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ABSTRACT
IMPROVEMENTS IN ROBOTIC ARM CONTROL BASED ON

COMPUTATIONAL INTELLIGENCE AND SLIDING MODE CONTROL

KINANI, Ali Hussien Mary
Ph. D. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Tolgay KARA
October 2017
105 pages

This work addresses the problem of trajectory tracking control of the robotic
manipulator. Different methods are proposed in kinematics and dynamic control of
robotic manipulator. In inverse kinematics, two methods are presented based on
closed loop strategy. First method is based on proportional Derivative (PD) like
fuzzy controller while second method exploits the effectiveness of Sliding Mode
Control by designing a robust method with solving the problem of singularity.
Different desired Cartesian trajectories are used to illustrate the effectiveness of
proposed methods with two links and 4 Degree of Freedom (DOF) SCARA robots.
Obtained results reveal the performance of proposed methods. In dynamic control of
robotic manipulator, efficient robust control methods are proposed for controlling
robotic manipulator subjected to external disturbance and model uncertainties.
Unlike most existing nonlinear robust control schemes, the proposed control
methodologies do not require the exact dynamic model of robotic manipulator. The
proposed controller’s gains are selected by using Lyapunov stability theorem. Three
robust control methods have been proposed, proportional-Sliding Mode Control (P-
SMC), Hybrid Computed Torque Control (CTC)-SMC, and adaptive SMC. P-SMC
requires upper bound of uncertainty while in Hybrid CTC-SMC method only
nominal dynamic model of robot manipulator is required. These requirements have
been avoided in the third proposed method by using adaptation technique. Linear
matrix inequality technique is applied to select the gains of linear part of proposed
controller in P-SMC and Hybrid CTC-SMC and Lyapunov stability theorem is used
to derive the updating laws for the controller gains. The performances of proposed
methods are compared with other different methods by simulating these methods
applied on a two-link robotic manipulator for different desired trajectories.
Moreover, performance index of integral absolute error is used to measure the
performance of each method. All proposed theorems and methodologies are
considered for the general robotic manipulator regardless of the degrees of freedom.
Simulation results illustrate in a comparative fashion the performance of proposed
methods in terms of cumulative error, robustness against disturbances and
uncertainties, and trajectory tracking.

Key words: Robotic Manipulator, Robust Control, Sliding mode control, Inverse
Kinematics.



OZET
SANAL GERCEKLIKLE HESAPLAMALI ZEKA TEMELLi ROBOT KOLU

KONTROLU

KINANI, Ali Hussien Mary
Doktora Tezi, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Yrd.Doc¢.Dr. Tolgay KARA
Ekim 2017
105 sayfa

Bu ¢alismada robot manipiilatoriin yoriinge izleme denetimi {lizerinde durulmustur.
Robot manipiilatériin  kinematigi ve dinamik denetimi i¢in farkli yontemler
Onerilmistir. Ters kinematikte, kapali devre stratejisine dayanan iki yoOntem
sunulmustur. ilk yontem oransal tiirevsel (PD) benzeri bulanik denetimciye
dayanirken ikinci yontem tekillik sorununu ¢dzen bir giirbliz yontem tasarlayarak
kayar kipli denetimin (SMC) etkinligini ortaya koyar. Farkli kartezyen yoriingeler
kullanilarak onerilen yontemlerin etkinligi hem iki eklemli robot hem de dort
serbestlik dereceli SCARA robot i¢in gosterilmistir. Elde edilen sonuglar onerilen
yontemlerin basarimimi ortaya koymaktadir. Robot manipiilatdriin - dinamik
denetiminde, manipiilatoriin dis bozucular ve model belirsizlikleri karsisinda etkili
giirbliz denetimi i¢in yontemler 6nerilmistir. Cogu mevcut dogrusal olmayan glirbiiz
denetim semalarinin aksine, onerilen denetim metodolojileri robot manipilatérin
kesin dinamik modelini gerektirmez. Onerilen denetimcinin kazang degerleri
Lyapunov kararlilik teoremiyle hesaplanmistir. Ug giirbiiz denetim yontemi, oransal-
kayar kipli denetim (P-SMC), melez hesaplanmis tork denetimi (CTC-SMC), ve
uyarlanir SMC o6nerilmistir. P-SMC belirsizligin {ist sinirin1 gerektirirken melez
CTC-SMC yonteminde sadece robot manipilatorin nominal dinamik modeline
ihtiyag vardir. Onerilen iiciincii yontemde uyarlama teknigiyle her iki gereksinimden
de kagmilmistir. P-SMC ve melez CTC-SMC’de oOnerilen denetimcinin dogrusal
kisminin kazanglarin1 segmek i¢in dogrusal matris esitsizligi teknigi uygulanmis ve
denetimci kazanglarinin giincelleme kurallarinin ¢ikarimi i¢in Lyapunov kararlilik
teoremi kullanilmistir. Onerilen yontemleri basarimlari farkli istenen yoriingeler igin
iki eklemli robot manipiilatérde benzetim yaparak diger farkli yontemlerle
karsilagtirilmistir. Dahasi, bir basarim endeksi olan tiimlenik mutlak hata kullanilarak
her bir yontemin basarimi Ol¢lilmiistiir. Tiim Onerilen teoremler ve metodolojiler
serbestlik derecesi sayisindan bagimsiz genel robot manipiilatorii i¢in ele alinmuistir.
Benzetim sonuglari Onerilen yontemlerin bagarimini toplam hata, bozuculara ve
belirsizliklere kars1 giirbiizlik ve yoriinge izleme performanst bakimindan
karsilastirmali bigimde ortaya koymaktadir.

Anahtar kelimeler: Robot manipulatér, Glrbuz denetim, Kayar kipli denetim, Ters
kinematik.
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CHAPTER ONE
INTRODUCTION
1.1 Motivations

Robotic manipulators are more and more widely applied due to their capability of
increasing the production efficiency and improving the product quality. Through the
decade of the 1990s, the robotic applications increased widely in the world. Robots
enter most of the aspects of life because they become cheaper, more effective, faster,
more accurate, and more flexible. Most jobs that are more industrial become
candidates for robotic automation. Today, robots have become able to do tasks that
might be dangerous or impossible for human workers to perform. There are robots in
hospitals that can help by fetching or distributing medicine and assist the patient. In
laboratory, robots carry out hundreds of tests in parallel, saving time and freeing
manpower for other purposes. In addition, the robots can perform repetitive tasks
with high speeds, more reliable and without fatigue. It can help permanently or
temporarily disabled people with the matters that they cannot deal with themselves.
In this type of robotic applications, the robot receives input commands from the user
via various input devices (Electromyography (EMG), electroencephalogram (EEG)).
Space robots are widely employed on the International Space Station (ISS). Due to
the advances in space robotics, some manipulators can move even more freely than
human arms, and are therefore well suited to support, or even replace, astronauts for
accomplishing precise, complex or risky maneuvers. Since 1960s, when robots began
being used in industrial factories, the factories became automated, high reliable, 24-
hour working per day and more flexible. Many enhancements have been applied in
the factories. It can be noticed that all these applications require high precision, good
performance, and suitable repeatability. On the other hand, robotic manipulator is a
complex system with high nonlinearity, it is suffering from parameter variations and
non-linear friction, and this may effect on robot performance and cause imprecision
in trajectory tracking. Therefore, attaining good control performance has become a

big challenge.



Therefore robotic manipulator control has become an important research area and
many strategies have been proposed. All proposed algorithms aim to design a
controller with a high performance controller [1]. Fast progress in computer
technology facilitated providing a hybrid controller that combines classical control
methods with more advanced control schemes. Finally, high development in
computational intelligent rapid enhancement in microcomputer system and modern

control schemes are the main motivation of this study.
1.2 Problem Statement

A rigid robotic manipulator is among the most complicated systems. It is Multi-
Input-Multi-Output (MIMO) with highly nonlinear structure and strong coupling
between its joints. It suffers from external disturbances, parameter variations and
very complicated trigonometric relations between the joint variables and end effector
position and orientation in Cartesian space. All robotic manipulator applications
require accurate positioning of the end effector. Therefore, the problem of designing
effective controllers for the robotic manipulators is a challenge for control engineers.
Robotic manipulator control has become one of the most important research areas
that attracts many researchers due to fast progress in computational intelligence and
possibility to combine the computational intelligent algorithms with the robust and

adaptive control schemes.
1.3 Previous Work

The section discusses the important strategies applied successfully for solving
Inverse Kinematics Problem (IKP) and also the control schemes for trajectory control
of nonlinear robotic manipulators. These strategies are discussed in detail with
focusing on drawback of each method in order to propose innovative method that

avoids these drawbacks in robotic kinematic and dynamic methods.
1.3.1 Inverse Kinematics

The nonlinear relation between the Cartesian space and the joint space make the IKP
more complex. There are different methods proposed to solve the IKP. In general,
the different schemes that are applied for solving IKP can be classified into analytical

solutions, numerical solutions, and neural network.



Analytical solutions

There are two directions in analytical solutions. First one is geometry based and
second one is algebraic elimination method. Geometry solution can be applied for
robots with simple structure such as a 2-DOF manipulator. Featherstone solved IKP
for the 6-DOF robotic manipulator having three revolute joint axes based on
geometry structure of the robotic manipulator [2]. Based on geometry information of
the robot, Husty et al., use this information to solve the IKP of 6-DOF robotic
manipulator numerically by broken 6R-chain into two 3R-chains [3]. Geometry
solution becomes more tedious in case of high DOF and complex structure. In this
case, the algebraic elimination method is more beneficial for solving IKP. In
algebraic elimination methods, the joint variables are eliminated and reduced into
only one single joint variable and the solution is obtained based on closed-form
computations [4-7]. Complexity of computation in this approach of solution was
reduced when homogenous transformation matrix is used [8]. Kinematics coupling
and singularity are main problems in this type of solution. Moreover, the closed form

solution may not be granted in this approach.
Numerical solutions

Many methods have been suggested for solve IKP based on numerical solution [9-
11]. The Newton—-Raphson method, gradient algorithm, and predictor-corrector
algorithm are applied successfully for this issue. Moreover, many optimization
techniques with nonlinear programming algorithms have been presented by
considering the IKP as a minimization problem. This type of solution can be applied
successfully regardless of the geometry of the robot. Raghavan used the elimination
method to reduce the complexity of the IKP of 6-DOF robotic manipulator to a
polynomial with degree 16 [12]. Manocha et al. restate the IKP as problem for
finding eigenvalues [13]. Overcoming the singularity problem by avoiding the need
to determine the inversion of the Jacobian matrix make this type of solution more
stable, but it is not suitable for real time application because it required a long time to
reach the solution. There are some other weak points in this type of solution.
Selection of initial point is very important and it has a significant effect on the
solution and convergence of the method [14]. Another weak point is the complexity

of the trigonometric equations of the robotic manipulator.



Neural network

Ability of Artificial Neural Networks (ANN) in learning has motivated many
researchers to use it in solving IKP. In general, ANN is applied to approximate the
nonlinear relation between the coordinates in Cartesian space and joint angles [15-
20] with different algorithms used in training stage such as radial base function [21],
and multi-layer perceptron [22]. Karlik & Aydin used feedforward neural networks
to solve IKP of 6-DOF robotic manipulator with huge data set for the end effector
position and orientation as inputs and equivalent joint angles as outputs [23]. Martin
et al. use different adaptation algorithms with ANN to solve the IKP of the SCARA
robotic manipulator [24]. Hasan et al. proposed a solution for the 6-DOF robotic
manipulator considering position and orientation of the end effector in Cartesian
space with the velocity of the joint and angular angles of the joints with their angular
velocity [25]. To improve the performance of ANN and overcome of the problem of
long time training, ANN hybridizes with different advanced techniques like Genetic
algorithm(GA) and fuzzy systems. Fuzzy logic is applied with ANN to solve the IKP
for the 6-DOF human upper limb [26]. (GA) is used to reduce the time required for
training ANN and applied to solve the IKP for the 2-DOF robots [27]. Koker used
GA with ANN to solve the IKP for the 6-DOF Standford robot arm by minimization
of the error at the end effector [28]. However, in all approaches based on ANN, the

accuracy of solution is based on the number of the patterns used for the training.
1.3.2 Dynamic Control

This section discusses in detail efficient and important schemes in robotic
manipulator system dynamic control, with emphasis on advantages and weak points
of each strategy in order to propose efficient methods that overcome these

drawbacks.
PID Control

The PID controller is widely used in industrial applications due to its simplicity of its
structure and ease of implementation, but in case of complicated and nonlinear
systems, a conventional PID controller may be unable to yield a desired
performance. As a result, different techniques are combined with PID controller to
improve its performance. Evolutionary optimization algorithms such as GA [29],

4



Multi-Objective GA [30], PSO [31] and CSA [32] are widely used to tune the PID
parameters. However, these tuning methods cannot achieve optimum performance
because the PID gain parameters remain as constants and robotic manipulator is
subjected to system uncertainties and external disturbances. ANN is combined with a
conventional PID for controlling 2-DOF robotic manipulator with online adaptation
for the controller parameters [33]. Long time required for training in most ANN
algorithms makes applying ANN in on line tuning of the PID controllers remain less
explored [34]. Application of fuzzy control successfully for controlling non-linear
systems attracted researchers to use it with PID to improve the capability of the
conventional PID in controlling linear and nonlinear complex systems [35]. Fuzzy
control is also used with PID for control of 6-DOF manipulators [36]. Although the
fuzzy controller with PID is better in performance than conventional PID, both are
single degree of freedom controllers that cannot track trajectory and reject the
disturbance simultaneously [37]. 2-DOF fractional PID (FPID) controller has been
proposed for controlling a 2-link planar robotic manipulator and good performance

were obtained [37].
Neural control

Artificial Neural network(ANN) is an efficient computational intelligence algorithm
that can be used in approximating nonlinear complex systems [38]. Patifio et al.
presented an adaptive neural network controller to compensate for the error in
modeling of friction in the robotic manipulator with good performance [39]. Sun et
al. proposed a feedback adaptive neural controller for PUMA-560 robot by
combining a feedforward neural network with adaptive control approach with large
control gain [40]. Zeng and Wang developed a discrete neuro-controller without off-
line training for 2-link robotic manipulator but this controller only provides
uniformly ultimately bounded (UUB) tracking [41]. Shenghai et al. applied
deterministic learning (DL) theory to train neural networks output feedback
controller that is applied on a 2-link robotic manipulator [42]. Kumar et al. presented
a hybrid controller that consists of model based part and second part is an adaptive
neural network part that compensates for the modelling error for trajectory control of
robotic manipulator in task space [43]. Kumar et al. combined CTC method with

neural network and provide a hybrid control for 3D planar robotic manipulator [44].



Fuzzy control

Features of fuzzy logic such as simplicity, nonlinear mapping between inputs and
outputs variables, and exploiting the human experiences, attracted researchers to use
it in control engineering field and good results are achieved especially for controlling
complex nonlinear systems. Many methods have been proposed for robotic
manipulator dynamic control by using fuzzy logic to approximate the nonlinearities
in robotic manipulator dynamic model [45-51], but these methods need many fuzzy
rules in order to tune many parameters. Shaocheng et al. designed a nonlinear
observer and estimated the controlled system dynamic by fuzzy logic [52]. Gole et al.
proposed an adaptive fuzzy controller for the robotic manipulator and stated the
stability of the proposed control method as Linear Matrix Inequality(LMI) problem
[50]. Tang and Chen improved the Pl controller by using fuzzy logic and a good
tracking performance was achieved with an uncertainty of about 10% tolerance of
the nominal model of robotic manipulator [53]. Li et al. developed Proportional
Controller, Integral, and Derivative (Fuzzy P + ID) controller where only one extra
parameter is required to tune with respect to the conventional PID controller [54].
Song et al. improved the CTC by combining it with fuzzy control in order to
compensate for the modelling error [55]. Sharma et al. used fuzzy controller with
fractional order theory for controlling 2-link planar robotic manipulator and Cuckoo
Search Algorithm (CSA) to tune controller parameters [56]. Chatterjee and Watanabe
proposed a self-tuning fuzzy PID controller for 2-link robotic manipulator with a
slight increase in complexity of structure of the fuzzy controller [57]. In recent years,
the combination of fuzzy logic and neural networks has been used widely, exploiting
the learning ability of neural networks and interpretability of the fuzzy logic. In
fuzzy-neural systems, the neural network supports fuzzy systems by training the
membership function and fuzzy rules of fuzzy logic [58]. Mbede et al. improved the
robust controller for trajectory control of robotic manipulator by using ElIman neural
network to compensate for the uncertainties [59]. Long and Nan proposed wavelet
fuzzy neural network controller for position tracking control and force control for
non-holonomic mobile robot manipulator [58]. Liu et al. proposed a self-tuning fuzzy
controller for robotic manipulators’ trajectory control with saturation function in

order for ensuring boundedness of the torque inputs [60].



Robust control

Most methods proposed by researchers for trajectory control of robotic manipulators
aim to be robust against model uncertainties and external disturbance. Robust
controllers for trajectory tracking of robotic manipulators ensure stability of the
closed-loop system, even if only partial knowledge of the dynamic model of the
manipulator is available. Robust control consists of two parts, one is a nominal
control part and the other is a part that is responsible for robustness of performance
during uncertainties and disturbance effects [61]. Sliding Mode Control (SMC) is a
major method in nonlinear robust control. However, the traditional SMC has two

drawbacks:

1- Its model based control system, which means that there is required to determine

the dynamic model of the controlled system.

2-The discontinuous term in control law of SMC, due to sign function, causes the

chattering problem.

Adaptive control is used widely with SMC to estimate the dynamic parameters or
estimate uncertainty and external disturbance and the estimation error can be
compensated by SMC [62-65]. Chattering is the main drawback in SMC and many
methods have been suggested to reduce chattering by using saturation function
instead of sign function, boundary layer, and Integral SMC [66-67]. In addition, the
fuzzy logic is combined with SMC to eliminate the chattering by approximating the
hitting control [68]. In late 1990’s, H-infinity became an efficient method in robust
control. H-infinity can reduce the uncertainties of parameters and disturbance
without assuming that these uncertainties belong to a known set while the other
nonlinear robust schemes (e.g. SMC) need to estimate it [69]. It reduces the effect of
uncertainty by minimizing the H-infinity norm. Miyasato developed an adaptive
nonlinear H-infinity controller by considering the disturbance and estimation errors
of the unknown model parameters as exogenous disturbance [70]. Pan et al.
improved the fuzzy controller for uncertain nonlinear systems by using H-infinity in
order to compensate for the fuzzy approximation error [71]. Chang and Shih
demonstrated the use of H-infinity with nonlinear stochastic systems by linearizing

nonlinear systems with T-S fuzzy modeling including saturation actuator constraints



[72]. Pan et al. used Lyapunov synthesis to select the parameters of the controller
based on fuzzy logic and H-infinity with unknown disturbances for nonlinear
systems [73]. Hsiao combined H-infinity with neural network for controlling
nonlinear systems and representing the dynamic system by neural networks and
converting them into linear differential equations [74].

1.4 Thesis Objectives

Although there are a lot of papers and methods that have been published and
suggested for the inverse kinematics and dynamic control of robotic manipulator
systems, these topics still represent an active area for development and researching
and some limitations and drawbacks must be overcome. For the inverse kinematics
most suggested methods are suffering from some drawbacks as discussed in detail in
previous sections and in this work a new strategy for inverse kinematics problem is
presented by combining computational intelligence with feedback theory to provide
fast and real time solution. The proposed strategy is general and it is independent of
the geometry of the robot arm or its number of degrees of freedom (DOF) and only
the forward kinematics is required. The proposed method is a closed-loop strategy in
which the IKP is restated as a control problem for a dynamic system and the
objective is providing a good trajectory tracking performance. In robotic manipulator
dynamic control, most existing control approaches discussed in the literature are
model based and a good performance is achieved when the dynamic mode of the
robotic manipulator is known. In addition, some of existing methods are not robust to
model uncertainties or external disturbance. However, in case of unpredictable
variations in the parameters of the manipulator dynamic or any modeling error due to
complexity of the manipulator dynamic, the performance of these methods will be
highly affected. The limitations of the existing control methodologies and these
challenges have motivated research on a new robust control approach for trajectory
control of nonlinear robotic manipulator system that achieves good performance
regardless of system uncertainties and modeling error. Lyapunov stability theorem is
used in this work to approve stability of the proposed method and for tuning and
selecting the controller parameters. To demonstrate the effectiveness of the proposed
methodologies, 2-link planar robot arm is used in the simulation with all
uncertainties in the dynamic of controlled system considered and subjected to

external disturbance.



1.5 Thesis Organization
This thesis is organized as follows:

In Chapter two, the robot kinematics is discussed in detail by reviewing important
methods used for solving IKP with focus on advantage and disadvantage of each
method. In addition, modeling the robotic manipulator system is introduced with
background concepts that are necessary to understand the proposed method like
independent joint control and model uncertainties. In order for a better understanding
of the contribution of the proposed method, principle of the SMC which represents
an efficient robust control scheme for nonlinear systems is discussed in detail and
also CTC which is designed specifically for the robotic manipulator are reviewed.

Weak points of these two methods are presented in this chapter.

In Chapter three, after reviewing important modification in Damped Least Square
(DLS) method, and basic concepts in fuzzy logic (fuzzification, defuzzification and
membership functions), a firstly-proposed method that improves and modifies the
DLS based on fuzzy logic is presented. Fuzzy-like PD controller is used to minimize
the error between desired and actual trajectories. To demonstrate the effectiveness of
the proposed method, 2-link robotic manipulator is used in simulation test and the
results of proposed method are compared with DLS method. A second proposed
method that overcomes the problem of singularity is discussed in details in which a
hybrid controller is presented combining SMC with PD. SCARA robot arm is
simulated to demonstrate the effectiveness and generality of the proposed method.

To demonstrate the feasibility of the robust control based on LMI approach, chapter
four presents two methods that improve conventional SMC and CTC, respectively. In
these methods, the linear controller gain part is determined by using LMI while the
robust gain is selected based on Lyapunov theory, which ensures stability of the
proposed control scheme. The performance of the proposed controller is compared

with the performance of other efficient methods.

Chapter five presents an adaptive and robust control scheme, which is based on SMC
accompanied by Proportional Derivative (PD) control terms in presence of system
uncertainties and external disturbances. In this method, an adaptation technique is
proposed to overcome the problem of model uncertainties and determining upper

9



bound of uncertainty. Lyapunov theory is used to get adaptation rules for the
controller parameter and for approving stability of proposed method. Simulation tests
are utilized to compare proposed method with conventional SMC in terms of
tracking control performance and cumulative error. Results have revealed significant

improvement in both aspects.

Finally, chapter six reviews the important features of the proposed algorithms that
solve important problem in IK and dynamic control of robotic manipulator system. In
addition, some suggestions for future work to improve the proposed algorithm are
presented.
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CHAPTER TWO
ROBOTIC MANIPULATOR KINEMATICS, DYNAMICS AND CONTROL

Robotic manipulators have been widely and successfully used in various fields like
surgical manipulators, military applications, process industries, and many more [75].
The good performance and accurate tracking are important features of these systems
but robotic manipulator is a MIMO system with hard nonlinearities and strong
coupling among joints. Therefore, control problem of a robotic manipulator with the
aim of good performance and accurate tracking has drawn an increasing attention in
recent years [76]. Through an accurate kinematic and dynamic model for the robotic

manipulator system, it is possible to determine an appropriate control method.
2.1 Robotic Manipulator Kinematics

The robotic manipulator kinematics discusses and studies robotic manipulator motion
regardless of the effects of the forces. Kinematics is the important and essential step
also for dynamics of the robotic manipulator because the robot will move along a
trajectory obtained by IK. Kinematics of the robotic manipulator includes two parts:
forward kinematics and inverse kinematics. In forward kinematics the end effector
position and orientation are determined based on the given joint angles. For an n-
DOF robotic manipulator, the relation between the end effector location in Cartesian

space and the vector of joint variables is a nonlinear function,

x = f(q) (2.1)
where x = [xq, X5, ... ..... Xy |7 refers to the task space vector variable and m
represents the number of variables in task space, g = [q4, Gy, ... ..... q,]T denotes the

joint angles and n represents the number of joints in the robotic manipulator. This
function denotes the forward kinematics of robotic manipulator. Denevit-Hartenberg

homogeneous transformation matrices is the important procedure used to
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determine the kinematic model of the robotic manipulator. The inverse kinematics

based on joint velocities (q) can be determined as follows:

x =J(q)q (2.2)

where J(q) € R™*™ is Jacobian matrix.

_o
J@ =3, (2.3)
For a given desired end effector pose x,, one can find the joint angles as follows:
q=f"Cxa) (2.4)

q =) (@) (2.5)

In general, geometry of most robotic manipulators is complex and it is very difficult
to obtain a closed form solution for the IK. Therefore, only the analytical method

will be discussed and analyzed in this chapter.
2.1.1 Jacobian Transpose Method

Balestrino et al., proposed Jacobian Transpose Method for solving the IKP by using
transpose of Jacobian matrix instead of inverse of it [77-78]. This method tries to
minimize the following cost function, which determines the error between desired

end effector and current end effector position:

F =50 =2)" (g =) (2.6)

Aq = —«a (Z—Z)T (2.7)

where « is a positive scalar

Aq == —a ((xd —x)T 6];_;(1))T (2.8)
= —a((xqg —0)" J(@)" (2.9)
=—aJT(x; —x) (2.10)
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In this method, there is no need to determine the inverse of the Jacobian matrix and
the computation steps are simple. However, this method requires many steps to get a

solution and it is non-conservative.
2.1.2 Pseudo Inverse Method

The methods that are based on inverse Jacobian matrix is suffering from the problem
that the dimensions of joint variables and task space are not equal, which means that
the Jacobian matrix is not square and cannot be inverted. Therefore, pseudo inverse

matrix is used instead of the inverse matrix, which can be derived as follows:

JAq = Ax (2.11)
JT] Aq = JTAx (2.12)
Ag =]"(yJ")tAx (2.13)

Although this method solves the inversion problem of the Jacobian matrix, there still

remains problem at singularities and it is non-conservative.
2.1.3 Damped Least Squares

The Damped Least Squares (DLS) method solves the problem of singularity that
appears in all methods based on inverse of Jacobian matrix and therefore it is more
stable than other methods. It was first used by Wampler [79] and Nakamura and
Hanafusa [80].

The cost function used in this method is
] Aq — Ax||* + 2%]|Aq]|? (2.14)

where A € R is the damping constant that is selected to minimize the following:

1G)aa =GO (2.15)

This quantity can be rewritten as follows:

JTAx = (JT ] + 221)Aq (2.16)
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Aq =T ]+ 22D YTAx (2.17)

It can be seen that the matrix (JT J + A2I) is nonsingular and problem of singularity
can be compensated. Damping constant must be chosen carefully because very large
values make this method very slow and small value of damping constant makes this

method similar to the Pseudo Inverse Method.
2.2 Robotic Manipulator Dynamics

Manipulator dynamics are a set of mathematical equations that describe the
response of manipulator to input torque. Manipulator modeling is necessary to
determine the torque required to execute a specific task. Manipulator control
requires accurate modeling for the manipulator to get desired performance.
Physical laws of Lagrangian and Newtonian mechanics are used to model the
manipulator, which represent complex dynamic systems. Lagrange’s equations

of motion can be expressed as follows:
————=T (2.18)

where q is an n-vector of generalized coordinates,z is an n-vector of generalized

force and L is the difference between the kinetic and potential energies.
L=k—-p (2.19)

For the manipulator g represents joint angles and t represents torque. Dynamic
model of a MIMO nonlinear robotic manipulator system can be expressed as

follows:

M@ q+N(qq)g+G6@+F(@+ta=71 (2.20)

where g € R™ is joint angular position vector, t is torque vector, M(q) € R™*™" is
inertia matrix as a function of q, N(q,q) € R™*™ is Coriolis/centripetal matrix,
G(q) € R™ s gravity vector, F(q) € R™ is frictional force vector and 7 ; € R™ is

external disturbance.
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2.2.1 Robotic Manipulator Properties

The dynamic model of robotic manipulator system has some important properties,
which are very important for many control schemes and for the identification
algorithms used to estimate parameters of the robotic manipulator like mass of each
link and frictions. The important properties are given below.

Property 2.1  The inertia matrix M(q) in (2.20) is a square symmetric positive

definite matrix and it is bounded as follows:
IM(PIl < B4 (2.21)
where f3; is a positive scalar.

Property 2.2  The Coriolis/Centrifugal matrix N(q,q) in (2.20) is bounded as

follows:

INCa, DIl < Bll4ll (2.22)

where 3, is a positive scalar. In addition, the matrix M(q) — 2N(q,q ) is a skew
symmetric matrix. Then the relation between inertia matrix and of Coriolis/

Centrifugal matrix can be expressed as follows:

XT[M(q) —2N(q,¢)]X =0, X € R" (2.23)
Property 2.3 The viscous friction vector F(q) in (2.20) is bounded as follows:
IFDI < Bsligll + Ba (2.24)
where (5 and 3, are positive scalars.

Property 2.4 The Coriolis/centrifugal matrix G (q) in (2.20) is bounded as follows:

G < Bs (2.25)

where S is a positive scalar.
Property 2.5 The external disturbance t, in (2.20) is bounded as follows:

ITall < Bs (2.26)
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Property 2.6 Since the robotic manipulator is linearly parametrized, its dynamics
can be represent by the product of a known regressor matrix Y(t,q,q,q4,q4) €
R™*P with a vector ¢ € RP in terms of a nominal reference ¢,- where p refers to the
number of unknown parameters. Matrix Y is based only on desired and actual

trajectories while vector a contains the unknown manipulator parameters.

Mg +Ng+G(@+F(@)=Yo (2.27)
Gy = qq + Aré + Aye (2.28)
where A; € R"*™and A, € R™*™ are positive definite diagonal matrices.

Assumption 2.1. The desired trajectories and their derivatives q4(t), g4(t), G4 (t)

are bounded as follows:

194 (O] < Mg1, 1ga(©)] < Mz, |Ga(®)] < Mgs (2.29)
with My4,, M4,, and M5 being positive constants.

2.2.2 Two Links Robotic Manipulator

In this work, a 2-DOF robotic manipulator is used in the simulation to demonstrate
effectiveness of the proposed methods under different challenging cases of parameter
variations and external disturbances. The dynamic model of the 2-DOF robotic

manipulator is [37]:
[Tl] _ A1y A12] ‘h] n [_Zb"b _b‘h] ] [Vﬂh] plsgn(ql)] n G1]
2 A1z Ar2llg bq, V24> p259n(42)
(2.30)
with
Ay =a+2ecos(qy) =1 + I, + myl2, + my[12 + 1%, + 2141c, cos(q,)]
Ay, = B+ ecos(qy) = I + my[lyl, cos(qy) + 12,]

App =B =1+ mzlgz

b = e sin(qy) = mylyl.; sin(qy)
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G, = el gcos(q, +q,) +e2gcos(q,)

=myLc1gcos(qy) + mpgl[Leacos(qy + q2) + Licos(qy)]

G, = el gcos(qi +qz)

= mylp9 cos(qy + q3)

Gravitational force can be ignored when the robotic manipulator operates on
horizontal plane. The definitions of the parameter and their nominal values are listed
in Table 2.1 and Table 2.2 respectively. Virtual Reality Modeling Language (VRML)
is used to visualize the motion of 2-link robotic manipulator. At first, the objects in
VRML environment are used to model the 2-link manipulator as shown in Figure 2.1
and it can be linked with Simulink model by using VR sink block that accepts signals
from Simulink and display it in Virtual Reality (VR) environment as shown in Figure

2.2.

Table 2.1. Definitions of variables

Variable | Definition
q.(rad) | Angular position of linkl
q, (rad) | Angular position of link2
7,(N m) | Applied torque of link1
7,(N m) | Applied torque of link2
m, (kg) | Mass of linkl
m, (kg) | Mass of link2
I;(m) length of link1
[, (m) | length of link2
[.; (m) | Distance from the joint of link1 to its center of gravity
l., (m) | Distance from the joint of link2 to its center of gravity
I;(kg m?) | Lengthwise centroid inertia of link1
L(kg m?) | Lengthwise centroid inertia of link2
2] Viscous friction coefficient of link1
12 Viscous friction coefficient of link2
p1 Dynamic friction coefficient of link1
D2 Dynamic friction coefficient of link2
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Table 2.2 Nominal values

Variable | Nominal Value
a 22.2
B 9.98
€ 7.75
el 8.75
e2 15
g 9.8
vy 1
v, 1
P1 1
P2 1

Figure 2.1 2-DOF robotic Manipulator in VR
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Figure 2.2 VR sink block
2.3 Robotic Manipulator Control

Usually, the motion of the end effector of any robotic manipulator is in the task
space, while the control torques are in the joint space. As a result, there are two
general methodologies for the motion control of the robotic manipulator system: joint
space control and task space control. Today joint space control scheme has been used
for all industrial robotics manipulators. Therefore, in this thesis only the joint space

control will be addressed and analyzed.
2.3.1 Decentralized control

In decentralized control, the robotic manipulator is system divided into subsystems
where each joint is considered as a subsystem with saving the coupling effect
between joint by considering it as disturbance. Therefore one controller is designed
for each joint. The dynamic model of each joint is expressed in scalar terms as
follows [81]:

my; (G; () + Xi=1mij (@q;(t) + ni(q,9) + 9:(@) + fi(@) = 7; (2.31)

Jj#i

where n is the total number of joints in the manipulator, i is a positive integer with
1 < i < n that denotes the joint number, g; is the displacement of joint i, m;; is the

inertia of the link connected to joint i, m;; is the inertia of the link between joints i
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and j, n; is the total Coriolis and centrifugal force, g; is the gravitational force, h; is
the frictional force, and t; is the external torque acting on joint i. Defining d;(q, q, )
as a time-varying disturbance torque representing the coupling effects between joints
including the centrifugal, Coriolis, friction, and gravitational forces associated with
joint i:

di(q,q,4) = Xj=1m;; (@)q;(t) +n;(q,4) + g:(@) + fi:(@) (2.32)

ji
The model in (2.31) reduces to:

my; ()G () + di(q,4,G) =7 (2.33)
2.3.1.1 Independent Joint Control

In this control methodology, each joint is considered as an independent system that
tracks a joint angle trajectory while the nonlinearity and coupling effects of other
joints are represented as disturbance as mentioned in the previous subsection.
However, it requires the design of N independent joint controllers for the N links of

the arm. Then the control signal for the i joint can be expressed as

. . t
u;(t) = kpi(qi — qa) + kai(qi — qai) + ki J,(q; — qa)dt (2.34)

where g, is the desired trajectory for the i" joint. k,;, k4;, and k;; are proportional,

pis
derivative and integral control gains, respectively. There are several drawbacks in
independent joint control: the output of the joint controller is based only on the error
of that joint, it is based on the classis control concepts, and finally, representing the
effects of some robotic manipulator dynamic parameters as disturbance downgrade

the performance causing an increase in the tracking errors.
2.3.2 Centralized Control

The robotic manipulator is a nonlinear system with strong coupling among its joints
and considering it as a combination of SISO systems achieved by the decentralized
control approach highly effects its trajectory tracking performance. In decentralized
control methodologies, all interactions and coupling between the joints are

considered as disturbances that act on each joint, but in fact there are some important

20



properties for the dynamic model of robotic manipulator to be used in order to
compensate for the system uncertainties and external disturbance. Therefore, it is
required to eliminate the causes of these effects instead of reducing the effects by
generating a suitable torque considering the states of the controlled system. As a
result, the control methodology that considers the robotic manipulator as a single
system is called centralized control. In this section, two important methods of CTC
and SMC will be discussed and each method will be analyzed in order to propose a

new method that overcomes the drawbacks of these important methods.
2.3.2.1 Compute Torque Control

The CTC method is multivariable control strategy that considers the robotic
manipulator as a single system in order to compensate for the gravity, friction and
Coriolis and centrifugal effects. This method can provide a good trajectory tracking
performance with respect to the independent joint controller because its design is
based on dynamics of the robotic manipulator taking into account all coupling effects
by performing exact linearization of the dynamics of the robotic manipulator. The
proposed controller consists of two parts. First part is a servo while the second part is
model based. The control law for the model based part is

T=M(q)t'+N(q,9) + F(@) + G(q) (2.35)

where 7/ € R™ is the torque vector produced by the servo part. It can be noticed by
comparing (2.35) with (2.20) that

T =] (2.36)

The model based part of CTC aims to linearize and decouple the relation between
inputs and outputs of the manipulator dynamics by using a nonlinear feedback of the
actual joint angles and their derivatives. The second part of CTC is servo and it is
model free since it is based only on tracking error signal and its derivative. The
objective of this part is stabilizing the controlled system. According to the control
law in (2.35), it is required to determine (q), N(q,q), F(g), and G(q). However, the
true values of (q), C(q,q), F(g), and G(q) cannot be determined off-line since
their values are based on actual instantaneous position and velocity. The tracking

error and its derivative can be expressed as
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e(t) = qq(t) —q(t) (2.37)
é(t) = qq(t) —q(t) (2.38)

where g4 (t) € R™ and q(t) € R™ are desired and actual joint positions, respectively.

The control law of this part is
T' = Gq(t) + kpe(t) + kqé(t) (2.39)

k, € R™", and kg € R™" are diagonal matrices that denote the position and

derivative gains. Then, the error dynamic of the controlled system will be

G =qa(t) + kpe(t) + kqé(t) (2.40)
Ga(t) — G + kpe(t) + kgé(t) =0 (2.41)
Let

é(t) = ga(t) — G(t) (2.42)
kpe(t) + kqé(t) +€(t) =0 (2.43)

Usually the position and derivative gain matrices are selected as diagonal matrices,
which is an indication of the fact that the dynamic error in closed loop for each joint
is independent of the error dynamic of other joints.

kpi €;(t) + kqiéi(t) + €(t) =0 (2.44)
where

ki, and k,4; denote the position and velocity gains of joint i.

e;(t) is tracking position error of joint i.

é;(t) denotes the tracking velocity error of joint i.

é;(t) refers to the tracking acceleration error of joint i.

Equation (2.44) indicates clearly that the nonlinear dynamic model of the robotic
manipulator is mapped into N linear and decoupled subsystems (i.e. joints). From
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(2.44) it is possible to make the response of joint i critically damped using the

following relation:
kdi == 2 kpi (245)

Although the trajectory tracking performance of CTC method for controlling robotic
manipulator is better than performance of independent joint control, there are some
important drawbacks of this method. The CTC method requires knowing the
dynamic model of robotic manipulator exactly, which is not easy to obtain in
particular applications. For example, the friction structure cannot be known exactly
during the operation and the payload may be subject to change. On the other hand,
any uncertainties and external disturbance will have a significant effect on the
performance. Moreover, CTC is more complex with respect to linear controllers due
to the fact that it needs determining details of dynamic model of the robotic
manipulator like mass, friction, and gravity, which must be done online. Many
research articles have been published for improving the CTC method based on

advanced control schemes.
2.3.2 Sliding Mode Control

In the early 1950s, Emelyanov with his co-researchers Utkin and Itkis from the
Russian Soviet Union, proposed variable structure control (VSC) with SMC. VSC
and SMC have generated significant interest by researchers in the control theory
[82]. Insensitivity to parametric uncertainty and external disturbances is the
important feature of SMC, which utilizes a high-speed switching control law to
achieve two objectives. Firstly, it drives the nonlinear plant’s state trajectory onto a
specified surface in the state space, which is called the sliding or switching surface.
This surface is called the switching surface because a control path has one gain if the
state trajectory of the plant is “above” the surface and a different gain if the trajectory
drops “below” the surface. Secondly, it maintains the plant’s state trajectory on this
surface for all subsequent times. The system is designed to drive and then constrain
the system state to lie within a neighborhood of the switching function. The closed-
loop response becomes totally insensitive to model uncertainty. In control law of
SMC, the control signal changes its value infinitely fast because SMC is

discontinuous which causes high frequency oscillation called chattering. Robustness
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and chattering reduction are the factors used to evaluate the performance of any

control approach based on SMC.
2.3.2.1 SMC for Robotic Manipulator

The trajectory states in SMC that start from a non-zero initial condition evolve in two

phases:

a) Reaching mode
This phase is equivalent to the transient state in classic control. In this mode
the state trajectories are enforced to move towards the sliding surface in finite
time called reaching time.

b) Sliding mode
This phase is equivalent to steady state in classic control and SMC keeps the
trajectory states within sliding mode regardless of the system uncertainties

and external disturbance that may occur.

The equation s(t) = 0 defines a surface in the error space, that is called “sliding

surface”. In robotic manipulator, the sliding surface is selected as follows:
s(t) = ce(t) + é(t) (2.46)

where ¢ is a diagonal positive definite matrix. The trajectories of the controlled
system are enforced onto the sliding surface. The objective of SMC control law is
enforcing the tracking error to approach the sliding surface and move to the origin
along the sliding surface. The SMC control law consists of two terms: equivalent
control term and robust term. The equivalent term is responsible for the performance
with nominal model of controlled system while the robust term is compensating the

uncertainties of the controlled system and external disturbance.
U = Ugq + U (2.47)

Uqq IS equivalent control that makes the derivative of the sliding surface equal to

zero to stay on the sliding surface. ug is corrective control that compensates for the
deviations from the sliding surface. The robust term, which is also called hitting

control or reaching control, is determined based on Lyapunov theorem as follows:
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Let v(t) be the Lyapunov function candidate,
v(t) = %STMS (2.48)

To ensure that the tracking error will move towards the sliding phase and remain in

sliding phase, it must be selected a control law that achieves the following condition:

v(t) <0 (2.49)
v(t) =s"[M(G-—§) + N(Gr — 9] (2.50)
v(t) =sT[M§,+N g, + G+ F —u] (2.51)
v(t) =sT[MG, + N ¢, + G+ F — upq — ] (2.52)
Ueqg = MyGr + Ny @y + G, + F, (2.53)

where M,,N,, G,, and F, are nominal parts of inertia matrix, Coriolis/centripetal

matrix, gravity vector, and frictional force vector, respectively.
v(t) =sT[M§, + N g, + G+ F —ug] (2.54)

where M, N, G, and Frepresent uncertainty parts of inertia matrix,
Coriolis/centripetal matrix, gravity vector, and frictional force vector, respectively.

The reaching condition (i.e. v(t) < 0) can be guaranteed if u is selected as follows:

us = k sgn(S) (2.55)
where
Ikl > ||Még, + N g, +G+F| (2.56)

Then k is based on upper bound of the uncertainty for the dynamics of robotic
manipulator and sgn(+) is the sign function. Under control law in (2.47), the states of
system can track a given reference signal with tracking error converging to zero in

finite time. However, the traditional control law has two drawbacks [83]:

1- In practical applications of robot manipulator, it may not be easy to determine

the upper bound of uncertainties and external disturbance.
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2- The discontinuous term in control law due to the sign function causes the
chattering problem and modelling error due to complex structure of robot

manipulator this may increase chattering and may cause damage for the
actuator of the robotic manipulator.
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CHAPTER THREE
PROPOSED INVERSE KINEMATICS SOLUTIONS BASED ON
CLOSED-LOOP STRATEGY
This chapter presents two schemes for solving IKP of a multi-link robotic
manipulator. Important features of the proposed strategy are generality and simplicity
regardless of the number of DOF and geometry of the robot and only the forward
kinematics is required. These methods are based on a closed-loop strategy in which
the IKP is restated as a control problem for a dynamic system and the objective is
providing a good trajectory tracking performance. Different Cartesian trajectories
with different configurations of robotic arm are used to illustrate efficiency of the

proposed methods.

3.1 Introduction

As discussed in previous chapter, although different strategies have been suggested
to solve the IKP, still there are some weak points in these methods [84-86]. In recent
years, many computational intelligence methods have been proposed and applied
successfully for solving IKP due to their ability in performing input-output mapping
faster than numerical methods [87, 88]. Features of ANN in representation of the
nonlinear relationship have motivated researchers to use ANN to solve the IKP by
providing nonlinear mapping between the Cartesian space and the joint space. In
training phase of ANN, Cartesian position and angular position are considered as
input and output respectively for the ANN [89]. This approach is common in
literature and several studies use the same input-output pairs for the training phase
[90-94]. A. Hasan presents an analysis of different structures of neural network used
for solving the IKP [25]. Ability of fuzzy logic in modelling complex systems by
generating rules based on human experiences motivated many researchers to use
fuzzy logic with ANN to reduce computation time required in training stage [95]. All
methods discussed above are open-loop approaches with the main drawbacks of long

computational time, complex computations and sensitivity to initial values.
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A different approach for solving the IKP is suggested in this study with a closed-loop
nature. In this approach, a closed-loop feedback system is considered where the input

is desired end-effector trajectory and the outputs are joint trajectories.
3.2 Proposed PD-Fuzzy Method

In this method, a new strategy based on fuzzy-like PD controller is suggested to solve
the IKP. The aim of the controller is to reduce the difference between the desired end-
effector Cartesian position and actual one as shown in Figure 3.1. The proposed
algorithm assumes that the desired Cartesian space trajectory X, is given, and the goal
of proposed controller is to find a joint trajectory g that can track the desired
Cartesian space trajectory. The configuration of the proposed fuzzy-like PD control is
shown in Figure 3.1. The fuzzy-like PD controller contains a two-input-single-output
fuzzy PD (FPD) term, in which Mamdani’s fuzzy inference method is used. U is the
output of FPD controller, which is determined by normalizing the tracking error e(t)

and its derivative é(t).

Up = kg fuzzy(e(t), é(t)) (3.1
e(t) = [e1(6), e2(t), -+, en(®)]" 3.2)
é(t) = [1(1), &2(1), , én(O]" (3.3)
ei(t) = xijqg — x; (3.4)
é;(t) = xig — %; (3.5)

where i=1,..,n. nis number of joints in the robot arm and k., k;, and k. are
scaling factors for inputs and output of fuzzy controller, respectively. The rules of the
controller represent mapping of the input linguistic variables e(t) and é(t) to the
output linguistic variable u,(t) where fuzzy(e(t), e'(t)) refers to the characteristics
of the fuzzy linguistic decision system. Figure 3.2 shows the membership function of
input linguistic variables e(t) and é(t) and the membership functions of output
linguistic variable u(t). The membership functions are decomposed into five fuzzy
partitions expressed as Negative Big (NB), Negative Small (NS), Zero (Z), Positive
Small (PS), and Positive Big (PB). The triangle shape membership functions are used
for the inputs and output variables and it can be expressed as follows:
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Figure 3.1 Proposed Fuzzy IK solution

f(x,a,b,c) = max {min {ﬂ ﬂ} , 0} (3.6)

b-a’c-b

where a and b parameters locate the feet of the triangle while the ¢ parameter locates
the peak. Table 3.1 summarizes the rule tables used, where linguistic fuzzy rules are

in the following form:
RO:IF ¢;(t) is A} and é;(t) is Ay THEN 14;(t) is B (3.7)

where A4, A5 denote the input fuzzy sets, and B! denotes the output fuzzy sets. |
refers to the number of fuzzy rules with 1 <[ < 25, and i denotes the number of
joints in robotic manipulator with 1 < i <n. Intersection minimum and center

average operations are used for fuzzification and defuzzification, respectively.
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Figure 3.2 Fuzzy sets of fuzzy controller

Table 3.1 Rules table of fuzzy controller

e(t)
NB | NS | Z Ps | PB
e(t)

NB NB | NB | NB | NS | Z
NS NB | NB | NS | Z | PS
z NB| NS | zZ | PS | PB
PS NS | z | PS | PB | PB
PB Z | PS | PB | PB | PB

The IKP is converted into a problem of tracking in which the proposed algorithm
aims to make the error tend to zero. In this case, i.e. if the error is reduced to zero or
a very small value, the joint angles take their values achieved when the current
output X (t) is very close to desired value X, (t), which constitutes the solution for
IKP. The control law is based only on the error signal and its derivative, which
means that the proposed algorithm is suitable for every robotic manipulator
irrespective of the physical structure.

3.2.1 Proposed PD-Fuzzy IK Solution Test

The performance of proposed methods based on PD control with fuzzy logic for
solving IKP is discussed in this section using Matlab. Two links arm (Figure 3.3) is

used in this simulation with forward kinematics expressed as follows:
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x(t) = Ly cos(qy) + Ly cos(qy + q2) (3.10)

y(t) = Lysin(qq) + Ly sin(q; + q2) (3.11)

where L; =1and L, =1 are lengths of linkl and link2 respectively with joint
angles of —mr < ¢, <m, and _73” <q; < 32—n The scaling factors are selected as:

k. =03, kg = 0.2, kf = 30. Proposed method is compared with DLS method with
desired end effector points (-0.5, 0.8), and the response of these methods are shown
in Figure 3.4. It can be noticed from this figure the faster responses of proposed
method with respect to DLS method. Tracking error of proposed error converges to
zero in very short time indicating clearly the accuracy of proposed method and
ability of it in real time applications. The joint angles that represent solution of IKP

are shown in Figure 3.5.

Figure 3.3 Schematic diagram of a two-link planar robot arm
3.3 Proposed Robust IK Method

In this section, a novel method for solving IKP of the multi-link robotic arm based on
SMC is presented. Drawbacks and disadvantages of important schemes such as ANN
and Jacobian based methods have been eliminated. Huge training dataset, and
singularity are main drawbacks of ANN and Jacobian based methods, respectively.
The proposed method is a closed-loop strategy and for a known end effector position
and orientation, a hybrid controller combining SMC with PD is proposed to

minimize the error between desired and actual trajectories.
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Important advantages of proposed method are:

1- Itis an on-line algorithm, which means it can be applied in real time.

2- The solution is given in position level while most other methods are based on
velocity and acceleration trajectories, which may be not be accurate due to
measurement noise.

3- The stability of the proposed method is guaranteed based on Lyapunov
theory.

4- Singularity problem is solved because proposed solution avoids determining

inverse of Jacobian matrix.

SCARA robotic manipulator is used in simulations to demonstrate the effectiveness

and generality of the proposed method.
3.3.1 Kinematic Analysis of SCARA Robot

The SCARA robotic manipulator is one of the most important and well-known
robotic manipulators used successfully in many industrial applications such as
packaging, cell manufacturing lines assembly, pick-and-place and so on. A 4-DOF
SCARA robot has three revolute joints and one prismatic joint. Figures 3.6 and 3.7
show the diagram of a SCARA robot in three dimensional (3D) and two dimensional
(2D) views, respectively. In forward kinematics the end effector of robot arm motion
with respect to the global coordinate system is studied. The origin of the global frame
is located at the base of the robot arm as shown in Figure 3.8. Homogeneous
transformation known as Denavit—Hartenberg (DH) notation is used to describe the

forward kinematics of robot arm based on four parameters of each link as follows:

A; = Rot(z,0;)Trans(0,0,d;)Trans(a;, 0,0)Rot(x, a;)

cosf; —sin#; cos a; sin 6; sin a; a;cos 6;
_|sin; —cos6;cosa; —cosb;sina; a;sinb; (3.12)
0 sin a; COS q; d;
0 0 0 1

where 6; represent joint angles from the X;_; axis to the X; about the Z;_;, d; refer to
the distance between origin of the i" coordinate frame to the intersection of the Zi_q
axis along the Z;_; axis, a; represent the distance form intersection of the Z;_; axis

with the X; axis to the origin of the i frame along the X; axis, and a; are the angles
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from the Z;_, axis to the Z; axis about the X; . The DH parameters of the SCARA

robot arm are shown in Table 3.2.

Table 3.2. DH parameters of SCARA robot
[ qi d; a; a;

1 a1 Lz Liq 0
2 q 0 L, 0
3 0 ds 0 s
4 qa Ly 0

Ny S, ax DPx

n, s, 4 Dy
Apna- = Ay XAy X Ay x Ay =" %Y 3.13
end—ef fector 1 2 3 4 n, s, a, P, ( )
0O 0 0 1
[cos@; —sin6; 0 Ly;cos 6,
A, = |sin 0, —cosb, 0 Ly sin 6y (3.14)
0 0 1 Ly,
0 0 0 1
[cosf, —siné, 0 Lpcos 0,
4, = |sin 6, coséb, 0 L, sin6, (3.15)
0 0 1 0
0 0 0 1
1 0 0 0
0 -1
0 O 0 1
[cos8, —sinf, 0 0
sin 6 cos 6 0 0
A = 2 2 ’ 3.17
4 0 0 1 L, (347
0 0 0 1
Aend—effector:
cos 614  SinBiyy 0 L3c0s 613 + L11c05 6,
Sinfy,, —COS6O;,, 0 Lysin 6y, + Ly;5in 6, (3.18)
0 0 -1 Li; +ds— L,
0 0 0 1
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The end effector orientation can be described based on of the roll-pitch-yaw (RPY)

rotations [96]. The rotational angles around the X, Y, and Z axes are:

RPY (@, ¢y, 92) = Rot(Zy, 9,)Rot (Yo, ¢, )Rot(Xo, ¢x)

Co, = C0.S0, C0.S0,Co, = Sp.S

C(Py C‘Pz S(PxS(Py Pz Px~ Py =Pz Px~ Pz
=CoyS0,  S0xS0yCo, — Corlo,  CorSe,S0, = Se.Co, (3.19)
_S(Py S(Px C‘Py C§0x C(Py

These angles can be obtained by comparing (3.18) with the expression in (3.19)

9 =0 (3.20)
Oy =T (3.21)
@z = 0124 (3.22)

The forward kinematic of SCARA robot arm can be expressed as:
X,v,Z, (pz) = Fpr(04,02,d3,0,), (3.23)
whereas the inverse kinematic for SCARA robot arm is:

(011 92'd3'94) = Flk (X' Y' Z, (pz) (324)

eurt

AU

Figure 3.6 3D view of SCARA robot diagram
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Figure 3.7 2D view of SCARA robot diagram

3.3.2 SCARA Robot Singularities

Singularities represent a major problem for the IK solutions. At singular
configurations any small change in joint variables causes an infinite joint velocity

that may cause serious damage in practical implementation.

1 2
Y Y,
2
X X
1 1 2
Zo {1} /I\ {2}
/VYO L1o
d'l
© X, v
L11
{3} X,
Y3 Zg I_A
{4}, X .
Y . 7

Figure 3.8 Frame assignment of SCARA robot
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It can be mathematically determined whether there exist singularities in the IK
solution, and the configurations at which a singularity will occur are based on
determining the inverse of Jacobian matrix. The Jacobian of the SCARA robot is a

6x4 matrix having 4 DOF with three revolute joints and one prismatic joint.

X(0,—-0 X0, —0 0
]:[Zo (24 0) 71 (; 1) gz , (3.25)
0 1 3
( Ly1cos 6,
01 = Lllsinel )
0

[L,cos 81, + Ly1c0s 0]
0, = | L,sinf,, + Ly;sin64 |,
3 L 0 | (3.26)
'L,cos 81, + Li1c0s 04]
04 = | Lpsinf,, + Ly1sin b, |,

ds — d4
Zog =71 = K,
\ ZZ=Z3=_K.

Then the SCARA robot Jacobian is:

'— L,sinf@;, — Ly;8in8; —L,sinf;, 0 07
L,cos 64, + Li1cos60;  LycosB, 0 0
J= 8 8 —01 8 . (3.27)
0 0 0 0
1 1 0 -1

Based on the Jacobian of SCARA robot, it is possible to determine the joint angles
that cause singularity. The part of the Jacobian that is responsible for the singularity

can be expressed as follows:

—L,sinf,, — Ly;sin6; —L,sin6,, O
J =1 Lycos 015 + Li1cos8;  LpcosB, O (3.28)
0 0 -1

The rank of J will be less than three (i.e. det(J)=0) at the following values of the

second jointangle: 6, = 0, .
3.3.3 Proposed Robust IK Solution

A new technique for solving the IKP based on feedback theory with SMC by

restating the IKP as a control problem for a simple dynamic system is shown in
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Figure 3.9. The proposed algorithm assumes that the desired Cartesian space
trajectory is given, and the goal of proposed controller is to find a joint trajectory that
can track the desired Cartesian space trajectory. Desired input is the variables in
Cartesian space x; = [XY Z ¢,] while the output is the variables in joint space
6 =[6,0,d50,]. The proposed method overcomes the drawbacks of previous
methods that have been suggested to solve the IKP like complex computations,
singularity problem and long time required in iteration methods as discussed above.

The proposed control law for this tracking problem is:

u = uPP + ysme, (3.29)
uPP = ky e(t) + kqé(t), (3.30)
u™e = Hsat(s, 0), (3.31)
e(t) = x4(t) — x(t), (3.32)
e(t) = x4(t) — x(t), (3.33)
s(t) = pe(t) + é(t), (3.34)

where e(t) represents the difference between the current and the desired Cartesian

coordinates.

Remark 3.1: The IKP is converted into a problem of tracking in which the proposed

algorithm aims to make the error tend to zero.

Remark 3.2: The control law is based only on error signal, its derivative, and the
sliding surface, which means that the proposed algorithm is suitable for every robotic

manipulator.
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3.3.4 Stability Analysis

This section discusses the stability problem of proposed algorithm based on

Lyapunov theory. The following Lyapunov function candidate is selected for this

purpose:
v (e,ét) =578, (3.35)
S(e,é,t) = ae + ¢, (3.36)
v(e, é,t) = STS, (3.37)
S=aé+é=aé+i;— %, (3.38)
$ = aé+ x4 — /(g +J(a)d], (3.39)
v(e é,t) = ST[aé + %4 — J(@)q] — ST (@)§ (3.40)

According to the theorem proposed by Novakovic, ¢(t) can be expressed as follows
[97]:

@) =9@)J’s (3.41)
where

_ w(t)+dv(eét)
ﬁ(t) - ST]]TS ] (342)
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w(t) = ST[ae + ¥4 — f4], (3.43)
and & is positive number. If STJJTS =+ 0 then
v(e e, t) = -6 v(eé,t). (3.45)

According to La Salle’s principle of invariance, the robotic system controlled by the
proposed control law in (3.29) is asymptotically stable. Then the tracking error e(t)

and its derivative é(t) tend to zero.

Remark 3.3: In case of the denominator of 9(t) being equal zero (i.e., STJJTS = 0),
joint accelerations become infinity and this is impossible due to bounded
accelerations of joints. Different methods have been proposed to solve this problem.
Burton and Zinobern solve this problem by replacing the denominator of 9(t) by the

following expression [98]:

STIITS + €2, (3.46)
where € is small positive number such that

/TS|l < e. (3.47)

Also, Spong proposed another method to solve this problem by replacing the

denominator of 9(t) by u [99], where
7Sl < w (3.48)
3.3.5 Proposed Robust IK Scheme Test

The performance of proposed method that is based on PD control with SMC for
solving IKP is discussed in this section. In order to demonstrate effectiveness of the
proposed IK solution scheme, computer simulation is used for solving IKP of
SCARA robot. Performance of proposed method is compared with ANN method,
which has been used widely in solving IKP in recent years. Since the ANN methods
are offline, at first they must be trained to learn the map between variables in joint
space and variables in Cartesian space. The values of DH parameters used in this
simulation are as follows: L,; =1, L;, =0.1, L, =1, and L, = 1. The gain

parameters of proposed controller are k,, = H = 50014, k; = 101,,
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@ = 0.01. The following desired trajectory is used in this simulation:

x4(t) = cos (g + 0.1sin(7t)) + cos (g + 0.1sin(7t) + 0.1cos(t)) (3.49)

ya(t) = sin (3 + 0.1sin(76) ) + sin (5 + 0.1sin(7¢) + 0.1cos(t))  (3.50)

zy(t) =1+ 0.1t. (3.51)

Figure 3.10 shows the desired path of end effector in Cartesian space. Integral of the

absolute value of the error (IAE) is used for comparison:
tf
IAE = [ le(t)dt. (3.52)

Therefore the error along X, Y and Z axes can be determined as follows:

Erre = [V lex(0)ldt = [} x(t) — xq(0)|dt (3.53)
Err, = [ |ey®|dt = [T 1y(©) — ya(®)ldt (3.54)
tf tf
Err, = [ le;(®ldt = [ |z(t) — zg()]dt. (3.55)
1.35
1.3 Q
1.25 e ——
1.2 e
1% &
E‘ 1.15 - \\
1.1
1.05 — 7 \

Y axis

X axis
Figure 3.10 Desired trajectory in Cartesian space for nonsingular test
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Figures 3.11, 3.12 and 3.13 show the desired trajectories and actual trajectories
obtained by proposed and ANN methods along the X, Y, and Z coordinates,
respectively. Roll angle which represents orientation of the end effector is shown in
Figure 3.14 and Cartesian space errors along the X, Y and Z axes are shown in
Figure 3.15 (a), (b) and (c). As expected because the trajectory along Z axis is based
only on d5, the ANN can easily approximate this relation therefore ANN method and
also the proposed control method have very small error value in this axis. Figure
3.16 shows the values of joint angles which represent the solution of IKP for SCARA
robot. These results indicate clearly high accuracy of proposed method. Moreover,
proposed method is an on-line method. Performance indices listed in Table 3.3 and
shown in Figure 3.17 indicate superiority of proposed method. Therefore, the actual
Cartesian path is very close to desired Cartesian path with very small error that is

approximately equal to zero.
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Figure 3.11 Motion along X axis
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In order to approve effectiveness of the proposed scheme in the regions adjacent to
the singular region, a desired Cartesian trajectory is selected in such a way that it
passes through the singular points. The following desired trajectories (that must be

inside the workspace) are used in this simulation.

x4(t) = cos G + 0.1sin(7t)) + cos (g + 0.1sin(7t) — %cos(t)) (3.56)
yq(t) = sin (g + 0.1sin(7t)) + sin (g + 0.1sin(7t) — %cos(t)) (3.57)

Singularity configuration occurs when g, is equal to zero, which corresponds to the
time instances at t = cos~1(0.5)7! or 0.1, 2.1, 4.2, and 6.15, etc. seconds. Figure

3.18 shows the desired path of end effector in Cartesian space.
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Table 3.3 Performance index IAE values
Proposed NN

Err, | 0.0014 | 0.0097
Err, | 0.0020 | 0.0048
Err, | 0.0000 | 0.0000

Figures 3.19 (a), (b) and (c) show the desired trajectories and actual trajectories
obtained by proposed method along the X, Y, and Z coordinates respectively while
Figure 3.20 shows the orientation of end effector by the Roll angle. Cartesian space
errors along the X, Y and Z axes are shown in Figure 3.21. Joint variables, angular
velocity and linear velocity are shown in Figures 3.22, 3.23 and 3.24, respectively.
These figures reveal the ability of proposed algorithm to solve problem of
singularity. The robot follows desired trajectory and passes through singular
configuration smoothly. Another important point is that the angular joint velocity of
each joint does not exceed 5 rad/sec. whereas most IK solution methods are suffering
from high deviations in joint rate at singular configuration. Table 3.4 illustrates the
comparison between the proposed method in this chapter and other important

schemes such as ANN and the Jacobian’s pseudo-inverse method in [16, 17, 22, 23].
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Table 3.4 Qualitative comparison of methods

Feature Proposed NN psgafj(())l-)iirz:\l/l;srse
Singularity problem Solved Solved Not solved
Stability Yes Yes No
Complexity Low Medium Medium
Computational time ;ﬁ)r% Long time Medium
Online/Offline Online Online Online
structure Dependence No Yes Yes
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CHAPTER FOUR

ROBUST CONTROL FOR TRAJECTORY TRACKING BASED ON LMI

This chapter discusses the problem of trajectory tracking control of a robotic
manipulator system. Two methods are proposed in this chapter by using linear matrix

inequality (LMI) technique.
4.1 First Proposed Method

In this method, the proposed controller consists of two terms. Proportional (P)
control structure is used as linear term while the SMC refers to the nonlinear
robustness term. This controller combines the simplicity and easy implementation
features of PID controller and robustness properties of SMC. In the proposed
controller there is no need to determine the dynamic model of the robotic
manipulator, which is a must in the standard SMC. Lyapunov theorem is used to
approve stability of the proposed controller. A control problem is restated as a
convex optimization problem based on LMI technique and optimal gain of P
controller is obtained. MATLAB-Simulink environment is used to illustrate
effectiveness of the proposed controller and compare the performance with SMC and
CTC. Simulation results reveal the effectiveness of proposed method in response to

system uncertainties, random noise and external disturbance.
4.2 Improvement in SMC

Owing to simplicity of implementation, easy tuning of the parameters and low cost,
standard PID controller still represents the first choice in most industrial applications.
Proportional-derivative (PD) controller is used widely with CTC. The prior
knowledge about the dynamic model and upper bound of uncertainty are necessary
for this design. Parameter variations of the robotic manipulator and external

disturbances are difficult challenges for the control engineers [100, 101].
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Advanced control schemes such as fuzzy control, ANN control or robust control are
hybridized with PID to overcome some drawbacks of PID controller [100]. SMC is
an effective control scheme that is used widely for nonlinear control and it is robust
against system uncertainties and external disturbance [101]. Therefore, SMC is
applied successfully in many applications such as flight control, industrial factories,
process control, and robotic systems [101-105]. Equivalent control term in SMC
requires determining dynamic model of the robotic manipulator and in particular
applications it is not always possible to obtain accurate dynamic model of the
controlled system. Many control schemes are presented to overcome this problem
[106]. Adaptive control strategy is one of the efficient solutions for this problem
[107-112].  Ability of NN in approximating nonlinear functions motivates
researchers to use it with SMC [113-116]. In addition, fuzzy logic is used efficiently
to estimate the dynamic model of controlled system [117]. In this chapter, a simple
and robust controller for trajectory tracking of a robotic manipulator is presented.
This controller combines the simplicity of a P controller and robustness of SMC. The

proposed method uses LMI to select the parameter of P controller [118-120].
4.3 Proposed P-SMC Method

The objective of the proposed controller is making the joint angles track the desired

trajectories. The tracking error for joint i:
e = qai — q; (4.1)
é; = qai — q; (4.2)

where q4; is the desired position and q; is the desired velocity. The sliding manifold

Is:
S; = éi + cie; (43)

with ¢; € Rt being a positive scalar. The proposed control law that combines P

control with SMC is then given by:

T; = kpl_ei + hLSLgn(el + ciel-) (44)
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where kpi is the proportional gain, and h; is the SMC gain of joint i. Control design
procedure mainly consists of selecting the proper values of control parameters
(kpi' hi) for ensuring stability of robotic manipulator in closed loop. Resulting error

dynamics under proposed control are given by the following closed loop differential
equation model for a single joint:

m;i; el + Z?=1 ml-j ej + kpiei + flSlng(el + Cei)
J#i

=My; Gai + Xj=1Mij Gaj + 1 + gi + fi (4.5)
JES!
Remark 4.1: The proposed control design procedure is model free, which means
there is no need to determine the model of the manipulator in contrast with standard
SMC.

Remark 4.2: Proposed control law is based only on the tracking error signal and its
derivative, and it is a combination of linear proportional control and nonlinear robust
control. As depicted in (4.4), P control term is used instead of equivalent control of
conventional SMC. Desired angular positions and their first and second order
derivatives are also bounded [121].

Theorem 4.1: Consider the nonlinear robotic manipulator system in (2.20) and the
proposed control law in (4.4). If the properties addressed in (2.21-2.26) are true and
desired angular positions and their derivatives up to order two are bounded, then it is

possible to select proper control parameters (kpi' hi) that guarantee stability of the

closed loop system. Moreover, the final tracking error and its derivative are both

convergent to zero.

Proof: The following positive definite Lyapunov function candidate is used to verify

stability.

V; =257 (4.6)

(4.7)

(kpiei + hisign(s;) — Z?=1 mg; —n; — fi — 9i>

JE!

Vi=s; [Ciéi + Gai —

1
mi;
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Based on upper limits of the robotic manipulator dynamic in (2.21-2.26) and
boundedness of the desired trajectories and their derivatives, one can obtain the

following expression:

. ~hi=ky,lei]
Vi < |Si| {T +

ij

ciléil + 1Gail +— <n1+ + 7+ gi + Xieami|da; - ejl)‘}
ij

Jj#i

(4.8)

where m{’j and mi; denote the maximum element and minimum element in Inertia

matrix, respectively and nj,f;*,and g/ represent maximum elements in
Coriolis/centripetal matrix, frictional vector and gravity vector respectively. Right
hand side of (4.8) is a negative definite function if the following condition is

satisfied:

h; + kpl-leil > m;}[ci|ei| + |G qil +F<nl+ +fiT+o +Z1j1=1m;rj|CIdj - ej|>]
Y j#i

(4.9)

Consequently, the time derivative of the Lyapunov function candidate in (4.6) is

guaranteed to be negative definite and the closed-loop system in (4.5) is stable if the
controller parameters (kpi' hi) are selected in accordance with the condition in

(4.9). Furthermore, the tracking error in (4.1) and its derivative in (4.2) converge to

zero according to Barbalat’s Lemma [82,122]
4.4 Mathematical Preliminaries

This section discusses robust stability property of perturbed nonlinear systems with

the following structure [119],
x=f(tx)+g(tx) (4.10)
where x € R™, f(t,x), g(t,x) are continuous functions of t. The nominal system is

%= f(tx) (4.11)
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where g(t, x) is perturbed term due to modelling error, external disturbance, and
parameter variations, which exist in practical systems. Usually g(t, x) is not exactly

known but some information can be available such as the upper bound of ||g(t, x)l|.

Let v(t, x) be the Lyapunov function candidate, which satisfies the following:

callxll? < v < collx||1? (4.12)
% 1L 2k (t,x) < —csllx]|? (4.13)
ot = ox vl = 3 .
2N < c,lixl? (4.14)
dx —= L4 .

for positive values of ¢4, c5, c3, c4. Suppose that g (¢, x) satisfies the following:

gt x) < yllx|l (4.15)

where y is a nonnegative constant.

v
0x

v(t, %) < —csllxl? + llg(t, Ol < —csllxll* + cayllxlI? (4.16)

If y is sufficiently small with the following upper bound,

y<2 (4.17)

4

it follows that
v(t,x) < —(cz—ve)llxll®(cs—ye) >0 (4.18)

Lemma 4.1: Let x be an exponentially stable equilibrium point of the nominal
system in (4.11). Let v(t,x) be the Lyapunov function of the nominal system which
satisfies (4.12, 4.14), and assume the perturbation term g(t, x) satisfies (4.15). Then
the origin is an exponentially stable equilibrium point of the perturbed system in
(4.10) [129]. For systems with the following structure:

x(t) = Ax(t) + g(t, x) (4.19)

the equilibrium point is exponentially stable if the perturbed system satisfies the

following two conditions:
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i. Aisa Hurwitz matrix ,
i [lg(t,0)I* < yllx]? (4.20)

Let the quadratic Lyapunov function that satisfies (4.12) and (4.18) be

v(t,x) = xTPx (4.21)
with P being the solution of following equation:

PA+ AP = —Q (4.22)
Then, for a symmetric positive definite matrix

Q=Q">0 (4.23)
there exists a unique solution P such that

P=PT>0 (4.24)

Then, derivative of the Lyapunov function for the nonlinear system in (4.10)
satisfies:

v(t, %) < —Amin(@lx)IZ + 22min (Py llx113 (4.25)
Therefore, the origin is globally exponentially stable if
Y < Amin(Q)/ZAmin(P) (4-26)

where 8,in(Q) and 8, (P) are the minimum and maximum eigenvalues of the

matrices Q and P, respectively.
4.5 LMI Formulation

Based on LMI optimization technique, the control problem of robotic manipulator is
considered as a convex optimization problem that minimizes the parameter y and the
objective is to find the linear part of controller, which is the proportional gain vector
k,. Substituting the control law (4.4) into the manipulator dynamics in (2.20), the

following equation is obtained:

4 =M"7[t—N(qq —Glq) —F(@)] (4.27)
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In order to state the manipulator under control as a linear system with nonlinear

perturbation, (4.27) is rewritten as follows:

4 =—kpq+kpq+M ' r—N(q ¢ - G(q) —F(q)] (4.28)
d=f(@+g@q (4.29)
f(@) = —kpq (4.30)
9(q,9) = kpq + Mt = N(q,q)] (4.31)
Letx = [ﬁ;] - [g] (4.32)

Then the state representation of the closed loop manipulator is

%= Ayt + [g ?x)] (4.33)
0 InXTL
Anew - [(_Kp)nxn 0 2nX2n (4'34)
glx) = [Igp g] [2] x+ Mt —N(x)—G(x)— F(x)] (4.35)
ky, = 0
Ko=|: =~ (4.36)
0 - ky

Now, it is possible to apply Lemma 4.1 on controlled robotic manipulator with

proposed controller to ensure the asymptotic stability of the closed-loop system.
g < [[kpql| + 1M~ [ = N(q,¢) = G(q) = F(]II (4.37)

According to Theorem 4.1, ||k,q|| and |zl are bounded because they depend on
error signal, which is shown to be also bounded in the same theorem. Knowing that

M is positive definite, then it follows that [112],
IM~Y <r (4.38)

with the assumptions in (2.21-2.26). Then (4.37) becomes:

57



g < yllxl (4.39)

The control parameter k,, is selected so that the robotic manipulator is asymptotically

stable with maximization of the y parameter that satisfies (4.39).
Theorem 4.2: If the matrix A, is selected such that
(Ape)TP+PApey, +v2PP+1<0 (4.40)

where P is a positive definite symmetric matrix, then the controlled robotic

manipulator is asymptotically stable [118].

Proof: Consider the candidate Lyapunov function that follows:

v(x) =xTPx (4.41)
with P being a positive definite symmetric matrix. Then,

v(x) = xT[P Apew + ApewPlx + 2xT P g(x) (4.42)
Using (4.15), one has:

2x" P g(x) < 2ylIPx|lllx]| (4.43)

By using the following algebraic inequality
a2
ab <+ b? (4.44)
Then the inequality in (4.44) can be expressed as follows:
2xT P g(x) < y?xTPPx + xTx (4.45)

Combining (4.45) with (4.42) yields the following upper bound for the derivative of

candidate Lyapunov function,
v(x) < xT[P Apew, + ALeyP +y?PP + 1] x (4.46)
As a result one can conclude that ©(x) < 0 if

[P Apew + AL P +y¥2PP +1]1<0 (4.47)
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Theorem 4.3: Let
Apew =A; —KC (4.48)

X =PK (4.49)
. [0 I [0 0 _[1 O
with 4; = 0 0],K—[KP O],C—[O 1]

Then based on Theorem 4.2 that guarantees the asymptotic stability of controlled
robotic manipulator system, the control problem in (4.5) can be restated as a convex
optimization problem for finding X and P and then find K.

K=P1Xx (4.50)
Proof: Based on Schur complement[121]

‘2, g]>O®A>0,D>0,A—BD‘1C>O (4.51)

The inequality in (4.47) can be rewritten in LMI form as follows:

PApew + Al P +1 P
1
P _V_ZI

<0 (4.52)

Then, substituting (4.48) in (4.52),

[PA,—PKC+A"P—(KC)TP+1 P
1,]<0 (4.53)
P —=1
Y
[PA, —XC+A"P-C™XT+1 P
1,]<0 (4.54)
P -1

It can be reformulated as a convex optimization problem with respect to y.

Let f =—

1
y2

Finally the convex optimization problem in LMI form is expressed as the problem of

minimizing S such that
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PA, —XC+A"™P-C"™X"+1 P

A _g] <0 (4.55)

P>0,8>0. (4.56)
4.6 P-SMC Simulation Test

In this section, a 2-DOF robotic manipulator is used in the simulation to demonstrate
effectiveness of the proposed controller under different challenging cases: parameter
variations, external disturbances and random noises. Gravitational force can be
ignored when the robotic manipulator operates on horizontal plane. The desired

trajectories are:

{qdl (t) = 0.3+ 0.1sin(t), (4.57)

qa2(t) = 0.3 + 0.1 cos(t)

The signum function is replaced by a saturation function with boundary values of
+0.05 to avoid chattering. The validity of the proposed controller is tested by
comparing it with standard SMC and CTC. The controller parameters are k,; = 5,
k,, = 5 determined based on LMI while the gain of the robust term and the slope of

sliding surface are selected as follows:
(hl, Cl) = (55J5)l (hz, CZ) = ( 55;5) (458)
4.6.1 Robustness to Model Uncertainties

This section discusses effects of the parameter variations on the performance of the
control schemes. The masses of link 1 and link 2 are increased by 10% of their
nominal values listed in table 2.2 to check the robustness of the proposed control
scheme. The tracking performances of the CTC, SMC and proposed controller are
shown in Figure. 4.1 and 4.2. The angular position, control signal, and tracking error
for the three control schemes are shown in these figures. It can be noticed that the
steady state errors for all three methods are approximately equal. Required torques to
drive link 1 and link 2 to track the desired trajectories are presented in Figure 4.1(c)
and Figure 4.2(c), respectively. Torque input values for the three controllers hardly

differ at the steady state.
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Figure 4.1 Position, error, and torque of link 1 in presence of model uncertainty

However, transient torque requirements by CTC and SMC are significantly higher
than proposed control in link 1, and in link 2. Proposed control has a sudden torque
requirement that lasts for a short duration. SMC torque input is similar to that of
proposed control in link 2, while CTC has an oscillatory torque variation for a much

longer duration of time.
4.6.2 Robustness to Random Noise

In this section, a random noise signal is added to the controlled variable in order to
examine the validity of proposed controller. A noise signal shown in Figure 4.3 with
amplitude of 15 x 1073 is generated and added at the feedback path of closed-loop
system. The trajectories, tracking errors and control input variations versus time for

the four tested controllers are given in Figure 4.4 for link 1 and Figure 4.5 for link 2.
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Figures 4.4 and 4.5 show clearly the high ability of proposed control scheme to
suppress noise signal. As expected, the results show the high sensitivity of CTC to
noise signal which leads to high variation on control signal, while SMC and
proposed controller exhibit similar tracking performances and torque input variations
that are less sensitive to noise. It should be noted that torque input for each link has a
much smoother variation under proposed control in comparison with CTC and SMC

as depicted in Figures 4.4 and 4.5.
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Figure 4.2 Position, error, and torque of link 2 in presence of model uncertainty
4.6.3 Robustness to External Disturbance

This section presents the effectiveness and robustness of proposed controller against
an external disturbance. The trajectory tracking performance, position tracking error
and control signal of each joint for proposed controller along with SMC and CTC are

presented in response to a disturbance input:
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d(t) = 5sin3t Nm (4.59)

Results are shown in Figures 4.6 and 4.7 for link 1 and link 2, respectively. Tracking

error variations in Figure 4.6(b) and Figure 4.7(b) reveal that proposed control has

good accuracy.
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Figure 4.4 Position, error, and torque of link 1 in presence of noise signal.

63



In addition, torque input for the proposed approach is significantly smaller,
especially for link 1 as in Figure 4.6. Disturbance rejection property of closed-loop
system under proposed control with model free control design is thus revealed by the

presented simulation test results.
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Figure 4.5 Position, error, and torque of link 2 in presence of noise signal
4.7 Proposed Hybrid CTC-SMC Method

Computed torque control is an important control scheme for nonlinear robotic
manipulator systems. However, CTC method requires determining accurate dynamic
model of the robotic manipulator that is not possible in most times. To avoid this
difficulty, in this chapter, robust control theory and standard CTC are combined to
provide a new controller for the robotic manipulator under model uncertainty and
external disturbance. A robust control term is added to the standard CTC to
compensate for the model uncertainties and external disturbance. LMI technique is

used to design CTC parameters while robust gain is determined by Lyapunov
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stability theory. Lyapunov stability theory is used to show that the proposed
controller scheme can ensure stability of the controlled system with satisfactory
performance. Simulation results on a 2-link robotic manipulator are presented to
demonstrate effectiveness and robustness of the proposed method against model

uncertainties and external disturbance.
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Figure 4.6 Position, error, and torque of link 1 in presence of external disturbance
4.8 Improvement in CTC

Computed torque control is an efficient control scheme that has been applied
successfully for control of robotic manipulator systems [123-128]. CTC is simpler
than SMC and fuzzy control strategies, but its performance is degrading due to
modelling errors, parameter variations and external disturbances [129]. Many
methods have been suggested to improve performance of CTC [130]. Based on

ability of neural networks in approximating nonlinear functions, several neural
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control approaches are presented in nonlinear control problem. Recently, most neural
network controllers are approved in terms of stability based on Lyapunov stability

theory, but most of them require long time for training and iterative calculations

[129].
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Figure 4.7 Position, error, and torque of link 2 in presence of external disturbance

In self-tuning CTC method, ANN has been widely used to tune control gains of
controller[131]. Variable structure controller is proposed as compensator for CTC
but with complex computations to determine the inversion of inertia matrix [132].
Ability of fuzzy logic to handle complex systems based on human experience
motivated researchers to use fuzzy logic control with CTC to compensate for the
uncertainties of controlled system. In recent years, many control methods have been
proposed by combining neural network with fuzzy logic based on capability of fuzzy
logic to handle uncertain information and capability of neural network in learning.

Although the stability of these methods can be approved, the prior knowledge about
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upper bound of uncertainty is required and this is not possible in particular

applications [133].
4.9 Nominal and Uncertain Subsystems of Robotic Manipulator

In particular applications, exact values for the robotic manipulator cannot be
obtained due to model uncertainties and strong coupling between adjacent joints,
external disturbance and inaccuracy of the measurement devices. Therefore, the

dynamic model of the robotic manipulator system expressed below:

T=M(q)§+C(q,q)q+F(G) +G(q) + 14 (4.60)

can be separated into nominal part and uncertainty part as follows:

M(q) = M,(q) + AM(q) (4.61)
€(q,q) = Co(q,9) + AC(g, ) (4.62)
F(q) = F(q) + AF(9) (4.63)
G(9) = Go(q) +AG(q) (4.64)

where M,(q), C,(q,q), F,(q), and G,(q) refer to the nominal model of the robotic
manipulator and in general it can be known, whereas AM(q),AC(q, q), AF(q) and
AG(q) are the uncertainty part of the robotic manipulator dynamic model and in most

times this part cannot be known exactly but its upper bound can be known.
4.10 Design of Computed Torque Control

Computed torque control is an effective scheme for robotic manipulator control when
the nominal dynamic model of the robot is known. At first, the uncertainty part of
dynamic model is excluded (i.e. setting AM(q), AC(q, ), and AF(q) to zero). Then,

the nominal dynamic model of robotic manipulator can be written as

T=M,(Q){ + Co(q,q)q + F,(q) + Go(q) (4.65)

The standard CTC is

T =M,(q)(Ga — kpe — kyé) + Co(q, ) + F, () + G, (q) (4.66)
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e=q—qq (4.67)

where e is the tracking error, k,, and k, are the proportional and derivative control

gain matrices. By substituting (4.65) in (4.66),
Ga tkpet+k,ée=0 (4.68)

It is obvious that the roots of (4.68) will lie on the left half plane if the control gain
matrices k, and k, are positive, which implies that the actual trajectory can track
desired trajectory and error signal will converge to zero. The dynamic equation of the
tracking error can be obtained by substituting (4.68) in (4.60), which can be rewritten

as follows:
X = AX + BO(x) (4.69)

where
) 0 I 0
_ T T — —
X - [xl xZ] i [e e] IA - [_kp _kv] ’ B _— I:I:I’

O(x) = Mo ()[AM(q)G + AC(q,¢) + AF(q) + AG(g)].

In practice, the standard CTC is not robust due to ignoring the model uncertainties
and external disturbance. As a result, the tracking error cannot converge to zero due
to the effects of the uncertainty that are represented by @(x). To improve robustness
of the CTC, an additional compensator input is added to the computed torque. The

following definitions are used to approve stability of the proposed method.

Definition 4.1 For the function f(t), L, and L., norms can be expressed as follows:
L, ={f:R* > RIlIfll, = [,If]dt < oo} (4.70)

Lo ={f:R* 5 RllIfllo = [ Supefo.) If1dt < o0} (4.71)

Definition 4.2 The system x = f(x, t) is called uniformly ultimately bounded if the

following conditions are satisfied:

lx(t,)] < a (4.72)
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lx(®)| < b, Vt>t,+T (4.73)
for constants b, c and T'(a) such that a € (0, c)

Lemma 4.2 If f(t), f(t) € Lo, and f(t) € L, then f(t) = 0 when t - co.

4.11 Proposed Control Law

The proposed controller combines CTC controller, which is responsible for
controlling nominal model of robotic manipulator, with robust controller that

compensates for the system uncertainties, modelling error, and external disturbance
T=ulT¢ +ym (4.74)
uT = My(q)(Ga — kp e — kvé) + Co(q, )G + Fo (@) + Go(q) (4.75)

where u¢T¢ is a standard computed torque and it represents a nominal controller part
in proposed controller. u™ is a robust control term that compensates for the

uncertainties and external disturbance is determined below.
4.12 Design of Robust Compensator Controller

In this section, a robust compensator controller is considered. Standard CTC ignores
uncertainty part of the dynamic model of robotic manipulator and this is not possible
in particular applications. Therefore, it can be make CTC controller control the
nominal model of the robot manipulator while the uncertainty part can be controlled

by adding robust term to CTC control law. The ideal compensate torque required is
u" = @(x) (4.76)

It can be noticed from (4.69) that @(x) is a function of joint variables and parameters
of the dynamic model of the robotic manipulator and it is denoting the uncertainty
part of the robotic manipulator dynamic model. In practical application @(x) cannot
be determined because the uncertainty part cannot be known exactly. Therefore, this
thesis proposes a method to mimic the ideal control law.

Firstly, let the ideal required compensated torque u* can be represented by u"° with

some error.
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6 =u"’+¢e(x) (4.77)

ur’e = kd(x) (4.78)
S(x) =x; +Vx, = €2 +:V2e2 (4.79)
en +V,én
k, 0 0
k=\o k; 0] (4.80)
0 0 k,
with assumptions that
Ik 8(x) + eIl < & (4.81)

and &(x) represents the difference between the ideal control «* and proposed robust

control term u"°.

Theorem 4.4 Let the proposed control law in (4.74) is selected as a control scheme
for the robot dynamic model in (4.60) that is rewritten as in (4.70) with the following

condition
ATP+PA+Q =0 (4.82)

where Q is a constant matrix and P is a positive definite matrix. Then, the controlled

system is stable.

Proof. Let us select the following positive definite function as the Lyapunov function
candidate.

vV =-XTPX (4.83)
Differentiating the function with respect to time yields,

V =XT(ATP + PA)X + X"PB (k&(x) + (x)) (4.84)
V=-X"QX + X"PB(k&(x) + £(x)) (4.85)

By using the Rayleigh-Ritz theorem [134], the following expression can be obtained.
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V < = Anin @IIXIZ + lleoldmar (PIXI (4.86)

= = 2UXI [ Amin (QIXN = 2l | Apmax (P)] (4.87)
Then V is negative if

2110 | Amax (P)
X1 > == (4.88)

In the set {IIXII > w}, the negative semi definiteness of the derivative of
)lmin (Q)

Lyapunov function indicates clearly the boundedness of the error signal, state of the

system X, and Lyapunov function V. Integrating the expression in (4.86) over time

yields,

I3V < =3 Anin (@) Sy X2 + 2ol s (P) J, 11 (4.89)
V() = V(0) < =5 Amin (@) [ IXNIZ + |20l Az (P) [ IX (4.90)
Jo IXI2 dt < 57— [V(0) = V(%) + Amax (P) J; lleolllIX 1 dt] (4.91)

It can be concluded from the final integral expression in (4.91) that X € L,. Based on
(4.69), and boundedness of the X and ¢, then, X € L.,. X, X € L, and X € L, are
obtained, so X(t) tends to zero as time goes to infinity based on Lemma 4.2. As a
result the stability of the controlled system in (4.60) with the proposed control law in
(4.74) is guaranteed.

4.13 Nominal Controller Design Based on LMI

The control problem can be restated as an optimization problem of determining the
optimal values for the nominal controller parameters that can reduce the effects of
the modelling error, system uncertainties and external disturbance. According to
Theorem 4.4, the term k&(x) + £(x) is bounded because it depends on the error

signal, which is approved to be bounded. Then it can be set as

B(k&(x) + e(x)) < allx|l (4.92)
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The control gain parameters k,and k, can be selected in such a way that

guarantees asymptotic stability of the robotic manipulator.

Theorem 4.5 If the matrix A that contains controller parameters k,and ky is

selected such that
ATP+PA+a?PP+1<0 (4.93)

where P is a positive definite symmetric matrix, then the controlled system is

asymptotically stable. The proof of Theorem 4.5 is available in [118].

Theorem 4.6 Based on Theorem 4.5 that approves stability of the robotic
manipulator with the proposed control law and tuning method presented in [121], the
control problem of robotic manipulator can be considered as an optimization problem

to find control gain matrices k,, and k,,.

Proof. The expression in (4.93) can be expressed as LMI form:

PA+ AP +1 P

p _1,<0 (4.94)
(12
Let
A=A, —-KN (4.95)
X =PK (4.96)
K=PX (4.97)

=l ol K=l =l 7]

Then (4.94) becomes

PA,—PKN+A"P—(KN)P+1 P
1 | <o (4.98)
P ——1
PA,—XN+A"P-NTXT+1 P
1,]1<0 (4.99)
2 ——1
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It can be considered as optimization problem with respect to a.
1
Letp =— (4.100)

Finally, LMI form for the convex optimization problem can be expressed as

minimizing £ such that

PA,—XN+A"P-NTXT4+] P

; gy <0 (4.101)

4.14 Hybrid CTC-SMC Test

In this section, the performance and robustness of the proposed robust CTC is
discussed through simulations on a 2-link robotic arm. Moreover, proposed method
is compared with two methods that are suggested to improve CTC. First method uses
artificial neural network with Hamilton—Jacobi—Isaacs (HJI) [135]. The second
method in this comparative simulation study uses radial basis function (RBF) neural
network [136]. Additionally, integral absolute value error (IAE) performance index
is used to reveal tracking error performances in this comparison that can be

expressed as follows:

IAE = [le(t)|de (4.102)
The desired trajectory is q;(t) = [qq1 a2 17, Where

qq1 = 0.3 + 0.1sin(t) + 0.3 sin(1.7t) + 0.2sin(2.9t) (4.103)

qaz = 0.4 + 0.1 cos(t) + 0.3 cos(2.9t) + 0.2cos(3.7t) (4.104)

The parameters of proposed method, HJI and RBF are listed in Table 4.1. k, and
k,, of proposed method are determined by using Matlab LMI toolbox.

Effectiveness and robustness of the proposed method are tested by increasing masses
and viscous frictions of each links by 15% of their nominal. Additionally, various
disturbance signals are applied at different time instances of simulation test as

follows:

1) Atfirst, 3 sin(t)disturbance signal is applied.
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2) Atsecond 2, disturbance signal of 5 sin(3t) is inserted.
3) Three seconds later, another addition to the disturbance signal which equal to
4sin (5t) be inserted. That mean the overall disturbance is 3sin(t) +

5sin(3t) + 4 sin(5t).

Table 4.1 Controller parameters

Method Control law Parameter Link1 Link2
) . ‘ k., 250 250
Proposed | * Mo(@)(da = kvé = kpe) + Co(@)q ky 25 25
—ké(x)
k 5 5
T = Mo(q)Ga + Co(q)lqd +Go(q) +u Y 0.05 | 0.05
u= —a)+WTaT—2—y2(e+aé) a 20 20
HJI [20] r % (e + ad)
w = My(q)aé + Co(q)ae L 1500 1500
WT - —LWT
© = Mo(q)(da — kvé — kpe) + Co(q)d ey 10 10
RBF [21 —f
Ly - 4G@-f k, 25 | 25
f estimation of uncertainty by RBF

Angular displacement and error in this displacement of robotic manipulators are
shown in Figures 4.8 and 4.9 for different control approaches. From these figures it
can be noticed that the proposed method has faster response while RBF requires long
time until it overcomes the uncertainties and external disturbance. Proposed method
needs approximately 0.06 seconds until tracking error converges to zero while HJI
needs 0.2 seconds and RBF requires 6.5 seconds. RBF needs long time to overcome
uncertainties and external disturbance because initially weights begin with small
values and they gradually increase until reaching the optimal values at which the

tracking error in this method converges to zero.
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The control input torque values for Link1 and Link2 are shown in Figures 4.8 and
4.9 , respectively. The figures indicate that the control efforts paid by all controllers
are almost equal except a short duration of time at the beginning. Figure 4.10 shows
the TAE for proposed control scheme and other methods. These indices are clear
indications of superiority of proposed control scheme in reduction tracking error. As
a final remark, it should be noted that all simulation results indicate high robustness

of proposed scheme against model uncertainties with better accuracy than other

methods.

Figure 4.8 Position, error, and torque signals of Link 1
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Figure 4.9. Position, error, and torque signals of Link 2
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CHAPTER FIVE
ADAPTIVE ROBUST SMC CONTROL

This chapter presents an adaptive and robust control scheme, which is based on SMC
accompanied by adaptation technique for trajectory tracking of nonlinear robotic
manipulators in presence of system uncertainties and external disturbances. Two
important features make proposed control method more suitable and better than
SMC; these features are model free and adaption properties of the technique that
cancels the need to determine the upper bound of uncertainty, while SMC needs to
determine the dynamic model of controlled system and a prior knowledge of upper
bound of uncertainties. Lyapunov theory is used to derive adaption law for the
controller parameter and prove stability of proposed method and a 2-link robotic
manipulator is selected for demonstrating efficacy of the proposed method via
simulation tests. Simulation tests are utilized to compare proposed method with

conventional SMC in terms of tracking control performance and cumulative error.
5.1 Introduction

As mentioned in previous chapter about SMC and its ability in control of nonlinear
systems, in particular applications precise dynamic model of nonlinear system like
robotic manipulator is not available. Hence, implementing SMC is very difficult.
Ability of fuzzy logic for controlling ill-defined systems and approximating
nonlinear functions motivated authors to use it to estimate parameters of the dynamic
model of the controlled system, but these schemes increase complexity of the SMC.
Combining PD controller with SMC is presented in the article by Lee at al. [137]. In
this hybrid method, PD control is active in reaching phase while in the sliding phase
SMC will be active. In addition, Ouyang proposed a method based on PID controller
and SMC for linear robotic systems [101]. In these methods, selecting the controller
parameters evokes the necessity to determine the dynamic model of robotic

manipulator system and upper bound of uncertainties.
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In this chapter, a proposed method combines the concepts of adaptive control, PD
control, and robust control. An adaptive PD-SMC control for the robotic manipulator

is presented with high robustness against system uncertainties and disturbances.
5.2 Linearly Parametrized of 2-Link Robotic Manipulator

Linearity in the parameters of the robotic manipulator is an important property
especially for adaptive control. The dynamic model of the robotic manipulator can be

expressed as follows:
Yo =M(q)§, + N(q,9)q, + G(q) + F(q) (5.1)
4r =qa+v(@Qa—q) (5.2)

where q, is reference trajectory, Y = Y(q, q, 4, 4,) € R™*P is the dynamic regression
matrix that contains a known nonlinear function, and ¢ € RP is a vector that contains

unknown constant parameters.

For the 2-link arm and based on its dynamic model described in (5.1), one can
rearrange the dynamic into a matrix that contains known variables like position

tracking and velocities and a vector that contains unknown variables.

My, M12] éir1] [—bflz —b‘?1—b512] 5Ir1] 91
Yo = . + . . + 5.3
¢ M, My, Gy, —bq, 0 dr2 [92] (5:3)
Y. Y Y.
y = [ 11 112 13] 5.4
Yo Yo Yo (6.4)
p=[a B o (5.5)

with

Y11 = Gr1 + ezc05(qz)

Yi2 = Gy — €2c08(q2)

Y13 = 2¢05(q3)Gr1 + €05(q2)Grz — 25in(q2)q2Gr1 — Sin(q2)42qy2 +
e;c0s(q1 + q2)

Y, =0
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Y22 = G2 + 41
Y3 = c0s(q2)Gr1 + Sin(q2)41Gr1 + €2c0s(q1 + q2)

It can be noticed from above equations that all variables in regression matrix are

known while all variables in ¢ are unknown exactly due to the model uncertainties.
5.3 Adaptive SMC

For the robotic manipulator system in (5.1), the closed-loop system is guaranteed to

be globally stable if the following proposed adaptive control law is used:
T=kpe+kyé(t) +p (5.6)
p=Yp

where p € RT*™ represents estimation for the dynamic model of robotic manipulator
Yp that is defined in (5.1).

p(t) € RP*™ is the estimation error and it can be determined as follows:

p(t) =p) —p(t) (5.7)
Adaptive law is:

p=-STL (5.8)
where L. € R™™ is the diagonal matrix adaptation rate.

Proof: The Lyapunov function candidate V (t) is used for the verification of stability

V(t) =5[STMS + pTL71p] (5.9)
V(t) = STMS +5STMS + 571715 (5.10)
=STMS +STCS + pTL™p (5.11)
= ST[M Gy — @) + C(4r — )] + FTL5 (5.12)
= ST[MG, + C4, — MG — Cql +p"L™"p (5.13)
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= ST[M§, + Cq, + G — 1] (5.14)
= ST[Mg, + Cqr + G — k,E — kaE(Y) — p| + pTL7Yp (5.15)
=ST[p(t) — kpE — kaE() —ps] ++pTL7%p (5.16)

If parameters k,, and k, selected as follows

kg 'ky =y (5.17)
V() = STlp(t) = kqS = pO) ] + pTL71p (5.18)
< —STkaS +ST[p(t) = p(O] + TL71p (5.19)
< —likalllISIZ + ST[5] + HTL715(32) (5.20)
< —llkalllISI? + ST[5] + 5L 725 (5.21)
< —llkalllISII? + [ST + 5"L7*]p (5.22)

If the changing rate of the control parameter is selected as follows:
p=-STL (5.23)
V() < —llkglllISII (5.24)

Then the proposed adaptation law for tuning the proposed controller guarantees
asymptotic stability of the robotic manipulator in (5.1) with tracking error signal and

its derivative converging to zero.
5.4 Control Methods Requirement

Table 5.1 summaries the requirements of SMC, PD with SMC and proposed method.
It can be notice from this table the proposed method assume no thing is known.
Therefore, it can be applied easily to control robot manipulator. While, the other
methods need some knowledge about dynamic mode and the upper uncertainty to

design their control laws.
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Table 5.1 Requirements of control methods

Method Requirement

Determine approximate dynamic model of robot

SMC manipulator

A prior knowledge about upper bound of uncertainty

PD with SMC A prior knowledge about upper bound of uncertainty

There is no need to determine dynamic model of robot
Proposed method neither prior knowledge about upper bound of

uncertainty

5.5 Simulation Results

This section demonstrates the effectiveness of proposed control method via
simulation tests by using 2-link robotic manipulator. In design of controller
parameters, first, the positive definite matrix y is selected, and then according to
condition in (5.17) the values of control gains in matrices k, and k, are determined.
As a result, the parameters take the values of y = 5I,, k,, = 3001, and k; = 60I,.
® = 0.021,. Finally the controller parameter vector p is updated according to (5.23)
with initial value p(0) =[0.01,0.01,0.06,0.02 ]7 where adaption rate matrix is
L = 100I,. The desired joint trajectories in this simulation are selected to be

sinusoidal variations versus time as qq(t) = [q41 4217, Where
qq1 = cos(2mt) (5.25)
Q42 = sin(2mt) (5.26)

The effectiveness and robustness of the proposed control method are investigated
under model uncertainties and compared with the SMC as shown in Figures 5.1 and
5.2.

81




torque (Nm)

1.5 r r r r r
=mmmnmijdeal position
’, — Proposed
=== SMC L

i [ \ ]
/I N/ \/] \/

°

position (rad)
o

o (61

o,

>

ey

—

-0.5
-1
-1.5 - - - - - -
0 0.5 1 1.5 2 2.5 3 35 4
0.6 r r r r r
— Proposed
0.4 == SMe

error (rad)
o
o N

-0.2 : . : . : ,
0 0.5 1 1.5 2 2.5 3 3.5 4
1000 r r
| — Proposed
500 m=mmm SMC i
0 % ¥/_\-
-500
-1000 : : : : : -
0 0.5 1 1.5 2 2.5 3 3.5 4

time(s)

Figure 5.1 Position, error, and torque signals of Link 1
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Figure 5.2 Position, error, and torque signals of Link 2
The model uncertainties include variations of manipulator parameters namely mass,
static friction, and dynamic friction of Linkl and Link2. In this simulation the
parameters are changed as much as 15% of their nominal values. From these figures,
it is observed that the proposed control method has satisfactory tracking performance
with significantly reduced position tracking errors with respect to standard SMC.
Moreover, the graphs in these figures are clear indications of faster response of the
method being proposed. The control input torque signals versus simulation time for
Linkl and Link2 are shown in associated Figures 5.1 and 5.2 respectively. Results
that are graphically presented in these figures indicate that the control efforts of
proposed control method and those of standard SMC are approximately equal for all
three links with the exception of a temporary transient duration at the beginning of
simulation. Figure 5.3 presents the IAE values for proposed control scheme and

conventional SMC. Proposed method reduces the cumulative error to approximately
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30% of that of the standard SMC. These values of the IAE index are clear indications
of superiority of proposed control scheme in reducing cumulative tracking error in

addition to significant reduction in the control effort.

0.025
0.02
0.015
0.01 -
0.005 -

H Linkl

M Link2

Proposed SMC

Figure 5.3. IAE Variations
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CHAPTER SIX
CONCLUSIONS AND FUTURE WORK

The general goal of this thesis is reviewed with focus on the significant contributions
on the proposed trajectory tracking control of robotic manipulator systems. Finally,

some suggestions for future work for improvement and development is presents.
6.1 Thesis summery

This work discusses in detail two important challenges in robotic manipulator
systems: IKP and dynamic control. At first, the difficulties of the inverse kinematics
solutions such as nonlinearity, singularity, and long time required to get solution are
discussed and disadvantage of current methods are analyzed. Chapter three presents
two methods based on feedback theory where IKP is restated as a control problem.
First proposed method improves the DLS and overcomes on the difficulties of this
method like long time of iteration and selecting initial point’s problem. Ability of
fuzzy logic to handle the nonlinear systems is exploited and PD like fuzzy controller
is used to reduce the error between desired trajectories and actual trajectories.
Different desired trajectories are used in the simulation test. Simulation test results
show superiority of the proposed method with respect to the DLS method. Fast
response of this method is one of important advantage. A second method is proposed
to solve IKP with 4-DOF SCARA robot manipulator selected to demonstrate this
method. In the second proposed method, a hybrid controller combining SMC with
PD is used to minimize the difference between desired trajectory and actual without

using Jacobean inversion in order to avoid the singularity problem.

Based on the literature survey for the control of robotic manipulator systems, the
robust control schemes are best choice but they are complex and model based and
this requires a priori knowledge about the dynamic of the robotic manipulator and
upper bound of uncertainty that may be not possible in particular applications.
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Although these control strategies provide good performance despite complexity of
the robotic manipulator, high nonlinearly and strong coupling between adjacent
joints as well as model uncertainties and external disturbance make challenges for
these controllers. In this thesis different strategies are proposed to provide simple and

robust control scheme.

Chapter four presents two robust control methods based on the LMI technique. In
the first method, an improvement on SMC is proposed. Although SMC is an efficient
control strategy used for the control of nonlinear systems, in real application it is
very difficult to implement control law of SMC due to its chattering and necessity of
determining dynamic model and upper bound of uncertainty. Based on previous
work, the chattering problem is solved by using sat function instead of discontinuous
function used in standard SMC. Proportional controller with SMC is combined to
provide model free controller where proportional controller is used as an equivalent
control term while the robust term will compensate for the uncertainties. LMI
technique is used to determine an optimal value gain of the P controller. Two links
robot manipulator used to illustrate the effectiveness of the proposed method under
different cases: model uncertainties, external disturbance, and noisy environment. A
second proposed method present in chapter four is improved version of CTC. CTC
method is one of important scheme that applied widely in robotic manipulator
control. Model uncertainties and external disturbance are highly affected on CTC
performance. This draw back motived many researchers to improve CTC. In this
proposed method, a robust term is added to compensate uncertainties and external
disturbance. LMI used to tune the gains of CTC part of the hybrid controller.
Robustness to model uncertainties and external disturbance and stability approved by
lyapunov theorem. Simulation test compare this method with other methods that
improve CTC. Results indicate clearly successes of proposed method and its

simplicity.

Finally, there are some requirements to implement control law in proposed methods
in chapter four like upper bound of uncertainty and nominal dynamic mode for the P-
SMC and hybrid CTC-SMC methods respectively. In chapter five, an adaptive robust
method is presented with no requirement. Linearly parametrized property of robot
manipulator and lyapunov theorem used to drive adaption law for the controller

parameters of proposed method. Very good performance obtained in this method and
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results illustrated robustness of proposed method. In conclusion, this work presents a
complete solution for the robotic system control. Starting by providing a IK solution
that solving the problem of singularity and then proposed control method for
trajectory tracking of robot manipulator with important advantages such as
robustness to model uncertainties, and external disturbance with avoid needing for
dynamic model and upper bound of uncertainty. The importance of this work is

approved by the publications in engineering index journals as listed below:
Journal Articles:

Mary, A.H. & Kara, T. (2016). Robust Proportional Control for Trajectory Tracking
of a Nonlinear Robotic Manipulator: LMI Optimization Approach, Arabian Journal
for Science and Engineering,41(12): 5027-5036.

KARA, T., MARY, A.H. (2017). Adaptive PD-SMC for Nonlinear Robotic
Manipulator Tracking Control, Studies in Informatics and Control, 26(1):49-58.

Conference Paper:

Mary, A. H., Kara, T., Miry, A.H. (2016). Inverse kinematics solution for robotic
manipulators based on fuzzy logic and PD control, Al-Sadeq International conference
on Multidisciplinary in IT and Communication Science and Applications (AIC-
MITCSA), DOI: 10.1109/AIC-MITCSA.2016.7759929.

6.2 Suggestion for Future Work

e A novel solution is presented in this thesis for the IKP by using feedback
theory with the fuzzy control. This method can be improved by selecting
optimum value for the damping factor. It is better if fuzzy logic used to
decided appropriate value instead of keeping it constant. Fuzzy rules can be
designed and give large value when the solution is near to the singularities
and reduce the damping factor when the end effector far away from the
singularity position.

e Fuzzy logic type 2: all fuzzy controllers used in this thesis are fuzzy logic
type 1 and recently fuzzy logic type 2 used successfully in many application

due to ability to overcome complex model uncertainties. Many researchers
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compare between fuzzy types 2 with fuzzy type 1. Therefore, it can improve
the performance of the proposed method by using fuzzy type 2.

e In this work all states assume to be measurable and in order to get more
accurate analysis, the state estimator can be used with including its dynamic
in the analysis for designing controller. Kalman Filter is one of the based
adaptive filters that can be used for the estimation.

¢ Inthis thesis, the acquired data in off-line were used to design the fuzzy rules.
Therefore it can be improve the performance of the proposed method by
generate these rules online during the operation of the robot manipulator.
Moreover, the shape of the Membership function can be adjusted by using
different optimization algorithms (i.e Ga, PSO,etc) by selecting suitable
objective function.

Since most algorithms proposed in this work are model independent, therefore it

can be apply on more complicated robot manipulators like flexible link arm that

used wildly in many applications especially in space plants. Moreover these
algorithms can be extending to use it with any nonlinear complex systems that
suffering from high coupling and high nonlinearity.
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APPENIDX
EULER-LAGRNAGE OF TWO LINKS ROBOTIC MANIPULATOR

Euler-Lagrange is one of important methods that used for obtaining the dynamic
model of the n links robot manipulator. This method establish relations between the
joint positions, velocities , accelerations, and the applied torque on the manipulator.

The Newton-Euler equation for link1 are given by
foir— fiz + Mg —mive =0 (A1)

No1—Nip+Tic1 X f12—Toe1 X fon— 11wy =0
(A.2)

Where

fii+1 isthe force applied to link i by link i+1

g is the acceleration of gravity

V.1 time derivative of liner velocity of link 1

N; ;41 IS the coupling moment

I; moment of inertia of link1

W, time derivative of angular velocity of link 1

For link2

fi2 +mMpg —myU, =0 (A.3)
Nip =Ty X fio—Lw, =0 (A4)

Where
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V., time derivative of liner velocity of link 2

I, moment of inertia of link2

W, time derivative of angular velocity of link 2

For the planar robot manipulator, the joint torques are equal to the coupling moments
Niop;=1i=1,2 (A.5)

Ty —Tyep XMpUpp + Ty XMpg — I W, =0 (A.6)

Ty = T1 = To,c1 X MyVeq —To1 X MV + To 1 X My g +

To1 XmMpg — I Wy =0 (A7)

Wi =(q1, W, =q1+ Q> (A.8)
The linear velocities are

_[~leaqa Sin‘h] =y s+ 12812)41 — lc2512"¥2]
Ver = [ lc1G1 cosqy 17 Ver = (1 1+ 12512)q1 + le2€12G2 (A9)

Then by simple substitutions

T, = [m1L%1 +L+1+ mz[(l% + L%z + 2L1Lc2C2)]]éi1 + mz[@%z +1; +
L1Lc2C2)]f?2 —2myL1L25,q1q; — mlechqug +mygLeCy + mypg(LepCop +
L,Cy) (A.10)

Ty = [myL%; + LGy + my[(L2 + I 4 L1Lp €)1y + myLyLeyS,45 +
+mygL.,Ci2 (A.11)
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