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Batuhan KAPLAN
(504181341)
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SIGNAL DETECTION AND PARAMETER ESTIMATION
OF

FREQUENCY HOPPING SIGNALS

SUMMARY

Unmanned aerial vehicles (UAVs) have become a prevalent part of the daily life
with their applications to many fields such as mapping and surveying, transportation,
surveillance, law enforcement, aerial imaging and agriculture. Besides the
aforementioned use of UAVs in many areas, one should keep in mind that UAVs
can also be used dangerously to create unwanted incidents especially when they are
diverted to the sensitive airspace near airports and their presence may cause accidents
which can result in fatal crashes. Moreover, UAVs can be utilized for collecting
information about people, organizations, and companies without their consent.
Therefore, identification and direction of arrival estimation of UAV systems/remote
controllers and their communication are great importance, especially to prevent
unwanted situations. In this context, it is known that most of the communication
between the UAVs and wireless radio controller (RC) utilize the spread spectrum
technology of frequency hopping spread spectrum (FHSS) on ISM band at 2.4 GHz.
Therefore a method to detect, classify and estimate the direction of arrival of these
kinds of signals in this band would lead to the identification of the communication
between the UAV and the controller. Thus, this thesis attempts to address solutions for
identifying and direction of arrival estimation of FHSS signals.

In Chapter I, open issues and the state–of–the–art solutions to the open issues in FHSS
signal detection, identification and direction of arrival estimation are given. Moreover,
in Chapter II, mathematical preliminaries of FHSS signal characteristics are provided.

In Chapter III, signal detection and parameter estimation are discussed by focusing
on cyclostationarity signal and time–frequency analyses. First, a method based on
cyclostationarity analysis is applied to distinguish the FHSS signals. Furthermore,
short–time Fourier transform (STFT) based blind signal detection and clustering are
employed to reconstruct the correct hops of the FHSS signal. Therefore, if there
is an interference signal, outliers are removed from the parameters table according
to the spectral localization of the signals. Furthermore, the literature utilizes the
simulated data instead of over–the–air signals in general and these simulations assume
that there is no time guards between hops. This assumption makes differentiation
of frequency–hopping (FH) signals easier, however, many hopping signals use time
guards and also these time guards are different for different signal sources.

In Chapter IV, direction of arrival estimation for FHSS signals are studied by utilizing
MUSIC algorithm which is a high–resolution subspace–based direction-finding
algorithm. A variant of STFT is introduced to extract the parameters of detected
FHSS signals. The correct hopping signals are then aggregated based on the clustered
parameters to obtain their combined baseband equivalent signal. Furthermore, the
resampling process is applied to reduce the unrelated samples in the spectrum

xxi



and represent the spectrum with the reconstructed signal, which has a much
lower bandwidth than the spread bandwidth. Finally, two different multiple signal
classification algorithms are utilized to estimate the direction of the drone controller
relative to the receiving system. In order to validate the overall performance of the
proposed method, the introduced framework is implemented on hardware platforms
and tested under real–world conditions. A uniform linear antenna array is utilized
to capture over–the–air signals in hilly terrain suburban environments by considering
both line–of–sight and non–line–of–sight cases. Direction estimation performance is
presented in a comparative manner and relevant discussions are provided.
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FREKANS ATLAMALI SİNYALLERİN
TESPİTİ VE PARAMETRE KESTİRİMİ

ÖZET

Akılı ev teknolojisi, kişisel cihazlar, endüstriyel otomasyon, araçla-herşey gibi
alanlarının yaygınlaşması ile kablosuz haberleşme cihazlarının sayısı gün geçtikçe
artmaktadır. Bundan dolayı, sınırlı kullanım alanına sahip spektrumun tüm kullanıcılar
için yeterli kaynağı sağlaması mümkün gözükmemektedir. Dolayısıyla, bu kablosuz
haberleşme cihazlarının her birinin mevcut kaynağı paylaşımlı bir şekilde kullanması
önem arz etmektedir. Sinyal kaynakları spektrumda kesintisiz bir şekilde haberleşmeye
devam edebilmek için çoklu erişim tekniklerini kullanmaktadır. Bunlar arasında
frekans atlama yayılmalı spektrum (FAYS) teknolojisi ile kablosuz haberleşme
sistemleri, hızlı bir şekilde merkez frekansını değiştirmesiyle spektrumda yayılarak
herhangi bir frekans planı olmadan geniş bantta iletişim sağlamaktadır. Böylece, FAYS
haberleşme sistemleri yoğun bir spektrumda girişime karşı dayanıklı ve karıştırmaya
karşı koyma gibi yeteneklere sahip olmaktadır.

Frekans atlamalı haberleşme sistemlerinin kullanımı öncelikli olarak askeri amaçlı
kullanılan radyolarda olmak üzere, Bluetooth haberleşmesi, drone radyo kontrolcü
haberleşmesi, medikal cihazlar için kullanılan haberleşme sistemleri gibi birçok farklı
sivil alan uygulamalarında da yaygın olarak kullanılmaktadır. Askeri uygulamalarda,
birçok ülke iletişim güvenliği açısından taktik veri linklerinde frekans atlamalı
sistemleri benimsemiştir. Frekans atlamalı haberleşme sistemleri, sivil uygulamalar
için ise lisanssız spektrum bölgesinde frekans planlanmasına gerek duymadan
spektrum paylaşımını girişim olmadan yapabilmektedir.

Günümüzde dronların ya da bir başka deyişle İnsansız Hava Araçları (İHA), hobi
amaçlı olarak kullanılan bir alan olarak gözüksede haritalama ve ölçme, ulaşım,
gözetleme, kolluk kuvvetleri, havadan görüntüleme, tarım gibi birçok alandaki
uygulamaları ile günlük hayatın yaygın bir parçası haline gelmektedir. İHA’ların pek
çok alanda kullanılmasının yanı sıra, güvenlik ve gizlilik açısından tehlike oluşturması
da mümkündür. Örneğin, İHA’ların havaalanlarında istenmeyen olaylar yaratmak
için tehlikeli bir şekilde kullanılabileceğini ve varlıklarının telafisi mümkün olmayan
kazalara neden olabileceği unutulmamalıdır. Ayrıca İHA’lar, araçlar, altyapılar
ve tesisler için doğrudan bir fiziksel tehdit olmanın yanı sıra, İHA’lar özellikle
kritik operasyonlarda ve/veya hizmetlerde arızaya yol açan iletişim bağlantılarını
karıştırmak, müdahale etmek veya tamamen engellemek için kullanıldıklarında da
tehdit kaynağı olabilir. Her geçen gün küçülen boyutları ve artan yetenekleri göz önüne
alındığında, güvenlik için çevredeki drone faaliyetlerinden haberdar olmak önemli bir
gözetleme unsuru haline gelmektedir. Ek olarak, İHA’nın görünümünü uçurtma, kuş
vb. gibi diğer uçan nesnelerden etkili bir şekilde ayırt edilemeyebilir. Bu nedenler
göz önüne alındığında İHA sistemlerinin/uzaktan kumandaların tanımlanması ve varış
yönü tahmini, özellikle istenmeyen durumların önlenmesi açısından büyük önem
taşımaktadır. Bu noktada, birçok İHA ile kablosuz radyo denetleyicisi arasındaki
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iletişimin 2.4 GHz ISM bandında ve FAYS teknolojisini kullandığı bilinmektedir. Bu
bilgiler ışığında, daha önce ifade edilen bantta farklı sinyal kaynakları spektrumu
meşgul edebileceği için FAYS türündeki drone radyo kontrolcüsünün tespit edilmesi
ve farklı sinyal kaynakları arasından ayrıştırılması sağlanmalıdır. Bu tez çalışmasında
FAYS türündeki drone radyo kontrolcüsünün tespit algoritması simülasyon verileri
ile analiz edilmektedir. Ayrıca, test düzeneği kurularak gerçek dünya koşulları
altında sinyal tespit ve parametre kestirimi yaklaşımı incelenmektedir. Ardından,
çoklu alıcı sistem kullanılarak altuzay tabanlı yön bulma algoritması ile drone
radyo kontrolcüsüne ait yön kestirimi yapılmaktadır. Sinyal ayrıştırma sırasındaki
çözünürlük sorunu ele alınarak elde edilen başarım göz önüne alınıp gerçek dünya
koşullarındaki performansına bakılmaktadır. Test için kurulan ölçüm düzeneği,
Rohde & Schwarz spektrum analizörü, Rohde & Schwarz sinyal üreteci, Futaba T8J
drone radyo kontrolcüsü, NI PXIe çok kanallı alıcı, özdeş 4 adet Quasi Yagi anten,
kişisel bilgisayar ekipmanlarından oluşmaktadır. Tüm ölçümler Türkiye Bilimsel ve
Teknolojik Araştırma Kurumu (TÜBİTAK) Gebze, Kocaeli yerleşkesinde bulunan
tepelik arazi banliyö tipi açık test sahasında yapılmıştır.

Bölüm I’de, dron kullanımı ve gerçekleşebilecek tehditler ele alınıp FAYS sinyal
algılama, tanımlama ve varış yönü tahminindeki açık sorunlara yönelik literatürde
yer alan çeşitli çözümlere yer verilmektedir. Ayrıca, Bölüm II’de FAYS sinyal
karakteristiklerinin matematiksel ön bilgileri detaylı bir şekilde anlatılmaktadır.

Bölüm III’te, döngüsel durağanlık sinyali ve zaman-frekans analizlerine odaklanılarak
sinyal tespiti ve parametre kestirimi tartışılmaktadır. İlk olarak, FAYS sinyallerini
ayırt etmek için döngüsel durağanlık analizine dayalı bir yöntem uygulanmaktadır.
İkince dereceden çevrimselözdurağan analizi ile alınan sinyal içinde gizli periyodiklik
ortaya çıkabilmektedir. Böylece, bir FAYS sinyaline ait atlama oranı kestirilerek
farklı sinyaller birbirinden ayrıştırılabilir. Örneğin, 2.4 GHz ISM bandında çokca
bulunan Bluetooth sinyali (saniyede 1600 atlama) ile drone radyo kontrolcüsü sinyali
(saniyede 100-200 atlama) kestirilen atlama oranı parametresine bakılarak gelen
FAYS sinyalinin tanımlanması mümkün olmaktadır. Ayrıca, FAYS sinyalinin doğru
atlamalarını yeniden oluşturmak için kısa süreli Fourier dönüşümü (STFT) tabanlı kör
sinyal algılama ve kümeleme yöntemi kullanılır. Böylece, bir girişim sinyali varsa,
sinyallerin spektral lokalizasyonuna göre parametreler tablosundan aykırı değerler
çıkartılır. Bunun için, STFT değerlerinin gürültü seviyesinin hesaplanması ile elde
edilen eşik seviyesi ile karşılaştırılmasıyla ikilileştirilmiş matris elde edilmektedir.
Ardından kablosuz haberleşme bozukluklarından kaynaklı hatalı olarak ifade edilen
değerler iki aşamada düzeltilmektedir. İlk önce, ikilileştirilmiş matris morfolojik
işlemler kullanılarak sinyali ifade eden alanın iç bölgesi düzeltilmektedir. İkinci
aşama olarak matris elemanlarının komşulukları kontrol edilerek sinyali ifade eden
bölgenin sınırları düzeltilmektedir. Böylece matris üzerinden sinyalleri segmente
edebilmek için süreklilik sağlanmış olup spektrumu meşgul eden sinyallerin zamansal
ve frekans bilgileri elde edilmektedir. Ayrıca, literatür genel olarak kablosuz
sinyaller yerine simüle edilmiş verileri kullanır ve bu simülasyonlar, atlamalar
arasında zaman koruması olmadığını varsayar. Bu varsayım, frekans atlamalı
sinyallerinin farklılaşmasını kolaylaştırır, ancak birçok frekans atlamalı sinyal zaman
boşlukları kullanır ve ayrıca bu zaman boşlukları farklı sinyal kaynakları için
farklıdır. Sinyal karakteristiklerine (başlangıç zamanı, bitiş zamanı, bandgenişliği,
bulunma süresi) bakılarak merkez tabanlı kümeleme yaklaşımı ile FAYS sinyaline
ait atlamalar sınıflandırılmaktadır. Buna bağlı olarakta, spektrumda FAYS sinyalinin
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olup olmadığına bakılarak farklı sinyal–gürültü oranı (SNR) değerleri için doğru tespit
olasılığı hesaplanmaktadır. Aynı zamanda, tespit performansı farklı yanlış alarm
oranları içinde incelenmektedir. Ayrıca, çevrimselözdurağan sinyal analizi yöntemi ile
kestirilen atlama oranı parametresi, gerçek atlama oranına ne kadar yaklaştığı analizi
üzerinde de durulmuktadır.

Bölüm IV’te, FAYS sinyalleri için varış yönü tahmini, yüksek çözünürlüklü altuzay
tabanlı yön bulma algoritmaları kullanılarak incelenmiştir. Frekans atlama sinyalleri
daha sonra birleştirilmiş temel bant eşdeğer sinyalini elde etmek için Bölüm III’te
bahsedildiği üzere kümelenmiş parametrelere dayalı olarak arka arkaya eklenir.
Böylece FAYS sinyali için kısa zamanda bulunan sinyal örnekleri yerine temel
bantta sinyal örnekleri arttırılmıştır. Ayrıca, temel bantta yeniden elde edilen sinyali
spektrumda yayılmış bant genişliğinden çok daha düşük bir bant genişliğine sahip
olacak şekilde yeniden örnekleme işlemi uygunabilmektedir. Böylece, spektrumdaki
ilgisiz örnekleri azaltmak ve altuzay tabanlı yön kestirimi uygulaması için gerekli olan
kovaryans matrisinin hesaplanmasını kolaylaşmaktadır. Bu önişlemlerin ardından,
alıcı sisteme göre drone kontrolörünün yönünü tahmin etmek için iki farklı çoklu
sinyal sınıflandırma algoritması kullanılır. Önerilen yöntemin genel performansını
doğrulamak için tanıtılan çerçeve, donanım platformları ile uygulanmaktadır ve gerçek
dünya koşulları altında test edilmektedir. Dronlar kısa sürede bir noktadan başka bir
noktaya hareket ettirilebilmektedir. Dronun hızlı hareket etmesinin yanı sıra, drone
pilotu o kadar hızlı hareket edememektedir. Bu durum göz önüne alınarak, farklı
mesafeler için yavaş açı değişiklikleri için oluşturulan senaryo ile hem görüş hattı
hem de görüş hattı olmayan durumlar ele alınmaktadır. Düzgün doğrusal dizilime
sahip anten dizisi ile havadan alınan sinyaller için farklı anten sayısı, önişlem etkisi,
farklı yön kestirimi algoritması parametrelerine göre sonuçlar karşılaştırmalı olarak
sunulmaktadır ve ilgili tartışmalara yer verilmektedir.

Gelecek çalışmalarda, son zamanlarda farklı alanlarda giderek kullanımı artan
derin öğrenme tabanlı sistemleri ile FAYS sinyallerinin tespiti için kullanılması
araştırılmalıdır. Böylece, spektral lokalizasyon açısından önişlem adımının yerine
geçmesi öngörülebilir. Bunun yanında, çoklu FAYS sinyallerinin spektrumda
mevcut olması durumunda, farklı SNR değerleri için farklı koşullar altında doğru
kümelenme olasılığı incelenebilir. FAYS sinyalleri geniş bantta farklı frekanslarda
bulunduğundan dolayı, yön kestirimi için Fourier domaninde altuzay tabanlı
algoritmalar araştırılmalıdır.
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1. INTRODUCTION

Nowadays, wireless communication is an indispensable point for communities.

There is a growing demand for the number of physical devices that used wireless

communications, such areas as personal devices, smart homes, vehicle-to-everything

(V2X), industrial automation, etc [1]. Since the demand for mobile data traffic

extremely grows day by day, scarcity emerges in the finite spectrum resources.

Utilization of the spectrum becomes inaccessible and in this regard, allocation is

controlled by national and international regulations. While the frequency spectrum is

a natural resource, it can not be expanded or increased and the demand of the spectrum

activity can be overcome with the development of communication systems. Many of

the communication devices rely on multiple access techniques to operate, especially in

the unlicensed spectrum [2]. In the context of the cooperative environment which

is consists of V2X or smart systems, the spectrum can be used over the network.

However, not all devices transmit signals over a network and hence, communicate

using the shared spectrum. This leads to uses the FHSS technology to avoid

interference or jamming and can share the frequency channels without frequency

planning.

FHSS communication is provided by changing carrier frequency rapidly while

transmitting information and occupies a large spectral region over time. Although

it was first developed for military areas, civilian applications also benefit from this

technology as a process of time. In the aspect of military usage, tactical data link

(Link–16) adopted the FHSS, since it has the ability of transmission security [3].

On the other hand, to manage the interference problem commercial communication

devices are using the FHSS [4]. Common commercial devices are operating with

FHSS such as Bluetooth, radio controller (RC), cordless phones, microphone signals,

and unstructured signal sources such as microwave ovens or several medical devices.

Among these applications, increased demand for the higher capacity of the V2X leads

to the usage of drones. As drones become more popular, they have pivoted various
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applications. Since the drones are controlled by a RC, the transmission between the

drone and its pilot is provided by FHSS.

Drones pervade the modern civilian life almost in every aspect. Mapping

and surveying, transportation, surveillance, law enforcement, aerial imaging, and

agriculture are just to name a few [5]. Apparent penetration of drones into the

aforementioned fields swiftly stems mainly from their multi–dimensional capabilities

such as payload transportation, telecommunications, and task accomplishment. On

the other hand, these capabilities pose several concerns regarding safety, security, and

privacy etc. Beyond these concerns, presence of drones is considered to be a threat,

especially in the vicinity or surrounding airspace of critical zones [6, 7]. For instance,

a drone appeared at the Gatwick airport and it causes the shut down of the airport due

to the risk of a crash with any aircraft. Hence, hundreds of flights were canceled and

140,000 passengers were affected [8]. Moreover, drones can be utilized for collecting

information about people, organizations, and companies without their consent. In

addition to being a direct physical threat to vehicles, infrastructures, and facilities,

drones could be an auxiliary source of threat especially when they are employed to

jam, interfere, or totally block communication links leading to malfunction in critical

operations and/or services. It is evident that detection of any potential or actual

intrusion by cooperative and non–cooperative drones and their pilots is required to

protect critical zones, vehicles, and operations. In this context, it is known that most

of the communication between the drone and wireless RC utilize the spread spectrum

technology of FHSS on industrial, scientific, and medical (ISM) band at 2.4 GHz,

which provide resilience to interference, enhance security, and networking operations,

as well as covert transmission [9].

Once a potential drone–RC/pilot link is detected, the next step is to determine the

direction of the incoming signals. This immediately implies the employment of

radio–direction finding (DF) techniques. It is important to estimate the angle of

arrival (AoA) of the signal while protecting the critical zones or unknown usage of

spectrum. Also, it can be expanded to localize the user, hence intercepting the harmful

usage of the spectrum and events is provided. Moreover, tracking is another crucial

parameter while identifying the sources. While the user occupies the spectrum, the

estimation of the angle of arrival should be provided constantly, especially for mobile
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users. In order not spotted by target users, passive systems are considered instead of

active systems. These are lead to considering the smart antenna systems [10, 11].

This thesis is composed of 5 chapters which are Introduction, FHSS Signals, Signal

Detection and Parameter Estimation, Direction of Arrival of Estimation of for

FHSS Signals, and Concluding Remarks and Future Directions. Chapter 2 presents

the background for FHSS signals. The Chapter 3 focuses on cyclostationarity

and time–frequency analysis for FHSS signals. Additionally, gives the real–world

measurements for signal detection and parameter estimation for FHSS signals. In

Chapter 4, the reconstruction is discussed for direction–finding estimation of FHSS

signals. Also, the estimation results of direction–finding are given under the real–world

conditions. Chapter 5 concludes the ideas that has been presented in the thesis and

presents the possible future studies about the signal detection and direction–finding for

FHSS signals.
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2. FHSS SIGNALS

In the digital communication system, the modulated signals are multiplied with the

carrier signal on a certain frequency. In the aspect of systems that uses FHSS, carrier

frequencies are changed over time. Considering the number of users that use the

limited spectrum, hops can allow avoiding interference. Also, if the avoidance is

not provided, the interference occurs only temporarily and the communication still

is available when the changing frequency [12].

The information is transmitted by a sequence of carrier frequencies which called as a

FH pattern. In order to consistency of the communication, each frequency channel of

an FHSS signal has a same width of a spectral region for all hops, depending on input

signal. Furthermore, the speed of the switching between hops occurs at a constant rate.

Therefore, the hopping duration or dwell time, which means the time that spends on a

certain frequency channel, is standard per user. Fig. 2.1 illustrates the communication

of an FHSS signal according to FH pattern between the interfere signals. The hopping

characteristics can be listed as: the time interval between the hops can be denoted

as Th and W represents the bandwidth of the each hop. Additionally, the difference

between the maximum frequency channel and minimum frequency channel means that

the spreading spectrum.

In a typical communication system, information bits are mapped to symbols according

to amplitude, phase, etc. After that, pulse shaping is utilized to prevent inter symbol

interference (ISI) and generating a band-limited signal which results of achieve

more suitable spectrum usage. Furthermore, a frequency synthesizer allows for

up-conversion of the baseband signal. In the FHSS communication system, the

frequency synthesizer produces a distinct tone determined by a set of channel numbers.

To provide the secrecy and unpredictably of the FH pattern, these channel numbers are

generated from the pseudo-noise sequence generator. Thus, mixing the output of the

frequency synthesizer and modulated signal produce the FHSS signal. The generation

of the FHSS signal can shown in Fig. 2.2. Additionally, when the communication
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Figure 2.1 : FHSS signal pattern.

begins, the signal power is maximal at each frequency channel according to the

hopping pattern. However, due to the limitation of the RF components, signal energy

can not be infinitesimal. Therefore, the rise time and fall time transitions are occurred.

Another factor that determines the consistency between each hop is the transmit

power. Since there are various users in a shared spectrum, at the receiver side,

channel conditions affect the signal that sent by the same user in a similar way, when

considering the received signal strength (RSS).

The variants of the FHSS signal can be classified as fast hopping rate and slow hopping

rate. The difference between the fast and slow is number of transmitted symbols at

each hop [13]. Considering the symbol rate, when there are multiple data symbols per

hop the system is called slow hopping, on the contrary, there are multiple hops per

data symbol for fast hopping. For spectral efficiency, the slow FH is more preferable.

Information
bits Modulation Pulse

Shaping

Frequency
Synthesizer

Pseudonoise
Sequence
Generator

FHSS	Signal

Figure 2.2 : FHSS signal modulator.
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The advantage of the fast FH, the communication systems are more robust against the

fading and noisy channels and also, possible jammers [14].

2.1 Signal Model

In the transmitter side, modulated signal is mixed with the frequency synthesizer

output. A single FHSS signal can be written as,

x(t) = s(t)×
K

∑
k=1

e j(2π fkt+ϕk)wk (t−Bk) (2.1)

where s(t) denotes the complex baseband equivalent of the information bearer that has

a periodic burst type transmission for t ∈ [0,T ], K stands for the total number of hops

during the duration of T , fk and ϕk represent the carrier frequency and initial phase of

the kth hopping, respectively. Rectangular window function, wk(t), can be expressed

as,

wk(t) =
{

1, t ∈ [(k−1)Th,kTh)
0, others (2.2)

where Th is the dwell time.

The start time of the kth hop is represented as Bk. Then, we define a sequence {Ck},

which is the time difference between kth and (k+1)th hop, are given as,

Ck = Bk+1−Bk, k ∈ [1,K−1] (2.3)

where Bk+1 and Bk are the sum of all time gaps corresponding to (k + 1)th and kth

hops, respectively. By assuming that the sequence of time gaps is periodic with N, Cl

can then described in terms of the estimated time gaps as,

Cl = Th +∆ti, l ≡ i mod N, 0 < i≤ N. (2.4)

The complex baseband equivalent of the received passband signal can be described by,

r(t) = h(t)∗ x(t)︸ ︷︷ ︸
y(t)

+n(t)+ i(t) (2.5)
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where ∗ is the convolution operator, h(t) is the channel impulse response between

the transmitter and receiver, which has frequency flat fading, x(t) denotes the desired

FHSS signal and n(t) stands for the complex additive white Gaussian noise (AWGN)

in which I and Q components are i.i.d ∼ N (0, σ2/2). Also, i(t) represents the

possible interference signal that disturbs the desired signal, and assumed as i(t)

and x(t) are uncorrelated signals. Considering the drastic increase in the number

of wireless communication devices, the impact of the interference might occur as

co-channel interference. The applications that use unlicensed spectrum consist of

Wi-Fi technology, ZigBee signals, and unstructured signal sources such as microwave

ovens or several medical devices. Hence, to define the signal model can comprise an

interference signal.
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3. SIGNAL DETECTION AND PARAMETER ESTIMATION

3.1 Cyclostationarity Signal Analysis

Communication signals are interpreted as a random process. Herein, encountered in

statistical signal processing and communication signals are often assumed stationary

processes. For example, a binary phase–shift keying (PSK) modulation scheme

mapped bits to −1 and +1 with equal probability is considered a stationary process.

However, the cyclostationarity process depends on varying cyclically statistical

properties with time. The stationary process can be affected due to the varying

environmental conditions (e.g. random fluctuations) and human-made external

additions such as upsampling, repetitive pulsing/on–off keying, sine-wave carriers

[15, 16]. Therefore, communication signals can be thought as a cyclostationarity

process under these effects.

For many years, research on the cyclostationarity process developed various

algorithms on different application areas. Considering the presence of periodicities

in every aspect of real life, cyclostationarity signals can occur in communication,

radar, sonar, telemetry, geophysical and atmospheric sciences, rotating machinery,

econometrics, and biological systems [17]. In regard to the communication signals,

the cyclostationarity signal analysis is preferred mostly in the problems of statistical

function estimation, signal detection, and cycle frequency estimation. In the problems

of spectrum sensing, cyclostationarity becomes prominent a robust technique under the

fading and low signal–to–noise ratio (SNR) [18]. Furthermore, cyclostationarity can be

used for identification between the different types of signals because of the extracting

cyclic features. For instance, in [19, 20], the authors preferred the cyclostationarity

based feature detection for modulation recognition with using higher–order cumulants,

in [21], orthogonal frequency division multiplexing (OFDM) based wireless standards

are distinguished with second–order cyclostationarity feature. Also, blind channel

estimation and equalization are achievable by using cyclostationarity signal analysis

[22]. The recent interest in cyclostationarity based solutions is adopted for periodically
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varying communication systems and signal processing applications tremendously, with

emphasis on second-order statistical characterization.

3.1.1 First–order cyclostationarity

If the signal behaves first–order periodicity as [23],

mα
r = lim

T→∞

1
T

∫ T
2

− T
2

r(t)e− j2παtdt (3.1)

where α and mα
r are the first-order cycle frequency and cyclic moment, respectively.

3.1.2 Second–order cyclostationarity

Cyclostationarity analysis can be utilized to discover hidden periodicity within a

received signal [24, 25]. The second-order cyclostationarity of the received signal

reveals the hopping rate of the FHSS signal. Cyclostationarity analysis begins by

taking the autocorrelation function which is denoted as,

Rr,r(t,τ) = E{r(t + τ)r∗(t)} , (3.2)

where (·)∗ is the complex conjugate operator, and τ represents the time lag. If the

autocorrelation function has a periodicity in t, it can be written by Fourier series

expansion,

Rr(t,τ) =
∞

∑
k=−∞

Ak(τ)e
j 2π

T0
kt

Ak(τ) =
1
T0

∫ T0/2

−T0/2
Rr(t,τ)e

− j 2π

T0
kt dt

(3.3)

where Ak(τ) represents the kth coefficient at τ time lag which is also known as a cyclic

autocorrelation function (CAF), and T0 is the fundamental period. Furthermore, the

frequency domain representation of the signals can extract unique features. In this

regard, the Fourier transform of the CAF can be calculated by using the cyclic Wiener

relationship,

Sk( f ) =
∫

∞

−∞

Ak(τ)e− j2π f τ dτ (3.4)

where Sk( f ) is known as spectral correlation function (SCF) for a fixed k value.
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3.1.2.1 On the investigation of second–order cyclostationarity for FHSS signals

Many FHSS signals follow a pattern in time and this leads cyclic behavior in time

domain. The received signal can be reformed by combining the x(t) into the r(t) by,

r(t) = h× s(t)
K

∑
k=1

e j(2π fkt+ϕk)wk(t−Bk)︸ ︷︷ ︸
x(t)

+n(t)+ i(t). (3.5)

The periodicity is provided by s(t) whereas x(t) and r(t) are not periodic due to

the frequency hopping pattern. To analyze hidden periodicity inside r(t), frequency

hopping pattern is suppressed on r̃(t) which is defined as,

r̃(t) = |r(t)|2 (3.6)

where r(t) represents the received signal. Considering the (3.5), r̃(t) equals to,

r̃(t) =
∣∣∣h∣∣∣2∣∣∣s(t)∣∣∣2 +hx(t)n∗(t)+hx(t)i∗(t)+h∗x∗(t)n(t)+n(t)n∗(t)+n(t)i∗(t) (3.7)

Autocorrelation function is considered for cyclostationarity analysis as,

Rr̃,r̃(t,τ) =
∣∣∣h∣∣∣4∣∣∣Rs,s(t,τ)

∣∣∣2 + ∣∣∣Ri,i(t,τ)
∣∣∣2 +2

∣∣∣h∣∣∣2Rx,x(t,τ)Ri,i(t,τ)+
(

h2 +(h∗)2
)

Rx,x∗(t,τ)Ri,i∗(t,τ)+2δ (τ)σ2
(∣∣∣h∣∣∣2Ps +Pi

)
+2

∣∣∣h∣∣∣2Ps

(
Pi +σ

2
)

+2σ
2Pi +σ

4 (3.8)

where Rr̃,r̃(t,τ) represents autocorrelation of r̃(t). Rr̃,r̃(t,τ) has 81 summation terms

and 64 of them are 0 due to properties of noise. σ2 stands for the noise variance, and

Ps and Pi are the average power of s(t) and i(t), respectively. In addition, if there is no

interference signal, then (3.8) is simplified as,

Rr̃,r̃(t,τ) =
∣∣∣h∣∣∣4∣∣∣Rs,s(t,τ)

∣∣∣2 +2
∣∣∣h∣∣∣2σ

2Ps +σ
4 +2σ

2
∣∣∣h∣∣∣2Psδ (τ) (3.9)

Recall that s(t) is periodic that depends on hopping duration, which indicates that

Rs,s(t,τ) is also periodic. Thus, Rr̃,r̃(t,τ) can be expanded via Fourier Series
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coefficients. Finally, SCF for FHSS signals can be obtained by calculating the Fourier

Transform of the CAF which defined in (3.4). SCF should have peaks at cyclic

frequencies for which the fundamental frequency is defined as a hopping rate.

Since the cyclostationarity based methods generally focus on periodicities such as

chip rate, pilot signals, etc., non-periodic signals such as double side band–single

carrier amplitude modulation do not indicate cyclic features. Any signal that behaves

periodically is detected by cyclostationarity feature detection. Moreover, if the

ISM spectrum is occupied with various signal sources, the cyclostationarity analysis

estimates the periodicity feature for signals that are periodic and reveal peaks for them.

However, the search area of cyclic frequencies is limited in the range specified in

the standards. Hence, the existence of other peak values would not be a concern to

consider.

3.2 Time–Frequency Analysis

Traditional time or frequency analysis can not be suitable for FHSS signals. Rather

than generating a 1-dimensional signal after taking a transform, the time-frequency

analysis provides a 2–dimensional representation [26, 27]. For instance, musical

sounds are time-varying signals which starts with a high level and gradually decay, can

not analysis with 1–dimensional transforms. Hence, time-frequency analysis is needed

for time-varying signals. Furthermore, time-frequency analysis is a great opportunity

to analyze when the model of signals is not known. Since FHSS signals that changing

carrier frequency in a short interval with an unknown sequence, time-frequency

analysis can provide in which carrier frequency where the signal starts in time and

where the ends in time.

Over years, there are different approaches are developed for represents signals in

2–dimensional. The time-frequency analysis can be categorized into two classes

[28]. First class is based on translating, modulating, and scaling a basis function

to derive time–frequency representation. This category can consist of short–time

Fourier transform (STFT), wavelets, and matching pursuit algorithms, as an example

[29–31]. In the aspect of the second class, the time–frequency representation can

be characterized by a kernel function. Wigner distribution, and Choi-Williams

distribution can be seen as some of the kernel based algorithms. Moreover,

12



compressive sampling (CS) is developed with the advances in the digital signal

processing algorithms [32–35]. CS is utilize the sparsity of the signals to reduce

the number of measurements needed, which achieved that with a fewer samples than

Nyquist-Shannon sampling theorem. However, CS brings with such problems at the

receiver as increased noise figure related to subsampling rate [36].

3.2.1 Short–time Fourier transform

The STFT approach is utilized to analyze the FHSS signals as a method to observe

the frequency content of this type of non–stationary signals over time. Mathematical

expression of STFT of the time-domain signal can be written as,

ST FT
{

r(t)
}
=

∫
∞

−∞

[r(t)w(t− τ)]e− j2π f τdτ (3.10)

where w(t) is the window function. The STFT matrix S = [s1[ f ],s2[ f ], · · · ,sK[ f ]]

such that ith element of this matrix is a column vector determined by discrete Fourier

transform of windowed signal as,

si[ f ] =
N−1

∑
n=0

r[n]w[n− iR]e− j2π f n (3.11)

where r[n] is sampled version of r(t) by considering the anti–aliasing property and R

denotes the shifting length.

One should keep in mind that adjusting the time and frequency resolution is crucial

point for STFT analysis [37] due to the trade off between them. The length of the time

point can be calculated as [38]

m =

⌊
Nr−L
M−L

⌋
(3.12)

where Nr is length of the signal, L denotes the number of overlap in the Fourier

transform, M represents the window size, ⌊·⌋ stands for the floor operator.

As depicted in Fig. 3.1, the flow graph explains how the system works in brief. After

the signal is received in the first stage, optimal window time length is decided to get

the optimum resolution at (3.12) based on maximizing the number of elements on
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Figure 3.1 : The flowchart of the detection method.

the matrix S in the second stage of the flowchart. STFT is calculated in a dBm unit

according to power spectral density (PSD) in the same step and shown in Fig. 3.3a.

As the next step of the flowchart, a binarization operation is conducted. The STFT

matrix is converted to Sbin(k, l), which will be defined as a binary matrix, using the

threshold µ . Also, in the flowchart PSD refers to each point in the STFT matrix.

Based on the dynamically calculated threshold value, whether the signal presents or

not for each element of the STFT matrix is decided as shown in Fig. 3.3b. When the

signal is present, Sbin(k, l) is evaluated as 1 and the new binarized matrix, Sbin(k, l), is

given as,

Sbin(k, l) =

{
1, S(k, l)≥ µ

0, S(k, l)< µ
(3.13)
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Figure 3.2 : Estimated threshold representation.

where k and l represent the frequency and time index in the sampled domain,

respectively. To determine the threshold value, each element of STFT matrix are

concatenated and a sorting algorithm implemented to list the power levels of each point

of the STFT matrix in a ascending order. Considering the wideband spectrum and the

fact that the hops of the FHSS signal occur in a short time interval, the majority of

the received signal is comprised of noise samples. Therefore, taking the mean value

of the top 20% of the sorted values of STFT matrix provides the to determine a lower

bound for the computation of the threshold. Fig. 3.2 shows PSD values of the received

signal, and the threshold value. Since the threshold value estimates the noise level,

even for the very low SNR regimes, the simulation results indicate the feasibility of

this threshold selection process.

Due to the wireless impairments on the received signal, the spectral region of the signal

on Sbin is corrupted. This corruption is made it difficult to estimate the parameters of

the spectral region and leads to miss the signal or increases the error of estimation

of the spectral region. Moreover, as a result of the binarize the S matrix with an

adaptive threshold, salt–and–pepper noise is seen which occurs from fluctuations of

Gaussian noise. In order to represent the signal in a more plausible way, widely

used morphological dilation and erosion aspects from the domain of image processing

[39,40] are considered to recover the received signal properly. This problem is handled
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in two parts as the inner region and edges of the signal. First, a 2–D convolution

operator is used to filling the inner region of the signal calculated as,

Sin(k, l) =

{
1, Sbin(k, l)∗ Jn,m > n×(m−1)

2

0, Sbin(k, l)∗ Jn,m < n×(m−1)
2

(3.14)

where J is the all–ones matrix with a size of n×m. According to the size of the

kernel matrix which determines the threshold, the sum of the overlapping elements

in each shifting in convolution are compared with the threshold value. Since the

salt–and–pepper noise is impulse noise which is seen to random points in the matrix,

the convolution operation is suppressing these points. Additionally, the region of the

signal is dilated while inner elements are filled up after the convolution operation. The

results of convolution with binarized matrix can be shown in Fig. 3.3c. Second part of

the correction of the Sbin considers the edges of the spectral region that represents the

presence of a signal. In order to preserve the continuity of the signal, the edge elements

are controlled by considering the similarity of the values of the neighboring elements.

For instance, when a signal region in the Sin is illustrates as,



. . . · · · · · · . .
.

0 0 0 0 0 0 0
0 1 1 1 1 1 0

· · · 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1
0 1 1 1 1 0 0
0 0 0 0 0 0 0

...


(3.15)

where 0 values marked in red are the values that remain incorrect. To change the

incorrect 0 values, the left, right, up and down corners of each 0 value are controlled.

Hence, if the conditions of neighbors elements are provided, the value is changed with

1. This process is continued until the region is shaped as rectangular, and the result is

exhibited in Fig. 3.3d.

After the recovery process, it becomes possible to extract the signal parameters such as

start time, stop time, center frequency and difference between start time and stop time

(dwell time) accurately. The parameter extraction process relied on the binary search

that detects the position of 1–valued elements of the Sin. Since the rows and columns of
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Figure 3.3a : The spectrogram of the
received signal.

Figure 3.3b : The binarized version of
the spectrum.

Figure 3.3c : Matrix correction pro-
cess: Inner side of the
signal.

Figure 3.3d : Matrix correction pro-
cess: Edge correction of
the signal.

Figure 3.3 : Time–frequency calculation of the received signal. After the calculation
binarization and correction results of the S.

the Sin indicate the time and frequency, respectively, when the first 1–valued element

is detected, the counting on the rows is started until the detecting the next 0–valued

element on the same row. Also, if the counter is reached the dimension of the Sin,

the counting process is terminated. Thus, at the end of the counting of the rows, the

duration of the signal has been estimated as the value of the counter. In addition to

these, the position of the row of the Sin that has been detected as 1–valued is defined

as the lower frequency band of the signal. After the counter is stopped by detecting

the 0–valued element or reaching the dimension of the row of the matrix, the search

position is updated as the position of the previous element in the row. This time,

the counter is established in the direction of the columns of the matrix. Hence, the

bandwidth of the signal can be defined as the difference between where the counter
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stops and its initial starting position. In the end a list is generated signal duration,

center frequency, start time, end time, and bandwidth.

In the last step of the flowchart, controlling for each hop is done to decide whether it

belongs to the FHSS signal or not. Based on the similarities of the features, the signals

can be separated correctly. Clustering analysis utilizes the unsupervised learning

process which points each data points to a group without prior knowledge. To achieve

the clustering process, there exist different approaches under unsupervised learning

such as centroid–based, density-based, distribution-based, and hierarchical-based

algorithms [41]. Considering the problems, these algorithms can give solutions

in different aspects. Considering the highly dynamic structure of the unlicensed

spectrum, it is hard to label each scenario. Hence, unsupervised clustering is most

beneficial to the signal separation process. In this regard, a set is formed according to

the estimated parameters which include several temporal parameters (e.g., dwell time,

start/stop time) and bandwidth of each hop. If there is a signal that is not satisfying

to the statistic of the set, this hop is excluded because of a possible interference

signal. In the aspect of FHSS signals, separating the signals while employing the

clustering analysis has unique conditions. The hops of FHSS signals must start after

the previous-hop ends and also, the hopping duration and bandwidth of the hops are

the same as each other. Moreover, in the case of multiple FHSS signals randomly

occupying the spectrum band, the hops of the interested FHSS signal can be clustered.

Therefore, regarding the number of input data features, the number of output labels

can be varied when defining the user that occupies the spectrum.

To obtain the separated signal sources, a centroid–based algorithm is utilized with

modifications. To initialize the clustering process, one of the input data is selected

and is set as a first centroid. Following that, selected input data is compared with

other parameters found in the parameter list concerning to hopping duration and

bandwidth. Also, as stated earlier, the hops must follow the consecutive start and

end time, therefore the difference between the end time of the selected input data and

the start time of the compared data must be a positive value. When these conditions are

provided, the hops are kept as a cluster, however, if the conditions are not matched, the

data, which is compared feature, is defined as an outlier for this cluster. After that, the

initial point of the bandwidth and hopping duration is updated according to clustered
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Figure 3.4 : An illustration of the clustering algorithm, which is taken parameters of
the signals as inputs and compared with each other. The outputs are the
clustered parameters and cluster labels.

parameters. Moreover, non–clustered signals are proceeded to compare with other

features. If the conditions between the compared ones are achieved, a new centroid

is determined. This process proceeds until all input features are compared with each

other. An illustration of this algorithm is shown in Fig. 3.4. Regarding unrelated

signals in spectral localization behavior, the clustering process is not converging any

centroid for these signals, and hence different clusters are designated for these kinds

of signals.

3.3 Simulation Results for Signal Detection and Parameter Estimation

To demonstrate the performance analysis of the signal detection, parameter estimation,

and clustering performance, the occupied spectrum is simulated for the random users,

which have varied signal characteristics. Since the spectrum contains a mixture of

signals, the signal characteristics for each signal source are selected randomly as

defined in Table 3.1. Considering the 80 MHz spectrum bandwidth, which is the

available spectrum range for the unlicensed 2.4 GHz ISM band, in the simulation

environment the frequency range is used as 80 MHz. Additionally, observation

duration is one of the crucial specifications when capturing the signals. Considering the

hop rates that are used in the simulations and computation limit, observation duration is

selected as 0.01 seconds. Figure 3.5 exhibits that the simulation process that modulates
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Figure 3.5 : Block diagram of emulation of FHSS signal generation and signal
analysis.

the input bits of each signal sources, determines the hopping sequence, and adds the

channel conditions.

Considering, Table 3.1 specifies the range of the transmitted FHSS signals

characteristics, different scenarios can be examined. The hopping parameters are

selected within the scope of Bluetooth specification and drone RC signal [42, 43].

In this regard, the lower and upper bounds of parameters, which are used for signal

generation, have been set. Moreover, the radio frequency (RF) channel list, the

dwell time and bandwidth of each hop, the time gap between the consecutive hops

are selected uniformly within the bounds. Also, the initial start time of each signal

source is determined as Poisson distributed. When the spectrum is occupied by the

different signal sources, interference may occur. However, since the interference is

observed within the dwell time duration of the FHSS signal, the consecutive hops can

be analyzed, which will proceed on another carrier frequency.

When the simulated signal is generated, first, cyclostationarity analysis is applied

as discussed in Section 3.1.2.1, second, time–frequency analysis is employed to

determine where the signal is located in the spectrum and which signals are related

Table 3.1 : Frequency hopping spread spectrum (FHSS) parameters used for
generating simulated signal.

Lower-bound Upper-bound

Start Time (s) 0 -
Stop Time (s) - 0.01

Dwell Time (s) 0.00005 0.01
Bandwidth (MHz) 0.5 2

Spreaded Bandwidth (MHz) 30 70
SNR (dB) -18 4
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Figure 3.6 : The result of the SCF for the Bluetooth signal which has 1600 hop/sec.

to each other as discussed in Section 3.2. In order to show the output of the

cyclostationarity analysis, a Bluetooth signal is simulated which has 1600 hop/sec. As

can be seen in Fig. 3.6, cyclic peaks appear in the SCF. The fundamental frequency,

which represents the hopping rate of the FHSS signal, is estimated as 1590 Hz. Next,

the 4 FHSS signal sources are considered actively occupying the spectrum to employ

time-frequency analysis as discussed in Section 3.2. Figure 3.7 exhibits the successful

separation of multi FHSS signal sources correctly. Each colored rectangles indicate the

consecutive hops that belong to the same FHSS signals. Even though bandwidth and

the hopping durations are the same, the interested cluster can be formed by checking

whether it starts at the same time or not. Thus, when the signal sources start at a

random time, the multi FHSS signals, which show the same specifications, can be

separated also.

The performance analyses are conducted with a Monte Carlo simulation. In the

simulation environment, the channel conditions are considered as Rayleigh fading and

the iteration number is determined as 2000. The probability of detection is obtained for
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Figure 3.7 : After clustering the hops for different signals.

FHSS signals by comparing the number of clustered hops with the minimum number of

hops that can be observed which is 50 hop/sec. For this analysis, the true detection rate

is calculated as shown in Fig. 3.8. The results in Fig. 3.8 demonstrate the 0.9 detection

accuracy is reached after the −4 dB SNR. Moreover, the detection performance is

considered through the ROC curve. ROC curves are achieved for different SNR values

as shown in Fig. 3.8. In Fig. 3.8, it can be inferred that the probability of detection

has lower slopes in Pf a = 0,1 and Pf a = 0,01 for −4 dB SNR and 0 dB SNR values,

respectively.

Since the cyclostationarity analysis estimates the hopping rate, it is important the

measure the approximation on the true hopping rate. Therefore, the performance of

the estimation of the hopping rate is calculated by root–mean–square–error (RMSE)

which can be calculated as,

RMSE =

√√√√ 1
Ns

Ns

∑
i=1

(
f̂i− fi

)2
(3.16)
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Figure 3.8 : The probability of detection rate is calculated by time-frequency analysis
for FHSS signals.

where f̂ is the estimated hopping rate and f denotes the true value of hopping

rate. Also, Ns represents the number of iteration. For each iteration of the Monte

Carlo simulation, the hopping rate of the FHSS signal is randomly changed. The

error performance of the cyclostationarity analysis is shown in Fig. 3.10. Since the

cyclostationarity analysis is based on matches between adjacent signals, more hops

that captured will give a higher peak value in the hopping rate. Therefore, the hopping

rate can be distinguishable more accurately for lower SNR values.

3.4 Real World Considerations for Signal Detection and Parameter Estimation

3.4.1 Measurement setup

Experimental setup for FHSS signal detection and parameter estimation is performed

in Scientific and Technological Research Council of Turkey (TÜBİTAK) Informatics

and Information Security Research Center (BİLGEM). The test–bed used in the data

acquisition procedure consists of FHSS–type drone RC signal source and spectrum

analyzer to record the signals.

Futaba T8J RC is used during the experiment as the FHSS signal source. It employs the

first 50 MHz of a 2.4 GHz ISM frequency band which is divided into 30 RF channels
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Figure 3.9 : ROC curve for time–frequency analysis in −4 dB and 0 dB SNR.

each with a channel width of 1.5 MHz [44]. The illustration of the hopping pattern of

the FHSS signal source is shown in Fig. 3.11 where ∆t1, ∆t2, and ∆t3 represent the time

gaps between the hops and their repetitions. These parameters are given by,

Cl =


Th +∆t1, l ≡ 1 mod 3
Th +∆t2, l ≡ 2 mod 3
Th +∆t3, l ≡ 3 mod 3.

(3.17)

The fundamental period of the Futaba T8J RC signal can be calculated as [44],

3Th +∆t1 +∆t2 +∆t3︸ ︷︷ ︸
C1+C2+C3

= 6.8 ms (3.18)

where ∆t1 < ∆t2 < ∆t3.

In the receiver side, Rohde&Schwarz FSW 26 signal and spectrum analyzer (SSA) is

utilized to record I/Q data. SSA can support the frequency range from 2 Hz to 26.5

GHz. The device provides real–time spectral analysis up to 160 MHz bandwidth. The

signals are recorded over the 2.4 GHz ISM spectrum band with an omnidirectional
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Figure 3.11 : The hopping pattern of the FHSS signal emitted by Futaba T8J RC.

antenna. The center frequency of SSA is set to 2.44 GHz and bandwidth of interest

is adjusted to 80 MHz for the purpose of full coverage. Also, SSA is connected to

external computer via an Ethernet cable in favor of achieving data storage with ease.
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Figure 3.12 : FHSS signal detection: Cyclostationarity Feature Detection.

Table 3.2 : Estimated parameters of FHSS signal.

Start Time
(ms)

Stop Time
(ms)

Dwell Time
(ms)

Center Frequency
(GHz)

1.7930 3.2403 1.4472 2.4271
5.1742 6.6086 1.4344 2.4414
6.7623 8.1967 1.4344 2.4414
8.6066 10.0410 1.4344 2.4211
11.9749 13.4221 1.4472 2.4039

The sampling rate depends on the analysis bandwidth of the real–time spectrum which

is selected as 80 MS/s.

3.4.2 Measurement results

Over–the–air data collection is realized and the performance of time–frequency

analysis method is evaluated. Captured signal includes real–world propagation effects

such as multipath fading, interference, carrier frequency offsets. The drone RC signal

and the Bluetooth signal are identified with the maximum peak of the cyclostationarity

function that described the hopping rate of FHSS signals as seen in Fig. 3.12a and

Fig. 3.12b.

Some of the estimated parameters of the real signal which measured at 25m distance

can be found in Table 3.2. Considering the resolution in both time and frequency, the

parameters are estimated within the ±1 sample.
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4. DIRECTION OF ARRIVAL ESTIMATION FOR FHSS SIGNALS

In Section 3 detection of FHSS signals and parameter extraction of each specific signal

source are discussed. Using this information, the direction of the signal sources can

be achieved with a passive system. Here, it is important to note that radio-–DF has a

rich history and a very well–established literature on a wide variety of its application

scenarios. Although, the majority of the DF algorithms present in the literature focus

on a non–hopping carrier and operate on a narrow–band spectrum [45, 46].

DF techniques can be grouped under the following two categories: switched beam

system (SBS) and adaptive array system (AAS) [47]. SBS method uses overlapping

beams to scan the azimuth plane. The AoA is then determined by a search carried

out across all over the candidate beam positions. Output is chosen to be the position

yielding a maximum value for a defined cost function. It is important to state here

that the SBS method benefits from the following two key points: firstly, it operates

with a mechanically agile directional single antenna, and secondly, it does not require

any baseband signal processing. Of course, these key points come at the expense

of several shortcomings. For instance, the accuracy of SBS method relies heavily

on SNR. This points out that detection range affects the performance significantly.

Furthermore, statistical nature of wireless propagation generally implies poor SNR

regimes for links especially within regulated but unlicensed bands where strict power

limitations are imposed on the transmitters. Hence, optimal performance could only be

achieved within the time slots when SNR is above a certain threshold. Therefore, the

overall performance could be improved by prolonging the observation intervals, which

is against the nature of the problem of interest. Such shortcomings necessitate more

robust and responsive algorithms.

In contrast to SBS, AAS methods take advantage of smart antennas to steer the main

beam in any desired direction and establish a continuous tracking. Beam steering is

achieved by combining the weights of each antenna array element so that the maximum

power is transferred spatially for a desired location or direction. Equipped with beam
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Figure 4.1 : The incident wave is impinging upon elements of the ULA structure for
θ angle.

steering/tracking capability, AAS could be used in DF with the following two groups

of techniques: conventional and subspace–based. Conventional methods form a power

spectrum in such a way that look–direction gain is forced to be at unity gain while those

of all other directions are minimized [48]. This way, a peak search could be carried out

across the spectrum for the candidate angles/directions for the signal source of interest.

It is noteworthy to indicate here that conventional techniques could operate in low

SNR regimes to some extent. However, their computational complexities are higher

as compared to those of AAS. On the other hand, subspace–based techniques focus

on separating the signal subspace orthogonal to the noise subspace. With the advances

in digital signal processing techniques and systems, subspace–based methods could be

implemented and deployed rapidly [49].

In the AAS, different time delays occur since the impinging signals arrive to the

antenna elements at different times as shown in Fig. 4.1. Therefore, after defining

a reference element, the delay between the mth element and the reference element can

be calculated as,

τm =
(m−1)d sinθ

c
(4.1)

where d represents distance between adjacent elements, θ denotes the direction of

arrival of a signal impinging upon the uniform linear array (ULA), and c stands for the

speed of light. The received signal at mth element can be formed by using the delay

amounts as,
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ym(t) = e− jωτmy1(t) = e− j 2π

λ
d(m−1)sinθ x(t)

= e j(m−1)ψx(t) = a(ψ)x(t)
(4.2)

where y1(t) represents the impinge signal to the reference element, ψ =−2π

λ
d sinθ is

the spatial frequency, and a(ψ) denotes the steering vector for the x(t). Considering all

the elements in ULA and the additive noise samples, we can write the received signal

in a matrix format for p signal sources as,

Y = AX+N, Y ∈ CM×N (4.3)

where A is the M× p matrix to the p steering vectors, N represents additive noise for

M element.

4.1 Direction–Finding Algorithms

There have been various approaches for the direction of arrival algorithms. In

this regard, subspace-based algorithms have shown better performance against

minimum variance distortionless response (MVDR), the sum and delay which are

spatial correlation methods. Among the aforementioned algorithms, the correlative

interferometer needs a calibration process to fill a phase offset table and requires

an odd number of antennas. In addition to this, pseudo-Doppler has a resolution

problem. Regarding expectation-maximization, the result has a prominent accuracy

but has difficult implementation problems, and also it requires prior information.

Also, considering the real-world applications such as cluttered environment or NLOS

conditions, correlative interferometry and pseudo-Doppler are not robust and the

performance of these algorithms is dropped tremendously. Furthermore, MUSIC

algorithm is robust under the multipath and mobility affects comparing the classical

methods. Thus, we focus on MUSIC algorithm in this thesis.

4.1.1 Multiple signal classification algorithm

The input covariance matrix calculated as,

Ryy = E[YYH ] = ARxxAH +σ
2IM (4.4)
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where (·)H is the Hermitian transpose operator, Rxx stands for the signal correlation

matrix, σ2 denotes the noise variance with identity matrix IM. However, in practical

applications, Ryy usually can not be directly obtained and only sample covariance can

be used [50],

R̃yy =
1
L

L

∑
l=1

y(tl)yH(tl) (4.5)

where L represent the number of snapshot. In order to achieve the frequency content of

the signal, multiple signal classification (MUSIC) uses the eigenvalue decomposition.

If the corresponding eigenvalues of the R̃yy are sorted in decreasing order, the largest

p eigenvalues indicate the signal subspace and the remaining (M− p) eigenvalues of

the R̃yy represents the noise subspace. Therefore, using the signal and noise subspaces,

pseudo–spectrum of phase can be calculated [51],

fr(θ) =
1

Ax(θ)HUnUH
n Ax(θ)

(4.6)

where Ax(θ) denotes the steering vector for x(t) and Un refers to the matrix of

eigenvectors associated with the noise subspace. A search over (4.6) is performed

to find maximum points as,

θ̂ = argmax
θ

fr(θ) (4.7)

where θ̂ is the estimated AoA of the signal.

4.1.2 root–MUSIC algorithm

The root–MUSIC method, in comparison to the MUSIC algorithm, finds the roots of

a polynomial rather than plotting the pseudo spectrum or searching for peaks in the

pseudo spectrum [52]. Same as the MUSIC algorithm, the covariance matrix can be

estimated from several snapshots. Then, eigenvalue decomposition of the estimated

covariance matrix is employed to obtain spectral function. The polynomial can be

obtained by taking the inverse of the MUSIC spectrum and is given as [53],

fr(θ)
−1 = Ax(θ)

HUnUH
n Ax(θ) (4.8)
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where steering vector and noise subspace are the same as in (4.6). Considering the

roots of the polynomial that are inside the unit circle, the closest p roots to unit circuit

are selected. Finally, the estimation of the AoA can be determined by,

θ̂ = sin−1
[

ψ
λ

2πd

]
(4.9)

where d is the distance between two adjacent elements, λ denotes the wavelength and

ψ stands for the roots of fr(θ).

4.2 Direction Finding of FHSS Signals

Although FHSS signals occupy a wide spectrum, each hop of FHSS signals has a lower

bandwidth. On the other hand, an accurate estimation of the AoA needs continuity in

the spectrum. For the case of FHSS signals, presence in a certain frequency with

a short time is not enough for an accurate estimation. Many hops are combined

sufficiently, the accumulated signal samples can be increased in a certain frequency

which is the pre–processing step. In Fig. 4.2, the flow graph explains how the system

works in brief. First, the received multi–channel signal is achieved using the ULA

and cyclostationarity analysis of the received signal obtained from the first antenna is

performed as discussed in Section 3.1.2.1. After ensuring the cyclostationarity feature

of the drone RC, parameters of the signal are estimated to reconstruct the FHSS signal

for the received signal array. Furthermore, the resampling process is employed to

decrease the signal sample rate and reduce the computational complexity. In the last

step, AoA of the FHSS signal is achieved by using subspace–based algorithms.

4.2.1 Reconstruction of FHSS signals

There are many different topologies for the antenna array. Considering the ULA

enumerated with 0,1, . . . ,M elements, (2.5) can be expanded for any mth antenna

element as,

rm(t) = hm(t)∗ x(t)︸ ︷︷ ︸
ym(t)

+nm(t)+ im(t) (4.10)
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Figure 4.2 : Overall block diagram of the system.

hm(t) is the channel impulse response between the mth element and signal source,

which has frequency flat fading and nm(t) stands for the complex AWGN in which I

and Q components are i.i.d ∼N (0, σ2/2).

A signal received in a wideband spectrum bears much higher noise level for each hop

of an FHSS signal that makes it almost impossible to distinguish it from the desired

signal. Therefore, extraction each hop from the wideband spectrum and estimation

of parameters of the FHSS signal are required as discussed in Section 3.2. Then,

the received signal can be filtered by using the lower and upper frequency band, i.e,

[ fL, fH ], of each hop for a estimated start and end time interval. A bandpass filter

is designed to obtain each hop from the spectrum and suppress other signals in the

same time interval. This approach also eliminates the unwanted noise from the signal.

After filtering the hops of the FHSS signal, each hop is shifted to achieve equivalent

baseband signal considering estimated center frequencies.

Let ẑ(t) be the filtered and shifted version of each hop to its baseband frequency. It can

be described as,

ẑ(t) = r(t)×
K

∑
k=1

e− j(2π f̂kt)wk(t−Bk) (4.11)

where r(t) is the received signal, f̂k = ( fL + fH)/2 denotes the estimated center

frequency of kth hop, Bk = ∑
k−1
l=1 Cl and Cl refers to the time difference between start

time of lth and (l+1)th hop. Then, ẑk(t), which is baseband equivalent and also shifted

to the interval [0,Th] of the kth hop, can be expressed as,
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ẑk(t) =
{

ẑ(t +(k−1)Th +Bk), t ∈ [O,Th]
0, others (4.12)

In order to increase the signal resolution at baseband frequency, time gaps between

hops should be removed. Therefore, we define a concatenated function, f̂ (t), as,

f̂ (t) =
K

∑
k=1

ẑk(t− (k−1)Th). (4.13)

As a result, by combining (4.11), (4.12), (4.13) the whole reconstruction process from

r(t) to f̂ (t) can be seen as:

f̂ (tk) =
K

∑
k=1

[
r(tk +Bk)×

K

∑
m=1

e− j(2π f̂m(tk+Bk))wm(tk)
]

(4.14)

where tk ∈ [(k−1)Th,kTh]. Note this process is realized for every received signal from

each antenna.

In the final step before executing the AoA algorithm, the resampling process

is employed. Considering the multi-rate filters, it can provide upsampling and

downsampling with a P-to-Q rational rate. Since the measurements consist of the

wideband spectrum, each hop of the FHSS signal has a smaller bandwidth than the

captured wideband spectrum. After achieving the reconstructed version of the FHSS

signal, the signal can be modeled as none frequency hopping which eliminates the

spreading. Thus, the signal can be sampled with a much lower sampling rate depending

on each hop’s bandwidth. In this regard, the P-to-Q rate can be determined with the

bandwidth of each hop of the FHSS signal and sampling rate [54, 55]. The input

signal is upsampled by adding zeros between samples of the original signal. After

that, an FIR anti–aliasing filter was applied to eliminate discontinuities. In the last

step, filtered signal samples are discarded to decimate the signal, and samples are

kept at each downsample step size. It is important to note that, phase of the input

signal can change while applying the resampling process [54]. However, since the

resampling process shifts the phase of each reconstructed signal in the same manner,

the phase difference between channels does not change. Thus, the result of the AoA

is not affected. Furthermore, this approach also reduce the computational complexity

during covariance matrix evaluation.
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High resolution in both time and frequency cannot be achieved when calculating STFT.

If the window is wider, the better frequency resolution is achieved but this leads

to less time resolution and vice versa. The extraction of the temporal information,

carrier frequency, and bandwidth of the signals depends on the resolution of the STFT.

For instance, when the window is selected for a higher frequency resolution, the

temporal parameters are estimated with margins as shown in Fig. 4.3a. Considering

the slicing of the hops in the time domain according to the start and end time which

are estimated with margins, the reconstructed signal contains more noise samples.

Since the eigenstructure-based algorithms separate the signal and noise subspaces, it

is expected that result of the direction of arrival is barely affected or even not, due to

resolution errors. Furthermore, if the time parameters are estimated more accurately,

the frequency parameters are estimated with margins as shown in Fig. 4.3b. Therefore,

the shift in the frequency domain might be affected by frequency resolution slightly,

but the low pass filter ensures that the hops of the FHSS signal remain below the

cutoff frequency which is determined as the bandwidth of the hops. Moreover, the

performance analysis is employed to calculate the RMSE for the ideal signal transition

case (the green shaded region in Fig. 4.3a) as well as signal transition with margins (the

yellow shaded region in Fig. 4.3b). The result of the RMSE between these conditions

has approximately the same form as shown in Fig. 4.4.

4.3 Real World Considerations for Direction–Finding of FHSS Signals

The AoA estimation of FHSS signals is performed for signals captured by using

over–the–air received signals by using the ULA. The measurements are taken in the

test field of TÜBİTAK BİLGEM in Gebze, Turkey. Measurements are conducted at

a suburban area with a hilly terrain structure and foliage, which is close to the Sea of

Marmara for both line–of–sight (LOS) and non–line–of–sight (NLOS) conditions.

4.3.1 Hardware setup

The test–bed consists of the Futaba T8J drone RC as an FHSS signal source, four

identical quasi Yagi antennas, and one National Instruments (NI) PXIe receiver to

support the multiple input structure as shown in Fig. 4.5. Four identical antennas are

utilized to construct our AAS. In AAS, it is preferred to utilize ULA for the AoA
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Algorithm 1: Resampling process

Input: Complex baseband signal ( f̂ (t)), estimated bandwidth (b̂w), sampling
rate ( fs)

Result: Resampled signal ( f̂RS(t))
Initilizations:

N = length( f̂ (t))
n← the numerator for the fractional rate between b̂w, fs
d← the denominator for the fractional rate between b̂w, fs
fcuto f f =

π

max(n,d) rad/sample
Filter order← 2× k×max(n,d), where k = 50

for i=0 to N-1 do
if (i/n) == floor(i/n) then

fM(i) = f̂ (i/n)
else

fM(i) = 0
end

end
hAA← fir(Filter order, fcuto f f , Kaiser window)
p = fM ∗hAA
for i=0 to n×N−1 do

f̂RS(i) = p(i×d)
end

process. A ULA structure is constructed with four identical quasi Yagi antennas. The

separation distance between each adjacent antenna element is kept as λ/2 ≈ 6.2 cm

where λ is the wavelength at 2.42 GHz. Furthermore, the height of antennas is set

at approximately 1.5–meter and thus, reflections from the ground are avoided. The

signal from each antenna are received synchronously with the help of a NI PXIe–1065

four–channel receiver. NI PXIe–1065 receiver chassis consists of four major parts:

one NI PXIe–8108 embedded controller, one NI PXI–5652 RF signal generator, four

NI PXIe–5622 digitizer which has a 16–bit resolution and four NI PXIe–5601 RF

downconverter in which each downconverter covers the frequency range 10 MHz to 6.6

GHz and has a 50 MHz instantaneous bandwidth. The corresponding block diagram

of our setup is shown in Fig. 4.6.

4.3.2 Experimental procedures

Since the signal source operates in the 2.4 GHz – 2.45 GHz spectrum, it spans over 50

MHz bandwidth. At this point, while the signal is captured at a high sample rate, only

a section of the spectrum has been considered to prevent data overflow. Therefore, the
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Figure 4.3a : STFT representation un-
der the better frequency
resolution. Green box is
the ground truth for the
signal and yellow box is
the estimated region.

Figure 4.3b : STFT representation un-
der the better time res-
olution. Green box is
the ground truth for the
signal and grey box is the
estimated region.

Figure 4.3 : Extracting the temporal information, carrier frequency, and bandwidth
representation with different resolution.
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Figure 4.4 : The performance comparison between the perfectly slicing the signal and
slicing the signal with margins.

bandwidth of interest is adjusted to 10 MHz and resulting sampling rate is 20 MS/s.

The center frequency is set to 2.42 GHz to monitor the spectrum where the hops of the

FHSS signal will likely appear the most.
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Figure 4.5 : The test-bed of the measurement campaign.
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Figure 4.6 : Block diagram of measurement setup.

One should note that the accuracy of the MUSIC and root–MUSIC algorithms highly

depends on the phase of the received signal. If there is a phase difference between

each receiver before the measurement campaign, the performance of the algorithms

degrade tremendously. In order to ensure the phase coherency between each receiver,

we perform a calibration procedure to cancel out the possible phase mismatches that

can occur from local oscillator errors and environmental factors such as cable length

etc. [56].

4.3.2.1 Calibration process

First, a signal generator is configured to generate a narrowband signal at 2.42 GHz. The

signal generator is placed right across the ULA to guarantee 0◦ for AoA. Four–channel

receiver is set at 2.42 GHz. Phase differences of each antenna are calculated according

to the reference antenna. Also, this process is implemented in the LabVIEW program.

Finally, once the phase difference are calculated, each phase difference value is

integrated into the measurement process before starting the measurement campaign.

Thus, phase coherency is assured across the receivers.
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4.3.3 Measurement results

The DF results obtained for the received signals with pre–processing and without

pre–processing stages for MUSIC and root–MUSIC algorithms are exhibited. In order

to check the accuracy of the proposed method, the true AoA values, θG, for each drone

RC location are calculated by using Garmin GPSmap 62sc and Google Earth Pro. The

true AoA values for each drone RC location are {4.43◦,6.41◦,8.55◦,10.33◦,2.1◦} for

115.24m, 164.74m, 214.74m, 264.62m and 512m, respectively.

The comparison of estimated AoAs for MUSIC and root–MUSIC algorithms illustrates

that the pseudo spectrum is shifted with a miscalculated value. For instance, the

phase–spectrum of the measurement that is taken from a 115.24-meter distance is

calculated for with processing and without processing as shown in Fig. 4.7. It clearly

indicates that pre–processing of the received signal array improves the DF estimation

of FHSS signals. As seen in Table 4.1, Table 4.2, Table 4.3, Table 4.4, and Table 4.5,

the results are exhibited based on different antenna numbers, processing effects, and

different estimators. The results show that angle accuracy is improved with antenna

number and pre–processing effect. It is also noted that environment characteristics

of the measurement campaign affects the performance of the proposed algorithm. In

Table 4.5, the results are calculated for the signal that is captured at the farthest distance

while considering LOS condition. According to the Table 4.1, Table 4.2, Table 4.3, and

Table 4.4 which are the NLOS cases, the increase in the Tx–Rx separation degrades

the results. On the other hand, at 512m which is the LOS case, the difference between

true value and estimated value is only 1.10◦.
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Figure 4.7 : MUSIC phase—spectrum for different processing methods.

Table 4.1 : AoA estimations of drone RC where has a 4.43◦ angle position at 115.24
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface
font.

M Processing
Effect Estimator Angle of Arrival

θG θ̂ Diff.

Google Earth 4.43◦

2

Without
Pre–processing

root-MUSIC 16.74◦ 12.31◦

MUSIC 16.70◦ 12.27◦

With
Pre–processing

root-MUSIC 28.20◦ 23.77◦

MUSIC 28.20◦ 23.77◦

3

Without
Pre–processing

root-MUSIC 44.28◦ 39.85◦

MUSIC 43.50◦ 39.07◦

With
Pre–processing

root-MUSIC 16.61◦ 12.18◦

MUSIC 16.60◦ 12.17◦

4

Without
Pre–processing

root-MUSIC 56.29◦ 51.86◦

MUSIC 56.30◦ 51.87◦

With
Pre–processing

root-MUSIC 4.54◦ 0.11◦
MUSIC 4.30◦ −0.13◦
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Table 4.2 : AoA estimations of drone RC where has a 6.41◦ angle position at 164.74
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface
font.

M Processing
Effect Estimator Angle of Arrival

θG θ̂ Diff.

Google Earth 6.41◦

2

Without
Pre–processing

root-MUSIC 19.53◦ 13.12◦

MUSIC 19.50◦ 13.09◦

With
Pre–processing

root-MUSIC 30.72◦ 24.31◦

MUSIC 30.70◦ 24.29◦

3

Without
Pre–processing

root-MUSIC 42.67◦ 36.26◦

MUSIC 42.00◦ 35.59◦

With
Pre–processing

root-MUSIC 19.89◦ 13.48◦

MUSIC 19.90◦ 13.49◦

4

Without
Pre–processing

root-MUSIC 56.15◦ 49.74◦

MUSIC 56.10◦ 49.69◦

With
Pre–processing

root-MUSIC 7.74◦ 1.33◦

MUSIC 7.70◦ 1.29◦

Table 4.3 : AoA estimations of drone RC where has a 8.55◦ angle position at 214.74
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface
font.

M Processing
Effect Estimator Angle of Arrival

θG θ̂ Diff.

Google Earth 8.55◦

2

Without
Pre–processing

root-MUSIC 16.63◦ 8.08◦

MUSIC 16.60◦ 8.05◦

With
Pre–processing

root-MUSIC 33.46◦ 24.91◦

MUSIC 33.50◦ 24.95◦

3

Without
Pre–processing

root-MUSIC 43.47◦ 34.92◦

MUSIC 42.80◦ 34.25◦

With
Pre–processing

root-MUSIC 23.69◦ 15.14◦

MUSIC 23.70◦ 15.15◦

4

Without
Pre–processing

root-MUSIC 56.82◦ 48.27◦

MUSIC 56.80◦ 48.25◦

With
Pre–processing

root-MUSIC 10.26◦ 1.71◦

MUSIC 10.20◦ 1.65◦
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Table 4.4 : AOA estimations of drone RC where has a 10.33◦ angle position at 264.62
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface
font.

M Processing
Effect Estimator Angle of Arrival

θG θ̂ Diff.

Google Earth 10.33◦

2

Without
Pre–processing

root-MUSIC 16.44◦ 6.11◦

MUSIC 16.40◦ 6.07◦

With
Pre–processing

root-MUSIC 29.75◦ 19.42◦

MUSIC 29.70◦ 19.37◦

3

Without
Pre–processing

root-MUSIC 44.48◦ 34.15◦

MUSIC 43.90◦ 33.57◦

With
Pre–processing

root-MUSIC 24.39◦ 14.06◦

MUSIC 24.40◦ 14.07◦

4

Without
Pre–processing

root-MUSIC 56.61◦ 46.28◦

MUSIC 56.60◦ 46.27◦

With
Pre–processing

root-MUSIC 12.92◦ 2.59◦
MUSIC 13.10◦ 2.77◦

Table 4.5 : AoA estimations of drone RC where has a 2.10◦ angle position at 512.00
meters apart from the antenna array with respect to a different number of
antennas (M). The best estimation for drone RC is highlighted in boldface
font.

M Processing
Effect Estimator Angle of Arrival

θG θ̂ Diff.

Google Earth 2.10◦

2

Without
Pre–processing

root-MUSIC 47.35◦ 45.25◦

MUSIC 47.40◦ 45.30◦

With
Pre–processing

root-MUSIC 35.50◦ 33.40◦

MUSIC 35.50◦ 33.40◦

3

Without
Pre–processing

root-MUSIC 57.16◦ 55.06◦

MUSIC 57.20◦ 55.10◦

With
Pre–processing

root-MUSIC 14.20◦ 12.10◦

MUSIC 14.20◦ 12.10◦

4

Without
Pre–processing

root-MUSIC 67.56◦ 65.46◦

MUSIC 67.20◦ 65.10◦

With
Pre–processing

root-MUSIC 3.33◦ 1.23◦

MUSIC 3.20◦ 1.10◦
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5. Concluding Remarks and Future Directions

Safety, security, and privacy are three critical concerns affiliated with the use of drones

in everyday life. Considering their ever–shrinking sizes and capabilities, being aware

of drone activities in the vicinity becomes an important surveillance item. Therefore,

keeping track of drones and preferably their controllers should be included into the

already–existing security measures. Therefore, this thesis focuses on the problem of

identification and AoA estimation of real–world drone RC signals. For this purpose,

cyclostationarity based signal identification and time–frequency analysis are applied to

distinguish FHSS signals such as drone RC and Bluetooth signals. Once the drone RC

signal is identified, rather than directly feeding wideband signals to the AoA algorithm,

the performance of the DF with the reconstruction of FHSS signals is discussed.

For this reason, time–frequency analysis is used to get the correct FHSS signal to

reconstruct in the baseband center which leads to the accurate estimation of AoA.

Also, real–world conditions are considered for the signal detection and estimation of

DF. The performance results show that gathering the hopping signal samples at a

frequency point against the noise will improve the performance of DF estimation for

FHSS signals.

Some of the potential future research directions that require further investigation are:

• Adopting the recently emerging deep learning algorithms to distinguish FHSS

signals among the standard-based wireless signals.

• Kalman filtering can be considered for the tracking of the hops of an FHSS signals

and use different subspace–based AoA estimation methods such as Fourier domain

MUSIC algorithm.

• For the case that the multiple FHSS signals exist, the probability of correct

clustering under the different conditions for various SNR values can be examined.
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