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ABSTRACT 

IMPROVEMENTS IN ROBOTIC ARM CONTROL BASED ON 

COMPUTATIONAL INTELLIGENCE AND SLIDING MODE CONTROL  

KINANI, Ali Hussien Mary  

Ph. D. in Electrical and Electronics Engineering 
Supervisor: Asst. Prof. Dr. Tolgay KARA 

October 2017 

 105 pages 
 

This work addresses the problem of trajectory tracking control of the robotic 

manipulator. Different methods are proposed in kinematics and dynamic control of 

robotic manipulator.  In inverse kinematics, two methods are presented based on 

closed loop strategy. First method is based on proportional Derivative (PD) like 

fuzzy controller while second method exploits the effectiveness of Sliding Mode 

Control by designing a robust method with solving the problem of singularity. 

Different desired Cartesian trajectories are used to illustrate the effectiveness of 

proposed methods with two links and 4 Degree of Freedom (DOF) SCARA robots. 

Obtained results reveal the performance of proposed methods. In dynamic control of 

robotic manipulator, efficient robust control methods are proposed for controlling 

robotic manipulator subjected to external disturbance and model uncertainties. 

Unlike most existing nonlinear robust control schemes, the proposed control 

methodologies do not require the exact dynamic model of robotic manipulator. The 

proposed controller’s gains are selected by using Lyapunov stability theorem. Three 

robust control methods have been proposed, proportional–Sliding Mode Control (P-

SMC), Hybrid Computed Torque Control (CTC)-SMC, and adaptive SMC. P-SMC 

requires upper bound of uncertainty while in Hybrid CTC-SMC method only 

nominal dynamic model of robot manipulator is required. These requirements have 

been avoided in the third proposed method by using adaptation technique. Linear 

matrix inequality technique is applied to select the gains of linear part of proposed 

controller in P-SMC and Hybrid CTC-SMC and Lyapunov stability theorem is used 

to derive the updating laws for the controller gains. The performances of proposed 

methods are compared with other different methods by simulating these methods 

applied on a two-link robotic manipulator for different desired trajectories. 

Moreover, performance index of integral absolute error is used to measure the 

performance of each method. All proposed theorems and methodologies are 

considered for the general robotic manipulator regardless of the degrees of freedom. 

Simulation results illustrate in a comparative fashion the performance of proposed 

methods in terms of cumulative error, robustness against disturbances and 

uncertainties, and trajectory tracking. 

Key words: Robotic Manipulator, Robust Control, Sliding mode control, Inverse 

Kinematics.  
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Bu çalışmada robot manipülatörün yörünge izleme denetimi üzerinde durulmuştur. 

Robot manipülatörün kinematiği ve dinamik denetimi için farklı yöntemler 

önerilmiştir. Ters kinematikte, kapalı devre stratejisine dayanan iki yöntem 

sunulmuştur. İlk yöntem oransal türevsel (PD) benzeri bulanık denetimciye 

dayanırken ikinci yöntem tekillik sorununu çözen bir gürbüz yöntem tasarlayarak 

kayar kipli denetimin (SMC) etkinliğini ortaya koyar. Farklı kartezyen yörüngeler 

kullanılarak önerilen yöntemlerin etkinliği hem iki eklemli robot hem de dört 
serbestlik dereceli SCARA robot için gösterilmiştir. Elde edilen sonuçlar önerilen 

yöntemlerin başarımını ortaya koymaktadır. Robot manipülatörün dinamik 

denetiminde, manipülatörün dış bozucular ve model belirsizlikleri karşısında etkili 

gürbüz denetimi için yöntemler önerilmiştir. Çoğu mevcut doğrusal olmayan gürbüz 

denetim şemalarının aksine, önerilen denetim metodolojileri robot manipülatörün 

kesin dinamik modelini gerektirmez. Önerilen denetimcinin kazanç değerleri 

Lyapunov kararlılık teoremiyle hesaplanmıştır. Üç gürbüz denetim yöntemi, oransal-

kayar kipli denetim (P-SMC), melez hesaplanmış tork denetimi (CTC-SMC), ve 

uyarlanır SMC önerilmiştir. P-SMC belirsizliğin üst sınırını gerektirirken melez 

CTC-SMC yönteminde sadece robot manipülatörün nominal dinamik modeline 

ihtiyaç vardır. Önerilen üçüncü yöntemde uyarlama tekniğiyle her iki gereksinimden 

de kaçınılmıştır. P-SMC ve melez CTC-SMC’de önerilen denetimcinin doğrusal 

kısmının kazançlarını seçmek için doğrusal matris eşitsizliği tekniği uygulanmış ve 

denetimci kazançlarının güncelleme kurallarının çıkarımı için Lyapunov kararlılık 

teoremi kullanılmıştır. Önerilen yöntemleri başarımları farklı istenen yörüngeler için 

iki eklemli robot manipülatörde benzetim yaparak diğer farklı yöntemlerle 

karşılaştırılmıştır. Dahası, bir başarım endeksi olan tümlenik mutlak hata kullanılarak 

her bir yöntemin başarımı ölçülmüştür. Tüm önerilen teoremler ve metodolojiler 

serbestlik derecesi sayısından bağımsız genel robot manipülatörü için ele alınmıştır. 

Benzetim sonuçları önerilen yöntemlerin başarımını toplam hata, bozuculara ve 

belirsizliklere karşı gürbüzlük ve yörünge izleme performansı bakımından 

karşılaştırmalı biçimde ortaya koymaktadır. 

Anahtar kelimeler: Robot manipülatör, Gürbüz denetim, Kayar kipli denetim, Ters 

kinematik.    
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivations 

Robotic manipulators are more and more widely applied due to their capability of 

increasing the production efficiency and improving the product quality. Through the 

decade of the 1990s, the robotic applications increased widely in the world. Robots 

enter most of the aspects of life because they become cheaper, more effective, faster, 

more accurate, and more flexible. Most jobs that are more industrial become 

candidates for robotic automation. Today, robots have become able to do tasks that 

might be dangerous or impossible for human workers to perform. There are robots in 

hospitals that can help by fetching or distributing medicine and assist the patient. In 

laboratory, robots carry out hundreds of tests  in parallel, saving time and freeing 

manpower for other purposes. In addition, the robots can perform repetitive tasks 

with high speeds, more reliable and without fatigue. It can help permanently or 

temporarily disabled people with the matters that they cannot deal with themselves. 

In this type of robotic applications, the robot receives input commands from the user 

via various input devices (Electromyography (EMG), electroencephalogram (EEG)). 

Space robots are widely employed on the International Space Station (ISS). Due to 

the advances in space robotics, some manipulators can move even more freely than 

human arms, and are therefore well suited to support, or even replace, astronauts for 

accomplishing precise, complex or risky maneuvers. Since 1960s, when robots began 

being used in industrial factories, the factories became automated, high reliable, 24-

hour working per day and more flexible. Many enhancements have been applied in 

the factories. It can be noticed that all these applications require high precision, good 

performance, and suitable repeatability. On the other hand, robotic manipulator is a 

complex system with high nonlinearity, it is suffering from parameter variations and 

non-linear friction, and this may effect on robot performance and cause imprecision 

in trajectory tracking. Therefore, attaining good control performance has become a 

big challenge.  
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Therefore robotic manipulator control has become an important research area and 

many strategies have been proposed. All proposed algorithms aim to design a 

controller with a high performance controller [1]. Fast progress in computer 

technology facilitated providing a hybrid controller that combines classical control 

methods with more advanced control schemes. Finally, high development in 

computational intelligent rapid enhancement in microcomputer system and modern 

control schemes are the main motivation of this study. 

1.2 Problem Statement 

A rigid robotic manipulator is among the most complicated systems. It is Multi-

Input-Multi-Output (MIMO) with highly nonlinear structure and strong coupling 

between its joints. It suffers from external disturbances, parameter variations and 

very complicated trigonometric relations between the joint variables and end effector 

position and orientation in Cartesian space. All robotic manipulator applications 

require accurate positioning of the end effector. Therefore, the problem of designing 

effective controllers for the robotic manipulators is a challenge for control engineers. 

Robotic manipulator control has become one of the most important research areas 

that attracts many researchers due to fast progress in computational intelligence and 

possibility to combine the computational intelligent algorithms with the robust and 

adaptive control schemes.  

1.3 Previous Work 

The section discusses the important strategies applied successfully for solving 

Inverse Kinematics Problem (IKP) and also the control schemes for trajectory control 

of nonlinear robotic manipulators. These strategies are discussed in detail with 

focusing on drawback of each method in order to propose innovative method that 

avoids these drawbacks in robotic kinematic and dynamic methods. 

1.3.1 Inverse Kinematics 

The nonlinear relation between the Cartesian space and the joint space make the IKP 

more complex. There are different methods proposed to solve the IKP. In general, 

the different schemes that are applied for solving IKP can be classified into analytical 

solutions, numerical solutions, and neural network.   
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Analytical solutions 

There are two directions in analytical solutions. First one is geometry based and 

second one is algebraic elimination method.  Geometry solution can be applied for 

robots with simple structure such as a 2-DOF manipulator. Featherstone solved IKP 

for the 6-DOF robotic manipulator having three revolute joint axes based on 

geometry structure of the robotic manipulator [2]. Based on geometry information of 

the robot, Husty et al., use this information to solve the IKP of 6-DOF robotic 

manipulator numerically by broken 6R-chain into two 3R-chains [3]. Geometry 

solution becomes more tedious in case of high DOF and complex structure. In this 

case, the algebraic elimination method is more beneficial for solving IKP. In 

algebraic elimination methods, the joint variables are eliminated and reduced into 

only one single joint variable and the solution is obtained based on closed-form 

computations [4-7]. Complexity of computation in this approach of solution was 

reduced when homogenous transformation matrix is used [8]. Kinematics coupling 

and singularity are main problems in this type of solution. Moreover, the closed form 

solution may not be granted in this approach. 

Numerical solutions 

Many methods have been suggested for solve IKP based on numerical solution [9-

11]. The Newton–Raphson method, gradient algorithm, and predictor-corrector 

algorithm are applied successfully for this issue. Moreover, many optimization 

techniques with nonlinear programming algorithms have been presented by 

considering the IKP as a minimization problem.  This type of solution can be applied 

successfully regardless of the geometry of the robot. Raghavan used the elimination 

method to reduce the complexity of the IKP of 6-DOF robotic manipulator to a 

polynomial with degree 16 [12]. Manocha et al. restate the IKP as problem for 

finding eigenvalues [13]. Overcoming the singularity problem by avoiding the need 

to determine the inversion of the Jacobian matrix make this type of solution more 

stable, but it is not suitable for real time application because it required a long time to 

reach the solution. There are some other weak points in this type of solution. 

Selection of initial point is very important and it has a significant effect on the 

solution and convergence of the method [14]. Another weak point is the complexity 

of the trigonometric equations of the robotic manipulator. 
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Neural network   

Ability of Artificial Neural Networks (ANN) in learning has motivated many 

researchers to use it in solving IKP. In general, ANN is applied to approximate the 

nonlinear relation between the coordinates in Cartesian space and joint angles [15-

20] with different algorithms used in training stage such as radial base function [21], 

and multi-layer perceptron [22].  Karlik & Aydin used feedforward neural networks 

to solve IKP of 6-DOF robotic manipulator with huge data set for the end effector 

position and orientation as inputs and equivalent joint angles as outputs [23]. Martín 

et al. use different adaptation algorithms with ANN to solve the IKP of the SCARA 

robotic manipulator [24]. Hasan et al. proposed a solution for the 6-DOF robotic 

manipulator considering position and orientation of the end effector in Cartesian 

space with the velocity of the joint and angular angles of the joints with their angular 

velocity [25]. To improve the performance of ANN and overcome of the problem of 

long time training, ANN hybridizes with different advanced techniques like Genetic 

algorithm(GA) and fuzzy systems. Fuzzy logic is applied with ANN to solve the IKP 

for the 6-DOF human upper limb [26].  (GA) is used to reduce the time required for 

training ANN and applied to solve the IKP for the 2-DOF robots [27].  Köker used 

GA with ANN to solve the IKP for the 6-DOF Standford robot arm by minimization 

of the error at the end effector [28]. However, in all approaches based on ANN, the 

accuracy of solution is based on the number of the patterns used for the training.  

1.3.2 Dynamic Control 

This section discusses in detail efficient and important schemes in robotic 

manipulator system dynamic control, with emphasis on advantages and weak points 

of each strategy in order to propose efficient methods that overcome these 

drawbacks. 

PID Control 

The PID controller is widely used in industrial applications due to its simplicity of its 

structure and ease of implementation, but in case of complicated and nonlinear 

systems, a conventional PID controller may be unable to yield a desired 

performance. As a result, different techniques are combined with PID controller to 

improve its performance. Evolutionary optimization algorithms such as GA [29], 



5 

 

Multi-Objective GA [30], PSO [31] and CSA [32] are widely used to tune the PID 

parameters. However, these tuning methods cannot achieve optimum performance 

because the PID gain parameters remain as constants and robotic manipulator is 

subjected to system uncertainties and external disturbances. ANN is combined with a 

conventional PID for controlling 2-DOF robotic manipulator with online adaptation 

for the controller parameters [33]. Long time required for training in most ANN 

algorithms makes applying ANN in on line tuning of the PID controllers remain less 

explored [34]. Application of fuzzy control successfully for controlling non-linear 

systems attracted researchers to use it with PID to improve the capability of the 

conventional PID in controlling linear and nonlinear complex systems [35]. Fuzzy 

control is also used with PID for control of 6-DOF manipulators [36]. Although the 

fuzzy controller with PID is better in performance than conventional PID, both are 

single degree of freedom controllers that cannot track trajectory and reject the 

disturbance simultaneously [37]. 2-DOF fractional PID (FPID) controller has been 

proposed for controlling a 2-link planar robotic manipulator and good performance 

were obtained [37]. 

Neural control 

Artificial Neural network(ANN) is an efficient computational intelligence algorithm 

that can be used in approximating nonlinear complex systems [38]. Patiño et al. 

presented an adaptive neural network controller to compensate for the error in 

modeling of friction in the robotic manipulator with good performance [39]. Sun et 

al. proposed a feedback adaptive neural controller for PUMA-560 robot by 

combining a feedforward neural network with adaptive control approach with large 

control gain [40]. Zeng and Wang developed a discrete neuro-controller without off-

line training for 2-link robotic manipulator but this controller only provides 

uniformly ultimately bounded (UUB) tracking [41]. Shenghai et al. applied 

deterministic learning (DL) theory to train neural networks output feedback 

controller that is applied on a 2-link robotic manipulator [42]. Kumar et al. presented 

a hybrid controller that consists of model based part and second part is an adaptive 

neural network part that compensates for the modelling error for trajectory control of 

robotic manipulator in task space [43].  Kumar et al. combined CTC method with 

neural network and provide a hybrid control for 3D planar robotic manipulator [44].  
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Fuzzy control 

Features of fuzzy logic such as simplicity, nonlinear mapping between inputs and 

outputs variables, and exploiting the human experiences, attracted researchers to use 

it in control engineering field and good results are achieved especially for controlling 

complex nonlinear systems. Many methods have been proposed for robotic 

manipulator dynamic control by using fuzzy logic to approximate the nonlinearities 

in robotic manipulator dynamic model [45-51], but these methods need many fuzzy 

rules in order to tune many parameters. Shaocheng et al. designed a nonlinear 

observer and estimated the controlled system dynamic by fuzzy logic [52]. Gole et al. 

proposed an adaptive fuzzy controller for the robotic manipulator and stated the 

stability of the proposed control method as Linear Matrix Inequality(LMI) problem 

[50]. Tang and Chen improved the PI controller by using fuzzy logic and a good 

tracking performance was achieved with an uncertainty of about 10% tolerance of 

the nominal model of robotic manipulator [53]. Li et al. developed Proportional 

Controller, Integral, and Derivative (Fuzzy P + ID) controller where only one extra 

parameter is required to tune with respect to the conventional PID controller [54]. 

Song et al. improved the CTC by combining it with fuzzy control in order to 

compensate for the modelling error [55]. Sharma et al. used fuzzy controller with 

fractional order theory for controlling 2-link planar robotic manipulator and Cuckoo 

Search Algorithm (CSA) to tune controller parameters [56]. Chatterjee and Watanabe 

proposed a self-tuning fuzzy PID controller for 2-link robotic manipulator with a 

slight increase in complexity of structure of the fuzzy controller [57]. In recent years, 

the combination of fuzzy logic and neural networks has been used widely, exploiting 

the learning ability of neural networks and interpretability of the fuzzy logic. In 

fuzzy-neural systems, the neural network supports fuzzy systems by training the 

membership function and fuzzy rules of fuzzy logic [58]. Mbede et al. improved the 

robust controller for trajectory control of robotic manipulator by using Elman neural 

network to compensate for the uncertainties [59]. Long and Nan proposed wavelet 

fuzzy neural network controller for position tracking control and force control for 

non-holonomic mobile robot manipulator [58]. Liu et al. proposed a self-tuning fuzzy 

controller for robotic manipulators’ trajectory control with saturation function in 

order for ensuring boundedness of the torque inputs [60].   
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Robust control 

Most methods proposed by researchers for trajectory control of robotic manipulators 

aim to be robust against model uncertainties and external disturbance. Robust 

controllers for trajectory tracking of robotic manipulators ensure stability of the 

closed-loop system, even if only partial knowledge of the dynamic model of the 

manipulator is available. Robust control consists of two parts, one is a nominal 

control part and the other is a part that is responsible for robustness of performance 

during uncertainties and disturbance effects [61].  Sliding Mode Control (SMC) is a 

major method in nonlinear robust control. However, the traditional SMC has two 

drawbacks: 

1- Its model based control system, which means that there is required to determine 

the dynamic model of the controlled system.  

2-The discontinuous term in control law of SMC, due to sign function, causes the 

chattering problem.  

Adaptive control is used widely with SMC to estimate the dynamic parameters or 

estimate uncertainty and external disturbance and the estimation error can be 

compensated by SMC [62-65]. Chattering is the main drawback in SMC and many 

methods have been suggested to reduce chattering by using saturation function 

instead of sign function, boundary layer, and Integral SMC [66-67]. In addition, the 

fuzzy logic is combined with SMC to eliminate the chattering by approximating the 

hitting control [68]. In late 1990’s,   H-infinity became an efficient method in robust 

control.  H-infinity can reduce the uncertainties of parameters and disturbance 

without assuming that these uncertainties belong to a known set while the other 

nonlinear robust schemes (e.g. SMC) need to estimate it [69]. It reduces the effect of 

uncertainty by minimizing the H-infinity norm. Miyasato developed an adaptive 

nonlinear H-infinity controller by considering the disturbance and estimation errors 

of the unknown model parameters as exogenous disturbance [70]. Pan et al. 

improved the fuzzy controller for uncertain nonlinear systems by using H-infinity in 

order to compensate for the fuzzy approximation error [71]. Chang and Shih 

demonstrated the use of H-infinity with nonlinear stochastic systems by linearizing 

nonlinear systems with T-S fuzzy modeling including saturation actuator constraints 
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[72]. Pan et al. used Lyapunov synthesis to select the parameters of the controller 

based on fuzzy logic and H-infinity with unknown disturbances for nonlinear 

systems [73]. Hsiao combined H-infinity with neural network for controlling 

nonlinear systems and representing the dynamic system by neural networks and 

converting them into linear differential equations [74]. 

1.4 Thesis Objectives 

Although there are a lot of papers and methods that have been published and 

suggested for the inverse kinematics and dynamic control of robotic manipulator 

systems, these topics still represent an active area for development and researching 

and some limitations and drawbacks must be overcome. For the inverse kinematics 

most suggested methods are suffering from some drawbacks as discussed in detail in 

previous sections and in this work a new strategy for inverse kinematics problem is 

presented by combining computational intelligence with feedback theory to provide 

fast and real time solution. The proposed strategy is general and it is independent of 

the geometry of the robot arm or its number of degrees of freedom (DOF) and only 

the forward kinematics is required. The proposed method is a closed-loop strategy in 

which the IKP is restated as a control problem for a dynamic system and the 

objective is providing a good trajectory tracking performance. In robotic manipulator 

dynamic control, most existing control approaches discussed in the literature are 

model based and a good performance is achieved when the dynamic mode of the 

robotic manipulator is known. In addition, some of existing methods are not robust to 

model uncertainties or external disturbance. However, in case of unpredictable 

variations in the parameters of the manipulator dynamic or any modeling error due to 

complexity of the manipulator dynamic, the performance of these methods will be 

highly affected. The limitations of the existing control methodologies and these 

challenges have motivated research on a new robust control approach for trajectory 

control of nonlinear robotic manipulator system that achieves good performance 

regardless of system uncertainties and modeling error. Lyapunov stability theorem is 

used in this work to approve stability of the proposed method and for tuning and 

selecting the controller parameters. To demonstrate the effectiveness of the proposed 

methodologies, 2-link planar robot arm is used in the simulation with all 

uncertainties in the dynamic of controlled system considered and subjected to 

external disturbance. 
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1.5 Thesis Organization 

This thesis is organized as follows: 

In Chapter two, the robot kinematics is discussed in detail by reviewing important 

methods used for solving IKP with focus on advantage and disadvantage of each 

method. In addition, modeling the robotic manipulator system is introduced with 

background concepts that are necessary to understand the proposed method like 

independent joint control and model uncertainties. In order for a better understanding 

of the contribution of the proposed method, principle of the SMC which represents 

an efficient robust control scheme for nonlinear systems is discussed in detail and 

also CTC which is designed specifically for the robotic manipulator are reviewed. 

Weak points of these two methods are presented in this chapter. 

In Chapter three, after reviewing important modification in Damped Least Square  

(DLS) method, and basic concepts in fuzzy logic (fuzzification, defuzzification and 

membership functions), a firstly-proposed method that improves and modifies the 

DLS based on fuzzy logic is presented. Fuzzy-like PD controller is used to minimize 

the error between desired and actual trajectories. To demonstrate the effectiveness of 

the proposed method, 2-link robotic manipulator is used in simulation test and the 

results of proposed method are compared with DLS method. A second proposed 

method that overcomes the problem of singularity is discussed in details in which a 

hybrid controller is presented combining SMC with PD. SCARA robot arm is 

simulated to demonstrate the effectiveness and generality of the proposed method.  

To demonstrate the feasibility of the robust control based on LMI approach, chapter 

four presents two methods that improve conventional SMC and CTC, respectively. In 

these methods, the linear controller gain part is determined by using LMI while the 

robust gain is selected based on Lyapunov theory, which ensures stability of the 

proposed control scheme. The performance of the proposed controller is compared 

with the performance of other efficient methods. 

Chapter five presents an adaptive and robust control scheme, which is based on SMC 

accompanied by Proportional Derivative (PD) control terms in presence of system 

uncertainties and external disturbances. In this method, an adaptation technique is 

proposed to overcome the problem of model uncertainties and determining upper 
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bound of uncertainty. Lyapunov theory is used to get adaptation rules for the 

controller parameter and for approving stability of proposed method. Simulation tests 

are utilized to compare proposed method with conventional SMC in terms of 

tracking control performance and cumulative error. Results have revealed significant 

improvement in both aspects. 

Finally, chapter six reviews the important features of the proposed algorithms that 

solve important problem in IK and dynamic control of robotic manipulator system. In 

addition, some suggestions for future work to improve the proposed algorithm are 

presented.   
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CHAPTER TWO 

ROBOTIC MANIPULATOR KINEMATICS, DYNAMICS AND CONTROL 

Robotic manipulators have been widely and successfully used in various fields like 

surgical manipulators, military applications, process industries, and many more [75]. 

The good performance and accurate tracking are important features of these systems 

but robotic manipulator is a MIMO system with hard nonlinearities and strong 

coupling among joints. Therefore, control problem of a robotic manipulator with the 

aim of good performance and accurate tracking has drawn an increasing attention in 

recent years [76]. Through an accurate kinematic and dynamic model for the robotic 

manipulator system, it is possible to determine an appropriate control method. 

2.1 Robotic Manipulator Kinematics 

The robotic manipulator kinematics discusses and studies robotic manipulator motion 

regardless of the effects of the forces. Kinematics is the important and essential step 

also for dynamics of the robotic manipulator because the robot will move along a 

trajectory obtained by IK. Kinematics of the robotic manipulator includes two parts: 

forward kinematics and inverse kinematics. In forward kinematics the end effector 

position and orientation are determined based on the given joint angles. For an n-

DOF robotic manipulator, the relation between the end effector location in Cartesian 

space and the vector of joint variables is a nonlinear function, 

𝑥 = 𝑓(𝑞)                                                             (2.1) 

where 𝑥 = [𝑥1, 𝑥2, …… . . 𝑥𝑚]
𝑇 refers to the task space vector variable and m 

represents  the number of variables in task space, 𝑞 = [𝑞1, 𝑞2, …… . . 𝑞𝑛]
𝑇 denotes the 

joint angles and n represents the number of joints in the robotic manipulator. This 

function denotes the forward kinematics of robotic manipulator. Denevit-Hartenberg 

homogeneous transformation matrices is the important procedure used to 
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determine the kinematic model of the robotic manipulator. The inverse kinematics 

based on joint velocities (𝑞̇) can be determined as follows: 

𝑥̇ = 𝐽(𝑞)𝑞̇                                                             (2.2) 

where  𝐽(𝑞) ∈ 𝑅𝑚×𝑛 is Jacobian matrix. 

𝐽(𝑞) =
𝜕𝑓

𝜕𝑞
                                                                                    (2.3) 

For a given desired end effector pose 𝑥𝑑, one can find the joint angles as follows: 

𝑞 = 𝑓−1(𝑥𝑑)                      (2.4) 

𝑞̇ = 𝐽−1(𝑞)𝑥̇𝑑                                                                 (2.5) 

In general, geometry of most robotic manipulators is complex and it is very difficult 

to obtain a closed form solution for the IK. Therefore, only the analytical method 

will be discussed and analyzed in this chapter. 

2.1.1 Jacobian Transpose Method 

Balestrino et al., proposed Jacobian Transpose Method for solving the IKP by using 

transpose of Jacobian matrix instead of inverse of it [77-78]. This method tries to 

minimize the following cost function, which determines the error between desired 

end effector and current end effector position: 

 𝐹 =
1

2
(𝑥𝑑 − 𝑥)

𝑇(𝑥𝑑 − 𝑥)                    (2.6) 

∆𝑞 = −𝛼 (
𝜕𝐹

𝜕𝑞
)
𝑇

                                 (2.7) 

where 𝛼 is a positive scalar 

∆𝑞 = = −𝛼 ((𝑥𝑑 − 𝑥)
𝑇  
𝜕𝑓(𝑞)

𝜕𝑞
)
𝑇

                   (2.8) 

= −𝛼((𝑥𝑑 − 𝑥)
𝑇 𝐽(𝑞))𝑇         (2.9) 

= −𝛼 𝐽𝑇(𝑥𝑑 − 𝑥)                    (2.10) 
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In this method, there is no need to determine the inverse of the Jacobian matrix and 

the computation steps are simple. However, this method requires many steps to get a 

solution and it is non-conservative. 

2.1.2 Pseudo Inverse Method 

The methods that are based on inverse Jacobian matrix is suffering from the problem 

that the dimensions of joint variables and task space are not equal, which means that 

the Jacobian matrix is not square and cannot be inverted. Therefore, pseudo inverse 

matrix is used instead of the inverse matrix, which can be derived as follows: 

𝐽 ∆𝑞 = ∆𝑥                    (2.11) 

𝐽𝑇𝐽 ∆𝑞 = 𝐽𝑇∆𝑥                  (2.12) 

∆𝑞 = 𝐽𝑇(𝐽𝐽𝑇)−1∆𝑥                  (2.13) 

Although this method solves the inversion problem of the Jacobian matrix, there still 

remains problem at singularities and it is non-conservative. 

2.1.3 Damped Least Squares 

The Damped Least Squares (DLS) method solves the problem of singularity that 

appears in all methods based on inverse of Jacobian matrix and therefore it is more 

stable than other methods. It was first used by Wampler [79] and Nakamura and 

Hanafusa [80]. 

The cost function used in this method is 

‖𝐽 ∆𝑞 − ∆𝑥‖2 + 𝜆2‖∆𝑞‖2         (2.14) 

where λ ∈ R is the damping constant that is selected to minimize the following: 

‖(
𝐽
λI
) ∆𝑞 − (

∆𝑥
0
)‖         (2.15) 

This quantity can be rewritten as follows: 

𝐽𝑇∆𝑥 = (𝐽𝑇 𝐽 + 𝜆2𝐼)∆𝑞         (2.16) 
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∆𝑞 = (𝐽𝑇 𝐽 + 𝜆2𝐼)−1𝐽𝑇∆𝑥        (2.17) 

It can be seen that the matrix (𝐽𝑇 𝐽 + λ2𝐼) is nonsingular and problem of singularity 

can be compensated. Damping constant must be chosen carefully because very large 

values make this method very slow and small value of damping constant makes this 

method similar to the Pseudo Inverse Method. 

2.2 Robotic Manipulator Dynamics 

Manipulator dynamics are a set of mathematical equations that describe the 

response of manipulator to input torque. Manipulator modeling is necessary to 

determine the torque required to execute a specific task. Manipulator control 

requires accurate modeling for the manipulator to get desired performance. 

Physical laws of Lagrangian and Newtonian mechanics are used to model the 

manipulator, which represent complex dynamic systems. Lagrange’s equations 

of motion can be expressed as follows: 

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
−
𝜕𝐿

𝜕𝑞
= 𝜏                                       (2.18) 

where 𝑞 is an n-vector of generalized coordinates,𝜏 is an n-vector of generalized 

force and 𝐿 is the difference between the kinetic and potential energies.  

𝐿 = 𝑘 − 𝑝                                 (2.19) 

For the manipulator 𝑞 represents joint angles and τ represents torque. Dynamic 

model of a MIMO nonlinear robotic manipulator system can be expressed as 

follows:   

𝑀(𝑞) 𝑞̈ + 𝑁(𝑞, 𝑞̇ )𝑞̇ + 𝐺(𝑞) + 𝐹(𝑞̇) + 𝜏𝑑 = 𝜏                                   (2.20) 

where 𝑞 ∈ 𝑅𝑛 is joint angular position vector, τ is torque vector, 𝑀(𝑞) ∈ 𝑅𝑛 × 𝑛 is 

inertia matrix as a function of 𝑞, 𝑁(𝑞, 𝑞̇ ) ∈ 𝑅𝑛 × 𝑛 is Coriolis/centripetal matrix, 

𝐺(𝑞) ∈ 𝑅𝑛  is gravity vector, 𝐹(𝑞̇) ∈ 𝑅𝑛 is frictional force vector and 𝜏 𝑑 ∈ 𝑅
𝑛 is 

external disturbance. 
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2.2.1 Robotic Manipulator Properties 

The dynamic model of robotic manipulator system has some important properties, 

which are very important for many control schemes and for the identification 

algorithms used to estimate parameters of the robotic manipulator like mass of each 

link and frictions. The important properties are given below. 

Property 2.1   The inertia matrix 𝑀(𝑞) in (2.20) is a square symmetric positive 

definite matrix and it is bounded as follows: 

‖𝑀(𝑞)‖ ≤ 𝛽1                                                    (2.21) 

where 𝛽1 is a positive scalar.  

Property 2.2   The Coriolis/Centrifugal matrix 𝑁(𝑞, 𝑞̇) in (2.20) is bounded as 

follows: 

‖𝑁(𝑞, 𝑞̇)‖ ≤ 𝛽2‖𝑞̇‖                                            (2.22)    

where 𝛽2 is a positive scalar. In addition, the matrix 𝑀̇(𝑞) − 2𝑁(𝑞, 𝑞̇ ) is a skew 

symmetric matrix. Then the relation between inertia matrix and of Coriolis/ 

Centrifugal matrix can be expressed as follows: 

𝑋𝑇[𝑀̇(𝑞) − 2𝑁(𝑞, 𝑞̇ )]𝑋 = 0, 𝑋 ∈ 𝑅𝑛  (2.23) 

Property 2.3   The viscous friction vector  𝐹(𝑞̇) in (2.20) is bounded as follows: 

‖𝐹(𝑞̇)‖ ≤ 𝛽3‖𝑞̇‖ + 𝛽4  (2.24) 

where 𝛽3 and 𝛽4 are positive scalars.  

Property 2.4   The Coriolis/centrifugal matrix 𝐺(𝑞) in (2.20) is bounded as follows: 

‖𝐺(𝑞)‖ ≤ 𝛽5                                                                                   (2.25)    

where 𝛽5 is a positive scalar. 

Property 2.5   The external disturbance 𝜏𝑑 in (2.20) is bounded as follows: 

‖𝜏𝑑‖ ≤ 𝛽6                                                                (2.26) 
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Property 2.6   Since the robotic manipulator is linearly parametrized, its dynamics 

can be represent by the product of a known regressor matrix 𝑌(𝑡, 𝑞, 𝑞̇, 𝑞𝑑, 𝑞̇𝑑) ∈

𝑅𝑛 × 𝑝  with a vector 𝜑 ∈ 𝑅𝑝  in terms of a nominal reference 𝑞̈𝑟 where 𝑝 refers to the 

number of unknown parameters. Matrix 𝑌 is based only on desired and actual 

trajectories while vector 𝑎 contains the unknown manipulator parameters. 

𝑀 𝑞̈𝑟 +𝑁 𝑞̇𝑟 + 𝐺(𝑞) + 𝐹(𝑞̇) = 𝑌 𝜑                      (2.27) 

𝑞̇𝑟 = 𝑞̇𝑑 + 𝐴1𝑒̇ + 𝐴2𝑒   (2.28) 

where 𝐴1 ∈ 𝑅
𝑛 𝑥 𝑛 and 𝐴2  ∈ 𝑅

𝑛 𝑥 𝑛 are positive definite diagonal matrices. 

Assumption 2.1. The desired trajectories and their derivatives 𝑞𝑑(𝑡), 𝑞̇𝑑(𝑡),  𝑞̈𝑑(𝑡) 

are bounded as follows: 

|𝑞𝑑(𝑡)| ≤ 𝑀𝑑1, |𝑞̇𝑑(𝑡)| ≤ 𝑀𝑑2, |𝑞̈𝑑(𝑡)| ≤ 𝑀𝑑3     (2.29) 

with 𝑀𝑑1, 𝑀𝑑2, and 𝑀𝑑3 being positive constants.  

2.2.2 Two Links Robotic Manipulator  

In this work, a 2-DOF robotic manipulator is used in the simulation to demonstrate 

effectiveness of the proposed methods under different challenging cases of parameter 

variations and external disturbances. The dynamic model of the 2-DOF robotic 

manipulator is [37]: 

[
𝜏1
𝜏2
] = [

𝐴11 𝐴12
𝐴12 𝐴12

] [
𝑞̈1
𝑞̈2
] + [

−2𝑏𝑞̇2 −𝑏𝑞̇2
𝑏𝑞̇1 0

] [
𝑞̇1
𝑞̇2
] + [

𝑣1𝑞̇1
𝑣2𝑞̇2

] + [
𝑝1𝑠𝑔𝑛(𝑞̇1)
𝑝2𝑠𝑔𝑛(𝑞̇2)

] + [
𝐺1
𝐺2
] 

       (2.30) 

with 

𝐴11 = 𝛼 + 2𝜖 𝑐𝑜𝑠(𝑞2) = 𝐼1 + 𝐼2 +𝑚1𝑙𝑐1
2 +𝑚2[𝑙1

2 + 𝑙𝑐2
2 + 2𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝑞2)]    

𝐴12 = 𝛽 + 𝜖 𝑐𝑜𝑠(𝑞2) = 𝐼2 +𝑚2[𝑙1𝑙𝑐2 𝑐𝑜𝑠(𝑞2) + 𝑙𝑐2
2 ]    

𝐴22 = 𝛽 = 𝐼2 +𝑚2𝑙𝑐2
2     

𝑏 = 𝜖 𝑠𝑖𝑛(𝑞2) =  𝑚2𝑙1𝑙𝑐2 𝑠𝑖𝑛(𝑞2)   
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𝐺1 =  𝑒1 𝑔 𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝑒2𝑔𝑐𝑜𝑠(𝑞1)  

= 𝑚1𝐿𝑐1𝑔𝑐𝑜𝑠(𝑞1) + 𝑚2𝑔[𝐿𝑐2𝑐𝑜𝑠(𝑞1 + 𝑞2) + 𝐿1𝑐𝑜𝑠(𝑞1)]    

𝐺2 =  𝑒1 𝑔 𝑐𝑜𝑠(𝑞1 + 𝑞2)   

= 𝑚2𝑙𝑐2𝑔 𝑐𝑜𝑠(𝑞1 + 𝑞2)  

Gravitational force can be ignored when the robotic manipulator operates on 

horizontal plane. The definitions of the parameter and their nominal values are listed 

in Table 2.1 and Table 2.2 respectively. Virtual Reality Modeling Language (VRML) 

is used to visualize the motion of 2-link robotic manipulator. At first, the objects in 

VRML environment are used to model the 2-link manipulator as shown in Figure 2.1 

and it can be linked with Simulink model by using VR sink block that accepts signals 

from Simulink and display it in Virtual Reality (VR) environment as shown in Figure 

2.2. 

Table 2.1. Definitions of variables  

Variable Definition 

𝑞1(rad) Angular position of  link1 

𝑞2 (rad) Angular position of link2 

𝜏1(N m) Applied torque of link1 

𝜏2(N m) Applied torque of link2 

𝑚1 (kg) Mass of link1 

𝑚2 (kg) Mass of link2 

𝑙1(m) length of link1 

𝑙2 (m) length of link2 

𝑙𝑐1 (m) Distance from the joint of link1 to its center of gravity   

𝑙𝑐2 (m) Distance from the joint of link2 to its center of gravity   

𝐼1(kg  m
2
) Lengthwise centroid inertia of link1 

𝐼2(kg  m
2
) Lengthwise centroid inertia of link2 

𝑣1 Viscous friction coefficient of link1 

𝑣2 Viscous friction coefficient of link2 

𝑝1 Dynamic friction coefficient of link1 

𝑝2 Dynamic friction coefficient of link2 
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Table 2.2 Nominal values   

Variable Nominal Value 

𝛼 22.2 

𝛽 9.98 

𝜖 7.75 

𝑒1 8.75 

𝑒2 15 

𝑔 9.8 

𝑣1 1 

𝑣2 1 

𝑝1 1 

𝑝2 1 

 

 

 

 

 

Figure 2.1 2-DOF robotic Manipulator in VR 
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Figure 2.2 VR sink block 

2.3 Robotic Manipulator Control 

Usually, the motion of the end effector of any robotic manipulator is in the task 

space, while the control torques are in the joint space. As a result, there are two 

general methodologies for the motion control of the robotic manipulator system: joint 

space control and task space control. Today joint space control scheme has been used 

for all industrial robotics manipulators. Therefore, in this thesis only the joint space 

control will be addressed and analyzed.  

2.3.1 Decentralized control 

In decentralized control, the robotic manipulator is system divided into subsystems 

where each joint is considered as a subsystem with saving the coupling effect 

between joint by considering it as disturbance. Therefore one controller is designed 

for each joint. The dynamic model of each joint is expressed in scalar terms as 

follows [81]: 

𝑚𝑖𝑖 (𝑞)𝑞̈𝑖(𝑡) + ∑ 𝑚𝑖𝑗 (𝑞)𝑞̈𝑗(𝑡)
𝑛
𝑗=1
𝑗≠𝑖

+ 𝑛𝑖(𝑞, 𝑞̇) + 𝑔𝑖(𝑞̇) + 𝑓𝑖(𝑞̇) = 𝜏𝑖    (2.31)                                  

where n is the total number of joints in the manipulator, 𝑖 is a positive integer with  

1 ≤ 𝑖 ≤ 𝑛 that denotes the joint number, 𝑞𝑖 is the displacement of joint i, 𝑚𝑖𝑖 is the 

inertia of the link connected to joint i, 𝑚𝑖𝑗 is the inertia of the link between joints i 



20 

 

and j, 𝑛𝑖 is the total Coriolis and centrifugal force, 𝑔𝑖 is the gravitational force, ℎ𝑖 is 

the frictional force, and 𝜏𝑖 is the external torque acting on joint i. Defining 𝑑𝑖(𝑞, 𝑞̇, 𝑞̈) 

as a time-varying disturbance torque representing the coupling effects between joints 

including the centrifugal, Coriolis, friction, and gravitational forces associated with 

joint i: 

𝑑𝑖(𝑞, 𝑞̇, 𝑞̈) = ∑ 𝑚𝑖𝑖 (𝑞)𝑞̈𝑗(𝑡)
𝑛
𝑗=1
𝑗≠𝑖

+ 𝑛𝑖(𝑞, 𝑞̇) + 𝑔𝑖(𝑞̇) + 𝑓𝑖(𝑞̇)                (2.32)                                          

The model in (2.31) reduces to: 

𝑚𝑖𝑖 (𝑞)𝑞̈𝑖(𝑡) + 𝑑𝑖(𝑞, 𝑞̇, 𝑞̈) = 𝜏𝑖                             (2.33)                                                                                

2.3.1.1 Independent Joint Control 

In this control methodology, each joint is considered as an independent system that 

tracks a joint angle trajectory while the nonlinearity and coupling effects of other 

joints are represented as disturbance as mentioned in the previous subsection. 

However, it requires the design of N independent joint controllers for the N links of 

the arm. Then the control signal for the i
th

 joint can be expressed as 

𝑢𝑖(𝑡) = 𝑘𝑝𝑖(𝑞𝑖 − 𝑞𝑑) + 𝑘𝑑𝑖(𝑞̇𝑖 − 𝑞̇𝑑𝑖) + 𝑘𝑖 ∫ (𝑞𝑖 − 𝑞𝑑)𝑑𝑡
𝑡

0
               (2.34) 

where 𝑞𝑑 is the desired trajectory for the i
th

 joint. 𝑘𝑝𝑖 , 𝑘𝑑𝑖 , 𝑎𝑛𝑑 𝑘𝐼𝑖 are proportional, 

derivative and integral control gains,  respectively. There are several drawbacks in 

independent joint control: the output of the joint controller is based only on the error 

of that joint, it is based on the classis control concepts, and finally, representing the 

effects of some robotic manipulator dynamic parameters as disturbance downgrade 

the performance causing an increase in the tracking errors. 

2.3.2 Centralized Control 

The robotic manipulator is a nonlinear system with strong coupling among its joints 

and considering it as a combination of SISO systems achieved by the decentralized 

control approach highly effects its trajectory tracking performance. In decentralized 

control methodologies, all interactions and coupling between the joints are 

considered as disturbances that act on each joint, but in fact there are some important 
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properties for the dynamic model of robotic manipulator to be used in order to 

compensate for the system uncertainties and external disturbance. Therefore, it is 

required to eliminate the causes of these effects instead of reducing the effects by 

generating a suitable torque considering the states of the controlled system. As a 

result, the control methodology that considers the robotic manipulator as a single 

system is called centralized control. In this section, two important methods of CTC 

and SMC  will be discussed and each method will be analyzed in order to propose a 

new method that overcomes the drawbacks of these important methods. 

2.3.2.1 Compute Torque Control 

The CTC method is multivariable control strategy that considers the robotic 

manipulator as a single system in order to compensate for the gravity, friction and 

Coriolis and centrifugal effects. This method can provide a good trajectory tracking 

performance with respect to the independent joint controller because its design is 

based on dynamics of the robotic manipulator taking into account all coupling effects 

by performing exact linearization of the dynamics of the robotic manipulator. The 

proposed controller consists of two parts. First part is a servo while the second part is 

model based. The control law for the model based part is 

𝜏 = 𝑀(𝑞)𝜏′ +𝑁(𝑞, 𝑞̇) + 𝐹(𝑞̇) + 𝐺(𝑞)             (2.35) 

where 𝜏′ ∈ 𝑅𝑛  is the torque vector produced by the servo part. It can be noticed by 

comparing (2.35) with (2.20) that 

𝜏′ = 𝑞̈               (2.36) 

The model based part of CTC aims to linearize and decouple the relation between 

inputs and outputs of the manipulator dynamics by using a nonlinear feedback of the 

actual joint angles and their derivatives. The second part of CTC is servo and it is 

model free since it is based only on tracking error signal and its derivative. The 

objective of this part is stabilizing the controlled system. According to the control 

law in (2.35), it is required to determine (𝑞),  𝑁(𝑞, 𝑞̇), 𝐹(𝑞̇), and 𝐺(𝑞). However, the 

true values of (𝑞),  𝐶(𝑞, 𝑞̇), 𝐹(𝑞̇), and 𝐺(𝑞)  cannot be determined off-line since 

their values are based on actual instantaneous position and velocity.  The tracking 

error and its derivative can be expressed as  
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𝑒(𝑡) = 𝑞𝑑(𝑡) − 𝑞(𝑡)               (2.37) 

𝑒̇(𝑡) = 𝑞̇𝑑(𝑡) − 𝑞̇(𝑡)   (2.38) 

where 𝑞𝑑(𝑡) ∈ 𝑅
𝑛  and 𝑞(𝑡) ∈ 𝑅𝑛  are desired and actual joint positions, respectively. 

The control law of this part is 

𝜏′ = 𝑞̈𝑑(𝑡) + 𝑘𝑝𝑒(𝑡) + 𝑘𝑑𝑒̇(𝑡)        (2.39) 

𝑘𝑝 ∈ 𝑅
𝑛𝑥𝑛, and  𝑘𝑑 ∈ 𝑅

𝑛𝑥𝑛 are diagonal matrices that denote the position and 

derivative gains. Then, the error dynamic of the controlled system will be 

𝑞̈ = 𝑞̈𝑑(𝑡) + 𝑘𝑝𝑒(𝑡) + 𝑘𝑑𝑒̇(𝑡)       (2.40) 

𝑞̈𝑑(𝑡) − 𝑞̈ + 𝑘𝑝𝑒(𝑡) + 𝑘𝑑𝑒̇(𝑡) = 0        (2.41) 

Let 

𝑒̈(𝑡) = 𝑞̈𝑑(𝑡) − 𝑞̈(𝑡)   (2.42) 

𝑘𝑝𝑒(𝑡) + 𝑘𝑑𝑒̇(𝑡) + 𝑒̈(𝑡) = 0        (2.43) 

Usually the position and derivative gain matrices are selected as diagonal matrices, 

which is an indication of the fact that  the dynamic error in closed loop for each joint 

is independent of the error dynamic of other joints. 

𝑘𝑝𝑖 𝑒𝑖(𝑡) + 𝑘𝑑𝑖𝑒̇𝑖(𝑡) + 𝑒̈𝑖(𝑡) = 0        (2.44) 

where  

𝑘𝑝𝑖 , and 𝑘𝑑𝑖 denote the position and velocity gains of joint i. 

𝑒𝑖(𝑡)  is tracking position error of joint i. 

𝑒̇𝑖(𝑡)  denotes the tracking velocity error of joint i. 

𝑒̈𝑖(𝑡)  refers to the tracking acceleration error of joint i. 

Equation (2.44) indicates clearly that the nonlinear dynamic model of the robotic 

manipulator is mapped into N linear and decoupled subsystems (i.e. joints). From 
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(2.44) it is possible to make the response of joint i critically damped using the 

following relation: 

𝑘𝑑𝑖 = 2√𝑘𝑝𝑖           (2.45) 

Although the trajectory tracking performance of CTC method for controlling robotic 

manipulator is better than performance of independent joint control, there are some 

important drawbacks of this method. The CTC method requires knowing the 

dynamic model of robotic manipulator exactly, which is not easy to obtain in 

particular applications. For example, the friction structure cannot be known exactly 

during the operation and the payload may be subject to change. On the other hand, 

any uncertainties and external disturbance will have a significant effect on the 

performance. Moreover, CTC is more complex with respect to linear controllers due 

to the fact that it needs determining details of dynamic model of the robotic 

manipulator like mass, friction, and gravity, which must be done online. Many 

research articles have been published for improving the CTC method based on 

advanced control schemes.  

2.3.2 Sliding Mode Control 

In the early 1950s, Emelyanov with his co-researchers Utkin and Itkis from the 

Russian Soviet Union, proposed variable structure control (VSC) with SMC. VSC 

and SMC have generated significant interest by researchers in the control theory 

[82]. Insensitivity to parametric uncertainty and external disturbances is the 

important feature of SMC, which utilizes a high-speed switching control law to 

achieve two objectives. Firstly, it drives the nonlinear plant’s state trajectory onto a 

specified surface in the state space, which is called the sliding or switching surface. 

This surface is called the switching surface because a control path has one gain if the 

state trajectory of the plant is “above” the surface and a different gain if the trajectory 

drops “below” the surface. Secondly, it maintains the plant’s state trajectory on this 

surface for all subsequent times. The system is designed to drive and then constrain 

the system state to lie within a neighborhood of the switching function. The closed-

loop response becomes totally insensitive to model uncertainty. In control law of 

SMC, the control signal changes its value infinitely fast because SMC is 

discontinuous which causes high frequency oscillation called chattering. Robustness 
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and chattering reduction are the factors used to evaluate the performance of any 

control approach based on SMC. 

2.3.2.1 SMC for Robotic Manipulator 

The trajectory states in SMC that start from a non‐zero initial condition evolve in two 

phases: 

a) Reaching mode 

This phase is equivalent to the transient state in classic control. In this mode 

the state trajectories are enforced to move towards the sliding surface in finite 

time called reaching time. 

b) Sliding mode 

This phase is equivalent to steady state in classic control and SMC keeps the 

trajectory states within sliding mode regardless of the system uncertainties 

and external disturbance that may occur. 

The equation 𝑠(𝑡) = 0 defines a surface in the error space, that is called “sliding 

surface”. In robotic manipulator, the sliding surface is selected as follows: 

𝑠(𝑡) = 𝑐𝑒(𝑡) + 𝑒̇(𝑡)                                             (2.46) 

where 𝑐 is a diagonal positive definite matrix. The trajectories of the controlled 

system are enforced onto the sliding surface. The objective of SMC control law is 

enforcing the tracking error to approach the sliding surface and move to the origin 

along the sliding surface. The SMC control law consists of two terms: equivalent 

control term and robust term. The equivalent term is responsible for the performance 

with nominal model of controlled system while the robust term is compensating the 

uncertainties of the controlled system and external disturbance. 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠                                                     (2.47) 

𝑢𝑒𝑞  is  equivalent control that makes the derivative of the sliding surface equal to 

zero to stay on the sliding surface. 𝑢𝑠 is corrective control that compensates for the 

deviations from the sliding surface. The robust term, which is also called hitting 

control or reaching control, is determined based on Lyapunov theorem as follows:  
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Let 𝑣(𝑡) be the Lyapunov function candidate, 

𝑣(𝑡) =
1

2
𝑠𝑇𝑀𝑠   (2.48) 

To ensure that the tracking error will move towards the sliding phase and remain in 

sliding phase, it must be selected a control law that achieves the following condition:  

𝑣̇(𝑡) ≤ 0   (2.49) 

𝑣̇(𝑡) = 𝑠𝑇[𝑀( 𝑞̈𝑟 − 𝑞̈) + 𝑁( 𝑞̇𝑟 − 𝑞̇)]  (2.50) 

𝑣̇(𝑡) = 𝑠𝑇[𝑀𝑞̈𝑟 + 𝑁 𝑞̇𝑟 + 𝐺 + 𝐹 − 𝑢]  (2.51) 

𝑣̇(𝑡) = 𝑠𝑇[𝑀𝑞̈𝑟 + 𝑁 𝑞̇𝑟 + 𝐺 + 𝐹 − 𝑢𝑒𝑞 − 𝑢𝑠]   (2.52) 

𝑢𝑒𝑞 = 𝑀𝑜𝑞̈𝑟 +𝑁𝑜 𝑞̇𝑟 + 𝐺𝑜 + 𝐹𝑜  (2.53) 

where 𝑀𝑜, 𝑁𝑜, 𝐺𝑜, and 𝐹𝑜 are nominal parts of inertia matrix, Coriolis/centripetal 

matrix, gravity vector, and frictional force vector, respectively.  

𝑣̇(𝑡) = 𝑠𝑇[𝑀̃𝑞̈𝑟 + 𝑁 𝑞̇𝑟 + 𝐺̃ + 𝐹̃ − 𝑢𝑠]   (2.54) 

where 𝑀̃, 𝑁, 𝐺̃, and 𝐹̃ represent uncertainty parts of inertia matrix, 

Coriolis/centripetal matrix, gravity vector, and frictional force vector, respectively. 

The reaching condition (i.e. 𝑣̇(𝑡) ≤ 0) can be guaranteed if 𝑢𝑠 is selected as follows: 

𝑢𝑠 = 𝑘 𝑠𝑔𝑛(𝑆)  (2.55) 

where  

‖𝑘‖ >  ‖𝑀̃𝑞̈𝑟 +𝑁 𝑞̇𝑟 + 𝐺̃ + 𝐹̃ ‖   (2.56) 

Then 𝑘 is based on upper bound of the uncertainty for the dynamics of robotic 

manipulator and 𝑠𝑔𝑛(∙) is the sign function. Under control law in (2.47), the states of 

system can track a given reference signal with tracking error converging to zero in 

finite time. However, the traditional control law has two drawbacks [83]: 

1- In practical applications of robot manipulator, it may not be easy to determine 

the upper bound of uncertainties and external disturbance.    
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2- The discontinuous term in control law due to the sign function causes the 

chattering problem and modelling error due to complex structure of robot 

manipulator this may increase chattering and may cause damage for the 

actuator of the robotic manipulator.  
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CHAPTER THREE 

PROPOSED INVERSE KINEMATICS SOLUTIONS BASED ON 

CLOSED-LOOP STRATEGY 

This chapter presents two schemes for solving IKP of a multi-link robotic 

manipulator. Important features of the proposed strategy are generality and simplicity 

regardless of the number of DOF and geometry of the robot and only the forward 

kinematics is required. These methods are based on a closed-loop strategy in which 

the IKP is restated as a control problem for a dynamic system and the objective is 

providing a good trajectory tracking performance. Different Cartesian trajectories 

with different configurations of robotic arm are used to illustrate efficiency of the 

proposed methods. 

3.1 Introduction 

As discussed in previous chapter, although different strategies have been suggested 

to solve the IKP, still there are some weak points in these methods [84-86]. In recent 

years, many computational intelligence methods have been proposed and applied 

successfully for solving IKP due to their ability in performing input-output mapping 

faster than numerical methods [87, 88]. Features of ANN in representation of the 

nonlinear relationship have motivated researchers to use ANN to solve the IKP by 

providing nonlinear mapping between the Cartesian space and the joint space. In 

training phase of ANN, Cartesian position and angular position are considered as 

input and output respectively for the ANN [89]. This approach is common in 

literature and several studies use the same input-output pairs for the training phase 

[90-94]. A. Hasan presents an analysis of different structures of neural network used 

for solving the IKP [25]. Ability of fuzzy logic in modelling complex systems by 

generating rules based on human experiences motivated many researchers to use 

fuzzy logic with ANN to reduce computation time required in training stage [95]. All 

methods discussed above are open-loop approaches with the main drawbacks of long 

computational time, complex computations and sensitivity to initial values.                
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A different approach for solving the IKP is suggested in this study with a closed-loop 

nature. In this approach, a closed-loop feedback system is considered where the input 

is desired end-effector trajectory and the outputs are joint trajectories.  

3.2 Proposed PD-Fuzzy Method 

In this method, a new strategy based on fuzzy-like PD controller is suggested to solve 

the IKP. The aim of the controller is to reduce the difference between the desired end-

effector Cartesian position and actual one as shown in Figure 3.1. The proposed 

algorithm assumes that the desired Cartesian space trajectory 𝑋𝑑 is given, and the goal 

of proposed controller is to find a joint trajectory 𝑞 that can track the desired 

Cartesian space trajectory. The configuration of the proposed fuzzy-like PD control is 

shown in Figure 3.1. The fuzzy-like PD controller contains a two-input-single-output 

fuzzy PD (FPD) term, in which Mamdani’s fuzzy inference method is used. 𝑈𝐹  is the 

output of FPD controller, which is determined by normalizing the tracking error 𝑒(𝑡) 

and its derivative 𝑒̇(𝑡).  

𝑈𝐹 = 𝑘𝐹  𝑓𝑢𝑧𝑧𝑦(𝑒(𝑡), 𝑒̇(𝑡))   (3.1) 

𝑒(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), ⋯ ,  𝑒𝑛(𝑡)]
𝑇  (3.2)                 

𝑒̇(𝑡) = [𝑒̇1(𝑡), 𝑒̇2(𝑡), ⋯ , 𝑒̇𝑛(𝑡)]
𝑇  (3.3) 

𝑒𝑖(𝑡) = 𝑥𝑖𝑑 − 𝑥𝑖   (3.4) 

𝑒̇𝑖(𝑡) = 𝑥̇𝑖𝑑 − 𝑥̇𝑖   (3.5) 

where   𝑖 = 1,… , 𝑛.  𝑛 is number of joints in the robot arm and 𝑘𝑒, 𝑘𝑑, and 𝑘𝐹 are 

scaling factors for inputs and output of fuzzy controller, respectively. The rules of the 

controller represent mapping of the input linguistic variables 𝑒(𝑡) and 𝑒̇(𝑡) to the 

output linguistic variable 𝑢𝑓(𝑡)  where 𝑓𝑢𝑧𝑧𝑦(𝑒(𝑡), 𝑒̇(𝑡)) refers to the characteristics 

of the fuzzy linguistic decision system. Figure 3.2 shows the membership function of 

input linguistic variables 𝑒(𝑡) and 𝑒̇(𝑡) and the membership functions of output 

linguistic variable 𝑢𝑓(𝑡). The membership functions are decomposed into five fuzzy 

partitions expressed as Negative Big (NB), Negative Small (NS), Zero (Z), Positive 

Small (PS), and Positive Big (PB). The triangle shape membership functions are used 

for the inputs and output variables and it can be expressed as follows: 
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Figure 3.1 Proposed Fuzzy IK solution 

𝑓(𝑥, 𝑎, 𝑏, 𝑐) = 𝑚𝑎𝑥 {𝑚𝑖𝑛 {
𝑥−𝑎

𝑏−𝑎
,
𝑐−𝑥

𝑐−𝑏
} , 0}   (3.6)           

where a and b parameters locate the feet of the triangle while the c parameter locates 

the peak.  Table 3.1 summarizes the rule tables used, where linguistic fuzzy rules are 

in the following form: 

𝑅(𝑙): 𝐼𝐹 𝑒𝑖(𝑡) 𝑖𝑠  𝐴1
𝑙  𝑎𝑛𝑑  𝑒̇𝑖(𝑡) 𝑖𝑠 𝐴2

𝑙  𝑇𝐻𝐸𝑁  𝜏𝑓𝑖(𝑡) 𝑖𝑠 𝐵
𝑙        (3.7)    

where 𝐴1
𝑙 , 𝐴2

𝑙   denote the input fuzzy sets, and 𝐵𝑙 denotes the output fuzzy sets. l 

refers to the number of fuzzy rules with 1 < 𝑙 < 25, and i denotes the number of 

joints in robotic manipulator with 1 < 𝑖 < 𝑛. Intersection minimum and center 

average operations are used for fuzzification and defuzzification, respectively. 
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Figure 3.2 Fuzzy sets of fuzzy controller 

Table 3.1 Rules table of fuzzy controller 

𝑒(𝑡) 

𝑒̇(𝑡) 
NB NS Z PS PB 

NB NB NB NB NS Z 

NS NB NB NS Z PS 

Z NB NS Z PS PB 

PS NS Z PS PB PB 

PB Z PS PB PB PB 

 

The IKP is converted into a problem of tracking in which the proposed algorithm 

aims to make the error tend to zero. In this case, i.e. if the error is reduced to zero or 

a very small value, the joint angles take their values achieved when the current 

output 𝑋(𝑡) is very close to desired value 𝑋𝑑(𝑡), which constitutes the solution for 

IKP.  The control law is based only on the error signal and its derivative, which 

means that the proposed algorithm is suitable for every robotic manipulator 

irrespective of the physical structure. 

3.2.1 Proposed PD-Fuzzy IK Solution Test  

The performance of proposed methods based on PD control with fuzzy logic for 

solving IKP is discussed in this section using Matlab. Two links arm (Figure 3.3) is 

used in this simulation with forward kinematics expressed as follows: 
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𝑥(𝑡) = 𝐿1 cos(𝑞1) + 𝐿2 cos(𝑞1 + 𝑞2)   (3.10) 

𝑦(𝑡) = 𝐿1 sin(𝑞1) + 𝐿2 sin(𝑞1 + 𝑞2)   (3.11) 

where 𝐿1 = 1 and 𝐿2 = 1 are lengths of link1 and link2 respectively with joint 

angles of −𝜋 ≤ 𝑞1 ≤ 𝜋,  and 
−3𝜋

2
≤ 𝑞2 ≤

3𝜋

2
.  The scaling factors are selected as: 

𝑘𝑒 = 0.3, 𝑘𝑑 = 0.2, 𝑘𝑓 = 30. Proposed method is compared with DLS method with 

desired end effector points (-0.5, 0.8), and the response of these methods are shown 

in Figure 3.4. It can be noticed from this figure the faster responses of proposed 

method with respect to DLS method. Tracking error of proposed error converges to 

zero in very short time indicating clearly the accuracy of proposed method and 

ability of it in real time applications. The joint angles that represent solution of IKP 

are shown in Figure 3.5. 

 

 

 

 

 

Figure 3.3 Schematic diagram of a two-link planar robot arm 

3.3 Proposed Robust IK Method   

In this section, a novel method for solving IKP of the multi-link robotic arm based on 

SMC is presented. Drawbacks and disadvantages of important schemes such as ANN 

and Jacobian based methods have been eliminated.  Huge training dataset, and 

singularity are main drawbacks of ANN and Jacobian based methods, respectively. 

The proposed method is a closed-loop strategy and for a known end effector position 

and orientation, a hybrid controller combining SMC with PD is proposed to 

minimize the error between desired and actual trajectories.  
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Figure 3.4   Motion along a) X axis, b) Y axis. Error in c) X axis, d) Y axis. 

Figure 3.5 Joint angles obtained by proposed method 
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Important advantages of proposed method are: 

1- It is an on-line algorithm, which means it can be applied in real time. 

2- The solution is given in position level while most other methods are based on 

velocity and acceleration trajectories, which may be not be accurate due to 

measurement noise.  

3- The stability of the proposed method is guaranteed based on Lyapunov 

theory. 

4- Singularity problem is solved because proposed solution avoids determining 

inverse of Jacobian matrix. 

SCARA robotic manipulator is used in simulations to demonstrate the effectiveness 

and generality of the proposed method. 

3.3.1 Kinematic Analysis of SCARA Robot   

The SCARA robotic manipulator is one of the most important and well-known 

robotic manipulators used successfully in many industrial applications such as 

packaging, cell manufacturing lines assembly, pick-and-place and so on. A 4-DOF 

SCARA robot has three revolute joints and one prismatic joint. Figures 3.6 and 3.7 

show the diagram of a SCARA robot in three dimensional (3D) and two dimensional 

(2D) views, respectively. In forward kinematics the end effector of robot arm motion 

with respect to the global coordinate system is studied. The origin of the global frame 

is located at the base of the robot arm as shown in Figure 3.8. Homogeneous 

transformation known as Denavit–Hartenberg (DH) notation is used to describe the 

forward kinematics of robot arm based on four parameters of each link as follows: 

𝐴𝑖 = 𝑅𝑜𝑡(𝑧, 𝜃𝑖)𝑇𝑟𝑎𝑛𝑠(0,0, 𝑑𝑖)𝑇𝑟𝑎𝑛𝑠(𝑎𝑖 , 0,0)𝑅𝑜𝑡(𝑥, 𝛼𝑖) 

= [

cos 𝜃𝑖 −sin 𝜃𝑖 cos 𝛼𝑖    sin 𝜃𝑖 sin 𝛼𝑖     𝑎𝑖cos 𝜃𝑖
sin 𝜃𝑖 −cos 𝜃𝑖 cos 𝛼𝑖 −cos 𝜃𝑖 sin 𝛼𝑖  𝑎𝑖 sin 𝜃𝑖
0
0

sin 𝛼𝑖
0

cos 𝛼𝑖
0

             𝑑𝑖
            1

]       (3.12) 

where 𝜃𝑖 represent joint angles from the 𝑋𝑖−1 axis to the 𝑋𝑖 about the 𝑍𝑖−1, 𝑑𝑖 refer to 

the distance between origin of the i
th

 coordinate frame to the intersection of the 𝑍𝑖−1 

axis along the 𝑍𝑖−1 axis, 𝑎𝑖 represent the distance form intersection of the 𝑍𝑖−1 axis 

with the 𝑋𝑖 axis to the origin of the i
th
 frame along the 𝑋𝑖 axis, and 𝛼𝑖 are the angles 
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from the 𝑍𝑖−1 axis to the  𝑍𝑖 axis about the 𝑋𝑖 . The DH parameters of the SCARA 

robot arm are shown in Table 3.2. 

Table 3.2. DH parameters of SCARA robot 

i 𝒒𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 

1 𝑞1 𝐿12 𝐿11 0 

2 𝑞2 0 𝐿2 0 

3 0 𝑑3 0 𝜋 

4 𝑞4 𝐿4 0 0 

 

𝐴𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 = 𝐴1 × 𝐴2 × 𝐴3 × 𝐴4 = [

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑝𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦 𝑝𝑦
𝑛𝑧
0

𝑠𝑧
0

𝑎𝑧
0

𝑝𝑧
1

] (3.13) 

𝐴1 = [

cos 𝜃1 −sin𝜃1           0        𝐿11cos 𝜃1
sin 𝜃1 −cos 𝜃1            0        𝐿11 sin 𝜃1
0
0

0
0

1
0
     
𝐿12
 1

] (3.14) 

𝐴2 = [

cos 𝜃2 −sin 𝜃2           0        𝐿2cos 𝜃2
sin 𝜃2 cos 𝜃2            0        𝐿2 sin 𝜃2
0
0

0
0

1
0
          

0
 1

] (3.15)  

𝐴3 = [

1 0 0 0
0 −1 0 0
0
0

0
0

−1
0

𝑑3
1

],  (3.16)  

𝐴4 = [

cos 𝜃4 −sin 𝜃4  0        0
sin 𝜃2 cos 𝜃2  0        0
0
0

0
0

   
1
0
      
𝐿2
 1

],       (3.17)  

𝐴𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟=  

[

cos 𝜃124 sin 𝜃124   0        𝐿2cos 𝜃12 + 𝐿11cos 𝜃1
sin 𝜃124 −cos 𝜃124  0        𝐿2sin 𝜃12 + 𝐿11sin𝜃1
0
0

0
0

   
−1
  0

      
𝐿12 + 𝑑3 − 𝐿4                   

1

]   (3.18) 
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The end effector orientation can be described based on of the roll-pitch-yaw (RPY) 

rotations [96]. The rotational angles around the X, Y, and Z axes are: 

𝑅𝑃𝑌(𝜑𝑥, 𝜑𝑦 , 𝜑𝑧) = 𝑅𝑜𝑡(𝑍0, 𝜑𝑧)𝑅𝑜𝑡(𝑌0, 𝜑𝑦)𝑅𝑜𝑡(𝑋0, 𝜑𝑥)  

= [

𝐶𝜑𝑦𝐶𝜑𝑧 𝑆𝜑𝑥𝑆𝜑𝑦𝐶𝜑𝑧 − 𝐶𝜑𝑥𝑆𝜑𝑧 𝐶𝜑𝑥𝑆𝜑𝑦𝐶𝜑𝑧 − 𝑆𝜑𝑥𝑆𝜑𝑧
𝐶𝜑𝑦𝑆𝜑𝑧 𝑆𝜑𝑥𝑆𝜑𝑦𝐶𝜑𝑧 − 𝐶𝜑𝑥𝐶𝜑𝑧 𝐶𝜑𝑥𝑆𝜑𝑦𝑆𝜑𝑧 − 𝑆𝜑𝑥𝐶𝜑𝑧
−𝑆𝜑𝑦 𝑆𝜑𝑥𝐶𝜑𝑦 𝐶𝜑𝑥𝐶𝜑𝑦

]    (3.19)  

These angles can be obtained by comparing (3.18) with the expression in (3.19) 

𝜑𝑥 = 0   (3.20) 

𝜑𝑦 = 𝜋   (3.21) 

𝜑𝑧 = 𝜃124   (3.22) 

The forward kinematic of SCARA robot arm can be expressed as: 

(𝑋, 𝑌, 𝑍, 𝜑𝑧) = 𝐹𝐹𝑘(𝜃1, 𝜃2, 𝑑3, 𝜃4),   (3.23) 

whereas the inverse kinematic for SCARA robot arm is: 

(𝜃1, 𝜃2, 𝑑3, 𝜃4) = 𝐹𝐼𝑘 (𝑋, 𝑌, 𝑍, 𝜑𝑧).    (3.24)  

 

 

 

 

 

 

 

 

Figure 3.6 3D view of SCARA robot diagram 
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Figure 3.7 2D view of SCARA robot diagram 

3.3.2 SCARA Robot Singularities 

Singularities represent a major problem for the IK solutions. At singular 

configurations any small change in joint variables causes an infinite joint velocity 

that may cause serious damage in practical implementation. 

 

Figure 3.8 Frame assignment of SCARA robot 
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It can be mathematically determined whether there exist singularities in the IK 

solution, and the configurations at which a singularity will occur are based on 

determining the inverse of Jacobian matrix. The Jacobian of the SCARA robot is a 

6×4 matrix having 4 DOF with three revolute joints and one prismatic joint. 

𝐽 = [
𝑧0 𝑋(𝑂4 − 𝑂0) 𝑧1𝑋(𝑂4 − 𝑂1) 𝑧2 0

𝑧0 𝑧1 0 𝑧3
]  (3.25) 

 

{
 
 
 
 
 

 
 
 
 
 𝑂1 = [

𝐿11cos 𝜃1
𝐿11sin𝜃1
0

] ,

𝑂2 = [
𝐿2cos 𝜃12 + 𝐿11cos 𝜃1
𝐿2sin𝜃12 + 𝐿11sin𝜃1

0

] ,

𝑂4 = [
𝐿2cos 𝜃12 + 𝐿11cos 𝜃1
𝐿2sin 𝜃12 + 𝐿11sin 𝜃1

𝑑3 − 𝑑4
] ,

𝑧0 = 𝑧1 = 𝐾,
𝑧2 = 𝑧3 = −𝐾.

   (3.26) 

Then the SCARA robot Jacobian is: 

𝐽 =

[
 
 
 
 
 
− 𝐿2sin 𝜃12 − 𝐿11sin 𝜃1 −𝐿2sin 𝜃12 0     0
𝐿2cos 𝜃12 + 𝐿11cos 𝜃1

0
0
0
1

𝐿2cos 𝜃12
0
0
0
1

0
−1
0
0
0

 0
 0
 0
 0
−1]
 
 
 
 
 

.  (3.27) 

Based on the Jacobian of SCARA robot, it is possible to determine the joint angles 

that cause singularity. The part of the Jacobian that is responsible for the singularity 

can be expressed as follows: 

𝐽 = [
−𝐿2sin 𝜃12 − 𝐿11sin 𝜃1 −𝐿2sin 𝜃12 0
𝐿2cos 𝜃12 + 𝐿11cos 𝜃1 𝐿2cos 𝜃12 0

0 0 −1

]  (3.28) 

The rank of 𝐽 will be less than three (i.e. det(𝐽)=0)  at the following values of the 

second joint angle: 𝜃2 = 0 , 𝜋.  

3.3.3 Proposed Robust IK Solution 

A new technique for solving the IKP based on feedback theory with SMC by 

restating the IKP as a control problem for a simple dynamic system is shown in 
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Figure 3.9. The proposed algorithm assumes that the desired Cartesian space 

trajectory is given, and the goal of proposed controller is to find a joint trajectory that 

can track the desired Cartesian space trajectory. Desired input is the variables in 

Cartesian space 𝑥𝑑 = [𝑋 𝑌 𝑍 𝜑𝑧] while the output is the variables in joint space 

𝜃 = [𝜃1 𝜃2 𝑑3 𝜃4]. The proposed method overcomes the drawbacks of previous 

methods that have been suggested to solve the IKP like complex computations, 

singularity problem and long time required in iteration methods as discussed above. 

The proposed control law for this tracking problem is: 

𝑢 = 𝑢𝑃𝐷 + 𝑢𝑠𝑚𝑐,     (3.29) 

𝑢𝑃𝐷 = 𝑘𝑝 𝑒(𝑡) + 𝑘𝑑𝑒̇(𝑡),     (3.30) 

𝑢𝑠𝑚𝑐 = 𝐻𝑠𝑎𝑡(𝑠, ∅),      (3.31) 

𝑒(𝑡) = 𝑥𝑑(𝑡) − 𝑥(𝑡),      (3.32) 

𝑒̇(𝑡) = 𝑥̇𝑑(𝑡) − 𝑥̇(𝑡),     (3.33) 

𝑠(𝑡) = 𝛽𝑒(𝑡) + 𝑒̇(𝑡),  (3.34) 

where 𝑒(𝑡) represents the difference between the current and the desired Cartesian 

coordinates. 

Remark 3.1: The IKP is converted into a problem of tracking in which the proposed 

algorithm aims to make the error tend to zero.  

Remark 3.2: The control law is based only on error signal, its derivative, and the 

sliding surface, which means that the proposed algorithm is suitable for every robotic 

manipulator. 
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Figure 3.9 Block diagram of proposed robust IK solution 

3.3.4 Stability Analysis 

This section discusses the stability problem of proposed algorithm based on 

Lyapunov theory. The following Lyapunov function candidate is selected for this 

purpose:  

𝑣 (𝑒, 𝑒̇, 𝑡) =
1

2
𝑆𝑇𝑆,   (3.35) 

𝑆(𝑒, 𝑒̇, 𝑡) = 𝛼𝑒 + 𝑒̇,      (3.36) 

𝑣̇(𝑒, 𝑒̇, 𝑡) = 𝑆𝑇𝑆̇,                   (3.37) 

𝑆̇ = 𝛼𝑒̇ + 𝑒̈ = 𝛼𝑒̇ + 𝑥̈𝑑 − 𝑥̈,      (3.38) 

𝑆̇ = 𝛼𝑒̇ + 𝑥̈𝑑 − [𝐽(̇𝑞)𝑞̇ + 𝐽(𝑞)𝑞̈],     (3.39) 

𝑣̇(𝑒, 𝑒̇, 𝑡) = 𝑆𝑇[𝛼𝑒̇ + 𝑥̈𝑑 − 𝐽(̇𝑞)𝑞̇] − 𝑆
𝑇𝐽(𝑞)𝑞̈   (3.40) 

According to the theorem proposed by Novakovic, 𝑞̈(𝑡) can be expressed as follows 

[97]: 

𝑞̈(𝑡) = 𝜗(𝑡)𝐽𝑇𝑆      (3.41) 

where 

𝜗(𝑡) =
𝑤(𝑡)+𝛿𝑣(𝑒,𝑒̇,𝑡)

𝑆𝑇𝐽𝐽𝑇𝑆
,     (3.42) 

+ 
S + 

q 

𝑥 

e 

+ 

+ 

- 

+ 𝑥𝑑  

d

Sat 

a 

d/dt 

PD 

Forward 

kinematics 
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𝑤(𝑡) = 𝑆𝑇[𝛼𝑒̇ + 𝑥̈𝑑 − 𝐽̇𝑞̇],                    (3.43) 

and 𝛿 is positive number. If 𝑆𝑇𝐽𝐽𝑇𝑆 ≠ 0 then  

𝑣̇(𝑒, 𝑒̇, 𝑡) = −𝛿 𝑣(𝑒, 𝑒̇, 𝑡).     (3.45) 

According to La Salle’s principle of invariance, the robotic system controlled by the 

proposed control law in (3.29) is asymptotically stable. Then the tracking error 𝑒(𝑡) 

and its derivative 𝑒̇(𝑡) tend to zero. 

Remark 3.3: In case of the denominator of 𝜗(𝑡) being equal zero (i.e.,  𝑆𝑇𝐽𝐽𝑇𝑆 = 0), 

joint accelerations become infinity and this is impossible due to bounded 

accelerations of joints. Different methods have been proposed to solve this problem. 

Burton and Zinobern solve this problem by replacing the denominator of  𝜗(𝑡) by the 

following expression [98]:  

 𝑆𝑇𝐽𝐽𝑇𝑆 + 𝜖2,   (3.46) 

where 𝜖 is small   positive number such that 

‖𝐽𝑇𝑆‖ ≤ 𝜖.     (3.47) 

Also, Spong proposed another method to solve this problem by replacing the 

denominator of  𝜗(𝑡) by µ [99], where  

‖𝐽𝑇𝑆‖ ≤ µ.    (3.48) 

3.3.5 Proposed Robust IK Scheme Test 

The performance of proposed method that is based on PD control with SMC for 

solving IKP is discussed in this section. In order to demonstrate effectiveness of the 

proposed IK solution scheme, computer simulation is used for solving IKP of 

SCARA robot. Performance of proposed method is compared with ANN method, 

which has been used widely in solving IKP in recent years. Since the ANN methods 

are offline, at first they must be trained to learn the map between variables in joint 

space and variables in Cartesian space. The values of DH parameters used in this 

simulation are as follows: 𝐿11 = 1, 𝐿12 = 0.1, 𝐿2 = 1, and 𝐿4 = 1. The gain 

parameters of proposed controller are 𝑘𝑝 = 𝐻 = 500𝐼4, 𝑘𝑑 = 10𝐼4,  
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 ∅ = 0.01. The following desired trajectory is used in this simulation:   

𝑥𝑑(𝑡) = cos (
𝜋

3
+ 0.1sin (7𝑡)) + cos (

𝜋

2
+ 0.1 sin(7𝑡) + 0.1cos (𝑡))  (3.49) 

𝑦𝑑(𝑡) = sin (
𝜋

3
+ 0.1sin (7𝑡)) + sin (

𝜋

2
+ 0.1 sin(7𝑡) + 0.1cos (𝑡))    (3.50) 

𝑧𝑑(𝑡) = 1 + 0.1𝑡.       (3.51) 

Figure 3.10 shows the desired path of end effector in Cartesian space. Integral of the 

absolute value of the error (𝐼𝐴𝐸) is used for comparison: 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡𝑓

0
.                    (3.52) 

Therefore the error along X, Y and Z axes can be determined as follows: 

𝐸𝑟𝑟𝑥 = ∫ |𝑒𝑥(𝑡)|𝑑𝑡
𝑡𝑓

0
= ∫ |𝑥(𝑡) − 𝑥𝑑(𝑡)|𝑑𝑡

𝑡𝑓

0
   (3.53) 

𝐸𝑟𝑟𝑦 = ∫ |𝑒𝑦(𝑡)|𝑑𝑡
𝑡𝑓

0
= ∫ |𝑦(𝑡) − 𝑦𝑑(𝑡)|𝑑𝑡

𝑡𝑓

0
   (3.54) 

𝐸𝑟𝑟𝑧 = ∫ |𝑒𝑧(𝑡)|𝑑𝑡
𝑡𝑓

0
= ∫ |𝑧(𝑡) − 𝑧𝑑(𝑡)|𝑑𝑡

𝑡𝑓

0
.   (3.55) 

Figure 3.10 Desired trajectory in Cartesian space for nonsingular test 
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Figures 3.11, 3.12 and 3.13 show the desired trajectories and actual trajectories 

obtained by proposed and ANN methods along the X, Y, and Z coordinates, 

respectively. Roll angle which represents orientation of the end effector is shown in 

Figure 3.14 and Cartesian space errors along the X, Y and Z axes are shown in 

Figure 3.15 (a), (b) and (c).  As expected because the trajectory along Z axis is based 

only on 𝑑3, the ANN can easily approximate this relation therefore ANN method and 

also the proposed control method have very small error value in this axis.  Figure 

3.16 shows the values of joint angles which represent the solution of IKP for SCARA 

robot. These results indicate clearly high accuracy of proposed method. Moreover, 

proposed method is an on-line method. Performance indices listed in Table 3.3 and 

shown in Figure 3.17 indicate superiority of proposed method. Therefore, the actual 

Cartesian path is very close to desired Cartesian path with very small error that is 

approximately equal to zero.  

 

Figure 3.11 Motion along X axis 
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Figure 3.12 Motion along Y axis  

 

Figure 3.13 Motion along Z axis 

 

Figure 3.14 Variation of roll angle versus time 
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In order to approve effectiveness of the proposed scheme in the regions adjacent to 

the singular region, a desired Cartesian trajectory is selected in such a way that it 

passes through the singular points. The following desired trajectories (that must be 

inside the workspace) are used in this simulation. 

𝑥𝑑(𝑡) = cos (
𝜋

3
+ 0.1sin (7𝑡)) + cos (

𝜋

2
+ 0.1 sin(7𝑡) −

𝜋

6
cos (𝑡))  (3.56) 

𝑦𝑑(𝑡) = sin (
𝜋

3
+ 0.1sin (7𝑡)) + sin (

𝜋

2
+ 0.1 sin(7𝑡) −

𝜋

6
cos (𝑡))    (3.57) 

𝑧𝑑(𝑡) = 1 + 1.1𝑡.       (3.58) 

Singularity configuration occurs when 𝑞2 is equal to zero, which corresponds to the 

time instances at t = cos−1(0.5)−1 or 0.1, 2.1, 4.2, and 6.15, etc. seconds. Figure 

3.18 shows the desired path of end effector in Cartesian space.  

Figure 3.15 Error  versus time 
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Table 3.3 Performance index 𝐼𝐴𝐸 values 

 Proposed NN 

𝐸𝑟𝑟𝑥 0.0014 0.0097 

𝐸𝑟𝑟𝑦 0.0020 0.0048 

𝐸𝑟𝑟𝑧 0.0000 0.0000 

 

Figures 3.19 (a), (b) and (c) show the desired trajectories and actual trajectories 

obtained by proposed method along the X, Y, and Z coordinates respectively while 

Figure 3.20  shows the orientation of end effector by the Roll angle. Cartesian space 

errors along the X, Y and Z axes are shown in Figure 3.21. Joint variables, angular 

velocity and linear velocity are shown in Figures 3.22, 3.23 and 3.24, respectively. 

These figures reveal the ability of proposed algorithm to solve problem of 

singularity. The robot follows desired trajectory and passes through singular 

configuration smoothly. Another important point is that the angular joint velocity of 

each joint does not exceed 5 rad/sec. whereas most IK solution methods are suffering 

from high deviations in joint rate at singular configuration. Table 3.4 illustrates the 

comparison between the proposed method in this chapter and other important 

schemes such as ANN and the Jacobian’s pseudo-inverse method in [16, 17, 22, 23]. 

 

 



46 

 

 

Figure 3.16 Variation of joint variable angles and distance versus time 

 

0 1 2 3 4 5 6
50

55

60

65

70

a
n
g
le

s
 o

f 
jo

in
t 
1

 

 

desired

proposed

NN

0 1 2 3 4 5 6
50

55

60

65

70

a
n
g
le

s
 o

f 
jo

in
t 
1

 

 

desired

proposed

NN

0 2 4 6 8 10
1.5

2

2.5

3

d
is

ta
n
c
e
 o

f 
jo

in
t 

3

 

 

desired

proposed

NN

0 1 2 3 4 5 6
-10

-5

0

5

10

time (s)

a
n
g
le

s
 o

f 
jo

in
t 
4

 

 
desired

proposed

NN



47 

 

 

 

 

Figure 3.18 Desired trajectory in Cartesian space for singularity test 
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Figure 3.19 Motion along X, Y, and Z axises 

 

 

Figure 3.20 Roll angle. 
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Figure 3.21 Variation of joint variables versus time 
 

Figure 3.22 Error trajectories along X-axis, Y-axis, and Z-axis 
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Figure 3.23 Joint motion rates (angular velocity) 

 

 

Figure 3.24 Joint motion rates ( linear velocity) 

 

Table 3.4 Qualitative comparison of methods 

Feature Proposed NN 
Jacobian’s 

pseudo-inverse 

Singularity problem Solved Solved Not solved 

Stability Yes Yes No 

Complexity Low Medium Medium 

Computational time 
Very 

short 
Long time Medium 

Online/Offline Online Online Online 

structure Dependence No Yes Yes 
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CHAPTER FOUR 

ROBUST CONTROL FOR TRAJECTORY TRACKING BASED ON LMI  

This chapter discusses the problem of trajectory tracking control of a robotic 

manipulator system. Two methods are proposed in this chapter by using linear matrix 

inequality (LMI) technique.  

4.1 First Proposed Method 

In this method, the proposed controller consists of two terms. Proportional (P) 

control structure is used as linear term while the SMC refers to the nonlinear 

robustness term. This controller combines the simplicity and easy implementation 

features of PID controller and robustness properties of SMC. In the proposed 

controller there is no need to determine the dynamic model of the robotic 

manipulator, which is a must in the standard SMC. Lyapunov theorem is used to 

approve stability of the proposed controller. A control problem is restated as a 

convex optimization problem based on LMI technique and optimal gain of P 

controller is obtained. MATLAB-Simulink environment is used to illustrate 

effectiveness of the proposed controller and compare the performance with SMC and 

CTC. Simulation results reveal the effectiveness of proposed method in response to 

system uncertainties, random noise and external disturbance. 

4.2 Improvement in SMC 

Owing to simplicity of  implementation, easy tuning of the parameters and low cost, 

standard PID controller still represents the first choice in most industrial applications. 

Proportional-derivative (PD) controller is used widely with CTC. The prior 

knowledge about the dynamic model and upper bound of uncertainty are necessary 

for this design. Parameter variations of the robotic manipulator and external 

disturbances are difficult challenges for the control engineers [100, 101].  
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Advanced control schemes such as fuzzy control, ANN control or robust control are 

hybridized with PID to overcome some drawbacks of PID controller [100]. SMC is 

an effective control scheme that is used widely for nonlinear control and it is robust 

against system uncertainties and external disturbance [101]. Therefore, SMC is 

applied successfully in many applications such as flight control, industrial factories, 

process control, and robotic systems [101-105]. Equivalent control term in SMC 

requires determining dynamic model of the robotic manipulator and in particular 

applications it is not always possible to obtain accurate dynamic model of the 

controlled system. Many control schemes are presented to overcome this problem 

[106]. Adaptive control strategy is one of the efficient solutions for this problem 

[107–112].  Ability of NN in approximating nonlinear functions motivates 

researchers to use it with SMC [113-116]. In addition, fuzzy logic is used efficiently 

to estimate the dynamic model of controlled system [117]. In this chapter, a simple 

and robust controller for trajectory tracking of a robotic manipulator is presented. 

This controller combines the simplicity of a P controller and robustness of SMC. The 

proposed method uses LMI to select the parameter of P controller [118-120].  

4.3 Proposed P-SMC Method 

The objective of the proposed controller is making the joint angles track the desired 

trajectories. The tracking error for joint i:  

𝑒𝑖 = 𝑞𝑑𝑖 − 𝑞𝑖       (4.1) 

𝑒̇𝑖 = 𝑞̇𝑑𝑖 − 𝑞̇𝑖      (4.2) 

where 𝑞𝑑𝑖 is the desired position and 𝑞̇𝑑𝑖 is the desired velocity. The sliding manifold 

is:  

𝑠𝑖 = 𝑒̇𝑖 + 𝑐𝑖𝑒𝑖      (4.3) 

with 𝑐𝑖 ∈ 𝑅
+ being a positive scalar. The proposed control law that combines P 

control with SMC is then given by: 

𝜏𝑖 = 𝑘𝑝𝑖𝑒𝑖 + ℎ𝑖𝑠𝑖𝑔𝑛
(𝑒̇𝑖 + 𝑐𝑖𝑒𝑖)      (4.4) 
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where 𝑘𝑝𝑖 is the proportional gain, and ℎ𝑖 is the SMC gain of joint i. Control design 

procedure mainly consists of selecting the proper values of control parameters 

(𝑘𝑝𝑖 , ℎ𝑖) for ensuring stability of robotic manipulator in closed loop. Resulting error 

dynamics under proposed control are given by the following closed loop differential 

equation model for a single joint: 

 𝑚𝑖𝑖 𝑒̈𝑖 + ∑ 𝑚𝑖𝑗 𝑒̈𝑗
𝑛
𝑗=1
𝑗≠𝑖

+ 𝑘𝑝𝑖𝑒𝑖 + 𝑓𝑖𝑠𝑖𝑔𝑛
(𝑒̇𝑖 + 𝑐𝑒𝑖) 

 =𝑚𝑖𝑖 𝑞̈𝑑𝑖 + ∑ 𝑚𝑖𝑗 𝑞̈𝑑𝑗
𝑛
𝑗=1
𝑗≠𝑖

+ 𝑛𝑖 + 𝑔𝑖 + 𝑓𝑖     (4.5) 

Remark 4.1: The proposed control design procedure is model free, which means 

there is no need to determine the model of the manipulator in contrast with standard 

SMC. 

Remark 4.2: Proposed control law is based only on the tracking error signal and its 

derivative, and it is a combination of linear proportional control and nonlinear robust 

control. As depicted in (4.4), P control term is used instead of equivalent control of 

conventional SMC. Desired angular positions and their first and second order 

derivatives are also bounded [121]. 

Theorem 4.1: Consider the nonlinear robotic manipulator system in (2.20) and the 

proposed control law in (4.4). If the properties addressed in (2.21-2.26) are true and 

desired angular positions and their derivatives up to order two are bounded, then it is 

possible to select proper control parameters (𝑘𝑝𝑖 , ℎ𝑖) that guarantee stability of the 

closed loop system. Moreover, the final tracking error and its derivative are both 

convergent to zero.  

Proof: The following positive definite Lyapunov function candidate is used to verify 

stability. 

𝑉𝑖 =
1

2
𝑠𝑖
2    (4.6) 

𝑉̇𝑖 = 𝑠𝑖 [𝑐𝑖𝑒̇𝑖 + 𝑞̈𝑑𝑖 −
1

𝑚𝑖𝑖
(𝑘𝑝𝑖𝑒𝑖 + ℎ𝑖𝑠𝑖𝑔𝑛

(𝑠𝑖) − ∑ 𝑚𝑖𝑗𝑞̈𝑗
𝑛
𝑗=1
𝑗≠𝑖

− 𝑛𝑖 − 𝑓𝑖 − 𝑔𝑖)] (4.7) 
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Based on upper limits of the robotic manipulator dynamic in (2.21-2.26) and 

boundedness of the desired trajectories and their derivatives, one can obtain the 

following expression: 

𝑉̇𝑖 ≤ |𝑠𝑖| {
−ℎ𝑖−𝑘𝑝𝑖

|𝑒𝑖|

𝑚𝑖𝑗
+ + [𝑐𝑖|𝑒̇𝑖| + |𝑞̈𝑑𝑖| +

1

𝑚𝑖𝑗
− (𝑛𝑖

+ + 𝑓𝑖
+ + 𝑔𝑖

+ + ∑ 𝑚𝑖𝑗
+ |𝑞̈𝑑𝑗 − 𝑒̈𝑗|

𝑛
𝑗=1
𝑗≠𝑖

)]}

   (4.8) 

where 𝑚𝑖𝑗
+  and 𝑚𝑖𝑗

−  denote the maximum element and minimum element in Inertia 

matrix, respectively and  𝑛𝑖
+, 𝑓𝑖

+, and 𝑔𝑖
+ represent maximum elements in 

Coriolis/centripetal matrix, frictional vector and gravity vector respectively. Right 

hand side of (4.8) is a negative definite function if the following condition is 

satisfied: 

ℎ𝑖 + 𝑘𝑝𝑖
|𝑒𝑖| > 𝑚𝑖𝑗

+ [𝑐𝑖|𝑒̇𝑖| + |𝑞̈𝑑𝑖| +
1

𝑚𝑖𝑗
− (𝑛𝑖

+ + 𝑓𝑖
+ + 𝑔𝑖

+ + ∑ 𝑚𝑖𝑗
+ |𝑞̈𝑑𝑗 − 𝑒̈𝑗|

𝑛
𝑗=1
𝑗≠𝑖

)] 

   (4.9) 

Consequently, the time derivative of the Lyapunov function candidate in (4.6) is 

guaranteed to be negative definite and the closed-loop system in (4.5) is stable if the 

controller parameters (𝑘𝑝𝑖 , ℎ𝑖) are selected in accordance with the condition in 

(4.9). Furthermore, the tracking error in (4.1) and its derivative in (4.2) converge to 

zero according to Barbalat’s Lemma [82,122]  

4.4 Mathematical Preliminaries 

This section discusses robust stability property of perturbed nonlinear systems with 

the following structure [119],  

𝑥̇ = 𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)                                                     (4.10) 

where 𝑥 ∈ 𝑅𝑛, 𝑓(𝑡, 𝑥), 𝑔(𝑡, 𝑥) are continuous functions of 𝑡. The nominal system is 

𝑥̇ = 𝑓(𝑡, 𝑥)                                                                     (4.11) 
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where 𝑔(𝑡, 𝒙) is perturbed term due to modelling error, external disturbance, and 

parameter variations, which exist in practical systems. Usually 𝑔(𝑡, 𝑥) is not exactly 

known but some information can be available such as the upper bound of  ‖𝑔(𝑡, 𝑥)‖. 

Let 𝑣(𝑡, 𝑥) be the Lyapunov function candidate, which satisfies the following: 

𝑐1‖𝑥‖
2 ≤ 𝑣 ≤ 𝑐2‖𝑥‖

2                                                    (4.12) 

𝜕𝑣

𝜕𝑡
+
𝜕𝑣

𝜕𝑥
𝑓(𝑡, 𝑥) ≤ −𝑐3‖𝑥‖

2                                            (4.13)                      

‖
𝜕𝑣

𝜕𝑥
‖ ≤ 𝑐4‖𝑥‖

2                                                              (4.14) 

for positive values of 𝑐1, 𝑐2, 𝑐3, 𝑐4. Suppose that 𝑔(𝑡, 𝑥) satisfies the following: 

𝑔(𝑡, 𝑥) ≤ 𝛾‖𝑥‖                                                              (4.15) 

where 𝛾 is a nonnegative constant.  

𝑣̇(𝑡, 𝑥) ≤ −𝑐3‖𝑥‖
2 + ‖

𝜕𝑣

𝜕𝑥
‖‖𝑔(𝑡, 𝑥)‖ ≤ −𝑐3‖𝑥‖

2 + 𝑐3𝛾‖𝑥‖
2                     (4.16) 

If 𝛾 is sufficiently small with the following upper bound, 

𝛾 <
𝑐3

𝑐4
                                                                             (4.17) 

it follows that 

𝑣̇(𝑡, 𝑥) ≤ −(𝑐3 − 𝛾 𝑐4)‖𝑥‖
2, (𝑐3 − 𝛾 𝑐4) > 0              (4.18) 

Lemma 4.1: Let 𝑥 be an exponentially stable equilibrium point of the nominal 

system in (4.11). Let  𝑣(𝑡, 𝑥) be the Lyapunov function of the nominal system which 

satisfies (4.12, 4.14), and assume the perturbation term 𝑔(𝑡, 𝑥) satisfies (4.15). Then 

the origin is an exponentially stable equilibrium point of the perturbed system in 

(4.10) [129]. For systems with the following structure: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝑔(𝑡, 𝑥)                                                 (4.19) 

the equilibrium point is exponentially stable if the perturbed system satisfies the 

following two conditions: 
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i. 𝐴 is a Hurwitz matrix ,  

ii. ‖𝑔(𝑡, 𝑥)‖2 ≤ 𝛾‖𝑥‖2                                 (4.20)                                                  

Let the quadratic Lyapunov function that satisfies (4.12) and (4.18) be 

𝑣(𝑡, 𝑥) = 𝑥𝑇𝑃𝑥                                                              (4.21) 

with 𝑃 being the solution of following equation: 

𝑃𝐴 + 𝐴𝑇𝑃 = −𝑄                                                           (4.22) 

Then, for a symmetric positive definite matrix 

𝑄 = 𝑄𝑇 > 0                                                                   (4.23) 

there exists a unique solution  𝑃 such that  

𝑃 = 𝑃𝑇 > 0                                                                    (4.24) 

Then, derivative of the Lyapunov function for the nonlinear system in (4.10) 

satisfies: 

𝑣̇(𝑡, 𝑥) ≤ −𝜆min(𝑄)‖𝑥‖2
2 + 2𝜆min(𝑃)𝛾‖𝑥‖2

2               (4.25) 

Therefore, the origin is globally exponentially stable if  

𝛾 < 𝜆min(𝑄)/2𝜆min(𝑃)                                                (4.26) 

where 𝛿min(𝑄) and 𝛿min(𝑃) are the minimum and maximum eigenvalues of the 

matrices 𝑄 and 𝑃, respectively. 

4.5 LMI Formulation 

Based on LMI optimization technique, the control problem of robotic manipulator is 

considered as a convex optimization problem that minimizes the parameter 𝛾 and the 

objective is to find the linear part of controller, which is the proportional gain vector 

𝑘𝑝. Substituting the control law (4.4) into the manipulator dynamics in (2.20), the 

following equation is obtained: 

𝑞̈ = 𝑀−1[𝜏 − 𝑁(𝑞, 𝑞̇) − 𝐺(𝑞) − 𝐹(𝑞̇)]                         (4.27)                                                
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In order to state the manipulator under control as a linear system with nonlinear 

perturbation, (4.27) is rewritten as follows:    

𝑞̈ = −𝑘𝑝𝑞 + 𝑘𝑝𝑞 +𝑀
−1[𝜏 − 𝑁(𝑞, 𝑞̇) − 𝐺(𝑞) − 𝐹(𝑞̇)]              (4.28) 

𝑞̈ = 𝑓(𝑞) + 𝑔(𝑞, 𝑞̇)                                                       (4.29) 

𝑓(𝑞) = −𝑘𝑝𝑞                                                                 (4.30) 

𝑔(𝑞, 𝑞̇) = 𝑘𝑝𝑞 +𝑀
−1[𝜏 − 𝑁(𝑞, 𝑞̇)]                              (4.31) 

Let 𝑥 = [
𝑥1
𝑥2
] = [

𝑞
𝑞̇]                                                        (4.32) 

Then the state representation of the closed loop manipulator is 

𝑥̇ = 𝐴𝑛𝑒𝑤𝑥 + [
0
𝑔(𝑥)

]                                                     (4.33) 

𝐴𝑛𝑒𝑤 = [
0 𝐼𝑛×𝑛

(−𝐾𝑝)𝑛×𝑛 0
]
2𝑛×2𝑛

  (4.34)       

  𝑔(𝑥) = [
𝐾𝑝 0

0 0
] [
𝑥1
𝑥2
]    𝑥 + 𝑀−1[𝜏 − 𝑁(𝑥) − 𝐺(𝑥) − 𝐹(𝑥)]                       (4.35) 

𝐾𝑃 = [

𝑘𝑝1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑘𝑝𝑛

]                                                   (4.36) 

Now, it is possible to apply Lemma 4.1 on controlled robotic manipulator with 

proposed controller to ensure the asymptotic stability of the closed-loop system.  

𝑔(𝑥) ≤ ‖𝑘𝑝𝑞‖ + ‖𝑀
−1[𝜏 − 𝑁(𝑞, 𝑞̇) − 𝐺(𝑞) − 𝐹(𝑞̇)]‖       (4.37) 

According to Theorem 4.1, ‖𝑘𝑝𝑞‖ and ‖𝜏‖ are bounded because they depend on 

error signal, which is shown to be also bounded in the same theorem.  Knowing that 

𝑀 is positive definite, then it follows that [112], 

‖𝑀−1‖ ≤ 𝑟                                                                     (4.38) 

with the assumptions in (2.21-2.26). Then (4.37) becomes: 
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𝑔(𝑥) ≤ 𝛾‖𝑥‖                                                               (4.39) 

The control parameter 𝑘𝑝 is selected so that the robotic manipulator is asymptotically 

stable with maximization of the 𝛾 parameter that satisfies (4.39). 

Theorem 4.2: If the matrix 𝐴𝑛𝑒𝑤 is selected such that  

(𝐴𝑛𝑒𝑤)
𝑇 𝑃 + 𝑃 𝐴𝑛𝑒𝑤 + 𝛾

2 𝑃𝑃 + 𝐼 < 0                       (4.40) 

where 𝑃 is a positive definite symmetric matrix, then the controlled robotic 

manipulator is asymptotically stable [118]. 

Proof: Consider the candidate Lyapunov function that follows: 

𝑣(𝑥) = 𝑥𝑇 𝑃 𝑥                                                              (4.41)  

with 𝑃 being a positive definite symmetric matrix.  Then, 

𝑣̇(𝑥) = 𝑥𝑇[𝑃 𝐴𝑛𝑒𝑤 + 𝐴𝑛𝑒𝑤𝑃]𝑥 + 2𝑥
𝑇 𝑃 𝑔(𝑥)             (4.42) 

Using (4.15), one has: 

2𝑥𝑇 𝑃 𝑔(𝑥) ≤ 2𝛾‖𝑃𝑥‖‖𝑥‖                                          (4.43) 

By using the following algebraic inequality 

𝑎𝑏 <
𝑎2

4
+ 𝑏2                                                                 (4.44) 

Then the inequality in (4.44) can be expressed as follows: 

2𝑥𝑇 𝑃 𝑔(𝑥) ≤ 𝛾2𝑥𝑇𝑃𝑃𝑥 + 𝑥𝑇𝑥                                    (4.45) 

Combining (4.45) with (4.42) yields the following upper bound for the derivative of 

candidate Lyapunov function, 

𝑣̇(𝑥) ≤ 𝑥𝑇[𝑃 𝐴𝑛𝑒𝑤 + 𝐴𝑛𝑒𝑤
𝑇 𝑃 + 𝛾2𝑃𝑃 + 𝐼] 𝑥               (4.46) 

As a result one can conclude that 𝑣̇(𝑥) ≤ 0  if   

[𝑃 𝐴𝑛𝑒𝑤 + 𝐴𝑛𝑒𝑤
𝑇 𝑃 + 𝛾2𝑃𝑃 + 𝐼] < 0                            (4.47) 
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Theorem 4.3: Let 

 𝐴𝑛𝑒𝑤 = 𝐴𝐼 − 𝐾 𝐶                                                         (4.48) 

𝑋 = 𝑃𝐾                                                                          (4.49) 

with 𝐴𝐼 = [
0 𝐼
0 0

] , 𝐾 = [
0 0
𝐾𝑃 0

] , 𝐶 = [
𝐼 0
0 𝐼

] 

Then based on Theorem 4.2 that guarantees the asymptotic stability of controlled 

robotic manipulator system, the control problem in (4.5) can be restated as a convex 

optimization problem for finding 𝑋 and 𝑃 and then find 𝐾. 

 𝐾 = 𝑃−1𝑋                                                                     (4.50) 

Proof: Based on Schur complement[121] 

[
𝐴 𝐵
𝐶 𝐷

] > 0 ⇔ 𝐴 > 0, 𝐷 > 0, 𝐴 − 𝐵𝐷−1𝐶 > 0        (4.51) 

The inequality in (4.47) can be rewritten in LMI form as follows: 

[
𝑃 𝐴𝑛𝑒𝑤 + 𝐴𝑛𝑒𝑤

𝑇 𝑃 + 𝐼 𝑃

𝑃 −
1

𝛾2
𝐼
] < 0                             (4.52) 

Then, substituting (4.48) in (4.52), 

[
𝑃𝐴𝐼 − 𝑃𝐾 𝐶 + 𝐴𝐼

𝑇𝑃 − (𝐾 𝐶)𝑇𝑃 + 𝐼 𝑃

𝑃 −
1

𝛾2
𝐼
] < 0     (4.53) 

[
𝑃𝐴𝐼 − 𝑋 𝐶 + 𝐴𝐼

𝑇𝑃 − 𝐶𝑇𝑋𝑇 + 𝐼 𝑃

𝑃 −
1

𝛾2
𝐼
] < 0            (4.54) 

It can be reformulated as a convex optimization problem with respect to 𝛾. 

Let 𝛽 =
1

𝛾2
 

Finally the convex optimization problem in LMI form is expressed as the problem of 

minimizing  𝛽 such that 
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[
𝑃𝐴𝐼 − 𝑋 𝐶 + 𝐴𝐼

𝑇𝑃 − 𝐶𝑇𝑋𝑇 + 𝐼 𝑃
𝑃 −𝛽𝐼

] < 0               (4.55) 

𝑃 > 0, 𝛽 > 0.                                                                (4.56) 

4.6 P-SMC Simulation Test 

In this section, a 2-DOF robotic manipulator is used in the simulation to demonstrate 

effectiveness of the proposed controller under different challenging cases: parameter 

variations, external disturbances and random noises. Gravitational force can be 

ignored when the robotic manipulator operates on horizontal plane.   The desired 

trajectories are: 

{
𝑞𝑑1(𝑡) = 0.3 + 0.1 sin(𝑡) ,

𝑞𝑑2(𝑡) = 0.3 + 0.1 cos(𝑡)  
  (4.57) 

The signum function is replaced by a saturation function with boundary values of 

±0.05 to avoid chattering. The validity of the proposed controller is tested by 

comparing it with standard SMC and CTC. The controller parameters are 𝑘𝑝1 = 5, 

𝑘𝑝2 = 5 determined based on LMI while the gain of the robust term and the slope of 

sliding surface are selected as follows: 

( ℎ1, 𝑐1) = ( 55,5), (ℎ2, 𝑐2) = ( 55,5)        (4.58) 

4.6.1 Robustness to Model Uncertainties  

This section discusses effects of the parameter variations on the performance of the 

control schemes. The masses of link 1 and link 2 are increased by 10% of their 

nominal values listed in table 2.2 to check the robustness of the proposed control 

scheme. The tracking performances of the CTC, SMC and proposed controller are 

shown in Figure. 4.1 and 4.2. The angular position, control signal, and tracking error 

for the three control schemes are shown in these figures. It can be noticed that the 

steady state errors for all three methods are approximately equal. Required torques to 

drive link 1 and link 2 to track the desired trajectories are presented in Figure 4.1(c) 

and Figure 4.2(c), respectively. Torque input values for the three controllers hardly 

differ at the steady state.  
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Figure 4.1 Position, error, and torque of link 1 in presence of model uncertainty  

However, transient torque requirements by CTC and SMC are significantly higher 

than proposed control in link 1, and in link 2. Proposed control has a sudden torque 

requirement that lasts for a short duration. SMC torque input is similar to that of 

proposed control in link 2, while CTC has an oscillatory torque variation for a much 

longer duration of time. 

4.6.2 Robustness to Random Noise   

In this section, a random noise signal is added to the controlled variable in order to 

examine the validity of proposed controller. A noise signal shown in Figure 4.3 with 

amplitude of  15 × 10−3 is generated and added at the feedback path of closed-loop 

system. The trajectories, tracking errors and control input variations versus time for 

the four tested controllers are given in Figure 4.4 for link 1 and Figure 4.5 for link 2.   

0 1 2 3 4 5 6

0.2

0.3

0.4

p
o
s
it
io

n
 (

ra
d
)

 

 

ideal position

CTC

Proposed

SMC

0 1 2 3 4 5 6

-0.04

-0.02

0

e
rr

o
r 

(r
a
d
)

 

 

CTC

Proposed

SMC

0 1 2 3 4 5 6

-400

-200

0

time(s)

to
rq

u
e
(N

m
)

 

 

CTC

Proposed

SMC



62 

 

Figures 4.4 and 4.5 show clearly the high ability of proposed control scheme to 

suppress noise signal. As expected, the results show the high sensitivity of CTC to 

noise signal which leads to high variation on control signal, while SMC and 

proposed controller exhibit similar tracking performances and torque input variations 

that are less sensitive to noise. It should be noted that torque input for each link has a 

much smoother variation under proposed control in comparison with CTC and SMC 

as depicted in Figures 4.4 and 4.5.  

 

Figure 4.2 Position, error, and torque of link 2 in presence of model uncertainty 

4.6.3 Robustness to External Disturbance   

This section presents the effectiveness and robustness of proposed controller against 

an external disturbance. The trajectory tracking performance, position tracking error 

and control signal of each joint for proposed controller along with SMC and CTC are 

presented in response to a disturbance input: 
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 𝑑(𝑡) = 5 sin 3𝑡  𝑁𝑚                                             (4.59) 

Results are shown in Figures 4.6 and 4.7 for link 1 and link 2, respectively. Tracking 

error variations in Figure 4.6(b) and Figure 4.7(b) reveal that proposed control has 

good accuracy.  

 

Figure 4.3 A noise signal 

 

Figure 4.4 Position, error, and torque of link 1 in presence of noise signal. 
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In addition, torque input for the proposed approach is significantly smaller, 

especially for link 1 as in Figure 4.6. Disturbance rejection property of closed-loop 

system under proposed control with model free control design is thus revealed by the 

presented simulation test results. 

 

 Figure 4.5 Position, error, and torque of link 2 in presence of  noise signal 

4.7 Proposed Hybrid CTC-SMC Method 

Computed torque control is an important control scheme for nonlinear robotic 

manipulator systems. However, CTC method requires determining accurate dynamic 

model of the robotic manipulator that is not possible in most times. To avoid this 

difficulty, in this chapter, robust control theory and standard CTC are combined to 

provide a new controller for the robotic manipulator under model uncertainty and 

external disturbance. A robust control term is added to the standard CTC to 

compensate for the model uncertainties and external disturbance.  LMI technique is 

used to design CTC parameters while robust gain is determined by Lyapunov 
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stability theory. Lyapunov stability theory is used to show that the proposed 

controller scheme can ensure stability of the controlled system with satisfactory 

performance. Simulation results on a 2-link robotic manipulator are presented to 

demonstrate effectiveness and robustness of the proposed method against model 

uncertainties and external disturbance. 

 

Figure 4.6 Position, error, and torque of link 1 in presence of external disturbance 

4.8 Improvement in CTC 

Computed torque control is an efficient control scheme that has been applied 

successfully for control of robotic manipulator systems [123-128]. CTC is simpler 

than SMC and fuzzy control strategies, but its performance is degrading due to 

modelling errors, parameter variations and external disturbances [129]. Many 

methods have been suggested to improve performance of CTC [130]. Based on 

ability of neural networks in approximating nonlinear functions, several neural 
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control approaches are presented in nonlinear control problem. Recently, most neural 

network controllers are approved in terms of stability based on Lyapunov stability 

theory, but most of them require long time for training and iterative calculations 

[129].  

Figure 4.7 Position, error, and torque of link 2 in presence of external disturbance 

In self-tuning CTC method, ANN has been widely used to tune control gains of 

controller[131]. Variable structure controller is proposed as compensator for CTC 

but with complex computations to determine the inversion of inertia matrix [132].  

Ability of fuzzy logic to handle complex systems based on human experience 

motivated researchers to use fuzzy logic control with CTC to compensate for the 

uncertainties of controlled system. In recent years, many control methods have been 

proposed by combining neural network with fuzzy logic based on capability of fuzzy 

logic to handle uncertain information and capability of neural network in learning. 
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upper bound of uncertainty is required and this is not possible in particular 

applications [133].     

4.9 Nominal and Uncertain Subsystems of Robotic Manipulator  

In particular applications, exact values for the robotic manipulator cannot be 

obtained due to model uncertainties and strong coupling between adjacent joints, 

external disturbance and inaccuracy of the measurement devices. Therefore, the 

dynamic model of the robotic manipulator system expressed below: 

𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) + 𝜏𝑑 (4.60) 

can be separated into nominal part and uncertainty part as follows: 

𝑀(𝑞) = 𝑀𝑜(𝑞) + ∆𝑀(𝑞)  (4.61) 

𝐶(𝑞, 𝑞̇) = 𝐶𝑜(𝑞, 𝑞̇) + ∆𝐶(𝑞, 𝑞̇)  (4.62) 

𝐹(𝑞̇) = 𝐹𝑜(𝑞̇) + ∆𝐹(𝑞̇)  (4.63) 

𝐺(𝑞̇) = 𝐺𝑜(𝑞̇) + ∆𝐺(𝑞̇)   (4.64) 

where 𝑀𝑜(𝑞), 𝐶𝑜(𝑞, 𝑞̇), 𝐹𝑜(𝑞̇), and 𝐺𝑜(𝑞) refer to the nominal model of the robotic 

manipulator and in general it can be known, whereas ∆𝑀(𝑞), ∆𝐶(𝑞, 𝑞̇), ∆𝐹(𝑞̇) and 

∆𝐺(𝑞) are the uncertainty part of the robotic manipulator dynamic model and in most 

times this part cannot be known exactly but its upper bound can be known. 

4.10 Design of Computed Torque Control 

Computed torque control is an effective scheme for robotic manipulator control when 

the nominal dynamic model of the robot is known. At first, the uncertainty part of 

dynamic model is excluded (i.e. setting ∆𝑀(𝑞), ∆𝐶(𝑞, 𝑞̇), and ∆𝐹(𝑞̇) to zero). Then, 

the nominal dynamic model of robotic manipulator can be written as   

 𝜏 = 𝑀𝑜(𝑞)𝑞̈ + 𝐶𝑜(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑜(𝑞̇) + 𝐺𝑜(𝑞)   (4.65) 

The standard CTC is 

𝜏 = 𝑀𝑜(𝑞)(𝑞̈𝑑 − 𝑘𝑝 𝑒 − 𝑘𝑣𝑒̇) + 𝐶𝑜(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑜(𝑞̇) + 𝐺𝑜(𝑞)   (4.66) 



68 

 

𝑒 = 𝑞 − 𝑞𝑑     (4.67) 

where 𝑒 is the tracking error, 𝑘𝑝  and 𝑘𝑣 are the proportional and derivative control 

gain matrices. By substituting (4.65) in (4.66), 

𝑞̈𝑑 + 𝑘𝑝 𝑒 + 𝑘𝑣𝑒̇ = 0    (4.68) 

It is obvious that the roots of (4.68) will lie on the left half plane if the control gain 

matrices 𝑘𝑝  and 𝑘𝑣 are positive, which implies that the actual trajectory can track 

desired trajectory and error signal will converge to zero. The dynamic equation of the 

tracking error can be obtained by substituting (4.68) in (4.60), which can be rewritten 

as follows: 

𝑋̇ = 𝐴𝑋 + 𝐵∅(𝑥)    (4.69) 

where  

 𝑋 = [𝑥1   𝑥2]
𝑇 = [𝑒    𝑒̇]𝑇, 𝐴 = [

0 𝐼
−𝑘𝑝 −𝑘𝑣

] , 𝐵 = [
0
𝐼
], 

∅(𝑥) = 𝑀𝑜(𝑞)[∆𝑀(𝑞)𝑞̈ + ∆𝐶(𝑞, 𝑞̇) +  ∆𝐹(𝑞̇) + ∆𝐺(𝑞)].  

In practice, the standard CTC is not robust due to ignoring the model uncertainties 

and external disturbance. As a result, the tracking error cannot converge to zero due 

to the effects of the uncertainty that are represented by ∅(𝑥). To improve robustness 

of the CTC, an additional compensator  input is added to the computed torque. The 

following definitions are used to approve stability of the proposed method. 

Definition 4.1 For the function 𝑓(𝑡), 𝐿2 and 𝐿∞ norms can be expressed as follows:  

𝐿2 = {𝑓: 𝑅
+ → 𝑅|‖𝑓‖2 = ∫ |𝑓|2𝑑𝑡 < ∞

∞

0
}   (4.70) 

𝐿∞ = {𝑓: 𝑅
+ → 𝑅|‖𝑓‖∞ = ∫ sup𝑡∈[0,∞) |𝑓|𝑑𝑡 < ∞

∞

0
}   (4.71) 

Definition 4.2 The system 𝑥̇ = 𝑓(𝑥, 𝑡) is called uniformly ultimately bounded if the 

following conditions are satisfied: 

|𝑥(𝑡𝑜)| < 𝑎   (4.72) 
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|𝑥(𝑡)| < 𝑏, ∀𝑡 > 𝑡𝑜 + 𝑇   (4.73) 

for constants  𝑏, 𝑐 and 𝑇(𝑎) such that  𝑎 ∈ (0, 𝑐) 

Lemma 4.2 If 𝑓(𝑡), 𝑓̇(𝑡) ∈ 𝐿∞ and 𝑓(𝑡) ∈ 𝐿2 then 𝑓(𝑡) → 0 when 𝑡 → ∞. 

4.11 Proposed Control Law 

The proposed controller combines CTC controller, which is responsible for 

controlling nominal model of robotic manipulator, with robust controller that 

compensates for the system uncertainties, modelling error, and external disturbance 

𝜏 = 𝑢𝐶𝑇𝐶 + 𝑢𝑟𝑜    (4.74) 

𝑢𝐶𝑇𝐶 = 𝑀𝑜(𝑞)(𝑞̈𝑑 − 𝑘𝑝 𝑒 − 𝑘𝑣𝑒̇) + 𝐶𝑜(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑜(𝑞̇) + 𝐺𝑜(𝑞)  (4.75) 

where 𝑢𝐶𝑇𝐶  is a standard computed torque and it represents a nominal controller part 

in proposed controller. 𝑢𝑟𝑜 is a robust control term that compensates for the 

uncertainties and external disturbance is determined below. 

4.12 Design of Robust Compensator Controller  

In this section, a robust compensator controller is considered. Standard CTC ignores 

uncertainty part of the dynamic model of robotic manipulator and this is not possible 

in particular applications. Therefore, it can be make CTC controller control the 

nominal model of the robot manipulator while the uncertainty part can be controlled 

by adding robust term to CTC control law. The ideal compensate torque required is  

𝑢∗ = ∅(𝑥)  (4.76) 

It can be noticed from (4.69) that ∅(𝑥) is a function of joint variables and parameters 

of the dynamic model of the robotic manipulator and it is denoting the uncertainty 

part of the robotic manipulator dynamic model. In practical application ∅(𝑥) cannot 

be determined because the uncertainty part cannot be known exactly. Therefore, this 

thesis proposes a method to mimic the ideal control law. 

Firstly, let the ideal required compensated torque 𝑢∗ can be represented by 𝑢𝑟𝑜 with 

some error. 
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𝛿 = 𝑢𝑟𝑜 + 𝜀(𝑥)     (4.77) 

𝑢𝑟𝑜 = 𝑘𝛿(𝑥)    (4.78) 

𝛿(𝑥) = 𝑥1 + ∇𝑥2 = [

𝑒1 + ∇1𝑒̇1
𝑒2 + ∇2𝑒̇2

⋮
𝑒𝑛 + ∇𝑛𝑒̇𝑛

]     (4.79) 

𝑘 = [
𝑘1 0 0
0 𝑘𝑖 0
0 0 𝑘𝑛

]   (4.80) 

with assumptions that 

‖𝑘 𝛿(𝑥) + 𝜀(𝑥)‖   < 𝜀0    (4.81) 

and 𝜀(𝑥) represents the difference between the ideal control 𝑢∗ and proposed robust 

control term  𝑢𝑟𝑜.  

Theorem 4.4 Let the proposed control law in (4.74) is selected as a control scheme 

for the robot dynamic model in (4.60) that is rewritten as in (4.70) with the following 

condition 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 = 0    (4.82) 

where 𝑄 is a constant matrix and 𝑃 is a positive definite matrix.  Then, the controlled 

system is stable. 

Proof. Let us select the following positive definite function as the Lyapunov function 

candidate. 

𝑉 =
1

2
𝑋𝑇𝑃𝑋   (4.83)  

Differentiating the function with respect to time yields, 

𝑉̇ = 𝑋𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑋 + 𝑋𝑇𝑃𝐵 (𝑘𝛿(𝑥) + 𝜀(𝑥)) (4.84) 

𝑉̇ = −𝑋𝑇𝑄𝑋 + 𝑋𝑇𝑃𝐵(𝑘𝛿(𝑥) + 𝜀(𝑥))    (4.85) 

By using the Rayleigh-Ritz theorem [134], the following expression can be obtained. 
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𝑉̇ ≤ −
1

2
𝜆𝑚𝑖𝑛 (𝑄)‖𝑋‖

2 + ‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃)‖𝑋‖   (4.86) 

= −
1

2
‖𝑋‖ [ 𝜆𝑚𝑖𝑛 (𝑄)‖𝑋‖ − 2‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃)]    (4.87) 

Then 𝑉̇ is negative if 

‖𝑋‖ >
2‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃)

𝜆𝑚𝑖𝑛 (𝑄)
    (4.88) 

 In the set {‖𝑋‖ >
2‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃)

𝜆𝑚𝑖𝑛 (𝑄)
}, the negative semi definiteness of the derivative of 

Lyapunov function indicates clearly the boundedness of the error signal, state of the 

system 𝑋, and Lyapunov function 𝑉. Integrating the expression in (4.86) over time 

yields,  

∫ 𝑉̇
∞

0
≤ −

1

2
𝜆𝑚𝑖𝑛 (𝑄) ∫ ‖𝑋‖2

∞

0
+ ‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃) ∫ ‖𝑋‖

∞

0
   (4.89) 

𝑉(∞) − 𝑉(0) ≤ −
1

2
𝜆𝑚𝑖𝑛 (𝑄)∫ ‖𝑋‖2

∞

0
+ ‖𝜀0‖𝜆𝑚𝑎𝑥 (𝑃) ∫ ‖𝑋‖

∞

0
  (4.90)  

∫ ‖𝑋‖2
∞

0
𝑑𝑡 ≤

2

𝜆𝑚𝑖𝑛 (𝑄) 
[𝑉(0) − 𝑉(∞) + 𝜆𝑚𝑎𝑥 (𝑃) ∫ ‖𝜀0‖‖𝑋‖𝑑𝑡

∞

0
]  (4.91) 

It can be concluded from the final integral expression in (4.91) that 𝑋 ∈ 𝐿2. Based on 

(4.69), and boundedness of the 𝑋 and 𝜀, then, 𝑋̇ ∈ 𝐿∞. 𝑋, 𝑋̇ ∈ 𝐿∞ and 𝑋 ∈ 𝐿2 are 

obtained, so 𝑋(𝑡) tends to zero as time goes to infinity based on Lemma 4.2. As a 

result the stability of the controlled system in (4.60) with the proposed control law in 

(4.74) is guaranteed. 

4.13 Nominal Controller Design Based on LMI 

The control problem can be restated as an optimization problem of determining the 

optimal values for the nominal controller parameters that can reduce the effects of 

the modelling error, system uncertainties and external disturbance. According to 

Theorem 4.4, the term 𝑘𝛿(𝑥) + 𝜀(𝑥) is bounded because it depends on the error 

signal, which is approved to be bounded. Then it can be set as  

𝐵(𝑘𝛿(𝑥) + 𝜀(𝑥)) ≤ 𝛼‖𝑥‖       (4.92) 
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The control gain parameters 𝑘𝑝 and 𝑘𝑉 can be selected in such a way that 

guarantees asymptotic stability of the robotic manipulator. 

Theorem 4.5 If the matrix 𝐴 that contains controller parameters 𝑘𝑝 and 𝑘𝑉 is 

selected such that  

𝐴𝑇𝑃 + 𝑃𝐴 + 𝛼2 𝑃𝑃 + 𝐼 < 0      (4.93) 

where 𝑃 is a positive definite symmetric matrix, then the controlled system is 

asymptotically stable. The proof of Theorem 4.5 is available in [118]. 

Theorem 4.6 Based on Theorem 4.5 that approves stability of the robotic 

manipulator with the proposed control law and tuning method presented in [121], the 

control problem of robotic manipulator can be considered as an optimization problem 

to find control gain matrices 𝑘𝑝 and 𝑘𝑣.  

Proof. The expression in (4.93) can be expressed as LMI form: 

[
𝑃 𝐴 + 𝐴𝑃 + 𝐼 𝑃

𝑃 −
1

𝛼2
𝐼] < 0                              (4.94) 

Let  

𝐴 = 𝐴𝐼 − 𝐾 𝑁                                                  (4.95) 

𝑋 = 𝑃𝐾     (4.96) 

𝐾 = 𝑃−1𝑋          (4.97) 

𝐴𝐼 = [
0 𝐼
0 0

] , 𝐾 = [
0 0
𝐾𝑃 𝐾𝑣

] , 𝑁 = [
𝐼 0
0 𝐼

]                                                             

Then (4.94) becomes 

[
𝑃𝐴𝐼 − 𝑃𝐾 𝑁 + 𝐴𝐼

𝑇𝑃 − (𝐾 𝑁)𝑇𝑃 + 𝐼 𝑃

𝑃 −
1

𝛼2
𝐼
] < 0  (4.98) 

[
𝑃𝐴𝐼 − 𝑋 𝑁 + 𝐴𝐼

𝑇𝑃 − 𝑁𝑇𝑋𝑇 + 𝐼 𝑃

𝑃 −
1

𝛼2
𝐼
] < 0     (4.99) 
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It can be considered as optimization problem with respect to 𝛼. 

Let 𝛽 =
1

𝛼2
   (4.100) 

Finally, LMI form for the convex optimization problem can be expressed as 

minimizing 𝛽 such that 

[
𝑃𝐴𝐼 − 𝑋 𝑁 + 𝐴𝐼

𝑇𝑃 − 𝑁𝑇𝑋𝑇 + 𝐼 𝑃
𝑃 −𝛽𝐼

] < 0     (4.101) 

4.14 Hybrid CTC-SMC Test 

In this section, the performance and robustness of the proposed robust CTC is 

discussed through simulations on a 2-link robotic arm. Moreover, proposed method 

is compared with two methods that are suggested to improve CTC. First method uses 

artificial neural network with Hamilton–Jacobi–Isaacs (HJI) [135].  The second 

method in this comparative simulation study uses radial basis function (RBF) neural 

network [136]. Additionally, integral absolute value error (𝐼𝐴𝐸) performance index 

is used to reveal tracking error performances in this comparison that can be 

expressed as follows: 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡𝑓

0
    (4.102) 

The desired trajectory is 𝑞𝑑(𝑡) = [𝑞𝑑1  𝑞𝑑2 ]
𝑇, where 

qd1 = 0.3 + 0.1 sin(t) + 0.3 sin(1.7t) + 0.2sin (2.9t) (4.103) 

𝑞𝑑2 = 0.4 + 0.1 cos(𝑡) + 0.3 cos(2.9𝑡) + 0.2cos (3.7𝑡)  (4.104) 

The parameters of proposed method, HJI and RBF are listed in Table 4.1.  𝑘𝑣 and  

𝑘𝑝  of proposed method are determined by using Matlab LMI toolbox.  

Effectiveness and robustness of the proposed method are tested by increasing masses 

and viscous frictions of each links by 15% of their nominal. Additionally, various 

disturbance signals are applied at different time instances of simulation test as 

follows: 

1) At first, 3 sin(𝑡)disturbance signal is applied.  
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2) At second 2, disturbance signal of  5 sin(3𝑡) is inserted.  

3) Three seconds later, another addition to the disturbance signal which equal to  

4 sin (5𝑡)  be inserted. That mean the overall disturbance is 3 sin(𝑡) +

5 sin(3𝑡) + 4 sin(5𝑡). 

 

 

Angular displacement and error in this displacement of robotic manipulators are 

shown in Figures 4.8 and 4.9 for different control approaches. From these figures it 

can be noticed that the proposed method has faster response while RBF requires long 

time until it overcomes the uncertainties and external disturbance. Proposed method 

needs approximately 0.06 seconds until tracking error converges to zero while HJI 

needs 0.2 seconds and RBF requires 6.5 seconds. RBF needs long time to overcome 

uncertainties and external disturbance because initially weights begin with small 

values and they gradually increase until reaching the optimal values at which the 

tracking error in this method converges to zero. 

Table 4.1 Controller parameters 
 

Method Control law Parameter Link1 Link2 

Proposed 
τ = 𝑀0(𝑞)(𝑞̈𝑑 − 𝑘𝑣𝑒̇ − 𝑘𝑝𝑒) + 𝐶0(𝑞)𝑞̇

− 𝑘𝛿(𝑥) 

𝑘𝑣 250 250 

𝑘𝑝 25 25 

𝑘 5 5 

HJI [20] 

τ = 𝑀0(𝑞)𝑞̈𝑑 + 𝐶0(𝑞)𝑞̇𝑑 + 𝐺0(𝑞) + 𝑢 

𝑢 = −𝜔 + 𝑊̂𝑇𝜎𝑇 −
1

2𝛾2
(𝑒 + 𝛼𝑒̇)

−
1

2
(𝑒 + 𝛼𝑒̇) 

𝜔 = 𝑀0(𝑞)𝛼𝑒̇ + 𝐶0(𝑞)𝛼𝑒 

𝑊̇𝑇 = −𝐿𝑊𝑇 

𝛾 0.05 0.05 

𝛼 20 20 

𝐿 1500 1500 

RBF [21] 

τ = 𝑀0(𝑞)(𝑞̈𝑑 − 𝑘𝑣𝑒̇ − 𝑘𝑝𝑒) + 𝐶0(𝑞)𝑞̇

+ 𝐺0(𝑞) − 𝑓 

𝑓 estimation of uncertainty by RBF 

𝑘𝑣 10 10 

𝑘𝑝 25 25 
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Figure 4.8 Position, error, and torque signals of Link 1  

 

The control input torque values for Link1 and Link2 are shown in Figures 4.8  and 

4.9 , respectively. The figures indicate that the control efforts paid by all controllers 

are almost equal except a short duration of time at the beginning. Figure 4.10 shows 

the 𝐼𝐴𝐸 for proposed control scheme and other methods. These indices are clear 

indications of superiority of proposed control scheme in reduction tracking error.  As 

a final remark, it should be noted that all simulation results indicate high robustness 

of proposed scheme against model uncertainties with better accuracy than other 

methods. 
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Figure 4.9. Position, error, and torque signals of Link 2  

 

 

Figure 4.10. 𝐼𝐴𝐸 variations  
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CHAPTER FIVE 

ADAPTIVE ROBUST SMC CONTROL 

This chapter presents an adaptive and robust control scheme, which is based on SMC 

accompanied by adaptation technique for trajectory tracking of nonlinear robotic 

manipulators in presence of system uncertainties and external disturbances. Two 

important features make proposed control method more suitable and better than 

SMC; these features are model free and adaption properties of the technique that 

cancels the need to determine the upper bound of uncertainty, while SMC needs to 

determine the dynamic model of controlled system and a prior knowledge of upper 

bound of uncertainties. Lyapunov theory is used to derive adaption law for the 

controller parameter and  prove stability of proposed method and a 2-link robotic 

manipulator is selected for demonstrating efficacy of the proposed method via 

simulation tests. Simulation tests are utilized to compare proposed method with 

conventional SMC in terms of tracking control performance and cumulative error.  

5.1 Introduction 

As mentioned in previous chapter about SMC and its ability in control of nonlinear 

systems, in particular applications precise dynamic model of nonlinear system like 

robotic manipulator is not available. Hence, implementing SMC is very difficult. 

Ability of fuzzy logic for controlling ill-defined systems and approximating 

nonlinear functions motivated authors to use it to estimate parameters of the dynamic 

model of the controlled system, but these schemes increase complexity of the SMC. 

Combining PD controller with SMC is presented in the article by Lee at al. [137]. In 

this hybrid method, PD control is active in reaching phase while in the sliding phase 

SMC will be active. In addition, Ouyang proposed a method based on PID controller 

and SMC for linear robotic systems [101]. In these methods, selecting the controller 

parameters evokes the necessity to determine the dynamic model of robotic 

manipulator system and upper bound of uncertainties. 
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In this chapter, a proposed method combines the concepts of adaptive control, PD 

control, and robust control. An adaptive PD-SMC control for the robotic manipulator 

is presented with high robustness against system uncertainties and disturbances.  

5.2 Linearly Parametrized of 2-Link Robotic Manipulator 

Linearity in the parameters of the robotic manipulator is an important property 

especially for adaptive control. The dynamic model of the robotic manipulator can be 

expressed as follows: 

Yφ = M(q)q̈r + N(q, q̇)q̇r + G(q) + F(q̇)    (5.1)      

𝑞̇𝑟 = 𝑞̇𝑑 + 𝛾(𝑞𝑑 − 𝑞)      (5.2) 

where q̇r is reference trajectory, Y = Y(q, q̇, q̇r, q̈r) ∈ R
n×p is the dynamic regression 

matrix that contains a known nonlinear function, and φ ∈ Rp is a vector that contains 

unknown constant parameters.  

For the 2-link arm and based on its dynamic model described in (5.1), one can 

rearrange the dynamic into a matrix that contains known variables like position 

tracking and velocities and a vector that contains unknown variables. 

Yφ = [
𝑀11 𝑀12
𝑀12 𝑀22

] [
𝑞̈𝑟1
𝑞̈𝑟2
] + [

−𝑏𝑞̇2 −𝑏𝑞̇1 − 𝑏𝑞̇2
−𝑏𝑞̇1 0

] [
𝑞̇𝑟1
𝑞̇𝑟2
] + [

𝑔1
𝑔2
]      (5.3)     

Y = [
Y11 Y12 Y13
Y21 Y22 Y23

]   (5.4)  

φ = [𝛼 𝛽 𝜎]𝑇      (5.5) 

with 

Y11 = 𝑞̈𝑟1 + 𝑒2𝑐𝑜𝑠(𝑞2)  

Y12 = 𝑞̈𝑟2 − 𝑒2𝑐𝑜𝑠(𝑞2)  

Y13 = 2𝑐𝑜𝑠(𝑞2)𝑞̈𝑟1 + 𝑐𝑜𝑠(𝑞2)𝑞̈𝑟2 − 2𝑠𝑖𝑛(𝑞2)𝑞̇2𝑞̇𝑟1 − 𝑠𝑖𝑛(𝑞2)𝑞̇2𝑞̇𝑟2 +

𝑒2𝑐𝑜𝑠(𝑞1 + 𝑞2)  

Y21 = 0  
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Y22 = 𝑞̈𝑟2 + 𝑞̈𝑟1  

Y23 = 𝑐𝑜𝑠(𝑞2)𝑞̈𝑟1 + 𝑠𝑖𝑛(𝑞2)𝑞̇1𝑞̇𝑟1 + 𝑒2𝑐𝑜𝑠(𝑞1 + 𝑞2)  

It can be noticed from above equations that all variables in regression matrix are 

known while all variables in φ are unknown exactly due to the model uncertainties. 

5.3 Adaptive SMC 

For the robotic manipulator system in (5.1), the closed-loop system is guaranteed to 

be globally stable if the following proposed adaptive control law is used:  

𝜏 = 𝑘𝑝𝑒 + 𝑘𝑑 𝑒̇(t) + 𝜌̂      (5.6) 

𝜌̂ = 𝑌𝛽̂  

where 𝜌̂ ∈ 𝑅1×𝑛 represents estimation for the dynamic model of robotic manipulator  

Y𝛽 that is defined in (5.1). 

𝜌̃(𝑡) ∈ 𝑅1×𝑛 is the estimation error and it can be determined as follows: 

𝜌̃(𝑡) = 𝜌(𝑡) − 𝜌̂(𝑡)       (5.7) 

Adaptive law is: 

𝜌̇̃ = −𝑆𝑇𝐿        (5.8) 

where L ∈ 𝑅𝑛×𝑛 is the diagonal matrix adaptation rate.  

Proof: The Lyapunov function candidate 𝑉(𝑡) is used for the verification of stability 

𝑉(𝑡) =
1

2
[𝑆𝑇𝑀𝑆 + 𝜌̃𝑇𝐿−1𝜌̃]    (5.9) 

𝑉̇(𝑡) = 𝑆𝑇𝑀𝑆̇ +
1

2
𝑆𝑇𝑀̇𝑆 + 𝜌̇̃𝑇𝐿−1𝜌̃     (5.10) 

= 𝑆𝑇𝑀𝑆̇ + 𝑆𝑇𝐶𝑆 + 𝜌̇̃𝑇𝐿−1𝜌̃     (5.11) 

= 𝑆𝑇[𝑀(𝑞̈𝑟 − 𝑞̈) + 𝐶(𝑞̇𝑟 − 𝑞̇)] + 𝜌̇̃
𝑇𝐿−1𝜌̃    (5.12) 

= 𝑆𝑇[𝑀𝑞̈𝑟 + 𝐶𝑞̇𝑟 −𝑀𝑞̈ − 𝐶𝑞̇] + 𝜌̇̃
𝑇𝐿−1𝜌̃   (5.13) 
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= 𝑆𝑇[𝑀𝑞̈𝑟 + 𝐶𝑞̇𝑟 + 𝐺 − 𝜏]    (5.14) 

 = 𝑆𝑇[𝑀𝑞̈𝑟 + 𝐶𝑞̇𝑟 + 𝐺 − 𝑘𝑝𝐸 − 𝑘𝑑𝐸̇(t) − 𝜌̂] + 𝜌̇̃
𝑇𝐿−1𝜌̃  (5.15) 

= 𝑆𝑇[𝜌(𝑡) − 𝑘𝑝𝐸 − 𝑘𝑑𝐸̇(t) − 𝜌̂ 𝑠] + +𝜌̇̃
𝑇𝐿−1𝜌̃   (5.16) 

If parameters 𝑘𝑝 and 𝑘𝑑 selected as follows 

𝑘𝑑
−1𝑘𝑝 = 𝛾     (5.17) 

 𝑉̇(𝑡) = 𝑆𝑇[𝜌(𝑡) − 𝑘𝑑𝑆 − 𝜌̂(𝑡) ] + 𝜌̇̃
𝑇𝐿−1𝜌̃   (5.18) 

≤ −𝑆𝑇𝑘𝑑𝑆 + 𝑆
𝑇[𝜌(𝑡) − 𝜌̂(𝑡)] + 𝜌̇̃𝑇𝐿−1𝜌̃    (5.19) 

≤ −‖𝑘𝑑‖‖𝑆‖
2 + 𝑆𝑇[𝜌̃] + 𝜌̇̃𝑇𝐿−1𝜌̃(32)        (5.20) 

≤ −‖𝑘𝑑‖‖𝑆‖
2 + 𝑆𝑇[𝜌̃] + 𝜌̇̃𝑇𝐿−1𝜌̃    (5.21) 

≤ −‖𝑘𝑑‖‖𝑆‖
2 + [𝑆𝑇 + 𝜌̇̃𝑇𝐿−1]𝜌̃    (5.22) 

If the changing rate of the control parameter is selected as follows: 

𝜌̇̃ = −𝑆𝑇𝐿      (5.23) 

𝑉̇(𝑡) ≤ −‖𝑘𝑑‖‖𝑆‖
2      (5.24) 

Then the proposed adaptation law for tuning the proposed controller guarantees 

asymptotic stability of the robotic manipulator in (5.1) with tracking error signal and 

its derivative converging to zero. 

5.4 Control Methods Requirement 

Table 5.1 summaries the requirements of SMC, PD with SMC and proposed method. 

It can be notice from this table the proposed method assume no thing is known. 

Therefore, it can be applied easily to control robot manipulator. While, the other 

methods need some knowledge about dynamic mode and the upper uncertainty to 

design their control laws.  

 



81 

 

 

Table 5.1 Requirements of control methods 

Method Requirement 

SMC 

Determine approximate   dynamic model of robot 

manipulator 

A prior knowledge about upper bound of uncertainty 

PD with SMC A prior knowledge about upper bound of uncertainty 

Proposed method 

There is no need to determine dynamic model of robot 

neither prior knowledge about upper bound of 

uncertainty 

 

5.5 Simulation Results 

This section demonstrates the effectiveness of proposed control method via 

simulation tests by using 2-link robotic manipulator. In design of controller 

parameters, first, the positive definite matrix 𝛾 is selected, and then according to 

condition in (5.17) the values of control gains in matrices 𝑘𝑝 and 𝑘𝑑 are determined. 

As a result, the parameters take the values of 𝛾 = 5I2, 𝑘𝑝 = 300I2, and 𝑘𝑑 = 60I2. 

∅ = 0.02I2. Finally the controller parameter vector 𝜌̂ is updated according to (5.23) 

with initial value 𝜌̂(0) = [0.01, 0.01, 0.06, 0.02 ]𝑇  where adaption rate matrix is 

L = 100I2. The desired joint trajectories in this simulation are selected to be 

sinusoidal variations versus time as qd(t) = [𝑞𝑑1  𝑞𝑑2]
𝑇, where 

𝑞𝑑1 = cos(2𝜋𝑡)     (5.25) 

𝑞𝑑2 = sin(2𝜋𝑡)     (5.26) 

The effectiveness and robustness of the proposed control method are investigated 

under model uncertainties and compared with the SMC as shown in Figures 5.1 and 

5.2.  
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Figure 5.1 Position, error, and torque signals of Link 1  
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Figure 5.2 Position, error, and torque signals of Link 2 

The model uncertainties include variations of manipulator parameters namely mass, 
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with significantly reduced position tracking errors with respect to standard SMC. 
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30% of that of the standard SMC. These values of the 𝐼𝐴𝐸 index are clear indications 

of superiority of proposed control scheme in reducing cumulative tracking error in 

addition to significant reduction in the control effort. 

 

Figure 5.3. IAE Variations 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

The general goal of this thesis is reviewed with focus on the significant contributions 

on the proposed trajectory tracking control of robotic manipulator systems. Finally, 

some suggestions for future work for improvement and development is presents.  

6.1 Thesis summery 

This work discusses in detail two important challenges in robotic manipulator 

systems: IKP and dynamic control. At first, the difficulties of the inverse kinematics 

solutions such as nonlinearity, singularity, and long time required to get solution are 

discussed and disadvantage of current methods are analyzed. Chapter three presents 

two methods based on feedback theory where IKP is restated as a control problem. 

First proposed method improves the DLS and overcomes on the difficulties of this 

method like long time of iteration and selecting initial point’s problem. Ability of 

fuzzy logic to handle the nonlinear systems is exploited and PD like fuzzy controller 

is used to reduce the error between desired trajectories and actual trajectories. 

Different desired trajectories are used in the simulation test. Simulation test results 

show superiority of the proposed method with respect to the DLS method.  Fast 

response of this method is one of important advantage. A second method is proposed 

to solve IKP with 4-DOF SCARA robot manipulator selected to demonstrate this 

method. In the second proposed method, a hybrid controller combining SMC with 

PD is used to minimize the difference between desired trajectory and actual without 

using Jacobean inversion in order to avoid the singularity problem. 

Based on the literature survey for the control of robotic manipulator systems, the 

robust control schemes are best choice but they are complex and model based and 

this requires a priori knowledge about the dynamic of the robotic manipulator and 

upper bound of uncertainty that may be not possible in particular applications.  
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Although these control strategies provide good performance despite complexity of 

the robotic manipulator, high nonlinearly and strong coupling between adjacent 

joints as well as model uncertainties and external disturbance make challenges for 

these controllers. In this thesis different strategies are proposed to provide simple and 

robust control scheme.  

Chapter four presents two robust control methods based on the LMI technique.  In 

the first method, an improvement on SMC is proposed. Although SMC is an efficient 

control strategy used for the control of nonlinear systems, in real application it is 

very difficult to implement control law of SMC due to its chattering and necessity of 

determining dynamic model and upper bound of uncertainty. Based on previous 

work, the chattering problem is solved by using sat function instead of discontinuous 

function used in standard SMC.  Proportional controller with SMC is combined to 

provide model free controller where proportional controller is used as an equivalent 

control term while the robust term will compensate for the uncertainties. LMI 

technique is used to determine an optimal value gain of the P controller. Two links 

robot manipulator used to illustrate the effectiveness of the proposed method under 

different cases: model uncertainties, external disturbance, and noisy environment.  A 

second proposed method present in chapter four is improved version of CTC.  CTC 

method is one of important scheme that applied widely in robotic manipulator 

control. Model uncertainties and external disturbance are highly affected on CTC 

performance. This draw back motived many researchers to improve CTC. In this 

proposed method, a robust term is added to compensate uncertainties and external 

disturbance. LMI  used to tune the gains of CTC part of the hybrid controller. 

Robustness to model uncertainties and external disturbance and stability approved by 

lyapunov theorem.  Simulation test compare this method with other methods that 

improve CTC. Results indicate clearly successes of proposed method and its 

simplicity.  

Finally, there are some requirements to implement control law in proposed methods 

in chapter four like upper bound of uncertainty and nominal dynamic mode for the P-

SMC and hybrid CTC-SMC methods respectively. In chapter five, an adaptive robust 

method is presented with no requirement. Linearly parametrized property of robot 

manipulator and lyapunov theorem used to drive adaption law for the controller 

parameters of proposed method. Very good performance obtained in this method and 
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results illustrated robustness of proposed method. In conclusion, this work presents a 

complete solution for the robotic system control.  Starting by providing a IK solution 

that solving the problem of singularity and then proposed control method for 

trajectory tracking of robot manipulator with important advantages such as 

robustness to model uncertainties, and external disturbance with avoid needing for 

dynamic model and upper bound of uncertainty. The importance of this work is 

approved by the publications in engineering index journals as listed below: 

Journal Articles:  

Mary, A.H. & Kara, T. (2016). Robust Proportional Control for Trajectory Tracking 

of a Nonlinear Robotic Manipulator: LMI Optimization Approach, Arabian Journal 

for Science and Engineering,41(12): 5027–5036. 

KARA, T., MARY, A.H. (2017). Adaptive PD-SMC for Nonlinear Robotic 

Manipulator Tracking Control, Studies in Informatics and Control, 26(1):49-58.  

Conference Paper: 

Mary, A. H., Kara, T., Miry, A.H. (2016). Inverse kinematics solution for robotic 

manipulators based on fuzzy logic and PD control, Al-Sadeq International conference 

on Multidisciplinary in IT and Communication Science and Applications (AIC-

MITCSA), DOI: 10.1109/AIC-MITCSA.2016.7759929.  

6.2 Suggestion for Future Work 

 A novel solution is presented in this thesis for the IKP by using feedback 

theory with the fuzzy control. This method can be improved by selecting 

optimum value for the damping factor. It is better if fuzzy logic used to 

decided appropriate value instead of keeping it constant. Fuzzy rules can be 

designed and give large value when the solution is near to the singularities 

and reduce the damping factor when the end effector far away from the 

singularity position. 

 Fuzzy logic type 2: all fuzzy controllers used in this thesis are fuzzy logic 

type 1 and recently fuzzy logic type 2 used successfully in many application 

due to ability to overcome complex model uncertainties. Many researchers 
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compare between fuzzy types 2 with fuzzy type 1. Therefore, it can improve 

the performance of the proposed method by using fuzzy type 2. 

 In this work all states assume to be measurable and in order to get more 

accurate analysis, the state estimator can be used with including its dynamic 

in the analysis for designing controller. Kalman Filter is one of the based 

adaptive filters that can be used for the estimation. 

 In this thesis, the acquired data in off-line were used to design the fuzzy rules. 

Therefore it can be improve the performance of the proposed method by 

generate these rules online during the operation of the robot manipulator. 

Moreover, the shape of the Membership function can be adjusted by using 

different optimization algorithms (i.e Ga, PSO,etc)  by selecting suitable 

objective function. 

 Since most algorithms proposed in this work are model independent, therefore it 

can be apply on more complicated robot manipulators like flexible link arm that 

used wildly in many applications especially in space plants. Moreover these 

algorithms can be extending to use it with any nonlinear complex systems that 

suffering from high coupling and high nonlinearity.  
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APPENIDX 

EULER-LAGRNAGE OF TWO LINKS ROBOTIC MANIPULATOR 

Euler-Lagrange is one of important methods that used for obtaining the dynamic 

model of the n links robot manipulator. This method establish relations between the 

joint positions, velocities , accelerations, and the applied torque on the manipulator. 

The Newton-Euler equation for link1 are given by 

𝑓0,1 − 𝑓1,2 +𝑚1𝑔 −𝑚1𝑣̇𝑐1 = 0          (A.1) 

𝑁0,1 −𝑁1,2 + 𝑟1,𝑐1 × 𝑓1,2 − 𝑟0,𝑐1 × 𝑓0,1 − 𝐼1 𝑤̇1 = 0             

 (A.2) 

Where 

𝑓𝑖,𝑖+1  is the force applied to link  i  by link i+1 

𝑔  is the acceleration of gravity  

𝑣̇𝑐1 time derivative of liner velocity of link 1 

𝑁𝑖,𝑖+1 is the coupling moment  

𝐼1  moment of inertia of link1  

𝑤̇1 time derivative of angular  velocity of link 1 

For link2 

𝑓1,2 +𝑚2𝑔 −𝑚2𝑣̇𝑐2 = 0                                                       (A.3) 

𝑁1,2 − 𝑟1,𝑐2 × 𝑓1,2 − 𝐼2 𝑤̇2 = 0                                           (A.4) 

Where 
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𝑣̇𝑐2 time derivative of liner velocity of link 2 

𝐼2  moment of inertia of link2  

𝑤̇2 time derivative of angular  velocity of link 2 

For the planar robot manipulator, the joint torques are equal to the coupling moments   

𝑁𝑖−1,𝑖 = 𝜏𝑖. 𝑖 = 1,2             (A.5) 

𝜏2 − 𝑟1,𝑐2 ×𝑚2𝑣̇𝑐2 + 𝑟1,𝑐2 ×𝑚2𝑔 − 𝐼2 𝑤̇2 = 0                                             (A.6) 

𝜏2 − 𝜏1 − 𝑟0,𝑐1 ×𝑚1𝑣̇𝑐1 − 𝑟0,1 ×𝑚2𝑣̇𝑐2 + 𝑟0,𝑐1 ×𝑚1𝑔 +  

𝑟0,1 ×𝑚2𝑔 − 𝐼1 𝑤̇1 = 0                                                                                  (A.7)   

𝑤1 = 𝑞̇1, 𝑤2 = 𝑞̇1 + 𝑞̇2                                                                                   (A.8) 

The linear velocities are 

𝑣𝑐1 = [
−𝑙𝑐1𝑞̇1 𝑠𝑖𝑛𝑞1
𝑙𝑐1𝑞̇1 𝑐𝑜𝑠𝑞1

] , 𝑣𝑐1 = [
−(𝑙1 𝑠1 + 𝑙𝑐2𝑠12)𝑞̇1 − 𝑙𝑐2𝑠12𝑞̇2
(𝑙1 𝑐1 + 𝑙𝑐2𝑠12)𝑞̇1 + 𝑙𝑐2𝑐12𝑞̇2

]                   (A.9) 

Then by simple substitutions  

𝜏1 = [𝑚1𝐿𝑐1
2 + 𝐼1 + 𝐼2 +𝑚2[(𝐿1

2 + 𝐿𝑐2
2 + 2𝐿1𝐿𝑐2𝐶2)]]𝑞̈1 +𝑚2[(𝐿𝑐2

2 + 𝐼2 +

𝐿1𝐿𝑐2𝐶2)]𝑞̈2 − 2𝑚2𝐿1𝐿𝑐2𝑆2𝑞̇1𝑞̇2 − 𝑚2𝐿1𝐿𝑐2𝑆2𝑞̇2
2 + 𝑚1𝑔𝐿𝑐1𝐶1 +𝑚2𝑔(𝐿𝑐2𝐶12 +

𝐿1𝐶1)  (A.10) 

𝜏2 = [𝑚2𝐿𝑐2
2 + 𝐼2]𝑞̈2 +𝑚2[(𝐿𝑐2

2 + 𝐼2 + 𝐿1𝐿𝑐2𝐶2)]𝑞̈1 +𝑚2𝐿1𝐿𝑐2𝑆2𝑞̇1
2 +

+𝑚2𝑔𝐿𝑐2𝐶12  (A.11) 

 

 

 


