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ÖZET 

 

JACKKNİFE VE BOOTSTRAP YÖNTEMLERİNE İLİŞKİN BİR UYGULAMA  

  

 

Elif BİÇER 

       

Yüksek Lisans Tezi 

  

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü 

İstatistik Anabilim Dalı 

Danışman: Doç. Dr. Hamit MİRTAGİOĞLU 

İkinci Danışman: Dr. Öğr. Üyesi Canan DEMİR 

Ocak 2022, 70 sayfa 

 

 Örnekleme, ana kütle içerisinden ana kütleyi daha iyi temsil edecek şekilde tesadüfi 

olarak daha küçük örnek birimi seçme işlemine denir. Örnekleme yöntemlerinin genel olarak iki 

grupta inceleyebiliriz. Bunlar tesadüfi örnekleme yöntemleri ve tesadüfi olmayan örnekleme 

yöntemleridir. Tesadüfi örnekleme yöntemlerinde ana kütledeki bütün birimlerin örneğe girme 

şansının olduğu ve bütün şansların birbirine eşit olduğu homojen bir durum söz konusudur. Bu 

yöntemlere basit tesadüfi örnekleme, tabakalı tesadüfi örnekleme, sistematik örnekleme ve küme 

örneklemesi verilebilir. 

 Son yıllarda ilerleyen teknoloji ile birlikte temel örnekleme yöntemlerinde bir takım 

eksiklikler ortaya çıkmıştır. Bu temel örnekleme yöntemlerindeki eksiklikler nedeniyle yeniden 

örnekleme yöntemlerinin kullanılmasına ihtiyaç duyuldu. Bu yöntemlere duyulan ihtiyacın 

nedeni klasik yöntemleri kullanan araştırmacıların bu yöntemi sürekli normale yaklaştırmaları ve 

merkezi limit teoreminden faydalanmalarıdır. Bu nedenle yeniden örnekleme yöntemleri hem 

parametrik hem de parametrik olmayan dağılımlar için temel yöntemlerle sınırlı kalmayıp, daha 

büyük veri setleri kullanarak iadeli ve iadesiz işlemler yapabilen bilgisayar yoğun yöntemler 

olarak kullanılmaya başlanmıştır. Bu yöntemlere permütasyon yöntemi, cross-validation, 

jackknife ve bootstrap yöntemleri örnek verilebilir. 

 

Anahtar kelimeler: Basit Tesadüfi Örnekleme, Tabakalı Tesadüfi Örnekleme, Sistematik 

Örnekleme, Permütasyon Yöntemi, Çapraz Geçerlilik, Jackknife, Bootstrap, R Programı. 
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 Sampling is the process of randomly selecting smaller sample units from the main mass 

to better represent the main mass. These are random sampling methods and non-random 

sampling methods. In random sampling methods, there is a homogenous situation in which all 

units in the main mass have a chance to enter the sample and all chances are equal to each other. 

Simple random sampling, stratified random sampling, systematic sampling and cluster sampling 

methods can be given as examples of these methods. 

 In recent years, with the advancing technology, some deficiencies have emerged in basic 

sampling methods. The use of resampling methods was required due to the flaws in these 

fundamental sampling methods. The necessity for these approaches arises from the fact that 

researchers who utilise traditional methods frequently approximate this method to the normal 

and employ the central limit theorem. As a result, resampling methods have been employed as 

computer-intensive approaches that can execute operations with and without return utilising 

bigger data sets, rather than being confined to basic methods for both parametric and non-

parametric distributions. Permutation, cross-validation, jackknife, and bootstrap techniques are 

examples of these approaches.  

 

 

Keywords: Simple Random Sampling, Stratified Random Sampling, Systematic Sampling, 

Permutation Method, Cross-Validation, Jackknife, Bootstrap, R Programe. 
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ÖNSÖZ 

 

Örnekleme, ana kütle içerisinden ana kütleyi daha iyi temsil edecek şekilde tesadüfi 

olarak daha küçük örnek birimi seçme işlemine denir. Örnekleme işlemi bilimsel bir araştırmanın 

vazgeçilmez aşamalarından biridir. Bütün örnekleme yöntemlerindeki amaç ana kütleden 

tesadüfi olarak örnek seçerek sonuca etki eden olumsuz faktörleri yok etmek veya bu faktörlerin 

oluşturmuş olduğu etkilerden dolayı meydana gelecek olan örnekleme varyanslarını azaltmaktır. 

Diğer bir ifadeyle örnekleme yapmaktaki amaç ana kütle hakkında tutarlı ve geçerli bir tahminde 

bulunmak için örnekleme hatasını minimuma indirgemektir. 

 Örnekleme yöntemlerinin genel olarak iki grupta inceleyebiliriz. Bunlar tesadüfi 

örnekleme yöntemleri ve tesadüfi olmayan örnekleme yöntemleridir. Tesadüfi örnekleme 

yöntemlerinde ana kütledeki bütün birimlerin örneğe girme şansının olduğu ve bütün şansların 

birbirine eşit olduğu homojen bir durum söz konusudur. Bu yöntemlere basit tesadüfi örnekleme, 

tabakalı tesadüfi örnekleme, sistematik örnekleme ve küme örneklemesi verilebilir. 

 Son yıllarda ilerleyen teknoloji ile birlikte temel örnekleme yöntemlerinde bir takım 

eksiklikler ortaya çıkmıştır. Bu temel örnekleme yöntemlerindeki eksiklikler nedeniyle yeniden 

örnekleme yöntemlerinin kullanılmasına ihtiyaç duyuldu. Bu yöntemlere duyulan ihtiyacın 

nedeni klasik yöntemleri kullanan araştırmacıların standart hata ve güven aralıklarını belirlemek 

için bu yöntemi sürekli normale yaklaştırmaları ve merkezi limit teoreminden faydalanmalarıdır. 

Çünkü bu yöntemler örnek dağılımlarının asimptotik olarak normal dağıldığı vakit geçerliliğini 

korumaktadır. Asimptotik olarak güvenilir standart hata ve test istatistiğinin elde edilmesinin zor 

olduğu durumlarda yeniden örnekleme yöntemlerinin kullanılması tercih edilebilir. Ayrıca bir 

istatistiğin dağılımının tahmini için asimptotik teorinin gerçekleşmesi durumu söz konusu 

olmayabilir. Bu nedenle yeniden örnekleme yöntemleri hem parametrik hem de parametrik 

olmayan dağılımlar için temel yöntemlerle sınırlı kalmayıp, daha büyük veri setleri kullanarak 

iadeli ve iadesiz işlemler yapabilen bilgisayar yoğun yöntemler olarak kullanılmaya başlanmıştır. 

Yeniden örnekleme yöntemlerine permütasyon yöntemi, cross-validation, jackknife ve bootstrap 

yöntemi örnek verilebilir. 
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1. GİRİŞ 

 

  İstatistik yöntemler, bir araştırmaya konu olan verilerin toplanması, toplanan verilerin 

düzenlenmesi ve özetlenmesiyle elde edilecek tablo ve grafiklerin yanı sıra, parametre 

tahmininde ve hipotez testlerinde kullanılmaktadır. Bilimsel araştırmalarda, elde edilen sonuçlara 

ve sonuçların raporlanmasına göre istatistik, tanımlayıcı istatistik ve çıkarımsal istatistik olmak 

üzere iki başlık altında incelenebilir. Tanımlayıcı istatistik, herhangi bir karşılaştırma içermeden 

ana kütleye veya örneğe ilişkin ortalama, standart sapma, sayı ve yüzde gibi tanımlayıcı 

istatistikleri sunar. Çıkarımsal istatistikte ise örnekten hesaplanan istatistiklerle, karşılaştırmalar 

(hipotez testleri) yapılır, ana kütle parametreleri tahmin edilir ve çıkarımsamalarda bulunulur.   

 İstatistik bilimi, başta muhasebe, işletme, ekonomi, biyoloji ve tıp olmak üzere hemen 

hemen bütün bilim dallarında yapılan bilimsel araştırmalarda yaygın olarak kullanılmaktadır. 

Bilimsel araştırmalarda, en önemli iki kısıtlayıcı olan zaman ve araştırma maliyeti nedeniyle, 

çoğunlukla Ana kütlenin tamamı ile çalışma yapma mümkün olmamaktadır. Bunun yerine ana 

kütleyi temsil edebilen ve örneklem veya örnek olarak adlandırılan daha küçük bir grupla 

çalışılmaktadır. Bu durumda, çalışma sonuçlarının yüksek doğrulukla ana kütleyi temsil 

edebilmesi bakımından örneklemenin önemi oldukça büyüktür. İstatistikte N birimlik bir ana 

kütleden, n birimlik örnek alma sürecinde, deney ünitelerinin homojenliği ve rasgeleliği oldukça 

önemlidir.  Ana kütleden örneklem alma süreci Şekil 1.1’ deki gibi özetlenebilir. 

 

                                                                                                            

                                                                                     Örnekleme 

 

 

                              

                                                                               Tahmin, karar verme 

Şekil 1.1. Ana kütleden örnek alınması 
 

 Günlük yaşamda çoğu zaman farkında olmadan bütünden parça alarak ya da ana kütleden 

örnek alarak bütünü daha iyi temsil edecek şekilde örnekleme yapılır. Pişmekte olan bir tencere 

yemekten tadım yapmak için alınan bir kaşık yemek veya kan gurubunu öğrenmek için alınan 

kan örneklemedir. Örnekleme işlemi veya süreci, bilimsel araştırma yapmanın en önemli 

aşamalarından birisidir. Örneklem yeterli büyüklükte değilse veya yeterli büyüklükte olduğu 

Ana kütle 

Parametre(µ, 𝜎) 

Örnek 

İstatistik(𝑥̅, s) 

 

𝑥̅ 
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halde uygun örnekleme yöntemi kullanılmamışsa ya da çalışmaya alınacak deney üniteleri 

homojen değilse araştırmadan elde edilecek sonuçlarda düşük güvenilirlik kaçınılmaz olacaktır. 

Bu nedenle bütün örnekleme yöntemlerinde amaç; ana kütleden rasgele alınan örnekten elde 

edilecek sonuca etki bakımından olumsuz faktörleri olabildiğince elemline etmek ve örnekleme 

varyanslarını azaltmaktır (Özdemir, Tekin, ve Esin, 2015; Topuz, 2002). Diğer bir ifade ile 

örneklemede, ana kütle hakkında tutarlı ve geçerli bir tahminde bulunmak için örnekleme 

hatsının minimuma indirgenmesi amaçlanır.   

 Örnekten ve elde edilen bilgilerin doğru olması her şeyden önce, örnekleme yönteminin 

ve uygulanan istatistik yöntemlerin iyi seçilmesine bağlıdır. Bütün örnekleme yöntemlerinin 

olumlu ve olumsuz yönleri mevcuttur. Bu nedenle probleme uygun bir örnekleme yönteminin 

seçimi önemlidir (Kabukçu, 1994).  

 Ana kütleden alınan örnekten hesaplanan istatistikler yardımıyla ana kütle parametreleri 

(ortalama, varyans ve standart sapma) tahmin edilmekte ve bu tahminler de nokta tahmini ve 

aralık tahmini olarak ikiye ayrılmaktadır. Ana kütleden rastgele alınan örneklerin tek bir sayısal 

değere göre yorumlanması nokta tahmini olarak ifade edilir. Parametrelerin belirli bir olasılıkla 

minimum ve maksimum değerlerinin bulunması yani alt sınır ve üst sınırlarının bulunması ise 

aralık tahmini olarak ifade edilebilir. Tahmin etme işlemini belirleyen formülasyona tahmin 

edici, formülasyon gerçek verilerle işlendiğinde ise ulaşılan sayıya tahmin adı verilmektedir 

(Püskülcü ve İkiz, 1986). Nokta tahmini için kullanılan yöntemler en küçük kareler yöntemi, en 

çok olabilirlik yöntemi ve momentler yöntemidir. Aralık tahmini için kullanılan yöntem güven 

aralığı yöntemidir.    

 Güven aralığı ile aralık tahmininde, 𝑋̅ ortalamalı (bilinmeyen parametre) ve σ standart 

sapmalı bir ana kütle olduğu varsayılsın. Normallik varsayımı üzerine kurulu merkezi limit 

teoreminden hareketle, (yeterince büyük (n>30) örnekler için)  standart hatanın elde edilmesi 

mümkün olabilmektedir. 𝑋̅ i tahmin etmek için:  

x̅: Örnek ortalaması  

σx̅: Örnek ortalamasının standart hatası olduğunda; 

 

 𝑍 =
x̅−X̅

σx̅
                                                                                                                           (1.1) 

 

 ifadesi asimptotik olarak, standart normal dağılım  (Z dağılımı) olacaktır, Bu durumda, normal 

dağılım tablosunda %90’lık güven aralığında (Tabloda %90’lik güven aralığına karşılık gelen Z 

değeri 1.65’dir) Z değeri için: 
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 P(-1.65<𝑍̅<1.65) = 0.90  

 P(-1.65< 
x̅−X̅

σx̅
  <1.65) = 0.90 

 P(𝑥̅-1.65 
σ

√n
< X̅ <𝑥̅+1.65 

σ

√n
 ) = 0.90 

 

olacaktır. 

Böylece aralığın, bilinmeyen ana kütle ortalamasını kapsama olasılığı %90 olacaktır. İfade 

genelleştirilerek güven aralığı eşitliği; 

 

 P(𝑥̅-Z𝜎𝑥̅ <𝑋̅< 𝑥̅+Z𝜎𝑥̅) = 1-𝛼                                                                                            (1.2) 

 

olarak yazılır. 

 İyi bir tahmin edicide aranılan ilk özellik; dağılımı, tahmin edilecek ana kütle parametresi 

etrafında yoğunlaşan bir tahmin edici olmasıdır. Örnek değeri (istatistik) ile tahmini yapılacak 

ana kütle parametresinin tam tamına aynı olması beklenemez (Yay, 2003). Amaç ana kütle 

parametresi ile örnek değeri arsındaki fark olarak ortaya çıkan toplam hatanın düşük olmasıdır.  

 Parametre tahmininde; parametrik yöntemlerin varsayımları bozulduğunda, parametrik 

olmayan yöntemler kullanılabilir. Tahmin ediciden hareketle ana kütle parametrelerinin tahmin 

edilmesinde nokta tahmini yöntemleri olarak, en küçük kareler, maksimum olabilirlik,  Bayes ve 

momentler yöntemi kullanılmaktadır.  

 Tahminlerdeki toplam hata, örnekleme hatası ve örnekleme dışı hatalar olmak üzere iki 

başlık altında toplanır. Örnekleme hatası, bir araştırma için elde edilen örnekten hesaplanan 

tahmin değeri ile ana kütle parametresi değeri arasındaki farktır. Burada θ ana kütle parametresi 

olsun ve θ̂ ise θ parametresinin tahmin edicisi olarak ifade edilsin. Bu durumda, örnekleme 

hatası; 

 

 Örnekleme hatası= θ̂ − θ                                                                                                (1.3) 

 

(1.3) no’lu eşitlikteki parametreler arasındaki fark olarak ifade edilir. Ana kütleden, tamsayımla 

bütün örneklerin incelenmesi durumunda örnekleme hatası ortadan kalkar. Diğer bir ifadeyle, 

örnekleme hatasının ortadan kalkması ancak tüm ana kütlenin alınması ile mümkündür. 

Örnekleme hatası, tahmin hatası ve seçim hatası olmak üzere ikiye ayrılabilir. Tahmin hatası, 

rastgele alınan örnekten kaynaklanan hatayı ifade eder ve tahmin hatasını azaltmak için örnek 
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hacmi artırılır. Seçim hatası ise yanlış seçim kriterlerinin kullanılması durumunda ortaya çıkar. 

(Özdemir, Tekin ve Esin, 2015).  

 Diğer hata ise örnekleme dışı hatadır. Bu hata ana kütleden alınabilecek bütün 

örneklerinin incelenmesi durumunda bile ortaya çıkabilir. Bilimsel çalışmalarda genellikle 

örnekleme dışı hataların küçük olması istenir. Örnekleme dışı hatalar da gözlem hatası ve 

gözlem yapamama hatası olarak ikiye ayrılır. Gözlem hatası, veriler elde edildiğinde ve 

kaydedilme esnasında ortaya çıkar. Bunlar, örneğe dahil etme hatası, ölçüm hatası ve işlem 

hatasıdır. Gözlem yapamama hatası ise birimlerden gerekli ölçümlerin yapılmaması durumunda 

ortaya çıkar. Bunlar, kapsam dışı bırakılma hatası ve anket formlarına cevap verilmeme 

hatasıdır. Toplam hatanın unsurlarına ayrılması şematik olarak Şekil 1. 2’ de verilmiştir.  

 

                                                                 Toplam Hata 

 

                                     Örnekleme hatası                              Örnekleme dışı hatalar 

                     Tahmin hatası       Seçim hatası       Gözlem hatası        Gözlem yapamama hatası 

                                                           

                                                            1) Örneğe dahil etme hatası           1) Kapsam dışı bırakılma 

                                                            2) Ölçüm hatası                              2) Cevaplamama hatası 

                                                             3) İşlem hatası 

Şekil 1.2. Toplam hata şeması 
  

 Örnekleme yöntemleri, istatistik biliminin gelişmesi ve bilgisayar teknolojisinin 

ilerlemesiyle birlikte son 50-60 yıl içerisinde her geçen gün daha da kullanılmaya başlanmıştır. 

Hauser (1941), 1940’larda yapılan nüfus sayımında, örnekleme yöntemleri kullanımının, 

gelecekteki nüfus sayımlarına öncülük edeceğini ve örnekleme yöntemleri kullanımının 

istatistikçiler ve sosyal bilimcilerin yanı sıra kamu ve özel sektör için de yararlı olduğunu 

belirtmiştir. Tarımsal ekonomi bürosu olasılıklı örneklemeye dayalı büyük bir araştırmaya karar 

verdi. Böylece tüm ülkeyi kapsayacak olan ‘’ana’’ örnek diye bilinen çalışmaya başlandı. Bu 

çalışma, 1945 yılında ana örnek geliştirmek için nüfus sayımı bürosu ile tarımsal ekonomi 

bürosunun birlikte çalışmasına neden oldu. Sonuç olarak ana örneğin kapsamı tüm ana kütleyi 

temsil edecek şekilde genişletildi (King ve Jessen, 1945). Nüfus sayımı bürosu genel amaçlı 

olarak kullanılacak olan genişletilmiş ve iyileştirilmiş örneği tanıttı (Sukhatme, 1954).  

 Modern çağın getirmiş olduğu kolaylıklar sayesinde bilgisayar kullanımının artmasıyla 

birlikte yeniden örnekleme yöntemleri ortaya çıkmıştır. Kullanılan paket programlarındaki artışla 
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birlikte, bir istatistiğin dağılımını tahmin etmek için normal dağılım şartı yerine, hem normal 

hem de normal olmayan dağılımlar için istenilen sonuçları sağlayan yeniden örnekleme 

yöntemleri kullanılmaya başlanmıştır (Kelly, 2000). Efron (1979) bootstrap üzerine yapmış 

olduğu bir çalışmada; doğrudan kuramsal hesap, monte carlo ve taylor yöntemleri ile bootstrap 

dağılımını elde etmeyi açıklamıştır. Ayrıca örnek hacmini artırmadan ana kütle parametresi ile 

tahmin edici arasındaki sapmanın azalacağından bahsetmiştir. 

  Efron ve Tibshirani (1986) ise çalışmalarında; tahmin edicinin, parametre için doğru bilgi 

taşıyıp taşımadığına cevap aramak üzere, standart sapmanın bootstrap tahminini ele almışlardır. 

Ayrıca jackknife yöntemi ile bootstrap yöntemleri arasındaki ilişkiyi de incelemişlerdir. 

Bootstrapta güven aralığı yöntemlerine değinerek, bootstrap tekrar sayısının büyük olması 

gerektiğini vurgulamışlardır. Diciccio ve Tibshirani (1987) ise farklı bootstrap güven aralıklarını 

ele almışlardır. Efron (1990) bootstrap tekrar sayısında azaltmaya giderek daha etkili bootstrap 

hesaplamaları yapmış ve bootstrap tekrar sayısında farklı görüşler bildirerek bu sayının 50 ile 

200 arasında olmasının yeterli olduğunu belirtmiştir. Efron (1994) jackknife standart sapma 

değerlerinin nasıl tahmin edileceğini açıklamıştır. 

  Bu tez çalışmasında örneklemenin amacına ve literatürde var olan temel örnekleme 

yöntemlerine değinilerek, yeniden örnekleme yöntemleri incelenmiştir.  

 

1.1. Örnekleme Yöntemlerinin Genel Özellikleri, Örnekleme Yapmanın Aşamaları, 

Verilerin Elde Edilmesi, Örneklemenin Avantajları, Merkezi Limit Teoremi  

 

1.1.1. Örnekleme Yöntemlerinin Genel Özellikleri 

 

 Ana kütleyi oluşturan tüm birimler üzerinde araştırma yapmak zaman ve maliyet 

açısından zordur.  Bu nedenle örnekleme yapmak çoğu kereler zorunludur. Ana kütleden alınan 

bir örneğin, ana kütleyi temsil yeteneğinin ve büyüklüğünün yeterli olması gerekir (Tekin, 2014). 

Temsil yeteneğiyle anlatılmak istenen, ana kütlenin bütün özelliklerini yansıtacak bir örnek 

olmasıdır.  Örnek büyüklüğünün yeterli olması durumu ise güvenilir tahminler yapabilecek kadar 

büyüklükte örnek olmasıdır. Bu iki özelliği taşıyan bir örnekleme yapabilmek için kullanılan 

örnekleme yöntemleri; tesadüfi örnekleme yöntemleri (olasılıklı örnekleme) ve tesadüfi olmayan 

örnekleme yöntemleri (olasılıklı olmayan) olmak üzere iki başlık altında incelenir. Tesadüfi 

örnekleme yöntemlerinde, ana kütledeki her bir birimin örneğe girme şansı eşittir. Diğer bir ifade 

ile bu örnekleme yönteminde yanlılığa yol açabilecek faktörler elemine edilmekte ve araştırıcının 

iradesi örneklemeye karışmamaktadır. Ana kütleyi oluşturan birimler arasında herhangi bir 
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farkın gözetilmediği ve tamamen olasılık teorisine dayalı bir örnekleme yöntemidir. Basit 

Tesadüfi Örnekleme, Tabakalı Örnekleme, Sistematik Örnekleme ve Küme Örneklemesi 

olasılıklı örnekleme yöntemleri grubunda yer almaktadır.   

 Tesadüfi olmayan örneklemede ise ana kütleden alınacak örneklem birimlerinin örneğe 

girme şansı eşit değildir. Bu yöntemlerde örneklem birimler araştırmacının kendi iradesine bağlı 

olarak belirlenir. Kota Örneklemesi, Keyfi Örnekleme ve Kartopu Örneklemesi Tesadüfi 

olmayan örnekleme yöntemlerindendir. 

 

1.1.2. Örnekleme Süreci 

 

 Örnekleme süreci aşağıdaki gibi özetlenebilir. 

1) Amaç belirlenir (araştırma hangi amaç üzerine yapılacak). 

2) Araştırmanın planı ortaya konulur. 

3) Ana kütle tanımlanır. 

4) Araştırma için gereken veri toplanır. 

5) Araştırmanın yapılacağı güven seviyesi ve hata payı belirlenir. 

6) Belirli bir çerçeve oluşturulur ve örneklem büyüklüğü belirlenir. 

7) Örnekleme yöntemi seçilir. 

8) Çözümleme ve istatistik değerlendirmeler yapılır. 

 

1.1.3. Verilerin Elde Edilmesi 

 

            Veri toplamada kullanılan yöntemler, araştırmanın amacına ve araştırma için gerekli olan 

zaman, maliyet ve işgücüne bağlıdır. Veriler, birincil ve ikincil veri olmak üzere 

sınıflandırılabilir. Araştırmacının kendisinin toplamış olduğu veriye birincil veri denir. Anket 

(soru kağıdı) ve görüşme (mülakat) birincil veri toplama yöntemi arasında sayılabilir. İkincil veri 

ise başka bir araştırmacı tarafından daha önceden kullanılan veriler veya kurumlar tarafından 

önceden toplanıp yayınlanan verilerdir (Özdemir, Tekin ve Esin, 2015). Bu verilerin toplanması, 

tamsayım veya örnekleme yoluyla elde edilir. Tamsayımda ana kütledeki tüm birimleri 

kullanarak ana kütle hakkında tam ve kesin bilgi elde edilse de; maliyet, zaman, işgücü, tüm 

birimlere ulaşamama ve verilerin güncelliğini yitirmesi gibi sorunlar nedeniyle tamsayım her 

zaman mümkün olmamaktadır (İşçil, 1977). 
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Verilerin örnekleme yoluyla elde edilmesinde ise örneklemin temsil yeteneğinin güçlü olması, 

yeterli büyüklükte olması ve deneklerin rasgele alınması gibi durumlara dikkat edilmelidir. 

(Yoğurtçugil, 1976). 

 

1.1.4. Örneklemenin Avantajları 

 

Ana kütleden bilgi toplamak yüksek maliyetli olabileceği gibi belirli bir zaman içerisinde 

gerçekleştirilmesi de mümkün olmayabilir. Bu nedenle örnekleme yapılması, zamandan ve 

işgücünden tasarruf sağlayarak çalışmanın maliyetini düşürür. Diğer yandan bazı araştırmalarda 

örnekleme yapmanın tek seçenek olması söz konusudur (Çil, 2000). 

 

İstatistik yöntemlerin amaçlarından birisi de bilinmeyen ana kütle parametrelerini tahmin 

etmektir. Tahmini yapılan ana kütle parametresi nokta tahmini olarak kabul edilir. Örnekleme 

dağılımları ise bir ana kütleden çekilebilecek mümkün ve muhtemel tüm örneklerden 

yararlanılarak oluşturulan teorik dağılımlardır ve hipotez kontrolü için gereklidir. N sayıdaki bir 

ana kütleden iadeli (yerine koyarak) ve iadesiz (yerine koymadan) olarak alınan n sayıdaki 

mümkün olan tüm örneklerin sayısı, iadesiz örneklemede C(𝑁
𝑛
) = 

𝑁

𝑛!(𝑁−𝑛)!
  kombinasyonu 

şeklinde olurken, iadeli örnekleme Nn’ dir (İşçil, 1975).  İstatistiklerden hareketle, ana kütle 

parametreleri hakkında genelleme yapmanın yolu örnekleme dağılımlarından geçmektedir. 

Ancak bu tür örnekleme dağılımlarının oluşturulması oldukça zor olduğundan uygulamada 

örnekleme dağılımları oluşturulmadan işlemler sürdürülür (Gürsakal, 1998). 

 

1.1.5. Merkezi limit teoremi 

 

 Örnekleme dağılımları, ana kütleden n hacimli mümkün olan sayıda veya tüm örneklerin 

çekilmesi ile oluşturulur. (Çömlekçi, 1988). Ancak bilimsel araştırmalarda, ana kütleden n 

hacimli tüm örneklerin çekilmesi pratikte mümkün değildir. Bu nedenle, hesaplamalar için 

gerekli olan standart hata, normallik varsayımı üzerine kurulu merkezi limit teoremine 

dayanılarak elde edilebilir. Merkezi limit teoreminde, yeterince büyüklükteki örneklerde,  

birbirinden bağımsız ve aynı dağılımı gösteren tesadüfi değişkenlerin aritmetik ortalamasının, 

yaklaşık olarak normal dağılım gösterdiği varsayılır. n sayısı ne kadar artarsa, değişkenlerin 

ortalamalarının dağılımı da normal dağılıma o kadar yaklaşır. Aynı durum, standart sapma için 

de geçerlidir. Böylece Merkezi limit teoremi gereğince, ortalama 𝜇 ve varyansı 𝜎2 olan herhangi 
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bir ana kütleden iadeli (yerine koyarak) olarak alınan n hacimli örneklerin ortalaması, ortalama 𝜇 

ve varyansı 
𝜎2

𝑛
 olan normal dağılım göstermektedir (Serper, 1996). 

 

1.2. Tahmin Edicilerin Özellikleri 

   

 Örnekleme teorisinde tahmin edici kavramı, parametre değerlerini hesaplama veya 

tahmin yöntemini ifade eder. Ana kütle parametrelerine ilişkin nokta tahmin edicilerin yanı sıra, 

parametrelerin gerçek değerine ilişkin güven aralığı da oluşturulmak istenir. Diğer yandan 

yapılacak olan tahminin, ana kütle parametresinin gerçek değerine yakın olması ya da parametre 

etrafında dar bir alanda değişim göstermesi istenir. Ana kütle parametresine yakınlık, örneklerin 

dağılımlarının ortalaması ve varyansıyla ölçülür (Tarı, 2014).  İyi bir nokta tahmin edicisinde 

istenilen özellikler, örnek büyüklüğüne göre küçük ve büyük örnek özellikleri olmak üzere ikiye 

ayrılır.  

Küçük örnekten elde edilen bir tahmin edicide istenilen özellikler; Sapmasızlık (sistematik 

hatasızlık, eğilimsizlik), En küçük varyans, Etkinlik ve Yeterliliktir. 

Büyük örnekten elde edilen bir tahmin edicide istenilen özellikler ise; Asimptotik sapmasızlık, 

Tutarlılık ve Asimptotik etkinliktir. 

 

1.2.1. Küçük Örnek Özellikleri 

 

1.2.1.1. Sapmasızlık (Yansızlık) 

 

 Sapma, bir tahmin edicinin beklenen değeri ile ana kütle parametresi arasındaki farktır. 

Sapmasızlık ise bir tahmin edicinin beklenen değeri için tahmin edilecek ana kütle 

parametresinin gerçek değerine olabildiğince yakın veya eşit olmasıdır. 𝜃 parametresinin tahmin 

edicisi 𝜃 olduğunda, tahmin edicinin beklenen değeri, ana kütle parametresine eşit (E(𝜃) = 𝜃) ise  

𝜃, 𝜃 nın sapmasız tahmin edicisidir (Çakır, 2000). Sonsuz veya sonsuza yakın sayıda örnek 

alındığında, tahmin edici ortalama olarak ele alınır ve tahmin edicinin gerçek parametre değerine 

yaklaştığı söylenebilir. 
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1.2.1.2. En Küçük Varyans 

 

 Sapmasızlık yalnızca ortalamaya dayandığından yeterli olmayabilir. Ancak küçük bir 

varyans ile bir arada olduğunda anlamlı olabilir. Aynı parametre için tahmin edicilerden, en 

küçük varyanslı olan iyi bir tahmin edici olarak kabul edilir (Tarı, 2014).  

 

 

 

 

 

 

                                        

(a)                                                      (b) 

Şekil 1.3. a-sapmasız ve büyük varyans (a), a-sapmalı ve küçük varyans (b) 

 

Şekil 1.3’ de gösterilen tahmin ediciler tercih edilmez. 

 

1.2.1.3. Etkinlik 

 

 Bir ana kütle parametresinin tahmini için aynı anda birden fazla sapmasız ve tutarlı 

tahmin ediciler oluşturulmuş olabilir. Bu tahmin ediciler içinde hangisinin seçileceği sorusunda 

cevap iyi bir tahmin edicide bulunması gereken ‘‘etkinlik‘’ özelliğidir (İşyar, 1999). Etkinlik için 

sapmasızlık ve en küçük varyanslılık özelliklerine bakılır. 𝜃 ’nın sapmasız ve en küçük varyanslı 

tahmin edici olması durumunda, 𝜃 ’nın etkin bir tahmin edici olduğu varsayılır. Ayrıca etkin 

tahmin ediciye herhangi bir sapmasız tahmin edici arasında en düşük varyansa sahip tahmin edici 

de denir. 

 

1.2.1.4. Doğrusal En İyi Sapmasızlık (DEST)  

 

 İyi bir tahmin edici, doğrusal sapmasız tahmin ediciler arasında en küçük varyanslı 

olmalıdır. Diğer bir ifade ile hem doğrusal hem sapmasız hem de diğer sapmasız tahmin ediciler 

arasında en küçük varyansa sahip olan bir tahmin edici doğrusal en iyi sapmasızdır (Tarı, 2014). 
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1.2.1.5. Ortalama Kare Hata (OKH) 

 

 Ortalama Kare Hata, tahmin edicinin, ana kütle parametresi (𝜃) ile olan farklarının 

karelerinin beklenen değeri olarak ifade edilir. Bu durum genelde sapmasızlık ve en küçük 

varyans özelliklerinin bir arada olmadığı durumlarda geçerlidir. Ortalama kare hata, sapmasızlık 

ve en küçük varyans özelliklerinin bileşimidir. Ortalama kare hata eşitlik (1.4)’ de verilmiştir. 

 

 OKH(𝜃)= E(𝜃 − 𝜃)2                                                                                                       (1.4) 

 

Sapmasız büyük varyanslı ve sapmalı küçük varyanslı tahmin ediciler arasında, Ortalama kare 

hatası en küçük olan tahmin edici seçilir. Ancak modelin amacı bağımlı değişken için yapılan 

tahminlere kesinlik sağlamak ise en düşük varyanslı ancak sapmalı tahmin edici tercih edilebilir 

(Tarı, 2014). 

 

1.2.1.6. Yeterlilik  

 

 Bu özellik tahmin edicinin, tahmini yapılacak ana kütle parametresi hakkında örnek 

üzerinde var olan bütün bilgiyi kullanmasıyla gerçekleşir. Yani tahmin edilmek istenen ana kütle 

parametresi hakkında daha fazla bilgi anlatılmayacağı, gelinen son noktaya ulaşıldığı anlamına 

gelir. Örneğin merkezi eğilim ölçülerinden parametrik ortalamalar (Aritmetik Ortalama) 

örnekteki tüm bilgiyi kullandığından bir tahmin edici için yeterli bir özelliğe sahipken, merkezi 

eğilim ölçülerinden parametrik olmayan ortalamalar (Mod, Medyan) ise serideki tüm bilgiyi 

kullanmadığından ana kütle ortalamasının yeterli bir tahmin edicisi değildir. 

 

1.2.2. Büyük Örnek Özellikleri 

 

 Tahmin edicide istenilen özellik küçük örneklerde sağlanmadığı durumlarda, büyük 

örnek özelliklerine bakılır. Tahmin edici sapmalı olduğunda ve örnek büyüklüğü artırıldığında 

bu tahmin edicinin daha az sapmalı olmasını sağlanır ve bu dağılımın ortalaması da ana kütle 

parametresinin değerine yaklaşır. Bu durum asimptotik dağılım olarak adlandırılır. 
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1.2.2.1. Asimptotik Sapmasızlık 

 

 θ̂ tahmin edicinin asimptotik ortalaması, ana kütle parametresi 𝜃’ya eşitse bu tahmin 

edici asimptotik sapmasız tahmin edici olur. Küçük örneklerin sapmasız olması aynı zamanda 

asimptotik sapmasız olarak da kabul edilir. Örnek büyüklüğü artırıldığında, sapmanın örnekleme 

dağılımındaki değişkenliği de azalır bu nedenle tersi geçerli olmaz. Sapmasızlık durumu büyük 

örneklerde zayıf bir durumdur. 

 

1.2.2.2. Tutarlılık 

 

 θ̂  tahmin edicisi, asimptotik sapmasız ve örnek büyüklüğü sonsuza giderken varyansı da 

sıfıra yaklaşıyorsa bu tahmin edicinin tutarlılık özelliğini taşıdığı varsayılır. Bu özellik aşağıdaki 

gibi gösterilir.  

 

 lim
𝑛→∞

𝑃(|𝜃 − 𝜃| ≤ 𝑏) = 1                                                                                          (1.5) 

  

 lim
𝑛→∞

𝑉𝑎𝑟(𝜃) = 0                                                                                                       (1.6) 

 

Eşitlik 1.5’ de  b, tahmin ediciyle gerçek değer arasındaki farkın b gibi küçük bir değerden küçük 

olma olasılığını ifade eder.  

 

1.2.2.3. Asimptotik Etkinlik 

 

 Tutarlı tahmin ediciler arasında en küçük asimptotik varyanslı tahmin ediciye asimptotik 

tahmin edici denir. n sayısı arttıkça en küçük varyansa sahip tahminci, en etkin tahminci olur ve 

buna asimptotik olarak etkili hata kareler tahmini adı da verilir. Yani 𝜃’nın asimptotik etkin bir 

tahmin edici olması için hem tutarlı hem de başka bir tutarlı tahmin ediciye göre daha düşük 

varyanslı olması istenir. 
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2. MATERYAL VE YÖNTEM 

 

2.1. Basit Tesadüfi Örnekleme Yöntemi 

 

 Basit tesadüfi örnekleme yöntemi, tesadüfi örnekleme yöntemleri içerisinde yer alan en 

temel ve en çok kullanılan örnekleme yöntemi olup, diğer örnekleme yöntemlerinin de temelini 

oluşturur (Özdemir, Tekin ve Esin, 2015; Yay, 2003; Yamane, 2010).  

 Basit tesadüfi örneklemede, ana kütleyi oluşturan her örnekleme birimine eşit şans tanınır 

(Tekin, 2014). Diğer bir ifadeyle örnek oluşturmak için, örneğe alınacak birimlerin 

oluşturulmasında, birimler arasında herhangi bir fark gözetilmez. Basit tesadüfi örneklemeye N 

çaplı ana kütleden alınacak n çaplı mümkün örneklerin her birinin örneğe girmede eşit seçilme 

şansına sahip olduğu seçme yöntemi de denir (Özdemir, Tekin ve Esin, 2015). Basit tesadüfi 

örneklemede örnek seçimi, yerine koyarak ve yerine koymadan yapılan seçme yöntemi olarak iki 

şekilde ifade edilir. 

 

2.1.1. Yerine Koyarak Seçim Yöntemi 

 

 Bu seçme yönteminde N çaplı ana kütleden, n çaplı örnek, yerine koyarak yapılan seçme 

yöntemiyle seçildiğinde, seçilebilecek tüm mümkün örneklerin sayısı, 

 

 𝑁 ∗ 𝑁 ∗ 𝑁 ∗ …∗ 𝑁 = 𝑁𝑛⏟                
𝑛 𝑡𝑎𝑛𝑒

                                                                                                (2.1) 

 

olarak ifade edilir. Böylece işlem yerine koyarak yapıldığında her bir n çaplı mümkün örneğin 

örneğe girme olasılığı  
1

𝑁𝑛
 olur (Özdemir, Tekin ve Esin, 2015).  

 

2.1.2. Yerine Koymadan Seçim Yöntemi 

 

 Yerine koymadan seçim yönteminde ise N çaplı bir ana kütleden, n hacimli örnek, yerine 

konmadan çekildiğinde, örnek birimlerinin seçilme sıraları göz ardı edilir. Bu durumda, örneği 

oluşturan n biriminin, n! kadar farklı bir sıralaması yapıldığından, mümkün olan örnek sayısı, 

 

 N*(N-1)*(N-2)*…*(N-n+1)*
1

𝑛!
 =(𝑁

𝑛
)                                                                            (2.2) 
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olarak ifade edilir. Böylece her bir n hacimli örneğin alınma olasılığı 
1

(𝑁𝑛)
 olur. Diğer bir ifadeyle 

örneklem birimin alınması, yerine konmadan (iadesiz) yapıldığında, birinci birimin çekilme 

durumu 
1

𝑁
, ikinci birimin çekilme durumu 

1

𝑁−1
 ve üçüncü birimin çekilme durumu 

1

𝑁−2
  olarak 

gerçekleşir. 

 Örneklem birimi seçimi sırasında, yanlılıktan kaçınmak için sistemli ve bilinçli bir çaba 

gerekebilir. Örneğe girecek her birime eşit şans tanınmalıdır. Bunun için kura yöntemi veya 

tesadüfi sayılar tablosuna başvurulur (Sümbüloğlu ve Sümbüloğlu, 2005). Farklı tesadüfi sayılar 

tablosu olmasına rağmen, büyüklük bakımından en uygun olanı Kendall ve Smith’in Tesadüfi 

sayılar tablosudur (Kendall ve Smith, 1954). Bilinen diğer iki tablo ise 105000 tesadüfi basmağa 

sahip Interstate commerce commision tablosu (1949) ile bir milyon basamağa sahip Rand 

Corporation (1955) tesadüfi sayılar tablosudur. Ayrıca on binlik ve yüz binlik tesadüfi sayılar 

tablosu da bazı istatistik kitaplarında mevcuttur. 

 Basit tesadüfi örnekleme yöntemi, tesadüfi örnekleme yöntemi olduğundan, bu yöntemde 

her birimin örneğe girme şansı eşittir. Ana kütle çok büyük olmadığında birimlerin örneğe 

alınması, istatistik değerlendirmeler ve sonuçların yorumlanması kolayca yapılabilmektedir. 

Basit tesadüfi örneklemede, örneklemeye başlamadan önce ana kütle birimlerinin listesi gerekir, 

listenin olmaması durumunda yeni bir listenin hazırlanması için araştırma yapılır. Ana kütle 

büyük olduğunda (örneğin 1000) birimleri listelemek ve seçim zorlaşabilir. Diğer yandan, 

araştırmada kullanılacak olan örneklem birimi, bireyler ise ve bu bireyler çok geniş ve farklı 

yerlerde yaşıyorsa, bunlara ulaşmak maliyet ve zaman açısından zor olabilir. Basit tesadüfi 

örnekleme yöntemini kullanmanın en önemli sakıncası, ana kütledeki birimlerin belirli 

özelliklere göre sınıflandırılamaması olarak düşünülebilir. Ayrıca basit tesadüfi örnekleme 

yöntemi ile seçilecek birimler, grupları eşit oranda temsil etmeyebilir. Bu gibi durumlarda 

tabakalı örnekleme yöntemini kullanmak daha uygun olabilir. (Sümbüloğlu ve Sümbüloğlu, 

2005). 

 

2.2. Sistematik Örnekleme 

 

 Sistematik örnekleme yöntemi, tesadüfi olan örnekleme yöntemleri arasında yer alır. 

Birimlerin her birisinin eşit şansla örneğe girmesine olanak sağlar. Sistematik örnekleme 

yöntemi, aynı zamanda basit tesadüfi örneklemeye alternatif olarak geliştirilen bir yöntemdir 

(Özdemir, Tekin ve Esin, 2015). 
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 Ana kütle büyük olduğunda, örneklem birimlerinin basit tesadüfi örnekleme yöntemiyle 

belirlenmesi zor olabilir. Bu durumda, basit tesadüfi örnekleme yapmak yerine sistematik 

örnekleme yapılabilir. Sistematik örnekleme, tabakalı örnekleme ve küme örneklemesi 

yöntemleriyle birlikte de kullanılabilir. Daha çok abonelik kayıtlarında, alan araştırmalarında, 

özellikle anketörlerin profesyonel istatistikçiler olmaması durumunda ve örneğin çekilmesi güç 

ya da olanaksız olduğu durumlarda sistematik örnekleme kullanılabilir. 

 Sistematik örneklemede, birimler numaralandırılarak, başlangıç sayısı tesadüfi olarak 

belirlenir. Böylece ilk birim, ana kütleden tesadüfen alınmış olur. Diğer birimlerin alınma işlemi 

ise sistematik olarak yapılır. Örneğin, 40 bin üyenin olduğu bir halk kütüphanesinde, hizmet 

kalitesini artırmak amacıyla memnuniyet düzeyinin araştırılması istensin. 1000 üyeden oluşan bir 

örnek alınmak istendiğinde, basit tesadüfi örnekleme uygulamak zaman alıcı olabilir. Bunun 

yerine sistematik örnekleme kullanılabilir, n hacimli bir örnek için tek bir tesadüfi sayı 

kullanılarak örneklem birileri alınabilir. Örneğin her 40 üye arasından 1 üye seçilebilir. İlk üye 

tesadüfi sayılar tablosu kullanılarak belirlenir ve bundan sonraki üyeler bu sayıya 40 eklenerek 

belirlenir. Tesadüfi olarak alınan ilk üyenin 15 no’lu üye olduğu varsayılırsa; 40 üye eklenerek; 

15, 55, 95, 135,…, no’lu üyeler alınarak işlem yürütülür 

 Sistematik örneklemede, aralık büyüklüğü (sistematik örnek sayısı, k), ana kütle birim 

sayısının (N), olması istenilen örneklem büyüklüğüne (n) bölünmesiyle (k=N/n) ya da sistematik 

örnek sayısı verilmiş ise her bir sistematik örnekte olması gereken örnek çapı, ana kütledeki 

birim sayısının sistematik örnek sayısına bölünmesiyle elde edilir (n=N/k). Örneğin 

2000/20=100 yani her yüz birimden birisinin örneğe alınması işlemidir (Özdemir, Tekin ve Esin, 

2015). Aynı zamanda bu yöntem ‘’k’de 1 örnek’’ denilerek ifade edilebilir (100’de 1 örnek). 

Basitçe örnekleme kesrinin 
1

𝑘
  olduğu anlamına gelir. 

 

2.2.1. Sistematik Örnekleme Süreci 

 

  Sistematik örnekleme süreci aşağıdaki gibi özetlenebilir: 

• İlk olarak n büyüklüğünde bir örnek hacmi belirlenir. 

• N hacimli ana kütlenin her biri k=
𝑁

𝑛
 tam sayıda birim içeren tabakaya veya kümeye 

bölünür. 

• 1, 2,…, k sayı arasından 
𝑁

𝑛
=k tesadüfi olarak alınır. Bu birim, örneği oluşturacak birinci 

birimin sıra numarasını oluşturur. 
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• Bundan sonra örneğe girecek birimleri takip ederek oluşturulan sıra numaraları a, a+k, 

a+2k, …, a+(n-1)k ifadedeki gibi örneğe alınarak istenilen n hacimli örnek oluşturulur. 

• Oluşturulan örnekten elde edilen bilgiler kullanılarak gerekli istatistikler hesaplanır ve bu 

istatistikler yardımıyla ana kütle hakkında uygun değerlendirmelerde bulunulur. 

 Sistematik örneklemede, ana kütle birimleri tesadüfi olarak sıralandığında, basit tesadüfi 

örneklemeye yakın duyarlılık düzeyi sağlanır. Uygulama alanlarından biri olan orantılı tabakalı 

örneklemede her tabakadaki örnekleme birimleri tesadüfi olarak sıralandığında, (örneğin 

işletmeler, büyük, orta ve küçük olarak tabakalandırılabilir) basit tesadüfi örnekleme yerine 

sistematik örnekleme de kullanılabilr. Böylece basit tesadüfi örneklemeye yakın bir duyarlılık 

sistematik örnekleme ile sağlanabilr (Yamane, 2010). Diğer bir uygulamada ise harita, plan ve 

kroki üzerinde; her aşamada daha alt kümelere ayrılarak, bunlar içerisinden örnekleme yapabilir. 

Sistematik örnekleme, ayrıca çerçevenin bulunmadığı durumlarda ve hareketli ana kütle 

örneklemelerinde de kullanılabilir.  

 

2.2.2. Sistematik Örnekleme Yapmanın Avantajları 

 

 Sistematik örneklemenin avantajlarını aşağıdaki gibi sayılabilir. 

1. Sistematik örneklemede, birimlerin örneğe alınması kolaydır. Başlangıç noktası 

belirlendikten sonra, kolay uygulanan bir yöntem olup, basit tesadüfi örneklemeye göre 

daha az uygulama hatası içerir. 

2. Alınan örnek genel olarak ana kütle üzerinde geniş dağılım gösterir. Çerçeveye ihtiyaç 

duymaz. Bu nedenle ana kütleyi daha iyi temsil eder. 

3. Maliyet ve zaman açısından, sistematik örnekleme, basit tesadüfi örneklemeye göre 

avantaj sağlar. 

4. Koşullar sağlandığında, sistematik örnekleme, basit tesadüfi örnekleme yerine 

kullanılabileceği gibi diğer örnekleme yöntemleri ile birlikte de kullanılabilir. 

 

2.2.3. Sistematik Örneklemenin Dezavantajları 

 

Sistematik örneklemenin dezavantajları ise aşağıdaki gibi sıralanır. 

a) Sistematik örneklemede, tek bir sistematik örnek ile ana kütle ortalamasının tahmin 

edicisinin varyansı tahmin edilemez. 

b) Ana kütledeki birimler periyodik olarak değişim gösteriyorsa, (örneğin bir bankanın iş 

yükünü araştırmak için haftanın sadece bir günü incelensin ve başlangıç noktası çarşamba 
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olsun) her seferinde aynı döngü ortaya çıkar ve kısır döngü oluşur, böylece elde edilen 

sonuçların güvenirliği azalır (Sümbüloğlu ve Sümbüloğlu, 2005; Özdemir, Tekin ve Esin, 

2015). 

 

 2.3. Tabakalı Tesadüfi Örnekleme 

  

 Örneklemede, ana kütleden alınacak birimlerin, ana kütleyi en iyi şekilde temsil etmesi 

istenir. Ancak, bazı özellikler için ana kütle, ilgilenilen özellik bakımından homojen olmayabilir. 

Örneğin bireylerin yaşı, cinsiyeti, mesleği, sosyo-ekonomik durumu ve kültürel özellikleri ana 

kütlenin homojenliğini etkileyebilir. Böyle bir durumda basit tesadüfi örnekleme ya da 

sistematik örnekleme yerine tabakalı örnekleme daha uygun olacaktır (Sümbüloğlu ve 

Sümbüloğlu, 2005). Örneğin, çiftçilerin üretmiş oldukları ürünlere ilişkin yapılacak araştırmada, 

eğitim düzeyi etkili ise ve çiftçiler de eğitim düzeyi bakımından farklı ise Basit tesadüfi 

örnekleme ile eğitim düzeyi yüksek ya da düşük olanların örnekte eşit oranda veya dengeli 

olması sağlanamayabilir. Bu durumda tabakalı örnekleme yönteminin tercih edilmesi daha uygun 

olacaktır. 

 Tabakalı örneklemede ana kütle, homojenliği bozan faktöre göre kendi içerisinde 

homojen olan ve tabaka olarak adlandırılan gruplara ayrılmaktadır. Her bir tabaka, bir ana kütle 

gibi düşünülerek, birimler bağımsız olarak alınmakta ve tabakadan elde edilecek tahminler de 

ayrı ayrı yapılmaktadır. Tabakalı örneklemede hesaplanacak ana kütle ortalamalarının tahmin 

edicileriyle daha düşük varyanslar elde edilebilir. Diğer bir ifade ile tabakalamada yapılacak 

tahminlerin varyansları küçülecektir (Kish, 1965). 

 Ana kütleyi tabakalara ayırmada, homojenliği bozan faktörlerden hangisinin dikkate 

alınması gerektiği önemlidir. Örneğin kadınların işgücüne katılım oranının araştırılmak istendiği 

bir araştırmada; örnekleme yapılırken, kadınların eğitim düzeyi, yaşı ve ya sosyo-ekonomik 

özelliklerinden hangisine göre tabakalama yapılacağına karar vermek önemlidir. (Yamane, 2010; 

Özdemir, Tekin ve Esin, 2015). Ana kütle tabakalara bölündükten sonra, her bir tabakadan 

tesadüfi olarak birimler alınır. 

   

2.3.1. Tabakalı Örnekleme Yönteminin Diğer Yöntemlerle Karşılaştırılması 

 

 Tabakalı örnekleme ile basit tesadüfi örnekleme ve sistematik örnekleme 

karşılaştırıldığında; tabakalı örneklemenin tüm bilgileri kullanması bakımından, diğer 

yöntemlere göre ana kütleyi daha iyi temsil edebilecek örnekler alınabilmesine olanak sağladığı 
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düşünülebilir.  Ana kütle çok geniş olduğunda ve homojenliği bozan faktörler olduğunda, 

tabakalı örnekleme avantajlı olabilir. Ayrıca tabakalı örneklemede, basit tesadüfi örneklemeyle 

göre daha küçük örnek ve daha düşük maliyetle, daha yüksek temsil düzeyine ulaşılabilir (Tekin, 

2014). 

 

2.3.2. Tabakalı Örneklemenin Avantajları 

 

1. Ana kütlenin geniş dağılım göstermesi ve ilgilenilen özellik bakımından homojenliği 

bozan faktörlerin olması durumunda tabakalı örnekleme duyarlılığı artırır.  

2. Her tabakaya ilişkin ayrı ayrı tahminler elde edilmek isteniyorsa, bu yöntem tercih 

edilebilir ve her tabaka içinde farklı örnekleme yöntemleri kullanılabilir. 

3. Ana kütle homojen tabakalara ayrıldıktan sonra yapılacak olan herhangi bir tabakadan 

örnek seçimi sırasında belli bir grubun alınması önlenmiş olur.  

4. Ana kütlede uç değerlerin olması halinde bunlar ayrı bir tabaka olarak gösterilir ve 

değişkenlik azaltılabilir. 

5. Tabaka içi değişkenlik azalacağı için daha etkin tahminler elde edilebilir. 

6. Birçok durumda tabakalama işlemi coğrafi bölgelere, idari gruplamaya, seçim bölgelerine 

veya doğal özelliklere göre tabakalara ayrılır. Bu durum genellikle maliyet ve kolaylık 

bakımından tercih edilebilir. 

Tabakalı örnekleme, ana kütlenin tabakalara ayrılması ve ayrılan her tabaka için farklı örnekleme 

yöntemlerinin kullanılabilmesi bakımından, zaman ve maliyetten tasarruf sağlayabilir. Nasıl 

tabakalama yapılacağına istatistikçi ve araştırıcı birlikte karar verebilir. 

 

2.3.3. Tabakalı Örnekleme Süreci 

 

 Tabakalı örnekleme süreci aşağıdaki gibi özetlenebilir. 

✓ N hacimli ana kütle, ilgilenilen özellikler bakımından farklılık gösteren faktöre veya 

özelliğe göre kendi içinde homojen, N1, N2, N3,…, Nh büyüklüğünde tabakalara ayrılır. 

Tabaka hacimleri toplamı ana kütle hacmine eşittir. 

✓ Hiçbir birim dışarıda birim kalmayacak şekilde birimler bir tabakaya atanır.  

✓ Her tabakadan sırayla n1, n2, n3,…, nh büyüklüğünde örnekler, basit tesadüfi örneklemeyle 

alınır ve işlemler yürütülür. 
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2.3.4. Tabakalar arasında örneklem hacminin paylaştırılmasında kullanılan yaklaşımlar 

 

 n birimlik örneğin tabakalara bölünmesiyle örnek çapları nh’ lar (h=1, 2 ,…, L) 

bilinmediğinden ana kütle parametrelerine ilişkin tahmin edici ve varyans hesaplamalarına 

ulaşılamaz. Bu nedenle tabakalı örneklemede en önemli sorunlardan biri n çaplı örneği en doğru 

şekilde tabakalara paylaştırarak, her tabakadan kaç birimlik örnek çekileceğine karar vermektir 

(Yamane, 2010; Özdemir, Tekin ve Esin, 2015). 

 Ana kütle tahmin edicisinin duyarlılığı varyans ile ölçülmektedir ve duyarlılığın yüksek 

olması, tahmin edicinin varyansının küçük olmasıyla ilgilidir (Yamane, 2010). 

 Tabakalar arasında örneklem hacminin paylaştırılmasında kullanılan yaklaşımlar 

aşağıdaki gibidir. 

1. Eşit Paylaştırma 

2. Orantılı Paylaştırma 

3. En Uygun Paylaştırma(optimum) 

4. Neyman Paylaştırma 

 

2.3.4.1. Eşit Paylaştırma 

 

 Eşit paylaştırma, her tabakadan eşit sayıda olacak şekilde örnek hacmi çekme yöntemine 

dayanır. Bilinen en basit ve en çok kullanılan yöntemidir. Bu yöntem, daha çok her bir tabaka 

çapı, tabaka varyansı ve her bir tabakadan çekilen örnek hacminin maliyetinin birbirine yakın 

olduğu durumlarda kullanılır. 

 

2.3.4.2. Orantılı Paylaştırma 

 

 Orantılı paylaştırma yöntemi,  ele alınan n birimlik örneğin tabaka çaplarıyla orantılı 

olarak paylaştırılmasına dayanır. Böylece, çapı büyük olan tabakadan daha fazla, küçük olan 

tabakadan daha az örneklem birimi alınmış olur.  Örnekleme oranı  
𝑛

𝑁
  her tabaka için eşittir. 

1200 birimlik bir ana kütleden, 300 birimlik bir örnek alınmak istendiğinde; ( 
𝑛

𝑁
 = 

300

1200
 = 0,25)  

örnekleme oranı 0,25 olacak ve böylece her tabakanın %25’lik kısmı örneğe girmiş olacaktır. Bu 

yöntem, daha çok tabaka çapları ve varyansları birbirinden farklı olduğu durumlarda 

kullanılabilir ve sadece tabaka çaplarına ihtiyaç duyar (Özdemir, Tekin ve Esin, 2015; Yamane, 

2010). 
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2.3.4.3. En Uygun Paylaştırma 

 

 En uygun paylaştırma yöntemi, n birimlik örneği belli bir maliyet fonksiyonu 

doğrultusunda varyansı minimum yapacak şekilde tabakalara paylaştırır. Tabaka çapı, tabaka 

varyansı ve her tabakadan birim seçme maliyetinin birbirinden farklı olduğu durumlarda 

kullanılır. Örneğin saha çalışmalarında, tabakalardan çekilen örnek birimlerin maliyetleri 

farklılık gösterebilir. Kırsal alandaki bir bireyle yapılan görüşme ile kentteki bireyle yapılan 

görüşme farklı maliyet içerebilir. 

 

2.3.4.4. Neyman Paylaştırma  

 

 Neyman paylaştırma, En uygun paylaştırma yönteminin özel halidir. Bazı durumlarda, 

tabaka çapları ve tabaka varyansları birbirinden oldukça farklı olmasına rağmen, her tabakadan 

bir birim seçme maliyeti birbirinden büyük farklılık göstermeyebilir. Bu durumda bu yöntemin 

kullanılması önerilir (Özdemir, Tekin ve Esin, 2015). Örnekleme hacmi sabit olup, örneklemeye 

alınacak birimlerin maliyetleri tabakadan tabakaya değişiklik göstermediği durumlarda 

uygulanır. 

  

2.4. Küme Örneklemesi 

 

 Daha önce bahsedilen örnekleme yöntemlerinde, ana kütleye ait birimlerin listesinin 

mevcut olduğu ve ana kütle çapının mevcut bir alana yayıldığı varsayılmaktadır. Ana kütle 

büyük olduğunda ve geniş bir dağılım gösterdiğinde; geniş bölgeye yayılan birimleri ölçme 

maliyetinin yüksek olması ve uygun çerçeve bulma zorluğu gibi nedenlerle örnekleme yapmak 

güç olabilir (Özdemir, Tekin ve Esin, 2015). Ana kütle kendi içinde belirli bir coğrafi bölgeye 

dağılmışsa veya ortak faktörler bakımından alt gruplara (kümelere) ayırmak mümkünse bu 

durumda küme örneklemesi kullanılabilir. Kümeler arasından tesadüfi örnekleme ile belirli bir 

küme örneği oluşturulur. Örneğe alınacak küme birimlerinin benzer özellik göstermeleri, diğer 

bir ifade kümelerin kendi içerisinde homojen olması istenir (Armutlulu, 1999).  

 Küme örnekleme yönteminde örnekleme birimi kümelerden oluşan ana kütle içinden 

alınır (Tekin, 2014). Küme örnekleme yöntemi, zaman ve maliyet açısından avantaj sağlamasına 

rağmen, diğer örnekleme yöntemlerine göre daha büyük standart hatalar içerebilir. Küme 

örneklemesinde kümenin homojen ya da heterojen olması standart hatayı etkiler.  Buna bağlı 

olarak standart hata büyükse, kümenin benzer özellikler içeren homojen birimlerden oluştuğu 
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söylenebilir. Ancak küme farklı özellikler içeren heterojen birimlerden oluşuyorsa standart 

hatanın daha küçük olduğu söylenebilir (Sümbüloğlu ve Sümbüloğlu, 2005). Bir kümede her yaş 

grubundan öğrenci varsa bu küme heterojen kabul edilir, sadece küçük ya da sadece büyük yaş 

gruplarını temsil eden kümeler varsa da bu kümeye homojen küme olarak kabul edilebilir.  

 

2.4.1. Küme Örneklemesi Süreci  

 

Küme örneklemesi süreci aşağıdaki gibidir. 

• Ana kütle, herhangi bir özelliğe göre değil de, coğrafi (konum) özelliklerine göre 

istenilen sayıda kümeye (gruba) ayrılır. Örneğin, aynı okulda öğrenim gören öğrenciler 

veya aynı okulda görev yapan öğretmenler ya da aynı mahallede yerleşim gösteren 

aileler. Ayrıca istenildiğinde her küme alt kümelere bölünür. 

• Oluşturulan alt kümelerden istenilen sayıda (m) küme tesadüfen alınır. 

• Alt kümelerdeki bütün birimler örneği oluşturur. Oluşturulan alt küme sayısına göre 

küme örnekleme yöntemi, tek aşamalı veya çok aşamalı örnekleme yöntemi olarak 

gruplandırılır. Tek aşamalı küme örneklemesinde örneğe alınacak ‘’m’’ kümeye ait 

bilgilerin tamamı kullanılır. Çok aşamalı küme örneklemesi ise ‘’m’’ kümeden alınan 

birimlerin tekrardan yerine koymadan seçilmesiyle gerçekleştirilir. 

10 bölüm ve her bölümde yaklaşık 50 öğrenci olduğu varsayımı ile küme örneklemesi aşağıdaki 

gibi yürütülebilir.            

  M=10                 1      2      3        4      5      6     7       8     9       10 

                                 

 Ni                

  

 m=4                       N1=54              N4=49              N7=55               N10=50 

 (küme) 

 

 

 ni                                                  n=n1+n2+n3+n4=27 

 

10 bölümden (M=10) örneğin m=4 bölüm (küme) alınsın. M=10, birincil örnekleme birimi (böb) 

olarak adlandırılır. Daha sonra; N1=54, N4=49, N7=55, N10=50 olan m=4 bölümden sırayla n1=6, 

n2=5, n3=7, n4=9 öğrenciden oluşan örnekler alınır. Bu öğrenciler (temel birimler) ikincil 

54 56 51 49 48 52 55 53 47 50 

n1=6, n2=5, n3=7, n4=9 
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örnekleme birimi (iöb) olarak adlandırılır. Burada n1=6, n2=5, n3=7 ve n4=9 olarak gösterilen 

öğrenci grupları, nihai küme olarak nitelendirilir 

 Küme örneklemesi yönteminde, örneklemeye alınacak birimler, yöntemin özelliği gereği 

iki aşamada gerçekleştirilir. İlk olarak M küme “birincil örnekleme birimi’’ olarak adlandırılır. 

M’den, ‘basit tesadüfi örnekleme ile yerine konmadan m örnekleme kümesi alınır. İkinci 

aşamada  ise i’inci böb’den, ni (i=1,2…,m) tane ikincil örnekleme birimi (iöb) örneğe alınır. Bu 

süreç, Şekil 3’te özetlenmiştir.  

 

        M:toplam küme sayısı 

 

        m: örneğe seçilecek                            N2                     N9                             Nm 

              olan küme                ( örneğe seçilen 1. Küme)                 (örneğe seçilen m. Küme) 

 

        n=n1+n2+…+nm                                     n1            …        nj           …            nm 

Şekil 2.1. Küme Örneklemesi Özeti 

 

 Küme örneklemesinde, ana kütle toplamının tahmini iki adımda gerçekleştirilir. Birincisi, 

ana kütle N= N1+N2+…+Nm=∑ 𝑁𝑖
𝑚
𝑖=1  olmak üzere, örnek seçiminde M küme içinden basit 

tesadüfi örnekleme ile yerine koymadan m tane küme toplamı tahmin edilir. Burada tahmin 

edilecek herhangi bir kümenin örneğe girme olasılığı  
1

𝑀
’dir ve (𝑀

𝑚
) tane küme örnek seçilme 

şansı elde eder. İkincisi ise, bu tahmin edilen m kümenin her birinden ni birimin örneğe 

girmesidir. Yani örneğe alınacak m kümenin her birinden ni  iöb’ün seçilmesi ile M kümenin 

toplamını tahmin etmek için kullanılmasıdır. Aynı şekilde i’inci kümeden örneğe girme 

olasılığı 
1

𝑁𝑖
  olur ve i’inci kümeden (𝑁𝑖

𝑛𝑖
)  tane birim örneğe çekilir. (Yamane,2010; Özdemir, 

Tekin ve Esin, 2015). Böylece toplam örnek çapı, 

 

 𝑛 = ∑ 𝑛𝑖
𝑚
𝑖=1                                                                                                                      (2.3) 

 

olarak ifade edilmektedir. 

  

N1 N2 N3 … NM-1 NM 
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2.5. Yeniden Örnekleme Yönteminin Genel Özellikleri 

 

 Son yıllarda ilerleyen teknolojilerle birlikte; örneklem birimi ve örneklem seçimi ile ilgili 

hatalar, yanlı örnekleme yöntemlerinin kullanılması, örneklem büyüklüğünün yeterli olmaması 

ve veri toplamada yapılan hatalar gibi temel örnekleme yöntemlerinin bazı eksiklikleri 

gözlenmiştir (Sümbüloğlu ve Sümbüloğlu, 1997). Temel örnekleme yöntemlerindeki bu eksikleri 

gidermek üzere, yeniden örnekleme yöntemleri geliştirilmiş ve birçok alanda kullanılmaya 

başlamıştır.  

 

Yeniden örnekleme yöntemleri, elde edilen verilerin tekrarlı kullanıldığı, bilgisayara dayalı 

yöntemler olarak bilinir. Bu yöntemler; örnekleme dağılımlarının asimptotik olarak normal 

dağılıma yaklaşmasını temel alarak, klasik analizleri kullanan araştırmacıların standart hata ve 

güven aralıklarını belirlemek için bu yöntemleri sürekli olarak normale yaklaştırma veya merkezi 

limit teoremini kullanma gereksinimlerinde esneklik sağlamıştır (Wang ve Gasser, 1998). 

Asimptotik olarak güvenilir standart hata, güven aralığı ve test istatistiklerinin elde edilmesinin 

zor olduğu durumlarda, yeniden örnekleme yöntemleri tahmin teorisine alternatif olacak şekilde 

deneye dayalı (ampirik) bir yaklaşım olarak tercih edilmekte ve simülasyon gerektirmektedir 

(Davison ve Hinkley, 1994). Yeniden örnekleme yöntemleri, asimptotik hesaplamalar 

aracılığıyla tahmin için bir örnekleme dağılımı oluşturmakta ve geleneksel asimptotiklere göre 

daha doğru sonuçlar vermektedir (Efron ve Tibshirani, 1986; Beşer, 2006).  

 

2.5.1. Yeniden Örnekleme Yöntemi Kullanmanın Gerekçesi  

 

 Yeniden örnekleme yöntemlerinin kullanım avantajları aşağıdaki gibi özetlenebilir (Yu, 

2002). 

 

2.5.1.1. Ampirik (Deneysellik) 

 

 Bilinen klasik yöntemler (temel yöntemler) daha çok teoriye dayanır ve varsayım 

gerektirir. Bu yöntemlerle, örnekten hareketle ana kütle hakkında yorum yapılabilir, ancak ana 

kütleye ilişkin yeterli ve güvenilir bilgi elde edilemediği durumlarda bu yöntemlerin etkinliği 

azalabilir. Bu gibi durumlarda, deneysel (ampirik) yöntemlere dayalı yeniden örnekleme 

yöntemlerinin kullanılması uygun olabilir (Diaconis ve Efron, 1983; Peterson, 1991). 
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2.5.1.2. Tesadüfi Olmayan Örnek 

 

 Klasik örnekleme yöntemleri, örneklemin tesadüfi alınması ilkesine dayanır. Yeniden 

örnekleme yöntemleri, rasgele veya tesadüfi örnekleme koşullarında kullanılabileceği gibi 

tesadüfi olmayan koşullarda da kullanılabilir (Edgington,1995) Böylece, yeniden örnekleme 

yöntemlerini kullanmak daha avantajlı olabilir (Lunneborg, 2000). 

 

2.5.1.3. Büyük Örnek 

 

 Yeniden örnekleme yöntemleri çoğu zaman küçük örnekler için belirgin kolaylık sağlar. 

Aynı zamanda bu yöntemler, büyük örnek genişliklerine de uygulanabilir. Ana kütle alt gruplara 

ayrılarak çapraz geçerlik (cross-validation) ya da bootstrap yöntemleri uygulanabilir. Buna bağlı 

olarak, büyük örnek göz önüne alındığında, testi yapan araştırmacı hiç reddedilmemesi gereken 

bir sıfır hipotezini reddedebilir (Helberg, 1996). Oysaki büyük veri seti, alt gruplara bölünerek 

elde edilecek sonuçlar kullanabilir.  

 

2.5.1.4. Küçük Örnek 

 

 Yeniden örnekleme yöntemlerinin bir amacı da simülasyon yapmaktır. Bu yöntemler, 

küçük örnekler kullanıldığında, daha fazla gözlem oluşturma gücüne sahip olmaları nedeniyle 

avantajlı olabilir (Peddada and Chang, 1996). Ancak, küçük örnekler de her ne kadar parametrik 

varsayımları sağlasa da yeterli sonuçlar elde edilemeyebilir. 

 

2.5.1.5. Dağılım 

 

 Klasik yöntemler, genellikle büyük örneklem genişliklerinde işlem gördüğünden fazla 

varsayım gerektirir. Ancak örneklem küçük olduğunda, yani yeterli büyüklükte olmadığında ve 

parametrik varsayımlar sağlanmadığında yeniden örnekleme yöntemlerinin kullanımı önerilebilir 

(Diaconis & Efron,1983). Böylece az varsayım gerektiren yeniden örnekleme yöntemleri daha 

avantajlı olabilir. 
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2.5.1.6. Tekrarlanabilirlik 

 

 İstatistikte tekrarlanabilirlik, çoğunlukla güven veren bir durumdur. Ancak, çoğu kez 

araştırmacılar tarafından tercih edilmez. Zira tekrarlanabilirlik; daha çok güç, maliyet, zaman ve 

işgücü gerektirebilir. Yeniden örneklemedeki çapraz geçerlilik ve bootstrap gibi tekrarlı 

yöntemler içsel tekrarlardır (Thompson ve Synder, 1997).  

  

2.5.1.7. Varsayım 

  

 Her teori ve yöntem belirli varsayımlara dayanır. Klasik yöntemler, yeniden örnekleme 

yöntemlerine göre daha fazla varsayım içerir. 

 

 2.5.1.8. Genelleme 

 

 Yeniden örnekleme yöntemleri, tek bir örneğe dayalı olması ve sonuçların tek bir örnek 

üzerinden değerlendirilmesi nedeniyle genelleme için yeterli olmadığı yönünde eleştirilmektedir. 

Ancak, Fan ve Wang (1996) test sonuçlarının kararlılığının değerlendirilmesinin çıkarımsal değil 

tanımlayıcı olduğunu belirtmiştir. 

 

2.5.1.9. Doğruluk 

 

 Yeterli deneysel çalışmanın yapılmadığı durumlarda, yeniden örnekleme tahminlerinin 

doğruluğunun düşük olduğu belirtilmektedir. Ancak, günümüz koşullarında yüksek hızlı 

bilgisayarlarla bu durumun üstesinden gelinebilir. 

 

2.5.1.10. Yanlılık 

 

 Bosch (2002), yanlılığın büyük örnekler ile azaltılabileceğini belirtmiştir. Ancak 

bootstrap yöntemi ile elde edilen güven aralıkları daima yanlılık gösterir. n örnek büyüklüğü 

olmak üzere, normal dağılım gösteren bir ana kütleden örnek alındığında; güven aralığı için 

yanlılık en az n/(n-1) olacaktır. Ancak daha karmaşık bootstrap yöntemleri ile bu yanlılık 

azaltılabilir. Yanlılığın azaltılması konusunda, klasik yöntemler belirgin bir çözüm sunamazken, 

yeniden örneklemeyle yapılan tekrarlar, bu sorunu kısmen de olsa giderebilmektedir. 
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2.6. Yeniden Örnekleme Yöntemlerinin Tarihsel Gelişimi ve Çeşitleri 

 

 Bilgisayara dayalı yoğun yöntemler olarak bilinen yeniden örnekleme yöntemleri, örnek 

verilerini tekrar tekrar işleme tabi tutarak istatistik bilgiler veren yöntemlerdir. Yeniden 

örnekleme yöntemlerinin elle hesaplanabilmesi, zaman ve maliyet bakımından oldukça zahmetli 

olduğundan, 1990’larda hızla gelişen teknolojiyle birlikte bu yöntemler, bilgisayar tabanlı 

yöntemler olarak uygulamadaki yerini almıştır. Bu yöntemler, tahminin yanlılığı, güven aralığı 

oluşumu ve tahmin edilen parametreyle ilgili istatistik hipotezleri test eder. Geleneksel 

yöntemlerde, normallik ve sabit varyanslılık varsayımları göz ardı edilemeyen kavramlardır. 

Veriler parametrik testlerin varsayımlarını sağlamadığında, yeni yöntemlerin kullanımında 

çekinceli davranılmakta ve geleneksel yöntemlerin kullanımı tercih edilmektedir. Ancak son 

yıllarda, ilerleyen teknolojilerin getirmiş olduğu kolaylıklarla birlikte, yeni yöntemlerin 

kullanımında artış olduğu söylenebilir. Bu yöntemler kısaca aşağıda özetlenmiştir.  

• Permütasyon Testi: Permütasyon testi, R. A Fisher (1935) ve E.J.G. Pitman’ın (1937) 

çalışmalarıyla geliştirilen en eski yeniden örnekleme yöntemidir. Örnek genişliği 

değiştirilmeden, gözlemlerin tesadüfi olarak yeniden düzenlenmesine dayanır. Edgington 

(1995) permütasyon ve randomizasyon testlerini sıklıkla birbirinin yerine kullanmıştır. 

Ancak Ernst (2004) bu terimlerin farkını kısaca açıklamış, Onghena (2018) ise bu 

kavramların hem tarihsel hem de kavramsal açıdan farklılık gösterdiğini vurgulamıştır.  

• Çapraz Geçerlilik: Basit çapraz geçerlilik yöntemi ilk olarak Kurtz (1948) tarafından 

Rorschach testine bir öneri olarak geliştirilmiştir. Buna bağlı olarak Mosier (1951), bu 

yöntemi geliştirerek çift çapraz geçerlilik yöntemini önermiştir. Daha sonrada Krus ve 

Fuller (1982), çift çapraz geçerlilik yöntemini genişleterek çoklu çapraz geçerlilik 

yöntemini önermişlerdir. Bu yöntemde, verilerin yeterliliğini değerlendirmek için 

örneklem ikiye bölünür. Bunlardan birisi analiz için kullanılırken, diğeri modelin 

doğruluğunu test etmek için kullanılır (Binzat, 2017). 

• Jackknife: Jackknife yöntemi ilk olarak Maurice Quenouille (1949,1956) tarafından, 

istatistik yanlılığı ortadan kaldırmak için önerilmiş daha sonra John W. Tukey (1958) 

tarafından hipotez testi ve güven aralığı oluşturmak için genişletilmiştir. 

• Bootstrap: Bootstrap yöntemi, Bradley Efron (1979) tarafından, Jackknife yöntemine 

alternatif olarak önerilmiş, daha sonra Efron ve Tibshirani (1993) tarafından 

geliştirilmiştir. Çapraz geçerlilikte amaç, sonuçların tekrarlanabilirliğini doğrulamak, 

Jackknife yönteminde aykırı değerleri tespit etmek ve Bootstrap yönteminde çıkarım 
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yapmaktır. Bootstrap yöntemi, gözlemlerin rastgele yer değiştirerek yerine konulması ile 

test edilir. 

 

2.6.1. Permütasyon Yöntemi  

 

 Permütasyon testi 1930’ların başında Fisher (1935,1960) ve Pitman (1937) tarafından 

geliştirildi. Fisher (1930) tarafından daha çok Student-t testini destekleyen bir argüman olarak 

kullanılmış ancak daha sonra kendi başına bir istatistik yöntem haline gelmiştir. Bu yöntem, 

örnek gözleminin değiştirilmeden rastgele yeniden düzenlenmesine dayanır. Rastgele veya kesin 

testler olarak bilinen en eski örnekleme yöntemi olarak da bilinir. Edgington (1995) tarafından 

‘’permutation test’’ ve ‘’randomization test’’ terimleri sıklıkla birbiri yerine kullanılırken, Ernst 

(2004) tarafından ayrıma tabi tutulmuştur (Binzat, 2017). Permütasyon testi, örnek veri seti 

üzerinde bootstrap gibi yerine konarak örnekleme yapmak yerine, daha çok veriye ilişkin tüm 

olası permütasyonları hesaplar ve verilerin çok sayıda yeniden düzenlenmesini yapar. Diğer bir 

ifadeyle permütasyon testi, yerine koymadan örnekleme yaparak rastgele yeni veri setleri 

oluşturur. 

 Permütasyon testlerinde önemli kavramlardan birisi tesadüfi ya da rastgele atamadır. Bu 

testte rastgele atama ile çok sayıda yeni örnek oluşturulur ve örnekten hesaplanan test istatistiği 

ile rastgele oluşturulan test istatistiği karşılaştırılır (Doğan, 2019). 

 Regresyon analizlerinde, hata terimlerinin normal dağılım göstermediği ve örnek 

büyüklüğünün yeterli olmadığı durumlarda, EKK tahmin edicisinin t dağılımı göstermemesi ve t-

testinin önemlilik (anlamlılık) için uygun olmadığı durumlarda permütasyon testleri önerilir. 

Parametrik testlerin ihtiyaç duyduğu varsayımlardan ve veri kümesinin göstermiş olduğu 

dağılımdan etkilenmeden, varsayımların oluşmadığı veya konu hakkında yeterli bilginin 

oluşturulmadığı durumlarda permütasyon testleri kullanılabilir (Önder, 2007). 

 Permütasyon testinin adımları aşağıdaki gibi özetlenebilir (Good, 2001). 

1. Problem analiz edilir (sıfır ve alternatif hipotez belirlenir). 

2. Test istatistiği seçilir. 

3. Orijinal örneklerden test istatistiği hesaplanır. 

4. Gözlemler yeniden düzenlenir. 

5. Yeniden düzenlenen gözlemler için test istatistiği hesaplanır. 

6. Oluşturulan test istatistikleri karşılaştırılarak sonuç elde edilir. 

 İlk olarak problem çözümlenir ve problem doğrultusunda hipotezler belirlenir. Orijinal 

gözlemler için test istatistiği hesaplanır. Daha sonra da gözlemler yeniden düzenlenir ve 



   

27 
 

olabilecek tüm düzenlemeler işleme dahil edilir. Yeni düzenlemeler için tekrardan yeni bir test 

istatistiği hesaplanır. Test istatistiğinin yeni değeri, orijinal gözlemler için elde edilen test 

istatistiği değeri ile karşılaştırılır. Karar verilene kadar yukarıdaki adımlar tekrarlanır. Bu 

işlemlerin tekrarlanması ve örneklerin yeniden etiketlenerek düzenlenmesi ile permütasyon testi 

gerçekleştirilmiş olur. N gözlem sayısı ve n örnek büyüklüğü olmak üzere, (𝑁
𝑛
) tane farklı 

kombinasyon ile rastgele etiketlenmiş gözlemler elde edilir ve bunlardan gerekli hesaplamalar 

yapılarak sonuca varılır (Good, 1997). 

 Parametrik olmayan birçok test, permütasyon testi olarak uygulanabilir. Bu yöntemin en 

yaygın kullanım alanı iki örnek problemleridir. Örneğin iki ana kütle için sıfır hipotezinin doğru 

olduğu varsayımı altında (iki bağımsız ana kütlenin ortalaması birbirine eşittir) gözlemler gruplar 

arasında rastgele yeniden örneklere atanır. Böylece istenen istatistik, tüm olası düzenlemeler için 

yeniden örnek işleminin tekrarlanmasıyla hesaplanır. Tüm olası permütasyonların hesaplanması, 

makul örneklem büyüklükleri için zaman alıcı olabilir. Hesaplanacak çok sayıda rastgele 

permütasyon alınarak tahmin yapılabilir. Permütasyon sayısı ile ilgili olarak Davison ve Hinkley 

(1997) 999 permütasyonun yeterli olacağını belirtmişlerdir. 

 İki örnek probleminde (two-sample problem); iki farklı olasılık dağılımı içeren F ve G 

dağılımlarından, iki bağımsız rastgele örnek aşağıdaki gibi tanımlanır: 

 

F dağılımından 

 

 z = (z1, z2, …, zn) 

 

G dağılımından 

 

 y = (y1, y2, …, yn)                                                                                                           (2.4) 

 

 gözlemleri alınsın. H0 hipotezi: F ve G dağılımları arasında bir fark yoktur (H0: F = G) 

olarak ifade edilir. Bu dağılımlar arasında farkın olmadığı ayrıca ProbF{𝐴}=ProbG{𝐴} olduğunu 

göstermek için A’nın, z ve y’nin ortak örnek uzayının herhangi bir alt kümesi olduğunu 

göstermesi gerekir. 

 Hipotezin test edilmesi, 𝜃‘nın hesaplanması ile başlar. Sıfır hipotezi ret edildiğinde 

hesaplanan test istatistiği 𝜃‘nın, kabul olması durumunda hesaplanan 𝜃‘dan daha büyük olması 
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beklenir. Bu durumda gözlemlenen 𝜃‘nın değerinin büyük olması, sıfır hipotezinin alternatifini 

daha da kuvvetlendirir. 

 Gözlemlenen 𝜃 değeri için, testin elde edilen anlamlılık düzeyi (ASL); sıfır hipotezi 

doğru kabul edildiğinde, 𝜃’dan büyük olan en az bir tane değerin gözlemlenmesi olasılığı olarak 

tanımlanır. Bu ifade aşağıdaki gibi tanımlanır: 

 

 ASL = ProbH0 {𝜃*≥ 𝜃}                                                                                                   (2.5) 

 

 (2.5) no’lu eşitlikte, 𝜃 kendi gözlem değeri ile ilişkilidir ve rastgele değişen 𝜃*,  sıfır 

hipotezi doğru iken 𝜃 ‘nın dağılımını ifade eden sıfır hipotezi dağılımına bağlanır. 𝜃*, gerçek 

gözlem 𝜃 ile H0 hipotezine göre üretilen varsayımsal bir 𝜃* arasında ayrım yapar. Böylece ASL 

değerlerinin hesaplanması, H0 hipotezinin kabul ya da ret edildiğini bildiren karar 

mekanizmasını ortaya çıkarır. Daha çok küçük olasılıklı (yani 0.01 veya 0.05) 𝛼 değeri seçilir. 

ASL’nin değeri 𝛼’dan küçükse H0 ret, büyük ise H0 kabul edilir. 

 Fisher’ın permütasyon testinde sıfır hipotezi F = G olduğunda, ASL’yi hesaplamanın 

kolay bir yolu vardır. Gözlemlerin m ve n olmak üzere iki gruba ayrıldığı varsayılsın. Buna bağlı 

olarak her iki grupta “m + n” kadar gözlem toplansın. Birinci grubu temsil etmek için yerine 

koymadan m boyutlu örnek alınır, geri kalan n gözlem de ikinci grubu oluşturur. Grup 

ortalamaları arasındaki fark hesaplanarak bu işlem çok sayıda tekrarlanır. Grup ortalamaları 

arasındaki bu orijinal fark, farkların oluşturduğu dağılımın % 95’inin dışında kalırsa, iki taraflı 

permütasyon testine göre % 95’lik bir güven seviyesinde H0 hipotezi reddedilir. 

 Permütasyon testleri, iki örnek probleminden elde edilen verilerin x = (z, y) sıra istatistik 

gösterimlerine dayanır. Farklı olasılık dağılımları olan F ve G’den alınan z ve y örnek veri 

setinden, z’den n büyüklüğünde, y’den de m büyüklüğünde örnek çekildiği ve m+n=N gözlem 

sayısının birleştirilip örneklem büyüklüğüne eşit olduğu kabul edilir. v vektörü “v =(v1, v2, … 

,vn)” olarak tanımlansın. n+m=N gösteriminde ifade edilen N değerlerinin sıralanmış hali v 

vektörü olsun. Ayrıca g = (g1, g2, … ,gn) her bir sıralı gözlemin hangi gruba ait olduğunu 

gösteren bir grup üyeliği vektörü tanımlanmış olsun; v ve g vektörü x=(z, y) ile aynı bilgileri 

paylaşır. Bu durumda g vektörü; 

 

 (𝑁
𝑛
)= 

𝑁!

𝑛!𝑚!
                                                                                                                         (2.6) 
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olmak üzere z’den n tane, m’den de y tane oluşturulur. Böylece N elemanları, n ve m boyutunda 

iki alt kümeye ayırmak üzere tüm olası yollara karşılık gelen vektörler vardır. Ayrıca H0: F = G 

sıfır hipotezi altında, g vektörünün olası değerlerinden herhangi biri için 
1

(𝑁𝑛)
  olasılığına sahip 

olduğu söylenebilir. Diğer bir ifadeyle F = G ise z ve y’lerin tüm permütasyonları eşit olasılığa 

sahiptir. 𝜃 test istatistiği, g ve v’nin bir fonksiyonu olarak aşağıdaki gibi ifade edilebilir. 

 

 𝜃 =S(g, v)                                                                                                                       (2.7) 

 

z’lerden n ve y’lerden m büyüklüğünde olmak üzere (𝑁
𝑛
) adet olası vektörün her biri g* ile 

gösterilirse, 𝜃’nın permütasyon tekrarı aşağıdaki gibi tanımlanır. 

 

 𝜃* = 𝜃(g*) = S(g*, v)                                                                                                       (2.8) 

 

𝜃 ‘ın (𝑁
𝑛
) tekrarı için bunların her birine 

1

(𝑁𝑛)
  olasılığı veren dağılıma 𝜃 ‘nın ya da 𝜃*’ın 

permütasyon dağılımı denir. 

 Permütasyonun ASL’si ise daha önce belirtildiği gibi 𝜃*’ın 𝜃’yı aşan permütasyon 

olasılığı olarak tanımlanır ve aşağıdaki gibi gösterilir. 

 

 ASLperm= Probperm { 𝜃*≥ 𝜃} 

              = # { 𝜃*≥ 𝜃}/ (𝑁
𝑛
)                                                                                             (2.9) 

 

 İki örnekli permütasyon test istatistiğinin hesaplanması kısaca aşağıdaki gibi ifade edilir: 

1) Her biri z ve y’den sırayla alınan n ve m büyüklüğünde olmak üzere ve (𝑁
𝑛
) tane olası 

vektörün oluşturduğu rastgele alınmış olan B tane bağımsız g*(1), g*(2), … ,g*(B) vektörü söz 

konusu olsun ve en az B≤1000 olmalıdır. 

2) Her bir permütasyon vektörüne karşılık gelen 𝜃’nın permütasyon tekrarları hesaplanır. Bu 

ifade aşağıdaki gibi gösterilir. 

 

 𝜃*(b) = S(g*(b), v), b=1, 2, …, B                                                                                (2.10) 

 

3) Aşağıdaki ifade ile ASLperm’e bir yaklaşım sergilendiği gösterilir (Efron ve Tibshirani, 1993). 
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 𝐴𝑆𝐿̂perm= # {𝜃*(b)≥ 𝜃 }/B                                                                                          (2.11) 

 

Parametrik testlerin güçlü varsayımlar içermesi, bazı parametrik testlerin parametrik olmayan 

alternatiflerinin olmaması ve kolayca hesaplanamaması, her geçen gün permütasyon testinin 

kullanımına ve yeniden örnekleme yöntemlerine olan önemi daha da bir artırmıştır. 

 

2.6.2. Çapraz Geçerlilik (Cross-Validation) Yöntemi 

 

 Çapraz geçerlilik, ilk olarak Kurtz (1948) tarafından önerilmiş ve Mosier (1951) bu 

yöntemi daha ileri bir aşamaya taşıyarak çift kat çapraz geçerlilik yöntemi haline getirmiştir. Bir 

algoritma üzerinde çalışmak ve aynı veriler üzerinde durağan performansını değerlendirmek aşırı 

iyimser bir sonuç verir gibi gözükebilir. Çapraz geçerlilik ise bu sorunu gidermek için 

geliştirilmiştir. Algoritmanın çıktısının, yeni veriler üzerinde test edilmesinin, daha iyi bir tahmin 

vereceğine dikkat çekilmiştir (Mosteller ve Tukey, 1968; Stone, 1974). Daha sonra Krus ve 

Fuller (1982), çapraz geçerliliğin bir başka yöntemini geliştirmişlerdir. Bu yöntem çoklu çapraz 

geçerlilik yöntemi olarak bilinmektedir. 

 Çapraz geçerlilik (cross-validation) yöntemi tahmin edicinin performansını 

değerlendirmede kullanılan bir yöntemdir (Zhang, 2011). Diğer bir ifade ile bir modelin tahmin 

performansını değerlendirmek üzere yapılacak tahminin, (tahmin) hatasını tahmin etmede 

kullanılır. Yöntem, istatistik model oluşturmada, modelin sırasına karar vermede, zaman 

serilerinde, regresyon modellerinde ve diskriminant modellerinde de kullanılır (Chernick, 2008).  

 Çapraz geçerlilik yönteminde, veriler rastgele iki alt kümeye ayrılır. En iyi modeli 

bulmak için ilk kümeye en uygun istatistik işlemler uygulanır. Daha sonra istatistik işlemler 

uygulanan model ikinci alt kümede test edilir (Chernick, 2008). Diğer bir ifadeyle çapraz 

geçerlik yönteminde, en iyi modeli oluşturmak üzere verilerin iki veya daha fazla alt gruplara 

bölünmesi ve ortaya çıkan test sonuçlarının alt gruplar içerisinde çapraz olarak karşılaştırılması 

yapılır. Daha sonra ortaya çıkan bu sonuçlar bir takım aday gruplar arasında karşılaştırılır ve en 

düşük tahmin hatasını veren bir model tercih edilir. 

 Çapraz geçerlik, doğrusal regresyon, diskriminant analizi, sınıflandırma ve en küçük 

kareler yöntemlerinde ve alternatif modeller içerisinde kestirim performansı en yüksek (kestirim 

hatası en düşük) olan model seçiminde kullanılmaktadır. (Uludağ, 2005). Çapraz geçerlik, model 

seçim kritiği olarak bilinir (Yay, 2003). Bunun en önemli sebebi, model seçiminde hangi 

modelin daha uygun olabileceği ve en küçük hataya sahip olan modeli belirlemede kullanılıyor 

olmasıdır. 



   

31 
 

 Çapraz geçerlik, ortalama kare hata gibi sürekli hata fonksiyonlarında iyi çalışırken, 

sürekli olmayan hata fonksiyonlarında, diğer bir ifade ile sınıflandırılmamış ve geniş 

örneklemler için eksik kalabilir. Bu durumda, k-kat çapraz geçerlik önerilir. k-kat çapraz 

geçerlikte, grup sayısı olan “k” çok küçük belirlenirse, yapılması gereken örnekleme analizi ile 

çapraz geçerlik arasında ortaya çıkan küme büyüklüğünden dolayı hata tahmini yanlılık 

gösterebilir. Bunu için genel olarak k=10 tercih edilir. 

 Daha küçük veri kümeleri ile ilgilenen k-kat çapraz geçerlik, mevcut bilgileri daha 

verimli kullanır. K-kat çapraz geçerlik için aşağıdaki adımlar takip edilir (Efron ve Tibshirani, 

1993; Yay, 2003): 

• Veriler, kabaca her biri aynı boyutta olan k eşit parçaya bölünür. 

• Bu parçalar k kez işleme konur. k’ıncı kısım için model, diğer k-1 kısıma uygulanır ve 

verinin k’ıncı kısmını tahmin ederken uygulanan modelin tahmin hatası hesaplanır. 

Yapılan bu işlemde her seferinde bir gözlem dışarıda bırakılır. 

• k = n olduğunda bu yöntem leave one out (bir gözlemi dışarıda bırak) çapraz geçerlilik 

olarak isimlendirilir (n, örnek büyüklüğü). “Leave one out cross-validation” yöntemiyle 

her seferinde dışarıda bırakılan gözlem, yöntemi oldukça maliyetli hale getirir. 

 Çapraz geçerlilik yöntemi, istatistiksel modellerde ve modellere daha yakın ya da 

alternatifi olacak yöntemlerin seçimi doğrultusunda kullanılan tekrarlı örnekleme yöntemidir. Bu 

yöntemde en önemli noktalardan biri doğruluk veya geçerlilik değerlendirmesi için verilerin 

nasıl gruplandırılacağı ya da kaç tane verinin dışarıda bırakılacağıdır. Bu yöntemin performansı, 

dışarıda bırakılan gözlem sayısına bağlıdır. İlk olarak veri kümesi iki alt gruba ayrılarak 

modelleme yapılır. Ayrılan bu gruplardan biri eğitim seti (training set), diğeri ise değerlendirme 

veya test seti (assessment set) olarak adlandırılır (Bishop, 1995). Çapraz geçerlilik için temel 

fikir, ilk olarak verilerin rastgele olarak iki alt kümesini almaktır. Daha sonra ilk modele uygun 

veya çeşitli istatistik yöntemler uygulanır ve bunlar ikinci alt kümede test edilir.  

 Örnek büyüklüğü n olduğunda n-1 tane gözlemi kullanan bir eğitim seti oluşturulur ve 

geriye kalan tek gözlem test edilir. Bu işlem her seferinde bir gözlem dışarıda bırakılarak n kez 

tekrar edilir. Diğer bir ifadeyle, eğitim kümesinde model oluşturulur ve daha sonra oluşturulan 

bu modelin tahmin performansının test edilmesi de test kümesi aracılığıyla gerçekleştirilir. 

Özellikle model oluşturma aşamasında, bilinmeyenin tahmin edilmesi ya da doğru tahmin 

yapılması, eldeki verilerle en uygun yöntemin modele en iyi uyacak şekilde uygulanması için iyi 

bir tahmin performansı göstermesi istenir. Literatürde, yaygın olan çapraz geçerlilik yöntemleri 

aşağıdaki gibi sıralanabilir: 

1. Leave-one-out cross-validation yöntemi (birini dışarıda bırak) 
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2. Leave-many-out cross-validation yöntemi (birden fazlasını dışarıda bırakma) 

a) Multi-fold cross-validation (çok kat çapraz geçerlilik) 

b) Monte Carlo çapraz geçerlilik yöntemi 

 Çapraz geçerlilikte, iki küme vardır. Bunlar: eğitim seti (training set), {(xj,yj): j∈ St} ve 

test verisi (assessment set) {(xj,yj): j∈ Sa} dir. Bu kümeler sırayla 𝐹̂t ve 𝐹̂a ile gösterilir ve n-1 

büyüklüğünde bir eğitim kümesi alınır. Daha sonra eğitim kümesindeki gözlemlerin tümü 

kullanılır. Buna bağlı olarak her bir yanıtın veya değişkenin değeri, verilerin geri kalanından 

tahmin edildiğinden yöntemin ne kadar iyi işlediği belirlenmiş olur. F-j, “{(xk, yk): k≠j}” olarak 

gösterilen “n-1” gözlemi ifade etsin. Buna bağlı olarak 𝜇 (xj, 𝐹̂-j) de 𝐹̂-j’ye dayanarak yj için 

tahmini değeri gösterdiği varsayılsın. Böylece çapraz geçerlilik yöntemine göre tahmin hatası; 

ifade edilme şekli, 

 

 ∆̂CV = 𝑛−1∑ 𝑐𝑛
𝑗=1 {yj, 𝜇 (xj, 𝐹̂-j)}                                                                                   (2.12) 

 

olarak yazılır (Davison ve Hinkley, 1997). 

 Çapraz geçerlilik (cross-validation) birkaç şekilde sınıflandırılır. Bunlar basit çapraz 

geçerlilik, çift kat çapraz geçerlilik ve çok kat çapraz geçerliliktir. Basit çapraz geçerlilikte, 

modelin belli bir dilimi test verisi olarak kullanılır. Geri kalan dilimler ise modelin kurulma 

aşamasında kullanılır ve modelin geçerliliği (doğruluğu) hesaplanır. 

 Çift kat çapraz geçerlilikte, modelleme aşamasında veri setleri her iki alt kümede üretilir. 

Bunların bir bölümü; eğitim setinde, diğer bölümü ise test setinde olacak şekilde rastgele iki eşit 

parçaya bölünür ve geçerlilik (doğruluk) hesaplaması yapılır. Daha sonra eğitim seti ve test seti 

yer değiştirilerek başka bir geçerlilik (doğruluk) hesaplamasına gidilir. Hesaplanan geçerlilik 

(doğruluk) değerlerinin ortalaması alınarak modelin geçerlilik (doğruluk) oranına ulaşılır.  

 Çok kat çapraz geçerlilikte, her bir veri bir defa eğitim seti bir defada test seti olmak 

üzere kullanılır. Buna bağlı olarak veri setleri 1, 2…,(n-1), n olmak üzere n eşit gruba ayrılır. n 

gruptan oluşan veriler içerisinden rastgele alınacak bir grup test seti olarak, diğer (n-1) grup ise 

eğitim seti olarak kullanılır. Bu işlem n kez tekrar edilerek yöntem gerçekleştirilir. Ek-1’de 

gösterilmiştir. 
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2.6.3. Jackknife Yöntemi 

 

2.6.3.1. Jackknife Yöntemi Nedir?  

 

 Örneklemenin en önemli özelliği, ana kütle hakkında geçerli ve doğru tahminlere 

ulaşmak için en küçük standart hatayı elde etmektir. Ancak örneklem sayısı az olduğunda 

parametrik tahmin etme yöntemleri güvenilir sonuçlar vermemektedir (Yay, 2003). Verilere 

parametrik yöntemlerin uygulanmasının mümkün olmadığı durumlarda yeniden örnekleme 

yöntemlerine ihtiyaç duyulmuştur. Bunlardan biriside jackknife yöntemidir. Jackknife yöntemi 

bir istatistiğin yanlılık miktarını, standart hatasını ve parametrelerin güven aralıklarını tahmin 

etme olanağı sağlar. 

 Jackknife yöntemi, parametrik olmayan yöntemler altında, parametrenin dağılımı 

hakkında herhangi bir bilginin olmadığı koşulu varsayımı altında daha güçlü ve güvenilir 

sonuçlar verdiği ve aynı zamanda dağılım hakkında bir bilgi sahibi olduğu takdirde parametrik 

yöntemlere benzer sonuçlar vereceği ileri sürülen bir yeniden örnekleme yöntemidir (Şahin, 

1993). 

 Çapraz geçerlilik yönteminin daha da ileriye taşınmış bir hali olarak kabul edilir. 

Jackknife yöntemi her seferinde bir veriyi veya gözlemi dışarıda bırakarak aynı testin 

tekrarlanmasına neden olur. Bu nedenle, yönteme birini dışarıda bırak (leave-one-out) yöntemi 

de denir. Bu şekilde yapılan tekrarlar yanlılığı (sapmayı) azaltmada etkili olur (Yu, 2003). 

Böylece birden fazla gözlemin dışarıda bırakılarak işlemden alıkonulması söz konusu olabilir, bu 

duruma ise jackknife’ın daha da genelleştirilmiş hali olan ‘’delete-d jackknife’’ adı verilir (Friedl 

ve Stampfer, 2001). 

 Jackknife yöntemi ilk olarak Maurice Quenouille (1949;1956) tarafından yanlılığı ortadan 

kaldırmak için önerilmiş daha sonra John W. Tukey tarafından (1958) hipotez testi ve güven 

aralığının istatistik olarak anlamlılığını test etmek üzere geliştirilmiştir. 

 Jackknife yöntemi, bir defada bir veya daha fazla gözlemi dışarıda bırakarak oluşturduğu 

veri setleriyle ana kütle parametrelerinin güven aralıklarının tahminini yapar ve bu veri setleriyle 

istatistik testler yaparak yanlılık ve standart hatalarının kestirimini yapar. 

 Genellikle ana kütle dağılımının geniş yayılım gösterdiği ya da veri setinde aşırı uç 

değerlerin varlığı halinde kullanılır (Yu, 2002). Jackknife, yöntem gereği veri setinde aşırı uç 

değerlerin olması halinde, bu uç değerlerin etkisini yok eder ve bu da yöntemin bir başarısı 

olarak kabul edilebilir. Böylece yeni bir olası örnek oluşturmadan her seferinde örnekten bir 

gözlem alarak tekrarlama yapar bu işlemi defalarca kez gerçekleştireceğinden verilerdeki uç 
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noktalara karşı oldukça hassas bir yöntem olduğunu gösterir. Bu yöntemde böylece tüm veriler 

dikkate alınır ve örneğe giren bütün verilerin yanlılığı (bias) ortadan kaldırılır (Bekiroğlu, 

Konyalıoğlu ve Karahan, 2013). 

 Veri setinde her bir gözlem değeri dışarıda bırakılarak model eksiltilmiş örneklemden 

tahmin edilir ve bunun sonucunda sahte (sözde, pseudo-values) gözlem değerleri elde edilir. Elde 

edilen bu sahte gözlem değerleri bir veri dönüşümü olarak bağımsız ve aynı dağılıma sahipmiş 

gibi düşünülebilir. Son olarak jackknife yöntemi ana kütle parametrelerinin tahmininde güven 

aralıkları elde ederek standart hatayı en aza düşürecek şekilde geliştirilmiştir. Ayrıca bu yöntem, 

bootstrap gibi parametrik varsayımları kullanmak yerine, örnek değişkenliğinin açıklanması 

yoluyla yani birini dışarıda bırakarak tahmin edicilerin güvenirliğini artırmaya yönelik kullanılan 

bir yöntemdir (Topuz, 2002).  

 

2.6.3.2. Jackknife Yönteminin Tanımı ve Standart Hatanın Jackknife Tahmini 

 

 Jackknife yönteminin esası, veri setinde her bir gözlem değerini bir kez dışarıda bırakarak 

geriye kalan gözlemlerden sözde değerler hesaplamaya dayanmaktadır. Bu şekilde n tane 

gözlemden her biri (n-1) büyüklüğünde n tane farklı örnek elde edilebilir. Jackknife yöntemini 

tanımlamak için, x = (x1, x2, … , xn) ile gösterilen orijinal veri kümesi olduğu varsayılsın. Bu 

örnekte yer alan tüm verilerin, aynı dağılımdan alınan, bağımsız, eşit dağılım gösterdiği 

varsayılsın ve tahmin edici 𝜃 =s(x) ile ifade edilsin. Jackknife yönteminde amaç 𝜃’nın standart 

hatasını ve yanlılığını (bias) tahmin etmektir. Yöntemde i. gözlem dışarıda bırakıldığında elde 

edilen örneklem aşağıdaki gibi ifade edilir. 

  

 x(i) = (x1, x2, …, xi-1, xi+1, …, xn)                                                                                  (2.13) 

 

 Burada i = 1, 2, … , n olup, jackknife örnekleri olarak adlandırılır. i. jackknife örneği 

orijinal veri kümesinden gözlemi kaldırılmış olarak ayarlanmış olan verilerden oluşur. Böylece 

orijinal veri kümesinin ortalaması 𝑥̅ ve i. gözlem değeri dışarıda bırakılarak elde edilen ortalama 

𝑥̅i olarak ifade edildiğinde i. gözlem değerini eşitlik (2.13) deki gibi hesaplamak mümkündür 

(Walsh, 2000; Yay, 2003). 

 

 xi= n𝑥̅- 𝑥̅i(n-1)                                                                                                              (2.14) 
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 Yeni örneğe dayalı tahmin edici ise 𝜃i = s(xi) şeklinde ifade edilebilir. 𝜃’nın i. jackknife 

tekrarı olarak düşünüldüğünde, ilk olarak yanlılık miktarı aşağıdaki gibi ifade edilir: 

 

 yanlılık= (𝜃(.) - 𝜃 )                                                                                                        (2.15) 

 

 Buradan da yanlılığın jackknife tahmini aşağıdaki şekilde tanımlanır: 

 

 𝑏𝑖𝑎𝑠̂jack= (n-1) (𝜃(.) - 𝜃 )                                                                                               (2.16) 

 

 Eşitlik (2.16) teki ifade, 𝜃’nın yanlılığı azaltılmış jackknife tahmini olarak adlandırılır. 

Ayrıca aradaki fark ise sözde değerler olarak ifade edilir.  

 

 𝜃̃= 𝜃 - 𝑏𝑖𝑎𝑠̂jack(𝜃) 

   = n𝜃 – (n-1) 𝜃(.)                                                                                                                                                                (2.17) 

 

 Eşitlik (2.17)’ te 𝜃(.) ile gösterilen ifade, her defasında dışarıda bırakılan değerleri ifade 

eder. Yani orijinal veri kümesinden silinen değerler üzerinden alınan ortalamadır ve aşağıdaki 

gibi açıklanabilir (Friedl ve Stampfer, 2001). 

  

 𝜃(.)= 
∑ 𝜃̂(.)𝑛
𝑖=1

𝑛
                                                                                                                   (2.18) 

 

 Jackknife’ın aynı zamanda bir diğer amacı da 𝜃’nın standart hatasını tahmin etme 

işlemidir ve eşitlik (2.19) deki gibi hesaplanır. 

 

 𝑠𝑒̂jack= [ 
𝑛−1

𝑛
 ∑ (𝑛
𝑖=1 𝜃(i) - 𝜃(.))

2]1/2                                                                                   (2.19) 

 

  Ayrıca 𝜃’nın jackknife nokta tahmini; sözde değerlerin hesaplanacak ortalamasına 

karşılık gelir. Jackknife bir başka şekilde sözde değerler olarak, Eşitlik (2.20)’deki gibi 

tanımlanır.  

 

 𝜃̃ = n𝜃 – (n-1)𝜃(i)                                                                                                          (2.20) 
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Özel bir durumda  𝜃 = 𝑥̅ olduğunda, sözde değerlerin i. gözlem değeri de, 𝜃̃ = xi’yi karşıladığı 

söylenebilir. Herhangi bir 𝜃 için sözde değerler cinsinden başka bir  𝑠𝑒̂jack eşitliği de  

 

 𝑠𝑒̂jack= [ ∑ (𝜃̃𝑛
1 i - 𝜃̃ )2/{(n-1) n }]1/2                                                                               (2.21) 

 

olarak tanımlanabilir. Eşitlik (2.21) da 𝜃̃  = 𝜃̃i / n olarak hesaplanır. Aynı zamanda ortalamanın 

standart hatasının tahminine benzemektedir olup, n tane sözde değerin, jackknife tahmin 

değerlerin ortalamasını gösterir. 𝜃̃(i) , i=1, 2, …, n jackknife’ın sözde değerlerinden oluşan 

örnekleri ifade eder. Ayrıca sözde değerleri (bkz.2.20), destekleyen temel fikir, n verilerinin 

bağımsız veri değerleri gibi davranması gerektiğidir. Buradan hareketle, sözde değerlerden bir 

güven aralığı oluşturulabilir. İlk olarak t-dağılımının yüzdesi 1-𝛼 ve serbestlik derecesi (n-1) 

olan bir güven aralığı elde edilerek aşağıdaki gibi ifade edilebilir (Efron ve Tibshirani, 1993). 

 

 𝜃̃ = 𝑡𝑛−1
1−𝛼 . 𝑠𝑒̂jack                                                                                                            (2.22) 

 

Aşağıdaki şekilde jackknife yönteminin işleyiş şeması gösterilmektedir. 
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Gözlemlerin çekildiği ‘’N’’ hacimli 

ana kütle 

                                                                              

                                                                              Örnekleme 

Çekilen ‘’n’’ hacimli örnek 

 

                                                                              Jackknife yöntemi 

      İadesiz örnekleme ile 

 örnekten bir gözlem çıkartılır 

                                         

                                                                              Örnek İstatistiğinin 

                                                                                  hesaplanması            

           

Örnek istatistiği 1 

Örnek istatistiği 2 

. 

. 

Örnek istatistiği n 

                                      

 

Standart hatanın 

jackknife tahmini 

𝜃’nın jackknife 

Tahmini 

𝜃 için ampirik 

güven aralığı 

𝜃’ların 

fonksiyonu 
 

Şekil 2.2. Jackkinife yönteminin işleyiş şeması 

 

2.6.3.3. Delete - d Jackknife 

 

 Miller (1974) tarafından tanımlanan, Quenouille-Tukey jackknife yöntemi, her seferinde 

bir gözlemi dışarıda bırakmaya dayanarak birçok kez yanlılığı (bias) azaltma ve varyans tahmini 

yapmada etkili olduğu bilinen bir yöntemdir. Birçok durumda, 𝜃 tahmin edicisinin dağılımı 

hakkında aralık tahmini ve çıkarım yapmak istendiğinde yeterli bilgi sağlamayabilir. Bu nedenle 

jackknife yaklaşımı dağılımın tahmin edilmesi amacıyla kullanılmaktadır. Ayrıca örnek 

nitelikleri (sample quantiles) gibi (örneğin, medyan gibi) düzgün olmayan 𝜃 için tutarlı bir 

Çıkartılan 

gözlemler 

yerine 

konarak n 

tekrarlama 

yapılır 
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varyans tahmincisi vermediğinde, jackknife yukarıdaki her iki durumu da içine alan eksik yanları 

gidermek için, Shao ve Wu (1989) jackknife yönteminin genel bir modifikasyonu olan delete-d 

jackknife yöntemini önermişlerdir. İlk olarak Wu (1986), her iki sorunda da gözlem aralığını 

geniş tutarak her seferde daha fazla gözlemin silinmesiyle çözüm getirilebileceğini önermiştir. 

İkinci problem için ise Shao ve Wu (1989) jackknife varyans tahmininin tutarlılığının 𝜃  

tahmincisinin düzgünlüğünün bir ölçüsüne bağlı olarak d ile bir delete-d jackknife kullanarak 

geri yüklendiğini gösterdi (Wu, 1990). Böylelikle 𝜃 daha az düzgün olduğunda d artar. Delete-d 

jackknife, varyans tahmin etmede ve jackknife histogramı oluşturmada da kullanılabilir. 

Jackknife histogramı, 𝜃’nın örnekleme dağılımının tutarlı bir tahmincisini sağlar. Bu kestirimde r 

ve  d nin sonsuza doğru sapması durumunda tutarlılık artar (Shao ve Dongsheng, 1995). 

 Düzgün olmayan istatistik (non-smooth statistics) için jackknife’ın tutarsızlığı, delete-d 

jackknife ile giderilebilir. Tek seferde bir gözlemi yok etmek yerine d gözlemi dışlayarak delete-

d jackknife medyan için tutarlı hale gelebilir (Shao ve Wu, 1989; Efron ve Tibshirani, 1993). 

Delete-d jackknife yöntemi, d tane gözlem dışlanaraktan delete-one jackknife yönteminden 

ayrılır (Wu, 1990). 

  s, (1, 2…, n) olmak üzere içerisinden alınan d boyutunda bir küme olsun, ve 𝜃(s), alt 

kümeleri kaldırılmış (s) veri kümesine uygulanan 𝜃’yı ifade etsin. 𝜃(s) = 𝜃(x), x orijinal veri 

kümesinden {xi, i∈s} dışarıda bırakılmak amacıyla geriye kalanlar bir delete-d jackknife 

örneğinin boyutunu temsil eden n-d tane veri noktasını göstersin. Standart hatanın delete-d 

jackknife tahmini aşağıdaki şekilde tanımlanır: 

 

 sejack-d ={ 
𝑛−𝑑

(𝑛𝑑)
 ∑(𝜃(s) - 𝜃(.))

2}1/2                                                                                     (2.23) 

 

Eşitlik (2.23) de, 𝜃(.) = ∑𝜃(s) / (𝑛
𝑑
) ve x1, x2, …, xn içerisinden değiştirilmeden alınan (n-d) 

boyutunda tüm alt küme s’lerin toplamıdır. (𝑛
𝑑
) ise bir seferde kaç gözlem dışarıda bırakmaya 

karşılık gelen alt küme örneklerini gösterir. Eğer n büyükse ve √𝑛 < 𝑑 < 𝑛 ise, jackknife 

örneklerinin alt küme (𝑛
𝑑
) sayıları da büyük olabilir (Efron ve Tibshirani, 1993). 

 Bu alt kümelerin tümü için 𝜃 hesaplamak yerine, rastgele bir alt küme örneği çizilebilir. 

Delete-d jackknife yönteminin en önemli avantajı, 𝜃’nın örnek dağılımının uygun bir tahmininin 

yorumlanmasına yardımcı olmasıdır. Bu da delete-d jackknife’ın (yani d silme değerinin) 

bootstrap’a göre standart hataya daha yakın bir değer olduğunu gösterir. Böylece delete-d 

jackknife’ın bootstrap’a daha çok benzemesini sağlar. 
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 n1/2 /𝑑 → 0 veya n-d → ∞ olduğunda delete-d jackknife değerinin medyan için tutarlı 

olduğu söylenebilir. Bu durumda jackknife’ın standart hatasının tahmini için tutarlılık elde 

etmek, d= √𝑛 ‘den daha fazla gözlemi dışarıda bırakmak ve n gözlemden daha az gözlem 

dışarıda bırakılmasıyla gerçekleştirilir (Efron ve Tibshirani, 1993). 

 

2.6.4. Bootstrap Yöntemi ve Temel Kavramlar 

 

 Uygulamalı istatistikte, belirli bir anakütle parametresi için bir tahmin edicinin 

belirlenmesi ve bu tahmin edicinin doğruluğunun testi için, tahmin edicinin, standart hata 

tahminleri üzerinden değerlendirilmesi ve parametre için güven aralıklarının belirlenmesi gerekir 

(Chernick, 2008). Bu problemler doğrultusunda yeniden örnekleme yöntemleri istatistik ve diğer 

bilimsel çevrelerce genel kabul gören bir teknik olma yolunda ilerlemiştir. 1979 yılında Efron’un 

yazdığı makale bunun başlangıcı olarak kabul edilmiştir ( Chernick, 1999). Carver bir yazısında 

“Tekrar, bilimin köşe taşıdır.’’ diyerekten tekrarlamanın önemine değinmiş ve tekrarlama ile 

elde edilen sonuçların güvenirliğini test ederek yeniden örnekleme yöntemlerine olan güveni 

daha da artırmıştır (Carver, 1978). Birçok istatistikçiye göre ilgili anakütle parametresinin 

tahmin sonuçlarının benzerdir ve bunun anakütle için de genelleştirilebileceğini incelemenin bir 

diğer yolunun yeni bir örnek grubuyla çalışarak var olan çalışmanın tekrarlanmasıdır. Ancak bu 

durum; zaman, maliyet ve personel ihtiyacını yineleyeceğinden tercih edilmeyebilir. Bu durumda 

yeniden örnekleme yöntemleri kullanılarak, yeni bir örnek oluşturmadan daha önce çalışılan 

örnek üzerinde tekrarlanabilirlik sağlanabilir. Böylece oluşturulan örneklerin anakütle içinde 

genelleştirilebilir güvenli tahminler elde edilebilen yöntemler olduğu da söylenilebilir.  

 

2.6.4.1. Bootstrap Yöntemi 

 

 Bootstrap yöntemi 1979 yılında bir yeniden örnekleme yöntemi olarak ileri sürülmüş ve 

bootstrap tahmin edicilerini kullanarak bir tahmin edicinin dağılımını tahmin etmek amacıyla 

geliştirilmiştir (Bülbül ve Altaş, 1998). Yöntem, tek örnekten hareketle ana kütle parametresi 

hakkında karar vermek yerine, örnekten elde edilen değerleri ana kütle değeri olarak varsayar ve 

tekrardan yerine koyarak (iadeli) örnek alıp, ana kütle parametresini tahmin eder.  

 Bootstrap yöntemi, ana kütle parametreleri hakkında bilgi sahibi olunmadığı ve sadece o 

ana kütleye ait bir örneklemin gözlemlenebilir olduğu durumlarda, ana kütlenin bilinmeyen 

parametrelerine ilişkin tahminlerin yapılması, güven aralıklarının oluşturulması ve istatistik 

hipotezlerin test edilmesi işlemlerini kapsar. Bu durumda Efron’un bootstrap yöntemi, bilinen bir 
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ana kütleden gözlemlenmiş olan bir örneklemin birbirinden bağımsız ve aynı dağılımlı olması 

koşulu ile analitik olarak elde edilmesi güç olan çeşitli tahmin edicilerin örneklem dağılımlarına 

yaklaşımda bulunarak elverişli bir yöntem olarak kullanılır (Duman, 2006). 

 Yöntem, bir başka yeniden örnekleme yöntemi olan jackknife yöntemine alternatif olarak 

ve söz konusu yöntemden daha kolay uygulanabilir ve çok daha güvenilir olduğu belirtilerek ileri 

sürülmüştür (Efron, 1979). Yöntemin önemi, gözlenen örnek verilerinden hareketle, tahminin 

standart hatasını minimuma indirerek ana kütle parametrelerinin tahmin edildiği istatistiksel 

yöntemler aşamasında ortaya çıkmaktadır. 

  Literatürde birkaç farklı bootstrap’a rastlanılabilir. Bunlar arasıda, basit bootstrap, çift 

bootstrap, ağırlıklı bootstrap, tekrarlamalı bootstrap, doğal (wild) bootstrap ve ardışık bootstrap, 

sayılabilir (Şengün, 1999). 

 Ana kütle parametresinin tahmin edicisi olan 𝜃’nın örnekleme dağılımının 

oluşturulmasının amacı, söz konusu ana kütle parametresinin tahmin edilmesi ya da test 

edilmesidir. Ancak, teorik olarak mümkün olan bu yöntemin uygulanabilirliği konusunda 

kuşkular bulunmaktadır. Tahmin edicinin örnekleme dağılımını oluşturmak imkansız olmasa da 

son derece güç ve zaman alıcı bir iştir. Ancak, tahmin edicinin deneysel örnekleme dağılımını 

oluşturmak amacıyla ortaya atılan bootstrap yöntemi bu sakıncayı ortadan kaldırmaktadır.  

 

2.6.4.2. Bootstrap Yönteminin İşleyiş Aşamaları 

 

 Bootstrap algoritması, aşağıdaki gibi tanımlanabilir (Fox, 1997): 

1) Ana kütleden n hacimlik bir örnek alınır.  

            ana kütle   ⇒  örnek      

Bu örnek kullanılarak ana kütle parametresinin tahmin edicisi hesaplanır. 

2) Ana kütle ile ilgili başka hiçbir bilgi olmadığından, elde edilen bu örnek, ana kütlenin en iyi 

tahmin edicisi kabul edilir. Bu nedenle bu örnek ana kütle gibi kabul edilerek her defasında 

iadeli seçimle her bir gözlemin örneğe girme olasılığı 1/n alınarak n hacimlik bir örneğin 

yeniden elde edilmesi ve bu sürecin B kez tekrarlaması yapılır. 

                                                            ⇒ 1. Bootstrap örneği 

                                                            ⇒ 2. Bootstrap örneği 

                               Örnek                   ⇒ 

                                                                . 

                                                                . 

                                                             ⇒ B. Bootstrap örneği 
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3) Her bootstrap örneği için ilgilenilen tahmin edici hesaplanır, 

4) B sayıda örnekten hareketle bu tahmin edicilerin örnekleme dağılımı elde edilir. 

5) Elde edilen bu dağılımdan, dağılımla ilgili ortalama, standart sapma ve standart hata gibi 

önemli tahmin ediciler ile parametre tahmin değerleri elde edilir. 

6) Sonuçta bu tahminler kullanılarak ana kütle hakkında yorumlar yapılır. 

 Yukarıdaki algoritma, bootstrap yönteminin işleyiş mantığını genel olarak açıklayan bir 

algoritmadır (Topuz, 2002). Yeniden örnekleme sayısı olan B, uygulamaya bağlıdır. Aslında n 

hacimlik bir örnekten teorik olarak 𝑛𝑛 sayıda bootstrap örneği oluşturmak mümkünse de bu hem 

gereksizdir hem de zaman kaybına neden olmaktadır (Stine, 1990). Bootstrap yönteminde amaç, 

var olan temel mevcut veri setindeki gözlemlerin tesadüfi olarak yer değiştirerek yeniden 

örneklenmesi ile yeni veri setleri oluşturmaktır. Yeniden örnek oluşturmasındaki amaç daha çok 

veri elde ederek tahminlerin standart hatasını küçültmek ve bunun bir sonucu olarak da daha 

güvenilir ve doğru tahminlere ulaşabilmektir.  

 

2.6.4.3. Bootstrap Dağılımının Standart Hata Tahmini 

 

 Elde dağılımı bilinmeyen rastgele bir örnek olduğu varsayılsın ve x = (x1, x2, …, xn) olan 

veri setinden oluşan gözlemlerden bootstrap’ın standart hatasını aşağıdaki algoritmayla 

bulunabilir. 

1. x = (x1, x2, …, xn) veri setinden, n birimlik yerine koyma yöntemiyle seçilmiş B tane 

birbirinden bağımsız x*1, x*2, …, x*B bootstrap örneği oluşturulur. 

2. Her bir örnek için standart sapma hesaplanır. 

 𝜃* (b) = s(x*b)                 b =1,2, …, B               

 burada “s” ile gösterilen standart sapmadır. 

3. Standart hata ise her bir standart sapma kullanılarak hesaplanır. 

 

 𝑠𝑒̂B = { ∑ [𝐵
𝑏=1 𝜃

*(b) - 𝜃*(.)]2 / (B – 1)}1/2                                                                      (2.24) 

 

Burada 𝑠𝑒̂B , bootstrap örneklerinin örnek standart hatası olarak adlandırılır ve 

 

𝜃*(.) = ∑ 𝜃𝐵
𝑏=1

*(b) / B’dır. 
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Ampirik                 n çaplı                 𝜃 için bootstrap standart hatanın bootstrap 

(deneysel)             bootstrap                 tekrarları                              tahmini 

Dağılım                 örnekleri 

 

                                x*1           𝜃*(1) = s(x*1) 

                      x*2             𝜃*(2) = s(x*2) 

 . 

 .   

 𝑭̂                  x*b                𝜃*(b) = s(x*b) 

 . 

 . 

                        x*B                  𝜃*(B) = s(x*B) 

 

 

                                                                             𝒔𝒆̂B = { ∑ [𝑩
𝒃=𝟏 𝜽̂

*(b) - 𝜽̂*(.)]2 / (B – 1)}1/2 

                                                                                       ve   𝜽̂*(.) = ∑ 𝜽̂𝑩
𝒃=𝟏

*(b) / B 

Şekil 2.3. Standart hata tahmini için bootstrap algoritması 

 

 Şekil 2.3’ de gösterilen algoritmada, bootstrap yöntemi kullanılarak standart hatanın 

hesaplanması açık bir şekilde gösterilmiştir. İlk aşamada gözlemlenmiş değerlerden bootstrap 

örnekleri oluşturulmuş ve her bir örnek için standart hata tahmin değerleri hesaplanmıştır. Daha 

sonra hesaplanan standart hata tahminlerinin ortalaması bulunmuştur. Ve her bir standart hata 

tahmin değerinden, hesaplanan ortalama standart hata değerler farkının karesi alınarak sapma 

miktarı elde edilmiştir ve son olarak sapmaların kareleri bootstrap örnek sayısının bir eksiğine 

bölünerek karekökü alınmış ve standart hata değerleri elde edilmiştir (Atabey, 2010).  

 

2.6.4.4. Bootstrap Yöntemi ile Güven Aralıklarının Oluşturulması 

 

 Bootstrap güven aralıkları; normal yaklaşım yöntemi ve yüzdelik yöntem olmak üzere iki 

yöntemle elde edilir. Günümüzde standart bootstrap güven aralıklarının yerine parametrik 

olmayan birçok güven aralığı oluşturma yöntemleri de bulunmaktadır. Bu yöntemler bootstrap-t 
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aralığı, sapması düzeltilmiş (BCa) aralığı ve yaklaştırılmış (ABC) aralığı olarak ifade edilir. Bu 

yöntemler yeniden örnekleme yaparak örneğin ampirik dağılımını elde eder. 

 Tahmin edicinin örnekleme dağılımının tahmin edilebilmesi için ana kütle parametresi ile 

ilgili güven aralıklarının oluşturulması gerekir. Örnekleme yönteminde F(𝜃)’nın normal ya da t 

dağılımına sahip olduğu varsayılsın. Bu varsayım doğrultusunda ana kütle parametresinin 1-𝛼 

anlamlılık düzeyinde güven sınırları oluşturulmak istensin. Ana kütle varyansı biliniyorken, 𝜃 

için güven aralığı (n > 30); 

 

 p(𝑋-𝑧𝛼
2
 
𝜎

√𝑛
 < 𝜃 < 𝑋+𝑧𝛼

2
 
𝜎

√𝑛
)= 1-𝛼                 (2.25) 

 

olarak yazılır. Bu aralık, 𝜃’nın örnekleme dağılımının şekli konusundaki varsayım geçerli 

olduğunda % (1-𝛼) anlamlılık düzeyinde ana kütle parametresini içerecektir. Ancak söz konusu 

varsayım her zaman doğru olmayabilir. Böyle bir durumda örnekleme yöntemleri geçerliliğini 

kaybedecektir (Mooney ve Duvall, 1993). Bootstrap güven aralıkları, örnekleme 

yöntemlerindeki bu güçsüz yönleri gidermek amacıyla kullanılabilecektir (Hall, 1986). 

 

2.6.4.4.1. Normal Yaklaşım (Standart) ile Bootstrap Güven Aralığı Yöntemi 

 

 Parametre tahminlerinin ampirik dağılımı olan örnekleme dağılımının elde edilebilir 

olması durumunda güven aralıkları oluşturulabilmektedir (Beşer, 2006). Normal yaklaşım ile 

bootstrap güven aralığı yönteminin, parametrik yöntemle büyük benzerlik gösterdiği 

söylenebilir. Bir güven aralığının belirleyicileri, örnekten elde edilen tahmin ve elde edilen bu 

tahminin standart hatası olduğu belirtilmektedir (Mooney ve Duvall, 1993). Bu yöntem, ilgili 

istatistiğin standart hatasının bilinmediği ancak örnekleme dağılımının normal dağılım gösterdiği 

varsayımı altında kullanım göstermektedir (Yıldıztepe ve Özdemir, 2013). Aynı zamanda 

bootstrap yaklaşımı standart hatanın bir tahminini sağlar. Bununla beraber hem örnekleme 

dağılımının türetilmesi hem de bu dağılımın standart hatasının kullanılması bootstrap yönteminin 

sağladığı yararlardan bir tanesi olarak söylenebilir. Normal yaklaşım yöntemi ile bootstrap güven 

aralığı; 

 

 P[ 𝜃-𝑧(1−𝛼
2
)𝑠𝑒̂boot < 𝜃 < 𝜃+𝑧(1−𝛼

2
)𝑠𝑒̂boot] =1- 𝛼                                                              (2.26) 

 

olarak yazılır.   
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 Alt sınır = 𝜃-𝑧(1−𝛼
2
)𝑠𝑒̂boot            (2.27) 

 

 Üst sınır = 𝜃+𝑧(1−𝛼
2
)𝑠𝑒̂boot              (2.28) 

 

olarak ifade edilir. 

 Bootstrap yöntemi parametrik olmayan bir yöntem olarak hazırlanmıştır. Ancak normal 

yaklaşımla elde edilen bootstrap güven aralığı yöntemi ise güçlü bir normallik varsayımı üzerine 

kurulmuştur. Bu yöntemin altında yatan varsayım sağlanmadığı durumda normal yaklaşımla elde 

edilen güven aralığı yöntemi, parametrik olmayan yöntemlerle elde edilen güven aralıklarından 

daha iyi sonuç vermez. Bu nedenle, yöntemin altında yatan varsayım nedeniyle çok tercih 

edilmez. Bunun yerine yüzdelik yöntemiyle elde edilen bootstrap güven aralıkları tercih edilir. 

 

2.6.4.4.2. Bootstrap Yüzdelik Güven Aralığı Yöntemi 

 

 Bootstrap yönteminin en önemli avantajı, parametrenin güven aralıklarının oluşturulması 

için ampirik dağılımın kullanılması olarak gösterilmektedir (Beşer, 2006). Bootstrap 

algoritmasındaki yinelemeler tekrar edilerek bootstrap yöntemi ile tahmin edilmiş parametre 

tahminlerinin vektörü oluşturulmakta ve dağılımın yüzdelik değerleri ortaya çıkarılmaktadır. 

Yani bu yaklaşımda 𝜃 için elde edilen bootstrap tekrarlarından oluşan örnekleme dağılımı 

kullanılarak 1-𝛼 güven seviyesinde dağılımın alt ve üst  
𝛼

2
  yüzdeleri güven sınırlarını 

oluşturmaktadır. Yani alt sınır  
𝛼

2
  ,  üst sınır ise 1-

𝛼

2
  ‘lik yüzdelere karşılık gelmektedir (Atalay 

ve İnal, 1999). 

 Bootstrap yüzdelik güven aralığı yöntemi daha çok parametrik varsayımların olmadığı 

durumlarda sıklıkla kullanılır. Standart normal güven aralığı yönteminin aksine bu yöntemde 

bilinmeyen parametrelerin dağılımı ya da bootstrap dağılımı için herhangi bir normallik 

varsayımı istenmez. 

 Bootstrap yüzdelik güven aralığı yönteminde örnekleme dağılımının parametrelerini 

tahmin etmek için bootstrap örnekleme dağılımının oluşturulması yeterlidir. Bu yöntemde güven 

aralığının sınırları  𝜃 ‘nın bootstrap dağılımı ile belirlenir. Ancak bu yöntem çarpık dağılımlarda 

oldukça doğru sonuçlar vermekte, örnek hacminin küçük olduğu durumlarda performansı 

düşmektedir (DiCiccio ve Romano, 1988). Böyle bir durumda da sıfır hipotezinin ret edilme 

olasılığının artma ihtimali ortaya çıkmaktadır. 
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 Bootstrap dağılımının asimetrik olduğu sonlu örnek problemlerinde, yüzdelik güven 

aralığı metodunun diğer yönteme nazaran daha doğru güven aralığı sağladığı söylenebilir. Zira 

örnek sayısının veya bootstrap tekrar sayısının artması, güven aralıklarının gerçek ana kütle 

parametresini kapsama olasılığını nispi bir şekilde artıracaktır. Bu durum daha doğru güvenilir 

bir aralık sağlamış olacaktır (Beşer, 2006). Ayrıca bootstrap tekrar sayısının sonsuza 

yaklaştırılmasıyla istenilen bootstrap güven aralığı elde edilebilir. Ancak uygulamada bu tekrar 

sayısının sonsuza yaklaştırılması durumu söz konusu olmayabilir. Buna bağlı olarak sonlu bir B 

tekrar sayısı ve  𝜃* ‘ın dağılımı için aşağıdaki gibi adımlar kullanılarak yüzdelik bootstrap güven 

aralığı tercih edilebilir. Bootstrap yüzdelik güven aralığı hesaplama adımları; 

1) x1, x2, x3, … , xn örnekleminden hareketle tesadüfi olarak örnek çekilerek bootstrap 

örneklemi x1*, x2*, x3*, … , xn* ‘ leri elde edilir. 

2) 𝜃 parametresine ilişkin bootstrap tahmini 𝜃* hesaplanır. 

3) Her iki adım B kez tekrarlanır. B tekrardan elde edilen 𝜃*1,  𝜃*2, … ,  𝜃*B tahminleri 

kullanılarak bootstrap dağılımının 𝐺̂ kümülatif dağılım fonksiyonu elde edilir. 

4) 𝐺̂, 𝜃* ‘ nın kümülatif dağılım fonksiyonu olduğu varsayımı altında, 1-2α yüzdelik aralığı 

𝐺̂ ’nin α’ıncı ve 1- α’ıncı yüzdelik dilimleri ile aşağıdaki gibi tanımlanır. 

 

 [𝜃%alt, 𝜃%üst] =[ 𝐺̂(-1)(𝛼), 𝐺̂(-1)(1 − 𝛼)]                                                                           (2.29) 

 

5) Bootstrap dağılımının 100𝛼’ ıncı yüzdeliği 𝜃* olduğu için 𝐺̂(-1)(𝛼) = 𝜃* şeklinde de ifade 

edilebilir. 

6) Bootstrap yüzdelerine ait aralık aşağıdaki şekilde de gösterilebilir: 

 

 [𝜃%alt, 𝜃%üst] = [𝜃∗ (𝛼), 𝜃∗ (1−𝛼)] 

 

2.6.5. Jackknife ve Bootstrap Yöntemleri Arasındaki Benzerlikler ve Farklılıklar 

 

 Jackknife ve bootstrap yöntemlerinin her ikisi de aynı veri kümesinden tekrarlama 

yaparak örnekler elde etme temeline dayanır. Bununla birlikte bootstrap standart hata 

tahmininde, sapma değerleri  
1

𝑛−1
  veya 

1

𝑛
 ile çarpılırken jackknife tahmininde  

𝑛−1

𝑛
 çarpanı 

kullanılır. 
𝑛−1

𝑛
 değeri,  

1

𝑛−1
  veya 

1

𝑛
’den çok daha büyüktür. Bunun için bir etki faktörüne gerek 

vardır. jackknife sapmaları  
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 (𝜃(i) - 𝜃(.))
2                                                                                                                     (2.30) 

 

Bootstrap sapmalarından 

 

 [ 𝜃*(B) - 𝜃*(.)] 
2                                                                                                              (2.31) 

 

daha küçük olma eğilimindedir (Efron ve Tibshirani, 1993; Avşar, 2006). 

 Jackknife yöntemi, bootstrap yöntemine göre hem kolay hem de oldukça başarılı bir 

yaklaşım sunar. Ancak bu yöntem 𝜃 istatistiği düzgün olmadığında (non-smooth) iyi sonuçlar 

sağlamaz. Düzgün olmayan istatistiğe verilebilecek en iyi örnek ‘’medyan’’ olarak gösterilir. 

İstatistiksel ölçümler açısından medyanın güvenirliği jackknife yöntemine göre güvenilir 

sonuçlar vermez. Zira jackknife yöntemi aşırı uç değerlerden etkilenir böylece duyarlı ölçümler 

yapmak için aşırı uç değerleri de veri setine dahil eder. Medyan ise aşırı uç değerlerden 

etkilenmez bu da jackknife için kabul edilemez. Tüm bunlara bağlı olarak düzgünlüğün 

olmaması örneğin medyan gibi hesaplanacak olan örnekleme hatasının jackknife tahmininde 

istenmeyen tutarsız durumlara neden olacaktır. Ancak böyle bir durumun bootstrap yönteminde 

söz konusu olduğu söylenemez. Zira bootstrap yönteminin jackknife yönteminden, medyan için 

daha tutarlı bir durum sergilediği bilinmektedir. 

 𝜃’nın sadece n jackknife veri kümeleri için hesaplanması gerektiğinde, n’nin standart 

hata tahmini, bootstrap tarafından yapılan tekrarlama yönteminden az ise jackknife’ın tercih 

edilmesi daha bir mantıklı olur. Ancak sadece n jackknife örneklerine bakarak, jackknife 𝜃 

hakkında sadece sınırlı bilgiye ulaşır. B nedenle jackknife’ın bootstrap’tan daha az etkili olduğu 

söylenebilir. Bu da jackknife’ın bootstrap yöntemine yakın bir tahmine dönüştüğü olarak 

yorumlanabilir (Efron ve Tibshirani, 1993). 

 Bootstrap yönteminde ise B tekrarlamayla Nn tane yeniden örnek oluşturulduğunda 

yapılan bootstrap tekrarlamayla elde edilecek birden fazla örneğin oldukça büyük işlemler 

gerektirdiği ayrıca zaman, maliyet ve kalifiyeli eleman durumlarını ortaya çıkaracağından 

verilerle ilgili bazı güncellikler zamanla önemini yitirecektir. Ayrıca jackknife yöntemi sadece n 

tane gözlem kullanarak elde edeceği sınırlı bilgiye rağmen bootstrap Nn tane örnek elde ederek 

jackknife göre daha küçük örnekleme hatası elde eder. Bu durumda bootstrap yönteminin, 

jackknife yöntemine nazaran daha etkili olduğu söyleyenebilir. 
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 Bazı paket programların geliştirilmesi ile çoğu araştırmacı jackknife yönteminin 

bootstrap yönteminden sonra kullanılan kontrol amaçlı bir yeniden örnekleme yöntemi olduğunu 

ileri sürmüştür (Yay, 2003). 

 Son olarak jackknife yöntemi, dağılımı tahmin etmek amacıyla kullanılırken bootstrap 

yönteminde böyle bir durumdan söz edilemez. Bootstrap yöntemiyle elde edilen yeniden 

örneklerde zaten yeni bir bootstrap dağılımı oluşturulur. Jackknife ve bootstrap yöntemlerinde 

ana kütle dağılımı normal dağılım göstermiyorsa bu iki yöntem;  

➢ Standart hatayı azaltır, 

➢ Herhangi bir dağılım olmadan güven aralığı verir, 

➢ Yeniden bir örnek üzerinde çalışma imkanı sağlar. 

 Jackknife ve bootstrap yöntemlerinden hangisinin daha kullanışlı olabileceğini anlamak 

için aşağıdaki tabloda bir karşılaştırma yapmak uygun olabilir. Bu karşılaştırmaya göre 

uygulamayı yapan kişinin elde edeceği sonuca göre hangi yöntemin kullanılabilirlik açısından 

uygun olduğuna karar verilir.  

 

JACKKNİFE BOOTSTRAP 

Yeniden örneklemenin yapılma şekli; belli bir 

gözlemden birinin dışarıda bırakılmasıyla 

yapılır. 

Yeniden örneklemenin yapılma şekli: elimizdeki 

gözlemleri yerine koyarak örnekleme yapılmasıdır. 

İadesiz seçim yapar. İadeli seçim yapar. 

En fazla örnek genişliği kadar örneklem elde 

eder. 

Örnek türetme konusunda herhangi bir limit yoktur 

Normal dağılım varsayımını gerektirir. Herhangi bir dağılımdan bağımsız üretilir. 

Daha az algoritma ve hesaplama içerir. Daha fazla algoritma ve hesaplama içerir. 

Her zaman aynı sonuçları sağlar. Aynı verilerin yinelenmesiyle zaman zaman farklı 

sonuçlar sağlar. 

Örnek büyüklüğü n tane gözlemden birinin 

dışarıda bırakılmasıyla geriye kalan n-1 tane 

gözlemden oluşur. 

Bootstrap’taki örnek büyüklüğü n’dir. 

Tekrar sayısı n iken, Tekrar sayısı Nn’dir. 

Herhangi bir dağılımın tahmin edilmesi 

amaçlanmazken daha çok doğrulama amacıyla 

iyi sonuçlar verir. 

Temelde bilinmeyen bir dağılımının tahmin 

edilmesi ve hesaplanması için tavsiye edilir. 

Esasen temel istatistik çıkarsamalarda iyi sonuç 

verir. 

Yoğun hesaplamalarda iyi sonuç sağlar. 
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3. BULGULAR VE TARTIŞMA  

 Bu tez çalışmasının materyal bölümünde belirtilen yeniden örnekleme yöntemlerinden 

olan jackknife ve bootstrap yöntemleriyle; 100, 200 ve 300 tekrarlamayla oluşturulan örneklem 

genişliklerinde, elde edilen n birimlik örneklemlerde; ortalama, varyans, varyasyon katsayısı ve 

güven aralığı değerleri incelendi. 

İlk olarak ele alınan 100 lük örneklemde; n = 10 dan 80’ e kadar çekilen bootstrap ve jackknife 

örneklemlerine ait ortalama, varyans, varyasyon katsayısı ve güven aralıkları Çizelge 3.1’ de 

verilmiştir. Daha sonra ele alınan 200’ lük örneklemde; n =10 dan 80’e kadar çekilen bootstrap 

ve jackknife örneklelemlerinde; ortalama, varyans, varyasyon katsayısı ve güven aralıkları 

Çizelge 3.2’ de verilmiştir. 

Son olarakta Çizelge 3.3’ te, ele alınan 300 lük örneklem genişliğinde; n = 10 dan 80’e kadar 

çekilen bootstrap ve jackknife örneklemlerinde; ortalama, varyans, varyasyon katsayısı ve güven 

aralıkları verilmiştir. 

100 birimlik örneklem genişliğinde ortalama: Ortalaması 10 olan ana kütleden 100’lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen ortalama 

10.058 olarak bulunurken, bootstrap ve jackknife ortalamaları sırasıyla, 10.065 ve 10.058 olarak 

bulunmuştur. Buna göre jackknife ortalamasının gerçekleşen değerle aynı sonucu vermiş olduğu 

gözlenmekle birlikte, bootstrapın da yaklaşık %1’lik farkla gerçekleşen değere oldukça yakın 

olduğu görülmüştür.  

• n = 20 lik bootstraplar incelendiğinde, her üç (gerçekleşen ortalama, jackknife ortalaması ve 

bootstrap ortalaması) ortalamanın da birbiri ile aynı olduğu gözlenmiştir. 

• n = 30 luk bootstraplarda, gerçekleşen ortalama değeri, 10.049 iken, bootstrap ortalaması 

10.031 ve jackknife ortalaması da 10.049 olarak bulunmuştur. Buna göre jackknife, 

gerçekleşen değerle aynı sonucu vermiş, bootstrap ise yaklaşık 0.018 birimlik fark 

göstermiştir. 

• Bootstrap örneklem genişliği n = 40 olduğunda; gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla; 10.127, 10.123 ve 10.127 olarak bulunmuştur. Buna göre 

önceki örneklem genişliklerine benzer şekilde jackknife, gerçekleşen ortalama değerle aynı 

sonucu vermiş, bootstrap ise gerçekleşen değere oldukça yakın bulunmuştur. 
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Çizelge 3.1. 100 birimlik örneklem genişliklerinde elde edilen sonuçlar 

 

Çizelge 3.2. 200 birimlik örneklem genişliklerinde elde edilen sonuçlar 

 

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen ortalama 10.104 olarak 

bulunurken, bootstrap ortalaması 10.107 ve jackknife ortalaması ise 10.104 olarak 

bulunmuştur. Buna göre jackknife, gerçekleşen ortalama ile aynı sonucu verirken, 

bootstrapta 0.003’lük fark gözlenmiştir.  

 

 n OrtG OrtB OrtJ VarG VarB VarJ CVG CVB 
CVJ 

 
CIG 

CIB 

 

CIJ 

 

100 

10 10.058 10.065 10.058 0.736 0.021 1.205 0.085 0.081 0.742 
8.376 9.781 7.906 

11.740 10.349 12.210 

20 10 10.000 10 0.971 0.037 2.403 0.098 0.092 0.818 
8.068 9.620 6.961 

11.931 10.380 13.038 

30 10.049 10.031 10.049 0.887 0.014 1.866 
0.093 

 
0.080 0.788 

8.203 9.793 7.371 

11.895 10.270 12.727 

40 10.127 10.123 10.127 1.012 0.015 2.516 0.099 0.071 0.810 
8.155 9.882 7.018 

12.099 10.364 13.236 

50 10.104 10.107 10.104 0.988 0.011 2.368 0.098 0.054 0.790 
8.155 9.900 7.088 

12.053 10.315 13.121 

60  

 
10.107 10.115 10.107 0.992 0.008 2.405 0.098 0.051 0.799 

8.155 9.933 7.067 

12.060 10.297 13.147 

70 10.077 10.071 10.077 1.022 0.008 2.965 0.100 0.046 0.868 
8.096 9.887 6.702 

12.059 10.255 13.452 

80 10.052 10.053 10.052 1.059 0.005 2.754 0.102 0.038 0.803 
8.034 9.904 6.799 

12.070 10.201 13.305 

 n OrtG OrtB OrtJ VarG VarB VarJ CVG CVB 

 

CVJ 

 

CIG 

 

CIB 

 

 

CIJ 

 

200 

10 9.980 9.985 9.980 0.739 0.044 2.280 0.086 0.142 1.071 
8.294 9.570 7.020 

11.666 10.399 12.940 

20 9.901 9.893 9.901 1.004 0.044 3.239 0.101 0.100 0.933 
7.937 9.479 6.373 

11.865 10.307 13.429 

30 9.990 9.984 9.990 0.909 0.026 2.577 0.095 0.093 0.917 
8.120 9.668 6.843 

11.859 10.300 13.136 

40 10.007 10.002 10.007 0.849 0.013 2.084 0.092 0.072 0.878 
8.200 9.778 7.177 

11.814 10.226 12.836 

50 9.942 9.943 9.942 0.907 0.010 1.902 0.095 0.056 0.782 
8.075 9.739 7.239 

11.809 10.147 12.645 

60 9.932 9.924 9.932 0.887 0.006 1.721 0.094 0.048 0.753 
8.085 9.767 7.360 

11.778 10.082 12.503 

70 9.928 9.931 9.928 0.904 0.004 1.675 0.095 0.040 0.729 
8.064 9.797 7.391 

11.792 10.066 12.465 

80 9.960 9.955 9.960 0.968 0.004 1.733 0.098 0.036 0.696 
8.031 9.826 7.379 

11.888 10.083 12.540 
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Çizelge 3.3. 300 birimlik örneklem genişliklerinde elde edilen sonuçlar 

 

• Bootstrap örneklem genişliği 60 olduğunda ise gerçekleşen ortalama 10.107, bootstrap 

ortalaması 10.115 ve jackknife ortalaması 10.107 olmuştur. Buna göre jackknife, 

gerçekleşen değerle aynı sonucu vermiş, bootstrapta ise yaklaşık 0.008’lik fark gözlenmiştir. 

• n = 70’lik bootstrap örnekleri incelendiğinde, gerçekleşen ortalama 10.077 iken bootstrap 

ortalaması 10.071 ve jackknife ortalaması 10.077’dir. Buna göre jackknife’ın gerçekleşen 

ortalama ile aynı sonucu vermiş olduğu gözlenmekle birlikte, bootstrapın yaklaşık 0.006’lık 

farkla, gerçekleşen ortlamaya oldukça yakın olduğu görülmüştür. 

• Bootstrap örneklem genişliği n = 80 olduğunda gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalamasının sırasıyla; 10.052, 10.053 ve 10.052 olduğu görülmektedir. Buna 

göre önceki örneklem genişliklerine benzer şekilde, jackknife’ın gerçekleşen değerle aynı 

sonucu vermiş olduğu, bootstrapın ise gerçekleşen değere oldukça yakın olduğu 

gözlenmiştir.  

200 birimlik örneklem genişliğinde ortalama: Ortalaması 10 olan ana kütleden, 200’ lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen ortalama 

9.980 olarak bulunurken, bootstrap ve jackknife ortalamaları sırasıyla 9.985 ve 9.980 olarak 

bulunmuştur. 

 n OrtG OrtB OrtJ VarG VarB VarJ CVG CVB 

 

CVJ 

 

CIG 

 

CIB 

 

 

CIJ 

 

300 

10 9.960 9.954 9.960 1.038 0.051 3.064 0.102 0.111 0.870 
7.963 9.508 6.529 

11.958 10.400 13.391 

20 10.042 9.960 10.042 1.098 0.035 2.814 0.104 0.088 0.783 
7.988 9.589 6.753 

12.096 10.332 13.330 

30 10.079 10.083 10.079 1.053 0.037 3.576 0.101 0.084 0.916 
8.067 9.704 6.372 

12.091 10.461 13.785 

40 10.028 10.022 10.028 0.999 0.021 2.926 0.099 0.069 0.872 
8.069 9.735 6.675 

11.987 10.309 13.381 

50 9.947 9.947 9.947 1.028 0.012 2.652 0.101 0.057 0.805 
7.959 9.727 6.755 

11.935 10.166 13.139 

60  

 
10.003 10.007 10.003 1.019 0.008 2.472 0.100 0.046 0.787 

8.024 9.824 6.921 

11.983 10.191 13.086 

70 10.006 10.007 10.006 1.049 0.006 2.306 0.102 0.035 0.737 
7.997 9.849 7.029 

12.014 10.164 12.983 

80 9.995 9.990 9.995 1.009 0.005 2.171 0.100 0.037 0.744 
8.025 9.843 7.106 

11.964 10.137 12.883 
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Buna göre jackknife ortalamasının gerçekleşen ortalama ile aynı sonucu vermiş olduğu 

gözlenmekle birlikte, bootstrapın da yaklaşık 0.005’lik farkla gerçekleşen ortalamaya oldukça 

yakın olduğu görülmüştür.  

• n = 20 lik bootstrap örneklemleri incelendiğinde, gerçekleşen ortalama değer 9.901 iken 

bootstrap ortalaması ve jackknife ortalaması sırasıyla 9.893 ve 9.901 olarak bulunmuştur. 

Buna göre jackknife, gerçekleşen ortalama ile aynı sonucu vermiş, bootstrapta ise 0.008’lik 

fark gözlenmiştir. 

• Bootstrap örneklem genişliği n = 30 olduğunda; gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla 9.990, 9.984 ve 9.990 olarak bulunmuştur. Buna göre 

jackknife, gerçekleşen ortalama ile aynı sonucu verirken, bootstrapta 0.006’lık fark 

gözlenmiştir.   

• Bootstrap örneklem genişliği 40 olduğunda ise gerçekleşen ortalama 10.007 olarak 

bulunurken, bootstrap ortalaması 10.002 ve jackknife ortalaması ise 10.007 olarak 

bulunmuştur. Buna göre jackknife gerçekleşen ortalama ile aynı sonucu verirken, 

bootstrapta 0.005’lik fark gözlenmiştir.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen ortalama 9.942, bootstrap 

ortalaması 9.943 ve jackknife ortalaması 9.942 olmuştur. Buna göre jackknife, gerçekleşen 

ortalama ile aynı sonucu vermiş, bootstrap ise yaklaşık 0.005’lik farkla gerçekleşen değere 

oldukça yakın bulunmuştur. 

• Bootstrap örneklem genişliği n = 60 olduğunda gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla 9.932, 9.924 ve 9.932 olarak bulunmuştur. Buna göre 

jackknife’ın gerçekleşen ortalama ile aynı sonucu vermiş olduğu, bootstrapın ise gerçekleşen 

değerden yaklaşık 0.008 birimlik fark gösterdiği görülmüştür. 

• n = 70’lik bootstrap örneklemleri incelendiğinde, gerçekleşen ortalamanın 9.928, bootstrap 

ortalamasının 9.931 ve jackknife ortalamasının da 9.928 olduğu görülmektedir. Buna göre 

jackknife’ın gerçekleşen ortalama ile aynı sonucu vermiş olduğu gözlenmekle birlikte, 

bootstrapın 0.003’lik farkla gerçekleşen değere oldukça yakın olduğu söylenebilir. 

• Bootstrap örneklem genişliği n = 80 olduğunda gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla; 9.960, 9.955 ve 9.960 olarak bulunmuştur. Buna göre 

jackknife, gerçekleşen ortalama ile aynı sonucu vermiş olmakla birlikte, bootstrapın da 

yaklaşık 0.005’lik farkla gerçekleşen değere oldukça yakın olduğu söylenebilir. 
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300 birimlik örneklem genişliğinde ortalama: Ortalaması 10 olan ana kütleden 300’lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen ortalama 

9.960 olarak bulunurken, bootstrap ve jackknife ortalamaları sırasıyla 9.954 ve 9.960 olarak 

bulunmuştur. Buna göre jackknife ortalamasının gerçekleşen ortalama ile aynı olduğu, 

bootstrapın da yaklaşık 0.006’lik farkla gerçekleşen değere oldukça yakın olduğu görülmüştür.  

• n = 20’lik bootstrap örneklemlerinde, gerçekleşen ortalama 10.042 iken, bootstrap 

ortalaması 9.960 ve jackknife ortalaması da 10.042 olarak bulunmuştur. Buna göre 

jackknife’ın gerçekleşen değerle aynı sonucu vermiş olduğu görülmekle birlikte, bootstrapın 

ise gerçekleşen değerden yaklaşık 0.082 birimlik fark gösterdiği görülmüştür. 

• n = 30 luk bootstrap örneklemleri incelendiğinde, gerçekleşen ortalama 10.079 iken, 

bootstrap ortalaması ve jackknife ortalaması sırasıyla 10.038 ve 10.079 olarak bulunmuştur. 

Buna göre jackknife ortalama değeri, gerçekleşen değerle aynı olurken bootstrap, 0.041’lik 

fark göstermiştir. 

• Bootstrap örneklem genişliği n = 40 olduğunda; gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla; 10.028, 10.022 ve 10.128 olarak bulunmuştur. Buna göre 

jackknife, gerçekleşen ortalama aynı sonucu verirken bootstrap, yaklaşık 0.006 birimlik fark 

göstermiştir. 

• n = 50 lik bootstraplar incelendiğinde, her üç  (gerçekleşen ortalama, jackknife ortalaması ve 

bootstrap ortalaması) ortalamanın da birbiri ile aynı olduğu gözlenmiştir. 

• Bootstrap örneklem genişliği 60 olduğunda, gerçekleşen ortalama 10.003 iken, bootstrap 

ortalaması 10.007 ve jackknife ortalaması ise 10.003 olarak bulunmuştur. Buna göre 

jackknife gerçekleşen ortalama ile aynı sonucu verirken, bootstrapta 0.004’lük fark 

gözlenmiştir.  

• n = 70’lik bootstrap örneklemleri incelendiğinde, gerçekleşen ortalama 10.006 iken 

bootstrap ortalamasının 10.007, jackknife ortalamasının ise 10.006 olduğu görülmektedir. 

Buna göre jackknife ortalamasının gerçekleşen değerle aynı sonucu vermiş olduğu 

gözlenmekle birlikte, bootstrapın da yaklaşık 0.001’lik farkla gerçekleşen değere oldukça 

yakın olduğu görülmüştür. 

• Bootstrap örneklem genişliği n = 80 olduğunda, gerçekleşen ortalama, bootstrap ortalaması 

ve jackknife ortalaması sırasıyla 9.995, 9.990 ve 9.995 olarak bulunmuştur. Buna göre 

jackknife’ın gerçekleşen değerle aynı sonucu vermiş olduğu gözlenmekle birlikte, 

bootstrapın da yaklaşık 0.005’lik farkla gerçekleşen değere oldukça yakın olduğu 

görülmüşür. 
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100 birimlik örneklem genişliğinde varyans değerleri: Ortalaması 10 olan ve 100 lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyans 

değeri 0.736 olarak bulunurken, bootstrap ve jackknife varyans değerleri sırasıyla 0.021 ve 1.205 

olarak bulunmuştur.  

• n = 20 lik bootstrap örneklemleri incelendiğinde, gerçekleşen varyans değeri 0.971 olurken, 

bootstrap ve jackknife varyans değerleri sırası ile 0.037 ve 2.403 olmuştur.  

• n = 30 luk bootstrap örneklemlerinde, gerçekleşen varyans değeri, 0.887 iken bootstrap 

varyans değeri 0.014 ve jackknife varyans değeri de 1.866 olarak bulunmuştur. 

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen, bootstrap ve jackknife varyans 

değerleri sırasıyla 1.012, 0.015 ve 2.516 olarak bulunmuştur. 

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyans değeri 0.988 olarak 

bulunurken, bootstrap varyans değeri 0.011 ve jackknife varyans değeri ise 2.368 olarak 

bulunmuştur.  

• Bootstrap örneklem genişliği 60 olduğunda ise gerçekleşen varyans değeri 0.992, bootstrap 

varyans değeri 0.008 ve jackknife varyans değeri 2.405 olmuştur.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen varyans değeri 1.022 iken, bootstrap 

varyans değeri 0.008 ve jackknife varyans değeri de 2.965’ tir.  

• Bootstrap örneklem genişliği n = 80 olduğunda, gerçekleşen bootstrap ve jackknife varyans 

değerleri sırasıyla 1.059, 0.005 ve 2.754 olmuştur.  

• Buna göre örneklem genişliğinden bağımsız olarak, gerçekleşen değere göre bootstrap 

varyans değerlerinin oldukça küçük, jackknife varyans değerinin ise oldukça büyük olduğu 

gözlenmiştir. Diğer bir ifadeyle önceki örneklem genişliklerinde olduğu gibi bootstrapla elde 

edilen varyans değerinin, diğer yönteme göre oldukça küçük olduğu söylenebilir. 

200 birimlik örneklem genişliğinde varyans değerleri: Ortalaması 10 olan 200’lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyans 

değeri 0.739 olarak bulunurken, bootstrap ve jackknife varyans değerleri sırasıyla 0.044 ve 

2.280 olarak bulunmuştur.  

• n = 20 lik bootstrap örneklemlerinde, gerçekleşen varyans değeri 1.004 olurken, bootstrapta 

0.044,  jackknife ise 3.239 olarak bulunmuştur.  

• n = 30 luk örneklemlerde ise gerçekleşen varyans değeri 0.909 iken bootstrap varyans değeri 

0.026 ve jackknife varyans değeri de 2.577 olarak bulunmuştur.  
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• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen, bootstrap ve jackknife varyans 

değerleri sırasıyla 0.849, 0.013 ve 2.084 olarak bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyans değeri 0.907 olarak 

bulunurken, bootstrap varyans değeri 0.010 ve jackknife varyans değeri de 1.902 olarak 

bulunmuştur.  

• Bootstrap örneklem genişliğinin 60 olduğu durumda ise gerçekleşen varyans değerinin 

0.887, bootstrap varyans değerinin 0.006 ve jackknife varyans değerinin de 1.721 olduğu 

görülmektedir.  

• n = 70’lik bootstrap örneklemleri incelendiğinde, gerçekleşen varyans değeri 0.904 iken 

bootstrap varyans değerinin 0.004 ve jackknife varyans değerinin de 1.675 olduğu 

görülmektedir.  

• Bootstrap örneklem genişliği n = 80 olduğunda, gerçekleşen, bootstrap ve jackknife varyans 

değerleri sırasıyla 0.968, 0.004 ve 1.733 olmuştur.  

• Buna göre örneklem genişliğinden bağımsız olarak gerçekleşen değere göre bootstrap 

varyans değerlerinin oldukça küçük, jackknife varyans değerinin ise oldukça büyük olduğu 

gözlenmiştir. Diğer bir ifadeyle bootstrapla elde edilen varyans değerinin, diğer yönteme 

göre daha küçük değerler olduğu söylenebilir. 

300 birimlik örneklem genişliğinde varyans değerleri: Ortalaması 10 olan 300’lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyans 

değeri 1.038 olarak bulunurken, bootstrap ve jackknife varyans değerleri sırasıyla 0.051 ve 

3.064 olarak bulunmuştur.  

• n = 20 lik bootstrap örneklemlerinde, gerçekleşen varyans değeri 1.098 iken, bootstrap ve 

jackknife varyans değerleri sırası ile 0.035 ve 2.814 olmuştur.  

• n = 30 luk bootstrap örneklemlerinde, gerçekleşen varyans değeri 1.053 iken bootstrap 

varyans değeri 0.037 ve jackknife varyans değeri de 3.517 olarak bulunmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen, bootstrap ve jackknife varyans 

değerleri sırasıyla; 0.099, 0.069 ve 2.926 olarak bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyans değeri 1.028 olurken, 

bootstrap ve jackknife varyans değerleri sırası ile 0.012 ve 2.652 olmuştur.  

• Bootstrap örneklem genişliği 60 olduğunda; gerçekleşen varyans değeri 1.019 iken, 

bootstrap ve jackknife varyans değerleri sırası ile 0.008 ve 2.472’ dir.  
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• n = 70’lik bootstrap örneklemleri incelendiğinde, gerçekleşen varyans değerinin 1.049, 

bootstrap varyans değerinin 0.006 ve jackknife varyans değerinin ise 2.306 olduğu 

görülmektedir.  

• Bootstrap örneklem genişliği n = 80 olduğunda gerçekleşen, bootstrap ve jackknife varyans 

değerleri sırasıyla 1.009, 0.005 ve 2.171 olmuştur.  

Buna göre örneklem genişliğinden bağımsız olarak gerçekleşen değere göre bootstrap varyans 

değerlerinin oldukça küçük, jackknife varyans değerlerinin ise oldukça büyük olduğu 

gözlenmiştir. Diğer bir ifadeyle önceki örneklem genişliklerinde olduğu gibi bootstrapın, diğer 

yönteme göre oldukça küçük varyans değerleri ürettiği söylenebilir. 

100 birimlik örneklem genişliğinde varyasyon katsayısı: Ortalaması 10 olan 100’lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyasyon 

katsayısı 0.085 olarak bulunurken, bootstrap varyasyon katsayısı 0.081 ve jackknife varyasyon 

katsayısı da 0.742 olarak bulunmuştur.  

• n = 20 lik bootstrap örneklemlerinde; gerçekleşen varyasyon katsayısı 0.098, bootstrap ve 

jackknife varyasyon katsayısı ise sırası ile 0.092 ve 0.818 olarak bulunmuştur.  

• n = 30 luk bootstraplarda, gerçekleşen varyasyon katsayısı 0.093 iken, bootstrap varyasyon 

katsayısı 0.080 ve jackknife varyasyon katsayısı da 0.788 olarak bulunmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen, bootstrap ve jackknife 

varyasyon katsayısı değerleri sırasıyla 0.099, 0.071 ve 0.810 olarak bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyasyon katsayısı 0.098 olarak 

bulunurken, bootstrap varyasyon katsayısı 0.054 ve jacknife varyasyon katsayısı da 0.790 

olarak bulunmuştur.  

• Bootstrap örneklem genişliği 60 olduğunda gerçekleşen varyasyon katsayısının 0.098, 

bootstrap varyasyon katsayısının 0.051 ve jackknife varyasyon katsayısının 0.797 olduğu 

görülmüştür.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen varyasyon katsayısı 0.100 iken, bootstrap 

varyasyon katsayısı 0.046 ve jackknife varyasyon katsayısı da 0.868 olmuştur.  

• Bootstrap örneklem genişliği n = 80 olduğunda; gerçekleşen, bootstrap ve jackknife 

varyasyon katsayıları sırasıyla 0.102, 0.038 ve 0.803 olarak bulunmuştur.  
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Buna göre tüm örneklem genişliklerinde jackknife varyasyon katsayısının, gerçekleşen değerden 

belirgin farklılık gösterdiği, bootstrap varyasyon katsayısının ise gerçekleşen değere daha yakın 

olduğu gözlenmiştir. 

200 birimlik örneklem genişliğinde varyasyon katsayısı: Ortalaması 10 olan 200 lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyasyon 

katsayısı 0.086 olarak bulunurken, bootstrap varyasyon katsayısı 0.142 ve jackknife varyasyon 

katsayısı ise 1.071 olarak bulunmuştur.  

• n = 20 lik bootstraplar incelendiğinde, gerçekleşen varyasyon katsayısı 0.101, bootstrap ve 

jackknife varyasyon katsayıları ise sırası ile 0.100 ve 0.933 olarak bulunmuştur.  

• n = 30 luk bootstraplarda, gerçekleşen varyasyon katsayısı ile bootstrap ve jackknife 

varyasyon katsayıları sırası ile 0.095, 0.093 ve 0.917 olarak bulunmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen varyasyon katsayısı, bootstrap 

varyasyon katsayısı ve jackknife varyasyon katsayısı sırasıyla 0.092, 0.072 ve 0.878 

olmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyasyon katsayısı 0.095 olarak 

bulunurken, bootstrap varyasyon katsayısı 0.056 ve jackknife varyasyon katsayısı da 0.782 

olarak bulunmuştur. 

• Bootstrap örneklem genişliğinin 60 olduğu durumda ise gerçekleşen varyasyon katsayısının 

0.094, bootstrap varyasyon katsayısının 0.048 ve jackknife varyasyon katsayısının da 0.753 

olduğu görülmüştür.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen varyasyon katsayısı 0.095 iken, bootstrap 

varyasyon katsayısı 0.040 ve jackknife varyasyon katsayısı da 0.729 olmuştur.  

• Bootstrap örneklem genişliğinın n = 80 olması durumda; gerçekleşen, bootstrap ve jackknife 

varyasyon katsayılarının sırasıyla 0.098, 0.036 ve 0.696 ‘dır.  

Buna göre tüm örneklem genişliklerinde jackknife varyasyon katsayısının, gerçekleşen değerden 

belirgin farklılık gösterdiği, bootstrap varyasyon katsayısının ise gerçekleşen değere daha yakın 

olduğu gözlenmiştir. 

300 birimlik örneklem genişliğinde varyasyon katsayısı: Ortalaması 10 olan 300 lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen varyasyon 

katsayısı 0.102 olarak bulunurken, bootstrap varyasyon katsayısı 0.111 ve jackknife varyasyon 

katsayısı ise 0.870 olarak bulunmuştur.  
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• n = 20 lik bootstrap örneklemlerinde; gerçekleşen varyasyon katsayısı 0.104 iken, bootstrap 

ve jackknife varyasyon katsayıları ise sırası ile 0.088 ve 0.783 olarak bulunmuştur.  

• n = 30 luk bootstrap örneklemlerinde; gerçekleşen, bootstrap ve jackknife varyasyon 

katsayıları sırası ile 0.101, 0.084 ve 0.916 olarak bulunmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen varyasyon katsayısı, bootstrap 

varyasyon katsayısı ve jackknife varyasyon katsayısı sırasıyla 0.099, 0.069 ve 0.872 olarak 

bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen varyasyon katsayısının 0.101, 

bootstrap varyasyon katsayısının 0.057 ve jackknife varyasyon katsayısının da 0.805 olduğu 

gözlenmiştir.  

• n = 60’lık bootstrap örneklemlerinde gerçekleşen varyasyon katsayısı 0.100 iken, bootstrap 

ve jackknife varyasyon katsayıları sırası ile 0.046 ve 0.787 olarak bulunmuştur.  

• Bootstrap örneklem genişliği n = 70 olduğunda, gerçekleşen, bootstrap ve jackknife 

varyasyon katsayıları sırası ile 0.102, 0.035 ve 0.737 olarak gözlenmiştir.   

• Bootstrap örneklem genişliğinin n = 80 olması durumunda ise gerçekleşen varyasyon 

katsayısı, bootstrap varyasyon katsayısı ve jackknife varyasyon katsayısı sırasıyla 0.100, 

0.037 ve 0.744 olarak bulunmuştur.  

Buna göre tüm örneklem genişliklerinde jackknife varyasyon katsayısının, gerçekleşen değerden 

belirgin farklılık gösterdiği, bootstrap varyasyon katsayısının ise gerçekleşen değere daha yakın 

olduğu gözlenmiştir. 

100 birimlik örneklem genişliğinde güven aralığı: Ortalaması 10 olan 100’ lük örneklemden 

alındığı varsayılan n = 10 luk bootstrap örneklemlerinde güven aralıkları incelendiğinde; 

gerçekleşen güven aralığı 8.376 ile 11.740 aralığında bulunurken, bootstrap ve jackknife güven 

aralıkları sırasıyla; 9.781-10.349 ve 7.906-12.210 aralığında bulunmuştur.  

• n = 20 lik bootstraplar örneklemlerinde, gerçekleşen güven aralığı; 8.068-11.931 iken 

bootstrap güven aralığı 9.620-10.380 ve jackknife güven aralığı 6.961-13.038 olarak 

bulunmuştur.  

• n = 30 luk bootstrap örneklemlerinde, gerçekleşen güven aralığı, 8.203-11.895 iken, 

bootstrap ve jackknife güven aralığı sırası ile 9.793-10.270 ve 7.371-12.727 olarak 

bulunmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen, bootstrap ve jackknife güven 

aralıkları sırasıyla; 8.155-12.099, 9.882-10.364 ve 7.018-13.236 olarak bulunmuştur.  
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• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen güven aralığı 8.155-12.053 

olarak bulunurken, bootstrap güven aralığı 9.900-10.315 ve jackknife güven aralığı da 

7.088-13.121 olarak bulunmuştur.  

• Bootstrap örneklem genişliği 60 olduğunda ise gerçekleşen, bootstrap ve jackknife güven 

aralıkları sırası ile 8.155-12.060, 9.933-10.297 ve 7.067-13.147 olmuştur.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen güven aralığı 8.096-12.059, bootstrap 

güven aralığı 9.887-10.255 ve jackknife güven aralığı 6.702-13.452’dir 

• Bootstrap örneklemlerinde n = 80 olduğunda; gerçekleşen, bootstrap ve jackknife güven 

aralıkları sırası ile 8.034-12.070, 9.904-10.201 6.799-13.305 olarak bulunmuştur.  

Buna göre tüm örneklem genişliklerinde jackknife güven aralıklarının, gerçekleşen değere göre 

oldukça geniş olduğu, bootstrap güven aralıklarının ise daha dar olduğu gözlenmiştir. 

200 birimlik örneklem genişliğinde güven aralığı değerleri: Ortalaması 10 olan 200’ lük 

örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde; gerçekleşen güven 

aralığı 8.294-11.666 iken, bootstrap ve jackknife güven aralıkları sırasıyla 9.570-10.399 ve 

7.020-12.940 olmuştur.  

• n = 20 lik bootstrap örneklemlerinde, gerçekleşen güven aralığı 7.937-11.865 iken, bootstrap 

güven aralığı 9.479-10.307 ve jackknife güven aralığı da 6.373-13.429 olarak bulunmuştur.  

• n = 30 luk bootstrap örneklemlerinde, gerçekleşen güven aralığı, 8.120-11.859, bootstrap 

güven aralığı 9.668-10.300 ve jackknife güven aralığı da 6.843-13.136’dır.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen güven aralığı, bootstrap güven 

aralığı ve jackknife güven aralığı sırasıyla 8.200-11.814, 9.778-10.226 ve 7.177-12.836 

olarak bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen güven aralığı 8.075-11.809 

olurken, bootstrap ve jackknife güven aralıkları 9.739-10.147 ve 7.239-12.645 olmuştur. 

• Bootstrap örneklem genişliği 60 olduğunda ise gerçekleşen güven aralığının 8.085-11.778, 

bootstrap güven aralığının 9.767-10.082 ve jackknife güven aralığının 7.360-12.503 olduğu 

görülmüştür.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen güven aralığı 8.064-11.792 iken, 

bootstrap ve jackknife güven aralığı sırası ile 9.797-10.066 ve 7.391-12.465’tir.  

• Bootstrap örneklemlerinde n = 80 olduğunda, gerçekleşen, bootstrap ve jackknife güven 

aralıkları sırası ile 8.031-11.888, 9.826-10.083 ve 7.379-12.540 olarak gözlenmiştir.  
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Buna göre tüm örneklem genişliklerinde jackknife güven aralığı değerlerinin, gerçekleşen 

değere göre oldukça geniş bir aralıkta, bootstrap güven aralıklarının ise daha dar bir aralıkta 

olduğu gözlenmiştir. 

300 birimlik örneklem genişliğinde güven aralığı değerleri: Ortalaması 10 olan ana kütleden 

alınan 300’lük örneklemden alındığı varsayılan n = 10 luk bootstrap örneklemlerinde 

gerçekleşen güven aralığı 7.963-11.958 olarak bulunurken, bootstrap ve jackknife güven 

aralıkları sırasıyla 9.508-10.400 ve 6.529-13.391 olarak bulunmuştur.  

• n = 20 lik bootstrap örneklemlerinde, gerçekleşen güven aralığı 7.988-12.096 iken, bootstrap 

güven aralığı 9.589-10.332 ve jackknife güven aralığı da 6.753-13.330’dur.  

• n = 30 luk bootstrap örneklemlerinde, gerçekleşen, bootstrap ve jackknife güven aralıkları 

sırası ile 8.067-12.091, 9.704-10.461 ve 6.372-13.785 olmuştur.  

• Bootstrap örneklem genişliği n = 40 olduğunda gerçekleşen güven aralığı, bootstrap güven 

aralığı ve jackknife güven aralığı değerleri sırasıyla; 8.069-11.987, 9.735-10.309 ve 6.675-

13.381 olarak bulunmuştur.  

• Bootstrap örneklem genişliği 50 olduğunda ise gerçekleşen güven aralığı 7.959-11.935, 

bootstrap güven aralığı 9.727-10.166 ve jackknife güven aralığı 6.755-13.139 olmuştur.  

• Bootstrap örneklem genişliği 60 olduğunda gerçekleşen güven aralığı 8.024-11.983 olurken, 

bootstrap güven aralığı 9.824-10.191 ve jackknife güven aralığı da 6.921-13.086 olmuştur.  

• n = 70’lik bootstrap örneklemlerinde, gerçekleşen güven aralığı 7.997-12.014, bootstrap 

güven aralığı 9.849-10.164 ve jackknife güven aralığı 7.029-12.983’tür.  

• Bootstrap örneklemlerinde n = 80 olduğunda, gerçekleşen, bootstrap ve jackknife güven 

aralıkları sırası ile 8.025-11.964, 9.843-10.137 ve 7.106-12.883 olarak gözlenmiştir.  

Buna göre tüm örneklem genişliklerinde, jackknife güven aralıklarının, gerçekleşen değere göre 

oldukça geniş bir aralıkta olduğu, bootstrap güven aralıklarının ise daha dar bir aralıkta olduğu 

gözlenmiştir. 

Çalışmada ele alınan örneklem genişliklerinde; ortalama, varyans ve varyasyon katsayısı için 

jackknife ve bootstrap yöntemleri ile gerçekleşen değerler arasındaki farklar Çizelge 3.4’te 

verilmiştir. Çizelge 3.4’te görüldüğü üzere, 100, 200 ve 300 birimlik örneklemlerde, örneklem 

genişliğinin 10’dan 80’e kadar değişmesinden etkilenmeden, jackknife ortalamaları ile 

gerçekleşen ortalamalar arasındaki farklılıklar sıfır (0) olarak bulunmuşken, bootstrap 

ortalamaları ile gerçekleşen ortalamalar arasında küçük farklılıklar gözlenmiştir.  
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Çizelge 3.4. 100, 200 ve 300 birimlik örneklerde Bootstrap (B) ve Jackknife (J) ile 

Gerçekleşen değer (G) farkları  

  100 200 300 

 n B-G J -G B-G J-G B-G J-G 

Ortalama 

10 0,007 0 0,005 0 -0,006 0 

20 0 0 -0,008 0 -0,082 0 

30 -0,018 0 -0,006 0 0,004 0 

40 -0,004 0 -0,005 0 -0,006 0 

50 0,003 0 -0,001 0 0 0 

60 0,008 0 -0,008 0 0,004 0 

70 -0,006 0 0,003 0 0,001 0 

80 0,001 0 -0,005 0 -0,005 0 

Varyans 

10 -0,715 0,469 -0,695 1,541 -0,987 2,026 

20 -0,934 1,432 -0,96 2,235 -1,063 1,716 

30 -0,873 0,979 -0,883 1,668 -1,016 2,523 

40 -0,997 1,504 -0,836 1,235 -0,978 1,927 

50 -0,977 1,38 -0,897 0,995 -1,016 1,624 

60 -0,984 1,413 -0,881 0,834 -1,011 1,453 

70 -1,014 1,943 -0,9 0,771 -1,043 1,257 

80 -1,054 1,695 -0,964 0,765 -1,004 1,162 

Varyason 

Katsayısı 

10 -0,004 0,657 0,056 0,985 0,009 0,768 

20 -0,006 0,72 -0,001 0,832 -0,016 0,679 

30 -0,013 0,695 -0,002 0,822 -0,017 0,815 

40 -0,028 0,711 -0,02 0,786 -0,03 0,073 

50 -0,044 0,692 -0,039 0,687 -0,044 0,704 

60 -0,047 0,701 -0,046 0,659 -0,054 0,687 

70 -0,054 0,768 -0,055 0,634 -0,067 0,635 

80 -0,064 0,701 -0,062 0,598 -0,063 0,644 
 

Dolayısıyla 100, 200 ve 300 birimlik örneklemlerde, ortalama için jackknife’ın, n sayısının 

10’dan 80'e kadar değişmesinden etkilenmediği söylenebilir. Jackknife’ın ise gerçekleşen 

varyanstan olan farkı, bootstrap a göre biraz daha büyük bulunmuş ve bu durum 200 ve 300 

birimlik örneklemlerde de aynı olmuştur.  

Çizelge 3.4, varyasyon katsayısı bakımından incelendiğinde ise bootstrap ile gerçekleşen 

varyasyon katsayıları arasındaki farkın, 100, 200 ve 300 birimlik örneklemlerden ve örneklem 

büyüklüğü artışından bağımsız olarak, jackknife’den daha düşük olduğu gözlenmiştir. Buna göre 

ortalamanın haricinde, varyans ve varyasyon katsayısı bakımından gerçekleşen değerle 

karşılaştırıldığında, bootstrap’ın jackknife göre gerçekleşen değere daha yakın sonuçlar verdiği 

söylenebilir. Ortalama bakımından ise jackknife bir miktar daha ön plana çıkmıştır. Ancak, 

bootstrapın, ortalama için de gerçekleşen değerden küçük farklılıklar göstermiş olduğu göz 

önüne alındığında, genel olarak bootstrap yönteminin performansının, jackknife yöntemine göre 

bir miktar daha iyi olduğu söylenebilir.    
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4. SONUÇ 

 

Ortalama için 100, 200 ve 300 birimlik örneklemlerde, örneklem genişliğinin 10’ dan 

80’e kadar artırılması ile jackknife ortalamalarının, gerçekleşen ortalama ile aynı sonuçları 

verdiği, bootstrap ortalamalarının ise gerçekleşen değerlerden küçük farklılıklar gösterdiği 

gözlenmiştir. 

Varyans için ise 100, 200 ve 300 birimlik örneklemlerde, yine örneklem genişliğinin 10’ 

dan 80’e kadar artmasıyla, bootstrap varyansları ile gerçekleşen varyanslar arasındaki farkların, 

jackjnife varyansı ile gerçekleşen varyanslar arasındaki farklardan bir miktar düşük olduğu 

gözlenmiştir. Dolayısıyla varyansın da örneklem genişliğinden etkilenmediği söylenebilir. 

Varyasyon katsayısı için de bootstrap varyasyon katsayıları ile gerçekleşen varyasyon katsayıları 

arasındaki farkların, Jackknife varyasyon katsayısı ile gerçekleşen varyasyon katsayısı arasındaki 

farklardan belirgin bir şekilde düşük olduğu gözlenmiştir. Diğer bir ifade varyasyon katsayısı 

bakımından jackknife’e göre bootstrap, gerçekleşen varyasyon katsayısına daha yakın sonuçlar 

vermiştir.  

Güven aralığı bakımından; 100, 200 ve 300 birimlik örneklerde, gerçekleşen güven 

aralığına göre jackknife güven aralıklarının, bootstrap’a göre daha geniş olduğu gözlenmiştir. 

Ayrıca gerek örneklem biriminin 100, 200 ve 300 olarak alınmasından, gerekse de örneklem 

genişliklerinin 10’dan 80'e kadar artırılmasından her iki yöntemin de belirgin şekilde 

etkilenmediği gözlenmiştir 

Sonuç olarak, bootstrapın gerçekleşen değere yakın sonuçlar vermesi ve bu sonuçların da 

örneklem genişliğinin 10’dan 80'e kadar değişmesinden etkilenmemiş olması ve sonuçların 200 

ile 300 birimlik örneklerde de birbirine oldukça yakın olması bootstrapı bir miktar daha ön plana 

çıkarmaktadır. Ancak çalışmanın kısıtlılıkları dikkate alındığında, daha kapsamlı çalışmaların 

yapılması gerekliliği de göz önünde bulundurulmalıdır.  
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6. EKLER  

 

EK 1. Çoklu çapraz geçerlilik şeması gösterimi 
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EK 2. Jackknife yönteminin işleyiş şeması 
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EK 3. Boootstrap yönteminin işleyiş şeması 
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