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OZET

KOROVKIN TiPLI YAKLASIM TEOREMLERI VE KUVVET SERIiSi
METODU
YUKSEK LISANS TEZi
EBRU ALTIPARMAK
PAMUKKALE UNIVERSITESI FEN BILIMLERI ENSTITUSU
MATEMATIK ANABILIiM DALI
(TEZ DANISMANI:DOC.DR. OZLEM GIiRGIN ATLIHAN)

DENIZLi, TEMMUZ - 2017

Bu tez dort boliimden olusmaktadir. Birinci boliim giris kismina ayrilmistir.
Ikinci boliimde, pozitif lineer operatdrler, matris toplanabilme, A-toplam siireci Abel
toplanabilme, Kuvvet Se{isi metodu ve siireklilik modiiliine iliskin temel tanimlar ve
kavramlar verilmistir. Uclinci bolimde, ilk olarak Klasik Korovkin teoremi
incelenmistir. Daha sonra sirasiyla A-toplam siireci, Abel toplanabilme ve Kuvvet
Serisi metodlarin1 kullanarak, C[a, b] uzayinda Korovkin tipli yaklagim teoremleri
verilmistir. Son boliimde ise oncelikle H, uzay: tamtilip, daha sonra H_ uzayindaki
Korovkin tipli yaklasim teoremi verilmistir. Bu boliimiin son kisminda ise kuvvet
serisi metodu yardimiyla ¢ift degiskenli H_ uzayinda tanimli pozitif lineer operator

dizileri i¢in Korovkin tipli yaklasim teoremi verilmistir. Ayn1 zamanda yaklagim
orani da verilmistir.

ANAHTAR KELIMELER: Korovkin teoremi, pozitif lineer operatérler, A-toplam
stireci, Abel toplanabilme, Kuvvet Serisi metodu, Yakinsaklik orani



ABSTRACT

KOROVKIN TYPE APPROXIMATION THEOREMS AND POWER SERIES
METHOD
MSC THESIS
EBRU ALTIPARMAK
PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE
MATHEMATICS
(SUPERVISOR:DOC.DR. OZLEM GIRGIN ATLIHAN)

DENIZLi, JULY 2017

This thesis consists of four chapters. The first chapter has been devoted to the
introduction. In the second chapter, some basic concepts of positive linear operators,
matrix summability, A-summation process, Abel summability, Power Series method
and modulus of continuity have been recalled. In the third chapter, firstly, Classical
Korovkin Theorem has been studied. Then, using A-summation process, Abel
method and Power Series method respectively, some Korovkin type approximation
theorems on C[a, b] spaces have been studied. In the last chapter, firstly, the space

H,, has been considered. Then Korovkin type approximation theorem on H_ spaces

has been studied. In the final section of this chapter, we give a Korovkin type
approximation theorem by positive linear operators defined on the double variable
H,, space with the use of the power series method. We also consider the rates of

convergence of these operators

KEYWORDS: Korovkin theorem, positive linear operators, A-summation porcess,
Abel summability, Power Series method, rate of convergence
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SEMBOL LISTESI

. X dizisinin A matrisi altindaki doniistim dizisi

: reel sayilar kiimesi
. dogal sayilar kiimesi
. E kiimesinin karakteristik fonksiyonu

: f fonksiyonunun siireklilik modiilii
: [a, b] araligindaki siirekli fonksiyonlarin uzay1
: [a, b] araligindaki siirli fonksiyonlarin uzay1
: [a, b] araligindaki integrallenebilir fonksiyonlarin
uzayi
; [O,oo) araliginda siirekli ve sinirli fonksiyonlarin
uzay1
= [0,oo)>< [O,oo) araligindaki siirekli ve sinirl
fonksiyonlarin uzay1
: ¢ift degiskenli f fonksiyonunun siireklilik modiili

2 | f (t)— f (XX < aﬂljx — 1—i/y J kosulunu saglayan,

[0, oo) araliginda tanimli reel degerli fonksiyonlarin

uzayi

:|f(u,v)—f(x,y)|£a{f'| . -~

_xfv oy
T+u 1+x[[1+v 14y
kosulunu saglayan | = [0,oo)x[0,oo) araliginda

taniml1 reel degerli fonksiyonlarin uzayi
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1. GIRIS

1821 yilinda Augustin Louis Cauchy yaymnladigi Analyse Algebrique adh
calismasinda yakinsak bir dizinin aritmetik ortalamasinin da yakinsak ve dizi ile ayni
limite sahip oldugunu ispatlamakla toplanabilme teorisinin temelini atan ilk
matematikg¢ilerden biri olmustur. Ancak ondan ¢ok daha 6nce Leibniz, Newton ve
cagdaslar1 sonsuz dizi ve serilerle ilgilenmislerdir. Ozellikle sonsuz serilerle yapilan
hesaplarin dogal bir sonucu gibi goérmiislerdir. Bu goriisiin sonucu olarak James

Bernoulli 1696 yilinda

1+x+x2+...=i
1-x

bagmtisini kullanmistir. Euler ise hicbir seyden kuskulanmadan bu esitlikte x =-1

alarak, Euler paradoksal esitligi ad1 verilen
1-1+1-1+...= 1
2

esitligini vermis ve bircok yerde bunu kullanmistir. 1828 yilinda Abel, iraksak
sonsuz serileri seytanin icadi olarak adlandirilmistir. Yakinsaklik kavraminin
aydinlatilmasindan ¢ok oOnce ve sezgisel olarak bulunan sonuglar yakinsaklik

tanimindan ve Cauchy'nin yukaridaki s6z konusu teoreminden sonra anlam kazanmis
ve toplanabilme teorisinin temelini olusturmustur. 1890 yilinda E. Cesaro, C,
yakinsaklik kavramini vermistir. Buna gore bir serinin kismi toplamlar dizisi olan

(S,) dizisinin aritmetik ortalamasi L degerine yakinsak ise (S,) dizisi L degerine

C, yakinsaktir veya serinin kendisi L degerine Cesaro toplanabilirdir denir. Boylece

yakinsaklik kavraminin genellestirilmesi goriisii ortaya c¢ikmistir. Ciinkdi, Z(—l)n

n

serisinin kismi toplamlar dizisi olan (Sn):[%[l+(—1)n D dizisi yakinsak olmadig

halde bunun aritmetik ortalamasi % degerine yakinsaktir. Bu sonucun yukarida

Euler tarafindan verilen sonug ile ayni oldugu goriilmiistiir. Bundan sonra 1raksak

serilere iligkin caligmalar yogun bir sekilde ele alinmistir. Buradan anlasilacagi gibi



toplanabilme metodunun temel amaci yakinsak olmayan bir diziyi yakinsak

yapmaktir.

Bu yiiksek lisans tezinde toplanabilme metodunun yaklasim teorisinde kullanimi

incelenmistir.

Klasik Yaklagim Teorisi, 1885 yilinda Alman matematik¢i Karl Weierstrass'in sonlu
aralikta siirekli olan her fonksiyona bu aralikta yakinsayan bir polinomun olacagini
ispat etmesiyle baslamistir. Birgok matematik¢i bunun ispatim farkli sekilde ele
almistir. Ornegin Bernstein 1912 yilinda Bernstein polinomlarinin C[O,l] uzayindaki
fonksiyonlara diizgiin yakinsadigini ispatlamistir. Daha sonralar1 pozitif lineer

operator dizilerinin yaklagim o6zellikleri iizerine c¢alisilmistir. Dolayisiyla (Ln)

dizisinin siirekli bir fonksiyona diizgiin yakinsak olmasi icin gerekli sartlar nelerdir
sorusu akla gelmektedir. Bu sorunun cevabini, Bohman (1952) ve Korovkin (1953)
birbirinden bagimsiz olarak bulmuslardir. Bu sonuglar birgok matematik¢inin bu
yaklagimlar1 farkli uzaylara genisletmesine kaynak saglamistir. Boylelikle Yaklasim

Teorisi'nin 6zel bir dali olan Korovkin Tipi Yaklasim Teorisi ortaya ¢ikmistir.

Kompakt bir aralikta siirekli fonksiyonlarin yaklasimi hakkindaki klasik Korovkin
teoremi, bir pozitif lineer operator dizisinin birim operatére yakinsayip
yakinsamayacagina iligkin sartlart belirler. Siireksizlik noktalarinda ise, bu
operatorlerin genellikle fonksiyonun sag ve sol limitlerinin aritmetik ortalamasina
yakinsadigi goriiliir. Fakat siireksizlik noktalarinda yakinsak olmayan Hermit-Fejer
yaklasim operatorleri gibi operatdrler de vardir (Bojanic ve Cheng, 1983). Boyle
durumlarda yakinsaklik kaybini gidermek ig¢in Cesaro metodunun siirekli periyodik

fonksiyonlarin Fourier serisini yakinsak yapmada etkili oldugunu gostermistir.

Klasik Korovkin teoremindeki pozitif lineer operatdr dizisinin yakinsamamasi
durumunda ilk yontem olarak hemen hemen yakinsaklik metodunun kullanimi
diisiiniilmiistlir. Bununla ilgili ¢alismalar King ve Swetits (1970), Mohapatra (1977)
tarafindan yapilmistir. Ikinci yontem olarak ise istatiksel yakinsaklik metodu
diisiiniilmiis ve bu metot yardimiyla Klasik Korovkin teoremi gelistirilmistir
(Gadjiev ve Orhan 2002, Duman, vd. 2003). Matris toplanabilme metodlarinin
Korovkin tipli yaklasim teorisinde kullanimi Swetits tarafindan yapilmistir (Swetits
1979).



Daha sonra 2013 yilinda Unver tarafindan Abel toplanabilme metodu kullanilarak

Korovkin tipli yaklagim teoremleri verilmistir.

Son olarak da 2017 yilinda Tas ve Atlithan tarafindan Kuvvet Serisi metodu

kullanilarak gelistirilen Korovkin tipli yaklagim teoremleri verilmistir.



2. TEMEL TANIM VE TEOREMLER

Bu boliimde, tez boyunca ihtiya¢ duyacagimiz temel tanim ve kavramlari verecegiz.

2.1 Pozitif Lineer Operatorler

Tammm 2.1.1 X bostan olmayan bir kiime, F reel veya kompleks sayilarin bir

cismi olsun.
+: XxX o>X
. FxX o5 X

fonksiyonlar1 asagidaki 6zellikleri sagliyorsa, X kiimesine F cismi {izerinde bir

lineer uzay (vektor uzayi) denir.

VX,y,ze X ve «,f €Ficin

L) x+y=y+z,

L,) (X+y)+z=x+(y+2),

L,) x+6=6+xolacak sekilde 6 e x vardur,

L,) VeX igin Xx+(—X)=(—X)+X=0 olacak sekilde bir —x € X vardir,
L) 1x=x,

L) a(x+y)=ax+ay,

L)) (a+p)x=ox+pX,

L)  a(pX)=(af)x (Kreyzing 1978).

Tanim 2.1.2 Vektor uzaylari izerinde tanimli doniisiimlere "operator" denir.



Tammm 2.1.3 X ve Y aym cisim iizerinde tanimli iki lincer uzay olmak {izere

L: X —Y operatorii verilmis olsun. Eger VX,y e X ve Ve, € F i¢in
Lox+ fy) = ad(x)+ ALy)
sartlarini sagliyorsa L'ye "lineer operator" denir (Maddox 1978).

Tammm 2.1.4 X ve Y reel degerli fonksiyonlarin uzayr olmak iizere L: X —Y lineer

operatér olsun. L operatoriiniin X noktasindaki degeri L(f;X)zg(X) seklinde
gosterilsin. X tanim uzaymdan alinan Vf >0 fonksiyonu igin L(f)ZO kosulunu

gercekliyor ise bu durumda L operatoriine "pozitif operator” denir.
Lineer ve pozitif olan operatorlere "pozitif lineer operator" denir.

Pozitif lineer operatdrler asagidaki 6zellikleri gercekler.
1. -f<0=L(-f)=-L(f)<0
2. Pozitif lineer operatorler monoton artandir.Yani;
f<g=1L(f)<L(g)
3. L pozitif lineer operatdr olmak iizere,
L(f )< (L))
gerceklenir.

Tamm 2.1.5 X kompleks veya reel vektér uzay: olmak iizere|||: X — R fonksiyonu
asagidaki oOzellikleri sagliyorsa bu fonksiyona X iizerinde bir norm ve (X||||)

ikilisine de "normlu uzay" denir. VX,y € X ve « € F olsun.
N,) [x|=0=x=6,

N,) Jox| =lalfx].

No) [x+yl<[lx+]v]

gerceklenir.



Tamm 2.1.6 X cR, f:X >R ve x; e X olsun. &>0 verilsin. Eger [x—X,|<&
kosulunu saglayan her x € X igin |f(x)— f(xox < ¢ olacak sekilde o= 5(8; X)> 0
sayist bulunabiliyorsa f fonksiyonu x, noktasinda siireklidir denir. Ayrica f

fonksiyonu her x € X i¢in siirekli ise f "stireklidir" denir (Kreyzing 1978).

Tamm 2.1.7 X =R ve f:X >R fonksiyonu ile & >0 verilsin. Eger [x—X,|<&
kosulunu saglayan her X,X, € X i¢in |f(x)— f(Xo) <& olacak sekilde 5:5(5)>0

sayis1 bulunabiliyorsa f fonksiyonu X de "diizgiin siireklidir" denir (Kreyzing

1978).

Tamm 2.1.8 X R ve f:X —R bir fonksiyon olsun. Her xe X igin | f(x) <M

olacak sekilde bir M >0 sayis1 varsa f fonksiyonuna "sinirli fonksiyon" denir.

2.2 Temel Toplanabilme Kavramlari

Bu kisimda tezde ihtiya¢ duyacagimiz matris toplanabilme metodlarindan ve buna
iliskin baz1 sonuglardan s6z edecegiz. Oncelikle klasik matris toplanabilme

metodunu hatirlatacagiz daha sonra da A-toplanabilme, Abel toplanabilme ve Kuvvet

Serisi metodu kavramlarini verecegiz.

Tanmm 2.2.1 A= (ank), k,n=1,2,3,... sonsuz bir matris ve reel yada kompleks terimli
bir x=(x) dizisi verilsin. x dizisinin A— doniisim dizisi Ax = ((Ax),) ile

gosterilir ve
(Ax)n = Zank Xy
k=1

seklinde tanimlanir (burada her bir nigin seri yakinsak kabul edilmektedir).
Eger,

lim(Ax), =L

n
n—owo



kosulu gercekleniyor ise X dizisi L degerine " A—toplanabilirdir " denir. Eger her

yakimsak (x_)dizisi igin limx, =L oldugunda lim(Ax), =L kosulu saglanirsa A

"regiiler matris" adin1 alir (Hardy 1949, Wilansky 1984, Boos 2000).

Bir A=(a,, ) matrisinin regiiler olmas: asagidaki Silverman-Toeplitz Teoremi ile

karakterize edilir.

Teorem 2.2.2 Bir A= (ank )matrisinin regliler olmasi i¢in gerek ve yeter kosul

i) supi|ank|<oo,

L)

i) Herkicin a, =lima, =0,

i) lim> a, =1
k=1

n—o

kosullarini saglamasidir (Hardy 1949, Wilansky 1984, Boos 2000).

Bell (1973) ve Steiglitz (1973) Tanim 2.2.1'deki diisiinceyi kullanarak A= (ank)

matrisi yerine Az{A(”)}ziakj(")} matris dizisini alarak daha genel olan asagidaki

tanimi1 vermislerdir.

Tamm 2.2.3 A:{A‘”)}:{aﬁj”)}, K, j=1,2,3,... sonsuz matrislerin bir dizisi olmak

iizere, verilen bir x = (x; )dizisi igin,

H - (n) _ ] . . .

Lm;am X; =L, (n'ye gore diizgiin )
kosulu gergekleniyorsa (x;) dizisi L degerine "A-toplanabilir" denir (Bell 1973,
Stieglitz 1973 ).

Eger her neNigin A™ = A ise A-toplanabilme klasik matris toplanabilmeyi verir.

| birim matris olmak iizere her ne N igin A™ =1 ise A-toplanabilme klasik

yakinsakliga indirgenir.



Tanim 2.2.4 Her y € (01) igin > x, y* serisi yakinsak olsun. Eger,

k=0

lim (1 - y)i x y* =L
k=0

y—1~

kosulu gergekleniyorsa X=(Xk) dizisi L degerine "Abel Yakinsaktir" veya "Abel
Toplanabilirdir" denir (Powel ve Shah, 1972).

Tanim 2.2.5 (pn), P, >0 ve p, 20, (neN) kosullarin1 saglayan reel terimli bir dizi

olsun. Ayrica

seklinde tanimli kuvvet serisi, R yakinsaklik yaricapimna sahip olsun (0< RSoo).

Eger,

T
lim—>» x.p,t"=L
t—>R™ p(t) rt

kosulu gercekleniyorsa X=(Xn) dizisi L degerine "Kuvvet Serisi Metodu

Anlaminda Yakinsaktir" denir (Kratz ve Stadtmiiller,1989).

2.3 Sureklilik Modiilii

Bu kisimda yakinsaklik orani olarak adlandirilan hesaplamay1 yaparken kullanilan

sureklilik modiili kavrami ve 6zellikleri verilecektir.

Tanim 2.3.1 C[a, b] uzayl, [a, b] araliginda tanimli reel degerli fonsiyonlarin uzay:

olmak iizere, f eCl[a,b] olsun. f fonksiyonunun siireklilik modili (f;d)

seklinde gosterilir ve

o(f;5)= sup|f(t)-f(x)

[t—x|<5
seklinde tanimlidir. Burada & pozitif bir sabittir.

Stireklilik modiilii asagidaki 6zellikleri gercekler (Altomore ve Campiti, 1914).



Ozellikler :

i) o(f;6)>0

i)y 6,<6,=0(f;8)<a(f;5,)

i) off +9;6)< o f;6)+0(g:5)

iv)  of;ms)<ma(f;5)

v)  [|4]} 2 'nin tam degerini gostermek iizere bir A>0 saysi igin,
o(£;28)< @+l £;6) < @+ L)l F;5)

vi)  o(fi[t=x)=|f ) - ()|

vii) [ f(t)— f(x)| s(@ +1}0(f )



3. KOROVKIN TiPLi YAKLASIM TEOREMLERI

3.1 Klasik Korovkin Teoremi

Bu boliimde yaklasimlar teorisinde 6nemli yeri olan, 1953 yilinda Korovkin

tarafindan verilen yaklagim teoremlerini ve bu teoremlerin ispatlarini verecegiz.
Burada kullanilan C[a,b] ve B[a,b] uzaylani sirasiyla, [a,b] arahiginda tanimli reel

degerli siirekli ve sinirli fonksiyonlarin uzaylari olup,

[¥]1= sup [ (x)

xe[a,b]
normuna gore Banach Uzaylaridir.

Teorem 3.1.1 L, :C[a, b]—)C[a, b] pozitif lineer operatorlerin bir dizisi olsun. Bu

durumda asagidaki ifadeler denktir :

i) vf eCla,b] igin lim|L, f —f[ ., =0

i) f,(t)=1,f,(t)=t, f,(t)=t* olmak iizere lim[L,f, - f| 0,i=012.

Clab] —

Ispat : i)=ii) gerceklendigi aciktir. Ciinki, Vf e C[a, b] icin i) hipotezi
saglandigina gore f,(t)=1 f,(t)=t, f,(t)=t> fonksiyonlar1 da C[a, b] uzayinin
eleman1 oldugundan istenilen elde edilir.

Simdi ii) = 1) oldugunu gosterelim .

f eC[a, b] alalm. f siirekli bir fonksiyon oldugundan Ve >0i¢in 3 6 > Ovardir >
t—x <& kosulunu saglayan Vx,te[ab] igin |f(t)- f(x)<e gerceklenir. Simdi

|t - X| >0 igin,

elde edilir. f ,[a,b]'de smirli oldugundan,

10



2

16)- 1) <1 0]+ () <2m 22 20

gergeklenir. O halde Vx,te [a, b] icin,

oldugu gortiliir.

Son esitsizligin her iki tarafina L pozitif lineer operatorii uygulanirsa,

L,(f - f o)< Ln[5+2M (t=x)° ;xj

52

< Ln(g;x)+2§—|\2/|Ln ((t—x)2 ;x)

=L, (& x)ig+25—l\g{Ln (t?;x)- 2xL, (t;x)

+ %L, (LX) + 22

—2x(L, (t; )= x)+ x3(L, (1, x) - 1)}
L(f(t)- f(x}x)< &+l X)—]J+25—'\2/|{Ln(t2; X)— x|

= 2L, (%)= X+ [} |L, (& x)—]” (3.1)

esitsizligi elde edilir. Diger yandan
L (F (0):%)= £ (0] =L (F %)+ L, (F (x); %)= L, (F () %)= £ ()
<L, (F () %) — Ly (F 00 %) + L (F () %) — £ ()]
<L, (f )= f00lx)+] f L, @ x)-1

11



yazilabilir. Bu son esitsizlikte (3.1) esitsizligi dikkate alinirsa,

L, (f(t);x)-f (x)‘_

L, (tz;x)—xz‘

2 (@:%)= X[+ £ QOlL, (1) -1

—2|x}|L, (t;x)-

elde edilir.

Son esitsizligin her iki tarafinin X € [a, b] i¢cin supremumu alinip norma gegilirse,
I f = f<e+H{L,f, - £+, f, = £+ L. fo = fo}

bulunur. Burada

H = sup {g 2—M sup 2|x| - sup

xela,b] 2 elan] % xJan]

1

seklindedir. Simdi N — ooigin limit alinirsa ii) hipotezinden

lim|L, £~ f]|

C[ab

oldugu goriiliir.m

Simdi periyodik fonksiyonlar i¢in verilen Korovkin tipli yaklagim teoremini verelim.

Burada C[O,Z;r]z{ f: f[O,Zﬂ']—)R, 27 periyotlu siirekli fonksiyon } vektdr uzayi

olup,

||f||C[0,27z]: sup | ( )

€[0,27]
normuna gore Banach Uzayidir.

Teorem 3.1.2 L, :C[O,Z;r]—)C[O,Zﬂ'] pozitif lineer operatorlerinin bir dizisi olsun.

Bu durumda asagidaki ifadeler denktir :

i) Vf eC[0,27] igin lim|L, f - f|

clo,2z

12



ii) f,(t)=1, ,(t)=sint, f,(t)= cost olmak iizere lim|L, f; - [, ,., =0, i=012.

ispat : i)=ii) gerceklendigi agiktir. Ciinkii Vf eC[0,27] igin ii) hipotezi

saglandigina  gore f,(t)=1 f,(t)=sint, f,(t)=cost fonksiyonlar1 da C[O,Zﬂ]

uzayinin elemani oldugundan istenilen elde edilir.

Simdi ii) = 1) oldugunu gosterelim.

fe C[O,27r] alalim. f siirekli bir fonksiyon oldugundan Ve >0Qigin 3 & > Ovardir 3

[t—x| <& kosulunu saglayan Vx,te[a,b] igin |f(t)- f(x)<e gergeklenir.

f,[0,27]'de smirh oldugundan,

£ (t)- f(><)|$|f(t)|+|f(x)|s2|\/|.132|\/|(t;_;‘)2

gerceklenir. Simdi t e (X —-0,2T+X—-0 ] araligini alalim. Bu araligin boyu 27 olup
X=0<t<27+X-0
—~5<t—X<27—§ esitsizliginden |t—X|< & bulunur.
Ayrica t—X| < Sigin |f (t)-f (X)| < & oldugu biliniyor.
Sonolarak t e (X +0,27+ X— 5] araligini alalim. Buradan,

X+O0<t<2r+X-0

O<t—Xx<27r-6

§ t-x_2z-8 sins sin(t-x)
<2< = <
2 2 2 2 2

5 sin 5
= 5 >1 = o >1

Sin — sin‘® —

2 2

elde edilir. O halde Vx,t €[0,27]igin

13



oldugu gortiliir.

Bu son esitsizligin her iki tarafina L, pozitif lineer operatorii uygulanirsa,

=L, (&%)+ 2l .an(l—cosz(t )XJ
. 20
sin?
2
:Ln(g;x)ig+

{L, (& x)—cosxL, (cost; x)
- 2 “
sin 5

—sin xL, (sint; x)+1}

— s+ elL,(LX)-1) M (L, @)-1)

—cosx(L, (cost; x)—cosx)—sin x(L, (sint; x)—sin x)}

q X)| )<g+g|L lx) ]4

ML

sin? =

lcos X||L, (cost; x)— cos x| —[sin x||L, (sint; x)—sin x{} (3.2)
esitsizligi elde edilir.
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L (F (@0:%)= £ (0] = Ly (F (0 %)+ L, (F (%)= L, (F(0:%)= £ (X))
< |Ln(f (t)’ X)_ Ln(f (X)’ X]+|Ln(f (X)1 X)_ f(X)|

<L, (f@® - f0fx)+|f (9L, 1x)-1]

Bu esitsizlikte (3.2) esitsizligi dikkate alinirsa,

ML

sin® —
2

L, (ft)x)- f(x)<e+el, Lx)-1+

— |cos x||L., (cost; x)— cos x| — fsin x||L., (sint; x)—sin x|}

+|f (L, (& x)-1
bulunur.

Son esitsizligin her iki tarafinin X € [0,27[] i¢cin supremumu alinip norma gegilirse,
IL, f = | <e+H{L, £, = £+, o= f+]L. fo = o}

bulunur. Burada

2M 2M .
H= sup {e, sup |cosx, sup [sin X

xe[O,Zn'] Sln 2 é xe[O,Z;z'] Sln 2 é Xe[O,Z;z]

seklindedir.

Daha sonra n — oo i¢in limit alinirsa ii) hipotezinden

Iirr]n”Lnf N f”c[o,zz] =0

oldugu goriiliir.m

15



3.2 A -Toplanabilme ile Korovkin Tipli Yaklasim Teoremi

Bu boliimde 1981 yilinda Bell tarafindan A-toplanabilme metodu kullanilarak
gelistirilen Korovkin tipli yaklasim teoremleri ve bu teoremlerin ispatlari
incelenmistir. Ayrica siireklilik modiilii  kullanilarak bu yaklagimin orani
incelenecektir.

Tamm 3.2.1 A={A®|={a}, k, j=12,3,... reel terimli sonsuz matris dizisi olmak
lizere her j igin L :C[a,b]— B[a,b] pozitif lineer operatér olsun. Eger her
f eCla,b] igin {L,(f)} dizisi f fonksiyonuna A-toplanabilir ise yani her
f eC[a, b] icin

I|m

Za(”) L ( H =0, ( n'ye gore diizgiin )

kosulu gergekleniyorsa {L j} dizisine "A-toplam siireci" ad1 verilir.

L, :C[a,b]— Bla,b] her n,k eN igin,

Za(n)

() <o (3.3)

kosulunu saglayan pozitif lineer operatdrlerinin bir dizisi olsun. Bu durumda her bir

nkeNve f eC[a, b] icin,

B™M(f;x) Zaﬁ“)L (t)x), nk=123,..
ile taniml Bk(") operatoriinii ele alalim. O halde,

HB'En)(f )(c[a,b] N XSl[Jaﬁ’,]

BM(f; x)‘ = sup

Xe[a b

SaL (1e)x ﬁ

j=1

< sup iaﬁ;"Lij(t);x)

xela,b] 7=

16



< sup STaipL, i)

Xe a b] j=1

=| f| sup Zaﬁ”’L (L x)

Xe[ b

<|f IIZa(”)

elde edilir. Simdi (3.3) gozoniine alinirsa Bk(n) operatorii her bir n,k i¢in anlaml

olup B[a, b] uzayina aittir. Dolayisiyla

—supz

H B(M
b] =1

a, L (,(t), x){

clab]>Blab] H (n) 11 B[a,b]

seklinde yazabiliriz.

Simdi toplam siireci yardimiyla gelistirilen Korovkin tipli yaklagim teoremleri ve bu

teoremlerin ispatlarini verelim (Bell 1981).

Teorem 3.2.2 A={A™ }={a{" | terimleri negatif olmayan reel terimli matrislerin bir
dizisi olsun. L, :C[a,b]— B[a,b] ve (3.3) kosulunu saglayan pozitif lineer operator

dizisi olsun. Bu durumda agagidaki ifadeler denktir :

i) Her f eCla,b] icin Ii[nHBlﬁ”)f - f” =0, (n'ye gore diizgiin )
ii) f,(t)=t',i=0,1,2 olmak iizere Ii[nHBé“)(fi)— fi” =0, (n'ye gore diizgiin )

Ispat : i)=ii) gerceklendigi agiktir. Ciinkii, her feC[a,b] icin 1) hipotezi
saglandigina gore f,(t)=1, f,(t)=t, f,(t)=t> fonksiyonlar1 da C[a, b] uzayinin

eleman1 oldugundan istenilen elde edilir.

Simdi ii) = 1) oldugunu gosterelim.

f eC[a, b] alalim. f siirekli bir fonksiyon oldugundan V& >0 i¢in 36 >0 vardir >
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t—x <& kosulunu saglayan ¥x.t e [a,b] igin |f(t)- f(x) <& gerceklenir. Buradan,

f, [a,b]'de siirh oldugundan,
2
1) 1<) | o) <2m 2o 20

gergeklenir. O halde Vx,te [a, b] icin

oldugu gortiliir.

Bu son esitsizligin her iki tarafina B{" pozitif lineer operatérii uygulanirsa ,

B™(f(t)- f(x);x)< Bé”)(5+25—l\f(t = x)z;xj

< Buf”) (g; x) + 25_|\£I B§“> ((t - x)2 : x)

=B (e;X)* ¢ +25—|\£|{B|§“)(t2; X)

—2xB{™ (t; X)+ X2B{" (I; )+ 2x° |

o a2 20 o))

- 2x(B(t:x)- x)+ x* (B (1:x) - 1)}
BO(£(0)- £ ()< 2+ B (0 x)- 1+ 25 B 73)- X

—2X{B{" (t; X)— x|+ [x*|[B" (@ x)—ﬂ} (3.4)
esitsizligi elde edilir. Ayrica

B (£ (thx)= (x) =B (f ()x) - B ( () x)+ B (£ (x) x) - £ (x)

18



<[B( (010~ B ( (<h )+ B (£ ()~ 1 (x)
<BO(f(t)— f(x):x)+|f (x)|B" @ x)-1]
bulunur. Bu esitsizlikte (3.4) esitsizligi dikkate alinirsa,
BO( (1) x)- f (x| <2+ dBO (LX) -1+ 25“" (B (t2:%)- ¢
~ 2B (t:%)— x|+ ||B" ()1
f(x}B" G x)-1
elde edilir.

Son esitsizligin her iki tarafinin X € [a, b] icin supremumu alinip norma gegilirse,
[BO(f:x)| < &+ HYBO £, £, +[BOf, - £, + [BO 1, — [}

bulunur. Burada,

H= sup{ 2§M sup 2|x| _M sup |x

xe[a,b] elab xela,b]
seklindedir.

Daha sonra k — oo i¢in limit alinirsa ve ii) hipoteziden
i mf _ _ 5 e .
I';[nHBk f f”c[a,b] =0, (n’e gore diizgiin )

oldugu goriiliir.m

Simdi Teorem 3.2.2 'de verilen pozitif lineer operatdr dizisi i¢in yaklagim oranini

elde edecegiz.

Yaklagim orami @, >0 (n—o) olmak iizere L, (f;x)- X)|<C a, olacak

sekilde (an) dizisinin belirlenmesi problemidir. Yaklagimlar teorisinde yakinsaklik
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orani olarak adlandirilan bu hesaplamay1 yapmak i¢in birgok ara¢ kullanilabilir.

Bunlardan biri de siireklilik moduliidiir.

Teorem 3.23 A ={A™}={a{} terimleri negatif olmayan reel terimli sonsuz
matrislerin bir dizisi olsun. L, :C[a,b]— B[a,b] ve (3.3) kosulunu saglayan pozitif

lineer operatérlerin bir dizisi olsun. Bu takdirde VK, igin,
B (f)— £ <[ B @)~ + olus ) B ) + 1
esitsizligi gerceklenir. Burada,
wt =B (t—xJ|
seklindedir.

Ispat : xt e[a, b] ve o pozitif bir say1 olmak tizere siireklilik modiiliiniin 6zelligi

nedeniyle,
1) f(x)<w[f;¥5}<{l+|t5—§|z]a)(f;5)

gerceklenir. Esitsizligin her iki tarafina B{" pozitif lineer operatoriinii uygulanirsa,

o) 16x)< 0 i)+ ot

=8 (o 110 x)+ AL - xi)

<8 (of 100+ A g0 - )
=BO(a(f0)x)+ A1) 2

elde edilir. Burada g, >0 oldugundan ¢ = y, alinirsa,
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5.0~ 1) =i )80 )+ AL )
k

B (t)— f (X} x)< (B (L x)+L)eo( F; 22, ) (3.5)
esitsizligi elde edilir. Ayrica
B (£t x)— £ ()] =B (F (thx) = B (f () x)+ B ( () %)~  (x)

<[BO(F(1);%)- B (F (053] +[BO(F (%)~ £ (0)
<BM(f(t)- f(x);x) +|f (B (1 %) -1

elde edilir. Bu esitsizlikte (3.5) esitsizligi dikkate almirsa,

B (F (%)= £ () < (B @ x)+ oo £ 28, )+ | £ (x)B (@ ) -1
bulunur. Buradan,
|8 ()= fl<[B” @+ 3 o) + 1] [ (0=

oldugu goriiliir. Bu ise ispat1 tamamlar.m

3.3 Abel Toplanabilme ile Korovkin Tipli Yaklasim Teoremleri

Bu béliimde, 2013 yilinda Unver tarafindan Abel yakinsaklik metodu kullanarak
gelistirilen Korovkin tipli yaklasim teoremleri ve bu teoremlerin ispatlar

incelenmistir.

L, :Cla,b]— B[a,b] her y(01) igin,
DL @)y <o (3.6)
n=0

kosulunu saglayan pozitif lineer operatorlerin bir dizisi olsun. Her ye(O,l) ve

f eC[a, b] icin,
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U((F @)Xk y)= - )3 L, (

n=0

ile taniml1 U operatoriinii ele alalim. O halde,

[SX(§i )|| sup|U X)y) = sup|Ll-y Z (t)x)y"

xe[a,b]

<sup(l

xeab]

Lo (0 x)y"

OMS

< sup (L) L, (| )y
n=0

Xeab

<[ - ZIIL @y’

elde edilir. Simdi (3.6) gdzoniine alinirsa U operatorii her ye(O,l) ve f eC[a, b]

icin anlamli olup B[a, b] uzayina aittir. Dolayisiyla

” ”C[ab»B[ab 1]|B[ab xiup Z

n=0

seklinde yazabiliriz. Ayrica

”U ym [a,b]>B[a,b] < Z fomyn (37)
n=0

elde edilir.

Simdi Abel Yakinsaklik yardimiyla Korovkin tipli yaklasim teoremini verelim.

Teorem 3.3.1 L, :C[a,b]—> B[a,b] ve (3.6) kosulunu saglayan pozitif lineer

operator dizisi olsun. Bu durumda asagidaki ifadeler denktir :
i) Herhangi bir f eC[a,b] icin,

o0

2 (L —f(x))y"

lim 1 y%

y—1
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i) f. (t) =t',i=0.1,2 olmak iizere,

=0 (Unver 2013).

> (L (1000~ 1)y’

lim (1— y){n

y—-1

Ispat : i) =ii) gercekledigi aciktir.

ii)=1i) oldugunu gosterelim. f EC[a, b] alalm. f stirekli bir fonksiyon
oldugundan Ve >0 i¢in 36 >0 vardir > |t—X|<5 kosulunu saglayan VXt e[a, b]

i¢in |f(t)— f(X)| <& gerceklenir. O halde Teorem 3.2.2'ye benzer olarak VXt e [a, b]

i¢in,
2
[f(t)-f(x)<e+2M (t;—i()ﬂ;

elde edilir.

Son esitsizligin her iki tarafina U pozitif lineer operatorii uygulanirsa,
U((f ()= F(x);x) y)su([3+25—l\f(t - X)2;xj; yj
2M
<U((&x); y)+?u (((t —x)’; x); y)

U((f(t)- f(xfxky)<e+eu(@x)y)-4 +25—|\£|{U (2 x}y)- X
= 21U (€ ) ) - X+ [x (@ ) y)-1i (38)

esitsizligi elde edilir. Daha sonra

o0

=y (L (F (%)= F(X))y"

n=0

—U((FE)x)y)- F(x)

= U ((F @)y =U ((F () y)+U ((F () y) - (x)
< CF @ y) =W ((F O )+ (CF () y) = ()
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<U (Q f(t)- f(x); x) y)+| fO UL x)y)-1
bulunur. Son esitsizlikte (3.8) esitsizligi dikkate alinirsa,

o0

=YL (@) £y <2+ aU (@ xky)-2+ U (b y)- ]

=2 (60 y)- X+ XU (@ 0 y)-1)
+ O (@ x)y) -1
gerceklenir. VY e (O,l) igin C= sup{[a|, |b|} olmak tizere,

U @hxky)- 1012 e+ 2 J0 b))

+45—I\£|C|U ((t;x)y)- x|+25—'\f‘u ((t?:x}y)- xz‘
elde edilir.

Son esitsizligin her iki tarafinin Xe[a, b] icin supremumu alinip norma gegilirse,

@ISR0 0| ey S L )
+(1- y*g(Ln (t; x)—x)y"[ + @ - y){é(Ln (L, x)-1)y" }
bulunur. Burada,
- e .20

seklindedir.

Daha sonra y — 1 i¢in limit alinirsa ii) hipotezinden

=0

lim (1— y*

yo1

> (L (F(0hx)= Gy
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oldugu gortiliir.m

Simdi siireklilik modiilii yardimiyla Teorem 3.3.1 'in yakinsaklik oranin1 verelim.

Teorem 3.3.2 L, :C[a,b] - B[a,b] seklinde tammli (3.6) ve

K=sup [U(()y) Clasloslap] < kosullarmni saglayan pozitif lineer operatorlerin bir
ye(01) PR

dizisi olsun. Bu takdirde,

i) lim[u((x)y)-1]=0

y—1

i) limao(f;a(y))=0

y—1"

kosullar1 saglaniyorsa her f eC[a, b] icin,

o0

(L (1) Ty

=0

Hm@—y%

y—1"

n

gerceklenir. Burada,

a*(y)=u((t-x7:x}ty)

seklindedir (Unver 2013).

ispat : Her ye (0,1) ve o pozitif bir say1 olmak iizere siireklilik modiiliiniin 6zelligi

nedeniyle,
t0)- f(xxgw[f;@.gHy@]w(f;a)
3(1{':}' Dw(f;a)
<£1+ i ;ﬂzja)(f;&)
gerceklenir.
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Esitsizligin her iki tarafina U pozitif lineer operatoriinii uygulanirsa,

U(([F )= f()ix) y)su[[w(f :5)+(t;—2x)2w(f 5), x]: yj

—U((a(f;8)x)y)+ a’(fig)u (€-x2:x}y)

<U((@(f;8)x)y)+ w(f;g)az(Y)

elde edilir. Burada a(y)> 0 oldugundan & = a(y)alinursa,
U((f @)= f () xky)< O @x)y)+Dalf;a(y) (3.9)
esitsizlii elde edilir. Burada,
U((F @xky)= £ ) <U (0= O xby)+[F OO (@) y)-Y
olup, bu esitsizlikte (3.9) esitsizligi dikkate alinirsa,
O((FE)x).y)- T < U@ x)y)+ ool fr(y)+ MU (@ x)y) -]
elde edilir.

Son esitsizligin her iki tarafinn X €[a,b] igin supremumu alinip norma gegilirse,
U Ehxky)- 10 < [0 @ x)y )+l )+ MU (@ X)) -4
<(K+Da(f;a(y)+MU(ELx)y)-1
< Hio( f5a(y)+ UL x) v3-1)
bulunur. Burada,

H=sup{l+K,M}

xe[a,b]
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seklindedir.

Daha sonra y —1 igin limit alinursa, hipotezler nedeniyle her f eCla,b] igin,

lim
[ Y e

oldugu goriiliir.m

3.4 Kuvvet Serisi Metodu ile Korovkin Tipli Yaklasim Teoremleri

Bu béliimde 2017 yilinda Atlihan ve Tas tarafindan verilen Kuvvet Serisi metodu
kullanilarak gelistirilen Korovkin tipli yaklagim teoremlerini inceleyecegiz. Ayrica
sireklilik modiilii kullanilarak, elde edilen yaklagimlarin yakinsaklik orani

incelenecektir.

C[a, b] uzayinda Kuvvet Serisi metodu yardimiyla, Korovkin tipli yaklagim teoremi

verelim.

L, : C[a,b]— Bla,b] herhangi bir f eC[a,b] icin,

sup—Z”L (@)p,t" <o (3.10)
o<t<r P(t) &=

kosulunu saglayan pozitif lineer operatorlerinin bir dizisi olsun. Bu durumda

herhangi bir f eCla,b] igin

(1)]]=sup N, {(£(y) )} = sup i)iLk<f<y>;x>pntn

xela,b] xelab] PLL
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1< "
< sup T; (“f||;x)pnt

Xeab]

1 0
<|f — > L, @)p,t"
I15ue S 2l Ole:

elde edilir. Simdi (3.10) gbzoniine alinirsa V, operatorii herhangi bir f eC[a, b] icin

anlamli olup B[a, b] uzayina aittir.

I’]

M8

"V ” ab—>B[ab 1)|B[a b]

seklinde yazabiliriz. Ayrica
1 & 0
IVACE x| < sup —= > |IL, @) p,t" < oo (3.11)
0<t<R p(t) n=0

elde edilir.

Teorem 3.4.1 L, :C[a, b]—) B[a, b] ve (3.10) kosulunu saglayan pozitif lineer

operator dizisi olsun. Bu durumda asagidaki ifadeler denktir :

i) Herhangi bir f eC[a,b] icin,

im|V, (£ (y) )} £ 09 =0

t—>R

ii) f,(t)=t',i=0,12 olmak iizere,

lim |V, {( f f,(x)]=0

t>R”™
gerceklenir (Atlihan ve Tag, 2017).
Ispat : i) = ii) ger¢ekledigi aciktur.

ii)=1) oldugunu gosterelim. f eC[a, b] alahm. f siirekli bir fonksiyon
oldugundan Ve >0 igin 36 >0 vardir 5 |[y—X/<J kosulunu saglayan Vx,y e[a,b]
igin |f(y)-f(x]<e gerceklenir. O halde Teorem 3.2.2'ye benzer olarak

vx,y [a,b] igin,
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f(y)- f(x)|£g+2M(y;—X)2

2

elde edilir. Bu son esitsizligin her iki tarafina V, pozitif lineer operatorii uygulanirsa,

Vo {(f(y)- f(x); x)}svt{(g+25—l\2/|(y— x)zj; x}
V, {‘ f(y)-f (x)‘;x} £g+g[\/t {(1;x)}—1‘+25_|\£|D\/t {(yZ;x)}—XZ

+2|X] .’Vt {(y;x)} - x‘ + ‘XZHVt {(1.x)} —1‘] (3.12)
esitsizligi elde edilir.
MACE )t £ O < VA F ()= £ O+ £ OOV A )} -4
elde edilir. Son esitsizlikte (3.12) esitsizligi dikkate alinirsa,
VA ()} o) o2, (0} - 24 25 e lly i) -]
=2V Ay )= X+ XV (L x)F -
+1 OOV, @)} -1]

elde edilir. Vte (0,1) igin C= Sup{[a|,|b|} olmak {iizere,

VA0 1) <[ o428 ) -4

4M . 2M 2. 2
+y0[\/t{(y'x)}—x|+?f\/t{(y ’X)}—X ‘
elde edilir.

Son esitsizligin her iki tarafinin X € [a, b] i¢cin supremumu alinip norma gegilirse,

IVACE ()= £ 00 < VA2 50— 2 Ve (s 0} = ] Ve {0} 1)
bulunur. Burada,
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H = sup {g+M+

Xe[a,b]

oM , 4M 2M
52(:’52’52

seklindedir.

Daha sonra t — R~ igin limit aliirsa ii) hipoteziden ve ¢ keyfi oldugundan

yeterince kiiciik segilirse,

lim [V {(f (y):x)j— f(x)|=0

t—>R™

oldugu goriiliir.m

Burada sirastyla p, =1, R=1 ve p(t) zﬁ te (—1,1) alinirsa, o zaman Kuvvet
Serisi metodu Abel metoduna denktir.

Simdi Teorem 3.4.1'deki hipotezin kosullarini saglayan fakat Klasik Korovkin

teoreminin kosullarini saglamayan pozitif lineer operator dizisi 6rnegini ele alalim.

Ornek 3.4.2 (Ln), C[a, b] tizerinde tanimli pozitif lineer operatdrlerin bir dizisi

olsun. (L, ), operatorii
L, (f;x)=(0+a,)B,(f;x)

olacak sekilde tanimlansin. Burada (Bn) Bernstein polinomlarinin dizisidir. Ayni

sekilde (e, )=((~1)") olsun. Dikkat edilirse (e, ) dizisi Klasik olarak yakisak degil
ancak 0 degerine Abel anlaminda yakinsaktir. Dolayisiyla (Ln) pozitif lineer

operatorii Klasik Korovkin teoremi hipotezlerini gergeklemez. Ancak Teorem

3.4.1'in hipotezlerini gercekler.

Teorem 3.4.3 Ln:C[a,b]—> B[a,b] ve (3.10) kosulunu saglayan pozitif lineer

operatorlerin bir dizisi olsun. Bu takdirde,
i) lim|V, {(z:x)}-1] =0

i) lim o(f;a(t)=0

t—>R™
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kosullarini sagliyorsa her f eC[a, b] icin,

lim |V {(f (v} x)j - £ ()| =0

t—>R

gerceklenir. Burada,

a(t)= v {(y )

seklindedir (Atlithan ve Tas, 2017).

ispat : Her t e (0,R) ve & pozitif bir sayi olmak iizere siireklilik modiiliiniin 6zelligi

nedeniyle,

1) 101<[1s U2 o

gerceklenir. Esitsizligin her iki tarafina V, pozitif lineer operatoriinii uygulanirsa,

wllt)- el o U2 oo

elde edilir. Ayrica
Vel f ()= £ 0} < Ve d@ )+ Do £ (0) (3.13)
esitsizligi elde edilir
VACE (k= £ O] <V ()= £ 0k x| £ GV, {00}

Bu esitsizlikte (3.13) esitsizligi dikkate alinirsa,

Vv A(f ~f(x)=(v Ya(f;a(y))+ MV LX)}
bulunur.

Bu son esitsizligin her iki tarafinin X e [a, b] icin supremumu alinip norma gegilirse,
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IVACE ()= 1 00 <[V @ ) + el 5 2(0)+ MV {5 x)}-1]

elde edilir.Her t e (0,R) ve [V {(): X} (o1 000y < K 61N,

< (K +Leo( )+'V'IIV{ X1
VACE (v X)) X)||<H[w fiaft)+ |V, (&)}

gerceklenir. Burada,

H=sup{l+K,M}

xe[a,b]
seklindedir.

Daha sonra t — R~ igin limit alinirsa, hipotezler nedeniyle her f <Cl[a,b] icin,

lim |V, {( f —f(x)|=0

t—>R™

oldugu gortiliir.m

Simdi L, [a, b] uzayinda Kuvvet Serisi metodu ile Korovkin tipli yaklagim teoremini

verelim. Burada L, uzay1, =1 igin

:{f:i‘f(x)‘qu«m}

seklinde tanimlanir. Bu uzay,

1= Jlrcorad

normuna gore Banach Uzayidir.

L, : L [a,b] - L,[a,b] herhangi bir t € (0,R) igin,

—supz Pul|Ls ||LﬁL <o (3.14)

0<t<R n-p
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kosulunu saglayan pozitif lineer operatdrlerinin bir dizisi olsun. Simdi her t (O, R)

ve fel, [a,b] igin

VA= S S L

ile taniml1 V, operatoriinii ele alalim

. Simdi (3.14) gdzoniine alinirsa V, operatori herhangi bir f e L, [a,b] icin anlamli

olup L, [a, b] uzayina aittir. Dolayisiyla

a

Ml =M@, [Jw " xdeJ

seklinde yazabiliriz

Simdi Kuvvet Serisi metodu yardimiyla L, [a,b] uzaymda Korovkin tipli yaklasim

teoremini ve bu teoremin ispatini verelim.

Teorem 3.4.4 L L, [a,b]— L, [a,b] ve (3.14) kosulunu saglayan pozitif lineer

operat0r dizisi olsun. Bu durumda agagidaki ifadeler denktir :

i) Herhangi bir f e L [a,b] icin,

im |V, (y) 0}~ ()], =0

t—>R™

i) fi(y)z y',i=012 olmak iizere,

lim [V A(,(y): )} = f,(x)], =0 (Atlihan ve Tas, 2017).

t—>R™

Ispat : i)=ii) gercekledigi aciktir. Ciinkii her feLq[a,b] icin 1i) hipotezi
saglandigina gore fo(y)zl, fl(y): Y, fz(y)z y® fonksiyonlar1 da L, [a,b] uzayimi

eleman1 oldugundan istenilen elde edilir.
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Hatirlatma ( Luzin Teoremi ) f el [a,b] ise Ve>0 igin |f —g||q < ¢ olacak
sekilde C[a, b] uzayinda siirekli bir g fonksiyonu vardir. Yani C[a, b] uzayt L, [a,b]
uzayinda yogundur (Royden 1968).

Simdi ii) = 1) oldugunu gosterelim.

fel, [a, b] alalim. L, uzayindaki fonksiyonlarin C-6zelligine gore (Luzin Teoremi)
Cla,b] uzaymnda 8yle bir siirekli ¢ fonksiyonu bulabiliriz ki Ve > Oigin |[f — ¢ <&

saglanir.
Ayrica (oeC[a, b] alalim. ¢ siirekli bir fonksiyon oldugundan Ve >0 i¢in 36 >0
vardir > |y - X| <0 kosulunu saglayan VX,ye [a, b] icin |(0(y)— go(x) <&

gergeklenir. O halde Vx,y e [a, b] icin,

oly)—p(x) < 5-+2M (y;})z

elde edilir. Son esitsizligin her iki tarafina V, pozitif lineer operatorii uygulanirsa,

wllt)- ot vz O | 819

elde edilir. Ayrica

NVllp(y) )} o(x) <V lle(y) - o (x): x)i+ eV, (@, x)}-1
Vellply )} o)< o+ oV, )} + 5 i)
+ 2V {(y; x)} =X+ ‘XH\/ LX) -1+MNVAGX)} -1

bulunur.

vt e(O R) icin C= sup ﬂa| |b|} olmak {izere,

xe[a,b]

Mlloy k- ofo) <+ oM+ 2 0 )
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T A (R R (P S I T

esitsizligi elde edilir. Ayni zamanda,

VA(F (Vo) =Ml F ()= oy ) = 2 (L(T(y)-oly)kx)n,t”

=t -l —ZL @x)p

Ok
VAo <]t ol o Bl wr e

esitsizligi elde edilir. Ayni zamanda
MACE ()0} £ (x) =M ACF (b= Ve llo(y )}V ey )} = o(x)+ o(x) - £ (x)
<M A(f(y J+ Ve llo(y ) )i = o(x) +{ £ (%)= o(x)
IVACE ()= £, < VACF (=i llo(y koo, + Ve d((y k)l - (),
+[f ()= o(x],

bulunur. Son esitsizlikte (3.16) ve (3.17) esitsizlikleri dikkate alinirsa,

NACF () F ), < gﬁz N +g+[g+ M +25—“§'c2j|[vt{(1: -1,
M 2M N s
0, 2 ) oo

MR- 0] = of 2070 o2 ),
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4M . 2M 2. 2
+?c|[\/t {(y; x)}—x||q +?”\/t {(y ,x)}—x H+g

elde edilir.

Esitsizligin her iki tarafinin t — R™ i¢in limit alinirsa 1i) hipoteziden

imlV, (£ (10} £ (1), =0

t—>R™

oldugu goriiliir.m

36



4. H, UZAYI ICIN VERILEN KOROVKIN TiPLI YAKLASIM
TEOREMLERI

Bu boliimde, 1999 yilinda Gadjiev ve Cakar tarafindan verilen H_ uzayimdaki

Korovkin tipli yaklasim teoremi incelenmistir.

Burada @ fonksiyonu,

i) @, [0,00)'da negatif olmayan artan bir fonksiyondur.
i) o5, +6,)<a(5,)+alS,),

i) limo(5)=0

o—0

ozelliklerini saglayan siireklilik modiilii tipi bir fonksiyon olsun.

j (4.1)

kosulunu saglayan, [0, oo) araliginda tanimli reel degerli fonksiyonlarin uzayidir.

H,, uzayi,

y

1+x 1+y

160 1(5)<of

Ayrica C, [O,oo) uzayl, [0,00) 'da taniml siirekli ve sinirli fonksiyonlarin bir uzayi

olup burada norm f e C,[0,)igin,

|t

¢, =sup|f(x)
seklinde tanimlanir.

Agiktir ki, herhangi bir f eH, i¢in H, CB[O,oo) saglanir.

1+2x
f =
(X) 1+X

Ornek 4.1 ile tamimli f fonksiyonu a)(t):t icin H,_ uzaymin bir

elemanidir. Gergekten, her X,y igin

~ C|teax 12y | xy |
‘f(x) f )‘_ 1+x 1+y|s|1+x 1+y|
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X .y

1+x 1+y

x ylox oy
|1+x l+y|_1+x 1+y

|

Simdi H_, uzayindaki Korovkin tipli yaklasim teoremini verelim.

elde edilir.

Teorem 4.2 L,:H, — C.[0,00) pozitif lineer operatdrlerin bir dizisi olsun. Bu

durumda
. t ) X ) .
lim|L, || —|:;X|-| — =0, 1=012
N> 1+t 1+x
Cs
kosulu saglaniyorsa herhangi bir f € H igin,
lim|L, f — f . =0

gerceklenir (Gadjiev ve Cakar, 1999).

Ispat : feH_ olsun. f siirekli bir fonksiyon oldugundan Ve >0 i¢in 35 >0

vardir 3 |—————<J kosulunu saglayan VXt i¢in |f(t)— f(x)|<5 gerceklenir.
1+t 1+X
imdi |—————>0 igin,
> 1+t 1+X ¢
ot X (t_ X j
1+t 1+x 51 1+t 14X 51
o 5°

elde edilir. f smirl oldugundan,

(t_ij
|£(t)- £ () <|f (t)+]F (x) <2m.1<2m ALHE 1EX

52

gerceklenir. O halde VXx,t i¢in,
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t_Xj
[£(t)-f(x)<2m [1”%+8

bulunur. Son esitsizligin her iki tarafina L, pozitif lineer operatorii uygulanirsa,

(t_sz
L(f(t)- f(x);x)<L,| e+2M At 16x)

52

2
SLn(g;X)+2|\2/I L, t__X ;X
o 1+t 1+X

2
=L,(& x)+g+2—'\£I L, (L—Lj X [—2-2 L, (LJ;X
o 1+t 1+x 1+x 1+t

_ 2&(%[%&) Xj{lfx}} 1j; (L, (& x)—l)}

L () F(x)x)< e+ &L, (LX) ]4+2M{L

52

(e

X

+2 )
1+ x|

- u} 4

‘1+ X ‘
esitsizligi elde edilir. Buradan
L (0= £ 00) < Ly ()= £ () £ (L, (@)1

bulunur. Bu esitsizlikte (4.2) esitsizligi dikkate alinirsa,
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of () o H)
g e

+ F(x)IL, (L x)-1

L, (fF(t)x)- f(X)SS+g|Ln(1;X)1|+25_'\£I{

+2 |X|

+‘X—2‘2-|Ln<1;x>—u}

L+x 1+ x|

elde edilir.

Son esitsizligin her iki tarafinin X >0 i¢in supremumu alinip norma gegilirse,

) ()
+—1|Ls —
C 1+t 1+X

lim|L, f - f

n—oo

IL, - f||CB <e+(e+M)L,@)-1

ol

+

bulunur. Boylece,

=0

Cg

oldugu goriiliir.m

Simdi Bleilmann, Butzer, Hahn operatériiniin Teorem 4.2'nin kosullarini sagladigini

gosterelim.

. 1 n
Ornek 4.3 L, (f;x)= ! - f( K j x* , x>0,neN
1+x) = n—k+1 )k
seklinde tanimlanan L, , Bleilmann, Butzer, Hahn operatorii pozitif lineer

operatdrlerin bir dizisi olmak iizere herhangi bir f € H igin,

fimL, f - ], =0

nN—o0

gerceklenir (Gadjiev ve Cakar, 1999).
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Ispat : L , Bleilmann, Butzer, Hahn operatoriiniin Teorem 4.2'nin hipotezlerini

gercekledigini gosterelim. Burada

(@+x)"
p=—* q=—1 = p+g=1
1+x = 14X

seklinde alinirsa Binom ag¢ilimindan,

g(gakar T Hepe

il (:x)-4, =0
elde edilir. Ayrica
n K n
- ((1%})(} ) (1+1x)n kz_(;lf_ki:l(:}(k ~ (1+1x)n kzz(:, nlil(:}(k
n-k+1
< n! v

L n! 1 K
=X D D)

=(1+x)" nz_l n(n-1) 1 xk

S kl(n—k-1) (n+1)

sty

n+1 =

:<1+1x>“ <1+l x) <n31>xg[nk_ jxk

- ((J—J j D
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bulunur. Boylece

elde edilir. Ayn1 zamanda

sty

S N
=) S (n+1) Ki(n—k)
i KEL n! )
(x) = (n+1y (k—1}(n—k)
=(1+x)’”_n k-4 nt N I n! ij|
F(n+17 (k=1(n=k)¥ S (n+1)’ (k—1p(n—k)

3L D02k, & 1 nln-1) Xk}
(S (n+1) (k=2§(n-Kkr" & (n+1) (k-2H(n—k)

=}

:(1+x)‘ x2nZ (n-2) ML, (n-1) X«
n+1 SKih-k-2)"  (n+1) Zki(n—k-1)

:?n(:)lz)(lfx) 1+x”22£ J (nfgz1+Xx(1+lx)“:_:(nl:ljxk

et et

elde edilir. Buradan,

()

oldugu goriiliir. Boylece Teorem 4.3 nedeniyle Vf €C, [0,00) i¢in,

Cg
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lim||L, f -

n—o0

C:0

B

gerceklenir.m

4.1 Cift Degiskenli H, Uzayinda Kuvvet Serisi Metodu Yardimiyla Korovkin

Tipli Yaklasim Teoremleri

Bu bolim orjinal bir calisma olup ¢ift degiskenli H  uzaymda Kuvvet Serisi

metodu kullanilarak gelistirilen Korovkin tipli yaklagim teoremi verilmistir.

Burada ¢ift degiskenli H_ uzayi,

If(u,v)—f(x,yka{ g A |j 4.3)

|1+u 1+x| |1+v 1+y|

kosulunu saglayan, | :[0,00)X[0,00) araliginda taniml reel degerli fonksiyonlarin
uzayidir. Ayrica CB(I ) uzay1, | da taniml siirekli ve sinirli fonksiyonlarin bir uzayi

olup buradaki norm f e C, (1) i¢in,

= sup |f(X,
. = 3up | (x.y)

seklindedir.

Agiktir ki, herhangi bir f € Hw(l ) icin H w(l ) c CB(I ) saglanir.

Ayrica ¢ift degiskenli f fonksiyonu i¢in Cg (1) uzaymdaki siireklilik modiilii

herhangi bir ¢,,0, >0 igin,

Y14y 1+y|

'1ru 1+ x|

w(f;&l,éz)zsup{‘f (uv)—=f (% y):(uv).(xy)el,

seklinde tanimlanir. f € CB(I) uzay1 igin,

lim @(f;5,,5,)=0

51,6,—0
gerceklenir.
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L, :H,(1)>Cg(1) her f eH (1) icin,

n

sup ZIIL o Pt <o (4.4)

O0<t<R p

kosulunu saglayan pozitif lineer operatorlerin bir dizisi olsun. Bu durumda her

feH (1) igin,

00

V(T b= S L (v p

ile taniml1 V, operatoriinii alalim. O halde,

VA, = sup VoA(F (U, v)ix, )} = sup %)i L, (Fuv)lx y)p,t"

(x,y)el (xy)!l| P

o0

< sup %; an f(u,v);x, y)p,t"

(xy)el P
< sup ii Ln(“f||;x,y)pnt”
(x,y)el p(t)n=0

1 00
<|f — ) |IL,{1 t"
I1598 S 2O, P

elde edilir. Simdi (4.4) gozoniine alinirsa V, operatorii herhangi bir f e Hw(l) icin

anlamli olup CB(I ) uzayina aittir. Dolayisiyla

"Vt”Hm(l)aCB(l):”Vt( C

1 o0
= Su 1x
") (x,yp pt ; y

seklinde yazabiliriz.

Teorem 4.1.2 L : Hw(l )—> CB(I) ve (4.4) kosulunu saglayan pozitif lineer operator

dizisi olsun.

lim |V A(f, W v)ix y)= fi(x v, = i=0123

t—>R
kosullari saglantyorsa herhangi bir f € H_ (1) igin,
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lim [V A(f (u,v);x, y)}— f(x, y)||

t—>R

gerceklenir. Burada,

f,(u,v)=1, fl(u,v):ﬁ, fz(uN):%’ fs(u,v)=(Lj2+(sz

1+u 1+v

seklindedir.

Ispat : f e Hw(l) alalim. f siirekli bir fonksiyon oldugundan Ve >0sayisi igin

X

1+u 1+X

vy

36,,0, >0 vardir >
1+v 1+y

. <0, kosullarin1 saglayan

V(u,v)e | igin |f(u,v)— f(X, y] < ¢ gergeklenir. Burada,

u X

1+u 1+X

RS 48
YlI+v 14y

Py :{(u,v)e |

<52}

1( u x ¥ 1( v y ’
V) Pt L T ) R . A 4.
Z”'M( uv) 512(1+u 1+xj +522(1+v 1+yj (4:5)
M =||f|= sup|f(x,y) diyelim. Ayrica,
(x.y)el
£ (uv)= FO0y)=[Fvu)= F (v, (v)+[fv)- (6 y)z,, , (Uv)

| £ (u,v)— f(x, y]<,s+2M;(,,,M2 (u,v) (4.6)

gerceklenir. Burada (4.5) ve (4.6) esitsizliklerinden,

2 2
| (u,v)-f(xy)< g+2l\£l(u_xj+ )
o 1+u 1+x 1+v 1+vy

bulunur. Burada & =min{s,, 5, } seklindedir.

Bu esitsizligin her iki tarafina V, pozitif lineer operatorii uygulanirsa,
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V(£ wv) = f(xyfxyli<v {“25'\9 l(lfu _1rxj2+[1\+lv_1ryﬂ;)(’ y}}

(4.7) esitsizligi elde edilir.

VAt )= £ 06y = MACE 6 ) =VA(F Oy vV {(F O v )l = £ O y)
<VA(Fx Y)=VAF O Yl Y+ VAT (6 v x y)= £ (x )
<V, {Qf(u v)- f(x,y)x, y)} (% YIVA(Foi %, y)b— o (% y)

Son esitsizlikte (4.8) esitsizligi dikkate alinirsa,

VA )< fy)}i—M[v{[(l—l—]y}

v oy ) L2 2yt | VN (x
+V{Hm‘m] ’X’yJ}t(l+x)2(l+Y)2] Mgyl Rl )

BV 2l 2 )

o2 [(1) +(1+yyﬂ<vt (o= G0y MV ) o)
it =t x|+ eem 2N f(ix )= (x)

LN B0+ SV ix )= ()
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2M
+?[Vt {( fs; X, y)}_ fa(X’ yl
Son esitsizligin her iki tarafinin (X, y) € | i¢in supremumu alinip norma gegilirse,

Vf = f|<e+H ﬂ[\/t fo = ol + Ve fo = fu| + [V £, = 5|+ [V £ - f3||} (4.8)

bulunur. Burada,

H = sup

X, yeK

2M 4AM 4M 2M
g+M+52,52,52,52

seklindedir. Daha sonra t — R i¢in limit alinirsa,
I|m|[\/t {(F:x,y)}= f(x, y)||

oldugu gortiliir.m

Simdi Cift degiskenli bir L, operatoriiniin Teorem 4.1.2'nin kosullarini sagladigini

gosterelim.

Ornek 4.1.3

L”(f;x’y):mkio :o f(n—tu'n—ll+1IEJ(T]XW’ (y)et.nen

seklinde tanimlanan pozitif lineer operatorlerin dizisi alalim. f e Hw(l) icin,

p,=1 R=1ve p(t): ﬁ, te (—1,1) alinirsa o zaman Kuvvet Serisi metodu, Abel

Yakinsakliga denktir. Burada (un) dizisi 1 degerine Abel yakinsak bir dizi ancak
klasik anlamda yakinsak olmasmn. L, , Teorem 4.1.2'nin hipotezlerini gergekler.
Yani,

=0

Ce

2 (L (Fixy)= O y)r”

lim 1 t)(

t—>1"

gerceklenir.

47



Ispat : L, yukaridaki sekilde tanimlanan pozitif lineer operatorlerin dizisi olsun.

Teorem 4.1.2'nin hipotezlerinin ger¢eklendigini gdsterelim.

L(fo % y) = (1+x) (1+y kzéuzo:( j(j |
ot =gp e e =E{l)

L,(fox y)=u,

elde edilir. Boylece L (f,;x,y)= f,oldugu goriiliir.

0= S AT

U, = k n! K
= z X
(1+x) & n+1k(n—k)

n n! k
1+—x”;: n+1) (k-1}(n— k)

u, ¥ 1 n(n-1)

n

(1+x) = (n+1)ki(n—k —1)!X

i <1+ux”>“-1 <1iL D6 Z(k 1ij

n X
+1)1+X "

u,

Ln(f1;X1 y) (

o0

Z f ' X, y X y)t H 0 oldugu goriiliir. Ayrica

n=0

elde edilir. Boylece IIm (- t*
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U, - | nt
C(+y) E(n -1y

u, = 1 n! |

) (1+ Y)n ;(n +1) (I —1)!(n _|)! yn

= n(n—1) y!
1+y Z;‘n+1 N(n—I 1)'

u 1 n lin-1
nml )YZ( | ]yl

Ty ary) )5

_nhy

L, (f,;X,
(%)= (n+1)1+yu

elde edilir. Boylece IIm (a- t%

Z f i X, y X y)t H 0 oldugu goriiliir. Ayrica

=0

L“(fe’;x’y):(u x)'(1 kzéw[ n+1y (nfl)zmmxky”
- (1fnx)" ano(n lfl)z @X T g(n |+21)2 my

Sy X« n "' olsun
1+x = n+12 k 1+y = n+1)2 ) '

k n! K
1+x kzlln+1 (k- 1)!(n—k)!x

k- nl N nl K
1+x LZ;‘ n+1y (k- 1)' kz;n+1 (k- 1)!(n—k)!x}

_ 4, 1 n(n-1)n-2) n! )
C(@1+x) kz;‘l+n (k—2)(n— k)' kzn+1 (k- l)!(n—k)!X }y

o, _n(n—l)xzf“2 (n—2) o & (n-1) !
@+ x)" | (n+1) kz_;‘k!(n—k—z)! (n+1)7 S k!(n—k -1} }
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TR T ) N e e

_n(n-1) x* ya D X,
(n+17 @+x)° " (n+1f Q+x) "

bulunur. Burada A igin yapilan hesaplamalara benzer olarak B igin,

_n(n-1 y? ya D Y
(n+17 @+y) " (h+1) @+y) "

elde edilir. Dolayisiyla A ve B yerine yazilirsa,

n(n-1) x? ya D X qun(n—l) AR Y
(n+17 @+x)° " (n+17 @+x) " (n+1f @+y) " (n+1f Q+y) "

Ln(f3;X,y):

o0

(L (5%, y)— f3(x, y)X"

n=0

elde edilir. Buradan Iirp(l—t* =0 oldugu goriiliir.
-1

Boylece Teorem 4.1.2'nin hipotezleri nedeniyle vf e H, (1) icin,

o0

2 (L (Fixy) = f O y)r”

=0

Ce

lim 1 t)(
t—1

gerceklenir.m

Simdi siireklilik modiilii yardimiyla Teorem 4.1.2'nin yakinsaklik oran1 verilecektir.

Teorem4.14 L, :H (I )—)C (I) ve (4.4) kosulunu saglayan pozitif lineer

V. {11 X, y)}” < oo saglansin. Bu

operatorlerinin bir dizisi olsun. Ayrica N = sup
(x,y)el

takdirde,

) limVExy)g -0

t—>R

iy limo(f:alt), A1) =0

t—>R™

kosullarini sagliyorsa, her f e Hw(l )igin,
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I|m|[\/t {(F:x,y)}= f(x, y)||

gerceklenir. Burada,

GBI Cei |

seklindedir.

Ispat: Her te (O, R) ve o pozitif bir say1 olmak iizere,

u X

1+u 1+X
bo)

v y

1+v 1+y

| (u,v)- f(x,y) <| 1+ 1+

1 2

w(f;51,52)

gerceklenir. Esitsizligin her iki tarafina V, pozitif lineer operatdrii ve Cauchy-

Shwartz esitsizligi uygulanirsa,

u X \ y

14U 1+X 1 1
1+u 1+Xx 14 +Vv 1+y X,y

2 %,

)
11, )(]u x || v y |
’ yJ} S, §2V{(|1+u 1+x||1+v 1+y[ yJH

Y/ ﬂf(u v)-f(x,y)x, y} S| @(f;6,8,) 1+

-w<f:al.a{ tm [

+iV {[ v_ Y
é‘2

u X

1+u 1+X

1+v 1+y

o1



<o(156,0, ]V lEx ) LT TER YT+ L AOGTER T+ 3 - el

1 2 1>2

elde edilir. Burada a(t), 4(t)>0 oldugundan &, = a(t) , 5, = A(t) almnirsa,
Vo (uv)- f(xy)ix y)< w(f;a(t),ﬂ(t))(\/t{(l;x, y)h+ 2NV AL Xy +1) (4.9)

esitsizligi elde edilir. Ayrica
VAP v y)i= £ 06y <Vel(F )= F00y o )i+ F ooy IV @ x y)) -4
Bu esitsizlikte (4.9) esitsizligi dikkate alinirsa,

VAF v - F(x v <a(falt) SO L x ) 20 T x y) +1)
+[F 6y IV X, y)-1

elde edilir.

Son esitsizligin her iki tarafinin (X, y) € | i¢in supremumu alinip norma gegilirse,

VAV )= £ y) < a () AONVAG x Y+ 2V Ex vl +1)

+ M|V AL x )1
@(fa(t) BONK+2N +1)+ MV (L x,y)-1
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’Vt {( f(u,v);x, y)}— f(x, y)”s H (w( f ;oc(t),,B(t))+”\/t {(Lx, y)—l}”)

bulunur. Burada,

H=sup{K+2N+LM}

(x.y)el
seklindedir.

Daha sonra t — R~ igin limit alinirsahipotezler nedeniyle her f e H_(1) icin,
iy, {(f5x)- 10y =0

oldugu gortiliir.m
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