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DESIGN OF SEAFARER-CENTRIC SAFETY SYSTEM; MENTAL 

WORKLOAD (MWL) PREDICTION 

SUMMARY 

It is known that human factor has a major effect on maritime casualties that cause great 

harm to environment, economy and maritime sector. It was stated that while human 

error is the primary contributor of accidents, a good part of collisions and groundings 

were related to mental workload (MWL) of watchkeeping officers. Automation, 

mechanization and the introduction of new technologies had changed the working 

conditions together with reducing the number of crew and increasing the MWL of 

operators. This clearly indicates that human element related issues will continue to be 

one of the major issues in marine transportation assets. In maritime-related studies, it 

has been analysed mostly how the ship's environment, working period and other 

factors affect the seafarers. Almost all maritime-related studies couldn’t have a 

potential to develop MWL prediction system for maritime operations aspect. However, 

lots of studies on drivers and pilots, have produced successful results for MWL 

prediction. Taking into consideration the fact that MWL has major contribution to 

maritime casualties, the development of real-time MWL prediction system is vitally 

essential for ships. 

By implementing the similar measurement techniques used in the studies on drivers 

and pilots, to maritime transportation, this study aims to classify the physiological 

responses of the operators that can produce an output for state of officer on duty as 

“Safe” or “Risky” from the collected physiological data and task load data during the 

seaborn operations. This study predicates on the theories which are the statement 

“minimum performance requires sufficient behavioural activity” of Sheridan and 

Simpson (1979) together with inverted U function of Yerkes and Dodson (1908) which 

presents the relationship between arousal and performance. Moreover, the theory of 

Young et al. (2015) which presents the relationship among mental workload, 

performance, task demand and resource supply and indicates the overload region, 

guides this study in terms of building the structure of the experimental research. By 

being predicated on the above-mentioned theories, this study aimed to design 

Cognitive Seafarer - Ship Interface (CSSI) which is a main part of Seafarer-Centric 

Safety System. The physiological data of the 17 junior deck officers (12 subjects 

performed navigation scenario, 5 subjects performed cargo operation scenario) was 

recorded according to the design. By being correlated with the performance of the 

officer, the change of physiological responses of the subjects were analysed in low and 

high task load levels. The medical decision-making process, which deduced “Safe” or 

“Risky”, was run for this change. For performance measurement that is a part of 

triangulated measurement strategy (Wierwille and Eggemeier, 1993), Officer 

Performance Model which is used for MWL classification, was developed for 

navigation and cargo operation tasks. Additionally, the inputs of Task Load Estimator 

were defined as data transcription from navigational aids according to results of 

classification. In summary, the following process were done and results were found. 
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Firstly, the navigation and cargo operation scenarios were created to simulate ship 

environment. The difficulty level of navigation scenario was gradually adjusted (in 

order to prevent acquired skill) according to traffic density, visibility and geography 

by combining in 4 steps. The difficulty level of cargo operation scenario was gradually 

adjusted according to type and number of operation and operation period 

corresponding to a real cargo operation by combining in 3 steps. Task load assessments 

of the scenarios were carried out according to Operator Function Model (OFM-COG) 

and its sample implications in literature.  

The results of NASA-TLX scores of the subjects supported the increase of task load 

levels of the scenarios. ANOVA results showed that there are significant differences 

in the NASA-TLX scores of 5 different dimensions and in total, among 4 steps which 

have different task load levels for navigation scenario. Similarly, ANOVA results 

showed that there are significant differences in the NASA-TLX scores of 3 different 

dimensions and in total among 3 steps which have different task load levels for cargo 

operation scenario. According to the subjective assessments of the subjects, MWL 

increased during the both of navigation and cargo operation scenarios. 

Secondly, ROC curve analysis was performed for validation of developed officer 

performance model. Recorded performances of the participants were evaluated as 

“safe” and “risky” for each task by one ocean going Master expert for navigation tasks 

and by one ocean going Chief Officer for cargo operation tasks. According to the ROC 

curve analysis, developed officer performance model was validated with high 

significance and AUC values. These results showed that the developed officer 

performance model can be used in any study focused on performance measurement in 

navigation and chemical tanker cargo operations.  

Being validated measurement method, performances of the subjects showed that there 

is a negative significant correlation between performance score and task load in both 

of navigation and cargo operation tasks. With the distinction of the task load as high 

task load and low task load, the performance scores were also found significantly 

different in low and high task loads for both of navigation and cargo operation tasks. 

Thirdly, physiological responses of the subjects were often differentiated between low 

and high task loads. Although the change of time-based heart rate variability (HRV) 

features was not found meaningful according to literature during the increase of task 

load, the change of frequency-based, time-frequency and nonlinear HRV features were 

found significant and meaningful during the increase of task load. Moreover, the 

change of some electrodermal activity (EDA) features and some eye responses were 

found significant in this study. However, the change of EDA responses was not found 

strongly correlated with the increase of task load. This can be explained by the fact 

that electrodermal activity occurs in stressful conditions rather than mental workload. 

The “frustration” scores of the NASA-TLX supported the fact that the subjects didn’t 

feel so stressed during the tasks. On the other hand, the change of pupil diameter 

features was found significant and meaningful during the increase of task load in 

navigation tasks but in cargo operation tasks. Additionally, the change of blink 

frequency features varied across the scenarios. The variable results of eye responses 

are thought that the selectivity of eye blinks and pupil diameter to MWL is low 

according to literature. Additionally, the reason of the fact that the change of some eye 

features was significant during the increase of task load is thought to be related with 

the characteristics of eye responses that pupil diameter change is correlated highly with 

error rate and blink rate increases in incorrect responses rather than correct responses. 
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Therefore, these significances can be explained with the decrease of performance 

together arising from the increase of task load. On the other hand, the correlations 

between HRV and EDA features, HRV and eye features, EDA and eye features were 

found significant and meaningful in mental workload theory. 

Classification process was carried out with artificial neural network (ANN) code and 

“Classification Learner” tool of Matlab 2020a. Although the results of the 

classifications of the subjects’ physiological responses on high and low task loads in 

this study did not give very good accuracies, compared with the studies in literature, 

they gave sufficient results. The classification accuracies, 75.7% in testing, 83.3% in 

all for navigation tasks, 80.0% in testing, 92.5% in all for cargo operation tasks and 

61.3% in testing, 77.0% in all for cross-task classification have been found similar to 

those stated in the related studies whose mental workload and stress classification 

accuracies vary between 70.48% and 98%. 

According to classification efforts of physiological responses on high task load and 

low task load levels and performance scores of the subjects, the red lines of task 

demand became appear in this study. Continuing from the aim of Orlandi and Brooks 

(2018) and the contributions to MWL prediction in marine engine operations of Yan 

et al. (2019), the red lines of task demand in ship navigation was tried to determine in 

this study. Classification of physiological responses and the distinction of the task 

loads according to the performances of the subjects have ensured the task load to be 

separated as high task load and low task load. 

Thus, the inputs of the Cognitive Seafarer-Ship Interface (CSSI) were formed with the 

outputs of high task load details for navigation and the physiological responses given 

as features (classified in this study). CSSI processes the task loading together with 

physiological data of the officer and gives an output as “Risky” for safety of navigation 

in “The future Seafarer-Centric Safety System design” to be used on ships or at the 

Shore Control Centre for autonomous ships in future. 

Consequently, this study will contribute to literature, being the first study in terms of 

predicting MWL for navigation and cargo operations in maritime transportation. In 

addition, this study will be a guide for future studies as it reveals the design of the 

“Seafarer-Centric Safety System” to be developed in order to minimize maritime 

casualties. 
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GEMİ İNSANI-MERKEZLİ EMNİYET SİSTEMİNİN TASARIMI; MENTAL 

İŞ YÜKÜ ÖNGÖRÜSÜ 

ÖZET 

Çevreye, ekonomiye ve denizcilik sektörüne büyük zararlar veren deniz kazalarında 

insan faktörünün büyük bir etkisi olduğu bilinmektedir. İnsan hatalarının kazaların 

başlıca sebebi olduğu belirtilirken, çatışma ve karaya oturma olaylarının nedenlerinin 

önemli bir kısmının vardiya zabitlerinin mental iş yükü (MWL) ile ilgili olduğu 

belirtilmektedir. Otomasyon, mekanizasyon ve yeni teknolojilerin girmesi çalışma 

koşullarını değiştirdi. Değişen çalışma koşullarında gemi personel sayısı azaldı ve 

dolayısıyla vardiya zabitlerinin mental iş yükleri arttı. Bu durum, insan unsuru ile ilgili 

konuların deniz taşımacılığında önemli konulardan biri olmaya devam edeceğini 

açıkça göstermektedir. Denizcilikle ilgili yapılan çalışmalarda daha çok gemi 

ortamının, çalışma süresinin ve diğer faktörlerin denizcileri nasıl etkilediği analiz 

edilmiştir. Denizcilikle ilgili hemen hemen tüm çalışmalar, denizcilik operasyonları 

açısından mental iş yükü ile ilgili bir uyarı sistemi geliştirme potansiyeline sahip 

değildir. Bununla birlikte, sürücüler ve pilotlar üzerinde yapılan birçok çalışma, 

mental iş yükü ölçümlerinde başarılı sonuçlar vermiştir. Mental iş yükünün deniz 

kazalarına büyük etkisi olduğu göz önüne alındığında, gerçek zamanlı bir mental iş 

yükü öngörü sisteminin geliştirilmesi gemiler için hayati önem taşımaktadır. 

Bu çalışma, sürücü ve pilotlar üzerinde yapılan çalışmalarda kullanılan benzer ölçüm 

tekniklerini deniz taşımacılığına da uygulayarak, denizcilik operasyonları süresince 

toplanan fizyolojik ve iş yükü verilerinden vardiya zabitinin durumuna dair 

“Emniyetli” veya “Riskli” çıkarımı üretebilecek bir fizyolojik veri sınıflaması 

yapmayı amaçlamaktadır. Bu çalışma, Sheridan ve Simpson'ın (1979) “asgari 

performans yeterli davranışsal aktivite gerektirir” önermesi ile uyarılma ve performans 

arasındaki ilişkiyi ortaya koyan Yerkes ve Dodson'ın (1908) ters U eğrisi teorilerini 

temel almaktadır. Ayrıca, Young ve arkadaşlarının (2015) mental iş yükü, performans, 

görev talebi ve mental kaynak arzı arasındaki ilişkiyi ortaya koyan ve aşırı yüklenme 

bölgesini gösteren teorisi, bu çalışmanın deneysel araştırma yapısını oluşturması 

açısından temelini oluşturmuştur. Bu çalışma, yukarıda bahsedilen teorilere 

dayanılarak, Gemi İnsanı - Merkezli Emniyet Sisteminin ana parçası olan Bilişsel 

Gemi İnsanı - Gemi Arayüzü (CSSI) tasarlamayı amaçlamış ve bu amaçla simulator 

ortamında 17 güverte zabitinin (12 katılımcı seyir senaryosunu, 5 katılımcı kimyasal 

tanker yük operasyonu senaryosunu icra etmişlerdir) fizyolojik verileri tasarıma göre 

kaydedilmiştir. Katılımcıların performansları ile ilişkilendirilerek düşük ve yüksek iş 

yükü seviyelerinde katılımcıların fizyolojik tepkilerinin değişimi analiz edilmiştir. Bu 

değişim için “Emniyetli” veya “Riskli” çıkarımı yapan “Tıbbi Karar Verme” süreci 

yürütülmüştür. Mental iş yükü sınıflandırmasında kullanılmak üzere, üçlü ölçüm 

stratejisinin bir parçası olan performans ölçümü için (Wierwille ve Eggemeier, 1993), 

seyir ve yük operasyon görevlerini içeren Vardiya Zabiti Performans Modeli 

geliştirilmiştir. Ayrıca sınıflandırma sonuçlarına göre, iş yükü estimator girdileri seyir 

yardımcılarından veri transkripsiyonu olarak tanımlanmıştır. Özetle tez boyunca 

aşağıdaki süreçler işletilmiş ve ilgili sonuçlara ulaşılmıştır. 



xxx 

İlk olarak, gemi ortamını simüle etmek için seyir ve yük operasyonu senaryoları 

oluşturulmuştur. Seyir senaryosunun zorluk seviyesi (kazanılan beceriyi önlemek için) 

trafik yoğunluğu, görüş ve coğrafi bölgeye göre kademeli olarak ayarlanarak senaryo 

4 aşamada birleştirilerek oluşturulmuştur. Yük operasyonu senaryosunun zorluk 

seviyesi ise, operasyon tipi ve sayısı ile gerçek bir yük operasyonunda denk gelen 

farklı operasyon süreçlerine göre kademeli olarak ayarlanarak senaryo 3 aşamada 

birleştirilerek oluşturulmuştur. Senaryoların iş yükü değerlendirmeleri ise Operatör 

Fonksiyon Modeli (OFM-COG) ve bu modelin literatürdeki örnek uygulamalarına 

göre yapılmıştır. 

Katılımcıların mental iş yüklerini ölçmek üzere kullanılan NASA-TLX anket 

sonuçları, senaryoların iş yükü seviyelerinin artışını destekler niteliktedir. ANOVA 

sonuçları, seyir senaryosu için farklı iş yükü seviyelerine sahip 4 aşama arasında 5 

farklı boyutta ve toplamda NASA-TLX sonuçlarında önemli farklılıklar olduğunu 

göstermiştir. Benzer şekilde ANOVA sonuçları, yük operasyonu senaryosu için farklı 

iş yükü seviyelerine sahip 3 aşama arasında 3 farklı boyutta ve toplamda NASA-TLX 

sonuçlarında önemli farklılıklar olduğunu göstermiştir. Katılımcıların sübjektif 

değerlendirmelerine göre, hem seyir hem de yük operasyonu senaryoları sırasında 

mental iş yükleri artmıştır. 

İkinci olarak, geliştirilen vardiya zabiti performans modelinin doğrulanması için ROC 

eğri analizi yapılmıştır. Katılımcıların kaydedilen performansları, seyir görevleri için 

bir uzakyol kaptanı tarafından, yük operasyonu görevleri için kimyasal tanker tecrübeli 

bir uzakyol birinci zabiti tarafından “emniyetli” ve “riskli” olarak değerlendirildi. 

ROC eğrisi analizine göre, geliştirilen vardiya zabiti performans modeli yüksek 

anlamlılık ve AUC değerleri ile doğrulanmıştır. Bu sonuçlar, geliştirilen vardiya zabiti 

performans modelinin seyir ve kimyasal tanker yük operasyonlarında performans 

ölçümüne odaklanan herhangi bir çalışmada kullanılabileceğini göstermiştir. 

Doğrulanan performans ölçüm metodu ile katılımcıların performansları, hem seyir 

hem de yük operasyonu görevlerinde performans sonuçları ile iş yükü arasında negatif 

ve anlamlı bir ilişki olduğunu göstermiştir. İş yükünün yüksek iş yükü ve düşük iş 

yükü olarak ayrılmasıyla, hem seyir hem de yük operasyonu görevleri için düşük ve 

yüksek iş yüklerinde performans sonuçları da önemli ölçüde farklı bulunmuştur. 

Üçüncü olarak, katılımcıların fizyolojik tepkileri genellikle düşük ve yüksek iş yükleri 

arasında değişiklik göstermiştir. İş yükünün artması sırasında zaman bazlı kalp hızı 

değişkenliği (HRV) özniteliklerinin değişimi literatüre göre anlamlı bulunmazken, 

frekans bazlı, zaman-frekans ve doğrusal olmayan HRV özniteliklerindeki değişim 

anlamlı bulunmuştur. Ayrıca bu çalışmada bazı elektrodermal aktivite (EDA) 

özniteliklerinin ve bazı göz tepkilerinin değişimi de anlamlı bulunmuştur. Fakat, 

elektrodermal aktivitedeki değişimin, iş yükündeki artışla olan ilişkisi güçlü bir şekilde 

değerlendirilememiştir. Bu, elektrodermal aktivitenin mental iş yükünden ziyade 

stresli koşullarda ortaya çıkmasıyla açıklanabilir. Ayrıca, NASA-TLX'in "frustrasyon" 

sonuçları, katılımcıların görevler sırasında çok stresli hissetmediği sonucunu 

desteklemiştir. Öte yandan, iş yükünün artması sırasında katılımcıların 

gözbebeklerindeki değişim, seyir görevlerinde anlamlı bulunurken yük operasyonu 

görevlerinde anlamlı bulunmamıştır. Ek olarak, göz kırpma frekansındaki değişim 

senaryolar arasında değişiklik göstermiştir. Göz tepkilerinin değişken sonuçlarının, 

literatüre göre göz kırpma frekansının ve göz bebeği çapının mental iş yükünde 

seçiciliğinin düşük olmasından kaynaklandığı düşünülmektedir. Ayrıca, iş yükünün 

artması sırasında bazı göz tepkilerindeki değişimin anlamlı bulunması, göz 
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hareketlerinin karakteristik özellikleri ile açıklanabilir ki gözbebeğindeki değişim, 

görevlerdeki hata oranı ile yüksek ilişkilidir ve göz kırpma frekansı görevler süresince 

verilen doğru aksiyonlardan ziyade yanlış akisyonlarda artmaktadır. Dolayısıyla bu 

anlamlılıklar, iş yükünün artması sonucunda performansın azalmasıyla birlikte 

açıklanabilir. Öte yandan, HRV ve EDA, HRV ve göz hareketleri, EDA ve göz 

hareketleri arasındaki ilişkiler mental iş yükü teorilerine göre anlamlı bulunmuştur. 

Sınıflama işlemleri yapay sinir ağları (YSA) kodu ve Matlab 2020a'nın “Classification 

Learner” aracı ile gerçekleştirilmiştir. Katılımcıların, yüksek ve düşük iş yüklerindeki 

fizyolojik tepkilerinin sınıflama sonuçları çok yüksek değerler vermese de 

literatürdeki çalışmalarla karşılaştırıldığında yeterli sonuçlar vermiştir. Seyir 

görevlerinde toplanan veriler için testte %75.7, tümünde %83.3, yük operasyonu 

görevlerinde toplanan veriler için testte %80.0, tümünde %92.5 ve görevler arası 

sınıflandırmada testte %61.3, tümünde %77.0 bulunan sınıflama başarıları, mental iş 

yükü ve stres sınıflamaları yapılan çalışmalardaki sınıflama başarıları ile benzerlik 

göstermiştir.  Bu çalışmalardaki sınıflama başarıları %70.48 ile %98 arasında bir değer 

almaktadır. 

Yüksek iş yükü ve düşük iş yükü seviyelerindeki fizyolojik tepkilerin sınıflama 

çabalarına ve katılımcıların performans sonuçlarına göre, bu çalışmada bir vardiya 

zabitinin emniyetli bir şekilde görev yapabileceği maksimum iş yükü belirginleşmiştir. 

Orlandi ve Brooks'un (2018) amacından ve Yan ve arkadaşlarının (2019) gemi 

makineleri operasyonlarında mental iş yükü ölçümü katkılarından devam ederek, bu 

çalışmada gemi seyrinde iş yükünün kırmızı çizgileri belirlenmeye çalışılmıştır. 

Fizyolojik tepkilerin sınıflanabilmesi ve katılımcıların performanslarının iş yüküne 

göre keskin bir şekilde ayrılabilmesi, iş yükünün yüksek iş yükü ve düşük iş yükü 

olarak ayrılmasını sağlamıştır. 

Böylece, Bilişsel Gemi İnsanı - Gemi Arayüzü'nün (CSSI) girdileri, seyir için yüksek 

iş yükü estimator çıktıları ve öznitelikleri ile belirtilen fizyolojik tepkilerin çıktıları ile 

oluşturulmuştur. Bu doktora tezi ile CSSI, gemilerde veya otonom gemiler için Kıyı 

Kontrol Merkezlerinde kullanılmak üzere “Geleceğin Gemi İnsanı - Merkezli Emniyet 

Sistemi tasarımı” nda, iş yükünü vardiya zabitinin fizyolojik verileri ile birlikte 

işleyerek ve seyir emniyeti için “Riskli” olarak uyarı verebilecek bir arayüz olarak 

tanımlanmıştır. 

Sonuç olarak, bu çalışma deniz taşımacılığında seyir ve yük operasyonları için mental 

iş yükünün öngörülebilmesi açısından ilk olması vesilesiyle literatüre katkı 

sağlayacaktır. Ayrıca bu çalışma, deniz kazalarını en aza indirebilecek bir “Gemi 

İnsanı - Merkezli Emniyet Sistemi” nin tasarımını ortaya koyması bakımından ileride 

yapılacak çalışmalara yol gösterecektir. 
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1.  INTRODUCTION  

While human error is the primary contributor of accidents where about 85% of all 

accidents were caused by human error (Kurt et al., 2016), it was stated that 16% of 

collisions, 30% of groundings were related to mental workload (MWL) of 

watchkeeping officers (Akhtar and Bouwer Utne, 2015) in furtherance the 

determination that technology and automation have reduced the number of crew and 

increased the workload of officers (Grech et al., 2008; Louie and Doolen, 2007). This 

clearly indicates that human element related issues will continue to be one of the major 

issues in marine transportation assets. 

International Maritime Organization (IMO) published a circular named as “Guidance 

on Fatigue Mitigation and Management” in 2001. Main objective of this circular is to 

develop marine safety culture by addressing the issue of fatigue. Human element was 

underlined as a contributing factor in maritime casualties just like the Exxon Valdez 

disaster. In effects of fatigue for ship’s officer, inability to concentrate, diminished 

decision-making ability, poor memory, slow response, loss of control bodily 

movements, mood change and attitude change were stated in circular. Boring, 

repetitive work and excessive work load were some of the causes of these performance 

impairments (IMO, 2001). 

One step forward, Maritime Labour Convention 2006 (MLC 2006) set the minimum 

requirements for living and working conditions of seafarers including the minimum 

standards for cabin and other places, health protection, working and rest hours. It was 

aimed that the external conditions which cause fatigue or stress are tried to diminished 

onboard ship together with protecting the seafarers’ rights (MLC, 2006). 

From global perspective, automation, mechanization and the introduction of new 

technologies had changed the working conditions together with increasing the MWL 

of operators. Thus, International Organization for Standardization (ISO) set the 

standards on MWL with ISO 10075 series to develop a standard on terminology and 

basic concepts, determine ergonomic principles and measurement method principles. 
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Firstly, ISO 10075 defines the “mental” as informational cognitive, and emotional 

process in the human being. Mental stress has also been defined as “the total of all 

assessable influences impinging upon a human being from external sources and 

affecting it mentally” in ISO 10075 (Koukoulaki and Boy, 2002) similar to definitions 

of “stress” stated in literature as the stressor factors which are the external conditions 

threatening the human being (Fisher, 1984; Lazarus, 1966). 

ISO 10075 uses the stress-strain-effects model to simplify the relation between the 

stress (stressor factors), mental strain and the effects of that (Figure 1.1). In the 

components of “Task requirements” there are sustained attention, information 

processing, responsibility, duration, temporal pattern and temporal position of action, 

task content and danger. These are underlined because of that the seaborn operations 

involve the same task requirement components. According to the model, mental strain 

is “immediate effect of mental stress within the individual depending on their current 

condition”. As the consequences of mental strain, the effects are divided to two 

different components as facilitating and impairing. In short term effects of mental 

strain, while activation, learning and warming-up effects are facilitating effects, mental 

fatigue and fatigue-like states as reduced vigilance, mental satiation and monotony are 

impairing effects. Mental fatigue is “temporary impairment of mental and physical 

functional efficiency, depending on the intensity, duration, and temporal pattern of the 

preceding mental strain”. Monotony is “slowly developing state of reduced activation 

which is mainly associated with drowsiness, tiredness, decrease and fluctuations in 

performance, reductions in adaptability and responsiveness”. Reduced vigilance is “a 

state with reduced activation and detection performance mainly associated with 

monitoring tasks offering only little variation” (ISO, 2017). Therefore, both of 

overload and underload is important in ergonomic principles due to their impairing 

effects (Koukoulaki and Boy, 2002).  This statement was early offered by inverted U 

principle (Yerkes and Dodson, 1908) and the MWL studies have been based on this 

principle (Kahneman, 1973; Sheridan and Simpson, 1979; Young et al., 2015) that is 

detailed explained in chapter 2 of this thesis. 

In the section of design principles of ISO 10075 (ISO, 2000), it is mostly underlined 

that both high workload demand and low workload demand that causes monotony or 

satiation, should be avoided. In complexity of work demands, decision support 

systems should be used in ergonomic principle. 
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Figure 1.1 : The stress-strain-effects model of ISO 10075-1, adapted from (ISO, 

2017). 

ISO 10075 Part 3 is concerned with measurement aspects (ISO, 2004). It is stated that 

standardized, valid, reliable and easy to handle diagnostic measurement methods are 

needed to measure MWL. While subjective measurements are not sufficient alone, 

psychophysiological measurements need specialised professional training. How the 

methods can be developed that are usable by non-experts, acceptable, valid and reliable 

is the question of this part (Koukoulaki and Boy, 2002). This part is based on a three-

dimensional model. First dimension involves stress-strain-effects process, second 

dimension involves the measurement techniques which are psychophysiology, 

subjective scaling, performance assessment and job and task analysis. These 

measurement techniques are detailed in chapter 2 of this thesis. Third dimension is the 

precision level of the measurement. However, the validation of the measurement 

methods has been still a problem to assess MWL (Nachreiner, 1999). 

Recent studies show that authors have get to first base on measurement techniques to 

assess MWL and stress for mostly drivers. Healey and Picard (2005) developed a stress 

detection system for drivers with ECG, EDA, EMG and respiration measurements and 

reported the accuracy of the system as 97%. Borghini et al. (2014) have designed the 

system for both drivers and pilots with EEG and EOG measurements, and have 

achieved 89% MWL classification accuracy with only EEG features. This was 98% 
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for air traffic controllers with same measurements and ANN classification (Wilson and 

Russell, 2003). Moreover, Singh et al. (2013) used EDA and PPG measurements in 

real-time stress detection system design for drivers and they stated the predictive 

ability as 89.23%. The above-mentioned and similar studies focus on maximizing 

classification performance and minimizing measurement instruments. 

In maritime-related studies, it has been analysed mostly how the ship's environment, 

working period and other factors affect the seafarers. Maurier et al. (2011) stated that 

fatigue negatively affects awareness and attention of seafarer in their study conducted 

in simulator with the aid of psychophysiological data. Yılmaz et al. (2013) analysed 

that increase in working hours caused fatigue and insomnia via EEG, SpO2 and ECG 

measurements. Tac et al. (2013) examined the effects of the seafarer's cognitive 

performance with EEG on the operational processes in ship environment under certain 

stressor factors such as fatigue, insomnia, temperature and noise. Özsever and 

Tavacıoğlu (2018) observed that when seafarer’s circadian rhythm is changed more 

frequently, they experience more drowsiness based upon EDA and HRV measures and 

their reaction times decrease. Lützhöft and Sri (2012) wrote a software (MARTHA) 

that involves working and resting hours of seafarers for fatigue detection. Culley et al. 

(2015) revised the software with the risk index by adding shift (watchkeeping hours) 

alterations. However, these studies were not able to implement real time fatigue / 

workload detection based on instantaneous physiological data. Wu et al. (2017) 

associated the EEG and the HRV data, obtained from 10 participants in engine control 

room simulator, with MWL as task difficulty increased. Orlandi and Brooks (2018) 

applied similar method to ship pilots and reached similar results. Yan et al. (2019) used 

eye response measurement to predict MWL for engine department tasks. With the 

ANN classification success of eye response data and subjective ratings together with 

decreased performance results, the authors stated that eye response measurement can 

be used to predict MWL. 

The maritime-related studies except last three ones, couldn’t have a potential to 

develop MWL prediction system for maritime operations aspect. However, lots of 

studies on drivers and pilots, have produced successful results for MWL prediction. 

Taking into consideration the fact that MWL has major contribution to maritime 

casualties, the development of real-time MWL prediction system is vitally essential 

for ships. With the help of developed MWL prediction system, in future, the dynamic 
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monitorization system such Seafarer-Centric Safety System, which consists of the 

operational variables together with physiological variables of the operator, can be 

applicable in ships. 

1.1 Seafarer-Centric Safety System 

As a future perspective, Seafarer-Centric Safety System focuses mainly the safety of 

the ship by taking the considerations of operational parameters which are navigational 

ones, if the operation is navigation or cargo operational ones if the operation is cargo 

operation, and physiological parameters of the responsible operator. Therefore, the 

system needs the operational data from related equipment and the physiological data 

of the operator. Figure 1.2 presents a sample Seafarer-Centric Safety System design 

for navigation. Considering the fact that operator manages the operation on ship or at 

the Shore Control Centre for autonomous ships, the Cognitive Seafarer-Ship Interface 

(CSSI) concept should include the variables of related operation and physiological 

variables of the operator and accomplished interface processing which gives a signal 

for safety of ship as “Safe” or “Risky”. The success of the CSSI processing is the 

success of the early warning system for ships according to the design. 

   

Figure 1.2 : The future Seafarer-Centric Safety System design. 

Task load estimator takes the traffic density data from Radar, geographical load, which 

is determined with fix interval, from ECDIS, visibility or other variables data from 

manual input option and calculates the task loading. CSSI process the task loading 
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together with physiological data of the officer and gives an output as “Safe” or “Risky” 

for safety of navigation in this sample design. Similar study for aircrafts was conducted 

by Liu et al. (2016). Cognitive pilot-aircraft interface was designed with environmental 

variables of flight and physiological variables of the pilot. Interface can give an output 

to adjust the level of auto pilot considering the mental strain of pilot and the task load 

of environmental variables of flight. 

1.2 Autonomous Ships and the Necessity of Physiological Monitorization of 

Operators in Future 

Physiological monitorization named as MWL prediction in this thesis, is essential in 

maritime-related operations even if the operations are controlled by manned vessels. 

With the increase of automation in bridge designs, situation awareness of 

watchkeeping officers has decreased as in the example of auto pilot failure; half of the 

test subjects couldn’t recognize the automation failure in the study (Pazouki et al., 

2018). 

The importance of human element was emphasized for new autonomous ships at the 

99th session of Maritime Safety Committee meeting (May 16-25, 2018). IMO 

(International Maritime Organization) Secretary-General Kitack Lim highlighted the 

importance of being flexible in using new technologies to improve the efficiency of 

shipping, “while at the same time keeping in mind the role of the human element and 

the need to maintain safe navigation, further reducing the number of marine casualties 

and incidents.” The most important thing that can be inferred from this statement is 

the fact that on board autonomous ships human element will not cease to exist. Within 

the four autonomous ship categories projected by IMO, only the fully autonomous 

ships will be operating with no seafarers on board or ashore. All the other three 

categories will require seafarers to be present either on board or ashore for remote 

controlling (IMO, 2018). 

Authors stated in their study that most prominent issue for Shore Control Centre 

Operator (SCCO) is reduced situation awareness due to limited sense of the ship 

(Burmeister et al., 2014; Man et al., 2015; Wahlström et al., 2015). The other issues 

were also stated as information overload due to the plurality of ships and ship sensors, 

boredom, constant reorientation to new tasks, delays in control and monitoring 



7 

(Wahlström et al., 2015). Physiological monitorization will be more important for 

autonomous ships due to the above-mentioned reasons. 

1.3 Purpose of the Thesis 

There have been studies focusing on assessing the cognitive states of operators in terms 

of their mental workload levels as well as their drowsiness through physiological 

measurements. The innovation site of the thesis is implementing the similar 

measurement techniques to maritime transportation for designing Cognitive Seafarer 

– Ship Interface. This study aims to classify the physiological responses of the 

operators that can produce an output for state of officer on duty as “Safe” or “Risky” 

from the collected physiological data and task load data during the seaborn operations. 

It is aimed to reach the following objectives with the study to be carried out throughout 

the thesis: 

• Designing Cognitive Seafarer - Ship Interface (CSSI) which is a main part of 

Seafarer-Centric Safety System. The physiological data of the officer will be 

recorded according to the design. By being correlated with the performance of 

the officer, the change of physiological responses of the subjects will be 

analysed in low and high task load levels. The medical decision-making 

process, which will deduce “Safe” or “Risky”, will be run for this change 

(Figure 1.3). High accuracy of classification will show the success of the 

design. 

 

Figure 1.3 : Mental workload prediction system layout. 

• Defining the inputs of Task Load Estimator (Figure 1.2) as data transcription 

from navigational aids according to results of classification. 

• Developing Officer Performance Model for navigation and cargo operation 

tasks which is used for MWL classification. 
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1.4 Limitations and Assumptions of the Thesis 

In this thesis study, “mental workload prediction” refers to task-related fatigue and 

fatigue-like effects caused by mental strain specified in the stress-strain-effects model 

of ISO 10075-1 (Figure 1.1).  

Limitations and assumptions of the thesis are stated below: 

• Simulator environment was chosen for measurements due to fact that 

measurement on real environment on board is dangerous and is difficult to 

obtain repeatable results of operator errors. 

• The sample group for this research consists of junior deck officers who have 

minimum one contract sea service. Although it is known that most of maritime 

accidents result from the deficiencies in cooperation of Master-Pilot-Officer 

during pilotage or manoeuvre, in one-third of all accidents one officer keeps 

watch at the bridge (Yıldırım et al., 2019). On the other hand, experience is a 

major contributor for coping with stressor factors (Jeżewska and Iversen, 2012; 

Salyga and Kusleikaite, 2011). Considering all of above-mentioned reasons, 

junior officers are selected for this research and the measurements were taken 

from the subjects in simulators as if they keep watch alone at the bridge. 

• It is assumed that all subjects, who have minimum one contract sea service, 

have sufficient knowledge to handle navigation and cargo operation tasks. 

• One of the limits of the thesis is that the sample group consists of only junior 

deck officers. Universal usability of the MWL prediction system for all ranks 

of seafarers and for all specified seaborn operations has to be researched in 

future studies. 

• Other limitation is that developed MWL prediction system is only based on 

mental strain and mental fatigue. In future, the related systems should be able 

to detect sleep-drowsiness states and/or other fatigue-like effects. 
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2.  THEORETICAL AND CONCEPTUAL FRAMEWORK 

Mental workload (MWL) can be defined as the amount of mental effort and it is related 

to information processing and decision making. In literature, the words such as 

attention, stress, arousal, activation, workload, physiological response, behavioural 

activity, cognitive ability are used in similar areas. As MWL can only be inferred, not 

directly measured, other measures such task performance measurement, physiological 

response have been analysed to infer MWL. 

Information processing and task performance items has been subjects of physiological 

and cognitive theories. They use same terminology at many times. It is stated that there 

is an integration between these theories (Sanders, 1983; De Waard 1996). From the 

view of this theoretical point, cognitive (mental) workload should be studied and 

overemphasised to determine which theoretical approaches to adopt and develop 

measurement techniques. In brief, cognitive workload can be defined as the number of 

mental resources an individual needs to handle a particular task in his / her 

environment. The difference of limited amount cognitive resource and environmental 

demand is a ground of human error in occupational areas (Embrey et al., 2006). 

First part of this section contains theoretical approach to workload. Second part 

presents the summary of the theories used in this study. Last part includes the measures 

of MWL and medical decision-making techniques. 

2.1 Workload Theory 

Workload is defined simplistically as a demand placed upon humans. Demand is 

specified by the aim of task performance. So, the workload is the effect of demand on 

the individual in terms of stages used in energetics and information processing. More 

specifically, workload is the amount of information processing capacity used for task 

performance. (De Waard, 1996). It points out two components; stress that is task 

demand and strain that is effect on the individual. While stress comprises multiple 

demand factors, strain indicates the use of available resources for those demands 

(Young et al., 2015). 
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The first information processing theory was proposed by Broadbent (Embrey et al., 

2006). The theory, single-channel hypothesis, suggests that there is a single-channel 

processor that can only select one sensory input at a time for intentional processing, 

that means limited capacity. However, this hypothesis fails on all tasks requiring 

selective or divided attention. It was accepted that human cognition should be thought 

as a limited capacity processor rather than a limited capacity channel, overtime. 

Although O’Donnell and Eggemeier argued that there is no difference between 

capacity and resource, Wickens stated that capacity is the maximum of processing 

capacity and resource is mental effort to improve processing efficiency (as cited in De 

Waard, 1996).  Moray asserted that performance is affected by the limitation of the 

central processor, not the limitations on input channels (Embrey et al., 2006). So, the 

capacity could be divided among different processors by this view. This theory is 

called resource theory. 

Single resource theory is simplistically based on the balance between supply and 

demand (Embrey et al., 2006). When resource demands exceed available supply, 

performance is assumed to be decreased (Figure 2.1). According to Kahneman (1973), 

the cognitive system has a single pool of limited capacity. Large amounts of resources 

are required for difficult tasks, especially when these tasks are coupled with concurrent 

tasks. On the contrary, easy and automated tasks require less resource with time 

sharing efficiency. 

 

Figure 2.1 : Relation between resources, demands and task performance, adapted 

from (Embrey et al., 2006). 

Kahneman (1973) argued that in the cognitive system, difficult and complex tasks 

increase the arousal level, providing additional resources to cope with these tasks. In 

the light of this information, MWL can be monitored with the aid of physiological data 

collection in terms of autonomic nervous system activation. Kahneman (1973)'s 
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approach, in terms of being measurable, was not considered sufficient alone, but has 

been adopted by other researchers (De Waard, 1996; Young and Stanton, 2002). 

From Kahneman (1973)’s viewpoint that resource supply needs sufficient arousal 

level, Sheridan and Simpson (1979) tried to formulate the relation of behavioural 

(arousal) activity, mental effort and performance. They underlined that MWL is 

neither performance nor task demand. They stated that acceptable minimum 

performance (Pi min) requires sufficient behavioural activity (Bi) (Figure 2.2). 

 

Figure 2.2 : Relation between task performance and behavioural activity, adapted 

from (Sheridan and Simpson, 1979). 

They assumed that there is a monotonic relationship between work load and 

behavioural activity and work load cannot be measured, only inferred. They also stated 

that mental work identified with task i can be extended in time (Figure 2.3). Thus, 

mental work load (MP
i) is the time integral of mental effort (ḾP

i); 

(2.1) 

 

 

Figure 2.3 : Mental effort applied by operator over time t, adapted from (Sheridan 

and Simpson, 1979). 

Similar to the lack of a simple relationship between performance and effort invested 

(De Waard, 1996), there is no constant relationship between behavioural effort and 

mental effort (Sheridan and Simpson, 1979). Practice, experience, operator’s state can 

affect the performance. Similarly, increasing level of skill can make individual need 

ḾPi(𝑡) = ∫ḾPi(𝑡). 𝑑𝑡

𝑡

0
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less mental effort (Figure 2.4). In order to prevent acquired skill, tasks were 

sequentially complicated within a certain period of time in this study. 

 

Figure 2.4 : The effect of increasing level of skill to mental work, adapted from 

(Sheridan and Simpson, 1979). 

Sheridan and Simpson (1979) put forth two constraints for the task completion 

optimization: 

i. The behavioural activity for task i is a function of the mental work expended 

on that task (Figure 2.4). 

ii. The performance achieved on task i is a function of behavioural activity 

expended on that task (Figure 2.2). 

In the information processing theory, a series of stages involved the process from 

information uptake to convert reaction, are performed in computational process which 

will be detailed in chapter 2.1.2. The researchers, who interpret energetic and 

computational models, stated that efficiency of computational process affected by the 

energetic resources (De Waard, 1996). According to Pribram & McGuiness, these 

energetic resources are arousal, activation (behavioural activity) and effort (mental 

work) which is not processing effort, is being active in the case of attention (as cited 

in De Waard, 1996). 

MWL, the effect of demand on operator, is an interaction between operator and task 

structure. Complexity and difficulty are the main characteristics of demand. 

Complexity is the number of stages of processing and difficulty is processing effort 

and it is related to number of resources (De Waard, 1996). MWL, in terms of demand 

/ resource balance, is a product of the resources available to meet the task demands 

(Young et al., 2015). Demand is determined by the aim to be achieved by the task 

performance and cannot be associated precisely to workload. Assessment of workload 

is combined with task difficulty as much as the operator experiences since the operator 
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can give several reactions to the task demands such as adaptation or giving up (De 

Waard, 1996). Thus, MWL is a multidimensional construct and is determined by task 

characteristics (e.g., performance, demand), operator characteristics (e.g., attention, 

skill) and environmental factors (Young et al., 2015). 

Although task performance cannot alone indicate any change in workload, suboptimal 

workload leads to errors and incidents. Suboptimal workload can be described either 

overload or underload (Young et al., 2015). With the aid of the relationship between 

mental work and behavioural activity (Sheridan and Simpson, 1979), physiological 

measurements can indicate mental work (De Waard, 1996; Embrey et al., 2006; 

Kahneman, 1973). 

Young et al. (2015) stated that physiological response (behavioural activity) cannot 

alone indicate any change in workload. Work load is born upon availability of resource 

supply to meet task demands rather than physiological response level. They stated that 

if cognitive system has a single pool of limited capacity, work load would be easily 

detected in case of any change in behavioural activity according to Kahneman (1973)’s 

viewpoint. However, cognitive system is a multiple channel processor and each 

processor has its own internal capacity (Wickens, 2008). The name of this theory is 

Multiple Resource Theory. 

Wickens (2008) argued that mental resources are divided among several competing 

tasks. Mental resources have three dichotomous dependent or independent resource 

pools (Figure 2.5). According to Multiple Resource Theory, when two different tasks 

that use different resource pools appear, operative time-sharing performance should 

occur. Although two tasks, that occur at same time, seem to raise workload, if they use 

different resource pools workload may not tend to rise with the aid of time-sharing 

efficiency. Thus, changes in MWL may not be quantitatively observed in Wickens’ 

model. 

Multiple resource theory is utilizable for interference between tasks but contradictive 

for multidimensionality that cause reveals the need to add new dimensions when 

existing dimensions are not enough (De Waard, 1996). 
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Figure 2.5 : Schematic representation of Wickens’ model, adapted from (Embrey et 

al., 2006). 

Another situation that makes the measurement of the workload difficult is related to 

controlled or automatic (nonattention) information processing. Mental effort is related 

to just controlled mode of information processing (De Waard, 1996). According to 

Young et al. (2015), MWL is identified by the balance of automatic and controlled 

processing. Automatic processing releases attentional resources for other tasks that 

reduces mental work load. 

Young et al. (2015) stated the relationship between performance, task demand and 

resource supply (that is activation level according to De Waard (1996)) in Figure 2.6. 

However, both of them is coherent with Kahneman (1973)’s viewpoint. 

 

Figure 2.6 : The relationship between task demand and resource supply associated 

with mental workload and performance, adapted from (Young et al., 2015). 

The left region of the red lines is called the ‘reserve capacity’ (underload) and right 

region is called the ‘overload’ region (Figure 2.6). In underload region task demands 

could be misperceived by operator and it could lead to performance decrement. 

Alternatively, in overload region when task demands exceed the resource supply, 

performance could be decreased. Resource supply is based on activation and/or effort 
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and brain oxygenation could reflect a quantitative measure of attentional measures in 

connection with mental effort (Young et al., 2015). 

2.1.1 Malleable attentional resources theory (MART) 

Underload needs to be focused more because of that is more difficult to detect than 

overload. The upper limit capacity of an operator has been based on task circumstance. 

If the task is low demand task, operator cannot cope with any critical situation when 

he/she has suddenly faced with increased demand. MART clarifies why mental 

underload can lead to performance impairment (Young and Stanton, 2002). 

The theory can be modelled as in Figure 2.7. Increased demand leads to sharp 

performance decrease. This theory is more acceptable in maritime because of that 

contains automation systems. Watchkeeping officer may not cope with the situation in 

case of any failure in automation systems or being exposed to unexpected danger when 

his/her attention decreases in non-traffic area with auto-pilot. 

 

Figure 2.7 : The relationship between performance and task demand with regards to 

MART, adapted from (Young and Stanton, 2002). 

2.1.2 The role of situation awareness theory on workload 

Situation awareness (SA) is a predominant concern in information processing. 

Working memory and attention are key factors that limit operators from acquiring and 

interpreting information from the environment to convert it to reaction. Endsley (2017) 

used the following definition for SA; “Situation awareness is the perception of the 

elements in the environment within a volume of time and space, the comprehension of 

their meaning, and the projection of their status in the near future.” (p. 36).  

Decision and action take place after three stages of SA. In Endsley (2017)’s SA model 

(Figure 2.8), “perception” points to the question “What is it doing”, “comprehension” 

to “Why is it doing that” and “projection” to “What will it do next”. 
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Figure 2.8 : Model of situation awareness, adapted from (Endsley, 2017). 

The model of SA is used as “encoding - central processing – responding” in Wickens 

(2008) multiple resource theory (presented in Figure 2.5) and similarly De Waard 

(1996) presented this process as the energetic magnetic activity of brain. It can be seen 

in Figure 2.9 that “Stimulus pre-processing” and “feature extraction” seem to be part 

of SA. Moreover, authors stated that it is possible to know which brain mechanisms 

are active in various information processing stages (De Waard, 1996). 

 

Figure 2.9 : Resemblance of 4 stages of information processing theory (De Waard, 

1996) with situation awareness theory. 

Errors can occur in all stages and can affect the task performance. However, the 

relationship between SA and performance is not always directed. Although it is known 

that incomplete or insufficient SA causes poor performance, it is stated in a study that 

when operators realized their poor SA, they were able to adjust their behaviour to 

eliminate the possibility of poor performance (Endsley, 2017). 

Endsley (2017) stated the relationship between workload and SA with the following 

comparisons; 

i. Low SA with low workload; inattentiveness, low motivation or vigilance 

problem. 

ii. Low SA with high workload; erroneous or incomplete perception and 

integration of information. 

iii. High SA with low workload; ideal state. 

iv. High SA with high workload; working hard but being successful in task. 
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Thus, SA and workload can be varied because of characteristics of task, operator and 

environmental factors. If effort increases but demand exceeds the operator’s limited 

capacity, a decrement in SA can be expected. 

2.1.3 Officer workload 

Safety of navigation and safe operation are crucial in terms of avoiding incidents and 

accidents in maritime. It is stated that operator errors that cause accidents can occur at 

all levels according to Endsley (2017)’s model. In literature, these levels have been 

investigated in terms of navigation parameters in mostly collision situations. Table 2.1 

presents how the SA model has been integrated into maritime context. 

Table 2.1 : Integration of SA model into maritime context. 

Authors The cases for levels 

 Level 1 Level 2 Level 3 

Schuffel et al. 

(1989)  

(Perception) 

Identification of 

targets 

(Information processing) 

Track keeping automated 

path prediction on ARPA 

(Motor control) 

Decision on tracks, set-point 

control 

Grech et al. (2008)  (Perception) 

Presence of other 

vessels 

(Comprehension) 

Will courses intersect? 

Any risk of collision? 

Which ship is going to 

give way? 

(Execution) 

Actions to avoid collision 

Gould et al. (2009)  (Cognitive 

mapping) 

Understanding of 

the surrounding 

environment 

(Decision-making) 

Planning the actions 

based on route 

information 

(Decision-execution) 

Decisions are transferred 

into physical behaviours by 

giving order to rudder and 

engine 

Cordon et al. (2017)  (Perception) 

Traffic on course 

(Comprehension) 

IMO regulations to 

prevent collisions 

(Projection) 

Predicted dangerous 

manoeuvres, radio contact 

with other vessels / VTS 

Grech et al. (2008) illustrated SA with anti-collision work on board a ship. Firstly, 

other vessels must be detected. In level 2, their courses must be determined whether 

there is a danger of collision or not. Watchkeeping officer must determine which ship 

is going to give way according to International Regulations for Preventing Collisions 

at Sea (COLREG). In level 3, action must be taken in order to avoid collision and 

officer must be sure that manoeuvre has the intended effect. 

Figure 2.10 presents that the bridge console where watchkeeping officer controls the 

ship. The main controlled equipment and items on bridge by watchkeeping officer are 

stated on the figure. 
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Figure 2.10 : An example of bridge console. 

Similarly, SA model can be integrated into cargo operations of ship. Table 2.2 presents 

the integration of SA model into chemical tanker cargo operation. Figure 2.11 presents 

that the cargo control room (CCR) where officer performs the cargo operation. The 

main controlled equipment in CCR is stated on the figure. 

Table 2.2 : The integration of SA model into chemical tanker cargo operation. 

Situation Perception Comprehension Projection 

Manifold 

pressure 

Increase of pressure Cargo lines linked 

correctly to each other? 

All related valves open? 

Being aware the distance 

of lines and height of 

shore tank. 

Reduce the pump rpm 

in discharging 

operation or increase 

the number of tanks in 

loading operation 

Cargo 

temperature 

Suddenly rise of 

temperature 

Being aware of 

polymerization. Chemical 

reaction may have been 

occurred. 

Stop operation. 

Cooling the tank. 

Using the inhibitor. 

Ballast operation Critical list or trim 

occurs 

Being aware of shearing 

force and bending 

moment limits. 

Present ballast tanks 

levels. 

Being aware of loading / 

discharging steps 

Load or discharge 

ballast contrariwise. 

Reduce the rate of 

cargo operation. 

All parameters should be respectively considered in order to determine officer 

workload. In this study, all these stages were stated to relate the behavioural activity 

of the officer with his / her performance in navigation and cargo operations. Operator 
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Function Model (OFM-COG) was adapted to determine task load of the simulation 

tasks (See detailed information in chapter 2.3.3.) The classification used in the model 

similar with SA model helps in determining the task difficulties and complexities of 

the simulation tasks and calculating the inferred workload. 

 

Figure 2.11 : An example of cargo control room. 

2.1.4 Vigilance 

Vigilance is the state of keeping of a individual's attention and long-standing alert to 

target stimuli. The efficiency of task performance depends upon several factors. These 

factors for watchkeeping tasks are stated below (Embrey et al., 2006): 

i. The sensory modality of the target signal; signals are detected via auditory, 

visual or cutaneous stimulation. 

ii. The salience or detectability of signal; amplitude and duration of signal are 

determinative for detectability. 

iii. Stimulus uncertainty; position, time or nature of signal can affect the response 

time to signal detection. 

iv. Background context; performance degradation is more pronounced when high 

frequency background events occur. 
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v. Stimulus complexity; fast, effortless and skill-based behaviours occur in 

automatic processes. On the contrary, slow, effortful and capacity limited 

behaviours occur in controlled processes. 

2.1.5 Inverted U principle 

When the environmental demands increase, MWL increases correspondingly and 

human information processing system cannot cope with large amounts of 

environmental demands in cognitive strain condition. On the contrary, when the 

environmental demand is low, an individual tends to become less vigilant and his / her 

attention cannot direct to needed environmental demand due to less stimulation. The 

relationship between performance on related task demand and mental arousal can be 

described with reference to Yerkes and Dodson (as cited in Tavacıoğlu, 1999). They 

observed on mice that weak and strong stimulus cause slow habit-formation. Thus, the 

optimal task performance takes place at a medium level of mental arousal and weak 

performances are related to higher and lower arousal levels according to the law called 

Yerkes-Dodson principle. There is a linear relationship between performance and 

arousal in simple tasks whilst there is a curvilinear relationship in complex tasks 

according to Yerkes and Dodson (1908) (Figure 2.12a). 

 

Figure 2.12 : Inverted U function of Yerkes-Dodson principle for relationship 

between arousal and performance, adapted from (Diamond et al., 2007). 

However, there shouldn’t be a linear relationship in simple tasks according to Diamond 

et al. (2007) (Figure 2.12b). High arousal cause performance degradation regardless 

of task difficulty. 
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2.2 The Summary of The Theories Used in This Study 

In this study, the following theoretical assumptions have been used as a result of the 

theoretical approach mentioned in the previous section. 

i. MWL (MP
i) is the time integral of mental effort (ḾP

i) (Equation 2.1, Figure 

2.3). 

ii. The behavioural activity for task i is a function of the mental work expanded 

on that task (Figure 2.4); 

(2.2) 

Tasks were sequentially complicated within a certain period of time in this 

study in order to prevent increasing level of skill that can make individual need 

less mental effort. 

iii. Acceptable minimum performance requires sufficient resource supply and 

behavioural activity (arousal) (Bi). Yerkes and Dodson (1908) stated that the 

optimal task performance takes place at a medium level of mental arousal and 

weak performances are related to higher and lower arousal levels. However, 

high stimulation (arousal level) is needed for optimal performance of simple 

tasks. Same behavioural activity at tasks of which difficulty levels are different, 

may not be sufficient for minimum performance (Figure 2.13). 

 

Figure 2.13 : The relationship between arousal and performance. 

iv. The relations among performance, task demand and resource supply are as the 

model of Young et al. (2015) (Figure 2.6). However, arousal level takes the 

place of resource supply according to assumption ii and iii. 

Consequently, when task demand is very low, operator should give more attention to 

tasks to detect any change in environmental conditions. When task demand is 

Bi = 𝑓(Mi)  
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moderate, higher performances of operator can be seen at this stage and the 

relationship between arousal and performance is formally closer to inverted U shape. 

It is assumed that the performance decreases as the complexity and difficulty of task 

increase. At last stage, best performance takes place at medium level of arousal. 

Moreover, MWL increases when task demand increases as stated in Figure 2.6.  

2.3 Measures of Mental Workload 

The main goal of MWL measurement is to evaluate the effect of task demands on 

human operator. There are 4 measurement strategy for MWL assessment. First one is 

subjective measurement that bases on the own subjective evaluation of operator. Self-

report rating scales were used to quantify the workload assessment. Second one is 

performance measurement that measures workload through fluctuation in task 

performance. Third one is physiological measurement and last one is task loading 

assessment which adopts engineering perspective to estimate workload within 

cognitive structure (Embrey et al., 2006). According to Wierwille and Eggemeier 

(1993), there are three major empirical measurement methods which are subjective, 

physiological and task performance measures. These are also the components of 

triangulated measurement strategy. 

In maritime human factor research, there are several data collection methods. The ones 

related with MWL or fatigue are mainly physiological, physical (eye movement etc.), 

environmental measures, performance analysis in simulator environment, interviews, 

questionnaires, observations and log books, accident / incident analysis and computer-

aided design / evaluations. To collect human factor data and choose the appropriate 

method in maritime domain, following general aspects should be considered (Grech et 

al., 2008); 

• where to conduct the study, 

• what to examine, 

• what measures to record, 

• who to study, 

• how to collect the data, 

• how to analyse the data, 
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• study requirements (practical, reliable, valid, free from contamination 

unplanned or unintended influences. 

In the studies related to MWL / fatigue in maritime, the measures for mainly navigation 

tasks and few engine and cargo operation tasks have been analysed. Table 2.3 presents 

the related maritime studies indicating the measurement strategies. 

Most of researchers didn’t apply the triangulated measurement strategy in their studies 

and they used mostly EEG measurements for workload assessment. Performance 

measurements were conducted either with primary task performance, which is related 

to the ship specific tasks, or secondary task performance. The contradiction between 

primary and secondary task performances appears in subjective workload 

measurement and EEG measurements (Wu et al., 2017). Participants reported higher 

MWL in n-back tasks (secondary task) than in primary tasks while they had lower 

alpha wave suppression in n-back tasks than in primary tasks. Primary task of the study 

required more than one information processing channel while the secondary task 

required only one. As the structure of multidimensional limited cognitive resource 

model (Wickens, 2008), MWL increases when task demand increases in tasks used 

only one information processing channel. Apart from that, most of researchers used 

either primary task performance measurements or non-ship specific task performance 

measurements which are mostly related to cognitive functions of operators (Table 2.3). 

Generally, there are two groups of techniques to measure workload. First one is 

arousal-related measures such as subjective, performance and physiological measures. 

It is thought that a global measure of MWL is possible and it is comparable to single-

resource use. This technique is applicable in many cases. The other group is more 

diagnostic and is linked to multiple resource theory. Some of physiological measures 

and secondary task techniques belong in this group (De Waard, 1996). 

The choice of workload measure depends on some properties. Sensitivity (ability to 

detect changes in workload levels), diagnosticity, primary task intrusion (by secondary 

task), those are essential according to De Waard (1996), implementation requirements 

and operator acceptance are the properties of workload measurement techniques 

(Embrey et al., 2006). Wickens added two properties – ‘selectivity’ (between mental 

workload and physical workload) and ‘bandwidth and reliability’ (to identify upper 

and lower performance limits) to the list of criteria (as cited in Embrey et al, 2006). 
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Table 2.3 : Mental workload and fatigue studies in maritime domain. 

Authors Subjects Measures   Results 

Subjective Physiological Performance 

Cook and 

Shipley 

(1980)  

7 marine pilots Self-Report Affect 

Questionnaire 

 

Body temperature 

ECG 

EDA 

Reaction time 

- The mean of fatigue is either high activation / 

stimulation or low vigilance. Monotonous tasks 

decrease the vigilance of ship pilots. 

Robert et al. 

(2003)  

12 non-seafarer 

students and 

graduates 

Subjective Rating of 

Mental Workload 

(MWL) 

- Primary; 6 generic scenarios with the 

crossing collision threat and target 

behaviour variables. 

Secondary; maintaining engine oil 

temperature within tolerance limits. 

Secondary task method can be used to assess 

cognitive demands in a simulated maritime task 

environment. Higher levels of collision threat were 

found to be associated with increased MWL and 

with impaired performance on the secondary task. 

Lützhöft and 

Dukic 

(2007)  

6 students and 

experienced 

officer 

- Eye tracking (AOI, % 

of gaze, mean glance 

duration, scan path, 

number of glances per 

minute) 

- Authors indicated the relationship between eye 

tracking data and workload. However, they didn’t 

find significant difference between students and 

experienced officers. 

Gould et al. 

(2009)  

20 senior students NASA - TLX HRV 

EDA 

TARGETS method (expert evaluation, 

course deviation, ship control) within 

the variables of geography, visibility 

and traffic density. 

Navigating with ECDIS significantly improved the 

course-keeping performance and HRV and EDA 

measurements indicated higher workload in using 

paper charts. 

Maurier et 

al. (2011)  

40 officers Food, wake and sleep 

diaries 

Karolinska 

Sleepiness Scale 

(KSS) 

EEG 

EOG 

Actiwatch 

Psychomotor 

Vigilance Task (PVT) 

Stroop Test 

Activity data allowing the analysis of 

area use and movements performed by 

the participants in bridge, cargo 

control room and engine room 

simulators. 

6 on / 6 off watch pattern has negative impact on 

officers in terms of fatigue and performance. EEG 

measurements indicated that sleepiness and fatigue 

increased at the end of the 00-06 watch. 

Yılmaz et al. 

(2013)  

7 officers - EEG 

 

Routine bridge operational check lists Increase in working hours caused fatigue and 

sleepiness and decrease in performance of routine 

operational tasks. 

Muczyński 

et al. (2013)  

10 captains, 

officers and 

students 

- Eye tracking (AOI, 

fixation freq., saccade 

freq., blink freq.) 

Simple navigation scenario consists of 

overtaking and bypassing of ships in a 

narrow canal. 

Experienced subjects with best performance results 

had lowest MWL. 
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Table 2.3 (continued) : Mental workload and fatigue studies in maritime domain. 

Authors Subjects Measures   Results 

Subjective Physiological Performance 

Tac et al. 

(2013)  

12 Seafarers - EEG 

 

Cognitive Test Cognitive performance and reaction time deteriorate 

through fatigue and sleepiness. 

Bjørneseth 

et al. (2014)  

8 Dynamic 

Position (DP) 

Operator 

Post-experiment 

interview 

Eye-tracking 

(fixation, saccadic 

movements, 

pupillary response, 

eye blink rate, 

scanpath) 

- Expert operators do spend more time during the 

operation, fixating on the outside environment and 

important equipment. DPO’s pupillary response 

increases when reaching a critical phase of the 

operation. 

Liu et al. 

(2017)  

4 students - EEG Stroop Colour word test The participant, who played the Master role in 

Bridge team, had the highest stress and workload. 

Wu et al. 

(2017)  

10 students and 

graduates 

NASA – TLX EEG 

HRV 

Primary; 4 engine department tasks 

with different levels of difficulty. 

Secondary; n-back task for quantifying 

working memory. 

EEG shows higher sensitivity than HRV. 

Participants reported higher MWL in n-back tasks 

than in MEPS tasks while they had lower alpha 

wave suppression in n-back tasks than in MEPS 

tasks. 

Orlandi and 

Brooks 

(2018)  

10 Marine Pilots NASA-TLX 

Likert Scale 

EEG 

HRV 

Eye-tracking (pupil 

dilation) 

 

Simulated berthing / unberthing 

operation tasks with the variables of 

port familiarity, difficulty and 

manoeuvre phase. 

Workload increased as the difficulty level of 

berthing increased and/or the pilots completed the 

berthings in unfamiliar ports. Physiological 

responses could indirectly monitor levels of mental 

workload. 

Özsever and 

Tavacıoğlu 

(2018)  

14 seafarers - EDA 

HRV 

 

2-choice reaction time test When seafarer’s circadian rhythm is changed more 

frequently, they experience more drowsiness. The 

synchronization of EDA and HRV contributed to 

assess individual’s arousal mood and activation 

state. 

Murai et al. 

(2018)  

4 seafarers - ECG 

 

Simple navigation scenario in the 

narrow channel. 

LF/HF value was useful index for MWL that was 

used for a real time evaluation. 

Yan et al. 

(2019)  

27 students NASA-TLX, SWAT Eye-tracking (pupil 

dilation, blink rate, 

fixation rate, 

saccadic rate) 

2 engine department tasks (operation 

time and number of errors) 

Eye response data and subjective ratings were 

classified with ANN. The results were correlated 

with decreased performance results. As a result, eye 

response is sensitive to MWL. 
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High sensitivity does not mean always high diagnosticity. For instance, pupil diameter 

is sensitive but not diagnosable for MWL. The diagnosticity of secondary task 

performance is higher than pupil diameter (De Waard, 1996). Besides, being global of 

sensitivity and transferability are the other important properties of workload 

measurement techniques (Wierwille and Eggemeier, 1993). Hereby, the workload 

measurement technique should have the properties as high reliability, preferably in a 

wide bandwidth, low primary task intrusion and high sensitivity (De Waard, 1996). 

2.3.1 Subjective workload measures 

Subjective measurement techniques are mostly used in estimating MWL. There are 

several scales for MWL measurement but three of them are thoroughly analysed in 

literature. Modified Cooper-Harper Scale (MCH) was mainly concerned with physical 

workload. In this scale, there is a simplistic assumption that performance of operator 

has a linear relation with the effort operator made on task. Low workload is desirable 

for task but low vigilance and sustain attention can indicate low workload according 

to scale. NASA Task Load Index (NASA-TLX) has 6 sub-scales for measurement. 

Mental, physical and temporal loads are task related, performance and effort loads are 

behavioural and skill related, frustration is individual related. Participants weight the 

sub-scales after they complete scoring the index. So, this measure has 

multidimensional structure and priority choice of workload types. Subjective 

Workload Assessment Technique (SWAT) has 3 sub-scales as mental effort load, time 

load and psychological stress load. SWAT scale involves two-step procedure same as 

NASA-TLX in terms of weighting the sub-scales. Authors stated that two-step 

procedure has negative effect on measurement duration for SWAT and TLX scales. 

Besides, simple univariate scales are more sensitive than SWAT/TLX scales in 

variation in task difficulty (Embrey et al., 2006). 

MCH, TLX and SWAT are globally sensitive measures of operator workload. They 

have been used mostly for flight simulation environment (Wierwille and Eggemeier, 

1993). According to the authors, TLX is more sensitive than SWAT at lower workload 

levels. Besides, TLX is more user acceptance scale because of that the implementation 

of SWAT scale takes 1 hour. 

The relation between subjective workload and task performance is not always 

significant as well as between physiological and subjective ones (Young et al., 2015). 
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Operator may not feel the workload during low task demand but performance can 

decrease caused by monotonous jobs. Actually, operator should more attention at this 

stage. Similarly, operator may quit from the task or give high activation during high 

task demand. Both of cases cause to performance decrement. Actual effort and 

workload experienced are not always in parallel and they are not always distinctive. 

Therefore, one of the MWL scales, Rating Scale Mental Effort (RSME) which has 

scale between ‘no effort’ and ‘extreme effort’, has a problem to detect workload but it 

was found more sensitive than TLX. It was stated that this outcome may be associated 

to confusion caused by sub-scales of TLX (De Waard, 1996). According to Author, 

Raw Task Load Index (RTLX) as well as RSME is more sensitive than TLX because 

of that RTLX does not necessitate task paired comparison weights. 

As a result, TLX (see column 3 of Table 2.3) and SWAT have been mostly used in 

MWL studies although they have 2-step procedures for evaluating workload that cause 

confusion. As the implementation of SWAT takes more time than TLX, it seems that 

the use of TLX is more applicable for this study. 

2.3.2 Performance-based measures 

In literature, there are 2 types of performance measurement methods. One of them is 

primary task performance that measures the total effectiveness of human-machine 

interaction. It mainly considers response latency, error rates, accuracy of response and 

time taken to complete the task (De Waard, 1996). Secondary task is mainly related to 

cognitive process and provides a measure of spare capacity. As the decrement of 

primary performance is not directly linked to workload, both tasks should be used 

concurrently to estimate workload (Embrey et al., 2006). 

According to Wickens (2008), both tasks should use same resource. For example, 

audial warnings have not an effect on the driver workload measurement (De Waard, 

1996). Therefore, light test can be used for secondary performance measurement 

because of that vehicle handling that is primary performance is a visual task (Young 

et al., 2015). Additionally, using of secondary task performance increase the workload. 

If the intrusion of primary task performance is not desirable, the use of secondary task 

performance can be risky because of possible compromises of secondary task to 

system safety. Besides, operator acceptance decreases with secondary task 

performance. 
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The expectation of primary task performance is the decrease of speed and accuracy 

and the increase of workload. The disadvantage of method can be variance of the 

results due to operator’s ability. In secondary task measurement, information 

processing and response functions such as perception, memory, motor output are 

assessed. However, sensitivity and intrusion should be considered when using the 

secondary tasks. An alternative method to use of external tasks is the embedded task. 

This task is a part of the normal system operation (Wierwille and Eggemeier, 1993). 

Routine or emergency radio communication can be an example of embedded task for 

navigation or cargo operation at terminal. 

Other alternative method that can be used to assess workload is reference task 

measurement. This measure involves pre and post measurements using some task 

batteries (De Waard, 1996). 

In maritime, lots of primary and secondary task measurement methods have been used 

to assess MWL (see Table 2.3). Wu et al. (2017) performed 4 engine department tasks 

with different levels of difficulty. These are transferring diesel oil from settling tank 

to service tank, preparing and starting the central cooling system, starting diesel engine 

of no. 2 generator and starting lubrication oil purifier. Authors considered the operation 

time for measurement of performance. For secondary task measurement, n-back task 

measurement was used to quantify working memory. Number of mistaken responses 

and total time in seconds were considered for measurement of secondary task 

performance. 

In another study conducted on workload assessment of marine pilots, port familiarity, 

difficulty of manoeuvre (adjusting the safety limits) and manoeuvre phase were 

selected as variables for primary task measurement. Pre and post physiological 

measurements were applied in order to determine MWL of marine pilots (Orlandi and 

Brooks, 2018). 

Gould et al. (2009) used the variables as geography, visibility and traffic density for 

navigation scenario with 4 different levels of difficulty. TARGETS method was 

implemented to assess primary performances of officers by expert evaluations. Task-

generated (observable safety-critical navigation tasks) and event-generated (responses 

to external objects such as safe passing criteria; these are evaluated as “just acceptable 

or not” by experts) evaluation criteria were implemented by experts. Additionally, 
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course deviation (XTE) and ship control (speed, rudder angle, turn rate) measures were 

considered in the study. 

Collision threat, target behaviour and traffic were used as variables for navigation 

scenario, which was conducted as 6 minutes and 18 times, in another study (Robert et 

al., 2003). CPA and TCPA, track keeping, rule following, course changes, target 

acquisitions, test manoeuvre, bearings taken and headings entered were considered for 

primary task performance parameters. For example, keeping the CPA value less than 

0.5 nm (nautical miles) is collision while less than 0.8 nm is near miss and more than 

1 nm is good performance. Authors also performed the secondary task measurement 

that is “to maintain engine oil temperature within tolerance limits” adding to primary 

task. 

Similar to the study of Gould et al. (2009), visibility, traffic density, geography, 

equipmental condition and speed restriction were determined as difficulty variables in 

the study of Grabowski and Sanborn (2003). Less XTE, fewer manoeuvring order 

command, fewer communication and more CPA were evaluated as good performance 

parameters in the study. Similarly, XTE, mean speed, mean frequency of engine rudder 

and course orders, mean frequency of fixes and CPA were chosen as performance 

measures for the landfall approach in earlier study (Cook et al., 1981). 

Kim et al. (2010) evaluated the operators in 3 main parameters; collision avoidance 

ability, decision making time and degree of deviation. They performed the criteria 

according to only COLREG rules. Position fixing, control of ship speed and course, 

look out of other vessels, collision avoidance and radio communication (Embrey et al., 

2006), determine position, COLREG compliance, detection range of targets, CPA, 

communication and attention, position report (Kircher and Lutzhoft, 2011) were 

evaluated in performance measurements conducted in the studies. Schuffel et al. 

(1989) used simpler method to assess workload of officers; XTE for primary task and 

continuous memory task for secondary task. 

Generally, safety aspects of navigation and ship handling parameters have been used 

for performance measurement in maritime. Navigation scenarios have been varied 

being used different level of difficulties in mostly visibility, traffic density and 

geography parameters. However, there is no performance measurement method for 

cargo operation of chemical tankers. In this study, a comprehensive performance 
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measurement method will be tried to form with experts for chemical tanker cargo 

operations. 

2.3.3 Task loading assessment 

Task loading method has an engineering approach to workload assessment. This 

method aims to measure workload predicated on the estimation of task demands 

matched against the resources needed to meet the demands. There are two approaches 

for task loading methodology; time-based loading model and cognitive transaction 

model (Embrey et al., 2006). 

Time-based evaluation assumes that workload is a function of the time required to 

perform the task. In this model, the number and durations of tasks to be carried out 

should be determined in specific time line. Secondly, the duration of watch or total 

work time of operator should be specified. So, workload can be calculated as ratio of 

total duration of task to the duration of watch. This method was first used for nuclear 

reprocessing facility and later refined to be used for measuring task demands in 

automated chemical process control room (Embrey et al., 2006). 

Another task load method is Task Analysis Workload (TAWL). This method was 

developed within the context of military operations and it can be only used where time 

constraint is taken for being an important performance influencing factor (Embrey et 

al., 2006). 

The third one is Operator Function Model (OFM) which is one of the cognitive task 

analysis methods. This method has been specifically used in maritime context to assess 

the workload deductions of ship-based automation systems. It is predicated on a state-

transition type of task analysis. Information processing model which is similar to SA 

model in terms of information processing stages as perception, comprehension and 

projection, is used to drive the analysis (Embrey et al., 2006). Lee and Sanquist (2000) 

extended the model (which has known as OFM-COG) adding cognitive transactions 

that indicate cognitive load on operator and proposed 9 resource types associated with 

the cognitive transaction: 

• Perceptual Sensitivity (Level 1) 

• Perceptual Discrimination (Level 1) 

• Working Memory (Level 1) 
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• Response Precision (Level 1) 

• Selective Attention (Level 2) 

• Sustained Attention (Level 2) 

• Distributed Attention (Level 2) 

• Long-term Memory (Level 3) 

• Processing Strategy (Level 3) 

The levels of resources state the information processing categories which are 

respectively information acquisition, handling and interpretation as well as in SA 

model (perception-comprehension-projection). Lee and Sanquist (2000) used Miller’s 

terminology for cognitive task transaction and their information processing resources 

(Table 2.4) to describe the information transformations and control activities required 

for system operation. They adapted Miller’s terminology for OFM-COG in maritime 

context.   For OFM-COG analysis of track-keeping subfunction with ECDIS example, 

determining position is a “Identify/Acquisition” cognitive agent task. However, this 

process occurs automatically as Global Positioning System (GPS) data is input and the 

current position is output. Similarly, in “Code/Handling” stage, recording position 

occurs automatically as plotted on ECDIS. In “Test/Interpretation” stage, monitoring 

progress uses the perception and working memory of human information processing 

resources to detect deviation between actual and planned position (see for more 

explanations; (Lee and Sanquist, 2000)). Whereas frequency count of cognitive tasks 

in total for track-keeping with ECDIS is only one (that is “Test/Interpretation”), this is 

seven for track-keeping with charts and without GPS data. 

OFM-COG can be adapted to cargo operations in similar way. For example, in tank 

topping operation, tank level monitoring is a “Input select/Acquisition” cognitive 

agent task to close required cargo valves (“Edit/Handling”), then being sure that cargo 

flow is stopped, is a “Test/Interpretation” cognitive agent task. In total, the frequency 

count of cognitive tasks for the exemplified operation is three. 
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Table 2.4 : Cognitive task transactions and the human information processing 

resources, adapted from (Lee and Sanquist, 2000). 

Cognitive Agent Task General Category of 

Information Processing 

Human Information 

Processing Resources 

1. Input select. Selecting what to pay attention 

to next. 

Acquisition Selective attention, 

Perceptual sensitivity 

2. Filter. Straining out what does not matter. Acquisition Selective attention 

3. Detect. Is something there? Acquisition Perceptual sensitivity, 

Distributed attention 

4. Search. Looking for something Acquisition Sustained attention, 

Perceptual sensitivity 

5. Identify. What is it and what is its name? Acquisition/Interpret Perceptual discrimination 

Long-term memory, 

Working memory 

6. Message. A collection of symbols sent as a 

meaningful statement. 

Handling Response precision 

7. Queue to channel. Lining up to process in 

the future. 

Handling Working memory, 

Processing strategies 

8. Code. Translating the same thing from one 

from to another. 

Handling Response precision, 

Working memory, 

Long-term memory 

9. Transmit. Moving something from one 

place to another. 

Handling Response precision 

10. Store. Keeping something intact for future 

use. 

Handling Working memory, 

Long-term memory 

11. Store in Buffer. Holding something 

temporarily. 

Handling Working memory, 

Processing strategies 

12. Compute. Figuring out a logical or 

mathematical answer to a defined problem. 

Handling Processing strategies, 

Working memory 

13. Edit. Arranging or correcting things 

according to rules. 

Handling Long-term memory, 

Selective attention 

14. Display. Showing something that makes 

sense. 

Handling Response precision 

15. Purge. Getting rid of the irrelevant data. Handling Selective attention 

16. Reset. Getting ready for some different 

action. 

Handling Selective attention, 

Response precision 

17. Count. Keeping track of how many. Handling/Interpretation Sustained attention, 

Working memory 

18. Control. Changing an action according to 

plan. 

Handling/Interpretation Response precision 

19. Decide/Select. Choosing a response to fit 

the situation. 

Interpret Long-term memory, 

Processing strategy 

20. Plan. Matching resources in time to 

expectations. 

Interpret Working memory, 

Processing strategy 

21. Test. Is it what is should be? Interpret Perceptual sensitivity, 

Working memory, 

Long-term memory 

22. Interpret. What does it mean? Interpretation Long-term memory, 

Sustained attention 

23. Categorize. Defining and naming a group 

of things. 

Interpretation Long-term memory, 

Perceptual sensitivity 

24. Adapt/Learn. Making and remembering 

new responses to a learned situation. 

Interpretation Long-term memory 

25. Goal image. A picture of a task well done. Interpretation Long-term memory, 

Processing strategies 

Briefly, time-based evaluations cannot consider the weight of information processing. 

For cognitive transaction models, TAD is more complex than OFM-COG because of 
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that expert judgment is needed for almost all stages. On the other hand, OFM-COG 

has been generally used in maritime context. 

In this study, OFM-COG analysis is used for task loading assessment. The level of 

complexities or difficulties of tasks used in this thesis, were determined according to 

the model and quantified based on the frequency count of cognitive tasks in similar 

way stated in the study of Lee and Sanquist (2000). 

2.3.4 Physiological measures 

In human physiology, there are two anatomical distinct structure: central nervous 

system (CNS), which is composed of spinal cord and brain, and peripheral nervous 

system, which consists of the nerves and ganglion out of brain and spinal cord (Figure 

2.14). Peripheral nervous system is divided to two nervous system as somatic, which 

is related to the voluntary muscles activation, and autonomic nervous system (ANS), 

which controls involuntary responses to regulate physiological functions. ANS is also 

divided into the sympathetic nervous system (SNS) and the parasympathetic nervous 

system (PNS). While PNS maintains bodily functions, SNS is active in emergency 

reactions (De Waard, 1996). SNS sends signals to the brain, which will command 

"fight or flight" in the face of emergency and stressful situations. By stimulating the 

hypothalamus, digestion stops, blood flows from the internal organs into the muscles 

and the heart rate increased. After the danger or emergency, PNS is activated and tries 

to return the body to its routine functioning. Breathing and heart rate become normal. 

PNS performs non-urgent recovery tasks such as the elimination of bodily wastes, 

providing the protective measures for the vision system (such as tears and pupil 

constriction) and the long-term preservation of body energy (Gerrig et al., 2010). 

Most organs are dually innervated by both the parasympathetic and sympathetic 

nervous systems. SNS and PNS can be independently active, mutually active or 

coactive (De Waard, 1996). 

MWL causes the changes in human performance and behaviour those are nearly 

related to the physiological and biochemical changes in the body which are based on 

humoral regulation, nervous regulation and autoregulation. Lean and Shan (2012) 

classified the measures according to their control and activation principles as; 

• peripheral physiological, 
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• central physiological, 

• biochemical. 

 

Figure 2.14 : Two anatomical distinct structure: Central Nervous System and 

Peripheral Nervous System. 

While central physiological evaluations involve brain and eye activity measurements 

such as EEG (electroencephalography), and EOG (electrooculography) (De Waard, 

1996; Lean and Shan, 2012), peripheral physiological evaluations involve following 

measures those reflect the activity of autonomic nervous system (Alberdi et al., 2016; 

De Waard, 1996; Embrey et al., 2006; Lean and Shan, 2012): 

• ECG (electrocardiogram); involves the measures of HRV (heart rate 

variability), HR (heart rate) 

• EDA (electrodermal activity) or GSR (galvanic skin response) 

• Pupil diameter 

• EEB (Endogenous eye blinks); involves eyeblink rate, blink duration and eye 

blink latency 

• BVP (blood volume pulse) or PPG (photoplethysmography) 

• Blood pressure 

• Respiration 

• Skin temperature 

• EMG (electromyography) 
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Authors classified the measures as physical and physiological in the studies mainly 

related to stress measurements (Alberdi et al., 2016; Sharma and Gedeon, 2012). 

Physical reactions can be observed without any instruments, but advanced instruments 

have been used for data analysis. Adding to pupil diameter, blink rates, the following 

measures are classified as physical measures: 

• Behaviour, gesture and interaction 

• Facial features including facial expressions, eye gaze, voice 

The last MWL evaluation is biochemical evaluation. Mostly, the following hormones 

have been used in workload studies (De Waard, 1996; Lean and Shan, 2012): 

• Catecholamines (adrenaline, noradrenaline) 

• Cortisol 

• Immunoglobulin A 

There are 4 dimensions that researchers should consider when using physiological 

metrics. These are the evaluations of invasive versus non-invasive, real-time versus 

delayed, natural context versus artificial lab and subjective versus objective. While 

subjective measurements can be easily collected, the scoring of the indexes by 

participants can not reflect the truth in reliance on retrospective memory. On the other 

hand, objective measurements reflect the real-time states of participants. However, 

arousal data may not express alone about the state of human, they should be combined 

with other measurements. For the dimension of real-time versus delayed, the measures 

such as EEG, pupil dilation are better for real-time assessment. However, EDA has 

more delayed response than EEG and pupil dilation. The place, where the 

measurement occurs, has an important role on the state assessment. While subjective 

measurements, facial recognition can be easily done in natural context, the 

physiological measurements need the laboratory conditions. However, advance in 

technology enables the physiological measurements execute easily in natural context 

by the aid of Bluetooth technology, ergonomic portable instruments. The last 

dimension is invasiveness. The brain imaging technics such as MEG 

(magnetoencephalography) and PET (brain positron emission tomography) need the 

laboratory environment and the participants cannot be relaxed during the 
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measurements. While pupil dilation, subjective assessment are non-invasive measures, 

facial recognition, EDA and EEG are close to invasive (Bergstrom et al., 2014). 

To identify workload peaks, relatively short durations should be considered. While 

HRV is not suitable to detect workload peaks, event-related potentials (ERP) from 

EEG data are suitable. On the other hand, there is no certainty for sensitivity of 

performance and physiological measures to workload peaks (De Waard, 1996). 

Briefly, as the advantage side of the physiological measurements, they do not require 

overt response. However, the disadvantage of those is needing specialized equipment 

(De Waard, 1996). 

2.3.4.1 Cardiovascular activity 

Cardiovascular system is essential for human body. It is composed of the heart and the 

vasculature. The heart supplies a consistent flow of oxygenated blood by sending it to 

the lungs and then to rest of the body (Berntson et al., 2007). The heart is clearly 

affected by autonomic nervous system (Alberdi et al., 2016). The cardiovascular 

system is under the control of both parasympathetic and sympathetic divisions of the 

ANS. Both parasympathetic and sympathetic neurons release acetylcholine onto 

nicotinic receptors (NN) at the peripheral ganglia (Figure 2.15). Sympathetic neurons 

secrete norepinephrine onto beta 1 adrenergic (β1) receptors while parasympathetic 

neurons secrete acetylcholine onto cholinergic (M) receptors. These processes vary in 

temporal dynamics according to related neurons. Parasympathetic system has a more 

rapid rise, a shorter latency of action and a higher frequency capacity. This is the base 

of selectivity of vagal control of heart which means high frequency heart rate 

variability (Berntson et al., 2007). 

The electrocardiogram (ECG) is the recording the electrical activity generated by heart 

on the body surface (Alberdi et al., 2016). Cardiac cycle is an event from one beat to 

the next beat in the heart. Another recording method of heart activity, blood volume 

pulse (BVP) is the measure of the volume of blood passes over specific area (finger 

etc.). It can be detected with the aid of photoplethysmography (PPG) sensor (Sharma 

and Gedeon, 2012). Figure 2.16 presents the one beat of ECG and PPG signal. RRI 

and PPI represent the cardiac beat-to-beat interval. 
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Figure 2.15 : General pattern of autonomic innervation, adapted from (Berntson et 

al., 2007). 

 

Figure 2.16 : Simultaneously recorded ECG (black coloured) and PPG (blue 

coloured) signal, adapted from (Berntson et al., 2007; Selvaraj et al., 2008). 

Cardiovascular activity is more correlated with stress than EMG and respiration. 

However, the ECG and PPG data cannot be directly compared across multiple people. 

The measurements should be standardised with some baseline measurements (Sharma 

and Gedeon, 2012). According to Embrey et al. (2006), stressful events cause 

considerable variation in the cardiovascular reactions. The variation can be analysed 

with the comparison of shifting averages relative to prevalent bandwidth norms. 

The heart period, which is the time between adjacent heart beats, and heart rate (HR) 

is a conversion of heart period as beats per minutes. However, heart rate and heart 

period are not linearly related to each other. Whereas heart period is sensitive to short-

term cardiac responses, heart rate is sensitive to the effects of parasympathetic and 

sympathetic branches interactions (Berntson et al., 2007). Inter beat interval (IBI) 

which is extracted from RRI and PPI data from ECG and PPG signal respectively, is 

average time duration of heart beats within that time period and heart rate variability 

(HRV) is the variation in IBI or temporal variation between series of successive heart 

beats (Embrey et al., 2006). HRV is useful feature of cardiovascular activity and has 
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successful classification accuracies in MWL and stress levels (Alberdi et al., 2016). 

HR increases when task demand increases (Backs et al., 2000; De Rivecourt et al., 

2008; De Waard, 1996; Embrey et al., 2006), in multi task conditions (Fournier et al., 

1999), during additional memory load (Finsen et al., 2001), when requiring problem 

solving (Splawn and Miller, 2013) or stressful condition increases (Alberdi et al., 

2016; Sharma and Gedeon, 2012), HR increases and HRV decreases (Alberdi et al., 

2016; De Waard, 1996; Embrey et al., 2006; Sharma and Gedeon, 2012). 

Additionally, there is no significant differences between ECG and PPG parameters 

which are detailed below, in HRV analysis. There is a high degree agreement between 

two measurement methods (Selvaraj et al., 2008). HRV metrics include the time-

domain, frequency domain, time-frequency and non-linear analysis (Aimie-Salleh et 

al., 2019; Ramshur, 2010; Selvaraj et al., 2008). 

In time domain analysis, NN (normal-to-normal, beat-to-beat) intervals have been 

analysed and the following features have been extracted (Alberdi et al., 2016; Shaffer 

and Ginsberg, 2017): 

• Mean of heart rate 

• Standard deviation of NN intervals (SDNN) (Equation 2.3) 

• Root mean square successive difference (RMSSD) (Equation 2.4) 

• NN intervals differing by more than 50 ms (NN50) 

• Percentage of the number of successive NN intervals varying more than 50ms 

from the previous interval (pNN50) 

• Standard deviation of the averages of NN interval in all 5-min segments 

(SDANN) 

• HRV triangular index (HRVti) (Equation 2.5) 

• Triangular interpolation of IBI interval histogram (TINN) (Equation 2.6) 

(2.3) 

 

(2.4) 

SDNN = √
1

𝑁−1
∑ [𝑁𝑁𝑛 −𝑚𝑒𝑎𝑛(𝑁𝑁)]2𝑁
𝑛=1  

RMSSD = √
1

𝑁−2
∑ [𝐼(𝑛) − 𝐼(𝑛 − 1)]2𝑁
𝑛=3  
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where N is total window length and NN is normal-to-normal time interval (Aimie-

Salleh et al., 2019). 

(2.5) 

(2.6) 

where NIBI is the total number of IBI (NN) intervals, Y is the maximum value of density 

distribution of IBI, M and N values represent the minimum and maximum values of a 

triangle which is shaped on IBI histogram graphic, on the time axis (Ramshur, 2010). 

Continuous feedback between peripheral autonomic receptors and the CNS leads to 

irregularities in HR. Decrease of HRV is more sensitive to increase in workload than 

increase of HR. Whereas HRV decreases and HR increases in physical load, HRV 

decreases and HR has no change in mental load (Brookings et al., 1996; De Waard, 

1996). On the other hand, Lean and Shan (2012) stated that the increase of HR with 

the decrease of HRV is associated with an increase of difficulty of task demand. 

Frequency domain methods decompound the variance of overall heart rate period into 

specific frequency bands. Quantifying the variance within the IBI series is done by 

calculating the power spectrum density (PSD). Estimation of PSD has been carried out 

using Fourier transform, autoregressive modelling etc. One of the methods is Welch 

periodogram that is based on discrete Fourier transform (Ramshur, 2010): 

(2.7) 

 

The periodogram that is extension of DFT is calculated to estimate PSD of a time series 

as below: 

(2.8) 

 

Modified periodogram, which is incorporating a weighted windowing function, is 

calculated to reduce spectral leakage as stated below: 

(2.9) 

 

where                          . Finally, PSD by the Welch periodogram is calculated as 

stated below: 

HRVti =
𝑁𝐼𝐵𝐼
𝑌

 

TINN = 𝑀 −𝑁 

𝐷𝐹𝑇𝑥(𝑓) = ∑ 𝑋(𝑛)𝑒 − 𝑖2𝜋𝑓𝑛
𝑁−1

𝑛=0

 

𝑃(𝑓) =
1

𝑁
|∑ 𝑋(𝑛)𝑒 − 𝑖2𝜋𝑓𝑘/𝐿
𝑁−1

𝑛=0

|

2 

       𝑘 = 0,1, … , 𝐿 − 1. 

𝑃𝑀(𝑓) =
1

𝑀𝑈
|∑ 𝑋(𝑛)𝑤(𝑛)𝑒 − 𝑖2𝜋𝑓𝑛
𝑁−1

𝑛=0

|

2 

       𝑖 = 0,1, … , 𝐿 − 1. 

𝑈 = 1/𝑀 ∑ 𝑤2(𝑛)

𝑀−1

𝑁=0

 



40 

(2.10) 

 

where PM,i(f) is the ith modified periodogram of the data series (Ramshur, 2010). 

Another method is Lomb-Scargle periodogram (LSP). LSP estimates the frequency 

spectrum by fitting the least squares of sinusoids to the data. Unlike Welch 

periodogram, LSP doesn’t use the weighted windowing functions. The LSP for real-

valued data sequence X of length N for random times tn is calculated as stated below: 

 

 

(2.11) 

 

where x̄ and σ2 are the mean and variance of the time series (Ramshur, 2010). Figure 

2.17 presents the above-mentioned frequency domain methods and a sample PSD-

frequency graphic for resting and stress conditions. 

 

Figure 2.17 : Welch and Lomb-Scargle Periodograms, adapted from (Ramshur, 

2010) (a) and samples of PSD generated from PPG-derived HRV for resting and 

stress conditions, adapted from (Aimie-Salleh et al., 2019) (b). 

In frequency analysis, the following features with above-mentioned methods have 

been extracted in literature (Aimie-Salleh et al., 2019; Ramshur, 2010; Shaffer and 

Ginsberg, 2017): 

• Absolute spectral powers of low, mid and high frequencies 

𝑃𝑊(𝑓) =
1

𝑁
∑ 𝑃𝑀, 𝑖(𝑓)

𝑁−1

𝑖=0

 

𝑃𝐿𝑆(𝑓) ≡
1

2𝜎
2 {
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∑ cos⁡
2
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+
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∑ sin⁡
2
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𝑁
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𝑁
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• Percentage of frequency bands to the sum of the bands 

• Normalized frequency bands to total power 

• The ratio of low frequency to high frequency 

• Peak frequencies in frequency bands 

The frequency band is divided into three frequency band, these are low frequency (0.02 

-0.06 Hz) that is related to body temperature, mid frequency (0.07-0.14 Hz) that is 

related to short-term blood pressure, and last one, high frequency (0.15-0.50 Hz) that 

is related to respiratory and PNS influenced fluctuations. Decrease in mid and high 

frequencies is associated with an increase in mental effort and task demand (Veltman 

and Gaillard, 1998). Mid frequency is most sensitive in low workload areas (De 

Waard, 1996). While sympathetic control increases the low frequency (LF) being 

under the control of cardiac sympathetic nervous, parasympathetic control affects high 

frequency (HF) being associated with vagal components of ANS including respiratory 

and cardiac vagal nervous (Alberdi et al., 2016; Berntson et al., 2007; Lean and Shan, 

2012). The increase of LF/HF by the increase of LF together with the decrease of HF 

is associated with MWL (Lean and Shan, 2012) and stress (Alberdi et al., 2016; 

Sharma and Gedeon, 2012). However, the decrease of LF in high task difficulty were 

stated by authors (Delaney and Brodie, 2000; Lehrer et al., 2010; Splawn and Miller, 

2013). 

Generally, the energy ratio of LF (0-0.08 Hz, 0.04-0.15Hz or 0.05-0.15 Hz) to HF 

(0.15-0.5 Hz or 0.16-0.4 HZ) (Sharma and Gedeon, 2012), the ratio of HF to all 

frequencies, total energy of the spectrum, energies of certain frequency bands (ULF, 

VLF, LF, HF) (Alberdi et al., 2016) have been used as features of ECG signal. Adding 

to above mentioned features, sum of LF power, sum of HF power, LF/HF, HF/AF, 

normalized mean, standard deviation, wavelet mean and wavelet standard deviation 

(Chen et al., 2017), total (LF+MF+HF), MF/HF, (LF+MF)/HF, (LF+MF) / total and 

median of HRV (Chueh et al., 2012) have been used for feature extraction. 

Like frequency-domain analysis, time-frequency analysis is carried out with low, mid 

and high frequency bands and the features of those. Despite the methods used in 

frequency bands, windowed periodograms are used in time-frequency analysis. 

Moreover, continuous wavelet transform (CWT) (Equation 2.12 and 2.13) and discrete 

wavelet transform are used to analyse non-stationary signals in HRV analysis 
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(Ramshur, 2010). Figure 2.18 presents a sample time-frequency analysis for resting 

and stress conditions. 

(2.12) 

 

where Ѱ*(t) is the complex conjugate of the mother wavelet Ѱ(t), α is the dilation 

parameter, and τ is the location parameter. CWT coefficients equals the W(τ, α) for 

given time τ. The instantaneous power of the frequency band [f1 f2] can be calculated 

as stated below: 

(2.13) 

 

 

Figure 2.18 : Samples of TFD generated from PPG-derived HRV for resting and 

stress conditions, adapted from (Aimie-Salleh et al., 2019). 

Spectral analysis of HRV has been used as an index of cognitive, MWL in literature. 

However, it can be influenced by speech (De Waard, 1996). In literature, the increase 

of HRV was stated in high complexity tasks for longer durations (Fairclough et al., 

2005; Gao et al., 2013). Although, HRV is lacked sufficient sensitivity and 

diagnosticity according to Nickel and Nachreiner (2003), HRV in HF changes when 

difficulty changes (Brookings et al., 1996). Moreover, HRV in MF band has a 

significant change during tasks compared to baseline (Fallahi et al., 2016). However, 

this is more sensitive for the task from low to intermediate, not at high levels (De 

Rivecourt et al., 2008). 

Besides, there are following non-linear features in literature (Aimie-Salleh et al., 2019; 

Alberdi et al., 2016; Ramshur, 2010; Shaffer and Ginsberg, 2017): 
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• Standard deviations in Poincare plot (Figure 2.19a) 

• Sample entropy (Equation 2.14) 

• Shannon entropy 

• Complexity (C) that is randomness of NN intervals and tone (T) that is 

sympathovagal balance 

• Alpha values of detrended fluctuation analysis (Equation 2.15 and Figure 

2.19b) 

(2.14) 

where                                                        , Ci
m = ni

m/(N-m), N is the sample value of 

the IBI signal, m and m+1 represent the length of vectors/sequences taken from IBI 

signal. 

(2.15) 

 

where                      and is the kth value of the integrated series, IBI(i) is 

the ith interbeat interval, IBI is the average interbeat interval for the entire time series, 

yn(k) represents the value of separated segment of length n (Ramshur, 2010). 

 

Figure 2.19 : Poincare Plot (a) and detrended fluctuation analysis (b) of IBI data, 

adapted from (Ramshur, 2010). 

From other recording methods of cardiovascular activity, blood pressure (BP) is the 

pressure of the blood against the inner walls of the veins. BP increases with stress 

(Sharma and Gedeon, 2012) but is not a good indicator as well as HRV. BP is regulated 

peripherally and is affected by local functions in working muscles. Therefore, it may 

SampEn (m,r,N) = -ln[ϕ
m+1

(r)/ϕ
m
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camouflage the changes of MWL. Systolic blood pressure (SBP), diastolic blood 

pressure (DBP), mean and standard deviation are mostly used features (Alberdi et al., 

2016). 

2.3.4.2 Electrodermal activity 

Electrodermal activity (EDA) or skin conductance response (SCR) or galvanic skin 

response (GSR) reflects the change in the electrical properties of the skin under 

increased cognitive workload or physical activity, arousal, emotion (Alberdi et al., 

2016). Besides, it reflects changes in the level of activation generated during on 

attention (Lajante et al., 2012). EDA occurs at the process from attention, emotion, 

information processing to normal-abnormal behaviours (Dawson et al., 2007). 

Electrodermal activity is a reliable indicator of stress. Additionally, EDA has strong 

correlation with cognitive load and working performance (Sharma and Gedeon, 2012). 

Basically, EDA reflects the fight or flight response (Bergstrom et al., 2014). In contrast 

to heart rate, electrodermal activity is controlled by only sympathetic nervous system 

(Kettunen et al., 1998). Therefore, it is mostly sensitive to stress, excitement, 

engagement, frustration and anger (Bergstrom et al., 2014) and EDA is a good 

physiological indicator of arousal related stress-strain process (Embrey et al., 2006). 

EDA and HRV are the best correlates of real time stress (Alberdi et al., 2016) and the 

synchronization of EDA and HRV is associated with verbal activity, variability of 

arousal ratings and prevailing activation mood, so this synchronization is mainly 

associated with arousal (Kettunen et al., 1998). For MWL measurement, EDA is 

sensitive to sudden stimulus and the duration of the response increases in stressful 

conditions (Collet et al., 2014). Additionally, EDA increases when task difficulty 

increases (Miyake et al., 2009). 

Eccrine and apocrine sweat glands are the forms of sweat glands in the human body. 

Eccrine sweat glands are active for thermoregulation. However, eccrine sweat glands 

located on palmar and plantar surfaces are responsive to psychologically significant 

stimuli than thermal stimuli. There are three independent pathways those lead to 

production of EDA (presented in Figure 2.20). The first one is the influences from 

limbic system and hypothalamus. Second one involves contralateral cortical and basal 

ganglion influences. One of the pathways is excitatory control by the premotor cortex 

and other one involves both excitatory and inhibitory influences originated in the 
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frontal cortex. Third one is the activation of reticular formation in the brain stem. 

Briefly, there are evidence that central control of EDA is associated with attention and 

emotional process (Dawson et al., 2007). 

 

Figure 2.20 : CNS determiners of EDA, adapted from (Dawson et al., 2007). 

Electrodermal recordings are generally taken from locations on the palms of the hands. 

There are many possible placements (presented in Figure 2.21) those are medial (#1) 

and distal (#2) phalanges of the fingers and thenar and hypothenar (#3) eminences. 

The greatest level of the reactivity was found at the distal site where a large number of 

active sweat glands are located. Before measurement, hands should be washed with 

nonabrasive soap and skin should be kept clean and dry. Ambient temperature should 

be the room temperature, 23˚C in order to prevent undesirable increase in sweating 

due to high ambient temperature (Dawson et al., 2007). 

EDA is composed of tonic, which is slow, and phasic activity which is rapid secretions 

in response to a discrete stimulus (Bergstrom et al., 2014). Skin conductance level 

(SCL) that is tonic activity, occurs at 2-20 µS, has1-3 µS changes in SCL in a specific 
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time (Dawson et al., 2007; Lajante et al., 2012) and skin conductance response that is 

phasic activity, generates 0.1-1.0 µS changes in amplitude (Dawson et al., 2007). 

 

Figure 2.21 : Electrode placements for EDA recording, adapted from (Dawson et al., 

2007). 

Defining the SCR in a raw EDA data is little complicated. Normally, minimum values 

between .01 and .05 µS increases in 5s or fewer duration have been used to define SCR 

(Blain et al., 2010). But there are nonspecific or spontaneous (NS-SCRs) and specific 

SCRs those should be differentiated correctly. NS-SCRs occur in the rate between 1 

and 3 per minute while the person is at rest. Latency window (presented in Figure 2.22) 

is also defined for SCRs and should be in the interval between 1-3 s or 1-4 s. SCR rise 

time is generally 1-3 s, SCR half recovery time is generally 2-10 s (Dawson et al., 

2007). Rise time should be less than recovery time to define a SCR (Bergstrom et al., 

2014). Figure 2.23 presents the raw EDA signals at the rest state and active state. Red 

circles on the rest trail graphic means the NS-SCRs and the red circles on the active 

trail graphic means the specific SCRs. 

 

Figure 2.22 : Graphical representation of EDA components, adapted from (Dawson 

et al., 2007). 
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Figure 2.23 : Sample EDA raw signal from rest and active trials, adapted from 

(Blain et al., 2010). 

EDA raw data requires minimal calculations such as mean and sum. On the other hand, 

complex measures are known that are more successive than mean and sum (Sharma 

and Gedeon, 2012). Generally, mean EDA value, the range and the number of SCRs 

have been used for feature extraction of EDA signal. However, first difference of EDA 

signal and the centroid of the EDA first difference histogram by using derivative of 

EDA signal were found more successive to detect emotional state of the person (Blain 

et al., 2010). Additionally, the following features have been used in literature (Alberdi 

et al., 2016): 

• Mean amplitude and standard deviation of mean amplitude 

• Minimum and maximum values 

• Root mean square (RMS) 

• Rising time (tRise) 

• Difference between first value and the maximum (DiffMax) and difference 

between first value and the minimum (DiffMin) 

• Position of maximum (MaxPos) and position of minimum (MinPos) 

• Zero crossings (ZC) 

• Number of peaks 

• Peak height 

• Half recovery time (tRecovery) 

• The sum of magnitudes, the sum of response duration and the sum of estimated 

areas under the response (areaResp) 

• Kurtosis, skewness and smoothed first derivate average (Diffavg) 
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• SCR amplitude (Aq), duration (Dq) and the average area under the rising half 

of SCRs (areaRise) 

The other features are generated from the superposition (namely SC) of SCL and SCR. 

One of them is overall level of SC. However, this method ignores the EDA signal 

property as the components of tonic and phasic activity. The other one is mean change 

score of SC (Lajante et al., 2012). To prevent skewness and leptokurtosis of EDA 

magnitude and amplitude (for SCL or SCR), logarithmic transformation is often used 

(Dawson et al., 2007). 

To assess SCRs, there are some extraction methods in literature. One of them is 

standard min-max or trough-to-peak analysis. Extraction is carried out according to 

values from local minimum to local maximum. However, there are common errors on 

quantification of SCR amplitude such as underestimation of amplitude and 

misattribution with respect to response window (Benedek and Kaernbach, 2010). The 

more reliable method, continuous decomposition analysis (CDA) reflects the SCL and 

SCR. The integral of the area under of SCR, the ISCR generates more reliable measure 

stimulus-related phasic activity (Lajante et al., 2012). 

To extract phasic sympathetic activity of the EDA signal decomposition of skin 

conductance (SC) data is performed (Figure 2.24). This process is based on standard 

deconvolution algorithm performed on SC data with impulse response function (IRF) 

(temporal vicinity of the SCR peak) which is based on Bateman function (Equation 

2.17): 

(2.16) 

(2.17) 

where τ1 and τ2 are 0.75 and 2 for standard IRF. To estimate phasic activity, tonic 

activity should be estimated. Although the tonic activity is observed in the absence of 

phasic activity, SCRs can overlap the tonic activity. Therefore, driver is smoothed by 

convolution with a gauss window (σ=200ms) and peak detection is performed with a 

difference of δ ≥ 0.2 µS between local minimum and local maximum. The areas which 

are not detected SCRs are considered non-overlapped tonic driver. Then, interpolation 

is carried out with 10s-time grids to estimate tonic driver for total time range. Phasic 

driver can be found in equation 2.16 after that tonic driver is found. The process is 

performed with pre-defined parameters of IRF. However, optimization of τ values 

SC = (Drivertonic + Driverphasic) * IRF 

𝐼𝑅𝐹 = 𝐶. (𝑒−
𝑡
𝜏
1 − 𝑒−

𝑡
𝜏
2) 
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should be carried out on Bateman function to increase goodness of the model. Finally, 

tonic and phasic activity of EDA are reconstructed (Benedek and Kaernbach, 2010). 

 

Figure 2.24 : Phasic driver extraction with continuous decomposition analysis, 

adapted from (Benedek and Kaernbach, 2010). 

Although electrodermal activity is a sensitive index of MWL according to Lean and 

Shan (2012), it is global sensitive and not very selective (De Waard, 1996). It should 

be noted that EDA shows the intensity of arousal but not the valence (Bergstrom et al., 

2014). 

Peak rise time (tRise) and the peak amplitude (Aq) have been mostly used for stress 

and emotion detection researches in literature (Healey and Picard, 2005; Katsis et al., 

2008; Parnandi et al., 2013; Singh et al., 2013). Moreover, sum of the peak number, 

sum of the startle magnitude, sum of the rising duration and sum of the rising area 

(Chen et al., 2017), mean amplitude of SCR, rate of SCR, mean abs first difference 

and mean rise duration of SCR (Katsis et al., 2008) were used in the studies. EDA and 

HRV were most closely correlated with driver stress in respect of the theory stated in 

Kettunen et al. (1998). 

2.3.4.3 Ocular activity 

Ocular activity can be recorded with the aid of developed eye movement recording 

techniques. One of them is electrooculogram (EOG). Eye is an electrical dipole. The 

axis of this dipole and the optical axis of the eye are nearly collinear. The retina is 

more negative than the cornea. The difference, roughly 6mV results from the electrical 
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activity of photoreceptors and the neurons in the retina. This way allows the EOG 

measurement on the skin. Adding to EOG, infrared reflection devices (IRD), scleral 

search coil and video-oculography (VOG) are the other eye movement recording 

techniques (Eggert, 2007). 

The features of ocular activity are based on the following functions of eye and basic 

dimensions of eye used in video recording techniques presented in Figure 2.25: 

• Eye gaze 

• Pupil diameter 

• Eye blink 

 

Figure 2.25 : The parts of eye (pointed with yellow line) and the basic dimensions 

used for MWL prediction (pointed with red lines and a circle). 

Eye gaze spatial distribution is positively correlated with stress levels. Human eye 

focuses more under stressful conditions (Alberdi et al., 2016; Sharma and Gedeon, 

2012). Dwell time and fixation duration also increases when workload increases (Lean 

and Shan, 2012). On the other hand, peak velocity of saccadic eye movement is 

decreased, duration of saccades is increased when mental work load increases (Di Stasi 

et al., 2012). However, it is differed depend on task characteristics, they were observed 

as decreased when task demand increased in flight task (De Rivecourt et al., 2008). 

Commonly used eye gaze features are stated below (Alberdi et al., 2016; Sharma and 

Gedeon, 2012): 

• Gaze spatial distribution (GazeDis) 

• Percentage of saccadic eye movement (PerSac) 

Additionally, mean, standard deviation of fixation duration, the number of forward and 

backward tracking fixations, the distance an eye covered and proportion of the time 

eye fixated on different regions of the computer screen have been used for eye gaze 

feature (Alberdi et al., 2016). 
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Pupil diameter and endogenous eye blinks are related to workload. Pupil dilation 

occurs when task demand increases (Causse et al., 2010), but gives insufficient data to 

state the magnitude of arousal (Embrey et al., 2006), moreover it cannot give any sign 

whether the arousal is negative or positive (Bergstrom et al., 2014; Sharma and 

Gedeon, 2012). So, it is not diagnostic (De Waard, 1996). Pupil dilation is an 

autonomic sympathetic nervous system response that covers attention, interest or 

emotion (Bergstrom et al., 2014). On the contrary, pupil constriction occurs as a result 

of parasympathetic-innervated muscles (De Waard, 1996). Pupil diameter change is 

also correlated highly with error rate (Gao et al., 2013). The following pupil features 

have been used in literature (Alberdi et al., 2016; Sharma and Gedeon, 2012): 

• Mean of pupil diameter, max-min values, standard deviation 

• Percentage of large pupil dilation (PerLPD) 

• Pupil ratio variation (PRV) 

Endogenous eye blinks can be measured by corneal-reflection techniques, EOG or 

video scanning. Those consist of three parameters; eye blink rate, blink duration and 

eye blink latency (speed of response of the blink following presentation of stimuli). 

Eye blink rate decreases when continued monitoring is required (Brookings et al., 

1996; Ryu and Myung, 2005; Sirevaag et al., 1993; Veltman and Gaillard, 1996; 

Wilson, 2002) while closure duration and eye blink latency decrease with increased 

task demand (De Waard, 1996; Embrey et al., 2006). In high MWL, eye blink interval 

is longest and blink duration is shortest (Borghini et al., 2014; Hwang et al., 2008; 

Lean and Shan, 2012; Veltman and Gaillard, 1996). Moreover, blink frequency 

increases under stressful conditions, higher stress causes faster eye closure (Alberdi et 

al., 2016; Sharma and Gedeon, 2012). In a study, the increase of mental fatigue and 

MWL caused the decrease of blink rate (Liu et al., 2016). Sharma and Gedeon (2012) 

stated that the opposite results about the blink frequency exist in literature. According 

to Holland and Tarlow (1972) blink rate increases in incorrect responses rather than 

correct responses. 

Ocular activity is more sensitive to visual demands not auditory or cognitive. The 

selectivity of eye blinks to workload is low just as pupil diameter (De Waard, 1996). 

Mostly used features for eye blink are stated below (Alberdi et al., 2016): 

• Blink rate (frequency) 
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• Average eye closure speed (AECS) 

• Percentage of eye closure (PERCLOS) 

2.3.4.4 Other central, peripheral and biochemical activities 

The brain which is located in the head, is the centre of the nervous. There are different 

imaging techniques for brain activities. These are hemodynamic (fMRI), metabolic 

(PET) and electromagnetic (EEG, MEG). While real-time data can be collected via 

EEG, this is hard to say for fMRI (Pizzagalli, 2007). EEG has high temporal resolution, 

needs lower intrusive equipment and lower costs. EEG signals can be collected during 

synaptic excitations and inhibitions of dendrites (Sharma and Gedeon, 2012). 

Excitatory and inhibitory post-synaptic potentials in cortical pyramidal neurons are 

assumed to generate scalp-recorded EEG oscillations. Tens of thousands of pyramidal 

cortical neurons should be activated synchronously to generate an EEG oscillation. An 

excitatory post-synaptic potential (EPSP) is generated at the cell soma; (see Figure 

2.26) local excitation (+ and -) leads to a tangential current flow. Extracellular currents 

(dashed lines) are produced by the post-synaptic potentials at cortical pyramidal cells 

and they are perpendicular to the cortical surface. This way produces a positive field 

potential at the cortical surface (Pizzagalli, 2007). 

 

Figure 2.26 : Neurophysiological basis of EEG generation. A coronal slice of brain 

(a), an expanded view of cerebral gyri and sulci in relations to the scalp, skull, and 

cerebral spinal fluid (CSF) (b), a schematic illustration of cortical pyramidal cells 

within the cortical mantle (c), adapted from (Pizzagalli, 2007). 

In the EEG studies, waveforms are characterized by frequency, amplitude, shape and 

sites of the scalp (Sharma and Gedeon, 2012). In many studies, normative EEG 

activities have been stated with frequencies and the sites of the brain related to state of 

the human. 
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Delta wave (1-4 Hz) appears in sleep, deep sleep conditions and there is inverse 

relation between delta and glucose metabolism. Delta activity is mainly an inhibitory 

rhythm (De Waard, 1996; Posner et al., 2007; Sharma and Gedeon, 2012). Theta wave 

(4-8 Hz) appears in two types of wakefulness conditions adding to sleep conditions. 

Decreased alertness (drowsiness) (De Waard, 1996; Posner et al., 2007; Sharma and 

Gedeon, 2012) and impaired information processing in widespread scalp distribution 

reveal theta activity. Other type is frontal midline theta activity which is related to 

mental effort, focused attention and effective stimulus processing, those are correlated 

glucose metabolism. Theta activity also appears in oscillation transmissions between 

different limbic structures. Theta activity may serve a gating function on the 

information processing flow in limbic regions (Posner et al., 2007). Alpha wave (8-13 

Hz) appears mainly in relaxed and wakefulness conditions (Alberdi et al., 2016; De 

Waard, 1996; Posner et al., 2007; Sharma and Gedeon, 2012). Its greatest amplitudes 

appear over posterior and parietal regions during resting period eye-closed. Alpha 

activity diminishes by eye-opening because of mental concentration and sudden 

alerting (Posner et al., 2007). While alpha activity decreases, beta activity increases in 

these cognitive and emotional process (Alberdi et al., 2016) or in the stressful 

conditions (Sharma and Gedeon, 2012). Beta wave (13-30 Hz) replaces alpha rhythm 

during cognitive activity with symmetrical fronto-central distribution and increases 

with attention and vigilance (Posner et al., 2007) or anxiety (Sharma and Gedeon, 

2012). In the stressful conditions high beta power seem at the anterior temporal sites 

(Alberdi et al., 2016). Gamma (36-44 Hz) activity is associated with object 

recognition, arousal, attention, top-down modulation of sensory process and other 

cognitive functions. In sleep-wake cycle, systematic decrease in gamma occurs. While 

highest gamma activity states the wakefulness, intermediate gamma activity states 

REM stage and lowest gamma activity states the slow-wave sleep. Gamma activity is 

a direct indicator of activation by means of glucose metabolism (Posner et al., 2007). 

In the sense of MWL, theta activity on central, parietal, frontal and temporal sites of 

the brain is sensitive to difficulty levels of MWL. Theta activity increases at those sites 

when difficulty increases. In low workload conditions alpha activity increases. Beta 1 

activity appears on F7 and T4 in overload condition, on T6 in high workload condition. 

Beta 1 and delta increase on Fz, F3, Pz, F7 and T4 in low-medium workload 

conditions. Delta is lower in high workload conditions (Lean and Shan, 2012). In dual 
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tasks, theta increases, alpha decreases (De Waard, 1996). Alpha event-related 

desynchronization and theta event-related synchronization with task demand is 

relevant to attentional resource allocation and sensory-motor processing. However, 

this is not sensitive to multiple task workload, is sensitive to single-task workload. 

Beta/alpha, beta/(alpha+theta), left temporal alpha/central alpha and left occipital 

alpha/right occipital alpha have been used for mental task engagement, and 

beta/(alpha+theta) gave the best accuracy in a study stated in (Lean and Shan, 2012). 

P300 (one of the event related potentials) and wavelet transform of theta+alpha+beta 

(Sharma and Gedeon, 2012) have been used for MWL evaluation. Theta activity on 

FC3, FC4 and C4 increases during mental arithmetic tasks. In dynamical perspective, 

nonlinear indices of EEG signals such as correlation dimension, Lyapunov exponent 

and approximate entropy reflect the cognitive and mental activation of cerebral cortical 

networks. Relative wavelet pocket energy in alpha on P3, P4, Pz, O1, O2 and Oz 

decreases while beta increases. It should be noted that changes in brain activity 

occurred earlier than autonomic nervous system (Lean and Shan, 2012). 

In mostly driver and pilot MWL / stress detection studies there are similar results of 

frequency meanings. When task demands increase, theta increases on frontal 

(especially for time pressure tasks) and central scalp (Borghini et al., 2014). Increase 

in theta with decrease in alpha was found to be associated with the increase of the 

accuracy of the performance (Borghini et al., 2014). When working memory load 

increases, alpha decreases on parietal sites (Fournier et al., 1999; Ryu and Myung, 

2005). In monotonous driving tasks, increase in delta, theta and alpha on occipital areas 

was observed. Alpha increases in resting state. While focusing and in time pressure, 

theta increases on frontal and central scalp areas. Increased MWL causes mental 

fatigue and alpha and delta increases and beta decreases at this stage. According to 

Myrden and Chau (2017), the frontal and central electrodes are important for fatigue 

detection, posterior alpha band and frontal beta band activity for frustration detection 

and posterior alpha band activity for attention detection. 

It can be seen that EEG activity cannot be easily analysed and needs more trials of the 

features of frequencies and scalp areas. It has been stated that no consensus has been 

reached related to best algorithms and features for detection (Borghini et al., 2014). 

On the other hand, specific low amplitude potentials may point out task demands. 

Disruption of the rhythmic pattern that can be attributed to the brain's reaction to an 
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external event (Embrey et al., 2006), the event-related potentials (ERP) are suitable to 

detect workload peaks (De Waard, 1996). One of the ERP features, P3 (P300), is 

sensitive to perceptual / central processing load (De Waard, 1996; Embrey et al., 

2006), but not affected by response / motor system (Embrey et al., 2006). Therefore, 

it has high diagnosticity to cognitive processing. P300 amplitude increases in response 

to unexpected task-relevant stimuli and task complexity. First or second negative 

waves of N1 and N2 and second or third positive waves of P2 and P3 (P300) are related 

to cognitive activities. Mismatch negativity (MMN) measures the function of central 

auditory processing, allocation of attention and level of workload (Lean and Shan, 

2012). Poor signal to noise ratio and individual variability are the disadvantages of this 

feature. Briefly, ERP figures out the dynamic changes in MWL (De Waard, 1996). 

Skin temperature is another physiological measurement. Skin temperature varies in 

different conditions such as fever, physical exertion, malnutrition and physiological 

changes. Localized changes in blood flow caused by arterial blood press or vascular 

resistance, has an effect on the change of skin temperature and this mechanism is 

influenced by autonomic nervous system (Alberdi et al., 2016). Sharma and Gedeon 

(2012) stated that skin temperature is negatively correlated with stress. However, there 

are coincident and opposite findings in literature; finger temperature increases in 

stressful conditions. Facial features such as nose and forehead are the effective 

indicators of stress and fatigue. Skin temperature difference between nose and 

forehead is a sensitive index of MWL (Lean and Shan, 2012). Whereas nasal skin 

temperature decreases during negative emotions, facial temperature increases with 

stress. Minimum, maximum and standard deviation are the mostly used features of 

skin temperature (Alberdi et al., 2016). 

Electromyogram (EMG) is the electrical activity of the muscles. Stress causes to 

involuntary reaction on trapezius (Sharma and Gedeon, 2012) and facial muscles. 

Tonic activity of facial muscles is related to mental effort. In detail, lateral frontalis 

muscle responses to mental effort and corrugator supercilia muscle responses to 

emotional changes (De Waard, 1996). While EMG amplitudes increases, number of 

gaps decreases (Alberdi et al., 2016). 

Stress and fatigue cause the change of speed and depth of respiration. It can be 

measured by pneumotachograph. However, this method is intrusive and respiration is 

not a good indicator as well as EDA and HRV (Alberdi et al., 2016; Sharma and 
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Gedeon, 2012). Cognitive effort has a small but significant increase in energy 

expenditure of respiration. Respiration rate increases when memory load or temporal 

demands increases and in stressful conditions. Ventilation per minute that is respiration 

rate times tidal volume, increases with mental effort while respiration rate increases 

and tidal volume decreases. It is also found that respiration rate decreased when 

cognitive activity increased. Respiration is also affected by speech and physical effort 

(De Waard, 1996). In a study conducted during landing operation, spectral energies of 

respiration in the mid and high band were largest and high workload caused slow 

respiratory (Lean and Shan, 2012). 

Facial expression has been also analysed for fatigue and stress detection by using 

visual techniques together with head movements. Eye brow activity, mouth activity 

and smile intensity are the features of facial expression (Alberdi et al., 2016). The 

increase of head and mouth movements indicates the increase of stress (Sharma and 

Gedeon, 2012). 

Voice is another stress indicator. Change in pitch (fundamental frequency) and in 

speaking rate, the spectral and energy variations of the glottal pulse are the common 

detection points (Alberdi et al., 2016). The increase of stress causes the increase in 

range and rapid fluctuations in pitch, the increase in energy for high frequency voice 

components and greater proportions of high frequency components (Sharma and 

Gedeon, 2012). 

Stress has an effect on the endocrine and immune system allowing to release 

adrenaline hormone from adrenal cortex and cortisol hormone from adrenal medulla 

(Alberdi et al., 2016) by SNS stimulation (De Waard, 1996). Catecholamines those are 

adrenal cortical steroid cortisol, noradrenaline (NA) and adrenaline (A) are the mostly 

analysed hormones in fatigue and stress studies. The hormones are measured from 

urine, blood and saliva samples (Alberdi et al., 2016; De Waard, 1996; Lean and Shan, 

2012). Cortisol levels increase with stress (Alberdi et al., 2016). In mental load, 

adrenaline increases, noradrenaline and dopamine hormones are constant (Lean and 

Shan, 2012). A and NA increase in effortful coping, while those together with cortisol 

increase in effortful distress. Whereas NA responses mostly to physical effort, A 

responses to mental effort. It is stated that when the ratio of NA to A is greater than or 

equal to 5 it means physical effort, when the ratio of NA to A is between 2 and 3 it 

means mental effort. However, NA increases with emotional stress, cortisol increases 
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with low control tasks and A and NA increase with high control tasks (De Waard, 

1996). Briefly, the analysis of hormone levels does not involve the continuous 

monitoring. Therefore, event-related detection cannot be done effectively. This 

method is intrusive, costly and slow (Alberdi et al., 2016; De Waard, 1996). 

2.3.4.5 The choice of physiological measures for the study 

Charles and Nixon (2019) evaluated the measures which are electro cardiac, 

respiration, skin, blood pressure, eye response and brain activity measures, according 

to their specifications and limitations and stated following findings: 

• The measures exclude eye response, some electro cardiac activities, skin 

measures and brain activity are affected by respiration, speech, training and 

experience. However, skin measure and blood pressure are sensitive to time of 

day and affected by ambient temperature or humidity and participant age or 

gender.  

• Only eye response and respiration are sensitive to errors or poor performance. 

• Electro cardiac activity and respiration differentiates MWL between higher or 

lower task load. But most of them is sensitive to changes in MWL from 

increasing task demand.  

• Eye response has higher predictivity of MWL for visual task demands.  

• All measures exclude brain activity is appropriate for shorter task duration (<5 

min.). 

• Eye response, skin measures, electro cardiac activity in time domain and 

respiration are sensitive to a sudden stimulus. 

According to capabilities of the measures stated in this chapter and above-mentioned 

findings, eye response, electro cardiac and skin measures were selected for MWL 

measurement in this study. Moreover, the time of day, the level of training and 

experience and participant age or gender were confined with the measurement time 

and sample group of subjects. 

2.3.5 Classification and decision-making techniques 

Before classifying the collected data, some issues should be taken into consideration. 

Data collection and the quality of the data are the essential parameters for 
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classification. Data must be relevant, complete, accurate, appropriately represented, 

sufficiently detailed, timely, and must retain sufficient contextual information to 

support decision making. Sensor placement, sampling frequency of the data are the 

other issues. Nyquist sampling frequency has been implemented to data collection 

process. According to the approach, sampling frequency should be greater than or 

equal to two times maximum frequency. Another issue is noise. In order to eliminate 

instrumental noise, some filters have been used such as Butterworth low-pass filter, 

wavelet decomposition, Kalman filters, wiener filters and median filters. For artefact 

removal, regression analysis, least mean squares, independent component analysis 

(ICA) and principal component analysis (PCA) have been used (Alberdi et al., 2016). 

When multimodal data is used for classification, some problems such as lack of data 

and having different dimensions, can affect the classification accuracy. It is better to 

process separately the data and merge in the final decision step in such cases. 

Moreover, synchronization is essential issue for multimodal data. Another problem is 

big data in the aspect of storage. Dimension reduction, feature extraction, segmentation 

windows (use of sliding window techniques is recommended) and feature selection 

have been used to eliminate the problems (Alberdi et al., 2016). Figure 2.27 presents 

the general illustration of pattern recognition including the processes such as 

dimension reduction, feature extraction. 

 

Figure 2.27 : Decision making blocks for pattern recognition. 

In previous section, normalization and feature extraction methods for EEG, EDA, ECG 

and ocular activity signals have been stated. Next processes are dimension reduction 

and feature selection (Figure 2.27). Generally, the method of feature extraction is 

determined according to discernment of researcher. However, some elements of 

feature space may not have significant information. Irrelevant features may cause the 

classifier structure to overgrow. Therefore, dimension reduction or/and feature 

selection methods have been used to select significant features for classification. 

Divergence analysis, which is the ratio of between-class scatter matrix to within-class 
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scatter matrix, has been mostly used for feature selection (Devijver and Kittler, 1982). 

Following equations are used for divergence calculations: 

(2.18) 

 

(2.19) 

 

(2.20) 

 

 (2.21) 

 

(2.22) 

 where βi
tj is i-dimensional t-th feature vector of the j-th class, µi

j is the mean value of 

the i-dimensional feature vectors of the j-th class, Wi
j is within-class scatter matrix of 

the j-th class, Bi is between-class scatter matrix, K is number of classes, Di is the 

divergence value at the i-th dimension, tr(.) is trace operation applied to the matrix 

obtained after the division. Low divergence values mean that the vectors are scattered 

in feature space while high divergence values mean that the vectors are clustered in 

feature space (Figure 2.28). Therefore, the features, which give high divergence 

values, should be selected in order to improve classification accuracy. 

 

Figure 2.28 : The distribution of vectors with low divergence value (a) and high 

divergence value (b). 
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Generally, divergence value increases when the dimension of vector increases. On the 

other hand, 2-dimension has the opportunity for comparing the classifiers in visual. It 

can be seen in Figure 2.28, there are 2 dimensions and 3 classes as an example of 

distribution of classes. 

Next step in decision-making blocks (Figure 2.27) is classification. Mostly used 

classifiers are stated below: 

• Decision functions 

• Bayesian decision theory 

• K-nearest neighbour (KNN) 

• Artificial neural networks (ANN) 

• Support vector machines (SVM) 

• Logistic regression 

• Markov chains and hidden Markov models 

• Fuzzy techniques 

Classifiers make a decision about cluster membership of the feature vectors. The 

functions are defined for representing the cluster borders. Most known decision 

function is stated below (Duda et al., 2012): 

(2.23) 

where x is the accessing vector and d(x) defines a hyper-plane in n-dimension space. 

Hyper-plane divides the feature space two patches. The x vector has a negative or 

positive value according to d(x) function based on the distance of the vector to plane. 

Following equation presents the rule of function: 

(2.24) 

Figure 2.29 is an example for a decision function as 2-dimension with 2 classes. It can 

be seen that when the x vector has positive value, the vector is the member of C1 

according to d(x) function. However, one straight line is not often adequate to 

determine the borders of clusters. In this case, more than one decision function may be 

used for determining the borders. 

d(x) = w0 + w1.x1 + w2.x2 +… + wn.xn 

ƒ(d(x))= 
+1 d(x)⁡≥⁡0 

⁡-⁡1 otherwise 
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Figure 2.29 : Basic decision function for 2 classes distribution. 

Other classifier is Bayesian decision theory and can be used only when distribution is 

statistically significant. As a priori information, P(wi) is the probabilities for classes, 

p(β\wi) is the conditional probability density and β is the feature vector. By this way, 

the conditional probability, P(wi\β), the element is in class i is defined as below (Duda 

et al., 2012): 

(2.25) 

For 2 classes, the penalty is defined as being an action of i-th class while being a 

member of class j. Therefore, the penalty is defined as following equation: 

(2.26) 

By the meaning of the equation, ʎii = 0 and ʎjj = 0. Expected error or conditional risk 

function can be defined as the following equation as a result of the occurrence of the 

αi action: 

(2.27) 

 

Then, discriminant function di(β) is defined in consideration of that the risk function 

is smallest: 

(2.28) 

As shown in Figure 2.30, class decision for i-th class is given with maximum di(β). At 

last, discriminant function takes its final shape with mahalanobis distance equation: 

(2.29) 
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p(β)
 

ʎ(αi\wj) = ʎij⁡(penalty)⁡ 

∑ ʎij .P(wj\β);    i=1, 2, … ,𝑀

𝑀

𝑗=1

 R(αi\ β) = 

di(β) = - R(αi\ β) 

di⁡(β)⁡=⁡
1

𝜎2
⋅ µi

T
⁡⋅ β -

µ
i

T
⋅µ

i

2𝜎2
 + lnP(wi) 



62 

 

Figure 2.30 : The classification of discriminant functions. 

KNN is another classifier which uses mostly the Euclidean distance. Assessing vector 

is labelled according to the class labels of K number neighbours in terms of Euclidean 

distance. There is a problem in conditions that feature vectors are not clustered. There 

is no priori information. Firstly, K number nearest neighbour is found for assessing 

vector. Then, the class labels are analysed and the label of majority is decided as class 

label. The distance of assessing vector to feature vectors of K number neighbours is 

not considered. Determining the number of neighbours is essential for classification 

accuracy (Duda et al., 2012). Figure 2.31 presents an example for different 

classification results according to the number of neighbours. 

 

Figure 2.31 : The effect of neighbourhood to KNN classification. 

As can be seen in Figure 2.31, when K is determined as 5, new example is classified 

in class 2. However, when K is determined as 10, it is classified in class 1. 

ANN has been often used for classification in literature. This classifier has lots of 

advantages such as feedforward and backpropagation options, high process speed, 

generalization ability. The classifier has a structure like a neuron which consists of 

similar input and output structure (Fausett, 1994; Polikar, 2006). Figure 2.32 

represents the general structure of ANN (perceptron) with the following mathematical 

statement of perceptron: 
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(2.30) 

 

 

Figure 2.32 : The structure of perceptron, adapted from (Polikar, 2006). 

While first part of equation 2.30 represents the linear weighted sum function consisting 

of assessing vector (xi), and associated weight (wi), second part of this equation 

represents the non-linear activation function of which output is represented by binary 

codes (Polikar, 2006): 

(2.31) 

The process of perceptron training includes the modifying the weights and finding the 

best wi. In literature, there are several training algorithms to form the relationship of 

input and output. These algorithms have been categorized based on their learning 

methods; supervised and unsupervised. Multi-layer perceptron (MLP), grow and learn 

(GAL) restricted coulomb energy (RCE) are the supervised neural networks. Kohonen 

self-organizing map (SOM) is one of the unsupervised neural networks. Each neural 

network consists of the nodes, input layer, hidden layers and output layer. The number 

of hidden layers and nodes vary to the structure of the problem (Fausett, 1994). 

Sharma and Gedeon (2012) stated that small number of hidden layers may not classify 

the complex patterns. On the other hand, large number of layers can cause over-

parameterization. Apart from above-mentioned classifiers, support vector machines 

(SVM) have been used for classifying linear and non-linear primary measures and used 

to model emotions based on mostly EEG data. Katsis et al. (2008) reported that SVM 
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had accuracy of 79,3% within the emotion categories which were high stress, low 

stress, disappointment and euphoria for drivers.  In another study, support vector data 

description and support vector clustering techniques have been used to classify 3 MWL 

classes which are low, normal and high with EEG data (Yin and Zhang, 2014). 

Besides, Markov chains and hidden Markov models that is time-domain process and 

has prior information from previous cases, have been used to recognize and predict 

behavioural changes. Another classification technique, Fuzzy has been used to model 

workload with heart rate signals (Sharma and Gedeon, 2012). 

There are some problems in classification the workload or emotions such as analysing 

the data within task or different tasks. Baldwin and Penaranda (2012) stated that the 

classification accuracy of the comparison of 2 distinct levels of task difficulty within 

task was higher than that is conducted for different (cross) tasks. The other issue is 

individual differences. In the study which is conducted for emotional recognition with 

ECG, EDA and skin temperature data, the problem, individual differences, was 

eliminated by using multivariate ANOVA (MANOVA) before classification. The 

feature vectors were seen to be well-clustered (Chueh et al., 2012). 

Table 2.5 presents the classification accuracies stated in sample studies conducted for 

mostly drivers with the signals used for measurement and classification techniques. It 

can be seen that the measurements were conducted with 24 subjects in most. This table 

consists of classified stress, mental workload and emotion targets. ANN and SVM 

were the best classifiers and their accuracy rates varied between 70% and 99%. 
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Table 2.5 : The classification accuracies stated in the studies in literature. 

Authors Target Classes Subj. Elicitation Signals Classifiers Accuracy 

Wilson and Russell 

(2003)  

Mental 

workload 

4 7 Air traffic control tasks EEG, EOG ANN and SWDA ANN: 98% 

Healey and Picard 

(2005)  

Stress 3 24 Real-time driving ECG, EDA, EMG and 

respiration 

Linear discriminant function Accuracy: 97% 

Hwang et al. (2008)  Mental 

workload 

2 13 Simulated nuclear 

power plant tasks 

Eye response, HRV, blood 

pressure 

Group method of data 

handling 

Validity of proposed 

model: R2=0.84 

Katsis et al. (2008)  Emotion 4 10 Car driving simulation ECG, EDA, EMG and 

respiration 

Adaptive neuro-fuzzy 

inference system (ANFIS) 

and SVM 

ANFIS: 76.7%    SVM: 

79.3% 

Baldwin and 

Penaranda (2012)  

Mental 

workload 

2 15 Working memory task EEG, EOG ANN Within task: 87,1% 

Cross task: 44,8% 

Chueh et al. (2012)  Emotion 3 10 Laboratory ECG, skin temperature, 

EDA 

Bayesian network learning, 

naive Bayesian 

classification, SVM, decision 

tree of C4.5, Logistic model 

and KNN 

Logistic model: 74,76% 

SVM: 70,48% 

Singh et al. (2013)  Stress 3 19 Real-time driving HRV from PPG signals 

and EDA 

ANN Predictive ability: 

89.23% 

Yin and Zhang 

(2014)  

Mental 

workload 

3 6 Simulated spacecraft 

tasks 

EEG Support vector clustering 

(SVC) and Support vector 

data description (SVDD) 

SVC-SVDD: 79,54% 

Guo et al. (2016)  Mental 

Fatigue 

2 20 Car driving simulation EEG, ECG and reaction 

time 

SVM EEG: 86% 

Chen et al. (2017)  Stress 3 14 Real-time driving ECG, EDA and 

respiration 

SVM, ELM 99% at per-drive level 

and 89% in cross-drive 

validation 

Han et al. (2020)  Mental states 4 8 Flight simulation EEG and PPMs (ECG, 

Respiration, EDA) 

Multimodal deep learning 

(MDL) 

EEG: 77,7% 

PPMs: 72,5% 

EEG & PPMs: 85,2% 
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3.  METHODOLOGY 

The study is based on the measurement in real-like environment and the analysis of 

the data to classify the physiological responses of the operators that can produce an 

output for state of officer on duty as “Safe” or “Risky” in mental workload prediction. 

The research model of the thesis is presented in Figure 3.1. According to the model, 

first attempt was to create navigation and cargo operation scenarios. In measurement 

process, triangulated measurement strategy (Wierwille and Eggemeier, 1993) with 

task loading assessment was applied to the thesis. In computerized process, 

transformation and classification techniques for measured data were applied. 

 

Figure 3.1 : Research model of the thesis. 

Therefore, the chapter of methodology involves the following sub-chapters: 

• Sampling strategy and subjects 

• Mental workload prediction system layout 

• Simulated ship environment 

• Measurement details 

• Analysis of data and computerized process 

3.1 Sampling Strategy and Subjects 

The sample group consists of junior deck officers who were randomly selected. 17 

subjects (6 female) were recruited to study (12 subjects performed navigation scenario, 

5 subjects performed cargo operation scenario). At least, subjects must have had an 

Oceangoing Watchkeeping Officer certificate and one contract sea experience as 
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officer in merchant ships. The mean age was 28.41 (SD = 5.02) and the mean period 

of service of subjects was 13.12 months (SD = 9.12). All subjects gave informed 

consent form (Appendix A) to be participant before performing the tasks in simulator. 

This study was approved by Medical and Engineering Sciences Human Research 

Ethics Committee of Istanbul Technical University. 

3.2 Mental Workload Prediction System Layout 

Mental workload prediction system, presented in Figure 3.2, has the main components 

which are named as “Cognition Model”, “Task Loading Model” and an oriented 

component which is named as “Officer Performance Model”. The most representative 

members of the system are listed in Table 3.1. Cognitive states of officers correspond 

to a set of the physiological variables of the officers, which is described as: 

(3.1) 

Task loading model were formed according to Officer Function Model (OFM-COG) 

which is detailed in chapter 3.3.1.1. and 3.3.2.1. According to the model, the output 

ѱ’’j was calculated from the complexity weights of the inputs σk. 

These changes of cognitive states and performance scores were analysed in tasks 

which have high task load level. The importance weights of the performance 

parameters, which are specified in chapter 3.4.1.1. and 3.4.1.2., were determined by 

experts with fuzzy logic for each step of the scenarios, and the performance scores of 

the subjects were equal to the weighted sum of these parameters: 

(3.2) 

 

where wα represents the weights of safety critical tasks and wν represents the weights 

of operational tasks. In addition, subjective workload assessments were compared with 

the cognitive status of the officer. It was assumed that the subject was familiar with 

the parameters for the performance evaluation of the specified tasks and tried to 

perform these tasks during the scenarios. The areas on the simulator screen tracked by 

the officer were monitored by Eye Tracker device for this assumption.

ψ'j,t⁡=⁡𝑓(φi,t) 

P
T
= ∑w𝛼 

. 𝛾𝛼

𝑝

𝛼=1

+∑w𝜈 
.𝜂𝜈

𝑞

𝜈=1
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Figure 3.2 : Mental workload prediction system layout.
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During the “Decision Making” process (specified in chapter 3.5.3), cognitive states ψ’j 

were classified in 2 groups which are “Safe” and “Risky” represented the distinction 

of task loads ψ’’j as low task load and high task load respectively in training data set. 

In test data set, ψ’j was tried to classified with high accuracy as “Safe” and “Risky” 

according to distinction of task load level ψ’’j (Figure 3.2). 

Table 3.1 : Classification of variables. 

Name Symbol Variables 

Physiological measurables φi i ϵ [1, m] Heart rate variability (HRV) 

Electrodermal activity (EDA) 

Blink rate, pupil diameter 

Task load parameters σk k ϵ [1, r] Traffic density, visibility and geography 

for navigation 

Type and number of operation and 

operation period for cargo operation 

Safety critical task scores 

 

Trackkeeping / operational 

task scores 

Cognitive indicators 

γα α ϵ⁡[1,⁡p] 
 

ην ν⁡ϵ⁡[1,⁡q] 
 

ψ’j j⁡ϵ⁡[1,⁡n] 

Scores for navigation 

Scores for cargo operation 

Scores for navigation 

Scores for cargo operation 

Workload, arousal 

Task load indicators ψ’’j ϵ⁡[1,..,10] Task difficulty numbered as 1, 2,…,10 

3.3 Simulated Ship Environment 

The study was conducted in bridge simulator and Liquefied Cargo Handling Simulator 

of Piri Reis University with navigation tasks based on Malacca Straight passage and 

cargo operation tasks based on different types of chemicals. 

Subjects performed the navigation tasks in bridge simulator (Figure 3.3a). The ship 

which was used for trials is a chemical tanker which has 183.0m length over all, 32.2m 

breadth with 60976.0t displacement and 13.0m maximum draft. The simulator has 

three screens which are ECDIS, RADAR and Conning Display that contains visual 

settings and auto pilot panel adding to one engine telegraph, one steering wheel. 

Navigational data was sampled at 1 Hz (TRANSAS, 2014). Additionally, the whole 

performance of subject as tracks on charts and other variables were recorded as video 

format from the computer located in control room (Figure 3.3b). 

Subjects performed the cargo operation tasks in Liquefied Cargo Handling Simulator 

(Figure 3.4a). The ship was used for trials is IMO type-1 chemical tanker (its length 

overall is 161.12m. and its displacement is 28921 tonnes) with 28 cargo tanks. The 

simulator has the functions which are remote controlling of valves and pumps, 



71 

performing on deck and inside tank jobs, monitoring the ship’s stress and stability 

conditions (TRANSAS, 2012). The whole performances of subjects were recorded as 

video format from the computer located in trainer’s desk (Figure 3.4b). 

 

Figure 3.3 : Bridge simulator (a), recording the subject performance (b). 

3.3.1 Navigation tasks 

In chapter 2.3.2, it is stated that navigation scenarios have been varied being used 

different level of difficulties in mostly visibility, traffic density and geography 

parameters (Gould et al., 2009; Grabowski and Sanborn, 2003). In this study, the 

difficulty level of navigation scenario was gradually adjusted (in order to prevent 

acquired skill) according to traffic density, visibility and geography by combining in 

4 steps as: 
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• Step 1; high visibility, low traffic density, easy geography 

• Step 2; high visibility, moderate traffic density, easy geography 

• Step 3; moderate visibility, high traffic density, moderate geography 

• Step 4; low visibility, high traffic density, hard geography 

 

Figure 3.4 : Liquefied Cargo Handling Simulator (a), recording the subject 

performance (b). 

Subjects performed the navigation scenario in Malacca Strait, Singapore (Figure 3.5) 

because of that this area has heavy traffic and there are lots of fishing boats and vessels 

making short cuts, make the passage more difficult. 
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Figure 3.5 : Navigation area used in simulator with route legs and performance 

measurement areas as stated in steps. Image obtained from Admiralty Chart BA 

3833. 

Performance parameters were determined according to issues stated in literature (see 

chapter 2.1.3 and 2.3.2) and the opportunities of simulator environment (Table 3.2). 

Table 3.2 : Performance parameters for navigation scenario. 

Type of task Main parameters Detailed parameters Symbol 

Safety critical 

navigation 

tasks 

Collision avoidance 

Keeping a safe CPA γ11 

Rule following (COLREG) γ12 

Detection range of targets γ13 

Time to response γ14 

Communication & true reaction γ15 

Identify and communicate 

navigation landmarks 
 γ2 

Identify hazards 

(report & action) 
 γ3 

Trackkeeping 

tasks 

Crosstrack variability 

(XTE) 
 η1 

Time to return to course  η2 

Ship control 
Rudder angle η31 

Turn radius η32 

Radar performance  η4 

In first step, contacting one vessel on starboard bow side (Figure 3.6a), making correct 

manoeuvre, course alteration and then returning to course are carried out by subjects. 

In second step, vessel traffic becomes moderate. Contacting two vessels on head in 

same separation zone (Figure 3.6b), course alteration to starboard to keep safe CPA, 

identifying the fishing nets and fishing boats, course alteration for way point with hand 

steering mode and safe passage from buoys are carried out by subjects. In third step, 
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adding to moderate traffic density, visibility decreases and geographical conditions 

make navigation hard for subjects. Firstly, keeping the vessel clear from fishing nets 

on starboard and port side, contacting two vessels which make short cut in separation 

on port bow side with one vessel on head in same separation zone (Figure 3.6c), then 

contacting one fishing boat on starboard bow side, altering course to starboard to avoid 

collision and contacting one vessel on starboard bow side are carried out by subjects. 

In last step, contacting one vessel which makes short cut in separation and one vessel 

on opposite side of separation prior to alteration course for making short cut and 

proceeding to port (Figure 3.6d) is carried out by subjects. Then, visibility decreases 

more in this period. After making short cut, geographical conditions become hard by 

currents making the vessel way through to northeast. There are fishing nets, fishing 

boats and one ferry make the navigation hard. Conducting another vessel on starboard 

side and avoiding collision with her are carried out by subjects. 

 

Figure 3.6 : Detailed step organization with the routes of own ship and target ships; 

step 1 (a), step 2 (b), step 3 (c) and step 4 (d). Chart screenshot authorized by 

TRANSAS. 

3.3.1.1 Task load assessment of navigation scenarios 

In this study, task load assessment was carried out according to Operator Function 

Model (OFM-COG) and its sample implications in literature (Lee and Sanquist, 2000). 
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Detailed information is stated in chapter 2.3.3. According to the model, the task loads 

of the navigation scenarios used in this thesis were calculated and detailed stated in 

Table 3.3, and figured out in Figure 3.7. 

 

Figure 3.7 : Task loading of navigation scenario. 

3.3.2 Cargo operation tasks 

The difficulty level of cargo operation scenario was gradually adjusted according to 

type and number of operation and operation period corresponding to a real cargo 

operation. The steps of cargo operation scenario those are represented with cargo plans 

of final conditions of steps in Figure 3.8, are stated as: 

• Step 1; 1 parcel cargo loading to 3 tanks 

• Step 2; 2 parcels cargo loading to 5 tanks, 2 tanks topping off and inert 

operation in 3 tanks 

• Step 3; 2 parcels cargo loading to 5 tanks, 1 parcel cargo discharging from 2 

tanks and 5 tanks (2 parcels) topping off 

Subjects performed the cargo operation scenario in a simulated IMO type-1 chemical 

tanker (presented in Figure 3.9) having 28 cargo tanks because of that this type 

chemical tankers carry a lot of type cargo and has the opportunity to be handled lots 

of operations simultaneously. 

Performance parameters were determined according to issues stated in chapter 2.1.3, 

developed scenario and the opportunities of simulator environment (Table 3.4). 
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Table 3.3 : The OFM-COG analysis for navigation tasks used in this thesis. 

Step Task (sec.) Task description OFM function Frequency count of the navigation tasks 

    Acquisition Handling Interpretation Total 

1 

T1 (0-300) Proceed to next waypoint with minimum XTE 

and detect the target on starboard bow side 

Track-keeping with ECDIS 

Identify target with RADAR 

1 (Identify) 0 2 (Interpret) (Categorize) 3 

T2 (300-420) React for collision avoidance Consider course change 1 (Input select) 1 (Compute) 2 (Interpret) (Decide) 4 

T3 (420-570) Make visible course change to starboard Target evaluation 

Course execution 

0 

0 

1 (Compute) 

1 (Count) 

1 (Categorize) 

1 (Goal image) 

4 

T4 (570-780) Proceed with safe CPA Track-keeping with ECDIS 

Target evaluation 

0 

0 

0 

0 

1 (Test) 

1 (Categorize) 

2 

T5 (780-1020) Return to planned course Course execution 0 1 (Queue to 

channel) 

1 (Select) 2 

2 

T1 (0-120) Proceed to next waypoint with minimum XTE 

and detect the targets on head 

Track-keeping with ECDIS 

Identify target with RADAR 

1 (Identify) 0 3 (Test) (Interpret) 

(Categorize) 

4 

T2 (120-240) Alter the course for safe CPA and for avoiding 

the fishing nets 

Consider course change 1 (Input select) 1 (Compute) 2 (Interpret) (Decide) 4 

T3 (240-360) Proceed with safe CPA and detect the target on 

starboard bow side 

Track-keeping with ECDIS 

Target evaluation 

Identify target 

0 

0 

1 (Identify) 

0 

0 

0 

1 (Test) 

1x2 (Categorize) 

2 (Interpret) (Categorize) 

6 

T4 (360-480) Proceed with safe CPA Track-keeping with ECDIS 

Target evaluation 

0 

0 

0 

0 

1 (Test) 

3 (Categorize) 

4 

T5 (480-800) Proceed with safe CPA and not be out of the 

traffic separation 

Course execution 

 

Target evaluation 

0 

 

0 

1 (Queue to 

channel) 

0 

1 (Select) 

 

1 (Categorize) 

3 

T6 (800-1020) Alter the course to port for next waypoint and 

detect the fishing boat targets 

Course execution 

 

Identify target 

0 

 

1 (Identify) 

1 (Queue to 

channel) 

0 

1 (Select) 

 

2 (Interpret) (Categorize) 

5 

3 

T1 (0-240) Proceed to next waypoint with minimum XTE 

by considering the fishing nets 

Detect the targets on port bow side 

Track-keeping with ECDIS 

Identify target (fishing nets) 

Identify target 

0 

1 (Identify) 

1 (Identify) 

0 

0 

0 

1 (Test) 

2 (Interpret) (Categorize) 

1 (Categorize) 

6 

T2 (240-300) Alter the course for safe CPA and for avoiding 

the fishing nets 

Track-keeping with ECDIS 

Consider course change 

Target evaluation 

0 

1 (Input select) 

1 (Identify) 

0 

1 (Compute) 

0 

1 (Test) 

2 (Interpret) (Decide) 

1x2 (Categorize) 

8 

T3 (300-420) Proceed with safe CPA and not be out of the 

traffic separation 

Course execution 

 

Target evaluation 

Identify target 

0 

 

0 

1 (Identify) 

1 (Queue to 

channel) 

0 

0 

1 (Select) 

 

3 (Categorize) 

2 (Interpret) (Categorize) 

8 
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Table 3.3 (continued) : The OFM-COG analysis for navigation tasks used in this thesis. 

Step Task (sec.) Task description OFM function Frequency count of the navigation tasks 

    Acquisition Handling Interpretation Total 

3 

T4 (420-540) Proceed with safe CPA in decreased visibility 

and not be out of the traffic separation 

Track-keeping with ECDIS 

Target evaluation 

Identify target 

0 

0 

2 (Detect) (Identify) 

0 

0 

0 

1 (Test) 

1 (Categorize) 

2 (Interpret) (Categorize) 

6 

T5 (540-840) Proceed with safe CPA and detect the target on 

starboard bow side 

Track-keeping with ECDIS 

Consider course change 

 

Identify hazards 

0 

2 (Detect) 

(Input select) 

0 

0 

1 (Compute) 

 

0 

1 (Test) 

2 (Interpret) (Decide) 

 

1 (Categorize) 

7 

T6 (840-1200) Detect the target on starboard bow side and 

react for collision avoidance 

Track-keeping with ECDIS 

Consider course change 

 

Target evaluation 

0 

2 (Detect) 

(Input select) 

0 

0 

1 (Compute) 

 

0 

1 (Test) 

2 (Interpret) (Decide) 

 

1 (Categorize) 

7 

4 

T1 (0-360) Proceed to next waypoint with minimum XTE 

Detect the targets on port bow side 

Track-keeping with ECDIS 

Identify target with RADAR 

0 

1 (Detect) 

1x2 (Identify) 

0 

0 

1 (Test) 

2x2 (Interpret) 

(Categorize) 

8 

T2 (360-540) Alter the course to port for next waypoint and 

proceed with safe CPA 

Course execution 

 

Identify target 

Target evaluation 

0 

 

2 (Detect) (Identify) 

0 

1 (Queue to 

channel) 

0 

0 

1 (Select) 

 

2 (Interpret) (Categorize) 

3 (Categorize) 

9 

T3 (540-800) Alter the course to starboard for safe CPA Track-keeping with ECDIS 

Consider course change 

 

Target evaluation 

0 

2 (Detect) 

(Input select) 

0 

0 

1 (Compute) 

 

0 

1 (Test) 

2 (Interpret) (Decide) 

 

1 (Categorize) 

7 

T4 (800-1100) Return to planned course considering the 

current and detect the targets on port bow side 

Course execution 

 

Identify target 

1 (Detect) 

 

1 (Detect) 

1x2 (Identify) 

1 (Queue to 

channel) 

0 

1 (Select) 

 

2x2 (Interpret) 

(Categorize) 

10 

T5 (1100-1250) Proceed with safe CPA to fishing targets in 

more decreased visibility, detect the target on 

starboard side 

Course execution 

 

Identify target (fishing nets) 

Identify target 

1 (Detect) 

 

1 (Detect) 

2 (Detect) (Identify) 

1 (Queue to 

channel) 

0 

0 

1 (Select) 

 

1 (Categorize) 

2 (Interpret) (Decide) 

9 

T6 (1250-1350) Detect the fishing targets and proceed with safe 

CPA 

Consider course change 

 

Target evaluation 

Course execution 

2 (detect) 

(Input select) 

0 

1 (Detect) 

1 (Compute) 

 

0 

1 (Queue to 

channel) 

2 (Interpret) (Decide) 

 

1 (Categorize) 

1 (Select) 

9 
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Table 3.3 (continued) : The OFM-COG analysis for navigation tasks used in this thesis. 

Step Task (sec.) Task description OFM function Frequency count of the navigation tasks 

    Acquisition Handling Interpretation Total 

4 

T7 (1350-1600) Detect the fishing targets and proceed with safe 

CPA 

Consider course change 

 

Target evaluation 

Course execution 

2 (detect) 

(Input select) 

0 

1 (Detect) 

1 (Compute) 

 

0 

1 (Queue to 

channel) 

2 (Interpret) (Decide) 

 

1 (Categorize) 

1 (Select) 

9 

T8 (1600-1800) Proceed to Loading Port with minimum XTE Course execution 

 

Identify target 

Target evaluation 

1 (Detect) 

 

2 (Detect) (Identify) 

0 

1 (Queue to 

channel) 

0 

0 

1 (Select) 

 

2 (Interpret) (Categorize) 

1 (Categorize) 

8 
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Figure 3.8 : The cargo operation scenario with cargo plans of final conditions. 

 

Figure 3.9 : The deck view (a) and the general plan (b) of the chemical tanker. View 

screenshot authorized by TRANSAS. 

The duration of first step is about 15 minutes. One parcel (methanol) loading to three 

tanks and de-ballasting are the tasks of the first step. In ten minutes, the operation of 

tank shifting is expected to carry out by subjects. The parameters should be considered 

by subjects in step 1 are γ1, γ2, γ3, γ4, γ5, γ6, η1, η2, η4 (detailed in Table 3.4). The 

duration of second step is about 18 minutes. Two parcels (methanol and p-xylene) 

loading to five tanks in total and de-ballasting are the tasks of the second step. Inerting 

operation in three tanks is expected to carry out by subjects before p-xylene loading. 

Additionally, the operation of tank topping for two methanol tanks is expected to carry 

out by subjects. The parameters should be considered by subjects in step 2 are γ7, γ8, 

η3 addition to first step. The duration of third step is about 23 minutes. two parcels 
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(methanol and p-xylene) loading to five tanks in total, one parcel (benzene) 

discharging from two tanks and de-ballasting are the tasks of the third step. The 

operations of tank topping for two methanol tanks and completion of methanol 

loading, tank topping for three p-xylene tanks in total and tank shifting amongst p-

xylene tanks are expected to carry out by subjects. Additionally, subjects are expected 

to prepare the valves and lines of the tanks to be discharged. The parameters should be 

considered by subjects in step 3 are those stated in previous steps except γ7 and η3.  

Table 3.4 : Performance parameters for cargo operation scenario. 

Type of task Main parameters Symbol 

Safety critical 

operation tasks 

List / Trim monitoring γ1 

Shearing Force (SF) / Bending Moment (BM) monitoring γ2 

Manifold pressure γ3 

Tank pressure γ4 

Line up from manifold to cargo tanks γ5 

Initial rate γ6 

Atmosphere monitoring γ7 

Topping of tanks γ8 

Operational 

tasks 

Ballast operation η1 

Loading / Discharging rate η2 

Inerting η3 

Operating pumps η4 

Tank heating η5 

Stripping η6 

3.3.2.1 Task load assessment of cargo operation scenarios 

In similar way, task load assessment was carried out according to Operator Function 

Model (OFM-COG). There are no similar implications for cargo operation in 

literature. However, it was tried to define the cargo operation tasks according to the 

model. Detailed information is stated in chapter 2.3.3. The task loads of the cargo 

operation scenarios used in this thesis were calculated and detailed stated in Table 3.5, 

and figured out in Figure 3.10.
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Table 3.5 : The OFM-COG analysis for cargo operation tasks used in this thesis. 

Step Task (sec.) Task description OFM function Frequency count of the navigation tasks 

    Acquisition Handling Interpretation Total 

1 

T1 (0-300) Check the status of continued Methanol 

loading to three tanks 

Level monitoring 

Monitoring the safety parameters 

0 

0 

0 

0 

1 (Test) 

1 (Test) 

2 

T2 (300-540) Do proper ballast operation to keep vessel 

upright 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

0 

0 

1 (Search) 

0 

0 

0 

1 (Test) 

1 (Test) 

1 (Control) 

4 

T3 (540-600) Do proper tank change according to planned 

cargo operation 

Level monitoring 

Monitoring the safety parameters 

Handling operation 

0 

0 

1 (Search) 

0 

0 

1 (Edit) 

1 (Test) 

1 (Test) 

1 (Test) 

5 

T4 (600-900) Check the status of continued Methanol 

loading to three tanks and do proper ballast 

operation to keep vessel upright 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

0 

0 

1 (Search) 

0 

0 

0 

1 (Test) 

1 (Test) 

1 (Control) 

4 

2 

T1 (0-120) Check the status of continued Methanol 

loading to three tanks and continued inerting 

operation for PX tanks 

Level monitoring 

Monitoring the safety parameters 

0 

0 

0 

0 

1x2 (Test) 

1 (Test) 

3 

T2 (120-360) Do proper ballast operation to keep vessel 

upright adding to continued operation 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

0 

0 

1 (Search) 

0 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Control) 

5 

T3 (360-720) Do proper tank topping operation for one 

methanol tank 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

1 (Input select) 

0 

1 (Search) 

1 (Edit) 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Control) 

7 

T4 (720-840) Do proper tank topping and tank changing 

operation for methanol tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

Handling operation 

1 (Input select) 

0 

0 

1 (Search) 

0 

0 

0 

1 (edit) 

1x2 (Test) 

1 (Test) 

1 (Test) 

1 (Test) 

8 

T5 (840-900) Check the status of continued Methanol 

loading to two tanks and continued inerting 

operation for PX tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

0 

0 

1 (Search) 

0 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Control) 

5 

T6 (900-960) Commence PX loading Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

Handling operation 

0 

0 

0 

1 (Search) 

0 

0 

0 

1 (edit) 

1x2 (Test) 

1 (Test) 

1 (Test) 

1 (Test) 

7 
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Table 3.5 (continued) : The OFM-COG analysis for cargo operation tasks used in this thesis. 

Step Task (sec.) Task description OFM function Frequency count of the navigation tasks 

    Acquisition Handling Interpretation Total 

2 

T7 (960-1080) Check the status of continued PX loading 

and Methanol loading to two tanks and 

continued inerting operation for PX tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

0 

0 

0 

0 

0 

0 

1x3 (Test) 

1 (Test) 

1 (Test) 

5 

3 

T1 (0-120) Check the status of continued PX loading 

and Methanol loading to two tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

0 

0 

0 

0 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Test) 

4 

T2 (120-300) Check the status of continued PX loading 

and Methanol loading to two tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

0 

0 

0 

0 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Test) 

4 

T3 (300-420) Do proper tank topping operation for one 

methanol tank 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

1 (Input select) 

0 

0 

1 (Edit) 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Test) 

6 

T4 (420-540) Check the status of continued PX loading to 

three tanks and Methanol loading to one 

tank 

Commence loading for one more PX tank 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

Handling operation 

1 (Input select) 

0 

0 

1 (Search) 

0 

0 

0 

1 (Edit) 

1x2 (Test) 

1 (Test) 

1 (Test) 

1 (Test) 

8 

T5 (540-600) Do proper tank topping operation for last 

methanol tank and 

Level monitoring 

Monitoring the safety parameters 

List / trim correction 

1 (Input select) 

0 

1 (Search) 

1 (Edit) 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Control) 

7 

T6 (600-780) Commence Benzene discharging Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

Handling operation 

1 (Input select) 

1 (Input select) 

0 

1 (Search) 

0 

0 

1 (count) 

1 (Edit) 

1 (Test) 

1 (Test) 

1 (Test) 

1 (Test) 

9 

T7 (780-1080) Do proper tank topping operation for one PX 

tank 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

1 (Input select) 

0 

0 

1 (Edit) 

0 

0 

1x2 (Test) 

1 (Test) 

1 (Test) 

6 

T8 (1080-1380) Do proper tank topping and tank changing 

operation for PX tanks 

Level monitoring 

Monitoring the safety parameters 

List / trim correction (mon.) 

Handling operation 

1 (Input select) 

0 

0 

1x2 (Search) 

0 

0 

0 

1x2 (edit) 

1x2 (Test) 

1 (Test) 

1 (Test) 

1x2 (Test) 

11 



83 

 

 

Figure 3.10 : Task loading of cargo operation scenario. 

3.4 Measurement Details 

It was stated that triangulated measurement strategy was implemented to this study. 

This involves performance measurement, physiological measurement and subjective 

assessment. This chapter includes the detailed procedures of these measurements. 

3.4.1 Performance measurement 

3.4.1.1 Performance measurement for navigation tasks 

The speed of own vessel is 10 to 13 knots and the XTE is 0.05 nm during the whole 

steps. Subjects performed the navigation with auto pilot, but they can use hand steering 

for big course alterations and in emergency cases. The tasks of each step were 

separately evaluated and their evaluation parameters were specified. Table 3.7 

represents optimum performance results of 3 experts during the trials. 

After the trails were completed by experts, they set the limits for each criterion and for 

each specific tasks of steps as well as “just acceptable or not” stated in the study of 

Gould et al. (2009). In this study, performances of the subjects were scored as 0 and 1 

or 0, 0.5 and 1 for safety critical navigation and trackkeeping tasks. Table 3.8 

represents the limits corresponding to the score values (stated with red colour) 

evaluated by experts. Subjects were evaluated according to the values stated in Table 

3.8. 
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Navigation performances were evaluated by using the targeted acceptable responses 

to generated events or tasks (TARGETS) method (Fowlkes et al., 1994). Differently, 

targets corresponding to the events were weighted according to the degree of 

importance in related event / task. Moreover, the performance results of the 

participants were scored as 0, 0.5 and 1 against the evaluation “just acceptable or not”. 

By the way, it was aimed to make performance measurement quantify in this study. In 

literature, Kim et al. (2010) tried to make performance measurement quantify, but they 

used constant limits for performances and that evaluation was not sufficient for 

variable navigational conditions. In a similar way stated in the study of Gould et al. 

(2009), tasks were evaluated separately as safety critical and trackkeeping in this study. 

Those were stated as task generated activities which are “observable safety-critical 

navigation tasks” and event-generated activities which are “responses to external 

objects” (Gould et al., 2009). Differently, performance scores were equal to the 

weighted sum of the scores of all parameters of both activities in this study. 

The navigation parameters were stated in Table 3.2. 3 experts scored the importance 

weights of each parameter for each step and for each task with fuzzy numbers (Table 

3.6) because of that the level of importance of navigation parameters can vary to the 

navigational conditions. 

Table 3.6 : Fuzzy numbers corresponding to the importance weights, adapted from 

(Buckley and Eslami, 2002). 

Linguistic expression Fuzzy numbers 

Very Low (VL) (0.1, 0.1, 0.3) 

Low (L) (0.1, 0.3, 0.5) 

Medium (M)  (0.3, 0.5, 0.7) 

High (H) (0.5, 0.7, 0.9) 

Very High (VH) (0.7, 0.9, 0.9) 

The averages of weights for each parameter were calculated with following equation; 

(3.3) 

where E is the number of experts and wj is the weight of jth parameter. The averages 

of all membership functions (lower, middle and upper values) are calculated according 

to the equation 3.3. Next step is defuzzification; 

(3.4)

=
1

E
 wj [wj

1
 (+) wj

2
 (+) …⁡(+) wj

E
]   

=
𝑙 + 4𝑚 + 𝑢

6
 Aj 
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Table 3.7 : Navigaiton performance results of 3 experts during the trials. 

Step Tasks (secs) Difficulty Safety critical navigation task parameters Trackkeeping task parameters 

The number 

of targets 
(target ID) 

Vsby. 

(nm) 

Fix 

interval 
(min.) 

CPA / 

TCPA 
(nm/min) 

(γ11) 

Heading 

(˚) (γ12) 

Detection 

range of 
targets 

(nm) (γ13) 

Time to 

response 
(min) 

(γ14) 

Comm. & 

true react. 
(γ15) 

Identify 

landmarks 
(γ2) 

Identify 

hazards 
(γ3) 

XTE 

(nm) 
(η1) 

Return to 

course (new 
heading) (˚) 

(η2) 

Turn 

radius 
(rad/nm) 

(η31) 

Rudder 

angle 
(˚) 

(η32) 

Radar 

(nm) 
(η4) 

1 

T1 (0-300) 1 10 5 0.18/11ʹ 133 3.5 - - - - 0.05 - 0.54 - 6 

T2 (300-420) 1 10 5 0.23/10ʹ 133 - TCPA 10ʹ VHF/ trial - - 0.05 - 0.54 - 6 
T3 (420-570) 1 10 5 - >133 - TCPA 8ʹ A/C to stb - - - - 0.54 - 6 

T4 (570-780) 1 10 5 1.0/5ʹ 133+ x - - - - - - - 0.54 - 6 

T5 (780-1020) 1 10 5 0.8/2ʹ 113 - - - - - - -2x 0.54 - 6 

2 

T1 (0-120) 2 10 3  122    - - 0.05 - 0.54 - 3 
(Detroit)   0.37/4ʹ  0.8 - -        

(Ara)   0.29/10ʹ  0.9 - VHF        

T2 (120-240) 2 10 3 - >122 - TCPA 8ʹ A/C to stb - F. nets - - 0.54 - 3 
T3 (240-360) 3 10 3  145    - - - - 0.54 - 3 

 (Detroit)   0.32/0ʹ  - - -        

 (Ara)   0.73/1ʹ  - - -        

 (Olympic)   1.24/8ʹ  3.5 - -        

T4 (360-480) 3 10 3 1.47/5ʹ 145 - - - - - - - 0.54 - 3 

T5 (480-800) 3 10 3 1.0/2ʹ A/C to P - - - Sep. - - - 0.54 - 3 
T6 (800-1020) 2+ f. boats 10 3 Hand steering for wp - - Sep. F. buoys - - - 10-15 3 

3 

T1 (0-240) 2 5 2  55    - F. nets 0.05 - 0.54 - 3 

 (Triesten)   0.15/11ʹ  1.1 - -        

 (MSC Kim)   0.33/6ʹ  1.85 <2 min. VHF        
T2 (240-300) 3 5 1  55    - .15s, .4p 0.05 - 0.54 - 3 

 (Satsuma)   0.08/2ʹ  0.4 - A/C to port        

T3 (300-420) 4 5 1  45 - - - - .15s, .4p - - 0.54 - 3 
 (Satsuma)   0.16/0ʹ            

T4 (420-540) 3 3 1  45 0.8 - - -  - - 0.54 - 3 

 (Herry 3 and fishing boats) -            
T5 (540-840) 4 3 1 - >45 - - A/C to stb - Shallow  - - 0.54 - 3 

T6 (840-1200) 4 3 3  55    Sep. - - - 0.34 - 3 

  (Cecela S)   0.12/3ʹ  1.5 <10 sec. A/C to stb        
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Table 3.7 (continued) : Navigaiton performance results of 3 experts during the trials. 

Table 3.8 : The limits corresponding to the score values evaluated by experts for navigation scenario. 

Step Tasks (secs) Difficulty Safety critical navigation task parameters Trackkeeping task parameters 

The number 

of targets 
(target ID) 

Vsby. 

(nm) 

Fix 

interval 
(min.) 

CPA / 

TCPA 
(nm/min) 

(γ11) 

Heading 

(˚) (γ12) 

Detection 

range of 
targets 

(nm) (γ13) 

Time to 

response 
(min) 

(γ14) 

Comm. & 

true react. 
(γ15) 

Identify 

landmarks 
(γ2) 

Identify 

hazards 
(γ3) 

XTE 

(nm) 
(η1) 

Return to 

course (new 
heading) (˚) 

(η2) 

Turn 

radius 
(rad/nm) 

(η31) 

Rudder 

angle 
(˚) 

(η32) 

Radar 

(nm) 
(η4) 

4 

T1 (0-360) 4 3 1  66    - - 0.05 - 0.34 - 3 

 (MSC Kim)   0.89/1ʹ  1 - -        
T2 (360-540) 4 3 1 Hand steering for wp   - - - - - 10-20 3 

 (Dhonoussa)   0.9/5ʹ  3 - -        

T3 (540-800) 4 3 1 0.3/1ʹ 350 - <10 sec. A/C to stb - - - - 0.34 - 3 
T4 (800-1100) 4 1.5 1 >0.1/0ʹ - - - - - Current/

Herry4/ 

fishing b. 

- - 0.34 - 3 

T5 (1100-1250) 5 0.8 1 0.24/4ʹ - 1.22 - - - F. nets - - 0.34 - 3 

T6 (1250-1350) 5 0.8 1 >0.2/0’ - - -ʹ A/C to stb - F. nets - - 0.34 - 3 

T7 (1350-1600) 5 0.8 1 0.02/1ʹ - - <10 sec. A/C to port - Shallow - - - - 3 
T8 (1600-1800) 4 0.8 1 - - - - - Buoys current 0.05 - 0.34 - 3 

Step Tasks (secs) Safety critical navigation task parameters Trackkeeping task parameters 

CPA / TCPA 

(nm/min) (γ11) 

Heading 

(˚) (γ12) 

Detection 

range of 
targets (nm) 

(γ13) 

Time to 

response 
(TCPA) (γ14) 

Comm. & true 

react. (γ15) 

Identify 

landmarks 
(γ2) 

Identify 

hazards 
(γ3) 

XTE 

(nm) 
(η1) 

return to course 

(new heading) 
(˚) (η2) 

Turn 

radius 
(rad/nm) 

(η31) 

Rudder 

angle (˚) 
(η32) 

Radar 

(nm) 
(η4) 

1 

T1 (0-300) - 0; <2, 0.5; 2-3, 1; >3 - - 0; >0.1 

0.5; 0.05-0.1 
1; <0.05 

0; S 
1; IS 

- 

1; 6 

T2 (300-420) - - 0; <6, 0.5; 6-8, 1; >8 0; NR, 1; Stb - - 

T3 (420-570)          - 0; P, 1; S 0; <4, 0.5; 4-6, 1; >6 0; <5, 1; >5 - - - - - 

T4 (570-780) 0; <0.5, 0.5; 

0.5-0.8,  

1; >0.8 

- - - - - - - - - 

T5 (780-1020) - - - - - -  0; /-2x(-5+5), 0.5;  

-2x(-5+5), 1; -2x 

 - 

2 

T1 (0-120) 
(Detroit)       

 (Ara) 

- - - - - - 0; >0.1 
0.5; 0.05-0.1, 1; <0.05 0; S 

1; IS 

- 

1; 3 - 0; <0.5, 0.5; 0.5-0.6,  
1; >0.7 

- - - - 

- 0; <5, 0.5; 5-7, 
1; >7 

0; P - - - - - 

T2 (120-240)          - 0;<-10, 1;>+10 - 1; A/C to stb - - - - -  
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Table 3.8 (continued) : The limits corresponding to the score values evaluated by experts for navigation scenario. 

Step Tasks (secs) Safety critical navigation task parameters Trackkeeping task parameters 

 CPA / TCPA 

(nm/min) (γ11) 

Heading 

(˚) (γ12) 

Detection 

range of 
targets (nm) 

(γ13) 

Time to 

response 
(TCPA) (γ14) 

Comm. & true 

react. (γ15) 

Identify 

landmarks 
(γ2) 

Identify 

hazards 
(γ3) 

XTE 

(nm) 
(η1) 

return to course 

(new heading) 
(˚) (η2) 

Turn 

radius 
(rad/nm) 

(η31) 

Rudder 

angle (˚) 
(η32) 

Radar 

(nm) 
(η4) 

2 

T3 (240-360) 0; <+10, 1; >+10 - - - - - - - 

0; S 

1; IS 

-  

(Detroit) 0; <0.1, 0.5; 0.1-0.3, 1; >0.3 - - - - - - - 

1; 3 

(Ara) 0; <0.4, 0.5; 0.4-0.6, 1; >0.6 - - - - - - - 

(Olympic) 0; <2, 0.5; 2-3, 1; >3 - - - - - - - 

T4 (360-480) 0; <0.5, 0.5; 0.5-1,  

1; >1 

0; <+10, 1; >+10 - - - - - - -  

T5 (480-800) 0; S, 1; P - - - 0; out,  

1; in 

- - - - 

T6 (800-1020) - - - - - 1; range > 0.1 - - 1; IS 

3 

T1 (0-240) - - - - - - 

0 ; out,  

1; NC 
0; >0.1 

0.5; 0.05-0.1 
1; <0.05 

0; S 

1; IS 

-  

(Triesten) 0; <0.5, 0.5; 0.5-1, 1; >1 - - - - 

1; 3 

(MSC Kim) 0; <1, 0.5; 1-1.5, 1; >1.5 0; <3, 0.5; 3-4, 

1; >4 
0; NR, 1;VHF - - 

T2 (240-300) 0; <0.3, 0.5; 0.3-0.4, 1; >0.4 - 0; A/C to stb 1; range > 0.1 - 

T3 (300-420) 0; <0.1,0.5; 0.1-0.5, 
1; >0.5 

1; <45 - - - - 
1; range > 

0.1 
- - - 

 
T4 (420-540) 0; <0.4, 0.5; 0.4-0.6, 1; >0.6 - - 1; range > 0.1 - - - 

T5 (540-840) - - - - 1; A/C to stb 1; range > 0.1 - - - 

T6 (840-1200) 0; <0.3, 0.5; 0.3-0.5, 

1; >0.5 
1; >55 

0; <0.5, 0.5; 

0.5-1, 1; >1 
1; <10s 1; A/C to stb 0; out, 1; in - - - - 

4 

T1 (0-360) - - - - - -           0; >0.1 

         0.5; 0.05-0.1 1; <0.05 

0; S 

1; IS 

-  

(MSC Kim) - 0; <0.5, 0.5; 0.5-1, 1; >1 - - - -  

T2 (360-540)                     -                     - - - - - - - - 1; IS 

1; <3 

(Dhonoussa) 0; <2, 0.5; 2-2.5, 1; >2.5        

T3 (540-800) 0; <0.2, 0.5; 0.2-0.3, 1; >0.3 - 1; <10s 1; A/C to stb - - - - - 

T4 (800-1100) 0; <0.1, 1; >0.1     - - - - 1; A/C to port - - -  

T5 (1100-1250)               -     - 0; <0.6, 0.5; 0.6-0.8, 1; >0.8 - 1; range > 0.1 - - -  

T6 (1250-1350) 0; <0.1, 0.5; 0.1-0.2, 1; >0.2 - - 1; A/C to stb - - - - - 

 T7 (1350-1600) 0; <0.1, 1; >0.1 - 1; <10s 1; A/C to port 0; out, 1; in 1; range > 0.1 - 1; IS 

T8 (1600-1800)              -     - - - - 0; out, 1; in 1; respon. 1; <0.05 - 
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Table 3.9 : The evaluations of the experts for parameter weights of whole navigation scenario and the quantification of weight evaluations. 

Steps Experts 
Task 

Parameter 

 Weights of parameter 

1 

 T1 T2 T3 T4 T5                 

 γ13 η1 η31 η4 γ14 γ15 η1 η31 η4 γ12 γ14 γ15 η31 η4 γ11 η31 η4 γ11 η2 η31 η4                 

Exp. 1 H M L M H H M L M VH VH VH M M VH L M M H M M                 

Exp. 2 VH M L H VH VH VL H H VH VH VH H H VH H H VH M M H                 
Exp. 3 VH VH H H VH VH M H VH VH VH VH VH VH VH M H M H M M                 

wα,ν .32 .25 .18 .25 .25 .25 .12 .17 .21 .22 .22 .22 .17 .17 .43 .25 .32 .27 .27 .22 .24                 

2 

 T1 T2 T3 T4 T5 T6       

 γ13 γ15 η1 η31 η4 γ12 γ14 γ15 η31 η4 γ11 γ12 γ13 η31 η4 γ11 γ12 η31 η4 γ11 γ12 γ2 η31 η4 γ2 γ3 η32 η4          

Exp. 1 VH H L L H H H VH L M VH H VH L H VH H L M H H VH L M H VH M M          
Exp. 2 VH VH H H VH VH VH VH H VH VH VH VH H VH VH VH H VH VH VH H H VH M H H VH          

Exp. 3 VH VH H H VH H VH VH H VH VH VH VH H VH VH VH H VH H M VH H H VH VH H VH          

wα,ν .24 .22 .16 .16 .22 .20 .22 .23 .15 .20 .22 .21 .22 .14 .21 .29 .27 .19 .25 .21 .20 .23 .16 .20 .24 .28 .22 .26          

3 

 T1 T2 T3 T4 T5 T6   

 γ13 γ14 γ15 γ3 η1 η31 η4 γ13 γ15 γ3 η1 η31 η4 γ11 γ12 γ3 η31 η4 γ13 γ3 η31 η4 γ15 γ3 η31 η4 γ11 γ12 γ13 γ14 γ15 γ2 η31 η4    

Exp. 1 VH H H H M L M VH VH H M L M VH H M L M H H L M VH H M M VH M VH VH VH H H M    

Exp. 2 VH VH VH VH M H VH VH VH VH M H VH VH VH H H VH VH VH H VH VH VH H VH VH VH VH VH VH VH H VH    

Exp. 3 VH VH VH VH H H VH VH VH VH M M VH VH H M M VH VH VH M VH M VH M VH H VH VH VH VH VH M VH    

wα,ν .16 .16 .16 .16 .11 .11 .14 .20 .20 .19 .12 .12 .17 .25 .22 .16 .15 .22 .28 .28 .18 .26 .26 .28 .20 .26 .13 .12 .13 .13 .14 .13 .10 .12    

4 

 T1 T2 T3 T4 T5 T6 T7 T8  

 γ13 η1 η31 η4 γ13 η32 η4 γ11 γ14 γ15 η31 η4 γ11 γ3 η31 η4 γ13 γ3 η31 η4 γ11 γ15 η31 η4 γ11 γ14 γ15 γ2 γ3 η3 η4 γ2 γ3 η1 η31 η4  

Exp. 1 VH M M H VH H M VH VH VH M M H VH M M VH H M M VH H M M VH VH VH VH VH H M H H M M M  
Exp. 2 VH L VH VH VH H VH VH VH VH H VH H H H VH VH H H VH VH VH H VH VH VH VH H H H VH H VH M VH VH  

Exp. 3 VH M M VH VH VH VH VH VH VH VH VH VH VH VH VH VH VH VH VH VH VH H VH VH VH VH VH VH VH VH VH VH H VH VH  

wα,ν .31 .16 .23 .30 .37 .32 .31 .21 .22 .22 .17 .18 .25 .27 .23 .25 .28 .25 .23 .24 .28 .27 .21 .24 .15 .15 .15 .14 .14 .14 .13 .21 .22 .16 .21 .20  
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The following equation is used to normalize the weights of the related parameter; 

(3.5) 

where wα is the weights of safety critical navigation task parameters and wν is the 

weights of trackkeeping task parameters. 

Table 3.9 presents the evaluations of the experts for parameters weights of whole 

scenario and the quantification of weight evaluations (wα,ν) as the results of the 

equations stated before. 

Then, the performance score of the subject can be calculated with the equation 3.2 (see 

chapter 3.2) where γα is the score value for safety critical navigation tasks and ην is the 

score value for trackkeeping tasks as stated with red colour in Table 3.8. 

3.4.1.2 Performance measurement for cargo operation tasks 

Table 3.10 represents optimum performance results of 3 experts during the trials. In a 

similar way with performance measurement for navigation tasks, experts set the limits 

for each criterion and for each specific task of steps. In this study, performances of the 

subjects were scored as 0 and 1 or 0, 0.5 and 1 for safety critical operation tasks and 

operational tasks. Table 3.11 represents the limits corresponding to the score values 

(stated with red colour) evaluated by experts. Subjects were evaluated according to the 

values stated in Table 3.11. 

The cargo operation parameters were stated in Table 3.4. 3 experts scored the 

importance weights of each parameter for each step and for each period with fuzzy 

numbers just like in performance measurement for navigation tasks. 

Table 3.12 presents the evaluations of the experts for parameter weights of whole 

scenario and the quantification of weight evaluations (wα,ν) as the results of the 

equations stated in previous sub-chapter. 

In a similar way for navigation tasks, the performance score of the subject can be 

calculated with the equation 3.2 (See chapter 3.2) where γα is the score value for safety 

critical operation tasks and ην is the score value for operational tasks as stated with red 

colour in Table 3.11.

=
wj

∑w
j

 wα,ν 
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Table 3.10 : Cargo operation performance results of 3 experts during the trials. 

Step Task (secs) Difficulty Safety critical operation task parameters Operational task parameters 

Type and number 

of operations 

Actual 

operation 
period 

List / Trim 

mon.  (γ1) 

SF/BM 

mon. 
(γ2) 

Man. 

press. 
(bar)  

(γ3) 

Tank 

pressure 
(γ4) 

Line up (γ5) Initial 

rate 
(m3/h) 

(γ6) 

Atmosphere 

monitoring 
(O2 conc.) 

(γ7) 

Topping 

of tanks 
(γ8) 

Ballast 

operation 
(η1) 

Loading / 

Discharging 
rate (m3/h)  

(η2) 

Inert. 

(η3) 

Opr. 

pumps 
(η4) 

Tank 

heat. 
(˚C) 

(η5) 

Strip. 

(η6) 

1 

T1 (0-300) 1 loading - 0 / 0.8 62 / 72 <10 P/V val. CC - - - - 900 - - - - 

T2 (300-540) 1 loa.+ball. - 0.2 P 62 / 72 <10 P/V val. CC - - - 5 W 900 - 2-3 j.p. - - 
T3 (540-600) 1 loa.+ball. tank cha. 0.1 P 62 / 72 >10 P/V val. CC 80 - - - 900 - -. - - 

T4 (600-900) 1 loa.+ball. - 0 / 0.9 62 / 71 >10 P/V val. CC - - - 5 W 900 - 2-3 j.p. - - 

2 

T1 (0-120) 1 loa.+inert - 0 / 1.2 62 / 74 <10 P/V val. CC - 3C < 5% - - 600 3C - - - 

T2 (120-360) 1 loa.+inert+ball. - 0.2 S 62 / 74 <10 P/V val. CC - 3C < 5% - 5W / 9W 600 3C 2-3 j.p. - - 
T3 (360-720) 1 loa.+inert+ball. tank top. 0.1 S 62 / 74 <10 P/V val. CC - 9W > 5% 5S 96% 5W / 9W 600 9W 2-3 j.p. - - 

T4 (720-840) 1 loa.+inert+ball. top.+cha. 0 62 / 74 <10 P/V val. CC - 9W > 5% 9P 97% 5W / 9W 400 9W 2-3 j.p. - - 
T5 (840-900) 1 loa.+inert+ball. - 0 62 / 74 <10 P/V val. CC - 9W < 5% - 9W 400 9W 2-3 j.p. - - 

T6 (900-960) 2 loa.+inert+ball. - 0 62 / 75 <10 P/V val. CC+10P+3C 80 5C > 5% - 9W/FPT 400 / 700 5C 2-3 j.p. - - 

T7 (960-1080) 2 loa.+inert+ball. - 0 / 1.2 62 / 75 <10 P/V val. CC+10P+3C - 5C < 5% - FPT 400 / 700 5C 2-3 j.p. - - 

3 

T1 (0-120) 2 loa.+ball. - 0.15S / 2.7 70 / 77 <10 P/V val. CC+10P+3C - - - 9S 400 / 700 - 2-3 j.p. - - 

T2 (120-300) 2 loa.+ball. - 0.15 S 70 / 77 <10 P/V val. CC+10P+3C - - - 9S 200 / 700 - 2-3 j.p. - - 

T3 (300-420) 2 loa.+ball. tank top. 0.1 S 70 / 77 <10 P/V val. CC+10P+3C - - 5P 98% 9S 100 / 700 - 2-3 j.p. - - 

T4 (420-540) 2 loa.+ball. tank cha. 0.1 S 70 / 77 <10 P/V val. CC+10P+3C+5C 80 - - 9S 100 / 700 - 2-3 j.p. - - 
T5 (540-600) 2 loa.+ball. tank top. 0.1 S 71 / 77 <10 P/V val. CC+10P+3C+5C - - 9S 97% 7W 700 - 2-3 j.p. - - 

T6 (600-780) 1 loa.+1 dis.+ball. tank prep 0 71 / 77 <10 P/V val. 10P+3C+5C+3P 80 - - 7W 700 / 80 - 3 j.p. - - 

T7 (780-1080) 1 loa.+1 dis.+ball. tank top. 0 71 / 77 <10 P/V val. 10P+3C+5C+3P - - 3C 85% 7W 700 / 400 - 3 j.p. - - 
T8 (1080-1380) 1 loa.+1 dis.+ball. top.+cha. 0 72 / 77 <10 P/V val. 10P+5C+3P+2P 80 - 10W 92% 7W 700 / 400 - 3 j.p. - - 
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Table 3.11 : The limits corresponding to the score values evaluated by experts for cargo operation scenario. 

Step Task (secs) Safety critical operation task parameters Operational task parameters 

List / 
Trim 

mon.  

(γ1) 

SF/BM 
mon. 

(γ2) 

Man. 
pressure 

(bar)  

(γ3) 

Tank 
pressure 

(γ4) 

Line up (γ5) Initial 
rate 

(m3/h) 

(γ6) 

Atmosphere 
monitoring 

(γ7) 

Topping of 
tanks (%) 

(γ8) 

Ballast 
operation 

(η1) 

Loading / 
Discharging 

rate (m3/h)  

(diff.) (η2) 

Inerting  
(O2 conc.) 

(η3) 

Opr. 
pumps 

(m3/h) 

(η4) 

Tank 
heating 

(˚C) (η5) 

Stripping 
(η6) 

1 

T1 (0-300) 

0; >0.4 
1; <0.4 

0; >80 
1; <80 

0; >12  
1; <12 

0; NR  
1; C 

1; CC 

- - - - 
0; >20, 

0.5;0-20,   

1; 0 

- - - - 

T2 (300-540) - - - 0; 5S, 1; 5P 0; <250,0.5;250-300,1;>300 

T3 (540-600) 1; <80 - - - - - - - 

T4 (600-900) - - - 0; 5P, 1; 5S 0; <250,0.5;250-300,1;>300 

2 

T1 (0-120) 

0; >0.4 
1; <0.4 

0; >80 
1; <80 

0; >12  
1; <12 

0; NR  
1; C 

1; CC 

- 

0; NR 
1; C 

- - 

0; >20, 

0.5;0-20,   

1; 0 

0;>6, 0.5;>5, 1;4-5  - 

T2 (120-360) - - 0.5; 9W,     

1; 5W 

0;>5, 0.5;>4.5, 1;4-4.5  - 

T3 (360-720) - 0;≠96,1;=96 0;>6, 0.5;>5.5, 1;4-5.5  - 

T4 (720-840) - 0;≠97,1;=97 0.5; 5W,     

1; 9W 
0;>6,0.5;>5.

5,1;4-5.5 

  - 

T5 (840-900) - - 0; <250, 0.5;250-300, 

1;>300 

- 

T6 (900-960) 

1; CC+10P+3C 

1; <80 - 

0.5; 9W,     

1; FPT 

0;>6,0.5;>5.

5, 1;4-5.5 

- 

T7 (960-1080) - - 0;>5,0.5;>4.
5, 1;4-4.5 

- 

3 

T1 (0-120) 

0; >0.4 
1; <0.4 

0; >80 
1; <80 

0; >12  
1; <12 

0; NR  
1; C 

1; CC+10P+3C 

- - - 

1; 9S 

0; >20, 

0.5;0-20,   

1; 0 

- 

0; <250, 

0.5;250-
300, 

1;>300 

- - 

T2 (120-300) - - - - - - 

T3 (300-420) - - 0;≠98,1;=98 - - - 

T4 (420-540) 1; CC+10P+ 

3C+5C 

1; <80 - - - - - 

T5 (540-600) - - 0;≠97,1;=97 

0; 9W, 

1; 7W 

- - - 

T6 (600-780) 1; 10P+3C+ 

5C+3P 

1; <80 - - - - - 

T7 (780-1080) - - 0;≠85,1;=85 - - - 

T8 (1080-1380) 1;10P+5C+3P+2P 1; <80 - 0;≠92,1;=92 - - - 
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Table 3.12 : The evaluations of the experts for parameter weights of whole cargo operation scenario and the quantification of weight evaluations. 

Steps Experts 
Task    

Parameter    

 Weights of parameter    

1 

 T1 T2 T3 T4            

 γ1 γ2 γ3 γ4 γ5 η2 γ1 γ2 γ3 γ4 γ5 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ6 η2 γ1 γ2 γ3 γ4 γ5 η1 η2 η4            

Exp. 1 L VL H H L M M VL H H L H M H L VL VH M VH H H M VL H H L H M H            

Exp. 2 L L M H VH M M M M H VH H M VH H L VH VH VH H H M M H H H H M H            
Exp. 3 M M H H VH M VH M H VH M VH M VH VH H VH VH VH VH H H M H H M H M H            

wα,ν .11 .10 .20 .22 .21 .16 .12 .08 .13 .15 .11 .15 .10 .16 .12 .08 .17 .15 .17 .15 .16 .12 .08 .15 .15 .10 .15 .10 .15            

2 

 T1 T2 T3 T4 

 γ1 γ2 γ3 γ4 γ5 γ7 η2 η3 γ1 γ2 γ3 γ4 γ5 γ7 η1 η2 η3 η4 γ1 γ2 γ3 γ4 γ5 γ7 γ8 η1 η2 η3 η4 γ1 γ2 γ3 γ4 γ5 γ7 γ8 η1 η2 η3 η4 

Exp. 1 L VL H M L H M H M VL H M L H H M H H M VL VH H VH M VH M H L M L VL M H VH M VH L H L M 
Exp. 2 M M H H H H M H M L M H M H H M M H M L H VH H H VH M H M H M VL H H H M VH H VH M H 

Exp. 3 H M H H M VH H H VH H M M M VH VH M VH VH H M VH VH VH H VH H M H H H H H H VH H VH H H H H 

wα,ν .10 .08 .15 .14 .12 .15 .11 .15 .09 .05 .10 .11 .08 .13 .13 .09 .10 .12 .07 .04 .11 .12 .11 .09 .13 .07 .10 .07 .09 .07 .02 .10 .11 .12 .08 .13 .08 .12 .07 .10 

 T5 T6 T7          

 γ1 γ2 γ3 γ4 γ5 γ7 η1 η2 η3 η4 γ1 γ2 γ3 γ4 γ5 γ6 γ7 η1 η2 η3 η4 γ1 γ2 γ3 γ4 γ5 γ7 η1 η2 η3 η4          

Exp. 1 L VL M H L VH L H H M L VL H H VH VH M M H M M L VL H H M H M H H M          

Exp. 2 M VL H H H M H H M H L M VH VH VH VH L M H M H VL L M H M L L H L M          

Exp. 3 H H H H M H H M H M H H VH VH VH VH VH H VH VH M H H M M M H H M H H          

wα,ν .08 .03 .11 .13 .10 .11 .10 .12 .11 .11 .05 .06 .12 .12 .13 .13 .06 .07 .10 .07 .09 .04 .06 .12 .14 .11 .10 .08 .14 .10 .11          

3 

 T1 T2 T3 T4       

 γ1 γ2 γ3 γ4 γ5 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ8 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ6 η1 η2 η4       

Exp. 1 L L H H M M M M L L H H M M H M L L H H M VH M H M L L H H VH VH M H M       

Exp. 2 L M H H M M M M L M M M L M M M M M L M L VH L M L L L M H H VH L H M       

Exp. 3 VH H M M M H M H H H H H M H VH H H H VH VH M VH H VH H H H VH VH VH VH H VH H       

wα,ν .11 .12 .14 .14 .12 .13 .11 .13 .10 .11 .14 .14 .10 .13 .15 .13 .10 .10 .12 .13 .08 .16 .09 .13 .09 .07 .07 .12 .13 .14 .15 .09 .13 .10       

 T5 T6 T7 T8    

 γ1 γ2 γ3 γ4 γ5 γ8 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ6 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ8 η1 η2 η4 γ1 γ2 γ3 γ4 γ5 γ6 γ8 η1 η2 η4    

Exp. 1 L L H H M VH H H M L L H H VH VH M H H L L H H M VH M H H L L H M VH VH VH L M H    
Exp. 2 L M M H M VH L L M M L VH VH VH H L VH H L L H H M VH L M H M M H H M VH VH L H H    

Exp. 3 H H M H M VH H H M M M VH VH VH VH H VH H M M M M M VH M M M M M VH VH VH VH VH M VH M    

wα,ν .08 .10 .11 .13 .09 .17 .11 .11 .10 .07 .06 .13 .13 .14 .14 .08 .13 .12 .07 .07 .13 .13 .10 .17 .09 .11 .13 .07 .07 .12 .11 .11 .13 .13 .06 .10 .10    
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3.4.1.3 Validation of the performance measurement method 

After the completion of experiments, performances were evaluated by different experts 

who is an ocean- going master for navigation scenario and an ocean-going chief officer 

for cargo operation scenario to assess the actions “just acceptable or not”. These 

evaluations were matched with the performance scores. The ratio of true positive to 

false positive was analysed in ROC curves with the help of the thresholds set to 

performance score value. It was expected to assess the performances of officers with 

the help of the statistically significant threshold value of performance score. 

A receiver operating characteristic (ROC) is a technique for evaluating classifiers 

based on their performance (Fawcett, 2006). Graphical plot of sensitivity (true positive 

rate) (Equation 3.6) is used to analyse the tendency of true positive and false positive 

rates (Equation 3.7). 

(3.6) 

 

(3.7) 

The area under the ROC curve (AUC) is a statistical metric to show the accuracy of 

the classification. AUC value represents the classification performance - excellent 

(AUC > 0.9), good (0.8 < AUC < 0.9), fair (0.6 < AUC < 0.8) and failed (below 0.6) 

test (Singh et al., 2013). 

The popular method has been used to evaluate the classification success of classifiers 

in stress / fatigue / drowsy levels of drivers, pilots in literature. Singh et al. (2013) used 

the ROC graph to evaluate the classifiers for 3-class stress levels. They matched the 

designated stress levels according to traffic conditions with classification results based 

on the subjects’ physiological data. In this study, positive, negative and hypothesized 

cases are stated in Table 3.13. The performance scores are calculated according to 

developed performance model. The “Safe” and “Risky” are the evaluations of experts 

and they represent the real positive and negative cases in this technique. 

According to equation 3.6 and 3.7, true positive rate is a ratio of TP to TP+FN and 

false positive rate is a ratio of FP to FP+TN as stated in Table 3.13. 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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Table 3.13 : Confusion matrix of used ROC technique for validation of performance 

measurement method. 

  Actual 

  Positive Negative 

Predicted 

Positive 

TP FP 

• Expert evaluation 

as “Safe” 

• Performance score 

above the threshold 

• Expert evaluation 

as “Risky” 

• Performance score 

above the threshold 

Negative 

FN TN 

• Expert evaluation 

as “Safe” 

• Performance score 

below the threshold 

• Expert evaluation 

as “Risky” 

• Performance score 

below the threshold  

3.4.2 Physiological measurement 

The physiological measures and the specifications of equipment used in this study are 

stated below. 

3.4.2.1 PPG 

Optical pulse sensor of GSR (EDA) unit used in this study, measures the 

photoplethysmogram (PPG) signal from a finger or ear-lobe to estimate heart rate. This 

measurement is used to evaluate PPG signal and to convert the PPG signal to heart 

rate. This unit contains electronics attached a velcro cuff for finger with a cable length 

of 9 inch (Figure 3.11a). 

 

Figure 3.11 : Optical Pulse Sensor of GSR unit (a) and recording the PPG data (b). 

Sampling rate of 100 Hz or greater is recommended to provide good performance in 

user guide. The ConsensysPRO software allows that PPG data is converted to heart 

rate and IBI signal (Figure 3.11b) ("Optical Pulse Sensor User Guide," 2016). 
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3.4.2.2 EDA 

The main function of the GSR (EDA) unit is the measure galvanic skin response, also 

known as electro dermal activity with two reusable electrodes attached to two fingers 

of one hand (Figure 3.12a). By increasing skin conductance (decreasing skin 

resistance) in response to internal and external stimuli, the flow of electrical current 

between positive and negative ions becomes more rapidly. 

 

Figure 3.12 : GSR unit (a) and recording the GSR data (b). 

The unit was designed to resolve skin conductance levels from 0.2µS to 125µS 

(4.7MΩ to 8kΩ resistance). Sampling rate of 0-5 Hz for tonic measurements with 0.03-

5 Hz for phasic measurements is suggested in user guide. 2 Ag/AgCl electrodes are 

used. The surface is of the electrodes should be kept to a minimum; 1 cm2 are ideal 

("GSR+ User Guide," 2018). 

3.4.2.3 Eye movements and eye tracking 

Eye tracking headset has 1 eye camera and 1 world camera (Figure 3.13a). The 

sampling frequency of eye camera is 200Hz at 192x192px and this is 30Hz at 1080p, 

60Hz at 720p, 120Hz at 480p for world camera (URL-1). 

With the help of the headset, the gaze positions can be recorded (Figure 3.13b). 

Additionally, the headset has pupil detector, by setting min and max areas of pupil, 

and blink detection. 

3.4.3 Subjective workload assessment 

According to the comparison of the subjective workload assessment tools (See chapter 

2.3.1), NASA Task Load Index (NASA-TLX) was chosen for this study. NASA-TLX 

is a multidimensional task load assessment tool, developed by Hart and Staveland 
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(1988). NASA-TLX has 6 sub-scales which are mental, physical and temporal loads 

(task related), performance and effort (behavioural and skill related) and frustration 

(individual related). Subjects weight the sub-scales to determine the intensity of each 

factor to total workload (Hart, 1986). 

 

Figure 3.13 : Eye tracking headset (a), recording the eye movement and tracking 

data (b). 

The explanations of sub-scales are stated in appendix B. NASA-TLX has two-step 

procedure. First step is comparative evaluation of the sub-scales in terms of 

contribution of scales to total workload. Subjects used the form (Appendix C) that 

consists 15 dual comparisons of 6 sub-scales by marking the sub-scale which is 

thought to be more dominant to other one. According to comparisons, the sub-scales 

are weighted from 0 to 5. In second step, subjects evaluate the sub-scales 

independently from 0 to 20 (Appendix B). Finally, the weighted sum of the task load 

assessment is found as a score between 0 and 100 (Hart, 1986). 

3.5 Analysis of Data and Computerized Process 

This chapter covers the transformation process which are normalization and feature 

extraction of the physiologic signals, the techniques used for classification of data and 

decision-making process. 

3.5.1 Transformation process 

3.5.1.1 PPG signal 

For HRV feature extraction from PPG signal, there are some steps to be performed. 

Firstly, PPG raw data was converted to IBI signal by The ConsensysPRO software and 

this IBI signal was transferred to new chart for indicating the variability (Figure 3.14). 
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Then, Heart Rate Variability Analysis Software (HRVAS) developed by Ramshur 

(2010), was used to perform transformation process of IBI data in Matlab R2014a. 

Figure 3.15 presents the transformation process of IBI data and extraction of HRV 

features. 

 

Figure 3.14 : Inter-beat interval conversion from raw PPG signal. 

 

Figure 3.15 : HRV extraction from IBI data, adapted from (Ramshur, 2010). 

Ectopic beats mean one or more abnormal beats on IBI signals. To detect ectopic beats, 

percentage filter (20%) and standard deviation (3 SD) filter were used. To correct 

ectopic beats, removal function was used. Detrending is used to remove low frequency 

trends on IBI signal. There are several methods in literature; linear, polynomial, 

wavelet, wavelet packet detrending and smoothing (Ramshur, 2010). In this study, 

wavelet detrending was implemented by using discrete wavelet transform. For signal 

stationary, resampling was used with linear interpolation. Figure 3.16 presents 

HRVAS software graphical user interface with a sample processed IBI signal analysis. 

According to reviewed literature (stated in chapter 2.3.4.1), the studies where the 

detailed HRV measurements were conducted (Aimie-Salleh et al., 2019; Moraes et al., 

2018; Ramshur, 2010; Selvaraj et al., 2008) and the contents of the HRVAS software, 

HRV features were extracted as stated in Table 3.14. The features were analysed in 

time domain, frequency domain, time-frequency and nonlinear domain. 
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Figure 3.16 : HRVAS software graphical user interface. 

Table 3.14 : Definition and description of HRV features. 

Domain Feature Equation / Description Abbreviation 

Time-based 

HR Mean of heart rate hrv_hr 

SDNN Standard deviation of NN intervals hrv_sdnnn 

RMSSD Root mean square of the successive differences hrv_rmssd 

pNN50 Percentage of NN50 count hrv_pnn50 

HRVti Integral of the density of IBI histogram divided by its height hrv_hrvti 

TINN The triangular interpolation of the NN interval histogram hrv_tinn 

Frequency-

based (Welch 

Periodogram) 

aLF Absolute spectral power of low frequency (0.04-0.15 Hz) hrv_fwalf 

aHF Absolute spectral power of high frequency (0.15-0.4 Hz) hrv_fwahf 

atotal Absolute total band power hrv_fwatotal 

pLF Low frequency percentage of the sum of aLF and aHF hrv_fwplf 

pHF High frequency percentage of the sum of aLF and aHF hrv_fwphf 

nLF Normalized low frequency to total power hrv_fwnlf 

nHF Normalized high frequency to total power hrv_fwnhf 

LF/HF The ratio of low frequency to high frequency hrv_fwlfhf 

peakLF Peak frequency in low frequency band hrv_fwpeaklf 

peakHF Peak frequency in high frequency band hrv_fwpeakhf 

Frequency-

based 

(Lomb-

Scargle 

Periodogram) 

aLF Absolute spectral power of low frequency (0.04-0.15 Hz) hrv_flsalf 

aHF Absolute spectral power of high frequency (0.15-0.4 Hz) hrv_flsahf 

atotal Absolute total band power hrv_flsatotal 

pLF Low frequency percentage of the sum of aLF and aHF hrv_flsplf 

pHF High frequency percentage of the sum of aLF and aHF hrv_flsphf 

nLF Normalized low frequency to total power hrv_flsnlf 

nHF Normalized high frequency to total power hrv_flsnhf 

LF/HF The ratio of low frequency to high frequency hrv_flslfhf 

peakLF Peak frequency in low frequency band hrv_flspeaklf 

peakHF Peak frequency in high frequency band hrv_flspeakhf 
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Table 3.14 (continued) : Definition and description of HRV features. 

Domain Feature Equation / Description Abbreviation 

Time-

frequency 

based 

(Wavelet 

transform) 

aLF Absolute spectral power of low frequency (0.04-0.15 Hz) hrv_tfwalf 

aHF Absolute spectral power of high frequency (0.15-0.4 Hz) hrv_tfwahf 

atotal Absolute total band power hrv_tfwatotal 

pLF Low frequency percentage of the sum of aLF and aHF hrv_tfwplf 

pHF High frequency percentage of the sum of aLF and aHF hrv_tfwphf 

nLF Normalized low frequency to total power hrv_tfwnlf 

nHF Normalized high frequency to total power hrv_tfwnhf 

LF/HF The ratio of low frequency to high frequency hrv_tfwlfhf 

peakLF Peak frequency in low frequency band hrv_tfwpeaklf 

peakHF Peak frequency in high frequency band hrv_tfwpeakhf 

Time-

frequency 

(Lomb-

Scargle 

Periodogram) 

aLF Absolute spectral power of low frequency (0.04-0.15 Hz) hrv_tflsalf 

aHF Absolute spectral power of high frequency (0.15-0.4 Hz) hrv_tflsahf 

atotal Absolute total band power hrv_tflsatotal 

pLF Low frequency percentage of the sum of aLF and aHF hrv_tflsplf 

pHF High frequency percentage of the sum of aLF and aHF hrv_tflsphf 

nLF Normalized low frequency to total power hrv_tflsnlf 

nHF Normalized high frequency to total power hrv_tflsnhf 

LF/HF The ratio of low frequency to high frequency hrv_tflslfhf 

peakLF Peak frequency in low frequency band hrv_tflspeaklf 

peakHF Peak frequency in high frequency band hrv_tflspeakhf 

Non-linear 

SD1 Poincaré plot SD perpendicular the line of identity hrv_nlsd1 

SD2 Poincaré plot standard deviation along the line of identity hrv_nlsd2 

SampEn Sample entropy, which measures the regularity and 

complexity of a time series 

hrv_nlsampen 

DFA α1 Detrended fluctuation analysis, which describes short-term 

fluctuations 

hrv_nlalpha1 

DFA α2 Detrended fluctuation analysis, which describes long-term 

fluctuations 

hrv_nlalpha2 

3.5.1.2 EDA signal 

To analysis EDA raw data, there are some methods to be performed. Ledalab was used 

to perform these methods and feature extraction. This software is a Matlab-based 

software. Firstly, the data which is taken from The ConsensysPRO software, was 

converted as importable GSR data for Ledalab software: 

data.conductance = Shimmer_C081_GSR_Skin_Conductance_CAL(:,:); 
data.time = (1:45689)/128; 
data.timeoff = 0; 
data.event = []; 

save('mydata','data') 

Then, Ledalab was run and data was imported. Down sampling to 8 Hz (Factor 16) 

was carried out because of that the sampling frequency was 128 Hz with PPG 

measurement. After the above-mentioned steps were carried out, transformation 

process of EDA data was started as stated in Figure 3.17. 

Butterworth-lowpass filter with 1 Hz lower cut-off frequency was implemented and 

artifacts were visually inspected and corrected. Then, CDA analysis was run. Figure 

3.18 presents the sample CDA analysis from EDA raw data (SC data) to obtain phasic 
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and tonic drivers. Figure 3.19 presents the tonic and phasic EDA trends after the 

implementation of CDA analysis and adding event markers.  

 

Figure 3.17 : Feature extraction from EDA raw data with different methods; CDA 

analysis is adapted from (Benedek and Kaernbach, 2010; Greco et al., 2014), TTP 

analysis is adapted from (Enewoldsen, 2016). 

 

Figure 3.18 : Continuous Decomposition Analysis (CDA) for raw EDA signal. 

 

Figure 3.19 : Tonic EDA (black coloured) and phasic EDA (blue coloured) trends. 
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According to reviewed literature (stated in chapter 2.3.4.2) and the contents of the 

Ledalab software, the EDA features were extracted as stated in Table 3.15. 

Table 3.15 : Definition and description of EDA features. 

Feature Equation / Description Abbreviation 

nSCR (CDA) Number of significant SCRs within response window 

(wrw) according to CDA 

eda_cdanscr 

AmpSum (CDA) Sum of SCR-amplitudes of significant SCRs wrw 

(reconvolved from corresponding phasic driver-peaks) 

eda_cdaampsum 

SCR (CDA) Average phasic driver wrw. This score represents phasic 

activity wrw most accurately, but does not fall back on 

classic SCR amplitudes 

eda_cdascr 

ISCR (CDA) Area (i.e., time integral) of phasic driver wrw. It equals 

SCR multiplied by size of response window 

eda_cdaiscr 

Phasic Max (CDA) Maximum value of phasic activity wrw eda_cdamax 

Tonic (CDA) Mean tonic activity wrw (of decomposed tonic component) eda_cdatonic 

nSCR (TTP) Number of significant SCRs within response window 

(wrw) according to TTP 

eda_ttpnscr 

AmpSum (TTP) Sum of SCR-amplitudes of significant SCRs wrw eda_ttpampsum 

Mean Mean SC value within response window eda_sc 

Due to fact that there is more than one feature value within response windows (task 

duration for this thesis), “average” and “max” values have been extracted for the 

features “AmpSum (CDA)”, “SCR (CDA)”, “ISCR (CDA)”, “Phasic Max (CDA)”, 

“Tonic (CDA)”, “AmpSum (TTP)” and “Mean” and indicated with “a” and “m” letters 

at the end of the related abbreviations (e.g., eda_scra and eda_scrm). Therefore, there 

are totally 16 EDA features extracted. 

3.5.1.3 Eye data 

Data set which is imported from Pupil Core Software, includes the pupil diameter and 

blink data. Firstly, down sampling to 60 Hz was carried out for pupil diameter data; 

A=load('pd.txt'); 

A0=downsample(A,2,0); 

Then, according to reviewed literature (stated in chapter 2.3.4.3), the pupil diameter 

and blink rate features were extracted in Matlab R2014a (code is presented in 

Appendix K) as stated in Table 3.16. 

Table 3.16 : Definition and description of pupil diameter and blink rate features. 

Feature Equation / Description Abbreviation 

Mean Mean of pupil diameter pd_mean 

Standard deviation Standard deviation of pupil diameter pd_std 

PerLPD Percentage of large pupil dilation pd_lpd 

Blink rate Blink rate as frequency br_freq 

AECD Average eye closure duration br_aecd 

PERCLOS Percentage of eye closure br_perclos 
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3.5.1.4 Normalization of extracted features 

Min-max normalization was applied in order to eliminate individual differences 

between the subjects and to observe the physiological change during the tasks. 

Following equation was performed for normalization; 

(3.8) 

 

where ѱ’j,min and ѱ’j,max are the minimum and maximum values of related extracted 

feature within the measured data of the subject. Normalized features have been 

indicated with “n” letter at the beginning of the related abbreviations (e.g., n_hrv_hr). 

3.5.2 Dimension reduction and/or feature selection 

In total, 73 physiological features were extracted in this study. Divergence analysis 

(detailed in chapter 2.3.5) was performed for feature selection in Matlab R2014a: 

for i=1:1:73 
    feai=features(:,i); 
    safei=feai(1:135); 
    riskyi=feai(136:283); 
    Bi=(mean (feai)'-(mean (safei)'))^2+(mean (feai)'-(mean 

(riskyi)'))^2; 
    Wi=var (safei)'+var (riskyi)'; 
    D(i)=Bi/Wi 
end 

Additionally, to correlate the divergence values, t-test was performed for extracted 

features in SPSS 24. The features have a significant value is less than 0.01 were 

selected for classification.  

3.5.3 Classification 

In this study, standard feed-forward ANN code (stated in Appendix L) has been used 

in Matlab R2014a. While physiological features form the input layer, two task load 

levels form the output layer. In ANN structure, 2 hidden layers have been used, a tansig 

transfer function have been used for hidden layers. Additionally, trainlm training 

function has been used as training method. Due to small number of samples, k-fold 

cross-validation method has been used to examine the performance of neural network 

in prediction model. Data has been divided into 6 partitions. Each partition has been 

trained and its performance has been tested with validation data set. Best partition has 

been selected according to average mean square error (MSE) values. Partitions of the 

ψ'
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=
ψ
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' - ψ
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′
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data sets are stated in Figure 3.20 and Figure 3.21 for navigation tasks and cargo 

operation tasks, respectively. The number of testing and validation data corresponds 

to 2 subjects for each and the number of training data corresponds to 7 subjects in 

partitions of data set for navigation tasks (Figure 3.20). The number of testing and 

validation data corresponds to 1 subject for each and the number of training data 

corresponds to 3 subjects in partitions of data set for cargo operation tasks (Figure 

3.21).  

 

Figure 3.20 :  Partitions of data set for navigation tasks. 

 

Figure 3.21 : Partitions of data set for cargo operation tasks. 

After the selection of best partition, MSE values of training and testing data sets 

corresponding to the number of neurons have been noted to determine best 

classification structure of ANN. 

Similarly, other classification techniques (detailed in chapter 2.3.5) have been 

performed by using “Classification Learner” tool box of Matlab R2020a. Due to small 

number of samples, k-fold cross validation (6 folds) have been used for each run. 

Classification accuracies and AUC values of ROC curves have been noted.   

Classification accuracies have been noted separately as the classification with feature 

selection and without feature selection for both of navigation and cargo operation 

tasks. These classification accuracies have been evaluated as within task classification.  

The samples of cargo operation tasks have been also classified with the ANN structure 



104 

formed for navigation tasks. This classification has been evaluated as cross task 

classification.   
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4.  RESULTS 

4.1 Analysis of Subjective Workload Assessment Results 

4.1.1 NASA-TLX scores of the subjects performing navigation scenario 

All subjective assessments of the subjects are presented in Appendix D. According to 

the Table D.1, subject ID 1,2,3,4,5,6,7,9,10,12,14 and 16 performed navigation 

scenario in experimental study. The NASA-TLX scores of each step evaluated by the 

subjects have been statistically analysed and summarized in Table 4.1. ANOVA results 

show that there are significant differences in the NASA-TLX scores of 5 different 

dimensions and in total, among 4 steps which have different task load levels, i.e., MD 

(p < 0.01), P (p < 0.05), TD (p < 0.01), E (p < 0.01), F (p < 0.01) and total (p < 0.01). 

Figure 4.1 shows the boxplots of the distribution of total scores among 4 steps.  

Table 4.1 : ANOVA of NASA-TLX scores among 4 navigation steps. 

 Step 1 (M ± SD) Step 2 (M ± SD)  Step 3 (M ± SD) Step 4 (M ± SD) p 

Mental demands 3.33 ± 2.15 10.22 ± 4.04 14.28 ± 5.71 20.03 ± 6.34 <0.001** 

Performance 5.61 ± 5.16 5.17 ± 2.94 6.89 ± 4.21 10.00 ± 5.04 0.045* 

Temporal demands 0.83 ± 1.19 6.36 ± 7.11 9.72 ± 7.21 14.53 ± 10.53 <0.001** 

Efforts 3.33 ± 2.56 6.97 ± 4.89 9.39 ± 4.89 14.72 ± 5.68 <0.001** 

Frustration 1.50 ± 1.27 6.31 ± 5.89 7.08 ± 5.23 13.75 ± 10.41 0.001** 

NASA-TLX score 14.61 ± 8.97 35.03 ± 16.16  47.36 ± 14.24 73.03 ± 10.20 <0.001** 

*. p ≤ 0.05, **. p ≤ 0.01. 

 

Figure 4.1 : Boxplot of NASA-TLX total scores among 4 navigation steps. 
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All statistical analysis of NASA-TLX assessments for navigation scenario are 

presented in Figure E.1 and Figure E.2 of Appendix E.  

4.1.2 NASA-TLX scores of the subjects performing cargo operation scenario 

According to the Table D.1, subject ID 8,11,13,15 and 17 performed cargo operation 

scenario in experimental study. The NASA-TLX scores of each step evaluated by the 

subjects have been statistically analysed and summarized in Table 4.2. ANOVA results 

show that there are significant differences in the NASA-TLX scores of mental demand 

(p < 0.01), temporal demand (p < 0.05), effort (p < 0.01) and in total (p < 0.01) among 

3 steps which have different task load levels. Figure 4.2 shows the boxplots of the 

distribution of total scores among 3 steps.  

Table 4.2 : ANOVA of NASA-TLX scores among 3 cargo operation steps. 

 Step 1 (M ± SD) Step 2 (M ± SD)  Step 3 (M ± SD) p 

Mental demands 5.60 ± 1.74 11.93 ± 4.23 18.00 ± 3.70 <0.001** 

Performance 4.60 ± 2.97 5.13 ± 2.78 4.27 ± 0.92 0.851 

Temporal demands 2.93 ± 1.21 9.93 ± 4.76 16.33 ± 10.43 0.025* 

Efforts 5.27 ± 2.81 11.40 ± 4.40 19.27 ± 6.49 0.002** 

Frustration 4.40 ± 4.78 8.53 ± 6.69 16.93 ± 11.97 0.094 

NASA-TLX score 22.80 ± 7.45 46.93 ± 10.13  74.80 ± 9.70 <0.001** 

*. p ≤ 0.05, **. p ≤ 0.01.    

 

Figure 4.2 : Boxplot of NASA-TLX total scores among 3 cargo operation steps. 

All statistical analysis of NASA-TLX assessments for cargo operation scenario are 

presented in Figure E.3 and Figure E.4 of Appendix E. 
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4.2 Analysis of Performance Measurement Results 

4.2.1 Navigation tasks 

The performances of the subjects were evaluated according to the performance 

parameters stated in Table 3.2 (in chapter 3) and calculated by the equation 3.4 (stated 

in chapter 3). Subjects performed the tasks which are detailed in Table 3.3. The 

performance-task load graphics of the all subjects are presented in Figure 4.3-4.14. 

Additionally, the weights of the performance parameters and the scores corresponding 

to the weights for each task and step are detailed for each subject in Appendix F. 

 

Figure 4.3 : The performance-task load graphic of subject ID 01. 

 

Figure 4.4 : The performance-task load graphic of subject ID 02. 

 

Figure 4.5 : The performance-task load graphic of subject ID 03. 
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Figure 4.6 : The performance-task load graphic of subject ID 04. 

 

Figure 4.7 : The performance-task load graphic of subject ID 05. 

 

Figure 4.8 : The performance-task load graphic of subject ID 06. 

 

Figure 4.9 : The performance-task load graphic of subject ID 07. 
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Figure 4.10 : The performance-task load graphic of subject ID 09. 

 

Figure 4.11 : The performance-task load graphic of subject ID 10. 

 

Figure 4.12 : The performance-task load graphic of subject ID 12. 

 

Figure 4.13 : The performance-task load graphic of subject ID 14. 
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Figure 4.14 : The performance-task load graphic of subject ID 16. 

Statistically, performance data show that there is a negative significant correlation 

between performance score and task load (p < 0.01). Correlation analysis are presented 

in Table 4.3.  

Table 4.3 : Correlation between performance score and task load level for navigation 

tasks. 

  Performance score Task load level 

Performance score Spearman’s rho Correlation 1.000  

 Sig. (1-tailed)   

Task load level Spearman’s rho Correlation -0.485** 1.000 

 Sig. (1-tailed) <0.001  

**. Correlation is significant at the 0.01 level (1-tailed). 

4.2.2 Cargo operation tasks 

The performances of the subjects were evaluated according to the performance 

parameters stated in Table 3.4 (in chapter 3) and calculated by the equation 3.4 (stated 

in chapter 3). Subjects performed the tasks which are detailed in Table 3.5. The 

performance-task load graphics of the all subjects are presented in Figure 4.15-4.19. 

Additionally, the weights of the performance parameters and the scores corresponding 

to the weights for each task and step are detailed for each subject in Appendix F. 

 

Figure 4.15 : The performance-task load graphic of subject ID 8. 
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Figure 4.16 : The performance-task load graphic of subject ID 11. 

 

Figure 4.17 : The performance-task load graphic of subject ID 13. 

 

Figure 4.18 : The performance-task load graphic of subject ID 15. 

 

Figure 4.19 : The performance-task load graphic of subject ID 17. 

Statistically, performance data show that there is a negative significant correlation 

between performance score and task load (p < 0.01). Correlation analysis are presented 

in Table 4.4. 
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Table 4.4 : Correlation between performance score and task load level for cargo 

operation tasks. 

  Performance score Task load level 

Performance score Spearman’s rho Correlation 1.000  

 Sig. (1-tailed)   

Task load level Spearman’s rho Correlation -0.484** 1.000 

 Sig. (1-tailed) <0.001  

**. Correlation is significant at the 0.01 level (1-tailed). 

4.2.3 Validation results of performance measurement method 

ROC curve analysis has been performed for validation of developed officer 

performance model. Recorded performances of the participants were evaluated as 

“safe” and “risky” for each task by one ocean going Master expert for navigation task 

and by one ocean going Chief Officer for cargo operation tasks. According to the 

analysis, the value of AUC is 0.983 (p < 0.0001) (Sensitivity; 92.7, Specificity; 93) 

and the cut-off value is 52.5 for the navigation tasks. Similarly, the value of AUC is 

0.998 (p < 0.0001) (Sensitivity; 98.8, Specificity; 100) and the cut-off value is 55 for 

the cargo operation tasks. 

ROC curves are stated for navigation and cargo operation tasks in Figure 4.20. Table 

4.5 and Table 4.6 present the area under the curve statistics for navigation and cargo 

operation tasks respectively. Coordinates of the curves are detailed in Appendix G for 

both of tasks. 

 

Figure 4.20 : ROC curve graphic of developed officer performance model for 

navigation tasks (a) and cargo operation tasks (b). 
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Table 4.5 : Area under the curve statistics for navigation tasks. 

Area Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

0.983 0.006 <0.001 0.971 0.994 

a. Under the nonparametric assumption 

b. Null hypthesis: true area=0.5 

Table 4.6 : Area under the curve statistics for cargo operation tasks. 

Area Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

0.998 0.003 <0.001 0.991 1.000 

a. Under the nonparametric assumption 

b. Null hypthesis: true area=0.5 

4.2.4 Determination of the red line for task load level 

Performance results show that the “risky” evaluations of the experts centre upon the 

specific task load level. For navigation tasks, the number and percentage of “risky” 

evaluations become distinct where the task load level is greater than or equal to 7 

(Figure 4.21). The similar distinction appears for cargo operation tasks (Figure 4.22).  

 

Figure 4.21 : The distinction of task load level for navigation tasks. 

 

Figure 4.22 : The distinction of task load level for cargo operation tasks. 



114 

Statistically, the performance scores have been found significantly different (t = 6.663; 

p < 0.01) in low and high task loads for navigation tasks (Table 4.7). Similarly, the 

performance scores are significantly different (t = 3.95; p < 0.01) in low and high task 

loads for cargo operation tasks (Table 4.8). 

Table 4.7 : t-Test of performance data between low and high task load for navigation 

tasks. 

 Low task load (M ± SD) High task load (M ± SD)  p 

Performance score 85.19 ± 18.692 67.43 ± 25.235 <0.001** 

**. p ≤ 0.01.    

Table 4.8 :  t-Test of performance data between low and high task load for cargo 

operation tasks. 

 Low task load (M ± SD) High task load (M ± SD)  p 

Performance score 86.88 ± 12.785 71.50 ± 19.784 <0.001** 

**. p ≤ 0.01.    

4.3 Analysis of Physiological Measurement Results 

In total, the measurement process has been conducted with 12 subjects in Bridge 

simulator and with 5 subjects in tanker simulator. Physiological measurement couldn’t 

be done for only participant ID 12. The whole data collected during the study is stated 

in Appendix H. Orange colour on the column of “Participant ID” indicates the 

measurement conducted in tanker simulator while white colour does in bridge 

simulator. Yellow colour on the column of “Task No” indicates the beginning of 

utilizable physiological data of the subject. The stages above yellow row has been 

assumed as adaptation period of subject to simulator environment. If there is missing 

or unreliable data (shown with pink highlight) at any task of steps due to the difficulty 

in data collection or feature extraction, the data at the relevant task have not included 

in the analysis and the relevant data set is shown with grey font colour in Figure H.1. 

Thus, 203x73 data set as rows x column (physiological features) has been constituted 

for navigation tasks and 80x73 data set has been constituted for cargo operation tasks 

in total.  

73 physiological features (stated in Figure H.1) have been extracted according to the 

methods which are detailed in chapter 3.5.1 of the thesis. As a part of transformation 

process, min-max normalization that is detailed in chapter 3.5.1.4, was performed for 

physiological features. Differently, the features which are pLF, pHF, nLF, nHF, nSCR 
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(CDA), Phasic Max (CDA), nSCR (TTP), standard deviation of pupil diameter and 

PerLPD have been analysed with their own values on the grounds that the related 

features do not differentiate between individuals or already normalized. 

4.3.1 Analysis of physiological responses during navigation tasks 

Physiological responses of the subjects have been often differentiated between low and 

high task loads. Figure 4.23 and 4.24 are examples of difference between low task load 

and high task load. In HRV section of the figures, it can be seen that low frequency 

increases while high frequency decreases in high task load. In EDA section of the 

figures, EDA responses are higher in high task load. Moreover, pupil diameter 

increases and blink rate and its features decrease in high task load. On the other hand, 

Figure 4.25 presents an example of difference between low performance and high 

performance in high task load. Although the task load level is high for both of 

examples compared in this figure, low frequency increases while high frequency 

decreases, EDA responses increase, pupil diameter increases and blink rate and its 

features decrease in the period where the subject has low performance scores and the 

action of the subject is evaluated as “Risky”. 

To analyse the relation among task load, performance and physiological responses 

statistically, correlation analysis has been performed in SPSS 24. Significant 

correlations are stated in Table 4.9. It should be noted that there no whole correlations 

in this table. Significant and meaningful correlations are stated. Firstly, it can be seen 

in HRV and HR features that there is a negative significant correlation between heart 

rate (hrv_hr) and task load, positive significant correlation between heart rate and 

performance and positive significant correlation between heart rate variability (HRV 

features) and task load. Although, this result does not support the literature (detailed 

in chapter 2.3.4.1), it is stated that HRV is more sensitive than HR and whereas HRV 

decreases and HR increases in physical load, HRV decreases and HR has no change 

in mental load (Brookings et al., 1996; De Waard, 1996). Besides, it should be noted 

that the increase of HRV was stated in high complexity tasks for longer durations 

(Fairclough et al., 2005; Gao et al., 2013). The other time-based HR features 

(hrv_sdnn, hrv_rmssd, hrv_pnn50 and hrv_tinn) were expected to be negative 

correlated with heart rate according to literature that they happened. 
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Figure 4.23 : The comparison of data between low and high task load for subject ID 03. 
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Figure 4.24 : The comparison of data between low and high task load for subject ID 10. 
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Figure 4.25 : The comparison of data between low and high performance for subject ID 06. 
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Table 4.9 : Correlations between task load and other measures for navigation tasks. 
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performance_ 

score 

Spearman’s rho  1                   

Sig. (2-tailed)                    
task_load Spearman’s rho   1                  

 Sig. (2-tailed)                    

n_hrv_hr Spearman’s rho  .196** -.163* 1                 
 Sig. (2-tailed) 0.005 0.020                  

n_hrv_sdnn Spearman’s rho  -.203** .215**  1                

 Sig. (2-tailed) 0.004 0.002                  
n_hrv_rmssd Spearman’s rho  -.227** .208**   1               

 Sig. (2-tailed) 0.001 0.003                  

n_hrv_pnn50 Spearman’s rho  -.215** .233**    1              
 Sig. (2-tailed) 0.002 0.001                  

n_hrv_tinn Spearman’s rho  -.211** .184**     1             

 Sig. (2-tailed) 0.003 0.008                  

n_hrv_fwalf Spearman’s rho  -.165* .233** -.207** .708** .667** .629** .275** 1            

 Sig. (2-tailed) 0.019 0.001 0.003 0.000 0.000 0.000 0.000             

n_hrv_fwahf Spearman’s rho  -.250** .197** -.401** .633** .770** .681** .381** .552** 1           
 Sig. (2-tailed) 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000            

n_hrv_fwatotal Spearman’s rho  -.201** .229** -.278** .758** .734** .684** .469** .967** .694** 1          

 Sig. (2-tailed) 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000           
hrv_fwplf Spearman’s rho  -0.055 0.078    .148* .213** .285**  .164* 1         

 Sig. (2-tailed) 0.436 0.270    0.035 0.002 0.000  0.020          

hrv_fwphf Spearman’s rho  0.078 -0.085    -.142* -.243** -.270**  -.171* -.973** 1        
 Sig. (2-tailed) 0.269 0.230    0.043 0.000 0.000  0.015 0.000         

n_hrv_fwlfhf Spearman’s rho  0.005 0.102  .251**   .254** .543**  .423** .284** -.243** 1       
 Sig. (2-tailed) 0.946 0.149  0.000   0.000 0.000  0.000 0.000 0.000        

n_hrv_flsalf Spearman’s rho   .145*  .232** .214** .169*        1      

 Sig. (2-tailed)  0.039  0.001 0.002 0.016              
n_hrv_nlsd1 Spearman’s rho  -.229** .206** -.462** .683** 1.000** .896** .421** .663** .770** .730**    .215** 1     

 Sig. (2-tailed) 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000    0.002      

n_hrv_nlsd2 Spearman’s rho  -.204** .220** -.164* .996** .644** .618** .624** .697** .610** .743**   .263** .231** -.161* 1    
 Sig. (2-tailed) 0.003 0.002 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000   0.000 0.001 0.022     

n_hrv_tflsalf Spearman’s rho  -.162* .247** -.211** .729** .644** .597** .494**        .639** .721** 1   

 Sig. (2-tailed) 0.021 0.000 0.002 0.000 0.000 0.000 0.000        0.000 0.000    
n_hrv_tflsahf Spearman’s rho  -.237** .215** -.379** .673** .762** .666** .390**        .760** .646** .644** 1  

 Sig. (2-tailed) 0.001 0.002 0.000 0.000 0.000 0.000 0.000        0.000 0.000 0.000   

n_hrv_tflsatotal Spearman’s rho  -.190** .241** -.292** .761** .711** .639** .485**        .707** .748** .967** .782** 1 
 Sig. (2-tailed) 0.007 0.001 0.000 0.000 0.000 0.000 0.000        0.000 0.000 0.000 0.000  
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Table 4.9 (continued) : Correlations between task load and other measures for navigation tasks. 

  

p
er

fo
rm

an
ce

_
 

sc
o

re
 

ta
sk

_
lo

ad
 

n
_
h

rv
_
h

r 

n
_
h

rv
_

sd
n

n
 

n
_
h

rv
_

rm
ss

d
 

n
_
h

rv
_
p

n
n
5

0
 

n
_
h

rv
_
ti

n
n
 

n
_
h

rv
_

fw
al

f 

n
_
h

rv
_

fw
ah

f 

n
_
h

rv
_

fw
at

o
ta

l 

h
rv

_
fw

p
lf

 

h
rv

_
fw

p
h

f 

n
_
h

rv
_

fw
lf

h
f 

n
_
h

rv
_

fl
sa

lf
 

n
_
h

rv
_
n

ls
d
1
 

n
_
h

rv
_
n

ls
d
2
 

n
_
h

rv
_
tf

ls
al

f 

n
_
h

rv
_
tf

ls
ah

f 

n
_
h

rv
_

 t
fl

sa
to

ta
l 

n_hrv_tfwalf Spearman’s rho  -.158* .253** -.186** .740** .677** .650** .474**          .672** .73**    

 Sig. (2-tailed) 0.024 0.000 0.008 0.000 0.000 0.000 0.000        0.000 0.000    
n_hrv_tfwahf Spearman’s rho  -.229** .224** -.348** .649** .756** .660** .396**        .755** .625**    

 Sig. (2-tailed) 0.001 0.001 0.000 0.000 0.000 0.000 0.000        0.000 0.000    

n_hrv_tfwatotal Spearman’s rho  -.180* .252** -.246** .765** .736** .687** .474**        .731** .749**    
 Sig. (2-tailed) 0.010 0.000 0.000 0.000 0.000 0.000 0.000        0.000 0.000    

eda_cdanscr Spearman’s rho      .189** .248**     .509** -.506**   .192**     

 Sig. (2-tailed)     0.007 0.000     0.000 0.000   0.006     
n_eda_ 

cdaampsuma 

Spearman’s rho       .157*      -.138* .168*       

Sig. (2-tailed)      0.025      0.050 0.017       

n_eda_ 
cdaampsumm 

Spearman’s rho             -.177*        
Sig. (2-tailed)            0.011        

n_eda_cdascra Spearman’s rho      .145* .197**    .139*   .161*  .145*     

 Sig. (2-tailed)     0.039 0.005    0.048   0.021  0.039     

n_eda_cdascrm Spearman’s rho    -.150*    .182**      .181**       

 Sig. (2-tailed)   0.033    0.010      0.010       

n_eda_cdaiscra Spearman’s rho      .145* .197**    .139*   .161*  .145*     
 Sig. (2-tailed)     0.039 0.005    0.048   0.021  0.039     

n_eda_cdaiscrm Spearman’s rho    -.150*    .182**      .181**       

 Sig. (2-tailed)   0.033    0.010      0.010       
n_eda_ 

cdamaxa 

Spearman’s rho              .153* .162*      

Sig. (2-tailed)             0.030 0.021      

eda_ cdamaxm 
Spearman’s rho    -.141*        .209** -.261**        
Sig. (2-tailed)   0.045        0.003 0.000        

n_eda_ 
cdatonica 

Spearman’s rho   .157*    .164*   .151*           
Sig. (2-tailed)  0.025    0.019   0.031           

n_eda_ 

cdatonicm 

Spearman’s rho   .154*  .144*  .171* .172*         .146*    

Sig. (2-tailed)  0.028  0.040  0.015 0.014         0.037    
n_eda_sca Spearman’s rho   .152*  .153*  .167* .143*  .149*       .156*    

 Sig. (2-tailed)  0.030  0.029  0.017 0.042  0.033       0.026    

n_eda_scm Spearman’s rho   .154*  .161*  .209** .154*       .167*  .161*    
 Sig. (2-tailed)  0.028  0.022  0.003 0.028       0.017  0.022    

n_pd_mean Spearman’s rho  -.165*   .208** .169* .140* .150*  .175* .143*     .172* .213**  .175*  

 Sig. (2-tailed) 0.019   0.003 0.016 0.046 0.033  0.012 0.042     0.014 0.002  0.013  
pd_std Spearman’s rho     .204**            .189**    

 Sig. (2-tailed)    0.004            0.007    

pd_lpd Spearman’s rho   .158*   .166* .179*   .155*      .172*     
 Sig. (2-tailed)  0.025   0.018 0.011   0.028      0.014     
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Table 4.9 (continued) : Correlations between task load and other measures for navigation tasks. 
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n_hrv_tfwalf Spearman’s rho  1                   

 Sig. (2-tailed)                    
n_hrv_tfwahf Spearman’s rho  .581** 1                  

 Sig. (2-tailed) 0.000                   

n_hrv_tfwatotal Spearman’s rho  .969** .709** 1                 
 Sig. (2-tailed) 0.000 0.000                  

eda_cdanscr Spearman’s rho     1                

 Sig. (2-tailed)                    
n_eda_ 

cdaampsuma 

Spearman’s rho      1               

Sig. (2-tailed)                    

n_eda_ 
cdaampsumm 

Spearman’s rho       1              
Sig. (2-tailed)                    

n_eda_cdascra Spearman’s rho        1             

 Sig. (2-tailed)                    

n_eda_cdascrm Spearman’s rho         1            

 Sig. (2-tailed)                    

n_eda_cdaiscra Spearman’s rho          1           
 Sig. (2-tailed)                    

n_eda_cdaiscrm Spearman’s rho           1          

 Sig. (2-tailed)                    
n_eda_ 

cdamaxa 

Spearman’s rho            1         

Sig. (2-tailed)                    

eda_ cdamaxm 
Spearman’s rho             1        
Sig. (2-tailed)                    

n_eda_ 
cdatonica 

Spearman’s rho              1       
Sig. (2-tailed)                    

n_eda_ 

cdatonicm 

Spearman’s rho               1      

Sig. (2-tailed)                    
n_eda_sca Spearman’s rho                1     

 Sig. (2-tailed)                    

n_eda_scm Spearman’s rho                 1    
 Sig. (2-tailed)                    

n_pd_mean Spearman’s rho   .168* .149*          .180* .170* .157* .152* 1   

 Sig. (2-tailed)  0.017 0.034          0.010 0.015 0.026 0.031    
pd_std Spearman’s rho     -.298**              1  

 Sig. (2-tailed)    0.000                

pd_lpd Spearman’s rho     .311**         .261** .268** .237** .255**   1 
 Sig. (2-tailed)    0.000         0.000 0.000 0.001 0.000    
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Table 4.9 (continued) : Correlations between task load and other measures for navigation tasks. 
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n_br_freq Spearman’s rho     .192** .176* .167*  .230**  .205**   .212**  .173* .182** .204** .155* .196** 

 Sig. (2-tailed)    0.006 0.012 0.018  0.001  0.003   0.002  0.013 0.009 0.004 0.027 0.005 
n_br_aecd Spearman’s rho  .167* -.218**         -.191** .194** .162*       

 Sig. (2-tailed) 0.017 0.002         0.006 0.005 0.021       

n_br_perclos Spearman’s rho   -.160*      .175*  .139*   .225**       
 Sig. (2-tailed)  0.022      0.013  0.048   0.001       

Table 4.9 (continued) : Correlations between task load and other measures for navigation tasks. 
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n_br_freq Spearman’s rho  .215**  .189**  .183** .181** .299** .160* .299** .160* .231** .222**     -.147*   

 Sig. (2-tailed) 0.002  0.007  0.009 0.010 0.000 0.023 0.000 0.023 0.001 0.001     0.036   
n_br_aecd Spearman’s rho   -.143*   .203**  .217** .168* .217** .168* .246** .140*     -.203** -.145* -.190** 

 Sig. (2-tailed)  0.042   0.004  0.002 0.016 0.002 0.016 0.000 0.046     0.004 0.039 0.007 

n_br_perclos Spearman’s rho      .223** .178* .313** .190** .313** .190** .258** .254**     -.259**  -.167* 
 Sig. (2-tailed)     0.001 0.011 0.000 0.007 0.000 0.007 0.000 0.000     0.000  0.017 
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Despite of the time-based HRV features, the frequency-based and time-frequency HRV 

features have been found to be more meaningful according to literature. Although absolute 

spectral powers of LF and HF (hrv_fwalf, hrv_fwahf, hrv_fwatotal, n_hrv_flsalf, 

hrv_tflsalf, hrv_tflsahf, hrv_tflsatotal, hrv_tfwalf, hrv_tfwahf, hrv_tfwatotal) increase 

together, the percentage of LF (hrv_fwplf) increases and the percentage of HF (hrv_fwphf) 

decreases when task load increases. The increase of LF/HF (hrv_fwlfhf) together with the 

increase of LF and the decrease of HF is significantly correlated with the increase of EDA 

responses (eda_cdaampsuma, eda_cdascra, eda_cdascrm, eda_cdaiscra, n_eda_cdaiscrm, 

eda_cdamaxa) that this situation occurs in high task load according to literature. 

From non-linear HRV features, nlsd2 (Poincaré plot standard deviation along the line of 

identity) has been found highly positive correlated with task load and negative correlated 

with performance score. It is also significantly correlated with LF/HF and EDA responses 

that nlsd2 increases together with other MWL measures when task load increases. This 

result supports the literature (Martin et al., 2016). 

Some EDA features (eda_cdatonica, eda_cdatonicm, eda_sca, eda_scm) are significantly 

correlated with task load that EDA response increases when task load increases. 

Additionally, some EDA features (eda_cdaampsuma, eda_cdascra, eda_cdascrm, 

eda_cdaiscra, eda_cdaiscrm, eda_cdamaxa) which are the components of the phasic 

activity, have been found positive significantly correlated with LF/HF (hrv_fwlfhf) that 

increases by the increase of MWL. These results also support the literature (See chapter 

2.3.4.2).    

Some eye responses have been significant in this study. Large pupil dilation (pd_lpd) is 

positive correlated with task load. Additionally, the mean of pupil diameter (pd_mean) 

and large pupil dilation (pd_lpd) have been found positive significantly correlated with 

some time-based HRV features (hrv_sdnn, hrv_rmssd, hrv_pnn50, hrv_tinn), non-linear 

HRV features (hrv_nlsd1, hrv_nlsd2) and EDA features (eda_cdatonica, eda_cdatonicm, 

eda_sca, eda_scm). These results support the literature on the grounds that pupil diameter 

increases when MWL increases (See chapter 2.3.4.3). The features of blink rate (br_aecd, 

br_perclos) are negative significantly correlated with task load and LF (hrv_fwplf). 

br_aecd is also positive significantly correlated with HF. This result support the literature 

that eye blink interval is longest and blink duration is shortest in high MWL (See chapter 

2.3.4.4). However, this correlation is not meaningful on the positive significant correlation 

between blink rate features and LF/HF (hrv_fwlfhf). Because, this correlation is expected 
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to be negative on the grounds that LF/HF increases when MWL increase. On the other 

hand, blink rate features have been found positive significantly correlated with EDA 

features (eda_cdaampsuma, eda_cdaampsumm, eda_cdascra, eda_cdascra, eda_cdascrm, 

eda_cdaiscra, eda_cdaiscrm, eda_cdamaxa, eda_cdamaxm) that blink frequency increases 

under stressful conditions according to literature (Alberdi et al., 2016; Sharma and 

Gedeon, 2012). It should be noted that EDA response is more observable in stressful 

conditions. 

Statistically, 40 physiological features in total have been found significantly different in 

low and high task loads for navigation tasks (Table 4.10). Whole SPSS t-Test output is 

stated in Appendix I.  

Table 4.10 : t-Test of physiological data between low and high task load for navigation 

tasks. 

 Low task load (M ± SD) High task load (M ± SD)  p 

n_hrv_hr 0.551 ± 0.294 0.432 ± 0.269 0.003** 

n_hrv_sdnn 0.417 ± 0.271 0.545 ± 0.255 0.001** 

n_hrv_rmssd 0.390 ± 0.268 0.479 ± 0.247 0.015* 

n_hrv_pnn50 0.305 ± 0.289 0.414 ± 0.287 0.008** 

n_hrv_tinn 0.419 ± 0.288 0.541 ± 0.276 0.003** 

n_hrv_fwalf 0.351 ± 0.268 0.486 ± 0.267 <0.001** 

n_hrv_fwahf 0.344 ± 0.260 0.446 ± 0.264 0.007** 

n_hrv_fwatotal 0.360 ± 0.262 0.490 ± 0.264 0.001** 

hrv_fwplf 61.28 ± 14.68 65.14 ± 11.20 0.042* 

hrv_fwphf 34.31 ± 16.32 29.82 ± 12.74 0.035* 

hrv_fwnlf 0.644 ± 0.163 0.688 ± 0.128 0.038* 

hrv_fwnhf 0.356 ± 0.163 0.312 ± 0.128 0.038* 

n_hrv_fwpeaklf 0.551 ± 0.317 0.452 ± 0.260 0.018* 

n_hrv_flsalf 0.444 ± 0.264 0.547 ± 0.278 0.008** 

hrv_flsphf 34.65 ± 16.25 30.43 ± 13.61 0.046* 

hrv_flsnlf 0.651 ± 0.162 0.692 ± 0.136 0.048* 

hrv_flsnhf 0.349 ± 0.162 0.308 ± 0.136 0.048* 

n_hrv_nlsd1 0.390 ± 0.268 0.477 ± 0.246 0.017* 

n_hrv_nlsd2 0.413 ± 0.268 0.545 ± 0.256 <0.001** 

n_hrv_tflsalf 0.337 ± 0.261 0.474 ± 0.273 <0.001** 

n_hrv_tflsahf 0.365 ± 0.295 0.475 ± 0.268 0.006** 

n_hrv_tflsatotal 0.357 ± 0.261  0.492 ± 0.273 <0.001** 

hrv_tflsplf 59.73 ± 14.50 63.67 ± 11.39 0.037* 

hrv_tflsphf 37.03 ± 15.65 32.61 ± 12.38 0.031* 

hrv_tflsnlf 0.619 ± 0.157 0.663 ± 0.124 0.034* 

hrv_tflsnhf 0.381 ± 0.157 0.337 ± 0.124 0.034* 

n_hrv_tflslfhf 0.418 ± 0.260 0.506 ± 0.266 0.020* 

n_hrv_tfwalf 0.362 ± 0.275 0.522 ± 0.284 <0.001** 

n_hrv_tfwahf 0.361 ± 0.275 0.488 ± 0.270 0.001** 

n_hrv_tfwatotal 0.381 ± 0.270 0.538 ± 0.287 <0.001** 

*. p ≤ 0.05; **. p ≤ 0.01. 
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Table 4.10 (continued) : t-Test of physiological data between low and high task load for 

navigation tasks. 

 Low task load (M ± SD) High task load (M ± SD)  p 

hrv_tfwplf 63.75 ± 15.81 68.26 ± 12.85 0.031* 

hrv_tfwphf 35.90 ± 15.99 31.33 ± 13.06 0.031* 

hrv_tfwnlf 0.640 ± 0.160 0.686 ± 0.130 0.031* 

hrv_tfwnhf 0.360 ± 0.160 0.314 ± 0.130 0.031* 

n_eda_cdatonica 0.484 ± 0.320 0.572 ± 0.304 0.046* 

n_eda_cdatonicm 0.481 ± 0.307 0.570 ± 0.283 0.035* 

n_eda_scm 0.474 ± 0.308 0.570 ± 0.283 0.022* 

pd_lpd 0.002 ± 0.053 0.031 ± 0.078 0.002** 

n_br_aecd 0.494 ± 0.332 0.338 ± 0.285 0.001** 

n_br_perclos 0.456 ± 0.275 0.380 ± 0.262 0.045* 

*. p ≤ 0.05; **. p ≤ 0.01. 

4.3.2 Analysis of physiological responses during cargo operation tasks 

Physiological responses of the subjects have been often differentiated between low and 

high task loads in cargo operation tasks same as in navigation tasks. Figure 4.26 is an 

example of difference between low task load and high task load. In HRV section of the 

figures, it can be seen that low frequency increases while high frequency decreases in high 

task load. In EDA section of the figures, EDA responses are higher in high task load. 

However, eye responses have not been meaningful unlike in navigation tasks. 

To analyse the relation among task load, performance and physiological responses 

statistically, correlation analysis has been performed in SPSS 24. Significant correlations 

are stated in Table 4.11. It should be noted that there no whole correlations in this table. 

Significant and meaningful correlations are stated. For time-based HRV features similar 

results with in navigation tasks have been observed. 

The frequency-based and time-frequency HRV features have also similar results as in 

navigation tasks. For example, the peak frequency of HF (hrv_fwpeakhf) is negative 

significantly correlated with task load and EDA features.  

From non-linear HRV features, nlsd1 (Poincaré plot SD perpendicular the line of identity) 

and nlsd2 have positive significant correlation with task load. These non-linear HRV 

features have also positive significant correlations with other HRV features and EDA 

features same as in navigation tasks. 
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Figure 4.26 : The comparison of data between low and high task load for subject ID 8. 



127 

Table 4.11 : Correlations between task load and other measures for cargo operation tasks. 
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performance_ 

score 

Spearman’s rho  1                   

Sig. (2-tailed)                    
task_load Spearman’s rho   1                  

 Sig. (2-tailed)                    

n_hrv_hr Spearman’s rho  .245* -.396** 1                 
 Sig. (2-tailed) 0.029 0.000                  

n_hrv_sdnn Spearman’s rho   .352**  1                

 Sig. (2-tailed)  0.001                  
n_hrv_rmssd Spearman’s rho   .350**   1               

 Sig. (2-tailed)  0.001                  

n_hrv_pnn50 Spearman’s rho  -.236* .400**    1              
 Sig. (2-tailed) 0.035 0.000                  

n_hrv_tinn Spearman’s rho   .343**     1             

 Sig. (2-tailed)  0.002                  

n_hrv_fwalf Spearman’s rho     .782** .456** .336** .510** 1            

 Sig. (2-tailed)    0.000 0.000 0.002 0.000             

n_hrv_fwahf Spearman’s rho   .317** -.457** .555** .778** .722** .274* .377** 1           
 Sig. (2-tailed)  0.004 0.000 0.000 0.000 0.000 0.014 0.001            

n_hrv_fwatotal Spearman’s rho   .249*  .870** .627** .502** .560** .911** .610** 1          

 Sig. (2-tailed)  0.026  0.000 0.000 0.000 0.000 0.000 0.000           
n_hrv_fwlfhf Spearman’s rho     .302**   .242* .645** -.265* .388** 1         

 Sig. (2-tailed)    0.007   0.031 0.000 0.018 0.000          

n_hrv_fwpeakhf Spearman’s rho   -.322**  -.399** -.273* -.274*  -.386** -.290** -.378**  1        
 Sig. (2-tailed)  0.004  0.000 0.014 0.014  0.000 0.009 0.001          

n_hrv_nlsd1 Spearman’s rho   .347** -.420** .636** 1.000** .935** .322** .455** .779** .626**  -.271* 1       
 Sig. (2-tailed)  0.002 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000  0.015        

n_hrv_nlsd2 Spearman’s rho   .334**  .983** .529** .422** .682** .807** .489** .859** .365** -.386** .526** 1      

 Sig. (2-tailed)  0.002  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000       
n_hrv_tflsalf Spearman’s rho   .224*  .842** .501** .389** .543**      .500** .864** 1     

 Sig. (2-tailed)  0.046  0.000 0.000 0.000 0.000      0.000 0.000      

n_hrv_tflsahf Spearman’s rho   .343** -.442** .686** .819** .762** .400**      .818** .609** .536** 1    
 Sig. (2-tailed)  0.002 0.000 0.000 0.000 0.000 0.000      0.000 0.000 0.000     

n_hrv_tflsatotal Spearman’s rho   .298** -.228* .902** .669** .549** .576**      .667** .884** .934** .738** 1   

 Sig. (2-tailed)  0.007 0.042 0.000 0.000 0.000 0.000      0.000 0.000 0.000 0.000    
n_hrv_tfwalf Spearman’s rho   .262*  .815** .529** .433** .551**      .527** .820**    1  

 Sig. (2-tailed)  0.019  0.000 0.000 0.000 0.000      0.000 0.000      

n_hrv_tfwahf Spearman’s rho   .378** -.454** .622** .827** .768** .326**      .828** .555**    .514** 1 
 Sig. (2-tailed)  0.001 0.000 0.000 0.000 0.000 0.003      0.000 0.000    0.000  
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Table 4.11 (continued) : Correlations between task load and other measures for cargo operation tasks. 
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n_hrv_tfwatotal Spearman’s rho   .351**  .894** .686** .577** .556**      .684** .868**    .944** .701** 

 Sig. (2-tailed)  0.001  0.000 0.000 0.000 0.000      0.000 0.000    0.000 0.000 
hrv_tfwplf Spearman’s rho                   .234*  

 Sig. (2-tailed)                  0.037  

hrv_tfwphf Spearman’s rho                   -.239*  
 Sig. (2-tailed)                  0.033  

eda_cdanscr Spearman’s rho  .220*                   

 Sig. (2-tailed) 0.050                   
n_eda_cdascra 

 

Spearman’s rho  -.297** .236* -.277*           .243*      

Sig. (2-tailed) 0.007 0.035 0.013           0.030      

n_eda_cdascrm 
 

Spearman’s rho   .264* -.260*                 
Sig. (2-tailed)  0.018 0.020                 

n_eda_cdaiscra Spearman’s rho  -.297** .236* -.277*           .243*      

 Sig. (2-tailed) 0.007 0.035 0.013           0.030      

n_eda_cdaiscrm Spearman’s rho   .264* -.260*                 

 Sig. (2-tailed)  0.018 0.020                 

n_eda_ 
cdamaxa 

Spearman’s rho            .261*         
Sig. (2-tailed)           0.019         

eda_ cdamaxm Spearman’s rho    -.288**        .252*         

 Sig. (2-tailed)   0.010        0.024         
n_eda_ 

cdatonica 

Spearman’s rho                     

Sig. (2-tailed)                    

n_eda_ 
cdatonicm 

Spearman’s rho                     
Sig. (2-tailed)                    

n_eda_ 
ttpampsuma 

Spearman’s rho    -.297**     .265*    -.228*  .252* .275*   .267*  
Sig. (2-tailed)   0.007     0.018    0.042  0.024 0.014   0.017  

n_eda_ 

ttpampsumm 

Spearman’s rho    -.263*                 

Sig. (2-tailed)   0.018                 
n_eda_sca Spearman’s rho                     

 Sig. (2-tailed)                    

n_eda_scm Spearman’s rho                     
 Sig. (2-tailed)                    

n_pd_mean Spearman’s rho   -.234*          .260*        

 Sig. (2-tailed)  0.037          0.020        
pd_std Spearman’s rho    -.338**   .253*   .264*       .232*   .265* 

 Sig. (2-tailed)   0.002   0.024   0.018       0.039   0.017 

pd_lpd Spearman’s rho  .221*           .222*        
 Sig. (2-tailed) 0.049           0.048        
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Table 4.11 (continued) : Correlations between task load and other measures for cargo operation tasks. 
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n_hrv_tfwatotal Spearman’s rho  1                   

 Sig. (2-tailed)                    
hrv_tfwplf Spearman’s rho   1                  

 Sig. (2-tailed)                    

hrv_tfwphf Spearman’s rho   -.999** 1                 
 Sig. (2-tailed)  0.000                  

eda_cdanscr Spearman’s rho   .375** -.378** 1                

 Sig. (2-tailed)  0.001 0.001                 
n_eda_cdascra 

 

Spearman’s rho      1               

Sig. (2-tailed)                    

n_eda_cdascrm 
 

Spearman’s rho       1              
Sig. (2-tailed)                    

n_eda_cdaiscra Spearman’s rho        1             

 Sig. (2-tailed)                    

n_eda_cdaiscrm Spearman’s rho         1            

 Sig. (2-tailed)                    

n_eda_ 
cdamaxa 

Spearman’s rho          1           
Sig. (2-tailed)                    

eda_ cdamaxm Spearman’s rho           1          

 Sig. (2-tailed)                    
n_eda_ 

cdatonica 

Spearman’s rho            1         

Sig. (2-tailed)                    

n_eda_ 
cdatonicm 

Spearman’s rho             1        
Sig. (2-tailed)                    

n_eda_ 
ttpampsuma 

Spearman’s rho  .226*            1       
Sig. (2-tailed) 0.044                   

n_eda_ 

ttpampsumm 

Spearman’s rho               1      

Sig. (2-tailed)                    
n_eda_sca Spearman’s rho                1     

 Sig. (2-tailed)                    

n_eda_scm Spearman’s rho  .223* .243* -.245*             1    
 Sig. (2-tailed) 0.047 0.030 0.028                 

n_pd_mean Spearman’s rho              .244*    1   

 Sig. (2-tailed)             0.029       
pd_std Spearman’s rho   -.281* .278*  .391**  .391**  .456** .488**   .363**     1  

 Sig. (2-tailed)  0.012 0.013  0.000  0.000  0.000 0.000   0.001       

pd_lpd Spearman’s rho     .323**               1 
 Sig. (2-tailed)    0.003                
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Table 4.11 (continued) : Correlations between task load and other measures for cargo operation tasks. 
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n_br_freq Spearman’s rho      .336** .267*   .256*    .336**   .227*   .228* 

 Sig. (2-tailed)     0.002 0.017   0.022    0.002   0.043   0.042 
n_br_aecd Spearman’s rho             .243*        

 Sig. (2-tailed)            0.030        

n_br_perclos Spearman’s rho                     
 Sig. (2-tailed)                    

Table 4.11 (continued) : Correlations between task load and other measures for cargo operation tasks. 
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n_br_freq Spearman’s rho                  .269* .385**  

 Sig. (2-tailed)                 0.016 0.000  
n_br_aecd Spearman’s rho            .263*    .244*     

 Sig. (2-tailed)           0.018    0.029     

n_br_perclos Spearman’s rho            .233*      .311** .288** .229* 
 Sig. (2-tailed)           0.037      0.005 0.009 0.041 
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It can be seen in Table 4.11 that some EDA features (eda_cdascra, eda_cdascrm 

eda_cdaiscra, eda_cdaiscrm,) are significantly correlated with task load that EDA 

response increases when task load increases. Additionally, the correlation between EDA 

and HRV features are meaningful according to literature; the increase of EDA response 

(eda_ttpampsuma) is correlated with the increase of LF (hrv_tfwalf) and the decrease of 

HF (hrv_fwpeakhf). 

Contrary to the results in the navigational tasks, the changes of pupil diameter (pd_mean) 

have not been meaningful; it is positive significantly correlated with the peak frequency 

of HF (hrv_fwpeakhf). Similarly, standard deviation of pupil diameter (pd_std) is positive 

significantly correlated with HF (hrv_tfwphf) and negative significantly correlated with 

LF (hrv_tfwplf). This result does not support the literature. On the other hand, large pupil 

dilation (pd_lpd) is positive significantly correlated with EDA response (eda_cdanscr); 

this supports the literature. The results of the correlations between blink rate features and 

other physiological features are similar with those in navigation tasks. 

Statistically, 10 physiological features in total have been found significantly different in 

low and high task loads for cargo operation tasks (Table 4.12). Whole SPSS t-Test output 

is stated in Appendix I. 

Table 4.12 : t-Test of physiological data between low and high task load for cargo 

operation tasks. 

 Low task load (M ± SD) High task load (M ± SD)  p 

n_hrv_hr 0.482 ± 0.306 0.314 ± 0.219 0.005** 

n_hrv_sdnn 0.429 ± 0.277 0.585 ± 0.268 0.014* 

n_hrv_rmssd 0.423 ± 0.303 0.584 ± 0.253 0.015* 

n_hrv_pnn50 0.435 ± 0.301 0.613 ± 0.231 0.006** 

n_hrv_tinn 0.427 ± 0.263 0.589 ± 0.270 0.009** 

n_hrv_nlsd1 0.426 ± 0.305 0.586 ± 0.254 0.016* 

n_hrv_nlsd2 0.430 ± 0.289 0.582 ± 0.278 0.022* 

n_hrv_tfwahf 0.410 ± 0.286 0.545 ± 0.245 0.032* 

n_hrv_tfwpeakhf 0.407 ± 0.406 0.154 ± 0.308 0.002** 

n_pd_mean 0.532 ± 0.306 0.365 ± 0.245 0.008** 

*. p ≤ 0.05; **. p ≤ 0.01. 

4.4 Feature Selection Results 

Feature selection has been carried out with the help of divergence analysis which is 

detailed in chapter 3.5.2. The results of divergence analysis for navigation tasks are 

graphed in Figure 4.27. All divergence values of the analysis are stated in Appendix J. 

Being compared with t-Test results (Table 4.10), 13 features (n_hrv_tfwalf, 
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n_hrv_tfwatotal, n_hrv_tflsalf, n_hrv_fwalf, n_hrv_tflsatotal, n_hrv_nlsd2, n_br_aecd, 

n_hrv_fwatotal, n_hrv_sdnn, n_hrv_tfwahf, n_hrv_tinn, pd_lpd, n_hrv_hr) have been 

selected.    

 

Figure 4.27 : Divergence values of features for navigation tasks. 

Similarly, the results of divergence analysis for cargo operation tasks are graphed in Figure 

4.28. Being compared with t-Test results (Table 4.12), 10 features (n_hrv_tfwpeakhf, 

n_hrv_pnn50, n_hrv_hr, n_hrv_tinn, n_pd_mean, n_hrv_rmssd, n_hrv_sdnn, 

n_hrv_nlsd1, n_hrv_nlsd2, n_hrv_tfwahf) have been selected. 

 

Figure 4.28 : Divergence values of features for cargo operation tasks. 

It can be seen in selected features that 5 of those are same features which are n_hrv_nlsd2, 

n_hrv_sdnn, n_hrv_tfwahf, n_hrv_tinn and n_hrv_hr. 
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4.5 Classification Results 

4.5.1 Within task classification 

4.5.1.1 Navigation task 

In ANN classification without feature selection, the partitioned data sets (detailed in 

chapter 3.5.3) have been trained for various network structures with different number of 

iterations. Table 4.13 presents the average MSE values in all network structures (from 1 

to 35) of validation data sets for each partition. The all MSE values are presented in 

Appendix M. It can be seen that in Table 4.13, partition 2 has minimum average MSE. 

Therefore, partition 2 has selected as a suitable partition.   

Table 4.13 : Average MSE values of validation data sets of partitions (navigation task 

without feature selection). 

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

0.2662 0.2374 0.2597 0.2543 0.2547 0.2792 

To determine best network structure, the MSE values of training and testing data sets of 

partition 2 have been evaluated. These values are given in Figure 4.29. It can be seen in 

this figure that 73-15-15-1 network structure has minimum training and testing error. 

Therefore, this structure has selected as a suitable network structure for this classification. 

  

Figure 4.29 : MSE values of various network structures in partition 2 (navigation task 

without feature selection). 

The results of the ANN classification with the 73-15-15-1 network structure showed that 

the classification accuracy is 83.7% in all (training; 92.4%, testing; 64.9%). Figure 4.30 

presents the confusion matrix and ROC curve graphics of the related structure. The results 

of other classifiers performed by “Classification Learner” tool box of the software showed 
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that KNN has the maximum accuracy (68.0%). Figure 4.31 presents the confusion matrix 

and ROC curve graphic of the KNN classifier. SVM followed the KNN as classification 

accuracy (66.5%). 

  

Figure 4.30 : Confusion matrix and ROC curve graphics of ANN classifier (navigation 

task without feature selection). 

 

Figure 4.31 : Confusion matrix and ROC curve graphic of KNN classifier (navigation 

task without feature selection). 

On the other hand, the results of classifications with selected features (detailed in chapter 

4.4) have provided better classification accuracies (especially in testing). Similarly, the 

partitioned data set has been trained for various network structures with different number 

of iterations in ANN classification. Table 4.14 presents the average MSE values in all 
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network structures (from 1 to 26) of validation data sets for each partition. It can be seen 

that in Table 4.14, partition 2 has minimum average MSE. Therefore, partition 2 has 

selected as a suitable partition. 

Table 4.14 : Average MSE values of validation data sets of partitions (navigation task 

with feature selection). 

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

0.2989 0.2217 0.2241 0.2698 0.2661 0.2729 

The MSE values of training and testing data sets of partition 2 are given in Figure 4.32. It 

can be seen in this figure that 13-19-19-1 network structure has minimum training and 

testing error. Therefore, this structure has selected as a suitable network structure for this 

classification. 

 

Figure 4.32 : MSE values of various network structures in partition 2 (navigation task 

with feature selection). 

The results of the ANN classification with the 13-19-19-1 network structure showed that 

the classification accuracy is 83.3% in all (training; 90.2%, testing; 75.7%). Figure 4.33 

presents the confusion matrix and ROC curve graphics of the related structure. 

The results of other classifiers performed by “Classification Learner” tool box of the 

software showed that Linear Discriminant has the maximum accuracy (70.4%). Figure 

4.34 presents the confusion matrix and ROC curve graphic of the Linear Discriminant 

classifier. Logistic Regression followed the Linear Discriminant as classification accuracy 

(69.5%). 

4.5.1.2 Cargo operation task 

Same steps have been performed for the data set of cargo operation tasks. The partitioned 

data set has been trained for various network structures with different number of iterations 
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in ANN classification. Table 4.15 presents the average MSE values in all network 

structures (from 1 to 35) of validation data sets for each partition. It can be seen that in 

Table 4.15, partition 3 has minimum average MSE. Therefore, partition 3 has selected as 

a suitable partition. 

 

Figure 4.33 : Confusion matrix and ROC curve graphics of ANN classifier (navigation 

task with feature selection). 

 

Figure 4.34 : Confusion matrix and ROC curve graphic of Linear Discriminant classifier 

(navigation task with feature selection). 
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Table 4.15 : Average MSE values of validation data sets of partitions (cargo operation 

task without feature selection). 

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

0.2180 0.1893 0.1876 0.2374 0.2505 0.2389 

The MSE values of training and testing data sets of partition 3 are given in Figure 4.35. It 

can be seen in this figure that 73-30-30-1 network structure has minimum training and 

testing error. Therefore, this structure has selected as a suitable network structure for this 

classification. 

 

Figure 4.35 : MSE values of various network structures in partition 3 (cargo operation 

task without feature selection). 

The results of the ANN classification with the 73-30-30-1 network structure showed that 

the classification accuracy is 87.5% in all (training; 95.7%, testing; 75.0%). Figure 4.36 

presents the confusion matrix and ROC curve graphics of the related structure. 

The results of other classifiers performed by “Classification Learner” tool box of the 

software showed that SVM has the maximum accuracy (68.8%). Figure 4.37 presents the 

confusion matrix and ROC curve graphic of the SVM classifier. 

On the other hand, the results of classifications with selected features (detailed in chapter 

4.4) have provided better classification accuracies (especially in testing) same as in 

navigation tasks. Similarly, the partitioned data set has been trained for various network 

structures with different number of iterations in ANN classification. Table 4.16 presents 

the average MSE values in all network structures (from 1 to 20) of validation data sets for 

each partition. It can be seen that in Table 4.16, partition 1 has minimum average MSE. 

Therefore, partition 1 has selected as a suitable partition. 
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Figure 4.36 : Confusion matrix and ROC curve graphics of ANN classifier (cargo 

operation task without feature selection). 

 

Figure 4.37 : Confusion matrix and ROC curve graphic of SVM classifier (cargo 

operation task without feature selection). 

Table 4.16 : Average MSE values of validation data sets of partitions (cargo operation 

task with feature selection). 

Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

0.1758 0.2036 0.1875 0.1870 0.2298 0.2109 

The MSE values of training and testing data sets of partition 1 are given in Figure 4.38. It 

can be seen in this figure that 10-14-14-1 network structure has minimum training and 



139 

testing error. Therefore, this structure has selected as a suitable network structure for this 

classification. 

 

Figure 4.38 : MSE values of various network structures in partition 1 (cargo operation 

task with feature selection). 

The results of the ANN classification with the 10-14-14-1 network structure showed that 

the classification accuracy is 92.5% in all (training; 98.0%, testing; 80.0%). Figure 4.39 

presents the confusion matrix and ROC curve graphics of the related structure. 

 

Figure 4.39 : Confusion matrix and ROC curve graphics of ANN classifier (cargo 

operation task with feature selection). 

The results of other classifiers performed by “Classification Learner” tool box of the 

software showed that Logistic Regression has the maximum accuracy (77.5%). Figure 
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4.40 presents the confusion matrix and ROC curve graphic of the Logistic Regression 

classifier. KNN and Linear Discriminant followed the Logistic Regression as 

classification accuracy (75.0%). 

 

Figure 4.40 : Confusion matrix and ROC curve graphic of Logistic Regression classifier 

(cargo operation task with feature selection). 

4.5.2 Cross task classification 

Cross task classification has been performed by testing the data of cargo operation tasks 

with training and validation data sets of navigation tasks (Partition is given in figure 4.41). 

 

Figure 4.41 : Partition of data used in cross task classification. 

The results of the ANN classification with the 13-19-19-1 network structure (this structure 

has been provided the best classification accuracy in navigation tasks) showed that the 

classification accuracy is 77.0% in all (training; 90.2%, testing; 61.3%). Figure 4.42 

presents the confusion matrix and ROC curve graphics of the related structure. The results 

of other classifiers performed by “Classification Learner” tool box of the software showed 

that Subspace KNN has the maximum accuracy (67.8%). Figure 4.43 presents the 

confusion matrix and ROC curve graphic of the Subspace KNN classifier. 

In another MWL study which was conducted for working memory tasks by 15 subjects 

(Baldwin and Penaranda, 2012), the classification accuracies of ANN were found as 

87.1% for within task and 44.8% for cross task. The result of this study has better 
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classification accuracy in especially cross task (75.7% and 80.0% testing accuracies for 

within task, 61.3% testing accuracy for cross task) when compared with the similar study. 

 

Figure 4.42 : Confusion matrix and ROC curve graphics of ANN classifier (cross task 

classification with feature selection). 

 

Figure 4.43 : Confusion matrix and ROC curve graphic of Subspace KNN classifier 

(cross task classification with feature selection). 

In general, although the results of the classifications in this study did not give very good 

accuracies, compared with the studies indicated in Table 2.5, they gave sufficient results. 

As can be seen in Table 2.5, mental workload and stress classification accuracies vary 
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between 70.48% and 98%. The results of this study are summarized in Table 4.17, it is 

seen that the classification accuracies are similar to the related studies in the literature. 

Table 4.17 : Summary of classification results. 

Data ANN (test/all) Other classifiers (accuracy) 

Within 

task 

Navigation tasks without feature selection 64.9% / 83.7% KNN; 68.0%  

Navigation tasks with feature selection 75.7% / 83.3% Linear Discriminant; 70.4% 

Cargo operation tasks without feature selection 75.0% / 87.5% SVM; 68.8% 

Cargo operation tasks with feature selection 80.0% / 92.5% Logistic Regression; 77.5% 

Cross  

task 

Cargo operation tasks (testing) adding to 

navigation tasks (training and validation) 
61.3% / 77.0% Subspace KNN; 67.8% 

4.6 Determining the Red Lines of Task Demands 

According to classification efforts of physiological responses on high task load and low 

task load levels and performance scores of the subjects, the red lines of task demands can 

become appear in this study. What the concrete conditions of the overload region theorized 

by Young et al. (2015) is a question and wondered by researchers. Moreover, Orlandi and 

Brooks (2018) tried to define an upper red line of the task demands during berthing and 

unberthing operations of ships. Continuing from the aim of Orlandi and Brooks (2018) 

and the contributions to MWL prediction in marine engine operations of Yan et al. (2019), 

the red lines of task demand in ship navigation have been tried to determine in this study. 

Classification of physiological responses and the distinction of the task loads (see chapter 

4.2.4) according to the performances of the subjects have ensured the task load to be 

separated as high task load and low task load. Concrete conditions of high task load have 

been detailed in Table 3.3 (the tasks of which task load level is greater than or equal to 7) 

and the “Difficulty” column of Table 3.7 for navigation tasks. 

Concrete conditions of high task load for navigation have been generalized and 

summarized in Figure 4.44 according to the results of this study. Thereby, the “Task Load 

Estimator” stated in “The future Seafarer-Centric Safety System design” (Figure 1.2) has 

been detailed. It is seen in Figure 4.44 that data from the navigational sensors (ECDIS, 

Radar and manual input) provides 8 “risky” conditions to be evaluated in task load 

estimator. According to the results of this study, these 8 “risky” conditions and the riskier 

conditions where the inputs are higher than the limits in blue boxes stated in this figure, 

can be input of the Cognitive Seafarer-Ship Interface (CSSI) concept that process the task 

loading together with physiological data of the officer and gives an output as “Risky” for 

safety of navigation in this sample design. This system design is detailed in chapter 5.1. 
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Figure 4.44 : Detailed navigational inputs of “Task Load Estimator” in CSSI.
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5.  CONCLUSIONS 

It is known that human factor has a major effect on maritime casualties that cause great 

harm to environment, economy and maritime sector. It was stated that while human 

error is the primary contributor of accidents, a good part of collisions and groundings 

were related to mental workload (MWL) of watchkeeping officers. Automation, 

mechanization and the introduction of new technologies had changed the working 

conditions together with reducing the number of crew and increasing the MWL of 

operators. This clearly indicates that human element related issues will continue to be 

one of the major issues in marine transportation assets. In maritime-related studies, it 

has been analysed mostly how the ship's environment, working period and other 

factors affect the seafarers. Almost all maritime-related studies couldn’t have a 

potential to develop MWL prediction system for maritime operations aspect. However, 

lots of studies on drivers and pilots, have produced successful results for MWL 

prediction. Taking into consideration the fact that MWL has major contribution to 

maritime casualties, the development of real-time MWL prediction system is vitally 

essential for ships. 

The innovation site of the thesis is implementing the similar measurement techniques 

used in the studies on drivers and pilots, to maritime transportation for designing 

Cognitive Seafarer – Ship Interface. This study aims to classify the physiological 

responses of the operators that can produce an output for state of officer on duty as 

“Safe” or “Risky” from the collected physiological data and task load data during the 

seaborn operations.  

This study predicates on the theories which are the statement “minimum performance 

requires sufficient behavioural activity” of Sheridan and Simpson (1979) together with 

inverted U function of Yerkes and Dodson (1908) which presents the relationship 

between arousal and performance. Moreover, the theory of Young et al. (2015) which 

presents the relationship among mental workload, performance, task demand and 

resource supply (Figure 2.6) and indicates the overload region, guides this study in 

terms of building the structure of the experimental research. By being predicated on 
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the above-mentioned theories, this study aimed to design Cognitive Seafarer - Ship 

Interface (CSSI) which is a main part of Seafarer-Centric Safety System. The 

physiological data of the officer was recorded according to the design. By being 

correlated with the performance of the officer, the change of physiological responses 

of the subjects were analysed in low and high task load levels. The medical decision-

making process, which deduced “Safe” or “Risky”, was run for this change (Figure 

3.2). For performance measurement that is a part of triangulated measurement strategy 

(Wierwille and Eggemeier, 1993), Officer Performance Model was developed for 

navigation and cargo operation tasks which is used for MWL classification. 

Additionally, the inputs of Task Load Estimator (Figure 1.2) were defined as data 

transcription from navigational aids according to results of classification. In summary, 

the following process were done and results were found. 

Firstly, the navigation and cargo operation scenarios were created to simulate ship 

environment. The difficulty level of navigation scenario was gradually adjusted (in 

order to prevent acquired skill) according to traffic density, visibility and geography 

by combining in 4 steps. The difficulty level of cargo operation scenario was gradually 

adjusted according to type and number of operation and operation period 

corresponding to a real cargo operation by combining in 3 steps. Task load assessments 

of the scenarios were carried out according to Operator Function Model (OFM-COG) 

and its sample implications in literature (Lee and Sanquist, 2000). It can be seen that 

the task loads of the scenarios were gradually increased.  

The results of NASA-TLX scores of the subjects supported the increase of task load 

levels of the scenarios. ANOVA results showed that there are significant differences 

in the NASA-TLX scores of 5 different dimensions and in total, among 4 steps which 

have different task load levels for navigation scenario. Similarly, ANOVA results 

showed that there are significant differences in the NASA-TLX scores of 3 different 

dimensions and in total among 3 steps which have different task load levels for cargo 

operation scenario. According to the subjective assessments of the subjects, MWL 

increased during the both of navigation and cargo operation scenarios. 

Secondly, ROC curve analysis was performed for validation of developed officer 

performance model. Recorded performances of the participants were evaluated as 

“safe” and “risky” for each task by one ocean going Master expert for navigation tasks 

and by one ocean going Chief Officer for cargo operation tasks. According to the ROC 
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curve analysis, developed officer performance model was validated with high 

significance and AUC values. These results showed that the developed officer 

performance model can be used in any study focused on performance measurement in 

navigation and chemical tanker cargo operations.  

Being validated measurement method, performances of the subjects showed that there 

is a negative significant correlation between performance score and task load in both 

of navigation and cargo operation tasks. With the distinction of the task load as high 

task load and low task load, the performance scores were also found significantly 

different in low and high task loads for both of navigation and cargo operation tasks. 

Thirdly, physiological responses of the subjects were often differentiated between low 

and high task loads. Although the change of time-based HRV features was not found 

meaningful according to literature during the increase of task load, the change of 

frequency-based, time-frequency and nonlinear HRV features were found significant 

and meaningful during the increase of task load. Moreover, the change of some EDA 

features and some eye responses were found significant in this study. However, the 

change of EDA responses was not found strongly correlated with the increase of task 

load. This can be explained by the fact that electrodermal activity occurs in stressful 

conditions rather than mental workload. The “frustration” scores of the NASA-TLX 

supported the fact that the subjects didn’t feel so stressed during the tasks. On the other 

hand, the change of pupil diameter features was found significant and meaningful 

during the increase of task load in navigation tasks but in cargo operation tasks. 

Additionally, the change of blink frequency features varied across the scenarios. The 

variable results of eye responses are thought that the selectivity of eye blinks and pupil 

diameter to MWL is low according to literature. Additionally, the reason of the fact 

that the change of some eye features was significant during the increase of task load is 

thought to be related with the characteristics of eye responses that pupil diameter 

change is correlated highly with error rate and blink rate increases in incorrect 

responses rather than correct responses. Therefore, these significances can be 

explained with the decrease of performance together arising from the increase of task 

load. On the other hand, the correlations between HRV and EDA features, HRV and 

eye features, EDA and eye features were found significant and meaningful in mental 

workload theory. For example, the increase of LF/HF (hrv_fwlfhf) together with the 

increase of LF and the decrease of HF was found to be significantly correlated with 
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the increase of EDA responses (eda_cdaampsuma, eda_cdascra, eda_cdascrm, 

eda_cdaiscra, n_eda_cdaiscrm, eda_cdamaxa) that this situation occurs in high task 

load.    

Classification process was carried out with ANN code and “Classification Learner” 

tool of Matlab 2020a. Although the results of the classifications of the subjects’ 

physiological responses on high and low task loads in this study did not give very good 

accuracies, compared with the studies indicated in Table 2.5, they gave sufficient 

results. The classification accuracies, 75.7% in testing, 83.3% in all for navigation 

tasks, 80.0% in testing, 92.5% in all for cargo operation tasks and 61.3% in testing, 

77.0% in all for cross-task classification have been found similar to those stated in the 

related studies. As can be seen in Table 2.5, mental workload and stress classification 

accuracies vary between 70.48% and 98%. 

According to classification efforts of physiological responses on high task load and 

low task load levels and performance scores of the subjects, the red lines of task 

demand became appear in this study. Continuing from the aim of Orlandi and Brooks 

(2018) and the contributions to MWL prediction in marine engine operations of Yan 

et al. (2019), the red lines of task demand in ship navigation was tried to determine in 

this study. Classification of physiological responses and the distinction of the task 

loads according to the performances of the subjects have ensured the task load to be 

separated as high task load and low task load. Concrete conditions of high task load 

for navigation were generalized and summarized in Figure 4.44 according to the results 

of this study. Thereby, the “Task Load Estimator” stated in “The future Seafarer-

Centric Safety System design” (Figure 1.2) has been detailed.  

5.1 Practical Application of This Study 

The system which is named as “The future Seafarer-Centric Safety System design” 

(Figure 1.2) needs the operational data from related equipment and the physiological 

data of the operator. The outputs of high task load details for navigation and the 

physiological responses given as features (classified in this study) can be input of the 

Cognitive Seafarer-Ship Interface (CSSI) concept that process the task loading 

together with physiological data of the officer and gives an output as “Risky” for safety 

of navigation in this sample design. Figure 5.1 presents the sample design to be used 

on ships or at the Shore Control Centre for autonomous ships in future.
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Figure 5.1 : The detailed future Seafarer-Centric Safety System design (created in Matlab 2020a Simulink).
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According to the design, task load estimator processes the data which are the possible 

combinations of the outputs from ECDIS, Radar and manual input. These 

combinations stated in this design, are the high task load indicators which have been 

tested in this study. Therefore, the combinations that can be evaluated as high task load 

should be increased in future studies. At the same time, neural network stated in CSSI, 

processes the inputs which are physiological features extracted from physiological 

sensors and gives an output according to the structure of ANN. When the output of 

neural network is “1” (indicated as “Risky” in this study) and one of the possible 

combinations exists in task load estimator, CSSI gives an output for early warning 

system to be activated. It was stated before that similar study for aircrafts was 

conducted by Liu et al. (2016). Cognitive pilot-aircraft interface was designed with 

environmental variables of flight and physiological variables of the pilot. Interface can 

give an output to adjust the level of auto pilot considering the mental strain of pilot 

and the task load of environmental variables of flight. 

Consequently, this study will contribute to literature, being the first study in terms of 

predicting MWL for navigation and cargo operations in maritime transportation. In 

addition, this study will be a guide for future studies as it reveals the design of the 

“Seafarer-Centric Safety System” to be developed in order to minimize maritime 

casualties.   
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APPENDIX A: Voluntary Participation Form  

Voluntary Participation Form 

This study is a PhD thesis, named as “Design of Seafarer-Centric Safety System; 

Mental Workload (MWL) Prediction”, conducted by Barış ÖZSEVER, postgraduate 

student in Maritime Transportation Engineering Department of Istanbul Technical 

University Graduate School of Science, Engineering and Technology and thesis 

advisor Prof. Dr. Leyla TAVACIOĞLU. Main aim of the thesis is designing the mental 

workload prediction system for seafarers. The physiological data of the officer will be 

recorded according to the design. By being correlated with the performance of the 

officer, the change of physiological responses of the subjects will be analysed in low 

and high task load levels. 

Your participation in this study is entirely voluntary. No personal identification is 

required during the research. For the purpose of the study, the data collected from you 

in the simulator environment will be used only for scientific purposes and will not be 

shared with others. You have the right to review the data collected from you, if you 

wish. 

The data collection process does not contain any requests or activities that may cause 

you discomfort. However, if you feel uncomfortable during this process, you can leave 

at any time. In this case, the data collected from you will be excluded from the study. 

You are asked to fill in the following parameters which are thought to have an impact 

on the data collected during the study: 

1. Year of birth: 

2. Total duration of sea service as an officer: 

3. Ship type you have worked as an officer: 

4. Coffee consumption since last night: 

5. Alcohol consumption since last morning: 

6. Usage of anti-depressant medicine: 

7. Total sleep duration of last night: 

For more information about the study, you can contact Prof. Dr. Leyla TAVACIOĞLU 

(tavaciog@itu.edu.tr) or Barış ÖZSEVER (barisozsever@yahoo.com). 

I take part in this research as a volunteer and I know that I can withdraw from 

this research whenever I want. I accept the use of data collected from me for 

scientific purposes. 

 

Subject ID:    

Date:     

Signature:    
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APPENDIX B: NASA Task Load Index (Rating)  

NASA Task Load Index (Rating) 

Subject ID: Task ID: Date: 

Evaluate the following workload factors within the defined task by giving a score 

between 0 and 20. 

Mental Demand: How much mental and perceptual activity, was required (e.g., 

thinking, deciding, calculating, remembering. looking, searching, etc.)? Was the task 

easy or demanding, simple or complex, exacting or forgiving? 

     0            10                20 

 
  Low                                                                                                                     High 

Physical Demand: How much physical activity was required (e.g. pushing, pulling, 

turning. controlling, activating, etc.}? Was the task easy or demanding, slow or brisk, 

slack or strenuous restful or laborious? 

     0            10                20 

 
   Low                                                                                                                     High 

Temporal Demand: How much time pressure did you feel due to the rate or pace at 

which the tasks or task elements occurred? Was the pace slow and leisurely or rapid 

and frantic? 

     0            10                20 

 
   Low                                                                                                                     High 

Performance: How successful do you think you were in accomplishing the goals of 

the task set by the experimenter (or yourself)? How satisfied were you with your 

performance in accomplishing these goals? 

     0            10                20 

 
  Perfect                                                                                                                Failure 

Effort: How hard did you have to work (mentally and physically) to accomplish your 

level of performance? 

     0            10                20 

 
   Low                                                                                                                     High 

Frustration Level: How insecure, discouraged, irritated. stressed and annoyed versus 

secure, gratified, content, relaxed and complacent did you feel during the task? 

     0            10                20 

 
   Low                                                                                                                     High 
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APPENDIX C: NASA Task Load Index (Weighting)  

NASA Task Load Index (Weighting) 

Subject ID: Task ID: Date: 

Which of the following workload factors do you think is more effective for the defined 

job? (Circle the selected workload factor in each row). 

 Factor - 1 Factor - 2 

1 Mental Demand Temporal Demand 

2 Temporal Demand Performance 

3 Mental Demand Frustration Level 

4 Effort Performance  

5 Mental Demand Physical Demand 

6 Physical Demand Frustration Level 

7 Temporal Demand Effort 

8 Mental Demand Performance 

9 Temporal Demand Frustration Level 

10 Physical Demand Temporal Demand 

11 Performance Frustration Level 

12 Physical Demand Effort 

13 Effort Frustration Level 

14 Mental Demand Effort 

15 Physical Demand Performance 

NASA-TLX workload test completed. Thank you for your co-operation. If you have 

any assessment about the test and / or testing process, please specify. 

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

………………………………………………………………………………………… 

 

 

 

 

 

 

 

 

 



165 

APPENDIX D: All Subjective Assessments of the Subjects 

Table D.1 : All subjective assessments of the subjects and their calculations. 

ID Step 
Scores Weights Weighted Scores 

Result 
MD PD TD P E F MD PD TD P E F MD PD TD P E F 

1 

1 3 0 3 1 5 3 4 0 1 4 2 4 4 0 1 1.3 3.3 4 13.66 

2 5 0 4 4 8 4 5 0 1 3 3 3 8.3 0 1.3 4 8 4 25.66 

3 8 0 7 5 10 6 5 0 3 1 4 2 13.3 0 7 1.7 13.3 4 39.33 

4 15 0 18 16 15 13 3 0 5 1 3 3 15 0 30 5.3 15 13 78.33 

2 

1 5 0 3 9 4 1 5 0 4 3 2 1 8.3 0 4 9 2.7 0.3 24.33 

2 7 0 5 5 7 1 5 0 4 2 2 2 11.7 0 6.7 3.3 4.7 0.7 27 

3 9 0 9 10 9 5 3 0 5 3 2 2 9 0 15 10 6 3.3 43.33 

4 15 0 17 17 14 10 3 0 5 4 2 1 15 0 28.3 22.7 9.3 3.3 78.66 

3 

1 0 0 0 0 0 0 - - - - - - 0 0 0 0 0 0 0 

2 1 0 1 2 2 1 2 0 3 4 5 1 0.7 0 1 2.6 3.3 0.3 8 

3 4 0 3 3 4 3 5 0 2 3 4 1 6.7 0 2 3 5.3 1 18 

4 15 0 9 10 14 9 5 0 2 3 4 1 25 0 6 10 18.7 3 62.66 

4 

1 2 0 1 4 4 3 3 0 1 5 4 2 2 0 0.3 6.7 5.3 2 16.33 

2 7 0 12 7 8 6 3 0 5 4 1 2 7 0 20 9.3 2.7 4 43 

3 12 0 14 10 6 9 2 0 5 4 1 3 8 0 23.3 13.3 2 9 55.66 

4 15 0 16 12 12 13 2 0 5 2 2 4 10 0 26.7 8 8 17.3 70 

5 

1 2 0 1 10 9 2 4 0 1 5 3 2 2.7 0 0.3 16.7 9 1.3 30 

2 14 0 13 12 13 13 3 0 4 1 2 5 14 0 17.3 4 8.7 21.7 65.66 

3 13 0 14 14 13 15 4 0 3 2 2 4 17.3 0 14 9.3 8.7 20 69.33 

4 18 0 18 20 20 20 4 0 3 1 2 5 24 0 18 6.7 13.3 33.3 95.33 

6 

1 1 0 0 0 0 1 3 0 2 5 1 4 1 0 0 0 0 1.33 2.333 

2 6 0 3 0 1 3 5 0 2 4 2 2 10 0 2 0 0.7 2 14.66 

3 12 0 11 6 5 5 4 0 5 2 3 1 16 0 18.3 4 5 1.7 45 

4 18 0 16 10 10 5 5 0 4 2 3 1 30 0 21.3 6.7 10 1.7 69.66 

7 

1 2 0 0 3 3 3 4 0 1 5 3 2 2.7 0 0 5 3 2 12.66 

2 6 0 0 6 6 6 5 0 1 4 3 2 10 0 0 8 6 4 28 

3 8 0 5 10 9 8 4 0 1 3 5 2 10.7 0 1.7 10 15 5.3 42.66 

4 10 0 5 17 14 10 5 0 1 2 4 3 16.7 0 1.7 11.3 18.7 10 58.33 

8 

1 5 0 4 10 7 7 4 0 1 2 3 5 6.7 0 1.3 6.7 7 11.7 33.33 

2 10 0 6 10 12 11 4 0 1 2 3 5 13.3 0 2 6.7 12 18.3 52.33 

3 16 0 13 11 10 18 4 0 2 1 3 5 21.3 0 8.7 3.7 10 30 73.66 

9 

1 2 0 1 2 2 2 4 0 3 1 3 4 2.7 0 1 0.7 2 2.7 9 

2 5 0 2 8 6 8 5 0 2 3 1 4 8.3 0 1.3 8 2 10.7 30.33 

3 9 0 4 5 8 6 5 0 3 1 2 4 15 0 4 1.7 5.3 8 34 

4 13 0 9 20 13 11 5 0 3 2 1 4 21.7 0 9 13.3 4.3 14.7 63 

10 

1 3 0 3 10 3 3 5 0 2 3 2 3 5 0 2 10 2 3 22 

2 8 0 10 12 10 9 4 0 3 1 4 3 10.7 0 10 4 13.3 9 47 

3 13 0 12 7 10 10 5 0 2 2 3 3 21.7 0 8 4.7 10 10 54.33 

4 18 0 18 6 18 17 4 0 3 2 3 3 24 0 18 4 18 17 81 

11 

1 5 0 4 7 6 5 4 0 3 2 2 4 6.7 0 4 4.7 4 6.7 26 

2 11 0 12 10 14 12 4 0 3 2 3 3 14.7 0 12 6.7 14 12 59.33 

3 17 0 18 17 17 18 4 0 2 1 3 5 22.7 0 12 5.7 17 30 87.33 

12 

1 5 0 0 5 4 0 2 0 3 5 4 1 3.3 0 0 8.3 5.3 0 17 

2 10 0 10 7 13 10 4 0 1 4 4 2 13.3 0 3.3 9.3 17.3 6.7 50 

3 14 0 10 10 14 14 4 0 3 4 2 2 18.7 0 10 13.3 9.3 9.3 60.66 

4 20 0 10 7 17 19 2 0 1 3 4 5 13.3 0 3.3 7 22.7 31.7 78 
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Table D.1 (continued) : All subjective assessments of the subjects and their 

calculations. 

ID Step 
Scores Weights Weighted Scores 

Result 
MD PD TD P E F MD PD TD P E F MD PD TD P E F 

13 

1 5 0 2 1 4 1 4 0 3 5 2 1 6.7 0 2 1.7 2.6 0.3 13.33 

2 10 0 11 5 9 6 5 0 4 1 3 2 16.7 0 14.7 1.7 9 4 46 

3 15 0 17 14 18 13 3 0 5 1 4 2 15 0 28.3 4.7 24 8.7 80.66 

14 

1 2 0 0 1 2 1 5 0 1 4 3 2 3.3 0 0 1.3 2 0.7 7.33 

2 9 0 0 6 7 7 4 0 1 3 3 4 12 0 0 6 7 9.3 34.33 

3 10 0 1 5 10 10 3 0 1 3 5 3 10 0 0.3 5 16.7 10 42 

4 13 0 6 13 14 15 4 0 1 3 4 3 17.3 0 2 13 18.7 15 66 

15 

1 4 0 5 1 7 4 2 0 2 5 4 2 2.7 0 3.3 1.7 9.3 2.7 19.66 

2 8 0 11 4 10 10 3 0 3 2 5 2 8 0 11 2.7 16.7 6.7 45 

3 16 0 9 4 16 14 3 0 2 3 5 2 16 0 6 4 26.7 9.3 62 

16 

1 5 0 2 5 4 2 3 0 2 5 4 1 5 0 1.3 8.3 5.3 0.7 20.66 

2 10 0 10 5 10 10 5 0 4 2 3 1 16.7 0 13.3 3.3 10 3.3 46.66 

3 15 0 13 10 12 10 5 0 3 2 4 1 25 0 13 6.7 16 3.3 64 

4 17 0 15 12 15 15 5 0 2 3 4 1 28.3 0 10 12 20 5 75.33 

17 

1 4 0 4 5 5 2 4 0 3 5 2 1 5.3 0 4 8.3 3.3 0.7 21.66 

2 7 0 6 6 8 5 3 0 5 4 2 1 7 0 10 8 5.3 1.7 32 

3 15 0 16 10 14 10 3 0 5 1 4 2 15 0 26.7 3.3 18.7 6.7 70.33 
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APPENDIX E: SPSS ANOVA Analysis Outputs of NASA-TLX Scores 

 

Figure E.1 : Descriptives of NASA-TLX scores for navigation scenario. 

 

Figure E.2 : ANOVA of NASA-TLX scores for navigation scenario. 

 

Descriptives 

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum Lower Bound Upper Bound 

MD 1 12 3.3333 2.14617 .61955 1.9697 4.6969 .00 8.33 

2 12 10.2222 4.04353 1.16727 7.6531 12.7914 .67 16.67 

3 12 14.2778 5.71341 1.64932 10.6476 17.9079 6.67 25.00 

4 12 20.0278 6.33805 1.82964 16.0008 24.0548 10.00 30.00 

Total 48 11.9653 7.72709 1.11531 9.7216 14.2090 .00 30.00 

P 1 12 5.6111 5.16365 1.49062 2.3303 8.8919 .00 16.67 

2 12 5.1667 2.94220 .84934 3.2973 7.0361 .00 9.33 

3 12 6.8889 4.20998 1.21532 4.2140 9.5638 1.67 13.33 

4 12 10.0000 5.03924 1.45470 6.7982 13.2018 4.00 22.67 

Total 48 6.9167 4.69067 .67704 5.5546 8.2787 .00 22.67 

TD 1 12 .8333 1.19342 .34451 .0751 1.5916 .00 4.00 

2 12 6.3611 7.11444 2.05376 1.8408 10.8814 .00 20.00 

3 12 9.7222 7.21227 2.08200 5.1398 14.3047 .33 23.33 

4 12 14.5278 10.52794 3.03915 7.8386 21.2169 1.67 30.00 

Total 48 7.8611 8.70120 1.25591 5.3345 10.3877 .00 30.00 

E 1 12 3.3333 2.56235 .73969 1.7053 4.9614 .00 9.00 

2 12 6.9722 4.89374 1.41270 3.8629 10.0816 .67 17.33 

3 12 9.3889 4.88831 1.41113 6.2830 12.4948 2.00 16.67 

4 12 14.7222 5.67972 1.63959 11.1135 18.3309 4.33 22.67 

Total 48 8.6042 6.14585 .88708 6.8196 10.3887 .00 22.67 

F 1 12 1.5000 1.26730 .36584 .6948 2.3052 .00 4.00 

2 12 6.3056 5.89548 1.70188 2.5597 10.0514 .33 21.67 

3 12 7.0833 5.22644 1.50874 3.7626 10.4041 1.00 20.00 

4 12 13.7500 10.40797 3.00452 7.1371 20.3629 1.67 33.33 

Total 48 7.1597 7.72732 1.11534 4.9159 9.4035 .00 33.33 

Total 1 12 14.6111 8.96777 2.58877 8.9133 20.3090 .00 30.00 

2 12 35.0278 16.16484 4.66639 24.7571 45.2984 8.00 65.67 

3 12 47.3611 14.24423 4.11196 38.3108 56.4115 18.00 69.33 

4 12 73.0278 10.20146 2.94491 66.5461 79.5095 58.33 95.33 

Total 48 42.5069 24.67059 3.56089 35.3434 49.6705 .00 95.33 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

MD Between Groups 1774.803 3 591.601 25.236 .000 

Within Groups 1031.472 44 23.443   

Total 2806.275 47    

P Between Groups 171.296 3 57.099 2.912 .045 

Within Groups 862.815 44 19.609   

Total 1034.111 47    

TD Between Groups 1194.574 3 398.191 7.412 .000 

Within Groups 2363.833 44 53.723   

Total 3558.407 47    

E Between Groups 821.896 3 273.965 12.644 .000 

Within Groups 953.361 44 21.667   

Total 1775.257 47    

F Between Groups 914.396 3 304.799 7.088 .001 

Within Groups 1892.046 44 43.001   

Total 2806.442 47    

Total Between Groups 21470.396 3 7156.799 44.131 .000 

Within Groups 7135.602 44 162.173   

Total 28605.998 47    
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Figure E.3 : Descriptives of NASA-TLX scores for cargo operation scenario. 

 

Figure E.4 : ANOVA of NASA-TLX scores for cargo operation scenario. 

 

Descriptives 

 N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum Lower Bound Upper Bound 

MD 1 5 5.6000 1.73845 .77746 3.4414 7.7586 2.67 6.67 

2 5 11.9333 4.23215 1.89268 6.6784 17.1882 7.00 16.67 

3 5 18.0000 3.70435 1.65664 13.4004 22.5996 15.00 22.67 

Total 15 11.8444 6.11253 1.57825 8.4594 15.2294 2.67 22.67 

TD 1 5 2.9333 1.21106 .54160 1.4296 4.4371 1.33 4.00 

2 5 9.9333 4.76329 2.13021 4.0189 15.8477 2.00 14.67 

3 5 16.3333 10.42966 4.66429 3.3832 29.2835 6.00 28.33 

Total 15 9.7333 8.37058 2.16128 5.0979 14.3688 1.33 28.33 

P 1 5 4.6000 2.97583 1.33083 .9050 8.2950 1.67 8.33 

2 5 5.1333 2.78488 1.24544 1.6754 8.5912 1.67 8.00 

3 5 4.2667 .92496 .41366 3.1182 5.4152 3.33 5.67 

Total 15 4.6667 2.26428 .58464 3.4127 5.9206 1.67 8.33 

E 1 5 5.2667 2.81267 1.25786 1.7743 8.7591 2.67 9.33 

2 5 11.4000 4.39949 1.96751 5.9373 16.8627 5.33 16.67 

3 5 19.2667 6.49102 2.90287 11.2070 27.3263 10.00 26.67 

Total 15 11.9778 7.41670 1.91498 7.8705 16.0850 2.67 26.67 

F 1 5 4.4000 4.78075 2.13802 -1.5361 10.3361 .33 11.67 

2 5 8.5333 6.69411 2.99370 .2215 16.8452 1.67 18.33 

3 5 16.9333 11.96848 5.35247 2.0725 31.7942 6.67 30.00 

Total 15 9.9556 9.45488 2.44124 4.7196 15.1915 .33 30.00 

Total 1 5 22.8000 7.44834 3.33100 13.5517 32.0483 13.33 33.33 

2 5 46.9333 10.13081 4.53064 34.3543 59.5124 32.00 59.33 

3 5 74.8000 9.70281 4.33923 62.7524 86.8476 62.00 87.33 

Total 15 48.1778 23.57456 6.08692 35.1226 61.2329 13.33 87.33 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

MD Between Groups 384.459 2 192.230 16.641 .000 

Within Groups 138.622 12 11.552   

Total 523.081 14    

TD Between Groups 449.200 2 224.600 5.069 .025 

Within Groups 531.733 12 44.311   

Total 980.933 14    

P Between Groups 1.911 2 .956 .164 .851 

Within Groups 69.867 12 5.822   

Total 71.778 14    

E Between Groups 492.504 2 246.252 10.645 .002 

Within Groups 277.600 12 23.133   

Total 770.104 14    

F Between Groups 407.881 2 203.941 2.901 .094 

Within Groups 843.644 12 70.304   

Total 1251.526 14    

Total Between Groups 6771.615 2 3385.807 40.266 .000 

Within Groups 1009.022 12 84.085   

Total 7780.637 14    
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APPENDIX F: Calculation Details of Performance Scores 

 

Figure F.1 : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.1 (continued) : Calculation details of performance score for navigation tasks. 
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Figure F.2 : Calculation details of performance score for cargo operation tasks. 
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Figure F.2 (continued) : Calculation details of performance score for cargo 

operation tasks. 

 

 



183 

 

Figure F.2 (continued) : Calculation details of performance score for cargo 

operation tasks. 
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Figure F.2 (continued) : Calculation details of performance score for cargo 

operation tasks. 
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Figure F.2 (continued) : Calculation details of performance score for cargo 

operation tasks. 
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APPENDIX G: Coordinates of the ROC Curves of Developed Officer Performance 

Model 

 

Figure G.1 : Coordinates of the ROC curves for navigaiton tasks (a) and cargo 

operation tasks (b).
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APPENDIX H: Data Collected During the Study 

 

Figure H.1 : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 



193 

 

Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 



206 

 

Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study. 
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Figure H.1 (continued) : Data collected during the study.
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APPENDIX I: SPSS t-Test Outputs of Physiological Data Between Low and High 

Task Load 

 

Figure I.1 : t-Test of physiological data between low and high task load for 

navigation tasks. 
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Figure I.1 (continued) : t-Test of physiological data between low and high task load 

for navigation tasks. 
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Figure I.1 (continued) : t-Test of physiological data between low and high task load 

for navigation tasks. 
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Figure I.1 (continued) : t-Test of physiological data between low and high task load 

for navigation tasks. 
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Figure I.2 : t-Test of physiological data between low and high task load for cargo 

operation tasks. 
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Figure I.2 (continued) : t-Test of physiological data between low and high task load 

for cargo operation tasks. 
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Figure I.2 (continued) : t-Test of physiological data between low and high task load 

for cargo operation tasks. 
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Figure I.2 (continued) : t-Test of physiological data between low and high task load 

for cargo operation tasks.
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APPENDIX J: Divergence Values of Physiological Features 

Table J.1 : Divergence values of features for navigation tasks. 

Feature Di Feature Di Feature Di 

n_hrv_hr 0.046 n_hrv_flspeaklf 0.000 n_hrv_tfwlfhf 0.016 

n_hrv_sdnn 0.060 n_hrv_flspeakhf 0.001 n_hrv_tfwpeaklf 0.019 

n_hrv_rmssd 0.030 n_hrv_nlsd1 0.029 n_hrv_tfwpeakhf 0.008 

n_hrv_pnn50 0.037 n_hrv_nlsd2 0.065 eda_cdanscr 0.005 

n_hrv_hrvti 0.012 n_hrv_nlsampen 0.003 n_eda_cdaampsuma 0.000 

n_hrv_tinn 0.048 n_hrv_nlalpha1 0.002 n_eda_cdaampsumm 0.019 

n_hrv_fwalf 0.065 n_hrv_nlalpha2 0.003 n_eda_cdascra 0.000 

n_hrv_fwahf 0.039 n_hrv_tflsalf 0.067 n_eda_cdascrm 0.009 

n_hrv_fwatotal 0.062 n_hrv_tflsahf 0.039 n_eda_cdaiscra 0.000 

hrv_fwplf 0.022 n_hrv_tflsatotal 0.065 n_eda_cdaiscrm 0.009 

hrv_fwphf 0.024 hrv_tflsplf 0.023 n_eda_cdamaxa 0.005 

hrv_fwnlf 0.023 hrv_tflsphf 0.025 eda_cdamaxm 0.004 

hrv_fwnhf 0.023 hrv_tflsnlf 0.024 n_eda_cdatonica 0.020 

n_hrv_fwlfhf 0.015 hrv_tflsnhf 0.024 n_eda_cdatonicm 0.023 

n_hrv_fwpeaklf 0.030 n_hrv_tflslfhf 0.028 eda_ttpnscr 0.001 

n_hrv_fwpeakhf 0.000 n_hrv_tflspeaklf 0.002 n_eda_ttpampsuma 0.000 

n_hrv_flsalf 0.037 n_hrv_tflspeakhf 0.003 n_eda_ttpampsumm 0.011 

n_hrv_flsahf 0.001 n_hrv_tfwalf 0.083 n_eda_sca 0.018 

n_hrv_flsatotal 0.012 n_hrv_tfwahf 0.055 n_eda_scm 0.027 

hrv_flsplf 0.019 n_hrv_tfwatotal 0.081 n_pd_mean 0.017 

hrv_flsphf 0.020 hrv_tfwplf 0.025 pd_std 0.000 

hrv_flsnlf 0.020 hrv_tfwphf 0.025 pd_lpd 0.047 

hrv_flsnhf 0.020 hrv_tfwnlf 0.025 n_br_freq 0.002 

n_hrv_flslfhf 0.011 hrv_tfwnhf 0.025 n_br_aecd 0.065 

    n_br_perclos 0.021 
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Table J.2 : Divergence values of features for cargo operation tasks. 

Feature Di Feature Di Feature Di 

n_hrv_hr 0.104 n_hrv_flspeaklf 0.036 n_hrv_tfwlfhf 0.001 

n_hrv_sdnn 0.086 n_hrv_flspeakhf 0.017 n_hrv_tfwpeaklf 0.003 

n_hrv_rmssd 0.086 n_hrv_nlsd1 0.085 n_hrv_tfwpeakhf 0.128 

n_hrv_pnn50 0.113 n_hrv_nlsd2 0.075 eda_cdanscr 0.001 

n_hrv_hrvti 0.013 n_hrv_nlsampen 0.001 n_eda_cdaampsuma 0.015 

n_hrv_tinn 0.096 n_hrv_nlalpha1 0.001 n_eda_cdaampsumm 0.019 

n_hrv_fwalf 0.013 n_hrv_nlalpha2 0.024 n_eda_cdascra 0.034 

n_hrv_fwahf 0.029 n_hrv_tflsalf 0.030 n_eda_cdascrm 0.053 

n_hrv_fwatotal 0.030 n_hrv_tflsahf 0.038 n_eda_cdaiscra 0.034 

hrv_fwplf 0.000 n_hrv_tflsatotal 0.048 n_eda_cdaiscrm 0.053 

hrv_fwphf 0.000 hrv_tflsplf 0.000 n_eda_cdamaxa 0.010 

hrv_fwnlf 0.000 hrv_tflsphf 0.001 eda_cdamaxm 0.010 

hrv_fwnhf 0.000 hrv_tflsnlf 0.001 n_eda_cdatonica 0.005 

n_hrv_fwlfhf 0.004 hrv_tflsnhf 0.001 n_eda_cdatonicm 0.016 

n_hrv_fwpeaklf 0.002 n_hrv_tflslfhf 0.000 eda_ttpnscr 0.005 

n_hrv_fwpeakhf 0.051 n_hrv_tflspeaklf 0.004 n_eda_ttpampsuma 0.005 

n_hrv_flsalf 0.044 n_hrv_tflspeakhf 0.027 n_eda_ttpampsumm 0.015 

n_hrv_flsahf 0.005 n_hrv_tfwalf 0.027 n_eda_sca 0.003 

n_hrv_flsatotal 0.013 n_hrv_tfwahf 0.067 n_eda_scm 0.019 

hrv_flsplf 0.001 n_hrv_tfwatotal 0.056 n_pd_mean 0.095 

hrv_flsphf 0.001 hrv_tfwplf 0.000 pd_std 0.005 

hrv_flsnlf 0.001 hrv_tfwphf 0.000 pd_lpd 0.026 

hrv_flsnhf 0.001 hrv_tfwnlf 0.000 n_br_freq 0.003 

n_hrv_flslfhf 0.005 hrv_tfwnhf 0.000 n_br_aecd 0.010 

    n_br_perclos 0.004 
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APPENDIX K: Matlab Code for Eye Features 

%pupil diameter% 
clc 
clear 
A=load('17_Pd_S3_T8.txt'); 
A0 = downsample(A,2,0); 
Time=A0(:,2); 
Pupil=A0(:,1); 

  
%mean% 
avg1=mean(Pupil); 
disp('pd_mean='); 
disp(avg1) 

  
%std% 
stddev=std(Pupil); 
disp('pd_std='); 
disp(stddev) 

  
%PerLPD% 
Dmean=27.03; 
PerLPD=(A0(:,1)-Dmean)./Dmean; 

  
avg2=mean(PerLPD); 
disp('pd_lpd='); 
disp(avg2) 

  
%blink frequency% 
%blink rate% 
B=load('17_Br_S3_T8.txt'); 
t=320; 
br_freq=length(B)./t; 
disp('br_freq='); 
disp(br_freq) 

  
%average eye closure duration% 
duration=B(:,1); 
avg3=mean(duration); 
disp('br_aecd='); 
disp(avg3) 

  
%percentage of eye closure% 
close=sum(B(:,1)); 
perclos=close./t; 
disp('br_perclos='); 
disp(perclos) 
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APPENDIX L: Matlab Code for ANN Classification 

function [output_test]=ann(Y, X, neuron, iteration) 

  

[obs, col]= size(X); 

[obs1, col1]= size(Y); 

  

%[trainInd,valInd,testInd] = divideind(obs,75:203,38:74,1:37); 

[trainInd,valInd,testInd] = divideind(obs,38:169,170:203,1:37); 

%[trainInd,valInd,testInd] = divideind(obs,1:130,170:203,131:169); 

%[trainInd,valInd,testInd] = divideind(obs,1:130,131:169,170:203); 

%[trainInd,valInd,testInd] = divideind(obs,38:169,1:37,170:203); 

%[trainInd,valInd,testInd] = divideind(obs,75:203,1:37,38:74); 

  

for i=1:length(trainInd) 

    train_Y(i,1:col1)= Y(trainInd(i),:); 

    train_X(i,:)= X(trainInd(i),:); 

end 

  

for i=1:length(testInd) 

    test_tar(i,1:col1)= Y(testInd(i), :); 

    test_inp(i,:)= X(testInd(i),:); 

end 

     

for i=1:length(valInd) 

    val_Y(i,1:col1)= Y(valInd(i),:); 

    val_X(i, :)= X(valInd(i),:); 

end 

  

hiddenLayerSize = [neuron neuron]; 

net = patternnet(hiddenLayerSize); 

net.performFcn = 'mse';  

net.trainFcn = 'trainlm';  

  

net.layers{1}.transferFcn = 'tansig'; 

 

net.divideFcn= 'divideind';   %  divide data into three parts with 

respect to their indices.  

net.divideParam.trainInd = 38:169; %75:203; %38:169; %1:130; %1:130; 

%38:169; %75:203    

net.divideParam.valInd = 170:203; %38:74; %170:203; %170:203; 

%131:169; %1:37; %1:37;  

net.divideParam.testInd = 1:37; %1:37; %1:37; %131:169; %170:203; 

%170:203; %38:74; 

 

net.trainParam.lr = 0.5;  % for GD GD 

  

net.trainParam.epochs=iteration; 

%net.trainParam.goal=0; 

%net.trainParam.max_fail=10; 

  

net.trainParam.min_grad=1e-10; 

  

[net,TR]=train(net,X',Y');  

x=getwb(net)'; 

view(net) 

  

outputs = net(train_X'); 

output_test = net(test_inp'); 

output_all = net(X'); 
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output_val = net(val_X'); 

  

perf = mse(net,train_Y',outputs); 

test_mse_perf = mse(net,test_tar',output_test); 

val_mse_perf = mse(net,val_Y',output_val); 

all_mse_perf= mse(net,Y',output_all); 

  

entropy_train = perform(net,train_Y',outputs); 

entropy_test = perform(net,test_tar',output_test); 

entropy_all = perform(net,Y',output_all); 

  

%par_fix= (neuron*(col +2)+1);   % the number of paramters 

  

par_fix= net.numWeightElements; 

  

fprintf('mse of training data is %6.4f\n',perf); 

fprintf('mse of test data is %6.4f\n',test_mse_perf); 

fprintf('mse of val data is %6.4f\n',val_mse_perf); 

fprintf('mse of all data is %6.4f\n',all_mse_perf); 

  

fprintf('entropy_train is %6.4f\n',entropy_train); 

fprintf('entropy_all is %6.4f\n',entropy_all); 

fprintf('entropy_test is %6.4f\n',entropy_test); 

  

fprintf('AIC is %6.4f\n',numel(train_Y)*log(perf)+ 2*par_fix); 

fprintf('AICc  %6.4f\n',numel(train_Y)*log(perf)+ 2*par_fix + 

(2*(par_fix+1)*(par_fix+2)/ (numel(train_Y) - par_fix-2))  ); 

fprintf('bic  %6.4f\n',numel(train_Y)*log(perf)+ par_fix+ 

par_fix*log(numel(train_Y)) ); 

  

end 
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APPENDIX M: MSE Values of Validation Data Sets 

Table M.1 : MSE values of validation data sets (navigation task without feature 

selection). 

Network 

structure 
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

73-1-1-1 0.2355 0.2285 0.2041 0.2467 0.227 0.2452 

73-2-2-1 0.2567 0.2235 0.2474 0.1871 0.2468 0.2468 

73-3-3-1 0.2663 0.2653 0.236 0.2512 0.2659 0.3309 

73-4-4-1 0.2209 0.2116 0.2543 0.286 0.2876 0.2811 

73-5-5-1 0.2638 0.2066 0.2066 0.2637 0.2528 0.2586 

73-6-6-1 0.2443 0.2184 0.2611 0.2372 0.2148 0.2757 

73-7-7-1 0.2689 0.2278 0.2609 0.2686 0.2644 0.2817 

73-8-8-1 0.3292 0.208 0.2972 0.2556 0.278 0.2875 

73-9-9-1 0.2453 0.2635 0.2679 0.2643 0.2424 0.1945 

73-10-10-1 0.2549 0.1791 0.1353 0.2772 0.3075 0.3071 

73-11-11-1 0.2368 0.2515 0.2665 0.2497 0.2088 0.2867 

73-12-12-1 0.2758 0.2607 0.2938 0.2688 0.2613 0.3543 

73-13-13-1 0.2466 0.2377 0.2011 0.2255 0.2502 0.2827 

73-14-14-1 0.3064 0.2021 0.2287 0.24 0.2634 0.2363 

73-15-15-1 0.2658 0.2108 0.3498 0.2921 0.2467 0.2712 

73-16-16-1 0.3005 0.2396 0.2575 0.2835 0.239 0.2592 

73-17-17-1 0.2171 0.2368 0.2375 0.2199 0.2977 0.2533 

73-18-18-1 0.2354 0.2719 0.276 0.254 0.2444 0.2533 

73-19-19-1 0.2782 0.2182 0.3253 0.2565 0.259 0.2897 

73-20-20-1 0.2493 0.2329 0.2483 0.2036 0.245 0.2453 

73-21-21-1 0.3219 0.2514 0.3068 0.2413 0.2674 0.2599 

73-22-22-1 0.2312 0.1958 0.2732 0.2824 0.2329 0.2743 

73-23-23-1 0.26 0.2227 0.3154 0.2826 0.2493 0.266 

73-24-24-1 0.2942 0.1632 0.1632 0.2555 0.2724 0.2482 

73-25-25-1 0.2494 0.2259 0.2259 0.2731 0.2475 0.2978 

73-26-26-1 0.292 0.1993 0.2001 0.236 0.2446 0.3276 

73-27-27-1 0.2398 0.2669 0.2986 0.2194 0.2645 0.3068 

73-28-28-1 0.2663 0.2547 0.2547 0.2643 0.2333 0.3094 

73-29-29-1 0.3233 0.2062 0.31324 0.2709 0.2213 0.3157 

73-30-30-1 0.2182 0.2966 0.2468 0.2045 0.2724 0.264 

73-31-31-1 0.2605 0.2688 0.2777 0.2615 0.2743 0.3243 

73-32-32-1 0.3433 0.3412 0.2681 0.2833 0.2717 0.3035 

73-33-33-1 0.3525 0.2652 0.3012 0.272 0.2635 0.2958 

73-34-34-1 0.1874 0.265 0.3205 0.2495 0.2359 0.2359 

73-35-35-1 0.2804 0.2914 0.2704 0.2731 0.2621 0.3022 
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Table M.2 : MSE values of validation data sets (navigation task with feature 

selection). 

Network 

structure 
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

13-1-1-1 0.2819 0.2068 0.2001 0.284 0.2819 0.2811 

13-2-2-1 0.2639 0.2403 0.2486 0.2784 0.2454 0.2488 

13-3-3-1 0.3091 0.2852 0.2845 0.2602 0.2517 0.2482 

13-4-4-1 0.2688 0.2207 0.2531 0.2279 0.2441 0.2688 

13-5-5-1 0.2616 0.2199 0.217 0.2459 0.2616 0.2616 

13-6-6-1 0.2867 0.2139 0.2401 0.2561 0.2465 0.2465 

13-7-7-1 0.3383 0.1664 0.1699 0.2507 0.2569 0.2478 

13-8-8-1 0.358 0.2103 0.2307 0.2511 0.2577 0.2785 

13-9-9-1 0.2614 0.2206 0.2341 0.2573 0.2648 0.2614 

13-10-10-1 0.2761 0.257 0.2395 0.2268 0.2336 0.2756 

13-11-11-1 0.2782 0.2469 0.2469 0.2775 0.2768 0.275 

13-12-12-1 0.2418 0.1972 0.2083 0.2715 0.24 0.2418 

13-13-13-1 0.3125 0.2233 0.2617 0.2564 0.2706 0.3125 

13-14-14-1 0.3151 0.2271 0.1993 0.2518 0.2379 0.2379 

13-15-15-1 0.3423 0.1756 0.2137 0.2679 0.2636 0.2839 

13-16-16-1 0.3209 0.2213 0.1673 0.2571 0.3008 0.2587 

13-17-17-1 0.2884 0.2619 0.2467 0.2715 0.2726 0.2884 

13-18-18-1 0.2665 0.2177 0.1732 0.3182 0.2686 0.2665 

13-19-19-1 0.3418 0.2129 0.2362 0.2786 0.1862 0.2579 

13-20-20-1 0.3275 0.2224 0.2334 0.3031 0.3066 0.3275 

13-21-21-1 0.3367 0.2202 0.2215 0.276 0.3172 0.3091 

13-22-22-1 0.334 0.197 0.2231 0.3232 0.2844 0.3003 

13-23-23-1 0.3128 0.2327 0.2378 0.2181 0.312 0.271 

13-24-24-1 0.275 0.1899 0.1681 0.2874 0.2924 0.275 

13-25-25-1 0.2839 0.2253 0.2516 0.3313 0.2843 0.2839 

13-26-26-1 0.2881 0.2513 0.2207 0.2868 0.2608 0.2881 
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Table M.3 : MSE values of validation data sets (cargo operation task without feature 

selection). 

Network 

structure 
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

73-1-1-1 0.1906 0.2495 0.2209 0.241 0.2839 0.2406 

73-2-2-1 0.1964 0.1863 0.1732 0.2584 0.2425 0.254 

73-3-3-1 0.17 0.2059 0.1748 0.1765 0.2428 0.1733 

73-4-4-1 0.1714 0.253 0.1165 0.2634 0.325 0.251 

73-5-5-1 0.2406 0.1568 0.1858 0.2382 0.2763 0.2886 

73-6-6-1 0.2622 0.2427 0.1935 0.2273 0.301 0.2972 

73-7-7-1 0.2201 0.261 0.2261 0.2598 0.3161 0.2861 

73-8-8-1 0.2644 0.2389 0.2185 0.1182 0.2271 0.2209 

73-9-9-1 0.2624 0.2057 0.1557 0.1507 0.2681 0.2568 

73-10-10-1 0.2596 0.1532 0.1502 0.2071 0.2863 0.2727 

73-11-11-1 0.2568 0.1971 0.1756 0.2638 0.1816 0.1871 

73-12-12-1 0.2663 0.131 0.2085 0.2143 0.2203 0.2203 

73-13-13-1 0.2281 0.1422 0.1504 0.3191 0.1846 0.2284 

73-14-14-1 0.1717 0.1824 0.2274 0.3267 0.3245 0.2648 

73-15-15-1 0.193 0.1933 0.1818 0.1929 0.3845 0.2864 

73-16-16-1 0.2276 0.196 0.1653 0.2403 0.2779 0.2471 

73-17-17-1 0.141 0.249 0.1757 0.2223 0.213 0.2413 

73-18-18-1 0.1892 0.169 0.2452 0.2868 0.1772 0.2026 

73-19-19-1 0.1968 0.1395 0.2639 0.2382 0.1907 0.2441 

73-20-20-1 0.2193 0.2458 0.2023 0.236 0.2301 0.2197 

73-21-21-1 0.2312 0.1144 0.1903 0.2912 0.2246 0.2465 

73-22-22-1 0.25 0.1581 0.1756 0.2571 0.2034 0.2135 

73-23-23-1 0.1963 0.2073 0.211 0.2851 0.2311 0.1712 

73-24-24-1 0.245 0.2073 0.1987 0.1816 0.2564 0.2022 

73-25-25-1 0.2728 0.1275 0.1606 0.2743 0.2292 0.2259 

73-26-26-1 0.2716 0.2212 0.0899 0.203 0.2075 0.2075 

73-27-27-1 0.1927 0.1678 0.1075 0.2428 0.2468 0.1985 

73-28-28-1 0.194 0.2423 0.1319 0.2068 0.3062 0.223 

73-29-29-1 0.2073 0.1824 0.2379 0.1925 0.2925 0.2734 

73-30-30-1 0.1899 0.1441 0.1511 0.178 0.2361 0.2131 

73-31-31-1 0.2732 0.1998 0.2361 0.2798 0.2937 0.3035 

73-32-32-1 0.1616 0.1578 0.2417 0.2278 0.2482 0.2781 

73-33-33-1 0.1961 0.1553 0.2507 0.2527 0.2532 0.2754 

73-34-34-1 0.1975 0.1777 0.1634 0.2686 0.1813 0.2149 

73-35-35-1 0.224 0.1627 0.2069 0.2874 0.2041 0.2333 
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Table M.4 : MSE values of validation data sets (cargo operation task with feature 

selection). 

Network 

structure 
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 

10-1-1-1 0.2068 0.1759 0.1811 0.1764 0.2457 0.1899 

10-2-2-1 0.2419 0.2086 0.1498 0.1445 0.2564 0.181 

10-3-3-1 0.1887 0.1717 0.1715 0.2349 0.1817 0.168 

13-4-4-1 0.2236 0.1522 0.1585 0.2031 0.1925 0.1668 

10-5-5-1 0.1937 0.1762 0.1552 0.2535 0.1611 0.2588 

10-6-6-1 0.1455 0.2044 0.2759 0.2575 0.2558 0.2043 

10-7-7-1 0.1737 0.1494 0.1494 0.1376 0.1951 0.1638 

10-8-8-1 0.1705 0.2289 0.2289 0.1961 0.2197 0.214 

10-9-9-1 0.1893 0.2396 0.2259 0.1224 0.2537 0.1901 

10-10-10-1 0.1863 0.2484 0.2255 0.2381 0.2359 0.2354 

10-11-11-1 0.1761 0.161 0.1817 0.1745 0.2315 0.2172 

10-12-12-1 0.1738 0.2078 0.1659 0.1165 0.247 0.2163 

10-13-13-1 0.1795 0.1582 0.1855 0.2052 0.2386 0.1957 

10-14-14-1 0.1368 0.2655 0.1594 0.2168 0.2367 0.2009 

10-15-15-1 0.1506 0.2323 0.2531 0.1992 0.304 0.2247 

10-16-16-1 0.2149 0.2356 0.1502 0.1887 0.2466 0.2571 

10-17-17-1 0.1605 0.239 0.1632 0.1758 0.221 0.2733 

10-18-18-1 0.1654 0.1999 0.2088 0.2181 0.2575 0.2687 

10-19-19-1 0.1541 0.1646 0.1646 0.1721 0.2075 0.2075 

10-20-20-1 0.0837 0.2528 0.1952 0.1093 0.2077 0.1835 
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