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ABSTRACT

Effects of VVarious Parameters on the Containment of
Pandemics

Ramin NASHEBI

Department of Mathematics

MSec. Thesis

Supervisor: Prof. Dr. Murat SARI
Co- Supervisor: Assist. Prof. Dr. Enes Seyfullah KOTIL

Human behavior, economic activity, vaccination, and social distancing are
inseparably entangled in epidemic management. This study aims to investigate
the effects of various parameters such as human behavior, economic activity,
vaccination, and social distance on the process of the containment of pandemics
such as COVID-19. To achieve this, an agent-based model based on a time-
dynamic network with stochastic transmission events has been developed via the
computer codes produced here in MATLAB 2019b. The network is constructed
from a real-world social network. The social network data has been categorized
into three categories: home, workplaces, and social environment. Consequently,
it has allowed us to understand household and non-household environments
contribution to the overall dissemination of the pandemic. The conditions needed
to mitigate the spread of wild-type COVID-19 and the delta variant have been
analyzed. Tens of thousands of individual-based simulations have been carefully
executed by our purposeful agent-based model. A function that fits the simulations
has been used and this attempt has given the opportunity to explore the
interaction between pharmaceutical and non-pharmaceutical interventions on
containment of COVID-19. It has been found that changing working hours or
implementing stay-at-home restrictions, up to 4 days, does not significantly reduce
the basic reproduction number R,. It has also been found that successful
vaccination does not bring R, below 1 when no other measures are implemented.
It has been concluded that although most of the infections occurred in homes
when R, < 1, the household transmission does not significantly alter the spread.
Note also that the spread ultimately depends on non-household transmissions.



Keywords: Pandemic, COVID-19, Agent-based model, Household transmission,
Social network, Working hours
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OZET

Cesitli Parametrelerin Pandemilerin Simirlandirilmasina
Etkileri

Ramin NASHEBI

Matematik Bolumi

Yiiksek Lisans Tezi

Danisman: Prof. Dr. Murat SARI
Es-Damisman: Dr. Ogretim Uyesi Enes Seyfullah KOTIL

Insan davranisi, ekonomik aktivite, asilama ve sosyal mesafe, salgin yonetiminde
ayrilmaz bir sekilde i¢c ice gecmis durumda. Bu calisma, COVID-19 gibi
pandemilerin kontrol altina alinmasi siirecinde insan davranisi, ekonomik aktivite,
asillama ve sosyal mesafe gibi cesitli parametrelerin etkilerini arastirmayi
amaclamaktadir. Bunu gerceklestirmek i¢in, burada MATLAB 2019b'de iiretilen
bilgisayar kodlar1 araciligiyla stokastik gecis (bulas) olaylariyla zaman dinamik bir
aga dayali faktor-tabanli bir model gelistirilmistir. S6z konusu ag, gercek
diinyadaki bir sosyal agdan insa edilmistir. Sosyal ag verileri {ic kategoriye
ayrilmastir: ev, isyerleri ve sosyal cevre. Sonuc olarak, ev ici ve ev dis1 ortamlarin
pandeminin genel yayilmasina katkisini anlamamizi saglamistir. Yabani tip
COVID-19 ve delta varyantinin yayilmasini azaltmak icin gereken kosullar analiz
edildi. Amaca yonelik ajan-tabanli modelimiz tarafindan on binlerce bireysel
tabanl simiilasyon dikkatli bir sekilde gerceklestirilmistir. Simiilasyonlara uyan
bir fonksiyon kullanilmis olup bu girisim, COVID-19'un kontrol altina alinmasina
iliskin farmasotik ve farmasotik olmayan miidahaleler arasindaki etkilesimi
kesfetme firsat1 vermistir. Calisma saatlerini degistirmenin veya 4 giine kadar evde
kalma kisitlamalarinin uygulanmasinin, temel ¢ogaltma sayisi Ry 1 6nemli Olctide
azaltmadig1 sonucuna varilmistir. Ayrica baska hicbir 6nlem uygulanmadiginda
basarili asilamanin R, 1 1'in altina getirmedigi gortlmiistiir. Enfeksiyonlarin
cogunun, Ry<1 oldugunda, evlerde meydana gelmesine ragmen, ev ici
bulasmanin yayilmayir onemli Ol¢lide degistirmedigi sonucuna varilmistir.
Yayilmanin nihayetinde ev dis1 bulasmalara bagli oldugu da goéz ardi
edilmemelidir.
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1

INTRODUCTION

This chapter presents an overview about the influence of the interplay of the non-
pharmaceutical policies and vaccination in the context of control and containment
of the disease and successful management of the economy and the public's health.
Also, the mathematical models that have been offered in literature for simulating
dynamic, control, and containment of COVID-19. Additionally, the goal of this

study of the thesis are given respectively.

1.1 Literature Review

Human behavior in households, workplaces, social environment during weekends
and weekdays have a vital role in the spread of infectious diseases such as middle
east respiratory syndrome (MERS) [1], HIN1 influenza [2], severe acute
respiratory syndrome (SARS) [3], and the current severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. Household members have frequent
and intimate contacts, making the disease spread rapidly within the households
[4-5]. We can observe the risk of infection within the household during seasonal
and pandemic influenza [6-7], for pneumococcal carriage [8], and childhood

infections [9-10].

The ongoing COVID-19 pandemic, instigated by the novel SARS-CoV-2, has
rapidly spread from Wuhan, China, to nearly all countries. The diverse clinical and
epidemiological features of COVID-19 have contributed to its disastrous effects
worldwide [11,12]. This disease transmission occurred via droplets during close
contacts and via contaminated surfaces [13-16]. The critical role of pre-
symptomatic and asymptomatic individuals in transmitting infection makes

symptom-based isolation less effective [12].

The development of strategies for preventing infectious diseases is a priority of

health organizations. There are three general containment strategies for



preventing and mitigating infectious disease: antiviral, vaccine, and non-
pharmaceutical measures [17]. The non-pharmaceutical measures include a wide
range of policies such as changing the number working hours, limiting
transmissibility between individuals by distancing measures, and stay at home
restrictions [18, 19, 34]. Stay-at-home policy is frequently used [19-22]. The
World Health Organization [23,24] and many local authorities [25,26] supported
stay-at-home measures and encouraged them. Governmental policies upon stay-
at-home orders are grouped into four categories: no measures implemented
concerning staying-at-home, recommended to stay at home, moderate restriction
concerning stay-at-home (people can do their daily exercise, grocery shopping,
and ‘essential’ trips), and high restriction regarding stay-at-home (people allowed
to leave only once every few days, or only one person can go at a time) [27]. The
same countries modified the long lockdown to a short-term stay-at-home order,
such as France [28,29], Turkey [30,31], India [32]. These countries recommend
stay-at-home orders only during weekends. On the downside, stay-at-home
orders, limiting work hours, distancing measures have negative effects on mental
health, physical health, and the economy [35]. Understanding the interplay of the
mentioned non-pharmaceutical policies and vaccination is essential in the context
of control and containment of the disease and successful management of the
economy and the public's health. Since the experimental study is not compliant to
investigate the social dynamic, control, and management of disease among
humans, mathematical models are crucial to quantify and investigate such effects
[33,36]. Models are developed in order to understand the effect of external
influences on outputs, through representation of the interactions between the
components of the system, and to communicate ideas about the behavior of the
system. In mathematical modelling, those features of system, that being studied

theoretically, translate into the language of science for simplification [37-38].

The role of stay-at-home (short-term) orders, limiting working hours, and
distancing measures in spreading COVID-19 requires modelling the interplay
between agents and their environment. Moreover, the interaction between agents
and agents' interaction with the environment directly affects the incidence and

persistence of infection disease. The spatial and social heterogeneity of agents, the



interaction between agents, and the emergent effect are produced from these
interactions and persists over time make it a complex phenomenon [39]. The
problem can be represented by agent-based models simulated on a time-resolved
contact network with stochastic events. We have aimed for a model where the
duration of stay-at-home restrictions, number of working hours and distancing
measures can be varied independently on an individual level. Many mathematical

models have been developed to investigate this complex system [40-42].

Standard compartmental models are used to investigate the dynamic of disease in
a population by using a set of ordinary differential equations [43]. These models
use mean-field [55, 48] approximation, assuming that every infectious member
infects any member of the susceptible class with the same probability. Many SEIR
compartmental models [44, 45] were conducted to investigate COVID-19 by using
mean-field approaches. Hou et al. [46] used a mean-field SEIR model to analyze
the role of self-isolation in the control and containment of COVID-19. Some
studies [47,49] modify the SEIR model by adding new states to account for
asymptomatic cases and the effect of quarantine and hospitalization. However,
due to the usage of mean-field approximation, these models do not capture the

stochasticity of phenomena and individual-level behavioral effects [43].

Stochastic models are individual-level models, include discrete and continuous-
time Markov chains models [43]. In these models, an infectious person infects a
susceptible person with a definite probability if there be present a physical
connection between them. The link between individuals makes a contact network,
where disease spread. Ando et al. [50] established a stochastic model to
investigate the role of human mobility in spreading of COVID-19. Stochastic
models relax the mean-field approximation hypothesis in infection disease
modelling, but when the interaction between individuals is homogenous, or there
is an infinite number of individuals, the stochastic models became the mean-field
deterministic model [43]. Heterogeneity of contact network has a significant effect
in dynamic of disease [43]. Firth et al. [51] used a real-world social network to

model control and containment strategies for COVID-19.



Agent-based modelling is a computational approach to modelling complex systems
consist of autonomous agent interactions [52,53]. Agent-based modelling
composed of three components: agents with behaviours and attributes, agents’
relationships and interactions, and agent’s environment where they interact. In
epidemiology, to decide to control an infection disease, it is essential to
understand the interaction between agent, host, and environment affects the
transmission of disease and its development in a population [54]. Consequently,
agent-based models are essential tools to understanding the impact of human
behavior in the transmission of infectious diseases in different environments such
as households, workplaces, and social environments. Moreover, they are deficient
in linking basic reproduction numbers to complex phenomena like the spatial and
time-wise occurrence of infection events. Among spatial places, we are interested
in infections occurring in households, workplaces and social environments. Aleta
et al. [40] used an agent-based model with three layers: school, workplace, and
household. They used human mobility data and constructed artificial contact
networks with different weights, which proxy transmission, for each setting
(schools, workplace, and households). They used their model to investigate the
influence of the closure of schools and stay-at-home restrictions. Another study by
Hoertel et al. [41] developed a stochastic agent-based model and run it over a
synthetical social network. They investigated the effectiveness of the national
lockdown of francs, post-lockdown, distancing measures, and mask-wearing.
Braun et al. [42] developed a network-based, agent-based model. Using this
model, they simulated the Watts—Strogatz small-world network to catch the
efficiency of social distancing, personal protective equipment, and quarantining.
In this study, we have developed a discrete-time stochastic agent-based model to
investigate the effect of social distancing, stay-at-home restriction during
weekends, and working hours on the containment of COVID-19. Our advancement
with the above works is that we use real-world social network data and manually

classified contacts into the household, workplace, and social environment

Simulation studies have been done using network models to investigate the
dynamic of disease [60]. Volz et al. [61] used this approach to investigate the

dynamical pattern of an epidemic in complex heterogeneous networks. Sewell and



Miller et al. [62] used the SEIR model and a contact network to investigate the
effect of mask and quarantine in spreading COVID-19. In addition, social
networking plays a significant role in assessing the potential effectiveness of stay-
at-home restriction [40], social distancing [12], economic policies [56], and
vaccination [57]. In 2018, the BBC released a human social interaction dataset to
explore the dynamics of a pandemic in the UK [58]. Josh et al. [59] developed a
branching process model and simulated the COCVID-19 outbreak throw this social
network dataset. They assessed the impact of testing and contact tracing strategies

for controlling of COVID-19 outbreak.

Some mathematical models and meta-analyses analyzed the dynamic of COVID-
19 inside and outside of households [63, 12, 64, 65, 66,71]. Many studies found
that the probability of indoor transmission was very high compared to outdoors
[65]. Another study shows that even by implementing strong social distance
measures, the epidemic peak can occur weeks to months later, and the decline in
cases can be prolonged. The efficacy of household transmission plays a vital role
in this result [12]. In a study [67], 1587 close contacts of confirmed cases with
COVID-19 were traced. In a case study [66], a report from China, 318 outbreaks
with three or more cases were identified. In Wuhan, the basic reproduction
number (R,) dropped from 3.54 to 1.18 after lockdown and cordon sanitaire.
Nevertheless, the epidemic was only brought under complete control when
Fangcang (field) hospitals were introduced to isolate cases outside the home,
dropping to 0.51 after two weeks [68]. However, a recent mathematical model
[69] suggested that stay-at-home does not play a dominant role in reducing
COVID-19 transmission. Despite this, in the presence of widespread community
measures, 70% of SARS-CoV-2 transmission occurred between household contacts

[70].

Basic reproduction number (R,) indicates the transmissibility of infectious
diseases [72]. R, is an estimate of contagiousness that is a function of human
behaviour and biological characteristics of pathogens [72]. Thus, R, estimates of
COVID-19 are not exclusively determined by the pathogen, and variability in R,
depends on local socio-behavioral and environmental settings [73]. Anderson and

May [74] calculated the basic reproduction number as a function of contacts,



transmission rate, and transmission duration. In this work, we hypothesize that
the basic reproduction number (R,) is the average number of secondary

cases [72].

There have been many published works in the efforts to study the role of
vaccination [77], social distancing [18], household [18, 71] in understanding the
dynamic and control of the SARS-CoV-2 virus. Several authors have been designed
and used simple models [76,75,78], complex models [77,79,81], and multi-scale
models [80] to simulate the trade-off between pharmaceutical (vaccination) and
non-pharmaceutical (social distancing, stay-at-home restriction, decrease in
working hours) intervention in the containment of COVID-19 pandemic. This
study presents an agent-based model based on a time-dynamic network with
stochastic transmission events that allowed us to analyze the interplay between
pharmaceutical and non-pharmaceutical interventions. The advancement is by
modelling in a way that the following are tunable: stay-at-home restriction,
working hours, vaccination, social distancing. Moreover, we represent the trade-
offs between complex phenomena in a simple equation. This simple function links
the modelled forces with basic reproduction number from the generated data by
thousands of carefully executed individual level simulations of multiscale
modelling on the real network. Additionally, some of the interesting observations
includes that the ratio of household infections increases as effective reproduction
number decreases. Moreover, the household infections provide resilience for

epidemic eradication but do not contribute significantly to spread.

1.2 Objective of the Thesis

This thesis aims at investigating influence of Human behavior, economic activity,
vaccination, and social distancing in context of control and containment of COVID-

19. To achieve this major aim, four objectives are outlined:

1. To construct an agent-based model based on a time-dynamic network with

stochastic transmission events

2. To construct a network from real-world social network, and categorize edges

into household, workplace, and social environment.



3. To accurately modelling stay-at-home restriction, working hours, vaccination,

social distancing.

4. To simulate the interplay between pharmaceutical (vaccination) and non-
pharmaceutical (social distancing, stay-at-home restriction, decrease in working

hours) intervention in the containment of COVID-19 pandemic.

1.3 Original Contribution

Most of the infections occur in homes when R, < 1. The household infections
provide resilience for epidemic eradication but do not contribute significantly to
spread. It is also noticeable that the spread ultimately depends on non-household
transmissions. Furthermore, changing working hours or implementing stay-at-
home restrictions, up to 4 days, does not significantly decrease R,. Finally,
successful vaccination does not bring R, below 1, when no other measures are

implemented.

1.4 Overview of the Thesis

This thesis consists of five chapters. Chapter 1 presents literature review,
objectives, and hypothesis of the thesis. In chapter 2 we will give some
preliminaries about graph theory, infection diseases, COVID-19 pandemic,

epidemiological modelling, and agent-based modelling and simulation.

In chapter 3 we will describe our methods and material. First, we describe our
real-world social network data, and methodology for classification of data into
household, workplace, and social environment. Secondly, the development and
simulation process of our agent-based model. Finally, the way that we modelled
the stay-at-home restrictions, decreasing working hour, social distancing, and
vaccination. In chapter 4 we will report the results of our investigation and make

discussion about it. Conclusions will be given in chapter 5.



2

PRELIMINARIES

This chapter gives a brief introduction to graph theory to understand the structure
and usage of social network data, considering the data that our agent-based model
uses to simulate agents (humans) behavior is a real-world social network dataset.
Then, we will give information about infectious disease, SARS-CoV-2, and
epidemiological modelling. Finally, we will give some preliminaries about the
agent-based modelling and simulation. As we will develop an agent-based model
based on a time-dynamic network with stochastic transmission events, we will

discuss in depth the structure and use of stochastic and agent-based modeling.

2.1 Graph Theory

Many real-world problems can be described through a network consisting of a set
of points and lines. The lines show any link and interaction between two points.
Networks that are built around people are called social networks. Moreno Jacob
was the first person who introduces a sociogram in the 1930s. His sociograms have
an essential contribution to social network analysis. A sociogram represents the
network, where people are demonstrated by points and their interaction by lines
(Fig 2.1). However, to study a network, you need to use accurate terms, such as
what it means to talk about the distance between two nodes; similarly, how are
we to understand that the network is well connected? These and other statements
can be precisely defined by taking the terminology from graph theory [82,83].
Graph theory is a mathematical field that gained popularity in the 19th and 20th
centuries, mainly because it allowed the description of phenomena from a wide
variety of fields: drawing and coloring maps of communication infrastructures,
planning problems and social structures, and many others [82]. The edges in a
graph can also have weights, or different numerical values, attached to them. A
graph whose edges have weights is called a weighted graph, and one whose edges

do not is an unweighted graph. In many situations, weighted graphs are helpful



for capturing additional information about the relationships between vertices. For
example, in an epidemiological context, if vertices represent individuals in a
population and edges indicate that two individuals are in epidemiological contact,
edge weights could give the probability of disease transmission occurring between
two individuals per unit time. In a graph, the shortest path between two nodes is

called geodesic distance, which is a valuable property in characterizing networks.
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Figure 2.1 Example of sociogram network where nodes (dots) represent
individual, and the edges (line segment) represent interaction between these
individual

2.2 Infection Diseases

A disease because of pathogen, caused by transmission of pathogen from
contaminated person, animal, or inanimate object to a susceptible host is called
infection disease [92].

The continuous outbreak of infectious diseases has shaped human history. For
centuries, entire countries and civilizations have disappeared from the map.
Around 1715 BC, in the middle of the Bronze Age, the bible pharaoh plague
ravaged ancient Egypt. From 430 BC to 425 BC, the "Aowdg" in Athens caused
about 13 million deaths and destroyed the indigenous population of Central
America [93]. In 1348, the Black Death plague broke out in Europe, killing more
than 25 million people in just five years. In 1918-1919 the pandemic of influenza
virus swept the Asia, Europe, Americas, and Africa and destroyed the world and

killed approximately 40 million people. In the following decades, there were two



less severe annual influenza pandemics: the influenza pandemics in 1957 and
1963 killed 2 and 1 million people, respectively [92]. In 2013, infectious diseases
caused the loss of more than 45 million people to ailment and more than 9 million
mortalities [94]. Tuberculosis (TB), the human immunodeficiency virus
(HIV)/AIDS, diarrheal diseases, malaria and inferior respiratory region infections
are among the leading reasons of inclusive global death [94]. Epidemic of AIDS
caused by the HIV that commence in non-human primates in the Central and West
Africa. According to the Joint United Nations Program on the HIV/AIDS, at the
end of 2010, an estimated 34 million people worldwide were living with HIV. Of
these, 3.4 million are children. The new deaths and related injuries were 1.8 and
2.7 million, respectively [95].

One of emerging infectious diseases, is coronavirus disease in mammals and birds.
They can cause mild or fatal respiratory infections in humans and birds. Human
mild illnesses include several common colds, and more deadly variants can cause
SARS, MERS, and COVID19. The Middle East Respiratory Syndrome (MERS) [96]
is caused by the middle east respiratory syndrome coronavirus (MERS-CoV). The
first confirmed case occurred in Jeddah, Saudi Arabia in June 2012, and most
cases occurred in the Arabian Peninsula [97]. As of January 2021, more than
2,500 cases were reported, including 45 cases in 2020 [98]. Approximately 35%
of patients die from it [98]. Severe Acute Respiratory Syndrome (SARS) is a
zoonotic respiratory viral disease caused by the severe acute respiratory syndrome
coronavirus (SARS-CoV or SARS-CoV-1). The syndrome caused the 2002-2004
SARS outbreak; at the end of the epidemic in June 2003, the incidence was 8,422
cases [99]. As of 2004, there were no reported cases of SARS-CoV-1 worldwide
[100]. In December 2019, another strain of the SARS-CoV was identified as SARS-
CoV-2. This new strain of coronavirus causes COVID-19, a pandemic that occurred
in 2019.

An infectious disease is caused by a combination of a host, agent and
environmental factors see Figure 2.2a. Bacteria, non-living viruses, fungi, and
living parasites are some of the infection agents. The interaction between host and
agent indicates whether exposure has occurred or not see Figure 2.2b.

Environmental factors indicate whether a host has been exposed by an agent or

10



not, and the outcome of exposure is determined by the successive interactions
between the agent and the host see Figure 2.2b. The interaction of the host and
the agent takes place in a series of stages consisting of infection, illness, and
convalescence or death. Following exposure, the pathogen begins colonization,
adhesion, and initial proliferation at the entrance gate. Some ailments are always
caused by infection, but not always by disease. Illness shows the degree of
confusion and damage to the host, resulting in subjective symptoms and objective
signs of disease. Recovery from infection is either complete (drug removal) or
incomplete. When a potential host is exposed to an infectious pathogen, the
outcome of that exposure depends on the dynamic relationship between
infectious, pathogenic, and pathogen determinants see Figure 2.2b. When the host
is exposed to the agent, the potential of the agent to infect the host is called
infectivity. Pathogenicity is the capability of a pathogen (organism) to cause a
disease (infectious disease). The result of exposure to infectious pathogens may
also depend on various host aspects that determine an individual's susceptibility
to infection. Exposed individuals can resist infection or limit disease due to their
biological makeup. This ability of individual is called susceptibility. There are
some factors such as innate factors, genetic factors and acquired factors, such as
specific immunity after exposure or vaccination, that affecting susceptibility. There
are two basic forms of immunity, active and passive. In active immunity the
immune protection produces by host’s own immune response. In contrast, passive
immunity is achieved by transferring immune effectors, the most common
antibodies (also known as immunoglobulins, antisera) from donor animals or
humans. Environmental causes of susceptibility to infectious diseases consist of

behavioral, physical, cultural, social, economic, and political factors [111].
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Figure 2.2 Epidemiological triad model of causality of infectious diseases and
potential consequences of host exposure to infectious agents [111]

The transmission of pathogens occurs in two ways: directly and indirectly.
According to public health, the transmission stages are classified according to the
clinical illness and transmission potential. With respect to clinical illness, the first
stage is the incubation period which host exposed with an infection agent utile the
appearances of first signs of symptom. After incubation period the clinical
illness or symptomatic period begin, which is defined as the duration between the
first and the last sign of symptom. With respect to the transmission potential, the
primary stage is /atent period, the duration between exposure to an agent and the
start of infectiousness. Latent period tracked by the infectious period, where
infected person can spread an infection agent to others [111]. Presymptomatic is
the phase when an individual is infected and maybe shedding virus but has not
yet developed symptoms [112]. The early or mild stages of this infection, whose
symptoms are below the level of clinical evidence, are called asymptomatic
infections, and those affected are called asymptomatic carriers. The serial
interval (SI) refers to the interval between the time points of symptom onset in an
infector and his/her infectees. The generation time of an infectious disease (GT) is
the time interval between the onset of an individual's infection and the time that
person infects another. The period of time during which the first case becomes
infected with the virus and then transmits it to the second is called transmission

generation (TG) [112].
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Figure 2.3 Illustrative timelines and various stages during infection and
transmission of an infectious disease [112]

In particular region or population numerous expressions are used to describe
the outbreak of an infectious disease. Diseases which happen with predictable
regularity is characterized as endemic, while diseases which occur occasionally
and unpredictably is called sporadic. The degree of endemic can be divided into
holoendemic, high epidemic, moderate epidemic, or low epidemic, depending on
whether the frequency of the disease is extreme, high, medium, or low. The term
outbreak is frequently used interchangeably with epidemic, nevertheless it can
also state to an epidemic that occurs in a narrower geographic
region. In contrast, pandemics are epidemics that spread geographically over
large areas, across multiple countries around the world [111].

The measures that characterize frequency of disease are, attack rate, prevalence,
incidence, basic reproduction number, effective reproduction number and herb
immunity. Attack rates is assessed as the proportion of number infected over
number of exposed. The prevalence estimates the number of existence cases in
population. Despite this, incidence calculate the rate of new cases that occur in
population at a specific time. In certain circumstances, the transmission of disease
from an index case to susceptible, exposed individuals in localized population this
is called secondary incidence rate [111]. The average number of secondary cases

generated from a single case in a completely susceptible population is defined as

13



the basic reproduction number in a completely susceptible population. However,
in some population, there already exist some nonsusceptible proportion due to
immunization and previous infections; thus, more accurate disease frequency to
reflect the potential of population disease spread is needed. The average number
of secondary cases generated from a single case in a population which is already
infected, is called effective reproduction number. The herb immunity, which is
also defined as community immunity, shows the percentage of the population that
is resistant to infectious diseases that prevents the infection/transmission chain.
According to a study by Leaver and Clack [113], the prevention of disease is
divided into three levels: primary preventions, secondary preventions, and tertiary
preventions. Primary prevention occurs before the population is triggered by the
spread of the disease. Secondary prevention is applied in asymptomatic stages
[111] to reduce the progression of infection and to prevent transmission of
infectious agents [111]. Tertiary prevention is used to reduce the effects of
infected individuals, reduce disease progression, enhance function, and maximize
quality of life.

The interaction of the agent, host and environmental factors has a linked sequence
called the chain of transmission or chain of infection. This chain starts with an
infectious agent, which causes the disease. The infectious agent leaves the
reservoir from a portal of exit. The portal of exit for infectious agents has several
routes with respect to infections; for example, the portal of exit for influenza
infectious agents are respiratory sections [111], for rotavirus is gastrointestinal
[111]. After exiting from the reservoir, infectious agents reach the portal of entry
of the susceptible host by using some mode of transmission. There are two modes
of transmission direct and indirect [111]. In a direct mode of transmission, agents
enter directly from reservoir to host by physical contact (skin or mucosa of agent
to host), the spread of droplets (sneezing, coughing), direct contact with an agent
in environmental reservoirs (inhalation), animal bites, transplacental (pregnancy
delivery) and perinatal (breastfeeding) transmission [111]. In indirect mode,
transmission agents enter indirectly from a reservoir to a host. Indirect
transmission is divided into three categories: biological, mechanical and

airborne. Biological transmission takes place when the pathogen reproduces
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within a biological vector [111] that transmits the pathogen from one host to
another. Arthropods are the key vectors responsible for biological transmission
[115]. When an infectious agent is transferred physically by using a live entity
(mechanical vector) or inanimate object (vehicle) to a susceptible host, this kind
of transmission is defined as mechanical transmission. Airborne transmission is a
colloidal suspension of residues or particles containing active substances that can
be transported over long distances and over long periods of time and still remain
infectious.

Understanding the chain of infection allowed us to prevent and control any
infectious disease. One of control and prevention strategies is breaking any link in
the chain, which avoid the transmission of the infectious agent. The earlier
intervention can implement to eliminate the infectious agent in their reservoirs.
The most common intervention is surveillance activity [111] which routinely
identify infectious agents in the reservoir. When the reservoirs of infectious agents
are humans, case isolation, contact tracing and quarantine [111] are intervention
activities. When targeting portal of existing for preventing disease, standard
precautions and transmission-based precautions [116] are suggested to reduce
transmission level of an infectious agent. Standard precaution consists of hand
hygiene, personal protective equipment (gloves, gowns, face protection, masks),
and respiratory hygiene/cough etiquette. Targeting the susceptible host to prevent

disease immunization (vaccination) are suggested as an intervention activity.
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Figure 2.4 Visualization of transmission chain. The spread of agent ensues
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2.3 Coronavirus Disease 2019 (COVID-19)

The coronavirus pandemic, also recognized as the COVID-19 pandemic, is the
ongoing global pandemic of the 2019 Coronavirus Disease (COVID-19) caused by
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The virus was
first detected in Wuhan, China in December 2019. On the 30th of January, the
World Health Organization declared an international public health emergency on
COVID-19 and declared a pandemic on the 11th of March. As of June 10, 2021,
174 million confirmed cases of COVID-19 had been reported, with more than 3.75
million confirmed deaths to date due to the virus and historically. It has become
one of the deadliest pandemics.

COVID-19 is a contagious disease caused by the SARS-CoV-2 virus [101]. Different
names were used for the virus during the first outbreak in Wuhan, China. Some
names were used by various sources were the "Coronavirus' or the "Wuhan
Coronavirus" [108]. The WHO recommended "2019 Novel Coronavirus" (2019-
nCov) as the tentative name of the virus in January 2020 [109]. On the 11th of
February 2020, the ICTV (International Committee on Taxonomy of Viruses)
adopted the official name "severe acute respiratory syndrome coronavirus 2"

(SARS-CoV-2) [110]. Coronaviruses are a family of enveloped RNA viruses that
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are distributed widely among mammals and birds, causing principally respiratory
or enteric diseases but in some cases neurologic illness or hepatitis [102]. In
taxonomy, which is a branch of biology for the scientific study of naming, defining
and classifying of a biological organism, Coronaviruses constitute the
subfamily Orthocoronavirinae, in the family Coronaviridae, order Nidovirales,
and realm Riboviria [103]. The viruses are enveloped with a single-stranded RNA
genome and a nucleocapsid of helical symmetry [104]. They have club-shaped
spikes that protrude from their surface, which in electron micrographs create an
image similar to the solar corona, from which their name derives [105]. They are
divided into four genera: Alphacoronaviruses, betacoronaviruses,
gammacoronaviruses, deltacoronaviruses. Alphacoronaviruses and
betacoronaviruses infect mammals, while gammacoronaviruses and
deltacoronaviruses primarily infect birds. In 2003 and 2012, the causative agents
of SARS and MERS outbreaks were the SARS-CoV and the MERS-related
coronavirus, which are a species of betacoronavirus genera [106]. The SARS-CoV-
2 is the culprit of the 2019 Coronavirus Disease (COVID-19), a type of coronavirus
(SARSr-CoV) associated with severe acute respiratory syndrome Viruses of the
genus Betacoronavirus [101]. It is closely related to both SARS-CoV and MERS-
CoV. The SARS-CoV-2 is spread more expeditiously, and it is more infectious than
the SARS-CoV and MERS-CoV [117]. The SARS-CoV-2 have zoonotic origin, and
there are some insinuations that it materializes from bats coronavirus [107], but
research is ongoing.

The clinical manifestations of the SAR-CoV-2 infection ranged from asymptomatic
lung disease of the upper respiratory tract to severe viral pneumonia with
respiratory failure and death [117]. The clinical symptom of the COVID-19
classified into three groups: respiratory symptoms, musculoskeletal symptoms,
and digestive symptoms. The respiratory symptoms include cough, shortness of
breath, sputum, and fever. The musculoskeletal symptoms include muscle and
joint pain, fatigue, and headache. The digestive symptoms include diarrhea,
abdominal pain, and vomiting [118]. Besides these symptoms, smell and test loss

also added to the chief symptoms [119]
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The COVID-19 disease has a direct and indirect mode of transmission. The direct
transmission has a respiratory route and occurs via droplets or aerosols released
as coughing, sneezing, breathing, and talking. The infectious individual transmits
the COVID-19 by making longer and closer, typically within 1 meter [120], contact
with susceptible hosts. The virus can also spread in imperfectly ventilated and
crowded indoor environments, where people tend to spend more extended periods
of time because aerosols remain suspended in the air or travel more than 1 meter.
After that, the aerosols or droplets containing the virus are inhaled or come
directly into contact with the eyes, nose, or mouth. Some of the aerosols fall to the
ground and make surfaces containment with the virus. Whenever people touch
the surfaces and touch their eyes, nose or mouth without cleaning their hands, it
will infect them. This kind of transmission forms an indirect mode of transmission

of the COVID-19.

2.4 Epidemiological Modelling

Epidemiology comes from the Greek words epi, which means upon, demos means
people, and logos means study, so we can define epidemiology as the study of how
health conditions or events are distributed and defined in a population.
Epidemiologists use this information to try to control health problems [131].
Epidemiology relies on research methods, systematic and impartial methods of
collecting and analyzing data. Basic epidemiological methods usually depend on
careful observation and the use of appropriate comparison groups to assess
whether the observed, such as the number of cases of the disease in a given area
during a given period of time or the frequency of exposure in sick people, differs

from what one might expect.

In epidemiology, to make a decision for control an infectious disease, it is
important to understand that how the interaction between agent, host, and
environment affect transmission of disease and its development in population.
Mathematical models are used to represent and analyze these interactions by
combining available knowledge and expert opinion about a disease. In recent
years, there have been significant developments in electronic surveillance of

infectious diseases, which revised computing, electronic data administration, the
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capability to share and deposit data over the internet [132]. These developments
have increased the application of mathematical models in epidemiology to study
disease processes [133], hypothesized factors involved in endemic persistence in
populations [134], give advice on risks associated with emerging and re-emerging
disease risks [135], estimate the economic effect of diseases [136], appraise
control strategies at different scales [136], calculate the effectiveness of
surveillance and control programs [136], and provide inputs and scenarios for

training activities [136].

A model is a physical process or system that is designed to imitate relevant features
of the system. Models are designed to understand the effect of external influences
on outputs by representing the interactions between system components and to
convey ideas about the behavior of the system. In mathematical modelling, we
translate those features of the system that are being studied theoretically and
scientifically into the language of mathematics for simplification [128-129].
Mathematics is an exact, accurate, and concise language, which helps us to
formulate and identify underlying assumptions, encourage manipulations.
Availability of potentially useful theorems and high-speed computers for
calculation make mathematical models more useful. The objectives of
mathematical modeling are to develop a scientific understanding of the system,
clarification, using our scientific understanding to manage the world, simulated
experimentation, testing the effect of changes in a system, the curse of

dimensionality and aid decision making [123-126].

A mathematical model is an abstract, simplified mathematical construct related to
a part of the system in the real world and created for a particular purpose [121].
Three things are important in modelling a system in the real world. The things the
model is designed to study behavior for are called endogenous variables, also
called output or dependent variables. The things that affect the model but whose
behavior the model is not designed to study is called exogenous variables (also
called parameters, inputs, or independent variables), including constants,
functions and so on. Things whose effects are neglected exclude from the model

and call the neglected part [121-129].
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The mathematical modeling process is divided into four parts: building, studying,
testing, and use. In general, deficiency found during the investigation and testing
phase are fixed by returning to the construction (building) phase. Note that the
investigation (studying) and testing phases will need to be repeated if changes are
made to the model. This iterative process is a typical feature of a modeling project
and one of the most useful aspects of modeling, giving you a better understanding
of how the system works [122]. Figure 2.5 illustrates different routes through the

modelling process:

Y

Building Studying TEStM

Figure 2.5 Pictorial representation of modelling process

The mathematical model in epidemiology developed by Daniel Bernoulli in 1766
[137]. Bernoulli developed the model to analyze the mortality due to smallpox in
England. The purpose of his model was to show that vaccination against the virus
would increase the life expectancy at birth by about three years. Lambert [138]
extended the Bernoulli’s model by including age-dependent parameters. The
modern mathematical modelling in epidemiology established by Ross [139-140].
He represented mechanistic form of the earlier modeling approaches by set of
equations to estimate the discrete-time dynamics of malaria through the mosquito
borne pathogen transmission. Kermack and McKendrick [141-143] found the first
deterministic compartmental epidemic model. They introduced the mass-action
incident [144] in disease transmission cycle. They suggested that the probability
of infection of susceptible is comparable with the number of its contacts with
infected individuals. Their model holds strong analogy with the law of mass action
[145] which was introduced by Guldberg and Waage and called SIR model.
MacDonald [146] extended the work of Ross and proposed method of eradication
of disease in an operational level. He used his method to explain the transmission
of malaria deeply. In general, the mathematical models for explaining the
dynamics and control of transmitted pathogens are known as the Ross-MacDonald

models [146]. Enko [139] used a probabilistic model to analyze the dynamic and
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control of measles epidemic. He assesses the number of contacts between infective
and susceptible in population. Frost [147], by using the Enko model, developed
the famous Reed-Frost chain binomial model. His model assumes that an infection
spreads through discrete time Markov chain events from infected individual to

susceptible one, which set the basis for stochastic modelling.

There is no agreed classification system for models [136]. Different researchers
have focused on different aspects of models which may distinguish them from each
other. According to the work of Siettos et al. [139], there are three general
categories: statistical-based methods for epidemic surveillance, State-space
models, and machine learning-based models for forecasting the evolution of
ongoing epidemic [139]. These categories are also divided into subgroups see
Figure 2.6. Since in our thesis, we use a discrete-time stochastic agent-based

model, so we will only focus on state-space mathematical models in epidemiology.

State-Space mathematical models are representations of the dynamic order system
consisting of input, output and state variables to a first-order differential equation
on the vector of state [148]. A state variable is a variable whose value changes
over time in a way that depends on the value at any given time and the externally
imposed value of the input variable. State-space mathematical models can be
divided into the following categories, depending on the level of approximation,

and increasing complexity of reality:

I.  Continuum models, deterministic SIR models
II.  Stochastic models
III.  Complex network models

1IV.  Agent-based simulations
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Figure 2.6 Classification tree of Mathematical models for epidemiology.

Continuum models describe the simplified dynamics of the epidemics in the
population [139]. Generally, they represent physical systems in the form of
differential equations. The Kermack and McKendrick [141-143] SIR
compartmental models make up the continuum models of differential equations.
In the SIR model, the population is segmented by health state, such as susceptible
(S), Infected (I), recovered (R), or quarantined (Q), vaccinated (V) by policy
makers. The inputs could be age or time, and output may be the vaccination or

efficiency of quarantine or isolation.

Stochastic models are used when the variability or randomness in transmission,
recovery, births, deaths, or the environment affects the outcome of an epidemic.
These models include discrete and continuous-time individual-based Markov-
chain models. Markov chain model is a series of possible events, where the
probability of each event only depending on the state approach in the prior event
[150]. The key illustration in the Markov chains is the discrete-time Markov chains
(DTMCQ). In the DTMC time and states are described on a discrete set of values. At
every discrete time step, individuals make their own decisions based on their own
current state and the current state of their links. The decisions are made with
respect to the simple rules including their own states and the states of their links
satisfying the Markov property. This property defines that the future values of the
states at time t + At related only to the values of the states at the previous time

step t. Stochastic models are individual-level models. The advantage is that this
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model loosens the mean-field approximation hypothesis of the models for infinite
population. Stochastic models use perfect mixing that familiarize the

distinctiveness of individual behavior, with multiple heterogeneous features.

The elements and interactions of real-world systems are modelled by complex
network models. The complex network models proxy elements with sets of nodes
and interactions with sets of edges. The 'complex' term mentions any collection of
interlinked things which have meaningful pattern their links [151]. These models
relax the hypothesis of the above stochastic model about homogeneity of
interaction between individuals, by using an heterogenous contact network [139].
In addition, the topology of contact social networks shapes the epidemic spread in
many situations. In the occurrence of various epidemics, changes in the epidemic
state of a particular population can lead to major changes in the characteristics of
the grid. Understanding this complex behavior is paramount to public health
interventions and policies to address the outbreak of illness. Vaccination,
quarantine, and/or the use of antivirals in specific population groups must be
carefully planned so that they can effectively combat new epidemics. If the
dynamics of infectious diseases are poorly understood, they can have serious
adverse effects because they are caused by non-uniform contact interactions. Over
the past few years, active exertions have been made to study the relationship
between the new dynamics of infectious diseases and the fundamental topology

of the network [139].

2.5 Agent-based Modelling and Simulation

Agent-based modelling and simulation (ABMS) are used to model complex
systems, complex adaptive systems, and artificial life [157]. Complex systems are
composed of interacting, autonomous 'agents' [155]. Complex adaptive systems
give the capability for agents to adapt at the individual or population levels [156].
Agents have behaviours, often defined by unpretentious rules and interactions
with other agents, persuading their behaviours. Occasionally self-organization can
be detected in agent-based modelling. Patterns, structures, and behaviors appear
that were not explicitly programmed into the models but emerges through the

agent interactions. Two significant features that extricate agent-based simulation
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from other simulation techniques, such as discrete event and dynamic system
simulations, are modelling the heterogeneity of agents across a population and
the presences of self-organization. Agent-based modelling can also model social
systems composed of agents that interact and stimulate each other, acquire from
their experience, and regulate their behavior to make it more appropriate for their
environment. Agent-based modelling has a comprehensive range of applications,
such as modelling agent behaviour in the stock market [152], forecasting the
supper of disease [153], modelling adaptive immune systems [154] and many

others.

The agent-based model has three elements: a set of agents, a set of agent
relationships and methods of interaction, and the agents' environment. Agents
have certain characteristics such as self-contained and identifiable, autonomous
and self-directed, state that varies over time, social and having dynamic
interactions, adaptive, goal-directed and having goals to achieve, and
heterogeneous. Agents usually interact with a subset of other agents called agents'
neighbours. How agents relate to each other is commonly referred to as the
topology or connectivity of an agent-based model. Typical topologies include a
spatial mesh or network of nodes (agents) and links (relationships). The topology
describes who communicates information to whom. The most common agent
interaction topologies are cellular automata (CA), Euclidean 2D/3D space, and
network and so on [155]. The environment helps define the space in which the
agent operates and supports interaction with the environment and other agents

[158].

To develop an agent-based model, first of all, we should specify the problem that
we will solve by model, the answer that we want to answer, and the value that
should be added to the problem that other models cannot bring. Then we should
describe agents of our model (decision-maker, entity that has behaviors, static
attributes, dynamic attributes). After that, we need to mention the agents'
environment of our model. Consequently, we must mention agents' behaviours of
interest, decisions that they are going to make, and actions that are taken by

agents. Introducing the way that agents interact is our next step—finally choosing
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accurate data with respect to agents' behaviour for our model and validating the

model according to agents' behaviours.

Agent-based modelling can be implemented by exploiting several software or
programming languages such as MATLAB, Mathematica, Python, Java, C++, and
C. In our thesis investigations we use MATLAB R2019b.
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3

METHODS AND MATERIALS

In this section, the multi-scale model developed in this study for the first time will
be introduced to explore the balance between pharmaceutical (vaccination) and
non-pharmaceutical (social distancing, stay-at-home restriction, and decrease in
working hours) intervention in the containment of COVID-19 pandemic. Also, we
will describe the classification methods that we have developed for categorizing
our social network data edges into household, workplace, and social environment.
Finally, we will explain the general methodology of our study and how we took
into account stay-at-home restrictions, social distancing, working hours, and

vaccination in our model.
3.1 Data

To make our simulation more realistic to human interaction patterns, we use the
BBC documentary ‘Contagion! The BBC Four Pandemic’ demonstrate social
network data of 469 volunteers from Haslemere, England. The data is not
categorized as where the interactions occur. Our main goal is to order each
interaction, whether it occurred in workplaces, social environment or households.
By categorizing edges of the graph, we can understand which of the settings and

behaviors of staying in that environment would affect the COVID-19 dynamics.

The Haslemere dataset consists of the pairwise distances of up to 50m resolution
between 469 volunteers from Haslemere, England, at five-minute intervals over
three consecutive days (Thursday 12 Oct — Saturday 14 Oct 2017). Graphical
representation of Haslemere dataset is given in Figure 3.1. It gives users’ data to
16 daytime hours only, between 07:00:00am and 22:55:00pm, excluding the
hours between 11 pm and 7 am. There are 576-time points for each user.
According to the 2011 UK census, volunteers of the Haslemere dataset establish a
sample of 4.2% of the total population of Haslemere. Participants downloaded the

BBC Pandemic mobile phone app and then went about their daily business, with
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the app running in the background. The study restricted to volunteers who are at
least 16 or 13 years of age with parental consent. The pairwise distances between
volunteers were calculated using the Haversine formula for great-circle geographic
distance and are based on the most accurate GPS coordinates that the volunteers’

mobile phones could provide [159,166].
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Figure 3.1 Graphical representation of our social network dataset. A) Unique
interaction between nodes during three consecutive days. B) 5 minutes time step
interactions between nodes during three consecutive days

3.2 Model

We have developed a discrete-time stochastic agent-based model, parameterized
to simulate different types of COVID-19 outbreak across the Haslemere data set.
An agent in our simulation can be in the following states: E(t) (exposed), PS(t)
(pre-symptomatic, documented), A(t) (asymptomatic, undocumented), S(t)
(symptomatic, documented), H(t) (hospitalized) and R(t) (recovered) (Figure
3.2).

In our model, symptomatic individuals are symptomatic with respect to medical
records, anyone who do not report symptoms are regarded as undocumented
(asymptomatic). The agent-based model starts with an exposed individual.

t

Initially, j** individual is exposed to the virus, and he/she cannot infect others

during his/her latent period for d; = 2.7 days (Table 3.1). After the latency period
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finishes, the j**individual tends to one of the two branches: pre-symptomatic with
a ratio of s or asymptomatic with a ratio of (1 - s). When the period of delay from

the onset finishes, we generate a random number ¢, there are two probabilities for

jth

asymptomatic stage. The infectious period of the asymptomatic stage is d; = 5.4

individual to proceed; the first one, if € < 1- she/she proceeds to the

days (Table 3.1). Through the infectious period of the asymptomatic stage, when

the j** individual comes in contact with i® individual, then we infect the i*

h
individual with probability uyPh;; if the edge is classified as household and
o Po;; if non-household. The uy and u, are the reduction factor for asymptomatic
transmission in households and non-household. Ph;; and Po;; are the probability
that j** individual infects i*" individual of his/her contacts in household and non-

household. When the infectious period of the asymptomatic stage finishes the j"

individual proceed to the recovered stage.

Alternatively, the j** individual can be in pre-symptomatic stage. The infectious
period of the pre-symptomatic stage is d, = 2.4 [160]. The probabilities of
infection are Ph;; and Po;; in household and non-household. When the pre-
symptomatic stage finishes, the j** individual proceed to the symptomatic stage
and stays for d, = 3 days [163]. The infection probabilities are the same as in
pre-symptomatic stage. When the delay period from symptomatic finishes, j*
individual proceeds to the hospitalization stage where he/she will recover or die.
The hospital stage does not necessarily mean that the agent is hospitalized. All
reported cases end up in hospital stage, regardless of severity (which is not
modelled). The default parameter values for the simulations with their sources

were presented in Table 3.1.
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Figure 3.2 Graphical representation of our discrete time, stochastic agent-based

model

Table 3.1 Agent based model parameters and their values

Parameter | Definition Value Source
d, Mean number of | 2.7 day | Derived by finding the difference
days in the latency between incubation period and
stage pre-symptomatic period. We take
incubation period 5.1 day [165]
d, Mean number of |2.4day | [160]
days in pre-
symptomatic stage
ds Mean number of |5.4day | Assumed to be the same duration
days in the as the total infectious period for
asymptomatic stage symptomatic cases, including pre-
symptomatic transmission [161]
s The ratio of | 0.83 [162]
symptomatic cases
dy Average time of | 3days | [163]
going to the
hospital
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Table 3.1 Agent based model parameters and their values (continued)

a Infection Probability 0.9841 | Derived (Fitted to COVID-19 R,
constant and SAR of household by
sampling see Fig. 3.5

B Infection Probability 0.1672 | Derived (Fitted to COVID-19 R,
constant and SAR of household by
sampling see Fig. 3.5

Uy Transmission 0.696 [164]
reduction fator for
asymptomatic cases
inside household

Ho Transmission 0.42 [164]
reduction fator for
asymptomatic cases
outside household

9]

g Granularity 192 Derived by converting 1 day to
minutes intervals (16x12)

3.3 Methods

3.3.1 Social Network Data Classification

We want to categorize this network into three categories, including household,
workplaces, and social environment. For doing this, we use a visualization method
that demonstrates the behaviour and contact member of every individual during
these three consecutive days, and a classification algorithm. We choose those
contacts with an average pairwise distance 20m or less. In our primary analysis,
we identify those contacts whose average pairwise distances are 5m or less
because we have aimed to capture household encounters and understand their
daily routine and behaviour. After investigating the behaviour of each individual
during these three days, we have come up with some procedures. Table 3.2
describes the procedures for households, workplaces, and social environment for
example: Individuals who contact for three consecutive nights after 19:00 and
have distance of less than 2 are classified as household encounter. Consequently,

we have developed a classification algorithm to classify the remaining encounters
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between 6m and 20m distances. The pseudo code for the algorithm produced here
is given below. To test the performance of the algorithm, we create a confusion
matrix of the algorithm by choosing the classified data points (by using the
visualization method) as actual data and the algorithm classified data points as

predicted data.
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Figure 3.3 Visualization method, which demonstrates the behavior and contact
member of every single individual Haslemere data set during these three
consecutive days. This figure illustrates the behavior of 21* individual during
three consecutive days. The red diamond shapes represent every single
individual. The black dash line illustrates specific hours during these three days

Table 3.2 List of procedures that are obtained by using visualization method
which demonstrates the behavior and contact member of every single individual
of Haslemere data set during these three consecutive days

Categories Procedures

1) Individuals with at least 10 logged data points between
22:00 and 07:55 AM on any of the dates [159]

2) Individuals who contact for three consecutive nights

Household after 19:00 and have distance of less than 2

3) Individuals who have more than 80 logged data point
during three consecutive days
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Table 3.3 List of procedures that are obtained by using visualization method
which demonstrates the behavior and contact member of every single
individual of Haslemere data set during these three consecutive days

(continued)

Workplace

1) Encounters which occurred on Thursday and Friday
between 8:30 AM and 18:00

Social
Environment

1) Individuals with a lease than ten logged data points
between 22:00 and 07:55 AM on any of the dates

2) The encounters which are occurred after 19:00 clock for
one-night lease than five logged data point

3) Encounters which occurred on Saturday from 8:00 AM
and 18:00 less 15 logged data points

3.3.2 Classification Algorithm Pseudocode

Let Y represent encounters which occurred between 6m and 20m distance in

Haslemere data point set, and X represent total number of logged data points of

each Y during three consecutive days. The duration between 07:00 AM up to
08:30 AM and 18:00 PM up to 23:00 PM on Thursday and Friday represent by t¢;.

The duration between 07:00 AM up to 23:00 PM on Saturday represent by t,. The

duration between 08:30 AM up to 18:00 PM on Thursday and Friday represent by

t;. Let Z(t; + t,) give the total number Y which occurred in t; and t, duration,

and Z(t3) give the total number Y which occurred in t4
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if X < 80
if X>15
if Z(t, +ty) > Z(t3)
Y classified as household contact
else
Y classified as workplace contact
endif
else
if Z(t; +t) > Z(t3)
Y classified as social environment contact
else
Y classified as workplace contact
endif
endif
endif

Figure 3.4 Classification algorithm pseudocode

3.3.3 Constructing Contact Matrices and Simulation with Real-world Social
Network Data

We construct classification matrices for households, H;;, workplaces, W;;, and
social environment, S; ;, which we have classified from Haslemere data. H; ; = 1 if
the contact of j** and i*" agent occurs in a household environment, and H; ; = 0
otherwise. The simulations are made for 5 minutes time step. At each time step,
each contact is checked if one of the agents is infectious, also if the other one is
susceptible, then it is infected by the precomputed probability. There are three
days in the Haslemere data: Thursday, Friday and Saturday. Our simulations take
14 days, so we construct the longer contact network by using the real data. The
weekday contacts are taken from Thursday and Friday. We repeat each day
sequentially and in whole. We do not mix the data in a day. The weekend contacts
are replicated from Saturday contacts of the Haslemere data. We start the

simulation with two exposed individuals. The first 14 days is designed as a
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warmup run. After 14 days, we randomly choose 2 individuals whose state are
exposed, presymptomatic, asymptomatic, or symptomatic, convert all others back
to susceptible. By this method we start with a more realistic initial sample of states.
Then, we restart the simulation for another 14. We calculate effective
reproduction number (R,), infection occurence ratio, and secondary attack rate
(SAR) of household from the second set of 14-day simulations. We run 500 trial
simulations for each scenario. The default parameter values for the simulations
were present in Table 3.1. By starting with only 2 infected individuals, we have
aimed those total cases at the end of 14 days do not exceed 10% of the total
population. Otherwise, the small population and repetitive use of data would have
more effect on the estimates. In line with our decision, even after 2 years, COVID-

19 cases of countries did not reach substantial percentage [167].
3.3.4 Calculating Infection Probability (P) and Basic Reproduction Number (R)

We specify the probability that a susceptible agent it becomes infected by an
infectious j'* agent in a 5-minute interval is given as a function of distance in
equation (3.1) for household and in equation (3.2) for non-household (workplace,

social environment).

Bre~ (@) d; <6
Ph;;(t) = d 3.1
o= {f 3, (3.1)
B e (@) d;; <6
Po::(t) = J 3-2

Ph;;(t) is the probability of infection if the contact occurs in a houshold. Po;;(t)
is the probability of infection if the contact occurs in workplace or social
environment. Also, d;; is the distance in meters between individuals i and j at
time t; a, B, B, are distance scaling parameter, transmission probability per 5
minutes in and out of households, respectively. 6 defines the cutoff distance, after
which the infection probability is assumed to be zero. Our social network consists
of a pairwise distance of up to 50m. Since we choose only those interaction which
occurred less than or equal to 20m, so 6 =20. Infection probability ranges between

0 and 1. Our network consists of 102831 interactions in 5 minutes time intervals
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for three consecutive days (Tuesday, Friday, Saturday). We calculate infection
probability for each interaction separately. Effective reproduction number (R,) is
estimated directly by counting the descendants of a discovered agent after
simulation finished, then averaged for 14 days. Percentage reduction of
transmission probability is computed as a ratio of the -effective-outside
transmission probability with respect to WT (default, estimated) transmission

rate. Thus

_ B
ﬁWT

(3.3)

D 100

3.3.5 Estimating Infection Occurrence Ratio

Throughout the simulations we track down ancestors and descendants of infected

agents. Each infection pair is an edge of the classification matrices, H; ;, W; ;,S; ;.

Then each classified edge is calculated.

3.3.6 Calculating Household Secondary Attack Rate (SAR)

The household secondary attack rate is defined as the probability of transmission
per susceptible household member when there is a single infected individual in
the house [12, 168]. The SAR of households calculates the number of cases among
contacts of primary cases divided by the total number of primary cases. Our model
starts the simulations with ten exposed individuals executed with a daily life
contact matrix to calculate the SAR of households. After that, we tract the infection
occurrence environments (household, workplace, social environment). We
identify those who are members of different households. We accept those initially
exposed individuals who are members of different households as our primary case
in each household. At the end of the simulation, we calculate the SAR of each

household by the following formula:

Number of cases among contacts of primary cases
Total number of contacts of primary cases

x 100 (3.4)
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3.3.7 Calculating Scaling Parameters of Distance («), and Transmission Rate ()

of COVID-19

We estimate scaling parameters of distance and transmission rate by sampling to
obtain a baseline R, = 2.87 [169] and 0.46 < SAR < 0.72 [170], which are basic
reproduction number and secondary attack rate of households of COVID-19,
respectively. Figure 3.4 shows the sampling results for calculating « and B
constants for COVID-19. To do this, we calculate the absolute error between the
estimated model R, and the exact COVID-19. We also compute the absolute error
between the estimated and the exact household SAR model for COVID-19. Finally,
we add these two errors and choose a and g values that give the required smallest

€Iror.
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Figure 3.5 Illustration of sampling result for calculating scaling parameters of
distance (a), and transmission rate (f3) .

3.3.8 Changing Number of Work Hours During Weekdays

We alter working hours during weekdays by changing the work edges of the
network. According to our classification methodology of the network, individuals
work for 9 hours from 09:00 AM up to 06:00 PM during weekdays. To decrease

working hour from 9 hours to 9 — i (1 < i < 9) hours during weekdays, firstly, we
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identify home, work, and social environment edges between 06:00 PM and 9 — i
hours before 06:00 PM of each weekday. Secondly, we randomly change only
work edges with work, home, and social environment edges from edges between
06:00 PM and 11:00 PM of each weekday. For example, if we want to decrease
working hours from 9 hours to 8 hours (i = 1) during weekdays. Firstly, we
identify every workplace, social environment, and household contacts that
occurred between 06:00 PM and 05:00 AM. Then we have changed only every
workplace contact with the workplace, social environment and household contacts

which occurred between 06:00 PM and 11:00 PM.

3.3.9 Simulating Stay-at-home Restrictions

We have four stay-at-home restrictions scenarios: restrictions on Sunday,
restrictions on Sunday and Saturday, restrictions on Sunday, Saturday and Friday
and restrictions on Sunday, Saturday, Friday and Thursday. After we form the 14
days of contact network, we replace all non-household (workplace and social
environment) contacts that occurred in a 5-minute time step with a household

contact that also occurred in that 5-minute interval.
3.3.10 Lowering Transmission Probability, Increasing Social Distancing

The infection probability is parameterized by two parameters, f and a. The «
indicates the decay of probability with the distance of contacts, whereas f is the
maximum transmission probability (at distance 0). We have obtained these
parameters by sampling many simulations that fit the COVID-19’s R, and
secondary attack rate. We use two f parameters, S, ,, to distinguish between
the infectiousness in households and outside. In our simulations, we reduce
infectious probability to simulate a population where people reduce probability of
infection by personal social distancing measures. The parameter S could be
thought as the total virus that is present at immediate vicinity of an infectious
agent, whereas « is the “loss parameter” (due to diffusion and other effects) with
respect to distance. Thus, we have chosen to alter the parameter 8 on the basis
that total number of virus changes when a person engages in protective measures
such as wearing masks. The parameter « is left untouched, since the events that

leads to the loss due to distance does not change. Alternative explanations can be
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made; however, this is the way that our simulation have been conducted.
Whenever we mention a reduction in infectiousness, we reduce the parameter S.
So, in some simulations we alter both 8, and 8, when agents at home are also
engaging in personal protection; in other simulations, we change 3, when agents

do not engage in personal social distancing at households.
3.3.12 Vaccination and The Delta Variant.

The simulations with delta variant use different values for f and a parameters.
Again, we have left @ untouched. We have changed S according to literature
[171]. It is assumed that the infectious probability of the delta variant is double
of the wild type of virus. We have simply used g for the delta variant as 0.33,
whereas the wild type was 0.167.

The agents that are vaccinated are chosen randomly. The vaccinated agents have
reduced B value. We have assumed 93% and 88% reduction infectiousness for the
wild type and delta variant, respectively [172]. So, S for the vaccinated, wild type

and delta variant are 0.012, 0.067, respectively, whilst a is unchanged.
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4

RESULTS AND DISCUSSION

In this chapter, we have investigated the contribution of household and non-
household environments to overall spread of the epidemic. Also, we have some
observation about the impact of stay-at-home restriction, and social distancing in
dynamic of COVID-19. Furthermore, we analyze the trade-off between
pharmaceutical (vaccination) and non-pharmaceutical (social distancing, stay-at-
home restriction, decrease in working hours) intervention in the containment of

COVID-19 pandemic.
4.1 Classification of Social Network Data

We have categorized the real-world social network data into household,
workplace, and social environment. Firstly, by using the visualization method we
have classified 1350 unique contacts, which occurred, between 1m and 5m. From
these 1350 unique contacts 123, 514, 713 of them occurred in the household,
workplaces, and social environment, respectively. We have categorized 1895
unique contacts, which occurred, between 6m and 20m by using the currently
developed algorithm. From these 1895 unique contacts 52, 790, 1003 of them
have occurred in the household, workplaces, and social environments,

respectively.

Figure 4.1 illustrates the confusion matrix of the algorithm by choosing the
classified data points (by using the visualization method) as actual data and the
algorithm classified data points as predicted data to test the performance of the
algorithm. The first two diagonal cells show the number and percentage of the
correct classifications by the algorithm. For example, 110 contacts are correctly
classified as household. This corresponds to 8.15% of all 1895 contacts. Similarly,
492 contacts are correctly classified as workplace. This corresponds to 36.44% of
all contacts. In the same way, 642 contacts are correctly classified as the social

environment. This corresponds to 47.56% of all contacts. 1 of the household
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contacts is incorrectly classified as workplace contact and this corresponds to
0.07% of all 1895 contacts. Also, 12 of the household contacts is incorrectly
classified as social environment contact and this corresponds to 0.89% of all 1895
contacts. Similarly, 4 of the workplace contacts are incorrectly classified as
households and this corresponds to 0.3% of all data. Similarly, 18 of the workplace
contacts are incorrectly classified as social environment and this corresponds to
1.33% of all data. 26 of the social environment contacts are incorrectly classified
as households and this corresponds to 1.93% of all data. In a similar manner, 45
of the social environment contacts are incorrectly classified as workplace and this
corresponds to 3.33% of all data. Out of 123 household predictions, 78.57% are
correct and 21.43% are wrong. Out of 514 workplace predictions, 91.45% are
correct and 8.55% are wrong. Out of 713 social environment predictions, 95.54%
are correct and 4.46% are wrong. Out of 52 household contacts, 89.43% are
correctly classified as household and 10.57% are classified as workplace and social
environment. Out of 590 workplace contacts, 95.72% are correctly classified as
household and 4.28% are classified as household and social environment. Out of
1003 social environment contacts, 90.04% are correctly classified as household
and 9.96% are classified as workplace and households. Overall, 91.73% of the
predictions are correct and 8.27% are wrong. Figure 4.2 shows the distribution of
household, workplace, and social environment interactions through 3 days

(Tuesday, Friday, and Saturday) in 5-minute time steps after classification of data.
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Figure 4.1 Confusion matrix of classification algorithm for clustering Haslemere
data set into households, workplaces, and social environment with respect to
visualization method classified data
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Saturday) after classification of data
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4.2 Estimating Infection Occurrence Ratio in the Household, Workplace and

Social Environment Under Two Social Distance Policies

It is vital to know the environment where the infections occur depending on the
basic reproduction number (R,). Here, we estimate the infection occurrence in

three environments: households, work, and social environment.

Our agent-based model enables us to simulate R, by varying household and/or
non-household transmission rates S, 8,, respectively. In general, people do not
carry out social distancing in their homes [12]. To simulate this phenomenon, we
reduce the total transmission rate by decreasing the non-household transmission
(B,) while fixing the household transmission rate (f,). Squares with a line in
Figure 4.3a shows the dependence of R, on varying 8, when g, is constant.
Additionally, triangles with a line shows the dependence of R, on varying S, when
By is also changing, B, = fy. The latter simulations are made to assess the effect

of making the distinction between S, and .

Interestingly, until Ry < 1, R, does not depend on the decrease of f3,. Only after
R, <1, further decreasing in B, decreases R, more than when B, is kept at its

maximum.

Additional simulations have been made with random networks. The pairs of
contacts are changed randomly without altering the time and probability of
infections. Two separate results are plotted: 1) the range of 8, and f3;, are the same
with the real-network, line with circles in Figure 4.3a; 2) the highest R, is fixed to

the same value as in real-world network, line with diamonds in Figure 4.3a.

When the ranges of 8, and S, are kept the same, the random networks show much
higher R,. Except, when the transmission rate is reduced significantly, then R is
lower than of the simulations with the real network (B, fixed), Figure 4.3a.
Indicating that, the real networks keep infections more local comparison to the
random networks. As expected, the frequency interactions among the selected

agents are significantly higher.

42



When the starting R,’s are aligned with the random networks, the decreasing in
R,’s are much faster comparison to the real networks (Figure 4.3a). Indicating that

decreasing R, in real networks is harder, retains infection chains.

The infection occurrence ratio of household, workplace, and social environment
have been counted for R, (for real networks). Overall, the household infections
are dominant when R, < 1 and most of the infections occur at social environment

when R, > 1.5.

We capture the only difference between Figure 4.3b (8, kept constant) and Figure
4.3c (B), decreases) is in the household infection occurrence ratio when R, < 1.
At Ry, > 1, the environments that the infections occur do not change significantly.

These results are further supporting the results in Figure 4.3a.

Overall, we speculate that the household transmission reaches its capacity at low
B due to abundant link frequency. The large size ), cannot lead to an increase in
R, value among the infections in the household. It has been concluded that the
household transmission contributes to resilience of the eradication but does not

contribute significantly to overall spread.

The way we investigate the impact of human behaviour on the household,
workplace, and social environment can be generalized to other infectious disease
epidemics. The MERS [1] is an infectious disease that first appeared in Saudi
Arabia in September 2012. Basic reproduction number (R,) for the MERS has
ranged from 0.42 to 0.92 [173,174,175,176]. In 2017, a cluster of the MERS was
reported from Al-Jawf Region, Saudi Arabia, including 7 cases, 6 of which were
household contacts [176]. According to our results (Figure 4.3), since R, < 1 for
the MERS, most infections has occurred in households, which is in line with earlier
work. It may also be noted that the household infections can increase the resilience

of eradication but do not significantly contribute to the spread.
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Figure 4.3 Representation of effect of social distancing on localization of
infection events. (a) show the R, correspond for different reduction level in
transmission probability. When agents applied social distance measure only in
non-household (graph with square marks) and agents applied social distance
measure in household and non-household (graph with triangular marks). The x-
axis shows, the percentage of reduction of the transmission probability (see
method). (b)-(c) shows the infection occurrence ratio for R, in the household
(blue graph), workplaces (green graph), and social environment (red graph), (b)
when g, fix and g, varies, (c) when B, and f, varies. The dashed line
demonstrates the COVID-19 R, the shaded areas in (a)-(c) give 95" confidence
intervals. In here, d, = 2.7 days, d, = 2.4 days, d; = 5.4 days, s = 0.83,p =
3days, a = 0.9841, uy = 0.696, uy = 0.42, g = 192. For the first scenario, 8, =
0.1672, 0.001 < B, < 0.1672. For the second scenario, 0.001 < B, < 0.1672,

0.001 < B, < 0.1672

4.3 Estimating Contribution of Household and Non-household in

Stabilizing of COVID-19

To better understand the effect of household and non-household transmission on

the spread of disease, we study the transmission chain of infections. In the earlier

results, Figure 4.3, we counted the place of infections in the transmission chain;

namely, the household (H), social environment (S), workplace (W). This can be
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regarded as the 0™ order knowledge on the transmission chain. To get further
information, we first group S and W to non-household transmission (O). We then
study the third order knowledge by counting three consecutive places of
infections, e.g. HOH (first infection is in Household, the infected person infected

another person in O, and that person infected another person in H).

There are total of eight combinations of H and O: HHH, HHO, HOH, HOO, OHH,
OHO, OOH, 00O0. The combination OOO is the dominant for R, at 2.87, the
default case. Besides the real-world network, a random network was also
simulated for R, at 2.87. For the correct comparison, the number of H edges and

O edges are kept the same in random and real network.

At Ry =2.87, the frequencies of the combinations are almost the opposite for the
random networks and the real-network, Figure 4.4. The combination OOO
dominates the real network, while the HHH is the highest in the random networks.
The simulations for R, at 1 (real networks) differ greatly compared to R, =2.87
(real network). The combination OOO is significantly lower for R, =1.
Additionally, the combinations that have more than two Hs (HHH, HHO, HOH,
OHH) are significantly higher. At high B, and B, both H and O infections are very
high; as B, and B, decrease, the infections at O diminishes faster than H. After

a 90% reduction in S, the infection rate of H decreased see Figure 4.3.
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Figure 4.4 Third order transmission chain analysis. Five cases were simulated.
The simulations with random networks (R, =2.87, R, =1) are plotted
overlappingly. For R, =2.87 the infections occurred the most as OO0

combination for real network. Followed by combinations with two “O”s. Then

tracked by single “O”s and lastly by HHH. There is a significant decrease in OOO

combination for R, =1, while others are of comparable frequency. The random

simulations are quite the opposite; the HHH combination has the most occurred
ratio since total “H” edges are more than “O” edges. In here, d, = 2.7 days,
d, = 2.4days, d; =5.4days, s = 0.83, p = 3days, a = 0.9841, uy = 0.696,
py = 0.42, g =192. B, = B, = 0.1672 for Ry, = 2.87 , B, = B, = 0.0214 for

Ry, =1,8, =0.1672, B, = 0.0165 forR, = 1,88% reduction applied to S,. Same

parameters are used for random networks simulations.

4.4 Calculating the Influence of Stay-at-home Restriction During
Weekends in the Spread of COVID-19

After investigating the effects of contagion probability, we have investigated the
effect of stay-at-home restrictions on weekends. To understand the impact of stay-
at-home restriction versus transmission probability, we have simulated 3 cases:
free weekend without restrictions, restriction on Sunday, and restriction on
Saturday and Sunday. We have simulated each restriction scenario when social

distancing applied in workplace and social environment (S, fixed ). The edge
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frequencies of the altered networks are given in Figures 4.5a-4.5c. To implement
the weekend restrictions, the social environment edges are replaced by the

household edges, as detailed previously.

We have found that stay-at-home restrictions during the weekends cause a
decrease in R,. Figure 4.6a shows that R, drops from 2.95 to 2.71 for restrictions
on Saturdays and to 2.56 when restrictions are on Saturdays and Sundays. Figure
4.6b-4.6d shows the ratio of infection occurrence ratio for increasing R, when
implementing stay-at-home restrictions during weekends. When stay-at-home
restrictions increases, the infection at social environment decreases and work

infections increase.

Expectedly, decreasing the social environment edges decreases infections at the
social environment, however the increase in household edges does not increase

the household infections. However, it leads to decrease in R, [177-178]
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Figure 4.5 The edge frequencies of the altered networks for (a) free weekend
without restriction scenario, (b) restriction on Sunday, (c) restriction on Sunday
and Saturday
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Figure 4.6 Representing the influence of stay-at-home restriction during the
weekends, under social distance policy, in the spread of COVID-19. (a) shows
the basic reproduction number in three stay-at-home restriction scenarios: free
weekend without restrictions (graph with square marks) restriction on Sunday
(graph with triangular marks), restriction on Sunday and Saturday (graph with
diamond marks). x-axis demonstrate the percentage of reduction in transmission
probability (see method for more information). Here agents are only applied
social distance measure in the non-household. (b)-(d) show the infection
occurrence ratio with respect to R, in the household (blue graph), workplaces
(green graph), and social environment (red graph), for (b) 1%, (c) 2", and (d)
3" stay-at-home restriction scenarios, respectively. The shaded areas in (a)-(d)
give 95" confidence intervals. Here d, = 2.7 days, d, = 2.4 days, d; = 5.4 days,
s =0.83,p =3days, a = 09841, uy = 0.696, uy =0.42, g =192. B, =
0.1672, 0.001 < B, < 0.1672

4.5 Estimating Impact of Daily Working Hour, Stay-at-home
Restriction and Transmission Reduction Level, During Weekends
and Weekdays, to Stabilize COVID-19

The next alteration to the network is on working hours. We alter working hours

by changing working edges. For example, if the working hours decreased from

nine to eight hours, the work edges between 5 pm to 6 pm are converted to a
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sample from the edges between 6 pm to 11 pm, as detailed previously. The edge

frequencies of the altered networks are given in Figures 4.8a-4.8e.

The last alteration is the vaccination. Different vaccination levels have been
simulated. At the beginning of the simulations, a certain percentage of randomly

selected individuals are vaccinated.
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Figure 4.7 Errors of the interpolants. The estimations from the interpolant
function and the simulations were plotted. (a) for the Wild Type, (b) delta
variant. In here, d, = 2.7 days, d, = 2.4 days, d; = 5.4 days,s = 0.83,p =
3days, a = 0.9841, uy = 0.696, uy = 0.42, g = 192. B, = 0.1672, 0.001 <
B, < 0.1672.

We simulate combinations of different vaccination levels, working hours, social
distancing measures (transmission probability), weekend restrictions: total of
30000 simulations were made. The number of parameters hinders us to
understand the trade-offs. Instead of plotting
Roy,+(DW,SDM,SH,Vac), Roge;;qa(DW,SDM,SH,Vac), where DW is the decrease
in working hours, the SDM is the social distancing measure, the SH is the stay-at-
home restriction (in weekends and also in weekdays), Vac is the vaccinated ratio.
The functions are chosen for their simplicity. The interpolations are valid in the
range of simulations, 0 to 4 hours for the DW, 0 to 1 for the SDM, 0 to 3 for the
SH, 0 to 0.9 for the Vac (90 percent vaccination). The scatter plots for the

simulated and estimated values are given in Figures 4.7a-4.7b. The coefficients of
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determination are 0.9697, 0.9756 for WT and delta variant, respectively. The

expressional relations are as follows
Royr =2.73-(1—0.0125-DW — 0.072 - SH — 0.54 - Vac) V1 —-SDM (4.1)

ROgeirq = 3.66 - (1 — 0.015 - DW — 0.074 - SH — 0.35 - Vac) - V1 —SDM  (4.2)

According to our estimated interpolants, the trade-offs are easily measured. For
both the WT and delta variant, changing working hours has the least effect, while
vaccination has the most effect. More specifically, for the WT, one day of the
weekend restriction is equal to more than 4 hours of work per weekday. While,
one day of restriction is equal to 13.3% vaccination. For the delta variant, the
effect of decrease in working hours and weekend restrictions act the same, while
one day of restriction is equal to 20% percent of vaccination. However, relative

effect of vaccination is 20% less effective compared to the WT.

The validity of functions is limited to the simulated ranges of parameters. Full
vaccination is expected to lower R, below 1, however this is not the case for
functions in equations (4.1) and (4.2). This is expected because the simulated
range, 0 to 90 percent, has linear effect. Most likely, after 90% vaccination R,
depends non-linearly on Vac until reaching Ry = 0. The same discussion can be

done for other parameters as well.

Unlike other parameters, the SDM (transmission probability) varies from 0 to 100
percent. As seen in Figure 4.3a, the reduction in transmission probability reduces
R, significantly after 80% reduction. The non-linearity is approximated by the
square root function. However, at the limit of SDM near 0, Vac is 0, DW is 0, and
the SH is 0. The effect of SDM at the mentioned limit is close to that of the

vaccination.

Among the parameters that we have simulated, DW and SH, the parameters vary
marginally. For example, DW only changes from O to 4 hours. In terms of working
hours, the DW varies from 9 hours of work to 5 hours of work. In the simulated
range, R, is not significantly affected. Perhaps simulating for the remaining hours,
from 9 hours of work to 0 hours of work would show the non-linearity that we

have suspected. However, the point we want to make is that a marginal decrease

50



of working hours (several hours) leads to minimal decrease in R,. To get a
significant decrease in R, the working hours must be decreased substantially. But

its burden on economic activity would be profound.

The range for SH has been simulated from O to 4 days. Meaningful range is O to 2
days, the weekend. 2 days of restrictions are equal to 26 % vaccination for the
WT, 42% for the delta type. However, it should be noted that the simulations on
the delta variant with 90 % vaccination and weekend restrictions have about Ry =
2 as the delta variant starts with a substantially higher R,,. The weekend restriction
on the wild type is somewhat more meaningful. The simulations with 90 %

vaccination with weekend restrictions have R, = 0.98.

In our simulations, even for the wild type, 90% vaccination has not brought R,
below 1 (when no other measure was implemented). Many countries such as
Singapore and United Arab Emirates have more than 80% [179] vaccination
ratios, but they still have cases [180,181]. It should be noted that in those
countries, they perform some form of social distancing as well. As mentioned
earlier, the weekend restriction can bring R, below 1, only for the wild type.

Interestingly, the working hour reduction does not show much effect.
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Figure 4. 8 The edge frequencies of the altered work hour for (a) No decrease,
(b) 1 hour decrease in work, (c¢) 2 hours decrease in work, (d) 3 hours decrease
in work, (e) 4 hours decrease in work

Numerous valuable theoretical deductions are made on simpler models [182-
185]. Also, valuable numerical deductions are made on complex models
[186,187]. Here, we have performed complicated simulations on real network.
This network is also inherently heterogeneous. Understanding the numerical
solutions is troublesome when there are many parameters. To circumvent that

problem we have guessed a simple interpolant for the whole simulations. Indeed,
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the results can be interpolated with a simple form. The simple interpolant allowed
us to compare the decrease in working hours, weekend restrictions, vaccination
percentage, and the decrease in transmission probability (social distancing

measures).

First of all, the restrictions can be added to each other. All measures are worth
considering. However, any measure that is not taken to almost completion does
not significantly affect the outbreak. This means that at least one measure must
be performed to its maximum level. Mixing marginal effects would not be strong
enough so that R, = 1. For example, the required reduction in transmission
probability for R, = 1 is 86%. With weekend restriction it only decreases to 82%.
Worse off, with 3 hours the working hour reduction, the required reduction is
85.5%. Obviously, vaccination and transmission reduction are almost
interchangeable. Thus, our simulations show that without vaccination or teaching
people how to lower their transmission probability significantly, changing the

working hours or weekend restrictions will only make people more frustrated.

There are some areas of improvement in our work. The children under 13 were
not included in this data [188]. Children play a crucial role in bringing infection
into the household [189]. Since there are only three days of data, we reuse the
data 5 times. We tried to decrease the effect of this by only performing brief
simulations. Simulations last for 14 days, and we only allow for a maximum of
around 20 infections per simulation. We recommend for social network data

miners increase their sample size during data collecting from a population.
4.6 Conclusions and Recommendation

In this study, the effects of various parameters such as human behavior, economic
activity, vaccination, and social distancing have been investigated in the
containment of pandemics such as COVID-19. In this context, a new agent-based
model based on a time-dynamic real network with stochastic transmission events
has been developed, which is also reinforced by the results of computer codes
generated in MATLAB 2019b. The network has been successfully categorized into
the household, workplace, and social environment. The contributions of

household and non-household environments to the overall spread of the pandemic
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have been clarified. The conditions needed to mitigate the spread of wild-type
COVID-19 and the delta variant have been analyzed. Complicated simulations
have been performed by our agent-based model on the real network.
Consequently, the interplay between pharmaceutical and non-pharmaceutical

intervention on the containment of COVID-19 have been investigated.

Our simulations have shown that without vaccination or teaching people how to
lower their transmission probability significantly, changing working hours or

weekend restrictions will only make people more frustrated.

This study could be carried out by incorporating a more realistic network and
considering children under 13 years of age in investigating the effect of the

corresponding parameters.
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