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SIGNAL DETECTION AND PARAMETER ESTIMATION
OF
FREQUENCY HOPPING SIGNALS

SUMMARY

Unmanned aerial vehicles (UAVs) have become a prevalent part of the daily life
with their applications to many fields such as mapping and surveying, transportation,
surveillance, law enforcement, aerial imaging and agriculture.  Besides the
aforementioned use of UAVs in many areas, one should keep in mind that UAVs
can also be used dangerously to create unwanted incidents especially when they are
diverted to the sensitive airspace near airports and their presence may cause accidents
which can result in fatal crashes. Moreover, UAVs can be utilized for collecting
information about people, organizations, and companies without their consent.
Therefore, identification and direction of arrival estimation of UAV systems/remote
controllers and their communication are great importance, especially to prevent
unwanted situations. In this context, it is known that most of the communication
between the UAVs and wireless radio controller (RC) utilize the spread spectrum
technology of frequency hopping spread spectrum (FHSS) on ISM band at 2.4 GHz.
Therefore a method to detect, classify and estimate the direction of arrival of these
kinds of signals in this band would lead to the identification of the communication
between the UAV and the controller. Thus, this thesis attempts to address solutions for
identifying and direction of arrival estimation of FHSS signals.

In Chapter I, open issues and the state—of—the—art solutions to the open issues in FHSS
signal detection, identification and direction of arrival estimation are given. Moreover,
in Chapter II, mathematical preliminaries of FHSS signal characteristics are provided.

In Chapter III, signal detection and parameter estimation are discussed by focusing
on cyclostationarity signal and time—frequency analyses. First, a method based on
cyclostationarity analysis i1s applied to distinguish the FHSS signals. Furthermore,
short—time Fourier transform (STFT) based blind signal detection and clustering are
employed to reconstruct the correct hops of the FHSS signal. Therefore, if there
is an interference signal, outliers are removed from the parameters table according
to the spectral localization of the signals. Furthermore, the literature utilizes the
simulated data instead of over—the—air signals in general and these simulations assume
that there is no time guards between hops. This assumption makes differentiation
of frequency—hopping (FH) signals easier, however, many hopping signals use time
guards and also these time guards are different for different signal sources.

In Chapter IV, direction of arrival estimation for FHSS signals are studied by utilizing
MUSIC algorithm which is a high-resolution subspace-based direction-finding
algorithm. A variant of STFT is introduced to extract the parameters of detected
FHSS signals. The correct hopping signals are then aggregated based on the clustered
parameters to obtain their combined baseband equivalent signal. Furthermore, the
resampling process is applied to reduce the unrelated samples in the spectrum

XX1



and represent the spectrum with the reconstructed signal, which has a much
lower bandwidth than the spread bandwidth. Finally, two different multiple signal
classification algorithms are utilized to estimate the direction of the drone controller
relative to the receiving system. In order to validate the overall performance of the
proposed method, the introduced framework is implemented on hardware platforms
and tested under real-world conditions. A uniform linear antenna array is utilized
to capture over—the—air signals in hilly terrain suburban environments by considering
both line—of-sight and non-line—of—sight cases. Direction estimation performance is
presented in a comparative manner and relevant discussions are provided.
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FREKANS ATLAMALI SINYALLERIN
TESPITI VE PARAMETRE KESTIRIMI

OZET

Akili ev teknolojisi, kisisel cihazlar, endiistriyel otomasyon, aragla-hersey gibi
alanlarinin yayginlagsmasi ile kablosuz haberlesme cihazlarinin sayis1 giin gectikce
artmaktadir. Bundan dolayi, sinirli kullanim alanina sahip spektrumun tiim kullanicilar
icin yeterli kaynagi saglamas1 miimkiin goziikkmemektedir. Dolayisiyla, bu kablosuz
haberlesme cihazlarinin her birinin mevcut kaynagi paylasimli bir sekilde kullanmasi
Oonem arz etmektedir. Sinyal kaynaklar spektrumda kesintisiz bir sekilde haberlesmeye
devam edebilmek i¢in ¢oklu erisim tekniklerini kullanmaktadir. Bunlar arasinda
frekans atlama yayilmali spektrum (FAYS) teknolojisi ile kablosuz haberlesme
sistemleri, hizli bir sekilde merkez frekansini degistirmesiyle spektrumda yayilarak
herhangi bir frekans plan1 olmadan genis bantta iletisim saglamaktadir. Boylece, FAYS
haberlesme sistemleri yogun bir spektrumda girisime kars1 dayanikli ve karigtirmaya
kars1 koyma gibi yeteneklere sahip olmaktadr.

Frekans atlamali haberlesme sistemlerinin kullanimi1 Oncelikli olarak askeri amacl
kullanilan radyolarda olmak iizere, Bluetooth haberlesmesi, drone radyo kontrolcii
haberlesmesi, medikal cihazlar i¢in kullanilan haberlesme sistemleri gibi bir¢ok farkli
sivil alan uygulamalarinda da yaygin olarak kullanilmaktadir. Askeri uygulamalarda,
bir¢cok iilke iletisim giivenligi acisindan taktik veri linklerinde frekans atlamali
sistemleri benimsemistir. Frekans atlamali haberlesme sistemleri, sivil uygulamalar
icin ise lisanssiz spektrum bolgesinde frekans planlanmasina gerek duymadan
spektrum paylagimini girisim olmadan yapabilmektedir.

Giiniimiizde dronlarin ya da bir bagka deyisle Insansiz Hava Araglar1 (IHA), hobi
amagl olarak kullanilan bir alan olarak goziiksede haritalama ve 6l¢me, ulasim,
gozetleme, kolluk kuvvetleri, havadan goriintilleme, tarim gibi bir¢cok alandaki
uygulamalar ile giinliik hayatin yaygin bir parcas1 haline gelmektedir. IHA larin pek
cok alanda kullanilmasinin yani sira, giivenlik ve gizlilik acisindan tehlike olusturmasi
da miimkiindiir. Ornegin, IHA’larm havaalanlarinda istenmeyen olaylar yaratmak
icin tehlikeli bir sekilde kullanilabilecegini ve varliklarinin telafisi miimkiin olmayan
kazalara neden olabilecegi unutulmamalidir. Ayrica IHA’lar, araglar, altyapilar
ve tesisler icin dogrudan bir fiziksel tehdit olmanin yam sira, IHA’lar ozellikle
kritik operasyonlarda ve/veya hizmetlerde arizaya yol acan iletisim baglantilarim
karistirmak, miidahale etmek veya tamamen engellemek i¢in kullanildiklarinda da
tehdit kaynagi olabilir. Her gecen giin kii¢iilen boyutlar1 ve artan yetenekleri goz 6niine
alindiginda, giivenlik icin ¢cevredeki drone faaliyetlerinden haberdar olmak 6nemli bir
gozetleme unsuru haline gelmektedir. Ek olarak, IHA nin goriiniimiinii ucurtma, kus
vb. gibi diger ucan nesnelerden etkili bir sekilde ayirt edilemeyebilir. Bu nedenler
g6z oniine alindiginda IHA sistemlerinin/uzaktan kumandalarin tanimlanmasi ve varis
yonii tahmini, 6zellikle istenmeyen durumlarin dnlenmesi agisindan biiyiikk onem
tasimaktadir. Bu noktada, bircok THA ile kablosuz radyo denetleyicisi arasindaki
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iletisimin 2.4 GHz ISM bandinda ve FAYS teknolojisini kullandig1 bilinmektedir. Bu
bilgiler 151¢1nda, daha 6nce ifade edilen bantta farkli sinyal kaynaklar1 spektrumu
mesgul edebilecegi i¢in FAYS tiirlindeki drone radyo kontrolciisiiniin tespit edilmesi
ve farkli sinyal kaynaklar1 arasindan ayrigtirilmasi saglanmalidir. Bu tez ¢alismasinda
FAYS tiirtindeki drone radyo kontrolciisiiniin tespit algoritmasi simiilasyon verileri
ile analiz edilmektedir. Ayrica, test diizene8i kurularak gercek diinya kosullar
altinda sinyal tespit ve parametre kestirimi yaklagimi incelenmektedir. Ardindan,
coklu alict sistem kullanilarak altuzay tabanli yon bulma algoritmasi ile drone
radyo kontrolciisiine ait yon kestirimi yapilmaktadir. Sinyal ayristirma sirasindaki
coziiniirlik sorunu ele alinarak elde edilen bagarim g6z Oniine alinip gercek diinya
kosullarindaki performansina bakilmaktadir. Test icin kurulan ol¢iim diizenegi,
Rohde & Schwarz spektrum analizorii, Rohde & Schwarz sinyal iireteci, Futaba T8J
drone radyo kontrolciisii, NI PXIe ¢ok kanall1 alic1, 6zdes 4 adet Quasi Yagi anten,
kigsisel bilgisayar ekipmanlarindan olugsmaktadir. Tiim 6l¢timler Tiirkiye Bilimsel ve
Teknolojik Arastirma Kurumu (TUBITAK) Gebze, Kocaeli yerleskesinde bulunan
tepelik arazi banliy®6 tipi agik test sahasinda yapilmstir.

Bolim I’de, dron kullanimi ve gerceklesebilecek tehditler ele alimp FAYS sinyal
algilama, tanimlama ve varig yonii tahminindeki agik sorunlara yonelik literatiirde
yer alan cesitli ¢coziimlere yer verilmektedir. Ayrica, Bolim II’de FAYS sinyal
karakteristiklerinin matematiksel on bilgileri detayli bir sekilde anlatilmaktadir.

Boliim I1I’te, dongiisel duraganlik sinyali ve zaman-frekans analizlerine odaklanilarak
sinyal tespiti ve parametre kestirimi tartisiimaktadir. Ilk olarak, FAYS sinyallerini
ayirt etmek i¢cin dongiisel duraganlik analizine dayali bir yontem uygulanmaktadir.
Ikince dereceden cevrimselozduragan analizi ile alinan sinyal icinde gizli periyodiklik
ortaya cikabilmektedir. Boylece, bir FAYS sinyaline ait atlama orani kestirilerek
farkli sinyaller birbirinden ayristirilabilir. Ornegin, 2.4 GHz ISM bandinda ¢okca
bulunan Bluetooth sinyali (saniyede 1600 atlama) ile drone radyo kontrolciisii sinyali
(saniyede 100-200 atlama) kestirilen atlama orami parametresine bakilarak gelen
FAYS sinyalinin tanimlanmasi miimkiin olmaktadir. Ayrica, FAYS sinyalinin dogru
atlamalarini yeniden olusturmak icin kisa siireli Fourier doniisiimii (STFT) tabanl kor
sinyal algilama ve kiimeleme yontemi kullanilir. Boylece, bir girisim sinyali varsa,
sinyallerin spektral lokalizasyonuna gore parametreler tablosundan aykir1 degerler
cikartilir. Bunun i¢in, STFT degerlerinin giiriiltii seviyesinin hesaplanmasi ile elde
edilen esik seviyesi ile karsilastirilmasiyla ikililestirilmis matris elde edilmektedir.
Ardindan kablosuz haberlesme bozukluklarindan kaynakli hatali olarak ifade edilen
degerler iki asamada diizeltilmektedir. Ilk once, ikililestirilmis matris morfolojik
islemler kullanilarak sinyali ifade eden alanin i¢ bolgesi diizeltilmektedir. Ikinci
asama olarak matris elemanlarinin komsuluklar1 kontrol edilerek sinyali ifade eden
bolgenin sinirlart diizeltilmektedir. Bodylece matris iizerinden sinyalleri segmente
edebilmek icin siireklilik saglanmis olup spektrumu mesgul eden sinyallerin zamansal
ve frekans bilgileri elde edilmektedir. Ayrica, literatiir genel olarak kablosuz
sinyaller yerine simiile edilmis verileri kullanir ve bu simiilasyonlar, atlamalar
arasinda zaman korumasi olmadigini varsayar. Bu varsayim, frekans atlamali
sinyallerinin farklilasmasin1 kolaylastirir, ancak bircok frekans atlamali sinyal zaman
bosluklar1 kullanir ve ayrica bu zaman bosluklar1 farkli sinyal kaynaklari i¢in
farklidir. Sinyal karakteristiklerine (baslangi¢c zamani, bitis zamani, bandgenisligi,
bulunma siiresi) bakilarak merkez tabanli kiimeleme yaklasimi ile FAYS sinyaline
ait atlamalar simiflandirilmaktadir. Buna bagli olarakta, spektrumda FAYS sinyalinin
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olup olmadigina bakilarak farkli sinyal—giiriiltii oran1 (SNR) degerleri i¢in dogru tespit
olasiligr hesaplanmaktadir. Ayni zamanda, tespit performansi farkli yanlis alarm
oranlari icinde incelenmektedir. Ayrica, cevrimselozduragan sinyal analizi yontemi ile
kestirilen atlama oran1 parametresi, gergek atlama oranina ne kadar yaklasti1 analizi
tizerinde de durulmuktadir.

Bolim IV’te, FAYS sinyalleri i¢in varis yonii tahmini, yiiksek ¢oziiniirliiklii altuzay
tabanli yon bulma algoritmalar1 kullanilarak incelenmigtir. Frekans atlama sinyalleri
daha sonra birlestirilmis temel bant esdeger sinyalini elde etmek i¢cin Bolim III’te
bahsedildigi lizere kiimelenmis parametrelere dayali olarak arka arkaya eklenir.
Boylece FAYS sinyali i¢cin kisa zamanda bulunan sinyal Ornekleri yerine temel
bantta sinyal ornekleri arttirllmistir. Ayrica, temel bantta yeniden elde edilen sinyali
spektrumda yayilmig bant genigliginden cok daha diisiik bir bant genisligine sahip
olacak sekilde yeniden drnekleme islemi uygunabilmektedir. Boylece, spektrumdaki
ilgisiz 6rnekleri azaltmak ve altuzay tabanli yon kestirimi uygulamasi i¢in gerekli olan
kovaryans matrisinin hesaplanmasini kolaylagmaktadir. Bu Onislemlerin ardindan,
alic1 sisteme gore drone kontroloriiniin yoniinii tahmin etmek icin iki farkli ¢oklu
sinyal siniflandirma algoritmasi kullanilir. Onerilen yontemin genel performansini
dogrulamak i¢in tanitilan cerceve, donanim platformlari ile uygulanmaktadir ve gercek
diinya kosullart altinda test edilmektedir. Dronlar kisa siirede bir noktadan bagka bir
noktaya hareket ettirilebilmektedir. Dronun hizli hareket etmesinin yani sira, drone
pilotu o kadar hizli hareket edememektedir. Bu durum goz Oniine alinarak, farkl
mesafeler icin yavas ac1 degisiklikleri icin olusturulan senaryo ile hem goriis hatti
hem de goriis hatti olmayan durumlar ele alinmaktadir. Diizgiin dogrusal dizilime
sahip anten dizisi ile havadan alinan sinyaller i¢in farkli anten sayisi, oniglem etkisi,
farkli yon kestirimi algoritmasi parametrelerine gore sonuclar karsilagtirmali olarak
sunulmaktadir ve ilgili tartismalara yer verilmektedir.

Gelecek calismalarda, son zamanlarda farkli alanlarda giderek kullanimi artan
derin 68renme tabanli sistemleri ile FAYS sinyallerinin tespiti icin kullanilmasi
arastirtlmalidir. Boylece, spektral lokalizasyon agisindan Onislem adiminin yerine
gecmesi Ongoriilebilir.  Bunun yaninda, coklu FAYS sinyallerinin spektrumda
mevcut olmas1 durumunda, farkli SNR degerleri i¢in farkli kosullar altinda dogru
kiimelenme olasilig1 incelenebilir. FAYS sinyalleri genis bantta farkli frekanslarda
bulundugundan dolayi, yon kestirimi i¢in Fourier domaninde altuzay tabanlh
algoritmalar arastiritlmalidir.
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1. INTRODUCTION

Nowadays, wireless communication is an indispensable point for communities.
There is a growing demand for the number of physical devices that used wireless
communications, such areas as personal devices, smart homes, vehicle-to-everything
(V2X), industrial automation, etc [1]. Since the demand for mobile data traffic
extremely grows day by day, scarcity emerges in the finite spectrum resources.
Utilization of the spectrum becomes inaccessible and in this regard, allocation is
controlled by national and international regulations. While the frequency spectrum is
a natural resource, it can not be expanded or increased and the demand of the spectrum
activity can be overcome with the development of communication systems. Many of
the communication devices rely on multiple access techniques to operate, especially in
the unlicensed spectrum [2]. In the context of the cooperative environment which
is consists of V2X or smart systems, the spectrum can be used over the network.
However, not all devices transmit signals over a network and hence, communicate
using the shared spectrum. This leads to uses the FHSS technology to avoid
interference or jamming and can share the frequency channels without frequency

planning.

FHSS communication is provided by changing carrier frequency rapidly while
transmitting information and occupies a large spectral region over time. Although
it was first developed for military areas, civilian applications also benefit from this
technology as a process of time. In the aspect of military usage, tactical data link
(Link—16) adopted the FHSS, since it has the ability of transmission security [3].
On the other hand, to manage the interference problem commercial communication
devices are using the FHSS [4]. Common commercial devices are operating with
FHSS such as Bluetooth, radio controller (RC), cordless phones, microphone signals,
and unstructured signal sources such as microwave ovens or several medical devices.
Among these applications, increased demand for the higher capacity of the V2X leads

to the usage of drones. As drones become more popular, they have pivoted various



applications. Since the drones are controlled by a RC, the transmission between the

drone and its pilot is provided by FHSS.

Drones pervade the modern civilian life almost in every aspect. = Mapping
and surveying, transportation, surveillance, law enforcement, aerial imaging, and
agriculture are just to name a few [5]. Apparent penetration of drones into the
aforementioned fields swiftly stems mainly from their multi—-dimensional capabilities
such as payload transportation, telecommunications, and task accomplishment. On
the other hand, these capabilities pose several concerns regarding safety, security, and
privacy etc. Beyond these concerns, presence of drones is considered to be a threat,
especially in the vicinity or surrounding airspace of critical zones [6, 7]. For instance,
a drone appeared at the Gatwick airport and it causes the shut down of the airport due
to the risk of a crash with any aircraft. Hence, hundreds of flights were canceled and
140,000 passengers were affected [8]. Moreover, drones can be utilized for collecting
information about people, organizations, and companies without their consent. In
addition to being a direct physical threat to vehicles, infrastructures, and facilities,
drones could be an auxiliary source of threat especially when they are employed to
jam, interfere, or totally block communication links leading to malfunction in critical
operations and/or services. It is evident that detection of any potential or actual
intrusion by cooperative and non—cooperative drones and their pilots is required to
protect critical zones, vehicles, and operations. In this context, it is known that most
of the communication between the drone and wireless RC utilize the spread spectrum
technology of FHSS on industrial, scientific, and medical (ISM) band at 2.4 GHz,
which provide resilience to interference, enhance security, and networking operations,

as well as covert transmission [9].

Once a potential drone—RC/pilot link is detected, the next step is to determine the
direction of the incoming signals. This immediately implies the employment of
radio—direction finding (DF) techniques. It is important to estimate the angle of
arrival (AoA) of the signal while protecting the critical zones or unknown usage of
spectrum. Also, it can be expanded to localize the user, hence intercepting the harmful
usage of the spectrum and events is provided. Moreover, tracking is another crucial
parameter while identifying the sources. While the user occupies the spectrum, the

estimation of the angle of arrival should be provided constantly, especially for mobile



users. In order not spotted by target users, passive systems are considered instead of

active systems. These are lead to considering the smart antenna systems [10, 11].

This thesis is composed of 5 chapters which are Introduction, FHSS Signals, Signal
Detection and Parameter Estimation, Direction of Arrival of Estimation of for
FHSS Signals, and Concluding Remarks and Future Directions. Chapter 2 presents
the background for FHSS signals. The Chapter 3 focuses on cyclostationarity
and time—frequency analysis for FHSS signals. Additionally, gives the real-world
measurements for signal detection and parameter estimation for FHSS signals. In
Chapter 4, the reconstruction is discussed for direction—finding estimation of FHSS
signals. Also, the estimation results of direction—finding are given under the real-world
conditions. Chapter 5 concludes the ideas that has been presented in the thesis and
presents the possible future studies about the signal detection and direction—finding for

FHSS signals.






2. FHSS SIGNALS

In the digital communication system, the modulated signals are multiplied with the
carrier signal on a certain frequency. In the aspect of systems that uses FHSS, carrier
frequencies are changed over time. Considering the number of users that use the
limited spectrum, hops can allow avoiding interference. Also, if the avoidance is
not provided, the interference occurs only temporarily and the communication still

is available when the changing frequency [12].

The information is transmitted by a sequence of carrier frequencies which called as a
FH pattern. In order to consistency of the communication, each frequency channel of
an FHSS signal has a same width of a spectral region for all hops, depending on input
signal. Furthermore, the speed of the switching between hops occurs at a constant rate.
Therefore, the hopping duration or dwell time, which means the time that spends on a
certain frequency channel, is standard per user. Fig. 2.1 illustrates the communication
of an FHSS signal according to FH pattern between the interfere signals. The hopping
characteristics can be listed as: the time interval between the hops can be denoted
as T, and W represents the bandwidth of the each hop. Additionally, the difference
between the maximum frequency channel and minimum frequency channel means that

the spreading spectrum.

In a typical communication system, information bits are mapped to symbols according
to amplitude, phase, etc. After that, pulse shaping is utilized to prevent inter symbol
interference (ISI) and generating a band-limited signal which results of achieve
more suitable spectrum usage. Furthermore, a frequency synthesizer allows for
up-conversion of the baseband signal. In the FHSS communication system, the
frequency synthesizer produces a distinct tone determined by a set of channel numbers.
To provide the secrecy and unpredictably of the FH pattern, these channel numbers are
generated from the pseudo-noise sequence generator. Thus, mixing the output of the
frequency synthesizer and modulated signal produce the FHSS signal. The generation

of the FHSS signal can shown in Fig. 2.2. Additionally, when the communication



)
u ——
=
(5)
=]
o 4
5]
=
1 Th
“—>

| Aw

Time
Figure 2.1 : FHSS signal pattern.

begins, the signal power is maximal at each frequency channel according to the
hopping pattern. However, due to the limitation of the RF components, signal energy
can not be infinitesimal. Therefore, the rise time and fall time transitions are occurred.
Another factor that determines the consistency between each hop is the transmit
power. Since there are various users in a shared spectrum, at the receiver side,
channel conditions affect the signal that sent by the same user in a similar way, when

considering the received signal strength (RSS).

The variants of the FHSS signal can be classified as fast hopping rate and slow hopping
rate. The difference between the fast and slow is number of transmitted symbols at
each hop [13]. Considering the symbol rate, when there are multiple data symbols per
hop the system is called slow hopping, on the contrary, there are multiple hops per
data symbol for fast hopping. For spectral efficiency, the slow FH is more preferable.

Information . Pulse

FHSS Signal
Pseudonoise

Sequence
Generator

Frequency
Synthesizer

Figure 2.2 : FHSS signal modulator.



The advantage of the fast FH, the communication systems are more robust against the

fading and noisy channels and also, possible jammers [14].

2.1 Signal Model

In the transmitter side, modulated signal is mixed with the frequency synthesizer

output. A single FHSS signal can be written as,

K
x(t) = s(t) x Y SOy (1 — By) (2.1)
k=1

where s(¢) denotes the complex baseband equivalent of the information bearer that has
a periodic burst type transmission for ¢ € [0, 7], K stands for the total number of hops
during the duration of 7', f; and ¢y represent the carrier frequency and initial phase of
the kth hopping, respectively. Rectangular window function, wy (), can be expressed

as,

— 1, re [(k_l)Thvah)
wi(t) _{ 0, others 2.2)

where 7}, is the dwell time.

The start time of the kth hop is represented as Bi. Then, we define a sequence {Cy},

which is the time difference between kth and (k + 1)th hop, are given as,

Cr,=Byi1—Byr, ke [I,K— 1] 2.3)

where By, and By are the sum of all time gaps corresponding to (k+ 1)th and kth
hops, respectively. By assuming that the sequence of time gaps is periodic with N, C;

can then described in terms of the estimated time gaps as,

C=T,+At;,I=i modN, 0<i<N. 2.4)

The complex baseband equivalent of the received passband signal can be described by,

r(t) = h(t) xx(t) +n(t) +i(t) (2.5)



where * is the convolution operator, A(t) is the channel impulse response between
the transmitter and receiver, which has frequency flat fading, x(¢) denotes the desired
FHSS signal and n(z) stands for the complex additive white Gaussian noise (AWGN)
in which I and Q components are i.i.d ~ .4(0,62/2). Also, i(t) represents the
possible interference signal that disturbs the desired signal, and assumed as i(7)
and x(¢) are uncorrelated signals. Considering the drastic increase in the number
of wireless communication devices, the impact of the interference might occur as
co-channel interference. The applications that use unlicensed spectrum consist of
Wi-Fi technology, ZigBee signals, and unstructured signal sources such as microwave
ovens or several medical devices. Hence, to define the signal model can comprise an

interference signal.



3. SIGNAL DETECTION AND PARAMETER ESTIMATION

3.1 Cyclostationarity Signal Analysis

Communication signals are interpreted as a random process. Herein, encountered in
statistical signal processing and communication signals are often assumed stationary
processes. For example, a binary phase—shift keying (PSK) modulation scheme
mapped bits to —1 and +1 with equal probability is considered a stationary process.
However, the cyclostationarity process depends on varying cyclically statistical
properties with time. The stationary process can be affected due to the varying
environmental conditions (e.g. random fluctuations) and human-made external
additions such as upsampling, repetitive pulsing/on—off keying, sine-wave carriers
[15, 16]. Therefore, communication signals can be thought as a cyclostationarity

process under these effects.

For many years, research on the cyclostationarity process developed various
algorithms on different application areas. Considering the presence of periodicities
in every aspect of real life, cyclostationarity signals can occur in communication,
radar, sonar, telemetry, geophysical and atmospheric sciences, rotating machinery,
econometrics, and biological systems [17]. In regard to the communication signals,
the cyclostationarity signal analysis is preferred mostly in the problems of statistical
function estimation, signal detection, and cycle frequency estimation. In the problems
of spectrum sensing, cyclostationarity becomes prominent a robust technique under the
fading and low signal-to—noise ratio (SNR) [18]. Furthermore, cyclostationarity can be
used for identification between the different types of signals because of the extracting
cyclic features. For instance, in [19,20], the authors preferred the cyclostationarity
based feature detection for modulation recognition with using higher—order cumulants,
in [21], orthogonal frequency division multiplexing (OFDM) based wireless standards
are distinguished with second—order cyclostationarity feature. Also, blind channel
estimation and equalization are achievable by using cyclostationarity signal analysis

[22]. The recent interest in cyclostationarity based solutions is adopted for periodically



varying communication systems and signal processing applications tremendously, with
emphasis on second-order statistical characterization.

3.1.1 First-order cyclostationarity

If the signal behaves first—order periodicity as [23],

me = Jim — / Y27 gy 3.1)

T—soo

where o and m? are the first-order cycle frequency and cyclic moment, respectively.

3.1.2 Second-order cyclostationarity

Cyclostationarity analysis can be utilized to discover hidden periodicity within a
received signal [24,25]. The second-order cyclostationarity of the received signal
reveals the hopping rate of the FHSS signal. Cyclostationarity analysis begins by

taking the autocorrelation function which is denoted as,

Ry (t,7) =E{r(t+1)r (1)}, 3.2)

where (-)* is the complex conjugate operator, and 7 represents the time lag. If the

autocorrelation function has a periodicity in ¢, it can be written by Fourier series

expansion,
27r
= ¥ At
k=—oo
3.3
To/2 Z”kz (3.3)
Ar(t) = — R/ (t,T)e dt
Ty J-1y/2

where Ay () represents the kth coefficient at T time lag which is also known as a cyclic
autocorrelation function (CAF), and Tj is the fundamental period. Furthermore, the
frequency domain representation of the signals can extract unique features. In this
regard, the Fourier transform of the CAF can be calculated by using the cyclic Wiener

relationship,

Si(f) = /_ O;Ak(r)e_ﬂ”f T4t 3.4)

where Sy (f) is known as spectral correlation function (SCF) for a fixed & value.

10



3.1.2.1 On the investigation of second—order cyclostationarity for FHSS signals

Many FHSS signals follow a pattern in time and this leads cyclic behavior in time

domain. The received signal can be reformed by combining the x(¢) into the r(¢) by,

>

=hxs(t Z JORIA+@) (1 — By) +n(t) +i(7). (3.5)

N J/
-~

x(t)

The periodicity is provided by s(z) whereas x(¢) and r(¢) are not periodic due to
the frequency hopping pattern. To analyze hidden periodicity inside r(z), frequency

hopping pattern is suppressed on 7(¢) which is defined as,

(1) = ()1 (3.6)
where r(t) represents the received signal. Considering the (3.5), 7(¢) equals to,

= ( s(r ‘ (1) () + B ()i () + B (0)n(0) 4 n(6)n (1) +n(0)i* () B.7)

Autocorrelation function is considered for cyclostationarity analysis as,

Rex(t,7) :W ‘2 Rit, r)‘2+2‘h)2R” (1, T)Rii(t,7) + <h2+(h*)2>

_|_

Ry (t,7)

Rex (1, T)Ri - (1,7) +28(7 (’ ‘P+P>+2‘ ‘ (P+0?)
+20%P +o* (3.8)

where R;;(t,T) represents autocorrelation of 7(f). Ry3(t,7) has 81 summation terms
and 64 of them are 0 due to properties of noise. ¢ stands for the noise variance, and
P; and P; are the average power of s(¢) and i(t), respectively. In addition, if there is no
interference signal, then (3.8) is simplified as,

‘4

2 2 2 4 2 2
Ri(1,7) = ‘h Rs,s(z,r)’ +2‘h‘ 2P, +c* + 20 ’h) P,5(7) 3.9)

Recall that s(z) is periodic that depends on hopping duration, which indicates that

R s(t,7) is also periodic. Thus, Ry3(t,7) can be expanded via Fourier Series

11



coefficients. Finally, SCF for FHSS signals can be obtained by calculating the Fourier
Transform of the CAF which defined in (3.4). SCF should have peaks at cyclic

frequencies for which the fundamental frequency is defined as a hopping rate.

Since the cyclostationarity based methods generally focus on periodicities such as
chip rate, pilot signals, etc., non-periodic signals such as double side band—single
carrier amplitude modulation do not indicate cyclic features. Any signal that behaves
periodically is detected by cyclostationarity feature detection. Moreover, if the
ISM spectrum is occupied with various signal sources, the cyclostationarity analysis
estimates the periodicity feature for signals that are periodic and reveal peaks for them.
However, the search area of cyclic frequencies is limited in the range specified in
the standards. Hence, the existence of other peak values would not be a concern to

consider.

3.2 Time-Frequency Analysis

Traditional time or frequency analysis can not be suitable for FHSS signals. Rather
than generating a 1-dimensional signal after taking a transform, the time-frequency
analysis provides a 2—dimensional representation [26, 27]. For instance, musical
sounds are time-varying signals which starts with a high level and gradually decay, can
not analysis with 1-dimensional transforms. Hence, time-frequency analysis is needed
for time-varying signals. Furthermore, time-frequency analysis is a great opportunity
to analyze when the model of signals is not known. Since FHSS signals that changing
carrier frequency in a short interval with an unknown sequence, time-frequency
analysis can provide in which carrier frequency where the signal starts in time and

where the ends in time.

Over years, there are different approaches are developed for represents signals in
2—dimensional. The time-frequency analysis can be categorized into two classes
[28]. First class is based on translating, modulating, and scaling a basis function
to derive time—frequency representation. This category can consist of short—time
Fourier transform (STFT), wavelets, and matching pursuit algorithms, as an example
[29-31]. In the aspect of the second class, the time—frequency representation can
be characterized by a kernel function. Wigner distribution, and Choi-Williams

distribution can be seen as some of the kernel based algorithms. Moreover,

12



compressive sampling (CS) is developed with the advances in the digital signal
processing algorithms [32-35]. CS is utilize the sparsity of the signals to reduce
the number of measurements needed, which achieved that with a fewer samples than
Nyquist-Shannon sampling theorem. However, CS brings with such problems at the

receiver as increased noise figure related to subsampling rate [36].

3.2.1 Short-time Fourier transform

The STFT approach is utilized to analyze the FHSS signals as a method to observe
the frequency content of this type of non—stationary signals over time. Mathematical

expression of STFT of the time-domain signal can be written as,

STFT{r(r) } = /_ o;[r(t)w(t _1)le 2Ty (3.10)

where w(z) is the window function. The STFT matrix S = [si[f],s2[f], - ,sk[f]]
such that i;, element of this matrix is a column vector determined by discrete Fourier

transform of windowed signal as,

N-1
silfl= ). r[n]wln — iR]e /2" (3.11)
n=0
where r[n| is sampled version of r(r) by considering the anti—aliasing property and R

denotes the shifting length.

One should keep in mind that adjusting the time and frequency resolution is crucial
point for STFT analysis [37] due to the trade off between them. The length of the time

point can be calculated as [38]

N,—L
m= {M—LJ 3.12)

where N, is length of the signal, L denotes the number of overlap in the Fourier

transform, M represents the window size, | -] stands for the floor operator.

As depicted in Fig. 3.1, the flow graph explains how the system works in brief. After
the signal is received in the first stage, optimal window time length is decided to get

the optimum resolution at (3.12) based on maximizing the number of elements on
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Figure 3.1 : The flowchart of the detection method.

the matrix S in the second stage of the flowchart. STFT is calculated in a dBm unit

according to power spectral density (PSD) in the same step and shown in Fig. 3.3a.

As the next step of the flowchart, a binarization operation is conducted. The STFT
matrix is converted to Sp;,(k,l), which will be defined as a binary matrix, using the
threshold p. Also, in the flowchart PSD refers to each point in the STFT matrix.
Based on the dynamically calculated threshold value, whether the signal presents or
not for each element of the STFT matrix is decided as shown in Fig. 3.3b. When the
signal is present, Sy;, (k,[) is evaluated as 1 and the new binarized matrix, Sp;,(k,1), is

given as,

3.13)



0 T T T T T T T
— RF Spectrum
Threshold

il Vr]n’wlimnlmv u|va‘m'w

Power, (dBm)

-120

_1 40 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Sample, (idx) «10°

Figure 3.2 : Estimated threshold representation.

where k and [ represent the frequency and time index in the sampled domain,
respectively. To determine the threshold value, each element of STFT matrix are
concatenated and a sorting algorithm implemented to list the power levels of each point
of the STFT matrix in a ascending order. Considering the wideband spectrum and the
fact that the hops of the FHSS signal occur in a short time interval, the majority of
the received signal is comprised of noise samples. Therefore, taking the mean value
of the top 20% of the sorted values of STFT matrix provides the to determine a lower
bound for the computation of the threshold. Fig. 3.2 shows PSD values of the received
signal, and the threshold value. Since the threshold value estimates the noise level,
even for the very low SNR regimes, the simulation results indicate the feasibility of

this threshold selection process.

Due to the wireless impairments on the received signal, the spectral region of the signal
on Sy is corrupted. This corruption is made it difficult to estimate the parameters of
the spectral region and leads to miss the signal or increases the error of estimation
of the spectral region. Moreover, as a result of the binarize the S matrix with an
adaptive threshold, salt—-and—pepper noise is seen which occurs from fluctuations of
Gaussian noise. In order to represent the signal in a more plausible way, widely
used morphological dilation and erosion aspects from the domain of image processing

[39,40] are considered to recover the received signal properly. This problem is handled
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in two parts as the inner region and edges of the signal. First, a 2-D convolution

operator is used to filling the inner region of the signal calculated as,

17 Sbln(k,l)*‘]n/m > nX(rg_l)

Sin(k,1) = 3.14
n(k1) {07 Soin (ko 1) - < ") 3.14)

where J is the all-ones matrix with a size of n x m. According to the size of the
kernel matrix which determines the threshold, the sum of the overlapping elements
in each shifting in convolution are compared with the threshold value. Since the
salt—-and—pepper noise is impulse noise which is seen to random points in the matrix,
the convolution operation is suppressing these points. Additionally, the region of the
signal is dilated while inner elements are filled up after the convolution operation. The
results of convolution with binarized matrix can be shown in Fig. 3.3c. Second part of
the correction of the Sy, considers the edges of the spectral region that represents the
presence of a signal. In order to preserve the continuity of the signal, the edge elements
are controlled by considering the similarity of the values of the neighboring elements.

For instance, when a signal region in the Sjj, is illustrates as,

(3.15)

SO == OO
O === =0
O»—H—H—H—OE
O = === O
S == —O
OO ===
SO = = OO

where 0 values marked in red are the values that remain incorrect. To change the
incorrect 0 values, the left, right, up and down corners of each 0 value are controlled.
Hence, if the conditions of neighbors elements are provided, the value is changed with
1. This process is continued until the region is shaped as rectangular, and the result is

exhibited in Fig. 3.3d.

After the recovery process, it becomes possible to extract the signal parameters such as
start time, stop time, center frequency and difference between start time and stop time
(dwell time) accurately. The parameter extraction process relied on the binary search

that detects the position of 1-valued elements of the S;,. Since the rows and columns of
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Figure 3.3b : The binarized version of
the spectrum.

2000

1800

1600

1400

1200

<1000

k, (idx)
k, (idx)

<1000

800 800
600 600
400 400

200 200

500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
I, (idx) I, (idx)

Figure 3.3d : Matrix correction pro-
cess: Edge correction of
the signal.

Figure 3.3c : Matrix correction pro-
cess: Inner side of the
signal.

Figure 3.3 : Time—frequency calculation of the received signal. After the calculation
binarization and correction results of the S.

the Sj, indicate the time and frequency, respectively, when the first 1-valued element
is detected, the counting on the rows is started until the detecting the next O—valued
element on the same row. Also, if the counter is reached the dimension of the S,
the counting process is terminated. Thus, at the end of the counting of the rows, the
duration of the signal has been estimated as the value of the counter. In addition to
these, the position of the row of the S;, that has been detected as 1—valued is defined
as the lower frequency band of the signal. After the counter is stopped by detecting
the O—valued element or reaching the dimension of the row of the matrix, the search
position is updated as the position of the previous element in the row. This time,
the counter is established in the direction of the columns of the matrix. Hence, the

bandwidth of the signal can be defined as the difference between where the counter
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stops and its initial starting position. In the end a list is generated signal duration,

center frequency, start time, end time, and bandwidth.

In the last step of the flowchart, controlling for each hop is done to decide whether it
belongs to the FHSS signal or not. Based on the similarities of the features, the signals
can be separated correctly. Clustering analysis utilizes the unsupervised learning
process which points each data points to a group without prior knowledge. To achieve
the clustering process, there exist different approaches under unsupervised learning
such as centroid-based, density-based, distribution-based, and hierarchical-based
algorithms [41]. Considering the problems, these algorithms can give solutions
in different aspects. Considering the highly dynamic structure of the unlicensed
spectrum, it is hard to label each scenario. Hence, unsupervised clustering is most
beneficial to the signal separation process. In this regard, a set is formed according to
the estimated parameters which include several temporal parameters (e.g., dwell time,
start/stop time) and bandwidth of each hop. If there is a signal that is not satisfying
to the statistic of the set, this hop is excluded because of a possible interference
signal. In the aspect of FHSS signals, separating the signals while employing the
clustering analysis has unique conditions. The hops of FHSS signals must start after
the previous-hop ends and also, the hopping duration and bandwidth of the hops are
the same as each other. Moreover, in the case of multiple FHSS signals randomly
occupying the spectrum band, the hops of the interested FHSS signal can be clustered.
Therefore, regarding the number of input data features, the number of output labels

can be varied when defining the user that occupies the spectrum.

To obtain the separated signal sources, a centroid—based algorithm is utilized with
modifications. To initialize the clustering process, one of the input data is selected
and is set as a first centroid. Following that, selected input data is compared with
other parameters found in the parameter list concerning to hopping duration and
bandwidth. Also, as stated earlier, the hops must follow the consecutive start and
end time, therefore the difference between the end time of the selected input data and
the start time of the compared data must be a positive value. When these conditions are
provided, the hops are kept as a cluster, however, if the conditions are not matched, the
data, which is compared feature, is defined as an outlier for this cluster. After that, the

initial point of the bandwidth and hopping duration is updated according to clustered
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Figure 3.4 : An illustration of the clustering algorithm, which is taken parameters of
the signals as inputs and compared with each other. The outputs are the
clustered parameters and cluster labels.

parameters. Moreover, non—clustered signals are proceeded to compare with other
features. If the conditions between the compared ones are achieved, a new centroid
is determined. This process proceeds until all input features are compared with each
other. An illustration of this algorithm is shown in Fig. 3.4. Regarding unrelated
signals in spectral localization behavior, the clustering process is not converging any
centroid for these signals, and hence different clusters are designated for these kinds

of signals.

3.3 Simulation Results for Signal Detection and Parameter Estimation

To demonstrate the performance analysis of the signal detection, parameter estimation,
and clustering performance, the occupied spectrum is simulated for the random users,
which have varied signal characteristics. Since the spectrum contains a mixture of
signals, the signal characteristics for each signal source are selected randomly as
defined in Table 3.1. Considering the 80 MHz spectrum bandwidth, which is the
available spectrum range for the unlicensed 2.4 GHz ISM band, in the simulation
environment the frequency range is used as 80 MHz. Additionally, observation
duration is one of the crucial specifications when capturing the signals. Considering the
hop rates that are used in the simulations and computation limit, observation duration is

selected as 0.01 seconds. Figure 3.5 exhibits that the simulation process that modulates
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-

the input bits of each signal sources, determines the hopping sequence, and adds the

channel conditions.

Considering, Table 3.1 specifies the range of the transmitted FHSS signals
characteristics, different scenarios can be examined. The hopping parameters are
selected within the scope of Bluetooth specification and drone RC signal [42, 43].
In this regard, the lower and upper bounds of parameters, which are used for signal
generation, have been set. Moreover, the radio frequency (RF) channel list, the
dwell time and bandwidth of each hop, the time gap between the consecutive hops
are selected uniformly within the bounds. Also, the initial start time of each signal
source is determined as Poisson distributed. When the spectrum is occupied by the
different signal sources, interference may occur. However, since the interference is
observed within the dwell time duration of the FHSS signal, the consecutive hops can

be analyzed, which will proceed on another carrier frequency.

When the simulated signal is generated, first, cyclostationarity analysis is applied
as discussed in Section 3.1.2.1, second, time—frequency analysis is employed to

determine where the signal is located in the spectrum and which signals are related

Table 3.1 : Frequency hopping spread spectrum (FHSS) parameters used for
generating simulated signal.

Lower-bound Upper-bound

Start Time (s) 0 -

Stop Time (s) - 0.01

Dwell Time (s) 0.00005 0.01
Bandwidth (MHz) 0.5 2
Spreaded Bandwidth (MHz) 30 70
SNR (dB) -18 4
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Figure 3.6 : The result of the SCF for the Bluetooth signal which has 1600 hop/sec.

to each other as discussed in Section 3.2. In order to show the output of the
cyclostationarity analysis, a Bluetooth signal is simulated which has 1600 hop/sec. As
can be seen in Fig. 3.6, cyclic peaks appear in the SCF. The fundamental frequency,
which represents the hopping rate of the FHSS signal, is estimated as 1590 Hz. Next,
the 4 FHSS signal sources are considered actively occupying the spectrum to employ
time-frequency analysis as discussed in Section 3.2. Figure 3.7 exhibits the successful
separation of multi FHSS signal sources correctly. Each colored rectangles indicate the
consecutive hops that belong to the same FHSS signals. Even though bandwidth and
the hopping durations are the same, the interested cluster can be formed by checking
whether it starts at the same time or not. Thus, when the signal sources start at a
random time, the multi FHSS signals, which show the same specifications, can be

separated also.

The performance analyses are conducted with a Monte Carlo simulation. In the
simulation environment, the channel conditions are considered as Rayleigh fading and

the iteration number is determined as 2000. The probability of detection is obtained for

21



Frequency, (MHz)

0 0.002 0.004 0.006 0.008 0.01
Time, (sec)

Figure 3.7 : After clustering the hops for different signals.

FHSS signals by comparing the number of clustered hops with the minimum number of
hops that can be observed which is 50 hop/sec. For this analysis, the true detection rate
is calculated as shown in Fig. 3.8. The results in Fig. 3.8 demonstrate the 0.9 detection
accuracy is reached after the —4 dB SNR. Moreover, the detection performance is
considered through the ROC curve. ROC curves are achieved for different SNR values
as shown in Fig. 3.8. In Fig. 3.8, it can be inferred that the probability of detection

has lower slopes in Pr, = 0,1 and Py, = 0,01 for —4 dB SNR and 0 dB SNR values,

respectively.

Since the cyclostationarity analysis estimates the hopping rate, it is important the
measure the approximation on the true hopping rate. Therefore, the performance of
the estimation of the hopping rate is calculated by root—-mean—square—error (RMSE)

which can be calculated as,

RMSE= |-} (ff,-—f,-)2 (3.16)

22



0.8 y -

0.6 [ ’ i

0.4 . X

Probability of Detection
.

0.2r ‘ 4

0 e _e_l %’ 1 1 1
-20 -15 -10 -5 0 5

SNR, (dB)

Figure 3.8 : The probability of detection rate is calculated by time-frequency analysis
for FHSS signals.

where f is the estimated hopping rate and f denotes the true value of hopping
rate. Also, N; represents the number of iteration. For each iteration of the Monte
Carlo simulation, the hopping rate of the FHSS signal is randomly changed. The
error performance of the cyclostationarity analysis is shown in Fig. 3.10. Since the
cyclostationarity analysis is based on matches between adjacent signals, more hops
that captured will give a higher peak value in the hopping rate. Therefore, the hopping

rate can be distinguishable more accurately for lower SNR values.
3.4 Real World Considerations for Signal Detection and Parameter Estimation

3.4.1 Measurement setup

Experimental setup for FHSS signal detection and parameter estimation is performed
in Scientific and Technological Research Council of Turkey (TUBITAK) Informatics
and Information Security Research Center (BILGEM). The test-bed used in the data
acquisition procedure consists of FHSS—type drone RC signal source and spectrum

analyzer to record the signals.

Futaba T8J RC is used during the experiment as the FHSS signal source. It employs the
first 50 MHz of a 2.4 GHz ISM frequency band which is divided into 30 RF channels
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Figure 3.9 : ROC curve for time—frequency analysis in —4 dB and 0 dB SNR.

each with a channel width of 1.5 MHz [44]. The illustration of the hopping pattern of

the FHSS signal source is shown in Fig. 3.11 where At;, At,, and Az3 represent the time

gaps between the hops and their repetitions. These parameters are given by,

T,+At;, [=1 mod3
C = T,+Aty, [=2 mod3 3.17)
T,+Atz, [ =3 mod3.
The fundamental period of the Futaba T8J RC signal can be calculated as [44],
(3.18)

3T, + At + Ay +At3,: 6.8 ms
C1+E§+C3

where Af; < Aty < At3.

In the receiver side, Rohde&Schwarz FSW 26 signal and spectrum analyzer (SSA) is
utilized to record I/Q data. SSA can support the frequency range from 2 Hz to 26.5
GHz. The device provides real-time spectral analysis up to 160 MHz bandwidth. The

signals are recorded over the 2.4 GHz ISM spectrum band with an omnidirectional
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Figure 3.11 : The hopping pattern of the FHSS signal emitted by Futaba T8J RC.

antenna. The center frequency of SSA is set to 2.44 GHz and bandwidth of interest

is adjusted to 80 MHz for the purpose of full coverage. Also, SSA is connected to

external computer via an Ethernet cable in favor of achieving data storage with ease.
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Figure 3.12 : FHSS signal detection: Cyclostationarity Feature Detection.

Table 3.2 : Estimated parameters of FHSS signal.

Start Time Stop Time Dwell Time Center Frequency

(ms) (ms) (ms) (GHz)
1.7930 3.2403 1.4472 2.4271
5.1742 6.6086 1.4344 2.4414
6.7623 8.1967 1.4344 2.4414
8.6066 10.0410 1.4344 24211

11.9749 13.4221 1.4472 2.4039

The sampling rate depends on the analysis bandwidth of the real-time spectrum which

is selected as 80 MS/s.

3.4.2 Measurement results

Over-the—air data collection is realized and the performance of time—frequency
analysis method is evaluated. Captured signal includes real-world propagation effects
such as multipath fading, interference, carrier frequency offsets. The drone RC signal
and the Bluetooth signal are identified with the maximum peak of the cyclostationarity
function that described the hopping rate of FHSS signals as seen in Fig. 3.12a and
Fig. 3.12b.

Some of the estimated parameters of the real signal which measured at 25m distance
can be found in Table 3.2. Considering the resolution in both time and frequency, the

parameters are estimated within the £1 sample.
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4. DIRECTION OF ARRIVAL ESTIMATION FOR FHSS SIGNALS

In Section 3 detection of FHSS signals and parameter extraction of each specific signal
source are discussed. Using this information, the direction of the signal sources can
be achieved with a passive system. Here, it is important to note that radio-—DF has a
rich history and a very well—established literature on a wide variety of its application
scenarios. Although, the majority of the DF algorithms present in the literature focus

on a non—hopping carrier and operate on a narrow—band spectrum [45,46].

DF techniques can be grouped under the following two categories: switched beam
system (SBS) and adaptive array system (AAS) [47]. SBS method uses overlapping
beams to scan the azimuth plane. The AoA is then determined by a search carried
out across all over the candidate beam positions. Output is chosen to be the position
yielding a maximum value for a defined cost function. It is important to state here
that the SBS method benefits from the following two key points: firstly, it operates
with a mechanically agile directional single antenna, and secondly, it does not require
any baseband signal processing. Of course, these key points come at the expense
of several shortcomings. For instance, the accuracy of SBS method relies heavily
on SNR. This points out that detection range affects the performance significantly.
Furthermore, statistical nature of wireless propagation generally implies poor SNR
regimes for links especially within regulated but unlicensed bands where strict power
limitations are imposed on the transmitters. Hence, optimal performance could only be
achieved within the time slots when SNR is above a certain threshold. Therefore, the
overall performance could be improved by prolonging the observation intervals, which
is against the nature of the problem of interest. Such shortcomings necessitate more

robust and responsive algorithms.

In contrast to SBS, AAS methods take advantage of smart antennas to steer the main
beam in any desired direction and establish a continuous tracking. Beam steering is
achieved by combining the weights of each antenna array element so that the maximum

power is transferred spatially for a desired location or direction. Equipped with beam
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Figure 4.1 : The incident wave is impinging upon elements of the ULA structure for
0 angle.

steering/tracking capability, AAS could be used in DF with the following two groups
of techniques: conventional and subspace—based. Conventional methods form a power
spectrum in such a way that look—direction gain is forced to be at unity gain while those
of all other directions are minimized [48]. This way, a peak search could be carried out
across the spectrum for the candidate angles/directions for the signal source of interest.
It is noteworthy to indicate here that conventional techniques could operate in low
SNR regimes to some extent. However, their computational complexities are higher
as compared to those of AAS. On the other hand, subspace—based techniques focus
on separating the signal subspace orthogonal to the noise subspace. With the advances
in digital signal processing techniques and systems, subspace—based methods could be

implemented and deployed rapidly [49].

In the AAS, different time delays occur since the impinging signals arrive to the
antenna elements at different times as shown in Fig. 4.1. Therefore, after defining
a reference element, the delay between the mth element and the reference element can

be calculated as,

o - (m—1)dsin6 @.1)

C

where d represents distance between adjacent elements, 6 denotes the direction of
arrival of a signal impinging upon the uniform linear array (ULA), and ¢ stands for the
speed of light. The received signal at mth element can be formed by using the delay

amounts as,
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))m(t) _ e—ja)’rmyl(t) _ e—de(m—l)sinex(t)

=/ WVx(r) = a(y)x(r)

4.2)

where yj (¢) represents the impinge signal to the reference element, y = —ZA—”d sin 0 is
the spatial frequency, and a(y) denotes the steering vector for the x(¢). Considering all
the elements in ULA and the additive noise samples, we can write the received signal

in a matrix format for p signal sources as,

Y =AX+N, YeC"¥N 4.3)

where A is the M x p matrix to the p steering vectors, N represents additive noise for

M element.

4.1 Direction—Finding Algorithms

There have been various approaches for the direction of arrival algorithms. In
this regard, subspace-based algorithms have shown better performance against
minimum variance distortionless response (MVDR), the sum and delay which are
spatial correlation methods. Among the aforementioned algorithms, the correlative
interferometer needs a calibration process to fill a phase offset table and requires
an odd number of antennas. In addition to this, pseudo-Doppler has a resolution
problem. Regarding expectation-maximization, the result has a prominent accuracy
but has difficult implementation problems, and also it requires prior information.
Also, considering the real-world applications such as cluttered environment or NLOS
conditions, correlative interferometry and pseudo-Doppler are not robust and the
performance of these algorithms is dropped tremendously. Furthermore, MUSIC
algorithm is robust under the multipath and mobility affects comparing the classical

methods. Thus, we focus on MUSIC algorithm in this thesis.

4.1.1 Multiple signal classification algorithm

The input covariance matrix calculated as,

Ry, = E[YY”] = AR, A" + 6°I) 4.4)
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where (-) is the Hermitian transpose operator, Ry, stands for the signal correlation
matrix, 62 denotes the noise variance with identity matrix I;. However, in practical
applications, Ry, usually can not be directly obtained and only sample covariance can

be used [50],

~ 1 &
Ry, = 17 1_21 y(t)y" (1) 4.5)

where L represent the number of snapshot. In order to achieve the frequency content of
the signal, multiple signal classification (MUSIC) uses the eigenvalue decomposition.
If the corresponding eigenvalues of the ﬁyy are sorted in decreasing order, the largest
p eigenvalues indicate the signal subspace and the remaining (M — p) eigenvalues of
the ﬁyy represents the noise subspace. Therefore, using the signal and noise subspaces,

pseudo—spectrum of phase can be calculated [51],

1

A(0)HU,UHA,(9) (4.6)

fr(e) =

where A,(0) denotes the steering vector for x(¢) and U, refers to the matrix of
eigenvectors associated with the noise subspace. A search over (4.6) is performed

to find maximum points as,

6 = argmax f,(6) 4.7)
]

where 0 is the estimated AoA of the signal.

4.1.2 root-MUSIC algorithm

The root—-MUSIC method, in comparison to the MUSIC algorithm, finds the roots of
a polynomial rather than plotting the pseudo spectrum or searching for peaks in the
pseudo spectrum [52]. Same as the MUSIC algorithm, the covariance matrix can be
estimated from several snapshots. Then, eigenvalue decomposition of the estimated
covariance matrix is employed to obtain spectral function. The polynomial can be

obtained by taking the inverse of the MUSIC spectrum and is given as [53],

[(0)7' =A.(6)"U,UTAL(6) (4.8)
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where steering vector and noise subspace are the same as in (4.6). Considering the
roots of the polynomial that are inside the unit circle, the closest p roots to unit circuit

are selected. Finally, the estimation of the AoA can be determined by,

A A
_n—l
0 = sin {WZMJ 4.9)

where d is the distance between two adjacent elements, A denotes the wavelength and

y stands for the roots of f,(6).

4.2 Direction Finding of FHSS Signals

Although FHSS signals occupy a wide spectrum, each hop of FHSS signals has a lower
bandwidth. On the other hand, an accurate estimation of the AoA needs continuity in
the spectrum. For the case of FHSS signals, presence in a certain frequency with
a short time is not enough for an accurate estimation. Many hops are combined
sufficiently, the accumulated signal samples can be increased in a certain frequency
which is the pre—processing step. In Fig. 4.2, the flow graph explains how the system
works in brief. First, the received multi—channel signal is achieved using the ULA
and cyclostationarity analysis of the received signal obtained from the first antenna is
performed as discussed in Section 3.1.2.1. After ensuring the cyclostationarity feature
of the drone RC, parameters of the signal are estimated to reconstruct the FHSS signal
for the received signal array. Furthermore, the resampling process is employed to
decrease the signal sample rate and reduce the computational complexity. In the last

step, AoA of the FHSS signal is achieved by using subspace—based algorithms.

4.2.1 Reconstruction of FHSS signals

There are many different topologies for the antenna array. Considering the ULA

enumerated with 0,1,...,M elements, (2.5) can be expanded for any mth antenna
element as,
P (1) = (1) % x(2) 41 (1) + 1 (2) (4.10)
N—_——

ym(t)
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Figure 4.2 : Overall block diagram of the system.

h(t) is the channel impulse response between the mth element and signal source,
which has frequency flat fading and n,,(¢) stands for the complex AWGN in which I
and Q components are i.i.d ~ .4(0, 62/2).

A signal received in a wideband spectrum bears much higher noise level for each hop
of an FHSS signal that makes it almost impossible to distinguish it from the desired
signal. Therefore, extraction each hop from the wideband spectrum and estimation
of parameters of the FHSS signal are required as discussed in Section 3.2. Then,
the received signal can be filtered by using the lower and upper frequency band, i.e,
[fL, fr], of each hop for a estimated start and end time interval. A bandpass filter
is designed to obtain each hop from the spectrum and suppress other signals in the
same time interval. This approach also eliminates the unwanted noise from the signal.
After filtering the hops of the FHSS signal, each hop is shifted to achieve equivalent

baseband signal considering estimated center frequencies.

Let %(¢) be the filtered and shifted version of each hop to its baseband frequency. It can

be described as,

K 2
2(t)=r(t) x Y. e TPy (t — By) (4.11)
k=1

where () is the received signal, fy = (fL + fu)/2 denotes the estimated center
frequency of kth hop, By = Z;‘;ll C; and C; refers to the time difference between start
time of /th and (/+ 1)th hop. Then, Z;(¢), which is baseband equivalent and also shifted

to the interval [0, 7;,] of the kth hop, can be expressed as,

32



k():{ 2(t+ (k—1)T,+By), 1 € [0,T;)] 4.12)

Zr(t
. 0, others

In order to increase the signal resolution at baseband frequency, time gaps between

hops should be removed. Therefore, we define a concatenated function, f (1), as,

Ft) = fzk(z— (k—1)Tj,). 4.13)
k=1

As a result, by combining (4.11), (4.12), (4.13) the whole reconstruction process from

r(1) to f(r) can be seen as:

K K N
Ft) =Y |rlte+B) x Y e IPmmlctBly, (1) (4.14)
k=1 m=1

where t; € [(k— 1)T},,kT},]. Note this process is realized for every received signal from

each antenna.

In the final step before executing the AoA algorithm, the resampling process
is employed. Considering the multi-rate filters, it can provide upsampling and
downsampling with a P-to-Q rational rate. Since the measurements consist of the
wideband spectrum, each hop of the FHSS signal has a smaller bandwidth than the
captured wideband spectrum. After achieving the reconstructed version of the FHSS
signal, the signal can be modeled as none frequency hopping which eliminates the
spreading. Thus, the signal can be sampled with a much lower sampling rate depending
on each hop’s bandwidth. In this regard, the P-to-Q rate can be determined with the
bandwidth of each hop of the FHSS signal and sampling rate [54, 55]. The input
signal is upsampled by adding zeros between samples of the original signal. After
that, an FIR anti—aliasing filter was applied to eliminate discontinuities. In the last
step, filtered signal samples are discarded to decimate the signal, and samples are
kept at each downsample step size. It is important to note that, phase of the input
signal can change while applying the resampling process [54]. However, since the
resampling process shifts the phase of each reconstructed signal in the same manner,
the phase difference between channels does not change. Thus, the result of the AoA
is not affected. Furthermore, this approach also reduce the computational complexity

during covariance matrix evaluation.
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High resolution in both time and frequency cannot be achieved when calculating STFT.
If the window is wider, the better frequency resolution is achieved but this leads
to less time resolution and vice versa. The extraction of the temporal information,
carrier frequency, and bandwidth of the signals depends on the resolution of the STFT.
For instance, when the window is selected for a higher frequency resolution, the
temporal parameters are estimated with margins as shown in Fig. 4.3a. Considering
the slicing of the hops in the time domain according to the start and end time which
are estimated with margins, the reconstructed signal contains more noise samples.
Since the eigenstructure-based algorithms separate the signal and noise subspaces, it
is expected that result of the direction of arrival is barely affected or even not, due to
resolution errors. Furthermore, if the time parameters are estimated more accurately,
the frequency parameters are estimated with margins as shown in Fig. 4.3b. Therefore,
the shift in the frequency domain might be affected by frequency resolution slightly,
but the low pass filter ensures that the hops of the FHSS signal remain below the
cutoff frequency which is determined as the bandwidth of the hops. Moreover, the
performance analysis is employed to calculate the RMSE for the ideal signal transition
case (the green shaded region in Fig. 4.3a) as well as signal transition with margins (the
yellow shaded region in Fig. 4.3b). The result of the RMSE between these conditions

has approximately the same form as shown in Fig. 4.4.

4.3 Real World Considerations for Direction—-Finding of FHSS Signals

The AoA estimation of FHSS signals is performed for signals captured by using
over—the—air received signals by using the ULA. The measurements are taken in the
test field of TUBITAK BILGEM in Gebze, Turkey. Measurements are conducted at
a suburban area with a hilly terrain structure and foliage, which is close to the Sea of

Marmara for both line—of—sight (LOS) and non—line—of-sight (NLOS) conditions.

4.3.1 Hardware setup

The test—bed consists of the Futaba T8J drone RC as an FHSS signal source, four
identical quasi Yagi antennas, and one National Instruments (NI) PXIe receiver to
support the multiple input structure as shown in Fig. 4.5. Four identical antennas are

utilized to construct our AAS. In AAS, it is preferred to utilize ULA for the AoA
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Algorithm 1: Resampling process

Input: Complex baseband signal (f (1)), estimated bandwidth (bw), sampling
rate (f;)
Result: Resampled signal (fzs(r))
Initilizations:
N = length(f(¢))
n < the numerator for the fractional rate between bw, f;
d « the denominator for the fractional rate between bw, fs
f cutoff — W rad/. sample
Filter order <— 2 x k x max(n,d), where k =50
for i=0to N-1 do
if (i/n) == floor(i/n) then
| fuli) = Fi/n)

else
| fu(i)=0
end
end
haa < fir(Filter order, feu0rf, Kaiser window)
P = fu*haa

for i=0ton xN —1 do

| frs(i) = p(ixd)
end

process. A ULA structure is constructed with four identical quasi Yagi antennas. The
separation distance between each adjacent antenna element is kept as /2 ~ 6.2 cm
where A is the wavelength at 2.42 GHz. Furthermore, the height of antennas is set
at approximately 1.5—-meter and thus, reflections from the ground are avoided. The
signal from each antenna are received synchronously with the help of a NI PXIe-1065
four—channel receiver. NI PXIe—1065 receiver chassis consists of four major parts:
one NI PXIe-8108 embedded controller, one NI PXI-5652 RF signal generator, four
NI PXIe-5622 digitizer which has a 16-bit resolution and four NI PXIe-5601 RF
downconverter in which each downconverter covers the frequency range 10 MHz to 6.6
GHz and has a 50 MHz instantaneous bandwidth. The corresponding block diagram

of our setup is shown in Fig. 4.6.

4.3.2 Experimental procedures

Since the signal source operates in the 2.4 GHz — 2.45 GHz spectrum, it spans over 50
MHz bandwidth. At this point, while the signal is captured at a high sample rate, only

a section of the spectrum has been considered to prevent data overflow. Therefore, the
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Figure 4.4 : The performance comparison between the perfectly slicing the signal and
slicing the signal with margins.

bandwidth of interest is adjusted to 10 MHz and resulting sampling rate is 20 MS/s.
The center frequency is set to 2.42 GHz to monitor the spectrum where the hops of the

FHSS signal will likely appear the most.
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Figure 4.5 : The test-bed of the measurement campaign.
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Figure 4.6 : Block diagram of measurement setup.

One should note that the accuracy of the MUSIC and root-MUSIC algorithms highly
depends on the phase of the received signal. If there is a phase difference between
each receiver before the measurement campaign, the performance of the algorithms
degrade tremendously. In order to ensure the phase coherency between each receiver,
we perform a calibration procedure to cancel out the possible phase mismatches that
can occur from local oscillator errors and environmental factors such as cable length

etc. [56].

4.3.2.1 Calibration process

First, a signal generator is configured to generate a narrowband signal at 2.42 GHz. The
signal generator is placed right across the ULA to guarantee 0° for AoA. Four—channel
receiver is set at 2.42 GHz. Phase differences of each antenna are calculated according
to the reference antenna. Also, this process is implemented in the LabVIEW program.
Finally, once the phase difference are calculated, each phase difference value is
integrated into the measurement process before starting the measurement campaign.

Thus, phase coherency is assured across the receivers.
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4.3.3 Measurement results

The DF results obtained for the received signals with pre—processing and without
pre—processing stages for MUSIC and root—-MUSIC algorithms are exhibited. In order
to check the accuracy of the proposed method, the true AoA values, 6, for each drone
RC location are calculated by using Garmin GPSmap 62sc and Google Earth Pro. The
true AoA values for each drone RC location are {4.43°,6.41°,8.55°,10.33°,2.1°} for
115.24m, 164.74m, 214.74m, 264.62m and 512m, respectively.

The comparison of estimated AoAs for MUSIC and root—-MUSIC algorithms illustrates
that the pseudo spectrum is shifted with a miscalculated value. For instance, the
phase—spectrum of the measurement that is taken from a 115.24-meter distance is
calculated for with processing and without processing as shown in Fig. 4.7. It clearly
indicates that pre—processing of the received signal array improves the DF estimation
of FHSS signals. As seen in Table 4.1, Table 4.2, Table 4.3, Table 4.4, and Table 4.5,
the results are exhibited based on different antenna numbers, processing effects, and
different estimators. The results show that angle accuracy is improved with antenna
number and pre—processing effect. It is also noted that environment characteristics
of the measurement campaign affects the performance of the proposed algorithm. In
Table 4.5, the results are calculated for the signal that is captured at the farthest distance
while considering LOS condition. According to the Table 4.1, Table 4.2, Table 4.3, and
Table 4.4 which are the NLOS cases, the increase in the Tx—Rx separation degrades
the results. On the other hand, at 512m which is the LOS case, the difference between

true value and estimated value is only 1.10°.
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Figure 4.7 : MUSIC phase—spectrum for different processing methods.

Table 4.1 : AoA estimations of drone RC where has a 4.43° angle position at 115.24
meters apart from the antenna array with respect to a different number of

antennas (M). The best estimation for drone RC is highlighted in boldface

font.
M Pr;);:ssing Estimator Angle ofAArrlval
ec 0 0 Diff.
Google Earth 4.43°
Without root-MUSIC 16.74° 12.31°
’ Pre—processing MUSIC 16.70° 12.27°
With root-MUSIC 28.20° 23.77°
Pre—processing MUSIC 28.20° 23.77°
Without root-MUSIC 44.28° 39.85°
3 Pre—processing MUSIC 43.50° 39.07°
With root-MUSIC 16.61° 12.18°
Pre—processing MUSIC 16.60° 12.17°
Without root-MUSIC 56.29° 51.86°
4 Pre—processing MUSIC 56.30° 51.87°
With root-MUSIC 4.54° 0.11°
Pre—processing MUSIC 4.30° —0.13°
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Table 4.2 : AoA estimations of drone RC where has a 6.41° angle position at 164.74
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface

font.
Prl(:;:ssing Estimator Angle of AArr1val
e 66 6 Diff.
Google Earth 6.41°

Without root-MUSIC 19.53° 13.12°
Pre—processing MUSIC 19.50° 13.09°
With root-MUSIC 30.72° 24.31°
Pre—processing MUSIC 30.70° 24.29°
Without root-MUSIC 42.67° 36.26°
Pre—processing MUSIC 42.00° 35.59°
With root-MUSIC 19.89° 13.48°
Pre—processing MUSIC 19.90° 13.49°
Without root-MUSIC 56.15° 49.74°
Pre—processing MUSIC 56.10° 49.69°
With root-MUSIC 7.74° 1.33°
Pre—processing MUSIC 7.70° 1.29°

Table 4.3 : AoA estimations of drone RC where has a 8.55° angle position at 214.74
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface

font.
M Pr%i;ssing Estimator Angle of AArrnval
ec 0 ] Diff.
Google Earth 8.55°

Without root-MUSIC 16.63° 8.08°
Pre—processing MUSIC 16.60° 8.05°
With root-MUSIC 33.46° 24.91°
Pre—processing MUSIC 33.50° 24.95°
Without root-MUSIC 43.47° 34.92°
Pre—processing MUSIC 42.80° 34.25°
With root-MUSIC 23.69° 15.14°
Pre—processing MUSIC 23.70° 15.15°
Without root-MUSIC 56.82° 48.27°
Pre—processing MUSIC 56.80° 48.25°
With root-MUSIC 10.26° 1.71°
Pre—processing MUSIC 10.20° 1.65°
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Table 4.4 : AOA estimations of drone RC where has a 10.33° angle position at 264.62
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface

font.
Pr;;;sslng Estimator Angle of i&rrlval
e 66 6 Diff.
Google Earth 10.33°
Without root-MUSIC 16.44° 6.11°
Pre—processing MUSIC 16.40° 6.07°
With root-MUSIC 29.75° 19.42°
Pre—processing MUSIC 29.70° 19.37°
Without root-MUSIC 44.48° 34.15°
Pre—processing MUSIC 43.90° 33.57°
With root-MUSIC 24.39° 14.06°
Pre—processing MUSIC 24.40° 14.07°
Without root-MUSIC 56.61° 46.28°
Pre—processing MUSIC 56.60° 46.27°
With root-MUSIC 12.92° 2.59°
Pre—processing MUSIC 13.10° 2.77°

Table 4.5 : AoA estimations of drone RC where has a 2.10° angle position at 512.00
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface

font.
M PrI(::i;ssing Estimator Angle of AArrlvaI
ec 0 0 Diff.
Google Earth 2.10°

Without root-MUSIC 47.35° 45.25°
Pre—processing MUSIC 47.40° 45.30°
With root-MUSIC 35.50° 33.40°
Pre—processing MUSIC 35.50° 33.40°
Without root-MUSIC 57.16° 55.06°
Pre—processing MUSIC 57.20° 55.10°
With root-MUSIC 14.20° 12.10°
Pre—processing MUSIC 14.20° 12.10°
Without root-MUSIC 67.56° 65.46°
Pre—processing MUSIC 67.20° 65.10°
With root-MUSIC 3.33° 1.23°
Pre—processing MUSIC 3.20° 1.10°
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5. Concluding Remarks and Future Directions

Safety, security, and privacy are three critical concerns affiliated with the use of drones
in everyday life. Considering their ever—shrinking sizes and capabilities, being aware
of drone activities in the vicinity becomes an important surveillance item. Therefore,
keeping track of drones and preferably their controllers should be included into the
already—existing security measures. Therefore, this thesis focuses on the problem of
identification and AoA estimation of real-world drone RC signals. For this purpose,
cyclostationarity based signal identification and time—frequency analysis are applied to
distinguish FHSS signals such as drone RC and Bluetooth signals. Once the drone RC
signal is identified, rather than directly feeding wideband signals to the AoA algorithm,
the performance of the DF with the reconstruction of FHSS signals is discussed.
For this reason, time—frequency analysis is used to get the correct FHSS signal to
reconstruct in the baseband center which leads to the accurate estimation of AoA.
Also, real-world conditions are considered for the signal detection and estimation of
DF. The performance results show that gathering the hopping signal samples at a
frequency point against the noise will improve the performance of DF estimation for

FHSS signals.

Some of the potential future research directions that require further investigation are:

e Adopting the recently emerging deep learning algorithms to distinguish FHSS

signals among the standard-based wireless signals.

e Kalman filtering can be considered for the tracking of the hops of an FHSS signals
and use different subspace—based AoA estimation methods such as Fourier domain

MUSIC algorithm.

e For the case that the multiple FHSS signals exist, the probability of correct

clustering under the different conditions for various SNR values can be examined.
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