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ABSTRACT 

DEVELOPMENT OF EMBEDDED SYSTEM FOR ENERGY ANALYZER 

POLAT, Uğur 

MSc. in Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Nurdal WATSUJİ 

February, 2022 

146 pages 

 

The increase in energy consumption and the gradual decrease in limited energy 

resources raise fundamental questions such as how much energy is produced, what is 

its efficiency, how it distributes to the end users. Not only on an individual basis, but 

also on a global basis research and development are carried out on this subject. Also, 

required equipment usage in energy generation, distribution and utilization is 

increasing every day, too. In the common systems for monitoring, need to install 

individual measuring devices e.g., Voltmeter, Oscilloscope, etc. separately because of 

the harmonic currents and voltages in the grids. Our design yields an industrial 

analyzer that sense the current and voltage at the input then designed circuit transmits 

signals proportional levels to the MCU which will be analyzed based on some 

standards such as IEEE Std 1459TM-2010 [1]. An A/D converter, converts the voltage 

and current signals to the digital representation at regular intervals. MCU periodically 

samples (f_sampling=1600 Hz, N=32, A/D resolution 12-bit) then analyze the voltage 

and current signals at regular intervals of time with the *0,4 % error rate. Then, it stores 

the data of electrical variables which are analyzed. e.g., frequency, true RMS volts, 

true RMS amps, cos(φ) and even harmonic values, including energy variables. For the 

project ARM based STM-32F405 and LCD-TFT screen which part number is HY-

32D are one of the most important components. The features of this device completely 

provide our requirements with isolation circuits, fuses and another safety equipment. 

As a summary, it is the goal of the thesis to develop a compact analyzer device that 

analyzes the variable parameters in a grid by eliminating the require of multiple 

measuring devices. Thanks to the LCD, with the compact design we are able to see all 

data only on a screen and it’s completely mobilized. 

*The error rate depends on the f_sampling, N, and A/D resolution. 

 

Key Words: Embedded Systems, Arm Cortex, Energy Analyzer, Single Phase 

Analyzer, STM-32f429, Digital Signal Processing, Real-time 

Operating System. 



 

ÖZET 

GÖMÜLÜ SİSTEM KULLANARAK BİR ENERJİ ANALİZÖRÜ 

GELİŞTİRİLMESİ 

POLAT, Uğur 

Yüksek Lisans Tezi, Elektrik Elektronik Mühendisliği 

Danışman: Dr. Öğrt. Üyesi Nurdal WATSUJİ 

Şubat, 2022 

146 sayfa 

 

Enerji tüketiminin artması ve sınırlı enerji kaynaklarının giderek azalması; ne kadar 

enerji üretildiğinin, verimliliğin, son kullanıcılara nasıl dağıtıldığının sorularını 

gündeme getiriyor. Bu konuda sadece bireysel bazda değil, global bazda da araştırma 

ve geliştirmeler mevcuttur. Ayrıca enerji üretimi, dağıtımı ve kullanımında gerekli 

ekipman kullanımı da her geçen gün artmaktadır. Güç sistemlerinde şebekedeki 

dengesiz harmonik akımlar ve gerilimleri gözlemek için; Voltmetre, Ampermetre, 

Osiloskop Wattmetre vb. ayrı ayrı ölçüm cihazlarının kurulumu gereklidir. Yapmış 

olduğumuz çalışmamızda, şebekeden gelen akımı ve voltajı algılayan özel bir devre 

MCU'ya orantılı seviyelerde sinyaller iletir. IEEE Std 1459TM-2010 [1] gibi bazı 

standartlara göre analizler yapılır. Bir A/D dönüştürücü, voltaj ve akım sinyallerini 

düzenli aralıklarla ayrık zamanlı sinyale  dönüştürür. MCU periyodik olarak örnekler 

(f_sampling=1600 Hz, N=32, A/D çözünürlüğü 12-bit) daha sonra voltaj ve akım 

sinyallerini düzenli aralıklarla yaklaşık *0,4 % hata oranıyla analiz eder. Analiz edilen 

frekans, RMS voltları, RMS amperleri, cos(φ), harmonikler ve enerji değerleri ölçülür. 

Projede STM-32F405 MCU ve HY-32D LCD-TFT ekran en önemli bileşenlerden 

biridir. PCB'miz için izolasyon devreleri, sigortalar ve diğer güvenlik ekipmanları ile 

gereksinimlerimizi tamamen karşılamaktadır. Özet olarak, birden fazla ölçüm cihazı 

gereksinimini ortadan kaldıran bir şebekedeki değişken parametreleri analiz eden tek 

bir analizör geliştirmek tezin amacıdır. LCD sayesinde tüm verileri sadece bir ekranda 

gösterecek mobilize ve kompakt yapıda olacaktır. 

*Hata oranı f_örnekleme, N ve A/D çözünürlüğüne bağlıdır. 

Anahtar Kelimeler: Gömülü Sistem, Arm Cortex, Enerji Analizörü, Tek Fazlı 

Analizör, STM-32f429, Sayısal Sinyal İşleme, Gerçek 

Zamanlı İşletim Sistemi 
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CHAPTER I 

 

INTRODUCTION 

 

1.1. Literature Summary 

The measurement in electrical systems is generally a numerical expression of an 

electrical quantity. There are lots of data in the electrical networks. In alternative 

current systems, generally voltage, current, frequency, phase difference, power factor, 

active power, reactive power and energy values are numerically measured values. In 

the common systems for monitoring power circuits, we require to install individual 

measuring devices e.g., Voltmeter, Ammeter, Oscilloscope, Wattmeter etc. separately 

because of the increasing harmonic currents and voltages in the grids. Our design 

yields an industrial analyzer that sense the current and voltage at the input terminals 

then designed special circuit transmits signals proportional levels to the MCU which 

will be analyzed based on some standards such as IEEE Std 1459TM-2010 [1]. A 12-

bit A/D converter, converts the voltage and current signals to the digital representation 

at regular intervals. MCU periodically samples (f_sampling=1600 Hz, N=32, A/D 

resolution 12-bit) then analyze the voltage and current signals at regular intervals of 

time with the approximately 0,4 % error rate. (The error rate depends on the 

f_sampling, N, and A/D resolution.) After that, stores the data of electrical variables 

which is analyzed. e.g., these electrical variables may be frequency, true RMS volts, 

true RMS amps, cos(φ) and even harmonic values, including energy variables. For the 

project ARM Cortex family as STM-32F405 and LCD-TFT screen which part number 

is HY-32D are one of the most important components. The features of this device 

completely provide our requirements with isolation circuits, fuses and another safety 

equipment for our PCB. As a summary, it is an objective of the thesis to develop an 

industrial analyzer which a single analyzer device that analyzes the variable 

parameters in a grid by eliminating the require of multiple measuring devices. Thanks 
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to the LCD, we are able to see all data only in a screen and it’s completely mobilized. 

You can see block diagram of the analyzer in Figure (1.1). 

 

Figure 1.1 Equivalent system block diagram for an energy analyzer 

 

1.1.1 Effective Value in AC Systems  

Voltage and current magnitudes change according to time and have a certain amplitude 

and frequency. For this reason, it is usually expressed with its effective values. 

Effective value is a type of value that enables the expression of equivalent equivalents 

of magnitudes in alternating current systems in direct current systems. It can be 

expressed as the equivalent of AC voltage required to obtain the amount of heat energy 

generated in a resistance under a DC voltage [2]. 

The effective value can be represented as the RMS (Root Mean Square) value 

consisting of the effective value or the initials of its English equivalent. The active 

power expended on a load is obtained by equation (1.2) in alternating and direct current 

systems [2]. According to this equation, the effective value can be expressed as the 

square root of the mean of the square of the voltage (or current), the integral over a 

period. In digital systems, the sum of the squares of instantaneous samples of the signal 

is averaged. The square root of this value is calculated and therefore the effective value 

is found.  

𝑃 =
𝑉2

𝑅
         (1. 1) 
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𝑉𝑑𝑐
2

𝑅
=

1

𝑇
⋅ ∫

𝑣(𝑡)2

𝑅
⋅ ⅆ𝑡

𝑇

0

       (1. 2) 

𝑉𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫ 𝑣(𝑡)2 ⋅ ⅆ𝑡

𝑇

0
      (1. 3) 

 

The effective (effective) value of the grid voltage in sine form can be written as in 

(1.5) equation. 

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡)       (1. 4) 

𝑣𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫  

𝑇

0
{𝑣𝑚 ⋅ sin(𝑤𝑡)}2 ⋅ ⅆ𝑡     (1. 5) 

 

 

Figure 1.2 Value of the grid voltage in sine form 

 

The effective value of the network voltage in the sine form in the range of [0, 2π] can 

be mathematically calculated by equation (1.6) where 𝑣𝑚 as the peak value. 

𝑣𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫  

𝑇

0
[𝑣𝑚 ⋅ sin(𝜔𝑡)]2 ⋅ ⅆ𝑡     (1. 6) 

𝑣𝑟𝑚𝑠 =
𝑣𝑚

√2
        (1. 7) 

 

The wave in red is said to lead the wave in green by θ. 

The wave in green sin(ωt) is said to lag the wave in red by θ. 

The units of θ and t must be consistent when computing the 

sine function. 



4 
 

1.1.2 Phase Difference Between AC Voltage and AC Current 

Inductance and capacitors in AC systems cause phase difference between voltage and 

current [3]. If we take the V1 signal as reference in Figure (1.3), the V2 signal is in 

reverse phase according to the V1 signal, and the V3 signal is in forward phase 

according to the V1 signal. Even if the amplitudes are not equal, the frequencies must 

be equal in order to be able to talk about the phase difference. If there is a DC 

component on the signal, this component can be reset and the phase difference can be 

checked [3]. 

 

Figure 1.3 Sinusoidal signals that has the phase difference 

 

If the load is pure ohmic, there is no phase difference between voltage and current [3]. 

In case of inductive load, the current is in phase back from the voltage, in case of 

capacitive load the voltage is in phase back from the current. 

This phase difference between voltage and current is denoted by "𝜑" and is called the 

phase angle. Since the phase angle close to zero is the most ideal situation for the 

network, the reactive power in the systems is compensated and the phase difference 

between the current drawn from the network and the voltage is tried to be reset. In this 

case, the reactive power required by the system is supplied from the compensation 

panel installed in the operation. 

Current and voltage signals with a phase difference of 57.3 ° is shown in Figure (1.4). 
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Figure 1.4 Sinusoidal signals that has phase difference 

 

1.1.3 Power Calculation in AC Systems  

Active power (P) in AC systems is defined as useful and usable power. Reactive power 

(Q) is defined as the power that does not work actively but is withdrawn from the 

network and then transferred back to the network. Apparent power (S) is the total 

resultant power formed by active and reactive power components. If the system has a 

pure ohmic load, there will be no phase difference between the current and voltage, so 

there will be no reactive power. Therefore, the active power value will be equal to the 

apparent power value. If there is a reactive power in the system, the apparent power 

will be equal to the combination of active and reactive powers. 

𝑆2 = 𝑃2 + 𝑄2       (1. 8) 

𝑃 = 𝑆 ⋅ cos 𝜑       (1. 9) 

𝑄 = 𝑆 ⋅ sin 𝜑       (1. 10) 

 

 

 

 

Phase Shift 

Period=6.28 / s 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

  

Red leads Blue by 57.3 degrees (1 radian) 

𝛷 =
1

6.28
⋅ 360° = 57.3° 



6 
 

 

 

  

 

 

 

Figure 1.5 Power Triangle, Relationship between Power factors 

 

Instantaneous power value is obtained by multiplying the instantaneous values of the 

voltage and current components [3]. Instantaneous power value changes with twice the 

system frequency. 

 

 

Figure 1.6 Instantaneous voltage, current and power values 

 

In electrical systems, instantaneous power is expressed by equation (1.10), where v (t) 

and i (t) are instantaneous values of voltage and current.  

𝑃(𝑡) = 𝑣(𝑡) ⋅ 𝑖(𝑡)      (1. 11) 

 

Devices that measure electrical power measure the average value of power [3]. In this 

case, if the instantaneous power expression is integrated over a period, the expression 

(1.13) can be written for the average power value (active power). 

 

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡)      (1. 12) 

Q S 

P 

𝜑 
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𝑖(𝑡) = 𝑖𝑚 ⋅ sin(𝜔𝑡 − 𝜑)     (1. 13) 

𝑃 =
1

2𝜋
⋅ ∫ [𝑣𝑚 ⋅ 𝐼𝑚 ⋅ sin(𝜔𝑡) ⋅ sin(𝜔𝑡 − 𝜑)] ⋅ ⅆ𝑤𝑡

2𝜋

0
  (1. 14) 

𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑)     (1. 15) 

 

The reactive power value can be calculated by the product of the voltage component 

and the 90° phase-shifted state of the current component or by the product of the 

current component and the 90 ° phase-shifted state of the voltage component. If the 

90° phase shifted state of the current signal is expressed as 𝐼𝑞, the expression (1.17) 

can be written for the reactive power. 

 

𝑣(𝑡) = 𝑣𝑚 ⋅ sin(𝜔𝑡)       (1. 16) 

𝐼𝑞(𝑡) = 𝑖𝑚 ⋅ sin (𝜔𝑡 − 𝜑 +
𝜋

2
) = 𝑖𝑚 ⋅ cos(𝜔𝑡 − 𝜑)   (1. 17) 

𝑄 =
1

2𝜋
⋅ ∫ [𝑣𝑚 ⋅ 𝐼𝑚 ⋅ sin(𝜔𝑡) ⋅ cos(𝜔𝑡 − 𝜑)] ⋅ ⅆ𝜔𝑡

2𝜋

0
  (1. 18) 

𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑)      (1. 19) 

 

As a summary power equation is follows, 

Active Power → 𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑)   (Watt) 

Reactive Power → 𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑)  (Var)  

Apparent Power → 𝑆 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠    (VA) 

In digital systems, it is possible to calculate the phase difference and power values 

based on the instantaneous values of voltage and current. In MATLAB environment, 

instantaneous values of current and voltage and power values can be calculated by 

using averaging command. 

 

1.1.4 Power Factor (Cos φ) in Power Systems 

In power systems, the ratio of active power to apparent power is defined as the power 

factor [2]. If the network voltage and current are in sinusoidal form, that is, if the 

system does not contain a non-linear load, cos φ is equal to the power factor (PF). 

𝑃 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ cos(𝜑)     (1. 20) 
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𝑄 = 𝑣𝑟𝑚𝑠 ⋅ 𝐼𝑟𝑚𝑠 ⋅ sin(𝜑)     (1. 21) 

𝑆 = √𝑃2 + 𝑄2       (1. 22) 

cos(𝜑) = 𝑃𝐹 =
𝑃

𝑆
      (1. 23) 

 

In addition to that, if there are non-linear loads such as rectifiers, uninterruptible power 

supplies, electronic ballasts in power systems, current and voltage signal shapes move 

away from the sinusoidal form and harmonics occur in the system.  

In a harmonic system, power expressions such as the effective value of the voltage 

fundamental component 𝑣1 and the effective value of the current fundamental 

component 𝑖1 can be written as follows [5]. 

𝑆1 = √𝑃1
2 + 𝑄1

2      (1. 24) 

𝑃1 = 𝑣1 ⋅ 𝐼1 ⋅ cos(𝜑)      (1. 25) 

𝑄1 = 𝑣1 ⋅ 𝐼1 ⋅ sin(𝜑)       (1. 26) 

𝑃𝐹 =
𝑣1

𝑣𝑟𝑚𝑠
⋅

𝑖1

𝑖𝑟𝑚𝑠

⋅ cos 𝜑      (1. 27) 

𝑃𝐹 = 𝐾𝑣_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑)    (1. 28) 

In equation (1.28), 𝐾𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 coefficients are defined as distortion factors for 

current and voltage, and cos 𝜑 is defined as the displacement factor. If it is assumed 

that there is no harmonic in the network voltage, the 𝐾𝑣_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 coefficient will 

have no effect and the power factor value will be as in equation (1.40) [5]. 

𝑃𝐹 = 1 ⋅ 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑) = 𝐾𝑖_𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 ⋅ cos(𝜑)  (1. 29) 
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Figure 1.7 A current signal with the 5th harmonic in it 

 

1.1.5 Harmonic Distortion 

In electrical power systems containing harmonics, the effective values of current and 

voltage can be expressed in the following equations. 

 

𝑣𝑟𝑚𝑠 = √𝑣1 
2 + 𝑣2

2 + 𝑣3
2 + ⋯ + 𝑣𝑛

2    (1. 30) 

𝑣𝑟𝑚𝑠 = √𝑣1
2 + ∑ 𝑣ℎ

2𝑛

ℎ=2
      (1. 31) 

𝑖𝑟𝑚𝑠 = √𝑖1
2 + 𝑖2

2 + 𝑖3
2 + ⋯ + 𝑖𝑛

2     (1. 32) 

𝑖𝑟𝑚𝑠 = √𝑖1
2 + ∑ 𝑖ℎ

2𝑛

ℎ=2
      (1. 33) 

Total harmonic distortion value can be defined as the ratio of harmonic components to 

fundamental components. This value can be written separately for current and voltage. 

𝑇𝐻𝐷𝑣 =
√𝑣2

2+𝑣3
2+⋯+𝑣𝑛

2

𝑣1
      (1. 34) 
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𝑇𝐻𝐷𝑖 =
√𝑖2

2+𝑖3
2+⋯+𝑖𝑛

2

𝑖1
       (1. 35) 

 

International standards such as IEEE 519 and IEC 61000 regarding energy quality have 

been put forward. The EN 61000 - 3 - 2 standard offered by IEC is implemented in our 

country as TS EN 61000 - 3 - 2: 2015, which was updated in 2015. Electrical devices 

are classified according to these standards and voltage and current harmonic limits are 

specified. Classification of devices below 16A per phase according to this standard is 

shown in Table (1.1). In addition, the flow chart for determining the classes in the EN 

61000-3-2 standard is included in Figure (1.11). In addition, harmonic limits of these 

classes are given in Table (1.2), and voltage distortion limits according to IEEE 519 - 

1992 standard are given in Table 1.3. [4]  

 

Table 1.1 Electrical device classification according to EN 61000 - 3 - 2 standard 

Class Definition 

A Balanced three-phase loaded devices, professional 

devices in the range of 75 - 1000W, electrical devices 

not defined in B / C / D classes 

B Non-professional portable electrical devices that 

consume 75W and above, non-professional welding 

devices 

C Lighting devices below 1000W 

D Computers, monitors, televisions and radio equipment 

in the 75W-600W range 
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Figure 1.8 Flow chart to apply standard EN 61000 - 3 -2 

General Grid and Phase 
current equal or smaller 

than 16A?

YES or NO?

EN 61000-3-2 can not 
applicable

NO

Balanced 3 Phase 
System?

YES

Power equal or smaller than  
75W and Lighting Device?

NO

Non-professional 
portable tool or welding 

machine?
NO

Lighting Device?

NO

Power smaller or equal to 
600W PC, Monitor or TV 

Device?
NO

Non-portable household 
appliance or audio 

device?
NO

Power smaller or equal to 
1000W a professional 

device?
NO

EN 61000-3-2 Not 
applicable

NO

CLASS A

YES

CLASS A

YES

CLASS D

YES

Dimmer Device for 
Incandescent Lamps?

YES

CLASS C

NO

CLASS A

YES

CLASS B

YES

EN 61000-3-2 
Not applicable

YES

CLASS A
YES
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Table 1.2 Harmonic limits according to EN 61000 - 3 - 2 standards 

Harmonic No. 
Class A 

(A) 

Class B  

(A) 

Class C  

(In/I1) (%) 

Class D  

(mA/W) 

Odd numbered Harmonics 

3 2,30 3,45 30 3,4 

5 1,13 1,71 10 1,9 

7 0,77 1,155 7 1,0 

9 0,40 0,60 5 0,5 

11 0,33 0,495 3 0,35 

13 0,21 0,315 3 0,3 

15 0,15 0,220 3 0,25 

17≤h≤39 0,13*(15/h) 0,19*(15/h) 3 3,85/n 

Even numbered Harmonics 

2 1,08 1,62 2 - 

4 0,43 0,645 - - 

6 0,30 0,45 - - 

8 0,23 0,34 - - 

10≤h≤40 0,23*(8/h) 0,345*(8/h) - - 

 

 

Table 1.3 Voltage distortion limits according to IEEE 519 - 1992 standard 

V Vn/V (%) THD (%) 

V ≤ 1kV 5,0 8,0 

1kV < V ≤ 69kV 3,0 5,0 

69kV < V ≤ 161kV 1,5 2,5 

161kV < V 1,0 1,5 
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Apart from these standards, there are some other standards related to energy quality 

[5]. 

✓ EN 61000 - 3 - 3: It determines the voltage fluctuation limits in LV systems. 

✓ EN 61000 - 3 - 4: They define harmonic limits for devices larger than 16A per 

phase. 

✓ EN 50006: It determines the disruption limits caused by household and similar 

electrical devices containing electronic elements in the network. 

✓ TS 9882: It determines the disruption limits caused by household and similar 

electrical devices in the network. 

✓ VDE 0838: Home Appliances, 

✓ VDE 0160: Converters, 

✓ VDE 0712: Sets harmonic limits for fluorescent lamps and ballasts. 

 

1.2 Purpose of the Thesis 

  The monitoring of electrical power is important to ensure that this energy resource is 

effectively generated, distributed and utilized. Utilities need to measure power coming 

out of a generation station or going into power station. In addition, to minimize power 

transmission losses, it's important to minimize the phase relationship between the 

current and voltage waveforms of the power being transmitted. In industrial control 

applications, it's important to be able to continuously monitor the current and phase of 

the power into a machine which may vary with the machine load. Traditional systems 

for monitoring power circuits require the installation of individual measuring devices 

to measure a specific power system parameter; for example, Watts, VARs, Amps, or 

Volts. These devices typically comprise discrete analog transducers which convert AC 

voltage and current signals from a power system into DC output signals proportional 

to the true power on the system. For example, typical utility revenue kilowatt hour 

meters measure power in an analog fashion. Where a data acquisition system must 

measure numerous circuits, requiring separate measuring devices for each circuit can 

add greatly to the overall cost of the system. Also, where a number of circuits are being 

remotely monitored for computer processing and display, the individual devices must 

be connected to a data acquisition device and suitably processed to interface with the 

computer. Further, multiple measuring devices greatly increase the overall error of the 
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system.   Also, it is a complex system for measuring various parameters in multiple 

power circuits and the cost of purchasing installing and maintaining the system may 

be increased. Accordingly, it is a principal objective of the thesis to provide a 

simplified system for measuring various parameters in multiple power circuits to 

reduce the cost of purchasing, installing and maintaining the system. More specifically, 

it is an objective of the thesis to provide a system in which a single measuring device 

measures the fundamental parameters in a power system so that subsequent derived 

parameters can be computed in a controller data processing computer, thereby 

eliminating the necessity of multiple measuring devices. Additionally, the thesis aims 

to provide a power analyzer which reduces the cost of maintenance of the overall 

system and to provide a power analyzer which has very high precision through self-

calibration and a non-synchronous measurement technique. It is one more objective of 

the thesis is to provide a microcontroller-controlled power analyzer that can 

continuously and rapidly monitor a plurality of circuits. With the thesis, low-cost 

power and energy analyzer will be developed. The power analyzer that will be 

developed in the thesis will include a microprocessor coupled to the circuit for 

performing additional calculations on the electrical variables to thereby derive 

electrical parameters relating to the performance of the power circuits. These 

parameters may include Watts, Watt-hours, VARs, Power Factor, etc. After the 

calculations whole results will be monitoring on the screen and also there will be a real 

time plotting of the spectrum. [36] 

1.3 Conclusion and Key Findings 

It’s proved that various factors directly affect the measurement quality. Temperature 

changes of electronic components used are one in all the important factors. thanks to 

the optimal working environment of the components are different, so as to attenuate 

the negative impact of this case, the materials used is preferred with higher sensitivity 

and lower temperature coefficient. Also, the field effect sensor utilized in the current 

input is tormented by the external magnetic field. To avoid negative effect of this case, 

it's going to be possible to produce magnetic isolation of the area where the sensor is 

located on the hardware or standard transformer like rated 100A/4mA is also 

accustomed get far better results with the high precision. However, a current 

transformer requires much space. Besides, sensitivity of the operational amplifiers 
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utilized in voltage and current inputs is critical. A low precision operational amplifier 

will cause irrelevant results, especially when making measurements too close to zero. 

To avoid this case, choosing a high quality and high precision operational amplifier 

will influence positively affect the results. Additionally, chosen MCU is vital. If a 

microcontroller with high performance and decimal processing capability isn't 

preferred, it'll influence negatively the results in order that it'll cause loss of sensitivity 

during the mathematical operations.  

Also, the reference voltage for the calculations is critical. So, the battery voltage will 

also affect negatively the results. 

The sampling frequency of the selected microcontroller to be used in the designed 

digital measurement system, the resolution of the analog-digital converter, the 

sampling rate and the number of ADC channels that can operate simultaneously are 

sufficient, calculation can be performed without losing time in sampling.  

In addition, if the temperature dependence of the sensors and electronic materials used 

is calibrated with an external temperature measurement, an error-free measurement 

can be obtained. 
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CHAPTER II 

 

PHASE LOCKED LOOP (PLL) DESIGN 

 

The phase angle of use may be an important piece of information on the operation of 

power grids such as PV inverters. A locked phase loop is a closed system in which the 

internal oscillator is controlled to keep track of the time and the external time signal 

phase using the feedback loop. PLL is the only servo system that controls its output 

signal phase and specifies phase error between the output phase and the reference 

phase is small. Lock quality directly affects the operation of the control loop on 

applications that are tied to the grid. Since line measurement, voltage imbalance, line 

immersion, phase loss and frequency variations are common conditions for mechanical 

and electrical interactions, PLL needs to be able to reject these error sources and 

maintain a clean phase lock on the grid. [6]. In this section, various software loop lock 

options will be analyzed and the simulation results will be presented. 

 

2.1 Phase Locked Loop 

Typically, a phase loop is a closed loop control system with an internal oscillator so 

that it can lock out the external signal section using the feedback structure. It can be 

simply expressed as a servo control system that minimizes the phase difference 

between the reference signal and the output signal. In devices connected to the 

network, there may be situations such as frequency change, absence of phase or 

imbalance [6]. In such cases, a phase locked loop design should be designed to 

minimize these errors for the stability of measurement systems. As seen in Figure (2.1), 

a simple phase locked loop (PLL) consists of a phase detector, a PI controller and a 

voltage-controlled oscillator unit at its output. 

A functional diagram of a PLL is showing in figure, which consists of a phase detect 

(PD), a loop filter (LPF), and a voltage-controlled oscillator (VCO).
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Figure 2.1 Phase Locked Loop Block Diagram 

 

The measured grid voltage can be written in terms the grid frequency (𝑤𝑔𝑟𝑖𝑑) as 

follows, 

𝑣 = 𝑣𝑔𝑟𝑖𝑑 ⋅ sin(𝜃𝑖𝑛) − 𝑣𝑔𝑟𝑖𝑑 ⋅ sin(𝜔𝑔𝑟𝑖𝑑𝑡 + 𝜃𝑔𝑟𝑖𝑑)   (2. 1) 

Now, assuming that VCO produces sine waves near the sinusoid grid, the VCO output 

can be labeled, 

𝑣′ = cos(𝜃𝑜𝑢𝑡) − cos(𝜔𝑃𝐿𝐿𝑡 + 𝜃𝑃𝐿𝐿)     (2. 2) 

The purpose of the phase detection block is to compare the input sine with the locked 

sine from the VCO and to generate the error signal in line with the angle error. In this 

case, the phase acquisition block doubles the VCO output and the estimated input value 

to be obtained: 

𝑣𝑑 =
𝐾𝑑⋅𝑣𝑔𝑟𝑖𝑑

2
[sin ((𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 − 𝜃𝑃𝐿𝐿)) + sin ((𝜔𝑔𝑟𝑖𝑑 −

𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 + 𝜃𝑃𝐿𝐿))]      (2. 3) 

From Equation (2.3), it is clear that the output of the PD block contains information 

about the lock error. However, the lock error information found in PD is linear, and 

has twice as much variation as grid frequency. To use this error lock information PLL 

angle, part of the double frequency grid must be removed. In the meantime, ignoring 

duplicate part of the grid frequency, a lock error is provided by: 

𝑣𝑑 =
𝐾𝑑⋅𝑣𝑔𝑟𝑖𝑑

2
sin ((𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿)𝑡 + (𝜃𝑔𝑟𝑖𝑑 − 𝜃𝑃𝐿𝐿))  (2. 4) 

For steady state operation, the 𝜔𝑔𝑟𝑖𝑑 − 𝜔𝑃𝐿𝐿 term can be ignored, for small values of 

theta sin(θ) ~ θ.  Hence, a linearized error is given as: 

𝑒𝑟𝑟 =
𝑣𝑔𝑟𝑖𝑑(𝜃𝑔𝑟𝑖𝑑−𝜃𝑃𝐿𝐿)

2
       (2. 5) 

This error is an input loop filter, which is nothing but a PI controller, which is used to 

reduce the lock error in the stabilization mode to zero. Small signal analysis is 
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performed using network theory, in which the response loop is broken to obtain an 

open loop transfer number and then a closed loop transmission function: 

𝐶𝑙𝑜𝑠𝑒ⅆ 𝐿𝑜𝑜𝑝 𝑇𝐹 = 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝐹 / (1 + 𝑂𝑝𝑒𝑛 𝐿𝑜𝑜𝑝 𝑇𝐹)  (2. 6) 

 

Thus, in response to the line the PLL transfer function can be written as follows: 

Closed loop section TF: 

𝐻0(𝑠) =
𝜃𝑜𝑢𝑡(𝑠)

𝜃𝑖𝑛(𝑠)
−

𝐿𝐹(𝑠)

𝑠+𝐿𝐹(𝑠)
−

𝑣𝑔𝑟𝑖𝑑⋅(𝑘𝑝𝑠+
𝑘𝑝

𝑇𝑖
)

𝑠2+𝑣𝑔𝑟𝑖𝑑⋅𝑘𝑝𝑠+𝑣𝑔𝑟𝑖𝑑⋅
𝑘𝑝

𝑇𝑖

   (2. 7) 

 

Closed loop error transfer function: 

𝐸0(𝑠) =
𝑣𝑑(𝑠)

𝜃𝑖𝑛(𝑠)
− 1 − 𝐻𝑜(𝑠) −

𝑠

𝑠+𝐿𝐹(𝑠)
−

𝑠2

𝑠2+𝑘𝑝𝑠+
𝑘𝑃
𝑇𝑖

   (2. 8) 

Comparing the closed loop transfer function with the standard second order system 

transfer function, provided: 

𝐻(𝑠) =
2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛

2

𝑠2+2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛
2        (2. 9) 

The natural frequency and reduction of the PLL rate in line is given by: 

𝜔𝑛 = √
𝑣𝑔𝑟𝑖𝑑⋅𝑘𝑝

𝑇𝑖
       (2. 10) 

𝜁 = √
𝑣𝑔𝑟𝑖𝑑⋅𝑇𝑖⋅𝑘𝑝

4
      (2. 11) 

Note to PLL, PI serves two purposes: 

• To filter out high frequency that is at twice the frequency of the carrier and grid 

• Manage PLL response to track changes in grid shapes, for example, section jumps, 

size sources, and more. Since the loop filter has a low-pass filter feature, it can be used 

to filter a portion of the high frequency that was previously ignored. If the network 

frequency / lock signal frequency is high, the lower PI transition features are good 

enough to cancel twice the frequency of the network company frequency. However, in 

grid-connected systems as the grid frequency is very low (50Hz-60Hz), the roll off 

provided by the PI is not sufficiently satisfactory and introduces a high frequency 

feature at the loop filter output, which affects PLL performance. From the discussion 

above, it is clear that the LPF feature of the PI controller cannot be used to eliminate 

part of a double frequency to grid from the output phase in the case of grid-connected 
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applications. Therefore, other methods should be used that guide the PD block. In this 

application report, the two PLL modes that make up the PD exit line, are displayed: 

• One uses a notch filter to filter out a double part of a grid frequency on a PD output 

• The other uses an orthogonal signal generating method to use the PLL process for a 

fixed PLL framework in one PLL phase. 

2.2 Phase Locked Loop (PLL) Methods 

2.2.1 Notch Filtered Single Phase PLL 

In this PLL method, a notch filter can be used to exit the phase detection block, which 

doubles the part of the grid frequency very well. The flexible notch filter can also be 

used for selection by selecting the correct frequency in the event of a grid frequency 

variation. Section (2.1) illustrates the process of selecting PI coefficients, their digital 

usage and mapping. The design of the flexible notch filter is displayed with the 

automatic coefficient calculation method, and in line is displayed using embed code. 

A single phase, phase locked loop structure with a notch filter is as follows. 

 

Figure 2.2 Single Phase PLL With Notch Filter 

 

As discussed in Section (2.1), with the addition of a notch filter, PI tuning can only be 

performed based on the PLL variable response. Section (2.1) illustrates the digital use 

of the PI controller and the selection of coefficients for the use of the PI control. 

 

2.2.1.1 Discrete Implementation of PI Controller 

 

The loop filter or the PI is implemented as a digital controller with like this 

𝑦𝑙𝑓[𝑛] − 𝑦𝑙𝑓[𝑛 − 1] ⋅ 𝐴1 + 𝑦𝑛𝑜𝑡𝑐ℎ[𝑛] ⋅ 𝐵0 + 𝑦𝑛𝑜𝑡𝑐ℎ[𝑛 − 1] ⋅ 𝐵1 (2. 12) 
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Using z-transform, equation (2.12) can be re-written as: 

𝑦𝑙𝑓(𝑧)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑧)
=

𝐵0+𝐵1⋅𝑧−1

1−𝑧−1
      (2. 13) 

It is well known the PI controller in Laplace transform is given by: 

𝑦𝑙𝑓(𝑠)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑠)
= 𝑘𝑝 +

𝑘𝑖

𝑠
      (2. 14) 

Using bi-linear transformation, replace 𝑠 =
2

𝑇
⋅ (

𝑧−1

𝑧+1
), where T = Sampling Time. 

𝑦𝑙𝑓(𝑧)

𝑦𝑛𝑜𝑡𝑐ℎ(𝑧)
=

−(
2⋅𝑘𝑝+𝑘𝑖⋅𝑇

2
)−(

2⋅𝑘𝑃−𝐾𝑖⋅𝑇

2
)⋅𝑧−1

1−𝑧−1
    (2. 15) 

Equation (2.13) and Equation (2.15) can be compared to a map of the equity and 

completeness of PI control in a digital domain. The next challenge is to choose the 

right amount of benefit and total profit. Step response to standard second order 

calculations: 

𝐻(𝑠) =
𝜔𝑛

2

𝑠2+2⋅𝜁⋅𝜔𝑛𝑠+𝜔𝑛
2       (2. 16) 

is given as: 

𝑦(𝑡) = 1 − 𝑐𝑒−𝜎𝑡 ⋅ sin(𝜔𝑑 ⋅ 𝑡 + 𝜑)    (2. 17) 

Ignoring the LHP zero from Equation (2.17). The settling time is given as the time it 

takes for the response to settle between an error band, say this error is ∂, then:  

1 − 𝜕 − 1 − 𝑐𝑒−𝜎𝑡𝑠 → 𝜕 − 𝑐𝑒−𝜎𝑡𝑠 → 𝑡𝑠 −
1

𝜎
⋅ ln (

𝑐

𝜎
)  (2. 18) 

Where, 𝜎 = 𝜁 ⋅ 𝜔𝑛 and 𝑐 =
𝜔𝑛

𝜔𝑑
 and 𝜔𝑑 = √1 − 𝜁2 ⋅ 𝜔𝑛  (2. 19) 

Using settling time as 30 milliseconds, and the error band as 5% and damping ratio to 

be 0.7, the natural frequency is obtained to be 158,6859. Back substituting 𝑘𝑝 =

222,1603 and 𝑘𝑖 = 25181,22 . Back substituting these values into the digital loop 

filter coefficients: 

𝐵0 = (
2⋅𝑘𝑝+𝑘𝑖⋅𝑇

2
) and 𝐵1 = (

2⋅𝑘𝑝−𝑘𝑖⋅𝑇

2
)    (2. 20) 

For 50 kHz run rate of the PLL, 𝐵0 = 223,4194 and 𝐵1 = -220,901.  

 

2.2.1.2 Adaptive Notch Filter Design 

 

The notch filter used in the PLL shown in Figure (2.1) requires a double reduction of 

the grid frequency. The grid frequency, although stable, can vary somewhat, and with 
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the increase in renewable content major variations are possible. Therefore, in order to 

accurately write a grid frequency, a compatible notch filter is used. The standard notch 

filter number is “s-domain” as shown in Equation (2.21): 

𝐻𝑛_𝑓(𝑠) =
𝑠2+2⋅𝜁2⋅𝜔𝑛𝑠+𝜔𝑛

2

𝑠2+2⋅𝜁1⋅𝜔𝑛𝑠+𝜔𝑛
2                    (2. 21) 

where 𝜁2 ≪ 𝜁1 for notch action to occur. 

Discretizing Equation (2.21) using zero order hold, , 𝑠 =
(𝑧−1)

𝑇
, the equation is reduced 

to: 

𝐻𝑛_𝑓(𝑧) =
𝑧2+(2⋅𝜁2⋅𝜔𝑛⋅𝑇−2)⋅𝑧+(−2⋅𝜁2⋅𝜔𝑛⋅𝑇+2𝜔𝑛

2 ⋅𝑇2+1)

𝑧2+(2⋅𝜁1⋅𝜔𝑛⋅𝑇−2)⋅𝑧+(−2⋅𝜁1⋅𝜔𝑛⋅𝑇+2𝜔𝑛
2 ⋅𝑇2+1)

−
𝐵0+𝐵1⋅𝑧−1+𝐵2⋅𝑧−2

𝐴0+𝐴1⋅𝑧−1+𝐴2⋅𝑧−2         (2. 22) 

In the Equation (2.22) the maps are in digital format with two poses zero and the notch 

filter coefficients can be changed variable as the grid frequency varies by calling the 

posterior system measuring the coefficients based on the grid rating scale. For 

example, taking 𝜁2 = 0,00001 and 𝜁1 = 0,1 (𝜁2 ≪ 𝜁1), the notch response as shown 

in Figure (2.2) of the 50 Hz and 60 Hz grid, where the coefficient is calculated based 

on the grid. The notch filter response is shown below in Figure (2.2). 

 

 

Figure 2.3 The response of the notch filter 
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2.2.1.3 Sine and Cosine Generation 

 

The PLL uses sine and cosine calculation, these calculations can consume large 

number of cycles in a typical microcontroller. To avoid this issue, the sine and cosine 

value is generated in this module by applying the principle of integration. 

𝑦(𝑡 + 𝛥𝑡) = 𝑦(𝑡) +
𝑑𝑦(𝑡)

𝑑𝑡
⋅ 𝛥𝑡     (2. 23) 

For sine and cosine signal, this reduces to: 

𝑠𝑖𝑛(𝑡 + 𝛥𝑡) = 𝑠𝑖𝑛(𝑡) +
𝑑𝑠𝑖𝑛(𝑡)

𝑑𝑡
⋅ 𝛥𝑡 − 𝑠𝑖𝑛(𝑡) + 𝑐𝑜𝑠(𝑡) ⋅ 𝛥𝑡  (2. 24) 

𝑐𝑜𝑠(𝑡 + 𝛥𝑡) = 𝑐𝑜𝑠(𝑡) +
𝑑𝑐𝑜𝑠(𝑡)

𝑑𝑡
⋅ 𝛥𝑡 − 𝑐𝑜𝑠(𝑡) + 𝑠𝑖𝑛(𝑡) ⋅ 𝛥𝑡  (2. 25) 

 

2.2.1.4 Simulating the Phase Locked Loop for Varying Conditions 

 

It is important to mimic the PLL behavior with different grid shapes. Fixed-point 

processors are used, at a lower cost to multiple grids connected by converters. IQ 

Mathis is an easy way to look at fixed points numbers with a decimal point. The 

C2000IQ math library provides built-in functions that can make it easy to manage a 

decimal point by an editor. However, coding in a fixed location can have additional 

issues of flexibility and accuracy; therefore, it is better to mimic the behavior of fixed-

point processors in the simulation environment. Therefore, MATLAB® is used to 

mimic and point a Q-point where the algorithm needs to work. Below, the MATLAB 

text uses a fixed-point tool that checks the PLL algorithm with a variable grid. You 

can check in the section Appendix A more details about the codes.  

General block diagram of interrupt service routine (ISR) for notch filter is shown 

below: 
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Figure 2.4 Filter Interrupt flow chart 

Figure (2.5), (2.6), (2.7), (2.8), (2.9) shows the results of the varying grid condition on 

the PLL simulation. 

 

 

Figure 2.5 PLL Response to Varying Grid Conditions 

 

1 • ISR (Interrupt Service Routine)

2 • Read ADC value and populate the spll object with the appropriate Q format

3 • Call SPLL run FUNC

4 • Phase Detect

5 • Notch Filter

6 • Loop Filter

7 • VCO & Calculate sine and cosine using integration process

8 • Read the spll sine value and run the rest of the inverter code

9 • Exit ISR
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Figure 2.6 PLL Response to Varying Grid Conditions 

 

 

Figure 2.7 PLL Response to Varying Grid Conditions 
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Figure 2.8 PLL Response to Varying Grid Conditions 

 

 

Figure 2.9 PLL Response to Varying Grid Conditions 
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2.2.2 Orthogonal Signal Generator 

As discussed earlier, the design of the PLL single-phase grid software is deceptive due 

to duplicate part of the existing grid frequency in the output acquisition phase. A notch 

filter was previously used to complete the component and satisfactory results were 

obtained. Alternatively, to create a PD output line, use an orthogonal signal generating 

system and use a park conversion. The synchronized reference framework for PLL is 

then used for a single-phase application. A working diagram of such a PLL is shown 

in Figure (2.10), which contains a PD that includes an orthogonal signal generator as 

well as a park conversion, LPF and VCO. [6] 

 

 

Figure 2.10 OSG Based Single Phase PLL 

 

The orthogonal part from the input voltage signal can be produced in various ways 

such as transport delays, Hilbert transform, and so on. The most widely discussed 

approach is to use a second-order link as proposed in ‘A New Single Phase PLL 

Structure Based on Second Order Generalized Integrator’, Mihai Ciobotaru, et al, 

PESC’06. This method is useful as it can be used for tuning by selecting an orthogonal 

signal generator to reject other frequencies other than the grid frequency. [6] 

 

 

Figure 2.11 Second Order Generalized Integrator for Orthogonal Signal Generation 
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The second order generalized integrator closed-loop transfer function can be written 

as: 

𝐻𝑑(𝑠) =
𝑣′

𝑣
(𝑠) =

𝑘⋅𝜔𝑛⋅𝑠

𝑠2+𝑘⋅𝜔𝑛⋅𝑠+𝜔𝑛
2     (2. 26) 

𝐻𝑞(𝑠) =
𝑞𝑣′

𝑣
(𝑠) =

𝑘⋅𝜔𝑛
2

𝑠2+𝑘⋅𝜔𝑛⋅𝑠+𝜔𝑛
2     (2. 27) 

 

As we discussed before, the grid frequency can change, therefore, this orthogonal 

signal generator must be able to tune its coefficients in case of grid frequency change. 

To achieve this, trapezoidal approximation is used to get the discrete transfer function 

as follows: 

𝐻𝑑(𝑧) =
𝑘⋅𝜔𝑛⋅

2

𝑇𝑠
⋅
𝑧−1

𝑧+1

(
2

𝑇𝑠⋅

𝑧−1

𝑧+1
)

2
+𝑘𝜔𝑛⋅

2

𝑇𝑠
⋅
𝑧−1

𝑧+1
+𝜔𝑛

2
−

(2⋅𝑘⋅𝜔𝑛⋅𝑇𝑠)⋅(𝑧 
2−1)

4⋅(𝑧−1)2+(2⋅𝑘⋅𝜔𝑛⋅𝑇𝑠)⋅(𝑧 
2−1)+(𝜔𝑛⋅𝑇𝑠)2⋅(𝑧+1)2

        (2. 28) 

Now, using 𝑥 = 2 ⋅ 𝑘 ⋅ 𝜔𝑛 ⋅ 𝑇𝑠 and 𝑦 =  (𝜔𝑛 ⋅ 𝑇𝑠)2: 

𝐻𝑑(𝑧) =

𝑥

𝑥+𝑦+4
+(

−𝑥

𝑥+𝑦+4
)⋅𝑧−2

1−(
2(4−𝑦)

𝑥+𝑦+4
)⋅𝑧−1−(

𝑥−𝑦−4

𝑥+𝑦+4
)⋅𝑧−2

 −
𝑏0+𝑏2⋅𝑧 

−2

1−𝑎1⋅𝑧 
−1−𝑎2⋅𝑧 

−2
  (2. 29) 

Similarly, 

𝐻𝑞(𝑧) =

𝑘⋅𝑦

𝑥+𝑦+4
+2⋅(

𝑘⋅𝑦

𝑥+𝑦+4
)⋅𝑧−1+(

𝑘⋅𝑦

𝑥+𝑦+4
)⋅𝑧−2

1−(
2(4−𝑦)

𝑥+𝑦+4
)⋅𝑧−1−(

𝑥−𝑦−4

𝑥+𝑦+4
)⋅𝑧−2

 −
𝑞⋅𝑏0+𝑞𝑏1⋅𝑧 

−1+𝑞𝑏2⋅𝑧 
−2

1−𝑎1⋅𝑧 
−1−𝑎2⋅𝑧 

−2
       (2. 30) 

 

Once the orthogonal signal is generated, the park switch is used to locate the Q and D 

segments in the rotating reference frame. This is then applied to the loop filter that 

controls the VCO PLL. The configuration of the loop filter is similar to that described 

in the notch filter in Section (2.2.1.1). Additionally, the coefficients of the orthogonal 

signal generator can be adjusted for grid frequency and sample time (ISR frequency). 

The only difference is k, which determines the frequency choice of the second system 

connector. The second standard integration order presented can also be adjusted to 

remove part of the harmonic frequency from the grid monitoring application, if 

required. A lower k value should be selected for this purpose; However, a low k has 

the effect of reducing the response. Figure (2.12) shows the fifth harmonic discharge 

using SOGI. The implementation of this follows the implementation of SOGI, which 

will be discussed next; However, the details are left out. 
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Figure 2.12 Extraction of the Fifth Harmonic Using the SOGI 

 

Additionally, the RMS voltage of the grid can also be estimated using (2.31): 

𝑣𝑟𝑚𝑠 =
1

√2
⋅ √𝑣′2 + 𝑞𝑣′2      (2. 31) 

 

2.2.2.1 Simulating the PLL for Varying Conditions 

 

It is important to mimic the PLL behavior with different grid shapes. Fixed-point 

processors are used, at a lower cost to multiple grids connected by converters. IQ 

Mathis is an easy way to look at fixed points numbers with a decimal point. The C2000 

IQ math library provides built-in functions that can make it easy to manage a decimal 

point by an editor. First, MATLAB® is used to mimic and identify Q-point where the 

algorithm needs to be operational. Below, the MATLAB text uses a fixed-point tool 

that checks the PLL algorithm with a variable grid. You can check in the section 

Appendix B for more details about the codes.  

General block diagram of interrupt service routine (ISR) for notch filter is shown 

below:  
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Figure 2.13 Interrupt Filter flow chart 

 

Figure (2.14), (2.15), (2.16), (2.17), (2.18) shows the results of the varying grid 

condition on the PLL simulation. 

 

 

Figure 2.14 Phase Jump of 90° 

 

1 • ISR (Interrupt Service Routine)

2 • Read ADC value and populate the spll object with the appropriate Q format

3 • Call SPLL run FUNC

4 • Run the OSG

5 • Run Park Transform on the orthogonal signals

6 • Loop Filter

7 • VCO & Calculate sine and cosine value from theta

8 • Read the spll sine value and run the rest of the inverter code

9 • Exit ISR
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Figure 2.15 Phase Jump of 90° 

 

 

Figure 2.16 Frequency drift at mid-point highlights the need for adaptive notch filter 
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Figure 2.17 Amplitude change (Voltage Sags and Dips) 

 

 

Figure 2.18 Amplitude change with harmonics (Voltage Sags and Dips) 
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Table 2.1 PLL and adaptive notch filter coefficients 

PLL Adaptive Filter 

Coefficient Value Coefficient Value 

Ki 1800 K 0,0085 

Kp 60 V 0,125 

Kt 1,0 Ts 50 µs 

Ts 50 µs  

 

𝑁 = 1000 samples are taken for the FFT analysis and in the DFT analysis, IEC 61000-

4-7 standards (which suggest using the windows with the period of 𝑇 = 10/𝑓 at the 5 

Hz resolution for 𝑓 = 50 Hz) are considered. Signals are windowed with a rectangular 

window and interharmonic group method is used to calculate the interharmonic with 

FFT and DFT. 

 

Figure 2.19 The signal 𝑥(𝑡) for 𝑓 = 50 Hz and 𝑇 = 0.2 s. 
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Figure 2.20 Under the multiple disturbances; (a) the signal, 𝑥(𝑡), (b) reference-filter 

output signal, and (c) FFT of the filter output. 

 

 

Figure 2.21 Single-phase PLL application with OSG 

 

 

Figure 2.22 Conventional OSG; a) SOGI, b) Park, c) Derivative, d) APF PLL 
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Responses in different cases shown below. 

 

Figure 2.23 Responses of the estimated angle error for 1 rad step change in PLL 

input phase for APF, Park, MFO and SOGI OSG filters, for PLL with the following 

disturbance attenuation at 2ω / (a) Atten@2ω = −20 dB, (b) Atten@2ω = −25 dB, (c) 

Atten@2ω = −30 dB, (d) Atten@2ω = −35 dB 

 

 

Figure 2.24 Responses of the estimated angle error for 50 rad/s step change in PLL 

input frequency for APF, Park, MFO and SOGI OSG filters, for PLL with the 

following disturbance attenuation at 2ω / (a) Atten@2ω = −20 dB, (b) 

Atten@2ω = −25 dB, (c) Atten@2ω = −30 dB, (d) Atten@2ω = −35 Db 
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Figure 2.25 Responses of the estimated angle error for 50 rad/s step change in PLL 

input frequency for APF, Park, MFO and SOGI OSG filters, for square-wave input 

and for PLL with the following disturbance attenuation at 2ω / (a) Atten@2ω = −20 

dB, (b) Atten@2ω = −25 dB, (c) Atten@2ω = −30 dB, (d) Atten@2ω = −35 Db 

 

2.3 Discretizing the Phase Locked Loop Model 

The second order low pass filter and PI controller part in the classical phase locked 

loop structure discussed in this section will be discretized and this structure will be 

made to be implemented on the real hardware software. 

 

 

Figure 2.26 Classic PLL PSIM model 
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2.3.1 Separation of the Second Order Low Pass Filter 

In the s domain of the second-order low-pass filter, the transfer function can be written 

as in equation (2.32). 

𝑘 →refers to Gain 

𝜉 →refers to Damping Ratio 

𝑓𝑐 →refers to Cut-off Frequency  (𝜔𝑐 = 2𝜋𝑓 ) 

 

𝐺(𝑠) =
𝑘⋅𝜔𝑐

2

𝑠2+2𝜉𝑤𝑐⋅𝑠+𝑤𝑐
2       (2. 32) 

 

In order to transform the transfer function in the continuous time s domain into discrete 

time, it must first be transformed into a z domain. There are various methods for this. 

For this transformation, the bilinear transformation (Tustin Transformation) method 

will be used. This transformation can also be done in the MATLAB environment.  

As an example, let's assume that the following values are given like this;  

𝑘 = 2  

𝜉 = 0,8  

𝑓𝑐 = 50   

The second-order low-pass filter with these parameters can be converted to z-domain 

with a sampling time of 100µs in MATLAB environment as follows. 

 

clear all  

clc  

k = 2;  

ksi = 0.8;  

fc = 50;  

Ts = 100e-5;  

wc = 2 * pi * fc;  

numerator = k * wc^2;  

denominator = [1 2*ksi*wc wc^2];  

Gs = tf(numerator, denominator);  

Gz = c2d(Gs, Ts, 'tustin') 
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Figure 2.27 Response of MATLAB for Discrete-time transfer function 

 

 

Figure 2.28 Response of MATLAB for Continuous-time transfer function 

 

𝐺(𝑧) =
𝑎𝑧2+𝑏𝑧+𝑐

𝑧2+𝑑𝑧+𝑒
      (2. 33) 

Discrete time transfer function can be obtained as in Eq. (2.33). In general, the discrete 

time transfer function of second-order low-pass filters can be written as in Eq. (2.34) 

or in Eq. (2.35) if the numerator and denominator are multiplied by (z-2). 

 

𝐺(𝑧) =
𝑏0𝑧2+𝑏1𝑧+𝑏2

𝑧2+𝑎1𝑧+𝑎2
      (2. 34) 

𝐺(𝑧) =
𝑏0+𝑏1𝑧−1+𝑏2𝑧−2

1+𝑎1𝑧−1+𝑎2𝑧−2
      (2. 35) 

In order to operate the discrete time transfer function on the microcontroller, it must 

be programmable. The direct programming method can be used for this. Discrete time 

transfer function can generally be written as in Equation (2.36). 

 

𝐷(𝑧) =
ℎ0𝑧𝑚+ℎ1𝑧𝑚−1+⋯+ℎ𝑚−1𝑧−1+ℎ𝑚

𝑎0𝑧𝑛+⋯+𝑎𝑛
    (2. 36) 

If the numerator and denominator are multiplied by (𝑧−𝑛). 𝑋(𝑧) where n is the highest 

degree of the denominator 
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𝐸2(𝑧)

𝐸1(𝑧)
= 𝐷(𝑧) =

𝑏0𝑧𝑚+𝑏1𝑧𝑚−1+⋯+𝑏𝑚−1𝑧−1+𝑏𝑚

𝑎0𝑧𝑛+⋯+𝑎𝑛
⋅ {

𝑧−𝑛

𝑧−𝑛
⋅

𝑋(𝑧)

𝑋(𝑧)
} (2. 37) 

𝐸1(𝑧) = [𝑎0 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑧−𝑛]. 𝑋(𝑧)    (2. 38) 

𝐸1(𝑧) = [𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑚𝑧−𝑚]. 𝑋(𝑧). 𝑧−(𝑛−𝑚)  (2. 39) 

 

Here, E1 (z) can be expressed as the input of the system and E2 (z) as the output of the 

system. The general discrete time transfer function of the second order low pass filter 

can also be written and programmed in the same way.  

𝐺(𝑧) =
𝑏0𝑧2+𝑏1𝑧+𝑏2

𝑧2+𝑎1𝑧+𝑎2
        (2. 40) 

𝐸2(𝑧)

𝐸1(𝑧)
=

𝑏0+𝑏1𝑧−1+𝑏2𝑧−2+𝑏𝑚

1+𝑎1𝑧−1+𝑎2𝑧−2
⋅ {

𝑋(𝑧)

𝑋(𝑧)
}    (2. 41) 

 

Using Equation (2.41), the filter output can be written with E2 (z) (2.42) as below. 

𝐸2(𝑧) = [𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2]. 𝑋(𝑧)    (2. 42) 

If the state variable for the filter is X (z), it can be written with equation (2.43). 

𝐸1(𝑧) = [1 + 𝑎1𝑧−1 + 𝑎2𝑧−2]. 𝑋(𝑧)     (2. 43) 

𝑋(𝑧) = 𝐸1(𝑧) − [𝑎1𝑧−1 + 𝑎2𝑧−2]. 𝑋(𝑧)   (2. 44) 

Finally, if we write the difference equations for the filter, 

𝐸2(𝑘) = 𝑏0. 𝑋(𝑘) + 𝑏1. 𝑋(𝑘 − 1) + 𝑏2. 𝑋(𝑘 − 2)  (2. 45) 

𝑋(𝑘) = 𝐸1(𝑘) − 𝑎1. 𝑋(𝑘 − 1) − 𝑎2. 𝑋(𝑘 − 2)  (2. 46) 

 

 

 

Figure 2.29 Programming block diagram for a second order low pass filter 
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The discrete time transfer function coefficients of the second order low pass filters will 

also be calculated according to the values of gain, damping ratio and cutoff frequency. 

These coefficient calculations were made with the tool in the Simulink environment. 

 

 

Figure 2.30 Calculation of filter coefficients with PSIM 

 

2.3.2 Discretization of the PI Controller 

The transfer function in the s domain of the PI controller can be written as in Equation 

(2.47). 

𝑘 = Gain   

𝑇 = PI Controller Time Constant  
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Figure 2.31 General structure of the PI controller 

 

𝐺(𝑠) = 𝐾𝑝 +
𝐾𝑖

𝑠
       (2. 47) 

𝐾𝑝 = 𝑘        (2. 48) 

𝐾𝑖 =
𝑘

𝑇
         (2. 49) 

 

if we assume the values like this the transfer function of the PI controller in continuous 

time can be written as follows. 

𝐺(𝑠) = 𝑘 +
𝑘

𝑠.𝑇
= 𝑘.

1+𝑠.𝑇

𝑠.𝑇
     (2. 50) 

 

In order to discretize the transfer function in the continuous time s domain, it must first 

be transformed into z domain. For this transformation, the bilinear transformation 

(Tustin transformation) method will be used as in the second order low pass filter. This 

transformation can also be done in the MATLAB environment. For example, let’s 

assume that; 

𝑘 = 2  and 

𝑇 = 1 𝑚𝑠   

A PI controller with these parameters can be converted to z domain with sampling time 

of 𝑇𝑠 = 100 𝜇𝑠 in MATLAB environment as follows. 

  

1/s Ki 

 

Kp 

 E(s) C(s) 
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clear all  

clc  

k = 2;  

T = 0.001; 

numerator = [k *T k];  

denominator = [T 0];  

G_s= tf(numerator, denominator); 

T_s= 100e-6; 

G_z= c2d (G_s, T_s, "tustin") 

 

𝐺(𝑧) =
2,1.𝑧−1,9

𝑧−1
      (2. 51) 

 

Discrete time transfer function can be obtained as in Eq. (2.51). In general, the discrete 

time transfer function of the PI controller can be written as in Eq. (2.52) or if the 

numerator and denominator of the rightmost expression is multiplied by z in Eq. (2.53). 

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

1+𝑧−1

1−𝑧−1
      (2. 52) 

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

𝑧+1

𝑧−1
      (2. 53) 

 

In order to run the obtained discrete time transfer function on the microcontroller, it 

must be programmable by direct programming method as in the low pass filter. 

𝐺(𝑧) = 𝐾𝑝 + 𝐾𝑖 ⋅
𝑇𝑠

2
⋅

1+𝑧−1

1−𝑧−1
       (2. 54) 

𝐾𝑖 ⋅
𝑇𝑠

2
= 𝐾𝑥        (2. 55) 

 

If the expression G (z) is rearranged, 

𝐺(𝑧) =
𝐾𝑝 +𝐾𝑥+(𝐾𝑥 −𝐾𝑝)  𝑧−1

1−𝑧−1
       (2. 56) 

 

Let’s assume that,  

𝐾𝑝 + 𝐾𝑥 = 𝑏0        (2. 57) 

𝐾𝑥 − 𝐾𝑝 = 𝑏1        (2. 58) 

so that the Equation (2.58) become as Equation (2.59). 

𝐺(𝑧) =
𝑏0+𝑏1 ⋅ 𝑧−1

1−𝑧−1
        (2. 59) 
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We can obtain the difference equations by multiplying the numerator and denominator 

of the expression 𝐺(𝑧) obtained in its simplest form by 𝑋(𝑧). 

𝐸2(𝑧)

𝐸1(𝑧)
=

𝑏1⋅𝑧−1+𝑏0

1−𝑧−1
⋅

𝑋(𝑧)

𝑋(𝑧)
      (2. 60) 

 

Using Equation (2.59), the PI controller output can be written with 𝐸2(𝑧) Equation 

(2.61). 

𝐸2(𝑧) = 𝑏0 ⋅ 𝑋(𝑧) + 𝑏1 ⋅ 𝑧−1 ⋅ 𝑋(𝑧)    (2. 61) 

 

If the state variable of the PI controller is 𝑋(𝑧), it can be written with Equation (2.63). 

𝐸1(𝑧) = 𝑋(𝑧) − 𝑧−1 ⋅ 𝑋(𝑧)     (2. 62) 

𝑋(𝑧) = 𝐸1(𝑧) + 𝑧−1 ⋅ 𝑋(𝑧)     (2. 63) 

 

Finally, if we write the difference equations for the PI controller 

𝐸2(𝑘) = 𝑏0 ⋅ 𝑋(𝑘) + 𝑏1 ⋅ 𝑋(𝑘 − 1)    (2. 64) 

𝑋(𝑘) = 𝐸1(𝑘) + 𝑋(𝑘 − 1)     (2. 65) 

 

Figure 2.32 Programming block diagram for PI controller 

 

The discrete time transfer function coefficients of PI controllers will also be calculated 

according to the gain and time constant values. These coefficient calculations were 

made with the tool in the PSIM environment. 

𝑘1 refers to 𝐾𝑃 and 𝑘2 refers to 𝐾𝑃/𝑇.  
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Figure 2.33 Calculation of 𝐾𝑃 and 𝐾𝑖  coefficients with Simulink environment 

 

2.3.3 Discrete Time Model of Classical PLL Structure 

The discrete time block diagram of the classical PLL model is as follows. 

 

Figure 2.34 Discrete time block diagram of the classical PLL model 
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The synchronization signal produced by the classical PLL model, which we obtained 

the discrete time model, according to the sinusoidal input is obtained as follows. 

Thanks to the synchronization signal obtained by the PLL model, synchronization with 

the network will be ensured in case of disturbances in the network and frequency shifts. 

As an example of the discrete time block diagram of the PLL model obtained in Figure 

(2.34), it is seen in Figure (2.35) that it is properly locked into phase at the output 

against the sinusoidal input signal with phase difference. Filter coefficients for the 

sample are as follows.  

Second order low pass filter coefficients; 

b_0 = 0,00048126594 

b_1 = 0,00096253188 

b_2 = 0,00048126594 

a_1 = -1,9500161 

a_2 = 0,95097865 

PI controller coefficients;  

b_0= 10,4 

b_1= -9,96 

 

 

 

Figure 2.35 Response of digital PLL to sinusoidal input signal 
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2.3.4 Software Implementation of the Digital PLL Model with PSIM 

There is a block on the PSIM simulation program that can be written with C / C ++ 

code and used in simulations. Before testing the digital PLL model obtained in Figure 

(2.36) on real hardware, we can implement it with this block. For this block, the input 

signal is the measured network voltage and the output signal is the generated 

synchronization signal. The output signal of the model in Figure (2.37) and the codes 

run on the C block are as follows. 

 

Figure 2.36 Software implementation of digital PLL 

 

 

 

Figure2.37 Software PLL's response to sinusoidal input signal 
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 ---------------------// Low-pass Filter Coefficients and related variables//-----------------

double b0 = 0.00048126594; 

double b1 = 0.00096253188; 

double b2 = 0.00048126594; 

double a1 = -1.9500161; 

double a2 = 0.95097865; 

static double Xk = 0;  // 2nd order LPF static variable 

static double Xk_1 = 0; // 2nd order LPF static variable previous value 

static double Xk_2 = 0; // 2nd order LPF static variable second previous value 

---------------------// PI controller Coefficients and related variables//----------------- 

double T_s = 0.0001;  

double k1 = 2;  

double k2 = 10000;  

double kx = k2 * (Ts/2);  

double c0 = kx + k1;  

double c1 = kx - k1;  

 

static double Xk_PI = 0; // static variable 

static double Xk_1_PI = 0; // static variable previous value 

 

------------------------------------// other variables//------------------------------- 

 

static double Tri_Index = 1;  

static double Cos_Out = 0;  

static double Pre_Out = 0;  

double input_lpf, output_lpf, input_pi, output_pi, Triangle_Out;  

 

input_lpf = in[0] * Cos_Out;  

Xk = input_lpf - a1 * X_k_1 - a2 * X_k_2;  

output_lpf = X_k * b0 + Xk_1 * b1 + X_k_2 * b2;  

X_k_2 = X_k_1;  

X_k_1 = X_k;  

 

input_pi = output_lpf;  

X_k_PI = input_pi + X_k_1_PI;  

output_pi = c0 * X_k_PI + c1 * X_k_1_PI;  

X_k_1_PI = X_k_PI;  

 

Triangle_Out = Tri_Index * 1.8;  

Pre_Out = output_pi + Triangle_Out;  

 

if(++Tri_Index > 200) {  

Tri_Index = 1; }  

 

Cos_Out = cos(Pre_Out * M_PI / 180);  

out[0] = sin(Pre_Out * M_PI / 180); 
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2.4 Hardware Implementation of Software PLL 

The software of the PLL model was also tested on the designed hardware. In this 

section, only the waveform and PLL synchronization signal of samples taken from the 

mains voltage are included. Sampling time is determined as 156.25 μs since 128 

samples will be taken in a period. This value is calculated by considering the network 

period as 20ms and its frequency as 50Hz. Small fluctuations in the network frequency 

are calculated at certain intervals with the synchronization signal generated by the 

PLL, and the sampling time is dynamically adjusted to receive 128 samples in a period. 

In this way, all measurements to be made are calculated more accurately and reliably. 

 

Figure 2.38 Sampled Signal from the grid voltage (Vline) 

 

The samples taken by the microcontroller with the serial port on the designed hardware 

were transferred to the MATLAB environment and the signals were plotted. 



48 
 

 

Figure 2.39 PLL output signal that locked to the grid signal  

(Blue=Vline, Red=Vsync) 

 

The part running the PLL algorithm in the software is as follows. This part is regularly 

called in the ISR where the samples were taken. 

 

 

 

stPLL.wt = (stPLL.wtIndex * 360) / 128.0;  

stPLL.LPF_Input = stPLL.Vin * stPLL.CosOut;  

stPLL.LPF_Xk = stPLL.LPF_Input - (LPF_A1 * stPLL.LPF_Xk1) - (LPF_A2 

* stPLL.LPF_Xk2); 

 

stPLL.LPF_Output = (stPLL.LPF_Xk * LPF_B0) + (stPLL.LPF_Xk1 * 

LPF_B1) + (stPLL.LPF_Xk2 * LPF_B2);  

 

stPLL.PI_Input = stPLL.LPF_Output;  

stPLL.PI_Xk = stPLL.PI_Input + stPLL.PI_Xk1;  

stPLL.PI_Output = (stPLL.K_PI_x * stPLL.PI_Xk) + (stPLL.K_PI_y * 

stPLL.PI_Xk1);  

 

stPLL.Theta = stPLL.PI_Output + stPLL.wt;  

stPLL.CosOut = arm_cos_f32(Deg2Rad(stPLL.Theta));  

stPLL.Vsync = arm_sin_f32(Deg2Rad(stPLL.Theta));  

stPLL.Vsign = signum(stPLL.Vsync); 

 

 

In this section, various PLL models used in single phase system are presented, discrete 

time modeling and simulation results are given. In addition, an example is provided on 
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the designed hardware. There are many studies on this subject in the literature. Second 

order generalized integrator based (SOGI) PLL structures, which can be used 

especially in both single phase and three phase systems, are very useful and can 

produce a very sensitive output without being affected by distortions in the network.  

 

In recent years, it has become possible to achieve excellent results on digital platforms 

with the increase in the performance of microcontrollers and digital signal processors 

(DSP) and the addition of units that can perform decimal and trigonometric processing 

independently of the central processing unit (CPU). 

 

For OSG simulating in MATLAB, it requires approximately: 868.451 seconds, in the 

contrast Notch simulating requires approximately: 264.621 seconds. According to 

these results a combined filter will get better results. 

 

 
 

Figure 2.40 MATLAB Simulink Demo PLL Program Outputs 

 



50 
 

CHAPTER III 

 

HARDWARE DESIGN FOR INDUSTRIAL ANALYZER 

 

3.1 Main Supply Circuit 

 

Figure 3.1 Sophisticated Triac Driver Optoisolator 230 VAC to 12 VDC Power 

Supply Circuit 

 

Figure 3.2 5 VDC circuit for TFT-LCD
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Figure 3.3 3V3 DC circuit for electronic components 

 

The energy requirement of the equipment to be designed is reduced gradually to 12V 

DC voltage with the converter circuit in the system with 230V AC voltage. All digital 

elements on the circuit (Microcontroller, OPAMP, Communication Peripherals etc.) 

except the TFT LCD screen, operate with 3.3V DC voltage. Only TFT LCD screen 

operates with 5V DC voltage. 12V DC voltage taken from the converter circuit is 

converted into 5V DC and 3.3V DC voltage by linear voltage regulators step by step. 

LM7805 is used for 5V conversion and 78M33 linear regulator is used for 3.3V 

conversion. In addition, diodes have been added to the input sections for linear current 

control.  

 

3.2 Voltage Detection Circuit 

 
Figure 3.4 Voltage detection circuit 
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In order to use any current transformer in the input circuit, a connection has been made 

using jumper. If desired, an external current transformer can be connected. In the 

voltage measurement circuit, the network voltage level was decreased with voltage 

dividers, then the voltage was increased with the differential input opamp circuit and 

the analog digital converter part of the microcontroller was entered. For the voltage 

divider part, the voltage falling on the R10 resistor can be calculated by Equation (3.1). 

𝑣𝑅10 = 𝑣𝑖𝑛 ⋅
𝑅10

𝑅6+𝑅7+𝑅8+𝑅9
      (3. 1) 

 

The gain of the differential input opamp circuit can be calculated by Equation (3.2) if 

the resistances of R8 - R9 and R10 - R11 are equal. 

𝐺𝑎𝑖𝑛 =
𝑅13

𝑅11
=

𝑅13

𝑅15
=

12𝑘

6,8𝑘
= 1,7647     (3. 2) 

 

The time constant of the RC circuit on the output side of the opamp circuit can be 

calculated with Equation (3.3). 

𝜏 = 𝑅 ⋅ 𝐶 = 100 ⋅ 10 ⋅ 10−9 = 1𝜇𝑠     (3. 3) 

A single supply, high precision opamp coded as MCP6061 from Microchip company 

was used as amplifier. The opamp output is shifted to half (1.65V) of the supply 

voltage, since both the positive and negative alternans of the grid voltage must be 

measured. In this way, the voltage sampled with an analog digital converter is 

converted into a sinusoidal DC voltage oscillating above 1.65V. In this circuit, the 

supply voltage is divided into two with two equivalent resistors and a voltage is applied 

to the voltages to be shifted by a follower opamp circuit. 
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Figure 3.5 Voltage offset circuit 

 

3.3 Current Detection Circuit 

 

Figure 3.6 Current detection circuit with hall effect sensor 
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Figure 3.7 Current output circuit 

 

Current measurement can be made on the hardware in two ways. First, it is the current 

measurement input where the field effect current sensor connected to the current input 

is used, while the measurement can be made over the jumper by adding an external 

current transformer if desired. Field effect sensor was used for measurement 

experiments. In addition, with the differential opamp in the current input circuit, since 

there is no need for boosting and shifting, the sensor output was directly connected to 

the opamp output and measurements were made. 
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As the field effect current sensor, a model of Allegro company, coded ACS711KLCA, 

capable of measuring in the range of ± 12.5A with a single supply of 3.3V and 

operating in the range of -40 / + 125 ° C was used. The output of the sensor is taken 

directly offset to half of the supply voltage. At the sensor output, 110mV voltage is 

produced per 1A. 

 

 

 

Figure 3.8 Characteristic Performance data of ACS711KLCA-25A, Vcc=3,3 V 

 

3.4 Voltage and Current Zero-cross Detection Circuit 

A comparator circuit has been added on the hardware to capture zero-cross from 

voltage and current output signals. LM393 integrated circuit is used as comparator. 

The corresponding signals were entered into the positive inputs of the comparators, 

and the voltage obtained from the shifting circuit was entered into the negative inputs. 

When the voltage level is higher than the shifting voltage the output is positive and 

when it is low the output is zero. Thus, the frequency of the input signal is detected by 

the square wave obtained from the output by connecting to the external interrupt inputs 

of the microcontroller. In the software, only the zero-crossing signal of the voltage was 

captured by external interrupts and frequency measurement was performed. 
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Figure 3.9 Zero-cross detection circuit 

 

3.5 Battery Back-up Circuit 

 

Figure 3.10 Battery backup circuit 

 

A backup battery system has been added to meet the energy needs of the processor in 

any case. 
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3.6 Microcontroller Unit (MCU)  

 

Figure 3.11 Central processing unit (CPU) input and outputs 

 

As the microcontroller on the hardware, STM32F405VG with a 32bit core, decimal 

processing unit (FPU) and a speed of 168MHz, which is produced by ST 

Microelectronics, is ARM Cortex M4 based. Generally, its features are as follows. [16] 

▪ Core: Arm® 32-bit Cortex®-M4 CPU with FPU [16] 

▪ ART Accelerator allowing 0-wait state execution from Flash memory [16] 

▪ Frequency up to 168 MHz [16] 

▪ Memory protection unit [16] 
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▪ 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1) [16] 

▪ DSP instructions [16] 

▪ 1 Mbyte of Flash memory [16] 

▪ LCD parallel interface, 8080/6800 modes [16] 

▪ Low-power operation [16] 

▪ 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple 

interleaved mode [16] 

▪ 2×12-bit D/A converters [16] 

▪ General-purpose DMA: 16-stream DMA controller with FIFOs and burst 

support [16] 

▪ Up to 17 timers: up to twelve 16-bit and two 32- bit timers up to 168 MHz, 

each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) 

encoder input [16] 

▪ Debug mode  

o  Serial wire debug (SWD) & JTAG interfaces [16] 

o Cortex-M4 Embedded Trace Macrocell™ [16] 

▪  I/O ports with interrupt capability 

▪ Up to 15 communication interfaces  

o Up to 3 × I2C interfaces (SMBus/PMBus) [16] 

o Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, 

IrDA, modem control) [16] 

o Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I2S to achieve 

audio class accuracy via internal audio PLL or external clock [16] 

o 2 × CAN interfaces (2.0B Active) – SDIO interface [16] 

▪  Advanced connectivity  

o USB 2.0 full-speed device/host/OTG controller with on-chip PHY [16] 

o USB 2.0 high-speed/full-speed device/host/OTG controller with 

dedicated DMA, on-chip full-speed PHY and ULPI [16] 

o 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 

hardware, MII/RMII [16] 

General features of the MCU are shown below in figure (3.13). 
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Figure 3.12 STM32F405VGT6 microchip designed by STM. 



60 
 

Analog

•2-channel 2x 12-bit 
DAC

•3x 12-bit ADC 24 
channels /2.4 MSPS

•Temperature sensor

Connectivity

•Camera interface

•3x SPI, 2x I2S, 3x I2C

•2x CAN 2.0B

•1x USB 2.0 OTG 
FS/HS

•1x USB 2.0 OTG FS

•SDIO

•6x USART LIN, 
smartcard, IrDA, 
modem control

Arm Cortex- M4 CPU-
168 MHz

•Floating point unit 
(FPU)

•Nested vector interrupt 
controller (NVIC)

•JTAG/ SW debug/ 
ETM

•Memory Protection 
Unit (MPU)

•Multi-AHB bus matrix

•16-channel DMA with 
BAM

•True RNG

•1-Mbyte Flash

•192-Kbyte SRAM

•FSMC/ SRAM/ NOR/ 
NAND/ CF/ LCD 
parallel interface

•80- byte + 4- Kbyte 
backup SRAM

Control

•10x 16-bit timer

•2x 16-bit motor control 
PWM synchronized AC 
timer

•2x32-bit timer

System

•Power Supply 1.2 V 
regulator 
POR/PDR/PVD

•XTAL Oscillators 32 
kHz + 4~ 26  MHz

•Internal RC Oscillators 
32 kHz +16 MHz

•PLL

•Clock Control

•RTC/AWU

•SysTick Timer

•2x Watchdogs 
(independent and 
window)

•Interrupt capability 
I/Os

•Cyclic redundancy 
check (CRC)

STM32F405VGT6

Figure 3.13 General features of the STM32F405VGT6 chip by STM. 
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The ST-LINK/V2 is an in-circuit debugger and programmer for the STM8 and STM32 

microcontrollers. The single-wire interface module (SWIM) and JTAG/serial wire 

debugging (SWD) interfaces are used to communicate with any STM8 or STM32 

microcontroller located on an application board. In addition to providing the same 

functionalities as the ST-LINK/V2, the ST-LINK/V2-ISOL features digital isolation 

between the PC and the target application board. It also withstands voltages of up to 

1000 𝑣𝑟𝑚𝑠. [36] 

 

Figure 3.14 ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32 

 

STM32F405VG with LQFP100 sheath structure shown in Figure 63 operates with 

3.3V voltage. In addition, programming and debugging can be done via SWD or JTAG 

interface with ST Microelectronics' ST-LINK programming and debug tool.  

 

Figure 3.15 Serial communication debugger interface circuit 
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Data, clock and reset pins of the SWD interface are taken out through the Header 7 

connector in order to be able to connect with the microcontroller via the ST-LINK 

programming tool. In addition, two USART connections on the same connector have 

been added in order to transfer and monitor various data of the microcontroller through 

the serial port channel during operation. 

In addition to them, the clock signals required for the operation of the microcontroller 

have been provided with an external crystal to have higher accuracy despite the 

presence of a built-in RC oscillator. In figure (3.16) an external crystal frequency is 

chosen as 25MHz and this frequency has been increased up to 144MHz in the 

microcontroller. Although the maximum operating frequency is 168 MHz, the 

operating frequency is limited to 144 MHz in order for the TFT LCD display to work 

properly. 

 

 

Figure 3.16 External Oscillator circuit 

 

3.7 Human Hardware Interface Design 

A TFT LCD has been added to show the measurement data on the hardware, three 

LEDs to indicate the operating conditions and three buttons to allow the user to switch 

between the operating screen pages and reset. 
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As a TFT LCD screen, an ILI9328 internal driver module of ILITEK company, with a 

screen size of 3.2” and a resolution of 320x240 pixels, was preferred. The presence of 

internal SRAM on the driver allows the microcontroller to be driven with the FSMC 

memory controller. 

 

 

 

Figure 3.17 Human Hardware Interface TFT-LCD Front view 

 

 

Figure 3.18 Human Hardware Interface TFT-LCD Rear view 

 

The wiring diagram of the TFT LCD module used with the microcontroller is as in 

Figure (3.13). The TFT LCD screen has been driven in 16-bit RGB565 format. Read, 

write, select or reset signals are automatically generated by the FSMC memory control 

unit in the microcontroller. The brightness of the backlight, which is fed with 5V DC 
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voltage, can be adjusted by PWM signals applied to the control pin. The schematic of 

HY32D shown in Appendix C. 

 

 

Figure 3.19 Header wiring diagram for connection between TFT-LCD and MCU 

 

The connection of the LED diodes used to show the operating states is as follows. In 

Figure (3.20), LED1 shows the power status of the device. It turns on as soon as energy 

comes to the CPU input. LED2 lights when the central processing unit (CPU) is 

processing a message in the main task function. Depending on the burning state of this 

LED, the intensity of the microcontroller's working state can be observed. LED3 

shows the communication status. It actively turns on when there is a query on the 

device via Modbus.  

In Figure (3.21), The first two of the buttons are effectively used to switch between 

working screens. The first button is used to go to the previous pages, and the second 

button to switch to the next working screen. The last button is designed for the reset 

CPU. If it needs to be reset this can be used for that purpose. 
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Figure 3.20 LED Indicators 

 

 

Figure 3.21 Human PCB Interface buttons 
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3.8 Communication Hardware 

 

Figure 3.22: RS-485 Interface circuit with the MCU 

 

Both RS485 connection Figure (3.22) and Bluetooth connection Figure (3.23) have 

been added on the hardware to enable the microcontroller to communicate. The 

USART3 unit of the microcontroller is used for both communications. If desired, serial 

communication can be provided via RS485 or Bluetooth. Wireless data transfer was 

realized over the virtual serial port that will be provided with the connection made over 

Bluetooth. 

 

Figure 3.23 Bluetooth Serial Interface with the MCU 
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The Bluetooth module used is a satellite mode Bluetooth module with HC-06 code. It 

provides a wireless data transfer with USART with the serial port protocol (SPP) it 

hosts. Since it can operate in satellite mode, the party that is the main unit must initiate 

the connection. After the connection is made positive, data transfer will be possible 

over the virtual serial ports that will be formed. 

 

 

Figure 3.24 Preferred Bluetooth Module (HC-06) 

 

In addition to RS485 and Bluetooth, a USB 2.0 mini-USB connection port has been 

added on the hardware. If desired, communication with the microcontroller can be 

provided through this port. 

 

Figure 3.25 USB Full-speed Interface Circuit 
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3.9 Designed PCB  

 

Figure 3.26 Designed PCB, Board Layer Stack Front view v.0.2 

 

 

Figure 3.27 Designed PCB, Board Layer Stack Rear view v.0.2 
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Figure 3.28 Designed PCB, 3D Front view v.0.2 

 

 

Figure 3.29 Designed PCB, 3D Front view v.0.2
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CHAPTER IV 

 

SOFTWARE DESIGN FOR INDUSTRIAL ANALYZER 

 

4.1 Message Queue Based Operating System 

As we will remember from the queue data structures, it is a linear data storage 

structure. We can make this subject concrete with a simple example. We wanted to 

withdraw money from a cash machine and when we went to the front of the cash 

dispenser, we saw that there was a long line in front of the cash dispenser. How does 

this queue or queue work? The tail has a head so there is a person pulling money from 

the cash machine at that moment, and he's probably the first to enter the queue. Those 

who come after him are lined up behind him, and after the head of the queue has done 

his job at the cash machine, he leaves the queue, and the person behind him goes to 

the queue. This process is repeated continuously until there is no one left in the queue. 

Queuing usage in RTOS is similar. In this example, people in the queue are data or 

messages in RTOS. They do certain operations by reading these data in order of tasks 

and tasks can be blocked when the queue is empty. The beauty of using the tail also 

starts here. When a data comes to the queue, the desired task can be activated. 

 

 

Figure 4.1 Message Queue Structure 
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A queue can hold fixed size variables (8 bits, 16 bits, etc.). The maximum number of 

these variables in the queue is called "length". These two parameters are defined when 

the queue is first created. Queues often use a FIFO (First in First Out) buffer. In other 

words, the first data written to the queue is read first. When writing data to the queue, 

it is usually appended at the end, when data is read from the beginning of the queue. 

 The queue is an object in their own right. It can be accessed from any task or ISR 

(Interrupt Service Routine). More than one task can write data to the queue and read 

data from the same queue. Typically, it is more common to write data to multiple flood 

queues than to read data from multiple flood queues. Tasks can be blocked with the 

queue. If there is no data in the queue, the task can be blocked until the data is in the 

queue. This blocking can be done until the data comes to the queue or optionally for a 

certain period of time. In other words, if the task waits for data to come to the queue 

for a certain period of time, and if there is no data within this period, it can continue 

its operations from where it left off. If there is more than one task that reads data from 

the queue, these tasks can be blocked at the same time, but the highest priority task 

gets the data in the queue first. If the priorities of the tasks waiting for data from the 

queue are equal, the longest waiting task will read the data from the queue. 

 

A task can also be blocked while writing data to the queue. If the queue is full, the task 

that writes data to the queue can be blocked until the data is deleted from the queue. 

Again, in this case, more than one task can be blocked while writing data to the queue. 

The highest priority task writes data to the queue when space is free. If the priorities 

are equal, the task that waits for the longest time to write data to the queue writes the 

data to the queue.  

 

The message structure to be defined in the software contains three pieces of data. These 

data are variables that hold the data about which task functions the messages concern, 

namely the target function, which message it contains and the message it carries. In 

the main loop, a system has been established that receives the messages transmitted to 

the message queue structure and transmits them to the relevant function. This 

mechanism receives, processes and deletes from the queue if there are any messages 

accumulated in the queue. Queuing structure has been established to keep maximum 

32 messages in memory. If it is insufficient, it can be enlarged, but it should not be 

forgotten that it means taking the system away from real time.  
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A message structure within this structure is as follows.  

 
typedef struct  

{  

eTasks_tTargetTask;  

uint16_tTargetTaskMessageID;  

uint16_tTargetTaskMessageData;  

}stMessage_t;  

 

The function that receives and processes the messages in the queue is as follows. 

 
for(;;)  

 {  

if(stMessageQueue.Counter)  

{  

KernelMessagePop();  

DoProcess();  

 }  

}  

The body of the main task functions that receive and process when a message is 

received is as follows.  

 
void TaskMain(stMessage_t *stMessage)  

{  

switch(stMessage->TargetTaskMessageID)  

  {  

case msgX:  

break;  

 case msgY:  

  break;  

 case msgZ:  

  break;  

 case msgT:  

  break;  

 }  

}  

Two task functions that fulfill the main operations and the parts related to the 

measurement are defined in the software. At any time of operation, a message can be 

sent to the desired task function. For example, when any of the buttons on the hardware 

is pressed, sending a message to the main task function (Main Task) can be done as 

follows. (All functions related to the structure established in the software are included 

in Appendix E.)  

 
KernelMessage_Push(eTaskMain, msgButtonPush, stButton->ButtonNo);  

 

Such structures have advantages over real-time operating system (RTOS) structures. 

There is a constant transition between task functions in RTOS systems. During this 
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transition, the variables belonging to each task function must be stored in its own 

memory areas. After each transition, the data in these memory areas are read and 

operations continue accordingly. Therefore, this is an important factor that consumes 

processing time. In addition, RTOS systems are structures that take a significant place 

in the memory of the microcontroller. For this reason, they do not work well on low 

performance platforms. 

Within the scope of this thesis, there is no continuous transition between functions in 

the message queue-based mini operating system. Only when a message is sent to a task 

function, the function is received. Therefore, there is no performance loss. It does not 

take up a significant amount of memory of the microcontroller. Therefore, it can be 

used in any system. It provides great convenience and flexibility during software 

development. It also improves readability in software. Therefore, the establishment of 

such a structure is stipulated within the scope of the thesis.  

 

4.2 TFT-LCD Graphical Library 

Nowadays, the use of LCD screens has increased due to the widespread use of graphic 

displays and the rapid increase of microcontrollers. Being aware of this situation, 

manufacturers also offer various graphic libraries to their users free of charge. In the 

software prepared within the scope of this thesis, emWin graphic library, which is 

offered free of charge by ST Microelectronics, was used. The emWin library is a very 

comprehensive tool produced by SEGGER. It can be used on many different 

microcontrollers. It also supports many different TFT LCD drivers, communication 

interfaces and picture formats. It also supports touch applications. In addition, the 

driverless TFT LCD displays have a structure that can be used very efficiently, whether 

using a real-time operating system or not. Therefore, companies such as ST and NXP 

offer this library free of charge. They have designer programs but general structure 

and graphics are similar. However, the library is not offered as open source. There are 

compiled library files for various platforms (Cortex M0, Cortex M3, Cortex M4, 

Cortex M7 etc.). It has been included in projects developed using the C / C ++ language 

and made available. 
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Figure 4.2 AppWizard by SEGGER and GUI Builder by NXP 

 

In addition to these, the emWin tool also includes a Windows program called GUI 

Builder to design ready-made windows and generate C / C ++ codes, a font file 

conversion tool to use fonts installed on Windows in projects, and converter programs 

that can convert image files to C / C ++ sequences. In these little tools, emWin has 

made the graphics library very useful and common.  

 

 

Figure 4.3 emWin Bitmap Converter tool by SEGER. 



75 
 

4.3 Effective Value Calculation of Voltage and Current in Discrete Time 

In the first part, the Equation (4.1) regarding the effective value calculation in 

continuous time was obtained. In this section, numerically effective value calculation 

will be made by the microcontroller with the Equation (4.2). 

𝑉𝑟𝑚𝑠 = √
1

𝑇
⋅ ∫ 𝑣(𝑡)2 ⋅ ⅆ𝑡

𝑇

0
      (4. 1) 

𝑉𝑟𝑚𝑠 = √
1

𝑁
⋅ ∑ 𝑣𝑖

2𝑁

𝑖=0
       (4. 2) 

 

We can calculate the effective value by taking the square root of the average of the 

sum of the squares of the samples taken from the voltage signal, as can be understood 

from the expression in Equation (4.2).  

The DMA is an AMBA advanced high-performance bus (AHB) module that features 

three AHB ports: a slave port for DMA programming and two master ports (peripheral 

and memory ports) that allow the DMA to initiate data transfers between different 

slave modules. The DMA allows data transfers to take place in the background, 

without the intervention of the Cortex-Mx processor. During this operation, the main 

processor can execute other tasks and it is only interrupted when a whole data block is 

available for processing. Large amounts of data can be transferred with no major 

impact on the system performance. The DMA is mainly used to implement central data 

buffer storage (usually in the system SRAM) for different peripheral modules. This 

solution is less expensive in terms of silicon and power consumption compared to a 

distributed solution where each peripheral needs to implement its own local data 

storage. Thanks to the Direct Memory Address (DMA) inside the microcontroller, the 

samples taken in order are designed to generate interrupts after they are written to the 

specified addresses. The analog to digital converter unit (ADC) was periodically 

triggered by the timer (TIMER) unit, and the sampling process was performed. 

Following the sample taken from the voltage channel, the current channel is sampled 

and then the results are transferred to the relevant variables by the DMA unit. Thus, it 

provides periodic sampling from voltage and current. The sampling period is set to 

take 128 samples per period. It is 156.25 μs for 50Hz network frequency. However, as 

it is explained in the second section, since this time is adjusted synchronously to the 

PLL output, in case of a frequency change, this time is adjusted dynamically. [17] 
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Figure 4.4 STM-32F405 DMA Structure 

 

 

Figure 4.5 CPU and DMA1 request an access to SRAM1 
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Figure 4.6 Peripheral-to-memory transfer states 

 

 

Figure 4.7 Memory-to-peripheral transfer states 
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Figure 4.8 Timing diagram for sampling 

 

Below is the cut sub-function for transferring raw values to the sequences where 

samples are stored in DMA interrupt. When the number of samples to be taken was 

completed, a message was sent to the task function related to measurement that 

samples were taken. 

 

 

void DMA2_Stream0_IRQHandler(void)  

 {  

 if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0))  

  {  

DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);  

 

stTaskMeas.SampleBuffer[0][stTaskMeas.SampleIndex] = 

InstantRawValues[0];  

stTaskMeas.SampleBuffer[1][stTaskMeas.SampleIndex] = 

InstantRawValues[1];  

 

if(++stTaskMeas.SampleIndex == TOTAL_SAMPLE_NUM)  

   {  

stTaskMeas.SampleIndex = 0;  

KernelMessagePush(eTaskMeas, msgSamplesCollected, 0);  

 }  

  }  

 } 

 

When the sampling is completed, the series in which the samples are kept are copied, 

as new samples will continue to be added to the original series. First of all, since the 

samples are taken offset, this shift amount must be subtracted from the sample values. 

This process was applied in two strings containing both voltage and current samples. 

DMA Interrupt 

Current Sampling 

Voltage Sampling 
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arm_mean_q15((int16_t *)stTaskMeas.CopyBuffer[0], TOTAL_SAMPLE_NUM, 

(int16_t *)&stTaskMeas.AverageVal[0]);  

arm_mean_q15((int16_t *)stTaskMeas.CopyBuffer[1], TOTAL_SAMPLE_NUM, 

(int16_t *)&stTaskMeas.AverageVal[1]);  

 

for(int i = 0; i < TOTAL_SAMPLE_NUM; i++)  

{  

 stTaskMeas.CopyBuffer[0][i] -= stTaskMeas.AverageVal[0];  

 stTaskMeas.CopyBuffer[1][i] -= stTaskMeas.AverageVal[1];  

} 

 

As the next step, the sum of the squares of the samples was transferred to the relevant 

variables, and then the raw effective value was obtained by taking the square root. 

After this step, the values obtained will be passed through the average filter and the 

results with a smoother transition will be shown on the graphic screen.  

 

arm_power_q15(stTaskMeas.CopyBuffer[0],TOTAL_SAMPLE_NUM, 

&TotalSquare[0]);  

arm_power_q15(stTaskMeas.CopyBuffer[1],TOTAL_SAMPLE_NUM, 

&TotalSquare[1]);  

v = (uint16_t)sqrt((double)TotalSquare[0] / (TOTAL_SAMPLE_NUM));  

i = (uint16_t)sqrt((double)TotalSquare[1] / (TOTAL_SAMPLE_NUM));  

 

 

4.4 Harmonics and Fast Fourier Transform (FFT) Analysis 

Non-linear loads cause harmonic currents to be drawn from the network. Both network 

voltage and current can be harmonic [33]. Sine and cosine components at different 

frequencies in a harmonic system can be calculated with the help of Fourier analysis. 

According to Fourier analysis, a periodic signal can be expressed as the sum of sine 

and cosine components whose frequencies are exactly multiple of each other. 

 

𝑖(𝑡) = 𝑖0 + 𝑎1 ⋅ cos(𝜔𝑡) + 𝑎2 ⋅ cos(2𝜔𝑡) + ⋯ + 𝑎𝑛 ⋅ cos(𝑛 ⋅ 𝜔𝑡) + 𝑏1 ⋅

sin(𝜔𝑡) + 𝑏2 ⋅ sin(2𝜔𝑡) + ⋯ + 𝑏𝑛 ⋅ sin(𝑛 ⋅ 𝜔𝑡)   (4. 3) 

𝑖(𝑡) = 𝑖0 + ∑ [𝐴𝑛 ⋅ cos(𝑛 ⋅ 𝜔𝑡) + 𝐵𝑛 ⋅ sin(𝑛 ⋅ 𝜔𝑡)]∞
𝑛=1    (4. 4) 

 

In a harmonic system, if there is no dc component, the value of becomes zero [33]. If 

the signal has a single function symmetry Equation (4.5), the cosine components will 

not be found [33]. 
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𝑖(𝜔𝑡) = −𝑖(−𝜔𝑡)       (4. 5) 

 

If the signal has a double function symmetry Equation (4.6), there will be no sine 

components [33]. 

 

𝑖(𝜔𝑡) = 𝑖(−𝜔𝑡)       (4. 6) 

 

If the signal has half-wave symmetry Equation (4.7), there will be no even numbered 

components [33]. 

 

𝑖(𝜔𝑡) = −𝑖(𝜔𝑡 + 𝜋)       (4. 7) 

 

In Fourier analysis, the DC component Equation (4.8), 𝐴𝑛 and 𝐵𝑛 coefficients can also 

be calculated using Equation (4.9) and Equation (4.10) [33]. 

 

𝑖0 =
1

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
       (4. 8) 

 𝐴𝑛 =
2

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ 𝑐𝑜𝑠(𝑛 ⋅ 𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
                           (4. 9) 

𝐵𝑛 =
2

𝑇
⋅ ∫ 𝑖(𝜔𝑡) ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡) ⋅ ⅆ𝜔𝑡

𝑇

0
                  (4. 10) 

 

Using the coefficients 𝐴𝑛 and 𝐵𝑛, the effective value of the relevant harmonic 

component and the phase difference of the harmonic component can be found as 

follows [34]. 

 

𝑎𝑛 ⋅ 𝑐𝑜𝑠(𝑛 ⋅ 𝜔𝑡) + 𝑏𝑛 ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡) = 𝐼𝑛 ⋅ 𝑠𝑖𝑛(𝑛 ⋅ 𝜔𝑡 + 𝜑𝑛)      (4. 11) 

𝐼𝑛 = √𝐴𝑛
2 + 𝐵𝑛

2      (4. 12) 

𝜑𝑛 = arctan
𝑎𝑛

𝑏𝑛
       (4. 13) 

 

The effective values of harmonics can be calculated by Equation (4.12) and phase 

angles of harmonics can be calculated by Equation (4.13). Effective value including 

all harmonics can be calculated with Equation (4.14). 
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𝐼 = √𝐼1
2 + 𝐼2

2 + 𝐼3
2 + ⋯ + 𝐼𝑛

2      (4. 14) 

 

With the help of Fourier analysis, we can examine current harmonics on MATLAB as 

follows. 

 

clear all  
clc  

  
f = 50;  
T = 1/f;  
w = 2*pi*f;  
Fs = 6400;  
Ts = 1/Fs;  
L = Fs/f;  
t = (0:L-1)*Ts;  

  
N = 35  
I_rms = 0;  
i = 25*sqrt(2)*sin(w*t)+4*sqrt(2)*sin(4*w*t)+2*sqrt(2)*sin(10*w*t);  

  
An = zeros(1,N);  
Bn = zeros(1,N);  
Cn = zeros(1,N);  
for j=1:length(i)  
for n = 1 : N  
 An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));  
 Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));  
 Cn(n) = sqrt( An(n)^2 + Bn(n)^2 )/sqrt(2);  
 end  
I_rms = I_rms + i(j)^2;  
 end  
I_rms = sqrt(I_rms / L);  
I1_rms = Cn(1);  
THDI = sqrt( I_rms^2 - I1_rms^2 ) / I1_rms;  

  
subplot(2,1,1);  
bar(Cn); grid; axis tight; ylabel('Harmonic Analyze'); 

xlabel('Harmonic No');  
subplot(2,1,2);  
plot(t,i); grid; axis tight; xlabel('time');  
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Figure 4.9 Effective values of the Current Harmonics 

 

4.5 The Calculation of Phase Angle [cos(𝝋)] 

After calculating the effective values of voltage and current, the next step will be 

cos(φ) calculation. For this, first the phase angles of the main harmonic component of 

the voltage signal and the main harmonic component of the current signal must be 

calculated [34]. 

 

𝜑 = 𝜑𝑣 − 𝜑𝑖       (4. 15) 

The values of 𝜑𝑣  and 𝜑𝑖 can be calculated with the help of 𝐴𝑛 and 𝐵𝑛coefficients 

obtained with the help of Fourier analysis as explained in the previous section. 

 

𝜑1_𝑣 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎1_𝑣

𝑏1_𝑣
      (4. 16) 

𝜑1_𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑎1_𝑖

𝑏1_𝑖
      (4. 17) 

In this case;  

cos(𝜑) = cos(𝜑1) = cos (𝜑1_𝑣 − 𝜑1_𝑖)    (4. 18) 
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will be calculated as in Equation (4.18).  

The cos(𝜑) value of a voltage and current signal in Figure (4.10), without harmonics 

and with a phase difference of 20° can be calculated as follows in MATLAB 

environment. 

 

clear all  
clc  
f = 50;  
T = 1 / f;  
Fs = 6400;  
Ts = 1/Fs;  
Ls = Fs/f;  
t = (0:Ls-1)*Ts;  
w = 2*pi*f;  
N = 1;  
v = 120 * sin(w*t);  
i = 15 * sin(w*t - (pi/9));  

  
y1=v; 
subplot(1,1,1); 
plot(t,v); grid; axis tight; xlabel('time');  
hold on 
y2=i; 
plot(t,i); grid; axis tight; xlabel('time'); 
hold off 

 

 

Figure 4.10 Voltage and current signal to be calculated phase difference 
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clear all  
clc  
f = 50;  
T = 1 / f;  
Fs = 6400;  
Ts = 1/Fs;  
Ls = Fs/f;  
t = (0:Ls-1)*Ts;  
w = 2*pi*f;  
N = 1;  
v = 120 * sin(w*t);  
i = 15 * sin(w*t - (pi/9));  
An = zeros(1,N);  
Bn = zeros(1,N);  
for j=1:length(v)  
for n = 1 : N  
An(n) = An(n) + (2/T)* Ts * v(j) * cos(n*w*(Ts*(j-1)));  
Bn(n) = Bn(n) + (2/T)* Ts * v(j) * sin(n*w*(Ts*(j-1)));  
end  
end  
Phi_V = atand(An(1)/Bn(1));  
An = zeros(1,N);  
Bn = zeros(1,N);  
for j=1:length(i)  
for n = 1 : N  
An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));  
Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));  
end  
end  

  
Phi_I = atand(An(1)/Bn(1));  
Phi = Phi_V - Phi_I;  
CosPhi = cosd(Phi);  

  
fprintf('Phi_V = %g\n', Phi_V);  
fprintf('Phi_I = %g\n', Phi_I);  
fprintf('CosPhi = %g\n',CosPhi);  
fprintf('Phi = %g\n',Phi);   

 

 

 

Figure 4.11 MATLAB output of Cos φ calculation for a harmonic-free system 

 

For a voltage and current signal whose current signal is harmonic and whose 

fundamental component is 30° phase different Figure (4.12), cos(𝜑) calculation will 

be as follows. 
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Figure 4.12 Voltage and harmonic current signal to be calculated phase difference 

 

v = 80 * sin(w*t); 
i = 20 * sin(w*t - (pi/6)) + 5 * sin(7*w*t);  

 

 

 

Figure 4.13 MATLAB output of cos(𝜑) calculation for a harmonic system 

 

The part that performs the above operations in the software is given in Appendix F. 

 

4.6 The Calculation of Power Factor (PF) 

After calculating the phase angle, the next step will be to calculate the power factor. 

Since vrms = v1_rms and irms = i1_rms expressions are valid in a system without 

harmonics, cos(𝜑) and power factor value are equal.  

𝑃𝐹 =
𝑣1_𝑟𝑚𝑠

𝑣𝑟𝑚𝑠
⋅

𝑖1_𝑟𝑚𝑠

𝑖𝑟𝑚𝑠
⋅ cos(𝜑)      (4. 19) 
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𝑃𝐹 = 𝐾𝑣 ⋅ 𝐾𝑖 ⋅ cos(𝜑)      (4. 20) 

 

In a network whose voltage is generally accepted as non-harmonic, the power factor 

can be defined by Equation (4.21). 

𝑃𝐹 =
𝑖1_𝑟𝑚𝑠

𝑖𝑟𝑚𝑠
⋅ cos(𝜑)      (4. 21) 

 

The total harmonic distortion (THD) value for the current in a harmonic system is 

defined by the Equation (4.22). 

𝑇𝐻𝐷𝐼 =
√𝐼2

2+𝐼3
2+𝐼4

2…+𝐼𝑛
2

𝐼1
      (4. 22) 

 

If the network voltage is non-harmonic, it can be written as Equation (4.23) depending 

on the value of the power factor (𝑇𝐻𝐷𝐼). 

𝑃𝐹 =
1

√1+𝑇𝐻𝐷𝐼 
2

⋅ cos(𝜑)     (4. 23) 

 

In the software, voltage and current harmonics will be calculated with the help of 

Fourier analysis and the power factor will be calculated using the obtained THD value 

and cos(𝜑). These steps can be performed on MATLAB as follows. 

 

clear all  
clc  
f = 50;  
T = 1 / f;  
Fs = 6400;  
Ts = 1/Fs;  
Ls = Fs/f;  
t = (0:Ls-1)*Ts;  
w = 2*pi*f;  
N = 10;  

  
V_rms = 0;  
I_rms = 0;  

  
v = 75 * sin(w*t);  
i = 25 * sin(w*t - (pi/6)) + 7 * sin(5*w*t); 

  
An = zeros(1,N);  
Bn = zeros(1,N);  
Cn = zeros(1,N);  
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for j=1:length(v)  
 for n = 1 : N  
An(n) = An(n) + (2/T)* Ts * v(j) * cos(n*w*(Ts*(j-1)));  
Bn(n) = Bn(n) + (2/T)* Ts * v(j) * sin(n*w*(Ts*(j-1)));  
Cn(n) = sqrt( An(n)^2 + Bn(n)^2 )/sqrt(2);  
 end  

  
V_rms = V_rms + v(j)^2;  
 end  

  
Phi_V = atand(An(1)/Bn(1));  
V_rms = sqrt(V_rms / length(i));  
Kv = Cn(1)/V_rms;  

  
An = zeros(1,N);  
Bn = zeros(1,N);  
Cn = zeros(1,N);  

  
for j=1:length(i)  
 for n = 1 : N  
An(n) = An(n) + (2/T)* Ts * i(j) * cos(n*w*(Ts*(j-1)));  
Bn(n) = Bn(n) + (2/T)* Ts * i(j) * sin(n*w*(Ts*(j-1)));  
Cn(n) = sqrt( An(n)^2 + Bn(n)^2 )/sqrt(2);  
 end  
I_rms = I_rms + i(j)^2;  
 end  

  
Phi_I = atand(An(1)/Bn(1));  
I_rms = sqrt(I_rms / length(i));  
Ki = Cn(1)/I_rms;  

  
Phi = Phi_V - Phi_I;  
CosPhi = cosd(Phi);  
PF = Kv * Ki * CosPhi;  

  
fprintf('CosPhi = %g\n', CosPhi);  
fprintf('PowerFactor = %g\n', PF);  
fprintf('Kv = %g, Ki = %g\n', Kv, Ki); 

 

 

 
Figure 4.14 Power factor calculation on MATLAB for a harmonic system 

 

The part that performs the above operations in the software is given in Appendix G. 
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4.7 Power and Energy Calculation 

After completing the effective values of voltage and current values, cos(𝜑) and power 

factor calculations, the next step is to make power and energy calculations. Apparent 

power, active power and reactive power are calculated in the software as follows. 

 

S = stTaskMeas.Voltage * stTaskMeas.Current;  

P = S * stTaskMeas.CosPhi;  

Q = S * stTaskMeas.SinPhi;  

 

In the energy calculation, the direction of the energy flow can be from the network to 

the load or from the load to the network, depending on the positive and negative phase 

angle. If the phase angle is positive, the energy flow is defined as from the network to 

the load (Import), and if it is negative, it is defined as the direction of production 

(Export). In addition, it will be taken into account as inductive or capacitive reactive 

power, depending on whether the reactive power is positive or negative along with the 

energy flow direction. 

 

 

 

 

 

  

P (-) 

Q (+) 

cos 𝜑 (-) 

P (+) 

Q (+) 

cos 𝜑 (+) P 

Q 

P (-) 

Q (-) 

cos 𝜑 (-) 

P (+) 

Q (-) 

cos 𝜑 (+) 

Figure 4.15 State of powers according to the sign of the phase angle 
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▪ In the first region, active power and reactive power are positive since cos(𝜑) 

and sin(𝜑) are positive. 

▪ In the second region, active power is negative and reactive power is positive 

since cos(𝜑) is negative and sin(𝜑) is positive. 

▪ In the third region, active power and reactive power is negative since cos(𝜑) 

and sin(𝜑) is negative. 

▪ In the fourth region, active power is positive and reactive power is negative 

since cos(𝜑) is positive and sin(𝜑) is negative. 

 

The right side of the Q-axis is the import direction for the energy flow direction, and 

the left side is the export direction. In terms of reactive power, the above part of the   

P-axis is inductive and the below part is capacitive.  

 

The electrical energy value is generally expressed as in Equation (4.24) and Equation 

(4.25). Its unit is watt-second. In energy systems, it is generally used as watt-hour (Wh) 

or kilowatt-hour (kWh). In the software, energy values are obtained by collecting 

cumulatively according to the state of power values and calculated according to kWh 

unit. 

 

𝐸𝑝 = 𝑃 ⋅ 𝑡        (4. 24) 

𝐸𝑞 = 𝑄 ⋅ 𝑡       (4. 25) 

  

Figure 4.16 State of powers according to the sign of the phase angle 
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if(stTaskMeas.CosPhi >= 0)  

{  

stTaskMeas.PowerDirection = IMPORT;  

stTaskMeas.stEnergiesImport.ActiveEnergy += ((0.16 * P) / 3600);  

 

if(Q >= 0)  

 {  

stTaskMeas.stEnergiesImport.InductiveReactiveEnergy += ((0.16 * Q)  

/ 3600);  

 }  

else  

{  

stTaskMeas.stEnergiesImport.CapacitiveReactiveEnergy += ((0.16 * -  

Q) / 3600);  

}  

}  

else  

 {  

stTaskMeas.PowerDirection = EXPORT;  

 

stTaskMeas.stEnergiesExport.ActiveEnergy += ((0.16 * -P) / 3600);  

 

if(Q >= 0)  

  {  

stTaskMeas.stEnergiesExport.InductiveReactiveEnergy += ((0.16 * Q)  

/ 3600);  

 }  

else  

  {  

stTaskMeas.stEnergiesExport.CapacitiveReactiveEnergy += ((0.16 * -  

Q) / 3600);  

}  

 

 

Since the sampling process in the software is based on 8 period sampling as 128 

samples per period, the calculations are made over 1024 samples. Therefore, since 

1024 samples were taken at 160ms intervals, the energy values were calculated by 

taking the calculated power values during this time as a reference.  
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CHAPTER V 

 

HARDWARE REALIZATION AND MEASUREMENT RESULTS 

 

5.1 Working Screens 

9 operating screens are designed for the graphic display on the hardware. Measurement 

results can be followed through these screens. Apart from this, it will also be possible 

to read the measurement results via Modbus communication. Address maps for 

Modbus communication are available in Appendix H. 

 

 

 
 

Figure 5.1 Voltage, Current, frequency, Cos φ and PF analyze screen without the 

load 
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Figure 5.2 Active, Reactive and Apparent Power Analyze Screen without the load 

 

 

Figure 5.3 Imported Active, Inductive and Reactive Energy Analyze Screen without 

the load 
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Figure 5.4 Exported Active, Inductive and Reactive Energy Analyze Screen without 

the load 

 

 

Figure 5.5 Voltage Harmonical Spectrum Graphical Analyze Screen without the 

load 
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Figure 5.6 Voltage Harmonic Ratios Analyzed Values without the load 

 

 

Figure 5.7 Current Harmonical Spectrum Graphical Analyze Screen without the load 

 

 

Figure 5.8 Current Harmonic Ratios Analyzed Values without the load 
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Figure 5.9 Total Harmonic Distortion on the Voltage and Current Analyze Screen 

without the load 

 

 

Figure 5.10 Voltage, Current, frequency, Cos φ and PF analyze screen on the load 

 

 

Figure 5.11 Active, Reactive and Apparent Power Analyze Screen on the load 
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Figure 5.12 Imported Active, Inductive and Reactive Energy Analyze Screen on the 

load 

 

 

Figure 5.13 Exported Active, Inductive and Reactive Energy Analyze Screen on the 

load 

 

 

Figure 5.14 Voltage Harmonical Spectrum Graphical Analyze Screen on the load 
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Figure 5.15 Voltage Harmonic Ratios Analyzed Values on the load 

 

 

Figure 5.16 Current Harmonical Spectrum Graphical Analyze Screen on the load 

 

 

Figure 5.17 Current Harmonic Ratios Analyzed Values on the load 
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Figure 5.18 Total Harmonic Distortions on the Voltage and Current Analyze Screen 

on the load 

 

5.2 The Effect of Sampling Frequency on the Measurements 

In this section, sampling at different sampling frequencies was used and a comparison 

was made between the measurement results and the reference measuring instrument. 

V * is the value read from the multimeter, V is the value measured by us on the graphic 

display. 

 

Table 5.1 Experiment results with the different sampling frequency 

Fs N V*(V) V(V) I(A) Voltage Error (%) 

12,8 kHz 256 227,5 226,25 8,605 0,549 

6,4 kHz 128 225,3 224,22 8,683 0,479 

3,2 kHz 64 226,3 225,38 8,638 0,406 

1,6 kHz 32 226,8 225,74 8,624 0,467 

 

5.3 The Effect of Analog Digital Converter Resolution on Measurements 

In this section, the measurement results of various resolutions are compared by 

changing the resolution of the microcontroller to analog digital converter. V * is the 

value read from the multimeter and V indicates the values measured by us on the 

graphic display. 
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Table 5.2 Experiment results with the different resolutions of ADC 

Resolution V*(V) V(V) Error Rate (%) 

12-bits 221,12 220,40 0,325 

10-bits 224,56 222,15 1,073 

8-bits 223,59 216,43 3,202 

6-bits 227,47 210,65 7,39 

 

 

 

Figure 5.19 Voltage and Current Graphs when the ADC has 6-bits resolution 

 

 

Figure 5.20 Voltage and Current Graphs when the ADC has 8-bits resolution 
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Figure 5.21 Voltage and Current Graphs when the ADC has 10-bits resolution 

 

 

 

Figure 5.22 Voltage and Current Graphs when the ADC has 12-bits resolution 

 

5.4 The Effect of Total Number of Samples on Measurements 

In this section, the total number of samples taken was kept at various values and the 

calculated measurement results were compared. The number of samples taken in a 
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period was kept as 128, and the measurement period was changed to 1, 2, 3, 4, 5, 6, 7, 

8 and different values were obtained in the total number of samples. 

 

Table 5.3 Experiment results with the different samples of ADC 

Number of 

Samples (N) 
Period (T) V*(V) V(V) 

Error Rate 

(%) 

128 1 227,33 226,68 0,285 

256 2 227,69 226,61 0,474 

384 3 227,27 226,14 0,497 

512 4 227,29 225,83 0,642 

640 5 226,92 224,61 1,017 

768 6 227,18 225,87 0,576 

896 7 226,74 225,53 0,533 

1024 8 226,42 225,44 0,432 

5.5 Other Factors That Effective on The Results 

It’s proved that various factors directly affect the measurement quality. Temperature 

changes of electronic components used are one in all the important factors. thanks to 

the optimal working environment of the components are different, so as to attenuate 

the negative impact of this case, the materials used is preferred with higher sensitivity 

and lower temperature coefficient. Also, the field effect sensor utilized in the current 

input is tormented by the external magnetic field. To avoid negative effect of this case, 

it's going to be possible to produce magnetic isolation of the area where the sensor is 

located on the hardware or standard transformer like rated 250/5A is also accustomed 

get far better results with the high precision.  However, a current transformer requires 

much space. Besides, sensitivity of the operational amplifiers utilized in voltage and 

current inputs is critical. a low precision operational amplifier will cause irrelevant 

results, especially when making measurements too close to zero. To avoid this case, 

choosing a high quality and high precision operational amplifier will influence 

positively affect the results.  Additionally, chosen MCU is vital.  If a microcontroller 

with high performance and decimal processing capability isn't preferred, it'll influence 

negatively the results in order that it'll cause loss of sensitivity during the mathematical 

operations.  
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In addition to that, low-battery voltage also will affect negatively the calculations. For 

the remainder, the second revolution of PCB also generated and everyone necessary 

revisions are upgraded. thanks to its open source, you'll be able to modify the PCB 

software as you desire. The software is sort of the identical but the screenshotted PCB 

can be modified. 
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CHAPTER VI 

 

MODBUS COMMUNICATION 

 

6.1 Modbus Communication 

There are a number of agreements designed for RS-232 or RS-485 communications 

that are still very much in place in automated systems. Modbus is probably the most 

well-known and widely accepted, and is described here as a typical example. The 

Modbus serial communications protocol is a standard designed to integrate PLCs, 

computers, terminals, sensors and actuators. Modbus is a master / slave system which 

means that one device, the master node, controls all serial functions by selecting slave 

resources. Modbus supports one main device and up to 247 slave devices. Each device 

is assigned a unique node address. There are two Modbus variants: ASCII and RTU. 

ASCII mode uses 'printable' message format. ASCII messages start with a colon and 

end with a cart return. [24] 

 

RTU mode uses binary so it is not 'printable'. Eight-character characters are sent as a 

continuous explosion and the end of the message is defined by 3.5 times silent periods. 

RTU mode messages use half of the letters of the same ASCII message. Only a 

professional who starts work. The master is usually the PC in charge or HMI device 

because most Modicon PLCs are addictive and cannot execute Modbus function (new 

Quantum PLCs can function as Modbus masters). Usually, the householder will read 

or write letters to the slave. In each case, the slave will return a reply to the message. 

With the learning function, the response will handle the requested data. For a writing 

task, feedback is used to ensure acceptance of the writing instruction. A special case 

is the ‘broadcast’ function where the writing function can be directed to all slaves. In 

this case, no reply is coming. The 8-bit address field is the first part of the message (1 

RTU byte, or 2 ASCII characters). This field indicates the local address of the slave 

who should respond to the message; all the slaves get the message but only the slave 

in question will act on it. The job code field tells the slave written what work to do.
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Modbus performance codes are specifically designed to communicate with PLC in 

Modbus industrial communication system. Two error checkers are added at the end of 

each message: ASCII mode uses longitudinal multiplication test (LRC), and RTU 

mode uses 16-bit CRC test. In the examples in Table 6.1 and Table 6.2, the home PC 

starts a three-frame study application starting with # 1.08 from call address 06. The 

initial catch register is 40108 but '4 'has been released in a series of messages. and the 

entire register address is 'one bit' (0108 becomes 0107, 0107 is entered 006B in 

hexadecimal). The answer repeats the address and code of operation, but includes the 

values read in the drive.  

There are four types of types in Modbus communication. 

• Coil 

• Discrete Login 

• Holding Registration 

• Login Registration 

Parameter types are in bit or 16-bit formats. Bit parameter type and only readable type 

parameter is called "Discrete Input", and the type that can be read and written is called 

"Coil". Parameters of 16bit type and readable only type are named as "Input Register", 

and those that can be both read and written are called "Holding Register" [24]. The 

parameter list for the designed hardware is given in Appendix H. All parameters are 

defined in read-only Input Register type. The basic data type is defined as 16-bit, 32-

bit parameters, two 16-bit parameters in sequence. 
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Table 6.1 Query 

Field Name RTU (hex) ASCII Characters 

Header None : (colon) 

Slave Address 06 0 6 

Function 03 0 3 

Starting address High 00 0 0 

Starting address Low 6B 6 B 

No. of registers High 00 0 0 

No. of registers Low 03 0 3 

Error check CRC(2-bytes) LRC (2 chars) 

Trailer None CRLF 

Total Bytes 8 17 

CRLF: Carriage Return Line Feed  

 

Table 6.2 Response 

Field Name RTU (hex) ASCII Characters 

Header None : (colon) 

Slave Address 06 0 6 

Function 03 0 3 

Byte count 06 0 6 

Data High 02 0 0 

Data Low 2B 2 B 

Data High 00 0 0 

Data Low 00 0 0 

Data High 00 0 0 

Data Low 63 6 3 

Error check CRC(2-bytes) LRC (2 chars) 

Trailer None None 

Total Bytes 11 23 
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CHAPTER VII 

 

CONCLUSION AND FUTURE WORKS 

 

 

Within the scope of this thesis, an embedded system has been developed so as to make 

numerical measurements in electrical grid systems and therefore the factors which will 

affect the measurement are investigated by making experiments on various systems 

supported IEEE 1459-2010 Standards [1].  

 

It’s been proved that some factors directly affect the measurements. The first thing is 

temperature changes of electronic components. In the operation progress, the active 

components switching sustainedly and during these operations they are warming. A 

good ventilating by the fan and heatsink with the thermal grease will prepare the 

equipment working on properly under hard environments.  And also, the optimal 

working environment of the components are different, so as to attenuate the negative 

impact of this case, the materials used is preferred with higher sensitivity and lower 

temperature coefficient. As the second, the field effect sensor utilized in the current 

input is tormented by the external magnetic field. To avoid negative effect of this case, 

it's going to be possible to produce magnetic isolation of the area where the sensor is 

located on the hardware. The third one is a compact current transformer that is rated 

100A/4mA is also accustomed get far better results with the high precision. However, 

a current transformer requires much space. But there are connection input terminals on 

the last PCB, so it can be connected to system externally. 

 

 Besides, sensitivity of the operational amplifiers utilized in voltage and current inputs 

is critical. A low precision operational amplifier will cause irrelevant results, 

especially when making measurements too close to zero. To avoid this case, choosing 

a high quality and high precision operational amplifier will influence positively affect 

the results. 
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Additionally, chosen MCU is vital. If a microcontroller with high performance and 

decimal processing capability isn't preferred, it'll influence negatively the results in 

order that it'll cause loss of sensitivity during the mathematical operations. For the 

remainder, the second revolution of PCB also generated and everyone necessary 

revisions are upgraded. thanks to its open source, you'll be able to modify the PCB 

software as you desire. The software is sort of the identical but the screenshotted PCB 

is modified. 

 

The sampling frequency of the selected microcontroller to be used in the designed 

digital measurement system, the resolution of the analog-digital converter, the 

sampling rate and the number of ADC channels that can operate simultaneously are 

sufficient, calculation can be performed without losing time in sampling.  

In addition, if the temperature dependence of the sensors and electronic materials used 

is calibrated with an external temperature measurement, an error-free measurement 

can be obtained. 

 

Another important factor is main supply voltage. Due to calculation reference voltage 

and component working voltage is important, even small changes affect the 

measurements. So, with the low DC voltage or high voltage has a critical role on the 

measurements. 

 

The last thing is measurements occurring on the grid, and it’s always rippling. So, the 

measurement results may change suddenly. With the taking more sample, it’ll be able 

to get much better results. 
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APPENDIX  

Appendix A: Simulating the PLL for Varying Conditions for Notch Filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%PLL Simulating for notch 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Select numeric type, let's choose Q21 
T=numerictype('WordLength',32,'FractionLength',21); 
%Specify math attributes to the fimath object 
F=fimath('RoundMode','floor','OverflowMode','wrap'); 
F.ProductMode='SpecifyPrecision'; 
F.ProductWordLength=32; 
F.ProductFractionLength=21; 
F.SumMode='SpecifyPrecision'; 
F.SumWordLength=32; 
F.SumFractionLength=21; 
%specify fipref object, to display warning in cases of overflow and 
%underflow 
P=fipref; 
P.LoggingMode='on'; 
P.NumericTypeDisplay='none'; 
P.FimathDisplay='none'; 
%PLL Modelling starts from here 
Fs=50000; %Sampling frequency = 50Khz 
GridFreq=50; %Nominal Grid Frequency in Hz 
Tfinal=0.2; %Time the simulation is run for = 0.5 seconds 
Ts=1/Fs; %Sampling Time = 1/Fs 
t=0:Ts:Tfinal; %Simulation Time vector 
wn=2*pi*GridFreq; %Nominal Grid Frequency in radians 
%generate input signal and create a fi object of it 
%input wave with a phase jump at the mid point of simulation 
% CASE 1 : Phase Jump at the Mid Point 
L=length(t); 
for n=1:floor(L) 
u(n)=sin(2*pi*GridFreq*Ts*n); 
end 
for n=1:floor(L) 
u1(n)=sin(2*pi*GridFreq*Ts*n); 
end 
for n=floor(L/2):L 
u(n)=sin(2*pi*GridFreq*Ts*n+pi/2); 
end 
%CASE 2 : Harmonics 
 L=length(t); 
 for n=1:floor(L) 
 u(n)=0.9*sin(2*pi*GridFreq*Ts*n)+0.1*sin(2*pi*5*GridFreq*Ts*n); 
 end 
 for n=1:floor(L) 
 u1(n)=sin(2*pi*GridFreq*Ts*n); 
 end 
%CASE 3 : Frequency Shift 
 L=length(t);
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 for n=1:floor(L) 
 u(n)=sin(2*pi*GridFreq*Ts*n); 
 end 
 for n=1:floor(L) 
 u1(n)=sin(2*pi*GridFreq*Ts*n); 
 end 
 for n=floor(L/2):L 
 u(n)=sin(2*pi*GridFreq*1.1*Ts*n); 
 end 
%CASE 4: Amplitude Variations 
 L=length(t); 
 for n=1:floor(L) 
 u(n)=sin(2*pi*GridFreq*Ts*n); 
 end 
 for n=1:floor(L) 
 u1(n)=sin(2*pi*GridFreq*Ts*n); 
 end 
 for n=floor(L/2):L 
 u(n)=0.8*sin(2*pi*GridFreq*Ts*n); 
 end; 
u=fi(u,T,F); 
u1=fi(u1,T,F); 
%declare arrays used by the PLL process 
Upd=fi([0,0,0],T,F); 
ynotch=fi([0,0,0],T,F); 
ynotch_buff=fi([0,0,0],T,F); 
ylf=fi([0,0],T,F); 
SinGen=fi([0,0],T,F); 
Plot_Var=fi([0,0],T,F); 
Mysin=fi([0,0],T,F); 
Mycos=fi([fi(1.0,T,F),fi(1.0,T,F)],T,F); 
theta=fi([0,0],T,F); 
werror=fi([0,0],T,F); 
%notch filter design 
c1=0.1; 
c2=0.00001; 
X=2*c2*wn*2*Ts; 
Y=2*c1*wn*2*Ts; 
Z=wn*2*wn*2*Ts*Ts; 
B_notch=[1 (X-2) (-X+Z+1)]; 
A_notch=[1 (Y-2) (-Y+Z+1)]; 
B_notch=fi(B_notch,T,F); 
A_notch=fi(A_notch,T,F); 
% simulate the PLL process 
for n=2:Tfinal/Ts % No of iteration of the PLL process in the 

simulation time 
% Phase Detect 
Upd(1)= u(n)*Mycos(2); 
%Notch Filter 
ynotch(1)=-A_notch(2)*ynotch(2)-

A_notch(3)*ynotch(3)+B_notch(1)*Upd(1)+B_notch(2)*Upd(2)+B_notch(3)*

Upd(3); 

  
%update the Upd array for future sample 
Upd(3)=Upd(2); 
Upd(2)=Upd(1); 

  
% PI Loop Filter 
%ts=30ms, damping ration = 0.7 
% we get natural frequency = 110, Kp=166.6 and Ki=27755.55 
% B0=166.877556 & B1=-166.322444 
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ylf(1)= fi(1.0,T,F)*ylf(2)+fi(166.877556,T,F)*ynotch(1)+fi(-

166.322444,T,F)*ynotch(2); 
%update Ynotch for future use 
ynotch(3)=ynotch(2); 
ynotch(2)=ynotch(1); 
ynotch_buff(n+1)=ynotch(1); 
ylf(1)=min([ylf(1) fi(200.0,T,F)]); 
ylf(2)=ylf(1); 
wo=fi(wn,T,F)+ylf(1); 
werror(n+1)=(wo-wn)*fi(0.00318309886,T,F); 
%integration process 
Mysin(1)=Mysin(2)+wo*fi(Ts,T,F)*(Mycos(2)); 
Mycos(1)=Mycos(2)-wo*fi(Ts,T,F)*(Mysin(2)); 
%limit the oscillator integrators 
Mysin(1)=max([Mysin(1) fi(-1.0,T,F)]); 
Mysin(1)=min([Mysin(1) fi(1.0,T,F)]); 
Mycos(1)=max([Mycos(1) fi(-1.0,T,F)]); 
Mycos(1)=min([Mycos(1) fi(1.0,T,F)]); 
Mysin(2)=Mysin(1); 
Mycos(2)=Mycos(1); 
%update the output phase 
theta(1)=theta(2)+wo*Ts; 
%output phase reset condition 
if(Mysin(1)>0 && Mysin(2) <=0) 
theta(1)=-fi(pi,T,F); 
end 
SinGen(n+1)=Mycos(1); 
Plot_Var(n+1)=Mysin(1); 
end 
% CASE 1 : Phase Jump at the Mid Point 
error=Plot_Var-u; 
%CASE 2 : Harmonics 
%error=Plot_Var-u1; 
%CASE 3: Frequency Variations 
%error=Plot_Var-u; 
%CASE 4: Amplitude Variations 
%error=Plot_Var-u1; 
figure; 
subplot(3,1,1),plot(t,Plot_Var,'r',t,u,'b'),title('SPLL(red) & Ideal 

Grid(blue)'); 
subplot(3,1,2),plot(t,error,'r'),title('Error'); 
subplot(3,1,3),plot(t,u1,'r',t,Plot_Var,'b'),title('SPLL Out(Blue) & 

Ideal Grid(Red)'); 
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Appendix B: Simulating the PLL for Varying Conditions for OSG Filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PLL Simulating for OSG 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
close all; 
clc; 
% define the math type being used on the controller using objects 

from the fixed-point toolbox in MATLAB 
%Select numeric type, let’s choose Q23 
T=numerictype('WordLength',32,'FractionLength',23); 
%Specify math attributes to the fimath object 

F=fimath('RoundMode','floor','OverflowMode','wrap'); 
F.ProductMode='SpecifyPrecision'; 
F.ProductWordLength=32; 
F.ProductFractionLength=23; 
F.SumMode='SpecifyPrecision'; 
F.SumWordLength=32; 
F.SumFractionLength=23; 
%specify fipref object, to display warning in cases of overflow and 
%underflow  
P=fipref; 
P.LoggingMode='on'; 
P.NumericTypeDisplay='none'; 
P.FimathDisplay='none'; 

  
%PLL Modelling starts from here  
Fs=50000;       %Sampling frequency = 50Khz  
GridFreq=50;    %Nominal Grid Frequency in Hz 
Tfinal=0.2;     %Time the simulation is run for = 0.5 seconds 
Ts=1/Fs;        %SamplingTime= 1/Fs  
t=0:Ts:Tfinal;  %Simulation Time vector  
wn=2*pi*GridFreq;   %Nominal Grid Frequency in radians  
%declare arrays used by the PLL process  
err=fi([0,0,0,0,0],T,F); 
ylf=fi([0,0,0,0,0],T,F); 
Mysin=fi([0,0,0,0,0],T,F); 
Mycos=fi([1,1,1,1,1],T,F); 
theta=fi([0,0,0,0,0],T,F); 
dc_err=fi([0,0,0,0,0],T,F); 
wo=fi(0,T,F); 

  
% used for plotting  
Plot_Var=fi([0,0,0,0],T,F); 
Plot_theta=fi([0,0,0,0],T,F); 
Plot_osgu=fi([0,0,0,0],T,F); 
Plot_osgqu=fi([0,0,0,0],T,F); 
Plot_D=fi([0,0,0,0],T,F); 
Plot_Q=fi([0,0,0,0],T,F); 
Plot_dc_err=fi([0,0,0,0,0],T,F); 

  
%orthogonal signal generator 
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%using trapezoidal approximation  
osg_k=0.5; 
osg_x=2*osg_k*wn*Ts; 
osg_y=(wn*wn*Ts*Ts); 
osg_b0=osg_x/(osg_x+osg_y+4); 
osg_b2=-1*osg_b0; 
osg_a1=(2*(4-osg_y))/(osg_x+osg_y+4); 
osg_a2=(osg_x-osg_y-4)/(osg_x+osg_y+4); 

  
osg_qb0=(osg_k*osg_y)/(osg_x+osg_y+4); 
osg_qb1=2*osg_qb0; 
osg_qb2=osg_qb0; 
osg_k=fi(osg_k,T,F); 
osg_x=fi(osg_x,T,F); 
osg_y=fi(osg_y,T,F); 
osg_b0=fi(osg_b0,T,F); 
osg_b2=fi(osg_b2,T,F); 
osg_a1=fi(osg_a1,T,F); 
osg_a2=fi(osg_a2,T,F); 
osg_qb0=fi(osg_qb0,T,F); 
osg_qb1=fi(osg_qb1,T,F); 
osg_qb2=fi(osg_qb2,T,F); 

  
osg_u=fi([0,0,0,0,0,0],T,F); 
osg_qu=fi([0,0,0,0,0,0],T,F); 

  
u_Q=fi([0,0,0],T,F); 
u_D=fi([0,0,0],T,F); 

  
%generate input signal 
% CASE1 : Phase Jump at the Mid Point  
L=length(t); 
for n=1:floor(L) 
u(n)=sin(2*pi*GridFreq*Ts*n); 
end 
for n=1:floor(L) 
u1(n)=sin(2*pi*GridFreq*Ts*n); 
end 
for n=floor(L/2):L 
u(n)=sin(2*pi*GridFreq*Ts*n+pi/2); 
end 
u=fi(u,T,F); 
% simulate the PLL process  
for n=3:Tfinal/Ts   % No of iteration of the PLL process in the 

simulation time 
%Orthogonal Signal Generator  
osg_u(1)=(osg_b0*(u(n)-u(n-2)))+osg_a1*osg_u(2)+osg_a2*osg_u(3); 
osg_u(3)=osg_u(2); 
osg_u(2)=osg_u(1); 

  
osg_qu(1)=(osg_qb0*u(n)+osg_qb1*u(n-1)+osg_qb2*u(n-

2))+osg_a1*osg_qu(2)+osg_a2*osg_qu(3); 
osg_qu(3)=osg_qu(2); 
osg_qu(2)=osg_qu(1); 

  
%park transform from alpha beta to d-q axis 
u_Q(1)=Mycos(2)*osg_u(1)+Mysin(2)*osg_qu(1); 
u_D(1)=-Mysin(2)*osg_u(1)+Mycos(2)*osg_qu(1); 

  
%Loop Filter 
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ylf(1)=fi(1,T,F)*ylf(2)+fi(166.877556,T,F)*u_Q(1)+fi(-

166.322444,T,F)*u_Q(2); 
u_Q(2)=u_Q(1); 
u_D(2)=u_D(1); 

  
%Limit LF according to its Q? size pipeline  
ylf(1)=max([ylf(1)fi(-128,T,F)]); 
ylf(1)=min([ylf(1)fi(128,T,F)]); 
ylf(2)=ylf(1); 
%update output frequency  
wo=GridFreq+ylf(1); 

  
%update the output phase  
theta(1)=theta(2)+wo*fi(Ts,T,F); 

  
if(theta(1)>fi(1.0,T,F))theta(1)=fi(0,T,F); 
end 

  
theta(2)=theta(1); 
Mysin(1)=sin(theta(1)*fi(2*pi,T,F)); 
Mycos(1)=cos(theta(1)*fi(2*pi,T,F)); 
Mysin(2)=Mysin(1); 
Mycos(2)=Mycos(1); 

  
Plot_theta(n+1)=theta(1); 
Plot_osgu(n+1)=osg_u(1); 
Plot_osgqu(n+1)=osg_qu(1); 
Plot_Var(n+1)=Mysin(1); 
Plot_D(n+1)=u_D(1); 
Plot_Q(n+1)=u_Q(1); 
end 
% CASE1 : Phase Jump at the Mid Point 
error=Plot_Var-u; 

  
%CASE2 : Harmonics 
%error=Plot_Var-u1; 

  
%CASE3: Frequency Variations  
%error=Plot_Var-u; 

  
%CASE4: Amplitude Variations 
%error=Plot_Var-u1; 
subplot(3,1,1),plot(t,Plot_Var,'r',t,u,'b'),title('SPLL(red)& 

IdealGrid(blue)'); 
subplot(3,1,2),plot(t,error,'r'),title('Error'); 
subplot(3,1,3),plot(t,u1,'r',t,Plot_Var,'b'),title('SPLLOut(Blue)& 

IdealGrid(Red)'); 
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Appendix C: Schematic of Human Hardware Interface HY32D 
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Appendix D: Schematic of HC-06 Bluetooth Device 
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Appendix E: Real-time Operating System Message Queue Service Codes 

E.1 Service Function of the System 

void KernelRun(void)  
{  
 for(;;)  
 {  
if(stMessageQueue.Counter)  
  {  
mRunLedOn();  
KernelMessagePop();  
DoProcess();  
mRunLedOff();  
  }  
 }  
} 

E.2 Message Sending Function to the System 

void KernelMessagePush(eTasks_t TargetTask, uint16_t 

TargetTaskMessageID, uint16_t TargetTaskMessageData)  
 {  
stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTask =  
TargetTask;  
     

stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTaskMessage 

ID = TargetTaskMessageID;  
stMessageQueue.Objects[stMessageQueue.WriteIndex].TargetTaskMessage 

Data = TargetTaskMessageData; 
if(++stMessageQueue.WriteIndex == MESSAGE_QUEUE_SIZE)  
 {  
stMessageQueue.WriteIndex = 0;  
 }  
if(++stMessageQueue.Counter == MESSAGE_QUEUE_SIZE)  
 {  
stMessageQueue.Counter = 0;  
 }  
} 

E.3 Message Requesting Function from the System 

void KernelMessagePop(void)  
 {  
stMessageQueue.CurrentObject.TargetTask = 

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTask;  
stMessageQueue.CurrentObject.TargetTaskMessageID = 

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTaskMessageID

; 
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stMessageQueue.CurrentObject.TargetTaskMessageData = 

stMessageQueue.Objects[stMessageQueue.ReadIndex].TargetTaskMessageDa

ta;  
  if(++stMessageQueue.ReadIndex == MESSAGE_QUEUE_SIZE)  
 {  
  stMessageQueue.ReadIndex = 0;  
 }  
  --stMessageQueue.Counter;  
} 
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Appendix F: 𝐂𝐨𝐬(𝝋) Calculating Function by the MCU 

for (i = 0; i < SAMPLE_MAX; i++)  
 {  

  
for (j = 0; j < N; j++)  
{  
An[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] * 

arm_cos_f32((j+1)*FFT_w*(FFT_Ts*i));  
Bn[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *  
arm_sin_f32((j+1)*FFT_w*(FFT_Ts*i));  
    }  
 }  
Phi_V = (float32_t) atan(An[0]/Bn[0]);  
ClearFFTCoeff();  

  
for (i = 0; i < SAMPLE_MAX; i++) {  
for (j = 0; j < N; j++) {  
An[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] * 

arm_cos_f32((j+1)*FFT_w*(FFT_Ts*i));  
Bn[j] += (2/FFT_T)* Ts * (float)stTaskMeas.CopyBuffer[0][i] *  
arm_sin_f32((j+1)*FFT_w*(FFT_Ts*i));  
}  
 }  

  
Phi_I = (float32_t) atan(An[0]/Bn[0]);  
Phi = Phi_V – Phi_I;  
ClearFFTCoeff();  
stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].CosPhi = 

arm_cos_f32(Phi); 
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Appendix G: Power Factor Calculating Function by the MCU 

for (s = 0; s < N; s++)  
{  
arm_sqrt_f32(((An[s]*An[s] + Bn[s]*Bn[s])/2) , &Cn[s]);  
Temp += Cn[s] * Cn[s];  
}  

  
arm_sqrt_f32(Temp, &Temp);  
Kv = Cn[0]/Temp;  
for (m = 0; m < N; m++)  
{  
arm_sqrt_f32(((An[m]*An[m] + Bn[m]*Bn[m])/2) , &Cn[m]);  
Temp += Cn[m] * Cn[m];  
}  

  
arm_sqrt_f32(Temp, &Temp);  
Ki = Cn[0]/Temp;  

  
stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].PowerFactor = Kv * 

Ki * stTaskMeas.stLineParamsRaw[stTaskMeas.RawIndex].CosPhi; 
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Appendix H: MODBUS Communication Address Mapping: 

Address 

(Decimal) 

Address 

Read / Write 
Type: Definition: Gain: 

0 R U16 Voltage 10 

1 R U16 Current 1000 

2 R S16 Cos(𝝋) 1000 

3 R S16 Power Factor 1000 

4 R U16 Frequency 100 

5 R U16 THDV 100 

6 R U16 THDI 100 

7 R S16 Active Power 1000 

8 R S16 Reactive Power 1000 

9 R U16 Apparent Power 1000 

10 R U32 
Active Power  

(Import) 
10 

12 R U32 
Inductive Reactive Power 

(Import) 
10 

14 R U32 
Capacitive Reactive Power 

(Import) 
10 

16 R U32 
Active Power 

(Export) 
10 

18 R U32 
Inductive Reactive Power 

(Export) 
10 

20 R U32 
Capacitive Reactive Power 

(Export) 
10 
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