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OZET

Bu calismada, iki kiimeli graflarin 6zel bir tipi olan ve A\ = 1 durumu i¢in (0, \)—
graflar1 simifinda yer alan lineer graflar tanimlanmistir. Daha sonra lineer graflarin temel
ozelllikleri incelenerek siiflandirilmast yapilmistir. Ayrica lineer graflarin bazi yasakl alt

graflarin karakterizasyonu yapilarak 6nemli sonuglar elde edilmistir.

Bu baglamda, bu ¢alisma sekiz boliimden olugmaktadir. Birinci boliimde ¢aligmanin
giris ve amag¢ kismina, ikinci boliimde ise detayli bir literatiir taramasina yer verilmistir.
Ugiincii béliimde calismamiz icin énemli bir yere sahip olan temel kavramlara yer
verilmigtir. Calismanin dordiincii boliimiinde lineer graf kavrami tanimlanmis ve bunlarin
temel ozellikleri incelenmistir. Ayrica lineer graflar afin graf, projektif graf ve {0, 1} —semi
graf olmak iizere siniflandirmasi yapilarak temel 6zellikleri incelenmis ve 6nemli sonuglar
elde edilmistir. Besinci boliimde lineer graflarin komsuluk graflar incelenerek Friendship
graflarin komsuluk graflarindan lineer graf elde edilmistir. Altinci bdliimiinde ise graflar
icin 6onemli bir indeks olan Wiener indeks kavrami kullanarak lineer graflarin Wiener
indeksleri incelenmistir. Yedinci boliimiinde bulgular ve tartismalar kismina yer verilerek
elde edilen bulgular 6zetlenmistir. Tezin son boliimii olan sekizinci boliimde ise sonuglar ve

oneriler kismina yer verilmistir.

Anahtar Kelimeler: Lineer graf, iki kiimeli graf, (0, \)— graf, Ortak komguluk



vi

SUMMARY

In this thesis, linear graphs, which are a type of bipartite graphs and which are a class
of graphs (0, \)— whenever A = 1, are defined. Following this, the basic properties of linear
graphs were examined and their classification was made. Also, some forbidden subgraphs of

linear graphs were characterized and important results were obtained.

In this context, this thesis consists of eight chapters. In the first part, the introduction
and purpose of the study are given, and in the second part a detailed literature review is
presented. The third chapter presents the basic concepts of importance to our thesis. In
chapter four, linear graphs are defined and their basic properties are explored. Further,
linear graphs that are affine graph, projective graph or {0, 1}—semigraph have been
classified, their properties examined and important results have been obtained. In chapter
five, we obtained a linear graph from the neighborhood graphs of the friendship graphs by
examining the neighborhood graphs of the linear graphs. In chapter six, Wienner indices of
linear graphs are examined, which has an important indices in graphs. In chapter seven of
the thesis, findings and discussions are presented and the findings are summarized. The final

chapter of the thesis, which contains the conclusions and suggestions, is the eighth chapter.

Keyword: Linear graph, Bipartite graph, (0, \)— graphs, Common neighborhood
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SIMGELER DIiZiNi

Simgeler Aciklamalar

en(x,y) x ve y diigiimlerinin ortak komsulugunun sayisi

d(x) x digiimiiniin derecesi

Q) G nin minumum derecesi

| V| V nin diigiim sayisi

N(x) x diigiimiiniin komsulugundaki diigiimler kiimesi

AL, H) Ortak komsulugunun sayisi &k olan diigiimler kiimesi

AF(L) L ile ortak komsulugunun sayisi £ olan diigiimler kiimesi

A (L, K) Ortak komsulugunun sayisi L ile r; K ile s olan diiglimler kiimesi
N (Q) G nin komguluk grafi

W(G) G nin Wiener indeksi



1. GIRIS VE AMAC

Graf Teorinin bir alt konusu olan (0,A\) — graflar1 H. M. Mulder(Mulder, 1979)
tarafindan "\ > 2 olmak {izere herhangi iki diiglimiiniin ortak komsulugunun sayis1 0 veya
A olan bagl graflar” olarak tanimlanmistir. Bu graflarla ilgili regiilerlik, diigiim sayist
derece iligkisi ve caplariyla ilgili calismalar yapilarak bazilarinin siniflandirilmalar
yapilmistir. Basta Mulder olmak iizere yapilan bu calismalarda A > 2 olmasi sarti goz
oniine alinmis A = 1 durumuyla ilgili herhangi bir ¢alisma yapilmamustir. Ilerleyen yillarda
A=1 durumu, basta Giinaltil1 olmak iizere Ulukan ve Olgun tarafindan incelenmis ve 6nemli
sonuglar elde edilmisti. Bu c¢alismalarda (0,1)—graflarinin bazi temel ozellikleri

incelenmis ve bazilarinin siniflandirmasina yonelik ¢alismalar yapilmistir.

Bu calismada iki kiimeli graflarin 6zel bir tipi olan lineer graflar tanimlanarak
karakterizasyonu yapilacaktir. Ayni zamanda (0,1)— graflar1 smifinda yer alan lineer
graflarin siniflandirilmasi yapilarak son yillarda arastirilmaya baglanan (0, 1)— graflarinin
siniflandirilmasina  katki saglanacaktir. Bununla birlikte bazi geometrik yapilardaki
karmasik  durumlarin lineer graflarla daha anlasilabilir temsili yapilabilecegi
ongoriilmektedir.

Ozetle lineer graflarin derece, ¢ap, regiilerlik ve cesitli kombinatdrik dzellikleri
incelenerek bu graflarin temel Ozellikleri ortaya c¢ikarilacak ve lineer graflar
siiflandirilarak bunlarin karakterizasyonu yapilacaktir. Ayrica smiflandirilmasi yapilan
lineer graflar arasindaki iligkiler incelenerek birbirlerini alt graf olarak icermesi igin gerekli

parametreler verilecektir.

Lineer graflarinin bazi yasaklanmig alt graflariyla ilgili incelemeler yapilarak bazi
0zel graflardan lineer graflar elde edilme kosullar1 incelenecektir. Son olarak ise graflarin
onemli bir indeksi olan Wiener indeks kavrami kullanilarak lineer graflarinin Wiener

indekleri hesaplanacaktir.



2. LITERATUR ARASTIRMASI

Graf Teori, 18. asirda Prusya’da bulunan Konigsberg Kasabasi sakinlerinin uzun bir

stire lizerine diistindiikleri bir problemden hareketle ortaya ¢ikmuistir.

Konigsberg Kasabasi igerisinden Pregel nehri ge¢gmektedir. Bu nehir kasabay1 dort
mahalleye ayirmakta ve bu mahalleleri birlestiren yedi tane koprii bulunmaktadir. Kasaba
sakinlerini su problem mesgul etmektedir. Herhangi bir mahalleden baslayip biitiin
kopriilerden bir ve yanliz bir defa gecerek ve biitiin mahalleleri dolasarak baslangig
noktasina geri déniilebilir mi? Bu problem dénemin iinlii Isvi¢reli matematik¢i Leonhard
Euler tarafindan ¢oztilmistiir. 1736 yilinda Euler yaptig1 ¢alismalarda boyle bir gezintinin
miimkiin olmadigini belirtmistir. Euler bu probleme ¢6ziin iiretirken kara parcalarini birer
diiglim(nokta) ve koprileri ise ayrit(kenar) olarak kabul etmistir. Boylece Sekil de
verilen Konigsberg sehrini Sekil 2.2 deki gibi modellemistir.

Sekil 2.1 Konigsberg’in yedi kopriisii

4

Sekil 2.2 Konigsberg Probleminin Grafla temsili



Yukaridaki problemin ¢éziimii temel olarak bir diiglim, ug(baslangi¢ ya da bitig)
diigiim degilse o diigiime giren kisinin turu tamamlayabilmesi i¢in o diiglimden ¢ikmasi
gerekir. Dolayisiyla bu sekildeki diigiimlerin derecesi ¢ift olmalidir. Bu sebepten dolay1 tek
dereceli diiglim sayis1 ikiden fazla ise boyle bir gezinti yapmak miimkiin degildir. Gergek
hayatla ilgili bir problemin Euler yaptigi gibi diiglimler ve ayritlarla temsil edilerek

¢Oziilmesi graf teorinin temelini atmistir. Sonraki yillarda benzer ¢alismalar devam etmistir.

G.R Kirchhoff (1847) tarafindan elektrik devrelerinde ve A.Cayley (1857)
tarafindan yapilan C), Hy, o Doymus Hidrokarbon izomerilerinin siniflanmasida, agac
kavramiin kullanilmasi, graf teorinin farkli ¢alisma alanlarin1 ortaya ¢ikmasina katki
saglamigtir. Thomas Guthrie (1852) meshur dort renk problemini ortaya atarak bir
haritasinin komgu iilkeler farki renkte olacak sekilde en fazla dort renkle boyanabilecegini
problemini ortaya atmistir. Bu problem yaklasik bir asir sonra 1976 yilinda Kaneth Appel
ve Wolfpeng Hakun tarafindan bilgisayar kullanarak ¢6zmesi biiylik tartismlara neden
olmustur. (Chartrand ve Lesniak, 2005). Fakat bu yondeki ¢caligmalar matematikte graf teori

alt alaninin dogmasina katkida bulunmustur.

Graf Teori ve uygulamalar ile ilgili ¢alismalar, giinliik yasamla ilgili problemlerin
graf teorisi sayesinde modellenip ¢oziilebilmesi sebebiyle son yillarda biiyiik bir hizla artis
gostermektedir. Graf Teori, ekonomi, yonetim bilimi, kimya, biyoloji, iktisat, genetik

,bilgisayar, sosyoloji ve kodlama teorisi gibi bir ¢ok alanda kullanilmaktadir.

V #0vel < k < 2,k € Z" olsun. V kiimesinin k elemanl alt kiimelerinin
ailesi [V]k ile gosterilsin. V' diiglimlerinin kiimesi, £’ ayritlarinin kiimesi,¢ tizerinde bulunma
bagintist ve V N E = () olmak iizere, ¢ :E — [V]' U [V]* bagmtisi bir fonksiyonsa G =
(V, E, ¢) tgliistine bir “graf “ denir. (Gliney, 2005).

Bir grafin diiglimler kiimesi maksimum mertebeli bagimsiz iki ayrik kiimeye
ayrilabiliyorsa G ye iki kiimeli graf denir. iki kiimeli graflar sistematik olarak ilk kez D.
Koéning (Konig, (1915, ) tarafindan ileri stiriilmiistiir. Her ne kadar iki kiimeli graflar
Koning tarafindan sistematik olarak ortaya konmussa da Kirchoff (1847), A. Cayley
(Cayley, [1857), J.J. Sylvester (Sylvester, 1875) ve J.J. Camille (Camille, 1869) gibi bilim
insanlarinin birbirinden bagimsiz olarak agaclar {izerine yapmis oldugu caligmalar iki
kiimeli graflar i¢in temel teskil etmektedir. F. W. Levi (Levi, [1942) tarafindan ortaya atilan
ve Levi graflar ya da ¢akisim (incidence) graflari olarak adlandirilan iki kiimeli graflar
projektif geometride bir konfigiirasyonda noktalar ve dogrular arasinda ¢akisim modeli
olarak kullanilmaktadir. Bu sayede lineer uzaylar ile iki kiimeli graflar arasinda bazi 6nemli
iliskiler elde edilmistir. H. M. Mulder(Mulder, 1979) tarafindan (0, \)— graflar1 ortaya

atilarak n-kiiplerle ilgili ¢alismalar yapilmistir. Daha sonraki yillarda A.E. Brouwer ve



H.M. Mulder(Brouwer ve Mulder, [1997), (0,2)— graflarinin diigim baglihigi iizerine
caligmalar yapmislardir. A.E. Brouwer(Brouwer, 2006) tarafindan agikligi en ¢ok 7 olan
(0,2)— graflarin smiflandiriimasi verilmistir. Benzer mahiyette galisma P. R. J. Ostergard
ve A.E. Brouwer(Brouwer ve Ostergdrd, 2009) tarafindan agikligi en gok 8 olan (0,2)—

graflarin siniflandirilmasi yapilmistir.

Daha sonraki siiregte 1. Giinaltili ve A. Ulukan(Ulukan, 2012) tarafindan iki kiimeli
bitisik graflarin temel Ozellikleri incelenerek bu graflardan bazilarmmin c¢aplarina gore
siniflandirmas1  yapilmistir. Benzer sekildeki calismalar 1. Giinaltili (Giinaltili, 2013)
tarafindan sonlu regiiler {0, 1}— bigraflar, I.Giinaltil1, S. Olgun ve A.Ulukan (Gunaltili vd.,
2013) tarafindan sonlu (0, 1)— graflarin baz1 6zellikleri konularinda ¢aligmalar yapilarak iki
kiimeli (0,1)— graflarinin bazilari igin smiflandirmalar yapilarak 6nemli sonuglar elde

edilmistir.



3. TEMEL KAVRAMLAR

Bu béliimde tezde kullanilan temel tanim ve kavramlarla birlikte tez i¢in gerekli bazi
teoremler verilecektir. Burada verilen kavram, teorem ve teorem ispatlariyla ilgili detayl

bilgiye belirtilen kaynaklardan ulasilabilir.

Tamm 3.1. V # () ve k € Z" icin V kiimesinin k elemanli alt kiimelerinin ailesi [V " ile
gosterilsin. 'V diigiimlerinin kiimesi, E ayritlarimin(kenarlarin) kiimesi, ¢ iizerinde bulunma
bagintisi ve V N E = 0 olmak iizere, ¢ :E — [V]' U [V]* bagntist bir fonksiyonsa G =
(V, E, ¢) iigliisiine bir “graf * denir ve kisaca G = (V, F) seklinde gosterilir.(Giiney, 2005)

Bu tanimdan anlagilacagi gibi ayritlar diigiimlerin birli ya da ikili alt kiimeleri ile
eslesir. Bir grafin diiglim sayis1; |V| ve ayrit sayisy; |E| seklinde gosterilir ve bir G grafinin
digiim sayis1 ve kenar sayisi sonlu (|[V| < o ve |E| < o) ise sonlu graf denir. Ayrica,
e = {vy, vo} kenari kolaylik olmasi agisindan e = vy vy seklinde gosterilecektir. Buradaki v,

ve vy diigiimlerine e ayritinin ug diigiimleri denir. (Vasudev, 2006)

Tanim 3.2. G = (V, E) bir graf olmak iizere G grafimin herhangi iki diigiimii arasinda
birden fazla kenar varsa bu kenarlara kath kenarlar denir. Eger bir G = (V, E) grafinda ug

diigtimleri ayni olan bir kenar varsa, bu kenara ilmek(loop) denir. (Vasudev, 2006)

Tamm 3.3. G = (V, E) bir graf olmak iizere G grafi katli kenar ve ilmek bulundurmuyorsa
G grafina basit graf denir. Ilmek bulunduran graflara yalanci graf (pseudo graph), kath
kenar bulunduran graflara ise ¢oklu graf (multigraph) denir. (Vasudev, 20006)

Ornek 3.1. Sekil 3.1 de basit graf, coklu graf ve pseudo grafla ilgili 6rnekler verilmistir.

Bagit Graf Coklu Graf Pseudugraf

Sekil 3.1 Ayritlarina Gore Graf Cesitleri



Bu durumda yukarida bahsi gecen basit graf tanimi, V' adina diigiimler denilen
elemanlardan olusan bostan farkli bir kiime ve E adina ayritlar denilen, her biri farkl iki
diiglim ¢iftini birlestiren elemanlardan olusan diger bir kiimenin olusturdugu bir sirali ikili
olarak verilebilir.

Bu tezdeki tiim graflar basit graf olarak alinmustir.

Tamm 3.4. G = (V, E) bir graf ve vi,vy € V(G) olmak iizere vivy € E(G) ise vy ve
vy ye komsu diigiimler denir. Aksi halde yani vivy ¢ E(G) ise v1 ve vy ye komsu olmayan
diigiimler denir. (West, 2005)

v € V diigiimii igin
Nw)={u:ueVvevue E(G)}
kiimesine v diigiimiiniin komsulugunda bulunan diigiimler kiimesi ve bu kiimenin

elemanlarina da v diigiimiiniin komsular: denir.

Ayrica p,q € V olmak iizere hem p hem q ile komsu olan diigiimlerin kiimesine p ve
q diigiimlerinin ortak komsulugu denir ve C' N (p, q) seklinde gosterilir. p ve q diigiimlerinin
ortak komsuluklarimin sayisi; | CN(p, q) | ya da kisaca en(p, q) seklinde gosterilir.

Tamm 3.5. Bir grafta ortak diigiime sahip olan kenarlara bitisik kenarlar denir. Ayrica
herhangi bir G = (V| F) grafi igin v € V diigiimiinii iizerinde bulunan kenar sayisina v
diigtimiintin derecesi denir ve d(v) ile gosterilir Bir grafin derecesi en kiigiik olan
diigtimiine minumum dereceli diigiim denir ve bir G grafintn minumum dereceli
diigiimiiniin derecesi 0(G) ile gosteriliv. Bir grafin derecesi en biiyiik olan diigiimiine
maksimum dereceli diigiim denir ve bir G grafimin maksimum dereceli diigiimiiniin
derecesi A(G) ile gosterilir. (West, 2005)

Tamm 3.6. G = (V| E) bir graf olsun. v € V i¢in d(v) = 0 ise v ye izole diigiim, u € V
i¢in d(u) = 1 ise u ya sarkik diigiim denir.

Tamm 3.7. G = (V| E) bir graf olmak iizere G grafinda biitiin diigiimlerin dereceleri esit
ise bu grafa diizenli(regular) graf denir. Eger Vv € V icin d(v) = r ise grafa r-diizenli
(r-regular) graf denir. (West, 2005)

Tanim 3.8. G = (V, E) bir graf olmak iizere G nin biitiin farkl diigiim ¢iftleri komsu ise G
ve tam graf denir. n diigiimlii tam graf K, ile gosterilir. (Vasudev, 2006)

Tamm 3.9. G = (V, E) bir grafve v; € V ve e; = v;_1v; € E olmak iizere u = vy — e —
V] —€g— . — Vi1 — € — Uy — ... — Up_1 — €, — U, = v) sonlu dizisine bir u — v dolasist denir.
Bir u — v dolasisinda uw = v ise kapali dolasi aksi halde agik dolagt denir. Bu dolasidaki

kenar sayisina u — v dolagimin uzunlugu denir. (West, 2005)



Tamm 3.10. G = (V, E) bir graf ve u — v bu grafa ait bir dolasi olsun. Eger bu dolasida
hi¢chir kenar tekrar etmiyorsa bu dolasiya gezi, hi¢hir diigiim tekrar etmiyorsa bu dolasiya
yol adi verilir. u ve v diigiimii arast yol P(u,v) ile gosterir. Ayrica P(u,v) = P(v,u) dir.
Bir P(u,v) yolunun uzunlugu bu yola ait ayrit sayisidwr ve kisaca | P(u,v) | ile gosterilir.

Ayrica n uzunluklu bir yol grafi P, ile gosterilir ve n + 1 diigiim igerir. (West, 2005)

Tamm 3.11. G = (V| E) bir graf ve P(u,v) bu grafa ait bir yol olsun. Eger u — v yolu

kapali(u = v) ise bu yola ¢evre denir. n uzunluklu bir ¢cevre C,, ile gosterilir.

Tamim 3.12. Herhangi bir G grafina ait ¢evrelerden minumum uzunluklu ¢evrenin

uzunluguna G grafimin girti denir ve girt(G) ile gosterilir. (West, 2005)

Tamim 3.13. G = (V| E) bir graf olsun. Eger her bir u,v € V diigiim ¢ifti i¢cin P(u,v) yolu
varsa G grafina bagh(baglantily) graf denir. (West, 20035)

Tamm 3.14. G = (V, E) bir graf olsun. Eger G grafimin her bir ayritini iceren kapali gezi
varsa bu grafa Euler graf ve bu geziye ise Euler gezi denir. (West, 2005)

Teorem 3.1. G = (V, E) bagh bir graf olsun. G nin Euler graf olmast i¢in gerek ve yeter
kosul G nin tiim diigiimlerinin derecesinin ¢ift olmasidir. (West, 2005)

Tamm 3.15. G = (V| E) bagh bir graf olsun. G, 2 — reguler ise G ye ¢evre graf denir.
(Vasudev, 2006)

Tanmim 3.16. G = (V| E) ¢evre icermeyen bagl bir grafise G ye agag¢ denir. (West, 2005)

Tamm 3.17. G = (V, E) bir bagh graf olsun. G grafina ait P(u, v) yollarinin uzunluklarinin
minimumuna u ve v diigtimleri arasindaki uzaklik denir ve d(u,v) notasyonu ile gosterilir.
(West, 2003)

Teorem 3.2. G = (V| E) baglh bir graf,

d:VxV =N

(u,v) = d(u,v)

fonksiyonu V kiimesindeki herhangi iki diigiim arasindaki uzaklik olmak iizere d, G iizerine

bir metriktir.

Ispat. G = (V, E) bagh bir graf ve d, V nin iki diigiimii arasindaki yollarin minumum

uzakligi olmak iizere, Yu,v,w € V i¢in
i. d(u,v) > 0ved(u,v) =0iseu=nw.

ii. d(u,v) = d(v,u)



i, d(u,v) < d(u,w) + d(w, v)

oldugundan dolay: d fonksiyonu G iizerinde bir metriktir.

Tamm 3.18. G = (V, E) bagl bir graf olsun. u € V igin,
e(u) = max{d(u,v) :v eV}
degerine u diigiimiiniin agikligi denir. (West, 2005)

Tamm 3.19. G = (V, E) grafinda minumum ag¢iklik degerine G nin yarigcapi denir ve rad(G)
ile gosterilir. Maksimum agiklik degerine ise G nin ¢api denir ve diam(G) ile gosterilir. (West,
2005)

Tamm 3.20. G = (V, E) bir graf olsun. Eger V kiimesi V1,Vo, C V, ViUV, = V ve
Vi NV, = 0 olmak iizere G grafin her bir kenarinin ug diigiimlerinden biri Vi kiimesinde,
diger diigiimii ise V, kiimesinde olacak sekilde iki alt diigiim kiimesine ayrilabiliyorsa bu
grafa iki kiimeli(bipartite) graf denir. |Vi| = m ve |V,| = n ise bu graf G, , ile gosterilir.
Eger V1 kiimesinin her bir diigiimii V5 nin tiim diigiimleriyle ayrit belirtiyorsa benzer sekilde
Va kiimesinin her bir diigiimii V nin tiim diigiimleriyle ayrit belirtiyorsa bu grafa iki kiimeli

tam graf denir ve K, ,, ile gosterilir.

Teorem 3.3. G bir graf olmak iizere G nin iki kiimeli olmasi igin gerek ve yeter sart tek

uzunluklu ¢evre icermemesidir. (Asratian vd., 1998).

Tanim 3.21. P noktalar kiimesi ve L dogrular kiimesi olmak iizere asagidaki aksiyomlart
saglayan S = (P, L) ikisine bir lineer uzay denir. (Batten, |1997)

L1. Her dogru iizerinde en az iki nokta vardr.

L1. Farkl iki nokta bir tek dogru iizerindedir.

Tanim 3.22. P noktalar kiimesi ve L dogrular kiimesi olmak iizere asagidaki aksiyomlart

saglayan S = (P, L) lineer uzayina afin diizlem denir.(Kaya, 20035)

Al. Bir dogrunun disindaki bir noktadan gegen ve bu dogruya paralel olan bir tek

dogru vardir.

A2. Dogrudas olmayan ii¢ nokta vardir.

Tanim 3.23. P noktalar kiimesi ve L dogrular kiimesi olmak iizere asagidaki aksiyomlart

saglayan S = (P, L) lineer uzayimna bir projektif diizlem denir.(Kaya, 2005)



PI. Herhangi iki dogrunun en az bir ortak noktasi vardir.

P2. Herhangi ii¢ii dogrudas olmayan dért nokta vardur.

Tamim 3.24. S =(P, L, o) herhangi bir geometrik yapi olsun. V=PULve E = {{p,(} : poP}
olmak iizere G pargalart P ve L olan iki kiimeli graftir. Bu grafa S =(P, L, o) geometrik
vapisinin ¢cakisim grafi (incidence graph) denir. (Levi, 1942).
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4. LINEER GRAFLAR

Bu boliimde tezin ana konusu olan lineer graflar tanimlanarak bu graflarin temel
ozellikleri ve graf parametreleriyle(uzakliklari, bagliliklari, girtleri, ¢ap ve regiilerlik) ilgili
onemli sonuglar elde edilmistir. Lineer graflarin bazi yasaklanmis alt graflar1 belirlenerek,
lineer graf olan ¢evre graflar1 karakterize edilmistir. Ayrica tam graflardan lineer graf elde
edilmistir. Baglant1 sayis1 tanimlanarak bu kavramla ilgili 6nemli sonuglar verilmistir. Son
olarak da lineer graflarin simiflandirmasi yapilarak 6nemli kavram ve iliskiler ortaya

cikarilmistir.

Iki kiimeli sonlu bir grafin parcalarindan birine ait herhangi iki diigiimiiniin ortak
komsulugunun sayist 1 ise bu grafa lineer graf denir. Bu caligmada lineer graflar
G = (£ U Z, E) notasyonu ile gosterilecek ve kolaylik olmasi agisindan &2 pargasindan
alman herhangi iki diiglimiin ortak komsulugunun sayisit 1 olarak alinacaktir. Ayrica bu

caligmadaki tiim graflar basit graftir.

Tanmmm 4.1. G, & ve L par¢alarindan olusan herhangi iki kiimeli sonlu graf olmak iizere,
LG1.Vz,y € P vex #yicin |[CN(x,y)| = cen(z,y) =1
LG2.5(G) > 2

sartlarimi sagliyorsa G ye iki kiimeli lineer graf veya kisaca lineer graf denir.

Ornek 4.1. Sekil de verilen graf tek uzunluklu ¢evre icermediginden Teorem [3.3 den
dolayt iki kiimelidir. Bu durumda & = {vy,vs,v5} ve L = {vo,v4,v6} iki kiimeli olarak
yazilirsa, en(vy, v3) = {ve},en(vy, vs) = {ve} ve en(vs, vs) = {v4} oldugundan LG1 ve her

bir v; € V(Cs) igin d(v;) = 2 oldugundan LG2 saglanir. Dolayisiyla Cy bir lineer graftir.

U6 '[73

Vs Vs

Sekil 4.1 Cg bir lineer graf modeli
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Lemma4.1. G = (£ U %, E) bir lineer grafise izole ve sarkik diigiim i¢ermez.

Ispat. Tamimdan dolay: izole diigiimiin derecesi sifir ve sarkik diigiimiin derececi 1 dir. LG2

den dolayi lineer graflar izole ve sarkik diigiim i¢ermez.
Lemma4.2. G = (£ U %, E) bir lineer grafise G tek uzunluklu ¢evre icermez.

ispat. Lineer graflar iki kiimeli graf oldugundan Teorem B.3 dolay: tek uzunluklu cevre

icermez.

Aksi belirtilmedikge kolaylik olmasi agisindan &7 pargasina ait diiglimler,
p,q,v,... gibi ki¢iik harflerle, .# pargasina ait digimler, K, L, M,... gibi biiyiik
harflerle gosterilecektir.

Lemma 4.3. G = (£ U %, FE) lineer graf olmak iizere K #+ L olacak sekilde herhangi
K,L e Ziginen(K,L) <1.

Ispat. G = (P U %, E) lineer graf olsun. Kabul edelim ki K # L olacak sekildeki
K, L € Zven > 2igin ecn(K, L) > n olsun. Bu durumda {p1,ps,...,pn} € CN(L, K)
olacak sekilde birbirinden farklt pi,ps,....,p, € £ diigiimleri vardw. i # j igin
pi,p; € Ap1,D2,...,pn} olsun. Bu durumda {K,L} C CN(p;,p;) dir Boylece
en(pi,p;) > 2 dir. Bu ise LG ile gelisir. Dolayisiyla kabuliimiiz yanhstir. O halde
en(K, L) < 1dir.

Lemma 4.4. G = (£ U 2, E) lineer graf olmak iizere, her bir p € & ve L € £ diigiim
¢ifti i¢in en(p, L) = 0.

Ispat. G = (2 U 2, E) lineer graf olsun. Kabul edelim ki herhangi bir p € & ve L € £
icin cn(p, L) > 1 olsun. O halde en az bir x € C'N (p, L) diigiimii vardir ki x € N(p) C £
ver € N(L) C Z dir. Budurumda & N L # ) dir. Bu ise G nin iki kiimeli graf olmasu ile
¢elisir. O halde kabuliimiiz yanlistir. Boylece cn(p, L) = 0 dir.

Sonuc¢ 4.1. G = (P UYL, E) bir lineer graf olmak iizere, birbirinden farkli herhangi z,y €
V(Q) igin cn(z,y) € {0,1}.

Ispat. G = (2 U .2, E) bir lineer graf olmak iizere, birbirinden farkli v,y € V(G) igin ii¢
farkly durum vardir.
1. durum. x,y € & ise LGI den dolayi en(z,y) = 1.

2. durum. v,y € £ ise Lemma W.3 den dolayr cn(z,y) < 1.

3. durum. x € &P vey € L icin Lemma .4 den dolayi cn(x,y) = 0.
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Baylece her x,y € V(G) ve x # y igin cn(x,y) = {0, 1} dir.
Teorem 4.1. G = (2 U %, E) bir lineer grafise Cy icermez.

Ispat. G = (2 U %, E) bir lineer graf olsun. Kabul edelim ki G grafi, p—x —q—y —p
seklinde dort uzunluklu bir ¢evre icersin. Lineer graflar iki kiimeli oldugundan p € & ya da
p € Z dir. Dolaysiyla iki durum vardw.

1. durum. p € & ise G iki kiimeli oldugundan v € £, q € & vey € £ dir. Bu durumda,
p,q € Zicin{x,y} C N(p) ve{x,y} C N(q) oldugundan cn(p,q) > 2 dir. Bu ise LG1 ile
celisir.

2. durum. p € £ ise G iki kiimeli oldugundan v € &, q € £ vey € & dir. Bu durumda,
p,q € ZLicin{x,y} C N(p) ve {x,y} C N(q) oldugundan cn(p,q) > 2 dir. Bu ise Lemma
ile celisir.

Dolayisiyla kabuliimiiz yanhstir. Boylece G, Cy icermez.
Sonu¢ 4.2. G = (£ UL, E) bir lineer grafise iki kiimeli tam graf degildir.

Ispat. G = (2U.Z, E) bir lineer graf olsun. Kabul edelim ki G = K., ,, olsun. Bu durumda,

i. n = 1veyam = 1 olmas: durumunda G' = K, ; yada G = K, ,,, olur. Bu durumda
Lemma ile ¢eligir. Dolayisiyla G # K, 1 ve G # K1 .

ii. n,m > 2 olmast durumunda G = K, ,,, olur ki bu durum Teorem ile geligir.

Baoylece (i) ve (ii) den dolay: G iki kiimeli tam graf degildir.

Teorem 4.2. K, bir tam grafve n > 3 olacak sekilde bir tamsay: olmak iizere K,, nin (¢capraz
kesisme noktalart harig) her bir ayritina birer diigiim eklenilerek olusturulan genigletilmis
graf G olsun. G (n— 1, 2)—biregiiler lineer graftir. (Burada ¢apraz kesisme noktalari diigiim

olarak alinmamaktadir.)

Ispat. K, bir tam graf olsun. Bu durumda N'p;, p; € V(K,,) vei # j i¢in pip; € E(K,,) dir.
Her bir ayritana birer diigiim ilave edilsin ve e = p;p; ayritina eklenen diigiim L;; olsun. Bu
durumda d(p;, p;) = pi — Lij — p; olacagindan CN (p;, pj) = {Li;} olup cn(p;, p;) = 1 dir.
Di, p; diigiimlerinin se¢imi keyfi oldugundan Vp;,p; € V (K, i¢in en(p;, p;) = 1 dir.

pi € V(K,) ig¢in d(p;) = n — 1 dir n > 3 oldugundan dolay §(p;) > 2 dir. Ayrica yeni
eklenen her bir L;; diigiimii i¢cin N(L;;) = {pi,p;} oldugudan d(L;;) = 2 dir. Dolayisiyla
LG2 saglanr.

n > 3icin K,, grafimin tek uzunluklu ¢evre icerdigi aciktir. Bu durumda herhangi bir Cyy,_1 €
K, i¢cin Cop_1 : p1 — P2 — p3 — *++ — Po—1 — p1 ve k € Z™" olsun. Her bir ayrita bir diigiim
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eklenirse; Cy—g : p1—Lio—pa—Lag—p3—---— L(2k72)(2k71) —D2k—1 _L(2k71)1 —p1 seklinde
¢ift uzunluklu bir ¢evreye doniisiir. Coi,_1 ¢evresi keyfi oldugundan K, tam grafindaki tek
uzunluklu gevreler K, tam grafimin genisletilmesi ile olusturulan G grafinda ¢ift uzunluklu
cevrelere doniigiir. Dolayisiyla G grafi tek uzunluklu cevre icermediginden Teorem 3.3 den
dolayt iki kiimelidir.

Burada her bir p; € V(K,,) icin d(p;) = n — 1, her bir L;; € £ i¢in d(L;;) = 2 ve
V = P UL oldugundan dolay1 G (n — 1, 2)—biregiiler lineer grafiwr.

Ornek 4.2. Sekil K, tam grafi ve Teorem de bahsedildigi sekliyle K, tin diigiim

genislemesiyle elde edilen graf modeli verilmistir.

551 P2 P1 Lz P2

P3 Py P3 L34 Pa

Sekil 4.2 K4 ve K, iin diigiim genislemesiyle olusan graf modeli

Sekil Y.3 de K, tam grafindan diigiim genislemesiyle olusan graf modelinin iki kiimeli olacak

sekilde diizenlenmistir.

P1 P2 P3 P4

Lis Lz Lia Lo Loy L3y

Sekil 4.3 K, iin diigiim genislemesinin iki kiimeli temsili
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Lemma 4.5. G = (£ U %, FE) bir lineer grafise
i.Vp,qg € Pvep#qicind(p,q) =2,
VLK e Lvel # Kigind(L,K) € {2,4} ve
iii. Vp € P veVL € L icind(p,L) € {1,3}

dir.

Ispat. i. G bir lineer graf olsun. G iki kiimeli bir graf oldugundan p,q € P ve p # q i¢gin
pq ¢ E(G) dir. Bu durumda d(p,q) # 1 dir. LGI den dolay1 Np,q € & ve p # q igin
CN(p,q) = {L} olacak sekilde L. € £ diigiimii vardw. O halde p — L — q yolu p ve q
diigtimleri arasindaki en kisa yol oldugundan d(p, q) = 2 dir.

ii. G bir lineer graf olsun. Bu durumda G iki kiimeli bir graf oldugundan L, K € £ ve
K # Lic¢in LK ¢ E(G) dir. Bu durumda d(L, K) # 1. Ayrica Lemma W.3 dan dolay: her
LK € Ziginen(L, K) € {0,1} dir.

L durum. cn(L, K) = 1lise CN(L, K) = {p} olacak sekilde p € & vardw. Bu durumunda
L —p— K yolu L ve K diigiimleri arasindaki en kisa yol oldugundan d(L, K) = 2 dir.

2. durum. en(L, K) = Oise d(L, K) # 2 ve lineer graflar iki kiimeli oldugundan d(L, K') #
3 dir. LG2 den dolay1 {p,q} C N(L) ve {r,s} C N(K) olacak sekilde p.q,r,s € &
diigiimleri vardir. en(L, K) = 0 oldugundan p # r, p # s, ¢ # r, ¢ # s dir. LG den
dolay1 CN (p,r) = { M} olacak sekilde M € £ diigiimii vardir. L = M olmast durumunda
en(L, K) = {r} dir. Buise cn(L, K') = 0 olmasu ile ¢elisir. Dolayisiyla L # M dir. Benzer
sekilde K # M dir. Bu durumda L ile K arasindaki en kisa yol L — p — M — r — K yolu
olup d(L, K) = 4 tiir.

iii. p € P ve L € L icin iki durum vardur.
1. durum. p € N(L) ise d(p, L) = 1 dir.

2. durum.p ¢ N(L)ised(L,K) # 1ved(L, K) # 2 dir. LG1 den dolayt CN (p,q) = {M}
olacak sekilde q € & ve M € £ diigiimleri vardir. Lemma den dolayr en(K, L) <
{0,1} dir. Eger en(L, M) = 1 ise CN(L, M) = {r} olacak sekilde r € & diigiimii vardir
ve p— M —r— Lyolu pile L arasindaki en kisa yol olup d(p, L) = 3 dir. Eger cn(L, M) = 0
ise LG2 den dolay1 N(L) = {x, y} olacak sekilde x,y € & diigiimleri vardw. cn(L, M) =0
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oldugundan dolayr x #+ p, v # q, y # pvey # q diir. LG den dolay1 p,x € & igin
CN(p,z) = {K} olacak sekilde K € £ diigiimii vardir. en(L, M) = 0 oldugundan K # L
ve K # M dir. O halde p ile L arasindaki en kisa yol p — K — x — L olup d(p, L) = 3 tiir.

Teorem 43. G = (V,E) bir lineer graf olmak iizere her x,y € V(G) igin
d(z,y) € {0,1,2,3,4}.

Ispat. G = (V, E) bir lineer graf olsun. Bu durumda x,y € V(G) i¢in x = y olmast
durumunda d(z,y) = d(z,z) = 0dw x,y € V(G) igin x # y ise Lemma ¥.5 den dolay
d(z,y) € {1,2,3,4}.

Ornek 4.3. Sekil deki graf modeli goz dniine alimrsa &7 parcasindaki p, ve po
arasindaki minumun uzaklikli yol, py — L1s — py oldugundan d(p,,p2) = 2 dir. Diger
diigiimler arasindaki uzakliklarda benzer sekilde hesaplanabili. £ parcasindaki
en(Lyg, L) = 1 oldugundan minumum uzaklikli yol, Lo — py — L3 oldugudan
d(L1s, L13) = 2 ve en(Lqs, Lsy) = 0 oldugundan bu diigiimler arast minumum uzaklikli yol,
L1y — p1 — Ly — p3 — L3y oldugudan d(L2, Lsy) = 4 tiir. Diger diigiim ¢iftleri arasindaki
uzaklikta benzer sekilde bulunabilir. Diigiimlerden biri &7 par¢asina digeri £ par¢asina
ait olmast durumda p, ile Lis arasindaki minumum uzunluklu yol p, — Ly oldugundan
d(p1, L12) = 1 dir. py ile Loz arasindaki minumum uzunluklu yol py — Lis — py — Log
oldugundan d(p,, Le3) = 3 tiir. Diger diigiim c¢iftleri arsindaki uzakliklar benzer sekilde

hesaplanabilir.
Teorem 4.4. G = (V| E) bir lineer graf olmak iizere, G bagh graftir.

Ispat. G = (V, E) bir lineer graf olsun. Teorem den dolayr her x,y € V(G) igin
d(xz,y) € {0,1,2,3,4} dir Bu durumda, G grafimin herhangi farkli x ve y diigiimleri
arasinda 1 < |P(x,y)| < 4 olacak sekilde P(x,y) € G yolu vardir. O halde G grafi
baghdr.

Teorem 4.5. G = (P U Z, E) bir lineer olmak iizere, G en az bir C igerir.

Ispat. G = (2 U %, E) bir lineer graf olsun. p € & i¢cin LG2 den dolay1 L, K € N(p)
ve L # K olacak sekilde L, K € £ diigiimleri vardir. Benzer sekilde LG2 den dolayr q €
N(L) ver € N(K) olacak sekilde q,r € & diigiimii vardir ve ¢ # p ve r # p dir. Eger
q = rise{p,q} € CN(L,K) dir. Bu ise Teorem ile ¢elisir. O halde q # r dir. LG1
den dolay1 CN(p,r) = {N} olacak sekilde bir tek N € £ diigiimii vardir N = L ise
{p,r} € CN(L, K) dir. Bu ise Lemma ile ¢elisir. O halde N #+ L dir. Benzer sekilde
N # K dw. Béylece G,Cs :p— L —q— N —r — K — p olacak sekilde en az bir Cy icerir.

Sonu¢ 4.3. G = (P U %, E) bir lineer grafise agag¢ degildir.

Ispat. Teorem {.3 ve aga¢ tanimdan ispat agiktir.
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Teorem 4.6. G = (V, E) bir lineer graf olmak iizere, girt(G) = 6.

Ispat. Kabul edelim ki girt(G) < 6 olsun. Bu durumda,

1. durum. qirt(G) € {1,3,5} olmasi halinde Lemma W.2 ile ¢elisir. O halde girt(G) ¢
{1,3,5).

2. durum. girt(G) = 2 olmasi halinde G grafi katli ayrit icerir. Bu ise lineer graflarin basit
graf olmaswyla ¢elisir. O halde girt(G) # 2.

3. durum. qgirt(G) = 4 olmasi halinde G grafi Cy i¢erir. Bu ise Teorem Y. 1 ile ¢eliseceginden
dolayr girtG +# 4.
Baylece girt(G) ¢ {1,2,3,4,5} dir. Teorem .3 goz oniine alimirsa girt(G) = 6 dur.

Sonu¢ 4.4. G = (V, E) bir lineer graf olmak iizere, cn(p,q,r) = 0 olacak sekilde &
pargasina ait en az ti¢ diigiim ve cn(L, K, M) = 0 olacak sekilde £ par¢asina ait en az ii¢

diigtim vardir.

Ispat. G = (V, E) bir lineer graf olsun. Teorem den dolay1 G grafi Cs : p — L — q —
K —r — M — p olacak sekilde en az bir Cy icerir. Teorem den dolay1 p,q,v € & ve
L, K, M € £ diigiimleri igin cn(p,q,r) = 0ve en(K, L, M) = 0 dir.

Ornek 4.4. Sekil deki graf modeli goz oniine alinirsa vy, v3,v5 € & ve vy, vy, € L

i¢in en(vy, vs, vs) = 0 ve en(vy, vy, v6) = 0 dir:

Teorem 4.7. G bir ¢evre graf olsun. G nin lineer graf olmasi icin gerek ve yeter kosul G = Cy

olmasidir.

Ispat. G bir cevre graf olmak iizere kabul edelim ki G = Cg olsun. O halde G lineer graftir.
(Ornek 4.1'de C min lineer graf oldugu gésterilmistir.)

Tersine, kabul edelim ki G bir lineer graf ve G # Cg olsun. Lemma 4.2 dolayt lineer
graflar tek uzunluklu cevre icermezler. Bu durumda G ¢evre grafi oldugundan k > 4 icin
G = Oy, dir. O halde G, uy — vy —uz — vy — - - - — U(2p—1) — V(2k) — U1 Seklinde yazilabilir. G,
iki kiimeli olacak sekilde yazilirsa, & = {uy,us, ..., ug_1} ve L = {9, vy, ..., Vox } Olur.
k > 4 oldugundan | & |> 4 ve | £ |> 4 tiir. O halde birbirinden farkl u;, w;,u, v, € &
diigiimleri vardir. LG1 den dolayr CN (u;,u;) = {vi;}, ON(u;, ug) = {vir.}, CON(w;, up) =
{vit} olacak sekilde v;j, vy, vy € £ diigiimleri vardir. vi; = vy, ise {u;, uj, up} C N(v;;)
olur ki bu durumda d(v;;) > 3 dir. Bu ise G nin ¢evre grafi olmasiyla celisir. O halde v;; # vy,
dir. Benzer sekilde v;; # vy, vij # Vi dir. Bu durumda, {v;;, vy, vie} C N(u;) dir. O halde
d(u;) > 3 dir. Bu ise G nin gevre grafi olmasuyla ¢elisir. Dolayisiyla kabuliimiiz yanlhstir. G
cevre grafi lineer grafise G = Cy dir.
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Lemma 4.6. G = (2 U %, E) bir lineer graf olmak iizere,

Ly 21021
2
dir.

Ispat. G = (22 U %, E) bir lineer graf olsun. LG1 den dolay1 & parcasina ait herhangi
farkly iki diigiim £ par¢asina ait bir diigiim belirtir ve &7 parcasina ait farkll diigiim

¢iftlerinin £ parcasina ait ayni diigtimii belirtme ihtimali oldugundan dolayi,

,$‘§<|@|>:|9|.<|@|—1>

2 2
dir.

Ornek 4.5. Sekil deki lineer graf modelinde | £ |= 3 ve % = % = 3 nir

; i1k i indeall r 21.021-1) _ 76 _
Benzer sekilde, Sekil deki lineer graf modelinde ise | £ |= T ve '=~—— = 76 =21
dir.

Lemma4.7. G = (£ U %, E) bir lineer graf olmak iizere
L. Vpe Picin|L| > d(p)
i.VL € Zigin |.£| > d(L)

dir.

Ispat. i. G = (2U.Z, E) bir lineer grafve p € & icin d(p) = n olsun. LG2 den dolayi n >
2 dir. Bu durumda N(p) = {L1, Lo, ..., L, } olacak sekilde Ly, Lo, ..., L, € £ diigiimleri
vardir. LG2 den dolayr i,1 < i < nigin p; € N(L;) olacak sekilde p; # p ve p; € &
diigiimii vardir. Benzer sekilde LG2 den dolayi L # L; ve L € N (p;) olacak sekilde L € £
diigiimii vardw. L € N(p) ise {L;, L} C C'N(p, p;) olur. Bu ise LG1 ile ¢elisir. Dolayisiyla
L ¢ N(p) dir. Béylece {Ly, Ls,...,L,, L} C £ oldugundan dolayi |.Z| > n + 1 dir. p
diigtimiiniin se¢imi keyfi oldugundan her bir p € & icin | £ |> d(p) dir.

ii. G = (PUL, E) birlineer grafve L € L icin d(L) = n olsun. LG2 den dolayin > 2 dir.
Bu durumda N (L) = {p1,ps,...,pn} olacak sekilde py,ps, ...,p, € & diigiimleri vardwr.
LG2dendolayi her biri,1 < i < nvep; € N(L) iginoyle bir L; € £ diigiimii vardw ki L; €
N(pi)ve L; # Ldir. 1 <i,j <nvelL; Lj € N(p;) igin L; = L;j ise {L, L;} C CN(p;, p;)
dir. Bu ise LG1 ile ¢elisir. O halde L; # L; dir. {L1, Lo, ..., Ly, L} C £ oldugundan dolay
| £ |> n+ 1dir. L diigiimiin se¢imi keyfi oldugundan her bir L € £ i¢in | £ |> d(L) dir.
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Sonu¢ 4.5. G = (£ UL, E) bir lineer graf olmak iizere
L. Vpe Pigin || > d(p)

i. VL € L i¢in || > d(L) dir.

Ispat. i. Ispat Lemma (i) nin ispatina benzer sekilde yapilabilir.

ii. G = (P UL, E) bir lineer graf ve L € £ i¢in d(L) = n olsun. LG2 den
dolayt n. > 2 dir. Bu durumda N (L) = {p1, pa, ..., pn} olacak sekilde p1,ps, ... ,p, € &
diigiimleri vardir. LG2 den dolay1 p; € N(L) i¢in K # L ve K € N(p;) olacak sekilde en
az bir K € % vardw. Benzer sekilde LG2 den dolayr q # p; ve ¢ € N(K) olacak sekilde

q € P digiimii vardwr. ¢ € N(L) ise {p;,q} C CN(K, L) dir. Bu ise Lemma {.3 ile ¢elisir.
O halde q ¢ N (L) dir. O halde | & |> n + 1 dir. Boylece her bir L € £ i¢in | & |> d(L).

Sonu¢ 4.6. G = (V, E) bir lineer graf olmak iizere
. VL € Zicinp ¢ N(L) olacak sekilde en az bir p € & vardir.

ii. Vp € & icin L ¢ N(p) olacak sekilde en az bir L € £ vardwr.

Ispat. Lemma ve Sonug den ispat agiktir.

Teorem 4.8. G = (£ U 2L, E) bir lineer graf olmak iizere
i. rad(G) =3
ii. diam(G) € {3,4}
dir.
Ispat. G = (2 U .2, E) bir lineer graf olsun. Sonu¢ 4.6 den dolayr en az bir p ¢ N(L) ve
en az bir L ¢ N (p) olacak sekilde p € & ve L € £ vardwr. Lemma {.3 den dolayn,

rad(G) = min{e(u)} = min{maz{d(u,v) :v € V(G)}} =3

diam(G) = max{e(u)} = max{max{d(u,v):v € V(G)}} € {3,4}.

Ornek 4.6. Sekil .1 deki lineer graf modeli icin e(v,) = e(vy) = e(vs3) = e(vy) = e(vs) =
e(vg) = 3 oldugundan rad(G) = diam(G) = 3. Sekil Y.3 deki lineer graf modeli i¢in
e(p1) = e(p2) = elps) = e(ps) = 3ve e(Liz) = e(Li3) = e(Lia) = e(L2s) = e(Lag) =
e(Lsy) = 4 oldugundan rad(G) = 3 ve diam(G) = 4.
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Teorem 4.9. G = (P U %, E) bir lineer graf olmak iizere p ¢ N (L) olacak sekilde p € &
ve L € £ i¢in

d(p) > d(L)
dir.
ispat. G = (P UL, E) bir lineer graf olsun. Sonu¢ §.q den dolayi p ¢ N (L) olacak sekilde
p € Pvel € L diigiimleri vardw: d(L) = n olsun. LG2 den dolayi n > 2 dir. Bu durumda,
i,1 < i <mnigin N(L) = {p1,p2, ..., pn} olacak sekilde p; € & diigiimleri vardw. Ayrica
LG1 den dolayr her bir p; diigiimii i¢cin CN (p, p;) = {L;} olacak sekilde L; € £ diigiimleri
vardir. Her bir i i¢in p € N(L;) oldugundan L; # L dir. L;,L; € {Ly, Lo, ..., L,} i¢in
L; = Ljise{L,L;} C CN(p;,p,) dir. Buise LGI ile ¢elisir. O halde L; # L; dir. Béylece
{L1, Lo, ..., L,} € N(p) dir. Burada iki durum vardur.

1. durum. q # p olacak sekilde her bir ¢ € & icin q € N(L) olsun. Kabul edelim ki
d(p) > n + 1 olsun. Bu durumda 1,1 < i < nig¢in K # L; olacak sekilde en az bir
K € N(p) diigiimii vardir. p ¢ N (L) oldugundan dolay1 K # L dir. ¢ # p olacak sekilde her
bir q € & igin q € N(L) oldugundan & = {p,p1,ps,.-.,Di,---,Dn} dir. LG2 den dolay
r # p olacak sekilde r € N(K) diigiimii vardir. r # pve P = {p,p1,P2, - Dir--+>Pn}
oldugundan dolayr herhangi bir i i¢in v = p; dir. Bu durumda CN (p, p;) = {L;, K} dir. Bu
ise LG1 ile ¢elisir. O halde kabuliimiiz yanlstir. Béylece

d(p) =| N(p) |=n 4.1
dir.

2. durum. s # p olacak sekilde en az bir s € & i¢in s ¢ N(L) olsun. LGI den dolay:
CN(p,s) = {K} olacak sekilde K € £ vardw. Bu durumda,

(@i, 1 <i<ni¢in K=L;ise{Ly,Ls,...,L,} C N(p)dir Budurumda
d(p) =| N(p) |= n (4.2)

dir.

()i, 1 <i<nig¢in K # L;ise {L, Lo, ..., L,, K} C N(p) dir. Bu durumda
d(p) = IN(p)| zn+1 (4.3)
dir. O halde #.1), #.2) ve #.3) den dolay:
d(p) > d(L)

dir.
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Sonu¢ 4.7. G = (P UL, E) bir lineer graf ve maksimumum diigiim derecesi r olmak iizere,

d(p) = r olacak sekilde p € &7 diigiimii vardr.

Ispat. G = (2 U 2, E) bir lineer graf ve maksimum diigiim dercesi r olsun. Kabul edelim
ki her bir p € 2 i¢in d(p) < r — 1 olsun. G grafimin maksimumum diigiim derecesi r
oldugundan en az bir L € & icin d(L) = r dir. Sonug Y.d den dolay1 ¢ ¢ N(L) olacak
sekilde q¢ € & vardw. Kabuliimiizden dolayr d(q) < r — 1 dir. Bu ise Teorem .9 ile celisir
Dolayisiyla en az bir p € &2 igin d(p) = r dir.

Teorem 4.10. G = (& U Z, E) bir lineer grafve p € & olmak iizere,
7= |J NL
L;eN(p)

dir.

Ispat. = € UrL.eng IV (L:) olsun. Budurumda 3L; € N(p) iginx € N(L;) dir. N(L;) € &
oldugundan dolay1 x € & dir. Béylece,
U ~yzycoz (4.4)
L;eN(p)
dir. ¢ € &P ve q # polsun. LG1 den dolayi CN (p, q) = {L;} olacak sekilde L; € £ diigiimii
vardir. ¢ € N(L;) ve L; € N(p) oldugundan q € ULEN o N(L;) dir: O halde,

P C U (4.5)

L,eN(p

dir. Boylece (H.4) ve #.5) den dolay
7= |J NL
L;eN(p)

elde edilir.

Teorem 4.11. G = (£ U %, E) bir lineer grafve p € & olsun. L; € N (p) diigiimleri i¢in

d(p)

| 2| —1=> (d(L) - 1)

=1

dir.

Ispat. G = (2UYZ, E) bir lineer graf olsun. LG2 den dolayrp € & icind(p) =| N(p) |> 2
dir. Bu durumda her bir i,1 < i < d(p) icin N(p) = {L1, Lo, ..., Lagy)} olacak sekilde
L; € £ diigiimleri vardw. Teorem .10 den dolay: | & |=| U,, engy V(Li) | dir. Her
bir L;, L; € N(p) ve L; # L; i¢in N(L;) N N(L;) = {p} dir. Bu durumda & — {p} de
N(L;) N N(L;) = 0 dir. Boylece p diigiimii hari¢, L; € N (p) igin

d(p)

| 2| —1=> (d(L:;) - 1)

=1

dir.
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Ornek 4.7. Sekil .4 deki lineer graf modeli icin | 2 | —1 = 8 dir. p; € P i¢in

d(p1)
D (d(Li) = 1) =d(Ly) = 1+ d(Ly) — L+ d(L;) —1+d(Le) —1=2+2+2+2=8

Sekil4.4 G = (2 U 2, E)

Sonu¢ 4.8. G = (P UL, E) bir lineer graf ve p € & olmak iizere her bir i,1 < i < d(p)
olacak sekilde L; € N (p) diigiimleri icin d(L;) = rise | & | —1 =d(p).(r — 1) dir.

Ispat. G = (2 U.Z, E) bir lineer graf olsun. L; € N(p) olacak sekildep € & ve L; € &
i¢in d(L;) = r olsun. Teorem den dolayt
d(p)

|2 -1=3(r-1)

i=1

dir. Boylece
| 2| —1=d(p).(r —1)

elde edilir.

Bu kisimda art arda verilen iki sonucun ispat1 Teorem ve Teorem ispatlarina

benzer sekildedir.

Sonu¢ 4.9. G = (£ U 2L, E) bir lineer graf ve birbirinden farkli her L, K € £ igin
en(L, K) = 1 olsun. p; € N(L) olacak sekilde L; € £ ve L € L igin

<= J Nm)

pi€N(L)

dir.



22

Sonu¢ 4.10. G = (£ U 2, E) bir lineer graf ve birbirinden farkli her L, K € £ i¢in
en(L, K) = 1 olsun. p; € N(L) olacak sekilde L € £ ve p; € & igin

| Z-1= ) (dp)-1)

pi€N(L)
dir.

Lemma 4.8. G = (£ U 2, E) bir lineer graf olsun. Eger £ par¢ast s — reguler ise
_ |2]-1

—— olmak iizere G grafi (r, s) — bireguler dir. Sayet v = s ise G grafi regulerdir.

Ispat. G = (2 U 2, E) bir lineer graf ve £ parcast s — reguler olsun. Bu durumda her
L e ZLigind(L) = s, s >2olacak sekilde s tamsayisi vardir. p € & i¢in Sonug den
dolayt

| Z | =1=d(p).(s =1)

dir. Esitlik diizenlenirse

_ |1 Z]-1
dlp) = ——7

|22|—1
s—1

(r,s) — biregulerdir. r = s olmast durumunda G grafi r—regiiler graf olur.

elde edilir. p nin segimi keyfi oldugundan &7 par¢asi — regulerdir. Boylece G grafi

Teorem 4.12. G = (£ U Z, E) bir lineer graf olsun. L € L igin

|21 (12]|-1) =) (L)L) -1)
Lez
Ispat. G bir lineer graf oldugundan & parcasina ait farkh diigiim cifilerini iki farkl sekilde
sayabiliriz. Birinci sayma yontemi,

(!?I):!c@!-(!é@!—l)

(4.6)

dir. LG1 den dolay1 &7 parcasina ait her bir farkll diigiim ¢iftinin ortak komsulugu &
parcasina ait bir tek diigiim oldugundan dolayi & parcasina ait her bir diigiimiiniin
komgulugundaki farkh diigiim ¢iftlerinin sayilart toplami &P parcasina ait her bir farkl

diigiim c¢iftinin sayisini verir. Bu durumda L € £ i¢in &7 de ortak komsulugu L olan farkl

IN(L)|

5 )Z(d(zL)) dir. Tiim L diigiimleri tizerinden hesaplanirsa;

diigiim ¢iftlerinin sayist, (

5> d(L).(d(r) ~ 1)) @)

Lez



23

dir. (.6) ve {.7) den dolay
|2 (2| -1)=) (d(L).(d(L) - 1)

Ley
dir.

Teorem 4.13. G = (P U L, E) bir lineer graf olsun. p € P i¢in

Y @p)(dp) -1 <[ 2| .(ZL]-1)

peEP

Ispat. G bir lineer graf olsun. Lemma den dolayi £ parcasina ait farkl diigiim
¢iftlerinin ortak komsulugunun sayist sifir ya da 1 dir. Bu durumda £ parcasina ait farkl
diigtim ciftlerini; ortak komsuluklarinin sayisi 0 olanlar ve ortak komsuluklarinin sayisi 1

olanlar seklinde iki kiimeye ayrilabilir. Bu kiimeler,
Aii?/:Lj (Lz, LJ) = {(LZ, LJ) . CTL(LZ‘, LJ) =1ve LZ‘, Lj € g}

A%ﬁéLj (L,L,L]) = {(L“LJ) . cn(Li,Lj) = 0 ve Li; Lj ~ g}

olsun. Bu kiimelerin elemanlar: sayilirken (L;,L;) ve (L;, L;) diigiim ciftleri aym
oldugundan birez kez sayilacaktir £ pargasina ait farkl diigiim c¢iftlerinin ortak

komsulugunun sayisi hem sifir hem de 1 olamayacagindan dolay:

Apisr, (Lis L) OVAY Ly (Liy Ly) = 0

dir. Ayrica £ pargasina ait tiim farkl diigiim ¢iflerinin sayist

Z 1
N =tizi021 @8
2 2
oldugu goz oniine alinirsa
1
| AL, (L L) | 4 | ALy, (Lis L) = 5 1 £ 1 (1 2| =1) (4.9)

dir. p € & olsun. Bu durumda £ par¢asina ait ortak komsulugu p olan diigiim c¢iftlerinin
sayisi, (d(zp )) dir. Bu durumda £ par¢asina ait ortak komsulugunun sayisi 1 olan tiim diigiim

¢iftlerinin sayist tiim p diigiimleri tizerinden hesaplanirsa,



24

| ALsr,(Li, Ly) Z d(p —-1) (4.10)

pEQz

dir. Lemma .3 den dolay | A9 41,(Li, Ly) |= 0dir: O halde M.9), #.10) ve {.8) den dolay

> (dp)-(dp) 1) <| 2| (| £ | -1)
peES
elde edilir.

Ornek 4.8. Sekil 4.4 deki lineer graf goz oniine alimrsa | 2 | (| 2 | —1) = 9.8 = 72 ve

> (d(Li)-(d(Li) = 1) =3.2+32+ -+ +32=T72
L,e?

dir. Ayrica | £ | (| £ | —1) = 12.11 = 132 ve

> (dlpi)(d(p;) — 1) =4.3+43+--- +4.3 =108
PiEZL

dir.
Sonu¢ 4.11. G = (£ U Z, E) bir lineer graf olsun.
AL £L, (Ll, Lj) = {(Ll, Lj) . cn(Li, LJ) =0ve Lz‘, Lj c g}

olmak iizere p € & icin

1
| AL, (L L) = 5 (| £ 1 (1 £ 1 =1) = > dp).(dp) - 1)

peEP

dir. (Burada (L;, L;) ve (L;, L;) aym diigiim ciftleridir.)
ispat. G = (2 U %, E) bir lineer graf olsun. {#.9) esitliginden dolay
1
[ ALisr, (Lo Li) |+ | AL (Lis L) = 5 | £ 1 (1 2| =1)

dir. p € P olmak iizere (#.10) esitligi kullanilirsa

1
| AL, (Lo L) = 5 (| £ 1 (1 £ 1 =1) = > dp).(d(p) = 1)

peP

dir.

Ornek 4.9. Sekil §.3 deki lineer graf modeli incelenirse £ parcasina ait herhangi farkl iki

diigtimiintin ortak komsulugunun sayisi 1 dir. Ayrica

| 2| (| £ -1=54=20
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> d(p).(d(p) — 1) =4.3+21+21+21+21=20

pEZ

dir.

L L, L Ly L

5

Sekil 4.5 Teorem ¢in 6rnek bir lineer graf modeli

Teorem 4.14. G = (P U L, E) bir lineer graf olsun. p € P igin
Yoperd®).(dp) =1) = Z | (| Z | -1) & VL, K € Zigincn(L, K) = 1 dir.

Ispat. G = (£ U Z,E) bir lineer graf olmak iizere kabul edelim ki p € P icin
> per(dp).(dp) —1) = Z | (| £ | —1) olsun. #.9) den dolay
1
[ AL, (L Li) | 4 | AL, (Lis L) = 5 | £ 1 (1 2| =1)

dir. Ayrica £ parg¢asindaki ortak komsulugunun sayist 1 olan farkl diigiim ¢iftlerinin sayusi,
M.10) esitliginden dolay:

| AL, (B 1) = 5 3 dp) (dp) — 1)
peEL

dir. Hipotezden dolay1,
1
[ ALy, (Li L) = 5 1 2 1.(1-2 | =)

elde edilir. Bu durumda,

en(L;, L) = 1 dir.

A%#LJ_(Li, L;) |= 0dw: DolayisiylaN'L;, L; € £ ve L; # L; i¢in

Tersine, kabul edelim ki VL;, L; € £ ve L; # Lj; i¢in cn(L;, Lj) = 1 olsun. Bu
durumda,

dir: Boylece (H.9) den dolay:

1
[ AL, (Lo L) = 5 1 2 (12| =1)
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dir. Ayrica
1 1
| ALﬁéLj(Liv L;) |= B) Z d(p).(d(p) — 1)
peES
oldugundan dolay:
Y @p)dp) -1 = Z|.(Z]|-1)
peEP
dir.

Lemma 4.9. G = (£ U %, E) bir lineer graf olmak iizere,

Y dp) =) dL)

peES Ley

Ispat. G = (2 U .2, E) bir lineer graf olsun. Bu durumda lineer graflarin ayrit sayinin iki

farkli sekilde sayabiliriz. Ilk olarak ayrit sayisim & parcasi iizerinden sayarsak,

| E =) d(p) (4.11)

peES

dir. ikinci olarak ayrit sayisimi £ parc¢asi iizerinden sayarsak,

|E|=) d(L) (4.12)

Lez

dir. ve den dolay1
> dlp) =) d(L)

peES Ley

dir.
Teorem 4.15. G = (£ U 2, E) bir lineer graf olmak iizere | £ |>| & | dir.

Ispat. G = (2 U %, E) bir lineer graf olsun. Kabul edelim ki | £ |<| P | olsun. L € &
i¢in LG2 den dolay1 d(L) > 2 dir. Bu durumda

d(L).| 2 |>d(L).| & |

—d(L). | Z |< —d(L). | Z |
| Z 2| =dl). [ Z|<|Z].|Z]-dL). | Z|
(2112 —dL) <|.Z | (| 2| —d(L))
dir. Lemma W.7 dan dolayi | £ | —d(L) > 0 ve | £ |> 0 oldugundan dolay,

| 2| ~d(L) | 2]
[ Z1-dI) " [Z)

(4.13)
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elde edilir. Burada herhangi bir p ve L diigiimii i¢in

1,pe N(L)
n(p, L) =
0,p¢ N(L)
olsun. Bu durumda
> nlp, L) =d(p) (4.14)
LeZ
ve
> n(p,L)=d(L) (4.15)
pES
dir. Ayrica
| 2= 1ve| L |=) 1 (4.16)
peES Lez
oldugundan {.14) esitligi kullanilirsa
| Z [ —dp) =) _(1=n(p.L) (4.17)
Le#

elde edilir. Lemma den dolayr | £ | —d(p) > 0 oldugu goz éniine alimrsa, #.16) ve

den dolay,

| £ | —d(p)
|9|=I§m Z<Z|$|_ ) (4.18)

c¥ \LeZ

elde edilir. Ayrica,

L—n(p, L) _ 1-np,L)
| Z | —=d(p) ~ | £ | —d(L)

(4.19)

esitsizligi hem p € N(L) hem de p ¢ N(L) ise Teorem 4.9 dan dolayt d(p) > d(L)
oldugundan yazilabiliv. Bu durumda, 4.13), (4.18) ve #.19) kullanmilirsa

|@|=Z(Z )) Z(Z‘g,_ ) Y 7T

peES Le,f peP \Le¥ Le,iﬂpe}

| 2 | —d(L) | P |
- P T oA A

LeZ ,2’

dir. Budurumda | & |>| P | ¢eliskisi ortaya ¢ikar. O halde kabuliimiiz yanligtir. Dolayisiyla,
| L |> | 2| dir.
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Ornek 4.10. Sekil 4.3 deki lineer graf modeli goz oniine almirsa | 2 |= 4ve | £ |= 6
oldugundan | £ |>| & | dwr:

Sekil 4.q deki grafmodeli 2 = {py, ps, p3s, ps} ve L = {L1, Ly, Ls, Ly} olmak iizere
G = (L UL, FE) bir lineer graft. Bu grafta | & |=| £ |= 4 nir.

Py
3

Sekil 4.6 Bir lineer graf modeli

Lemma 4.10. G = (£ U %, E) bir lineer graf olmak iizere
| Z |=| & |< p ¢ N(L) olacak sekilde p € & ve L € £ diigiimleri i¢in d(p) = d(L)
dir.
Ispat. G = (2 U %, E) bir lineer graf ve | £ |=| & | olsun. Teorem W.9 dan dolay
p & N(L) olacak sekilde p € & ve L € £ diigiimleri igin
d(p) > d(L) (4.20)
dir. Bu durumda
0 <d(p) —d(L)
| Z | = | 2 |<d(p) —d(L)

| Z | —d(p) <| Z | —d(L) (4.21)
elde edilir. Lemma W.7 ve Sonug¢ Y.5 den dolayr | £ | —d(p) > Ove | & | —d(L) > 0 dir.
Bu durumda (#.20) ve den dolayt

dp)  _  d(D)
[Z]~dlp) ~ [ 7] ~d(L)

elde edilir.

) ) aw
2W=2\ > t7i-am ) 2\ 2 T —an | T 2

peES pe? \L¢N(p LeZ \p¢N(L peEP
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oldugundan Lemma W.9 goz oniine alinirsa

dp) _d(L)
[ Z1-dp)  [2]-d(L)

dir. Hipotezden dolay1 | & |=| £ | oldugundan dolayr d(p) = d(L) dir.

Tersine G = (P U 2L, E) bir lineer graf ve p ¢ N (L) olacak sekilde p € & ve
L € & diigiimleri igin d(p) = d(L) olsun. Teorem den dolay1 | £ |>| & | dir. Bu
durumda,

0<[Z| -2
dip) —d(L)<| ZL |- | Z |

| 2| =d(p) 2| & | —d(L) (4.22)

elde edilir. LG2 den dolayr 6(G) > 2 ve hipotezden dolayr d(p) = d(L) oldugundan dolay:
esitsizliginden
Ay _ d)
| Z [ —d(p) ~ | Z | =d(L)

elde edilir.
) d(p) aw
2 40 =2, pg;(mwwd(p) <2 L%pg%—d(m 2 d(0)

oldugundan Lemma Y.9 goz oniine alinirsa

dp) d(L)
[ Z1-dlp)  [2]-d(D)

dir. Hipotezden d(p) = d(L) oldugu goz oniine alimwrsa | & |=| £ | dir.

Lemma 4.11. G = (£ U 2, E) bir lineer graf olsun. p ¢ N (L) olacak sekilde p € & ve
L € & diigiimleri i¢in

dlp) =d(L) < VK,H € £ ve K # H i¢in cn(K,H) =1
dir.

Ispat. G = (2 U %, E) bir lineer graf ve p ¢ N(L) olacak sekilde p € &P ve L € £
diigiimleri igcin d(p) = d(L) olsun. Kabul edelim ki K,H € ¥ ve K # H igin
en(K,H) = 0 olsun. Bu durumda LG2 den dolayi d(K) > 2 oldugundan
N(K) =A{p1,p2, .- -+ Di,- -, Pa(i) } olacak sekilde py,pa, . ... pi,...,pak) € P diigiimleri
vardir. LG2 den dolayr ¢ € N(H) vardw ki en(K, H) = 0 oldugundan q ¢ N(K) dir.
Dolayisiyla q # p; dir. LG1 den dolayt her bir i,1 < i < d(K) i¢cin CN(q,p;) = {L;}
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olacak sekilde bir tek L; € £ diigiimleri vardir. ¢ € N(L;) ve ¢ ¢ N(K) oldugundan
L, # K dr p, € N(L;) ve p, ¢ N(H) oldugundan L; # H dir Ayrica
g1 < j#i < d(K)igin L; = L; olmasi durumunda CN (p;,p;) = {K, L;} dir. Bu ise
LG1I ile ¢elisir. O halde L; # L; dir. Bu durumda {L:, L, ..., Lyr),H} C N(q) ve
dolayisiyla d(q) > d(K) + 1 dir. Boylece q ¢ N(K) igin d(q) > d(K) elde edilir. Bu
durum hipotezle ¢elisir. O halde kabiiliimiiz yanlistir Boylece VK, H € £ ve K # H i¢in
en(K, H) = 1dir

Tersine, G = (£ U L, E) bir lineer graf ve VK, H € £ ve K # H i¢in cn(K,H) = 1
olsun. Kabul edelim ki p ¢ N (L) olacak sekilde p € & ve L € £ diigiimleri i¢in d(p) >
d(L) olsun. LG2 den dolayr d(L) > 2 dir. Bu durumda N(L) = {p1,p2,...,paw)} olacak
sekilde birbirinden farkli p\,ps,...,par) € & diigiimleri vardi. LG1 den dolay: her bir
i,1 < i < d(L) i¢in CN(p,p;) = {L;} olacak sekilde bir tek L, € £ diigiimleri vardr.
p ¢ N(L)vep € N(L;) oldugudan L; # L dir. Ayrica j,1 < j # i < d(L) i¢in L; = L;
ise CN(pi,pj) = {L,L;} dir. Bu ise LG ile ¢elisir. O halde L, # L; dir. Bu durumda
{L1, Ly, ..., Loy} € N(p) dir. Kabuliimiizden dolay d(p) > d(L) oldugundan dolay:
AK € N(p) vardwr ki her biri,1 < i < d(L)igin K # L;dir. Ayrica K € N(p)ve L ¢ N(p)
oldugundan K # L dir. Hipotezden dolayt en(K, L) = 1 oldugundan CN(K, L) = {q}
olacak sekilde q € & diigiimii vardw:. ¢ € N(L) oldugundan j € {1,2,... d(L)} igin
q = p; dir. Bu durumda CN (p,q) = {K, L;} dir. K # L, oldugundan bu durum LGI ile
gelisir. O halde kabuliimiiz yanhstir. Dolayisiyla d(p) < d(L) dir. Ayrica Teorem den
dolayr d(p) > d(L) oldugundan d(p) = d(L) dir.

Teorem 4.16. G = (£ U 2, E) bir lineer graf olmak iizere,

| Z |=|Z | VK, He Lve K# H igincn(K.H) =1
dir.
Ispat. Lemma ve Lemma den elde edilir.

Ornek 4.11. Sekil 4.6 deki lineer graf modeli i¢in | & |=| £ |= 4 ve ON(Ly, Ly) = {p1},
CN(Ly,Ls) = {p1}, ON(L1,Ls) = {ps}, ON(Ls, L) = {p1}, ON(Lz, Ls) = {p2},
CN(Ls, Ly) = {ps} oldugundan & pargasina ait tim diigiimlerin ortak komsuluklarinin

sayist 1 dir.

Lemma 4.12. G = (2 U %2, E) bir lineer grafve r > 2, r € Z olmak iizere VL € £ igin
d(L) € {r,r 4+ 1} olsun. Z£.(N(p))={L:Le N(p)ved(L)=r} ve
2 1(N(p)) ={L:L e N(p)ved(L) =r+ 1} olmak iizere

| Z(N(p)) |=rd(p)— | P | +1
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ve
| (N (p) |= A =r)d(p)+ | 2| -1

dir.

Ispat. G = (22 U %, E) bir lineer graf olmak iizere her L € £ i¢in d(L) € {r,r + 1}

olsun. & parc¢asina ait herhangi bir p diigiimiiniin komgulugunda £ parcasina ait

| Z.(N(p)) | tane r dereceli ve | Z,.1(N(p)) | tane (r + 1) dereceli diigiim olsun. Bu

durumda p diigiimiiniin komsulugundaki diigiimlerin derecesi r ya da r + 1 oldugundan
| Z.(N(p) | + | Z1(N(p)) [= d(p) (4.23)

vazilabilir. Teorem den dolayt

’

| 2| —1= E (d(L)—1)+ E (d(L)-1) (4.24)
LEN(p) L'eN(p)
d(L)=r d(L/):rz-l

dir. p nin komsulugunda derecesi r olan | £.(N(p)) | tane ve derecesi v + 1 olan
| Z1(N(p)) | tane diigiim oldugundan Sonug 4.8 den dolay:

| Z | 1= Z(N(p) | .(r =D+ [ ZLa(N(p) | -1 (4.25)
elde edilir. (4.23) ve (#.23) birlikte degerlendirilirse
| Z.(N(p)) |=rd(p)—| 2| +1
| Za(N(p)) = (1 —r)dp)+ | 2| -1
dir.

Teorem 4.17. G = (£ U L, E) bir lineer graf ve r > 2, r € Z olmak iizere her L € £
icind(L) € {r,r + 1} olsun. p € & i¢in

wgd(p)gw

T r—1

dir.

Ispat. G = (2 U 2, E) bir lineer graf ve VL € £ i¢in d(L) € {r,r + 1} olsun. &£
parcasina ait her bir diigiimiin derecesi en ¢ok r + 1 oldugu goézéniine alinirsa, Sonug
den dolay1p € & igin max | & | = r.d(p) + 1 dir. Bu durumda

rd(p) +1>| 2| (4.26)

Benzer sekilde £ par¢asina ait her bir diigiimiin derecesi en az r oldugu gézoniine alinirsa,
Sonug¢ Y.§ den dolayi p € & i¢inmin| & | = (r — 1).d(p) + 1 dir. Bu durumda

(r—1)dp)+1<| 2| (4.27)
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dir. Boylece (#.26) ve esitsizliklerinden

wgd(p)gw

r r—1

elde edilir.

Sonu¢ 4.12. G = (P U 2L, E) bir lineer graf ve r > 2, r € 7 olmak iizere her L € £ i¢in
d(L) € {r,r + 1} ve & parcast k — regular olsun. £ par¢asina ait sirasiyla derecesi r ve

derecesi v + 1 olan toplam diigiim sayist | £, | ve | £, | olmak iizere,
r| L=l 2| (rk= | 2 [ +1)

ve

r+ D)L=l Z[(A=rk=|Z]-1)
dir.
Ispat. G = (2 U %, E) bir lineer graf, her bir L € £ icin d(L) € {r,r + 1} ve P
pargast k — regular olsun. Lemma den dolayr her bir p € & diigiimiinii igin
| £.(N(p)) |=rk—| £ | +1 dir. Bu durumda derecesi r olan £ parg¢asina ait herhangi

bir diigiimiin komsulunda &7 par¢asina ait r tane diigiim oldugundan, & par¢asinin tiim

diigiimleri iizerinden hesaplanirsa,

| 2| k= Z | +1)

| Z |: ,
Benzer sekilde
|2 0=k |2]-1)
| o |- o
dir.

Teorem 4.18. G = (£ U %, E) bir lineer graf, & par¢asina ait herhangi p diigtimiiniin
komsulugunda derecesi n — 1 olan diigiim sayisi; | £,—1(N(p)) |, derecesi n olan diigiim
Z1(N(p) |> 1, | ZL.(N(p)) |> 1veher L € £ igin
d(L) € {n — 1,n} olsun. 2 pargasi (n + 1)—regiiler ise | & |€ {n* — n,n?* — 1} dir.

sayist; | £, (N(p)) | olmak iizere,

Ispat. G = (2 U %, E) bir lineer graf, her L € £ i¢ind(L) € {n — 1,n} ve & parcasi
(n+ 1) — regular olsun. Teorem den dolayt

wgd(p)gw

n—1 n—2

dir. Esitsizlik yeniden diizenlenirse

n*—n-1<| 2|<n? (4.28)
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elde edilir. Vp € & i¢in d(p) = n + 1 oldugundan Lemma den dolayi
| Zu(N(p) |=n*= | Z |ve| Za(N(p) |= —n* +n+ 1+ | 2 | (4.29)
dir. | Z,—1(N(p)) |> 1ve| Z.(N(p)) |> 1 oldugundan dolay
| 2 |#n*—n—1 (4.30)

ve

| P |# n? (4.31)

dir. O halde 4.28), 4.30) ve (4.31) den dolay

n?—-n<| Z|<n? -1

dir. Kabul edelim kin> —n +1 <| & |< n? — 2 olsun. 2 < m < n — 1 olacak sekilde m ve
n tamsayilart i¢in | & |= n® — m yazilabilir. Her bir p € 2 i¢in d(p) = n + 1 ve her bir
L e Zigind(L) € {n —1,n} oldugundan dolay:

| L0 a(N() | + | Zu(N(p)) [=n+1

dir. #.29) gozoniine alimrsa | £,_1(N(p)) |= mve | Z(N(p)) |= n+ 1 — m elde edilir
Sonug den dolay

n| %, |=m*=m).n+1-—m)ve(n—1)| %1 |=n*—m)m

elde edilir. Bu durumda

m? —m

j— — 2 _—e—_—
|2 |2 Lo |+ | L= 0 n =

seklinde yazilabilir. Fakat m < n oldugundan 0 < 21_((7;:__11)) < 1 olur. Bu durumda | £ |=
n2+n—% ¢ Zolup | & |€ Zolmast ile ¢elisir. O halde kabuliimiiz yanlistir. Dolayisiyla

| 2 |€ {n? —n,n*— 1} dir
Lemma 4.13. ¢ = (¥ U Z,E) bir lineer graf ve L € £ igin
AYL) ={K :cen(L,K) = 1ve K € £} olmak iizere

ALy = |J N —{L})
peEN(L)
dir.
Ispat. G = (2 U 2, E) bir lineer graf olsun. LG2 den dolay: lineer grafin minumum
derecesi 2 oldugundan A'(L) # 0 dir K € A'(L) olsun. cn(K,L) = 1 oldugundan
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CN(K, L) = {q} olacak sekilde bir tek ¢ € & diigiimii vardir. Bu durumda g € N(L) ve
K € N(q) oldugundan K € \J ¢ y(1,(N(p) — {L}) dir. Béylece

A c |J W) - {2 (432)
pEN(L)
dir. M € U ey (N(p) — {L}) olsun. Bu durumda p € N(L) icin M € (N(p) — {L}) dir.
p € N(M) oldugundan {p} C CN (M, L) dir. Lemma W.3 den dolayt CN (M, L) = {p} dir.
Bu durumda M € A'(L) dir. Boylece

U (N —{L}) € A'(L) (433)
dir. ve (#.33) den dolaylpeN(L)
AY(L) = %JL (N(p) —{L})
. pEN(L)

Sonu¢ 4.13. G = (£ U Z,FE) bir lineer graf olsun. Herhangi bir L € £ icin
AYL) ={K : en(L,K) = 1 ve K € £} olmak iizere,

AN L) |= ) (dp) —1)

pEN(L)

dir.

Ispat. Birbirinden farkl herhangip,q € N(L) i¢in N(p) N\ N(q) = {L} oldugundan dolay:
(N(p) —{L}) N (N(q) — {L}) = 0 dir. Lemma den dolay

ALy =l [ W) —{L) = ) (dp) - 1)

peN(L) peEN(L)

dir.

Sonu¢ 4.14. G = (P U Y, E) bir lineer graf ve & parcasi r — reguler olsun. L € £ i¢in
AYL) ={K : en(L,K) = 1 ve K € £} olmak iizere

| ANL) |= (r = 1)d(L)
dir.
Ispat. Sonu¢ dan ispat agiktir.

Sonu¢ 4.15. ¢ = (£ U ZL,E) bir lineer graf ve L € £ igin
AYL)={K:K # L,en(L,K) = 0ve K € £} olmak iizere,
| ANL) =l £ ~1= > (d(p) —1)
pEN(L)

dir.
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Ispat. G = (2 U2, E) bir lineer graf olsun. Lemma {3 den dolay1 L € £ ve her K € &
icin en(L, K) € {0, 1} oldugundan L diigiimii harig,

| AYL) [+ AYL) = 2| -1 (4.34)

dir. Sonug den dolayr | A'(L) |= > pen(ny(d(p) — 1) dir: Bu esitlik #.34) de yerine
yvazilirsa
A =l 2| -1- Y () - 1)
peN(L)

elde edilir:

Teorem 4.19. G = (&£ U L, E) bir lineer graf olsun. & par¢asi (n + 1) — reguler ve
en(L;, Lj) = 1 olacak sekilde L;, L; € £ i¢in
AL, L) ={K : en(K, L;) = 0veen(K, L;) =0, K € £} olmak iizere,

| ALy, L) |=| £ | =2 —d(Li)n — d(Lj)n +n — 1+ (d(L;) — 1)(1 — d(L;))
dir.

Ispat. G = (2 U %, E) bir lineer graf, L;,L; € £ i¢in cn(L;, L;) = 1 ve & parcasi
(n + 1)—regiiler olsun. Sonug den dolayr | A*(L;) |= n.d(L;) ve | AY(L;) |= n.d(L;)
dir. en(L;, L;) = 1 oldugundan ecn(L;, L;) = {p} olacak sekilde bir tek p € & diigiimii
vardir. O halde L;, L; diigiimleri ile ortak komsulugu p olan diigiimlerin sayisi d(p) — 2 =
n — Ldir. N(L;) = {p,p1,p2, ---» Pa)-1} ve N(Lj) = {p,q1, @, ..., qaz, -1} olsun. LGI
den dolayr her bir p; € N(L;) — {p} ve her bir q; € N(L;) — {p} icin CN(p;, q;) = {Li;}
olacak sekilde bir tek L;; € £ diigiimii vardir. 1 < i,r < d(L;)—1,1<j s <d(L;)—1ve
(i,7) # (1, s) olmak iizere L;; = L, ise CN(q;,qs) = {Lj, Li;} dir. Buise LG1 ile ¢elisir. O
halde L;; # L, dir. Bu durumda hem L; hem de L; ile ortak komsulugunun sayisi 1 olan ve p
diigiimiiniin komsulugunda olmayan diigiimlerin sayisi; (d(L;) —1).(d(L;) — 1) dir. Béylece

| AY(Li, Ly) |=| £ | =2 = d(Li)n — d(Lj)n +n — 1+ (d(L;) — 1)(d(L:) — 1)
dir.

Teorem 4.20. G = (&£ U £, E) bir lineer graf, & par¢ast (n + 1) — reguler, | £ |=
n®+n+1— z ve birbirinden farkl L1, Ly, Ly € £ diigiimleriyle ortak komsulugunun sayist
stfir olacak sekilde n — 1 dereceli en az bir L € £ diigiimiiniine sahip bir lineer graf olsun.
Eger Ly, Lo, Ly ikiserli ortak komsuluklarimin sayisi 1 ve d(L;) =n+1—d;, (j = 1,2,3)
ise

n <dy.dy+di.ds+ds.ds —dy —dy —d3z — 2
dir.



36

Ispat. G = (2 U Z,E), teoremde verilen kosullart saglayan bir lineer graf ve
AYL)={K:en(L,K)=0ve K € ¥}  olsun.  Sonug dan  dolay
| ANL) |=| L | -1—(n*—n)=2n—2z dir A%L) — {L;} kiimesinin L; ile ortak
komsulugunun sayist 1 olan diigiimlerinin kiimesi Ajl olsun. L; nin komsulugunda bulunan
her bir diigiim L ile ortak komsulugun sayisi sifir olan iki diigiimiin komsulugundadir.
Bunlardan biri L; diigiimii oldugundan | A; |= d(L;) = n+ 1 —d; dir. j # k icin
A%(L) — (Aj U Ay) kiimesinin her diigiimii L; ve Ly, ile ortak komsulugunun sayisu sifirdir.
L; ve Ly, ile ortak komsulugunun sayisi sifir olan £ parcasina ait tiim diigiimlerin sayisi

Teorem den dolay1

dir. L diigiimiiniin L; ve Ly ile ortak komsulugunun sayisi sifir oldugundan ayrica A°(L)
kiimesi disinda L den baska diigiimlerinde L; ve Ly, ile ortak komsulugunun sayisi sifir

olabileceginden
| A°(L) | — | AJU A, |> djudy — 2 — 1

dir.
| AN A =l A T+ Al = TAJUAL S| AS |+ | AL L= [ AYL) | +djde — 2 — 1

elde edilir. Buradan
| ATUAUA 2] AL T+ A T+ A [ — [ AN A | — AN Ay | — [ AN A |

Z 3n — dl.dg — dl.dg — dg.dg + dl + dz + d3

dir. Ayrica j € {1,2,3} i¢in A; € A°(L) ve | A°(L) |= 2n — z oldugundan
3n — dl.dg — dl.dg — dz.d3 + dl + d2 + dg S 2n —z
dir.

Ornek 4.12. Sekil 4.7 da verilen graf modeli goz oniine alimirsa,

L = L12, Ll = L34, Lg = L35, L3 = L45 olmak L'izere, n = 3, z = 3, d(L) = 2, dl = 2,
dy = 2, d3 = 2 dir. Bu durumda,

3<22422422-2-2-2-3

dir. Farkli L, Ly, Lo, L3 secimleri igin benzer sekilde yapilabilir.
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P1 D2 P3 Pa s

L1z Lys Lis Lyis Ly Lys Lys Lay Lis Lys

Sekil 4.7 Teorem .20 deki parametrelere sahip lineer graf modeli

Teorem 4.21. G = (£ U Z, E) bir lineer graf, & parcasi (n + 1) — reguler, | & |=
n*+n+1—sve| Z|=n*+n+1olsun.

sayist olmak iizere,

| £, > s.(n+2—s)

dir. Esitligin gecerli olmasi i¢in gerek ve yeter kosul £ parcasindaki her diigiimiiniin derecesi

n — 1, n veyan + 1 olmasidir.

Ispat. G = (2 U 2, E), Teoremdeki kosullar saglayan bir lineer graf olsun. Teorem
dan dolay

|2 .(|2]-1)=> dL) —1) (4.35)
Les
dir. Lemma $.9 den dolay:
Y dL)=> dp)=| Z|.(n+1) (4.36)
Le® peEL

dir. (4.33) ve [#.36) den dolay
Y (n+1—d(L).(n—1—d(L) =s.(s—2—n)

LeZ

esitligi saglanir. Ayrica

(n+1—d(L)).(n—1—-4d(L)) + Z (n+1—d(L)).(n—1—-d(L))
d(L)#n
seklinde yazilabilir. Bu durumda

> (nt+1-dL).(n—-1-d(L)=-|2,]

d(L)=n
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dir. Boylece

d (n+1—dL).(n—1—dL)+| L= Y (n+1-d(L)).(n—1—d(L))

Le¥ d(L)#n

dir. Teorem 4.9 den dolayi n + 1 = d(p) > d(L) oldugundan

0< Y (n+1-d(L).(n—1-d(L))=s(s—2—-n)+| .2, |
d(L)#n

— [ L <) (n+1=d(L)).(n—1-d(L))

LeZ
| L |>s.(n+2—5)

elde edilir. Sayet | £, |= s.(n +2 — s) ise

Y (nt+1—d(L).(n—1-d(L)=s(s—2—n)+| L |=0
d(L)#£YZ

dir. Boylece £ parcasina ait sadece n + 1, n ve n — 1 dereceli diigiimler bulunur.
Tersine d(L) € {n — 1,n,n + 1} ise | £, |= s.(—s + 2 + n) dir.

Ornek 4.13. Sekil 4.8'de verilen graf modeli goz oniine alinmirsa, | £, |1=6,s=2,n=3
ve her bir L € £ i¢in d(L) € {2,3,4} dir. Teorem §.21]'daki esitsizlikte yerine yazilirsa

6>2(3+2-2)

dir.

/2
N\~

Y

77 O
AN
\O
0
(7R
R

N
XA
X
/\
X

>
S

N
N,
X}

;?

>

———

Sekil 4.8 Teorem B.21"daki parametrelere sahip lineer graf modeli
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Tamm 4.2. G = (P UL, E) bir lineer graf ve u,v € V(G) olmak iizere u ve v arasindaki

minimun uzunluklu yollarin sayisina baglant: sayisi denir ve c(u, v) seklinde gosterilir.

Lemma 4.14. G = (£ U %2, E) bir lineer graf olmak iizere

Lp,q€ Picinp# qisec(p,q) =1
ii. p € N(L) olacak sekilde p € & ve L € L i¢in c(p,L) =1

dir.

Ispat. G = (2 U %, E) bir lineer graf olsun.

i.p,q € Picinp # qolsun. Teorem .4 den dolayr G bagl graf oldugundan p ile q arasinda
en az bir yol vardir. O halde c(p,q) > 1 dir. Kabul edelim ki c¢(p,q) > 2 olsun. Lemma
den dolay p ile q diigiimleri arasindaki minumum uzunluklu yollarin uzunlugu 2 dir. Bu
durumda p ile q arasinda Py : p — L — qve P; : p— K — q olacak sekilde en az iki farkl: yol
vardir. Py # P oldugundan L # K dir. O halde {L, K} C CN(p,q) olur ki bu durumda
en(p, q) > 2 dir. Bu ise LG1 ile ¢elisir. O halde kabuliimiiz yanligtir. Béylece c(p, q) = 1 dir.

ii. p € N(L) olacak sekilde p € & ve L € £ olsun. Bu durumda pL € E(G) oldugundan
p ile L arasindaki minumum uzunluklu yollarin uzunlugu 1 dir. Eger c¢(p, q) > 2 ise G ¢oklu

ayrit icereceginden lineer grafin tamimu ile ¢elisir. Boylece c(p, q) = 1 dir.

Teorem 4.22. G = (P UYL, E) bir lineer graf olsun. n € Z* olmak iizere p ¢ N (L) olacak
sekilde p € & ve L € £ icin A}V(p)(L) ={K :cn(K,L)=1ve K € N(p)} olsun.

dir.

Ispat. G = (P2 U .2, E) bir lineer grafve p ¢ N(L) olacak sekildep € 2, L € &£ ve
n € Z" igin ¢(p, L) = n olsun. Lemma den dolayt d(p, L) = 3 oldugundan p ile L
arasindaki minumum uzunluklu yollarin uzunlugu 3 tiir. Bu durumda p ile L arasindaki tiim
minimum uzunluklu yollar; her biri,1 < i < ni¢in P;(p,L) : p— K;—q¢;— L ,K; € N(p) ve
¢; € & dir. Burada P;(p, L) : p—K,—q;—Lve Pj(p, L) : p—K;—q;—Lyollarti¢in K; = K;
iken q; # q; olmast durumunda CN(K; = K;, L) = {q;, q;} olur ki bu durum Lemma
ile ¢elisir. Bu durumda, K; = K i¢in q; = q; dir. Benzer sekilde LGI den dolay1 q; = q; ise
K; = K; dir. Ayrica K; # K; iken q; = q; olmast durumunda CN (p, ¢;) = {K;, K;} dir.
Bu ise LG1 ile ¢elisir. O halde K; # K; ise q; # q; dir. Béylece p ile L diigiimii arasindaki
minimum uzunluklu birbirinden farkli her bir yol igin tam olarak bir tek K; € N (p) vardwr
ki en(K;, L) = 1dir. O halde
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| A}V(p)(L) |=n
dir.

Tersine, | A}V(p)(L) |= n olsun. Bu durumda p ile L arasinda her bir i,1 < i <n
icin P; : p — K; — q; — L olacak sekilde n tane yol vardir. Burada p ile L arasindaki farkl 3
uzunluklu her bir yol igin bir tek (K;, q;) ikilisinin var oldugu ve farkl yollar i¢in bu ikililerin
farkli oldugu benzer sekilde gosterilebilir. Lemma@.5 den dolay: p ile L arasindaki minumum

uzunluklu yollarin uzunlugu 3 oldugundan ve baglanti sayisi tanimindan
c(p, L) =n
dir.

Teorem 4.23. G = (& U £, E) bir lineer graf ve p ¢ N(L) olacak sekilde p € & ve
L e Zigin A?V(p)(L)Z{Lj: en(L,L;) =0ve L; € N(p)} olmak iizere

| AR (L) |=d(p) — c(p, L)
dir.

Ispat. G = (£ U 2, E) bir lineer graf ve p ¢ N(L) olacak sekilde p € & ve L € £
olsun. LG2 den dolayr d(p) > 2 dir. Bu durumda her bir i,1 < i < d(p) i¢in N(p) =
{L1, Lo, ..., Ly } olacak sekilde L; € £ diigiimleri vardir.

A}V(p)(L):{Lz’-' cn(L,Li) =1lvel, € N(p)}
olsun. Lemma den dolayr cn(L, L;) € {0,1} dir. Bu durumda
N(p) = ‘A}V(p)([’) U A%(p)(ﬂ)

dir. Ayrica
AN (L) N Ay (L) =0

oldugundan dolay:
| N(p) [=] Ay (L) |+ | Ay (L) |

dir. A}V(p)(L) kiimesinin tanimi ve Teorem den dolay
| N(p) |= c(p, L)+ | A?V(p)<L) |
dir. Ayrica d(p) =| N(p) | oldugundan,
| A?V(p)(L) |=d(p) —c(p, L)

dir.
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Sonu¢ 4.16. G = (£ U %, E) bir lineer graf olsun. p € & ve L € L igin

c(p, L) < d(p)
dir.

Ispat. G = (2 U 2, E) bir lineer graf olsun. p € & ve L € & icin iki durum vardur.

1. durum p € N(L) ise Lemma den dolayr c(p, L) = 1 dir. LG2 den dolay1 d(p) > 2
dir. Boylece

c(p, L) < d(p)
dir.

2. durum p ¢ N(L) ise Teorem den dolayi

c(p, L) < d(p)
dir.

Lemma 4.15. G = (2 U %, E) bir lineer graf ve n € Z*, n > 2 olsun. p ¢ N (L) olacak
sekildep € P ve L € L igin

d(Ly=n<c(p,L)=n

Ispat. G = (ZU.Z, E) bir lineer graf olsun. Kabul edelim ki d(L) = n olsun. Bu durumda
N(L) = {p1,p2, ..., pn} olacak sekilde py,pa,...,p, € & vardir. LGI den dolayt her bir
i,1 < i < nigin CN(p,p;) = {L;} olacak sekilde L; € £ diigiimleri vardw. Herhangi
bir i i¢in L; = L olmasi halinde p ¢ N (L) olmasu ile ¢elisir. O halde L; # L dir. Ayrica
J.1 < j <nvei# jicinp; # p;iken L; = L; olmasi halinde N (L, L;) = {p;,p;} dir. Bu
ise Lemma W.3) ile ¢eliseceginden L; # L; dir. Béylece

|{K: K e N(p)veen(L,K) =1} |=| {L1, Lo, ..., L,} |=n

elde edilir. Teorem den dolayi c(p, L) = n dir.

Tersine kabul edelim ki c¢(p, L) = n olsun. p ¢ N(L) olacak sekilde p € & ve
L € £ icin Teorem den dolayir K € N(p) ve ecn(K,L) = 1 olacak sekilde K
diigiinlerinin sayisi n dir. Bu 6zellikteki diigiimler Ly, Lo, ..., L, olsun. LGI den dolay:r her
biri,1 <i <mnigcin CN(L, L;) = {p;} olacak sekilde p; € & diigiimleri vardir. p ¢ N(L)
oldugundan dolayr p; # pdir' 1 < ¢ # j < nigin L; # L; iken p; = pj ise
CN(L;,L;) = {p,p:} dir. Bu ise Lemma ile ¢elisir. O halde p; # p; dir. Boylece
{p1,p2, .-, pn} C N(L) elde edilir.
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Ispatin tamamlanmast igin ¢ # p; olacak sekilde bir ¢ € N(L) diigiimiiniin olmadig
gosterilmelidir. Kabul edelim ki bu ézellikte bir ¢ € & diigiimii olsun. Bu durumda LGI
sarti geregince CN(p,q) = {M} olacak sekilde M € £ diigiimii vardw: p ¢ N(L)
oldugundan M # L dir M = L; ise CN(p;,q) = {L,L;} dir. Bu ise LG ile ¢elisir. O
halde M # L; dir. Fakat CN(p,q) = {M} ve M # L ve M # L; olacak sekilde M € £
diigiimiintin bulunmast halinde c(p, L) = n + 1 dir. Bu ise hipotezle ¢elisir. Dolayisiyla
q # p; olacak sekilde bir ¢ € N (L) diigiimii yoktur. Bu durumda N (L) = {p1,p2, ..., Pn}
dir. Boylece d(L) = n elde edilir.

Sonu¢ 4.17. G = (P U £, E) bir lineer graf olsun. p ¢ N (L) olacak sekilde p € & ve
L € £ icin
c(p, L) =2

dir.
Ispat. Lemma ve LG2 den dolayt ispat agiktir.

Sonu¢ 4.18. G = (P U Z, E) bir lineer graf olsun. p ¢ N (L) olacak sekilde p € & ve
L e Z icin
c(p, L) = d(p) < d(p) = d(L)
dir.
Ispat. G = (P U .2, E) bir lineer graf olsun. Kabul edelim ki p ¢ N(L) olacak sekilde

pe Pvel € L iginc(p,L) = d(p) olsun. Bu durumda Lemma den dolayr d(L) =
d(p) dir. Tersine d(p) = d(L) olsun. Bu durumda Lemma den dolayi ¢(p, L) = d(p) dir.

Teorem 4.24. G = (P U L, E) bir lineer graf olsun.

i.p¢ N(L)UN(L) olacak sekilde p € P ve L, L € £ diigiimleri varsa
AN (L, L) = {K s en(K, L) = Lve en(K, L) = 0, K € N(p)}
ve
At (L L) = {K s en(K,L) = 0veen(K,L') =1, K € N(p)}

olmak tizere
| Ay (L, L) |= d(L)+ | Ay, (L, L) | —d(L)

dir.
ii. L,L',H € & i¢incn(H,L) = 1vecn(H,L') = 0 olsun. p ¢ N(L)U N(L')

ozellikli herhangi bir p € 2 icin ecn(K,L) = 0, ecn(K, L) = 1 ve en(K, H) = 1 olacak
sekilde en az (d(H) — 1).(d(L") — d(L) + 1) tane K € N (p) diigiimii vardur.
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Ispat. i. Ay (L, L") = {K :cen(K,L) = Lveen(K, L) = 1, K € N(p)} ve Ay, (L) =
{H:en(H,L)=1, H € N(p)} olsun. Bu durumda

| A}\’Tl(p)(Lu L/) |:‘ A}V(p)(L) | - | ALO (Lv L/) ‘

N(p)

dir. Teorem dan dolayr | A}V(p)(L) |= ¢(p, L) oldugundan dolay
| A (L. L) |= c(p, L)— | A (L, L) | (4.37)

dir. Ayrica

AU (L, L) |=| Ay (L) | — | AYL (L,L) |
dir. Bu durumda Teorem dan dolayr | A}V(p)(L') |= c(p, L) oldugundan ve den
dolayr

| A?\}l(p)(La L/) |: C(p7 L/) - (C(pv L)_ | A}\ﬁp)(‘[ﬁ L/) |)

elde edilir. Lemma den dolay1

| ANy (B, L) |= d(LY) = d(L)+ | Ay, (L, L) |
dir.

ii. Hipotezden dolayt cn(H, L") = 0 ve cn(H, L) = 1 dir. Bu durumda, CN(H, L) = {q}
olacak sekilde q € &7 diigiimii vardir. LG2 den dolayt en az bir p € N(H) vardir ki p # q
dir. p # q oldugudan p ¢ N(L) dir. p € N(L') olmast halinde CN(H, L") = {p} dir. Bu ise
hipotezle ¢elisir. O haldep ¢ N (L/) dir. p nin se¢imi keyfi oldugundan p # q olacak sekildeki
her birp € N(H) i¢inp ¢ N(L)U N(L) dir. Ayrica H € A}\}?p)(L, L") oldugundan dolay
A]l\}(gp)(L, L") # 0 dir. Bu durumda | .A}\’,(zp)(L, L) |> 1dir

Her bir p € N(H) — {q} i¢inp ¢ N(L)U N(L), A}\}?p)(L,L’) |> 1 ve (i) den dolay
| ANy (L, L) |> d(L') = d(L) + 1 dir. | N(H) = {q} |= d(H) — 1 oldugundan dolay:
p & N(L)UN(L) olacak sekildep € P icinen(K,L) =0, cn(K,L') = 1veen(K,H) =1
olacak sekilde en az (d(H) — 1).(d(L") — d(L) + 1) tane K € N(p) diigiimii vardur.

Teorem 4.25. G = (£ U L, E) bir lineer graf, L,H € £ vep € N(L) olmak iizere
AL H)={K :cen(K,L)=1vecn(K,H) =0, K € £} olsun.

i.cen(L,H) =0 ise
| AY(LH) |= ) (dp) —d(H) — 1),

pEN(L)

ii. cn(L,H) = 1ise
AL H) = ) (dp) —d(H))

pEN(L)—q
CN(L,H)={q}

dir.
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Ispat. i. G = (2UZ, E) bir lineer graf, L, H € £ vep € N(L)olmakiizere cn(L, H) = 0
olsun. Bu durumda p ¢ N(H) dur. | A?V(p)(H) |={K :en(K,H)=0ve K € N(p)} olmak
tizere Teorem den dolay1

| AN (H) |= dlp) — c(p, H)
dir. Lemma den dolay
| Ay (H) |= d(p) — d(H)

dir. L € .A?V(p)(H) oldugu goz oniine alimwrsa L den farkli her bir K € .A?V(p)(H) i¢in
en(L, K) = 1 dir. L nin komsulugunda bulunan tiim p diigiimleri iizerinden hesaplanirsa, L
diigtimii harig

| AY(L, H) |= ) (d(p) —d(H) = 1)

pEN(L)

dir.

ii. cn(L, H) = 1 olsun. Bu durumda CN (L, H) = {q} olacak sekilde q € & diigiimii vardur.
P —{q} par¢asinda en(L, H) = 0 dir: O halde herhangi bir p € N(L) — {q} diigiimii igin
p & N(H) dir. O halde (i) den dolay:

AL H) = ) (dp) —d(H))

pEN(L)—{q}
CN(L,H)={q}

dir.

Teorem 4.26. G = (P U .2, E) bir lineer graf olsun. 2’ C P, P = P — X ve E =
E—{pL:pc 2, L€ L}olmakiizere L € N(Z)i¢ind(L)— | Z |>2ve| 2" |> 3ise
G = (2" UL E) bir lineer grafur.

ispat. G’ grafimn iki kiimeli oldugu acikt: Np,q € P icin ' C P oldugundan
p,q € P ve G lineer graf oldugundan LGI den dolayt cn(p,q) = 1 dir. Boylece
Vp,q € & icin en(p,q) = 1 oldugundan LGI saglamr. §(G') > 2 oldugunu gésterelim.
Vp € Picin P C P oldugundan p € P dir. Bu durumda G lineer graf oldugundan
0(G) > 2 dir. Bu durumda d(p) > 2 dir.

Le ZLiginL ¢ N(Z)ise P parcasindan X kiimesi atilirsa L diigiimiiniin derecesini
degistirmeyeceginden d(L) > 2 dirL € £ i¢in L € N (Z) ise d(L)— | Z |> 2
oldugundan d(L) > 2 dir. Bu durumda N'p € P’ ve VL € £ icin d(p) > 2 ve d(L) > 2
oldugundan 6(G') > 2 dir. Boylece LG1 ve LG2 saglandigindan G' = (&' U <" E') bir

lineer graftir.
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Ornek4.14. & = {p;: 1 <i<13,i € Z7}, £ = {L;: 1 < j < 13,5 € Z*} ve ayritlar
kiimesi olan F, Cizelge W.1’deki gibi verilsin.

Cizelge 4.1 Ornek da verilen G = (£ U %, E) grafina ait ayritlarin tablosu

pily | pile | pils | pila | paly | pale | p2lr | p2Ls | p3la
p3lio | psLlar | pslaa | pale paLls | pals pal1r | psLs psLs
psLe | psLia | pela peLs peL7 | psLio | prla prly prLog
prlis | psly psLe psLyg pslan | pols poLs P9 L PoLio
proly | proLls | prole | prolas | puile | prile | prilio | pr1las | prals
pi2l7 | prolun | pr2las | pisla | pisls | pislie | p13las

Bu durumda G = (£ U %, E) bir lineer graftir. 2" = {p1, po} olsun. Teorem
ifade edildigi sekliyle .2~ kiimesinin G' grafindan atilmasiyla olusan G’ = (2" U £ | E')
olsun. Bu durumda &' = {pi:3<i<13,i e Z"}, & = {Li:1 <35 <13,j€Z"}dir
Ayrica E'(G"), Cizelge .2 deki gibidir. Boylece G' = (2" U.Z', E') grafi bir lineer graftur.

Cizelge 4.2 Ornek da verilen G' = (2" U ', ) grafina ait ayritlarm tablosu

psLy | psLlio | psLar | p3lia | palo pals | pals pali | psLs
psLs | psLe | psLlaa | pela PeLis peLr | peLio | prle prLr
prLy | prlaz | psly psLe psLg psLai1 | pols poLs PoLyg
poLio | prola | prols | proLle | prolas | piile | prile | piilio | prilas
pi2Lls | pi2Ll7 | pralay | pr2las | pisla | pisls | pislae | p13las
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4.1 Afin Graflar

Bu bolimde | &f]\(}(p)(L) |= 1 sartin1 saglayan lineer graflar afin graf olarak tanimlanarak
temel Ozellikleri incelenmis ve bazi lineer graflarin afin graf olmasi igin gerekli
parametreler verilmistir. Ayrica . pargasina ait bir diigiimiiniin derecesi n olan afin graflar
(n,n + 1)— biregiiler lineer graflar olarak karakterize edilerek diigiim ve ayrit sayilarina

iliskin parametreler hesaplanmustir.

Tanim 4.3. G = (£ U .2, E) bir lineer graf ve p ¢ N (L) olacak sekilde her bir p € & ve
L e Zigin dlg(p)([/) ={K:cen(K,L)=0ve K € N(p)} olmak iizere

| (L) =1

oluyorsa G ye afin graf denir.

Ornek 4.15. Sekil 4.9 de bir afin graf modeli verilmistir.

Sekil 4.9 G = (£ U Z, E) bir afin graf modeli

Lemma 4.16. G = (£ U %, E) bir afin graf olsun. Birbirinden farkli L, K, M € £
diigiimleri i¢in en(L, K) = 0 ve en(L, M) = 1 ise en(K, M) = 1 dir.

Ispat. G = (£ U 2, E) afin graf ve birbirinden farkh L, K,M € £ diigiimleri icin
en(L, K) = 0ve cn(L, M) = 1 olsun.

Kabul edelim ki cn(K, M) = 0 olsun. cn(L, M) = 1 oldugundan CN (L, M) = {p} olacak
sekilde bir tek p € & diigiimii vardir. p € N(M) ve cn(K, M) = 0 oldugundan dolayt p ¢
N(K) dir. Ayrica L, M € N(p), en(L, K) = 0ve ecn(K, M) = 0 dw: L # M oldugundan
dolayr | dﬁ(p)(K) |> 2 dir. Bu ise G nin afin graf olmasi ile ¢elisir. O halde kabiiliimiiz
yanlistir. Dolaywsiyla ecn(K, M) = 1 dir.

Lemma 4.17. G = (2 U .2, E) bir afin graf olsun. L, K, M € £ i¢in cn(L, K) = 0 ve
en(K,M)=0ise L =M yadacn(L,M) =0 dm
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Ispat. G = (22 U 2, E) bir afin graf olmak iizere L, K, M € & i¢in ecn(L,K) = 0 ve
en(K, M) = 0 olsun. L = M ise ispat tamamdiwr. Lemma Y.3 den dolayr cn(L, M) € {0,1}
dir. O halde L #+ M igin en(L, M) = 0 oldugu gosterilmelidir.

Kabul edelim ki L # M i¢in en(L, M) = 1 olsun. Bu durumda CN (L, M) = {p}
olacak sekilde p € &7 diigiimii vardir. en(L, K) = 0 oldugundan dolayi p ¢ N(K) dir.
L,M € N(p), en(K, L) = 0 ve cn(K, M) = 0 oldugundan dolay: | ,ij\(}(p)(L) |> 2 dir. Bu
ise G nin afin graf olmast ile ¢elisir. O halde kabuliimiiz yanhstir. Boylece en(L, M) = 0.

Lemma 4.18. G = (£ U %2, E) bir afin graf ise Cy igerir.

Ispat. G = (2 U .2, E) bir afin graf olsun. Sonug¢ §.4 den dolayr cn(p, q,v) = 0 olacak
sekilde birbirinden farkli p, q,r € &2 diigiimleri vardw.

LGI den dolayt en(q,r) = 1 dir. Bu durumda C'N(q,r) = {L} olacak sekilde bir tek
L € £ diigiimii vardw: cn(p,q,r) = 0 oldugundan p ¢ N(L) dir. | ;Zf]?,(p)(L) |= 1
oldugundan dolay1 K € N(p) ve en(K, L) = 0 olacak sekilde bir tek K € £ vardwr:
Benzer sekilde, LG1 den dolayt CN(p,q) = {M} olacak sekilde bir tek M € £ diigiimii
vardir. en(p,q,r) = 0 oldugundan v ¢ N(M) dir. | ﬂ]?,(r)(M) |= 1 oldugudan dolay
S € N(r)ve en(M,S) = 0 olacak sekilde bir tek S € £ vardir K = S ise K € N(r) ve
L € N(r) dir. Bu durumda CN (K, L) = {r} dir. Bu ise K diigiimiiniin se¢imi ile ¢eligir.
Dolayisiyla K # S dir.

Kabul edelim ki ecn(K,S) = 0 olsun. en(K,S) = 0, en(L,K) = 0ve cn(S,L) = 1
oldugundan Lemma den dolay1 S = L dir. Bu durumda CN (M, S) = {q} olur. Bu ise
S diigiimiiniin segimi ile ¢elisir. O halde kabuliimiiz yanlistir. Dolayisiyla en(K, S) = 1 dir.
O halde CN (K, S) = {t} olacak sekilde bir tek t € &7 diigiimii vardir. ecn(K,L) = 0
oldugundan dolay1 t # q ve t # r dir. Benzer sekilde cn(M,S) = 0 oldugundan dolay
t # pdir. Boylece G, Cs :q— L —r—S5 —t— K —p— M — qigerir.

Lemma 4.19. G = (2 U %, E) bir afin graf olsun. Birbirinden farkli L, K € £ i¢in
P =N(L)UN(K)isecn(L,K) =0
dr.

Ispat. G = (2 U £, E) bir afin graf ve birbirinden farkli L,K € £ icin
P = N(L)U N(K) olsun. O halde cn(L, K) = 0 oldugu gosterilmelidir. Lemma W.3 den
dolayi en(L, K) € {0,1} dir.

Kabul edelim ki cn(L, K) = 1 olsun. Bu durumda bir tek q € & i¢cin CN (L, K) = {q} dir.
Sonug den dolayi en az bir r ¢ N(L) olacak sekilde r € &7 vardir. v ¢ N(L)
oldugundan dolayr r # q dir. & = N(L) U N(K) oldugundan r € N(K) dir. G afin graf
oldugundan dolayt | %]S(r)(L) |= 1 dir. Bu durumda r ¢ N(L) i¢cin M € N(r) ve
en(L, M) = 0 olacak sekilde bir tek M € £ diigiimii vardi. LG2 den dolayt s # r olacak
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sekilde en az bir s € N(M) C & vardir. cn(L, M) = 0 oldugundan dolayr s ¢ N (L) dir.
P = N(L)U N(K) oldugundan dolay1 s € N(K) dir. Bu durumda {r,s} C CN(K, M)
dir. Boylece en(K, M) > 2 dir. Bu ise Lemma ile celisir. O halde kabuliimiiz yanhgstir.
O halde en(L, K) = 0 dir.

Lemma 4.20. G = (£ U %, E) bir afin graf olsun. p ¢ N(L) olacak sekilde L. € £ ve
p € Zicind(p) =d(L)+ 1 dir

Ispat. G = (2 U %, E) bir afin graf olsun. Sonug §.4 den dolayr p ¢ N (L) olacak sekilde
L € Lvep € & digiimleri vardwr. i,1 < i < d(L) olacak sekilde her bir i i¢in p; €
N(L) olsun. LG2 den dolayr N(L) = {p1,p2,...,paw)} ve d(L) > 2 dir. LGI den dolay:
her bir i i¢cin CN(p,p;) = {L;} olacak sekilde L; € £ diigiimleri vardir. L; € N(p)
ve L ¢ N(p) oldugundan L # L, dir. Ayrica 1 < i,j < d(L) vei # ji¢in L; = L; ise
CN(pi,pj) = {L,L;}dir. Buise LG1 ile ¢elisir. O halde L; # L; dir. G afin graf oldugundan
| Mjs(p)(L) |= 1dir. Budurumda, K € N(p) ve cn(K, L) = 0 olacak sekilde tek bir K € £
diigiimii vardir. Her bir i i¢cin CN (L, L;) = {p;} oldugundan en(L;, L) = 1 dir. Béylece
K # L; dir. Boylece
{L1, La, ..., Lyry, K} € N(p)

olur.

Kabul edelim ki, her bir i icin M # L; ve M # K olacak sekilde M € N (p) diigiimii
olsun. | %ﬁ(p)(L) |= 1 ve bu diigiim K oldugundan dolay1 cn(M, L) = 1 dir. Bu durumda
CN(M, L) = {q} olacak sekilde q € & diigiimii vardwr. q € {p1, D2, . . ., pacr)} oldugundan
oyle bir j,1 < j < d(L) vardir ki ¢ = p; dir. Bu durumda C'N (p, p;) = {L, M} dir. Bu ise
LG1 ile gelisir. O halde kabuliimiiz yanlistir. Dolayisiyla { L1, Lo, . .., Lqry, K} = N(p) dir.
Boylece

d(p) =| N(p) [=[{L1, La, .- ., Law), K} [= d(L) + 1

dir.

Teorem 4.27. G = (£ U .2, E) bir afin graf ve L € £ i¢in d(L) = n olmak iizere
i. G, (n+1,n) — biregulerdir.
ii. | Z |=n?
ii. | & |=n® +n

dir.

Ispat. G = (ZU.Z, E) bir afin grafve L € £ icin d(L) = n olsun. LG2 den dolayi n > 2
dir L # M ve M € £ i¢in iki durum vardir.



49

Ldurum. & = N(L)UN (M) ise Lemma den dolayr en(L, M) = 0 dir. LG2 den dolay
)(G) > 2dir

Kabul edelim ki d(L) > 3 olsun. (Burada L veya M den herhangi birini segmek genelligi
bozmayacagindan d(M) > 3 olmasi durumuda benzer sekilde gosterilebilir.) Bu durumda
durumda {p,q,r} C N(L) olacak sekilde p,q,r € & diigiimleri vardw. Ayrica d(M) > 2
oldugundan dolayi {s,t} C N (M) olacak sekilde s,t € & diigiimleri vardi. cn(L, M) =0
oldugundan dolayr, s #+ p, s # ¢, s # r,t # p,t # qvet # r dir. LGI den dolay:
CN(p,s) = {X}, CN(q,s) = {Y} ve CN(r,t) = {Z} olacak sekilde X,Y,7 € &£
diigiimleri vardw:. s,t ¢ N(L) oldugudan dolay1 X #+ L, Y # Lve Z # L dir. X = M ise
CN(L,M) = {p} dir. Buise cn(L, M) = 0 olmasu ile ¢elisir. O halde X # M dir. Benzer
sekilde Y # M ve Z # M dir X =Y ise CN(p,q) = {L, X} olur. Bu ise LG ile ¢elisir.
O halde X # Y dir. Benzer sekilde X # Z ve Y # Z dir.

d(Z) > 3 olsun. Bu durumda 3k € N(Z) vardir ki k # r ve k # t dir. Eger k = p ise
CN(Z,L) = {r,p} olur. Bu ise Lemma W.3 ile ¢elisir. O halde k # p dir. Benzer sekilde
k#qvek # sdir & = N(L)U N(M) ve en(L, M) = 0 oldugundan ya k € N(L) ya
dak € N(M)dir. k € N(L) ise CN(Z,L) = {r,k} olur. Bu ise Lemma W.3 ile ¢elisir. O
halde k ¢ N (L) dir. Benzer sekilde k € N(M) ise CN(Z, M) = {s, k} olur. Bu ise Lemma
ile gelisir. O halde k ¢ N (M) dir. Fakat bu durumda &7 = N(L) U N (M) olmast ile
celiseceginden dolay1 d(Z) = 2 dir. Benzer sekilde X ve Y diigiimlerii¢ind(X) = d(Y) = 2
dir.

d(Z) = 2 oldugundan N(Z) = {r,t} dir. Bu durumda s ¢ N(Z) i¢in cn(Y,Z) = 0 ve
en(X,Z) = 0olup X, Y € N(s)dir X # Y oldugundan | MJS(S)(Z) |= 1 ile ¢elisir. O
halde kabuliimiiz yanlistir. Dolayisiyla d(L) = d(M) = 2 dir. Boylece £ par¢asindaki tiim

diigtimlerin derecesi 2 dir.

2.durum. Eger & #+ N(L)U N(M) isep ¢ N(L) U N(M) olacak sekilde p € & vardr.
Lemma den dolay1 d(p) = d(L) + 1 ve d(p) = d(M) + 1 dir. Béylece d(L) = d(M)
elde edilir. L ve M se¢imi keyfi oldugundan VYL, M € & i¢in d(L) = d(M) = n dir.
BoyleceVL € £ i¢cind(L) = n oldugundan £ parcasi n—regulerdir. Bu durumda Lemma
dan dolayr & par¢asida regulerdir. Sonug W.4 den dolayi L € £ i¢in p ¢ N (L) olacak
sekilde p € &7 diigiimii vardw. Lemma den dolay1 d(p) = d(L) + 1 ve d(L) = n
oldugundan d(p) = n+ 1 dir. G grafimn & par¢ast reguler oldugundan p € & i¢in d(p) =
n + 1 dir. Bu durumda G, (n + 1,n) — bireguler dir.

ii. L € N(p) olacak sekilde p € &7 ve L € £ i¢in Teorem den dolay

(2| -1= Y (L)1)

LeN(p)



50

dir. (i) den dolayi VL € £ igcin d(L) = nveVp € & icin d(p) = n + 1 dir. Bu durumda
| Z|=(n+1)(n—-1)+1=n?

dir.

iii. L € . icin {#.34) esitliginden dolay
| ANL) |+ [ AYL) =] 2 | —1
dir. (i) den dolay1 G, (n + 1,n) — biregulerdir. Sonug den dolayt
| AY(L) |=n? (4.38)

dir. Ispati tamamlamak icin oncelikle asagidaki #.39) esitliginin dogru oldugunu gésterilsin.

Amy= | D (4.39)

peEP—N(L)
K € A°(L) olsun. en(K, L) = 0 oldugundan dolay1 N(K) C & — N(L) dir. Bu durumda,
K € N(p) olacak sekilde en az bir p € & — N (L) diigiimii vardir. cn(K, L) = 0 oldugundan

Ay c | (L) (4.40)
peP—N(L)
dir. Tersine, K' € Uper_ny mf]?,(p)(L) olsun. Bu durumda en az bir ¢ € &2 — N(L) igin
K ¢ %]S(q)(L) dir. en(K', L) = 0 oldugundan dolayr K' € A°(L) dir. Dolayisiyla

U @) < A1) (4.41)

peP—N(L)

dir. ve den dolayr (#.39) esitligi gecerlidir.

Ayrica
U ~NE)=2-NQ1©)

peSZO—N(L)
KealQ (1)

oldugu agiktir. G afin graf oldugundan p € &7 — N(L) igin | &f]?,(p)(L) |= 1 dir. O halde
herhangi birp € & — N(L) i¢in %]S(p)(L) = {K'} olacak sekilde bir tek K € & diigiimii
vardir. p,q € & — N(L) ve p # q digiimleri icin o7y, (L) = {K}, oy, (L) = {M} ve
K # M olmak iizere en(K, M) = 1 olsun. Bu durumda CN (K, M) = {r} olacak sekilde
r € P — N(L) digiimii vardir. v ¢ N(L), K,M € N(r)ve cn(K,L) =0, cn(M,L) =0
oldugundan dolayt | M]?,(T) (L) |> 2 dir. Buise G nin afin graf olmasiyla ¢elisir. Dolayisiyla
en(K, M) = 0dir. en(K, M) = 0 oldugundan N(K) N N(M) = 0 dir. O halde

>, INE) =2 -NQD)| (4.42)

peP—N(L)

KEN ) (1)
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dir: | Upe w1 szje,(p)(L) |= x olsun. Herhangi bir p € &2 — N(L) igin djs(p)(L) ={K}
olacak sekilde bir tek K € £ diigiimii oldugundan | e 5_y) K |= © dir. Her L € £
icind(L) =| N(L) |=nve| & |= n? oldugundan esitligi diizenlenirse,

2

-1

T = r =n—1

n

dir. (#.39) den dolay
| A%(L) |[=n—1 (4.43)
dir.
Boéylece (4.34), (H.38) ve (H.43) den dolay:
| Z |=n*+n

dir.

Sonu¢ 4.19. G = (P U %, E) bir afin graf ve L € £ i¢in d(L) = n olmak iizere
| V(G) |=2n* +n
dir.

Ispat. G = (P U2, E) bir afin grafve L € £ i¢in d(L) = n olsun. LG2 den dolayr n > 2
dir Z N % = ) ve Teorem den dolayt

(V@) =l 20Z = 2|+ L |=2"+n
dir.
Sonu¢ 4.20. G = (P U %, E) bir afin graf ve L € £ i¢in d(L) = n olmak iizere
| B(G) |= w2+ 1)
dir.

Ispat. G = (2 U2, E) bir afin grafve L € £ icin d(L) = n olsun. LG2 den dolayi n > 2
dir. den dolay1
| E(G) =) dlp)
peEL
dir. Teorem den dolay1 | & |= n* ve her p € & icin d(p) = n + 1 oldugundan
| E(G) |=n*(n+1)

dir.
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Ornek 4.16. Sekil de verilen graf modeli goz oniine alimirsa, n = 2 i¢in G,
(3,2)—biregiiler, | 2 |=2%, | L |=22+2, V(G) =2.2*+2ve E(G) = 2*(2+ 1) dir.

Sonu¢ 421. G = (£ U Z,E) bir afin graf ve L € £ i¢in d(L) = n olsun.
AYL) ={K :en(K,L) = 1ve K € £} olmak iizere

| AYL) |=n®
dir.

Sonu¢ 4.22. G = (P U Z, E) bir afin graf olsun. L € £ i¢in d(L) = n olsun. LG2 den
dolayin > 2 dir. L € £ i¢cin A°(L) = {K : en(K,L) = 0ve K € £} olmak iizere

| AL) |=n— 1
dir.
Teorem 4.28. G = (£ U 2, E) afin graf'ise Euler graf degildir.

Ispat. G = (2 U %, E) bir afin graf olsun. LG2 den dolay1 L € £ i¢in d(L) = n olacak
sekilde n > 2 tamsayisi vardir. Teorem den dolayt G, (n + 1,n)— biregiilerdir. Bu
durumda, her bir p € & i¢in d(p) = n+ 1 ve her bir L € £ icin d(L) = n dir.
Egern=2k+ 1,k € Z" ised(L) = 2k + 1 dir.

Egern =2k, k € Z" ise d(p) = 2k + 1 dir.

Bu durumda, en az bir v € V(G diigiimiiniin derecesi tek oldugundan Teorem 31 den dolay
G, Euler graf degildir.

Teorem 4.29. G = (UYL, E), (n+1,n)—biregiiler lineer graf < G (n+ 1, n)—bireguler
afin graftir.

Ispat. G = (22U .2, E), (n+ 1,n) — bireguler lineer graf olsun. LG2 den dolayi n > 2
dir. Sonu¢ den dolayi p ¢ N(L) olacak sekilde p € P ve L € £ diigiimleri vardwr.
d(L) = n oldugundan i,1 < i < nigin N(L) = {p1,p2,...,pn} olacak sekilde p; € &
diigiimleri vardw. Ayrica LG1 den dolayi her bir i,1 < i < ni¢cin CN(p,p;) = {L;} olacak
sekilde L; € £ diigiimleri vardir. Her bir i i¢in p € N(L;) oldugundan L; # L dir. i # j
vel < i,j < niginL; = Ljise CN(p;,p;) = {L,L;} dir. Bu ise LGI ile ¢elisir. O
halde L; # L; dir. d(p) = n + 1 oldugundan her bir i i¢in K # L; olacak sekilde bir tek
K € N(p) C & diigiimii vardir. Herhangi bir i i¢cin K € N(p;) ise CN(p,p;) = {L;, K}
olur. Buise LG 1 ile ¢elisir. O halde K ¢ N (p;) dir. Budurumda p ¢ N (L) i¢incn(L, K) =0
olacak sekilde bir tek K € N (p) diigiimii vardir. p ve L diigiimlerinin se¢imi keyfi oldugundan
| M]?](p)(L) |= 1 dir. Dolayisiyla G afin grafir: L € £ i¢in d(L) = n oldugu gozoniine
alimirsa Teorem den dolay1 G (n + 1,n) biregiiler afin graftr.
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Tersine, kabul edelim ki G (n + 1,n) biregiiler afin graf olsun. Afin graf tanimindan
dolayr G lineer graftir. Boylece G (n + 1,n) biregiiler lineer graftir.

Teorem 4.30. G = (P U ¥, E) bir lineer graf olmak iizere, VL € £ ve | P |= n? i¢in
d(L) =n < G (n+ 1,n)— biregiiler afin graftir.

Ispat. G = (2 U 2, E) bir lineer graf olmak iizere | 2 |= n? ve VL € &£ i¢in d(L) =
olsun. Lemma W.8 den dolayr &7 pargasi regulerdir ve her bir p € & i¢in

REARR
d(ﬁ)—m

dir. | 2 |= n? ve d(L) = n oldugundan dolay

dir. Bu durumda G, (n + 1,n)—biregulerdir. Dolayisiyla Teorem dan dolay1 G (n +
1, n)—biregiiler afin graftir.

Tersine, kabul edelim ki G (n+ 1, n)— biregiiler afin graf olsun. Afin graf tanimindan
dolay1 G lineer graftir. Teorem den dolay1 | & |=n*veVL € £ icin d(L) = n dir.

Teorem 4.31. G = (P U %, E) bir lineer graf olmak iizere, | £ |=n* +nveher L € &
icind(L) =n < G (n+ 1,n)— biregiiler afin graftir.

Ispat. G = (P U 2, E) bir lineer graf olmak iizere | £ |= n®> + nve VL € &£ icin
d(L) = n olsun. Teorem dan dolay

212 -)=) dL) -1

Lez
| Z|.(12 ] -1) =n(n—1)(n"+n)
| 2112 ] -1)=n"(n"—1)

elde edilir. Bu durumda | & |= n* dir. Teorem den dolayt G (n + 1,n)—biregiiler afin
graftir.

Tersine, kabul edelim ki G (n+ 1, n)— biregiiler afin graf olsun. Afin graf tamimindan
dolayr G lineer graftir. Teorem den dolayt | £ |=n?+nveVL € L i¢ind(L) = n dir

Teorem 4.32. G = (P U %L, E) bir lineer graf olsun. p ¢ N (L) olacak sekilde p € & ve
L e Ziginc(p, L) =d(p) — 1< G bir afin graftir.

Ispat. G = (2U.Z, E) bir lineer graf olsun. Sonug §.4 den dolayi p ¢ N (L) olacak sekilde
p € P ve L € £ diigiimleri vardir. c¢(p, L) = d(p) — 1 olsun. LG2 den dolay: d(p) > 2 dir.
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Bu durumda, N(p) = {L1, Lo, ..., Lay)} olacak sekilde Ly, L, ..., Ly € £ diigiimleri
vardir. Her bir L; € N(p) i¢in L; # L dir. ¢(p, L) = d(p) — 1 oldugu goz éniine alinirsa
Teorem dan dolayi

| ijlr(p)(L) |=d(p) — 1
dir. Bu durumda bir tek K € N (p) diigtimii vardwr ki cn(L, K') = 0 dir: O halde | szjg(p)(L) |=
1 oldugundan dolay: G bir afin graftir.

Tersine, G = (£ U %, E) bir afin graf olsun. Afin graf tamimindan dolay: lineer
graftir. Sonug ¥.4 den dolayr p ¢ N (L) olacak sekilde p € & ve L € £ diigiimleri vardwr.
Lemma den dolayi ¢(p, L) = d(L) dir. Lemma den dolayr d(p) = d(L) + 1
oldugundan dolay: c(p, L) = d(p) — 1 dir.

Teorem 4.33. G = (P U 2, E) bir lineer graf ve n > 3 olmak iizere | & |= n* + 1 ve her
L e Zigind(L) € {n,n + 1} olsun. G — {q} bir afin graf olacak sekilde en az bir ¢ € &

diigiimii vardur.

Ispat. G = (2 U 2, E) bir lineer graf olmak iizere L € £ ven > 3icin| & |=n?+ 1
ved(L) € {n,n + 1} olsun. Eger VL € £ i¢in d(L) = n ise Teorem den dolay,

| Z |=n*+1=d(p).(n—1)+1

dir. Boylece
2

n
d(p) = = 1
(p) n—1 ne +n—1

elde edilir. Bu ise d(p) € Z olmasu ile ¢elisir. O halde £ par¢asinda derecesi n + 1 olan en
az bir diigiim vardir.

L € ZLic¢ind(L) = n+ 1 olsun. Sonug ¥.4 den dolay1 p ¢ N(L) olacak sekilde p € &
diigtimii vardw. Teorem den dolayr p € & igin

—<dp<—
n _()_ n—1

dir. | 2 |= n* + 1 oldugundan dolay
d(p) € {n,n+ 1}

dir. Teorem Y.9 den dolayr d(p) = n + 1 dir.

d(L) = n + 1 oldugundan dolayi i,1 < i < n+ ligin N(L) = {p1,p2, s Pnt1}
olacak sekilde p; € & diigiimleri vardir. LG1 den dolayi her bir i i¢cin CN(p,p;) = {L;}
olacak sekilde L; € £ diigiimleri vardw: d(p) = d(L) oldugundan Sonug den dolay:
c(p, L) = n + 1 dir. Bu durumda her L; € N(p) i¢in cn(L;, L) = 1 dir. Hipotezden dolay:
her bir L; € N(p) i¢in d(L;) € {n,n + 1} dir. p diigiimiin komsulugundaki diigiimlerden
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x tanesi n + 1 dereceli olsun. d(p) = n + 1 oldugundan n + 1 — x tanesi de n derecelidir.
Teorem den dolay,

| Z|=n*+1=an+(n+1—-2).(n—-1)+1

dir. Bu durumda x = 1 dir. O halde bir tek L; € N(p) i¢in d(L;) =n+1veVL;, € N(p)—
{L;} i¢in d(Ly) = n dir.

Ayrica d(R) = d(S) = n + 1 olacak sekilde R,S € £ i¢in cn(R,S) = 0 olmasi
durumdap € N(R)igincn(R,S) = 0 oldugundanp ¢ N(S) dir. d(S) = n+1 oldugundan
N(S) = {p1,Pay- - Pns1} Olacak sekilde py,p,...,pn.y € P diigiimleri vardir: LG1
dolayt her birt,1 < t < n+ 1i¢in CN(p',p,) = {L;} olacak sekilde L, € £ diigiimleri
vardir CN(R,S) = 0 oldugundan R # L, ve L, # S dir. L;-,L;C € N(p) igin L, =
L, ise CN(p;,p,) = {S,L,} dir. Bu ise LG ile celisir. O halde L, # L, dir. Boylece
{R,Ly, Ly, ..., L1} € N(p') dir. Bu durumda d(p') > n + 2 olur. Buise d(p') = n + 1
olmasu ile ¢elisir. O halde kabuliimiiz yanhstir. Dolayisiyla d(R) = d(S) = n + 1 olacak
sekildeki her bir R, S € £ diigiim ¢ifti icin cn(R, S) = 1 dir.

en(L, Lj) = 1 oldugundan dolay1 CN (L, L;) = {q} olacak sekilde q € & diigiimii
vardwr. Kabul edelim ki d(M) = n + 1 olacak sekilde M € £ diigiimii icin M ¢ N(q)
olsun. £ par¢asinda ait n+ 1 dereceli diigiimlerin ortak komsulugunun sayist 1 oldugundan
CN(L, M) = {q'} olacak sekilde ¢ € 2 diigiimiivardir M ¢ N(q) oldugundan q # q dur.
q € N(L;)ise CN(L,L;) = {q,q'} olur. Bu ise Lemma .3 ile gelisir. O halde ¢ ¢ N(L;)
dir. Teorem .9 den dolayr d(q') > d(L;) = n+ 1ved(q) € {n,n + 1} oldugundan dolay
d(q") = n+1dir. Budurumda d(M) = d(L) = n+1, M, L € N(¢') ve M # L oldugundan
P parcasina ait n + 1 dereceli herhangi bir diigiimiiniin komsulugunda n + 1 dereceli bir
tek diigiim olmasu ile ¢elisir. O halde kabuliimiiz yanlistir. Dolayisiyla d(M) = n + 1 olacak
sekilde her bir M € £ i¢in M € N(q) dir.

Boylece q diigiimii G grafindan atilirsa VL € £ igin d(L) = nve | & |= n? dir.
Teorem dan dolayr G — {q} grafi afin graftir.

Ornek ’de Teorem de verilen parametrelere ait bir lineeer graf verilmistir.

Ornek 4.17. Asagidaki verilen ézelliklere sahip G = (P U £, E) bir lineer grafir. Bu
durumda G — {q} grafi bir afin graftwr.

‘@ = {p17p27p3;p47p57p67p77p87p9aQ}: g - {L1>L27L3a L47 L57L67L7a L87 L97L10a L117L12}

ve E(G) = {e; : i,1 < i < 39} olmak iizere, G = (£ U L, E) Teorem da verilen
parametrelere sahip bir lineer graftir. (Cizelge 4.3 de E(G) kiimesinin elemanlart verilmistir.)



Cizelge 4.3 Ornek da verilen G = (£ U %, E) grafina ait ayritlar

er=pily | ea=pily | e3=pils es =p1lg
es = palo | g =paly | €7 =paliy | es = paliy
eg =psls | €10 =p3ly | €11 =p3ls | €12 = p3laa
€13 = paln | ey = palis | e15 = palio | €16 = paliao
e17 =pslo | e1s = psLs | €19 = psL7 | €20 = psLsg
€21 = pels | eaa = pelis | €23 = pelg | €21 = peLa1
eas = prly | eas = prle | €27 = prls | eas = prlan
€20 = pslo | €30 = psLe | €31 = pslo | €32 = pslia
€33 = pols | €34 = polLe | €35 = poLl7 | €36 = pyLio
esr =qly | ess =qla | €39 = qL3
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4.2 Projektif Graflar

Bu bolimde G = (& U Z, F) bir lineer graf olmak tizere . parcasindaki farkl iki
diiglimiin ortak komsulugunun sayis1 1 olan ve Cy igeren lineer graflar projektif graf olarak
tanimlanarak bu graflarin temel Gzellikleri incelenmistir. . parcasindaki bir diigiimiin
derecesi n olan projektif graflar (n + 1)—regiiler lineer graflar olarak karakterize edilerek
diiglim sayilar1 ve ayrit sayilarina iliskin hesaplamalar yapilmistir. Lineer graflarin projektif
graf olmasi icin gerekli parametreler verilerek afin graflarla iligkileri incelenmistir. Ayrica
projektif graflarin Euler graf olmas1 kosullar1 belirlenmistir.

Son olarakta .# pargasindaki farkli iki diiglimiin ortak komsulugunun sayisi 1 olan fakat Cg
icermeyen lineer graflar dejenere projektif graf olarak tanimlanarak temel oOzellikleri

incelenmistir.

Tamm 4.4. G = (P U %L, E) lineer grafi PG1 ve PG2 sartlarini sagliyorsa G ye projektif
graf denir.

PGI.VL,K € Lve L # K igcincen(L,K) =1

PG2. Cy igerir.

Ornek 4.18. Sekil de bir projektif graf modeli verilmistir. Burada G nin lineer graf
oldugu a¢iktir. £ parcasindaki birbirinden farkly iki diigiimiin ortak komsulugun sayr 1 ve
G, Cyg icerir.

Sekil 4.10 G = (£ U %, E), bir projektif graf modeli
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Sonu¢ 4.23. G = (P U L, E) bir projektif graf olmak tizere VK, L € £ ve K # L i¢in
d(L, K) = 2 dir.

Ispat. G bir projektif graf olsun. G iki kiimeli oldugundan L, K € & i¢in d(L,K) # 1.
PG1 den dolan VK € £ ve K # Licin CN(L, K) = {p} olacak sekilde p € & vardir. Bu
durumda L — p — K yolu G grafindaki en kisa yol oldugundan d(L, K) = 2 dir.

Sonu¢ 4.24. G = (P U %, E) bir projektif graf ise diam(G) = 3 diir.

Ispat. G = (2 U %, E) bir projektif graf olsun. LG1 den dolayi Vp,q € & ve p # q
icin CN(p,q) = {L} olacak sekilde bir tek L. € £ vardw. O halde Lemma W.5 den dolay
d(p,q) = 2 dir. PGI den dolayr her bir L, K € £ ve K # L i¢in Sonug dolayi
d(L, K) = 2 dir

Sonug .4 den dolayr her bir M € £ i¢inen azr € & vardir ki r ¢ N(M) dir.
Lemma W.5 den dolay: d(r, L) = 3 olur. Bu durumda,

diam(G)= mazx{mazx{d(u,v) : u,v € P UL}}=3
diir.

Teorem 4.34. G = (& U £, E) bir lineer graf ve £ parcasindaki birbirinden farkli
herhangi iki diigiimiin ortak komsulugunun sayisi 1 olmak iizere” par¢asinda herhangi
lictiniin ortak komsuluk sayisi sifir olacak sekilde dort diigiim olmasi i¢in gerek ve yeter

kosul G projektif graftir.

Ispat. Kabul edelim ki G projektif graf olsun. Bu durumda G = (22 U £, E) bir lineer
grafve L parg¢asinda ki birbirinden farkl herhangi iki diigiimiin ortak komsulugunun sayust
1 dir. PG2 den dolay1 G, birbiriden farklt pi,ps,p3,ps € & ve Ly, Lo, L3, Ly € £ igin
Cs:p1— Ly —py — Ly — p3 — L3 — Py, — Ly — py olacak sekilde Cy icerir.

p1 € N(L3) ise CN(p1,ps) = {L1, Lo} dir. Bu ise LG1 ile ¢elisir. Boylece p1 ¢ N(Ls)
dir. Benzer sekilde ps ¢ N(L3), p3 ¢ N(Ly) ve py ¢ N(L1) dir. CN(p1,p2) = {L1}
ve CN(ps,ps) = {L3} oldugundan pi,ps,ps ve py diigiimlerinin herhangi iigiiniin ortak

komsulugunun sayist sifirdr.

Tersine, G = (2 U £, E) bir lineer graf ve £ par¢asinda ki birbirinden farkli
herhangi iki diigtimiin ortak komsulugunun sayisi 1 olsun. Kabul edelim ki & par¢asinda
herhangi iiciiniinortak komsuluk sayist sifir olacak sekilde dort diigiim olsun. Hipotezden
dolayt PG1 saglamwr. p, q,r ve s diigtimleri & parcasinda herhangi iigiiniin ortak komsuluk
sayist sifir olacak sekilde dort diigiim olsun. LG den dolayt CN (p,q) = {L} ve CN(r,s) =
{K} olacak sekilde L, K € & diigiimleri vardir. L = K ise CN(p,q,r) = {K} olur. Bu
durumda cn(p, q,r) = 1 olacagindan p, q,r, s diigiimlerin se¢imi ile ¢elisir. O halde L # K
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dir. Benzer sekilde, LG1 den dolayt CN (p,r) = {M} ve CN(q,s) = {N} olacak sekilde
M,N € £ diigiimleri vardwr. p,q,r, s diigiimlerinin se¢iminden dolayi1 M # N, M # L,
M # K, N # Lve M # K dir.

Boylece G, Cs :p—L—q— N —s— K —r — M — pigerir.

Lemma 4.21. G = (£ U2, E) bir projektif graf olmak iizere birbirinden farkli L, K € £
icinp ¢ N(L)U N(K) olacak sekilde p € & diigiimii varduwr.

Ispat. G = (2 U .2, E) bir projektif graf olsun. PG2 den dolay: G, Cy icerir. Bu durumda,
Cs:n—L—q—N—-—s—K—r— M —nolacak sekilde n,q,r,s € P ve L, N, K,M € ¥
diigiimleri vardwr. PG1 den dolayr CN (N, M) = {p} olacak sekilde p € & diigiimii vardur.
Teorem den dolayr p diigiimii n, q,r, s diigiimlerinden farklidir. p € N (L) ise {n,p} C
CN(L, M) dir. Bu ise LemmaH.3 ile ¢elisir. O halde p ¢ N (L) dir. Benzer sekildep € N (K)
ise{r,p} C CN(K, M) dir. Bu durum Lemma W.3 ile ¢eliseceginden p ¢ N (K) dir. Béylece
p & N(L)U N(K) olacak sekilde p € & diigiimii vardr.

Teorem 4.35. G = (P U %, E) bir projektif graf ve L € £ i¢in d(L) = n+ 1 olmak iizere
i. G, (n+ 1)—regiilerdir
ii.| 2 |=n*+n+1
ii. | £ |=n*+n+1
vn>2

dir.

Ispat. i. G = (P2UZL, E) bir projektif grafve L, K € £ i¢in L # K olsun. PG den dolay:
CN(L,K) = {p} olacak sekilde p € & vardw. d(L) = n + 1 oldugundan i,1 < i < n
icin N(L) = {p, p1,p2, - - -, P} Olacak sekilde p; € & diigiimleri vardwr. Lemma dolay
q ¢ N(L)U N(K) olacak sekilde ¢ € & vardw. ¢ ¢ N(L) U N(K) oldugundan her bir
iigcin q # p; ve q # p dir. Ayrica herhangi bir i i¢cin CN(q,p;) = {K} olmast durumunda
CN(p,p;) = {L, K} dir. Buise LG ile ¢eliseceginden CN(q,p;) # {K} diri,1 <i<n
i¢cin CN(q,p;) = M; olsun. Bu durumda M; # K ve M; # L dir. Buna gore,

fo: N(L) = {p} = N(K) — {p}
Jfq (pi) = CN(M;, K)

doniisiimiinii goz oniine alinsin. Bu durumda p; # p; digiimleri icin kabul edelim ki
fapi) = fo(p;) olsun. Bu durumda CN(M;, M;) = {q,[f(p:)} olur q & N(K)
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oldugundan q # f,(p:;) dir. Bu durumda cn(M;, M;) > 2 oldugundan Lemma ile
celisir. O halde kabuliimiiz yanlistir. Béylece, f,(p;) # f,(p;) dir. Dolayisiyla f, birebirdir.

Ayrica herhangi bir x € N(K) — {p} diigiimiinii alahim. ¢ ¢ N(K) oldugundan
dolayr x # q dir. LG den dolayt CN (z,q) = {M'} olacak sekilde M' € & diigiimii vardr:
PG den dolayrt OCN (L, M") = {r} olacak sekilde r € & diigiimii vardir. r = p olmasi
durumunda CN(K,M') = {x,p} dir. Bu ise Lemma {.3 ile ¢elisir. Dolayisiyla v # p dir.
N(L) = {p,p1,p2; ..., pn} oldugudan dolayt bir j,1 < j < n indisi vardir ki v = p,
dir. Bu durumda M' = M; ve {z} = CN(M;,K) = f,(p;) elde edilir. Dolayisiyla x
keyfi oldugundan K diigiimiiniin komsulugunda alinan p den farkli her bir diigiim icin L nin
komsulugunda p den farkl bir diigiim vardir. Boylece f, orten bir doniisiimdiir.

Bu durumda d(L) = d(K) = n + 1 dir. K diigiimiiniin se¢imi keyfi oldugundan her bir
K € Zicin d(K) = n+ 1dir. O halde £ par¢asi (n + 1)—regiilerdir.

Lemma dan dolayt & parcasida regiilerdir. Sonug den dolayr = ¢ N(L)
olacak sekilde = € 7 diigtimii vard. d(L) = n + 1 oldugundan i,1 < i < n + 1 igin
N(L) =A{p1,p2, - -, Dns1} olacak sekilde p; € & diigiimleri vardir. LG1 den dolay: her bir
i icin CN(z,p;) = {L;} olacak sekilde L; € £ diigiimleri vardir. Teorem 4.9 den dolay
z ¢ N(L)igind(z) > d(L) = n + 1 dir. Kabul edelim ki d(z) > n + 2 olsun. Bu durumda
en az bir K € N(p) vardir ki en(K, L) = 0 dir. Bu ise PG1 ile ¢elisir. O halde kabuliimiiz
yanlistir. Dolayisiyla d(z) = n + 1 dir. Boylece G grafi (n + 1)—regiilerdir.

ii. (i) den dolay1 G, (n + 1)—regiilerdir. Bu durumda, Teorem den dolay
| 2| ~1=(Mn+1).n+1-1)=n*+n

dir. Esitlik diizenlenirse,
| P |=n*+n+1

dir.

iii. L € £ vep e N(L) igin Sonug den dolayt

| Z|-1= ) (dp)-1)

peEN(L)

dir. (i) den dolayr d(L) = d(p) = n + 1 oldugu goz oniine alimirsa
| Z|-1=(n+1).(n+1-1)

| L |=n*+n+1
dir.
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iv. Kabul edelim ki n = 1 olsun. (i) den dolayi G, 2—regiilerdir. Bu durumda G ¢evre
graftir. (i) ve (iii) den dolay1 V(G) = 6 dir. Dolayisiyla G = Cg dir: Bu ise PG?2 ile ¢elisir.
Dolayisiyla n > 2 dir.

Sonu¢ 4.25. G = (P U %, E) bir projektif graf olmak iizere,
I(G) >3
dir.

Ispat. Teorem den dolayr L € £ i¢in d(L) = 2 ise G, (n + 1)—regiilerdir. G, lineer
graf oldugu goz oniine alimirsa LG2 den dolayr n > 2 dir. Béylece §(G) > 3 tiir.

Sonu¢ 4.26. G = (£ U 2, E) bir projektif graf ve L € £ i¢in d(L) = n + 1 olmak iizere,
| V(G) |[=2(n*+n+1)
dir.

Ispat. G = (2 U %, E) bir projektif graf ve L € . i¢in d(L) = n + 1 olsun. Sonug
den dolay1 n > 3 tiir. Teorem dendolayit| P |=n*+n+1lve| L |=n®>+n+1dir
P N L = oldugundan

V(G |=| 2UZL |=| 2|+ | ZL|=2(n*+n+1)

dir.

Lemma 4.22. G = (UYL, E) bir projektif graf ve L € £ icin d(L) = n+ 1 olmak iizere,

| BE(G) |=n®+2(n* +n) + 1

dir.

Ispat. G = (2 U .2, E) bir projektif graf olsun. L € & i¢cin d(L) = n + 1 olsun. Sonu¢
den dolayr n > 2 dir. Esitlik den dolay

| E(G) =) dp)

pES

dir. Teorem .33 den dolayt| P |= n*+n+1ve her birp € 2 i¢in d(p) = n+1 oldugundan
dolayr

| E(G) |=n®*+2(n®+n)+1
dir.

Ornek 4.19. Sekil de verilen projektif graf modeli géz oniine alimirsa n = 2 igin G nin;
3—regiiler, | Z |=7T=224+2+1,|Z |=7T=224+2+1,06G) =3ve E(G) =21 =
23 +2(22 4+ 24 1) + 1 oldugu agikir.
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Teorem 4.36. G = (P UL, F) bir lineer graf olsun.n > 2, n € Zi¢in G, (n+ 1)—regiiler
< G (n + 1)— regiiler projektif graftir.

Ispat. G = (2 U %, E) bir lineer graf ve n > 2, n € Z igin G, (n + 1)—regiiler olsun.
Kabul edelim ki birbirinden farkli K, M € £ i¢in cn(K, M) = 0 olsun. Bu durumda her bir
p€ N(K)iginp ¢ N(M)dir. d M) = n+1 oldugundan dolayr N(M ) = {q1,q2, ..., qns1}
olacak sekilde qi, qo, . . . , qni1 € & diigiimleri vardw. LG1 den dolayt her biri, 1 <i < n+1
icin CN(p,q;) = {L;} olacak sekilde L, € £ diigiimleri vardir. 1 < i # j < n+ 1 igin
L; = L; olmasi durumunda {M,L;} C CN(q;,q;) dir. p ¢ N(M) oldugundan M +# L,
dir. Bu ise LG1 ile ¢elisir. O halde L; # L; dir. K = L; olmasi halinde q¢; € N(K) ve
¢; € N(M) oldugundan dolayt CN (K, M) = {q;} olur. Bu ise kabuliimiizle ¢elisir. O halde
K # L;dir. Boylece {K, Ly, La, ..., L,.1} € N(p)vedolayisiyla d(p) > n+2dir. Buise G
nin (n + 1)—regiiler olmasu ile ¢eligir. O halde kabuliimiiz yanlistir. Dolayisiyla birbirinden
Sarkly her bir L, K € £ i¢in ecn(L,K) = 1 dir. Hipotezden dolay1 d(L) = n + 1 dir.
Bu durumda N (L) = {p1,p2,...,Dns1} Olacak sekilde p1,ps,...,pp1 € & diigiimleri
vardir. Sonug W.4 den dolayr p ¢ N (L) olacak sekilde p € & vardir. LG1 den dolayi her bir
i,1 <i<mn+1ligin CN(p,p;) = {L;} olacak sekilde L; € £ diigiimleri vardwr p ¢ N (L)
oldugundan dolay1 L; # L dir. 1 < i # j <n+ ligin L; = L; ise {L,L;} C CN(pi,p;)
dir. Bu ise LG1 ile ¢elisir. O halde L; # L; dir. G, (n + 1) — reguler ve n > 2 oldugundan
dolayr d(L;) > 3 tiir. Bu durumda q € N(L;) vardwr ki ¢ # p ve q # p; dir. Bdylece
CN(p,q) = {L;} dir. Ayrica q € N(L) ise {L,L;} C CN(q,p;) dir. Bu ise LG1 ile ¢elisir.
Dolayisiyla g ¢ N (L) dir. i # jigcin ¢ € N(L;) ise {L;; L;} € CN(p,q) dir. Bu ise LG
ile gelisir. Dolayisiyla i # j igin ¢ ¢ N(L;) dir. d(L) > 3 oldugundan py, # p; ve p,, # p,
olacak sekilde p;, € N (L) diigiimii vardir ve CN (p;,pi) = {L} dir. Boylece p, py, p; ve q
herhangi ticiiniin ortak komsulugunun sayisi sifir olan dort diigiimdiir. Bu durumda Teorem
den dolay1 G (n + 1)— regiiler projektif graftwr.

Tersine G (n+ 1)—regiiler bir projektif graf olsun. Projektif graf tamimindan G lineer
grafti. Dolayisiyla G (n + 1)—regiiler lineer graftir.

Teorem 4.37. G = (£ U .2, E) bir projektif graf olmak iizere, G, Euler graftir gerek ve
yeter kosul w € V(G) igin d(u) = 2.k, k € Z olmasidwr.

Ispat. G = (2 U2, E) bir projektif graf olsun. Kabul edelim ki G Euler graf olsun. Teorem
den dolayr G nin diigiimlerinin derecesi ¢ifitir. Bu durumda v € V(G) igin d(u) = 2.k
olacak sekilde k € 7. vardur.

Tersine, kabul edelim ki bir u € V(Q) i¢gin d(u) = 2.k olsun. Bu durumda Teorem
den dolay1 G, 2.k-regiilerdir. Sonug den dolayr k > 2 dir. Boylece Teorem 31| den
dolayt G Euler graftir.
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Teorem 4.38. G = (X U 2, E) lineer graf ve n > 2 olacak sekilde bir tamsayi olsun.
| Z |=n*+n+1veherbir L € ZLi¢cind(L) = n+1< G (n+1) regiiler projektif graftir.

Ispat. G = (2 U 2, E) bir lineer graf ve n > 2 olacak sekilde bir tamsay: olmak iizere
| P |=n?+n+1veherbir L € £ i¢ind(L) = n+1olsun. £ parcasi regiiler oldugundan
Lemma .8 den dolayr & parcasida regiilerdir. Her bir p € & icin

Edk
d(p) = ———
dir. Hipotezden dolay:
n+n+1-1
= - 1
d(p) n+1-1 n

dir. O halde G, (n + 1)—regiilerdir. Boylece Teorem dan dolayt G (n + 1)— projektif
graftir.

Tersine, G (n + 1) regiiler projektif graf olsun. Projektif graf tammindan G lineer
graftir. Sonug den dolayt n > 2 dir. Teorem den dolay1 | 2 |=n*+n + 1 ve her
bir L € Zi¢ind(L) =n+ 1dir

Teorem 4.39. G = (& U 2, E) bir lineer graf olsun. n > 2 olacak sekilde bir tamsay
olmak iizere | £ |=n?+n+ 1veher bir L € L icind(L) =n+ 1< G (n + 1) projektif
graftir.

Ispat. G = (2 U 2, E) bir lineer graf ve n > 2 olacak sekilde bir tamsay: olmak iizere
| Z|=n*+n+1veVL € L igind(L) = n+ 1 olsun. Teorem dan dolay

12|

|2 1.( 2| -1) =) (dL).(d(L:) ~ 1)

=1

dirVL € ZLicind(L) =n+ 1ve| % |=n?+n + 1 oldugundan
| 2| .(| 2] -1)=m+1)nn*+n+1)

|2 |.(| 2| —-1)=n*+n).n*+n+1)

dir. Bu durumda
| 2 |=n*+n+1

dir. Teorem den dolay1 G (n + 1)—regiiler projektif graftir.
Tersine, G (n + 1) regiiler projektif graf olsun. Projektif graf tammindan G lineer

graftir. Sonug den dolayr n > 2 dir. Teorem den dolayi | £ |=n? +n + 1 ve her
bir L € £ i¢ind(L) = n+ 1dir.
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Teorem 4.40. G = (£ U X, FE), Cy iceren bir lineer graf olsun. p ¢ N (L) olacak sekilde
pe Pvel € Licinc(p, L) = d(p) ise G bir projektif graftir.

Ispat. G = (P U2, E) lineer graf olsun. LG2 den dolayi i,1 < i < d(p) ve d(p) > 2 i¢in
N(p) = {L1,La, ..., Lay} olacak sekilde L; € £ diigiimleri vardir. Boylece birbirinden
farkli R, S € £ diigiimleri i¢in ii¢ farkli durum vardur.

1. durum. R, S € N(p) ise CN(R,S) = {p} dir. Dolayisiyla cn(R, S) = 1 dir.

2. durum. R ¢ N(p) ve S € N(p) ise hipotezten dolayi c¢(p, R) = d(p) dir. Teorem den
dolayt | A3, (R) |= 0 dir: Boylece cn(R, S) = 1 dir.

3. durum. R, S ¢ N(p). LG2 ve LemmaW.3den dolayt q ¢ N(S) olacak sekilde en az bir q €
N(R) diigiimii vardir. Hipotezten dolayi c¢(q, S) = d(q) dir. Teorem | A?V(q)(S) |=0dr
Dolayisiyla en(R, S) = 1 dir. Béylece PG1 saglanwr. Hipotezden dolay G, Cs icerdiginden
PG?2 saglanmir. Boylece G projektif graftir.

Teorem 4.41. G = (P U £, E) bir projektif graf olsun. L € £ i¢cin ' = & — N(L),
L' =% {LYveE ={ay:2¢€ P veyc L}NE olmakiizere G' = (¥ UL E)
bir afin grafuir.

ispat. G = (2U.Z, E) bir projektifgrafve L € Licin ' = P -N(L), & = £ —{L}
ve B' = {ay: v € P veyc L'} N E olmak iizere G' = (P UL E) olsun. G iki
kiimeli graf oldugundan alt grafi olan G’ de iki kiimelidir. x,y € P C P ise x,y ¢
N(L) dir. G lineer graf oldugundan cn(x,y) = 1 dir. Dolayisiyla CN(z,y) = {K} ve
K # L olacak sekilde K € & diigiimii vardir K € &' dir. x,vy secimi keyfi oldugundan
LGI saglamr. L diigiimii komsulart ile birlikte atildigindan G grafimn &' parcasindaki
diigiimlerinin derecesi degismez. L' € £ olsun. G de PGI den dolay: cn(L, L") = 1 dir.
Dolayisiyla dgy (L) = dg(L') — 1 dir. G projektif graf oldugundan Sonug den dolay
§(G) > 3 dir. Bu durumda her bir L' € " i¢in d(L") > 2 dir. Dolayisiyla 6(G) > 2 dir. O
halde LG2 saglanir. Boylece G, lineer graftir

Sonug den dolay1 p' ¢ N(L') olacak sekilde p € &' ve L' € ' diigiimleri
vardir. G projektif graf oldugundan G de CN(L', L) = {q} olacak sekilde ¢ € & vardur.
Ayrica LG1 den dolayt CN(p', q) = {S} olacak sekilde S € £ vardir. p € ' oldugundan
p & N(L)dir.p € N(S) oldugundan dolay1 S # L vep ¢ N(L') oldugundan dolay:
S # L dir G grafinda S € £ vep ¢ N(L') dir G grafinda CN(S,L') € N(L)
oldugundan dolay: G’ grafinda CN(S, L") = 0 dir. O halde cn(S, L") = 0 dir.
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R # L' olmak iizere kabul edelim ki R € N(p) i¢in cn(R, L") = 0 olacak sekilde
R # S diigiimii olsun. p ¢ N(L) oldugundan R # L dir CN(R,L") ¢ N(L) olmas
durumunda cn(R, L") = 1 olur ki bu durum kabuliimiizle gelisir. O halde CN (R, L") € N(L)
dir. G projektif graf oldugundan G de CN(R, L") = {t} olacak sekilde t € N(L) C &
vardir. Eger t # qiset € N(L)vet € N(L') oldugundan dolay1 CN (L', L) = {q,t}
dir. Bu ise Lemma ile ¢elisir. Dolayisiyla t = q dir. Bu durumda R € N(q) ve R €
N(p) oldugundan dolayt CN(p',q) = {R, S} dir. Bu ise LG1 ile ¢elisir. O halde kabuliimiiz
yanhistir: Dolayisiyla p ¢ N(L') icin en(L',S) = 0 olacak sekilde bir tek S € N(L')
diigiimii vardir. Béylece G' afin grafir

Lemma 4.23. G = (Z U %, E), (n + 1)—regiiler projektif graf, ) # X C &, | X |= s,
P =P X, E ={ovy:ayc E(Q)vex,y¢ X} veG = (P UL, E) olmak iizere
Le Zigindy (L) =n+1—dy olsun. Bu durumda

LY copdr=s(n+1)
ii. Y, cpdi =s.(n+s)

dir.

Ispat. G = (2 U 2, E), (n + 1)—regiiler projektif graf, ) # X ¢ 2 ,| X |= s,
P =P X, E ={ay:vyc BE(G)vex,y¢ X} veG = (& UL, E) olmak iizere
Le Zigindy (L) =n+1—dg olsun.
i. Lemma §.9 den dolay

S = Y dip)

Le¥ pegz/
der (L) =n+1—dy, ve her birp € 2" igin d(p) = n + 1 oldugundan dolay

dn+l—dy)=> (n+1)

Le¥ pe’

dir | Z' |=n*+n+1—sve| L |=n?+n+ 1 oldugu dikkate alnirsa
D di=m+1).(*+n+1)—(n+1).(n* +n+1-s)
Lez
elde edilir. Esitlik yeniden diizenlenirse,
Z dL = 8.(n + 1)
Lez

dir.
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ii. Teorem den dolay

Y dL)dL) 1) =7 | (| 2| -1)

Lez
dir. | 2" |=n?® 4+ n + 1 — s yerine yazilarak esitlik yeniden diizenlenirse,
Zd2 Zd =m*4+n+1-s).(n*+n—s) (4.44)
Lez LeZ

elde edilir. Her birp € & igind(p) = n + 1ve| 2" |=n?+n+ 1 — s oldugundan dolay
>y dp) = (n+1).(n* +n+ 1~ s) dir. Lemma 4.9 den dolay:

Y dL)y= ) dp)

Le¥ pefﬂ/
oldugundan
Y dL)=(n+1).(n* +n+1-s) (4.45)
LeZ
dir. ifade daki esitlikte yerine yazilirsa
ng =M’ 4+n+1=s5).n*+n—s)+nm+1).(nP+n+1-2s) (4.46)
LeZ

elde edilir. (L) = n+ 1 — dy, oldugundan dolay

dn+1—d)? =Y (n+12?=2n+1) d+ > di (4.47)
Le¥ Le¥ Le¥ Ley
dir. (i) den dolay1 Y, _, d;, = s.(n + 1) esitligi ve | £ |= n® + n + 1 oldugu goz oniine
alinarak yeniden diizenlenirse
Z di = (n*+n+1-s).(n*+n—s)+(n+1).(n*+n+1—s)—(n+1)*.(n’+n+1)+2.(n+1)*.s
Lez

dir. Burada gerekli diizenlemeler yapilirsa

ZdL—s (n+s)

LeZ

dir.

Tamm 4.5. G = (£ U 2, E) bir lineer graf olmak iizere,
DPl. | 7 |=| Z |
DP2. 3v € V(G) igin d(v) = @ —-1=2]-1

sartlarini saghyorsa G ye dejenere projektif graf denir.
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Ornek 4.20. Sekil H.6 de verilen graf modeli bir dejenere projtif graftir:

Teorem 4.42. G = (£ U %2, E) dejenere projektif graf olmak iizere, K # L olacak sekilde
her bir K, L € £ i¢in cn(K, L) = 1 dir.

Ispat. G = (2 U .2, E) dejenere projektif graf olsun. DPI den dolay1 | & |=| £ | dir.
Teorem den dolayi VK, L € ¥ ve K # Ligin en(K, L) = 1 dir.

Lemma 4.24. G = (£ U .2, E) bir dejenere projektif graf olmak iizere, & par¢asina ait
derece dizisi (| £ | —1,2,...,2) ve £ par¢asina ait derece dizisi (| & | —1,2,...,2) dir.

Ispat. G = (2 U 2, E) bir dejenere projektif graf ve n > 3 bir tamsay olmak iizere
| & |=| £ |= n olsun. Bu durumda d(p) = n — 1 olacak sekilde p € &7 diigiimii vardr.
Her biri,1 <i <mn-—1ligin N(p) = {L1, Lo, ..., L, 1} olacak sekilde L; € £ diigiimleri
vardwr. LG2 den dolayr her bir i,1 < i < n — 1igin Ip; € N(L;) vardir ki p; # p dir. Eger
p den farkly p;,p; € & icin p; = p; ise CN(L;,L;) = {p,p;} olur. Bu ise Lemma ile
celisir. O halde p; # p; dir.

Kabul edelim ki 3L; € N(p) i¢in d(L;) > 3 olsun. 3g € N(L;) vardwr ki ¢ # p ve q # p;
dir. Herhangi bir j,1 < j # i < n — 1l i¢in ¢ = p; ise CN(L;, L;) = {p,q} dir. Bu ise
Lemma ile ¢elisir. O halde q # p; dir. Boylece {p,q,p1,p2,...,Pn—1} C & olur. Bu
durumdan + 1 <| & | dir. Buise | & |= n olmasiyla ¢elisir. O halde kabuliimiiz yanlistir.
VL; € N(p) igin d(L;) = 2 dir.

Ayrica | £ |= n oldugundan dolay1 & = N(p) U {L} olacak sekilde bir tek L diigiimii
vardw: YL; € N(p) igin d(L;) = 2 ve LGI den dolayt CN (p1,p2,...,pn-1) = {L} dir.
Kabul edelim ki 3p; € N(L;) i¢in d(p;) > 3 olsun. Bu durumda 3K € £ vardir ki K # L
ve K # L; dir Herhangi bir j,1 < j # i < n — 1li¢in K = L; olmast durumda
CN(p,p;) = {Li, K} olur. Bu ise LG1 ile ¢elisir. O halde K # L; dir. Fakat bu durumda
{L,K,Ly,Lo,..., L1} C £ vedolayisivlan + 1 <| £ | olur ki bu ise | £ |= n
olmaswla c¢elisir. O halde kabuliimiiz yanlhstir ve ¥p; € N(L) igin d(p;) = 2 dir
CN(p1,p2y---yPn—1) = AL} oldugundan dolayt {p\,p2,...,pn—1} < N(L) olup
n — 1 < d(L) dir. Kabul edelim ki n < d(L) olsun. Bu durumda 3q € N(L) vardw ki her
biri,1 < i < n —1ig¢inq # p; dir Eger ¢ = pise L. € N(p) olur ki bu durum
dlp) = n — 1 olmaswyla c¢elisir O halde ¢ # p dir Fakat bu durumda
{p,q,p1,p2, -, Pn1} S P olacagindan n + 1 <| P | olur ki bu durum | & |= n
olmaswla ¢elisir. O halde kabuliimiiz yanlistir. Boylece d(L) = n — 1 dir.

Teorem 4.43. G = (& U L, E) bir lineer olmak iizere, & parcasina (£ par¢asina) ait
derece dizisi (| £ | —1,2,...,2) olmasi i¢in gerek ve yeter kosul G nin dejenere projektif

graf olmasidir.
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Ispat. G nin dejenere projektif graf olsun. Tammdan dolay: G lineer graftir Bu durumda
Lemma den dolayt & par¢asina (£ par¢asina) ait derece dizisi (| £ | —1,2,...,2)
(| 2| -1,2,...,2)) dir

Tersine, kabul edelim ki G, & par¢asina ait derece dizisi (| £ | —1,2,...,2) olan
lineer graf olsun. O halde en az bir p € & ve her bir i,1 < i <| £ | —1 i¢in N(p) =
{Ly, Lo, ..., L|$|_1} olacak sekilde L; € £ diigiimii vardir. LG2 den dolayr herhangi bir i
icin p; € N(L;) olacak sekilde pi € & ve p; # p diigiimii vardir. j,1 < i # j <| £ | —1
icin p; = pj ise CN(L;, L;) = {p,p;} dir. Bu ise Lemma ile ¢elisir. O halde p; # p;
dir. LG2 den dolay1 en az bir L € £ vardir ki L € N(p;) ve L # L; dir. Eger L = L; ise
CN (pi,pj) = {Li, L} dir. Bu ise Lemma {.3 ile ¢elisir. O halde L # L; dir. LGI gbzoniine
alimrsa CN (p1,ps, ..., Dlz|-1) = {L} dir. Boylece | £ |=| & | dir. O halde G dejenere
projektif graftir.

Sonu¢ 4.27. G = (P U %L, E) bir dejenere projektif graf ve n > 4 i¢in | & |=| £ |=n

olmak tizere, &2 ve £ parc¢alarin her birinde derecesi n — 1 olan bir tek diigiim vardur.

Ispat. G = (22 U %, E) bir dejenere projektif graf ve n. > 4 icin | & |=| £ |= n olsun.
Kabul edelim ki d(p) = d(q) = n — 1 olacak sekilde p,q € &2 diigiimleri i¢in p # q olsun.
N(p) UN(q) C Z oldugundan | N(p) U N(q) |<| L | dir. | & |=| £ | oldugudan,

| N(p) UN(q) <[ Z |
elde edilir. Ayirica, LG1 den dolayi,

cn(p,q) =| N(p) " N(q) |= 1

oldugundan,
| Z|Z| N(p) | +| N(g) | -1

dir. | Z |=nved(p) = d(q) =n — 1 oldugundan,
n<3
elde ediliv. Bu durum n > 4 olmasiyla ¢eligir. Béylece, p = q.

Teorem 4.44. G = (& U L, E) bir dejenere projektif graf olmak iizere G nin icerdigi tiim

cevrelerin uzunlugu 6 dr.

Ispat. G = (P U 2, E) bir dejenere projektif graf olsun. n > 4 olmak iizere G en az bir
Cy, € G ¢evresi icersin. Bu durumda Cy,, : py — L1 —po— Lo —p3—Ls— -+ —p, — L, —p1
olacak sekilde p1,ps,p3,...,pn € P ve Ly, Ls, L3, ..., L, € £ diigiimleri vardw. LG1
den dolayt CN(p1,p3) = {L} olacak sekilde L € £ diigiimii vardw. Eger herhangi bir
i,1 < i < mnigin L # L;ise {Ly,L,,L} C N(p1)ve{Ls, L3, L} C N(p3) olur ki bu
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durumda d(p1) > 3 ve d(ps) > 3 olacagindan Sonug ile gelisir L = Lyyada L = Ly
olmast durumunda swrasiyla Ly — py — Ly — p3 — Ly ve py — Ly — py — Lo — py olur ki bu
durum Teorem W.1 ile ¢elisir. k,4 < k < n — 1i¢in L = Ly olmast durumunda d(p,) > 3 ve
d(p3) > 3 olacagindan Sonug ile geligiv. Bu durumda L. = L3 ya da L = L,, olmalidr.

1. durum. I = Lj olsun. LG1 den dolayr CN (pa,ps) = {K?} olacak sekilde K € &£
diigiimii vardwr. Eger herhangi bir i,1 < i < ni¢in K # L; ise {L1, L2, K} C N(py) ve
{Ls3, Ly, K} C N(p4) olup d(ps) > 3ved(ps) > 3 olacagindan Sonug ile ¢elisir Benzer
sekilde herhangi bir i,1 < i < ni¢in K = L; olmast durumunda, d(p,) > 3 oldugundan
d(p2) > 3 veya d(py) > 3 olacagindan Sonug ile ¢elisir. Boylece, L # Ls tiir.

2. durum. L = L, olsun. LGI den dolayt CN(p2,ps) = {K} olacak sekilde K € £
diigiimii vardw. Eger herhangi bir i,1 < i < nig¢in K # L; ise {L1, L2, K} C N(py) ve
{Ls3, Ly, K} C N(p4) olup d(p2) > 3ved(ps) > 3 olacagindan Sonug ile gelisir Benzer
sekilde herhangi bir i,1 < i < ni¢in K = L; olmast durumunda, d(p3) > 3 oldugundan
d(p2) > 3 veya d(py) > 3 olacagindan Sonug ile ¢elisir. Boylece, L # L, dir.

O halde kabuliimiiz yanlistir. Dolayisiylan < 3 ve Teorem 4.6 den dolay: girt(G) = 6

oldugundan n = 3 tiir.

Sonug 4.28. G = (P U %, E) bir dejenere projektif graf olmak iizere n # 3 icin G, C,,

icermez.

Sonu¢ 4.29. G = (£ U 2, E) bir dejenere projektif graf olmak tizere n # 3 i¢in G, C,,

icermezler.

Teorem 4.45. G = (& U %, E) bir dejenere projektif graf olmak iizere, G, Euler graftir
gerek ve yeter kosul | & |= 2k + 1 olacak sekilde k € Z olmasidur.

Ispat. G = (P U %, E) bir dejere projektif graf olsun. Kabul edelim ki G Euler graf olsun.
O halde Teorem 3.1 den dolay1 G nin diigiimlerinin derecesi ¢ifttir. Lemma den dolayt
Z par¢asina ait derece dizisi (| & | —1,2,...,2) dir. Boylece | & |= 2k + 1 olacak sekilde
k € Z* vardw.

Tersine, kabul edelim ki | &7 |= 2k + 1 olacak sekilde k € Z* olsun. Bu durumda
Lemma den dolay1 & parg¢asina ait derece dizisi (| £ | —1,2,...,2) ve £ parcasina
ait derece dizisi (| & | —1,2,...,2) dir. DP1 den dolay1 | & |=| £ |= 2k + 1 dir. Béylece
G nin tiim diigtimlerinin derecesi ¢iftir. O halde, Teorem den dolay1 G, Euler graftir.
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4.3 {0,1}—Semi Graflar

Bu kisimda {0, 1}—semi graflarlarin temel 6zellikleri incelenmis ve karakterizasyonlari

yapilarak dnemli sonuglar elde edilmistir.

Tamm 4.6. G = (£ U Z, E) bir lineer graf ve p ¢ N (L) olacak sekilde her bir p € & ve
L e ZLigin oy, (L) ={K :en(K,L) =0ve K € N(p)} olmak iizere

| (L) € {0,1}
ise G grafina {0, 1} —semi graf denir.

Ornek 4.21. Sekil de bir {0, 1} —semi graf modeli verilmistir.

’ |_2 Ly L4 Ly L6 L7

Sekil 4.11 G = (£ U %, E): bir {0, 1} —semi graf modeli

Lemma 4.25. G = (# U %, E) bir {0, 1}—semi graf olsun. p ¢ N (L) olacak sekildeki
pe Pvel e Licind(p) € {d(L),d(L)+ 1} dir.

Ispat. G, {0, 1} —semigraf olsun. Sonu¢ 4.4 dan dolay1 p ¢ N(L) olacak sekilde p € P ve
L € & diigiimleri vardir. G, {0, 1}—semi graf oldugundan dolay: | %Js(p)(L) € {0,1} dir
O halde iki durum vardr.

1. durum. | ,@7]8(]))(1)) |= 0 ise her bir M € N(p) i¢in CN(L, M) = {q} olacak sekilde
q € N(L) diigiimii vardir: Bu durumda | N (p) |<| N(L) | dir. Teorem §.9 g6z oniine alimirsa
dir.

2. durum. | o7y (L) |= lise K € N(p) ve ecn(L, K) = 0 olacak sekilde bir tek K € &
diigiimii vardwr. Bu durumda her bir M € N(p) —{K} i¢in CN (L, M) = {r} olacak sekilde
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r € N(L) diigiimii vardir. O halde | N(p) — {K} |<| N(L) | dir. Teorem Y.9 goz oniine
alimrsa d(L) < d(p) < d(L) + 1 dir. Béylece

d(p) € {d(L),d(L) + 1}
elde edilir.

Sonu¢ 4.30. G = (£ U %, E) bir {0,1}—semi graf olsun. p ¢ N(L) olacak sekildeki
pe Pvel e Licind(L) € {d(p) —1,d(p)} dir

Ispat. Lemma den dolayt ispat agiktir.

Teorem 4.46. G = (2 U .2, E) bir {0, 1} —semi graf olmak iizere L, L' € & icin & =
N(L)U N(L') ise G asagidakilerden biridir.

i. G, (3,2)—biregiiler afin graftwr.
ii. G dejenere projektif graftr.

iii. Sekil da verilen graf modeline izomorftur.

ispat. G = (22U 2, E) bir {0, 1} —semi grafve L, L' € £ olsun. Lemma ¥.3 den dolay
en(L, L") = {0,1} dir

L durum. cn(L,L') = 0 olsun. LG2 den dolay1 5(G) > 2 dir. Bu durumda L ve L
diigtimlerinin her birinin komsulugunda en az iki diigiim vardur.

Kabul edelim ki m > 3 ven > 3 i¢in d(L) = m ve d(L') = n olsun. Bu durumda
{p1,p2} € N(L) ve N(L') = {py,p,,...,p,} olacak sekilde py,ps,py,ps, .-, p, € P
diigiimleri vardir. LG1 den dolayt her bir i,7,1 < 4,7 < n igin CN(p1,p;) = {Ly} ve
CN(p2.p;) = {Loj} olacak sekilde L;,Ly; € £ diigiimleri vardir. cn(L,L') = 0
oldugundan herhangi bir i ve j i¢in Ly; , Loj diigiimleri L, L' diigiimlerinden farkldr.
Ayrica i # j igin Ly; = Lyj olmast durumunda C’N(p;,p;) = {L', Ly;} dir. Bu ise LGI ile
celisir. O halde L,; # Li; dir. Benzer sekilde Lo; # Loj dir. L1; = Loj olmast durumunda
ise CN(p1,p2) = {L, Ly;} dir. Buise LG ile ¢elisir. Boylece Ly; # Lo, dir.

Ayrica herhangi bir i igin d(Ly;) > 3ise s # py ve s # p; olacak sekilde en az bir
s € N(Ly) digiimii vardir. Hipotezden dolay1 s € N(L) U N(L') dir. en(L,L") = 0
oldugundan s € N(L) yada s € N(L') dir. s € N(L) ise CN(p1,s) = {L, Ly;} dir. Bu ise
LGl ile gelisir. O halde s € N(L') diir. Bu durumda CN(p,,s) = {L', Ly;} dir. Bu ise
LG1 ile ¢elisir. Dolayisiyla herhangi bir i i¢in d(L1;) = 2 dir. Benzer sekilde herhangi bir j
icin d(Ly;) = 2 dir Bu durumda N(Liy) = {p1,py}, N(La) = {pa,p,} ve
N(Ly,) = {pl,p;t} ve Lo, L1, € N(p1) ve cn(Lis, Loy) = 0, en(Lyy, Loy) = 0dirn > 3
oldugundan dolayr L5 # Ly, dir. Bu durumda | edjs(pl)([/zl) |> 2 dir. Bu ise G nin



72

{0, 1} —semi graf olmast ile ¢eligir. O halde kabuliimiiz yanhstir. Dolayisiyla, d(L') = 2
dir. Benzer sekilde d(L) = 2 olduguda gosterilebilir. Bu durumda & = N(L) U N(L")
oldugundan | & |= 4 tiir. Ayrica her bir R € £ i¢in d(R) = 2 oldugundan Teorem
den dolay1 G (3, 2)—biregiiler afin graftr.

2. durum. cn(L, L") = 1 olsun. Bu durumda CN(L,L") = {q} olacak sekilde ¢ € &
diigiimii vardir. LG2 den dolay1 §(G) > 2 dir.

(a) Kabul edelim ki L ve L diigiimleri i¢in d(L) = 2 ve d(L") = 2 olsun. Bu durumda
N(L) = {p,q} ve N(L') = {q,p'} olacak sekilde p,p € 2 diigiimleri vardi. LGI den
dolayt CN(p,p') = {K} olacak sekilde K € . diigiimii vardi: K = L olmast durumda
CN(p',q) = {L, L'} dir. Bu ise LG ile ¢elisir. O halde K # L dir. Benzer sekilde K # L'
diir. d(K) > 3 ise en az bir v € N(K) vardir ki v # p ver # p dir. Hipotezden dolay
P = N(L)UN(L)ved(L) = d(L'") = 2 oldugundan v = q dir. Bu ise Teorem {.1 ile
¢elisir. O halde d(K) = 2 dir. Boylece G = Cy dir. Bu durumda G dejenere projektif grafir.

(b) Kabul edelim ki d(L) = 2 ve n > 3 olmak iizere d(L') = n olsun. Bu durumda
N(L) = {p,q} ve her bir i,1 < i < n — 1igin N(L') = {q,py,p5...,p, .} olacak
sekilde p, p, € P diigiimleri vardir. LG1 den dolay1 her bir i icin CN (p, p;) = {L;} olacak
sekilde L; € & diigiimleri vardw. L; = L olmast durumunda {p, q,p,} C N(L) dir. Bu ise
d(L) = 2 olmasu ile ¢elisir. Boylece L; # L dir. L; = L' olmast halinde CN (p,q) = {L, L;}
dir. Bu ise LG1 ile celigir. Boylece L; # L' dir. Her bir i,j,1 < i,j < n—1vei # j
icin L; = Lj ise C’N(p;,p;.) = {L', L;} dir. Bu ise LGI ile ¢elisir. Boylece L; # L; dir
Kabuliimiizden dolayr &2 = {p,q,py,py - ..,p,_,} oldugundan dolayr | & |= n + 1 dir
Ayrica {L,L', Ly, Ly, ..., L,_1} C & dir. Bu durumda | £ |> n + 1 dir. Eger | & |>
n + 2 olmasi durumda S ¢ {L,L', Ly, Ly, ..., L,_1} olacak sekilde en az bir ve S € £
vardir. Ayrica LG2 den dolayr {x,y} C N(S) olacak sekilde x,y € & diigiimleri vardr.
{x,y} € {p,q, D}, Dy ...,D, 1} dir. Bu ise Teorem W.1 ile ¢elisir. Boylece | £ |= n + 1 dir
d(L") = n oldugundan G dejenere projektif grafir:

(c) d(L) = 3 olsun. Kabul edelim kin > 4 icin d(L') = n olsun. Bu durumda N (L) =
{q7p17p2} ve N(L/) = {Q7p,17pl2ap;,a "'7pln—1} Olacak§ekilde Q7p17p27pl17pl27p;37 "'7p;1—1 <
P diigiimleri vardir. LG1 den dolayt her bir i,1 < 1 < 2 ve her bir j,1 < 7 < n — 1 i¢in
CN(pi,p;-) = {L;;} olacak sekilde L;; € £ diigiimleri vardir. L;; = L ise CN(L, L) =
{q, pi} dir. Bu ise Lemma .3 ile ¢elisir. Dolayisiyla L;; # L dir. Benzer sekilde L;; # L' dir
5,1 <s<2ves # jigin L;; = L, ise C’N(p;-,p;) = {L', L;;} dir. Bu ise LG ile celisir.
Dolayisiyla L;; # L, dir. Benzer sekilde, r,1 < r < 2ver # iicin Li; # L,; ve L;j # Ly
dir.
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Bu durumda py ¢ N(Lss) igin cn(Lag, L11) = 0, en(Las, L12) = 0 ve L1y, L1y €
N(p1) dir. L1 # L1 oldugundan| ’Q{J(\)’(m)(L%) |> 2 dir. Bu ise G nin {0, 1}-semi graf
olmaswyla celisir. O halde kabuliimiiz yanhstir. Dolayisiyla, d(L') = 3 diir. Boylece, & =
{p1.p2.¢, 01,5}, N(L) = {q,p1,p2} . N(L') = {q,py,pa} ve {L, L', L11, L13, L1, Lys} C
% dir. Kabul edelim ki K ¢ {L, L' Ly, Lia, Loy, Loo} olacak sekilde en az bir K € £
olsun. LG2 den dolayt {a,b} C N(K) olacak sekilde a,b € {py,ps,q,p|, Dy} dir. Bu ise
Teorem ile ¢elisir. Dolayisiyla {L, L', Ly1, Li3, Loy, Loy Y = & dir. Graf modeli Sekil
verilmigtir.

251 P> q P1 2

Ly Ly, L L L,y Ly,

Sekil4.12 G = (2 U Z, E)

Teorem 4.47. G = (2 U %, E) bir {0, 1} —semi graf olmak iizere p # p' ve p,p € P icin
&% = N(p) UN(p) ise G dejenere projektif grafirr:

ispat. G = (22U .2, E) bir {0, 1} —semi graf ve p,p € P icin & = N(p) UN(p') olsun.
LGI den dolayt en(p,p’) = 1 oldugundan CN (p,p') = {L,,} olacak sekilde L,; € &
diigiimii vardur. Sonug W.4 den dolayr q ¢ N(L, ) olacak sekilde q € & diigiimii vardr.
LGI den dolayr ON (p,q) = {Ly,} ve CN(p',q) = {L,,} olacak sekilde Ly, Ly, € £
diigiimleri vardw. ¢ ¢ N(L,,) oldugundan Ly, # L, ve Ly, # L,/ dir. L,y = L, ise
CN(p,p) = {L,,> Lpq} dir. Bu ise LG1 ile ¢elisir. Béylece Lyq # Ly, dir. Eger d(q) > 3
ise K # Ly, ve K # L olacak sekilde en az bir K € N (q) diigiimii vardr.

K € N(p) olmasi durumda CN(p,q) = {L,,, K} dir. Buise LG1 ile ¢elisir. Boylece K ¢
N(p) dir. Hipotezden dolayi K € N(p') dir. Bu durumda CN(p',q) = {L,,, K} dir. Buise
LGl ile gelisir. O halde kabiiliimiiz yanlistir. Béylece d(q) = 2 dir. Benzer sekilde d(L,,;) = 2
olduguda gosterilebilir.
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ye P —{p,p,q} diigiimii olsun. LGI dolayi cn(q,y) = 1 dir. Bu durumda N(q) =
{Lpg; Ly} oldugundan dolayry € N(Lp,)UN(L,,) dir. ON(Lpg, Lyy) = {q} oldugundan
dolayty ¢ N(Ly,,) N N(L,,) dir. Boylece her biry € &2 —{p,p,q} i¢ciny € N(L,,) yada
y € N(L,,) dir. LG2 den dolay1 6(G) > 2 oldugudan L., ve L, diigiimlerin derecelerini

ti¢ farkli durumda inceleyelim.

1. durum. d(L,,) = d(L,,) = 2 olsun. Budurumda G = Cg dir. Béylece G dejenere projektif
graftir.

2. durum. L,, ve L, , diigiimlerinden en az birinin derecesi 2 dir. (Burada L,, ve L,
diigtimlerinden herhangi birini se¢mek genelligi bozmaz.)

d(Lyq) = 2ven > 3igin d(L,y) = n olsun. N(Lyy) = {p,¢,p1,P2,- - Dis---,Pn—2}
olacak sekilde p; € & diigiimleri vardw. LG1 den dolayr her bir i,1 < i < n — 2 olmak
sizere CN(p',p;) = {L;} olacak sekilde L; € £ diigiimleri vardir. d(L,y) = d(Ly,) = 2
oldugundan dolayr L; # L, ve L; # Ly dir 1 < 4,7 <n—2vei # jicin L; = Lj ise
CN (pi,p;) = {Lpg, Li} dir. Bu ise LG1 ile ¢elisir. Boylece L; # L; dir. Herhangi bir i i¢in
d(L;) > 3 ise p; ve p den farkli en az bir r € N(L;) diigiimii vardw: d(q) = 2 oldugundan
r# qdwrr =pise CN(p,p') = {Lyy, L;} dir. Bu ise LG ile ¢elisir. O halde r # p dir.
r € Ly ve d(Ly,,) = n oldugudan j # i i¢in r = p; dir Bu durumda
CN (pi,p;j) = {Lpg, Li} dir. Bu ise LG1 ile ¢elisir. O halde herhangi bir i i¢in d(L;) = 2
dir. Boylece & = {p,p',q,p1,D2:- - Pn—2} ve {Lpp, Lpg, Lyyg, L1, ..., Lo} C L dir.
Eger| £ |> n+liseT ¢ {Lyy, Lpg, Lyg, L1, ..., Ln_o2} olacak sekilde en bir T € £
vardir. LG2 den dolayr {a,b} C T olacak sekilde a,b € & = {p,p’,q,p1,P2, -, Pn_2}
vardir. Bu ise Teorem W.1| ile ¢elisir. Boylece | £ |= n dir. Bu durumda | & |=| £ |= n ve
d(L,,) = n — 1 oldugundan dolay1 G dejenere projektif graftir.

3. durum. d(L,,) > 3 ve d(Ly,) > 3 olsun. Bu durumda p ve q diigiimiinden farkli en az
biry € N(Ly,) diigiimii ve p’ ve q diigiimiinden farkli en az bir x € N(L,,) diigiimii vardir.
x =yise CN(Lypg, Lyy) = {q, x} dir. Bu ise Lemma{.3 ile ¢elisir. Boylece x # y dir. Ayrica
LGI1 den dolayi1 CN(y,x) = {L,y,} olacak sekilde L,, € £ diigiimii vardw: L, = L,,
ise CN(q,x) = {Lpg, Ly} dir Bu ise LG1 ile ¢elisir. Dolayisiyla L,, # L,, dir. Benzer
sekilde L, # Ly, dir. d(L,y) = 2 oldugundan L, # L, diir. Hipotezden dolayt L., €
N(p) U N(p) dir. Eger Ly, € N(p) ise CN(p,y) = {Lpg, Lsy} dir. Bu ise LG1 ile ¢elisir.
Béylece L, ¢ N(p) dir. O halde L,, € N(p') diir. Bu durumda CN(p',x) = {L,q, Ly}
dir. Bu ise LG ile ¢elisir. Dolayisiyla kabuliimiiz yanhistir. O halde Ly, ve L, diigiimlerinin
en az birinin derecesi 2 dir. O halde G dejenere projektif grafiir.



75

Sekil de verilen {0, 1}—semi graf modeli gbz oniine alinirsa & pargasina ait
herhangi iki diiglimiin komsulugu disinda . parcasina ait bir diigiim ve . pargasina ait
herhangi iki diigiimiin komsulugu disinda & pargasina ait bir diigiim oldugu agiktir. Bu
sebepten asagida art arda verilen Lemma §.26, Lemma §.27, Teorem ve Teorem §.49,
G grafinda & pargasina ait herhangi iki diigiimiin komsulugu disinda .’ parcasina ait bir
diigiim ve .Z pargalanmasina ait herhangi iki diigiimiin disinda &2 parg¢asina ait bir digiim
bulunan graflar ile ilgili sonuglar elde edilmis ve bu ozellige sahip {0,1}— semi graflar
kisaca G* = (£ U .Z, E) ile gosterilmistir.

Lemma 4.26. G* = (2 U %2, E), maksimum diigiim derecesi n + 1 olan {0, 1} —semi graf
olmak iizere herhangi bir p € & i¢in d(p) € {n,n + 1} dir.

Ispat. G* = (2 U .2, E), maksimum diigiim derecesi n + 1 olan {0, 1}— semi graf olsun.
Sonug Y.7 den dolay d(po) = n+1 olacak sekilde en az bir py € & vardw: G* n ézelliginden
dolayrp # povep € P icin L ¢ N(p)UN (py) olacak sekilde L € & diigiimii vardir. Teorem
den dolayr d(po) > d(L) dir. Bu durumda d(L) < n+ 1dir. Ayrica d(py) = n+ 1 oldugu
g0z oniine alimirsa Sonug den dolay d(L) > n dir. Bu durumda d(L) € {n,n+ 1} elde
edilir. G* nin maksimum diigiim derecesi n + 1 oldugu goz oniine alinirsa Lemma den
dolayr d(p) € {n,n + 1} dir.

Lemma 4.27. G* = (2 U .%Z, E), maksimum diigiim derecesi n + 1 olan {0, 1}—semi graf
olmak iizere herhangi bir L € £ i¢cin d(L) € {n,n + 1} dir.

Ispat. G* = (2 U 2, E), maksimum diigiim derecesi n + 1 olan {0, 1} —semi graf olsun.
Her bir L € £ i¢in d(L) < n + 1 dir. Oncelikle . par¢asimdaki diigiimlerin derecesi igin
alt sinir1 belirlensin.

M e Zicind(M) < n — 2 olsun. Sonug 4.4 den dolayr x ¢ N (M) olacak sekilde en az bir
x € P vardwr. Lemma |26 den dolayr d(x) € {n,n + 1} dir. Bu durumda | d]?,(x)(M) |> 2
dir. Bu ise G* nin {0, 1} —semi graf olmasiyla ¢elisir. Dolayisiyla d(M) > n — 1 dir. Kabul
edelim ki d(M) = n — 1 olsun. G*, {0, 1}—semi graf oldugundan dolay: d(x) = n dir.
G* nin maksimum diigiim derecesi n + 1 oldugu goz oniine alinirsa Sonug den dolay
d(po) = n+ 1 olacak sekilde py € & vardwr. G*, {0, 1}—semi graf oldugundan M € N (p,)
dir.

G* n ozelliginden dolayr ¢ ¢ N(L)U N (M) olacak sekilde q € & diigiimiinii vardir. q ¢
N(M) oldugundan d(q) = n dir. | oy, (L) |€ {0, 1} oldugundan dolayt d(L) € {n—1,n}
dir.

Egerpy ¢ N(L) ise d(L) = n olmalidwr.

Kabul edelim ki £ par¢asinda derecesi n—1 olan tek diigiim M olsun. Sonug H.0 den
dolayir ¢ N(M) olacak sekilde r € & diigiimii vardw. d(M) = n—1 oldugundan d(r) = n
dir. Kabiiliimiizden dolay1 £ par¢asina ait derecesi n — 1 olan tek diigiim M oldugundan &
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pargasina ait diger diigtimlerin derecesi n dir. Herhangi bir i,1 < i < d(r) i¢in L; € N(r)
olsun. Teorem dan dolay

d(r)
| 2| -1= (d(L;j)—1)=d(r).(n—1) =n.(n—1) (4.48)
i=1
dir. Benzer sekilde herhangi bir j,1 < j < d(r)—1i¢in L;- € N(po)— M olsun. M € N(py)
ve Teorem dan dolay:
d(po)—1
| 2| —1=d(M)-1+ (L;—1) = d(M)—1+(d(po)—1).(n—1) = d(M)—1+n.(n—1)

=1

(4.49)

dir. ve den dolayr d(M) = 1 dir. Bu ise LG2 ile ¢elisir. Dolayisiyla &
parcasinda derecesi n — 1 olan en az iki diigiim vardir. Bu durumda G*, {0, 1}—semi graf
oldugundan dolayt py, n — 1 dereceli diigiimlerin komsulugundadir. Boylece £ par¢asina
ait n — 1 dereceli diigiimlerin ortak komsulugu py dw. Bu durumda po dan farklh &
parcasina ait her bir diigiimiin komsulugu disinda dercesi n — 1 olan en az bir diigiim
vardir. G*, {0, 1}—sem igraf oldugundan dolayi py dan farkli & par¢asina her diigiimiin
derecesi n dir.
Farzedelim ki py diigiimiiniin komsulugunda en az bir tane derecesi n olan diigiim olsun. Bu
durumda F,K,H € N(py) i¢in d(K) = d(H) = n — 1 ve d(F) = n olacak sekilde
F,K,H € £ diigiimleri vardir. Ayrica LG2 den dolayi z # po olacak sekilde = € N(F')
vardir. O halde d(z) = ndir T € N(z) i¢in d(T) =n — lise T € N(py) dir. Bu durumda
{F, T} C CN(po, z) dir. Bu ise LG1 ile ¢elisir. Dolayisiyla z diigtimiiniin komsulugundaki
tiim diigiimlerin derecesi n dir. Teorem dan dolay

| Z |=d(z).(n—1)+1=n—-1)n+1=n*—n+1 (4.50)

dir. Benzer sekilde, LG2 den dolayr s # pgy olacak sekilde s € N(H) vardir. s # po
oldugundan dolayr d(s) = n dir. T' € N(s)veT’ # H i¢ind(T') =n — lise T' € N(po)
dir. Bu durumda {H,T'} C C'N(po, s) dir. Bu ise LG ile ¢elisir. Dolayisiyla s diigiimiiniin
komsulugundaki H dan farkl: diigiimlerin derecesi n dir. Teorem dan dolay

| Z|=1.(n—=2)+d(s) —1).n—=1)+1=n—-2+n—-17>+1=n>—n (45]1)

dir. #.50) ve den dolayr c¢eliski ortaya c¢ikar. Dolayisiyla py diigiimiiniin
komsulugundaki tiim diigiimlerin derecesi n — 1 dir. Boylece Teorem dan dolay

| Z |=d(po).(n—2)+1=Mn+1)(n—-2)+1=n*-n—-1 (4.52)

dir. ve den dolayi ¢eligki ortaya ¢ikar. O halde kabuliimiiz yanlistir. Dolayistyla
Z par¢asinda derecesi n — 1 olan diigiim yoktur. Béylece L € £ i¢in d(L) > nve d(L) <
n + 1 oldugundan dolayr d(L) € {n,n + 1} dir.
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Ornek 4.22. Sekil da verilen graf modeli n = 2 i¢in Lemma icin bir ornek teskil

eder.

Teorem 4.48. G* = (P U %, E), maksimum diigiim derecesi n + 1 olan {0, 1} —semi graf
olsun. Eger d(q) = n olacak sekilde q € & diigiimii varsa G — {q}, (n + 1, n)— biregiiler

afin graftr.

Ispat. G = (ZU.Z, E), maksimum diigiim derecesi n+ 1 olan {0, 1} —semi grafve ¢ € &
icin d(q) = n olsun. Sonu¢ ¥.6 den dolayr q ¢ N (L) seklindeki bir L € £ diigiimiinii vardur.
Lemma den dolay1 d(L) € {n,n + 1} dir. d(L) = n + 1 ise Teorem ile gelisir.
Dolayisiyla L ¢ N(q) igin d(L) = n dir. G* nin maksimum derecesi n + 1 oldugundan
Sonug .7 den dolayr d(p') = n + 1 olacak sekilde p € &P diigiimii vardir. Her bir L' € &
icin d(L') = n ise Lemma dan dolay1 & parcasi n + 1 regiilerdir. Bu ise hipotezle
¢gelisir. Dolayisiyla £ par¢asinda derecesi n + 1 olan en az bir diigiim vardir. M € £ i¢in
d(M) = n + 1 ise Teorem den dolay1 M € N(q) dwr. Dolayisiyla £ par¢asinda ait
n + 1 dereceli diigiimlerin tamami q diigiimiiniin komsulugundadir. Ayrica Teorem den
ve Lemma den dolay1 £ parc¢asina ait derecesi n + 1 olan herhangi bir diigiimiiniin

komsulugunda olmayan & parcasina ait diigiimlerin derecesi n + 1 dir.

Kabul edelim ki £ parcasinda n + 1 dereceli bir tek M diigiimii olsun. Bu durumda
r ¢ N(M)igin d(r) = n+1ve Lemma{.27 den dolayr her bir L € £ —{M} i¢ind(L) = n
dir. Dolayisiyla r nin komsulugundaki tiim diigiimlerin derecesi n dir. Teorem {.9 den dolayi

| Z |=d(r).n—1)+1=(n+1).(n—1)+1 (4.53)

dir. £ parcasinda ait tiim n+ 1 dereceli diigiimler q diigtimiintin komsulugunda oldugundan,
M € N(q) ve Z par¢asinda derecesi n + 1 olan tek diigiim M oldugundan Teorem g0z

ontine alimirsa
| Z|=n+(d(g—-1).(n—1)+1=n+(n—-1).(n—1)+1 (4.54)

dir. ve (#.54) den dolayi n = 2 dir. Béylece | P |= 4 ve d(M) = 3 tiir. Bu ise £
parg¢asindaki herhangi iki diigiimiin komsulugu disinda en az bir diigiim olmas ile ¢elisir.
Dolayisiyla £ parcasina ait derecesi n + 1 olan en az iki diigiim vardir. Bu diigiimler q
diigiimiiniin komsulugundadir. Her bir p € & — {q} i¢in Lemma den dolay d(p) €
{n,n + 1} olmahdir. Ayrica q diigiimiiniin komsulugunda n + 1 dereceli en az iki diigiim
oldugundan R, S € N(q) ve d(R) = d(S) = n + 1 olacak sekilde R, S € £ diigiimleri
vardir. Bu durumda, her bir p € & — {q} i¢in diigiimii ile ilgili ti¢ durum vardr.

1. durum. p € N(R) ise p ¢ N(S) dir. O halde Teorem 4.9 den dolayi d(p) = n + 1 dir.

2. durum. p € N(S) isep ¢ N(R) dir. O halde Teorem W.9 den doLay: d(p) = n + 1 dir.
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3. durum. p ¢ N(R) U N(S) ise Teorem 4.9 den dolayi d(p) = n + 1 dir.

Bdéylece, her bir p € &2 — {q} i¢in d(p) = n + 1 dir. Kabul edelim ki en az bir H €
N(q) i¢in d(H) = n olsun. Bu durumda s ¢ N(H) olacak sekilde s € & i¢in d(s) =n+ 1
dir. d(s) = n+ 1 ve d(H) = n oldugundan dolayi ecn(H, F') = 0 olacak sekilde bir tek
F € N(s)vardi. en(H, F) = 0 ve ¢ € N(H) oldugundan dolay1 F' ¢ N(q) dwr. Teorem
ve Lemma .27 den dolay1 d(F) = n dir. O halde N(F) = {s = p1,pa,...Di, ..., Dn} olacak
sekilde p; € & diigiimleri vardwr. LG1 den dolayt her biri,1 < i < ni¢in CN(q,p;) = {L;}
olacak sekilde L; € £ diigiimleri vardw. F' ¢ N(q) oldugundan dolay: L; # F dir. L, = H
ise CN(H,F) = {p;} dir. Buise cn(H, F') = 0 olmasu ile ¢elisir. Dolayisiyla L; #+ H dr.
Béylece {H, Ly, Lo, ...,L,} C N(q) dir. Buise d(q) = n olmasu ile ¢elisir. Dolayisiyla her
birT € N(q) i¢in d(T) = n + 1 dir. Teorem den dolay

| Z |=d(q)n+1=n>+1

dir. Ayrica £ pargasina ait n + 1 dereceli diigiimleri tamami q diigiimiiniin komsulugunda
oldugundan G* — {q} grafi i¢in | P |= n? ve her bir L € £ i¢in d(L) = n dir. Teorem
den dolay1 G* — {q} bir afin graftr.

Teorem 4.49. G* = (P U X, E), & pargasi (n + 1)—regiiler ve £ parcasi n ve n + 1
dereceli diigiimlerden olusan {0, 1} —semi graf olsun. £ par¢asmna ait n dereceli diigiimlerin

ortak komsulugu olacak sekilde bir v diigiimii eklenirse, G* + {x} projektif graftir.

Ispat. G* = (P U 2, E), & pargast (n + 1)—regiiler ve £ parcasi n ve n + 1 dereceli
diigiimlerden olusan {0, 1}—semi graf olsun. Hipotezden dolayt d(H) = n olacak sekilde
H € £ diigiimii vardir. Bu durumda

A H)={L:en(L,H)=0ve L € £} U{H}

olsun. En az biri H dan farkli R, S € A°[H| i¢in R # S olsun. Eger R ve S diigiimlerinden
biri H diigiimiine esitse cn(R, S) = 0 dw

R # H ve S # H olmak iizere kabul edelim ki cn(R,S) = 1 olsun. Bu durumda
CN(R,S) = {p'} olacak sekilde p € & diigiimii vardw: A°[H] kiimesinin tanimindan
dolayt ecn(R, H) = 0 ve cn(S,H) = 0 dir. Dolayisiyla p ¢ N(H) dir. Bu durumda
] Ag, (H) |> 2 dir. Buise G* nin {0, 1}—semi graf olmaswyla ¢elisir. O halde birbirinden ve
en az biri H dan farkli olacak sekilde R, S € A°(H) i¢in cn(R, S) = 0 dir.

Kabul edelim ki en az bir py € 2 icin py ¢ Upcopm N(L) olsun. & parcasi
(n + 1)—regiiler oldugundan dolayr d(py) = n + 1 dir. Bu durumda her bir i,1 < i <n+1
icin N(po) = {Li,Ls,...,L; ... L1} olacak sekilde L; € £ digiimleri vardw
Herhangi bir L; € N(po) igin cn(L;, H) = 0 ise L; € A°[H| dwr. Bu ise py diigiimiiniin
segimi ile ¢eligir. Dolayisiyla her L; € N(po) i¢in ecn(H, L;) = 1 dir. Bu durumda her bir i
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icin CN(H, L;) = {p;} olacak sekilde p; € & diigiimleri vardwr. j,1 < j <n+1lvei#j
icin p; = p; ise CN(po,p;) = {Li, L;} dir. Bu ise LG1 ile ¢elisir. Dolayisiyla p; # p; dir.
Bu durumda {pi,pa,...,pns1} C N(H) du: Buise d(H) = n olmas ile ¢elisir. O halde
kabuliimiiz yanhstir: Dolayisiyla her p € & i¢in p € Uy g N(L) dir:

Lemma ten dolayr her bir L € £ i¢in d(L) € {n,n + 1} dir. Kabul edelim
ki en az bir L' € A°[H] i¢in d(L") = n + 1 olsun. Bu durumda her bir i,1 < i < n + 1
icin N(L') = {py,Dg, - -, D1} olacak sekilde p; € & diigiimleri vardw: ¢ € N(H) i¢in
q & N(L')diir. LG den dolayt her biri,1 < i < n+1icin CN(q, p;) = {L;} olacak sekilde
L; € & diigiimleri vardir. j,1 < j <n+1vej #ii¢in L, = L; ise C’N(p;,p;-) ={L, L}
dir. Bu ise LG1 ile ¢elisir. Dolayisiyla L; + L; dir.en(L', H ) = 0 oldugundan dolay L; + H
dir. Béylece {H, Ly, Ly, ..., L, } C N(q) dir. Bu durumda d(q) = n + 2 dir. Bu ise &
parcasindan (n+1)—regiiler olmaswyla gelisir. Dolayisiyla her bir L € A°(H) i¢ind(L) = n
dir.

S e ZLicind(S) =n+ 1 olsun. Bu durumda S ¢ A°[H| dir. Kabul edelim ki en az
bir F € A°[H] igin cn(S, F) = 0 olsun. d(S) = n + 1 oldugundan her biri,1 <i <n+1
icin N(S) = {q1,42, - - -, qns1} olacak sekilde q; € &7 diigiimleri vardir. LG1 den dolay
p € N(F) igin CN(p,q) = {H;} olacak sekilde H; € & diigiimleri vardur:
J,1<j<n+1lveijicin H; = H;ise CN(q;,q;) = {S, H;} dir. Bu ise LG ile ¢elisir.
Dolayisiyla H; # H; dir. en(S, F) = 0 oldugudan dolayr H; # S dir. Benzer sekilde
H; # F dir. Boylece N(p') = {F,Hy, Hy, ..., H,.\} dir. Bu durumda d(p') > n + 2 dir.
Bu ise & parcasimn (n + 1)—regiiler olmast ile ¢elisir. O halde kabuliimiiz yanlstwr.
Dolayiswla her D € A°(H) i¢in cn(D, S) = 1 dir. O halde | A°(H) |> n + 1 dir.

Kabul edelim ki | A°(H) |> n + 2 olsun. Bu durumda A°(H) ait her bir diigiimiiniin S
diigiimii ile ortak komsulugunun sayisi 1 oldugundan S diigiimiiniin komsulugundaki en az
bir diigiim, A°(H) kiimesine ait en az iki diigiimiin komsulugunda olur ki bu durum A°(H)
kiimesine ait herhangi iki diigiimiin ortak komsulugun sayisinin sifir olmasiyla celisir. O
halde kabuliimiiz yanhstir. Dolayisiyla | A°(H) |< n + 1 dir. Boylece | A°(H) |= n + 1
dir.

Kabul edelim ki en az bir L' ¢ A°(H) icin d(L') = n olsun. Bu durumda her bir
i,1 < i < nigin N(L') = {p,py,...,p,} olacak sekilde p; € P diigiimleri vardir. Bu
durumda p; € Ureaopm N(L) dir. | A°(H) |= n + 1 oldugundan dolay1 k,1 < i < n +1
icin A°(H) = {Hy,Hs,...,H,.1} olacak sekilde H; € £ diigiimleri vardir. A°(H)
kiimesine ait herhangi iki diigiimiin komsulugunda, N(L') kiimesine ait aym diigiimiin
bulunmast halinde A°(H) kiimesinin tammi ile ¢elisir. Bu durumda A°(H) kiimesine ait
her bir diigiimiin komsulugunda N(L') kiimesine ait farkli diigiimler vardir. d(L') = n
oldugundan bir tek H, € A°(H) i¢in en(L', Hy) = 0 dir. Bu durumda p, € N(L') igin
p; & N(Hy) dir. Ayrica p; € Ureaoi N(L) oldugundan dolay: p; € N(L") olacak sekilde
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en az bir L" € A°[H] vardw: Bu durumda cn(L", H})) = 0 dir. Boylece | Ag,_(Hk) |> 2 dir.
Bu ise G nin {0,1}—semi graf olmasiyla ¢elisir. Dolayisiyla her bir K’ §é A°(H) igin
Ad(K')=n+1dir | A°(H) |=n+ 1, her bir L € A°(H) i¢in d(L) = n ve her birp € &
icin p € Upeaom V(L) ve herhangi L, K € A°[H] igin N(L) N N(K) = () oldugundan

dolay1 Teorem goz oniine alinirsa

|2 |= Y dL)=[AH) | n=(n+1).n=n"+n (4.55)
LeAY[H]
dir. Ayrica &P parcasindaki herhangi bir diigiimiin komsulugunda bulunan n dereceli

diigiimlerin sayisi o olsun. Teorem den dolay
| Z | —-1=a.(n—-1)+(n+1—a)n=an—a+n.(n+1)—an=n.(n+1)—a (4.56)

dir. @.53) ve .58) den dolayr o = 1 dir. Bu durumda 2 parcasindaki tiim diigiimler A°(H)
kiimesinin elemanlarinin komsulugunda oldugundan dolayr A°(H), £ par¢asina ait biitiin
n dereceli diigiimlerin kiimesidir. Bu durumda A°(H) kiimesinin elemanlarinin her birine
komsu olacak sekilde yeni bir x diigiimii &7 par¢asina ilave edililmesiyle olusan G* + {x}
=n?+n+1veherbir L € £ i¢cind(L) = n+ 1 olacagindan Lemma
den dolay1 G* + {x} grafi projektif graftwr.

Teorem 4.50. G* = (£ U .2, E) maksimum diigiim derecesi n + 1 olan {0, 1}— semi graf

olmak iizere,
i.VL e Ligind(L) =niseG, (n+1,n)— biregiiler afin graftir.

ii. VL € ZLicind(L) = n+ lise G, (n+ 1)—regiiler projektif graftir.
Ornek 4.23. Sekil 4.9 de verilen afin graf modelinde p ¢ N (L) olacak sekildeki her bir
pe Pvel € £ igin| dﬁ(p)(L) |= 1 oldugundan {0, 1} —semi graftir:

Sekil de verilen projektif graf modelinde ise p ¢ N (L) olacak sekildeki her bir
pe Pvel € L igin | szj\(}(p)(L) |= 0 oldugundan {0, 1} —semi grafir.
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5. LINEER GRAFLARIN KOMSULUK GRAFLARI

Herhangi bir grafin komsuluk graflart V. R. Kulli tarafindan(Kulli, 2015)
incelemistir. Bu ¢calismada graflarin komsuluk graflariyla ilgili regiilerlik, bagllik ve Euler

graf olma durumlariyla ilgli sonuglar elde edilmistir.

Tezin bu boliimiinde dncelikle komsuluk graflartyla ilgili bazi sonuglar verilerek,
lineer graflarin komsuluk graflar1 incelenmis ve O6nemli sonuglar elde edilmistir. Ayrica

komsuluk graflar1 lineer graf olan graflar karakterize edilmistir.

G = (V,E) bir graf ve S(V') = {N(u) : u € V'} olmak iizere S(V) kiimesine G nin

tiim a¢1k komsuluklarinin kiimesi denir.

Tamm 5.1. G = (V, E) bir graf ve S(V') kiimeside G nin tiim agik komsuluklarinin kiimesi
olsun. E' = {uN(v) : u € N(v), u # v veu,v € V'} olmak iizere ¥ (G) = (VUS(V), E)
grafina G nin komguluk grafi denir.(Kulli, 2015)

Ornek 5.1. Sekil .1 de sirasiyla G ve G nin komsuluk grafi olan N (G) grafi verilmistir.
N(Ul) = {Ug,Ug}, N(UQ> = {ul,u3}, N(Ug) = {Ul,UQ,Ug,U4}, N(U4> = {U3}, N(U5> =
{u?)} Oldugundan §= {N(u1)7 N(u2)7 N(U3), N(’LL4>, N(u5)} dir.

ta Us Uy Uz Us Uy Us
X W

Uy U, N(uy) N(u,) N(us) N(u,) N(us)

Sekil 5.1 G ve A (G)

Teorem 5.1. G, herhangi bir graf olmak iizere N (G) grafi iki kiimelidir. (Kulli, 2015)
Sonug 5.1. G, iki kiimeli bir graf olmak iizere N (G) grafi baglantisizdir. (Kulli, 2015)

Sonu¢ 5.2. G = (V, E) herhangi bir graf olmak iizere x,y € V icin vy ¢ E(N (G)) ve
N(x)N(y) ¢ E(AN(G))
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Ispat. Komsuluk grafi tanimindan ispat aciktir

Lemma5.1. G = (V, E) bir graf olmak iizere G nin derece dizisi (d, da, . . ., dy)) ise N (G)
komsuluk grafimn derece dizisi (dv, dy, da, ds, . .., dyy|,dy|) dir.

Ispat. ; € V ve her biri,1 < i <| V |igin d(x;) = d; olsun. G grafimn derece dizisi
(di,dy,...,dy|) oldugundan dolayt x; € V ve her bir j,1 < j < d; igin
N(z;) = {y1,v2,-..,Ya,} olacak sekilde yy,y>,...,yq;, € V diigiimleri vardir. O halde,
N(G) grafinda d(N(x;))) = d; dir. G grafinda x; diigiimii yy,ys, . . . ,ya, diigiimlerinin
komsulugunda oldugundan N (G) de N(x;) = {N(y1), N(y2), ..., N(ya,)} olacagindan
d(z;) = d; olur V(AN (G)) = V U S(V) oldugundan N (G) nin derece dizisi
(di,dy,da,da, . .. dy, dyy) dir

Sonug 5.3. G = (V, E) herhangi bir graf ve u € V ve A (G) G nin komsuluk grafi olmak
sizere, dg(u) = d y(c)(u) = dy ) (N (u)) dir

Lemma 5.2. G = (£ U .2, E) bir lineer graf olmak iizere, G (r, s)—bireguler ise her bir
u € V(A(Q)) igin d(u) € {r, s} dir

ispat. G = (22 U %, E) (r, s)—biregiiler lineer graf olsun. Sonug 5.3 den dolayi p € &
ve L € L i¢in N/ (G)ded(N(p)) =d(p) =rved(N(L)) =d(L) = sdir V(N (G)) =
(P UZL)UI[S(Z)US(L)] oldugundan her bir w € V(N (G)) igin d(u) € {r, s} dir.

Sonu¢ 54. G = (P U L, E) bir afin graf ve L € £ i¢in d(L) = n olmak iizere her bir
u € V(AN (Q)) igin d(u) € {n+ 1,n} dir

Ispat. G = (2 U %, E) bir afin graf olsun. Bu durumda Teorem ve Lemma [5.3 den
dolayi1Yu € V(AN (Q)) igin d(u) € {n + 1,n} dir

Sonu¢ 5.5. G = (£ U Z, E) bir projektif graf ve L € £ icin d(L) = n olmak iizere,
N (G), (n + 1)—regiilerdir.

Ispat. G = (2 U %, E) bir projektif graf ve L € & i¢in d(L) = n olsun. Bu durumda
Teorem ve Lemma [5.4 den dolayr her bir v € V(N (Q)) igin d(u) = n + 1 dir.

Sonu¢ 5.6. G = (&£ U .2, E) bir lineer graf olmak iizere, N (G) izole ve sarkik diigiim

icermez.

Ispat. G = (2 U %, E) bir lineer graf olsun. LG2 den dolay: §(G) > 2 dir. Bu durumda
Sonug B.3 den dolayr 6(. (G)) > 2 dir. Izole diigiimiin derecesi sifir ve sarkik diigiimiin
derecesi 1 oldugundan N (G) grafi izole ve sarkik diigiim icermez.

Lemma 5.3. G = (2 U %, E) bir lineer graf olmak iizere, NV (G) grafi baglantisiz graftir.

ispat. Lineer graf tanimi ve Sonug¢ 5.1 den dolay ispat aciktir
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Lemma 54. G = (2 U %, E) bir lineer graf olmak iizere N (G) grafi Euler graf degildir.
ispat. Lemma [5.3 den dolay: ispat agiktir:

Teorem 5.2. G = (£ U 2, E) bir lineer graf ve & ve £ parc¢alarinn her bir elemaninin
acitk komsuluklarindan olugan kiimeler sirasiyla

S(#) = {N{p : p € P} ve S(¥) = {N(L) : L € £} olsun.
Ei={w:ue PveveS(L)} ve Ey={zy:xe€S(P)veve L} olmak iizere

asagida verilen ifadeler gecerlidir.
. G =(P2US(Y), Ey)ve Gy = (S(2) UL, Ey) birer lineer graftr.

ii.G’éleeG%JGg
dir.

Ispat. i. G = (2 U %, E) bir lineer graf olsun. Teorem den dolayr N (G) grafi iki
kiimelidir. Her p,q € 22 ve p # q i¢in LG den dolayi1 CN (p,q) = {L} olacak sekilde
bir tek L € &£ diigiimii vardir. Bu durumda {p,q} C N(L) dir. Béylece pN(L),qN (L) €
E(A(Q)) dir. Burada N (L) diigiimii p ve q diigiimlerin ikisiyle ayrit belirten tek diigtimdiir.
Boylece G = (PUS(ZL), E) grafinda CN (p,q) = {N(L)} olacak sekilde bir tek N(L) €
S(Z) dir. Dolayisiyla LG1 saglanw: LG2 den dolayr 6(G) > 2 oldugundan her bir u €
V(G) igin d(u) > 2 dir. Lemma 5.1 den dolayr N (G) grafi her bir N(u) € V(AN (G))
icin d(N(u)) = d(u) > 2 dir. Dolayisiyla 6(G1) > 2 dir. Bdylece G lineer graftir. Benzer
sekilde G5 grafida lineer graftir.

ii.
f 20U =S (P)UY
N(z),z € &
r,x €L

fx) =

olacak sekilde tanimlanan f fonksiyonu icin

1. durum. x,,x5 € < i¢in vy F# x9 olsun. [ fonksiyonunun tammmindan dolay
f(z1) = N(x1) ve f(x2) = N(x3) olacak sekilde N(x1),N(xs) € S(P) diigiimleri
vardir. Ayrica N(z1),N(z2) € V(A(G)) olup N (G) grafimn tammumdan farkl:
diigiimlerin agik komsuluk diigiimleride farklidir. Bu durumda N (x1) # N (z5) dir. Béylece
f(z1) # f(x2) dir

2. durum. x1,x5 € £ icin x1 # 3 olsun. Bu durumda f(x1) = x1 ve f(xs) = x4 dir
Baylece f(x1) # f(x9) dir.

3.durum. v\ € & ve x4 € L olsun. Bu durumda G lineer graf oldugundan x| # xo dir. f
Sonksiyonunun tammindan dolayr N(x1) € S(2) ve xo € £ diigiimleri vardir. N (G)
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grafimin tanimindan dolayt bir diigiim ile a¢ik komsuluk diigiimii farkli oldugundan dolay:
N(x1) # w5 dir. Boylece f(x1) # f(x2) dir. U¢ durumdan dolay1 f fonksiyonu birebirdir.
PN YL = 0 oldugundan dolay:

| 2U0UZ =2 |+ |Z| (5.1)
dir. S(2) N L = 0 oldugundan dolay:
| S(Z)VZ = S(2) |+ 2] (5.2)
dir. & parcasimin her bir diigiimiine karsilik bir tek a¢ik komsuluk diigiimii oldugundan
| 2 =1 8(2) | (5.3)
dir. (5.1), (.2) ve (5.3) den dolay:
| Z2UZ |=| S(Z)u.Z | (54
elde edilir. Bu durumda f fonksiyonu birebir ve (5.3) den dolayi f értendir.
f 202 > S(P)U”L

xL € E(G) igin f(xzL) = N(x)L dir. G grafinda L € N(x) oldugundan komsuluk grafinin
tanimi geregince LN (v) € E(AN(G)) dir. O halde f izomorfizmadir. Boylece G = G4 dir.
Benzer sekilde G = GG dir.

Lemma 5.5. G = (£ U.Z, E) bir lineer graf ve & ve £ parc¢alarimin her bir elemaninin
a¢tk komsuluklarindan olusan kiimeler sirasiyla

S(Z)={N(p):pe P}tveS(¥)={N(L): L€ ZL}olsun. G = (P US(X), Ey) ve
Go = (S(P) U Z, Es) olmak iizere N (G) = G1 U Gy grafi iki bilesenlidir.

ispat. Teorem .4 den dolayi G, lineer graf oldugundan Teorem den dolayr G,
baglantilidir. Benzer gsekilde G, de baglantilidir. Ayrica Komsuluk grafi tanimindan
V(AN (G) = (U L)U (S(2) U S(ZL)) dir Bu durumda Lemma den dolay
N (G) = G1 U Go grafi iki bilesenlidir.

Sonu¢ 5.7. G = (£ U Z, E) bir lineer graf olmak iizere, N (G) = 2G dir.
ispat. Teorem [5.2 (ii) ve Lemma 5.5 den dolayr N (G) = 2G dir.

Ornek 5.2. Sekil .2 de verilen graf modeli icin & = {p1,ps,ps} ve L = {L, Lo, L3}
olmak iizere G = (£ U £, E) bir lineer grafir S(&?) = {N(p1), N(p2), N(ps)} ve
S(Z) = {N(Ly),N(L3), N(L3)} olmak iizere G nin komsuluk grafi / (G) = G1 U Gy
Sekil 5.3 da verilmistir. Burada G, = (S(P) U L, E,) ve Gy = (P U S(L), Es,) dir
Burada G = G ve G = G5 oldugu aciktir.
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L
Ly

(]

Sekil 5.2 Cy grafinin iki kiimeli modeli

N(p) Pa) Nips) Pq

XA

N{Ly) N(Ls)

Sekll 5.3 Gl = (S(:@) Ug,El) A\ Gg = (@ U S(g),Eg)

Tanmmm 5.2. Farkli iki digiimiiniin  ortak komsulugunun sayisi 1 olan graflara
arkadaglik(friendship) graflar: denir. (Chvatal vd., Sonlu arkadashk graflarin € Z+
icin F, ile gosterilir ve F,, tam olarak bir ortak komsuya sahip n tane kenarlart ayrik Cs

den olusur. F,, grafi 2n + 1 diigiim ve 3n kenar icerir.

Ornek 5.3. Sekil 5.4 de verilen graf bir Friendship grafiur.

P P>

24
Pa

Pe Ps

Sekil 5.4 n = 3 i¢in Friendship graf modeli: F;
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Teorem 5.3. G = (V, E) bir Friendship grafi olmak iizere, V' (G) dejenere projektif graftir.

ispat. G bir Friendship grafi olsun. Teorem [5.1 den dolay1 N (G) iki kiimeli bir graftr.
V(A (G)) =V US(V) oldugudan herhangi farkli x,y € V icin G de Tamim [5.4 dan dolay:
CN(z,y) = {2z} olacak sekilde bir tek z € V diigiimii vardir. Bu durumda x ve y nin her ikisi
birden sadece z diigiimiiniin agik komsulugundadir. Boylece, komsuluk grafinin tanimindan
dolayt N (G) de en(x,y) = {N(z)} olacak sekilde bir tek N(z) € S(V') vardir. Dolaysiyla
LGI saglamr. Ayrica Tamm b1 ve Sonug 5.3 den dolay1 6(. (G)) > 2 dir. O halde LG2 de
saglamir. Boylece N (G) bir lineer graftir.

Ayrica V(AN (G)) = (VU S(V),) dir. V(G) ait derece dizisi (| V | —1,2,...,2)
oldugundan Sonu¢ [5.3 dan dolayi 'V ve N (V) par¢alarina ait derece diziside
(|V | -1,2,...,2) dir. Teorem den dolayr N (G) dejenere projektif grafir.

Ornek 5.4. Sekil 5.4 de verilen Friendship grafin komsuluk grafi Sekil 5.3 de verilen N ( Fs)
grafina izomorftur. N (F3) dejenere projektif grafiwr.

N@p) N() N(m) N Nps) Nps) NPy

Sekil 5.5 A (F3), F3 grafinin komsuluk grafi
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6. LINEER GRAFLARIN WIiENER INDEKSLERI

Bir graftaki tiim diigiim c¢iftleri(diigiim ciftlerinin siralamasi 6nemsiz olmak iizere)
arasindaki uzakliklar toplami olarak tanimlanan Wiener indeks kavrami1 H. Wiener(Wiener,
1947) tarafindan organik molekiillerin bazi fiziksel, kimyasal, biyolojik ve farmolojik
ozelliklerini incelemek amaciyla ileri atilmistir. Sonraki yillarda ise basta agaclar olmak
iizere iki kiimeli graflar, bazi 6zel graflar ile bu graflarin line graflarinin Wiener
indekleriyle ilgili caligmalar yapilmig graflar i¢in Onemli parametrelerden biri haline
gelmistir. Ayrica bir grafin Wiener sayisinin sinirlariyla ilgili ¢alismlar da yapilmistir.
Detaylar i¢in asagida verilen kaynaklara bakilabilir. (Graovac ve Pisanski, [1991),
(Dobrynin vd., 2001), (Walikar vd., 2004), (Cohen vd., 2010), (Li ve Song, 2014), (Knor
vd., 2015), (Knor vd., 2015).

Bu boliimde lineer graflarin Wiener indekleri incelenerek, lineer graflarin Wiener
indeksinin sinirlart tespit edilmistir. Ayrica, Onceki boliimlerde siniflandirilan lineer

graflarin Wiener indeksleri hesaplanarak baz1 6nemli sonuglar elde edilmistir.

Tanmm 6.1. G = (V| E) bagh bir graf olsun. W(G), G grafinin Wiener indeksi olmak iizere

W(G):% S d(u,v)

u,veV(Q)

dir.

Ornek 6.1. Sekil 6.1 da verilen G = (V, E) grafimin Wiener indeksi hesaplanirsa,

Sekil 6.1 G = (V, E) grafi

d(vi,v9) = 1, d(vy,v3) = 1, d(v1,v4) = 2, d(ve,v3) = 1, d(va,v4) = 2, d(vs,v4) = 1 ve
W(G) =14+1+2+14+2+1=38

elde edilir.



88

Teorem 6.1. G = (2 U L, E) bir lineer graf olmak iizere
WG =l Z|.(2]|-1)+3[ 2| Z]|-2]| EG) | +W(ZL)
dir.

Ispat. G = (2 U 2, E) bir lineer graf, P(P) ve P(L) sirasiyla P ve £ par¢alarinin
kuvvet kiimesi olsun. Lineer graflar tanimi geregince iki kiimeli oldugundan,
WG = > duv)+ > duv)+ Y duw) (6.1)
{u,v}CP(2) (u,v)eP XL {u,v}CP(Z)
dir. LG1 den dolayi her u,v € & i¢in cn(u,v) = 1 dir. Lemma W.5 den dolayt d(u,v) = 2
dir. Bu durumda

> d(u,v):<’f’> du,v)=| 2| .(| 2| -1) (6.2)

{u,0}CP(L)
dir u € P vev € L olsun. Bu durumda

Z d(u,v) = Z d(u,v) + Z d(u,v) (6.3)

(w,w)eP XL (u,v)eP XL (u,0)EP XL
vEN (u) v€N(u)

esitligi yazilabilir. Ayrica v € N (u) olacak sekilde v diigiimlerinin sayisi; d(u) ve v ¢ N(u)
d(u) dw: O halde,

| 2| d(us)

SRR o PIIs w0

(uw)EP XYL =1 j=1

vEN (u)
ve

1zl |
Y. dwv)=3 > d(uvy) (6.5)
(u,0)EP XL =1 j=d(u;)+1
v N (u)

dir. wv € E(G) ise d(u,v) = 1 veuv ¢ E(G) ise Lemma den dolayr d(u,v) = 3
oldugundan

2| d(u;) 12|
Y d(uiv) =) d(u) =| E(G) | (6.6)
i=1 j=1 i=1
ve
2] |-Z| |2|

> X dwe) =33 (2| -dw) =321 Z|-1EC)) 6

=1 j=d(u;)+1

dir. Bu durumda (6.3), (6.4), 6.3), (6.6) ve (6.7) den dolay
Y duw)=3.12| £ |-2|EQG)| (6.8)

(u,v)eP <L
dir. (6.1) ve (6.8) den dolay: asagidaki esitlik elde edilir.

WG =lZ[.(Z]-D)+3]2||Z]-2] E@G)|+W(Z).
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Lemma 6.1. G = (£ U %, E) bir lineer graf olmak iizere, p € &

W) =212 |.(1ZL|-D)+|EG)|-)_dp)’
pES

dir.

ispat. G = (2 U.Z, E) bir lineer graf olsun. Lemma|.3 den dolay: L; # L; olacak sekilde
her bir Ly, L; € £ ¢ifti igin cn(Li, L;) < 1 dir. LemmaW.3, (4.10) ve Sonug ¥.11 den dolayr,

( > d(p)( )+4<—|$|(|$|—1——Zd )_1)>

peEP PEDP

dir. Esitlik den | E(G) |= ) c» d(p) oldugundan,

W(ZL) =212 |.(1ZL|-D)+|EG)| =) _dp)*

peEL

Sonu¢ 6.1. G = (£ U Z, E) bir lineer graf olmak iizere, p € & igin

we =l z|.(2|-0)+2|L|(Z]|-)+3| 2] ZL|-|EG)|-) dp)

pEP

ispat. Teorem [6.1 ve Lemma 6.1 dolay: ispat agiktr:

Ornek 6.2. Sekil de verilen lineer graf modelinin diigiimlerini yeniden adlandirilarak

Sekil |6.2 verilsin. Burada & = {v1,v9,v3,v4, 05} ve L = {vg, v7, V3, Vg, V10, V11 } dir:

Vg V7 Vg Vg LT V11

Sekil 6.2 Sekil de verilen lineer graf modelinin yeniden adlandirilmasi

Bu grafin Wiener indeksinin hesaplanmasi icin gerekli olan diigiim ¢iftleri
arasindaki uzakliklar Cizelge 6.1 de verilmistir. d(v;,v;) = d(vj,v;) oldugundan Tabloda
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verilen uzakliklar toplanirsa

Z d(u,v) = 116

u,veV(G)

dir.

Cizelge 6.1 Sekil 6.2 de verilen graf modelindeki farkli diigiim ¢iftleri arasi uzakliklar

d(vi,v9) =2 | d(vy,v3) =2 | d(vy,vq) =2 | d(vy,v5) =2 | d(ve,v3) =
d(ve,v4) =2 | d(vg,v5) =2 | d(vg,v4) =2 | d(vs,v5) =2 | d(vg,v5) =2
d(vi,v6) =1 | d(vy,v7) =1 | d(vi,v8) =1 | d(vy,v9) =3 | d(v1,v19) =3
d(vi,v11) =3 | d(va,v6) =3 | d(ve,v7) =3 | d(va,vs) =1 | d(ve,v9) =3
d(vg,v10) = 1 | d(vg,v11) =1 | d(vs,v6) =3 | d(vs,v7) =3 | d(vs,vg) =1
d(vs,vg9) =1 | d(vs,v10) =3 | d(vs,v11) =3 | d(vg,v6) =1 | d(vyg,v7) =
d(vg,v8) =3 | d(vg,v9) = d(vyg,v9) = d(vg,v11) =3 | d(vs,v6) =
d(vs,v7) =1 | d(vs,vg) = d(vs,vg) = d(vs,v10) = 3 | d(vs,v11) =1
d(ve,v7) =2 | d(vg,vs) = d(ve,vg) = d(ve,v10) = 2 | d(vg,v11) =4
d(vr,v8) =2 | d(vr,v9) =2 | d(v7,v10) =4 | d(v7,v11) =2 | d(vs,v9) = 2
d(vs,v10) =2 | d(vs,v11) =2 | d(vg,v10) =2 | d(vg,v11) =2 | d(v19,v11) =

dyrica | P |=5,| £ |=6,| E(G) |=14ve ) ., d(p)* = 40 oldugundan Sonu¢
deki esitlikte yerine yazilirsa,

W(G)=5442.6.5+3.5.6—14 —40 =116

Teorem 6.2. G = (£ U 2L, E) bir lineer graf ve & pargasi regiiler olmak iizere,

W(G):|9|-(|Wl—1)+2|$!(|$|—1)+3|32||g|_|E<G)‘_(|]—|“7f;)||)

dir.

Ispat. G = (2 U %, E) bir lineer graf ve & par¢asi regiiler olsun. Bu durumda,

> dw)?=dp)’. | 2|

peES

dir. Ayrica,

dir. Sonug 6.1 den dolay

W(G)=|<@|-(|9’|—1)+2|$y(|.$|—1)+3|y||g|_|E<G)|_(|?f;)|l)

dir.
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Sonug 6.2. G = (£ UL, E) bir lineer graf ve L par¢asi regiiler olmak iizere,

W(G)=|9’|-<|9’|—1>+2|$y<|z|—1)+3|9||g|_|E(G)|_(|f|*3f;>||)

dir.

Ispat. G = (2 U %, E) bir lineer graf ve £ par¢asi regiiler olsun. Bu durumda, Lemma
den dolayr P parcasi regiilerdir. Teorem 6.3 den dolay

W(G)Zle@l-(le@l—l)+2|$|(|o§,ﬂ|—1)+3|y||g|_|E(G)|_(’E(G)!)

| 2|
dir.
Ornek 6.3. Sekil deki graf modeli goz oniine almwsa &P = {vy,vs,v5} ve
L = {vg,v4,v6} olmak iizere £ parcasi regiilerdir. G nin diigiim ¢iftleri arasindaki

uzakliklar, d(vy,v3) = d(vy,v5) = d(vs,v5) = 2, d(ve,vs) = d(ve,v) = d(vy,v6) = 2 ve
d(Ul,UQ) = d(’l)h?}ﬁ) = 1, d(’Ul,U4) = 3, d(Ug,UQ) = d(’U3,U4) = ]_, d(Ug,UG) = 3,
d(vs, v4) = d(vs,v6) = 1, d(vs,v2) = 3 oldugundan dolay:

W(G) =2+4+2+2+2+242+1+1+1+1+1+14+343+3=27

dir. | 2 |=| £ |= 3 ve| E(G) |= 6 degerleri Sonug 6.1 de yerine yazilirsa ayni sonug elde
edilir.
62
W(G)=32+232+333-6- - =27

Lemma 6.2. G = (£ U .Z, E) bir lineer graf olmak iizere,
W)zl 2| .(Z]-1)
dir.
Ispat. G = (P U .2, E) bir lineer graf olsun. Lemma .3 den dolayi, L # K olacak sekilde
her bir L, K € £ i¢in

L durum. ¢(L,K) = lised(L,K) =2,

2. durum. ¢(L,K) =0ised(L,K) =4
dir. Ayrica Lemma dan dolay1 L # K olacak sekilde her bir L, K € £ diigiimleri i¢in
en(L, K) < 1oldugundan, £ par¢asindaki tiim farkl diigiim ¢iftlerinin ortak komsulugunun

sayist 1 alinirsa,

w(Z) =2 |.(2]-1)
dir.
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Ornek 6.4. Sekil 6.2 daki lineer graf modelinde W () = 34ve | £ | (| £ | —1) = 30
dur. Sekil 4.1 lineer graf modelinde ise W (L) = 6ve | L | .(| £ | —1) = 6 duwr:

Sonu¢ 6.3. G = (£ U .Z, E) bir lineer graf olmak iizere,

W zlz|(2[-D+3|2||ZL]|21EG) |+|Z]|.(2]-1)
dir.
ispat. Teorem 6.1 ve Lemma 6.4 den dolay: ispat agiktir:
Lemma 6.3. G = (£ U %, E) bir projektif graf olmak iizere,

W) =l z|.(2|-D+3[2[|Z|21EG)|+|Z2].(1£]-1)
dir.
Ispat. G = (2 U 2, E) bir projektif graf olsun. Teorem |61 den dolay

WG =l2|.(02|-)+3|2||Z|-2|EG)|+W(ZL)

dir. Sonug den dolayi her u,v € L ¢ifti i¢in d(u,v) = 2 dir. Bu durumda

| Z |

; ) d(u,v) =] Z | (Z]-1)

W(f)z(
dir. Boylece
W@ =l2z|.(2z-)+3|2|Z]|2[EG) |+|Z].(ZL]-1)
dir.

Teorem 6.3. G = (&£ U 2, E) bir projektif graf olsun. n > 2 olacak sekilde bir tamsay
olmak iizere u € V (G) igin d(u) = n + 1 ise

W(G) = 5n* +8n* +9n* +4n + 1
dir.
Ispat. G = (2 U %, E) bir projektif graf olsun. Lemma 6.3 den dolay
We) =l z|.(2|-D+3[2[|Z|21EG)|+|Z2].(1Z]-1)

dir. G bir projektif graf ve u € V(QG) olsun. Teorem den dolay1 | & |=n*+n + 1 ve
| £ |= n®+ n+ 1dir. Ayrica, Lemma den dolayr E(G) = n® + 2(n* + n) + 1 dir
Boylece

W(G) =5n* +8n® +9n* +4n + 1

dir.
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Teorem 6.4. G = (£ U .Z, E) bir afin graf olsun. n > 2 olacak sekilde bir tamsayr olmak
sizere L € L i¢in d(L) = n ise

W(G) = 5n* +4n® — 3n* — 2n
dir.
Ispat. G = (2 U 2, FE) bir afin graf ve L € £ icin d(L) = n, n € Z* olsun. Bu durumda
G aymi zamanda lineer graf oldugundan dolayr Teorem .1 de dolay
W) =l Z(2]-D+3[2]|[Z]|-2]EG)|+W(Z) (6.9)

dir. Ayrica Lemma Y.3 den her u,v € L ¢ifti i¢in en(u,v) € {0, 1} oldugundan dolay

W)= Y duv)= Y duv)+ Y duv) (6.10)
{u,v}CP(¥) {u,v(}C?&{) {u,v(}C7)3£‘51f)

dir. Ayrica Lemma 4.5 den dolayi

2,c(u,v) =1
4,c(u,v) =

d(u,v) =

dir. Bu durumda
W(Gy) =4 (Z) (n+1)+2(nnn+nn(n—1)+---+nn.l)

dir. Esitligin sol tarafi diizenlenirse
W (L) =2n(n*—1)+n*(n+1) (6.11)

elde edilir. Teorem den dolayr | P |= n? ve | £ |= n? + n dir. Boylece (6.9) ve (6.11)
den dolay

W(G) = 5n* +4n® — 3n* — 2n
dir.
Ornek 6.5. Sekil deki afin graf modeline ait diigiim ¢iftleri arasindaki uzakliklar,
Cizelge [6.] de verilmistir. Buna gore G grafinin Wiener indeksi cizelgede verilen uzakliklar

toplamidir. Bu durumda
W(G) =96

dir. Ayrica L € £ i¢in d(L) = 2 oldugundan Teorem dan dolay
W(G) =52 +4.2° - 322 - 2.2 =96

dir.
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Cizelge 6.2 Sekil B.9 de verilen graf modelindeki farkli diigiim ¢iftleri arasi uzakliklar

d(pr,p2) =2 | d(p1,p3) =2 | d(p1,ps) =2 | d(p2,p3) =2 | d(p2;ps) =2
d(ps,ps) =2 | d(p1,L1) =1 | d(p1,L2) =1 | d(p1,L3) =1 | d(p1,Ls) =3
d(p1, Ls) =3 | d(p1,Leé) =3 | d(p2, L1) =1 | d(p2, L2) =3 | d(p2, L3) =3
d(pa, Ly) =1 | d(p2, Ls) =1 | d(p2, L) =3 | d(ps, L1) =3 | d(ps, L2) = 1
d(ps, L3) =3 | d(ps, La) =1 | d(p3, Ls) =3 | d(ps,Le) =1 | d(ps, L1) =3
d(ps, L) =3 | d(ps, L3) =1 | d(ps, Ls) =3 | d(ps, Ls) =1 | d(ps, Le) = 1
d(Ly,Ls) =2 | d(Ly,Ls) =2 | d(L1, Ly) =2 | d(Ly, Ls) = 2 | d(Ly, Lg) = 4
d(Ly, Lg) =2 | d(Ls, La) = 2 | d(La, Ly) = 4 | d(La, Lg) = 2 | d(Ls, L1) — 4
d(Ly, Ls) = 2 | d(Ls, Lg) — 2 | d(La, Ls) = 2 | d(Ls, Lg) = 2 | d(Ls, Lg) — 2

Lemma 6.4. G = (£ U %, E) bir dejenere projektif graf olmak iizere,
W(G)=5|2>-8|2|+6
dir.
ispat. Teorem 6.1 den dolay:
WG = Z(2]-)+3[2]|[Z|-2]|EG)|+W(Z) (6.12)

dir. Sonug den dolayiVL, K € £ i¢in en(L, K) = 1 dir. Béylece Sonug den dolay:
d(L, K) = 2 dir. Bu durumda

W(Ggy) = <‘ f |> du,v) =2 |.(Z]|-1) (6.13)
dir. Ayrica,
=) dp) =2 |-1+(2|-1)2=3|2|-3 (6.14)
peEP

diir. G dejenere projektif graf oldugundan | & |=| £ | dir. Ayrica (6.12), (6.13) ve (6.14)

denklemleri gozoniine alinirsa,

W(@G)=5|2>-8|2|+6
dir.

Sonu¢ 6.4. G = (P U.Z, E) bir dejenere projektif graf ve n. > 3 olacak sekilde bir tamsay
olmak iizere V (G) = 2n olsun. Bu durumda

W(G) = 5n* —8n + 6

dir.
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Ispat. Lemma ve dejenere projektif graf tanimindan ispat agiktir.

Sonuc 6.5. G = (P U.Z, E) bir (n+ 1)—regiiler projektif grafve G' = (2" UL, E') bir
dejenere projektif graf olmak iizere, V(G) = V(G') ise W(G) > W(G") dir.

Ispat. Projektif graf tammindan | & |=| £ | ve benzer sekilde dejenere projektif graf
tammindan dolay1 | &' |=| " | dir. Hipotezden dolay1 V (G) = V(G') oldugundan

| P |=| P |=n+n+1

ve
| L= L |=n®+n+1

dir. Bu durumda Teorem 6.3, Lemma 6.4 ve n > 3 den dolay
W(G) > W(G)

dir.
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7. BULGULAR VE TARTISMA

Bu caligmada iki kiimeli graflar i¢in ortak komsuluk sayis1 goz oniine alinarak lineer
graflar tanimlanmustir. Lineer graflarin temel ozellikleri ortaya koyularak onemli bir
kisminin  siniflandirilmast  yapilmistir.  Yapilan  smiflandirmalar  diiglim  dereceleri
kullanilmak suretiyle karakterize edilmistir. Daha sonra lineer graflarla bazi1 6zel graflar
arasindaki iligkiler incelenmistir. Bu baglamda tam graflardan, graflarin diigiim genislemesi
kullanarak lineer graflar elde edilmis ve k£ diiglimlii tam graflardan elde edilen lineer graflar

(k — 1,2)— biregiiler lineer graflar olarak karakterize edilmistir.

Siniflandirilan lineer graflar arasindaki iligkiler incelenerek birbirini alt graf olarak
icermesi i¢in sahip olunmasi gereken parametrelerle ilgili sonuglar ortaya koyulmustur.
V.R. Kulli tarafindan yapilan baz1 6zel graflarin komsuluk graflariyla ilgili ¢aligmalar
incelenerek lineer graflarin komsuluk graflariyla ilgili ¢alismalar yapilmis ve Onemli
sonuglar ortaya cikarilmigti. Bu baglamda genis bir uygulama alani olan Friendship
graflarinin komsuluk graflarindan belirli parametrelere sahip lineer graflar elde edilmistir.

Ayrica lineer graflarin Wiener indeksleri incelenerek dnemli sonuglar verilmistir.

Gegtigimiz on yil igerisinde I. Giinaltili’'nin onciiliik ettigi (0, 1)— graflaryla ilgili
caligmalar yapilmistir. Bu baglamda bu tezde ¢alisilan lineer graflar gerek bazi1 geometrik
yapilarin temsili gerekse (0, 1)—graflarmin smiflandirilmasi ¢aligmalarina 6nemli katki

saglayarak bu yondeki ¢aligmalara 151k tutacaktir.
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8. SONUCLAR VE ONERILER

Sunulan tez ¢galismamizda asagidaki sonuglar elde edilmistir.

Oncelikle tezle ilgili tamm ve kavramlarak sunularak bazi 6nemli teoremler
verilmistir. lerleyen kisimlarda teze temel teskil eden lineer graf kavrami tanimlanarak,
lineer graflarin temel 6zellikleri elde edilmis ve bu graflardan bazilar1 siniflandirilmistir. Bu
baglamda tanimlanan afin graflar, projektif graflar ve dejenere projektiflar graf pargalarin
regiilerlikleri kullanilarak, n > 2 ve n € Z* olmak {izere (n + 1)— regiiler lineer graflar
projektif graf, (n + 1,n)— biregiiler lineer graflarin afin graflar, & pargas1 (n — 1,2)—
biregiiler lineer graflarin tam graflardan elde edilen graflar ve &2 pargasi (n — 1,2)
biregiiler ve . pargast (n — 1,2)— biregiiler olan lineer graflarin dejenere projektif graf

olarak karekterizasyonu yapilmistir. Ayrica
i. Lineer graf olan ¢evre graflari karakterize edilmistir.
ii. Tam graflardan lineer graflar elde edilmistir.

iii. Lineer graflarin baz1 yasakli graflar1 karekterize edilmis ve lineer graflarin C) i alt graf
olarak igermedikleri ortaya koyulmustur. Dejenere prokjektif graflarinin n # 6 olmak tizere

C,, alt graf olarak icermedikleri gosterilmistir.

iv. Lineer graflarda baglant1 sayis1 tanimlanmis ve lineer graflarinin projektif graf veya afin
graf olmalar1 i¢in gerekli baglant1 sayisi ile diigiim dereceleri arasindaki iliskiler ortaya

koyulmustur.

v. Siniflandirilan lineer graflardan bazilarinin Euler graf olmasi igin gerekli kosullar

incelenmistir.

vi. Komsuluk graflar1 incelenerek lineer graflarin komsuluk graflariyla ilgili 6zellikler elde
edilmistir. Ayrica Friendship graflarinin komsuluk graflarimin lineer graf oldugu ortaya

koyulmustur.

vii. Graflar i¢in 6nemli bir 6zellik olan Wiener indeks kavrami kullanilarak lineer graflarin

Wiener indeksleri hesaplanmuistir.
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Bu sonuglar 1ginda n,r,m,s > 2 olacak sekilde bir tamsay1 olmak iizere (n,r)—
biregiiler lineer graflar ve & pargasi (n,r) , £ pargast (m,s)— biregiiler olan lineer
graflarin siniflandirilmast yapilabilir. {0, 1}—semi graflarla ilgili sonuglardan hareketle
0 < a < b olacak sekildeki a ve b tamsayilart i¢in | o7y, (L) |€ {0,a,b} olan lineer graflar
arastirilabilir. Baz1 6zel graflardan lineer graf elde edilme kosullar1 incelenebilir. Ayrica
lineer graflardan agaclar elde edilip bunlarun Wiener indekleri tespit edilerek kimyasal
graflarla iliskilerine bakilabilir ve lineer graflarin enerjileriyle ilgili calismalar yapilabilir.
k > 2vet > 1 olacak sekilde birer tamsay1 olmak iizere iki kiimeli graflarin parcasindan
birinin herhangi £ tane diiglimiin ortak komsulunun ¢ olmasi halinde elde edilen graflarla

cesitli geometrik yapilar arasinda iligski kurulabilir.

Son olarakta, lineer graflarin bir uygulamasi olarak 6zellikle projektif graf ve afin
graflar kullanilarak Kodlama Teorisinde onemli bir rolii olan Diisilk Yogunluklu Eslik

Denetim Kodlarinin(LCPC) elde edilmesine yonelik ¢alismalar yapilabilir.
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