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YÜKSEK LİSANS TEZİ
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ÖZET

HİPERSPEKTRAL GÖRÜNTÜLERDE LİDAR DESTEKLİ SPEKTRAL
BÖLÜTLEME

Orhan TORUN

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Seniha Esen YÜKSEL

Eylül 2017, 101 sayfa

Bu tez çalışmasında, hiperspektral görüntüler ile LiDAR (Light Detection and Ranging)

verileri spektral bölütleme yöntemleriyle kaynaştırılarak hiperspektral görüntülerin de-

netlemesiz bölütlemesi yapılmıştır. Hiperspektral görüntüler normal KYM görüntüler-

den farklı olarak yüzlerce bantta görüntü oluştururlar. Bu yüksek boyutlarından ötürü

hiperspektral verileri işlemek büyük problem haline gelmektedir. Bu sebeple, görüntü

işlemede boyut indirgeme ve bölütleme önemli bir yere sahiptir. Bu çalışmada, hipers-

pektral görüntülerin bölütlenmesi için herhangi bir ön bilgiye ihtiyaç duymayan spektral

bölütleme yöntemleri kullanılmıştır.

Hiperspektral görüntüler birçok spektral banda sahip olmasının yanı sıra piksel başına

yüksek uzamsal çözünürlüğe de sahiptir. Uzamsal ve spektral bilgiler her ne kadar bö-

lütlemeye katkı sağlasalar da aynı sahnede yer alan benzer spektral özelliklere sa-

hip nesnelerin sadece bu bilgiler kullanılarak ayırt edilmesi zorlaşmaktadır. Bu ben-

zer spektral özelliklere sahip nesneler farklı yüksekliklere sahiplerse, yükseklik bilgileri

kullanılarak ayırt edilmeleri mümkündür. Ancak, hiperspektral görüntüler herhangi bir

yükseklik bilgisi içermemektedir. Bu sebeple, hiperspektral görüntüler ile yükseklik bil-

gisi içeren başka kaynakların birleştirilmesi, verilen bir sahnedeki nesneler daha detaylı

yorumlanabilir. Bu tez kapsamında, LiDAR verilerinden elde edilen yükseklik bilgisi ile

hiperspektral görüntülerden elde edilen uzamsal-spektral bilgiler birleştirilerek hipers-

pektral görüntülerin bölütlenmesi sağlanmıştır.
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Spektral bölütleme, görüntü hakkında herhangi bir ön bilgiye ihtiyaç duymaması, stan-

dart doğrusal cebir yöntemleriyle kolayca çözülmesi ve geleneksel yöntemlerden daha

iyi sonuçlar vermesinden dolayı son yıllarda popüler bir yöntem haline gelmiştir. Hi-

perspektral görüntüler bölütlemesinde spektral bölütleme yöntemleri olan Düzgelenmiş

Kesit (Normalized Cut) ve Schroedinger Özharitalar (Schroedinger Eigenmaps) kul-

lanılmıştır. Bu yöntemlerin kullandığı benzeşim matrisi LiDAR ve hiperspektral veriler

kullanılarak oluşturulmuştur. Özellikle, Nokta Tabanlı Karşılıklı Bilgi (Pointwise Mutual

Information-PMI) yöntemiyle oluşturulan benzeşim matrisi kullanılarak önemli bölüt-

leme sonuçları elde edilmiştir. Ayrıca, bu spektral bölütleme yöntemlerinin farklı çö-

zümleri ile oluşturulan bölütleme sonuçları incelenmiş ve karşılaştırılmıştır. Uzamsal ve

spektral bilgilerin yanı sıra LiDAR’dan elde edilen yükseklik bilgisinin bölütlemeye sağla-

dığı katkı incelenmiş ve önerilen birleştirme yöntemlerin sonuçları ve mevcut yötemlerle

elde edilen bölütleme sonuçları karşılaştırılmıştır.

Anahtar Kelimeler: Hiperspektral Görüntüler, LiDAR, Denetlemesiz Bölütleme, Spekt-

ral Bölütleme
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In this thesis, hyperspectral images and LiDAR (Light Detection and Ranging) data has

been fused by using spectral clustering methods in order to obtain unsupervised hy-

perspectral image segmentation. Hyperspectral Images, unlike ordinary RGB images,

contain hundreds of spectral bands. Because of these high dimensions, it becomes a

huge problem to process hyperspectral data. For this reason, dimension reduction and

segmentation in image processing have an important position. In this work, spectral

clustering methods that do not require a prior information are used for segmentation of

hyperspectral images.

Hyperspectral images have many spectral bands as well as high spatial resolution per

pixel. Although spatial and spectral information contribute to segmentation, it is difficult

to distinguish objects with similar spectral characteristics in the same scene using only

this information. If these objects which comprise similar spectral information have dif-

ferent altitudes, it is possible to distinguish them using elevation information. However,

hyperspectral images do not contain any elevation information. Therefore, hyperspectral

images and other sources of elevation information can be combined to provide a more

detailed interpretation of the objects in a given scene. In this thesis, elevation infor-

mation obtained from LiDAR data and spatial-spectral information are fused to provide

hyperspectral image segmentation.
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Spectral segmentation has become a popular method in recent years because it does

not need any priori information about the image, it is easily solved by standard linear

algebra methods and gives better results than traditional methods. Normalized Cut and

Schroedinger Eigenmaps, which are spectral clustering methods, have been used in

order to segment hyperspectral images. The affinity matrix used by these methods has

been constructed using LiDAR and hyperspectral data. In particular, significant seg-

mentation results have been obtained by using the affinity matrix generated by the

Pointwise Mutual Information (PMI) method. In addition, the segmentation results ge-

nerated by different solutions of these spectral segmentation methods have been exa-

mined and compared. Besides the spatial and spectral information, the contribution of

the elevation information obtained from LiDAR to the segmentation is examined and the

segmentation results of the proposed fused methods and the segmentation results of

the available methods are compared.

Keywords: Hyperspectral Imagery, LiDAR, Unsupervised Segmentation, Spectral Clus-

tering
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2.2. Düzgelenmiş Kesit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Özyinelemeli 2-Ncut (Recursive 2-Ncut) . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2. k-ortalamalar (k-means) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3. Çok katmanlı Ncut (Multiclass Ncut) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4. Spektral Pb + UCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. Laplacian Özharitaları . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Schroedinger Özharitaları . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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4.6. Mevcut ve Önerilen Yöntemlerin Karşılaştırılması . . . . . . . . . . . . . . . . . . . . . . 59

5. SONUÇLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

KAYNAKLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

EKLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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P Potansiyel matrisi

V Çizgedeki boğumlar
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α Potaniyel matrisi ağırlıklandırma katsayısı

βspektral Spektral benzerliği kontrol parametresi
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LE Laplacian Eigenmaps Laplacian Özharitaları

LiDAR Light Detection and Ranging Lazerle Tespit ve Menzil Tayini

LWIR Long-Wave Infrared Uzun-Dalga Kızılötesi

MWIR Mid-Wave Infrared Orta-Dalga Kızılötesi

Ncut Normalized Cut Düzgelenmiş Kesit
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1. GİRİŞ

Uzaktan algılama (UA) nesnelerle fiziksel bir temas olmaksızın, herhangi bir uzaklıktan

nesneler hakkında bilgi toplama ve yorumlama bilimi olarak tanımlanabilir [1]. UA’nın

kullanılmasındaki en temel neden, bize dünyaya bakmanın farklı bir yolunu veriyor ol-

masıdır. Özellikle, ulaşılması zor olan ve duyu organlarımızla algılayamadığımız nesne-

lerin belirlenmesi ve özelliklerinin çıkartılıp yorumlanması bakımından UA büyük önem

taşımaktadır. UA, sensör olarak bilinen mekanik aygıtlar yardımıyla yapılır. Bu sensör-

ler; uçaklar, uydular veya başka platformlar kullanılarak algılanması istenilen nesnenin

uzağına yerleştirilir. Çoğu algılama cihazı, bir nesnenin yüzeyinden yansıyan veya ya-

yılan elektromanyetik enerjinin iletimini ölçerek nesne hakkındaki bilgileri kaydeder.

Kullanılan enerjiye göre UA sistemleri, pasif UA ve aktif UA diye iki gruba ayrılır. Pasif

sistemler uzaktan algılamada herhangi bir enerji üretmezler ve güneş enerjisini kullanır-

lar. Aktif sistemler ise kendi enerjisini üretirler ve yansıttıkları enerjinin geriye dönüşünü

toplayarak bilgi oluştururlar. Pasif UA sistemlerinin üretimi kolay ve maliyeti düşük ol-

duğundan aktif UA sistemlerine göre daha çok tercih edilmektedir. Ancak, aydınlatma

kaynağının kontrolüne sahip olan aktif UA sistemleri, pasif UA sistemlerine göre bir-

çok avantajı vardır [2]. Aktif UA, gece ve gündüz şartlarından bağımsız olarak ölçüm

alabilirler. Pasif UA teknikleri ile hedeften çıkarılabilecek bilgilerin çoğu, algılanan sin-

yalin genliği ile ilgilidir; aktif sistemlerde ise aydınlatma sinyalinin genlik, frekans, faz ve

kutuplaşma parametrelerinin tam olarak bilinmesi hedefin kapsamlı bir şekilde incelen-

mesine olanak sağlamaktadır. Diğer bir avantaj, aktif sistemlerde frekansta veya dalga

boyundaki algılanan değişmelerin ölçülmesi, hareket eden hedefin göreceli hızını belir-

lemek için Doppler tekniklerine olanak tanımasıdır. Son yıllarda, sensör teknolojilerinin

gelişmesiyle birlikte UA uygulamaları da hızla artmaktadır. Örneğin, bu uygulamalardan

bazıları:

• Doğal kaynak yönetimi ve işletimi [3],

• Arazi kullanım planlaması [4],

• Savunma ve istihbarat amaçlı uygulamalar [5],

1



• Jeolojik, jeomorfolojik ve tektonik amaçlı uygulamalar [6],

• Hidrolojik amaçlı uygulamalar [7],

• Tarımsal amaçlı uygulamalar [8],

• Çevre değişim analizi [9],

• Kentsel planlama [10],

Hiperspektral görüntüleme, yüzlerce dalga boyunda görüntü oluşturan yeni nesil pasif

UA teknolojisidir. Hiperspektral görüntüleme sensörleri, insan gözünün algıladığı gö-

rünür ışıkta elde edilen klasik görüntülerinden farklı olarak çok sayıdaki bitişik bantta

görüntü oluşturur. Bu görüntüler nesnelerin farklı dalga boylarında ışığı ne kadar yan-

sıttıklarının ölçümüdür. Her nesnenin ışığı yansıtma özelliği kendisine ait spektral im-

zasını oluşturur [11]. Şekil 1.1’de hiperspektral veri küpü ve farklı nesneler içeren beş

pikselin spektral imzaları gösterilmektedir. Yüzlerce dalga boyuna bakıldığında, hipers-

pektral görüntülerden (HSG) her bir pikselde hangi materyal olduğu anlaşılabilmektedir.

HSG’ler bölütleme, sınıflandırma, hedef tespiti işlemlerine olanak sağladığından, askeri

ve sivil uygulamalarda sıkça kullanılmaktadır [12].

Hiperspektral görüntüleme, yukarıda bahsedildiği gibi, pasif UA yöntemine dayandığın-

dan güneşten gelen ışınların yüzeydeki nesnelerden değişik dalga boylarındaki farklı

yansıma özelliklerinden faydalanır. Spektral imzayı oluşturan değer spektral yansıma-

dır. Bu yansıma, her dalga boyu için yansıyan enerjinin gelen enerjiye oranından bu-

lunmaktadır. Hiperspektral alıcıların en belirgin özelliği önceki teknoloji olan çok bantlı

(multispektral) görüntülerden farklı olarak birbirine bitişik çok daha fazla banda sahip

olmalarıdır. Hiperspektral sensörleri, 0.01 µm gibi dar bir bant genişliğinde ve elektro-

manyetik spektrumun 0.4 µm ile 14 µm dalga boyunu içeren kısımda çalışırlar. Hipers-

pektral görüntü sensörleri, uygulama alanlarına göre dört dalga boyu aralığında görüntü

toplayacak biçimde tasarlanmıştır. Şekil 1.2’de verilen elektromanyetik spektrumda da

görülebileceği gibi, bu bölgeler aşağıdaki gibi sıralanabilir:

• Görünür ve yakın kızılötesi bant (VNIR, 0.4-1.1 µm),
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Şekil 1.1. Hiperspektral veri küpü

• Kısa dalga kızılötesi bant (SWIR, 1.1-3 µm),

• Orta dalga kızılötesi bant (MWIR, 3-5 µm),

• Uzun dalga kızılötesi bant (LWIR, 5-14 µm),

Şekil 1.2. LiDAR ve hiperspektral için elektromanyetik spektrum bölgeleri

LiDAR (Light Detection and Ranging) bir nesneyi algılamak için optik aralıktaki elekt-

romanyetik enerjiyi kullanan, hedef ile sensör arasındaki mesafeyi belirlemek ve ışıma
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ile etkileşime dayalı nesnenin fiziksel özelliklerini belirleyen aktif bir UA tekniğidir. Li-

DAR sistemleri enerji kaynağı olarak genellikle lazer kullanırlar. Hedef nesneye lazer

darbeleri gönderilir ve yansıyan enerjiyi toplayarak hedef hakkında bilgi çıkarılır. Lazer

kullanılmasının sebebi, normal ışıktan farklı olarak kaynaktan uzaklaştıkça dağılma-

masından ve tutarlı (coherent) olmasından kaynaklanmaktadır. Şekil 1.2’de gösterildiği

gibi, LiDAR elektromanyetik spektrumun 0.3-2 µm dalga boyu bölgesi olan morötesi

(UV), görünür-yakın kızılötesi (VNIR) ve kısa dalga kızılötesi (SWIR) bantlarında çalış-

maktadır. Uygulama alanına göre LiDAR üç gruba ayrılabilir [13]. Bunlar:

• Menzil Bulma LiDAR’ı: Bir nesnenin uzaklığı belirlemek için kullanılır. Kısa dalga

kızılötesi bandında çalıştıklarından, küçük hedeflerin menzillerinin hesaplanma-

sında etkili bir yöntemdir. Gelişmiş menzil bulma LiDAR’ı hedefin yüzeyini taraya-

rak, mesafenin yanı sıra hedefin şeklini ve boyutunu da belirleyebilir.

• Diferansiyel Emilim LiDAR’ı: Atmosferde bulunan gazların ve aerosollerin (du-

man, sis vb.) sıcaklığını, yoğunluğunu ve basıncını ölçmek için kullanılır.

• Doppler LiDAR’ı: Tutarlı (coherent) özelliğine sahip olan lazerleri kaynak olarak

kullanan LiDAR sistemleri, Doppler kayması yardımıyla hedef nesnenin hızını be-

lirlemede kullanılır.

1.1 Hiperspektral Görüntü Bölütlemede Mevcut Yöntemler

HSG’ler iki boyutu uzamsal ve bir boyutu da spektral olmak üzere, Şekil 1.1’de verildiği

gibi, üç boyutlu bir veri küpü oluşturmaktadır. Son yıllarda hiperspektral sensörler ve

hiperspektral görüntüleme teknolojilerinde kaydedilen ilerlemelerle yüksek boyutluluk,

veri işlemede problem haline gelmiştir. Bu nedenle HSG analizinde en hayati görevler-

den biri, görüntüdeki ayrıntıları kaybetmeden görüntüyü etkin bir şekilde bölütlemektir.

HSG bölütleme süreci, uzaktan algılanan bu görüntülerin yorumlaması, analiz edilmesi

ve sonraki uygulamalarda kullanılması açısından önemli bir adımı oluşturmaktadır [14].

Genel anlamda görüntü bölütleme, benzer özelliklere sahip pikselleri anlamlı bölgelere

ayırma işlemidir. Son yıllarda, HSG bölütleme için birçok yöntem önerilmiştir. Bu yön-

temler temelde iki gruba ayrılabilir: denetlemeli (supervised) bölütleme ve denetlemesiz
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(unsupervised) bölütleme. Hiperspektral görüntülerin denetlemeli bölütlemesine yöne-

lik birçok yöntem önerilmiştir. Kullanılan bu HSG sınıflandırma yaklaşımlarının bazıları

sadece spektral bilgilere dayanmaktadır [15, 16]. Bu yöntemlerle spektral özellikler, ilk

önce temel bileşen analizi (principal component analysis-PCA) ve bağımsız bileşen

analizi (independent component analysis-ICA) gibi bir öznitelik çıkarma yöntemi kulla-

nılarak çıkarılmaktadır. Ayıklanan bu özellikler daha sonra bir sınıflandırıcıyı eğitmek

amacıyla kullanılmaktadır. Bu yaklaşımlar yalnızca spektral bilgileri dikkate almakta ve

görüntüdeki farklı pikseller arasındaki ilintiyi göz ardı etmektedir. Bu yöntemler hem

uzamsal hem de spektral bilgiler kullanan diğer yöntemlere kıyasla düşük performans

göstermektedirler.

Gerçek görüntülerde komşu pikseller aslında birbiriyle ilişkilidir. Bu nedenle, her bir pik-

selin hem uzamsal hem de spektral bilgisi kullanılarak sınıflandırma sonuçları iyileş-

tirilebilir. Son zamanlarda, Markov Rastgele Alan (Markov Random Field) ile uzamsal

ve spektral bilgiler kullanılarak HSG’lerin bölütlenmesi ve sınıflandırılması gerçekleşti-

rilmiştir [17]. Diğer bir yöntem ise yama tabanlı öznitelik çıkarma yöntemidir [18]. Yama

tabanlı yöntem sınıflandırıcı eğitilmeden önce kare pencereler kullanarak komşu pik-

selleri gruplar ve sonra bir alt-uzay öğrenme tekniği kullanarak her yerel pencereye

dayanan özellikleri çıkararak sınıflandırma yapmaktadır. Ancak, HSG’lerde denetlemeli

bölütleme ve sınıflandırma yöntemleri malzemelerin spektral imzaları ve/veya bölüt-

leme haritaları gibi önsel bilgilere ihtiyaç duyarlar. Malzemelerin spektral imzalarının

elde edilmesi zor ve pahalı bir işlemdir ve gerçek UA problemlerinde bölütleme harita-

ları bilinmemektedir. Bu sebeplerden ötürü, denetlemeli bölütlemenin uygulama alanları

sınırlıdır [19].

Denetlemeli bölütlemeye kıyasla, denetlemesiz hiperspektral görüntü bölütlemesi nis-

peten daha az ilgi görmüştür. Bununla birlikte, denetlemesiz bölütleme herhangi bir

önsel bilgiye gereksinim duymadığından birçok uygulama alanında kullanılabilir. Bu se-

beple, halen daha da geliştirilmesi gereken önemli bir alandır. Denetimsiz bölütleme,

hiperspektral görüntülerin içeriğini herhangi bir ön bilgi olmadan keşfetmeye ve anla-

maya olanak sağlar. Hiperspektral görüntülerin bölütlenmesini sağlamak için spektral

ve uzamsal bilgileri dikkate alarak denetlemesiz teknikler geliştirilmesine ilgi artmakta-
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dır. Yakın tarihte, Watershed dönüşüm tabanlı bölütleme hiperspektral görüntülerin de-

netlemesiz bölütlemesi için önerilmiş bir tekniktir [20]. Watershed dönüşümü genelde,

tek banttan oluşan görüntülerin gradyan fonksiyonuna uygulanır. Gradyan, bölgeler ara-

sındaki geçişleri tanımlar; homojen bölgelerdeki nesneler ve minimumlar arasındaki sı-

nırlarda yüksek değerlere sahiptir. Diğer bir deyişle, gradyan görüntüdeki nesnelerin

kenar çizgilerine karşılık gelmektedir. Bu gradyan fonksiyonuna Watershed dönüşümü

uygulandığında görüntüyü anlamlı bölgelere ayırmak mümkün hale gelmektedir. Ancak,

HSG’ler birden çok bant içerdiğinde gradyan fonksiyonun hesaplanması için uygun hale

getirilmelidir. HSG’ler, temel bileşen analizi ve bağımsız bileşen analizi gibi yöntemler

ile tek banda indirdikten sonra oluşturulan gradyan fonksiyonu kullanarak veya [20]’de

anlatılan vektörel gradyan yöntemleri kullanarak Watershed dönüşümüne uygun hale

getirilmektedir. Bu yöntemle elde edilen bölütleme haritası daha sonra sınıflandırma

performanslarını iyileştirmek için kullanılır. Bununla birlikte, eğer temel hedef denetle-

mesiz bölütleme ise, Watershed tabanlı tekniğin kullanılması genelde görüntüdeki nes-

neleri gereğinden fazla bölüte ayırmaktadır.

Doğru bölütleme sonuçlarının elde edilmesine yönelik alternatif bir diğer yol, işaretle-

yici (marker) kontrollü bölütleme uygulamaktır. İşaretleyici kontrollü yöntemlerde temel

fikir, her uzamsal nesne için, bu nesneye ait bir veya birkaç pikseli, yani bir işaret-

leyici seçmektir. Ardından, seçilen işaretleyicilerden bölgeler büyütülmekte, böylelikle

bölütleme haritası elde edilmektedir. Bölge işaretleyicileri, zaman alıcı bir yöntem olan

elle veya otomatik olarak seçilebilmektedir. Otomatik yaklaşımda, verilere sınıflandırma

yöntemleri uygulanmakta ve daha sonra en güvenilir şekilde sınıflandırılmış pikseller

ilgili bölgelerin işaretleyicileri olarak seçilmektedir. Literatürde, bu bölge işaretleyiciler-

den Minimum Yayılmış Orman (Minimum Spanning Forest-MSF) oluşturulmasıyla bö-

lütleme yapan bir yöntem önerilmiştir [21]. Bölge işaretleyicileri tabanlı diğer bir yöntem

ise Hiyerarşik Bölütleme (Hierarchical Segmentation - HSEG) yöntemidir [22]. Bu yön-

temde işaretleyicilerin kullanılması, tek bir bölütün otomatik olarak seçilmesini sağlar.

Bu yöntemlerin dezavantajı, güvenilir işaretleyicilerin belirlenmesi için bölütleme doğru-

luk haritaları gibi elde edilmesi zor ve pahalı bilgiler gerektirmesidir.

Diğer bir yöntem, dokusal bölgelerin özniteliklerini yakalamayı hedefleyen Markov Rast-
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gele Alan (Markov Random Field - MRF) modelidir [23]. Nispeten daha eski olan bu

yöntem, doğrudan piksel üzerinde çalışmak yerine, fazla bölütlenmiş görüntü için iki

aşamalı bir algoritma kullanmaktadır. İlk aşamada, fazla bölütlenmiş bölgeler için bölge

yakınlık grafiği çizilmektedir. MRF modelinin enerji fonksiyonu, bölge içi homojenlik ve

bölgeler arası benzerlik temelinde tanımlanmaktadır. İkinci aşamada, Fischer dağılı-

mına dayalı bir eşik ile karşılaştırıldığında bu enerji fonksiyonun değerine dayalı ola-

rak bölge birleştirme gerçekleştirilmektedir. Yine yakın tarihte, ağırlıklandırılmış küme-

leme yoluyla başlatılan ve spektral-uzamsal bilgileri kullanarak Uyarlanabilir Sınır Ayarı

( Adaptive Boundary Adjustment - ABA) tabanlı denetlemesiz HSG bölütleme yöntemi

önerilmiştir [24]. Bu model, hiperspektral verilerinin iki temel özelliğini kullanmaktadır:

spektral ilinti ve uzamsal bant tercihi. Bant tercihi, her bir bantta bulunan ayırt edici bilgi

ile tanımlanmakta, spektral ilintinin korunması ve gerçek yapının uzamsal boyutlarla eş-

leştirilmesi için uyarlanabilir bir mekanizma önerilmektedir. Bölütleme işlemi, görüntüyü

farklı bant gruplarına bölerek her banttaki bilgi gücüyle uyarlanabilir şekilde ayarlan-

maktadır. Yakın tarihte önerilen diğer bir yöntem ise, hiperspektral veri gibi çok yüksek

boyutlu verileri işlemek için İkili Bölme Ağacı (Binary Partition Tree- BPT) tabanlı yön-

temdir [25]. BPT, bir görüntünün ağaç yapısında hiyerarşik bölge tabanlı gösterimidir.

Çoğunlukla, ağaç yapısı budanma olarak adlandırılan işlemden geçirilerek görüntülerin

bölütlere ayrılması sağlanmaktadır. Bu yöntem, kullanıcıların farklı bölütleme ölçekle-

rinde görüntüyü incelemelerine olanak sağlamaktadır. Ancak, bu yöntem ABA tabanlı

yönteme göre daha düşük performans göstermektedir.

Görüntü bölütlemesi konusunda çizge tabanlı bölütleme algoritmaları, yüksek perfor-

mansı nedeniyle oldukça popüler ve olgun hale gelmiştir. HSG’lerin bölütlemesinde de

yakın tarihte çizge tabanlı algoritmaya dayanan bir spektral yöntem önerilmiştir [26]. Bu

yöntemle çizgenin kenar ağırlıkları, pikseller arasındaki uzamsal ve spektral mesafele-

rin ağırlıklı birleşimi ile oluşturulmaktadır. Ardından görüntü, yinelemeli olarak bölütlere

ayrılmaktadır. Matematiksel olarak basit çözümü olmasına rağmen, yinelemeli yöntemin

sonlandırma kıstasını belirlemek zordur. Bu tez kapsamında, geliştirdiğimiz algoritmalar

da çizge tabanlı bölütleme alanına girmektedir.

Bu yeni yöntemlere kıyasla günümüze göre daha eski olan çalışmalar da mevcuttur.
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Örneğin, piksek benzerliklerini kullanarak bölütleme yapan morfolojik bir yöntem öne-

rilmiştir [27]. Hiperspektral görüntüleri doğru bir şekilde bölütlemek için, karşılıklı bilgi

[28] ve faz korelasyonu [29] gibi teknikler kullanılmıştır. HSG’lerde istatiksel denetle-

mesiz bölütleme yöntemi olarak Gauss Karışım Modelleri (Gaussian Mixture Models -

GMM) kullanılmıştır [30].

1.2 Tezin Amacı

Mevcut HSG bölütleme ve sınıflandırma algoritmaların çoğu ya spektral uzayda ya da

uzamsal uzayda çalışmaktadır. Teknolojini gelişmesiyle HSG’lerin uzamsal çözünürlük-

leri artmıştır. Bununla birlikte, bölütleme ve sınıflandırma sonuçlarını daha da geliş-

tirmek için HSG’lerin uzamsal ve spektral bileşenleri birlikte kullanılmaya başlanmıştır

[26, 31, 32]. HSG’ler, çok sayıda spektral bant içerdiklerinden dolayı, farklı spektral

özellikler taşıyan nesnelerin ayırt edilmesine olanak sağlamaktadırlar. Ancak, uzamsal

ve spektral bilgiler her ne kadar bölütlemeye katkı sağlasa da aynı sahnede yer alan

benzer spektral özelliklere sahip nesnelerin sadece bu bilgiler kullanılarak ayırt edil-

mesi zorlaşmaktadır. Bundan dolayı; bölütleme, sınıflandırma ve hedef tespiti uygula-

malarında performansı iyileştirmek amacıyla HSG’lerden elde edilen uzamsal-spektral

bilgiler ile tamamlayıcı nitelikte olan farklı veri kaynaklarına başvurmak gerekebilir. Bu

amaçla, literatürde farklı kaynaklardan toplanan verilerin kaynaştırılması üzerine çalış-

malar mevcuttur [33, 34, 35]. Eğer, aynı sahnede yer alan benzer spektral özelliklere

sahip nesneler farklı yüksekliklere sahiplerse, yükseklik bilgileri kullanılarak ayırt edile-

bilir. Ancak, hiperspektral görüntüler herhangi bir yükseklik bilgisi içermemektedir. Bu

sebeple, hiperspektral görüntüler ile yükseklik bilgisi içeren başka kaynakların birleşti-

rilmesi verilen bir sahnedeki nesnelerin daha detaylı yorumlanması gerçekleştirilebilir.

Bu tez çalışmasında, yükseklik bilgisi kaynağı olarak yeni bir UA teknoloji olan LiDAR

kullanılmıştır. LiDAR’dan elde edilen yükseklik bilgisi, hiperspektral görüntüleri tamam-

layıcı niteliktedir. Örneğin, bölütlemede sorun teşkil eden benzer spektral malzemelerin

yükseklik haritaları kullanarak ayırmak mümkündür. Bu nedenle, HSG bölütlenmesinde

LiDAR’dan türetilmiş yükseklik bilgisinin kullanılması göz önüne alınmalıdır. HSG’lerin

denetlemesiz bölütlenmesi için hiperspektral verilerden elde edilen uzamsal ve spektral

bilgilerle LiDAR’dan elde edilen yükseklik bilgisi verimli bir şekilde birleştirilmesi gerek-

8



mektedir. Bu amaçla, çalışmamızda, çizge tabanlı spektral bölütleme yöntemleri kul-

lanılarak hiperspektral verileri ve LiDAR verileri birleştirilerek bölütleme sonuçları ge-

liştirilmiştir. Günümüzde, spektral bölütleme popüler bir yöntem haline gelmiştir. Stan-

dart doğrusal cebir yöntemleriyle verimli bir şekilde çözülebilir olması ve k-ortalamalar

(k-means) ile tek bağlı (single linkage) gibi geleneksel yöntemlerden daha iyi sonuç-

lar üretmesi nedeniyle tercih edilmektedir [36]. Spektral kümeleme yöntemiyle komşu

pikseller arasındaki spektral ve yükseklik benzerlikleri göz önüne alınarak çizge elde

edilir. Oluşturulan bu çizgede farklı grupta yer alan pikseller arasındaki kenarların dü-

şük ağırlık alması, aynı grup içindeki piksellerin arasındaki kenarların da yüksek ağır-

lık alması amaçlanır. Bu amacı gerçekleştirmek için, spektral bölütlemede en önemli

nokta benzeşim matrisinin (similarity matrix) probleme uygun seçilmesidir. Bu çalış-

mada, hem uzamsal-spektral hem de yükseklik bilgilerini birleştirecek yeni benzeşim

matrisleri önerilmiştir. Elde edilen bu benzeşim matrisleri spektral bölütlemede kulla-

nılarak HSG’lerin bölütlenmesi gerçekleştirilmiştir. Bu kapsamda, spektral bölütleme

yöntemlerinden Düzgelenmiş Kesit (Normalized Cut-Ncut) ile Schroedinger Özharitalar

(Schroedinger Eigenmaps-SE) algoritmaları kullanılmış, önerilen yeni benzeşim matris-

leri ile bu algoritmaların farklı çözümleri ele alınarak bölütleme sonuçları incelenmiştir.

LiDAR’dan elde edilen yükseklik bilgisinin hiperspektral görüntü bölütlemesine sağla-

dığı katkılar tartışılmıştır.

1.3 Tezin Kapsamı ve Akışı

Tezin geri kalanı şu şekilde organize edilmiştir:

İkinci bölümde, spektral bölütlemenin temeli olan çizge teorisi anlatılmıştır. Çizge oluş-

tururken dikkat edilmesi gereken noktalara değinilmiş ve çizgedeki boğumlar arasın-

daki kenarların ağırlıklarının nasıl belirleneceği açıklanmıştır. Çizge oluşturulduktan

sonra bölütlerin elde edilmesi için spektral bölütleme yöntemleri olan Düzgelenmiş Kesit

(Ncut) ve Schroedinger Özharitalar (SE) algoritmalarının matematiksel çıkarımları ge-

niş bir şekilde ele alınmıştır. Bu algoritmaların farklı çözümleri anlatılmış ve çözümlerin

birbirlerine göre avantaj ve eksiklikleri belirtilmiştir. Spektral bölütlemede önemli nokta

olan benzeşim matrisini oluşturmak için literatürde mevcut olan yöntemlere değinilmiş-

tir.
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Bu tez kapsamında, KYM görüntü bölütlemesi için Shi-Malik [38] tarafından önerilen

spektral yöntem temel alınarak, HSG’ler bölütlenmesi çalışılmıştır. HSG bölütleme doğ-

ruluğunu arttırmak amacıyla LiDAR’dan elde edilen yüksek bilgisi, spektral ve uzamsal

bilgilerle uygun şekilde birleştirilmesi için araştırmalar yapılmış ve uygun yöntemler ge-

liştirilmiştir. Bu amaç doğrultusunda üçüncü bölümde, HSG’lerin bölütlenmesi için yeni

yöntemler önerilmiştir. Ncut ve SE spektral bölütleme algoritmalarının kullandığı ben-

zeşim matrisi, HSG’lerden elde edilen uzamsal ve spektral bilgiler ile LiDAR’dan elde

edilen yükseklik bilgisini kullanacak şekilde geliştirilmiştir. Benzeşim matrisi oluşturu-

lurken ilgili parametrelerin seçilmesi ve bu parametrelerin bölütleme sonuçlarına etkisi

tartışılmıştır. Spektral bölütlemenin farklı çözümleri kullanılarak görüntü bölütleme doğ-

ruluğu arttırılmıştır. Tez boyunca çalışılan SM benzeşim matrisi tabanlı Ncut yöntemiyle

HSG’lerin denetlemesiz bölütlenmesi, SE tabanlı HSG’lerin denetlemesiz bölütlenmesi

ve PMI benzeşim matrisi tabanlı Ncut yöntemiyle HSG’lerin denetlemesiz bölütlenmesi

algoritmaları üçüncü bölümde ayrıntılı olarak açıklanmıştır.

Dördüncü bölümde, denetlemesiz bölütleme için kullanılan MUUFL Gulfport gerçek veri

kümesi tanıtılmıştır. Önerilen denetlemesiz bölütleme yöntemleri bu gerçek veri küme-

sine uygulanmıştır. Denetlemesiz bölütleme sonuçlarının performanslarını değerlendi-

rebilmek ve farklı yöntemlerle elde edilen bölütleme haritalarının doğruluğunu karşı-

laştırmak için istatiksel bir yöntem olan Spektral Ayrıştırma Gücü (Power of Spectral

Discrimination-PSD) kullanılmıştır. Spektral bölütleme yöntemlerinin kullandığı para-

metrelere farklı değerler verilerek bölütleme üzerindeki etkileri karşılaştırılmış ve yo-

rumlanmıştır. LiDAR’dan elde edilen yükseklik bilgisinin bölütleme sonuçlarına katkıları

tartışılmıştır. Mevcut yöntemlerle önerilen yöntemler karşılaştırılmıştır.

Son bölümde ise tez genelinde önerilen HSG bölütleme yöntemleri ve sonuçları ile ilgili

çıkarımlara yer verilmiştir.
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2. SPEKTRAL BÖLÜTLEME

Görüntü bölütleme, görüntüdeki nesneleri gruplama tekniğidir. Diğer bir deyişle, bir gö-

rüntüyü benzer özelliklere sahip farklı bölgelere ayırma yöntemidir. Bölütleme, veri ana-

lizi için sıklıkla kullanılmaktadır. Temel olarak, görüntü bölütlemenin amacı aşağıdaki

gibi sıralanabilir:

• Görüntü veya görüntü gruplarından yararlı bilgiler çıkartmak,

• Nesneleri arka plandan ayırmak,

• Farklı nesneleri birbirinden ayırmak,

Bir önceki bölümde de bahsedildiği gibi, standart doğrusal cebir yöntemleriyle çözüle-

bilen ve geleneksel yöntemlerden daha iyi sonuçlar vermesinden dolayı spektral bölüt-

leme son yıllarda popüler bir yöntem haline gelmiştir. Bu bölümde, spektral bölütleme

için gerekli olan çizge teorisi anlatılmış ve HSG’lerin bölütlemesi için kullanılan spektral

bölütleme yöntemlerinin teorileri verilmiştir.

Konuya başlamadan önce, hiperspektral görüntülerde ve spektral bölütlemede yer alan

"spektral" kelimesinden dolayı aralarında bir bağlantı olduğu düşünülebilir, ancak ifade

ettikleri kavramlar tamamen farklıdır. Daha önce belirtildiği gibi hiperspektral görüntüler,

çok sayıdaki bitişik bantta toplanan görüntü topluluğudur. Diğer yandan spektral bölüt-

leme ise; bir nokta topluluğuyla, bir KYM görüntüyle veya bir hiperspektral görüntüyle

çizge oluşturarak ilgili bu veri kümelerini bölütlere ayırma yöntemidir.

2.1 Benzerlik Çizgesi

Bir veri kümesi içindeki noktaları kümelendirmenin amacı, birbirine benzeyen noktaları

aynı grubun içine dahil ederek ve birbirlerine benzemeyenleri ise farklı gruplara yer-

leştirerek bölmektir. Veri noktaları arasındaki benzerliklerden daha fazla bilgiye sahip

değilsek, verileri temsil etmenin güzel bir yolu benzerlik çizgesi, G = (V, E), oluşturmak-

tır [36]. Bir G = (V, E) çizgesi, V boğumlarının E kenarları ile birleştirilmesi sonucunda

oluşturulur. Burada V boğumları, veri kümesindeki noktaları ifade etmektedir. E ise veri

11



Şekil 2.1. Ağırlıklandırılmış yönsüz benzerlik çizgesi

kümesindeki nokta çiftlerinin arasındaki kenarları ifade eder. Şekil 2.1’de A ve B sınıf-

larından oluşan çizgede, boğumlar ve bu boğumları birbirine bağlayan kenarlar gözük-

mektedir. Her bir boğumu birbirine bağlayan kenarlara bir ağırlık verildiğinde, bu çizgeye

ağırlıklandırılmış çizge denilmektedir. Şekilde gözüktüğü gibi i ve j adındaki iki boğumu

bağlayan kenar ağırlıkları wi ,j ile ifade edilmektedir. Bu ağırlıklar, boğumların birbirine

olan benzerlikleri kullanılarak hesaplanmaktadır. İki boğumun benzerliği yüksekse ke-

nar ağırlığı 1’e yakın, aksi halde 0’a yakındır, yani aralarında bağlantı yok demektir.

Eğer bir G = (V, E) çizgesindeki kenar ağırlıkları wi ,j = wj ,i koşulunu sağlıyorsa, bu çizge

yönsüz çizge diye adlandırılmaktadır.

2.1.1 Çizgenin Matematiksel Gösterimi

G = (V, E), kenar ağırlıkları wi ,j olan bir ağırlıklandırılmış yönsüz çizge olsun. W(i, j) =

{wi ,j } matrisi çizgenin benzerlik matrisi olarak tanımlanır. Bu matrisin her bir indisi i

ve j boğumlarını birleştiren wi ,j ile ifade ettiğimiz kenarın ağırlığıdır. Çizgede toplamda

n tane boğum varsa, i . boğumun derecesi di =
n∑

j=1

wi ,j olarak hesaplanır. Aslında, bu

toplam yalnızca i . boğuma komşu kenarlar üzerinden hesaplanır, diğer tüm kenarların

ağırlıkları sıfıra eşittir. D ise köşegenleri d1, ..., dn olan diyagonal bir matristir ve çiz-

genin derece matrisi olarak adlandırılır. Son olarak, ilerde matematiksel gösterimlerde

kullanacağımız ve Laplacian matrisi olarak adlandırılan L matrisi denklem (2.1)’de gös-

terildiği gibi hesaplanır.

L = D−W (2.1)
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Şekil 2.2. Çizge bölütlenmesi

2.1.2 Çizgenin Bölütlenmesi

Çizgeyi bölütlemedeki amacımız, çizgeyi ayrık boğum kümelerine ayırmaktır. Öyle ki,

her bir boğum sadece bir grupta yer alacak ve tüm grupların toplamı çizgeyi oluştu-

racak şekilde sınıflandırmaktır. Bir örnek üzerinde olaya bakacak olursak, Şekil 2.2’de

gösterilen çizgeyi A ve B gibi ayrık gruplara bölmek hedeflenmektedir. Yani, A ∪ B = V

ve A ∩ B = ∅ olacak şekilde çizgeyi bölmek gerekmektedir. Bunu yaparken önemli iki

soru karşımıza çıkmaktadır:

1. İyi bir bölütleme için kesin kıstas nedir?

2. Böyle bir bölütleme nasıl verimli bir şekilde hesaplanabilir?

Çizgedeki A ve B grupları arasındaki farklılık derecesi, bu iki grup arasındaki kenar

ağırlıklarının toplamı olarak ifade edilebilir. Çizge teorisinde, bu değer kesit (cut) olarak

ifade edilir ve denklem (2.2)’deki gibi hesaplanır.

cut(A, B) =
∑

i∈A,j∈B

wi ,j (2.2)

Çizgeyi en iyi bölüte ayırmanın yolu, denklem (2.3)’te verildiği gibi bu kesit değerini

en aza indirmekle eşdeğerdir [37]. Denklem (2.3)’e göre, i boğumları A sınıfında ve
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j boğumları B sınıfında kalacak şekilde, boğumlar arasındaki ağırlıkların en küçük ol-

duğu kenarlardan ayırmak hedeflenmektedir. Böylece birbirine benzeyen boğumlar aynı

gruba yerleştirilir ve diğer boğumlardan ayrılmaları gerçekleştirilir.

min cut(A, B) = min
∑

i∈A,j∈B

wi ,j (2.3)

Fakat, Şekil 2.3’te verilen çizge örneğinde olduğu gibi çizgedeki uç boğumların kesit

değeri küçük olduğundan, denklem (2.3)’ün sonucunda uç boğumlar yanlış sınıflandırı-

labilmektedir. Bunu önlemek amacıyla Düzgelenmiş Kesit yöntemi geliştirilmiştir [38].

Şekil 2.3. Kesit değerinin en az indirgenme yönteminin kötü sonuçları

2.2 Düzgelenmiş Kesit

Yukarıda bahsedilen ve Şekil 2.3’te gösterildiği gibi, kesit değerinin ayrık uç boğumları

bölütlemedeki bu doğal olmayan eğilimini önlemek için denklem (2.2)’nin düzgelenmesi

gerekmektedir. Bu problemin çözümü için [38]’de Düzgelenmiş Kesit (Normalized Cut-

Ncut) yöntemi önerilmiştir. Kesit değeri çizgede mevcut olan tüm bağlantılarla düzge-

lersek denklem (2.4)’te verilen Ncut yöntemi elde edilmektedir. Denklem (2.5)’te verilen

assoc, A’daki boğumların çizgedeki tüm boğumlara olan bağlantısını ifade etmektedir.

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)
assoc(B, V )

(2.4)
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ve

assoc(A, V ) =
∑

i∈A,j∈V

wi ,j (2.5)

Düzgelenmiş Kesit yöntemi, boğumlar arasındaki bağların kuvvetine göre gruplarken,

A ve B gibi gruplar arasındaki ayırımı azaltıp, grupların kendi içindeki ilişkiyi arttırmayı

amaçlar [38]. Bunu gerçekleştirmek için Ncut maliyetinin minimize edilmesinin gerekir.

Ancak, bu maliyet fonksiyonun minimize edilmesinin Belirsiz Çokterimli Tam (Nondeter-

ministic Polynomial Complete- NPC) problem sınıfına girdiği [38]’de ispatlanmıştır. NPC

problemleri çözümleme zamanı arttıkça artan bir yapıya sahiptirler. Fakat ayrık çözüme

sahip Ncut problemi reel sayılar kümesinden değer alacak şekilde genişletilirse, yakla-

şık bir ayrık çözüm bulunabilmektedir. Bu çözüm [38]’de ispatlanmış, aşağıda da detaylı

olarak verilmiştir.

Şekil 2.2’de A ve B sınıflarından oluşan G = (V, E) çizgesi verilsin ve x çizgedeki boğum

sayısını, yani N = |V| boyutunda bir gösterge vektörünü temsil etsin. Bir i boğumu A

sınıfında yer aldığında xi = 1 değerini alırken, bu boğum B sınıfında yer alırsa xi =

−1 değerini almaktadır. Bu anlamda, denklem (2.4)’te verilen Ncut değerini yeniden

yazarsak:

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)
assoc(B, V )

=

∑
xi>0,xj<0

−wi ,j xixj∑
xi>0

di
+

∑
xi<0,xj>0

−wi ,j xixj∑
xi<0

di

(2.6)

Denklem (2.6)’nın sonucunu üzerinde işlem yapılacak hale getirmek için; tüm girdileri

bir olan Nx1 boyutunda 1 vektörü verildiğinde, gösterge vektörünün xi > 0 değerleri için
1 + x

2
ve xi < 0 değerleri için de

1− x
2

değeri kullanılabilir. Denklem (2.7)’deki bölüme

de k dersek:

k =

∑
xi>0

di∑
i

di
(2.7)
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Denklem (2.6)’daki Ncut, denklem (2.8)’deki gibi düzenlenebilir.

4[Ncut(x)] =
(1 + x)T (D−W)(1 + x)

k1T D1
+

(1− x)T (D−W)(1− x)
(1− k )1T D1

=
xT (D−W)x + 1T (D−W)1

k (1− k )1T D1
+

2(1− 2k )1T (D−W)x
k (1− k )1T D1

(2.8)

Takip kolaylığı amacıyla denklem (2.8)’deki bazı terimler yerine aşağıda verilen simge-

lerle devam edilecektir.

α(x) = xT (D−W)x,

β(x) = 1T (D−W)x,

γ = 1T (D−W)1,

M = 1T D1

(2.9)

Bu simgeleri kullanarak, denklem (2.8) aşağıdaki gibi daha geniş şekilde yazılabilir:

4[Ncut(x)] =
(α(x) + γ) + 2(1− 2k )β(x)

k (1− k )M

=
(α(x) + γ) + 2(1− 2k )β(x)

k (1− k )M
− 2(α(x) + γ)

M
+

2α(x)
M

+
2γ
M

(2.10)

Yukardaki denklemin sağdaki son terimi sıfır olduğundan, γ = 0, ihmal edilebilir. Denk-
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lem (2.10)’u yeniden düzenlersek:

4[Ncut(x)] =
(1− 2k + 2k2)(α(x) + γ) + 2(1− 2k )β(x)

k (1− k )M
+

2α(x)
M

=

(1− 2k + 2k2)
(1− k )2 (α(x) + γ) +

2(1− 2k )
(1− k )2 β(x)

k
1− k

M
+

2α(x)
M

(2.11)

Denklem (2.11)’deki
k

1− k
’ye b dersek ve γ = 0 olduğundan bu denklem aşağıdaki gibi

düzenlenebilir:

4[Ncut(x)] =
(1 + b2)(α(x) + γ) + 2(1− b2)β(x)

bM
+

2bα(x)
bM

=
(1 + b2)(α(x) + γ)

bM
+

2(1− b2)β(x)
bM

+
2bα(x)

bM
+

2bγ
bM

(2.12)

Denklem (2.9)’daki α(x), β(x), γ ve M değerlerini denklem (2.12)’de yerlerine koyarsak:

4[Ncut(x)] =
(1 + b2)(xT (D−W)x + 1T (D−W)1)

b1T D1

+
2(1− b2)1T (D−W)x

b1T D1

+
2bxT (D−W)x(x)

b1T D1

+
2b1T (D−W)1

b1T D1

=
(1 + x)T (D−W)(1 + x)

b1T D1

+
b2(1− x)T (D−W)(1− x)

b1T D1

+
2b(1− x)T (D−W)(1 + x)

b1T D1

(2.13)
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Son olarak denklem (2.13)’ün sonucunu düzenlersek:

4[Ncut(x)] =
[(1 + x)− b(1− x)]T (D−W)[(1 + x)− b(1− x)]

b1T D1
(2.14)

Denklem (2.14)’teki (1 + x)− b(1− x)’ye y dersek ve b =
k

1− k
=

∑
xi>0 di∑
xi>0 di

olduğundan

(2.15)’te ve (2.16)’da yer alan eşitliklere kolay bir şekilde ulaşılabilir.

yT D1 =
∑
xi>0

di − b
∑
xi<0

di = 0 (2.15)

ve

yT Dy =
∑
xi>0

di + b2
∑
xi<0

di

= b
∑
xi<0

di + b2
∑
xi<0

di

= b(
∑
xi<0

di + b
∑
xi<0

di)

= b1T D1

(2.16)

En iyi bölütün hesaplanması için Ncut’ın minimize edilmesi gerektiğinden yukarıda bah-

sedilmişti. Denklem (2.14), (2.15) ve (2.16)’nın sonuçlarını birleştirirsek problemimiz

aşağıda verilen optimizasyon problemine indirgenmiş olur:

min
x

Ncut(x) = min
y

yT (D−W)y
yT Dy

(2.17)

Burada, y(i) ∈ {1,−b} ve yT D1 = 0 kısıtlarını sağlamak zorundadır. Denklem (2.17)’deki

ifade Rayleigh bölümüdür (Rayleigh quotient) [39]. Eğer y gösterge vektörü reel sayılar

alacak şekilde serbest bırakılırsa, (2.17)’deki denklemi (2.18)’de verilen genelleştirilmiş

özvektör sistemi çözülerek minimize edilebilir.

(D−W)y = λDy (2.18)
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Özvektörler elde edildikten sonra, x gösterge vektörünün tanımı gereği y vektörünün

bazı kısıtları sağlaması gerekmektedir. y üzerindeki yT D1 = 0 kısıtı özvektör sisteminin

çözümüyle otomatik olarak sağlanmaktadır [38]. İkinci kısıt ise y vektörünün 1 veya -b

gibi ayrık değerleri almasıdır. Özvektör sisteminin çözümü ile elde edilen özvektörler

reel değerler aldığından, y(i)’nin iki ayrık değer alması birinci kısıt gibi otomatik olarak

sağlanamamaktadır. y vektörlerinin Ncut çözümü için ayrık hale getirilmesi gerekmek-

tedir. Bu durum kendi başına bir sınıflandırma metodu gerektirmektedir. Bunu gerçek-

leştirmek için literatürde farklı yöntemler vardır. İlerleyen alt bölümlerde, literatürde yer

alan bazı yöntemler avantaj ve dezavantajlarıyla ele alınmıştır.

Ayrıklaştırma yöntemlerine geçmeden önce; konunun özünü anlamak amacıyla bir ör-

nek üzerinden gidecek olursak, Şekil 2.4’teki 130 noktadan oluşan kümeyi sınıflara

ayırmak istersek, öncelikle çizge oluşturmak gerekmektedir. Çizgeyi her nokta ikilisi

arasındaki kenar ağırlığı wi ,j = e−
d(i ,j)
σ olacak şekilde oluşturalım. Burada, d(i , j) i . ve j .

nokta (boğum) arasında Euclidean uzaklığını ifade etmektedir ve σ ise kenar ağırlık-

larını ayarlamak amacıyla seçilen kontrol parametresidir. Noktalar arasındaki uzaklık

arttıkça kenar ağırlıkları da azalacaktır. Tüm kenar ağırlıkları hesaplanıp W benzerlik

matrisi ve D derece matrisi oluşturulur. Bu matrisler oluşturulduğunda noktaların hangi

sıraya göre yerleştirildiğinin önemi yoktur. Ancak, kolay anlaşılması amacıyla, benzer-

lik matrisinin 1-80 arası satır ve sütunlarına şekildeki dairesel halka oluşturan noktalar

saatin tersi yönünde sırasıyla yerleştirilmiş, 81-90 arası satır ve sütunlarına dairesel hal-

kanın içinde kalan noktalar yerleştirilmiş, 91-110 arası satır ve sütunlarına sağ üstteki

noktalar yerleştirilmiş ve 110-130 arası satır ve sütunlarına ise sağ alttaki noktalar yer-

leştirilmiştir. Bu adımdan sonra, denklem (2.18)’deki özvektör sistemi çözümü sonucu

elde edilen özdeğer ve bunlara karşılık gelen bazı özvektörler Şekil 2.5’te verilmiştir.

Laplacian matrisi, yani L = D −W, artı yarı-belgili (positive semidefinite) bir matris ol-

duğundan, özvektör sistemi sonucu elde edilen özdeğerler λ1 = 0 < λ2 < λ3 < ... < λn

şeklinde sıralanmaktadır. λ1 = 0 özdeğere karşılık gelen özvektör girdileri Şekil 2.5’te

gözüktüğü gibi sabit değerler içermektedir. Ancak, λ2’ye karşılık gelen özvektöre bak-

tığımızda girdileri iki seviyede toplanmıştır. Bu tam olarak Şekil 2.4’te yer alan soldaki

noktaların oluşturduğu dairesel halka ve ortasındaki nokta kümesi ile sağda yer alan

nokta kümelerini ikiye ayıracak şekilde farklı seviyeler almıştır. λ2’den büyük diğer öz-
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değerlere karşılık gelen özvektörler ise noktaları farklı bölgelerden, birden çok sınıfa

ayıracak şekilde seviyeler oluşturmuştur. Ancak, bu seviyeler arasında ikinci özvektörde

olduğu gibi keskin bir ayrım yoktur.

Şekil 2.4. Nokta kümesi

Şekil 2.5. Özdeğer ve bunlara karşılık gelen bazı özvektörler

2.2.1 Özyinelemeli 2-Ncut (Recursive 2-Ncut)

Nokta örneğinde olduğu gibi 2. özvektör daima iki ayrı seviye almaktadır ve bu vektör

aynı zamandan Ncut maliyetini minimize eden çözümlerden bir tanesidir. Bu yöntem,

2. özvektörü kullanarak çizgeyi özyinelemeli olarak ikiye bölerek bölütler oluşturur. Bu

algoritma aşağıdaki gibi özetlenebilir [38]:

1. G = (V, E) çizgesi oluşturulur, kenar ağırlıkları hesaplanır ve W benzeşim matrisi
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ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin çözümü ile küçük özdeğerlere karşılık gelen özvek-

törler hesaplanır,

3. Ncut en aza indirgenecek şekilde çizgeyi ikiye bölmek için ikinci en küçük özde-

ğere karşılık gelen özvektör kullanılır,

4. Kesitin kararlılığı kontrol edilerek bölütlere ayrılması gerekip gerekmediğine karar

verilir ve Ncut maliyetinin önceden belirlenmiş değerin altında olduğundan emin

olunur,

5. Her bir bölüt özyinelemeli şekilde yukarıdaki basamaklar takip edilerek ikiye bölü-

nür,

Bu yöntem özyinelemeli olarak çizgeyi sürekli oluşturduğundan yavaş bir yöntemdir.

Ayrıca, algoritmanın 4. basamağında yer alan Ncut için minimum seviyenin belirlenmesi

bölüt doğruluğu açısında zor bir durumdur.

2.2.2 k-ortalamalar (k-means)

Genelleştirilmiş özvektör sistemi sonucu elde edilen özvektörleri ayrık hale getirilmesi

bir sınıflandırma problemi olduğu yukarıda değinilmişti. Bunun için klasik yöntem olan

k-ortalamaları literatürde sıklıkla kullanılmaktadır. k-ortalamalar kullanan bölütleme al-

goritması aşağıda verilmiştir [36, 38]:

1. G = (V, E) çizgesi oluşturulur, kenar ağırlıkları hesaplanır ve W benzeşim matrisi

ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin çözümü ile küçük k tane özdeğere karşılık gelen

özvektörler hesaplanır,

3. Elde edilen y1,...yk ∈ <n özvektörleri sütunlara yerleştirilerek bir Y ∈ <nxk matrisi

elde edilir,

4. k-ortalamalar algoritmasıyla Y matrisinin her bir satırı S1,...Sk sınıflarına ayrılır,
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5. Aynı sınıfa düşen girdilerle k adet bölüt elde edilir,

Bu yönteminle k sayısına karar vermek bölütleme doğruluğu için kritik önem taşımak-

tadır. k ’nin yüksek bir değer seçilmesi çizgeyi daha çok bölüte ayırmak anlamına gel-

mektedir fakat bu da gereksiz yere fazla bölüt oluşturmaya sebep olabilmektedir (over-

segmentation). Ayrıca, görüntü bölütlemesinde bu yöntem görüntüde tekdüze büyük

alanlar olduğunda yanlış bölütlemelere sebep olmaktadır. Diğer taraftan k ’nın düşük se-

çilmesi de çizgede olduğundan daha az bölüte ayırmak demektir (under-segmentation).

Bölütleme problemlerinde bu iki durum da istenmemektedir. Bu durumlardan kaçınmak

için kullanılan özvektör sayısının probleme uygun seçilmesi gerekmektedir. Ancak; kul-

lanılacak özvektör sayısını belirlemek, hakkında önsel bilgimiz olmayan çizge için zor

bir durumdur.

2.2.3 Çok katmanlı Ncut (Multiclass Ncut)

k-ortalamalar yöntemiyle oldukça benzer bir yöntem olmakla beraber bölüt oluşturmada

daha verimli sonuçlar vermektedir. Bu yöntemle genelleştirilmiş özvektör sisteminin öz-

vektörleri bulunduktan sonra, bu optimum çözüme en yakın ayrık çözüm bulunmaya ça-

lışılır. Ayrıklaştırma, Tekil Değer Ayrıştırması (Singular Value Decomposition) ve Maksi-

mum Olmayan Bastırma (Nonmaximum Suppression) kullanarak yinelemeli bir biçimde

ve verimli bir şekilde hesaplanır. Bu yöntemin özet algoritması aşağıda verilmiştir, de-

taylı algoritma için [40]’a bakılabilir:

1. G = (V, E) çizgesi oluşturulur, kenar ağırlıkları hesaplanır ve W benzeşim matrisi

ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin çözümü ile büyük k tane özdeğere karşılık gelen

özvektörler hesaplanır,

3. Elde edilen y1,...yk ∈ <n özvektörleri sütunlara yerleştirilerek bir Y ∈ <nxk matrisi

elde edilir,

4. Y matrisinin her bir satırı Tekil Değer Ayrıştırması ve Maksimum Olmayan Bas-

tırma kullanılarak yenilemeli bir biçimde S1,...Sk sınıflarına ayrılır,
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5. Aynı sınıfa düşen girdilerle k adet bölüt elde edilir,

Bu yöntemle de çizgenin kaç bölüte ayrılacağının, yani k değerinin, önceden bilinmesi

gerekmektedir.

2.2.4 Spektral Pb + UCM

Görüntü bölütlenmesi düşünüldüğünde, özvektör sistemi sonucu elde edilen özvektör-

ler kenar bilgisi taşımaktadır. Bu özvektörler denklem (2.19)’da verilen spektral sınır

olasılığı (spectral probability of boundary-sPb) kenar bulma algoritmasıyla birleştirilerek

görüntünün kenar bilgisi elde edilir [41]. Burada, denklem (2.18)’de elde edilen özvek-

törlerin (yk ) yönlü türevleri alınıp özdeğerler (λk ) ile normalleştirildikten sonra toplanarak

kenarlar elde edilmektedir. Denklem (2.19)’da gösterildiği gibi, θ ile gösterilen farklı yön-

lerden alınan türevlerin en büyük değerleri alındığında kenar bulma sonuçları iyileşmek-

tedir. Son işlem olarak, bu kenar sonuçları kullanılarak Ultrametric Contour Maps (UCM)

yardımıyla bölütler oluşturulur [42]. Hiyerarşik sınıflandırma çerçevesinde UCM, iç içe

bölütlemelerin bir ailesi ile ilişkili olan yumuşak sınır görüntüsüdür. UCM algoritması,

bölge sınırları boyunca yerel kenar kanıtlarını birleştirerek ve bu bilgiyi bölge içi nite-

liklerle tamamlayarak kenar bilgisi çıkarma için ultrametrik tanımlanmaktadır. UCM’nin

matematiksel modeli ve daha fazla bilgi için [42]’ye bakılabilir.

sPb = max
θ

k∑
i=1

1√
λi
∇θyi (2.19)

Bu yöntemin algoritması aşağıda verilmiştir:

1. G = (V, E) çizgesi oluşturulur, kenar ağırlıkları hesaplanır ve W benzeşim matrisi

ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin çözümü ile en büyük k tane özdeğere karşılık gelen

özvektörler hesaplanır,

3. Denklem (2.19)’da verilen sPb, özdeğerler ve bunlara karşılık gelen özvektörler

birleştirilerek hesaplanır,
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4. sPb sonucu belirlenen eşik değeriyle UCM algoritması geçirilir ve bölütler oluştu-

rulur,

Bu algoritmada k yeterince büyük seçilebilir, çünkü burada bölüt sayısı bu değerden ba-

ğımsız olarak belirlenmektedir. Öncelikle kenar bilgisi çıkartıldığından, yukarıdaki diğer

yöntemlerin aksine, görüntüdeki tekdüze büyük alanları bölütlemede başarılı sonuçlar

vermektedir. sPb ile elde edilen kenar bilgisiyle ve UCM algoritmasının eşik değeri de-

ğiştirilerek istenilen sayıda ve doğrulukta bölütler elde edilmektedir.

2.3 Laplacian Özharitaları

Laplacian Özharitaları (Laplacian Eigenmaps-LE) doğrusal olmayan bir boyut indir-

geme yöntemidir [43]. x1, ..., xk ∈ <n gibi bir veri kümesi verildiğinde bu kümeyi y1, ..., yk ∈

<m(m� n) gibi daha düşük boyutlu bir uzayda göstermek mümkündür. LE, boyut indir-

gemesi yaparken yerel bilgileri en iyi şekilde korumak için denklem (2.20)’deki ifadeyi

minimize etmeye çalışır.

∑
i ,j

‖yi − yj‖2w(i , j) = tr (YT LY)

ve YT LY = I

(2.20)

Denklem (2.20)’de Y = [y1, ..., yk ] iken, L ise xi verisinin Laplacian matrisidir. Burada, xi

ve xj birbirine yakınken, yi ile yj birbirinden uzaklaştığında ağır bir ceza verilmiş olunur.

Dolayısıyla bu minimizasyon düşük boyutta benzer yapıyı sağlayabilir. Denklemdeki kı-

sıt, ölçeklendirme faktörlerini ortadan kaldıracak ve boyutların m − 1’den küçük bir alt

uzayına düşmesini önleyecektir. Denklem (2.20)’deki ifadenin minimumu genelleştiril-

miş özvektör siteminin çözümü sonucu elde edilen m tane aşikar olmayan (λ 6= 0) öz-

değere karşılık gelen özvektörlerin oluşturduğu matrisinin sütunlarıdır. LE algoritmasını

kısaca özetlersek:

1. x1, ..., xk ∈ <n verileriyle G = (V, E) çizgesi oluşturulur, kenar ağırlıkları hesaplanır

ve W benzeşim matrisi ile D derece matrisi elde edilir,
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2. Denklem (2.18)’deki sistemin çözümü ile küçük m+1 tane özdeğere karşılık gelen

özvektörler hesaplanır,

3. Elde edilen sıralı özdeğerlere, λ0 6 ... 6 λm, karşılık gelen özvektörler f0, ..., fk

olsun, sonuç olarak yT
1 , ..., yT

k boyutu indirgenmiş veri kümesi F = [f1, ..., fk ] matri-

sinin satırları olarak tanımlanır,

LE algoritmasının çözümü, Ncut algoritmanın reel sayılarda değer alacak şekilde ser-

best bırakılan çözümü ile aynı olduğu gözükmektedir. LE algoritması, yakın noktaların

yerel yapısını koruyarak yüksek boyutlu uzaydaki verileri düşük boyuta indirgeyen bir

yaklaşımdır. Ncut algoritması ise görüntüleri farklı bölütlere ayıran bir optimizasyon yak-

laşımıdır. Dolayısıyla, LE yerel yaklaşımı yüksek boyutlu verilerin doğal kümelenmesi

olarak düşünülebilir.

2.4 Schroedinger Özharitaları

Schroedinger Özharitaları (Schroedinger Eigenmaps-SE) algoritması, yüksek boyutlu

verileri düşük boyutlara indirgeyen doğrusal olmayan bir boyut indirgeme ve/veya küme-

leme amacıyla kullanılan çizge tabanlı bir yöntemdir [31, 44]. Temelde, LE algoritma-

sıyla benzerlik gösteren SE, çizgeye bir P potansiyel matrisi ekleyerek LE algoritmasını

genelleştirir. Hiperspektral görüntü analizi için kullanılan iki tür potansiyel matrisi bu-

lunmaktadır: bariyer ve küme potansiyeli. Bariyer potansiyeli, P’nin negatif olmayan bir

köşegen matrisi olarak tanımlanmasıyla oluşturulmaktadır. Bariyer potansiyeli, x1, ..., xk

noktaları için y1, ..., yk ’deki ilgili noktaları orijine çeker. Küme potansiyeli ise, P’nin denk-

lem (2.21)’de verilen köşegen olmayan Pi ,j matrislerin toplamı olarak tanımlanarak oluş-

turulur. x1, ..., xk noktaları için tanımlanan küme potansiyeli y1, ..., yk ’deki ilgili noktaları

birbirine doğru çeker, başka bir deyişle aynı kümeye toplar.

P(i ,j)
k ,l =


1, eğer (k , l) ∈ (i , i), (j , j)

−1, eğer (k , l) ∈ (i , j), (j , i)

0, aksi takdirde.

(2.21)

SE algoritması denklem (2.18)’deki genelleştirilmiş özvektör sistemi yerine denklem
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(2.22)’deki sistemin çözmeye çalışır. Laplacian matrisinin ve potansiyel matrisinin bölüt-

lemeye katkıları α parametresiyle ayarlanmaktadır. α’nın değeri arttırıldıkça bölütleme

sonuçlarında potansiyel matrisinin etkisi de artmaktadır.

(D−W + αP)y = λDy (2.22)

Burada, özvektör sisteminin potansiyel matrisi eklenmiş halinin çözümü olan özvektörler

elde edildikten sonra Ncut algoritmasının çözümü için anlatılan 4 yöntemden herhangi

biri kullanılarak görüntüler için bölütler oluşturulabilir.

2.5 Benzeşim Matrisi

Şimdiye kadar bahsettiğimiz spektral bölütleme yöntemlerinde de gözüktüğü üzere al-

goritmaların temel taşını benzeşim matrisi, W, oluşturmaktadır. Spektral bölütleme önemli

olan faktör benzeşim matrisi W’nun probleme uygun olarak tasarlanmasıdır. Daha önce

bahsettiğimiz gibi, çizge oluştururken aynı sınıfta yer alan boğumlar arasındaki ilişkiyi

arttırmak ve farklı sınıflarda olan boğumlar arasındaki ilişkiyi azaltmak amaçlanmakta-

dır. Çizgedeki tüm boğumların ilişkilerini içeren benzeşim matrisi olduğundan, probleme

uygun seçilmesi kritik önem taşımaktadır.

Bu kısımda, KYM (kırmızı-yeşil-mavi) ve HSG görüntülerin bölütlenmesi ve sınıflan-

dırılması amacıyla literatürde önerilen benzeşim matrisleri ele alınmıştır. Görüntülerin

spektral bölütlenmesinde her boğum pikselleri veya süper pikselleri ifade etmektedir.

Pikseller arasındaki uzamsal, renk, parlaklık gibi benzerlikler kullanılarak çizgedeki ke-

nar ağırlıkları hesaplanıp benzeşim matrisi W oluşturulur. Aşağıda, görüntü bölütlemesi

için önerilen farklı yöntemler verilmiştir.

2.5.1 Shi-Malik (SM) Benzeşim Matrisi

Shi-Malik yöntemi [38], çizge yapısını ve kenar ağırlık tanımlamasını hem spektral hem

de uzamsal bilgileri içeren bir biçimde nasıl ele alacağını açıklamaktadır. Görüntüler-

deki tüm pikseller arasındaki kenar ağırlıklarını hesaplamak karmaşık ve zordur. Yakın

piksellerin aynı sınıftan olma ihtimalleri daha yüksek olduğundan, SM yöntemi çizge

oluştururken sadece uzamsal olarak birbirine yakın olan piksellerin kenar ağırlıklarını
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hesaplarken uzak olanların kenar ağırlıklarına sıfır atamaktadır. Böylece ağır işlem yü-

künden kurtulmuş olunur. Ayrıca, yakın piksellerin arasındaki uzamsal uzaklık ile ters

orantılı olarak çizgedeki kenar ağırlığı azalacaktır. Bu yöntemin görüntüler için tanımla-

dığı W benzeşim matrisi denklem (2.23)’te verilmiştir.

Wi ,j =

e
−
‖xs

i − xs
j ‖2

β2
spektral e

−
‖xu

i − xu
j ‖2

γ2
uzamsal , eğer ‖xu

i − xu
i ‖ < ε

0, aksi takdirde.

(2.23)

Burada, xs
j pikselin spektral (renk, parlaklık vb.) bilgisini göstermekte ve xu

j ise pikse-

lin uzamsal konumunu göstermektedir. βspektral ve γuzamsal piksellerin spektral ve uzam-

sal bilgilerle elde edilen kenar ağırlıklarının uzaklığa bağlı olarak değişimini etkileyen

kontrol parametreleridir. Denklem (2.23)’te de görüldüğü üzere sadece uzamsal ola-

rak ε-komşuluğundaki pikseller için kenar ağırlıkları belirlenmiş ve diğer kenarlara sıfır

atanmıştır.

2.5.2 Gilles-Bowles (GB) Benzeşim Matrisi

Gilles-Bowles (GB) yöntemi [26], SM ile benzerlik göstermektir. Uzamsal benzerlik için

SM yönteminde olduğu gibi Euclidean uzaklığı kullanılırrken, spektral benzerlik için

spektral açı haritalayıcı (spektral angle mapper-SAM) kullanılmıştır. Bu yöntemin, özel-

likle çok sayıda bant bilgisi içeren HSG’ler için etkili bir yöntem olduğu gösterilmiştir

[26]. GB yöntemiyle oluşturulan W benzeşim matrisi denklem (2.24)’te verilmiştir.

Wi ,j =

e
− arccos(

< xs
i , xs

j >

‖xs
i ‖.‖xs

j ‖
)

e
−
‖xu

i − xu
j ‖2

γ2
uzamsal , eğer ‖xu

i − xu
j ‖ < ε

0, aksi takdirde.

(2.24)

Burada, < xs
i , xs

j > iki pikselin spektral bilgileri arasındaki iç çarpımı ifade etmektedir ve

‖xs
i ‖ ise i . pikselin spektral bilgilerle oluşturan normudur. SM’de olduğu gibi, uzamsal

olarak ε-komşuluğundaki pikseller için kenar ağırlıkları belirlenmiş ve diğer kenarlara

sıfır atanmıştır.

27



2.5.3 Hou-Zhang-Ye-Zheng (HZYZ) Benzeşim Matrisi

Hou-Zhang-Ye-Zheng (HZYZ) yöntemi [45], SM ve GM yöntemlerine benzemekle bir-

likte farklı bir yaklaşım göstermektedir. HZYZ spektral ve uzamsal bilgileri kaynaştıran

LE algoritma tabanlı bir yöntemdir. SM ve GM yöntemleri spektral ve uzamsal bilgilerin

benzerliğini direkt kullanarak kenar ağırlıklarını belirlerken, HYZY yöntemi ise spektral

ve uzamsal bilgilerin benzerliğini kullanarak ikili (0-1) kenar ağırlıklarını belirler. Bu yön-

teme, denklem (2.25)’te verilen ifadeye göre iki piksel arasındaki uzaklık, spektral ve

uzamsal bilgiler kullanılarak hesaplanır. Uzaklık hesaplamada SM ve GB yöntemlerine

benzerlik göstermektedir.

d(xi , xj) = (1− e
−
‖xs

i − xs
j ‖2

2β2
spektral )(1− e

−
‖xu

i − xu
j ‖2

2γ2
uzamsal )

(2.25)

Bu yöntemle kenar ağırlıkları belirlenirken d uzaklığını direkt kullanmak yerine, bu uzak-

lığın belirlenmiş bir değerden küçük olan xi ve xj komşu piksellerin kenar ağırlığına

denklem (2.26) gösterildiği gibi 1 değeri atanmaktadır. Böylece, benzerlik matrisinin

girdileri yalnızca 0 ve 1 değerlerinden oluşmaktadır. Bu yöntem de HSG’lerin kümelen-

mesi için kullanılmaktadır.

Wi ,j =

1, eğer d(xi , xj) < ε

0, aksi takdirde.
(2.26)

2.5.4 Nokta tabanlı karşılıklı bilgi (Pointwise mutual information-PMI) Benzeşim

Matrisi

Karşılıklı bilgi (mutual information), iki rastgele değişken arasındaki bilgi örtüşmesinin

bir ölçümüdür. Nokta tabanlı karşılıklı bilgi (Pointwise mutual information-PMI) ise iki ör-

nek arasındaki karşılıklı bağımlılığı veya rastgele değişkenlerin gerçekleşmelerini ölçer.

Başka bir deyişle, PMI iki olay için bir korelasyon ölçüsüyken, karşılıklı bilgi olası tüm

olaylar için PMI ölçümüdür. PMI kelime çiftlerinin yan yana bulunma olasılığını bulmak

için hesaplamalı dil biliminde kullanılan bir yöntemdir [46, 47]. Aynı zamanda görüntü
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sınıflandırmasını arttırmak için de kullanılmaktadır [48]. Son zamanlarda, spektral bö-

lütlemenin benzeşim matrisi PMI ile oluşturularak KYM görüntülerde kenar bulma ve

bölütleme amacıyla önerilen oldukça başarılı bir yöntem haline gelmiştir [49]. PMI yön-

temi, görüntüde aynı nesneye ait piksellerin, farklı nesnelere ait piksellerden daha yük-

sek istatiksel bağımlılık sergilemesi prensibini temel alır. PMI benzeşim matrisini olasılık

yoğunluk kestirimine göre hesaplar. xi ve xj görüntüdeki iki piksele ait özniteliği (renk,

parlaklık, spektral bilgiler vb.) olsun ve bu iki özniteliğin belli bir d Euclidean uzaklığın-

daki bileşik olasılığı p(xi , xj ; d) olsun. Bu bileşik olasılığı farklı Euclidean uzaklıklarında

hesaplayarak denklem (2.27)’deki P(xi , xj) olasılık yoğunluk fonksiyonu tanımlanabilir.

Bu olasılık yoğunluk fonksiyonunu hesaplamak için görüntünün içinden farklı d uzaklık-

larda çok sayıda parça rastgele olarak örneklenir ve birlikte görülme olasılıkları hesap-

lanır.

P(xi , xj) =
1
Z

∞∑
d=d0

w(d)p(xi , xj ; d) (2.27)

Denklem (2.27)’deki w(d) iki piksel arasındaki uzaklık arttıkça azalan Gauss tabanlı bir

ağırlıktır ve Z ise normalizasyon sabitidir. Bu olasılık yoğunluk fonksiyonunun marjinal-

leri bulunarak P(xi) ve P(xj) marjinal olasılıkları hesaplanabilir.

Pikseller arasındaki benzerlik ölçüsü olarak bu olasılık yoğunluk fonksiyonu kullanıl-

ması mantıklıdır. Ancak, bazı nesnelerin zıt renklerden oluşması, örneğin siyah ve be-

yaz renklerden oluşan bir nesne, bu nesnelerin pikselleri arasındaki bileşik olasılığın

düşük çıkmasına neden olmaktadır. Böyle durumu önlemek amacıyla, P(xi , xj) dağı-

lımı yerine denklem (2.28)’deki PMI kullanmak pikseller arasındaki benzerlik dağılımını

iyileştirmektedir [49].

PMIρ(xi , xj) = log
P(xi , xj)ρ

P(xi)P(xj)
(2.28)

Yukardaki denkleme göre, ρ = 1 olduğunda PMIρ değeri tam olarak xi ve xj arsındaki

karşılıklı bilgidir. ρ = 1 durumunda logaritma içindeki oran
P(xi |xj)
P(xi)

şeklinde yazılabilir.

Bu oran, görüntüdeki xi ’nin gözlemlenme olasılığına kıyasla xj gözlemi verildiğinde xi
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gözlemlenme ihtimalini vermektedir. ρ = 2 olduğunda ise logaritmanın içindeki oran
P(xi |xj)
P(xj |xi)

olmaktadır, yani xi ’nin gözlemlenmesi xj ’nin yakında olmasını gerektirmekte ve

xj ’nin gözlemlenmesi xi ’nin yakında olmasını gerektirmektedir. ρ’nun hangi değeri için

bölütleme sonuçlarının iyi olacağı bilinmediğinden, veri kümesi üzerinde performansı

artırmak amacıyla serbest bir değişken olarak bırakılabilir.

Spektral bölütleme yöntemlerinin kullandığı W benzeşim matrisi için direkt PMIρ’yu kul-

lanmak yerine üstel bir fonksiyona yerleştirmenin daha iyi sonuçlar verdiği gözlemlen-

miştir [49]. Bu sebeple, W benzeşim matrisi denklem (2.29)’da verildiği gibi PMIρ’nun

üstel fonksiyonu olacak şekilde hesaplanır.

Wi ,j = ePMIρ(xi , xj) (2.29)

30



3. HİPERSPEKTRAL GÖRÜNTÜLERİN BÖLÜTLENMESİ

Son zamanlarda, yüksek spektral çözünürlükteki UA teknolojileri önemli gelişmeler gös-

termektedir. Görüntüleme alanında önemli bir yere sahip hiperspektral görüntüleyiciler

UA teknolojilerin başında gelmektedir. Yüzlerce spektral banttan oluşan HSG’ler, pik-

sel başına 1-3 metreye kadar uzamsal çözünürlüğe de sahip olabilirler. Bu özelliklerin-

den dolayı HSG’ler yeryüzü sınıflandırmasında başarılı sonuçlar vermektedir. Aynı za-

manda, çok sayıda spektral bant içerdiklerinden, benzer özellikler taşıyan ancak farklı

türlere ait nesnelerin ayırt edilmesine olanak sağlamaktadırlar. Bunun yanı sıra; bölüt-

leme, sınıflandırma ve hedef tespiti uygulamalarında performansı iyileştirmek amacıyla

HSG’lerin sağladığı bilgileri tamamlayıcı nitelikte olan farklı veri kaynaklarına başvur-

mak gerekebilir. Bu amaçla, literatürde farklı kaynaklardan toplanan verilerin kaynaştı-

rılması üzerine çalışmalar mevcuttur [33, 34, 35].

HSG’ler uzamsal ve spektral gibi önemli bilgiler içermekteyken, yükseklik bilgisini içer-

memektedir. Yükseklik bilgisi eksikliğinden dolayı HSG’lerin bölütlenmesi iki alanda ba-

şarısız olmaktadır. İlk olarak, benzer spektral bilgilere sahip nesneleri ayırt etmek zor-

laşmaktadır. Ancak, benzer spektral özellikteki nesneler farklı yüksekliklere sahiplerse,

örneğin çatı ve asfalt gibi, bunları ayırt etmek yükseklik bilgisi kullanarak mümkün hale

gelmektedir. Başarısız olduğu diğer bir nokta ise gölgelik alanları nesnelerden yeterli

doğrulukta ayırt edememesidir. Bu durum, özellikle hedef bulma uygulamalarında ha-

yati önem taşımaktadır. HSG’lerin bu temel eksikliklerini gidermek amacıyla yükseklik

bilgisini algılayan veya 3 boyutlu görüntü oluşturan başka UA teknolojilerinden faydalan-

mak son derece önemlidir. Yükseklik bilgisini, son zamanlarda sıklıkla kullanılan LiDAR

veya sentetik açıklık radarı (SAR) gibi UA teknolojileriyle elde etmek mümkündür. Özel-

likle, LiDAR’dan elde edilen yükseklik bilgisi, HSG’leri tamamlayıcı niteliktedir. HSG’lere

ek olarak LiDAR verileri de kullanıldığında yukarıda bahsedilen problemlerden kurtul-

muş olunur. Dolayısıyla, HSG verileriyle LiDAR verileri bir araya getirildiğinde yeryüzün-

deki nesnelerin daha kapsamlı bir şekilde yorumlanması sağlanabilir.

Bu tez çalışmasında, HSG’lerden elde edilen uzamsal ve spektral bilgilerle LiDAR’dan

elde edilen yükseklik bilgisi kaynaştırılarak, HSG’lerin denetlemesiz bölütlenmesi ger-

çekleştirilmiştir. Giriş bölümünde de bahsedildiği gibi, denetlemesiz bölütleme herhangi
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bir önsel bilgiye gereksinim duymadığından birçok uygulama alanında kullanılmaktadır.

HSG’lerin denetlemesiz bölütlenmesi için ikinci bölümde anlatılan çizge tabanlı spektral

bölütleme yöntemleri kullanılmıştır. Spektral bölütleme yöntemlerinde önemli bir nokta

olan benzeşim matrisinin (W) probleme uygun seçilmesi gerektiğinden ikinci bölümde

bahsedilmiştir. Bu kısımda, HSG’lerin uzamsal-spektral bilgileri ile LiDAR’ın yükseklik

bilgisi kaynaştırılarak spektral bölütleme için benzeşim matrisleri önerilmiştir. Oluştu-

rulan bu benzeşim matrisleri kullanılarak spektral bölütleme yöntemleriyle HSG’lerin

denetlemesiz bölütlenmesi gerçekleştirilmiştir. Bu tezde, HSG ve LiDAR verilerini kay-

naştırmak için 3 yöntem önerilmiştir:

1. SM Benzeşim Matrisi Tabanlı Ncut Yöntemiyle HSG’lerin Denetlemesiz Bö-

lütlenmesi (SMTNcut): SM yönteminde olduğu gibi, Euclidean uzaklıkları kulla-

nılarak benzeşim matrisi oluşturulmuştur. SM benzeşim matrisi ek olarak LiDAR

verilerinden elde edilen yükseklik bilgileri de kullanılarak HSG’lerin yüksek doğ-

rulukta bölütlemesi için yeni bir benzeşim matrisi önerilmiştir. HSG ve LiDAR ve-

rileriyle oluşturulan bu benzeşim matrisi kullanılarak, ikinci bölümde anlatılan çok

katmanlı Ncut ile bölütleme yapılmıştır [50, 51].

2. SE Tabanlı HSG’lerin Denetlemesiz Bölütlenmesi (SET): SE algoritmasının

kullandığı LiDAR’dan elde edilen yükseklik bilgisi ve uzamsal bilgiler ile yeni bir

küme matrisi önerilmiştir. HSG’lerden elde edilen spektral bilgilerle de benzeşim

matrisi oluşturulmuş ve SE algoritması spektral Pb + UCM yöntemiyle çözümle-

nerek bölütleme sağlanmıştır [52].

3. PMI Benzeşim Matrisi Tabanlı Ncut Yöntemiyle HSG’lerin Denetlemesiz Bö-

lütlenmesi (PMITNcut): PMI benzeşim matrisi ile uzamsal-spektral ve yüksek-

lik bilgileri birleştirilerek HSG’ler için yeni bir benzeşim matrisi önerilmiş ve ikinci

bölümde anlatılan Ncut yönteminin başarılı bir çözümü olan spektral Pb + UCM

yöntemiyle bölütleme sağlanmıştır [53].

Bu bölümde, yukarıda bahsedilen 3 yöntem ayrıntılı bir şekilde tanıtılmış ve algoritma-

ları verilmiştir.
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3.1 SM Benzeşim Matrisi Tabanlı Ncut Yöntemiyle HSG’lerin Denetlemesiz Bö-

lütlenmesi (SMTNcut)

Görüntülerden çizge oluşturulmak istendiğinde, boğumlar (V) pikselleri veya süper pik-

selleri ifade etmektedir. Pikseller arasındaki kenar ağırlıkları (w) ise görüntülere ait

uzamsal benzerlik, renk benzerliği, parlaklık benzerliği gibi özellikler kullanılarak hesap-

lanmaktadır. HSG’lerde ise uzamsal bilgilerin yanı sıra yüzlerce banttan oluşan spekt-

ral bilgiler yer almaktadır. HSG’lerden çizge oluşturmak için bu bilgiler kullanılmaktadır.

Bölütleme sonuçlarını iyileştirmek amacıyla LiDAR verileri de göz önüne alınacağından

çizgedeki kenar ağırlıkları hesaplanırken yükseklik bilgileri uygun bir şekilde uzamsal

ve spektral bilgilerle birleştirilmelidir. Bu tez kapsamında önerdiğimiz ilk yöntemde, Ncut

spektral bölütleme algoritması kullanılarak LiDAR’dan ve HSG’lerden elde edilen bilgiler

birleştirilerek görüntülerin bölütleri elde edilmektedir. Öncelikle, bir spektral bölütleme

yöntemi olan Ncut algoritması için benzeşim matrisinin oluşturulması gerekmektedir.

Farklı kaynaklardan elde ettiğimiz uzamsal-spektral ve yükseklik bilgilerinin kendi içle-

rinde Euclidean uzaklığı kullanılarak, pikseller arasındaki benzerlikler hesaplanmakta

ve aşağıda verilen denklemdeki gibi kenar ağırlıkları belirlenmektedir.

Wi ,j = e
−

dspektral(i , j)
β2

spektral e
−

dlidar (i , j)
δ2

lidar

e
−

duzamsal(i , j)
γ2

uzamsal , eğer duzamsal(i , j) ≤ r

0, aksi takdirde.

(3.1)

Burada, dspektral(i , j) i . ve j . piksellerin tüm bantlardaki spektral bilgilerinin arasındaki

Euclidean uzaklığını ifade eder ve (3.2)’deki gibi hesaplanır. Denklemdeki xs
i ve xs

j , iki

piksele ait farklı dalga boylarındaki spektral bilgiyi içeren vektörlerdir. Bu iki pikselin

spektral bilgileri arasındaki fark arttıkça Euclidean uzaklığı da artacaktır. Bunlar ara-

sındaki kenar ağırlığı ise Euclidean uzaklığının bir üstel fonksiyonu olarak tanımlan-

dığından, uzaklık arttıkça kenar ağırlığı azalacaktır. Böylece, spektral bilgiler ile yakın

olan pikseller arasındaki bağı kuvvetlendirmiş olurken, uzaktakiler arasındaki bağı da

zayıflatmış olmaktayız.

dspektral(i , j) = ‖xs
i − xs

j ‖2
2 (3.2)
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Denklem (3.1)’de yer alan dlidar (i , j) piksellerin yükseklik bilgilerinin arasındaki Eucli-

dean uzaklığıdır ve (3.3)’te gösterildiği gibi spektral bilgilere benzer şekilde hesaplanır.

xy
i ve xy

j iki piksele ait yükseklik bilgisini içeren vektörlerdir. Spektral bilgiler kullanıla-

rak oluşturulan kenar ağırlıkları, dlidar (i , j) uzaklığının üstel fonksiyonuyla çarpıldığında

yükseklikleri yakın olan piksellerin arasındaki bağı bir derece daha güçlendirirken, yük-

seklikleri farklı olanlar arasındaki bağı ise iyice zayıflatmış olmaktayız.

dlidar (i , j) = ‖xy
i − xy

j ‖
2
2 (3.3)

Görüntülerden elde edilen diğer bir bilgi ise uzamsal bilgidir. Uzamsal bilgi görüntüdeki

piksellerin birbirine göre konumlarını ifade etmektedir. Komşu piksellerin aynı nesne

üzerinde olma olasılığı fazladır ve aralarındaki mesafe artıkça bu ihtimal de ters orantılı

olarak azalmaktadır. Bundan ötürü, kenar ağrılıkları hesaplanırken uzamsal uzaklıkları-

nın da kullanılması oldukça önemlidir. Denklem (3.4)’te pikseller arasındaki Euclidean

uzaklığının xu
i ve xu

j uzamsal bilgiler kullanılarak hesaplanışı verilmiştir. Spektral ve

yükseklik bilgilerine benzer olarak, piksellerin konumları arasındaki fark artıkça kenar

bilgileri azalacaktır. Böylece yakın olan piksellerin diğer özellikleri de benzerse aynı

bölütte yer alması sağlanmaktadır.

Görüntülerde her piksel ikilileri arasındaki kenar ağırlıklarını hesaplamak çok işlem ge-

rektiren bir yöntemdir. Pikseller uzaklaştıkça kenar ağırlıkları sıfıra yakınsayacağından,

belli bir uzamsal uzaklıktan sonraki piksel ikilisi arasındaki kenar ağırlıklarına sıfır ata-

mak ağır işlem yükünden kurtulmaya ve benzeşim matrisini fazla yer kaplamadan kay-

detmeye yardımcı olacaktır. Bu amaçla, denklem (3.1)’de verilen benzeşim matrisinin

girdileri, pikseller arasındaki uzamsal Euclidean uzaklığı (duzamsal) önceden belirlenen

r değerinden küçük pikseller için hesaplanmakta ve bu değerden büyük olanlara direkt

sıfır atanmaktadır. r artıkça daha çok piksel arasındaki kenar hesaplandığından bölüt-

leme sonuçları da iyileşmektedir, ancak bu artış birlikteliğinde işlem yükünü arttırmakta-

dır. Bu değer deneysel olarak bölütleme doğruluğunu arttıracak şekilde ayarlanmalıdır.

Benzeşim matrisi, (W), tüm piksel ikilisi arasındaki ilişkiyi içermektedir. Denklem (3.1)’de

görüldüğü üzere, benzeşim matrisi maksimum değerini aynı pikseller arasındaki ke-

nar ağırlığını içeren ana köşegeninde almaktadır, yani Wi ,i = 1’dir. Bu ana köşegenin
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r komşuluğunda pikseller arasındaki benzerlik azaldıkça benzeşim matrisini oluşturan

kenar ağırlıkları da sıfıra yakınsamaktadır. r komşuluğu dışındaki tüm girdiler ise sıfırdır.

Ayrıca, benzeşim matrisi simetrik olduğu için, Wi ,j = Wj ,i , sadece yarısını oluşturacak

şekilde işlem yapmak karmaşıklığı önleyecek ve oluşturma zamanını kısaltacaktır.

duzamsal(i , j) = ‖xu
i − xu

j ‖2
2 (3.4)

Denklem (3.1)’de verilen βspektral , γuzamsal ve δlidar değişkenleri sırasıyla spektral, uzam-

sal ve yükseklik bilgilerinin kenar ağırlıklarındaki katkılarını ayarlayan kontrol paramet-

releridir. Uzamsal, spektral ve yükseklik bilgileri birbirinden farklı ölçülerde olduğundan

βspektral , γuzamsal ve δlidar parametrelerin bölütleme doğruluğu için uygun seçilmesi ge-

rekmektedir. Bu parametrelerinin arttırılması pikseller arasındaki benzerlik geçişlerini

yumuşatmaktadır, azaltılması ise benzerliklerin pikselden piksele hızlı değişmesine se-

bep olmaktadır. Dolayısıyla βspektral , γuzamsal ve δlidar parametrelerinin bölütleme doğru-

luğu için HSG ve LiDAR verilerine göre uygun seçilmesi gerekmektedir.

Şekil 3.1’de HSG’den alınan uzamsal-spektral bilgilerle LiDAR’dan elde edilen yükseklik

bilgisinin birleştirilerek Ncut algoritması tabanlı yöntemin akış şeması verilmiştir. Yuka-

rıda bahsettiğimiz gibi Euclidean uzaklıkları kullanılarak tüm pikseller arasındaki kar-

şılıklı kenar ağırlıklarını içeren benzeşim matrisi oluşturulduktan sonra genelleştirilmiş

özvektör sisteminin k tane küçük özdeğer ve bunlara karşılık gelen özvektörleri bulmak

için çözümü yapılır. Burada elde dilen özvektörlerin girdileri sürekli reel sayılardan oluş-

maktadır. Bu özvektörlerden bölütler elde edilmesi için ayrıklaştırılması gerekmektedir.

Önerdiğimiz bu yöntemde, 2. bölümde bahsedilen çok katmanlı Ncut algoritması kul-

lanılarak özvektörler ayrıklaştırılmıştır. Elde edilen ayrık özvektörler (y′) birleştirilerek

görüntünün bölütleri oluşturulmuştur.

3.2 SE Tabanlı HSG’lerin Denetlemesiz Bölütlenmesi (SET)

Bu yöntem, Ncut spektral bölütlemeyi bir potansiyel matrisi ekleyerek genelleştiren SE

algoritma tabanlı bir yöntemdir. SE algoritması denklem (2.22)’de verildiği gibi benzeşim

matrisini (W) ve potansiyel matrisini (P’yi) girdi olarak almaktadır. HSG’lerin bu algorit-

mayla bölütlenmesi için çizge oluşturulurken, bu matrislerin veri kümesinden elde edilen
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Şekil 3.1. SMTNcut spektral bölütleme yöntemi kullanılarak LiDAR destekli HSG’lerin
bölütlenmesi

uzamsal, spektral ve yükseklik bilgileriyle uygun bir biçimde oluşturulması gerekir. Ben-

zeşim matrisi oluşturulurken sadece HSG’lere ait spektral bilgiler arasındaki Euclidean

uzaklıklar kullanılmıştır. Bu yöntem için belirlenen W aşağıdaki gibi tanımlanmaktadır.
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Birinci yöntemde de bahsedildiği gibi, denklem (3.5)’te yer alan xs
i , bir pikselde yer

alan tüm spektral bantları ifade etmektedir. ε komşuluğundaki piksellerin kenar ağırlığı

spektral bilgiler kullanılarak belirlenirken, bu komşuluk dışında kalan piksellerin kenar

ağırlıklarına sıfır atanmaktadır.

Wi ,j =

e
−

∥∥∥xs
i − xs

j

∥∥∥2

2

β2
spektral , eğer (xi , xj) < ε

0, aksi takdirde.

(3.5)

SE algoritmasının potansiyel matrisi, uzamsal bileşenler arasındaki yakınlığı ve LiDAR

verileri arasındaki yakınlığı birleştirilerek elde edilmiştir. Uzamsal çözünürlük ve yük-

seklik çözünürlüğü uzunluk birimlerinden oluştukları için bunların, ışık yansıması kul-

lanılarak elde edilen spektral bilgilerden ayırıp kendi aralarında potansiyel matrisiyle

birleştirilmesi mantıklıdır. Ayrıca, bu yöntem spektral bilgilerin komşuluğunun uzam-

sal bilgilerden bağımsız bir şekilde belirlenmesine olanak sağlamaktadır. Uzamsal ve

yükseklik bilgisi kullanılarak önerdiğimiz potansiyel matrisi denklem (3.6)’da verilmiştir.

Denklemdeki ℵu
ε (xi), xi ’nin uzamsal bileşenlerinin ε komşuluğundaki uzamsal bileşenler

kümesidir. xu
i ve xy

i sırasıyla piksellerin uzamsal ve yükseklik bileşenlerini göstermek-

tedir. P(i ,j) matrisi ise denklem (2.21)’da tanımlanan diyagonal olmayan bir matristir [32].

P =
k∑

i=1

∑
xj∈ℵu

ε (xi )

P(i ,j)e
−

∥∥∥xy
i − xy

j

∥∥∥2

2

δ2
lidar e

−

∥∥∥xu
i − xu

j

∥∥∥2

2

γ2
uzamsal

(3.6)

Şekil 3.2’de SE yöntemi ile LiDAR destekli HSG’lerin bölütleme akış şeması verilmiştir.

W ve P matrisleri oluşturulduktan sonra, denklem (2.22)’deki özvektör sistemi çözüle-

rek özdeğerler ve özvektörler elde edilir. Bu sistemde yer alan α değeri bölütlemede

spektral bilgilerinin ve uzamsal-yükseklik bilgilerinin katkılarını ayarlamak amacıyla de-

neysel olarak ayarlanacak serbest bir parametredir. α küçültüldüğünde bölütleme so-

nuçlarında spektral bilgilerinin etkisi diğerlerine göre daha fazla olacağından görüntü

bölütleri spektral benzerliğine göre oluşacaktır. Diğer yandan, α büyütüldüğünde bölüt-

leme sonuçları uzamsal ve yükseklik bilgilerine göre şekillenecektir. Bölütleme sonrası

37



HSG’lerin üzerine uygulanacak işlemlere yönelik, α parametresi değiştirilerek bölütleme

sonuçları istenilen hale getirilmiş olunur. SMTNcut yönteminde, görüntü kaç bölüte ayrı-

lacaksa ona göre özvektör sistemik adet özvektör için çözülmekte ve sonuç olarak aynı

sayıda bölüt oluşturulmaktaydı. Ancak, görüntülerde bölüt sayısının önceden bilinmesi

gibi bir durum söz konusu değildir. Özvektör sayısını değiştirerek bölütleme doğruluğu

arttırma bir yöntem olarak kullanılabilir.

Bu tez kapsamında gerçek veriler üzerinde de gösterileceği gibi, özvektör sisteminin

çözümü sonucu elde edilen özvektörler görüntüdeki nesnelerin sınır bilgilerini içermek-

tedir. Bu sebeple, k değerini belirlemek yerine, nitekim bu zor bir işlemdir, özvektör

sistemi belirli sayıda özvektör için çözüldükten sonra, bu özvektörler denklem (2.19)’da

verilen kenar bulma algoritmasıyla birleştirilip görüntünün kenar bilgilerinin oluşturul-

ması sağlanabilir. Kenar bulma ile bölütleme birbiriyle örtüşen problemlerdir. Biri elde

edilince diğerini elde etmek mümkündür. Bundan dolayı, Şekil 3.2’deki akış şemasında

da gözüktüğü üzere sPb algoritmasının sonucu olan görüntünün kenar bilgisi UCM al-

goritmasından geçirilerek HSG’lerin bölütleri oluşturulmaktadır.

3.3 PMI Benzeşim Matrisi Tabanlı Ncut Yöntemiyle HSG’lerin Denetlemesiz Bö-

lütlenmesi (PMITNcut):

Diğer iki yöntemde HSG verileri ile LiDAR verileri birleştirilip spektral bölütlemenin kul-

landığı benzeşim matrisi oluşturulurken uzamsal, spektral ve yükseklik bilgileri arasın-

daki Euclidean uzaklık temel alındı. Bu yöntemle ise HSG ve LiDAR verilerindeki aynı

nesneye ait piksellerin, farklı nesnelere ait piksellerden daha yüksek istatiksel bağımlılık

sergilemesi prensibi temel alınarak benzeşim matrisi oluşturulmaktadır. PMI ile görün-

tüden alınan örnek ikililerinin özniteliklerinin tüm görüntüde birlikte bulunma olasılık-

ları hesaplanmaktadır. Bu yöntemle, HSG’lerden alınan uzamsal, spektral bilgiler ve

LiDAR’dan elde edilen yükseklik bilgisi için ayrı ayrı PMI’lar hesaplanmaktadır. Daha

sonra, bu PMI değerleri birleştirilerek benzeşim matrisi oluşturulmaktadır. Bu farklı kay-

naklardan elde edilen bilgilerin birbirinden bağımsız olduğu açıktır. Çünkü nesnelerin

spektral özellikleri, yükseklikleri ve görüntüdeki uzamsal konumları arasında herhangi

bir ilgileşim (correlation) bulunmamaktadır. Bu gerçek ışığında, uzamsal, spektral ve

yükseklik bilgilerinin PMI değerleri aşağıdaki denklemde verildiği gibi birleştirilerek ben-
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Şekil 3.2. SET spektral bölütleme yöntemi kullanılarak LiDAR destekli HSG’lerin bölüt-
lenmesi
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zeşim matrisinin oluşturulması önerilmektedir.

Wi ,j = e

3∑
k=1

PMIρ(xk
i , xk

j ) (3.7)

Denklem (3.7)’deki x1
i , x2

i ve x3
i sırasıyla uzamsal, spektral ve yükseklik bilgilerini ifade

etmektedir. ρ parametresi ise önceki bölümde de bahsettiğimiz gibi veri kümesi üze-

rinde bölütleme doğruluğunu artıracak şekilde deneysel olarak belirlenecek serbest bir

parametredir.

HSG’ler yüzlerce spektral bant içerir, bu yüzden spektral bilgi için PMI oluşturulması

muazzam miktarda hesaplama gerektirebilir. Spektral bilgiler farklı nesneler için sadece

belirli dalga boylarında farklılık göstermektedir. Bu bantlar için PMI değeri bölütlemede

herhangi bir fayda sağlamamaktadır. Bu nedenle, bölütlemenin efektif yapılması için

HSG’lerden elde edilen spektral bilgilerin önemli kısımlarını koruyarak boyutlarının in-

dirgenmesi gerekmektedir. Boyut indirgeme, verilerin içeriğini geliştiren bir işlemdir. Bu

çalışmada, spektral bilgilere ilişkin herhangi bir ön bilgiye ihtiyaç duymayan temel bile-

şen analizi (principle component analysis-PCA) yöntemi kullanılmıştır. PCA çok boyutlu

veri kümelerindeki bilgileri sıkıştırmada etkili bir yöntemdir [54]. Bu tezde kullanılan

HSG’lere ait spektral bilgileri PCA ile elde edilen ilk 20 temel birleşenine ait özdeğerler

Şekil 3.3’te verilmiştir. İlk 7 en büyük özdeğerin toplamı, tüm özdeğerlerin toplamının

%99,35’ini oluşturmaktadır. Dolayısıyla; spektral veri kümesi, ilk 7 temel bileşen kulla-

nılarak gösterilebilir. Böylece, işlem karmaşasından kaçınmış olunacak ve PMI daha

verimli elde edilerek bölütleme doğruluğu arttırılacaktır.

Diğer yandan, LiDAR belirli bir sahnedeki her piksele ait yükseklik bilgilerini sağlamak-

tadır. Ancak, 4. bölümünde sunulan veri kümesi düşük yoğunluklu kentsel bölgeler-

den oluşmakta ve çok sayıda ağaç grubu içermektedir. Bu ağaçların dalları arasındaki

boşluklar nedeniyle, LiDAR verileri bazı bölgelerde pikselden piksele hızlı değişimler

göstermektedir. Bu değişim, PMI sonucunu ve buna bağlı olarak HSG’lerin bölütleme

doğruluğunu negatif yönde etkilemektedir. Bu eksikliği önlemek amacıyla LiDAR verile-

rinin pikseller arası geçişlerini yumuşatmak gerektiğinden standart sapması 1 olan ve

5x5’lik pencereden oluşan simetrik bir Gauss alçak geçirgen filtresi kullanılmıştır.
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Şekil 3.3. Kullanılan veri kümesinin PCA ile elde edilen en büyük 20 özdeğeri

Şekil 3.4’te 3. yöntemin akış şeması gösterilmektedir. Benzeşim matrisi oluşturulurken

direkt olarak PMI değeri de kullanılabilir. Ancak, PMI’nin üstel fonksiyonu PMI’dan daha

iyi sonuçlar verdiğinden denklem (3.7)’de verilen form kullanılmaktadır. Şekil 3.4’te de

verildiği gibi, benzeşim matrisi PMI ile oluşturulduktan sonraki işlemler yöntem 2 ile

aynıdır. Yani, PMI tabanlı benzeşim matrisi kullanılarak genelleştirilmiş özvektör sis-

temi çözülerek belirli sayıda özdeğer (bu yöntem için 100 adet özdeğer) ve bunlara

karşılık gelen özvektörler hesaplanmaktadır. Bu özvektörlerin görüntüdeki nesnelerin

kenar bilgilerini içerdiğini önceki bölümde söylenmişti. HSG’lerin yanı sıra LiDAR ve-

rilerinin de kullanılması bu özvektörlerdeki kenar bilgisini iyice arttırmaktadır. Bundan

dolayı, elde edilen özvektörler (2.19)’de verilen sPb ile birleştirilerek görüntünün kenar

bilgisi çıkartılmaktadır. Son olarak, Yönlendirilmiş Havza Dönüşümü (Oriented Waters-

hed Transform-OWT) ve UCM uygulanarak görüntünün bölütleri elde edilir.
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Şekil 3.4. PMITNcut yöntemi kullanılarak LiDAR destekli HSG’lerin bölütlenmesi

42



4. GERÇEK VERİLER ÜZERİNDE DENEYSEL SONUÇLAR

Çalışmanın bu kısmında, tez süresince kullanılan gerçek hiperspektral ve LiDAR veri

kümeleri tanıtılmıştır. Bir önceki bölümde önerilen LiDAR destekli HSG’lerin bölütleme

yöntemleri gerçek veriler üzerinde uygulanmış ve önerilen 3 yöntemin sonuçları ile mev-

cut çizge tabanlı yöntemlerin sonuçları karşılaştırılmıştır.

4.1 Gerçek Veri Kümesi

Bu tezde bölütleme sonuçları için MUUFL Gulfport veri kümesi [55] kullanılmıştır. MU-

UFL Gulfport veri kümesi Kasım 2010’da Mississippi Long Beach’te bulunan Güney

Mississippi Gulf Park Kampüsü üzerinde toplanmıştır. Aynı anda tek bir uçaktan Op-

tech ALTM Gemini LiDAR ve CASI-1500 hiperspektral görüntüleyici kullanılarak toplan-

mış veriler düşük yoğunluklu kentsel ve kıyı bölgelerinden oluşmaktadır. Hiperspektral

veriler 72 bantta VNIR spektral aralığında oluşturulmuştur. LiDAR sensörü, 1064 nm’lik

dalga boyunda çalıştırılarak yükseklik bilgisi elde edilmiştir. Hiperspektral görüntüleyi-

cinin ve LiDAR sensörünün teknik özellikleri sırasıyla Çizelge 4.1’de ve Çizelge 4.2’de

verilmektedir.

Çizelge 4.1. CASI-1500 hiperspektral görüntüleyicinin teknik özellikleri

Sensör Özelliği Birimi Değeri

Dalga Boyu Aralığı nm 375− 1050

Bant Sayısı adet 72

Spektral Çözünürlük nm 10

Uzamsal Çözünürlük m 1

Toplandığı Yükseklik km 1.0668

Şekil 4.1’de KYM görüntüsünde de görüleceği üzere, orijinal MUUFL Gulfport veri kü-

mesi 325x337 pikselden oluşmaktadır. Gürültü sebebiyle hiperspektral verinin ilk 4

bandı ve son 4 bandı kullanılmamaktadır. Dolayısıyla, önerilen yöntemlerde 64 banttan

oluşan spektral bilgiler üzerinde çalışılmaktadır. Yakın tarihte, veri kümesinin bölütleme

doğruluk haritası da oluşturulmuştur [56]. Orjinal verinin sağ alt tarafı geçersiz alandan

oluştuğundan bölütleme doğruluk haritası 325x220 piksellik kısım için oluşturulmuştur.
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Çizelge 4.2. Optech ALTM Gemini LiDAR sensörünün teknik özellikleri

Sensör Özelliği Birimi Değeri

Dalga Boyu nm 1064

Darbe Tekrarlama Frekansı (PRF) kHz 70

Tarama Frekansı Hz 43

Tarama Açısı derece 30

Toplandığı Yükseklik km 1.0668

Şekil 4.2’de veri kümesinin bölütleme haritası gösterilmektedir. Şekilde de görüldüğü

gibi görüntüde toplam 11 tane etiketlenmiş sınıf bulunmaktadır. Bu sınıflar şunlardan

oluşmaktadır: ağaçlar, çim, karışık zemin yüzeyi, çamur/kum, asfalt, su, binalar, bina

gölgeleri, kaldırım, bordür taşları ve farklı spektral özelliklere sahip kumaş hedefler.

Şekil 4.1. MUUFL Gulfport veri kümesinin KYM görüntüsü
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Şekil 4.2. MUUFL Gulfport veri kümesinin bölüt doğrulama haritası

4.2 Denetlemesiz Bölütleme Sonuçlarının Nesnel Olarak Karşılaştırılması

Denetlemesiz bölümleme sonuçlarının performansını değerlendirmek ve farklı yöntem-

lerin bölütleme doğruluğunu (BD) karşılaştırmak için nesnel ve istatistiksel bir kıstasa

gereksinim duyulmaktadır. Bu amaçla, [57]’de önerilen spektral ayrıştırma gücü (po-

wer of spectral discrimination-PWSD) uygun gözükmektedir. Bu yöntemin değiştirilmiş

sürümü, HSG’lerin denetlemesiz bölütleme performansını değerlendirmek için [29]’da

kullanılmıştır. PWSD, görüntüdeki belirli bir piksel için iki referans bölüt temsilci imza-

sına bağlı olarak bir ayrıştırma ölçütü sağlamaktadır. PWSD şöyle hesaplanmaktadır:

Ω(ci , cj , x) = max
{

sam(ci , x)
sam(cj , x)

,
sam(cj , x)
sam(ci , x)

}
(4.1)

Burada, ci ve cj sırasıyla i ve j bölütlerindeki piksellerin spektral bilgilerinin ortala-

ması alınarak her bir bölüt için elde edilen temsilci imzalardır. x ise bir pikselin hipers-

pektral verisini ifade eder. Denklem (4.1)’de verilen spektral açı ölçüsü (spectral angle

measure-sam), iki hiperspektral verinin (x ve y) benzerlik ölçümünü gösterir ve aşağı-
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daki gibi tanımlanır. Denklemde yer alan n spektral verilerin boyutunu göstermektedir.

sam(x, y) = 1− arccos


n∑

i=1
xiyi√

n∑
i=1

x2
i

√
n∑

i=1
y2

i

 (4.2)

Bir bölütteki her xi pikseli için PWSD, pikselin ait olduğu bölütün (ci) temsilci imzası

ve elde edilen farklı bölütlerin temsilci imzaları kullanılarak hesaplanır (cj , i 6= j). Daha

sonra; m bölüte ayrılmış bir sahnedeki x pikseli için BD, denklem (4.3)’te verildiği gibi

PWSD değerlerinin ortalaması alınarak hesaplanır.

BD(x) = ortalama {Ω(ci , cj , x)|j = 1, ..., m(i 6= j)} (4.3)

Tanımı gereği PWSD değeri ve dolayısıyla BD daima 1’den büyüktür. Bir bölütleme

tekniği için ortalama BD, tüm piksellerin BD değerinin ortalaması alınarak elde edilebilir.

Bölütleme tekniğinin görüntüdeki nesnelerin ayırt etme kabiliyeti, ortalama BD’nin artan

değeri ile orantılı olarak arttığı sonucuna varılabilir.

4.3 SMTNcut Yöntemiyle HSG’lerin Denetlemesiz Bölütleme Sonuçları

Bu yöntemin bölütleme sonuçlarının ayrıntılı olarak incelenmesi için öncelikle Şekil 4.1’de

KYM görüntüsü verilen veri kümesinin 121x121 pikselden oluşan bölümünün HSG ve

LiDAR verileri üzerinde çalışılmıştır. Kullanılan bu alt kümenin KYM görüntüsü, farklı 14

hiperspektral bandından elde edilen görüntüler ve LiDAR’dan elde edilen yükseklik ha-

ritası Şekil 4.3’te gösterilmektedir. Daha önce bahsedildiği gibi, şekildeki hiperspektral

bantlara bakıldığında görüntüdeki maddelerin ışığı farklı yansıttığı gözükmektedir. Tek

bant ele alındığında; bazı maddeler, özellikle çimen ve ağaçlar, ışığı benzer yansıttığın-

dan tek bant verileriyle bunları ayırmak oldukça zorlaşmaktadır.

HSG’lerdeki farklı dalga boyları malzemeleri ayırmada avantaj sağlamakla birlikte ye-

terli iyileştirmeyi yapamamaktadır. LiDAR verilerinden elde edilen yükseklik bilgileri yar-

dımıyla, spektral olarak birbirlerine benzeyen ancak farklı yükseklikte bulunan madde-
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Şekil 4.3. Sırasıyla: Kullanılan verinin 121x121 piksellik KYM görüntüsü (sol üst),
425nm bandı, 465nm bandı, 515nm bandı, 565nm bandı, 615nm bandı,
665nm bandı, 715nm bandı, 765nm bandı, 815nm bandı, 865nm bandı,
915nm bandı, 965nm bandı, 1015nm bandı,1050nm bandı ve LiDAR ile oluş-
turulan yükseklik haritası(sağ alt)

leri ayırmak kolaylaşmaktadır. Ayrıca, LiDAR verilerinin kullanımı cisimleri ve cisimlere

ait gölgeleri birbirinden ayırmada önemli katkı sağlamaktadır.

Benzeşim matrisini oluşturmak için görüntülerde yer alan her bir piksel boğum olarak
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Şekil 4.4. Sırasıyla: Veri kümesinin 121x121 piksellik bölümü bilgileri kullanılarak oluş-
turulan benzeşim matrisi (βspektral = 0.3, γuzamsal = 5, δlidar = 2 ve r = 5), belli
bir bölgesi yakınlaştırılmış benzeşim matrisi

seçilmiş ve denklem (3.1)’de olduğu gibi hesaplamıştır. Hesaplama yapılırken βspektral =

0.3, γuzamsal = 5, δlidar = 2 ve r = 5 olarak seçilmiştir. Deneysel olarak seçilen bu para-

metre değerlerine göre elde edilen benzeşim matrisi Şekil 4.4’te verilmiştir. Şekilde de

gözüktüğü gibi benzeşim matrisi seyrek (sparse) bir matristir. Yani köşegen ve köşegen

çevresindeki bantta yer alan girdiler dışında kalan tüm değerler sıfırdır. Aynı zamanda

benzeşim matrisi simetrik bir matristir. Kullanılan görüntü 121x121 boyutlarında oldu-

ğundan, yani çizge toplamda 14641 piksel (boğum) içerdiğinden, oluşturulan benzeşim

matrisi 14641x14641 boyutlarındadır. Tanımı gereği benzeşim matrisi maksimum 1 de-

ğerini ve minimum 0 değeri almaktadır. Şekilde yakınlaştırılmış bölümüne bakıldığında

sadece komşu 5 piksel arasındaki kenar ağırlıklarının hesaplandığı gözükmektedir ve

bu ağırlıklar pikseller arasındaki benzerlikler (uzamsal, spektral ve yükseklik) azaldıkça,

orantılı olarak azalmaktadır.

Benzeşim matrisi oluşturulduktan sonra, Şekil 3.1’de gözüktüğü gibi özvektör sistemi-

nin çözümü yapılır. Belirlenen sahne için özvektör sistemi en büyük 30 tane özdeğer ve

bunlara karşılık gelen özvektörler bulunacak şekilde çözümlenmiştir. Sistemin çözümü

sonucunda elde edilen en büyük 30 özdeğer ve görüntünün boyutlarına dönüştürül-

müş ilk 8 özvektör Şekil 4.5’te gösterilmektedir. Şekilde gözüktüğü gibi her bir özvektör

görüntünün belirli alanlarını diğer alanlardan ayırmaktadır. Ancak, bir önceki bölümde
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bahsedildiği gibi Ncut çözümü ayrık olması gerekirken genelleştirilmiş özvektör siste-

minin çözümü ile elde edilen özvektörler süreklidirler. Dolayısıyla, Şekil 4.5’te de gö-

züktüğü gibi, özvektörlerde bazı bölgeler arasındaki geçişler daha yumuşak olduğun-

dan ve özvektörlerin yüksek değerler aldığı kısımların çakışması sebebiyle tam olarak

görüntüdeki bölütleri ifade etmemektedir. Bu özvektörlerden bölütler elde edilmesi için

ayrıklaştırılması gerekmektedir.

Önerdiğimiz bu yöntemde, çok katmanlı Ncut algoritması kullanılarak özvektörler ayrık-

laştırılmıştır. Oluşturulan bu ayrık vektörlerin görüntü boyutlarına dönüştürülmüş halleri

Şekil 4.6’da gösterilmektedir. Şekilde de gözüktüğü gibi, her bir ayrık özvektör görüntü-

nün farklı bir bölümünü ayırmaktadır ve vektörlerin ayırdığı bölgeler çakışmaktadır. Son

olarak, verilen sahnedeki görüntü bölütlerini oluşturmak için bu ayrık vektörler birleştiril-

melidir. Bu birleştirme işlemi basit bir çarpma ve toplama işleminden ibarettir. Ayrık öz-

vektörlerin elemanları sadece 1 ve 0 değerlerinden oluşmaktadır. Bölütleri birbirinden

ayırmak için her bir özvektör farklı doğal sayıyla çarpılıp ardından toplanırsa bölütler

elde edilmektedir. Örneğin; ilk vektör 1 ile çarpılsın, ikinci vektör 2 ile çarpılsın ve bu

sırayla devam edilerek tüm vektörler artan sıradaki doğal sayıyla çarpılıp toplandığında

görüntü bölütleri oluşturulmaktadır.

Şekil 4.5. Veri kümesinin 121x121 piksellik bölümü kullanılarak özvektör sistemiyle
oluşturulan en büyük 30 tane özdeğer (sol üst) ve ilk 8 en büyük özdeğere
karşılık gelen görüntünün boyutlarına dönüştürülmüş özvektörler (y)
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Şekil 4.6. Sürekli özvektörlerin ayrıklaştırılması sonucu oluşturulan ve görüntünün bo-
yutlarına dönüştürülmüş ilk 8 ayrık özvektör (y′)

Şekil 4.7. (a) Kullanılan verinin 121x121 piksellik KYM görüntüsü, (b) Verinin bölütleme
doğruluk haritası, (c) SMTNcut yöntemiyle HSG’lerin bölütleme sonucu

Şekil 4.7’de ilgili görüntü kısmının bu yöntemle elde edilmiş bölütleme sonucu veril-

mektedir. LiDAR verilerinin kullanılmasıyla benzer özelikler taşıyan ağaç ve çim gibi

nesneler başarılı bir şekilde ayrı ayrı bölütlenmiştir. Aynı zamanda, bölütleme doğruluk

haritasında verilmeyen, ancak Şekil 4.7 (a)’da yer alan kırmızı araba da bu yöntem so-

nucu ayrı bir bölüte yerleştirilmiştir. Binalar ile gölgelerini ayırmada başarı göstermekte-

dir. Ancak, bu yöntemin temel birkaç eksikliği mevcuttur. İlk olarak, kullanılan özvektör
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sayısının önceden belirlenmesi gerekmektedir, yukarıda bahsedildiği gibi görüntünün

121x121 piksel alana sahip sahnesi için 30 özvektör kullanılmıştır. Görüntünün doğru

bir şekilde bölütlenmesi için kullanılan özvektör sayısının uygun seçilmesi gerekmekte-

dir. Az sayıda özvektör kullanıldığında görüntü olduğundan daha az bölüte ayrılacaktır.

Çok sayıda özvektör kullanıldığında ise görüntü olduğundan daha fazla bölüte ayrıla-

caktır. İkinci eksiklik ise bu yöntemle görüntüdeki tekdüze büyük alanlar yanlış ayrılmak-

tadır. Örneğin, Şekil 4.7 (c)’de verilen bölütleme sonucunda da görüldüğü gibi, asfalt yol

bir bütün olarak ayrılamamıştır. Ayrıca, büyük alanların birden çok bölüte ayrılmasını

kullanılan özvektör sayısı da etkilemektedir.

Bölütleme doğruluğu için benzeşim matrisi oluşturulurken kullanılan βspektral , γuzamsal ,

δlidar değerlerinin ve komşu kaç piksel arasında (r ) kenar ağırlıklarının hesaplanacağı

kritik öneme sahiptir. Çizelge 4.3’te farklı r parametresi için bu yöntemin ortalama BD

değeri verilmektedir. Ortalama BD hesaplanırken diğer tüm değişkenler sabit tutularak

sadece r parametresi değiştirilmiştir. Sonuçlara bakıldığında bu değer artıkça, buna

bağlı olarak ortalama BD de artmaktadır. Çünkü r değerinin artması, çizgede daha çok

komşu piksel aralarındaki kenar ağırlıklarının hesaplanması anlamına gelmektedir. Ke-

nar sayısı arttıkça görüntü hakkında daha çok bilgi kullanılarak çizge oluşturulmaktadır.

Ancak, hesaplanan kenar ağırlığı sayısı arttıkça, birlikteliğinde işlem yükü de artmak-

tadır. r değeri arttıkça ortalama BD’deki artış miktarı azalmaktadır. Bu sebeple, işlem

yükünü fazla arttırmayacak bir değerde sabit bırakılması mantıklıdır. Ayrıca, βspektral ,

γuzamsal ve δlidar parametrelerinin arttırılması pikseller arasındaki benzerlik geçişlerini

yumuşattığından, bölütleme sonucunu iyileştirmektedir. Fakat çok arttırılmaları, farklı

uzamsal ve spektral özelliklere sahip piksellerin benzerliğini de arttıracağından bölütle-

meyi negatif yönde etkilemektedir.

4.4 SET Yöntemiyle HSG’lerin Denetlemesiz Bölütleme Sonuçları

Bu yöntemin bölütleme sonuçları için Ncut yönteminde olduğu gibi ayrıntılı incelemek

amacıyla veri kümesinin Şekil 4.3’te verilen 121x121 pikselden oluşan bölümünün HSG

ve LiDAR verileri üzerinde çalışılmıştır. Denklem (3.5)’te verilen benzeşim matrisini

oluşturmak için βspektral = 1 seçilmiştir. ε = 10 komşuluğundaki pikseller arası ağırlıklar

hesaplanmıştır. Denklem (3.6)’da gösterilen potansiyel matrisi oluşturulurken ise basit-
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Çizelge 4.3. Farklı r değerleri için SMTNcut yöntemin ortalama BD’si (βspektral = 0.3,
γuzamsal = 5, δlidar = 2 ve kullanılan özdeğer sayısı=30)

Deneme No r (piksel) ortalama BD

1 2 1.2620

2 3 1.2755

3 4 1.3658

4 5 1.3658

5 6 1.3873

6 7 1.3996

7 10 1.4051

lik olması açısından γuzamsal = 1, δlidar = 1 seçilmiş ve ε = 6 komşuluğundaki uzamsal bil-

giler ve bunlara karşılık gelen yükseklik bilgileri kullanılmıştır. Spektral Pb kenar bulma

algoritmasındaki yönlü türevler hesaplanırken, θ’nın [0,π] aralığında düzgün dağılmış 8

açı değeri kullanılmıştır. Bulunan kenarlardan bölütler oluşturulurken, elde edilen tüm

sonuçlar için, UCM algoritmasının kullandığı eşik değeri 0, 2 olarak belirlenmiştir. Son

olarak, Laplacian matrisi ile potansiyel matrisin katkılarını görece ağırlıklandırarak bö-

lütleme sonuçlarındaki değişimi gözlemlemek amacıyla denklem (2.22)’deki α’nın farklı

değerleri için ortalama BD hesaplanmıştır.

SE algoritmasının benzeşim matrisi olan W ve potansiyel matrisi olan P hiperspektral

ve LiDAR verileriyle oluşturulduktan sonra Şekil 3.2’de gözüktüğü gibi belirlenen bir α

değeri ile özdeğer sistemi en küçük özdeğer ve bunlara karşılık gelen özvektörler için

çözümlenir. SMTNcut yöntemiyle bu basamaktan sonra elde edilen özvektörler ayrık-

laştırılarak bölütler oluşturuldu. Ancak, SMTNcut yönteminde oluşturulan ayrık özvektör

sayısı bölüt sayısıyla aynı olması gerekmektedir. Gerçek UA uygulamalarında görüntü-

deki bölüt sayısı önceden bilinmediğinden özvektör sayısı belirlemek bölütleme doğru-

luğu açısından büyük önem kazanmaktadır. Bu yöntemle özvektör sistemi daha fazla

özdeğer ve özvektör (N=50) için çözülerek bu bağımlılık ortadan kaldırılmaktadır. 3. bö-

lümde bahsettiğimiz gibi elde edilen bu özvektörler görüntüdeki nesnelerin kenar bilgi-

lerini içermektedir. Bu sebeple özdeğer sistemi sonucu elde edilen özvektörler denklem

(2.19)’daki spektral Pb yöntemiyle birleştirilip görüntünün kenar bilgileri oluşturulabilir.
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Şekil 4.8’de, özvektör sisteminin çözümü sonucu elde edilen ilk beş en küçük özdeğere

karşılık gelen özvektörler ve bu özvektörler kullanılarak elde edilen spektral Pb sonucu

gösterilmektedir. Şekildeki özvektörlere bakıldığında, her birinin görüntüdeki farklı böl-

gelerin kenar bilgisi taşıdığı gözükmektedir. Çok sayıda özdeğer ve bunlara ait özvektör

kullanılarak sPb ile görüntüdeki tüm nesnelerin kenar bilgisini oluşturmak mümkündür.

LiDAR’dan elde edilen yüksekli bilgisi de kullanıldığından nesneler ile gölgeleri arasın-

daki kenar bilgileri de oluşturulmaktadır.

Şekil 4.8. Veri kümesinin 121x121 piksellik bölümü kullanılarak özvektör sistemiyle
oluşturulan en büyük 5 tane özdeğer karşılık gelen özvektörler ve bu 5 vektör
ile elde edilen sPb sonucu (sağ alt)

Spektral Pb sonucu kullanılarak UCM algoritmasıyla verilen sahnenin bölütleri oluştu-

rulmaktadır. SET yönteminin bölütleme algoritmasının farklı α değerleri için elde edilen

bölütleme sonuçları Şekil 4.9’da gösterilmektedir. Sonuçlara bakıldığında, α = 0 iken,

yani sadece spektral bilgiler kullanıldığında, görüntünün gereğinden fazla bölütlere ay-

rıldığı gözlemlenmektedir. Özellikle, ağaç toplulukları, gölgeleri ve çimenler olması ge-

rekenden daha fazla bölütlere ayrılmıştır. α = 4 iken, spektral bilgilerin yanı sıra uzamsal
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ve özellikle yükseklik bilgileriyle elde edilen potansiyel matrisi devreye girdiğinde daha

önce elde edilen fazla bölütlerin bertaraf edildiği gözükmektedir. Ağaç toplulukları tek

bir bölüt olarak ayrılmış, ağaç gölgeleri de ağaçlardan farklı bir bütün olarak gruplan-

mıştır. Benzer şekilde, çimenlerdeki fazla bölütler ortadan kalkmış, tek bölüt halinde

ayrılmıştır. α değeri arttırıldığında, spektral bilginin bölütlemeye etkisi azalırken yük-

seklik bilgisinin etkisini arttırmaktadır. Beklenildiği gibi, yüksekliği baskın olan cisimlerin

bölütlendiği Şekil 4.9 (d)’de α = 50 için gözükmektedir.

Şekil 4.9. (a) α = 0 iken bölütleme sonucu, (b) α = 4 iken bölütleme sonucu, (c) Verinin
121x121 piksellik KYM görüntüsü , (d) α = 10 iken bölütleme sonucu, (e)
α = 50 iken bölütleme sonucu , (f) Verinin bölütleme doğruluk haritası

Şekil 4.10’da α parametresinin değişimine bağlı olarak ortalama BD değişimi gösteril-

mektedir. Grafikte gözüktüğü gibi α ayarlanarak verilen sahnenin BD’si en iyi seviyeye

çıkartılabilir. α’nın değeri belli bir noktadan sonra arttırılması sahnenin BD’sinin azal-

masına sebep olmaktadır. Bu yanlış bölütler oluşturulduğu anlamına gelmemektedir.

Bölümün başında bahsedildiği gibi BD, bölütleme yönteminin görüntüdeki nesnelerin

spektral olarak ayırıp ayırmadığının bir ölçüsüdür. Ancak, α arttırılmasıyla spektral bil-

gilerin bölütleme üzerindeki etkisi azaldığından, beklenildiği gibi BD’nin azaldığı gö-
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zükmektedir. α’nın arttırılması uzamsal ve yükseklik bilgilerinin bölütleme üzerindeki

etkisini arttırmasına sebep olurken, elde edilen bölütleme haritası da buna göre şekil-

lenmektedir. Dolayısıyla, Şekil 4.9 (d)’de de gözüktüğü üzere α = 50 iken, yükseklik

bilgisine göre görüntü bölütleri oluşmaktadır.

Şekil 4.10. α’nın değişimine bağlı olarak ortalama BD’nin değişimi

4.5 PMITNcut Yöntemiyle HSG’lerin Denetlemesiz Bölütleme Sonuçları

PMITNcut yönteminin HSG’lerin denetlemesiz bölütleme sonuçları incelemek amacıyla

diğer iki yöntemde olduğu gibi ilk olarak veri kümesinin Şekil 4.3’te verilen 121x121

pikselden oluşan bölümünün HSG ve LiDAR verileri üzerinde çalışılmıştır. Bu sahne

verileriyle spektral bölütlemenin kullandığı benzeşim matrisini, W, oluşturmadan önce

ilgili veri kümesinin Şekil 3.4’teki akış şemasında gözüktüğü gibi bazı ön işlemlerden

geçmesi gerekmektedir. Öncelikle işlem kargaşasını önlemek amacıyla ve PMI’nın ve-

rimli hesaplanması için PCA ile spektral bilgilerin daha düşük boyutlara indirgenmesi

gerekmektedir. Şekil 3.3’te PCA ile elde edilen temel bileşenlere ait özdeğerler gözük-

mektedir. Bunların ilk 7 temel bileşenine ait özdeğerlerin toplamı, tüm özdeğerlerin top-

lamının yüzde 99,35’ini oluşturduğu bölüm 3.3’te bahsedilmişti. Dolayısıyla bu 7 temel
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bileşen kullanarak önemli veri kaybına uğramadan spektral bileşenlerin içeriği zengin-

leştirilebilir. Şekil 4.11’de verinin 121x121 piksellik sahnesinin spektral bilgileri için PCA

ile oluşturulan ilk 7 temel bileşeni gösterilmektedir. Görüldüğü üzere temel bileşenlere

ait özdeğerler azaldıkça spektral bilgilerden elde edilecek bilgiler de gürültü haline dö-

nüşmektedir. PMI oluşturulurken daha küçük bileşenlerin kullanılması, hem işlem yükü

oluşturacağından hem de nesneler hakkında önemli bilgiler getirmeyeceğinden, gerek-

sizdir.

Diğer ön işlem ise LiDAR verileri ile PMI oluşturmadan önce yükseklikler arasındaki ge-

çişleri yumuşatmak için filtreden geçirmektir. Veri kümesi düşük yoğunluklu kentsel böl-

gelerden oluştuğundan yükseklik bilgisi pikseller arası hızlı değişimler gösterebilmekte-

dir. Şekil 4.12 (a)’da verinin orijinal yükseklik haritası gözükmektedir. Şekilde gözüktüğü

gibi, özellikle ağaç topluluklarının olduğu bölgelerde yükseklik bilgisi pikseller arasında

hızlı değişimler göstermektedir. LiDAR verileri ile elde edilen PMI etkinliğini arttırmak

adına yükseklik bilgileri, standart sapması 1 olan ve 5x5’lik pencereden oluşan simet-

rik bir Gauss alçak geçirgen filtresinden geçirilerek hızlı değişimler yumuşatılmaktadır.

Filtrelenmiş yükseklik haritası Şekil 4.12 (b)’de verilmektedir. Filtrelenmiş yükseklik hari-

tasına bakıldığında ağaç topluluklarının olduğu bölgeler başta olmak üzere, veriye zarar

vermeden pikseller arasındaki yükseklik geçişleri yumuşatılmaktadır.

Ön işlemden geçen veriler, spektral bölütleme yönteminin kullandığı benzeşim matrisini

oluşturmaya hazır hale gelmektedir. Denklem (2.27)’de verilen piksellerin birlikte gö-

rülme olasılıklarını hesaplamak için görüntüden 5000 örnek piksel alınmıştır. Bu piksel

örnekleri görüntünün farklı bölgelerinden alınması için rastgele seçilmektedir. Rastgele

belirlenen örnek piksellerin etrafından d = 2’den d = 4 uzaklığına kadar xi ve xj öznitelik

çifti alınarak birlikte bulunma olasılıkları hesaplanmıştır. Uzaklık arttıkça pikseller ara-

sındaki bağları ters orantılı olarak azaltmak için ağırlık fonksiyonu olan w(d) standart

sapması 0.1 olan Gauss fonksiyonu seçilmiştir. Elde edilen bu örnek piksellere çekirdek

yoğunluk kestirimi (kernel density estimation-kde) kullanarak denklem 2.27’deki olasılık

yoğunluk fonksiyonu oluşturulmuştur [49]. Daha sonra, bu olasılık fonksiyonu kullanarak

PMI oluşturulmuştur. PMI hesaplanırken ρ parametresi bölütleme performansını arttır-

mak amacıyla farklı değerler için test edilmiş ve 1.8 olarak belirlenmiştir. PMI; uzamsal,
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Şekil 4.11. Verinin 121x121 piksellik sahnesinin PCA ile oluşturulan ilk 7 temel bileşeni

spektral ve yükseklik bilgileri için ayrı ayrı hesaplandıktan sonra (3.7)’deki gibi birleşti-

rilerek benzeşim matrisi oluşturulmuştur. Bu aşamadan sonra ikinci yöntem olan SET

yönteminde olduğu gibi spektral bölütleme kullanılarak bölütler oluşturulmuştur. SET

yönteminden farklı olarak spektral bölütleme 100 özdeğer ve bunlara karşılık gelen öz-

vektörler için çözümlenmiştir. Bu özvektörler ve özdeğerler kullanılarak sPb algoritma-

sıyla görüntünün kenar bilgisi çıkartıldıktan sonra eşik değeri 0.25 olarak belirlenen

OWT-UCM algoritmasıyla bölütler elde edilmiştir.

Şekil 4.13’te verilerinin 121x121 piksellik bölümü kullanılarak elde edilen PMITNcut

bölütleme yönteminin sonuçları verilmektedir. Şekil 4.13 (c) görüntünün sPb ile elde

edilen kenar bilgisini göstermektedir. Bu kenar bilgisi özellikle belli yüksekliğe sahip

olan bina ve ağaç topluluklarında oldukça baskındır. Bunun temel nedeni HSG’lere ek

olarak LiDAR verilerinin de kullanılmasıdır. Bu kenar bilgisi kullanılarak oluşturulan bö-

lütler Şekil 4.13 (d)’de verilmektedir. Bölütleme sonucu verinin KYM görüntüsü ve bö-

lütleme doğruluk haritasıyla karşılaştırıldığında başarılı olduğu açıkça gözükmektedir.

PMITNcut algoritmasının, bölütleme doğruluk haritasında pembe renkle gösterilen bina

gölgesini tam anlamıyla ayrıldığı gözükmektedir. Doğruluk haritasında etiketsiz olarak

tanımlanan ancak KYM görüntüsünde ağaç gölgelerinden oluşan anlaşılan bölgelerin
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Şekil 4.12. Verinin 121x121 piksellik sahnesinin: (a) orijinal yükseklik haritası, (b) Ga-
uss filtresinden geçirilmiş yükseklik haritası

ağaçlardan ayrı bölütlendiği gözükmektedir. SET yönteminde olduğu gibi görüntüdeki

tekdüze büyük alanlar bütün olarak yüksek başarıyla bölütlenmektedir.

Yukarıda anlatıldığı gibi, bu yöntemle görüntüden rastgele seçilen piksellerle bölütleme

yapıldığından algoritmanın her seferinde farklı sonuçlar vereceği aşikardır. Bu sebeple

her denemede ilgili bölütleme sonucunun ortalama BD’si farklı olmaktadır. Bu yöntem

için ortalama BD hesaplanırken algoritmanın çok sayıda çalışma sonucunun ortala-

ması alınarak genel bir ortalama BD oluşturulmaktadır. Çizelge 4.4’te sadece 10 farklı

deneme sonucunun ortalama BD değeri ile 100 deneme sonucunda elde edilen değer-

lerin ortalaması verilmektedir. PMITNcut yönteminin farklı denemelerinde hesaplanan

ortalama BD en fazla 5.0439 değerini alarak yüksek bir performans göstermektedir.

Diğer yandan, ortalama BD’nin en düşük değeri 3.8300 olarak gözükmektedir. Bunun

temel nedeni sahneden rasgele örneklenen parçaların konumlarıdır. Uygun pikseller

seçildiğinde ve bu piksellerin komşularından elde edilen uzamsal, spektral ve yükseklik

bilgileriyle başarılı bölütleme sonuçları elde edilebilmektedir. Şekil 4.9 (c) ve Şekil 4.13

(d) bölütleme sonuçları karşılaştırıldığında, PMITNcut yöntemi ile SET yöntemin benzer

sonuçlar verdiği gözükmektedir. Ancak, ortalama BD’lere bakıldığında PMI yönteminin
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yüksek başarı oranı göze çarpmaktadır. Ortalama BD’nin yüksek olması şu anlama

gelmektedir: PMITNcut yöntemi pikselleri spektral olarak ayırmada üstün performans

göstermektedir. Başarıyı arttıran etkenlerden biri LiDAR verileridir. LiDAR verileriyle gö-

rüntüdeki nesneleri yorumlama kabiliyetinin arttığı açıkça gözükmektedir.

Çizelge 4.4. Farklı denemeler için PMITNcut yönteminin ortalama BD değerleri ile genel
ortalama BD ve standart sapma değeri

Deneme No ortalama BD

1 4.2114

2 5.0439

3 4.5819

4 3.8300

5 4.2446

6 4.5175

7 4.7306

8 4.4329

9 4.5145

10 4.6976

Genel ortalama 4.4805 ± 0.1104

4.6 Mevcut ve Önerilen Yöntemlerin Karşılaştırılması

Bu bölümde, LiDAR destekli HSG’lerin bölütlenmesi için önerilen 3 yöntemin sonuçları

ve LiDAR bilgileri kullanmadan bölütleme yapan mevcut yöntemlerin sonuçları kıyas-

lanmaktadır. Bu kıyaslama yapılırken Şekil 4.14’te KYM görüntüsü, yükseklik haritası

ve bölütleme doğruluk haritası gösterilen veri kümesi üzerinde sonuçlar tartışılmakta-

dır. LiDAR verilerinin bölütlemede sağladığı avantajı görmek açısından; SM, GB yön-

temleriyle benzeşim matrisi oluşturmuş ve (3.7)’de verilen benzeşim matrisi yükseklik

verisi çıkartılarak hesaplanmış ve ilgili veri kümesinin bölütleri oluşturulmuştur. Yük-

seklik bilgisi kullanılmadan elde edilen sonuçlar ile önerilen yöntemlerle elde edilen

sonuçlar karşılaştırılmaktadır. Sadece HSG verileri kullanılarak bölütleme yapıldığında

karşımıza çıkan iki temel problem olduğundan bahsedilmişti. Bunlar, benzer spektral

özelliklere sahip nesnelerin ayrılamaması ve nesnelerle gölgelerinin tam anlamında bir-
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Şekil 4.13. (a) Kullanılan verinin 121x121 piksellik KYM görüntüsü, (b) Verinin bölüt-
leme doğruluk haritası, (c) sPb ile oluşturulan görüntünün kenar bilgisi, (d)
PMITNcut yöntemiyle HSG’lerin bölütleme sonucu

birinden ayrılamaması problemleriydi. Önerilen yöntemlerle LiDAR kullanıldığından bu

problemlerin ne derece bertaraf edildiği sonuçlar üzerinden gösterilmektedir.

Şekil 4.15’te Ncut yönteminin ilgili veri kısmı için bölütleme sonuçları verilmektedir. Bu

bölüt haritası oluşturulması için r = 10 seçilmiş ve 40 özvektör kullanılmıştır. Bölüt oluş-

turma ile kenar bilgisi örtüşen problemler olduğundan, SMTNcut bölütleme sonucunun

daha iyi anlaşılması adına verinin doğruluk haritası üzerine bölütleme sonunda elde

edilen kenar bilgisi çizdirilmiştir. Binaların olduğu bölgelere bakıldığında başarılı bölüt-
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Şekil 4.14. (a) Veri kümesinin 150x220 piksellik bölümünün KYM görüntüsü, (b) Gauss
filtresinden geçirilmiş yükseklik haritası, (c) Bölütleme doğruluk haritası

ler oluşturulmuş ve bina gölgeleri ayrılmıştır. Dikkat edilirse, binalar üzerinde bulunan

bazı yükseltiler (havalandırma veya merdiven çıkışları olabilir) LiDAR verileri yardımıyla

ayrılmıştır. Ancak, bu yöntemin temel problemi olan tekdüze alanları düzgün ayırama-

ması bu sahne için de gözükmektedir. Kullanılan özvektör sayısı değiştirilerek kısmen

bu problemin önüne geçilebilir. Diğer yandan, aynı görüntü kullanılarak SET ve PMITN-

cut yöntemlerin sonuçları sırasıyla Şekil 4.16 (a)’da ve Şekil 4.16 (b)’de verilmektedir.

Bu bölütleme sonuçları elde edilirken, SET yöntemi için UCM eşik değeri 0.15 olarak

belirlenmiş ve PMITNcut yöntemi için UCM eşik değeri 0.05 olarak belirlenmiştir. Bu

yöntemlerin kullandığı diğer parametreler yukarıda belirlenen değerleriyle kullanılmış-

tır. SET ve PMITNcut yöntemlerin sonuçlarına bakıldığında, SMTNcut yöntemine naza-

ran sahnedeki nesnelerin daha düzgün ayrıldıkları anlaşılmaktadır. SET ve PMITNcut
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Şekil 4.15. SMTNcut yöntemin bölütleme sonucu (solda, r=10), bölütleme sonucu kul-
lanılarak elde edilen kenar bilgisi (sağda)

yöntemlerinin, SMTNcut’taki gibi tekdüze büyük alanları yanlış ayırma oranlarının daha

düşük olduğu gözükmektedir.

Bu algoritmalarda önemli olan UCM eşik değerinin uygun seçilmesidir. Bu eşik de-

ğeriyle görüntü bölüt sayısı ve doğruluğu arttırılabilir. Tüm algoritmaların sonuçlarına

bakıldığında, binalar ve gölgelerinin muazzam şekilde ayrıldığı gözükmektedir. Ancak,

SMTNcut’ın binalar üzerindeki çıkıntıları ayırdığı gözükürken, SET ve PMITNcut yön-

temlerinde gözükmemektedir. Bunun nedeni LiDAR verilerinin algoritmadaki diğer bilgi-

lere göre ağırlıklandırılmasıyla ilgilidir.

Şekil 4.16 (a)’ya ve Şekil 4.16 (b)’ye daha ayrıntılı bakacak olursak, kırmızı halka içine

alınan kısımlarda SET yönteminin gereksiz bölütler oluşturduğu gözükürken PMITNcut

yönteminde bu sorunlar büyük oranda çözümlenmiştir. Mavi halka ile gösterilen su böl-

gesinin SET yöntemiyle daha başarılı bir şekilde ayrıldığı gözükmektedir. Aynı şekilde,

sarı halkalarla gösterilen bazı bölgelerde, SET’in PMITNcut’tan daha doğru sonuçlar

ürettiği göze çarpmaktadır.

Şekil 4.15’teki ve Şekil 4.16’daki bölütleme sonuçları kullanılarak hesaplanan ortalama

BD değerleri Çizelge 4.5’te verilmektedir. Çizelgeye bakıldığında, diğer iki yönteme kı-

yasla PMITNcut yöntemiyle son derece yüksek BD elde edilmiştir. Bu değerin yüksek

olması, görüntüdeki nesnelerin spektral açıdan PMITNcut yöntemiyle daha doğru ayrıl-
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Şekil 4.16. (a) SET yöntemin bölütleme sonucu (UCM eşik değeri 0.15) , (b) PMITNcut
yöntemin bölütleme sonucu (UCM eşik değeri 0.05) (c) Bölütleme doğruluk
haritası

dığı anlamına gelir. SMTNcut ve SET yöntemlerinin bu değeri düşük çıkmasının temel

sebebi bazı bölgeleri fazla veya eksik bölütlemesinden kaynaklanmaktadır.

Şekil 4.17’de önerilen SMTNcut ve SET yöntemlerinin bölütleme sonuçları ile önerilen

PMITNcut yönteminin LiDAR’lı ve LiDAR’sız bölütleme sonuçları ve mevcut SM, GB

yöntemleriyle oluşturulan bölütleme sonuçları verilmektedir. Sonuçlar incelendiğinde,

önerilen yöntemlerde yükseklik bilgisi kullanıldığında bölütleme sonuçlarında gelişme

gözükmektedir. Görüntüdeki nesnelerin LiDAR verileri yardımıyla daha anlamlı bölüt-

lere ayrıldığı açıktır. Sadece uzamsal ve spektral bilgiler kullanan SM ve GB yöntemleri

ile önerilen PMITNcut yönteminin LiDAR kullanılmayan sürümü, benzer spektral özel-

liklere sahip nesnelerin ayrılamaması (çimenler ve ağaçlar gibi) ve bazı noktalarda göl-

gelerin ayrılamaması (binalar ve gölgeleri gibi) problemleri yükseklik bilgisi yardımıyla
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Şekil 4.17. (a) Önerilen PMITNcut yöntemin LiDAR’sız bölütleme sonucu, (b) Önerilen
PMITNcut yöntemin LiDAR’lı bölütleme sonucu , (c) GB yöntemiyle oluş-
turulan bölütleme sonucu (LiDAR’sız), (d) Önerilen SET yönteminin bölüt-
leme sonucu (e) SM yöntemiyle oluşturulan bölütleme sonucu (LiDAR’sız),
(f) Önerilen SMTNcut yönteminin bölütleme sonucu
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Çizelge 4.5. Yöntemlerin veri kümesinin 150x220 piksellik bölümü kullanılarak elde edi-
len ortalama BD’leri

Deneme No Ortalama BD ± standart sapma

SM yöntemi 1.3879 ± 0

GB yöntemi 1.3693 ± 0

Önerilen SMTNcut yöntemi 1.4429 ± 0

Önerilen SET yöntemi 1.4536 ± 0

Önerilen PMITNcut yöntemi (LiDAR’sız) 4.2770 ± 0.3390

Önerilen PMITNcut yöntemi (LiDAR’lı) 4.6489 ± 0.4607

büyük oranda çözüme ulaştığı sonuçlardan anlaşılmaktadır. Ayrıca, Çizelge 4.5’teki or-

talama BD’ler incelendiğinde, LiDAR kullanılması görüntülerin spektral ayrıştırma gü-

cünü arttırmaktadır.
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5. SONUÇLAR

Bu tezde, son zamanlarda görüntü işleme alanında önemli bir konu olan spektral bö-

lütleme yöntemiyle hiperspektral veriler ve LiDAR verileri birleştirilip HSG’lerin denetle-

mesiz bölütlemesi sağlanmıştır. Spektral bölütlemede en önemli nokta benzeşim mat-

risinin probleme uygun seçilmesidir. Bu çalışmada, HSG’lerden elde edilen uzamsal

ve spektral bilgilerle LiDAR’dan elde edilen yükseklik bilgisi birleştirmek amacıyla 3

farklı benzeşim matrisi önerilmiştir. Önerilen bu benzeşim matrisleri farklı spektral yön-

temler ve bu yöntemlerin farklı çözümleri ile görüntü bölütleri incelenmiş ve spektral

ayrıştırma gücü yöntemiyle bölütleme doğrulukları karşılaştırılmıştır. Önerilen bu 3 yön-

temin kullandığı parametrelere farklı değerler atanarak bölütleme sonuçları incelenmiş

ve HSG’lerin ortalama BD’sini arttırmak amacıyla ilgili parametrelerin nasıl seçilmesi

gerektiği tartışılmıştır. Önerilen yöntemler hem hiperspektral hem de LiDAR verilerin-

den oluşan MUUFL Gulfport gerçek veri kümesine uygulanmış ve bölütleme sonuçları

karşılaştırılmıştır.

SMTNcut yönteminin özvektör sayısının bölütleme doğruluğu üzerinde kritik öneme sa-

hip olduğu gösterilmiştir. Özvektör sayısının uygun seçilmemesinin görüntüyü az veya

fazla bölütlere ayırdığı veri kümesi üzerinden gösterilmiştir. Ancak, bu sayının görüntü

hakkında bilgi sahibi olmadan uygun olarak belirlenmesinin zor olduğu anlaşılmıştır.

Diğer yandan, benzeşim matrisi oluştururken r parametresinin (kaç adet komşu pik-

sel arasındaki kenar ağırlığının hesaplanacağı) farklı değerleri için sonuçların ortalama

BD’si hesaplanmıştır. Sonuçlara göre r arttırıldıkça doğal olarak bölütleme doğruluğu-

nun da arttığı gözlemlenmiştir. Ancak, r ’nin arttırılması beraberinde işlem yükünü de

arttırdığından algoritma hızını düşürmektedir. İşlem yükü ve ortalama BD göz önüne

alınarak uygun bir değer atanması anlaşılmıştır ve bu tezdeki veriler için r = 10 olarak

en iyi performans verdiği gözükmektedir.

Spektral bölütleme sonucu elde edilen özvektörler görüntüdeki nesnelerin kenar bilgisi

içerdiği bilinmektedir. HSG’lere ek olarak LiDAR verilerin de bölütlemede kullanılması-

nın özellikle bir yüksekliğe sahip olan nesnelerde kenar bilgisini iyice belirginleştirdiği

sonuçlar üzerinden görülmüştür. SMTNcut yöntemindeki özdeğer sayısı belirlemedeki

zorluğu ortadan kaldırmak amacıyla SET ve PMITNcut yöntemlerde belli sayıda özvek-
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tör, sPb algoritmasıyla birleştirilerek öncelikle kenar bilgisi oluşturulmuş ve OWT-UCM

algoritmasıyla bölütler elde edilmiştir. Görüntünün kenar bilgisi oluşturulduktan sonra

UCM’nin farklı eşik değeri için farklı sayılarda bölüt sayısı elde etmek mümkün hale

gelmiştir. Ayrıca, SMTNcut yönteminde görüntüdeki tekdüze büyük alanlar yanlış bölüt-

lenirken, sPb+UCM yöntemi kullanıldığında bu sorunun ortada kalktığı gözükmüştür.

SET yöntemiyle spektral veriler ile uzamsal-yükseklik verileri α parametresinin farklı de-

ğerleriyle ağırlıklandırılmış ve bölütleme sonuçlarına etkisi incelenmiştir. Sonuçlardan

anlaşıldığı gibi α sıfıra yaklaştıkça bölütleme sonuçları spektral bilgilere göre şekillenir-

ken, α arttırıldığında ise uzamsal-yükseklik bilgilerine göre şekillendiği gözlemlenmiştir.

Veri kümesi üzerindeki denemeler sonucunda α 3-4 değerleri arasında en yüksek bölüt-

leme doğruluğu ulaştığına anlaşılmıştır. Bu parametrenin daha fazla artırılması çizge-

deki spektral bilgilerin ağırlığını uzamsal-yükseklik bilgilerine göre azalttığından, bunun

sonucundan bölütleme yönteminin spektral ayrıştırma gücünü de düşürdüğü gözlem-

lenmiştir. Bunun sebebi, bölütlemenin spektral bilgilerden ziyada uzamsal ve yükseklik

bilgiler ışığında bölütlenmesidir.

PMITNcut yönteminde ise benzeşim matrisi, bilgilerin birlikte bulunma olasılıklarına

göre hesaplandığından pikseller arasında daha güçlü bağlar oluşturduğu açıktır. Bu

yöntemin bölütleme sonuçlarına katkısını ve başarısı arttırmak amacıyla hiperspektral

ve LiDAR verileri bazı ön işlemlerden geçirilmiştir. Gerek bölütleme sonuçlarına gerekse

ortalama BD’lere bakıldığında, PMITNcut yönteminin üstün performans sergilediği an-

laşılmaktadır. Özellikle, görüntüdeki nesnelerin spektral olarak son derece başarılı bir

şekilde ayrıştırdığı ortalama BD sonuçlarında gözükmektedir.

Son olarak, LiDAR verilerinin bölütlemeye sağladığı katkıyı görmek amacıyla yüksek-

lik bilgisi kullanmayan SM [38] ve GB [26] yöntemleri ve önerilen PMITNcut yöntemi

yükseklik bilgisi kullanılmadan üzerinde çalışılan veri kümesine uygulanmış ve bölüt-

leme sonuçları oluşturulmuştur. Sonuçlar incelendiğinde, önerilen yöntemlerde LiDAR

verilerinin kullanılması görüntüdeki nesnelerin daha iyi yorumlanmasını sağladığı açık-

tır. LiDAR verileri yardımıyla, yakın spektral özelliklere sahip ancak yükseklikleri farklı

olan nesnelerin (ağaçlar ve çimenler) bölütleme başarısının arttırdığı gözlemlenmiştir.

Görüntüdeki binalar ile gölgelerinin de başarılı bir şekilde ayrıştırıldığı sonuçlardan an-
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laşılmaktadır. Önerilen üç yöntemde de LiDAR verileri kullanıldığında sonuçların orta-

lama BD’leri yükseldiği gözükmektedir. Yani, LiDAR kullanılması görüntüdeki nesnele-

rin spektral olarak ayrıştırmasını iyileştirilmiştir. Çünkü yükseklik bilgisi yardımıyla eksik,

fazla veya yanlış bölütler en aza indirgenmiştir.
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EKLER

EK 1: SÖZLÜK DİZİNİ

Belirsiz Çokterimli Tam

Benzerlik Çizgesi

Benzerlik Matrisi

Boğum

Bölütleme

Bölütleme Doğruluğu

Çekirdek Yoğunluk Kestirimi

Çok Bantlı

Doğruluk Haritası

Düzgelenmiş Kesit

Eşik Değeri

Görünür ve Yakın Kızılötesi

Karşılıklı bilgi

Kenar

k-ortalamalar

Laplacian Özharitaları

Lazerle Tespit ve Menzil Tayini

Morötesi

Nokta Tabanlı Karşılıklı Bilgi

Orta-Dalga Kızılötesi

Ön İşleme

Özdeğer

Özvektör

Özyinelemeli

Schroedinger Özharitaları

Sentetik Açıklık Radarı

Seyrek

Spektral Ayrıştırma Gücü

: Nondeterministic Polynomial Complete

: Similarity Graph

: Affinity Matrix

: Node

: Segmentation

: Segmentation Accuracy

: Kernal Density Estimation

: Multispectral

: Ground Truth

: Normalized Cut

: Threshold

: Visible and Near Infrared

: Mutual Information

: Edge

: k-means

: Laplacian Eigenmaps

: Light Detection and Ranging

: Ultraviolet

: Pointwise Mutual Information

: Mid-Wave Infrared

: Preprocessing

: Eigenvalue

: Eigenvector

: Recursive

: Schroedinger Eigenmaps

: Synthetic Aperture Radar

: Sparse

: Power of Spectral Discrimination
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Spektral Bölütleme

Spektral Sınır Olsılığı

Tek Bağlı

Temel Bileşen Analizi

Temsilci İmza

Tutarlı

Ultrametrik Kontur Haritası

Uzaktan Algılama

Uzamsal

Uzun-Dalga Kızılötesi

Yönlendirilmiş Havza Dönüşümü

Yönlü Türev

: Spectral Clustering

: Spectral Probability of Boundary

: Single Linkage

: Principle Component Analysis

: Representative Signature

: Coherent

: Ultrametric Contour Map

: Remote Sensing

: Spatial

: Long-Wave Infrared

: Oriented Watershed Transform

: Directional Derivative
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Özetçe� Hiperspektral görüntülerde (HSG) birbirine 
fiziksel olarak yakn ve spektral olarak benzer olan alanlarn 
kümelenmesi, snflandrmadan hedef tesbitine birçok alanda 
kullanlmaktadr. Bu bildiride, düzgelenmi  kesit algoritmas 
HSGler için geli tirilmi tir. Düzgelenmi  kesit 
algoritmasnda kullanlan benze im matrisi, hem uzamsal 
hem de spektral bilgileri kullanacak ekilde olu turulmu , 
daha sonra da spektral kümeleme yöntemleriyle 
çözümlenmi tir. Benze im matrisinde kullanlan 
parametreler de i tirilerek, bu parametrelerin bölütlemeye 
olan etkileri incelenmi tir. Sonuçlar, önerilen yöntem ile 
görüntülerdeki farkl spektral özelliklere sahip olan 
materyallerin ayrt edilebildi ini  ve aranan hedeflerin 
belirlenebildi ini göstermektedir.  

Anahtar Kelimeler � hiperspektral görüntü; spektral-
uzamsal bölütleme; çizge, düzgelenmi  kesit. 

Abstract� The segmentation of hyperspectral images 
based on spatial and spectral information is being used in 
many fields from target detection to classification. In this 
paper, the normalized cuts algoritm is extended for the 
segmentation of hyperspectral images. The affinity matrix of 
the normalized cuts algorithm is modified such that it uses 
both the spatial and spectral information. The effect of the 
parameters on the segmentation results is investigated, and it 
is shown that with proper parameter selection, the proposed 
method can segment the spectrally similar materials, and 
also extract the targets that we are after. 

Keywords � hyperspectral image; spectral-spatial 
segmentation; graph; normalized cuts. 

I. G R  

Farkl nesneler de i ik dalga boylarnda    farkl 
ekillerde yanstr. Her nesnenin    yanstma özelli i 

kendisine ait spektral imzasn olu turur. Hiperspektral 
kameralar, çok sayda dalga boyunda nesnelerin    ne 

kadar yansttklarn ölçerler [1]. Yüzlerce dalga boyuna 
bakld nda, hiperspektral görüntülerden her bir pikselde 
hangi materyal oldu u anla labilmektedir. HSG 
snflandrma ve bölütleme, uzaktan alglama ile 
görüntüleme alannda ara trlan önemli bir konu haline 
gelmi tir. Savunma sanayi, maden haritalama, tarm 
denetimi, çevre izleme gibi alanlarda uygulama 
bulmaktadr. Bu bildiride, uzamsal ve spektral bilgi 
kullanlarak HSGlerin bölütlenmesi gerçekle tirilmi tir. 
Görüntü bölütleme için düzgelenmi  kesit algoritmas 
kullanlm tr.  

Bildirinin ak  söyledir: II. bölümde çizge (graph) 
teorisi ve düzgelenmi  kesit algoritmas özetlenmi tir. III. 
bölümde düzgelenmi  kesit algoritmasnda kullanlan, 
hem uzamsal hem de spektral bilgi yardmyla elde edilen 
benze im matrisi anlatlm tr. IV. bölümde ise kullanlan 
hiperspektral veriler tantlm  ve sonuçlar verilmi tir.   

II. TEOR  

A. Çizge Teorisi 

Bir G = (V, E) çizgesi, V bo umlarnn E kenarlar ile 
birle tirilmesi sonucunda olu turulur. ekil 1�de A ve B 
snflarndan olu an çizgede, bo umlar ve bu bo umlar 
birbirine ba layan kenarlar gözükmektedir. Her bir 
bo umu birbirine ba layan kenarlara bir a rlk 
verildi inde, bu çizgeye a rlandrlm  çizge 
denilmektedir. ekilde gözüktü ü gibi i ve j adndaki iki 
bo umu ba layan kenar a rlklar w(i,j) ile ifade 
edilmektedir. Bu a rlklar bo umlarn birbirine olan 
benzerlikleri kullanlarak hesaplanmaktadr. Birbirine 
benzeyen bo umlarn kenar a rlklar di er a rlklardan 
daha fazla olur. Görüntülerde ise bu bo umlar pikselleri 
veya süper pikselleri ifade etmektedir. Pikseller arasndaki 
uzamsal benzerlik, renk benzerli i, parlaklk benzerli i ve 
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bu bildiride de bahsedilen spektral benzerlikler 
kullanlarak çizgedeki a rlklar hesaplanmaktadr. 
Buradaki temel amaç denklem (1)�de verilen ifadeyi 
minimize ederek çizgeyi iki farkl gruba ayrmaktr [2].  

 
                             (1) 

 
Denklem (1)�e göre,  i bo umlar A snfnda ve j 

bo umlar B snfnda  kalacak ekilde, pikseller bo umlar 
arasndaki a rlklarn en küçük oldu u kenarlardan 
ayrlrlar. Böylece birbirine benzeyen pikseller 
gruplandrlm  ve di erlerinden ayrlm  olur.   

 
ekil 1. Çizgeyi olu turan bo umlar, kenarlar ve kenar a rlklar 

Fakat, çizgedeki uç bo umlarn kesit (cut) de eri küçük 
oldu undan denklem (1)�in sonucunda uç bo umlar yanl  
snflandrlabilmektedir. Bunu önlemek amacyla 
düzgelenmi  kesit yöntemi geli tirilmi tir [3].  

B. Düzgelenmi  Kesit Algoritmas 

Yukardaki bölümde bahsedildi i gibi uç bo umlarn 
kesit de eri küçük olmasn önlemek amacyla (1)�deki 
denklemin düzgelenmesi gerekmektedir. Bu kesit de eri, 
A ve B�deki bo umlar ile çizgedeki tüm bo umlar 
birle tiren kenar a rlklar toplamn ifade eden denklem 
(3) ile düzgelenirse, denklem (2)�de verilen düzgelenmi  
kesit maliyeti elde edilmektedir [3].  
 

                          (2) 

ve  

                                 (3) 
 

burada V çizgedeki tüm bo umlar ifade etmektedir. 

Düzgelenmi  kesit yöntemi, pikselleri aralarndaki 
ba larn kuvvetine göre gruplarken, A ve B gibi gruplar 
arasndaki ayrm azaltp, gruplarn kendi içindeki ili kiyi 
arttrmay amaçlar [3]. Bunu gerçekle tirmek için 
düzgülenmi  kesit maliyetinin minimize edilmesi gerekir. 
Düzgelenmi  kesit maliyetini minimize eden çözüm, (4)�te 
yer alan denklemin özde er ve özvektörlerinin bulunmas 
ile elde edilir. 

                                                     (4) 
 

W matrisi, benze im matrisi olarak da adlandrlr ve 
her bir indisi i,j bo umlarn birle tiren w(i,j) ile ifade 
etti imiz kenarn a rl dr. Bu bildiride, temel amaç 
HSGlerin uzamsal ve spektral bilgileri kullanlarak bu 
benze im matrisinin olu turulmasdr. D kö egenleri 
benze im matrisinin satrlarnn veya sütunlarnn 
toplamyla olu turulmu  bir matristir ve denklem (5)�teki 
gibi hesaplanr. y ise bo umlarn boyutunda bir indikatör 
vektördür ve i bo umu A�da ise yi=1, de ilse yi= -1 
de erini alr.  matrisi de Laplas matrisi olarak 
adlandrlr.  

 
                                                    (5) 

Denklem (4)�ün özvektörleri kullanlarak çizge iki 
yöntemle bölütlenebilir. Birinci yöntemde, en küçük ikinci 
özde ere kar lk gelen özvektör kullanlarak çizge önce 
iki grubu ayrlr ve ayrlan gruplar yeni çizge olarak 
dü ünülüp, özyenilemeli (recursive) olarak bölütlemeye 
devam edilir. kinci yöntemde ise, çizge kaç bölüte 
ayrlmak isteniyorsa o kadar özvektör kullanlr. Bu 
bildiride, HSG bölütlenmesinde ikinci yöntem 
kullanlm tr ve a a daki basamaklar takip edilmi tir: 

 HSGlerden G=(V,E) çizgesi olu turulur, W 
benze im matrisi ve D matrisi hesaplanr, 

 Denklem (4)�ten en küçük özde erlere kar lk 
gelen bölüt says kadar özvektör hesaplanr, 

 E ik de eri belirlenir ve bu de er kullanlarak 
her bir özvektörün girdileri iki ksma ayrlr, 

 Hesaplanan özvektörler, görüntüyle ayn 
boyuta çevrilip birle tirildikten sonra kenar 
bulma algoritmasndan geçirerek görüntü 
bölütlere ayrlr. 

III. H PERSPEKTRAL GÖRÜNTÜLER Ç N 

BENZE M MATR S  HESAPLAMA 

Önceki bölümde bahsedilen düzgelenmi  kesit 
yönteminde önemli olan faktör benze im matrisinin 
probleme uygun olarak dizayn edilmesidir. Bu bildiride, 
uzamsal ve spektral bilgiler kullanlarak denklem (6)�da 
verilen form kullanlacaktr.  

 

       (6) 

Burada duzamsal, denklem (7)�de verilen ekilde 
hesaplanr. Bu denklemde K(i) ve K(j) görüntüdeki 
piksellerin konumunu gösteren vektörlerdir. Buna göre iki 
piksel birbirine çok uzaksa, aralarndaki kenar a rl na 
sfr de eri atanr. Birbirlerine yakn iseler, aralarndaki 
uzakl a ters orantl olarak kenarn a rl  azalacaktr.  

                              (7) 

dspektral ise iki spektra arasndaki Öklid uzakl n ifade   
eder ve (8)�deki gibi hesaplanr: 
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         (8) 

Burada F(i) ve F(j), i ile j piksellere ait farkl dalga 
boylarndaki spektral bilgiyi içeren vektörlerdir. 

Bölüm IV�te  algoritmann performans uzamsal, spaktral 
ve r de i kenleri için farkl de erler kullanlarak 
de erlendirilmektedir. 

IV. KULLANILAN VER LER VE SONUÇLAR 

A. Hiperspektal Veriler 

Bu çal mada MUUFL Gulfport veri koleksiyonu 
kullanlm tr [4]. Veriler 3500 feet ve 6700 feet�ten 
uçularak Southern Mississippi kampüsü üzerinden 
toplanm tr. Alçaktan uçularak toplanan verilerde bir 
piksel 0.6m x 1.0m�lik alana; yüksekten uçularak toplanan 
verilerde ise bir piksel 1.0m x 1.0m�lik bir alana kar lk 
gelmektedir. Kampüse farkl renklere ve farkl boyutlara 
sahip toplamda 57 tane hedef yerle tirilmi tir. Yerle kenin 
uçakla çekilmi  KYM (Krmz-Ye il-Mavi) foto raf 

ekil 2�de verilmi tir. Toplanlan hiperspektral 
görüntülerin (HSG) özellikleri Tablo 1�de verilmi tir. 
 

 
ekil 2. Mississippi Üniversitesi Güney Yerle kesi 

Parametre De eri 

Dalga boyu 375-1050 nm 

 Spektral bant says 72 

Bant geni li i 10 nm 

Tablo 1. CASI-1500 Hiperspektral Görüntüleyici Parametreleri. 

B. Benzetim Sonuçlar 

      Benzetim için ekil 2�de verilen görüntüden seçilen 
bir alann hiperspektral verileri kullanlarak benze im 
matrisi olu turulmu  ve bu benze im matrisine ba l 
olarak (4)�te verilen denklemin özvektörleri bulunarak 
görüntünün bölütlenmesi yaplm tr. Kullanlan 
hiperspektral verinin 3 dalga boyu (725nm-555nm-
475nm) birle tirilerek elde edilen RGB görüntüsü ekil 
3(a)�da ve tek dalga boyu (975nm ve 475nm) kullanlarak 
olu turulan griölçek görüntüsü ekil 3(b)�de ve ekil 
3(c)�de gözükmektedir. 
 

 
(a) (b) (c) 

ekil 3. (a) Hiperspektral verilerin farkl 3 dalga boyundaki görüntülerin 
birle tirilmesiyle olu turulan RGB görüntüsü, (b)-(c) tek dalga boyuyla 

elde edilen griölçek görüntüsü 

     Benze im matrisini olu turmak için görüntülerde yer 
alan her bir piksel bo um olarak seçilmi  ve denklem 
(6)�da oldu u gibi hesaplam tr. Hesaplama yaplrken 

uzamsal=10, spektral=0.2 ve r=5 olarak seçilmi tir. Bu 
seçime göre elde edilen benze im matrisi ekil 4�te 
verilmi tir. ekilde de gözüktü ü gibi benze im matrisi 
seyrek (sparse) bir matristir. Yani kö egen ve kö egen 
çevresindeki bantta yer alan girdiler d nda kalan tüm 
de erler sfrdr. Ayn zamanda benze im matrisi simetrik 
bir matristir. Kullanlan görüntü 76x76 boyutlarnda 
oldu undan, yani çizge toplamda 5776 bo umdan 
olu maktadr, olu turulan benze im matrisi 5776x5776 
boyutlarndadr. 

 
ekil 4. Uzamsal ve spektral bilgiler kullanlarak olu turulan benze im 

matrisi 

       Olu turulan benze im matrisini kullanarak denklem 
(4)�ün özvektörleri hesaplanm  ve elde edilen 
özvektörlerin dört tanesinin görüntünün boyutlarna 
dönü türülmü  halleri ekil 5�te verilmi tir. ekilde 
gözüktü ü gibi her bir özvektör görüntünün belirli 
alanlarn di er alanlardan ayrmaktadr. Ancak, baz 
bölgeler arasndaki geçi ler daha yumu ak oldu undan 
bölütleme zorla maktadr. Geçi  snrlarn 
keskinle tirmek için her özvektör belirlenen e ik de ere 
göre ayrk hale getirilir. 
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ekil 5. Görüntü boyutlarna dönü türülmü  ilk 4 özvektör 

      Olu turulan bu 4 özvektör hesaplanan e ik de eri ayrk 
bölgelere ayrlp birle tirildikten sonra görüntü bölütleri 
bulunmaktadr. r=5 ve r=10 de erleri için, sadece bu 4 
özvektör kullanlarak görüntünün bölütlenmi  hali ekil 
6�da verilmi tir. 

 
(a) r=5, uzamsal=10, spektral=0.2     (b) r=10, uzamsal=10, spektral=0.2 

ekil 6. Dört özvektör kullanlarak görüntünün bölütlenmesi 

      ekil 6(a) ile ekil 6(b) kar la trld nda, r de erinin 
arttrlmasyla bölütlemenin iyile ti i gözükmektedir. 
Ancak, r�nin artmas daha çok pikselin arasndaki kenar 
a rlklarnn hesaplanmasn gerektirdi inden, benze im 
matrisi olu turma i lem yükü de buna ba l olarak 
artmaktadr. Ayrca, r�nin artrlmas ile ekil 6�da 
gözüktü ü gibi birbirine yakn olan hedeflerin ayrlmama 
problemi olu maktadr. Bunu önlemek için r�nin 
seçiminde hedeflerin boyutlarnn dikkate alnmas 
ve/veya uzamsal, spektral parametrelerinin uygun seçilmesi 
gerekmektedir. uzamsal ve spektral parametrelerinin 
arttrlmas pikseller arasndaki benzerlik geçi lerini 
yumu att ndan, bölütleme sonucunu iyile tirmektedir. 
Fakat; çok arttrlmalar, farkl uzamsal ve spektral 
özelliklere sahip piksellerin benzerli ini de arttraca ndan 
bölütlemeyi negatif yönden etkilemektedir. Tablo 2�de 
farkl r, uzamsal ve spektral parametreleri için Matlab�da 
olu turulan benze im matrisi süreleri verilmi tir ve ekil 
8�de bu parametreler kullanlarak elde edilen bölütleme 
gözükmektedir. Parametrelerin uygun seçilmesiyle, ekil 
7(c)'deki bölütlemenin ekil 7(a)-(b)�ye kyasla daha iyi 
bir sonuç verdi i gözlemlenmektedir. 

 

 

Deneme r uzamsal spektral Özvektör 
says 

BM olu um 
süresi(s) 

(a) 3 5 0.10 10 4,064 

(b) 5 10 0,10 10 12,845 

(c) 10 10 0,15 10 54,397 

Tablo 2. Farkl parametre de erleri için benze im matrisi olu turma 
süresi 

 

ekil 7. Tablo 1�de verilen de erlere göre bölütleme sonuçlar 

V. SONUÇ 

      ekil 3(b) ve 3(c)'de, tek bant kullanlarak olu turulan 
görüntülerde, görüntünün alnd  banda ba l olarak, baz 
hedefler gözükmezken; bazlar ayn özelliklere sahipmi  
gibi gözükmektedir. Bundan dolay, sadece tek bir bant 
kullanarak görüntüler bölütlenmeye çal lsayd kötü 
sonuçlar elde edilecekti; çünkü piksellerin sadece bir 
banttaki parlakl na baklarak bölütleme yaplacakt. Bu 
bildiride, HSGlerdeki tüm bantlar kullanlarak, farkl 
dalga boylarndaki görüntülerin spektral özellikleri göz 
önüne alnd  için daha iyi sonuçlar elde edilmi tir.  
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