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Effects of Various Parameters on the Containment of 

Pandemics 

Ramin NASHEBI 

 

Department of Mathematics 

MSc. Thesis 

 

Supervisor: Prof. Dr. Murat SARI 

Co- Supervisor: Assist. Prof. Dr. Enes Seyfullah KOTIL 

 

Human behavior, economic activity, vaccination, and social distancing are 

inseparably entangled in epidemic management. This study aims to investigate 

the effects of various parameters such as human behavior, economic activity, 

vaccination, and social distance on the process of the containment of pandemics 

such as COVID-19. To achieve this, an agent-based model based on a time-

dynamic network with stochastic transmission events has been developed via the 

computer codes produced here in MATLAB 2019b. The network is constructed 

from a real-world social network. The social network data has been categorized 

into three categories: home, workplaces, and social environment. Consequently, 

it has allowed us to understand household and non-household environments 

contribution to the overall dissemination of the pandemic. The conditions needed 

to mitigate the spread of wild-type COVID-19 and the delta variant have been 

analyzed. Tens of thousands of individual-based simulations have been carefully 

executed by our purposeful agent-based model. A function that fits the simulations 

has been used and this attempt has given the opportunity to explore the 

interaction between pharmaceutical and non-pharmaceutical interventions on 

containment of COVID-19. It has been found that changing working hours or 

implementing stay-at-home restrictions, up to 4 days, does not significantly reduce 

the basic reproduction number 𝑅0. It has also been found that successful 

vaccination does not bring 𝑅0 below 1 when no other measures are implemented. 

It has been concluded that although most of the infections occurred in homes 

when 𝑅0 < 1, the household transmission does not significantly alter the spread. 

Note also that the spread ultimately depends on non-household transmissions. 
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ÖZET 

 

 

Çeşitli Parametrelerin Pandemilerin Sınırlandırılmasına 

Etkileri 

Ramin NASHEBI 

 

Matematik Bölümü 

Yüksek Lisans Tezi 

 

Danışman: Prof. Dr. Murat SARI 

Eş-Danışman: Dr. Öğretim Üyesi Enes Seyfullah KOTIL 

 

İnsan davranışı, ekonomik aktivite, aşılama ve sosyal mesafe, salgın yönetiminde 

ayrılmaz bir şekilde iç içe geçmiş durumda. Bu çalışma, COVID-19 gibi 

pandemilerin kontrol altına alınması sürecinde insan davranışı, ekonomik aktivite, 

aşılama ve sosyal mesafe gibi çeşitli parametrelerin etkilerini araştırmayı 

amaçlamaktadır. Bunu gerçekleştirmek için, burada MATLAB 2019b'de üretilen 

bilgisayar kodları aracılığıyla stokastik geçiş (bulaş) olaylarıyla zaman dinamik bir 

ağa dayalı faktör-tabanlı bir model geliştirilmiştir. Söz konusu ağ, gerçek 

dünyadaki bir sosyal ağdan inşa edilmiştir. Sosyal ağ verileri üç kategoriye 

ayrılmıştır: ev, işyerleri ve sosyal çevre. Sonuç olarak, ev içi ve ev dışı ortamların 

pandeminin genel yayılmasına katkısını anlamamızı sağlamıştır. Yabani tip 

COVID-19 ve delta varyantının yayılmasını azaltmak için gereken koşullar analiz 

edildi. Amaca yönelik ajan-tabanlı modelimiz tarafından on binlerce bireysel 

tabanlı simülasyon dikkatli bir şekilde gerçekleştirilmiştir. Simülasyonlara uyan 

bir fonksiyon kullanılmış olup bu girişim, COVID-19'un kontrol altına alınmasına 

ilişkin farmasötik ve farmasötik olmayan müdahaleler arasındaki etkileşimi 

keşfetme fırsatı vermiştir. Çalışma saatlerini değiştirmenin veya 4 güne kadar evde 

kalma kısıtlamalarının uygulanmasının, temel çoğaltma sayısı 𝑅0 'ı önemli ölçüde 

azaltmadığı sonucuna varılmıştır. Ayrıca başka hiçbir önlem uygulanmadığında 

başarılı aşılamanın 𝑅0 'ı 1'in altına getirmediği görülmüştür. Enfeksiyonların 

çoğunun, 𝑅0<1 olduğunda, evlerde meydana gelmesine rağmen, ev içi 

bulaşmanın yayılmayı önemli ölçüde değiştirmediği sonucuna varılmıştır. 

Yayılmanın nihayetinde ev dışı bulaşmalara bağlı olduğu da göz ardı 

edilmemelidir. 
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1  
INTRODUCTION 

 

This chapter presents an overview about the influence of the interplay of the non-

pharmaceutical policies and vaccination in the context of control and containment 

of the disease and successful management of the economy and the public's health. 

Also, the mathematical models that have been offered in literature for simulating 

dynamic, control, and containment of COVID-19. Additionally, the goal of this 

study of the thesis are given respectively. 

1.1 Literature Review 

Human behavior in households, workplaces, social environment during weekends 

and weekdays have a vital role in the spread of infectious diseases such as middle 

east respiratory syndrome (MERS) [1], H1N1 influenza [2], severe acute 

respiratory syndrome (SARS) [3], and the current severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [1]. Household members have frequent 

and intimate contacts, making the disease spread rapidly within the households 

[4-5]. We can observe the risk of infection within the household during seasonal 

and pandemic influenza [6-7], for pneumococcal carriage [8], and childhood 

infections [9-10].   

The ongoing COVID-19 pandemic, instigated by the novel SARS-CoV-2, has 

rapidly spread from Wuhan, China, to nearly all countries. The diverse clinical and 

epidemiological features of COVID-19 have contributed to its disastrous effects 

worldwide [11,12]. This disease transmission occurred via droplets during close 

contacts and via contaminated surfaces [13-16]. The critical role of pre-

symptomatic and asymptomatic individuals in transmitting infection makes 

symptom-based isolation less effective [12].  

The development of strategies for preventing infectious diseases is a priority of 

health organizations. There are three general containment strategies for 
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preventing and mitigating infectious disease: antiviral, vaccine, and non-

pharmaceutical measures [17]. The non-pharmaceutical measures include a wide 

range of policies such as changing the number working hours, limiting 

transmissibility between individuals by distancing measures, and stay at home 

restrictions [18, 19, 34]. Stay-at-home policy is frequently used [19-22]. The 

World Health Organization [23,24] and many local authorities [25,26] supported 

stay-at-home measures and encouraged them. Governmental policies upon stay-

at-home orders are grouped into four categories: no measures implemented 

concerning staying-at-home, recommended to stay at home, moderate restriction 

concerning stay-at-home (people can do their daily exercise, grocery shopping, 

and ‘essential’ trips), and high restriction regarding stay-at-home (people allowed 

to leave only once every few days, or only one person can go at a time) [27]. The 

same countries modified the long lockdown to a short-term stay-at-home order, 

such as France [28,29], Turkey [30,31], India [32]. These countries recommend 

stay-at-home orders only during weekends. On the downside, stay-at-home 

orders, limiting work hours, distancing measures have negative effects on mental 

health, physical health, and the economy [35]. Understanding the interplay of the 

mentioned non-pharmaceutical policies and vaccination is essential in the context 

of control and containment of the disease and successful management of the 

economy and the public's health. Since the experimental study is not compliant to 

investigate the social dynamic, control, and management of disease among 

humans, mathematical models are crucial to quantify and investigate such effects 

[33,36]. Models are developed in order to understand the effect of external 

influences on outputs, through representation of the interactions between the 

components of the system, and to communicate ideas about the behavior of the 

system. In mathematical modelling, those features of system, that being studied 

theoretically, translate into the language of science for simplification [37-38]. 

The role of stay-at-home (short-term) orders, limiting working hours, and 

distancing measures in spreading COVID-19 requires modelling the interplay 

between agents and their environment. Moreover, the interaction between agents 

and agents' interaction with the environment directly affects the incidence and 

persistence of infection disease. The spatial and social heterogeneity of agents, the 
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interaction between agents, and the emergent effect are produced from these 

interactions and persists over time make it a complex phenomenon [39]. The 

problem can be represented by agent-based models simulated on a time-resolved 

contact network with stochastic events. We have aimed for a model where the 

duration of stay-at-home restrictions, number of working hours and distancing 

measures can be varied independently on an individual level. Many mathematical 

models have been developed to investigate this complex system [40-42].  

Standard compartmental models are used to investigate the dynamic of disease in 

a population by using a set of ordinary differential equations [43]. These models 

use mean-field [55, 48] approximation, assuming that every infectious member 

infects any member of the susceptible class with the same probability. Many SEIR 

compartmental models [44, 45] were conducted to investigate COVID-19 by using 

mean-field approaches. Hou et al. [46] used a mean-field SEIR model to analyze 

the role of self-isolation in the control and containment of COVID-19. Some 

studies [47,49] modify the SEIR model by adding new states to account for 

asymptomatic cases and the effect of quarantine and hospitalization. However, 

due to the usage of mean-field approximation, these models do not capture the 

stochasticity of phenomena and individual-level behavioral effects [43].  

Stochastic models are individual-level models, include discrete and continuous-

time Markov chains models [43]. In these models, an infectious person infects a 

susceptible person with a definite probability if there be present a physical 

connection between them. The link between individuals makes a contact network, 

where disease spread. Ando et al. [50] established a stochastic model to 

investigate the role of human mobility in spreading of COVID-19. Stochastic 

models relax the mean-field approximation hypothesis in infection disease 

modelling, but when the interaction between individuals is homogenous, or there 

is an infinite number of individuals, the stochastic models became the mean-field 

deterministic model [43]. Heterogeneity of contact network has a significant effect 

in dynamic of disease [43]. Firth et al. [51] used a real-world social network to 

model control and containment strategies for COVID-19.  
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Agent-based modelling is a computational approach to modelling complex systems 

consist of autonomous agent interactions [52,53]. Agent-based modelling 

composed of three components: agents with behaviours and attributes, agents’ 

relationships and interactions, and agent’s environment where they interact. In 

epidemiology, to decide to control an infection disease, it is essential to 

understand the interaction between agent, host, and environment affects the 

transmission of disease and its development in a population [54]. Consequently, 

agent-based models are essential tools to understanding the impact of human 

behavior in the transmission of infectious diseases in different environments such 

as households, workplaces, and social environments. Moreover, they are deficient 

in linking basic reproduction numbers to complex phenomena like the spatial and 

time-wise occurrence of infection events. Among spatial places, we are interested 

in infections occurring in households, workplaces and social environments. Aleta 

et al. [40] used an agent-based model with three layers: school, workplace, and 

household. They used human mobility data and constructed artificial contact 

networks with different weights, which proxy transmission, for each setting 

(schools, workplace, and households). They used their model to investigate the 

influence of the closure of schools and stay-at-home restrictions. Another study by 

Hoertel et al. [41] developed a stochastic agent-based model and run it over a 

synthetical social network. They investigated the effectiveness of the national 

lockdown of francs, post-lockdown, distancing measures, and mask-wearing. 

Braun et al. [42] developed a network-based, agent-based model. Using this 

model, they simulated the Watts–Strogatz small-world network to catch the 

efficiency of social distancing, personal protective equipment, and quarantining. 

In this study, we have developed a discrete-time stochastic agent-based model to 

investigate the effect of social distancing, stay-at-home restriction during 

weekends, and working hours on the containment of COVID-19. Our advancement 

with the above works is that we use real-world social network data and manually 

classified contacts into the household, workplace, and social environment   

Simulation studies have been done using network models to investigate the 

dynamic of disease [60]. Volz et al. [61] used this approach to investigate the 

dynamical pattern of an epidemic in complex heterogeneous networks. Sewell and 



5 

Miller et al. [62] used the SEIR model and a contact network to investigate the 

effect of mask and quarantine in spreading COVID-19. In addition, social 

networking plays a significant role in assessing the potential effectiveness of stay-

at-home restriction [40], social distancing [12], economic policies [56], and 

vaccination [57]. In 2018, the BBC released a human social interaction dataset to 

explore the dynamics of a pandemic in the UK [58]. Josh et al. [59] developed a 

branching process model and simulated the COCVID-19 outbreak throw this social 

network dataset. They assessed the impact of testing and contact tracing strategies 

for controlling of COVID-19 outbreak. 

Some mathematical models and meta-analyses analyzed the dynamic of COVID-

19 inside and outside of households [63, 12, 64, 65, 66,71]. Many studies found 

that the probability of indoor transmission was very high compared to outdoors 

[65]. Another study shows that even by implementing strong social distance 

measures, the epidemic peak can occur weeks to months later, and the decline in 

cases can be prolonged. The efficacy of household transmission plays a vital role 

in this result [12]. In a study [67], 1587 close contacts of confirmed cases with 

COVID-19 were traced. In a case study [66], a report from China, 318 outbreaks 

with three or more cases were identified. In Wuhan, the basic reproduction 

number (𝑅0)  dropped from 3.54 to 1.18 after lockdown and cordon sanitaire. 

Nevertheless, the epidemic was only brought under complete control when 

Fangcang (field) hospitals were introduced to isolate cases outside the home, 

dropping to 0.51 after two weeks [68]. However, a recent mathematical model 

[69] suggested that stay-at-home does not play a dominant role in reducing 

COVID-19 transmission. Despite this, in the presence of widespread community 

measures, 70% of SARS-CoV-2 transmission occurred between household contacts 

[70]. 

Basic reproduction number (𝑅0) indicates the transmissibility of infectious 

diseases [72]. 𝑅0 is an estimate of contagiousness that is a function of human 

behaviour and biological characteristics of pathogens [72]. Thus, 𝑅0 estimates of 

COVID-19 are not exclusively determined by the pathogen, and variability in 𝑅0 

depends on local socio-behavioral and environmental settings [73]. Anderson and 

May [74] calculated the basic reproduction number as a function of contacts, 
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transmission rate, and transmission duration. In this work, we hypothesize that 

the basic reproduction number (𝑅0) is the average number of secondary 

cases [72].  

There have been many published works in the efforts to study the role of 

vaccination [77], social distancing [18], household [18, 71] in understanding the 

dynamic and control of the SARS-CoV-2 virus. Several authors have been designed 

and used simple models [76,75,78], complex models [77,79,81], and multi-scale 

models [80] to simulate the trade-off between pharmaceutical (vaccination) and 

non-pharmaceutical (social distancing, stay-at-home restriction, decrease in 

working hours) intervention in the containment of COVID-19 pandemic. This 

study presents an agent-based model based on a time-dynamic network with 

stochastic transmission events that allowed us to analyze the interplay between 

pharmaceutical and non-pharmaceutical interventions. The advancement is by 

modelling in a way that the following are tunable: stay-at-home restriction, 

working hours, vaccination, social distancing. Moreover, we represent the trade-

offs between complex phenomena in a simple equation. This simple function links 

the modelled forces with basic reproduction number from the generated data by 

thousands of carefully executed individual level simulations of multiscale 

modelling on the real network. Additionally, some of the interesting observations 

includes that the ratio of household infections increases as effective reproduction 

number decreases.  Moreover, the household infections provide resilience for 

epidemic eradication but do not contribute significantly to spread. 

1.2 Objective of the Thesis 

This thesis aims at investigating influence of Human behavior, economic activity, 

vaccination, and social distancing in context of control and containment of COVID-

19. To achieve this major aim, four objectives are outlined: 

1. To construct an agent-based model based on a time-dynamic network with 

stochastic transmission events  

2.  To construct a network from real-world social network, and categorize edges 

into household, workplace, and social environment.  
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3. To accurately modelling stay-at-home restriction, working hours, vaccination, 

social distancing. 

4. To simulate the interplay between pharmaceutical (vaccination) and non-

pharmaceutical (social distancing, stay-at-home restriction, decrease in working 

hours) intervention in the containment of COVID-19 pandemic. 

1.3 Original Contribution 

Most of the infections occur in homes when 𝑅0 < 1. The household infections 

provide resilience for epidemic eradication but do not contribute significantly to 

spread. It is also noticeable that the spread ultimately depends on non-household 

transmissions. Furthermore, changing working hours or implementing stay-at-

home restrictions, up to 4 days, does not significantly decrease 𝑅0.  Finally, 

successful vaccination does not bring 𝑅0 below 1, when no other measures are 

implemented. 

1.4 Overview of the Thesis 

This thesis consists of five chapters. Chapter 1 presents literature review, 

objectives, and hypothesis of the thesis.  In chapter 2 we will give some 

preliminaries about graph theory, infection diseases, COVID-19 pandemic, 

epidemiological modelling, and agent-based modelling and simulation. 

In chapter 3 we will describe our methods and material. First, we describe our 

real-world social network data, and methodology for classification of data into 

household, workplace, and social environment. Secondly, the development and 

simulation process of our agent-based model. Finally, the way that we modelled 

the stay-at-home restrictions, decreasing working hour, social distancing, and 

vaccination. In chapter 4 we will report the results of our investigation and make 

discussion about it. Conclusions will be given in chapter 5. 
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2  
PRELIMINARIES 

 

This chapter gives a brief introduction to graph theory to understand the structure 

and usage of social network data, considering the data that our agent-based model 

uses to simulate agents (humans) behavior is a real-world social network dataset. 

Then, we will give information about infectious disease, SARS-CoV-2, and 

epidemiological modelling. Finally, we will give some preliminaries about the 

agent-based modelling and simulation. As we will develop an agent-based model 

based on a time-dynamic network with stochastic transmission events, we will 

discuss in depth the structure and use of stochastic and agent-based modeling. 

2.1 Graph Theory 

Many real-world problems can be described through a network consisting of a set 

of points and lines. The lines show any link and interaction between two points. 

Networks that are built around people are called social networks. Moreno Jacob 

was the first person who introduces a sociogram in the 1930s. His sociograms have 

an essential contribution to social network analysis. A sociogram represents the 

network, where people are demonstrated by points and their interaction by lines 

(Fig 2.1). However, to study a network, you need to use accurate terms, such as 

what it means to talk about the distance between two nodes; similarly, how are 

we to understand that the network is well connected? These and other statements 

can be precisely defined by taking the terminology from graph theory [82,83]. 

Graph theory is a mathematical field that gained popularity in the 19th and 20th 

centuries, mainly because it allowed the description of phenomena from a wide 

variety of fields: drawing and coloring maps of communication infrastructures, 

planning problems and social structures, and many others [82]. The edges in a 

graph can also have weights, or different numerical values, attached to them. A 

graph whose edges have weights is called a weighted graph, and one whose edges 

do not is an unweighted graph. In many situations, weighted graphs are helpful 
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for capturing additional information about the relationships between vertices. For 

example, in an epidemiological context, if vertices represent individuals in a 

population and edges indicate that two individuals are in epidemiological contact, 

edge weights could give the probability of disease transmission occurring between 

two individuals per unit time. In a graph, the shortest path between two nodes is 

called geodesic distance, which is a valuable property in characterizing networks.   

 

Figure 2.1 Example of sociogram network where nodes (dots) represent 
individual, and the edges (line segment) represent interaction between these 

individual 

 

2.2 Infection Diseases 

A disease because of pathogen, caused by transmission of pathogen from 

contaminated person, animal, or inanimate object to a susceptible host is called 

infection disease [92].  

The continuous outbreak of infectious diseases has shaped human history. For 

centuries, entire countries and civilizations have disappeared from the map. 

Around 1715 BC, in the middle of the Bronze Age, the bible pharaoh plague 

ravaged ancient Egypt.  From 430 BC to 425 BC, the "λoιμóς" in Athens caused 

about 13 million deaths and destroyed the indigenous population of Central 

America [93]. In 1348, the Black Death plague broke out in Europe, killing more 

than 25 million people in just five years. In 1918-1919 the pandemic of influenza 

virus swept the Asia, Europe, Americas, and Africa and destroyed the world and 

killed approximately 40 million people. In the following decades, there were two 



10 

less severe annual influenza pandemics: the influenza pandemics in 1957 and 

1963 killed 2 and 1 million people, respectively [92]. In 2013, infectious diseases 

caused the loss of more than 45 million people to ailment and more than 9 million 

mortalities [94]. Tuberculosis (TB), the human immunodeficiency virus 

(HIV)/AIDS, diarrheal diseases, malaria and inferior respiratory region infections 

are among the leading reasons of inclusive global death [94]. Epidemic of AIDS 

caused by the HIV that commence in non-human primates in the Central and West 

Africa. According to the Joint United Nations Program on the HIV/AIDS, at the 

end of 2010, an estimated 34 million people worldwide were living with HIV. Of 

these, 3.4 million are children. The new deaths and related injuries were 1.8 and 

2.7 million, respectively [95]. 

One of emerging infectious diseases, is coronavirus disease in mammals and birds. 

They can cause mild or fatal respiratory infections in humans and birds. Human 

mild illnesses include several common colds, and more deadly variants can cause 

SARS, MERS, and COVID19. The Middle East Respiratory Syndrome (MERS) [96] 

is caused by the middle east respiratory syndrome coronavirus (MERS-CoV). The 

first confirmed case occurred in Jeddah, Saudi Arabia in June 2012, and most 

cases occurred in the Arabian Peninsula [97]. As of January 2021, more than 

2,500 cases were reported, including 45 cases in 2020 [98]. Approximately 35% 

of patients die from it [98]. Severe Acute Respiratory Syndrome (SARS) is a 

zoonotic respiratory viral disease caused by the severe acute respiratory syndrome 

coronavirus (SARS-CoV or SARS-CoV-1). The syndrome caused the 2002–2004 

SARS outbreak; at the end of the epidemic in June 2003, the incidence was 8,422 

cases [99]. As of 2004, there were no reported cases of SARS-CoV-1 worldwide 

[100]. In December 2019, another strain of the SARS-CoV was identified as SARS-

CoV-2. This new strain of coronavirus causes COVID-19, a pandemic that occurred 

in 2019. 

An infectious disease is caused by a combination of a host, agent and 

environmental factors see Figure 2.2a. Bacteria, non-living viruses, fungi, and 

living parasites are some of the infection agents. The interaction between host and 

agent indicates whether exposure has occurred or not see Figure 2.2b. 

Environmental factors indicate whether a host has been exposed by an agent or 
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not, and the outcome of exposure is determined by the successive interactions 

between the agent and the host see Figure 2.2b. The interaction of the host and 

the agent takes place in a series of stages consisting of infection, illness, and 

convalescence or death. Following exposure, the pathogen begins colonization, 

adhesion, and initial proliferation at the entrance gate. Some ailments are always 

caused by infection, but not always by disease. Illness shows the degree of 

confusion and damage to the host, resulting in subjective symptoms and objective 

signs of disease. Recovery from infection is either complete (drug removal) or 

incomplete. When a potential host is exposed to an infectious pathogen, the 

outcome of that exposure depends on the dynamic relationship between 

infectious, pathogenic, and pathogen determinants see Figure 2.2b. When the host 

is exposed to the agent, the potential of the agent to infect the host is called 

infectivity. Pathogenicity is the capability of a pathogen (organism) to cause a 

disease (infectious disease). The result of exposure to infectious pathogens may 

also depend on various host aspects that determine an individual's susceptibility 

to infection. Exposed individuals can resist infection or limit disease due to their 

biological makeup. This ability of individual is called susceptibility. There are 

some factors such as innate factors, genetic factors and acquired factors, such as 

specific immunity after exposure or vaccination, that affecting susceptibility. There 

are two basic forms of immunity, active and passive. In active immunity the 

immune protection produces by host’s own immune response. In contrast, passive 

immunity is achieved by transferring immune effectors, the most common 

antibodies (also known as immunoglobulins, antisera) from donor animals or 

humans. Environmental causes of susceptibility to infectious diseases consist of 

behavioral, physical, cultural, social, economic, and political factors [111]. 
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Figure 2.2 Epidemiological triad model of causality of infectious diseases and 
potential consequences of host exposure to infectious agents [111] 

The transmission of pathogens occurs in two ways: directly and indirectly. 

According to public health, the transmission stages are classified according to the 

clinical illness and transmission potential. With respect to clinical illness, the first 

stage is the incubation period which host exposed with an infection agent utile the 

appearances of first signs of symptom. After incubation period the clinical 

illness or symptomatic period begin, which is defined as the duration between the 

first and the last sign of symptom. With respect to the transmission potential, the 

primary stage is latent period, the duration between exposure to an agent and the 

start of infectiousness. Latent period tracked by the infectious period, where 

infected person can spread an infection agent to others [111].  Presymptomatic is 

the phase when an individual is infected and maybe shedding virus but has not 

yet developed symptoms [112]. The early or mild stages of this infection, whose 

symptoms are below the level of clinical evidence, are called asymptomatic 

infections, and those affected are called asymptomatic carriers. The serial 

interval (SI) refers to the interval between the time points of symptom onset in an 

infector and his/her infectees. The generation time of an infectious disease (GT) is 

the time interval between the onset of an individual's infection and the time that 

person infects another. The period of time during which the first case becomes 

infected with the virus and then transmits it to the second is called transmission 

generation (TG) [112].   
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Figure 2.3 Illustrative timelines and various stages during infection and 
transmission of an infectious disease [112] 

In particular region or population numerous expressions are used to describe 

the outbreak of an infectious disease.  Diseases which happen with predictable 

regularity is characterized as endemic, while diseases which occur occasionally 

and unpredictably is called sporadic. The degree of endemic can be divided into 

holoendemic, high epidemic, moderate epidemic, or low epidemic, depending on 

whether the frequency of the disease is extreme, high, medium, or low. The term 

outbreak is frequently used interchangeably with epidemic, nevertheless it can 

also state to an epidemic that occurs in a narrower geographic 

region. In contrast, pandemics are epidemics that spread geographically over 

large areas, across multiple countries around the world [111]. 

The measures that characterize frequency of disease are, attack rate, prevalence, 

incidence, basic reproduction number, effective reproduction number and herb 

immunity. Attack rates is assessed as the proportion of number infected over 

number of exposed. The prevalence estimates the number of existence cases in 

population. Despite this, incidence calculate the rate of new cases that occur in 

population at a specific time. In certain circumstances, the transmission of disease 

from an index case to susceptible, exposed individuals in localized population this 

is called secondary incidence rate [111]. The average number of secondary cases 

generated from a single case in a completely susceptible population is defined as 
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the basic reproduction number in a completely susceptible population. However, 

in some population, there already exist some nonsusceptible proportion due to 

immunization and previous infections; thus, more accurate disease frequency to 

reflect the potential of population disease spread is needed. The average number 

of secondary cases generated from a single case in a population which is already 

infected, is called effective reproduction number. The herb immunity, which is 

also defined as community immunity, shows the percentage of the population that 

is resistant to infectious diseases that prevents the infection/transmission chain. 

According to a study by Leaver and Clack [113], the prevention of disease is 

divided into three levels: primary preventions, secondary preventions, and tertiary 

preventions. Primary prevention occurs before the population is triggered by the 

spread of the disease. Secondary prevention is applied in asymptomatic stages 

[111] to reduce the progression of infection and to prevent transmission of 

infectious agents [111]. Tertiary prevention is used to reduce the effects of 

infected individuals, reduce disease progression, enhance function, and maximize 

quality of life.  

The interaction of the agent, host and environmental factors has a linked sequence 

called the chain of transmission or chain of infection. This chain starts with an 

infectious agent, which causes the disease. The infectious agent leaves the 

reservoir from a portal of exit. The portal of exit for infectious agents has several 

routes with respect to infections; for example, the portal of exit for influenza 

infectious agents are respiratory sections [111], for rotavirus is gastrointestinal 

[111]. After exiting from the reservoir, infectious agents reach the portal of entry 

of the susceptible host by using some mode of transmission. There are two modes 

of transmission direct and indirect [111]. In a direct mode of transmission, agents 

enter directly from reservoir to host by physical contact (skin or mucosa of agent 

to host), the spread of droplets (sneezing, coughing), direct contact with an agent 

in environmental reservoirs (inhalation), animal bites, transplacental (pregnancy 

delivery) and perinatal (breastfeeding) transmission [111]. In indirect mode, 

transmission agents enter indirectly from a reservoir to a host. Indirect 

transmission is divided into three categories: biological, mechanical and 

airborne. Biological transmission takes place when the pathogen reproduces 
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within a biological vector [111] that transmits the pathogen from one host to 

another. Arthropods are the key vectors responsible for biological transmission 

[115]. When an infectious agent is transferred physically by using a live entity 

(mechanical vector) or inanimate object (vehicle) to a susceptible host, this kind 

of transmission is defined as mechanical transmission. Airborne transmission is a 

colloidal suspension of residues or particles containing active substances that can 

be transported over long distances and over long periods of time and still remain 

infectious. 

Understanding the chain of infection allowed us to prevent and control any 

infectious disease. One of control and prevention strategies is breaking any link in 

the chain, which avoid the transmission of the infectious agent. The earlier 

intervention can implement to eliminate the infectious agent in their reservoirs. 

The most common intervention is surveillance activity [111] which routinely 

identify infectious agents in the reservoir. When the reservoirs of infectious agents 

are humans, case isolation, contact tracing and quarantine [111] are intervention 

activities. When targeting portal of existing for preventing disease, standard 

precautions and transmission-based precautions [116] are suggested to reduce 

transmission level of an infectious agent. Standard precaution consists of hand 

hygiene, personal protective equipment (gloves, gowns, face protection, masks), 

and respiratory hygiene/cough etiquette. Targeting the susceptible host to prevent 

disease immunization (vaccination) are suggested as an intervention activity. 

 



16 

 

Figure 2.4 Visualization of transmission chain. The spread of agent ensues 
through six interconnection chain-linked element in a population 

 

2.3 Coronavirus Disease 2019 (COVID-19) 

The coronavirus pandemic, also recognized as the COVID-19 pandemic, is the 

ongoing global pandemic of the 2019 Coronavirus Disease (COVID-19) caused by 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus was 

first detected in Wuhan, China in December 2019. On the 30th of January, the 

World Health Organization declared an international public health emergency on 

COVID-19 and declared a pandemic on the 11th of March. As of June 10, 2021, 

174 million confirmed cases of COVID-19 had been reported, with more than 3.75 

million confirmed deaths to date due to the virus and historically. It has become 

one of the deadliest pandemics. 

COVID-19 is a contagious disease caused by the SARS-CoV-2 virus [101]. Different 

names were used for the virus during the first outbreak in Wuhan, China. Some 

names were used by various sources were the "Coronavirus" or the "Wuhan 

Coronavirus" [108]. The WHO recommended "2019 Novel Coronavirus" (2019-

nCov) as the tentative name of the virus in January 2020 [109]. On the 11th of 

February 2020, the ICTV (International Committee on Taxonomy of Viruses) 

adopted the official name "severe acute respiratory syndrome coronavirus 2" 

(SARS-CoV-2) [110]. Coronaviruses are a family of enveloped RNA viruses that 
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are distributed widely among mammals and birds, causing principally respiratory 

or enteric diseases but in some cases neurologic illness or hepatitis [102]. In 

taxonomy, which is a branch of biology for the scientific study of naming, defining 

and classifying of a biological organism, Coronaviruses constitute the 

subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales, 

and realm Riboviria [103]. The viruses are enveloped with a single-stranded RNA 

genome and a nucleocapsid of helical symmetry [104]. They have club-shaped 

spikes that protrude from their surface, which in electron micrographs create an 

image similar to the solar corona, from which their name derives [105]. They are 

divided into four genera: Alphacoronaviruses, betacoronaviruses, 

gammacoronaviruses, deltacoronaviruses. Alphacoronaviruses and 

betacoronaviruses infect mammals, while gammacoronaviruses and 

deltacoronaviruses primarily infect birds. In 2003 and 2012, the causative agents 

of SARS and MERS outbreaks were the SARS-CoV and the MERS-related 

coronavirus, which are a species of betacoronavirus genera [106]. The SARS-CoV-

2 is the culprit of the 2019 Coronavirus Disease (COVID-19), a type of coronavirus 

(SARSr-CoV) associated with severe acute respiratory syndrome Viruses of the 

genus Betacoronavirus [101]. It is closely related to both SARS-CoV and MERS-

CoV. The SARS-CoV-2 is spread more expeditiously, and it is more infectious than 

the SARS-CoV and MERS-CoV [117]. The SARS-CoV-2 have zoonotic origin, and 

there are some insinuations that it materializes from bats coronavirus [107], but 

research is ongoing.  

The clinical manifestations of the SAR-CoV-2 infection ranged from asymptomatic 

lung disease of the upper respiratory tract to severe viral pneumonia with 

respiratory failure and death [117]. The clinical symptom of the COVID-19 

classified into three groups: respiratory symptoms, musculoskeletal symptoms, 

and digestive symptoms. The respiratory symptoms include cough, shortness of 

breath, sputum, and fever. The musculoskeletal symptoms include muscle and 

joint pain, fatigue, and headache. The digestive symptoms include diarrhea, 

abdominal pain, and vomiting [118]. Besides these symptoms, smell and test loss 

also added to the chief symptoms [119]  
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The COVID-19 disease has a direct and indirect mode of transmission. The direct 

transmission has a respiratory route and occurs via droplets or aerosols released 

as coughing, sneezing, breathing, and talking. The infectious individual transmits 

the COVID-19 by making longer and closer, typically within 1 meter [120], contact 

with susceptible hosts. The virus can also spread in imperfectly ventilated and 

crowded indoor environments, where people tend to spend more extended periods 

of time because aerosols remain suspended in the air or travel more than 1 meter. 

After that, the aerosols or droplets containing the virus are inhaled or come 

directly into contact with the eyes, nose, or mouth. Some of the aerosols fall to the 

ground and make surfaces containment with the virus. Whenever people touch 

the surfaces and touch their eyes, nose or mouth without cleaning their hands, it 

will infect them. This kind of transmission forms an indirect mode of transmission 

of the COVID-19. 

2.4 Epidemiological Modelling  

Epidemiology comes from the Greek words epi, which means upon, demos means 

people, and logos means study, so we can define epidemiology as the study of how 

health conditions or events are distributed and defined in a population. 

Epidemiologists use this information to try to control health problems [131]. 

Epidemiology relies on research methods, systematic and impartial methods of 

collecting and analyzing data. Basic epidemiological methods usually depend on 

careful observation and the use of appropriate comparison groups to assess 

whether the observed, such as the number of cases of the disease in a given area 

during a given period of time or the frequency of exposure in sick people, differs 

from what one might expect.  

In epidemiology, to make a decision for control an infectious disease, it is 

important to understand that how the interaction between agent, host, and 

environment affect transmission of disease and its development in population. 

Mathematical models are used to represent and analyze these interactions by 

combining available knowledge and expert opinion about a disease. In recent 

years, there have been significant developments in electronic surveillance of 

infectious diseases, which revised computing, electronic data administration, the 
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capability to share and deposit data over the internet [132]. These developments 

have increased the application of mathematical models in epidemiology to study 

disease processes [133], hypothesized factors involved in endemic persistence in 

populations [134], give advice on risks associated with emerging and re-emerging 

disease risks [135], estimate the economic effect of diseases [136], appraise 

control strategies at different scales [136], calculate the effectiveness of 

surveillance and control programs [136], and provide inputs and scenarios for 

training activities [136]. 

A model is a physical process or system that is designed to imitate relevant features 

of the system. Models are designed to understand the effect of external influences 

on outputs by representing the interactions between system components and to 

convey ideas about the behavior of the system. In mathematical modelling, we 

translate those features of the system that are being studied theoretically and 

scientifically into the language of mathematics for simplification [128-129]. 

Mathematics is an exact, accurate, and concise language, which helps us to 

formulate and identify underlying assumptions, encourage manipulations. 

Availability of potentially useful theorems and high-speed computers for 

calculation make mathematical models more useful. The objectives of 

mathematical modeling are to develop a scientific understanding of the system, 

clarification, using our scientific understanding to manage the world, simulated 

experimentation, testing the effect of changes in a system, the curse of 

dimensionality and aid decision making [123-126]. 

A mathematical model is an abstract, simplified mathematical construct related to 

a part of the system in the real world and created for a particular purpose [121]. 

Three things are important in modelling a system in the real world. The things the 

model is designed to study behavior for are called endogenous variables, also 

called output or dependent variables. The things that affect the model but whose 

behavior the model is not designed to study is called exogenous variables (also 

called parameters, inputs, or independent variables), including constants, 

functions and so on. Things whose effects are neglected exclude from the model 

and call the neglected part [121-129]. 
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The mathematical modeling process is divided into four parts: building, studying, 

testing, and use. In general, deficiency found during the investigation and testing 

phase are fixed by returning to the construction (building) phase. Note that the 

investigation (studying) and testing phases will need to be repeated if changes are 

made to the model. This iterative process is a typical feature of a modeling project 

and one of the most useful aspects of modeling, giving you a better understanding 

of how the system works [122]. Figure 2.5 illustrates different routes through the 

modelling process: 

 

Figure 2.5 Pictorial representation of modelling process  

The mathematical model in epidemiology developed by Daniel Bernoulli in 1766 

[137]. Bernoulli developed the model to analyze the mortality due to smallpox in 

England. The purpose of his model was to show that vaccination against the virus 

would increase the life expectancy at birth by about three years. Lambert [138] 

extended the Bernoulli’s model by including age-dependent parameters. The 

modern mathematical modelling in epidemiology established by Ross [139-140]. 

He represented mechanistic form of the earlier modeling approaches by set of 

equations to estimate the discrete-time dynamics of malaria through the mosquito 

borne pathogen transmission. Kermack and McKendrick [141-143] found the first 

deterministic compartmental epidemic model.  They introduced the mass-action 

incident [144] in disease transmission cycle. They suggested that the probability 

of infection of susceptible is comparable with the number of its contacts with 

infected individuals. Their model holds strong analogy with the law of mass action 

[145] which was introduced by Guldberg and Waage and called SIR model. 

MacDonald [146] extended the work of Ross and proposed method of eradication 

of disease in an operational level. He used his method to explain the transmission 

of malaria deeply. In general, the mathematical models for explaining the 

dynamics and control of transmitted pathogens are known as the Ross-MacDonald 

models [146]. Enko [139] used a probabilistic model to analyze the dynamic and 
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control of measles epidemic. He assesses the number of contacts between infective 

and susceptible in population. Frost [147], by using the Enko model, developed 

the famous Reed-Frost chain binomial model. His model assumes that an infection 

spreads through discrete time Markov chain events from infected individual to 

susceptible one, which set the basis for stochastic modelling.  

There is no agreed classification system for models [136]. Different researchers 

have focused on different aspects of models which may distinguish them from each 

other. According to the work of Siettos et al. [139], there are three general 

categories: statistical-based methods for epidemic surveillance, State-space 

models, and machine learning-based models for forecasting the evolution of 

ongoing epidemic [139]. These categories are also divided into subgroups see 

Figure 2.6. Since in our thesis, we use a discrete-time stochastic agent-based 

model, so we will only focus on state-space mathematical models in epidemiology.   

State-Space mathematical models are representations of the dynamic order system 

consisting of input, output and state variables to a first-order differential equation 

on the vector of state [148]. A state variable is a variable whose value changes 

over time in a way that depends on the value at any given time and the externally 

imposed value of the input variable. State-space mathematical models can be 

divided into the following categories, depending on the level of approximation, 

and increasing complexity of reality:  

I. Continuum models, deterministic SIR models  

II. Stochastic models  

III. Complex network models  

IV. Agent-based simulations 
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Figure 2.6 Classification tree of Mathematical models for epidemiology. 

Continuum models describe the simplified dynamics of the epidemics in the 

population [139]. Generally, they represent physical systems in the form of 

differential equations. The Kermack and McKendrick [141-143] SIR 

compartmental models make up the continuum models of differential equations. 

In the SIR model, the population is segmented by health state, such as susceptible 

(S), Infected (I), recovered (R), or quarantined (Q), vaccinated (V) by policy 

makers. The inputs could be age or time, and output may be the vaccination or 

efficiency of quarantine or isolation. 

Stochastic models are used when the variability or randomness in transmission, 

recovery, births, deaths, or the environment affects the outcome of an epidemic. 

These models include discrete and continuous-time individual-based Markov-

chain models. Markov chain model is a series of possible events, where the 

probability of each event only depending on the state approach in the prior event 

[150]. The key illustration in the Markov chains is the discrete-time Markov chains 

(DTMC). In the DTMC time and states are described on a discrete set of values. At 

every discrete time step, individuals make their own decisions based on their own 

current state and the current state of their links. The decisions are made with 

respect to the simple rules including their own states and the states of their links 

satisfying the Markov property. This property defines that the future values of the 

states at time 𝑡 +  𝛥𝑡 related only to the values of the states at the previous time 

step 𝑡. Stochastic models are individual-level models. The advantage is that this 
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model loosens the mean-field approximation hypothesis of the models for infinite 

population. Stochastic models use perfect mixing that familiarize the 

distinctiveness of individual behavior, with multiple heterogeneous features.   

The elements and interactions of real-world systems are modelled by complex 

network models. The complex network models proxy elements with sets of nodes 

and interactions with sets of edges. The 'complex' term mentions any collection of 

interlinked things which have meaningful pattern their links [151]. These models 

relax the hypothesis of the above stochastic model about homogeneity of 

interaction between individuals, by using an heterogenous contact network [139]. 

In addition, the topology of contact social networks shapes the epidemic spread in 

many situations. In the occurrence of various epidemics, changes in the epidemic 

state of a particular population can lead to major changes in the characteristics of 

the grid. Understanding this complex behavior is paramount to public health 

interventions and policies to address the outbreak of illness. Vaccination, 

quarantine, and/or the use of antivirals in specific population groups must be 

carefully planned so that they can effectively combat new epidemics. If the 

dynamics of infectious diseases are poorly understood, they can have serious 

adverse effects because they are caused by non-uniform contact interactions. Over 

the past few years, active exertions have been made to study the relationship 

between the new dynamics of infectious diseases and the fundamental topology 

of the network [139]. 

2.5 Agent-based Modelling and Simulation 

Agent-based modelling and simulation (ABMS) are used to model complex 

systems, complex adaptive systems, and artificial life [157]. Complex systems are 

composed of interacting, autonomous 'agents' [155]. Complex adaptive systems 

give the capability for agents to adapt at the individual or population levels [156]. 

Agents have behaviours, often defined by unpretentious rules and interactions 

with other agents, persuading their behaviours. Occasionally self-organization can 

be detected in agent-based modelling. Patterns, structures, and behaviors appear 

that were not explicitly programmed into the models but emerges through the 

agent interactions. Two significant features that extricate agent-based simulation 
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from other simulation techniques, such as discrete event and dynamic system 

simulations, are modelling the heterogeneity of agents across a population and 

the presences of self-organization. Agent-based modelling can also model social 

systems composed of agents that interact and stimulate each other, acquire from 

their experience, and regulate their behavior to make it more appropriate for their 

environment. Agent-based modelling has a comprehensive range of applications, 

such as modelling agent behaviour in the stock market [152], forecasting the 

supper of disease [153], modelling adaptive immune systems [154] and many 

others. 

The agent-based model has three elements: a set of agents, a set of agent 

relationships and methods of interaction, and the agents' environment. Agents 

have certain characteristics such as self-contained and identifiable, autonomous 

and self-directed, state that varies over time, social and having dynamic 

interactions, adaptive, goal-directed and having goals to achieve, and 

heterogeneous. Agents usually interact with a subset of other agents called agents' 

neighbours. How agents relate to each other is commonly referred to as the 

topology or connectivity of an agent-based model. Typical topologies include a 

spatial mesh or network of nodes (agents) and links (relationships). The topology 

describes who communicates information to whom. The most common agent 

interaction topologies are cellular automata (CA), Euclidean 2D/3D space, and 

network and so on [155]. The environment helps define the space in which the 

agent operates and supports interaction with the environment and other agents 

[158]. 

To develop an agent-based model, first of all, we should specify the problem that 

we will solve by model, the answer that we want to answer, and the value that 

should be added to the problem that other models cannot bring. Then we should 

describe agents of our model (decision-maker, entity that has behaviors, static 

attributes, dynamic attributes). After that, we need to mention the agents' 

environment of our model. Consequently, we must mention agents' behaviours of 

interest, decisions that they are going to make, and actions that are taken by 

agents. Introducing the way that agents interact is our next step—finally choosing 
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accurate data with respect to agents' behaviour for our model and validating the 

model according to agents' behaviours. 

Agent-based modelling can be implemented by exploiting several software or 

programming languages such as MATLAB, Mathematica, Python, Java, C++, and 

C. In our thesis investigations we use MATLAB R2019b. 
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3  
METHODS AND MATERIALS 

 

In this section, the multi-scale model developed in this study for the first time will 

be introduced to explore the balance between pharmaceutical (vaccination) and 

non-pharmaceutical (social distancing, stay-at-home restriction, and decrease in 

working hours) intervention in the containment of COVID-19 pandemic. Also, we 

will describe the classification methods that we have developed for categorizing 

our social network data edges into household, workplace, and social environment. 

Finally, we will explain the general methodology of our study and how we took 

into account stay-at-home restrictions, social distancing, working hours, and 

vaccination in our model.  

3.1 Data 

To make our simulation more realistic to human interaction patterns, we use the 

BBC documentary ‘Contagion! The BBC Four Pandemic’ demonstrate social 

network data of 469 volunteers from Haslemere, England. The data is not 

categorized as where the interactions occur. Our main goal is to order each 

interaction, whether it occurred in workplaces, social environment or households. 

By categorizing edges of the graph, we can understand which of the settings and 

behaviors of staying in that environment would affect the COVID-19 dynamics. 

The Haslemere dataset consists of the pairwise distances of up to 50m resolution 

between 469 volunteers from Haslemere, England, at five-minute intervals over 

three consecutive days (Thursday 12 Oct – Saturday 14 Oct 2017). Graphical 

representation of Haslemere dataset is given in Figure 3.1. It gives users’ data to 

16 daytime hours only, between 07:00:00am and 22:55:00pm, excluding the 

hours between 11 pm and 7 am. There are 576-time points for each user. 

According to the 2011 UK census, volunteers of the Haslemere dataset establish a 

sample of 4.2% of the total population of Haslemere. Participants downloaded the 

BBC Pandemic mobile phone app and then went about their daily business, with 
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the app running in the background. The study restricted to volunteers who are at 

least 16 or 13 years of age with parental consent. The pairwise distances between 

volunteers were calculated using the Haversine formula for great-circle geographic 

distance and are based on the most accurate GPS coordinates that the volunteers’ 

mobile phones could provide [159,166]. 

A B 

Figure 3.1 Graphical representation of our social network dataset. A) Unique 
interaction between nodes during three consecutive days. B) 5 minutes time step 

interactions between nodes during three consecutive days 

 

3.2 Model 

We have developed a discrete-time stochastic agent-based model, parameterized 

to simulate different types of COVID-19 outbreak across the Haslemere data set. 

An agent in our simulation can be in the following states: 𝐸(𝑡) (exposed), 𝑃𝑆(𝑡) 

(pre-symptomatic, documented), 𝐴(𝑡) (asymptomatic, undocumented), 𝑆(𝑡) 

(symptomatic, documented), 𝐻(𝑡) (hospitalized) and 𝑅(𝑡) (recovered) (Figure 

3.2). 

In our model, symptomatic individuals are symptomatic with respect to medical 

records, anyone who do not report symptoms are regarded as undocumented 

(asymptomatic). The agent-based model starts with an exposed individual. 

Initially, 𝑗𝑡ℎ individual is exposed to the virus, and he/she cannot infect others 

during his/her latent period for 𝑑1 = 2.7 days (Table 3.1). After the latency period 



28 

finishes, the 𝑗𝑡ℎindividual tends to one of the two branches: pre-symptomatic with 

a ratio of 𝑠 or asymptomatic with a ratio of (1 –  𝑠). When the period of delay from 

the onset finishes, we generate a random number 𝜀, there are two probabilities for 

𝑗𝑡ℎ individual to proceed; the first one, if 𝜀 < 1 –  𝑠 he/she proceeds to the 

asymptomatic stage. The infectious period of the asymptomatic stage is 𝑑3 = 5.4 

days (Table 3.1). Through the infectious period of the asymptomatic stage, when 

the 𝑗𝑡ℎ  individual comes in contact with 𝑖𝑡ℎ individual, then we infect the 𝑖𝑡ℎ 

individual with probability 𝜇𝐻𝑃ℎ𝑗,𝑖  if the edge is classified as household and 

𝜇𝑜𝑃𝑜𝑗,𝑖 if non-household. The 𝜇𝐻 and 𝜇𝑜 are the reduction factor for asymptomatic 

transmission in households and non-household. 𝑃ℎ𝑗,𝑖 and 𝑃𝑜𝑗,𝑖 are the probability 

that 𝑗𝑡ℎ individual infects 𝑖𝑡ℎ individual of his/her contacts in household and non-

household. When the infectious period of the asymptomatic stage finishes the 𝑗𝑡ℎ 

individual proceed to the recovered stage.  

Alternatively, the 𝑗𝑡ℎ individual can be in pre-symptomatic stage. The infectious 

period of the pre-symptomatic stage is 𝑑2 = 2.4 [160]. The probabilities of 

infection are 𝑃ℎ𝑗,𝑖 and 𝑃𝑜𝑗,𝑖 in household and non-household. When the pre-

symptomatic stage finishes, the 𝑗𝑡ℎ individual proceed to the symptomatic stage 

and stays for 𝑑4 = 3 days [163].  The infection probabilities are the same as in 

pre-symptomatic stage. When the delay period from symptomatic finishes, 𝑗𝑡ℎ 

individual proceeds to the hospitalization stage where he/she will recover or die. 

The hospital stage does not necessarily mean that the agent is hospitalized. All 

reported cases end up in hospital stage, regardless of severity (which is not 

modelled). The default parameter values for the simulations with their sources 

were presented in Table 3.1. 
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Figure 3.2 Graphical representation of our discrete time, stochastic agent-based 
model 

 

Table 3.1 Agent based model parameters and their values 

Parameter Definition  Value  Source 

𝑑1 Mean number of 
days in the latency 
stage 

2.7 day Derived by finding the difference 
between incubation period and 
pre-symptomatic period. We take          
incubation period 5.1 day [165] 

𝑑2 Mean number of 
days in pre-
symptomatic stage 

2.4 day [160] 

𝑑3 Mean number of 
days in the 
asymptomatic stage 

5.4 day  Assumed to be the same duration 
as the total infectious period for 
symptomatic cases, including pre-
symptomatic transmission [161] 

𝒔 The ratio of 
symptomatic cases 

0.83 [162] 

𝑑4 Average time of 
going to the 
hospital 

3 days [163] 
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Table 3.1 Agent based model parameters and their values (continued) 

𝛼 Infection Probability 
constant 

0.9841 Derived (Fitted to COVID-19 𝑅0 
and SAR of household by 
sampling see Fig. 3.5 

𝛽 Infection Probability 
constant 

0.1672 Derived (Fitted to COVID-19 𝑅0 
and SAR of household by 
sampling see Fig. 3.5 

𝜇𝐻 Transmission 
reduction fator for 
asymptomatic cases 
inside household 

0.696 [164] 

𝜇𝑂 Transmission 
reduction fator for 
asymptomatic cases 
outside household 

0.42 [164] 

𝑔 Granularity 192 Derived by converting 1 day to 5 
minutes intervals (16×12) 

 

3.3 Methods 

 

3.3.1 Social Network Data Classification  

We want to categorize this network into three categories, including household, 

workplaces, and social environment. For doing this, we use a visualization method 

that demonstrates the behaviour and contact member of every individual during 

these three consecutive days, and a classification algorithm. We choose those 

contacts with an average pairwise distance 20m or less. In our primary analysis, 

we identify those contacts whose average pairwise distances are 5m or less 

because we have aimed to capture household encounters and understand their 

daily routine and behaviour. After investigating the behaviour of each individual 

during these three days, we have come up with some procedures. Table 3.2 

describes the procedures for households, workplaces, and social environment for 

example: Individuals who contact for three consecutive nights after 19:00 and 

have distance of less than 2 are classified as household encounter. Consequently, 

we have developed a classification algorithm to classify the remaining encounters 
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between 6m and 20m distances. The pseudo code for the algorithm produced here 

is given below. To test the performance of the algorithm, we create a confusion 

matrix of the algorithm by choosing the classified data points (by using the 

visualization method) as actual data and the algorithm classified data points as 

predicted data. 

 

Figure 3.3 Visualization method, which demonstrates the behavior and contact 
member of every single individual Haslemere data set during these three 

consecutive days. This figure illustrates the behavior of 21st individual during 
three consecutive days. The red diamond shapes represent every single 

individual. The black dash line illustrates specific hours during these three days 

 

Table 3.2 List of procedures that are obtained by using visualization method 
which demonstrates the behavior and contact member of every single individual 

of Haslemere data set during these three consecutive days 

Categories Procedures 

Household 

1) Individuals with at least 10 logged data points between 
22:00 and 07:55 AM on any of the dates [159] 

2) Individuals who contact for three consecutive nights 
after 19:00 and have distance of less than 2 

3) Individuals who have more than 80 logged data point 
during three consecutive days 
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Table 3.3 List of procedures that are obtained by using visualization method 
which demonstrates the behavior and contact member of every single 
individual of Haslemere data set during these three consecutive days 

(continued) 

Workplace 
1) Encounters which occurred on Thursday and Friday 

between 8:30 AM and 18:00 

Social 
Environment 

1)  Individuals with a lease than ten logged data points 
between 22:00 and 07:55 AM on any of the dates 

2) The encounters which are occurred after 19:00 clock for 
one-night lease than five logged data point 

3) Encounters which occurred on Saturday from 8:00 AM 
and 18:00 less 15 logged data points 

 

3.3.2 Classification Algorithm Pseudocode 

Let 𝑌 represent encounters which occurred between 6m and 20m distance in 

Haslemere data point set, and 𝑋 represent total number of logged data points of 

each 𝑌 during three consecutive days. The duration between 07:00 AM up to 

08:30 AM and 18:00 PM up to 23:00 PM on Thursday and Friday represent by 𝑡1. 

The duration between 07:00 AM up to 23:00 PM on Saturday represent by 𝑡2. The 

duration between 08:30 AM up to 18:00 PM on Thursday and Friday represent by 

𝑡3. Let 𝑍(𝑡1 + 𝑡2) give the total number 𝑌 which occurred in 𝑡1 and 𝑡2 duration, 

and 𝑍(𝑡3) give the total number 𝑌 which occurred in 𝑡3 
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Figure 3.4  Classification algorithm pseudocode 

 

3.3.3 Constructing Contact Matrices and Simulation with Real-world Social 

Network Data  

We construct classification matrices for households, 𝐻𝑖,𝑗, workplaces, 𝑊𝑖,𝑗,  and 

social environment, 𝑆𝑖,𝑗, which we have classified from Haslemere data. 𝐻𝑖,𝑗 = 1 if 

the contact of 𝑗𝑡ℎ  and 𝑖𝑡ℎ agent occurs in a household environment, and 𝐻𝑖,𝑗 = 0 

otherwise. The simulations are made for 5 minutes time step. At each time step, 

each contact is checked if one of the agents is infectious, also if the other one is 

susceptible, then it is infected by the precomputed probability. There are three 

days in the Haslemere data: Thursday, Friday and Saturday. Our simulations take 

14 days, so we construct the longer contact network by using the real data. The 

weekday contacts are taken from Thursday and Friday. We repeat each day 

sequentially and in whole. We do not mix the data in a day. The weekend contacts 

are replicated from Saturday contacts of the Haslemere data. We start the 

simulation with two exposed individuals. The first 14 days is designed as a 

 

 

𝒊𝒇 𝑋 ≤  80 

       𝒊𝒇  𝑋 > 15 

                  𝒊𝒇 𝑍(𝑡1 + 𝑡2) > 𝑍(𝑡3) 

                            𝑌 classified as household contact  

                else  

                             𝑌 classified as workplace contact 

                endif 

      else  

                 𝒊𝒇  𝑍(𝑡1 + 𝑡2) > 𝑍(𝑡3) 

                           𝑌 classified as social environment contact 

               else  

                           𝑌 classified as workplace contact 

               endif 

      endif  

endif  
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warmup run. After 14 days, we randomly choose 2 individuals whose state are 

exposed, presymptomatic, asymptomatic, or symptomatic, convert all others back 

to susceptible. By this method we start with a more realistic initial sample of states. 

Then, we restart the simulation for another 14. We calculate effective 

reproduction number (𝑅𝑒), infection occurence ratio, and secondary attack rate 

(SAR) of household from the second set of 14-day simulations. We run 500 trial 

simulations for each scenario. The default parameter values for the simulations 

were present in Table 3.1. By starting with only 2 infected individuals, we have 

aimed those total cases at the end of 14 days do not exceed 10% of the total 

population. Otherwise, the small population and repetitive use of data would have 

more effect on the estimates. In line with our decision, even after 2 years, COVID-

19 cases of countries did not reach substantial percentage [167].  

3.3.4 Calculating Infection Probability (𝑷) and Basic Reproduction Number (𝑹𝟎) 

We specify the probability that a susceptible agent 𝑖𝑡ℎ becomes infected by an 

infectious 𝑗𝑡ℎ agent in a 5-minute interval is given as a function of distance in 

equation (3.1) for household and in equation (3.2) for non-household (workplace, 

social environment).  

𝑃ℎ𝑗,𝑖(𝑡) =  {
𝛽ℎ𝑒−(𝛼𝑑𝑗,𝑖)             𝑑𝑖,𝑗 ≤ 𝜃

0                              𝑑𝑖,𝑗 > 𝜃
       (3.1) 

𝑃𝑜𝑗,𝑖(𝑡) =  {
𝛽𝑜𝑒−(𝛼𝑑𝑗,𝑖)             𝑑𝑖,𝑗 ≤ 𝜃

0                              𝑑𝑖,𝑗 > 𝜃
 (3.2) 

𝑃ℎ𝑗,𝑖(𝑡) is the probability of infection if the contact occurs in a houshold. 𝑃𝑜𝑗,𝑖(𝑡) 

is the probability of infection if the contact occurs in workplace or social 

environment. Also, 𝑑𝑗,𝑖 is the distance in meters between individuals 𝑖 and 𝑗 at 

time 𝑡; 𝛼, 𝛽ℎ, 𝛽𝑜 are distance scaling parameter, transmission probability per 5 

minutes in and out of households, respectively. 𝜃 defines the cutoff distance, after 

which the infection probability is assumed to be zero. Our social network consists 

of a pairwise distance of up to 50m. Since we choose only those interaction which 

occurred less than or equal to 20m, so 𝜃=20. Infection probability ranges between 

0 and 1. Our network consists of 102831 interactions in 5 minutes time intervals 
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for three consecutive days (Tuesday, Friday, Saturday). We calculate infection 

probability for each interaction separately. Effective reproduction number (𝑅𝑒) is 

estimated directly by counting the descendants of a discovered agent after 

simulation finished, then averaged for 14 days. Percentage reduction of 

transmission probability is computed as a ratio of the effective-outside 

transmission probability with respect to WT (default, estimated) transmission 

rate. Thus 

𝐷 =
𝛽𝑜

𝛽𝑊𝑇
100 

(3.3) 

3.3.5 Estimating Infection Occurrence Ratio 

Throughout the simulations we track down ancestors and descendants of infected 

agents. Each infection pair is an edge of the classification matrices, 𝐻𝑖,𝑗, 𝑊𝑖,𝑗 , 𝑆𝑖,𝑗. 

Then each classified edge is calculated. 

3.3.6 Calculating Household Secondary Attack Rate (SAR)   

The household secondary attack rate is defined as the probability of transmission 

per susceptible household member when there is a single infected individual in 

the house [12, 168]. The SAR of households calculates the number of cases among 

contacts of primary cases divided by the total number of primary cases. Our model 

starts the simulations with ten exposed individuals executed with a daily life 

contact matrix to calculate the SAR of households. After that, we tract the infection 

occurrence environments (household, workplace, social environment).  We 

identify those who are members of different households. We accept those initially 

exposed individuals who are members of different households as our primary case 

in each household. At the end of the simulation, we calculate the SAR of each 

household by the following formula:  

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒂𝒔𝒆𝒔 𝒂𝒎𝒐𝒏𝒈 𝒄𝒐𝒏𝒕𝒂𝒄𝒕𝒔 𝒐𝒇 𝒑𝒓𝒊𝒎𝒂𝒓𝒚 𝒄𝒂𝒔𝒆𝒔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑜𝑓 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑐𝑎𝑠𝑒𝑠
 × 𝟏𝟎𝟎 (3.4) 
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3.3.7 Calculating Scaling Parameters of Distance (𝜶),  and Transmission Rate (𝜷) 

of COVID-19 

We estimate scaling parameters of distance and transmission rate by sampling to 

obtain a baseline 𝑅0 = 2.87 [169] and 0.46 ≤ 𝑆𝐴𝑅 ≤ 0.72 [170], which are basic 

reproduction number and secondary attack rate of households of COVID-19, 

respectively. Figure 3.4 shows the sampling results for calculating  𝛼 and 𝛽 

constants for COVID-19. To do this, we calculate the absolute error between the 

estimated model 𝑅0 and the exact COVID-19. We also compute the absolute error 

between the estimated and the exact household SAR model for COVID-19. Finally, 

we add these two errors and choose 𝛼 and 𝛽 values that give the required smallest 

error. 

 

Figure 3.5  Illustration of sampling result for calculating scaling parameters of 
distance (𝛼),  and transmission rate (𝛽) . 

 

3.3.8 Changing Number of Work Hours During Weekdays 

We alter working hours during weekdays by changing the work edges of the 

network. According to our classification methodology of the network, individuals 

work for 9 hours from 09:00 AM up to 06:00 PM during weekdays. To decrease 

working hour from 9 hours to 9 − 𝑖 (1 ≤ 𝑖 ≤ 9) hours during weekdays, firstly, we 
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identify home, work, and social environment edges between 06:00 PM and 9 − 𝑖 

hours before 06:00 PM of each weekday. Secondly, we randomly change only 

work edges with work, home, and social environment edges from edges between 

06:00 PM and 11:00 PM of each weekday. For example, if we want to decrease 

working hours from 9 hours to 8 hours (𝑖 = 1) during weekdays. Firstly, we 

identify every workplace, social environment, and household contacts that 

occurred between 06:00 PM and 05:00 AM. Then we have changed only every 

workplace contact with the workplace, social environment and household contacts 

which occurred between 06:00 PM and 11:00 PM.   

3.3.9 Simulating Stay-at-home Restrictions 

We have four stay-at-home restrictions scenarios: restrictions on Sunday, 

restrictions on Sunday and Saturday, restrictions on Sunday, Saturday and Friday 

and restrictions on Sunday, Saturday, Friday and Thursday. After we form the 14 

days of contact network, we replace all non-household (workplace and social 

environment) contacts that occurred in a 5-minute time step with a household 

contact that also occurred in that 5-minute interval.  

3.3.10   Lowering Transmission Probability, Increasing Social Distancing 

The infection probability is parameterized by two parameters, 𝛽 and 𝛼. The 𝛼 

indicates the decay of probability with the distance of contacts, whereas 𝛽 is the 

maximum transmission probability (at distance 0). We have obtained these 

parameters by sampling many simulations that fit the COVID-19’s  𝑅0 and 

secondary attack rate. We use two 𝛽 parameters, 𝛽ℎ, 𝛽𝑜, to distinguish between 

the infectiousness in households and outside. In our simulations, we reduce 

infectious probability to simulate a population where people reduce probability of 

infection by personal social distancing measures. The parameter 𝛽 could be 

thought as the total virus that is present at immediate vicinity of an infectious 

agent, whereas 𝛼 is the “loss parameter” (due to diffusion and other effects) with 

respect to distance. Thus, we have chosen to alter the parameter 𝛽 on the basis 

that total number of virus changes when a person engages in protective measures 

such as wearing masks. The parameter 𝛼 is left untouched, since the events that 

leads to the loss due to distance does not change. Alternative explanations can be 
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made; however, this is the way that our simulation have been conducted. 

Whenever we mention a reduction in infectiousness, we reduce the parameter 𝛽. 

So, in some simulations we alter both 𝛽ℎ and 𝛽𝑜 when agents at home are also 

engaging in personal protection; in other simulations, we change 𝛽𝑜 when agents 

do not engage in personal social distancing at households. 

3.3.12    Vaccination and The Delta Variant. 

The simulations with delta variant use different values for 𝛽 and 𝛼 parameters. 

Again, we have left 𝛼 untouched. We have changed 𝛽 according to literature 

[171]. It is assumed that the infectious probability of the delta variant is double 

of the wild type of virus. We have simply used 𝛽 for the delta variant as 0.33, 

whereas the wild type was 0.167.  

The agents that are vaccinated are chosen randomly. The vaccinated agents have 

reduced 𝛽 value. We have assumed 93% and 88% reduction infectiousness for the 

wild type and delta variant, respectively [172]. So, 𝛽 for the vaccinated, wild type 

and delta variant are 0.012, 0.067, respectively, whilst 𝛼 is unchanged. 
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4  
RESULTS AND DISCUSSION 

 

In this chapter, we have investigated the contribution of household and non-

household environments to overall spread of the epidemic. Also, we have some 

observation about the impact of stay-at-home restriction, and social distancing in 

dynamic of COVID-19. Furthermore, we analyze the trade-off between 

pharmaceutical (vaccination) and non-pharmaceutical (social distancing, stay-at-

home restriction, decrease in working hours) intervention in the containment of 

COVID-19 pandemic. 

4.1 Classification of Social Network Data 

We have categorized the real-world social network data into household, 

workplace, and social environment. Firstly, by using the visualization method we 

have classified 1350 unique contacts, which occurred, between 1m and 5m. From 

these 1350 unique contacts 123, 514, 713 of them occurred in the household, 

workplaces, and social environment, respectively. We have categorized 1895 

unique contacts, which occurred, between 6m and 20m by using the currently 

developed algorithm. From these 1895 unique contacts 52, 790, 1003 of them 

have occurred in the household, workplaces, and social environments, 

respectively.  

Figure 4.1 illustrates the confusion matrix of the algorithm by choosing the 

classified data points (by using the visualization method) as actual data and the 

algorithm classified data points as predicted data to test the performance of the 

algorithm. The first two diagonal cells show the number and percentage of the 

correct classifications by the algorithm. For example, 110 contacts are correctly 

classified as household. This corresponds to 8.15% of all 1895 contacts. Similarly, 

492 contacts are correctly classified as workplace. This corresponds to 36.44% of 

all contacts. In the same way, 642 contacts are correctly classified as the social 

environment. This corresponds to 47.56% of all contacts. 1 of the household 
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contacts is incorrectly classified as workplace contact and this corresponds to 

0.07% of all 1895 contacts. Also, 12 of the household contacts is incorrectly 

classified as social environment contact and this corresponds to 0.89% of all 1895 

contacts. Similarly, 4 of the workplace contacts are incorrectly classified as 

households and this corresponds to 0.3% of all data. Similarly, 18 of the workplace 

contacts are incorrectly classified as social environment and this corresponds to 

1.33% of all data. 26 of the social environment contacts are incorrectly classified 

as households and this corresponds to 1.93% of all data. In a similar manner, 45 

of the social environment contacts are incorrectly classified as workplace and this 

corresponds to 3.33% of all data. Out of 123 household predictions, 78.57% are 

correct and 21.43% are wrong. Out of 514 workplace predictions, 91.45% are 

correct and 8.55% are wrong. Out of 713 social environment predictions, 95.54% 

are correct and 4.46% are wrong. Out of 52 household contacts, 89.43% are 

correctly classified as household and 10.57% are classified as workplace and social 

environment. Out of 590 workplace contacts, 95.72% are correctly classified as 

household and 4.28% are classified as household and social environment. Out of 

1003 social environment contacts, 90.04% are correctly classified as household 

and 9.96% are classified as workplace and households. Overall, 91.73% of the 

predictions are correct and 8.27% are wrong. Figure 4.2 shows the distribution of 

household, workplace, and social environment interactions through 3 days 

(Tuesday, Friday, and Saturday) in 5-minute time steps after classification of data.  
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Figure 4.1  Confusion matrix of classification algorithm for clustering Haslemere 
data set into households, workplaces, and social environment with respect to 

visualization method classified data 

 

 

Figure 4.2 Number of encounters that occurred for three days (Thursday, Friday, 
Saturday) after classification of data 

 



42 

4.2 Estimating Infection Occurrence Ratio in the Household, Workplace and 

Social Environment Under Two Social Distance Policies  

It is vital to know the environment where the infections occur depending on the 

basic reproduction number (𝑅0). Here, we estimate the infection occurrence in 

three environments: households, work, and social environment.  

Our agent-based model enables us to simulate 𝑅0 by varying household and/or 

non-household transmission rates 𝛽ℎ, 𝛽𝑜, respectively. In general, people do not 

carry out social distancing in their homes [12]. To simulate this phenomenon, we 

reduce the total transmission rate by decreasing the non-household transmission 

(𝛽𝑜) while fixing the household transmission rate (𝛽ℎ). Squares with a line in 

Figure 4.3a shows the dependence of 𝑅0 on varying 𝛽𝑜 when 𝛽ℎ is constant. 

Additionally, triangles with a line shows the dependence of 𝑅0 on varying  𝛽𝑜 when 

𝛽ℎ is also changing, 𝛽𝑜 = 𝛽ℎ. The latter simulations are made to assess the effect 

of making the distinction between 𝛽𝑜 and 𝛽ℎ.  

Interestingly, until 𝑅0 < 1, 𝑅0 does not depend on the decrease of 𝛽ℎ. Only after 

𝑅0 < 1,  further decreasing in 𝛽ℎ decreases 𝑅0 more than when 𝛽ℎ is kept at its 

maximum.  

Additional simulations have been made with random networks. The pairs of 

contacts are changed randomly without altering the time and probability of 

infections. Two separate results are plotted: 1) the range of 𝛽𝑜 and 𝛽ℎ are the same 

with the real-network, line with circles in Figure 4.3a; 2) the highest 𝑅0 is fixed to 

the same value as in real-world network, line with diamonds in Figure 4.3a.  

When the ranges of 𝛽𝑜 and 𝛽ℎ are kept the same, the random networks show much 

higher 𝑅0. Except, when the transmission rate is reduced significantly, then 𝑅0 is 

lower than of the simulations with the real network (𝛽ℎ fixed), Figure 4.3a. 

Indicating that, the real networks keep infections more local comparison to the 

random networks. As expected, the frequency interactions among the selected 

agents are significantly higher.  
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When the starting 𝑅0’s are aligned with the random networks, the decreasing in 

𝑅0’s are much faster comparison to the real networks (Figure 4.3a). Indicating that 

decreasing 𝑅0 in real networks is harder, retains infection chains. 

The infection occurrence ratio of household, workplace, and social environment 

have been counted for 𝑅0 (for real networks). Overall, the household infections 

are dominant when 𝑅0 < 1  and most of the infections occur at social environment 

when 𝑅0 > 1.5.  

 We capture the only difference between Figure 4.3b (𝛽ℎ kept constant) and Figure 

4.3c (𝛽ℎ decreases) is in the household infection occurrence ratio when 𝑅0 < 1.  

At 𝑅0 > 1, the environments that the infections occur do not change significantly. 

These results are further supporting the results in Figure 4.3a.  

Overall, we speculate that the household transmission reaches its capacity at low 

𝛽ℎ due to abundant link frequency. The large size 𝛽ℎ cannot lead to an increase in 

𝑅0 value among the infections in the household. It has been concluded that the 

household transmission contributes to resilience of the eradication but does not 

contribute significantly to overall spread. 

The way we investigate the impact of human behaviour on the household, 

workplace, and social environment can be generalized to other infectious disease 

epidemics. The MERS [1] is an infectious disease that first appeared in Saudi 

Arabia in September 2012. Basic reproduction number (𝑅0) for the MERS has 

ranged from 0.42 to 0.92 [173,174,175,176]. In 2017, a cluster of the MERS was 

reported from Al-Jawf Region, Saudi Arabia, including 7 cases, 6 of which were 

household contacts [176]. According to our results (Figure 4.3), since 𝑅0 < 1 for 

the MERS, most infections has occurred in households, which is in line with earlier 

work. It may also be noted that the household infections can increase the resilience 

of eradication but do not significantly contribute to the spread. 
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Figure 4.3  Representation of effect of social distancing on localization of 
infection events. (a) show the 𝑅0 correspond for different reduction level in 

transmission probability. When agents applied social distance measure only in 
non-household (graph with square marks) and agents applied social distance 

measure in household and non-household (graph with triangular marks). The x-
axis shows, the percentage of reduction of the transmission probability (see 

method). (b)-(c) shows the infection occurrence ratio for  𝑅0 in the household 
(blue graph), workplaces (green graph), and social environment (red graph), (b) 

when  𝛽ℎ fix and  𝛽𝑜 varies, (c) when  𝛽ℎ and  𝛽𝑜 varies. The dashed line 
demonstrates the COVID-19 𝑅0, the shaded areas in (a)-(c) give 95th confidence 
intervals. In here,  𝑑1 = 2.7 𝑑𝑎𝑦𝑠, 𝑑2 = 2.4 𝑑𝑎𝑦𝑠, 𝑑3 = 5.4 𝑑𝑎𝑦𝑠, 𝑠 = 0.83, 𝑝 =

3 𝑑𝑎𝑦𝑠, 𝛼 = 0.9841, 𝜇𝐻 = 0.696,  𝜇𝐻 = 0.42, 𝑔 = 192. For the first scenario, 𝛽ℎ =
0.1672, 0.001 ≤  𝛽𝑜 ≤ 0.1672. For the second scenario, 0.001 ≤  𝛽ℎ ≤ 0.1672,

0.001 ≤  𝛽𝑜 ≤ 0.1672 

 

4.3 Estimating Contribution of Household and Non-household in 

Stabilizing of COVID-19 

To better understand the effect of household and non-household transmission on 

the spread of disease, we study the transmission chain of infections. In the earlier 

results, Figure 4.3, we counted the place of infections in the transmission chain; 

namely, the household (H), social environment (S), workplace (W). This can be 
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regarded as the 0th order knowledge on the transmission chain. To get further 

information, we first group S and W to non-household transmission (O). We then 

study the third order knowledge by counting three consecutive places of 

infections, e.g. HOH (first infection is in Household, the infected person infected 

another person in O, and that person infected another person in H).  

There are total of eight combinations of H and O: HHH, HHO, HOH, HOO, OHH, 

OHO, OOH, OOO. The combination OOO is the dominant for 𝑅0 at 2.87, the 

default case. Besides the real-world network, a random network was also 

simulated for 𝑅0 at 2.87. For the correct comparison, the number of H edges and 

O edges are kept the same in random and real network. 

At 𝑅0 =2.87, the frequencies of the combinations are almost the opposite for the 

random networks and the real-network, Figure 4.4.  The combination OOO 

dominates the real network, while the HHH is the highest in the random networks. 

The simulations for 𝑅0 at 1 (real networks) differ greatly compared to 𝑅0 =2.87 

(real network). The combination OOO is significantly lower for 𝑅0 =1. 

Additionally, the combinations that have more than two Hs (HHH, HHO, HOH, 

OHH) are significantly higher. At high  𝛽ℎ and  𝛽o both H and O infections are very 

high; as  𝛽ℎ and  𝛽o  decrease, the infections at O diminishes faster than H.  After 

a 90% reduction in 𝛽, the infection rate of H decreased see Figure 4.3. 
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Figure 4.4  Third order transmission chain analysis. Five cases were simulated. 
The simulations with random networks (𝑅0 =2.87, 𝑅0 =1) are plotted 
overlappingly. For 𝑅0 =2.87  the infections occurred the most as OOO 

combination for real network. Followed by combinations with two “O”s. Then 
tracked by single “O”s and lastly by HHH. There is a significant decrease in OOO 
combination for  𝑅0 =1, while others are of comparable frequency. The random 
simulations are quite the opposite; the HHH combination has the most occurred 

ratio since total “H” edges are more than “O” edges. In here,  𝑑1 = 2.7 𝑑𝑎𝑦𝑠, 
𝑑2 = 2.4 𝑑𝑎𝑦𝑠, 𝑑3 = 5.4 𝑑𝑎𝑦𝑠, 𝑠 = 0.83, 𝑝 = 3 𝑑𝑎𝑦𝑠, 𝛼 = 0.9841, 𝜇𝐻 = 0.696,  
𝜇𝐻 = 0.42, 𝑔 = 192.  𝛽ℎ =  𝛽𝑜 = 0.1672 for 𝑅0 = 2.87 , 𝛽ℎ =  𝛽𝑜 = 0.0214 for 

𝑅0 = 1, 𝛽ℎ = 0.1672,  𝛽𝑜 = 0.0165 for𝑅0 = 1, 88% reduction applied to  𝛽𝑜. Same 
parameters are used for random networks simulations. 

 

4.4 Calculating the Influence of Stay-at-home Restriction During 

Weekends in the Spread of COVID-19 

After investigating the effects of contagion probability, we have investigated the 

effect of stay-at-home restrictions on weekends. To understand the impact of stay-

at-home restriction versus transmission probability, we have simulated 3 cases: 

free weekend without restrictions, restriction on Sunday, and restriction on 

Saturday and Sunday. We have simulated each restriction scenario when social 

distancing applied in workplace and social environment (𝛽ℎ fixed ). The edge 
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frequencies of the altered networks are given in Figures 4.5a-4.5c. To implement 

the weekend restrictions, the social environment edges are replaced by the 

household edges, as detailed previously. 

We have found that stay-at-home restrictions during the weekends cause a 

decrease in R0. Figure 4.6a shows that R0 drops from 2.95 to 2.71 for restrictions 

on Saturdays and to 2.56 when restrictions are on Saturdays and Sundays. Figure 

4.6b-4.6d shows the ratio of infection occurrence ratio for increasing R0 when 

implementing stay-at-home restrictions during weekends. When stay-at-home 

restrictions increases, the infection at social environment decreases and work 

infections increase.  

Expectedly, decreasing the social environment edges decreases infections at the 

social environment, however the increase in household edges does not increase 

the household infections. However, it leads to decrease in R0 [177-178]  

 

Figure 4.5 The edge frequencies of the altered networks for (a) free weekend 
without restriction scenario, (b) restriction on Sunday, (c) restriction on Sunday 

and Saturday 



48 

 

Figure 4.6  Representing the influence of stay-at-home restriction during the 
weekends, under social distance policy, in the spread of COVID-19. (a) shows 
the basic reproduction number in three stay-at-home restriction scenarios: free 
weekend without restrictions (graph with square marks) restriction on Sunday 
(graph with triangular marks), restriction on Sunday and Saturday (graph with 

diamond marks). x-axis demonstrate the percentage of reduction in transmission 
probability (see method for more information). Here agents are only applied 

social distance measure in the non-household. (b)-(d) show the infection 
occurrence ratio with respect to  𝑅0 in the household (blue graph), workplaces 
(green graph), and social environment (red graph), for (b) 1st, (c) 2nd, and (d) 
3rd stay-at-home restriction scenarios, respectively. The shaded areas in (a)-(d) 

give 95th confidence intervals. Here  𝑑1 = 2.7 𝑑𝑎𝑦𝑠, 𝑑2 = 2.4 𝑑𝑎𝑦𝑠, 𝑑3 = 5.4 𝑑𝑎𝑦𝑠, 
𝑠 = 0.83, 𝑝 = 3 𝑑𝑎𝑦𝑠, 𝛼 = 0.9841, 𝜇𝐻 = 0.696,  𝜇𝐻 = 0.42, 𝑔 = 192.  𝛽ℎ =

0.1672, 0.001 ≤  𝛽𝑜 ≤ 0.1672 

 

4.5 Estimating Impact of Daily Working Hour, Stay-at-home 

Restriction and Transmission Reduction Level, During Weekends 

and Weekdays, to Stabilize COVID-19 

The next alteration to the network is on working hours. We alter working hours 

by changing working edges. For example, if the working hours decreased from 

nine to eight hours, the work edges between 5 pm to 6 pm are converted to a 
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sample from the edges between 6 pm to 11 pm, as detailed previously. The edge 

frequencies of the altered networks are given in Figures 4.8a-4.8e. 

The last alteration is the vaccination. Different vaccination levels have been 

simulated. At the beginning of the simulations, a certain percentage of randomly 

selected individuals are vaccinated. 

 

Figure 4.7 Errors of the interpolants. The estimations from the interpolant 
function and the simulations were plotted. (a) for the Wild Type, (b) delta 

variant. In here,  𝑑1 = 2.7 𝑑𝑎𝑦𝑠, 𝑑2 = 2.4 𝑑𝑎𝑦𝑠, 𝑑3 = 5.4 𝑑𝑎𝑦𝑠, 𝑠 = 0.83, 𝑝 =
3 𝑑𝑎𝑦𝑠, 𝛼 = 0.9841, 𝜇𝐻 = 0.696,  𝜇𝐻 = 0.42,  𝑔 = 192.  𝛽ℎ = 0.1672, 0.001 ≤

 𝛽𝑜 ≤ 0.1672. 

We simulate combinations of different vaccination levels, working hours, social 

distancing measures (transmission probability), weekend restrictions: total of 

30000 simulations were made. The number of parameters hinders us to 

understand the trade-offs. Instead of plotting 

𝑅𝑜𝑊𝑇(𝐷𝑊, 𝑆𝐷𝑀, 𝑆𝐻, 𝑉𝑎𝑐), 𝑅𝑜𝑑𝑒𝑙𝑡𝑎(𝐷𝑊, 𝑆𝐷𝑀, 𝑆𝐻, 𝑉𝑎𝑐), where DW is the decrease 

in working hours, the SDM is the social distancing measure, the SH is the stay-at-

home restriction (in weekends and also in weekdays), Vac is the vaccinated ratio. 

The functions are chosen for their simplicity. The interpolations are valid in the 

range of simulations, 0 to 4 hours for the DW, 0 to 1 for the SDM, 0 to 3 for the 

SH, 0 to 0.9 for the Vac (90 percent vaccination). The scatter plots for the 

simulated and estimated values are given in Figures 4.7a-4.7b. The coefficients of 
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determination are 0.9697, 0.9756 for WT and delta variant, respectively. The 

expressional relations are as follows 

𝑅𝑜𝑊𝑇 = 2.73 ∙ (1 − 0.0125 ∙ 𝐷𝑊 − 0.072 ∙ 𝑆𝐻 − 0.54 ∙ 𝑉𝑎𝑐) ∙ √1 − 𝑆𝐷𝑀 (4.1) 

𝑅𝑜𝑑𝑒𝑙𝑡𝑎 = 3.66 ∙ (1 − 0.015 ∙ 𝐷𝑊 − 0.074 ∙ 𝑆𝐻 − 0.35 ∙ 𝑉𝑎𝑐) ∙ √1 − 𝑆𝐷𝑀 (4.2) 

According to our estimated interpolants, the trade-offs are easily measured. For 

both the WT and delta variant, changing working hours has the least effect, while 

vaccination has the most effect. More specifically, for the WT, one day of the 

weekend restriction is equal to more than 4 hours of work per weekday. While, 

one day of restriction is equal to 13.3% vaccination. For the delta variant, the 

effect of decrease in working hours and weekend restrictions act the same, while 

one day of restriction is equal to 20% percent of vaccination. However, relative 

effect of vaccination is 20% less effective compared to the WT.  

The validity of functions is limited to the simulated ranges of parameters. Full 

vaccination is expected to lower R0 below 1, however this is not the case for 

functions in equations (4.1) and (4.2). This is expected because the simulated 

range, 0 to 90 percent, has linear effect. Most likely, after 90% vaccination R0 

depends non-linearly on Vac until reaching R0 = 0. The same discussion can be 

done for other parameters as well. 

Unlike other parameters, the SDM (transmission probability) varies from 0 to 100 

percent. As seen in Figure 4.3a, the reduction in transmission probability reduces 

R0 significantly after 80% reduction. The non-linearity is approximated by the 

square root function. However, at the limit of SDM near 0, Vac is 0, DW is 0, and 

the SH is 0. The effect of SDM at the mentioned limit is close to that of the 

vaccination.  

Among the parameters that we have simulated, DW and SH, the parameters vary 

marginally. For example, DW only changes from 0 to 4 hours. In terms of working 

hours, the DW varies from 9 hours of work to 5 hours of work. In the simulated 

range, R0 is not significantly affected. Perhaps simulating for the remaining hours, 

from 9 hours of work to 0 hours of work would show the non-linearity that we 

have suspected. However, the point we want to make is that a marginal decrease 
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of working hours (several hours) leads to minimal decrease in R0. To get a 

significant decrease in R0, the working hours must be decreased substantially. But 

its burden on economic activity would be profound.  

The range for SH has been simulated from 0 to 4 days. Meaningful range is 0 to 2 

days, the weekend. 2 days of restrictions are equal to 26 % vaccination for the 

WT, 42% for the delta type. However, it should be noted that the simulations on 

the delta variant with 90 % vaccination and weekend restrictions have about R0 =

2 as the delta variant starts with a substantially higher R0. The weekend restriction 

on the wild type is somewhat more meaningful. The simulations with 90 % 

vaccination with weekend restrictions have 𝑅0 = 0.98.  

In our simulations, even for the wild type, 90% vaccination has not brought R0 

below 1 (when no other measure was implemented). Many countries such as 

Singapore and United Arab Emirates have more than 80% [179] vaccination 

ratios, but they still have cases [180,181]. It should be noted that in those 

countries, they perform some form of social distancing as well. As mentioned 

earlier, the weekend restriction can bring R0 below 1, only for the wild type. 

Interestingly, the working hour reduction does not show much effect. 
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Figure 4. 8 The edge frequencies of the altered work hour for (a) No decrease, 
(b) 1 hour decrease in work, (c) 2 hours decrease in work, (d) 3 hours decrease 

in work, (e) 4 hours decrease in work 

Numerous valuable theoretical deductions are made on simpler models [182-

185]. Also, valuable numerical deductions are made on complex models 

[186,187]. Here, we have performed complicated simulations on real network. 

This network is also inherently heterogeneous. Understanding the numerical 

solutions is troublesome when there are many parameters. To circumvent that 

problem we have guessed a simple interpolant for the whole simulations. Indeed, 

a) b) 

c) d) 

e) 
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the results can be interpolated with a simple form. The simple interpolant allowed 

us to compare the decrease in working hours, weekend restrictions, vaccination 

percentage, and the decrease in transmission probability (social distancing 

measures).  

First of all, the restrictions can be added to each other. All measures are worth 

considering. However, any measure that is not taken to almost completion does 

not significantly affect the outbreak. This means that at least one measure must 

be performed to its maximum level. Mixing marginal effects would not be strong 

enough so that 𝑅0 = 1. For example, the required reduction in transmission 

probability for 𝑅0 = 1 is 86%. With weekend restriction it only decreases to 82%. 

Worse off, with 3 hours the working hour reduction, the required reduction is 

85.5%. Obviously, vaccination and transmission reduction are almost 

interchangeable. Thus, our simulations show that without vaccination or teaching 

people how to lower their transmission probability significantly, changing the 

working hours or weekend restrictions will only make people more frustrated.  

There are some areas of improvement in our work. The children under 13 were 

not included in this data [188]. Children play a crucial role in bringing infection 

into the household [189]. Since there are only three days of data, we reuse the 

data 5 times. We tried to decrease the effect of this by only performing brief 

simulations. Simulations last for 14 days, and we only allow for a maximum of 

around 20 infections per simulation. We recommend for social network data 

miners increase their sample size during data collecting from a population. 

4.6 Conclusions and Recommendation 

In this study, the effects of various parameters such as human behavior, economic 

activity, vaccination, and social distancing have been investigated in the 

containment of pandemics such as COVID-19. In this context, a new agent-based 

model based on a time-dynamic real network with stochastic transmission events 

has been developed, which is also reinforced by the results of computer codes 

generated in MATLAB 2019b. The network has been successfully categorized into 

the household, workplace, and social environment. The contributions of 

household and non-household environments to the overall spread of the pandemic 
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have been clarified. The conditions needed to mitigate the spread of wild-type 

COVID-19 and the delta variant have been analyzed. Complicated simulations 

have been performed by our agent-based model on the real network. 

Consequently, the interplay between pharmaceutical and non-pharmaceutical 

intervention on the containment of COVID-19 have been investigated.  

Our simulations have shown that without vaccination or teaching people how to 

lower their transmission probability significantly, changing working hours or 

weekend restrictions will only make people more frustrated.  

This study could be carried out by incorporating a more realistic network and 

considering children under 13 years of age in investigating the effect of the 

corresponding parameters.  
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