

PRIOR-INFORMED MULTIVARIATE LSTM (PIM-LSTM)

FOR ECONOMIC TIME SERIES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

PETEK AYDEMİR AYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

STATISTICS

MARCH 2025

Approval of the thesis:

PRIOR-INFORMED MULTIVARIATE LSTM (PIM-LSTM)

FOR ECONOMIC TIME SERIES

submitted by PETEK AYDEMİR AYDIN in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Statistics, Middle East Technical

University by,

Prof. Dr. Naci Emre Altun

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Vilda Purutçuoğlu

Head of the Department, Statistics

Prof. Dr. Ceylan Yozgatlıgil

Supervisor, Statistics, METU

Examining Committee Members:

Prof. Dr. Özlem İlk Dağ

Statistics, METU

Prof. Dr. Ceylan Yozgatlıgil

Statistics, METU

Prof. Dr. Seher Nur Sülkü

Econometrics, HBV Uni.

Assoc. Prof. Dr. Hande Alemdar

Computer Engineering, METU

Assoc. Prof. Dr. Kamil Demirberk Ünlü

Industrial Engineering, Atılım Uni.

Date: 06.03.2025

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name Last name : Petek Aydemir Aydın

 Signature :

v

ABSTRACT

PRIOR-INFORMED MULTIVARIATE LSTM (PIM-LSTM)

FOR ECONOMIC TIME SERIES

Aydemir Aydın, Petek

Doctor of Philosophy, Statistics

Supervisor: Prof. Dr. Ceylan Yozgatlıgil

March 2025, 103 pages

Deep Learning is a subset of machine learning that emphasizes algorithms influenced

by the human brain, called artificial neural networks. Physics-Informed Neural

Networks (PINNs) represent a distinct deep learning method that combines the

strengths of neural networks with the physical principles that dictate particular

systems. The main goal of this thesis is to enhance the PINNs model for multivariate

time series by integrating causal relationships and cross-correlations to improve

overall model performance. For this purpose, we developed a Prior-Informed

Multivariate Long Short-Term Memory (PIM-LSTM) model. First, its application to

the New Keynesian and Dividend-Augmented Goodwin-Keen (DAGKM) models is

demonstrated. Then, the forecast performance of the PIM-LSTM model is compared

to the LSTM and PINN models. Our findings indicate that the PIM-LSTM model

demonstrates strong predictive performance on the New Keynesian Model for

Turkiye and Mexico’s macroeconomic series, achieving lower MAE, RMSE, and

MASE compared to LSTM and PINNs models. The PIM-LSTM model also

performs well in the DAGKM model. Integrating the New Keynesian model for

vi

Turkiye and Mexico enhances the analysis by capturing country-specific monetary

policies and economic dynamics. Similarly, incorporating the DAGKM model

enhances the analysis by capturing cyclical growth and income distribution.

Keywords: Time series analysis, Forecasting Methods, Deep Learning Algorithms

vii

ÖZ

ÖN BİLGİYE DAYALI ÇOK DEĞİŞKENLİ LSTM (PIM-LSTM) İLE

EKONOMİK ZAMAN SERİLERİ

Aydemir Aydın, Petek

Doktora, İstatistik

Tez Yöneticisi: Prof. Dr. Ceylan Yozgatlıgil

Mart 2025, 103 sayfa

Derin Öğrenme, yapay sinir ağları olarak adlandırılan insan beyninden etkilenen

algoritmaları vurgulayan makine öğreniminin bir alt kümesidir. Fizik Bilgilendirmeli

Sinir Ağları (PINNs), sinir ağlarının güçlü yönlerini belirli sistemleri belirleyen

fiziksel ilkelerle birleştiren farklı bir derin öğrenme yöntemini temsil eder. Bu tezin

temel amacı, genel model performansını iyileştirmek için nedensel ilişkileri ve

çapraz korelasyonları entegre ederek çok değişkenli zaman serileri için PINNs

modelini geliştirmektir. Bu amaçla, Ön Bilgiye Dayalı Çok Değişkenli Uzun Kısa

Vadeli Bellek (PIM-LSTM) modeli geliştirilmiştir. İlk olarak, Yeni Keynesyen ve

Temettü Artırılmış Goodwin-Keen (DAGKM) modellerine uygulanması

gösterilmiştir. Ardından, PIM-LSTM modelinin tahmin performansı LSTM ve

PINNs modelleriyle karşılaştırılmıştır. Bulgularımız, PIM-LSTM modelinin Türkiye

ve Meksika'nın makroekonomik serileri için Yeni Keynesyen Model üzerinde güçlü

tahmin performansı sergilediğini ve LSTM ve PINN modellerine kıyasla daha düşük

MAE, RMSE ve MASE elde ettiğini göstermektedir. PIM-LSTM modeli DAGKM

modelinde de iyi performans göstermektedir. Türkiye ve Meksika için Yeni

viii

Keynesyen modelin entegre edilmesi, ülkeye özgü para politikalarını ve ekonomik

dinamikleri yakalayarak analizi geliştirmektedir. Benzer şekilde, DAGKM

modelinin dahil edilmesi, konjonktürel büyüme ve gelir dağılımını yakalayarak

analizi geliştirmektedir.

Anahtar Kelimeler: Çok Değişkenli Zaman Serileri Analizi, Öngörü Metotları,

Derin Öğrenme Algoritmaları

ix

To My Family

x

ACKNOWLEDGMENTS

Initially, I would like to sincerely express my endless appreciation to my thesis

advisor Prof. Dr. Ceylan Yozgatlıgil for assists, patience and recommendations

during my thesis. This thesis would not finish without her encouranging behaviours,

invaluable help and guidance. I feel honored to work with her and benefit from her

experience and knowledge. She is more than thesis advisor to me with her friendly

and sympathetic attitudes.

I would also like to present my appreciative thanks to my examining committee

members, Prof. Dr. Özlem İlk Dağ, Assoc. Prof. Dr. Hande Alemdar, Prof. Dr. Seher

Nur Sülkü, and Assoc. Prof. Dr. Kamik Demirberk Ünlü for their participation,

valuable and constructive feedback, suggestions, and comments.

I am grateful to my friends Neşe Bayram, Serenay Çakar, Rana Arslan, İrem

Tanrıverdi and Ozancan Özdemir for their support and motivation during my thesis.

Moreover, I would like to present my special gratitude to my instructors for helping

me to enhance my knowledge in this field.

I owe special thanks to Eray Aydın for his patience and loving support during this

thesis, I want to present my thanks to my friends Duygu Uzunlar Atamtürk and

Hüseyin Atamtürk who do not leave me alone during this thesis period.

Finally, I want to express my grateful thanks to my dear mother Gülcan Aydemir

and my dear father Yıldırım Aydemir who have provided me through endless love,

emotional and unconditional support in my life.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiv

LIST OF FIGURES ... xvi

LIST OF ABBREVIATIONS .. xviii

CHAPTERS

1 INTRODUCTION ... 1

2 LITERATURE REVIEW .. 7

2.1 Related Studies .. 8

3 METHODOLOGY .. 19

3.1 New Keynesian Macroeconomic Model ... 19

3.2 Dividend-Augmented Goodwin Keen Model ... 22

3.3 Cross Correlation Function ... 23

3.4 Deep Neural Networks and Automatic Differentiation 24

3.4.1 Perceptron and Deep Neural Networks ... 24

3.4.2 Training and Automatic Differentiation ... 26

3.5 Long Short-Term Memory Networks ... 28

3.6 Physics Informed Neural Networks .. 30

3.6.1 Architecture ... 31

3.6.2 Data-Driven Solutions of Partial Differential Equations 33

xii

3.6.3 Data-Driven Discovery of Partial Differential Equations 34

3.7 Prior-Informed Multivariate LSTM (PIM-LSTM) 35

3.8 Performance Metrics ... 38

4 DATA ANALYSİS ... 39

4.1 Dataset for the New Keynesian Model for Turkiye 39

4.1.1 Exploratory Data Analysis .. 40

4.1.2 Data Preprocessing .. 45

4.2 Dataset for the New Keynesian Model for Mexico 48

4.2.1 Exploratory Data Analysis .. 49

4.2.2 Data Preprocessing .. 53

4.3 Dataset for Dividend-Augmented Goodwin-Keen Model 54

4.3.1 Exploratory Data Analysis .. 55

4.3.2 Data Preprocessing .. 59

4.4 Experiment Setup .. 60

4.4.1 Hyperparameter Tuning for New Keynesian Model for Turkiye 62

4.4.2 Hyperparameter Tuning for New Keynesian Model for Mexico 67

4.4.3 Hyperparameter Tuning for DAGKM Model 71

4.5 Results ... 75

5 DISCUSSION AND CONCLUSION ... 91

REFERENCES .. 93

APPENDICES

TABLES FOR EXPERIMENT SETUP .. 99

ARCHITECTURE OF PIM-LSTM MODEL ... 100

CURRICULUM VITAE ... 103

xiii

LIST OF TABLES

TABLES

Table 4.1 Descriptive Statistics of Turkiye’s Macroeconomic Series 41

Table 4.2 ADF test for Inflation Rate ... 44

Table 4.3 ADF test for Interest Rate ... 44

Table 4.4 ADF test for Real GDP ... 44

Table 4.5 Toda-Yamamoto Causality Test Result .. 45

Table 4.6 1st Input and Output Sequence used in the LSTM model 47

Table 4.7 2nd Input and Output Sequence used in the LSTM model 47

Table 4.8 1st Input and Output Sequence used in the PINN model 47

Table 4.9 2nd Input and Output Sequence used in the PINN model 47

Table 4.10 Descriptive Statistics of Mexico’s Macroeconomic Series 49

Table 4.11 ADF test for Inflation Rate ... 52

Table 4.12 ADF test for Interest Rate ... 52

Table 4.13 ADF test for Real GDP ... 52

Table 4.14 Toda-Yamamoto Causality Test Result .. 53

Table 4.15 Descriptive Statistics of US Economic Indicators 55

Table 4.16 ADF test for US Wage Share .. 58

Table 4.17 ADF test for US Debt Ratio .. 58

Table 4.18 ADF test for US Employment Rate .. 58

Table 4.19 Toda-Yamamoto Causality Test Result .. 59

Table 4.20 Calibrated Parameters from Güloğlu’s Article [12].............................. 63

Table 4.21 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Turkiye’s New Keynesian Model ... 65

Table 4.22 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Turkiye’s New Keynesian Model ... 66

Table 4.23 Calibrated Parameters from Zendejas-Fonseca’s Article [50] 67

xiv

Table 4.24 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Mexico’s New Keynesian Model .. 69

Table 4.25 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Mexico’s New Keynesian Model .. 70

Table 4.26 Estimate of Parameters from Bailly’s Article [3] 71

Table 4.27 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

DAGKM Model ... 73

Table 4.28 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

DAGKM Model ... 74

Table 4.29 Test Set Model Performance for Turkiye’s New Keynesian Model 75

Table 4.30 Test Set Model Performance for Mexico’s New Keynesian Model 80

Table 4.31 Test Set Model Performance for US DAGKM model 85

Table A.1 Detailed data sources - quarterly and monthly data series 99

xv

LIST OF FIGURES

FIGURES

Figure 3.1 Structure of Perceptron .. 24

Figure 3.2 Structure of the FFNN ... 25

Figure 3.3 Computational Graph of AD ... 27

Figure 3.4 Memory Block in LSTM [37] ... 30

Figure 3.5 Architecture of PINNs [7] ... 32

Figure 3.6 Architecture of PIM-LSTM Model for the New Keynesian Model 37

Figure 4.1 The Time Series Plot of Turkiye’s Inflation Rate 42

Figure 4.2 The Time Series Plot of Turkiye’s Interest Rate 42

Figure 4.3 The Time Series Plot of Turkiye’s Real GDP 42

Figure 4.4 The sACF and sPACF of Turkiye’s Inflation Rate 43

Figure 4.5 The sACF and sPACF of Turkiye’s Interest Rate 43

Figure 4.6 The sACF and sPACF of Turkiye’s Real GDP 43

Figure 4.7 The Time Series Plot of Mexico’s Inflation Rate 50

Figure 4.8 The Time Series Plot of Mexico’s Interest Rate.................................... 50

Figure 4.9 The Time Series Plot of Mexico’s Real GDP 51

Figure 4.10 The sACF and sPACF of Mexico’s Inflation Rate 51

Figure 4.11 The sACF and sPACF of Mexico’s Interest Rate................................ 51

Figure 4.12 The sACF and sPACF of Mexico’s Real GDP.................................... 52

Figure 4.13 The Time Series Plot of the Wage Share of US 56

Figure 4.14 The Time Series Plot of the Debt Ratio of US 56

Figure 4.15 The Time Series Plot of the Employment Rate of US 57

Figure 4.16 The sACF and sPACF of Wage Share of US 57

Figure 4.17 The sACF and sPACF of Debt Ratio of US .. 57

Figure 4.18 The sACF and sPACF of Employment Rate of US............................. 58

Figure 4.19 Forecast Plot of Turkiye’s Inflation Rate .. 77

xvi

Figure 4.20 Forecast Plot of Turkiye’s Interest Rate .. 78

Figure 4.21 Forecast Plot of Turkiye’s Real GDP .. 79

Figure 4.22 Forecast Plot of Mexico’s Inflation Rate ... 82

Figure 4.23 Forecast Plot of Mexico’s Interest Rate ... 83

Figure 4.24 Forecast Plot of Mexico’s Real GDP ... 84

Figure 4.25 Forecast Plot of US Wage Share .. 87

Figure 4.26 Forecast Plot of US Debt Ratio .. 88

Figure 4.27 Forecast Plot of US Employment Rate .. 89

Figure B.1 Architecture of PIM-LSTM Model for New Keynesian Model 100

Figure B.2 Architecture of PIM-LSTM Model for DAGKM 101

xvii

LIST OF ABBREVIATIONS

ABBREVIATIONS

AC-OPF

ACF

AD

ADF

ALDL

APINN

AR

AC-Optional Power Flow

Autocorrelation Function

Automatic Differentiation

Augmented Dickey Fuller

Augmented Lagrangian Deep Learning

Augmented PINN

Autoregressive

ARMA

ARIMA

Autoregressive Moving Average

Autoregressive Integrated Moving Average

ANN

BNN

B-PINN

CNN

cPINN

DAGKM

DGM

DL

DSGE

FFNN

FORM

fPINNs

FRED

hp-VPINN

IPINN

IS

LRS

Artificial Neural Networks

Bayesian Neural Network

Bayesian PINN

Convolutional Neural Network

Conservative PINN

Dividend-Augmented Goodwin-Keen Model

Deep Galerkin Methods

Deep Learning

Dynamic Stochastic General Equilibrium

Feed-Forward Neural Network

First-Order Reliability Method

Fractional PINNs

Federal Reserve Economic Data

High-Order Polynomial Variational PINN

Improved PINN

Investment-Savings

Locally Refined Sampling Strategy

xviii

LSTM

MAE

MASE

MLP

MO-PINNs

MO-MPINNs

MSE

ND

NKPC

NSE

PACF

PDEs

PIM-LSTM

PINNs

PINNs-WE

QML

RMSE

RNN

SA-PINNs

TSF

WSS

XPINNs

VAR

VECM

Long Short-Term Memory

Mean Absolute Error

Mean Absolute Scaled Error

Multi-Layer Perceptron

Multi-Output PINNs

Multi-Output Multi-Physics-Informed Neural Networks

Mean Squared Error

Numerical Differentiation

New Keynesian Philips Curve

Navier- Stokes Equations

Partial Autocorrelation Function

Partial Differential Equations

Prior-Informed LSTM

Physics Informed Neural Networks

PINNs with Equation Weighting

Quantum Machine Learning

Root Mean Squared Error

Recurrent Neural Network

Self-Adaptive Weights PINNs

Time Series Forecasting

Wall Shear Stress

Extended PINNs

Vector Autoregressive

Vector Error Correction Model

1

CHAPTER 1

1 INTRODUCTION

Since the dawn of humanity, people have wondered about the future and tried to

predict what will happen. Forecasting has attracted the interest of researchers and

experts in many fields and has become an important activity in economics, business,

marketing and various disciplines. This study focuses on forecasting through time

series analysis. A time series consists of data points gathered at consecutive time

intervals, which may be equally or unequally spaced. Time series analysis is a

statistical method used to examine a sequence of data points collected over time,

aiming to identify patterns, trends, and other characteristics within the data. It plays

a significant role in understanding the temporal dynamics of the dataset, which can

then be used to make informed decisions. The primary goal of time series analysis is

to obtain reasonably accurate forecasts. Time series forecasting entails constructing

models based on historical data and using these models to predict future

observations. Time series analysis can be categorized into univariate and

multivariate analyses. Univariate time series analysis deals with a time-dependent

variable and focuses on understanding its behavior and making predictions based

solely on its past values. The traditional univariate models, including Autoregressive

(AR), Autoregressive Moving Average (ARMA) and Autoregressive Integrated

Moving Average (ARIMA) introduced by Box and Jenkins [5], and Exponential

Smoothing introduced by Brown [6], are widely opted for univariate time series

forecasting (TSF). Multivariate time series analysis involves multiple interrelated

time-dependent variables, where the relationships and dependencies between these

variables are also considered. This added complexity requires more sophisticated

modeling techniques but can provide more accurate and comprehensive forecasts by

leveraging the interactions between the variables. The vector autoregressive (VAR)

model proposed by Sims [39] is mostly preferred traditional model for multivariate

2

time series forecasting. It is the multivariate version of the AR model. In a VAR

model, each variable is represented as a linear function of its own past values and

the past values of all other variables.

VAR models are particularly effective in describing the dynamic behavior of time

series and producing better forecasts compared to univariate models. However, the

limitation of this model is that it only works well with stationary series. The second

classical multivariate time series forecasting method is the Vector Error Correction

Model (VECM). It is a cointegrated VAR model. VECM is an advanced statistical

technique designed to analyze and predict multivariate time series data that exhibit a

cointegration. Cointegration indicates a long-run association among variables,

despite short term fluctuations. The VECM is particularly useful in economic and

financial contexts, where variables often have long-run interrelationships, such as

interest rates, exchange rates, and prices. Despite VECM offering a comprehensive

and accurate framework for understanding and forecasting complex time series by

grasping not only short-term variations but also long-term trends, it has certain

limitations: it is only effective with difference-stationary series.

Traditional methods for multivariate time series analysis have been limited since

real-world time series have undesirable characteristics such as non-stationarity,

seasonality, irregular fluctuations and cyclical variations. These methods fail to

capture these undesirable characteristics and need large datasets to accurately capture

the interrelationship between the variables. They are also sensitive to outliers. Due

to these limitations, deep learning methods have become the preferred solution. Deep

learning (DL), a subfield of machine learning, has revolutionized data analysis and

prediction capability. Deep learning utilizes multilayer artificial neural networks to

develop algorithms that extract meaningful patterns and features from large data sets.

It is effectively used in various areas, including natural language processing (NLP),

image processing, speech recognition, gaming, and autonomous vehicles.

The main strength of this field is its capacity to handle intricate, high-dimensional

data. Unlike traditional machine learning algorithms, deep learning models can

3

automatically extract features from data. This reduces the need for manual feature

engineering and enhances the model’s overall performance. Deep learning models

employ different types of artificial neural networks, the most widely common of

which are Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks

(LSTMs), and Transformers. The success of deep learning is directly tied to the

presence of large datasets and powerful computational resources. Large datasets

enable models to make more general and accurate predictions, while powerful

computational resources speed up the training process of these models. For this

reason, deep learning is a constantly evolving and expanding field in machine

learning. As new algorithms and architectures are developed, the application areas of

deep learning are expanding and providing effective solutions in more industries. As

part of these advancements, Physics-Informed Neural Networks (PINNs) utilize DL

techniques to develop more precise and interpretable models of physical systems.

PINNs incorporate physical laws and differential equations directly into the training

process of neural networks, ensuring that predictions align with established scientific

principles while learning from data. By incorporating known deterministic

relationships between variables into neural networks, PINNs leverage this additional

information to typically enhance the prediction and forecasting performance of the

models. PINNs not only learn from data but also make predictions that align with

physical laws, providing more profound solutions to scientific and engineering

challenges. This approach also allows PINNs to be applied in complex economic

models, facilitating more accurate and theoretically consistent modeling of economic

dynamics.

Despite the importance of multivariate time series forecasting, the literature lacks

sufficient models that effectively capture these complex relationships. Most existing

models either ignore or oversimplify these interactions, creating a significant

opportunity for advancements in forecasting methodologies that better incorporate

variable interdependencies.

4

The primary objective of this thesis is to propose a novel Multivariate Physics-

Informed Neural Network (PINN) model for multivariate time series forecasting,

considering the interdependencies and cross-correlations among variables. The

proposed model aims to enhance forecasting accuracy by explicitly capturing the

relationships among multiple variables. Additionally, this model will be applied to

the New Keynesian model and the Dividend-Augmented Goodwin-Keen model,

which have not yet been explored with such approaches in the context of economic

data. The applications of this method to economic data aim to provide new insights

into forecasting within this theoretical framework.

The New Keynesian macroeconomic model is a development of Keynesian

economics, merging microeconomic theory with macroeconomic consequences. It

underscores the significance of market imperfections, specifically price and wage

rigidities, in explaining why the economy may not always achieve full employment,

and how monetary policy can impact output and inflation. It provides a framework

for analyzing monetary and fiscal policy, illustrating how these policies can stabilize

the economy by affecting aggregate supply and demand. The fundamental

assumption of New Keynesian macroeconomic analysis is the rational expectations

of households and firms. The New Keynesian model includes three core equations:

the New Keynesian Phillips Curve (NKPC), the dynamic Investment-Savings (IS)

equation, and Taylor's Rule. Together, these equations depict the behavior of

inflation, output, and interest rates, offering a comprehensive perspective of

economic dynamics. The NKPC explains that the expected inflation one period

ahead and the output gap influence the current inflation. The dynamic IS equation

states that the current output gap is a function of the expected output gap one period

ahead, expected inflation, the nominal interest rate, and the natural rate of interest.

The difference between the output and the potential output is called the output gap.

The Taylor rule explains how nominal interest rates are determined. According to

the Taylor rule, nominal interest rates depend on the current inflation rate and the

output gap.

5

The Dividend-Augmented Goodwin-Keen Model (DAGKM) extends the traditional

Goodwin-Keen model by incorporating dividend payments into the analysis of

economic cycles, particularly focusing on the interactions between wage share,

employment rate, and debt ratio. This enhancement acknowledges that firms invest

their profits and distribute a portion as dividends to shareholders, influencing debt

accumulation dynamics. Key components of the DAGKM model are wage share,

employment rate and debt ratio. The wage share is a fraction of the total output

allocated to employee compensation. The employment rate is the ratio of employed

individuals to the total labor force. The debt ratio is the proportion of corporate debt

relative to total economic output. By integrating dividend payments into the

Goodwin-Keen framework, the DAGKM Model offers a more comprehensive

understanding of the interplay between corporate financial policies and

macroeconomic cycles. This enhancement underscores the importance of

considering dividend distributions when analyzing the sustainability and stability of

economic growth patterns.

This study seeks to leverage Physics-Informed Neural Networks (PINNs) for

analyzing time series data, aiming to enhance the predictive accuracy and theoretical

consistency of both the New Keynesian and Dividend-Augmented Goodwin-Keen

models. In this framework, we propose the Prior-Informed Multivariate LSTM

(PIM-LSTM), a novel deep learning architecture designed to incorporate prior

knowledge constraints into multivariate time-series forecasting. The proposed PIM-

LSTM model, inspired by Physics-Informed Neural Networks (PINNs), leverages

prior knowledge constraints and incorporates cross-correlation function (CCF)

constraints to improve multivariate time-series forecasting.

The remaining part of this thesis is organized as follows: Chapter 2 provides a review

of the literature on PINNs models. Chapter 3 discusses the New Keynesian model,

the DAGKM model, DL methods, including LSTM and PINNs models and

architecture of PIM-LSTM model. Chapter 4 provides an empirical analysis utilizing

the PIM-LSTM model to forecast Turkey's output, inflation, and nominal interest

rate within the context of the New Keynesian model. It also includes an empirical

6

analysis using the same PIM-LSTM model to forecast Mexico's output, inflation,

and nominal interest rate under the New Keynesian framework. The PIM-LSTM

model is also applied to forecast the debt ratio, employment rate and wage share in

the United States for the DAGKM model. It also includes a comparison of the out-

of-sample performance of all models. Finally, Chapter 5 includes the conclusion and

further discussion.

7

CHAPTER 2

2 LITERATURE REVIEW

In scientific computing, deep neural networks have been explored for solving partial

differential equations (PDEs) through various methods, including augmented

Lagrangian deep learning (ALDL) [16], Neural Operators [24, 26], deep Galerkin

methods (DGM) [40], and Physics-Informed Neural Networks (PINNs) [48]. Among

these, PINNs have emerged as a leading approach due to their ability to seamlessly

integrate physical laws into the learning process, making them highly effective for

solving complex PDEs.

PINNs offer several advantages, including robust generalization, automatic

differentiation, and grid-free capabilities [45, 34]. By incorporating physical laws

directly into the neural network framework, PINNs use a loss function that combines

residuals from differential equations and boundary conditions, eliminating the need

for simulation or experimental data. This approach reduces reliance on large labeled

datasets, enhances computational efficiency, and ensures physically consistent

solutions. Additionally, PINNs' ability to generalize well to unseen data makes them

more versatile. Their grid-free nature allows them to be applied to complex

geometries, and the use of automatic differentiation simplifies the computation of

derivatives. These features make PINNs highly suitable for a wide range of scientific

applications, particularly in data-scarce environments.

PINNs have been the subject of increasing amounts of research in many different

fields, especially in engineering and computational sciences. In their review article,

Lawal et al. (2022) [25] state that 288 documents were chosen from the literature on

these disciplines. Their review article offers a perceptive depiction of the

development of PINNs over the previous three and a half years, showing a consistent

8

increase in publications from 2019 to mid-2022, with a peak in 2021. This pattern

demonstrates how scholars are becoming more interested in and dedicated to using

PINNs to solve challenging issues and improve their work. In this part, the most

recent studies on PINNs from different research areas as well as studies including its

hybrid forms will be reviewed.

2.1 Related Studies

In their paper, Raissi et al. (2019) [35] introduced the concept of PINNs to

enrich deep learning. To this end, they employed deep neural networks to address

supervised learning tasks by incorporating established principles from mathematical

physics, specifically those defined by general nonlinear partial differential equations

(PDEs). Based on the characteristics and structure of their available data, they

developed two distinct types of algorithms: one for continuous time models and

another for discrete-time models. They emphasize that their proposed method should

not be viewed as a replacement for traditional numerical techniques used to solve

PDEs, such as finite element or spectral methods. Rather, they demonstrate that

classical methods, including Runge-Kutta time-stepping schemes, can effectively

complement deep neural networks. Their integration provides valuable insights for

creating structured predictive algorithms. Additionally, the simplicity of

implementing neural networks supports the rapid development and testing of new

ideas, potentially initializing a new era of data-driven scientific computing.

In their paper, Mao et al. (2020) [28] investigate the use of PINNs to the solution of

forward and inverse Euler equation problems for high-velocity aerodynamic flows.

Despite discontinuities such as oblique shock waves, they show that PINNs can solve

the forward issue and capture solutions with little scattered input. Motivated by

Schlieren photography, PINNs for the inverse issue perform better than conventional

techniques in situations where standard techniques are inadequate. They do this by

reliably inferring density, velocity, and pressure fields from data on density gradients

and pressure. While their study also demonstrates that employing Euler equations in

https://www.sciencedirect.com/topics/engineering/deep-learning

9

characteristic form outperforms the conservative form, PINNs still lag behind

conventional approaches for forward issues. This suggests that PINNs may be useful

in the future for aerodynamic analysis applications, as they are adept at resolving

challenging inverse problems.

Despite notable advancements in simulating flow problems through the numerical

discretization of the Navier–Stokes equations (NSE), Cai et al. (2021) [7] discuss the

existing challenges in their paper. For instance, they stated that current methods still

struggle with integrating noisy data, managing the complexity of mesh generation,

and addressing high-dimensional problems governed by parametrized NSE. To

overcome these issues, the authors proposed a method called flow physics-informed

learning, which utilizes PINNs to integrate data and mathematical models

effectively. Their findings indicate that this approach successfully infers hidden

velocity fields and unknown parameters of PDEs from sampled data alone, indicating

the potential of PINNs to address the limitations of conventional numerical

simulations.

Cai et al. (2021) [8] applied the PINN framework to address several representative

heat transfer challenges. They utilized PINNs as a transformative solution for

bridging the gap between experimental and computational heat transfer. By

integrating conservation laws directly into their architecture and utilizing sparse

measurements through multifidelity methods, PINNs enable accurate inference of

velocity and temperature fields, as well as unknown thermal boundary conditions or

interfaces. Their effectiveness is particularly evident in handling realistic conditions

that challenge conventional computational methods. Applications in power

electronics highlight the practical utility of PINNs in addressing complex heat

transfer problems encountered in industrial settings. The collective findings confirm

that PINNs not only excel in solving ill-posed problems difficult for traditional

methods but also effectively bridge the gap between computational and experimental

heat transfer.

10

Tanios (2021) [41] explores the application of PINNs for pricing multi-asset

European options within the high-dimensional Black-Scholes and Heston models.

Given the recent success of PINNs in approximating solutions to PDEs, their utility

extends to accurately estimating solutions and unknown model parameters from

observed data. They demonstrate how PINNs offer a straightforward method for

calculating the Greeks—quantities that measure the sensitivity of a derivative's price,

represented as partial derivatives (either first-order or higher) in calculus.

To improve the quantification of near-wall blood flow and wall shear stress (WSS),

which are difficult to quantify yet essential for understanding cardiovascular

disorders, Arzani et al. (2021) [1] utilize PINNs. Conventional approaches to patient-

specific computational and experimental WSS assessment suffer from limited

resolution, noise, and uncertainty. By combining mathematical equations—more

specifically, the Navier-Stokes equations that govern blood flow—with sparse

measurement data, PINNs provide a strong deep learning methodology. Their study

shows that by absorbing a few measurement points, PINNs can effectively handle

blood flow issues when inlet and output boundary conditions are unknown. This is

especially useful because patient-specific fluid dynamics models sometimes have

unknown boundary conditions. Their examples from idealized models of stenosis

and aneurysms show how limited measurements combined with a partial

understanding of flow mechanics can produce accurate near-wall blood flow data.

This hybrid data-driven and physics-based approach has significant potential to

advance high-fidelity modeling of near-wall hemodynamics in cardiovascular

disease.

Jiang et al. (2022) [20] investigate nonlinear dynamics inside optical fibers while

utilizing PINNs to solve the nonlinear Schrödinger equation. The paper offers a

thorough assessment of PINNs' abilities to handle a range of physical phenomena,

including higher-order nonlinear effects, dispersion, and self-phase modulation. The

study looks at both soliton and multipulse propagation, and it finds that adding

physical characteristics to the PINN as extra input controls, such as pulse peak power

and subpulse amplitudes, greatly improves the network's generalization capabilities

11

in many contexts. The shortcomings of earlier models—which were frequently

limited to isolated instances—are addressed by this approach. The findings show

that, in comparison to the split-step Fourier method, PINNs require significantly less

data and have lower computational complexity, making them an effective tool for

solving PDEs and advancing the fields of scientific computing and automated

modeling in fiber optics.

To accurately solve the AC-Optimal Power Flow (AC-OPF) problem which is often

challenging due to its non-linear and non-convex structure, Nellikkath and

Chatzivasileiadis (2022) [31] trained PINNs. By embedding these equations directly

into the training process, the dependency on the size of the training data set is

substantially reduced, making the model more efficient and practical for real-world

applications. Moreover, this integration significantly improves the worst-case

performance of neural networks, ensuring more reliable and robust outcomes in

power system operations. This development represents a crucial step forward in

enhancing the effectiveness and dependability of neural networks in managing

complex power systems.

Bararnia and Esmaeilpour (2022) [4] investigate the use of PINNs to solve

challenging thermal-fluid issues, with a particular emphasis on thermal and viscous

boundary layers. The three benchmark problems they chose to study the impact of

unbounded boundary conditions and equation nonlinearity on the width and depth of

the network structure were Blasius-Pohlhausen, Falkner-Skan, and Natural

Convection. They used big-data training using TensorFlow to create and train the

PINN models, revealing hidden physics in transport phenomena. The correctness and

dependability of the PINN models were confirmed by comparing their predictions

with the outcomes of using Richardson extrapolation in conjunction with the finite

difference technique. Key findings showed that the number of neurons and layers

needed in a neural network to produce precise solutions is highly influenced by the

Prandtl number in the heat equation. Furthermore, to effectively manage the infinite

boundary condition, handling unbounded boundary conditions by placing the

boundary farther from the origin required adding more layers and neurons. The PINN

12

models that had been trained were effectively utilized for assessing boundary layer

thicknesses on previously unseen data, proving their resilience and usefulness. In

addition to providing insights into how neural network topologies can be optimized

for best performance, this research shows how PINNs can be used to solve extremely

nonlinear and complex boundary layer issues in thermal-fluid dynamics.

Jeong et al. (2024) [19] applied PINNs to overcome a complex multi-physics

problem involving electromagnetism, fluid dynamics, and heat transfer. They

applied this model to a cylindrical conductor, considering the interplay between

electrical and magnetic fields and the thermal interactions between the conductor and

its environment. To enhance the performance of their PINN, the authors divided the

problem into seven interlinked neural networks. They employed domain

decomposition and variable separation techniques, optimizing each network

individually and ensuring efficient data transfer between them. Their results

demonstrate impressive accuracy, with less than 2% error compared to traditional

numerical methods and analytical solutions.

Recent advancements have introduced extensions to the traditional PINN

framework, aiming to enhance its capabilities further. In addition to papers utilizing

traditional PINNs in different research fields, we also review studies focused on

developing hybrid forms of PINNs to improve their predictive capability under

different circumstances (see e.g. [32], [2], [46], [23]). For instance, Pang et al. [32]

extend PINNs to fractional PINNs (fPINNs) which will be efficient in solving space-

time fractional advection-diffusion equations (fractional ADEs). They demonstrate

the accuracy and effectiveness of fPINNs in solving multidimensional forward and

inverse problems with forcing terms whose values are only known at randomly

scattered spatio-temporal coordinates. Additionally, they introduce a hybrid

approach that involves constructing the residual in the loss function using both

automatic differentiation for the integer-order operators and numerical discretization

for the fractional operators. Their proposed PINNs solve several inverse problems in

one, two, and three dimensions, enabling the identification of the fractional orders,

13

diffusion coefficients, and transport velocities while obtaining accurate results under

proper initializations even in the presence of significant noise.

Bai et al. (2022) [2] propose an improved PINN (IPINN), which integrates a local

adaptive activation function for neurons to enhance neural network performance.

They successfully applied the IPINN to the Ivancevic option pricing model and the

Black–Scholes model in finance, demonstrating its effectiveness in improving

accuracy and efficiency for complex financial problems. They address the rogue

wave and soliton solutions of the Ivancevic option pricing model, as well as the

numerical solution of the Black–Scholes model using IPINN method. Their

numerical experiments demonstrate that the IPINN method exhibits faster

convergence, greater stability, and higher accuracy compared to the traditional PINN

method.

Yang et al. (2021) [46] introduce a Bayesian PINN (B-PINN) for addressing both

forward and inverse nonlinear problems characterized by PDEs and noisy data. In

their Bayesian framework, the prior is established by combining a Bayesian neural

network (BNN) with a PINN for PDEs, while the posterior can be estimated using

either Hamiltonian Monte Carlo or variational inference. Compared to PINNs, their

results indicate that B-PINNs not only provide better uncertainty quantification but

also deliver more accurate predictions in high-noise scenarios, thanks to their ability

to mitigate overfitting.

Kharazmi et al. (2021) [23] develop a high-order polynomial Variational PINN (hp-

VPINN) method integrating a variational formulation based on the sub-domain

Petrov–Galerkin method, where neural networks are used as the trial space and

localized non-overlapping high-order polynomials form the test space. This

innovative combination enhances the method's ability to model PDE solutions

accurately by utilizing the complementary strengths of neural networks and

polynomial functions. The use of integration-by-parts, which increases performance

in processing difficult or rough solutions, such as singularities, steep gradients, and

abrupt changes in the data, is a fundamental component of hp-VPINN. Their

14

comparative analysis with traditional PINNs highlights the hp-VPINN's improved

accuracy and efficiency, confirming its robustness in practical applications.

Jagtap et al. (2020) [18] introduce an innovative method called the conservative

PINN (cPINN), designed to handle nonlinear conservation laws in discrete domains.

In this approach, discrete domains refer to the segmented regions of the

computational domain created by partitioning. The cPINN enforces conservation

principles by maintaining flux continuity in the strong form at the interfaces between

these segments. Furthermore, the cPINN utilizes locally adaptive activation

functions, which accelerates the training process compared to traditional fixed

activation functions.

In 2020, Jagtap and Karniadakis [17] propose the extended PINNs (XPINNs)

framework, a novel development that generalizes and improves upon existing PINN

and cPINN methodologies by incorporating a more flexible and comprehensive

space-time domain decomposition approach. XPINNs leverage multiple neural

networks deployed in smaller subdomains, enhancing representation capacity and

parallelization. This approach reduces training costs and improves computational

efficiency by allowing parallel processing across both spatial and temporal domains.

Considering the challenges of PINNs and XPINNs in achieving optimal

performance, particularly in handling complex domain decompositions and

parameter sharing, Hu et al. (2023) [15] introduce the augmented PINN (APINN), a

novel approach designed to enhance their capabilities. One of the key innovations of

APINN is its ability to utilize all available training data across the entire domain,

rather than limiting data usage to specific subdomains. This approach enhances the

efficiency of the learning process and improves the generalization of the model.

Additionally, APINN employs parameter sharing across sub-networks to capture

common features and components in decomposed functions, thus boosting the

overall performance and generalization capability. Their approach addresses key

limitations of existing methods and opens new places for applying PINNs to complex

scientific and engineering problems.

15

Wandel et al. (2022) [44] introduce an innovative approach by combining PINNs

and convolutional neural networks to deal with the challenge of solving PDEs. The

approach produces rapid and continuous solutions which can be applicable across

diverse domains. They illustrate their methodology by demonstrating the

incompressible Navier-Stokes equation and the damped wave equation. By utilizing

spline-PINNS, their model can capture various phenomena, reduce the accuracy gap

in computational fluid Dynamics and also work faster.

In their study, Chiu et al. (2022) [9] suggest CAN-PINN, a novel PINN technique

that combines numerical differentiation (ND) with automated differentiation (AD)

to improve training accuracy and efficiency. By using differential equations to

restrict the training loss function, PINNs make sure their outputs adhere to the laws

of physics. Even though AD calculates precise gradients at any point, achieving high

accuracy often requires a large number of collocation points; otherwise, it may lead

to unphysical solutions when fewer points are used. In order to overcome this, CAN-

PINN combines AD and ND, making use of ND's capacity to connect nearby

collocation sites for effective training in sparse sample regimes. When compared to

ND-based PINNs alone, this hybrid technique produces training that is up to two

orders of magnitude more robust and precise. Fluid dynamics challenges such as

flow mixing, lid-driven flow, and channel flow over a backward-facing step were

investigated with the CAN-PINN framework, which proved to be more accurate and

resilient than traditional AD-based PINNs.

Zhang et al. (2022) [49] present GW-PINN, a deep learning technique that does not

require labeled data to estimate groundwater flow. GW-PINN employs PINN and

modifies its loss function to include either soft or hard constraints. To maximize

sampling and training efficiency, it uses a snowball-style two-stage training

approach and a locally refined sampling strategy (LRS). According to their results,

GW-PINN captures variations in hydraulic heads in a variety of aquifers effectively;

the hard constraint outperforms the soft constraint. With the help of the LRS

approach and two-stage training, they demonstrate that GW-PINN becomes a more

accurate and effective instrument for simulating groundwater flow.

16

In their paper, McClenny and Braga-Neto (2023) [29] present a unique method of

optimizing PINNs using self-adaptive weights (SA-PINNs). By training adaptive

weights that are applied to each training point separately, the technique enables the

neural network to concentrate on difficult areas of stiff PDEs. By growing when

losses are greater, the weights function as a soft attention mask, helping the network

to become more accurate in challenging situations. In order to better understand how

these weights affect training dynamics, the research also offers a continuous map of

these weights using Gaussian Process regression and produces the Neural Tangent

Kernel matrix for SA-PINNs. When compared to state-of-the-art PINN algorithms,

numerical experiments show that SA-PINNs achieve lower L2 error and require

fewer training epochs.

In the same year, Vadyala and Betgeri [43] propose a hybrid Quantum Machine

Learning (QML) model named quantum-based PINNs, which combines classical

information processing with quantum manipulation and processing, along with

PINNs. This model is designed to address challenges related to reliability,

trustworthiness, safety, and security in QML while leveraging the strengths of both

classical and quantum computing. They achieved the highest performance with their

quantum simulation data containing outliers by utilizing a neural network

architecture consisting of 6 layers and 40 neurons.

Meng et al. (2023) [30] introduce PINN-FORM, a novel combination of the first-

order reliability method (FORM) and PINN designed to tackle the problems

associated with structural reliability analysis, especially when working with complex

limit state functions expressed as implicit PDEs. These kinds of problems are

generally quite computationally challenging using traditional FORM approaches. By

using PINN's capabilities as a black-box solution tool, they suggested PINN-FORM

to address these problems by doing away with the necessity to compute actual

structural answers directly.

In 2024, Liu et al. [27] address the limitation of traditional PINNs in handling

discontinuities, particularly when compared to conventional shock-capturing

17

methods. To overcome this challenge, they develop an innovative approach called

PINNs with Equation Weighting (PINNs-WE). This method enhances the capability

of PINNs to accurately capture shocks by incorporating equation weighting

techniques, which adjust the relative importance of different components in the loss

function. By employing this approach, PINNs-WE can more effectively manage

abrupt changes and discontinuities in various physical phenomena, significantly

enhancing performance where traditional PINNs struggle. They concluded that

PINNs-WE provides a more robust and efficient tool for solving problems involving

discontinuities.

There are also studies that focus on multi-output approaches within the context of

PINNs [47, 13]. In 2022, Yang and Foster [47] proposed the Multi-Output PINNs

(MO-PINNs) to solve both forward and inverse PDE problems with noisy data. By

utilizing the bootstrap method, their framework translates uncertainty from noisy

data into multiple measurements based on prior noise distribution. The network

outputs are designed to satisfy both the noisy measurements and the underlying

physical laws. Numerical experiments showed that MO-PINNs provided accurate

predictions and uncertainty distributions, comparable to traditional methods like

finite element methods and Monte Carlo simulations. Their work demonstrates the

potential of MO-PINNs for uncertainty quantification and accelerating predictions

in engineering applications.

In another study, Hao et al. (2024) [13] introduced the Multi-Output Multi-Physics-

Informed Neural Networks (MO-MPINNs) to address challenges in solving the

Dimension-Reduced Probability Density Evolution Equation in stochastic dynamical

systems. Traditional methods for estimating the intrinsic drift and diffusion

coefficients rely on numerical differentiation, which can be unstable and inaccurate,

especially in data-scarce regions. MO-MPINNs overcome these issues by integrating

multiple outputs within parallel subnetworks, allowing for simultaneous prediction

of time-varying coefficients and response probability density functions. This

approach embeds physical laws in the loss function and leverages automatic

differentiation, providing a more efficient and accurate solution for high-

18

dimensional, nonlinear systems with complex spatio-temporal dependencies. Their

framework enhances the applicability of PINNs to complex stochastic systems with

double randomness in parameters and excitations.

Building on these advancements, our study further refines the PINN framework by

incorporating multivariate dependencies, allowing for a more comprehensive

representation of complex dynamical systems. By embedding cross-correlation

relationships within the loss function, we enhance the network's ability to capture

intricate interdependencies across multiple outputs. This refinement broadens the

applicability of PINNs, extending their use beyond traditional scientific and

engineering fields to economic and multi-agent systems, where conventional

approaches often fail to address spatio-temporal complexities effectively.

The literature indicates that PINNs are primarily employed for solving engineering

and physical problems, including stochastic differential equations, with no known

applications in economic modeling. Despite their increasing use in engineering

contexts, their potential in economic modeling remains largely unexplored,

presenting an opportunity to extend the PINN framework beyond traditional

applications. This gap presents an opportunity to extend the PINN framework

beyond traditional engineering applications and apply it to economic systems with

complex spatio-temporal dynamics in their governing equations.

19

CHAPTER 3

3 METHODOLOGY

This chapter provides a comprehensive examination and introduction to the new

Keynesian macroeconomic model and the Dividend-Debt-Augmented Goodwin

Model (DAGKM). Furthermore, it will delve into the architectures of Long Short-

Term Memory (LSTM) networks, Physics-Informed Neural Networks (PINNs) and

the proposed model which is called Prior-Informed Multivariate LSTM (PIM-

LSTM).

3.1 New Keynesian Macroeconomic Model

The New Keynesian economics is a fusion of Keynesian economics and

microeconomic theory. It highlights the importance of market imperfections,

particularly inflexible prices and wages, in explaining why the economy may only

sometimes achieve full employment, and how monetary policy can impact output

and inflation. This framework helps us understand how monetary and fiscal policies

can stabilize the economy by affecting overall supply and demand. The New

Keynesian view assumes that households and businesses make decisions based on

rational expectations. The New Keynesian model comprises three fundamental

equations: the New Keynesian Phillips Curve (NKPC), the dynamic Investment-

Savings (IS) equation, and Taylor's Rule. Together, these equations explain inflation,

output, and interest rates, giving us a clear picture of how the economy works.

The NKPC, originally derived by Roberts in 1995 [36], has found practical

application in the New Keynesian Dynamic Stochastic General Equilibrium (DSGE)

models. This curve, which states that inflation is influenced by the current output

gap and the expectations of the next period's inflation, is derived from the dynamic

https://en.wikipedia.org/wiki/New_Keynesian_economics#cite_note-48

20

Calvo pricing model. Its practical application in economic models is expressed in

mathematical terms:

 𝜋𝑡 = 𝛽𝐸𝑡{𝜋𝑡+1} + 𝜅𝑦̃𝑡 + 𝜀𝑡
𝑠 (1)

where 𝜅 ≡ 𝜆 (𝜎 +
𝜑+𝛼

1−𝛼
) , 𝜆 ≡

(1−𝜃)(1−𝛽𝜃)

𝜃
Θ , Θ =

1−𝛼

1−𝛼+𝛼𝜖

In this equation, 𝛽 represents discount factor and 𝜋𝑡 denotes the inflation, 𝐸𝑡{𝜋𝑡+1}

is the expectation of the next period's inflation, 𝑦̃𝑡 = 𝑦𝑡 − 𝑦𝑡
𝑛 denotes output gap, 𝑦𝑡

denotes output, 𝑦𝑡
𝑛 denotes potential output and 𝜀𝑡

𝑠 is supply shock. Additionally, 𝛼

is capital share, 𝜖 is elasticity of substitution, 𝜑 is Frisch elasticity, 𝜎 is relative risk

aversion and 𝜃 is Calvo parameter. The NKPC equation can also be expressed in

terms of output and potential output:

𝜋𝑡 = 𝛽𝐸𝑡{𝜋𝑡+1} + 𝜅𝑦𝑡 − 𝜅𝑦𝑡
𝑛 + 𝜀𝑡

𝑠 (2)

The IS equation in economics is an important formulation that helps us to understand

how the economy works. It shows that the current output gap is the difference

between what we expect from the output gap to be in the next period and a value

connected to the difference between the real interest rate (𝑖𝑡 − 𝐸𝑡{𝜋𝑡+1}) and the

natural rate of interest. This equation provides a clear understanding of the output

gap. This relationship can be expressed mathematically as follows:

 𝑦̃𝑡 = −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝑟𝑡

𝑛) + 𝐸𝑡(𝑦̃𝑡+1) + 𝜀𝑡
𝑑 (3)

where 𝑦̃𝑡 is output gap, 𝐸𝑡{𝑦̃𝑡+1} is expected output gap, 𝑖𝑡 is the nominal interest

rate, 𝜋𝑡 is inflation, 𝑟𝑡
𝑛 is the natural rate of interest and 𝜀𝑡

𝑑 is demand shock. The

natural rate of interest reflects equilibrium values with flexible prices. The natural

rate of interest is calculated by:

𝑟𝑡
𝑛 = 𝜌 + 𝜎 𝜓𝑦𝑎

𝑛 𝐸𝑡(Δ𝑎𝑡+1) (4)

21

where 𝜓𝑦𝑎
𝑛 ≡

1+𝜑

𝜎(1−𝛼)+𝜑+𝛼
 , 𝑦̃𝑡 = 𝑦𝑡 − 𝑦𝑡

𝑛 , 𝑦𝑡
𝑛 = 𝜓𝑦𝑎𝑎𝑡 + 𝜓𝑦.

In the equation, the variable 𝑎𝑡 represents the total factor productivity shock, which

can be described as follows: 𝑎𝑡 = 𝜌𝑎𝑎𝑡−1 + 𝜉𝑡
𝑎 with 𝜉𝑡

𝑎~𝑖𝑖𝑑 𝑁(0, 𝜎𝑎
2). 𝜌𝑎 represents

the persistency parameter of total factor productivity shock, and Δ signifies the

difference operator.

After applying some calculation, the IS equation can be written in terms of the

output:

𝑦𝑡 = 𝐸𝑡(𝑦𝑡+1) −
1

𝜎
(𝑖𝑡 − 𝐸𝑡(𝜋𝑡+1) − 𝜌) + 𝜀𝑡

𝑑 (5)

where 𝜌 = −log (𝛽).

The third equation in the New Keynesian model represents an interest rate rule that

explains how the nominal interest rate is established. This rule is commonly

associated with the implementation of monetary policy. A commonly used interest

rate rule in the literature to represent monetary policy in advanced economies is a

Taylor-type rule proposed by Taylor [42]. According to this rule, nominal interest

rates increase or decrease in line with the current inflation rate and output gap.

𝑖𝑡 = 𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦̃𝑡 + 𝜀𝑡
𝑚 (6)

Where 𝑖𝑡 is the nominal interest rate, 𝜋𝑡 is inflation, 𝑦̃𝑡 denotes output gap and 𝜀𝑡
𝑚 is

an exogeneous monetary policy shifter. Moreover, 𝜙𝜋 is the feedback parameter of

inflation and 𝜙𝑦 is the feedback parameter of output gap. The interest rate is also re-

expressed in terms of the output:

𝑖𝑡 = 𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦𝑡 − 𝜙𝑦𝑦𝑡
𝑛 + 𝜀𝑡

𝑚 (7)

22

3.2 Dividend-Augmented Goodwin Keen Model

The Goodwin model proposed by Goodwin [11] is a traditional macroeconomic

framework that represents cyclical growth and income distribution by considering

capital and labor as interconnected variables. It demonstrates how wages and

employment vary over time through a predator-prey dynamic, which illustrates the

natural interplay of these economic forces. Building on this foundation, the

Goodwin-Keen model proposed by Keen [22] extends the original framework by

incorporating private debt. This enhancement allows the model to better capture real-

world phenomena, as it shows how debt-financed investment and consumption can

either amplify or moderate economic fluctuations. Furthermore, Bailly et al. [3]

identified that the original Goodwin-Keen model led to inaccurate estimates because

it failed to account for situations in which firms frequently borrow to finance

dividends. To address this shortcoming, they proposed a Dividend-Augmented

Goodwin model (DAGKM). By incorporating dividends as a share of profits, this

revised model produces debt trajectories that more closely align with observed

economic behavior.

The dynamic system of DAGKM consists of three equations, which are the wage

share (denoted by 𝜔𝑡), the employment rate (denoted by 𝜆𝑡) and the debt ratio

(denoted by 𝑑𝑡). This system is described as follows:

𝜕𝜔𝑡

𝜕𝑡
= 𝜔𝑡(ϕ(𝜆𝑡) − 𝛼) (8)

𝜕𝜆𝑡

𝜕𝑡
= 𝜆𝑡 (

𝜅(1−𝜔𝑡−𝑟𝑑𝑡)

𝜐
− 𝛼 − 𝛽 − 𝛿) (9)

𝜕𝑑𝑡

𝜕𝑡
= 𝑑𝑡 (𝑟(1 − ∆) −

𝜅(1−𝜔𝑡−𝑟𝑑𝑡)

𝜐
+ 𝛿) + 𝜅(1 − 𝜔𝑡 − 𝑟𝑑𝑡) − (1 − 𝜔𝑡)(1 − ∆) (10)

where 𝛼 is constant growth rates of the labor productivity, 𝛽 is the constant growth

rates of the labor force, 𝛿 is the depreciation rate, 𝜐 is the capital-to output ratio, 𝑟 is

the real interest rate and ∆ is the newly defined share of profits distributed to

23

shareholders. Function ϕ(𝜆𝑡) = 𝛾 + 𝜌(1 − 𝜆𝑡)−2 is the real short-run Phillips curve

and 𝜅(1 − 𝜔𝑡 − 𝑟𝑑𝑡) = 𝑘1𝑒𝑘2(1−𝜔𝑡−𝑟𝑑𝑡) is an investment function.

3.3 Cross Correlation Function

The cross-covariance function measures how two time series are related by assessing

how changes in one series relate to past values of the other over different time lags.

For two series 𝑋𝑡 and 𝑌𝑡, the cross-covariance function at lag ℎ is defined as:

𝐶𝑜𝑣(𝑋𝑡, 𝑌𝑡−ℎ) = 𝐸 ((𝑋𝑡 − 𝜇𝑥)(𝑌𝑡−ℎ − 𝜇𝑦)) (11)

where 𝜇𝑥 and 𝜇𝑦 are the means of 𝑋𝑡 and 𝑌𝑡, respectively.

The closely related cross-correlation function (CCF) is a statistical tool utilized to

measure the linear dynamic dependence of two series. It is essentially the cross-

covariance normalized by the product of the standard deviations of the two series.

Mathematically, the CCF at lag ℎ is given by:

𝐶𝑜𝑟𝑟(𝑋𝑡, 𝑌𝑡−ℎ) = 𝜌𝑥𝑦(ℎ) =
𝐸 ((𝑋𝑡 − 𝜇𝑥)(𝑌𝑡−ℎ − 𝜇𝑦))

𝜎𝑥𝜎𝑦

(12)

where 𝜎𝑥 and 𝜎𝑦 are the standard deviations of 𝑋𝑡 and 𝑌𝑡, respectively.

In practice, these quantities are estimated using sample means and variances. The

sample CCF at lag ℎ is computed as:

𝑟𝑥𝑦(ℎ) = 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) =
∑ (𝑥𝑡 − 𝑥̅)(𝑦𝑡−ℎ − 𝑦̅)𝑛−ℎ

𝑡=1

√∑ (𝑥𝑡 − 𝑥̅)2𝑛
𝑡=1 ∑ (𝑦𝑡 − 𝑦̅)2𝑛

𝑡=1

(13)

where 𝑥̅ and 𝑦̅ denote the sample means of 𝑥𝑡 and 𝑦𝑡. The sample CCF values lie

between −1 and 1, indicating the strength and direction of the linear relationship at

each lag.

24

3.4 Deep Neural Networks and Automatic Differentiation

Deep learning, a subsection of machine learning, is the cutting-edge technology used

to enhance data analysis and predictive capabilities. It employs multi-layer artificial

neural networks to construct algorithms that can extract meaningful patterns and

features from extensive data sets effectively. This approach has been effectively

utilized in diverse areas, including image process and speech recognition, natural

language process (NLP), gaming, and self-driving vehicles. Deep learning excels at

managing complex, high-dimensional data. The main benefit of deep learning

models is their capability to automatically identify features from data, minimizing

the need for manual feature engineering and greatly enhancing the overall

performance of the model.

3.4.1 Perceptron and Deep Neural Networks

The perceptron is a building block of artificial neural network laying the groundwork

for more complex networks. It was devised in the 1960s by scientist Frank Rosenblatt

[38]. The perceptron comprises a single neuron and an activation function. The input

of the perceptron is denoted as 𝑥, the corresponding weights are denoted as w, the

associated bias is denoted as 𝑏, and 𝑓 represents the activation function. As depicted

in Figure 3.1, before applying 𝑓, the perceptron takes the input 𝑥, computes the

weighted sum, and adds the bias.

Figure 3.1 Structure of Perceptron

25

Hence, for input 𝑥, our perceptron makes the following predictions:

𝑦 = 𝑓(𝑧) = 𝑓(𝑤𝑥𝑇 + 𝑏) = 𝑓(∑ 𝑥𝑖𝑤𝑗 + 𝑏)
𝑛

𝑖=1

(14)

The process for building more complex neural networks is not significantly different.

A feed-forward neural network (FFNN) or multi-layer perceptron neural network is

an extension of the basic perceptron, consisting of multiple layers of neurons, with

each layer fully connected to the next. FFNNs are called "feed-forward" because

inputs are processed forward through the network without any loops or cycles. They

can easily solve more complex problems than a single-layer perceptron due to their

depth and complexity. The architecture of a FFNN is depicted in Figure 3.2. In a

neural network, a layer comprises individual neurons that process inputs separately

and generate a sole output. When a neural network is referred to as “deep,” it means

that there are multiple layers between the input and output layer. Since each neuron

has a weight vector used to compute its output, a “weight matrix” is created to

mathematically describe the collection of weight vectors in each layer.

Figure 3.2 Structure of the FFNN

26

3.4.2 Training and Automatic Differentiation

Training a neural network is quite intricate, involving initialization, forward and

backward passes, loss calculation, and parameter updates. The main objective is to

adjust the network’s weights and biases to minimize prediction errors. This enables

the network to learn from the training data and generalize its findings. This training

is crucial as it allows the model to improve its accuracy and generalize new situations

by capturing complex patterns, making accurate predictions, and adapting to new

information. Properly trained neural networks can achieve state-of-the-art

performance.

The gradient descent algorithm is a method used to iteratively optimize and find the

local minimum of a function. This algorithm is crucial for learning from training data

as it assists in determining the set of weights that minimally correspond to prediction

errors by minimizing the loss function of the network. The loss function assesses the

difference between the predicted outputs and the actual outputs, and the goal of

training is to reduce this difference. The steps of the Gradient Descent Algorithm are

as follows:

1. Parameter Initialization: Begin with initial values for the parameters.

2. Gradient Computation: Determine the gradient of the loss function concerning

each parameter.

3. Parameter Adjustment: Adjust the parameters in the direction opposite to the

gradient to decrease the loss.

4. Iteration: Repeat the process until the loss converges or a maximum number of

iterations is reached.

Backpropagation is an essential technique for training artificial neural networks. It

efficiently calculates the gradient of the loss function for each weight by propagating

the error backward through the network. Automatic Differentiation (AD) efficiently

computes gradients by numerically evaluating the derivative of a function specified

27

by a computer program. AD exploits the differentiability of every computer

operation, from simple arithmetic to complex functions, and automates the

calculation of derivatives using the chain rule. Figure 3.3 offers an accurate

representation of how AD computes 𝜕𝐸/𝜕𝜔1 and 𝜕𝐸/𝜕𝜔2.

Figure 3.3 Computational Graph of AD

The backpropagation is utilized to enhance prediction accuracy in artificial neural

networks by modifying the model's weights and biases. This adjustment is

accomplished by transmitting the error from the output layer back to the input layer.

The process begins with a forward pass where each neuron computes the weighted

sum of its inputs, adds a bias term, and then applies an activation function to the

result. This process continues through the network, layer by layer, until the final

output values are produced. Afterward, the loss function is calculated. During the

backward pass, the gradient which is the derivative of the loss function with respect

to parameters is computed using the chain rule of calculus. Once these gradients are

computed, the weights and biases are updated using them to minimize the loss. These

updates are typically done using the gradient descent algorithm or its variations,

which adjust the weights in the opposite direction of the gradient.

28

3.5 Long Short-Term Memory Networks

The concept of Long Short-Term Memory (LSTM) networks was presented by

Hochreiter and Schmidhuber in 1997 [14]. These networks have revolutionized

sequence modeling by overcoming the constraints of traditional RNNs and

facilitating the successful acquisition of long-term dependencies. Traditional RNNs

maintain a hidden state that is updated at each time step to handle sequences.

However, they struggle with long-term dependencies due to the vanishing gradient

problem, where gradients decrease exponentially as they are backpropagated through

time. Therefore, RNNs have difficulty learning long-term dependencies and

retaining information over long sequences. LSTMs solve this problem by

introducing a more complex unit structure that includes gates to control the flow of

information. Their capacity to retain data across long sequences and address the issue

of the vanishing gradient gives them significant utility for various areas, including

NLP, speech recognition, image process, time series prediction, and video analysis.

An LSTM network consists of LSTM units, each with a cell state and three gates:

the input gate, the forget gate, and the output gate. These gates of the LSTM units

regulate the flow of information into, out of, and within the units.

1. Cell State: The cell state acts as a memory, preserving information across various

time steps. It is modified by the gates to preserve or discard information.

2. Input Gate: It controls the flow of new information that enters the cell state. It

determines which values from the input should be utilized to update the cell state.

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (15)

where 𝑖𝑡 represents the input gate, ℎ𝑡−1 represents the output of the previous

LSTM block, 𝑥𝑡 represents the input at time step 𝑡, 𝑏𝑖 is the bias for the input

gate, 𝑊𝑖 is the weight for the input 𝑥𝑡 , 𝑈𝑖 is the weight for the output of the

previous LSTM block ℎ𝑡−1 and 𝜎 represents the sigmoid function.

3. Forget Gate: It decides which information from the cell state to ignore, allowing

the LSTM to discard irrelevant information.

29

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (16)

where 𝑓𝑡 represents the forget gate, 𝑏𝑓 is the bias for the forget gate, 𝑊𝑓 is the

weight for the input 𝑥𝑡 , 𝑈𝑓 is the weight for the output of the previous LSTM

block ℎ𝑡−1 and 𝜎 represents the sigmoid function.

4. Output Gate: It governs the output of the LSTM unit. It decides which parts of

the cell state should be transmitted to the next time step as the hidden state.

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (17)

where 𝑜𝑡 represents the output gate, 𝑏𝑜 is the bias for the output gate, 𝑊𝑜 is the

weight for the input 𝑥𝑡 , 𝑈𝑜 is the weight for the output of the previous LSTM

block ℎ𝑡−1.

5. Cell Update: It is refreshed using the information from the input gate and the

forget gate.

𝑐̃𝑡 = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (18)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡 (19)

where 𝑐̃𝑡 represents the candidate for the cell state at time step 𝑡 , 𝑐𝑡 is the cell

state (memory) at time step 𝑡, 𝑊𝑐 is the weight for input 𝑥𝑡 , 𝑈𝑐 is the weight for

the output of the previous LSTM block ℎ𝑡−1, 𝑏𝑐 is the bias for the cell state, tanh

is the hyperbolic tangent function and “∘” represents elementwise multiplication

of the vectors.

6. Hidden State Update: The hidden state is updated based on the cell state and the

output gate.

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡) (20)

At each time step, an input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 are received by the

LSTM cell. The current hidden state ℎ𝑡 and the current output 𝑦𝑡 are then produced

30

by the LSTM cell. Sigmoid activation functions are utilized by the input, forget, and

output gates. These functions yield values within the range of 0 to 1. These values

are subsequently multiplied by the input and the previous hidden state to determine

the amount of information that enters the cell state, the amount that is removed from

the cell state, and the amount that is output from the cell state. The cell state is then

passed through a tanh function to generate the hidden state. Following this, the

hidden state undergoes processing through a fully connected layer featuring a

sigmoid or softmax activation function to generate the output. This functionality

allows LSTM networks to selectively determine the information to store, discard,

and output. The visual representation of the memory block in an LSTM is illustrated

in Figure 3.4.

Figure 3.4 Memory Block in LSTM [37]

3.6 Physics Informed Neural Networks

PINNs directly incorporate physical laws or differential equations into the training

process of neural networks. This integration ensures that the predictions align with

established scientific principles while learning from data. By including known

deterministic relationships between variables in neural networks, PINNs use this

extra information to improve the prediction and forecast performance of the models.

31

3.6.1 Architecture

Training a deep learning algorithm may seem difficult or even impractical to

accurately identify a nonlinear map from a limited number of input and output data

pairs. Achieving model accuracy with complex and high-dimensional data may pose

challenges. Deep learning algorithms have demonstrated their capability in

approximating complex nonlinear mappings. However, these training processes

necessitate a substantial amount of training data to generalize well for unseen data. If

the available data is limited or issues related to high dimensionality arise, training the

model becomes exceedingly challenging.

In the field of biology or physics, it is essential to integrate existing knowledge to

enhance the precision of the model. This existing knowledge may take the form of

fundamental physical laws, empirically verified principles, or other expertise within

the specific domain. By embedding this organized information into the learning

algorithm, the information content of the available data can be enhanced, allowing

the model to rapidly converge towards the correct solution and exhibit effective

generalization, even in cases where only a small number of training examples are

accessible. Within this framework, Raissi et al. [35] has introduced a machine

learning approach that merges the capabilities of deep neural networks with the

fundamentals of physics, known as PINNs. Their explanation of the method and its

applications has laid the groundwork for recent advancements in using neural

networks and differential equations together. The key feature of this technique is to

perform regression and model estimation by leveraging the properties of both

differential equations and neural networks. In the field of physical modeling, it is

typical to describe the dynamics of a system using a series of differential equations.

PINNs attempt to leverage the fundamental features of a solution to a differential

equation to efficiently regulate a neural network model. This is accomplished by

embedding the mathematical model into the network and enhancing the loss function

by adding a residual term that is derived from the governing equation, effectively

serving as a penalizing factor to confine the acceptable solution space. The motivation

32

for this varies, but it does introduce some bias to models that would typically have

been unbiased. In the physics-informed approach, the differential equation serves as

the regularization cost for the model's parameters. A typical architecture of PINNs is

depicted in Figure 3.5. In Figure 3.5, a fully connected neural network uses time and

space coordinates (𝑡, 𝑥) as inputs to approximate the multi-physics solutions. AD is

used to compute the derivatives with respect to the inputs, which are then employed

to define the residuals of the governing equations within the loss function. This

function usually consists of several terms, each weighted by different coefficients.

Both the neural network parameters (𝜃) and the unknown parameters of the PDEs

(𝜆) can be learned simultaneously by minimizing the loss function.

Figure 3.5 Architecture of PINNs [7]

In PINNs approach, the loss function is designed in a way that the neural network not

only fits the data but also satisfies the physical laws and constraints represented by

the differential equation and the boundary/initial conditions. This means that PINNs

incorporate physics into the learning process. The parameterized and nonlinear partial

differential equations (PDEs) of the general form:

𝑢𝑡 + 𝒩[𝑢; 𝜆] = 0 , 𝑥𝜖Ω , 𝑡𝜖[0, 𝑇] (21)

33

In here, 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution

to the equation, which refers to the unknown function that we are trying to find or

approximate. It is a function of two variables, time (𝑡) and position (𝑥). 𝒩[.]

represents a nonlinear differential operator parameterized by λ. An operator is a

mathematical symbol or function that operates on a function to produce another

function. In this case, 𝒩[.] is a nonlinear operator that acts on the function 𝑢(𝑡, 𝑥) to

yield a new function. Ω denotes a subset of 𝑅𝐷. This setup covers a wide range of

problems in mathematical physics including kinetic equations, conservation laws,

advection–diffusion–reaction systems and diffusion processes. Raissi et al. [35]

focus on solving two different problems. The first one is data driven solution of

PDEs, which refers to “Given fixed model parameters λ what can be said about the

unknown hidden state u(t, x) of the system?”. The second one is data driven discovery

of PDEs, which refers to “What are the parameters λ that best describe the observed

data?”.

3.6.2 Data-Driven Solutions of Partial Differential Equations

The parametrized and nonlinear PDEs of the general form is considered:

𝑢𝑡 + 𝒩[𝑢] = 0 , 𝑥𝜖Ω , 𝑡𝜖[0, 𝑇] (22)

where 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution,

𝒩[.] is a nonlinear operator and Ω is a subset of 𝑅𝐷. We define 𝑓(𝑡, 𝑥) to be given

by the left-hand side of equation given above:

𝑓 ∶= 𝑢𝑡 + 𝒩[𝑢] (23)

and proceed by approximating 𝑢(𝑡, 𝑥) by a deep neural network. This assumption

along with the above equation results in a physics informed neural network 𝑓(𝑡, 𝑥).

This network can be derived by applying the chain rule for differentiating

compositions of functions using AD and has the same parameters as the network

34

representing 𝑢(𝑡, 𝑥), albeit with different activation functions due to the action of the

differential operator 𝒩. The shared parameters between the neural networks 𝑢(𝑡, 𝑥)

and 𝑓(𝑡, 𝑥) can be learned by minimizing the mean squared error (MSE) loss. The

loss function over data for this network can be realized as the combined MSE loss:

𝑀𝑆𝐸𝑝𝑖𝑛𝑛 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸𝑓 (24)

where

𝑀𝑆𝐸𝑢 =
1

𝑁𝑢
∑ |𝑢(𝑡𝑢

𝑖 , 𝑥𝑢
𝑖) − 𝑢𝑖|2𝑁𝑢

𝑖=1

(25)

and

 𝑀𝑆𝐸𝑓 =
1

𝑁𝑓
∑|𝑓(𝑡𝑓

𝑖 , 𝑥𝑓
𝑖)|

2

𝑁𝑓

𝑖=1

(26)

where the sets {𝑡𝑢
𝑖 , 𝑥𝑢

𝑖 , 𝑢𝑖}𝑖=1
𝑁𝑢 denote the initial and boundary training data on 𝑢(𝑡, 𝑥).

{𝑡𝑓
𝑖 , 𝑥𝑓

𝑖 }
𝑖=1

𝑁𝑓 specifies the collocations points for 𝑓(𝑡, 𝑥). The loss 𝑀𝑆𝐸𝑢 corresponds

to the initial and boundary training data while 𝑀𝑆𝐸𝑓 enforces the structure imposed

by equation 𝑓 at a finite set of collocation points.

3.6.3 Data-Driven Discovery of Partial Differential Equations

We consider parametrized and nonlinear PDEs of the general form:

𝑢𝑡 + 𝒩[𝑢; 𝜆] = 0 , 𝑥𝜖Ω , 𝑡𝜖[0, 𝑇] (27)

where 𝑢𝑡 denotes the t derivative of 𝑢(𝑡, 𝑥) which denotes the hidden/latent solution,

𝒩[.] is a nonlinear operator parameterized by λ and Ω is a subset of 𝑅𝐷. We define

𝑓(𝑡, 𝑥) to be given by the left-hand side of equation given above:

𝑓 ∶= 𝑢𝑡 + 𝒩[𝑢; 𝜆] (28)

35

We proceed by approximating 𝑢(𝑡, 𝑥) by a deep neural network. This assumption

along with the above equation results in a physics informed neural network 𝑓(𝑡, 𝑥).

This network can be derived by applying the chain rule for differentiating

compositions of functions using AD. The parameters λ of the nonlinear differential

operator as well as the parameters of the neural networks can be learned by

minimizing the MSE loss. The loss function used for this network corresponds to

that defined in Equations (24 - 26).

3.7 Prior-Informed Multivariate LSTM (PIM-LSTM)

In this study, we propose the Prior-Informed Multivariate LSTM (PIM-LSTM), a

novel deep learning architecture designed to incorporate prior knowledge constraints

into multivariate time-series forecasting. The proposed PIM-LSTM model, inspired

by Physics-Informed Neural Networks (PINNs), leverages prior knowledge

constraints and incorporates cross-correlation function (CCF) constraints to improve

multivariate time-series forecasting.

A sequence of inputs is fed into a LSTM. The LSTM processes these inputs over

time, capturing both short-term and long-term dependencies via its hidden and cell

states. At the final step, the network produces a prediction, which is then compared

to the true target. The first loss component is the standard Mean Squared Error on

the training data. It measures how closely LSTM’s predictions align with the ground

truth values. For three output model, when output is 𝑋⃑ = {𝑥, 𝑦, 𝑧} , MSE is

calculated as follows:

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 =
1

3𝑛
(∑(𝑥̂𝑡 − 𝑥𝑡)2

𝑛

𝑡=1

+ ∑(𝑦̂𝑡 − 𝑦𝑡)2

𝑛

𝑡=1

+ ∑(𝑧̂𝑡 − 𝑧𝑡)2

𝑛

𝑡=1

)

(29)

The second loss component is obtained from prior knowledge or constraints. For

three output model, when output is 𝑋⃑ = {𝑥, 𝑦, 𝑧} , MSE is calculated as follows:

36

𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 =
1

3𝑛
(∑(𝑥̂𝑡 − 𝑓(𝑥𝑡))

2
𝑛

𝑡=1

+ ∑(𝑦̂𝑡 − 𝑓(𝑦𝑡))
2

𝑛

𝑡=1

+ ∑(𝑧̂𝑡 − 𝑓(𝑧𝑡))
2

𝑛

𝑡=1

(30)

where 𝑥̂𝑡 , 𝑦̂𝑡 and 𝑧̂𝑡 are the predictions obtained from the model and 𝑓 is the prior

function, reflecting the expected or theoretically derived behavior. This could be a

known relationship from physics, an empirical formula from domain experts, or any

other expression encoding constraints or knowledge relevant to the problem.

The final loss is CCF loss, which typically aims to preserve certain correlation

structures in time-series data. The CCF loss measures how closely the predicted

series’ cross-correlation function matches either the observed data’s cross-

correlation or a desired correlation pattern. Symbolically, it can be written as:

ℒ𝐶𝐶𝐹 =
1

2 × ℓ × 𝑘
∑ ∑ (𝑟(𝑥̂𝑡, 𝑦̂𝑡−ℎ) − 𝑟(𝑥𝑡, 𝑦𝑡−ℎ))

2

(𝑥,𝑦)∈𝑆

ℓ

ℎ=1

(31)

where 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) =
∑ (𝑥𝑡−𝑥̅)(𝑦𝑡−ℎ−𝑦̅)𝑛−ℎ

𝑡=1

√∑ (𝑥𝑡−𝑥̅)2𝑛
𝑡=1 ∑ (𝑦𝑡−𝑦̅)2𝑛

𝑡=1

.

ℓ denotes the number of lags, while 𝑘 refers to the number of output variables.

𝑟(𝑥̂𝑡, 𝑦̂𝑡−ℎ) denotes the cross-correlation function at lag ℎ of predicted 𝑥̂𝑡 and

predicted 𝑦̂𝑡−ℎ. 𝑟(𝑥𝑡, 𝑦𝑡−ℎ) denotes the cross-correlation function at lag ℎ of actual

𝑥𝑡 and actual 𝑦𝑡−ℎ. 𝑆 is the set of output variable pairs. For example, for the New

Keynesian model, the output pairs are 𝑆 = {(𝜋, 𝑖), (𝜋, 𝑦), (𝑖, 𝜋), (𝑖, 𝑦), (𝑦, 𝜋), (𝑦, 𝑖)}.

For the DAGKM model, the output pairs are 𝑆 = {(𝜔, 𝜆), (𝜔, 𝑑), (𝜆, 𝜋), (𝜆, 𝑑),

(𝑑, 𝜔), (𝑑, 𝜆)}. By minimizing ℒ𝐶𝐶𝐹, the model learns to generate forecasts whose

interdependence or temporal correlations more closely match those in the true data

(or match specified domain expectations).

All these terms 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛, 𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 and ℒ𝐶𝐶𝐹 are combined into a single total loss

function. A typical form is:

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹 (32)

37

where 𝛼1 and 𝛼2 are weighting coefficients that balance the importance of fitting the

training data, adhering to priors, and matching the desired correlation structure. The

gradient of this total loss concerning the LSTM parameters is computed (via

backpropagation through time) and used to update the model weights. By jointly

optimizing these three objectives, the model learns to produce forecasts that are

accurate. The architecture of the PIM-LSTM is depicted in Figure 3.6 and 3.7 for the

New Keynesian model and the DAGKM model.

Figure 3.6 Architecture of PIM-LSTM Model for the New Keynesian Model

Figure 3.7 Architecture of PIM-LSTM Model for the DAGKM

38

3.8 Performance Metrics

When forecasting multivariate time series data, it is important to check how accurate

the forecasts are. There are different ways to measure how well a forecasting model

works and each method has its own advantages. Root Mean Squared Error (RMSE),

Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE) are

commonly used metrics. RMSE quantifies the average magnitude of errors in a set

of predictions. Its sensitivity to larger errors makes RMSE particularly advantageous

in situations where significant discrepancies require penalization. RMSE can be

determined using the following formula:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1

(33)

where 𝑦𝑡 is the actual value at time 𝑡, 𝑦̂𝑡 is the forecasted value at time 𝑡 and 𝑛 is the

number of observations.

MAE provides a straightforward way to assess the average size of errors in a group

of predictions, irrespective of whether they are positive or negative. Compared to

RMSE, MAE is less affected by outliers. The calculation for MAE can be expressed

with the following formula:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛

𝑡=1

(34)

where 𝑦𝑡 is the actual value at time 𝑡, 𝑦̂𝑡 is the forecasted value at time 𝑡 and 𝑛 is the

number of observations.

MASE is a metric that evaluates the accuracy of forecasts across various datasets by

normalizing errors relative to a naive estimate, typically derived from the mean of

previous observations.

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸

𝑀𝐴𝐸𝑛𝑎𝑖𝑣𝑒
=

1

𝑛
∑ |𝑦𝑡−𝑦̂𝑡|𝑛

𝑡=1
1

𝑛−1
∑ |𝑦𝑡−𝑦𝑡−1|𝑛

𝑡=2

(35)

39

CHAPTER 4

4 DATA ANALYSİS

In this study, PIM-LSTM model is applied for multivariate time series forecasting

across three different datasets from economics. Its performance is thoroughly asses-

sed by comparing it with various well-established benchmark models.

4.1 Dataset for the New Keynesian Model for Turkiye

The New Keynesian model for Turkiye is employed to apply the PIM-LSTM

method. The model is composed of several equations for the inflation rate, output

gap and nominal interest rate. The consumer price index (CPI), real gross domestic

product (GDP), the short-term interest rate, the inflation forecast, and the real GDP

forecast are used. We utilize a quarterly dataset of these variables from 2002Q4 to

2021Q3 for Turkiye. The real GDP and the CPI are sourced from IMF International

Financial Statistics. The inflation forecast, the real GDP forecast and the short-term

interest rate are retrieved from OECD Data Explorer.

Before conducting exploratory data analysis, some transformations on the dataset are

implemented. Initially, following the recommendations of Pfeifer [33], these

calculations are performed:

i. 𝑦𝑡
𝑜𝑏𝑠 = log(𝑦𝑡

𝑑𝑎𝑡𝑎)

ii. 𝜋𝑡
𝑜𝑏𝑠 = log (

𝑐𝑝𝑖𝑡
𝑑𝑎𝑡𝑎

𝑐𝑝𝑖𝑡−1
𝑑𝑎𝑡𝑎) − 𝑚𝑒𝑎𝑛 (log (

𝑐𝑝𝑖𝑡
𝑑𝑎𝑡𝑎

𝑐𝑝𝑖𝑡−1
𝑑𝑎𝑡𝑎))

iii. 𝑖𝑡
𝑜𝑏𝑠 = log (1 +

𝑖𝑡
𝑑𝑎𝑡𝑎

4×100
) − 𝑚𝑒𝑎𝑛 (log (1 +

𝑖𝑡
𝑑𝑎𝑡𝑎

4×100
))

(36)

Secondly, the real GDP is seasonally adjusted by using Census X-13 procedure since

the real GDP shows seasonal pattern. Then, two-sided Hodrick-Prescott (HP) filter

40

is utilized to extract the trend component of seasonally adjusted real GDP. The

Hodrick-Prescott (HP) filter is a technique utilized to separate a time series into its

trend and cyclical components. It is commonly employed in macroeconomics to

decompose a real GDP 𝑦𝑡 into potential output (trend component) and output gap

(cyclical component) by minimizing this function:

∑(𝑦𝑡 − 𝜏𝑡)2 +

𝑇

𝑡=1

𝜆 ∑((𝜏𝑡+1 − 𝜏𝑡) − (𝜏𝑡 − 𝜏𝑡−1))
2

𝑇−1

𝑡=2

(37)

where 𝑦𝑡 = 𝜏𝑡 + 𝑐𝑡, 𝜏𝑡 is trend component and 𝑐𝑡 is cyclical component. Potential

output data obtained from HP filter is added to the dataset. Additionally, potential

output, inflation forecasts, and GDP forecasts are considered exogenous variables.

4.1.1 Exploratory Data Analysis

Table 4.1 provides descriptive statistics of key macroeconomic indicators for

Turkiye, specifically the CPI inflation rate, the short-term interest rate, the real GDP,

the potential output, the inflation forecast, and the GDP forecast. The CPI inflation

rate has a mean close to zero (−0.0004) with a range from −0.0185 to 0.0913. Half

of the CPI inflation rate values fall between −0.0103 and 0.0005. The short-term

interest rate has a mean of -0.0008. Half of the short-term interest rate values are

between −0.0078 and 0.0019. Similarly, the real GDP and the potential output

values are closely aligned, with means of 5.5585 and 5.5580, respectively. The CPI

inflation rate, the short-term interest rate, the real GDP, the potential output are

probably symmetrically distributed since their means and median values are close.

The inflation forecast and the GDP forecast exhibit the highest dispersion, as

indicated by their wide ranges (from 4.2894 to 81.0785 and -36.1690 to 82.9082,

respectively) and large standard deviations (18.4976 and 11.9554). In contrast, the

interest rate, inflation rate, real GDP, and potential output exhibit lower variability,

as indicated by relatively small standard deviations that denote greater stability.

41

Table 4.1 Descriptive Statistics of Turkiye’s Macroeconomic Series

Inflation

Rate

Interest

Rate

Real

GDP

Potential

Output

Inflation

Forecast

GDP

Forecast

Minimum -0.0185 -0.0124 5.3037 5.3152 4.2894 -36.1690

 Q1 -0.0103 -0.0078 5.4413 5.4410 8.0459 1.3710

Median -0.0053 -0.0036 5.5704 5.5627 9.4801 5.9014

Mean -0.0004 -0.0008 5.5585 5.5580 17.3075 5.8449

Standard Dev. 0.0181 0.0108 0.1385 0.1379 18.4976 11.9554

Q3 0.0005 0.0019 5.6734 5.6744 14.5977 9.8588

Maximum 0.0913 0.0343 5.7887 5.7921 81.0785 82.9082

There is no missing data in any of the series. The time series graphs of Turkiye’s

macroeconomic series are shown above. Figure 4.1 illustrates the changes in the CPI

inflation rate from 2002Q4 to 2021Q3. The time series plot of the CPI inflation rate

does not exhibit any seasonal behavior and displays only slight fluctuations over

time. Initially, there is a sharp decline, followed by frequent ups and downs around

the zero line. After 2012, there appears to be a slight upward trend. Figure 4.2 shows

how the interest rate changed from 2002Q4 to 2021Q3. The interest rate shows no

seasonal pattern and follows a decreasing trend from 2002 to 2013. Although there

is a sudden decline between 2019 and 2020, there has been a gradual increase in the

short-term interest rate since 2013. Figure 4.3 illustrates the changes in real GDP

from 2002Q4 to 2021Q3. The real GDP shows no seasonal behavior and

demonstrates an overall upward trend during this period, despite occasional short-

term declines.

By examining sample ACF and sample PACF in Figures 4.4, 4.5, and 4.6, inflation

rate and interest rate could be stationary since their ACFs show exponential decay,

their PACFs cut off after lags 1 and 2. However, the ACF of the real GDP shows

slow decay, indicating that it is non-stationary.

42

Figure 4.1 The Time Series Plot of Turkiye’s Inflation Rate

Figure 4.2 The Time Series Plot of Turkiye’s Interest Rate

Figure 4.3 The Time Series Plot of Turkiye’s Real GDP

43

Figure 4.4 The sACF and sPACF of Turkiye’s Inflation Rate

Figure 4.5 The sACF and sPACF of Turkiye’s Interest Rate

Figure 4.6 The sACF and sPACF of Turkiye’s Real GDP

44

Augmented Dickey-Fuller (ADF) Test

The ADF test is a statistical method used to determine if a time series is stationary

or not. The hypothesis of the test is:

 𝐻0 : The time series has a unit root (is non-stationary)

 𝐻1 : The time series is stationary

ADF test results indicate that inflation rate, interest rate and real GDP have unit roots,

indicating nonstationarity.

Table 4.2 ADF test for Inflation Rate

Test Statistic

Number of Lags Used

P-value

0.2193
5
0.9733

Table 4.3 ADF test for Interest Rate

Test Statistic

Number of Lags Used

P-value

−1.4759
4
0.5454

Table 4.4 ADF test for Real GDP

Test Statistic

Number of Lags Used

P-value

−0.9467
1
0.7722

Toda-Yamamoto Causality Test

In multivariate time series analysis, multiple interdependent variables are dealt with.

Before conducting models, it is necessary to examine causal relationships. For this

purpose, the Toda-Yamamoto Causality test is the most appropriate method to

employ since the series exhibits a unit root. This test is a recognized statistical

45

technique that facilitates the analysis and identification of causal relationships

between variables. The hypothesis of the test:

 𝐻0 : The series 𝑥 does not granger cause the series 𝑦.

 𝐻1 : The series 𝑥 granger causes the series 𝑦.

Toda-Yamamoto Causality test results given in Table 4.5 indicate several significant

relationships between the variables. The short-term interest rates and the real GDP

granger cause the CPI inflation rate. The CPI inflation rate and the real GDP granger

cause the short-term interest rate. The short-term interest rate granger causes the real

GDP whereas the CPI inflation rate does not granger cause the real GDP. These

results suggest the presence of causal relationships among certain variables,

indicating that multivariate time series analysis is applicable to this dataset.

Table 4.5 Toda-Yamamoto Causality Test Result

X => Y P value

Interest Rate => Inflation Rate

Interest Rate => Real GDP

Inflation Rate => Interest Rate

Inflation Rate => Real GDP

Real GDP => Interest Rate

Real GDP => Inflation Rate

0.018

0.000

0.000

0.935

0.032

0.000

4.1.2 Data Preprocessing

Data preprocessing is the set of operations performed on raw data before applying a

machine learning or deep learning model. It typically includes steps such as cleaning,

normalization or scaling and structuring data into a suitable format. By ensuring data

quality and consistency, preprocessing helps models learn more effectively and

converge faster, ultimately leading to more reliable results.

Min-Max normalization is a useful method because it scales data to a fixed range,

usually between 0 and 1, while keeping the original data distribution intact. This

approach makes sure that all features influence the training process equally, avoiding

46

issues where features with larger scales might have too much impact on the model.

By reducing the range of the data, Min-Max normalization also helps improve the

stability and speed of many optimization algorithms, which can lead to better

performance and reliability in deep learning models.

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(38)

This study employs supervised deep learning models to analyze time series data. The

input data is converted into sequences for the models to learn from previous input

values and predict future output values. The generation of sequences is based on

three key principles: input sequence length, sliding window, and output sequence

length. Input sequence length refers to the number of time steps in the input data that

the model utilizes to forecast the associated output. The sliding window technique

creates multiple sequences of the same length by sliding the sequence to 'n' steps.

Output sequence length, also known as prediction horizon, determines the number

of future values that the model forecasts based on the input sequence provided. In

this study, input sequences are generated using a sliding window approach with a

stride of one quarter, which refers to the step size used when shifting the sliding

window to create new input-output sequences. Each output sequence consists of

three values, each representing a one-step-ahead forecast based on past values of the

series. For example, to forecast macroeconomic data for the upcoming quarter using

data from the previous 4 quarters, we first organize the data from those 4 quarters

into a sequence. The goal is to predict the values for the 5th quarter. After that, we

shift the time window by one quarter to create a new sequence, now consisting of

data from the 2nd to the 5th quarter and aim to predict the values for the 6th quarter.

This process continues to generate sequences and corresponding forecast targets.

47

Table 4.6 1st Input and Output Sequence used in the LSTM model

Table 4.7 2nd Input and Output Sequence used in the LSTM model

Table 4.8 1st Input and Output Sequence used in the PINN model

Table 4.9 2nd Input and Output Sequence used in the PINN model

Table 4.6 and Table 4.7 show the 1st and 2nd input and output sequence used in the

LSTM model. The green space gives the input sequence, the orange space gives the

output sequence. Similarly, Table 4.8 and Table 4.9 show the 1st and 2nd input and

output sequence utilized in the LSTM model. The green space gives the input

sequence, the orange space gives the output sequence, the purple space represents

exogeneous variables. In both LSTM model and PINN model, 6 inputs which are

past values of inflation rate, interest rate, real GDP, potential output, inflation

forecast, and real GDP forecast are used.

48

Splitting the dataset into two subsets is crucial for ensuring that the model can

generalize effectively to new, unseen data. The training set is designed to teach the

model the relationships between input data features and output data targets. During

this stage, the model adjusts its parameters, such as weights in neural networks. The

validation set impartially evaluates the model's fit on the training dataset while fine-

tuning the hyperparameters of the model. Finally, the test set assesses the model's

performance after training and validation. This study divides the macroeconomic

time series data into 80% for training, 10% for validation, and 10% for testing.

4.2 Dataset for the New Keynesian Model for Mexico

The New Keynesian model is also employed on the Mexican economic series to

apply the PIM-LSTM method. The real gross domestic product (GDP), the consumer

price index (CPI), the short-term interest rate, the inflation forecast, and the real GDP

forecast are used. We utilize a quarterly dataset of these variables spanning from

1998Q1 to 2024Q2 for Mexico. The real GDP and the CPI are sourced from the

Federal Reserve Economic Data (FRED) at https://fred.stlouisfed.org/, while the

short-term interest rate, the inflation forecast, and the real GDP forecast are retrieved

from OECD Data Explorer.

Before conducting exploratory data analysis, some transformations on the dataset are

applied. First, following Pfeifer's recommendations [33], some calculations are

performed, shown in Equation (36). Secondly, the real GDP is seasonally adjusted

by using Census X-13 procedure since the real GDP shows seasonal pattern. Then,

two-sided Hodrick-Prescott (HP) filter is utilized to extract the trend component of

seasonally adjusted real GDP. The trend component of seasonally adjusted real GDP

represents the potential output. The potential output data obtained from HP filter is

added to the dataset. Moreover, potential output, inflation forecasts, and GDP

forecasts are considered exogenous variables.

https://fred.stlouisfed.org/

49

4.2.1 Exploratory Data Analysis

Table 4.10 provides descriptive statistics of key macroeconomic indicators for

Mexico, specifically the CPI inflation rate, interest rate, real GDP, potential output,

inflation forecast, and GDP forecast. The CPI inflation rate has a mean close to zero

(−0.0023) with a range from −0.0102 to 0.0173. Half of the CPI inflation rate

values fall between −0.0052 and −0.0005. The interest rate has a mean of

−0.0028. Half of the interest rate values are between −0.0066 and 0.0022.

Similarly, the real GDP and the potential output values are closely aligned, with

means of 6.7145 and 6.7140, respectively. The CPI inflation rate, the interest rate,

the real GDP, the potential output are probably symmetrically distributed since their

means and median values are close. The inflation forecast and the GDP forecast have

high standard deviations (3.4654 and 4.1644). In contrast, the interest rate, the CPI

inflation rate, the real GDP and the potential output show lower variability, with

relatively small standard deviations indicating more stability.

Table 4.10 Descriptive Statistics of Mexico’s Macroeconomic Series

 Inflation

Rate

Interest

Rate

Real

GDP

Potential

Output

Inflation

Forecast

GDP

Forecast

Minimum −0.0102 −0.0083 6.6122 6.6005 2.2662 −20.2938

 Q1 −0.0052 −0.0066 6.6663 6.6705 3.7983 0.9048

Median −0.0022 −0.0037 6.7101 6.7141 4.5085 2.3488

Mean −0.0023 −0.0028 6.7145 6.7140 5.6325 1.9443

Standard Dev. 0.0045 0.0057 0.0550 0.0545 3.4654 4.1644

Q3 −0.0005 −0.0022 6.7652 6.7684 5.9476 3.5132

Maximum 0.0173 0.0236 6.8018 6.7985 18.6328 22.7001

There is no missing data in any of the series. The time series graphs of Mexico’s

macroeconomic series are shown below. Figure 4.7 illustrates the changes in the CPI

inflation rate from 1998Q1 to 2024Q2. The time series plot of the CPI inflation rate

exhibits irregular cycle pattern over time. Until the last quarter of 2007, a downward

50

trend was observed. After that, small fluctuations around zero occurred. Figure 4.8

shows how the interest rate changed from 1998Q1 to 2024Q2. The interest rate

shows no seasonal pattern and follows a decreasing trend. Figure 4.9 illustrates the

changes in real GDP from 1998Q1 to 2024Q2. The real GDP shows no seasonal

behavior and demonstrates an overall upward trend during this period, despite

occasional short-term declines.

By examining the sACF and the sPACF in Figures 4.10, 4.11, and 4.12, inflation rate

and interest rate could be stationary since their ACFs show exponential decay, their

PACFs cut off after lags 1 and 2. However, the ACF of the real GDP shows slow

decay, indicating that it is non-stationary.

Figure 4.7 The Time Series Plot of Mexico’s Inflation Rate

Figure 4.8 The Time Series Plot of Mexico’s Interest Rate

51

Figure 4.9 The Time Series Plot of Mexico’s Real GDP

Figure 4.10 The sACF and sPACF of Mexico’s Inflation Rate

Figure 4.11 The sACF and sPACF of Mexico’s Interest Rate

52

Figure 4.12 The sACF and sPACF of Mexico’s Real GDP

Augmented Dickey-Fuller (ADF) Test

ADF test results show that the CPI inflation rate and the interest rate do not have unit

roots, so these series are stationary. However, the real GDP has unit roots, indicating

nonstationarity.

Table 4.11 ADF test for Inflation Rate

Test Statistic

Number of Lags Used

P-value

−4.1983

11
0.0007

Table 4.12 ADF test for Interest Rate

Test Statistic

Number of Lags Used

P-value

−2.9846

11
0.0364

Table 4.13 ADF test for Real GDP

Test Statistic

Number of Lags Used

P-value

-1.0587

2
0.7312

53

Toda-Yamamoto Causality Test

The Toda-Yamamoto causality test results presented in Table 4.14 reveal several

significant relationships among the variables. Specifically, the interest rates and the

real GDP Granger cause the inflation rate. The real GDP Granger causes the interest

rate. These results suggest the presence of causal relationships among certain

variables, indicating that multivariate time series analysis is applicable to this

dataset.

Table 4.14 Toda-Yamamoto Causality Test Result

X => Y P value

Interest Rate => Inflation Rate

Interest Rate => Real GDP

Inflation Rate => Interest Rate

Inflation Rate => Real GDP

Real GDP => Interest Rate

Real GDP => Inflation Rate

0.026

0.984

0.477

0.726

0.047

0.024

4.2.2 Data Preprocessing

Min-Max normalization is applied to scale the data while preserving its overall

distribution. The data is transformed into sequences of inputs and outputs, allowing

the model to learn from past input values and predict output values.

A sliding window approach is implemented with a stride of one quarter to create

these input sequences. Each output sequence consists of three values, each

representing a one-step-ahead forecast based on previous values of the series. This

study splits the time series data into 80% for training, 10% for validation, and 10%

for testing.

54

4.3 Dataset for Dividend-Augmented Goodwin-Keen Model

The Dividend-Augmented Goodwin-Keen model (DAGKM) for USA is also

employed to apply the PIM-LSTM method. The model is composed of several

differential equations for the wage share, the employment rate, and debt ratio. By the

methodology suggested by Bailly et al. [3], our research employs a framework where

the Goodwin-Keen model characterizes an economy comprised solely of households

and private firms, intentionally omitting taxes and public investments. Moreover,

financial activities affect the dynamics of the model only through loan provisions

and interest payments by the non-financial sector. Employment, investment, and

value-added are not directly impacted by banking activities in the model, leading to

the exclusion of the banking sector from the analyzed time series. As a result, the

data series are designed to closely represent the nonfinancial private sector, with

most empirical variables defined as the combination of corporate and non-corporate

nonfinancial business data. The series were primarily gathered from the FRED at

https://fred.stlouisfed.org/. The series were collected quarterly over the period from

1959 to 2019. Additional information regarding the datasets used can be found in the

Appendix (Table A.1).

The wage share at time 𝑡, 𝜔𝑡
𝑜, is defined as the ratio of real compensation of

employees in the non-financial private sector to total real output:

𝜔𝑡
𝑜 =

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠𝑡
𝑛𝑜𝑛𝑓𝑖

𝑌𝑡
𝑜

(39)

where 𝑌𝑡
𝑜 = 𝐺𝑟𝑜𝑠𝑠 𝑉𝑎𝑙𝑢𝑒 𝐴.𝑡

𝑛𝑜𝑛𝑓𝑖
− 𝐶𝑜𝑛𝑠. 𝑜𝑓 𝐹𝑖𝑥𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑡

𝑛𝑜𝑛𝑓𝑖
− 𝑁𝑒𝑡 𝑇𝑎𝑥𝑒𝑠 𝑜𝑛 𝑃𝑟𝑜𝑑𝑡

𝑛𝑜𝑛𝑓𝑖
 .

The employment rate at time 𝑡, 𝜆𝑡
𝑜, is calculated from employment and

unemployment series:

𝜆𝑡
𝑜 =

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

+ 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡
𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑛𝑜𝑛𝑎𝑔𝑟𝑖

(40)

https://fred.stlouisfed.org/

55

As the employment rate exhibits seasonal behavior, seasonality is removed using the

Seasonal Trend Decomposition using LOESS procedure [10]. The real debt ratio,

𝑑𝑡
𝑜, is described as the ratio of the net debt level to total real output:

𝑑𝑡
𝑜 =

𝐷𝑡
𝑜

𝑌𝑡
𝑜

(41)

where 𝐷𝑡
𝑜 = 𝐷𝑒𝑏𝑡 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑡

𝑐𝑜𝑟𝑝𝑜 + 𝐿𝑜𝑎𝑛𝑠𝑡
𝑛𝑜𝑛𝑓𝑖

− 𝑆𝑎𝑣𝑖𝑛𝑔 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑡
𝑛𝑜𝑛𝑓𝑖

 .

4.3.1 Exploratory Data Analysis

Table 4.15 presents summary statistics for key economic indicators in the USA. The

wage share ranges from 0.6269 to 0.7240, with an average of 0.6770 and a small

standard deviation of 0.0214, indicating small variation. In contrast, the debt ratio

has a broader range from 0.5563 to 1.5954, with a higher standard deviation of

0.2690, reflecting greater variability around its average of 1.0655. The employment

rate falls between 0.8893 and 0.9562, averaging 0.9399, and has a standard deviation

of 0.0168, suggesting it is relatively stable. Half of the wage share values are between

0.6615 and 0.6930. Half of the debt ratio values are between 0.8592 and 1.2633.

Similarly, half of the employment rate values are between 0.9284 and 0.9510.

Notably, the mean and median for each series are almost equal, indicating that all

series are symmetrically distributed. There is no missing value in the series.

Table 4.15 Descriptive Statistics of US Economic Indicators

 Wage Share Debt Ratio Employment Rate

Minimum 0.6269 0.5563 0.8893

Q1 0.6615 0.8592 0.9284

Median 0.6799 1.0858 0.9411

Mean 0.6770 1.0655 0.9390

Standard Dev. 0.0214 0.2690 0.0168

Q3 0.6930 1.2633 0.9510

Maximum 0.7240 1.5954 0.9669

56

Figure 4.13 shows how the wage share in the US over time. The wage share rises

significantly from the 1960s to 1980, peaking above 0.72. After 1980, it fluctuates

and generally decreases until 2010s. Figure 4.14 shows the change in the US debt

ratio over time. The debt ratio increased steadily over time. The debt ratio increased

steadily from around 0.6 in 1959 to above 1.4 in 2020. There are noticeable short-

term fluctuations but a sharp decline in 2010. After this decline, the debt ratio

continues to rise. Figure 4.15 depicts the change in the US employment rate over

time. The US employment rate displays an irregular cyclical pattern. Overall, the

employment rate fluctuates between a low of 0.89 and a high of 0.97. Figures 4.16,

4.17, and 4.18 indicates that all sACF plots show slow decay, indicating that these

three series are not stationary.

Figure 4.13 The Time Series Plot of the Wage Share of US

Figure 4.14 The Time Series Plot of the Debt Ratio of US

57

Figure 4.15 The Time Series Plot of the Employment Rate of US

Figure 4.16 The sACF and sPACF of Wage Share of US

Figure 4.17 The sACF and sPACF of Debt Ratio of US

58

Figure 4.18 The sACF and sPACF of Employment Rate of US

Augmented Dickey-Fuller (ADF) Test

ADF test results show that the wage share, debt ratio, and employment rate exhibit

unit roots, indicating nonstationarity.

Table 4.16 ADF test for US Wage Share

Test Statistic

Number of Lags Used

P-value

−2.204730
0
0.204533

Table 4.17 ADF test for US Debt Ratio

Test Statistic

Number of Lags Used

P-value

−1.075899
1
0.724587

Table 4.18 ADF test for US Employment Rate

Test Statistic

Number of Lags Used

P-value

−2.789385
13
0.059806

59

Toda-Yamamoto Causality Test

The Toda-Yamamoto causality test results presented in Table 4.19 reveal several

significant relationships among the variables. Specifically, the debt ratio and

employment rate are found to Granger-cause the wage share. Additionally, the

employment rate also Granger-causes the debt ratio. However, the wage share does

not Granger-cause either the debt ratio or the employment rate. These results suggest

the presence of causal relationships among certain variables, indicating that

multivariate time series analysis is applicable to this dataset.

Table 4.19 Toda-Yamamoto Causality Test Result

X => Y P value

Wage Share => Debt Ratio

Debt Ratio => Wage Share

Wage Share => Employment Rate

Employment Rate => Wage Share

Debt Ratio => Employment Rate

Employment Rate => Debt Ratio

0.056

0.030

0.189

0.015

0.301

0.000

4.3.2 Data Preprocessing

Min-Max normalization scales the data to a fixed range, typically between 0 and 1,

while preserving its overall distribution. The data is transformed into sequences of

inputs and outputs, allowing the model to learn from past input values and predict

output values. To create these input sequences, a sliding window approach is

implemented with a stride of one quarter, which indicates the step size used to shift

the window and generate new input-output pairs. Each output sequence consists of

three values, each representing a one-step-ahead forecast based on previous values

of the series. This study splits the time series data into 80% for training, 10% for

validation, and 10% for testing.

60

4.4 Experiment Setup

In this study, deep learning models for forecasting time series, as well as data

processing and analysis, are developed using the Python programming language. Its

recognized flexibility and dependability in building these models, especially in the

realm of machine learning, is well-established. Moreover, Python has many libraries

and packages created for scientific computing and data analysis. This offers exciting

opportunities for users.

PyTorch, an open-source deep learning framework, is used for this study due to its

ability to facilitate flexible model execution and debugging using dynamic graphs.

In addition, its automatic differentiation engine simplifies the computation of

gradients in deep learning applications. Furthermore, PyTorch's support for CUDA

enables efficient execution of computations on graphical processing units (GPUs).

Ray Tune is preferred for performing hyperparameter tuning on deep learning

models. Ray Tune helps find the best combination of parameters in deep learning

models. It is a widely used tool for distributed hyperparameter tuning in the industry,

with the most up-to-date hyperparameter search algorithms. Ray Tune also works

seamlessly with TensorBoard and other analysis libraries, and it facilitates

distributed training through Ray's distributed machine learning engine.

The PIM-LSTM model is a deep learning architecture built using PyTorch, designed

to process sequential data with a Long Short-Term Memory (LSTM) network. It

operates on CUDA for efficient GPU acceleration. The model consists of multiple

configurable layers, including an LSTM layer, linear layers, layer normalization,

dropout regularization, and residual connections. The LSTM layer processes input

sequences with a specified number of hidden units and layers while applying dropout

if more than one layer is used. Afterward, the output undergoes layer normalization

and dropout to stabilize training and prevent overfitting. The architecture is dynamic,

allowing different numbers of fully connected layers based on a parameter that

defines the number of linear layers. If no additional layers are specified, the LSTM

output is directly mapped to the final predictions. When one or more linear layers

61

are included, they are followed by ReLU activations, layer normalization, and

residual connections to enhance gradient flow and model stability. In the forward

pass, the LSTM processes the input sequence, followed by conditional linear

transformations and residual connections, ultimately producing a final prediction.

In this experiment, we conduct hyperparameter tuning with Ray Tune to find the best

hyperparameters such as number of hidden units, the number of linear layers, the

number of LSTM layer etc. We determined the appropriate hyperparameters by

setting the maximum epoch in Ray Tune to 100 and the hyperparameter trial epoch

to 100 and using 50 or 75 different hyperparameter combination trials. Ray Tune is

a powerful library for hyperparameter tuning, while Optuna is a flexible and efficient

framework for hyperparameter optimization. When used together with

OptunaSearch, they create a scalable, distributed, and effective solution for

hyperparameter tuning. Therefore, for our hyperparameter tuning needs, we choose

to use Ray Tune alongside OptunaSearch to explore various model configurations.

The search space includes LSTM architecture parameters (hidden sizes, number of

layers, dropout probabilities), learning rates, and batch sizes. The tuning process

optimizes the model based on validation loss using Asynchronous Successive

Halving (ASHA) for efficient resource allocation. The ASHA Scheduler is a useful

tool for managing resources and stopping tasks early in hyperparameter optimization

with Ray Tune. It helps with large experiments by quickly removing trials that are

not performing well and reallocating resources to better candidates. ASHA monitors

ongoing trials and halts those that fail to meet performance standards, reallocating

resources to more promising configurations. Unlike traditional methods, it operates

asynchronously and terminates trials without waiting for all to finish.

In the training process in our proposed model, the used loss function combines Mean

Squared Error (MSE) with a cross-correlation loss to align model predictions with

real-world dependencies. Additionally, prior knowledge constraints are incorporated

into the training process by enforcing relationships derived from economic models.

Additionally, gradient clipping is applied to prevent exploding gradients, and

learning rate scheduler “ReduceLROnPlateau” is applied. It dynamically reduces the

62

learning rate when a monitored metric which is validation loss stops improving.

Instead of reducing the learning rate at fixed intervals, this scheduler adjusts it only

when necessary, helping the model continue learning efficiently. The model’s

performance is periodically assessed using a validation set, and checkpointing is

employed to save model progress and resume training if interrupted. After

performing hyperparameter tuning in Ray Tune, the best training parameters are

selected based on the lowest validation loss. Using the best-trained model, we then

generate the forecast values for the test set.

While constructing the PIM-LSTM model, a prior knowledge-based approach was

adopted to define the prior loss function. This prior knowledge consists of specific

mathematical equations, within which certain parameters exist. These parameters

have either been previously calibrated or estimated. In this study, two different

strategies were employed. Firstly, the estimated or calibrated parameter values were

directly incorporated into the model (referred to PIM-LSTM1). Secondly, these

parameters were assumed to be unknown and were introduced into the model as

hyperparameters (referred to PIM-LSTM2). This approach allowed the model to

learn these parameters independently, facilitating a data-driven optimization process.

By combining both strategies, the model’s flexibility was enhanced, enabling the

development of a learning mechanism that leverages both prior knowledge and data-

driven learning.

4.4.1 Hyperparameter Tuning for New Keynesian Model for Turkiye

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM

architecture for Turkiye’s New Keynesian Model. Firstly, for the PIM-LSTM model,

the calibrated parameters specific to the New Keynesian model are applied. These

calibrated parameters for Turkiye are sourced from the article by Güloğlu and

Güngör [12]. Table 4.20 shows the calibrated parameters for the New Keynesian

model related to Turkiye.

63

Table 4.20 Calibrated Parameters from Güloğlu’s Article [12]

𝛼 = 0.33 Capital share in Production 𝜎 = 1 Relative Risk Aversion

𝛽 = 0.99 Discount Factor 𝜃 = 0.6699 Calvo Parameter

∈= 6 Elasticity of Substitution 𝜙𝜋 = 1.9959 Feedback parameter of inflation

𝜑 = 1 Frisch Elasticity 𝜙𝑦 = 0.5122 Feedback parameter of output gap

Table 4.21 shows the detailed setup for PIM-LSTM model with known parameters.

The hyperparameter tuning experiment for PIM-LSTM model with known

parameters in the New Keynesian Model was conducted using Ray Tune with

OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize

validation loss. The best model configuration included 32 hidden units in the first

LSTM layer, one LSTM layer, and one linear layer, with a dropout rate of 0.2. The

best training parameters were found using the AdamW optimizer, Xavier weight

initialization, and Normal bias initialization, with batch shuffling enabled. The

optimal batch size was 4 and the input sequence length was 4. The learning rate was

0.0056171, with a weight decay of 0.002717, and learning rate scheduling was

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction

factor of 0.8. The training process was set to run for a maximum of 100 epochs, with

a grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.1 determine

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹.

Secondly, the parameters in the New Keynesian model were treated as unknowns

and integrated into the model as hyperparameters when implementing the PIM-

LSTM model for the New Keynesian model. Table 4.22 indicates the detailed setup

for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment

for the PIM-LSTM model with unknown parameters in the New Keynesian Model

utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler,

conducting 75 trials to minimize validation loss. The best model configuration

selected 32 hidden units in the first LSTM layer, one LSTM layer, two linear layers,

64

and a dropout rate of 0.2. The best training parameters included the AdamW

optimizer, Xavier weight initialization, and Normal bias initialization, with batch

shuffling enabled. The optimal batch size was 4, input sequence length was 16, and

learning rate was 0.001736, with weight decay of 0.000005. Learning rate scheduling

was applied using Reduce Learning Rate on Plateau, with a patience of 2 and a

reduction factor of 0.8. The tuning also optimized New Keynesian model parameters

(𝛽, 𝜃, 𝛼, ∈, 𝜎, 𝜑 , 𝜙𝜋 and 𝜙𝑦), with the best values found at 𝛽 = 0.36058 , 𝜃 =

0.75432 , 𝛼 = 0.66505 , ∈= 7 , 𝜎 = 5 , 𝜑 = 4 , 𝜙𝜋 = 1.8387 and 𝜙𝑦 = 0.5644.

𝛼1 = 0.1 and 𝛼2 = 0.1 are weighting coefficients.

65

Table 4.21 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Turkiye’s New Keynesian Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

75

Minimize Validation Loss

100

16, 32, 64, 128, 256,512

1, 2, 3, 4, 5

0, 1, 2

0.1,0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256,512

16, 32, 64, 128, 256,512

32

1

1

0.2

32

256

Model Training Parameter

Tuning

Trials Best Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32,64

4, 8, 12, 16

0.1, 0.3, 0.5, 0.7, 0.9

0.1, 0.3, 0.5, 0.7, 0.9

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

AdamW

Xavier

Normal

On

4

4

0.1

0.1

0.0056171

0.002717

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

66

Table 4.22 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Turkiye’s New Keynesian Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

75

Minimize Validation Loss

100

16, 32, 64, 128, 256,512

1, 2, 3, 4, 5

0, 1, 2

0.1,0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256,512

16, 32, 64, 128, 256,512

32

1

2

0.2

128

32

Model Training Parameter

Tuning

Trials Best Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

𝛽

𝜃

𝛼

∈

𝜎

𝜑

𝜙𝜋
𝜙𝑦

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32,64

4, 8, 12, 16

0.1, 0.3, 0.5, 0.7, 0.9

0.1, 0.3, 0.5, 0.7, 0.9

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

Uniform Min:0.01 Max:0.999

Uniform Min:0.6 Max:0.9

Uniform Min:0.01 Max:0.999

1,3,5,7,9,11

1,3,5,7,9,11

1,2,3,4

Uniform Min:1 Max:2

Uniform Min:0.01 Max:0.999

AdamW

Xavier

Normal

On

4

16

0.1

0.1

0.001736

0.000005

0.36058

0.75432

0.66505

7

5

4

1.83874

0.56441

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

67

4.4.2 Hyperparameter Tuning for New Keynesian Model for Mexico

Hyperparameter and model parameter tuning are performed for the PIM-LSTM

architecture for Mexico’s New Keynesian Model. Initially, for the PIM-LSTM

model, the calibrated parameters specific to Mexico’s New Keynesian model are

utilized. These calibrated parameters are sourced from the article by Zendejas-

Fonseca et al. [50]. Table 4.23 displays the calibrated parameters for Mexico's New

Keynesian model.

Table 4.23 Calibrated Parameters from Zendejas-Fonseca’s Article [50]

𝛼 = 0.33 Capital share in Production 𝜎 = 1 Relative Risk Aversion

𝛽 = 0.99 Discount Factor 𝜃 = 0.6699 Calvo Parameter

∈= 6 Elasticity of Substitution 𝜙𝜋 = 1.5 Feedback parameter of inflation

𝜑 = 1 Frisch Elasticity 𝜙𝑦 = 0.12 Feedback parameter of output gap

Table 4.24 shows the detailed setup for PIM-LSTM model with known parameters.

The hyperparameter tuning experiment for PIM-LSTM model with known

parameters in the New Keynesian Model was conducted using Ray Tune with

OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize

validation loss. The best model configuration included 32 hidden units in the first

LSTM layer, one LSTM layer, and no linear layer, with a dropout rate of 0.3. The

best training parameters were found using the Adam optimizer, Kaiming weight

initialization, and Ones bias initialization, with batch shuffling enabled. The optimal

batch size was 8, and the input sequence length was 16. The learning rate was

0.007785, with a weight decay of 0.000019, and learning rate scheduling was applied

using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor

of 0.8. The training process was set to run for a maximum of 100 epochs, with a

grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.1 determine

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹.

68

Secondly, the parameters in the New Keynesian model were treated as unknowns

and integrated into the model as hyperparameters when implementing the PIM-

LSTM model for the New Keynesian model. Table 4.25 indicates the detailed setup

for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment

for the PIM-LSTM model with known parameters in the New Keynesian Model

utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler,

conducting 75 trials to minimize validation loss. The best model configuration

selected 256 hidden units in the first LSTM layer, one LSTM layer, no linear layers,

and a dropout rate of 0.2. The best training parameters included the Adam optimizer,

Kaiming weight initialization, and Ones bias initialization, with batch shuffling

enabled. The optimal batch size was 32, input sequence length was 4, and learning

rate was 0.003166, with weight decay of 0.000257. Learning rate scheduling was

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction

factor of 0.8. The tuning also optimized New Keynesian model parameters (𝛽, 𝜃, 𝛼, ∈

, 𝜎, 𝜑 , 𝜙𝜋 and 𝜙𝑦), with the best values found at 𝛽 = 0.86045 , 𝜃 = 0.61734 , 𝛼 =

0.75074 , ∈= 5 , 𝜎 = 9 , 𝜑 = 3 , 𝜙𝜋 = 1.76522 and 𝜙𝑦 = 0.59629. Also, the

weighting coefficients are 𝛼1 = 0.3 and 𝛼2 = 0.1.

69

Table 4.24 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Mexico’s New Keynesian Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

75

Minimize Validation Loss

100

16, 32, 64, 128, 256,512

1, 2, 3, 4, 5

0, 1, 2

0.1,0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256,512

16, 32, 64, 128, 256,512

32

1

0

0.3

512

16

Model Training Parameter

Tuning

Trials Best Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32, 64

4, 8, 12, 16

0.1, 0.3, 0.5, 0.7, 0.9

0.1, 0.3, 0.5, 0.7, 0.9

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

Adam

Kaiming

Ones

On

8

16

0.1

0.1

0.007785

0.000019

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

70

Table 4.25 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Mexico’s New Keynesian Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

75

Minimize Validation Loss

100

16, 32, 64, 128, 256,512

1, 2, 3, 4, 5

0, 1, 2

0.1,0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256,512

16, 32, 64, 128, 256,512

256

1

0

0.1

512

512

Model Training Parameter

Tuning

Trials Best Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

𝛽

𝜃

𝛼

∈

𝜎

𝜑

𝜙𝜋
𝜙𝑦

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32,64

4, 8, 12, 16

0.1, 0.3, 0.5, 0.7, 0.9

0.1, 0.3, 0.5, 0.7, 0.9

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

Uniform Min:0.01 Max:0.999

Uniform Min:0.6 Max:0.9

Uniform Min:0.01 Max:0.999

1,3,5,7,9,11

1,3,5,7,9,11

1,2,3,4

Uniform Min:1 Max:2

Uniform Min:0.01 Max:0.999

Adam

Kaiming

Ones

On

32

4

0.3

0.1

0.003166

0.000257

0.86045

0.61734

0.75074

5

9

3

1.76522

0.59629

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

71

4.4.3 Hyperparameter Tuning for DAGKM Model

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM

architecture for the DAGKM model. When working with the PIM-LSTM model, we

utilize estimated parameters. These estimated parameters for the DAGKM model in

the USA are derived from the article by Bailly et al. [3]. Table 4.26 exhibits the

estimated parameters used in the DAGKM model for the USA.

Table 4.26 Estimate of Parameters from Bailly’s Article [3]

𝜌 = 0.0000352 𝑟 = 0.0126 𝛿 = 0.0427

𝑘1 = 0.0584

𝑘2 =4.03 ∆= 0.469

Table 4.27 shows the detailed setup for PIM-LSTM model with known parameters.

The hyperparameter tuning experiment for PIM-LSTM model with known

parameters in the DAGKM model was conducted using Ray Tune with

OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize

validation loss. The best model configuration selected 64 hidden units in the first

LSTM layer, one LSTM layer, zero linear layer, and a dropout rate of 0.1. The best

training parameters were determined using the RMSProp optimizer, Normal weight

initialization, and Normal bias initialization, with batch shuffling enabled. The

optimal batch size was 8, and the input sequence length was 4. The learning rate was

found to be 0.005097, with a weight decay of 0.00006. Learning rate scheduling was

applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction

factor of 0.8. The training process was set to run for a maximum of 100 epochs, with

a grace period of 10 and a reduction factor of 2. 𝛼1 = 0.1 and 𝛼2 = 0.5 determine

how much influence each loss component has on the total loss function: ℒ𝑡𝑜𝑡𝑎𝑙 =

𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝛼1𝑀𝑆𝐸𝑝𝑟𝑖𝑜𝑟 + 𝛼2ℒ𝐶𝐶𝐹.

Table 4.28 shows the detailed setup for PIM-LSTM model with unknown

parameters. The hyperparameter tuning experiment for PIM-LSTM model with

72

unknown parameters in the DAGKM model was conducted using Ray Tune with

OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize

validation loss. The best model configuration selected 32 hidden units in the first

LSTM layer, one LSTM layer, no linear layers, and a dropout rate of 0.4. The best

training parameters were found using the RMSProp optimizer, Normal weight

initialization, and Normal bias initialization, with batch shuffling enabled. The

optimal batch size was 16, and the input sequence length was 4. The learning rate

was 0.00764, with a weight decay of 0.00006. Learning rate scheduling was applied

using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor

of 0.8. Additional parameters were optimized, with the best values set for 𝜌 =

0.00004, 𝑘1 = 0.01935, 𝑘2 = 5.09022, 𝑟 = 0.00947, 𝛿 = 0.03806, ∆= 0.85094.

Also, the best weighting coefficients are 𝛼1 = 0.1 and 𝛼2 = 0.3.

73

Table 4.27 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

DAGKM Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

50

Minimize Validation Loss

100

16, 32, 64, 128, 256,512

1, 2, 3, 4, 5

0, 1, 2

0.1,0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256,512

16, 32, 64, 128, 256,512

64

1

0

0.1

64

256

Model Training Parameter

Tuning

Trials Best

Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32,64

4, 8, 12, 16

0.1,0.3,0.5,0.7

0.1,0.3,0.5,0.7

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

RMSProp

Normal

Normal

On

8

4

0.1

0.5

0.005907

0.00006

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

74

Table 4.28 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

DAGKM Model

Hyperparameter Tuning

Trials Best Model

Parameters

Tuning Environment

Search Algorithm

Scheduler

Hyperparameter Trials

Tuning Objective

Hyperparameter Trial Epochs

LSTM Layer 1 Hidden Size

LSTM Layer Num Layer

Linear Layer Num Layer

Dropout 1

Linear Layer 1 Hidden Size

Linear Layer 2 Hidden Size

Ray Tune

OptunaSearch

AsyncHyperBandScheduler

50

Minimize Validation Loss

100

16, 32, 64, 128, 256, 512

1, 2, 3, 4, 5

0, 1, 2

0.1, 0.2, 0.3, 0.4, 0.5

16, 32, 64, 128, 256, 512

16, 32, 64, 128, 256, 512

32

1

0

0.4

256

256

Model Training Parameter

Tuning

Trials Best

Training

Parameters

Optimizers

Weight Initialization

Bias Initialization

Batch Shuffle

Batch Size

Input Sequence Length

𝛼1

𝛼2

Learning Rate

Weight Decay

Learning Rate Scheduler

Learning Rate Scheduler Patience

Learning Rate Scheduler Factor

𝜌

𝑘1

𝑘2

𝑟
𝛿

∆

Adam, RMSProp, SGD, AdamW

Xavier, Kaiming, Normal

Zeros, Ones, Normal

On

4, 8, 16, 32,64

4, 8, 12, 16

0.1,0.3,0.5,0.7

0.1,0.3,0.5,0.7

Log Uniform: Min:0.00001 Max:0.01

Log Uniform: Min:0.000001 Max:0.01

Reduce Learning Rate on Plateau

2

0.8

Uniform Min:0.0000144

Max:0.000044

Uniform Min:0.00279 Max:0.148

Uniform Min:2.47 Max:10

Uniform Min:-0.0501 Max:0.0721

Uniform Min:0 Max:0.0937

Uniform Min:0.000036 Max:0.894

RMSProp

Normal

Normal

On

16

4

0.1

0.3

0.00764

0.00006

0.00004

0.01935

5.09022

0.00947

0.03806

0.85094

Best Model Training

Additional Setting

Max Epoch

Grace Period

Reduction Factor

100

10

2

75

4.5 Results

Firstly, we conducted multivariate time series forecasting for the New Keynesian

model for Turkiye. Six deep learning models were utilized to predict the values of

the series in the New Keynesian model. These models are the LSTM model and

LSTM model with CCF loss, PINN model with Data-Driven Solution, PINN model

with Data-Driven Discovery, PIM-LSTM model with known parameters (referred to

as PIM-LSTM1), and PIM-LSTM model with unknown parameters (referred to as

PIM-LSTM2). After performing hyperparameter tuning on all models for three

series, the performance metrics, MAE, RMSE and MASE were calculated.

Furthermore, the Vector Error Correction Model (VECM) is implemented for

multivariate time series forecasting. Table 4.29 shows the out-of-sample forecast

performance of these models for each series. In terms of overall performance across

all indicators, the PIM-LSTM1 achieves the lowest MAE (0.0073), RMSE (0.0132),

and MASE (0.8013), indicating superior accuracy.

Table 4.29 Test Set Model Performance for Turkiye’s New Keynesian Model

Model MAE RMSE MASE

LSTM Model

PINN Model (Data-Driven Solution)

PINN Model (Data-Driven Discovery)

LSTM_CCF Model

PIM-LSTM1

PIM-LSTM2

VECM Model

0.0140

0.0093

0.0173

0.0101

0.0073

0.0116

0.0095

0.0197

0.0138

0.0255

0.0201

0.0132

0.0171

0.014

1.5288

1.0194

1.8814

1.1062

0.8013

1.2696

1.9027

Figures 4.19, 4.20 and 4.21 depict the time series forecast plot for the CPI inflation

rate, the short-term interest rate and real GDP of Turkiye. In these plots, the legend

of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while

"PIM-LSTM1" represents the PIM-LSTM model with known parameters.

76

Additionally, "PINN1" represents the PINN model with data-driven solutions and

"PINN2" refers to the PINN model with data-driven discovery.

Figure 4.19 shows the performance of different models in forecasting the CPI

inflation rate over time, compared to the actual CPI inflation values, which are

represented by the "Test Set" in orange. Each colored and dashed line corresponds

to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-

LSTM1, and VECM. Most models struggle to fully capture the upward trend in

inflation rate seen in the test set in late 2020. Nevertheless, among the models, the

LSTM (green) and PINN1(purple) model forecasts are slightly closer to actual

inflation values. Figure 4.20 shows the forecast of interest rates obtained by various

models, including the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-

LSTM2, PIM-LSTM1, and VECM. Overall, the forecasts from the PIM-

LSTM1(red) model, PINN1(purple) model, and the PIM-LSTM2(light blue) model

are closer to the actual interest rate values. Figure 4.21 shows the predictions of the

real GDP using the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-

LSTM2, PIM-LSTM1, and VECM. Both the PIM-LSTM1 (red) model and VECM

(brown) provide a more consistent and realistic forecast.

77

Figure 4.19 Forecast Plot of Turkiye’s Inflation Rate

78

Figure 4.20 Forecast Plot of Turkiye’s Interest Rate

79

Figure 4.21 Forecast Plot of Turkiye’s Real GDP

80

Secondly, we performed multivariate time series forecasting using the New

Keynesian model for Mexico. We employed six deep learning models to forecast the

values associated with the series in the New Keynesian framework. These models

include the LSTM model, the LSTM model with CCF loss, the PINN model utilizing

a Data-Driven Solution, the PINN model based on Data-Driven Discovery, the PIM-

LSTM model with known parameters (referred to as PIM-LSTM1), and the PIM-

LSTM model with unknown parameters (referred to as PIM-LSTM2). After

performing hyperparameter tuning on all models for three series, the performance

metrics, MAE, RMSE, and MASE, were calculated. Furthermore, the Vector

Autoregressive (VAR) is implemented for multivariate time series forecasting. Table

4.30 shows the out-of-sample forecast performance of these models for each series.

In terms of overall performance across all indicators, the PIM-LSTM2 achieves the

lowest MAE (0.0030), RMSE (0.0036), and MASE (1.5847), indicating superior

accuracy.

Table 4.30 Test Set Model Performance for Mexico’s New Keynesian Model

Model MAE RMSE MASE

LSTM Model

PINN Model (Data-Driven Solution)

PINN Model (Data-Driven Discovery)

LSTM_CCF Model

PIM-LSTM1

PIM-LSTM2

VAR Model

0.0130

0.0087

0.0136

0.0080

0.0033

0.0030

0.0064

0.0189

0.0126

0.0191

0.0103

0.0041

0.0036

0.0081

6.7887

4.5628

7.1034

4.2164

1.7471

1.5847

3.3501

Figures 4.22, 4.23 and 4.24 depict the time series forecast plot for the CPI inflation

rate, the short-term interest rate and real GDP of Mexico. In these plots, the legend

of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while

"PIM-LSTM1" represents the PIM-LSTM model with known parameters.

81

Additionally, "PINN1" represents the PINN model with data-driven solutions and

"PINN2" refers to the PINN model with data-driven discovery.

Figure 4.22 shows the performance of different models in forecasting the CPI

inflation rate over time, compared to the actual CPI inflation values, which are

represented by the "Test Set" in orange. Each colored and dashed line corresponds

to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-

LSTM1, and VAR. Although all models struggle to precisely capture the fluctuations

observed in the inflation rate within the test set, the narrow range of the test set

indicates that most of the forecasts are quite close to the actual values. Figure 4.23

shows the forecast of interest rates obtained by various models, including the LSTM

model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR.

Overall, the PIM-LSTM1(red) model forecasts are closer to the actual interest rate

values. Figure 4.24 exhibits the forecast of the real GDP using the LSTM model,

LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR. The

PIM-LSTM1 (red) model provides a more consistent and realistic forecast than the

other models.

82

Figure 4.22 Forecast Plot of Mexico’s Inflation Rate

83

Figure 4.23 Forecast Plot of Mexico’s Interest Rate

84

Figure 4.24 Forecast Plot of Mexico’s Real GDP

85

Lastly, we conducted multivariate time series forecasting for the Dividend-

Augmented Goodwin-Keen model (DAGKM) for the USA. Six deep learning

models were utilized to get the forecasts of the series in the DAGKM model. These

models are LSTM model and LSTM model with CCF loss, PINN model with Data

Driven Solution, PINN model with Data Driven Discovery, PIM-LSTM model with

known parameters (referred to as PIM-LSTM1) and PIM-LSTM model with

unknown parameters (referred to as PIM-LSTM2). After performing hyperparameter

tuning on all models for three series, the performance metrics such as MAE, RMSE

and MASE for three series were calculated. Furthermore, VECM is built for

multivariate time series forecasting. Table 4.31 presents the out-of-sample forecast

performance of these models for each series. In terms of overall performance across

all indicators, the PIM-LSTM1 achieves the lowest MAE (0.0080), RMSE (0.0103),

and MASE (1.5546), indicating superior accuracy.

Table 4.31 Test Set Model Performance for US DAGKM model

Model MAE RMSE MASE

LSTM Model

PINN Model (Data Driven Solution)

PINN Model (Data Driven Discovery)

LSTM_CCF Model

PIM-LSTM1

PIM-LSTM2

VECM Model

0.0190

0.0098

0.0295

0.0098

0.0080

0.0174

0.0399

0.0290

0.0174

0.0475

0.0149

0.0103

0.0265

0.0447

3.7129

1.9161

5.7727

1.9144

1.5546

3.3869

5.8167

Figures 4.25, 4.26 and 4.27 shows the time series forecast plot for the wage share,

the debt ratio and the employment rate of the USA. In these plots, the legend of

"PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while

"PIM-LSTM1" represents the PIM-LSTM model with known parameters.

Additionally, "PINN1" represents the PINN model with data-driven solutions and

"PINN2" refers to the PINN model with data-driven discovery.

86

Figure 4.25 illustrates the performance of different models in forecasting the wage

share over time, compared to the actual wage share values, which are represented by

the "Test Set" in orange. Each colored and dashed line corresponds to a different

model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and

VECM. All models except the VECM (in brown) effectively showed an upward

trend in wage share, as seen in Figure 4.25. Among these models, the PINN1 (in

purple) and PIM-LSTM1 (in red) performed better at capturing the small fluctuations

that followed the initial increase.

Figure 4.26 shows the forecast of debt ratio obtained by various models, including

the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1,

and VAR. All models, except the VECM (brown), successfully captured the

increasing trend in the debt ratio as seen in Figure 4.26. However, among these

models, the PIM-LSTM1(red) model performs better, as its forecasted values are

closer to the actual debt ratio values.

Furthermore, Figure 4.27 shows that all models, except the VECM (brown),

successfully capture the increasing trend in the employment rate. However, the

forecasts from the LSTM_CCF (black) and the PIM-LSTM2(light blue) are more

closely aligned with the actual values.

87

Figure 4.25 Forecast Plot of US Wage Share

88

Figure 4.26 Forecast Plot of US Debt Ratio

89

Figure 4.27 Forecast Plot of US Employment Rate

90

91

CHAPTER 5

5 DISCUSSION AND CONCLUSION

The main goal of this thesis is to adapt Physics-Informed Neural Networks (PINNs)

to multivariate time series analysis, integrating causal relationships and cross-

correlations into the PINNs framework to enhance model performance. Additionally,

a side goal is to introduce the PINNs model to economic modeling, which has not

been previously applied in economics. To achieve this, we developed the Prior-

Informed Multivariate LSTM (PIM-LSTM) model, drawing inspiration from the

PINNs framework. The proposed PIM-LSTM model leverages prior knowledge

constraints and incorporates cross-correlation function (CCF) constraints to improve

multivariate time-series forecasting. In this study, while training our model, the

econometric model and the CCF function are incorporated into the loss function.

This integration results in adjusting weights and biases according to the modified

loss function, improving the training process and model performance. By integrating

economic prior knowledge and cross-correlation information into the model, the

PIM-LSTM model produces more reliable and consistent forecasts, ultimately

improving the performance of multivariate time series forecasting. In this context,

how the PIM-LSTM model works for the New Keynesian model for Turkiye and

Mexico macroeconomic series is demonstrated, and its performance is compared

with that of the LSTM model and the PINNs model. While training our model, the

New Keynesian model and the CCF function are incorporated into the loss function

to improve the overall training process and model performance.

In our analysis of Turkiye’s macroeconomic series, the PIM-LSTM model with

known parameters achieves the lowest errors across all performance metrics,

demonstrating the highest overall accuracy for the New Keynesian Model.

Specifically, the PIM-LSTM model with known parameters achieves a Mean

Absolute Error (MAE) of 0.0073, a Root Mean Squared Error (RMSE) of 0.0132,

92

and a Mean Absolute Scaled Error (MASE) of 0.8013. In our analysis of Mexico’s

macroeconomic series, the PIM-LSTM model with unknown parameters achieves

the lowest errors across all performance metrics, demonstrating the highest overall

accuracy for the New Keynesian Model. Specifically, the PIM-LSTM model with

unknown parameters achieves an MAE of 0.0030, an RMSE of 0.0036, and a MASE

of 1.5847. Similarly, we show how the PIM-LSTM model works for the DAGKM

model, and its performance is compared with the LSTM and PINNs models. Our

analysis reveals that the PIM-LSTM model with known parameters achieves the

lowest errors across all performance metrics, demonstrating the highest overall

accuracy for the DAGKM model. Specifically, the PIM-LSTM model with known

parameters achieves an MAE of 0.0080, RMSE of 0.0103, and MASE of 1.5546.

Upon evaluating the performance metrics alongside the forecast plots in detail, it can

be inferred that the PIM-LSTM model displayed the highest overall performance in

multivariate time series analysis. Its ability to balance precision across different

variables and effectively identify significant trends establishes it as the most

dependable model for this analysis.

Future research could extend the PIM-LSTM model to additional economic models,

such as DSGE or agent-based models, to evaluate its adaptability across different

macroeconomic models. Alternative architectures, like graph neural networks or

transformers, could also be explored to enhance forecasting accuracy. Improving

interpretability through causal inference and explainability methods would help

validate learned relationships against economic theories. Additional studies could

examine the model’s robustness under different economic conditions, including

financial crises and changes in policy. These studies may use statistical methods like

VAR or Bayesian estimation to create hybrid models. Improving training methods

with new loss functions and better optimization strategies could also boost

performance. Finally, extending PIM-LSTM to capture time-varying and nonlinear

economic dynamics would help address structural breaks and evolving relationships

in financial systems.

93

REFERENCES

[1] Arzani, A., Wang, J. X., & D'Souza, R. M. (2021). Uncovering near-wall blood

flow from sparse data with physics-informed neural networks. Physics of Fluids,

33(7).

[2] Bai, Y., Chaolu, T., & Bilige, S. (2022). The application of improved physics-

informed neural network (IPINN) method in finance. Nonlinear Dynamics,

107(4), 3655-3667.

[3] Bailly, H., Mortier, F., & Giraud, G. (2024). Empirical analysis of a debt-

augmented Goodwin model for the United States. Structural Change and

Economic Dynamics, 70, 619-633.

[4] Bararnia, H., & Esmaeilpour, M. (2022). On the application of physics-informed

neural networks (PINN) to solve boundary layer thermal-fluid problems.

International Communications in Heat and Mass Transfer, 132, 105890.

[5] Box, G., & Jenkins, G. (1976). Time Series Analysis, Forecasting and Control.

Holden Day.

[6] Brown, R. G. (1959). Statistical forecasting for inventory control. New York:

McGraw-Hill.

[7] Cai, S., Mao, Z., Wang, Z., Yin, M., & Karniadakis, G. E. (2021). Physics-

informed neural networks (PINNs) for fluid mechanics: A review. Acta

Mechanica Sinica, 37(12), 1727-1738.

[8] Cai, S., Wang, Z., Wang, S., Perdikaris, P., & Karniadakis, G. E. (2021). Physics-

informed neural networks for heat transfer problems. Journal of Heat Transfer,

143(6), 060801.

94

[9] Chiu, P. H., Wong, J. C., Ooi, C., Dao, M. H., & Ong, Y. S. (2022). CAN-PINN:

A fast physics-informed neural network based on coupled-automatic–numerical

differentiation method. Computer Methods in Applied Mechanics and

Engineering, 395, 114909.

[10] Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL:

A seasonal-trend decomposition. J. off. Stat, 6(1), 3-73.

[11] Goodwin, R. M. (1967). A Growth Cycle: Socialism, Capitalism and Economic

Growth, 1967, ED. CH Feinstein. In Essays in economic dynamics (pp. 165-

170). London: Palgrave Macmillan UK.

[12] Güngör, M. S., & Güloğlu, B. (2019). The effects of structural shocks on

macroeconomic fundamentals under aggressive monetary policy: The case of

Turkiye. International Journal of Business and Economic Sciences Applied

Research (IJBESAR), 12(2), 7-21.

[13] Hao, T. T., Yan, W. J., Chen, J. B., Sun, T. T., & Yuen, K. V. (2024). Multi-

output multi-physics-informed neural network for learning dimension-reduced

probability density evolution equation with unknown spatio-temporal-dependent

coefficients. Mechanical Systems and Signal Processing, 220, 111683.

[14] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

Computation, 9(8), 1735-1780.

[15] Hu, Z., Jagtap, A. D., Karniadakis, G. E., & Kawaguchi, K. (2023). Augmented

Physics-Informed Neural Networks (APINNs): A gating network-based soft

domain decomposition methodology. Engineering Applications of Artificial

Intelligence, 126, 107183.

[16] Huang, J., Wang, H., & Zhou, T. (2021). An augmented Lagrangian deep

learning method for variational problems with essential boundary

conditions. arXiv preprint arXiv:2106.14348.

95

[17] Jagtap, A. D., & Karniadakis, G. E. (2020). Extended physics-informed neural

networks (XPINNs): A generalized space-time domain decomposition-based

deep learning framework for nonlinear partial differential equations.

Communications in Computational Physics, 28(5).

[18] Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative physics-

informed neural networks on discrete domains for conservation laws:

Applications to forward and inverse problems. Computer Methods in Applied

Mechanics and Engineering, 365, 113028.

[19] Jeong, Y., Jo, J., Lee, T., & Yoo, J. (2024). Combined analysis of thermofluids

and electromagnetism using physics-informed neural networks. Engineering

Applications of Artificial Intelligence, 133, 108216.

[20] Jiang, X., Wang, D., Fan, Q., Zhang, M., Lu, C., & Lau, A. P. T. (2022).

Physics‐ informed neural network for nonlinear dynamics in fiber optics. Laser

& Photonics Reviews, 16(9), 2100483.

[21] Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang,

L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6),

422-440.

[22] Keen, S. (1995). Finance and economic breakdown: modeling Minsky’s

“financial instability hypothesis”. Journal of Post Keynesian Economics, 17(4),

607-635.

[23] Kharazmi, E., Zhang, Z., & Karniadakis, G. E. (2021). hp-VPINNs: Variational

physics-informed neural networks with domain decomposition. Computer

Methods in Applied Mechanics and Engineering, 374, 113547.

[24] Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A.,

& Anandkumar, A. (2023). Neural operator: Learning maps between function

96

spaces with applications to pdes. Journal of Machine Learning Research, 24(89),

1-97.

[25] Lawal, Z. K., Yassin, H., Lai, D. T. C., & Che Idris, A. (2022). Physics-informed

neural network (PINN) evolution and beyond: A systematic literature review and

bibliometric analysis. Big Data and Cognitive Computing, 6(4), 140.

[26] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A.,

& Anandkumar, A. (2020). Fourier neural operator for parametric partial

differential equations. arXiv preprint arXiv:2010.08895.

[27] Liu, L., Liu, S., Xie, H., Xiong, F., Yu, T., Xiao, M., & Yong, H. (2024).

Discontinuity computing using physics-informed neural networks. Journal of

Scientific Computing, 98(1), 22.

[28] Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural

networks for high-speed flows. Computer Methods in Applied Mechanics and

Engineering, 360, 112789.

[29] McClenny, L. D., & Braga-Neto, U. M. (2023). Self-adaptive physics-informed

neural networks. Journal of Computational Physics, 474, 111722.

[30] Meng, Z., Qian, Q., Xu, M., Yu, B., Yıldız, A. R., & Mirjalili, S. (2023). PINN-

FORM: a new physics-informed neural network for reliability analysis with

partial differential equation. Computer Methods in Applied Mechanics and

Engineering, 414, 116172.

[31] Nellikkath, R., & Chatzivasileiadis, S. (2022). Physics-informed neural networks

for AC optimal power flow. Electric Power Systems Research, 212, 108412.

[32] Pang, G., Lu, L., & Karniadakis, G. E. (2019). fPINNs: Fractional physics-

informed neural networks. SIAM Journal on Scientific Computing, 41(4),

A2603-A2626.

97

[33] Pfeifer, J. (2018) A Guide to Specifying Observation Equations for the

Estimation of DSGE Models, University of Mannheim. Working Paper.

Available at: https://sites.google.com/site/pfeiferecon/dynare.

[34] Pourtakdoust, S. H., & Khodabakhsh, A. H. (2022). A deep learning approach

for the solution of probability density evolution of stochastic systems. Structural

Safety, 99, 102256.

[35] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. Journal of Computational

Physics, 378, 686-707.

[36] Roberts, J. M. (1995). New Keynesian economics and the Phillips curve. Journal

of Money, Credit and Banking, 27(4), 975-984.

[37] Roel, J. (2017). Understanding Recurrent Neural Networks: The preferred

Neural Network for time series data. Retrieved from

https://towardsdatascience.com/understanding-recurrent-neural-networks-the-

prefered-neural-network-for-time-series-data-7d856c21b759.

[38] Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory

of brain mechanisms. Washington, DC: Spartan Books.

[39] Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the

Econometric Society, 1-48.

[40] Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for

solving partial differential equations. Journal of computational physics, 375,

1339-1364.

[41] Tanios, R. (2021). Physics Informed Neural Networks in Computational

Finance: High Dimensional Forward & Inverse Option Pricing (Master's thesis,

ETH Zurich).

https://sites.google.com/site/pfeiferecon/dynare
https://towardsdatascience.com/understanding-recurrent-neural-networks-the-prefered-neural-network-for-time-series-data-7d856c21b759
https://towardsdatascience.com/understanding-recurrent-neural-networks-the-prefered-neural-network-for-time-series-data-7d856c21b759

98

[42] Taylor, J. B. (1993, December). Discretion versus policy rules in practice. In

Carnegie-Rochester Conference Series on Public Policy (Vol. 39, pp. 195-214).

North-Holland.

[43] Vadyala, S. R., & Betgeri, S. N. (2023). General implementation of quantum

physics-informed neural networks. Array, 18, 100287.

[44] Wandel, N., Weinmann, M., Neidlin, M., & Klein, R. (2022). Spline-PINN:

Approaching PDEs without data using fast, physics-informed Hermite-Spline

CNNs. Proceedings of the AAAI Conference on Artificial Intelligence, 36(8),

8529-8538. https://doi.org/10.1609/aaai.v36i8.20830.

[45] Xu, Y., Zhang, H., Li, Y., Zhou, K., Liu, Q., & Kurths, J. (2020). Solving Fokker-

Planck equation using deep learning. Chaos: An Interdisciplinary Journal of

Nonlinear Science, 30(1).

[46] Yang, L., Meng, X., & Karniadakis, G. E. (2021). B-PINNs: Bayesian physics-

informed neural networks for forward and inverse PDE problems with noisy data.

Journal of Computational Physics, 425, 109913.

[47] Yang, M., & Foster, J. T. (2022). Multi-output physics-informed neural networks

for forward and inverse PDE problems with uncertainties. Computer Methods in

Applied Mechanics and Engineering, 402, 115041.

[48] Zhai, R., Yin, D., & Pang, G. (2023). A deep learning framework for solving

forward and inverse problems of power-law fluids. Physics of Fluids, 35(9).

[49] Zhang, X., Zhu, Y., Wang, J., Ju, L., Qian, Y., Ye, M., & Yang, J. (2022). GW-

PINN: A deep learning algorithm for solving groundwater flow equations.

Advances in Water Resources, 165, 104243

[50] Zendejas-Fonseca, A. S., Borrego-Salcido, C., & Venegas-Martínez, F. (2024).

An Estimated DSGE Model Under the New Keynesian Framework for

Mexico. Computational Economics, 1-24

https://doi.org/10.1609/aaai.v36i8.20830

99

APPENDIX A

TABLES FOR EXPERIMENT SETUP

Table A.1 Detailed data sources - quarterly and monthly data series

Variable Sector FRED code Complete series name

Gross value
added

Corporate NCBGAVQ027S Nonfinancial Corporate Business; Gross Value Added,
Transactions

Gross value

added
Noncorporate NNBGAVQ027S Nonfinancial Noncorporate Business; Gross Value

Added, Transactions
Consumption
of fixed capital

Corporate BOGZ1FA1063
00003Q

Nonfinancial Corporate Business; Consumption of Fixed
Capital, Structures, Equipment, and Intellectual Property

Products, Including Equity REIT Residential Structures

(NIPA Basis), Transactions
Consumption
of fixed capital

Noncorporate NNBCCFQ027S Nonfinancial Noncorporate Business; Consumption of
Fixed Capital, Structures, Equipment, and Intellectual

Property Products, Current Cost Basis, Transactions
Net taxes on
production and

imports

Corporate NCBPISQ027S Nonfinancial Corporate Business; Taxes on Production
and Imports Less Subsidies, Payable, Transactions

Net taxes on
production and

imports

Noncorporate NNBTPIQ027S Nonfinancial Noncorporate Business; Taxes on
Production and Imports Less Subsidies, Payable,

Transactions
Compensation

of employees
Corporate NCBCEPQ027S Nonfinancial Corporate Business; Compensation of

Employees Paid, Transactions
Compensation

of employees
Noncorporate NNBCEPQ027S Nonfinancial Noncorporate Business; Compensation of

Employees Paid, Transactions
Debt securities Corporate NCBDBIQ027S Nonfinancial Corporate Business; Debt Securities;

Liability, Level
Loans Corporate NCBLILQ027S Nonfinancial Corporate Business; Loans Including

Foreign Direct Investment Intercompany Debt; Liability,

Level
Loans Noncorporate NNBTLBQ027S Nonfinancial Noncorporate Business; Loans Including

Foreign Direct Investment Intercompany Debt; Liability,

Level
Time and
saving deposits

Corporate TSDABSNNCB Nonfinancial Corporate Business; Total Time and
Savings Deposits; Asset, Level

Time and

saving deposits
Noncorporate TSDABSNNB Nonfinancial Noncorporate Business; Total Time and

Savings Deposits; Asset, Level
Employment -
non agri

private sector

Non agri LNU02032189 Employment Level - Nonagriculture, Private Industries
Wage and Salary Workers

Unemployment
- non agri

private sector

Non agri LNU03032229 Unemployment Level - Nonagriculture, Private Wage
and Salary Workers

Employment -

total private
sector

Tot private

sector

USPRIV All Employees, Total Private

GDP deflator All economy GDPDEF Gross Domestic Product: Implicit Price Deflator

Nonfinancial

assets

Corporate BOGZ1LM102010005Q Nonfinancial Corporate Business; Nonfinancial Assets,

Market Value Levels

Nonfinancial

assets

Noncorporate BOGZ1LM112010005Q Nonfinancial Noncorporate Business; Nonfinancial

Assets, Market Value Levels

Inventories Corporate BOGZ1LM105020015Q Nonfinancial Corporate Business; Inventories Excluding

IVA, Current Cost Basis, Market Value Levels

Inventories Noncorporate BOGZ1LM115020005Q Nonfinancial Noncorporate Business; Inventories,

Market Value Levels

100

APPENDIX B

ARCHITECTURE OF PIM-LSTM MODEL

Figure B.1 Architecture of PIM-LSTM Model for New Keynesian Model

101

Figure B.2 Architecture of PIM-LSTM Model for DAGKM

102

103

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Aydemir Aydın, Petek

EDUCATION

Degree Institution Year of Graduation

MS METU, Department of Statistics 2018

BS METU, Department of Statistics 2015

High School Atatürk Anadolu High School, Aydın 2009

FOREIGN LANGUAGES

Advanced English

PROFESSIONAL EXPERIENCE

Year Institution Position

2018-Present METU, Department of Statistics Research Assistant

