDE AT+ AE%Y O Y5 AW =0 (2.38)
Son denklem agildiginda,

. w i
€abed De’ A ed =-ly A eKYkGabys AY =—IyA ekYk (Esabcdcst j A

cdkr

= %Sabcd\l_f e {i(n™y! =™y )+ e vy fay

(2.39)
A — d, c 1 cdkr —
=TI WACY AW+ €448 C AYYsY AY
2 0
S R ANTIN-E
esitligine ulasilir. Burada sol ve sag taraf karsilastirildiginda,
De° =iyy° Ay (2.40)

ifadesi elde edilir. Bu ifade sayesinde siiper burulma tensorii F* =0 olur ve
Lagranjiyenin degismezlik sartia uygundur. Ikinci olarak €* ayar potansiyeline gore

varyasyon alinirsa,

8,Ses = I—8\T] AOE%Y Vs ADy = IZSGC A (4,75 ADy) (2.41)
=0

ve bu netice Denklem (1.151) ile birlikte ele alindiginda,
£ R™ A" +4yy,y; ADy =0 (2.42)
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hareket denklemi elde edilir. Bu denklem kullanilarak Einstein alan denkleminin

genellestirilmis halini elde edebiliriz. Bunun igin Denklem (1.153)’deki neticeye

ilave olarak ikinci terimi sag taraftan €" ile ¢arpalim,

4y, v, ADy A€’ =4y,7.v.D, v, e Ae® e neY

_ abdv (2.43)
=2Y,Y.VsDpWae . \/—gd“x

seklinde yazilabilir. Bu netice uzay-zaman indislerine gegirilip Denklem (1.154) ile

birlikte yazildiginda,

1
R* —=8" R=.7.v.D, y_g"™
o 2 o WV’Y&’YS [p\ljc] (244)

=T(v),

ifadesi elde edilir. Bu esitlik Einstein alan denkleminin genellestirilmis halidir.

Burada T(\y)”a enerji momentum tensorii olarak ele alinabilir.

Son olarak y* ayar potansiyeline gore varyasyona bakilirsa,

8,5=8 j 59 A(e%.7; ADy)=0 (2.45)
Boylece son hareket denklemi asagidaki sekilde bulunur,

ey, ADy =0 (2.46)
Bu denklem sag taraftan e’ ile ¢arpilip acilirsa,

ey.Ys ADy A€’ =y,y;Dy ne’ ne’
=7.v:D,y, re* re® ne® e’ (2.47)
1
— EYCYSD[aWb]Saded4X

elde edilir ve uzay-zaman indislerinde tekrar yazilirsa asagidaki genel ifade elde

edilir,
ey vs ADp W, =0 (2.48)
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3. MAXWELL SIMETRISI VE KUTLECEKIM TEORISi

3.1. Maxwell Cebri

Poincare cebrinin antisimetrik bir Z_ {reticisi ile genisletilmis hali olan M(1,3)’lin

sifir olmayan komutasyon bagintilari,

[M 'Mcd] (nadec+nbcMad_nachd_nbdMac)
[P P ] =i
[ P
[

3.1)
Mab' c] (nbcP T]acl:) )
Mab ' ch] - I (nadzbc + nbczad T]achd nbdzac)
Ve grup elemant ise,
0(x,0,0) =e" e Zee 2™ (32)

seklinde yazilabilir. Burada X° (X), o (X), o® (X) ilgili treticilere karsilik gelen

sonlu parametrelerdir. Bu parametrelerin M(1,3) altinda sonsuz kiiglik degisimlerini

bulmak icin koset doniisiimlerinden faydalanacagiz. K bir koset olmak iizere bu

kosetin doniisimii K'(X',0',...)H=g(a,&u)K(x,6,...) seklinde verilir. Burada

a’ (X), g™ (X), u® ( X) sonsuz kii¢iik parametrelerdir ve H kararlilik grubunu temsil

etmektedir. Koset asagidaki sekilde secilir,

(X ¢) |x Pae|¢ ®Z b (33)

Ilco

Burada H = eiEma M seklinde SO(1,3) olarak tercih edilmistir. Bu noktadan hareketle
Denklem (3.4)’deki neticeler elde edilir,
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&x* =a® +u’ x"
5% =& +ul® ¢! —%a[axb] (3.4)

(Dab =u ab

Ilk iki varyasyon kullanilarak iireticilerin diferansiyel gosterimleri bulunabilir.
Bunun igin varyasyonlar bir skaler alanin degisimi ®'(X,¢)=®(x—X,$—350¢)

tizerinde uygulanir ve Taylor serisine agilir,

(Dr(xa’q)ab):q)(xa _8Xa’¢ab _8¢ab)

cI)(xa —a" - U X%, 0" —® + %a[axb] -~ u[acd)c'”j (3.5)

(_aa_uacxc)aa+
. a, ) ) a, ab
(x*.0)+ (_aab+%a[axb]—ulac¢cm)aab b47)

Burada 8@’'(x,0)=®'(x,0)—®(x,0) temel alinarak diizenleme yapildiginda,

ia® {i (651 _%Xbaabj} +ie™ (10, )
5D (x,0)=| 20d) Y
_é uba {I (Xaab - Xbaa + 2¢a66bc - Z(I)bcaac )}

elde edilir. Buna ek olarak skaler alanin sonsuz kiiciik grup doniisiimii altindaki

varyasyonu,
5D = (iaaPa +ie®Z, —é@ablvlabjcp 3.7)

seklindedir. Bu ifade ile Denklem (3.6) ile karsilastirildiginda {reticilerin

diferansiyel gosterimleri Denklem (3.8)’deki yapida elde edilir,

P = i(@a —lxbaabj
2

z, =io, (3.8)
Mab =1 {Xaab - Xbaa + 2(¢acabc - (I)bcaac )}
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3.1.1. Maxwell cebrinin ayar teorisi

Bu boliimde Maxwell cebrinin ayar teorisini olusturacagiz. Ayar teorisi i¢in oncelikle

bir A(x) ayar alan1 tanimlanir,
a ab 1 ab
A=e'P,+BYZ, > oM, (3.9)

Burada e*(x) vielbein, ®®(x) spin baglantisi, B®(x) antisimetrik ireticiye

karsilik gelen ayar alanidir. Bu alanlarin, sonsuz kiigiik ayar doniisiimii altindaki

degisimi Denklem (1.110)’da verilen,

SA =—dg—i[A,C] (3.10)
formiilii ile bulunur. Burada £(x) ayar iireticisi olup asagidaki gibi tanimlanr,

5(X) =Y ()P +0° ()2 =52 (XM, @11)

Burada y*(x), *(x), 7 (x) sonsuz kiigik parametrelerdir. Son iki esitlik
kullanildiginda ayar alanlarinin degisimi asagidaki sekilde elde edilir,

5e* = —dy* —?,y" +1°,€’,

SB* = —do® — " o™ +1* B + % efty™, (3.12)

So® = —dt® — ol 1®.

Bu gruba ait 2-form egrilikler IF:IFAXA:FaPa+FabZab—%RabMab seklinde

tanimlanir ve Denklem (1.114) kullanildiginda egrilikler asagidaki bicimde elde
edilir,

F* =de® + o, Ae”
F* =dB® + 0", A B™ —%ea ne (3.13)

R* =do® + 0 , Ao®
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Denklem (3.13)’deki ifadeler sirasiyla burulma tensorii, Maxwell egriligi ve
Riemann egrilik tensoriidiir. Bunlarin sonsuz kiigiik ayar doniisimi altindaki
degisimini bulmak i¢in Denklem (1.119) kullanildiginda asagidaki denklemler elde
edilir,

SF* =-R%y° +1°F°

swbz@%Rwl+ﬂiwm—%yhﬂl (3.14)
SR® =1* R

Lorentz kovaryant dis tiirev kullanildiginda Bianchi 6zdeslikleri asagidaki sekilde

bulunabilir,

DF* =R®, Ae’
Dmh:thBm—%F“Aél (3.15)

DR® =0

Bu temelden hareketle M(1,3) igin kiitlegekim eylemini olusturmaya baslayabiliriz.

Egriliklerin sadece Lorentz simetrisi altindaki degisimleri dikkate alindiginda,

SF =1° F°
SF* =l* F*! (3.16)
6Rab — T[a Rcb]

elde edilir. Buradan hareketle asagidaki sekilde bir birlesimi (Gtelenmis egrilik)

yazabiliriz,
T® =R® +2uF® (3.17)

Bu egriligin, Denklem (3.16)’daki ilgili ifadeler kullanildiginda asagidaki doniisiime
sahip oldugu agik¢a goriilmektedir,

8J* = T (3.18)

Bu 6telenmis egrilikten yararlanildiginda yerel Lorentz doniistimii altinda degismez

kalan bir eylem Denklem (3.19)’daki sekilde yazilabilir,
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1 1
5= ANTL JJ AT = 8k Igabcdjab AT
(3.19)

:4—££mﬁwARw+i£m£wAFw+££mfwApd
8k 2K 2K

burada x Einstein sabiti ve p herhangi bir sabittir ve (*) Hodge dual islemine

karsilik gelmektedir. Yerel Maxwell doniisiimleri altinda de§ismezlik ise Lie tiirevi

ile dogrudan gosterilebilir;
8Suq = [1.L= [(di.L+i.dL) (3.20)

Burada ilk terim tam tiirev oldugundan yiizey terimi olarak ihmal edilebilir, ikinci
terim ise 5-form oldugundan 4 boyutlu uzay-zamanda etkisi olmayacaktir. Bu sayede
3,+S=0 olur.

Simdi hareket denklemlerini bulabiliriz. Eylemin »®(x) spin baglantiya gore

degisimini alirsak asagidaki ifade elde edilir,

DF* - J% AB® =0 (3.21)
Eylemin e (x)’ye gore degisimini alirsak,

Epad " AE =0 (3.22)
esitligine ulagilir. B® (x)’ye gore degisimi alirsak,

DJ* =0 (3.23)

elde edilir. Boylece hareket denklemlerini elde etmis olduk. Bu denklemlerin

birbirlerini sagladiklari gosterilebilir. Denklem (3.22) sayesinde,
a 1 a
(.7 b_ES bJJ:O (3.24)

elde edilir. Burada tanjant uzayi indislerinden uzay-zaman indislerine gegis yapilir ve
denklem agilirsa Denklem (3.25) elde edilir,
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R*, —%S“QR +3ud*, =—2uT(B)" (3.25)

Burada, yukaridaki ifadeyi Denklem (1.157) ile karsilastirdigimizda kolaylikla

goriilecektir ki esitligin sol tarafinda bulunan (3u8“ oc) terimi kozmolojik sabit ile

iliskilidir, buna ilaveten Bab(x) alanina karsilik gelen enerji-momentum tensorii
asagidaki sekilde verilir,

T(B)" =e*e',D,B ab—%és“ (¢°,6°,D;,B,") (3.26)

[a—V] [p 0]

3.2. Siiper Maxwell Cebri

Siiper Maxwell cebri [47] sectigimiz notasyona gore Denklem (3.27)’deki yapida

verilir,

M., ] H(NagMpe + MMy =M Mg —MisM,)
LR

My, Pe]= (ﬂbc ~MecPy)

M., Zy]= I(nadzbc Mo Zag ~MacZog ~ Moo Zac )

[
[
[
[
[P.Qy =12, (7.), (3.27)
{
{
]

;»_U

O
d
éD

( )BF’C

Mab'Qp]_ abQ I:Mab’z ] ;(Gabz:)p

Bu gruba ait herhangi bir grup elemani asagidaki sekilde yazilabilir,

i
g= @iy g0 zabeieﬂQaeiqy“zae‘g"’abMab

(3.28)
3.2.1. Siiper Maxwell cebrinin ayar teorisi

Ayar teorisine geldigimizde ise, bunun igin 6ncelikle Denklem (3.29)’daki gibi bir 1-

form A ayar alani ortaya atilir,
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A=¢P, +B*Z, +y"Q, +E"T, —%(oabl\/lab (3.29)

Burada e*, A®, y*, &%, ®® swasiyla P, Z, ,Q,, % , M, dtreticilerine karsilik

gelen ayar alanlaridir. Bu alanlarin sonsuz kiigiik ayar doniisiimii altindaki

degisimleri Denklem (1.110) ve asagida verilen,
C(X)=y'P, +0"Z, +£"Q, +V°Z, —%ra"Mab (3.30)

sonsuz kii¢lik ayar iireticisi yardimiyla asagidaki bicimde bulunabilir,

8¢ = —dy* — o'y’ + 1, - 2i(2y'y)
SBab _ —d([)ab _(D[ac(PCb] n T[aCBCb] + le[ayb] —E(EGabé)—l(\_/Gab\U)
2 2 2
S0® = —dt® — o 1! (3.31)

a a I al a I al o
Sy =—de +Zmb(cab8) —Zrb(cab\p)

o o I al a I al o c [¢] c o
SE* =—dv +Zwb(6abv) —Zrb(cabi) +Y°(vov) —€°(v.€)

2-form Egrilikleri Denklem (1.114) ifadesi yardimi ile bulabiliriz. Burada egriliklerin

genel ifadesi,

F=FP,+F*Z, +¥P°Q, +E"Z, —%Rabl\/lab (3.32)

kullanilirsa egrilikler asagidaki sekilde elde edilir,

Fazdea+03ab/\eb—i(\|_/ya/\\|1)
1 1
ab ab [a cb] a b — _ab
F* =dB” + 0" AB _Ee ne _E(WG /\i)
R® =do® + o, A®® (3.33)

P =dy* —%coab (o Aw)

—a o I al a a a
E*=dg —Zwb(cab/\ﬁ) +e* (v, Ay)

Son iki egriligin kompleks eslenikleri Denklem (3.34)’deki sekilde yazilabilir,
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HE|

a:D\I_Ja,

_ o (3.34)
*=Dg"* +(\T//\eaya)

[

Burada D Lorentz kovaryant dis tiirevdir. Egriliklerin sonsuz kiigiik ayar doniisiimii
altindaki degisimini bulmak i¢in Denklem (1.119) ifadesi kullanildiginda Denklem
(3.35)’deki varyasyonlar elde edilir,

8F =1, F° —R%,y" - 2i (/")

8Fab — T[achb] _ R[aC(PCb] _%y[an] _%(EGabE)_%(vGabLP)

SR* =1* R (3.35)

[0} I al a I al o
SY = Wk " (oY) +ZR " (0.,¢)
52 = —~1® (0,8 + % R® (0,V)" +Y° (1.%)" — F (.8)"
Her bir egrilik i¢in Bianchi 6zdeslikleri de asagidaki sekilde bulunabilir,

DF* =R®, e’ —i(\lea /\‘I’)

DE® — R[ac N —%F[a Ae —%(‘T’Gab A EJ)
+%(\|—Jcab A E)—%(\T] A eltyP] /\\|])
DR® =0 (3.36)

DY = —i R® (o, Av)"

—a I S ¢ a ¢ 2 *
D= :_ZRb(Gab/\EJ) +F (vaAy) e (v, A )

Bulunan egrilikler kullanilarak siiper Maxwell ayar dontisiimleri altinda degismez

kalan bir Lagranjiyen, Azcarraga’nin [47] makalesi dikkate alinarak, asagidaki

sekilde yazildi,
1 ab cd —_

S=—[EuuR™ AF + 42y, AW, (3.37)
2K

Bu Lagranjiyendeki terimler agildiginda Denklem (3.38) elde edilir,
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1 —_—
1 8abcdRab ~DB* _EgadeRab NN —%SabcdRab /\(E_,GCd /\\lf)

+4DEy, AP +4y Al Yy AT

1 al c ey a al Cf (338)
1 _E(SabcdR " ne’ ne’ -8y ey, /\Dw)+ D(sabcdR "AB d)

—%aabcdRab /\(EGCd /\\|1)+4D€y5 AY

Buradaki son terim tizerinde Denklem (3.36)’daki dordiincii Bianchi 6zdesligi ve

i i
YO, = EgadeGCd esitligi kullanildiginda,

4DEy, AW = D(4&y, AW )+4Ey; ADY
= D(4Ey5 /\‘I’)— iR® /\(Eyscab /\\y) (3.39)

= D(4Ey5 /\‘I’)+%8abcdRab /\(Eo‘:d /\\If)

elde edilir. Bu ifade Denklem (3.38)’de yerine yazilir ve tam tiirevler ihmal edilirse

eylem asagidaki bigimi alir,

1 _
S= —4—IsabcdRab e’ ne? -8y Ae, vy, ADy (3.40)
K
Boylece Denklem (2.36)‘de verilen D=4 i¢in minimal siiper kiitlegekim
Lagranjiyenini Maxwell simetrisi yardimiyla elde etmis oluruz. Buradan anlasiliyor
ki siiper Maxwell simetrisi siiper kiitlegekim Lagranjiyenine alternatif bir yol olarak
karsimiza ¢ikmaktadir ve Maxwell simetrisi sakli bir simetri olarak teoride yer

almaktadir.
3.3. Maxwell-Weyl Cebri

P(1,3)’na olg¢ekleme simetrisinin ilave edilmesiyle elde edilen Weyl grubu (W(1,3))

sirastyla X, ={P,,D,M,,} ftireticilerinden olusmaktadir. Burada D 0lgekleme

simetrisini temsil etmektedir. Bu grubun sifir olmayan komiitasyon iligkileri

Denklem (3.41)’deki gibidir,
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[M M ] i(nadec+nbcMad_nachd_nbdMac)
['V'ab,Pc] (5P, —MecPy) (3.41)

Bu gruba ait herhangi bir grup elemant,

ahMab

9(x,0,0)=e""e"e 2 (3.42)

Seklinde segilebilir ve iireticilerinin diferansiyel gosterimleri asagidaki bigimde

verilir,

ab =1
P, =iﬁa (3.43)
D=i(x-0)

Weyl cebrinin antisimetrik bir z_ iireticisi ile genisletilmis hali olan MW(1,3)’nun

sifir olmayan komutasyon bagintilari,

[M 'Mcd] (nadec+nbcMad_nachd_nbdMac)

[P R]=i

[I\/Iab, PC] (anP —MuPy) (3.44)
[Maps Zos 1= 1(MeaZie + Mo Zag = MacZos ~ Moo Zac )

[Pa,D =iP,, [Zab,D]:2IZab

ve grup elemant ise asagidaki bigimdedir,

g(X,¢, Cl)) |x PaeI(I) Z“e"’De 2¢ © My (345)
Grup elemanindaki sirasiyla X* (x), ¢ (x), o(x), ©® (x) ifadeleri, ilgili iireticilere

karsilik gelen sonlu parametrelerdir. Bu parametrelerin MW(1,3) altinda sonsuz

kiiglik degisimlerini bulmak i¢in koset doniisiimlerinden faydalanacagiz. K bir koset

olmak tizere bu kosetin parametrelerinin doniigimii K'H =g(a,s,k, u)K seklinde
verilir. Burada a®(x), € (x), A(x), u®(x) sonsuz kiigik parametrelerdir ve H
kararlilik grubunu temsil etmektedir. Koset asagidaki sekilde secilir,
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K(x,0,0)= 9(x.¢.0.0) 4:'0’ I g™ gl Zngic (3.46)

ab

Burada H=e 2" seklinde tercih edilmistir. Bu noktadan hareketle asagidaki

neticeler elde edilir,

8x* =a® +u® X" +Ax*

1
ab _ _ab [a 4cb] ab _ — A[ay,b]
00" =& +u” 07 + 200 4a X (3.47)
0 =7
mab:uab

Ilk iki varyasyon kullamlarak iireticilerin diferansiyel gosterimleri bulunabilir.
Bunun igin varyasyonlar bir skaler alanin degisimi ®'(X,¢)=®(x—3X,$—350¢)
tizerinde uygulanir ve Taylor serisine agilir,
(X740 ) = D(x* -8, 6% —5¢”)
=P (xa —a® — U X —Ax*, 0% —&® + %a[axb] —ul ¢®! - 2x¢abj (3.48)
(-a"—u" x"—ax*)a, +

— (X9 )+ (_8@ +%a[axb] g —27»<|>abj8ab o (x*,¢*)

Burada 8@'(x,$)=®'(X,¢)—D(X,¢) temel alinarak diizenleme yapildiginda,

50 (x.4)= ia® {i (83 —%xbaabj}+ ie® (i0,, )+ ik{i (x-0+ 2¢-6)}

o, fi(%,0, ~%,0, +20,0,c 26,0, )

D(x,0) (3.49)

elde edilir. Buna ek olarak skaler alanin sonsuz kii¢iik grup doniisiimii altindaki

varyasyonu Denklem (3.50)’deki sekilde yazilabilir,

3D(X,¢) = [iaaPa +ig®Z, + ikD—%coabMabjd)(x,d)) (3.50)
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Bu ifade ile Denklem (3.49) mukayese edildiginde iireticilerin diferansiyel

gosterimleri agagidaki sekilde elde edilir,

P, = i(aa —ixbaabj
2
Zab = iaab

D =i(x0, +2¢0,, )

Mab =i {Xaab - Xbaa + Z(d)acabc - (I)bcaac )}

(3.51)

3.3.1. Maxwell-Weyl cebrinin ayar teorisi

Weyl ayar teorisi Charap, Omote, Kasuya ve diger pek ¢ok bilim insaninin [5-7, 10,
74 |75] ¢alismalarinda detayli verilmistir. Bu boélimde MW(1,3)’nun ayar teorisini

olusturacagiz. Ayar teorisi i¢in dncelikle bir A (X) ayar alani tanimlanur,
a ab 1 ab
A =eP +B’Z, +XHD_§Q)H M., (3.52)

Burada e *(x) vielbein, o ®(x) spin baglantis, B,*®(x) antisimetrik iireticiye
kargilik gelen ayar alani, y,, (x) Olcekleme tireticisine karsilik gelen ayar alanidir. Bu

alanlarin, sonsuz kiigiik ayar doniisiimii altindaki degisimi, Denklem (1.110) ile,
a al 1 al
L(x)=y (X)Pa+(pb(X)Zab+p(X)D—§rb(x)Mab (3.53)

seklinde bir sonsuz kiigiik ayar {ireticisi tanimlanarak asagidaki bigimde bulunabilir,

a a a ,b a a 4b a
SEH = —ﬁuy —O,Y +pe+T e, — XY

al al a Ci al a Ci al 1 a
8B =-0,0" ~ {0 ~21,0" + B + B+ —efly”

8 (3.54)
oy, =—0,p
Swﬁb = —aurab - wLaCTCb]

Bu gruba ait 2-form egrilikleri F=F"X, =F°P, +F*Z, + FD-{R*M,, bigiminde

tanimlayabiliriz ve Denklem (1.114) yardimiyla asagidaki sekilde bulabiliriz,
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F* =de* + ', ne” +y A€’

F* =dB™ + o, AB® +2A AB® —%ea ne

(3.55)

f=dy

ab ab a ch
R =do” +0’ . Ao
Egrilikleri uzay-zaman indisleri ile ifade edersek,

a a a Ab a
Fo = 01,80 + Opp80) + %84

1

ab ab [a cb] ab _ — qa b
Fu =0, By T oy, By + 2y, By > L8y (3.56)
fuo = a[HXU]

ab _ ab a ch
Rl = 0,0 + @0

elde edilir. Bunlarin sonsuz kiigiik ayar dontisiimii altindaki degisimini ise Denklem

(1.119) ve F, =F,P, +F?Z, +f D—-1R% M, tanimi yardimiyla Denklem (3.57)

uo' a o “ab

’deki sekilde bulunabilir,

8F% =—y*f,, —R%, Y+ pFS, + rabFfU

1
ab __ ab [a pcb] [a=b] ab [a cb]
Ok, =—20"F +0" R —Ey Fot+2pF0 +7° Fy (357)

of =0

po

8Rab =T[a Rcb]
o

¢ Mo

Bu boliimde Lorentz-Weyl kovaryant tiirevi (Ek-A) kullanacagiz. Boylece Bianchi
0zdeslikleri asagidaki sekilde bulunabilir,

DF* =R* e’ +f e
DF® =RE AB™ +2f AB® —%F[a ~e (3.58)

DR® =0

Simdi kiitlegekim Lagranjiyenini Denklem (3.55)’deki egrilikler yardimiyla
olusturmaya calisacagiz. Ayar degismez bir Lagranjiyen yazabilmek i¢in 6lcekleme
doniisiimiine ve bunun eyleme etkisine dikkat etmek gerekir. Olgekleme simetrisini
yerellestirmek bizi Weyl ayar teorisine gotiirmektedir. Burada onemli bir nokta,

metrigin 6lgekleme simetrisini altinda sonsuz kii¢iik degisiminin,
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59,, (x) = 20(X)g,, (X). (359)

biciminde olmasidir. Metrigin bu sekilde degismesi, bizi egriliklerden olusturulmak

istenen eylem konusunda simirlamaktadir. Denklem (3.59), metrik tensoriin Weyl

agirhginin iki W(g W) =+2 oldugunu ifade etmektedir. Buna ek olarak, W(g“v) =-2
ve W(«/—g ) =+4 oldugu gosterilebilir. Denklem (3.54) ve Denklem (3.57)’den

dogrudan anlagilabilir ki e}, BY, x,, F ve F, F?, f , R® ifadelerinin Weyl

agirliklar sirastyla 1,2, 0,0 ve 1, 2, 0, 0’dr.

Serbest kiitlegekimsel eylemin genel ifadesi asagidaki bigimdedir,
S = [d'xeL; (3.60)

ve bu son yapi, eylemin toplam Weyl agirliginin sifir olmasini gerektirir. Lakin ele
aldigimiz durumda W(J—g ) =w(e)=+4 oldugundan W([T ) =—4 olmas1 gerekir.
Buna gore w(R)=-2 oldugundan eylem igerisinde R’ye gore lineer bir yap:

gozlenemez. Tutarli bir kiitlegekim teorisi ortaya koymak igin Weyl [76] eylem

igerisinde kuadratik egrilik terimlerini kullanmistir. Buradan da agikga goriiliiyor ki,
S :ijd“xeR (3.61)
EH 2K

Einstein-Hilbert eylemi tek basina degismezlik i¢in uygun degildir, fakat Brans ve
Dicke’nin [77] girisini yaptigit ve Dirac, Agnese ve Dereli’nin [78-80]
detaylandirdig1 sekilde R’yi Oyle bir skaler alanla ¢arpalim ki bu carpimin Weyl
agirligl (-4) olsun. Bu sayede R’ye gore lineer bir eylem yazabiliriz. Biz burada
Dirac’in yaklasimini  kullanacagiz. Olgekleme doniisiimii altindaki varyasyonu

asagidaki sekilde olan bir skaler alan ortaya atlildiginda,
3¢(x)=—pd(x) (3.62)

Bu ¢(x) alamnin Weyl agirhg (-1) olur ve $°R gibi bir ifadenin Weyl agirligia

bakildiginda W(¢2R>:—4 elde edilir. Bu sayede degismezlik sart1 saglanir. Diger
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taraftan, diferansiyel formlarda ise genel eylem S= _[ L seklinde yazilir ve buradan

anlagilir ki Lagranjiyenin Weyl agirligit w(L)=0 olmak zorundadir. Ornegin

Einstein-Hilbert eylemi diferansiyel formlarda,

S, = _4_1K [EaeR nE AE (3.63)
seklinde verilir ve dlgekleme doniisiimii altindaki varyasyonu alindiginda asagidaki
ifade elde edilir,

weyl~EH

BeniS =—2ijeabcdRab/\Se°/\ed
< (3.64)
=—ij.p8bdRab/\e°/\ed¢O
2K anc

Son denklemde agik¢a goriilmektedir ki degismezlik saglanmamaktadir. Lakin

Lagranjiyen Denklem (3.62)’deki doniisiime sahip bir ¢(x) alani yardimyla

asagidaki sekilde yazildiginda,
s—_1 LS SN-N (3.65)
4

ve degismezlige bakildiginda,

1

S S= ——I{Sq)zgabcdRab e’ net +2¢e, R ASE /\ed}
4k

weyl

- —4i {-2p9°epeaR™ A€ A€+ 200E,R™ A€ A0} (3.66)
K

=0

elde edilir ve boylece degismezlik saglanmis olur. Bu temelden hareketle MW(1,3)
icin kiitlecekim eylemini olusturmaya baglayabiliriz. Lagranjiyeni diferansiyel
formlarda olusturacagimizdan dolay1 Weyl agirligir sifir olan ifadeler isimizi
kolaylastiracaktir, bu sebeple Denklem (3.67)’deki birlesimi (degistirilmis egrilik)

yazabiliriz,

TP =R® + 2u¢’F® (3.67)
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Burada W(j ab) =0’dir. Bu birlesim sayesinde Lagranjiyenin serbest kiitlecekimsel

kismin1 agagidaki sekilde yazabiliriz,

1 1 a .
Lf :_¥7/\*‘7:_8abcd‘7b/\‘7d
VANTI 8ku (3.68)
= i gabcd Rab A RCd + ¢2 iSabcd Rab N FCd + ¢4 iSabcd Fab A FCd
8k 2K 2K

burada k ve p sabittir ve Lagranjiyenin Weyl agirhigimin sifir oldugu agikga
goriilmektedir. Ortaya atilan skaler alan bizi Lagranjiyen igerisinde ona ait bir kinetik

terim yazmaya zorlar. Lagranjiyen igerisinde bir biitiinliik olmasi i¢in (I)(X) skaler

alanmin kendisiyle etkilestigini de varsayarak %4)4 terimini ekleyebiliriz. Bu sayede

vakum i¢in toplam Lagranjiyeni asagidaki sekilde yazabiliriz,
1 Aoay
L0=f/\*‘f—§D¢/\*’D¢+Z¢ 1 (3.69)

Simdi toplam eylemi asagidaki seklinde yazabiliriz,

S=[L +L,
1

1 u
£ R ARY +0* —¢, R® AFY +¢* —¢,, F° AFY
=J' 8KM abcd ¢ 2K abcd d) 2K abcd (370)

+f/\*f—%'D¢/\*’D¢+%¢4*l

Denklem (3.57)’deki egriliklerin sadece Lorentz ve Olgekleme simetrisi altindaki

doniistimleri dikkate alindiginda asagidaki ifadeler elde edilir,

a a a b
ok, =pF, +T,F,

SF® = 2pF® + 1 F!
f“" Pl T e (3.71)
8f, =0

8Rab =,E[a RCb]
po

¢ Mpo

Buradan hareketle degistirilmis egrilik olan J ®>nin  sonsuz kiiciik degisimi

Denklem (3.72)’deki yapida olmasi gerekir,
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8JT* = g (3.72)

Degistirilmis egriligin degisimi ¢ =—p¢ olmasini zorunlu kilar. Bu sayede eylemin
serbest kismi ayar degismez kalmaktadir. Vakum tarafi ise kendi bi¢imi ile ayar

degismez yapidadir. Yerel Maxwell-Weyl doniisiimleri altinda degismezlik ise Lie

tiirevi ile dogrudan gosterilebilir.

Simdi hareket denklemlerini bulabiliriz. Bunun i¢in 8S=0 temel alinarak sirasiyla

ab a

o™, €, B®, y ayar alanlarma ve ¢(X) alanina gore varyasyon alinirsa asagidaki

hareket denklemleri elde edilir (Ek-D),

D(¢°F*)-¢° T AB™ =0 (3.73)
¢2
— 00T A& +[ DO* DY+ D A*(e, A, ) D |
f . A =0 (3.74)
——(fabeb A g, F% /\f}+i*ea
2 2 2
D($*T*)=0 (3.75)
(I)Z ab cd 1
g ABY + D +¢* D=0 (3.76)
K
Qeabcdjab AFY+D* Do+ *1=0 (3.77)
K

Bu denklemlerin birbirlerini sagladiklar1 gosterilebilir. Denklem (3.74) sayesinde

Olcekleme alanina bagli kozmolojik terimi igeren alan denklemi asagidaki sekilde
elde edilir (Ek-E),

R, ~ 8 R+ 305", =—2u°T (B)', {T(¢)‘L 5 T(0 )”a} (3.78)

Burada alanlarin agik ifadesi ise Denklem (3.79)’daki gibi verilir,
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[a™="V] [p— ol

T(B)' =e*,e',D,B ab—%su (e*.€°D,B.")

T, =D 50 Dame- e | (379
1 X
T(F), =fuf + 5807,

Bu son denklemler ilgili alanlara bagli enerji momentum tensorlerine karsilik gelir.

Burada 6nceki (siiper) Maxwell gruplarina kiyasla en 6nemli farklilik kozmolojik

terimin (3u¢28“a) seklinde ¢(x) alammn bir fonksiyonu seklinde gelmesidir.

3.4. Siiper Maxwell-Weyl Cebri

Stiper Maxwell-Weyl cebri [34] makalesindeki cebrin sectigimiz notasyona

uyarlanmasiyla asagidaki sekilde elde edilmistir,

M ] (nadec+nbcMad_nachd _nbdMac)

Mab’ ] (nbcP 1ﬂ'acl:) )
cd] (nadzbc +nbczad T’laczbd _nbdzac)
Pa, D]=iP,, [Z,.D]=2iZ,

[
[
[
M,
[
{Q.. Qi =2(Cr"),, P, |
[ |
[

Pa’Qﬁ}:_lz Ya) : {Qa’EB}:_E(CGCd)QBch

Mab’Qp]_ abQ) [Mab’zp]:%(cabz)

p

D, :—i , |D,Z :—E'Z
[ Q(X] ZQOt [ oc] 2' o (380)

Bu gruba ait grup elemani asagidaki sekilde yazilabilir,

ab
M ab

e (3.81)

g e|x P, |¢ Zabeie“Queicb“Z ech

3.4.1. Siiper Maxwell-Weyl cebrinin ayar teorisi

Ayar teorisi i¢in 1-form A ayar alan1 Denklem (3.82)’deki gibi yazilir,
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A=¢e"P, +yD+B*Z, +y“Q, +&°%, —%coabMab (3.82)

Burada e, y, B®, y*, &%, ® alanlann swasiyla P, D,Z,,Q,, %, M,

uireticilerine karsilik gelen ayar alanlaridir. Bu alanlarin tanjant uzayinda sonsuz

kiiglik ayar doniistimii altindaki degisimi Denklem (1.110) ile,
a ab o o 1 ab
§(X)=y'P, +pD+0*Z,, +&*Q, +V z“_ET M, (3.83)

seklinde tanimlanan sonsuz kiiglik bir ayar lreticisi yardimiyla asagidaki bigimde

bulunabilir,

5e* = —dy* —w*, Y’ —xy* +1°,e" +pe’ —2i (§ya\|/)

ab _[a b]

C(PCb] _ ZX(Pab + T[achb] + 2pBab +%e[ay

—dop” —
SB* = . .
—5(8078)=5(vs"y)
oy =—dp
S0 = —dt® — o ) (3.84)

Sy =—de” + i(o"b (6.)" —%xs“ —itab (cv)" + %pw“

—dv* +lof‘b (GabV)a —§xv°‘ —lrab (csabﬁ,)OL
3 o c a c a
+oPETHY (v,v)" —€°(v.¢)

Bu gruba ait 2-form egrilikler F=FP, +fD+F"Z +¥*Q,+Z"Z, 1 R*M,,
2

bi¢iminde tanimlanir ve ilgili formiiller yardimiyla asagidaki sekilde bulunur,

F* =de* +o°, Ae’ +y re’ —i(\Tfya /\\|1)

F* =dB® + o AB® + 2y AB® —%ea ne —%(\chab A g)

R® =do® + o’ A0®, f=dy (3.85)
P =dy” —icoab (o AY) +%x/\\y°‘

—a o I al o 3 o a a

E* =dg 7 "(65 AE) +§x/\§ +e (Y, AY)

65



Egriliklerin sonsuz kiigiik ayar doniisiimii altindaki degisimini ise Denklem (1.119)

yardimiyla asagidaki sekilde bulunabilir,

SF" =1, F" + pF° — Ry’ —fy" —2i (/" ¥)

T[achb] + ZpFab _ R[aC(PCb] _ 2f([)ab _ % y[a Fb]

SF =
-2 (50°2) -2 (7o)
of =0
SR® =1 R*! (3.86)

dY* = —itab (c,¥) + %p‘P“ + i R® (c,¢e) - %S“f

—irah (6,2)" + ng“ + i R®(o,Vv)"

3 c o c o
—EV“f+y (yC‘I’) -F (yce)

Lorentz-Weyl kovaryant dis tiirevi kullanildiginda Bianchi 6zdeslikleri Denklem
(3.87)’deki sekilde bulundu,

DF* =Rab/\eb+f/\ea—i(\Tfya/\‘P)

R® AB® +2f AB® 1 F A e —1(‘?0“’ A EJ)
2 2

DF* = . .
+§(\|—Jcab /\E)—E(\TJ/\E[&YD]/\\V)
Df =0 (3.87)
DR® =0
DY* ——iRab (o AW) +=FAy®
= = —iRab (04 AE) +§f NE +F (v, Ay) =€ (Y, AY)”

Yukarida bulunan nicelikler ve bir dnceki boliimde verdigimiz temelden hareketle

kullanilarak asagidaki gibi bir Lagranjiyen yazildi,

2 b ed  a= 1 1 3
S=jg’—K(gabcdR b AF 445y, /\‘P)Jrzf N —§D¢A*D¢+Z¢4*l (3.88)
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Bu Lagranjiyen Dp=0 sMW(1,3) doniisiimii altinda degismez kaldigi (Ek-F)’de
gosterilmistir. Buradan hareketle ilgili Lagranjiyen asagidaki sekilde yazilabilir,
(I)Z

b _ 1 A oay
S:J'—E(aabcdR " net ne’ —8F ne,y ys/\D\V)+Zf/\*f + 01 (3.89)

Simdi hareket denklemlerini bulabiliriz. Bunun i¢in 8S=0 temel alinarak sirasiyla

«®, €, x, y ayar alanlarma ve ¢(x) alanina gbre varyasyon alimrsa asagidaki

hareket denklemleri elde edilir,

€, DE° A"+ Ay Gy Ay =0 (3.90)
2
%(SabcdeC A ed + 4\TIYaYS A D\V)
) . g =0 (3.91)
—[fabeb AR - g, Afj—ﬁ*ea
2 2 2
2
(I)—\TJ/\eayays/\\u+1D*f =0 (3.92)
K 2
ey.vs ADy=0 (3.93)
(8aR™ A€ A€* —8F A, ¥"Ys A Dy)— 20" *1=0 (3.94)

Bunlara ilave olarak Denklem (3.91) sayesinde asagidaki ifade elde edilir,

R“a—%S“aRzT(\y)ua—K 2 {T(¢)“a+% (f)“a} (3.95)

Bu esitlik Denklem (2.44)’1n Glgekleme simetrisi donilisiimii altinda genisletilmis
halidir. Burada enerji-momentum tensorlerinin agik sekli asagidaki gibidir,

uvpc

T(v) =97,V Dot

T(9)", = %5“&4 (3.96)

T(F)' =f,F*+ %6{; of

67



4. SONUCLAR VE ONERILER

Maxwell simetrisi iizerine, 2005 yilinda Soroka’nin galismasindan [18] itibaren
simdiye kadar genisletilmis kiitlegekim teorileri ve bunlarin siipersimetrik
genellemeleri, kozmolojik sabit, karanlik enerji, yiiksek spinli alanlarin da i¢inde
bulundugu genis bir yelpazede ¢alismalar yapildi. Burada yazarlar agirlikli olarak,
anti de Sitter grubunda oldugu gibi Maxwell simetrisinin de dogal neticesi olan,
kozmolojik sabit iizerinde durdu. Karanlik enerjinin agiklanmasinda kozmolojik
sabitin kuvvetli bir aday [81, 82] olmasi da bu simetrinin Onemini giderek

arttirmaktadir.

Diger bir 6nemli alan ise Maxwell simetrisinin komutatif olmayan geometri ile

iliskisidir. Ornegin [P,,P,]=iZ,, esitliginin, Minkowski uzay-zamaninda komutatif
olmayan geometriyi temsil eden [x,,x,]=i¢,, [83, 84] ifadesine kanonik olarak es

oldugu diisiiniildiigiinde Maxwell simetrisinin komutatif olmayan geometri ile iligkisi
kurulur ve dolayisiyla kuantum kiitlecekiminin [85] cebirsel bir yaklasimi elde
edilmis olur. Buradan da anlagilir ki bu simetri ileride komutatif olmayan alan

teorisinde de [86] 6nemli bir yere sahip olacaktir.

Bu tezde Maxwell-Weyl ve Siiper Maxwell-Weyl cebirlerinin dogrusal olmayan
gerceklemeleri ve ayar teorileri incelendi. Bu inceleme neticesinde ilgili gruplara ait
egrilikler, genellestirilmis kiitlegekim Lagranjiyeni ve hareket denklemleri elde
edildi.

MW(1,3) igin, tammladigimiz dtelenmis egrilik sayesinde ¢(x) alanina bagh

degisken kozmolojik terimi igeren Einstein-Cartan-Weyl alan denkleminin
genellestirilmis halini ve buna ilave kaynak terimler elde ettik. Bu kaynak terimler,
enerji-momentum tensorii olarak tanimlandi ve neticede goriildii ki, teoriye dilatonun
eklenmesi kozmolojik sabite ve enerji-momentum tensoriine katkilar getirmistir. Son
durumda kozmolojik sabit terimi, Maxwell simetrisinden kaynaklanan arka plan

alaninda bir dinamik degisken olarak karsimiza c¢ikmistir. Kozmolojik sabit ve
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karanlik enerjinin birbiri ile yakin alakali oldugu bilindiginden dolay1, bu durum bizi
elde edilen enerji-momentum tensoriiniin biitiinliniin veya bir kismmin karanlik

enerji olarak yorumlanmasina gotiirebilir. Bir baska deyisle karanlik enerji Maxwell

simetrisinden kaynaklanan B® (x) ayar alan ile iliskili olabilir.

sSMW!(1,3) simetrisinin incelenmesinde ise 6ncelikle literatiirde bulunan bu cebir [34]
sectigimiz notasyona uyarlandi. Kurulan ayar teorisinden elde edilen egrilikler
sayesinde SMW(1,3) simetrisi altinda degismez kalan bir Lagranjiyen elde edildi.
Keza bu Lagranjiyenin olgekleme simetrisi altinda degismez kalan yalin siiper
kiitlegekim Lagranjiyenine doniistiigli gozlendi. Bu netice bize sMW(1,3)
simetrisinin siiper kiitlecekim teorisinin olusturulmasinda alternatif bir yol olacagini

gostermistir.

Bu iki c¢alisma sayesinde sirasiyla [39] ve [47] makalelerindeki neticelerin
genellestirilmis halleri elde edildi. Boylece Maxwell kiitlegekim teorisine literatiirde
ilk defa olarak olgekleme simetrisinin eklenmesiyle Maxwell-Weyl kiitlegekim

teorisi elde edildi ve olan galismalar bir adim 6teye tasinmis oldu.

Ozetle biitiin bu calismalar bize gosterdi ki Maxwell simetrisi gelecekte, basta
kozmolojik sabit, karanlik enerji ve kuantum kiitlegekimi olmak iizere fizigin pek

¢ok alaninda olduk¢a miihim bir yere sahip olacaktir.
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Ek-A: NOTASYON VE BAZI TEMEL FORMULLER

Tez boyunca 4 boyut i¢in diiz uzay metrigi asagidaki sekilde kullanilmistir,
N = diag (+,—,—,-) (4.1)
Levi-Civita sembolii ve baz1 6zellikleri

Levi-Civita sembolii  gy,, =—1, € =1 seklinde secildi. Kovaryant ve

kontravaryant indisleri aras1 gecis ise asagidaki seklilde verilir,
_ggaﬁyﬁ = g(wnggypgSGSP’pr (42)

Yukaridaki ifadeden anlasilacagi {izere bu sembol bir tensér yogunluguna karsilik

gelir. Eger asagidaki gibi bir tanim yapilirsa,

VpGC
ghvP

nvaG — H , T’lwpc = ngps (43)

biitiiniiyle antisimetrik olan bir tensor elde edilir. D boyut i¢in genel ifade ve D =4

icin baz1 uygulamalar asagida verilmistir,

nul---uonulmu[) _ (_1)'3‘1 D!

nwpcn*”p“ =4I

T]abcdnabCe = _3!8de

T]abcdnablaf = _2!80def = _2!(8c68df - 8cf 8de) (44)
5, (8", —8'.8",)—8%, (8,8, —8'3",)

+8°, (8,8, -8",8",)

efrd _

MNabea M - _:l'!Sabcefr ==

efrs efrs

MNapea™ = _Sabcd

Burada &"“* | nicelikleri asagidaki gibi tanimlanur,

8}11 8“1

Vi Vn

g o=det| .. . . (4.5)
SO

V1 Vn
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Tensor notasyonu ve indislerin kullanimi
Tensor indislerinde simetrik ve anti simetrik gosterim asagidaki sekildedir,

A,B,=AB,-AB, AB,=AB +AB, (4.6)

[n 0] (u"=v)

Indis ayiraci (|) kullanildiginda ise asagidaki sekilde yazilir,

A,B,,=AB,-AB, 4.7)

[ plv]

Tez boyunca kullanilan indisler aksi belirtilmedikge sonraki sayfadaki sekilde

kullanilmuastir,

e AB,C,..=01..,N: Uretici indisleri, burada N grubun iretici sayisidir
e a,b,c,..=0,12 3: Tanjant uzayi indisleri

e W,v,p,...=0,123: Koordinat veya spinér indisleri

Kovaryant tiirev

Kovaryant tiirev (V* : vektor),

V,V*=0,V*+I* V*, V.V, =0V, -I" V, (4.8)

Lorentz kovaryant dis tiirev (V* : 1-form vektor, y*: 1-form spindr),

DV* =dV* + ", AV®, DV, =dV, —o’, AV, (4.9)
Dy® = dy* —icoab (o AW)", Dy“ =dy*® +%40)ab AYoy,) (4.10)

Lorentz-Weyl kovaryant dis tiirev, (V* : 1-form vektdr, y* : 1-form spindr),

DV* =dV* + 0y AV +W(V)AV?
(4.11)

o

o I al o
Dy* =dy —Zoab(cab/\\u) +W(y)Ay

Burada w/(.) ilgili alana bagli Weyl agirhigidir.
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Komiitasyon, anti komutasyon bagintilar: ve Jakobi 6zdeslikleri,

Komutasyon ve anti komutasyon ifadeleri asagidaki sekilde tanimlanir,
[A,B|=AB-BA, {AB}=AB+BA (4.12)
F fermiyon ve B bozonik degisken olmak {izere Jacobi 6zdesliginin genel ifadesi,
(-1)** B, o(F, °F,)+(-1)** F, o(F, B, )+ (-1)** F, o(B, °F,) =0 (4.13)

seklindedir. Burada bozonik g,, =0 ve fermiyonik g, , =1 degerlerine sahip

oldugu dikkate alindiginda asagidaki nicelikler elde edilir,

(4.14)

A p-form, B g-form ve C r-form bozonik degisken olmak iizere sirastyla komutasyon

bagintis1 ve Jacobi 6zdesligi asagidaki sekilde yazilir,

[AB]=—(-1)"[B,A] (4.15)
[[A.B].c]+(-2)"[[c,A],B]+(-1)"[[B,C],A]=0 (4.16)

Maxwell parametresi ve tiirevinin bazi ozellikleri

O = 0 o= aab (4.17)
g, o

[0 8] = 00 = (8535 - 555
0,0 =0, 9,x° =0 (4.18)
[6a’acd]zo’ [aa’d)cd]zoi I:aabixc]:O
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Ek-B: DIRAC GAMMA MATRISLERIi VE SPINORLERIN BAZI
OZELLIKLERI

Pauli spin matrisleri

01 0 i 1 0
G1=0 =, o) G, =0, =| . o) 0,=0, = 0 —1 (4.19)

Dirac gamma matrisleri

Majorana gosterimi ile Dirac gamma matrisleri ve bazi oOzellikleri asagidaki

sekildedir,

0 o icc 0 0 -o° —ict 0
0 = , 1 = , 2 = ’ 3 = . 420
Y (—62 0 j v ( 0 iGSJ ! (—62 0 J Y [ 0 ic'j ( )

2
) c 0
¥ =7e =i Py :( 2} (4.21)
0 o
o=,y r°)=0 (4.22)
v I v v I o
o" :E[V“:Y ]1 |:Gl—l ’y5] :01 Y5Gpv :ESHV&BG p (423)
A U I ) I Al M il A
% yvyayﬁ _ SuVO(B,YO,Yl,YZ,Y3 HVaﬁ,Y5 (424)
V.o B] _ I puvap, 5
YUYy 4!8 Y
GabGCd _ (nacnbd _nadnbc)+ i (nadGbc +T]chad nachd nbd ac )+ |8ade'Y5 (425)

oMyP =i (nmyu —PyY ) Py y
_ (4.26)
Yot =i(ny -yt )+ ey,

{07} =26"ygy,,  [o™ ]=2(n"y" —n*y") (4.27)
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I:Guv , GPG:I Y (T]”GGVP +1"cH — s _nvcrcup)

4.28
{Gpv,cpc} _ Z(HHpnw e+ igwpgys) (4.28)

Burada Lorenz grubu fiireticisi M, :%cab seklinde secildiginde asagidaki

komutasyon iliskisini sagladig1 goriilecektir,
[Mab ' Mcd ] =1 (nad Mbc + T'Ibc'vlad - 1’]ac'vlbd — Ny Mac ) (429)
Yiik eslenigi matrisi

Yiik eslenigi matrisi C=y, yapisindadir ve buna ait bazi &zellikleri asagidaki

sekildedir,

c'=c'=Cc'=-Cc, C’=-1, cC'=1 (4.30)
yTH T —CyuC_l, GHVT T= —CGWC_1 @31
(v*) =crct,  (vv) =Cr'y'ct

T T

cy.) =(cy.), (cC =(C

(en) =(en). (€)' ~(eou) o
(Crs) =—(Cvs).  (Crvs) =—(Cr.vs)

(Cy, )(qp (Cy )GB) =0 (4.33)

Bu temelden hareketle, bir spindriin komplex eslenigi y =y 'C seklinde kullanildi.

Spinorlerin bazi 6zellikleri

Stipersimetrinin ~ olusturulmasinda  kullanilan  fermiyonik uzaym koordinat

parametresi 0% ve ilgili tiirevin 0 6zellikleri asagidaki bicimdedir,

0= =gy 0'=—— (4.34)
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(o8

0,0" =80, 0,0,=-¢,, 00"=—<" 0,6(00)=20
[0,,0° =88, [0,.0,]=—¢,

(4.35)

Burada ¢,, =—¢,, seklinde antisimetrik bir tensdrdiir. Spindr tirevinin y ve y

spinor degiskenlerine etkisi asagidaki sekildedir,
0, (x°w°)=(0,0" )W —x"8,y°
Spinér degiskenlerin bazi 6zellikler asagidaki sekildedir,

\I'I(XXB = _XBWOL
VX=X, WX=XY, WX =LY

WY ==X, wy,w=0

\T]vaX = _ZYHV\V’ \TIYHV\V = 0

UYsY X=XV W WYX = XYW

Eger v ve y spindrleri sirasiyla p ve g-form yapisinda ise,

v, A =—(-1)" % A,

ifadesinin dikkate alinmasi gerekir.

82

(4.36)

(4.37)

(4.38)

(4.39)



Ek-C: BAKER-CAMPBELL-HAUSDORFF FORMULU VE ILGIiLi BAZI

ACILIMLAR

Baker-Campell-Hausdorff formiilii,

A+B+1[A,B]+3[A[AB]]
e"e® =exp| [ B,[A,B]]- %[ B.[A[AB]]]

~([[[1a8].8].8].8]+[[[[B.A].A]A]A])+..

Hadamard formiili,

e"Be* =B+[AB]+1[A[AB]]+i[ A[A[AB]]]+..
e"Be* =B+[B,A]+4[[B, Al A]+%[[[B.ALA]A]+..

Zassenhaus agilimi,

et(A+B) _ etAetBe Z[A B e 3(2[5 A B ]+|:A A B ])

e%“([[ A,B],A],A]Jra[[[A,B],A],B}s[[[A,B],B],B]) r

[A,B]=5sY ise,
eAeB — eexp(s)BeA

eAeBe—A — eexp(s)B

e”e? = eBelelMBl ([A B]=0ve [A, [A, B]] = [B, [A, B]] =0 ise)

Diger acilimlar,

ALB

e*e®e ™ =exp(e”Be ™)

=exp(B+[A,B]+4[A[AB]]+4[ A[A[AB]]]+.)

e "de™ =cdA—4[cA,cdA]+ %[ cA [cA, cdA] | +...
e #5e™ =CBA —4[cA,cBA]+4[ cA[cA,cBA] ] +...
e *0,e” =c0,A—4[cA,co,A]+%[cA [cA,co,Al+...
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Ek-C: TANJANT UZAYINDAN KOORDINAT UZAYINA GECIS VE
KOZMOLOJIK SABITI iCEREN EINSTEIN ALAN DENKLEMI

Einsten-Hilbert eylemi, kozmolojik terim ve kiitle terimi ile asagidaki sekilde

yazilabilir,
S = SEH + SKozm + SKUtIe
= —ij'gabcdRab ne‘nel+ Aj'gabmea NGNS j L,*1 (4.47)
4k 8k

1 A
= —4—I(sabcdRab NN —Esabcdea e’ et ael -4kl *1)
K

Simdi yukaridaki eylemi uzay-zaman indislerinde yazalim. Einstein-Hilbert terimi,

R® = % R*.e°ne’, R=R%;8,5, (4.48)
e* ne” ne’ net = [—ge™d’x (4.49)
Eanat” " =—21(8,78,"~8,'8,") (4.50)

denklemleri yardimiyla uzay zaman indislerinde asagidaki sekilde elde edilir,

1 al c 1 1 al e c
Sen =_&I8abcdR NN :—Efsabcd (ER b e Aefj/\e ne’
:_gij‘gadeRabef (Semdﬁdﬂ'X)
K (4.51)
- _i j R®, {—2(5ea5fb —Sebea)}w/—gd"x
1
=— [Ry/-gd*x
ZKJ. J
Kozmolojik terim Denklem (4.49) ve g, & =-4! ifadesi sayesinde asagidaki
yapida yazilabilir,
Skomm = IAsabcdea NCANON-EE J'Asabcdsabw./—gd“x
8k 8k 452
30 (4.52)
= |-—4/-gd*x
K
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Kiitle terimi ise *1=—,/—gd*x esitligi yardimiyla asagidaki gibi yazilabilir,

Swite = | L *1=—[ L,/~gd' (4.53)

Denklem (4.51), Denklem (4.52) ve Denklem (4.53) sonuglar bir araya getirildiginde
toplam eylem asagidaki sekilde elde edilir,

S=2ijd4x\/§(R ~6A-2xL,,) (4.54)
K

Einstein alan denklemi, 5,S=0 sart: ve N =—%ﬁgwé59“” esitligi dikkate

alinarak eylemin metrige gore varyasyonu alindiginda,

8,S= ifd"XS{ﬁ(g“va _6A—2KLm)}
= Z—l]{fd“x{sﬁ(gwa ~6A)+~95g"R,, —2K5(\/§Lm)} (4.55)

2K S(HLm )
J-g 8"

1 y 1
= EId“xHBg“ R, _ngR +3Ag,,, -

asagidaki sekilde elde edilir,

1
Ry =5 0uR +3Ag,, = KT, (4.56)

pv

Burada T, enerji-momentum veya enerji-stres tensorii olarak adlandirilir ve

asagidaki sekilde ifade edilir,

2 ol
w H S+

(4.57)
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Ek-D: MAXWELL-WEYL HAREKET DENKLEMLERI

Islem karmasikliklarindan kurtulmak ig¢in Denklem (3.70)’deki eylem iizerinde
asagidaki gibi bir isimlendirme yapilir,

szjigabcdjab AT+ 28 a% — L Dy AxDp+ gt o1 (4.58)
8xu 4 2 4
A B c D

Hareket denklemleri i¢in ayar alanlarina ve d)(x) alanina gore varyasyon alacagiz.

o® ayar alanina gore varyasyon asagidaki sekildedir,

5A=—1 o, 5T AT
ANT)

®

= 4i € (D&oab +2y0%50w!, A B! ) AT
< ) . (4.59)
=D () + €100 ADT ™ — — %, 50™ A T, AB™
ZANT) 2K
_ 1 ab 2cd 2 ~7lc ed]
= B0 AD(§°F)-4°T¢, A B
5,B=0, 5,C=0, 5D=0 (4.60)

e® ayar alanina gére varyasyon igin i¢ c¢arpim ile ilgili baz1 ifadeler asagidaki

sekildedir,

3, *1=205e" A*e,
5, *e* =5e"*(e* ne, ) =3¢ A, *e"
5, *e* =de, n*e®

5, *e® =5, A*e™

(4.61)

Ayrica *G :GM_“up *e"" olmak {izere, bu ifadenin €° alanma gdre varyasyonu

asagidaki sekilde verilir,
5, *G =0e" Al *G (4.62)

Bu temelden hareketle ilgili Lagranjiyenin e* ayar alanina gore varyasyon ile takip

eden sayfadaki denklemler elde edilir,
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SA=— o 5T AT
AN

e

= Zid)zgabcd (—%86[6‘ A eb]j AT (4.63)
K

1
== ¥ eudet A AT
K

d BzS(lf /\*fj:—léSeC INRPN i +1f NN
4 4 4

(4.64)

890:5(—%D¢A*p¢j=%5e°AiCD¢A*D¢—%D¢A5e°AiC*D¢
=%5€C/\(iCDd)/\*Dd)-l-Dd)/\ic*Dd))
_1 c i oAb * i x(ab
=08 /\(Ice Dy A*Do+ Dy A, *(e qu))) (4.65)
= %8e° A8 Dy A*D+ Do i, *e"Dyd |

— 86" A[DOA™DO+ DhA*(e, Ae,) D]

A
5.D=38| =¢**1
o=5( 5]

A 1 a ¢
:8{2(])4 (Zaabcde NCONC /\ed]}

(4.66)
A 4qAC 1 a b d
=Z¢ oe" A ggabcde NGV

A
=5e° Al — 0" *e
A(4¢ J
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B® ayar alanina gore varyasyon neticesinde asagidaki ifadeler elde edilir,

SBA = %Sabcdsjab 7AN de = zid)zgabcd (DSBab ) A de
*H . b (4.67)
_ 2 ab 2 cd
_D(....)+£¢ £000B” AD($°T)
5;B=0, 6;C=0, 5;D=0 (4.68)
y ayar alanina gore varyasyon ile asagidaki ifadeler elde edilir,
1 ab cd 1 2 ab cd
8 A= mamﬂ AT = =8y A (%€ s ® AB) (4.69)
B= L f A | = L Dy A*Dy +D *D
5,B=9% 2 A —Z(S YA*Dy+ Dy NS x)
1 1
:Z(DSX A*Dy + Dy /\*DB)():E(DSX A*Dy) (4.70)
1 1
==D /\*Dx)+§8x/\D*f
1 1 1
5,C=3 —ED(I)/\*D(I) = —ESD(I)/\*D(I)—ED(I)/\B*D(I)
:—%SD(I)/\*D(I)—%D(I)/\*B(D(I)):—8D¢/\*D(|> (4.71)
=8xoA*Dh
5.D=0 (4.72)
¢ alanina gore varyasyon asagidaki sekilde elde edilir,
1 ab cd 1 ab cd
S A=——gu T AT = S(I)(— depd  AF J (4.73)
ZANT) K
5,B=0 (4.74)
1
6¢C=8(—§D¢/\*D¢]=—D8¢/\*D¢:WnLSd)D*Dd) (4.75)
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A 4 % 3 %
6¢D=6(Z¢ 1j=5¢(x¢ 1) (4.76)

Bulunan ifadeler toparlandiginda hareket denklemleri sirasiyla asagidaki sekildedir,
D(¢2FC" ) —* T ABY =0 (4.77)

2
—‘I’—gabcdjab ne' +[ DY A*DY+ D A*(e, ne,) D |
K

=0 (4.78)

1 1 . A
_E(fcbeb /\*f _Esabcdf bed /\fj‘FE(I)“*ec

D(¢*T%)=0 (4.79)
¢_2 ab cd l * * il

Eaegd C AB +2D f+0*Dp=0 (4.80)
K
ia—:abcdja*’ AFY +D*Do+1p* *1=0 (4.81)
K
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Ek-E: MAXWELL-WEYL GENISLETILMIS EINSTEIN ALAN DENKLEMI

Denklem (3.70)’te belirtilen Maxwell-Weyl Lagranjiyeninin e®(x) alanma gore

varyasyonundan elde edilen Denklem (3.74) iizerinde asagidaki gibi isimlendirme

yapilir,

2
T Al +[ D A*DY+DhA*(e, ne,) D]
K k

E1 E2

=0 4.82
1 f e’ /\*f—ls fPe! Af +&¢4*e e
2 cb 2 abcd 2 c
E3 E4

Yukaridaki biitiin parcalar sagdan €' ile garpilir ve Denklem (1.86), Denklem (4.4)
ve Hodge dual operatoriiniin bazi 6zellikleri kullanildiginda sirasiyla asagidaki

neticeler elde edilir,

2
Elne' = —%aabcdjab NC-EN-N

2
— —¢—sabcdjabefee ref ne’ ae'
K
, (4.83)

= ?Jabef (Sabcdgewd )ﬁdllx
G LN
K

E2ne' ={D.o A*Dp+DhA*(e, ne,) D¢} ne”

=1D,0*(e,D'¢) +%Da¢ebDb¢ ~*(e, nE, )} ae

|
o
.

1
57
%Dc(l)(pr(b 8rstuSStuv + l Dad)pb(l)gacghgbghv}\/_gd4x

D'd)e,e ne' ne'+ %Dadﬂ)bd)sacgheb NN } ne’ (4.84)

<|>D¢——8V (D°¢D, ¢)}\/_d4
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E3ne’ =—=|f e° A*f —lsabcdfabed /\fj/\e
2

f.e° A *(%fmne”‘” ) - %sabcdf P A (%frser AE° j} ne'

1
fe" Af™*e —Zgabcdf‘"‘bfrsed ne'netne’

|
| |
N |- NIH NP, NFE N e

1 1
f f™e’ A ( > €, AE 2 I e AN U S N Y

1
f.f™e e’ Ae ae’ne " I e AN AN AN }

mnrs

Z fcbf mngmnrssbrsv + %f ab-':rs‘c;abcd‘c:rsvd j HdAX

_%fcbf " (Sbmsvn F 8bngvm )

1
T2 1w {6:(6%6”0626%)5%(52828262)} Jad

AT (8, -5,

|
N |-
—— —— —— ———
- -l>||—‘ N[+ l\)II—‘

(4.85)

__k —f f* —%fabfabSVc +favfacjﬁd4x

(f = fabf ,8" J\/_d X

v_7\' 4 % v_}\' 4 1 Y
E4 ne _Eq) e, NE _E(I) [3' AN LN L PN

Al 4 abdv A 4 v 4
)R Y AN @

3!

- %q)“svcﬁd“x

Bu neticeler Denklem (4.82)’de yerine yazilir ve diizenlenirse asagidaki yapi elde

edilir,

2@%@@—6%(@%@&—%&]

(4.87)
ac 1 a gcd
+(f fcb+28bf fcd]

1 K
a __Sa —_ -2
VAN > Wi 2¢
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Bu son ifadeyi uzay-zaman indisleri ile yazabilmek igin F® egriligine ait ifadeleri

asagidaki sekilde bulabiliriz,
N T N 4.88
=e" e, =3 oodX” A X (4.88)

Seklinde yazabiliriz, ayrica ayni1 ifade asagidaki bicimde yazilabilir,

\% A% 1
e" e’ F® =¢e"e", (DB“’ —Eea ne

v (1 b 1, a o
—e"e b(quBG] ° ~ 2% ec]bjdx" ~dx (4.89)
e nB 2 -1(6n 5, ~5".5" ) |ax> adx
_E 2€ b1, Bq _E( PP o p) g X

Ve son iki netice karsilastirilirsa asagidaki ifadeler elde edilir,

1

P =e'e", D B," —E(SHPSVG -8,8",) (4.90)
B ZF —eh e D BL® - (5" 5 — 55"
p = o =€ L8 L, By _E( UV Py p) (4.91)
=e* e DB ab—§8“ |
a” b™[p—v] 2 p
F=F, =e"¢e,D,B, "6 (4.92)

Denklem (4.87)’nin sol tarafi 7% =R® +2u¢’F* dikkate alinarak agildiginda
Denklem (4.93)’teki ifade elde edilir,

T, —%S”uj =R", —%S“QR +2u4° (F“a —%S”QF)
e e, D B,” (4.93)

1 [a™=V]
=R*, —=8" R+3u?8", +2ud’
2 —%S“Q(e"ae"bD B,")

[p—cl

Denklem (4.93), Denklem (4.87)’de yerine yazildiginda ise Denklem (4.94) elde

edilir,
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R, 3SR, -2 T(E), b T, + 5T, (4.94)

Buradaki alanlarin agik ifadesi ise asagidaki sekildedir,

T(B)ua _ euaevb,D[qBv]ab _%Sua (epaecbe B ab)

[p—cl

T(9), =DD-33, (DV¢DV¢—%¢4J (4.95)

T(F)', =f 30,
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Ek-F: SUPER MAXWELL WEYL LAGRANJIYENi

Asagida verildigi gibi Denklem (3.88)’de sadece paranez igindeki terimleri dikkate

alacagiz.

s= 1 [078.0aR™ AF +4¢°Zy, A P (4.96)
2K

Bu Lagranjiyendeki terimleri agarsak,

1 (I)ZgabcdRab A DBCd _%q)zgabcdRab A eC A ed _%d)zgabcdRab A (EGCd A \V)

+4(|)2Dgy5 AW+ 407y A e,V ys AW
1 (4.97)
1 —54)2 (sabcdRab e’ ne -8y A,y A D\V) + D(d)zsabcdRab A B* )

~Di’e, ,R® AB™ - %q)zgabcd R® A(Ec™ Ay)+4¢"DEy, AW

elde edilir. Buradaki son terimi Denklem (3.87)‘deki besinci Bianchi 6zdesligi ve

YsOu = %%bchCd esitligini kullandigimizda asagidaki gibi agabiliriz,

49’ Dy, AV =D (49°Eys A W) —4D?Eys AW +497Eys A DY
=D (40°8ys A ¥) - 4DY’Eys A Y —i0°R® A(Eys0, A V) (4.98)

=D(40°Ers AP ) 4D Ty A + %‘bzgadeab A (& Ay)

Bu ifade Denklem (4.97)’de yerine yazilir ve tam tiirevler ihmal edilirse eylem

asagidaki bigimi alir,

1 .97 (aabcdRab e ne? -8 e,y Y, /\D\u)

S=-— i
4K 7 | 20D (£,4qR™ AB™ +4Ey, A ¥)

(4.99)

Burada siiper kiitlegekiminin anlatildigi boliimdeki islemler dikkate alindiginda

yukaridaki Lagranjiyenin D=0 sartinda SMW(1,3) grubunun yerel doniisiimleri

altinda degismez kaldig1 goriilecektir.
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