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ABSTRACT

GEOMETRIC AND MOBILITY ANALYSIS OF
THE MIURA-ORI PATTERN AND ITS DERIVATIONS

Origami is a Japanese art of folding paper. Recently it has started to be used in
aerospace applications such as deployable masts, satellite antennas, and in architectural
applications such as emergency shelters, temporary shelters, portable exhibition stands.

Deployable plate structures based origami art are attractive to both architects and
engineers because of their structural and spatial qualities. They have special geometries
according to the rigid origami patterns. The Miura-Ori is a rigid origami pattern that is
formed from a tessellated arrangement of a single repeated unit consists of four
quadrangle plates. It has fully folded and fully deployed configurations.

This research investigates geometric and mobility aspects of Miura-Ori pattern
with its derivations and explore the possibilities of constructing a deployable plate
structure using the same pattern. The first part of the research investigates geometry of
the Miura patterns. The aim is to generate derivations by changing the input parameters.
Small scale physical models are built to verify the geometric design guidelines.

Miura unit consisted of four plates and four joints is a single degree of freedom
spherical mechanism. The second part of the research is concentrated on mobility
analysis. The aim is to develop a method for removing excessive plates and joints
without changing the mobility. The established equations assist us to determine n'" term
of the excessive plates and joints. A Method of Double Arrangement (MoDA) is
developed in order to determine the placement of excessive plates.

Finally, a deployable plate structure based on Miura-Ori pattern is proposed for
an architectural application. However, the plates cause obstruction of the sky, thereby
affecting sunlight and daylight availability inside the building. Thus, some excessive
plates are reduced according to the proposed method. The final form of the structure lets
to get more energy from the sun to provide heating and lighting.

Keyword: rigid origami, Miura-Ori, spherical mechanisms, mobility.



OZET

MIURA-ORI VE TUREVLERININ GEOMETRIK VE SERBESTLIK
DERECESI ANALIZI

Origami bir Japon kagit katlama sanatidir. Son yillarda agilip-kapanan direkler,
uydu antenleri gibi uzaya dair uygulamalarda, acil ve gecici siginaklar, taginabilir sergi
stantlar1 gibi mimari alanlarda uygulanmaya baslamistir.

Origamiden esinlenilen acilip kapanabilen plak striiktiirler yapisal ve mekansal
oOzellikleri nedeniyle mimar ve miihendisler tarafindan ilgi cekmektedir. Bu striktlrlerin
rijit origami desenlerinden kaynaklanan 6zel geometrileri vardir. Miura-Ori rijit origami
dort plakadan olusan bir birimin tekrarlanmasindan olusur. Tam kapanip agilabilme
ozelligine sahiptir.

Bu tez Miura-Ori ve turevlerini geometrisi ve serbestlik derecesi agisindan
inceleyerek bir hareketli plak struktir olusturma olasiliklarini incelemektedir. Tezin ilk
kismi Miura-Ori rijit origaminin geometrisini 6nceden belirlenmis parametreleri ile
hesaplamali incelemektedir. Amag, istenilen formlara ulagmak i¢in geometrik
kisitlamalar1  tiiretmektir. Kigiik 0Olgekli fiziksel modeller, geometrik tasarim
yonergelerini dogrulamak i¢in olusturulmustur.

Miura birimi dort adet sert plakadan ve dort adet doner mafsaldan olusan tek
serbestlik dereceli bir kiiresel mekanizmadir. Tezin ikinci kismu serbestlik derecesi analizi
lizerine yogunlagsmistir. Amac tek serbestlik dereceli olma durumunu degistirmeden
elimine edilecebilecek plaka ve mafsallar1 belirlemek i¢in bir yontem gelistirmektir.

Son olarak, mimari bir uygulama icin Miura-Ori modeline dayanan hareketli bir
plak striiktlir 6nerilmistir. Ancak mimari uygulama disiiniildiigiinde plakalar gokytzinu
kapatarak binanin iginde giines 15181 ve giin 1s1g1min kullanilabilirligini etkiler. Bu sebeple
bazi plakalar 6nerilen metoda uygun olarak eksiltilmistir. Yapinin nihai sekli, 1sitma ve
aydinlatma saglamak icin giinesten daha fazla enerji almamizi saglayacaktir. Cozumleri

gostermek icin fiziksel bir model de yapilmustir.

Anahtar Kelimeler: rijit origami, Miura-Ori, kiresel mekanizmalar, serbestlik

derecesi.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Origami is the art of folding paper. Although it started to be used as a hobby by
the ancient Japanese, recently origami is applied to different areas, such as architecture,
engineering, medicine, electronics, astronomy, manufacturing & packing
industry. Brigham Young University mechanical engineers, Larry Howell and his team
designed compact solar array (Figure 1(a)) that developed into space to get power for
space stations in 2013 (Zirbel et al., 2013). Wyss Institute (Harvard) researcher— Shawn
Douglas and colleagues used Origami DNA in 2012 (Figure 1(b)) to create 3D shapes
(Douglas, Bachelet, & Church, 2012). In 2013 Arizona State University researchers
constructed a deployable paper-based lithium-ion battery (Figure 1(c)) that can be folded
as Miura-Ori pattern (Cheng et al., 2013).

Seek and destroy
Clam-like DNA probe releases drug

payload only when the target molecule
unzips the lock

CLAM-LIKE

B
PROBE MADE UP ‘a‘
OF DNA MESH "A\ )
\ Z

LEUKAEMIA
CELL

TARGET DNA
MOLECULE

DNA LOCK
"unzips” when
target molecule

is attached

DRUG PAYLOAD
exposed to cells
b) when clamis open

Figure 1. a) Solar Array (Source: Zirbel et al., 2013); b) Origami DNA (Source: Douglas
etal., 2012); c¢) Paper-Based Lithium-lon Battery (Source: Cheng et al., 2013).

(cont. on next page)
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Miura folding

c)

Figure 1. (cont.)

Designing and construction of folded plate structures began at the beginning of
the twentieth century. Bruno Taut applied origami as facade detail in Berlin—Grunau in
1912 (Figure 2), Eduardo Torroja as decks of the dining room in Tarragona in 1956,
Renzo Piano as mobile structure for Sulfur Extraction in Italy in 1966 (Figure 3), Jgrn
Utzon for stadium and sports complex in Jeddah in 1967 (Figure 4), Mats Karlsson as
foldable plastic tube in Stockholm in 2008 (Vyzoviti & de Souza, 2012).

Figure 2. Glass Pavilion, Bruno Taut
(Source: L. S. d. Lang, 2015.)
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Figure 3. Mobile Structure for Sulfur Extraction, Renzo Piano
(Source: Piano, 1966.)

Figure 4. Stadium and Sports Complex, Jarn Utzon
(Source: Mariano, 2012.)

In architecture origami progress in three ways, such: folded plate roofs or facades;
deployable architectural structures; transformable or Kinetic architecture (Schenk, 2012).

Origami folded plate roofs or fagades are stable in folded position. Several applied
examples involve basic V-shaped folded roofs and also special or freeform complicated
patterns in architecture. An early sample is customs building at Glanerburg covered with
continuous folded plates (Figure 5). The facades of US Air Force Academy Cadet Chapel
is enclosed with folded aluminum plates in 1954 (Gordon, 1954). One-way Colour Tunnel
(Figure 6) with glass plate in 2007 is also folded plate structures base on origami. Mark
Schenk described the main points of plate roofs or facades with mechanical advantage,
visual appeal, materiality (timber, glass, etc.), approximation to curved surfaces (Schenk,
2012).

15



Figure 5. Glanerburg Customs Building
(Source: Beltman & Spit, 1962.)

Figure 6. One-way Colour Tunnel
(Source: Schenk, 2012.)

Unlike folded structures, deployable and transformable structures are
developable. Andre James stated developable objects, in his thesis, such as turning,
wrapping, enfolding piercing, hinging, knotting, weaving, compressing, balancing and
unfolding, and he declared that all these manipulations together with each other or

separately generate a developable object (James, 2008). Deployable structures are easily
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transported in its fully folded state. To activate the deployable system, whole structure
should be unfolded. On the other hand, the system of transformable (or kinetic) structures
active both folded and unfolded states, every position has own duty. Accordion recover
shelter which designed for disaster in 2008 by Matthew Malone, origami inspired bamboo
house (Figure 7) in 2008 by Ming Trang, deployable shelter in 2009 by Tachi and etc. are
the proposed examples for deployable structures (Schenk, 2012). Hypo surface moving
wall is a kinetic architecture sample, which is controlled by sound and movement (Figure
8). It was designed in 2000 by Mark Goulthorpe and etc (Burry, 2006). Moving origami
facade cover is also kinetic architecture samples, has shading function for the Al-Bahar
Tower facade (Figure 9).

Figure 7. Accordion Recover Shelter
(Source: Schenk, 2012.)

17



Figure 8. Hypo surface
(Source: Burry, 2006.)

Figure 9. Al-Bahar Tower Facade
(Source: Boake, Bes, & Arch, 2014.)

18



1.2. Problem Statement

The thesis consists of two main problems: geometric analysis and mobility
analysis of the Miura pattern (Chapter 3. and 4.).

Architectural plate structures which are designed with origami patterns as roofs,
facades, buildings, have specific and complex geometries. Because of its complex
configuration, it is difficult to apply such structures to a given area or cover a building
part. There are hundreds of origami patterns, and each origami pattern requires special
geometry calculation according to its shape. The first problem area is the geometric
possibilities of rigid Miura patterns and its derivations. These patterns have some
parameters, such as span lengths (a or b), vertex angles (o or 6). Third chapter includes
research of geometric characteristics of the rigid Miura pattern with these basic
parameters.

Origami based architectural structures are fully surrounded with plates. Rigid
plates strengthen mechanism and increase the durability of the structure. Although this
configuration has beneficial side, the placement of the plates make space fully covered,
so structures could not be adequately illuminated with daylight. These deployable
structures may also require energy consumption. The second problem is around the
mobility aspect of Miura pattern by the analysis of degrees of freedom. With this concept,
number of excessive plates and excessive joints are obtained and number of placement of

excessive alternatives are analyzed.

1.3. Previous Studies Related to Origami-Inspired Deployable

Structures

There are several studies on origami-inspired structures. Arzu Gonenc and et al.,
Ulrich Buri, Martin Trautz and Ralf Herkrath, Tomohiro Tachi have discussed different
origami patterns which are applied to architecture.

Arzu Goneng and et al. proposed development of 2-D diagram to understand the
matematical relations of the patterns in order to explore solid modeling in computational
media. The researchers noted: "This relation between 2-D diagrams and the resulting 3-
D solid models have also clues for the manufacturing/ fabrication of these models from

simple sheets of raw materials to complex forms" (Sorgug, Hagiwara, & Selcuk, 2009).
19
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The researchers discussed several student workshops on origami structures.
Students obtained "mesh networks" of structural forms with using diagram method. By
the mesh networks, Middle East Technical University (METU) students experienced shell
structure, The University of Cambridge students designed cardboard structure, and built
"Packaged" pavilion (Sorgug et al., 2009).

Martin Trautz and Ralf Herkrath studied the development of folded plate principles
on spatial structures. Researchers analyzed free-form geometry details of the structures
with a Finite Element Method (FEM) programme. The program was set some parameters
o
change variables of the free-form geometry structures. These parameters are height,
frequency of the folding, thickness of a metal element (Trautz & HERKRATH, 2009).

Ulrich Buri investigated new methods of designing folded structures which could
be built with timber plates (Figure 10). He was convinced that a design method which
rapidly generates and modifies folded plate structures is of great interest, and can form
the basis of a productive collaboration between architects and engineers. He proposed
modeling in a 3D CAD software for regular folding patterns. To analyze the geometry of
the folds, classical representations of architectural drawings (plans and sections) were
used (Buri, 2010).

Figure 10. Test of the Timber Folding Patterns Prototype
(Source: Buri, 2010.)

Tomohiro Tachi developed a method to design free-form variations of Resh-like
origami tessellations with Japan Science and Technology (JST) Presto program. They
optimized the surface to make it developable and also non-intersecting at the vertices
(Tachi, 2013).

20
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If we look at the studies that relates origami mechanisms, we can recognize that
the most of the themes are form generation of the Miura-Ori. Joseph M. Gattas and Zhong
You described parametrizations of curved-crease geometries of Miura-ori (Gattas, Wu,
& You, 2013), Jianguo Cai and et al. analyzed geometry and motion of origami-based
deployable shelter structures (Cai, Deng, Xu, & Feng, 2015). Marcelo A. Dias et al.
worked on mechanics of curved crease origami with analyzing multiple curved structures
(Dias, Dudte, Mahadevan, & Santangelo, 2012).

The previous studies presented in the second part of the thesis review such topics,
as: degrees of freedom origami inspired structures and mobility of origami. L.A. Bowen
et al. worked on a position analysis of action origami vertex observing relationship
between input and output angles. The researchers suggest future work to demonstrate this
method for mechanisms which allow spherical centers to move (Bowen et al, 2014). Tarek
AlGeddawy’s et al. studied design model of regular product to help designers connect
foldability and mobility (AlGeddawy, Abbas, & EIMaraghy, 2014).

1.4. Methodology

The first part of the study is based on calculations in order to design desired Miura
Pattern. In this part parameters are identified to analyze and define geometric variations.
Miura derivative patterns are demonstrated with several trigonometric formulas and
theorems. Studied patterns are drawn in Autocad and calculated with Microsoft Excel to
determine validity of the analysis.

The second part of the study investigates to remove excessive plates from the
structure considering mobility factors to let daylight into the structure. In order to
investigate mobility, 12 different Miura-Ori patterns are analyzed. During the
investigation excessive plates and its joints are determined without changing the mobility.
A new method is developed to pick relevant excessives. This part is procured with
perception and analytical thinking on the behavior of the patterns and some calculations.

In the both parts, several paper model of the Miura derivative patterns are made
to observe the geometric and mechanical behavior. Rigid Origami Simulator which was
introduced by Tomohiro Tachi, is used to simulate kinematics of the Miura derivative

patterns.
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In the case study, a designed pattern is proposed as a deployable shelter to show
the real-world application. The origami shelter is visualized in the 3ds MAX and Lumion.
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CHAPTER 2

REVIEW OF THE LITERATURE

2.1. History of Origami

Origami ( HrY#& ) fromori- "folding", and kami - "paper"is the ancient

Japanese art of paper folding (Dureisseix, 2011). The process of folding doesn’t require
stretching, cutting, or gluing and crossing (E. Demaine, 2010).

"Origami involves the creation of paper forms usually entirely by folding" (Katz,
2001-2014)

There is an ongoing debate as to who were the first paper folders. Certainly, paper
folding is a part of Chinese culture: perhaps they were the first. When people are buried,
replicas of items are folded and included in their tombs. Also, the Chinese have always
been frugal people who would not waste something that could be reused. So, a paper that
has served its original purpose now can be recycled for origami. Many origami toys were
developed by the Chinese. The most famous of these is the "waterbomb". Children make
balloons out of paper, fill them with water and throw them down with a loud splat.

It is believed that paper has been invented by Ts ai Lun, a Chinese court official,
in 105 AD. By the invention of paper, origami spread out several countries primarily in
China and Japan, then Uzbekistan, Egypt, Spain, France, England, Italy and etc. (Smith,
2005).

In Japan Origami was developed in special period, as follows:

794-1185 A.D. Heian Period- evolution of ceremonial fold and some basic origami
models;
1185-1333 A.D. Kamakura Period- Origami extension everywhere in Japan;
1333-1573 A.D. Muromachi Period- development of "Modern" origami;
1603-1867 A.D. Edo Period- Origami had become an entertainment;
1868-1912 A.D. Meiji Period- Gaining popularity of origami usage in schools (E. O. E.
Demaine, Joseph 2007).
The first famous origami book "The Secret of One Thousand Cranes Origami" or

"How to Fold a Thousand Cranes" was published in 1797. The book name is the
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translation of "Hiden Senbazuru Orikata". In Japanese language Sen nen (F£F) is ‘one
thousand years’ and Senba zuru (FF}#8) is ‘one thousand cranes’ (Ishii, 2013).

Akira Yoshizawa (1911-2005) is known as a master of origami. When he was just
three years old, he started working with origami as a hobby and at the age of 26,
Yoshizawa worked full time on origami and published several books. In 1935 he
developed universal symbols to help people understand diagrams, without understanding
his native language (Hoover, 2006-2014).

2.2. Terminology

After unfolding a fold trace is formed on paper, that trace is a crease (R. J. Lang,
2004-2014b).

Crease pattern is a collection of creases which presents an origami model on a
flat piece of paper. Note that there can be dual crease patterns (Figure 11.) that shows
different origami models. It is easy to define crease pattern in traditional origami (Figure
11), as, creases starting from corners and create angles by connecting with vertex.
(Dureisseix, 2011).

"A fold is an action and a crease is the product of that action" (Greenberg, 2011).
If we look at a crease pattern with unfolded paper, we can see that there are two main
folds: mountain and valley folds. They are dual of each other because they can
interchange by changing the face of the paper. In spatial position, mountain folds follow

concave 3D shapes and valley folds follow convex 3D shapes (Dureisseix, 2011).
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Valley fold
Mountain fold

Figure 11. Crease Patterns and Folding Steps for the Preliminary Base (top) and
Waterbomb Base (bottom) (Source: Dureisseix, 2011.)

"Vertex : a point in a crease pattern where multiple creases come together” (R. J.
Lang, 2004-2014b). Vertex is the point where several folds meet (Figure 12).

Figure 12. Left: Unfolded Origami Single Vertex. Right: Partially Folded Origami

Vertex (Source: Lang J., 2013.)

Apart from mountain and valley fold, there are other four folds mostly using as a

term (Figure 13.):

e Inside reverse fold. Open edges of the paper is turned inside-out.
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e Outside reverse fold. Open edges of the paper is turned outside-out.

e Crimp fold. A pair of valley folds and mountain folds converge at one point.

e Pleat fold. Mountain and valley fold are parallel, or near. They are folded together
(Engel, 2011).

Figure 13. (a) Inside reverse fold; (b) Outside reverse fold; (c) Crimp fold;
(d) Pleat fold.

Most origamists decompose the folding process into two stage: base and shape
(R. J. Lang, 2004-2014c). "'Base : a regular geometric shape that has a structure similar
to that of the desired subject” (R. J. Lang, 2004-2014b). Lang's tree method focuses on
the design of the origami base. “The usage of a base has many benefits; the folding
sequence will be easier to remember and create diagrams for”. (WikiBooks, 2014). Shape
is the end of transforming a base into the actual origami model (E. O. E. Demaing, Joseph
2007). In Figure 14, there is Standard Origami Bases:
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Figure 14. The Six Standard Origami Bases; (a) Waterbomb; (b) preliminary; (c) fish;
(d) bird; (e) windmill; (f) frog (Source: E. O. E. Demaine, Joseph 2007)

2.3. Theorems

According to unfolding process four type of behaviours are possible for the

conditions of origami shapes: (non) developable and (non) flat-foldable.

“Developed state” and “flat-folded state” are defined as follows in Tachi's paper

(Scheme 1.)

Developed
state

Flat-folded
state

A flat state in which
every edge has
rotational angle of

= 7 (the sign shows mountain or
valley).

0 (thus foldlines are unfolded and
complementary foldlines are
folded).

Scheme 1. Developed State and Flat-Folded State

(Source: Tachi, 2010.)

27



In order to prove flat vertex folds condition several theorems were achieved.
Mathematical approaches about origami are on the three main bases:
Huzita-Hatori axioms;
Kawasaki's Theorem;

Maekawa's theorems.
2.3.1. Huzita- Hatori axioms
Huzita- Hatori axioms firstly discovered by Jacques Justin in 1989, then in 1991
recovered by Humiaki Huzita. These 7 axioms were finalized by Koshiro Hatori, Justin

and Robert Lang in 2001 (Fei, 2013).
The axioms are (Figure 15):
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(O1) Given two points p; and pz,

we can fold a line connecting them.

{O2) Given two points p; and pa,

we can fold p; onto p;

{O3) Given two lines |y and |y, we
can fold line |; onto L5,

{04) Given as point p; and a line
li, we can make a fold
perpendicular to |; passing through
the point p;

{O5) Given two points p; and p:
and a line I;, we can make a lold
that places py onto 1, and passes
through the point pz.

{O6) Given two points py and ps
and two lines 1y and |3, we can
muke a [old that places p; onto line
l; and places p: onto line |y,

{O7) Given a points p; and two
lines |, and 1z, we can make a fold
perpendicular to Iz that places p,
onto line |y,

- - = -

-

-
-
-
-

Figure 15. Huzita- Hatori axioms
(Source: R. J. Lang, 2004-2014a.)
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2.3.2. Toshikazu Kawasaki's Theorem

Kawasaki Theorem explains that for affirming a given crease pattern is foldable,
all the sequences of angles around each (interior) vertex must be summed to 180° as given
in eg. (1) and eq. (2) and showed in Fig. 16 (Fei, 2013).

01-02+03-04+ ... - a2n=0 (2.1)
O 1+ 03+...+ O2n-1 = 02+ Q4+ + 02n=180° (2.2)

a1,02,.., o2 1S the consecutive angles between the creases (Lim, 2007).

Figure 16. Application of Kawasaki's Theorem in a Foldable Paper Crane
(Source: Fei, 2013.)

2.3.3. Maekawa's Theorem

If the difference between the number of mountain creases and valley creases are
equal to 2, origami crease pattern is a flat, shown in eq. (3) (Fei, 2013).
M-V =4%2 (2.3)

where, M is the number of mountain creases; V is the number of valley creases.

2.3.4 Sufficiency Control

According to the Maekawa's theorem flat origami can be described by its MV
assignment. In Figure 17. we can recognize that Maekawa's description is not enough for
flat-foldability. Origami patterns may overlap differently with the same MV-assignment

(Figure 17).
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Figure 17. Two Origamis with the Same MV-Assignment but Different Overlap Maps

In the Figure 17, same patterns are folded differently. Hense, first sample is valid
MYV assignment, while another still fails to fold flat. M. Bern and B. Hayes showed that
assigning mountain and valley folds for flat origami is NP-hard (Non-
deterministic Polynomial acceptable problems).

Figure 18 is the alteration of Figure 19. Each vertex has equal number of creases,
but one is flat foldable, another is not. In figure 19 Bern and et al. were omitted NP

hardness proofs, and modified vertex angles from 90° to 35 (Bern, 1996).

Figure 18. Inconsistency of Flat Folding (90°)
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Figure 19. Possibility of Flat Folding (35°)

Crease patterns can be locally flat-foldable but that have no global flat folding
that works for the whole crease pattern at once (Hull, 2011).
"Because global at foldability depends on the whole structure not only the
point, you should consider some area, not a point” (Lim, 2007).
Schneider proposed four conditions in his study. He proposed four conditions for
flat-foldability:
"1. All crease lines must be straight line segments.
2. All interior vertices in the crease pattern must be of even degree.
3. At each interior vertex, the sum of every other angle must be 180°.
4. There must exist a superposition ordering function that does not violate the non-
crossing condition™ (Schneider, 2004).

2.4. Type Classification with Most Famous Origami Examples

2.4.1. Traditional origami

"Traditional designs are designs of uncertain origin. Nobody knows where they
were first folded, when, by whom and sometimes why. Some may be a thousand years
old or more" (Jackson, 1990).
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Traditional origami is a straight fold on a square, planar piece of paper (Figure
20). During that process tearing, cutting or gluing are not allowed. It is commonly static

and representational (Greenberg, 2011).

"

Figure 20. Yoshizawa's Butterfly
(Source: Jackson, 1990.)

“Traditional origami models were often developed from similar patterns. While
some of them are rarely used, there are six that are used quite frequently (Fig. 14): the
waterbomb base, preliminary fold, kite base, fish base, bird base and frog base®
(WikiBooks, 2014). They also called as the classic bases, share the same symmetry, and

certain structural properties, were used until the 1960s (WikiBooks, 2014).
2.4.2. Action Origami

"Action origami (Fig. 21) is a field of origami dealing with models that are folded
so that they exhibit motion in their final, deployed state™ (Lang J., 2013). Motion is not
observed from folded state to unfolded state in action origami. Action origami models
mostly have been improved as children’s toys: flapping cranes, tops, and paper airplanes.
There are in fact hundreds of action origami models. From a single flat sheet of paper,

engineers use many of complicated patterns to accomplish act, with one manufacturing
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process- folding (Lang J., 2013). Engineers introduce the term “action origami” as
"Kkinetic origami" (Greenberg, 2011).
Action origami (Figure 21) models have been created by various origami artists.

The primary sources of action origami is in Lang and Shafer’s book (Lang J., 2013).

Figure 21. Shafer’s “Venus Fly Trap” is an Example of Action Origami
(Source: Lang J., 2013.)

2.4.3. Rigid Origami

Rigid origami is a type of origami where all surfaces are rigid, except the crease
lines. "'If the plates could be replaced with nonflexible material and the creases with
hinges while maintaining motion, the origami is considered rigid” (Lang J., 2013).
Commonly rigid origami in used in manufacturing and packaging industry. A basic
example is a shopping bag (Figure 22). Benefit of the material maintains self-folding of
the origami structures. It transforms without the deformation of each facet (Figure 23).

Folding process does not require bending or twisting (Greenberg, 2011).
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Figure 22. Origami Shopping Bag
(Source: Wu & You, 2011.)

Figure 23. A Corrugated Vault Used as a Transformable Architecture that Connects Two
Existing Buildings (Source: Tachi, 2010.)
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2.4.4. Origami Tessellation

Tessellations is repetition patterns of specific shapes (Figure 24 (a)). "The word
“tessellation” comes from the Latin “tessella” meaning “small square” - which the
Romans used for making mosaics and tile designs™ (Gjerde, 2007).

In origami tesellation from a single sheet of paper, a complex repeating pattern of
shapes are made. It was extended from simple square tilings to various pieces inspired by
Islamic art. "There are three basic tessellation patterns, called “regular tessellations”
which tile infinitely using only one shape™ (Gjerde, 2007) These tilings are equilateral
triangles, squares, and hexagons (Gjerde, 2007). It is clear that during developed acts

from folded to unfolded forms tiles rotate Figure 24 (b)).

b)

Figure 24. a) Hexagon, Square and Triangle- Basic Tessellation Patterns
(Source: Gjerde, 2007); b) A Tessellation from a Square Twist Fold.
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2.4.5. Kirigami (and Pop Up)

Kirigami is a variation of origami (Figure 25 and 26). The Japanese word-
Kirigami came from "Cyrus" or "kiru" means "to cut”, "kami™ means "paper". In order to
make kirigami pattern, folded base is used and then it is cut. The cuts are opened and
flattened to make the finished kirigami. It is defined as the art of folding and cutting
paper (Hart, 2007). Kinetic kirigami models are often made planar materials, especially
kirigami pop-up models (Greenberg, 2011).

Pop-up is similar to kirigami, but they have also a difference. Kirigami is made
from a single piece of paper. Otherwise pop ups can be made of several pieces glued
together (Carrek, 2014).

Figure 25. A Kirigami House Made in Cardstock
(Source: Greenberg, 2011.)
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Figure 26. Duomo Milan
(Source: Carrek, 2014.)

2.4.6. Unit Origami (Modular Origami)

As the name emphasised, different numbers of units are prepared and assembled
to produce many forms in unit origami folding method (Fuse, 1990).

"Because no adhesives are used, sometimes assemblies are unstable™ (Fuse,
1990). But it never reduce interest of unit origami. There are also reasons for that
curiosity. First it is easy. Second, folding process is like some of puzzles.

In 2012, 42-year-old Sergei Tarasov, a school teacher from the Russian village
of Tigritskoe, has recently completed an incredibly detailed modular origami model of
Moscow’s St. Basil cathedral (Figure 27), 1.5 meter tall.

QUITIT
Ui

Figure 27. Modular Origami Model of St. Basil Cathedral
(Source: Spooky, 2012.)
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2.4.7. 3D Geometric Origami

Much of the previous origami examples can be unfolded flat. In 3D origami main
works focus on polyhedral structures (Dureisseix, 2011). That geometric foldings are
created with Platonic or Archimedean solids by interlocking modules to each other.
Module types and the base shape of the paper depend on the design of the solid (Karaveli,
2014).

"The Masu box (Figure 28) is a traditional Japanese design. It is a classic folded
box; strong, adaptable, functional, and elegant in construction and final form" (Jackson,
2011).

Figure 28. Masu Box.

2.4.8. Wet Folding

Wet folding was a secret folding technique of the great Japanese master Akira
Yoshizawa. In the latter half of the twentieth century, during the West tour Akira’s
audiences were impressed by his organic creation. The difference and effect of this
folding is rather than making every crease sharp, soft, curved and rounded creases are
obtained when the paper dries (R. J. Lang, 2004-2014d). For the wet folding, usually the
heavier, stiffly art paper is suggested. A common problem occurred when beginners add
too much water to paper (Figure 29).
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Figure 29. Wet Folding
(Source: Origami, 2014.)
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CHAPTER 3

GEOMETRIC ANALYSIS OF THE
MIURA-ORI PATTERN AND ITS DERIVATIONS

The Miura-Ori is a rigid foldable origami pattern that is formed from a tessellated
arrangement of a single repeated unit geometry. The unit consists of four identical
parallelogram plates. It can fold by rotation of rigid plates about hinged creases without
twisting or stretching of the plates. Miura unit has a basic geometry with single vertex
angle (a) and single span length (a) (Figure 30). Joseph M. Gattas and et al. introduced
some derivative patterns by modifying single characteristic of the base Miura pattern. In
this chapter, three samples are studied: Miura, Arc-Miura and Tapered Miura patterns

(Gattas et al., 2013).

Arc-Miura pattern has common parameters with Miura pattern, just plus one
more constant as vertex angle B for Arc-Miura (Figure 31). The specific feature of
Tapered Miura pattern is its tapered lines spread out from a common center point (Figure
32). It has also one vertex angle. In this section, a new derivation of Miura-Ori is
introduced by adding second vertex angle to Tapered Miura pattern. It is called as
Tapered Arc-Miura pattern (Figure 33). Unlike Miura and Arc-Miura, Tapered Miura
and Tapered Arc-Miura has one more angle parameter (taper angle ®), where in Miura

and Arc-Miura this angle is zero and the straight crease lines are parallel.
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Figure 30. Miura-Ori pattern: a) Miura-Ori unit; b) Flat-Folded Miura-Ori Pattern;
¢) Partly Folded Miura-Ori Pattern.
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Figure 31. Arc-Miura Patterns: a) Arc-Miura Unit; b) Flat-Folded Arc-Miura
Pattern; ¢) Partly Folded Arc-Miura Pattern.
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Figure 32. Tapered Miura patterns: a) Tapered Miura Unit; b) Flat-Folded Tapered Miura
Pattern; c) Partly Folded Tapered Miura Pattern.
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Figure 33. Tapered Arc-Miura Patterns (left unfolded, right folded pattern): a) Tapered
Arc-Miura Unit; b) Flat-Folded Tapered Arc-Miura Pattern; c) Partly Folded
Tapered Arc-Miura Pattern.

As shown in the figures above, unfolded geometry of the pattern units involves
vertex angles and span lengths. Miura pattern has single vertex angle o, however Arc-
Miura and introduced Tapered Arc-Miura pattern has two vertex angles a, 3 that follows
each other. Span lengths are equal in the all three patterns. During the analysis, the
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possibility of different span lengths are also considered, so b is included as a second span
length. The flat-folded forms of the patterns indicate main differences. Flat-folded Miura
and Tapered Miura patterns illustrate as straight form, however Arc-Miura and Tapered

Arc-Miura illustrate an arc form.

3.1. Geometric Approach to Miura-Ori Pattern

The geometry of the Miura-Ori pattern is analyzed by specified parameters. Vertex
angle of Miura-Ori is always constant (Figure 30 (a)).
Specified parameters are expressed below,
Vertex angle = o
Span length; = a
Span length; = b
Rotation angle (d) and length of one unit (k) are another parameters will help to
analyze the geometry (Figure 35). As,
Rotation angle = 0
Length of one unit = k

3.1.1. Rotation Angle (o)

In this step the rotation angle (J) need to be calculated. Rotation angle is the
turning value of a unit.
The angle ¢ is assistance angle for arranging relationship between vertex angle o

and rotation angle ¢ (Figure 35). Using figure 34. the angle can be calculated as, below

e =180°-a (3.1)
: L
/ o e o /
& oia _< ey
N hY

N

Figure 34. Assistance Angle € on the Unfolded Miura-Ori Pattern.
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To define the rotation angle 6 in folded position (Figure 35), we refer flat position of
the mechanism.

o=¢e—a=(180°-a) —a = 180°—2a (3.2)

3.1.2. Unit Length (k)

The unit length of Miura-Ori pattern kg (with same span length) is obtained by
sine theorem.
kssi/ sin 0 = a/ sin o
kssi=a sin 6 /sin a = a sin (180°—2a) / sin a (3.3)
The unit length Miura-Ori pattern kg (different span length) is obtained specially.
The simple definition of the kuy is (Figure 35 (b))
kass=c +y (3.4)
And,
y=(d—c)/2 (3.5)
Using eq. (3.4.) and eq. (3.5.),
kis=c+y=c+(d-c)2
kasi = (d+c)/ 2 (3.6)
d is the base side of the triangle which consists of a, a, d sides and c is the base
side of the triangle which consists of b, b, ¢ sides. With the sine theorem c and d is
expressed as,
d= a sin J/ sin a 3.7
¢ =bsin d/sin a (3.8)
Thus, the final definition of the &4y 1s expressed with leading eq. (3.6.)
kasi = (d+c)/ 2 = (a sin o/ sin o.+ b sin 6/ sin a. ) /12
kas = (atb) sin 6/ 2sin a 3.9
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Figure 35. Parameters in the Folded Position of the Miura-Ori Pattern: a) flat-folded
position with same span length (a=b); b) flat-folded position with different
span length (a#b).

3.2. Geometric Approach to Arc-Miura Pattern

Geometric possibilities of Arc-Miura pattern are analyzed using specified
parameters of vertex angles a, f, and span lengths a and b. The measurement module for
the geometric analysis is the unit that is composed of 4 facets. In the first stage we have
only four specified parameters (Figure 31 (a)), expressed as below

Vertex angle; = o

Vertex angle; = 8
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Span length; = a
Span length; = b
Geometric analysis is developed on the flat-folded position of the pattern. The

next step is to calculate other parameters d;, 02, 7, k, 7, 0 that are necessary to analyze
whole pattern. The constants of ¢, d, x, y are assistant parameters (Figure 36). To extend
and calculate parameters flat and folded positions of the pattern are observed and
opposed. These parameters expressed as below

Rotation angle; = 0,

Rotation angle> = 0,

External angle =y

Unit Angle = 0

Length of one unit = k

Radius of the Pattern = r
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Figure 36. Parameters in the Folded Position of the Arc-Miura Pattern.

3.2.1. Rotation Angles of a Unit (d1, 92)

Calculation of second rotation angle 6. of Arc-Miura is same with rotation angle
of Miura-Ori pattern. According to eq (3.2), d2 is expressed below
dr=e—a = (180°—a) —a = 180°—2a (3.10)
The first rotation angle 91 is specified by another assistance angle ¢ (Figure 37).
Using figure 37. the angle can be calculated as, below
0 =180°—p (3.11)
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Figure 37. Assistance Angles € and ¢ on the Unfolded Arc-Miura Pattern.

Then first rotation angle J; is obtained according to folded position of the pattern

(Figure 36), we refer flat position of the mechanism.

01=p—p = (180°~B) — p = 180°-28 (3.12)
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3.2.2. External Angle (y)

The external angle y is obtained by the formula for the sum of the x, J2, y, 2y is
equal 360° (Figure 38).

N4 |
- r//

Figure 38. Piece of Pattern for Developing the External Angles.

According to figure 38, external angles can be expressed as below, eq (3.5).
x+o2+y+2y = 360° (3.13)
Using sum of the interior angles of a triangle helps to identify the x and y angles.
x+6;+y = 180°
where x+y is
x+y=180°-4; (3.14)
After defining the sum of angles, the external angle y can be calculated with using
the eq. (3.13 and 3.14).
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y = (360°—(x+52+y))2 = (360°—(180°—01+52 ))/2
= (360°—180°+01—02)/2 = 90°+51/2—52/2
= 90°+90°—p—90°+o = 90°—f+a (3.15)
There is a special condition;
If p>a,y=90°=f+a;
If p<a,y=90°-a+p;
The external angle y helps to find radius » of the full pattern and unit angle 6.

3.2.3. Unit Angle (0)

The unit angle can be calculated after y is known. The formula for the sum of the
angles in a triangle helps to define the unit angle 0. According to the triangle with r, k and
r sides (Figure 36), 6 can be specified as

2y+0 = 180°
0 =180°—2y = 180°—180°+ 2—20 = |2—2a| (3.16)

The formulation is presented in a module because of a and  amount.

3.2.4. The Length of a Unit (k)

k 1s the length of one unit and is also the base side of the triangle which consists of
a, k and b sides. There, span lengths a, b and the rotation angle J; are the specified
parameters. In this triangle, & is obtained by using cosine theorem.
kK =a’+ b’ 2 ab cos 6
k=Na’+b>—2ab cos (3.17)

3.2.5. The Radius of the Pattern (r)

r 1s the radius of the pattern and obtained by the triangle which consists of r, k and
r sides, with sine theorem.
v/ siny =k/sin 6
where 1 is

r=ksiny/sin @ =ksiny/sin (180°-2y) (3.18)
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3.3. Geometric Approach to Tapered Miura and Tapered Arc-Miura

Pattern

Tapered Miura is basically similar with Miura pattern as seen in figure 39. The
added lines create new angle that is called taper angle ®. Taper angle is also the starting
vertex angle of Tapered Miura. Pattern starts with taper angle o, then first vertex angle a
and second vertex angle B. Tapered Arc-Miura has the same characters with Arc-Miura.
As a consequence, Miura and Tapered Miura, Arc-Miura and Tapered Arc-Miura are
similar patterns of each other. Because of these resemblances, these patterns do not have
special geometric studies. Taper angle is an independent variable and does not affect the

analysis. Taper angle is obtained according to the number of plates.

Figure 39. Creating of Tapered Miura and Tapered Arc-Miura Pattern: a) From Miura
Pattern

to Tapered Miura; b) From Arc-Miura to Tapered Arc-Miura Pattern.

3.4. Validity of the Developed Formulas

Miura-Ori and its derivations are reviewed with three different vertex angles and
same span lengths. In order to testify the validity of the developed formulas Microsoft
Excel is used. Derived formulas are placed into the cells. According to assigned values of

the specified parameters, rest parameters are calculated. Then flat-folded positions of the
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patterns are drawn in Autocad. This software helps to measure exact values of the

drawings.

3.4.1. Review of the Miura-Ori

Three different Miura-Ori are analyzed. These patterns have 30°, 45°, 60° vertex

angles. Span length a is 4 and equal to b in all three. (Table 1. and Figures 40).

Table 1. below shows Excel calculations of all the studied constants. Vertex angle

a is different in all three examples.

Table 1. Comparison of the Unit Lengths Caused by Different Vertex Angles.

Vertex Angles Span lengthi Span length: | Rotation angle Unit Length
(o) (a) (b) (6) (k)
30 4 4 120 6,928
45 4 4 90 5,657
60 4 4 60 4
N o
4 \/ o=1200" - Y. N _/ P \_
e s ~ oS - ~ e,
= 1 - N o NP Y
| k=6.9282 |
Sew NN 2 NN
N % A -
Zae /N N /N N
L _\_r NV L N
| k=5.6569 ——————~|

Lajo__/ \/_'v .\

Figure 40. Miura-Ori folded patterns where a is equal to 30°, 45° and 60°.
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Figure 40. is Autocad drawings of the analyzed patterns. The measurement of the
constants on the drawings validates the study.

The research on Miura-Ori result the distinction in folded position of the patterns
(Figure 40). The vertex angles affect the pattern rotations and cause the distinction of the
unit lengths.

According to figure 40. we can explain relations between vertex angles and unit
lengths. In the first example, the folded pattern with 30° vertex angles has 6.93 cm unit
length. The unit length of the second pattern (a=45°) is 5.65 cm, and third pattern (a=60°)
is 4 cm. Three examples verify that vertex angle o is inversely proportional to unit length

k. The increase of the vertex angles cause the decrease of the unit lengths of the patterns.

3.4.2. Review of the Arc-Miura

Type 1. Three different type 1 Arc-Miura are analyzed. These arcs have 45°&30°,
45°&60°, 45°&75° vertex angles. Span length a is 4 cm and equal to b. (Table 2. and
Figure 41).

Table 2. Checking for Calculation of Type 1.

Vertex | Vertex | Span Span |Rotation|Rotation |External| Unit Unit ’
Radius
angler | anglez | length: | length2 | angle:r | angle: | angle | angle | length
a p a b o1 52 Y 0 k r
45 30 4 4 120 90 75 30 |6,9282 13,384
45 60 4 4 60 90 75 30 4 7,7274
45 75 4 4 30 90 60 60 |2,0706 |2,0706

56



Figure 41. Type 1 Patterns. a) The Arc-Miura unit with 45°&30° vertex angles; b) The
Arc- Miura unit with the 45°&60° Vertex Angles; ¢) The Arc-Miura unit with
45°&70° vertex angles.

(cont. on next page)
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c)
Figure 41. (cont.)

Type 2. Three different type 2 Arc-Miura are analyzed. These arcs have 45°&30°,
45°&60°, 45°&75° vertex angles. Span length a is 4 cm and equal to b. (Table 3. and

Figure 42).
Table 3. Checking for Calculation of Type 2.

Vertex Angles o B a b o1 62 Y 0 k r
30°&15° 30 15 4 4 150 120 75 30 | 7.7274] 14,928
30°&45° 30 45 4 -+ 90 120 75 30 |5.6569|10.928
30°&60° 30 60 4 4 60 120 60 60 4 4
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Figure 42. Type 2 Patterns. a) Arc-Miura unit with the 30°&15° vertex angles;
b) Arc-Miura unit with the 30°&45° vertex angles; ¢) The 30°&60° Vertex
Angles Pattern.
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The table 2. and table 3. show Excel calculations of all the studied constants. Each
vertex angle a is equal for its three examples and second rotation angle 92, and first vertex
angles o are dependent to each other. Thus the second rotation angle (62) of all three
samples are equal. In the first and second samples, unit angle 0 are equal, because they
were specified by the relationship of vertex angles 3 and a. Furthermore, the values of the
v are also equal. In the Figure 41 (c). equilateral triangle and in the Figure 42 (c). isosceles
triangle is shown which consists of 7, k and 7 sides.

Figure 41. and b26. are Autocad drawings of the studied patterns. The validity of

the calculation is approved after measurement of the constants on the drawings.

3.4.3. Review of the Tapered Miura Pattern

Three different Tapered Miura patterns are analyzed. These patterns have 30°, 45°
and 60° vertex angles. In these patterns, « is 4 and equal to b. (Table 4. and Figures 43).

Tapered pattern has only one vertex angle a is different in all examples. Table 4.
Below shows Excel calculations of all the studied constants which is exactly same with

Miura pattern calculation (same with Table 1).

Table 4. Comparison of Tapered Patterns.

Vertex Angles Span lengtha Span length: | Rotation angle Unit Length
(@) (a) (b) () &)
30 4 4 120 6,928
45 4 4 90 5,657
60 4 4 60 4
0=120°~ "N~ _’\-\ N T -7\-\
~ . AN
P - ™~ N bty e > fac
(Vg - Ny ~. .’ - ™ ~.
- - ~ > - > ~
S ~ P - ~ Mg
< S{ N e - w7 fp "
0=30°
| k=6,928

Figure 43. Miura-Ori Folded Patterns. a) The Piece of the 30° Vertex Angles; b) The Piece
of the 45° Vertex Angles; ¢) The Piece of the 60° Vertex Angles.
(cont. on next page)
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Figure 43. (cont.)

Figure 43. is Autocad drawings of the studied patterns. The measurement of the

constants on the drawings validates the study.

3.4.4. Review of the Tapered Arc-Miura Pattern

Three different Tapered Arc-Miura will be analyzed. These arcs have 45°&30°,
45°&60°, 45°&75° vertex angles. Span length a is also 4 cm and equal to b. (Table 5. and
Figure 44).

Table 5. shows Excel calculations of all the studied constants. It is exactly same

with Arc-Miura pattern calculation (same with Table 2).

Table 5. Checking for Calculation of Tapered Arc-Miura.

Vertex | Vertex | Span Span |Rotation |Rotation |External| Unit Unit ;
Radius
angler | anglez | length: | length2 | angler | angle> | angle | angle | length
a p a b o1 02 Y (S k r
45 30 4 4 120 90 75 30 |6,9282 (13,384
45 60 4 4 60 90 75 30 4 7,7274
45 75 4 4 30 90 60 60 |2,0706 (2,0706
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b)

Figure 44. Tapered Miura folded pattern with Same Span Lengths. a) The Piece of the
45°&30° Vertex Angles; b) The Piece of the 45°&60° Vertex Angles; ¢) The
45°&75° Vertex Angles Pattern.

(cont. on next page)
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c)

Figure 44. (cont.)

Figure 44. is Autocad drawing of the studied patterns. The validity of the

calculation is approved after measurement of the constants on the drawings.

3.4.5. Conclusion

During the research of Arc-Miura, the curvature distinctions are recognized in
folded position of the patterns (Figure 45). The vertex angles affect the pattern rotations.
Considering figure 45. we can explain relations between the vertex angles and the
folded forms. In the first example, the folded pattern with 45°&30° vertex angles takes a
convex form. Second example with 45°&45° vertex angles presents a straight form. Third

example with 45°&60° vertex angles, and fourth example with 45°&75° vertex angles take
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concave forms. As a consequence of the curvature distinction (Figure 45), three
circumstances can be investigated, as below

1) if o>, folded pattern takes convex form;

2) if o =p, folded pattern takes straigth form;

3) if a<p, folded pattern takes concave form.

Figure 45. Curvature Distinction of Folded Arc-Miura Pattern.

The difference between the vertex angles determine the radius of the folded
pattern. If the difference between the angles decrease, the radius increase or vice versa.

Although the span lengths of the patterns are equal, 45°&30° and 45°&60° angle
patterns complete full surroundings with 12 units, however 45°&75° pattern with 6,
numbered in figure 46 (a). The angle difference in the 45°&30° and 45°&60° patterns are
+15° while it 1s £30° in the 45°&75° pattern. The result is also same for type 2.; if vertex
angle difference is +15°, circle complete with 12 units and if it is £30°, circle complete

with 6 units (Figure 46 (b)).
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Unit number can be obtained by the difference of vertex angles,
360°/ (b— &) = niink (3.19)
Type 1. and type 2. have different vertex angles, but the vertex angle difference is
similar in each first, second and third example. Some similarities are observed as: o> in

each parts are equal, y and @ in all types are equal (Table 2. and 6).

Figure 46. Numbered folded patterns. a) Type 1. Pattern; b) Type 2. Pattern.

(cont. on next page)
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b)

Figure 46. (cont.)
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CHAPTER 4

MOBILITY ANALYSIS OF MIURA ORI PATTERN

The Miura-Ori unit is composed of a symmetrical degree-4 vertices. Degree-4
vertex consists of four intersecting crease lines which are symmetric about a horizontal
centerline. This unit is a four bar spherical mechanism with a single degree of freedom
(DOF). A four bar spherical mechanism is a rotational manipulator with all axes
intersecting at the center of the sphere (Lum, Rosen, Sinanan, & Hannaford, 2006). The
axes indicate the directions of all revolute joints. A spherical four-bar mechanism is

shown in figure 47.

Figure 47. A Spherical Four-Bar Mechanism.
Figure 48 illustrates the similarity between a Miura-Ori unit and a spherical

mechanism. The origami creases are analogous to hinges and the facets are analogous to
rigid plates. Note that four creases intersect at a vertex.
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Figure 48 Miura-Ori Unit as a Spherical Mechanism
(Source: Mooth, 2014.)

4.1. Determining DoF of Miura-Ori Pattern

Miura-Ori unit is a spherical mechanism with its rigid plates and revolute joints.
An unfolded unit of the Miura-Ori pattern, constructed from four identical parallelogram
plates and four revolute joints, is shown in Fig. 49. Each vertex has four crease lines and

the mechanism works with one degree of freedom.

Figure 49. An Unfolded Miura-Ori Unit.
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Considering Miura-Ori origami as a mechanism, the mobility of the unit can be
calculated with Grubler Kutzbach formula (Phillips, 2006) as (4.1.),

5
M = 20-1)- 2 (2-0)j; (4.1)

where A is the DoF of space in which the mechanism operates (A = 3 for spherical
mechanisms), n is number of plates and j; is number of joints having i DoFs.

The dimension of active motion of rigid body for spherical mechanism is RRR.
The dimension of subspace is A=3. So, the formula is given, as

M :3(n_1)_2j1 - jz (4.2)
where j1 is the number of single degree of joints, j2 is the number of two degree of freedom
joints.

The joints of the Miura-Ori are all revolute. Revolute joints have one degree of
freedom, so j» is reduced from eq. (4.2.). Mobility of a Miura-Ori can be calculated as
follows,

M=3(m—1)-2j (4.3)

M=3(4-1)—2x4=1

The sum of plates in Miura-Ori pattern can be calculated by eq. (4.4.),

Y plate = axb (4.49)
where Y plate is the number of plates, a is the number of columns and b is the number of
rows.

The sum of joints can be calculated by eq. (4.5.),

Yji=a(b—-1)+b (a—1) (4.5)
where Y’ is the sum of joints.

Developing a mobility analysis on Miura-Ori involves studying twelve items
(Figure 50, 51 and 52). These patterns are established with adding new facets to the base
pattern. Patterns in the numbered steps line up horizontally. Numbered steps differ by
column numbers, each one has one more column facets. The derivations are needed to
check whether there are mobility variations or not. Following steps are recovered by
mobility calculations on the classified examples.

1) Miura-Ori patterns consist of two columns. All four examples have one degree of
freedom.

a) M=3(4-1)-2x4=1

b)M=3(6-1) —2x7 =1
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) M=3(8-1)-2x10=1
d) M=3(10-1) —2x13 = |

Nl
e S e I

LA LT ™

L ] bl LT

L N L

7%

1a) 1b) 1c) 1d)

Figure 50. Miura-Ori Patterns Consist of Two Columns.

2) Miura-Ori patterns consist of three columns:
a) M =3(6-1)-2x7 =1
b)M=309-1)-2x12=0
Q)M=3(12-1) —2x17 =—1
d) M =3(15-1) —2x22 = -2

P i i o b R Wy
b il Y o B e e T
I TN TN
P " T " ™ s I P N Py
P T P N P
7 gl g
2a) 2b) 2¢) 2d)

Figure 51. Miura-Ori Patterns in Three Columns.
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3) Miura-Ori patterns consist of four columns.
a) M =3(8—1)—-2x10=1
b)M=3(12—1) —2x17 = —1
o) M=3(16—1) —2x24 =-3
d) M =3(20—1) —2x3] =5

P e e TP | g L
P ™ B P W P N Y g M Y
NN TN TN
PN N I g N g DN P g N
LN TN
P P N
3a) 3b) 3c) 3d)

Figure 52. Miura-Ori Patterns in Four Columns.

It is known that deployable Miura-Ori pattern is a single DoF mechanism.
However, Grubler Kutzbach formula fails above examples. While the derivation
processes, mobility calculations variate with zero and negative values in the examples.
The patterns are single DoF but the equation fails in some generated Miura-Ori patterns.
Zero and negative amount of mobility can be explained with excessive plates in Miura-
Ori patterns. In that case, how many and where are they situated in the pattern?

In order to find exact solution with Grubler Kutzbach formula, a new parameter
(Omax) IS necessary. max is the number of maximum excessive plates. It helps to find
number of excessive plates for each mechanisms in Miura-Ori generations. Modified
Grubler Kutzbach formula is given below

M=3(n—1)=2j1+ Qnax=1 (4.6)

It is known that all the generated Miura-Ori patterns are single DoF mechanisms.

Thus, there is not any excessive plate in the pattern shown in figure 49.
M=3(n-1)-2j1+Qgmax=1
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M=3 (4_1) -2 x4+qmax: 1
Qmax=0

4.2. Determining the Excessive Plates and Joints of Miura-Ori

Mobility results except one state presence of excessive plates. The aim of this
subchapter is to find the number of excessive plates and joints. Additionally, determining
the place of excessive plates is another aim of the subchapter.

Modified Grubler Kutzbach formula in eq. (4.6.) helps to find maximum number
of excessive plates.

Figure 53 shows a single DoF pattern with excessive plates. According to the
calculation, the number of maximum excessive plates are two.

M=3n—1)-2j1+ gmax=1
M=3(12-1)-2 x 17 + Qmax= 1
Qmax = 2

Figure 53. Pattern with Two Excessive Plates.

In figure 53 there are two excessive plates. But these plates are not determined
randomly. To eliminate excessive plates from proper place, the number of excessive joints

is also necessary. Finding the number of excessive joints helps us to pick up proper plates.

—

[ 01= Omax; jexc1 =2 X Omax ;
J2 =012, jexc2= jg1—3;
] e=a-2; T jecs= jo6
¥q4 =032, Jexca=J3—9 .
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So,

01 = Omax
Jexc1= 2 X Qmax
On=Qn-1—2

jexc.n = ] excn-1—3

(4.7)
(4.8)
(4.9)
(4.10)

To find desired number of excessive plates and joints (qn, jn) without determining

number of previous one (gn-1, jn-1), arithmetic sequence rule is used. The n term of an

arithmetic sequence is below, where n is the number of terms and d is the common

difference (Boyer & Merzbach, 2011).
an=ai1+ m—1)d
The common difference for arithmetic sequence is obtained below,
d =an+1—an
For the excessive plates, if an+1 = gn and an = q,-;, and using eq. 4.9.
dg = On =01 = (On-1-2) = Qo1 = -2
So the n'" term of a plate is obtained,
On = 01— 2(n—1)

For the excessive joints, if an+1 = jexcn and an = jexc..—, and using eq. 4.10.

dj = Jexcn—Jexen—1= — Jexcn—1 —3— Jexen—1= -3
So the n'" term of a joint is obtained,
jn =ji=3(n—1)
To check the excessive plate equations, figure 53 is used.
Qmax = 2,
| exc. plate =2 and | exc. joint = 4;

Il exc. plate = 0 and Il exc. joint = 1.

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

It means, one of the excessive variation is 2 plates and 4 joints, another is 0 plate

and 1 joints.

Modified Grubler Kutzbach formula is not enough to determine the proper

excessive plates. A Method of Double Arrangemet (MoDA) should be concerned. The

Method of Double Arrangement is demand of two-line plates for both two concurrent

edge. As figure 54, MoDA involves the plates which are along the dashed lines.
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b)

Figure 54. A Method of Double Arrangemet (MoDA) examples. a) Maximum 20
excessive plates; b) 22 excessive plates.

After the calculation and determination of number of excessive plates and joints,
if the placement of necessary plates are not conformed with the MoDA, the pattern does
not deploy. There are determination examples in figure 55. The pattern has 3 excessive
plates and 6 excessive joints. Three placement variations are designated. First two
examples are correct, the Method of Double Arrangement have been fitted in the edges
of left and top side. Third variation is wrong, because the hatched plate is single, the
MoDA is not provided.

M=3(Nn-1)-2j1+gmax=1

M=3(15-1) 2% 22+ Quax =1

Qmax = 3
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M=3(12-1)-2x16=1
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Figure 55. Correct and Wrong Determination of Excessive Plates and Joints.

4.2.1 Excessive Plates and Joint Studies on the Six Derivations

Following step focuses on the excessive plates and joints layout designs of 6
derivations. The 6 derivations with single DoF are studied again with Modified Grubler
Kutzbach formula to find excessive plates. With the eq. From 4.7. to 4.10. the excessive
plates and joints are obtained. Then, the locations of excessive plates and joints are chosen
(Fig. 56-60).

2b) M= 3 (9—1) —2%12 + Qmax =1
Omax = 1
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2by) 1L2]
q=1;
jexc.l =2.

M=3(81)-2x10=1

AN

2by)

Figure 56. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2b).

2c) M= 3 (12—1) —2%x17 + gmax =1
Omax = 2
2¢1) 2L4j

gL = 2;
jexc.i = 4.

M=3(10-1) —2x13 =]

2c2) OL1;j
qr=0;
jexc.t =1.

M=3(12-1) -2x16 =1
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Figure 57. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2c).

2d) M = 3(15—1) —2%22 + gmax =1

Qmax = 3
2d;) 3L6j 2d) 1L3j
qi=3; qu=1;
jexc.. = 6. jexc.. = 3.
M=3(12-1) —2x16 = 1 M=3(14-1) —2x19 =]
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Figure 58. Determination of Excessive Plates and Joints on the Pattern of Fig. 51 (2d).

3b) M =3 (12—1) —2%x17 + g max =1

Qmax = 2
3b1) 2L4j 3b2) OL1j
Qi =2; 92 = 0;
Jexc1 = 4. jexc2 = 1.
M=3(10—1)—2x13= 1 M=3(12-1)-2x16 = 1
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Figure 59. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3b).

3¢c) M =3 (16-1) =2x24 + g max =1

Omax = 4
3c1) 4L.8j 3c2) 2L5j 3c3) 0L2j
qi=4; q2 = 2; gs =0;
Jexc1=8. Jexc2 = 5. Jexc3 = 2.

M=3(12—1)-2x16=1 M=3(14—1-2x19=1 M=3(16—1)—2x22=1
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Figure 60. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3c).
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3d) M =3 (20—1) —2x31 + g max =1

VAN SVAV,

gmax==6
3d1) 6L12j 3d2) 4L9j
a1 = 6; 02 = 4;
Jexea = 12. Jexc2 = 9.
M =3(14—1)-2x19= I
3ds) 2L6j 3d4) OL3;j
0z = 2; g4 = 0;
jexc.3 =6. jexc,4 =3.
M= 3(18—1)—2x25=1
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Figure 61. Determination of Excessive Plates and Joints on the Pattern of Fig. 52 (3d).

Miura-Ori derivations share common mechanical features with Miura-Ori. Miura-

Ori (Figure 30 (a)), Arc-Miura (Figure 31 (a)), Tapered Miura (Figure 32 (a)) and

Tapered-Arc Miura (Figure 33 (a)) patterns can be characterized commonly, as:

-Unit (of each patterns) is composed of a symmetrical degree-4 vertices.
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-Unit (of each patterns) is a four bar spherical mechanism with a single degree of
freedom (DOF).

-Unit (of each patterns) is consisted from 4 revolute joints on the axes, which
intersect at the sphere center of mechanism.

Because of common mechanical features only Miura-Ori has been analyzed in this
chapter. The same calculations and results can be applied to other Miura patterns

(derivations).
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CHAPTER 5

CASE STUDY

In this section, a design is proposed to show the application and possibility of the

analyzed Miura-Ori pattern and its derivatives.

5.1. Example Problem

Example problem starts with a short geometric description of the design. It is a
path of a folded origami pattern (figure 62 bold line) which is consisted from three curves
and two straight lines. Here some specific conditions are given for calculation:

a) The radii of the draft curves are given
curve; =180 cm;
curvez =135 cm;
curves =90 cm.
b) Curve angles are 150°, 96° and 99°.
c) Straight line measurements are 220 cm and 150 cm. And,
O linel = A curvel
o line2 = P curve3
d) Span length is preferred equal (a=b) as 60 cm.
The problem is to design Arc-Miura pattern shelter according to the draft path and

remove excessive plates and joints.
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Figure 62. Draft Path of the Example Problem.

Following steps include solution of the problem sequentially.
1. Identify the vertex angles of curves

Defined parameters for the curves are written below

r. =180 cm;
r, =135 cm;
rs =90 cm,
a=b=60 cm,
To calculate vertex angles radius formula is used.
r=ksiny/sin (180°- 2y) (3.18)

Hence, indefinite parameters should be calculated,
y = 90°—p+a (for f>a)
y = 90°—a+p (for f<a) (3.15)
k=\a?+ b?—2 ab cos (180°-2p) (3.17)

There are three different curves, so three different calculations are necessary. In

the third chapter, angle relation with curve was described. Thus, if a is bigger than 3 the

curve is convex, if not the curve is concave. In there, first and third curves are concave,

second is convex. According to this condition, vertex angles are obtained for all types.
In curve 1. (concave f>a)

r=180 cm
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a==60cm
S — o is accepted as 15°
y = 90°—f+a = 90°—a—15+q = 75°

k=N a+ b>— 2 ab cos (180°-28) = @’ + &® — 2d° cos (180°—2p)=\2d’ (I —

cos (180°—28))= 7200 (I — cos (180°—28))= 7200 (I + cos2p)

So with eq (3.10),

r=ksiny/sin (180°- 2y)
180 =~'7200 (I + cos2p) sin 75°/ sin 30° =N7200 (1 + cos2f) x 1.93
93.26 =N7200 (1 + cos2p)

8698.2 = 7200 (1 + cos2p)
0.21 = cos2p

B =39°22'
a=p—15°=24°22

In curve 2. (convex a >p)
r=135cm
a=60cm
a — f is accepted as 16°
y=90°— o + f = 90°—p-16°+p = 74°
k=17200 (1 + cos2p)
So with eq (3.10),
r=ksiny/sin (180°- 2y)
135 =N7200 (1 + cos2p) sin 74°/ sin (180° - 2y)
5538.2055 = 7200 (1 + cos2p)
cos2f =-0.231
24 =103°21"'21.431"
S = 51°40'
a=p+16°=67°40'

In curve 3. (concave f>a)
r=90cm
a=060cm

S — o is accepted as 16° 30’
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y = 90°—f+a = 90°—a—16° 30'+a = 73° 30"
k=~7200 (I + cos2p)

So with eq (3.10),

r=ksiny/sin (180°- 2y)

90 = 7200 (1 + cos2p) sin 73° 30" / sin 33°

2613.2697 = 7200 (1 + cos2p)

cos2f =-0.637

2f = 129°34' 6.525"

S = 64°47"

o =p-16°30" = 48° 17"

2. Identify number of the units and plates of curves
For curve 1. (f = 39°22"; a = 24°22"),
The angles of curve 1. is 150°. To identify unit number unit angle are necessary.
0 = 180°—2y (3.16)
6 =180°—150°=30°
Pattern angle is 1507, so unit number is
150°/ 6 =150°/30°=5
As described in third chapter, each unit has 4 plates. Plates number is obtained as
A unit number X a unit plates = 5x4 = 20
For curve 2. (8 = 51°40"; a = 67°40"),
0 =180°—148°=32°
Pattern angle is 96 so unit number is
96°/ 6 =96°/32°=3
Plates number is obtained as
A unit number % a unit plates = 3x4 =12
For curve 3. (f = 64° 47'; o = 48° 17"),
0 =180°—147° = 33°
Pattern angle is 99 so unit number is
99°/6=99°/33°=3
Plates number is obtained as
A unit number % a unit plates = 3x4 = [2

3. Identify the vertex angles of lines
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Given angle conditions is below,
0l linel = 0 curvel = 24° 22'
0 line2 = B curve3 = 64° 47"
4. Identify number of the units and plates of lines
Defined parameters for the lines are written below
l; =218,6 cm; |2 = 153.4 cm
a=b=60cm
o line1 = 24° 22'
a line2 = 64° 47
Unit length formula is used to obtain number of the units and plates.
ksst = a sin (180°—2a) / sin o (3.3)
Hence,
In line 1.
kst = a sin (180°—2a) / sin o. = 60 x sin 131 °16'/ sin 24°22' =60 x 0.7516

/0.4126 = 109.3

In line 2.
Kssi = a sin (180°—2a) / sin a. = 60 % sin 50° 26"/ sin 64° 47'= 60 % 0.771/
0.905 =51.12
To identify unit number line length is divides by unit length.
In line 1.
I/ k =220/ 109.3 =2.01~2
In line 2.

I/ k =150/ 51.12=2.93 ~ 3
Unit numbers of line; and line; are fractional numbers. To fold the example pattern
number should be integer. So, these fractions are simplified by rounding off. And, line
lengths are changed (Figure 73).
Line 1. 2 xk=218.6
Line 2. 3 x k=153.4
Each unit has 4 plates. Plates number is obtained as
In line 1.
number of units x number of unit plates = 2x4 = 8§
In line 2.

number of units x number of unit plates = 3x4 = 12
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5. Draw crease pattern

The example shelter has 5 pattern parts; linei, curvei, curvey, curves, linez. These
parts are drawn according to obtained vertex angles and defined parameters. Then
mountain and valley folds are assigned (Figure 63-67).

Line1. Vertex angle of the line; are 24° 22'. Span length is 60 cm. Liney is
composed of 8 plates.

Pl ~ -~
24722 <l s

Figure 63. Curve; Pattern.

Curvei. Vertex angles of the curve; are o = 24°22"and f = 39° 22". Span length

is 60 cm. Curve; is composed of 20 plates.

(’—i\f.{ mﬁ_.(._,_..(____( __.<___.( __.<___.( Sl .<___.<
~
L T S - s S _._E__.L e s N5 _._2.__; _._.1.

Figure 64. Curve;s Pattern.

Curvez. Vertex angles of the curve; are o = 67°40" and f = 51°40". Span length

1s 60 cm. Curve is composed of 12 plates.

___T T T F T T F T T T}
66712,_ _<£4° _____ _<____€ _._._<____<
. T S TN SN SIS S |

Figure 65. Curve; Pattern.

Curves. Vertex angle of the curve; are a = 48° 17" and § = 64° 47'. Span length is

60 cm. Curves is composed of 12 plates.

87



P~ e e

LA AN J— ¥ SNV - g

| WL, W, S .. S SN

Figure 66. Curves Pattern.

Linez. Vertex angle of the line, are a = 64° 47'. Span length is 60 cm. Liney is

composed of 12 plates.

54:__7_._._.7____.7._‘_,7____-7_._._.7
R e e e e
XN )\

Figure 67. Line; Pattern.

The parts are connected together in order to get whole pattern. To combine parts,
[ of previous parts is attached with a of next part. During this combination, different
angles generate a problem. As a solution of the problem, last vertex angle of the previous
part is accepted as a of next part. The change of a is only take up first plate. For the next

plate current vertex angles continue (Figure 68).

_3922 _:T _——& o / _
24°22' 67°40 51°40
N — e e e e e X . |

' 1 39°22' gﬁ_ol E)'

b) Parts after combination.

Figure 68. Combination of Different Parts.
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Whole pattern is composed of 64 plates (Figure 69).

Connected parts are multiplied in order to design its shelter. The full shelter is

composed from 544 plates (Figure 70).
6. Determining of the excessive links and joints
Y plates =ax b
Yj=a®b—1)tb (a—1)
In there,
Y plates = 32x 17 = 544
Yj =17%x31+32x16 = 1039
7. Identify excessive rigid plates
M=3(-1)-2j1+Ogmax=1
1629 —2078 + Qmax=1
Qmax = 450

The system has 450 excessive plates.

8. Layout maximum excessive plates and joints

01 = Omax

Jg1= 2 X Omax

(4.4)
(4.5)

(4.6)

(4.7)
(4.8)

In there, first and maximum excessive plate is 450, first excessive joint is 840

(Figure 71). So, revise mobility calculation of the pattern,
g1 =450
Jj1=2%450 =900
450L900j
M = 3((544—450)—1)—2 x (1039-900) = 279-278 = 1
9. Layout 236%™ excessive plates and joints
On = Q1—2(n—1)
jn =ji=3(m—1)
Thus,
Q36 = q1—2(n—1) = 544-2(236—1) =74
J236 = J1— 3(n—1) = 1039- 3(236—1) = 334
236" excessive plates and joints can be expressed as 741.334;.

10. Pickup the excessives

(4.14)
(4.16)
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First excessive plates and joints (450L900j) are indicated maximum excessive
plates and joints. The excessives are removed from the pattern and the resulted simple
pattern also has single DoF (Figure 71).

236" excessive plates and joints (74L334j) are removed from the pattern and the
resulted pattern still has single DoF (Figure 72). To choose 74L334j, 74 plates and 296
joints (four joints for each plates) are reduced firstly. However, 38 joints out of the 334

are reduced without plates.

90



J31J3YS 8y} JO uJaled "0/ ainbi

\ /
Y
|
i/
Y
1
\/
Y
|
i
!
Al
!
Y
1

i
W
]
Y
i

|
\/
]
Y
i

i
Al
!
Y
i

|
W
}
Y
i
+
i

|

|
Y
i
o
|

|
Y
i
+
|
|
Y
|

i
Y
|
+
|

i
¥
|
+
|
Y
|
i

|
*
|

i

|
Y
|

i
w‘/
|

i

|
t
]

I
\k
|
|
|
+
1
i

A A
SN N/
IYI
Al
|‘+I/\
|
/{\\://l\
lYI
Al
l\Tl//\
|
/?\\://:\
ALA
1Y
’f\:/l\
| }
AALA
M
/{‘\:/,*\
Ne s
| ]
LA LA
11
/|L\:/|*\
\l7
| |
LA
Py
||i
|\:’|‘
4872
] }
AL
Y
B AN
| |
IEI
Hd
IH
+++
] ]
Iil
AlLA
i
+++
| |
.i.
ALA
M
(B
ALA,
|‘1|’|
| )
I
T
i
et A
I\rl
| |
1|
)
III
At K
I\rl
I I
|
e
B
T
I:I
g
B
T
|}|
g
0
vt
I:I
T
B
By

el TS G VR S i S VR o e S s T O Sl U S, W T W
S .
V|II|V|IIV|IIIV|IIVI WnllleIWlllle Vlll : .

- -

N/
Y
1
Y
Y
1
A
¥
i
Y
1
1
Y
Y
1
1
|
bi
Y
1
l
\Y/
Y
1
[
\l/

i\ //E\

I\

\

Vb

4

1A
\/
\/
!
Y
I
l
/N
Y
Y
l
+
|
I
|
Y
1
s
|
1
1
|
Y
1
4
1
I
1
[
Y
I
l
Y
|
+
1
i
Y
|
++
1
1
Y
|
l
1
*
1
I
1
+
1
l
\'/
I
1
I
+
[

I
+
1
|
1
+
I
l

A

ke
i
A
|
I
A
i
i
A
/l\
i
|
i
b
[
i
A
|
|
|
&,
|
|
A
|
|
|
A
[
|
* 4
|
I
|
A
:
Y
|
|
|
A
[
|
o
|
i
|
ok
[
[
=4
|
|
|
ok
[
[
4
|
|
|
A
i
[
4
|
|
|
A

<

g

Nl
Y
I
A
Y
.y
X
Y
) 3
M/
Y
!/
Ny
Y
Y
:/

\ /
|
NI
Y
Y
]
+
I}
|
|
|
Y
i
i
i
|
]
|
Y
|
4.
|
1
1
|
Y
l
]
T
]
+
l
i
Y
|
+y
|
l
N2
|
|
|
T
|
|
+
1
]
~-

\/

?-A---A-.-AI-A--A---A!-A---A--A---.T-A---A--A--i.-.-*--i--+-I+!-.T--A--+---A--+.I-A--+-I+--+---+--+-I+--+--i
T s I A e R R e R
T-A-IA--A./.-.T-A-IA--AI-A--A---A--AI-.T-A--JT-*IJT-A-IA.--*I-A--+-IA--+---A--+I-+--+I-+--+-I+--+Ii

R e e s e e e B L e B e e e e e e
?-A?-A--AE-A--A-IA:A}-A--A{-AlAli-IA-I+{*-!)TIAIL«:*-!A--;rlA||+I-AI+-!+--+I-+-l+l-+l-+?i

, e e s e e i i e e St ot S il
N AR S GRS A, = A = 0 N 7 NS, G s SHNr SENAF SR SUSr U SN S S > SO S S S — — S— " —-—

s e g e S e SR e v RS RS T S M N e N e N NN N e N B e e e R oo N iR eV coc i oo o R oo

N/
\/
|

Y
I
[}

\/

\

\ I

Nodf

Y

I
A/
Y
!
N
Y

|
N
Y
l
|
Y
‘Y

1
l
NN
Y
‘f’

1
!
NN
Y
Y

[

[
NP

/

"UJdNed 9JOYA PapIouN ays Jo ajdwex3 ‘69 ainbi4

\lll\.l.l\llll\l I.Illlﬂlll\lllﬂlll\lllvllllll.ﬂlll J|IIIJIIJllllq..llxvlll.ﬁ!llﬂullquIlﬂllld.ll.lll...llu.lll....llu.lll1llu
.I\ﬂ| .AIIIAII.AI/IIA I\m.I.A I.I:AIIIA.MI.I,.AIIIA./\I.I [ S .\l\.wn .Aln krl.A.|¢.I|IA.I|.AIII.*I|AIII.ALl;m.nllAl,l.A.lll.A.l.l B e B R et s Tt
e e e T D !III(IIrIr N VRN T R N, S O S NN M. NN AN W " I SR T o S S T I S Vi T

91



“(*syutol aA1SS9X@ 8Je Saul| an|q ‘40J0D 8N|q Ul Je SBAISSBIX® aU}) SeAISseaxT ,9¢¢ Bulnowey Jo sejdwres ‘gz ainbiy

i AR = i L U T

PO T - W By TN T N G R . .TI-Y:Y--“_T-.' L O, WU S R ) W N

\
A

=7 L 7 K 7 ~I 7 III|A|I I+IHII|A
e T i T T Ai-+ -- *-1+ S S R e I SO R i W N M [ S S B |

e i et o i i e D B e e e s i e v e i

A

v

A

NN

!
"y
A
o
ny
i
i\
g
|
i

/

‘Ajiqow syl Buibueys Inoynim sereld Jo Jaquinu winwiul "1/ ainbi4

/
/
/

\/
Y
1
i
Y
[
7
v

A
I\
|
A
M
|
A

A A
)
\Y/'\Y,'\Y/
FALAL
\:/:\}/:\:
YiYuiY
P AL AN
NN AN
VARV
vV Y

\
Y

|
\‘:f,
i
\l/
i

|
?

I

i

|
Y

I
!
%
T
Y

I
1/
1
Y

1

! '
I/
14
Y

i

\
|
¥
o
!

l
Y

1
o

1

|
W

A

|

|
71\

]
A

s g
S~ S~

~

4

= ¢ x . N ———
S>3 = > > > S A A A S b S WD AR S S

B e G e T NI, SIS NN S/ D SRy I AR SO/ i SOR/ ; SIS S, L) ;R RN

/

<

/

4
]
I
|
|
bd
I
]

\/
Y
|
i/
LA
A\l
v

A
N\
|
4

NG/
|
A

A
AN/
|\YI
Al
/{\:
1Y
A
ANTA
A7
N

\
A/
Y
I
|
i
i
v

A
41
1
1
M
1
A
VAN

/
{
I

i
f
[
Iy
[

92



11. Fold the pattern
According to the calculation, all given parameters of the problem are established
(Figure 73).

Figure 73. Folded Shelter.

12. Vizualize the architectural origami shelter
Designed n is proposed as a deployable roof. It is vizualized in the architectual softwares
of the 3d MAX and Lumion (Figure 74).

Figure 74. Shelter Visualizations.

(cont. on next page)
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CHAPTER 6

CONCLUSION

In this thesis, Miura-Ori pattern and its derivations have been analyzed in
geometric and mobility aspects.

Studied derivations are Arc-Miura, Tapered-Miura and Tapered Arc-Miura
patterns. The main differences between these patterns are around the vertex angles (o, B),
span lengths (a, b) and tapered line (which creates taper angle ).

Behind the input parameters (a, B, a, b), several depended parameters are
identified. By the changing input parameters, different geometries of the Miura-Ori pattern
and its derivations are investigated. At the end of the geometric analysis, the patterns are
drawn with Autocad and calculated with Excel in order to validate the study.

Besides, twelve different Miura-Ori patterns’ mobility are analyzed with Grubler
Kutzbach formula. Although the pattern is single DoF mechanism, studied six patterns
give negative mobility results. Negative mobility results mean that there are excessive
plates. Then fourteen different excessive placements are found in the six patterns. After
all the research on the number and placement of excessive plates, two steps are developed
to determine excessive plates and joints. First step is determining the first and n' term of
a plates and joints for the patterns with Modified Grubler Kutzbach formula, and second
step is using the Method of Double Arrangement (MoDA).

In the last chapter, in order to utilize geometrical and mobility analysis, example
problem is proposed as an architectural origami shelter. The shelter is composed of five
different Miura derivations. The geometry of the derivations are developed with given
parameters. Later, number of excessive plates and joints of the shelter application were
calculated and reduced according to the MoDA. 174" excessive alternative is found that
there are 74 plates and 321 excessive joints. Introduced folded origami shelter is modelled
in 3Ds Max and Lumion.

We suggest further research for the geometric analysis of partly deployed of
Miura-Ori and its derivations. Also the research can be expanded with various rigid

origami patterns.
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