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ÖZET

Bu çalışmada, iki kümeli grafların özel bir tipi olan ve λ = 1 durumu için (0, λ)−
grafları sınıfında yer alan lineer graflar tanımlanmıştır. Daha sonra lineer grafların temel
özelllikleri incelenerek sınıflandırılması yapılmıştır. Ayrıca lineer grafların bazı yasaklı alt
grafların karakterizasyonu yapılarak önemli sonuçlar elde edilmiştir.

Bu bağlamda, bu çalışma sekiz bölümden oluşmaktadır. Birinci bölümde çalışmanın
giriş ve amaç kısmına, ikinci bölümde ise detaylı bir literatür taramasına yer verilmiştir.
Üçüncü bölümde çalışmamız için önemli bir yere sahip olan temel kavramlara yer
verilmiştir. Çalışmanın dördüncü bölümünde lineer graf kavramı tanımlanmış ve bunların
temel özellikleri incelenmiştir. Ayrıca lineer graflar afin graf, projektif graf ve {0, 1}−semi
graf olmak üzere sınıflandırması yapılarak temel özellikleri incelenmiş ve önemli sonuçlar
elde edilmiştir. Beşinci bölümde lineer grafların komşuluk grafları incelenerek Friendship
grafların komşuluk graflarından lineer graf elde edilmiştir. Altıncı bölümünde ise graflar
için önemli bir indeks olan Wiener indeks kavramı kullanarak lineer grafların Wiener
indeksleri incelenmiştir. Yedinci bölümünde bulgular ve tartışmalar kısmına yer verilerek
elde edilen bulgular özetlenmiştir. Tezin son bölümü olan sekizinci bölümde ise sonuçlar ve
öneriler kısmına yer verilmiştir.

Anahtar Kelimeler: Lineer graf, İki kümeli graf, (0, λ)− graf, Ortak komşuluk
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SUMMARY

In this thesis, linear graphs, which are a type of bipartite graphs and which are a class
of graphs (0, λ)− whenever λ = 1, are defined. Following this, the basic properties of linear
graphs were examined and their classification was made. Also, some forbidden subgraphs of
linear graphs were characterized and important results were obtained.

In this context, this thesis consists of eight chapters. In the first part, the introduction
and purpose of the study are given, and in the second part a detailed literature review is
presented. The third chapter presents the basic concepts of importance to our thesis. In
chapter four, linear graphs are defined and their basic properties are explored. Further,
linear graphs that are affine graph, projective graph or {0, 1}−semigraph have been
classified, their properties examined and important results have been obtained. In chapter
five, we obtained a linear graph from the neighborhood graphs of the friendship graphs by
examining the neighborhood graphs of the linear graphs. In chapter six, Wienner indices of
linear graphs are examined, which has an important indices in graphs. In chapter seven of
the thesis, findings and discussions are presented and the findings are summarized. The final
chapter of the thesis, which contains the conclusions and suggestions, is the eighth chapter.

Keyword: Linear graph, Bipartite graph, (0, λ)− graphs, Common neighborhood
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1. GİRİŞ VE AMAÇ

Graf Teorinin bir alt konusu olan (0,λ) − grafları H. M. Mulder(Mulder, 1979)
tarafından ”λ ≥ 2 olmak üzere herhangi iki düğümünün ortak komşuluğunun sayısı 0 veya
λ olan bağlı graflar” olarak tanımlanmıştır. Bu graflarla ilgili regülerlik, düğüm sayısı
derece ilişkisi ve çaplarıyla ilgili çalışmalar yapılarak bazılarının sınıflandırılmaları
yapılmıştır. Başta Mulder olmak üzere yapılan bu çalışmalarda λ ≥ 2 olması şartı göz
önüne alınmış λ = 1 durumuyla ilgili herhangi bir çalışma yapılmamıştır. İlerleyen yıllarda
λ=1 durumu, başta Günaltılı olmak üzere Ulukan ve Olgun tarafından incelenmiş ve önemli
sonuçlar elde edilmiştir. Bu çalışmalarda (0, 1)−graflarının bazı temel özellikleri
incelenmiş ve bazılarının sınıflandırmasına yönelik çalışmalar yapılmıştır.

Bu çalışmada iki kümeli grafların özel bir tipi olan lineer graflar tanımlanarak
karakterizasyonu yapılacaktır. Aynı zamanda (0, 1)− grafları sınıfında yer alan lineer
grafların sınıflandırılması yapılarak son yıllarda araştırılmaya başlanan (0, 1)− graflarının
sınıflandırılmasına katkı sağlanacaktır. Bununla birlikte bazı geometrik yapılardaki
karmaşık durumların lineer graflarla daha anlaşılabilir temsili yapılabileceği
öngörülmektedir.

Özetle lineer grafların derece, çap, regülerlik ve çeşitli kombinatörik özellikleri
incelenerek bu grafların temel özellikleri ortaya çıkarılacak ve lineer graflar
sınıflandırılarak bunların karakterizasyonu yapılacaktır. Ayrıca sınıflandırılması yapılan
lineer graflar arasındaki ilişkiler incelenerek birbirlerini alt graf olarak içermesi için gerekli
parametreler verilecektir.

Lineer graflarının bazı yasaklanmış alt graflarıyla ilgili incelemeler yapılarak bazı
özel graflardan lineer graflar elde edilme koşulları incelenecektir. Son olarak ise grafların
önemli bir indeksi olan Wiener indeks kavramı kullanılarak lineer graflarının Wiener
indekleri hesaplanacaktır.
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2. LİTERATÜR ARAŞTIRMASI

Graf Teori, 18. asırda Prusya’da bulunan Königsberg Kasabası sakinlerinin uzun bir
süre üzerine düşündükleri bir problemden hareketle ortaya çıkmıştır.

Königsberg Kasabası içerisinden Pregel nehri geçmektedir. Bu nehir kasabayı dört
mahalleye ayırmakta ve bu mahalleleri birleştiren yedi tane köprü bulunmaktadır. Kasaba
sakinlerini şu problem meşgul etmektedir. Herhangi bir mahalleden başlayıp bütün
köprülerden bir ve yanlız bir defa geçerek ve bütün mahalleleri dolaşarak başlangıç
noktasına geri dönülebilir mi? Bu problem dönemin ünlü İsviçreli matematikçi Leonhard
Euler tarafından çözülmüştür. 1736 yılında Euler yaptığı çalışmalarda böyle bir gezintinin
mümkün olmadığını belirtmiştir. Euler bu probleme çözün üretirken kara parçalarını birer
düğüm(nokta) ve köprüleri ise ayrıt(kenar) olarak kabul etmiştir. Böylece Şekil 2.1 de
verilen Königsberg şehrini Şekil 2.2 deki gibi modellemiştir.

Şekil 2.1 Königsberg’in yedi köprüsü

Şekil 2.2 Königsberg Probleminin Grafla temsili
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Yukarıdaki problemin çözümü temel olarak bir düğüm, uç(başlangıç ya da bitiş)
düğüm değilse o düğüme giren kişinin turu tamamlayabilmesi için o düğümden çıkması
gerekir. Dolayısıyla bu şekildeki düğümlerin derecesi çift olmalıdır. Bu sebepten dolayı tek
dereceli düğüm sayısı ikiden fazla ise böyle bir gezinti yapmak mümkün değildir. Gerçek
hayatla ilgili bir problemin Euler yaptığı gibi düğümler ve ayrıtlarla temsil edilerek
çözülmesi graf teorinin temelini atmıştır. Sonraki yıllarda benzer çalışmalar devam etmiştir.

G.R.Kirchhoff (1847) tarafından elektrik devrelerinde ve A.Cayley (1857)
tarafından yapılan CnH2n+2 Doymuş Hidrokarbon izomerilerinin sınıflanmasıda, ağaç
kavramının kullanılması, graf teorinin farklı çalışma alanlarını ortaya çıkmasına katkı
sağlamıştır. Thomas Guthrie (1852) meşhur dört renk problemini ortaya atarak bir
haritasının komşu ülkeler farkı renkte olacak şekilde en fazla dört renkle boyanabileceğini
problemini ortaya atmıştır. Bu problem yaklaşık bir asır sonra 1976 yılında Kaneth Appel
ve Wolfpeng Hakun tarafından bilgisayar kullanarak çözmesi büyük tartışmlara neden
olmuştur. (Chartrand ve Lesniak, 2005). Fakat bu yöndeki çalışmalar matematikte graf teori
alt alanının doğmasına katkıda bulunmuştur.

Graf Teori ve uygulamaları ile ilgili çalışmalar, günlük yaşamla ilgili problemlerin
graf teorisi sayesinde modellenip çözülebilmesi sebebiyle son yıllarda büyük bir hızla artış
göstermektedir. Graf Teori, ekonomi, yönetim bilimi, kimya, biyoloji, iktisat, genetik
,bilgisayar, sosyoloji ve kodlama teorisi gibi bir çok alanda kullanılmaktadır.

V ̸= ∅ ve 1 ≤ k ≤ 2, k ∈ Z+ olsun. V kümesinin k elemanlı alt kümelerinin
ailesi [V ]k ile gösterilsin. V düğümlerinin kümesi,E ayrıtlarının kümesi,ϕ üzerinde bulunma
bağıntısı ve V ∩ E = ∅ olmak üzere, ϕ :E → [V ]1 ∪ [V ]2 bağıntısı bir fonksiyonsa G =

(V,E, ϕ) üçlüsüne bir “graf “ denir. (Güney, 2005).

Bir grafın düğümler kümesi maksimum mertebeli bağımsız iki ayrık kümeye
ayrılabiliyorsa G ye iki kümeli graf denir. İki kümeli graflar sistematik olarak ilk kez D.
Köning (König, 1915, 1916) tarafından ileri sürülmüştür. Her ne kadar iki kümeli graflar
Köning tarafından sistematik olarak ortaya konmuşsa da Kirchoff (1847), A. Cayley
(Cayley, 1857), J.J. Sylvester (Sylvester, 1875) ve J.J. Camille (Camille, 1869) gibi bilim
insanlarının birbirinden bağımsız olarak ağaçlar üzerine yapmış olduğu çalışmalar iki
kümeli graflar için temel teşkil etmektedir. F. W. Levi (Levi, 1942) tarafından ortaya atılan
ve Levi grafları ya da çakışım (incidence) grafları olarak adlandırılan iki kümeli graflar
projektif geometride bir konfigürasyonda noktalar ve doğrular arasında çakışım modeli
olarak kullanılmaktadır. Bu sayede lineer uzaylar ile iki kümeli graflar arasında bazı önemli
ilişkiler elde edilmiştir. H. M. Mulder(Mulder, 1979) tarafından (0, λ)− grafları ortaya
atılarak n-küplerle ilgili çalışmalar yapılmıştır. Daha sonraki yıllarda A.E. Brouwer ve
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H.M. Mulder(Brouwer ve Mulder, 1997), (0, 2)− graflarının düğüm bağlılığı üzerine
çalışmalar yapmışlardır. A.E. Brouwer(Brouwer, 2006) tarafından açıklığı en çok 7 olan
(0, 2)− grafların sınıflandırılması verilmiştir. Benzer mahiyette çalışma P. R. J. Östergard
ve A.E. Brouwer(Brouwer ve Östergård, 2009) tarafından açıklığı en çok 8 olan (0, 2)−
grafların sınıflandırılması yapılmıştır.

Daha sonraki süreçte İ. Günaltılı ve A. Ulukan(Ulukan, 2012) tarafından iki kümeli
bitişik grafların temel özellikleri incelenerek bu graflardan bazılarının çaplarına göre
sınıflandırması yapılmıştır. Benzer şekildeki çalışmalar İ. Günaltılı (Günaltili, 2013)
tarafından sonlu regüler {0, 1}− bigraflar, İ.Günaltılı, Ş. Olgun ve A.Ulukan (Gunaltılı vd.,
2013) tarafından sonlu (0, 1)− grafların bazı özellikleri konularında çalışmalar yapılarak iki
kümeli (0, 1)− graflarının bazıları için sınıflandırmalar yapılarak önemli sonuçlar elde
edilmiştir.
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3. TEMEL KAVRAMLAR

Bu bölümde tezde kullanılan temel tanım ve kavramlarla birlikte tez için gerekli bazı
teoremler verilecektir. Burada verilen kavram, teorem ve teorem ispatlarıyla ilgili detaylı
bilgiye belirtilen kaynaklardan ulaşılabilir.

Tanım 3.1. V ̸= ∅ ve k ∈ Z+ için V kümesinin k elemanlı alt kümelerinin ailesi [V ]k ile
gösterilsin. V düğümlerinin kümesi, E ayrıtlarının(kenarların) kümesi,ϕ üzerinde bulunma
bağıntısı ve V ∩ E = ∅ olmak üzere, ϕ :E → [V ]1 ∪ [V ]2 bağıntısı bir fonksiyonsa G =

(V,E, ϕ) üçlüsüne bir “graf “ denir ve kısaca G = (V,E) şeklinde gösterilir.(Güney, 2005)

Bu tanımdan anlaşılacağı gibi ayrıtlar düğümlerin birli ya da ikili alt kümeleri ile
eşleşir. Bir grafın düğüm sayısı; |V| ve ayrıt sayısı; |E| şeklinde gösterilir ve bir G grafının
düğüm sayısı ve kenar sayısı sonlu (|V | < ∞ ve |E| < ∞) ise sonlu graf denir. Ayrıca,
e = {v1, v2} kenarı kolaylık olması açısından e = v1v2 şeklinde gösterilecektir. Buradaki v1
ve v2 düğümlerine e ayrıtının uç düğümleri denir. (Vasudev, 2006)

Tanım 3.2. G = (V,E) bir graf olmak üzere G grafının herhangi iki düğümü arasında
birden fazla kenar varsa bu kenarlara katlı kenarlar denir. Eğer birG = (V,E) grafında uç
düğümleri aynı olan bir kenar varsa, bu kenara ilmek(loop) denir. (Vasudev, 2006)

Tanım 3.3. G = (V,E) bir graf olmak üzere G grafı katlı kenar ve ilmek bulundurmuyorsa
G grafına basit graf denir. İlmek bulunduran graflara yalancı graf (pseudo graph), katlı
kenar bulunduran graflara ise çoklu graf (multigraph) denir. (Vasudev, 2006)

Örnek 3.1. Şekil 3.1 de basit graf, çoklu graf ve pseudo grafla ilgili örnekler verilmiştir.

Şekil 3.1 Ayrıtlarına Göre Graf Çeşitleri
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Bu durumda yukarıda bahsi geçen basit graf tanımı, V adına düğümler denilen
elemanlardan oluşan boştan farklı bir küme ve E adına ayrıtlar denilen, her biri farklı iki
düğüm çiftini birleştiren elemanlardan oluşan diğer bir kümenin oluşturduğu bir sıralı ikili
olarak verilebilir.
Bu tezdeki tüm graflar basit graf olarak alınmıştır.

Tanım 3.4. G = (V,E) bir graf ve v1, v2 ∈ V (G) olmak üzere v1v2 ∈ E(G) ise v1 ve
v2 ye komşu düğümler denir. Aksi halde yani v1v2 /∈E(G) ise v1 ve v2 ye komşu olmayan
düğümler denir. (West, 2005)

v ∈ V düğümü için
N(v) = {u : u ∈ V ve vu ∈ E(G)}

kümesine v düğümünün komşuluğunda bulunan düğümler kümesi ve bu kümenin
elemanlarına da v düğümünün komşuları denir.

Ayrıca p,q ∈ V olmak üzere hem p hem q ile komşu olan düğümlerin kümesine p ve
q düğümlerinin ortak komşuluğu denir ve CN(p, q) şeklinde gösterilir. p ve q düğümlerinin
ortak komşuluklarının sayısı; | CN(p, q) | ya da kısaca cn(p, q) şeklinde gösterilir.

Tanım 3.5. Bir grafta ortak düğüme sahip olan kenarlara bitişik kenarlar denir. Ayrıca
herhangi bir G = (V,E) grafı için v ∈ V düğümünü üzerinde bulunan kenar sayısına v

düğümünün derecesi denir ve d(v) ile gösterilir. Bir grafın derecesi en küçük olan
düğümüne minumum dereceli düğüm denir ve bir G grafının minumum dereceli
düğümünün derecesi δ(G) ile gösterilir. Bir grafın derecesi en büyük olan düğümüne
maksimum dereceli düğüm denir ve bir G grafının maksimum dereceli düğümünün
derecesi ∆(G) ile gösterilir. (West, 2005)

Tanım 3.6. G = (V,E) bir graf olsun. v ∈ V için d(v) = 0 ise v ye izole düğüm, u ∈ V

için d(u) = 1 ise u ya sarkık düğüm denir.

Tanım 3.7. G = (V,E) bir graf olmak üzere G grafında bütün düğümlerin dereceleri eşit
ise bu grafa düzenli(regular) graf denir. Eğer ∀v ∈ V için d(v) = r ise grafa r-düzenli
(r-regular) graf denir. (West, 2005)

Tanım 3.8. G = (V,E) bir graf olmak üzere G nin bütün farklı düğüm çiftleri komşu ise G
ye tam graf denir. n düğümlü tam graf Kn ile gösterilir. (Vasudev, 2006)

Tanım 3.9. G = (V,E) bir graf ve vi ∈ V ve ei = vi−1vi ∈ E olmak üzere u = v0 − e1 −
v1−e2− ...−vi−1−ei−vi− ...−vn−1−en−vn = v) sonlu dizisine bir u−v dolaşısı denir.
Bir u − v dolaşısında u = v ise kapalı dolaşı aksi halde açık dolaşı denir. Bu dolaşıdaki
kenar sayısına u− v dolaşının uzunluğu denir. (West, 2005)
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Tanım 3.10. G = (V,E) bir graf ve u − v bu grafa ait bir dolaşı olsun. Eğer bu dolaşıda
hiçbir kenar tekrar etmiyorsa bu dolaşıya gezi, hiçbir düğüm tekrar etmiyorsa bu dolaşıya
yol adı verilir. u ve v düğümü arası yol P (u, v) ile gösterir. Ayrıca P (u, v) = P (v, u) dir.
Bir P (u, v) yolunun uzunluğu bu yola ait ayrıt sayısıdır ve kısaca | P (u, v) | ile gösterilir.
Ayrıca n uzunluklu bir yol grafı Pn ile gösterilir ve n+ 1 düğüm içerir. (West, 2005)

Tanım 3.11. G = (V,E) bir graf ve P (u, v) bu grafa ait bir yol olsun. Eğer u − v yolu
kapalı(u = v) ise bu yola çevre denir. n uzunluklu bir çevre Cn ile gösterilir.

Tanım 3.12. Herhangi bir G grafına ait çevrelerden minumum uzunluklu çevrenin
uzunluğuna G grafının girti denir ve girt(G) ile gösterilir. (West, 2005)

Tanım 3.13. G = (V,E) bir graf olsun. Eğer her bir u, v ∈ V düğüm çifti için P (u, v) yolu
varsa G grafına bağlı(bağlantılı) graf denir. (West, 2005)

Tanım 3.14. G = (V,E) bir graf olsun. Eğer G grafının her bir ayrıtını içeren kapalı gezi
varsa bu grafa Euler graf ve bu geziye ise Euler gezi denir. (West, 2005)

Teorem 3.1. G = (V,E) bağlı bir graf olsun. G nin Euler graf olması için gerek ve yeter
koşul G nin tüm düğümlerinin derecesinin çift olmasıdır. (West, 2005)

Tanım 3.15. G = (V,E) bağlı bir graf olsun. G, 2 − reguler ise G ye çevre graf denir.
(Vasudev, 2006)

Tanım 3.16. G = (V,E) çevre içermeyen bağlı bir graf ise G ye ağaç denir. (West, 2005)

Tanım 3.17. G = (V,E) bir bağlı graf olsun.G grafına aitP (u, v) yollarının uzunluklarının
minimumuna u ve v düğümleri arasındaki uzaklık denir ve d(u, v) notasyonu ile gösterilir.
(West, 2005)

Teorem 3.2. G = (V,E) bağlı bir graf,

d : V × V → N

(u, v) → d (u, v)

fonksiyonu V kümesindeki herhangi iki düğüm arasındaki uzaklık olmak üzere d, G üzerine
bir metriktir.

İspat. G = (V,E) bağlı bir graf ve d, V nin iki düğümü arasındaki yolların minumum
uzaklığı olmak üzere, ∀u, v, w ∈ V için

i. d(u, v) ≥ 0 ve d(u, v) = 0 ise u = v.

ii. d(u, v) = d(v, u)
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iii. d(u, v) ≤ d(u,w) + d(w, v)

olduğundan dolayı d fonksiyonu G üzerinde bir metriktir.

Tanım 3.18. G = (V,E) bağlı bir graf olsun. u ∈ V için,

e(u) = max{d(u, v) : v ∈ V }

değerine u düğümünün açıklığı denir. (West, 2005)

Tanım 3.19. G = (V,E) grafında minumum açıklık değerineG nin yarıçapı denir ve rad(G)

ile gösterilir. Maksimum açıklık değerine iseG nin çapı denir ve diam(G) ile gösterilir. (West,
2005)

Tanım 3.20. G = (V,E) bir graf olsun. Eğer V kümesi V1, V2 ⊂ V , V1 ∪ V2 = V ve
V1 ∩ V2 = ∅ olmak üzere G grafın her bir kenarının uç düğümlerinden biri V1 kümesinde,
diğer düğümü ise V2 kümesinde olacak şekilde iki alt düğüm kümesine ayrılabiliyorsa bu
grafa iki kümeli(bipartite) graf denir. |V1| = m ve |V2| = n ise bu graf Gm,n ile gösterilir.
Eğer V1 kümesinin her bir düğümü V2 nin tüm düğümleriyle ayrıt belirtiyorsa benzer şekilde
V2 kümesinin her bir düğümü V1 nin tüm düğümleriyle ayrıt belirtiyorsa bu grafa iki kümeli
tam graf denir ve Km,n ile gösterilir.

Teorem 3.3. G bir graf olmak üzere G nin iki kümeli olması için gerek ve yeter şart tek
uzunluklu çevre içermemesidir.(Asratian vd., 1998).

Tanım 3.21. P noktalar kümesi ve L doğrular kümesi olmak üzere aşağıdaki aksiyomları
sağlayan S = (P , L) ikisine bir lineer uzay denir. (Batten, 1997)

L1. Her doğru üzerinde en az iki nokta vardır.

L1. Farklı iki nokta bir tek doğru üzerindedir.

Tanım 3.22. P noktalar kümesi ve L doğrular kümesi olmak üzere aşağıdaki aksiyomları
sağlayan S = (P , L) lineer uzayına afin düzlem denir.(Kaya, 2005)

A1. Bir dogrunun dışındaki bir noktadan geçen ve bu doğruya paralel olan bir tek
doğru vardır.

A2. Doğrudaş olmayan üç nokta vardır.

Tanım 3.23. P noktalar kümesi ve L doğrular kümesi olmak üzere aşağıdaki aksiyomları
sağlayan S = (P , L) lineer uzayımna bir projektif düzlem denir.(Kaya, 2005)
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P1. Herhangi iki doğrunun en az bir ortak noktası vardır.

P2. Herhangi üçü doğrudaş olmayan dört nokta vardır.

Tanım3.24. S=(P ,L, ◦) herhangi bir geometrik yapı olsun. V=P∪L veE = {{p, l} : p◦P}
olmak üzere G parçaları P ve L olan iki kümeli graftır. Bu grafa S =(P , L, ◦) geometrik
yapısının çakışım grafı (incidence graph) denir. (Levi, 1942).
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4. LİNEER GRAFLAR

Bu bölümde tezin ana konusu olan lineer graflar tanımlanarak bu grafların temel
özellikleri ve graf parametreleriyle(uzaklıkları, bağlılıkları, girtleri, çap ve regülerlik) ilgili
önemli sonuçlar elde edilmiştir. Lineer grafların bazı yasaklanmış alt grafları belirlenerek,
lineer graf olan çevre grafları karakterize edilmiştir. Ayrıca tam graflardan lineer graf elde
edilmiştir. Bağlantı sayısı tanımlanarak bu kavramla ilgili önemli sonuçlar verilmiştir. Son
olarak da lineer grafların sınıflandırması yapılarak önemli kavram ve ilişkiler ortaya
çıkarılmıştır.

İki kümeli sonlu bir grafın parçalarından birine ait herhangi iki düğümünün ortak
komşuluğunun sayısı 1 ise bu grafa lineer graf denir. Bu çalışmada lineer graflar
G = (P ∪ L , E) notasyonu ile gösterilecek ve kolaylık olması açısından P parçasından
alınan herhangi iki düğümün ortak komşuluğunun sayısı 1 olarak alınacaktır. Ayrıca bu
çalışmadaki tüm graflar basit graftır.

Tanım 4.1. G ,P veL parçalarından oluşan herhangi iki kümeli sonlu graf olmak üzere,

LG1. ∀x, y ∈ P ve x ̸= y için |CN(x, y)| = cn(x, y) = 1

LG2. δ(G) ≥ 2

şartlarını sağlıyorsa G ye iki kümeli lineer graf veya kısaca lineer graf denir.

Örnek 4.1. Şekil 4.1 de verilen graf tek uzunluklu çevre içermediğinden Teorem 3.3 den
dolayı iki kümelidir. Bu durumda P = {v1, v3, v5} ve L = {v2, v4, v6} iki kümeli olarak
yazılırsa, cn(v1, v3) = {v2},cn(v1, v5) = {v6} ve cn(v3, v5) = {v4} olduğundan LG1 ve her
bir vi ∈ V (C6) için d(vi) = 2 olduğundan LG2 sağlanır. Dolayısıyla C6 bir lineer graftır.

Şekil 4.1 C6 bir lineer graf modeli
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Lemma 4.1. G = (P ∪ L , E) bir lineer graf ise izole ve sarkık düğüm içermez.

İspat. Tanımdan dolayı izole düğümün derecesi sıfır ve sarkık düğümün derececi 1 dir. LG2
den dolayı lineer graflar izole ve sarkık düğüm içermez.

Lemma 4.2. G = (P ∪ L , E) bir lineer graf ise G tek uzunluklu çevre içermez.

İspat. Lineer graflar iki kümeli graf olduğundan Teorem 3.3 dolayı tek uzunluklu çevre
içermez.

Aksi belirtilmedikçe kolaylık olması açısından P parçasına ait düğümler,
p, q, v, . . . gibi küçük harflerle, L parçasına ait düğümler, K,L,M, . . . gibi büyük
harflerle gösterilecektir.

Lemma 4.3. G = (P ∪ L , E) lineer graf olmak üzere K ̸= L olacak şekilde herhangi
K,L ∈ L için cn(K,L) ≤ 1.

İspat. G = (P ∪ L , E) lineer graf olsun. Kabul edelim ki K ̸= L olacak şekildeki
K,L ∈ L ve n ≥ 2 için cn(K,L) ≥ n olsun. Bu durumda {p1, p2,…, pn} ⊆ CN(L,K)

olacak şekilde birbirinden farklı p1, p2,…, pn ∈ P düğümleri vardır. i ̸= j için
pi, pj ∈ {p1, p2,…, pn} olsun. Bu durumda {K,L} ⊆ CN(pi, pj) dir. Böylece
cn(pi, pj) ≥ 2 dir. Bu ise LG1 ile çelişir. Dolayısıyla kabulümüz yanlıştır. O halde
cn(K,L) ≤ 1 dir.

Lemma 4.4. G = (P ∪ L , E) lineer graf olmak üzere, her bir p ∈ P ve L ∈ L düğüm
çifti için cn(p, L) = 0.

İspat. G = (P ∪ L , E) lineer graf olsun. Kabul edelim ki herhangi bir p ∈ P ve L ∈ L

için cn(p, L) ≥ 1 olsun. O halde en az bir x ∈ CN(p, L) düğümü vardır ki x ∈ N(p) ⊆ L

ve x ∈ N(L) ⊆ P dir. Bu durumdaP ∩ L ̸= ∅ dır. Bu ise G nin iki kümeli graf olması ile
çelişir. O halde kabulümüz yanlıştır. Böylece cn(p, L) = 0 dir.

Sonuç 4.1. G = (P ∪L , E) bir lineer graf olmak üzere, birbirinden farklı herhangi x, y ∈
V (G) için cn(x, y) ∈ {0, 1}.

İspat. G = (P ∪L , E) bir lineer graf olmak üzere, birbirinden farklı x, y ∈ V (G) için üç
farklı durum vardır.
1. durum. x, y ∈ P ise LG1 den dolayı cn(x, y) = 1.

2. durum. x, y ∈ L ise Lemma 4.3 den dolayı cn(x, y) ≤ 1.

3. durum. x ∈ P ve y ∈ L için Lemma 4.4 den dolayı cn(x, y) = 0.
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Böylece her x, y ∈ V (G) ve x ̸= y için cn(x, y) = {0, 1} dir.

Teorem 4.1. G = (P ∪ L , E) bir lineer graf ise C4 içermez.

İspat. G = (P ∪ L , E) bir lineer graf olsun. Kabul edelim ki G grafı, p− x− q − y − p

şeklinde dört uzunluklu bir çevre içersin. Lineer graflar iki kümeli olduğundan p ∈ P ya da
p ∈ L dir. Dolaysıyla iki durum vardır.
1. durum. p ∈ P ise G iki kümeli olduğundan x ∈ L , q ∈ P ve y ∈ L dir. Bu durumda,
p, q ∈ P için {x, y} ⊆ N(p) ve {x, y} ⊆ N(q) olduğundan cn(p, q) ≥ 2 dir. Bu ise LG1 ile
çelişir.

2. durum. p ∈ L ise G iki kümeli olduğundan x ∈ P , q ∈ L ve y ∈ P dir. Bu durumda,
p, q ∈ L için {x, y} ⊆ N(p) ve {x, y} ⊆ N(q) olduğundan cn(p, q) ≥ 2 dir. Bu ise Lemma
4.3 ile çelişir.
Dolayısıyla kabulümüz yanlıştır. Böylece G, C4 içermez.

Sonuç 4.2. G = (P ∪ L , E) bir lineer graf ise iki kümeli tam graf değildir.

İspat. G = (P∪L , E) bir lineer graf olsun. Kabul edelim kiG = Kn,m olsun. Bu durumda,

i. n = 1 veyam = 1 olması durumundaG = Kn,1 ya daG = K1,m olur. Bu durumda
Lemma 4.1 ile çelişir. Dolayısıyla G ̸= Kn,1 ve G ̸= K1,m.

ii. n,m ≥ 2 olması durumunda G = Kn,m olur ki bu durum Teorem 4.1 ile çelişir.

Böylece (i) ve (ii) den dolayı G iki kümeli tam graf değildir.

Teorem 4.2. Kn bir tam graf ve n ≥ 3 olacak şekilde bir tamsayı olmak üzereKn nin (çapraz
kesişme noktaları hariç) her bir ayrıtına birer düğüm eklenilerek oluşturulan genişletilmiş
grafG olsun.G (n−1, 2)−biregüler lineer graftır. (Burada çapraz kesişme noktaları düğüm
olarak alınmamaktadır.)

İspat. Kn bir tam graf olsun. Bu durumda ∀pi, pj ∈ V (Kn) ve i ̸= j için pipj ∈ E(Kn) dir.
Her bir ayrıtana birer düğüm ilave edilsin ve e = pipj ayrıtına eklenen düğüm Lij olsun. Bu
durumda d(pi, pj) = pi −Lij − pj olacağından CN(pi, pj) = {Lij} olup cn(pi, pj) = 1 dir.
pi, pj düğümlerinin seçimi keyfi olduğundan ∀pi, pj ∈ V (Kn) için cn(pi, pj) = 1 dir.
pi ∈ V (Kn) için d(pi) = n − 1 dir. n ≥ 3 olduğundan dolayı δ(pi) ≥ 2 dir. Ayrıca yeni
eklenen her bir Lij düğümü için N(Lij) = {pi, pj} olduğudan d(Lij) = 2 dir. Dolayısıyla
LG2 sağlanır.

n ≥ 3 içinKn grafının tek uzunluklu çevre içerdiği açıktır. Bu durumda herhangi birC2k−1 ∈
Kn için C2k−1 : p1 − p2 − p3 − · · · − p2k−1 − p1 ve k ∈ Z+ olsun. Her bir ayrıta bir düğüm
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eklenirse;C4k−2 : p1−L12−p2−L23−p3−· · ·−L(2k−2)(2k−1)−p2k−1−L(2k−1)1−p1 şeklinde
çift uzunluklu bir çevreye dönüşür. C2k−1 çevresi keyfi olduğundan Kn tam grafındaki tek
uzunluklu çevreler Kn tam grafının genişletilmesi ile oluşturulan G grafında çift uzunluklu
çevrelere dönüşür. Dolayısıyla G grafı tek uzunluklu çevre içermediğinden Teorem 3.3 den
dolayı iki kümelidir.
Burada her bir pi ∈ V (Kn) için d(pi) = n − 1, her bir Lij ∈ L için d(Lij) = 2 ve
V = P ∪ L olduğundan dolayı G (n− 1, 2)−biregüler lineer graftır.

Örnek 4.2. Şekil 4.2 K4 tam grafı ve Teorem 4.2 de bahsedildiği şekliyle K4 ün düğüm
genişlemesiyle elde edilen graf modeli verilmiştir.

Şekil 4.2 K4 veK4 ün düğüm genişlemesiyle oluşan graf modeli

Şekil 4.3 deK4 tam grafından düğüm genişlemesiyle oluşan graf modelinin iki kümeli olacak
şekilde düzenlenmiştir.

Şekil 4.3 K4 ün düğüm genişlemesinin iki kümeli temsili
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Lemma 4.5. G = (P ∪ L , E) bir lineer graf ise

i. ∀p, q ∈ P ve p ̸= q için d(p, q) = 2,

ii. ∀L,K ∈ L ve L ̸= K için d(L,K) ∈ {2, 4} ve

iii. ∀p ∈ P ve ∀L ∈ L için d(p, L) ∈ {1, 3}

dir.

İspat. i. G bir lineer graf olsun. G iki kümeli bir graf olduğundan p, q ∈ P ve p ̸= q için
pq /∈ E(G) dir. Bu durumda d(p, q) ̸= 1 dir. LG1 den dolayı ∀p, q ∈ P ve p ̸= q için
CN(p, q) = {L} olacak şekilde L ∈ L düğümü vardır. O halde p − L − q yolu p ve q
düğümleri arasındaki en kısa yol olduğundan d(p, q) = 2 dir.

ii. G bir lineer graf olsun. Bu durumda G iki kümeli bir graf olduğundan L,K ∈ L ve
K ̸= L için LK /∈ E(G) dir. Bu durumda d(L,K) ̸= 1. Ayrıca Lemma 4.3 dan dolayı her
L,K ∈ L için cn(L,K) ∈ {0, 1} dir.

1. durum. cn(L,K) = 1 ise CN(L,K) = {p} olacak şekilde p ∈ P vardır. Bu durumunda
L− p−K yolu L veK düğümleri arasındaki en kısa yol olduğundan d(L,K) = 2 dir.

2. durum. cn(L,K) = 0 ise d(L,K) ≠ 2 ve lineer graflar iki kümeli olduğundan d(L,K) ̸=
3 dir. LG2 den dolayı {p, q} ⊆ N(L) ve {r, s} ⊆ N(K) olacak şekilde p.q, r, s ∈ P

düğümleri vardır. cn(L,K) = 0 olduğundan p ̸= r, p ̸= s, q ̸= r, q ̸= s dir. LG1 den
dolayı CN(p, r) = {M} olacak şekildeM ∈ L düğümü vardır. L = M olması durumunda
cn(L,K) = {r} dir. Bu ise cn(L,K) = 0 olması ile çelişir. Dolayısıyla L ̸= M dir. Benzer
şekilde K ̸= M dir. Bu durumda L ile K arasındaki en kısa yol L − p −M − r −K yolu
olup d(L,K) = 4 tür.

iii. p ∈ P ve L ∈ L için iki durum vardır.

1. durum. p ∈ N(L) ise d(p, L) = 1 dir.

2. durum. p /∈ N(L) ise d(L,K) ̸= 1 ve d(L,K) ̸= 2 dir. LG1 den dolayı CN(p, q) = {M}
olacak şekilde q ∈ P ve M ∈ L düğümleri vardır. Lemma 4.10 den dolayı cn(K,L) ≤
{0, 1} dir. Eğer cn(L,M) = 1 ise CN(L,M) = {r} olacak şekilde r ∈ P düğümü vardır
ve p−M−r−L yolu p ile L arasındaki en kısa yol olup d(p, L) = 3 dir. Eğer cn(L,M) = 0

ise LG2 den dolayıN(L) = {x, y} olacak şekilde x, y ∈ P düğümleri vardır. cn(L,M) = 0
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olduğundan dolayı x ̸= p, x ̸= q, y ̸= p ve y ̸= q dür. LG1 den dolayı p, x ∈ P için
CN(p, x) = {K} olacak şekildeK ∈ L düğümü vardır. cn(L,M) = 0 olduğundanK ̸= L

veK ̸= M dir. O halde p ile L arasındaki en kısa yol p−K − x− L olup d(p, L) = 3 tür.

Teorem 4.3. G = (V,E) bir lineer graf olmak üzere her x, y ∈ V (G) için
d(x, y) ∈ {0, 1, 2, 3, 4}.

İspat. G = (V,E) bir lineer graf olsun. Bu durumda x, y ∈ V (G) için x = y olması
durumunda d(x, y) = d(x, x) = 0 dır. x, y ∈ V (G) için x ̸= y ise Lemma 4.5 den dolayı
d(x, y) ∈ {1, 2, 3, 4}.

Örnek 4.3. Şekil 4.3 deki graf modeli göz önüne alınırsa P parçasındaki p1 ve p2

arasındaki minumun uzaklıklı yol, p1 − L12 − p2 olduğundan d(p1, p2) = 2 dir. Diğer
düğümler arasındaki uzaklıklarda benzer şekilde hesaplanabilir. L parçasındaki
cn(L12, L13) = 1 olduğundan minumum uzaklıklı yol, L12 − p1 − L13 olduğudan
d(L12, L13) = 2 ve cn(L12, L34) = 0 olduğundan bu düğümler arası minumum uzaklıklı yol,
L12 − p1 − L13 − p3 − L34 olduğudan d(L12, L34) = 4 tür. Diğer düğüm çiftleri arasındaki
uzaklıkta benzer şekilde bulunabilir. Düğümlerden biri P parçasına diğeri L parçasına
ait olması durumda p1 ile L12 arasındaki minumum uzunluklu yol p1 − L12 olduğundan
d(p1, L12) = 1 dir. p1 ile L23 arasındaki minumum uzunluklu yol p1 − L12 − p2 − L23

olduğundan d(p1, L23) = 3 tür. Diğer düğüm çiftleri arsındaki uzaklıklar benzer şekilde
hesaplanabilir.

Teorem 4.4. G = (V,E) bir lineer graf olmak üzere, G bağlı graftır.

İspat. G = (V,E) bir lineer graf olsun. Teorem 4.3 den dolayı her x, y ∈ V (G) için
d(x, y) ∈ {0, 1, 2, 3, 4} dir. Bu durumda, G grafının herhangi farklı x ve y düğümleri
arasında 1 ≤ |P (x, y)| ≤ 4 olacak şekilde P (x, y) ∈ G yolu vardır. O halde G grafı
bağlıdır.

Teorem 4.5. G = (P ∪ L , E) bir lineer olmak üzere, G en az bir C6 içerir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. p ∈ P için LG2 den dolayı L,K ∈ N(p)

ve L ̸= K olacak şekilde L,K ∈ L düğümleri vardır. Benzer şekilde LG2 den dolayı q ∈
N(L) ve r ∈ N(K) olacak şekilde q, r ∈ P düğümü vardır ve q ̸= p ve r ̸= p dir. Eğer
q = r ise {p, q} ⊆ CN(L,K) dir. Bu ise Teorem 4.1 ile çelişir. O halde q ̸= r dir. LG1
den dolayı CN(p, r) = {N} olacak şekilde bir tek N ∈ L düğümü vardır. N = L ise
{p, r} ⊆ CN(L,K) dir. Bu ise Lemma 4.3 ile çelişir. O halde N ̸= L dir. Benzer şekilde
N ̸= K dır. Böylece G,C6 : p− L− q −N − r −K − p olacak şekilde en az bir C6 içerir.

Sonuç 4.3. G = (P ∪ L , E) bir lineer graf ise ağaç değildir.

İspat. Teorem 4.5 ve ağaç tanımdan ispat açıktır.



16

Teorem 4.6. G = (V,E) bir lineer graf olmak üzere, girt(G) = 6.

İspat. Kabul edelim ki girt(G) < 6 olsun. Bu durumda,

1. durum. girt(G) ∈ {1, 3, 5} olması halinde Lemma 4.2 ile çelişir. O halde girt(G) /∈
{1, 3, 5}.

2. durum. girt(G) = 2 olması halinde G grafı katlı ayrıt içerir. Bu ise lineer grafların basit
graf olmasıyla çelişir. O halde girt(G) ̸= 2.

3. durum. girt(G) = 4 olması halindeG grafıC4 içerir. Bu ise Teorem 4.1 ile çelişeceğinden
dolayı girtG ̸= 4.

Böylece girt(G) /∈ {1, 2, 3, 4, 5} dir. Teorem 4.5 göz önüne alınırsa girt(G) = 6 dır.

Sonuç 4.4. G = (V,E) bir lineer graf olmak üzere, cn(p, q, r) = 0 olacak şekilde P

parçasına ait en az üç düğüm ve cn(L,K,M) = 0 olacak şekilde L parçasına ait en az üç
düğüm vardır.

İspat. G = (V,E) bir lineer graf olsun. Teorem 4.5 den dolayı G grafı C6 : p − L − q −
K − r − M − p olacak şekilde en az bir C6 içerir. Teorem 4.1 den dolayı p, q, r ∈ P ve
L,K,M ∈ L düğümleri için cn(p, q, r) = 0 ve cn(K,L,M) = 0 dir.

Örnek 4.4. Şekil 4.1 deki graf modeli göz önüne alınırsa v1, v3, v5 ∈ P ve v2, v4, v6 ∈ L

için cn(v1, v3, v5) = 0 ve cn(v2, v4, v6) = 0 dır.

Teorem 4.7. G bir çevre graf olsun.G nin lineer graf olması için gerek ve yeter koşulG = C6

olmasıdır.

İspat. G bir çevre graf olmak üzere kabul edelim ki G = C6 olsun. O halde G lineer graftır.
(Örnek 4.1’de C6 nın lineer graf olduğu gösterilmiştir.)

Tersine, kabul edelim ki G bir lineer graf ve G ̸= C6 olsun. Lemma 4.2 dolayı lineer
graflar tek uzunluklu çevre içermezler. Bu durumda G çevre grafı olduğundan k ≥ 4 için
G = C2k dır. O haldeG, u1−v2−u3−v4−· · ·−u(2k−1)−v(2k)−u1 şeklinde yazılabilir.G,
iki kümeli olacak şekilde yazılırsa, P = {u1, u3,…, u2k−1} ve L = {v2, v4,…, v2k} olur.
k ≥ 4 olduğundan | P |≥ 4 ve | L |≥ 4 tür. O halde birbirinden farklı ui, uj, uk, ut ∈ P

düğümleri vardır. LG1 den dolayı CN(ui, uj) = {vij}, CN(ui, uk) = {vik}, CN(ui, ut) =

{vit} olacak şekilde vij, vik, vit ∈ L düğümleri vardır. vij = vik ise {ui, uj, uk} ⊆ N(vij)

olur ki bu durumda d(vij) ≥ 3 dir. Bu iseG nin çevre grafı olmasıyla çelişir. O halde vij ̸= vik

dir. Benzer şekilde vij ̸= vik, vij ̸= vit dir. Bu durumda, {vij, vik, vit} ⊆ N(ui) dir. O halde
d(ui) ≥ 3 dir. Bu ise G nin çevre grafı olmasıyla çelişir. Dolayısıyla kabulümüz yanlıştır. G
çevre grafı lineer graf ise G = C6 dır.
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Lemma 4.6. G = (P ∪ L , E) bir lineer graf olmak üzere,

| L |≤ | P | .(| P | −1)

2

dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. LG1 den dolayı P parçasına ait herhangi
farklı iki düğüm L parçasına ait bir düğüm belirtir ve P parçasına ait farklı düğüm
çiftlerininL parçasına ait aynı düğümü belirtme ihtimali olduğundan dolayı,

| L |≤

(
| P |
2

)
=

| P | .(| P | −1)

2

dir.

Örnek 4.5. Şekil 4.1 deki lineer graf modelinde | L |= 3 ve |P|.(|P|−1)
2

= 3.2
2

= 3 tür.
Benzer şekilde, Şekil 4.10 deki lineer graf modelinde ise | L |= 7 ve |P|.(|P|−1)

2
= 7.6

2
= 21

dir.

Lemma 4.7. G = (P ∪ L , E) bir lineer graf olmak üzere

i. ∀p ∈ P için |L | > d(p)

ii. ∀L ∈ L için |L | > d(L)

dir.

İspat. i.G = (P∪L , E) bir lineer graf ve p ∈ P için d(p) = n olsun. LG2 den dolayı n ≥
2 dir. Bu durumda N(p) = {L1, L2, . . . , Ln} olacak şekilde L1, L2, . . . , Ln ∈ L düğümleri
vardır. LG2 den dolayı i, 1 ≤ i ≤ n için pi ∈ N(Li) olacak şekilde pi ̸= p ve pi ∈ P

düğümü vardır. Benzer şekilde LG2 den dolayı L ̸= Li ve L ∈ N(pi) olacak şekilde L ∈ L

düğümü vardır. L ∈ N(p) ise {Li, L} ⊆ CN(p, pi) olur. Bu ise LG1 ile çelişir. Dolayısıyla
L /∈ N(p) dir. Böylece {L1, L2, . . . , Ln, L} ⊆ L olduğundan dolayı |L | ≥ n + 1 dir. p
düğümünün seçimi keyfi olduğundan her bir p ∈ P için | L |> d(p) dir.

ii.G = (P∪L , E) bir lineer graf veL ∈ L için d(L) = n olsun. LG2 den dolayı n ≥ 2 dir.
Bu durumda N(L) = {p1, p2, . . . , pn} olacak şekilde p1, p2,…, pn ∈ P düğümleri vardır.
LG2 den dolayı her bir i, 1 ≤ i ≤ n ve pi ∈ N(L) için öyle birLi ∈ L düğümü vardır kiLi ∈
N(pi) ve Li ̸= L dir. 1 ≤ i, j ≤ n ve Li, Lj ∈ N(pi) için Li = Lj ise {L,Li} ⊆ CN(pi, pj)

dir. Bu ise LG1 ile çelişir. O halde Li ̸= Lj dir. {L1, L2, . . . , Ln, L} ⊆ L olduğundan dolayı
| L |≥ n+ 1 dir. L düğümün seçimi keyfi olduğundan her bir L ∈ L için | L |> d(L) dir.
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Sonuç 4.5. G = (P ∪ L , E) bir lineer graf olmak üzere

i. ∀p ∈ P için |P| > d(p)

ii. ∀L ∈ L için |P| > d(L) dir.

İspat. i. İspat Lemma 4.7 (i) nin ispatına benzer şekilde yapılabilir.

ii. G = (P ∪ L , E) bir lineer graf ve L ∈ L için d(L) = n olsun. LG2 den
dolayı n ≥ 2 dir. Bu durumda N(L) = {p1, p2, . . . , pn} olacak şekilde p1, p2, . . . , pn ∈ P

düğümleri vardır. LG2 den dolayı pi ∈ N(L) için K ̸= L ve K ∈ N(pi) olacak şekilde en
az bir K ∈ L vardır. Benzer şekilde LG2 den dolayı q ̸= pi ve q ∈ N(K) olacak şekilde
q ∈ P düğümü vardır. q ∈ N(L) ise {pi, q} ⊆ CN(K,L) dir. Bu ise Lemma 4.3 ile çelişir.
O halde q /∈ N(L) dir. O halde | P |≥ n+ 1 dir. Böylece her bir L ∈ L için | P |> d(L).

Sonuç 4.6. G = (V,E) bir lineer graf olmak üzere

i. ∀L ∈ L için p /∈ N(L) olacak şekilde en az bir p ∈ P vardır.

ii. ∀p ∈ P için L /∈ N(p) olacak şekilde en az bir L ∈ L vardır.

İspat. Lemma 4.7 ve Sonuç 4.5 den ispat açıktır.

Teorem 4.8. G = (P ∪ L , E) bir lineer graf olmak üzere

i. rad(G) = 3

ii. diam(G) ∈ {3, 4}
dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. Sonuç 4.6 den dolayı en az bir p /∈ N(L) ve
en az bir L /∈ N(p) olacak şekilde p ∈ P ve L ∈ L vardır. Lemma 4.5 den dolayı,

rad(G) = min{e(u)} = min{max{d(u, v) : v ∈ V (G)}} = 3

diam(G) = max{e(u)} = max{max{d(u, v) : v ∈ V (G)}} ∈ {3, 4}.

Örnek 4.6. Şekil 4.1 deki lineer graf modeli için e(v1) = e(v2) = e(v3) = e(v4) = e(v5) =

e(v6) = 3 olduğundan rad(G) = diam(G) = 3. Şekil 4.3 deki lineer graf modeli için
e(p1) = e(p2) = e(p3) = e(p4) = 3 ve e(L12) = e(L13) = e(L14) = e(L23) = e(L24) =

e(L34) = 4 olduğundan rad(G) = 3 ve diam(G) = 4.
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Teorem 4.9. G = (P ∪L , E) bir lineer graf olmak üzere p /∈ N(L) olacak şekilde p ∈ P

ve L ∈ L için
d(p) ≥ d(L)

dir.

İspat. G = (P∪L , E) bir lineer graf olsun. Sonuç 4.6 den dolayı p /∈ N(L) olacak şekilde
p ∈ P ve L ∈ L düğümleri vardır. d(L) = n olsun. LG2 den dolayı n ≥ 2 dir. Bu durumda,
i, 1 ≤ i ≤ n için N(L) = {p1, p2,…, pn} olacak şekilde pi ∈ P düğümleri vardır. Ayrıca
LG1 den dolayı her bir pi düğümü için CN(p, pi) = {Li} olacak şekilde Li ∈ L düğümleri
vardır. Her bir i için p ∈ N(Li) olduğundan Li ̸= L dir. Li, Lj ∈ {L1, L2,…, Ln} için
Li = Lj ise {L,Lj} ⊆ CN(pi, pj) dir. Bu ise LG1 ile çelişir. O halde Li ̸= Lj dir. Böylece
{L1, L2,…, Ln} ⊆ N(p) dir. Burada iki durum vardır.

1. durum. q ̸= p olacak şekilde her bir q ∈ P için q ∈ N(L) olsun. Kabul edelim ki
d(p) ≥ n + 1 olsun. Bu durumda i, 1 ≤ i ≤ n için K ̸= Li olacak şekilde en az bir
K ∈ N(p) düğümü vardır. p /∈ N(L) olduğundan dolayıK ̸= L dir. q ̸= p olacak şekilde her
bir q ∈ P için q ∈ N(L) olduğundan P = {p, p1, p2, . . . , pi, . . . , pn} dir. LG2 den dolayı
r ̸= p olacak şekilde r ∈ N(K) düğümü vardır. r ̸= p ve P = {p, p1, p2, . . . , pi, . . . , pn}
olduğundan dolayı herhangi bir i için r = pi dir. Bu durumda CN(p, pi) = {Li, K} dır. Bu
ise LG1 ile çelişir. O halde kabulümüz yanlıştır. Böylece

d(p) =| N(p) |= n (4.1)

dir.

2. durum. s ̸= p olacak şekilde en az bir s ∈ P için s /∈ N(L) olsun. LG1 den dolayı
CN(p, s) = {K} olacak şekildeK ∈ L vardır. Bu durumda,

(a) i, 1 ≤ i ≤ n içinK = Li ise {L1, L2, . . . , Ln} ⊆ N(p) dir. Bu durumda

d(p) =| N(p) |≥ n (4.2)

dir.

(b) i, 1 ≤ i ≤ n içinK ̸= Li ise {L1, L2,…, Ln, K} ⊆ N(p) dir. Bu durumda

d(p) = |N(p)| ≥ n+ 1 (4.3)

dir. O halde (4.1), (4.2) ve (4.3) den dolayı

d(p) ≥ d(L)

dir.
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Sonuç 4.7. G = (P∪L , E) bir lineer graf ve maksimumum düğüm derecesi r olmak üzere,
d(p) = r olacak şekilde p ∈ P düğümü vardır.

İspat. G = (P ∪ L , E) bir lineer graf ve maksimum düğüm dercesi r olsun. Kabul edelim
ki her bir p ∈ P için d(p) ≤ r − 1 olsun. G grafının maksimumum düğüm derecesi r
olduğundan en az bir L ∈ L için d(L) = r dir. Sonuç 4.6 den dolayı q /∈ N(L) olacak
şekilde q ∈ P vardır. Kabulümüzden dolayı d(q) ≤ r − 1 dir. Bu ise Teorem 4.9 ile çelişir.
Dolayısıyla en az bir p ∈ P için d(p) = r dir.

Teorem 4.10. G = (P ∪ L , E) bir lineer graf ve p ∈ P olmak üzere,

P =
∪

Li∈N(p)

N(Li)

dir.

İspat. x ∈
∪

Li∈N(p) N(Li) olsun. Bu durumda ∃Li ∈ N(p) için x ∈ N(Li) dir.N(Li) ⊆ P

olduğundan dolayı x ∈ P dir. Böylece,∪
Li∈N(p)

N(Li) ⊆ P (4.4)

dir. q ∈ P ve q ̸= p olsun. LG1 den dolayıCN(p, q) = {Li} olacak şekildeLi ∈ L düğümü
vardır. q ∈ N(Li) ve Li ∈ N(p) olduğundan q ∈

∪
Li∈N(p) N(Li) dir. O halde,

P ⊆
∪

Li∈N(p)

N(Li) (4.5)

dir. Böylece ( 4.4) ve (4.5) den dolayı

P =
∪

Li∈N(p)

N(Li)

elde edilir.

Teorem 4.11. G = (P ∪ L , E) bir lineer graf ve p ∈ P olsun. Li ∈ N(p) düğümleri için

| P | −1 =

d(p)∑
i=1

(d(Li)− 1)

dir.

İspat. G = (P∪L , E) bir lineer graf olsun. LG2 den dolayı p ∈ P için d(p) =| N(p) |≥ 2

dir. Bu durumda her bir i, 1 ≤ i ≤ d(p) için N(p) = {L1, L2, . . . , Ld(p)} olacak şekilde
Li ∈ L düğümleri vardır. Teorem 4.10 den dolayı | P |=|

∪
Li∈N(p) N(Li) | dir. Her

bir Li, Lj ∈ N(p) ve Li ̸= Lj için N(Li) ∩ N(Lj) = {p} dir. Bu durumda P − {p} de
N(Li) ∩N(Lj) = ∅ dir. Böylece p düğümü hariç, Li ∈ N(p) için

| P | −1 =

d(p)∑
i=1

(d(Li)− 1)

dir.
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Örnek 4.7. Şekil 4.4 deki lineer graf modeli için | P | −1 = 8 dir. p1 ∈ P için

d(p1)∑
i=1

(d(Li)− 1) = d(L1)− 1 + d(L4)− 1 + d(L7)− 1 + d(L9)− 1 = 2 + 2 + 2 + 2 = 8

Şekil 4.4 G = (P ∪ L , E)

Sonuç 4.8. G = (P ∪ L , E) bir lineer graf ve p ∈ P olmak üzere her bir i, 1 ≤ i ≤ d(p)

olacak şekilde Li ∈ N(p) düğümleri için d(Li) = r ise | P | −1 = d(p).(r − 1) dir.

İspat. G = (P ∪L , E) bir lineer graf olsun. Li ∈ N(p) olacak şekilde p ∈ P ve Li ∈ L

için d(Li) = r olsun. Teorem 4.11 den dolayı

| P | −1 =

d(p)∑
i=1

(r − 1)

dir. Böylece
| P | −1 = d(p).(r − 1)

elde edilir.

Bu kısımda art arda verilen iki sonucun ispatı Teorem 4.10 ve Teorem 4.11 ispatlarına
benzer şekildedir.

Sonuç 4.9. G = (P ∪ L , E) bir lineer graf ve birbirinden farklı her L,K ∈ L için
cn(L,K) = 1 olsun. pi ∈ N(L) olacak şekilde Li ∈ L ve L ∈ L için

L =
∪

pi∈N(L)

N(pi)

dir.
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Sonuç 4.10. G = (P ∪ L , E) bir lineer graf ve birbirinden farklı her L,K ∈ L için
cn(L,K) = 1 olsun. pi ∈ N(L) olacak şekilde L ∈ L ve pi ∈ P için

| L | −1 =
∑

pi∈N(L)

(d(pi)− 1)

dir.

Lemma 4.8. G = (P ∪ L , E) bir lineer graf olsun. Eğer L parçası s − reguler ise
r = |P|−1

s−1
olmak üzere G grafı (r, s)− bireguler dir. Şayet r = s ise G grafı regulerdir.

İspat. G = (P ∪ L , E) bir lineer graf ve L parçası s − reguler olsun. Bu durumda her
L ∈ L için d(L) = s , s ≥2 olacak şekilde s tamsayısı vardır. p ∈ P için Sonuç 4.8 den
dolayı

| P | −1 = d(p).(s− 1)

dir. Eşitlik düzenlenirse

d(p) =
| P | −1

s− 1

elde edilir. p nin seçimi keyfi olduğundan P parçası |P|−1
s−1

− regulerdir. Böylece G grafı
(r, s)− biregulerdir. r = s olması durumunda G grafı r−regüler graf olur.

Teorem 4.12. G = (P ∪ L , E) bir lineer graf olsun. L ∈ L için

| P | .(| P | −1) =
∑
L∈L

(d(L).(d(L)− 1)

İspat. G bir lineer graf olduğundanP parçasına ait farklı düğüm çiftlerini iki farklı şekilde
sayabiliriz. Birinci sayma yöntemi,(

| P |
2

)
=

| P | .(| P | −1)

2
(4.6)

dir. LG1 den dolayı P parçasına ait her bir farklı düğüm çiftinin ortak komşuluğu L

parçasına ait bir tek düğüm olduğundan dolayı L parçasına ait her bir düğümünün
komşuluğundaki farklı düğüm çiftlerinin sayıları toplamı P parçasına ait her bir farklı
düğüm çiftinin sayısını verir. Bu durumda L ∈ L için P de ortak komşuluğu L olan farklı
düğüm çiftlerinin sayısı,

(|N(L)|
2

)
=
(
d(L)
2

)
dir. Tüm L düğümleri üzerinden hesaplanırsa;

1

2

∑
L∈L

d(L).(d(L)− 1)) (4.7)
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dir. (4.6) ve (4.7) den dolayı

| P | (| P | −1) =
∑
L∈L

(d(L).(d(L)− 1)

dir.

Teorem 4.13. G = (P ∪ L , E) bir lineer graf olsun. p ∈ P için∑
p∈P

(d(p).(d(p)− 1) ≤| L | .(| L | −1)

İspat. G bir lineer graf olsun. Lemma 4.2 den dolayı L parçasına ait farklı düğüm
çiftlerinin ortak komşuluğunun sayısı sıfır ya da 1 dir. Bu durumda L parçasına ait farklı
düğüm çiftlerini; ortak komşuluklarının sayısı 0 olanlar ve ortak komşuluklarının sayısı 1
olanlar şeklinde iki kümeye ayrılabilir. Bu kümeler,

Λ1
Li ̸=Lj

(Li, Lj) = {(Li, Lj) : cn(Li, Lj) = 1 ve Li, Lj ∈ L }

Λ0
Li ̸=Lj

(Li, Lj) = {(Li, Lj) : cn(Li, Lj) = 0 ve Li, Lj ∈ L }

olsun. Bu kümelerin elemanları sayılırken (Li, Lj) ve (Lj, Li) düğüm çiftleri aynı
olduğundan birez kez sayılacaktır. L parçasına ait farklı düğüm çiftlerinin ortak
komşuluğunun sayısı hem sıfır hem de 1 olamayacağından dolayı

Λ1
Li ̸=Lj

(Li, Lj) ∩ Λ0
Li ̸=Lj

(Li, Lj) = ∅

dir. AyrıcaL parçasına ait tüm farklı düğüm çiflerinin sayısı

(
| L |
2

)
=

1

2
| L | (| L | −1) (4.8)

olduğu göz önüne alınırsa

| Λ1
Li ̸=Lj

(Li, Lj) | + | Λ0
Li ̸=Lj

(Li, Lj) |=
1

2
| L | .(| L | −1) (4.9)

dir. p ∈ P olsun. Bu durumda L parçasına ait ortak komşuluğu p olan düğüm çiftlerinin
sayısı,

(
d(p)
2

)
dir. Bu durumdaL parçasına ait ortak komşuluğunun sayısı 1 olan tüm düğüm

çiftlerinin sayısı tüm p düğümleri üzerinden hesaplanırsa,
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| Λ1
Li ̸=Lj

(Li, Lj) |=
1

2

∑
p∈P

d(p).(d(p)− 1) (4.10)

dir. Lemma 4.3 den dolayı | Λ0
Li ̸=Lj

(Li, Lj) |≥ 0 dir. O halde (4.9), (4.10) ve (4.8) den dolayı

∑
p∈P

(d(p).(d(p)− 1) ≤| L | .(| L | −1)

elde edilir.

Örnek 4.8. Şekil 4.4 deki lineer graf göz önüne alınırsa | P | (| P | −1) = 9.8 = 72 ve∑
Li∈L

(d(Li).(d(Li)− 1) = 3.2 + 3.2 + · · ·+ 3.2 = 72

dir. Ayrıca | L | (| L | −1) = 12.11 = 132 ve∑
pi∈L

(d(pi).(d(pi)− 1) = 4.3 + 4.3 + · · ·+ 4.3 = 108

dir.

Sonuç 4.11. G = (P ∪ L , E) bir lineer graf olsun.

Λ0
Li ̸=Lj

(Li, Lj) = {(Li, Lj) : cn(Li, Lj) = 0 ve Li, Lj ∈ L }

olmak üzere p ∈ P için

| Λ0
Li ̸=Lj

(Li, Lj) |=
1

2

[
| L | .(| L | −1)−

∑
p∈P

d(p).(d(p)− 1)

]

dir. (Burada (Li, Lj) ve (Lj, Li) aynı düğüm çiftleridir.)

İspat. G = (P ∪ L , E) bir lineer graf olsun. (4.9) eşitliğinden dolayı

| Λ1
Li ̸=Lj

(Li, Lj) | + | Λ0
Li ̸=Lj

(Li, Lj) |=
1

2
| L | .(| L | −1)

dir. p ∈ P olmak üzere (4.10) eşitliği kullanılırsa

| Λ0
Li ̸=Lj

(Li, Lj) |=
1

2

[
| L | .(| L | −1)−

∑
p∈P

d(p).(d(p)− 1)

]

dir.

Örnek 4.9. Şekil 4.5 deki lineer graf modeli incelenirseL parçasına ait herhangi farklı iki
düğümünün ortak komşuluğunun sayısı 1 dir. Ayrıca

| L | .(| L | −1 = 5.4 = 20
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∑
p∈P

d(p).(d(p)− 1) = 4.3 + 2.1 + 2.1 + 2.1 + 2.1 = 20

dir.

Şekil 4.5 Teorem 4.14 çin örnek bir lineer graf modeli

Teorem 4.14. G = (P ∪ L , E) bir lineer graf olsun. p ∈ P için∑
p∈P d(p).(d(p)− 1) =| L | .(| L | −1) ⇔ ∀L,K ∈ L için cn(L,K) = 1 dir.

İspat. G = (P ∪ L , E) bir lineer graf olmak üzere kabul edelim ki p ∈ P için∑
p∈P(d(p).(d(p)− 1) =| L | (| L | −1) olsun. (4.9) den dolayı

| Λ1
Li ̸=Lj

(Li, Lj) | + | Λ0
Li ̸=Lj

(Li, Lj) |=
1

2
| L | .(| L | −1)

dir. AyrıcaL parçasındaki ortak komşuluğunun sayısı 1 olan farklı düğüm çiftlerinin sayısı,
(4.10) eşitliğinden dolayı

| Λ1
Li ̸=Lj

(Li, Lj) |=
1

2

∑
p∈P

d(p).(d(p)− 1)

dir. Hipotezden dolayı,

| Λ1
Li ̸=Lj

(Li, Lj) |=
1

2
| L | .(| L | −1)

elde edilir. Bu durumda, | Λ0
Li ̸=Lj

(Li, Lj) |= 0 dır. Dolayısıyla ∀Li, Lj ∈ L ve Li ̸= Lj için
cn(Li, Lj) = 1 dir.

Tersine, kabul edelim ki ∀Li, Lj ∈ L ve Li ̸= Lj için cn(Li, Lj) = 1 olsun. Bu
durumda,

| Λ0
Li ̸=Lj

(Li, Lj) |= 0

dır. Böylece (4.9) den dolayı

| Λ1
Li ̸=Lj

(Li, Lj) |=
1

2
| L | .(| L | −1)
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dir. Ayrıca 4.10
| Λ1

Li ̸=Lj
(Li, Lj) |=

1

2

∑
p∈P

d(p).(d(p)− 1)

olduğundan dolayı ∑
p∈P

(d(p).(d(p)− 1) =| L | .(| L | −1)

dir.

Lemma 4.9. G = (P ∪ L , E) bir lineer graf olmak üzere,∑
p∈P

d(p) =
∑
L∈L

d(L)

İspat. G = (P ∪L , E) bir lineer graf olsun. Bu durumda lineer grafların ayrıt sayının iki
farklı şekilde sayabiliriz. İlk olarak ayrıt sayısınıP parçası üzerinden sayarsak,

| E |=
∑
p∈P

d(p) (4.11)

dir. ikinci olarak ayrıt sayısınıL parçası üzerinden sayarsak,

| E |=
∑
L∈L

d(L) (4.12)

dir. (4.11) ve (4.12) den dolayı ∑
p∈P

d(p) =
∑
L∈L

d(L)

dir.

Teorem 4.15. G = (P ∪ L , E) bir lineer graf olmak üzere | L |≥| P | dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. Kabul edelim ki | L |<| P | olsun. L ∈ L

için LG2 den dolayı d(L) ≥ 2 dir. Bu durumda

d(L). | P |> d(L). | L |

−d(L). | P |< −d(L). | L |

| L | . | P | −d(L). | P |<| L | . | P | −d(L). | L |

| P | .(| L | −d(L)) <| L | .(| P | −d(L))

dir. Lemma 4.7 dan dolayı | L | −d(L) > 0 ve | L |> 0 olduğundan dolayı,

| P | −d(L)

| L | −d(L)
>

| P |
| L |

(4.13)
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elde edilir. Burada herhangi bir p ve L düğümü için

η (p, L) =

1, p ∈ N(L)

0, p /∈ N(L)

olsun. Bu durumda ∑
L∈L

η (p, L) = d(p) (4.14)

ve ∑
p∈P

η (p, L) = d(L) (4.15)

dir. Ayrıca
| P |=

∑
p∈P

1 ve | L |=
∑
L∈L

1 (4.16)

olduğundan (4.14) eşitliği kullanılırsa

| L | −d(p) =
∑
L∈L

(1− η(p, L)) (4.17)

elde edilir. Lemma 4.7 den dolayı | L | −d(p) > 0 olduğu göz önüne alınırsa, (4.16) ve
(4.17) den dolayı,

| P |=
∑
p∈P

| L | −d(p)

| L | −d(p)
=
∑
p∈P

(∑
L∈L

1− η(p, L)

| L | −d(p)

)
(4.18)

elde edilir. Ayrıca,

1− η(p, L)

| L | −d(p)
≥ 1− η(p, L)

| L | −d(L)
(4.19)

eşitsizliği hem p ∈ N(L) hem de p /∈ N(L) ise Teorem 4.9 dan dolayı d(p) ≥ d(L)

olduğundan yazılabilir. Bu durumda, (4.13), (4.18) ve (4.19) kullanılırsa

| P |=
∑
p∈P

(∑
L∈L

1− η(p, L)

| L | −d(p)

)
≥
∑
p∈P

(∑
L∈L

1− η(p, L)

| L | −d(L)

)
=
∑
L∈L

∑
p∈P

1− η(p, L)

| L | −d(L)

=
∑
L∈L

| P | −d(L)

| L | −d(L)
>
∑
L∈L

| P |
| L |

=| P |

dir. Bu durumda | P |>| P | çelişkisi ortaya çıkar. O halde kabulümüz yanlıştır. Dolayısıyla,
| L |≥ | P | dir.



28

Örnek 4.10. Şekil 4.3 deki lineer graf modeli göz önüne alınırsa | P |= 4 ve | L |= 6

olduğundan | L |>| P | dır.

Şekil 4.6 deki graf modeliP = {p1, p2, p3, p4} veL = {L1, L2, L3, L4} olmak üzere
G = (P ∪ L , E) bir lineer graftır. Bu grafta | P |=| L |= 4 tür.

Şekil 4.6 Bir lineer graf modeli

Lemma 4.10. G = (P ∪ L , E) bir lineer graf olmak üzere

| L |=| P |⇔ p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L düğümleri için d(p) = d(L)

dir.

İspat. G = (P ∪ L , E) bir lineer graf ve | L |=| P | olsun. Teorem 4.9 dan dolayı
p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L düğümleri için

d(p) ≥ d(L) (4.20)

dir. Bu durumda
0 ≤ d(p)− d(L)

| L | − | P |≤ d(p)− d(L)

| L | −d(p) ≤| P | −d(L) (4.21)

elde edilir. Lemma 4.7 ve Sonuç 4.5 den dolayı | L | −d(p) > 0 ve | P | −d(L) > 0 dir.
Bu durumda (4.20) ve (4.21) den dolayı

d(p)

| L | −d(p)
≥ d(L)

| P | −d(L)

elde edilir.

∑
p∈P

d(p) =
∑
p∈P

 ∑
L/∈N(p)

d(p)

| L | −d(p)

 ≥
∑
L∈L

 ∑
p/∈N(L)

d(L)

| P | −d(L)

 =
∑
p∈P

d(L)
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olduğundan Lemma 4.9 göz önüne alınırsa

d(p)

| L | −d(p)
=

d(L)

| P | −d(L)

dir. Hipotezden dolayı | P |=| L | olduğundan dolayı d(p) = d(L) dir.

Tersine G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L düğümleri için d(p) = d(L) olsun. Teorem 4.15 den dolayı | L |≥| P | dir. Bu
durumda,

0 ≤| L | − | P |

d(p)− d(L) ≤| L | − | P |

| L | −d(p) ≥| P | −d(L) (4.22)

elde edilir. LG2 den dolayı δ(G) ≥ 2 ve hipotezden dolayı d(p) = d(L) olduğundan dolayı
(4.22) eşitsizliğinden

d(p)

| L | −d(p)
≤ d(L)

| P | −d(L)

elde edilir.

∑
p∈P

d(p) =
∑
p∈P

 ∑
p/∈N(L)

d(p)

| L | −d(p)

 ≤
∑
L∈L

 ∑
L/∈N(p)

d(L)

| P | −d(L)

 =
∑
p∈P

d(L)

olduğundan Lemma 4.9 göz önüne alınırsa

d(p)

| L | −d(p)
=

d(L)

| P | −d(L)

dir. Hipotezden d(p) = d(L) olduğu göz önüne alınırsa | P |=| L | dir.

Lemma 4.11. G = (P ∪ L , E) bir lineer graf olsun. p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L düğümleri için

d(p) = d(L) ⇔ ∀K,H ∈ L veK ̸= H için cn(K,H) =1

dir.

İspat. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L

düğümleri için d(p) = d(L) olsun. Kabul edelim ki K,H ∈ L ve K ̸= H için
cn(K,H) = 0 olsun. Bu durumda LG2 den dolayı d(K) ≥ 2 olduğundan
N(K) = {p1, p2, . . . , pi, . . . , pd(K)} olacak şekilde p1, p2, . . . , pi, . . . , pd(K) ∈ P düğümleri
vardır. LG2 den dolayı q ∈ N(H) vardır ki cn(K,H) = 0 olduğundan q /∈ N(K) dır.
Dolayısıyla q ̸= pi dir. LG1 den dolayı her bir i, 1 ≤ i ≤ d(K) için CN(q, pi) = {Li}
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olacak şekilde bir tek Li ∈ L düğümleri vardır. q ∈ N(Li) ve q /∈ N(K) olduğundan
Li ̸= K dır. pi ∈ N(Li) ve pi /∈ N(H) olduğundan Li ̸= H dır. Ayrıca
j, 1 ≤ j ̸= i ≤ d(K) için Li = Lj olması durumunda CN(pi, pj) = {K,Li} dir. Bu ise
LG1 ile çelişir. O halde Li ̸= Lj dir. Bu durumda {L1, L2, . . . , Ld(K), H} ⊆ N(q) ve
dolayısıyla d(q) ≥ d(K) + 1 dir. Böylece q /∈ N(K) için d(q) > d(K) elde edilir. Bu
durum hipotezle çelişir. O halde kabülümüz yanlıştır.Böylece ∀K,H ∈ L ve K ̸= H için
cn(K,H) = 1 dir.

Tersine, G = (P ∪ L , E) bir lineer graf ve ∀K,H ∈ L ve K ̸= H için cn(K,H) = 1

olsun. Kabul edelim ki p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L düğümleri için d(p) >
d(L) olsun. LG2 den dolayı d(L) ≥ 2 dir. Bu durumda N(L) = {p1, p2, . . . , pd(L)} olacak
şekilde birbirinden farklı p1, p2, . . . , pd(L) ∈ P düğümleri vardır. LG1 den dolayı her bir
i, 1 ≤ i ≤ d(L) için CN(p, pi) = {Li} olacak şekilde bir tek Li ∈ L düğümleri vardır.
p /∈ N(L) ve p ∈ N(Li) olduğudan Li ̸= L dir. Ayrıca j, 1 ≤ j ̸= i ≤ d(L) için Li = Lj

ise CN(pi, pj) = {L,Li} dir. Bu ise LG1 ile çelişir. O halde Li ̸= Lj dir. Bu durumda
{L1, L2, . . . , Ld(L)} ⊆ N(p) dir. Kabulümüzden dolayı d(p) > d(L) olduğundan dolayı
∃K ∈ N(p) vardır ki her bir i, 1 ≤ i ≤ d(L) içinK ̸= Li dir. AyrıcaK ∈ N(p) veL /∈ N(p)

olduğundan K ̸= L dir. Hipotezden dolayı cn(K,L) = 1 olduğundan CN(K,L) = {q}
olacak şekilde q ∈ P düğümü vardır. q ∈ N(L) olduğundan j ∈ {1, 2, . . . , d(L)} için
q = pj dir. Bu durumda CN(p, q) = {K,Lj} dir. K ̸= Lj olduğundan bu durum LG1 ile
çelişir. O halde kabulümüz yanlıştır. Dolayısıyla d(p) ≤ d(L) dir. Ayrıca Teorem 4.9 den
dolayı d(p) ≥ d(L) olduğundan d(p) = d(L) dir.

Teorem 4.16. G = (P ∪ L , E) bir lineer graf olmak üzere,

| P |=| L | ⇔ ∀K,H ∈ L veK ̸= H için cn(K,H) =1

dir.

İspat. Lemma 4.10 ve Lemma 4.11 den elde edilir.

Örnek 4.11. Şekil 4.6 deki lineer graf modeli için | P |=| L |= 4 ve CN(L1, L2) = {p1},
CN(L1, L3) = {p1}, CN(L1, L4) = {p3}, CN(L2, L3) = {p1}, CN(L2, L4) = {p2},
CN(L3, L4) = {p4} olduğundan L parçasına ait tüm düğümlerin ortak komşuluklarının
sayısı 1 dir.

Lemma 4.12. G = (P ∪ L , E) bir lineer graf ve r ≥ 2, r ∈ Z olmak üzere ∀L ∈ L için
d(L) ∈ {r, r + 1} olsun. Lr(N(p)) = {L : L ∈ N(p) ve d(L) = r} ve
Lr+1(N(p)) = {L : L ∈ N(p) ve d(L) = r + 1} olmak üzere

| Lr(N(p)) |= r.d(p)− | P | +1
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ve
| Lr+1(N(p)) |= (1− r).d(p)+ | P | −1

dir.

İspat. G = (P ∪ L , E) bir lineer graf olmak üzere her L ∈ L için d(L) ∈ {r, r + 1}
olsun. P parçasına ait herhangi bir p düğümünün komşuluğunda L parçasına ait
| Lr(N(p)) | tane r dereceli ve | Lr+1(N(p)) | tane (r + 1) dereceli düğüm olsun. Bu
durumda p düğümünün komşuluğundaki düğümlerin derecesi r ya da r + 1 olduğundan

| Lr(N(p)) | + | Lr+1(N(p)) |= d(p) (4.23)

yazılabilir. Teorem 4.11 den dolayı

| P | −1 =
∑

L∈N(p)
d(L)=r

(d(L)− 1) +
∑

L
′∈N(p)

d(L
′
)=r+1

(d(L
′
)− 1) (4.24)

dir. p nin komşuluğunda derecesi r olan | Lr(N(p)) | tane ve derecesi r + 1 olan
| Lr+1(N(p)) | tane düğüm olduğundan Sonuç 4.8 den dolayı

| P | −1 =| Lr(N(p)) | .(r − 1)+ | Lr+1(N(p)) | .r (4.25)

elde edilir. (4.23) ve (4.25) birlikte değerlendirilirse

| Lr(N(p)) |= r.d(p)− | P | +1

| Lr+1(N(p)) |= (1− r).d(p)+ | P | −1

dir.

Teorem 4.17. G = (P ∪ L , E) bir lineer graf ve r ≥ 2, r ∈ Z olmak üzere her L ∈ L

için d(L) ∈ {r, r + 1} olsun. p ∈ P için

| P | −1

r
≤ d(p) ≤ | P | −1

r − 1

dir.

İspat. G = (P ∪ L , E) bir lineer graf ve ∀L ∈ L için d(L) ∈ {r, r + 1} olsun. L

parçasına ait her bir düğümün derecesi en çok r + 1 olduğu gözönüne alınırsa, Sonuç 4.8
den dolayı p ∈ P için max | P | = r.d(p) + 1 dir. Bu durumda

r.d(p) + 1 ≥| P | (4.26)

Benzer şekildeL parçasına ait her bir düğümün derecesi en az r olduğu gözönüne alınırsa,
Sonuç 4.8 den dolayı p ∈ P için min | P | = (r − 1).d(p) + 1 dir. Bu durumda

(r − 1).d(p) + 1 ≤| P | (4.27)
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dir. Böylece (4.26) ve (4.27) eşitsizliklerinden

| P | −1

r
≤ d(p) ≤ | P | −1

r − 1

elde edilir.

Sonuç 4.12. G = (P ∪ L , E) bir lineer graf ve r ≥ 2, r ∈ Z olmak üzere her L ∈ L için
d(L) ∈ {r, r + 1} veP parçası k − regular olsun.L parçasına ait sırasıyla derecesi r ve
derecesi r + 1 olan toplam düğüm sayısı | Lr | ve | Lr+1 | olmak üzere,

r | Lr |=| P | (rk− | P | +1)

ve

(r + 1) | Lr+1 |=| P | ((1− r)k− | P | −1)

dir.

İspat. G = (P ∪ L , E) bir lineer graf, her bir L ∈ L için d(L) ∈ {r, r + 1} ve P

parçası k − regular olsun. Lemma 4.12 den dolayı her bir p ∈ P düğümünü için
| Lr(N(p)) |= r.k− | P | +1 dir. Bu durumda derecesi r olan L parçasına ait herhangi
bir düğümün komşulunda P parçasına ait r tane düğüm olduğundan, P parçasının tüm
düğümleri üzerinden hesaplanırsa,

| Lr |=
| P | (rk− | P | +1)

r

Benzer şekilde

| Lr+1 |=
| P | (1− r)k− | P | −1)

r + 1

dir.

Teorem 4.18. G = (P ∪ L , E) bir lineer graf, P parçasına ait herhangi p düğümünün
komşuluğunda derecesi n − 1 olan düğüm sayısı; | Ln−1(N(p)) |, derecesi n olan düğüm
sayısı; | Ln(N(p)) | olmak üzere, | Ln−1(N(p)) |≥ 1, | Ln(N(p)) |≥ 1 ve her L ∈ L için
d(L) ∈ {n− 1, n} olsun.P parçası (n+ 1)−regüler ise | P |∈ {n2 − n, n2 − 1} dir.

İspat. G = (P ∪ L , E) bir lineer graf, her L ∈ L için d(L) ∈ {n − 1, n} ve P parçası
(n+ 1)− regular olsun. Teorem 4.17 den dolayı

| P | −1

n− 1
≤ d(p) ≤ | P | −1

n− 2

dir. Eşitsizlik yeniden düzenlenirse

n2 − n− 1 ≤| P |≤ n2 (4.28)
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elde edilir. ∀p ∈ P için d(p) = n+ 1 olduğundan Lemma 4.12 den dolayı

| Ln(N(p)) |= n2− | P | ve | Ln−1(N(p)) |= −n2 + n+ 1+ | P | (4.29)

dir. | Ln−1(N(p)) |≥ 1 ve | Ln(N(p)) |≥ 1 olduğundan dolayı

| P |̸= n2 − n− 1 (4.30)

ve
| P |̸= n2 (4.31)

dir. O halde (4.28), (4.30) ve (4.31) den dolayı

n2 − n ≤| P |≤ n2 − 1

dir. Kabul edelim ki n2 − n+ 1 ≤| P |≤ n2 − 2 olsun. 2 ≤ m ≤ n− 1 olacak şekildem ve
n tamsayıları için | P |= n2 −m yazılabilir. Her bir p ∈ P için d(p) = n + 1 ve her bir
L ∈ L için d(L) ∈ {n− 1, n} olduğundan dolayı

| Ln−1(N(p)) | + | Ln(N(p)) |= n+ 1

dir. (4.29) gözönüne alınırsa | Ln−1(N(p)) |= m ve | Ln(N(p)) |= n + 1 −m elde edilir.
Sonuç 4.12 den dolayı

n | Ln |= (n2 −m).(n+ 1−m) ve (n− 1) | Ln−1 |= (n2 −m)m

elde edilir. Bu durumda

| L |=| Ln−1 | + | Ln |= n2 + n− m2 −m

n(n− 1)

şeklinde yazılabilir. Fakat m < n olduğundan 0 < m(m−1)
n.(n−1)

< 1 olur. Bu durumda | L |=
n2+n− m2−m

n.(n−1)
/∈ Z olup | P |∈ Z olması ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla

| P |∈ {n2 − n, n2 − 1} dir.

Lemma 4.13. G = (P ∪ L , E) bir lineer graf ve L ∈ L için
A1(L) = {K : cn(L,K) = 1 veK ∈ L } olmak üzere

A1(L) =
∪

p∈N(L)

(N(p)− {L})

dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. LG2 den dolayı lineer grafın minumum
derecesi 2 olduğundan A1(L) ̸= ∅ dir. K ∈ A1(L) olsun. cn(K,L) = 1 olduğundan
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CN(K,L) = {q} olacak şekilde bir tek q ∈ P düğümü vardır. Bu durumda q ∈ N(L) ve
K ∈ N(q) olduğundanK ∈

∪
p∈N(L)(N(p)− {L}) dir. Böylece

A1(L) ⊆
∪

p∈N(L)

(N(p)− {L}) (4.32)

dir.M ∈
∪

p∈N(L)(N(p)− {L}) olsun. Bu durumda p ∈ N(L) içinM ∈ (N(p)− {L}) dir.
p ∈ N(M) olduğundan {p} ⊆ CN(M,L) dir. Lemma 4.3 den dolayı CN(M,L) = {p} dir.
Bu durumdaM ∈ A1(L) dir. Böylece∪

p∈N(L)

(N(p)− {L}) ⊆ A1(L) (4.33)

dir. (4.32) ve (4.33) den dolayı

A1(L) =
∪

p∈N(L)

(N(p)− {L})

dir.

Sonuç 4.13. G = (P ∪ L , E) bir lineer graf olsun. Herhangi bir L ∈ L için
A1(L) = {K : cn(L,K) = 1 veK ∈ L } olmak üzere,

| A1(L) |=
∑

p∈N(L)

(d(p)− 1)

dir.

İspat. Birbirinden farklı herhangi p, q ∈ N(L) içinN(p)∩N(q) = {L} olduğundan dolayı
(N(p)− {L}) ∩ (N(q)− {L}) = ∅ dir. Lemma 4.13 den dolayı

A1(L) =|
∪

p∈N(L)

(N(p)− {L}) |=
∑

p∈N(L)

(d(p)− 1)

dir.

Sonuç 4.14. G = (P ∪L , E) bir lineer graf veP parçası r− reguler olsun. L ∈ L için
A1(L) = {K : cn(L,K) = 1 veK ∈ L } olmak üzere

| A1(L) |= (r − 1)d(L)

dir.

İspat. Sonuç 4.13 dan ispat açıktır.

Sonuç 4.15. G = (P ∪ L , E) bir lineer graf ve L ∈ L için
A0(L) = {K : K ̸= L, cn(L,K) = 0 veK ∈ L } olmak üzere,

| A0(L) |=| L | −1−
∑

p∈N(L)

(d(p)− 1)

dir.
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İspat. G = (P ∪L , E) bir lineer graf olsun. Lemma 4.3 den dolayı L ∈ L ve herK ∈ L

için cn(L,K) ∈ {0, 1} olduğundan L düğümü hariç,

| A1(L) | + | A0(L) |=| L | −1 (4.34)

dir. Sonuç 4.13 den dolayı | A1(L) |=
∑

p∈N(L)(d(p) − 1) dir. Bu eşitlik (4.34) de yerine
yazılırsa

| A0(L) |=| L | −1−
∑

p∈N(L)

(d(p)− 1)

elde edilir.

Teorem 4.19. G = (P ∪ L , E) bir lineer graf olsun. P parçası (n + 1) − reguler ve
cn(Li, Lj) = 1 olacak şekilde Li, Lj ∈ L için
A0,0(Li, Lj) = {K : cn(K,Li) = 0 ve cn(K,Lj) = 0, K ∈ L } olmak üzere,

| A0,0(Li, Lj) |=| L | −2− d(Li)n− d(Lj)n+ n− 1 + (d(Li)− 1)(1− d(Li))

dir.

İspat. G = (P ∪ L , E) bir lineer graf, Li, Lj ∈ L için cn(Li, Lj) = 1 ve P parçası
(n + 1)−regüler olsun. Sonuç 4.14 den dolayı | A1(Li) |= n.d(Li) ve | A1(Lj) |= n.d(Lj)

dir. cn(Li, Lj) = 1 olduğundan cn(Li, Lj) = {p} olacak şekilde bir tek p ∈ P düğümü
vardır. O halde Li, Lj düğümleri ile ortak komşuluğu p olan düğümlerin sayısı d(p) − 2 =

n − 1 dir. N(Li) = {p, p1, p2,…, pd(Li)−1} ve N(Lj) = {p, q1, q2,…, qd(Lj)−1} olsun. LG1
den dolayı her bir pi ∈ N(Li)− {p} ve her bir qj ∈ N(Lj)− {p} için CN(pi, qj) = {Lij}
olacak şekilde bir tek Lij ∈ L düğümü vardır. 1 ≤ i, r ≤ d(Li)−1 , 1 ≤ j, s ≤ d(Lj)−1 ve
(i, j) ̸= (r, s) olmak üzere Lij = Lrs iseCN(qj, qs) = {Lj, Lij} dir. Bu ise LG1 ile çelişir. O
halde Lij ̸= Lrs dir. Bu durumda hem Li hem de Lj ile ortak komşuluğunun sayısı 1 olan ve p
düğümünün komşuluğunda olmayan düğümlerin sayısı; (d(Li)− 1).(d(Lj)− 1) dir. Böylece

| A0,0(Li, Lj) |=| L | −2− d(Li)n− d(Lj)n+ n− 1 + (d(Li)− 1)(d(Li)− 1)

dir.

Teorem 4.20. G = (P ∪ L , E) bir lineer graf, P parçası (n + 1) − reguler, | L |=
n2+n+1−z ve birbirinden farklı L1, L2, L3 ∈ L düğümleriyle ortak komşuluğunun sayısı
sıfır olacak şekilde n− 1 dereceli en az bir L ∈ L düğümününe sahip bir lineer graf olsun.
Eğer L1, L2, L3 ikişerli ortak komşuluklarının sayısı 1 ve d(Lj) = n + 1 − dj , (j = 1, 2, 3)

ise
n ≤ d1.d2 + d1.d3 + d2.d3 − d1 − d2 − d3 − z

dir.
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İspat. G = (P ∪ L , E), teoremde verilen koşulları sağlayan bir lineer graf ve
A0(L) = {K : cn(L,K) = 0 veK ∈ L } olsun. Sonuç 4.15 dan dolayı
| A0(L) |=| L | −1− (n2 − n) = 2n− z dir. A0(L) − {Lj} kümesinin Lj ile ortak
komşuluğunun sayısı 1 olan düğümlerinin kümesi A1

j olsun. Lj nin komşuluğunda bulunan
her bir düğüm L ile ortak komşuluğun sayısı sıfır olan iki düğümün komşuluğundadır.
Bunlardan biri Lj düğümü olduğundan | A1

j |= d(Lj) = n + 1 − dj dir. j ̸= k için
A0(L)− (A1

j ∪ A1
k) kümesinin her düğümü Lj ve Lk ile ortak komşuluğunun sayısı sıfırdır.

Lj ve Lk ile ortak komşuluğunun sayısı sıfır olan L parçasına ait tüm düğümlerin sayısı
Teorem 4.19 den dolayı

| L | −2− d(Li).n− d(Lj).n+ n− 1 + (d(Li)− 1).(d(Lj)− 1 = dj.dk − z

dir. L düğümünün Lj ve Lk ile ortak komşuluğunun sayısı sıfır olduğundan ayrıca A0(L)

kümesi dışında L den başka düğümlerinde Lj ve Lk ile ortak komşuluğunun sayısı sıfır
olabileceğinden

| A0(L) | − | A1
j ∪ A1

k |≥ dj.dk − z − 1

dir.

| A1
j ∩ A1

k |=| A1
j | + | A1

k | − | A1
j ∪ A1

k |≤| A1
j | + | A1

k | − | A0(L) | +dj.dk − z − 1

= dj.dk − dj − dk + 1

elde edilir. Buradan

| A1
1 ∪ A1

2 ∪ A1
3 |≥| A1

1 | + | A1
2 | + | A1

3 | − | A1
1 ∩ A1

2 | − | A1
2 ∩ A1

3 | − | A1
1 ∩ A1

3 |

≥ 3n− d1.d2 − d1.d3 − d2.d3 + d1 + d2 + d3

dir. Ayrıca j ∈ {1, 2, 3} için A1
j ⊆ A0(L) ve | A0(L) |= 2n− z olduğundan

3n− d1.d2 − d1.d3 − d2.d3 + d1 + d2 + d3 ≤ 2n− z

dir.

Örnek 4.12. Şekil 4.7 da verilen graf modeli göz önüne alınırsa,

L = L12, L1 = L34, L2 = L35, L3 = L45 olmak üzere, n = 3, z = 3, d(L) = 2, d1 = 2,
d2 = 2, d3 = 2 dir. Bu durumda,

3 ≤ 2.2 + 2.2 + 2.2− 2− 2− 2− 3

dir. Farklı L, L1, L2, L3 şeçimleri için benzer şekilde yapılabilir.
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Şekil 4.7 Teorem 4.20’deki parametrelere sahip lineer graf modeli

Teorem 4.21. G = (P ∪ L , E) bir lineer graf, P parçası (n + 1) − reguler, | P |=
n2 + n+ 1− s ve | L |= n2 + n+ 1 olsun. | Ln |,L parçasındaki n dereceli düğümlerin
sayısı olmak üzere,

| Ln |≥ s.(n+ 2− s)

dir. Eşitliğin geçerli olması için gerek ve yeter koşulL parçasındaki her düğümünün derecesi
n− 1, n veya n+ 1 olmasıdır.

İspat. G = (P ∪ L , E), Teoremdeki koşulları sağlayan bir lineer graf olsun. Teorem 4.12
dan dolayı

| P | .(| P | −1) =
∑
L∈L

d(L)(d(L)− 1) (4.35)

dir. Lemma 4.9 den dolayı∑
L∈L

d(L) =
∑
p∈P

d(p) =| P | .(n+ 1) (4.36)

dir. (4.35) ve (4.36) den dolayı∑
L∈L

(n+ 1− d(L)).(n− 1− d(L)) = s.(s− 2− n)

eşitliği sağlanır. Ayrıca ∑
L∈L

(n+ 1− d(L)).(n− 1− d(L))

=
∑

d(L) ̸=n

(n+ 1− d(L)).(n− 1− d(L)) +
∑

d(L)=n

(n+ 1− d(L)).(n− 1− d(L))

şeklinde yazılabilir. Bu durumda∑
d(L)=n

(n+ 1− d(L)).(n− 1− d(L)) = − | Ln |
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dir. Böylece∑
L∈L

(n+ 1− d(L)).(n− 1− d(L))+ | Ln |=
∑

d(L) ̸=n

(n+ 1− d(L)).(n− 1− d(L))

dir. Teorem 4.9 den dolayı n+ 1 = d(p) ≥ d(L) olduğundan

0 ≤
∑

d(L) ̸=n

(n+ 1− d(L)).(n− 1− d(L)) = s.(s− 2− n)+ | Ln |

− | Ln |≤
∑
L∈L

(n+ 1− d(L)).(n− 1− d(L))

| Ln |≥ s.(n+ 2− s)

elde edilir. Şayet | Ln |= s.(n+ 2− s) ise∑
d(L) ̸=L

(n+ 1− d(L)).(n− 1− d(L)) = s.(s− 2− n)+ | Ln |= 0

dir. BöyleceL parçasına ait sadece n+ 1, n ve n− 1 dereceli düğümler bulunur.

Tersine d(L) ∈ {n− 1, n, n+ 1} ise | Ln |= s.(−s+ 2 + n) dir.

Örnek 4.13. Şekil 4.8’de verilen graf modeli göz önüne alınırsa, | Ln |= 6, s = 2, n = 3

ve her bir L ∈ L için d(L) ∈ {2, 3, 4} dir. Teorem 4.21’daki eşitsizlikte yerine yazılırsa

6 ≥ 2.(3 + 2− 2)

dir.

Şekil 4.8 Teorem 4.21’daki parametrelere sahip lineer graf modeli
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Tanım 4.2. G = (P ∪L , E) bir lineer graf ve u, v ∈ V (G) olmak üzere u ve v arasındaki
minimun uzunluklu yolların sayısına bağlantı sayısı denir ve c(u, v) şeklinde gösterilir.

Lemma 4.14. G = (P ∪ L , E) bir lineer graf olmak üzere

i. p, q ∈ P için p ̸= q ise c(p, q) = 1

ii. p ∈ N(L) olacak şekilde p ∈ P ve L ∈ L için c(p, L) = 1

dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun.

i. p, q ∈ P için p ̸= q olsun. Teorem 4.4 den dolayı G bağlı graf olduğundan p ile q arasında
en az bir yol vardır. O halde c(p, q) ≥ 1 dir. Kabul edelim ki c(p, q) ≥ 2 olsun. Lemma
4.5 den dolayı p ile q düğümleri arasındaki minumum uzunluklu yolların uzunluğu 2 dir. Bu
durumda p ile q arasında P1 : p−L− q ve P2 : p−K − q olacak şekilde en az iki farklı yol
vardır. P1 ̸= P2 olduğundan L ̸= K dir. O halde {L,K} ⊆ CN(p, q) olur ki bu durumda
cn(p, q) ≥ 2 dir. Bu ise LG1 ile çelişir. O halde kabulümüz yanlıştır. Böylece c(p, q) = 1 dir.

ii. p ∈ N(L) olacak şekilde p ∈ P ve L ∈ L olsun. Bu durumda pL ∈ E(G) olduğundan
p ile L arasındaki minumum uzunluklu yolların uzunluğu 1 dir. Eğer c(p, q) ≥ 2 ise G çoklu
ayrıt içereceğinden lineer grafın tanımı ile çelişir. Böylece c(p, q) = 1 dir.

Teorem 4.22. G = (P∪L , E) bir lineer graf olsun. n ∈ Z+ olmak üzere p /∈ N(L) olacak
şekilde p ∈ P ve L ∈ L için A1

N(p)(L) = {K : cn(K,L) = 1 veK ∈ N(p)} olsun.

c(p, L) = n ⇔ | A1
N(p)(L) |= n

dir.

İspat. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde p ∈ P , L ∈ L ve
n ∈ Z+ için c(p, L) = n olsun. Lemma 4.5 den dolayı d(p, L) = 3 olduğundan p ile L
arasındaki minumum uzunluklu yolların uzunluğu 3 tür. Bu durumda p ile L arasındaki tüm
minimum uzunluklu yollar; her bir i, 1 ≤ i ≤ n için Pi(p, L) : p−Ki−qi−L ,Ki ∈ N(p) ve
qi ∈ P dir. BuradaPi(p, L) : p−Ki−qi−L vePj(p, L) : p−Kj−qj−L yolları içinKi = Kj

iken qi ̸= qj olması durumunda CN(Ki = Kj, L) = {qi, qj} olur ki bu durum Lemma 4.3
ile çelişir. Bu durumda, Ki = Kj için qi = qj dir. Benzer şekilde LG1 den dolayı qi = qj ise
Ki = Kj dir. Ayrıca Ki ̸= Kj iken qi = qj olması durumunda CN(p, qi) = {Ki, Kj} dir.
Bu ise LG1 ile çelişir. O halde Ki ̸= Kj ise qi ̸= qj dir. Böylece p ile L düğümü arasındaki
minimum uzunluklu birbirinden farklı her bir yol için tam olarak bir tek Ki ∈ N(p) vardır
ki cn(Ki, L) = 1 dir. O halde
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| A1
N(p)(L) |= n

dir.

Tersine, | A1
N(p)(L) |= n olsun. Bu durumda p ile L arasında her bir i, 1 ≤ i ≤ n

için Pi : p−Ki − qi − L olacak şekilde n tane yol vardır. Burada p ile L arasındaki farklı 3
uzunluklu her bir yol için bir tek (Ki, qi) ikilisinin var olduğu ve farklı yollar için bu ikililerin
farklı olduğu benzer şekilde gösterilebilir. Lemma 4.5 den dolayı p ileL arasındaki minumum
uzunluklu yolların uzunluğu 3 olduğundan ve bağlantı sayısı tanımından

c(p, L) = n

dir.

Teorem 4.23. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L için A0

N(p)(L)={Lj: cn(L,Lj) = 0 ve Lj ∈ N(p)} olmak üzere

| A0
N(p)(L) |= d(p)− c(p, L)

dir.

İspat. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L

olsun. LG2 den dolayı d(p) ≥ 2 dir. Bu durumda her bir i, 1 ≤ i ≤ d(p) için N(p) =

{L1, L2, ..., Ld(p)} olacak şekilde Li ∈ L düğümleri vardır.

A1
N(p)(L)={Li: cn(L,Li) = 1 ve Li ∈ N(p)}

olsun. Lemma 4.3 den dolayı cn(L,Li) ∈ {0, 1} dir. Bu durumda

N(p) = A1
N(p)(L) ∪ A0

N(p)(L)

dir. Ayrıca
A1

N(p)(L) ∩ A0
N(p)(L) = ∅

olduğundan dolayı
| N(p) |=| A1

N(p)(L) | + | A0
N(p)(L) |

dir. A1
N(p)(L) kümesinin tanımı ve Teorem 4.22 den dolayı

| N(p) |= c(p, L)+ | A0
N(p)(L) |

dir. Ayrıca d(p) =| N(p) | olduğundan,

| A0
N(p)(L) |= d(p)− c(p, L)

dir.



41

Sonuç 4.16. G = (P ∪ L , E) bir lineer graf olsun. p ∈ P ve L ∈ L için

c(p, L) ≤ d(p)

dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. p ∈ P ve L ∈ L için iki durum vardır.

1. durum p ∈ N(L) ise Lemma 4.14 den dolayı c(p, L) = 1 dir. LG2 den dolayı d(p) ≥ 2

dir. Böylece
c(p, L) < d(p)

dir.

2. durum p /∈ N(L) ise Teorem 4.23 den dolayı

c(p, L) ≤ d(p)

dir.

Lemma 4.15. G = (P ∪ L , E) bir lineer graf ve n ∈ Z+, n ≥ 2 olsun. p /∈ N(L) olacak
şekilde p ∈ P ve L ∈ L için

d(L) = n ⇔ c(p, L) = n

İspat. G = (P ∪L , E) bir lineer graf olsun. Kabul edelim ki d(L) = n olsun. Bu durumda
N(L) = {p1, p2,…, pn} olacak şekilde p1, p2,…, pn ∈ P vardır. LG1 den dolayı her bir
i, 1 ≤ i ≤ n için CN(p, pi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. Herhangi
bir i için Li = L olması halinde p /∈ N(L) olması ile çelişir. O halde Li ̸= L dir. Ayrıca
j, 1 ≤ j ≤ n ve i ̸= j için pi ̸= pj iken Li = Lj olması halinde N(L,Li) = {pi, pj} dir. Bu
ise Lemma 4.3 ile çelişeceğinden Li ̸= Lj dir. Böylece

| {K : K ∈ N(p) ve cn(L,K) = 1} |=| {L1, L2,…, Ln} |= n

elde edilir. Teorem 4.22 den dolayı c(p, L) = n dir.

Tersine kabul edelim ki c(p, L) = n olsun. p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L için Teorem 4.22 den dolayı K ∈ N(p) ve cn(K,L) = 1 olacak şekilde K

düğünlerinin sayısı n dir. Bu özellikteki düğümler L1, L2,…, Ln olsun. LG1 den dolayı her
bir i, 1 ≤ i ≤ n için CN(L,Li) = {pi} olacak şekilde pi ∈ P düğümleri vardır. p /∈ N(L)

olduğundan dolayı pi ≠ p dir. 1 ≤ i ̸= j ≤ n için Li ̸= Lj iken pi = pj ise
CN(Li, Lj) = {p, pi} dir. Bu ise Lemma 4.3 ile çelişir. O halde pi ̸= pj dir. Böylece
{p1, p2,…, pn} ⊆ N(L) elde edilir.
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İspatın tamamlanması için q ̸= pi olacak şekilde bir q ∈ N(L) düğümünün olmadığı
gösterilmelidir. Kabul edelim ki bu özellikte bir q ∈ P düğümü olsun. Bu durumda LG1
şartı gereğince CN(p, q) = {M} olacak şekilde M ∈ L düğümü vardır. p /∈ N(L)

olduğundan M ̸= L dir. M = Li ise CN(pi, q) = {L,Li} dir. Bu ise LG1 ile çelişir. O
haldeM ̸= Li dır. Fakat CN(p, q) = {M} veM ̸= L veM ̸= Li olacak şekildeM ∈ L

düğümünün bulunması halinde c(p, L) = n + 1 dir. Bu ise hipotezle çelişir. Dolayısıyla
q ̸= pi olacak şekilde bir q ∈ N(L) düğümü yoktur. Bu durumda N(L) = {p1, p2,…, pn}
dir. Böylece d(L) = n elde edilir.

Sonuç 4.17. G = (P ∪ L , E) bir lineer graf olsun. p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L için

c(p, L) ≥ 2

dir.

İspat. Lemma 4.15 ve LG2 den dolayı ispat açıktır.

Sonuç 4.18. G = (P ∪ L , E) bir lineer graf olsun. p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L için

c(p, L) = d(p) ⇔ d(p) = d(L)

dir.

İspat. G = (P ∪ L , E) bir lineer graf olsun. Kabul edelim ki p /∈ N(L) olacak şekilde
p ∈ P ve L ∈ L için c(p, L) = d(p) olsun. Bu durumda Lemma 4.15 den dolayı d(L) =

d(p) dir. Tersine d(p) = d(L) olsun. Bu durumda Lemma 4.15 den dolayı c(p, L) = d(p) dir.

Teorem 4.24. G = (P ∪ L , E) bir lineer graf olsun.

i. p /∈ N(L) ∪N(L
′
) olacak şekilde p ∈ P ve L,L′ ∈ L düğümleri varsa

A1,0
N(p)(L,L

′
) = {K : cn(K,L) = 1 ve cn(K,L

′
) = 0, K ∈ N(p)}

ve
A0,1

N(p)(L,L
′
) = {K : cn(K,L) = 0 ve cn(K,L

′
) = 1, K ∈ N(p)}

olmak üzere
| A0,1

N(p)(L,L
′
) |= d(L

′
)+ | A1,0

N(p)(L,L
′
) | −d(L)

dir.

ii. L,L′
, H ∈ L için cn(H,L) = 1 ve cn(H,L

′
) = 0 olsun. p /∈ N(L) ∪ N(L

′
)

özellikli herhangi bir p ∈ P için cn(K,L) = 0 , cn(K,L
′
) = 1 ve cn(K,H) = 1 olacak

şekilde en az (d(H)− 1).(d(L
′
)− d(L) + 1) taneK ∈ N(p) düğümü vardır.
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İspat. i. A1,1
N(p)(L,L

′
) = {K : cn(K,L) = 1 ve cn(K,L

′
) = 1, K ∈ N(p)} ve A1

N(p)(L) =

{H : cn(H,L) = 1, H ∈ N(p)} olsun. Bu durumda

| A1,1
N(p)(L,L

′
) |=| A1

N(p)(L) | − | A1,0
N(p)(L,L

′
) |

dir. Teorem 4.22 dan dolayı | A1
N(p)(L) |= c(p, L) olduğundan dolayı

| A1,1
N(p)(L,L

′
) |= c(p, L)− | A1,0

N(p)(L,L
′
) | (4.37)

dir. Ayrıca
| A0,1

N(p)(L,L
′
) |=| A1

N(p)(L
′
) | − | A1,1

N(p)(L,L
′
) |

dir. Bu durumda Teorem 4.22 dan dolayı | A1
N(p)(L

′
) |= c(p, L

′
) olduğundan ve (4.37) den

dolayı
| A0,1

N(p)(L,L
′
) |= c(p, L

′
)− (c(p, L)− | A1,0

N(p)(L,L
′
) |)

elde edilir. Lemma 4.15 den dolayı

| A0,1
N(p)(L,L

′
) |= d(L

′
)− d(L)+ | A1,0

N(p)(L,L
′
) |

dir.

ii. Hipotezden dolayı cn(H,L
′
) = 0 ve cn(H,L) = 1 dir. Bu durumda, CN(H,L) = {q}

olacak şekilde q ∈ P düğümü vardır. LG2 den dolayı en az bir p ∈ N(H) vardır ki p ̸= q

dir. p ̸= q olduğudan p /∈ N(L) dir. p ∈ N(L
′
) olması halinde CN(H,L

′
) = {p} dir. Bu ise

hipotezle çelişir. O halde p /∈ N(L
′
) dir. p nin şeçimi keyfi olduğundan p ̸= q olacak şekildeki

her bir p ∈ N(H) için p /∈ N(L) ∪N(L
′
) dir. Ayrıca H ∈ A1,0

N(p)(L,L
′
) olduğundan dolayı

A1,0
N(p)(L,L

′
) ̸= ∅ dir. Bu durumda | A1,0

N(p)(L,L
′
) |≥ 1 dir.

Her bir p ∈ N(H) − {q} için p /∈ N(L) ∪ N(L
′
), | A1,0

N(p)(L,L
′
) |≥ 1 ve (i) den dolayı

| A0,1
N(p)(L,L

′
) |≥ d(L

′
) − d(L) + 1 dir. | N(H) − {q} |= d(H) − 1 olduğundan dolayı

p /∈ N(L)∪N(L
′
) olacak şekilde p ∈ P için cn(K,L) = 0 , cn(K,L

′
) = 1 ve cn(K,H) = 1

olacak şekilde en az (d(H)− 1).(d(L
′
)− d(L) + 1) taneK ∈ N(p) düğümü vardır.

Teorem 4.25. G = (P ∪ L , E) bir lineer graf, L,H ∈ L ve p ∈ N(L) olmak üzere
A1,0(L,H) = {K : cn(K,L) = 1 ve cn(K,H) = 0, K ∈ L } olsun.

i. cn(L,H) = 0 ise

| A1,0(L,H) |=
∑

p∈N(L)

(d(pi)− d(H)− 1),

ii. cn(L,H) = 1 ise

| A1,0(L,H) |=
∑

p∈N(L)−q
CN(L,H)={q}

(d(p)− d(H))

dir.
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İspat. i.G = (P∪L , E) bir lineer graf,L,H ∈ L ve p ∈ N(L) olmak üzere cn(L,H) = 0

olsun. Bu durumda p /∈ N(H) dır. | A0
N(p)(H) |= {K : cn(K,H) = 0 veK ∈ N(p)} olmak

üzere Teorem 4.23 den dolayı

| A0
N(p)(H) |= d(p)− c(p,H)

dır. Lemma 4.15 den dolayı

| A0
N(p)(H) |= d(p)− d(H)

dır. L ∈ A0
N(p)(H) olduğu göz önüne alınırsa L den farklı her bir K ∈ A0

N(p)(H) için
cn(L,K) = 1 dir. L nin komşuluğunda bulunan tüm p düğümleri üzerinden hesaplanırsa, L
düğümü hariç

| A1,0(L,H) |=
∑

p∈N(L)

(d(p)− d(H)− 1)

dir.

ii. cn(L,H) = 1 olsun. Bu durumdaCN(L,H) = {q} olacak şekilde q ∈ P düğümü vardır.
P − {q} parçasında cn(L,H) = 0 dır. O halde herhangi bir p ∈ N(L)− {q} düğümü için
p /∈ N(H) dir. O halde (i) den dolayı

| A1,0(L,H) |=
∑

p∈N(L)−{q}
CN(L,H)={q}

(d(p)− d(H))

dir.

Teorem 4.26. G = (P ∪ L , E) bir lineer graf olsun. X ⊂ P , P ′
= P − X ve E ′

=

E −{pL : p ∈ X , L ∈ L } olmak üzere L ∈ N(X ) için d(L)− | X |≥ 2 ve | P
′ |≥ 3 ise

G
′
= (P

′ ∪ L
′
, E

′
) bir lineer graftır.

İspat. G
′ grafının iki kümeli olduğu açıktır. ∀p, q ∈ P

′ için P
′ ⊂ P olduğundan

p, q ∈ P ve G lineer graf olduğundan LG1 den dolayı cn(p, q) = 1 dir. Böylece
∀p, q ∈ P

′ için cn(p, q) = 1 olduğundan LG1 sağlanır. δ(G′
) ≥ 2 olduğunu gösterelim.

∀p ∈ P için P
′ ⊂ P olduğundan p ∈ P dir. Bu durumda G lineer graf olduğundan

δ(G) ≥ 2 dir. Bu durumda d(p) ≥ 2 dir.
L ∈ L için L /∈ N (X ) ise P parçasından X kümesi atılırsa L düğümünün derecesini
değiştirmeyeceğinden d(L) ≥ 2 dir.L ∈ L için L ∈ N (X ) ise d(L)− | X |≥ 2

olduğundan d(L) ≥ 2 dir. Bu durumda ∀p ∈ P
′ ve ∀L ∈ L

′ için d(p) ≥ 2 ve d(L) ≥ 2

olduğundan δ(G
′
) ≥ 2 dir. Böylece LG1 ve LG2 sağlandığından G

′
= (P

′ ∪ L
′
, E

′
) bir

lineer graftır.
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Örnek 4.14. P = {pi: 1 ≤ i ≤ 13, i ∈ Z+}, L = {Li: 1 ≤ j ≤ 13, j ∈ Z+} ve ayrıtlar
kümesi olan E, Çizelge 4.1’deki gibi verilsin.

Çizelge 4.1 Örnek 4.14 da verilen G = (P ∪ L , E) grafına ait ayrıtların tablosu

p1L1 p1L2 p1L3 p1L4 p2L1 p2L6 p2L7 p2L8 p3L1

p3L10 p3L11 p3L12 p4L2 p4L5 p4L8 p4L11 p5L3 p5L5

p5L6 p5L12 p6L4 p6L5 p6L7 p6L10 p7L2 p7L7 p7L9

p7L12 p8L4 p8L6 p8L9 p8L11 p9L3 p9L8 p9L9 p9L10

p10L1 p10L5 p10L9 p10L13 p11L2 p11L6 p11L10 p11L13 p12L3

p12L7 p12L11 p12L13 p13L4 p13L8 p13L12 p13L13

Bu durumda G = (P ∪ L , E) bir lineer graftır. X = {p1, p2} olsun. Teorem 4.26
ifade edildiği şekliyle X kümesinin G grafından atılmasıyla oluşan G

′
= (P

′ ∪ L
′
, E

′
)

olsun. Bu durumda P
′
= {pi: 3 ≤ i ≤ 13, i ∈ Z+}, L ′

= {Li: 1 ≤ j ≤ 13, j ∈ Z+} dir.
Ayrıca E ′

(G
′
), Çizelge 4.2’deki gibidir. BöyleceG′

= (P
′ ∪L

′
, E

′
) grafı bir lineer graftır.

Çizelge 4.2 Örnek 4.14 da verilen G′
= (P

′ ∪ L
′
, E

′
) grafına ait ayrıtların tablosu

p3L1 p3L10 p3L11 p3L12 p4L2 p4L5 p4L8 p4L11 p5L3

p5L5 p5L6 p5L12 p6L4 p6L5 p6L7 p6L10 p7L2 p7L7

p7L9 p7L12 p8L4 p8L6 p8L9 p8L11 p9L3 p9L8 p9L9

p9L10 p10L1 p10L5 p10L9 p10L13 p11L2 p11L6 p11L10 p11L13

p12L3 p12L7 p12L11 p12L13 p13L4 p13L8 p13L12 p13L13
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4.1 Afin Graflar

Bu bölümde | A 0
N(p)(L) |= 1 şartını sağlayan lineer graflar afin graf olarak tanımlanarak

temel özellikleri incelenmiş ve bazı lineer grafların afin graf olması için gerekli
parametreler verilmiştir. Ayrıca L parçasına ait bir düğümünün derecesi n olan afin graflar
(n, n + 1)− biregüler lineer graflar olarak karakterize edilerek düğüm ve ayrıt sayılarına
ilişkin parametreler hesaplanmıştır.

Tanım 4.3. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde her bir p ∈ P ve
L ∈ L için A 0

N(p)(L) = {K : cn(K,L) = 0 veK ∈ N(p)} olmak üzere

| A 0
N(p)(L) |= 1

oluyorsa G ye afin graf denir.

Örnek 4.15. Şekil 4.9 de bir afin graf modeli verilmiştir.

Şekil 4.9 G = (P ∪ L , E) bir afin graf modeli

Lemma 4.16. G = (P ∪ L , E) bir afin graf olsun. Birbirinden farklı L,K,M ∈ L

düğümleri için cn(L,K) = 0 ve cn(L,M) = 1 ise cn(K,M) = 1 dir.

İspat. G = (P ∪ L , E) afin graf ve birbirinden farklı L,K,M ∈ L düğümleri için
cn(L,K) = 0 ve cn(L,M) = 1 olsun.
Kabul edelim ki cn(K,M) = 0 olsun. cn(L,M) = 1 olduğundan CN(L,M) = {p} olacak
şekilde bir tek p ∈ P düğümü vardır. p ∈ N(M) ve cn(K,M) = 0 olduğundan dolayı p /∈
N(K) dır. Ayrıca L,M ∈ N(p), cn(L,K) = 0 ve cn(K,M) = 0 dır. L ̸= M olduğundan
dolayı | A 0

N(p)(K) |≥ 2 dir. Bu ise G nin afin graf olması ile çelişir. O halde kabülümüz
yanlıştır. Dolayısıyla cn(K,M) = 1 dir.

Lemma 4.17. G = (P ∪ L , E) bir afin graf olsun. L,K,M ∈ L için cn(L,K) = 0 ve
cn(K,M) = 0 ise L = M ya da cn(L,M) = 0 dır.
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İspat. G = (P ∪ L , E) bir afin graf olmak üzere L,K,M ∈ L için cn(L,K) = 0 ve
cn(K,M) = 0 olsun. L = M ise ispat tamamdır. Lemma 4.3 den dolayı cn(L,M) ∈ {0, 1}
dir. O halde L ̸= M için cn(L,M) = 0 olduğu gösterilmelidir.

Kabul edelim ki L ̸= M için cn(L,M) = 1 olsun. Bu durumda CN(L,M) = {p}
olacak şekilde p ∈ P düğümü vardır. cn(L,K) = 0 olduğundan dolayı p /∈ N(K) dir.
L,M ∈ N(p), cn(K,L) = 0 ve cn(K,M) = 0 olduğundan dolayı | A 0

N(p)(L) |≥ 2 dir. Bu
ise G nin afin graf olması ile çelişir. O halde kabulümüz yanlıştır. Böylece cn(L,M) = 0.

Lemma 4.18. G = (P ∪ L , E) bir afin graf ise C8 içerir.

İspat. G = (P ∪ L , E) bir afin graf olsun. Sonuç 4.4 den dolayı cn(p, q, r) = 0 olacak
şekilde birbirinden farklı p, q, r ∈ P düğümleri vardır.
LG1 den dolayı cn(q, r) = 1 dir. Bu durumda CN(q, r) = {L} olacak şekilde bir tek
L ∈ L düğümü vardır. cn(p, q, r) = 0 olduğundan p /∈ N(L) dir. | A 0

N(p)(L) |= 1

olduğundan dolayıK ∈ N(p) ve cn(K,L) = 0 olacak şekilde bir tekK ∈ L vardır.
Benzer şekilde, LG1 den dolayı CN(p, q) = {M} olacak şekilde bir tek M ∈ L düğümü
vardır. cn(p, q, r) = 0 olduğundan r /∈ N(M) dir. | A 0

N(r)(M) |= 1 olduğudan dolayı
S ∈ N(r) ve cn(M,S) = 0 olacak şekilde bir tek S ∈ L vardır. K = S ise K ∈ N(r) ve
L ∈ N(r) dir. Bu durumda CN(K,L) = {r} dir. Bu ise K düğümünün seçimi ile çelişir.
DolayısıylaK ̸= S dir.
Kabul edelim ki cn(K,S) = 0 olsun. cn(K,S) = 0, cn(L,K) = 0 ve cn(S, L) = 1

olduğundan Lemma 4.17 den dolayı S = L dir. Bu durumda CN(M,S) = {q} olur. Bu ise
S düğümünün seçimi ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla cn(K,S) = 1 dir.
O halde CN(K,S) = {t} olacak şekilde bir tek t ∈ P düğümü vardır. cn(K,L) = 0

olduğundan dolayı t ̸= q ve t ̸= r dir. Benzer şekilde cn(M,S) = 0 olduğundan dolayı
t ̸= p dir. Böylece G, C8 : q − L− r − S − t−K − p−M − q içerir.

Lemma 4.19. G = (P ∪ L , E) bir afin graf olsun. Birbirinden farklı L,K ∈ L için

P = N(L) ∪N(K) ise cn(L,K) = 0

dır.

İspat. G = (P ∪ L , E) bir afin graf ve birbirinden farklı L,K ∈ L için
P = N(L) ∪ N(K) olsun. O halde cn(L,K) = 0 olduğu gösterilmelidir. Lemma 4.3 den
dolayı cn(L,K) ∈ {0, 1} dir.
Kabul edelim ki cn(L,K) = 1 olsun. Bu durumda bir tek q ∈ P için CN(L,K) = {q} dir.
Sonuç 4.4 den dolayı en az bir r /∈ N(L) olacak şekilde r ∈ P vardır. r /∈ N(L)

olduğundan dolayı r ̸= q dir. P = N(L) ∪ N(K) olduğundan r ∈ N(K) dir. G afin graf
olduğundan dolayı | A 0

N(r)(L) |= 1 dir. Bu durumda r /∈ N(L) için M ∈ N(r) ve
cn(L,M) = 0 olacak şekilde bir tekM ∈ L düğümü vardır. LG2 den dolayı s ̸= r olacak
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şekilde en az bir s ∈ N(M) ⊂ P vardır. cn(L,M) = 0 olduğundan dolayı s /∈ N(L) dir.
P = N(L) ∪ N(K) olduğundan dolayı s ∈ N(K) dir. Bu durumda {r, s} ⊆ CN(K,M)

dir. Böylece cn(K,M) ≥ 2 dir. Bu ise Lemma 4.3 ile çelişir. O halde kabulümüz yanlıştır.
O halde cn(L,K) = 0 dir.

Lemma 4.20. G = (P ∪ L , E) bir afin graf olsun. p /∈ N(L) olacak şekilde L ∈ L ve
p ∈ P için d(p) = d(L) + 1 dir.

İspat. G = (P ∪ L , E) bir afin graf olsun. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde
L ∈ L ve p ∈ P düğümleri vardır. i, 1 ≤ i ≤ d(L) olacak şekilde her bir i için pi ∈
N(L) olsun. LG2 den dolayı N(L) = {p1, p2, . . . , pd(L)} ve d(L) ≥ 2 dir. LG1 den dolayı
her bir i için CN(p, pi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. Li ∈ N(p)

ve L /∈ N(p) olduğundan L ̸= Li dir. Ayrıca 1 ≤ i, j ≤ d(L) ve i ̸= j için Li = Lj ise
CN(pi, pj) = {L,Lj} dir. Bu ise LG1 ile çelişir. O haldeLi ̸= Lj dir. G afin graf olduğundan
| A 0

N(p)(L) |= 1 dir. Bu durumda,K ∈ N(p) ve cn(K,L) = 0 olacak şekilde tek birK ∈ L

düğümü vardır. Her bir i için CN(L,Li) = {pi} olduğundan cn(Li, L) = 1 dir. Böylece
K ̸= Li dir. Böylece

{L1, L2, . . . , Ld(L), K} ⊆ N(p)

olur.
Kabul edelim ki, her bir i için M ̸= Li ve M ̸= K olacak şekilde M ∈ N(p) düğümü
olsun. | A 0

N(p)(L) |= 1 ve bu düğüm K olduğundan dolayı cn(M,L) = 1 dir. Bu durumda
CN(M,L) = {q} olacak şekilde q ∈ P düğümü vardır. q ∈ {p1, p2, . . . , pd(L)} olduğundan
öyle bir j, 1 ≤ j ≤ d(L) vardır ki q = pj dir. Bu durumda CN(p, pj) = {L,M} dir. Bu ise
LG1 ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla {L1, L2, . . . , Ld(L), K} = N(p) dir.
Böylece

d(p) =| N(p) |=| {L1, L2, . . . , Ld(L), K} |= d(L) + 1

dir.

Teorem 4.27. G = (P ∪ L , E) bir afin graf ve L ∈ L için d(L) = n olmak üzere

i. G, (n+ 1, n)− biregulerdir.

ii. | P |= n2

iii. | L |= n2 + n

dir.

İspat. G = (P ∪L , E) bir afin graf ve L ∈ L için d(L) = n olsun. LG2 den dolayı n ≥ 2

dir. L ̸= M veM ∈ L için iki durum vardır.
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1.durum. P = N(L)∪N(M) ise Lemma 4.19 den dolayı cn(L,M) = 0 dır. LG2 den dolayı
δ(G) ≥ 2 dir.
Kabul edelim ki d(L) ≥ 3 olsun. (Burada L veya M den herhangi birini seçmek genelliği
bozmayacağından d(M) ≥ 3 olması durumuda benzer şekilde gösterilebilir.) Bu durumda
durumda {p, q, r} ⊆ N(L) olacak şekilde p, q, r ∈ P düğümleri vardır. Ayrıca d(M) ≥ 2

olduğundan dolayı {s, t} ⊆ N(M) olacak şekilde s, t ∈ P düğümleri vardır. cn(L,M) = 0

olduğundan dolayı, s ̸= p, s ̸= q, s ̸= r, t ̸= p, t ̸= q ve t ̸= r dir. LG1 den dolayı
CN(p, s) = {X}, CN(q, s) = {Y } ve CN(r, t) = {Z} olacak şekilde X,Y, Z ∈ L

düğümleri vardır. s, t /∈ N(L) olduğudan dolayı X ̸= L, Y ̸= L ve Z ̸= L dir. X = M ise
CN(L,M) = {p} dir. Bu ise cn(L,M) = 0 olması ile çelişir. O halde X ̸= M dir. Benzer
şekilde Y ̸= M ve Z ̸= M dir. X = Y ise CN(p, q) = {L,X} olur. Bu ise LG1 ile çelişir.
O halde X ̸= Y dir. Benzer şekilde X ̸= Z ve Y ̸= Z dir.
d(Z) ≥ 3 olsun. Bu durumda ∃k ∈ N(Z) vardır ki k ̸= r ve k ̸= t dir. Eğer k = p ise
CN(Z,L) = {r, p} olur. Bu ise Lemma 4.3 ile çelişir. O halde k ̸= p dir. Benzer şekilde
k ̸= q ve k ̸= s dir. P = N(L) ∪ N(M) ve cn(L,M) = 0 olduğundan ya k ∈ N(L) ya
da k ∈ N(M) dir. k ∈ N(L) ise CN(Z,L) = {r, k} olur. Bu ise Lemma 4.3 ile çelişir. O
halde k /∈ N(L) dir. Benzer şekilde k ∈ N(M) ise CN(Z,M) = {s, k} olur. Bu ise Lemma
4.3 ile çelişir. O halde k /∈ N(M) dir. Fakat bu durumda P = N(L) ∪ N(M) olması ile
çelişeceğinden dolayı d(Z) = 2 dir. Benzer şekildeX ve Y düğümleri için d(X) = d(Y ) = 2

dir.
d(Z) = 2 olduğundan N(Z) = {r, t} dir. Bu durumda s /∈ N(Z) için cn(Y, Z) = 0 ve
cn(X,Z) = 0 olup X,Y ∈ N(s) dir. X ̸= Y olduğundan | A 0

N(s)(Z) |= 1 ile çelişir. O
halde kabulümüz yanlıştır. Dolayısıyla d(L) = d(M) = 2 dir. Böylece L parçasındaki tüm
düğümlerin derecesi 2 dir.

2.durum. Eğer P ̸= N(L) ∪ N(M) ise p /∈ N(L) ∪ N(M) olacak şekilde p ∈ P vardır.
Lemma 4.20 den dolayı d(p) = d(L) + 1 ve d(p) = d(M) + 1 dir. Böylece d(L) = d(M)

elde edilir. L veM seçimi keyfi olduğundan ∀L,M ∈ P için d(L) = d(M) = n dir.
Böylece ∀L ∈ L için d(L) = n olduğundanL parçası n−regulerdir. Bu durumda Lemma
4.8 dan dolayı P parçasıda regulerdir. Sonuç 4.4 den dolayı L ∈ L için p /∈ N(L) olacak
şekilde p ∈ P düğümü vardır. Lemma 4.20 den dolayı d(p) = d(L) + 1 ve d(L) = n

olduğundan d(p) = n+1 dir.G grafınınP parçası reguler olduğundan p ∈ P için d(p) =
n+ 1 dir. Bu durumda G, (n+ 1, n)− bireguler dir.

ii. L ∈ N(p) olacak şekilde p ∈ P ve L ∈ L için Teorem 4.11 den dolayı

| P | −1 =
∑

L∈N(p)

(d(L)− 1)
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dir. ( i) den dolayı ∀L ∈ L için d(L) = n ve ∀p ∈ P için d(p) = n+ 1 dir. Bu durumda

| P |= (n+ 1)(n− 1) + 1 = n2

dir.

iii. L ∈ L için (4.34) eşitliğinden dolayı

| A1(L) | + | A0(L) |=| L | −1

dir. (i) den dolayı G, (n+ 1, n)− biregulerdir. Sonuç 4.14 den dolayı

| A1(L) |= n2 (4.38)

dir. İspatı tamamlamak için öncelikle aşağıdaki (4.39) eşitliğinin doğru olduğunu gösterilsin.

A0(L) =
∪

p∈P−N(L)

A 0
N(p)(L) (4.39)

K ∈ A0(L) olsun. cn(K,L) = 0 olduğundan dolayı N(K) ⊂ P −N(L) dir. Bu durumda,
K ∈ N(p) olacak şekilde en az bir p ∈ P−N(L) düğümü vardır. cn(K,L) = 0 olduğundan

A0(L) ⊆
∪

p∈P−N(L)

A 0
N(p)(L) (4.40)

dir. Tersine, K ′ ∈
∪

p∈P−N(L) A
0
N(p)(L) olsun. Bu durumda en az bir q ∈ P − N(L) için

K
′ ∈ A 0

N(q)(L) dir. cn(K
′
, L) = 0 olduğundan dolayı K ′ ∈ A0(L) dir. Dolayısıyla∪

p∈P−N(L)

A 0
N(p)(L) ⊆ A0(L) (4.41)

dir. (4.40) ve (4.41) den dolayı (4.39) eşitliği geçerlidir.

Ayrıca ∪
p∈P−N(L)

K∈A 0
N(p)

(L)

N (K) = P −N(L)

olduğu açıktır. G afin graf olduğundan p ∈ P − N(L) için | A 0
N(p)(L) |= 1 dir. O halde

herhangi bir p ∈ P − N(L) için A 0
N(p)(L) = {K} olacak şekilde bir tek K ∈ L düğümü

vardır. p, q ∈ P − N(L) ve p ̸= q düğümleri için A 0
N(p)(L) = {K}, A 0

N(q)(L) = {M} ve
K ̸= M olmak üzere cn(K,M) = 1 olsun. Bu durumda CN(K,M) = {r} olacak şekilde
r ∈ P − N(L) düğümü vardır. r /∈ N(L), K,M ∈ N(r) ve cn(K,L) = 0, cn(M,L) = 0

olduğundan dolayı | A 0
N(r)(L) |≥ 2 dir. Bu ise G nin afin graf olmasıyla çelişir. Dolayısıyla

cn(K,M) = 0 dır. cn(K,M) = 0 olduğundan N(K) ∩N(M) = ∅ dir. O halde∑
p∈P−N(L)

K∈A 0
N(p)

(L)

| N (K) |=| P −N(L) | (4.42)
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dir. |
∪

p∈P−N(L) A
0
N(p)(L) |= x olsun. Herhangi bir p ∈ P −N(L) için A 0

N(p)(L) = {K}
olacak şekilde bir tek K ∈ L düğümü olduğundan |

∪
p∈P−N(L) K |= x dir. Her L ∈ L

için d(L) =| N(L) |= n ve | P |= n2 olduğundan (4.42) eşitliği düzenlenirse,

x =
n2 − 1

n
= n− 1

dir. (4.39) den dolayı
| A0(L) |= n− 1 (4.43)

dir.

Böylece (4.34), (4.38) ve (4.43) den dolayı

| L |= n2 + n

dir.

Sonuç 4.19. G = (P ∪ L , E) bir afin graf ve L ∈ L için d(L) = n olmak üzere

| V (G) |= 2n2 + n

dir.

İspat. G = (P ∪L , E) bir afin graf ve L ∈ L için d(L) = n olsun. LG2 den dolayı n ≥ 2

dir.P ∩ L = ∅ ve Teorem 4.27 den dolayı

| V (G) |=| P ∪ L |=| P | + | L |= 2n2 + n

dir.

Sonuç 4.20. G = (P ∪ L , E) bir afin graf ve L ∈ L için d(L) = n olmak üzere

| E(G) |= n2(n+ 1)

dir.

İspat. G = (P ∪L , E) bir afin graf ve L ∈ L için d(L) = n olsun. LG2 den dolayı n ≥ 2

dir. (4.11) den dolayı
| E(G) |=

∑
p∈P

d(p)

dir. Teorem 4.27 den dolayı | P |= n2 ve her p ∈ P için d(p) = n+ 1 olduğundan

| E(G) |= n2(n+ 1)

dir.
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Örnek 4.16. Şekil 4.9 de verilen graf modeli göz önüne alınırsa, n = 2 için G,
(3, 2)−biregüler, | P |= 22, | L |= 22 + 2, V (G) = 2.22 + 2 ve E(G) = 22(2 + 1) dir.

Sonuç 4.21. G = (P ∪ L , E) bir afin graf ve L ∈ L için d(L) = n olsun.
A1(L) = {K : cn(K,L) = 1 veK ∈ L } olmak üzere

| A1(L) |= n2

dir.

Sonuç 4.22. G = (P ∪ L , E) bir afin graf olsun. L ∈ L için d(L) = n olsun. LG2 den
dolayı n ≥ 2 dir. L ∈ L için A0(L) = {K : cn(K,L) = 0 veK ∈ L } olmak üzere

| A0(L) |= n− 1

dir.

Teorem 4.28. G = (P ∪ L , E) afin graf ise Euler graf değildir.

İspat. G = (P ∪ L , E) bir afin graf olsun. LG2 den dolayı L ∈ L için d(L) = n olacak
şekilde n ≥ 2 tamsayısı vardır. Teorem 4.27 den dolayı G, (n + 1, n)− biregülerdir. Bu
durumda, her bir p ∈ P için d(p) = n+ 1 ve her bir L ∈ L için d(L) = n dir.
Eğer n = 2k + 1, k ∈ Z+ ise d(L) = 2k + 1 dir.
Eğer n = 2k , k ∈ Z+ ise d(p) = 2k + 1 dir.
Bu durumda, en az bir v ∈ V (G) düğümünün derecesi tek olduğundan Teorem 3.1 den dolayı
G, Euler graf değildir.

Teorem 4.29. G = (P∪L , E), (n+1, n)−biregüler lineer graf⇔G (n+1, n)−bireguler
afin graftır.

İspat. G = (P ∪ L , E), (n + 1, n) − bireguler lineer graf olsun. LG2 den dolayı n ≥ 2

dir. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L düğümleri vardır.
d(L) = n olduğundan i, 1 ≤ i ≤ n için N(L) = {p1, p2, . . . , pn} olacak şekilde pi ∈ P

düğümleri vardır. Ayrıca LG1 den dolayı her bir i, 1 ≤ i ≤ n için CN(p, pi) = {Li} olacak
şekilde Li ∈ L düğümleri vardır. Her bir i için p ∈ N(Li) olduğundan Li ̸= L dir. i ̸= j

ve 1 ≤ i, j ≤ n için Li = Lj ise CN(pi, pj) = {L,Li} dir. Bu ise LG1 ile çelişir. O
halde Li ̸= Lj dir. d(p) = n + 1 olduğundan her bir i için K ̸= Li olacak şekilde bir tek
K ∈ N(p) ⊂ L düğümü vardır. Herhangi bir i için K ∈ N(pi) ise CN(p, pi) = {Li, K}
olur. Bu ise LG1 ile çelişir. O haldeK /∈ N(pi) dir. Bu durumda p /∈ N(L) için cn(L,K) = 0

olacak şekilde bir tekK ∈ N(p) düğümü vardır. p veL düğümlerinin seçimi keyfi olduğundan
| A 0

N(p)(L) |= 1 dir. Dolayısıyla G afin graftır. L ∈ L için d(L) = n olduğu gözönüne
alınırsa Teorem 4.27 den dolayı G (n+ 1, n) biregüler afin graftır.
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Tersine, kabul edelim ki G (n+ 1, n) biregüler afin graf olsun. Afin graf tanımından
dolayı G lineer graftır. Böylece G (n+ 1, n) biregüler lineer graftır.

Teorem 4.30. G = (P ∪ L , E) bir lineer graf olmak üzere, ∀L ∈ L ve | P |= n2 için
d(L) = n ⇔ G (n+ 1, n)− biregüler afin graftır.

İspat. G = (P ∪ L , E) bir lineer graf olmak üzere | P |= n2 ve ∀L ∈ L için d(L) = n

olsun. Lemma 4.8 den dolayıP parçası regulerdir ve her bir p ∈ P için

d(p) =
| P | −1

d(L)− 1

dir. | P |= n2 ve d(L) = n olduğundan dolayı

d(p) =
n2 − 1

n− 1
= n+ 1

dir. Bu durumda G, (n + 1, n)−biregulerdir. Dolayısıyla Teorem 4.29 dan dolayı G (n +

1, n)−biregüler afin graftır.

Tersine, kabul edelim kiG (n+1, n)− biregüler afin graf olsun. Afin graf tanımından
dolayı G lineer graftır. Teorem 4.27 den dolayı | P |= n2 ve ∀L ∈ L için d(L) = n dir.

Teorem 4.31. G = (P ∪ L , E) bir lineer graf olmak üzere, | L |= n2 + n ve her L ∈ L

için d(L) = n ⇔ G (n+ 1, n)− biregüler afin graftır.

İspat. G = (P ∪ L , E) bir lineer graf olmak üzere | L |= n2 + n ve ∀L ∈ L için
d(L) = n olsun. Teorem 4.12 dan dolayı

| P | .(| P | −1) =
∑
L∈L

d(L).(d(L)− 1)

| P | .(| P | −1) = n(n− 1)(n2 + n)

| P | .(| P | −1) = n2(n2 − 1)

elde edilir. Bu durumda | P |= n2 dir. Teorem 4.30 den dolayı G (n+ 1, n)−biregüler afin
graftır.

Tersine, kabul edelim kiG (n+1, n)− biregüler afin graf olsun. Afin graf tanımından
dolayıG lineer graftır. Teorem 4.27 den dolayı | L |= n2+n ve ∀L ∈ L için d(L) = n dir.

Teorem 4.32. G = (P ∪ L , E) bir lineer graf olsun. p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L için c(p, L) = d(p)− 1 ⇔ G bir afin graftır.

İspat. G = (P∪L , E) bir lineer graf olsun. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde
p ∈ P ve L ∈ L düğümleri vardır. c(p, L) = d(p)− 1 olsun. LG2 den dolayı d(p) ≥ 2 dir.
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Bu durumda, N(p) = {L1, L2, . . . , Ld(p)} olacak şekilde L1, L2, . . . , Ld(p) ∈ L düğümleri
vardır. Her bir Li ∈ N(p) için Li ̸= L dir. c(p, L) = d(p) − 1 olduğu göz önüne alınırsa
Teorem 4.22 dan dolayı

| A 1
N(p)(L) |= d(p)− 1

dir. Bu durumda bir tekK ∈ N(p) düğümü vardır ki cn(L,K) = 0 dır. O halde | A 0
N(p)(L) |=

1 olduğundan dolayı G bir afin graftır.

Tersine, G = (P ∪ L , E) bir afin graf olsun. Afin graf tanımından dolayı lineer
graftır. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde p ∈ P ve L ∈ L düğümleri vardır.
Lemma 4.15 den dolayı c(p, L) = d(L) dir. Lemma 4.20 den dolayı d(p) = d(L) + 1

olduğundan dolayı c(p, L) = d(p)− 1 dir.

Teorem 4.33. G = (P ∪L , E) bir lineer graf ve n ≥ 3 olmak üzere | P |= n2 + 1 ve her
L ∈ L için d(L) ∈ {n, n+ 1} olsun. G− {q} bir afin graf olacak şekilde en az bir q ∈ P

düğümü vardır.

İspat. G = (P ∪ L , E) bir lineer graf olmak üzere L ∈ L ve n ≥ 3 için | P |= n2 + 1

ve d(L) ∈ {n, n+ 1} olsun. Eğer ∀L ∈ L için d(L) = n ise Teorem 4.11 den dolayı,

| P |= n2 + 1 = d(p).(n− 1) + 1

dir. Böylece

d(p) =
n2

n− 1
= n+ 1 +

1

n− 1

elde edilir. Bu ise d(p) ∈ Z olması ile çelişir. O haldeL parçasında derecesi n+ 1 olan en
az bir düğüm vardır.
L ∈ L için d(L) = n + 1 olsun. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde p ∈ P

düğümü vardır. Teorem 4.17 den dolayı p ∈ P için

| P | −1

n
≤ d(p) ≤ | P | −1

n− 1

dir. | P |= n2 + 1 olduğundan dolayı

d(p) ∈ {n, n+ 1}

dir. Teorem 4.9 den dolayı d(p) = n+ 1 dir.

d(L) = n + 1 olduğundan dolayı i, 1 ≤ i ≤ n + 1 için N(L) = {p1, p2,…, pn+1}
olacak şekilde pi ∈ P düğümleri vardır. LG1 den dolayı her bir i için CN(p, pi) = {Li}
olacak şekilde Li ∈ L düğümleri vardır. d(p) = d(L) olduğundan Sonuç 4.18 den dolayı
c(p, L) = n + 1 dir. Bu durumda her Li ∈ N(p) için cn(Li, L) = 1 dir. Hipotezden dolayı
her bir Li ∈ N(p) için d(Li) ∈ {n, n + 1} dir. p düğümün komşuluğundaki düğümlerden
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x tanesi n + 1 dereceli olsun. d(p) = n + 1 olduğundan n + 1 − x tanesi de n derecelidir.
Teorem 4.11 den dolayı,

| P |= n2 + 1 = x.n+ (n+ 1− x).(n− 1) + 1

dir. Bu durumda x = 1 dir. O halde bir tek Lj ∈ N(p) için d(Lj) = n+1 ve ∀Lk ∈ N(p)−
{Lj} için d(Lk) = n dir.

Ayrıca d(R) = d(S) = n + 1 olacak şekilde R,S ∈ L için cn(R,S) = 0 olması
durumda p′ ∈ N(R) için cn(R,S) = 0 olduğundan p′

/∈ N(S) dir. d(S) = n+1 olduğundan
N(S) = {p′

1, p
′
2, . . . , p

′
n+1} olacak şekilde p

′
1, p

′
2, . . . , p

′
n+1 ∈ P düğümleri vardır. LG1

dolayı her bir t, 1 ≤ t ≤ n + 1 için CN(p
′
, p

′
t) = {L′

t} olacak şekilde L
′
t ∈ L düğümleri

vardır. CN(R,S) = 0 olduğundan R ̸= L
′
t ve L

′
t ̸= S dir. L′

j, L
′

k ∈ N(p
′
) için L

′
t =

L
′

k ise CN(p
′
t, p

′

k) = {S, L′
t} dir. Bu ise LG1 ile çelişir. O halde L

′
t ̸= L

′

k dir. Böylece
{R,L

′
1, L

′
2, . . . , L

′
n+1} ⊆ N(p

′
) dir. Bu durumda d(p′

) ≥ n + 2 olur. Bu ise d(p′
) = n + 1

olması ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla d(R) = d(S) = n + 1 olacak
şekildeki her bir R,S ∈ L düğüm çifti için cn(R,S) = 1 dir.

cn(L,Lj) = 1 olduğundan dolayı CN(L,Lj) = {q} olacak şekilde q ∈ P düğümü
vardır. Kabul edelim ki d(M) = n + 1 olacak şekilde M ∈ L düğümü için M /∈ N(q)

olsun.L parçasında ait n+1 dereceli düğümlerin ortak komşuluğunun sayısı 1 olduğundan
CN(L,M) = {q′} olacak şekilde q′ ∈ P düğümü vardır.M /∈ N(q) olduğundan q′ ̸= q dur.
q
′ ∈ N(Lj) ise CN(L,Lj) = {q, q′} olur. Bu ise Lemma 4.3 ile çelişir. O halde q′

/∈ N(Lj)

dir. Teorem 4.9 den dolayı d(q′
) ≥ d(Lj) = n+ 1 ve d(q′

) ∈ {n, n + 1} olduğundan dolayı
d(q

′
) = n+1 dir. Bu durumda d(M) = d(L) = n+1,M,L ∈ N(q

′
) veM ̸= L olduğundan

P parçasına ait n + 1 dereceli herhangi bir düğümünün komşuluğunda n + 1 dereceli bir
tek düğüm olması ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla d(M) = n+ 1 olacak
şekilde her birM ∈ L içinM ∈ N(q) dir.

Böylece q düğümü G grafından atılırsa ∀L ∈ L için d(L) = n ve | P |= n2 dir.
Teorem 4.30 dan dolayı G− {q} grafı afin graftır.

Örnek 4.17 ’de Teorem 4.33 de verilen parametrelere ait bir lineeer graf verilmiştir.

Örnek 4.17. Aşağıdaki verilen özelliklere sahip G = (P ∪ L , E) bir lineer graftır. Bu
durumda G− {q} grafı bir afin graftır.

P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, q},L = {L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12}

ve E(G) = {ei : i, 1 ≤ i ≤ 39} olmak üzere, G = (P ∪ L , E) Teorem 4.33 da verilen
parametrelere sahip bir lineer graftır. (Çizelge 4.3 de E(G) kümesinin elemanları verilmiştir.)
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Çizelge 4.3 Örnek 4.17 da verilen G = (P ∪ L , E) grafına ait ayrıtlar

e1 = p1L1 e2 = p1L4 e3 = p1L7 e4 = p1L9

e5 = p2L2 e6 = p2L4 e7 = p2L10 e8 = p2L11

e9 = p3L3 e10 = p3L4 e11 = p3L8 e12 = p3L12

e13 = p4L1 e14 = p4L5 e15 = p4L10 e16 = p4L12

e17 = p5L2 e18 = p5L5 e19 = p5L7 e20 = p5L8

e21 = p6L3 e22 = p6L5 e23 = p6L9 e24 = p6L11

e25 = p7L1 e26 = p7L6 e27 = p7L8 e28 = p7L11

e29 = p8L2 e30 = p8L6 e31 = p8L9 e32 = p8L12

e33 = p9L3 e34 = p9L6 e35 = p9L7 e36 = p9L10

e37 = qL1 e38 = qL2 e39 = qL3
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4.2 Projektif Graflar

Bu bölümde G = (P ∪ L , E) bir lineer graf olmak üzere L parçasındaki farklı iki
düğümün ortak komşuluğunun sayısı 1 olan ve C8 içeren lineer graflar projektif graf olarak
tanımlanarak bu grafların temel özellikleri incelenmiştir. L parçasındaki bir düğümün
derecesi n olan projektif graflar (n + 1)−regüler lineer graflar olarak karakterize edilerek
düğüm sayıları ve ayrıt sayılarına ilişkin hesaplamalar yapılmıştır. Lineer grafların projektif
graf olması için gerekli parametreler verilerek afin graflarla ilişkileri incelenmiştir. Ayrıca
projektif grafların Euler graf olması koşulları belirlenmiştir.
Son olarakta L parçasındaki farklı iki düğümün ortak komşuluğunun sayısı 1 olan fakat C8

içermeyen lineer graflar dejenere projektif graf olarak tanımlanarak temel özellikleri
incelenmiştir.

Tanım 4.4. G = (P ∪ L , E) lineer grafı PG1 ve PG2 şartlarını sağlıyorsa G ye projektif
graf denir.

PG1. ∀L,K ∈ L ve L ̸= K için cn(L,K) = 1

PG2. C8 içerir.

Örnek 4.18. Şekil 4.10 de bir projektif graf modeli verilmiştir. Burada G nin lineer graf
olduğu açıktır. L parçasındaki birbirinden farklı iki düğümün ortak komşuluğun sayı 1 ve
G, C8 içerir.

Şekil 4.10 G = (P ∪ L , E), bir projektif graf modeli
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Sonuç 4.23. G = (P ∪ L , E) bir projektif graf olmak üzere ∀K,L ∈ L ve K ̸= L için
d(L,K) = 2 dir.

İspat. G bir projektif graf olsun. G iki kümeli olduğundan L,K ∈ L için d(L,K) ̸= 1.
PG1 den dolayı ∀K ∈ L veK ̸= L için CN(L,K) = {p} olacak şekilde p ∈ P vardır. Bu
durumda L− p−K yolu G grafındaki en kısa yol olduğundan d(L,K) = 2 dir.

Sonuç 4.24. G = (P ∪ L , E) bir projektif graf ise diam(G) = 3 dür.

İspat. G = (P ∪ L , E) bir projektif graf olsun. LG1 den dolayı ∀p, q ∈ P ve p ̸= q

için CN(p, q) = {L} olacak şekilde bir tek L ∈ L vardır. O halde Lemma 4.5 den dolayı
d(p, q) = 2 dir. PG1 den dolayı her bir L,K ∈ L ve K ̸= L için Sonuç 4.24 dolayı
d(L,K) = 2 dir.

Sonuç 4.4 den dolayı her bir M ∈ L için en az r ∈ P vardır ki r /∈ N(M) dir.
Lemma 4.5 den dolayı d(r, L) = 3 olur. Bu durumda,

diam(G)= max{max{d(u, v) : u, v ∈ P ∪ L }}=3

dür.

Teorem 4.34. G = (P ∪ L , E) bir lineer graf ve L parçasındaki birbirinden farklı
herhangi iki düğümün ortak komşuluğunun sayısı 1 olmak üzereP parçasında herhangi
üçünün ortak komşuluk sayısı sıfır olacak şekilde dört düğüm olması için gerek ve yeter
koşul G projektif graftır.

İspat. Kabul edelim ki G projektif graf olsun. Bu durumda G = (P ∪ L , E) bir lineer
graf veL parçasında ki birbirinden farklı herhangi iki düğümün ortak komşuluğunun sayısı
1 dir. PG2 den dolayı G, birbiriden farklı p1, p2, p3, p4 ∈ P ve L1, L2, L3, L4 ∈ L için
C8 : p1 − L1 − p2 − L2 − p3 − L3 − P4 − L4 − p1 olacak şekilde C8 içerir.
p1 ∈ N(L3) ise CN(p1, p4) = {L1, L2} dir. Bu ise LG1 ile çelişir. Böylece p1 /∈ N(L3)

dir. Benzer şekilde p2 /∈ N(L3), p3 /∈ N(L1) ve p4 /∈ N(L1) dir. CN(p1, p2) = {L1}
ve CN(p3, p4) = {L3} olduğundan p1, p2, p3 ve p4 düğümlerinin herhangi üçünün ortak
komşuluğunun sayısı sıfırdır.

Tersine, G = (P ∪ L , E) bir lineer graf ve L parçasında ki birbirinden farklı
herhangi iki düğümün ortak komşuluğunun sayısı 1 olsun. Kabul edelim ki P parçasında
herhangi üçününortak komşuluk sayısı sıfır olacak şekilde dört düğüm olsun. Hipotezden
dolayı PG1 sağlanır. p, q, r ve s düğümleri P parçasında herhangi üçünün ortak komşuluk
sayısı sıfır olacak şekilde dört düğüm olsun. LG1 den dolayıCN(p, q) = {L} veCN(r, s) =

{K} olacak şekilde L,K ∈ L düğümleri vardır. L = K ise CN(p, q, r) = {K} olur. Bu
durumda cn(p, q, r) = 1 olacağından p, q, r, s düğümlerin seçimi ile çelişir. O halde L ̸= K
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dir. Benzer şekilde, LG1 den dolayı CN(p, r) = {M} ve CN(q, s) = {N} olacak şekilde
M,N ∈ L düğümleri vardır. p, q, r, s düğümlerinin seçiminden dolayı M ̸= N , M ̸= L,
M ̸= K, N ̸= L veM ̸= K dır.
Böylece G, C8 : p− L− q −N − s−K − r −M − p içerir.

Lemma 4.21. G = (P ∪L , E) bir projektif graf olmak üzere birbirinden farklı L,K ∈ L

için p /∈ N(L) ∪N(K) olacak şekilde p ∈ P düğümü vardır.

İspat. G = (P ∪L , E) bir projektif graf olsun. PG2 den dolayı G, C8 içerir. Bu durumda,
C8 : n−L− q−N − s−K− r−M −n olacak şekilde n, q, r, s ∈ P ve L,N,K,M ∈ L

düğümleri vardır. PG1 den dolayı CN(N,M) = {p} olacak şekilde p ∈ P düğümü vardır.
Teorem 4.1 den dolayı p düğümü n, q, r, s düğümlerinden farklıdır. p ∈ N(L) ise {n, p} ⊆
CN(L,M) dir. Bu ise Lemma 4.3 ile çelişir. O halde p /∈ N(L) dir. Benzer şekilde p ∈ N(K)

ise {r, p} ⊆ CN(K,M) dir. Bu durum Lemma 4.3 ile çelişeceğinden p /∈ N(K) dır. Böylece
p /∈ N(L) ∪N(K) olacak şekilde p ∈ P düğümü vardır.

Teorem 4.35. G = (P ∪L , E) bir projektif graf ve L ∈ L için d(L) = n+1 olmak üzere

i. G, (n+ 1)−regülerdir

ii. | P |= n2 + n+ 1

iii. | L |= n2 + n+ 1

iv. n ≥ 2

dir.

İspat. i.G = (P∪L , E) bir projektif graf veL,K ∈ L içinL ̸= K olsun. PG1 den dolayı
CN(L,K) = {p} olacak şekilde p ∈ P vardır. d(L) = n + 1 olduğundan i, 1 ≤ i ≤ n

içinN(L) = {p, p1, p2, . . . , pn} olacak şekilde pi ∈ P düğümleri vardır. Lemma 4.21 dolayı
q /∈ N(L) ∪ N(K) olacak şekilde q ∈ P vardır. q /∈ N(L) ∪ N(K) olduğundan her bir
i için q ̸= pi ve q ̸= p dir. Ayrıca herhangi bir i için CN(q, pi) = {K} olması durumunda
CN(p, pi) = {L,K} dir. Bu ise LG1 ile çelişeceğinden CN(q, pi) ̸= {K} dır. i, 1 ≤ i ≤ n

için CN(q, pi) = Mi olsun. Bu durumdaMi ̸= K veMi ̸= L dir. Buna göre,

fq : N(L)− {p} → N(K)− {p}

fq (pi) = CN(Mi, K)

dönüşümünü göz önüne alınsın. Bu durumda pi ̸= pj düğümleri için kabul edelim ki
fq(pi) = fq(pj) olsun. Bu durumda CN(Mi,Mj) = {q, fq(pi)} olur. q /∈ N(K)
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olduğundan q ̸= fq(pi) dir. Bu durumda cn(Mi,Mj) ≥ 2 olduğundan Lemma 4.3 ile
çelişir. O halde kabulümüz yanlıştır. Böylece, fq(pi) ̸= fq(pj) dir. Dolayısıyla fq birebirdir.

Ayrıca herhangi bir x ∈ N(K) − {p} düğümünü alalım. q /∈ N(K) olduğundan
dolayı x ̸= q dır. LG1 den dolayı CN(x, q) = {M ′} olacak şekildeM ′ ∈ L düğümü vardır.
PG1 den dolayı CN(L,M

′
) = {r} olacak şekilde r ∈ L düğümü vardır. r = p olması

durumunda CN(K,M
′
) = {x, p} dir. Bu ise Lemma 4.3 ile çelişir. Dolayısıyla r ̸= p dir.

N(L) = {p, p1, p2, . . . , pn} olduğudan dolayı bir j, 1 ≤ j ≤ n indisi vardır ki r = pj

dir. Bu durumda M
′
= Mj ve {x} = CN(Mj, K) = fq(pj) elde edilir. Dolayısıyla x

keyfi olduğundanK düğümünün komşuluğunda alınan p den farklı her bir düğüm için L nin
komşuluğunda p den farklı bir düğüm vardır. Böylece fq örten bir dönüşümdür.
Bu durumda d(L) = d(K) = n + 1 dir. K düğümünün seçimi keyfi olduğundan her bir
K ∈ L için d(K) = n+ 1 dir. O haldeL parçası (n+ 1)−regülerdir.

Lemma 4.8 dan dolayı P parçasıda regülerdir. Sonuç 4.4 den dolayı z /∈ N(L)

olacak şekilde z ∈ P düğümü vardır. d(L) = n + 1 olduğundan i, 1 ≤ i ≤ n + 1 için
N(L) = {p1, p2, . . . , pn+1} olacak şekilde pi ∈ P düğümleri vardır. LG1 den dolayı her bir
i için CN(z, pi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. Teorem 4.9 den dolayı
z /∈ N(L) için d(z) ≥ d(L) = n + 1 dir. Kabul edelim ki d(z) ≥ n + 2 olsun. Bu durumda
en az bir K ∈ N(p) vardır ki cn(K,L) = 0 dır. Bu ise PG1 ile çelişir. O halde kabulümüz
yanlıştır. Dolayısıyla d(z) = n+ 1 dir. Böylece G grafı (n+ 1)−regülerdir.

ii. (i) den dolayı G, (n+ 1)−regülerdir. Bu durumda, Teorem 4.11 den dolayı

| P | −1 = (n+ 1).(n+ 1− 1) = n2 + n

dir. Eşitlik düzenlenirse,
| P |= n2 + n+ 1

dir.

iii. L ∈ L ve p ∈ N(L) için Sonuç 4.10 den dolayı

| L | −1 =
∑

p∈N(L)

(d(p)− 1)

dir. (i) den dolayı d(L) = d(p) = n+ 1 olduğu göz önüne alınırsa

| L | −1 = (n+ 1).(n+ 1− 1)

| L |= n2 + n+ 1

dir.
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iv. Kabul edelim ki n = 1 olsun. (i) den dolayı G, 2−regülerdir. Bu durumda G çevre
graftır. (ii) ve (iii) den dolayı V (G) = 6 dır. Dolayısıyla G = C6 dır. Bu ise PG2 ile çelişir.
Dolayısıyla n ≥ 2 dir.

Sonuç 4.25. G = (P ∪ L , E) bir projektif graf olmak üzere,

δ(G) ≥ 3

dir.

İspat. Teorem 4.35 den dolayı L ∈ L için d(L) = 2 ise G, (n + 1)−regülerdir. G, lineer
graf olduğu göz önüne alınırsa LG2 den dolayı n ≥ 2 dir. Böylece δ(G) ≥ 3 tür.

Sonuç 4.26. G = (P ∪ L , E) bir projektif graf ve L ∈ L için d(L) = n+ 1 olmak üzere,

| V (G) |= 2(n2 + n+ 1)

dir.

İspat. G = (P ∪ L , E) bir projektif graf ve L ∈ L için d(L) = n + 1 olsun. Sonuç 4.25
den dolayı n ≥ 3 tür. Teorem 4.35 den dolayı | P |= n2 + n+ 1 ve | L |= n2 + n+ 1 dir.
P ∩ L = ∅ olduğundan

| V (G) |=| P ∪ L |=| P | + | L |= 2(n2 + n+ 1)

dir.

Lemma 4.22. G = (P ∪L , E) bir projektif graf ve L ∈ L için d(L) = n+1 olmak üzere,

| E(G) |= n3 + 2(n2 + n) + 1

dir.

İspat. G = (P ∪ L , E) bir projektif graf olsun. L ∈ L için d(L) = n + 1 olsun. Sonuç
4.25 den dolayı n ≥ 2 dir. Eşitlik (4.11) den dolayı

| E(G) |=
∑
p∈P

d(p)

dir. Teorem 4.35 den dolayı | P |= n2+n+1 ve her bir p ∈ P için d(p) = n+1 olduğundan
dolayı

| E(G) |= n3 + 2(n2 + n) + 1

dir.

Örnek 4.19. Şekil 4.10 de verilen projektif graf modeli göz önüne alınırsa n = 2 içinG nin;
3−regüler, | P |= 7 = 22 + 2 + 1, | L |= 7 = 22 + 2 + 1, δ(G) = 3 ve E(G) = 21 =

23 + 2(22 + 2 + 1) + 1 olduğu açıktır.



62

Teorem 4.36. G = (P ∪L , E) bir lineer graf olsun. n ≥ 2, n ∈ Z içinG, (n+1)−regüler
⇔ G (n+ 1)− regüler projektif graftır.

İspat. G = (P ∪ L , E) bir lineer graf ve n ≥ 2, n ∈ Z için G, (n + 1)−regüler olsun.
Kabul edelim ki birbirinden farklıK,M ∈ L için cn(K,M) = 0 olsun. Bu durumda her bir
p ∈ N(K) için p /∈ N(M) dir. d(M) = n+1 olduğundan dolayıN(M) = {q1, q2, . . . , qn+1}
olacak şekilde q1, q2, . . . , qn+1 ∈ P düğümleri vardır. LG1 den dolayı her bir i, 1 ≤ i ≤ n+1

için CN(p, qi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. 1 ≤ i ̸= j ≤ n + 1 için
Li = Lj olması durumunda {M,Li} ⊆ CN(qi, qj) dir. p /∈ N(M) olduğundan M ̸= Li

dir. Bu ise LG1 ile çelişir. O halde Li ̸= Lj dir. K = Li olması halinde qi ∈ N(K) ve
qi ∈ N(M) olduğundan dolayı CN(K,M) = {qi} olur. Bu ise kabulümüzle çelişir. O halde
K ̸= Li dir. Böylece {K,L1, L2, . . . , Ln+1} ⊆ N(p) ve dolayısıyla d(p) ≥ n+2 dir. Bu iseG
nin (n+ 1)−regüler olması ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla birbirinden
farklı her bir L,K ∈ L için cn(L,K) = 1 dir. Hipotezden dolayı d(L) = n + 1 dir.
Bu durumda N(L) = {p1, p2, . . . , pn+1} olacak şekilde p1, p2, . . . , pn+1 ∈ P düğümleri
vardır. Sonuç 4.4 den dolayı p /∈ N(L) olacak şekilde p ∈ P vardır. LG1 den dolayı her bir
i, 1 ≤ i ≤ n+ 1 için CN(p, pi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. p /∈ N(L)

olduğundan dolayı Li ̸= L dir. 1 ≤ i ̸= j ≤ n + 1 için Li = Lj ise {L,Li} ⊆ CN(pi, pj)

dir. Bu ise LG1 ile çelişir. O halde Li ̸= Lj dir. G, (n + 1)− reguler ve n ≥ 2 olduğundan
dolayı d(Li) ≥ 3 tür. Bu durumda q ∈ N(Li) vardır ki q ̸= p ve q ̸= pi dir. Böylece
CN(p, q) = {Li} dir. Ayrıca q ∈ N(L) ise {L,Li} ⊆ CN(q, pi) dir. Bu ise LG1 ile çelişir.
Dolayısıyla q /∈ N(L) dir. i ̸= j için q ∈ N(Lj) ise {Li, Lj} ⊆ CN(p, q) dir. Bu ise LG1
ile çelişir. Dolayısıyla i ̸= j için q /∈ N(Lj) dir. d(L) ≥ 3 olduğundan pk ̸= pi ve pk ̸= pj

olacak şekilde pk ∈ N(L) düğümü vardır ve CN(pj, pk) = {L} dir. Böylece p, pk, pj ve q
herhangi üçünün ortak komşuluğunun sayısı sıfır olan dört düğümdür. Bu durumda Teorem
4.34 den dolayı G (n+ 1)− regüler projektif graftır.

TersineG (n+1)−regüler bir projektif graf olsun. Projektif graf tanımındanG lineer
graftır. Dolayısıyla G (n+ 1)−regüler lineer graftır.

Teorem 4.37. G = (P ∪ L , E) bir projektif graf olmak üzere, G, Euler graftır gerek ve
yeter koşul u ∈ V (G) için d(u) = 2.k, k ∈ Z olmasıdır.

İspat. G = (P∪L , E) bir projektif graf olsun. Kabul edelim kiG Euler graf olsun. Teorem
3.1 den dolayı G nin düğümlerinin derecesi çifttir. Bu durumda u ∈ V (G) için d(u) = 2.k

olacak şekilde k ∈ Z vardır.

Tersine, kabul edelim ki bir u ∈ V (G) için d(u) = 2.k olsun. Bu durumda Teorem
4.35 den dolayı G, 2.k-regülerdir. Sonuç 4.25 den dolayı k ≥ 2 dir. Böylece Teorem 3.1 den
dolayı G Euler graftır.
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Teorem 4.38. G = (P ∪ L , E) lineer graf ve n ≥ 2 olacak şekilde bir tamsayı olsun.
| P |= n2+n+1 ve her bir L ∈ L için d(L) = n+1⇔G (n+1) regüler projektif graftır.

İspat. G = (P ∪ L , E) bir lineer graf ve n ≥ 2 olacak şekilde bir tamsayı olmak üzere
| P |= n2+n+1 ve her bir L ∈ L için d(L) = n+1 olsun.L parçası regüler olduğundan
Lemma 4.8 den dolayıP parçasıda regülerdir. Her bir p ∈ P için

d(p) =
| P | −1

d(L)− 1

dir. Hipotezden dolayı

d(p) =
n2 + n+ 1− 1

n+ 1− 1
= n+ 1

dir. O halde G, (n + 1)−regülerdir. Böylece Teorem 4.36 dan dolayı G (n + 1)− projektif
graftır.

Tersine, G (n + 1) regüler projektif graf olsun. Projektif graf tanımından G lineer
graftır. Sonuç 4.25 den dolayı n ≥ 2 dir. Teorem 4.35 den dolayı | P |= n2 + n + 1 ve her
bir L ∈ L için d(L) = n+ 1 dir.

Teorem 4.39. G = (P ∪ L , E) bir lineer graf olsun. n ≥ 2 olacak şekilde bir tamsayı
olmak üzere | L |= n2 + n+ 1 ve her bir L ∈ L için d(L) = n+ 1 ⇔ G (n+ 1) projektif
graftır.

İspat. G = (P ∪ L , E) bir lineer graf ve n ≥ 2 olacak şekilde bir tamsayı olmak üzere
| L |= n2 + n+ 1 ve ∀L ∈ L için d(L) = n+ 1 olsun. Teorem 4.12 dan dolayı

| P | .(| P | −1) =

|L |∑
i=1

(d(Li).(d(Li)− 1)

dir. ∀L ∈ L için d(L) = n+ 1 ve | L |= n2 + n+ 1 olduğundan

| P | .(| P | −1) = (n+ 1).n.(n2 + n+ 1)

| P | .(| P | −1) = (n2 + n).(n2 + n+ 1)

dir. Bu durumda
| P |= n2 + n+ 1

dir. Teorem 4.38 den dolayı G (n+ 1)−regüler projektif graftır.

Tersine, G (n + 1) regüler projektif graf olsun. Projektif graf tanımından G lineer
graftır. Sonuç 4.25 den dolayı n ≥ 2 dir. Teorem 4.35 den dolayı | L |= n2 + n + 1 ve her
bir L ∈ L için d(L) = n+ 1 dir.
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Teorem 4.40. G = (P ∪ L , E), C8 içeren bir lineer graf olsun. p /∈ N(L) olacak şekilde
p ∈ P ve L ∈ L için c(p, L) = d(p) ise G bir projektif graftır.

İspat. G = (P ∪ L , E) lineer graf olsun. LG2 den dolayı i, 1 ≤ i ≤ d(p) ve d(p) ≥ 2 için
N(p) = {L1, L2, . . . , Ld(p)} olacak şekilde Li ∈ L düğümleri vardır. Böylece birbirinden
farklı R,S ∈ L düğümleri için üç farklı durum vardır.

1. durum. R,S ∈ N(p) ise CN(R,S) = {p} dir. Dolayısıyla cn(R,S) = 1 dir.

2. durum. R /∈ N(p) ve S ∈ N(p) ise hipotezten dolayı c(p,R) = d(p) dir. Teorem 4.23 den
dolayı | A0

N(p)(R) |= 0 dır. Böylece cn(R,S) = 1 dir.

3. durum.R,S /∈ N(p). LG2 ve Lemma 4.3 den dolayı q /∈ N(S) olacak şekilde en az bir q ∈
N(R) düğümü vardır. Hipotezten dolayı c(q, S) = d(q) dir. Teorem 4.23 | A0

N(q)(S) |= 0 dır.
Dolayısıyla cn(R,S) = 1 dir. Böylece PG1 sağlanır. Hipotezden dolayı G, C8 içerdiğinden
PG2 sağlanır. Böylece G projektif graftır.

Teorem 4.41. G = (P ∪ L , E) bir projektif graf olsun. L ∈ L için P
′
= P − N(L),

L
′
= L − {L} ve E ′

= {xy : x ∈ P
′ ve y ∈ L

′} ∩ E olmak üzere G′
= (P

′ ∪ L
′
, E

′
)

bir afin graftır.

İspat. G = (P∪L , E) bir projektif graf ve L ∈ L içinP
′
= P−N(L),L ′

= L −{L}
ve E

′
= {xy : x ∈ P

′ ve y ∈ L
′} ∩ E olmak üzere G

′
= (P

′ ∪ L
′
, E

′
) olsun. G iki

kümeli graf olduğundan alt grafı olan G
′ de iki kümelidir. x, y ∈ P

′ ⊂ P ise x, y /∈
N(L) dir. G lineer graf olduğundan cn(x, y) = 1 dir. Dolayısıyla CN(x, y) = {K} ve
K ̸= L olacak şekilde K ∈ L düğümü vardır. K ∈ L

′ dir. x, y şeçimi keyfi olduğundan
LG1 sağlanır. L düğümü komşuları ile birlikte atıldığından G

′ grafının P
′ parçasındaki

düğümlerinin derecesi değişmez. L′ ∈ L
′ olsun. G de PG1 den dolayı cn(L,L′

) = 1 dir.
Dolayısıyla dG′ (L

′
) = dG(L

′
) − 1 dir. G projektif graf olduğundan Sonuç 4.25 den dolayı

δ(G) ≥ 3 dir. Bu durumda her bir L′ ∈ L
′ için d(L′

) ≥ 2 dir. Dolayısıyla δ(G) ≥ 2 dir. O
halde LG2 sağlanır. Böylece G′ , lineer graftır.

Sonuç 4.4 den dolayı p′
/∈ N(L

′
) olacak şekilde p′ ∈ P

′ ve L′ ∈ L
′ düğümleri

vardır. G projektif graf olduğundan G de CN(L
′
, L) = {q} olacak şekilde q ∈ P vardır.

Ayrıca LG1 den dolayı CN(p
′
, q) = {S} olacak şekilde S ∈ L vardır. p′ ∈ P

′ olduğundan
p
′
/∈ N(L) dir. p′ ∈ N(S) olduğundan dolayı S ̸= L ve p′

/∈ N(L
′
) olduğundan dolayı

S ̸= L
′ dir. G′ grafında S ∈ L

′ ve p
′
/∈ N(L

′
) dir. G grafında CN(S, L

′
) ∈ N(L)

olduğundan dolayı G′ grafında CN(S, L
′
) = ∅ dir. O halde cn(S, L′

) = 0 dır.
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R ̸= L
′ olmak üzere kabul edelim ki R ∈ N(p

′
) için cn(R,L

′
) = 0 olacak şekilde

R ̸= S düğümü olsun. p′
/∈ N(L) olduğundan R ̸= L dir. CN(R,L

′
) /∈ N(L) olması

durumunda cn(R,L
′
) = 1 olur ki bu durum kabulümüzle çelişir. O haldeCN(R,L

′
) ∈ N(L)

dir. G projektif graf olduğundan G de CN(R,L
′
) = {t} olacak şekilde t ∈ N(L) ⊂ P

vardır. Eğer t ̸= q ise t ∈ N(L) ve t ∈ N(L
′
) olduğundan dolayı CN(L

′
, L) = {q, t}

dir. Bu ise Lemma 4.3 ile çelişir. Dolayısıyla t = q dir. Bu durumda R ∈ N(q) ve R ∈
N(p

′
) olduğundan dolayı CN(p

′
, q) = {R,S} dir. Bu ise LG1 ile çelişir. O halde kabulümüz

yanlıştır. Dolayısıyla p
′
/∈ N(L

′
) için cn(L

′
, S) = 0 olacak şekilde bir tek S ∈ N(L

′
)

düğümü vardır. Böylece G′ afin graftır.

Lemma 4.23. G = (P ∪ L , E), (n + 1)−regüler projektif graf, ∅ ̸= X ⊂ P , | X |= s,
P

′
= P − X , E ′

= {xy : xy ∈ E(G) ve x, y /∈ X} ve G′
= (P

′ ∪ L , E
′
) olmak üzere

L ∈ L için dG′ (L) = n+ 1− dL olsun. Bu durumda

i.
∑

L∈L dL = s.(n+ 1)

ii.
∑

L∈L d2L = s.(n+ s)

dir.

İspat. G = (P ∪ L , E), (n + 1)−regüler projektif graf, ∅ ̸= X ⊂ P , | X |= s,
P

′
= P − X , E ′

= {xy : xy ∈ E(G) ve x, y /∈ X} ve G′
= (P

′ ∪ L , E
′
) olmak üzere

L ∈ L için dG′ (L) = n+ 1− dL olsun.
i. Lemma 4.9 den dolayı ∑

L∈L

d(L) =
∑
p∈P′

d(p)

dG′ (L) = n+ 1− dL ve her bir p ∈ P
′ için d(p) = n+ 1 olduğundan dolayı∑

L∈L

(n+ 1− dL) =
∑
p∈P′

(n+ 1)

dir. | P
′ |= n2 + n+ 1− s ve | L |= n2 + n+ 1 olduğu dikkate alınırsa∑

L∈L

dL = (n+ 1).(n2 + n+ 1)− (n+ 1).(n2 + n+ 1− s)

elde edilir. Eşitlik yeniden düzenlenirse,∑
L∈L

dL = s.(n+ 1)

dir.
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ii. Teorem 4.12 den dolayı∑
L∈L

d(L)(d(L)− 1) =| P
′ | (| P

′ | −1)

dir. | P
′ |= n2 + n+ 1− s yerine yazılarak eşitlik yeniden düzenlenirse,∑

L∈L

d2(L)−
∑
L∈L

d(L) = (n2 + n+ 1− s).(n2 + n− s) (4.44)

elde edilir. Her bir p ∈ P
′ için d(p) = n+ 1 ve | P

′ |= n2 + n+ 1− s olduğundan dolayı∑
p∈P′ d(p) = (n+ 1).(n2 + n+ 1− s) dir. Lemma 4.9 den dolayı∑

L∈L

d(L) =
∑
p∈P′

d(p)

olduğundan ∑
L∈L

d(L) = (n+ 1).(n2 + n+ 1− s) (4.45)

dir. (4.45) ifade (4.44) daki eşitlikte yerine yazılırsa∑
L∈L

d2(L) = (n2 + n+ 1− s).(n2 + n− s) + (n+ 1).(n2 + n+ 1− s) (4.46)

elde edilir. dG′ (L) = n+ 1− dL olduğundan dolayı∑
L∈L

(n+ 1− dL)
2 =

∑
L∈L

(n+ 1)2 − 2(n+ 1)
∑
L∈L

dL +
∑
L∈L

d2L (4.47)

dir. (i) den dolayı
∑

L∈L dL = s.(n + 1) eşitliği ve | L |= n2 + n + 1 olduğu göz önüne
alınarak (4.47) yeniden düzenlenirse∑
L∈L

d2L = (n2+n+1−s).(n2+n−s)+(n+1).(n2+n+1−s)−(n+1)2.(n2+n+1)+2.(n+1)2.s

dir. Burada gerekli düzenlemeler yapılırsa∑
L∈L

d2L = s.(n+ s)

dir.

Tanım 4.5. G = (P ∪ L , E) bir lineer graf olmak üzere,

DP1. | P |=| L |

DP2. ∃v ∈ V (G) için d(v) = |V (G)|
2

− 1 =| P | −1

şartlarını sağlıyorsa G ye dejenere projektif graf denir.
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Örnek 4.20. Şekil 4.6 de verilen graf modeli bir dejenere projtif graftır.

Teorem 4.42. G = (P ∪ L , E) dejenere projektif graf olmak üzere,K ̸= L olacak şekilde
her bir K,L ∈ L için cn(K,L) = 1 dir.

İspat. G = (P ∪ L , E) dejenere projektif graf olsun. DP1 den dolayı | P |=| L | dir.
Teorem 4.16 den dolayı ∀K,L ∈ L veK ̸= L için cn(K,L) = 1 dir.

Lemma 4.24. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere, P parçasına ait
derece dizisi (| L | −1, 2,…, 2) veL parçasına ait derece dizisi (| P | −1, 2,…, 2) dir.

İspat. G = (P ∪ L , E) bir dejenere projektif graf ve n ≥ 3 bir tamsayı olmak üzere
| P |=| L |= n olsun. Bu durumda d(p) = n − 1 olacak şekilde p ∈ P düğümü vardır.
Her bir i, 1 ≤ i ≤ n− 1 için N(p) = {L1, L2, . . . , Ln−1} olacak şekilde Li ∈ L düğümleri
vardır. LG2 den dolayı her bir i, 1 ≤ i ≤ n − 1 için ∃pi ∈ N(Li) vardır ki pi ̸= p dir. Eğer
p den farklı pi, pj ∈ P için pi = pj ise CN(Li, Lj) = {p, pi} olur. Bu ise Lemma 4.3 ile
çelişir. O halde pi ̸= pj dir.
Kabul edelim ki ∃Li ∈ N(p) için d(Li) ≥ 3 olsun. ∃q ∈ N(Li) vardır ki q ̸= p ve q ̸= pi

dir. Herhangi bir j, 1 ≤ j ̸= i ≤ n − 1 için q = pj ise CN(Li, Lj) = {p, q} dir. Bu ise
Lemma 4.3 ile çelişir. O halde q ̸= pj dir. Böylece {p, q, p1, p2, . . . , pn−1} ⊆ P olur. Bu
durumda n + 1 ≤| P | dir. Bu ise | P |= n olmasıyla çelişir. O halde kabulümüz yanlıştır.
∀Li ∈ N(p) için d(Li) = 2 dir.
Ayrıca | L |= n olduğundan dolayı L = N(p) ∪ {L} olacak şekilde bir tek L düğümü
vardır. ∀Li ∈ N(p) için d(Li) = 2 ve LG1 den dolayı CN(p1, p2, . . . , pn−1) = {L} dir.
Kabul edelim ki ∃pi ∈ N(Li) için d(pi) ≥ 3 olsun. Bu durumda ∃K ∈ L vardır ki K ̸= L

ve K ̸= Li dir. Herhangi bir j, 1 ≤ j ̸= i ≤ n − 1 için K = Lj olması durumda
CN(p, pi) = {Li, K} olur. Bu ise LG1 ile çelişir. O halde K ̸= Lj dir. Fakat bu durumda
{L,K,L1, L2, . . . , Ln−1} ⊆ L ve dolayısıyla n + 1 ≤| L | olur ki bu ise | L |= n

olmasıyla çelişir. O halde kabulümüz yanlıştır ve ∀pi ∈ N(L) için d(pi) = 2 dir.
CN(p1, p2, . . . , pn−1) = {L} olduğundan dolayı {p1, p2, . . . , pn−1} ⊆ N(L) olup
n − 1 ≤ d(L) dir. Kabul edelim ki n ≤ d(L) olsun. Bu durumda ∃q ∈ N(L) vardır ki her
bir i, 1 ≤ i ≤ n − 1 için q ̸= pi dir. Eğer q = p ise L ∈ N(p) olur ki bu durum
d(p) = n − 1 olmasıyla çelişir. O halde q ̸= p dir. Fakat bu durumda
{p, q, p1, p2, . . . , pn−1} ⊆ P olacağından n + 1 ≤| P | olur ki bu durum | P |= n

olmasıyla çelişir. O halde kabulümüz yanlıştır. Böylece d(L) = n− 1 dir.

Teorem 4.43. G = (P ∪ L , E) bir lineer olmak üzere, P parçasına (L parçasına) ait
derece dizisi (| L | −1, 2,…, 2) olması için gerek ve yeter koşul G nin dejenere projektif
graf olmasıdır.
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İspat. G nin dejenere projektif graf olsun. Tanımdan dolayı G lineer graftır. Bu durumda
Lemma 4.24 den dolayı P parçasına (L parçasına) ait derece dizisi (| L | −1, 2,…, 2)

((| P | −1, 2,…, 2)) dir.

Tersine, kabul edelim ki G, P parçasına ait derece dizisi (| L | −1, 2,…, 2) olan
lineer graf olsun. O halde en az bir p ∈ P ve her bir i, 1 ≤ i ≤| L | −1 için N(p) =

{L1, L2, . . . , L|L |−1} olacak şekilde Li ∈ L düğümü vardır. LG2 den dolayı herhangi bir i
için pi ∈ N(Li) olacak şekilde pi ∈ P ve pi ̸= p düğümü vardır. j, 1 ≤ i ̸= j ≤| L | −1

için pi = pj ise CN(Li, Lj) = {p, pi} dir. Bu ise Lemma 4.3 ile çelişir. O halde pi ̸= pj

dir. LG2 den dolayı en az bir L ∈ L vardır ki L ∈ N(pi) ve L ̸= Li dir. Eğer L = Lj ise
CN(pi, pj) = {Li, L} dir. Bu ise Lemma 4.3 ile çelişir. O halde L ̸= Lj dir. LG1 gözönüne
alınırsa CN(p1, p2, . . . , p|L |−1) = {L} dir. Böylece | L |=| P | dir. O halde G dejenere
projektif graftır.

Sonuç 4.27. G = (P ∪ L , E) bir dejenere projektif graf ve n ≥ 4 için | P |=| L |=n
olmak üzere,P veL parçaların her birinde derecesi n− 1 olan bir tek düğüm vardır.

İspat. G = (P ∪ L , E) bir dejenere projektif graf ve n ≥ 4 için | P |=| L |= n olsun.
Kabul edelim ki d(p) = d(q) = n − 1 olacak şekilde p, q ∈ P düğümleri için p ̸= q olsun.
N(p) ∪N(q) ⊆ L olduğundan | N(p) ∪N(q) |≤| L | dir. | P |=| L | olduğudan,

| N(p) ∪N(q) |≤| P |

elde edilir. Ayırıca, LG1 den dolayı,

cn(p, q) =| N(p) ∩N(q) |= 1

olduğundan,
| P |≥| N(p) | + | N(q) | −1

dir. | P |= n ve d(p) = d(q) = n− 1 olduğundan,

n ≤ 3

elde edilir. Bu durum n ≥ 4 olmasıyla çelişir. Böylece, p = q.

Teorem 4.44. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere G nin içerdiği tüm
çevrelerin uzunluğu 6 dır.

İspat. G = (P ∪ L , E) bir dejenere projektif graf olsun. n ≥ 4 olmak üzere G en az bir
C2n ∈ G çevresi içersin. Bu durumda C2n : p1−L1−p2−L2−p3−L3−· · ·−pn−Ln−p1

olacak şekilde p1, p2, p3, . . . , pn ∈ P ve L1, L2, L3, . . . , Ln ∈ L düğümleri vardır. LG1
den dolayı CN(p1, p3) = {L} olacak şekilde L ∈ L düğümü vardır. Eğer herhangi bir
i, 1 ≤ i ≤ n için L ̸= Li ise {L1, Ln, L} ⊆ N(p1) ve {L2, L3, L} ⊆ N(p3) olur ki bu
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durumda d(p1) ≥ 3 ve d(p3) ≥ 3 olacağından Sonuç 4.27 ile çelişir. L = L1 ya da L = L2

olması durumunda sırasıyla L1 − p2 − L2 − p3 − L1 ve p1 − L1 − p2 − L2 − p1 olur ki bu
durum Teorem 4.1 ile çelişir. k, 4 ≤ k ≤ n− 1 için L = Lk olması durumunda d(p1) ≥ 3 ve
d(p3) ≥ 3 olacağından Sonuç 4.27 ile çelişir. Bu durumda L = L3 ya da L = Ln olmalıdır.

1. durum. L = L3 olsun. LG1 den dolayı CN(p2, p4) = {K} olacak şekilde K ∈ L

düğümü vardır. Eğer herhangi bir i, 1 ≤ i ≤ n için K ̸= Li ise {L1, L2, K} ⊆ N(p2) ve
{L3, L4, K} ⊆ N(p4) olup d(p2) ≥ 3 ve d(p4) ≥ 3 olacağından Sonuç 4.27 ile çelişir.Benzer
şekilde herhangi bir i, 1 ≤ i ≤ n için K = Li olması durumunda, d(p1) ≥ 3 olduğundan
d(p2) ≥ 3 veya d(p4) ≥ 3 olacağından Sonuç 4.27 ile çelişir. Böylece, L ̸= L3 tür.

2. durum. L = Ln olsun. LG1 den dolayı CN(p2, p4) = {K} olacak şekilde K ∈ L

düğümü vardır. Eğer herhangi bir i, 1 ≤ i ≤ n için K ̸= Li ise {L1, L2, K} ⊆ N(p2) ve
{L3, L4, K} ⊆ N(p4) olup d(p2) ≥ 3 ve d(p4) ≥ 3 olacağından Sonuç 4.27 ile çelişir Benzer
şekilde herhangi bir i, 1 ≤ i ≤ n için K = Li olması durumunda, d(p3) ≥ 3 olduğundan
d(p2) ≥ 3 veya d(p4) ≥ 3 olacağından Sonuç 4.27 ile çelişir. Böylece, L ̸= Ln dir.

O halde kabulümüz yanlıştır. Dolayısıyla n ≤ 3 ve Teorem 4.6 den dolayı girt(G) = 6

olduğundan n = 3 tür.

Sonuç 4.28. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere n ̸= 3 için G, Cn

içermez.

Sonuç 4.29. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere n ̸= 3 için G, Cn

içermezler.

Teorem 4.45. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere, G, Euler graftır
gerek ve yeter koşul | P |= 2k + 1 olacak şekilde k ∈ Z+ olmasıdır.

İspat. G = (P ∪L , E) bir dejere projektif graf olsun. Kabul edelim kiG Euler graf olsun.
O halde Teorem 3.1 den dolayı G nin düğümlerinin derecesi çifttir. Lemma 4.24 den dolayı
L parçasına ait derece dizisi (| P | −1, 2, . . . , 2) dir. Böylece | P |= 2k+1 olacak şekilde
k ∈ Z+ vardır.

Tersine, kabul edelim ki | P |= 2k + 1 olacak şekilde k ∈ Z+ olsun. Bu durumda
Lemma 4.24 den dolayı P parçasına ait derece dizisi (| L | −1, 2, . . . , 2) ve L parçasına
ait derece dizisi (| P | −1, 2, . . . , 2) dir. DP1 den dolayı | P |=| L |= 2k + 1 dir. Böylece
G nin tüm düğümlerinin derecesi çiftir. O halde, Teorem 3.1 den dolayı G, Euler graftır.
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4.3 {0, 1}−Semi Graflar

Bu kısımda {0, 1}−semi graflarların temel özellikleri incelenmiş ve karakterizasyonları
yapılarak önemli sonuçlar elde edilmiştir.

Tanım 4.6. G = (P ∪ L , E) bir lineer graf ve p /∈ N(L) olacak şekilde her bir p ∈ P ve
L ∈ L için A 0

N(p)(L) = {K : cn(K,L) = 0 veK ∈ N(p)} olmak üzere

| A 0
N(p)(L) |∈ {0, 1}

ise G grafına {0, 1}−semi graf denir.

Örnek 4.21. Şekil 4.11 de bir {0, 1}−semi graf modeli verilmiştir.

Şekil 4.11 G = (P ∪ L , E): bir {0, 1}−semi graf modeli

Lemma 4.25. G = (P ∪ L , E) bir {0, 1}−semi graf olsun. p /∈ N(L) olacak şekildeki
p ∈ P ve L ∈ L için d(p) ∈ {d(L), d(L) + 1} dir.

İspat. G, {0, 1}−semigraf olsun. Sonuç 4.6 dan dolayı p /∈ N(L) olacak şekilde p ∈ P ve
L ∈ L düğümleri vardır. G, {0, 1}−semi graf olduğundan dolayı | A 0

N(p)(L) |∈ {0, 1} dir.
O halde iki durum vardır.

1. durum. | A 0
N(p)(L) |= 0 ise her bir M ∈ N(p) için CN(L,M) = {q} olacak şekilde

q ∈ N(L) düğümü vardır. Bu durumda | N(p) |≤| N(L) | dir. Teorem 4.9 göz önüne alınırsa

d(p) = d(L)

dir.

2. durum. | A 0
N(p)(L) |= 1 ise K ∈ N(p) ve cn(L,K) = 0 olacak şekilde bir tek K ∈ L

düğümü vardır. Bu durumda her birM ∈ N(p)−{K} içinCN(L,M) = {r} olacak şekilde
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r ∈ N(L) düğümü vardır. O halde | N(p) − {K} |≤| N(L) | dir. Teorem 4.9 göz önüne
alınırsa d(L) ≤ d(p) ≤ d(L) + 1 dir. Böylece

d(p) ∈ {d(L), d(L) + 1}

elde edilir.

Sonuç 4.30. G = (P ∪ L , E) bir {0, 1}−semi graf olsun. p /∈ N(L) olacak şekildeki
p ∈ P ve L ∈ L için d(L) ∈ {d(p)− 1, d(p)} dir.

İspat. Lemma 4.25 den dolayı ispat açıktır.

Teorem 4.46. G = (P ∪ L , E) bir {0, 1}−semi graf olmak üzere L,L′ ∈ L için P =

N(L) ∪N(L
′
) ise G aşağıdakilerden biridir.

i. G, (3, 2)−biregüler afin graftır.

ii. G dejenere projektif graftır.

iii. Şekil 4.12 da verilen graf modeline izomorftur.

İspat. G = (P ∪ L , E) bir {0, 1}−semi graf ve L,L′ ∈ L olsun. Lemma 4.3 den dolayı
cn(L,L

′
) = {0, 1} dir.

1. durum. cn(L,L′
) = 0 olsun. LG2 den dolayı δ(G) ≥ 2 dir. Bu durumda L ve L

′

düğümlerinin her birinin komşuluğunda en az iki düğüm vardır.
Kabul edelim ki m ≥ 3 ve n ≥ 3 için d(L) = m ve d(L

′
) = n olsun. Bu durumda

{p1, p2} ⊆ N(L) ve N(L
′
) = {p′

1, p
′
2, . . . , p

′
n} olacak şekilde p1, p2, p

′
1, p

′
2, . . . , p

′
n ∈ P

düğümleri vardır. LG1 den dolayı her bir i, j, 1 ≤ i, j ≤ n için CN(p1, p
′
i) = {L1i} ve

CN(p2, p
′
j) = {L2j} olacak şekilde L1i, L2j ∈ L düğümleri vardır. cn(L,L′

) = 0

olduğundan herhangi bir i ve j için L1i , L2j düğümleri L,L
′ düğümlerinden farklıdır.

Ayrıca i ̸= j için L1i = L1j olması durumunda CN(p
′
i, p

′
j) = {L′

, L1i} dir. Bu ise LG1 ile
çelişir. O halde L1i ̸= L1j dir. Benzer şekilde L2i ̸= L2j dir. L1i = L2j olması durumunda
ise CN(p1, p2) = {L,L1i} dir. Bu ise LG1 ile çelişir. Böylece L1i ̸= L2j dir.
Ayrıca herhangi bir i için d(L1i) ≥ 3 ise s ̸= p1 ve s ̸= p

′
i olacak şekilde en az bir

s ∈ N(L1i) düğümü vardır. Hipotezden dolayı s ∈ N(L) ∪ N(L
′
) dir. cn(L,L′

) = 0

olduğundan s ∈ N(L) ya da s ∈ N(L
′
) dir. s ∈ N(L) ise CN(p1, s) = {L,L1i} dir. Bu ise

LG1 ile çelişir. O halde s ∈ N(L
′
) dür. Bu durumda CN(p

′
1, s) = {L′

, L1i} dir. Bu ise
LG1 ile çelişir. Dolayısıyla herhangi bir i için d(L1i) = 2 dir. Benzer şekilde herhangi bir j
için d(L2j) = 2 dir. Bu durumda N(L12) = {p1, p

′
2}, N(L21) = {p2, p

′
1} ve

N(L1n) = {p1, p
′
n} ve L12, L1n ∈ N(p1) ve cn(L12, L21) = 0, cn(L1n, L21) = 0 dır. n ≥ 3

olduğundan dolayı L12 ̸= L1n dir. Bu durumda | A 0
N(p1)

(L21) |≥ 2 dir. Bu ise G nin
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{0, 1}−semi graf olması ile çelişir. O halde kabulümüz yanlıştır. Dolayısıyla, d(L′
) = 2

dir. Benzer şekilde d(L) = 2 olduğuda gösterilebilir. Bu durumda P = N(L) ∪ N(L
′
)

olduğundan | P |= 4 tür. Ayrıca her bir R ∈ L için d(R) = 2 olduğundan Teorem 4.30
den dolayı G (3, 2)−biregüler afin graftır.

2. durum. cn(L,L′
) = 1 olsun. Bu durumda CN(L,L

′
) = {q} olacak şekilde q ∈ P

düğümü vardır. LG2 den dolayı δ(G) ≥ 2 dir.

(a) Kabul edelim ki L ve L′ düğümleri için d(L) = 2 ve d(L′
) = 2 olsun. Bu durumda

N(L) = {p, q} ve N(L
′
) = {q, p′} olacak şekilde p, p′ ∈ P düğümleri vardır. LG1 den

dolayı CN(p, p
′
) = {K} olacak şekilde K ∈ L düğümü vardır. K = L olması durumda

CN(p
′
, q) = {L,L′} dir. Bu ise LG1 ile çelişir. O halde K ̸= L dir. Benzer şekilde K ̸= L

′

dür. d(K) ≥ 3 ise en az bir r ∈ N(K) vardır ki r ̸= p ve r ̸= p
′ dir. Hipotezden dolayı

P = N(L) ∪ N(L
′
) ve d(L) = d(L

′
) = 2 olduğundan r = q dir. Bu ise Teorem 4.1 ile

çelişir. O halde d(K) = 2 dir. Böylece G = C6 dir. Bu durumda G dejenere projektif graftır.

(b) Kabul edelim ki d(L) = 2 ve n ≥ 3 olmak üzere d(L′
) = n olsun. Bu durumda

N(L) = {p, q} ve her bir i, 1 ≤ i ≤ n − 1 için N(L
′
) = {q, p′

1, p
′
2 . . . , p

′
n−1} olacak

şekilde p, p′
i ∈ P düğümleri vardır. LG1 den dolayı her bir i için CN(p, p

′
i) = {Li} olacak

şekilde Li ∈ L düğümleri vardır. Li = L olması durumunda {p, q, p′
i} ⊆ N(L) dir. Bu ise

d(L) = 2 olması ile çelişir. Böylece Li ̸= L dir. Li = L
′ olması halinde CN(p, q) = {L,Li}

dir. Bu ise LG1 ile çelişir. Böylece Li ̸= L
′ dir. Her bir i, j, 1 ≤ i, j ≤ n − 1 ve i ̸= j

için Li = Lj ise CN(p
′
i, p

′
j) = {L′

, Li} dir. Bu ise LG1 ile çelişir. Böylece Li ̸= Lj dir.
Kabulümüzden dolayı P = {p, q, p′

1, p
′
2 . . . , p

′
n−1} olduğundan dolayı | P |= n + 1 dir.

Ayrıca {L,L′
, L1, L2, . . . , Ln−1} ⊆ L dir. Bu durumda | L |≥ n + 1 dir. Eğer | L |≥

n + 2 olması durumda S /∈ {L,L′
, L1, L2, . . . , Ln−1} olacak şekilde en az bir ve S ∈ L

vardır. Ayrıca LG2 den dolayı {x, y} ⊆ N(S) olacak şekilde x, y ∈ P düğümleri vardır.
{x, y} ∈ {p, q, p′

1, p
′
2 . . . , p

′
n−1} dir. Bu ise Teorem 4.1 ile çelişir. Böylece | L |= n + 1 dir.

d(L
′
) = n olduğundan G dejenere projektif graftır.

(c) d(L) = 3 olsun. Kabul edelim ki n ≥ 4 için d(L′
) = n olsun. Bu durumdaN(L) =

{q, p1, p2} ve N(L
′
) = {q, p′

1, p
′
2, p

′
3,…, p

′
n−1} olacak şekilde q, p1, p2, p

′
1, p

′
2, p

′
3,…, p

′
n−1 ∈

P düğümleri vardır. LG1 den dolayı her bir i, 1 ≤ i ≤ 2 ve her bir j, 1 ≤ j ≤ n − 1 için
CN(pi, p

′
j) = {Lij} olacak şekilde Lij ∈ L düğümleri vardır. Lij = L ise CN(L,L

′
) =

{q, pi} dir. Bu ise Lemma 4.3 ile çelişir. Dolayısıyla Lij ̸= L dir. Benzer şekilde Lij ̸= L
′ dir.

s, 1 ≤ s ≤ 2 ve s ̸= j için Lij = Lis ise CN(p
′
j, p

′
s) = {L′

, Lij} dir. Bu ise LG1 ile çelişir.
Dolayısıyla Lij ̸= Lis dir. Benzer şekilde, r, 1 ≤ r ≤ 2 ve r ̸= i için Lij ̸= Lrj ve Lij ̸= Lrs

dir.
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Bu durumda p1 /∈ N(L23) için cn(L23, L11) = 0 , cn(L23, L12) = 0 ve L11, L12 ∈
N(p1) dir. L11 ̸= L12 olduğundan| A 0

N(p1)
(L23) |≥ 2 dir. Bu ise G nin {0, 1}-semi graf

olmasıyla çelişir. O halde kabulümüz yanlıştır. Dolayısıyla, d(L′
) = 3 dür. Böylece, P =

{p1, p2, q, p
′
1, p

′
2}, N(L) = {q, p1, p2} , N(L

′
) = {q, p′

1, p
′
2} ve {L,L

′
, L11, L12, L21, L22} ⊆

L dir. Kabul edelim ki K /∈ {L,L′
, L11, L12, L21, L22} olacak şekilde en az bir K ∈ L

olsun. LG2 den dolayı {a, b} ⊆ N(K) olacak şekilde a, b ∈ {p1, p2, q, p
′
1, p

′
2} dir. Bu ise

Teorem 4.1 ile çelişir. Dolayısıyla {L,L′
, L11, L12, L21, L22} = L dir. Graf modeli Şekil

4.12 verilmiştir.

Şekil 4.12 G = (P ∪ L , E)

Teorem 4.47. G = (P ∪L , E) bir {0, 1}−semi graf olmak üzere p ̸= p
′ ve p, p′ ∈ P için

L = N(p) ∪N(p
′
) ise G dejenere projektif graftır.

İspat. G = (P ∪L , E) bir {0, 1}−semi graf ve p, p′ ∈ P içinL = N(p) ∪N(p
′
) olsun.

LG1 den dolayı cn(p, p′
) = 1 olduğundan CN(p, p

′
) = {Lpp′} olacak şekilde Lpp′ ∈ L

düğümü vardır. Sonuç 4.4 den dolayı q /∈ N(Lpp′ ) olacak şekilde q ∈ P düğümü vardır.
LG1 den dolayı CN(p, q) = {Lpq} ve CN(p

′
, q) = {Lp′q} olacak şekilde Lpq, Lp′q ∈ L

düğümleri vardır. q /∈ N(Lpp′ ) olduğundan Lpq ̸= Lpp′ ve Lp′q ̸= Lpp′ dir. Lpq = Lp′q ise
CN(p, p

′
) = {Lpp′ , Lpq} dir. Bu ise LG1 ile çelişir. Böylece Lpq ̸= Lp′q dir. Eğer d(q) ≥ 3

iseK ̸= Lpq veK ̸= Lp′q olacak şekilde en az birK ∈ N(q) düğümü vardır.
K ∈ N(p) olması durumda CN(p, q) = {Lpq, K} dır. Bu ise LG1 ile çelişir. Böylece K /∈
N(p) dir. Hipotezden dolayıK ∈ N(p

′
) dir. Bu durumda CN(p

′
, q) = {Lp′q, K} dir. Bu ise

LG1 ile çelişir. O halde kabülümüz yanlıştır. Böylece d(q) = 2 dir. Benzer şekilde d(Lpp′ ) = 2

olduğuda gösterilebilir.
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y ∈ P −{p, p′
, q} düğümü olsun. LG1 dolayı cn(q, y) = 1 dir. Bu durumda N(q) =

{Lpq, Lp′q} olduğundan dolayı y ∈ N(Lpq)∪N(Lp′q) dir.CN(Lpq, Lp′q) = {q} olduğundan
dolayı y /∈ N(Lpq)∩N(Lp′q) dir. Böylece her bir y ∈ P −{p, p′, q} için y ∈ N(Lpq) ya da
y ∈ N(Lp′q) dir. LG2 den dolayı δ(G) ≥ 2 olduğudan Lpq ve Lp′q düğümlerin derecelerini
üç farklı durumda inceleyelim.

1. durum. d(Lpq) = d(Lp′q) = 2 olsun. Bu durumdaG = C6 dır. BöyleceG dejenere projektif
graftır.

2. durum. Lpq ve Lp′q düğümlerinden en az birinin derecesi 2 dir. (Burada Lpq ve Lp′q

düğümlerinden herhangi birini seçmek genelliği bozmaz.)
d(Lp′q) = 2 ve n ≥ 3 için d(Lpq) = n olsun. N(Lpq) = {p, q, p1, p2, . . . , pi, . . . , pn−2}
olacak şekilde pi ∈ P düğümleri vardır. LG1 den dolayı her bir i, 1 ≤ i ≤ n − 2 olmak
üzere CN(p′, pi) = {Li} olacak şekilde Li ∈ L düğümleri vardır. d(Lpp′) = d(Lp′q) = 2

olduğundan dolayı Li ̸= Lp′q ve Li ̸= Lpp′ dir. 1 ≤ i, j ≤ n − 2 ve i ̸= j için Li = Lj ise
CN(pi, pj) = {Lpq, Li} dir. Bu ise LG1 ile çelişir. Böylece Li ̸= Lj dir. Herhangi bir i için
d(Li) ≥ 3 ise pi ve p′ den farklı en az bir r ∈ N(Li) düğümü vardır. d(q) = 2 olduğundan
r ̸= q dır. r = p ise CN(p, p′) = {Lpp′ , Li} dir. Bu ise LG1 ile çelişir. O halde r ̸= p dir.
r ∈ Lpq ve d(Lpq) = n olduğudan j ̸= i için r = pj dir. Bu durumda
CN(pi, pj) = {Lpq, Li} dir. Bu ise LG1 ile çelişir. O halde herhangi bir i için d(Li) = 2

dir. Böylece P = {p, p′, q, p1, p2, . . . , pn−2} ve {Lpp′ , Lpq, Lp′q, L1, . . . , Ln−2} ⊆ L dir.
Eğer | L |≥ n + 1 ise T /∈ {Lpp′ , Lpq, Lp′q, L1, . . . , Ln−2} olacak şekilde en bir T ∈ L

vardır. LG2 den dolayı {a, b} ⊆ T olacak şekilde a, b ∈ P = {p, p′, q, p1, p2, . . . , pn−2}
vardır. Bu ise Teorem 4.1 ile çelişir. Böylece | L |= n dir. Bu durumda | P |=| L |= n ve
d(Lpq) = n− 1 olduğundan dolayı G dejenere projektif graftır.

3. durum. d(Lpq) ≥ 3 ve d(Lp′q) ≥ 3 olsun. Bu durumda p ve q düğümünden farklı en az
bir y ∈ N(Lpq) düğümü ve p′ ve q düğümünden farklı en az bir x ∈ N(Lp′q) düğümü vardır.
x = y ise CN(Lpq, Lp′q) = {q, x} dir. Bu ise Lemma 4.3 ile çelişir. Böylece x ̸= y dir. Ayrıca
LG1 den dolayı CN(y, x) = {Lxy} olacak şekilde Lxy ∈ L düğümü vardır. Lxy = Lpq

ise CN(q, x) = {Lpq, Lp′q} dir. Bu ise LG1 ile çelişir. Dolayısıyla Lxy ≠ Lpq dir. Benzer
şekilde Lxy ̸= Lp′q dir. d(Lpp′) = 2 olduğundan Lxy ̸= Lpp′ dür. Hipotezden dolayı Lxy ∈
N(p) ∪ N(p

′
) dir. Eğer Lxy ∈ N(p) ise CN(p, y) = {Lpq, Lxy} dir. Bu ise LG1 ile çelişir.

Böylece Lxy /∈ N(p) dir. O halde Lxy ∈ N(p′) dür. Bu durumda CN(p′, x) = {Lp′q, Lxy}
dir. Bu ise LG1 ile çelişir. Dolayısıyla kabulümüz yanlıştır. O halde Lpq ve Lp′q düğümlerinin
en az birinin derecesi 2 dir. O halde G dejenere projektif graftır.
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Şekil 4.11 de verilen {0, 1}−semi graf modeli göz önüne alınırsa P parçasına ait
herhangi iki düğümün komşuluğu dışında L parçasına ait bir düğüm ve L parçasına ait
herhangi iki düğümün komşuluğu dışında P parçasına ait bir düğüm olduğu açıktır. Bu
sebepten aşağıda art arda verilen Lemma 4.26, Lemma 4.27, Teorem 4.48 ve Teorem 4.49,
G grafında P parçasına ait herhangi iki düğümün komşuluğu dışında L parçasına ait bir
düğüm ve L parçalanmasına ait herhangi iki düğümün dışında P parçasına ait bir düğüm
bulunan graflar ile ilgili sonuçlar elde edilmiş ve bu özelliğe sahip {0, 1}− semi graflar
kısaca G∗ = (P ∪ L , E) ile gösterilmiştir.

Lemma 4.26. G∗ = (P ∪ L , E), maksimum düğüm derecesi n+ 1 olan {0, 1}−semi graf
olmak üzere herhangi bir p ∈ P için d(p) ∈ {n, n+ 1} dir.

İspat. G∗ = (P ∪ L , E), maksimum düğüm derecesi n + 1 olan {0, 1}− semi graf olsun.
Sonuç 4.7 den dolayı d(p0) = n+1 olacak şekilde en az bir p0 ∈ P vardır.G∗ ın özelliğinden
dolayı p ̸= p0 ve p ∈ P içinL /∈ N(p)∪N(p0) olacak şekildeL ∈ L düğümü vardır. Teorem
4.9 den dolayı d(p0) ≥ d(L) dir. Bu durumda d(L) ≤ n+1 dir. Ayrıca d(p0) = n+1 olduğu
göz önüne alınırsa Sonuç 4.30 den dolayı d(L) ≥ n dir. Bu durumda d(L) ∈ {n, n+1} elde
edilir. G∗ nin maksimum düğüm derecesi n + 1 olduğu göz önüne alınırsa Lemma 4.25 den
dolayı d(p) ∈ {n, n+ 1} dir.

Lemma 4.27. G∗ = (P ∪ L , E), maksimum düğüm derecesi n+ 1 olan {0, 1}−semi graf
olmak üzere herhangi bir L ∈ L için d(L) ∈ {n, n+ 1} dir.

İspat. G∗ = (P ∪ L , E), maksimum düğüm derecesi n + 1 olan {0, 1}−semi graf olsun.
Her bir L ∈ L için d(L) ≤ n + 1 dir. Öncelikle L parçasınıdaki düğümlerin derecesi için
alt sınırı belirlensin.
M ∈ L için d(M) ≤ n− 2 olsun. Sonuç 4.4 den dolayı x /∈ N(M) olacak şekilde en az bir
x ∈ P vardır. Lemma 4.26 den dolayı d(x) ∈ {n, n+ 1} dir. Bu durumda | A 0

N(x)(M) |≥ 2

dir. Bu ise G∗ nin {0, 1}−semi graf olmasıyla çelişir. Dolayısıyla d(M) ≥ n − 1 dir. Kabul
edelim ki d(M) = n − 1 olsun. G∗, {0, 1}−semi graf olduğundan dolayı d(x) = n dir.
G∗ nin maksimum düğüm derecesi n + 1 olduğu göz önüne alınırsa Sonuç 4.7 den dolayı
d(p0) = n+1 olacak şekilde p0 ∈ P vardır. G∗, {0, 1}−semi graf olduğundanM ∈ N(p0)

dır.
G∗ ın özelliğinden dolayı q /∈ N(L) ∪ N(M) olacak şekilde q ∈ P düğümünü vardır. q /∈
N(M) olduğundan d(q) = n dir. | A 0

N(q)(L) |∈ {0, 1} olduğundan dolayı d(L) ∈ {n−1, n}
dir.
Eğer p0 /∈ N(L) ise d(L) = n olmalıdır.

Kabul edelim kiL parçasında derecesi n−1 olan tek düğümM olsun. Sonuç 4.6 den
dolayı r /∈ N(M) olacak şekilde r ∈ P düğümü vardır. d(M) = n−1 olduğundan d(r) = n

dir. Kabülümüzden dolayıL parçasına ait derecesi n−1 olan tek düğümM olduğundanL
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parçasına ait diğer düğümlerin derecesi n dir. Herhangi bir i, 1 ≤ i ≤ d(r) için Li ∈ N(r)

olsun. Teorem 4.11 dan dolayı

| P | −1 =

d(r)∑
i=1

(d(Li)− 1) = d(r).(n− 1) = n.(n− 1) (4.48)

dir. Benzer şekilde herhangi bir j, 1 ≤ j ≤ d(r)−1 için L′
j ∈ N(p0)−M olsun.M ∈ N(p0)

ve Teorem 4.11 dan dolayı

| P | −1 = d(M)−1+

d(p0)−1∑
i=1

(L
′

j−1) = d(M)−1+(d(p0)−1).(n−1) = d(M)−1+n.(n−1)

(4.49)
dir. (4.48) ve (4.49) den dolayı d(M) = 1 dir. Bu ise LG2 ile çelişir. Dolayısıyla L

parçasında derecesi n − 1 olan en az iki düğüm vardır. Bu durumda G∗, {0, 1}−semi graf
olduğundan dolayı p0, n − 1 dereceli düğümlerin komşuluğundadır. Böylece L parçasına
ait n − 1 dereceli düğümlerin ortak komşuluğu p0 dır. Bu durumda p0 dan farklı P

parçasına ait her bir düğümün komşuluğu dışında dercesi n − 1 olan en az bir düğüm
vardır. G∗, {0, 1}−sem igraf olduğundan dolayı p0 dan farklı P parçasına her düğümün
derecesi n dir.
Farzedelim ki p0 düğümünün komşuluğunda en az bir tane derecesi n olan düğüm olsun. Bu
durumda F,K,H ∈ N(p0) için d(K) = d(H) = n − 1 ve d(F ) = n olacak şekilde
F,K,H ∈ L düğümleri vardır. Ayrıca LG2 den dolayı z ̸= p0 olacak şekilde z ∈ N(F )

vardır. O halde d(z) = n dir. T ∈ N(z) için d(T ) = n − 1 ise T ∈ N(p0) dır. Bu durumda
{F, T} ⊆ CN(p0, z) dir. Bu ise LG1 ile çelişir. Dolayısıyla z düğümünün komşuluğundaki
tüm düğümlerin derecesi n dir. Teorem 4.11 dan dolayı

| P |= d(z).(n− 1) + 1 = (n− 1).n+ 1 = n2 − n+ 1 (4.50)

dir. Benzer şekilde, LG2 den dolayı s ̸= p0 olacak şekilde s ∈ N(H) vardır. s ̸= p0

olduğundan dolayı d(s) = n dir. T ′ ∈ N(s) ve T ′ ̸= H için d(T ′) = n − 1 ise T ′ ∈ N(p0)

dır. Bu durumda {H,T ′} ⊆ CN(p0, s) dir. Bu ise LG1 ile çelişir. Dolayısıyla s düğümünün
komşuluğundaki H dan farklı düğümlerin derecesi n dir. Teorem 4.11 dan dolayı

| P |= 1.(n− 2) + (d(s)− 1).(n− 1) + 1 = n− 2 + (n− 1)2 + 1 = n2 − n (4.51)

dir. (4.50) ve (4.51) den dolayı çelişki ortaya çıkar. Dolayısıyla p0 düğümünün
komşuluğundaki tüm düğümlerin derecesi n− 1 dir. Böylece Teorem 4.11 dan dolayı

| P |= d(p0).(n− 2) + 1 = (n+ 1)(n− 2) + 1 = n2 − n− 1 (4.52)

dir. (4.51) ve (4.52) den dolayı çelişki ortaya çıkar. O halde kabulümüz yanlıştır. Dolayısıyla
L parçasında derecesi n− 1 olan düğüm yoktur. Böylece L ∈ L için d(L) ≥ n ve d(L) ≤
n+ 1 olduğundan dolayı d(L) ∈ {n, n+ 1} dir.
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Örnek 4.22. Şekil 4.12 da verilen graf modeli n = 2 için Lemma 4.27 için bir örnek teşkil
eder.

Teorem 4.48. G∗ = (P ∪ L , E), maksimum düğüm derecesi n+ 1 olan {0, 1}−semi graf
olsun. Eğer d(q) = n olacak şekilde q ∈ P düğümü varsa G − {q}, (n + 1, n)− biregüler
afin graftır.

İspat. G = (P ∪L , E), maksimum düğüm derecesi n+1 olan {0, 1}−semi graf ve q ∈ P

için d(q) = n olsun. Sonuç 4.6 den dolayı q /∈ N(L) şeklindeki bir L ∈ L düğümünü vardır.
Lemma 4.27 den dolayı d(L) ∈ {n, n + 1} dir. d(L) = n + 1 ise Teorem 4.9 ile çelişir.
Dolayısıyla L /∈ N(q) için d(L) = n dir. G∗ nin maksimum derecesi n + 1 olduğundan
Sonuç 4.7 den dolayı d(p′

) = n + 1 olacak şekilde p′ ∈ P düğümü vardır. Her bir L′ ∈ L

için d(L
′
) = n ise Lemma 4.8 dan dolayı P parçası n + 1 regülerdir. Bu ise hipotezle

çelişir. Dolayısıyla L parçasında derecesi n + 1 olan en az bir düğüm vardır.M ∈ L için
d(M) = n + 1 ise Teorem 4.9 den dolayı M ∈ N(q) dır. Dolayısıyla L parçasında ait
n + 1 dereceli düğümlerin tamamı q düğümünün komşuluğundadır. Ayrıca Teorem 4.9 den
ve Lemma 4.26 den dolayı L parçasına ait derecesi n + 1 olan herhangi bir düğümünün
komşuluğunda olmayanP parçasına ait düğümlerin derecesi n+ 1 dir.

Kabul edelim kiL parçasında n+ 1 dereceli bir tekM düğümü olsun. Bu durumda
r /∈ N(M) için d(r) = n+1 ve Lemma 4.27 den dolayı her bir L ∈ L −{M} için d(L) = n

dir. Dolayısıyla r nin komşuluğundaki tüm düğümlerin derecesi n dir. Teorem 4.9 den dolayı

| P |= d(r).(n− 1) + 1 = (n+ 1).(n− 1) + 1 (4.53)

dir.L parçasında ait tüm n+1 dereceli düğümler q düğümünün komşuluğunda olduğundan,
M ∈ N(q) veL parçasında derecesi n+1 olan tek düğümM olduğundan Teorem 4.11 göz
önüne alınırsa

| P |= n+ (d(q)− 1).(n− 1) + 1 = n+ (n− 1).(n− 1) + 1 (4.54)

dir. (4.53) ve (4.54) den dolayı n = 2 dir. Böylece | P |= 4 ve d(M) = 3 tür. Bu ise L

parçasındaki herhangi iki düğümün komşuluğu dışında en az bir düğüm olması ile çelişir.
Dolayısıyla L parçasına ait derecesi n + 1 olan en az iki düğüm vardır. Bu düğümler q
düğümünün komşuluğundadır. Her bir p ∈ P − {q} için Lemma 4.26 den dolayı d(p) ∈
{n, n + 1} olmalıdır. Ayrıca q düğümünün komşuluğunda n + 1 dereceli en az iki düğüm
olduğundan R,S ∈ N(q) ve d(R) = d(S) = n + 1 olacak şekilde R,S ∈ L düğümleri
vardır. Bu durumda, her bir p ∈ P − {q} için düğümü ile ilgili üç durum vardır.

1. durum. p ∈ N(R) ise p /∈ N(S) dir. O halde Teorem 4.9 den dolayı d(p) = n+ 1 dir.

2. durum. p ∈ N(S) ise p /∈ N(R) dir. O halde Teorem 4.9 den doLayı d(p) = n+ 1 dir.
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3. durum. p /∈ N(R) ∪N(S) ise Teorem 4.9 den dolayı d(p) = n+ 1 dir.

Böylece, her bir p ∈ P − {q} için d(p) = n + 1 dir. Kabul edelim ki en az bir H ∈
N(q) için d(H) = n olsun. Bu durumda s /∈ N(H) olacak şekilde s ∈ P için d(s) = n+ 1

dir. d(s) = n + 1 ve d(H) = n olduğundan dolayı cn(H,F ) = 0 olacak şekilde bir tek
F ∈ N(s) vardır. cn(H,F ) = 0 ve q ∈ N(H) olduğundan dolayı F /∈ N(q) dır. Teorem 4.9
ve Lemma 4.27 den dolayı d(F ) = n dir. O haldeN(F ) = {s = p1, p2, . . . pi, . . . , pn} olacak
şekilde pi ∈ P düğümleri vardır. LG1 den dolayı her bir i, 1 ≤ i ≤ n içinCN(q, pi) = {Li}
olacak şekilde Li ∈ L düğümleri vardır. F /∈ N(q) olduğundan dolayı Li ̸= F dir. Li = H

ise CN(H,F ) = {pi} dir. Bu ise cn(H,F ) = 0 olması ile çelişir. Dolayısıyla Li ̸= H dır.
Böylece {H,L1, L2, . . . , Ln} ⊆ N(q) dir. Bu ise d(q) = n olması ile çelişir. Dolayısıyla her
bir T ∈ N(q) için d(T ) = n+ 1 dir. Teorem 4.11 den dolayı

| P |= d(q).n+ 1 = n2 + 1

dir. Ayrıca L parçasına ait n + 1 dereceli düğümleri tamamı q düğümünün komşuluğunda
olduğundanG∗−{q} grafı için | P |= n2 ve her bir L ∈ L için d(L) = n dir. Teorem 4.30
den dolayı G∗ − {q} bir afin graftır.

Teorem 4.49. G∗ = (P ∪ L , E), P parçası (n + 1)−regüler ve L parçası n ve n + 1

dereceli düğümlerden oluşan {0, 1}−semi graf olsun.L parçasına ait n dereceli düğümlerin
ortak komşuluğu olacak şekilde bir x düğümü eklenirse, G∗ + {x} projektif graftır.

İspat. G∗ = (P ∪ L , E), P parçası (n + 1)−regüler ve L parçası n ve n + 1 dereceli
düğümlerden oluşan {0, 1}−semi graf olsun. Hipotezden dolayı d(H) = n olacak şekilde
H ∈ L düğümü vardır. Bu durumda

A0[H] = {L : cn(L,H) = 0 ve L ∈ L } ∪ {H}

olsun. En az biri H dan farklı R,S ∈ A0[H] için R ̸= S olsun. Eğer R ve S düğümlerinden
biri H düğümüne eşitse cn(R,S) = 0 dır.
R ̸= H ve S ̸= H olmak üzere kabul edelim ki cn(R,S) = 1 olsun. Bu durumda
CN(R,S) = {p′} olacak şekilde p

′ ∈ P düğümü vardır. A0[H] kümesinin tanımından
dolayı cn(R,H) = 0 ve cn(S,H) = 0 dir. Dolayısıyla p

′
/∈ N(H) dir. Bu durumda

| A0
p′
(H) |≥ 2 dir. Bu ise G∗ nin {0, 1}−semi graf olmasıyla çelişir. O halde birbirinden ve

en az biri H dan farklı olacak şekilde R,S ∈ A0(H) için cn(R,S) = 0 dir.
Kabul edelim ki en az bir p0 ∈ P için p0 /∈

∪
L∈A0[H] N(L) olsun. P parçası

(n+1)−regüler olduğundan dolayı d(p0) = n+1 dir. Bu durumda her bir i, 1 ≤ i ≤ n+1

için N(p0) = {L1, L2, . . . , Li, . . . Ln+1} olacak şekilde Li ∈ L düğümleri vardır.
Herhangi bir Li ∈ N(p0) için cn(Li, H) = 0 ise Li ∈ A0[H] dır. Bu ise p0 düğümünün
seçimi ile çelişir. Dolayısıyla her Li ∈ N(p0) için cn(H,Li) = 1 dir. Bu durumda her bir i
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için CN(H,Li) = {pi} olacak şekilde pi ∈ P düğümleri vardır. j, 1 ≤ j ≤ n + 1 ve i ̸= j

için pi = pj ise CN(p0, pi) = {Li, Lj} dir. Bu ise LG1 ile çelişir. Dolayısıyla pi ̸= pj dir.
Bu durumda {p1, p2, . . . , pn+1} ⊆ N(H) dır. Bu ise d(H) = n olması ile çelişir. O halde
kabulümüz yanlıştır. Dolayısıyla her p ∈ P için p ∈

∪
L∈A0[H] N(L) dir.

Lemma 4.27 ten dolayı her bir L ∈ L için d(L) ∈ {n, n + 1} dir. Kabul edelim
ki en az bir L′ ∈ A0[H] için d(L

′
) = n + 1 olsun. Bu durumda her bir i, 1 ≤ i ≤ n + 1

için N(L
′
) = {p′

1, p
′
2, . . . , p

′
n+1} olacak şekilde p

′
i ∈ P düğümleri vardır. q ∈ N(H) için

q /∈ N(L
′
) dür. LG1 den dolayı her bir i, 1 ≤ i ≤ n+1 içinCN(q, p

′
i) = {L′

i} olacak şekilde
L

′
i ∈ L düğümleri vardır. j, 1 ≤ j ≤ n+1 ve j ̸= i için L′

i = L
′
j ise CN(p

′
i, p

′
j) = {L′

, L
′
i}

dir. Bu ise LG1 ile çelişir. DolayısıylaL′
i ̸= L

′
j dir. cn(L

′
, H) = 0 olduğundan dolayıL′

i ̸= H

dır. Böylece {H,L
′
1, L

′
2, . . . , L

′
n+1} ⊆ N(q) dir. Bu durumda d(q) = n + 2 dir. Bu ise P

parçasından (n+1)−regüler olmasıyla çelişir. Dolayısıyla her birL ∈ A0(H) için d(L) = n

dir.

S ∈ L için d(S) = n + 1 olsun. Bu durumda S /∈ A0[H] dir. Kabul edelim ki en az
bir F ∈ A0[H] için cn(S, F ) = 0 olsun. d(S) = n+ 1 olduğundan her bir i, 1 ≤ i ≤ n+ 1

için N(S) = {q1, q2, . . . , qn+1} olacak şekilde qi ∈ P düğümleri vardır. LG1 den dolayı
p
′ ∈ N(F ) için CN(p

′
, qi) = {Hi} olacak şekilde Hi ∈ L düğümleri vardır.

j, 1 ≤ j ≤ n+ 1 ve i ̸= j için Hi = Hj ise CN(qi, qj) = {S,Hi} dir. Bu ise LG1 ile çelişir.
Dolayısıyla Hi ̸= Hj dir. cn(S, F ) = 0 olduğudan dolayı Hi ̸= S dir. Benzer şekilde
Hi ̸= F dir. Böylece N(p

′
) = {F,H1, H2, . . . , Hn+1} dir. Bu durumda d(p

′
) ≥ n + 2 dir.

Bu ise P parçasının (n + 1)−regüler olması ile çelişir. O halde kabulümüz yanlıştır.
Dolayısıyla her D ∈ A0(H) için cn(D,S) = 1 dir. O halde | A0(H) |≥ n+ 1 dir.
Kabul edelim ki | A0(H) |≥ n + 2 olsun. Bu durumda A0(H) ait her bir düğümünün S

düğümü ile ortak komşuluğunun sayısı 1 olduğundan S düğümünün komşuluğundaki en az
bir düğüm, A0(H) kümesine ait en az iki düğümün komşuluğunda olur ki bu durum A0(H)

kümesine ait herhangi iki düğümün ortak komşuluğun sayısının sıfır olmasıyla çelişir. O
halde kabulümüz yanlıştır. Dolayısıyla | A0(H) |≤ n + 1 dir. Böylece | A0(H) |= n + 1

dir.
Kabul edelim ki en az bir L

′
/∈ A0(H) için d(L

′
) = n olsun. Bu durumda her bir

i, 1 ≤ i ≤ n için N(L
′
) = {p′

1, p
′
2, . . . , p

′
n} olacak şekilde p

′
i ∈ P düğümleri vardır. Bu

durumda p′
i ∈

∪
L∈A0[H] N(L) dir. | A0(H) |= n + 1 olduğundan dolayı k, 1 ≤ i ≤ n + 1

için A0(H) = {H1, H2, . . . , Hn+1} olacak şekilde Hi ∈ L düğümleri vardır. A0(H)

kümesine ait herhangi iki düğümün komşuluğunda, N(L
′
) kümesine ait aynı düğümün

bulunması halinde A0(H) kümesinin tanımı ile çelişir. Bu durumda A0(H) kümesine ait
her bir düğümün komşuluğunda N(L

′
) kümesine ait farklı düğümler vardır. d(L′

) = n

olduğundan bir tek Hk ∈ A0(H) için cn(L
′
, Hk) = 0 dir. Bu durumda p

′
i ∈ N(L

′
) için

p
′
i /∈ N(Hk) dir. Ayrıca p

′
i ∈
∪

L∈A0[H] N(L) olduğundan dolayı p′
i ∈ N(L

′′
) olacak şekilde
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en az bir L′′ ∈ A0[H] vardır. Bu durumda cn(L′′
, Hk) = 0 dır. Böylece | A0

p
′
i

(Hk) |≥ 2 dir.
Bu ise G nin {0, 1}−semi graf olmasıyla çelişir. Dolayısıyla her bir K ′

/∈ A0(H) için
d(K

′
) = n + 1 dir. | A0(H) |= n + 1, her bir L ∈ A0(H) için d(L) = n ve her bir p ∈ P

için p ∈
∪

L∈A0[H] N(L) ve herhangi L,K ∈ A0[H] için N(L) ∩ N(K) = ∅ olduğundan
dolayı Teorem 4.11 göz önüne alınırsa

| P |=
∑

L∈A0[H]

d(L) =| A0(H) | .n = (n+ 1).n = n2 + n (4.55)

dir. Ayrıca P parçasındaki herhangi bir düğümün komşuluğunda bulunan n dereceli
düğümlerin sayısı α olsun. Teorem 4.11 den dolayı

| P | −1 = α.(n−1)+(n+1−α).n = α.n−α+n.(n+1)−α.n = n.(n+1)−α (4.56)

dir. (4.55) ve (4.56) den dolayı α = 1 dir. Bu durumdaP parçasındaki tüm düğümlerA0(H)

kümesinin elemanlarının komşuluğunda olduğundan dolayı A0(H), L parçasına ait bütün
n dereceli düğümlerin kümesidir. Bu durumda A0(H) kümesinin elemanlarının her birine
komşu olacak şekilde yeni bir x düğümü P parçasına ilave edililmesiyle oluşan G∗ + {x}
grafı için, | P |= n2 + n+1 ve her bir L ∈ L için d(L) = n+1 olacağından Lemma 4.36
den dolayı G∗ + {x} grafı projektif graftır.

Teorem 4.50. G∗ = (P ∪ L , E) maksimum düğüm derecesi n+ 1 olan {0, 1}− semi graf
olmak üzere,

i. ∀L ∈ L için d(L) = n ise G, (n+ 1, n)− biregüler afin graftır.

ii. ∀L ∈ L için d(L) = n+ 1 ise G, (n+ 1)−regüler projektif graftır.

Örnek 4.23. Şekil 4.9 de verilen afin graf modelinde p /∈ N(L) olacak şekildeki her bir
p ∈ P ve L ∈ L için | A 0

N(p)(L) |= 1 olduğundan {0, 1}−semi graftır.

Şekil 4.10 de verilen projektif graf modelinde ise p /∈ N(L) olacak şekildeki her bir
p ∈ P ve L ∈ L için | A 0

N(p)(L) |= 0 olduğundan {0, 1}−semi graftır.
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5. LİNEER GRAFLARIN KOMŞULUK GRAFLARI

Herhangi bir grafın komşuluk grafları V. R. Kulli tarafından(Kulli, 2015)
incelemiştir. Bu çalışmada grafların komşuluk graflarıyla ilgili regülerlik, bağlılık ve Euler
graf olma durumlarıyla ilgli sonuçlar elde edilmiştir.

Tezin bu bölümünde öncelikle komşuluk graflarıyla ilgili bazı sonuçlar verilerek,
lineer grafların komşuluk grafları incelenmiş ve önemli sonuçlar elde edilmiştir. Ayrıca
komşuluk grafları lineer graf olan graflar karakterize edilmiştir.

G = (V,E) bir graf ve S(V ) = {N(u) : u ∈ V } olmak üzere S(V ) kümesine G nin
tüm açık komşuluklarının kümesi denir.

Tanım 5.1. G = (V,E) bir graf ve S(V ) kümeside G nin tüm açık komşuluklarının kümesi
olsun.E ′

= {uN(v) : u ∈ N(v), u ̸= v ve u, v ∈ V } olmak üzereN (G) = (V ∪S(V ), E
′
)

grafına G nin komşuluk grafı denir.(Kulli, 2015)

Örnek 5.1. Şekil 5.1 de sırasıyla G ve G nin komşuluk grafı olan N (G) grafı verilmiştir.
N(u1) = {u2, u3}, N(u2) = {u1, u3}, N(u3) = {u1, u2, u3, u4}, N(u4) = {u3}, N(u5) =

{u3} olduğundan S = {N(u1), N(u2), N(u3), N(u4), N(u5)} dir.

Şekil 5.1 G ve N (G)

Teorem 5.1. G, herhangi bir graf olmak üzereN (G) grafı iki kümelidir. (Kulli, 2015)

Sonuç 5.1. G, iki kümeli bir graf olmak üzereN (G) grafı bağlantısızdır. (Kulli, 2015)

Sonuç 5.2. G = (V,E) herhangi bir graf olmak üzere x, y ∈ V için xy /∈ E(N (G)) ve
N(x)N(y) /∈ E(N (G))



82

İspat. Komşuluk grafı tanımından ispat açıktır.

Lemma 5.1. G = (V,E) bir graf olmak üzereG nin derece dizisi (d1, d2, . . . , d|V |) iseN (G)

komşuluk grafının derece dizisi (d1, d1, d2, d2, . . . , d|V |, d|V |) dir.

İspat. xi ∈ V ve her bir i, 1 ≤ i ≤| V | için d(xi) = di olsun. G grafının derece dizisi
(d1, d2, . . . , d|V |) olduğundan dolayı xj ∈ V ve her bir j, 1 ≤ j ≤ di için
N(xj) = {y1, y2, . . . , ydj} olacak şekilde y1, y2, . . . , ydj ∈ V düğümleri vardır. O halde,
N (G) grafında d(N(xj))) = dj dir. G grafında xj düğümü y1, y2, . . . , ydj düğümlerinin
komşuluğunda olduğundan N (G) de N(xj) = {N(y1), N(y2), . . . , N(ydj)} olacağından
d(xj) = dj olur. V (N (G)) = V ∪ S(V ) olduğundan N (G) nin derece dizisi
(d1, d1, d2, d2, . . . , d|V |, d|V |) dir.

Sonuç 5.3. G = (V,E) herhangi bir graf ve u ∈ V ve N (G) G nin komşuluk grafı olmak
üzere, dG(u) = dN (G)(u) = dN (G)(N(u)) dir.

Lemma 5.2. G = (P ∪ L , E) bir lineer graf olmak üzere, G (r, s)−bireguler ise her bir
u ∈ V (N (G)) için d(u) ∈ {r, s} dir.

İspat. G = (P ∪ L , E) (r, s)−biregüler lineer graf olsun. Sonuç 5.3 den dolayı p ∈ P

ve L ∈ L için N (G) de d(N(p)) = d(p) = r ve d(N(L)) = d(L) = s dir. V (N (G)) =

[(P ∪ L )] ∪ [S(P) ∪ S(L )] olduğundan her bir u ∈ V (N (G)) için d(u) ∈ {r, s} dir.

Sonuç 5.4. G = (P ∪ L , E) bir afin graf ve L ∈ L için d(L) = n olmak üzere her bir
u ∈ V (N (G)) için d(u) ∈ {n+ 1, n} dir.

İspat. G = (P ∪ L , E) bir afin graf olsun. Bu durumda Teorem 4.27 ve Lemma 5.2 den
dolayı ∀u ∈ V (N (G)) için d(u) ∈ {n+ 1, n} dir.

Sonuç 5.5. G = (P ∪ L , E) bir projektif graf ve L ∈ L için d(L) = n olmak üzere,
N (G), (n+ 1)−regülerdir.

İspat. G = (P ∪ L , E) bir projektif graf ve L ∈ L için d(L) = n olsun. Bu durumda
Teorem 4.35 ve Lemma 5.2 den dolayı her bir u ∈ V (N (G)) için d(u) = n+ 1 dir.

Sonuç 5.6. G = (P ∪ L , E) bir lineer graf olmak üzere, N (G) izole ve sarkık düğüm
içermez.

İspat. G = (P ∪ L , E) bir lineer graf olsun. LG2 den dolayı δ(G) ≥ 2 dir. Bu durumda
Sonuç 5.3 den dolayı δ(N (G)) ≥ 2 dir. İzole düğümün derecesi sıfır ve sarkık düğümün
derecesi 1 olduğundanN (G) grafı izole ve sarkık düğüm içermez.

Lemma 5.3. G = (P ∪L , E) bir lineer graf olmak üzere,N (G) grafı bağlantısız graftır.

İspat. Lineer graf tanımı ve Sonuç 5.1 den dolayı ispat açıktır.



83

Lemma 5.4. G = (P ∪L , E) bir lineer graf olmak üzereN (G) grafı Euler graf değildir.

İspat. Lemma 5.3 den dolayı ispat açıktır.

Teorem 5.2. G = (P ∪ L , E) bir lineer graf ve P ve L parçalarının her bir elemanının
açık komşuluklarından oluşan kümeler sırasıyla
S(P) = {N(p) : p ∈ P} ve S(L ) = {N(L) : L ∈ L } olsun.
E1 = {uv : u ∈ P ve v ∈ S(L )} ve E2 = {xy : x ∈ S(P) ve v ∈ L } olmak üzere
aşağıda verilen ifadeler geçerlidir.

i. G1 = (P ∪ S(L ), E1) ve G2 = (S(P) ∪ L , E2) birer lineer graftır.

ii. G ∼= G1 ve G ∼= G2

dir.

İspat. i. G = (P ∪ L , E) bir lineer graf olsun. Teorem 5.1 den dolayı N (G) grafı iki
kümelidir. Her p, q ∈ P ve p ̸= q için LG1 den dolayı CN(p, q) = {L} olacak şekilde
bir tek L ∈ L düğümü vardır. Bu durumda {p, q} ⊆ N(L) dir. Böylece pN(L), qN(L) ∈
E(N (G)) dir. BuradaN(L) düğümü p ve q düğümlerin ikisiyle ayrıt belirten tek düğümdür.
BöyleceG1 = (P∪S(L ), E1) grafındaCN(p, q) = {N(L)} olacak şekilde bir tekN(L) ∈
S(L ) dir. Dolayısıyla LG1 sağlanır. LG2 den dolayı δ(G) ≥ 2 olduğundan her bir u ∈
V (G) için d(u) ≥ 2 dir. Lemma 5.1 den dolayı N (G) grafı her bir N(u) ∈ V (N (G))

için d(N(u)) = d(u) ≥ 2 dir. Dolayısıyla δ(G1) ≥ 2 dir. Böylece G1 lineer graftır. Benzer
şekilde G2 grafıda lineer graftır.

ii.
f : P ∪ L → S (P) ∪ L

f (x) =

N (x) , x ∈ P

x, x ∈ L

olacak şekilde tanımlanan f fonksiyonu için

1. durum. x1, x2 ∈ P için x1 ̸= x2 olsun. f fonksiyonunun tanımından dolayı
f(x1) = N(x1) ve f(x2) = N(x2) olacak şekilde N(x1),N (x2) ∈ S(P) düğümleri
vardır. Ayrıca N(x1), N(x2) ∈ V (N (G)) olup N (G) grafının tanımımdan farklı
düğümlerin açık komşuluk düğümleride farklıdır. Bu durumda N(x1) ̸= N(x2) dir. Böylece
f(x1) ̸= f(x2) dir.
2. durum. x1, x2 ∈ L için x1 ̸= x2 olsun. Bu durumda f(x1) = x1 ve f(x2) = x2 dir.
Böylece f(x1) ̸= f(x2) dir.
3.durum. x1 ∈ P ve x2 ∈ L olsun. Bu durumda G lineer graf olduğundan x1 ̸= x2 dir. f
fonksiyonunun tanımından dolayı N(x1) ∈ S(P) ve x2 ∈ L düğümleri vardır. N (G)
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grafının tanımından dolayı bir düğüm ile açık komşuluk düğümü farklı olduğundan dolayı
N(x1) ̸= x2 dir. Böylece f(x1) ̸= f(x2) dir. Üç durumdan dolayı f fonksiyonu birebirdir.
P ∩ L = ∅ olduğundan dolayı

| P ∪ L |=| P | + | L | (5.1)

dir. S(P) ∩ L = ∅ olduğundan dolayı

| S(P) ∪ L |=| S(P) | + | L | (5.2)

dir.P parçasının her bir düğümüne karşılık bir tek açık komşuluk düğümü olduğundan

| P |=| S(P) | (5.3)

dir. (5.1), (5.2) ve (5.3) den dolayı

| P ∪ L |=| S(P) ∪ L | (5.4)

elde edilir. Bu durumda f fonksiyonu birebir ve (5.3) den dolayı f örtendir.

f : P ∪ L → S (P) ∪ L

xL ∈ E(G) için f(xL) = N(x)L dir. G grafında L ∈ N(x) olduğundan komşuluk grafının
tanımı gereğince LN(x) ∈ E(N (G)) dir. O halde f izomorfizmadır. Böylece G ∼= G2 dir.
Benzer şekilde G ∼= G1 dir.

Lemma 5.5. G = (P ∪ L , E) bir lineer graf ve P ve L parçalarının her bir elemanının
açık komşuluklarından oluşan kümeler sırasıyla
S(P) = {N(p) : p ∈ P} ve S(L ) = {N(L) : L ∈ L } olsun. G1 = (P ∪ S(L ), E1) ve
G2 = (S(P) ∪ L , E2) olmak üzereN (G) = G1 ∪G2 grafı iki bileşenlidir.

İspat. Teorem 5.2 den dolayı G1 lineer graf olduğundan Teorem 4.4 den dolayı G1

bağlantılıdır. Benzer şekilde G2 de bağlantılıdır. Ayrıca Komşuluk grafı tanımından
V (N (G)) = (P ∪ L ) ∪ (S(P) ∪ S(L )) dir. Bu durumda Lemma 5.3 den dolayı
N (G) = G1 ∪G2 grafı iki bileşenlidir.

Sonuç 5.7. G = (P ∪ L , E) bir lineer graf olmak üzere,N (G) ∼= 2G dir.

İspat. Teorem 5.2 (ii) ve Lemma 5.5 den dolayıN (G) = 2G dir.

Örnek 5.2. Şekil 5.2 de verilen graf modeli için P = {p1, p2, p3} ve L = {L1, L2, L3}
olmak üzere G = (P ∪ L , E) bir lineer graftır. S(P) = {N(p1), N(p2), N(p3)} ve
S(L ) = {N(L1), N(L2), N(L3)} olmak üzere G nin komşuluk grafı N (G) = G1 ∪ G2

Şekil 5.3 da verilmiştir. Burada G1 = (S(P) ∪ L , E1) ve G2 = (P ∪ S(L ), E2) dir.
Burada G ∼= G1 ve G ∼= G2 olduğu açıktır.
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Şekil 5.2 C6 grafının iki kümeli modeli

Şekil 5.3 G1 = (S(P) ∪ L , E1) ve G2 = (P ∪ S(L ), E2)

Tanım 5.2. Farklı iki düğümünün ortak komşuluğunun sayısı 1 olan graflara
arkadaşlık(friendship) grafları denir. (Chvátal vd., 1976) Sonlu arkadaşlık grafları n ∈ Z+

için Fn ile gösterilir ve Fn tam olarak bir ortak komşuya sahip n tane kenarları ayrık C3

den oluşur. Fn grafı 2n+ 1 düğüm ve 3n kenar içerir.

Örnek 5.3. Şekil 5.4 de verilen graf bir Friendship graftır.

Şekil 5.4 n = 3 için Friendship graf modeli: F3
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Teorem 5.3. G = (V,E) bir Friendship grafı olmak üzere,N (G) dejenere projektif graftır.

İspat. G bir Friendship grafı olsun. Teorem 5.1 den dolayı N (G) iki kümeli bir graftır.
V (N (G)) = V ∪ S(V ) olduğudan herhangi farklı x, y ∈ V için G de Tanım 5.2 dan dolayı
CN(x, y) = {z} olacak şekilde bir tek z ∈ V düğümü vardır. Bu durumda x ve y nin her ikisi
birden sadece z düğümünün açık komşuluğundadır. Böylece, komşuluk grafının tanımından
dolayıN (G) de cn(x, y) = {N(z)} olacak şekilde bir tek N(z) ∈ S(V ) vardır. Dolaysıyla
LG1 sağlanır. Ayrıca Tanım 5.1 ve Sonuç 5.3 den dolayı δ(N (G)) ≥ 2 dir. O halde LG2 de
sağlanır. BöyleceN (G) bir lineer graftır.

Ayrıca V (N (G)) = (V ∪ S(V ), ) dir. V (G) ait derece dizisi (| V | −1, 2, ..., 2)

olduğundan Sonuç 5.3 dan dolayı V ve N (V ) parçalarına ait derece diziside
(| V | −1, 2, ..., 2) dir. Teorem 4.43 den dolayıN (G) dejenere projektif graftır.

Örnek 5.4. Şekil 5.4 de verilen Friendship grafın komşuluk grafı Şekil 5.5 de verilenN (F3)

grafına izomorftur.N (F3) dejenere projektif graftır.

Şekil 5.5 N (F3), F3 grafının komşuluk grafı
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6. LİNEER GRAFLARIN WİENER İNDEKSLERİ

Bir graftaki tüm düğüm çiftleri(düğüm çiftlerinin sıralaması önemsiz olmak üzere)
arasındaki uzaklıklar toplamı olarak tanımlanan Wiener indeks kavramı H. Wiener(Wiener,
1947) tarafından organik moleküllerin bazı fiziksel, kimyasal, biyolojik ve farmolojik
özelliklerini incelemek amacıyla ileri atılmıştır. Sonraki yıllarda ise başta ağaçlar olmak
üzere iki kümeli graflar, bazı özel graflar ile bu grafların line graflarının Wiener
indekleriyle ilgili çalışmalar yapılmış graflar için önemli parametrelerden biri haline
gelmiştir. Ayrıca bir grafın Wiener sayısının sınırlarıyla ilgili çalışmlar da yapılmıştır.
Detaylar için aşağıda verilen kaynaklara bakılabilir. (Graovac ve Pisanski, 1991),
(Dobrynin vd., 2001), (Walikar vd., 2004), (Cohen vd., 2010), (Li ve Song, 2014), (Knor
vd., 2015), (Knor vd., 2015).

Bu bölümde lineer grafların Wiener indekleri incelenerek, lineer grafların Wiener
indeksinin sınırları tespit edilmiştir. Ayrıca, önceki bölümlerde sınıflandırılan lineer
grafların Wiener indeksleri hesaplanarak bazı önemli sonuçlar elde edilmiştir.

Tanım 6.1. G = (V,E) bağlı bir graf olsun. W(G), G grafının Wiener indeksi olmak üzere

W (G) =
1

2

∑
u,v∈V (G)

d(u, v)

dir.

Örnek 6.1. Şekil 6.1 da verilen G = (V,E) grafının Wiener indeksi hesaplanırsa,

Şekil 6.1 G = (V,E) grafı

d(v1, v2) = 1, d(v1, v3) = 1, d(v1, v4) = 2, d(v2, v3) = 1, d(v2, v4) = 2, d(v3, v4) = 1 ve

W (G) = 1 + 1 + 2 + 1 + 2 + 1 = 8

elde edilir.
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Teorem 6.1. G = (P ∪ L , E) bir lineer graf olmak üzere

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | +W (L )

dir.

İspat. G = (P ∪ L , E) bir lineer graf, P(P) ve P(L ) sırasıyla P ve L parçalarının
kuvvet kümesi olsun. Lineer graflar tanımı gereğince iki kümeli olduğundan,

W (G) =
∑

{u,v}⊂P(P)

d(u, v) +
∑

(u,v)∈P×L

d(u, v) +
∑

{u,v}⊂P(L )

d(u, v) (6.1)

dir. LG1 den dolayı her u, v ∈ P için cn(u, v) = 1 dir. Lemma 4.5 den dolayı d(u, v) = 2

dir. Bu durumda ∑
{u,v}⊂P(P)

d(u, v) =

(
| P |
2

)
.d(u, v) =| P | .(| P | −1) (6.2)

dir. u ∈ P ve v ∈ L olsun. Bu durumda∑
(u,v)∈P×L

d(u, v) =
∑

(u,v)∈P×L
v∈N(u)

d(u, v) +
∑

(u,v)∈P×L
v/∈N(u)

d(u, v) (6.3)

eşitliği yazılabilir. Ayrıca v ∈ N(u) olacak şekilde v düğümlerinin sayısı; d(u) ve v /∈ N(u)

olacak şekildeki v düğümlerinin sayısı; | L | −d(u) dır. O halde,

∑
(u,v)∈P×L

v∈N(u)

d(u, v) =

|P|∑
i=1

d(ui)∑
j=1

d (ui, vj) (6.4)

ve ∑
(u,v)∈P×L

v/∈N(u)

d(u, v) =

|P|∑
i=1

|L |∑
j=d(ui)+1

d (ui, vj) (6.5)

dir. uv ∈ E(G) ise d(u, v) = 1 ve uv /∈ E(G) ise Lemma 4.5 den dolayı d(u, v) = 3

olduğundan
|P|∑
i=1

d(uj)∑
j=1

d (ui, vj) =

|P|∑
i=1

d(ui) =| E(G) | (6.6)

ve
|P|∑
i=1

|L |∑
j=d(ui)+1

d (ui, vj) = 3.

|P|∑
i=1

(| L | −d (ui)) = 3(| P || L | − | E(G) |) (6.7)

dir. Bu durumda (6.3), (6.4), (6.5), (6.6) ve (6.7) den dolayı∑
(u,v)∈P×L

d(u, v) = 3. | P || L | −2 | E(G) | (6.8)

dir. (6.1) ve (6.8) den dolayı aşağıdaki eşitlik elde edilir.

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | +W (L ).
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Lemma 6.1. G = (P ∪ L , E) bir lineer graf olmak üzere, p ∈ P

W (L ) = 2 | L | .(| L | −1)+ | E(G) | −
∑
p∈P

d(p)2

dir.

İspat. G = (P ∪L , E) bir lineer graf olsun. Lemma 4.3 den dolayı Li ̸= Lj olacak şekilde
her bir Li, Lj ∈ L çifti için cn(Li, Lj) ≤ 1 dir. Lemma 4.5, (4.10) ve Sonuç 4.11 den dolayı,

W (L ) = 2

(
1

2

∑
p∈P

d(p)(d(p)− 1)

)
+ 4

(
1

2
| L | .(| L | −1)− 1

2

∑
p∈P

d(p)(d(p)− 1)

)

dir. Eşitlik (4.11) den | E(G) |=
∑

p∈P d(p) olduğundan,

W (L ) = 2 | L | .(| L | −1)+ | E(G) | −
∑
p∈P

d(p)2

Sonuç 6.1. G = (P ∪ L , E) bir lineer graf olmak üzere, p ∈ P için

W (G) =| P | .(| P | −1) + 2 | L | (| L | −1) + 3 | P || L | − | E(G) | −
∑
p∈P

d(p)2

İspat. Teorem 6.1 ve Lemma 6.1 dolayı ispat açıktır.

Örnek 6.2. Şekil 4.12 de verilen lineer graf modelinin düğümlerini yeniden adlandırılarak
Şekil 6.2 verilsin. BuradaP = {v1, v2, v3, v4, v5} veL = {v6, v7, v8, v9, v10, v11} dir.

Şekil 6.2 Şekil 4.12 de verilen lineer graf modelinin yeniden adlandırılması

Bu grafın Wiener indeksinin hesaplanması için gerekli olan düğüm çiftleri
arasındaki uzaklıklar Çizelge 6.1 de verilmiştir. d(vi, vj) = d(vj, vi) olduğundan Tabloda
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verilen uzaklıklar toplanırsa

W (G) =
1

2

∑
u,v∈V (G)

d(u, v) = 116

dir.

Çizelge 6.1 Şekil 6.2 de verilen graf modelindeki farklı düğüm çiftleri arası uzaklıklar

d(v1, v2) = 2 d(v1, v3) = 2 d(v1, v4) = 2 d(v1, v5) = 2 d(v2, v3) = 2

d(v2, v4) = 2 d(v2, v5) = 2 d(v3, v4) = 2 d(v3, v5) = 2 d(v4, v5) = 2

d(v1, v6) = 1 d(v1, v7) = 1 d(v1, v8) = 1 d(v1, v9) = 3 d(v1, v10) = 3

d(v1, v11) = 3 d(v2, v6) = 3 d(v2, v7) = 3 d(v2, v8) = 1 d(v2, v9) = 3

d(v2, v10) = 1 d(v2, v11) = 1 d(v3, v6) = 3 d(v3, v7) = 3 d(v3, v8) = 1

d(v3, v9) = 1 d(v3, v10) = 3 d(v3, v11) = 3 d(v4, v6) = 1 d(v4, v7) = 3

d(v4, v8) = 3 d(v4, v9) = 1 d(v4, v9) = 1 d(v4, v11) = 3 d(v5, v6) = 3

d(v5, v7) = 1 d(v5, v8) = 3 d(v5, v9) = 1 d(v5, v10) = 3 d(v5, v11) = 1

d(v6, v7) = 2 d(v6, v8) = 2 d(v6, v9) = 2 d(v6, v10) = 2 d(v6, v11) = 4

d(v7, v8) = 2 d(v7, v9) = 2 d(v7, v10) = 4 d(v7, v11) = 2 d(v8, v9) = 2

d(v8, v10) = 2 d(v8, v11) = 2 d(v9, v10) = 2 d(v9, v11) = 2 d(v10, v11) = 2

Ayrıca | P |= 5, | L |= 6, | E(G) |= 14 ve
∑

p∈P d(p)2 = 40 olduğundan Sonuç
6.1 deki eşitlikte yerine yazılırsa,

W (G) = 5.4 + 2.6.5 + 3.5.6− 14− 40 = 116

Teorem 6.2. G = (P ∪ L , E) bir lineer graf veP parçası regüler olmak üzere,

W (G) =| P | .(| P | −1)+2 | L | (| L | −1)+3 | P || L | − | E(G) | −
(
| E(G) |2

| P |

)
dir.

İspat. G = (P ∪ L , E) bir lineer graf veP parçası regüler olsun. Bu durumda,∑
p∈P

d(p)2 = d(p)2. | P |

dir. Ayrıca,

d(p) =
| E(G) |
| P |

dir. Sonuç 6.1 den dolayı

W (G) =| P | .(| P | −1)+2 | L | (| L | −1)+3 | P || L | − | E(G) | −
(
| E(G) |2

| P |

)
dir.
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Sonuç 6.2. G = (P ∪ L , E) bir lineer graf veL parçası regüler olmak üzere,

W (G) =| P | .(| P | −1)+2 | L | (| L | −1)+3 | P || L | − | E(G) | −
(
| E(G) |2

| P |

)
dir.

İspat. G = (P ∪ L , E) bir lineer graf ve L parçası regüler olsun. Bu durumda, Lemma
4.8 den dolayıP parçası regülerdir. Teorem 6.2 den dolayı

W (G) =| P | .(| P | −1)+2 | L | (| L | −1)+3 | P || L | − | E(G) | −
(
| E(G) |2

| P |

)
dir.

Örnek 6.3. Şekil 4.1 deki graf modeli göz önüne alınırsa P = {v1, v3, v5} ve
L = {v2, v4, v6} olmak üzere L parçası regülerdir. G nin düğüm çiftleri arasındaki
uzaklıklar, d(v1, v3) = d(v1, v5) = d(v3, v5) = 2, d(v2, v4) = d(v2, v6) = d(v4, v6) = 2 ve
d(v1, v2) = d(v1, v6) = 1, d(v1, v4) = 3, d(v3, v2) = d(v3, v4) = 1, d(v3, v6) = 3,
d(v5, v4) = d(v5, v6) = 1, d(v5, v2) = 3 olduğundan dolayı

W (G) = 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 3 + 3 + 3 = 27

dir. | P |=| L |= 3 ve | E(G) |= 6 değerleri Sonuç 6.2 de yerine yazılırsa aynı sonuç elde
edilir.

W (G) = 3.2 + 2.3.2 + 3.3.3− 6− 62

3
= 27

Lemma 6.2. G = (P ∪ L , E) bir lineer graf olmak üzere,

W (L ) ≥| L | .(| L | −1)

dir.

İspat. G = (P ∪L , E) bir lineer graf olsun. Lemma 4.5 den dolayı, L ̸= K olacak şekilde
her bir L,K ∈ L için

1. durum. c(L,K) = 1 ise d(L,K) = 2,

2. durum. c(L,K) = 0 ise d(L,K) = 4

dir. Ayrıca Lemma 4.3 dan dolayı L ̸= K olacak şekilde her bir L,K ∈ L düğümleri için
cn(L,K) ≤ 1 olduğundan,L parçasındaki tüm farklı düğüm çiftlerinin ortak komşuluğunun
sayısı 1 alınırsa,

W (L ) ≥| L | .(| L | −1)

dir.
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Örnek 6.4. Şekil 6.2 daki lineer graf modelinde W (L ) = 34 ve | L | .(| L | −1) = 30

dur. Şekil 4.1 lineer graf modelinde iseW (L ) = 6 ve | L | .(| L | −1) = 6 dır.

Sonuç 6.3. G = (P ∪ L , E) bir lineer graf olmak üzere,

W (G) ≥| P | .(| P | −1) + 3 | P || L | −2 | E(G) | + | L | .(| L | −1)

dir.

İspat. Teorem 6.1 ve Lemma 6.2 den dolayı ispat açıktır.

Lemma 6.3. G = (P ∪ L , E) bir projektif graf olmak üzere,

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | + | L | .(| L | −1)

dir.

İspat. G = (P ∪ L , E) bir projektif graf olsun. Teorem 6.1 den dolayı

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | +W (L )

dir. Sonuç 4.23 den dolayı her u, v ∈ L çifti için d(u, v) = 2 dir. Bu durumda

W (L ) =

(
| L |
2

)
.d(u, v) =| L | .(L | −1)

dir. Böylece

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | + | L | .(| L | −1)

dir.

Teorem 6.3. G = (P ∪ L , E) bir projektif graf olsun. n ≥ 2 olacak şekilde bir tamsayı
olmak üzere u ∈ V (G) için d(u) = n+ 1 ise

W (G) = 5n4 + 8n3 + 9n2 + 4n+ 1

dir.

İspat. G = (P ∪ L , E) bir projektif graf olsun. Lemma 6.3 den dolayı

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | + | L | .(| L | −1)

dir. G bir projektif graf ve u ∈ V (G) olsun. Teorem 4.35 den dolayı | P |= n2 + n + 1 ve
| L |= n2 + n + 1 dir. Ayrıca, Lemma 4.22 den dolayı E(G) = n3 + 2(n2 + n) + 1 dir.
Böylece

W (G) = 5n4 + 8n3 + 9n2 + 4n+ 1

dir.
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Teorem 6.4. G = (P ∪ L , E) bir afin graf olsun. n ≥ 2 olacak şekilde bir tamsayı olmak
üzere L ∈ L için d(L) = n ise

W (G) = 5n4 + 4n3 − 3n2 − 2n

dir.

İspat. G = (P ∪L , E) bir afin graf ve L ∈ L için d(L) = n, n ∈ Z+ olsun. Bu durumda
G aynı zamanda lineer graf olduğundan dolayı Teorem 6.1 de dolayı

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | +W (L ) (6.9)

dir. Ayrıca Lemma 4.3 den her u, v ∈ L çifti için cn(u, v) ∈ {0, 1} olduğundan dolayı

W (L ) =
∑

{u,v}⊂P(L )

d(u, v) =
∑

{u,v}⊂P(L )
cn(u,v)=0

d(u, v) +
∑

{u,v}⊂P(L )
cn(u,v)=1

d(u, v) (6.10)

dir. Ayrıca Lemma 4.5 den dolayı

d (u, v) =

2, c (u, v) = 1

4, c (u, v) = 0

dır. Bu durumda

W (GL ) = 4

(
n

2

)
(n+ 1) + 2 (n.n.n+ n.n.(n− 1) + · · ·+ n.n.1)

dir. Eşitliğin sol tarafı düzenlenirse

W (L ) = 2n(n2 − 1) + n3(n+ 1) (6.11)

elde edilir. Teorem 4.27 den dolayı | P |= n2 ve | L |= n2 + n dir. Böylece (6.9) ve (6.11)
den dolayı

W (G) = 5n4 + 4n3 − 3n2 − 2n

dir.

Örnek 6.5. Şekil 4.9 deki afin graf modeline ait düğüm çiftleri arasındaki uzaklıklar,
Çizelge 6.2 de verilmiştir. Buna göre G grafının Wiener indeksi çizelgede verilen uzaklıklar
toplamıdır. Bu durumda

W (G) = 96

dır. Ayrıca L ∈ L için d(L) = 2 olduğundan Teorem 6.4 dan dolayı

W (G) = 5.24 + 4.23 − 3.22 − 2.2 = 96

dir.
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Çizelge 6.2 Şekil 4.9 de verilen graf modelindeki farklı düğüm çiftleri arası uzaklıklar

d(p1, p2) = 2 d(p1, p3) = 2 d(p1, p4) = 2 d(p2, p3) = 2 d(p2, p4) = 2

d(p3, p4) = 2 d(p1, L1) = 1 d(p1, L2) = 1 d(p1, L3) = 1 d(p1, L4) = 3

d(p1, L5) = 3 d(p1, L6) = 3 d(p2, L1) = 1 d(p2, L2) = 3 d(p2, L3) = 3

d(p2, L4) = 1 d(p2, L5) = 1 d(p2, L6) = 3 d(p3, L1) = 3 d(p3, L2) = 1

d(p3, L3) = 3 d(p3, L4) = 1 d(p3, L5) = 3 d(p3, L6) = 1 d(p4, L1) = 3

d(p4, L2) = 3 d(p4, L3) = 1 d(p4, L4) = 3 d(p4, L5) = 1 d(p4, L6) = 1

d(L1, L2) = 2 d(L1, L3) = 2 d(L1, L4) = 2 d(L1, L5) = 2 d(L1, L6) = 4

d(L2, L3) = 2 d(L2, L4) = 2 d(L2, L5) = 4 d(L2, L6) = 2 d(L3, L4) = 4

d(L3, L5) = 2 d(L3, L6) = 2 d(L4, L5) = 2 d(L4, L6) = 2 d(L5, L6) = 2

Lemma 6.4. G = (P ∪ L , E) bir dejenere projektif graf olmak üzere,

W (G) = 5 | P |2 −8 | P | +6

dir.

İspat. Teorem 6.1 den dolayı

W (G) =| P | .(| P | −1) + 3 | P || L | −2 | E(G) | +W (L ) (6.12)

dir. Sonuç 4.42 den dolayı ∀L,K ∈ L için cn(L,K) = 1 dir. Böylece Sonuç 4.23 den dolayı
d(L,K) = 2 dir. Bu durumda

W (GL ) =

(
| L |
2

)
.d(u, v) = L | .(L | −1) (6.13)

dir. Ayrıca,

E(G) =
∑
p∈P

d(p) =| P | −1 + (| P | −1).2 = 3 | P | −3 (6.14)

dür. G dejenere projektif graf olduğundan | P |=| L | dir. Ayrıca (6.12), (6.13) ve (6.14)
denklemleri gözönüne alınırsa,

W (G) = 5 | P |2 −8 | P | +6

dir.

Sonuç 6.4. G = (P ∪L , E) bir dejenere projektif graf ve n ≥ 3 olacak şekilde bir tamsayı
olmak üzere V (G) = 2n olsun. Bu durumda

W (G) = 5n2 − 8n+ 6

dir.
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İspat. Lemma 6.4 ve dejenere projektif graf tanımından ispat açıktır.

Sonuç 6.5. G = (P ∪L , E) bir (n+1)−regüler projektif graf veG′
= (P

′ ∪L
′
, E

′
) bir

dejenere projektif graf olmak üzere, V (G) = V (G
′
) iseW (G) ≥ W (G

′
) dir.

İspat. Projektif graf tanımından | P |=| L | ve benzer şekilde dejenere projektif graf
tanımından dolayı | P

′ |=| L
′ | dir. Hipotezden dolayı V (G) = V (G

′
) olduğundan

| P |=| P
′ |= n2 + n+ 1

ve
| L |=| L

′ |= n2 + n+ 1

dir. Bu durumda Teorem 6.3, Lemma 6.4 ve n ≥ 3 den dolayı

W (G
′
) ≥ W (G)

dir.
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7. BULGULAR VE TARTIŞMA

Bu çalışmada iki kümeli graflar için ortak komşuluk sayısı göz önüne alınarak lineer
graflar tanımlanmıştır. Lineer grafların temel özellikleri ortaya koyularak önemli bir
kısmının sınıflandırılması yapılmıştır. Yapılan sınıflandırmalar düğüm dereceleri
kullanılmak suretiyle karakterize edilmiştir. Daha sonra lineer graflarla bazı özel graflar
arasındaki ilişkiler incelenmiştir. Bu bağlamda tam graflardan, grafların düğüm genişlemesi
kullanarak lineer graflar elde edilmiş ve k düğümlü tam graflardan elde edilen lineer graflar
(k − 1, 2)− biregüler lineer graflar olarak karakterize edilmiştir.

Sınıflandırılan lineer graflar arasındaki ilişkiler incelenerek birbirini alt graf olarak
içermesi için sahip olunması gereken parametrelerle ilgili sonuçlar ortaya koyulmuştur.
V.R. Kulli tarafından yapılan bazı özel grafların komşuluk graflarıyla ilgili çalışmalar
incelenerek lineer grafların komşuluk graflarıyla ilgili çalışmalar yapılmış ve önemli
sonuçlar ortaya çıkarılmıştır. Bu bağlamda geniş bir uygulama alanı olan Friendship
graflarının komşuluk graflarından belirli parametrelere sahip lineer graflar elde edilmiştir.
Ayrıca lineer grafların Wiener indeksleri incelenerek önemli sonuçlar verilmiştir.

Geçtiğimiz on yıl içerisinde İ. Günaltılı’nın öncülük ettiği (0, 1)− graflarıyla ilgili
çalışmalar yapılmıştır. Bu bağlamda bu tezde çalışılan lineer graflar gerek bazı geometrik
yapıların temsili gerekse (0, 1)−graflarının sınıflandırılması çalışmalarına önemli katkı
sağlayarak bu yöndeki çalışmalara ışık tutacaktır.
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8. SONUÇLAR VE ÖNERİLER

Sunulan tez çalışmamızda aşağıdaki sonuçlar elde edilmiştir.

Öncelikle tezle ilgili tanım ve kavramlarak sunularak bazı önemli teoremler
verilmiştir. İlerleyen kısımlarda teze temel teşkil eden lineer graf kavramı tanımlanarak,
lineer grafların temel özellikleri elde edilmiş ve bu graflardan bazıları sınıflandırılmıştır. Bu
bağlamda tanımlanan afin graflar, projektif graflar ve dejenere projektiflar graf parçaların
regülerlikleri kullanılarak, n ≥ 2 ve n ∈ Z+ olmak üzere (n + 1)− regüler lineer graflar
projektif graf, (n + 1, n)− biregüler lineer grafların afin graflar, P parçası (n − 1, 2)−
biregüler lineer grafların tam graflardan elde edilen graflar ve P parçası (n − 1, 2)

biregüler ve L parçası (n − 1, 2)− biregüler olan lineer grafların dejenere projektif graf
olarak karekterizasyonu yapılmıştır. Ayrıca

i. Lineer graf olan çevre grafları karakterize edilmiştir.

ii. Tam graflardan lineer graflar elde edilmiştir.

iii. Lineer grafların bazı yasaklı grafları karekterize edilmiş ve lineer grafların C4 ü alt graf
olarak içermedikleri ortaya koyulmuştur. Dejenere prokjektif graflarının n ̸= 6 olmak üzere
Cn alt graf olarak içermedikleri gösterilmiştir.

iv. Lineer graflarda bağlantı sayısı tanımlanmış ve lineer graflarının projektif graf veya afin
graf olmaları için gerekli bağlantı sayısı ile düğüm dereceleri arasındaki ilişkiler ortaya
koyulmuştur.

v. Sınıflandırılan lineer graflardan bazılarının Euler graf olması için gerekli koşullar
incelenmiştir.

vi. Komşuluk grafları incelenerek lineer grafların komşuluk graflarıyla ilgili özellikler elde
edilmiştir. Ayrıca Friendship graflarının komşuluk graflarının lineer graf olduğu ortaya
koyulmuştur.

vii. Graflar için önemli bir özellik olan Wiener indeks kavramı kullanılarak lineer grafların
Wiener indeksleri hesaplanmıştır.
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Bu sonuçlar ışında n, r,m, s ≥ 2 olacak şekilde bir tamsayı olmak üzere (n, r)−
biregüler lineer graflar ve P parçası (n, r) , L parçası (m, s)− biregüler olan lineer
grafların sınıflandırılması yapılabilir. {0, 1}−semi graflarla ilgili sonuçlardan hareketle
0 < a < b olacak şekildeki a ve b tamsayıları için | A 0

N(p)(L) |∈ {0, a, b} olan lineer graflar
araştırılabilir. Bazı özel graflardan lineer graf elde edilme koşulları incelenebilir. Ayrıca
lineer graflardan ağaçlar elde edilip bunlarun Wiener indekleri tespit edilerek kimyasal
graflarla ilişkilerine bakılabilir ve lineer grafların enerjileriyle ilgili çalışmalar yapılabilir.
k ≥ 2 ve t ≥ 1 olacak şekilde birer tamsayı olmak üzere iki kümeli grafların parçasından
birinin herhangi k tane düğümün ortak komşulunun t olması halinde elde edilen graflarla
çeşitli geometrik yapılar arasında ilişki kurulabilir.

Son olarakta, lineer grafların bir uygulaması olarak özellikle projektif graf ve afin
graflar kullanılarak Kodlama Teorisinde önemli bir rolü olan Düşük Yoğunluklu Eşlik
Denetim Kodlarının(LCPC) elde edilmesine yönelik çalışmalar yapılabilir.
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