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OZET

JACKKNIFE VE BOOTSTRAP YONTEMLERINE ILISKIN BIR UYGULAMA

Elif BICER

Yiksek Lisans Tezi

Bitlis Eren Universitesi Lisansiistii Egitim Enstitiisi
Istatistik Anabilim Dal1
Danisman: Dog. Dr. Hamit MIRTAGIOGLU
Ikinci Danigman: Dr. Ogr. Uyesi Canan DEMIR
Ocak 2022, 70 sayfa

Ornekleme, ana kiitle icerisinden ana kiitleyi daha iyi temsil edecek sekilde tesadiifi
olarak daha kiigiik 6rnek birimi segme islemine denir. Ornekleme yontemlerinin genel olarak iki
grupta inceleyebiliriz. Bunlar tesadifi 6rnekleme yontemleri ve tesadlfi olmayan 6rnekleme
yontemleridir. Tesadiifi 6rnekleme yontemlerinde ana kiitledeki biitiin birimlerin 6rnege girme
sansinin oldugu ve biitiin sanslarin birbirine esit oldugu homojen bir durum s6z konusudur. Bu
yontemlere basit tesadiifi 6rnekleme, tabakali tesadlfi 6rnekleme, sistematik érnekleme ve kiime
orneklemesi verilebilir.

Son yillarda ilerleyen teknoloji ile birlikte temel Grnekleme yontemlerinde bir takim
eksiklikler ortaya ¢ikmigtir. Bu temel 6rnekleme yontemlerindeki eksiklikler nedeniyle yeniden
ornekleme yontemlerinin kullanilmasina ihtiya¢ duyuldu. Bu yontemlere duyulan ihtiyacin
nedeni klasik yontemleri kullanan arastirmacilarin bu yontemi stirekli normale yaklastirmalari ve
merkezi limit teoreminden faydalanmalaridir. Bu nedenle yeniden érnekleme ydntemleri hem
parametrik hem de parametrik olmayan dagilimlar i¢in temel yontemlerle sinirli kalmayip, daha
biiyiik veri setleri kullanarak iadeli ve iadesiz islemler yapabilen bilgisayar yogun yontemler
olarak kullanilmaya baslanmistir. Bu yOntemlere permitasyon yontemi, cross-validation,

jackknife ve bootstrap yontemleri 6rnek verilebilir.

Anahtar kelimeler: Basit Tesadiifi Ornekleme, Tabakali Tesadiifi Ornekleme, Sistematik

Ornekleme, Permiitasyon Yontemi, Capraz Gegerlilik, Jackknife, Bootstrap, R Programi.
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AN APPLICATION ON THE JACKKNIFE AND BOOTSTRAP METHOD
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Sampling is the process of randomly selecting smaller sample units from the main mass
to better represent the main mass. These are random sampling methods and non-random
sampling methods. In random sampling methods, there is a homogenous situation in which all
units in the main mass have a chance to enter the sample and all chances are equal to each other.
Simple random sampling, stratified random sampling, systematic sampling and cluster sampling
methods can be given as examples of these methods.

In recent years, with the advancing technology, some deficiencies have emerged in basic
sampling methods. The use of resampling methods was required due to the flaws in these
fundamental sampling methods. The necessity for these approaches arises from the fact that
researchers who utilise traditional methods frequently approximate this method to the normal
and employ the central limit theorem. As a result, resampling methods have been employed as
computer-intensive approaches that can execute operations with and without return utilising
bigger data sets, rather than being confined to basic methods for both parametric and non-
parametric distributions. Permutation, cross-validation, jackknife, and bootstrap techniques are

examples of these approaches.

Keywords: Simple Random Sampling, Stratified Random Sampling, Systematic Sampling,
Permutation Method, Cross-Validation, Jackknife, Bootstrap, R Programe.
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ONSOZz

Ornekleme, ana kiitle igerisinden ana kiitleyi daha iyi temsil edecek sekilde tesadiifi
olarak daha kiiglik 6rnek birimi segme islemine denir. Ornekleme islemi bilimsel bir arastirmanin
vazgecilmez asamalarindan biridir. Butln 0Ornekleme yontemlerindeki ama¢ ana kutleden
tesadufi olarak drnek secgerek sonuca etki eden olumsuz faktorleri yok etmek veya bu faktorlerin
olusturmus oldugu etkilerden dolay1 meydana gelecek olan 6rnekleme varyanslarini azaltmaktir.
Diger bir ifadeyle 6rnekleme yapmaktaki amag ana kiitle hakkinda tutarli ve gegerli bir tahminde
bulunmak i¢in drnekleme hatasini minimuma indirgemektir.

Ornekleme yo6ntemlerinin genel olarak iki grupta inceleyebiliriz. Bunlar tesadiifi
ornekleme yontemleri ve tesadifi olmayan Ornekleme yontemleridir. Tesadufi érnekleme
yontemlerinde ana kiitledeki biitiin birimlerin 6érnege girme sansinin oldugu ve biitiin sanslarin
birbirine esit oldugu homojen bir durum s6z konusudur. Bu yontemlere basit tesadiifi 6rnekleme,
tabakali tesadiifi ornekleme, sistematik érnekleme ve kiime érneklemesi verilebilir.

Son yillarda ilerleyen teknoloji ile birlikte temel Ornekleme yontemlerinde bir takim
eksiklikler ortaya ¢cikmistir. Bu temel 6rnekleme yontemlerindeki eksiklikler nedeniyle yeniden
ornekleme yontemlerinin kullanilmasina ihtiya¢ duyuldu. Bu ydntemlere duyulan ihtiyacin
nedeni klasik yontemleri kullanan aragtirmacilarin standart hata ve giiven araliklarini belirlemek
i¢in bu yontemi siirekli normale yaklastirmalart ve merkezi limit teoreminden faydalanmalaridir.
Ciinkii bu yontemler 6rnek dagilimlarinin asimptotik olarak normal dagildig1 vakit gegerliligini
korumaktadir. Asimptotik olarak giivenilir standart hata ve test istatistiginin elde edilmesinin zor
oldugu durumlarda yeniden 6rnekleme yontemlerinin kullanilmasi tercih edilebilir. Ayrica bir
istatistigin dagilimmin tahmini i¢in asimptotik teorinin ger¢eklesmesi durumu s6z konusu
olmayabilir. Bu nedenle yeniden 6rnekleme yontemleri hem parametrik hem de parametrik
olmayan dagilimlar i¢in temel yontemlerle simirli kalmayip, daha biiyiik veri setleri kullanarak
1adeli ve iadesiz islemler yapabilen bilgisayar yogun yontemler olarak kullanilmaya baslanmistir.
Yeniden drnekleme yontemlerine permutasyon yontemi, cross-validation, jackknife ve bootstrap
yontemi 6rnek verilebilir.

Bu tez calismasinin hazirlanmasinda ve diizenlenmesinde yardimlarini esirgemeyen ve
calismalarim boyunca degerli fikirlerinden ve tecriibelerinden yararlandigim, her asamada yakin
ilgi ve destegini gordiigiim ¢ok kiymetli hocam Sayin Prof. Dr. Siddik KESKIiN’ne

tesekkiirlerimi sunarim.
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1. GIRIS

Istatistik yontemler, bir arastirmaya konu olan verilerin toplanmasi, toplanan verilerin
diizenlenmesi ve Ozetlenmesiyle elde edilecek tablo ve grafiklerin yani sira, parametre
tahmininde ve hipotez testlerinde kullanilmaktadir. Bilimsel arastirmalarda, elde edilen sonuglara
ve sonuglarin raporlanmasina gore istatistik, tanimlayici istatistik ve ¢ikarimsal istatistik olmak
tizere iki baslik altinda incelenebilir. Tanimlayicr istatistik, herhangi bir karsilagtirma igcermeden
ana kiitleye veya oOrnege iligkin ortalama, standart sapma, say1 ve yiizde gibi tanimlayici
istatistikleri sunar. Cikarimsal istatistikte ise 0rnekten hesaplanan istatistiklerle, karsilastirmalar
(hipotez testleri) yapilir, ana kiitle parametreleri tahmin edilir ve ¢ikarimsamalarda bulunulur.

Istatistik bilimi, basta muhasebe, isletme, ekonomi, biyoloji ve tip olmak iizere hemen
hemen biitiin bilim dallarinda yapilan bilimsel arastirmalarda yaygin olarak kullanilmaktadir.
Bilimsel arastirmalarda, en onemli iki kisitlayici olan zaman ve arastirma maliyeti nedeniyle,
cogunlukla Ana kiitlenin tamamu ile ¢aligma yapma miimkiin olmamaktadir. Bunun yerine ana
kiitleyi temsil edebilen ve Orneklem veya Ornek olarak adlandirilan daha kiiciik bir grupla
calisilmaktadir. Bu durumda, calisma sonuglarinin yiiksek dogrulukla ana kutleyi temsil
edebilmesi bakimindan 6rneklemenin énemi oldukga biiyiiktiir. Istatistikte N birimlik bir ana
kiitleden, n birimlik 6rnek alma siirecinde, deney iinitelerinin homojenligi ve rasgeleligi oldukca

onemlidir. Ana kitleden 6rneklem alma siireci Sekil 1.1” deki gibi 6zetlenebilir.

Ana kiitle . Ornek
Ornekleme

Parametre(y, o) m— | statistik(Z, s)

Tahmin, karar verme

Sekil 1.1. Ana kiitleden 6rnek alinmasi

Giinliik yasamda ¢ogu zaman farkinda olmadan biitiinden parca alarak ya da ana kiitleden
Ornek alarak biitiinii daha iyi temsil edecek sekilde 6rnekleme yapilir. Pigsmekte olan bir tencere
yemekten tadim yapmak icin alinan bir kasik yemek veya kan gurubunu 6grenmek i¢in alinan
kan orneklemedir. Ornekleme islemi veya siireci, bilimsel arastirma yapmanin en onemli

asamalaridan birisidir. Orneklem yeterli biiyiikliikte degilse veya yeterli biiyiikliikte oldugu



halde uygun ornekleme yontemi kullanilmamigsa ya da g¢alismaya alinacak deney {initeleri
homojen degilse aragtirmadan elde edilecek sonuglarda diisiik giivenilirlik kaginilmaz olacaktir.
Bu nedenle biitiin 6rnekleme yontemlerinde amag; ana kiitleden rasgele alinan 6rnekten elde
edilecek sonuca etki bakimindan olumsuz faktorleri olabildigince elemline etmek ve 6rnekleme
varyanslarini azaltmaktir (Ozdemir, Tekin, ve Esin, 2015; Topuz, 2002). Diger bir ifade ile
orneklemede, ana kiitle hakkinda tutarli ve gecerli bir tahminde bulunmak i¢in Ornekleme
hatsinin minimuma indirgenmesi amaglanir.

Ornekten ve elde edilen bilgilerin dogru olmasi her seyden &nce, drnekleme ydnteminin
ve uygulanan istatistik yontemlerin iyi secilmesine baghidir. Biitiin 6érnekleme yontemlerinin
olumlu ve olumsuz yonleri mevcuttur. Bu nedenle probleme uygun bir drnekleme yonteminin
secimi 6nemlidir (Kabukcu, 1994).

Ana kiitleden alinan 6rnekten hesaplanan istatistikler yardimiyla ana kiitle parametreleri
(ortalama, varyans ve standart sapma) tahmin edilmekte ve bu tahminler de nokta tahmini ve
aralik tahmini olarak ikiye ayrilmaktadir. Ana kiitleden rastgele alinan orneklerin tek bir sayisal
degere gore yorumlanmasi nokta tahmini olarak ifade edilir. Parametrelerin belirli bir olasilikla
minimum ve maksimum degerlerinin bulunmasi yani alt sinir ve iist sinirlarinin bulunmasi ise
aralik tahmini olarak ifade edilebilir. Tahmin etme islemini belirleyen formulasyona tahmin
edici, formiilasyon gercek verilerle islendiginde ise ulasilan sayiya tahmin adi verilmektedir
(Piiskiilcii ve Ikiz, 1986). Nokta tahmini icin kullanilan ydntemler en kiiciik kareler yontemi, en
cok olabilirlik yontemi ve momentler yontemidir. Aralik tahmini i¢in kullanilan yontem giiven
aralig1 yontemidir.

Giiven aralig1 ile aralik tahmininde, X ortalamali (bilinmeyen parametre) ve ¢ standart
sapmali bir ana kiitle oldugu varsayilsin. Normallik varsayimi {lizerine kurulu merkezi limit
teoreminden hareketle, (yeterince biylk (n>30) 6rnekler igin) standart hatanin elde edilmesi
mimkin olabilmektedir. X i tahmin etmek icin:

%: Ornek ortalamasi

og: Ornek ortalamasimin standart hatas1 oldugunda;

>I<|
X

(1.1)

ifadesi asimptotik olarak, standart normal dagilim (Z dagilimi) olacaktir, Bu durumda, normal
dagilim tablosunda %90’lik giiven araliginda (Tabloda %90’lik giiven araligina karsilik gelen Z
degeri 1.65°dir) Z degeri icin:



P(-1.65<7<1.65) = 0.90
P(-1.65< ’:_’_‘ <1.65) = 0.90

_ o _ T _- o\ _
P(x-1.65 N < X <x+1.65 N )=0.90

olacaktir.
Boylece araligin, bilinmeyen ana kiitle ortalamasini kapsama olasiligi %90 olacaktir. Ifade

genellestirilerek giiven araligi esitligi;
P(X-Zy, <X< X+Z, )= 1-a (1.2)

olarak yazilir.

Iyi bir tahmin edicide aramlan ilk 6zellik; dagilimi, tahmin edilecek ana kiitle parametresi
etrafinda yogunlasan bir tahmin edici olmasidir. Ornek degeri (istatistik) ile tahmini yapilacak
ana kiitle parametresinin tam tamina ayni olmasi beklenemez (Yay, 2003). Amac¢ ana kiitle
parametresi ile 6rnek degeri arsindaki fark olarak ortaya ¢ikan toplam hatanin diisiik olmasidir.

Parametre tahmininde; parametrik yontemlerin varsayimlari bozuldugunda, parametrik
olmayan yontemler kullanilabilir. Tahmin ediciden hareketle ana kiitle parametrelerinin tahmin
edilmesinde nokta tahmini yontemleri olarak, en kicuk kareler, maksimum olabilirlik, Bayes ve
momentler yontemi kullanilmaktadir.

Tahminlerdeki toplam hata, 6rnekleme hatasi1 ve 6rnekleme dis1 hatalar olmak {izere iki
baslik altinda toplanir. Ornekleme hatasi, bir arastirma igin elde edilen 6rnekten hesaplanan
tahmin degeri ile ana kiitle parametresi degeri arasindaki farktir. Burada 0 ana kiitle parametresi
olsun ve 8 ise 0 parametresinin tahmin edicisi olarak ifade edilsin. Bu durumda, 6rnekleme

hatasi;
Ornekleme hatasi=8 — 0 (1.3)

(1.3) no’lu esitlikteki parametreler arasindaki fark olarak ifade edilir. Ana kiitleden, tamsayimla
biitiin 6rneklerin incelenmesi durumunda 6rnekleme hatasi ortadan kalkar. Diger bir ifadeyle,
ornekleme hatasinin ortadan kalkmasi ancak tiim ana kiitlenin alinmasi ile miimkiindiir.
Ornekleme hatas1, tahmin hatas1 ve se¢im hatas1 olmak iizere ikiye ayrilabilir. Tahmin hatasi,

rastgele aliman 6rnekten kaynaklanan hatayr ifade eder ve tahmin hatasini azaltmak i¢in 6rnek



hacmi artirilir. Se¢im hatasi ise yanlis se¢im kriterlerinin kullanilmasi durumunda ortaya ¢ikar.
(Ozdemir, Tekin ve Esin, 2015).

Diger hata ise ornekleme dis1 hatadir. Bu hata ana kiitleden alinabilecek biitiin
orneklerinin incelenmesi durumunda bile ortaya c¢ikabilir. Bilimsel ¢alismalarda genellikle
ornekleme dis1 hatalarin kiiciik olmasi istenir. Ornekleme dis1 hatalar da gozlem hatasi ve
gbézlem yapamama hatasi olarak ikiye ayrilir. Gozlem hatasi, veriler elde edildiginde ve
kaydedilme esnasinda ortaya cikar. Bunlar, 6rnege dahil etme hatasi, Ol¢iim hatasi ve islem
hatasidir. Gozlem yapamama hatasi ise birimlerden gerekli 6l¢iimlerin yapilmamasi durumunda
ortaya ¢ikar. Bunlar, kapsam dis1 birakilma hatasi ve anket formlarina cevap verilmeme

hatasidir. Toplam hatanin unsurlarina ayrilmasi sematik olarak Sekil 1. 2° de verilmistir.

Toplam Hata
Ormnekleme hatasi Ormekleme dis1 hatalar
Tahmin hatas1 Secim hatasi Gozlem hatasi Gozlem yapamama hatasi
1) Ornege dahil etme hatasi 1) Kapsam dis1 birakilma
2) Olgiim hatas1 2) Cevaplamama hatasi

3) Islem hatasi
Sekil 1.2. Toplam hata semas1

Ornekleme yontemleri, istatistik biliminin gelismesi ve bilgisayar teknolojisinin
ilerlemesiyle birlikte son 50-60 yil igerisinde her gecen giin daha da kullanilmaya baglanmustir.
Hauser (1941), 1940’larda yapilan niifus sayiminda, ornekleme yontemleri kullaniminin,
gelecekteki niifus sayimlaria Onciilikk edecegini ve ornekleme yontemleri kullaniminin
istatistik¢iler ve sosyal bilimcilerin yani sira kamu ve 6zel sektor i¢in de yararli oldugunu
belirtmistir. Tarimsal ekonomi biirosu olasilikli 6rneklemeye dayal1 biiyiik bir arastirmaya karar
verdi. Boylece tiim tilkeyi kapsayacak olan ‘’ana’’ d6rnek diye bilinen ¢alismaya baslandi. Bu
calisma, 1945 yilinda ana 6rnek gelistirmek i¢in niifus sayimi biirosu ile tarimsal ekonomi
biirosunun birlikte ¢aligmasina neden oldu. Sonug¢ olarak ana 6rnegin kapsami tiim ana kiitley1
temsil edecek sekilde genisletildi (King ve Jessen, 1945). Niifus sayimi biirosu genel amacl
olarak kullanilacak olan genisletilmis ve iyilestirilmis 6rnegi tanittt (Sukhatme, 1954).

Modern cagin getirmis oldugu kolayliklar sayesinde bilgisayar kullaniminin artmasiyla

birlikte yeniden 6rnekleme yontemleri ortaya ¢ikmistir. Kullanilan paket programlarindaki artisla
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birlikte, bir istatistigin dagilimin1 tahmin etmek i¢in normal dagilim sart1 yerine, hem normal
hem de normal olmayan dagilimlar i¢in istenilen sonuglari saglayan yeniden Ornekleme
yontemleri kullanilmaya baslanmistir (Kelly, 2000). Efron (1979) bootstrap iizerine yapmis
oldugu bir ¢alismada; dogrudan kuramsal hesap, monte carlo ve taylor yontemleri ile bootstrap
dagilimimi elde etmeyi agiklamistir. Ayrica 6rnek hacmini artirmadan ana kiitle parametresi ile
tahmin edici arasindaki sapmanin azalacagindan bahsetmistir.

Efron ve Tibshirani (1986) ise ¢alismalarinda; tahmin edicinin, parametre i¢in dogru bilgi
tasty1lp tagimadigina cevap aramak iizere, standart sapmanin bootstrap tahminini ele almiglardir.
Ayrica jackknife yontemi ile bootstrap yontemleri arasindaki iliskiyi de incelemislerdir.
Bootstrapta giiven araligi yontemlerine deginerek, bootstrap tekrar sayisinin biiyiikk olmasi
gerektigini vurgulamiglardir. Diciccio ve Tibshirani (1987) ise farkli bootstrap giiven araliklarini
ele almiglardir. Efron (1990) bootstrap tekrar sayisinda azaltmaya giderek daha etkili bootstrap
hesaplamalar1 yapmis ve bootstrap tekrar sayisinda farkli goriigler bildirerek bu saymin 50 ile
200 arasinda olmasmin yeterli oldugunu belirtmistir. Efron (1994) jackknife standart sapma
degerlerinin nasil tahmin edilecegini agiklamstir.

Bu tez ¢alismasinda orneklemenin amacia ve literatiirde var olan temel 6rnekleme

yontemlerine deginilerek, yeniden 6rnekleme yontemleri incelenmistir.

1.1. Ornekleme Yontemlerinin Genel Ozellikleri, Ornekleme Yapmanin Asamalar,

Verilerin Elde Edilmesi, Orneklemenin Avantajlari, Merkezi Limit Teoremi

1.1.1. Ornekleme Yodntemlerinin Genel Ozellikleri

Ana Kkiitleyi olusturan tiim birimler {izerinde arastirma yapmak zaman ve maliyet
acisindan zordur. Bu nedenle 6rnekleme yapmak ¢ogu kereler zorunludur. Ana kiitleden alinan
bir 6rnegin, ana kiitleyi temsil yeteneginin ve biiytikliigiiniin yeterli olmasi gerekir (Tekin, 2014).
Temsil yetenegiyle anlatilmak istenen, ana kiitlenin biitiin 6zelliklerini yansitacak bir 6rnek
olmasidir. Ornek biiyiikliigiiniin yeterli olmas1 durumu ise giivenilir tahminler yapabilecek kadar
blyuklikte 6rnek olmasidir. Bu iki 6zelligi tasiyan bir 6rnekleme yapabilmek i¢in kullanilan
ornekleme yontemleri; tesadiifi 6rnekleme yontemleri (olasilikli 6rnekleme) ve tesadiifi olmayan
ornekleme yontemleri (olasilikli olmayan) olmak tizere iki baslik altinda incelenir. TesadUfi
ornekleme yontemlerinde, ana kiitledeki her bir birimin 6rnege girme sansi esittir. Diger bir ifade
ile bu 6rnekleme yonteminde yanliliga yol acabilecek faktorler elemine edilmekte ve arastiricinin

iradesi Orneklemeye karigmamaktadir. Ana kiitleyi olusturan birimler arasinda herhangi bir
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farkin gozetilmedigi ve tamamen olasilik teorisine dayali bir drnekleme yontemidir. Basit
Tesadiifi Ornekleme, Tabakali Ornekleme, Sistematik Ornekleme ve Kiime Orneklemesi
olasilikli 6rnekleme yontemleri grubunda yer almaktadir.

Tesadiifi olmayan 6rneklemede ise ana kiitleden alinacak 6rneklem birimlerinin 6rnege
girme sans1 esit degildir. Bu yontemlerde 6rneklem birimler arastirmacinin kendi iradesine bagl
olarak belirlenir. Kota Orneklemesi, Keyfi Ornekleme ve Kartopu Orneklemesi Tesad(ifi

olmayan 6rnekleme yontemlerindendir.

1.1.2. Ornekleme Siireci

Ornekleme siireci asagidaki gibi 6zetlenebilir.
1) Amag belirlenir (arastirma hangi amag {izerine yapilacak).
2) Arastirmanin plani ortaya konulur.
3) Ana kiitle tanimlanir.
4) Arastirma i¢in gereken veri toplanir.
5) Arastirmanin yapilacagi giiven seviyesi ve hata pay1 belirlenir.
6) Belirli bir gergeve olusturulur ve 6rneklem biiyiikligii belirlenir.
7) Ornekleme yontemi segilir.

8) Cozimleme ve istatistik degerlendirmeler yapilir.

1.1.3. Verilerin Elde Edilmesi

Veri toplamada kullanilan yontemler, arastirmanin amacina ve arastirma icin gerekli olan
zaman, maliyet ve isgiiciine baghdir. Veriler, birincil ve ikincil veri olmak {izere
siiflandirilabilir. Arastirmacinin kendisinin toplamis oldugu veriye birincil veri denir. Anket
(soru kagidi) ve goriisme (miilakat) birincil veri toplama yontemi arasinda sayilabilir. Ikincil veri
ise bagka bir arastirmaci tarafindan daha 6nceden kullanilan veriler veya kurumlar tarafindan
onceden toplanip yayinlanan verilerdir (Ozdemir, Tekin ve Esin, 2015). Bu verilerin toplanmasi,
tamsayim veya Ornekleme yoluyla elde edilir. Tamsayimda ana kiitledeki tim birimleri
kullanarak ana kiitle hakkinda tam ve kesin bilgi elde edilse de; maliyet, zaman, isgiicii, tUm
birimlere ulasamama ve verilerin giincelligini yitirmesi gibi sorunlar nedeniyle tamsayim her

zaman miimkiin olmamaktadir (Iscil, 1977).



Verilerin 6rnekleme yoluyla elde edilmesinde ise drneklemin temsil yeteneginin giiclii olmasi,
yeterli biiytiklikte olmasi ve deneklerin rasgele alinmasi gibi durumlara dikkat edilmelidir.

(Yogurtcugil, 1976).

1.1.4. Orneklemenin Avantajlar

Ana kiitleden bilgi toplamak yiliksek maliyetli olabilecegi gibi belirli bir zaman igerisinde
gergeklestirilmesi de miimkiin olmayabilir. Bu nedenle 6rnekleme yapilmasi, zamandan ve
isgiiciinden tasarruf saglayarak ¢aligmanin maliyetini diisliriir. Diger yandan bazi arastirmalarda

ornekleme yapmanin tek secenek olmasi s6z konusudur (Cil, 2000).

Istatistik yontemlerin amaglarindan birisi de bilinmeyen ana kitle parametrelerini tahmin
etmektir. Tahmini yapilan ana kiitle parametresi nokta tahmini olarak kabul edilir. Ornekleme
dagilimlar1 ise bir ana kiitleden c¢ekilebilecek miimkiin ve muhtemel tiim o6rneklerden
yararlanilarak olusturulan teorik dagilimlardir ve hipotez kontrolii i¢cin gereklidir. N sayidaki bir

ana kiitleden iadeli (yerine koyarak) ve iadesiz (yerine koymadan) olarak alinan n sayidaki

N
n!(N—-n)!

miimkiin olan tiim Orneklerin sayisi, iadesiz 6rneklemede C(IZ) = kombinasyonu

seklinde olurken, iadeli 6rnekleme N™ dir (Iscil, 1975). Istatistiklerden hareketle, ana kiitle
parametreleri hakkinda genelleme yapmanin yolu ornekleme dagilimlarindan ge¢mektedir.
Ancak bu tir ornekleme dagilimlarinin olusturulmasi olduk¢a zor oldugundan uygulamada

ornekleme dagilimlart olusturulmadan islemler stirdiiriiliir (Giirsakal, 1998).
1.1.5. Merkezi limit teoremi

Ornekleme dagilimlari, ana kiitleden n hacimli miimkiin olan sayida veya tiim érneklerin
cekilmesi ile olusturulur. (Comlekci, 1988). Ancak bilimsel arastirmalarda, ana kiitleden n
hacimli tiim Orneklerin ¢ekilmesi pratikte miimkiin degildir. Bu nedenle, hesaplamalar icin
gerekli olan standart hata, normallik varsayimi Tlizerine kurulu merkezi limit teoremine
dayanilarak elde edilebilir. Merkezi limit teoreminde, yeterince buyuklikteki oGrneklerde,
birbirinden bagimsiz ve aymi dagilimi gosteren tesadiifi degiskenlerin aritmetik ortalamasinin,
yaklasik olarak normal dagilim gosterdigi varsayilir. n sayist ne kadar artarsa, degiskenlerin
ortalamalarinin dagilimi da normal dagilima o kadar yaklasir. Ayn1 durum, standart sapma igin

de gecerlidir. Boylece Merkezi limit teoremi geregince, ortalama u ve varyansi o olan herhangi



bir ana kiitleden iadeli (yerine koyarak) olarak alinan n hacimli 6rneklerin ortalamasi, ortalama u

2
ve varyansi % olan normal dagilim gostermektedir (Serper, 1996).

1.2. Tahmin Edicilerin Ozellikleri

Ornekleme teorisinde tahmin edici kavrami, parametre degerlerini hesaplama veya
tahmin yontemini ifade eder. Ana kiitle parametrelerine iligskin nokta tahmin edicilerin yani sira,
parametrelerin ger¢ek degerine iliskin giiven aralifi da olusturulmak istenir. Diger yandan
yapilacak olan tahminin, ana kiitle parametresinin ger¢ek degerine yakin olmasi ya da parametre
etrafinda dar bir alanda degisim gostermesi istenir. Ana kiitle parametresine yakinlik, érneklerin
dagilimlarinin ortalamasi ve varyanstyla dlciiliir (Tar1, 2014). lIyi bir nokta tahmin edicisinde
istenilen 6zellikler, 6rnek biiyiikliigiine gore kiigiik ve biiylik 6rnek 6zellikleri olmak iizere ikiye
ayrilir.

Kiiciik ornekten elde edilen bir tahmin edicide istenilen Ozellikler; Sapmasizlik (sistematik
hatasizlik, egilimsizlik), En kiigiik varyans, Etkinlik ve Yeterliliktir.
Biiyiik 6rnekten elde edilen bir tahmin edicide istenilen 6zellikler ise; Asimptotik sapmasizlik,

Tutarlilik ve Asimptotik etkinliktir.
1.2.1. Kuiciik Ornek Ozellikleri
1.2.1.1. Sapmasizlik (Yansizhik)

Sapma, bir tahmin edicinin beklenen degeri ile ana kiitle parametresi arasindaki farktir.
Sapmasizlik ise bir tahmin edicinin beklenen degeri i¢in tahmin edilecek ana kiitle
parametresinin gergek degerine olabildigince yakin veya esit olmasidir. 6 parametresinin tahmin
edicisi § oldugunda, tahmin edicinin beklenen degeri, ana kiitle parametresine esit (E(9) = ) ise
0, 6 nmn sapmasiz tahmin edicisidir (Cakir, 2000). Sonsuz veya sonsuza yakin sayida ornek
alindiginda, tahmin edici ortalama olarak ele alinir ve tahmin edicinin ger¢ek parametre degerine

yaklastig1 sdylenebilir.



1.2.1.2. En Kuguk Varyans

Sapmasizlik yalnizca ortalamaya dayandigindan yeterli olmayabilir. Ancak kiiglik bir
varyans ile bir arada oldugunda anlamli olabilir. Ayn1 parametre i¢in tahmin edicilerden, en

kiiclik varyansl olan iyi bir tahmin edici olarak kabul edilir (Tar1, 2014).

‘> >

(a) (b)
Sekil 1.3. a-sapmasiz ve biiyiik varyans (a), a-sapmali ve kiiciik varyans (b)

Sekil 1.3’ de gosterilen tahmin ediciler tercih edilmez.

1.2.1.3. Etkinlik

Bir ana kiitle parametresinin tahmini i¢in ayni anda birden fazla sapmasiz ve tutarl
tahmin ediciler olusturulmus olabilir. Bu tahmin ediciler i¢cinde hangisinin se¢ilecegi sorusunda
cevap iyi bir tahmin edicide bulunmasi gereken *‘etkinlik*’ dzelligidir (Isyar, 1999). Etkinlik igin
sapmasizlik ve en kiiciik varyanslilik 6zelliklerine bakilir. 8 *nin sapmasiz ve en kiigiik varyansl
tahmin edici olmasi durumunda, @ *nin etkin bir tahmin edici oldugu varsayilir. Ayrica etkin
tahmin ediciye herhangi bir sapmasiz tahmin edici arasinda en diisiik varyansa sahip tahmin edici

de denir.
1.2.1.4. Dogrusal En Iyi Sapmasiziik (DEST)
Iyi bir tahmin edici, dogrusal sapmasiz tahmin ediciler arasinda en kiiciik varyansh

olmalidir. Diger bir ifade ile hem dogrusal hem sapmasiz hem de diger sapmasiz tahmin ediciler

arasinda en kiiciik varyansa sahip olan bir tahmin edici dogrusal en iyi sapmasizdir (Tar1, 2014).



1.2.1.5. Ortalama Kare Hata (OKH)

Ortalama Kare Hata, tahmin edicinin, ana kitle parametresi (8) ile olan farklarinin
karelerinin beklenen degeri olarak ifade edilir. Bu durum genelde sapmasizlik ve en kiiglik
varyans Ozelliklerinin bir arada olmadig1 durumlarda gegerlidir. Ortalama kare hata, sapmasizlik

ve en kiiglik varyans 6zelliklerinin bilesimidir. Ortalama kare hata esitlik (1.4)’ de verilmistir.

OKH(B)=E(8 — 6)? (1.4)

Sapmasiz biiyiik varyansli ve sapmali kiigliik varyansh tahmin ediciler arasinda, Ortalama kare
hatast en kiiciik olan tahmin edici segilir. Ancak modelin amaci bagimli degisken i¢in yapilan
tahminlere kesinlik saglamak ise en diisiik varyansl ancak sapmali tahmin edici tercih edilebilir

(Tar1, 2014).

1.2.1.6. Yeterlilik

Bu 0Ozellik tahmin edicinin, tahmini yapilacak ana kiitle parametresi hakkinda ornek
izerinde var olan biitlin bilgiyi kullanmasiyla gerceklesir. Yani tahmin edilmek istenen ana kiitle
parametresi hakkinda daha fazla bilgi anlatilmayacagi, gelinen son noktaya ulasildig1 anlamina
gelir. Ornegin merkezi egilim olgiilerinden parametrik ortalamalar (Aritmetik Ortalama)
ornekteki tiim bilgiyi kullandigindan bir tahmin edici i¢in yeterli bir 6zellige sahipken, merkezi
egilim Olgiilerinden parametrik olmayan ortalamalar (Mod, Medyan) ise serideki tim bilgiyi

kullanmadigindan ana kiitle ortalamasinin yeterli bir tahmin edicisi degildir.

1.2.2. Buyuk Ornek Ozellikleri

Tahmin edicide istenilen 6zellik kiiglik 6rneklerde saglanmadigi durumlarda, biiyiik
ornek ozelliklerine bakilir. Tahmin edici sapmali oldugunda ve 6rnek biiytlikliigli artirildiginda
bu tahmin edicinin daha az sapmali olmasini saglanir ve bu dagilimin ortalamasi da ana kiitle

parametresinin degerine yaklasir. Bu durum asimptotik dagilim olarak adlandirilir.
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1.2.2.1. Asimptotik Sapmasizhk

6 tahmin edicinin asimptotik ortalamasi, ana kiitle parametresi 8’ya esitse bu tahmin
edici asimptotik sapmasiz tahmin edici olur. Kiigiik 6rneklerin sapmasiz olmasi ayni zamanda
asimptotik sapmasiz olarak da kabul edilir. Ornek bilyiikligii artirldiginda, sapmanin érnekleme
dagilimindaki degiskenligi de azalir bu nedenle tersi gecerli olmaz. Sapmasizlik durumu biiytik

orneklerde zayif bir durumdur.

1.2.2.2. Tutarhhk

6 tahmin edicisi, asimptotik sapmasiz ve 6rnek biiyiikliigii sonsuza giderken varyansi da

sifira yaklastyorsa bu tahmin edicinin tutarlilik 6zelligini tasidig1 varsayilir. Bu 6zellik asagidaki

gibi gosterilir.
lim P(|0 -0 <b) =1 (1.5)
lim Var(8) = 0 (1.6)

Esitlik 1.5° de b, tahmin ediciyle ger¢ek deger arasindaki farkin b gibi kiigiik bir degerden kiigiik

olma olasiligini ifade eder.

1.2.2.3. Asimptotik Etkinlik

Tutarli tahmin ediciler arasinda en kiigiik asimptotik varyansh tahmin ediciye asimptotik
tahmin edici denir. n sayisi arttik¢a en kiiciik varyansa sahip tahminci, en etkin tahminci olur ve
buna asimptotik olarak etkili hata kareler tahmini ad1 da verilir. Yani §’nin asimptotik etkin bir
tahmin edici olmasi i¢in hem tutarli hem de baska bir tutarli tahmin ediciye gore daha diisiik

varyansli olmasi istenir.
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2. MATERYAL VE YONTEM

2.1. Basit Tesadufi Ornekleme Yontemi

Basit tesadifi 6rnekleme yontemi, tesadufi 6rnekleme yontemleri igerisinde yer alan en
temel ve en ¢ok kullanilan 6rnekleme yontemi olup, diger drnekleme yontemlerinin de temelini
olusturur (Ozdemir, Tekin ve Esin, 2015; Yay, 2003; Yamane, 2010).

Basit tesadiifi 6rneklemede, ana kiitleyi olusturan her 6rnekleme birimine esit sans taninir
(Tekin, 2014). Diger bir ifadeyle Ornek olusturmak ic¢in, Ornege alinacak birimlerin
olusturulmasinda, birimler arasinda herhangi bir fark gozetilmez. Basit tesadiifi 6rneklemeye N
capl ana kiitleden alinacak n ¢apli miimkiin 6rneklerin her birinin 6rnege girmede esit se¢ilme
sansina sahip oldugu se¢me yontemi de denir (Ozdemir, Tekin ve Esin, 2015). Basit tesadiifi
orneklemede ornek secimi, yerine koyarak ve yerine koymadan yapilan segme yontemi olarak iki
sekilde ifade edilir.

2.1.1. Yerine Koyarak Secim Ydntemi

Bu se¢me yonteminde N c¢apli ana kiitleden, n ¢apli 6rnek, yerine koyarak yapilan se¢me

yontemiyle secildiginde, segilebilecek tiim miimkiin 6rneklerin sayisi,

NxNx*xNsx*..*xN=N" (2.1)

n tane

olarak ifade edilir. Boylece islem yerine koyarak yapildiginda her bir n ¢apli miimkiin 6rnegin

ornege girme olasilig % olur (Ozdemir, Tekin ve Esin, 2015).

2.1.2. Yerine Koymadan Secim Yodntemi
Yerine koymadan se¢cim yonteminde ise N capli bir ana kiitleden, n hacimli 6rnek, yerine

konmadan ¢ekildiginde, 6rnek birimlerinin se¢ilme siralari gz ardi edilir. Bu durumda, 6rnegi

olusturan n biriminin, n! kadar farkli bir siralamasi yapildigindan, miimkiin olan 6rnek sayisi,
1 _ N
N*(N-1)*(N-2)*... *(N-n+1)*— =) (2.2)
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G)

orneklem birimin alinmasi, yerine konmadan (iadesiz) yapildiginda, birinci birimin ¢ekilme

olarak ifade edilir. Boylece her bir n hacimli 6rnegin alinma olasilig1 = olur. Diger bir ifadeyle

durumu % ikinci birimin ¢ekilme durumu ﬁ ve Uglncu birimin ¢ekilme durumu ﬁ olarak
gergeklesir.

Orneklem birimi se¢imi sirasinda, yanliliktan kagimmak igin sistemli ve bilingli bir ¢aba
gerekebilir. Ornege girecek her birime esit sans taninmalidir. Bunun i¢in kura yontemi veya
tesadiifi sayilar tablosuna bagvurulur (Siimbiiloglu ve Stimbiiloglu, 2005). Farkli tesadiifi sayilar
tablosu olmasina ragmen, biiyiikliik bakimindan en uygun olanm1 Kendall ve Smith’in Tesadiifi
sayilar tablosudur (Kendall ve Smith, 1954). Bilinen diger iki tablo ise 105000 tesadiifi basmaga
sahip Interstate commerce commision tablosu (1949) ile bir milyon basamaga sahip Rand
Corporation (1955) tesadiifi sayilar tablosudur. Ayrica on binlik ve yiiz binlik tesadiifi sayilar
tablosu da bazi istatistik kitaplarinda mevcuttur.

Basit tesadiifi ornekleme yontemi, tesadiifi ornekleme yontemi oldugundan, bu yontemde
her birimin Ornege girme sansi esittir. Ana kiitle ¢ok biiyilk olmadiginda birimlerin 6rnege
alinmasi, istatistik degerlendirmeler ve sonuclarin yorumlanmasi kolayca yapilabilmektedir.
Basit tesadiifi 6rneklemede, 6rneklemeye baslamadan 6nce ana kitle birimlerinin listesi gerekir,
listenin olmamast durumunda yeni bir listenin hazirlanmasi i¢in arastirma yapilir. Ana kiitle
bliyiik oldugunda (6rnegin 1000) birimleri listelemek ve secim zorlasabilir. Diger yandan,
aragtirmada kullanilacak olan orneklem birimi, bireyler ise ve bu bireyler ¢ok genis ve farkl
yerlerde yasiyorsa, bunlara ulasmak maliyet ve zaman agisindan zor olabilir. Basit tesadiifi
ornekleme yontemini kullanmanin en Onemli sakincasi, ana kiitledeki birimlerin belirli
Ozelliklere gore siniflandirillamamasi olarak diisiiniilebilir. Ayrica basit tesadiifi 6rnekleme
yontemi ile secilecek birimler, gruplari esit oranda temsil etmeyebilir. Bu gibi durumlarda

tabakali 6rnekleme yontemini kullanmak daha uygun olabilir. (Stimbiiloglu ve Siimbiiloglu,
2005).

2.2. Sistematik Ornekleme
Sistematik Ornekleme yontemi, tesadiifi olan Ornekleme yoOntemleri arasinda yer alir.
Birimlerin her birisinin esit sansla 6rnege girmesine olanak saglar. Sistematik 6rnekleme

yontemi, ayn1 zamanda basit tesadiifi 6rneklemeye alternatif olarak gelistirilen bir yontemdir

(Ozdemir, Tekin ve Esin, 2015).
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Ana kiitle biiylik oldugunda, 6rneklem birimlerinin basit tesadiifi 6rnekleme yontemiyle
belirlenmesi zor olabilir. Bu durumda, basit tesadufi ornekleme yapmak yerine sistematik
ornekleme yapilabilir. Sistematik ornekleme, tabakali o6rnekleme ve kiime oOrneklemesi
yontemleriyle birlikte de kullanilabilir. Daha ¢ok abonelik kayitlarinda, alan arastirmalarinda,
ozellikle anketorlerin profesyonel istatistik¢iler olmamasi durumunda ve 6rnegin ¢ekilmesi gii¢
ya da olanaksiz oldugu durumlarda sistematik 6rnekleme kullanilabilir.

Sistematik Orneklemede, birimler numaralandirilarak, baslangic sayisi tesadiifi olarak
belirlenir. Boylece ilk birim, ana kiitleden tesadiifen alinmis olur. Diger birimlerin alinma islemi
ise sistematik olarak yapilir. Ornegin, 40 bin {iyenin oldugu bir halk kiitiiphanesinde, hizmet
kalitesini artirmak amaciyla memnuniyet diizeyinin arastirilmasi istensin. 1000 {iyeden olusan bir
ornek alinmak istendiginde, basit tesadiifi 6rnekleme uygulamak zaman alici olabilir. Bunun
yerine sistematik Ornekleme kullanilabilir, n hacimli bir 6rnek icin tek bir tesadiifi say1
kullanilarak drneklem birileri alinabilir. Oregin her 40 iiye arasindan 1 iiye segilebilir. 1k iiye
tesad(ifi sayilar tablosu kullanilarak belirlenir ve bundan sonraki iiyeler bu sayiya 40 eklenerek
belirlenir. Tesadiifi olarak alinan ilk iiyenin 15 no’lu iiye oldugu varsayilirsa; 40 iiye eklenerek;
15, 55, 95, 135,..., no’lu tiyeler alinarak islem yiiriitiiliir

Sistematik orneklemede, aralik biiyiikliigii (sistematik 6rnek sayisi, k), ana kiitle birim
sayisinin (N), olmasi istenilen 6rneklem biiyiikliigiine (n) boliinmesiyle (k=N/n) ya da sistematik
ornek sayisi verilmis ise her bir sistematik ornekte olmasi gereken ornek capi, ana kiitledeki
birim sayisinin  sistematik 6rnek sayisma béliinmesiyle elde edilir (n=N/k). Ornegin
2000/20=100 yani her yiiz birimden birisinin érnege alinmasi islemidir (Ozdemir, Tekin ve Esin,

2015). Ayn1 zamanda bu yontem “’k’de 1 drnek’” denilerek ifade edilebilir (100°de 1 Ornek).

Basitge drnekleme kesrinin % oldugu anlamina gelir.

2.2.1. Sistematik Ornekleme Stireci

Sistematik ornekleme siireci asagidaki gibi 6zetlenebilir:

e Ik olarak n biiyiikliigiinde bir 6rnek hacmi belirlenir.

e N hacimli ana kitlenin her biri k:% tam sayida birim igeren tabakaya veya kiimeye
bolinar.

e 1,2,..., k say1 arasindan %Zk tesadiifi olarak alinir. Bu birim, 6rnegi olusturacak birinci

birimin sira numarasini olusturur.
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e Bundan sonra 6rnege girecek birimleri takip ederek olusturulan sira numaralar a, atk,
at+2k, ..., at(n-1)k ifadedeki gibi 6rnege alinarak istenilen n hacimli 6rnek olusturulur.
¢ Olusturulan 6rnekten elde edilen bilgiler kullanilarak gerekli istatistikler hesaplanir ve bu
istatistikler yardimiyla ana kiitle hakkinda uygun degerlendirmelerde bulunulur.
Sistematik 6rneklemede, ana kiitle birimleri tesadiifi olarak siralandiginda, basit tesadiifi
orneklemeye yakin duyarlilik diizeyi saglanir. Uygulama alanlarindan biri olan orantili tabakali
orneklemede her tabakadaki ©Ornekleme birimleri tesadiifi olarak siralandiginda, (6rnegin
isletmeler, biiyiik, orta ve kiigiik olarak tabakalandirilabilir) basit tesadiifi 6rnekleme yerine
sistematik ornekleme de kullanilabilr. Boylece basit tesadiifi 6rneklemeye yakin bir duyarlilik
sistematik drnekleme ile saglanabilr (Yamane, 2010). Diger bir uygulamada ise harita, plan ve
kroki iizerinde; her agsamada daha alt kiimelere ayrilarak, bunlar icerisinden 6rnekleme yapabilir.
Sistematik Ornekleme, ayrica g¢ercevenin bulunmadigi durumlarda ve hareketli ana kiitle

orneklemelerinde de kullanilabilir.

2.2.2. Sistematik Ornekleme Yapmanin Avantajlar

Sistematik 6rneklemenin avantajlarin1 asagidaki gibi sayilabilir.

1. Sistematik oOrneklemede, birimlerin o6rnege alinmasi kolaydir. Baslangic noktasi
belirlendikten sonra, kolay uygulanan bir yontem olup, basit tesadiifi érneklemeye gore
daha az uygulama hatasi igerir.

2. Alinan 6rnek genel olarak ana kiitle lizerinde genis dagilim gosterir. Cergeveye ihtiyag
duymaz. Bu nedenle ana kiitleyi daha iyi temsil eder.

3. Maliyet ve zaman agisindan, sistematik Ornekleme, basit tesadiifi Orneklemeye gore
avantaj saglar.

4. Kosullar saglandiginda, sistematik oOrnekleme, basit tesadiifi Ornekleme yerine

kullanilabilecegi gibi diger 6rnekleme yontemleri ile birlikte de kullanilabilir.

2.2.3. Sistematik Orneklemenin Dezavantajlari

Sistematik 6rneklemenin dezavantajlar ise asagidaki gibi siralanir.
a) Sistematik Orneklemede, tek bir sistematik 6rnek ile ana kiitle ortalamasinin tahmin
edicisinin varyansi tahmin edilemez.
b) Ana kutledeki birimler periyodik olarak degisim gosteriyorsa, (6rnegin bir bankanin is

yukiinii arastirmak icin haftanin sadece bir giinii incelensin ve baglangi¢ noktasi carsamba

15



olsun) her seferinde ayn1 dongii ortaya c¢ikar ve kisir dongii olusur, boylece elde edilen
sonuglarin giivenirligi azalir (Siimbiiloglu ve Siimbiiloglu, 2005; Ozdemir, Tekin ve Esin,

2015).

2.3. Tabakah Tesadiifi Ornekleme

Orneklemede, ana kiitleden alinacak birimlerin, ana kiitleyi en iyi sekilde temsil etmesi
istenir. Ancak, bazi 6zellikler i¢in ana kiitle, ilgilenilen 6zellik bakimindan homojen olmayabilir.
Ormnegin bireylerin yasi, cinsiyeti, meslegi, sosyo-ekonomik durumu ve kiltirel ézellikleri ana
kiitlenin homojenligini etkileyebilir. Boyle bir durumda basit tesadiifi ornekleme ya da
sistematik Ornekleme yerine tabakali Ornekleme daha uygun olacaktir (Siimbiiloglu ve
Siimbiiloglu, 2005). Ornegin, ¢iftcilerin iiretmis olduklar1 iiriinlere iliskin yapilacak arastirmada,
egitim diizeyi etkili ise ve ¢iftgiler de egitim diizeyi bakimindan farkli ise Basit tesadiifi
ornekleme ile egitim diizeyi yiiksek ya da diisiik olanlarin 6rnekte esit oranda veya dengeli
olmasi saglanamayabilir. Bu durumda tabakali 6rnekleme yonteminin tercih edilmesi daha uygun
olacaktir.

Tabakali 6rneklemede ana kiitle, homojenligi bozan faktdre gore kendi igerisinde
homojen olan ve tabaka olarak adlandirilan gruplara ayrilmaktadir. Her bir tabaka, bir ana kiitle
gibi diisiiniilerek, birimler bagimsiz olarak alinmakta ve tabakadan elde edilecek tahminler de
ayr1 ayr1 yapilmaktadir. Tabakali 6rneklemede hesaplanacak ana kiitle ortalamalarmin tahmin
edicileriyle daha diisiik varyanslar elde edilebilir. Diger bir ifade ile tabakalamada yapilacak
tahminlerin varyanslar kiiciilecektir (Kish, 1965).

Ana kiitleyi tabakalara ayirmada, homojenligi bozan faktorlerden hangisinin dikkate
alinmasi gerektigi dnemlidir. Ornegin kadinlarin isgiiciine katilim oraninin arastirilmak istendigi
bir arasgtirmada; ornekleme yapilirken, kadinlarin egitim diizeyi, yasi ve ya sosyo-ekonomik
ozelliklerinden hangisine gore tabakalama yapilacagina karar vermek 6nemlidir. (Yamane, 2010;
Ozdemir, Tekin ve Esin, 2015). Ana kiitle tabakalara boliindilkten sonra, her bir tabakadan

tesadiifi olarak birimler alinir.

2.3.1. Tabakal Ornekleme Yénteminin Diger Yontemlerle Karsilastirilmasi

Tabakali ornekleme ile basit tesadiifi oOrnekleme ve sistematik Ornekleme
karsilagtirildiginda; tabakali Orneklemenin tiim bilgileri kullanmasi bakimindan, diger

yontemlere gore ana kiitleyi daha iyi temsil edebilecek ornekler alinabilmesine olanak sagladigi
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diisiiniilebilir. Ana kiitle ¢ok genis oldugunda ve homojenligi bozan faktdrler oldugunda,
tabakali 0rnekleme avantajli olabilir. Ayrica tabakali 6rneklemede, basit tesadiifi 6rneklemeyle
gore daha kiiciik 6rnek ve daha diisiik maliyetle, daha yiiksek temsil diizeyine ulasilabilir (Tekin,
2014).

2.3.2. Tabakali Orneklemenin Avantajlar

1. Ana kiitlenin genis dagilim gostermesi ve ilgilenilen 6zellik bakimindan homojenligi
bozan faktorlerin olmasi durumunda tabakali 6rnekleme duyarlilig: artirir.

2.Her tabakaya iligkin ayr1 ayr1 tahminler elde edilmek isteniyorsa, bu yontem tercih
edilebilir ve her tabaka icinde farkli 6rnekleme yontemleri kullanilabilir.

3. Ana kiitle homojen tabakalara ayrildiktan sonra yapilacak olan herhangi bir tabakadan
ornek se¢imi sirasinda belli bir grubun alinmasi 6nlenmis olur.

4. Ana kiitlede u¢ degerlerin olmasi halinde bunlar ayr1 bir tabaka olarak gosterilir ve
degiskenlik azaltilabilir.

5. Tabaka i¢i degiskenlik azalacagi i¢in daha etkin tahminler elde edilebilir.

6. Bir¢ok durumda tabakalama islemi cografi bolgelere, idari gruplamaya, secim bolgelerine
veya dogal ozelliklere gore tabakalara ayrilir. Bu durum genellikle maliyet ve kolaylik
bakimindan tercih edilebilir.

Tabakali 6rnekleme, ana kiitlenin tabakalara ayrilmasi ve ayrilan her tabaka igin farkli 6rnekleme
yontemlerinin kullanilabilmesi bakimindan, zaman ve maliyetten tasarruf saglayabilir. Nasil

tabakalama yapilacagina istatistik¢i ve arastirici birlikte karar verebilir.

2.3.3. Tabakah Ornekleme Siireci

Tabakali 6rnekleme siireci asagidaki gibi Ozetlenebilir.

v" N hacimli ana Kkiitle, ilgilenilen ozellikler bakimindan farklilik gosteren faktore veya
ozellige gore kendi i¢inde homojen, N1, N2, Nas,..., Np biiyiikliigiinde tabakalara ayrilir.
Tabaka hacimleri toplam1 ana kiitle hacmine esittir.

v" Higbir birim disarida birim kalmayacak sekilde birimler bir tabakaya atanir.

v’ Her tabakadan sirayla ni, Nz, Ns,..., ny biiylikliigiinde ornekler, basit tesadiifi 6rneklemeyle

ahnir ve islemler yiriitiliir.
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2.3.4. Tabakalar arasinda érneklem hacminin paylastirilmasinda kullanilan yaklagimlar

n birimlik Ornegin tabakalara boliinmesiyle 6rnek c¢aplari np’ lar (h=1, 2 ,..., L)
bilinmediginden ana kiitle parametrelerine iliskin tahmin edici ve varyans hesaplamalarina
ulasilamaz. Bu nedenle tabakali 6rneklemede en 6nemli sorunlardan biri n ¢apli 6rnegi en dogru
sekilde tabakalara paylastirarak, her tabakadan kag birimlik 6rnek ¢ekilecegine karar vermektir
(Yamane, 2010; Ozdemir, Tekin ve Esin, 2015).

Ana kiitle tahmin edicisinin duyarlilig1 varyans ile 6l¢iilmektedir ve duyarliligin yiiksek
olmasi, tahmin edicinin varyansinin kii¢lik olmasiyla ilgilidir (Yamane, 2010).

Tabakalar arasinda oOrneklem hacminin paylagtirilmasinda kullanilan yaklagimlar
asagidaki gibidir.

1. Esit Paylastirma

2. Orantil1 Paylastirma

3. En Uygun Paylastirma(optimum)
4. Neyman Paylastirma

2.3.4.1. Esit Paylastirma

Esit paylastirma, her tabakadan esit sayida olacak sekilde 6rnek hacmi ¢ekme yontemine
dayanir. Bilinen en basit ve en ¢ok kullanilan yontemidir. Bu yontem, daha ¢ok her bir tabaka
capi, tabaka varyansi ve her bir tabakadan g¢ekilen 6rnek hacminin maliyetinin birbirine yakin

oldugu durumlarda kullanilir.
2.3.4.2. Orantil Paylastirma

Orantili paylastirma yontemi, ele alinan n birimlik 6rnegin tabaka caplariyla orantili
olarak paylastirilmasina dayanir. Boylece, ¢apr biiyiik olan tabakadan daha fazla, kiigiik olan
tabakadan daha az 6rneklem birimi alinmis olur. Ornekleme orani % her tabaka i¢in esittir.

1200 birimlik bir ana kiitleden, 300 birimlik bir 6rnek alinmak istendiginde; ( % = % = 0,25)

ornekleme orani 0,25 olacak ve boylece her tabakanin %25°lik kismi1 6rnege girmis olacaktir. Bu
yontem, daha cok tabaka caplar1 ve varyanslart birbirinden farkli oldugu durumlarda

kullanilabilir ve sadece tabaka caplarina ihtiya¢ duyar (Ozdemir, Tekin ve Esin, 2015; Yamane,
2010).
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2.3.4.3. En Uygun Paylastirma

En uygun paylastirma yontemi, n birimlik 6rnegi belli bir maliyet fonksiyonu
dogrultusunda varyanst minimum yapacak sekilde tabakalara paylastirir. Tabaka capi, tabaka
varyanst ve her tabakadan birim se¢me maliyetinin birbirinden farkli oldugu durumlarda
kullanilir. Ornegin saha calismalarinda, tabakalardan cekilen &rnek birimlerin maliyetleri
farklilik gosterebilir. Kirsal alandaki bir bireyle yapilan goriisme ile kentteki bireyle yapilan

goriisme farkli maliyet igerebilir.

2.3.4.4. Neyman Paylastirma

Neyman paylastirma, En uygun paylastirma yonteminin 6zel halidir. Baz1 durumlarda,
tabaka caplar1 ve tabaka varyanslari birbirinden oldukga farkli olmasina ragmen, her tabakadan
bir birim se¢gme maliyeti birbirinden biiyiik farklilik gostermeyebilir. Bu durumda bu yontemin
kullanilmas1 énerilir (Ozdemir, Tekin ve Esin, 2015). Ornekleme hacmi sabit olup, érneklemeye
almacak birimlerin maliyetleri tabakadan tabakaya degisiklik gostermedigi durumlarda

uygulanir.

2.4. Kiime Orneklemesi

Daha Once bahsedilen drnekleme yoOntemlerinde, ana kitleye ait birimlerin listesinin
mevcut oldugu ve ana kiitle ¢capinin mevcut bir alana yayildigi varsayilmaktadir. Ana kiitle
biiyiik oldugunda ve genis bir dagilim gosterdiginde; genis bolgeye yayilan birimleri 6lgme
maliyetinin yliksek olmasi ve uygun cergeve bulma zorlugu gibi nedenlerle érnekleme yapmak
gii¢ olabilir (Ozdemir, Tekin ve Esin, 2015). Ana kiitle kendi iginde belirli bir cografi bolgeye
dagilmigsa veya ortak faktorler bakimindan alt gruplara (kiimelere) ayirmak miimkiinse bu
durumda kiime orneklemesi kullanilabilir. Kiimeler arasindan tesadiifi 6rnekleme ile belirli bir
kiime &rnegi olusturulur. Ornege alinacak kiime birimlerinin benzer dzellik gdstermeleri, diger
bir ifade kiimelerin kendi icerisinde homojen olmasi istenir (Armutlulu, 1999).

Kiime ornekleme yonteminde Ornekleme birimi kiimelerden olusan ana kiitle i¢inden
aliir (Tekin, 2014). Kiime 6rnekleme yontemi, zaman ve maliyet agisindan avantaj saglamasina
ragmen, diger ornekleme yoOntemlerine gore daha buyuk standart hatalar icerebilir. Kime
orneklemesinde kiimenin homojen ya da heterojen olmasi standart hatay: etkiler. Buna baglh

olarak standart hata biiyiikse, kiimenin benzer 6zellikler igeren homojen birimlerden olustugu
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sOylenebilir. Ancak kiime farkli o6zellikler iceren heterojen birimlerden olusuyorsa standart
hatanin daha kii¢lik oldugu sdylenebilir (Siimbiiloglu ve Stimbiiloglu, 2005). Bir kiimede her yas
grubundan Ogrenci varsa bu kiime heterojen kabul edilir, sadece kii¢iik ya da sadece biiylik yas

gruplarin1 temsil eden kiimeler varsa da bu kiimeye homojen kiime olarak kabul edilebilir.

2.4.1. Kiime Orneklemesi Stireci

Kiime 6rneklemesi stireci asagidaki gibidir.

e Ana kiitle, herhangi bir 6zellige gore degil de, cografi (konum) ozelliklerine gore
istenilen sayida kiimeye (gruba) ayrilir. Ornegin, ayn1 okulda 6grenim goren 6grenciler
veya ayni okulda gorev yapan 6gretmenler ya da ayni mahallede yerlesim gosteren
aileler. Ayrica istenildiginde her kiime alt kiimelere boliiniir.

e Olusturulan alt kiimelerden istenilen sayida (m) kiime tesadiifen alinir.

e Alt kiimelerdeki biitiin birimler 6rnegi olusturur. Olusturulan alt kiime sayisina gore
kiime ornekleme yoOntemi, tek asamali veya c¢ok asamali 6rnekleme yoOntemi olarak
gruplandirilir. Tek asamali kiime Orneklemesinde Ornege alinacak “’m’’ kiimeye ait
bilgilerin tamami kullanilir. Cok asamali kiime 6rneklemesi ise “’m’’ kiimeden alinan
birimlerin tekrardan yerine koymadan segilmesiyle gerceklestirilir.

10 boliim ve her boliimde yaklasik 50 6grenci oldugu varsayimi ile kiime 6rneklemesi asagidaki

gibi yaratulebilir.

M=10 1 2 3 4 5 6 7 8 9 10
N 54 56 51 49 48 52 55 53 47 50
m=4 N1=54 N4=49 N7=55 N10=50
(ktime)

Nn1=6, n»=5, n3=7, Nny=9
ni n=ni+nx+ns+ns=27

10 boliimden (M=10) 6rnegin m=4 boliim (kiime) alinsin. M=10, birincil 6rnekleme birimi (bob)

olarak adlandirilir. Daha sonra; N1=54, N4=49, N7=55, N10=50 olan m=4 boliimden sirayla n1=6,

n2=5, n3=7, ns=9 Ogrenciden olusan ornekler alimir. Bu ogrenciler (temel birimler) ikincil
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ornekleme birimi (i6b) olarak adlandirilir. Burada n1=6, n,=5, n3=7 ve ns=9 olarak gosterilen
Ogrenci gruplari, nihai kiime olarak nitelendirilir

Kiime 6rneklemesi yonteminde, 6rneklemeye alinacak birimler, yontemin 6zelligi geregi
iki asamada gergeklestirilir. ilk olarak M kiime “birincil drnekleme birimi’’ olarak adlandirilir.
M’den, ‘basit tesadiifi drnekleme ile yerine konmadan m Ornekleme kiimesi alir. ikinci
asamada ise i’inci bob’den, nj (i=1,2...,m) tane ikincil 6rnekleme birimi (i6b) 6rnege alinir. Bu

siireg, Sekil 3’te 6zetlenmistir.

M:toplam kiime sayisi N N2 Nz .. Nm-1  Nm
m: ornege segilecek N2 No Nm

olan kiime ( 0rnege secilen 1. Kiime) (6rnege secilen m. Kiime)
N=ni+Nz+...+tnm N1 nj Nm

Sekil 2.1. Kiime Orneklemesi Ozeti

Kiime 6rneklemesinde, ana kiitle toplaminin tahmini iki adimda gergeklestirilir. Birincisi,
ana kitle N= Ni+Nzt...+Nn=X1; N; olmak Uzere, érnek se¢ciminde M kime icinden basit

tesadiifi 6rnekleme ile yerine koymadan m tane kiime toplami tahmin edilir. Burada tahmin
edilecek herhangi bir kiimenin 6rnege girme olasilig Zdir ve (M) tane kiime 6rnek secilme
M m

sans1 elde eder. Ikincisi ise, bu tahmin edilen m kimenin her birinden n; birimin 6rnege
girmesidir. Yani 6rnege alinacak m kiimenin her birinden nj 16b’lin se¢ilmesi ile M kiimenin

toplamimn1 tahmin etmek i¢in kullanilmasidir. Ayni sekilde 1’inci kiimeden oOrnege girme

01as1hglNi olur ve 1’inci kiimeden (Z‘) tane birim drnege ¢ekilir. (Yamane,2010; Ozdemir,
i i

Tekin ve Esin, 2015). Boylece toplam 6rnek capi,
n=ymn (23)

olarak ifade edilmektedir.
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2.5. Yeniden Ornekleme Yénteminin Genel Ozellikleri

Son yillarda ilerleyen teknolojilerle birlikte; 6rneklem birimi ve 6rneklem seg¢imi ile ilgili
hatalar, yanli 6rnekleme yontemlerinin kullanilmasi, érneklem biiyiikliigiiniin yeterli olmamasi
ve veri toplamada yapilan hatalar gibi temel Ornekleme yontemlerinin bazi eksiklikleri
gbzlenmistir (Siimbiiloglu ve Stimbiiloglu, 1997). Temel 6rnekleme yontemlerindeki bu eksikleri
gidermek {lizere, yeniden ornekleme yoOntemleri gelistirilmis ve bir¢cok alanda kullanilmaya

baslamistir.

Yeniden 6rnekleme yontemleri, elde edilen verilerin tekrarli kullanildigi, bilgisayara dayali
yontemler olarak bilinir. Bu yontemler; 6rnekleme dagilimlarinin asimptotik olarak normal
dagilima yaklasmasini temel alarak, klasik analizleri kullanan arastirmacilarin standart hata ve
giiven araliklarini belirlemek icin bu yontemleri siirekli olarak normale yaklastirma veya merkezi
limit teoremini kullanma gereksinimlerinde esneklik saglamistir (Wang ve Gasser, 1998).
Asimptotik olarak giivenilir standart hata, giiven aralig1 ve test istatistiklerinin elde edilmesinin
zor oldugu durumlarda, yeniden 6rnekleme yontemleri tahmin teorisine alternatif olacak sekilde
deneye dayali (ampirik) bir yaklasim olarak tercih edilmekte ve simiilasyon gerektirmektedir
(Davison ve Hinkley, 1994). Yeniden 0Ornekleme yontemleri, asimptotik hesaplamalar
aracilifiyla tahmin i¢in bir 6rnekleme dagilimi olusturmakta ve geleneksel asimptotiklere gore

daha dogru sonuglar vermektedir (Efron ve Tibshirani, 1986; Beser, 2006).

2.5.1. Yeniden Ornekleme Yontemi Kullanmanin Gerekgesi

Yeniden 6rnekleme yontemlerinin kullanim avantajlar1 agsagidaki gibi 6zetlenebilir (Yu,
2002).

2.5.1.1. Ampirik (Deneysellik)

Bilinen klasik yontemler (temel yontemler) daha cok teoriye dayanir ve varsayim
gerektirir. Bu yontemlerle, 6rnekten hareketle ana kiitle hakkinda yorum yapilabilir, ancak ana
kiitleye iliskin yeterli ve giivenilir bilgi elde edilemedigi durumlarda bu yontemlerin etkinligi
azalabilir. Bu gibi durumlarda, deneysel (ampirik) yontemlere dayali yeniden oOrnekleme

yontemlerinin kullanilmast uygun olabilir (Diaconis ve Efron, 1983; Peterson, 1991).
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2.5.1.2. Tesadiifi Olmayan Ornek

Klasik ornekleme yontemleri, 6rneklemin tesadiifi alinmasi ilkesine dayanir. Yeniden
ornekleme yontemleri, rasgele veya tesadiifi 6rnekleme kosullarinda kullanilabilecegi gibi
tesadiifi olmayan kosullarda da kullanilabilir (Edgington,1995) Boylece, yeniden ornekleme

yontemlerini kullanmak daha avantajli olabilir (Lunneborg, 2000).

2.5.1.3. Blyuk Ornek

Yeniden ornekleme yontemleri ¢ogu zaman kiigiik ornekler i¢in belirgin kolaylik saglar.
Ayni zamanda bu yontemler, biiylik 6rnek genisliklerine de uygulanabilir. Ana kiitle alt gruplara
ayrilarak capraz gegerlik (cross-validation) ya da bootstrap yontemleri uygulanabilir. Buna bagl
olarak, biiyiik 6rnek g6z Oniine alindiginda, testi yapan arastirmaci hi¢ reddedilmemesi gereken
bir sifir hipotezini reddedebilir (Helberg, 1996). Oysaki biiyiik veri seti, alt gruplara boliinerek

elde edilecek sonuglar kullanabilir.

2.5.1.4. Kuguik Ornek

Yeniden ornekleme yontemlerinin bir amaci da simiilasyon yapmaktir. Bu yontemler,
kiiclik 6rnekler kullanildiginda, daha fazla gézlem olusturma giicline sahip olmalar1 nedeniyle
avantajli olabilir (Peddada and Chang, 1996). Ancak, kiigiik 6rnekler de her ne kadar parametrik

varsayimlari saglasa da yeterli sonuclar elde edilemeyebilir.

2.5.1.5. Dagilim

Klasik yontemler, genellikle biiyiik 6rneklem genisliklerinde islem gordiiglinden fazla
varsayim gerektirir. Ancak drneklem kiigiik oldugunda, yani yeterli biiyiikliikte olmadiginda ve
parametrik varsayimlar saglanmadiginda yeniden 6rnekleme yontemlerinin kullanimi dnerilebilir
(Diaconis & Efron,1983). Boylece az varsayim gerektiren yeniden drnekleme yontemleri daha

avantajli olabilir.
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2.5.1.6. Tekrarlanabilirlik

[statistikte tekrarlanabilirlik, ¢ogunlukla giiven veren bir durumdur. Ancak, ¢ogu kez
arastirmacilar tarafindan tercih edilmez. Zira tekrarlanabilirlik; daha ¢ok gii¢, maliyet, zaman ve
isgiicii gerektirebilir. Yeniden orneklemedeki capraz gegerlilik ve bootstrap gibi tekrarl

yontemler i¢sel tekrarlardir (Thompson ve Synder, 1997).

2.5.1.7. Varsayim

Her teori ve yontem belirli varsayimlara dayanir. Klasik yontemler, yeniden drnekleme

yontemlerine gore daha fazla varsayim igerir.

2.5.1.8. Genelleme

Yeniden ornekleme yontemleri, tek bir 6rnege dayali olmasi ve sonuglarin tek bir 6rnek
tizerinden degerlendirilmesi nedeniyle genelleme i¢in yeterli olmadig1 yoniinde elestirilmektedir.
Ancak, Fan ve Wang (1996) test sonuglarinin kararliliginin degerlendirilmesinin ¢ikarimsal degil

tanimlayict oldugunu belirtmistir.

2.5.1.9. Dogruluk

Yeterli deneysel calismanin yapilmadigi durumlarda, yeniden 6rnekleme tahminlerinin
dogrulugunun diisiik oldugu belirtilmektedir. Ancak, gilinlimiiz kosullarinda yiiksek hizli

bilgisayarlarla bu durumun stesinden gelinebilir.

2.5.1.10. Yanhhk

Bosch (2002), yanliligin biiyiik o6rnekler ile azaltilabilecegini belirtmistir. Ancak
bootstrap yontemi ile elde edilen guven araliklar1 daima yanlilik gdsterir. n 6rnek biiyiikligi
olmak iizere, normal dagilim gosteren bir ana kiitleden 6rnek alindiginda; giiven araligi i¢in
yanlilik en az n/(n-1) olacaktir. Ancak daha karmasik bootstrap yontemleri ile bu yanlilik
azaltilabilir. Yanliligin azaltilmas1 konusunda, klasik yontemler belirgin bir ¢6ziim sunamazken,

yeniden 6rneklemeyle yapilan tekrarlar, bu sorunu kismen de olsa giderebilmektedir.
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2.6. Yeniden Ornekleme Yontemlerinin Tarihsel Gelisimi ve Cesitleri

Bilgisayara dayali yogun yontemler olarak bilinen yeniden drnekleme ydntemleri, 6rnek
verilerini tekrar tekrar isleme tabi tutarak istatistik bilgiler veren yoOntemlerdir. Yeniden
ornekleme yontemlerinin elle hesaplanabilmesi, zaman ve maliyet bakimindan olduk¢a zahmetli
oldugundan, 1990’larda hizla gelisen teknolojiyle birlikte bu yontemler, bilgisayar tabanl
yontemler olarak uygulamadaki yerini almistir. Bu yontemler, tahminin yanliligi, giiven araligi
olusumu ve tahmin edilen parametreyle ilgili istatistik hipotezleri test eder. Geleneksel
yontemlerde, normallik ve sabit varyanslilik varsayimlari goz ardi edilemeyen kavramlardir.
Veriler parametrik testlerin varsayimlarini saglamadiginda, yeni yontemlerin kullaniminda
¢ekinceli davranilmakta ve geleneksel yontemlerin kullanimi tercih edilmektedir. Ancak son
yillarda, ilerleyen teknolojilerin getirmis oldugu kolayliklarla birlikte, yeni yontemlerin
kullaniminda artis oldugu sdylenebilir. Bu yontemler kisaca asagida 6zetlenmistir.

e Permutasyon Testi: Permitasyon testi, R. A Fisher (1935) ve E.J.G. Pitman’in (1937)
caligmalariyla gelistirilen en eski yeniden Ornekleme yontemidir. Ornek genisligi
degistirilmeden, gbzlemlerin tesadiifi olarak yeniden diizenlenmesine dayanir. Edgington
(1995) permiitasyon ve randomizasyon testlerini siklikla birbirinin yerine kullanmistir.
Ancak Ernst (2004) bu terimlerin farkini kisaca aciklamis, Onghena (2018) ise bu
kavramlarin hem tarihsel hem de kavramsal agidan farklilik gosterdigini vurgulamastir.

e Capraz Gegerlilik: Basit capraz gecerlilik yontemi ilk olarak Kurtz (1948) tarafindan
Rorschach testine bir oneri olarak gelistirilmistir. Buna bagli olarak Mosier (1951), bu
yontemi gelistirerek ¢ift capraz gegerlilik yontemini onermistir. Daha sonrada Krus ve
Fuller (1982), c¢ift capraz gecerlilik yontemini genisleterek ¢oklu capraz gegerlilik
yontemini Onermiglerdir. Bu yontemde, verilerin yeterliligini degerlendirmek i¢in
orneklem ikiye bdliiniir. Bunlardan birisi analiz i¢in kullanilirken, digeri modelin
dogrulugunu test etmek icin kullanilir (Binzat, 2017).

e Jackknife: Jackknife yontemi ilk olarak Maurice Quenouille (1949,1956) tarafindan,
istatistik yanlihig1 ortadan kaldirmak igin 6nerilmis daha sonra John W. Tukey (1958)
tarafindan hipotez testi ve giiven aralig1 olusturmak i¢in genisletilmistir.

e Bootstrap: Bootstrap yontemi, Bradley Efron (1979) tarafindan, Jackknife yontemine
alternatif olarak Onerilmis, daha sonra Efron ve Tibshirani (1993) tarafindan
gelistirilmistir. Capraz gegerlilikte amag, sonuclarin tekrarlanabilirligini dogrulamak,

Jackknife yonteminde aykiri degerleri tespit etmek ve Bootstrap yonteminde ¢ikarim
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yapmaktir. Bootstrap yontemi, gézlemlerin rastgele yer degistirerek yerine konulmas: ile

test edilir.
2.6.1. Permitasyon Yontemi

Permiitasyon testi 1930’larin basinda Fisher (1935,1960) ve Pitman (1937) tarafindan
gelistirildi. Fisher (1930) tarafindan daha ¢ok Student-t testini destekleyen bir argiiman olarak
kullanilmis ancak daha sonra kendi basina bir istatistik yontem haline gelmistir. Bu yontem,
ornek gozleminin degistirilmeden rastgele yeniden diizenlenmesine dayanir. Rastgele veya kesin
testler olarak bilinen en eski 6rnekleme yontemi olarak da bilinir. Edgington (1995) tarafindan
“’permutation test’’ ve ‘’randomization test’’ terimleri siklikla birbiri yerine kullanilirken, Ernst
(2004) tarafindan ayrima tabi tutulmustur (Binzat, 2017). Permitasyon testi, 6rnek veri seti
tizerinde bootstrap gibi yerine konarak 6rnekleme yapmak yerine, daha ¢ok veriye iliskin tim
olas1 permiitasyonlar1 hesaplar ve verilerin ¢cok sayida yeniden diizenlenmesini yapar. Diger bir
ifadeyle permitasyon testi, yerine koymadan ornekleme yaparak rastgele yeni veri setleri
olusturur.

Permiitasyon testlerinde dnemli kavramlardan birisi tesadiifi ya da rastgele atamadir. Bu
testte rastgele atama ile ¢ok sayida yeni 6rnek olusturulur ve 6rnekten hesaplanan test istatistigi
ile rastgele olusturulan test istatistigi karsilagtirilir (Dogan, 2019).

Regresyon analizlerinde, hata terimlerinin normal dagilim gostermedigi ve Ornek
bliytikliigliniin yeterli olmadigi durumlarda, EKK tahmin edicisinin t dagilimi gostermemesi ve t-
testinin Onemlilik (anlamlilik) i¢in uygun olmadigi durumlarda permiitasyon testleri Onerilir.
Parametrik testlerin ihtiya¢ duydugu varsayimlardan ve veri kiimesinin gostermis oldugu
dagilimdan etkilenmeden, varsayimlarin olusmadigi veya konu hakkinda yeterli bilginin
olusturulmadig1 durumlarda permiitasyon testleri kullanilabilir (Onder, 2007).

Permiitasyon testinin adimlar1 asagidaki gibi 6zetlenebilir (Good, 2001).
1. Problem analiz edilir (sifir ve alternatif hipotez belirlenir).
2. Test istatistigi segilir.
3. Orijinal 6rneklerden test istatistigi hesaplanir.
4. Gozlemler yeniden diizenlenir.
5. Yeniden diizenlenen gozlemler igin test istatistigi hesaplanir.
6. Olusturulan test istatistikleri karsilastirilarak sonug elde edilir.
Ik olarak problem ¢oziimlenir ve problem dogrultusunda hipotezler belirlenir. Orijinal

gozlemler igin test istatistigi hesaplanir. Daha sonra da goézlemler yeniden diizenlenir ve
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olabilecek tiim diizenlemeler isleme dahil edilir. Yeni diizenlemeler i¢in tekrardan yeni bir test
istatistigi hesaplanir. Test istatistiginin yeni degeri, orijinal gozlemler icin elde edilen test
istatistigi degeri ile karsilastirilir. Karar verilene kadar yukaridaki adimlar tekrarlanir. Bu
islemlerin tekrarlanmasi ve 6rneklerin yeniden etiketlenerek diizenlenmesi ile permutasyon testi
gerceklestirilmis olur. N gdzlem sayis1 ve n 6rnek biiylikliigii olmak iizere, (17\:) tane farkl
kombinasyon ile rastgele etiketlenmis gozlemler elde edilir ve bunlardan gerekli hesaplamalar
yapilarak sonuca varilir (Good, 1997).

Parametrik olmayan bircok test, permitasyon testi olarak uygulanabilir. Bu ydntemin en
yaygin kullanim alan1 iki 6rnek problemleridir. Ornegin iki ana kiitle igin sifir hipotezinin dogru
oldugu varsayimi altinda (iki bagimsiz ana kiitlenin ortalamasi birbirine esittir) gézlemler gruplar
arasinda rastgele yeniden orneklere atanir. Boylece istenen istatistik, tiim olasi diizenlemeler igin
yeniden 6rnek isleminin tekrarlanmasiyla hesaplanir. Tiim olas1 permiitasyonlarin hesaplanmasi,
makul Orneklem biiytikliikleri i¢cin zaman alici olabilir. Hesaplanacak c¢ok sayida rastgele
permiitasyon alinarak tahmin yapilabilir. Permiitasyon sayisi ile ilgili olarak Davison ve Hinkley
(1997) 999 permiitasyonun yeterli olacagini belirtmislerdir.

Iki 6rnek probleminde (two-sample problem); iki farkli olasilik dagilimi iceren F ve G

dagilimlarindan, iki bagimsiz rastgele 6rnek asagidaki gibi tanimlanir:
F dagilimindan
z2=(21,22, ..., 7n)
G dagilimindan
y =1 Y2, ..., yn) (2.4)
gozlemleri alinsin. Ho hipotezi: F ve G dagilimlari arasinda bir fark yoktur (Ho: F = G)
olarak ifade edilir. Bu dagilimlar arasinda farkin olmadigi ayrica Probr{A}=Probc{A} oldugunu

gostermek i¢in A’nin, z ve y’nin ortak Ornek uzaymin herhangi bir alt kiimesi oldugunu

gostermesi gerekir.
Hipotezin test edilmesi, #‘nin hesaplanmas: ile baslar. Sifir hipotezi ret edildiginde

hesaplanan test istatistigi @ ‘nin, kabul olmas1 durumunda hesaplanan §‘dan daha biiyiik olmas1
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beklenir. Bu durumda gdzlemlenen nin degerinin biiyiik olmasi, sifir hipotezinin alternatifini
daha da kuvvetlendirir.

Gozlemlenen @ degeri icin, testin elde edilen anlamlilik diizeyi (ASL); sifir hipotezi
dogru kabul edildiginde, ’dan biiyiik olan en az bir tane degerin gozlemlenmesi olasilig1 olarak

tanimlanir. Bu ifade asagidaki gibi tanimlanir:
ASL = Probno {8"> 6} (2.5)

(2.5) no’lu esitlikte, 8 kendi gozlem degeri ile iliskilidir ve rastgele degisen 8", sifir
hipotezi dogru iken 8 ‘nin dagilimini ifade eden sifir hipotezi dagilimina baglanir. 8°, gercek
g6zlem 8 ile Ho hipotezine gore iiretilen varsayimsal bir 8" arasinda ayrim yapar. Boylece ASL
degerlerinin hesaplanmasi, Ho hipotezinin kabul ya da ret edildigini bildiren karar
mekanizmasini ortaya ¢ikarir. Daha c¢ok kii¢iik olasilikli (yani 0.01 veya 0.05) a degeri segilir.
ASL’nin degeri a’dan kii¢iikse Ho ret, blylk ise Ho kabul edilir.

Fisher’in permiitasyon testinde sifir hipotezi F = G oldugunda, ASL’yi hesaplamanin
kolay bir yolu vardir. Gézlemlerin m ve n olmak {izere iki gruba ayrildigi varsayilsin. Buna bagl
olarak her iki grupta “m + n” kadar gozlem toplansin. Birinci grubu temsil etmek i¢in yerine
koymadan m boyutlu 6rnek aliir, geri kalan n gozlem de ikinci grubu olusturur. Grup
ortalamalar1 arasindaki fark hesaplanarak bu islem cok sayida tekrarlanir. Grup ortalamalari
arasindaki bu orijinal fark, farklarin olusturdugu dagilimin % 95’inin disinda kalirsa, iki tarafh
permiitasyon testine gore % 95°lik bir giiven seviyesinde Ho hipotezi reddedilir.

Permiitasyon testleri, iki 6rnek probleminden elde edilen verilerin x = (z, y) sira istatistik
gosterimlerine dayanir. Farkli olasilik dagilimlart olan F ve G’den alinan z ve y Ornek veri
setinden, z’den n biiylikliiglinde, y’den de m biiyiikliigiinde 6rnek ¢ekildigi ve m+n=N gbzlem
sayisinin birlestirilip 6rneklem biiyiikliigiine esit oldugu kabul edilir. v vektorii “v =(vi, v, ...
,Vn)” olarak tanimlansin. n+m=N gosteriminde ifade edilen N degerlerinin siralanmis hali v
vektorli olsun. Ayrica g = (91, g2, ... ,gn) her bir sirali gbzlemin hangi gruba ait oldugunu
gosteren bir grup tiyeligi vektorii tanimlanmis olsun; v ve g vektorii x=(z, y) ile ayn1 bilgileri

paylasir. Bu durumda g vektorti;

(M= (2.6)

n'm!
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olmak iizere z’den n tane, m’den de y tane olusturulur. Boylece N elemanlari, n ve m boyutunda

iki alt kiimeye ayirmak iizere tiim olas1 yollara karsilik gelen vektorler vardir. Ayrica Ho: F = G
=
&)

oldugu sdylenebilir. Diger bir ifadeyle F = G ise z ve y’lerin tiim permiitasyonlar1 esit olasiliga

sifir hipotezi altinda, g vektoriiniin olast degerlerinden herhangi biri igin olasiligma sahip

sahiptir. 8 test istatistigi, g ve v’nin bir fonksiyonu olarak asagidaki gibi ifade edilebilir.
6 =5(g, v) (2.7)

z’lerden n ve y’lerden m biiyiikliiglinde olmak iizere (IZ ) adet olas1 vektdriin her biri g~ ile

gosterilirse, 8’nin permiitasyon tekrar asagidaki gibi tanimlanr.

0"=6(g)=5(g",v) (2.8)

1

(@)

6 ‘m (Ir\i) tekrart i¢in bunlarin her birine olasiligi veren dagilimad ‘nin ya da ™ mn

permutasyon dagilimi denir.
Permiitasyonun ASL’si ise daha once belirtildigi gibi 8*1n 8’y1 asan permiitasyon

olasilig1 olarak tanimlanir ve asagidaki gibi gosterilir.

ASL perm= Probperm { 0*> 9}
=#{0*= 0} () (2.9)

Iki 6rnekli permiitasyon test istatisti§inin hesaplanmasi kisaca asagidaki gibi ifade edilir:
1) Her biri z ve y’den sirayla alinan n ve m biyiikligiinde olmak Uzere ve (17\1') tane olasi
vektoriin olusturdugu rastgele alinmis olan B tane bagimsiz g*(1), g*(2), ... ,g*(B) vektorii s6z
konusu olsun ve en az B<1000 olmalidur.
2) Her bir permiitasyon vektoriine karsilik gelen §’nin permiitasyon tekrarlari hesaplanir. Bu

ifade asagidaki gibi gosterilir.
6*(b) = S(g*(b), v), b=1,2, ..., B (2.10)
3) Asagidaki ifade ile ASLperm’e bir yaklagim sergilendigi gosterilir (Efron ve Tibshirani, 1993).
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ASLperm=# {0*(b)> 6 }/B (2.11)

Parametrik testlerin gii¢lii varsayimlar icermesi, bazi parametrik testlerin parametrik olmayan
alternatiflerinin olmamas1 ve kolayca hesaplanamamasi, her gecen giin permiitasyon testinin

kullanimina ve yeniden 6rnekleme yontemlerine olan 6énemi daha da bir artirmistir.

2.6.2. Capraz Gegerlilik (Cross-Validation) Yontemi

Capraz gecerlilik, ilk olarak Kurtz (1948) tarafindan Onerilmis ve Mosier (1951) bu
yontemi daha ileri bir agamaya tasiyarak cift kat ¢capraz gecerlilik yontemi haline getirmistir. Bir
algoritma iizerinde ¢alismak ve ayni veriler iizerinde duragan performansini degerlendirmek asir1
lyimser bir sonug verir gibi gozukebilir. Capraz gegerlilik ise bu sorunu gidermek igin
gelistirilmistir. Algoritmanin ¢iktisinin, yeni veriler lizerinde test edilmesinin, daha iyi bir tahmin
verecegine dikkat cekilmistir (Mosteller ve Tukey, 1968; Stone, 1974). Daha sonra Krus ve
Fuller (1982), capraz gegerliligin bir baska yontemini gelistirmislerdir. Bu yontem ¢oklu ¢apraz
gegerlilik yontemi olarak bilinmektedir.

Capraz  gecerlilik  (cross-validation) yontemi tahmin edicinin  performansini
degerlendirmede kullanilan bir yontemdir (Zhang, 2011). Diger bir ifade ile bir modelin tahmin
performansin1 degerlendirmek iizere yapilacak tahminin, (tahmin) hatasini tahmin etmede
kullanilir. Yontem, istatistik model olusturmada, modelin sirasina karar vermede, zaman
serilerinde, regresyon modellerinde ve diskriminant modellerinde de kullanilir (Chernick, 2008).

Capraz gecerlilik yonteminde, veriler rastgele iki alt kiimeye ayrilir. En iyi modeli
bulmak i¢in ilk kiimeye en uygun istatistik islemler uygulanir. Daha sonra istatistik islemler
uygulanan model ikinci alt kiimede test edilir (Chernick, 2008). Diger bir ifadeyle g¢apraz
gecerlik yonteminde, en iyi modeli olusturmak {izere verilerin iki veya daha fazla alt gruplara
boliinmesi ve ortaya ¢ikan test sonuglarinin alt gruplar igerisinde ¢apraz olarak karsilastirilmasi
yapilir. Daha sonra ortaya ¢ikan bu sonuglar bir takim aday gruplar arasinda karsilastirilir ve en
diisiik tahmin hatasini veren bir model tercih edilir.

Capraz gegerlik, dogrusal regresyon, diskriminant analizi, smiflandirma ve en kiiciik
kareler yontemlerinde ve alternatif modeller igerisinde kestirim performansi en yiiksek (kestirim
hatas1 en diisiik) olan model se¢ciminde kullanilmaktadir. (Uludag, 2005). Capraz gegerlik, model
secim kritigi olarak bilinir (Yay, 2003). Bunun en 6nemli sebebi, model segiminde hangi
modelin daha uygun olabilecegi ve en kiiciik hataya sahip olan modeli belirlemede kullaniliyor

olmasidir.
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Capraz gecerlik, ortalama kare hata gibi siirekli hata fonksiyonlarinda iyi calisirken,
stirekli olmayan hata fonksiyonlarinda, diger bir ifade ile smiflandirilmamis ve genis
orneklemler icin eksik kalabilir. Bu durumda, k-kat capraz gecerlik onerilir. k-kat capraz
gecerlikte, grup sayisi olan “k” cok kiigiik belirlenirse, yapilmasi gereken 6rnekleme analizi ile
capraz gecerlik arasinda ortaya c¢ikan kiime biiyiikliigiinden dolayr hata tahmini yanlilik
gosterebilir. Bunu icin genel olarak k=10 tercih edilir.

Daha kucuk veri kimeleri ile ilgilenen k-kat capraz gecerlik, mevcut bilgileri daha
verimli kullanir. K-kat capraz gecerlik i¢in asagidaki adimlar takip edilir (Efron ve Tibshirani,
1993; Yay, 2003):

e Veriler, kabaca her biri ayn1 boyutta olan k esit pargaya boliiniir.

e Bu parcalar k kez isleme konur. k’inc1 kisim i¢in model, diger k-1 kisima uygulanir ve
verinin k’mc1 kismini tahmin ederken uygulanan modelin tahmin hatast hesaplanir.
Yapilan bu islemde her seferinde bir gézlem disarida birakilir.

e k =n oldugunda bu yontem leave one out (bir gozlemi disarida birak) ¢apraz gegerlilik
olarak isimlendirilir (n, 6rnek biiyilikliigii). “Leave one out cross-validation” yontemiyle
her seferinde disarida birakilan gézlem, yontemi olduk¢a maliyetli hale getirir.

Capraz gegerlilik yontemi, istatistiksel modellerde ve modellere daha yakin ya da
alternatifi olacak yontemlerin se¢imi dogrultusunda kullanilan tekrarli 6rnekleme yontemidir. Bu
yontemde en Onemli noktalardan biri dogruluk veya gegerlilik degerlendirmesi i¢in verilerin
nasil gruplandirilacag: ya da kag tane verinin disarida birakilacagidir. Bu yontemin performansi,
disarida birakilan gozlem sayisma baghdir. Ilk olarak veri kiimesi iki alt gruba ayrilarak
modelleme yapilir. Ayrilan bu gruplardan biri egitim seti (training set), digeri ise degerlendirme
veya test seti (assessment set) olarak adlandirilir (Bishop, 1995). Capraz gecerlilik i¢in temel
fikir, ilk olarak verilerin rastgele olarak iki alt kiimesini almaktir. Daha sonra ilk modele uygun
veya ¢esitli istatistik yontemler uygulanir ve bunlar ikinci alt kiimede test edilir.

Ornek biiyiikliigii n oldugunda n-1 tane gdzlemi kullanan bir egitim seti olusturulur ve
geriye kalan tek gozlem test edilir. Bu islem her seferinde bir gézlem disarida birakilarak n kez
tekrar edilir. Diger bir ifadeyle, egitim kiimesinde model olusturulur ve daha sonra olusturulan
bu modelin tahmin performansinin test edilmesi de test kiimesi araciligiyla gerceklestirilir.
Ozellikle model olusturma asamasinda, bilinmeyenin tahmin edilmesi ya da dogru tahmin
yapilmasi, eldeki verilerle en uygun yontemin modele en i1yi uyacak sekilde uygulanmasi i¢in iyi
bir tahmin performansi gostermesi istenir. Literatiirde, yaygin olan capraz gecerlilik yontemleri
asagidaki gibi siralanabilir:

1. Leave-one-out cross-validation yontemi (birini disarida birak)
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2. Leave-many-out cross-validation yontemi (birden fazlasini disarida birakma)
a) Multi-fold cross-validation (cok kat ¢apraz gecerlilik)
b) Monte Carlo capraz gecerlilik yontemi
Capraz gecerlilikte, iki kiime vardir. Bunlar: egitim seti (training set), {(xjyj): JE St} ve
test verisi (assessment set) {(x;,yj): j€ Sa} dir. Bu kiimeler sirayla F ve F, ile gosterilir ve n-1
blyiikliigiinde bir egitim kiimesi alinir. Daha sonra egitim kiimesindeki gozlemlerin tiimii
kullanilir. Buna bagh olarak her bir yanitin veya degiskenin degeri, verilerin geri kalanindan
tahmin edildiginden yontemin ne kadar iyi isledigi belirlenmis olur. Fj, “{(xk, Yk): kK#j}” olarak
gosterilen “n-1” gozlemi ifade etsin. Buna bagh olarak u (xj, ) de F’ye dayanarak yj icin
tahmini degeri gosterdigi varsayilsin. Boylece ¢apraz gecerlilik yontemine gore tahmin hatast;

ifade edilme sekli,
Acv=n"1 37, cfyi u (X, F)} (2.12)

olarak yazilir (Davison ve Hinkley, 1997).

Capraz gecerlilik (cross-validation) birkag¢ sekilde siniflandirilir. Bunlar basit ¢apraz
gecerlilik, cift kat capraz gecerlilik ve cok kat capraz gecerliliktir. Basit capraz gecerlilikte,
modelin belli bir dilimi test verisi olarak kullanilir. Geri kalan dilimler ise modelin kurulma
asamasinda kullanilir ve modelin gegerliligi (dogrulugu) hesaplanir.

Cift kat capraz gecerlilikte, modelleme asamasinda veri setleri her iki alt kiimede tiretilir.
Bunlarin bir boliimii; egitim setinde, diger boliimii ise test setinde olacak sekilde rastgele iki esit
parcaya boliiniir ve gegerlilik (dogruluk) hesaplamasi yapilir. Daha sonra egitim seti ve test seti
yer degistirilerek baska bir gecerlilik (dogruluk) hesaplamasia gidilir. Hesaplanan gecerlilik
(dogruluk) degerlerinin ortalamasi alinarak modelin gegerlilik (dogruluk) oranina ulasilir.

Cok kat capraz gecerlilikte, her bir veri bir defa egitim seti bir defada test seti olmak
tizere kullanilir. Buna bagl olarak veri setleri 1, 2...,(n-1), n olmak iizere n esit gruba ayrilir. n
gruptan olusan veriler igerisinden rastgele alinacak bir grup test seti olarak, diger (n-1) grup ise
egitim seti olarak kullanilir. Bu islem n kez tekrar edilerek yontem gercgeklestirilir. Ek-1’de

gosterilmistir.
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2.6.3. Jackknife Yontemi

2.6.3.1. Jackknife Yontemi Nedir?

Orneklemenin en o6nemli 6zelligi, ana kiitle hakkinda gecerli ve dogru tahminlere
ulagsmak icin en kiigiik standart hatayr elde etmektir. Ancak orneklem sayisi az oldugunda
parametrik tahmin etme yontemleri guvenilir sonuclar vermemektedir (Yay, 2003). Verilere
parametrik yontemlerin uygulanmasinin miimkiin olmadigi durumlarda yeniden ornekleme
yontemlerine ihtiya¢ duyulmustur. Bunlardan biriside jackknife yontemidir. Jackknife yontemi
bir istatistigin yanlilik miktarini, standart hatasin1 ve parametrelerin giiven araliklarini tahmin
etme olanagi saglar.

Jackknife yontemi, parametrik olmayan yontemler altinda, parametrenin dagilimi
hakkinda herhangi bir bilginin olmadigi kosulu varsayimi altinda daha giicli ve giivenilir
sonuclar verdigi ve ayn1 zamanda dagilim hakkinda bir bilgi sahibi oldugu takdirde parametrik
yontemlere benzer sonuglar verecegi ileri siiriilen bir yeniden 6rnekleme yontemidir (Sahin,
1993).

Capraz gegerlilik yonteminin daha da ileriye taginmis bir hali olarak kabul edilir.
Jackknife yontemi her seferinde bir veriyi veya gozlemi disarida birakarak ayni testin
tekrarlanmasina neden olur. Bu nedenle, yonteme birini digarida birak (leave-one-out) yontemi
de denir. Bu sekilde yapilan tekrarlar yanliligi (sapmay1) azaltmada etkili olur (Yu, 2003).
Boylece birden fazla gbzlemin disarida birakilarak islemden alikonulmasi s6z konusu olabilir, bu
duruma ise jackknife’in daha da genellestirilmis hali olan *’delete-d jackknife’” adi verilir (Friedl
ve Stampfer, 2001).

Jackknife yontemi ilk olarak Maurice Quenouille (1949;1956) tarafindan yanliligi ortadan
kaldirmak icin Onerilmis daha sonra John W. Tukey tarafindan (1958) hipotez testi ve giiven
arali@inin istatistik olarak anlamliligini test etmek tlizere gelistirilmistir.

Jackknife yontemi, bir defada bir veya daha fazla gzlemi disarida birakarak olusturdugu
veri setleriyle ana kiitle parametrelerinin giiven araliklarinin tahminini yapar ve bu veri setleriyle
istatistik testler yaparak yanlilik ve standart hatalarinin kestirimini yapar.

Genellikle ana kiitle dagiliminin genis yayilim gosterdigi ya da veri setinde asir1 ug
degerlerin varlig1 halinde kullanilir (Yu, 2002). Jackknife, yontem geregi veri setinde asir1 ug
degerlerin olmasi halinde, bu u¢ degerlerin etkisini yok eder ve bu da yontemin bir basarisi
olarak kabul edilebilir. Boylece yeni bir olasi 6rnek olusturmadan her seferinde ornekten bir

gozlem alarak tekrarlama yapar bu islemi defalarca kez gerceklestireceginden verilerdeki ug
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noktalara kars1 oldukca hassas bir yontem oldugunu gosterir. Bu yontemde bdylece tiim veriler
dikkate alinir ve Ornege giren biitiin verilerin yanliligi (bias) ortadan kaldirilir (Bekiroglu,
Konyalioglu ve Karahan, 2013).

Veri setinde her bir gozlem degeri disarida birakilarak model eksiltilmis 6rneklemden
tahmin edilir ve bunun sonucunda sahte (s6zde, pseudo-values) gézlem degerleri elde edilir. Elde
edilen bu sahte gozlem degerleri bir veri doniisiimii olarak bagimsiz ve ayni dagilima sahipmis
gibi diisiiniilebilir. Son olarak jackknife yontemi ana kiitle parametrelerinin tahmininde giiven
araliklar elde ederek standart hatay1 en aza diisiirecek sekilde gelistirilmistir. Ayrica bu yontem,
bootstrap gibi parametrik varsayimlari kullanmak yerine, 6rnek degiskenliginin agiklanmasi
yoluyla yani birini digarida birakarak tahmin edicilerin glivenirligini artirmaya yonelik kullanilan

bir yontemdir (Topuz, 2002).

2.6.3.2. Jackknife Yonteminin Tanim ve Standart Hatanin Jackknife Tahmini

Jackknife yonteminin esasi, veri setinde her bir gézlem degerini bir kez disarida birakarak
geriye kalan goézlemlerden sozde degerler hesaplamaya dayanmaktadir. Bu sekilde n tane
g6zlemden her biri (n-1) biiytikliigiinde n tane farkli 6rnek elde edilebilir. Jackknife  yontemini
tanimlamak i¢in, X = (X1, X2, ... , Xn) ile gosterilen orijinal veri kiimesi oldugu varsayilsin. Bu
ornekte yer alan tiim verilerin, ayni dagilimdan alinan, bagimsiz, esit dagilim gosterdigi
varsayilsin ve tahmin edici 8 =s(x) ile ifade edilsin. Jackknife ydnteminde amag¢ 8’nin standart
hatasint ve yanliligini (bias) tahmin etmektir. Yontemde i. gézlem disarida birakildiginda elde

edilen orneklem asagidaki gibi ifade edilir.
X(i) = (X1, X2, ..., Xi-1, Xi+1, ..., Xn) (2.13)
Burada i = 1, 2, ... , n olup, jackknife 6rnekleri olarak adlandirilir. i. jackknife 6rnegi
orijinal veri kiimesinden gdzlemi kaldirilmis olarak ayarlanmis olan verilerden olusur. Boylece
orijinal veri kiimesinin ortalamasi X ve i. gozlem degeri disarida birakilarak elde edilen ortalama
Xi olarak ifade edildiginde i. gdzlem degerini esitlik (2.13) deki gibi hesaplamak mimkunduir

(Walsh, 2000; Yay, 2003).

Xi= nx- xi(n-1) (2.14)
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Yeni 6rnege dayali tahmin edici ise 8i = s(xi) seklinde ifade edilebilir. 8’nm i. jackknife

tekrar1 olarak diisiiniildiigiinde, ilk olarak yanlilik miktar1 agagidaki gibi ifade edilir:
yanlilik= (0()- 0 ) (2.15)
Buradan da yanliligin jackknife tahmini asagidaki sekilde tanimlanir:
biasjek= (n-1) (B() - ) (2.16)

Esitlik (2.16) teki ifade, 8’nin yanlihigi azaltilmis jackknife tahmini olarak adlandirilir.

Ayrica aradaki fark ise sozde degerler olarak ifade edilir.

0= 0 - biasjack(0)
=nd —(n-1) 6, (2.17)
Esitlik (2.17)" te () ile gosterilen ifade, her defasinda disarida birakilan degerleri ifade
eder. Yani orijinal veri kiimesinden silinen degerler iizerinden alinan ortalamadir ve asagidaki

gibi agiklanabilir (Friedl ve Stampfer, 2001).

é(): Zi:l 0 ()

n

(2.18)

Jackknife’in aym zamanda bir diger amaci da f’nin standart hatasini tahmin etme

islemidir ve esitlik (2.19) deki gibi hesaplanir.
Sejec= [ = 211 () - 00))4™2 (2.19)

Ayrica ’nin jackknife nokta tahmini; sézde degerlerin hesaplanacak ortalamasina
karsilik gelir. Jackknife bir baska sekilde sézde degerler olarak, Esitlik (2.20)’deki gibi

tanimlanir.

6 =nd — (n-1)8 (2.20)
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Ozel bir durumda 6 = X oldugunda, sézde degerlerin i. gozlem degeri de, 8 = x;’yi karsiladig:

soylenebilir. Herhangi bir 8 i¢in sozde degerler cinsinden baska bir $jack esitligi de

Sejeck= [ X1(6i - 6 )?{(n-1) n }2 (2.21)

olarak tanimlanabilir. Esitlik (2.21) da 8 = 8/ n olarak hesaplanir. Ayn1 zamanda ortalamanin
standart hatasinin tahminine benzemektedir olup, n tane sézde degerin, jackknife tahmin
degerlerin ortalamasim gosterir. 8¢y , i=1, 2, ..., n jackknife’in sozde degerlerinden olusan
ornekleri ifade eder. Ayrica sozde degerleri (bkz.2.20), destekleyen temel fikir, n verilerinin
bagimsiz veri degerleri gibi davranmasi gerektigidir. Buradan hareketle, s6zde degerlerden bir
giiven aralig1 olusturulabilir. Ik olarak t-dagiliminin yiizdesi 1-a ve serbestlik derecesi (n-1)

olan bir giiven aralig1 elde edilerek asagidaki gibi ifade edilebilir (Efron ve Tibshirani, 1993).

Asagidaki sekilde jackknife yonteminin isleyis semas1 gosterilmektedir.
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fonksiyonu

Sekil 2.2. Jackkinife yonteminin igleyis semasi

2.6.3.3. Delete - d Jackknife

Miller (1974) tarafindan tanimlanan, Quenouille-Tukey jackknife yontemi, her seferinde
bir gozlemi disarida birakmaya dayanarak birgok kez yanlilig1 (bias) azaltma ve varyans tahmini
yapmada etkili oldugu bilinen bir yéntemdir. Birgok durumda, A tahmin edicisinin dagilim
hakkinda aralik tahmini ve ¢ikarim yapmak istendiginde yeterli bilgi saglamayabilir. Bu nedenle
jackknife yaklagimi dagilimin tahmin edilmesi amaciyla kullanilmaktadir. Ayrica Ornek

nitelikleri (sample quantiles) gibi (6rnegin, medyan gibi) diizgiin olmayan 8 icin tutarli bir
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varyans tahmincisi vermediginde, jackknife yukaridaki her iki durumu da i¢ine alan eksik yanlar
gidermek igin, Shao ve Wu (1989) jackknife yonteminin genel bir modifikasyonu olan delete-d
jackknife yontemini onermislerdir. ilk olarak Wu (1986), her iki sorunda da gozlem araligini
genis tutarak her seferde daha fazla gdzlemin silinmesiyle ¢6ziim getirilebilecegini dnermistir.
ikinci problem igin ise Shao ve Wu (1989) jackknife varyans tahmininin tutarliigmmn 8
tahmincisinin diizgiinliigiiniin bir dlglisiine bagl olarak d ile bir delete-d jackknife kullanarak
geri yiiklendigini gosterdi (Wu, 1990). Boylelikle 8 daha az diizgiin oldugunda d artar. Delete-d
jackknife, varyans tahmin etmede ve jackknife histogrami olusturmada da kullanilabilir.
Jackknife histogrami, 8’nin 6rnekleme dagiliminin tutarli bir tahmincisini saglar. Bu kestirimde r
ve d nin sonsuza dogru sapmasi durumunda tutarlilik artar (Shao ve Dongsheng, 1995).

Dizgln olmayan istatistik (non-smooth statistics) i¢in jackknife’in tutarsizligi, delete-d
jackknife ile giderilebilir. Tek seferde bir gozlemi yok etmek yerine d gdzlemi dislayarak delete-
d jackknife medyan icin tutarli hale gelebilir (Shao ve Wu, 1989; Efron ve Tibshirani, 1993).
Delete-d jackknife yontemi, d tane gozlem dislanaraktan delete-one jackknife ydnteminden
ayrilir (Wu, 1990).

s, (1, 2..., n) olmak {izere igerisinden alinan d boyutunda bir kiime olsun, ve é(s), alt
kiimeleri kaldirilmis (s) veri kiimesine uygulanan 6’y1 ifade etsin. 8¢ = ), X orijinal veri
kiimesinden {xi, i€s} disarida birakilmak amaciyla geriye kalanlar bir delete-d jackknife
Orneginin boyutunu temsil eden n-d tane veri noktasini gostersin. Standart hatanin delete-d

jackknife tahmini asagidaki sekilde tanimlanir:
—d ~ ~
S€jack-d ={ n(? Y (B - 0)*}? (2.23)

Esitlik (2.23) de, 8() = X8 / (Z) Ve X1, X2, ..., Xn igerisinden degistirilmeden alinan (n-d)
boyutunda tiim alt kiime s’lerin toplamidir. (Z) ise bir seferde ka¢ gozlem disarida birakmaya
karsihik gelen alt kiime Orneklerini gosterir. Eger n biiyiikse ve Vn < d < n ise, jackknife
orneklerinin alt kiime (Z) sayilar1 da biiytik olabilir (Efron ve Tibshirani, 1993).

Bu alt kiimelerin tiimii igin @ hesaplamak yerine, rastgele bir alt kiime 6rnegi ¢izilebilir.
Delete-d jackknife yonteminin en 6nemli avantaji, 8’nm 6rnek dagiliminin uygun bir tahmininin
yorumlanmasina yardimci olmasidir. Bu da delete-d jackknife’in (yani d silme degerinin)

bootstrap’a gore standart hataya daha yakin bir deger oldugunu gosterir. Boylece delete-d

jackknife’n bootstrap’a daha ¢ok benzemesini saglar.
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nY2 /d - 0 veya n-d — oo oldugunda delete-d jackknife degerinin medyan icin tutarl

oldugu soylenebilir. Bu durumda jackknife’in standart hatasinin tahmini ig¢in tutarlilik elde
etmek, d= vn ‘den daha fazla gozlemi disarida birakmak ve n gozlemden daha az gdzlem

disarida birakilmasiyla gergeklestirilir (Efron ve Tibshirani, 1993).

2.6.4. Bootstrap Yontemi ve Temel Kavramlar

Uygulamali istatistikte, belirli bir anakiitle parametresi i¢in bir tahmin edicinin
belirlenmesi ve bu tahmin edicinin dogrulugunun testi i¢in, tahmin edicinin, standart hata
tahminleri tizerinden degerlendirilmesi ve parametre i¢in giiven araliklarinin belirlenmesi gerekir
(Chernick, 2008). Bu problemler dogrultusunda yeniden 6rnekleme yontemleri istatistik ve diger
bilimsel cevrelerce genel kabul gbren bir teknik olma yolunda ilerlemistir. 1979 yilinda Efron’un
yazdig1 makale bunun baslangici olarak kabul edilmistir ( Chernick, 1999). Carver bir yazisinda
“Tekrar, bilimin kose tasidir.”’ diyerekten tekrarlamanin dnemine deginmis ve tekrarlama ile
elde edilen sonuglarin giivenirligini test ederek yeniden 6rnekleme yontemlerine olan giiveni
daha da artirmistir (Carver, 1978). Bircok istatistikciye gore ilgili anakitle parametresinin
tahmin sonuglariin benzerdir ve bunun anakiitle i¢in de genellestirilebilecegini incelemenin bir
diger yolunun yeni bir 6rnek grubuyla ¢alisarak var olan ¢alismanin tekrarlanmasidir. Ancak bu
durum; zaman, maliyet ve personel ihtiyacini yineleyeceginden tercih edilmeyebilir. Bu durumda
yeniden Ornekleme yontemleri kullanilarak, yeni bir 6rnek olusturmadan daha once calisilan
ornek tlizerinde tekrarlanabilirlik saglanabilir. Boylece olusturulan drneklerin anakutle iginde

genellestirilebilir giivenli tahminler elde edilebilen yontemler oldugu da sdylenilebilir.

2.6.4.1. Bootstrap Yontemi

Bootstrap yontemi 1979 yilinda bir yeniden 6rnekleme yontemi olarak ileri siiriilmiis ve
bootstrap tahmin edicilerini kullanarak bir tahmin edicinin dagilimin1 tahmin etmek amaciyla
gelistirilmistir (Biilbiil ve Altag, 1998). Yontem, tek ornekten hareketle ana kitle parametresi
hakkinda karar vermek yerine, drnekten elde edilen degerleri ana kiitle degeri olarak varsayar ve
tekrardan yerine koyarak (iadeli) 6rnek alip, ana kiitle parametresini tahmin eder.

Bootstrap yontemi, ana kiitle parametreleri hakkinda bilgi sahibi olunmadig1 ve sadece o
ana kiitleye ait bir drneklemin goézlemlenebilir oldugu durumlarda, ana kiitlenin bilinmeyen
parametrelerine iliskin tahminlerin yapilmasi, giiven araliklarinin olusturulmasi ve istatistik

hipotezlerin test edilmesi islemlerini kapsar. Bu durumda Efron’un bootstrap yontemi, bilinen bir
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ana kiitleden gbézlemlenmis olan bir 6rneklemin birbirinden bagimsiz ve ayni dagilimli olmasi
kosulu ile analitik olarak elde edilmesi gii¢ olan ¢esitli tahmin edicilerin 6rneklem dagilimlarina
yaklasimda bulunarak elverisli bir yontem olarak kullanilir (Duman, 2006).

Yontem, bir baska yeniden 6rnekleme yontemi olan jackknife yontemine alternatif olarak
ve s0z konusu yontemden daha kolay uygulanabilir ve ¢ok daha giivenilir oldugu belirtilerek ileri
suriilmistiir (Efron, 1979). Yontemin 6nemi, gozlenen 6rnek verilerinden hareketle, tahminin
standart hatasini minimuma indirerek ana kiitle parametrelerinin tahmin edildigi istatistiksel
yontemler asamasinda ortaya ¢ikmaktadir.

Literatiirde birkac¢ farkli bootstrap’a rastlanilabilir. Bunlar arasida, basit bootstrap, ¢ift
bootstrap, agirlikli bootstrap, tekrarlamali bootstrap, dogal (wild) bootstrap ve ardisik bootstrap,
sayilabilir (Sengiin, 1999).

Ana kiitle parametresinin tahmin edicisi olan 8’nin  6rnekleme dagilimmnin
olusturulmasinin amaci, s6z konusu ana kiitle parametresinin tahmin edilmesi ya da test
edilmesidir. Ancak, teorik olarak miimkiin olan bu yontemin uygulanabilirligi konusunda
kuskular bulunmaktadir. Tahmin edicinin 6rnekleme dagilimini olusturmak imkansiz olmasa da
son derece giic ve zaman alict bir istir. Ancak, tahmin edicinin deneysel 6rnekleme dagilimini

olusturmak amaciyla ortaya atilan bootstrap yontemi bu sakincay1 ortadan kaldirmaktadir.

2.6.4.2. Bootstrap Yonteminin Isleyis Asamalari

Bootstrap algoritmasi, asagidaki gibi tanimlanabilir (Fox, 1997):
1) Ana kiitleden n hacimlik bir 6rnek alinir.

ana kitle = 0Ornek
Bu 6rnek kullanilarak ana kiitle parametresinin tahmin edicisi hesaplanir.
2) Ana kiitle ile 1lgili bagka hi¢bir bilgi olmadigindan, elde edilen bu 6rnek, ana kiitlenin en 1y1
tahmin edicisi kabul edilir. Bu nedenle bu 6rnek ana kiitle gibi kabul edilerek her defasinda
iadeli secimle her bir gozlemin 6rnege girme olasiligi 1/n alinarak n hacimlik bir 6rnegin
yeniden elde edilmesi ve bu siirecin B kez tekrarlamasi yapilir.
i 1. Bootstrap 6rnegi

= 2. Bootstrap ornegi

Ornek =

~ = B. Bootstrap drnegi
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3) Her bootstrap 6rnegi i¢in ilgilenilen tahmin edici hesaplanir,

4) B sayida 6rnekten hareketle bu tahmin edicilerin 6rnekleme dagilimi elde edilir.

5) Elde edilen bu dagilimdan, dagilimla ilgili ortalama, standart sapma ve standart hata gibi
Oonemli tahmin ediciler ile parametre tahmin degerleri elde edilir.

6) Sonugta bu tahminler kullanilarak ana kiitle hakkinda yorumlar yapilir.

Yukaridaki algoritma, bootstrap yonteminin igleyis mantigin1 genel olarak aciklayan bir
algoritmadir (Topuz, 2002). Yeniden 6rnekleme sayisi olan B, uygulamaya baglidir. Aslinda n
hacimlik bir érnekten teorik olarak n™ sayida bootstrap 6rnegi olusturmak miimkiinse de bu hem
gereksizdir hem de zaman kaybina neden olmaktadir (Stine, 1990). Bootstrap yonteminde amag,
var olan temel mevcut veri setindeki gozlemlerin tesadiifi olarak yer degistirerek yeniden
orneklenmesi ile yeni veri setleri olusturmaktir. Yeniden 6rnek olusturmasindaki amag¢ daha ¢ok
veri elde ederek tahminlerin standart hatasini kii¢iiltmek ve bunun bir sonucu olarak da daha

giivenilir ve dogru tahminlere ulasabilmektir.

2.6.4.3. Bootstrap Dagiliminin Standart Hata Tahmini

Elde dagilimi bilinmeyen rastgele bir 6rnek oldugu varsayilsin ve x = (x1, X2, ..., Xn) 0lan
veri setinden olusan gozlemlerden bootstrap’in standart hatasin1 asagidaki algoritmayla
bulunabilir.

1. X = (X1, X2, ..., xn) veri setinden, n birimlik yerine koyma yontemiyle se¢ilmis B tane

1 *2

birbirinden bagimsiz x%, X2, ..., x"® bootstrap érnegi olusturulur.
2. Her bir 6rnek igin standart sapma hesaplanir.
6" (b) = s(x™) b=1.2,....B

({92l
S

burada “s” ile gosterilen standart sapmadir.

3. Standart hata ise her bir standart sapma kullanilarak hesaplanir.

ses ={X5-1[0°(b) - 6°())*/ (B - 1)} (2.24)

Burada Ség , bootstrap drneklerinin 6rnek standart hatasi olarak adlandirilir ve

07()=Y5_,0"(b)/B’dur.
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Ampirik n ¢apl 6 icin bootstrap standart hatanin bootstrap
(deneysel) bootstrap tekrarlari tahmini

Dagilim ornekleri

X1 — 0°(1) =s(x
X2 ey 07(2) =5(x?)

g

F e X —3 87°(b)=s(x

\ XB 3 6°(B)=s(x®)

ses ={Xp-4[0°(b) - "))/ (B - 1)}*"
ve 8°()=Xp-,6"(b)/B

Sekil 2.3. Standart hata tahmini i¢in bootstrap algoritmasi

Sekil 2.3° de gosterilen algoritmada, bootstrap yontemi kullanilarak standart hatanin
hesaplanmas: agik bir sekilde gosterilmistir. Ilk asamada gozlemlenmis degerlerden bootstrap
ornekleri olusturulmus ve her bir 6rnek icin standart hata tahmin degerleri hesaplanmistir. Daha
sonra hesaplanan standart hata tahminlerinin ortalamas1 bulunmustur. Ve her bir standart hata
tahmin degerinden, hesaplanan ortalama standart hata degerler farkinin karesi alinarak sapma
miktar1 elde edilmistir ve son olarak sapmalarin kareleri bootstrap 6rnek sayisinin bir eksigine

boliinerek karekokii alinmis ve standart hata degerleri elde edilmistir (Atabey, 2010).
2.6.44.  Bootstrap Yontemi ile Giiven Araliklarinin Olusturulmasi
Bootstrap giiven araliklari; normal yaklasim yontemi ve ylizdelik yontem olmak tizere iki

yontemle elde edilir. Gilinlimiizde standart bootstrap giliven araliklarinin yerine parametrik

olmayan birgok giiven aralig1 olusturma yontemleri de bulunmaktadir. Bu yontemler bootstrap-t
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araligi, sapmasi diizeltilmis (BCa) aralig1 ve yaklastirilmis (ABC) araligi olarak ifade edilir. Bu
yontemler yeniden 6rnekleme yaparak 6rnegin ampirik dagilimini elde eder.

Tahmin edicinin 6rnekleme dagiliminin tahmin edilebilmesi i¢in ana kiitle parametresi ile
ilgili giiven araliklarmin olusturulmasi gerekir. Ornekleme yonteminde F(8)’nin normal ya da t
dagilimina sahip oldugu varsayilsin. Bu varsayim dogrultusunda ana kiitle parametresinin 1-a
anlamlilik diizeyinde giiven sinirlar1 olusturulmak istensin. Ana kiitle varyansi biliniyorken, 6

i¢in giiven aralig1 (n > 30);

p()_(-z% % <f< Y+z% %): 1-a (2.25)

olarak yazilir. Bu aralik, 8’nin ornekleme dagilimmin sekli konusundaki varsaymm gegerli
oldugunda % (1-a) anlamlilik diizeyinde ana kiitle parametresini igerecektir. Ancak s6z konusu
varsayim her zaman dogru olmayabilir. Boyle bir durumda 6rnekleme yontemleri gecerliligini
kaybedecektir (Mooney ve Duvall, 1993). Bootstrap giiven araliklari, 6rnekleme

yontemlerindeki bu gii¢siiz yonleri gidermek amaciyla kullanilabilecektir (Hall, 1986).
2.6.4.4.1. Normal Yaklasim (Standart) ile Bootstrap Giiven Aralig1 Yontemi

Parametre tahminlerinin ampirik dagilimi olan O6rnekleme dagiliminin elde edilebilir
olmasi durumunda giiven araliklar1 olusturulabilmektedir (Beser, 2006). Normal yaklagim ile
bootstrap gliven aralii yoOnteminin, parametrik yontemle biiylik benzerlik gosterdigi
sOylenebilir. Bir giiven araliginin belirleyicileri, 6rnekten elde edilen tahmin ve elde edilen bu
tahminin standart hatas1 oldugu belirtilmektedir (Mooney ve Duvall, 1993). Bu yontem, ilgili
istatistigin standart hatasinin bilinmedigi ancak 6rnekleme dagiliminin normal dagilim gosterdigi
varsayimi altinda kullanim gdstermektedir (Yildiztepe ve Ozdemir, 2013). Ayni zamanda
bootstrap yaklagimi standart hatanin bir tahminini saglar. Bununla beraber hem o6rnekleme
dagiliminin tiiretilmesi hem de bu dagilimin standart hatasinin kullanilmasi bootstrap yonteminin
sagladig1 yararlardan bir tanesi olarak sdylenebilir. Normal yaklagim yontemi ile bootstrap giiven

araligy;

P[ é-z(l_%)@boot <6< 9+z(1_%)§éboot] =1-a (2.26)

olarak yazilir.
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Alt sinir = @-Z(l_g)féboot (2.27)
2
Ust sinir = 6 2,1 Sehoot (2.28)
2

olarak ifade edilir.

Bootstrap yontemi parametrik olmayan bir yontem olarak hazirlanmistir. Ancak normal
yaklasimla elde edilen bootstrap giiven aralig1 yontemi ise gili¢lii bir normallik varsayimai iizerine
kurulmustur. Bu yontemin altinda yatan varsayim saglanmadig1 durumda normal yaklasimla elde
edilen giiven aralig1 yontemi, parametrik olmayan yontemlerle elde edilen giiven araliklarindan
daha iyi sonu¢ vermez. Bu nedenle, yontemin altinda yatan varsayim nedeniyle ¢ok tercih

edilmez. Bunun yerine yiizdelik yontemiyle elde edilen bootstrap giiven araliklar tercih edilir.
2.6.4.4.2. Bootstrap Yiizdelik Giiven Aralhigi Yontemi

Bootstrap yonteminin en dnemli avantaji, parametrenin giiven araliklarinin olusturulmasi
icin ampirik dagilimm kullanilmasi olarak gosterilmektedir (Beser, 2006). Bootstrap
algoritmasindaki yinelemeler tekrar edilerek bootstrap yontemi ile tahmin edilmis parametre
tahminlerinin vektorii olusturulmakta ve dagilimin yiizdelik degerleri ortaya c¢ikarilmaktadir.

Yani bu yaklasimda 8 igin elde edilen bootstrap tekrarlarindan olusan &rnekleme dagilimi

kullanilarak 1-a giliven seviyesinde dagilimin alt ve iist % ylzdeleri giiven sinirlarini

olusturmaktadir. Yani alt sinir % , ust smir ise 1-% ‘lik ytizdelere karsilik gelmektedir (Atalay

ve Inal, 1999).

Bootstrap yiizdelik giiven araligi yontemi daha ¢ok parametrik varsayimlarin olmadigi
durumlarda siklikla kullanilir. Standart normal giiven araligi yonteminin aksine bu yontemde
bilinmeyen parametrelerin dagilimi ya da bootstrap dagilimi i¢in herhangi bir normallik
varsayimi istenmez.

Bootstrap yiizdelik giliven araligi yonteminde ornekleme dagiliminin parametrelerini
tahmin etmek icin bootstrap 6rnekleme dagiliminin olusturulmas yeterlidir. Bu yontemde giiven
arahgmin simirlart @ ‘ni bootstrap dagilimi ile belirlenir. Ancak bu yontem carpik dagilimlarda
olduk¢a dogru sonuglar vermekte, ornek hacminin kiiciik oldugu durumlarda performansi
diismektedir (DiCiccio ve Romano, 1988). Boyle bir durumda da sifir hipotezinin ret edilme

olasiligmin artma ihtimali ortaya ¢ikmaktadir.
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Bootstrap dagiliminin asimetrik oldugu sonlu 6rnek problemlerinde, yiizdelik giiven
aralig1 metodunun diger yonteme nazaran daha dogru giliven aralig1 sagladigi soylenebilir. Zira
ornek sayisinin veya bootstrap tekrar sayisinin artmasi, giiven araliklarinin gergek ana kiitle
parametresini kapsama olasiligini nispi bir sekilde artiracaktir. Bu durum daha dogru gilivenilir
bir aralik saglamis olacaktir (Beser, 2006). Ayrica bootstrap tekrar sayisinin sonsuza
yaklastirilmasiyla istenilen bootstrap giliven araligi elde edilebilir. Ancak uygulamada bu tekrar
sayisinin sonsuza yaklastirilmasi durumu s6z konusu olmayabilir. Buna bagli olarak sonlu bir B
tekrar sayist ve 0* ‘in dagilimi i¢in asagidaki gibi adimlar kullanilarak yiizdelik bootstrap giiven
aralig1 tercih edilebilir. Bootstrap yiizdelik giiven aralig1 hesaplama adimlari;

1) X1, X2, X3, ... , xn Ornekleminden hareketle tesadiifi olarak drnek cekilerek bootstrap
orneklemi xa1*, Xo*, X3*, ..., xp* © leri elde edilir.

2) 6 parametresine iliskin bootstrap tahmini 8* hesaplanir.

3) Her iki adim B kez tekrarlanir. B tekrardan elde edilen 8*%, 6*2, ..., 6*B tahminleri
kullanilarak bootstrap dagiliminin G kiimiilatif dagilim fonksiyonu elde edilir.

4) G, 6* * mn kiimiilatif dagilim fonksiyonu oldugu varsaymmi altinda, 1-2a yiizdelik aralig

A~

G ’nin o’mc1 ve 1- a’inct yiizdelik dilimleri ile asagidaki gibi tanimlanir.
[Beart, Bosist] =[ GV(a), GEV(1 — )] (2.29)

5) Bootstrap dagiliminim 100a’ nc1 yiizdeligi 8* oldugu icin GV(ar) = 6* seklinde de ifade
edilebilir.
6) Bootstrap ylizdelerine ait aralik asagidaki sekilde de gosterilebilir:

[é%alt, é%USt] = [é* (a)’ é* (1_0_,)]
2.6.5. Jackknife ve Bootstrap Yontemleri Arasindaki Benzerlikler ve Farkhiliklar

Jackknife ve bootstrap yontemlerinin her ikisi de ayni veri kiimesinden tekrarlama

yaparak Ornekler elde etme temeline dayanir. Bununla birlikte bootstrap standart hata

tahmininde, sapma degerleri ﬁ veya % ile carpilirken jackknife tahmininde nT carpant

kullanilir. nT_l degeri, ﬁ veya %’den cok daha biiyiiktiir. Bunun i¢in bir etki faktoriine gerek

vardir. jackknife sapmalari
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B - 6())? (2.30)

Bootstrap sapmalarindan

[ %@ - 6%()] 2 (2.31)

daha kii¢iik olma egilimindedir (Efron ve Tibshirani, 1993; Avsar, 2006).

Jackknife yontemi, bootstrap yontemine gore hem kolay hem de oldukga basarili bir
yaklasim sunar. Ancak bu yontem @ istatistigi diizgiin olmadiginda (non-smooth) iyi sonuglar
saglamaz. Diizgiin olmayan istatistige verilebilecek en iyi 6rnek “’medyan’’ olarak gosterilir.
Istatistiksel Olciimler agisindan medyanin giivenirligi jackknife yontemine gére guvenilir
sonuclar vermez. Zira jackknife yontemi asir1 u¢ degerlerden etkilenir boylece duyarli dl¢timler
yapmak i¢in asir1 u¢ degerleri de veri setine dahil eder. Medyan ise asir1 u¢ degerlerden
etkilenmez bu da jackknife icin kabul edilemez. Tiim bunlara bagli olarak diizgiinligiin
olmamasi 6rnegin medyan gibi hesaplanacak olan 6rnekleme hatasinin jackknife tahmininde
istenmeyen tutarsiz durumlara neden olacaktir. Ancak bdyle bir durumun bootstrap yonteminde
s0z konusu oldugu séylenemez. Zira bootstrap yonteminin jackknife yonteminden, medyan icin
daha tutarli bir durum sergiledigi bilinmektedir.

0’nin sadece n jackknife veri kiimeleri icin hesaplanmasi1 gerektiginde, n’nin standart
hata tahmini, bootstrap tarafindan yapilan tekrarlama yonteminden az ise jackknife’in tercih
edilmesi daha bir mantikli olur. Ancak sadece n jackknife Orneklerine bakarak, jackknife 6
hakkinda sadece sinirl bilgiye ulasir. B nedenle jackknife’in bootstrap’tan daha az etkili oldugu
sOylenebilir. Bu da jackknife’in bootstrap yontemine yakin bir tahmine donistiigii olarak
yorumlanabilir (Efron ve Tibshirani, 1993).

Bootstrap yonteminde ise B tekrarlamayla N" tane yeniden ornek olusturuldugunda
yapilan bootstrap tekrarlamayla elde edilecek birden fazla 6rnegin oldukg¢a biiyiik islemler
gerektirdigi ayrica zaman, maliyet ve kalifiyeli eleman durumlarini ortaya c¢ikaracagindan
verilerle ilgili baz1 giincellikler zamanla 6nemini yitirecektir. Ayrica jackknife yontemi sadece n
tane gozlem kullanarak elde edecegi smirh bilgiye ragmen bootstrap N" tane drnek elde ederek
jackknife gore daha kiiciik drnekleme hatasi elde eder. Bu durumda bootstrap yonteminin,

jackknife yontemine nazaran daha etkili oldugu sdyleyenebilir.
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Baz1 paket programlarin gelistirilmesi ile c¢ogu arastirmaci jackknife yoOnteminin
bootstrap yonteminden sonra kullanilan kontrol amacli bir yeniden 6rnekleme yontemi oldugunu
ileri siirmiistiir (Yay, 2003).

Son olarak jackknife yontemi, dagilimi tahmin etmek amaciyla kullanilirken bootstrap
yonteminde boyle bir durumdan soz edilemez. Bootstrap yontemiyle elde edilen yeniden
orneklerde zaten yeni bir bootstrap dagilimi olusturulur. Jackknife ve bootstrap yontemlerinde
ana kiitle dagilimi normal dagilim gostermiyorsa bu iki yontem;

» Standart hatay1 azaltir,
» Herhangi bir dagilim olmadan giiven aralig1 verir,
» Yeniden bir 6rnek tizerinde ¢alisma imkani1 saglar.

Jackknife ve bootstrap yontemlerinden hangisinin daha kullanigh olabilecegini anlamak
icin asagidaki tabloda bir karsilastirma yapmak uygun olabilir. Bu karsilastirmaya gore
uygulamayi1 yapan kisinin elde edecegi sonuca gore hangi yontemin kullanilabilirlik agisindan

uygun olduguna karar verilir.

Yeniden orneklemenin yapilma sekli; belli bir
gozlemden birinin disarida birakilmasiyla
yapilir.

Yeniden orneklemenin yapilma sekli: elimizdeki
gbzlemleri yerine koyarak 6rnekleme yapilmasidir.

Iadesiz secim yapar.

Iadeli secim yapar.

En fazla ornek genisligi kadar orneklem elde
eder.

Ornek tiiretme konusunda herhangi bir limit yoktur

Normal dagihim varsayimim gerektirir.

Herhangi bir dagilimdan bagimsiz iiretilir.

Daha az algoritma ve hesaplama icerir.

Daha fazla algoritma ve hesaplama icerir.

Her zaman aym sonuclari saglar.

Ayni verilerin yinelenmesiyle zaman zaman farkli
sonuglar saglar.

Ornek biiyiikliigii n tane gozlemden birinin
disarida birakilmasiyla geriye kalan n-1 tane
gozlemden olusur.

Bootstrap’taki 6rnek biiytikliigii n’dir.

Tekrar sayisi n iken,

Tekrar say1s1 N"dir.

Herhangi bir dagihmm tahmin edilmesi
amaclanmazken daha c¢ok dogrulama amaciyla
iyi sonuclar verir.

Temelde bilinmeyen bir dagilimmnin tahmin

edilmesi ve hesaplanmasi i¢in tavsiye edilir.

Esasen temel istatistik cikarsamalarda iyi sonuc
Verir.

Yogun hesaplamalarda iyi sonug saglar.
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3. BULGULAR VE TARTISMA

Bu tez calismasinin materyal boliminde belirtilen yeniden 6rnekleme yontemlerinden
olan jackknife ve bootstrap yontemleriyle; 100, 200 ve 300 tekrarlamayla olusturulan dérneklem
genisliklerinde, elde edilen n birimlik 6rneklemlerde; ortalama, varyans, varyasyon katsayisi ve

giiven aralig1 degerleri incelendi.

Ik olarak ele alinan 100 liik 6rneklemde; n = 10 dan 80’ e kadar gekilen bootstrap ve jackknife
orneklemlerine ait ortalama, varyans, varyasyon Katsayis1 ve giiven araliklar1 Cizelge 3.1 de
verilmistir. Daha sonra ele alinan 200’ lik 6rneklemde; n =10 dan 80’¢ kadar cekilen bootstrap
ve jackknife Orneklelemlerinde; ortalama, varyans, varyasyon katsayist ve giiven araliklari

Cizelge 3.2° de verilmistir.

Son olarakta Cizelge 3.3’ te, ele alinan 300 liik 6rneklem genisliginde; n = 10 dan 80’e kadar
cekilen bootstrap ve jackknife érneklemlerinde; ortalama, varyans, varyasyon katsayisi ve giiven

araliklar verilmistir.

100 birimlik 6rneklem genisliginde ortalama: Ortalamasi 10 olan ana kiitleden 100’k
orneklemden alindigi varsayilan n = 10 luk bootstrap 6rneklemlerinde; gergeklesen ortalama
10.058 olarak bulunurken, bootstrap ve jackknife ortalamalari sirasiyla, 10.065 ve 10.058 olarak
bulunmustur. Buna gore jackknife ortalamasinin gerceklesen degerle ayni sonucu vermis oldugu
gozlenmekle birlikte, bootstrapin da yaklasik %1°lik farkla gerceklesen degere oldukca yakin

oldugu goriilmiistiir.

e n =20 lik bootstraplar incelendiginde, her ii¢ (gerceklesen ortalama, jackknife ortalamasi ve
bootstrap ortalamasi) ortalamanin da birbiri ile ayn1 oldugu goézlenmistir.

e n = 30 luk bootstraplarda, ger¢eklesen ortalama degeri, 10.049 iken, bootstrap ortalamasi
10.031 ve jackknife ortalamasi da 10.049 olarak bulunmustur. Buna gore jackknife,
gerceklesen degerle ayni sonucu vermis, bootstrap ise yaklasik 0.018 birimlik fark
gOstermistir.

e Bootstrap drneklem genisligi n = 40 oldugunda; gergeklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirastyla; 10.127, 10.123 ve 10.127 olarak bulunmustur. Buna gore
onceki orneklem genisliklerine benzer sekilde jackknife, ger¢eklesen ortalama degerle ayni

sonucu vermis, bootstrap ise ger¢ceklesen degere oldukca yakin bulunmustur.
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Cizelge 3.1. 100 birimlik 6rneklem genisliklerinde elde edilen sonuglar

n [Ortg |Orts | Ort Varg | Vars | Var, | cVe |cve |V | cle Cle Cl
8.376 9.781 7.906
10 | 10.058 | 10.065 | 10.058 | 0.736 | 0.021 | 1.205 | 0.085 | 0.081 | 0.742 11.740 | 10349 | 12.210
8.068 9.620 6.961
20| 10 10.000 | 10 0.971 | 0.037 | 2.403 | 0.098 | 0.092 | 0.818 11.931 | 10380 | 13.038
30 | 10.049 | 10.031 | 10.049 | 0.887 | 0.014 | 1.866 | %9%° | 0.080 | 0.788 | 3293 | 9793 | 7.371
11.895 | 10.270 | 12.727
40 | 10.127 | 10.123 | 10.127 | 1.012 | 0.015 | 2.516 | 0.099 | 0.071 | 0.810 8.155 9.882 7.018
100 12.099 | 10.364 | 13.236
8.155 9.900 7.088
50 | 10.104 | 10.107 | 10.104 | 0.988 | 0.011 | 2.368 | 0.098 | 0.054 | 0.790 12053 | 10315 | 13.121
60 10.107 | 10.115 | 10.107 | 0.992 | 0.008 | 2.405 | 0.098 | 0.051 | 0.799 8.155 9.933 7.067
12.060 | 10.297 | 13.147
8.096 | 9.887 | 6.702
70 | 10.077 | 10.071 | 10.077 | 1.022 | 0.008 | 2.965 | 0.100 | 0.046 | 0.868 12,059 | 10255 | 13.452
8.034 | 9.904 | 6.799
80 | 10.052 | 10.053 | 10.052 | 1.059 | 0.005 | 2.754 | 0.102 | 0.038 | 0.803 12070 | 10201 | 13.305
Cizelge 3.2. 200 birimlik 6rneklem genisliklerinde elde edilen sonuglar
n Ortg Ortg Ort; Varg | Varg | Varn CVs CVg CV; Clg Clg Cly
8.294 9.570 7.020
10 { 9980 | 9.985 | 9.980 | 0.739 | 0.044 | 2.280 | 0.086 | 0.142 | 1.071 11.666 | 10399 | 12.940
7.937 9.479 6.373
20 | 9.901 9.893 9.901 1.004 | 0.044 | 3.239 | 0.101 | 0.100 | 0.933 11.865 | 10307 | 13.429
30(9.990 |9.984 |9.990 | 0.909 | 0.026 | 2.577 | 0.095 | 0.093 | 0.917 8.120 | 9.668 | 6.843
11.859 | 10.300 | 13.136
40 | 10.007 | 10.002 | 10.007 | 0.849 | 0.013 | 2.084 | 0.092 | 0.072 | 0.878 | 3290 | 9778 | 7.177
200 11.814 | 10.226 | 12.836
8.075 9.739 7.239
50 | 9.942 9.943 9.942 0.907 | 0.010 | 1.902 | 0.095 | 0.056 | 0.782 11809 | 10147 | 12.625
60 | 9.932 9.924 9.932 0.887 | 0.006 | 1.721 | 0.094 | 0.048 | 0.753 8.085 9.767 7.360
11.778 | 10.082 | 12.503
8.064 9.797 7.391
70 1 9.928 | 9.931 | 9.928 | 0.904 | 0.004 | 1.675 | 0.095 | 0.040 | 0.729 11792 | 10.066 | 12.465
8.031 9.826 7.379
80 | 9.960 9.955 9.960 0.968 | 0.004 | 1.733 | 0.098 | 0.036 | 0.696 11.888 | 10.083 | 12540
e Bootstrap oOrneklem genisligi 50 oldugunda ise ger¢eklesen ortalama 10.104 olarak
bulunurken, bootstrap ortalamasi 10.107 ve jackknife ortalamasi ise 10.104 olarak

bulunmustur. Buna gore jackknife, gergeklesen ortalama ile ayni sonucu verirken,

bootstrapta 0.003’liik fark gézlenmistir.
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Cizelge 3.3. 300 birimlik 6rneklem genisliklerinde elde edilen sonuglar

n Ortg Ortg Orty Varg | Varg | Varn CVs CVg CV; Clg Clg Cly

300

7.963 | 9.508 | 6.529

10 | 9960 | 9.954 | 9.960 | 1.038 | 0.051 | 3.064 | 0.102 | 0.111 | 0.870 11.958 | 10.400 | 13.391

20 | 10.042 | 9.960 | 10.042 | 1.098 | 0.035 | 2.814 | 0.104 | 0.088 | 0.783 7.988 | 9.589 | 6.753

12.096 | 10.332 | 13.330

30 | 10.079 | 10.083 | 10.079 | 1.053 | 0.037 | 3.576 | 0.101 | 0.084 | 0.916 8.067 |9.704 | 6372

12.091 | 10.461 | 13.785

40 | 10.028 | 10.022 | 10.028 | 0.999 | 0.021 | 2.926 | 0.099 | 0.069 | 0.872 8069 |9.735 | 6.675

11.987 | 10.309 | 13.381

7.959 | 9.727 | 6.755

50 | 9.947 | 9.947 | 9.947 | 1.028 | 0.012 | 2.652 | 0.101 | 0.057 | 0.805
11.935 | 10.166 | 13.139

60 8.024 | 9.824 | 6.921

10.003 | 10.007 | 10.003 | 1.019 | 0.008 | 2.472 | 0.100 | 0.046 | 0.787
11.983 | 10.191 | 13.086

70 | 10.006 | 10.007 | 10.006 | 1.049 | 0.006 | 2.306 | 0.102 | 0.035 | 0.737 7.997 | 9849 | 7,029

12.014 | 10.164 | 12.983

8.025 |9.843 | 7.106

80 |9.995 |9.990 |9.995 |1.009 | 0.005 | 2.171 | 0.100 | 0.037 | 0.744 11.964 | 10137 | 12.883

Bootstrap 6rneklem genisligi 60 oldugunda ise gerceklesen ortalama 10.107, bootstrap
ortalamasi 10.115 ve jackknife ortalamast 10.107 olmustur. Buna gore jackknife,
gerceklesen degerle ayni sonucu vermis, bootstrapta ise yaklasik 0.008°lik fark gézlenmistir.
n = 70’lik bootstrap ornekleri incelendiginde, gergeklesen ortalama 10.077 iken bootstrap
ortalamasi 10.071 ve jackknife ortalamasi 10.077’dir. Buna gore jackknife’in gergeklesen
ortalama ile ayn1 sonucu vermis oldugu gézlenmekle birlikte, bootstrapin yaklasik 0.006’1ik
farkla, gerceklesen ortlamaya oldukca yakin oldugu goériilmistiir.

Bootstrap 6rneklem genisligi n = 80 oldugunda gerceklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasinin sirasiyla; 10.052, 10.053 ve 10.052 oldugu goriilmektedir. Buna
gore onceki orneklem genisliklerine benzer sekilde, jackknife’in gergeklesen degerle ayni
sonucu vermis oldugu, bootstrapin ise gerceklesen degere oldukg¢a yakin oldugu

gdzlenmistir.

200 birimlik 6rneklem genisliginde ortalama: Ortalamas: 10 olan ana kiitleden, 200’ 1tk
6rneklemden alindig1 varsayilan n = 10 luk bootstrap drneklemlerinde; gerceklesen ortalama
9.980 olarak bulunurken, bootstrap ve jackknife ortalamalar1 sirasiyla 9.985 ve 9.980 olarak

bulunmustur.
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Buna gore jackknife ortalamasinin gerceklesen ortalama ile ayni sonucu vermis oldugu

gozlenmekle birlikte, bootstrapin da yaklasik 0.005°lik farkla gerg¢eklesen ortalamaya oldukca

yakin oldugu goriilmiistiir.

n = 20 lik bootstrap drneklemleri incelendiginde, ger¢eklesen ortalama deger 9.901 iken
bootstrap ortalamasi ve jackknife ortalamasi sirasiyla 9.893 ve 9.901 olarak bulunmustur.
Buna gore jackknife, gerceklesen ortalama ile ayni sonucu vermis, bootstrapta ise 0.008lik
fark gézlenmistir.

Bootstrap 6rneklem genisligi n = 30 oldugunda; gergeklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirasiyla 9.990, 9.984 ve 9.990 olarak bulunmustur. Buna gore
jackknife, gerceklesen ortalama ile ayni sonucu verirken, bootstrapta 0.006’lik fark
gbzlenmistir.

Bootstrap oOrneklem genisligi 40 oldugunda ise gergeklesen ortalama 10.007 olarak
bulunurken, bootstrap ortalamasi 10.002 ve jackknife ortalamasi ise 10.007 olarak
bulunmustur. Buna gore jackknife gerceklesen ortalama ile ayni sonucu verirken,
bootstrapta 0.005°lik fark gézlenmistir.

Bootstrap Orneklem genisligi 50 oldugunda ise gerceklesen ortalama 9.942, bootstrap
ortalamasi 9.943 ve jackknife ortalamasi 9.942 olmustur. Buna gore jackknife, gerceklesen
ortalama ile ayni sonucu vermis, bootstrap ise yaklasik 0.005°1lik farkla gerceklesen degere
olduke¢a yakin bulunmustur.

Bootstrap 6rneklem genisligi n = 60 oldugunda gergeklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirasiyla 9.932, 9.924 ve 9.932 olarak bulunmustur. Buna gore
jackknife’in gergeklesen ortalama ile ayni sonucu vermis oldugu, bootstrapin ise gergeklesen
degerden yaklasik 0.008 birimlik fark gosterdigi goriilmiistiir.

n = 70’lik bootstrap 6rneklemleri incelendiginde, gergeklesen ortalamanin 9.928, bootstrap
ortalamasimin 9.931 ve jackknife ortalamasinin da 9.928 oldugu goriilmektedir. Buna gore
jackknife’m gergeklesen ortalama ile ayni sonucu vermis oldugu gdzlenmekle birlikte,
bootstrapin 0.003’lik farkla gergeklesen degere oldukga yakin oldugu sdylenebilir.

Bootstrap 6rneklem genisligi n = 80 oldugunda gergeklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirasiyla; 9.960, 9.955 ve 9.960 olarak bulunmustur. Buna gore
jackknife, gergeklesen ortalama ile ayni sonucu vermis olmakla birlikte, bootstrapin da

yaklagik 0.005’lik farkla gergeklesen degere oldukga yakin oldugu sdylenebilir.
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300 birimlik 6rneklem genisliginde ortalama: Ortalamasi 10 olan ana kiitleden 300’lUk
orneklemden alindig1 varsayilan n = 10 luk bootstrap 6rneklemlerinde; gerceklesen ortalama
9.960 olarak bulunurken, bootstrap ve jackknife ortalamalar1 sirasiyla 9.954 ve 9.960 olarak
bulunmustur. Buna gore jackknife ortalamasinin gergeklesen ortalama ile ayni oldugu,

bootstrapin da yaklasik 0.006’lik farkla ger¢eklesen degere oldukca yakin oldugu goriilmiistiir.

e n = 20’lik bootstrap 6rneklemlerinde, gergeklesen ortalama 10.042 iken, bootstrap
ortalamast 9.960 ve jackknife ortalamasi da 10.042 olarak bulunmustur. Buna gore
jackknife’in gerceklesen degerle ayni sonucu vermis oldugu goriilmekle birlikte, bootstrapin
ise gerceklesen degerden yaklasik 0.082 birimlik fark gosterdigi goriilmiistiir.

e n = 30 luk bootstrap Orneklemleri incelendiginde, gergeklesen ortalama 10.079 iken,
bootstrap ortalamasi ve jackknife ortalamasi sirasiyla 10.038 ve 10.079 olarak bulunmustur.
Buna gore jackknife ortalama degeri, gergeklesen degerle ayni olurken bootstrap, 0.041°1ik
fark gostermistir.

e Bootstrap drneklem genisligi n = 40 oldugunda; gerceklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirasiyla; 10.028, 10.022 ve 10.128 olarak bulunmustur. Buna gore
jackknife, gerceklesen ortalama ayni sonucu verirken bootstrap, yaklasik 0.006 birimlik fark
gostermistir.

e n =50 lik bootstraplar incelendiginde, her iic (gerceklesen ortalama, jackknife ortalamasi ve
bootstrap ortalamasi) ortalamanin da birbiri ile ayn1 oldugu gozlenmistir.

e Bootstrap 6rneklem genisligi 60 oldugunda, gergeklesen ortalama 10.003 iken, bootstrap
ortalamasi 10.007 ve jackknife ortalamasi ise 10.003 olarak bulunmustur. Buna gore
jackknife gerceklesen ortalama ile aymi sonucu verirken, bootstrapta 0.004’lik fark
gbzlenmistir.

e n = 70lik bootstrap Orneklemleri incelendiginde, gergeklesen ortalama 10.006 iken
bootstrap ortalamasinin 10.007, jackknife ortalamasinin ise 10.006 oldugu goriilmektedir.
Buna gore jackknife ortalamasinin gergeklesen degerle ayni sonucu vermis oldugu
gozlenmekle birlikte, bootstrapin da yaklasik 0.001°lik farkla gerceklesen degere oldukga
yakin oldugu goriilmiistiir.

e Bootstrap drneklem genisligi n = 80 oldugunda, gergeklesen ortalama, bootstrap ortalamasi
ve jackknife ortalamasi sirasiyla 9.995, 9.990 ve 9.995 olarak bulunmustur. Buna gore
jackknife’in gergeklesen degerle ayni sonucu vermis oldugu gozlenmekle birlikte,
bootstrapin da yaklasik 0.005’lik farkla gerceklesen degere olduk¢a yakin oldugu

gorilmiisiir.
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100 birimlik 6rneklem genisliginde varyans degerleri: Ortalamasi 10 olan ve 100 luk
orneklemden alindigi varsayilan n = 10 luk bootstrap 6rneklemlerinde; gergeklesen varyans
degeri 0.736 olarak bulunurken, bootstrap ve jackknife varyans degerleri sirasiyla 0.021 ve 1.205

olarak bulunmustur.

e n =20 lik bootstrap érneklemleri incelendiginde, gergeklesen varyans degeri 0.971 olurken,
bootstrap ve jackknife varyans degerleri sirasi ile 0.037 ve 2.403 olmustur.

e n = 30 luk bootstrap orneklemlerinde, ger¢eklesen varyans degeri, 0.887 iken bootstrap
varyans degeri 0.014 ve jackknife varyans degeri de 1.866 olarak bulunmustur.

e Bootstrap drneklem genisligi n = 40 oldugunda gergeklesen, bootstrap ve jackknife varyans
degerleri sirasiyla 1.012, 0.015 ve 2.516 olarak bulunmustur.

e Bootstrap orneklem genisligi 50 oldugunda ise gerceklesen varyans degeri 0.988 olarak
bulunurken, bootstrap varyans degeri 0.011 ve jackknife varyans degeri ise 2.368 olarak
bulunmustur.

e Bootstrap orneklem genisligi 60 oldugunda ise gergeklesen varyans degeri 0.992, bootstrap
varyans degeri 0.008 ve jackknife varyans degeri 2.405 olmustur.

e n = 70’lik bootstrap orneklemlerinde, gerceklesen varyans degeri 1.022 iken, bootstrap
varyans degeri 0.008 ve jackknife varyans degeri de 2.965 tir.

e Bootstrap drneklem genisligi n = 80 oldugunda, gerceklesen bootstrap ve jackknife varyans
degerleri sirastyla 1.059, 0.005 ve 2.754 olmustur.

e Buna gore orneklem genisliginden bagimsiz olarak, gerceklesen degere gore bootstrap
varyans degerlerinin oldukga kiigiik, jackknife varyans degerinin ise oldukga blyuk oldugu
gozlenmistir. Diger bir ifadeyle 6nceki 6rneklem genisliklerinde oldugu gibi bootstrapla elde

edilen varyans degerinin, diger yonteme gore oldukca kiiglik oldugu séylenebilir.

200 birimlik 6rneklem genisliginde varyans degerleri: Ortalamasi 10 olan 200’k
orneklemden alindig1 varsayilan n = 10 luk bootstrap drneklemlerinde; gergeklesen varyans
degeri 0.739 olarak bulunurken, bootstrap ve jackknife varyans degerleri sirasiyla 0.044 ve

2.280 olarak bulunmustur.

e n =20 lik bootstrap érneklemlerinde, gergeklesen varyans degeri 1.004 olurken, bootstrapta
0.044, jackknife ise 3.239 olarak bulunmustur.
e n =230 luk 6rneklemlerde ise gerceklesen varyans degeri 0.909 iken bootstrap varyans degeri

0.026 ve jackknife varyans degeri de 2.577 olarak bulunmustur.
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Bootstrap drneklem genisligi n = 40 oldugunda gergeklesen, bootstrap ve jackknife varyans
degerleri sirasiyla 0.849, 0.013 ve 2.084 olarak bulunmustur.

Bootstrap 6rneklem genisligi 50 oldugunda ise gergeklesen varyans degeri 0.907 olarak
bulunurken, bootstrap varyans degeri 0.010 ve jackknife varyans degeri de 1.902 olarak
bulunmustur.

Bootstrap 6rneklem genisliginin 60 oldugu durumda ise gerceklesen varyans degerinin
0.887, bootstrap varyans degerinin 0.006 ve jackknife varyans degerinin de 1.721 oldugu
gorulmektedir.

n = 70’lik bootstrap 6rneklemleri incelendiginde, ger¢eklesen varyans degeri 0.904 iken
bootstrap varyans degerinin 0.004 ve jackknife varyans degerinin de 1.675 oldugu
gorulmektedir.

Bootstrap drneklem genisligi n = 80 oldugunda, gergeklesen, bootstrap ve jackknife varyans
degerleri sirasiyla 0.968, 0.004 ve 1.733 olmustur.

Buna gore oOrneklem genisliginden bagimsiz olarak gerceklesen degere gore bootstrap
varyans degerlerinin oldukea kii¢iik, jackknife varyans degerinin ise oldukca biyik oldugu
gozlenmistir. Diger bir ifadeyle bootstrapla elde edilen varyans degerinin, diger yonteme

gore daha kiigtik degerler oldugu sdylenebilir.

300 birimlik 6rneklem genisliginde varyans degerleri: Ortalamasi 10 olan 300’10k

orneklemden alindig1 varsayilan n = 10 luk bootstrap 6rneklemlerinde; gerceklesen varyans

degeri 1.038 olarak bulunurken, bootstrap ve jackknife varyans degerleri sirasiyla 0.051 ve

3.064 olarak bulunmustur.

n = 20 lik bootstrap drneklemlerinde, gergeklesen varyans degeri 1.098 iken, bootstrap ve
jackknife varyans degerleri sirasi ile 0.035 ve 2.814 olmustur.

n = 30 luk bootstrap 6rneklemlerinde, gergeklesen varyans degeri 1.053 iken bootstrap
varyans degeri 0.037 ve jackknife varyans degeri de 3.517 olarak bulunmustur.

Bootstrap drneklem genisligi n = 40 oldugunda gergeklesen, bootstrap ve jackknife varyans
degerleri sirasiyla; 0.099, 0.069 ve 2.926 olarak bulunmustur.

Bootstrap orneklem genisligi 50 oldugunda ise gergeklesen varyans degeri 1.028 olurken,
bootstrap ve jackknife varyans degerleri sirasi ile 0.012 ve 2.652 olmustur.

Bootstrap 0Orneklem genisligi 60 oldugunda; gergeklesen varyans degeri 1.019 iken,

bootstrap ve jackknife varyans degerleri siras1 ile 0.008 ve 2.472’ dir.

54



e n = 70’lik bootstrap Orneklemleri incelendiginde, gerceklesen varyans degerinin 1.049,
bootstrap varyans degerinin 0.006 ve jackknife varyans degerinin ise 2.306 oldugu
gorulmektedir.

e Bootstrap drneklem genisligi n = 80 oldugunda gergeklesen, bootstrap ve jackknife varyans
degerleri sirasiyla 1.009, 0.005 ve 2.171 olmustur.

Buna gore 6rneklem genisliginden bagimsiz olarak gergeklesen degere gore bootstrap varyans
degerlerinin olduk¢a Kkiigiik, jackknife varyans degerlerinin ise oldukca biyuk oldugu
gozlenmistir. Diger bir ifadeyle onceki 0rneklem genisliklerinde oldugu gibi bootstrapin, diger
yonteme gore oldukga kiiguk varyans degerleri iirettigi sOylenebilir.

100 birimlik Orneklem genisliginde varyasyon Kkatsayisi: Ortalamasi 10 olan 100’k
orneklemden alindig1 varsayilan n = 10 luk bootstrap drneklemlerinde; gerceklesen varyasyon
katsayis1 0.085 olarak bulunurken, bootstrap varyasyon katsayisi 0.081 ve jackknife varyasyon
katsayisi da 0.742 olarak bulunmustur.

e n = 20 lik bootstrap 6rneklemlerinde; gergeklesen varyasyon katsayisi 0.098, bootstrap ve
jackknife varyasyon katsayisi ise sirasi ile 0.092 ve 0.818 olarak bulunmustur.

e n = 30 luk bootstraplarda, gergeklesen varyasyon katsayis1 0.093 iken, bootstrap varyasyon
katsayis1 0.080 ve jackknife varyasyon katsayisi da 0.788 olarak bulunmustur.

e Bootstrap oOrneklem genisligi n = 40 oldugunda gerceklesen, bootstrap ve jackknife
varyasyon katsayis1 degerleri sirasiyla 0.099, 0.071 ve 0.810 olarak bulunmustur.

e Bootstrap drneklem genisligi 50 oldugunda ise gerceklesen varyasyon katsayisi 0.098 olarak
bulunurken, bootstrap varyasyon katsayist 0.054 ve jacknife varyasyon katsayist da 0.790
olarak bulunmustur.

e Bootstrap 0Orneklem genisligi 60 oldugunda gerceklesen varyasyon katsayisinin 0.098,
bootstrap varyasyon katsayisinin 0.051 ve jackknife varyasyon katsayisinin 0.797 oldugu
gorilmustiir.

e n = 70’lik bootstrap 6rneklemlerinde, ger¢eklesen varyasyon katsayisi 0.100 iken, bootstrap
varyasyon katsayis1 0.046 ve jackknife varyasyon katsayis1 da 0.868 olmustur.

e Bootstrap orneklem genisligi n = 80 oldugunda; gergeklesen, bootstrap ve jackknife

varyasyon katsayilari sirasiyla 0.102, 0.038 ve 0.803 olarak bulunmustur.
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Buna gore tim Orneklem genisliklerinde jackknife varyasyon katsayisinin, gergeklesen degerden
belirgin farklilik gosterdigi, bootstrap varyasyon katsayisinin ise gergeklesen degere daha yakin
oldugu gozlenmistir.

200 birimlik 6rneklem genisliginde varyasyon Kkatsayisi: Ortalamasi 10 olan 200 lik

orneklemden alindig1 varsayilan n = 10 luk bootstrap drneklemlerinde; gerceklesen varyasyon

katsay1s1 0.086 olarak bulunurken, bootstrap varyasyon katsayis1 0.142 ve jackknife varyasyon
katsayisi ise 1.071 olarak bulunmustur.

e n = 20 lik bootstraplar incelendiginde, gerceklesen varyasyon katsayis1 0.101, bootstrap ve
jackknife varyasyon katsayilari ise sirasi ile 0.100 ve 0.933 olarak bulunmustur.

e n = 30 luk bootstraplarda, gergeklesen varyasyon katsayisi ile bootstrap ve jackknife
varyasyon katsayilari sirast ile 0.095, 0.093 ve 0.917 olarak bulunmustur.

e Bootstrap 6rneklem genisligi n = 40 oldugunda gergeklesen varyasyon katsayisi, bootstrap
varyasyon katsayis1 ve jackknife varyasyon katsayisi sirasiyla 0.092, 0.072 ve 0.878
olmustur.

e Bootstrap drneklem genisligi 50 oldugunda ise gergeklesen varyasyon katsayist 0.095 olarak
bulunurken, bootstrap varyasyon katsayisi 0.056 ve jackknife varyasyon katsayisi1 da 0.782
olarak bulunmustur.

e Bootstrap drneklem genisliginin 60 oldugu durumda ise ger¢eklesen varyasyon katsayisinin
0.094, bootstrap varyasyon katsayisinin 0.048 ve jackknife varyasyon katsayisinin da 0.753
oldugu goriilmiistiir.

e n = 70’lik bootstrap 6rneklemlerinde, ger¢eklesen varyasyon katsayisi 0.095 iken, bootstrap
varyasyon katsayist 0.040 ve jackknife varyasyon katsayisi da 0.729 olmustur.

e Bootstrap 6rneklem genisliginin n = 80 olmas1 durumda; gergeklesen, bootstrap ve jackknife
varyasyon katsayilarmin sirastyla 0.098, 0.036 ve 0.696 “dur.

Buna gore tim Orneklem genisliklerinde jackknife varyasyon katsayisinin, gergeklesen degerden
belirgin farklilik gosterdigi, bootstrap varyasyon katsayisinin ise gerceklesen degere daha yakin

oldugu gdzlenmistir.

300 birimlik 6rneklem genisliginde varyasyon Kkatsayisi: Ortalamasi 10 olan 300 lik
orneklemden alindig1 varsayilan n = 10 luk bootstrap drneklemlerinde; gerceklesen varyasyon
katsayis1 0.102 olarak bulunurken, bootstrap varyasyon katsayis1 0.111 ve jackknife varyasyon

katsayis1 ise 0.870 olarak bulunmustur.
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e n =20 lik bootstrap 6rneklemlerinde; ger¢eklesen varyasyon katsayisi 0.104 iken, bootstrap
ve jackknife varyasyon katsayilari ise sirasi ile 0.088 ve 0.783 olarak bulunmustur.

e n = 30 luk bootstrap 0Orneklemlerinde; gerceklesen, bootstrap ve jackknife varyasyon
katsayilar sirast ile 0.101, 0.084 ve 0.916 olarak bulunmustur.

e Bootstrap 6rneklem genisligi n = 40 oldugunda gergeklesen varyasyon katsayisi, bootstrap
varyasyon katsayisi ve jackknife varyasyon katsayisi sirastyla 0.099, 0.069 ve 0.872 olarak
bulunmustur.

e Bootstrap drneklem genisligi 50 oldugunda ise gergeklesen varyasyon katsayisinin 0.101,
bootstrap varyasyon katsayisinin 0.057 ve jackknife varyasyon katsayisinin da 0.805 oldugu
gbzlenmistir.

e n =60’lik bootstrap 6rneklemlerinde gerceklesen varyasyon katsayist 0.100 iken, bootstrap
ve jackknife varyasyon katsayilari sirasi ile 0.046 ve 0.787 olarak bulunmustur.

e Bootstrap Orneklem genisligi n = 70 oldugunda, gercgeklesen, bootstrap ve jackknife
varyasyon katsayilari siras1 ile 0.102, 0.035 ve 0.737 olarak gézlenmistir.

e Bootstrap 6rneklem genisliginin n = 80 olmasi durumunda ise gerg¢eklesen varyasyon
katsayisi, bootstrap varyasyon katsayisi ve jackknife varyasyon katsayisi sirasiyla 0.100,

0.037 ve 0.744 olarak bulunmustur.

Buna gore tiim 6rneklem genisliklerinde jackknife varyasyon katsayisinin, ger¢eklesen degerden
belirgin farklilik gosterdigi, bootstrap varyasyon katsayisinin ise ger¢eklesen degere daha yakin

oldugu gozlenmistir.

100 birimlik 6rneklem genisliginde giiven araligi: Ortalamasi1 10 olan 100’ lik 6rneklemden
alindig1 varsayillan n = 10 luk bootstrap Orneklemlerinde giiven araliklari incelendiginde;
gergeklesen giliven araligi 8.376 ile 11.740 araliginda bulunurken, bootstrap ve jackknife guiven
araliklar sirastyla; 9.781-10.349 ve 7.906-12.210 araliginda bulunmustur.

e n = 20 lik bootstraplar orneklemlerinde, gerceklesen giiven araligi; 8.068-11.931 iken
bootstrap giiven araligi 9.620-10.380 ve jackknife giiven araligi 6.961-13.038 olarak
bulunmustur.

e n = 30 luk bootstrap oOrneklemlerinde, gergeklesen giiven aralhigi, 8.203-11.895 iken,
bootstrap ve jackknife given araligi siras1 ile 9.793-10.270 ve 7.371-12.727 olarak
bulunmustur.

e Bootstrap drneklem genisligi n = 40 oldugunda gergeklesen, bootstrap ve jackknife given
araliklari sirastyla; 8.155-12.099, 9.882-10.364 ve 7.018-13.236 olarak bulunmustur.
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e Bootstrap Orneklem genisligi 50 oldugunda ise gergeklesen giiven araligi 8.155-12.053
olarak bulunurken, bootstrap giiven araligi 9.900-10.315 ve jackknife gliven araligi da
7.088-13.121 olarak bulunmustur.

e Bootstrap 6rneklem genisligi 60 oldugunda ise gergeklesen, bootstrap ve jackknife glven
araliklari sirasi ile 8.155-12.060, 9.933-10.297 ve 7.067-13.147 olmustur.

e n = 70’lik bootstrap orneklemlerinde, gergeklesen giiven araligi 8.096-12.059, bootstrap
giiven aralig1 9.887-10.255 ve jackknife gliven araligi 6.702-13.452°dir

e Bootstrap 6rneklemlerinde n = 80 oldugunda; gergeklesen, bootstrap ve jackknife giiven
araliklar1 sirast ile 8.034-12.070, 9.904-10.201 6.799-13.305 olarak bulunmustur.

Buna gore tum 6rneklem genisliklerinde jackknife giiven araliklarinin, ger¢eklesen degere gore

olduke¢a genis oldugu, bootstrap giiven araliklarinin ise daha dar oldugu gozlenmistir.

200 birimlik 6rneklem genisliginde giiven arahigi degerleri: Ortalamasi 10 olan 200” luk
orneklemden alindig1 varsayillan n = 10 luk bootstrap Orneklemlerinde; gergeklesen giiven
araligi 8.294-11.666 iken, bootstrap ve jackknife giiven araliklari sirasiyla 9.570-10.399 ve
7.020-12.940 olmustur.

e n =20 lik bootstrap drneklemlerinde, gerceklesen giiven araligi 7.937-11.865 iken, bootstrap
giiven aralig1 9.479-10.307 ve jackknife giiven araligi da 6.373-13.429 olarak bulunmustur.

e n = 30 luk bootstrap 6rneklemlerinde, gerceklesen giiven araligi, 8.120-11.859, bootstrap
guven aralig1 9.668-10.300 ve jackknife gliven aralig1 da 6.843-13.136°dur.

e Bootstrap 6rneklem genisligi n = 40 oldugunda gergeklesen giliven araligi, bootstrap giiven
aralig1 ve jackknife giiven aralig1 sirasiyla 8.200-11.814, 9.778-10.226 ve 7.177-12.836
olarak bulunmustur.

e Bootstrap Orneklem genisligi 50 oldugunda ise gergeklesen giiven araligr 8.075-11.809
olurken, bootstrap ve jackknife giiven araliklar1 9.739-10.147 ve 7.239-12.645 olmustur.

e Bootstrap drneklem genisligi 60 oldugunda ise gergeklesen giiven araligimnin 8.085-11.778,
bootstrap giiven araliginin 9.767-10.082 ve jackknife giiven araliginin 7.360-12.503 oldugu
gorulmiistiir.

e n = 70’lik bootstrap Orneklemlerinde, gergeklesen giiven araligi 8.064-11.792 iken,
bootstrap ve jackknife giiven araligi siras1 ile 9.797-10.066 ve 7.391-12.465tir.

e Bootstrap 6rneklemlerinde n = 80 oldugunda, gergeklesen, bootstrap ve jackknife giiven
araliklar sirasi ile 8.031-11.888, 9.826-10.083 ve 7.379-12.540 olarak gézlenmistir.
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Buna gore tim orneklem genisliklerinde jackknife giiven araligi degerlerinin, gerceklesen
degere gore olduke¢a genis bir aralikta, bootstrap giiven araliklarinin ise daha dar bir aralikta

oldugu gozlenmistir.

300 birimlik 6érneklem genisliginde giiven aralig1 degerleri: Ortalamasi 10 olan ana kiitleden
alinan 300’luk o©rneklemden alindigr varsayilan n = 10 luk bootstrap Orneklemlerinde
gerceklesen giiven araligi 7.963-11.958 olarak bulunurken, bootstrap ve jackknife giiven
araliklar sirasiyla 9.508-10.400 ve 6.529-13.391 olarak bulunmustur.

e n =20 lik bootstrap drneklemlerinde, gerceklesen giiven araligi 7.988-12.096 iken, bootstrap
giiven aralig1 9.589-10.332 ve jackknife giiven araligi da 6.753-13.330°dur.

e n = 30 luk bootstrap 6rneklemlerinde, gergeklesen, bootstrap ve jackknife giiven araliklari
sirast ile 8.067-12.091, 9.704-10.461 ve 6.372-13.785 olmustur.

e Bootstrap 6rneklem genisligi n = 40 oldugunda gergeklesen giliven araligi, bootstrap giiven
aralig1 ve jackknife gliven aralig1 degerleri sirasiyla; 8.069-11.987, 9.735-10.309 ve 6.675-
13.381 olarak bulunmustur.

e Bootstrap orneklem genisligi 50 oldugunda ise gergeklesen giiven araligi 7.959-11.935,
bootstrap gliven aralig1 9.727-10.166 ve jackknife giiven aralig1 6.755-13.139 olmustur.

e Bootstrap 6rneklem genisligi 60 oldugunda gerceklesen giiven araligi 8.024-11.983 olurken,
bootstrap giliven araligi 9.824-10.191 ve jackknife giiven aralig1 da 6.921-13.086 olmustur.

e n = 70’lik bootstrap Orneklemlerinde, gergeklesen giiven araligr 7.997-12.014, bootstrap
guven aralig1 9.849-10.164 ve jackknife gliven aralig1 7.029-12.983’tiir.

e Bootstrap drneklemlerinde n = 80 oldugunda, gerceklesen, bootstrap ve jackknife given
araliklar sirast ile 8.025-11.964, 9.843-10.137 ve 7.106-12.883 olarak gozlenmistir.

Buna gore tum 6rneklem genisliklerinde, jackknife giiven araliklarinin, gerceklesen degere gore
oldukca genis bir aralikta oldugu, bootstrap giiven araliklarinin ise daha dar bir aralikta oldugu

gbzlenmistir.

Calismada ele alinan orneklem genisliklerinde; ortalama, varyans ve varyasyon katsayisi i¢in
jackknife ve bootstrap yontemleri ile gerceklesen degerler arasindaki farklar Cizelge 3.4’te
verilmistir. Cizelge 3.4’te goriildiigii iizere, 100, 200 ve 300 birimlik 6rneklemlerde, 6rneklem
genisliginin 10’dan 80’e¢ kadar degismesinden etkilenmeden, jackknife ortalamalar ile
gerceklesen ortalamalar arasindaki farkliliklar sifir (0) olarak bulunmusken, bootstrap

ortalamalari ile ger¢eklesen ortalamalar arasinda kiiciik farkliliklar gdzlenmistir.
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Cizelge 3.4. 100, 200 ve 300 birimlik Orneklerde Bootstrap (B) ve Jackknife (J) ile
Gergeklesen deger (G) farklari

100 200 300
n B-G J-G B-G J-G B-G J-G
10 0,007 0 0,005 0 -0,006 0
20 0 0 -0,008 0 -0,082 0
30 -0,018 0 -0,006 0 0,004 0
Ortalama 40 -0,004 0 -0,005 0 -0,006 0
50 0,003 0 -0,001 0 0 0
60 0,008 0 -0,008 0 0,004 0
70 -0,006 0 0,003 0 0,001 0
80 0,001 0 -0,005 0 -0,005 0
10 -0,715 0,469 -0,695 1,541 -0,987 | 2,026
20 -0,934 1,432 -0,96 2,235 -1,063 | 1,716
30 -0,873 0,979 -0,883 1,668 -1,016 | 2,523
Varyans 40 -0,997 1,504 -0,836 1,235 -0,978 1,927
50 -0,977 1,38 -0,897 0,995 -1,016 | 1,624
60 -0,984 1,413 -0,881 0,834 -1,011 | 1,453
70 -1,014 1,943 -0,9 0,771 -1,043 | 1,257
80 -1,054 1,695 -0,964 0,765 -1,004 | 1,162
10 -0,004 0,657 0,056 0,985 0,009 0,768
20 -0,006 0,72 -0,001 0,832 -0,016 | 0,679
30 -0,013 0,695 -0,002 0,822 -0,017 10,815
Varyason 40 -0,028 0,711 -0,02 0,786 -0,03 0,073
Katsayis1 50 -0,044 0,692 -0,039 0,687 -0,044 | 0,704
60 -0,047 0,701 -0,046 0,659 -0,054 | 0,687
70 -0,054 0,768 -0,055 0,634 -0,067 | 0,635
80 -0,064 0,701 -0,062 0,598 -0,063 | 0,644

Dolayisiyla 100, 200 ve 300 birimlik 6rneklemlerde, ortalama icin jackknife’in, n sayisinin
10’dan 80'e kadar degismesinden etkilenmedigi sdylenebilir. Jackknife’in ise gergeklesen
varyanstan olan farki, bootstrap a goére biraz daha biiylik bulunmus ve bu durum 200 ve 300

birimlik 6rneklemlerde de ayni olmustur.

Cizelge 3.4, varyasyon katsayisi bakimindan incelendiginde ise bootstrap ile gergeklesen
varyasyon katsayilar1 arasindaki farkin, 100, 200 ve 300 birimlik 6érneklemlerden ve 6rneklem
biiyiikliigii artisindan bagimsiz olarak, jackknife’den daha diisiik oldugu gdzlenmistir. Buna gore
ortalamanin haricinde, varyans ve varyasyon katsayisi bakimindan gerceklesen degerle
karsilastirildiginda, bootstrap’in jackknife gore gergeklesen degere daha yakin sonuglar verdigi
sOylenebilir. Ortalama bakimindan ise jackknife bir miktar daha 6n plana ¢ikmistir. Ancak,
bootstrapin, ortalama i¢in de gerceklesen degerden kiiglik farkliliklar gostermis oldugu goz
Ontline alindiginda, genel olarak bootstrap yonteminin performansinin, jackknife yontemine gore

bir miktar daha iyi oldugu sdylenebilir.
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4. SONUC

Ortalama icin 100, 200 ve 300 birimlik drneklemlerde, 6rneklem genisliginin 10° dan
80’e kadar artirilmasi ile jackknife ortalamalarinin, gerceklesen ortalama ile ayni sonuglari
verdigi, bootstrap ortalamalarinin ise gergeklesen degerlerden kiigiik farkliliklar gosterdigi

gozlenmistir.

Varyans icin ise 100, 200 ve 300 birimlik 6rneklemlerde, yine 6rneklem genisliginin 10’
dan 80’¢ kadar artmasiyla, bootstrap varyanslari ile gergeklesen varyanslar arasindaki farklarin,
jackjnife varyansi ile gerceklesen varyanslar arasindaki farklardan bir miktar disiik oldugu
gOzlenmistir. Dolayisiyla varyansin da orneklem genisliginden etkilenmedigi sOylenebilir.
Varyasyon katsayisi i¢in de bootstrap varyasyon katsayilari ile gergeklesen varyasyon katsayilari
arasindaki farklarin, Jackknife varyasyon katsayisi ile gerceklesen varyasyon katsayisi arasindaki
farklardan belirgin bir sekilde diisiik oldugu gozlenmistir. Diger bir ifade varyasyon katsayisi
bakimindan jackknife’e gore bootstrap, gergeklesen varyasyon katsayisina daha yakin sonuglar

vermistir.

Giiven araligi bakimindan; 100, 200 ve 300 birimlik 6rneklerde, gergeklesen glven
araligina gore jackknife giiven araliklarinin, bootstrap’a gore daha genis oldugu gozlenmistir.
Ayrica gerek orneklem biriminin 100, 200 ve 300 olarak alinmasindan, gerekse de 6rneklem
genigliklerinin 10’dan 80'e kadar artirilmasindan her iki yontemin de belirgin sekilde

etkilenmedigi gézlenmistir

Sonug olarak, bootstrapin gergeklesen degere yakin sonuglar vermesi ve bu sonuglarin da
orneklem genisliginin 10°dan 80'e kadar degismesinden etkilenmemis olmasi ve sonuglarin 200
ile 300 birimlik drneklerde de birbirine oldukg¢a yakin olmasi bootstrap: bir miktar daha 6n plana
cikarmaktadir. Ancak caligmanin kisithiliklar1 dikkate alindiginda, daha kapsamli calismalarin

yapilmasi gerekliligi de g6z oniinde bulundurulmalidir.
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6. EKLER

EK 1. Coklu ¢apraz gegerlilik semas1 gosterimi

1 (n-1) | N
<€ l >
Egitim seti Test seti
1 . (n-1) N

/

Egitim seti Test seti

<€ > >
—

Test seti Egitim seti
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EK 2. Jackknife yonteminin isleyis semast

Gozlemlerin ¢ekildigi “’N’’ hacimli

ana kitle

l Ornekleme

Cekilen “’n’’ hacimli 6rnek

l Jackknife yontemi

fadesiz ornekleme ile

<€

ornekten bir gozlem ¢ikartilir

Ornek Istatistiginin

hesaplanmasi

v
Ornek istatistigi 1

Ornek istatistigi 2

Cikartilan
gozlemler
yerine
konarak n
tekrarlama
yapilir

Ornek istatistigi n

Standart hatanin

jackknife tahmini

6’nin jackknife 0 icin ampirik

Tahmini giiven aralig1

@’larin

fonksiyonu
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EK 3. Boootstrap yonteminin isleyis semast

Gozlemlerin ¢ekildigi “’N’’ hacimli

ana kitle

l

Ornekleme

Cekilen “’n’’ hacimli 6rnek

l Bootstrap Yontemi

[adeli yeniden

ornekleme yapilir

<€

\4

Ornek Istatistiginin

Hesaplanmasi

Ornek istatistigi 1
Ornek istatistigi 2

Ornek istatistigi n

B kere
tekrar
islemi

yapilir

Standart hatanin

bootstrap tahmini

6’nin bootstrap

tahmini

0 icin ampirik

giiven aralig1

@’larin

Fonksiyonu
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OZGECMIS

G - GEEED y:nda dogmustur. Ik ve ortadgretimini gD
Gl (2 ve liscyi CEENY e tamamlamistir. @D
G ktisadi ve idari Bilimler Fakiiltesi Iktisat Béliimii’nden D

ortalama ile mezun olmustur QD yilinda G Fcn Bilimleri Enstitisi
Istatistik Anabilim Dali’nda yiiksek lisansa baslamis ve QA dc yiksek lisansin

tamamlamustir. Yabanci dili Ingilizee’dir

Elif BICER
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