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ONSOZ

Kanigimlar teorisi gaz, sivi veya kati ortamlarin herhangi bir kombinasyonda bir
araya gelmesi neticesinde olugan yapilarin davramglarii belirlemekle ugrasir. Bu
kapsamda elastik kat1 karigimlan i¢in de gesitli termomekanik modeller ortaya
konmustur. Elastik katilardan olusan ortamlar &zellikle endiistride 6nemli bir yere
sahiptir. Cegitli uygulamalar i¢in malzemeden beklenen degisik mekaniksel
ozellikleri genellikle tekil bir yapmnin verememesi nedeniyle alagimlar ve kompozit
malzemeler konusundaki aragtirmalara 6nem verilmektedir.

Elastik katilardan olusan karigimlar, her ne kadar karigimi olusturan bilesenlerin
davranislan birbirlerinden farkh olsa da, disaridan bakildiginda tekil bir elastik cisim
gibi davranirlar. Bu durum, ortam bir biitiin olarak ele alindiginda, tekil ortamlar igin
gelistirilmis olan ¢6ziim metotlarmin karnisgimin da davramsim  belirlemekte
kullanilabilecegini diisiindiirmektedir.

Bu ¢aligmaya karigimin tiimii i¢in kullanilabilecek olan metotlarn karnigim bilesenleri
i¢in de kullanilabilir olup olmadigim inceleyen bir arastirma goziiyle bakmak
miimkiindiir. Caligmada elastisite ve termoelastisite teorilerindeki bazi ¢6ziim
metotlar1 kullanilarak karigimi olugturan bilesenlerin davraniglarini verecek olan
bagintilar formiile edilmekte ve gesitli uygulamalar ele alinmaktadr.

Kangmmlar teorisine ilgimi ¢eken, temel kavramlari bana 6greten ve tiim galigma
boyunca yardimlarim esirgemeyen hocam Saym Prof. Dr. Thsan T. Giirgdze’ ye ve
cesaret verici telkinlerinden dolayr biitin c¢aligma arkadaglarima en igten
tesekkiirlerimi sunarim.

Eyliil, 1999 M. Salih Dokuz
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TERMOELASTIK KOSULLAR ALTINDA iKI ELASTIK KATI KARISIMI
ILE ILGILI ANALITIK COZOUMLER

OZET

Iki veya daha fazla malzemenin birbirleri igerisinde difiizyona ugramalar sonucunda
olusan ortama karisim adi verilmektedir. Bu anlamda astrofiziksel, jeolojik veya
biyolojik pek ¢ok dogal olusum karigim kavraminin kapsamina girmektedir. Ancak,
sadece dogal ortamlarin davranigimi belirleme ihtiyaci degil, ayn1 zamanda, geligen
teknoloji de karisim konusu ile ilgilenmeyi gerekli kilmaktadir. Tekil malzemelerin
ihtiyac1  kargilayamadifa yerlerde kullanmak amaciyla gelistirilen yeni tiir
malzemeler kangimlarin davramigimi duyarli bir gekilde belirlemeyi teknolojik bir
zorunluluk haline getirmigtir.

Bu caligmada, gergekte tekil malzemeler igin gelistirilmis olan elastisite ve
termoelastisite teorilerindeki baz1 ¢6ziim metotlarinin iki lineer elastik katidan olusan
bir karisgim i¢in de uygulanabilir olup olmadig: incelenmekte ve karigim igin yer
degistirme problemleri ele alinmaktadir. Caligmada ayni1 zamanda verilen ¢6ziimlerin
kullanildigt uygulamalara da yer verilerek bu yondeki girisimlere katkida
bulunulmaktadir. Karigimlar teorisinin temel kabullerinin ve iki elastik kati
karisimina iligkin lineer biinye denklemlerinin verildigi béliim diginda g¢aligma
sicaklik ve kuvvet tesiriyle olugan yer degistirmelerin incelendigi iki ana béliime
ayrilmaktadir.

Sicaklik alaninin etkisinin incelendigi ilk kisimda yer degistirme potansiyeli tanimi
kullanilarak her bilesenin yer degistirmesini yoneten iki ayr1 diferansiyel denklem
elde edilmekte ve gerekli sinir sartlar1 hesaplanmaktadir. Hesaplar kiiresel sicaklik
alan1 problemine uygulanarak 1sitilmig bdlgenin sinirini olugturan siireksizlik yiizeyi
lizerinde yer degistirmelerin ve radyal dogrultudaki gerilmelerin siirekli kalmasi
kosulu altinda ¢6ziim verilmektedir. Bu béliimde ayn1 zamanda iki elastik kati
karisimi igin Betti kargithik teoremi ve Maysel formiiliiniin genellegtirilmig formlar
da arastirilmaktadir.

Kuvvet etkisinin incelendigi ikinci kisumda ise Helmholtz teoremi yardimiyla iki adet
Navier denklemi benzeri ifadeye ulagilmakta ve bu denklemlerin ¢6ziimleri elastisite
teorisinden Papkovich-Neuber metodu olarak bilinen yontemle harmonik vektér ve
harmonik fonksiyonlar cinsinden elde edilmektedir. Daha sonra tekil bir yiikiin
etkisinin incelendigi Kelvin problemi ele alinarak, her bilesene ait denge denklemleri
yardimiyla, karigim bilesenlerinin tasidiklar yiitk miktarlart ve ortama iliskin yer
degistirme, gerilme ve diflizyon kuvveti alanlar1 hesaplanmaktadir.

Caligma karigim bilegenlerinin yer degistirmelerini y6neten diferansiyel denklemlerin
klasik elastisite ve termoelastisite teorilerindekilerle gekilsel olarak benzerligini
ortaya koymus ve bu nedenle burada ele alinan ve esas olarak tekil bir elastik
malzeme igin gelistirilmis olan ¢6ziim metotlarinmn iki lineer elastik kat1 karigimi igin
de kullanilabilecegi sonucunu vermistir.
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ANALYTICAL SOLUTIONS FOR A MIXTURE OF TWO ELASTIC SOLIDS
UNDER THERMOELASTIC CONDITIONS

SUMMARY

A continuum that consists of two or more materials mutually diffused through each
other is defined as a mixture. Most bodies, astrophysical, geological and biological
are, in the spirit of the above definition, mixtures in which two or more constituents
co-exist. However, not only the need of the determination of the behaviour of natural
environments, but also the advanced technology, make the study of the theory of
mixtures necessary. Because of the fact that materials of new kind are used in some
areas instead of single materials that are not enough for our expectations, sensitive
determination of the behaviour of the mixtures has been a technological obligation.

In this study, the applicability of some methods of the theories of elasticity and
thermoelasticity for a mixture of two elastic solids are investigated and displacement
problems for the mixture are considered. In addition, applications of the given
solutions are included in the study to give some help to attempts in this way. Except
for the chapter where fundamental assumptions in the theory of mixtures and linear
constitutive equations for a mixture of two elastic solids are given, the study consists
of two major parts where the effects of temperature and force on displacements are
studied.

In the first part that is related to the effect of the temperature field, with the help of
displacement potential definition, two differential equations which govern the
displacements of each constituent are obtained and necessary boundary conditions
are examined. By applying the obtained results to spherical thermal inclusion
problem, the solutions are made under the condition that the continuity is valid for
the displacement vectors and the radial stresses on the surface which enclose the
spherical temperature field. At the same time, in this section, the generalized forms
of Betti reciprocal theorem and Maysel formula for a mixture of two elastic solids
are investigated.

In the second major part, the effect of force on the mixture is studied. Firstly, two
equations in the similar form of Navier's equations are obtained by using the
Helmholtz’s theorem, and then with the help of Papkovich-Neuber method of the
theory of elasticity, the solutions of these equations are developed in terms of
harmonic vectors and harmonic functions. Furthermore, the Kelvin problem that
interest in the effect of a single force acting in the interior of the mixture is
considered and taking into account the equilibrium equations, the rate of single
forces and the fields of displacements, stresses and diffusive force are obtained for
each constituent.



The study has shown that the differential equations, which govern displacements of
constituents of the mixture, are formally the same with ones of the classical theories
of elasticity and thermoelasticity. Therefore, the solution methods considered in this
study which essentially have been developed for a single elastic solid can be used for

a mixture of two elastic solids.



1. GIRIS

Farkli davramig bigimleri sergileyen ortamlarin mekanigine olan ilginin tarihsel
gecmisi oldukga eskilere dayamir. Ilk dénemlerdeki yaygin kam akigkan ve elastik
kat1 gibi farkli tipteki maddesel cisimler arasinda higbir iligkinin olmadig1
seklindeydi. Fakat siirekli ortamlar mekanigi 17. yiizyildan itibaren yasadigi hizli
gelismenin neticesi olarak sekil degistiren ortamlar i¢in ortamin tipinden bagimsiz
genel bir yaklagim sunmay1 bagarmistir. Bunun bir sonucu olarak benzer veya farkl
davranig bigimleri gosteren birden fazla maddesel cismin bir arada bulunmasiyla
olugan ve karigim olarak tanimlanan yapmin da siirekli ortamlar mekanigini baz alan
bir yaklagimla incelenmesi miimkiin olmaktadir. Bu yaklagima &zel olarak karigimlar

teorisi ad1 verilmektedir.

Karigimlar teorisi iki veya daha fazla maddenin birbirleri igerisinde difiizyona
ugramas: sonucunda olugan ortamin mekanik davramigini belirlemekle ugrasan
bilimsel bir alandir. Bir maddesel cismin karigim olarak nitelendirilebilmesi ortami
olusturan bilegenlerin her birinin ortamin davraniglan iizerinde kabul edilebilir bir
tesirinin var olmasim gerektirir. Eger bilegenlerden birinin etkisi yaninda digerlerinin
etkileri ihmal edilebilecek mertebede ise bu durumda ortama baskmn olanin tekil
malzemesi goéziiyle bakilabilir. Ancak bilegenlerden hi¢ birinin etkisinin digerlerine
gore ihmal edilemeyecegi sayisiz durumlar da s6z konusudur. Ornegin; biyolojik
doku ve kaslar, kan, iginde petrol, su veya gaz barindiran toprak ve gozenekli
kayalar, gaz karigimlari, alasimlar, kompozit malzemeler ilk akla gelen Srneklerdir.
Atmosferin iist katmanlarindaki gazlar gibi siirekli ortam kapsamina girmeyen

karigimlar ise ayr1 bir teorik yaklagim gerektirirler.

Karigimlar sadece jeolojik veya biyolojik degil teknolojik sahada da ¢oziilmesi
gereken problemlerle karsimiza ¢ikmaktadir. Endiistrideki gelismelere paralel olarak

malzeme 6zelliklerine dair beklentilerin de artmasi ve tekil bir malzemenin bu

oot



ilgili aragtirmalar teknolojik bir ihtiyag haline gelmigtir. Bunlara 6rnek olarak
mukavemet/agirhk oram yliksek olan malzemelerin iiretilmesi (ugak ve uzay
endiistrisi), ildve katki maddeleriyle mineral yaglarin 6zelliklerinin geligtirilmesi ve
metal igleme siirecinde kullanilan su-yag karisimlari verilebilir. Baz1 durumlarda ise
isteyerek veya istemeyerek ortaya gikan karigim problemleri dizayna tesir etmektedir.
Buhar tiirbinlerinde kullanilan yaglayicilarin su ile karigmasi, petrol kuyularinda
siklikla aym1 anda iiretilen su veya gaz sebebiyle olugan iki veya ii¢ fazli akiglar,
hidrolik tarama sistemleri ve boru hatlar1 ile tagima bu tiirden sayilabileceklerden

bazilaridir.

1.1 Yapilan Caliymalar

Arastirmalar ¢ok fazli malzemelerin teorik tanmimlarina ayri1 bir 6nem verildigini ve
baz alinabilecek teorik bir gergevenin formiilasyonu igin gayret sarf edildigini
gostermektedir. Bu baglamda bilesenler arasindaki diflizyonu tanimlamayi amaglayan
ilk ¢aligmalar Fick, Darcy ve Stefan tarafindan yapilmigtir [1, 2]. Bu ¢aligmalarda
karigimlar teorisinin halen gegerli olan temel kabulii ortaya konmus ve karigimin her
biri kendi hareketini yapan » adet tekil ortamun bir siiperpozisyonu olarak
diisliniilebilecegi ifade edilmigtir. Ancak Ongoriilen kanunlar difiizyon siirecindeki
baz1 6nemli bilgileri verme konusunda oldukga yetersizdir. Ornegin bu kanunlari
kullanarak kat1 bilegendeki gerilme ve gekil degistirmeyi veya akigkanin akim alanim
bulmak miimkiin degildir. Halbuki bu tiir bilgiler kati malzemede ¢atlama, kopma
veya bagka tiir tahribatlarin ortaya ¢iktig1 durumlarda kritik bir 6neme sahiptir. Bu
yetersizlikler modern siirekli ortamlar mekaniginin ¢ok bilesenli malzemelere

uygulanmasiyla agilmigtir.

Karigimlar teorisinin modern safhasinin 1957° de Truesdell tarafindan ortaya konan
ve daha sonra Truesdell ve Toupin [3] tarafindan yeniden gozden gegirilen
caligmalarla bagladigi kabul edilmektedir. Truesdell, gazlarin kinetik teorisinden
etkilenerek, sezgiye ve mekanik diigiincelere dayanan bir teoriyle difiizyon
hakkindaki gesitli ¢aligmalarin sinirlarini incelemistir. Karigim bilegenlerine ait kism1
gerilme tansorlerinin simetrik olmamasina imkén taniyan ¢aligmalarinda her bilesen
i¢in korunum yasalarini yerel formda yazmis ve daha sonra karigimin tiimii igin

gecerli olan denge denklemlerini bulmak amaciyla bunlari bir araya getirmistir.



Daha sonra Kelly [4] elektromagnetik etkileri de dikkate alarak bu galigmalarin bir
genellestirmesini  yapmugtir. Aym  yaklasimin  devamu olarak Adkins [5],
sikigtirilabilir ve Newtonian olmayan akigkanlarin karigimlarinin kararh akiglarim
inceleyerek, donmekte olan es eksenli silindirler arasindaki akis ile ilgili hesaplar

vermistir.

1963’ e dek karigimlar bir tarafa tekil bir ortamin bile termodinamigi konusunda fikir
ayriliklar1 s6z konusuydu. Coleman ve Noll [6] yaptiklar1 ¢aligmayla termodinamigin
ikinci aksiyomunun tekil malzemeler i¢in rolii ve getirdigi kisitlamalar ile ilgili
sorulan cevaplamig ve uygun bir form ortaya koymuglardir. Eringen ve Ingram [7],
Green ve Naghdi [8], Bowen [9] ve Miiller [10] bu yaklagimi karigimlar teorisine

uygulayarak ilk karigum termodinamigi formiilasyonlarin1 vermislerdir.

Daha 6nce konu hakkinda hazirlanmig raporlara ve verilen konferanslara ragmen
Eringen ve Ingram [7] tekil bir ortamin termodinamigi i¢in 6nerilen yaklagimlari
karigimlar teorisine uyarlayan ilk aragtirmacilardir. Karigim bilesenlerinin farkh
sicakliklara sahip olmalarina imkin veren bu c¢aligma kanigimlarin termomekanik

teorisinin formiilasyonu konusunda ilk gergek girisim olarak kabul edilmektedir [1].

Aym yillarda Truesdell’ in diigiince tarzindan kismen farkli bir metotla Green ve
Naghdi [8] tarafindan bilesenleri ayni sicakliga sahip ikili bir karigim igin
termodinamik bir teori sunulmugtur. Burada, genel teori igin bir gereklilik arz
etmedigini ve bir ¢ok fikirsel zorluklara da sebep olacagini ileri siirerek, i¢ enerji, i¢
1s1 kaynagi, entropi ve yiizeyden gegen 1s1 akisi fonksiyonlarim1 karigimin her bir
bileseni i¢in degil tiim karigim igin tanimlamuglardir. Caligma bilegenlere ait kismi
gerilme tansorlerinin simetrik olmak zorunda olmadigi fakat toplamlarinin
simetriklik sartin1 sagladig1 sonucunu vermistir. Aym ¢aligmada ortaya konan formu
kullanan Green ve Steel [11], kati-akigkan ve kati-kati karigimlari i¢in temel biinye
denklemlerini verdikten sonra, kati-akigkan karigimi igin gegerli olan denklemlerin
lineer hallerini elde etmiglerdir. Kati-kat1 karisiminin biinye denklemlerinin lineer
halleri ise daha sonra Steel [12] tarafindan verilerek karisim igerisindeki dalga
hareketleri ile ilgili uygulamalar yapilmugtir. Teoriyi once sikigtirilamaz iki
Newtonian akigkan karigimina uygulayan Mills [13], daha sonraki g¢aligmasinda, bir
elastik kat1 ve ¢ok sayidaki Newtonian akigkandan olugan bir karnigim igin



genellestirmis ve izotropik bir rijit kat1 cisim igerisinde ikili bir gaz karigiminin

kararli akig1 i¢in bir uygulamasini yapmugtir [14].

Bowen [9], Green ve Naghdi tarafindan verilen formiilasyonun ayni sicaklia sahip
iki akigkan problemi durumunda ¢ok 6zel sonuglar verdigini ileri stirerek farkli bir
yaklagim 6nermigtir. Coleman ve Noll tarafindan gelistirilen metoda benzer bir yol
izleyerek denge halindeki bir karigimda karigim bilegenlerine ait kismi serbest enerji
yogunlugu fonksiyonlarmin diger bilesenlerin deformasyonlarindan bagimsiz
olmalarina imkén veren bir formiilasyon ortaya koymustur. Caligmasinda akigkan
karigimlar1 s6z konusu oldugunda bdyle bir bagimliligin deney sonuglariyla geliskiye
sebep olacagmni ifade etmisgtir.

Bu ve daha 6nceki teorik ¢aligmalar1 elegtiren Miiller [10] ise Truesdell’ in ortaya
koydugu modeli temel alarak hem fiziksel olarak anlamli hem de klasik termostatik
ile tutarh bir teori vermeye galigmis ve iki akigkan karigimu ig¢in sekiz prensibe
dayandirdigi termodinamik bir teori sunmugtur. Miiller’ in formiilasyonunun 6nemli
bir 6zelligi, kabul edilebilir bir genel karisum teorisi i¢in, biinye degiskenleri arasina
yogunluk gradyanlarinin da dahil edilmesi gerekliligini ortaya koyan ilk ¢alisma
olmasidir [15]. Burada ortaya konan yaklagimin bir devami olarak, farkli sicakliklara
sahip ve kimyasal olarak etkilesen iki gazdan olusan bir karisgm Dunwoody ve
Miiller [16] tarafindan incelenmigtir. Bedford ve Ingram [17] ise aym diigiince tarzini
jeoloji ve biyomekanikte 6neme sahip olan akigkanla dolu gozenekli ortamlar

konusuna uyarlamustir.

Elastik katilarin karigimindan hareketle kompozit malzemeler igin bir teori Bedford
ve Stern [18] tarafindan verilmistir. Bu teoride 6ncekilerden farkli olarak karigim
bilesenlerinin uzaysal degil maddesel konumda ayni yeri isgal ettikleri kabul
edilmekte ve blinye bagimsiz degiskenlerinden olan bagil hiz yerine bagil yer
degistirme alami kullanilmaktadir [19, 20]. Teori daha sonra Pop ve Bowen [21]
tarafindan gelistirilerek uzun menzilli elastik etkilegimleri i¢eren bir termodinamik
karisim modeli tesis edilmistir. Diger bir kompozitler teorisi Tiersten ve Jahanmir
[22] tarafindan ele alinmigtir. Burada da kompozit yapi karigim halindeki bir kats
ortam olarak modellenip bilesenlerin birbirlerine gore bagil hareketleri sonsuz kiigiik

kabul edilmistir.



Kimyasal olarak etkilegen akigkan-kati1 karigimlan ile ilgili bir teorik ¢aligma da
Demiray [23] tarafindan yapilmistir. Bu g¢aligmada, karigimin korunum yasalarinin
yerellestirilmesinde farkli bir yol izlenerek, uzaysal eksen takiminin zamana bagh
déniigiimleri altinda degismez kalan kismi enerji denklemleri elde edilmektedir.
Demiray, esasen tekil ortamlar i¢in tanimlanmis olan esdegerlik (equipresence)
aksiyomunu farkl1 bir tarzda kullanarak, biinye bagumli degiskenlerini farkli bagimsiz
degiskenler cinsinden ifade etmistir. Caligmasinin sonunda ise bu tiir bir ortamda

harmonik dalgalarin yayilmasi problemine deginmistir.

Borrelli ve Patria [24], iki lineer elastik kati karigiminin matematiksel y&niiyle
ilgilenerek, karigimin denge hali i¢in ¢esitli sinir deger problemlerinin ¢éziimlerinin

tekligi hakkinda teoriler ve ispatlarini vermiglerdir.

Bedford [25] Hamilton prensibini karigimlarin siirekli ortam teorisine uygulayarak
akigkan-akigkan ve akigkan-elastik kati karigimlar i¢in sonuglar vermistir. Buradaki
temel diigince kanigimu olugturan bilesenlerden her birinin hacimsel degisiminin
digerlerinin hacimsel degisimlerine de bagimli oldugudur. Lagrange ¢arpanlar

metoduyla bu kisit karisim i¢in bir Hamilton prensibi tiiretilmesinde kullanilmigtir.

Iki sikigamaz Newtonian akiskandan olusan bir ortamda titresen bir levhanin
olusturdugu akislar ilk olarak Craine [26] tarafindan incelenmistir. Bu ¢alismanin bir
devamu olarak, Gogiis [27] iki sonsuz paralel levhanin boyuna titregsimleri neticesinde

olusan akig1 sabit bir basing gradyani i¢in incelemis ve analitik ¢6ziimiinii vermistir.

Giirgdze [28] Kelvin problemini bir elastik kat1 ve bir akigkandan olugan karigimin
denge hali i¢in incelemigtir. Calismasinda, Green ve Steel [11] tarafindan verilen
bagintilar kullanarak, elastik kat1 bilesendeki yer degistirmeleri y6neten diferansiyel
denklemleri elde etmis ve bu denklemlerin elastisite teorisinden bilinen Navier
denklemlerinin benzerleri oldugunu gostermigtir. C6ziim i¢in Galerkin vektoriiniin
ozel bir hali olan Love sekil degistirme fonksiyonunu kullanarak yer degistirme ve

diftizyon kuvveti vektorleri ile gerilme tansorlerini hesaplamusgtir.

Elastik bir kat1 ve bir akigkan karisim i¢in sicaklik tesirinin incelendigi bir ¢aligma
da Erkman ve Giirgbze [29] tarafindan yapilmistir. Caligmada denge halindeki

sonsuz bir akigkan-elastik kat1 karisiminda R=a yarigapli kiiresel bir sicaklik alam



etkisiyle olusan yer degistirme, difiizyon ve gerilme alanlar1 hesaplanmigtir. Ayrica
bu tiir bir karigim i¢in Betti kargithk teoremi ve Maysel formiiliiniin daha genel

halleri verilmigtir.

Bedford ve Stern [18] tarafindan 6nerilen Lagrange tanimu fikrini kullanan Iesan
[30], tanecikli kompozit yapilarin ve jeolojik ortamlarin mekanik davranigini izah
etmek amaciyla, iki elastik kat1 karigimi igin bir teorik formiilasyon ortaya
koymustur. Caligmasinda bagimsiz biinye degiskenleri olarak yer degistirme farkini,
yer degistirme gradyanlarini, her bilesenin hacimsel oram ile bunlarin gradyanlariu
kullanmugtir. Incelemesinin sonunda lineerlestirdigi biinye denklemlerini kullanarak

bir teklik teoremi tiiretmistir.

Sonsuz bir yari-uzay: dolduran bir akigkan ve bir elastik kat1 karigimi igin Boussinesq
probleminin ele alindif1 bir ¢aligma Giirgéze ve Dokuz [31] tarafindan yapilmustir.
Bu ¢aligmada, karnigimin sminni olugturan diizlem {izerinde ve diizleme dik
dogrultudaki bir tekil kuvvetin etkisi sebebiyle olugan yer degistirme, gerilme ve
difiizyon kuvveti alanlarini bulmak amaciyla Love gekil degistirme fonksiyonundan
yararlanilmigtir. Love fonksiyonunun denge denkleminde kullanilmasiyla ortaya
cikan biharmonik denklemin ¢6ziimii ise Hankel doniiglimii yardimiyla elde

edilmigtir.

Giirgéze ve Dokuz [32] tarafindan yapilan bir diger ¢aligmada iki elastik katidan

olusan sonsuz bir karigimin denge hali i¢in Kelvin problemi ele alinmugtir.

1.2 Calismanin Amaci ve Igerigi

Giirgéze ve Dokuz [32] tarafindan yapilmug olan galigmada denge halindeki iki
elastik kati karigiminda kuvvet etkisi altinda olusan degisimler incelenmekte ve bir
¢oziim Onerilmektedir. Bu c¢aligmada ise, buna ildveten, sicakligin da karigim
bilesenleri tizerindeki etkileri aragtirilmakta ve bdylece iki elastik kat1 karigimu igin
hem kuvvet hem de sicaklik tesirlerine iligkin ¢O6ziim metotlart bir arada

sunulmaktadir.

Caligmada ilk olarak, genel bir karigima ait temel kabuller ve karigumin kinematigi

hakkinda 6zet bir bilgi verildikten sonra, esas inceleme konusu olan iki elastik kati



karisimina iligkin lineer biinye denklemleri ve gerekli korunum yasalari ortaya
konmaktadir. Daha sonra denge denklemleri yer degistirmeler cinsinden
hesaplanmakta ve ¢6zlim metotlarinin uygulanacag diferansiyel denklem takimi elde

edilmektedir.

Bélim 3’ te yer degistirmelere ait diferansiyel denklem takimi termoelastisiteden
bilinen yer degistirme potansiyelleri yardimiyla yeniden diizenlenmekte ve her bir
bilesenin hareketini yoneten denklemler elde edilmektedir. Isitilmig bolgeyi
cevreleyen yiizey ilizerinde problemin sinir gartlar1 hesaplanarak sicaklik alaninin
kiiresel gekilli olmasi durumuna iligkin genel ¢6ziim verilmektedir. Daha sonra
sicaklik fonksiyonu ve malzeme sabitleri i¢in kabuller yapilarak alan biiyiikliiklerinin
degisimlerine ait grafikler ¢izilmektedir. Boliimiin sonunda ise, tekil bir malzeme
icin verilmis olan Betti karsitlik teoremi ve Maysel formiiliiniin iki elastik kati
karigimina iliskin diizenlemesi yapilarak, kiiresel sicaklik alan1 problemi i¢in Maysel

formiiliiniin verdigi sonuglar genel ¢éziimle karsilagtiriimaktadir.

Kuvvet tesiri altindaki degisimlerin incelendigi Boliim 4’ te, denge denklemlerinin
vermis oldugu diferansiyel denklem takimi bu kez Helmholtz teoremi yardimiyla
diizenlenmekte ve bilegenlerin yer degistirmelerine ait denklemler elde edilmektedir.
Navier denklemi formunda olan ifadelerin ¢6ziimleri ise Papkovich-Neuber
metoduyla verilmekte ve bulunan ¢6ziim formu tekil kuvvetin etkisinin incelendigi
Kelvin probleminde kullanilmaktadir. Problem kuvvetin étkidigi noktada kiiresel bir
eleman iizerinde her bilesenin dengesi diigiiniilerek ¢oziildiikten sonra, boéliimiin
sonunda, 6nceden verilmis olan malzeme sabitlerinin gegerli oldugu bir karigim igin

bilesenlerin tagidiklar: yiik miktarlar1 hesaplanmaktadir.



2. TEMEL KAVRAMLAR VE DENKLEMLER

Bu boliimde, oncelikle, genel bir karigimin siirekli ortam diigiincesine dayanan 6n
kabulleri ele alinmakta ve karisimin hareketine ait kinematik biiyiikliikler ortaya
konmaktadir. Daha sonra 6zel olarak iki elastik katidan olugan bir karigim igin lineer
hale ait denklemler verilmekte ve statik durumdaki denklemlere gecilmektedir.
Boliimiin sonunda biinye denklemlerinden sekil degistirme tansérleri gekilerek iki
lineer elastik kati karigiminin gerilme-sekil degistirme bagntilarmin ters formlar:

verilmektedir.

2.1 Karisimin Kinematigi

Karigimi olugturan bilesenlerin karigima ait uzaym her konumunda yeterli yogunluga
sahip olduklari, yani siirekli ortam olarak nitelendirilebildikleri kabul edilsin. Bu
durumda, kanigim igerisinde herhangi bir noktayi gevreleyen yeteri kadar biiyiik bir
AV hacmine bakildiginda, bunun karigimi olugturan tiim bilesenlere ait pargaciklar
ihtiva ettigi goriilecektir. O an i¢in aym1 AV hacmini paylasan bu pargaciklar
karigimin gekil degistirme siirecinde farkli konumlarda farkli pargaciklarla bir araya
gelmek tizere yer degistireceklerdir. Buna gore, karigim tarafindan doldurulmug olan
uzayin her bir noktasinin karigimi olusturan tiim bilesenler tarafindan iggal edildigi
ve sekil degisiminden sonra da bu durumun degismedigi diigiiniilebilir. Karigimlar

teorisinin temel kabulii olan bu diisiince matematiksel olarak

x=xOX9,n, ¢

Lynt 2.1)

déniigiimleriyle tamimlanmaktadir. Burada X® karigim olusturan ortamlara ait
maddese] hacim elemanlarinin referans konumlarini, x ise gekil degisiminden sonra

bu elemanlarin iggal ettikleri ortak konumu gostermektedir (Sekil 2.1).



Sekil 2.1 Karigimda Sekil Degistirme

Karigimin hareketini tamimlayan (2.1) doniigiimii ayni zamanda belli bir uzay
noktasindan ¢esitli zamanlarda bilegenlerin hangi pargaciklarinin gegtigini de
belirler. Doniigiimlerin fiziksel bir harekete kars1 gelebilmesi i¢in siirekli olmasi ve
(X9, 1) = det(—%_y 2.2)
J b= ox @ :
jakobyenlerinin sifir veya sonsuz degerlerini almamas1 gerekir. Buna goére (2.1)
doniigiimleri ayn1 zamanda uzaydaki bir bdlgenin her ¢ aninda bilesenlerin farkli
pargaciklari tarafindan isgal edilebilecegini gostermektedir [33].

x konumundaki pargaciklarin hiz vektorleri

@)@ Q)
Dt ot

w (2.3)

®
ifadesiyle tamimlanur. o terimi & numarali ortamda X nin sabit tutulmasiyla
t

alinan maddesel tiirevi gostermektedir ve agik hali

D®() _90), ., @90 @2.4)
Dt o F oox, '

seklindedir. Burada oldugu gibi tiim ¢aliyma boyunca gerekli olan yerlerde Einstein
toplama uylagimindan yararlanilarak, parantez igindeki indisler diginda, tekrarlanan

iki indis lizerinde 1°den 3’e kadar toplama yapilacag: kabul edilecektir. p,(x,?)

karigim bilegenlerinin yogunluklarint géstermek lizere, karigumin ortalama hizi



1 n
W=—> pw® (2.5)
P =
bagmtisiyla tanimlanmaktadir. Esitlikteki p biiylikliigti karigimm yogunlugu olarak

adlandirilir ve bilesenlerin yogunluklarinin toplami olarak
P=2.Pe (2:6)
&=l

seklinde verilir. £ numarali ortama ait ivime vektorii ise
O =—— (2.7)

olarak tanimlanmaktadir.

2.2 iki Elastik Kati Karigumi I¢in Lineer Biinye Denklemleri

Iki bilesenli genel bir karigim igin Green ve Naghdi [8] tarafindan &nerilen temel
aksiyomlarin 1g181 altinda iki elastik katidan olusan bir karigima ait nonlineer biinye
denklemleri Green ve Steel [11] tarafindan verilmigtir. Bu denklemlerin lineer halleri
ise daha sonra Steel [12] tarafindan elde edilmistir. Karigmmin sonlu gekil
degistirmelerini gbz oniine alan genel teoride farkli maddesel konumlardaki bilesen
parcaciklarinin deformasyondan sonra aymi uzaysal x;, =y, konumuna geldikleri
kabul edilmektedir. Ancak, burada sonsuz kiigiik yer degisimleri séz konusu
olduguna gore, bilesenlerin sekil degisiminden once de ortak bir X, =Y, konumunu
isgal ettiklerini diigiinmek miimkiindiir. Bu diigiinceye ek olarak ilk anda karigim
bilesenlerinin sabit g, sicaklifinda ve sabit p,, p, yogunluklarinda dengede
olduklart ve kansimin ilk anda izotropik oldugu varsayilmaktadir. Biitiin yer
degistirmelerin, hizlarmn, sicaklik degisimlerinin ve bunlarin zamana ve konuma gore
tiirevlerinin ¢ok kiigiik olduklari, dolayisiyla kuadratik ve daha yiksek ¢arpim
terimlerinin ihmal edilebilecegi kabul edilmektedir. Maddesel ve uzaysal konumlar

arasindaki yer degisimleri u, , v, ve sicaklik degisimi T ile gosterilirse

x, =X, +u,, y, =Y +v,, 0=0,+T 2.8)
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yazilabilir. Bu sartlar altinda iki elastik katidan olugan bir karisim i¢in lineer biinye

denklemleri
Oy =—Q,0, +Ae,, 0, +2ue, +2,8,,0, +2/,8, _Z'S(hik _hld)_71T§zk , (2.9)

Ty = @y8y + A8 unOu + 280 + A4C0nOy + 2413, + A5y —hy)—y,T6,, (2.10)

o PE O B 0 o)
p an p 5Xk

ve karigim bilegenleri arasinda herhangi bir kimyasal etkilesimin olmadigi kabul

edilerek siireklilik denklemleri
pl'—_ﬁl(l—emm)’ p2=52(1_gmm)‘ ) (212)

seklinde verilmektedir [12, 34, 35]. Burada o, ve 7z, bilesenlere ait kismi gerilme
tansorlerini, 7, Truesdell ve Toupin tarafindan kullamildigi sekliyle “momentum

katkis1” vektoriinii veya Green ve Adkins tarafindan kullanilan ve bizim de tercih

edecegimiz “diflizyon kuvveti” vektoriinii temsil etmektedir. p ve «,
P=pi+p, @=A-4, (2.13)

seklindedir ve tim y, y,, ¥,, 4,,..., 45, 4;,... katsayilan p,, p, ve 8, bityiikliiklerine
bagli sabitlerdir. Ayrica &, terimi Kronecker deltasim gostermekte ve ¢,, g, ve

h,, tansorleri lineer teori s6z konusu oldugunda

e, =L O Ou | o L[V v, S Mgy
2{0X, oX, 2\o0v, Y, oX, 07,
bagintilarini ifade etmektedir. Biinye denklemlerinde 4, li terimlerin katsayisi olan

As sabiti karigim Dbilesenlerinin izotropik olup olmamasimi belirleyen bir

biiyiikliiktiir. Eger kangimin ilk anda bir biitiin olarak izotropik olmasi yerine

bilesenlerinin ayr1 ayri izotropik olduklar kabulii yapilirsa A, =0 olmaktadir [34].
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Iki elastik kat1 karigimu igin hareket denklemlerinin yerel formlar
Oui ~ 7 + pFY =p S0, gy + 7 + PP = P, (2.15)

esitlikleriyle verilmektedir. Burada F" ve F,” bilesenlere ait kismi kiitle kuvveti

vektorleridir. Bundan sonra bu biiyiikliikler igin yazim kolaylifn agisindan

pE® = F, ve p,F® =G, tammlar kullanlacaktr.

Karistmin denge haliyle ilgilenildigi takdirde hizlar w® =w® =0 ve ivmeler

f® = £ =0 olacaktir. Bu durumda denge denklemleri
Oy, — % +F, =0, Ty, 7, +G, =0 (2.16)
olmakta ve (2.11) ile verilen difiizyon kuvveti vektorii

ﬂ'k = pl_aZ agmm + p2_“2 aemm (217)
p X, p IX,

sekline indirgenmektedir.

Denge denklemlerini yer degistirme vektorleri cinsinden yazmak amaciyla (2.9),

(2.10) ve (2.17) bagmtilartyla (2.16) denklemlerine gidilirse
/l;emm,k + ﬂ';gmm,k t2ue,,; Y284, — As (hik,i - hki,i )_ 71T,i5ik +F, =0, (2.18)
l;gmm,k + ﬂ';emm,k + 2,8, +2Me,, + As (hik,i - hla',i )" 7,16, +G, =0 (2.19)

elde edilir. Burada A;, 4;, 4; ve 4, katsayilan

A= -2 o+ B% g, P o+ P2 (200)
p p P

ifadelerini temsil etmektedirler. (2.14) ile verilen e, , g, ve h, tansorleri (2.18) ve

(2.19)’da yerlerine konularak

12



(.”1 =4 )uk,ii + (/43 + 4 )vk,ii + (’1; + 4y + A )ui,ik

A&+ g = Ay =7\ T, 8, + F, =0, @.21)

(, + ls)ukﬂ +(u, — A, )v,(’,.,. + (/1'; + py — A )u,.,l.k
(1 + 11y + A5 i — 7,18, +G, =0 (2.22)
denklemleri elde edilir.
K=y -2, K,=K;=K=p,+2;, K =p,—2As, D =2"+u+2,

Dy =2 +uy~As, Dy=2+p—As, D=2 +m+i  (223)

tanimlari yapildiginda (2.21) ve (2.22) diferansiyel denklemleri vektorel olarak
K V*u+KV*v+DV(V-u)+D,V(V-v)-y VT +F =0, (2.24)
KV*u+K,V*v+DV(V-u)+ D,V(V-v)-y,VT+G =0 (2.25)

seklinde ifade edilebilir [24]. Ayrica, D, ve D, katsayilar arasinda, (2.20) ve (2.23)

tanimlar: kullanilarak
D, =D, (2.26)
egitliginin var oldugu gosterilebilir.

t, ve g, swastyla gerilme ve sekil degistirme tansorlerini temsil etmek iizere,

izotropik tekil bir elastik cismin lineer biinye denklemi
t, =2ue, +A€,,0, —yTo, 2.27)

mm* ik

bagmtisiyla verilmektedir. Burada 4 ve x4 Lamé sabitleri olarak bilinen malzeme

katsayilaridir ve y biiyiikliigii bu katsayilara

y=0B1+2u)a, (2.28)
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ifadesiyle bagimlidir. «, tekil malzeme igin lineer 1sil genlesme katsayisim
gostermektedir. iki elastik kat1 karigimina ait (2.9) ve (2.10) biinye denklemlerinde
gecen y, ve y, bilyiikliiklerinin malzeme sabitlerine ne gekilde bagimli olduklarmi
tespit etmek iizere, karigim bilegenlerinin ilk anda izotropik olduklar1 kabulii altinda

A =0 almnarak, biinye denklemlerinden sekil degistirme tansorleri hesaplanirsa

v 11
e, =, EH\6, +'5[§(_ HsTty "'.uza'ik)"' E(Alﬂ'mm + B0, )5w]+ar1T5m ,» (2.29)

111
8x =—0,EH,0, +E[‘i(ﬂ1”u« _ﬂso'ik)"' E(Azﬂmm + B,0 )5ikj|+aT2T5ik (2.30)

elde edilir. Burada, E,...,a,, katsayilari asagidaki sekilde tanimlanmugtir:

1

E= , G=pp,-pu,
G4, + 24, )37, +211,)— B, + 224, Y37, + 24 ' 4

H|=3(/12+’13)+2(F2+/13)= H2=3(Z,,+l4)+2(,u,+;13),

3 3
A ==y 1y +/13|:’1|(512 +.U2J—’14(5’13 +ﬂ3)] )

[, (3 3 ]
Ay =~hps + 4 "’12(‘2‘/11 "'/‘1)"’13(5/14 "‘ﬂs]'*"lmuaj )

(3 3
B = ~Ayuts + —/11(512 ‘*‘/12)'*'13(5/14 ‘*‘/‘3)""141“3 J

3 3 !
B, = =4, +#3I:11(5/12 "'/”2)""12/‘1 _}“3(5/14 ‘*‘ﬂs) ’

.

Q) = E[}’l(:mz '*'2,“2)_72(3'13 +21U3)] >

= Ely, (32, +24,)- 3,82, +2u,)] . (2.31)
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(2.31)’deki son iki bagntidan y, ve y,
V1 =CQqy (3/11 +24, )'*' ar2(3)'3 + 2.”3) )
72 = o (3 + 21 )+ ar, (34, +2u,) (2.32)

seklinde hesaplamr. Burada a; ve a,, biyiikliiklerine, (2.29) ve (2.30)

denklemlerinden goriilecegi {izere, karigim bilesenlerinin 1sil genlesme katsayilart
goziiyle bakmak miimkiindiir. Ancak bu biiyiikliikklerin her iki bilegenin de malzeme
sabitlerine bagimli oldugu gbézden kagiriimamalidir.
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3. SICAKLIK ALANININ iKi ELASTIK KATI KARISIMI UZERINDEKI
ETKISI ILE ILGILI ANALITIiK COZUMLER VE KURESEL SICAKLIK
ALANI iCIN BiR UYGULAMA

Bu boliimde denge halindeki bir karigimda sicaklik etkisiyle olugan degisimler ele
alinmaktadir. Oncelikle, (2.24) ve (2.25) vektorel denklemleri diizenlenerek, hem u
hem de v yer degistirmeleri ayr1 ayr1 denklemlerle ifade edilmekte ve gerekli sir
sartlar1 incelenmektedir. Bulunan sonuglar sicaklik alanmn kiiresel bir bolgeyi
etkilemesi durumunda olugacak olan yer degistirme, gerilme ve diflizyon kuvveti
degisimlerinin hesaplanmasinda kullanilmaktadir. Daha sonra elastisite teorisinden
bilinen Betti kargithik teoreminin sicaklik etkisine maruz iki elastik kat1 karigimmu igin
genel bir formu aranmakta ve Maysel formiiliiniin kiiresel sicaklik alani problemi

i¢in verdigi sonuglar genel ¢6ziimle kargilagtirilmaktadir.

Bu noktadan sonra tiim galigma boyunca karigim bilegenlerinin ilk anda ayr ayr
izotropik olduklar1 kabul edilerek A, =0 olarak alinacaktir. Bu durumda, (2.9) ve

(2.10) biinye denklemlerine gore, kismi gerilme tansorleri igin asagidaki bagmntilar

gecerlidir:
Oy =—0,0, + 248,04 +2M1e4 + 2,8 pmOu + 20,8, =710, , @E.D

Ty =030, + 2,804 21,8, +A4e,,0, + 21, —y,T5, . (3.2)

3.1 Yer Degistirme Potansiyelleri ve Sinir Sartlari

Tekil bir ortama ait denklemleri ¢ozmek amaciyla yer degistirme potansiyeli
kullanilmas: diisiincesi ilk olarak Goodier tarafindan ortaya atilmigtir [36]. Karigim
bilesenlerinin yer degistirmeleri i¢in de benzer sekilde

oy

u=Vp-Le =g, v=Vy=Le -y, (3.3)
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tamimlar1 yapiliyor olsun. F ve G ile gosterilen kiitle kuvvetleri ihmal edilir ve (3.3)
tanimlarn ile (2.24) ve (2.25)’e gidilirse

(K, + D, )V(V?p)+ (K + D, )V(V?y)-y,VT =0, (3.4)
(X + D, )V(VZ(D)"' (K, +D, )V(V2W)_72VT =0 (3.5)

elde edilir. Yer degistirmelerin sadece sicaklik tesiriyle olustugu diisiincesi altinda bu

denklemlerin integrasyonu
(K, +D,\V?0)+ (K + D, YV )- T =0, (3.6)
(K +D,YV?p)+ (K, + D,YV?W)-y,T =0 3.7)

sonuglarini verir. Bu iki denklem yardimiyla V@ ve V:y bityiikliikleri asagidaki
sekilde hesaplanur:

Vo=5T, Vy=sT. (3.8)

Burada esitliklerin sagindaki s, ve s, katsayilar

5 = (K4+D4)7’1_(K+D2)}’2 (3.9)
" (K, +DXK,+D,)-(K+D,XK+D,)’ |

5. = (K1+D1)72_(K+D3)71
> (K, +DXK,+D,)-(K+D,XK+D,)

(3.10)

olarak tammlanmugtir.

Yer degistirme potansiyeli fonksiyonlarinin saglamalari gereken (3.8) esitlikleri

Poisson diferansiyel denklemleri olarak adlandirilir ve ¢6ziimleri Poisson

integralleriyle
=S Trn R —
y() =2 [FEITC) oy 5 (3.12)

ar ; L(,,x,)
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seklinde verilir. Burada L(&,,x,) terimi £, ve x, noktalar1 arasindaki uzaklig: ifade

etmektedir. Potansiyel teoriye gore, (3.11) ve (3.12) eger (3.8) diferansiyel

denklemlerinin ¢6ziimleri iseler, ¢ ve  fonksiyonlarmin asagida verilen kogullar

sagliyor olmalar1 gerekir [36]:

a) @(x,) ve w(x,) fonksiyonlarnin birinci tiirevleri ¢, ve y, sicaklik alam

T nin siireksiz oldugu konumlar da dahil olmak {izere tiim karigim bélgesinde

siireklidir.

b) Karisim bdlgesi igerisinde sicaklik alanmn T% —T() geklinde siireksizlige
maruz kaldig: bir S ylizeyi diigliniilsiin. P bu ylizey lizerindeki bir nokta olmak
iizere, x, vex, eksenleri P noktasindaki teget diizlem igerisinde x, ise bu noktadaki
dis normal dogrultusunda segildigi takdirde, @(x,) ve w(x,) potansiyel

fonksiyonlarmin ¢ ,, ve y ,; ikinci mertebeden tiirevleri
o ~ ol =51 -1*), G139
)~y =5, -1) (3.14)

siireksizliklerine maruz kalirken bunlar digindaki tiim ikinci mertebeden tiirevler

bolgenin her noktasinda siirekli olurlar.

Yukaridaki kosullar problemin simur sartlarinin belirlenmesinde faydali olurlar. Ilk
kosul, (3.3) tammlar sebebiyle, u;, ve v, yer degistirmelerinin siireksizlik yiizeyi de

dahil bélgenin her noktasinda siirekli olacaklar1 sonucunu verir.

U =@y oyl 3.15)

Ikinci kosulun getirdiklerini gérebilmek igin (3.1) ve (3.2) biinye denklemlerinin yer
degistirme potansiyelleri cinsinden yazilmasi gerekir. Bu amagla 6nce (2.14) ile

verilen e, ve g, sekil degistirme tansorleri (3.3) yardimi ile hesaplanir

w =5 (P +0.) =00 (3.16)
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g4 = %(w,,-k VW)=V (3.17)

ve bunlarla (3.1) ve (3.2)’ye gidilirse
Oy =—Q,0, + AP O + 2,0, + /13l//’mm5ik +2u3y y — v, 16, , (3.18)
Ty =00 + 24P im0y + 210 4 + AW 1Oy + 240 4, — 7,10, (3.19)

ifadeleri elde edilir. Buna gore sicaklik alaninin siireksizlige ugradifs S yiizeyini

gecerken o,;; ve 7,; gerilme bilesenleri
ot~ = 1o - 0% ) 24 (08 - 020 )+ 4 (0 - v )
+24, (%) —y @ )y, (T® ~T) (3.20)
7 - 20 = 4,0 - 02 )+ 211, (0D - 05 )+ 2, (0 -y )
+2,p %) -y @)=, ~1*) (3.21)

seklinde degisime ugrayacaklardir. (3.8) diferansiyel denklemleri kullanilarak

wsitilmug bolgenin igi ve dig1 igin elde edilen

0l — ) =5, (7@ @) | (3.22)
,/,f;e'z _ '//,(»}d”m) =s, (T(ic) _Tws)) (3.23)

esitlikleri ve (3.13), (3.14) kosullar1 (3.20) ve (3.21)’de yerlerine konulursa
o —o W =[5, (4 +2m)+ 5,4 +2p) -1, JT© -T),  324)
7 a0 =[5, (4 + 208+ 5,08 +2,) -1, JT@ -T®)  325)

bulunur. Eger s, ves, tammlart 4, , 4, ,... i¢in hesaplanip gerekli islemler yapilirsa,

(3.24) ve (3.25)’in sag taraflarindaki katsayilarin

5 (’11 +2ﬂ1)+sz(ﬂ'3 +2,u3)—71 =0, (3.26)
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51(As +2083)+ 5,4, +241,) 7, =0 (3.27)

olduklar1 goriiliir. Bu sonuca goére sicaklik alanina iligkin siireksizlik yiizeyinde

053 V€ 7,, gerilme bilesenlerinin
i§) _ o (dy (i) _
o =™, 7wy =y (3.28)

esitliklerini saglamak zorunda kaldiklari, yani siirekli olduklar1 anlagilmaktadir.

Verilen kosullar alinda o,,, 0,5, 03,, 7|, , 7,3 Ve 7, in de siirekli oldugu fakat

G, s Oy, T, V€ Ty Nin
(i) (dis) _. (i) (dig) __ (i¢) (as)
ol — @) = g0 @ = (s, + Ays, —y, T -T),  (3.29)

(dzs)

(ig)
7ty

i =70 — 78 = (L5, + 4,5, =7, T — @) (3.30)

sigramalarina maruz kaldiklari kolaylikla gosterilebilir.

(3.11) ve (3.12) integrallerinden u; ve v, yer degistirme vektorlerine gegebilmek
igin (3.3) tanimlar1 geregince @(x,) ve y(x,) fonksiyonlarmmn gradyanlarinin

alinmasi gerekir. Eger

_ 1 1
Vi) = 47z[(1<.+D.)(z<4+D4)—<1<+szK+D3)][L<:,,x,>]. .35

g

tanimi yapilirsa, yer degistirme vektorleri igin (3.9)-(3.12)’den

u,(x,)=[(K, + D)y, ~(K+ D)y, | [T€)UE,.x)adV (E) . (332)

vi(x)=[(K, + DYy, - (K + D), |[T&)U & .x,)dV (£,) (3.33)

bagntilar1 bulunur. (3.8) ifadelerinin gradyanlarini almak suretiyle yer degistirmeleri

y6neten diferansiyel denklemler agagidaki sekilde elde edilir:
Viu=5VT, (3.34)

Viv=s,VT . (3.35)
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3.2 Kiiresel Bir Sicaklik Alam Etkisi Altinda Iki Elastik Kati Karisim1

Sonsuz bir karigim igerisinde R = a yarigapl kiiresel bir bdlgenin 1sitilmus oldugu ve
sicaklik alanmnin sadece R nin fonksiyonu olarak; R>a igin T“(R)=0 ve

R <a igin T® (R) seklinde verildigi kabul edilsin (Sekil 3.1).

Sekil 3.1 Kiiresel Sicaklik Alan1 Kabulii

Bu diisiinceyi matematiksel olarak

0, R>a

T®(R), R<a (3:36)

T(R)=T®[R)H(a-R)= {

bagintisiyla ifade etmek miimkiindiir. Burada H(x) Heaviside fonksiyonu olarak

adlandirlir ve agagidaki gibi tanimlanur:

0, x<0

H(x)= (3.37)
1, x>0

j S Hx)dc= [f(x)dx . (3.38)

Sicaklik alaninin etkisiyle karigim bilegenlerine ait pargaciklarin sadece radyal

dogrultuda yer degistirebildikleri kabul edilirse u ve v vektorleri
u=u(R)e, , v=v(R)e, (3.39)

seklinde yazilabilir. Kiiresel koordinatlarda sekil degistirme tansorii, V operatorii ve

bununla ilgili baz1 gerekli sonuglar agsagida toplu halde verilmektedir.
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Bilesenleri R,® ve® nin fonksiyonu olan bir W =We, +W.eq +W,e, yer
degistirme vektorii i¢in agagidaki bagmtilar gegerlidir:

laW W | o)/ W+cotd)

&, N & —+ /4 s
=250 'R % ~psin® 00 R R °
oW, 1( 1 oW, 10W, cotd
Erp = s Eop = +— Wel,
oR 2\ Rsin® 8@ R 6® 2R

1(16W ow,, Wd,J 1( 1 oW, Wy W,
+ - > Eor +

Ero = = :
2\R 0® OR R Rsin® 6@  OR R

> J (3.40)

d 10 1 8
V= + +e —, 3.41
“*2R " “®Ro® " ° Rsind 00 (3.41)
VxW = 1 —a—(W@sintb Mo e, + 1 oW, ———( W) leo
Rsin®| 0 o8 Rsin® 6® ROR
oW,

w,)-—=X 3.42
vl Zewm)- Tk 6.

1 9 1 1 o,
V-W=—(RW, )+ —w, + °© . (343
R 6R( ) Rsi q>ac1>( Sa0) s e, )

Ayrica V’W igin

VW =V(V-W)-V x(Vx W) (3.44)

vektorel 6zdesligi verilebilir. (3.39) ile verilen vektorler sz konusu oldugunda

(3.42) isleminin sonucunun
Vxu=0, Vxv=0 (3.45)
olacagina dikkat edilirse, (3.34), (3.35) ve (3.44)’ten
V(V-u-5,T)=0, V(V-v-5,T) =0 (3.46)

elde edilir. Bu denklemlerin bilesen formlar: ise agagidaki sekildedir:

22



d 1 d 2 d 1 d 2
________._R -— T =0, -—-—————-R —_ T —_—-0. 3.47
dR[R’ o7 &)= ] dR[RZ &) ] @47

(3.47) diferansiyel denklemlerinin ¢oziimleri R <a igin u®, v ve R>a igin
u@) @ geklinde bulunduktan sonra bilinmeyen integrasyon sabitleri R = a daki

sinir gartlar1 yardimiyla elde edilir.

R < a bélgesiigin T =T (R) olduguna gore, (3.47) denklemlerinin integrasyonu

R
u('?)(R)=7‘;‘TIT(""(§)§2d§+%R+c2% , (3.48)
0
@) (R ___iZ_RT(if) 24 f"iR L 3.49
VO(R)=—5 () dg+—R+c,— (3 49)
R? ] 3 R

sonuglarini verir. R =0 durumunda u“(R) ve v*(R)nin sonlu kalabilmesi igin

¢, =c, =0 olmas: gerekir. Bu durumda R <a daki yer degistirmeler i¢in (3.47)

denklemlerinin ¢oziimleri
R
w9 (R =5 TG +CR (3.50)
0
R
VOR) =k [T(©)5dE +C,R (3.5
0
seklinde elde edilir.

Karigimin R > a bélgesi igin T“’(R) =0 kabul edildigine gore, bu durumda (3.47)

denklemlerinin integrasyonu

1 (R) = %SR + ¢ -Rl—z, (3.52)
@) py= £ 1
v (R) —?R’*‘CSF (353)
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ifadelerini verecektir. R=o olmasi durumunda %“’(R) ve v*’(R) nin sonlu

kalabilmesi igin bu kez ¢; =c, =0 olmak zorundadir. Buna gére R > a igin ¢6ziim

1

u“ (R)=C, = (3.54)
v (R)=C, % (3.55)

fonksiyonlariyla belirlenir.
(3.15) sinir gartina gore sicakligin stireksizlige ugradigi R = a yarigapi igin
u'® (a) = u(%) (a) , ) (a)= v(d"’)(a) (3.56)

olmalidir. Bu durumda (3.50), (3.51), (3.54) ve (3.55) esitlikleri yardimiyla

C =5 ‘].T(ic) (&)&*dE+Cia’ 3.57)
Ci=s, aIT"'” (6)EdéE+Cya’ (3.58)

0

bagintilan elde edilir. Boylece (3.54) ve (3.55) ile verilen u‘“’(R) ve v'*(R) yer

degistirmeleri agagidaki sekilde yazilabilir:

a 3
u(R)=—k [TO@EdE+25C, (3.59)
0
V) (R) = % ]T"’” (E)E*dE + ;—ZCZ . (3.60)
0

(3.50), (3.51), (3.59) ve (3.60) ifadelerindeki bilinmeyen C, ve C, sabitleri (3.28)
ile verilen sinir sartlar1 yardimiyla belirlenir. x; olarak tamimlanan eksen burada

radyal dogrultuya karsilik geldigi i¢in sinur gartlari

o (a)=c@(a) , @ (@) =74 (a) (3.61)
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seklinde olmaktadir.
(3.1) ve (3.2) biinye denklemlerinden 0% ve 7#%) bilesenleri igin

ORR =0, + ey} +2neR) + Angun + 218w~ T® . (3.62)

mm
T = gl + g + el 2l 7 TO (Y

bagintilart ve R>a durumunda, 7’ =0 oldugu hatirlanarak, o ve 7%

gerilme bilegenleri i¢in

0'1(2?) =-Q, +ﬂ,,e,($f) +2ﬂle§$) +}“3g;($) + 2/13g§$) > (3.64)
o =y + 85 + 24,850 + 2,50 + 2507 (3.65)

bagintilar1 elde edilir. (3.40) ile verilen sekil degistirme tansérii bilesenleri (3.39)

vektorleri i¢in hesaplanirsa

du u
RR=dR’ed>¢ Co0 = » €po =€op =€eg =0 ,
2 du
€ =€ppteloy tepy =—U+— , 3.66
mm RR o6 [520)] R dR ( )

dv v
8rr =ﬁ s Soo =g®®=E > 8ro = 8o0 =8er =0 »

2
&um =8rrt8o0 T 8oo =7 V+—5 (3.67)
bulunur. Bu ifadelerde u(R) ve v(R) nin R <a ve R > a bolgeleri igin hesaplanmig

olan (3.50), (3.51), (3.59) ve (3.60) bagntilar1 kullanilarak karisim elemanlarinin

sekil degistirme tansorii bilesenleri agagidaki sekilde elde edilir:

. 2s R i i s i i
e == [TOOS A +sTOR+C, 5 eff = =25 [TP@F s +C,
0 0

e =5 T®(R)+3C, , (3.68)
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8rR T
g,(,ffn) = szT(’”(R)+3C2 ,

25,
(dts) =0, e%s) — =0

mm

IT("’(é)«f df——C. :
i) _ ) _ St e 2 a
e = el = JT?(:)& d§ +-5C,

0

2s
g =0, g =-TF jT“”(é)fzd:——c

a

3
i a
26 =858 =25 [T‘f’ ©)E*dE+45C
Bunlarla (3.62)-(3.65) denklemlerine gidilirse, gerilme tansorleri ic;in.

, 4 o
ol = _q, __(fif;_ﬂf_) [r@@&E*ag +[(A +2u)s, + (4, + 245 )s,
0

+ (3/?1 +24 )Cl +(34, + 2/”3)C2 )
TR =y - ————4(”’S'1§§ ta32) [reo gyt o0, + 240)+ (o +2

+ (32'4 +241,)C, + (32'2 +24, )Cz ’

2s
) Rz IT(w)(§)§2d§+s T®@R)+C,, g% =g%) = ' IT(“)(§)§2d§+Cz,

(3.69)

(3.70)

(3.71)

~7, ]T(ic)(R)

(3.72)

~7, T ®)

(3.73)

C,, (3.74)

4(;1 S, + WUsS ) 4,u 4,u a’
(dis) _ 121 372 (i¢) 1 3
o =-a, = jT (&)EdE - ~
(dt;) 4(1”351 "'ﬂzsz (ig) 2 4/13 4/12a3
=q, -—— ] IT ©)¢*de -—2—C -5
R’ R
esitlikleri elde edilir.
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Bilinmeyen C, ve C, sabitlerini belirlemek amaciyla (3.72)-(3.75) ifadeleri (3.61)

stur gartlarinda kullanilirsa

3( + 244 )C, +3(A; + 244, )C, = (4 + 24 )5, + (4 + 241 )s, -1, T (@), (3.76)

3(A +24, )Cl + 3(/12 +2u, )Cz = _[(14 +24, )51 + (’12 +24 )sz —72 ]T(ic)(a) (3.77)

seklinde iki denkleme ulagilir ve buradan C, ve C, asagidaki sekilde bulunur:

__T(ic)(a) 72(/13 +2/_[3)_},I(2’2 +2ﬂ2) -

C = 3 l:sl + (/‘Ll +2ﬂ])(ﬂ,2 +2y2)—(,‘{3 +24U3Xﬂ«4 +2’u3)_ , (3.78)
__T(ic)(a) 71(2’4+2/‘3)_}’2(ﬂ.|+2ﬂ1) -

Cz - 3 I:S2+(Z1+21ulxﬂ'2 +2,U2)—()u3 +2/u3X/14+2,U3)_ : (379)

(3.1) ve (3.2) biinye bagmntilarindan faydalanilarak, (3.66) ve (3.67) dikkate

alindiginda, gerilme tansérlerinin diger bilesenleri i¢in R < a bdlgesinde
66 =0 =~y + e +244e60 + g + 211,868 — 1T,

O-OG = o-<b¢ mm

@i¢) _ . (ig) _ (2] (i) i i
T o6 —”gfb =Qy + A8 21,866 +/'L4ef,,ifn) +2.useé>g "72T('¢) s

nie =nld =n$) =0 (3.81)

ifadeleri elde edilir. (3.68) ve (3.69) esitlikleri yardimiyla o&) =o% ve

%) = 7% bilegenleri igin

Oo0 = Ton

i i 2u, s, + pys i i i
(© = o) = —q, + 2t +s502) ‘RJ" ) [T e +[Aus, + 2y, =7 TP R)
(]

+(34, +244,)C, + (3/13 + 24 )Cz ) (3.82)

. 2u.s, + w5, ) % . y
78 =78 =q, +——~('u3‘ ]R3 #15) J.T“)(é‘)fza'f+[/14sl + 4,5, —7, T (R)
0

+ (3’14 +2 )Cl + (312 +2u, )Cz (3.83)
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sonuclarina ulagilir. Aynt bilegenlerin R > a bolgesinde aldiklar1 degerler ise, yine

aym yol izlenerek, T = 0 igin elde edilen

dig) __ () _ (di5) (di5) (dig) (ag)
0'<(a® =Cga =—Q +Ae,, +2Mmegs + 1,8, +2/5800 >

mm

(dg) _ (dy) _ (ds) _
Oro =0pe =0pp =0, (3.84)

( _ o (dy) _ (dis) (dis) (at5) (dis)
”edg) =Tos =0y +A8m +2,860 +ACmm +2M€59 >
— dy) _ —
@) = ) — g @) = (3.85)

7 ro>

ifadelerinde (3.70) ve (3.71) esitlikleri kullanilarak agagidaki sekilde bulunur:

20,8, + 1455,) T 2ua’ 2pa’
ol = ag,‘f’,f’=—a2+('u‘—‘R3'u¥) [To@)Ede + "1‘;3 C, + ‘1‘;3 Cy, (3.86)
0

2u,a°

R3

24,8, + 14,5, ) b 2ua’
7 = 7@ =a2+———('u3 = 45,) [T @) &ds+ /1‘;3 C + C,. (3.87)
0

Diflizyon kuvveti vektoriine gelince; R < a bolgesi igin (2.17) vektorel denklemi
70 = 2{pvle@)s 7ve) (3.88)

olacagma gore (3.68) ve (3.69) bagntilar1 yardimiyla difiizyon kuvveti vektoriiniin
bilesenleri

dr® (R)

T 7 =7y =0 (3.89)

e = %(ﬁlsz "‘,stl)

seklinde elde edilir. R>a bolgesi s6z konusu oldugunda (3.70) ve (3.71)’den

goriilecegi iizere €% =0 ve g% =0 seklindedir. Bu durumda 1sitilmig bdlgenin

mm mm

disinda difiizyon kuvveti vektorii sifir olmaktadir.

) = gl = g — ¢ (3.90)
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3.3 Ozel Bir Kiiresel Sicaklik Alami I¢in Uygulama

Yukarida genel formiilasyonlar: verilen biiyiikliiklerin belirli bir sicaklik alani i¢in ne
gibi sonuglar verdiklerini gorebilmek amaciyla T% (R) sicaklik alani igin asagidaki

kabul yapiliyor olsun:
TR =T, . (3.91)

Yani R=a yarigapli bdlgenin igerisi sabit bir 7, sicakligma sahip iken bolge
diginda sicaklik sifir olmaktadir. Bu durumda ifadelerde gegen integraller
R I;) R3

[roora ===,  [1¢)ds=

Tya®
3

(3.92)

degerlerini alirlar. Béylece (3.50), (3.51), (3.59) ve (3.60) yer degistirme vektorleri

. T, i
u(w)(R):R(S|3O +C,) i v(tc)(R)=R(§l§°—+C2) , (3.93)

3 3
dis _a [ s5T, _a’ (8T )
u' ’(R)——RZ( ‘3° +C,) , v("‘”(R)——RZ( 23" +c2) ; (3.94)
(3.72)-(3.75) gerilme tansorii bilegenleri

i T
Gfuce) =-Q, +C1(3/11 +2/‘1)+C2(3}°3 +2/‘3)+_30'[S1(3/11 +2p1)+s2(3/13 +2,u3)—3}/,],

”gf‘*) =, +C1(3’14 +2/‘3)+C2(3/12 +2/‘2)+€0‘[S1(3/14 +2ﬂ3)+sz(32~2 "‘2#2)‘372]’

(3.95)
(ds5) 4a’
Opr =05 — IR’ [/ll(slTo +3C1)+/‘3(52To +3C2)] )
4 3
”i(a‘?) =a, _3%[/”3(51710 +3C1)+,u2(S2T0 +3C2)] > (3.96)

gerilme tansorlerinin (3.82), (3.83), (3.86) ve (3.87) ile verilen diger bilesenleri

e) __ icy _. i i) _ i) __
ool =0l =0, e =nll =, (3.97)
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20
Uédg) =°'e(1;§) =-a, +3_;3'[/‘1(S1To +3C1)+/13(32To +3C2)] )

3
”é)dg) =7zf:§) =Q, +%[/“3(S|To +3C|)+/12(32To +3C2)] (3.98)

ve (3.89) ile verilen difiizyon kuvveti vektorii
7 =0 (3.99)
seklinde elde edilir.

Ic ve dig bolge (R<a,R>a)digiincesi ile ayr1 ayn yazilan tiim sonuglarin

Heaviside fonksiyonu kullanilarak
W(R) =W H(a-R)+W ™ H(R-a) (3.100)

seklinde birlestirilip tek bir ifade altinda verilmesi miimkiindiir. Bu durumda (3.50),
(3.59) ve (3.51), (3.60) esitlikleri ile ayr1 ayr verilmis olan u(R) ve w(R) yer
degistirme fonksiyonlari igin

u= —%I]'T("‘)(é)fzd§+C1R H(a-R)+ -s—‘]'T(“)(§)§2d§+;—1CI}H(R ~a),

v= %JT(i‘)(§)§2d§+C2R H(a-R)+ %JT(W)(§)§2d§+%C2]H(R—a)

L J i
(3.101)
yazilabilecegi gibi, bunlara iliskin (3.93) ve (3.94) sonuglar1 da
7, Y 3 ]
u =(M+c, RH(@-R)+_H(R-a)|,

3 A R i

T \ 3 7]
:(‘230 +C, RH(a—R)+%H(R—a) (3.102)

L i

bagmntilariyla ifade edilebilir.
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Malzeme sabitleri olarak tamumlanan y,,%,,4,,..., ;... bilyiikliiklerinin degerleri
icin kabuller yapilarak gesitli karigimlar igin sicaklik alaninin etkisi grafiksel olarak
gosterilebilir. Borrelli ve Patria [37] iki lineer elastik kat1 karigiminin yer degistirme
problemine iligkin teoremler verdikleri bir ¢aligmalarinda izotropik bir karigimda
malzeme sabitlerinin maruz kaldiklar1 kisitlamalar1 da ortaya koymuslardir. Bu

caligmaya gore malzeme sabitleri

ﬂ1+2y1—%a220, /12+2ﬂ2+%a220,

- 2 — -
(/13 + 24, ——'?_—‘az) 5(21 +24 ——p_—zaz)(ﬂ.z +2u, +£_‘—a2J,
P P P

/—‘1—/1520» /‘2“’%20, (/13+/15)25(y1—15)(y2—/15) (3.103)

kisitlamalarina uygun olmak zorundadir. Sabitlerin degerlerinin rastgele segilmesi
yerine bir fikir vermesi a¢isindan tekil malzemeler igin deneysel yollarla bulunmus
olan sonuglardan faydalanmak daha dogru olacaktir. Bu amagla Tablo 3.1°de ¢esitli

metaller igin malzeme sabitleri verilmektedir.

Tablo 3.1 Bazi1 Metallere Ait Malzeme Sabitleri

Altin Alliminyum Bakir Demir Nikel Titanyum
P (kg/m’) 19300 2700 8920 7874 8908 4507
E (GPa) 78 70 130 211 200 116
M (GPa) 27 26 48 82 . 76 44
v 0.44 0.35 0.34 0.29 0.31 0.32
A (GPa) 198 60.7 102 113.2 124 78.2
a, (1F°K) 14.2x10° | 23.1x10° | 16.5x10° | 11.8x10° | 13.4x10° | 8.6x10°
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(3.103) kisitlamalarina uygun olarak

A, =36(GPa), 1,=77(GPa), 1,=25(GPa), A,=4,—aq,,
4 =14(GPa),  p, =36(GPa),  u, =12(GPa), a,,=23.1x10~6(7112),

ay, =16.5x107° (LK) p, =2700 (kg/m’), B, =8920 (kg/m®) (3.104)

degerleri verilmis olsun. Bu durumda, y, ve y, sabitleri (2.32) bagintilarindan
v, =4.775(MPa/°’K), y, = 7.286 (MPa/’K) olarak hesaplanir. , =1 (Pa), 1s1tilmug
kiiresel bolgenin yarigapt a=0.05 (m) ve sicaklik farki 7, =100 ("K) olarak

alindig1 takdirde, yukaridaki malzeme sabitlerinin gegerli oldugu bir karnigimin
bilesenlerine ait yer degistirme fonksiyonlarinin ve gerilme bilesenlerinin

degisimlerini gosteren grafikler asagidaki sekilde elde edilir:

10
8
ux10°®
g
A
4 I/\ --------- vx10°
/
2 / \\
4 \
]
\
) ) ; — R(m)
0.05 0.15 0.25 0.35 0.45

Sekil 3.2 u(R) ve v(R) Fonksiyonlarmin Degigsimleri

: , R(m)
0.2 0.25

Sekil 3.3 o, ve 7 ,, Gerilme Bilesenlerinin Degigimleri
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1.5[
1 N\,
\.
0.5
k
R(m)
0.ps 0.1 0.15 0.2
-0.5 8
OgaX10
-1 e
-1.5
Y S Teex 1078
-2.5

Sekil 3.4 0gg = O g Ve T = Tgq Gerilme Bilegenlerinin Degisimleri

3.4 iki Elastik Kati Kangim I¢in Betti Karsithk Teoremi

Ozel olarak tekil malzemelerin elastisite problemleri igin verilmis olan teorem
1951°de Maysel tarafindan termoelastisite problemlerine genellestirilmistir [36, 38].
Teorem, Ozetle, elastik bir cismin iki farkli kiitle ve yiizey kuvvetleri sistemine
maruz kalmasi neticesinde olusan yer degistirmelerden birincisinin ikinci kuvvetler
sistemiyle, ikincisinin ise birinci kuvvetler sistemiyle birlikte yapacaklan iglerin egit
oldugunu ifade eder. Bu kisimda teorem iki elastik kati karigimi igin
genellestirilmekte ve getirdigi kisitlamalar ortaya konmaktadir.

Karigima ait iki farkli denge hali ve bunlara iliskin yer degistirme vektorleri

asagidaki sekilde verilmig olsun:

a) F,,G,, PVveP?® Kkitle ve yiizey kuvvetlerinin etkisiyle u, ve v, yer

H

degistirmeleri,

b) F', G/, P’V veP'® kiitle ve yiizey kuvvetlerinin etkisiyle u, ve v| yer

!

degistirmeleri.
Birinci kuvvetler sistemiyle ikinci yer degistirme vektorlerinin birlikte yapacaklari ig

[Fujav + [PPudS + [GvidV + [RPv]dS (3.105)
1 4 S vV N

integralleriyle belirlenir. n, karigim elemanina ait bir birim dis normal vektsr olmak

tizere, P ve P?® yiizey kuvvetleri ile kismi gerilme tansorleri arasindaki iligki

33



PO =oun,, P®=z,n, (3.106)
seklindedir. F, ve G, kiitle kuvvetleri yerine (2.16) denge denklemlerine gére

F=-0yu,+7, , G, = —Tpi =7, (3.107)

I

esitlikleri kullanilir ve (3.106), (3.107) bagintilar ile (3.105) ifadesine gidilirse
[~z uidv + [POuas + [(G, +,W,dV + [RPvidS
14 N vV s
=—[ou,udV + [o,nudS - [z, ViV + [z,nvdS (3.108)
14 S 14 N
elde edilir. Diverjans (Gauss) teoreminin yardimiyla esitligin saginda bulunan ikinci

ve dordiincii integralleri

! ! !
J.O.Ia‘nk w;dS = J.(O.ki,k Uy + 0yl )dV >
$

v

[umvidS = [y, + mevi, )av (3.109)
S

14

seklinde diizenlemek miimkiindiir. u;, ve v;, yer degistirme gradyanlarmin simetrik

ve antisimetrik kisimlar cinsinden
uy, =ep +w, Vi =gy + Wi (3.110)

seklinde yazilabilecekleri ve (3.1), (3.2) biinye denklemlerine gore o, ve 7, kismi

gerilme tansorlerinin simetrik olduklan diigiiniiliirse ifadelerde gegen o u;, ve

7T ,Vi, i¢ carpimlar
[ — ’ [} - I
o.ldui,k _o-ldeik ’ ﬂ.[dvi’k —ﬂ'k,gik (3111)

sonuglarim verir. Bu sonuglarla birlikte (3.109) esitlikleri (3.108)’de kullanildiginda
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[(F, -z Jjav + [POujdS + [(G, + 7, W,aV + [PPvds
V S 14 N

= [(oue +7ugi)dV
14

(3.112)

elde edilir. Gerilme tansorlerinin (3.1) ve (3.2) ile verilmig ifadeleri yerlerine

konularak bu bagintinin sagindaki integral agagidaki sekilde yazilabilir:

J.(O-kie;k +7,85 )V = ﬂ_ (@, +7.T)e; + (@, = 7,T) g} + M pmey +24424€),
v v

+ 288 T 21,8484 + 2,8 mei + A48 +2:u3(gike:k +eikg1{k)]dV . (3.113)

(2.14)’te verilen tanumlar geregince e; =u;, ve g; =v;, oldugu dikkate almarak

diverjans teoreminin yardimiyla esitligin sagindaki ilk iki terim igin

- I(az +}/1T)e:i dv = _I(az +71T)u:nids+71 J‘T:iui'dV’
v s v

Jl(az _72T)g1{.' av = J-(az —sz)v,fnidS +7, J.T,iv;dV
X S v

diizenlemeleri yapilir ve (3.113), (3.114) ile (3.112)’ye gidilirse

i +2Me,e;

mm Eii

J-[:’,u,.'dV+ J‘ﬁi(l)u,’dS+ Ié,v,’dV+ Ié(z)v;dg = '[[/?.le
14 N 14 N 14

+ 28 mm8h + 21818k + G unCs + M8 + 211580l + s8NV

esitligine ulagilir. Burada £, G,, P® ve P® biyiikliikleri sirastyla,

A ~

E=F -z -yT G, =G, +m,~y,T

A2 A2

BY =PO +(ay+y T, PP =P® —(a,~7,T)n,

(3.114)

(3.115)

(3.116)

seklinde tanimlanmaktadir. 4, =/, olmasi halinde (3.115)’in sag tarafinin islii ve

lissiiz terimlerine gore simetrik oldugu goriiliir. Bu ise (2.13) tanimmna goére o, =0

olmasi ve dolayistyla (2.17)’den 7, = 0 olmasi anlamina gelir. O halde buradan iki
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elastik kat1 karigim igin Betti karsitlik teoreminin kangim bilesenlerinin on
gerilmesiz oldugu ve bundan dolay1 da difiizyon etkisinin bulunmadig bir durum
i¢in kullanilabilecegi sonucuna ulagilir. Teorem bu durumda agagidaki genel forma

sahip olur:

[Fujdv + [BOuds + [Gvidv + [BPv,ds
vV N 14 N

= [Fruwdv + [BOu,ds + [Glv,av + [B/®v,ds . (3.117)
14 S 14 S

3.5 Iki Elastik Kati Karisim I¢in Maysel Formiilii

Genel olarak homojen olmayan sinir sartlarim saglatarak diferansiyel denklemlerin
direkt integrasyonu yoluyla 1sil gerilme ve yer degistirme alanlarimi saptamak
olduk¢a zordur. Bu nedenle varyasyonel prensipleri termoelastisite teorisine
uygulayarak yaklagik ¢6ziim elde etme konusuna yonelmeler olmustur. Ancak Betti
kargitlik teoremine dayanan Maysel metodu termoelastisite problemlerinin direkt
¢6ziimiinii elde etme hususunda bir alternatif sunmaktadir. Bu metot sayesinde bir
elastik cisimde 1sil gerilme alaminin saptanmasi problemi bir noktasal kuvvetin
etkisini igeren izotermal elastisite probleminin ¢6ziimiine indirgenmektedir. Eger yer
degistirme alani eksenel simetriye sahipse, bu durumda termoelastisite problemi
smir1 boyunca homojen bir sekilde dagilmig birim tekil kuvvetlerin etkisi altinda olan
ve homojen olarak isitilmig bulunan bir cismin 1s1l gerilmelerinin saptanmasi

problemine doniigmektedir [38].

Betti kargitlik teoreminin iki elastik katidan olusan bir karisim igin genel bir hali elde

edilmeye calisilirken iki farkli kuvvet ve bunlara iligkin deformasyon alanlar

distincesinden hareket edilmigti.‘ Teoremin «, =0 (dolayisiyla z; =0) olmas:

halinde gegerli oldugu hatirlanarak sozii edilen iislii ve iissiiz deformasyon alanlart

i¢in agagidaki kabuller yapilmaktadir:
a) Ussiiz deformasyon halleri,

F,=0,G =0ve PY=pP? =0 (3.118)

olmak iizere, sadece 1sil etkiler sebebiyle olusuyor olsun. Bu durumda (3.116)
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tanimlar

E=-yT,, G=-yT,, BV=yTn, B®?=y,Tn,  (3.119)
bagmtilarina indirgenir.
b) Uslii deformasyon halleri ise, sicaklik alani

T'=0 (3.120)

olmak iizere, x, konumunda x, ekseni yoniinde etkiyen ve sirasiyla P, F/ ve

P'® G sistemlerine egdeger olan birim noktasal kuvvetler tarafindan tiretiliyor
olsun. Diger bir deyisle, birim noktasal kuvvetlerin sebep oldugu gerilme ve yer

degistirme alanlar1 P'", F' ve P'®, G! kuvvet sistemlerinin meydana getirecegi
g $ I3 ! ! g

i

gerilme ve yer degistirme alanlarina esdeger kabul edilmektedir. Noktasal yiiklerin

belirtilmesinde & (x—xo) seklinde gosterilen Dirac delta fonksiyonu siklikla

kullanilir.

6(x—x0)={ 0, x#x

0, X=X,

olarak tanimlanan Dirac delta fonksiyonu x = x, konumunda siirekli olan bir f(x)

fonksiyonu igin

Trwe w={  ToE@D) 3.121
aff(x) G-x)d=y ) (3.121)

sonuglarini verir.

Deformasyon alanlari i¢in yapilan kabullerle-(3.1 17) bagintisina gidilirse

[ [[6€ - %)8(&, = %086, %), (61,6,,6,) dE dEydE,

+ [ [[8 -x)8(&; =2)86, ~x,)v,(61,62,85) dEdE,dE,

=y, [TdV +y, [Tujn,dS -y, [TyvdV +y, [Tvin,ds (3.122)
vV S 14 N
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elde edilir. Esitligin sagindaki yiizey integrallerine diverjans teoremi uygulanir ve
esitligin solundaki integrallerin (3.121) 6zelligi geregince

u(x,), v(x), r=12,3
verecegine dikkat edilirse asagidaki sonuca ulagilir:

4, (x,) +v,(x,) = 1, [TE KO E,x)dVE) 4, [TEOE,,x,)dV (£,) . (3.123)
1 4 14

Bu bagmnti iki elastik kati karigimui i¢in Maysel formiiliiniin genellestirilmis bir
ifadesidir. Integrallerde yer alan x®(&,,x,) ve 7 (£,,x,) biiylikliikleri igin

K(i)(ér’xr)=v'u'=ui',x s ﬂ(i)(§r9xr)=v'v,=v;,i (3.124)

tanimlart yapilmustir. Mekaniksel agidan bu fonksiyonlarin x, noktasinda
konumlanmig olan ve x, yoniinde etkiyen birim noktasal yiikler sebebiyle karigimin

&, noktasinda bilesenlerde meydana gelen genlesmeler olarak yorumlanmasi
mimkiindiir [36]. Ayrica, iislii yer degistirme alanlarindan tiiretildikleri igin bunlarin

izotermal hale ait biiyiikliikler olduklarina da dikkat edilmelidir. (i) st indisi ¥ ve
n® biiyiikliklerinin x, yoniinde etkiyen noktasal kuvvetlerden dolay: olustuklarmni
ifade etmek amaciyla kullanilmaktadir.

(3.123)’te toplam olarak ortaya ¢ikan yer degistirmeleri ayri ayr1 elde etmek

amaciyla (3.32) ve (3.33)’iin toplamlar: alinir ve elde edilen

u(x,)+v,(x,)= [(K4 +D,—K—-D,)y+ (K1 +D -K- Dz)Vz]
x [TE)U(&,,x,)dV(£,) (3.125)
vV
esitligi (3.123) ile karsilagtinlusa U,(¢,,x,) biyikliginin «©(&,x) ve
7% (&,,x,) cinsinden

yl’c(i)(gr’xr)+7277(1)(§r’xr)
(3.126)
(K4 +D, "K_Da)}’l +(K1 +D, "K—Dz)}’z

Ui(,.x,)=
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degerine esit oldugu goriiliir. U,(£,,x,) igin bulunan bu deger (3.32) ve (3.33)’te

kullanilarak bilegenlere ait yer degistirme vektorleri

(K,+D,)y,-(K+D,)y, }

ui(xr) =[(K4 +D4 _K"D3)71 +(K| +D1 _K_Dz)}’z

x [TENrx €, %)+ 70O &, x V&), (3.127)

(K, + D)y, (K +D,), }

V;(x,)=[(K4 +D4 _K_D3)71 +(K1 +D1 “K—Dz)yz

x [T x® & x) + 7O, x AV E,) (3.128)

seklinde elde edilir.

3.6 Kiiresel Sicaklik Alan1 Problemi I¢in Maysel Formiiliiniin Kullanilmasi

Kangim bilesenlerinin $ekil 3.5°te gosterildigi gibi R yarigaph kiiresel bir yiizey
tizerinde homojen olarak dagilmis bulunan ve 1.6(£ — R) seklinde tamimlanan birim
radyal kuvvetlerin etkisine maruz kaldifi kabul edilsin. Burada ¢ yarigap
dogrultusundaki koordinat degisimini gostermektedir. Ayrica bu etkiler sebebiyle &
yarigaplh bolgede bilesenlerde meydana gelen genlesmeler «(&,R) ve n(&,R)

biiylikliikleriyle tanimlaniyor olsun.

Sekil 3.5 Yayili Birim Kuvvetlerin Etkisine Maruz Kiiresel Bir Yiizey
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Bu yiikleme durumu ve (3.119), (3.120) kabulleri ile (3.117)’ye gidilirse
[ [[s¢-Ru&yave)+ [ [[o¢-RwEare)
=-7, J.Ij,.ui'dV +7, ITu,fn, as -y, IZ}V{dV +7, ITv{ni as
14 S 14 S

elde edilir. Bagintinin sag tarafina diverjans teoremi uygulanip hacim integralleri
yeniden diizenlendiginde elde edilen

4z [S(& - Rou(E)E dE +4n [8(£ ~ R)E)E dé

=A4ny, ojT(é‘)K(f,R)f *d& +4ny, jT(é)ﬂ(f, R)S*d¢
esitlifinde Dirac delta fonksiyonunun (3.121) ile verilen dzelligi kullamlirsa
BB = [TOlrw@ D@ R 619)
sonucuna ulagilir. (3.32) ve (3.33) integralleri ise bu durumda agagidaki sekildedir:

u(R) = 4n[(K, + D, )y, —(K+ D,), | [TOUE R dE,  (3.130)

vW(R) =4z[(K, + D)y, (K + D) |[T@OUE BEdE . (3.131)
0
Bu ifadelerin toplamlar1 almir ve sonu¢ (3.129) ile kargilastiilirsa U, (&,,x,)
fonksiyonu igin

1k (&, R) +y,1(S, R) (3.132)
4”R2[(K4+D4_K_D3)}/1+(K1+D1—K_Dz)72] .

U@, R) =

bagintist bulunur. Bu bagmnti kullanilarak (3.130) ve (3.131) ile verilen radyal yer
degistirmeler x(&,R) ve n(&, R) cinsinden
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(R) = (K4+D4)y1_(K+D2)72
* - (K4+D4_K_D3)V|+(K1+D1_K_D2)}’2
xr [T@l@ R +rnC RIS (3.133)
v(R)— (Kl +D1)}'2_(K+D3)71
- (K4+D4_K"D3)}’1+(K1+D1"K_D2)72

<= [TOlyE. R +7mE Rl dz (3.134)

seklinde elde edilir.

x(&,R) ve n(&,R) genlesme fonksiyonlari, genel hallerinin verildigi (3.124)

bagmtilarindan gériilecegi lizere, iislii deformasyon hallerine (izotermal hal) karsilik
gelen ¢oziimlerden elde edilmektedir. Kiiresel sicaklik alam etkisine maruz iki elastik
kat1 kanigiminin yer degistirmelerini ydneten diferansiyel denklem takimi (3.47) ile
verilmisti. Radyal koordinat degisimi ¢ ile gosterildiginde (3.47) denklemleri

izotermal durum igin

d [Li(gzu')} o, 2 [Li(gzv')] =0 (3.135)

dz| ¢ ag g & de
seklini alirlar. Coziim yine iki bolgenin yardimiyla elde edilmektedir. Yalniz burada
bolgeler sicaklik alaninin etkidigi & = a yarigapi igin degil, homojen birim yiiklerin
etkidigi £ = R yanigapi i¢gin ayrilmaktadir. Bundan sonra 0 <& < R bolgesi igin elde
edilen ¢oziimler %' ve ¥’ ile, R <& <o bolgesi igin elde edilenler ise u' ve v' ile

gosterilecektir.

Sinir gartlart £ = R konumunda bilegenlere ait yer degistirmelerin siirekli olacagi,
buna karsilik, kiiresel ylizey iizerinde bulunan radyal birim yiikler sebebiyle o, ve

my, gerilme tansorii bilesenlerinin birim artimlara maruz kalacag diigiiniilerek

=0, (3.136)
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P P S A A I (3.137)

seklinde verilir.
(3.135) diferansiyel denklemlerinin integrasyonu ile

u'=c5§+c(,212—, v'=c7§+c8212— (3.138)

elde edilir. Yer degistirmelerin 0<& <R bolgesinde £ -—>0 iginy R<&<oo

bolgesinde ise & — oo igin sonlu kalacagi kabul edilirse her iki bélgeye ait ¢oziimler

u=Ct, v'=C¢, (3.139)

v'=C (3.140)

&

, 1 1

bagmtilarina indirgenir. (3.139) bagmtilarinin (3.136) sinir sartlarinda kullanilmasi

halinde integrasyon sabitleri arasinda
C, =C,R*, Cy =C,R’ (3.141)

iligkilerinin var oldugu goriiliir. Gerilmeler cinsinden verilen (3.137) sinir sartlarim

et §

kullanabilmek igin 6ncelikle &}, , G,, , 7, ve 7, gerilme bilesenlerinin hesab

gerekir. (3.1) ve (3.2) biinye denklemlerinin a, =0 ve 7' =0 durumu igin
o-;-f = ﬂ'le:"m +2'uleé-f +2’3g:nm +2ﬂ3g;§ s
Tgs = 28 um + 2Hr8z + AyCpum + 21585 (3.142)

verecekleri dikkate almnir ve bagmtilarda yer alan sekil deZistirme tansorlerine ait

degerler i¢in (3.66) ve (3.67) ifadelerine bagvurulursa, (3.142)’den
u' v au' av'
o =2 — 422, —+ (4, + 24—+, + 20, )—
O 4 £ 3§ (Z’I 'ul)df ( 3 ,Us)dé:

u' v du’' av’
=24, —+ 24, —+ (A, + 24 )—+(4, + 24, )— 3.143
T s 4 ¢ 2 £ ( 4 ﬂ3)a’f ( 2 #Z)d«f ( )
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sonuglar elde edilir. Burada gegen ' ve v' yerine 6nce (3.139) ve daha sonra da

(3.140) ¢6ziimleri yerlestirilerek asagidaki ifadelere ulagilir:
5.5'/; = C5(3/11 + 2/11)"' ¢, (3}“3 + 2/‘3) >

g = Cs(34, +2,)+C, (34, +24,) ,

=, 4
Ofg = —?(C&ul +Cs,U3) s

=, 4
e =_Eg'(C6,us "‘Cs/‘z) : (3.144)

Bu hesaplar sonucunda, (3.137) sintr sartlar1 ve (3.141) bagmtilar1 yardimiyla
Cs(3A, +644)+C, (B34, +611)=1,
Cs(34, +61,)+C,(34, +6u,)=1 (3.145)

denklemleri ve bunlarin ¢6ziimiiyle de C, ve C, integrasyon sabitleri igin

C. = 12_13"‘2(/“2"#3)
’ 3[(/11 +2ﬂ1)('12+2/‘2)_(}'3"'2/‘3)(/14"'2/—‘3)] ’

A=A+ 2(/11 "/‘3)
3[(11 +24 Xﬂz + 2/»‘2)_ (/13 +24, )(;L4 +24, )]

(3.146)

C, =

degerleri elde edilir.

Béylece (3.139) ve (3.140) ile verilen ve izotermal hale ait olan tiim #’ , ¥’ , i’

9 2

¥' yer degistirmeleri belirlenmis olmaktadir. Bu durumda karigim bilesenleriﬁde
& =R bolgesinin i¢i ve digt i¢in meydana gelen genlesmeler, (3.43) bagintisi
yardimiyla, (3.139) ve (3.140) ifadelerinden agagidaki gekilde elde edilir:

-— -—t 1 d -t — <! 1 d o!

k(¢ R)=V - =?d_§(§2u )=3C,, TER)=V-V =?E(§2v )=3c,,

k(& R)=V-T =—1~di(§zﬁ')= 0, TER)=V-¥="L L

3')=0. (3.147
£ dz Fag® )0 G140
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Iki ayn bolge icin hesaplanan bagmntilar1 Heaviside fonksiyonu yardimiyla tek bir
ifade altinda vermek miimkiindiir:

k=KHR-&)+KH(E-R), n=7HR-E+7HE-R) .
Buna gore karigim bilegenlerine ait genlesme fonksiyonlar:
k(& R)=3C;H(R-¢), 1§, R)=3C,H(R-¢) (3.148)

seklindedir. Yer degistirmeleri verecek olan (3.133) ve (3.134) bagmtilarinda
yerlerine koymak tizere y,x(&, R)+y,n(€,R) biylikligi teskil edilir ve bulunan
ifadede «, =0 i¢in (2.20), (2.23) ve (2.26) kullanilirsa

(K4 +D, "K_Ds))’l +(Kl + D, _K_D2)72
(k, + D, XK, + D,)- (K + D, XK + D,)

1K (G, R) +7,1(8, R) = H(R-¢)

(3.149)

esitligi ve bu esitligin (3.133) ve (3.134) bagintilarinda kullanilmasi neticesinde

_ » W 4 2

B s lg’g(;ﬁg)_((’f(: 52))’(;(+ o[ FOH®R-88dE, G150
, y 45 WV 4

W= é’i;’i )g)_(é“: 1;2))y(‘K+ ) - [ron®-o5a @15y

seklinde yer degistirme vektorleri elde edilir. Integrallerin katsayilar1 (3.9) ve (3.10)
tanimlariyla karsilastirildiginda birinci integrale ait katsaymin s, e ikincisinin ise s,
ye esit oldugu goriilmektedir. Ayrica integraller igerisindeki Heaviside fonksiyonlari
ist smirin R olarak degistirilmesini gerektirir. Bu durumda 7'(¢) seklindeki bir
sicaklik alaninin tesiri altindaki iki elastik katidan olugan bir karigimda bilesenlerde
meydana gelen yer degistirmeleri ifade eden bagintilar Maysel formiilii yardimiyla
agagidaki sekilde elde edilmis olur:

R R
uR)=25 [T@FdE,  wR)="% [T . 3152)
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Ozel olarak sicaklik alani (3.36)’daki gibi T(&) =T (£)H(a—¢&) seklinde segilirse;
R R
uB) =5 [TOOH@-EEAE , R =% [TV OH (-5
0 0

olur ve R ye gore iki durum ortaya ¢ikar:

1) 0< R <a igin
i _5 R i 2 ig _5 i i 2
u(R) =2 ()IT( ©xs, VOm®=% OIT‘ (EEE,  (3.153)
2) a< R <o igin
@) py = SU [rlie) (g2 @) py— 52 Trte ( re2
u (R)_R2 ojT (EXE2dE , V(R) = ojT (EXEdE . (3.154)

(3.153) ve (3.154)’te R<a ve R>a igin ayn ayn verilen yer degistirme alanlar
tiim karisim bolgesi i¢in Heaviside fonksiyonu yardimiyla

u(R) = % [T )e%dg |H(a-R)+ 7‘;‘7 [r® @& ds |H(R-a),  (3.155)

r R 7] I~ a T

W(R) = % [T E)¢de |H(a-R) + %jT"‘”(g)gzdg HR-a)  (3.156)
Lo i L% o A

seklinde birlegtirilebilir. Bu sonuglarin ise C, =C, =0 olmas1 halinde (3.101) ile
ayni olduklar1 goriilmektedir. Gergekten de, Maysel formiilii &, 6n gerilmesinin sifir
oldugu durum igin gegerli- olduguna gore, (2.20) ve (2.23)’lm o, =0 igin
verdikleriyle (3.9) ve (3.10)’a gidilirse

g = }’l(ﬂz‘*zﬂz)_)’z(ﬂ's*‘zﬂs)
1~ s
(ll +2u X’q'z + 2:“2)_()“3 +2u, )(/14 + 2,“3)

5. = }/2(2’1-‘-2#])—}/](2'44-2”3) (3.157)
? (/11 +24, )(/12 +2/‘2)_(/13 +2ﬂ3X’14 +21U3)

bagmtilar1 ve bu bagmtilarin (3.78) ve (3.79)’da kullanilmasi neticesinde de

C, = 0 ve C, =0 sonuglar elde edilir.
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4. IZOTERMAL KOSULLAR ALTINDA IKi ELASTIK KATI KARISIMI
ILE ILGILi PAPKOVICH-NEUBER COZUMU VE KELVIN PROBLEMI

Bir 6nceki boliimde sicaklifin tesiriyle olusan degisimler ve bu duruma iligkin
¢oziim tartigilmugti. Bu boliimde ise sicaklik yerine kuvvet tesirinin var olmasi
halinde ¢6ziimiin nasil bulunacag: incelenmektedir. Ilk olarak, (2.24) ve (2.25) ile
verilen yer degistirmelere ait diferansiyel denklemler Helmholtz teoremi yardimiyla
diizenlenmekte ve elastisite teorisinden bilinen Navier denklemlerinin benzerleri elde
edilmektedir. Daha sonra bu denklemler Papkovich-Neuber metodu kullanilarak
¢oziilmekte ve bulunan ¢oziimden tekil bir kuvvetin etkisinin incelendigi Kelvin

probleminde yararlanilmaktadir.

Sicaklik alaninin bulunmadig: ve kiitle kuvvetlerinin ihmal edildigi durumda (2.24)
ve (2.25) diferansiyel denklemleri

K, Vu+KV?v+DV(V-u)+D,V(V-v)=0, @.1)
KV?u+K,V?v+D,V(V-u)+DV(V-v)=0 (4.2)

seklini alirlar. (2.14) ile tamimlanan gekil degistirme tansorleri i¢in
2e=Vu+(Vu), 2g=Vv+(W), V.u=e,, V-v=g, 4.3)

gosterimleri kullanilirsa, A, =0 igin (2.9), (2.10) ve (2.17) biinye bagmntilarinin
tansorel formlar agagidaki sekilde yazilabilir:

o =-a, 1+ ,(V-u)l + 4, [Vu +(Vu) ]+ A (V- + p, [Vv + (Vv)T] , (4.4)

t =@ ]+ 4,V -+ [V + (W) [+ 4,V w4 [vu+ (vu) |, @45

7#=POyv.v)+ P22y ) | (4.6)
P p
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4.1 Genellestirilmis Navier Denklemleri

Iki elastik katidan olusan bir karigim igin yer degistirme probleminin temel
denklemleri olan (4.1) ve (4.2) diferansiyel denklemlerini de saglayacak olan bir
bagka formun bulunmasinda Helmholtz teoreminden faydalanilabilir. Bu teoreme
gore, basit bagimli bir Q bolgesinde kendisi ve tiirevi siirekli olan ve sonsuzda sifir

degerini alan herhangi bir f(x) vekt6ér alam bir solenoidal ve bir irrotasyonel

vektoriin toplami olarak ifade edilebilir.
fx)=f(x)+f, (x). “.7
Solenoidal ve irrotasyonel vektor alanlari
V£ (x)=0, Vxf (x)=0 (4.8)

seklinde tanmimlanir ve ¢ bir skaler potansiyel fonksiyonu ve y bir vektorel

potansiyel fonksiyonu gostermek lizere
f=Vxy, f =V¢ 4.9)

ir

bagmtilar1 yazilabilir.
Yer degistirme vektorleri igin de Helmholtz teoremi geregince
u=u,+u,, V=V +V, , (4.10)
V-u, =0, Vxu, =0, V.v,=0, Vxv, =0 (4.11)
tanimlar yapilir ve (4.11) dikkate alinarak (4.10) ifadeleri ile (4.1)’e gidilirse
KV(u, +u,)+ KV (v, +v,)+DV(V-u, )+ D,V(V-v, )=0
elde edilir. Ilk iki terim
VW =V(V-W)-Vx(Vx W) (4.12)
vektorel 6zdesligi uyarinca yeniden diizenlenerek

V{V-[(k, + D), +(K+ D, v, }-Vx[Vx(Ku, +Kv,)]=0
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denklemi bulunur. Son denklemin iki kisumda ele alinmasi ve
V{V : [(Kl + Dl)uir +(K + DZ)vir]} =0,
Vx[Vx(Ku, +Kv,)]=0 (4.13)

seklinde yazilmasi miimkiindiir [39]. (4.13) esitlikleri ayn1 zamanda, (4.11) tanumlar
dikkate alinarak, (4.12) 6zdesligi yardimiyla

V?[(K, + D))Ju, +(K+ D, v, ]=0, (4.14)
V3(Ku, +Kv,)=0 (4.15)

seklinde de ifade edilebilir. (4.10)’dan (4.13)’e kadar olan iglemleri (4.2) vektorel
denklemi igin tekrarlamak yerine (4.1) ve (4.2) arasindaki benzegim kullanilirsa

kolayca agagidaki denklemlere ulagilir:
V2[(K + D, )u;, +(K, + D, v, =0, (4.16)
V*(Ku, + K,v,)=0 . 4.17)

Burada (2.26) ile verilen D, =D; esitligi kullamlmistir. Bulunan diferansiyel
denklemler (4.14), (4.16) ve (4.15), (4.17) seklinde gruplandirilarak ele alinirsa

(K, + D,)V?*u, +(K+D,)V?v, =0,

(K +D,)V*u, +(K, +D,)V?v, =0, (4.18)
K\ Vu, +KVv, =0,
KVu, +K,Vv, =0 4.19)

denklem sistemleri elde edilir. (3.103) ile verilen kisitlamalara uygun olarak her iki

denklem sisteminin katsayilar determinanti sifirdan farkli kabul edilirse

Viu, =0, V?v,=0, V?’u, =0, Vv, =0 (4.20)
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ifadelerine varlir. Bu sonug u,,v,,u; vev, biyiikliiklerinin harmonik vektorler

olduklarim1 géstermektedir. U ve V ile gosterilen iki vektorel biiyiikliik i¢in
U=(K+K,)Vu+(D, +D,)V(V-u), 4.21)
V=(K+K,)V*v+(D, +D,)V(V-v) (4.22)
tanimlari yapilmis olsun. Bu durumda (4.1) ve (4.2) denklemlerinin toplamlari
U+V=0 (4.23)
seklinde yazilabilir. (4.10) esitlikleri ile (4.21) ve (4.22)’ye gidilirse
U=V[(K+K,+D,+D,)u, +(K+K)u,], (4.24)
V=V}[(K+K,+D,+D,)v, +(K+K,)v,] (4.25)

elde edilir. Burada, (4.9) bagmntilarma gore, f, =V¢ olarak yazilabilecegi
distiniilerek V(V-f, )=V?*(V¢)= V£, islemi yapilmstir. (4.20) ifadeleri dikkate
alindigs takdirde (4.24) ve (4.25)’in

U=0, V=0 (4.26)

oldugu ve bu nedenle de (4.21) ve (4.22)’den
(K+ K, )V*u+(D, + D,)V(V-u)=0, 4.27)
(K+K )Vv+(D, +D)V(V-v)=0 (4.28)

yazilabilecegi goriiliir. Boylece her iki bilesenin yer degistirme vektorlerini iceren
(4.1) ve (4.2) diferansiyel denklemlerinden yer degistirme vektérlerini ayri ayn

yoneten iki adet Navier formunda denkleme ge¢ilmis olmaktadir.
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4.2 Papkovich-Neuber Metoduyla Céziim

Navier denklemlerinin bir ¢oziimiinii verebilmek amaciyla Papkovich ve Neuber
tarafindan ayr1 ayr1 gelistirilmis olan metot temel olarak Helmholtz teoremine
dayanmaktadir. (4.24) ve (4.25) ifadelerindeki parantez i¢i terimler i¢in asafidaki

tanimlar yapilmis olsun:
@ =(K+K,+D, +D,u, +(K+K ), ,
®,=(K+K,+D,+D, v, +(K+K,)v, . (4.29)
Bu durumda (4.26)’ya gore
Vi, =0, V®@,=0 (4.30)
olacagindan @, ve @, nin de harmonik vektorler olduklari anlagilir.

Yer degistirme vektorleri igin bir ¢6ziim formu verebilmek amaciyla énce @, ve @,
vektorlerine diverjans islemi uygulanir ve ardindan (4.11) bagintilar1 kullanilirsa
V-® =(K+K,+D +D,)V-u, ,
V-®,=(K+K,+D,+D,V-v, 4.31)
elde edilir. (4.9) bagmntilarina gore u,, ve v, igin
u, =Vg , v,.=Vg, 4.32)

yazilabileceginden (4.31) esitliklerini

1
Vi = V-®& ,
é (K+K,+D,+D,) !
1
Vg, = V-® 4.33
¢, (K+K,+D,+D,) 2 (4.33)

seklinde diizenlemek miimkiindiir. Bu esitlikleri saglayan ¢, ve ¢, ¢6ziimleri ise, R

yer vektoriinti gostermek {izere,
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1
" 2(K+K,+D, +D,)

¢1 (¢01 +®P, 'R) ?

1
" 2AK+K,+D,+D,)

¢z (¢oz +D, - R) (4.34)

bagmtilariyla verilebilir [39]. Burada ¢, ve ¢, keyfi harmonik fonksiyonlardir.

Coziimiin bu gekilde verilebilecegini gostermek amaciyla (4.34)’in ilkine V2

operatorii uygulanir
V24 = 1 [V2¢01 + V2 (w, - R)]
2(K + K, + D, +D,)
ve
V3 (W-R)=2V-W+R.V*W (4.35)
ozdesligi kullanilirsa
1

Vg, )[v2¢0l +2V-®, +R V2@, ]

“2K+K,+D, + D,

ifadesi bulunur. ¢, in keyfi bir harmonik fonksiyon olarak tanimlandiina ve @, in
(4.30)’dan goriilecegi iizere harmonik bir vektér olduguna dikkat edilirse (4.33)’teki

ilk denkleme varilmig olur.

(4.29) bagintilarinin verecegi

S T _(K+K,+D,+D2)u‘
* (k+K) ! (k+K,) o
v, = 1 ¢z_(1<+1<4 +D2+D4)vir 4.36)
(k+K,) (k+k,)
ifadeleri ile (4.10)’a gidilirse
1 (Dl +D2) 1 (Dz +D4)

s v

k) KAk “&K+k) P (K+K,) "
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elde edilir. u,, ve v, yerine (4.32) ifadeleri geregince (4.34)’lin gradyanlan

ir

kullanilirsa bilegenlere ait yer degistirme vektorleri igin agagidaki sonuglara ulagilir:

D
u=B, - D, +D, V(B,, +B, -R), 4.37)
2(K+K, + D, +D,)
D
veB,-——22*Ds __gp g .R). 4.38)
2(K+K,+D,+D,)
Burada
1 1 1 1
B=——® , B,= D, , By =——— ’ By, =
1 K+K| 1 2 K+K4 2 01 K+K| ¢01 02 K+K4 ¢02

tanimlar1 yapilmugtir. Bu tanimlara gére B, , B, , B, ve B,, biiyiikliiklerinin de

harmonik vektérel ve harmonik skaler fonksiyonlar olduklar1 goriilmektedir.
V’B,=0, V’B,=0, V’B,=0, V?B,=0. (4.39)

Bulunan yer degistirme vektorlerinin (4.1) ve (4.2) denklemler sistemi igin bir ¢6ziim

olup olmadigim kontrol etmek amaciyla

_ D, +D, Be— D, +D,
2AK+K,+D,+D,)’ 2(K+K,+D,+D,)

(4.40)

tanimlarini kullanarak (4.37) ve (4.38) ile (4.1) ve (4.2)’ye gidilir ve (4.39) dikkate

alinarak iglemler yapilirsa
A(K, + D,)V*(B, -R)+ B(K + D,)V*(B, -R)+ D,(V-B,)+ D,(V-B,) =0,
A(K +D,V*(B, -R)+ B(K, + D,)V*(B, -R)+ D,(V-B,)+ D,(V-B,)=0

elde edilir. Bulunan bu ifadelerde (4.35) 6zdesligine gore agilim yapilarak elde

edilen
[24(X, + D))+ D,JV-B,)+[2B(K + D,)+ D,V-B,)=0,

[24(X + D,)+ D,}V-B,)+[2B(K, +D,)+ D,JV-B,)=0 (4.41)
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denklem sisteminin katsayilar determinanti hesaplanirsa

24(K,+D,)+D, 2B(K+D,)+D,

0 (4.42)
24(K + D,)+D, 2B(K,+D,)+D,

oldugu goriiliir. Boylece, V-B, #0 ve V-B, #0 olduguna gére, (4.37) ve (4.38)
yer degistirme vektorlerinin (4.1) ve (4.2) sistemi igin bir ¢dziim oldugu ispatlanmis

olur.

Sonug olarak, iki lineer elastik katidan olusan bir karigimin yer degistirme problemi
icin genel bir ¢6ziim Papkovich-Neuber metodu yardimiyla harmonik vektorler ve

harmonik fonksiyonlar cinsinden (4.37) ve (4.38) bagmntilartyla verilmis olmaktadir.

4.3 Kelvin Problemi i¢in Uygulama

Sonsuz bir karigim igerisinde bir O noktasina Sekil 4.1°de goriildiigii gibi sabit bir P
tekil yiikii etkiyor olsun.

Sekil 4.1 Kelvin Problemi

Bu durumda O noktasim gevreleyen keyfi bir hacimsel eleman igin bilesenlere ait

denge denklemleri

P,=-[t"ds, P,=- [t,"as
S s

M, = [Rxt,"dS=0, M, = [Rxt,”dS=0 (4.43)
N N
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seklinde yazilabilir. Burada t,”” ve t,” normal dogrultusu n olan yiizeye etkiyen
gerilme vektorlerini, R yer vektoriinli, P, ve P, birinci ve ikinci elastik kati cismin

tagidiklar: tekil yiik miktarlarini temsil etmektedir.

P nin P, ve P, nin toplamina esit oldugu ve ayn1 zamanda P,, P, vektrlerinin
birbirlerine paralel ve ayni yonde olduklari diigiiniiliirse, A pozitif bir sabit olmak

lizere,
P=P +P,, P, =AP, (4.44)
bagintilar1 yazilabilir.

Kiitle kuvvetinin olmamas: halinde Papkovich-Neuber ¢6ziim metodunda yer
degistirme vektoriinii belirleyen dort fonksiyondan (B, ve B, i¢in iiger, B, ve B,
icin birer) keyfl olarak segilen bir tanesinin sifira esit kilinmasi ve bu sekilde bir

¢6ziimiin aranmas1 miimkiindiir [39, 40]. Bu sebeple, f(R) harmonik bir fonksiyon

olmak iizere, problemin

B,=P,f, B;=0, B,=P,f, B,=0 (4.45)

seklinde bir ¢ozlimii aranmaktadir.

Iki elastik kati karmigimi icin yer degistirme vektorleri (4.37), (4.38) ve (4.40)

bagmtilarina gére
u=B, +4V(B, +B,-R),
v=B, +BV(B,, +B, -R) (4.46)
seklindedir. (4.45) kabulleri sonucunda bu ifadelerden
u=[4+1)Bf + AR P, Vf],
v=[B +1)Bf +BR B )V/] (4.47)

elde edilir. Burada, P, ve P, nin sabit vektorler oldugu diisiiniilerek, W sabit bir

vektorii temsil etmek iizere
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VR -Wf)=Wf+(R-W)Vf (4.48)

agilimi kullanilmistir. Yer degistirmeler O noktasindaki tekil kuvvetler nedeniyle
olugtuguna gore u ve v vektorlerinin bu noktada tekillik gdstermesi ve R sonsuza

giderken sifira yaklagmasi beklenmektedir. Bu durumda f(R) fonksiyonu igin

harmoniklik sart1 yaninda bu hususlara da dikkat edilerek
a
f(R)= z (4.49)

seklinde bir ¢oziim kabulii yapilabilir. o ileride tespit edilecek olan sabit bir

katsayidir. Kiiresel koordinatlardaki V? ifadesi kullanilarak (4.49)*un

V2f=—1—i(1e29’:)=0
R’ R &R

sonucunu verdigi, yani harmonik bir fonksiyon oldugu kolayca gésterilebilir.

W sabit vektoér olmak iizere hesaplarda gerekli olabilecek bazi islemler agagida

toplu halde verilmektedir:

()R, vD) R R W ARR g,

R R R R R R’

n-v(%)b(“é—?)w : nx[Vx(%)]= (“If)w-(“;v)k , (4.51)

n-V[(W 'BR)R] = (“':N)R+ (W '3R)n— 3(“'RX5W'R)R , (452
R R R R

V.[-(-‘%R)R}z (v‘;sR) , nx{Vx[%R]}= ("é?)w—(“;v)R . (453)

Ayrica, V gibi degisken bir vektorel alanin gradyani ikinci mertebeden bir tansér

ifade edeceginden, VV nin

(A% =%[VV+(VV)T]+%[VV—(VV)T]
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seklinde simetrik ve antisimetrik kisimlara ayrilabilecegi diisiiniiliir ve
n-[(VV) -vV]=nx (¥ xV)
bagintis1 kullantlirsa
n-[VV +(VV) |=20-(VV)+nx(Vx V) (4.54)
vektorel esitligi de yazilabilir.

(4.49) kabuliiyle (4.47) bagintilarina gidilir ve (4.50)’deki ilk esitlik hesaba katilirsa

2

u=a[(A+1)Ii—A(Pl—'3R)R
R R

v=a [(B + 1)% -B (BR;R) Rj (4.55)

elde edilir.

Bilinmeyen «, P, ve P, biiyiikliiklerini belirléyebilmek icin (4.43) ve (4.44)
bagintilarindan yararlanilabilir. (4.43) denge denklemlerinde kullanilmak iizere
normal dogrultusu n olan yiizeydeki gerilme vektorleri (4.4) ve (4.5) bagintilarindan

£ =n-6 = —ayn+ 4 (V-wn+ - [Vu+ (Vu) [+ 4,7 0+ gn-[ov+ (o) ],
€ =n-7=aym + 4,V -v)n+ mn- [y + () [+ 4,7 -wn + gn-[Fu+ (Gu) |
seklinde elde edilir. (4.54) vektorel denklemi uyarinca bu ifadeler aym zamanda
t,” =—a,n+A4,(V-wn+ 20 - Vu+nx(Vxu)]+ 4,(V-v)n
+ 4,20V +nx(Vxv)],
t," =@+ 4, (V-v)n+ 4,20 Vv +nx(Vxv)]+ 4,(V-u)n

+ U, [2n Vu+nx(Vx u)] (4.56)

56



seklinde de yazilabilir. Yer degistirme vektorleri i¢in bulunan (4.55) bagmtilan
(4.56)’da yerlerine konulur ve ardindan (4.50)-(4.53) esitlikleri kullanilirsa

t" =-a,n +%{M, [@-R)P, +(n-P,)R]+M,[n-R)P, +(n-P,)R]+ N,(P, - R)n

(n-R)P, -R)

RZ

(n : R)(Pz 'R)

+N,(P, -Rn+7Y, R+7, R},

t,” =a2n+%{M3[(n-R)Pl +(0-B )R]+ M,[@-R)P, +(0-P,)R]+ N, (P, -R)n

+N,(P,-Rn+7, M—%ZQ)RHQ—(H—'—R%—R—)R} (4.57)

ifadelerine ulagilir. Burada M, ,..., ¥, katsayilar1 i¢in

M, =—pu(1+24), M,=-u(1+2B), M,=-p(+24), M,=-u(1+2B),
Ny=—{4+240 + )], Ny =4 +2B(2; + )],
Ny =-a, +24(4, + )], N, =-4, +2B(4, + 1)),
Y,=6ud, Y,=6uB, Y,=6u,Ad, Y,=6u,B (4.58)

tamimlan yapilmugtir.

O noktasim gevreleyen yilizeyin keyfi degil de R yarigapli bir kiire oldugu kabul

edilirse, n=e, ve R=Reg, olacag i¢in, (4.57) bagmntilarinda yer alan vektorel

islemleri
(»-R)P, =RP,, (n-R)P, =RP, ,

@-P)R=R(, -en)ew » (0-B,)R=R(P,-ep e -

@, R)n=R[, e )er,» (B, -Rn=R(P, ey )eq, »

(n ) RXPI ) R)R = RS(PI “Cw )e(R) ’ (n ) R)(Pz ) R)R = R3(P2 ) )e(R)
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seklinde diizenlemek miimkiin olur ve bu durumda (4.57)’den
t," =-a,n+ %[Ml P, +(M, + N, +V, )(Pl ‘@) )e(R)
+ M, P+ (M, + N, + 1, P, e Jecn ] » (4.59)
t,” =a,n+ %[M3 P, + (M, + N, + T, P, -ex Jen

+ M, P+ (M, + N, + Y, YP, e Jecr | (4.60)

elde edilir. (4.59) bagmtis1 (4.43) denge denklemlerinin ilkine gotiiriiliirse

1 1
P,=a, [nds —aJ'F[M, P, + M,P,]dS —a(M, + N, +Y,)j§2—(P1 € )8y dS
S N N

1
~a(M,+N,+V,) j-liz—(P2 € Jeca, dS 4.61)
N

ifadesi bulunur. ilk integral
andS: [vFay (4.62)
S Vv

diverjans teoremi geregince sifira esit olur ve dS = R’dS*, dS* =sin® d® dO®

tanimlar1 yardimyla ikinci integral

2rn

[P, + M, P,)dS" = (M,P, + M,P,) [ [sin®dDd® = 4z(M, P, + M,P;) (4.63)
S 00
sonucunu verir. dS* m tamimina dikkat edilirse bunun aslhinda yarigap: birim

uzunlukta olan bir kiirenin yiizey elemanini temsil ettifi goriilmektedir. Bu durumda

e =R dir. Aym1 zamanda n = e, olduguna gére ligiincii integral igin
I(P, ‘€ )e(R)dS' = I(Pl R)nds*
s s

esitligi yazilabilir. Esitligin sag tarafina (4.62) diverjans teoremi uygulanir
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[, -R)nds* = [v(p, -R)av"

s
ve (4.48) 6zdesligi kullanularak V(P, -R)=P, olacagma dikkat edilirse

[, e Jegryds® =P, [av" = -‘13’511 (4.64)
N 14

elde edilir. Burada dV* birim yarigapli kiire igin hacim elemanini temsil etmektedir.
Ayn diigiinceler altinda dordiincii integralin de

[P, sy Jegryds” =P, [av* = %”P, (4.65)
4

N

olacag goriiliir. (4.63)-(4.65) sonuglariyla (4.61) denklemine gidilirse
P, = —a%”[(uu, +N, +Y))P, +(4M, + N, + 1,)P, ] (4.66)

sonucuna ulagilir. Ayn1 islemler (4.60) bagintis1 ve (4.43)’teki ikinci denge denklemi
i¢in tekrarlandig1 takdirde

P, = —ozf;f[@M3 +N,+Y,)P, +(4M, + N, +7,)P,] (4.67)
bulunur.
4 4r
k,=—T(4M,+N,+Yl), k2=——3—(4M2+N2+Y2),
4 4
k, =—?(4M3 +N,+1,), k, =—T(4M4 +N,+7Y,) (4.68)
tanimlar1 kullanilarak (4.66) ve (4.67)
ak 1-ak
P=—210p, P, = ip 4.69
1 1_ akl 2 1 ak3 2 ( )

seklinde ifade edilebilir ve buradan bilinmeyen « sabiti i¢in
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o (k,key — kyke, )+ alk, +k,)-1=0 (4.70)

denklemi elde edilir. Bilinmeyen P, ve P, vektorleri ise (4.44) ve (4.69)
bagintilarindan

ak, l-ak,

Pp=——F—=—P, P=———"—P 4.
! 1+a(k2-k,) 2 1+a(k2—kl) (4.71)

seklinde bulunur. Boylece iki elastik kat: karnigimi igin Kelvin problemine ait
bilinmeyen «, P; ve P, biiyiikliikleri belirlenmis olmaktadir. Bu durumda
bilegenlere ait yer degistirme vektorleri bu bagmtilar yardimiyla (4.55)’ten asagidaki
sekilde elde edilir:

u=p -(A+l)%—A~(—P'—R)R_ :

R
v=4, _(B +1)£—B MR— (4.72)
2L R R ] '
Burada £, ve 3,
_ d'k, B a(l-ak,)
A Cl+alk, —k)’ % Cl+alk, - k) (4.73)

ifadelerini temsil etmektedir. Bu hesaplara gore tekil kuvvetler arasinda
aP, =4P, aP, =p4,P (4.74)
esitlikleri de yazilabilir.

Koordinat takiminin birim vektérleri m ile gosterildigi takdirde gerilme tansérlerinin
bilesenleri

o,=t"m, z,=t,""m 4.75)

bagntilar1 yardimiyla bulunabilir. Buna gore (4.57), (4.74) ve (4.75)ten kismi

gerilme tansorleri igin
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O =-an-m+—{(BM, + f,3, )@ R)P m + (a-P)R -]
+(ﬂ1N1 +,32N2)(P~R)n-m+(ﬂlYl +ﬂ2Y2)(n—.RI%(2£.—19R'm} ,  (4.76)

7T o =azn-m+%-{(,B,M3 +,B2M4)[(n-R)P-m+(n-P)R~m]

(B Ao Yo Rnom+ (5 + 47 ) R Rl (a7

ifadeleri elde edilir.

Difiizyon kuvveti vektoriinii belirlemek amaciyla (4.72) yer degistirme vektorleriyle

(4.6)’ya gidilirse, (4.50)-(4.53) bagmtilarinin yardimiyla

# =-’%[P—§(P—'§£] (4.78)
R R

bulunur. Burada k& biiyiikliigii

ks =—%L62(1+2A)ﬂ1 +5,1+2B)8,] (4.79)
seklinde tamimlanmustir.

Boylece yer degistirme vektorleri, gerilme tansérleri ve difiizyon kuvveti vektorii P
tekil kuvveti cinsinden verilmis olmaktadir. P kuvveti Sekil 4.1°de gosterildigi gibi
kabul edildigi takdirde

P = P(-cos®e, +sinde,) (4.80)
yazilabilir. R = Re, olduguna gore (4.72) baZmtilarmdan yer degistirme
vektorlerinin bilegenleri i¢in

B, Pcos® B, (4 +1)Psin®
Up =——T— s Uy = R s Ug =

__PyPeos® _B:(B+1)Psin®

v = Vo ;" . Ve =0 (4.81)
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degerleri elde edilir.

Gerilme tansorlerinin bilesenleri, (4.76) ve (4.77)’den agagidaki sekilde bulunur:

n=e, veswrasiyla m=e, , m=ey , m=eg i¢in;

Pcos®
Opg =—Q4 "[ﬂx(ZMl + N, +Y;)+ﬂz(2M2 +N, +Y2)]_0T02s__ )

Psin®
O-Rq):(ﬂlMl-'-ﬂzMZ)T’ Ore =0,

Pcosd
R2

Tpg =@y —[ﬂl(ZMS + N, +Y3)+ﬂ2(2M4 +N, +Y4)]

9

Psin®
T ro =(ﬂiM3+ﬂzM4)—R§— > T re

i
[

n=eq, vesrasiyla m=egy , m=eq, , m=e¢q, igin;

)Pcos<D
2 R2

Oor =Oro » O'mz"az_(ﬂlNl"‘ﬁzN > Ceo =0,

' Pcos®d
Tor =Tre » ”cbcb=az_(ﬂ1N3+ﬂ2N4) R oo =0 .
n=eg ve sirastyla m=eg, , m =€) » I =€y, igin;
Oor =000 =0, Coo =0e0 >
Tor =ge =0, oo =Moo -

Diflizyon kuvveti vektorii bilegenleri ise (4.78) ve (4.80)’den

_ 2Pk cos® T = Pkysin®

Y s " ' R 7y =0

Zr

olarak elde edilir.
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Ornek olarak, a, =1 (Pa) alinarak (3.104)’te verilmis olan malzeme sabitleri
kullanilirsa (4.70) denkleminden « sabiti igin

a=193x107", a=881x107"

degerleri bulunur. (4.44) ve (4.69) bagntilarina gére P, ve P, arasindaki iligkiyi

veren

_ ak, l-ak,
l-ak, ak

(4.88)

bityiikliigii bu o degerleri igin sirasiyla
A=0443 , A=-2297

sonuglarimi vermektedir. ikinci sonug, fiziksel olarak kabul edilemez olan, P, ve P,
nin yo6nlerinin birbirlerine ters olmalart anlamina geleceginden terk edilerek o igin
¢oziim olarak 1.93x107"* degeri kullanilmaktadir. Bu durumda yer degistirme
vektorii, gerilme tansorii ve diflizyon kuvveti vektorii bilegenleri i¢in asagidaki
grafikler elde edilir:

Sekil 4.3 Yer Degistirme Vektorlerinin #, ve v, Bilesenlerinin Degigimleri
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R(m)

Sekil 4.7 Difiizyon Kuvveti Vektorii Bilegenlerinin Degisimleri
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5. SONUCLAR VE TARTISMA

Karigim birden fazla malzemenin bir araya gelmesiyle olusan bir yapidir. Karigim
bilesenleri tek baglarina iken kendilerine 6zgii malzeme &zellikleri ve davranig
bigimlerine sahip olmalarina ragmen, bir araya geldiklerinde bunlardan etkilenmis
fakat daha farkli cevap veren yeni bir ortami olusturmaktadirlar. Bu ortamda dig
kuvvetler bilesenler tarafindan ortaklaga taginmakta, fakat bilesenlerin karigim
icerisindeki yer degistirmeleri birbirlerinden farkli olmaktadir. Ancak digamidan
bakan bir gbzlemcinin gorecegi sey ortamin bir tekil malzeme gibi degigsimlere
ugradiidir. Gergekten de, karigima &zellikleri kendini olusturanlarinkinden farkh bir
iiclincii tekil malzeme géziiyle bakmak miimkiindiir. O halde, bunun tersi olarak,
tekil malzemeleri de karigimlar teorisi agisindan yeniden ele almak s6z konusu
olabilir. Eger karisima ait malzeme sabitlerinin deneysel olarak bulunmasi miimkiin
olursa, bu durumda, tekil malzemelerin davranislarina bir bagka a¢idan bakmak ve

onlar1 daha hassas olarak tayin etmek imkéani1 da dogacaktir.

Iki elastik kat1 karigimuna iligkin lineer biinye denklemleri incelendiginde bilesenlerin
birbirlerine olan tesirleri sebebiyle denklemlerin diger bilegene ait biiyiikliikleri de
icerdigi goriilmektedir. Kanimn tiimiine ait gerilme tansérii o, +7, seklinde
verildigine gore ([2]), iki elastik kat1 karigimi igin

Oy +7y = ('11 +l4)emm51k +(’12 +ﬂ',3)gmm61k ‘*‘2(!‘1 +:u3)eik
"'2(”2 +/‘3)gik "(71 +72)T5ik (5.1)

biinye bagintis1 gegerlidir. Bu bagnti, izotropik bir elastik cismin lineer biinye

denklemi olarak bilinen
tﬂr = Mmmdik +2/"£ik —}/T61k

ifadesi gz Oniine alindifinda, iki adet tekil malzemenin biinye denklemlerinin

toplamina gekilsel olarak benzerlik arz etmektedir.
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Bir diger husus da, (5.1)’den goriilecegi iizere, tiim karigim igin herhangi bir 6n
gerilme s6z konusu olmamasina ragmen bilesenler agisindan olaya bakildiginda «,
ile temsil edilen bir 6n gerilmenin var olabilecegidir. Diftizyon kuvveti vektorii
statik halde a, biyiikliiiiyle dogru orantilidir. Bu nedenle diftizyon direncinin

bilesen pargaciklarinin normal konumlarina ulagmalarin1 engelledigi ve bu durumun

da bilegenler arasinda bir 6n gerilmeye sebep oldugu sonucu ortaya ¢ikmaktadir.

Caligmada difiizyon kuvvetinin de degigimini inceleyebilmek amaciyla rnek olarak
a, =1 kabulii yapilmustir. o, nin bagka degerleri i¢in yer degistirmelerde meydana
gelen farkliliklar ise Tablo 5.1’de verilmektedir. Tabloya gére yer degistirmeleri u
vektoriiyle temsil edilen birinci elastik kat1 bilegene ait sonuglarda «, nin pozitif
degerlerinde hem sicaklik hem de Kelvin problemleri igin artma, buna kargilik, yer
degistirmeleri v vektoriiyle temsil edilen ikinci kati bilesene ait sonuglarda ise
azalma goriilmektedir. Karisum bilesenlerinin biinye denklemlerine dikkat edilecek
olursa a, nin pozitif oldugu durum igin 6n gerilme birinci bilesene basma ikinci
bilesene ise gekme seklinde tesir etmektedir. Bu sebeple sicaklik veya kuvvet tesiri
g6z Oniine alinan noktalarda birinci bilesenin ikinci bilegene nazaran daha fazla yer
degistirmesine neden olmaktadir. &, nin negatif olmasi durumunda ise birinci
bilesen ¢ekme ikinci bilegen basma etkisine maruz kalmakta ve dig tesirler sebebiyle
sekil degisimi Oncekilere ters olarak gergeklesmektedir. On gerilmenin sekil
degistirme iizerinde etkisinin F10° degerinden itibaren hissedilmesi ise yer
degistirmeleri yOneten diferansiyel denklemlerde etkili olan D,,..., D,

katsayilarindaki a, 1li terimlerin etkisinin digerlerine nazaran az olmasmndan

kaynaklanmaktadir.

Sicaklik tesirinin incelendigi Boliim 3’ te yer degistirme vektorlerinin her ikisini de
iceren diferansiyel denklem takimindan potansiyel fonksiyonlar yardimiyla her bir
bilesene ait denklemler tesis edilmigtir. Elde edilen yeni denklemlerin, tekil bir
malzeme igin verilenle bi¢imsel olarak aymi olmakla birlikte, her iki karigim
bileseninin de etkisini igerdigi goriilmektedir. Ayrica, simir gartlar1 i¢in yapilan
hesaplar yardimiyla 1sitilmig bélgeyi ¢evreleyen yiizeyi gegerken yer degistirmelerin
ve yiizeye dik gerilme bilegenlerinin siirekli olmasi1 gerektigi gésterilmigtir.
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Tablo 5.1 @, nin Yer Degistirmeler Uzerindeki Etkisi

Sicaklik Problemi Kelvin Problemi
(R=0.05m) (R=10"m, ®=7zrad)
2, u(R) v(R) [ul/P [vl/P
-10™ 8.039x10” 5.742x10” 5.838x10™ 1.342x107
-10° 8.257x107 5.457x10” 5.912x10° 1.338x107
-10’ 8.280x10~ 5.428x10” 5.921x10° 1.337x10°7
0 8.280x107 5.427x10” 5.921x107 1.337x107
10 8.280x10” 5.427x107 5.922x10° 1.337x107
10° 8.302x10” 5.398x10” 5.931x10° 1.337x107
10" 8.490x107 5.153x10” 6.026x10° 1.331x107

Bir uygulama olarak sicaklik alami kiiresel, sicaklik ise T®(R)=T, =100 (°K)
olarak alinmistir. Cizilen grafiklerde yer degistirme vektorlerinin ve ylizeye dik o,
ve 7, gerilme bilesenlerinin R =a konumu igin Ongoriilen siireklilik sartini
gergekledikleri ve aymi konumda Ggg =04q Ve 7o =74, gerilme bilesenlerinin
ise yapilan teorik hesaplara uygun olarak sirastyla, 2.173x10® (Pa) ve 3.537x10® (Pa)

degerlerinde sigramalara maruz kaldiklar1 goriilmiigtiir.

Béliim 3’ te ayn1 zamanda tekil bir elastik malzeme igin verilmis olan Betti kargitlik
teoreminin iki lineer elastik malzeme i¢in genel bir hali aragtiridmugtir. Yapilan
hesaplar neticesinde bu tiir bir ortam igin gegerli bir teorik yapmin on gerilmeyi
temsil eden a, sabitinin sifir oldugu durumda verilebilecegi sonucuna ulagilmugtir.
Bu ise, Betti karsitlik teoreminin karigim bilesenlerine ait pargaciklarin dogal
konumlarmna ulagabildikleri ve dolayisiyla da difiizyon kuvvetinin var olmadigi bir
statik hal kabulii altinda kullanilabilecedi anlamina gelmektedir. Bu bsliimde yapilan
hesaplara ek olarak iki elastik kat1 karigimina iligkin Maysel formiilii kiiresel sicaklik
alam problemine uygulanmig ve sonuglar genel ¢oziimle kargilagtirilmgtir.

Karsilagtirma sonucunda, a, =0 durumunda genel ¢o6ziimdeki integrasyon
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sabitlerinin sifira egit olmasi nedeniyle, her iki ¢oziimiin de aym sonuglar verdigi
gOriilmiigtiir.

Béliim 4’ te iki lineer elastik katidan olusan bir karigimin kuvvet tesiri altindaki yer
degistirmelerini veren bir ¢6ziim metodu ortaya konmustur. Uygulama olarak

karigim uzaymnda bir noktaya tesir eden tekil bir ylikiin etkisinin incelendigi Kelvin

problemi ele alinmig ve problemin harmonik fonksiyonlarn sifir oldugu, harmonik
vektorlerin ise @/R biyiikligiine bagli oldugu bir ¢6ziimii aranmustir. Tekil yiikiin
karigim bilegenleri tarafindan ortaklasa tasindif: diislincesi altinda, her bilesenin
tagidig1 kuvvet P, ve P, ile gosterildiginde, problemin bilinmeyenleri , P, ve P,
seklinde olmaktadir. Her bilegen igin yazilan denge denklemleri ve P =P, +P,
bagintis1 yardimiyla bilinmeyenler ¢oziilmiis ve yapilan hesaplar neticesinde
onceden verilmis olan malzeme sabitlerinin gegerli oldugu bir kansim igin

bilesenlerin

P, =0.307P , P, = 0.693P

seklinde tekil yiikii paylagtiklari sonucuna ulagilmugtir.
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