

F
E

B
R

U
A

R
Y

 2
0

2
2

M
.S

c. in
 E

lectrica
l a

n
d

 E
lectro

n
ics E

n
g
in

eerin
g

U

Ğ
U

R
 P

O
L

A
T

REPUBLIC OF TURKEY

GAZİANTEP UNIVERSITY

GRADUATE SCHOOL OF NATURAL & APPLIED SCIENCES

DEVELOPMENT OF EMBEDDED SYSTEM FOR ENERGY

ANALYZER

M.Sc. THESIS

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

BY

UĞUR POLAT

FEBRUARY 2022

DEVELOPMENT OF EMBEDDED SYSTEM FOR ENERGY

ANALYZER

M.Sc. Thesis

in

Electrical and Electronics Engineering

Gaziantep University

Supervisor

Assist. Prof. Dr. Nurdal WATSUJİ

by

Uğur POLAT

February 2022

©2022[Uğur POLAT]

DEVELOPMENT OF EMBEDDED SYSTEM FOR ENERGY ANALYZER

submitted by Uğur POLAT in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Electronics Engineering, Gaziantep University

is approved by,

Prof. Dr. Mehmet İshak YÜCE

Director of the Graduate School of Natural and Applied Sciences…………..............

Prof. Dr. Ergün ERÇELEBİ

Head of the Department of Electrical and Electronics Engineering…………..............

Assist. Prof. Dr. Nurdal WATSUJİ

Supervisor, Electrical and Electronics Engineering

Gaziantep University …………..............

Graduation Date: 03 February 2022

Examining Committee Members:

Assist. Prof. Dr. Nurdal WATSUJİ

Thesis Supervisor, Electrical and Electronics Engineering

Gaziantep University …………..............

Prof. Dr. Arif NACAROĞLU

Electrical and Electronics Engineering

Gaziantep University …………..............

Assist. Prof. Dr. Noor Baha ALDİN

Electrical and Electronics Engineering

Hasan Kalyoncu University …………..............

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Uğur POLAT

ABSTRACT

DEVELOPMENT OF EMBEDDED SYSTEM FOR ENERGY ANALYZER

POLAT, Uğur

MSc. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Nurdal WATSUJİ

February, 2022

146 pages

The increase in energy consumption and the gradual decrease in limited energy

resources raise fundamental questions such as how much energy is produced, what is

its efficiency, how it distributes to the end users. Not only on an individual basis, but

also on a global basis research and development are carried out on this subject. Also,

required equipment usage in energy generation, distribution and utilization is

increasing every day, too. In the common systems for monitoring, need to install

individual measuring devices e.g., Voltmeter, Oscilloscope, etc. separately because of

the harmonic currents and voltages in the grids. Our design yields an industrial

analyzer that sense the current and voltage at the input then designed circuit transmits

signals proportional levels to the MCU which will be analyzed based on some

standards such as IEEE Std 1459TM-2010 [1]. An A/D converter, converts the voltage

and current signals to the digital representation at regular intervals. MCU periodically

samples (f_sampling=1600 Hz, N=32, A/D resolution 12-bit) then analyze the voltage

and current signals at regular intervals of time with the *0,4 % error rate. Then, it stores

the data of electrical variables which are analyzed. e.g., frequency, true RMS volts,

true RMS amps, cos(φ) and even harmonic values, including energy variables. For the

project ARM based STM-32F405 and LCD-TFT screen which part number is HY-

32D are one of the most important components. The features of this device completely

provide our requirements with isolation circuits, fuses and another safety equipment.

As a summary, it is the goal of the thesis to develop a compact analyzer device that

analyzes the variable parameters in a grid by eliminating the require of multiple

measuring devices. Thanks to the LCD, with the compact design we are able to see all

data only on a screen and it’s completely mobilized.

*The error rate depends on the f_sampling, N, and A/D resolution.

Key Words: Embedded Systems, Arm Cortex, Energy Analyzer, Single Phase

Analyzer, STM-32f429, Digital Signal Processing, Real-time

Operating System.

ÖZET

GÖMÜLÜ SİSTEM KULLANARAK BİR ENERJİ ANALİZÖRÜ

GELİŞTİRİLMESİ

POLAT, Uğur

Yüksek Lisans Tezi, Elektrik Elektronik Mühendisliği

Danışman: Dr. Öğrt. Üyesi Nurdal WATSUJİ

Şubat, 2022

146 sayfa

Enerji tüketiminin artması ve sınırlı enerji kaynaklarının giderek azalması; ne kadar

enerji üretildiğinin, verimliliğin, son kullanıcılara nasıl dağıtıldığının sorularını

gündeme getiriyor. Bu konuda sadece bireysel bazda değil, global bazda da araştırma

ve geliştirmeler mevcuttur. Ayrıca enerji üretimi, dağıtımı ve kullanımında gerekli

ekipman kullanımı da her geçen gün artmaktadır. Güç sistemlerinde şebekedeki

dengesiz harmonik akımlar ve gerilimleri gözlemek için; Voltmetre, Ampermetre,

Osiloskop Wattmetre vb. ayrı ayrı ölçüm cihazlarının kurulumu gereklidir. Yapmış

olduğumuz çalışmamızda, şebekeden gelen akımı ve voltajı algılayan özel bir devre

MCU'ya orantılı seviyelerde sinyaller iletir. IEEE Std 1459TM-2010 [1] gibi bazı

standartlara göre analizler yapılır. Bir A/D dönüştürücü, voltaj ve akım sinyallerini

düzenli aralıklarla ayrık zamanlı sinyale dönüştürür. MCU periyodik olarak örnekler

(f_sampling=1600 Hz, N=32, A/D çözünürlüğü 12-bit) daha sonra voltaj ve akım

sinyallerini düzenli aralıklarla yaklaşık *0,4 % hata oranıyla analiz eder. Analiz edilen

frekans, RMS voltları, RMS amperleri, cos(φ), harmonikler ve enerji değerleri ölçülür.

Projede STM-32F405 MCU ve HY-32D LCD-TFT ekran en önemli bileşenlerden

biridir. PCB'miz için izolasyon devreleri, sigortalar ve diğer güvenlik ekipmanları ile

gereksinimlerimizi tamamen karşılamaktadır. Özet olarak, birden fazla ölçüm cihazı

gereksinimini ortadan kaldıran bir şebekedeki değişken parametreleri analiz eden tek

bir analizör geliştirmek tezin amacıdır. LCD sayesinde tüm verileri sadece bir ekranda

gösterecek mobilize ve kompakt yapıda olacaktır.

*Hata oranı f_örnekleme, N ve A/D çözünürlüğüne bağlıdır.

Anahtar Kelimeler: Gömülü Sistem, Arm Cortex, Enerji Analizörü, Tek Fazlı

Analizör, STM-32f429, Sayısal Sinyal İşleme, Gerçek

Zamanlı İşletim Sistemi

‘‘Dedicated to my darling wife Kübra, daughter Eslem

Âmine and science of electronics…’’

VIII

ACKNOWLEDGEMENTS

I would like to thanks my supervisor, Assist. Prof. Dr. Nurdal WATSUJİ and my

motivator Mr. F. Gökçegöz and Mr. U. Şentürk for their guidance and support

throughout the study. I am thankful for their encouragement and motivation.

I would like to express my gratitude and gratitude to my teachers who have supported

me throughout my studies, to my darling wife, my family and friends who have

always been there for me.

IX

TABLE OF CONTENTS

Page

ABSTRACT ... V

ÖZET .. VI

ACKNOWLEDGEMENTS .. VIII

TABLE OF CONTENTS ... IX

LIST OF TABLES .. XII

LIST OF FIGURES ... XIII

LIST OF SYMBOLS .. XVIII

LIST OF ABBREVIATIONS .. XIX

CHAPTER I: INTRODUCTION ... 1

1.1. Literature Summary ... 1

1.1.1 Effective Value in AC Systems .. 2

1.1.2 Phase Difference Between AC Voltage and AC Current 4

1.1.3 Power Calculation in AC Systems ... 5

1.1.4 Power Factor (Cos φ) in Power Systems .. 7

1.1.5 Harmonic Distortion ... 9

1.2 Purpose of the Thesis ... 13

1.3 Conclusion and Key Findings .. 14

CHAPTER II: PHASE LOCKED LOOP (PLL) DESIGN 16

2.1 Phase Locked Loop .. 16

2.2 Phase Locked Loop (PLL) Methods .. 19

2.2.1 Notch Filtered Single Phase PLL ... 19

2.2.2 Orthogonal Signal Generator ... 26

2.3 Discretizing the Phase Locked Loop Model .. 35

X

2.3.1 Separation of the Second Order Low Pass Filter 36

2.3.2 Discretization of the PI Controller ... 39

2.3.3 Discrete Time Model of Classical PLL Structure 43

2.3.4 Software Implementation of the Digital PLL Model with PSIM 45

2.4 Hardware Implementation of Software PLL ... 47

CHAPTER III: HARDWARE DESIGN FOR INDUSTRIAL ANALYZER 50

3.1 Main Supply Circuit .. 50

3.2 Voltage Detection Circuit .. 51

3.3 Current Detection Circuit .. 53

3.4 Voltage and Current Zero-cross Detection Circuit 55

3.5 Battery Back-up Circuit ... 56

3.6 Microcontroller Unit (MCU) ... 57

3.7 Human Hardware Interface Design ... 62

3.8 Communication Hardware ... 66

3.9 Designed PCB .. 68

CHAPTER IV: SOFTWARE DESIGN FOR INDUSTRIAL ANALYZER 70

4.1 Message Queue Based Operating System ... 70

4.2 TFT-LCD Graphical Library ... 73

4.3 Effective Value Calculation of Voltage and Current in Discrete Time ... 75

4.4 Harmonics and Fast Fourier Transform (FFT) Analysis 79

4.5 The Calculation of Phase Angle [cos(𝝋)] ... 82

4.6 The Calculation of Power Factor (PF) ... 85

4.7 Power and Energy Calculation .. 88

CHAPTER V: HARDWARE REALIZATION AND MEASUREMENT

RESULTS .. 91

5.1 Working Screens .. 91

5.2 The Effect of Sampling Frequency on the Measurements 98

XI

5.3 The Effect of Analog Digital Converter Resolution on Measurements ... 98

5.4 The Effect of Total Number of Samples on Measurements 100

5.5 Other Factors That Effective on The Results... 101

CHAPTER VI: MODBUS COMMUNICATION ... 103

6.1 Modbus Communication ... 103

CHAPTER VII: CONCLUSION AND FUTURE WORKS 106

REFERENCES .. 108

APPENDIX .. 111

Appendix A: Simulating the PLL for Varying Conditions for Notch Filter 111

Appendix B: Simulating the PLL for Varying Conditions for OSG Filter 114

Appendix C: Schematic of Human Hardware Interface HY32D 117

Appendix D: Schematic of HC-06 Bluetooth Device ... 118

Appendix E: Real-time Operating System Message Queue Service Codes 119

E.1 Service Function of the System ... 119

E.2 Message Sending Function to the System 119

E.3 Message Requesting Function from the System 119

Appendix F: 𝐂𝐨𝐬𝝋 Calculating Function by the MCU 121

Appendix G: Power Factor Calculating Function by the MCU 122

Appendix H: MODBUS Communication Address Mapping: 123

Cirriculum Vitae ...124

XII

LIST OF TABLES

 Page

Table 1.1 Electrical device classification according to EN 61000 - 3 - 2

standard 10

Table 1.2 Harmonic limits according to EN 61000 - 3 - 2 standards 12

Table 1.3 Voltage distortion limits according to IEEE 519 - 1992 standard 12

Table 2.1 PLL and adaptive notch filter coefficients ... 32

Table 5.1 Experiment results with the different sampling frequency 98

Table 5.2 Experiment results with the different resolutions of ADC 99

Table 5.3 Experiment results with the different samples of ADC 101

Table 6.1 Query .. 105

Table 6.2 Response ... 105

XIII

LIST OF FIGURES

 Page

Figure 1.1 Equivalent system block diagram for an energy analyzer 2

Figure 1.2 Value of the grid voltage in sine form .. 3

Figure 1.3 Sinusoidal signals that has the phase difference 4

Figure 1.4 Sinusoidal signals that has phase difference 5

Figure 1.5 Power Triangle, Relationship between Power factors 6

Figure 1.6 Instantaneous voltage, current and power values 6

Figure 1.7 A current signal with the 5th harmonic in it 9

Figure 1.8 Flow chart to apply standard EN 61000 - 3 -2 11

Figure 2.1 Phase Locked Loop Block Diagram ... 17

Figure 2.2 Single Phase PLL With Notch Filter .. 19

Figure 2.3 The response of the notch filter .. 21

Figure 2.4 Filter Interrupt flow chart ... 23

Figure 2.5 PLL Response to Varying Grid Conditions 23

Figure 2.6 PLL Response to Varying Grid Conditions 24

Figure 2.7 PLL Response to Varying Grid Conditions 24

Figure 2.8 PLL Response to Varying Grid Conditions 25

Figure 2.9 PLL Response to Varying Grid Conditions 25

Figure 2.10 OSG Based Single Phase PLL .. 26

Figure 2.11 Second Order Generalized Integrator for Orthogonal Signal

Generation 26

Figure 2.12 Extraction of the Fifth Harmonic Using the SOGI 28

Figure 2.13 Interrupt Filter flow chart .. 29

Figure 2.14 Phase Jump of 90° ... 29

Figure 2.15 Phase Jump of 90° ... 30

Figure 2.16 Frequency drift at mid-point highlights the need for adaptive notch

filter ... 30

Figure 2.17 Amplitude change (Voltage Sags and Dips) 31

Figure 2.18 Amplitude change with harmonics (Voltage Sags and Dips) 31

XIV

Figure 2.19 The signal 𝑥(𝑡) for 𝑓 = 50 Hz and 𝑇 = 0.2 s. 32

Figure 2.20 Under the multiple disturbances; (a) the signal, 𝑥(𝑡), (b) reference-

filter output signal, and (c) FFT of the filter output. 33

Figure 2.21 Single-phase PLL application with OSG ... 33

Figure 2.22 Conventional OSG; a) SOGI, b) Park, c) Derivative, d) APF PLL . 33

Figure 2.23 Responses of the estimated angle error for 1 rad step change in

PLL input phase .. 34

Figure 2.24 Responses of the estimated angle error for 50 rad/s step change in

PLL input frequency .. 34

Figure 2.25 Responses of the estimated angle error for 50 rad/s step change in

PLL input frequency ... 35

Figure 2.26 Classic PLL PSIM model .. 35

Figure 2.27 Response of MATLAB for Discrete-time transfer function 37

Figure 2.28 Response of MATLAB for Continuous-time transfer function 37

Figure 2.29 Programming block diagram for a second order low pass filter 38

Figure 2.30 Calculation of filter coefficients with PSIM 39

Figure 2.31 General structure of the PI controller .. 40

Figure 2.32 Programming block diagram for PI controller 42

Figure 2.33 Calculation of 𝐾𝑃 and 𝐾𝑖 coefficients with Simulink environment 43

Figure 2.34 Discrete time block diagram of the classical PLL model 43

Figure 2.35 Response of digital PLL to sinusoidal input signal 44

Figure 2.36 Software implementation of digital PLL ... 45

Figure 2.37 Software PLL's response to sinusoidal input signal 45

Figure 2.38 Sampled Signal from the grid voltage (Vline) 47

Figure 2.39 PLL output signal that locked to the grid signal 48

Figure 2.40 MATLAB Simulink Demo PLL Program Outputs.......................... 49

Figure 3.1 Sophisticated Triac Driver Optoisolator 230 VAC to 12 VDC

Power Supply Circuit 50

Figure 3.2 5 VDC circuit for TFT-LCD .. 50

Figure 3.3 3V3 DC circuit for electronic components 51

Figure 3.4 Voltage detection circuit ... 51

Figure 3.5 Voltage offset circuit .. 53

Figure 3.6 Current detection circuit with hall effect sensor 53

Figure 3.7 Current output circuit .. 54

XV

Figure 3.8 Characteristic Performance data of ACS711KLCA-25A, Vcc=3,3 V

 .. 55

Figure 3.9 Zero-cross detection circuit ... 56

Figure 3.10 Battery backup circuit .. 56

Figure 3.11 Central processing unit (CPU) input and outputs 57

Figure 3.12 STM32F405VGT6 microchip designed by STM. 59

Figure 3.13 General features of the STM32F405VGT6 chip by STM. 60

Figure 3.14 ST-LINK/V2 in-circuit debugger/programmer for STM8 and

STM32 61

Figure 3.15 Serial communication debugger interface circuit 61

Figure 3.16 External Oscillator circuit .. 62

Figure 3.17 Human Hardware Interface TFT-LCD Front view 63

Figure 3.18 Human Hardware Interface TFT-LCD Rear view 63

Figure 3.19 Header wiring diagram for connection between TFT-LCD and

MCU .. 64

Figure 3.20 LED Indicators ... 65

Figure 3.21 Human PCB Interface buttons ... 65

Figure 3.22: RS-485 Interface circuit with the MCU .. 66

Figure 3.23 Bluetooth Serial Interface with the MCU .. 66

Figure 3.24 Preferred Bluetooth Module (HC-06) .. 67

Figure 3.25 USB Full-speed Interface Circuit .. 67

Figure 3.26 Designed PCB, Board Layer Stack Front view v.0.2 68

Figure 3.27 Designed PCB, Board Layer Stack Rear view v.0.2 68

Figure 3.28 Designed PCB, 3D Front view v.0.2 ... 69

Figure 3.29 Designed PCB, 3D Front view v.0.2 ... 69

Figure 4.1 Message Queue Structure .. 70

Figure 4.2 AppWizard by SEGGER and GUI Builder by NXP 74

Figure 4.3 emWin Bitmap Converter tool by SEGER. 74

Figure 4.4 STM-32F405 DMA Structure .. 76

Figure 4.5 CPU and DMA1 request an access to SRAM1................................ 76

Figure 4.6 Peripheral-to-memory transfer states ... 77

Figure 4.7 Memory-to-peripheral transfer states ... 77

Figure 4.8 Timing diagram for sampling .. 78

Figure 4.9 Effective values of the Current Harmonics...................................... 82

https://d.docs.live.net/45f14ad62f5816d3/Masaüstü/Thesis/20220223%20MSc.%20Thesis%20by%20UP.docx#_Toc96557213

XVI

Figure 4.10 Voltage and current signal to be calculated phase difference 83

Figure 4.11 MATLAB output of Cos φ calculation for a harmonic-free system 84

Figure 4.12 Voltage and harmonic current signal to be calculated phase

difference 85

Figure 4.13 MATLAB output of cos𝜑 calculation for a harmonic system 85

Figure 4.14 Power factor calculation on MATLAB for a harmonic system 87

Figure 4.15 State of powers according to the sign of the phase angle 89

Figure 4.16 Energy flow direction according to the state of forces 88

Figure 5.1 Voltage, Current, frequency, Cos φ and PF analyze screen without

the load 91

Figure 5.2 Active, Reactive and Apparent Power Analyze Screen without the

load 92

Figure 5.3 Imported Active, Inductive and Reactive Energy Analyze Screen

without the load .. 92

Figure 5.4 Exported Active, Inductive and Reactive Energy Analyze Screen

without the load .. 93

Figure 5.5 Voltage Harmonical Spectrum Graphical Analyze Screen without the

load 93

Figure 5.6 Voltage Harmonic Ratios Analyzed Values without the load 94

Figure 5.7 Current Harmonical Spectrum Graphical Analyze Screen without

the load 94

Figure 5.8 Current Harmonic Ratios Analyzed Values without the load 94

Figure 5.9 Total Harmonic Distortion on the Voltage and Current Analyze Screen

without the load .. 95

Figure 5.10 Voltage, Current, frequency, Cos φ and PF analyze screen on the load

 .. 95

Figure 5.11 Active, Reactive and Apparent Power Analyze Screen on the load . 95

Figure 5.12 Imported Active, Inductive and Reactive Energy Analyze Screen

on the load 96

Figure 5.13 Exported Active, Inductive and Reactive Energy Analyze Screen

on the load 96

Figure 5.14 Voltage Harmonical Spectrum Graphical Analyze Screen on the

load 96

Figure 5.15 Voltage Harmonic Ratios Analyzed Values on the load 97

https://d.docs.live.net/45f14ad62f5816d3/Masaüstü/Thesis/20220223%20MSc.%20Thesis%20by%20UP.docx#_Toc96557244
https://d.docs.live.net/45f14ad62f5816d3/Masaüstü/Thesis/20220223%20MSc.%20Thesis%20by%20UP.docx#_Toc96557245

XVII

Figure 5.16 Current Harmonical Spectrum Graphical Analyze Screen on the

load 97

Figure 5.17 Current Harmonic Ratios Analyzed Values on the load 97

Figure 5.18 Total Harmonic Distortions on the Voltage and Current Analyze

Screen on the load .. 98

Figure 5.19 Voltage and Current Graphs when the ADC has 6-bits resolution ... 99

Figure 5.20 Voltage and Current Graphs when the ADC has 8-bits resolution ... 99

Figure 5.21 Voltage and Current Graphs when the ADC has 10-bits resolution100

Figure 5.22 Voltage and Current Graphs when the ADC has 12-bits resolution100

XVIII

LIST OF SYMBOLS

φ Phase Difference between Voltage and Current

f Frequency

Ω Ohm

π Pi

𝝎 Angular Velocity

fc Cutting Frequency

fs Sampling Frequency

T Periodic Time

Ts Sampling Periodic Time

ζ Damping Ratio

Kv Voltage Distortion Rate

Ki Current Distortion Rate

P Active Power

Q Reactive Power

S Apparent Power

THD Total Harmonic Distortion

THDI Total Harmonic Distortion in Current

THDV Total Harmonic Distortion in Voltage

Vrms RMS Voltage

Vref Reference Voltage

XIX

LIST OF ABBREVIATIONS

A/D Analog to Digital Converter

AC Alternate Current

ADC Analog to Digital Converter

AGND Analog Ground

APF All-pass-filter

BAM Batch Acquisition Mode

BPF Band-Pass Filter

CLK Clock

CMOS Complementary Metal Oxide Semiconductor

CONVST Conversation Start

CRC Cyclic redundancy checky

D/A Digital to Analog Converter

DAC Digital to Analog Converter

DC Direct Current

DGND Digital Ground

DMA Direct- memory Address

DSP Digital Signal Processor

DVMs Digital Volt-meters

FET Field Effect Transistor

FIFO First IN First OUT

FFT Fast Fourier Transform

FPU Floating-point Unit

FS Full- Scale

GUI Graphical User Interface

IC Integrated Circuit

ISR Interrupt Service Routine

LCD Liquid Crystal Display

XX

LPF Low-Pass Filter

LSB Least Significant Bit

MPU Memory Protection Unit

MSB Most Significant Bit

MSPS Mega-Samples Per Second

NZ Nyquist Zone

OSG Orthogonal signal generator

P Active Power- Magnitude of Complex Power

PCB Printed Circuit Board

PD Phase Detect

PF Power Factor

PCM Pulse Code Modulation

PGA Programmable Gain Amplifier

PLL Phase Lock Loop

PWM Pulse Width Modulation

Q Reactive Power- Magnitude of Complex Power

RAM Random Access Memory

REFIN Reference Input

REFOUT Reference Output

RD Read

RMS Root Mean Square

RNG Random number generator

RTC Real-time Clock

RTD Resistive Temperature Detector

RTOS Real-Time Operating System

S Apparent Power- Magnitude of Complex Power

SRAM Static Random-Access Memory

SAR Successive Approximation

SFDR Spurious-Free Dynamic Range

SHA Sample and Hold Amplifier

SNR Signal to Noise Ratio

SOGI Second-order generalized integrator

SPI Serial Peripheral Interface

XXI

T/H Track and Hold

TF Transfer Function

TFT Thin Film Transistor

THD Total Harmonic Distortion

USART
Universal Synchronous Asynchronous Receiver

Transmitter

VCO Voltage-Controlled Oscillator

WE Windowing Effect

WRT Write

1

CHAPTER I

INTRODUCTION

1.1. Literature Summary

The measurement in electrical systems is generally a numerical expression of an

electrical quantity. There are lots of data in the electrical networks. In alternative

current systems, generally voltage, current, frequency, phase difference, power factor,

active power, reactive power and energy values are numerically measured values. In

the common systems for monitoring power circuits, we require to install individual

measuring devices e.g., Voltmeter, Ammeter, Oscilloscope, Wattmeter etc. separately

because of the increasing harmonic currents and voltages in the grids. Our design

yields an industrial analyzer that sense the current and voltage at the input terminals

then designed special circuit transmits signals proportional levels to the MCU which

will be analyzed based on some standards such as IEEE Std 1459TM-2010 [1]. A 12-

bit A/D converter, converts the voltage and current signals to the digital representation

at regular intervals. MCU periodically samples (f_sampling=1600 Hz, N=32, A/D

resolution 12-bit) then analyze the voltage and current signals at regular intervals of

time with the approximately 0,4 % error rate. (The error rate depends on the

f_sampling, N, and A/D resolution.) After that, stores the data of electrical variables

which is analyzed. e.g., these electrical variables may be frequency, true RMS volts,

true RMS amps, cos(φ) and even harmonic values, including energy variables. For the

project ARM Cortex family as STM-32F405 and LCD-TFT screen which part number

is HY-32D are one of the most important components. The features of this device

completely provide our requirements with isolation circuits, fuses and another safety

equipment for our PCB. As a summary, it is an objective of the thesis to develop an

industrial analyzer which a single analyzer device that analyzes the variable

parameters in a grid by eliminating the require of multiple measuring devices. Thanks

2

to the LCD, we are able to see all data only in a screen and it’s completely mobilized.

You can see block diagram of the analyzer in Figure (1.1).

Figure 1.1 Equivalent system block diagram for an energy analyzer

1.1.1 Effective Value in AC Systems

Voltage and current magnitudes change according to time and have a certain amplitude

and frequency. For this reason, it is usually expressed with its effective values.

Effective value is a type of value that enables the expression of equivalent equivalents

of magnitudes in alternating current systems in direct current systems. It can be

expressed as the equivalent of AC voltage required to obtain the amount of heat energy

generated in a resistance under a DC voltage [2].

The effective value can be represented as the RMS (Root Mean Square) value

consisting of the effective value or the initials of its English equivalent. The active

power expended on a load is obtained by equation (1.2) in alternating and direct current

systems [2]. According to this equation, the effective value can be expressed as the

square root of the mean of the square of the voltage (or current), the integral over a

period. In digital systems, the sum of the squares of instantaneous samples of the signal

is averaged. The square root of this value is calculated and therefore the effective value

is found.

𝑃 =
𝑉2

𝑅
 (1. 1)

C
P

U

A/D Converter
Amplifier &

Filter

Voltage
Sensor and

Zero-crossing

Line Voltage
[INPUT]

A/D Converter
Amplifier &

Filter
Current Sensor

Load Current
[OUTPUT]

Data sampling in

discrete time

Data amplifying

and filtering

Data sampling in

discrete time

Data amplifying

and filtering

Voltage Sensing

Voltage Sensing

Input data

Input Data

3

𝑉𝑑𝑐
2

𝑅
=

1

𝑇
⋅ ∫

𝑣(𝑡)2

𝑅
⋅ ⅆ𝑡

𝑇

0

 (1. 2)

𝑉𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫ 𝑣(𝑡)2 ⋅ ⅆ𝑡

𝑇

0
 (1. 3)

The effective (effective) value of the grid voltage in sine form can be written as in

(1.5) equation.

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡) (1. 4)

𝑣𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫

𝑇

0
{𝑣𝑚 ⋅ sin(𝑤𝑡)}2 ⋅ ⅆ𝑡 (1. 5)

Figure 1.2 Value of the grid voltage in sine form

The effective value of the network voltage in the sine form in the range of [0, 2π] can

be mathematically calculated by equation (1.6) where 𝑣𝑚 as the peak value.

𝑣𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫

𝑇

0
[𝑣𝑚 ⋅ sin(𝜔𝑡)]2 ⋅ ⅆ𝑡 (1. 6)

𝑣𝑟𝑚𝑠 =
𝑣𝑚

√2
 (1. 7)

The wave in red is said to lead the wave in green by θ.

The wave in green sin(ωt) is said to lag the wave in red by θ.

The units of θ and t must be consistent when computing the

sine function.

4

1.1.2 Phase Difference Between AC Voltage and AC Current

Inductance and capacitors in AC systems cause phase difference between voltage and

current [3]. If we take the V1 signal as reference in Figure (1.3), the V2 signal is in

reverse phase according to the V1 signal, and the V3 signal is in forward phase

according to the V1 signal. Even if the amplitudes are not equal, the frequencies must

be equal in order to be able to talk about the phase difference. If there is a DC

component on the signal, this component can be reset and the phase difference can be

checked [3].

Figure 1.3 Sinusoidal signals that has the phase difference

If the load is pure ohmic, there is no phase difference between voltage and current [3].

In case of inductive load, the current is in phase back from the voltage, in case of

capacitive load the voltage is in phase back from the current.

This phase difference between voltage and current is denoted by "𝜑" and is called the

phase angle. Since the phase angle close to zero is the most ideal situation for the

network, the reactive power in the systems is compensated and the phase difference

between the current drawn from the network and the voltage is tried to be reset. In this

case, the reactive power required by the system is supplied from the compensation

panel installed in the operation.

Current and voltage signals with a phase difference of 57.3 ° is shown in Figure (1.4).

5

Figure 1.4 Sinusoidal signals that has phase difference

1.1.3 Power Calculation in AC Systems

Active power (P) in AC systems is defined as useful and usable power. Reactive power

(Q) is defined as the power that does not work actively but is withdrawn from the

network and then transferred back to the network. Apparent power (S) is the total

resultant power formed by active and reactive power components. If the system has a

pure ohmic load, there will be no phase difference between the current and voltage, so

there will be no reactive power. Therefore, the active power value will be equal to the

apparent power value. If there is a reactive power in the system, the apparent power

will be equal to the combination of active and reactive powers.

𝑆2 = 𝑃2 + 𝑄2 (1. 8)

𝑃 = 𝑆 ⋅ cos 𝜑 (1. 9)

𝑄 = 𝑆 ⋅ sin 𝜑 (1. 10)

Phase Shift

Period=6.28 / s

Red leads Blue by 57.3 degrees (1 radian)

𝛷 =
1

6.28
⋅ 360° = 57.3°

6

Figure 1.5 Power Triangle, Relationship between Power factors

Instantaneous power value is obtained by multiplying the instantaneous values of the

voltage and current components [3]. Instantaneous power value changes with twice the

system frequency.

Figure 1.6 Instantaneous voltage, current and power values

In electrical systems, instantaneous power is expressed by equation (1.10), where v (t)

and i (t) are instantaneous values of voltage and current.

𝑃(𝑡) = 𝑣(𝑡) ⋅ 𝑖(𝑡) (1. 11)

Devices that measure electrical power measure the average value of power [3]. In this

case, if the instantaneous power expression is integrated over a period, the expression

(1.13) can be written for the average power value (active power).

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡) (1. 12)

Q S

P

𝜑

7

𝑖(𝑡) = 𝑖𝑚 ⋅ sin(𝜔𝑡 − 𝜑) (1. 13)

𝑃 =
1

2𝜋
⋅ ∫ [𝑣𝑚 ⋅ 𝐼𝑚 ⋅ sin(𝜔𝑡) ⋅ sin(𝜔𝑡 − 𝜑)] ⋅ ⅆ𝑤𝑡

2𝜋

0
 (1. 14)

𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑) (1. 15)

The reactive power value can be calculated by the product of the voltage component

and the 90° phase-shifted state of the current component or by the product of the

current component and the 90 ° phase-shifted state of the voltage component. If the

90° phase shifted state of the current signal is expressed as 𝐼𝑞, the expression (1.17)

can be written for the reactive power.

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡) (1. 16)

𝐼𝑞(𝑡) = 𝑖𝑚 ⋅ sin (𝜔𝑡 − 𝜑 +
𝜋

2
) = 𝑖𝑚 ⋅ cos(𝜔𝑡 − 𝜑) (1. 17)

𝑄 =
1

2𝜋
⋅ ∫ [𝑣𝑚 ⋅ 𝐼𝑚 ⋅ sin(𝜔𝑡) ⋅ cos(𝜔𝑡 − 𝜑)] ⋅ ⅆ𝜔𝑡

2𝜋

0
 (1. 18)

𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑) (1. 19)

As a summary power equation is follows,

Active Power → 𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑) (Watt)

Reactive Power → 𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑) (Var)

Apparent Power → 𝑆 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 (VA)

In digital systems, it is possible to calculate the phase difference and power values

based on the instantaneous values of voltage and current. In MATLAB environment,

instantaneous values of current and voltage and power values can be calculated by

using averaging command.

1.1.4 Power Factor (Cos φ) in Power Systems

In power systems, the ratio of active power to apparent power is defined as the power

factor [2]. If the network voltage and current are in sinusoidal form, that is, if the

system does not contain a non-linear load, cos φ is equal to the power factor (PF).

𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑) (1. 20)

8

𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑) (1. 21)

𝑆 = √𝑃2 + 𝑄2 (1. 22)

cos(𝜑) = 𝑃𝐹 =
𝑃

𝑆
 (1. 23)

In addition to that, if there are non-linear loads such as rectifiers, uninterruptible power

supplies, electronic ballasts in power systems, current and voltage signal shapes move

away from the sinusoidal form and harmonics occur in the system.

In a harmonic system, power expressions such as the effective value of the voltage

fundamental component 𝑣1 and the effective value of the current fundamental

component 𝑖1 can be written as follows [5].

𝑆1 = √𝑃1
2 + 𝑄1

2 (1. 24)

𝑃1 = 𝑣1 ⋅ 𝐼1 ⋅ cos(𝜑) (1. 25)

𝑄1 = 𝑣1 ⋅ 𝐼1 ⋅ sin(𝜑) (1. 26)

𝑃𝐹 =
𝑣1

𝑣𝑟𝑚𝑠
⋅

𝑖1

𝑖𝑟𝑚𝑠

⋅ cos 𝜑 (1. 27)

𝑃𝐹 = 𝐾𝑣_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑) (1. 28)

In equation (1.28), 𝐾𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 coefficients are defined as distortion factors for

current and voltage, and cos 𝜑 is defined as the displacement factor. If it is assumed

that there is no harmonic in the network voltage, the 𝐾𝑣_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 coefficient will

have no effect and the power factor value will be as in equation (1.40) [5].

𝑃𝐹 = 1 ⋅ 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑) = 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑) (1. 29)

9

Figure 1.7 A current signal with the 5th harmonic in it

1.1.5 Harmonic Distortion

In electrical power systems containing harmonics, the effective values of current and

voltage can be expressed in the following equations.

𝑣𝑟𝑚𝑠 = √𝑣1
2 + 𝑣2

2 + 𝑣3
2 + ⋯ + 𝑣𝑛

2 (1. 30)

𝑣𝑟𝑚𝑠 = √𝑣1
2 + ∑ 𝑣ℎ

2𝑛

ℎ=2
 (1. 31)

𝑖𝑟𝑚𝑠 = √𝑖1
2 + 𝑖2

2 + 𝑖3
2 + ⋯ + 𝑖𝑛

2 (1. 32)

𝑖𝑟𝑚𝑠 = √𝑖1
2 + ∑ 𝑖ℎ

2𝑛

ℎ=2
 (1. 33)

Total harmonic distortion value can be defined as the ratio of harmonic components to

fundamental components. This value can be written separately for current and voltage.

𝑇𝐻𝐷𝑣 =
√𝑣2

2+𝑣3
2+⋯+𝑣𝑛

2

𝑣1
 (1. 34)

10

𝑇𝐻𝐷𝑖 =
√𝑖2

2+𝑖3
2+⋯+𝑖𝑛

2

𝑖1
 (1. 35)

International standards such as IEEE 519 and IEC 61000 regarding energy quality have

been put forward. The EN 61000 - 3 - 2 standard offered by IEC is implemented in our

country as TS EN 61000 - 3 - 2: 2015, which was updated in 2015. Electrical devices

are classified according to these standards and voltage and current harmonic limits are

specified. Classification of devices below 16A per phase according to this standard is

shown in Table (1.1). In addition, the flow chart for determining the classes in the EN

61000-3-2 standard is included in Figure (1.11). In addition, harmonic limits of these

classes are given in Table (1.2), and voltage distortion limits according to IEEE 519 -

1992 standard are given in Table 1.3. [4]

Table 1.1 Electrical device classification according to EN 61000 - 3 - 2 standard

Class Definition

A Balanced three-phase loaded devices, professional

devices in the range of 75 - 1000W, electrical devices

not defined in B / C / D classes

B Non-professional portable electrical devices that

consume 75W and above, non-professional welding

devices

C Lighting devices below 1000W

D Computers, monitors, televisions and radio equipment

in the 75W-600W range

11

Figure 1.8 Flow chart to apply standard EN 61000 - 3 -2

General Grid and Phase
current equal or smaller

than 16A?

YES or NO?

EN 61000-3-2 can not
applicable

NO

Balanced 3 Phase
System?

YES

Power equal or smaller than
75W and Lighting Device?

NO

Non-professional
portable tool or welding

machine?
NO

Lighting Device?

NO

Power smaller or equal to
600W PC, Monitor or TV

Device?
NO

Non-portable household
appliance or audio

device?
NO

Power smaller or equal to
1000W a professional

device?
NO

EN 61000-3-2 Not
applicable

NO

CLASS A

YES

CLASS A

YES

CLASS D

YES

Dimmer Device for
Incandescent Lamps?

YES

CLASS C

NO

CLASS A

YES

CLASS B

YES

EN 61000-3-2
Not applicable

YES

CLASS A
YES

12

Table 1.2 Harmonic limits according to EN 61000 - 3 - 2 standards

Harmonic No.
Class A

(A)

Class B

(A)

Class C

(In/I1) (%)

Class D

(mA/W)

Odd numbered Harmonics

3 2,30 3,45 30 3,4

5 1,13 1,71 10 1,9

7 0,77 1,155 7 1,0

9 0,40 0,60 5 0,5

11 0,33 0,495 3 0,35

13 0,21 0,315 3 0,3

15 0,15 0,220 3 0,25

17≤h≤39 0,13*(15/h) 0,19*(15/h) 3 3,85/n

Even numbered Harmonics

2 1,08 1,62 2 -

4 0,43 0,645 - -

6 0,30 0,45 - -

8 0,23 0,34 - -

10≤h≤40 0,23*(8/h) 0,345*(8/h) - -

Table 1.3 Voltage distortion limits according to IEEE 519 - 1992 standard

V Vn/V (%) THD (%)

V ≤ 1kV 5,0 8,0

1kV < V ≤ 69kV 3,0 5,0

69kV < V ≤ 161kV 1,5 2,5

161kV < V 1,0 1,5

13

Apart from these standards, there are some other standards related to energy quality

[5].

✓ EN 61000 - 3 - 3: It determines the voltage fluctuation limits in LV systems.

✓ EN 61000 - 3 - 4: They define harmonic limits for devices larger than 16A per

phase.

✓ EN 50006: It determines the disruption limits caused by household and similar

electrical devices containing electronic elements in the network.

✓ TS 9882: It determines the disruption limits caused by household and similar

electrical devices in the network.

✓ VDE 0838: Home Appliances,

✓ VDE 0160: Converters,

✓ VDE 0712: Sets harmonic limits for fluorescent lamps and ballasts.

1.2 Purpose of the Thesis

 The monitoring of electrical power is important to ensure that this energy resource is

effectively generated, distributed and utilized. Utilities need to measure power coming

out of a generation station or going into power station. In addition, to minimize power

transmission losses, it's important to minimize the phase relationship between the

current and voltage waveforms of the power being transmitted. In industrial control

applications, it's important to be able to continuously monitor the current and phase of

the power into a machine which may vary with the machine load. Traditional systems

for monitoring power circuits require the installation of individual measuring devices

to measure a specific power system parameter; for example, Watts, VARs, Amps, or

Volts. These devices typically comprise discrete analog transducers which convert AC

voltage and current signals from a power system into DC output signals proportional

to the true power on the system. For example, typical utility revenue kilowatt hour

meters measure power in an analog fashion. Where a data acquisition system must

measure numerous circuits, requiring separate measuring devices for each circuit can

add greatly to the overall cost of the system. Also, where a number of circuits are being

remotely monitored for computer processing and display, the individual devices must

be connected to a data acquisition device and suitably processed to interface with the

computer. Further, multiple measuring devices greatly increase the overall error of the

14

system. Also, it is a complex system for measuring various parameters in multiple

power circuits and the cost of purchasing installing and maintaining the system may

be increased. Accordingly, it is a principal objective of the thesis to provide a

simplified system for measuring various parameters in multiple power circuits to

reduce the cost of purchasing, installing and maintaining the system. More specifically,

it is an objective of the thesis to provide a system in which a single measuring device

measures the fundamental parameters in a power system so that subsequent derived

parameters can be computed in a controller data processing computer, thereby

eliminating the necessity of multiple measuring devices. Additionally, the thesis aims

to provide a power analyzer which reduces the cost of maintenance of the overall

system and to provide a power analyzer which has very high precision through self-

calibration and a non-synchronous measurement technique. It is one more objective of

the thesis is to provide a microcontroller-controlled power analyzer that can

continuously and rapidly monitor a plurality of circuits. With the thesis, low-cost

power and energy analyzer will be developed. The power analyzer that will be

developed in the thesis will include a microprocessor coupled to the circuit for

performing additional calculations on the electrical variables to thereby derive

electrical parameters relating to the performance of the power circuits. These

parameters may include Watts, Watt-hours, VARs, Power Factor, etc. After the

calculations whole results will be monitoring on the screen and also there will be a real

time plotting of the spectrum. [36]

1.3 Conclusion and Key Findings

It’s proved that various factors directly affect the measurement quality. Temperature

changes of electronic components used are one in all the important factors. thanks to

the optimal working environment of the components are different, so as to attenuate

the negative impact of this case, the materials used is preferred with higher sensitivity

and lower temperature coefficient. Also, the field effect sensor utilized in the current

input is tormented by the external magnetic field. To avoid negative effect of this case,

it's going to be possible to produce magnetic isolation of the area where the sensor is

located on the hardware or standard transformer like rated 100A/4mA is also

accustomed get far better results with the high precision. However, a current

transformer requires much space. Besides, sensitivity of the operational amplifiers

15

utilized in voltage and current inputs is critical. A low precision operational amplifier

will cause irrelevant results, especially when making measurements too close to zero.

To avoid this case, choosing a high quality and high precision operational amplifier

will influence positively affect the results. Additionally, chosen MCU is vital. If a

microcontroller with high performance and decimal processing capability isn't

preferred, it'll influence negatively the results in order that it'll cause loss of sensitivity

during the mathematical operations.

Also, the reference voltage for the calculations is critical. So, the battery voltage will

also affect negatively the results.

The sampling frequency of the selected microcontroller to be used in the designed

digital measurement system, the resolution of the analog-digital converter, the

sampling rate and the number of ADC channels that can operate simultaneously are

sufficient, calculation can be performed without losing time in sampling.

In addition, if the temperature dependence of the sensors and electronic materials used

is calibrated with an external temperature measurement, an error-free measurement

can be obtained.

16

CHAPTER II

PHASE LOCKED LOOP (PLL) DESIGN

The phase angle of use may be an important piece of information on the operation of

power grids such as PV inverters. A locked phase loop is a closed system in which the

internal oscillator is controlled to keep track of the time and the external time signal

phase using the feedback loop. PLL is the only servo system that controls its output

signal phase and specifies phase error between the output phase and the reference

phase is small. Lock quality directly affects the operation of the control loop on

applications that are tied to the grid. Since line measurement, voltage imbalance, line

immersion, phase loss and frequency variations are common conditions for mechanical

and electrical interactions, PLL needs to be able to reject these error sources and

maintain a clean phase lock on the grid. [6]. In this section, various software loop lock

options will be analyzed and the simulation results will be presented.

2.1 Phase Locked Loop

Typically, a phase loop is a closed loop control system with an internal oscillator so

that it can lock out the external signal section using the feedback structure. It can be

simply expressed as a servo control system that minimizes the phase difference

between the reference signal and the output signal. In devices connected to the

network, there may be situations such as frequency change, absence of phase or

imbalance [6]. In such cases, a phase locked loop design should be designed to

minimize these errors for the stability of measurement systems. As seen in Figure (2.1),

a simple phase locked loop (PLL) consists of a phase detector, a PI controller and a

voltage-controlled oscillator unit at its output.

A functional diagram of a PLL is showing in figure, which consists of a phase detect

(PD), a loop filter (LPF), and a voltage-controlled oscillator (VCO).

17

Figure 2.1 Phase Locked Loop Block Diagram

The measured grid voltage can be written in terms the grid frequency (𝑤𝑔𝑟𝑖𝑑) as

follows,

𝑣 = 𝑣𝑔𝑟𝑖𝑑 ⋅ sin(𝜃𝑖𝑛) − 𝑣𝑔𝑟𝑖𝑑 ⋅ sin(𝜔𝑔𝑟𝑖𝑑𝑡 + 𝜃𝑔𝑟𝑖𝑑) (2. 1)

Now, assuming that VCO produces sine waves near the sinusoid grid, the VCO output

can be labeled,

𝑣′ = cos(𝜃𝑜𝑢𝑡) − cos(𝜔𝑃𝐿𝐿𝑡 + 𝜃𝑃𝐿𝐿) (2. 2)

The purpose of the phase detection block is to compare the input sine with the locked

sine from the VCO and to generate the error signal in line with the angle error. In this

case, the phase acquisition block doubles the VCO output and the estimated input value

to be obtained:

𝑣𝑑 =
𝐾𝑑⋅𝑣𝑔𝑟𝑖𝑑

2
[sin ((𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 − 𝜃𝑃𝐿𝐿)) + sin ((𝜔𝑔𝑟𝑖𝑑 −

𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 + 𝜃𝑃𝐿𝐿))] (2. 3)

From Equation (2.3), it is clear that the output of the PD block contains information

about the lock error. However, the lock error information found in PD is linear, and

has twice as much variation as grid frequency. To use this error lock information PLL

angle, part of the double frequency grid must be removed. In the meantime, ignoring

duplicate part of the grid frequency, a lock error is provided by:

𝑣𝑑 =
𝐾𝑑⋅𝑣𝑔𝑟𝑖𝑑

2
sin ((𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 − 𝜃𝑃𝐿𝐿)) (2. 4)

For steady state operation, the 𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿 term can be ignored, for small values of

theta sin(θ) ~ θ. Hence, a linearized error is given as:

𝑒𝑟𝑟 =
𝑣𝑔𝑟𝑖𝑑(𝜃𝑔𝑟𝑖𝑑−𝜃𝑃𝐿𝐿)

2
 (2. 5)

This error is an input loop filter, which is nothing but a PI controller, which is used to

reduce the lock error in the stabilization mode to zero. Small signal analysis is

18

performed using network theory, in which the response loop is broken to obtain an

open loop transfer number and then a closed loop transmission function:

𝐶𝑙𝑜𝑠𝑒ⅆ 𝐿𝑜𝑜𝑝 𝑇𝐹 = 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝐹 / (1 + 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝐹) (2. 6)

Thus, in response to the line the PLL transfer function can be written as follows:

Closed loop section TF:

𝐻0(𝑠) =
𝜃𝑜𝑢𝑡(𝑠)

𝜃𝑖𝑛(𝑠)
−

𝐿𝐹(𝑠)

𝑠+𝐿𝐹(𝑠)
−

𝑣𝑔𝑟𝑖𝑑⋅(𝑘𝑝𝑠+
𝑘𝑝

𝑇𝑖
)

𝑠2+𝑣𝑔𝑟𝑖𝑑⋅𝑘𝑝𝑠+𝑣𝑔𝑟𝑖𝑑⋅
𝑘𝑝

𝑇𝑖

 (2. 7)

Closed loop error transfer function:

𝐸0(𝑠) =
𝑣𝑑(𝑠)

𝜃𝑖𝑛(𝑠)
− 1 − 𝐻𝑜(𝑠) −

𝑠

𝑠+𝐿𝐹(𝑠)
−

𝑠2

𝑠2+𝑘𝑝𝑠+
𝑘𝑃
𝑇𝑖

 (2. 8)

Comparing the closed loop transfer function with the standard second order system

transfer function, provided:

𝐻(𝑠) =
2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛

2

𝑠2+2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛
2 (2. 9)

The natural frequency and reduction of the PLL rate in line is given by:

𝜔𝑛 = √
𝑣𝑔𝑟𝑖𝑑⋅𝑘𝑝

𝑇𝑖
 (2. 10)

𝜁 = √
𝑣𝑔𝑟𝑖𝑑⋅𝑇𝑖⋅𝑘𝑝

4
 (2. 11)

Note to PLL, PI serves two purposes:

• To filter out high frequency that is at twice the frequency of the carrier and grid

• Manage PLL response to track changes in grid shapes, for example, section jumps,

size sources, and more. Since the loop filter has a low-pass filter feature, it can be used

to filter a portion of the high frequency that was previously ignored. If the network

frequency / lock signal frequency is high, the lower PI transition features are good

enough to cancel twice the frequency of the network company frequency. However, in

grid-connected systems as the grid frequency is very low (50Hz-60Hz), the roll off

provided by the PI is not sufficiently satisfactory and introduces a high frequency

feature at the loop filter output, which affects PLL performance. From the discussion

above, it is clear that the LPF feature of the PI controller cannot be used to eliminate

part of a double frequency to grid from the output phase in the case of grid-connected

19

applications. Therefore, other methods should be used that guide the PD block. In this

application report, the two PLL modes that make up the PD exit line, are displayed:

• One uses a notch filter to filter out a double part of a grid frequency on a PD output

• The other uses an orthogonal signal generating method to use the PLL process for a

fixed PLL framework in one PLL phase.

2.2 Phase Locked Loop (PLL) Methods

2.2.1 Notch Filtered Single Phase PLL

In this PLL method, a notch filter can be used to exit the phase detection block, which

doubles the part of the grid frequency very well. The flexible notch filter can also be

used for selection by selecting the correct frequency in the event of a grid frequency

variation. Section (2.1) illustrates the process of selecting PI coefficients, their digital

usage and mapping. The design of the flexible notch filter is displayed with the

automatic coefficient calculation method, and in line is displayed using embed code.

A single phase, phase locked loop structure with a notch filter is as follows.

Figure 2.2 Single Phase PLL With Notch Filter

As discussed in Section (2.1), with the addition of a notch filter, PI tuning can only be

performed based on the PLL variable response. Section (2.1) illustrates the digital use

of the PI controller and the selection of coefficients for the use of the PI control.

2.2.1.1 Discrete Implementation of PI Controller

The loop filter or the PI is implemented as a digital controller with like this

𝑦𝑙𝑓[𝑛] − 𝑦𝑙𝑓[𝑛 − 1] ⋅ 𝐴1 + 𝑦𝑛𝑜𝑡𝑐ℎ[𝑛] ⋅ 𝐵0 + 𝑦𝑛𝑜𝑡𝑐ℎ[𝑛 − 1] ⋅ 𝐵1 (2. 12)

20

Using z-transform, equation (2.12) can be re-written as:

𝑦𝑙𝑓(𝑧)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑧)
=

𝐵0+𝐵1⋅𝑧−1

1−𝑧−1
 (2. 13)

It is well known the PI controller in Laplace transform is given by:

𝑦𝑙𝑓(𝑠)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑠)
= 𝑘𝑝 +

𝑘𝑖

𝑠
 (2. 14)

Using bi-linear transformation, replace 𝑠 =
2

𝑇
⋅ (

𝑧−1

𝑧+1
), where T = Sampling Time.

𝑦𝑙𝑓(𝑧)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑧)
=

−(
2⋅𝑘𝑝+𝑘𝑖⋅𝑇

2
)−(

2⋅𝑘𝑃−𝐾𝑖⋅𝑇

2
)⋅𝑧−1

1−𝑧−1
 (2. 15)

Equation (2.13) and Equation (2.15) can be compared to a map of the equity and

completeness of PI control in a digital domain. The next challenge is to choose the

right amount of benefit and total profit. Step response to standard second order

calculations:

𝐻(𝑠) =
𝜔𝑛

2

𝑠2+2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛
2 (2. 16)

is given as:

𝑦(𝑡) = 1 − 𝑐𝑒−𝜎𝑡 ⋅ sin(𝜔𝑑 ⋅ 𝑡 + 𝜑) (2. 17)

Ignoring the LHP zero from Equation (2.17). The settling time is given as the time it

takes for the response to settle between an error band, say this error is ∂, then:

1 − 𝜕 − 1 − 𝑐𝑒−𝜎𝑡𝑠 → 𝜕 − 𝑐𝑒−𝜎𝑡𝑠 → 𝑡𝑠 −
1

𝜎
⋅ ln (

𝑐

𝜎
) (2. 18)

Where, 𝜎 = 𝜁 ⋅ 𝜔𝑛 and 𝑐 =
𝜔𝑛

𝜔𝑑
 and 𝜔𝑑 = √1 − 𝜁2 ⋅ 𝜔𝑛 (2. 19)

Using settling time as 30 milliseconds, and the error band as 5% and damping ratio to

be 0.7, the natural frequency is obtained to be 158,6859. Back substituting 𝑘𝑝 =

222,1603 and 𝑘𝑖 = 25181,22 . Back substituting these values into the digital loop

filter coefficients:

𝐵0 = (
2⋅𝑘𝑝+𝑘𝑖⋅𝑇

2
) and 𝐵1 = (

2⋅𝑘𝑝−𝑘𝑖⋅𝑇

2
) (2. 20)

For 50 kHz run rate of the PLL, 𝐵0 = 223,4194 and 𝐵1 = -220,901.

2.2.1.2 Adaptive Notch Filter Design

The notch filter used in the PLL shown in Figure (2.1) requires a double reduction of

the grid frequency. The grid frequency, although stable, can vary somewhat, and with

21

the increase in renewable content major variations are possible. Therefore, in order to

accurately write a grid frequency, a compatible notch filter is used. The standard notch

filter number is “s-domain” as shown in Equation (2.21):

𝐻𝑛_𝑓(𝑠) =
𝑠2+2⋅𝜁2⋅𝜔𝑛𝑠+𝜔𝑛

2

𝑠2+2⋅𝜁1⋅𝜔𝑛𝑠+𝜔𝑛
2 (2. 21)

where 𝜁2 ≪ 𝜁1 for notch action to occur.

Discretizing Equation (2.21) using zero order hold, , 𝑠 =
(𝑧−1)

𝑇
, the equation is reduced

to:

𝐻𝑛_𝑓(𝑧) =
𝑧2+(2⋅𝜁2⋅𝜔𝑛⋅𝑇−2)⋅𝑧+(−2⋅𝜁2⋅𝜔𝑛⋅𝑇+2𝜔𝑛

2 ⋅𝑇2+1)

𝑧2+(2⋅𝜁1⋅𝜔𝑛⋅𝑇−2)⋅𝑧+(−2⋅𝜁1⋅𝜔𝑛⋅𝑇+2𝜔𝑛
2 ⋅𝑇2+1)

−
𝐵0+𝐵1⋅𝑧−1+𝐵2⋅𝑧−2

𝐴0+𝐴1⋅𝑧−1+𝐴2⋅𝑧−2 (2. 22)

In the Equation (2.22) the maps are in digital format with two poses zero and the notch

filter coefficients can be changed variable as the grid frequency varies by calling the

posterior system measuring the coefficients based on the grid rating scale. For

example, taking 𝜁2 = 0,00001 and 𝜁1 = 0,1 (𝜁2 ≪ 𝜁1), the notch response as shown

in Figure (2.2) of the 50 Hz and 60 Hz grid, where the coefficient is calculated based

on the grid. The notch filter response is shown below in Figure (2.2).

Figure 2.3 The response of the notch filter

22

2.2.1.3 Sine and Cosine Generation

The PLL uses sine and cosine calculation, these calculations can consume large

number of cycles in a typical microcontroller. To avoid this issue, the sine and cosine

value is generated in this module by applying the principle of integration.

𝑦(𝑡 + 𝛥𝑡) = 𝑦(𝑡) +
𝑑𝑦(𝑡)

𝑑𝑡
⋅ 𝛥𝑡 (2. 23)

For sine and cosine signal, this reduces to:

𝑠𝑖𝑛(𝑡 + 𝛥𝑡) = 𝑠𝑖𝑛(𝑡) +
𝑑𝑠𝑖𝑛(𝑡)

𝑑𝑡
⋅ 𝛥𝑡 − 𝑠𝑖𝑛(𝑡) + 𝑐𝑜𝑠(𝑡) ⋅ 𝛥𝑡 (2. 24)

𝑐𝑜𝑠(𝑡 + 𝛥𝑡) = 𝑐𝑜𝑠(𝑡) +
𝑑𝑐𝑜𝑠(𝑡)

𝑑𝑡
⋅ 𝛥𝑡 − 𝑐𝑜𝑠(𝑡) + 𝑠𝑖𝑛(𝑡) ⋅ 𝛥𝑡 (2. 25)

2.2.1.4 Simulating the Phase Locked Loop for Varying Conditions

It is important to mimic the PLL behavior with different grid shapes. Fixed-point

processors are used, at a lower cost to multiple grids connected by converters. IQ

Mathis is an easy way to look at fixed points numbers with a decimal point. The

C2000IQ math library provides built-in functions that can make it easy to manage a

decimal point by an editor. However, coding in a fixed location can have additional

issues of flexibility and accuracy; therefore, it is better to mimic the behavior of fixed-

point processors in the simulation environment. Therefore, MATLAB® is used to

mimic and point a Q-point where the algorithm needs to work. Below, the MATLAB

text uses a fixed-point tool that checks the PLL algorithm with a variable grid. You

can check in the section Appendix A more details about the codes.

General block diagram of interrupt service routine (ISR) for notch filter is shown

below:

23

Figure 2.4 Filter Interrupt flow chart

Figure (2.5), (2.6), (2.7), (2.8), (2.9) shows the results of the varying grid condition on

the PLL simulation.

Figure 2.5 PLL Response to Varying Grid Conditions

1 • ISR (Interrupt Service Routine)

2 • Read ADC value and populate the spll object with the appropriate Q format

3 • Call SPLL run FUNC

4 • Phase Detect

5 • Notch Filter

6 • Loop Filter

7 • VCO & Calculate sine and cosine using integration process

8 • Read the spll sine value and run the rest of the inverter code

9 • Exit ISR

24

Figure 2.6 PLL Response to Varying Grid Conditions

Figure 2.7 PLL Response to Varying Grid Conditions

25

Figure 2.8 PLL Response to Varying Grid Conditions

Figure 2.9 PLL Response to Varying Grid Conditions

26

2.2.2 Orthogonal Signal Generator

As discussed earlier, the design of the PLL single-phase grid software is deceptive due

to duplicate part of the existing grid frequency in the output acquisition phase. A notch

filter was previously used to complete the component and satisfactory results were

obtained. Alternatively, to create a PD output line, use an orthogonal signal generating

system and use a park conversion. The synchronized reference framework for PLL is

then used for a single-phase application. A working diagram of such a PLL is shown

in Figure (2.10), which contains a PD that includes an orthogonal signal generator as

well as a park conversion, LPF and VCO. [6]

Figure 2.10 OSG Based Single Phase PLL

The orthogonal part from the input voltage signal can be produced in various ways

such as transport delays, Hilbert transform, and so on. The most widely discussed

approach is to use a second-order link as proposed in ‘A New Single Phase PLL

Structure Based on Second Order Generalized Integrator’, Mihai Ciobotaru, et al,

PESC’06. This method is useful as it can be used for tuning by selecting an orthogonal

signal generator to reject other frequencies other than the grid frequency. [6]

Figure 2.11 Second Order Generalized Integrator for Orthogonal Signal Generation

27

The second order generalized integrator closed-loop transfer function can be written

as:

𝐻𝑑(𝑠) =
𝑣′

𝑣
(𝑠) =

𝑘⋅𝜔𝑛⋅𝑠

𝑠2+𝑘⋅𝜔𝑛⋅𝑠+𝜔𝑛
2 (2. 26)

𝐻𝑞(𝑠) =
𝑞𝑣′

𝑣
(𝑠) =

𝑘⋅𝜔𝑛
2

𝑠2+𝑘⋅𝜔𝑛⋅𝑠+𝜔𝑛
2 (2. 27)

As we discussed before, the grid frequency can change, therefore, this orthogonal

signal generator must be able to tune its coefficients in case of grid frequency change.

To achieve this, trapezoidal approximation is used to get the discrete transfer function

as follows:

𝐻𝑑(𝑧) =
𝑘⋅𝜔𝑛⋅

2

𝑇𝑠
⋅
𝑧−1

𝑧+1

(
2

𝑇𝑠⋅

𝑧−1

𝑧+1
)

2
+𝑘𝜔𝑛⋅

2

𝑇𝑠
⋅
𝑧−1

𝑧+1
+𝜔𝑛

2
−

(2⋅𝑘⋅𝜔𝑛⋅𝑇𝑠)⋅(𝑧
2−1)

4⋅(𝑧−1)2+(2⋅𝑘⋅𝜔𝑛⋅𝑇𝑠)⋅(𝑧
2−1)+(𝜔𝑛⋅𝑇𝑠)2⋅(𝑧+1)2

 (2. 28)

Now, using 𝑥 = 2 ⋅ 𝑘 ⋅ 𝜔𝑛 ⋅ 𝑇𝑠 and 𝑦 = (𝜔𝑛 ⋅ 𝑇𝑠)2:

𝐻𝑑(𝑧) =

𝑥

𝑥+𝑦+4
+(

−𝑥

𝑥+𝑦+4
)⋅𝑧−2

1−(
2(4−𝑦)

𝑥+𝑦+4
)⋅𝑧−1−(

𝑥−𝑦−4

𝑥+𝑦+4
)⋅𝑧−2

 −
𝑏0+𝑏2⋅𝑧

−2

1−𝑎1⋅𝑧
−1−𝑎2⋅𝑧

−2
 (2. 29)

Similarly,

𝐻𝑞(𝑧) =

𝑘⋅𝑦

𝑥+𝑦+4
+2⋅(

𝑘⋅𝑦

𝑥+𝑦+4
)⋅𝑧−1+(

𝑘⋅𝑦

𝑥+𝑦+4
)⋅𝑧−2

1−(
2(4−𝑦)

𝑥+𝑦+4
)⋅𝑧−1−(

𝑥−𝑦−4

𝑥+𝑦+4
)⋅𝑧−2

 −
𝑞⋅𝑏0+𝑞𝑏1⋅𝑧

−1+𝑞𝑏2⋅𝑧
−2

1−𝑎1⋅𝑧
−1−𝑎2⋅𝑧

−2
 (2. 30)

Once the orthogonal signal is generated, the park switch is used to locate the Q and D

segments in the rotating reference frame. This is then applied to the loop filter that

controls the VCO PLL. The configuration of the loop filter is similar to that described

in the notch filter in Section (2.2.1.1). Additionally, the coefficients of the orthogonal

signal generator can be adjusted for grid frequency and sample time (ISR frequency).

The only difference is k, which determines the frequency choice of the second system

connector. The second standard integration order presented can also be adjusted to

remove part of the harmonic frequency from the grid monitoring application, if

required. A lower k value should be selected for this purpose; However, a low k has

the effect of reducing the response. Figure (2.12) shows the fifth harmonic discharge

using SOGI. The implementation of this follows the implementation of SOGI, which

will be discussed next; However, the details are left out.

28

Figure 2.12 Extraction of the Fifth Harmonic Using the SOGI

Additionally, the RMS voltage of the grid can also be estimated using (2.31):

𝑣𝑟𝑚𝑠 =
1

√2
⋅ √𝑣′2 + 𝑞𝑣′2 (2. 31)

2.2.2.1 Simulating the PLL for Varying Conditions

It is important to mimic the PLL behavior with different grid shapes. Fixed-point

processors are used, at a lower cost to multiple grids connected by converters. IQ

Mathis is an easy way to look at fixed points numbers with a decimal point. The C2000

IQ math library provides built-in functions that can make it easy to manage a decimal

point by an editor. First, MATLAB® is used to mimic and identify Q-point where the

algorithm needs to be operational. Below, the MATLAB text uses a fixed-point tool

that checks the PLL algorithm with a variable grid. You can check in the section

Appendix B for more details about the codes.

General block diagram of interrupt service routine (ISR) for notch filter is shown

below:

29

Figure 2.13 Interrupt Filter flow chart

Figure (2.14), (2.15), (2.16), (2.17), (2.18) shows the results of the varying grid

condition on the PLL simulation.

Figure 2.14 Phase Jump of 90°

1 • ISR (Interrupt Service Routine)

2 • Read ADC value and populate the spll object with the appropriate Q format

3 • Call SPLL run FUNC

4 • Run the OSG

5 • Run Park Transform on the orthogonal signals

6 • Loop Filter

7 • VCO & Calculate sine and cosine value from theta

8 • Read the spll sine value and run the rest of the inverter code

9 • Exit ISR

30

Figure 2.15 Phase Jump of 90°

Figure 2.16 Frequency drift at mid-point highlights the need for adaptive notch filter

31

Figure 2.17 Amplitude change (Voltage Sags and Dips)

Figure 2.18 Amplitude change with harmonics (Voltage Sags and Dips)

32

Table 2.1 PLL and adaptive notch filter coefficients

PLL Adaptive Filter

Coefficient Value Coefficient Value

Ki 1800 K 0,0085

Kp 60 V 0,125

Kt 1,0 Ts 50 µs

Ts 50 µs

𝑁 = 1000 samples are taken for the FFT analysis and in the DFT analysis, IEC 61000-

4-7 standards (which suggest using the windows with the period of 𝑇 = 10/𝑓 at the 5

Hz resolution for 𝑓 = 50 Hz) are considered. Signals are windowed with a rectangular

window and interharmonic group method is used to calculate the interharmonic with

FFT and DFT.

Figure 2.19 The signal 𝑥(𝑡) for 𝑓 = 50 Hz and 𝑇 = 0.2 s.

33

Figure 2.20 Under the multiple disturbances; (a) the signal, 𝑥(𝑡), (b) reference-filter

output signal, and (c) FFT of the filter output.

Figure 2.21 Single-phase PLL application with OSG

Figure 2.22 Conventional OSG; a) SOGI, b) Park, c) Derivative, d) APF PLL

34

Responses in different cases shown below.

Figure 2.23 Responses of the estimated angle error for 1 rad step change in PLL

input phase for APF, Park, MFO and SOGI OSG filters, for PLL with the following

disturbance attenuation at 2ω / (a) Atten@2ω = −20 dB, (b) Atten@2ω = −25 dB, (c)

Atten@2ω = −30 dB, (d) Atten@2ω = −35 dB

Figure 2.24 Responses of the estimated angle error for 50 rad/s step change in PLL

input frequency for APF, Park, MFO and SOGI OSG filters, for PLL with the

following disturbance attenuation at 2ω / (a) Atten@2ω = −20 dB, (b)

Atten@2ω = −25 dB, (c) Atten@2ω = −30 dB, (d) Atten@2ω = −35 Db

35

Figure 2.25 Responses of the estimated angle error for 50 rad/s step change in PLL

input frequency for APF, Park, MFO and SOGI OSG filters, for square-wave input

and for PLL with the following disturbance attenuation at 2ω / (a) Atten@2ω = −20

dB, (b) Atten@2ω = −25 dB, (c) Atten@2ω = −30 dB, (d) Atten@2ω = −35 Db

2.3 Discretizing the Phase Locked Loop Model

The second order low pass filter and PI controller part in the classical phase locked

loop structure discussed in this section will be discretized and this structure will be

made to be implemented on the real hardware software.

Figure 2.26 Classic PLL PSIM model

36

2.3.1 Separation of the Second Order Low Pass Filter

In the s domain of the second-order low-pass filter, the transfer function can be written

as in equation (2.32).

𝑘 →refers to Gain

𝜉 →refers to Damping Ratio

𝑓𝑐 →refers to Cut-off Frequency (𝜔𝑐 = 2𝜋𝑓)

𝐺(𝑠) =
𝑘⋅𝜔𝑐

2

𝑠2+2𝜉𝑤𝑐⋅𝑠+𝑤𝑐
2 (2. 32)

In order to transform the transfer function in the continuous time s domain into discrete

time, it must first be transformed into a z domain. There are various methods for this.

For this transformation, the bilinear transformation (Tustin Transformation) method

will be used. This transformation can also be done in the MATLAB environment.

As an example, let's assume that the following values are given like this;

𝑘 = 2

𝜉 = 0,8

𝑓𝑐 = 50

The second-order low-pass filter with these parameters can be converted to z-domain

with a sampling time of 100µs in MATLAB environment as follows.

clear all

clc

k = 2;

ksi = 0.8;

fc = 50;

Ts = 100e-5;

wc = 2 * pi * fc;

numerator = k * wc^2;

denominator = [1 2*ksi*wc wc^2];

Gs = tf(numerator, denominator);

Gz = c2d(Gs, Ts, 'tustin')

37

Figure 2.27 Response of MATLAB for Discrete-time transfer function

Figure 2.28 Response of MATLAB for Continuous-time transfer function

𝐺(𝑧) =
𝑎𝑧2+𝑏𝑧+𝑐

𝑧2+𝑑𝑧+𝑒
 (2. 33)

Discrete time transfer function can be obtained as in Eq. (2.33). In general, the discrete

time transfer function of second-order low-pass filters can be written as in Eq. (2.34)

or in Eq. (2.35) if the numerator and denominator are multiplied by (z-2).

𝐺(𝑧) =
𝑏0𝑧2+𝑏1𝑧+𝑏2

𝑧2+𝑎1𝑧+𝑎2
 (2. 34)

𝐺(𝑧) =
𝑏0+𝑏1𝑧−1+𝑏2𝑧−2

1+𝑎1𝑧−1+𝑎2𝑧−2
 (2. 35)

In order to operate the discrete time transfer function on the microcontroller, it must

be programmable. The direct programming method can be used for this. Discrete time

transfer function can generally be written as in Equation (2.36).

𝐷(𝑧) =
ℎ0𝑧𝑚+ℎ1𝑧𝑚−1+⋯+ℎ𝑚−1𝑧−1+ℎ𝑚

𝑎0𝑧𝑛+⋯+𝑎𝑛
 (2. 36)

If the numerator and denominator are multiplied by (𝑧−𝑛). 𝑋(𝑧) where n is the highest

degree of the denominator

38

𝐸2(𝑧)

𝐸1(𝑧)
= 𝐷(𝑧) =

𝑏0𝑧𝑚+𝑏1𝑧𝑚−1+⋯+𝑏𝑚−1𝑧−1+𝑏𝑚

𝑎0𝑧𝑛+⋯+𝑎𝑛
⋅ {

𝑧−𝑛

𝑧−𝑛
⋅

𝑋(𝑧)

𝑋(𝑧)
} (2. 37)

𝐸1(𝑧) = [𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑧−𝑛]. 𝑋(𝑧) (2. 38)

𝐸1(𝑧) = [𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑚𝑧−𝑚]. 𝑋(𝑧). 𝑧−(𝑛−𝑚) (2. 39)

Here, E1 (z) can be expressed as the input of the system and E2 (z) as the output of the

system. The general discrete time transfer function of the second order low pass filter

can also be written and programmed in the same way.

𝐺(𝑧) =
𝑏0𝑧2+𝑏1𝑧+𝑏2

𝑧2+𝑎1𝑧+𝑎2
 (2. 40)

𝐸2(𝑧)

𝐸1(𝑧)
=

𝑏0+𝑏1𝑧−1+𝑏2𝑧−2+𝑏𝑚

1+𝑎1𝑧−1+𝑎2𝑧−2
⋅ {

𝑋(𝑧)

𝑋(𝑧)
} (2. 41)

Using Equation (2.41), the filter output can be written with E2 (z) (2.42) as below.

𝐸2(𝑧) = [𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2]. 𝑋(𝑧) (2. 42)

If the state variable for the filter is X (z), it can be written with equation (2.43).

𝐸1(𝑧) = [1 + 𝑎1𝑧−1 + 𝑎2𝑧−2]. 𝑋(𝑧) (2. 43)

𝑋(𝑧) = 𝐸1(𝑧) − [𝑎1𝑧−1 + 𝑎2𝑧−2]. 𝑋(𝑧) (2. 44)

Finally, if we write the difference equations for the filter,

𝐸2(𝑘) = 𝑏0. 𝑋(𝑘) + 𝑏1. 𝑋(𝑘 − 1) + 𝑏2. 𝑋(𝑘 − 2) (2. 45)

𝑋(𝑘) = 𝐸1(𝑘) − 𝑎1. 𝑋(𝑘 − 1) − 𝑎2. 𝑋(𝑘 − 2) (2. 46)

Figure 2.29 Programming block diagram for a second order low pass filter

39

The discrete time transfer function coefficients of the second order low pass filters will

also be calculated according to the values of gain, damping ratio and cutoff frequency.

These coefficient calculations were made with the tool in the Simulink environment.

Figure 2.30 Calculation of filter coefficients with PSIM

2.3.2 Discretization of the PI Controller

The transfer function in the s domain of the PI controller can be written as in Equation

(2.47).

𝑘 = Gain

𝑇 = PI Controller Time Constant

40

Figure 2.31 General structure of the PI controller

𝐺(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
 (2. 47)

𝐾𝑝 = 𝑘 (2. 48)

𝐾𝑖 =
𝑘

𝑇
 (2. 49)

if we assume the values like this the transfer function of the PI controller in continuous

time can be written as follows.

𝐺(𝑠) = 𝑘 +
𝑘

𝑠.𝑇
= 𝑘.

1+𝑠.𝑇

𝑠.𝑇
 (2. 50)

In order to discretize the transfer function in the continuous time s domain, it must first

be transformed into z domain. For this transformation, the bilinear transformation

(Tustin transformation) method will be used as in the second order low pass filter. This

transformation can also be done in the MATLAB environment. For example, let’s

assume that;

𝑘 = 2 and

𝑇 = 1 𝑚𝑠

A PI controller with these parameters can be converted to z domain with sampling time

of 𝑇𝑠 = 100 𝜇𝑠 in MATLAB environment as follows.

1/s Ki

Kp

 E(s) C(s)

41

clear all

clc

k = 2;

T = 0.001;

numerator = [k *T k];

denominator = [T 0];

G_s= tf(numerator, denominator);

T_s= 100e-6;

G_z= c2d (G_s, T_s, "tustin")

𝐺(𝑧) =
2,1.𝑧−1,9

𝑧−1
 (2. 51)

Discrete time transfer function can be obtained as in Eq. (2.51). In general, the discrete

time transfer function of the PI controller can be written as in Eq. (2.52) or if the

numerator and denominator of the rightmost expression is multiplied by z in Eq. (2.53).

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

1+𝑧−1

1−𝑧−1
 (2. 52)

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

𝑧+1

𝑧−1
 (2. 53)

In order to run the obtained discrete time transfer function on the microcontroller, it

must be programmable by direct programming method as in the low pass filter.

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

1+𝑧−1

1−𝑧−1
 (2. 54)

𝐾𝑖 ⋅
𝑇𝑠

2
= 𝐾𝑥 (2. 55)

If the expression G (z) is rearranged,

𝐺(𝑧) =
𝐾𝑝 +𝐾𝑥+(𝐾𝑥 −𝐾𝑝) 𝑧−1

1−𝑧−1
 (2. 56)

Let’s assume that,

𝐾𝑝 + 𝐾𝑥 = 𝑏0 (2. 57)

𝐾𝑥 − 𝐾𝑝 = 𝑏1 (2. 58)

so that the Equation (2.58) become as Equation (2.59).

𝐺(𝑧) =
𝑏0+𝑏1 ⋅ 𝑧−1

1−𝑧−1
 (2. 59)

42

We can obtain the difference equations by multiplying the numerator and denominator

of the expression 𝐺(𝑧) obtained in its simplest form by 𝑋(𝑧).

𝐸2(𝑧)

𝐸1(𝑧)
=

𝑏1⋅𝑧−1+𝑏0

1−𝑧−1
⋅

𝑋(𝑧)

𝑋(𝑧)
 (2. 60)

Using Equation (2.59), the PI controller output can be written with 𝐸2(𝑧) Equation

(2.61).

𝐸2(𝑧) = 𝑏0 ⋅ 𝑋(𝑧) + 𝑏1 ⋅ 𝑧−1 ⋅ 𝑋(𝑧) (2. 61)

If the state variable of the PI controller is 𝑋(𝑧), it can be written with Equation (2.63).

𝐸1(𝑧) = 𝑋(𝑧) − 𝑧−1 ⋅ 𝑋(𝑧) (2. 62)

𝑋(𝑧) = 𝐸1(𝑧) + 𝑧−1 ⋅ 𝑋(𝑧) (2. 63)

Finally, if we write the difference equations for the PI controller

𝐸2(𝑘) = 𝑏0 ⋅ 𝑋(𝑘) + 𝑏1 ⋅ 𝑋(𝑘 − 1) (2. 64)

𝑋(𝑘) = 𝐸1(𝑘) + 𝑋(𝑘 − 1) (2. 65)

Figure 2.32 Programming block diagram for PI controller

The discrete time transfer function coefficients of PI controllers will also be calculated

according to the gain and time constant values. These coefficient calculations were

made with the tool in the PSIM environment.

𝑘1 refers to 𝐾𝑃 and 𝑘2 refers to 𝐾𝑃/𝑇.

43

Figure 2.33 Calculation of 𝐾𝑃 and 𝐾𝑖 coefficients with Simulink environment

2.3.3 Discrete Time Model of Classical PLL Structure

The discrete time block diagram of the classical PLL model is as follows.

Figure 2.34 Discrete time block diagram of the classical PLL model

44

The synchronization signal produced by the classical PLL model, which we obtained

the discrete time model, according to the sinusoidal input is obtained as follows.

Thanks to the synchronization signal obtained by the PLL model, synchronization with

the network will be ensured in case of disturbances in the network and frequency shifts.

As an example of the discrete time block diagram of the PLL model obtained in Figure

(2.34), it is seen in Figure (2.35) that it is properly locked into phase at the output

against the sinusoidal input signal with phase difference. Filter coefficients for the

sample are as follows.

Second order low pass filter coefficients;

b_0 = 0,00048126594

b_1 = 0,00096253188

b_2 = 0,00048126594

a_1 = -1,9500161

a_2 = 0,95097865

PI controller coefficients;

b_0= 10,4

b_1= -9,96

Figure 2.35 Response of digital PLL to sinusoidal input signal

45

2.3.4 Software Implementation of the Digital PLL Model with PSIM

There is a block on the PSIM simulation program that can be written with C / C ++

code and used in simulations. Before testing the digital PLL model obtained in Figure

(2.36) on real hardware, we can implement it with this block. For this block, the input

signal is the measured network voltage and the output signal is the generated

synchronization signal. The output signal of the model in Figure (2.37) and the codes

run on the C block are as follows.

Figure 2.36 Software implementation of digital PLL

Figure2.37 Software PLL's response to sinusoidal input signal

46

 ---------------------// Low-pass Filter Coefficients and related variables//-----------------

double b0 = 0.00048126594;

double b1 = 0.00096253188;

double b2 = 0.00048126594;

double a1 = -1.9500161;

double a2 = 0.95097865;

static double Xk = 0; // 2nd order LPF static variable

static double Xk_1 = 0; // 2nd order LPF static variable previous value

static double Xk_2 = 0; // 2nd order LPF static variable second previous value

---------------------// PI controller Coefficients and related variables//-----------------

double T_s = 0.0001;

double k1 = 2;

double k2 = 10000;

double kx = k2 * (Ts/2);

double c0 = kx + k1;

double c1 = kx - k1;

static double Xk_PI = 0; // static variable

static double Xk_1_PI = 0; // static variable previous value

------------------------------------// other variables//-------------------------------

static double Tri_Index = 1;

static double Cos_Out = 0;

static double Pre_Out = 0;

double input_lpf, output_lpf, input_pi, output_pi, Triangle_Out;

input_lpf = in[0] * Cos_Out;

Xk = input_lpf - a1 * X_k_1 - a2 * X_k_2;

output_lpf = X_k * b0 + Xk_1 * b1 + X_k_2 * b2;

X_k_2 = X_k_1;

X_k_1 = X_k;

input_pi = output_lpf;

X_k_PI = input_pi + X_k_1_PI;

output_pi = c0 * X_k_PI + c1 * X_k_1_PI;

X_k_1_PI = X_k_PI;

Triangle_Out = Tri_Index * 1.8;

Pre_Out = output_pi + Triangle_Out;

if(++Tri_Index > 200) {

Tri_Index = 1; }

Cos_Out = cos(Pre_Out * M_PI / 180);

out[0] = sin(Pre_Out * M_PI / 180);

47

2.4 Hardware Implementation of Software PLL

The software of the PLL model was also tested on the designed hardware. In this

section, only the waveform and PLL synchronization signal of samples taken from the

mains voltage are included. Sampling time is determined as 156.25 μs since 128

samples will be taken in a period. This value is calculated by considering the network

period as 20ms and its frequency as 50Hz. Small fluctuations in the network frequency

are calculated at certain intervals with the synchronization signal generated by the

PLL, and the sampling time is dynamically adjusted to receive 128 samples in a period.

In this way, all measurements to be made are calculated more accurately and reliably.

Figure 2.38 Sampled Signal from the grid voltage (Vline)

The samples taken by the microcontroller with the serial port on the designed hardware

were transferred to the MATLAB environment and the signals were plotted.

48

Figure 2.39 PLL output signal that locked to the grid signal

(Blue=Vline, Red=Vsync)

The part running the PLL algorithm in the software is as follows. This part is regularly

called in the ISR where the samples were taken.

stPLL.wt = (stPLL.wtIndex * 360) / 128.0;

stPLL.LPF_Input = stPLL.Vin * stPLL.CosOut;

stPLL.LPF_Xk = stPLL.LPF_Input - (LPF_A1 * stPLL.LPF_Xk1) - (LPF_A2

* stPLL.LPF_Xk2);

stPLL.LPF_Output = (stPLL.LPF_Xk * LPF_B0) + (stPLL.LPF_Xk1 *

LPF_B1) + (stPLL.LPF_Xk2 * LPF_B2);

stPLL.PI_Input = stPLL.LPF_Output;

stPLL.PI_Xk = stPLL.PI_Input + stPLL.PI_Xk1;

stPLL.PI_Output = (stPLL.K_PI_x * stPLL.PI_Xk) + (stPLL.K_PI_y *

stPLL.PI_Xk1);

stPLL.Theta = stPLL.PI_Output + stPLL.wt;

stPLL.CosOut = arm_cos_f32(Deg2Rad(stPLL.Theta));

stPLL.Vsync = arm_sin_f32(Deg2Rad(stPLL.Theta));

stPLL.Vsign = signum(stPLL.Vsync);

In this section, various PLL models used in single phase system are presented, discrete

time modeling and simulation results are given. In addition, an example is provided on

49

the designed hardware. There are many studies on this subject in the literature. Second

order generalized integrator based (SOGI) PLL structures, which can be used

especially in both single phase and three phase systems, are very useful and can

produce a very sensitive output without being affected by distortions in the network.

In recent years, it has become possible to achieve excellent results on digital platforms

with the increase in the performance of microcontrollers and digital signal processors

(DSP) and the addition of units that can perform decimal and trigonometric processing

independently of the central processing unit (CPU).

For OSG simulating in MATLAB, it requires approximately: 868.451 seconds, in the

contrast Notch simulating requires approximately: 264.621 seconds. According to

these results a combined filter will get better results.

Figure 2.40 MATLAB Simulink Demo PLL Program Outputs

50

CHAPTER III

HARDWARE DESIGN FOR INDUSTRIAL ANALYZER

3.1 Main Supply Circuit

Figure 3.1 Sophisticated Triac Driver Optoisolator 230 VAC to 12 VDC Power

Supply Circuit

Figure 3.2 5 VDC circuit for TFT-LCD

51

Figure 3.3 3V3 DC circuit for electronic components

The energy requirement of the equipment to be designed is reduced gradually to 12V

DC voltage with the converter circuit in the system with 230V AC voltage. All digital

elements on the circuit (Microcontroller, OPAMP, Communication Peripherals etc.)

except the TFT LCD screen, operate with 3.3V DC voltage. Only TFT LCD screen

operates with 5V DC voltage. 12V DC voltage taken from the converter circuit is

converted into 5V DC and 3.3V DC voltage by linear voltage regulators step by step.

LM7805 is used for 5V conversion and 78M33 linear regulator is used for 3.3V

conversion. In addition, diodes have been added to the input sections for linear current

control.

3.2 Voltage Detection Circuit

Figure 3.4 Voltage detection circuit

52

In order to use any current transformer in the input circuit, a connection has been made

using jumper. If desired, an external current transformer can be connected. In the

voltage measurement circuit, the network voltage level was decreased with voltage

dividers, then the voltage was increased with the differential input opamp circuit and

the analog digital converter part of the microcontroller was entered. For the voltage

divider part, the voltage falling on the R10 resistor can be calculated by Equation (3.1).

𝑣𝑅10 = 𝑣𝑖𝑛 ⋅
𝑅10

𝑅6+𝑅7+𝑅8+𝑅9
 (3. 1)

The gain of the differential input opamp circuit can be calculated by Equation (3.2) if

the resistances of R8 - R9 and R10 - R11 are equal.

𝐺𝑎𝑖𝑛 =
𝑅13

𝑅11
=

𝑅13

𝑅15
=

12𝑘

6,8𝑘
= 1,7647 (3. 2)

The time constant of the RC circuit on the output side of the opamp circuit can be

calculated with Equation (3.3).

𝜏 = 𝑅 ⋅ 𝐶 = 100 ⋅ 10 ⋅ 10−9 = 1𝜇𝑠 (3. 3)

A single supply, high precision opamp coded as MCP6061 from Microchip company

was used as amplifier. The opamp output is shifted to half (1.65V) of the supply

voltage, since both the positive and negative alternans of the grid voltage must be

measured. In this way, the voltage sampled with an analog digital converter is

converted into a sinusoidal DC voltage oscillating above 1.65V. In this circuit, the

supply voltage is divided into two with two equivalent resistors and a voltage is applied

to the voltages to be shifted by a follower opamp circuit.

53

Figure 3.5 Voltage offset circuit

3.3 Current Detection Circuit

Figure 3.6 Current detection circuit with hall effect sensor

54

Figure 3.7 Current output circuit

Current measurement can be made on the hardware in two ways. First, it is the current

measurement input where the field effect current sensor connected to the current input

is used, while the measurement can be made over the jumper by adding an external

current transformer if desired. Field effect sensor was used for measurement

experiments. In addition, with the differential opamp in the current input circuit, since

there is no need for boosting and shifting, the sensor output was directly connected to

the opamp output and measurements were made.

55

As the field effect current sensor, a model of Allegro company, coded ACS711KLCA,

capable of measuring in the range of ± 12.5A with a single supply of 3.3V and

operating in the range of -40 / + 125 ° C was used. The output of the sensor is taken

directly offset to half of the supply voltage. At the sensor output, 110mV voltage is

produced per 1A.

Figure 3.8 Characteristic Performance data of ACS711KLCA-25A, Vcc=3,3 V

3.4 Voltage and Current Zero-cross Detection Circuit

A comparator circuit has been added on the hardware to capture zero-cross from

voltage and current output signals. LM393 integrated circuit is used as comparator.

The corresponding signals were entered into the positive inputs of the comparators,

and the voltage obtained from the shifting circuit was entered into the negative inputs.

When the voltage level is higher than the shifting voltage the output is positive and

when it is low the output is zero. Thus, the frequency of the input signal is detected by

the square wave obtained from the output by connecting to the external interrupt inputs

of the microcontroller. In the software, only the zero-crossing signal of the voltage was

captured by external interrupts and frequency measurement was performed.

56

Figure 3.9 Zero-cross detection circuit

3.5 Battery Back-up Circuit

Figure 3.10 Battery backup circuit

A backup battery system has been added to meet the energy needs of the processor in

any case.

57

3.6 Microcontroller Unit (MCU)

Figure 3.11 Central processing unit (CPU) input and outputs

As the microcontroller on the hardware, STM32F405VG with a 32bit core, decimal

processing unit (FPU) and a speed of 168MHz, which is produced by ST

Microelectronics, is ARM Cortex M4 based. Generally, its features are as follows. [16]

▪ Core: Arm® 32-bit Cortex®-M4 CPU with FPU [16]

▪ ART Accelerator allowing 0-wait state execution from Flash memory [16]

▪ Frequency up to 168 MHz [16]

▪ Memory protection unit [16]

58

▪ 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1) [16]

▪ DSP instructions [16]

▪ 1 Mbyte of Flash memory [16]

▪ LCD parallel interface, 8080/6800 modes [16]

▪ Low-power operation [16]

▪ 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple

interleaved mode [16]

▪ 2×12-bit D/A converters [16]

▪ General-purpose DMA: 16-stream DMA controller with FIFOs and burst

support [16]

▪ Up to 17 timers: up to twelve 16-bit and two 32- bit timers up to 168 MHz,

each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental)

encoder input [16]

▪ Debug mode

o Serial wire debug (SWD) & JTAG interfaces [16]

o Cortex-M4 Embedded Trace Macrocell™ [16]

▪ I/O ports with interrupt capability

▪ Up to 15 communication interfaces

o Up to 3 × I2C interfaces (SMBus/PMBus) [16]

o Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN,

IrDA, modem control) [16]

o Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I2S to achieve

audio class accuracy via internal audio PLL or external clock [16]

o 2 × CAN interfaces (2.0B Active) – SDIO interface [16]

▪ Advanced connectivity

o USB 2.0 full-speed device/host/OTG controller with on-chip PHY [16]

o USB 2.0 high-speed/full-speed device/host/OTG controller with

dedicated DMA, on-chip full-speed PHY and ULPI [16]

o 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2

hardware, MII/RMII [16]

General features of the MCU are shown below in figure (3.13).

59

Figure 3.12 STM32F405VGT6 microchip designed by STM.

60

Analog

•2-channel 2x 12-bit
DAC

•3x 12-bit ADC 24
channels /2.4 MSPS

•Temperature sensor

Connectivity

•Camera interface

•3x SPI, 2x I2S, 3x I2C

•2x CAN 2.0B

•1x USB 2.0 OTG
FS/HS

•1x USB 2.0 OTG FS

•SDIO

•6x USART LIN,
smartcard, IrDA,
modem control

Arm Cortex- M4 CPU-
168 MHz

•Floating point unit
(FPU)

•Nested vector interrupt
controller (NVIC)

•JTAG/ SW debug/
ETM

•Memory Protection
Unit (MPU)

•Multi-AHB bus matrix

•16-channel DMA with
BAM

•True RNG

•1-Mbyte Flash

•192-Kbyte SRAM

•FSMC/ SRAM/ NOR/
NAND/ CF/ LCD
parallel interface

•80- byte + 4- Kbyte
backup SRAM

Control

•10x 16-bit timer

•2x 16-bit motor control
PWM synchronized AC
timer

•2x32-bit timer

System

•Power Supply 1.2 V
regulator
POR/PDR/PVD

•XTAL Oscillators 32
kHz + 4~ 26 MHz

•Internal RC Oscillators
32 kHz +16 MHz

•PLL

•Clock Control

•RTC/AWU

•SysTick Timer

•2x Watchdogs
(independent and
window)

•Interrupt capability
I/Os

•Cyclic redundancy
check (CRC)

STM32F405VGT6

Figure 3.13 General features of the STM32F405VGT6 chip by STM.

61

The ST-LINK/V2 is an in-circuit debugger and programmer for the STM8 and STM32

microcontrollers. The single-wire interface module (SWIM) and JTAG/serial wire

debugging (SWD) interfaces are used to communicate with any STM8 or STM32

microcontroller located on an application board. In addition to providing the same

functionalities as the ST-LINK/V2, the ST-LINK/V2-ISOL features digital isolation

between the PC and the target application board. It also withstands voltages of up to

1000 𝑣𝑟𝑚𝑠. [36]

Figure 3.14 ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32

STM32F405VG with LQFP100 sheath structure shown in Figure 63 operates with

3.3V voltage. In addition, programming and debugging can be done via SWD or JTAG

interface with ST Microelectronics' ST-LINK programming and debug tool.

Figure 3.15 Serial communication debugger interface circuit

62

Data, clock and reset pins of the SWD interface are taken out through the Header 7

connector in order to be able to connect with the microcontroller via the ST-LINK

programming tool. In addition, two USART connections on the same connector have

been added in order to transfer and monitor various data of the microcontroller through

the serial port channel during operation.

In addition to them, the clock signals required for the operation of the microcontroller

have been provided with an external crystal to have higher accuracy despite the

presence of a built-in RC oscillator. In figure (3.16) an external crystal frequency is

chosen as 25MHz and this frequency has been increased up to 144MHz in the

microcontroller. Although the maximum operating frequency is 168 MHz, the

operating frequency is limited to 144 MHz in order for the TFT LCD display to work

properly.

Figure 3.16 External Oscillator circuit

3.7 Human Hardware Interface Design

A TFT LCD has been added to show the measurement data on the hardware, three

LEDs to indicate the operating conditions and three buttons to allow the user to switch

between the operating screen pages and reset.

63

As a TFT LCD screen, an ILI9328 internal driver module of ILITEK company, with a

screen size of 3.2” and a resolution of 320x240 pixels, was preferred. The presence of

internal SRAM on the driver allows the microcontroller to be driven with the FSMC

memory controller.

Figure 3.17 Human Hardware Interface TFT-LCD Front view

Figure 3.18 Human Hardware Interface TFT-LCD Rear view

The wiring diagram of the TFT LCD module used with the microcontroller is as in

Figure (3.13). The TFT LCD screen has been driven in 16-bit RGB565 format. Read,

write, select or reset signals are automatically generated by the FSMC memory control

unit in the microcontroller. The brightness of the backlight, which is fed with 5V DC

64

voltage, can be adjusted by PWM signals applied to the control pin. The schematic of

HY32D shown in Appendix C.

Figure 3.19 Header wiring diagram for connection between TFT-LCD and MCU

The connection of the LED diodes used to show the operating states is as follows. In

Figure (3.20), LED1 shows the power status of the device. It turns on as soon as energy

comes to the CPU input. LED2 lights when the central processing unit (CPU) is

processing a message in the main task function. Depending on the burning state of this

LED, the intensity of the microcontroller's working state can be observed. LED3

shows the communication status. It actively turns on when there is a query on the

device via Modbus.

In Figure (3.21), The first two of the buttons are effectively used to switch between

working screens. The first button is used to go to the previous pages, and the second

button to switch to the next working screen. The last button is designed for the reset

CPU. If it needs to be reset this can be used for that purpose.

65

Figure 3.20 LED Indicators

Figure 3.21 Human PCB Interface buttons

66

3.8 Communication Hardware

Figure 3.22: RS-485 Interface circuit with the MCU

Both RS485 connection Figure (3.22) and Bluetooth connection Figure (3.23) have

been added on the hardware to enable the microcontroller to communicate. The

USART3 unit of the microcontroller is used for both communications. If desired, serial

communication can be provided via RS485 or Bluetooth. Wireless data transfer was

realized over the virtual serial port that will be provided with the connection made over

Bluetooth.

Figure 3.23 Bluetooth Serial Interface with the MCU

67

The Bluetooth module used is a satellite mode Bluetooth module with HC-06 code. It

provides a wireless data transfer with USART with the serial port protocol (SPP) it

hosts. Since it can operate in satellite mode, the party that is the main unit must initiate

the connection. After the connection is made positive, data transfer will be possible

over the virtual serial ports that will be formed.

Figure 3.24 Preferred Bluetooth Module (HC-06)

In addition to RS485 and Bluetooth, a USB 2.0 mini-USB connection port has been

added on the hardware. If desired, communication with the microcontroller can be

provided through this port.

Figure 3.25 USB Full-speed Interface Circuit

68

3.9 Designed PCB

Figure 3.26 Designed PCB, Board Layer Stack Front view v.0.2

Figure 3.27 Designed PCB, Board Layer Stack Rear view v.0.2

69

Figure 3.28 Designed PCB, 3D Front view v.0.2

Figure 3.29 Designed PCB, 3D Front view v.0.2

70

CHAPTER IV

SOFTWARE DESIGN FOR INDUSTRIAL ANALYZER

4.1 Message Queue Based Operating System

As we will remember from the queue data structures, it is a linear data storage

structure. We can make this subject concrete with a simple example. We wanted to

withdraw money from a cash machine and when we went to the front of the cash

dispenser, we saw that there was a long line in front of the cash dispenser. How does

this queue or queue work? The tail has a head so there is a person pulling money from

the cash machine at that moment, and he's probably the first to enter the queue. Those

who come after him are lined up behind him, and after the head of the queue has done

his job at the cash machine, he leaves the queue, and the person behind him goes to

the queue. This process is repeated continuously until there is no one left in the queue.

Queuing usage in RTOS is similar. In this example, people in the queue are data or

messages in RTOS. They do certain operations by reading these data in order of tasks

and tasks can be blocked when the queue is empty. The beauty of using the tail also

starts here. When a data comes to the queue, the desired task can be activated.

Figure 4.1 Message Queue Structure

71

A queue can hold fixed size variables (8 bits, 16 bits, etc.). The maximum number of

these variables in the queue is called "length". These two parameters are defined when

the queue is first created. Queues often use a FIFO (First in First Out) buffer. In other

words, the first data written to the queue is read first. When writing data to the queue,

it is usually appended at the end, when data is read from the beginning of the queue.

 The queue is an object in their own right. It can be accessed from any task or ISR

(Interrupt Service Routine). More than one task can write data to the queue and read

data from the same queue. Typically, it is more common to write data to multiple flood

queues than to read data from multiple flood queues. Tasks can be blocked with the

queue. If there is no data in the queue, the task can be blocked until the data is in the

queue. This blocking can be done until the data comes to the queue or optionally for a

certain period of time. In other words, if the task waits for data to come to the queue

for a certain period of time, and if there is no data within this period, it can continue

its operations from where it left off. If there is more than one task that reads data from

the queue, these tasks can be blocked at the same time, but the highest priority task

gets the data in the queue first. If the priorities of the tasks waiting for data from the

queue are equal, the longest waiting task will read the data from the queue.

A task can also be blocked while writing data to the queue. If the queue is full, the task

that writes data to the queue can be blocked until the data is deleted from the queue.

Again, in this case, more than one task can be blocked while writing data to the queue.

The highest priority task writes data to the queue when space is free. If the priorities

are equal, the task that waits for the longest time to write data to the queue writes the

data to the queue.

The message structure to be defined in the software contains three pieces of data. These

data are variables that hold the data about which task functions the messages concern,

namely the target function, which message it contains and the message it carries. In

the main loop, a system has been established that receives the messages transmitted to

the message queue structure and transmits them to the relevant function. This

mechanism receives, processes and deletes from the queue if there are any messages

accumulated in the queue. Queuing structure has been established to keep maximum

32 messages in memory. If it is insufficient, it can be enlarged, but it should not be

forgotten that it means taking the system away from real time.

72

A message structure within this structure is as follows.

typedef struct

{

eTasks_tTargetTask;

uint16_tTargetTaskMessageID;

uint16_tTargetTaskMessageData;

}stMessage_t;

The function that receives and processes the messages in the queue is as follows.

for(;;)

 {

if(stMessageQueue.Counter)

{

KernelMessagePop();

DoProcess();

 }

}

The body of the main task functions that receive and process when a message is

received is as follows.

void TaskMain(stMessage_t *stMessage)

{

switch(stMessage->TargetTaskMessageID)

 {

case msgX:

break;

 case msgY:

 break;

 case msgZ:

 break;

 case msgT:

 break;

 }

}

Two task functions that fulfill the main operations and the parts related to the

measurement are defined in the software. At any time of operation, a message can be

sent to the desired task function. For example, when any of the buttons on the hardware

is pressed, sending a message to the main task function (Main Task) can be done as

follows. (All functions related to the structure established in the software are included

in Appendix E.)

KernelMessage_Push(eTaskMain, msgButtonPush, stButton->ButtonNo);

Such structures have advantages over real-time operating system (RTOS) structures.

There is a constant transition between task functions in RTOS systems. During this

73

transition, the variables belonging to each task function must be stored in its own

memory areas. After each transition, the data in these memory areas are read and

operations continue accordingly. Therefore, this is an important factor that consumes

processing time. In addition, RTOS systems are structures that take a significant place

in the memory of the microcontroller. For this reason, they do not work well on low

performance platforms.

Within the scope of this thesis, there is no continuous transition between functions in

the message queue-based mini operating system. Only when a message is sent to a task

function, the function is received. Therefore, there is no performance loss. It does not

take up a significant amount of memory of the microcontroller. Therefore, it can be

used in any system. It provides great convenience and flexibility during software

development. It also improves readability in software. Therefore, the establishment of

such a structure is stipulated within the scope of the thesis.

4.2 TFT-LCD Graphical Library

Nowadays, the use of LCD screens has increased due to the widespread use of graphic

displays and the rapid increase of microcontrollers. Being aware of this situation,

manufacturers also offer various graphic libraries to their users free of charge. In the

software prepared within the scope of this thesis, emWin graphic library, which is

offered free of charge by ST Microelectronics, was used. The emWin library is a very

comprehensive tool produced by SEGGER. It can be used on many different

microcontrollers. It also supports many different TFT LCD drivers, communication

interfaces and picture formats. It also supports touch applications. In addition, the

driverless TFT LCD displays have a structure that can be used very efficiently, whether

using a real-time operating system or not. Therefore, companies such as ST and NXP

offer this library free of charge. They have designer programs but general structure

and graphics are similar. However, the library is not offered as open source. There are

compiled library files for various platforms (Cortex M0, Cortex M3, Cortex M4,

Cortex M7 etc.). It has been included in projects developed using the C / C ++ language

and made available.

74

Figure 4.2 AppWizard by SEGGER and GUI Builder by NXP

In addition to these, the emWin tool also includes a Windows program called GUI

Builder to design ready-made windows and generate C / C ++ codes, a font file

conversion tool to use fonts installed on Windows in projects, and converter programs

that can convert image files to C / C ++ sequences. In these little tools, emWin has

made the graphics library very useful and common.

Figure 4.3 emWin Bitmap Converter tool by SEGER.

75

4.3 Effective Value Calculation of Voltage and Current in Discrete Time

In the first part, the Equation (4.1) regarding the effective value calculation in

continuous time was obtained. In this section, numerically effective value calculation

will be made by the microcontroller with the Equation (4.2).

𝑉𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫ 𝑣(𝑡)2 ⋅ ⅆ𝑡

𝑇

0
 (4. 1)

𝑉𝑟𝑚𝑠 = √
1

𝑁
⋅ ∑ 𝑣𝑖

2𝑁

𝑖=0
 (4. 2)

We can calculate the effective value by taking the square root of the average of the

sum of the squares of the samples taken from the voltage signal, as can be understood

from the expression in Equation (4.2).

The DMA is an AMBA advanced high-performance bus (AHB) module that features

three AHB ports: a slave port for DMA programming and two master ports (peripheral

and memory ports) that allow the DMA to initiate data transfers between different

slave modules. The DMA allows data transfers to take place in the background,

without the intervention of the Cortex-Mx processor. During this operation, the main

processor can execute other tasks and it is only interrupted when a whole data block is

available for processing. Large amounts of data can be transferred with no major

impact on the system performance. The DMA is mainly used to implement central data

buffer storage (usually in the system SRAM) for different peripheral modules. This

solution is less expensive in terms of silicon and power consumption compared to a

distributed solution where each peripheral needs to implement its own local data

storage. Thanks to the Direct Memory Address (DMA) inside the microcontroller, the

samples taken in order are designed to generate interrupts after they are written to the

specified addresses. The analog to digital converter unit (ADC) was periodically

triggered by the timer (TIMER) unit, and the sampling process was performed.

Following the sample taken from the voltage channel, the current channel is sampled

and then the results are transferred to the relevant variables by the DMA unit. Thus, it

provides periodic sampling from voltage and current. The sampling period is set to

take 128 samples per period. It is 156.25 μs for 50Hz network frequency. However, as

it is explained in the second section, since this time is adjusted synchronously to the

PLL output, in case of a frequency change, this time is adjusted dynamically. [17]

76

Figure 4.4 STM-32F405 DMA Structure

Figure 4.5 CPU and DMA1 request an access to SRAM1

77

Figure 4.6 Peripheral-to-memory transfer states

Figure 4.7 Memory-to-peripheral transfer states

78

Figure 4.8 Timing diagram for sampling

Below is the cut sub-function for transferring raw values to the sequences where

samples are stored in DMA interrupt. When the number of samples to be taken was

completed, a message was sent to the task function related to measurement that

samples were taken.

void DMA2_Stream0_IRQHandler(void)

 {

 if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0))

 {

DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);

stTaskMeas.SampleBuffer[0][stTaskMeas.SampleIndex] =

InstantRawValues[0];

stTaskMeas.SampleBuffer[1][stTaskMeas.SampleIndex] =

InstantRawValues[1];

if(++stTaskMeas.SampleIndex == TOTAL_SAMPLE_NUM)

 {

stTaskMeas.SampleIndex = 0;

KernelMessagePush(eTaskMeas, msgSamplesCollected, 0);

 }

 }

 }

When the sampling is completed, the series in which the samples are kept are copied,

as new samples will continue to be added to the original series. First of all, since the

samples are taken offset, this shift amount must be subtracted from the sample values.

This process was applied in two strings containing both voltage and current samples.

DMA Interrupt

Current Sampling

Voltage Sampling

79

arm_mean_q15((int16_t *)stTaskMeas.CopyBuffer[0], TOTAL_SAMPLE_NUM,

(int16_t *)&stTaskMeas.AverageVal[0]);

arm_mean_q15((int16_t *)stTaskMeas.CopyBuffer[1], TOTAL_SAMPLE_NUM,

(int16_t *)&stTaskMeas.AverageVal[1]);

for(int i = 0; i < TOTAL_SAMPLE_NUM; i++)

{

 stTaskMeas.CopyBuffer[0][i] -= stTaskMeas.AverageVal[0];

 stTaskMeas.CopyBuffer[1][i] -= stTaskMeas.AverageVal[1];

}

As the next step, the sum of the squares of the samples was transferred to the relevant

variables, and then the raw effective value was obtained by taking the square root.

After this step, the values obtained will be passed through the average filter and the

results with a smoother transition will be shown on the graphic screen.

arm_power_q15(stTaskMeas.CopyBuffer[0],TOTAL_SAMPLE_NUM,

&TotalSquare[0]);

arm_power_q15(stTaskMeas.CopyBuffer[1],TOTAL_SAMPLE_NUM,

&TotalSquare[1]);

v = (uint16_t)sqrt((double)TotalSquare[0] / (TOTAL_SAMPLE_NUM));

i = (uint16_t)sqrt((double)TotalSquare[1] / (TOTAL_SAMPLE_NUM));

4.4 Harmonics and Fast Fourier Transform (FFT) Analysis

Non-linear loads cause harmonic currents to be drawn from the network. Both network

voltage and current can be harmonic [33]. Sine and cosine components at different

frequencies in a harmonic system can be calculated with the help of Fourier analysis.

According to Fourier analysis, a periodic signal can be expressed as the sum of sine

and cosine components whose frequencies are exactly multiple of each other.

𝑖(𝑡) = 𝑖0 + 𝑎1 ⋅ cos(𝜔𝑡) + 𝑎2 ⋅ cos(2𝜔𝑡) + ⋯ + 𝑎𝑛 ⋅ cos(𝑛 ⋅ 𝜔𝑡) + 𝑏1 ⋅

sin(𝜔𝑡) + 𝑏2 ⋅ sin(2𝜔𝑡) + ⋯ + 𝑏𝑛 ⋅ sin(𝑛 ⋅ 𝜔𝑡) (4. 3)

𝑖(𝑡) = 𝑖0 + ∑ [𝐴𝑛 ⋅ cos(𝑛 ⋅ 𝜔𝑡) + 𝐵𝑛 ⋅ sin(𝑛 ⋅ 𝜔𝑡)]∞
𝑛=1 (4. 4)

In a harmonic system, if there is no dc component, the value of becomes zero [33]. If

the signal has a single function symmetry Equation (4.5), the cosine components will

not be found [33].

80

𝑖(𝜔𝑡) = −𝑖(−𝜔𝑡) (4. 5)

If the signal has a double function symmetry Equation (4.6), there will be no sine

components [33].

𝑖(𝜔𝑡) = 𝑖(−𝜔𝑡) (4. 6)

If the signal has half-wave symmetry Equation (4.7), there will be no even numbered

components [33].

𝑖(𝜔𝑡) = −𝑖(𝜔𝑡 + 𝜋) (4. 7)

In Fourier analysis, the DC component Equation (4.8), 𝐴𝑛 and 𝐵𝑛 coefficients can also

be calculated using Equation (4.9) and Equation (4.10) [33].

𝑖0 =
1

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
 (4. 8)

 𝐴𝑛 =
2

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ 𝑐𝑜𝑠(𝑛 ⋅ 𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
 (4. 9)

𝐵𝑛 =
2

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
 (4. 10)

Using the coefficients 𝐴𝑛 and 𝐵𝑛, the effective value of the relevant harmonic

component and the phase difference of the harmonic component can be found as

follows [34].

𝑎𝑛 ⋅ 𝑐𝑜𝑠(𝑛 ⋅ 𝜔𝑡) + 𝑏𝑛 ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡) = 𝐼𝑛 ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡 + 𝜑𝑛) (4. 11)

𝐼𝑛 = √𝐴𝑛
2 + 𝐵𝑛

2 (4. 12)

𝜑𝑛 = arctan
𝑎𝑛

𝑏𝑛
 (4. 13)

The effective values of harmonics can be calculated by Equation (4.12) and phase

angles of harmonics can be calculated by Equation (4.13). Effective value including

all harmonics can be calculated with Equation (4.14).

81

𝐼 = √𝐼1
2 + 𝐼2

2 + 𝐼3
2 + ⋯ + 𝐼𝑛

2 (4. 14)

With the help of Fourier analysis, we can examine current harmonics on MATLAB as

follows.

clear all
clc

f = 50;
T = 1/f;
w = 2*pi*f;
Fs = 6400;
Ts = 1/Fs;
L = Fs/f;
t = (0:L-1)*Ts;

N = 35
I_rms = 0;
i = 25*sqrt(2)*sin(w*t)+4*sqrt(2)*sin(4*w*t)+2*sqrt(2)*sin(10*w*t);

An = zeros(1,N);
Bn = zeros(1,N);
Cn = zeros(1,N);
for j=1:length(i)
for n = 1 : N
 An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));
 Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));
 Cn(n) = sqrt(An(n)^2 + Bn(n)^2)/sqrt(2);
 end
I_rms = I_rms + i(j)^2;
 end
I_rms = sqrt(I_rms / L);
I1_rms = Cn(1);
THDI = sqrt(I_rms^2 - I1_rms^2) / I1_rms;

subplot(2,1,1);
bar(Cn); grid; axis tight; ylabel('Harmonic Analyze');

xlabel('Harmonic No');
subplot(2,1,2);
plot(t,i); grid; axis tight; xlabel('time');

82

Figure 4.9 Effective values of the Current Harmonics

4.5 The Calculation of Phase Angle [cos(𝝋)]

After calculating the effective values of voltage and current, the next step will be

cos(φ) calculation. For this, first the phase angles of the main harmonic component of

the voltage signal and the main harmonic component of the current signal must be

calculated [34].

𝜑 = 𝜑𝑣 − 𝜑𝑖 (4. 15)

The values of 𝜑𝑣 and 𝜑𝑖 can be calculated with the help of 𝐴𝑛 and 𝐵𝑛coefficients

obtained with the help of Fourier analysis as explained in the previous section.

𝜑1_𝑣 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎1_𝑣

𝑏1_𝑣
 (4. 16)

𝜑1_𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎1_𝑖

𝑏1_𝑖
 (4. 17)

In this case;

cos(𝜑) = cos(𝜑1) = cos (𝜑1_𝑣 − 𝜑1_𝑖) (4. 18)

83

will be calculated as in Equation (4.18).

The cos(𝜑) value of a voltage and current signal in Figure (4.10), without harmonics

and with a phase difference of 20° can be calculated as follows in MATLAB

environment.

clear all
clc
f = 50;
T = 1 / f;
Fs = 6400;
Ts = 1/Fs;
Ls = Fs/f;
t = (0:Ls-1)*Ts;
w = 2*pi*f;
N = 1;
v = 120 * sin(w*t);
i = 15 * sin(w*t - (pi/9));

y1=v;
subplot(1,1,1);
plot(t,v); grid; axis tight; xlabel('time');
hold on
y2=i;
plot(t,i); grid; axis tight; xlabel('time');
hold off

Figure 4.10 Voltage and current signal to be calculated phase difference

84

clear all
clc
f = 50;
T = 1 / f;
Fs = 6400;
Ts = 1/Fs;
Ls = Fs/f;
t = (0:Ls-1)*Ts;
w = 2*pi*f;
N = 1;
v = 120 * sin(w*t);
i = 15 * sin(w*t - (pi/9));
An = zeros(1,N);
Bn = zeros(1,N);
for j=1:length(v)
for n = 1 : N
An(n) = An(n) + (2/T)* Ts * v(j) * cos(n*w*(Ts*(j-1)));
Bn(n) = Bn(n) + (2/T)* Ts * v(j) * sin(n*w*(Ts*(j-1)));
end
end
Phi_V = atand(An(1)/Bn(1));
An = zeros(1,N);
Bn = zeros(1,N);
for j=1:length(i)
for n = 1 : N
An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));
Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));
end
end

Phi_I = atand(An(1)/Bn(1));
Phi = Phi_V - Phi_I;
CosPhi = cosd(Phi);

fprintf('Phi_V = %g\n', Phi_V);
fprintf('Phi_I = %g\n', Phi_I);
fprintf('CosPhi = %g\n',CosPhi);
fprintf('Phi = %g\n',Phi);

Figure 4.11 MATLAB output of Cos φ calculation for a harmonic-free system

For a voltage and current signal whose current signal is harmonic and whose

fundamental component is 30° phase different Figure (4.12), cos(𝜑) calculation will

be as follows.

85

Figure 4.12 Voltage and harmonic current signal to be calculated phase difference

v = 80 * sin(w*t);
i = 20 * sin(w*t - (pi/6)) + 5 * sin(7*w*t);

Figure 4.13 MATLAB output of cos(𝜑) calculation for a harmonic system

The part that performs the above operations in the software is given in Appendix F.

4.6 The Calculation of Power Factor (PF)

After calculating the phase angle, the next step will be to calculate the power factor.

Since vrms = v1_rms and irms = i1_rms expressions are valid in a system without

harmonics, cos(𝜑) and power factor value are equal.

𝑃𝐹 =
𝑣1_𝑟𝑚𝑠

𝑣𝑟𝑚𝑠
⋅

𝑖1_𝑟𝑚𝑠

𝑖𝑟𝑚𝑠
⋅ cos(𝜑) (4. 19)

86

𝑃𝐹 = 𝐾𝑣 ⋅ 𝐾𝑖 ⋅ cos(𝜑) (4. 20)

In a network whose voltage is generally accepted as non-harmonic, the power factor

can be defined by Equation (4.21).

𝑃𝐹 =
𝑖1_𝑟𝑚𝑠

𝑖𝑟𝑚𝑠
⋅ cos(𝜑) (4. 21)

The total harmonic distortion (THD) value for the current in a harmonic system is

defined by the Equation (4.22).

𝑇𝐻𝐷𝐼 =
√𝐼2

2+𝐼3
2+𝐼4

2…+𝐼𝑛
2

𝐼1
 (4. 22)

If the network voltage is non-harmonic, it can be written as Equation (4.23) depending

on the value of the power factor (𝑇𝐻𝐷𝐼).

𝑃𝐹 =
1

√1+𝑇𝐻𝐷𝐼
2

⋅ cos(𝜑) (4. 23)

In the software, voltage and current harmonics will be calculated with the help of

Fourier analysis and the power factor will be calculated using the obtained THD value

and cos(𝜑). These steps can be performed on MATLAB as follows.

clear all
clc
f = 50;
T = 1 / f;
Fs = 6400;
Ts = 1/Fs;
Ls = Fs/f;
t = (0:Ls-1)*Ts;
w = 2*pi*f;
N = 10;

V_rms = 0;
I_rms = 0;

v = 75 * sin(w*t);
i = 25 * sin(w*t - (pi/6)) + 7 * sin(5*w*t);

An = zeros(1,N);
Bn = zeros(1,N);
Cn = zeros(1,N);

87

for j=1:length(v)
 for n = 1 : N
An(n) = An(n) + (2/T)* Ts * v(j) * cos(n*w*(Ts*(j-1)));
Bn(n) = Bn(n) + (2/T)* Ts * v(j) * sin(n*w*(Ts*(j-1)));
Cn(n) = sqrt(An(n)^2 + Bn(n)^2)/sqrt(2);
 end

V_rms = V_rms + v(j)^2;
 end

Phi_V = atand(An(1)/Bn(1));
V_rms = sqrt(V_rms / length(i));
Kv = Cn(1)/V_rms;

An = zeros(1,N);
Bn = zeros(1,N);
Cn = zeros(1,N);

for j=1:length(i)
 for n = 1 : N
An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));
Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));
Cn(n) = sqrt(An(n)^2 + Bn(n)^2)/sqrt(2);
 end
I_rms = I_rms + i(j)^2;
 end

Phi_I = atand(An(1)/Bn(1));
I_rms = sqrt(I_rms / length(i));
Ki = Cn(1)/I_rms;

Phi = Phi_V - Phi_I;
CosPhi = cosd(Phi);
PF = Kv * Ki * CosPhi;

fprintf('CosPhi = %g\n', CosPhi);
fprintf('PowerFactor = %g\n', PF);
fprintf('Kv = %g, Ki = %g\n', Kv, Ki);

Figure 4.14 Power factor calculation on MATLAB for a harmonic system

The part that performs the above operations in the software is given in Appendix G.

88

4.7 Power and Energy Calculation

After completing the effective values of voltage and current values, cos(𝜑) and power

factor calculations, the next step is to make power and energy calculations. Apparent

power, active power and reactive power are calculated in the software as follows.

S = stTaskMeas.Voltage * stTaskMeas.Current;

P = S * stTaskMeas.CosPhi;

Q = S * stTaskMeas.SinPhi;

In the energy calculation, the direction of the energy flow can be from the network to

the load or from the load to the network, depending on the positive and negative phase

angle. If the phase angle is positive, the energy flow is defined as from the network to

the load (Import), and if it is negative, it is defined as the direction of production

(Export). In addition, it will be taken into account as inductive or capacitive reactive

power, depending on whether the reactive power is positive or negative along with the

energy flow direction.

P (-)

Q (+)

cos 𝜑 (-)

P (+)

Q (+)

cos 𝜑 (+) P

Q

P (-)

Q (-)

cos 𝜑 (-)

P (+)

Q (-)

cos 𝜑 (+)

Figure 4.15 State of powers according to the sign of the phase angle

89

▪ In the first region, active power and reactive power are positive since cos(𝜑)

and sin(𝜑) are positive.

▪ In the second region, active power is negative and reactive power is positive

since cos(𝜑) is negative and sin(𝜑) is positive.

▪ In the third region, active power and reactive power is negative since cos(𝜑)

and sin(𝜑) is negative.

▪ In the fourth region, active power is positive and reactive power is negative

since cos(𝜑) is positive and sin(𝜑) is negative.

The right side of the Q-axis is the import direction for the energy flow direction, and

the left side is the export direction. In terms of reactive power, the above part of the

P-axis is inductive and the below part is capacitive.

The electrical energy value is generally expressed as in Equation (4.24) and Equation

(4.25). Its unit is watt-second. In energy systems, it is generally used as watt-hour (Wh)

or kilowatt-hour (kWh). In the software, energy values are obtained by collecting

cumulatively according to the state of power values and calculated according to kWh

unit.

𝐸𝑝 = 𝑃 ⋅ 𝑡 (4. 24)

𝐸𝑞 = 𝑄 ⋅ 𝑡 (4. 25)

Figure 4.16 State of powers according to the sign of the phase angle

Export

Inductive

Region (II)

Import

Inductive

Region (I)

Export

Capacitive

Region (III)

Import

Capacitive

Region (IV)

P

Q

90

if(stTaskMeas.CosPhi >= 0)

{

stTaskMeas.PowerDirection = IMPORT;

stTaskMeas.stEnergiesImport.ActiveEnergy += ((0.16 * P) / 3600);

if(Q >= 0)

 {

stTaskMeas.stEnergiesImport.InductiveReactiveEnergy += ((0.16 * Q)

/ 3600);

 }

else

{

stTaskMeas.stEnergiesImport.CapacitiveReactiveEnergy += ((0.16 * -

Q) / 3600);

}

}

else

 {

stTaskMeas.PowerDirection = EXPORT;

stTaskMeas.stEnergiesExport.ActiveEnergy += ((0.16 * -P) / 3600);

if(Q >= 0)

 {

stTaskMeas.stEnergiesExport.InductiveReactiveEnergy += ((0.16 * Q)

/ 3600);

 }

else

 {

stTaskMeas.stEnergiesExport.CapacitiveReactiveEnergy += ((0.16 * -

Q) / 3600);

}

Since the sampling process in the software is based on 8 period sampling as 128

samples per period, the calculations are made over 1024 samples. Therefore, since

1024 samples were taken at 160ms intervals, the energy values were calculated by

taking the calculated power values during this time as a reference.

91

CHAPTER V

HARDWARE REALIZATION AND MEASUREMENT RESULTS

5.1 Working Screens

9 operating screens are designed for the graphic display on the hardware. Measurement

results can be followed through these screens. Apart from this, it will also be possible

to read the measurement results via Modbus communication. Address maps for

Modbus communication are available in Appendix H.

Figure 5.1 Voltage, Current, frequency, Cos φ and PF analyze screen without the

load

92

Figure 5.2 Active, Reactive and Apparent Power Analyze Screen without the load

Figure 5.3 Imported Active, Inductive and Reactive Energy Analyze Screen without

the load

93

Figure 5.4 Exported Active, Inductive and Reactive Energy Analyze Screen without

the load

Figure 5.5 Voltage Harmonical Spectrum Graphical Analyze Screen without the

load

94

Figure 5.6 Voltage Harmonic Ratios Analyzed Values without the load

Figure 5.7 Current Harmonical Spectrum Graphical Analyze Screen without the load

Figure 5.8 Current Harmonic Ratios Analyzed Values without the load

95

Figure 5.9 Total Harmonic Distortion on the Voltage and Current Analyze Screen

without the load

Figure 5.10 Voltage, Current, frequency, Cos φ and PF analyze screen on the load

Figure 5.11 Active, Reactive and Apparent Power Analyze Screen on the load

96

Figure 5.12 Imported Active, Inductive and Reactive Energy Analyze Screen on the

load

Figure 5.13 Exported Active, Inductive and Reactive Energy Analyze Screen on the

load

Figure 5.14 Voltage Harmonical Spectrum Graphical Analyze Screen on the load

97

Figure 5.15 Voltage Harmonic Ratios Analyzed Values on the load

Figure 5.16 Current Harmonical Spectrum Graphical Analyze Screen on the load

Figure 5.17 Current Harmonic Ratios Analyzed Values on the load

98

Figure 5.18 Total Harmonic Distortions on the Voltage and Current Analyze Screen

on the load

5.2 The Effect of Sampling Frequency on the Measurements

In this section, sampling at different sampling frequencies was used and a comparison

was made between the measurement results and the reference measuring instrument.

V * is the value read from the multimeter, V is the value measured by us on the graphic

display.

Table 5.1 Experiment results with the different sampling frequency

Fs N V*(V) V(V) I(A) Voltage Error (%)

12,8 kHz 256 227,5 226,25 8,605 0,549

6,4 kHz 128 225,3 224,22 8,683 0,479

3,2 kHz 64 226,3 225,38 8,638 0,406

1,6 kHz 32 226,8 225,74 8,624 0,467

5.3 The Effect of Analog Digital Converter Resolution on Measurements

In this section, the measurement results of various resolutions are compared by

changing the resolution of the microcontroller to analog digital converter. V * is the

value read from the multimeter and V indicates the values measured by us on the

graphic display.

99

Table 5.2 Experiment results with the different resolutions of ADC

Resolution V*(V) V(V) Error Rate (%)

12-bits 221,12 220,40 0,325

10-bits 224,56 222,15 1,073

8-bits 223,59 216,43 3,202

6-bits 227,47 210,65 7,39

Figure 5.19 Voltage and Current Graphs when the ADC has 6-bits resolution

Figure 5.20 Voltage and Current Graphs when the ADC has 8-bits resolution

100

Figure 5.21 Voltage and Current Graphs when the ADC has 10-bits resolution

Figure 5.22 Voltage and Current Graphs when the ADC has 12-bits resolution

5.4 The Effect of Total Number of Samples on Measurements

In this section, the total number of samples taken was kept at various values and the

calculated measurement results were compared. The number of samples taken in a

101

period was kept as 128, and the measurement period was changed to 1, 2, 3, 4, 5, 6, 7,

8 and different values were obtained in the total number of samples.

Table 5.3 Experiment results with the different samples of ADC

Number of

Samples (N)
Period (T) V*(V) V(V)

Error Rate

(%)

128 1 227,33 226,68 0,285

256 2 227,69 226,61 0,474

384 3 227,27 226,14 0,497

512 4 227,29 225,83 0,642

640 5 226,92 224,61 1,017

768 6 227,18 225,87 0,576

896 7 226,74 225,53 0,533

1024 8 226,42 225,44 0,432

5.5 Other Factors That Effective on The Results

It’s proved that various factors directly affect the measurement quality. Temperature

changes of electronic components used are one in all the important factors. thanks to

the optimal working environment of the components are different, so as to attenuate

the negative impact of this case, the materials used is preferred with higher sensitivity

and lower temperature coefficient. Also, the field effect sensor utilized in the current

input is tormented by the external magnetic field. To avoid negative effect of this case,

it's going to be possible to produce magnetic isolation of the area where the sensor is

located on the hardware or standard transformer like rated 250/5A is also accustomed

get far better results with the high precision. However, a current transformer requires

much space. Besides, sensitivity of the operational amplifiers utilized in voltage and

current inputs is critical. a low precision operational amplifier will cause irrelevant

results, especially when making measurements too close to zero. To avoid this case,

choosing a high quality and high precision operational amplifier will influence

positively affect the results. Additionally, chosen MCU is vital. If a microcontroller

with high performance and decimal processing capability isn't preferred, it'll influence

negatively the results in order that it'll cause loss of sensitivity during the mathematical

operations.

102

In addition to that, low-battery voltage also will affect negatively the calculations. For

the remainder, the second revolution of PCB also generated and everyone necessary

revisions are upgraded. thanks to its open source, you'll be able to modify the PCB

software as you desire. The software is sort of the identical but the screenshotted PCB

can be modified.

103

CHAPTER VI

MODBUS COMMUNICATION

6.1 Modbus Communication

There are a number of agreements designed for RS-232 or RS-485 communications

that are still very much in place in automated systems. Modbus is probably the most

well-known and widely accepted, and is described here as a typical example. The

Modbus serial communications protocol is a standard designed to integrate PLCs,

computers, terminals, sensors and actuators. Modbus is a master / slave system which

means that one device, the master node, controls all serial functions by selecting slave

resources. Modbus supports one main device and up to 247 slave devices. Each device

is assigned a unique node address. There are two Modbus variants: ASCII and RTU.

ASCII mode uses 'printable' message format. ASCII messages start with a colon and

end with a cart return. [24]

RTU mode uses binary so it is not 'printable'. Eight-character characters are sent as a

continuous explosion and the end of the message is defined by 3.5 times silent periods.

RTU mode messages use half of the letters of the same ASCII message. Only a

professional who starts work. The master is usually the PC in charge or HMI device

because most Modicon PLCs are addictive and cannot execute Modbus function (new

Quantum PLCs can function as Modbus masters). Usually, the householder will read

or write letters to the slave. In each case, the slave will return a reply to the message.

With the learning function, the response will handle the requested data. For a writing

task, feedback is used to ensure acceptance of the writing instruction. A special case

is the ‘broadcast’ function where the writing function can be directed to all slaves. In

this case, no reply is coming. The 8-bit address field is the first part of the message (1

RTU byte, or 2 ASCII characters). This field indicates the local address of the slave

who should respond to the message; all the slaves get the message but only the slave

in question will act on it. The job code field tells the slave written what work to do.

104

Modbus performance codes are specifically designed to communicate with PLC in

Modbus industrial communication system. Two error checkers are added at the end of

each message: ASCII mode uses longitudinal multiplication test (LRC), and RTU

mode uses 16-bit CRC test. In the examples in Table 6.1 and Table 6.2, the home PC

starts a three-frame study application starting with # 1.08 from call address 06. The

initial catch register is 40108 but '4 'has been released in a series of messages. and the

entire register address is 'one bit' (0108 becomes 0107, 0107 is entered 006B in

hexadecimal). The answer repeats the address and code of operation, but includes the

values read in the drive.

There are four types of types in Modbus communication.

• Coil

• Discrete Login

• Holding Registration

• Login Registration

Parameter types are in bit or 16-bit formats. Bit parameter type and only readable type

parameter is called "Discrete Input", and the type that can be read and written is called

"Coil". Parameters of 16bit type and readable only type are named as "Input Register",

and those that can be both read and written are called "Holding Register" [24]. The

parameter list for the designed hardware is given in Appendix H. All parameters are

defined in read-only Input Register type. The basic data type is defined as 16-bit, 32-

bit parameters, two 16-bit parameters in sequence.

105

Table 6.1 Query

Field Name RTU (hex) ASCII Characters

Header None : (colon)

Slave Address 06 0 6

Function 03 0 3

Starting address High 00 0 0

Starting address Low 6B 6 B

No. of registers High 00 0 0

No. of registers Low 03 0 3

Error check CRC(2-bytes) LRC (2 chars)

Trailer None CRLF

Total Bytes 8 17

CRLF: Carriage Return Line Feed

Table 6.2 Response

Field Name RTU (hex) ASCII Characters

Header None : (colon)

Slave Address 06 0 6

Function 03 0 3

Byte count 06 0 6

Data High 02 0 0

Data Low 2B 2 B

Data High 00 0 0

Data Low 00 0 0

Data High 00 0 0

Data Low 63 6 3

Error check CRC(2-bytes) LRC (2 chars)

Trailer None None

Total Bytes 11 23

106

CHAPTER VII

CONCLUSION AND FUTURE WORKS

Within the scope of this thesis, an embedded system has been developed so as to make

numerical measurements in electrical grid systems and therefore the factors which will

affect the measurement are investigated by making experiments on various systems

supported IEEE 1459-2010 Standards [1].

It’s been proved that some factors directly affect the measurements. The first thing is

temperature changes of electronic components. In the operation progress, the active

components switching sustainedly and during these operations they are warming. A

good ventilating by the fan and heatsink with the thermal grease will prepare the

equipment working on properly under hard environments. And also, the optimal

working environment of the components are different, so as to attenuate the negative

impact of this case, the materials used is preferred with higher sensitivity and lower

temperature coefficient. As the second, the field effect sensor utilized in the current

input is tormented by the external magnetic field. To avoid negative effect of this case,

it's going to be possible to produce magnetic isolation of the area where the sensor is

located on the hardware. The third one is a compact current transformer that is rated

100A/4mA is also accustomed get far better results with the high precision. However,

a current transformer requires much space. But there are connection input terminals on

the last PCB, so it can be connected to system externally.

 Besides, sensitivity of the operational amplifiers utilized in voltage and current inputs

is critical. A low precision operational amplifier will cause irrelevant results,

especially when making measurements too close to zero. To avoid this case, choosing

a high quality and high precision operational amplifier will influence positively affect

the results.

107

Additionally, chosen MCU is vital. If a microcontroller with high performance and

decimal processing capability isn't preferred, it'll influence negatively the results in

order that it'll cause loss of sensitivity during the mathematical operations. For the

remainder, the second revolution of PCB also generated and everyone necessary

revisions are upgraded. thanks to its open source, you'll be able to modify the PCB

software as you desire. The software is sort of the identical but the screenshotted PCB

is modified.

The sampling frequency of the selected microcontroller to be used in the designed

digital measurement system, the resolution of the analog-digital converter, the

sampling rate and the number of ADC channels that can operate simultaneously are

sufficient, calculation can be performed without losing time in sampling.

In addition, if the temperature dependence of the sensors and electronic materials used

is calibrated with an external temperature measurement, an error-free measurement

can be obtained.

Another important factor is main supply voltage. Due to calculation reference voltage

and component working voltage is important, even small changes affect the

measurements. So, with the low DC voltage or high voltage has a critical role on the

measurements.

The last thing is measurements occurring on the grid, and it’s always rippling. So, the

measurement results may change suddenly. With the taking more sample, it’ll be able

to get much better results.

108

REFERENCES

[1] IEEE-Std 1459-2010, (2010). IEEE Standard Definitions for the

Measurement of Electric Power Quantities Under Sinusoidal,

Nonsinusoidal, Balanced, or unbalanced Conditions.

[2] Uğur, A., (2013). Elektrik Elektronik Devrelerinin Analizi. Alfa.

[3] Uğur, A., (2007). Elektrik Elektronik Mühendisliğinin Temelleri -Alternatif

Akım Devreleri. 3rd edition, Alfa.

[4] Wikipedia., (2021). IEC 61000-3-2 Harmonic current limits for class A, B, C,

D. Intl.:

https://en.wikipedia.org/wiki/IEC_61000-3-

2#Harmonic_current_limits_for_class_A,B,C_and_D, 15.01.2022.

[5] Wikipedia, (2021). IEC 61000-3-2 Electromagnetic compatibility. Intl.:

https://en.wikipedia.org/w/index.php?title=IEC_61000-3-2&action=history,

15.01.2022.

[6] Texas Instruments, (2013-rev.2017). Software Phase Locked Loop Design

Using C2000 Microcontrollers for Single Phase Grid Connected Inverter.

Application Report.

[7] Kevin, S., Michel, A. Phase Noise of Integer-N and Fractional-N PLL

Synthesizers. Intl.: https://www.analog.com/en/technical-articles/phase-noise-

of-integer-n-and-fractional-n-pll-synthesizers.html, 15.01.2022.

[8] Ayhan, Ö., Mehmet, T., (2014). PLL Based Digital Adaptive Filter for

Detecting Interharmonics. Intl.:

https://www.researchgate.net/publication/275068708_PLL_Based_Digital_A

daptive_Filter_for_Detecting_Interharmonics, 15.01.2022.

[9] Djordje, S., Nikola, G., Marco, R., Saša, M., (2018). Novel orthogonal signal

generator for single phase PLL applications.

[10] Francisco, D., (2008). Robust Phase Locked Loops Optimized for DSP

implementation in Power Quality Applications, IECON 2008, 3052-3057.

109

[11] Texas Instruments, TMS320F28030, TMS320F28031, TMS320F28032,

TMS320F28033, TMS320F28034, TMS320F28035 Piccolo Microcontrollers

Data Manual (SPRS584).

[12] Marco, L., Pedro, R., Remus, T., (2011). Grid Converters for Photovoltaic and

Wind Power Systems. John Wiley & Sons Ltd.

[13] Pedro, R., J., Pou, Joan, B., Ignacio, C., (2007). Double Synchronous Reference

Frame PLL for Power Converters Control. 22(2).

[14] Alexander, C., K., Sadiku, M., N., O., 3rd Edition. Fundamentals of Electric

Circuits. Mc. Graw Hill.

[15] Blooming, T., M., Carnovale, D., (2006). Application of IEEE STD 519-1992

Harmonic Limits. Annual Pulp and Paper Industry Technical Conference,

Appleton, WI.

[16] ST Microelectronics, (2020). STM32F405xx STM32F407xx Microcontroller

Datasheet.

[17] ST Microelectronics, (2016). Using the STM32F2, STM32F4 and STM32F7

Series DMA controller Datasheet. AN4031.

[18] Ayhan, Ö., Mehmet, T., (2014). PLL Based Digital Adaptive Filter for

Detecting Interharmonics. Hindawi Publishing Corporation Mathematical

Problems in Engineering. Article ID 501781

[19] Ferudun G., Faruk, B., (2019). Tek Fazlı Bir Enerji Analizörünün

Gerçekleştirilmesi. Master Thesis.

[20] James, N., Susan, R., 9th Edition. NILSSON RIEDEL, Electric Circuits.

Chapter 9.

[21] Stojić, D., Georgijević, N., Rivera, M., Milić, S., (2018). Novel ortogonal

signal generator for single phase PLL applications. IET Power Electronics,

11(3), 427-433.

[22] Andrew, M., (1990). Electric Power Measuring System. United States Patent

Office, US4980634A.

[23] William, E., Andrew, M., Charles, D., (1991). Power Line Measurement

System. United States Patent Office, US5027285A.

[24] MODICON, Inc., (1996). Modbus Protocol Reference Guide.

[25] Haoyu Electronics. 3,2" Touch Screen TFT LCD with 16 bit parallel interface.

Int.l: https://www.hotmcu.com/32-touch-screen-tft-lcd-with-16-bit-parallel-

interface-p-36.html , 15.01.2022.

110

[26] Charles, A., Matthew, S., (2013). Fundamentals of Electric Circuits. 5th

Edition, Mc. Graw Hill.

[27] Thomas, B., Daniel, C., (2006). Application of IEEE STD 519-1992

Harmonic Limits. Annual Pulp and Paper Industry Technical Conference,

Appleton, WI, June 18- 23 2006.

[28] Texas Instruments, (2017). Software Phase Locked Loop Design Using

C2000 Microcontrollers for Single Phase Grid Connected Inverter.

Application Report, (2013-rev.2017).

[29] LSIS Co. Ltd., (2016). Electric power measuring system. JUSTIA Patents,

Patent: 9863986, July 13, 2016.

[30] P., Wattanayingcharoen, A., Detchrat, Sakreya, C., (2012). Developing

Harmonic Power Analyzer based on IEEE 1459-2010 Standard.

Proceedings of the International Multiconference of Engineers and

Computer Scientists 2012 (2), IMECS 2012, Hong Kong, March 14-16,

2012.

[31] George, T., Joel, H., Frank, G., (2005). Thomas’ Calculus. 11th Edition,

TURKISH language edition published by Beta Basim Yayim Dağitim A.S.,

(2009), ISBN 978 - 605 - 377 - 068 – 8.

[32] Bill, D., (2009). The Control Techniques Drives and Controls Handbook. 2nd

Edition. The Institution of Engineering and Technology, ISBN 978-1-84919-

101-2 (PDF).

[33] Hacı, B., (2014). Güç Elektroniği. Power Electronics Lecture Notes, Yıldız

Technical University, İSTANBUL.

[34] Ümit, P., Uğur, A., (2004). Statik Reaktif Güç Kompanzasyonu Uygulaması ve

Matlab Simulasyonu. Sakarya University.

[35] ST Microelectronics, (2021). ST-LINK/V2 in-circuit debugger/programmer

for STM8 and STM32 Datasheet.

[36] Uğur, P., Ergün, E., (2021). ARM Based Development of Embedded System

for an Energy and Harmonic Analyzer, Gaziantep University, Manchester

Journal of Artificial Intelligence & Applied Sciences, 2(1). 2021, ISSN: 2634-

1034.

111

APPENDIX

Appendix A: Simulating the PLL for Varying Conditions for Notch Filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%PLL Simulating for notch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Select numeric type, let's choose Q21
T=numerictype('WordLength',32,'FractionLength',21);
%Specify math attributes to the fimath object
F=fimath('RoundMode','floor','OverflowMode','wrap');
F.ProductMode='SpecifyPrecision';
F.ProductWordLength=32;
F.ProductFractionLength=21;
F.SumMode='SpecifyPrecision';
F.SumWordLength=32;
F.SumFractionLength=21;
%specify fipref object, to display warning in cases of overflow and
%underflow
P=fipref;
P.LoggingMode='on';
P.NumericTypeDisplay='none';
P.FimathDisplay='none';
%PLL Modelling starts from here
Fs=50000; %Sampling frequency = 50Khz
GridFreq=50; %Nominal Grid Frequency in Hz
Tfinal=0.2; %Time the simulation is run for = 0.5 seconds
Ts=1/Fs; %Sampling Time = 1/Fs
t=0:Ts:Tfinal; %Simulation Time vector
wn=2*pi*GridFreq; %Nominal Grid Frequency in radians
%generate input signal and create a fi object of it
%input wave with a phase jump at the mid point of simulation
% CASE 1 : Phase Jump at the Mid Point
L=length(t);
for n=1:floor(L)
u(n)=sin(2*pi*GridFreq*Ts*n);
end
for n=1:floor(L)
u1(n)=sin(2*pi*GridFreq*Ts*n);
end
for n=floor(L/2):L
u(n)=sin(2*pi*GridFreq*Ts*n+pi/2);
end
%CASE 2 : Harmonics
 L=length(t);
 for n=1:floor(L)
 u(n)=0.9*sin(2*pi*GridFreq*Ts*n)+0.1*sin(2*pi*5*GridFreq*Ts*n);
 end
 for n=1:floor(L)
 u1(n)=sin(2*pi*GridFreq*Ts*n);
 end
%CASE 3 : Frequency Shift
 L=length(t);

112

 for n=1:floor(L)
 u(n)=sin(2*pi*GridFreq*Ts*n);
 end
 for n=1:floor(L)
 u1(n)=sin(2*pi*GridFreq*Ts*n);
 end
 for n=floor(L/2):L
 u(n)=sin(2*pi*GridFreq*1.1*Ts*n);
 end
%CASE 4: Amplitude Variations
 L=length(t);
 for n=1:floor(L)
 u(n)=sin(2*pi*GridFreq*Ts*n);
 end
 for n=1:floor(L)
 u1(n)=sin(2*pi*GridFreq*Ts*n);
 end
 for n=floor(L/2):L
 u(n)=0.8*sin(2*pi*GridFreq*Ts*n);
 end;
u=fi(u,T,F);
u1=fi(u1,T,F);
%declare arrays used by the PLL process
Upd=fi([0,0,0],T,F);
ynotch=fi([0,0,0],T,F);
ynotch_buff=fi([0,0,0],T,F);
ylf=fi([0,0],T,F);
SinGen=fi([0,0],T,F);
Plot_Var=fi([0,0],T,F);
Mysin=fi([0,0],T,F);
Mycos=fi([fi(1.0,T,F),fi(1.0,T,F)],T,F);
theta=fi([0,0],T,F);
werror=fi([0,0],T,F);
%notch filter design
c1=0.1;
c2=0.00001;
X=2*c2*wn*2*Ts;
Y=2*c1*wn*2*Ts;
Z=wn*2*wn*2*Ts*Ts;
B_notch=[1 (X-2) (-X+Z+1)];
A_notch=[1 (Y-2) (-Y+Z+1)];
B_notch=fi(B_notch,T,F);
A_notch=fi(A_notch,T,F);
% simulate the PLL process
for n=2:Tfinal/Ts % No of iteration of the PLL process in the

simulation time
% Phase Detect
Upd(1)= u(n)*Mycos(2);
%Notch Filter
ynotch(1)=-A_notch(2)*ynotch(2)-

A_notch(3)*ynotch(3)+B_notch(1)*Upd(1)+B_notch(2)*Upd(2)+B_notch(3)*

Upd(3);

%update the Upd array for future sample
Upd(3)=Upd(2);
Upd(2)=Upd(1);

% PI Loop Filter
%ts=30ms, damping ration = 0.7
% we get natural frequency = 110, Kp=166.6 and Ki=27755.55
% B0=166.877556 & B1=-166.322444

113

ylf(1)= fi(1.0,T,F)*ylf(2)+fi(166.877556,T,F)*ynotch(1)+fi(-

166.322444,T,F)*ynotch(2);
%update Ynotch for future use
ynotch(3)=ynotch(2);
ynotch(2)=ynotch(1);
ynotch_buff(n+1)=ynotch(1);
ylf(1)=min([ylf(1) fi(200.0,T,F)]);
ylf(2)=ylf(1);
wo=fi(wn,T,F)+ylf(1);
werror(n+1)=(wo-wn)*fi(0.00318309886,T,F);
%integration process
Mysin(1)=Mysin(2)+wo*fi(Ts,T,F)*(Mycos(2));
Mycos(1)=Mycos(2)-wo*fi(Ts,T,F)*(Mysin(2));
%limit the oscillator integrators
Mysin(1)=max([Mysin(1) fi(-1.0,T,F)]);
Mysin(1)=min([Mysin(1) fi(1.0,T,F)]);
Mycos(1)=max([Mycos(1) fi(-1.0,T,F)]);
Mycos(1)=min([Mycos(1) fi(1.0,T,F)]);
Mysin(2)=Mysin(1);
Mycos(2)=Mycos(1);
%update the output phase
theta(1)=theta(2)+wo*Ts;
%output phase reset condition
if(Mysin(1)>0 && Mysin(2) <=0)
theta(1)=-fi(pi,T,F);
end
SinGen(n+1)=Mycos(1);
Plot_Var(n+1)=Mysin(1);
end
% CASE 1 : Phase Jump at the Mid Point
error=Plot_Var-u;
%CASE 2 : Harmonics
%error=Plot_Var-u1;
%CASE 3: Frequency Variations
%error=Plot_Var-u;
%CASE 4: Amplitude Variations
%error=Plot_Var-u1;
figure;
subplot(3,1,1),plot(t,Plot_Var,'r',t,u,'b'),title('SPLL(red) & Ideal

Grid(blue)');
subplot(3,1,2),plot(t,error,'r'),title('Error');
subplot(3,1,3),plot(t,u1,'r',t,Plot_Var,'b'),title('SPLL Out(Blue) &

Ideal Grid(Red)');

114

Appendix B: Simulating the PLL for Varying Conditions for OSG Filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
PLL Simulating for OSG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
close all;
clc;
% define the math type being used on the controller using objects

from the fixed-point toolbox in MATLAB
%Select numeric type, let’s choose Q23
T=numerictype('WordLength',32,'FractionLength',23);
%Specify math attributes to the fimath object

F=fimath('RoundMode','floor','OverflowMode','wrap');
F.ProductMode='SpecifyPrecision';
F.ProductWordLength=32;
F.ProductFractionLength=23;
F.SumMode='SpecifyPrecision';
F.SumWordLength=32;
F.SumFractionLength=23;
%specify fipref object, to display warning in cases of overflow and
%underflow
P=fipref;
P.LoggingMode='on';
P.NumericTypeDisplay='none';
P.FimathDisplay='none';

%PLL Modelling starts from here
Fs=50000; %Sampling frequency = 50Khz
GridFreq=50; %Nominal Grid Frequency in Hz
Tfinal=0.2; %Time the simulation is run for = 0.5 seconds
Ts=1/Fs; %SamplingTime= 1/Fs
t=0:Ts:Tfinal; %Simulation Time vector
wn=2*pi*GridFreq; %Nominal Grid Frequency in radians
%declare arrays used by the PLL process
err=fi([0,0,0,0,0],T,F);
ylf=fi([0,0,0,0,0],T,F);
Mysin=fi([0,0,0,0,0],T,F);
Mycos=fi([1,1,1,1,1],T,F);
theta=fi([0,0,0,0,0],T,F);
dc_err=fi([0,0,0,0,0],T,F);
wo=fi(0,T,F);

% used for plotting
Plot_Var=fi([0,0,0,0],T,F);
Plot_theta=fi([0,0,0,0],T,F);
Plot_osgu=fi([0,0,0,0],T,F);
Plot_osgqu=fi([0,0,0,0],T,F);
Plot_D=fi([0,0,0,0],T,F);
Plot_Q=fi([0,0,0,0],T,F);
Plot_dc_err=fi([0,0,0,0,0],T,F);

%orthogonal signal generator

115

%using trapezoidal approximation
osg_k=0.5;
osg_x=2*osg_k*wn*Ts;
osg_y=(wn*wn*Ts*Ts);
osg_b0=osg_x/(osg_x+osg_y+4);
osg_b2=-1*osg_b0;
osg_a1=(2*(4-osg_y))/(osg_x+osg_y+4);
osg_a2=(osg_x-osg_y-4)/(osg_x+osg_y+4);

osg_qb0=(osg_k*osg_y)/(osg_x+osg_y+4);
osg_qb1=2*osg_qb0;
osg_qb2=osg_qb0;
osg_k=fi(osg_k,T,F);
osg_x=fi(osg_x,T,F);
osg_y=fi(osg_y,T,F);
osg_b0=fi(osg_b0,T,F);
osg_b2=fi(osg_b2,T,F);
osg_a1=fi(osg_a1,T,F);
osg_a2=fi(osg_a2,T,F);
osg_qb0=fi(osg_qb0,T,F);
osg_qb1=fi(osg_qb1,T,F);
osg_qb2=fi(osg_qb2,T,F);

osg_u=fi([0,0,0,0,0,0],T,F);
osg_qu=fi([0,0,0,0,0,0],T,F);

u_Q=fi([0,0,0],T,F);
u_D=fi([0,0,0],T,F);

%generate input signal
% CASE1 : Phase Jump at the Mid Point
L=length(t);
for n=1:floor(L)
u(n)=sin(2*pi*GridFreq*Ts*n);
end
for n=1:floor(L)
u1(n)=sin(2*pi*GridFreq*Ts*n);
end
for n=floor(L/2):L
u(n)=sin(2*pi*GridFreq*Ts*n+pi/2);
end
u=fi(u,T,F);
% simulate the PLL process
for n=3:Tfinal/Ts % No of iteration of the PLL process in the

simulation time
%Orthogonal Signal Generator
osg_u(1)=(osg_b0*(u(n)-u(n-2)))+osg_a1*osg_u(2)+osg_a2*osg_u(3);
osg_u(3)=osg_u(2);
osg_u(2)=osg_u(1);

osg_qu(1)=(osg_qb0*u(n)+osg_qb1*u(n-1)+osg_qb2*u(n-

2))+osg_a1*osg_qu(2)+osg_a2*osg_qu(3);
osg_qu(3)=osg_qu(2);
osg_qu(2)=osg_qu(1);

%park transform from alpha beta to d-q axis
u_Q(1)=Mycos(2)*osg_u(1)+Mysin(2)*osg_qu(1);
u_D(1)=-Mysin(2)*osg_u(1)+Mycos(2)*osg_qu(1);

%Loop Filter

116

ylf(1)=fi(1,T,F)*ylf(2)+fi(166.877556,T,F)*u_Q(1)+fi(-

166.322444,T,F)*u_Q(2);
u_Q(2)=u_Q(1);
u_D(2)=u_D(1);

%Limit LF according to its Q? size pipeline
ylf(1)=max([ylf(1)fi(-128,T,F)]);
ylf(1)=min([ylf(1)fi(128,T,F)]);
ylf(2)=ylf(1);
%update output frequency
wo=GridFreq+ylf(1);

%update the output phase
theta(1)=theta(2)+wo*fi(Ts,T,F);

if(theta(1)>fi(1.0,T,F))theta(1)=fi(0,T,F);
end

theta(2)=theta(1);
Mysin(1)=sin(theta(1)*fi(2*pi,T,F));
Mycos(1)=cos(theta(1)*fi(2*pi,T,F));
Mysin(2)=Mysin(1);
Mycos(2)=Mycos(1);

Plot_theta(n+1)=theta(1);
Plot_osgu(n+1)=osg_u(1);
Plot_osgqu(n+1)=osg_qu(1);
Plot_Var(n+1)=Mysin(1);
Plot_D(n+1)=u_D(1);
Plot_Q(n+1)=u_Q(1);
end
% CASE1 : Phase Jump at the Mid Point
error=Plot_Var-u;

%CASE2 : Harmonics
%error=Plot_Var-u1;

%CASE3: Frequency Variations
%error=Plot_Var-u;

%CASE4: Amplitude Variations
%error=Plot_Var-u1;
subplot(3,1,1),plot(t,Plot_Var,'r',t,u,'b'),title('SPLL(red)&

IdealGrid(blue)');
subplot(3,1,2),plot(t,error,'r'),title('Error');
subplot(3,1,3),plot(t,u1,'r',t,Plot_Var,'b'),title('SPLLOut(Blue)&

IdealGrid(Red)');

117

Appendix C: Schematic of Human Hardware Interface HY32D

118

Appendix D: Schematic of HC-06 Bluetooth Device

119

Appendix E: Real-time Operating System Message Queue Service Codes

E.1 Service Function of the System

void KernelRun(void)
{
 for(;;)
 {
if(stMessageQueue.Counter)
 {
mRunLedOn();
KernelMessagePop();
DoProcess();
mRunLedOff();
 }
 }
}

E.2 Message Sending Function to the System

void KernelMessagePush(eTasks_t TargetTask, uint16_t

TargetTaskMessageID, uint16_t TargetTaskMessageData)
 {
stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTask =
TargetTask;

stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTaskMessage

ID = TargetTaskMessageID;
stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTaskMessage

Data = TargetTaskMessageData;
if(++stMessageQueue.WriteIndex == MESSAGE_QUEUE_SIZE)
 {
stMessageQueue.WriteIndex = 0;
 }
if(++stMessageQueue.Counter == MESSAGE_QUEUE_SIZE)
 {
stMessageQueue.Counter = 0;
 }
}

E.3 Message Requesting Function from the System

void KernelMessagePop(void)
 {
stMessageQueue.CurrentObject.TargetTask =

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTask;
stMessageQueue.CurrentObject.TargetTaskMessageID =

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTaskMessageID

;

120

stMessageQueue.CurrentObject.TargetTaskMessageData =

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTaskMessageDa

ta;
 if(++stMessageQueue.ReadIndex == MESSAGE_QUEUE_SIZE)
 {
 stMessageQueue.ReadIndex = 0;
 }
 --stMessageQueue.Counter;
}

121

Appendix F: 𝐂𝐨𝐬(𝝋) Calculating Function by the MCU

for (i = 0; i < SAMPLE_MAX; i++)
 {

for (j = 0; j < N; j++)
{
An[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *

arm_cos_f32((j+1)*FFT_w*(FFT_Ts*i));
Bn[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *
arm_sin_f32((j+1)*FFT_w*(FFT_Ts*i));
 }
 }
Phi_V = (float32_t) atan(An[0]/Bn[0]);
ClearFFTCoeff();

for (i = 0; i < SAMPLE_MAX; i++) {
for (j = 0; j < N; j++) {
An[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *

arm_cos_f32((j+1)*FFT_w*(FFT_Ts*i));
Bn[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *
arm_sin_f32((j+1)*FFT_w*(FFT_Ts*i));
}
 }

Phi_I = (float32_t) atan(An[0]/Bn[0]);
Phi = Phi_V – Phi_I;
ClearFFTCoeff();
stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].CosPhi =

arm_cos_f32(Phi);

122

Appendix G: Power Factor Calculating Function by the MCU

for (s = 0; s < N; s++)
{
arm_sqrt_f32(((An[s]*An[s] + Bn[s]*Bn[s])/2) , &Cn[s]);
Temp += Cn[s] * Cn[s];
}

arm_sqrt_f32(Temp, &Temp);
Kv = Cn[0]/Temp;
for (m = 0; m < N; m++)
{
arm_sqrt_f32(((An[m]*An[m] + Bn[m]*Bn[m])/2) , &Cn[m]);
Temp += Cn[m] * Cn[m];
}

arm_sqrt_f32(Temp, &Temp);
Ki = Cn[0]/Temp;

stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].PowerFactor = Kv *

Ki * stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].CosPhi;

123

Appendix H: MODBUS Communication Address Mapping:

Address

(Decimal)

Address

Read / Write
Type: Definition: Gain:

0 R U16 Voltage 10

1 R U16 Current 1000

2 R S16 Cos(𝝋) 1000

3 R S16 Power Factor 1000

4 R U16 Frequency 100

5 R U16 THDV 100

6 R U16 THDI 100

7 R S16 Active Power 1000

8 R S16 Reactive Power 1000

9 R U16 Apparent Power 1000

10 R U32
Active Power

(Import)
10

12 R U32
Inductive Reactive Power

(Import)
10

14 R U32
Capacitive Reactive Power

(Import)
10

16 R U32
Active Power

(Export)
10

18 R U32
Inductive Reactive Power

(Export)
10

20 R U32
Capacitive Reactive Power

(Export)
10

124

Curriculum Vitae

PERSONAL INFORMATION

Name and Surname : Uğur POLAT

EDUCATION

Degree Graduate School Year

Master of Science Gaziantep University, Gaziantep 2022

Bachelor of Science
Kahramanmaraş Sütçü İmam University,

Kahramanmaraş
2019

High School Opet Anatolian High School, Gaziantep 2013

PUBLICATIONS

Uğur, P., Ergün, E., (2021). ARM Based Development of Embedded System for an

Energy and Harmonic Analyzer, Gaziantep University, Manchester Journal of

Artificial Intelligence & Applied Sciences, 2(1). 2021, ISSN: 2634-1034.

