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ABSTRACT 

 

PRIOR-INFORMED MULTIVARIATE LSTM (PIM-LSTM) 

FOR ECONOMIC TIME SERIES 

 

 

 

Aydemir Aydın, Petek 

Doctor of Philosophy, Statistics 

Supervisor: Prof. Dr. Ceylan Yozgatlıgil 

 

 

March 2025, 103 pages 

 

 

Deep Learning is a subset of machine learning that emphasizes algorithms influenced 

by the human brain, called artificial neural networks. Physics-Informed Neural 

Networks (PINNs) represent a distinct deep learning method that combines the 

strengths of neural networks with the physical principles that dictate particular 

systems. The main goal of this thesis is to enhance the PINNs model for multivariate 

time series by integrating causal relationships and cross-correlations to improve 

overall model performance. For this purpose, we developed a Prior-Informed 

Multivariate Long Short-Term Memory (PIM-LSTM) model. First, its application to 

the New Keynesian and Dividend-Augmented Goodwin-Keen (DAGKM) models is 

demonstrated. Then, the forecast performance of the PIM-LSTM model is compared 

to the LSTM and PINN models. Our findings indicate that the PIM-LSTM model 

demonstrates strong predictive performance on the New Keynesian Model for 

Turkiye and Mexico’s macroeconomic series, achieving lower MAE, RMSE, and 

MASE compared to LSTM and PINNs models. The PIM-LSTM model also 

performs well in the DAGKM model.  Integrating the New Keynesian model for 



 

 

vi 

 

Turkiye and Mexico enhances the analysis by capturing country-specific monetary 

policies and economic dynamics. Similarly, incorporating the DAGKM model 

enhances the analysis by capturing cyclical growth and income distribution. 

 

Keywords: Time series analysis, Forecasting Methods, Deep Learning Algorithms 
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ÖZ 

 

ÖN BİLGİYE DAYALI ÇOK DEĞİŞKENLİ LSTM (PIM-LSTM) İLE 

EKONOMİK ZAMAN SERİLERİ 

 

 

 

Aydemir Aydın, Petek 

Doktora, İstatistik 

Tez Yöneticisi: Prof. Dr. Ceylan Yozgatlıgil 

 

 

Mart 2025, 103 sayfa 

 

 

Derin Öğrenme, yapay sinir ağları olarak adlandırılan insan beyninden etkilenen 

algoritmaları vurgulayan makine öğreniminin bir alt kümesidir. Fizik Bilgilendirmeli 

Sinir Ağları (PINNs), sinir ağlarının güçlü yönlerini belirli sistemleri belirleyen 

fiziksel ilkelerle birleştiren farklı bir derin öğrenme yöntemini temsil eder. Bu tezin 

temel amacı, genel model performansını iyileştirmek için nedensel ilişkileri ve 

çapraz korelasyonları entegre ederek çok değişkenli zaman serileri için PINNs 

modelini geliştirmektir. Bu amaçla, Ön Bilgiye Dayalı Çok Değişkenli Uzun Kısa 

Vadeli Bellek (PIM-LSTM) modeli geliştirilmiştir. İlk olarak, Yeni Keynesyen ve 

Temettü Artırılmış Goodwin-Keen (DAGKM) modellerine uygulanması 

gösterilmiştir. Ardından, PIM-LSTM modelinin tahmin performansı LSTM ve 

PINNs modelleriyle karşılaştırılmıştır. Bulgularımız, PIM-LSTM modelinin Türkiye 

ve Meksika'nın makroekonomik serileri için Yeni Keynesyen Model üzerinde güçlü 

tahmin performansı sergilediğini ve LSTM ve PINN modellerine kıyasla daha düşük 

MAE, RMSE ve MASE elde ettiğini göstermektedir. PIM-LSTM modeli DAGKM 

modelinde de iyi performans göstermektedir. Türkiye ve Meksika için Yeni 
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Keynesyen modelin entegre edilmesi, ülkeye özgü para politikalarını ve ekonomik 

dinamikleri yakalayarak analizi geliştirmektedir. Benzer şekilde, DAGKM 

modelinin dahil edilmesi, konjonktürel büyüme ve gelir dağılımını yakalayarak 

analizi geliştirmektedir. 

 

Anahtar Kelimeler: Çok Değişkenli Zaman Serileri Analizi, Öngörü Metotları, 

Derin Öğrenme Algoritmaları 
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CHAPTER 1  

1 INTRODUCTION  

Since the dawn of humanity, people have wondered about the future and tried to 

predict what will happen. Forecasting has attracted the interest of researchers and 

experts in many fields and has become an important activity in economics, business, 

marketing and various disciplines. This study focuses on forecasting through time 

series analysis. A time series consists of data points gathered at consecutive time 

intervals, which may be equally or unequally spaced. Time series analysis is a 

statistical method used to examine a sequence of data points collected over time, 

aiming to identify patterns, trends, and other characteristics within the data. It plays 

a significant role in understanding the temporal dynamics of the dataset, which can 

then be used to make informed decisions. The primary goal of time series analysis is 

to obtain reasonably accurate forecasts. Time series forecasting entails constructing 

models based on historical data and using these models to predict future 

observations. Time series analysis can be categorized into univariate and 

multivariate analyses. Univariate time series analysis deals with a time-dependent 

variable and focuses on understanding its behavior and making predictions based 

solely on its past values. The traditional univariate models, including Autoregressive 

(AR), Autoregressive Moving Average (ARMA) and Autoregressive Integrated 

Moving Average (ARIMA) introduced by Box and Jenkins [5], and Exponential 

Smoothing introduced by Brown [6], are widely opted for univariate time series 

forecasting (TSF). Multivariate time series analysis involves multiple interrelated 

time-dependent variables, where the relationships and dependencies between these 

variables are also considered. This added complexity requires more sophisticated 

modeling techniques but can provide more accurate and comprehensive forecasts by 

leveraging the interactions between the variables. The vector autoregressive (VAR) 

model proposed by Sims [39] is mostly preferred traditional model for multivariate 
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time series forecasting. It is the multivariate version of the AR model.  In a VAR 

model, each variable is represented as a linear function of its own past values and 

the past values of all other variables. 

VAR models are particularly effective in describing the dynamic behavior of time 

series and producing better forecasts compared to univariate models. However, the 

limitation of this model is that it only works well with stationary series.  The second 

classical multivariate time series forecasting method is the Vector Error Correction 

Model (VECM). It is a cointegrated VAR model. VECM is an advanced statistical 

technique designed to analyze and predict multivariate time series data that exhibit a 

cointegration. Cointegration indicates a long-run association among variables, 

despite short term fluctuations. The VECM is particularly useful in economic and 

financial contexts, where variables often have long-run interrelationships, such as 

interest rates, exchange rates, and prices. Despite VECM offering a comprehensive 

and accurate framework for understanding and forecasting complex time series by 

grasping not only short-term variations but also long-term trends, it has certain 

limitations: it is only effective with difference-stationary series.  

Traditional methods for multivariate time series analysis have been limited since 

real-world time series have undesirable characteristics such as non-stationarity, 

seasonality, irregular fluctuations and cyclical variations. These methods fail to 

capture these undesirable characteristics and need large datasets to accurately capture 

the interrelationship between the variables. They are also sensitive to outliers. Due 

to these limitations, deep learning methods have become the preferred solution. Deep 

learning (DL), a subfield of machine learning, has revolutionized data analysis and 

prediction capability. Deep learning utilizes multilayer artificial neural networks to 

develop algorithms that extract meaningful patterns and features from large data sets. 

It is effectively used in various areas, including natural language processing (NLP), 

image processing, speech recognition, gaming, and autonomous vehicles. 

The main strength of this field is its capacity to handle intricate, high-dimensional 

data. Unlike traditional machine learning algorithms, deep learning models can 
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automatically extract features from data. This reduces the need for manual feature 

engineering and enhances the model’s overall performance. Deep learning models 

employ different types of artificial neural networks, the most widely common of 

which are Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks 

(LSTMs), and Transformers. The success of deep learning is directly tied to the 

presence of large datasets and powerful computational resources. Large datasets 

enable models to make more general and accurate predictions, while powerful 

computational resources speed up the training process of these models. For this 

reason, deep learning is a constantly evolving and expanding field in machine 

learning. As new algorithms and architectures are developed, the application areas of 

deep learning are expanding and providing effective solutions in more industries. As 

part of these advancements, Physics-Informed Neural Networks (PINNs) utilize DL 

techniques to develop more precise and interpretable models of physical systems. 

PINNs incorporate physical laws and differential equations directly into the training 

process of neural networks, ensuring that predictions align with established scientific 

principles while learning from data. By incorporating known deterministic 

relationships between variables into neural networks, PINNs leverage this additional 

information to typically enhance the prediction and forecasting performance of the 

models. PINNs not only learn from data but also make predictions that align with 

physical laws, providing more profound solutions to scientific and engineering 

challenges. This approach also allows PINNs to be applied in complex economic 

models, facilitating more accurate and theoretically consistent modeling of economic 

dynamics.  

Despite the importance of multivariate time series forecasting, the literature lacks 

sufficient models that effectively capture these complex relationships. Most existing 

models either ignore or oversimplify these interactions, creating a significant 

opportunity for advancements in forecasting methodologies that better incorporate 

variable interdependencies. 
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The primary objective of this thesis is to propose a novel Multivariate Physics-

Informed Neural Network (PINN) model for multivariate time series forecasting, 

considering the interdependencies and cross-correlations among variables. The 

proposed model aims to enhance forecasting accuracy by explicitly capturing the 

relationships among multiple variables. Additionally, this model will be applied to 

the New Keynesian model and the Dividend-Augmented Goodwin-Keen model, 

which have not yet been explored with such approaches in the context of economic 

data. The applications of this method to economic data aim to provide new insights 

into forecasting within this theoretical framework. 

The New Keynesian macroeconomic model is a development of Keynesian 

economics, merging microeconomic theory with macroeconomic consequences. It 

underscores the significance of market imperfections, specifically price and wage 

rigidities, in explaining why the economy may not always achieve full employment, 

and how monetary policy can impact output and inflation. It provides a framework 

for analyzing monetary and fiscal policy, illustrating how these policies can stabilize 

the economy by affecting aggregate supply and demand. The fundamental 

assumption of New Keynesian macroeconomic analysis is the rational expectations 

of households and firms. The New Keynesian model includes three core equations: 

the New Keynesian Phillips Curve (NKPC), the dynamic Investment-Savings (IS) 

equation, and Taylor's Rule. Together, these equations depict the behavior of 

inflation, output, and interest rates, offering a comprehensive perspective of 

economic dynamics. The NKPC explains that the expected inflation one period 

ahead and the output gap influence the current inflation. The dynamic IS equation 

states that the current output gap is a function of the expected output gap one period 

ahead, expected inflation, the nominal interest rate, and the natural rate of interest. 

The difference between the output and the potential output is called the output gap. 

The Taylor rule explains how nominal interest rates are determined. According to 

the Taylor rule, nominal interest rates depend on the current inflation rate and the 

output gap. 
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The Dividend-Augmented Goodwin-Keen Model (DAGKM) extends the traditional 

Goodwin-Keen model by incorporating dividend payments into the analysis of 

economic cycles, particularly focusing on the interactions between wage share, 

employment rate, and debt ratio. This enhancement acknowledges that firms invest 

their profits and distribute a portion as dividends to shareholders, influencing debt 

accumulation dynamics. Key components of the DAGKM model are wage share, 

employment rate and debt ratio. The wage share is a fraction of the total output 

allocated to employee compensation. The employment rate is the ratio of employed 

individuals to the total labor force. The debt ratio is the proportion of corporate debt 

relative to total economic output. By integrating dividend payments into the 

Goodwin-Keen framework, the DAGKM Model offers a more comprehensive 

understanding of the interplay between corporate financial policies and 

macroeconomic cycles. This enhancement underscores the importance of 

considering dividend distributions when analyzing the sustainability and stability of 

economic growth patterns. 

This study seeks to leverage Physics-Informed Neural Networks (PINNs) for 

analyzing time series data, aiming to enhance the predictive accuracy and theoretical 

consistency of both the New Keynesian and Dividend-Augmented Goodwin-Keen 

models. In this framework, we propose the Prior-Informed Multivariate LSTM 

(PIM-LSTM), a novel deep learning architecture designed to incorporate prior 

knowledge constraints into multivariate time-series forecasting. The proposed PIM-

LSTM model, inspired by Physics-Informed Neural Networks (PINNs), leverages 

prior knowledge constraints and incorporates cross-correlation function (CCF) 

constraints to improve multivariate time-series forecasting. 

The remaining part of this thesis is organized as follows: Chapter 2 provides a review 

of the literature on PINNs models. Chapter 3 discusses the New Keynesian model, 

the DAGKM model, DL methods, including LSTM and PINNs models and 

architecture of PIM-LSTM model. Chapter 4 provides an empirical analysis utilizing 

the PIM-LSTM model to forecast Turkey's output, inflation, and nominal interest 

rate within the context of the New Keynesian model. It also includes an empirical 
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analysis using the same PIM-LSTM model to forecast Mexico's output, inflation, 

and nominal interest rate under the New Keynesian framework. The PIM-LSTM 

model is also applied to forecast the debt ratio, employment rate and wage share in 

the United States for the DAGKM model. It also includes a comparison of the out-

of-sample performance of all models. Finally, Chapter 5 includes the conclusion and 

further discussion. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In scientific computing, deep neural networks have been explored for solving partial 

differential equations (PDEs) through various methods, including augmented 

Lagrangian deep learning (ALDL) [16], Neural Operators [24, 26], deep Galerkin 

methods (DGM) [40], and Physics-Informed Neural Networks (PINNs) [48]. Among 

these, PINNs have emerged as a leading approach due to their ability to seamlessly 

integrate physical laws into the learning process, making them highly effective for 

solving complex PDEs.   

PINNs offer several advantages, including robust generalization, automatic 

differentiation, and grid-free capabilities [45, 34]. By incorporating physical laws 

directly into the neural network framework, PINNs use a loss function that combines 

residuals from differential equations and boundary conditions, eliminating the need 

for simulation or experimental data. This approach reduces reliance on large labeled 

datasets, enhances computational efficiency, and ensures physically consistent 

solutions. Additionally, PINNs' ability to generalize well to unseen data makes them 

more versatile. Their grid-free nature allows them to be applied to complex 

geometries, and the use of automatic differentiation simplifies the computation of 

derivatives. These features make PINNs highly suitable for a wide range of scientific 

applications, particularly in data-scarce environments.  

PINNs have been the subject of increasing amounts of research in many different 

fields, especially in engineering and computational sciences. In their review article, 

Lawal et al. (2022) [25] state that 288 documents were chosen from the literature on 

these disciplines. Their review article offers a perceptive depiction of the 

development of PINNs over the previous three and a half years, showing a consistent 
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increase in publications from 2019 to mid-2022, with a peak in 2021. This pattern 

demonstrates how scholars are becoming more interested in and dedicated to using 

PINNs to solve challenging issues and improve their work. In this part, the most 

recent studies on PINNs from different research areas as well as studies including its 

hybrid forms will be reviewed.  

2.1 Related Studies 

In their paper, Raissi et al. (2019) [35] introduced the concept of PINNs to 

enrich deep learning. To this end, they employed deep neural networks to address 

supervised learning tasks by incorporating established principles from mathematical 

physics, specifically those defined by general nonlinear partial differential equations 

(PDEs). Based on the characteristics and structure of their available data, they 

developed two distinct types of algorithms: one for continuous time models and 

another for discrete-time models. They emphasize that their proposed method should 

not be viewed as a replacement for traditional numerical techniques used to solve 

PDEs, such as finite element or spectral methods. Rather, they demonstrate that 

classical methods, including Runge-Kutta time-stepping schemes, can effectively 

complement deep neural networks. Their integration provides valuable insights for 

creating structured predictive algorithms. Additionally, the simplicity of 

implementing neural networks supports the rapid development and testing of new 

ideas, potentially initializing a new era of data-driven scientific computing.  

In their paper, Mao et al. (2020) [28] investigate the use of PINNs to the solution of 

forward and inverse Euler equation problems for high-velocity aerodynamic flows. 

Despite discontinuities such as oblique shock waves, they show that PINNs can solve 

the forward issue and capture solutions with little scattered input. Motivated by 

Schlieren photography, PINNs for the inverse issue perform better than conventional 

techniques in situations where standard techniques are inadequate. They do this by 

reliably inferring density, velocity, and pressure fields from data on density gradients 

and pressure. While their study also demonstrates that employing Euler equations in 

https://www.sciencedirect.com/topics/engineering/deep-learning
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characteristic form outperforms the conservative form, PINNs still lag behind 

conventional approaches for forward issues. This suggests that PINNs may be useful 

in the future for aerodynamic analysis applications, as they are adept at resolving 

challenging inverse problems. 

Despite notable advancements in simulating flow problems through the numerical 

discretization of the Navier–Stokes equations (NSE), Cai et al. (2021) [7] discuss the 

existing challenges in their paper. For instance, they stated that current methods still 

struggle with integrating noisy data, managing the complexity of mesh generation, 

and addressing high-dimensional problems governed by parametrized NSE. To 

overcome these issues, the authors proposed a method called flow physics-informed 

learning, which utilizes PINNs to integrate data and mathematical models 

effectively. Their findings indicate that this approach successfully infers hidden 

velocity fields and unknown parameters of PDEs from sampled data alone, indicating 

the potential of PINNs to address the limitations of conventional numerical 

simulations.  

Cai et al. (2021) [8] applied the PINN framework to address several representative 

heat transfer challenges. They utilized PINNs as a transformative solution for 

bridging the gap between experimental and computational heat transfer. By 

integrating conservation laws directly into their architecture and utilizing sparse 

measurements through multifidelity methods, PINNs enable accurate inference of 

velocity and temperature fields, as well as unknown thermal boundary conditions or 

interfaces. Their effectiveness is particularly evident in handling realistic conditions 

that challenge conventional computational methods. Applications in power 

electronics highlight the practical utility of PINNs in addressing complex heat 

transfer problems encountered in industrial settings. The collective findings confirm 

that PINNs not only excel in solving ill-posed problems difficult for traditional 

methods but also effectively bridge the gap between computational and experimental 

heat transfer.  
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Tanios (2021) [41] explores the application of PINNs for pricing multi-asset 

European options within the high-dimensional Black-Scholes and Heston models. 

Given the recent success of PINNs in approximating solutions to PDEs, their utility 

extends to accurately estimating solutions and unknown model parameters from 

observed data. They demonstrate how PINNs offer a straightforward method for 

calculating the Greeks—quantities that measure the sensitivity of a derivative's price, 

represented as partial derivatives (either first-order or higher) in calculus.  

To improve the quantification of near-wall blood flow and wall shear stress (WSS), 

which are difficult to quantify yet essential for understanding cardiovascular 

disorders, Arzani et al. (2021) [1] utilize PINNs. Conventional approaches to patient-

specific computational and experimental WSS assessment suffer from limited 

resolution, noise, and uncertainty. By combining mathematical equations—more 

specifically, the Navier-Stokes equations that govern blood flow—with sparse 

measurement data, PINNs provide a strong deep learning methodology. Their study 

shows that by absorbing a few measurement points, PINNs can effectively handle 

blood flow issues when inlet and output boundary conditions are unknown. This is 

especially useful because patient-specific fluid dynamics models sometimes have 

unknown boundary conditions. Their examples from idealized models of stenosis 

and aneurysms show how limited measurements combined with a partial 

understanding of flow mechanics can produce accurate near-wall blood flow data. 

This hybrid data-driven and physics-based approach has significant potential to 

advance high-fidelity modeling of near-wall hemodynamics in cardiovascular 

disease. 

Jiang et al. (2022) [20] investigate nonlinear dynamics inside optical fibers while 

utilizing PINNs to solve the nonlinear Schrödinger equation. The paper offers a 

thorough assessment of PINNs' abilities to handle a range of physical phenomena, 

including higher-order nonlinear effects, dispersion, and self-phase modulation. The 

study looks at both soliton and multipulse propagation, and it finds that adding 

physical characteristics to the PINN as extra input controls, such as pulse peak power 

and subpulse amplitudes, greatly improves the network's generalization capabilities 
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in many contexts. The shortcomings of earlier models—which were frequently 

limited to isolated instances—are addressed by this approach. The findings show 

that, in comparison to the split-step Fourier method, PINNs require significantly less 

data and have lower computational complexity, making them an effective tool for 

solving PDEs and advancing the fields of scientific computing and automated 

modeling in fiber optics.  

To accurately solve the AC-Optimal Power Flow (AC-OPF) problem which is often 

challenging due to its non-linear and non-convex structure, Nellikkath and 

Chatzivasileiadis (2022) [31] trained PINNs. By embedding these equations directly 

into the training process, the dependency on the size of the training data set is 

substantially reduced, making the model more efficient and practical for real-world 

applications. Moreover, this integration significantly improves the worst-case 

performance of neural networks, ensuring more reliable and robust outcomes in 

power system operations. This development represents a crucial step forward in 

enhancing the effectiveness and dependability of neural networks in managing 

complex power systems. 

Bararnia and Esmaeilpour (2022) [4] investigate the use of PINNs to solve 

challenging thermal-fluid issues, with a particular emphasis on thermal and viscous 

boundary layers. The three benchmark problems they chose to study the impact of 

unbounded boundary conditions and equation nonlinearity on the width and depth of 

the network structure were Blasius-Pohlhausen, Falkner-Skan, and Natural 

Convection. They used big-data training using TensorFlow to create and train the 

PINN models, revealing hidden physics in transport phenomena. The correctness and 

dependability of the PINN models were confirmed by comparing their predictions 

with the outcomes of using Richardson extrapolation in conjunction with the finite 

difference technique. Key findings showed that the number of neurons and layers 

needed in a neural network to produce precise solutions is highly influenced by the 

Prandtl number in the heat equation. Furthermore, to effectively manage the infinite 

boundary condition, handling unbounded boundary conditions by placing the 

boundary farther from the origin required adding more layers and neurons. The PINN 
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models that had been trained were effectively utilized for assessing boundary layer 

thicknesses on previously unseen data, proving their resilience and usefulness. In 

addition to providing insights into how neural network topologies can be optimized 

for best performance, this research shows how PINNs can be used to solve extremely 

nonlinear and complex boundary layer issues in thermal-fluid dynamics.  

Jeong et al. (2024) [19] applied PINNs to overcome a complex multi-physics 

problem involving electromagnetism, fluid dynamics, and heat transfer. They 

applied this model to a cylindrical conductor, considering the interplay between 

electrical and magnetic fields and the thermal interactions between the conductor and 

its environment. To enhance the performance of their PINN, the authors divided the 

problem into seven interlinked neural networks. They employed domain 

decomposition and variable separation techniques, optimizing each network 

individually and ensuring efficient data transfer between them. Their results 

demonstrate impressive accuracy, with less than 2% error compared to traditional 

numerical methods and analytical solutions.  

Recent advancements have introduced extensions to the traditional PINN 

framework, aiming to enhance its capabilities further. In addition to papers utilizing 

traditional PINNs in different research fields, we also review studies focused on 

developing hybrid forms of PINNs to improve their predictive capability under 

different circumstances (see e.g. [32], [2], [46], [23]). For instance, Pang et al. [32] 

extend PINNs to fractional PINNs (fPINNs) which will be efficient in solving space-

time fractional advection-diffusion equations (fractional ADEs). They demonstrate 

the accuracy and effectiveness of fPINNs in solving multidimensional forward and 

inverse problems with forcing terms whose values are only known at randomly 

scattered spatio-temporal coordinates. Additionally, they introduce a hybrid 

approach that involves constructing the residual in the loss function using both 

automatic differentiation for the integer-order operators and numerical discretization 

for the fractional operators. Their proposed PINNs solve several inverse problems in 

one, two, and three dimensions, enabling the identification of the fractional orders, 
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diffusion coefficients, and transport velocities while obtaining accurate results under 

proper initializations even in the presence of significant noise. 

Bai et al. (2022) [2] propose an improved PINN (IPINN), which integrates a local 

adaptive activation function for neurons to enhance neural network performance. 

They successfully applied the IPINN to the Ivancevic option pricing model and the 

Black–Scholes model in finance, demonstrating its effectiveness in improving 

accuracy and efficiency for complex financial problems. They address the rogue 

wave and soliton solutions of the Ivancevic option pricing model, as well as the 

numerical solution of the Black–Scholes model using IPINN method. Their 

numerical experiments demonstrate that the IPINN method exhibits faster 

convergence, greater stability, and higher accuracy compared to the traditional PINN 

method. 

Yang et al. (2021) [46] introduce a Bayesian PINN (B-PINN) for addressing both 

forward and inverse nonlinear problems characterized by PDEs and noisy data. In 

their Bayesian framework, the prior is established by combining a Bayesian neural 

network (BNN) with a PINN for PDEs, while the posterior can be estimated using 

either Hamiltonian Monte Carlo or variational inference. Compared to PINNs, their 

results indicate that B-PINNs not only provide better uncertainty quantification but 

also deliver more accurate predictions in high-noise scenarios, thanks to their ability 

to mitigate overfitting. 

Kharazmi et al. (2021) [23] develop a high-order polynomial Variational PINN (hp-

VPINN) method integrating a variational formulation based on the sub-domain 

Petrov–Galerkin method, where neural networks are used as the trial space and 

localized non-overlapping high-order polynomials form the test space. This 

innovative combination enhances the method's ability to model PDE solutions 

accurately by utilizing the complementary strengths of neural networks and 

polynomial functions. The use of integration-by-parts, which increases performance 

in processing difficult or rough solutions, such as singularities, steep gradients, and 

abrupt changes in the data, is a fundamental component of hp-VPINN. Their 
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comparative analysis with traditional PINNs highlights the hp-VPINN's improved 

accuracy and efficiency, confirming its robustness in practical applications. 

Jagtap et al. (2020) [18] introduce an innovative method called the conservative 

PINN (cPINN), designed to handle nonlinear conservation laws in discrete domains. 

In this approach, discrete domains refer to the segmented regions of the 

computational domain created by partitioning. The cPINN enforces conservation 

principles by maintaining flux continuity in the strong form at the interfaces between 

these segments. Furthermore, the cPINN utilizes locally adaptive activation 

functions, which accelerates the training process compared to traditional fixed 

activation functions. 

In 2020, Jagtap and Karniadakis [17] propose the extended PINNs (XPINNs) 

framework, a novel development that generalizes and improves upon existing PINN 

and cPINN methodologies by incorporating a more flexible and comprehensive 

space-time domain decomposition approach. XPINNs leverage multiple neural 

networks deployed in smaller subdomains, enhancing representation capacity and 

parallelization. This approach reduces training costs and improves computational 

efficiency by allowing parallel processing across both spatial and temporal domains. 

Considering the challenges of PINNs and XPINNs in achieving optimal 

performance, particularly in handling complex domain decompositions and 

parameter sharing, Hu et al. (2023) [15] introduce the augmented PINN (APINN), a 

novel approach designed to enhance their capabilities. One of the key innovations of 

APINN is its ability to utilize all available training data across the entire domain, 

rather than limiting data usage to specific subdomains. This approach enhances the 

efficiency of the learning process and improves the generalization of the model. 

Additionally, APINN employs parameter sharing across sub-networks to capture 

common features and components in decomposed functions, thus boosting the 

overall performance and generalization capability. Their approach addresses key 

limitations of existing methods and opens new places for applying PINNs to complex 

scientific and engineering problems. 
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Wandel et al. (2022) [44] introduce an innovative approach by combining PINNs 

and convolutional neural networks to deal with the challenge of solving PDEs. The 

approach produces rapid and continuous solutions which can be applicable across 

diverse domains. They illustrate their methodology by demonstrating the 

incompressible Navier-Stokes equation and the damped wave equation. By utilizing 

spline-PINNS, their model can capture various phenomena, reduce the accuracy gap 

in computational fluid Dynamics and also work faster. 

In their study, Chiu et al. (2022) [9] suggest CAN-PINN, a novel PINN technique 

that combines numerical differentiation (ND) with automated differentiation (AD) 

to improve training accuracy and efficiency. By using differential equations to 

restrict the training loss function, PINNs make sure their outputs adhere to the laws 

of physics. Even though AD calculates precise gradients at any point, achieving high 

accuracy often requires a large number of collocation points; otherwise, it may lead 

to unphysical solutions when fewer points are used. In order to overcome this, CAN-

PINN combines AD and ND, making use of ND's capacity to connect nearby 

collocation sites for effective training in sparse sample regimes. When compared to 

ND-based PINNs alone, this hybrid technique produces training that is up to two 

orders of magnitude more robust and precise. Fluid dynamics challenges such as 

flow mixing, lid-driven flow, and channel flow over a backward-facing step were 

investigated with the CAN-PINN framework, which proved to be more accurate and 

resilient than traditional AD-based PINNs.  

Zhang et al. (2022) [49] present GW-PINN, a deep learning technique that does not 

require labeled data to estimate groundwater flow. GW-PINN employs PINN and 

modifies its loss function to include either soft or hard constraints. To maximize 

sampling and training efficiency, it uses a snowball-style two-stage training 

approach and a locally refined sampling strategy (LRS). According to their results, 

GW-PINN captures variations in hydraulic heads in a variety of aquifers effectively; 

the hard constraint outperforms the soft constraint. With the help of the LRS 

approach and two-stage training, they demonstrate that GW-PINN becomes a more 

accurate and effective instrument for simulating groundwater flow. 
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In their paper, McClenny and Braga-Neto (2023) [29] present a unique method of 

optimizing PINNs using self-adaptive weights (SA-PINNs). By training adaptive 

weights that are applied to each training point separately, the technique enables the 

neural network to concentrate on difficult areas of stiff PDEs. By growing when 

losses are greater, the weights function as a soft attention mask, helping the network 

to become more accurate in challenging situations. In order to better understand how 

these weights affect training dynamics, the research also offers a continuous map of 

these weights using Gaussian Process regression and produces the Neural Tangent 

Kernel matrix for SA-PINNs. When compared to state-of-the-art PINN algorithms, 

numerical experiments show that SA-PINNs achieve lower L2 error and require 

fewer training epochs.  

In the same year, Vadyala and Betgeri [43] propose a hybrid Quantum Machine 

Learning (QML) model named quantum-based PINNs, which combines classical 

information processing with quantum manipulation and processing, along with 

PINNs. This model is designed to address challenges related to reliability, 

trustworthiness, safety, and security in QML while leveraging the strengths of both 

classical and quantum computing. They achieved the highest performance with their 

quantum simulation data containing outliers by utilizing a neural network 

architecture consisting of 6 layers and 40 neurons. 

Meng et al. (2023) [30] introduce PINN-FORM, a novel combination of the first-

order reliability method (FORM) and PINN designed to tackle the problems 

associated with structural reliability analysis, especially when working with complex 

limit state functions expressed as implicit PDEs. These kinds of problems are 

generally quite computationally challenging using traditional FORM approaches. By 

using PINN's capabilities as a black-box solution tool, they suggested PINN-FORM 

to address these problems by doing away with the necessity to compute actual 

structural answers directly. 

In 2024, Liu et al. [27] address the limitation of traditional PINNs in handling 

discontinuities, particularly when compared to conventional shock-capturing 
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methods. To overcome this challenge, they develop an innovative approach called 

PINNs with Equation Weighting (PINNs-WE). This method enhances the capability 

of PINNs to accurately capture shocks by incorporating equation weighting 

techniques, which adjust the relative importance of different components in the loss 

function. By employing this approach, PINNs-WE can more effectively manage 

abrupt changes and discontinuities in various physical phenomena, significantly 

enhancing performance where traditional PINNs struggle. They concluded that 

PINNs-WE provides a more robust and efficient tool for solving problems involving 

discontinuities. 

There are also studies that focus on multi-output approaches within the context of 

PINNs [47, 13]. In 2022, Yang and Foster [47] proposed the Multi-Output PINNs 

(MO-PINNs) to solve both forward and inverse PDE problems with noisy data. By 

utilizing the bootstrap method, their framework translates uncertainty from noisy 

data into multiple measurements based on prior noise distribution. The network 

outputs are designed to satisfy both the noisy measurements and the underlying 

physical laws. Numerical experiments showed that MO-PINNs provided accurate 

predictions and uncertainty distributions, comparable to traditional methods like 

finite element methods and Monte Carlo simulations. Their work demonstrates the 

potential of MO-PINNs for uncertainty quantification and accelerating predictions 

in engineering applications. 

In another study, Hao et al. (2024) [13] introduced the Multi-Output Multi-Physics-

Informed Neural Networks (MO-MPINNs) to address challenges in solving the 

Dimension-Reduced Probability Density Evolution Equation in stochastic dynamical 

systems. Traditional methods for estimating the intrinsic drift and diffusion 

coefficients rely on numerical differentiation, which can be unstable and inaccurate, 

especially in data-scarce regions. MO-MPINNs overcome these issues by integrating 

multiple outputs within parallel subnetworks, allowing for simultaneous prediction 

of time-varying coefficients and response probability density functions. This 

approach embeds physical laws in the loss function and leverages automatic 

differentiation, providing a more efficient and accurate solution for high-
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dimensional, nonlinear systems with complex spatio-temporal dependencies. Their 

framework enhances the applicability of PINNs to complex stochastic systems with 

double randomness in parameters and excitations. 

Building on these advancements, our study further refines the PINN framework by 

incorporating multivariate dependencies, allowing for a more comprehensive 

representation of complex dynamical systems. By embedding cross-correlation 

relationships within the loss function, we enhance the network's ability to capture 

intricate interdependencies across multiple outputs. This refinement broadens the 

applicability of PINNs, extending their use beyond traditional scientific and 

engineering fields to economic and multi-agent systems, where conventional 

approaches often fail to address spatio-temporal complexities effectively. 

The literature indicates that PINNs are primarily employed for solving engineering 

and physical problems, including stochastic differential equations, with no known 

applications in economic modeling. Despite their increasing use in engineering 

contexts, their potential in economic modeling remains largely unexplored, 

presenting an opportunity to extend the PINN framework beyond traditional 

applications. This gap presents an opportunity to extend the PINN framework 

beyond traditional engineering applications and apply it to economic systems with 

complex spatio-temporal dynamics in their governing equations. 
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CHAPTER 3  

3 METHODOLOGY 

This chapter provides a comprehensive examination and introduction to the new 

Keynesian macroeconomic model and the Dividend-Debt-Augmented Goodwin 

Model (DAGKM). Furthermore, it will delve into the architectures of Long Short-

Term Memory (LSTM) networks, Physics-Informed Neural Networks (PINNs) and 

the proposed model which is called Prior-Informed Multivariate LSTM (PIM-

LSTM). 

3.1 New Keynesian Macroeconomic Model 

The New Keynesian economics is a fusion of Keynesian economics and 

microeconomic theory. It highlights the importance of market imperfections, 

particularly inflexible prices and wages, in explaining why the economy may only 

sometimes achieve full employment, and how monetary policy can impact output 

and inflation. This framework helps us understand how monetary and fiscal policies 

can stabilize the economy by affecting overall supply and demand. The New 

Keynesian view assumes that households and businesses make decisions based on 

rational expectations. The New Keynesian model comprises three fundamental 

equations: the New Keynesian Phillips Curve (NKPC), the dynamic Investment- 

Savings (IS) equation, and Taylor's Rule. Together, these equations explain inflation, 

output, and interest rates, giving us a clear picture of how the economy works. 

The NKPC, originally derived by Roberts in 1995 [36], has found practical 

application in the New Keynesian Dynamic Stochastic General Equilibrium (DSGE) 

models. This curve, which states that inflation is influenced by the current output 

gap and the expectations of the next period's inflation, is derived from the dynamic 

https://en.wikipedia.org/wiki/New_Keynesian_economics#cite_note-48
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Calvo pricing model. Its practical application in economic models is expressed in 

mathematical terms: 

  𝜋𝑡 = 𝛽𝐸𝑡{𝜋𝑡+1} + 𝜅𝑦̃𝑡 + 𝜀𝑡
𝑠 (1) 

where 𝜅 ≡ 𝜆 (𝜎 +
𝜑+𝛼

1−𝛼
)  ,  𝜆 ≡

(1−𝜃)(1−𝛽𝜃)

𝜃
Θ  ,   Θ =

1−𝛼

1−𝛼+𝛼𝜖
 

In this equation, 𝛽 represents discount factor and  𝜋𝑡 denotes the inflation, 𝐸𝑡{𝜋𝑡+1} 

is the expectation of the next period's inflation, 𝑦̃𝑡 = 𝑦𝑡 − 𝑦𝑡
𝑛 denotes output gap, 𝑦𝑡 

denotes output, 𝑦𝑡
𝑛 denotes potential output and 𝜀𝑡

𝑠 is supply shock. Additionally, 𝛼 

is capital share,  𝜖 is elasticity of substitution, 𝜑 is Frisch elasticity, 𝜎 is relative risk 

aversion and 𝜃 is Calvo parameter. The NKPC equation can also be expressed in 

terms of output and potential output: 

𝜋𝑡 = 𝛽𝐸𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡 − 𝜅𝑦𝑡
𝑛 + 𝜀𝑡

𝑠 (2) 

The IS equation in economics is an important formulation that helps us to understand 

how the economy works. It shows that the current output gap is the difference 

between what we expect from the output gap to be in the next period and a value 

connected to the difference between the real interest rate (𝑖𝑡 − 𝐸𝑡{𝜋𝑡+1})  and the 

natural rate of interest. This equation provides a clear understanding of the output 

gap. This relationship can be expressed mathematically as follows: 

 𝑦̃𝑡 = −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝑟𝑡

𝑛) + 𝐸𝑡(𝑦̃𝑡+1) + 𝜀𝑡
𝑑  (3) 

where  𝑦̃𝑡 is output gap, 𝐸𝑡{𝑦̃𝑡+1} is expected output gap, 𝑖𝑡  is the nominal interest 

rate, 𝜋𝑡 is inflation, 𝑟𝑡
𝑛 is the natural rate of interest and 𝜀𝑡

𝑑 is demand shock. The 

natural rate of interest reflects equilibrium values with flexible prices. The natural 

rate of interest is calculated by: 

𝑟𝑡
𝑛 = 𝜌 + 𝜎 𝜓𝑦𝑎

𝑛 𝐸𝑡(Δ𝑎𝑡+1)  (4) 
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where    𝜓𝑦𝑎
𝑛 ≡

1+𝜑

𝜎(1−𝛼)+𝜑+𝛼
  ,  𝑦̃𝑡 =  𝑦𝑡 − 𝑦𝑡

𝑛  , 𝑦𝑡
𝑛 = 𝜓𝑦𝑎𝑎𝑡 + 𝜓𝑦. 

In the equation, the variable 𝑎𝑡 represents the total factor productivity shock, which 

can be described as follows: 𝑎𝑡 = 𝜌𝑎𝑎𝑡−1 + 𝜉𝑡
𝑎 with 𝜉𝑡

𝑎~𝑖𝑖𝑑 𝑁(0, 𝜎𝑎
2). 𝜌𝑎 represents 

the persistency parameter of total factor productivity shock, and Δ signifies the 

difference operator. 

After applying some calculation, the IS equation can be written in terms of the 

output: 

𝑦𝑡 = 𝐸𝑡(𝑦𝑡+1) −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝜌) + 𝜀𝑡

𝑑    (5) 

where  𝜌 = −log (𝛽). 

The third equation in the New Keynesian model represents an interest rate rule that 

explains how the nominal interest rate is established. This rule is commonly 

associated with the implementation of monetary policy. A commonly used interest 

rate rule in the literature to represent monetary policy in advanced economies is a 

Taylor-type rule proposed by Taylor [42]. According to this rule, nominal interest 

rates increase or decrease in line with the current inflation rate and output gap.  

𝑖𝑡 =  𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦̃𝑡 +  𝜀𝑡
𝑚 (6) 

Where 𝑖𝑡 is the nominal interest rate, 𝜋𝑡 is inflation, 𝑦̃𝑡 denotes output gap and 𝜀𝑡
𝑚 is 

an exogeneous monetary policy shifter. Moreover, 𝜙𝜋 is the feedback parameter of 

inflation and 𝜙𝑦 is the feedback parameter of output gap. The interest rate is also re-

expressed in terms of the output:  

𝑖𝑡 =  𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦𝑡 − 𝜙𝑦𝑦𝑡
𝑛 +  𝜀𝑡

𝑚 (7) 
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3.2 Dividend-Augmented Goodwin Keen Model 

The Goodwin model proposed by Goodwin [11] is a traditional macroeconomic 

framework that represents cyclical growth and income distribution by considering 

capital and labor as interconnected variables. It demonstrates how wages and 

employment vary over time through a predator-prey dynamic, which illustrates the 

natural interplay of these economic forces. Building on this foundation, the 

Goodwin-Keen model proposed by Keen [22] extends the original framework by 

incorporating private debt. This enhancement allows the model to better capture real-

world phenomena, as it shows how debt-financed investment and consumption can 

either amplify or moderate economic fluctuations. Furthermore, Bailly et al. [3] 

identified that the original Goodwin-Keen model led to inaccurate estimates because 

it failed to account for situations in which firms frequently borrow to finance 

dividends. To address this shortcoming, they proposed a Dividend-Augmented 

Goodwin model (DAGKM). By incorporating dividends as a share of profits, this 

revised model produces debt trajectories that more closely align with observed 

economic behavior.  

The dynamic system of DAGKM consists of three equations, which are the wage 

share (denoted by 𝜔𝑡), the employment rate (denoted by 𝜆𝑡) and the debt ratio 

(denoted by 𝑑𝑡). This system is described as follows: 

𝜕𝜔𝑡

𝜕𝑡
= 𝜔𝑡(ϕ(𝜆𝑡) − 𝛼)  (8) 

𝜕𝜆𝑡

𝜕𝑡
= 𝜆𝑡 (

𝜅(1−𝜔𝑡−𝑟𝑑𝑡)

𝜐
− 𝛼 − 𝛽 − 𝛿)  (9) 

𝜕𝑑𝑡

𝜕𝑡
= 𝑑𝑡 (𝑟(1 − ∆) −

𝜅(1−𝜔𝑡−𝑟𝑑𝑡)

𝜐
+ 𝛿) +  𝜅(1 − 𝜔𝑡 − 𝑟𝑑𝑡) − (1 − 𝜔𝑡)(1 − ∆)  (10) 

where 𝛼 is constant growth rates of the labor productivity, 𝛽 is the constant growth 

rates of the labor force, 𝛿 is the depreciation rate, 𝜐 is the capital-to output ratio, 𝑟 is 

the real interest rate and ∆ is the newly defined share of profits distributed to 
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shareholders. Function ϕ(𝜆𝑡) = 𝛾 + 𝜌(1 − 𝜆𝑡)−2 is the real short-run Phillips curve 

and 𝜅(1 − 𝜔𝑡 − 𝑟𝑑𝑡) = 𝑘1𝑒𝑘2(1−𝜔𝑡−𝑟𝑑𝑡) is an investment function.  

3.3 Cross Correlation Function 

The cross-covariance function measures how two time series are related by assessing 

how changes in one series relate to past values of the other over different time lags. 

For two series 𝑋𝑡 and 𝑌𝑡, the cross-covariance function at lag ℎ is defined as: 

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−ℎ) = 𝐸 ((𝑋𝑡 − 𝜇𝑥)(𝑌𝑡−ℎ − 𝜇𝑦)) (11) 

where 𝜇𝑥 and 𝜇𝑦 are the means of 𝑋𝑡 and 𝑌𝑡, respectively. 

The closely related cross-correlation function (CCF) is a statistical tool utilized to 

measure the linear dynamic dependence of two series. It is essentially the cross-

covariance normalized by the product of the standard deviations of the two series. 

Mathematically, the CCF at lag ℎ is given by: 

𝐶𝑜𝑟𝑟(𝑋𝑡, 𝑌𝑡−ℎ) = 𝜌𝑥𝑦(ℎ) =
𝐸 ((𝑋𝑡 − 𝜇𝑥)(𝑌𝑡−ℎ − 𝜇𝑦))

𝜎𝑥𝜎𝑦
 

 

(12) 

where  𝜎𝑥 and 𝜎𝑦 are the standard deviations of 𝑋𝑡 and 𝑌𝑡, respectively. 

In practice, these quantities are estimated using sample means and variances. The 

sample CCF at lag ℎ is computed as: 

𝑟𝑥𝑦(ℎ) = 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) =
∑ (𝑥𝑡 − 𝑥̅)(𝑦𝑡−ℎ − 𝑦̅)𝑛−ℎ

𝑡=1

√∑ (𝑥𝑡 − 𝑥̅)2𝑛
𝑡=1 ∑ (𝑦𝑡 − 𝑦̅)2𝑛

𝑡=1

 
(13) 

where 𝑥̅ and 𝑦̅ denote the sample means of 𝑥𝑡 and 𝑦𝑡. The sample CCF values lie 

between −1 and 1, indicating the strength and direction of the linear relationship at 

each lag. 
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3.4 Deep Neural Networks and Automatic Differentiation 

Deep learning, a subsection of machine learning, is the cutting-edge technology used 

to enhance data analysis and predictive capabilities. It employs multi-layer artificial 

neural networks to construct algorithms that can extract meaningful patterns and 

features from extensive data sets effectively. This approach has been effectively 

utilized in diverse areas, including image process and speech recognition, natural 

language process (NLP), gaming, and self-driving vehicles. Deep learning excels at 

managing complex, high-dimensional data. The main benefit of deep learning 

models is their capability to automatically identify features from data, minimizing 

the need for manual feature engineering and greatly enhancing the overall 

performance of the model. 

3.4.1 Perceptron and Deep Neural Networks 

The perceptron is a building block of artificial neural network laying the groundwork 

for more complex networks. It was devised in the 1960s by scientist Frank Rosenblatt 

[38]. The perceptron comprises a single neuron and an activation function. The input 

of the perceptron is denoted as 𝑥, the corresponding weights are denoted as w, the 

associated bias is denoted as 𝑏, and 𝑓 represents the activation function. As depicted 

in Figure 3.1, before applying 𝑓, the perceptron takes the input 𝑥, computes the 

weighted sum, and adds the bias.  

 

 

Figure 3.1 Structure of Perceptron 
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Hence, for input 𝑥, our perceptron makes the following predictions:  

𝑦 = 𝑓(𝑧) = 𝑓(𝑤𝑥𝑇 + 𝑏) = 𝑓(∑ 𝑥𝑖𝑤𝑗 + 𝑏)
𝑛

𝑖=1
 

 

(14) 

The process for building more complex neural networks is not significantly different. 

A feed-forward neural network (FFNN) or multi-layer perceptron neural network is 

an extension of the basic perceptron, consisting of multiple layers of neurons, with 

each layer fully connected to the next. FFNNs are called "feed-forward" because 

inputs are processed forward through the network without any loops or cycles. They 

can easily solve more complex problems than a single-layer perceptron due to their 

depth and complexity. The architecture of a FFNN is depicted in Figure 3.2. In a 

neural network, a layer comprises individual neurons that process inputs separately 

and generate a sole output. When a neural network is referred to as “deep,” it means 

that there are multiple layers between the input and output layer. Since each neuron 

has a weight vector used to compute its output, a “weight matrix” is created to 

mathematically describe the collection of weight vectors in each layer. 

 

 

Figure 3.2 Structure of the FFNN 
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3.4.2 Training and Automatic Differentiation 

Training a neural network is quite intricate, involving initialization, forward and 

backward passes, loss calculation, and parameter updates. The main objective is to 

adjust the network’s weights and biases to minimize prediction errors. This enables 

the network to learn from the training data and generalize its findings. This training 

is crucial as it allows the model to improve its accuracy and generalize new situations 

by capturing complex patterns, making accurate predictions, and adapting to new 

information. Properly trained neural networks can achieve state-of-the-art 

performance. 

The gradient descent algorithm is a method used to iteratively optimize and find the 

local minimum of a function. This algorithm is crucial for learning from training data 

as it assists in determining the set of weights that minimally correspond to prediction 

errors by minimizing the loss function of the network. The loss function assesses the 

difference between the predicted outputs and the actual outputs, and the goal of 

training is to reduce this difference. The steps of the Gradient Descent Algorithm are 

as follows: 

1. Parameter Initialization: Begin with initial values for the parameters. 

2. Gradient Computation: Determine the gradient of the loss function concerning 

each parameter. 

3. Parameter Adjustment: Adjust the parameters in the direction opposite to the 

gradient to decrease the loss. 

4. Iteration: Repeat the process until the loss converges or a maximum number of 

iterations is reached. 

Backpropagation is an essential technique for training artificial neural networks. It 

efficiently calculates the gradient of the loss function for each weight by propagating 

the error backward through the network. Automatic Differentiation (AD) efficiently 

computes gradients by numerically evaluating the derivative of a function specified 
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by a computer program. AD exploits the differentiability of every computer 

operation, from simple arithmetic to complex functions, and automates the 

calculation of derivatives using the chain rule. Figure 3.3 offers an accurate 

representation of how AD computes 𝜕𝐸/𝜕𝜔1  and 𝜕𝐸/𝜕𝜔2. 

 

 

Figure 3.3 Computational Graph of AD 

The backpropagation is utilized to enhance prediction accuracy in artificial neural 

networks by modifying the model's weights and biases. This adjustment is 

accomplished by transmitting the error from the output layer back to the input layer. 

The process begins with a forward pass where each neuron computes the weighted 

sum of its inputs, adds a bias term, and then applies an activation function to the 

result. This process continues through the network, layer by layer, until the final 

output values are produced. Afterward, the loss function is calculated. During the 

backward pass, the gradient which is the derivative of the loss function with respect 

to parameters is computed using the chain rule of calculus. Once these gradients are 

computed, the weights and biases are updated using them to minimize the loss. These 

updates are typically done using the gradient descent algorithm or its variations, 

which adjust the weights in the opposite direction of the gradient. 
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3.5 Long Short-Term Memory Networks 

The concept of Long Short-Term Memory (LSTM) networks was presented by 

Hochreiter and Schmidhuber in 1997 [14]. These networks have revolutionized 

sequence modeling by overcoming the constraints of traditional RNNs and 

facilitating the successful acquisition of long-term dependencies. Traditional RNNs 

maintain a hidden state that is updated at each time step to handle sequences. 

However, they struggle with long-term dependencies due to the vanishing gradient 

problem, where gradients decrease exponentially as they are backpropagated through 

time. Therefore, RNNs have difficulty learning long-term dependencies and 

retaining information over long sequences. LSTMs solve this problem by 

introducing a more complex unit structure that includes gates to control the flow of 

information. Their capacity to retain data across long sequences and address the issue 

of the vanishing gradient gives them significant utility for various areas, including 

NLP, speech recognition, image process, time series prediction, and video analysis.  

An LSTM network consists of LSTM units, each with a cell state and three gates: 

the input gate, the forget gate, and the output gate. These gates of the LSTM units 

regulate the flow of information into, out of, and within the units. 

1. Cell State: The cell state acts as a memory, preserving information across various 

time steps. It is modified by the gates to preserve or discard information. 

2. Input Gate: It controls the flow of new information that enters the cell state. It 

determines which values from the input should be utilized to update the cell state. 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (15) 

where 𝑖𝑡 represents the input gate, ℎ𝑡−1 represents the output of the previous 

LSTM block, 𝑥𝑡 represents the input at time step 𝑡, 𝑏𝑖 is the bias for the input 

gate, 𝑊𝑖 is the weight for the input 𝑥𝑡 , 𝑈𝑖 is the weight for the output of the 

previous LSTM block ℎ𝑡−1 and 𝜎 represents the sigmoid function. 

3. Forget Gate: It decides which information from the cell state to ignore, allowing 

the LSTM to discard irrelevant information. 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (16) 

where 𝑓𝑡 represents the forget gate, 𝑏𝑓 is the bias for the forget gate, 𝑊𝑓 is the 

weight for the input 𝑥𝑡 , 𝑈𝑓 is the weight for the output of the previous LSTM 

block ℎ𝑡−1 and 𝜎 represents the sigmoid function. 

4. Output Gate: It governs the output of the LSTM unit. It decides which parts of 

the cell state should be transmitted to the next time step as the hidden state. 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (17) 

where 𝑜𝑡 represents the output gate, 𝑏𝑜 is the bias for the output gate, 𝑊𝑜 is the 

weight for the input 𝑥𝑡 , 𝑈𝑜 is the weight for the output of the previous LSTM 

block ℎ𝑡−1. 

5. Cell Update: It is refreshed using the information from the input gate and the 

forget gate. 

𝑐̃𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (18) 

𝑐𝑡 =  𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡 (19) 

where 𝑐̃𝑡 represents the candidate for the cell state at time step 𝑡 , 𝑐𝑡 is the cell 

state (memory) at time step 𝑡, 𝑊𝑐 is the weight for input 𝑥𝑡 , 𝑈𝑐 is the weight for 

the output of the previous LSTM block ℎ𝑡−1, 𝑏𝑐 is the bias for the cell state, tanh 

is the hyperbolic tangent function and  “∘” represents elementwise multiplication 

of the vectors. 

6. Hidden State Update: The hidden state is updated based on the cell state and the 

output gate. 

ℎ𝑡 = 𝑜𝑡 ∘  tanh (𝑐𝑡) (20) 

At each time step, an input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 are received by the 

LSTM cell. The current hidden state ℎ𝑡 and the current output 𝑦𝑡 are then produced 
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by the LSTM cell. Sigmoid activation functions are utilized by the input, forget, and 

output gates. These functions yield values within the range of 0 to 1. These values 

are subsequently multiplied by the input and the previous hidden state to determine 

the amount of information that enters the cell state, the amount that is removed from 

the cell state, and the amount that is output from the cell state. The cell state is then 

passed through a tanh function to generate the hidden state. Following this, the 

hidden state undergoes processing through a fully connected layer featuring a 

sigmoid or softmax activation function to generate the output. This functionality 

allows LSTM networks to selectively determine the information to store, discard, 

and output. The visual representation of the memory block in an LSTM is illustrated 

in Figure 3.4. 

 

Figure 3.4 Memory Block in LSTM [37] 

3.6 Physics Informed Neural Networks 

PINNs directly incorporate physical laws or differential equations into the training 

process of neural networks. This integration ensures that the predictions align with 

established scientific principles while learning from data. By including known 

deterministic relationships between variables in neural networks, PINNs use this 

extra information to improve the prediction and forecast performance of the models. 
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3.6.1 Architecture 

Training a deep learning algorithm may seem difficult or even impractical to 

accurately identify a nonlinear map from a limited number of input and output data 

pairs. Achieving model accuracy with complex and high-dimensional data may pose 

challenges. Deep learning algorithms have demonstrated their capability in 

approximating complex nonlinear mappings. However, these training processes 

necessitate a substantial amount of training data to generalize well for unseen data. If 

the available data is limited or issues related to high dimensionality arise, training the 

model becomes exceedingly challenging. 

In the field of biology or physics, it is essential to integrate existing knowledge to 

enhance the precision of the model. This existing knowledge may take the form of 

fundamental physical laws, empirically verified principles, or other expertise within 

the specific domain. By embedding this organized information into the learning 

algorithm, the information content of the available data can be enhanced, allowing 

the model to rapidly converge towards the correct solution and exhibit effective 

generalization, even in cases where only a small number of training examples are 

accessible. Within this framework, Raissi et al. [35] has introduced a machine 

learning approach that merges the capabilities of deep neural networks with the 

fundamentals of physics, known as PINNs. Their explanation of the method and its 

applications has laid the groundwork for recent advancements in using neural 

networks and differential equations together. The key feature of this technique is to 

perform regression and model estimation by leveraging the properties of both 

differential equations and neural networks. In the field of physical modeling, it is 

typical to describe the dynamics of a system using a series of differential equations. 

PINNs attempt to leverage the fundamental features of a solution to a differential 

equation to efficiently regulate a neural network model. This is accomplished by 

embedding the mathematical model into the network and enhancing the loss function 

by adding a residual term that is derived from the governing equation, effectively 

serving as a penalizing factor to confine the acceptable solution space. The motivation 
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for this varies, but it does introduce some bias to models that would typically have 

been unbiased. In the physics-informed approach, the differential equation serves as 

the regularization cost for the model's parameters. A typical architecture of PINNs is 

depicted in Figure 3.5. In Figure 3.5, a fully connected neural network uses time and 

space coordinates (𝑡, 𝑥) as inputs to approximate the multi-physics solutions. AD is 

used to compute the derivatives with respect to the inputs, which are then employed 

to define the residuals of the governing equations within the loss function. This 

function usually consists of several terms, each weighted by different coefficients. 

Both the neural network parameters (𝜃) and the unknown parameters of the PDEs 

(𝜆) can be learned simultaneously by minimizing the loss function. 

 

 

Figure 3.5 Architecture of PINNs [7] 

In PINNs approach, the loss function is designed in a way that the neural network not 

only fits the data but also satisfies the physical laws and constraints represented by 

the differential equation and the boundary/initial conditions. This means that PINNs 

incorporate physics into the learning process. The parameterized and nonlinear partial 

differential equations (PDEs) of the general form: 

𝑢𝑡 +  𝒩[𝑢; 𝜆] = 0   ,   𝑥𝜖Ω   ,   𝑡𝜖[0, 𝑇] (21) 
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In here, 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution 

to the equation, which refers to the unknown function that we are trying to find or 

approximate. It is a function of two variables, time (𝑡) and position (𝑥). 𝒩[. ] 

represents a nonlinear differential operator parameterized by λ. An operator is a 

mathematical symbol or function that operates on a function to produce another 

function. In this case, 𝒩[. ] is a nonlinear operator that acts on the function 𝑢(𝑡, 𝑥) to 

yield a new function. Ω denotes a subset of 𝑅𝐷. This setup covers a wide range of 

problems in mathematical physics including kinetic equations, conservation laws, 

advection–diffusion–reaction systems and diffusion processes. Raissi et al. [35] 

focus on solving two different problems. The first one is data driven solution of 

PDEs, which refers to “Given fixed model parameters λ what can be said about the 

unknown hidden state u(t, x) of the system?”. The second one is data driven discovery 

of PDEs, which refers to “What are the parameters λ that best describe the observed 

data?”.  

3.6.2 Data-Driven Solutions of Partial Differential Equations 

The parametrized and nonlinear PDEs of the general form is considered:  

𝑢𝑡 +  𝒩[𝑢] = 0   ,   𝑥𝜖Ω   ,   𝑡𝜖[0, 𝑇] (22) 

where 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution, 

𝒩[. ] is a nonlinear operator and Ω is a subset of 𝑅𝐷. We define 𝑓(𝑡, 𝑥) to be given 

by the left-hand side of equation given above:  

𝑓 ∶= 𝑢𝑡 +  𝒩[𝑢] (23) 

and proceed by approximating 𝑢(𝑡, 𝑥) by a deep neural network. This assumption 

along with the above equation results in a physics informed neural network 𝑓(𝑡, 𝑥). 

This network can be derived by applying the chain rule for differentiating 

compositions of functions using AD and has the same parameters as the network 
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representing 𝑢(𝑡, 𝑥), albeit with different activation functions due to the action of the 

differential operator 𝒩. The shared parameters between the neural networks 𝑢(𝑡, 𝑥) 

and 𝑓(𝑡, 𝑥) can be learned by minimizing the mean squared error (MSE) loss. The 

loss function over data for this network can be realized as the combined MSE loss: 

𝑀𝑆𝐸𝑝𝑖𝑛𝑛 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸𝑓 (24) 

where  

𝑀𝑆𝐸𝑢 =  
1

𝑁𝑢
∑ |𝑢(𝑡𝑢

𝑖 , 𝑥𝑢
𝑖 ) − 𝑢𝑖|2𝑁𝑢

𝑖=1   

 

(25) 

and  

 𝑀𝑆𝐸𝑓 =  
1

𝑁𝑓
∑|𝑓(𝑡𝑓

𝑖 , 𝑥𝑓
𝑖 )|

2

𝑁𝑓

𝑖=1

 

 

(26) 

where the sets {𝑡𝑢
𝑖 , 𝑥𝑢

𝑖 , 𝑢𝑖}𝑖=1
𝑁𝑢  denote the initial and boundary training data on 𝑢(𝑡, 𝑥).  

{𝑡𝑓
𝑖 , 𝑥𝑓

𝑖 }
𝑖=1

𝑁𝑓   specifies the collocations points for 𝑓(𝑡, 𝑥).  The loss 𝑀𝑆𝐸𝑢 corresponds 

to the initial and boundary training data while 𝑀𝑆𝐸𝑓 enforces the structure imposed 

by equation 𝑓 at a finite set of collocation points.  

3.6.3 Data-Driven Discovery of Partial Differential Equations 

We consider parametrized and nonlinear PDEs of the general form:  

𝑢𝑡 +  𝒩[𝑢; 𝜆] = 0   ,   𝑥𝜖Ω   ,   𝑡𝜖[0, 𝑇] (27) 

where 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution, 

𝒩[. ] is a nonlinear operator parameterized by λ and Ω is a subset of 𝑅𝐷. We define 

𝑓(𝑡, 𝑥) to be given by the left-hand side of equation given above:  

𝑓 ∶= 𝑢𝑡 +  𝒩[𝑢; 𝜆] (28) 
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We proceed by approximating 𝑢(𝑡, 𝑥) by a deep neural network. This assumption 

along with the above equation results in a physics informed neural network 𝑓(𝑡, 𝑥). 

This network can be derived by applying the chain rule for differentiating 

compositions of functions using AD. The parameters λ of the nonlinear differential 

operator as well as the parameters of the neural networks can be learned by 

minimizing the MSE loss. The loss function used for this network corresponds to 

that defined in Equations (24 - 26). 

3.7 Prior-Informed Multivariate LSTM (PIM-LSTM) 

In this study, we propose the Prior-Informed Multivariate LSTM (PIM-LSTM), a 

novel deep learning architecture designed to incorporate prior knowledge constraints 

into multivariate time-series forecasting. The proposed PIM-LSTM model, inspired 

by Physics-Informed Neural Networks (PINNs), leverages prior knowledge 

constraints and incorporates cross-correlation function (CCF) constraints to improve 

multivariate time-series forecasting. 

A sequence of inputs is fed into a LSTM. The LSTM processes these inputs over 

time, capturing both short-term and long-term dependencies via its hidden and cell 

states. At the final step, the network produces a prediction, which is then compared 

to the true target. The first loss component is the standard Mean Squared Error on 

the training data. It measures how closely LSTM’s predictions align with the ground 

truth values. For three output model, when output is  𝑋⃑ = {𝑥, 𝑦, 𝑧} , MSE is 

calculated as follows: 

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 =
1

3𝑛
(∑(𝑥̂𝑡 − 𝑥𝑡)2

𝑛

𝑡=1

+ ∑(𝑦̂𝑡 − 𝑦𝑡)2

𝑛

𝑡=1

+ ∑(𝑧̂𝑡 − 𝑧𝑡)2

𝑛

𝑡=1

) 

 

(29) 

The second loss component is obtained from prior knowledge or constraints. For 

three output model, when output is  𝑋⃑ = {𝑥, 𝑦, 𝑧} , MSE is calculated as follows: 
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𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 =
1

3𝑛
(∑(𝑥̂𝑡 − 𝑓(𝑥𝑡))

2
𝑛

𝑡=1

+ ∑(𝑦̂𝑡 − 𝑓(𝑦𝑡))
2

𝑛

𝑡=1

+ ∑(𝑧̂𝑡 − 𝑓(𝑧𝑡))
2

𝑛

𝑡=1

 

 

(30) 

where 𝑥̂𝑡 , 𝑦̂𝑡 and 𝑧̂𝑡 are the predictions obtained from the model and 𝑓 is the prior 

function, reflecting the expected or theoretically derived behavior. This could be a 

known relationship from physics, an empirical formula from domain experts, or any 

other expression encoding constraints or knowledge relevant to the problem. 

The final loss is CCF loss, which typically aims to preserve certain correlation 

structures in time-series data. The CCF loss measures how closely the predicted 

series’ cross-correlation function matches either the observed data’s cross-

correlation or a desired correlation pattern. Symbolically, it can be written as: 

ℒ𝐶𝐶𝐹 =
1

2 × ℓ × 𝑘
∑ ∑ (𝑟(𝑥̂𝑡, 𝑦̂𝑡−ℎ) − 𝑟(𝑥𝑡, 𝑦𝑡−ℎ))

2

(𝑥,𝑦)∈𝑆

ℓ

ℎ=1

 

 

 

(31) 

where 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) =
∑ (𝑥𝑡−𝑥̅)(𝑦𝑡−ℎ−𝑦̅)𝑛−ℎ

𝑡=1

√∑ (𝑥𝑡−𝑥̅)2𝑛
𝑡=1 ∑ (𝑦𝑡−𝑦̅)2𝑛

𝑡=1

. 

ℓ denotes the number of lags, while 𝑘 refers to the number of output variables. 

𝑟(𝑥̂𝑡, 𝑦̂𝑡−ℎ) denotes the cross-correlation function at lag ℎ of predicted 𝑥̂𝑡 and 

predicted 𝑦̂𝑡−ℎ. 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) denotes the cross-correlation function at lag ℎ of actual 

𝑥𝑡 and actual 𝑦𝑡−ℎ. 𝑆 is the set of output variable pairs. For example, for the New 

Keynesian model, the output pairs are 𝑆 = {(𝜋, 𝑖), (𝜋, 𝑦), (𝑖, 𝜋), (𝑖, 𝑦), (𝑦, 𝜋), (𝑦, 𝑖)}. 

For the DAGKM model, the output pairs are 𝑆 = {(𝜔, 𝜆), (𝜔, 𝑑), (𝜆, 𝜋), (𝜆, 𝑑),

(𝑑, 𝜔), (𝑑, 𝜆)}. By minimizing ℒ𝐶𝐶𝐹, the model learns to generate forecasts whose 

interdependence or temporal correlations more closely match those in the true data 

(or match specified domain expectations).  

All these terms 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛, 𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 and ℒ𝐶𝐶𝐹 are combined into a single total loss 

function. A typical form is: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 +  𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹  (32) 
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where 𝛼1 and 𝛼2 are weighting coefficients that balance the importance of fitting the 

training data, adhering to priors, and matching the desired correlation structure. The 

gradient of this total loss concerning the LSTM parameters is computed (via 

backpropagation through time) and used to update the model weights. By jointly 

optimizing these three objectives, the model learns to produce forecasts that are 

accurate. The architecture of the PIM-LSTM is depicted in Figure 3.6 and 3.7 for the 

New Keynesian model and the DAGKM model. 

 

 

Figure 3.6 Architecture of PIM-LSTM Model for the New Keynesian Model 

Figure 3.7 Architecture of PIM-LSTM Model for the DAGKM 
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3.8 Performance Metrics 

When forecasting multivariate time series data, it is important to check how accurate 

the forecasts are. There are different ways to measure how well a forecasting model 

works and each method has its own advantages. Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE) are 

commonly used metrics. RMSE quantifies the average magnitude of errors in a set 

of predictions. Its sensitivity to larger errors makes RMSE particularly advantageous 

in situations where significant discrepancies require penalization. RMSE can be 

determined using the following formula: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1   
 

(33) 

where 𝑦𝑡 is the actual value at time 𝑡, 𝑦̂𝑡 is the forecasted value at time 𝑡 and 𝑛 is the 

number of observations.  

MAE provides a straightforward way to assess the average size of errors in a group 

of predictions, irrespective of whether they are positive or negative. Compared to 

RMSE, MAE is less affected by outliers. The calculation for MAE can be expressed 

with the following formula: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛

𝑡=1   
 

(34) 

where 𝑦𝑡 is the actual value at time 𝑡, 𝑦̂𝑡 is the forecasted value at time 𝑡 and 𝑛 is the 

number of observations.  

MASE is a metric that evaluates the accuracy of forecasts across various datasets by 

normalizing errors relative to a naive estimate, typically derived from the mean of 

previous observations. 

𝑀𝐴𝑆𝐸 =  
𝑀𝐴𝐸

𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒
=

1

𝑛
∑ |𝑦𝑡−𝑦̂𝑡|𝑛

𝑡=1
1

𝑛−1
∑ |𝑦𝑡−𝑦𝑡−1|𝑛

𝑡=2

  
 

(35) 
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CHAPTER 4  

4 DATA ANALYSİS 

In this study, PIM-LSTM model is applied for multivariate time series forecasting 

across three different datasets from economics. Its performance is thoroughly asses-

sed by comparing it with various well-established benchmark models. 

4.1 Dataset for the New Keynesian Model for Turkiye 

The New Keynesian model for Turkiye is employed to apply the PIM-LSTM 

method. The model is composed of several equations for the inflation rate, output 

gap and nominal interest rate. The consumer price index (CPI), real gross domestic 

product (GDP), the short-term interest rate, the inflation forecast, and the real GDP 

forecast are used. We utilize a quarterly dataset of these variables from 2002Q4 to 

2021Q3 for Turkiye. The real GDP and the CPI are sourced from IMF International 

Financial Statistics. The inflation forecast, the real GDP forecast and the short-term 

interest rate are retrieved from OECD Data Explorer. 

Before conducting exploratory data analysis, some transformations on the dataset are 

implemented. Initially, following the recommendations of Pfeifer [33], these 

calculations are performed: 

i. 𝑦𝑡
𝑜𝑏𝑠 = log(𝑦𝑡

𝑑𝑎𝑡𝑎)    

ii. 𝜋𝑡
𝑜𝑏𝑠 = log (

𝑐𝑝𝑖𝑡
𝑑𝑎𝑡𝑎

𝑐𝑝𝑖𝑡−1
𝑑𝑎𝑡𝑎 ) − 𝑚𝑒𝑎𝑛 (log (

𝑐𝑝𝑖𝑡
𝑑𝑎𝑡𝑎

𝑐𝑝𝑖𝑡−1
𝑑𝑎𝑡𝑎 )) 

iii. 𝑖𝑡
𝑜𝑏𝑠 = log (1 +

𝑖𝑡
𝑑𝑎𝑡𝑎

4×100
 ) − 𝑚𝑒𝑎𝑛 (log (1 +

𝑖𝑡
𝑑𝑎𝑡𝑎

4×100
 )) 

 

 

(36) 

Secondly, the real GDP is seasonally adjusted by using Census X-13 procedure since 

the real GDP shows seasonal pattern. Then, two-sided Hodrick-Prescott (HP) filter 
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is utilized to extract the trend component of seasonally adjusted real GDP. The 

Hodrick-Prescott (HP) filter is a technique utilized to separate a time series into its 

trend and cyclical components. It is commonly employed in macroeconomics to 

decompose a real GDP 𝑦𝑡 into potential output (trend component)  and output gap 

(cyclical component) by minimizing this function: 

∑(𝑦𝑡 − 𝜏𝑡)2 +

𝑇

𝑡=1

𝜆 ∑((𝜏𝑡+1 − 𝜏𝑡) − (𝜏𝑡 − 𝜏𝑡−1))
2

𝑇−1

𝑡=2

 

 

(37) 

where 𝑦𝑡 =  𝜏𝑡 + 𝑐𝑡,  𝜏𝑡 is trend component and 𝑐𝑡 is cyclical component. Potential 

output data obtained from HP filter is added to the dataset. Additionally, potential 

output, inflation forecasts, and GDP forecasts are considered exogenous variables. 

4.1.1 Exploratory Data Analysis 

Table 4.1 provides descriptive statistics of key macroeconomic indicators for 

Turkiye, specifically the CPI inflation rate, the short-term interest rate, the real GDP, 

the potential output, the inflation forecast, and the GDP forecast. The CPI inflation 

rate has a mean close to zero (−0.0004) with a range from −0.0185 to 0.0913. Half 

of the CPI inflation rate values fall between −0.0103 and 0.0005. The short-term 

interest rate has a mean of -0.0008. Half of the short-term interest rate values are 

between −0.0078 and 0.0019. Similarly, the real GDP and the potential output 

values are closely aligned, with means of 5.5585 and 5.5580, respectively. The CPI 

inflation rate, the short-term interest rate, the real GDP, the potential output are 

probably symmetrically distributed since their means and median values are close. 

The inflation forecast and the GDP forecast exhibit the highest dispersion, as 

indicated by their wide ranges (from 4.2894 to 81.0785 and -36.1690 to 82.9082, 

respectively) and large standard deviations (18.4976 and 11.9554). In contrast, the 

interest rate, inflation rate, real GDP, and potential output exhibit lower variability, 

as indicated by relatively small standard deviations that denote greater stability. 
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Table 4.1 Descriptive Statistics of Turkiye’s Macroeconomic Series 

 

Inflation 

Rate 

Interest 

Rate 

Real 

GDP 

Potential 

Output 

Inflation 

Forecast 

GDP 

Forecast 
 

Minimum  -0.0185 -0.0124 5.3037 5.3152 4.2894 -36.1690 

 

 Q1  -0.0103 -0.0078 5.4413 5.4410 8.0459 1.3710  

Median -0.0053 -0.0036 5.5704 5.5627 9.4801 5.9014  

Mean -0.0004 -0.0008 5.5585 5.5580 17.3075 5.8449  

Standard Dev. 0.0181 0.0108 0.1385 0.1379 18.4976 11.9554  

Q3 0.0005 0.0019 5.6734 5.6744 14.5977 9.8588  

Maximum 0.0913 0.0343 5.7887 5.7921 81.0785 82.9082  

 

There is no missing data in any of the series. The time series graphs of Turkiye’s 

macroeconomic series are shown above. Figure 4.1 illustrates the changes in the CPI 

inflation rate from 2002Q4 to 2021Q3.  The time series plot of the CPI inflation rate 

does not exhibit any seasonal behavior and displays only slight fluctuations over 

time. Initially, there is a sharp decline, followed by frequent ups and downs around 

the zero line. After 2012, there appears to be a slight upward trend. Figure 4.2 shows 

how the interest rate changed from 2002Q4 to 2021Q3. The interest rate shows no 

seasonal pattern and follows a decreasing trend from 2002 to 2013. Although there 

is a sudden decline between 2019 and 2020, there has been a gradual increase in the 

short-term interest rate since 2013. Figure 4.3 illustrates the changes in real GDP 

from 2002Q4 to 2021Q3. The real GDP shows no seasonal behavior and 

demonstrates an overall upward trend during this period, despite occasional short-

term declines. 

By examining sample ACF and sample PACF in Figures 4.4, 4.5, and 4.6, inflation 

rate and interest rate could be stationary since their ACFs show exponential decay, 

their PACFs cut off after lags 1 and 2. However, the ACF of the real GDP shows 

slow decay, indicating that it is non-stationary. 
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Figure 4.1 The Time Series Plot of Turkiye’s Inflation Rate 

 

Figure 4.2 The Time Series Plot of Turkiye’s Interest Rate 

 

Figure 4.3 The Time Series Plot of Turkiye’s Real GDP 
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Figure 4.4 The sACF and sPACF of Turkiye’s Inflation Rate 

 

Figure 4.5 The sACF and sPACF of Turkiye’s Interest Rate 

 

Figure 4.6 The sACF and sPACF of Turkiye’s Real GDP 
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Augmented Dickey-Fuller (ADF) Test 

The ADF test is a statistical method used to determine if a time series is stationary 

or not. The hypothesis of the test is: 

 𝐻0 : The time series has a unit root (is non-stationary) 

 𝐻1 : The time series is stationary 

ADF test results indicate that inflation rate, interest rate and real GDP have unit roots, 

indicating nonstationarity.  

Table 4.2 ADF test for Inflation Rate 

Test Statistic 

Number of Lags Used 

P-value 

0.2193   
5  
0.9733  
 

 

Table 4.3 ADF test for Interest Rate 

Test Statistic 

Number of Lags Used 

P-value 
 

−1.4759  
4  
0.5454  

 

Table 4.4 ADF test for Real GDP 

Test Statistic 

Number of Lags Used 

P-value 

−0.9467   
1  
0.7722  

 

Toda-Yamamoto Causality Test  

In multivariate time series analysis, multiple interdependent variables are dealt with. 

Before conducting models, it is necessary to examine causal relationships. For this 

purpose, the Toda-Yamamoto Causality test is the most appropriate method to 

employ since the series exhibits a unit root. This test is a recognized statistical 
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technique that facilitates the analysis and identification of causal relationships 

between variables. The hypothesis of the test: 

 𝐻0 : The series 𝑥 does not granger cause the series 𝑦.  

 𝐻1 : The series 𝑥 granger causes the series 𝑦. 

Toda-Yamamoto Causality test results given in Table 4.5 indicate several significant 

relationships between the variables. The short-term interest rates and the real GDP 

granger cause the CPI inflation rate. The CPI inflation rate and the real GDP granger 

cause the short-term interest rate. The short-term interest rate granger causes the real 

GDP whereas the CPI inflation rate does not granger cause the real GDP. These 

results suggest the presence of causal relationships among certain variables, 

indicating that multivariate time series analysis is applicable to this dataset. 

Table 4.5 Toda-Yamamoto Causality Test Result 

X => Y    P value 

Interest Rate    =>   Inflation Rate 

Interest Rate    =>   Real GDP  

Inflation Rate  =>   Interest Rate     

Inflation Rate  =>   Real GDP 

Real GDP        =>   Interest Rate     

Real GDP        =>   Inflation Rate 

 

0.018 

0.000 

0.000 

0.935 

0.032 

0.000 

 

4.1.2 Data Preprocessing 

Data preprocessing is the set of operations performed on raw data before applying a 

machine learning or deep learning model. It typically includes steps such as cleaning, 

normalization or scaling and structuring data into a suitable format. By ensuring data 

quality and consistency, preprocessing helps models learn more effectively and 

converge faster, ultimately leading to more reliable results. 

Min-Max normalization is a useful method because it scales data to a fixed range, 

usually between 0 and 1, while keeping the original data distribution intact. This 

approach makes sure that all features influence the training process equally, avoiding 
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issues where features with larger scales might have too much impact on the model. 

By reducing the range of the data, Min-Max normalization also helps improve the 

stability and speed of many optimization algorithms, which can lead to better 

performance and reliability in deep learning models. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(38) 

This study employs supervised deep learning models to analyze time series data. The 

input data is converted into sequences for the models to learn from previous input 

values and predict future output values. The generation of sequences is based on 

three key principles: input sequence length, sliding window, and output sequence 

length. Input sequence length refers to the number of time steps in the input data that 

the model utilizes to forecast the associated output. The sliding window technique 

creates multiple sequences of the same length by sliding the sequence to 'n' steps. 

Output sequence length, also known as prediction horizon, determines the number 

of future values that the model forecasts based on the input sequence provided. In 

this study, input sequences are generated using a sliding window approach with a 

stride of one quarter, which refers to the step size used when shifting the sliding 

window to create new input-output sequences. Each output sequence consists of 

three values, each representing a one-step-ahead forecast based on past values of the 

series. For example, to forecast macroeconomic data for the upcoming quarter using 

data from the previous 4 quarters, we first organize the data from those 4 quarters 

into a sequence. The goal is to predict the values for the 5th quarter. After that, we 

shift the time window by one quarter to create a new sequence, now consisting of 

data from the 2nd to the 5th quarter and aim to predict the values for the 6th quarter. 

This process continues to generate sequences and corresponding forecast targets.  
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Table 4.6 1st Input and Output Sequence used in the LSTM model 

 

Table 4.7 2nd Input and Output Sequence used in the LSTM model 

 

Table 4.8 1st Input and Output Sequence used in the PINN model 

 

Table 4.9 2nd Input and Output Sequence used in the PINN model 

 

Table 4.6 and Table 4.7 show the 1st and 2nd input and output sequence used in the 

LSTM model. The green space gives the input sequence, the orange space gives the 

output sequence. Similarly, Table 4.8 and Table 4.9 show the 1st and 2nd input and 

output sequence utilized in the LSTM model. The green space gives the input 

sequence, the orange space gives the output sequence, the purple space represents 

exogeneous variables. In both LSTM model and PINN model, 6 inputs which are 

past values of inflation rate, interest rate, real GDP, potential output, inflation 

forecast, and real GDP forecast are used. 
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Splitting the dataset into two subsets is crucial for ensuring that the model can 

generalize effectively to new, unseen data. The training set is designed to teach the 

model the relationships between input data features and output data targets. During 

this stage, the model adjusts its parameters, such as weights in neural networks. The 

validation set impartially evaluates the model's fit on the training dataset while fine-

tuning the hyperparameters of the model. Finally, the test set assesses the model's 

performance after training and validation. This study divides the macroeconomic 

time series data into 80% for training, 10% for validation, and 10% for testing. 

4.2 Dataset for the New Keynesian Model for Mexico 

The New Keynesian model is also employed on the Mexican economic series to 

apply the PIM-LSTM method. The real gross domestic product (GDP), the consumer 

price index (CPI), the short-term interest rate, the inflation forecast, and the real GDP 

forecast are used. We utilize a quarterly dataset of these variables spanning from 

1998Q1 to 2024Q2 for Mexico. The real GDP and the CPI are sourced from the 

Federal Reserve Economic Data (FRED) at https://fred.stlouisfed.org/, while the 

short-term interest rate, the inflation forecast, and the real GDP forecast are retrieved 

from OECD Data Explorer. 

Before conducting exploratory data analysis, some transformations on the dataset are 

applied. First, following Pfeifer's recommendations [33], some calculations are 

performed, shown in Equation (36). Secondly, the real GDP is seasonally adjusted 

by using Census X-13 procedure since the real GDP shows seasonal pattern. Then, 

two-sided Hodrick-Prescott (HP) filter is utilized to extract the trend component of 

seasonally adjusted real GDP. The trend component of seasonally adjusted real GDP 

represents the potential output. The potential output data obtained from HP filter is 

added to the dataset. Moreover, potential output, inflation forecasts, and GDP 

forecasts are considered exogenous variables. 

https://fred.stlouisfed.org/
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4.2.1 Exploratory Data Analysis 

Table 4.10 provides descriptive statistics of key macroeconomic indicators for 

Mexico, specifically the CPI inflation rate, interest rate, real GDP, potential output, 

inflation forecast, and GDP forecast. The CPI inflation rate has a mean close to zero 

(−0.0023) with a range from −0.0102 to 0.0173. Half of the CPI inflation rate 

values fall between −0.0052 and −0.0005. The interest rate has a mean of 

−0.0028. Half of the interest rate values are between −0.0066 and 0.0022. 

Similarly, the real GDP and the potential output values are closely aligned, with 

means of 6.7145 and 6.7140, respectively. The CPI inflation rate, the interest rate, 

the real GDP, the potential output are probably symmetrically distributed since their 

means and median values are close. The inflation forecast and the GDP forecast have 

high standard deviations (3.4654 and 4.1644). In contrast, the interest rate, the CPI 

inflation rate, the real GDP and the potential output show lower variability, with 

relatively small standard deviations indicating more stability. 

Table 4.10 Descriptive Statistics of Mexico’s Macroeconomic Series 

 Inflation 

Rate 

Interest 

Rate 

Real 

GDP 

Potential 

Output 

Inflation 

Forecast 

GDP 

Forecast 

 

Minimum  −0.0102 −0.0083 6.6122 6.6005 2.2662 −20.2938 

 

 Q1  −0.0052 −0.0066 6.6663 6.6705 3.7983 0.9048  

Median −0.0022 −0.0037 6.7101 6.7141 4.5085 2.3488  

Mean −0.0023 −0.0028 6.7145 6.7140 5.6325 1.9443  

Standard Dev. 0.0045 0.0057 0.0550 0.0545 3.4654 4.1644  

Q3 −0.0005 −0.0022 6.7652 6.7684 5.9476 3.5132  

Maximum 0.0173 0.0236 6.8018 6.7985 18.6328 22.7001  

 

There is no missing data in any of the series. The time series graphs of Mexico’s 

macroeconomic series are shown below. Figure 4.7 illustrates the changes in the CPI 

inflation rate from 1998Q1 to 2024Q2. The time series plot of the CPI inflation rate 

exhibits irregular cycle pattern over time.  Until the last quarter of 2007, a downward 
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trend was observed. After that, small fluctuations around zero occurred. Figure 4.8 

shows how the interest rate changed from 1998Q1 to 2024Q2. The interest rate 

shows no seasonal pattern and follows a decreasing trend. Figure 4.9 illustrates the 

changes in real GDP from 1998Q1 to 2024Q2. The real GDP shows no seasonal 

behavior and demonstrates an overall upward trend during this period, despite 

occasional short-term declines. 

By examining the sACF and the sPACF in Figures 4.10, 4.11, and 4.12, inflation rate 

and interest rate could be stationary since their ACFs show exponential decay, their 

PACFs cut off after lags 1 and 2. However, the ACF of the real GDP shows slow 

decay, indicating that it is non-stationary. 

 

Figure 4.7 The Time Series Plot of Mexico’s Inflation Rate 

 

Figure 4.8 The Time Series Plot of Mexico’s Interest Rate 
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Figure 4.9 The Time Series Plot of Mexico’s Real GDP 

 

Figure 4.10 The sACF and sPACF of Mexico’s Inflation Rate 

 

Figure 4.11 The sACF and sPACF of Mexico’s Interest Rate 
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Figure 4.12 The sACF and sPACF of Mexico’s Real GDP 

 

Augmented Dickey-Fuller (ADF) Test 

ADF test results show that the CPI inflation rate and the interest rate do not have unit 

roots, so these series are stationary. However, the real GDP has unit roots, indicating 

nonstationarity. 

Table 4.11 ADF test for Inflation Rate 

Test Statistic 

Number of Lags Used 

P-value 

−4.1983  

11  
0.0007  

 

Table 4.12 ADF test for Interest Rate 

Test Statistic 

Number of Lags Used 

P-value 

−2.9846  

11  
0.0364  

 

Table 4.13 ADF test for Real GDP 

Test Statistic 

Number of Lags Used 

P-value 

-1.0587 

2  
0.7312  
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Toda-Yamamoto Causality Test  

The Toda-Yamamoto causality test results presented in Table 4.14 reveal several 

significant relationships among the variables. Specifically, the interest rates and the 

real GDP Granger cause the inflation rate. The real GDP Granger causes the interest 

rate. These results suggest the presence of causal relationships among certain 

variables, indicating that multivariate time series analysis is applicable to this 

dataset. 

Table 4.14 Toda-Yamamoto Causality Test Result 

X => Y    P value 

Interest Rate    =>   Inflation Rate 

Interest Rate    =>   Real GDP  

Inflation Rate  =>   Interest Rate     

Inflation Rate  =>   Real GDP 

Real GDP        =>   Interest Rate     

Real GDP        =>   Inflation Rate 

0.026 

0.984 

0.477 

0.726 

0.047 

0.024 

 

 

4.2.2 Data Preprocessing 

Min-Max normalization is applied to scale the data while preserving its overall 

distribution. The data is transformed into sequences of inputs and outputs, allowing 

the model to learn from past input values and predict output values.  

A sliding window approach is implemented with a stride of one quarter to create 

these input sequences. Each output sequence consists of three values, each 

representing a one-step-ahead forecast based on previous values of the series. This 

study splits the time series data into 80% for training, 10% for validation, and 10% 

for testing. 
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4.3 Dataset for Dividend-Augmented Goodwin-Keen Model 

The Dividend-Augmented Goodwin-Keen model (DAGKM) for USA is also 

employed to apply the PIM-LSTM method. The model is composed of several 

differential equations for the wage share, the employment rate, and debt ratio. By the 

methodology suggested by Bailly et al. [3], our research employs a framework where 

the Goodwin-Keen model characterizes an economy comprised solely of households 

and private firms, intentionally omitting taxes and public investments. Moreover, 

financial activities affect the dynamics of the model only through loan provisions 

and interest payments by the non-financial sector. Employment, investment, and 

value-added are not directly impacted by banking activities in the model, leading to 

the exclusion of the banking sector from the analyzed time series. As a result, the 

data series are designed to closely represent the nonfinancial private sector, with 

most empirical variables defined as the combination of corporate and non-corporate 

nonfinancial business data. The series were primarily gathered from the FRED at 

https://fred.stlouisfed.org/. The series were collected quarterly over the period from 

1959 to 2019. Additional information regarding the datasets used can be found in the 

Appendix (Table A.1).  

The wage share at time 𝑡, 𝜔𝑡
𝑜, is defined as the ratio of real compensation of 

employees in the non-financial private sector to total real output: 

𝜔𝑡
𝑜 =

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑡
𝑛𝑜𝑛𝑓𝑖

𝑌𝑡
𝑜

 

 

(39) 

where 𝑌𝑡
𝑜 = 𝐺𝑟𝑜𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 𝐴.𝑡

𝑛𝑜𝑛𝑓𝑖
− 𝐶𝑜𝑛𝑠. 𝑜𝑓 𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑡

𝑛𝑜𝑛𝑓𝑖
− 𝑁𝑒𝑡 𝑇𝑎𝑥𝑒𝑠 𝑜𝑛 𝑃𝑟𝑜𝑑𝑡

𝑛𝑜𝑛𝑓𝑖
 . 

The employment rate at time 𝑡, 𝜆𝑡
𝑜, is calculated from employment and 

unemployment series: 

𝜆𝑡
𝑜 =

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

+ 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

 

 

(40) 

https://fred.stlouisfed.org/
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As the employment rate exhibits seasonal behavior, seasonality is removed using the 

Seasonal Trend Decomposition using LOESS procedure [10]. The real debt ratio, 

𝑑𝑡
𝑜, is described as the ratio of the net debt level to total real output: 

𝑑𝑡
𝑜 =

𝐷𝑡
𝑜

𝑌𝑡
𝑜
 

(41) 

where 𝐷𝑡
𝑜 =  𝐷𝑒𝑏𝑡 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑡

𝑐𝑜𝑟𝑝𝑜 + 𝐿𝑜𝑎𝑛𝑠𝑡
𝑛𝑜𝑛𝑓𝑖

− 𝑆𝑎𝑣𝑖𝑛𝑔 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑡
𝑛𝑜𝑛𝑓𝑖

 . 

4.3.1 Exploratory Data Analysis 

Table 4.15 presents summary statistics for key economic indicators in the USA. The 

wage share ranges from 0.6269 to 0.7240, with an average of 0.6770 and a small 

standard deviation of 0.0214, indicating small variation. In contrast, the debt ratio 

has a broader range from 0.5563 to 1.5954, with a higher standard deviation of 

0.2690, reflecting greater variability around its average of 1.0655. The employment 

rate falls between 0.8893 and 0.9562, averaging 0.9399, and has a standard deviation 

of 0.0168, suggesting it is relatively stable. Half of the wage share values are between 

0.6615 and 0.6930. Half of the debt ratio values are between 0.8592 and 1.2633. 

Similarly, half of the employment rate values are between 0.9284 and 0.9510. 

Notably, the mean and median for each series are almost equal, indicating that all 

series are symmetrically distributed. There is no missing value in the series. 

Table 4.15 Descriptive Statistics of US Economic Indicators 

 Wage Share Debt Ratio Employment Rate 

Minimum  0.6269 0.5563 0.8893 

Q1  0.6615 0.8592 0.9284 

Median 0.6799 1.0858 0.9411 

Mean 0.6770 1.0655 0.9390 

Standard Dev. 0.0214 0.2690 0.0168 

Q3 0.6930 1.2633 0.9510 

Maximum 0.7240 1.5954 0.9669 
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Figure 4.13 shows how the wage share in the US over time. The wage share rises 

significantly from the 1960s to 1980, peaking above 0.72. After 1980, it fluctuates 

and generally decreases until 2010s. Figure 4.14 shows the change in the US debt 

ratio over time. The debt ratio increased steadily over time. The debt ratio increased 

steadily from around 0.6 in 1959 to above 1.4 in 2020. There are noticeable short-

term fluctuations but a sharp decline in 2010. After this decline, the debt ratio 

continues to rise. Figure 4.15 depicts the change in the US employment rate over 

time. The US employment rate displays an irregular cyclical pattern. Overall, the 

employment rate fluctuates between a low of 0.89 and a high of 0.97. Figures 4.16, 

4.17, and 4.18 indicates that all sACF plots show slow decay, indicating that these 

three series are not stationary. 

 

Figure 4.13 The Time Series Plot of the Wage Share of US 

 

Figure 4.14 The Time Series Plot of the Debt Ratio of US 
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Figure 4.15 The Time Series Plot of the Employment Rate of US 

 

Figure 4.16 The sACF and sPACF of Wage Share of US 

 

Figure 4.17 The sACF and sPACF of Debt Ratio of US 
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Figure 4.18 The sACF and sPACF of Employment Rate of US 

Augmented Dickey-Fuller (ADF) Test 

ADF test results show that the wage share, debt ratio, and employment rate exhibit 

unit roots, indicating nonstationarity.  

Table 4.16 ADF test for US Wage Share 

Test Statistic 

Number of Lags Used 

P-value 

−2.204730  
0  
0.204533  

 

Table 4.17 ADF test for US Debt Ratio 

Test Statistic 

Number of Lags Used 

P-value 

−1.075899  
1  
0.724587  

 

Table 4.18 ADF test for US Employment Rate 

Test Statistic 

Number of Lags Used 

P-value 

−2.789385  
13  
0.059806  
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Toda-Yamamoto Causality Test  

The Toda-Yamamoto causality test results presented in Table 4.19 reveal several 

significant relationships among the variables. Specifically, the debt ratio and 

employment rate are found to Granger-cause the wage share. Additionally, the 

employment rate also Granger-causes the debt ratio. However, the wage share does 

not Granger-cause either the debt ratio or the employment rate. These results suggest 

the presence of causal relationships among certain variables, indicating that 

multivariate time series analysis is applicable to this dataset. 

Table 4.19 Toda-Yamamoto Causality Test Result 

X => Y    P value 

Wage Share             =>   Debt Ratio 

Debt Ratio               =>   Wage Share     

Wage Share              =>   Employment Rate    

Employment Rate    =>   Wage Share      

Debt Ratio               =>   Employment Rate     

Employment Rate    =>   Debt Ratio        

0.056 

0.030 

0.189 

0.015 

0.301 

0.000 

 

4.3.2 Data Preprocessing 

Min-Max normalization scales the data to a fixed range, typically between 0 and 1, 

while preserving its overall distribution. The data is transformed into sequences of 

inputs and outputs, allowing the model to learn from past input values and predict 

output values. To create these input sequences, a sliding window approach is 

implemented with a stride of one quarter, which indicates the step size used to shift 

the window and generate new input-output pairs. Each output sequence consists of 

three values, each representing a one-step-ahead forecast based on previous values 

of the series. This study splits the time series data into 80% for training, 10% for 

validation, and 10% for testing. 
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4.4 Experiment Setup 

In this study, deep learning models for forecasting time series, as well as data 

processing and analysis, are developed using the Python programming language. Its 

recognized flexibility and dependability in building these models, especially in the 

realm of machine learning, is well-established. Moreover, Python has many libraries 

and packages created for scientific computing and data analysis. This offers exciting 

opportunities for users. 

PyTorch, an open-source deep learning framework, is used for this study due to its 

ability to facilitate flexible model execution and debugging using dynamic graphs. 

In addition, its automatic differentiation engine simplifies the computation of 

gradients in deep learning applications. Furthermore, PyTorch's support for CUDA 

enables efficient execution of computations on graphical processing units (GPUs). 

Ray Tune is preferred for performing hyperparameter tuning on deep learning 

models. Ray Tune helps find the best combination of parameters in deep learning 

models. It is a widely used tool for distributed hyperparameter tuning in the industry, 

with the most up-to-date hyperparameter search algorithms. Ray Tune also works 

seamlessly with TensorBoard and other analysis libraries, and it facilitates 

distributed training through Ray's distributed machine learning engine. 

The PIM-LSTM model is a deep learning architecture built using PyTorch, designed 

to process sequential data with a Long Short-Term Memory (LSTM) network. It 

operates on CUDA for efficient GPU acceleration. The model consists of multiple 

configurable layers, including an LSTM layer, linear layers, layer normalization, 

dropout regularization, and residual connections. The LSTM layer processes input 

sequences with a specified number of hidden units and layers while applying dropout 

if more than one layer is used. Afterward, the output undergoes layer normalization 

and dropout to stabilize training and prevent overfitting. The architecture is dynamic, 

allowing different numbers of fully connected layers based on a parameter that 

defines the number of linear layers. If no additional layers are specified, the LSTM 

output is directly mapped to the final predictions. When one or more linear layers 
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are included, they are followed by ReLU activations, layer normalization, and 

residual connections to enhance gradient flow and model stability. In the forward 

pass, the LSTM processes the input sequence, followed by conditional linear 

transformations and residual connections, ultimately producing a final prediction. 

In this experiment, we conduct hyperparameter tuning with Ray Tune to find the best 

hyperparameters such as number of hidden units, the number of linear layers, the 

number of LSTM layer etc. We determined the appropriate hyperparameters by 

setting the maximum epoch in Ray Tune to 100 and the hyperparameter trial epoch 

to 100 and using 50 or 75 different hyperparameter combination trials. Ray Tune is 

a powerful library for hyperparameter tuning, while Optuna is a flexible and efficient 

framework for hyperparameter optimization. When used together with 

OptunaSearch, they create a scalable, distributed, and effective solution for 

hyperparameter tuning. Therefore, for our hyperparameter tuning needs, we choose 

to use Ray Tune alongside OptunaSearch to explore various model configurations. 

The search space includes LSTM architecture parameters (hidden sizes, number of 

layers, dropout probabilities), learning rates, and batch sizes. The tuning process 

optimizes the model based on validation loss using Asynchronous Successive 

Halving (ASHA) for efficient resource allocation. The ASHA Scheduler is a useful 

tool for managing resources and stopping tasks early in hyperparameter optimization 

with Ray Tune. It helps with large experiments by quickly removing trials that are 

not performing well and reallocating resources to better candidates. ASHA monitors 

ongoing trials and halts those that fail to meet performance standards, reallocating 

resources to more promising configurations. Unlike traditional methods, it operates 

asynchronously and terminates trials without waiting for all to finish.  

In the training process in our proposed model, the used loss function combines Mean 

Squared Error (MSE) with a cross-correlation loss to align model predictions with 

real-world dependencies. Additionally, prior knowledge constraints are incorporated 

into the training process by enforcing relationships derived from economic models. 

Additionally, gradient clipping is applied to prevent exploding gradients, and 

learning rate scheduler “ReduceLROnPlateau” is applied. It dynamically reduces the 
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learning rate when a monitored metric which is validation loss stops improving. 

Instead of reducing the learning rate at fixed intervals, this scheduler adjusts it only 

when necessary, helping the model continue learning efficiently. The model’s 

performance is periodically assessed using a validation set, and checkpointing is 

employed to save model progress and resume training if interrupted. After 

performing hyperparameter tuning in Ray Tune, the best training parameters are 

selected based on the lowest validation loss. Using the best-trained model, we then 

generate the forecast values for the test set. 

While constructing the PIM-LSTM model, a prior knowledge-based approach was 

adopted to define the prior loss function. This prior knowledge consists of specific 

mathematical equations, within which certain parameters exist. These parameters 

have either been previously calibrated or estimated. In this study, two different 

strategies were employed. Firstly, the estimated or calibrated parameter values were 

directly incorporated into the model (referred to PIM-LSTM1). Secondly, these 

parameters were assumed to be unknown and were introduced into the model as 

hyperparameters (referred to PIM-LSTM2). This approach allowed the model to 

learn these parameters independently, facilitating a data-driven optimization process. 

By combining both strategies, the model’s flexibility was enhanced, enabling the 

development of a learning mechanism that leverages both prior knowledge and data-

driven learning. 

4.4.1 Hyperparameter Tuning for New Keynesian Model for Turkiye 

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM 

architecture for Turkiye’s New Keynesian Model. Firstly, for the PIM-LSTM model, 

the calibrated parameters specific to the New Keynesian model are applied. These 

calibrated parameters for Turkiye are sourced from the article by Güloğlu and 

Güngör [12]. Table 4.20 shows the calibrated parameters for the New Keynesian 

model related to Turkiye. 
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Table 4.20 Calibrated Parameters from Güloğlu’s Article [12] 

𝛼 = 0.33  Capital share in Production 𝜎 = 1  Relative Risk Aversion 

𝛽 = 0.99  Discount Factor 𝜃 = 0.6699  Calvo Parameter 

∈= 6  Elasticity of Substitution 𝜙𝜋 = 1.9959  Feedback parameter of inflation 

𝜑 = 1  Frisch Elasticity 𝜙𝑦 = 0.5122  Feedback parameter of output gap 

 

Table 4.21 shows the detailed setup for PIM-LSTM model with known parameters. 

The hyperparameter tuning experiment for PIM-LSTM model with known 

parameters in the New Keynesian Model was conducted using Ray Tune with 

OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize 

validation loss. The best model configuration included 32 hidden units in the first 

LSTM layer, one LSTM layer, and one linear layer, with a dropout rate of 0.2. The 

best training parameters were found using the AdamW optimizer, Xavier weight 

initialization, and Normal bias initialization, with batch shuffling enabled. The 

optimal batch size was 4 and the input sequence length was 4. The learning rate was 

0.0056171, with a weight decay of 0.002717, and learning rate scheduling was 

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction 

factor of 0.8. The training process was set to run for a maximum of 100 epochs, with 

a grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.1 determine 

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 +  𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹. 

Secondly, the parameters in the New Keynesian model were treated as unknowns 

and integrated into the model as hyperparameters when implementing the PIM-

LSTM model for the New Keynesian model. Table 4.22 indicates the detailed setup 

for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment 

for the PIM-LSTM model with unknown parameters in the New Keynesian Model 

utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler, 

conducting 75 trials to minimize validation loss. The best model configuration 

selected 32 hidden units in the first LSTM layer, one LSTM layer, two linear layers, 
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and a dropout rate of 0.2. The best training parameters included the AdamW 

optimizer, Xavier weight initialization, and Normal bias initialization, with batch 

shuffling enabled. The optimal batch size was 4, input sequence length was 16, and 

learning rate was 0.001736, with weight decay of 0.000005. Learning rate scheduling 

was applied using Reduce Learning Rate on Plateau, with a patience of 2 and a 

reduction factor of 0.8. The tuning also optimized New Keynesian model parameters 

(𝛽, 𝜃, 𝛼, ∈, 𝜎, 𝜑 , 𝜙𝜋 and 𝜙𝑦), with the best values found at 𝛽 = 0.36058 , 𝜃 =

0.75432 , 𝛼 = 0.66505 , ∈= 7 , 𝜎 = 5 , 𝜑 = 4 , 𝜙𝜋 = 1.8387 and 𝜙𝑦 = 0.5644. 

𝛼1 = 0.1 and 𝛼2 = 0.1 are weighting coefficients. 
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Table 4.21 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for 

Turkiye’s New Keynesian Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 

75 

Minimize Validation Loss 

100 

16, 32, 64, 128, 256,512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1,0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256,512 

16, 32, 64, 128, 256,512 

 

 

 

 

 

 

 

32 

1 

1 

0.2 

32 

256 

 

Model Training Parameter 

Tuning 
 

Trials Best Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32,64 

4, 8, 12, 16 

0.1, 0.3, 0.5, 0.7, 0.9 

0.1, 0.3, 0.5, 0.7, 0.9 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

AdamW 

Xavier  

Normal 

On 

4 

4 

0.1 

0.1 

0.0056171 

0.002717 

 

 

 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 
 

100 

10 

2 
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Table 4.22 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for 

Turkiye’s New Keynesian Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 

75 

Minimize Validation Loss 

100 

16, 32, 64, 128, 256,512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1,0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256,512 

16, 32, 64, 128, 256,512 

 

 

 

 

 

 

 

32 

1 

2 

0.2 

128 

32 

 

Model Training Parameter 

Tuning 
 

Trials Best Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

𝛽  

𝜃  

𝛼  

∈  

𝜎  

𝜑  

𝜙𝜋   
𝜙𝑦  

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32,64 

4, 8, 12, 16 

0.1, 0.3, 0.5, 0.7, 0.9 

0.1, 0.3, 0.5, 0.7, 0.9 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

Uniform Min:0.01  Max:0.999 

Uniform Min:0.6  Max:0.9 

Uniform Min:0.01  Max:0.999 

1,3,5,7,9,11 

1,3,5,7,9,11 

1,2,3,4 

Uniform Min:1  Max:2 

Uniform Min:0.01  Max:0.999 

AdamW 

Xavier  

Normal 

On 

4 

16 

0.1 

0.1 

0.001736 

0.000005 

 

 
 

0.36058 

0.75432 

0.66505 

7 

5 

4 

1.83874 

0.56441 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 

100 

10 

2 
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4.4.2 Hyperparameter Tuning for New Keynesian Model for Mexico 

Hyperparameter and model parameter tuning are performed for the PIM-LSTM 

architecture for Mexico’s New Keynesian Model. Initially, for the PIM-LSTM 

model, the calibrated parameters specific to Mexico’s New Keynesian model are 

utilized. These calibrated parameters are sourced from the article by Zendejas-

Fonseca et al. [50]. Table 4.23 displays the calibrated parameters for Mexico's New 

Keynesian model.  

Table 4.23 Calibrated Parameters from Zendejas-Fonseca’s Article [50] 

𝛼 = 0.33  Capital share in Production 𝜎 = 1  Relative Risk Aversion 

𝛽 = 0.99  Discount Factor 𝜃 = 0.6699  Calvo Parameter 

∈= 6  Elasticity of Substitution 𝜙𝜋 = 1.5  Feedback parameter of inflation 

𝜑 = 1  Frisch Elasticity 𝜙𝑦 = 0.12  Feedback parameter of output gap 

 

Table 4.24 shows the detailed setup for PIM-LSTM model with known parameters. 

The hyperparameter tuning experiment for PIM-LSTM model with known 

parameters in the New Keynesian Model was conducted using Ray Tune with 

OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize 

validation loss. The best model configuration included 32 hidden units in the first 

LSTM layer, one LSTM layer, and no linear layer, with a dropout rate of 0.3. The 

best training parameters were found using the Adam optimizer, Kaiming weight 

initialization, and Ones bias initialization, with batch shuffling enabled. The optimal 

batch size was 8, and the input sequence length was 16. The learning rate was 

0.007785, with a weight decay of 0.000019, and learning rate scheduling was applied 

using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor 

of 0.8. The training process was set to run for a maximum of 100 epochs, with a 

grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.1  determine 

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 +  𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹.  
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Secondly, the parameters in the New Keynesian model were treated as unknowns 

and integrated into the model as hyperparameters when implementing the PIM-

LSTM model for the New Keynesian model. Table 4.25 indicates the detailed setup 

for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment 

for the PIM-LSTM model with known parameters in the New Keynesian Model 

utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler, 

conducting 75 trials to minimize validation loss. The best model configuration 

selected 256 hidden units in the first LSTM layer, one LSTM layer, no linear layers, 

and a dropout rate of 0.2. The best training parameters included the Adam optimizer, 

Kaiming weight initialization, and Ones bias initialization, with batch shuffling 

enabled. The optimal batch size was 32, input sequence length was 4, and learning 

rate was 0.003166, with weight decay of 0.000257. Learning rate scheduling was 

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction 

factor of 0.8. The tuning also optimized New Keynesian model parameters (𝛽, 𝜃, 𝛼, ∈

, 𝜎, 𝜑 , 𝜙𝜋 and 𝜙𝑦), with the best values found at 𝛽 = 0.86045 , 𝜃 = 0.61734 , 𝛼 =

0.75074 , ∈= 5 , 𝜎 = 9 , 𝜑 = 3 , 𝜙𝜋 = 1.76522 and 𝜙𝑦 = 0.59629. Also, the 

weighting coefficients are 𝛼1 = 0.3 and 𝛼2 = 0.1. 
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Table 4.24 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for 

Mexico’s New Keynesian Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 

75 

Minimize Validation Loss 

100 

16, 32, 64, 128, 256,512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1,0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256,512 

16, 32, 64, 128, 256,512 

 

 

 

 

 

 

 

32 

1 

0 

0.3 

512 

16 

 

Model Training Parameter 

Tuning 
 

Trials Best Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32, 64 

4, 8, 12, 16 

0.1, 0.3, 0.5, 0.7, 0.9 

0.1, 0.3, 0.5, 0.7, 0.9 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

Adam 

Kaiming  

Ones 

On 

8 

16 

0.1 

0.1 

0.007785 

0.000019 

 

 

 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 
 

100 

10 

2 
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Table 4.25 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for 

Mexico’s New Keynesian Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 
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Minimize Validation Loss 

100 

16, 32, 64, 128, 256,512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1,0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256,512 

16, 32, 64, 128, 256,512 

 

 

 

 

 

 

 

256 

1 

0 

0.1 

512 

512 

 

Model Training Parameter 

Tuning 
 

Trials Best Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

𝛽  

𝜃  

𝛼  

∈  

𝜎  

𝜑  

𝜙𝜋   
𝜙𝑦  

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32,64 

4, 8, 12, 16 

0.1, 0.3, 0.5, 0.7, 0.9 

0.1, 0.3, 0.5, 0.7, 0.9 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

Uniform Min:0.01  Max:0.999 

Uniform Min:0.6  Max:0.9 

Uniform Min:0.01  Max:0.999 

1,3,5,7,9,11 

1,3,5,7,9,11 

1,2,3,4 

Uniform Min:1  Max:2 

Uniform Min:0.01  Max:0.999 

Adam 

Kaiming 

Ones 

On 

32 

4 

0.3 

0.1 

0.003166 

0.000257 

 

 
 

0.86045 

0.61734 

0.75074 

5 

9 

3 

1.76522 

0.59629 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 

100 

10 

2 
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4.4.3 Hyperparameter Tuning for DAGKM Model  

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM 

architecture for the DAGKM model. When working with the PIM-LSTM model, we 

utilize estimated parameters. These estimated parameters for the DAGKM model in 

the USA are derived from the article by Bailly et al. [3]. Table 4.26 exhibits the 

estimated parameters used in the DAGKM model for the USA.  

Table 4.26 Estimate of Parameters from Bailly’s Article [3] 

𝜌 = 0.0000352 𝑟 = 0.0126 𝛿 = 0.0427 

𝑘1 = 0.0584 

 

𝑘2 =4.03 ∆= 0.469 

 

Table 4.27 shows the detailed setup for PIM-LSTM model with known parameters. 

The hyperparameter tuning experiment for PIM-LSTM model with known 

parameters in the DAGKM model was conducted using Ray Tune with 

OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize 

validation loss. The best model configuration selected 64 hidden units in the first 

LSTM layer, one LSTM layer, zero linear layer, and a dropout rate of 0.1. The best 

training parameters were determined using the RMSProp optimizer, Normal weight 

initialization, and Normal bias initialization, with batch shuffling enabled. The 

optimal batch size was 8, and the input sequence length was 4. The learning rate was 

found to be 0.005097, with a weight decay of 0.00006. Learning rate scheduling was 

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction 

factor of 0.8. The training process was set to run for a maximum of 100 epochs, with 

a grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.5  determine 

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 +  𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹. 

Table 4.28 shows the detailed setup for PIM-LSTM model with unknown 

parameters. The hyperparameter tuning experiment for PIM-LSTM model with 
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unknown parameters in the DAGKM model was conducted using Ray Tune with 

OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize 

validation loss. The best model configuration selected 32 hidden units in the first 

LSTM layer, one LSTM layer, no linear layers, and a dropout rate of 0.4. The best 

training parameters were found using the RMSProp optimizer, Normal weight 

initialization, and Normal bias initialization, with batch shuffling enabled. The 

optimal batch size was 16, and the input sequence length was 4. The learning rate 

was 0.00764, with a weight decay of 0.00006. Learning rate scheduling was applied 

using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor 

of 0.8. Additional parameters were optimized, with the best values set for 𝜌 =

0.00004, 𝑘1 = 0.01935, 𝑘2 = 5.09022, 𝑟 = 0.00947, 𝛿 = 0.03806, ∆= 0.85094.  

Also, the best weighting coefficients are 𝛼1 = 0.1 and 𝛼2 = 0.3. 
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Table 4.27 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for 

DAGKM Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 

50 

Minimize Validation Loss 

100 

16, 32, 64, 128, 256,512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1,0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256,512 

16, 32, 64, 128, 256,512 

 

 

 

 

 

 

 

64 

1 

0 

0.1 

64 

256 

 

Model Training Parameter 

Tuning 
 

Trials Best 

Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32,64 

4, 8, 12, 16 

0.1,0.3,0.5,0.7 

0.1,0.3,0.5,0.7 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

RMSProp 

Normal 

Normal 

On 

8 

4 

0.1 

0.5 

0.005907 

0.00006 

 

 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 

100 

10 

2 
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Table 4.28 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for 

DAGKM Model 

Hyperparameter Tuning 
 

Trials Best Model 

Parameters 

Tuning Environment  

Search Algorithm 

Scheduler 

Hyperparameter Trials 

Tuning Objective 

Hyperparameter Trial Epochs 

LSTM Layer 1 Hidden Size 

LSTM Layer Num Layer 

Linear Layer Num Layer 

Dropout 1 

Linear Layer 1 Hidden Size  

Linear Layer 2 Hidden Size  

 

Ray Tune 

OptunaSearch 

AsyncHyperBandScheduler 

50 

Minimize Validation Loss 

100 

16, 32, 64, 128, 256, 512 

1, 2, 3, 4, 5 

0, 1, 2 

0.1, 0.2, 0.3, 0.4, 0.5 

16, 32, 64, 128, 256, 512 

16, 32, 64, 128, 256, 512 

 

 

 

 

 

 

 

32 

1 

0 

0.4 

256 

256 

 

Model Training Parameter 

Tuning 
 

Trials Best 

Training 

Parameters 

Optimizers 

Weight Initialization 

Bias Initialization 

Batch Shuffle 

Batch Size 

Input Sequence Length 

𝛼1  

𝛼2  

Learning Rate 

Weight Decay 

Learning Rate Scheduler 

Learning Rate Scheduler Patience 

Learning Rate Scheduler Factor 

𝜌  

 

𝑘1  

𝑘2  

𝑟   
𝛿  

∆  

Adam, RMSProp, SGD, AdamW 

Xavier, Kaiming, Normal  

Zeros, Ones, Normal 

On 

4, 8, 16, 32,64 

4, 8, 12, 16 

0.1,0.3,0.5,0.7 

0.1,0.3,0.5,0.7 

Log Uniform: Min:0.00001 Max:0.01 

Log Uniform: Min:0.000001 Max:0.01 

Reduce Learning Rate on Plateau 

2 

0.8 

Uniform Min:0.0000144  

Max:0.000044 

Uniform Min:0.00279  Max:0.148 

Uniform Min:2.47  Max:10 

Uniform Min:-0.0501  Max:0.0721 

Uniform Min:0  Max:0.0937 

Uniform Min:0.000036  Max:0.894 

 

RMSProp 

Normal 

Normal 

On 

16 

4 

0.1 

0.3 

0.00764 

 

0.00006 

 

 

0.00004 

 

0.01935 

5.09022 

0.00947 

0.03806 

0.85094 

 

Best Model Training 
 

Additional Setting  

Max Epoch 

Grace Period 

Reduction Factor 
 

100 

10 

2 
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4.5 Results 

Firstly, we conducted multivariate time series forecasting for the New Keynesian 

model for Turkiye. Six deep learning models were utilized to predict the values of 

the series in the New Keynesian model. These models are the LSTM model and 

LSTM model with CCF loss, PINN model with Data-Driven Solution, PINN model 

with Data-Driven Discovery, PIM-LSTM model with known parameters (referred to 

as PIM-LSTM1), and PIM-LSTM model with unknown parameters (referred to as 

PIM-LSTM2). After performing hyperparameter tuning on all models for three 

series, the performance metrics, MAE, RMSE and MASE were calculated. 

Furthermore, the Vector Error Correction Model (VECM) is implemented for 

multivariate time series forecasting. Table 4.29 shows the out-of-sample forecast 

performance of these models for each series. In terms of overall performance across 

all indicators, the PIM-LSTM1 achieves the lowest MAE (0.0073), RMSE (0.0132), 

and MASE (0.8013), indicating superior accuracy.  

Table 4.29 Test Set Model Performance for Turkiye’s New Keynesian Model  

Model MAE RMSE MASE 

LSTM Model 

PINN Model (Data-Driven Solution) 

PINN Model (Data-Driven Discovery) 

LSTM_CCF Model 

PIM-LSTM1 

PIM-LSTM2 

VECM Model 

0.0140 

0.0093 

0.0173 

0.0101 

0.0073 

0.0116 

0.0095 

0.0197 

0.0138 

0.0255 

0.0201 

0.0132 

0.0171 

0.014 

1.5288 

1.0194 

1.8814 

1.1062 

0.8013 

1.2696 

1.9027 

 

Figures 4.19, 4.20 and 4.21 depict the time series forecast plot for the CPI inflation 

rate, the short-term interest rate and real GDP of Turkiye. In these plots, the legend 

of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while 

"PIM-LSTM1" represents the PIM-LSTM model with known parameters. 
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Additionally, "PINN1" represents the PINN model with data-driven solutions and 

"PINN2" refers to the PINN model with data-driven discovery. 

Figure 4.19 shows the performance of different models in forecasting the CPI 

inflation rate over time, compared to the actual CPI inflation values, which are 

represented by the "Test Set" in orange. Each colored and dashed line corresponds 

to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-

LSTM1, and VECM. Most models struggle to fully capture the upward trend in 

inflation rate seen in the test set in late 2020. Nevertheless, among the models, the 

LSTM (green) and PINN1(purple) model forecasts are slightly closer to actual 

inflation values. Figure 4.20 shows the forecast of interest rates obtained by various 

models, including the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-

LSTM2, PIM-LSTM1, and VECM. Overall, the forecasts from the PIM-

LSTM1(red) model, PINN1(purple) model, and the PIM-LSTM2(light blue) model 

are closer to the actual interest rate values. Figure 4.21 shows the predictions of the 

real GDP using the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-

LSTM2, PIM-LSTM1, and VECM. Both the PIM-LSTM1 (red) model and VECM 

(brown) provide a more consistent and realistic forecast. 
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Figure 4.19 Forecast Plot of Turkiye’s Inflation Rate 
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Figure 4.20 Forecast Plot of Turkiye’s Interest Rate 



 

 

79 

 

 

 

Figure 4.21 Forecast Plot of Turkiye’s Real GDP 
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Secondly, we performed multivariate time series forecasting using the New 

Keynesian model for Mexico. We employed six deep learning models to forecast the 

values associated with the series in the New Keynesian framework. These models 

include the LSTM model, the LSTM model with CCF loss, the PINN model utilizing 

a Data-Driven Solution, the PINN model based on Data-Driven Discovery, the PIM-

LSTM model with known parameters (referred to as PIM-LSTM1), and the PIM-

LSTM model with unknown parameters (referred to as PIM-LSTM2). After 

performing hyperparameter tuning on all models for three series, the performance 

metrics, MAE, RMSE, and MASE, were calculated. Furthermore, the Vector 

Autoregressive (VAR) is implemented for multivariate time series forecasting. Table 

4.30 shows the out-of-sample forecast performance of these models for each series. 

In terms of overall performance across all indicators, the PIM-LSTM2 achieves the 

lowest MAE (0.0030), RMSE (0.0036), and MASE (1.5847), indicating superior 

accuracy.  

Table 4.30 Test Set Model Performance for Mexico’s New Keynesian Model 

Model MAE RMSE MASE 

LSTM Model 

PINN Model (Data-Driven Solution) 

PINN Model (Data-Driven Discovery) 

LSTM_CCF Model 

PIM-LSTM1 

PIM-LSTM2 

VAR Model 

0.0130 

0.0087 

0.0136 

0.0080 

0.0033 

0.0030 

0.0064 

0.0189 

0.0126 

0.0191 

0.0103 

0.0041 

0.0036 

0.0081 

6.7887 

4.5628 

7.1034 

4.2164 

1.7471 

1.5847 

3.3501 

 

Figures 4.22, 4.23 and 4.24 depict the time series forecast plot for the CPI inflation 

rate, the short-term interest rate and real GDP of Mexico. In these plots, the legend 

of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while 

"PIM-LSTM1" represents the PIM-LSTM model with known parameters. 
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Additionally, "PINN1" represents the PINN model with data-driven solutions and 

"PINN2" refers to the PINN model with data-driven discovery. 

Figure 4.22 shows the performance of different models in forecasting the CPI 

inflation rate over time, compared to the actual CPI inflation values, which are 

represented by the "Test Set" in orange. Each colored and dashed line corresponds 

to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-

LSTM1, and VAR. Although all models struggle to precisely capture the fluctuations 

observed in the inflation rate within the test set, the narrow range of the test set 

indicates that most of the forecasts are quite close to the actual values. Figure 4.23 

shows the forecast of interest rates obtained by various models, including the LSTM 

model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR. 

Overall, the PIM-LSTM1(red) model forecasts are closer to the actual interest rate 

values. Figure 4.24 exhibits the forecast of the real GDP using the LSTM model, 

LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR. The 

PIM-LSTM1 (red) model provides a more consistent and realistic forecast than the 

other models. 
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Figure 4.22 Forecast Plot of Mexico’s Inflation Rate 
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Figure 4.23 Forecast Plot of Mexico’s Interest Rate 
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Figure 4.24 Forecast Plot of Mexico’s Real GDP 
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Lastly, we conducted multivariate time series forecasting for the Dividend-

Augmented Goodwin-Keen model (DAGKM) for the USA. Six deep learning 

models were utilized to get the forecasts of the series in the DAGKM model. These 

models are LSTM model and LSTM model with CCF loss, PINN model with Data 

Driven Solution, PINN model with Data Driven Discovery, PIM-LSTM model with 

known parameters (referred to as PIM-LSTM1) and PIM-LSTM model with 

unknown parameters (referred to as PIM-LSTM2). After performing hyperparameter 

tuning on all models for three series, the performance metrics such as MAE, RMSE 

and MASE for three series were calculated. Furthermore, VECM is built for 

multivariate time series forecasting. Table 4.31 presents the out-of-sample forecast 

performance of these models for each series. In terms of overall performance across 

all indicators, the PIM-LSTM1 achieves the lowest MAE (0.0080), RMSE (0.0103), 

and MASE (1.5546), indicating superior accuracy.  

Table 4.31 Test Set Model Performance for US DAGKM model 

Model MAE RMSE MASE 

LSTM Model 

PINN Model (Data Driven Solution) 

PINN Model (Data Driven Discovery) 

LSTM_CCF Model 

PIM-LSTM1 

PIM-LSTM2 

VECM Model 

0.0190 

0.0098 

0.0295 

0.0098 

0.0080 

0.0174 

0.0399 

0.0290 

0.0174 

0.0475 

0.0149 

0.0103 

0.0265 

0.0447 

3.7129 

1.9161 

5.7727 

1.9144 

1.5546 

3.3869 

5.8167 

 

Figures 4.25, 4.26 and 4.27 shows the time series forecast plot for the wage share, 

the debt ratio and the employment rate of the USA. In these plots, the legend of 

"PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while 

"PIM-LSTM1" represents the PIM-LSTM model with known parameters. 

Additionally, "PINN1" represents the PINN model with data-driven solutions and 

"PINN2" refers to the PINN model with data-driven discovery. 
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Figure 4.25 illustrates the performance of different models in forecasting the wage 

share over time, compared to the actual wage share values, which are represented by 

the "Test Set" in orange. Each colored and dashed line corresponds to a different 

model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and 

VECM. All models except the VECM (in brown) effectively showed an upward 

trend in wage share, as seen in Figure 4.25. Among these models, the PINN1 (in 

purple) and PIM-LSTM1 (in red) performed better at capturing the small fluctuations 

that followed the initial increase. 

Figure 4.26 shows the forecast of debt ratio obtained by various models, including 

the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, 

and VAR. All models, except the VECM (brown), successfully captured the 

increasing trend in the debt ratio as seen in Figure 4.26. However, among these 

models, the PIM-LSTM1(red) model performs better, as its forecasted values are 

closer to the actual debt ratio values. 

Furthermore, Figure 4.27 shows that all models, except the VECM (brown), 

successfully capture the increasing trend in the employment rate. However, the 

forecasts from the LSTM_CCF (black) and the PIM-LSTM2(light blue) are more 

closely aligned with the actual values.  
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Figure 4.25 Forecast Plot of US Wage Share 
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Figure 4.26 Forecast Plot of US Debt Ratio 
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Figure 4.27 Forecast Plot of US Employment Rate 
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CHAPTER 5  

5 DISCUSSION AND CONCLUSION 

The main goal of this thesis is to adapt Physics-Informed Neural Networks (PINNs) 

to multivariate time series analysis, integrating causal relationships and cross-

correlations into the PINNs framework to enhance model performance. Additionally, 

a side goal is to introduce the PINNs model to economic modeling, which has not 

been previously applied in economics. To achieve this, we developed the Prior-

Informed Multivariate LSTM (PIM-LSTM) model, drawing inspiration from the 

PINNs framework.  The proposed PIM-LSTM model leverages prior knowledge 

constraints and incorporates cross-correlation function (CCF) constraints to improve 

multivariate time-series forecasting. In this study, while training our model, the 

econometric model and the CCF function are incorporated into the loss function. 

This integration results in adjusting weights and biases according to the modified 

loss function, improving the training process and model performance. By integrating 

economic prior knowledge and cross-correlation information into the model, the 

PIM-LSTM model produces more reliable and consistent forecasts, ultimately 

improving the performance of multivariate time series forecasting. In this context, 

how the PIM-LSTM model works for the New Keynesian model for Turkiye and 

Mexico macroeconomic series is demonstrated, and its performance is compared 

with that of the LSTM model and the PINNs model. While training our model, the 

New Keynesian model and the CCF function are incorporated into the loss function 

to improve the overall training process and model performance.  

In our analysis of Turkiye’s macroeconomic series, the PIM-LSTM model with 

known parameters achieves the lowest errors across all performance metrics, 

demonstrating the highest overall accuracy for the New Keynesian Model. 

Specifically, the PIM-LSTM model with known parameters achieves a Mean 

Absolute Error (MAE) of 0.0073, a Root Mean Squared Error (RMSE) of 0.0132, 
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and a Mean Absolute Scaled Error (MASE) of 0.8013. In our analysis of Mexico’s 

macroeconomic series, the PIM-LSTM model with unknown parameters achieves 

the lowest errors across all performance metrics, demonstrating the highest overall 

accuracy for the New Keynesian Model. Specifically, the PIM-LSTM model with 

unknown parameters achieves an MAE of 0.0030, an RMSE of 0.0036, and a MASE 

of 1.5847. Similarly, we show how the PIM-LSTM model works for the DAGKM 

model, and its performance is compared with the LSTM and PINNs models. Our 

analysis reveals that the PIM-LSTM model with known parameters achieves the 

lowest errors across all performance metrics, demonstrating the highest overall 

accuracy for the DAGKM model. Specifically, the PIM-LSTM model with known 

parameters achieves an MAE of 0.0080, RMSE of 0.0103, and MASE of 1.5546. 

Upon evaluating the performance metrics alongside the forecast plots in detail, it can 

be inferred that the PIM-LSTM model displayed the highest overall performance in 

multivariate time series analysis. Its ability to balance precision across different 

variables and effectively identify significant trends establishes it as the most 

dependable model for this analysis. 

Future research could extend the PIM-LSTM model to additional economic models, 

such as DSGE or agent-based models, to evaluate its adaptability across different 

macroeconomic models. Alternative architectures, like graph neural networks or 

transformers, could also be explored to enhance forecasting accuracy. Improving 

interpretability through causal inference and explainability methods would help 

validate learned relationships against economic theories. Additional studies could 

examine the model’s robustness under different economic conditions, including 

financial crises and changes in policy.  These studies may use statistical methods like 

VAR or Bayesian estimation to create hybrid models. Improving training methods 

with new loss functions and better optimization strategies could also boost 

performance. Finally, extending PIM-LSTM to capture time-varying and nonlinear 

economic dynamics would help address structural breaks and evolving relationships 

in financial systems. 
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APPENDIX A 

TABLES FOR EXPERIMENT SETUP 

Table A.1 Detailed data sources - quarterly and monthly data series 

Variable Sector FRED code Complete series name 

Gross value 
added 

Corporate NCBGAVQ027S Nonfinancial Corporate Business; Gross Value Added, 
Transactions 

Gross value 

added 
Noncorporate NNBGAVQ027S Nonfinancial Noncorporate Business; Gross Value 

Added, Transactions 
Consumption 
of fixed capital 

Corporate BOGZ1FA1063 
00003Q 

Nonfinancial Corporate Business; Consumption of Fixed 
Capital, Structures, Equipment, and Intellectual Property 

Products, Including Equity REIT Residential Structures 

(NIPA Basis), Transactions 
Consumption 
of fixed capital 

Noncorporate NNBCCFQ027S Nonfinancial Noncorporate Business; Consumption of 
Fixed Capital, Structures, Equipment, and Intellectual 

Property Products, Current Cost Basis, Transactions 
Net taxes on 
production and 

imports 

Corporate NCBPISQ027S Nonfinancial Corporate Business; Taxes on Production 
and Imports Less Subsidies, Payable, Transactions 

Net taxes on 
production and 

imports 

Noncorporate NNBTPIQ027S Nonfinancial Noncorporate Business; Taxes on 
Production and Imports Less Subsidies, Payable, 

Transactions 
Compensation 

of employees 
Corporate NCBCEPQ027S Nonfinancial Corporate Business; Compensation of 

Employees Paid, Transactions 
Compensation 

of employees 
Noncorporate NNBCEPQ027S Nonfinancial Noncorporate Business; Compensation of 

Employees Paid, Transactions 
Debt securities Corporate NCBDBIQ027S Nonfinancial Corporate Business; Debt Securities; 

Liability, Level 
Loans Corporate NCBLILQ027S Nonfinancial Corporate Business; Loans Including 

Foreign Direct Investment Intercompany Debt; Liability, 

Level 
Loans Noncorporate NNBTLBQ027S Nonfinancial Noncorporate Business; Loans Including 

Foreign Direct Investment Intercompany Debt; Liability, 

Level 
Time and 
saving deposits 

Corporate TSDABSNNCB Nonfinancial Corporate Business; Total Time and 
Savings Deposits; Asset, Level 

Time and 

saving deposits 
Noncorporate TSDABSNNB Nonfinancial Noncorporate Business; Total Time and 

Savings Deposits; Asset, Level 
Employment - 
non agri 

private sector 

Non agri LNU02032189 Employment Level - Nonagriculture, Private Industries 
Wage and Salary Workers 

Unemployment 
- non agri 

private sector 

Non agri LNU03032229 Unemployment Level - Nonagriculture, Private Wage 
and Salary Workers 

Employment - 

total private 
sector 

Tot private 

sector 

USPRIV All Employees, Total Private 

GDP deflator All economy GDPDEF Gross Domestic Product: Implicit Price Deflator 

Nonfinancial 

assets 

Corporate BOGZ1LM102010005Q Nonfinancial Corporate Business; Nonfinancial Assets, 

Market Value Levels 

Nonfinancial 

assets 

Noncorporate BOGZ1LM112010005Q Nonfinancial Noncorporate Business; Nonfinancial 

Assets, Market Value Levels 

Inventories Corporate BOGZ1LM105020015Q Nonfinancial Corporate Business; Inventories Excluding 

IVA, Current Cost Basis, Market Value Levels 

Inventories Noncorporate BOGZ1LM115020005Q Nonfinancial Noncorporate Business; Inventories, 

Market Value Levels 
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APPENDIX B 

ARCHITECTURE OF PIM-LSTM MODEL 

 

Figure B.1 Architecture of PIM-LSTM Model for New Keynesian Model  



 

 

101 

 

Figure B.2 Architecture of PIM-LSTM Model for DAGKM  
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