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Bu tez galismasinda, hiperspekiral gorintuler ile LiDAR (Light Detection and Ranging)
verileri spektral bélitleme yéntemleriyle kaynastirilarak hiperspektral gérintilerin de-
netlemesiz bollutlemesi yapilmigtir. Hiperspektral gérintiler normal KYM gérintler-
den farkli olarak ylUzlerce bantta goérintl olustururlar. Bu yiksek boyutlarindan 6tari
hiperspektral verileri islemek blyUk problem haline gelmektedir. Bu sebeple, gbrintl
islemede boyut indirgeme ve bélitleme édnemli bir yere sahiptir. Bu ¢alismada, hipers-
pektral gérintilerin bélatlenmesi igin herhangi bir én bilgiye ihtiya¢ duymayan spektral

bolutleme yéntemleri kullaniimistir.

Hiperspektral goruntller birgok spektral banda sahip olmasinin yani sira piksel basina
yUksek uzamsal ¢ézinarlige de sahiptir. Uzamsal ve spektral bilgiler her ne kadar bé-
l0tlemeye katki saglasalar da ayni sahnede yer alan benzer spektral 6zelliklere sa-
hip nesnelerin sadece bu bilgiler kullanilarak ayirt edilmesi zorlagmaktadir. Bu ben-
zer spektral 6zelliklere sahip nesneler farkh ytksekliklere sahiplerse, ytkseklik bilgileri
kullanilarak ayirt edilmeleri mimkandir. Ancak, hiperspektral gérintiler herhangi bir
yUkseklik bilgisi icermemektedir. Bu sebeple, hiperspektral goérintuler ile yikseklik bil-
gisi iceren baska kaynaklarin birlegtiriimesi, verilen bir sahnedeki nesneler daha detayl
yorumlanabilir. Bu tez kapsaminda, LiDAR verilerinden elde edilen yUkseklik bilgisi ile
hiperspektral gortntilerden elde edilen uzamsal-spekiral bilgiler birlestirilerek hipers-

pektral gérintllerin bélitlenmesi saglanmistir.



Spektral bélutleme, gérinti hakkinda herhangi bir 6n bilgiye ihtiyac duymamasi, stan-
dart dogrusal cebir yéntemleriyle kolayca ¢ézilmesi ve geleneksel yontemlerden daha
iyi sonuglar vermesinden dolayi son yillarda popdtler bir yéntem haline gelmigtir. Hi-
perspektral géruntiler bélitlemesinde spektral bolttleme yéntemleri olan Dizgelenmis
Kesit (Normalized Cut) ve Schroedinger Ozharitalar (Schroedinger Eigenmaps) kul-
laniimistir. Bu yéntemlerin kullandigi benzesim matrisi LiDAR ve hiperspektral veriler
kullanilarak olusturulmustur. Ozellikle, Nokta Tabanli Karsilikli Bilgi (Pointwise Mutual
Information-PMI) yéntemiyle olusturulan benzesim matrisi kullanilarak énemli bolt-
leme sonuglari elde edilmigtir. Ayrica, bu spektral bolutleme yéntemlerinin farkli ¢o-
ztmleri ile olusturulan bélitleme sonugclar incelenmig ve karsilastiriimigtir. Uzamsal ve
spektral bilgilerin yani sira LiDAR’dan elde edilen ylkseklik bilgisinin bélitlemeye sagla-
digi katki incelenmis ve dnerilen birlestirme yéntemlerin sonuglari ve mevcut ydtemlerle

elde edilen bélutleme sonuglari kargilastiriimistir.

Anahtar Kelimeler: Hiperspekiral Goruntiler, LiDAR, Denetlemesiz Boélatleme, Spekt-

ral Bolutleme
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LIDAR AIDED SPECTRAL SEGMENTATION ON HYPERSPECTRAL
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September 2017, 101 pages

In this thesis, hyperspectral images and LiDAR (Light Detection and Ranging) data has
been fused by using spectral clustering methods in order to obtain unsupervised hy-
perspectral image segmentation. Hyperspectral Images, unlike ordinary RGB images,
contain hundreds of spectral bands. Because of these high dimensions, it becomes a
huge problem to process hyperspectral data. For this reason, dimension reduction and
segmentation in image processing have an important position. In this work, spectral
clustering methods that do not require a prior information are used for segmentation of
hyperspectral images.

Hyperspectral images have many spectral bands as well as high spatial resolution per
pixel. Although spatial and spectral information contribute to segmentation, it is difficult
to distinguish objects with similar spectral characteristics in the same scene using only
this information. If these objects which comprise similar spectral information have dif-
ferent altitudes, it is possible to distinguish them using elevation information. However,
hyperspectral images do not contain any elevation information. Therefore, hyperspectral
images and other sources of elevation information can be combined to provide a more
detailed interpretation of the objects in a given scene. In this thesis, elevation infor-
mation obtained from LiDAR data and spatial-spectral information are fused to provide

hyperspectral image segmentation.



Spectral segmentation has become a popular method in recent years because it does
not need any priori information about the image, it is easily solved by standard linear
algebra methods and gives better results than traditional methods. Normalized Cut and
Schroedinger Eigenmaps, which are spectral clustering methods, have been used in
order to segment hyperspectral images. The affinity matrix used by these methods has
been constructed using LIDAR and hyperspectral data. In particular, significant seg-
mentation results have been obtained by using the affinity matrix generated by the
Pointwise Mutual Information (PMI) method. In addition, the segmentation results ge-
nerated by different solutions of these spectral segmentation methods have been exa-
mined and compared. Besides the spatial and spectral information, the contribution of
the elevation information obtained from LiDAR to the segmentation is examined and the
segmentation results of the proposed fused methods and the segmentation results of
the available methods are compared.

Keywords: Hyperspectral Imagery, LiDAR, Unsupervised Segmentation, Spectral Clus-
tering
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1. GIRIS

Uzaktan algilama (UA) nesnelerle fiziksel bir temas olmaksizin, herhangi bir uzakliktan
nesneler hakkinda bilgi toplama ve yorumlama bilimi olarak tanimlanabilir [1]. UA’nIn
kullanilmasindaki en temel neden, bize diinyaya bakmanin farkh bir yolunu veriyor ol-
masidir. Ozellikle, ulasilmasi zor olan ve duyu organlarimizla algilayamadigimiz nesne-
lerin belirlenmesi ve 6zelliklerinin ¢ikartihp yorumlanmasi bakimindan UA blyik énem
tasimaktadir. UA, sensér olarak bilinen mekanik aygitlar yardimiyla yapilir. Bu sensor-
ler; ucaklar, uydular veya baska platformlar kullanilarak algilanmasi istenilen nesnenin
uzagina yerlesgtirilir. Cogu algilama cihazi, bir nesnenin ylizeyinden yansiyan veya ya-
yilan elektromanyetik enerjinin iletimini él¢cerek nesne hakkindaki bilgileri kaydeder.

Kullanilan enerjiye gére UA sistemleri, pasif UA ve aktif UA diye iki gruba ayrilir. Pasif
sistemler uzaktan algilamada herhangi bir enerji Gretmezler ve glines enerijisini kullanir-
lar. Aktif sistemler ise kendi enerjisini Uretirler ve yansittiklari enerjinin geriye dénisind
toplayarak bilgi olugtururlar. Pasif UA sistemlerinin Uretimi kolay ve maliyeti distk ol-
dugundan aktif UA sistemlerine gore daha ¢ok tercih edilmektedir. Ancak, aydinlatma
kaynaginin kontroliine sahip olan aktif UA sistemleri, pasif UA sistemlerine gére bir-
cok avantaji vardir [2]. Aktif UA, gece ve glindiz sartlarindan bagimsiz olarak élgim
alabilirler. Pasif UA teknikleri ile hedeften ¢ikarilabilecek bilgilerin ¢cogu, algilanan sin-
yalin genligi ile ilgilidir; aktif sistemlerde ise aydinlatma sinyalinin genlik, frekans, faz ve
kutuplagsma parametrelerinin tam olarak bilinmesi hedefin kapsamli bir sekilde incelen-
mesine olanak saglamaktadir. Diger bir avantaj, aktif sistemlerde frekansta veya dalga
boyundaki algilanan degismelerin élgtlmesi, hareket eden hedefin géreceli hizini belir-
lemek icin Doppler tekniklerine olanak tanimasidir. Son yillarda, sensér teknolojilerinin
gelismesiyle birlikte UA uygulamalari da hizla artmaktadir. Ornegin, bu uygulamalardan

bazilari:

e Dogal kaynak yénetimi ve isletimi [3],
e Arazi kullanim planlamasi [4],

e Savunma ve istihbarat amagcli uygulamalar [5],



Jeolojik, jeomorfolojik ve tektonik amaclh uygulamalar [6],

Hidrolojik amagh uygulamalar [7],

Tarimsal amagl uygulamalar [8],

Gevre degisim analizi [9],

Kentsel planlama [10],

Hiperspektral gbrintileme, ylzlerce dalga boyunda gérintli olusturan yeni nesil pasif
UA teknolojisidir. Hiperspektral gériintileme sensérleri, insan gézinin algiladigr gé-
rindr 1sikta elde edilen klasik goértntulerinden farkli olarak ¢ok sayidaki bitisik bantta
goruntd olusturur. Bu gérintller nesnelerin farkli dalga boylarinda 1s1g1 ne kadar yan-
sittiklarinin élgimidur. Her nesnenin 1s1g1 yansitma 6zelligi kendisine ait spektral im-
zasini olusturur [11]. Sekil 1.1’de hiperspektral veri kiipl ve farkl nesneler igceren beg
pikselin spektral imzalari gésterilmektedir. Ylzlerce dalga boyuna bakildiginda, hipers-
pektral gérinttlerden (HSG) her bir pikselde hangi materyal oldugu anlasilabilmektedir.
HSG’ler bélatleme, siniflandirma, hedef tespiti islemlerine olanak sagladigindan, askeri
ve sivil uygulamalarda sik¢a kullaniimaktadir [12].

Hiperspektral gérintileme, yukarida bahsedildigi gibi, pasif UA yéntemine dayandigin-
dan glinesten gelen iginlarin ylzeydeki nesnelerden degisik dalga boylarindaki farkh
yansima 6zelliklerinden faydalanir. Spektral imzayi olusturan deger spektral yansima-
dir. Bu yansima, her dalga boyu igin yansiyan enerjinin gelen enerjiye oranindan bu-
lunmaktadir. Hiperspektral alicilarin en belirgin 6zelligi énceki teknoloji olan ¢ok bantli
(multispektral) gérintilerden farkl olarak birbirine bitigsik cok daha fazla banda sahip
olmalanidir. Hiperspektral sensérleri, 0.01 um gibi dar bir bant genisliginde ve elektro-
manyetik spektrumun 0.4 umile 14 um dalga boyunu iceren kisimda calisirlar. Hipers-
pektral gbrintl sensérleri, uygulama alanlarina gére dért dalga boyu araliginda gérint
toplayacak bicimde tasarlanmistir. Sekil 1.2°de verilen elektromanyetik spektrumda da

gorulebilecegi gibi, bu bdlgeler asagidaki gibi siralanabilir:

e GOrunar ve yakin kizilétesi bant (VNIR, 0.4-1.1 um),
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Sekil 1.1. Hiperspektral veri kipl

¢ Kisa dalga kizilétesi bant (SWIR, 1.1-3 um),
e Orta dalga kizilétesi bant (MWIR, 3-5 um),

e Uzun dalga kizilétesi bant (LWIR, 5-14 um),
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Sekil 1.2. LiDAR ve hiperspektral icin elektromanyetik spektrum bdélgeleri

LiDAR (Light Detection and Ranging) bir nesneyi algilamak igin optik araliktaki elekt-
romanyetik enerjiyi kullanan, hedef ile sensér arasindaki mesafeyi belirlemek ve 1sima
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ile etkilesime dayali nesnenin fiziksel 6zelliklerini belirleyen aktif bir UA teknigidir. Li-
DAR sistemleri enerji kaynagi olarak genellikle lazer kullanirlar. Hedef nesneye lazer
darbeleri gonderilir ve yansiyan enerjiyi toplayarak hedef hakkinda bilgi ¢ikarilr. Lazer
kullanilmasinin sebebi, normal i1siktan farkh olarak kaynaktan uzaklastikca dagiima-
masindan ve tutarl (coherent) olmasindan kaynaklanmaktadir. Sekil 1.2'de gdésterildigi
gibi, LIDAR elektromanyetik spektrumun 0.3-2 ym dalga boyu bdlgesi olan mordotesi
(UV), géranadr-yakin kizilétesi (VNIR) ve kisa dalga kizilétesi (SWIR) bantlarinda ¢als-
maktadir. Uygulama alanina gére LiDAR Ug¢ gruba ayrilabilir [13]. Bunlar:

e Menzil Bulma LiDAR’i: Bir nesnenin uzakhgi belirlemek igin kullanilir. Kisa dalga
kizilétesi bandinda calistiklarindan, kiicik hedeflerin menzillerinin hesaplanma-
sinda etkili bir ydontemdir. Gelismis menzil bulma LiDAR’1 hedefin ylzeyini taraya-
rak, mesafenin yani sira hedefin seklini ve boyutunu da belirleyebilir.

¢ Diferansiyel Emilim LiDAR’1: Atmosferde bulunan gazlarin ve aerosollerin (du-

man, sis vb.) sicakligini, yogunlugunu ve basincini élgcmek icin kullanilir.

e Doppler LiDAR’1: Tutarli (coherent) 6zelligine sahip olan lazerleri kaynak olarak
kullanan LiDAR sistemleri, Doppler kaymasi yardimiyla hedef nesnenin hizini be-

lirlemede kullanilir.

1.1 Hiperspektral Goriintii Bolutlemede Mevcut Yontemler

HSG’ler iki boyutu uzamsal ve bir boyutu da spektral olmak lzere, Sekil 1.1°de verildigi
gibi, ¢ boyutlu bir veri kiipt olusturmaktadir. Son yillarda hiperspektral sensoérler ve
hiperspektral gérintileme teknolojilerinde kaydedilen ilerlemelerle yliksek boyutluluk,
veri islemede problem haline gelmigstir. Bu nedenle HSG analizinde en hayati gorevler-
den biri, gértnttdeki ayrintilar kaybetmeden gortntlyl etkin bir sekilde bolitlemektir.
HSG bélutleme slreci, uzaktan algilanan bu gérintilerin yorumlamasi, analiz edilmesi

ve sonraki uygulamalarda kullaniimasi agisindan énemli bir adimi olusturmaktadir [14].

Genel anlamda gorinti béliutleme, benzer ézelliklere sahip pikselleri anlamh bélgelere
ayirma iglemidir. Son yillarda, HSG béllatleme igin bircok yéntem énerilmistir. Bu yon-
temler temelde iki gruba ayrilabilir: denetlemeli (supervised) bélitleme ve denetlemesiz
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(unsupervised) boélutleme. Hiperspektral gérintilerin denetlemeli bélutlemesine yéne-
lik birgok yontem énerilmistir. Kullanilan bu HSG siniflandirma yaklagimlarinin bazilari
sadece spektral bilgilere dayanmaktadir [15, 16]. Bu yontemlerle spektral 6zellikler, ilk
6nce temel bilegen analizi (principal component analysis-PCA) ve bagimsiz bilesen
analizi (independent component analysis-ICA) gibi bir 6znitelik gikarma yéntemi kulla-
nilarak g¢ikarilmaktadir. Ayiklanan bu 6zellikler daha sonra bir siniflandiriciyr egitmek
amaciyla kullaniimaktadir. Bu yaklasimlar yalnizca spektral bilgileri dikkate almakta ve
goérunttdeki farkli pikseller arasindaki ilintiyi g6z ardi etmektedir. Bu yéntemler hem
uzamsal hem de spektral bilgiler kullanan diger yéntemlere kiyasla diigik performans

gOstermektedirler.

Gercgek goruntilerde komsu pikseller aslinda birbiriyle iligkilidir. Bu nedenle, her bir pik-
selin hem uzamsal hem de spektral bilgisi kullanilarak siniflandirma sonuclari iyiles-
tirilebilir. Son zamanlarda, Markov Rastgele Alan (Markov Random Field) ile uzamsal
ve spektral bilgiler kullanilarak HSG’lerin bélatlenmesi ve siniflandiriimasi gerceklesti-
rilmigtir [17]. Diger bir ydntem ise yama tabanl 6znitelik gikarma yéntemidir [18]. Yama
tabanli yéntem siniflandirici egitimeden énce kare pencereler kullanarak komsu pik-
selleri gruplar ve sonra bir alt-uzay 6grenme teknigi kullanarak her yerel pencereye
dayanan Ozellikleri ¢cikararak siniflandirma yapmaktadir. Ancak, HSG’lerde denetlemeli
bélatleme ve siniflandirma yoéntemleri malzemelerin spektral imzalari ve/veya bélit-
leme haritalari gibi 6nsel bilgilere ihtiya¢c duyarlar. Malzemelerin spektral imzalarinin
elde edilmesi zor ve pahali bir igslemdir ve gercek UA problemlerinde bdlitleme harita-
lar bilinmemektedir. Bu sebeplerden 6tiird, denetlemeli bélttlemenin uygulama alanlari
sinirhdir [19].

Denetlemeli bélitlemeye kiyasla, denetlemesiz hiperspektral gérintl bélitlemesi nis-
peten daha az ilgi gérmuastir. Bununla birlikte, denetlemesiz bélitleme herhangi bir
6nsel bilgiye gereksinim duymadigindan birgok uygulama alaninda kullanilabilir. Bu se-
beple, halen daha da geligtiriimesi gereken édnemli bir alandir. Denetimsiz bélitleme,
hiperspektral gértntilerin icerigini herhangi bir n bilgi olmadan kesfetmeye ve anla-
maya olanak saglar. Hiperspektral gérintilerin bélitlenmesini saglamak icin spektral
ve uzamsal bilgileri dikkate alarak denetlemesiz teknikler gelistiriimesine ilgi artmakta-



dir. Yakin tarihte, Watershed déntsim tabanli bélitleme hiperspektral gbérintilerin de-
netlemesiz bélitlemesi igin dnerilmig bir tekniktir [20]. Watershed dénisimi genelde,
tek banttan olusan géruntilerin gradyan fonksiyonuna uygulanir. Gradyan, bélgeler ara-
sindaki gecisleri tanimlar; homojen bélgelerdeki nesneler ve minimumlar arasindaki si-
nirlarda yiiksek degerlere sahiptir. Diger bir deyigle, gradyan gérintiideki nesnelerin
kenar gizgilerine karsilik gelmektedir. Bu gradyan fonksiyonuna Watershed déntsimi
uygulandiginda gérintlyt anlamli bélgelere ayirmak mimkin hale gelmektedir. Ancak,
HSG’ler birden ¢ok bant igerdiginde gradyan fonksiyonun hesaplanmasi i¢in uygun hale
getirilmelidir. HSG’ler, temel bilesen analizi ve bagimsiz bilesen analizi gibi yéntemler
ile tek banda indirdikten sonra olusturulan gradyan fonksiyonu kullanarak veya [20]de
anlatilan vektérel gradyan yéntemleri kullanarak Watershed dénidsimuine uygun hale
getiriimektedir. Bu yontemle elde edilen bélitleme haritasi daha sonra siniflandirma
performanslarini iyilestirmek icin kullanilir. Bununla birlikte, eger temel hedef denetle-
mesiz bélitleme ise, Watershed tabanl teknigin kullaniimasi genelde goérintideki nes-
neleri gereginden fazla bélite ayirmaktadir.

Dogru bélatleme sonuglarinin elde edilmesine yénelik alternatif bir diger yol, isaretle-
yici (marker) kontrolli béliitteme uygulamaktir. isaretleyici kontrollii ydntemlerde temel
fikir, her uzamsal nesne icin, bu nesneye ait bir veya birka¢ pikseli, yani bir isaret-
leyici se¢mektir. Ardindan, secilen isaretleyicilerden bélgeler buydtilmekte, bdylelikle
bdlutleme haritasi elde edilmektedir. Bblge isaretleyicileri, zaman alici bir ydéntem olan
elle veya otomatik olarak secilebilmektedir. Otomatik yaklagimda, verilere siniflandirma
yontemleri uygulanmakta ve daha sonra en guvenilir sekilde siniflandiriimig pikseller
ilgili bolgelerin isaretleyicileri olarak segilmektedir. Literatlrde, bu bdlge isaretleyiciler-
den Minimum Yayiimis Orman (Minimum Spanning Forest-MSF) olusturulmasiyla bo-
lGtleme yapan bir ydntem dnerilmistir [21]. Bolge isaretleyicileri tabanl diger bir ydntem
ise Hiyerarsik Bolitleme (Hierarchical Segmentation - HSEG) ydntemidir [22]. Bu y6n-
temde isaretleyicilerin kullaniimasi, tek bir bélitiin otomatik olarak secilmesini saglar.
Bu ydntemlerin dezavantaji, gtvenilir isaretleyicilerin belirlenmesi icin bélitleme dogru-

luk haritalar gibi elde edilmesi zor ve pahali bilgiler gerektirmesidir.

Diger bir ydbntem, dokusal bélgelerin 6zniteliklerini yakalamayi hedefleyen Markov Rast-



gele Alan (Markov Random Field - MRF) modelidir [23]. Nispeten daha eski olan bu
ybntem, dogrudan piksel Uzerinde calismak yerine, fazla bdlitlenmis goérinti icin iki
asamall bir algoritma kullanmaktadir. ilk asamada, fazla bélitlenmis bélgeler icin bdlge
yakinlk grafigi gizilmektedir. MRF modelinin enerji fonksiyonu, bdlge i¢i homojenlik ve
bélgeler arasi benzerlik temelinde tanimlanmaktadir. ikinci asamada, Fischer dagili-
mina dayali bir egik ile kargilastirildiginda bu enerji fonksiyonun degerine dayal ola-
rak bolge birlestirme gergeklestiriimektedir. Yine yakin tarihte, agirliklandiriimig kiime-
leme yoluyla baslatilan ve spekiral-uzamsal bilgileri kullanarak Uyarlanabilir Sinir Ayari
( Adaptive Boundary Adjustment - ABA) tabanh denetlemesiz HSG bdélitleme ydntemi
6nerilmigtir [24]. Bu model, hiperspektral verilerinin iki temel 6zelligini kullanmaktadir:
spektral ilinti ve uzamsal bant tercihi. Bant tercihi, her bir bantta bulunan ayirt edici bilgi
ile tanimlanmakta, spektral ilintinin korunmasi ve gercek yapinin uzamsal boyutlarla es-
lestirilmesi icin uyarlanabilir bir mekanizma énerilmektedir. Bolutleme iglemi, gérintiy
farkli bant gruplarina bdlerek her banttaki bilgi glctyle uyarlanabilir sekilde ayarlan-
maktadir. Yakin tarihte énerilen diger bir ydéntem ise, hiperspektral veri gibi cok ylksek
boyutlu verileri islemek icin ikili Blme Agaci (Binary Partition Tree- BPT) tabanl yon-
temdir [25]. BPT, bir gériintinin agag¢ yapisinda hiyerarsik bdlge tabanl gésterimidir.
Cogunlukla, agac yapisi budanma olarak adlandirilan islemden gecirilerek gérintilerin
bélltlere ayrniimasi saglanmaktadir. Bu yéntem, kullanicilarin farkl bélutleme dlgekle-
rinde gorintlyU incelemelerine olanak saglamaktadir. Ancak, bu yéntem ABA tabanli
ybnteme gdre daha disik performans gdstermektedir.

Goruntlh bélatlemesi konusunda gizge tabanh bélitleme algoritmalari, yiksek perfor-
mansi nedeniyle oldukga popdler ve olgun hale gelmigtir. HSG’lerin bélitlemesinde de
yakin tarihte gizge tabanli algoritmaya dayanan bir spektral yéntem énerilmistir [26]. Bu
yéntemle cizgenin kenar agirliklari, pikseller arasindaki uzamsal ve spektral mesafele-
rin agirhkl birlegimi ile olugturulmaktadir. Ardindan gérintQ, yinelemeli olarak bélutlere
ayrilmaktadir. Matematiksel olarak basit ¢6zimU( olmasina ragmen, yinelemeli ydntemin
sonlandirma kistasini belirlemek zordur. Bu tez kapsaminda, gelistirdigimiz algoritmalar
da cizge tabanl bélatleme alanina girmektedir.

Bu yeni yontemlere kiyasla giinimulze g6re daha eski olan ¢alismalar da mevcuttur.



Ornegin, piksek benzerliklerini kullanarak bdliitleme yapan morfolojik bir yéntem éne-
rilmigtir [27]. Hiperspektral géruntlleri dogru bir sekilde bélutlemek igin, karsihkli bilgi
[28] ve faz korelasyonu [29] gibi teknikler kullaniimistir. HSG’lerde istatiksel denetle-
mesiz bolitleme ydntemi olarak Gauss Karisim Modelleri (Gaussian Mixture Models -
GMM) kullaniimistir [30].

1.2 Tezin Amaci

Mevcut HSG bélatleme ve siniflandirma algoritmalarin gogu ya spektral uzayda ya da
uzamsal uzayda galismaktadir. Teknolojini gelismesiyle HSG’lerin uzamsal ¢6zUnUrlUk-
leri artmigtir. Bununla birlikte, bdlitleme ve siniflandirma sonuclarini daha da gelis-
tirmek icin HSG’lerin uzamsal ve spektral bilesenleri birlikte kullaniimaya baslanmistir
[26, 31, 32]. HSG'ler, cok sayida spektral bant icerdiklerinden dolayi, farkli spektral
Ozellikler tasiyan nesnelerin ayirt edilmesine olanak saglamaktadirlar. Ancak, uzamsal
ve spektral bilgiler her ne kadar bélitlemeye katki saglasa da ayni sahnede yer alan
benzer spekiral 0zelliklere sahip nesnelerin sadece bu bilgiler kullanilarak ayirt edil-
mesi zorlagmaktadir. Bundan dolayi; bélitleme, siniflandirma ve hedef tespiti uygula-
malarinda performansi iyilestirmek amaciyla HSG’lerden elde edilen uzamsal-spektral
bilgiler ile tamamlayici nitelikte olan farkli veri kaynaklarina bagvurmak gerekebilir. Bu
amagla, literattrde farkli kaynaklardan toplanan verilerin kaynastiriimasi tzerine galis-
malar mevcuttur [33, 34, 35]. Eger, ayni sahnede yer alan benzer spektral 6zelliklere
sahip nesneler farkli yiksekliklere sahiplerse, yiukseklik bilgileri kullanilarak ayirt edile-
bilir. Ancak, hiperspektral géruntiler herhangi bir yikseklik bilgisi icermemektedir. Bu
sebeple, hiperspektral gorintuler ile ylkseklik bilgisi iceren bagka kaynaklarin birlegti-
rilmesi verilen bir sahnedeki nesnelerin daha detayli yorumlanmasi gerceklestirilebilir.

Bu tez gcalismasinda, ylkseklik bilgisi kaynagi olarak yeni bir UA teknoloji olan LiDAR
kullaniimigtir. LIDAR’dan elde edilen yUkseklik bilgisi, hiperspektral gérintileri tamam-
layici niteliktedir. Ornegin, béliitlemede sorun teskil eden benzer spektral malzemelerin
yUkseklik haritalari kullanarak ayirmak mimkindur. Bu nedenle, HSG bélUtlenmesinde
LiDAR’dan tiretilmis yUkseklik bilgisinin kullaniimasi g6z éniine alinmalidir. HSG’lerin
denetlemesiz bolitlenmesi icin hiperspektral verilerden elde edilen uzamsal ve spektral
bilgilerle LiDAR’dan elde edilen yukseklik bilgisi verimli bir sekilde birlestiriimesi gerek-



mektedir. Bu amagla, ¢calismamizda, cizge tabanli spektral bélutleme yontemleri kul-
lanilarak hiperspektral verileri ve LiDAR verileri birlestirilerek bélitleme sonugclari ge-
listirilmistir. GUnUmUzde, spektral béllitleme populer bir yéntem haline gelmistir. Stan-
dart dogrusal cebir ydntemleriyle verimli bir sekilde ¢6zilebilir olmasi ve k-ortalamalar
(k-means) ile tek bagh (single linkage) gibi geleneksel yéntemlerden daha iyi sonug-
lar Gretmesi nedeniyle tercih edilmektedir [36]. Spektral kimeleme yéntemiyle komsu
pikseller arasindaki spektral ve yUkseklik benzerlikleri gz énline alinarak cizge elde
edilir. Olusturulan bu gizgede farkli grupta yer alan pikseller arasindaki kenarlarin di-
stk agirlik almasi, ayni grup igindeki piksellerin arasindaki kenarlarin da yiksek agir-
hk almasi amagclanir. Bu amaci gergeklestirmek igin, spektral bolutlemede en 6nemli
nokta benzesim matrisinin (similarity matrix) probleme uygun secilmesidir. Bu c¢alis-
mada, hem uzamsal-spektral hem de ylUkseklik bilgilerini birlegtirecek yeni benzesim
matrisleri énerilmistir. Elde edilen bu benzesim matrisleri spektral bdlitlemede kulla-
nilarak HSG’lerin bolitlenmesi gergeklestiriimistir. Bu kapsamda, spektral bélitleme
ybéntemlerinden Diizgelenmis Kesit (Normalized Cut-Ncut) ile Schroedinger Ozharitalar
(Schroedinger Eigenmaps-SE) algoritmalari kullaniimis, énerilen yeni benzesim matris-
leri ile bu algoritmalarin farkli ¢ézimleri ele alinarak bélitleme sonuglari incelenmigtir.
LiDAR’dan elde edilen yikseklik bilgisinin hiperspektral gérinti bdlitlemesine sagla-

digi katkilar tartisiimistir.
1.3 Tezin Kapsami ve Akisi
Tezin geri kalani su sekilde organize edilmistir:

ikinci ballimde, spektral béliitlemenin temeli olan cizge teorisi anlatiimistir. Cizge olus-
tururken dikkat edilmesi gereken noktalara deginilmis ve gizgedeki bogumlar arasin-
daki kenarlarin agirliklarinin nasil belirlenecegi aciklanmistir. Cizge olusturulduktan
sonra bolutlerin elde edilmesi igin spektral bolitleme ydntemleri olan Dizgelenmis Kesit
(Ncut) ve Schroedinger Ozharitalar (SE) algoritmalarinin matematiksel cikarimlari ge-
nig bir sekilde ele alinmistir. Bu algoritmalarin farkli ¢éztmleri anlatiimis ve ¢ézimlerin
birbirlerine gbére avantaj ve eksiklikleri belirtilmigtir. Spektral bélitlemede énemli nokta
olan benzesim matrisini olugturmak igin literatiirde mevcut olan yéntemlere deginilmis-

tir.



Bu tez kapsaminda, KYM gérintt bélutlemesi igin Shi-Malik [38] tarafindan énerilen
spektral ybntem temel alinarak, HSG’ler bélutlenmesi ¢caligiimistir. HSG bélitleme dog-
rulugunu arttirmak amaciyla LiDAR’dan elde edilen yUksek bilgisi, spektral ve uzamsal
bilgilerle uygun sekilde birlestiriimesi icin arastirmalar yapilmis ve uygun yéntemler ge-
listirilmigtir. Bu amag dogrultusunda Uglinct bélimde, HSG’lerin bélitlenmesi igin yeni
yontemler dnerilmistir. Ncut ve SE spektral bdlutleme algoritmalarinin kullandigi ben-
zesim matrisi, HSG’lerden elde edilen uzamsal ve spektral bilgiler ile LiDAR’dan elde
edilen yUkseklik bilgisini kullanacak sekilde geligtirilmigtir. Benzesim matrisi olugturu-
lurken ilgili parametrelerin secilmesi ve bu parametrelerin bélitleme sonuglarina etkisi
tartisiimigtir. Spektral bélltlemenin farkli géztmleri kullanilarak gérintt bélitleme dog-
rulugu arttirilmistir. Tez boyunca caligilan SM benzesim matrisi tabanl Ncut yéntemiyle
HSG’lerin denetlemesiz bolutlenmesi, SE tabanli HSG’lerin denetlemesiz bélitlenmesi
ve PMI benzegim matrisi tabanli Ncut yontemiyle HSG’lerin denetlemesiz bélitlenmesi

algoritmalari Gglnct bolimde ayrintili olarak agiklanmistir.

D&rdincl bélimde, denetlemesiz bélutleme igin kullanilan MUUFL Gulfport gercek veri
kiimesi tanitilmistir. Onerilen denetlemesiz béliitleme ydntemleri bu gercek veri kiime-
sine uygulanmigtir. Denetlemesiz bélitleme sonuglarinin performanslarini degerlendi-
rebilmek ve farkli yéntemlerle elde edilen bélitleme haritalarinin dogrulugunu kargi-
lastirmak icin istatiksel bir yéntem olan Spektral Ayristirma Gucl (Power of Spectral
Discrimination-PSD) kullaniimigtir. Spektral bolitleme yéntemlerinin kullandigi para-
metrelere farkli degerler verilerek bolitleme Gzerindeki etkileri karsilastiriimis ve yo-
rumlanmistir. LIDAR’dan elde edilen yUkseklik bilgisinin bolutleme sonuglarina katkilari
tartigiimistir. Mevcut yontemlerle onerilen yontemler karsilastiriimistir.

Son bélimde ise tez genelinde dnerilen HSG bdlutleme yéntemleri ve sonuglari ile ilgili

ctkarimlara yer verilmigtir.
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2. SPEKTRAL BOLUTLEME

Gorunta bélitleme, goérintiideki nesneleri gruplama teknigidir. Diger bir deyigle, bir gé-
rintyd benzer 6zelliklere sahip farkli bélgelere ayirma yéntemidir. BélUtleme, veri ana-
lizi igin siklikla kullaniimaktadir. Temel olarak, gériinti bélitlemenin amaci asagidaki

gibi siralanabilir:

e GOrintl veya goérintl gruplarindan yararl bilgiler ¢cikartmak,
e Nesneleri arka plandan ayirmak,

e Farkli nesneleri birbirinden ayirmak,

Bir dnceki bélimde de bahsedildigi gibi, standart dogrusal cebir ydntemleriyle ¢dzlle-
bilen ve geleneksel ydntemlerden daha iyi sonuclar vermesinden dolayi spektral bélit-
leme son yillarda popdler bir ydontem haline gelmistir. Bu bélimde, spekiral bélitleme
icin gerekli olan gizge teorisi anlatiimis ve HSG’lerin bélltlemesi icin kullanilan spektral

bélatleme yéntemlerinin teorileri verilmistir.

Konuya baslamadan énce, hiperspektral gérintilerde ve spektral bdlitlemede yer alan
"spektral" kelimesinden dolayi aralarinda bir baglanti oldugu distnulebilir, ancak ifade
ettikleri kavramlar tamamen farklidir. Daha énce belirtildigi gibi hiperspektral gértntuler,
cok sayidaki bitisik bantta toplanan goérintl toplulugudur. Diger yandan spektral bolit-
leme ise; bir nokta topluluguyla, bir KYM goérintlyle veya bir hiperspektral gérintiyle

cizge olusturarak ilgili bu veri kiimelerini bélGtlere ayirma yéntemidir.
2.1 Benzerlik Cizgesi

Bir veri kimesi igindeki noktalari kiimelendirmenin amaci, birbirine benzeyen noktalari
ayni grubun icine dahil ederek ve birbirlerine benzemeyenleri ise farkli gruplara yer-
lestirerek bolmektir. Veri noktalari arasindaki benzerliklerden daha fazla bilgiye sahip
deqilsek, verileri temsil etmenin giizel bir yolu benzerlik gizgesi, G = (V, E), olusturmak-
tir [36]. Bir G = (V, E) cizgesi, V bogumlarinin E kenarlari ile birlestiriimesi sonucunda
olusturulur. Burada V bogumlari, veri kiimesindeki noktalari ifade etmektedir. E ise veri
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Sekil 2.1. Agirliklandinimig yénsiiz benzerlik gizgesi

kimesindeki nokta ciftlerinin arasindaki kenarlari ifade eder. Sekil 2.1°de A ve B sinif-
larindan olusan cizgede, bogumlar ve bu bogumlari birbirine baglayan kenarlar g6z k-
mektedir. Her bir bogumu birbirine baglayan kenarlara bir agirlik verildiginde, bu gizgeye
agirhklandinimis gizge denilmektedir. Sekilde gézuktigu gibi i ve j adindaki iki bogumu
baglayan kenar agirliklart w;,; ile ifade edilmektedir. Bu agirliklar, bogumlarin birbirine
olan benzerlikleri kullanilarak hesaplanmaktadir. iki bogumun benzerligi yiiksekse ke-
nar agirligr 1’e yakin, aksi halde 0’a yakindir, yani aralarinda baglanti yok demektir.
Eger bir G = (V, E) gizgesindeki kenar agirliklari w;,; = w;,; kogulunu saghyorsa, bu ¢izge

ybnslz cizge diye adlandiriimaktadir.
2.1.1 Cizgenin Matematiksel Gosterimi

G = (V,E), kenar agirliklari w;,; olan bir agirliklandiriimig yénsiz cizge olsun. W(i, j) =
{w;,; } matrisi ¢izgenin benzerlik matrisi olarak tanimlanir. Bu matrisin her bir indisi i

ve j bogumlarini birlegtiren w;,; ile ifade ettigimiz kenarin agirhigidir. Cizgede toplamda

n

n tane bogum varsa, i. bogumun derecesi d; = Z w;,; olarak hesaplanir. Aslinda, bu
J=1

toplam yalnizca i. boguma komsu kenarlar Gzerinden hesaplanir, diger tim kenarlarin

agirhklar sifira esittir. D ise kdsegenleri d, ..., d, olan diyagonal bir matristir ve ¢iz-
genin derece matrisi olarak adlandirilir. Son olarak, ilerde matematiksel gdsterimlerde
kullanacagimiz ve Laplacian matrisi olarak adlandirilan L matrisi denklem (2.1)’de g6s-

terildigi gibi hesaplanir.
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Sekil 2.2. Gizge bélutlenmesi

2.1.2 Cizgenin Bolutlenmesi

Cizgeyi béliitlemedeki amacimiz, cizgeyi ayrik bogum kiimelerine ayirmaktir. Oyle ki,
her bir bogum sadece bir grupta yer alacak ve tim gruplarin toplami cizgeyi olustu-
racak sekilde siniflandirmaktir. Bir 6rnek Gzerinde olaya bakacak olursak, Sekil 2.2'de
gbsterilen gizgeyi A ve B gibi ayrik gruplara bélmek hedeflenmektedir. Yani, AUB =V
ve AN B = @ olacak sekilde gizgeyi bdlmek gerekmektedir. Bunu yaparken énemli iki
soru kargimiza ¢gikmaktadir:

1. lyi bir béliitleme igin kesin kistas nedir?

2. Bdyle bir béltutleme nasil verimli bir sekilde hesaplanabilir?

Gizgedeki A ve B gruplar arasindaki farklilik derecesi, bu iki grup arasindaki kenar
agirliklarinin toplami olarak ifade edilebilir. Cizge teorisinde, bu deder kesit (cut) olarak
ifade edilir ve denklem (2.2)’'deki gibi hesaplanir.

cut(A, B) = Z Wi,j (2.2)

i€A,jeB

Cizgeyi en iyi bélite ayirmanin yolu, denklem (2.3)’te verildigi gibi bu kesit degerini
en aza indirmekle esdegerdir [37]. Denklem (2.3)’e goére, i bogumlari A sinifinda ve
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j bogumlari B sinifinda kalacak sekilde, bogumlar arasindaki agirliklarin en kigik ol-
dugu kenarlardan ayirmak hedeflenmektedir. Bylece birbirine benzeyen bogumlar ayni
gruba yerlestirilir ve diger bogumlardan ayrilmalari gerceklestirilir.

min cut(A, B) = min > w;, (2.3)

i€A,jeB

Fakat, Sekil 2.3'te verilen ¢gizge 6rneginde oldugu gibi cizgedeki u¢ bogumlarin kesit
degeri kiiclk oldugundan, denklem (2.3)’in sonucunda ug¢ bogumlar yanls siniflandiri-
labilmektedir. Bunu 6nlemek amaciyla Dizgelenmis Kesit ydntemi gelistirilmigtir [38].

. : Min-cut-1

coo:i@ ©\0
o: _©

OQ 0 O o-.o
000} o ® g
o0 ¢ '

' ' Min-cut-2
Uygun cut

Sekil 2.3. Kesit degerinin en az indirgenme ydnteminin kétl sonuglari

2.2 Dizgelenmis Kesit

Yukarida bahsedilen ve Sekil 2.3’te gosterildigi gibi, kesit degerinin ayrik ug bogumlari
bélatlemedeki bu dogal olmayan egilimini dnlemek igin denklem (2.2)’nin diizgelenmesi
gerekmektedir. Bu problemin ¢6zimu icin [38]'de Dizgelenmis Kesit (Normalized Cut-
Ncut) yéntemi dnerilmistir. Kesit degeri ¢cizgede mevcut olan tim baglantilarla dizge-
lersek denklem (2.4)’te verilen Ncut yontemi elde edilmektedir. Denklem (2.5)’te verilen

assoc, A’'daki bogumlarin cizgedeki tim bogumlara olan baglantisini ifade etmektedir.

cut(A, B) cut(A, B)

Ncut(A, B) =
cut(A, B) assoc(A, V) * assoc(B, V)

(2.4)
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ve

assoc(A, V) = Z W;,j (2.5)

Dlzgelenmis Kesit ydéntemi, bogumlar arasindaki baglarin kuvvetine gére gruplarken,
A ve B gibi gruplar arasindaki ayirimi azaltip, gruplarin kendi igindeki iligkiyi arttirmayi
amaglar [38]. Bunu gergeklestirmek igin Ncut maliyetinin minimize edilmesinin gerekir.
Ancak, bu maliyet fonksiyonun minimize edilmesinin Belirsiz Cokterimli Tam (Nondeter-
ministic Polynomial Complete- NPC) problem sinifina girdigi [38]'de ispatlanmistir. NPC
problemleri c6zimleme zamani arttikga artan bir yapiya sahiptirler. Fakat ayrik ¢c6ziime
sahip Ncut problemi reel sayilar kiimesinden deger alacak sekilde genisletilirse, yakla-
sik bir ayrik ¢6ziim bulunabilmektedir. Bu ¢dzim [38]'de ispatlanmig, asagida da detayh

olarak verilmistir.

Sekil 2.2’de A ve B siniflarindan olusan G = (V, E) gizgesi verilsin ve x gizgedeki bogum
sayisini, yani N = |V| boyutunda bir gdsterge vekt6érini temsil etsin. Bir i bogumu A
sinifinda yer aldiginda x; = 1 degerini alirken, bu bogum B sinifinda yer alirsa x; =
—1 degerini almaktadir. Bu anlamda, denklem (2.4)’te verilen Ncut degerini yeniden

yazarsak:
cut(A, B) cut(A, B)
Ncut(A, B) =
cut(4, B) assoc(A, V) * assoc(B, V)
(2.6)

> — Wi XX Yo Wi XiX;

_ x;>0,x;<0 X;<0,x;>0

- > d * > d

x;>0 x;<0

Denklem (2.6)'nin sonucunu Uzerinde islem yapilacak hale getirmek igin; tim girdileri

bir olan Nx1 boyutunda 1 vektéri verildiginde, gésterge vektdriniin x; > 0 degerleri igin

1%)( ve x; < 0 degerleri icin de 1-x

degeri kullanilabilir. Denklem (2.7)'deki bélime

de k dersek:
> d;
x;>0
= 2.7
SRS &7
i
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Denklem (2.6)'daki Ncut, denklem (2.8)’deki gibi dizenlenebilir.

(1+x)T(D-W)1+x) (1-x)"(D—W)(1—Xx)

ANeut(x)] = K17D1 A —k1Di

XD -W)x+17(D—W)1  2(1 —2k)17(D — W)x
- k(1 — k)17D1 YT k(1 —k)17D1

Takip kolayligi amaciyla denklem (2.8)’'deki bazi terimler yerine asagida verilen simge-
lerle devam edilecektir.

a(x) = xT(D — W)X,

B(x) =17(D — W)x,

y=17(D - W)1,

M =1"D1

Bu simgeleri kullanarak, denklem (2.8) asagidaki gibi daha genis sekilde yazilabilir:

(a(X) +7) +2(1 — 2k)5(x)
k(1 — k)M

4[Ncut(x)] =

(2.10)

_ (a(x) +9)+2(1 —2K)B(x) _ 2(a(X) +7) 2a(X) 27
k(1 — k)M M M M

Yukardaki denklemin sagdaki son terimi sifir oldugundan, v = 0, ihmal edilebilir. Denk-
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lem (2.10)’'u yeniden dlzenlersek:

(1 — 2k + 2K2)(a(X) + 7) + 2(1 — 2K)B(X)  2a(x)

4[Ncut(x)] = KA — M + =
(1 — 2k + 2K?) 2(1 — 2Kk) (2.11)
(1 _ k)2 (OC(X) + 7) + (1 _ k)2 ﬁ(x) 20[(X)
= k M + M
1k

Denklem (2.11)'deki

duzenlenebilir:

'ye b dersek ve v = 0 oldugundan bu denklem asagidaki gibi

k
1—-k

(1 + b?)(a(X) +7) +2(1 — b?)B(X)  2ba(x)

4[Ncut(x)] = ol ¢ — 7

(2.12)
(1+b3)(a(X)+7) 2(1 —bA)B(X) 2ba(x) 2by

= bM * bM T bM T bM

Denklem (2.9)'daki a(x), 5(x), v ve M deg@erlerini denklem (2.12)’de yerlerine koyarsak:

(1+ b2)(x"(D — W)x +17(D — W)1)
b17D1

2(1 — b2)17(D — W)x

b17D1
2bx7 (D — W)x(x)

b17D1
2b17(D — W)1
b17D1 (2.13)

4[Ncut(x)] =

(1+x)7(D — W)(1 +x)
b17D1
, PP -x)7(D - W)(1 —x)
b17D1
2b(1 — x)7(D — W)(1 + X)
b17D1
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Son olarak denklem (2.13)’lin sonucunu diizenlersek:

[(1+x) — b(1—x)]"(D—W)[(1+x)—b(1—x)]

= 2.14
4[Ncut(x)] 17D (2.14)
) H l ZX'>0 d’ -
Denklem (2.14)teki (1 + x) — b(1 — x)’'ye y dersek ve b = Tk 5 ’ d oldugundan
- x;>0 i
(2.15)’te ve (2.16)'da yer alan esitliklere kolay bir sekilde ulagilabilir.
y'D1=> "di-b> d;=0 (2.15)
x;>0 x;<0
ve
y'Dy=) di+b*>) d
X;>0 x;<0
=b) di+b*) d
X< <l (2.16)
=b(d di+b) d)
X;<0 x;<0
= b1'D1

En iyi bél0tin hesaplanmasi igin Ncut'in minimize edilmesi gerektiginden yukarida bah-
sedilmisti. Denklem (2.14), (2.15) ve (2.16)’nin sonuglarini birlestirirsek problemimiz
asagida verilen optimizasyon problemine indirgenmis olur:

y'(D — Wy (2.17)

min Ncut(x) = myln y"Dy

Burada, y(i) € {1, —b} ve y'D1 = 0 kisitlarini saglamak zorundadir. Denklem (2.17)deki
ifade Rayleigh bélimudur (Rayleigh quotient) [39]. Eger y gdsterge vektdrl reel sayilar
alacak sekilde serbest birakilirsa, (2.17)’'deki denklemi (2.18)’'de verilen genellegtirilmis

O6zvektdr sistemi ¢dzilerek minimize edilebilir.

(D— W)y = ADy (2.18)
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Ozvektdrler elde edildikten sonra, x gésterge vektdriiniin tanimi geregi y vektdrinin
bazi kisitlari saglamasi gerekmektedir. y izerindeki y'D1 = 0 kisiti 6zvektér sisteminin
¢6zlimiyle otomatik olarak saglanmaktadir [38]. ikinci kisit ise y vektériiniin 1 veya -b
gibi ayrik degerleri almasidir. Ozvektdr sisteminin ¢dzimii ile elde edilen &zvektdrler
reel degerler aldigindan, y(i)’nin iki ayrik deger almasi birinci kisit gibi otomatik olarak
saglanamamaktadir. y vektorlerinin Ncut ¢6zimda igin ayrik hale getirilmesi gerekmek-
tedir. Bu durum kendi basina bir siniflandirma metodu gerektirmektedir. Bunu gergek-
lestirmek icin literatiirde farkl yéntemler vardir. ilerleyen alt bdlimlerde, literatiirde yer

alan bazi ydontemler avantaj ve dezavantajlariyla ele alinmigtir.

Ayriklastirma ydntemlerine gegmeden 6nce; konunun 6zinl anlamak amaciyla bir 6r-
nek Uzerinden gidecek olursak, Sekil 2.4’teki 130 noktadan olusan kimeyi siniflara
ayirmak istersek, dncelikle cizge olusturmak gerekmektedir. Cizgeyi her nokta ikilisi
arasindaki kenar agirhgr w;,;= e~ %" olacak sekilde olugturalim. Burada, d(i,j) i. ve j.
nokta (bogum) arasinda Euclidean uzakhgini ifade etmektedir ve o ise kenar agirhk-
larini ayarlamak amaciyla segilen kontrol parametresidir. Noktalar arasindaki uzaklik
arttikga kenar agirliklari da azalacaktir. Tim kenar agirliklari hesaplanip W benzerlik
matrisi ve D derece matrisi olusturulur. Bu matrisler olusturuldugunda noktalarin hangi
siraya goére yerlestirildiginin énemi yoktur. Ancak, kolay anlasilmasi amaciyla, benzer-
lik matrisinin 1-80 arasi satir ve situnlarina sekildeki dairesel halka olugturan noktalar
saatin tersi yéoninde sirasiyla yerlestirilmis, 81-90 arasi satir ve sttunlarina dairesel hal-
kanin icinde kalan noktalar yerlestiriimis, 91-110 arasi satir ve stitunlarina sag Ustteki
noktalar yerlestirilmis ve 110-130 arasi satir ve sltunlarina ise sag alttaki noktalar yer-
lestirilmistir. Bu adimdan sonra, denklem (2.18)’deki 6zvektor sistemi ¢ozUmuU sonucu
elde edilen 6zdeger ve bunlara karsilik gelen bazi ézvektdrler Sekil 2.5'te verilmistir.
Laplacian matrisi, yani L = D — W, arti yari-belgili (positive semidefinite) bir matris ol-
dugundan, 6zvektdr sistemi sonucu elde edilen 6zdegerler \{ =0 < o < A3 < ... < Ap
seklinde siralanmaktadir. Ay = 0 6zdegere karsilik gelen 6zvektér girdileri Sekil 2.5'te
g6zUktGgu gibi sabit degerler icermektedir. Ancak, \.’ye karsilik gelen 6zvektére bak-
tigimizda girdileri iki seviyede toplanmigtir. Bu tam olarak Sekil 2.4’'te yer alan soldaki
noktalarin olusturdugu dairesel halka ve ortasindaki nokta kiimesi ile sagda yer alan
nokta kimelerini ikiye ayiracak sekilde farkli seviyeler almistir. A\,’den biyik diger 6z-
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degerlere karsilik gelen 6zvektdrler ise noktalari farkl bdlgelerden, birden ¢ok sinifa
ayiracak sekilde seviyeler olusturmustur. Ancak, bu seviyeler arasinda ikinci 6zvektérde
oldugu gibi keskin bir ayrim yoktur.

T | T T T T T
15+ m ™ L 1% ] 7
- ] - [T ]
10 g - 5 :
] iy
5 m L1 ] -
L LW -
07.' -.- [ ] - |
» [] = [ ]
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Sekil 2.4. Nokta kiimesi
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Sekil 2.5. Ozdeger ve bunlara karsilik gelen bazi 6zvektérler

2.2.1 Ozyinelemeli 2-Ncut (Recursive 2-Ncut)

Nokta 6érneginde oldugu gibi 2. 6zvektdér daima iki ayri seviye almaktadir ve bu vektér
ayni zamandan Ncut maliyetini minimize eden ¢6zimlerden bir tanesidir. Bu ydntem,
2. Ozvektoru kullanarak gizgeyi 6zyinelemeli olarak ikiye bdélerek bélitler olusturur. Bu
algoritma asagidaki gibi 6zetlenebilir [38]:

1. G = (V, E) cizgesi olusturulur, kenar agirliklari hesaplanir ve W benzesim matrisi
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ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin ¢6zimd ile kiigik 6zdegerlere karsilik gelen 6zvek-
térler hesaplanir,

3. Ncut en aza indirgenecek sekilde gizgeyi ikiye bdlmek igin ikinci en kigik 6zde-
gere karsilik gelen 6zvektdr kullanilir,

4. Kesitin kararliligi kontrol edilerek bélitlere ayrilmasi gerekip gerekmedigine karar
verilir ve Ncut maliyetinin énceden belirlenmis degerin altinda oldugundan emin

olunur,

5. Her bir bolit 6zyinelemeli sekilde yukaridaki basamaklar takip edilerek ikiye bola-

nar,

Bu yontem 6zyinelemeli olarak cgizgeyi slrekli olusturdugundan yavas bir yéntemdir.
Ayrica, algoritmanin 4. basamaginda yer alan Ncut icin minimum seviyenin belirlenmesi

béllit dogrulugu agisinda zor bir durumdur.
2.2.2 k-ortalamalar (k-means)

Genellegtiriimis 6zvektdr sistemi sonucu elde edilen dzvektdrleri ayrik hale getiriimesi
bir siniflandirma problemi oldugu yukarida deginilmisti. Bunun igin klasik yéntem olan
k-ortalamalari literatirde siklikla kullaniimaktadir. k-ortalamalar kullanan bélitleme al-
goritmasi agsagida verilmistir [36, 38]:

1. G = (V, E) cizgesi olusturulur, kenar agirliklari hesaplanir ve W benzesim matrisi
ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin ¢6zimdi ile kiiglk k tane 6zdegere karsilik gelen
O6zvektdrler hesaplanir,

3. Elde edilen yi,...yx € R" dzvektdrleri siitunlara yerlestirilerek bir Y € R™* matrisi

elde edilir,
4. k-ortalamalar algoritmasiyla Y matrisinin her bir satiri S4,...S, siniflarina ayrilir,
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5. Ayni sinifa disen girdilerle k adet bolut elde edlilir,

Bu ybénteminle k sayisina karar vermek bélitleme dogrulugu icin kritik Gnem tasimak-
tadir. kK’nin ylksek bir deger secilmesi cizgeyi daha cok bélite ayirmak anlamina gel-
mektedir fakat bu da gereksiz yere fazla bélit olusturmaya sebep olabilmektedir (over-
segmentation). Ayrica, gérintl bdlitlemesinde bu yéntem gérintide tekdize blylk
alanlar oldugunda yanhs bélitlemelere sebep olmaktadir. Diger taraftan k’'nin diigiik se-
cilmesi de ¢izgede oldugundan daha az bélite ayirmak demektir (under-segmentation).
Bolutleme problemlerinde bu iki durum da istenmemektedir. Bu durumlardan kaginmak
icin kullanilan 6zvektér sayisinin probleme uygun segilmesi gerekmektedir. Ancak; kul-
lanilacak 6zvektdr sayisini belirlemek, hakkinda dnsel bilgimiz olmayan c¢izge icin zor

bir durumdur.
2.2.3 Cok katmanli Ncut (Multiclass Ncut)

k-ortalamalar yéntemiyle oldukg¢a benzer bir ydntem olmakla beraber béllt olusturmada
daha verimli sonuglar vermektedir. Bu yéntemle genellestirilmis 6zvektor sisteminin 6z-
vektorleri bulunduktan sonra, bu optimum ¢dzime en yakin ayrik ¢c6zim bulunmaya ca-
hsilir. Ayriklastirma, Tekil Deger Ayristirmasi (Singular Value Decomposition) ve Maksi-
mum Olmayan Bastirma (Nonmaximum Suppression) kullanarak yinelemeli bir bicimde
ve verimli bir sekilde hesaplanir. Bu ydntemin 6zet algoritmasi asagida verilmistir, de-
tayl algoritma igin [40]'a bakilabilir:

1. G = (V, E) cizgesi olusturulur, kenar agirliklari hesaplanir ve W benzesim matrisi
ile D derece matrisi elde edilir,

2. Denklem (2.18)'deki sistemin ¢dzimdi ile blylk k tane 6zdegere karsilik gelen

6zvektérler hesaplanir,

3. Elde edilen yi,...yx € R" dzvektorleri siitunlara yerlestirilerek bir Y € R™* matrisi
elde edilir,

4. Y matrisinin her bir satiri Tekil Deger Ayrigtirmasi ve Maksimum Olmayan Bas-

tirma kullanilarak yenilemeli bir bicimde S1,...S siniflarina ayrilir,
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5. Ayni sinifa disen girdilerle k adet bolut elde edlilir,

Bu yoéntemle de cizgenin kag béllte ayrilacaginin, yani k degerinin, dnceden bilinmesi
gerekmektedir.

2.2.4 Spektral Pb + UCM

Gorintl boélutlenmesi distnildiginde, 6zvektdr sistemi sonucu elde edilen 6zvektor-
ler kenar bilgisi tagimaktadir. Bu 6zvektorler denklem (2.19)'da verilen spektral sinir
olasiligi (spectral probability of boundary-sPb) kenar bulma algoritmasiyla birlestirilerek
gOrantinan kenar bilgisi elde edilir [41]. Burada, denklem (2.18)’'de elde edilen 6zvek-
torlerin (yx) yonld tirevleri alinip 6zdegerler (\«) ile normallestirildikten sonra toplanarak
kenarlar elde edilmektedir. Denklem (2.19)’da gdsterildigi gibi, ¢ ile gbsterilen farkh yon-
lerden alinan tlrevlerin en blyUk degerleri alindiginda kenar bulma sonuglari iyilesmek-
tedir. Son islem olarak, bu kenar sonuglari kullanilarak Ultrametric Contour Maps (UCM)
yardimiyla bélGtler olusturulur [42]. Hiyerarsik siniflandirma cergcevesinde UCM, i¢ ice
bolutlemelerin bir ailesi ile iligkili olan yumusak sinir gérunttstudir. UCM algoritmasi,
bdlge sinirlari boyunca yerel kenar kanitlarini birlegtirerek ve bu bilgiyi bdlge igi nite-
liklerle tamamlayarak kenar bilgisi ¢ikarma icin ultrametrik tanimlanmaktadir. UCM’nin
matematiksel modeli ve daha fazla bilgi i¢in [42]'ye bakilabilir.

K
1
sPb=max » —=Vyy; 2.19
6 ; Vi oy ( )
Bu yéntemin algoritmasi agsagida verilmistir:

1. G = (V, E) cizgesi olusturulur, kenar agirliklari hesaplanir ve W benzesim matrisi
ile D derece matrisi elde edilir,

2. Denklem (2.18)’deki sistemin ¢c6zimu ile en blylk k tane 6zdegere karsilik gelen
OzvektOrler hesaplanir,

3. Denklem (2.19)'da verilen sPb, 6zdegerler ve bunlara kargilik gelen 6zvektorler
birlestirilerek hesaplanir,
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4. sPb sonucu belirlenen esik degeriyle UCM algoritmasi gecirilir ve bélitler olustu-

rulur,

Bu algoritmada k yeterince blyUk secilebilir, clinkl burada bélit sayisi bu degerden ba-
§imsiz olarak belirlenmektedir. Oncelikle kenar bilgisi cikartildigindan, yukaridaki diger
yontemlerin aksine, gorintideki tekdlize blyUk alanlari bolitlemede basarili sonuglar
vermektedir. sPb ile elde edilen kenar bilgisiyle ve UCM algoritmasinin esik degeri de-
gistirilerek istenilen sayida ve dogrulukta boélltler elde edilmektedir.

2.3 Laplacian Ozharitalari

Laplacian Ozharitalar (Laplacian Eigenmaps-LE) dogrusal olmayan bir boyut indir-
geme yontemidir [43]. X4, ..., X,k € R" gibi bir veri kiimesi verildiginde bu kiimeyi yy, ...,y €
R™(m < n) gibi daha disik boyutlu bir uzayda géstermek mimkindur. LE, boyut indir-
gemesi yaparken yerel bilgileri en iyi sekilde korumak igcin denklem (2.20)'deki ifadeyi

minimize etmeye calisir.

> Iy = yillPw(i,j) = tr(YTLY)
i (2.20)

ve Y'LY =1

Denklem (2.20)'de Y = [y;, ..., Yk] iken, L ise X; verisinin Laplacian matrisidir. Burada, X;
ve X; birbirine yakinken, y; ile y; birbirinden uzaklastiginda agir bir ceza verilmis olunur.
Dolayisiyla bu minimizasyon disuk boyutta benzer yapiyi saglayabilir. Denklemdeki ki-
sit, 6lceklendirme faktorlerini ortadan kaldiracak ve boyutlarin m — 1’den kiguk bir alt
uzayina dasmesini dnleyecektir. Denklem (2.20)’deki ifadenin minimumu genellestiril-
mig 6zvektdr siteminin ¢6zUmU sonucu elde edilen m tane agikar olmayan (A # 0) 6z-
degere karsilik gelen 6zvektorlerin olusturdugu matrisinin sttunlaridir. LE algoritmasini
kisaca Ozetlersek:

1. X4, ..., Xk € R" verileriyle G = (V, E) gizgesi olusturulur, kenar agirliklari hesaplanir
ve W benzesim matrisi ile D derece matrisi elde edilir,
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2. Denklem (2.18)’deki sistemin ¢dzimd ile kicik m+1 tane 6zdegere karsilik gelen
6zvektérler hesaplanir,

3. Elde edilen sirall 6zdegerlere, \y < ... < Ap, karsilik gelen 6zvektorler fo, ..., fx
olsun, sonug olarak y/, ..., y/ boyutu indirgenmis veri kiimesi F = [f1, ..., f] matri-

sinin satirlari olarak tanimlanir,

LE algoritmasinin ¢ézim, Ncut algoritmanin reel sayilarda deger alacak sekilde ser-
best birakilan ¢6zimi ile ayni oldugu gbézikmektedir. LE algoritmasi, yakin noktalarin
yerel yapisini koruyarak ylksek boyutlu uzaydaki verileri dugtk boyuta indirgeyen bir
yaklasimdir. Ncut algoritmasi ise géruntaleri farkl bélitlere ayiran bir optimizasyon yak-
lasimidir. Dolayisiyla, LE yerel yaklagimi yiksek boyutlu verilerin dogal kiimelenmesi
olarak dugunalebilir.

2.4 Schroedinger Ozharitalari

Schroedinger Ozharitalari (Schroedinger Eigenmaps-SE) algoritmasi, yilksek boyutlu
verileri disUk boyutlara indirgeyen dogrusal olmayan bir boyut indirgeme ve/veya kiime-
leme amaciyla kullanilan gizge tabanl bir yontemdir [31, 44]. Temelde, LE algoritma-
siyla benzerlik gbsteren SE, ¢izgeye bir P potansiyel matrisi ekleyerek LE algoritmasini
genellestirir. Hiperspektral gbrintl analizi igin kullanilan iki tr potansiyel matrisi bu-
lunmaktadir: bariyer ve kime potansiyeli. Bariyer potansiyeli, P’nin negatif olmayan bir
késegen matrisi olarak tanimlanmasiyla olusturulmaktadir. Bariyer potansiyeli, x4, ..., X
noktalari igin y1, ..., Y, 'deki ilgili noktalari orijine ¢geker. Kime potansiyeli ise, P'nin denk-
lem (2.21)'de verilen kdsegen olmayan P’/ matrislerin toplami olarak tanimlanarak olus-
turulur. x4, ..., X, noktalari igin tanimlanan kiime potansiyeli y;, ..., y«'deki ilgili noktalar
birbirine dogru ¢eker, baska bir deyisle ayni kiimeye toplar.

1, eder (k1) € (i,i), (. ))
PY) = <1, eger (k1) € (i,)). (i) (2.21)
0, aksi takdirde.

SE algoritmasi denklem (2.18)’'deki genellestiriimis 6zvektdr sistemi yerine denklem
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(2.22)'deki sistemin ¢bzmeye ¢alisir. Laplacian matrisinin ve potansiyel matrisinin bolut-
lemeye katkilari o parametresiyle ayarlanmaktadir. o’nin degeri arttirildik¢ca bélitleme
sonuglarinda potansiyel matrisinin etkisi de artmaktadir.

(D—W+aP)y= \Dy (2.22)

Burada, 6zvektdr sisteminin potansiyel matrisi eklenmis halinin ¢6zimu olan 6zvektérler
elde edildikten sonra Ncut algoritmasinin ¢ézimu igin anlatilan 4 yéntemden herhangi
biri kullanilarak géruntuler igin bolUtler olusturulabilir.

2.5 Benzesim Matrisi

Simdiye kadar bahsettigimiz spektral bélitleme yéntemlerinde de gbziktiga Gzere al-
goritmalarin temel tagini benzesim matrisi, W, olusturmaktadir. Spektral béltitleme dnemli
olan faktdr benzesim matrisi W’nun probleme uygun olarak tasarlanmasidir. Daha 6nce
bahsettigimiz gibi, ¢izge olustururken ayni sinifta yer alan bogumlar arasindaki iliskiyi
arttirmak ve farkh siniflarda olan bogumlar arasindaki iligkiyi azaltmak amacglanmakta-
dir. Gizgedeki tim bogumlarin iliskilerini igeren benzesim matrisi oldugundan, probleme
uygun secilmesi kritik 6nem tagimaktadir.

Bu kisimda, KYM (kirmizi-yesil-mavi) ve HSG goéruntllerin bdlitlenmesi ve siniflan-
dirilmasi amaciyla literatirde énerilen benzesim matrisleri ele alinmistir. Gérintilerin
spektral bélitlenmesinde her bogum pikselleri veya siper pikselleri ifade etmektedir.
Pikseller arasindaki uzamsal, renk, parlaklik gibi benzerlikler kullanilarak gizgedeki ke-
nar agirliklari hesaplanip benzesim matrisi W olusturulur. Asagida, gérintd bélitlemesi

icin dnerilen farkli ydntemler verilmistir.
2.5.1 Shi-Malik (SM) Benzesim Matrisi

Shi-Malik yéntemi [38], ¢izge yapisini ve kenar agirlik tanimlamasini hem spektral hem
de uzamsal bilgileri iceren bir bicimde nasil ele alacagini aciklamaktadir. Gérintller-
deki tim pikseller arasindaki kenar agirliklarini hesaplamak karmasik ve zordur. Yakin
piksellerin ayni siniftan olma ihtimalleri daha ylksek oldugundan, SM ydntemi cizge
olustururken sadece uzamsal olarak birbirine yakin olan piksellerin kenar agirliklarini
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hesaplarken uzak olanlarin kenar agirliklarina sifir atamaktadir. Béylece agir islem yi-
kinden kurtulmus olunur. Ayrica, yakin piksellerin arasindaki uzamsal uzaklik ile ters
orantili olarak ¢izgedeki kenar agirligi azalacaktir. Bu yéntemin gérintdler igin tanimla-
digr W benzesim matrisi denklem (2.23)’te verilmigtir.

2
7||X,-S—Xf|| Hx;’—xj‘.’H2
52 . 2 ~ u u
W;=q€ spektral @ Vuzamsal | eQer ||x¥ — xY|| < e (2.23)

0, aksi takdirde.

Burada, x7 pikselin spekiral (renk, parlaklik vb.) bilgisini géstermekte ve x;' ise pikse-
lin uzamsal konumunu gostermektedir. Bspexirar V€ Vuzamsar Piksellerin spektral ve uzam-
sal bilgilerle elde edilen kenar agirliklarinin uzakhiga bagh olarak degisimini etkileyen
kontrol parametreleridir. Denklem (2.23)’te de goérildigu Uzere sadece uzamsal ola-
rak e-komsulugundaki pikseller igin kenar agirliklari belirlenmis ve diger kenarlara sifir

atanmisgtir.
2.5.2 Gilles-Bowles (GB) Benzesim Matrisi

Gilles-Bowles (GB) yéntemi [26], SM ile benzerlik gostermektir. Uzamsal benzerlik igin
SM yénteminde oldugu gibi Euclidean uzakhgi kullanilirrken, spektral benzerlik igin
spektral agi haritalayici (spektral angle mapper-SAM) kullaniimigtir. Bu yéntemin, 6zel-
likle cok sayida bant bilgisi iceren HSG’ler icin etkili bir ydontem oldugu gdsterilmigtir
[26]. GB yontemiyle olusturulan W benzegim matrisi denklem (2.24)’te verilmigtir.

<X > xd XY

— arccos( _
DAIRD .

0, aksi takdirde.

2 -
Vuzamsal , eger ||Xfl - XIUH <€ (2.24)

Burada, < x7, x7 > iki pikselin spekiral bilgileri arasindaki i¢ arpimi ifade etmektedir ve
|1%7|| ise i. pikselin spektral bilgilerle olusturan normudur. SM'de oldugu gibi, uzamsal
olarak e-komsulugundaki pikseller icin kenar agirliklar belirlenmis ve diger kenarlara

sifir atanmigtir.
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2.5.3 Hou-Zhang-Ye-Zheng (HZYZ) Benzesim Matrisi

Hou-Zhang-Ye-Zheng (HZYZ) yéntemi [45], SM ve GM ydntemlerine benzemekle bir-
likte farkh bir yaklagsim géstermektedir. HZYZ spektral ve uzamsal bilgileri kaynastiran
LE algoritma tabanli bir ydntemdir. SM ve GM ydntemleri spektral ve uzamsal bilgilerin
benzerligini direkt kullanarak kenar agirliklarini belirlerken, HYZY ydntemi ise spektral
ve uzamsal bilgilerin benzerligini kullanarak ikili (0-1) kenar agirliklarini belirler. Bu yon-
teme, denklem (2.25)’te verilen ifadeye goére iki piksel arasindaki uzaklik, spektral ve
uzamsal bilgiler kullanilarak hesaplanir. Uzaklik hesaplamada SM ve GB ydntemlerine
benzerlik gbstermektedir.

%7 — X7 I} = x72 (2.25)
T — -
d(X,-, X/) — (1 —e zﬂspektra/ )(1 —e 27523m5a/ )

Bu ydntemle kenar agirliklari belirlenirken d uzakhgini direkt kullanmak yerine, bu uzak-
ligin belirlenmis bir degerden kuglk olan x; ve X; komsu piksellerin kenar agirligina
denklem (2.26) gosterildigi gibi 1 degeri atanmaktadir. Bdylece, benzerlik matrisinin
girdileri yalnizca 0 ve 1 degerlerinden olusmaktadir. Bu yéntem de HSG’lerin kiimelen-

mesi igin kullaniimaktadir.

1, eger d(x;, X;) <
W, = ger d(x;,x;) < ¢ (2.26)

0, aksitakdirde.

2.5.4 Nokta tabanh karsilikhi bilgi (Pointwise mutual information-PMI) Benzesim
Matrisi

Kargilikh bilgi (mutual information), iki rastgele degisken arasindaki bilgi érttismesinin
bir 6lcimadur. Nokta tabanli karsilikli bilgi (Pointwise mutual information-PMI) ise iki &6r-
nek arasindaki karsihkli bagimliligi veya rastgele degiskenlerin gergeklesmelerini élger.
Baska bir deyigle, PMI iki olay icin bir korelasyon 6l¢ctstyken, karsilikli bilgi olasi tim
olaylar igin PMI élcimudir. PMI kelime ciftlerinin yan yana bulunma olasiligini bulmak
icin hesaplamali dil biliminde kullanilan bir ydntemdir [46, 47]. Ayni zamanda goruntu

28



siniflandirmasini arttirmak igin de kullaniimaktadir [48]. Son zamanlarda, spektral bo-
l0tlemenin benzesim matrisi PMI ile olusturularak KYM gérintilerde kenar bulma ve
bdlitleme amaciyla énerilen oldukga basarili bir yéntem haline gelmistir [49]. PMI y6n-
temi, gbrintiide ayni nesneye ait piksellerin, farkli nesnelere ait piksellerden daha yuk-
sek istatiksel bagimlilik sergilemesi prensibini temel alir. PMI benzesim matrisini olasilik
yogunluk kestirimine gére hesaplar. x; ve X; gérintiideki iki piksele ait 6zniteligi (renk,
parlaklik, spektral bilgiler vb.) olsun ve bu iki 6zniteligin belli bir d Euclidean uzakhgin-
daki bilesik olasihgr p(x;, X;; d) olsun. Bu bilesik olasiligi farkli Euclidean uzakliklarinda
hesaplayarak denklem (2.27)deki P(x;, X;) olasilik yogunluk fonksiyonu tanimlanabilir.
Bu olasilik yogunluk fonksiyonunu hesaplamak igin géranttiniin i¢cinden farklh d uzaklk-
larda ¢ok sayida parga rastgele olarak érneklenir ve birlikte gérilme olasiliklari hesap-

lanir.
P(x;, X;) = ZZ )p(X;, X;; d) (2.27)

Denklem (2.27)’deki w(d) iki piksel arasindaki uzaklk arttikga azalan Gauss tabanl bir
agirliktir ve Z ise normalizasyon sabitidir. Bu olasilik yogunluk fonksiyonunun marjinal-
leri bulunarak P(x;) ve P(x;) marjinal olasiliklari hesaplanabilir.

Pikseller arasindaki benzerlik 6lciisii olarak bu olasilik yogunluk fonksiyonu kullanil-
masi mantiklidir. Ancak, bazi nesnelerin zit renklerden olusmasi, érnegin siyah ve be-
yaz renklerden olusan bir nesne, bu nesnelerin pikselleri arasindaki bilesik olasiligin
diglk gitkmasina neden olmaktadir. Béyle durumu 6nlemek amaciyla, P(x;, X;) dagi-
limi yerine denklem (2.28)’deki PMI kullanmak pikseller arasindaki benzerlik dagilimini
lyilestirmektedir [49].

P(x;, X;)”

PMI,(x;, x;) = log W

(2.28)

Yukardaki denkleme gére, p = 1 oldugunda PMI, degeri tam olarak X; ve X; arsindaki

karsilikh bilgidir. p = 1 durumunda logaritma igindeki oran P(;l )/ seklinde yazilabilir.
i

Bu oran, gértntideki x;'nin gdzlemlenme olasiligina kiyasla x; gézlemi verildiginde x;
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gdzlemlenme ihtimalini vermektedir. p = 2 oldugunda ise logaritmanin igindeki oran
P(xi|x;)
PX;|x;) o . . o
X;'nin gozlemlenmesi X;'nin yakinda olmasini gerektirmektedir. p’nun hangi degeri igin

olmaktadir, yani x;'nin gézlemlenmesi x;'nin yakinda olmasini gerektirmekte ve

bélitleme sonuglarinin iyi olacagi bilinmediginden, veri kimesi Gzerinde performansi

artirmak amaciyla serbest bir degisken olarak birakilabilir.

Spektral bélitleme yéntemlerinin kullandigi W benzesim matrisi icin direkt PM/,’yu kul-
lanmak yerine Ustel bir fonksiyona yerlesgtirmenin daha iyi sonuglar verdigi gézlemlen-
migtir [49]. Bu sebeple, W benzesim matrisi denklem (2.29)'da verildigi gibi PM/,’nun
ustel fonksiyonu olacak sekilde hesaplanir.

Wi, = oPMI,(Xi, X)) (2.29)
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3. HIPERSPEKTRAL GORUNTULERIN BOLUTLENMESI

Son zamanlarda, yiksek spektral ¢cézinarlikteki UA teknolojileri 5nemli gelismeler gos-
termektedir. Gortintlileme alaninda énemli bir yere sahip hiperspektral gérintileyiciler
UA teknolojilerin basinda gelmektedir. Yizlerce spektral banttan olugsan HSG’ler, pik-
sel basgina 1-3 metreye kadar uzamsal ¢6zUnUrlige de sahip olabilirler. Bu 6zelliklerin-
den dolayr HSG’ler yeryUzi siniflandirmasinda basarili sonuglar vermektedir. Ayni za-
manda, ¢ok sayida spektral bant icerdiklerinden, benzer ézellikler tagsiyan ancak farkl
tirlere ait nesnelerin ayirt edilmesine olanak saglamaktadirlar. Bunun yani sira; bolit-
leme, siniflandirma ve hedef tespiti uygulamalarinda performansi iyilestirmek amaciyla
HSG’lerin sagladigi bilgileri tamamlayici nitelikte olan farkli veri kaynaklarina basvur-
mak gerekebilir. Bu amagla, literatlirde farkli kaynaklardan toplanan verilerin kaynasti-
rilmasi tUzerine ¢aligsmalar mevcuttur [33, 34, 35].

HSG’ler uzamsal ve spektral gibi dnemli bilgiler icermekteyken, yikseklik bilgisini iger-
memektedir. YUkseklik bilgisi eksikliginden dolay1 HSG’lerin bélitlenmesi iki alanda ba-
sarisiz olmaktadir. ilk olarak, benzer spekiral bilgilere sahip nesneleri ayirt etmek zor-
lagmaktadir. Ancak, benzer spekiral 6zellikteki nesneler farkh yiksekliklere sahiplerse,
6rnegin cati ve asfalt gibi, bunlari ayirt etmek ylUkseklik bilgisi kullanarak mimkin hale
gelmektedir. Basarisiz oldugu diger bir nokta ise gdlgelik alanlari nesnelerden yeterli
dogrulukta ayirt edememesidir. Bu durum, 6zellikle hedef bulma uygulamalarinda ha-
yati 6nem tagimaktadir. HSG’lerin bu temel eksikliklerini gidermek amaciyla yikseklik
bilgisini algilayan veya 3 boyutlu gorintl olusturan baska UA teknolojilerinden faydalan-
mak son derece onemlidir. YUkseklik bilgisini, son zamanlarda siklikla kullanilan LiDAR
veya sentetik aciklik radari (SAR) gibi UA teknoloijileriyle elde etmek miimkiindiir. Ozel-
likle, LIDAR’dan elde edilen yUkseklik bilgisi, HSG’leri tamamlayici niteliktedir. HSG’lere
ek olarak LiDAR verileri de kullanildiginda yukarida bahsedilen problemlerden kurtul-
mus olunur. Dolayisiyla, HSG verileriyle LiDAR verileri bir araya getirildiginde yerytzin-
deki nesnelerin daha kapsamli bir sekilde yorumlanmasi saglanabilir.

Bu tez calismasinda, HSG’lerden elde edilen uzamsal ve spektral bilgilerle LiDAR’dan
elde edilen yUkseklik bilgisi kaynastirilarak, HSG’lerin denetlemesiz bélitlenmesi ger-
ceklestirilmistir. Giris béliminde de bahsedildigi gibi, denetlemesiz bélitleme herhangi
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bir 6nsel bilgiye gereksinim duymadigindan birgcok uygulama alaninda kullaniimaktadir.
HSG’lerin denetlemesiz bélutlenmesi igin ikinci b6limde anlatilan gizge tabanli spektral
bolutleme ydntemleri kullaniimistir. Spektral bélatleme yéntemlerinde édnemli bir nokta
olan benzesim matrisinin (W) probleme uygun secilmesi gerektiginden ikinci bélimde
bahsedilmigtir. Bu kisimda, HSG’lerin uzamsal-spektral bilgileri ile LiDAR’In ylkseklik
bilgisi kaynagtirilarak spektral bdlitleme igcin benzesim matrisleri énerilmistir. Olustu-
rulan bu benzesim matrisleri kullanilarak spektral bélitleme yéntemleriyle HSG’lerin
denetlemesiz bélltlenmesi gergeklestirilmistir. Bu tezde, HSG ve LiDAR verilerini kay-

nastirmak igin 3 yéontem énerilmistir:

1. SM Benzesim Matrisi Tabanli Ncut Yontemiyle HSG’lerin Denetlemesiz B6-
litlenmesi (SMTNcut): SM yénteminde oldugu gibi, Euclidean uzakliklari kulla-
nilarak benzegim matrisi olusturulmustur. SM benzegim matrisi ek olarak LiDAR
verilerinden elde edilen yikseklik bilgileri de kullanilarak HSG’lerin yiksek dog-
rulukta bélutlemesi igin yeni bir benzesim matrisi énerilmistir. HSG ve LiDAR ve-
rileriyle olusturulan bu benzegim matrisi kullanilarak, ikinci bdlimde anlatilan gok

katmanh Ncut ile bélatleme yapilmigtir [50, 51].

2. SE Tabanli HSG’lerin Denetlemesiz Bolitlenmesi (SET): SE algoritmasinin
kullandigi LiDAR'dan elde edilen yikseklik bilgisi ve uzamsal bilgiler ile yeni bir
kime matrisi 6nerilmigtir. HSG’lerden elde edilen spektral bilgilerle de benzegim
matrisi olusturulmus ve SE algoritmasi spektral Pb + UCM ydntemiyle ¢ézimle-
nerek boélitleme saglanmistir [52].

3. PMI Benzesim Matrisi Tabanlh Ncut Yontemiyle HSG’lerin Denetlemesiz Bo6-
litlenmesi (PMITNcut): PMI benzesim matrisi ile uzamsal-spektral ve yUksek-
lik bilgileri birlestirilerek HSG’ler i¢in yeni bir benzesim matrisi énerilmis ve ikinci
bélimde anlatilan Ncut yénteminin basarih bir ¢6zimi olan spektral Pb + UCM
yéntemiyle béliutleme saglanmistir [53].

Bu bdlimde, yukarida bahsedilen 3 yéntem ayrintili bir sekilde tanitilmis ve algoritma-

lart verilmigtir.
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3.1 SM Benzesim Matrisi Tabanli Ncut Yontemiyle HSG’lerin Denetlemesiz B6-
litlenmesi (SMTNcut)

Goruntllerden gizge olusturulmak istendiginde, bogumlar (V) pikselleri veya slper pik-
selleri ifade etmektedir. Pikseller arasindaki kenar agirliklari (w) ise gorintllere ait
uzamsal benzerlik, renk benzerligi, parlaklik benzerligi gibi 6zellikler kullanilarak hesap-
lanmaktadir. HSG’lerde ise uzamsal bilgilerin yani sira yizlerce banttan olusan spekt-
ral bilgiler yer almaktadir. HSG’lerden ¢izge olusturmak icin bu bilgiler kullaniimaktadir.
Bélltleme sonuglarini iyilestirmek amaciyla LiDAR verileri de gbz 6niine alinacagindan
cizgedeki kenar agirliklari hesaplanirken yikseklik bilgileri uygun bir sekilde uzamsal
ve spektral bilgilerle birlestiriimelidir. Bu tez kapsaminda énerdigimiz ilk yéntemde, Ncut
spektral bélUtleme algoritmasi kullanilarak LiDAR’dan ve HSG’lerden elde edilen bilgiler
birlestirilerek gérintilerin bélitleri elde edilmektedir. Oncelikle, bir spektral bélitleme
yéntemi olan Ncut algoritmasi icin benzesim matrisinin olusturulmasi gerekmektedir.
Farkll kaynaklardan elde ettigimiz uzamsal-spektral ve yikseklik bilgilerinin kendi icle-
rinde Euclidean uzakligi kullanilarak, pikseller arasindaki benzerlikler hesaplanmakta
ve asagida verilen denklemdeki gibi kenar agirliklar belirlenmektedir.

dspektral(i: ]) dlidar(i, j) duzamsa/(i, ./)

W;=e spektral g lidar € uzamsal ,  €Qer Ayzamsal(l,]) < r (3.1)

0, aksi takdirde.

Burada, dspexiral(i, ) i. ve j. piksellerin tim bantlardaki spektral bilgilerinin arasindaki
Euclidean uzakhgini ifade eder ve (3.2)'deki gibi hesaplanir. Denklemdeki X7 ve X7, iki
piksele ait farkli dalga boylarindaki spektral bilgiyi iceren vektdrlerdir. Bu iki pikselin
spektral bilgileri arasindaki fark arttikgca Euclidean uzakligi da artacaktir. Bunlar ara-
sindaki kenar agirhgi ise Euclidean uzakliginin bir Ustel fonksiyonu olarak tanimlan-
digindan, uzaklik arttikga kenar agirligi azalacaktir. Bdylece, spektral bilgiler ile yakin
olan pikseller arasindaki bagi kuvvetlendirmis olurken, uzaktakiler arasindaki bagi da

zayiflatmis olmaktayiz.

Aspektrai(/, f) = %7 — xjng (3:2)
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Denklem (3.1)'de yer alan djq4ar(/,j) piksellerin yukseklik bilgilerinin arasindaki Eucli-
dean uzakligidir ve (3.3)’te gbsterildigi gibi spektral bilgilere benzer sekilde hesaplanir.
x} ve x]}.’ iki piksele ait ylkseklik bilgisini iceren vektdrlerdir. Spektral bilgiler kullanila-
rak olusturulan kenar agirliklari, djuar(i, /) uzakhginin tstel fonksiyonuyla carpildiginda
yUkseklikleri yakin olan piksellerin arasindaki bagi bir derece daha glglendirirken, yik-
seklikleri farkl olanlar arasindaki bagi ise iyice zayiflatmis olmaktayiz.

dicar (i, ) = 1%} = %/ |3 (3.3)

Goruntllerden elde edilen diger bir bilgi ise uzamsal bilgidir. Uzamsal bilgi gérintideki
piksellerin birbirine gére konumlarini ifade etmektedir. Komsu piksellerin ayni nesne
Uzerinde olma olasiligi fazladir ve aralarindaki mesafe artikgca bu ihtimal de ters orantili
olarak azalmaktadir. Bundan 6tlr(, kenar agriliklari hesaplanirken uzamsal uzakliklari-
nin da kullaniimasi oldukg¢a 6nemlidir. Denklem (3.4)’te pikseller arasindaki Euclidean
uzakliginin x;i' ve x;' uzamsal bilgiler kullanilarak hesaplanigi verilmistir. Spektral ve
yUkseklik bilgilerine benzer olarak, piksellerin konumlari arasindaki fark artik¢ca kenar
bilgileri azalacaktir. Bdylece yakin olan piksellerin diger 6zellikleri de benzerse ayni
bélltte yer almasi saglanmaktadir.

Goruntllerde her piksel ikilileri arasindaki kenar agirliklarini hesaplamak ¢ok islem ge-
rektiren bir ydntemdir. Pikseller uzaklastikca kenar agirliklari sifira yakinsayacagindan,
belli bir uzamsal uzakliktan sonraki piksel ikilisi arasindaki kenar agirliklarina sifir ata-
mak agir islem yikinden kurtulmaya ve benzesim matrisini fazla yer kaplamadan kay-
detmeye yardimci olacaktir. Bu amagla, denklem (3.1)'de verilen benzesim matrisinin
girdileri, pikseller arasindaki uzamsal Euclidean uzakligi (d,zamsar) ©nceden belirlenen
r degerinden kiclk pikseller i¢cin hesaplanmakta ve bu degerden blylk olanlara direkt
sifir atanmaktadir. r artikga daha ¢ok piksel arasindaki kenar hesaplandigindan bélGt-
leme sonuglari da iyilesmektedir, ancak bu artis birlikteliginde iglem yUkini arttirmakta-
dir. Bu deger deneysel olarak bélitleme dogrulugunu arttiracak sekilde ayarlanmalidir.
Benzesim matrisi, (W), tim piksel ikilisi arasindaki iliskiyi icermektedir. Denklem (3.1)’de
goruldiga Uzere, benzegim matrisi maksimum degerini ayni pikseller arasindaki ke-

nar agirhgini iceren ana kdésegeninde almaktadir, yani W;; = 1’dir. Bu ana kdsegenin
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r komsulugunda pikseller arasindaki benzerlik azaldikga benzesim matrisini olusturan
kenar agirliklari da sifira yakinsamaktadir. r komsulugu disindaki tim girdiler ise sifirdir.
Ayrica, benzegim matrisi simetrik oldugu icin, W;; = W;;, sadece yarisini olusturacak
sekilde iglem yapmak karmasikligi 6nleyecek ve olusturma zamanini kisaltacaktir.

Cluzamsalli, /) = |[X¢ — xY||3 (3.4)

Denklem (3.1)'de verilen Sspexiral, Vuzamsal V€ diiaar deQiskenleri sirasiyla spekiral, uzam-
sal ve yUkseklik bilgilerinin kenar agirliklarindaki katkilarini ayarlayan kontrol paramet-
releridir. Uzamsal, spektral ve ylUkseklik bilgileri birbirinden farkli 6lgiilerde oldugundan
Bspektrals “uzamsal V€ Ojigar Parametrelerin bolutleme dogrulugu icin uygun segilmesi ge-
rekmektedir. Bu parametrelerinin arttiriimasi pikseller arasindaki benzerlik gegislerini
yumusatmaktadir, azaltilmasi ise benzerliklerin pikselden piksele hizli degismesine se-
bep olmaktadir. Dolayisiyla Bspextrai, Yuzamsal V€ Jiigar Parametrelerinin bélutleme dogru-
lugu icin HSG ve LiDAR verilerine gére uygun secilmesi gerekmektedir.

Sekil 3.1’'de HSG’den alinan uzamsal-spektral bilgilerle LIDAR'dan elde edilen ylkseklik
bilgisinin birlestirilerek Ncut algoritmasi tabanli ydntemin akis semasi verilmistir. Yuka-
rida bahsettigimiz gibi Euclidean uzakliklari kullanilarak tim pikseller arasindaki kar-
silikh kenar agirliklarini iceren benzesim matrisi olusturulduktan sonra genellegtiriimis
6zvektor sisteminin k tane kiguk 6zdeger ve bunlara kargilik gelen 6zvektérleri bulmak
icin ¢ozUma yapilir. Burada elde dilen 6zvekidrlerin girdileri strekli reel sayilardan olus-
maktadir. Bu 6zvektdrlerden bélitler elde edilmesi igin ayriklastirilmasi gerekmektedir.
Onerdigimiz bu ydntemde, 2. béliimde bahsedilen ¢ok katmanli Ncut algoritmasi kul-
lanilarak &zvektorler ayriklastiriimistir. Elde edilen ayrik dzvektorler (y’) birlestirilerek

goruntiinin bolutleri olusturulmustur.
3.2 SE Tabanli HSG’lerin Denetlemesiz Bolltlenmesi (SET)

Bu ydntem, Ncut spektral bélitlemeyi bir potansiyel matrisi ekleyerek genellestiren SE
algoritma tabanh bir yéntemdir. SE algoritmasi denklem (2.22)'de verildigi gibi benzegim
matrisini (W) ve potansiyel matrisini (P’yi) girdi olarak almaktadir. HSG’lerin bu algorit-

mayla bélitlenmesiigin ¢izge olusturulurken, bu matrislerin veri kiimesinden elde edilen
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/ Hiperspektral /! / LiDAR /
/ / / . /
/ goruntiiler / / verileri /
4 / 4 /
,— ——————————————— o I— —————————————— o
Spektral Bilgiler Uzamsal Bilgiler Yiikseklik Bilgileri

Benzesim Matrisinin
Olusturulmasi
W

v

Ozvektor Sisteminin
Cozimii
{(D-W)y=ADy}

y

v

Ozvektorlerin
ayriklastirigsmasi

Ayrik 6zvektorler (y’)

Ayrik Ozvektorlerin
Birlestirilmesi

@jlﬁtlenmis gérﬁn@

Sekil 3.1. SMTNcut spektral bélitleme yéntemi kullanilarak LiDAR destekli HSG’lerin
bolutlenmesi

uzamsal, spektral ve ylUkseklik bilgileriyle uygun bir bicimde olusturulmasi gerekir. Ben-
zesim matrisi olusturulurken sadece HSG’lere ait spektral bilgiler arasindaki Euclidean
uzakhklar kullaniimistir. Bu yéntem icin belirlenen W asagidaki gibi tanimlanmaktadir.
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Birinci yontemde de bahsedildigi gibi, denklem (3.5)'te yer alan x?, bir pikselde yer
alan tim spektral bantlari ifade etmektedir. ¢ komsulugundaki piksellerin kenar agirligi
spektral bilgiler kullanilarak belirlenirken, bu komsguluk disinda kalan piksellerin kenar

agirliklarina sifir atanmaktadir.

—
W,',j = e spektral , eger (xi: xj) <€ (35)

2

S S

2

0, aksi takdirde.

SE algoritmasinin potansiyel matrisi, uzamsal bilesenler arasindaki yakinligi ve LiDAR
verileri arasindaki yakinlhgi birlestirilerek elde edilmistir. Uzamsal ¢dzunurlik ve yik-
seklik ¢6zUnUrlGgi uzunluk birimlerinden olustuklari i¢in bunlarin, 1sik yansimasi kul-
lanilarak elde edilen spektral bilgilerden ayirip kendi aralarinda potansiyel matrisiyle
birlestiriimesi mantikhdir. Ayrica, bu ydéntem spektral bilgilerin komgulugunun uzam-
sal bilgilerden bagimsiz bir sekilde belirlenmesine olanak saglamaktadir. Uzamsal ve
yUkseklik bilgisi kullanilarak énerdigimiz potansiyel matrisi denklem (3.6)'da verilmistir.
Denklemdeki X!(x;), X;’'nin uzamsal bilegenlerinin ¢ komsulugundaki uzamsal bilesenler
kimesidir. x!' ve x! sirasiyla piksellerin uzamsal ve ylkseklik bilesenlerini gostermek-

tedir. PU/) matrisi ise denklem (2.21)'da tanimlanan diyagonal olmayan bir matristir [32].

y v 2 2
. |

P- Z Z Pl e 6l%dar e ’Yizamsal

u u

2

Sekil 3.2'de SE ydntemi ile LiDAR destekli HSG’lerin bolitleme akis semasi verilmistir.
W ve P matrisleri olusturulduktan sonra, denklem (2.22)'deki 6zvektdr sistemi ¢bzile-
rek 6zdegerler ve 6zvektorler elde edilir. Bu sistemde yer alan o degeri bélitlemede
spektral bilgilerinin ve uzamsal-ylkseklik bilgilerinin katkilarini ayarlamak amaciyla de-
neysel olarak ayarlanacak serbest bir parametredir. o kic¢ultildiginde bélitleme so-
nuglarinda spektral bilgilerinin etkisi digerlerine gére daha fazla olacagindan gérintl
bélutleri spektral benzerligine gére olusacaktir. Diger yandan, « biyuttldiginde bolit-
leme sonuglari uzamsal ve yikseklik bilgilerine gére sekillenecektir. Bélitleme sonrasi
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HSG’lerin Gizerine uygulanacak islemlere yoénelik, o parametresi degistirilerek bélitleme
sonuglari istenilen hale getirilmig olunur. SMTNcut yénteminde, gérintl kag bélite ayri-
lacaksa ona gére 6zvektor sistemik adet 6zvektdr icin ¢cbzilmekte ve sonug olarak ayni
sayida bdélit olusturulmaktaydi. Ancak, gérintilerde boélat sayisinin énceden bilinmesi
gibi bir durum séz konusu degildir. Ozvektdr sayisini degistirerek béliitleme dogrulugu
arttirma bir yontem olarak kullanilabilir.

Bu tez kapsaminda gercek veriler lizerinde de gbésterilecegi gibi, 6zvektor sisteminin
¢6zUmu sonucu elde edilen 6zvektérler gorintlideki nesnelerin sinir bilgilerini igermek-
tedir. Bu sebeple, k degerini belirlemek yerine, nitekim bu zor bir iglemdir, 6zvektor
sistemi belirli sayida 6zvektdr icin ¢cdzlldikten sonra, bu 6zvektdrler denklem (2.19)'da
verilen kenar bulma algoritmasiyla birlestirilip gérantinin kenar bilgilerinin olusturul-
masl! saglanabilir. Kenar bulma ile bélutleme birbiriyle 6rtiisen problemlerdir. Biri elde
edilince digerini elde etmek mimkindtr. Bundan dolayi, Sekil 3.2'deki akis semasinda
da g6zuktigu Gzere sPb algoritmasinin sonucu olan gérintinin kenar bilgisi UCM al-
goritmasindan gecirilerek HSG’lerin bélutleri olugturulmaktadir.

3.3 PMI Benzesim Matrisi Tabanli Ncut Yontemiyle HSG’lerin Denetlemesiz B6-
litlenmesi (PMITNcut):

Diger iki ydéntemde HSG verileri ile LiDAR verileri birlestirilip spektral bélutlemenin kul-
landig1 benzesim matrisi olusturulurken uzamsal, spektral ve yikseklik bilgileri arasin-
daki Euclidean uzaklik temel alindi. Bu yontemle ise HSG ve LiDAR verilerindeki ayni
nesneye ait piksellerin, farkli nesnelere ait piksellerden daha yiksek istatiksel bagimlilik
sergilemesi prensibi temel alinarak benzesim matrisi olusturulmaktadir. PMI ile gbrin-
tiden alinan 6rnek ikililerinin ézniteliklerinin tim goérintlde birlikte bulunma olasilik-
lari hesaplanmaktadir. Bu yontemle, HSG’lerden alinan uzamsal, spektral bilgiler ve
LiDAR'dan elde edilen yUkseklik bilgisi igin ayri ayri PMI'lar hesaplanmaktadir. Daha
sonra, bu PMI degerleri birlestirilerek benzesim matrisi olusturulmaktadir. Bu farkh kay-
naklardan elde edilen bilgilerin birbirinden bagimsiz oldugu agiktir. Clnki nesnelerin
spektral dzellikleri, yukseklikleri ve goértntlideki uzamsal konumlari arasinda herhangi
bir ilgilesim (correlation) bulunmamaktadir. Bu gercek 1siginda, uzamsal, spektral ve
yukseklik bilgilerinin PMI deg@erleri asagidaki denklemde verildigi gibi birlestirilerek ben-
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———————————————y

/ /
/ Hiperspektral // / LiDAR ///
/ goruntiiler / / verileri /
4 / 4 /
I_ ________ .|. _____ o I_ _____________ o

Spektral Bilgiler Uzamsal Bilgiler Yikseklik Bilgileri

Benzesim Matrisinin Potansiyel Matrisinin
Olusturulmasi Olusturulmasi

W P

Ozvektor Sisteminin
5 Coziimi «——
{(D-W+oP)y=ADy}

Avey

Spektral Pb ile
Ozvektorler
Birlestirilerek Kenar
Bilgilerinin
Olusturulmasi

Kenar Bilgisi

UCM Algoritmasiyla
Boliitlerin
Olusturulmasi

@élﬁtlenmis gérﬁn@

Sekil 3.2. SET spektral bélutleme ydntemi kullanilarak LiDAR destekli HSGlerin bélit-
lenmesi
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zesim matrisinin olusturulmasi dnerilmektedir.

3
> PMI,(xf, xf) (3.7)
W,'!j = gk=1

Denklem (3.7)deki x}, x? ve x3 sirasiyla uzamsal, spektral ve yiikseklik bilgilerini ifade
etmektedir. p parametresi ise dnceki bdlimde de bahsettigimiz gibi veri kimesi Gze-
rinde bolitleme dogrulugunu artiracak sekilde deneysel olarak belirlenecek serbest bir
parametredir.

HSG’ler yuzlerce spektral bant icerir, bu ylzden spektral bilgi icin PMI olusturulmasi
muazzam miktarda hesaplama gerektirebilir. Spektral bilgiler farkli nesneler icin sadece
belirli dalga boylarinda farklilik géstermektedir. Bu bantlar igin PMI degeri bélutlemede
herhangi bir fayda saglamamaktadir. Bu nedenle, bélitlemenin efektif yapilmasi igin
HSG’lerden elde edilen spektral bilgilerin énemli kisimlarini koruyarak boyutlarinin in-
dirgenmesi gerekmektedir. Boyut indirgeme, verilerin igerigini gelistiren bir islemdir. Bu
calismada, spektral bilgilere iliskin herhangi bir 6n bilgiye ihtiyag duymayan temel bile-
sen analizi (principle component analysis-PCA) yéntemi kullaniimigtir. PCA ¢ok boyutlu
veri kiimelerindeki bilgileri sikistirmada etkili bir ydontemdir [54]. Bu tezde kullanilan
HSG’lere ait spektral bilgileri PCA ile elde edilen ilk 20 temel birlesenine ait 6zdegerler
Sekil 3.3'te verilmistir. ilk 7 en blyik 6zdegerin toplami, tim 6zdegerlerin toplaminin
%99,35’ini olusturmaktadir. Dolayisiyla; spektral veri kimesi, ilk 7 temel bilesen kulla-
nilarak gosterilebilir. Boylece, islem karmasasindan kaginmis olunacak ve PMI daha

verimli elde edilerek bélltleme dogrulugu arttinlacaktir.

Diger yandan, LiDAR belirli bir sahnedeki her piksele ait ylkseklik bilgilerini saglamak-
tadir. Ancak, 4. béliminde sunulan veri kiimesi disik yogunluklu kentsel bdlgeler-
den olusmakta ve ¢ok sayida agag grubu icermektedir. Bu agaglarin dallari arasindaki
bosluklar nedeniyle, LiDAR verileri bazi bélgelerde pikselden piksele hizli degisimler
gostermektedir. Bu degisim, PMI sonucunu ve buna bagh olarak HSG’lerin bélitleme
dogrulugunu negatif yénde etkilemektedir. Bu eksikligi 6nlemek amaciyla LiDAR verile-
rinin pikseller arasi gegiglerini yumusatmak gerektiginden standart sapmasi 1 olan ve
5x5’lik pencereden olusan simetrik bir Gauss algak gecirgen filtresi kullaniimistir.
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Sekil 3.3. Kullanilan veri kiimesinin PCA ile elde edilen en blyik 20 6zdegeri

Sekil 3.4’te 3. yontemin akis semasi gdsterilmektedir. Benzesim matrisi olugturulurken
direkt olarak PMI degeri de kullanilabilir. Ancak, PMI'nin Ustel fonksiyonu PMI'dan daha
iyi sonuglar verdiginden denklem (3.7)’'de verilen form kullaniimaktadir. Sekil 3.4’te de
verildigi gibi, benzesim matrisi PMI ile olusturulduktan sonraki islemler yéntem 2 ile
aynidir. Yani, PMI tabanl benzesim matrisi kullanilarak genellestirilmis 6zvektor sis-
temi ¢Ozllerek belirli sayida 6zdeger (bu yéntem icin 100 adet 6zdeger) ve bunlara
karsilik gelen 6zvektdrler hesaplanmaktadir. Bu 6zvektorlerin gorintideki nesnelerin
kenar bilgilerini icerdigini 6nceki bélimde sdylenmigti. HSG’lerin yani sira LiDAR ve-
rilerinin de kullaniimasi bu 6zvektdrlerdeki kenar bilgisini iyice arttirmaktadir. Bundan
dolayi, elde edilen 6zvektoérler (2.19)'de verilen sPb ile birlestirilerek gérintiintin kenar
bilgisi ¢cikartiimaktadir. Son olarak, Yénlendirilmis Havza Déntstmu (Oriented Waters-
hed Transform-OWT) ve UCM uygulanarak gérantinin bélatleri elde edilir.
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Sekil 3.4. PMITNcut ydntemi kullanilarak LiDAR destekli HSG’lerin bélitlenmesi
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4. GERCEK VERILER UZERINDE DENEYSEL SONUCLAR

Galismanin bu kisminda, tez suresince kullanilan gercek hiperspektral ve LiDAR veri
kimeleri tanitiimigtir. Bir 6nceki bdlimde énerilen LiDAR destekli HSG’lerin bélitleme
ybntemleri gergek veriler Gzerinde uygulanmig ve 6nerilen 3 ydntemin sonuglari ile mev-

cut gizge tabanl yontemlerin sonuglari karsilastiriimigtir.
4.1 Gercek Veri Kimesi

Bu tezde bélutleme sonuglari igcin MUUFL Gulfport veri kimesi [55] kullaniimistir. MU-
UFL Gulfport veri kiimesi Kasim 2010’da Mississippi Long Beach’te bulunan Giney
Mississippi Gulf Park Kampusu Gzerinde toplanmistir. Ayni anda tek bir ugaktan Op-
tech ALTM Gemini LiDAR ve CASI-1500 hiperspektral géruntaleyici kullanilarak toplan-
mis veriler digik yogunluklu kentsel ve kiyi bdlgelerinden olusmaktadir. Hiperspektral
veriler 72 bantta VNIR spektral araliginda olusturulmustur. LiDAR senséri, 1064 nm’lik
dalga boyunda calistirilarak yukseklik bilgisi elde edilmistir. Hiperspekitral gorintuleyi-
cinin ve LiDAR sensérinun teknik 6zellikleri sirasiyla Cizelge 4.1°de ve Cizelge 4.2°de

verilmektedir.

Cizelge 4.1. CASI-1500 hiperspektral gérintileyicinin teknik dzellikleri

Sensér Ozelligi | Birimi | Degeri
Dalga Boyu Araligi nm | 375 - 1050
Bant Sayisi adet 72

Spektral Cézanurlik | nm 10
Uzamsal CozunUrlik m 1
Toplandigi YUkseklik km 1.0668

Sekil 4.1°de KYM gérintistinde de gorulecegi Uzere, orijinal MUUFL Gulfport veri ki-
mesi 325x337 pikselden olusmaktadir. Gurulti sebebiyle hiperspektral verinin ilk 4
bandi ve son 4 bandi kullaniimamaktadir. Dolayisiyla, dnerilen yontemlerde 64 banttan
olusan spektral bilgiler Gzerinde ¢alisiimaktadir. Yakin tarihte, veri kimesinin bélitleme
dogruluk haritasi da olusturulmustur [56]. Orjinal verinin sag alt tarafi gecgersiz alandan
olustugundan bélitleme dogruluk haritasi 325x220 piksellik kisim igin olusturulmustur.
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Cizelge 4.2. Optech ALTM Gemini LiDAR sensérinin teknik 6zellikleri

Sensér Ozelligi Birimi | Degeri
Dalga Boyu nm 1064
Darbe Tekrarlama Frekansi (PRF) | kHz 70
Tarama Frekansi Hz 43
Tarama Acisi derece 30
Toplandigi YUkseklik km 1.0668

Sekil 4.2'de veri kiimesinin boélitleme haritasi gosterilmektedir. Sekilde de goérildigl
gibi gérintide toplam 11 tane etiketlenmis sinif bulunmaktadir. Bu siniflar sunlardan
olusmaktadir: agaclar, ¢im, karisik zemin yizeyi, camur/kum, asfalt, su, binalar, bina
golgeleri, kaldirim, borddr taslari ve farkli spektral 6zelliklere sahip kumas hedefler.
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Sekil 4.1. MUUFL Gulfport veri kimesinin KYM gérintusi
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Sekil 4.2. MUUFL Gulfport veri kiimesinin bélit dogrulama haritasi

4.2 Denetlemesiz Boliutleme Sonuclarinin Nesnel Olarak Karsilastiriimasi

Denetlemesiz bélimleme sonuglarinin performansini degerlendirmek ve farklh yéntem-
lerin bolitleme dogrulugunu (BD) kargilastirmak icin nesnel ve istatistiksel bir kistasa
gereksinim duyulmaktadir. Bu amagla, [57]'de Onerilen spektral ayristirma guci (po-
wer of spectral discrimination-PWSD) uygun gdézikmektedir. Bu yéntemin degistiriimis
strimi, HSG’lerin denetlemesiz bélitleme performansini degerlendirmek igin [29]'da
kullaniimigtir. PWSD, gérintideki belirli bir piksel icin iki referans bélit temsilci imza-
sina bagl olarak bir ayristirma 6lgiti saglamaktadir. PWSD séyle hesaplanmaktadir:

(4.1)

a(e;, ¢;, X) = max {sam(c,-,x) sam(cj,x)}

sam(c;,Xx)’ sam(c;, X)

Burada, c; ve c; sirasiyla i ve j bolutlerindeki piksellerin spektral bilgilerinin ortala-
masi alinarak her bir bolUt igin elde edilen temsilci imzalardir. x ise bir pikselin hipers-
pektral verisini ifade eder. Denklem (4.1)'de verilen spektral agi 6l¢clsu (spectral angle
measure-sam), iki hiperspektral verinin (x ve y) benzerlik 6lgimant gésterir ve asagi-
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daki gibi tanimlanir. Denklemde yer alan n spekiral verilerin boyutunu géstermektedir.

n
Z XiYi

i=1
X[ VE
i=1 i=1

Bir bolutteki her x; pikseli icin PWSD, pikselin ait oldugu bélitin (c;) temsilci imzasi

sam(x,y) = 1 — arccos

(4.2)

ve elde edilen farkli bolGtlerin temsilci imzalari kullanilarak hesaplanir (c;, i # j). Daha
sonra; m bélite ayrilmis bir sahnedeki x pikseli igin BD, denklem (4.3)’te verildigi gibi
PWSD degerlerinin ortalamasi alinarak hesaplanir.

BD(x) = ortalama {Q(c;,c;, X)|j =1,....,m(i #j)} (4.3)

Tanimi geregi PWSD degeri ve dolayisiyla BD daima 1’den blyUktdr. Bir bélitleme
teknigi icin ortalama BD, tim piksellerin BD degerinin ortalamasi alinarak elde edilebilir.
Bélltleme tekniginin gériintideki nesnelerin ayirt etme kabiliyeti, ortalama BD’nin artan

degeri ile orantili olarak arttigi sonucuna varilabilir.
4.3 SMTNcut Yontemiyle HSG’lerin Denetlemesiz Bollitleme Sonuclari

Bu yéntemin bélatleme sonuglarinin ayrintih olarak incelenmesi igin éncelikle Sekil 4.1°de
KYM gérinttsi verilen veri kiimesinin 121x121 pikselden olusan béliminin HSG ve
LiDAR verileri Gzerinde ¢ahgiimistir. Kullanilan bu alt kimenin KYM goruntisu, farkh 14
hiperspektiral bandindan elde edilen goruntuler ve LiDAR'dan elde edilen yukseklik ha-
ritasi Sekil 4.3'te gbsteriimektedir. Daha 6nce bahsedildigi gibi, sekildeki hiperspektral
bantlara bakildiginda gérintiideki maddelerin 15101 farkli yansittigr géztikmektedir. Tek
bant ele alindiginda; bazi maddeler, 6zellikle cimen ve agaglar, 1191 benzer yansittigin-
dan tek bant verileriyle bunlari ayirmak oldukga zorlagmaktadir.

HSG’lerdeki farkli dalga boylari malzemeleri ayirmada avantaj saglamakla birlikte ye-
terli iyilestirmeyi yapamamaktadir. LiDAR verilerinden elde edilen yikseklik bilgileri yar-
dimiyla, spekiral olarak birbirlerine benzeyen ancak farkh yikseklikte bulunan madde-
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Sekil 4.3. Sirasiyla: Kullanilan verinin 121x121 piksellik KYM g6runtist (sol Ust),
425nm bandi, 465nm bandi, 515nm bandi, 565nm bandi, 615nm bandi,
665nm bandi, 715nm bandi, 765nm bandi, 815nm bandi, 865nm bandi,
915nm bandi, 965nm bandi, 1015nm bandi,1050nm bandi ve LiDAR ile olus-
turulan ytkseklik haritasi(sag alt)

leri ayirmak kolaylagsmaktadir. Ayrica, LiDAR verilerinin kullanimi cisimleri ve cisimlere
ait gélgeleri birbirinden ayirmada 6énemli katki saglamaktadir.

Benzesim matrisini olugsturmak igin gérintilerde yer alan her bir piksel bogum olarak
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Sekil 4.4. Sirasiyla: Veri kimesinin 121x121 piksellik bélumu bilgileri kullanilarak olus-
turulan benzesim matrisi (Bspektrai = 0.3, Yuzamsar = 5, djigar = 2 ve r = 5), belli
bir bélgesi yakinlastiriimig benzesim matrisi

segilmis ve denklem (3.1)’de oldugu gibi hesaplamigtir. Hesaplama yapilirken Sspexirar =
0.3, Yuzamsal = 5, diigar = 2 ve r = 5 olarak secilmistir. Deneysel olarak secilen bu para-
metre degerlerine gére elde edilen benzesim matrisi Sekil 4.4’te verilmigtir. Sekilde de
g6zUktigu gibi benzesim matrisi seyrek (sparse) bir matristir. Yani késegen ve kdsegen
cevresindeki bantta yer alan girdiler disinda kalan tim degerler sifirdir. Ayni zamanda
benzesim matrisi simetrik bir matristir. Kullanilan gorintd 121x121 boyutlarinda oldu-
gundan, yani ¢izge toplamda 14641 piksel (bogum) icerdiginden, olusturulan benzegim
matrisi 14641x14641 boyutlarindadir. Tanimi geregi benzesim matrisi maksimum 1 de-
gerini ve minimum 0 degeri almaktadir. Sekilde yakinlastirilmis bélimune bakildiginda
sadece komgu 5 piksel arasindaki kenar agirliklarinin hesaplandigr gézikmektedir ve
bu agirliklar pikseller arasindaki benzerlikler (uzamsal, spektral ve ylkseklik) azaldikga,
orantil olarak azalmaktadir.

Benzesim matrisi olusturulduktan sonra, Sekil 3.1’de géziktiga gibi 6zvektdr sistemi-
nin ¢6zUmu yapilir. Belirlenen sahne igin 6zvektér sistemi en blylk 30 tane 6zdeger ve
bunlara karsilik gelen ézvektérler bulunacak sekilde ¢é6zimlenmistir. Sistemin ¢6zUm
sonucunda elde edilen en blyik 30 6zdeger ve goérintinin boyutlarina déndstardl-
mus ilk 8 6zvektdr Sekil 4.5’te gdsteriimektedir. Sekilde gdzuktligu gibi her bir 6zvektor
gbruntinin belirli alanlarini diger alanlardan ayirmaktadir. Ancak, bir énceki bélimde
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bahsedildigi gibi Ncut ¢6zimu ayrik olmasi gerekirken genellestiriimis 6zvektdr siste-
minin ¢6zimu ile elde edilen 6zvektérler sureklidirler. Dolayisiyla, Sekil 4.5'te de go-
z0ktga gibi, 6zvektérlerde bazi bélgeler arasindaki gegisler daha yumusak oldugun-
dan ve dzvektorlerin ylksek degerler aldigi kisimlarin gakismasi sebebiyle tam olarak
gorunttdeki bolutleri ifade etmemektedir. Bu 6zvektdrlerden bélltler elde edilmesi igin
ayriklastiriimasi gerekmektedir.

Onerdigimiz bu yéntemde, cok katmanli Ncut algoritmasi kullanilarak dzvektérler ayrik-
lastiriimigtir. Olusturulan bu ayrik vektérlerin gérintl boyutlarina dénastirialmas halleri
Sekil 4.6’da gbsterilmektedir. Sekilde de gdzuktligu gibi, her bir ayrik 6zvektdr goriinti-
ntn farkh bir bélimunG ayirmaktadir ve vektérlerin ayirdigi bélgeler cakismaktadir. Son
olarak, verilen sahnedeki gérintl bélGtlerini olusturmak icin bu ayrik vektorler birlestiril-
melidir. Bu birlegtirme islemi basit bir garpma ve toplama isleminden ibarettir. Ayrik 6z-
vektorlerin elemanlari sadece 1 ve 0 degerlerinden olusmaktadir. Bélltleri birbirinden
ayirmak icin her bir 6zvektor farkli dogal sayiyla ¢arpilip ardindan toplanirsa bélatler
elde edilmektedir. Ornegin; ilk vektér 1 ile garpilsin, ikinci vektdr 2 ile garpilsin ve bu
sirayla devam edilerek tim vektérler artan siradaki dogal sayiyla ¢arpilip toplandiginda

gO6rantl boélutleri olusturulmaktadir.

0.99

g,
0.985 o

Sekil 4.5. Veri kiimesinin 121x121 piksellik bélim0 kullanilarak 6zvektér sistemiyle
olusturulan en biylik 30 tane 6zdeger (sol Ust) ve ilk 8 en blylk ézdegere
karsilik gelen gorintindn boyutlarina déntstirilmis ézvektorler (y)
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Sekil 4.6. Surekli 6zvektérlerin ayriklastiriimasi sonucu olusturulan ve gérintinin bo-
yutlarina dénistiriimis ilk 8 ayrik 6zvektor (y')

Kumag hedefler
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Sekil 4.7. (a) Kullanilan verinin 121x121 piksellik KYM gorinttsa, (b) Verinin bélutleme
dogruluk haritasi, (¢) SMTNcut yéntemiyle HSG’lerin bélitleme sonucu

Sekil 4.7°de ilgili gérintl kisminin bu yéntemle elde edilmis bélttleme sonucu veril-
mektedir. LiDAR verilerinin kullaniimasiyla benzer ézelikler tagiyan agac ve ¢im gibi
nesneler basarili bir sekilde ayri ayr boélitlenmistir. Ayni zamanda, bélatleme dogruluk
haritasinda verilmeyen, ancak Sekil 4.7 (a)'da yer alan kirmizi araba da bu yéntem so-
nucu ayri bir bélute yerlestirilmigtir. Binalar ile gélgelerini ayirmada basari géstermekte-
dir. Ancak, bu yéntemin temel birkac eksikligi mevcuttur. ilk olarak, kullanilan dzvektér
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sayisinin énceden belirlenmesi gerekmektedir, yukarida bahsedildigi gibi gérintinin
121x121 piksel alana sahip sahnesi igin 30 6zvektdr kullaniimigtir. Gérintinin dogru
bir sekilde bélutlenmesi icin kullanilan ézvektdr sayisinin uygun segilmesi gerekmekte-
dir. Az sayida 6zvektér kullanildiginda gorinti oldugundan daha az bélite ayrilacaktir.
Cok sayida 6zvektor kullanildiginda ise gérintl oldugundan daha fazla bélite ayrila-
caktir. ikinci eksiklik ise bu yéntemle gériintiideki tekdiize biiyiik alanlar yanhs ayriimak-
tadir. Ornegin, Sekil 4.7 (c)'de verilen béliitleme sonucunda da gériildiigi gibi, asfalt yol
bir bltlin olarak ayrilamamigtir. Ayrica, blyUk alanlarin birden ¢ok bélite ayrilmasini
kullanilan 6zvektor sayisi da etkilemektedir.

Bolitleme dogrulugu igin benzesim matrisi olugturulurken kullanilan Sspextrars Yuzamsar,
digar degerlerinin ve komsu kag piksel arasinda (r) kenar agirliklarinin hesaplanacagi
kritik 6Gneme sahiptir. Cizelge 4.3’te farkli r parametresi icin bu yéntemin ortalama BD
degeri verilmektedir. Ortalama BD hesaplanirken diger tim degigkenler sabit tutularak
sadece r parametresi degistiriimistir. Sonuclara bakildiginda bu deger artikca, buna
bagli olarak ortalama BD de artmaktadir. Clnk0 r degerinin artmasi, gizgede daha ¢ok
komsu piksel aralarindaki kenar agirliklarinin hesaplanmasi anlamina gelmektedir. Ke-
nar sayisi arttikga géruntt hakkinda daha ¢ok bilgi kullanilarak ¢izge olusturulmaktadir.
Ancak, hesaplanan kenar agirligi sayisi arttikga, birlikteliginde islem yUki de artmak-
tadir. r degeri arttikca ortalama BD’deki artis miktari azalmaktadir. Bu sebeple, iglem
yUkinu fazla arttirmayacak bir degerde sabit birakilmasi mantikhdir. Ayrica, SBspextrar,
Yuzamsal V€ Jjigar Parametrelerinin arttiriimasi pikseller arasindaki benzerlik gecislerini
yumusattigindan, bélitleme sonucunu iyilestirmektedir. Fakat ¢ok arttinimalar, farkl
uzamsal ve spekiral 6zelliklere sahip piksellerin benzerligini de arttiracagindan bélutle-
meyi negatif ydnde etkilemektedir.

4.4 SET Yontemiyle HSG’lerin Denetlemesiz Béllitleme Sonuclar

Bu yontemin bélitleme sonuglari icin Ncut yénteminde oldugu gibi ayrintili incelemek
amaciyla veri kimesinin Sekil 4.3’te verilen 121x121 pikselden olugan bdlimanin HSG
ve LiDAR verileri Uzerinde galisiimigtir. Denklem (3.5)’te verilen benzesim matrisini
olugturmak igin Bspertrar = 1 segilmigtir. e = 10 komsulugundaki pikseller arasi agirliklar
hesaplanmigtir. Denklem (3.6)'da gdsterilen potansiyel matrisi olusturulurken ise basit-
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Cizelge 4.3. Farkli r degerleri i¢cin SMTNcut yéntemin ortalama BD’si (Sspexirar = 0.3,
Yuzamsal = D, Ojigar = 2 Ve kullanilan 6zdeger sayisi=30)

Deneme No | r (piksel) | ortalama BD
1 2 1.2620
2 3 1.2755
3 4 1.3658
4 5 1.3658
5 6 1.3873
6 7 1.3996
7 10 1.4051

lik olmasi agisindan vy zamsas = 1, djigar = 1 secilmis ve e = 6 komsulugundaki uzamsal bil-
giler ve bunlara karsilik gelen yikseklik bilgileri kullaniimistir. Spektral Pb kenar bulma
algoritmasindaki yonli tirevler hesaplanirken, 6’nin [0, «] araliginda diizgin dagiimis 8
acl degeri kullanilmistir. Bulunan kenarlardan bélatler olusturulurken, elde edilen tim
sonuglar i¢cin, UCM algoritmasinin kullandidi esik degeri 0, 2 olarak belirlenmistir. Son
olarak, Laplacian matrisi ile potansiyel matrisin katkilarini gérece agirliklandirarak bo-
lGtleme sonuclarindaki degisimi gézlemlemek amaciyla denklem (2.22)’deki o’nin farkli
degerleri igin ortalama BD hesaplanmistir.

SE algoritmasinin benzesim matrisi olan W ve potansiyel matrisi olan P hiperspektral
ve LiDAR verileriyle olusturulduktan sonra Sekil 3.2°’de g6zUktigu gibi belirlenen bir «
degeri ile 6zdeger sistemi en kiglk 6zdeger ve bunlara karsilik gelen dzvektorler icin
¢6zimlenir. SMTNcut yéntemiyle bu basamaktan sonra elde edilen 6zvektérler ayrik-
lagtirilarak bélutler olusturuldu. Ancak, SMTNcut ydnteminde olusturulan ayrik 6zvektér
sayisi bolat sayisiyla ayni olmasi gerekmektedir. Gercek UA uygulamalarinda goérinti-
deki bolit sayisi 6nceden bilinmediginden 6zvektér sayisi belirlemek bélitleme dogru-
lugu agisindan buyidk énem kazanmaktadir. Bu yéntemle 6zvektdr sistemi daha fazla
6zdeger ve 6zvektdr (N=50) icin ¢ézilerek bu bagimlilik ortadan kaldirilmaktadir. 3. bo-
limde bahsettigimiz gibi elde edilen bu 6zvektodrler gériintliideki nesnelerin kenar bilgi-
lerini icermektedir. Bu sebeple 6zdeger sistemi sonucu elde edilen 6zvektérler denklem
(2.19)'daki spektral Pb ydontemiyle birlestirilip gérintiinin kenar bilgileri olusturulabilir.
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Sekil 4.8'de, 6zvektdr sisteminin ¢6zimu sonucu elde edilen ilk bes en kiiclk 6zdegere
karsilik gelen 6zvektorler ve bu dzvektdrler kullanilarak elde edilen spektral Pb sonucu
gosterilmektedir. Sekildeki 6zvektérlere bakildiginda, her birinin gértntideki farkh bol-
gelerin kenar bilgisi tasidigi gézikmektedir. Cok sayida 6zdeger ve bunlara ait 6zvektor
kullanilarak sPb ile gorinttdeki tim nesnelerin kenar bilgisini olugturmak mimkindur.
LiDAR'dan elde edilen yUksekli bilgisi de kullanildigindan nesneler ile gdlgeleri arasin-
daki kenar bilgileri de olusturulmaktadir.
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Sekil 4.8. Veri kimesinin 121x121 piksellik b6limi kullanilarak 6zvektdr sistemiyle
olusturulan en blyik 5 tane 6zdeger karsilik gelen 6zvektérler ve bu 5 vektér
ile elde edilen sPb sonucu (sag alt)

Spektral Pb sonucu kullanilarak UCM algoritmasiyla verilen sahnenin bélutleri olustu-
rulmaktadir. SET ydnteminin bélitleme algoritmasinin farkli o degerleri icin elde edilen
bolitleme sonuclarn Sekil 4.9'da gdsterilmektedir. Sonuglara bakildiginda, o = 0 iken,
yani sadece spektral bilgiler kullanildiginda, gérintiinin gereginden fazla bélitlere ay-
rnidigi gézlemlenmektedir. Ozellikle, agag topluluklari, gdlgeleri ve cimenler olmasi ge-
rekenden daha fazla bélUtlere ayrilmigtir. o = 4 iken, spektral bilgilerin yani sira uzamsal
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ve Ozellikle ylkseklik bilgileriyle elde edilen potansiyel matrisi devreye girdiginde daha
6nce elde edilen fazla bélltlerin bertaraf edildigi gdzikmektedir. Agag topluluklar tek
bir bolit olarak ayriimig, agac gélgeleri de agaglardan farkli bir bitin olarak gruplan-
mistir. Benzer sekilde, ¢imenlerdeki fazla bélltler ortadan kalkmis, tek bolit halinde
ayriimistir. o degeri arttinldiginda, spektral bilginin bélitlemeye etkisi azalirken yik-
seklik bilgisinin etkisini arttirmaktadir. Beklenildigi gibi, yiksekligi baskin olan cisimlerin
bélutlendigi Sekil 4.9 (d)’'de « = 50 igin gézikmektedir.
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Sekil 4.9. (a) a = 0 iken bélitleme sonucu, (b) a = 4 iken bélitleme sonucu, (¢) Verinin
121x121 piksellik KYM géruntist , (d) « = 10 iken béllitleme sonucu, (e)
a = 50 iken boélitleme sonucu , (f) Verinin bélitleme dogruluk haritasi

Sekil 4.10°da « parametresinin degisimine bagl olarak ortalama BD degisimi gosteril-
mektedir. Grafikte g6zUktiglu gibi « ayarlanarak verilen sahnenin BD’si en iyi seviyeye
cikartilabilir. o’nin degeri belli bir noktadan sonra arttiriimasi sahnenin BD’sinin azal-
masina sebep olmaktadir. Bu yanhs bolltler olusturuldugu anlamina gelmemektedir.
Bélimiin basinda bahsedildigi gibi BD, boélitleme yénteminin gérintideki nesnelerin
spektral olarak ayirip ayirmadiginin bir élcistdir. Ancak, « arttiriimasiyla spektral bil-
gilerin bolitleme Gzerindeki etkisi azaldigindan, beklenildigi gibi BD’nin azaldigi g6-
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zUkmektedir. o’'nin arttirlmasi uzamsal ve yukseklik bilgilerinin bolitleme Gzerindeki
etkisini arttirmasina sebep olurken, elde edilen bélitleme haritasi da buna gore sekil-

lenmektedir. Dolayisiyla, Sekil 4.9 (d)de de gdzUktigi lzere o = 50 iken, ylkseklik
bilgisine gbre gdrunti bolutleri olusmaktadir.
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Sekil 4.10. o’nin degisimine bagh olarak ortalama BD’nin degisimi

4.5 PMITNcut Yontemiyle HSG’lerin Denetlemesiz Bollutleme Sonuclari

PMITNcut yénteminin HSG’lerin denetlemesiz bdlitleme sonuglari incelemek amaciyla
diger iki ydontemde oldugu gibi ilk olarak veri kimesinin Sekil 4.3'te verilen 121x121
pikselden olusan bdliminin HSG ve LiDAR verileri Gzerinde calisiimistir. Bu sahne
verileriyle spektral bélitlemenin kullandigi benzesim matrisini, W, olusturmadan énce
ilgili veri kimesinin Sekil 3.4’teki akis semasinda g6ziktigu gibi bazi 6n islemlerden
gecmesi gerekmektedir. Oncelikle islem kargasasini 6nlemek amaciyla ve PMI'nin ve-
rimli hesaplanmasi igin PCA ile spektral bilgilerin daha disik boyutlara indirgenmesi
gerekmektedir. Sekil 3.3'te PCA ile elde edilen temel bilegenlere ait 6zdegerler gézuk-
mektedir. Bunlarin ilk 7 temel bilesenine ait 6zdegerlerin toplami, tim &zdegerlerin top-
laminin yizde 99,35’ini olusturdugu bélim 3.3’te bahsedilmisti. Dolayisiyla bu 7 temel
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bilesen kullanarak énemli veri kaybina ugramadan spektral bilesenlerin igerigi zengin-
lestirilebilir. Sekil 4.11°de verinin 121x121 piksellik sahnesinin spektral bilgileri igcin PCA
ile olusturulan ilk 7 temel bilegeni gésterilmektedir. Géraldigu tzere temel bilesenlere
ait 6zdegerler azaldikca spektral bilgilerden elde edilecek bilgiler de gurdlti haline do-
nismektedir. PMI olusturulurken daha kuguk bilesenlerin kullaniimasi, hem islem yuka
olusturacagindan hem de nesneler hakkinda énemli bilgiler getirmeyeceginden, gerek-

sizdir.

Diger 6n islem ise LiDAR verileri ile PMI olugturmadan énce ylkseklikler arasindaki ge-
cisleri yumusatmak igin filtreden gecirmektir. Veri kimesi dustk yogunluklu kentsel bél-
gelerden olustugundan yukseklik bilgisi pikseller arasi hizli degisimler gésterebilmekte-
dir. Sekil 4.12 (a)'da verinin orijinal ylkseklik haritasi gdziikmektedir. Sekilde gézUiktigu
gibi, 6zellikle agag topluluklarinin oldugu bélgelerde ylkseklik bilgisi pikseller arasinda
hizli degisimler gbéstermektedir. LiDAR verileri ile elde edilen PMI etkinligini arttirmak
adina yukseklik bilgileri, standart sapmasi 1 olan ve 5x5’lik pencereden olusan simet-
rik bir Gauss algak gecirgen filtresinden gegirilerek hizli degisimler yumusatiimaktadir.
Filtrelenmis ylkseklik haritasi Sekil 4.12 (b)'de verilmektedir. Filtrelenmis yikseklik hari-
tasina bakildiginda agac topluluklarinin oldugu bélgeler basta olmak Gzere, veriye zarar
vermeden pikseller arasindaki ylukseklik gegisleri yumusatiimaktadir.

On islemden gecen veriler, spektral bélitleme ydnteminin kullandi§i benzesim matrisini
olusturmaya hazir hale gelmektedir. Denklem (2.27)'de verilen piksellerin birlikte go6-
rilme olasiliklarini hesaplamak igin gérantiden 5000 6rnek piksel alinmigtir. Bu piksel
6rnekleri gérintinan farkh bélgelerinden alinmasi icin rastgele segilmektedir. Rastgele
belirlenen 6rnek piksellerin etrafindan d = 2'den d = 4 uzakligina kadar x; ve x; 6znitelik
cifti alinarak birlikte bulunma olasiliklari hesaplanmigtir. Uzaklik arttik¢a pikseller ara-
sindaki baglar ters orantili olarak azaltmak icin agirlik fonksiyonu olan w(d) standart
sapmasi 0.1 olan Gauss fonksiyonu secilmigtir. Elde edilen bu érnek piksellere ¢ekirdek
yogunluk kestirimi (kernel density estimation-kde) kullanarak denklem 2.27°deki olasilik
yogunluk fonksiyonu olusturulmustur [49]. Daha sonra, bu olasilik fonksiyonu kullanarak
PMI olusturulmustur. PMI hesaplanirken p parametresi bolitleme performansini arttir-
mak amaciyla farkh degerler igin test edilmis ve 1.8 olarak belirlenmistir. PMI; uzamsal,
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Sekil 4.11. Verinin 121x121 piksellik sahnesinin PCA ile olusturulan ilk 7 temel bileseni

spektral ve yukseklik bilgileri igcin ayri ayri hesaplandiktan sonra (3.7)’deki gibi birlegti-
rilerek benzesim matrisi olusturulmustur. Bu asamadan sonra ikinci ydontem olan SET
yénteminde oldugu gibi spektral bélitleme kullanilarak bélitler olusturulmustur. SET
yénteminden farkli olarak spektral bélitleme 100 6zdeger ve bunlara karsilik gelen 6z-
vektoérler icin ¢c6zUmlenmistir. Bu 6zvektorler ve 6zdegerler kullanilarak sPb algoritma-
styla gérintinin kenar bilgisi ¢ikartildiktan sonra egik degeri 0.25 olarak belirlenen
OWT-UCM algoritmasiyla bélutler elde edilmigtir.

Sekil 4.13’te verilerinin 121x121 piksellik bélimd kullanilarak elde edilen PMITNcut
bélatleme ydnteminin sonuglar verilmektedir. Sekil 4.13 (c) goérantinin sPb ile elde
edilen kenar bilgisini gdstermektedir. Bu kenar bilgisi 6zellikle belli yikseklige sahip
olan bina ve agag topluluklarinda oldukga baskindir. Bunun temel nedeni HSG’lere ek
olarak LiDAR verilerinin de kullaniimasidir. Bu kenar bilgisi kullanilarak olusturulan bé-
lGtler Sekil 4.13 (d)’'de verilmektedir. Bélitleme sonucu verinin KYM goérintlisit ve bo-
l0tleme dogruluk haritasiyla karsilastirildiginda basarili oldugu agik¢a gézikmektedir.
PMITNcut algoritmasinin, bélitleme dogruluk haritasinda pembe renkle gésterilen bina
goblgesini tam anlamiyla ayrildigi gdézikmektedir. Dogruluk haritasinda etiketsiz olarak
tanimlanan ancak KYM gérintisinde aga¢ gélgelerinden olusan anlasilan bélgelerin
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Sekil 4.12. Verinin 121x121 piksellik sahnesinin: (a) orijinal ylkseklik haritasi, (b) Ga-
uss filtresinden gecirilmis yukseklik haritasi

agaclardan ayr bélutlendigi gézikmektedir. SET yénteminde oldugu gibi gérintideki
tekdize buylk alanlar batiin olarak yiksek basariyla bdlutlenmektedir.

Yukarida anlatildigi gibi, bu yontemle gérintiiden rastgele secilen piksellerle bélitleme
yaplildigindan algoritmanin her seferinde farkh sonuglar verecegi asikardir. Bu sebeple
her denemede ilgili bolitleme sonucunun ortalama BD’si farkli olmaktadir. Bu yéntem
icin ortalama BD hesaplanirken algoritmanin ¢ok sayida ¢alisma sonucunun ortala-
mas! alinarak genel bir ortalama BD olugturulmaktadir. Cizelge 4.4’te sadece 10 farkli
deneme sonucunun ortalama BD degeri ile 100 deneme sonucunda elde edilen deger-
lerin ortalamasi verilmektedir. PMITNcut yénteminin farkli denemelerinde hesaplanan
ortalama BD en fazla 5.0439 degerini alarak yiksek bir performans gdstermektedir.
Diger yandan, ortalama BD’nin en disik degeri 3.8300 olarak gbéztikmektedir. Bunun
temel nedeni sahneden rasgele drneklenen pargalarin konumlaridir. Uygun pikseller
secildiginde ve bu piksellerin komsularindan elde edilen uzamsal, spektral ve yikseklik
bilgileriyle basarili bélitleme sonuglari elde edilebilmektedir. Sekil 4.9 (c) ve Sekil 4.13
(d) bolutleme sonuclari karsilastirildiginda, PMITNcut yéntemi ile SET ydntemin benzer
sonuclar verdigi gdzikmektedir. Ancak, ortalama BD’lere bakildiginda PMI yénteminin
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ylksek basari orani gbéze carpmaktadir. Ortalama BD’nin ylksek olmasi su anlama
gelmektedir: PMITNcut yontemi pikselleri spektral olarak ayirmada Ustin performans
gbstermektedir. Bagariyi arttiran etkenlerden biri LiDAR verileridir. LiDAR verileriyle g6-
rintlideki nesneleri yorumlama kabiliyetinin arttigi acikga gézikmektedir.

Cizelge 4.4. Farkl denemeler icin PMITNcut yénteminin ortalama BD degerleri ile genel
ortalama BD ve standart sapma degeri

Deneme No ortalama BD
1 4.2114
5.0439
4.5819
3.8300
4.2446
4.5175
4.7306
4.4329
4.5145
4.6976

Genel ortalama | 4.4805 + 0.1104

O | N OO O B> WD

—_
o

4.6 Mevcut ve Onerilen Yéntemlerin Karsilastiriimasi

Bu bélimde, LiDAR destekli HSG’lerin bélitlenmesi icin 6nerilen 3 ydntemin sonuglari
ve LiDAR bilgileri kullanmadan bélitleme yapan mevcut yontemlerin sonuglari kiyas-
lanmaktadir. Bu kiyaslama yapilirken Sekil 4.14’te KYM géruntUsu, yikseklik haritasi
ve bolitleme dogruluk haritasi gdsterilen veri kiimesi (izerinde sonugclar tartisiimakta-
dir. LiDAR verilerinin bélitlemede sagladigi avantaji gérmek agisindan; SM, GB yo6n-
temleriyle benzesim matrisi olusturmus ve (3.7)'de verilen benzesim matrisi ylkseklik
verisi ¢ikartilarak hesaplanmig ve ilgili veri kimesinin bélGtleri olugturulmusgtur. YUk-
seklik bilgisi kullanilmadan elde edilen sonuglar ile dnerilen yéntemlerle elde edilen
sonugclar karsilastinimaktadir. Sadece HSG verileri kullanilarak bélitleme yapildiginda
karsimiza ¢ikan iki temel problem oldugundan bahsedilmigti. Bunlar, benzer spektral

Ozelliklere sahip nesnelerin ayrilamamasi ve nesnelerle gdélgelerinin tam anlaminda bir-
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Sekil 4.13. (a) Kullanilan verinin 121x121 piksellik KYM gérintisd, (b) Verinin bélit-
leme dogruluk haritasi, (c) sPb ile olusturulan gérintinin kenar bilgisi, (d)
PMITNcut yéntemiyle HSG’lerin bélitleme sonucu

birinden ayrilamamasi problemleriydi. Onerilen yéntemlerle LiDAR kullanildigindan bu
problemlerin ne derece bertaraf edildigi sonuglar Gzerinden gdésterilmektedir.

Sekil 4.15'te Ncut yénteminin ilgili veri kismi i¢in bélitleme sonuglari verilmektedir. Bu
béllt haritasi olusturulmasi igin r = 10 segilmig ve 40 6zvektdr kullaniimigtir. Béllt olus-
turma ile kenar bilgisi 6rtigen problemler oldugundan, SMTNcut bélitleme sonucunun
daha iyi anlasilmasi adina verinin dogruluk haritasi (izerine bélitleme sonunda elde

edilen kenar bilgisi ¢izdiriimistir. Binalarin oldugu bélgelere bakildiginda basarili bdlit-
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Sekil 4.14. (a) Veri kimesinin 150x220 piksellik b6liminin KYM gérintisa, (b) Gauss
filtresinden gecirilmis ylUkseklik haritasi, (c) Bélutleme dogruluk haritasi

ler olusturulmus ve bina golgeleri ayrilmigtir. Dikkat edilirse, binalar Gzerinde bulunan
bazi yUkseltiler (havalandirma veya merdiven ¢ikiglari olabilir) LiDAR verileri yardimiyla
ayrilmistir. Ancak, bu yéntemin temel problemi olan tekdlize alanlari dizgin ayirama-
mas! bu sahne i¢in de gdzikmektedir. Kullanilan 6zvektdr sayisi degistirilerek kismen
bu problemin éntine gecilebilir. Diger yandan, ayni gérintt kullanilarak SET ve PMITN-
cut yéntemlerin sonuglar sirasiyla Sekil 4.16 (a)'da ve Sekil 4.16 (b)'de verilmektedir.
Bu bélutleme sonuglari elde edilirken, SET ydntemi icin UCM esik degeri 0.15 olarak
belirlenmis ve PMITNcut yontemi icin UCM esik de@eri 0.05 olarak belirlenmistir. Bu
yéntemlerin kullandigi diger parametreler yukarida belirlenen degerleriyle kullaniimis-
tir. SET ve PMITNcut yéntemlerin sonuglarina bakildiginda, SMTNcut ydntemine naza-
ran sahnedeki nesnelerin daha dizgin ayrildiklari anlasiimaktadir. SET ve PMITNcut
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Sekil 4.15. SMTNcut yéntemin bélitleme sonucu (solda, r=10), bolitleme sonucu kul-
lanilarak elde edilen kenar bilgisi (sagda)

yontemlerinin, SMTNcut’taki gibi tekdlize blyuk alanlari yanlis ayirma oranlarinin daha
disik oldugu g6zikmektedir.

Bu algoritmalarda énemli olan UCM esik degerinin uygun secilmesidir. Bu esik de-
geriyle gorintl bolit sayisi ve dogrulugu arttirilabilir. TGm algoritmalarin sonuglarina
bakildiginda, binalar ve gdlgelerinin muazzam sekilde ayrildigi gdézikmektedir. Ancak,
SMTNcut’in binalar Gzerindeki g¢ikintilari ayirdigr gézikirken, SET ve PMITNcut yon-
temlerinde g6zikmemektedir. Bunun nedeni LiDAR verilerinin algoritmadaki diger bilgi-
lere gbre agirliklandinimasiyla ilgilidir.

Sekil 4.16 (a)’ya ve Sekil 4.16 (b)’ye daha ayrintili bakacak olursak, kirmizi halka igine
alinan kisimlarda SET yénteminin gereksiz bélitler olusturdugu gézikirken PMITNcut
yénteminde bu sorunlar blyik oranda ¢éztmlenmigtir. Mavi halka ile gésterilen su bél-
gesinin SET ydntemiyle daha basaril bir sekilde ayrildigi gézikmektedir. Ayni sekilde,
sari halkalarla gosterilen bazi bélgelerde, SET’in PMITNcut'tan daha dogru sonuclar

urettigi gbze carpmaktadir.

Sekil 4.15’teki ve Sekil 4.16°daki bélitleme sonugclari kullanilarak hesaplanan ortalama
BD degerleri Cizelge 4.5'te verilmektedir. Cizelgeye bakildiginda, diger iki ydonteme ki-
yasla PMITNcut ydntemiyle son derece yliksek BD elde edilmigtir. Bu degerin yiiksek
olmasi, gérintideki nesnelerin spektral agidan PMITNcut ydntemiyle daha dogru ayril-

62



J ) - 4

b S 0 ; put

20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 220
(®)

Kumas hedefler

San bordiir taglan

Kaldirnm

Binalar

Bina gdlgeleri

Su

Asfalt

Camur/kum

Kangik zemin yiizeyi

Cim

Agaglar

Etiketsiz alanlar

Sekil 4.16. (a) SET yontemin bélitleme sonucu (UCM esik degeri 0.15) , (b) PMITNcut
yéntemin bélatleme sonucu (UCM esik degeri 0.05) (c) Bolutleme dogruluk
haritasi

digi anlamina gelir. SMTNcut ve SET ydntemlerinin bu degeri diisik ¢ikmasinin temel
sebebi bazi bélgeleri fazla veya eksik bélitlemesinden kaynaklanmaktadir.

Sekil 4.17'de dnerilen SMTNcut ve SET ydntemlerinin bdlitleme sonuglari ile énerilen
PMITNcut yénteminin LiDAR’lI ve LiDAR’siz bélatleme sonuglari ve mevcut SM, GB
yéntemleriyle olusturulan bélitleme sonuglari verilmektedir. Sonuglar incelendiginde,
Onerilen yéntemlerde ylUkseklik bilgisi kullanildiginda bélitleme sonuglarinda gelisme
g6zUkmektedir. Gorintiideki nesnelerin LiDAR verileri yardimiyla daha anlamh bélGt-
lere ayrildigi aciktir. Sadece uzamsal ve spektral bilgiler kullanan SM ve GB yontemleri
ile 6nerilen PMITNcut yénteminin LiDAR kullaniimayan strima, benzer spektral 6zel-
liklere sahip nesnelerin ayrilamamasi (¢imenler ve agaglar gibi) ve bazi noktalarda gél-
gelerin ayrilamamasi (binalar ve gdlgeleri gibi) problemleri yukseklik bilgisi yardimiyla
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Sekil 4.17. (a) Onerilen PMITNcut yéntemin LiDAR’siz bdlitleme sonucu, (b) Onerilen
PMITNcut yéntemin LiDAR’lI bélutleme sonucu , (c) GB ydntemiyle olus-
turulan bélitleme sonucu (LiDAR’siz), (d) Onerilen SET yénteminin bol(it-
leme sonucu (e) SM yéntemiyle olusturulan bélitleme sonucu (LiDAR’sIZ),
(f) Onerilen SMTNcut ydnteminin bdlitleme sonucu
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Cizelge 4.5. Yontemlerin veri kiimesinin 150x220 piksellik bélim kullanilarak elde edi-
len ortalama BD’leri

Deneme No Ortalama BD + standart sapma
SM yéntemi 1.3879 £ 0
GB y6ntemi 1.3693 £ 0
Onerilen SMTNcut yéntemi 1.4429 + 0
Onerilen SET ydntemi 1.4536 + 0
Onerilen PMITNcut ydntemi (LiDAR’s1z) 4.2770 + 0.3390
Onerilen PMITNcut yéntemi (LIDAR'lN) 4.6489 + 0.4607

blylk oranda ¢6ziime ulastigi sonuglardan anlasiimaktadir. Ayrica, Cizelge 4.5’teki or-
talama BD’ler incelendiginde, LiDAR kullaniimasi gérintulerin spektral ayristirma gu-
cuna arttirmaktadir.
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5. SONUCLAR

Bu tezde, son zamanlarda goéruntl isleme alaninda énemli bir konu olan spektral bo-
l0tleme yéntemiyle hiperspektral veriler ve LiDAR verileri birlegtirilip HSG’lerin denetle-
mesiz bdlitlemesi saglanmistir. Spektral bélitlemede en dnemli nokta benzesim mat-
risinin probleme uygun segilmesidir. Bu ¢alismada, HSG’lerden elde edilen uzamsal
ve spektral bilgilerle LiDAR'dan elde edilen yUkseklik bilgisi birlestirmek amaciyla 3
farkll benzesim matrisi dnerilmistir. Onerilen bu benzesim matrisleri farkl spektral yon-
temler ve bu ydntemlerin farkli ¢éztmleri ile gérintl bolutleri incelenmis ve spektral
ayristirma giicli ydntemiyle bdlitleme dogruluklar karsilastiriimistir. Onerilen bu 3 yén-
temin kullandig1 parametrelere farkl degerler atanarak bélitleme sonuglari incelenmis
ve HSG’lerin ortalama BD’sini arttirmak amaciyla ilgili parametrelerin nasil segilmesi
gerektigi tartisiimistir. Onerilen yéntemler hem hiperspektral hem de LiDAR verilerin-
den olusan MUUFL Gulfport gergek veri kiimesine uygulanmis ve bélitleme sonuglar
karsilastinimistir.

SMTNcut yénteminin 6zvektér sayisinin bélitleme dogrulugu tGzerinde kritik &neme sa-
hip oldugu gdsterilmistir. Ozvektdr sayisinin uygun secilmemesinin gériintiiyi az veya
fazla bélutlere ayirdigi veri kiimesi tzerinden goésterilmistir. Ancak, bu sayinin gérintt
hakkinda bilgi sahibi olmadan uygun olarak belirlenmesinin zor oldugu anlasiimigtir.
Diger yandan, benzesim matrisi olustururken r parametresinin (ka¢ adet komsu pik-
sel arasindaki kenar agirliginin hesaplanacagi) farkli degerleri i¢in sonuglarin ortalama
BD’si hesaplanmigtir. Sonuglara gére r arttinldikga dogal olarak bélutleme dogrulugu-
nun da arttigi gézlemlenmistir. Ancak, r’nin arttirilmasi beraberinde islem yukini de
arttirdiindan algoritma hizini diisiirmektedir. islem yiikii ve ortalama BD géz dniine
alinarak uygun bir deger atanmasi anlasiimistir ve bu tezdeki veriler igin r = 10 olarak
en iyi performans verdigi gézikmektedir.

Spektral bélitleme sonucu elde edilen dzvektdrler gérintiideki nesnelerin kenar bilgisi
icerdigi bilinmektedir. HSG’lere ek olarak LiDAR verilerin de bélitlemede kullaniimasi-
nin &zellikle bir yikseklige sahip olan nesnelerde kenar bilgisini iyice belirginlestirdigi
sonuglar Gzerinden gorilmastir. SMTNcut yéntemindeki 6zdeger sayisi belirlemedeki
zorlugu ortadan kaldirmak amaciyla SET ve PMITNcut yéntemlerde belli sayida 6zvek-
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tor, sPb algoritmasiyla birlestirilerek dncelikle kenar bilgisi olusturulmus ve OWT-UCM
algoritmasiyla bolatler elde edilmistir. Gorintinin kenar bilgisi olusturulduktan sonra
UCM'nin farkli esik degeri igin farkli sayilarda bélit sayisi elde etmek mimkiin hale
gelmistir. Ayrica, SMTNcut yénteminde gérintideki tekdiize blyUk alanlar yanlis bélit-
lenirken, sPb+UCM yéntemi kullanildiginda bu sorunun ortada kalktigi gézikmustur.

SET ybéntemiyle spektral veriler ile uzamsal-yUkseklik verileri a parametresinin farkh de-
gerleriyle agirliklandiriimis ve bélitleme sonugclarina etkisi incelenmistir. Sonuclardan
anlasildigi gibi « sifira yaklastikga bélitleme sonuclar spektral bilgilere gére sekillenir-
ken, a arttirlldiginda ise uzamsal-yUkseklik bilgilerine gére sekillendigi gézlemlenmistir.
Veri kiimesi Uzerindeki denemeler sonucunda « 3-4 degerleri arasinda en yiksek bélit-
leme dogrulugu ulastigina anlasiimigtir. Bu parametrenin daha fazla artiriimasi ¢gizge-
deki spektral bilgilerin agirligini uzamsal-ytkseklik bilgilerine gére azalttigindan, bunun
sonucundan bdélitleme yénteminin spektral ayristirma glcini de diastrdigu gbzlem-
lenmigtir. Bunun sebebi, bélutlemenin spektral bilgilerden ziyada uzamsal ve yUkseklik
bilgiler 1s1g1nda bélitlenmesidir.

PMITNcut yonteminde ise benzesim matrisi, bilgilerin birlikte bulunma olasiliklarina
goére hesaplandigindan pikseller arasinda daha gucli baglar olusturdugu aciktir. Bu
yontemin boélltleme sonuglarina katkisini ve basarisi arttirmak amaciyla hiperspektral
ve LiDAR verileri bazi 6n islemlerden gecirilmigtir. Gerek bélltleme sonuglarina gerekse
ortalama BD’lere bakildiginda, PMITNcut yénteminin Ustlin performans sergiledigi an-
lasiimaktadir. Ozellikle, gériintiideki nesnelerin spektral olarak son derece basarili bir
sekilde ayristirdigi ortalama BD sonuglarinda gézikmektedir.

Son olarak, LiDAR verilerinin boélitlemeye sagladigi katkiyr gérmek amaciyla ylksek-
lik bilgisi kullanmayan SM [38] ve GB [26] y&ntemleri ve dnerilen PMITNcut yéntemi
yukseklik bilgisi kullaniimadan Uzerinde g¢aligilan veri kimesine uygulanmis ve bolut-
leme sonuglari olusturulmustur. Sonuglar incelendiginde, énerilen yéntemlerde LiDAR
verilerinin kullaniimasi gértintideki nesnelerin daha iyi yorumlanmasini sagladigi agik-
tir. LIDAR verileri yardimiyla, yakin spekiral 6zelliklere sahip ancak yUkseklikleri farkli
olan nesnelerin (agaclar ve ¢imenler) bélitleme basarisinin arttirdigr gdézlemlenmistir.

Goruntadeki binalar ile golgelerinin de basarih bir sekilde ayristirildigi sonuglardan an-
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lasiimaktadir. Onerilen {¢ ydntemde de LiDAR verileri kullanildiginda sonuglarin orta-
lama BD’leri yUkseldigi gézukmektedir. Yani, LIDAR kullaniimasi gérintideki nesnele-
rin spektral olarak ayristirmasini iyilestirilmigtir. Clnk( yUkseklik bilgisi yardimiyla eksik,
fazla veya yanlis boélutler en aza indirgenmistir.
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Ozetce— Hiperspektral goriintiilerde (HSG) birbirine
fiziksel olarak yakin ve spektral olarak benzer olan alanlarin
kiimel. i flandirmadan hedef tesbitine bir¢ok alanda
kullanilmaktadir. Bu bildiride, diizgelenmis kesit algoritmasi
HSGler icin gelistirilmistir. Diizgelenmis kesit
algorit da kullanilan b im matrisi, hem uzamsal
hem de spektral bilgileri kullanacak sekilde olusturulmus,
daha sonra da spektral kiimel o leriyle
oziiml istir. B i matrisinde kullanilan
parametreler degistirilerek, bu parametrelerin béliitlemeye
olan etkileri incel istir. S lar, onerilen yo ile
goriintiilerdeki farkh spektral ozelliklere sahip olan
materyallerin ayirt edilebildigini ve aranan hedeflerin
belirlenebildigini gostermektedir.

Anahtar Kelimeler — hiperspektral gériintii; spektral-
uzamsal boliitleme; ¢izge, diizgelenmiy kesit.

Abstract— The segmentation of hyperspectral images
based on spatial and spectral information is being used in
many fields from target detection to classification. In this
paper, the normalized cuts algoritm is extended for the
segmentation of hyperspectral images. The affinity matrix of
the normalized cuts algorithm is modified such that it uses
both the spatial and spectral information. The effect of the
parameters on the segmentation results is investigated, and it
is shown that with proper parameter selection, the proposed
method can segment the spectrally similar materials, and
also extract the targets that we are after.

Keywords —  hyperspectral  image;  spectral-spatial
74 ion; graph; normalized cuts.
I. GIRiS

Farkli nesneler degisik dalga boylarinda 15181 farkh
sekillerde yansitir. Her nesnenin 15181 yansitma ozelligi
kendisine ait spektral imzasmi olusturur. Hiperspektral
kameralar, ¢ok sayida dalga boyunda nesnelerin 15131 ne

978-1-5090-1679-2/16/$31.00 ©2016 IEEE

kadar yansittiklarmni dlgerler [1]. Yiizlerce dalga boyuna
bakildiginda, hiperspektral goriintiilerden her bir pikselde
hangi materyal oldugu anlagilabilmektedir. HSG
smiflandirma  ve bolitleme, uzaktan algilama ile
gorlintiileme alaninda arastirilan 6nemli bir konu haline
gelmistir. Savunma sanayi, maden haritalama, tarim
denetimi, ¢evre izleme gibi alanlarda uygulama
bulmaktadir. Bu bildiride, uzamsal ve spektral bilgi
kullanilarak HSGlerin béliitlenmesi  gergeklestirilmistir.
Goriintii boliitleme igin diizgelenmis kesit algoritmasi
kullanilmugtir.

Bildirinin akis1 soyledir: II. bolimde ¢izge (graph)
teorisi ve diizgelenmis kesit algoritmas: 6zetlenmistir. I1I.
bolimde diizgelenmis kesit algoritmasinda kullanilan,
hem uzamsal hem de spektral bilgi yardimiyla elde edilen
benzesim matrisi anlatilmigtir. IV. bolimde ise kullanilan
hiperspektral veriler tamitilmis ve sonuglar verilmistir.

II. TEORI

A. Cizge Teorisi

Bir G = (V, E) gizgesi, V bogumlarinin E kenarlar ile
birlestirilmesi sonucunda olusturulur. Sekil 1’de A ve B
smiflarindan olusan ¢izgede, bogumlar ve bu bogumlari
birbirine baglayan kenarlar gozikmektedir. Her bir
bogumu birbirine baglayan kenarlara bir agirhk
verildiginde, bu  ¢izgeye agirlandirilmis  ¢izge
denilmektedir. Sekilde goziiktiigii gibi i ve j adindaki iki
bogumu baglayan kenar agirliklar1 w(ij) ile ifade
edilmektedir. Bu agirliklar bogumlarin birbirine olan
benzerlikleri kullanilarak hesaplanmaktadir. Birbirine
benzeyen bogumlarm kenar agirhiklar diger agirliklardan
daha fazla olur. Goriintiilerde ise bu bogumlar pikselleri
veya siiper pikselleri ifade etmektedir. Pikseller arasindaki
uzamsal benzerlik, renk benzerligi, parlaklik benzerligi ve
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bu bildiride de bahsedilen spektral benzerlikler
kullanilarak  ¢izgedeki  agirliklar  hesaplanmaktadir.
Buradaki temel amag¢ denklem (1)’de verilen ifadeyi
minimize ederek ¢izgeyi iki farkli gruba ayirmaktir [2].

min cut(4, B) = Lieajes w(i, ) (O]

Denklem (1)’e gore, i bogumlart A sinifinda ve j
bogumlari B sinifinda kalacak sekilde, pikseller bogumlar
arasindaki agirhiklarin en kiigik oldugu kenarlardan
ayrilirlar.  Boylece  birbirine  benzeyen  pikseller
gruplandirilmis ve digerlerinden ayrilmis olur.

b
wiij),
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Sekil 1. Cizgeyi olusturan bogumlar, kenarlar ve kenar agirhklart

Fakat, ¢izgedeki ug¢ bogumlarin kesit (cut) degeri kiigiik
oldugundan denklem (1)’in sonucunda ug bogumlar yanls
smiflandirilabilmektedir. ~ Bunu  onlemek  amaciyla
diizgelenmis kesit yontemi gelistirilmistir [3].

B. Diizgelenmis Kesit Algoritmasi

Yukardaki bolimde bahsedildigi gibi u¢ bogumlarin
kesit degeri kiigiik olmasini 6nlemek amaciyla (1)’deki
denklemin diizgelenmesi gerekmektedir. Bu kesit degeri,
A ve B’deki bogumlar ile g¢izgedeki tiim bogumlari
birlestiren kenar agirliklar1 toplamini ifade eden denklem
(3) ile diizgelenirse, denklem (2)’de verilen diizgelenmis
kesit maliyeti elde edilmektedir [3].

Ncut(A, B) _ cut(A,B) cut(A,B) (2)
assoc(AV) assoc(B,V)
ve
assoc(A,V) = Yieajev W(i, ) (&)

burada V ¢izgedeki tiim bogumlari ifade etmektedir.

Diizgelenmis kesit yontemi, pikselleri aralarindaki
baglarin kuvvetine gore gruplarken, A ve B gibi gruplar
arasindaki ayirimi azaltip, gruplarin kendi igindeki iligkiyi
arttirmayr amaglar [3]. Bunu gergeklestirmek igin
diizgiilenmis kesit maliyetinin minimize edilmesi gerekir.
Diizgelenmis kesit maliyetini minimize eden ¢oziim, (4)’te
yer alan denklemin 6zdeger ve 6zvektdrlerinin bulunmasi
ile elde edilir.

(D —W)y = ADy @)

W matrisi, benzesim matrisi olarak da adlandirilir ve
her bir indisi i,j bogumlarini birlestiren w(i,j) ile ifade
ettigimiz kenarin agirligidir. Bu bildiride, temel amag
HSGlerin uzamsal ve spektral bilgileri kullanilarak bu
benzesim matrisinin olusturulmasidir. D kosegenleri
benzesim matrisinin  satirlarinin - veya  siitunlarinin
toplamiyla olusturulmus bir matristir ve denklem (5)’teki
gibi hesaplanir. y ise bogumlarin boyutunda bir indikator
vektordiir ve i bogumu A’da ise y=I, degilse yi= -1
degerini alir. D — W matrisi de Laplas matrisi olarak
adlandirilir.

D(i,i) = ¥;W(i, ) (&)

Denklem (4)’tin ozvektorleri kullanilarak ¢izge iki
yontemle boliitlenebilir. Birinci yontemde, en kiigiik ikinci
Ozdegere karsilik gelen 6zvektor kullanilarak gizge once
iki grubu ayrilir ve ayrilan gruplar yeni ¢izge olarak
diistiniiliip, 6zyenilemeli (recursive) olarak boliitlemeye
devam edilir. Ikinci yontemde ise, ¢izge kag boliite
ayrilmak isteniyorsa o kadar Ozvektor kullanilir. Bu
bildiride, HSG  bolitlenmesinde  ikinci  yontem
kullanilmistir ve agagidaki basamaklar takip edilmistir:

e HSGlerden G=(V,E) g¢izgesi olusturulur, W
benzesim matrisi ve D matrisi hesaplanir,

e Denklem (4)’ten en kiigiik 6zdegerlere karsilik
gelen boliit sayis1 kadar 6zvektor hesaplanir,

e  Esik degeri belirlenir ve bu deger kullanilarak
her bir 6zvektoriin girdileri iki kisma ayrilir,

e Hesaplanan ozvektorler, goriintilyle ayni
boyuta cevrilip birlestirildikten sonra kenar
bulma algoritmasindan gecirerek goriintii
boliitlere ayrilir.

III. HIiPERSPEKTRAL GORUNTULER iCIN
BENZESIM MATRISI HESAPLAMA

Onceki boliimde bahsedilen diizgelenmis  kesit
yonteminde Onemli olan faktor benzesim matrisinin
probleme uygun olarak dizayn edilmesidir. Bu bildiride,
uzamsal ve spektral bilgiler kullanilarak denklem (6)’da
verilen form kullanilacaktir.

W(i,j) =e Cspektral x Tuzamsal

_4spekrai®i) _duzamsal)
e . Ny
aksi taktirde

eger duzamsar < T} ©)
0

Burada duamsa, denklem (7)’de  verilen sekilde
hesaplanir. Bu denklemde K(i) ve K(j) goriintideki
piksellerin konumunu gosteren vektdrlerdir. Buna gore iki
piksel birbirine ¢ok uzaksa, aralarmdaki kenar agirligma
sifir degeri atanir. Birbirlerine yakin iseler, aralarindaki
uzakliga ters orantili olarak kenarin agirligi azalacaktir.

duzamsal(irj) = ”K(L) - K(])“Z (7)

dspekirat ise iki spektra arasindaki Oklid uzakligini ifade
eder ve (8)’deki gibi hesaplanir:
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dspektral(ivj) = ”F(l) - F(/)”2 (8)

Burada F(i) ve F(j), i ile j piksellere ait farkli dalga
boylarindaki spektral bilgiyi iceren vektorlerdir.

Boliim IV’te algoritmanin performansi Guzamsal, Gspakiral
ve 1 degiskenleri igin farkli degerler kullamilarak
degerlendirilmektedir.

IV. KULLANILAN VERILER VE SONUCLAR
A. Hiperspektal Veriler

Bu ¢alismada MUUFL Gulfport veri koleksiyonu
kullanilmigtir [4]. Veriler 3500 feet ve 6700 feet’ten
ucularak  Southern Mississippi kampiisii  tizerinden
toplanmustir. Algaktan ugularak toplanan verilerde bir
piksel 0.6m x 1.0m’lik alana; yiiksekten ugularak toplanan
verilerde ise bir piksel 1.0m x 1.0m’lik bir alana karsilik
gelmektedir. Kampiise farkli renklere ve farkli boyutlara
sahip toplamda 57 tane hedef yerlestirilmistir. Yerleskenin
ucakla c¢ekilmis KYM (Kirmizi-Yesil-Mavi) fotografi
Sekil 2’de  verilmistir.  Toplanilan  hiperspektral

goriintiilerin (HSG) 6zellikleri Tablo 1’de verilmistir.

Sekil 2. Mississippi Universitesi Giiney Yerleskesi

Parametre Degeri

Dalga boyu 375-1050 nm
Spektral bant sayist 72

Bant genisligi 10 nm

Tablo 1. CASI-1500 Hiperspektral Goriintiileyici Parametreleri.

B. Benzetim Sonuglart

Benzetim igin Sekil 2’de verilen goriintiden secilen
bir alanin hiperspektral verileri kullanilarak benzesim
matrisi olusturulmus ve bu benzesim matrisine bagh
olarak (4)’te verilen denklemin O6zvektorleri bulunarak
goriintiniin -~ bolitlenmesi  yapilmigtir.  Kullanilan
hiperspektral verinin 3 dalga boyu (725nm-555nm-
475nm) birlestirilerek elde edilen RGB goriintiisii Sekil
3(a)’da ve tek dalga boyu (975nm ve 475nm) kullanilarak
olusturulan gridlgek goriintiisii Sekil 3(b)’de ve Sekil
3(c)’de goziikmektedir.

(a) ®) (©
Sekil 3. (a) Hiperspektral verilerin farkli 3 dalga boyundaki goriintiilerin
birlestirilmesiyle olusturulan RGB goriintiisii, (b)-(c) tek dalga boyuyla
elde edilen gridlgek goriintiisit

Benzesim matrisini olusturmak i¢in goriintiilerde yer
alan her bir piksel bogum olarak segilmis ve denklem
(6)’da oldugu gibi hesaplamustir. Hesaplama yapilirken
Guzamsa=10, Ospekirai=0.2 ve r=5 olarak segilmistir. Bu
segime gore elde edilen benzesim matrisi Sekil 4’te
verilmistir. Sekilde de goziiktiigii gibi benzesim matrisi
seyrek (sparse) bir matristir. Yani kdsegen ve kdsegen
¢evresindeki bantta yer alan girdiler diginda kalan tiim
degerler sifirdir. Ayni zamanda benzesim matrisi simetrik
bir matristir. Kullanilan goriinti 76x76 boyutlarinda
oldugundan, yani ¢izge toplamda 5776 bogumdan
olusmaktadir, olusturulan benzesim matrisi 5776x5776
boyutlarindadir.

1
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1000

Sekil 4. Uzamsal ve spektral bilgiler kullanilarak olusturulan benzesim
matrisi

Olusturulan benzesim matrisini kullanarak denklem
(4)’tin  Ozvektorleri  hesaplanmis  ve elde edilen
Ozvektorlerin - dort tanesinin  gorintiiniin  boyutlarina
dontistirilmiis  halleri  Sekil 5’te verilmistir. Sekilde
goziktigii gibi her bir 6zvektér goriintiinin belirli
alanlarint diger alanlardan ayirmaktadir. Ancak, bazi
bolgeler arasindaki gegisler daha yumusak oldugundan
boliitleme zorlagmaktadir. Gegis sinirlarini
keskinlestirmek i¢in her 6zvektor belirlenen esik degere
gore ayrik hale getirilir.
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Sekil 5. Gortintii boyutlarina dontistirilmis ilk 4 6zvektor

Olusturulan bu 4 6zvektor hesaplanan esik degeri ayrik
bolgelere ayrilip birlestirildikten sonra goriintii boliitleri
bulunmaktadir. =5 ve r=10 degerleri i¢in, sadece bu 4
ozvektor kullanilarak goriintiiniin boliitlenmis hali Sekil
6’da verilmistir.

(a) =5, Cuzamsa=10, Gsp:k!ml=0-2 (b) =10, Guama=10, Gspcklrsl_0~2

Sekil 6. Dort 6zvektor kullanilarak goriintiiniin bélitlenmesi

Sekil 6(a) ile Sekil 6(b) karsilastirildiginda, r degerinin
arttirilmasiyla  boliitlemenin  iyilestigi goziikmektedir.
Ancak, r’nin artmasi daha ¢ok pikselin arasindaki kenar
agirliklarinin hesaplanmasini gerektirdiginden, benzesim
matrisi olusturma islem yiikii de buna baglh olarak
artmaktadir. Ayrica, r’nin artirilmast ile Sekil 6’da
goziiktiigii gibi birbirine yakin olan hedeflerin ayrilmama
problemi olusmaktadir. Bunu Onlemek i¢in r’nin
seciminde hedeflerin  boyutlarinin  dikkate alinmasi
ve/Veya Guzmsal, Ospekiral Parametrelerinin uygun segilmesi
gerekmektedir.  Guzamsal V€  Ospekiral  parametrelerinin
arttirllmast  pikseller arasindaki benzerlik gecislerini
yumusattigindan, béliitleme sonucunu iyilestirmektedir.
Fakat; ¢ok arttirilmalari, farkli uzamsal ve spektral
ozelliklere sahip piksellerin benzerligini de arttiracagindan
boliitlemeyi negatif yonden etkilemektedir. Tablo 2’de
farklt I, Guzmsal V€ Ospekiral parametreleri i¢in Matlab’da
olusturulan benzesim matrisi siireleri verilmigtir ve Sekil
8’de bu parametreler kullamilarak elde edilen boliitleme
goziikmektedir. Parametrelerin uygun segilmesiyle, Sekil
7(c)'deki boliitlemenin Sekil 7(a)-(b)’ye kiyasla daha iyi
bir sonug verdigi gézlemlenmektedir.

Deneme r Guzamsal Gspektral Ozvektor BM olusum
sayisi siiresi(s)

(a) 3 5 0.10 10 4,064

(b) 5 10 0,10 10 12,845

(©) 10 10 0,15 10 54,397

Tablo 2. Farkli parametre degerleri igin benzesim matrisi olusturma
siiresi

Sekil 7. Tablo 1°de verilen degerlere gore boliitleme sonuglart

V. SONUC

Sekil 3(b) ve 3(c)'de, tek bant kullanilarak olusturulan
goriintiilerde, goriintiiniin alindig1 banda bagh olarak, bazi
hedefler gozilkmezken; bazilart aym 6zelliklere sahipmis
gibi goziikmektedir. Bundan dolayi, sadece tek bir bant
kullanarak goriintiiller boliitlenmeye ¢alisilsaydr  koti
sonuglar elde edilecekti; ¢iinkii piksellerin sadece bir
banttaki parlakligma bakilarak boliitleme yapilacakti. Bu
bildiride, HSGlerdeki tiim bantlar1 kullanilarak, farkli
dalga boylarindaki goriintiilerin spektral ozellikleri goz
oniine alindig1 i¢in daha iyi sonuglar elde edilmistir.
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Abstract: The segmentation of hyperspectral images (HSIs) based on spatial and spectral
information is being used in many fields from target detection to classification. In this paper,
the light detection and ranging (LiDAR) data and hyperspectral imagery are integrated by
using the normalized cuts algorithm for the segmentation of HSIs. The affinity matrix of the
normalized cuts algorithm is modified such that it uses both the spatial-spectral information
and the LiDAR data. The effect of the LiDAR data on the segmentation results is investigated,
and it is shown that with proper parameter selection.

OCIS codes: 000.0000, 999.9999.

1. Introduction

Hyperspectral images (HSI) measure how much light is reflected from a material. Every material reflects light dif-
ferently. These different reflections generate a spectral fingerprint for a material. When a large number of bands are
considered, material can be detected by looking one pixel in HSIs. This important information has been at the many
areas including the defence industry, mining, civil engineering and geology. In previous paper [1], the normalized
cuts algoritm is extended for the segmentation of hyperspectral images. The affinity matrix of the normalized cuts
algorithm is modified such that it uses both the spatial and spectral information.

LiDAR is a remote sensing technique that measures the elevation in a given scene. The elevation information ob-
tained from LiDAR has been complementary to hyperspectral imagery. Using elevation map, it is possible to distin-
guish objects of similar material but of different elevation. Therefore, it makes great sense to combine hyperspectral
data with the elevation information derived from LiDAR to increase the efficiency of HSIs segmentation.

In this paper, we aim to combine the two distinct data sources. Normalized cuts method is proposed to integrate
both spatial-spectral information and elevation information.

2. Background
2.1.  Graph Theory

A graph G = (V,E) consists of a set of objects called vertices (V) and edges (E) that represent connections between
vertices. A graph is weighted if each edge has an associated number w;, ;. In the figure 1, the graph consist of two
classes that are A and B. Some node in the graph are connected each other and weighted with respect to similarity
between them. if similarity of two nodes is high, weight on the edge is close to 1, otherwise it is close to 0. We aim to
partition the graph into disjoint sets such as A and B. The degree of dissimilarity between two classes can be computed
as total weight of edges which have been moved away. In graph theory, it is called cut.

cut(A,B) = Y wi; 1)

The optimal partitioning graph is the one that minimizes this cut value [2-3].
However, the minimum cut criteria support to cut small sets of isolated nodes in the graph. To avoid this problem,
equation (1) must be adjusted.
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Fig. 1. An example of weighted graph.

2.2.  Normalized Cuts

As mentioned, to avoid cutting small sets of isolated nodes in graph, equation (1) is normalized. Instead of looking
cut value, new measure compute the cost function as a fraction of the total edge connections between classes to all the
nodes in the graph. Theoretically, it is called normalized cut (Ncut).

cut(A,B) cut(A,B)

Ncut(A,B) = 2
cut(A,B) assoc(A,V) + assoc(B,V) @

and

assoc(AV) = Z Wiyj 3)
i€A,jeV

Now, we aim to minimize the normalized cut value. The solution of this problem is discrete. If it is relaxed to take
on real values, equation (2) can be minimized by solving general eigenvalue system that given in equation (4). D is an
diagonal matrix with the total connection from one node to all other nodes on its diagonal, and W is similarity matrix
whose entries compose of w;, ;.

(D-W)y = ADy “

In this paper, hyperspectral imagery and LiDAR data are combined to construct similarity matrix. Then, using
constructed similarity matrix, we solve relaxed version of equation (4), and we seek discrete solution closest to the
continuous optima in iterative manner as mentioned in [4].

3. Proposed Similarity Matrix for HSIs

Designing of the similarity matrix is critically important for image segmentation. Firstly, we construct a weighted
graph, by taking each pixel as node, then connecting each pair of pixels by an edge. We use spatial-spectral information
and LiDAR data to compute weight for each pair of pixels. However, all pixel pairs do not connect, just closest r pairs
are connected for computational complexity. We can define edge weight that connect two nodes as follow:

_speetralG)  dpipap(in) 7".\,:?“!(’-])
2 I3 . . .
wi,j = e Tpeciral sy OLDAR % { e spatial if dspmiul(l;j) <r )
0 otherwise

In equation (5), dspeciral (i, f)» dLipar(i, j) and dspasiar (i, j) is spectral, LIDAR and spatial Euclidean distance between
node i and j, respectively. Opecrral> OLiDAR @nd Ogpariqr control the scale of data similarity measure. In the simulation
part, efficiency of HSIs segmentation will be discussed for different o's value and r.

4. Data Set and Simulation Results
4.1.  Data Set Description

MUUFL Gulfport Hyperspectral and LiDAR Airborne data set used for simulation. Data were collected using a Gemini
LiDAR and CASI-1500 flown in a single plane simultaneously [5].
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4.2.  Simulation Results

Firstly, we compute similarity matrix W as given equation (5). Parameters in this equation are chosen experimentally
as follow: Opecrrat = 0.3, OLipar = 2 and Gypaiar = 5 and r = 6. Secondly, equation (4) are solved for 14 eigenvalues
and corresponding eigenvectors. The number of eigenvectors are also chosen experimentally for better segmentation.
This eigenvectors are solution of relaxed problem. We use method given in [4], discrete eigenvectors are obtained.
Some of this discrete eigenvectors are given in the figure 2. This eigenvectors partition the image into disjoint sets as
we have seen in the figure 2. Then, discrete eigenvectors are merged and segments of HSIs are obtained. In the figure
3, HSIs’ segments that compose of 14 discrete eigenvector are shown. There are two segmented image in the figure
3. Center image is segmented by using spatial and spectral information. However, right image is segmented by using
LiDAR data beside spatial and spectral information. By using LiDAR data, segmentation results have been improved.
When LiDAR are used, some group of trees, some individual tree and one extra object are also segmented as seen in
the figure 3.

We will discuss segmentation solution for different o, different r and different number of eigenvector, and simula-
tion results these parameters will be given.

Fig. 2. Six discrete eigenvectors
»* h

‘ E
\ﬂ - d
(a) (b) (©)

Fig. 3. Left: false RGB, Center: segments of HSI without using LiDAR, Right: segments of HSI
with using LiDAR
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Ozetce —Uzamsal ve spektral bilgi tabanli hiperspektral
goriintiilerin (HSG) béliitlenmesi, hedef bulma ve simflandirma
gibi bircok alanda kullamlmaktadir. Bu bildiride, hem LiDAR
verilerinden elde edilen yiikseklik bilgisini hem de uzamsal-
spektral bilgileri birlestirecek yeni bir Schroedinger Ozharitalar
(SO) algoritmasi onerilmistir. SO algoritmasinin potansiyel mat-
risi, 1 bil ler ar daki yakinhg ve LiDAR verileri
arasindaki yakmhg birlestirerek elde edilmistir. Bu potansiyel
matris agirhklandirilarak béliitleme sonuclari incelenmistir. Ay-
rica; onerilen yo béliitleme s clari, U I-Spektral
Schroedinger Ozharitalar (USSO) algoritmasinin sonuglariyla ve
Diizgel is Kesit algorit artyla karsilastiriimistir.

Anahtar Kelimeler—hiperspektral goriintiiler, LiDAR, schro-
edinger oOzharitalar, boliitleme.

Abstract—The segmentation of hyperspectral images (HSI)
based on spatial and spectral information is being used in many
fields from target detection to classification. In this paper, a new
Schroedinger Eigenmaps (SE) algorithm is proposed to combine
both elevation information obtained from LiDAR data and the
spatial-spectral information. The potential matrix of SE algorithm
is obtained by integrating the proximity between spatial compo-
nents and the proximity between LiDAR data. The segmentation
results are examined with weighting of this potential matrix.
In additi the ion results of the proposed method
compares with the results of the Spatial-Spectral Schroedinger
Eigenmaps (SSSE) algorithm and the results of the Normalized
Cut algorithm.

Keywords—hyperspectral imagery, LiDAR, schroedinger eigen-
maps, segmentation.

I. Giris

Hiperspektral goriintilleme sensorleri, insan goziiniin algi-
ladig1 goriiniir 1s1kta elde edilen RGB goriintiilerinden farkli
olarak cok sayidaki bitisik bantta goriintii olusturur. HSG’ler,
goriiniir 1s1kta elde edilen goriintiilerden daha fazla bilgi icer-
mektedir. Bu sebeple, HSG’lerin boliitlenmesi ve HSG’lerden
hedef tespiti askeri ve sivil uygulamalarda yaygm olarak kul-
lanilmaktadir [1]. Diizgelenmis Kesit algoritmasi [2] kullanila-
rak uzamsal ve spektral bilgilerin birlestirilmesiyle HSG’lerin
boliitlendigi calismalar literatiirde bulunmaktadir [3], [4].

978-1-5090-6494-6/17/$31.00 ©2017 IEEE

LiDAR , belirli bir alandaki yiiksekligi olgen uzaktan algi-
lama teknigidir. LIDAR’dan elde edilen yiikseklik bilgisi, hi-
perspektral goriintiileri tamamlayicr niteliktedir. Ornegin; yiik-
seklik haritalarin1 kullanarak, benzer malzemeden olusan farkli
yiikseklikteki nesneleri ayirmak miimkiindiir. Bu nedenle, HSG
boliitlenmesinde LiDAR’dan tiiretilmis yiikseklik bilgisinin
kullanilmasi goz oniine alinmalidir. Uzamsal-spektral bilgiler
ile yiikseklik bilgisi, Diizgelenmis Kesit algoritmas1 yardimiyla
birlestirildiginde HSG boliitlenmesinde iyilesme saglandig: bir
onceki yaymimiz olan [5]’te goziikkmektedir.

Bu galismada, [6]’da verilen SO algoritmasi kullanlarak
HSG’lerden elde edilen spektral bilgiler ile ¢izge olusturulmus,
HSG’lerin uzamsal bilgisi ile LIDAR dan elde edilen yiikseklik
bilgisi potansiyel matrisiyle birlestirilip ¢oziimlenmistir. SO
algoritmasmin sonucunda clde edilen 6zvektorler, oncelikle
[7’deki spektral Pb kenar bulma yontemi ile birlestirilerek
goriintiiniin kenar bilgisi elde edilmigtir. Kenar bilgisi, Ult-
rametric Contour Maps (UCM) algoritmasindan gegirilerek
HSG’lerin boliitleri olusturulmustur. Uzamsal ve yiikseklik
bilgileri kullanilarak elde edilen potensiyel matrisinin farkli
agirliklandirilmasiyla boliitleme sonuglari incelemistir. LIDAR
verilerinin boliitleme iizerindeki etkisini incelemek i¢in, sadece
uzamsal ve spektral bilgileri kullanan USSO algoritmasiyla [8]
ozvektorler olusturulmus ve yukarida bahsedildigi gibi, bu 6z-
vektorlerden boliitler elde edilerek sonuglar karsilastirilmistir.
Ayni zamanda, uzamsal-spektral ve yiikseklik bilgilerini Diiz-
gelenmig Kesit algoritmasiyla birlestirerek boliitleme yapan
[S)teki yontemimizin sonuglariyla da karsilagtirma yapilmistir.

Bu calismanin organizasyonu su sekilde devam etmektedir:
II. bolimde SO algoritmast kisaca dzetlenmistir. TII. bolimde
spektral ve uzamsal bilgilere ek olarak yiikseklik bilgisinin de
SO algoritmast ile birlestirilerek HSG’lerin boliitlenmesi icin
onerilen yeni yontem anlatilmistir. IV. bolimde ise kullanilan
HSG verileri tanitilmig ve boliitleme sonuglar tartigtimistir.

II. SCHROEDINGER OZHARITALAR ALGORITMASI

SO algoritmast, son zamanlarda HSG’lere 6zgii uzamsal ve
spektral bilgileri birlestirerek boyut indirgeme ve kiimeleme
amactyla kullanilan ¢izge tabanh bir yontemdir [3]. Temelde,
Diizgelenmis Kesit algoritmastyla benzerdir [2]. SO, cizgeye
bir potasiyel matrisi ekleyerek Diizgelenmis Kesit algoritma-
sin1 genellestirir. Ayn1 zamanda, SO yiiksek boyutlu verileri
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diisiik boyutlara diigiiren dogrusal olmayan bir boyut indirgeme
yontemidir.

Bir G = (V,E) cizgesi, V bogumlarinin E kenarlar1 ile
birlestirilmesi sonucunda olusturulur. HSG’lerde her bir bogum
piksellerden olusur. ¢ ve j pikselleri arasindaki benzerlige
gore w; ; kenar agirliklar1 belirlenir. Bu kenar agirliklarini
girdi olarak alan ve benzesim matrisi olarak adlandirilan W,
spektral veriler i¢in denklem (1)’de verilmistir. Denklemde yer
alan le , bir pikselde yer alan tiim spektral bantlari ifade etmek-
tedir. € komsulugundaki piksellerin kenar agirligi denklemdeki
gibi belirlenirken, bu komsuluk diginda kalan piksellerin kenar
agirhiklarina sifir atanmaktadir.
Al
Wi; = e Twerra o efer (x5,x5) <e (1)

0, aksi takdirde.

D, kosegenleri her bir pikselin ¢izgedeki ¢ komsulugunda
yer alan tiim pikseller ile olusturdugu kenar agirliklarmim
toplamiyla elde edilenen bir diyagonal matristir ve denklem
(2)’deki gibi hesaplanir.

Di,z = Z W1,J 2)
J

Denklem (3)’teki gibi hesaplanan L matrisi ise Laplas
matrisi olarak adlandirilir.

L=D-W 3)

Tiim bu tanimlamalardan sonra, SO algoritmasinin ¢oziimii
denklem (4)’te verilen sistemin ilk N tane kiiciik 6zdegere (\)
karsilik gelen Ozvektorlerin (y) bulunmasiyla elde edilir. Bu
bildiride, boliitleme icin N = 20 segilmistir.

(L+aP)y = MDy “)

Denklem (4)’te yer alan P, diyagonal olmayan ve uzamsal
bilesenler arasindaki yakinligi kodlayan potansiyel matrisidir.
P matrisi denklem (5)’teki gibi tanimlanmaktadir [8]. Laplas
matrisinin ve potansiyel matrisinin boliitlemeye katkilart « pa-
rametresiyle ayarlanmaktadir. o’nin degeri arttirildikca boliit-
leme sonuglarinda potansiyel matrisinin etkisi de artmaktadir.
HSG’lerin boliitlenmesinde, bu parametrenin uygun segilmesi
kritik 6nem tagimaktadir.

2
[
i “gllo

k
P o= 3 > POaye T ()

=1 x; ENY (x:)

Denklem (5)’teki RP(x;), x; nin uzamsal bilesenlerinin ¢
komsulugundaki uzamsal bilegenler kiimesidir. x? piksellerin
uzamsal bilesenlerini gostermektedir ve P9) matrisi ise denk-
lem (6)°’da tanimlanan diyagonal olmayan matristir [8]. 7; ;
ise, III. boliimde anlatildig1 gibi, piksellerin LiDAR verileri
arasindaki yakinlig1 kodlayacak sekilde secilmistir.

N 1, eger (k1) € (4,9), (4,7)
PP = {1 eger (kD)€ (6,), () (6)
0, aksi takdirde.

HSG

. Bolutlenmis

» sPb+UCM HSG

LiDAR

Sekil 1: HSG Boliitleme Akig Semast

III. BOLUTLEME YONTEMI

Daha 6nce bahsedildigi gibi; LiDAR’dan elde edilen yiik-
seklik bilgisi, hiperspektral goriintiileri tamamlayict nitelik-
tedir. Bu ¢aligmada, boliitleme sonuglarini iyilestirmek ama-
ciyla SO algoritmasinin potansiyel matrisinde yer alan Vi,
parametresi, denklem (7)’de goziiktiigii gibi, piksellerin yiik-
seklik bilesenleri arasindaki yakinlik bilgisiyle olusturulmasi
onerilmigtir. Denklemdeki xﬁ pikseldeki yiikseklik bilesenini
gostermektedir.

2
[l =31l
Wil

“lidar )

Tig = €

Denklem (4)’te verilen sistemin ilk N tane kiigiik 6zde-
gere karsilik gelen oOzvektorler bulunduktan sonra k-means
kiimeleme yontemi uygulanarak boliitlere ayrilir [7]. Ancak,
bu yontem goriintiide tekdiize biiyiik alanlar oldugunda yanlig
boliitlemelere sebep olmaktadir. Bundan kurtulmak igin, Sekil
3’te verilen Ozvektorlerin kenar bilgisi tagig1 goziiktiigiinden,
spektral Pb kenar bulma algoritmasiyla birlestirip sonra boliit-
lere ayristirlmigtir. Spektral Pb kenar bulma yontemi (8)’de
verilmistir. Burada, denklem (4)’te elde edilen 6zvektorlerin
(yx) yonli turevleri alinip 6zdegerler (\y) ile normallestiril-
dikten sonra toplanarak kenarlar elde edilmektedir. Denklem
(8)’de gosterildigi gibi, 6 ile gosterilen farkli yonlerden alinan
tirevlerin en biiyiik degerleri alindiginda kenar bulma sonug-
lart iyilesmektedir.

N
1
sPb = max —V 8
2 ; o oYk ()]

Bu ¢alismada, Sekil 1°de verilen akis semasinda gozuktigu
gibi, HSG ve LiDAR verilerinin birlestirilmesiyle goriintiile-
rin bolitlenmesi saglanmustir. Boliitleme yaparken asagidaki
basamaklar izlenmigtir:

e HSG’lerden G = (V, E) ¢izgesi olusturulur, W ben-
zesim matrisi ve D diyagonal matrisi hesaplanir,

e  Yiikseklik ve uzamsal bilgileri kullanilarak P potan-
siyel matrisi olusturulur,

e Belirlenen « degerine gore denklem (4)’te verilen sis-
tem en kiiclik N tane 6zdegere karsi gelen 6zvektorler
hesaplanir,

e Denklem 8’de verilen sPb hesaplanir,

e  Belirlenen esik degeriyle UCM algoritmasi ¢aligtirilir
ve boliitler olusturulur.
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Sekil 2: Sirastyla: Kullanilan Verinin RGB Goriintiisti, 475nm
Bandi, 1075nm Bandi ve LiDAR

IV. KULLANILAN VERILER VE SONUCLAR
A. Kullamilan Veriler

Bu yaymnda boliitleme sonuglart igcin MUUFL Gulfport
verisi kullanilmigtir [9]. Veriler Southern Mississippi kampiisit
iizerinden toplanmustir. Algaktan ugularak toplanan verilerde
bir piksel 0.621.0m?’lik alana; yiiksekten ucularak toplanan
verilerde ise bir piksel 1.021.0m?’lik bir alana karsihk gel-
mektedir. Kampiise farkli renklere ve farkli boyutlara sahip
toplamda 64 tane hedef yerlestirilmistir. HSG ve LiDAR sensor
ozellikleri Tablo I ’de verilmistir.

TABLO I: HSG VE LIDAR SENSOR PARAMETRELERI

[ HSG 1T LiDAR ]
Parametre Degeri Parametre Degeri
Dalga boyu araligi  375-1050nm Dalga boyu 1064nm
Bant sayist 72 Darbe Tekrarlama Frekansi 70KHz
Bant Genisligi 10nm Tarama Frekanst 43Hz

B. Sonuglar

Boliitleme sonuglart igin  yukarda bahsedilen verinin
1212121 pikselden olusan bolimiinin HSG ve LiDAR veri-
leri iizerinde calisilmistir. Denklem (1)’de verilen benzesim
matrisini olusturmak i¢in Ogpertrar = 1 secilmistir. € =
10 komsulugundaki pikseller arasi agirhklar hesaplanmugtir.
Denklem (5)’te gosterilen potansiyel matrisi olusturulurken
Ouzamsal = 1, Olidar = 1 secilmis ve ¢ = 6 komsulugundaki
uzamsal bilgiler ve bunlara karsilik gelen yiikseklik bilgileri
kullanilmugtir. Spektral Pb kenar bulma algoritmasindaki yonlii
tiirevler hesaplanirken, 6’nin [0, 7] araliginda diizgiin dagilms
8 ag1 degeri kullanilmistir. Bulunan kenarlardan boliitler olus-
turulurken, elde edilen tiim sonuclar i¢in, UCM algoritmasimin
kullandig1 esik degeri 0,2 olarak belirlenmistir. Son olarak,
denklem (4)’teki «, Laplas matrisi ile potansiyel matrisin
katkilarmi gorece agirliklandirarak boliitleme sonuglarindaki
degisimi gozlemlemek amaciyla sirasiyla 0, 2, 10 ve 50
secilmisgtir.

Sekil 2°de kullanilan verinin RGB goriintiisii, hiperspektral
veriden alinan 475nm ile 1075nm bantlarindaki goriintiileri
ve bu hiperspektral verilere karsilik gelen LiDAR verileri
gosterilmistir. Daha 6nce bahsedildigi gibi, Sekil 2’deki hi-
perspektral bantlara bakildiginda goriintiideki maddelerin 15181
farkli yansittigr goziikkmektedir. Tek bant ele alindiginda; bazi
maddeler, 6zellikle ¢imen ve agaglar, 15181 benzer yansitigindan
tek bant verleriyle bunlar1 ayirmak oldukg¢a zorlasmaktadir.
HSG’lerdeki farkl dalga boylart malzemeleri ayirmada avan-
taj saglamakla birlikte yeteri iyilestirmeleri yapamamaktadir.
LiDAR verilerinden elde edilen yiikseklik bilgileri yardimiyla,
spektral olarak birbirlerine benzeyen ancak farkli yiikseklikte
bulunan maddeleri ayirmak kolaylagmaktadir. Bu calismada

Sekil 3: (a) Tlk Dort Ozvektor, (b) Spektral Pb Kenarlari

kullanilan veriler diisiiniildiigiinde, ¢imen ve agaclari ayir-
makta basartli oldugu goziikmektedir. Ayrica, LiDAR yardi-
muryla cisimleri ve cisimlere ait golgeleri birbirinden ayirmada
6nemli katki saglamaktadir.

Sekil 3’te, (4)’teki denklemin ¢oziimii sonucu elde edilen
ilk dort en kiigiik 6zdegere karsilik gelen 6zvektorler ve bu
ozvektorler kullanilarak elde edilen spektral Pb sonucu ve-
rilmigtir. Sekildeki 6zvektorlere bakildiginda, III. bolimde de
bahsedildigi gibi, her birinin kenar bilgisi tasidig1 goziikmek-
tedir. Literatiirde, 6zvektorler elde edildikten sonra k-means
gibi kiimeleme algoritmalar1 kullanilarak bolitlenme yapil-
maktadir. Ancak; 6zellikle HSG’lere ek olarak LiDAR verileri
de kullamldiginda, Sekil 3’te de goziiktiigii gibi kenarlarin
belirginlesmesiyle Onerilen algoritma boliitleme sonuglarina
o6nemli katki saglamaktadir.

Bolim III’de Onerilen algoritma farkli o degerleri i¢in
uygulanmig, elde edilen boliitler Sekil 4’te gosterilmistir.
Sonuglara bakildiginda, = 0 iken, yani sadece spektral
bilgiler kullanildiginda, goriintiiniin gereginden fazla boliitlere
ayrildig1 goriilmiistiir. Ozellikle, agag topluluklari, golgeleri ve
¢imenler olmasi gerekenden daha fazla bélutlere ayrilmustir.
o = 2 iken, HSG’lerin yan1 sira uzamsal ve ozellikle yiikseklik
bilgileriyle elde edilen potansiyel matrisi devreye girdiginde
daha once elde edilen fazla béliitlerin bertaraf edildigi goziik-
mektedir. Agag topluluklarr tek bir boliit olarak ayrilmis, agag
golgeleri de agaclardan farkli bir biitiin olarak gruplanmugtir.
Benzer sekilde, ¢imenlerdeki fazla boliitler ortadan kalkmus,
tek bolut halinde ayrilmisur. o degeri arturildiginda, spektral
bilginin boliitlemeye etkisi azalirken yiikseklik bilgisinin et-
kisini arttirmaktadir. Beklenildigi gibi, yiiksekligi baskin olan
cisimlerin boliitlendigi Sekil 4’te o = 50 igin goziikmektedir.

USSO algoritmasinin farkli o degerleri icin boliitleme
sonuclar1 Sekil 6’da verilmisti. @ = 2 oldugunda iyilesme
goziikmekle birlikte, bazi noktalarda agaglarla ¢imenlerin ve
agaclarla golgelerinin birbirlerine karistirlldigi goziikmektedir.
Benzer sekilde, asfaltin da bazi boliimlerinin fazla boliitlere
ayristirldign gozitkkmektedir. o = 2 igin, Sekil 4 ve Sekil
6°da verilen sonuglar karsilagtirldigida, LiDAR 1 iyilestirme
etkisi garpict bir sekilde gozikmektedir. Yine Sekil 6’da so-
nuglart verilen USSO algoritmasinin « degeri arturildiginda
anlamsiz ve yanhgs boliit sayisi artmaktadir. Halbuki, Sekil
4’te goziiktiigi gibi Onerilen algoritmada « arttirildiginda
yiikseklik bilgisi yardimiyla anlamli boliitler olusturulmaya
devam edilmektedir.

HSG ile LiDAR verilerini [5]’te bahsedilen Diizgelenmig
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Sekil 4: Onerilen Algoritmanin Farkli o Degerleri ile Elde
Edilen Boliitler

Kesit algoritmasi yardimiyla birlestirerck boliitleme yapan
yontemin ve Onerilen algoritmanin sonuglart Sekil 5°da veril-
mistir. Sekile bakildiginda, 1 ile gosterilen kisimda yer alan
hedefleri Diizgelenmis Kesit ayirirken, onerilen yontem yiik-
seklik bilgisine daha ¢ok onem verdiginden (o = 2), alcakta
olan bu hedefleri boliitlemedigi goziikmektedir. Diger taraftan,
agac toplulugu ile binalari ayirmada 6nerilen yontemin son
derece basarili oldugu 2 ile gosterilen bolgede ve diger bolge-
lerde goziikmektedir. Ayni sekilde, Diizgelenmis Kesit algorit-
mas1 4 numarali bolgedeki agaglarin hig birini boliitlemezken,
onerilen yontem hem agacglart hem de golgelerini ayr1 ayri
boliitlemistir. Son olarak, 3. bolgede verilen ve ¢evresine gore
alcakta kalan arabay1 Diizgelenmig Kesit algoritmasi ayirirken,
onerilen algoritma aymramamustir. Sekildeki sonuglara genel
olarak bakildiginda ise, onerilen algoritmanin bolitlemedeki
stunligu fark edilmektedir.

Sekil 5: Sirasiyla: Kullanilan Verin__in RGB Goriintiisii, Diiz-
gelenmig Kesit Boliitleme Sonucu, Onerilen Algoritmanin Bo-
liitleme Sonucu (o = 2)

Sonug olarak, HSG ve LiDAR verilerinin birlestirilmesiyle
elde edilen goriintii boliitlerinin dogrulugunun artmasinda ve
bu boliitlerdeki malzemelerin bir biitiin olarak kiimelenmesinde
onemli katki saglandigr agik bir sekilde goziikmektedir.

Sekil 6: USSO Algoritmasinin Farkli o Degerleri ile Elde
Edilen Boliitler
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