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ABSTRACT

PRIOR-INFORMED MULTIVARIATE LSTM (PIM-LSTM)
FOR ECONOMIC TIME SERIES

Aydemir Aydin, Petek
Doctor of Philosophy, Statistics
Supervisor: Prof. Dr. Ceylan Yozgathigil

March 2025, 103 pages

Deep Learning is a subset of machine learning that emphasizes algorithms influenced
by the human brain, called artificial neural networks. Physics-Informed Neural
Networks (PINNSs) represent a distinct deep learning method that combines the
strengths of neural networks with the physical principles that dictate particular
systems. The main goal of this thesis is to enhance the PINNs model for multivariate
time series by integrating causal relationships and cross-correlations to improve
overall model performance. For this purpose, we developed a Prior-Informed
Multivariate Long Short-Term Memory (PIM-LSTM) model. First, its application to
the New Keynesian and Dividend-Augmented Goodwin-Keen (DAGKM) models is
demonstrated. Then, the forecast performance of the PIM-LSTM model is compared
to the LSTM and PINN models. Our findings indicate that the PIM-LSTM model
demonstrates strong predictive performance on the New Keynesian Model for
Turkiye and Mexico’s macroeconomic series, achieving lower MAE, RMSE, and
MASE compared to LSTM and PINNs models. The PIM-LSTM model also
performs well in the DAGKM model. Integrating the New Keynesian model for



Turkiye and Mexico enhances the analysis by capturing country-specific monetary
policies and economic dynamics. Similarly, incorporating the DAGKM model

enhances the analysis by capturing cyclical growth and income distribution.

Keywords: Time series analysis, Forecasting Methods, Deep Learning Algorithms
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0z

ON BILGIYE DAYALI COK DEGISKENLI LSTM (PIM-LSTM) iLE
EKONOMIK ZAMAN SERILERIi

Aydemir Aydin, Petek
Doktora, Istatistik
Tez Yoneticisi: Prof. Dr. Ceylan Yozgathgil

Mart 2025, 103 sayfa

Derin Ogrenme, yapay sinir aglar1 olarak adlandirilan insan beyninden etkilenen
algoritmalar1 vurgulayan makine 6greniminin bir alt kiimesidir. Fizik Bilgilendirmeli
Sinir Aglar1 (PINNs), sinir aglarinin giiglii yonlerini belirli sistemleri belirleyen
fiziksel ilkelerle birlestiren farkli bir derin 6grenme yontemini temsil eder. Bu tezin
temel amaci, genel model performansi iyilestirmek i¢in nedensel iliskileri ve
capraz korelasyonlar1 entegre ederek cok degiskenli zaman serileri igin PINNs
modelini gelistirmektir. Bu amagla, On Bilgiye Dayali Cok Degiskenli Uzun Kisa
Vadeli Bellek (PIM-LSTM) modeli gelistirilmistir. Ilk olarak, Yeni Keynesyen ve
Temettii Artirllmis  Goodwin-Keen (DAGKM) modellerine uygulanmasi
gosterilmistir. Ardindan, PIM-LSTM modelinin tahmin performanst LSTM ve
PINNs modelleriyle karsilastirilmistir. Bulgularimiz, PIM-LSTM modelinin Tiirkiye
ve Meksika'nin makroekonomik serileri i¢in Yeni Keynesyen Model iizerinde giiclii
tahmin performansi sergiledigini ve LSTM ve PINN modellerine kiyasla daha diisiik
MAE, RMSE ve MASE elde ettigini gostermektedir. PIM-LSTM modeli DAGKM

modelinde de iyi performans gostermektedir. Tiirkiye ve Meksika igin Yeni

vii



Keynesyen modelin entegre edilmesi, lilkeye 6zgii para politikalarin1 ve ekonomik
dinamikleri yakalayarak analizi gelistirmektedir. Benzer sekilde, DAGKM
modelinin dahil edilmesi, konjonktiirel bliylime ve gelir dagilimimi yakalayarak

analizi gelistirmektedir.

Anahtar Kelimeler: Cok Degiskenli Zaman Serileri Analizi, Ongorii Metotlari,

Derin Ogrenme Algoritmalari
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CHAPTER 1

INTRODUCTION

Since the dawn of humanity, people have wondered about the future and tried to
predict what will happen. Forecasting has attracted the interest of researchers and
experts in many fields and has become an important activity in economics, business,
marketing and various disciplines. This study focuses on forecasting through time
series analysis. A time series consists of data points gathered at consecutive time
intervals, which may be equally or unequally spaced. Time series analysis is a
statistical method used to examine a sequence of data points collected over time,
aiming to identify patterns, trends, and other characteristics within the data. It plays
a significant role in understanding the temporal dynamics of the dataset, which can
then be used to make informed decisions. The primary goal of time series analysis is
to obtain reasonably accurate forecasts. Time series forecasting entails constructing
models based on historical data and using these models to predict future
observations. Time series analysis can be categorized into univariate and
multivariate analyses. Univariate time series analysis deals with a time-dependent
variable and focuses on understanding its behavior and making predictions based
solely on its past values. The traditional univariate models, including Autoregressive
(AR), Autoregressive Moving Average (ARMA) and Autoregressive Integrated
Moving Average (ARIMA) introduced by Box and Jenkins [5], and Exponential
Smoothing introduced by Brown [6], are widely opted for univariate time series
forecasting (TSF). Multivariate time series analysis involves multiple interrelated
time-dependent variables, where the relationships and dependencies between these
variables are also considered. This added complexity requires more sophisticated
modeling techniques but can provide more accurate and comprehensive forecasts by
leveraging the interactions between the variables. The vector autoregressive (VAR)

model proposed by Sims [39] is mostly preferred traditional model for multivariate



time series forecasting. It is the multivariate version of the AR model. In a VAR
model, each variable is represented as a linear function of its own past values and

the past values of all other variables.

VAR models are particularly effective in describing the dynamic behavior of time
series and producing better forecasts compared to univariate models. However, the
limitation of this model is that it only works well with stationary series. The second
classical multivariate time series forecasting method is the Vector Error Correction
Model (VECM). It is a cointegrated VAR model. VECM is an advanced statistical
technique designed to analyze and predict multivariate time series data that exhibit a
cointegration. Cointegration indicates a long-run association among variables,
despite short term fluctuations. The VECM is particularly useful in economic and
financial contexts, where variables often have long-run interrelationships, such as
interest rates, exchange rates, and prices. Despite VECM offering a comprehensive
and accurate framework for understanding and forecasting complex time series by
grasping not only short-term variations but also long-term trends, it has certain

limitations: it is only effective with difference-stationary series.

Traditional methods for multivariate time series analysis have been limited since
real-world time series have undesirable characteristics such as non-stationarity,
seasonality, irregular fluctuations and cyclical variations. These methods fail to
capture these undesirable characteristics and need large datasets to accurately capture
the interrelationship between the variables. They are also sensitive to outliers. Due
to these limitations, deep learning methods have become the preferred solution. Deep
learning (DL), a subfield of machine learning, has revolutionized data analysis and
prediction capability. Deep learning utilizes multilayer artificial neural networks to
develop algorithms that extract meaningful patterns and features from large data sets.
It is effectively used in various areas, including natural language processing (NLP),

image processing, speech recognition, gaming, and autonomous vehicles.

The main strength of this field is its capacity to handle intricate, high-dimensional

data. Unlike traditional machine learning algorithms, deep learning models can



automatically extract features from data. This reduces the need for manual feature
engineering and enhances the model’s overall performance. Deep learning models
employ different types of artificial neural networks, the most widely common of
which are Multi-Layer Perceptrons (MLPs), Convolutional Neural Networks
(CNNSs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks
(LSTMs), and Transformers. The success of deep learning is directly tied to the
presence of large datasets and powerful computational resources. Large datasets
enable models to make more general and accurate predictions, while powerful
computational resources speed up the training process of these models. For this
reason, deep learning is a constantly evolving and expanding field in machine
learning. As new algorithms and architectures are developed, the application areas of
deep learning are expanding and providing effective solutions in more industries. As
part of these advancements, Physics-Informed Neural Networks (PINNSs) utilize DL
techniques to develop more precise and interpretable models of physical systems.
PINNs incorporate physical laws and differential equations directly into the training
process of neural networks, ensuring that predictions align with established scientific
principles while learning from data. By incorporating known deterministic
relationships between variables into neural networks, PINNs leverage this additional
information to typically enhance the prediction and forecasting performance of the
models. PINNs not only learn from data but also make predictions that align with
physical laws, providing more profound solutions to scientific and engineering
challenges. This approach also allows PINNs to be applied in complex economic
models, facilitating more accurate and theoretically consistent modeling of economic

dynamics.

Despite the importance of multivariate time series forecasting, the literature lacks
sufficient models that effectively capture these complex relationships. Most existing
models either ignore or oversimplify these interactions, creating a significant
opportunity for advancements in forecasting methodologies that better incorporate

variable interdependencies.



The primary objective of this thesis is to propose a novel Multivariate Physics-
Informed Neural Network (PINN) model for multivariate time series forecasting,
considering the interdependencies and cross-correlations among variables. The
proposed model aims to enhance forecasting accuracy by explicitly capturing the
relationships among multiple variables. Additionally, this model will be applied to
the New Keynesian model and the Dividend-Augmented Goodwin-Keen model,
which have not yet been explored with such approaches in the context of economic
data. The applications of this method to economic data aim to provide new insights

into forecasting within this theoretical framework.

The New Keynesian macroeconomic model is a development of Keynesian
economics, merging microeconomic theory with macroeconomic consequences. It
underscores the significance of market imperfections, specifically price and wage
rigidities, in explaining why the economy may not always achieve full employment,
and how monetary policy can impact output and inflation. It provides a framework
for analyzing monetary and fiscal policy, illustrating how these policies can stabilize
the economy by affecting aggregate supply and demand. The fundamental
assumption of New Keynesian macroeconomic analysis is the rational expectations
of households and firms. The New Keynesian model includes three core equations:
the New Keynesian Phillips Curve (NKPC), the dynamic Investment-Savings (IS)
equation, and Taylor's Rule. Together, these equations depict the behavior of
inflation, output, and interest rates, offering a comprehensive perspective of
economic dynamics. The NKPC explains that the expected inflation one period
ahead and the output gap influence the current inflation. The dynamic IS equation
states that the current output gap is a function of the expected output gap one period
ahead, expected inflation, the nominal interest rate, and the natural rate of interest.
The difference between the output and the potential output is called the output gap.
The Taylor rule explains how nominal interest rates are determined. According to
the Taylor rule, nominal interest rates depend on the current inflation rate and the

output gap.



The Dividend-Augmented Goodwin-Keen Model (DAGKM) extends the traditional
Goodwin-Keen model by incorporating dividend payments into the analysis of
economic cycles, particularly focusing on the interactions between wage share,
employment rate, and debt ratio. This enhancement acknowledges that firms invest
their profits and distribute a portion as dividends to shareholders, influencing debt
accumulation dynamics. Key components of the DAGKM model are wage share,
employment rate and debt ratio. The wage share is a fraction of the total output
allocated to employee compensation. The employment rate is the ratio of employed
individuals to the total labor force. The debt ratio is the proportion of corporate debt
relative to total economic output. By integrating dividend payments into the
Goodwin-Keen framework, the DAGKM Model offers a more comprehensive
understanding of the interplay between corporate financial policies and
macroeconomic cycles. This enhancement underscores the importance of
considering dividend distributions when analyzing the sustainability and stability of

economic growth patterns.

This study seeks to leverage Physics-Informed Neural Networks (PINNSs) for
analyzing time series data, aiming to enhance the predictive accuracy and theoretical
consistency of both the New Keynesian and Dividend-Augmented Goodwin-Keen
models. In this framework, we propose the Prior-Informed Multivariate LSTM
(PIM-LSTM), a novel deep learning architecture designed to incorporate prior
knowledge constraints into multivariate time-series forecasting. The proposed PIM-
LSTM model, inspired by Physics-Informed Neural Networks (PINNS), leverages
prior knowledge constraints and incorporates cross-correlation function (CCF)

constraints to improve multivariate time-series forecasting.

The remaining part of this thesis is organized as follows: Chapter 2 provides a review
of the literature on PINNs models. Chapter 3 discusses the New Keynesian model,
the DAGKM model, DL methods, including LSTM and PINNs models and
architecture of PIM-LSTM model. Chapter 4 provides an empirical analysis utilizing
the PIM-LSTM model to forecast Turkey's output, inflation, and nominal interest
rate within the context of the New Keynesian model. It also includes an empirical



analysis using the same PIM-LSTM model to forecast Mexico's output, inflation,
and nominal interest rate under the New Keynesian framework. The PIM-LSTM
model is also applied to forecast the debt ratio, employment rate and wage share in
the United States for the DAGKM model. It also includes a comparison of the out-
of-sample performance of all models. Finally, Chapter 5 includes the conclusion and

further discussion.



CHAPTER 2

LITERATURE REVIEW

In scientific computing, deep neural networks have been explored for solving partial
differential equations (PDEs) through various methods, including augmented
Lagrangian deep learning (ALDL) [16], Neural Operators [24, 26], deep Galerkin
methods (DGM) [40], and Physics-Informed Neural Networks (PINNSs) [48]. Among
these, PINNs have emerged as a leading approach due to their ability to seamlessly
integrate physical laws into the learning process, making them highly effective for

solving complex PDEs.

PINNs offer several advantages, including robust generalization, automatic
differentiation, and grid-free capabilities [45, 34]. By incorporating physical laws
directly into the neural network framework, PINNs use a loss function that combines
residuals from differential equations and boundary conditions, eliminating the need
for simulation or experimental data. This approach reduces reliance on large labeled
datasets, enhances computational efficiency, and ensures physically consistent
solutions. Additionally, PINNs' ability to generalize well to unseen data makes them
more versatile. Their grid-free nature allows them to be applied to complex
geometries, and the use of automatic differentiation simplifies the computation of
derivatives. These features make PINNSs highly suitable for a wide range of scientific

applications, particularly in data-scarce environments.

PINNs have been the subject of increasing amounts of research in many different
fields, especially in engineering and computational sciences. In their review article,
Lawal et al. (2022) [25] state that 288 documents were chosen from the literature on
these disciplines. Their review article offers a perceptive depiction of the

development of PINNSs over the previous three and a half years, showing a consistent



increase in publications from 2019 to mid-2022, with a peak in 2021. This pattern
demonstrates how scholars are becoming more interested in and dedicated to using
PINNs to solve challenging issues and improve their work. In this part, the most
recent studies on PINNSs from different research areas as well as studies including its

hybrid forms will be reviewed.

2.1 Related Studies

In their paper, Raissi et al. (2019) [35] introduced the concept of PINNs to
enrich deep learning. To this end, they employed deep neural networks to address
supervised learning tasks by incorporating established principles from mathematical
physics, specifically those defined by general nonlinear partial differential equations
(PDEs). Based on the characteristics and structure of their available data, they
developed two distinct types of algorithms: one for continuous time models and
another for discrete-time models. They emphasize that their proposed method should
not be viewed as a replacement for traditional numerical techniques used to solve
PDEs, such as finite element or spectral methods. Rather, they demonstrate that
classical methods, including Runge-Kutta time-stepping schemes, can effectively
complement deep neural networks. Their integration provides valuable insights for
creating structured predictive algorithms. Additionally, the simplicity of
implementing neural networks supports the rapid development and testing of new
ideas, potentially initializing a new era of data-driven scientific computing.

In their paper, Mao et al. (2020) [28] investigate the use of PINNSs to the solution of
forward and inverse Euler equation problems for high-velocity aerodynamic flows.
Despite discontinuities such as oblique shock waves, they show that PINNs can solve
the forward issue and capture solutions with little scattered input. Motivated by
Schlieren photography, PINNs for the inverse issue perform better than conventional
techniques in situations where standard techniques are inadequate. They do this by
reliably inferring density, velocity, and pressure fields from data on density gradients

and pressure. While their study also demonstrates that employing Euler equations in
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characteristic form outperforms the conservative form, PINNs still lag behind
conventional approaches for forward issues. This suggests that PINNs may be useful
in the future for aerodynamic analysis applications, as they are adept at resolving
challenging inverse problems.

Despite notable advancements in simulating flow problems through the numerical
discretization of the Navier—Stokes equations (NSE), Cai et al. (2021) [7] discuss the
existing challenges in their paper. For instance, they stated that current methods still
struggle with integrating noisy data, managing the complexity of mesh generation,
and addressing high-dimensional problems governed by parametrized NSE. To
overcome these issues, the authors proposed a method called flow physics-informed
learning, which utilizes PINNs to integrate data and mathematical models
effectively. Their findings indicate that this approach successfully infers hidden
velocity fields and unknown parameters of PDEs from sampled data alone, indicating
the potential of PINNs to address the limitations of conventional numerical

simulations.

Cai et al. (2021) [8] applied the PINN framework to address several representative
heat transfer challenges. They utilized PINNs as a transformative solution for
bridging the gap between experimental and computational heat transfer. By
integrating conservation laws directly into their architecture and utilizing sparse
measurements through multifidelity methods, PINNs enable accurate inference of
velocity and temperature fields, as well as unknown thermal boundary conditions or
interfaces. Their effectiveness is particularly evident in handling realistic conditions
that challenge conventional computational methods. Applications in power
electronics highlight the practical utility of PINNs in addressing complex heat
transfer problems encountered in industrial settings. The collective findings confirm
that PINNs not only excel in solving ill-posed problems difficult for traditional
methods but also effectively bridge the gap between computational and experimental

heat transfer.



Tanios (2021) [41] explores the application of PINNs for pricing multi-asset
European options within the high-dimensional Black-Scholes and Heston models.
Given the recent success of PINNs in approximating solutions to PDEs, their utility
extends to accurately estimating solutions and unknown model parameters from
observed data. They demonstrate how PINNs offer a straightforward method for
calculating the Greeks—quantities that measure the sensitivity of a derivative's price,

represented as partial derivatives (either first-order or higher) in calculus.

To improve the quantification of near-wall blood flow and wall shear stress (WSS),
which are difficult to quantify yet essential for understanding cardiovascular
disorders, Arzani et al. (2021) [1] utilize PINNs. Conventional approaches to patient-
specific computational and experimental WSS assessment suffer from limited
resolution, noise, and uncertainty. By combining mathematical equations—more
specifically, the Navier-Stokes equations that govern blood flow—with sparse
measurement data, PINNSs provide a strong deep learning methodology. Their study
shows that by absorbing a few measurement points, PINNs can effectively handle
blood flow issues when inlet and output boundary conditions are unknown. This is
especially useful because patient-specific fluid dynamics models sometimes have
unknown boundary conditions. Their examples from idealized models of stenosis
and aneurysms show how limited measurements combined with a partial
understanding of flow mechanics can produce accurate near-wall blood flow data.
This hybrid data-driven and physics-based approach has significant potential to
advance high-fidelity modeling of near-wall hemodynamics in cardiovascular
disease.

Jiang et al. (2022) [20] investigate nonlinear dynamics inside optical fibers while
utilizing PINNs to solve the nonlinear Schrodinger equation. The paper offers a
thorough assessment of PINNSs' abilities to handle a range of physical phenomena,
including higher-order nonlinear effects, dispersion, and self-phase modulation. The
study looks at both soliton and multipulse propagation, and it finds that adding
physical characteristics to the PINN as extra input controls, such as pulse peak power

and subpulse amplitudes, greatly improves the network's generalization capabilities
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in many contexts. The shortcomings of earlier models—which were frequently
limited to isolated instances—are addressed by this approach. The findings show
that, in comparison to the split-step Fourier method, PINNSs require significantly less
data and have lower computational complexity, making them an effective tool for
solving PDEs and advancing the fields of scientific computing and automated

modeling in fiber optics.

To accurately solve the AC-Optimal Power Flow (AC-OPF) problem which is often
challenging due to its non-linear and non-convex structure, Nellikkath and
Chatzivasileiadis (2022) [31] trained PINNs. By embedding these equations directly
into the training process, the dependency on the size of the training data set is
substantially reduced, making the model more efficient and practical for real-world
applications. Moreover, this integration significantly improves the worst-case
performance of neural networks, ensuring more reliable and robust outcomes in
power system operations. This development represents a crucial step forward in
enhancing the effectiveness and dependability of neural networks in managing

complex power systems.

Bararnia and Esmaeilpour (2022) [4] investigate the use of PINNs to solve
challenging thermal-fluid issues, with a particular emphasis on thermal and viscous
boundary layers. The three benchmark problems they chose to study the impact of
unbounded boundary conditions and equation nonlinearity on the width and depth of
the network structure were Blasius-Pohlhausen, Falkner-Skan, and Natural
Convection. They used big-data training using TensorFlow to create and train the
PINN models, revealing hidden physics in transport phenomena. The correctness and
dependability of the PINN models were confirmed by comparing their predictions
with the outcomes of using Richardson extrapolation in conjunction with the finite
difference technique. Key findings showed that the number of neurons and layers
needed in a neural network to produce precise solutions is highly influenced by the
Prandtl number in the heat equation. Furthermore, to effectively manage the infinite
boundary condition, handling unbounded boundary conditions by placing the
boundary farther from the origin required adding more layers and neurons. The PINN

11



models that had been trained were effectively utilized for assessing boundary layer
thicknesses on previously unseen data, proving their resilience and usefulness. In
addition to providing insights into how neural network topologies can be optimized
for best performance, this research shows how PINNSs can be used to solve extremely

nonlinear and complex boundary layer issues in thermal-fluid dynamics.

Jeong et al. (2024) [19] applied PINNs to overcome a complex multi-physics
problem involving electromagnetism, fluid dynamics, and heat transfer. They
applied this model to a cylindrical conductor, considering the interplay between
electrical and magnetic fields and the thermal interactions between the conductor and
its environment. To enhance the performance of their PINN, the authors divided the
problem into seven interlinked neural networks. They employed domain
decomposition and variable separation techniques, optimizing each network
individually and ensuring efficient data transfer between them. Their results
demonstrate impressive accuracy, with less than 2% error compared to traditional
numerical methods and analytical solutions.

Recent advancements have introduced extensions to the traditional PINN
framework, aiming to enhance its capabilities further. In addition to papers utilizing
traditional PINNSs in different research fields, we also review studies focused on
developing hybrid forms of PINNs to improve their predictive capability under
different circumstances (see e.g. [32], [2], [46], [23]). For instance, Pang et al. [32]
extend PINNSs to fractional PINNs (fPINNs) which will be efficient in solving space-
time fractional advection-diffusion equations (fractional ADEs). They demonstrate
the accuracy and effectiveness of fPINNs in solving multidimensional forward and
inverse problems with forcing terms whose values are only known at randomly
scattered spatio-temporal coordinates. Additionally, they introduce a hybrid
approach that involves constructing the residual in the loss function using both
automatic differentiation for the integer-order operators and numerical discretization
for the fractional operators. Their proposed PINNSs solve several inverse problems in

one, two, and three dimensions, enabling the identification of the fractional orders,
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diffusion coefficients, and transport velocities while obtaining accurate results under

proper initializations even in the presence of significant noise.

Bai et al. (2022) [2] propose an improved PINN (IPINN), which integrates a local
adaptive activation function for neurons to enhance neural network performance.
They successfully applied the IPINN to the Ivancevic option pricing model and the
Black—Scholes model in finance, demonstrating its effectiveness in improving
accuracy and efficiency for complex financial problems. They address the rogue
wave and soliton solutions of the Ivancevic option pricing model, as well as the
numerical solution of the Black—Scholes model using IPINN method. Their
numerical experiments demonstrate that the IPINN method exhibits faster
convergence, greater stability, and higher accuracy compared to the traditional PINN

method.

Yang et al. (2021) [46] introduce a Bayesian PINN (B-PINN) for addressing both
forward and inverse nonlinear problems characterized by PDEs and noisy data. In
their Bayesian framework, the prior is established by combining a Bayesian neural
network (BNN) with a PINN for PDEs, while the posterior can be estimated using
either Hamiltonian Monte Carlo or variational inference. Compared to PINNS, their
results indicate that B-PINNs not only provide better uncertainty quantification but
also deliver more accurate predictions in high-noise scenarios, thanks to their ability

to mitigate overfitting.

Kharazmi et al. (2021) [23] develop a high-order polynomial Variational PINN (hp-
VPINN) method integrating a variational formulation based on the sub-domain
Petrov—Galerkin method, where neural networks are used as the trial space and
localized non-overlapping high-order polynomials form the test space. This
innovative combination enhances the method's ability to model PDE solutions
accurately by utilizing the complementary strengths of neural networks and
polynomial functions. The use of integration-by-parts, which increases performance
in processing difficult or rough solutions, such as singularities, steep gradients, and

abrupt changes in the data, is a fundamental component of hp-VPINN. Their
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comparative analysis with traditional PINNs highlights the hp-VPINN's improved

accuracy and efficiency, confirming its robustness in practical applications.

Jagtap et al. (2020) [18] introduce an innovative method called the conservative
PINN (cPINN), designed to handle nonlinear conservation laws in discrete domains.
In this approach, discrete domains refer to the segmented regions of the
computational domain created by partitioning. The cPINN enforces conservation
principles by maintaining flux continuity in the strong form at the interfaces between
these segments. Furthermore, the cPINN utilizes locally adaptive activation
functions, which accelerates the training process compared to traditional fixed

activation functions.

In 2020, Jagtap and Karniadakis [17] propose the extended PINNs (XPINNSs)
framework, a novel development that generalizes and improves upon existing PINN
and cPINN methodologies by incorporating a more flexible and comprehensive
space-time domain decomposition approach. XPINNs leverage multiple neural
networks deployed in smaller subdomains, enhancing representation capacity and
parallelization. This approach reduces training costs and improves computational

efficiency by allowing parallel processing across both spatial and temporal domains.

Considering the challenges of PINNs and XPINNs in achieving optimal
performance, particularly in handling complex domain decompositions and
parameter sharing, Hu et al. (2023) [15] introduce the augmented PINN (APINN), a
novel approach designed to enhance their capabilities. One of the key innovations of
APINN is its ability to utilize all available training data across the entire domain,
rather than limiting data usage to specific subdomains. This approach enhances the
efficiency of the learning process and improves the generalization of the model.
Additionally, APINN employs parameter sharing across sub-networks to capture
common features and components in decomposed functions, thus boosting the
overall performance and generalization capability. Their approach addresses key
limitations of existing methods and opens new places for applying PINNs to complex

scientific and engineering problems.
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Wandel et al. (2022) [44] introduce an innovative approach by combining PINNs
and convolutional neural networks to deal with the challenge of solving PDEs. The
approach produces rapid and continuous solutions which can be applicable across
diverse domains. They illustrate their methodology by demonstrating the
incompressible Navier-Stokes equation and the damped wave equation. By utilizing
spline-PINNS, their model can capture various phenomena, reduce the accuracy gap

in computational fluid Dynamics and also work faster.

In their study, Chiu et al. (2022) [9] suggest CAN-PINN, a novel PINN technique
that combines numerical differentiation (ND) with automated differentiation (AD)
to improve training accuracy and efficiency. By using differential equations to
restrict the training loss function, PINNs make sure their outputs adhere to the laws
of physics. Even though AD calculates precise gradients at any point, achieving high
accuracy often requires a large number of collocation points; otherwise, it may lead
to unphysical solutions when fewer points are used. In order to overcome this, CAN-
PINN combines AD and ND, making use of ND's capacity to connect nearby
collocation sites for effective training in sparse sample regimes. When compared to
ND-based PINNs alone, this hybrid technique produces training that is up to two
orders of magnitude more robust and precise. Fluid dynamics challenges such as
flow mixing, lid-driven flow, and channel flow over a backward-facing step were
investigated with the CAN-PINN framework, which proved to be more accurate and
resilient than traditional AD-based PINNs.

Zhang et al. (2022) [49] present GW-PINN, a deep learning technique that does not
require labeled data to estimate groundwater flow. GW-PINN employs PINN and
modifies its loss function to include either soft or hard constraints. To maximize
sampling and training efficiency, it uses a snowball-style two-stage training
approach and a locally refined sampling strategy (LRS). According to their results,
GW-PINN captures variations in hydraulic heads in a variety of aquifers effectively;
the hard constraint outperforms the soft constraint. With the help of the LRS
approach and two-stage training, they demonstrate that GW-PINN becomes a more

accurate and effective instrument for simulating groundwater flow.
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In their paper, McClenny and Braga-Neto (2023) [29] present a unique method of
optimizing PINNSs using self-adaptive weights (SA-PINNSs). By training adaptive
weights that are applied to each training point separately, the technique enables the
neural network to concentrate on difficult areas of stiff PDEs. By growing when
losses are greater, the weights function as a soft attention mask, helping the network
to become more accurate in challenging situations. In order to better understand how
these weights affect training dynamics, the research also offers a continuous map of
these weights using Gaussian Process regression and produces the Neural Tangent
Kernel matrix for SA-PINNs. When compared to state-of-the-art PINN algorithms,
numerical experiments show that SA-PINNs achieve lower L2 error and require

fewer training epochs.

In the same year, Vadyala and Betgeri [43] propose a hybrid Quantum Machine
Learning (QML) model named guantum-based PINNs, which combines classical
information processing with gquantum manipulation and processing, along with
PINNs. This model is designed to address challenges related to reliability,
trustworthiness, safety, and security in QML while leveraging the strengths of both
classical and quantum computing. They achieved the highest performance with their
quantum simulation data containing outliers by utilizing a neural network

architecture consisting of 6 layers and 40 neurons.

Meng et al. (2023) [30] introduce PINN-FORM, a novel combination of the first-
order reliability method (FORM) and PINN designed to tackle the problems
associated with structural reliability analysis, especially when working with complex
limit state functions expressed as implicit PDEs. These kinds of problems are
generally quite computationally challenging using traditional FORM approaches. By
using PINN's capabilities as a black-box solution tool, they suggested PINN-FORM
to address these problems by doing away with the necessity to compute actual

structural answers directly.

In 2024, Liu et al. [27] address the limitation of traditional PINNs in handling

discontinuities, particularly when compared to conventional shock-capturing
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methods. To overcome this challenge, they develop an innovative approach called
PINNs with Equation Weighting (PINNs-WE). This method enhances the capability
of PINNs to accurately capture shocks by incorporating equation weighting
techniques, which adjust the relative importance of different components in the loss
function. By employing this approach, PINNs-WE can more effectively manage
abrupt changes and discontinuities in various physical phenomena, significantly
enhancing performance where traditional PINNs struggle. They concluded that
PINNs-WE provides a more robust and efficient tool for solving problems involving

discontinuities.

There are also studies that focus on multi-output approaches within the context of
PINNSs [47, 13]. In 2022, Yang and Foster [47] proposed the Multi-Output PINNs
(MO-PINNSs) to solve both forward and inverse PDE problems with noisy data. By
utilizing the bootstrap method, their framework translates uncertainty from noisy
data into multiple measurements based on prior noise distribution. The network
outputs are designed to satisfy both the noisy measurements and the underlying
physical laws. Numerical experiments showed that MO-PINNs provided accurate
predictions and uncertainty distributions, comparable to traditional methods like
finite element methods and Monte Carlo simulations. Their work demonstrates the
potential of MO-PINNSs for uncertainty quantification and accelerating predictions

in engineering applications.

In another study, Hao et al. (2024) [13] introduced the Multi-Output Multi-Physics-
Informed Neural Networks (MO-MPINNSs) to address challenges in solving the
Dimension-Reduced Probability Density Evolution Equation in stochastic dynamical
systems. Traditional methods for estimating the intrinsic drift and diffusion
coefficients rely on numerical differentiation, which can be unstable and inaccurate,
especially in data-scarce regions. MO-MPINNs overcome these issues by integrating
multiple outputs within parallel subnetworks, allowing for simultaneous prediction
of time-varying coefficients and response probability density functions. This
approach embeds physical laws in the loss function and leverages automatic
differentiation, providing a more efficient and accurate solution for high-

17



dimensional, nonlinear systems with complex spatio-temporal dependencies. Their
framework enhances the applicability of PINNs to complex stochastic systems with

double randomness in parameters and excitations.

Building on these advancements, our study further refines the PINN framework by
incorporating multivariate dependencies, allowing for a more comprehensive
representation of complex dynamical systems. By embedding cross-correlation
relationships within the loss function, we enhance the network's ability to capture
intricate interdependencies across multiple outputs. This refinement broadens the
applicability of PINNSs, extending their use beyond traditional scientific and
engineering fields to economic and multi-agent systems, where conventional

approaches often fail to address spatio-temporal complexities effectively.

The literature indicates that PINNs are primarily employed for solving engineering
and physical problems, including stochastic differential equations, with no known
applications in economic modeling. Despite their increasing use in engineering
contexts, their potential in economic modeling remains largely unexplored,
presenting an opportunity to extend the PINN framework beyond traditional
applications. This gap presents an opportunity to extend the PINN framework
beyond traditional engineering applications and apply it to economic systems with

complex spatio-temporal dynamics in their governing equations.
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CHAPTER 3

METHODOLOGY

This chapter provides a comprehensive examination and introduction to the new
Keynesian macroeconomic model and the Dividend-Debt-Augmented Goodwin
Model (DAGKM). Furthermore, it will delve into the architectures of Long Short-
Term Memory (LSTM) networks, Physics-Informed Neural Networks (PINNSs) and
the proposed model which is called Prior-Informed Multivariate LSTM (PIM-
LSTM).

3.1  New Keynesian Macroeconomic Model

The New Keynesian economics is a fusion of Keynesian economics and
microeconomic theory. It highlights the importance of market imperfections,
particularly inflexible prices and wages, in explaining why the economy may only
sometimes achieve full employment, and how monetary policy can impact output
and inflation. This framework helps us understand how monetary and fiscal policies
can stabilize the economy by affecting overall supply and demand. The New
Keynesian view assumes that households and businesses make decisions based on
rational expectations. The New Keynesian model comprises three fundamental
equations: the New Keynesian Phillips Curve (NKPC), the dynamic Investment-
Savings (IS) equation, and Taylor's Rule. Together, these equations explain inflation,

output, and interest rates, giving us a clear picture of how the economy works.

The NKPC, originally derived by Roberts in 1995 [36], has found practical
application in the New Keynesian Dynamic Stochastic General Equilibrium (DSGE)
models. This curve, which states that inflation is influenced by the current output

gap and the expectations of the next period's inflation, is derived from the dynamic
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Calvo pricing model. Its practical application in economic models is expressed in

mathematical terms:

my = PEAm 1} + kP + & (1)

Where;cz)l(a+(’)—+“) =00 g g 1@
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In this equation, S represents discount factor and m; denotes the inflation, E.{m;, 1}
is the expectation of the next period's inflation, ¥, = y, — y{* denotes output gap, y;
denotes output, y/* denotes potential output and &; is supply shock. Additionally, a
is capital share, e is elasticity of substitution, ¢ is Frisch elasticity, o is relative risk
aversion and 6 is Calvo parameter. The NKPC equation can also be expressed in

terms of output and potential output:

my = BEAm i1} + kye — kY& + &F (2)

The IS equation in economics is an important formulation that helps us to understand
how the economy works. It shows that the current output gap is the difference
between what we expect from the output gap to be in the next period and a value
connected to the difference between the real interest rate (i; — E;{m;4+1}) and the
natural rate of interest. This equation provides a clear understanding of the output

gap. This relationship can be expressed mathematically as follows:

o 1., \V
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where ¥, is output gap, E:{J;,1} is expected output gap, i, is the nominal interest
rate, m, is inflation, r* is the natural rate of interest and &¢ is demand shock. The
natural rate of interest reflects equilibrium values with flexible prices. The natural

rate of interest is calculated by:

7= p+ o PyaEe(Aac.) (4)
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In the equation, the variable a, represents the total factor productivity shock, which
can be described as follows: a; = pga,_; + && with E&~iid N(0,52). p, represents
the persistency parameter of total factor productivity shock, and A signifies the

difference operator.

After applying some calculation, the IS equation can be written in terms of the

output:
Ve = Ee(eer) — = (i = Ee(men) — p) + & )

where p = —log(p).

The third equation in the New Keynesian model represents an interest rate rule that
explains how the nominal interest rate is established. This rule is commonly
associated with the implementation of monetary policy. A commonly used interest
rate rule in the literature to represent monetary policy in advanced economies is a
Taylor-type rule proposed by Taylor [42]. According to this rule, nominal interest

rates increase or decrease in line with the current inflation rate and output gap.

it = pmte + QY + (6)

Where i, is the nominal interest rate, m, is inflation, ¥, denotes output gap and &{™ is
an exogeneous monetary policy shifter. Moreover, ¢, is the feedback parameter of
inflation and ¢,, is the feedback parameter of output gap. The interest rate is also re-

expressed in terms of the output:

it = ¢gpm + ¢yyt - qbyygl + & (7)
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3.2  Dividend-Augmented Goodwin Keen Model

The Goodwin model proposed by Goodwin [11] is a traditional macroeconomic
framework that represents cyclical growth and income distribution by considering
capital and labor as interconnected variables. It demonstrates how wages and
employment vary over time through a predator-prey dynamic, which illustrates the
natural interplay of these economic forces. Building on this foundation, the
Goodwin-Keen model proposed by Keen [22] extends the original framework by
incorporating private debt. This enhancement allows the model to better capture real-
world phenomena, as it shows how debt-financed investment and consumption can
either amplify or moderate economic fluctuations. Furthermore, Bailly et al. [3]
identified that the original Goodwin-Keen model led to inaccurate estimates because
it failed to account for situations in which firms frequently borrow to finance
dividends. To address this shortcoming, they proposed a Dividend-Augmented
Goodwin model (DAGKM). By incorporating dividends as a share of profits, this
revised model produces debt trajectories that more closely align with observed

economic behavior.

The dynamic system of DAGKM consists of three equations, which are the wage
share (denoted by w;), the employment rate (denoted by A;) and the debt ratio

(denoted by d;). This system is described as follows:

Tt = W (6(A) — @) ®)
% =1 (K(l—a;t—rdt) —a—f- 5) (9)
% —d, (r(l Ay - x(l—u;t—rdt) + 5) + k(1 —w, —rdy) — (1 — w)(1 = A) (10)

where a is constant growth rates of the labor productivity, g is the constant growth
rates of the labor force, § is the depreciation rate, v is the capital-to output ratio, r is

the real interest rate and A is the newly defined share of profits distributed to
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shareholders. Function ¢p(4,) = y + p(1 — A,)~ 2 is the real short-run Phillips curve

and k(1 — w, — rd,) = k,e*2(1=@c=7d0) js an investment function.

3.3 Cross Correlation Function

The cross-covariance function measures how two time series are related by assessing
how changes in one series relate to past values of the other over different time lags.

For two series X; and Y;, the cross-covariance function at lag h is defined as:
Cov(Xe,Yep) = E (X = 1) (Ve — 1)) (1)

where u, and p,, are the means of X, and Y;, respectively.

The closely related cross-correlation function (CCF) is a statistical tool utilized to
measure the linear dynamic dependence of two series. It is essentially the cross-
covariance normalized by the product of the standard deviations of the two series.
Mathematically, the CCF at lag h is given by:

E (X = ) Yoo — 1))
G20, (12)

Corr (X, Ye—p) = pxy(h) =

where o, and o,, are the standard deviations of X, and Y;, respectively.

In practice, these quantities are estimated using sample means and variances. The

sample CCF at lag h is computed as:

Yot (e = D) Yen = ¥) (13)
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where X and y denote the sample means of x; and y;. The sample CCF values lie
between —1 and 1, indicating the strength and direction of the linear relationship at

each lag.
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3.4  Deep Neural Networks and Automatic Differentiation

Deep learning, a subsection of machine learning, is the cutting-edge technology used
to enhance data analysis and predictive capabilities. It employs multi-layer artificial
neural networks to construct algorithms that can extract meaningful patterns and
features from extensive data sets effectively. This approach has been effectively
utilized in diverse areas, including image process and speech recognition, natural
language process (NLP), gaming, and self-driving vehicles. Deep learning excels at
managing complex, high-dimensional data. The main benefit of deep learning
models is their capability to automatically identify features from data, minimizing
the need for manual feature engineering and greatly enhancing the overall

performance of the model.

34.1 Perceptron and Deep Neural Networks

The perceptron is a building block of artificial neural network laying the groundwork
for more complex networks. It was devised in the 1960s by scientist Frank Rosenblatt
[38]. The perceptron comprises a single neuron and an activation function. The input
of the perceptron is denoted as x, the corresponding weights are denoted as w, the
associated bias is denoted as b, and f represents the activation function. As depicted
in Figure 3.1, before applying f, the perceptron takes the input x, computes the
weighted sum, and adds the bias.

e @
_

Figure 3.1 Structure of Perceptron
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Hence, for input x, our perceptron makes the following predictions:
n
y=f(@) = faT +b) = f()  xw;+ 1) (14
1=

The process for building more complex neural networks is not significantly different.
A feed-forward neural network (FFNN) or multi-layer perceptron neural network is
an extension of the basic perceptron, consisting of multiple layers of neurons, with
each layer fully connected to the next. FFNNs are called "“feed-forward" because
inputs are processed forward through the network without any loops or cycles. They
can easily solve more complex problems than a single-layer perceptron due to their
depth and complexity. The architecture of a FFNN is depicted in Figure 3.2. In a
neural network, a layer comprises individual neurons that process inputs separately
and generate a sole output. When a neural network is referred to as “deep,” it means
that there are multiple layers between the input and output layer. Since each neuron
has a weight vector used to compute its output, a “weight matrix” is created to

mathematically describe the collection of weight vectors in each layer.

Layer 1 Layer 2 Layern—1 Layern

O O O O

O O O O
Input :>O:>O :>O :}-O:)om

Figure 3.2 Structure of the FFNN
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3.4.2 Training and Automatic Differentiation

Training a neural network is quite intricate, involving initialization, forward and
backward passes, loss calculation, and parameter updates. The main objective is to
adjust the network’s weights and biases to minimize prediction errors. This enables
the network to learn from the training data and generalize its findings. This training
is crucial as it allows the model to improve its accuracy and generalize new situations
by capturing complex patterns, making accurate predictions, and adapting to new
information. Properly trained neural networks can achieve state-of-the-art

performance.

The gradient descent algorithm is a method used to iteratively optimize and find the
local minimum of a function. This algorithm is crucial for learning from training data
as it assists in determining the set of weights that minimally correspond to prediction
errors by minimizing the loss function of the network. The loss function assesses the
difference between the predicted outputs and the actual outputs, and the goal of
training is to reduce this difference. The steps of the Gradient Descent Algorithm are

as follows:
1. Parameter Initialization: Begin with initial values for the parameters.

2. Gradient Computation: Determine the gradient of the loss function concerning

each parameter.

3. Parameter Adjustment: Adjust the parameters in the direction opposite to the

gradient to decrease the loss.

4. lteration: Repeat the process until the loss converges or a maximum number of

iterations is reached.

Backpropagation is an essential technique for training artificial neural networks. It
efficiently calculates the gradient of the loss function for each weight by propagating
the error backward through the network. Automatic Differentiation (AD) efficiently

computes gradients by numerically evaluating the derivative of a function specified
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by a computer program. AD exploits the differentiability of every computer
operation, from simple arithmetic to complex functions, and automates the
calculation of derivatives using the chain rule. Figure 3.3 offers an accurate
representation of how AD computes dE /0w, and dE /0w,.

(a) Forward Pass g

n 2] o

\ dE @E 6y3 ay,
ﬂwl ‘3)'3 "3}’1 a_‘ﬂl
() sz |
aE /3y, dE dE 6 s, ay,
ﬂwz ‘3)'3 "3}’2 a‘ﬂz
dys /[y,

- (b) Backward Pass

Figure 3.3 Computational Graph of AD

The backpropagation is utilized to enhance prediction accuracy in artificial neural
networks by modifying the model's weights and biases. This adjustment is
accomplished by transmitting the error from the output layer back to the input layer.
The process begins with a forward pass where each neuron computes the weighted
sum of its inputs, adds a bias term, and then applies an activation function to the
result. This process continues through the network, layer by layer, until the final
output values are produced. Afterward, the loss function is calculated. During the
backward pass, the gradient which is the derivative of the loss function with respect
to parameters is computed using the chain rule of calculus. Once these gradients are
computed, the weights and biases are updated using them to minimize the loss. These
updates are typically done using the gradient descent algorithm or its variations,

which adjust the weights in the opposite direction of the gradient.
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3.5  Long Short-Term Memory Networks

The concept of Long Short-Term Memory (LSTM) networks was presented by
Hochreiter and Schmidhuber in 1997 [14]. These networks have revolutionized
sequence modeling by overcoming the constraints of traditional RNNs and
facilitating the successful acquisition of long-term dependencies. Traditional RNNs
maintain a hidden state that is updated at each time step to handle sequences.
However, they struggle with long-term dependencies due to the vanishing gradient
problem, where gradients decrease exponentially as they are backpropagated through
time. Therefore, RNNs have difficulty learning long-term dependencies and
retaining information over long sequences. LSTMs solve this problem by
introducing a more complex unit structure that includes gates to control the flow of
information. Their capacity to retain data across long sequences and address the issue
of the vanishing gradient gives them significant utility for various areas, including

NLP, speech recognition, image process, time series prediction, and video analysis.

An LSTM network consists of LSTM units, each with a cell state and three gates:
the input gate, the forget gate, and the output gate. These gates of the LSTM units

regulate the flow of information into, out of, and within the units.

1. Cell State: The cell state acts as a memory, preserving information across various
time steps. It is modified by the gates to preserve or discard information.
2. Input Gate: It controls the flow of new information that enters the cell state. It

determines which values from the input should be utilized to update the cell state.

it = O-(Wixt + Uih’t—l + bl) (15)

where i, represents the input gate, h;_, represents the output of the previous
LSTM block, x; represents the input at time step t, b; is the bias for the input
gate, W; is the weight for the input x; , U; is the weight for the output of the
previous LSTM block h;_; and o represents the sigmoid function.

3. Forget Gate: It decides which information from the cell state to ignore, allowing

the LSTM to discard irrelevant information.
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ft = O-(fot + Ufh't—l + bf) (16)

where f; represents the forget gate, by is the bias for the forget gate, W is the
weight for the input x, , Uy is the weight for the output of the previous LSTM
block h;_, and o represents the sigmoid function.

4. Output Gate: It governs the output of the LSTM unit. It decides which parts of

the cell state should be transmitted to the next time step as the hidden state.
0y = o(Woxy + Uyhe_y + by) (17)

where o, represents the output gate, b, is the bias for the output gate, W, is the
weight for the input x, , U, is the weight for the output of the previous LSTM
block h;_;.

5. Cell Update: It is refreshed using the information from the input gate and the
forget gate.

6{: = tanh(VVCxt + UCht—l + bC) (18)
= froCoq1t ol (19)

where ¢, represents the candidate for the cell state at time step t , c; is the cell
state (memory) at time step t, W is the weight for input x; , U, is the weight for
the output of the previous LSTM block h;_4, b, is the bias for the cell state, tanh
is the hyperbolic tangent function and “o” represents elementwise multiplication
of the vectors.

6. Hidden State Update: The hidden state is updated based on the cell state and the
output gate.

ht = 0¢° tanh(ct) (20)

At each time step, an input x; and the previous hidden state h,_; are received by the

LSTM cell. The current hidden state h; and the current output y, are then produced
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by the LSTM cell. Sigmoid activation functions are utilized by the input, forget, and
output gates. These functions yield values within the range of 0 to 1. These values
are subsequently multiplied by the input and the previous hidden state to determine
the amount of information that enters the cell state, the amount that is removed from
the cell state, and the amount that is output from the cell state. The cell state is then
passed through a tanh function to generate the hidden state. Following this, the
hidden state undergoes processing through a fully connected layer featuring a
sigmoid or softmax activation function to generate the output. This functionality
allows LSTM networks to selectively determine the information to store, discard,
and output. The visual representation of the memory block inan LSTM is illustrated

in Figure 3.4.

Forget Gate

®

A 4

Input Gate Output Gate

Figure 3.4 Memory Block in LSTM [37]

3.6 Physics Informed Neural Networks

PINNs directly incorporate physical laws or differential equations into the training
process of neural networks. This integration ensures that the predictions align with
established scientific principles while learning from data. By including known
deterministic relationships between variables in neural networks, PINNs use this

extra information to improve the prediction and forecast performance of the models.
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3.6.1 Architecture

Training a deep learning algorithm may seem difficult or even impractical to
accurately identify a nonlinear map from a limited number of input and output data
pairs. Achieving model accuracy with complex and high-dimensional data may pose
challenges. Deep learning algorithms have demonstrated their capability in
approximating complex nonlinear mappings. However, these training processes
necessitate a substantial amount of training data to generalize well for unseen data. If
the available data is limited or issues related to high dimensionality arise, training the

model becomes exceedingly challenging.

In the field of biology or physics, it is essential to integrate existing knowledge to
enhance the precision of the model. This existing knowledge may take the form of
fundamental physical laws, empirically verified principles, or other expertise within
the specific domain. By embedding this organized information into the learning
algorithm, the information content of the available data can be enhanced, allowing
the model to rapidly converge towards the correct solution and exhibit effective
generalization, even in cases where only a small number of training examples are
accessible. Within this framework, Raissi et al. [35] has introduced a machine
learning approach that merges the capabilities of deep neural networks with the
fundamentals of physics, known as PINNs. Their explanation of the method and its
applications has laid the groundwork for recent advancements in using neural
networks and differential equations together. The key feature of this technique is to
perform regression and model estimation by leveraging the properties of both
differential equations and neural networks. In the field of physical modeling, it is
typical to describe the dynamics of a system using a series of differential equations.
PINNs attempt to leverage the fundamental features of a solution to a differential
equation to efficiently regulate a neural network model. This is accomplished by
embedding the mathematical model into the network and enhancing the loss function
by adding a residual term that is derived from the governing equation, effectively

serving as a penalizing factor to confine the acceptable solution space. The motivation
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for this varies, but it does introduce some bias to models that would typically have
been unbiased. In the physics-informed approach, the differential equation serves as
the regularization cost for the model's parameters. A typical architecture of PINNSs is
depicted in Figure 3.5. In Figure 3.5, a fully connected neural network uses time and
space coordinates (t, x) as inputs to approximate the multi-physics solutions. AD is
used to compute the derivatives with respect to the inputs, which are then employed
to define the residuals of the governing equations within the loss function. This
function usually consists of several terms, each weighted by different coefficients.
Both the neural network parameters () and the unknown parameters of the PDEs

(4) can be learned simultaneously by minimizing the loss function.

__Neural Network AD

Loss

Lppe = f(.0,0,0,0, ..., 4)
Lpara = Ul — ulpara
Lic = llge, — glag,
/| Lpc = (Onltlan—0nglan) + (@lon — glan) |

L =wLppg + WoLlgarat |,
waLlyc+ wyLgc

Figure 3.5 Architecture of PINNSs [7]

In PINNSs approach, the loss function is designed in a way that the neural network not
only fits the data but also satisfies the physical laws and constraints represented by
the differential equation and the boundary/initial conditions. This means that PINNs
incorporate physics into the learning process. The parameterized and nonlinear partial

differential equations (PDEs) of the general form:

U+ Nu; Al =0, xeQ , te[0,T] (21)

32



In here, u; denotes the t derivative of u(t, x) which denotes the hidden/latent solution
to the equation, which refers to the unknown function that we are trying to find or
approximate. It is a function of two variables, time (t) and position (x). N[.]
represents a nonlinear differential operator parameterized by A. An operator is a
mathematical symbol or function that operates on a function to produce another
function. In this case, V'[. ] is a nonlinear operator that acts on the function u(t, x) to
yield a new function. Q denotes a subset of RP. This setup covers a wide range of
problems in mathematical physics including kinetic equations, conservation laws,
advection—diffusion—reaction systems and diffusion processes. Raissi et al. [35]
focus on solving two different problems. The first one is data driven solution of
PDEs, which refers to “Given fixed model parameters ). what can be said about the
unknown hidden state u(t, x) of the system? . The second one is data driven discovery
of PDEs, which refers to “What are the parameters A that best describe the observed
data?”.

3.6.2 Data-Driven Solutions of Partial Differential Equations

The parametrized and nonlinear PDEs of the general form is considered:
U+ Nul =0, xeQ , te[0,T] (22)

where u; denotes the t derivative of u(t, x) which denotes the hidden/latent solution,
N[.]is a nonlinear operator and Q is a subset of R”. We define f(t, x) to be given

by the left-hand side of equation given above:
fi=u + Nul (23)

and proceed by approximating u(t, x) by a deep neural network. This assumption
along with the above equation results in a physics informed neural network f (¢, x).
This network can be derived by applying the chain rule for differentiating

compositions of functions using AD and has the same parameters as the network
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representing u(t, x), albeit with different activation functions due to the action of the
differential operator V. The shared parameters between the neural networks u(t, x)
and f(t,x) can be learned by minimizing the mean squared error (MSE) loss. The

loss function over data for this network can be realized as the combined MSE loss:

MSEpinn = MSE,, + MSE; (24)
where
MSE, = — % Ju(th, xi) — u'|? (25)
and
Ny
MSE, = — i x| (26)
=N 1|f(tf'xf)|
i=

where the sets {t%, x%, u'}}*, denote the initial and boundary training data on u(t, x).

{t}, x}}?’zfl specifies the collocations points for f(t,x). The loss MSE,, corresponds

to the initial and boundary training data while MSE enforces the structure imposed

by equation f at a finite set of collocation points.

3.6.3 Data-Driven Discovery of Partial Differential Equations

We consider parametrized and nonlinear PDEs of the general form:
U+ Nu; Al =0, xeQ , te[0,T] 27)

where u; denotes the t derivative of u(t, x) which denotes the hidden/latent solution,
N[.] is a nonlinear operator parameterized by A and Q is a subset of R”. We define

f(t, x) to be given by the left-hand side of equation given above:

fi=u;+ Nu; 1] (28)
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We proceed by approximating u(t, x) by a deep neural network. This assumption
along with the above equation results in a physics informed neural network f (¢, x).
This network can be derived by applying the chain rule for differentiating
compositions of functions using AD. The parameters A of the nonlinear differential
operator as well as the parameters of the neural networks can be learned by
minimizing the MSE loss. The loss function used for this network corresponds to
that defined in Equations (24 - 26).

3.7 Prior-Informed Multivariate LSTM (PIM-LSTM)

In this study, we propose the Prior-Informed Multivariate LSTM (PIM-LSTM), a
novel deep learning architecture designed to incorporate prior knowledge constraints
into multivariate time-series forecasting. The proposed PIM-LSTM model, inspired
by Physics-Informed Neural Networks (PINNSs), leverages prior knowledge
constraints and incorporates cross-correlation function (CCF) constraints to improve

multivariate time-series forecasting.

A sequence of inputs is fed into a LSTM. The LSTM processes these inputs over
time, capturing both short-term and long-term dependencies via its hidden and cell
states. At the final step, the network produces a prediction, which is then compared
to the true target. The first loss component is the standard Mean Squared Error on

the training data. It measures how closely LSTM’s predictions align with the ground

truth values. For three output model, when output is X= {x,y,z}, MSE is

calculated as follows:

n n n
1
MSFerain = 5~ (Z(x —x)?+ ) Pe=y)P+ ) (G- )) 29)
t=1 t=1 t=1

The second loss component is obtained from prior knowledge or constraints. For

three output model, when output is X = {x, v, z} , MSE is calculated as follows:
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1w 2 S R 2 . ) 2
MSEW-OFB—”(;(@—f(xt)) +;(yt—f(yt>) +;(zt—f(zt)) (30)

where X, ,y; and Z; are the predictions obtained from the model and f is the prior
function, reflecting the expected or theoretically derived behavior. This could be a
known relationship from physics, an empirical formula from domain experts, or any

other expression encoding constraints or knowledge relevant to the problem.

The final loss is CCF loss, which typically aims to preserve certain correlation
structures in time-series data. The CCF loss measures how closely the predicted
series’ cross-correlation function matches either the observed data’s cross-

correlation or a desired correlation pattern. Symbolically, it can be written as:

¢
1 A 2
Lecr = mz Z (r(Re, Pe—n) — (Xt Vo)) (31)

h=1 (x,y)€S

S —%) Ve n—)
\/Z?ﬂ(xt—@zz;l:l(yt—y)z

where 7(x¢, Yep) =

£ denotes the number of lags, while k refers to the number of output variables.
r(X: y:—p) denotes the cross-correlation function at lag h of predicted X, and
predicted y,_;. r(x;, y.—p) denotes the cross-correlation function at lag h of actual
x; and actual y,_,. S is the set of output variable pairs. For example, for the New
Keynesian model, the output pairs are S = {(m, i), (m, y), (i, ), (i, y), (y, ), (v, i)}.
For the DAGKM model, the output pairs are S = {(w, 1), (w,d), (1, m),(4,4d),
(d, w), (d,A)}. By minimizing L.cr, the model learns to generate forecasts whose
interdependence or temporal correlations more closely match those in the true data
(or match specified domain expectations).

All these terms MSE¢.qin, MSEpyior and Lccr are combined into a single total loss

function. A typical form is:

Liotat = MSEtrqin + 0 MSEy,rior + a2 Lccr (32)
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where a; and a, are weighting coefficients that balance the importance of fitting the
training data, adhering to priors, and matching the desired correlation structure. The
gradient of this total loss concerning the LSTM parameters is computed (via
backpropagation through time) and used to update the model weights. By jointly
optimizing these three objectives, the model learns to produce forecasts that are
accurate. The architecture of the PIM-LSTM is depicted in Figure 3.6 and 3.7 for the
New Keynesian model and the DAGKM model.
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3.8 Performance Metrics

When forecasting multivariate time series data, it is important to check how accurate
the forecasts are. There are different ways to measure how well a forecasting model
works and each method has its own advantages. Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Scaled Error (MASE) are
commonly used metrics. RMSE quantifies the average magnitude of errors in a set
of predictions. Its sensitivity to larger errors makes RMSE particularly advantageous
in situations where significant discrepancies require penalization. RMSE can be

determined using the following formula:

RMSE = [1ZL, (- 902 (33)

where y;, is the actual value at time ¢, ¥, is the forecasted value at time t and n is the

number of observations.

MAE provides a straightforward way to assess the average size of errors in a group
of predictions, irrespective of whether they are positive or negative. Compared to
RMSE, MAE is less affected by outliers. The calculation for MAE can be expressed
with the following formula:

1 N
MAE = —¥¥-1|ye = Vel (34)

where y, is the actual value at time ¢, ¥, is the forecasted value at time ¢t and n is the

number of observations.

MASE is a metric that evaluates the accuracy of forecasts across various datasets by
normalizing errors relative to a naive estimate, typically derived from the mean of
previous observations.

1 ~
MAE =Y |ye=el
J— n

MASE = =
MAEqgive ﬁZ?ﬂ [ye—=ye-1l (35)
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CHAPTER 4

DATA ANALYSIS

In this study, PIM-LSTM model is applied for multivariate time series forecasting
across three different datasets from economics. Its performance is thoroughly asses-

sed by comparing it with various well-established benchmark models.

4.1  Dataset for the New Keynesian Model for Turkiye

The New Keynesian model for Turkiye is employed to apply the PIM-LSTM
method. The model is composed of several equations for the inflation rate, output
gap and nominal interest rate. The consumer price index (CPI), real gross domestic
product (GDP), the short-term interest rate, the inflation forecast, and the real GDP
forecast are used. We utilize a quarterly dataset of these variables from 2002Q4 to
2021Q3 for Turkiye. The real GDP and the CPI are sourced from IMF International
Financial Statistics. The inflation forecast, the real GDP forecast and the short-term

interest rate are retrieved from OECD Data Explorer.

Before conducting exploratory data analysis, some transformations on the dataset are
implemented. Initially, following the recommendations of Pfeifer [33], these

calculations are performed:

Ly =log(yf*?)

;data -data
. cpl cpl
i b = log (%) — mean (log( s >>

rdata
CPle—q cpicly

;data rdata

ii. P =log (1 + 41;100 ) — mean (log (1 + 1;100 )) (36)

Secondly, the real GDP is seasonally adjusted by using Census X-13 procedure since
the real GDP shows seasonal pattern. Then, two-sided Hodrick-Prescott (HP) filter
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is utilized to extract the trend component of seasonally adjusted real GDP. The
Hodrick-Prescott (HP) filter is a technique utilized to separate a time series into its
trend and cyclical components. It is commonly employed in macroeconomics to
decompose a real GDP y, into potential output (trend component) and output gap

(cyclical component) by minimizing this function:
T T-1
2
Z()’t —1,)? +AZ((TL“+1 — 1) — (1, — Tt—1)) (37)
t=1 t=2

where y, = 1, + ¢;, T IS trend component and c; is cyclical component. Potential
output data obtained from HP filter is added to the dataset. Additionally, potential
output, inflation forecasts, and GDP forecasts are considered exogenous variables.

4.1.1 Exploratory Data Analysis

Table 4.1 provides descriptive statistics of key macroeconomic indicators for
Turkiye, specifically the CPI inflation rate, the short-term interest rate, the real GDP,
the potential output, the inflation forecast, and the GDP forecast. The CPI inflation
rate has a mean close to zero (—0.0004) with a range from —0.0185 to 0.0913. Half
of the CPI inflation rate values fall between —0.0103 and 0.0005. The short-term
interest rate has a mean of -0.0008. Half of the short-term interest rate values are
between —0.0078 and 0.0019. Similarly, the real GDP and the potential output
values are closely aligned, with means of 5.5585 and 5.5580, respectively. The CPI
inflation rate, the short-term interest rate, the real GDP, the potential output are
probably symmetrically distributed since their means and median values are close.
The inflation forecast and the GDP forecast exhibit the highest dispersion, as
indicated by their wide ranges (from 4.2894 to 81.0785 and -36.1690 to 82.9082,
respectively) and large standard deviations (18.4976 and 11.9554). In contrast, the
interest rate, inflation rate, real GDP, and potential output exhibit lower variability,

as indicated by relatively small standard deviations that denote greater stability.
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Table 4.1 Descriptive Statistics of Turkiye’s Macroeconomic Series

Inflation Interest Real Potential Inflation GDP

Rate Rate GDP Output Forecast Forecast
Minimum -0.0185 -0.0124 5.3037 5.3152 4.2894 -36.1690
Q1 -0.0103 -0.0078 5.4413 5.4410 8.0459 1.3710
Median -0.0053 -0.0036 5.5704 5.5627 9.4801 5.9014
Mean -0.0004 -0.0008 5.5585 5.5580 17.3075 5.8449
Standard Dev. 0.0181 0.0108 0.1385 0.1379 18.4976 11.9554
Qs 0.0005 0.0019 5.6734 5.6744 14.5977 9.8588
Maximum 0.0913 0.0343 5.7887 5.7921 81.0785 82.9082

There is no missing data in any of the series. The time series graphs of Turkiye’s
macroeconomic series are shown above. Figure 4.1 illustrates the changes in the CPI
inflation rate from 2002Q4 to 2021Q3. The time series plot of the CPI inflation rate
does not exhibit any seasonal behavior and displays only slight fluctuations over
time. Initially, there is a sharp decline, followed by frequent ups and downs around
the zero line. After 2012, there appears to be a slight upward trend. Figure 4.2 shows
how the interest rate changed from 2002Q4 to 2021Q3. The interest rate shows no
seasonal pattern and follows a decreasing trend from 2002 to 2013. Although there
is a sudden decline between 2019 and 2020, there has been a gradual increase in the
short-term interest rate since 2013. Figure 4.3 illustrates the changes in real GDP
from 2002Q4 to 2021Q3. The real GDP shows no seasonal behavior and
demonstrates an overall upward trend during this period, despite occasional short-

term declines.

By examining sample ACF and sample PACF in Figures 4.4, 4.5, and 4.6, inflation
rate and interest rate could be stationary since their ACFs show exponential decay,
their PACFs cut off after lags 1 and 2. However, the ACF of the real GDP shows

slow decay, indicating that it is non-stationary.
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Figure 4.1 The Time Series Plot of Turkiye’s Inflation Rate
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Figure 4.2 The Time Series Plot of Turkiye’s Interest Rate
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Figure 4.3 The Time Series Plot of Turkiye’s Real GDP
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Figure 4.6 The sACF and sPACF of Turkiye’s Real GDP
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Augmented Dickey-Fuller (ADF) Test

The ADF test is a statistical method used to determine if a time series is stationary
or not. The hypothesis of the test is:

e H,: The time series has a unit root (is non-stationary)

e H,; :The time series is stationary

ADF test results indicate that inflation rate, interest rate and real GDP have unit roots,

indicating nonstationarity.

Table 4.2 ADF test for Inflation Rate

Test Statistic 0.2193
Number of Lags Used 5
P-value 0.9733

Table 4.3 ADF test for Interest Rate

Test Statistic —1.4759
Number of Lags Used 4
P-value 0.5454

Table 4.4 ADF test for Real GDP

Test Statistic —0.9467
Number of Lags Used 1
P-value 0.7722

Toda-Yamamoto Causality Test

In multivariate time series analysis, multiple interdependent variables are dealt with.
Before conducting models, it is necessary to examine causal relationships. For this
purpose, the Toda-Yamamoto Causality test is the most appropriate method to

employ since the series exhibits a unit root. This test is a recognized statistical
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technique that facilitates the analysis and identification of causal relationships

between variables. The hypothesis of the test:

e H,:The series x does not granger cause the series y.

e H, :The series x granger causes the series y.

Toda-Yamamoto Causality test results given in Table 4.5 indicate several significant
relationships between the variables. The short-term interest rates and the real GDP
granger cause the CPI inflation rate. The CPI inflation rate and the real GDP granger
cause the short-term interest rate. The short-term interest rate granger causes the real
GDP whereas the CPI inflation rate does not granger cause the real GDP. These
results suggest the presence of causal relationships among certain variables,

indicating that multivariate time series analysis is applicable to this dataset.

Table 4.5 Toda-Yamamoto Causality Test Result

X=>Y P value
Interest Rate => Inflation Rate 0.018
Interest Rate => Real GDP 0.000
Inflation Rate => Interest Rate 0.000
Inflation Rate => Real GDP 0.935
Real GDP => Interest Rate 0.032
Real GDP => |nflation Rate 0.000

412 Data Preprocessing

Data preprocessing is the set of operations performed on raw data before applying a
machine learning or deep learning model. It typically includes steps such as cleaning,
normalization or scaling and structuring data into a suitable format. By ensuring data
quality and consistency, preprocessing helps models learn more effectively and

converge faster, ultimately leading to more reliable results.

Min-Max normalization is a useful method because it scales data to a fixed range,
usually between 0 and 1, while keeping the original data distribution intact. This

approach makes sure that all features influence the training process equally, avoiding
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issues where features with larger scales might have too much impact on the model.
By reducing the range of the data, Min-Max normalization also helps improve the
stability and speed of many optimization algorithms, which can lead to better
performance and reliability in deep learning models.

X~ Xmin_ (38)

Xnorm = —
Xmax Xmin

This study employs supervised deep learning models to analyze time series data. The
input data is converted into sequences for the models to learn from previous input
values and predict future output values. The generation of sequences is based on
three key principles: input sequence length, sliding window, and output sequence
length. Input sequence length refers to the number of time steps in the input data that
the model utilizes to forecast the associated output. The sliding window technique
creates multiple sequences of the same length by sliding the sequence to 'n' steps.
Output sequence length, also known as prediction horizon, determines the number
of future values that the model forecasts based on the input sequence provided. In
this study, input sequences are generated using a sliding window approach with a
stride of one quarter, which refers to the step size used when shifting the sliding
window to create new input-output sequences. Each output sequence consists of
three values, each representing a one-step-ahead forecast based on past values of the
series. For example, to forecast macroeconomic data for the upcoming quarter using
data from the previous 4 quarters, we first organize the data from those 4 quarters
into a sequence. The goal is to predict the values for the 5th quarter. After that, we
shift the time window by one quarter to create a new sequence, now consisting of
data from the 2nd to the 5th quarter and aim to predict the values for the 6th quarter.

This process continues to generate sequences and corresponding forecast targets.
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Table 4.6 1st Input and Output Sequence used in the LSTM model

Time period Inflation Rate InterestRate Real GDP Potential Output Inflation Forecast Real GDP Forecast
2002-Q4 0.020805173 0.031277482 5.303673772 5.31523095 26.3289945 -0.068136509
2003-01 0.010289461 0.031896287 5.305750003 5.321096329 25.55277476 1.179269547
2003-Q2 -0.00193909 0.027838701 5.311009293 5.327286465 22.21899049 11.90999681
2003-Q3 -0.01369958 0.015080898 5.326266777 5.333757544 13.60194217 12.91669264
2003-Q4 -0.00451102 0.010335811 5.332461181

Table 4.7 2nd Input and Output Sequence used in the LSTM model

Time period Inflation Rate InterestRate Real GDP Potential Output Inflation Forecast Real GDP Forecast
2003-01 0.010289461 0.031896287 5.305750003 5.321096329 25.55277476 1.179269547
2003-Q2 -0.00193909 0.027838701 5.311009293 5.327286465 22.21899049 11.90999681
2003-Q3 -0.01369958 0.019080898 5.326266777 5.333757544 13.60194217 12.91669264
2003-Q4 -0.00451102 0.010335811 5.332461181 5.340455576 9.480111702 12.00637393
2004-Q1 -0.00810775 0.007462984 5.349563237

Table 4.8 1st Input and Output Sequence used in the PINN model

Time period Inflation Rate Interest Rate Real GDP Potential Output Inflation Forecast Real GDP Forecast
2002-Q4 0.020805173 0.031277482 5.303673772 5.31523095 26.3289945 -0.068136509
2003-Q1 0.010285461 0.031896287 5.305750003 5.321096329 25.55277476 1.179269547
2003-Q2 -0.00193909 0.027838701 5.311009293 5.327286465 22.21899049 11.90999681
2003-Q3 -0.01369958 0.019080898 5.326266777 5.333757544 13.60194217 12.91669264
2003-Q4 -0.00451102 0.010335811 5.332461181 5.340455576 9.480111702 12.00637393

Table 4.9 2nd Input and Output Sequence used in the PINN model

Time period Inflation Rate InterestRate Real GDP Potential Qutput Inflation Forecast Real GDP Forecast
2003-01 0.010289461 0.031896287 5.305750003 5.321096329 25.55277476 1.179269547
2003-Q2 -0.00193909 0.027838701 5.311009293 5.327286465 22.21899049 11.90999681
2003-Q3 -0.01369958 0.015080898 5.326266777 5.333757544 13.60194217 12.91669264
2003-04 -0.00451102 0.010335811 5.332461181 5.340455576 9.480111702 12.00637393
2004-Q1 -0.00810775 0.007462984 5.349563237 5.347321891 7.378891201 9.983548638

Table 4.6 and Table 4.7 show the 1% and 2" input and output sequence used in the
LSTM model. The green space gives the input sequence, the orange space gives the
output sequence. Similarly, Table 4.8 and Table 4.9 show the 1% and 2" input and
output sequence utilized in the LSTM model. The green space gives the input
sequence, the orange space gives the output sequence, the purple space represents
exogeneous variables. In both LSTM model and PINN model, 6 inputs which are
past values of inflation rate, interest rate, real GDP, potential output, inflation
forecast, and real GDP forecast are used.
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Splitting the dataset into two subsets is crucial for ensuring that the model can
generalize effectively to new, unseen data. The training set is designed to teach the
model the relationships between input data features and output data targets. During
this stage, the model adjusts its parameters, such as weights in neural networks. The
validation set impartially evaluates the model's fit on the training dataset while fine-
tuning the hyperparameters of the model. Finally, the test set assesses the model's
performance after training and validation. This study divides the macroeconomic
time series data into 80% for training, 10% for validation, and 10% for testing.

4.2  Dataset for the New Keynesian Model for Mexico

The New Keynesian model is also employed on the Mexican economic series to
apply the PIM-LSTM method. The real gross domestic product (GDP), the consumer
price index (CPI), the short-term interest rate, the inflation forecast, and the real GDP
forecast are used. We utilize a quarterly dataset of these variables spanning from
1998Q1 to 2024Q2 for Mexico. The real GDP and the CPI are sourced from the
Federal Reserve Economic Data (FRED) at https://fred.stlouisfed.org/, while the

short-term interest rate, the inflation forecast, and the real GDP forecast are retrieved
from OECD Data Explorer.

Before conducting exploratory data analysis, some transformations on the dataset are
applied. First, following Pfeifer's recommendations [33], some calculations are
performed, shown in Equation (36). Secondly, the real GDP is seasonally adjusted
by using Census X-13 procedure since the real GDP shows seasonal pattern. Then,
two-sided Hodrick-Prescott (HP) filter is utilized to extract the trend component of
seasonally adjusted real GDP. The trend component of seasonally adjusted real GDP
represents the potential output. The potential output data obtained from HP filter is
added to the dataset. Moreover, potential output, inflation forecasts, and GDP

forecasts are considered exogenous variables.
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4.2.1 Exploratory Data Analysis

Table 4.10 provides descriptive statistics of key macroeconomic indicators for
Mexico, specifically the CPI inflation rate, interest rate, real GDP, potential output,
inflation forecast, and GDP forecast. The CPI inflation rate has a mean close to zero
(—0.0023) with a range from —0.0102 to 0.0173. Half of the CPI inflation rate
values fall between —0.0052 and —0.0005. The interest rate has a mean of
—0.0028. Half of the interest rate values are between —0.0066 and 0.0022.
Similarly, the real GDP and the potential output values are closely aligned, with
means of 6.7145 and 6.7140, respectively. The CPI inflation rate, the interest rate,
the real GDP, the potential output are probably symmetrically distributed since their
means and median values are close. The inflation forecast and the GDP forecast have
high standard deviations (3.4654 and 4.1644). In contrast, the interest rate, the CPI
inflation rate, the real GDP and the potential output show lower variability, with
relatively small standard deviations indicating more stability.

Table 4.10 Descriptive Statistics of Mexico’s Macroeconomic Series

Inflation Interest Real Potential Inflation GDP

Rate Rate GDP Output Forecast Forecast
Minimum —0.0102 —0.0083 6.6122 6.6005 2.2662 —20.2938
Q1 —0.0052 —0.0066  6.6663 6.6705 3.7983 0.9048
Median —0.0022 —0.0037 6.7101 6.7141 4.5085 2.3488
Mean —0.0023 —0.0028 6.7145 6.7140 5.6325 1.9443
Standard Dev. 0.0045 0.0057 0.0550 0.0545 3.4654 4.1644
Qs —0.0005 —0.0022 6.7652 6.7684 5.9476 3.5132
Maximum 0.0173 0.0236 6.8018 6.7985 18.6328 22.7001

There is no missing data in any of the series. The time series graphs of Mexico’s
macroeconomic series are shown below. Figure 4.7 illustrates the changes in the CPI
inflation rate from 1998Q1 to 2024Q2. The time series plot of the CPI inflation rate
exhibits irregular cycle pattern over time. Until the last quarter of 2007, a downward
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trend was observed. After that, small fluctuations around zero occurred. Figure 4.8
shows how the interest rate changed from 1998Q1 to 2024Q2. The interest rate
shows no seasonal pattern and follows a decreasing trend. Figure 4.9 illustrates the
changes in real GDP from 1998Q1 to 2024Q2. The real GDP shows no seasonal
behavior and demonstrates an overall upward trend during this period, despite

occasional short-term declines.

By examining the SACF and the SPACF in Figures 4.10, 4.11, and 4.12, inflation rate
and interest rate could be stationary since their ACFs show exponential decay, their
PACEFs cut off after lags 1 and 2. However, the ACF of the real GDP shows slow

decay, indicating that it is non-stationary.
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Figure 4.7 The Time Series Plot of Mexico’s Inflation Rate
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Figure 4.8 The Time Series Plot of Mexico’s Interest Rate
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Figure 4.9 The Time Series Plot of Mexico’s Real GDP
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Figure 4.10 The sACF and sPACF of Mexico’s Inflation Rate
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Figure 4.11 The sACF and sPACF of Mexico’s Interest Rate
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Figure 4.12 The sACF and sPACF of Mexico’s Real GDP

Augmented Dickey-Fuller (ADF) Test

ADF test results show that the CPI inflation rate and the interest rate do not have unit
roots, so these series are stationary. However, the real GDP has unit roots, indicating

nonstationarity.

Table 4.11 ADF test for Inflation Rate

Test Statistic —4.1983
Number of Lags Used 11
P-value 0.0007

Table 4.12 ADF test for Interest Rate

Test Statistic —2.9846
Number of Lags Used 11
P-value 0.0364

Table 4.13 ADF test for Real GDP

Test Statistic -1.0587
Number of Lags Used 2
P-value 0.7312
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Toda-Yamamoto Causality Test

The Toda-Yamamoto causality test results presented in Table 4.14 reveal several
significant relationships among the variables. Specifically, the interest rates and the
real GDP Granger cause the inflation rate. The real GDP Granger causes the interest
rate. These results suggest the presence of causal relationships among certain
variables, indicating that multivariate time series analysis is applicable to this
dataset.

Table 4.14 Toda-Yamamoto Causality Test Result

X=Y P value
Interest Rate => Inflation Rate 0.026
Interest Rate => Real GDP 0.984
Inflation Rate => Interest Rate 0.477
Inflation Rate => Real GDP 0.726
Real GDP => |nterest Rate 0.047
Real GDP => |nflation Rate 0.024

422 Data Preprocessing

Min-Max normalization is applied to scale the data while preserving its overall
distribution. The data is transformed into sequences of inputs and outputs, allowing

the model to learn from past input values and predict output values.

A sliding window approach is implemented with a stride of one quarter to create
these input sequences. Each output sequence consists of three values, each
representing a one-step-ahead forecast based on previous values of the series. This
study splits the time series data into 80% for training, 10% for validation, and 10%
for testing.
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4.3  Dataset for Dividend-Augmented Goodwin-Keen Model

The Dividend-Augmented Goodwin-Keen model (DAGKM) for USA is also
employed to apply the PIM-LSTM method. The model is composed of several
differential equations for the wage share, the employment rate, and debt ratio. By the
methodology suggested by Bailly et al. [3], our research employs a framework where
the Goodwin-Keen model characterizes an economy comprised solely of households
and private firms, intentionally omitting taxes and public investments. Moreover,
financial activities affect the dynamics of the model only through loan provisions
and interest payments by the non-financial sector. Employment, investment, and
value-added are not directly impacted by banking activities in the model, leading to
the exclusion of the banking sector from the analyzed time series. As a result, the
data series are designed to closely represent the nonfinancial private sector, with
most empirical variables defined as the combination of corporate and non-corporate
nonfinancial business data. The series were primarily gathered from the FRED at

https://fred.stlouisfed.org/. The series were collected quarterly over the period from

1959 to 2019. Additional information regarding the datasets used can be found in the
Appendix (Table A.1).

The wage share at time t, w?, is defined as the ratio of real compensation of

employees in the non-financial private sector to total real output:

nonfi

0o = Compensation of Employees, (39)
£

where Y? = Gross Value A.}°"'— Cons. of Fixed Capital!”"" — Net Taxes on Prod}”"" .

The employment rate at time ¢, A?, is calculated from employment and

unemployment series:

private nonagri
20 = Employment; (40)

private nonagri private nonagri
Employment, + Unemployment,
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As the employment rate exhibits seasonal behavior, seasonality is removed using the
Seasonal Trend Decomposition using LOESS procedure [10]. The real debt ratio,

2, is described as the ratio of the net debt level to total real output:

o _ D (41)
t Y?
where DY = Debt Security;°"™"° + Loans,'*"' — Saving Deposit;*"'" .

4.3.1 Exploratory Data Analysis

Table 4.15 presents summary statistics for key economic indicators in the USA. The
wage share ranges from 0.6269 to 0.7240, with an average of 0.6770 and a small
standard deviation of 0.0214, indicating small variation. In contrast, the debt ratio
has a broader range from 0.5563 to 1.5954, with a higher standard deviation of
0.2690, reflecting greater variability around its average of 1.0655. The employment
rate falls between 0.8893 and 0.9562, averaging 0.9399, and has a standard deviation
of 0.0168, suggesting it is relatively stable. Half of the wage share values are between
0.6615 and 0.6930. Half of the debt ratio values are between 0.8592 and 1.2633.
Similarly, half of the employment rate values are between 0.9284 and 0.9510.
Notably, the mean and median for each series are almost equal, indicating that all
series are symmetrically distributed. There is no missing value in the series.

Table 4.15 Descriptive Statistics of US Economic Indicators

Wage Share Debt Ratio Employment Rate

Minimum 0.6269 0.5563 0.8893
Q: 0.6615 0.8592 0.9284
Median 0.6799 1.0858 0.9411
Mean 0.6770 1.0655 0.9390
Standard Dev. 0.0214 0.2690 0.0168
Qs 0.6930 1.2633 0.9510
Maximum 0.7240 1.5954 0.9669
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Figure 4.13 shows how the wage share in the US over time. The wage share rises
significantly from the 1960s to 1980, peaking above 0.72. After 1980, it fluctuates
and generally decreases until 2010s. Figure 4.14 shows the change in the US debt
ratio over time. The debt ratio increased steadily over time. The debt ratio increased
steadily from around 0.6 in 1959 to above 1.4 in 2020. There are noticeable short-
term fluctuations but a sharp decline in 2010. After this decline, the debt ratio
continues to rise. Figure 4.15 depicts the change in the US employment rate over
time. The US employment rate displays an irregular cyclical pattern. Overall, the
employment rate fluctuates between a low of 0.89 and a high of 0.97. Figures 4.16,
4.17, and 4.18 indicates that all SACF plots show slow decay, indicating that these

three series are not stationary.
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Figure 4.14 The Time Series Plot of the Debt Ratio of US
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Figure 4.15 The Time Series Plot of the Employment Rate of US
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Figure 4.16 The sACF and sPACF of Wage Share of US
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Figure 4.17 The sACF and sPACF of Debt Ratio of US
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Figure 4.18 The sACF and sPACF of Employment Rate of US
Augmented Dickey-Fuller (ADF) Test

ADF test results show that the wage share, debt ratio, and employment rate exhibit

unit roots, indicating nonstationarity.

Table 4.16 ADF test for US Wage Share

Test Statistic —2.204730
Number of Lags Used 0
P-value 0.204533

Table 4.17 ADF test for US Debt Ratio

Test Statistic —1.075899
Number of Lags Used 1
P-value 0.724587

Table 4.18 ADF test for US Employment Rate

Test Statistic —2.789385
Number of Lags Used 13
P-value 0.059806
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Toda-Yamamoto Causality Test

The Toda-Yamamoto causality test results presented in Table 4.19 reveal several
significant relationships among the variables. Specifically, the debt ratio and
employment rate are found to Granger-cause the wage share. Additionally, the
employment rate also Granger-causes the debt ratio. However, the wage share does
not Granger-cause either the debt ratio or the employment rate. These results suggest
the presence of causal relationships among certain variables, indicating that

multivariate time series analysis is applicable to this dataset.

Table 4.19 Toda-Yamamoto Causality Test Result

X=>Y P value
Wage Share => Debt Ratio 0.056
Debt Ratio => Woage Share 0.030
Wage Share => Employment Rate 0.189
Employment Rate => Wage Share 0.015
Debt Ratio => Employment Rate 0.301
Employment Rate => Debt Ratio 0.000

4.3.2 Data Preprocessing

Min-Max normalization scales the data to a fixed range, typically between 0 and 1,
while preserving its overall distribution. The data is transformed into sequences of
inputs and outputs, allowing the model to learn from past input values and predict
output values. To create these input sequences, a sliding window approach is
implemented with a stride of one quarter, which indicates the step size used to shift
the window and generate new input-output pairs. Each output sequence consists of
three values, each representing a one-step-ahead forecast based on previous values
of the series. This study splits the time series data into 80% for training, 10% for

validation, and 10% for testing.
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4.4  Experiment Setup

In this study, deep learning models for forecasting time series, as well as data
processing and analysis, are developed using the Python programming language. Its
recognized flexibility and dependability in building these models, especially in the
realm of machine learning, is well-established. Moreover, Python has many libraries
and packages created for scientific computing and data analysis. This offers exciting

opportunities for users.

PyTorch, an open-source deep learning framework, is used for this study due to its
ability to facilitate flexible model execution and debugging using dynamic graphs.
In addition, its automatic differentiation engine simplifies the computation of
gradients in deep learning applications. Furthermore, PyTorch's support for CUDA
enables efficient execution of computations on graphical processing units (GPUs).
Ray Tune is preferred for performing hyperparameter tuning on deep learning
models. Ray Tune helps find the best combination of parameters in deep learning
models. It is a widely used tool for distributed hyperparameter tuning in the industry,
with the most up-to-date hyperparameter search algorithms. Ray Tune also works
seamlessly with TensorBoard and other analysis libraries, and it facilitates

distributed training through Ray's distributed machine learning engine.

The PIM-LSTM model is a deep learning architecture built using PyTorch, designed
to process sequential data with a Long Short-Term Memory (LSTM) network. It
operates on CUDA for efficient GPU acceleration. The model consists of multiple
configurable layers, including an LSTM layer, linear layers, layer normalization,
dropout regularization, and residual connections. The LSTM layer processes input
sequences with a specified number of hidden units and layers while applying dropout
if more than one layer is used. Afterward, the output undergoes layer normalization
and dropout to stabilize training and prevent overfitting. The architecture is dynamic,
allowing different numbers of fully connected layers based on a parameter that
defines the number of linear layers. If no additional layers are specified, the LSTM

output is directly mapped to the final predictions. When one or more linear layers
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are included, they are followed by RelLU activations, layer normalization, and
residual connections to enhance gradient flow and model stability. In the forward
pass, the LSTM processes the input sequence, followed by conditional linear

transformations and residual connections, ultimately producing a final prediction.

In this experiment, we conduct hyperparameter tuning with Ray Tune to find the best
hyperparameters such as number of hidden units, the number of linear layers, the
number of LSTM layer etc. We determined the appropriate hyperparameters by
setting the maximum epoch in Ray Tune to 100 and the hyperparameter trial epoch
to 100 and using 50 or 75 different hyperparameter combination trials. Ray Tune is
a powerful library for hyperparameter tuning, while Optuna is a flexible and efficient
framework for hyperparameter optimization. When wused together with
OptunaSearch, they create a scalable, distributed, and effective solution for
hyperparameter tuning. Therefore, for our hyperparameter tuning needs, we choose
to use Ray Tune alongside OptunaSearch to explore various model configurations.
The search space includes LSTM architecture parameters (hidden sizes, number of
layers, dropout probabilities), learning rates, and batch sizes. The tuning process
optimizes the model based on validation loss using Asynchronous Successive
Halving (ASHA\) for efficient resource allocation. The ASHA Scheduler is a useful
tool for managing resources and stopping tasks early in hyperparameter optimization
with Ray Tune. It helps with large experiments by quickly removing trials that are
not performing well and reallocating resources to better candidates. ASHA monitors
ongoing trials and halts those that fail to meet performance standards, reallocating
resources to more promising configurations. Unlike traditional methods, it operates

asynchronously and terminates trials without waiting for all to finish.

In the training process in our proposed model, the used loss function combines Mean
Squared Error (MSE) with a cross-correlation loss to align model predictions with
real-world dependencies. Additionally, prior knowledge constraints are incorporated
into the training process by enforcing relationships derived from economic models.
Additionally, gradient clipping is applied to prevent exploding gradients, and
learning rate scheduler “ReduceLRONPlateau” is applied. It dynamically reduces the
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learning rate when a monitored metric which is validation loss stops improving.
Instead of reducing the learning rate at fixed intervals, this scheduler adjusts it only
when necessary, helping the model continue learning efficiently. The model’s
performance is periodically assessed using a validation set, and checkpointing is
employed to save model progress and resume training if interrupted. After
performing hyperparameter tuning in Ray Tune, the best training parameters are
selected based on the lowest validation loss. Using the best-trained model, we then

generate the forecast values for the test set.

While constructing the PIM-LSTM model, a prior knowledge-based approach was
adopted to define the prior loss function. This prior knowledge consists of specific
mathematical equations, within which certain parameters exist. These parameters
have either been previously calibrated or estimated. In this study, two different
strategies were employed. Firstly, the estimated or calibrated parameter values were
directly incorporated into the model (referred to PIM-LSTM1). Secondly, these
parameters were assumed to be unknown and were introduced into the model as
hyperparameters (referred to PIM-LSTMZ2). This approach allowed the model to
learn these parameters independently, facilitating a data-driven optimization process.
By combining both strategies, the model’s flexibility was enhanced, enabling the
development of a learning mechanism that leverages both prior knowledge and data-

driven learning.

44.1 Hyperparameter Tuning for New Keynesian Model for Turkiye

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM
architecture for Turkiye’s New Keynesian Model. Firstly, for the PIM-LSTM model,
the calibrated parameters specific to the New Keynesian model are applied. These
calibrated parameters for Turkiye are sourced from the article by Giiloglu and
Gilingor [12]. Table 4.20 shows the calibrated parameters for the New Keynesian

model related to Turkiye.
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Table 4.20 Calibrated Parameters from Giiloglu’s Article [12]

a = 0.33 Capital share in Production o =1 Relative Risk Aversion

B =099 Discount Factor 6 = 0.6699 Calvo Parameter

E=6 Elasticity of Substitution ¢, = 1.9959  Feedback parameter of inflation
p=1 Frisch Elasticity ¢, = 05122  Feedback parameter of output gap

Table 4.21 shows the detailed setup for PIM-LSTM model with known parameters.
The hyperparameter tuning experiment for PIM-LSTM model with known
parameters in the New Keynesian Model was conducted using Ray Tune with
OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize
validation loss. The best model configuration included 32 hidden units in the first
LSTM layer, one LSTM layer, and one linear layer, with a dropout rate of 0.2. The
best training parameters were found using the AdamW optimizer, Xavier weight
initialization, and Normal bias initialization, with batch shuffling enabled. The
optimal batch size was 4 and the input sequence length was 4. The learning rate was
0.0056171, with a weight decay of 0.002717, and learning rate scheduling was
applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction
factor of 0.8. The training process was set to run for a maximum of 100 epochs, with
a grace period of 10 and a reduction factor of 2. «; = 0.1 and a, = 0.1 determine
how much influence each loss component has on the total loss function: Lptq; =

MSEtrain + alMSEprior + aZLCCF-

Secondly, the parameters in the New Keynesian model were treated as unknowns
and integrated into the model as hyperparameters when implementing the PIM-
LSTM model for the New Keynesian model. Table 4.22 indicates the detailed setup
for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment
for the PIM-LSTM model with unknown parameters in the New Keynesian Model
utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler,
conducting 75 trials to minimize validation loss. The best model configuration

selected 32 hidden units in the first LSTM layer, one LSTM layer, two linear layers,
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and a dropout rate of 0.2. The best training parameters included the AdamwW
optimizer, Xavier weight initialization, and Normal bias initialization, with batch
shuffling enabled. The optimal batch size was 4, input sequence length was 16, and
learning rate was 0.001736, with weight decay of 0.000005. Learning rate scheduling
was applied using Reduce Learning Rate on Plateau, with a patience of 2 and a
reduction factor of 0.8. The tuning also optimized New Keynesian model parameters
(B,9,a,€,0, ¢ , prand ¢,), with the best values found at g = 0.36058,6 =
0.75432, a = 0.66505, €E=7,0 =5, ¢ =4, ¢, = 1.8387 and ¢, = 0.5644.

a; = 0.1 and @, = 0.1 are weighting coefficients.
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Table 4.21 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Turkiye’s New Keynesian Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 75

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256,512 32

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 1

Dropout 1 0.1,0.2,0.3,0.4,0.5 0.2

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256,512 32

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256,512 256

Model Training Parameter

Trials

Best Training

Tuning Parameters
Optimizers Adam, RMSProp, SGD, AdamW AdamwW
Weight Initialization Xavier, Kaiming, Normal Xavier
Bias Initialization Zeros, Ones, Normal Normal
Batch Shuffle On On

Batch Size 4,8, 16, 32,64 4

Input Sequence Length 4,8,12,16 4

a, 0.1,0.3,0.5,0.7,0.9 0.1

a, 0.1,0.3,05,0.7,0.9 0.1
Learning Rate Log Uniform: Min:0.00001 Max:0.01 0.0056171
Weight Decay Log Uniform: Min:0.000001 Max:0.01  0.002717

Learning Rate Scheduler

Learning Rate Scheduler Patience
Learning Rate Scheduler Factor

Reduce Learning Rate on Plateau
2
0.8

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2
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Table 4.22 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Turkiye’s New Keynesian Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 75

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256,512 32

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 2

Dropout 1 0.1,0.2,0.3,04,0.5 0.2

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256,512 128

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256,512 32

Model Training Parameter

Trials

Best Training

Tuning Parameters
Optimizers Adam, RMSProp, SGD, AdamW AdamwW
Weight Initialization Xavier, Kaiming, Normal Xavier
Bias Initialization Zeros, Ones, Normal Normal
Batch Shuffle On On
Batch Size 4,8, 16, 32,64 4

Input Sequence Length 4,8,12,16 16

a, 0.1,0.3,0.5,0.7,0.9 0.1

a, 0.1,0.3,0.5,0.7,0.9 0.1
Learning Rate Log Uniform: Min:0.00001 Max:0.01 0.001736
Weight Decay Log Uniform: Min:0.000001 Max:0.01  0.000005
Learning Rate Scheduler Reduce Learning Rate on Plateau

Learning Rate Scheduler Patience 2

Learning Rate Scheduler Factor 0.8

B Uniform Min:0.01 Max:0.999 0.36058
2] Uniform Min:0.6 Max:0.9 0.75432
a Uniform Min:0.01 Max:0.999 0.66505
€ 1,3,5,7,9,11 7

o 1,3,5,7,9,11 5

® 1,234 4

b Uniform Min:1 Max:2 1.83874
b, Uniform Min:0.01 Max:0.999 0.56441

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2
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4.4.2 Hyperparameter Tuning for New Keynesian Model for Mexico

Hyperparameter and model parameter tuning are performed for the PIM-LSTM
architecture for Mexico’s New Keynesian Model. Initially, for the PIM-LSTM
model, the calibrated parameters specific to Mexico’s New Keynesian model are
utilized. These calibrated parameters are sourced from the article by Zendejas-
Fonseca et al. [50]. Table 4.23 displays the calibrated parameters for Mexico's New

Keynesian model.

Table 4.23 Calibrated Parameters from Zendejas-Fonseca’s Article [50]

a = 0.33 Capital share in Production o =1 Relative Risk Aversion

B =0.99 Discount Factor 6 = 0.6699  Calvo Parameter

E=6 Elasticity of Substitution ¢ =15 Feedback parameter of inflation
p=1 Frisch Elasticity ¢, =0.12 Feedback parameter of output gap

Table 4.24 shows the detailed setup for PIM-LSTM model with known parameters.
The hyperparameter tuning experiment for PIM-LSTM model with known
parameters in the New Keynesian Model was conducted using Ray Tune with
OptunaSearch and an Async Hyperband Scheduler, running 75 trials to minimize
validation loss. The best model configuration included 32 hidden units in the first
LSTM layer, one LSTM layer, and no linear layer, with a dropout rate of 0.3. The
best training parameters were found using the Adam optimizer, Kaiming weight
initialization, and Ones bias initialization, with batch shuffling enabled. The optimal
batch size was 8, and the input sequence length was 16. The learning rate was
0.007785, with a weight decay of 0.000019, and learning rate scheduling was applied
using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor
of 0.8. The training process was set to run for a maximum of 100 epochs, with a
grace period of 10 and a reduction factor of 2. a; = 0.1 and a, = 0.1 determine
how much influence each loss component has on the total loss function: L;,iq1 =

MSEtrain + alMSEprior + aZLCCF-
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Secondly, the parameters in the New Keynesian model were treated as unknowns
and integrated into the model as hyperparameters when implementing the PIM-
LSTM model for the New Keynesian model. Table 4.25 indicates the detailed setup
for PIM-LSTM with unknown parameters. The hyperparameter tuning experiment
for the PIM-LSTM model with known parameters in the New Keynesian Model
utilized Ray Tune with OptunaSearch and an Async Hyperband Scheduler,
conducting 75 trials to minimize validation loss. The best model configuration
selected 256 hidden units in the first LSTM layer, one LSTM layer, no linear layers,
and a dropout rate of 0.2. The best training parameters included the Adam optimizer,
Kaiming weight initialization, and Ones bias initialization, with batch shuffling
enabled. The optimal batch size was 32, input sequence length was 4, and learning
rate was 0.003166, with weight decay of 0.000257. Learning rate scheduling was
applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction
factor of 0.8. The tuning also optimized New Keynesian model parameters (5, 6, «, €
,0, ¢ , ¢ and ¢,,), with the best values found at f = 0.86045,0 = 0.61734, a =
0.75074, €=5,0=9, ¢ =3 , ¢, = 1.76522and ¢, = 0.59629. Also, the

weighting coefficients are ; = 0.3 and a, = 0.1.
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Table 4.24 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

Mexico’s New Keynesian Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 75

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256,512 32

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 0

Dropout 1 0.1,0.2,0.3,0.4,0.5 0.3

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256,512 512

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256,512 16

Model Training Parameter

Trials

Best Training

Tuning Parameters
Optimizers Adam, RMSProp, SGD, AdamW Adam
Weight Initialization Xavier, Kaiming, Normal Kaiming
Bias Initialization Zeros, Ones, Normal Ones
Batch Shuffle On On
Batch Size 4,8, 16, 32, 64 8

Input Sequence Length 4,8,12,16 16

a; 0.1,0.3,0.5,0.7,0.9 0.1

a, 0.1,0.3,05,0.7,0.9 0.1
Learning Rate Log Uniform: Min:0.00001 Max:0.01 0.007785
Weight Decay Log Uniform: Min:0.000001 Max:0.01  0.000019

Learning Rate Scheduler

Learning Rate Scheduler Patience
Learning Rate Scheduler Factor

Reduce Learning Rate on Plateau
2
0.8

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2
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Table 4.25 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

Mexico’s New Keynesian Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 75

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256,512 256

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 0

Dropout 1 0.1,0.2,0.3,04,0.5 0.1

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256,512 512

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256,512 512

Model Training Parameter

Trials

Best Training

Tuning Parameters
Optimizers Adam, RMSProp, SGD, AdamW Adam
Weight Initialization Xavier, Kaiming, Normal Kaiming
Bias Initialization Zeros, Ones, Normal Ones
Batch Shuffle On On
Batch Size 4,8, 16, 32,64 32

Input Sequence Length 4,8,12,16 4

a, 0.1,0.3,0.5,0.7,0.9 0.3

a, 0.1,0.3,0.5,0.7,0.9 0.1
Learning Rate Log Uniform: Min:0.00001 Max:0.01 0.003166
Weight Decay Log Uniform: Min:0.000001 Max:0.01  0.000257
Learning Rate Scheduler Reduce Learning Rate on Plateau

Learning Rate Scheduler Patience 2

Learning Rate Scheduler Factor 0.8

B Uniform Min:0.01 Max:0.999 0.86045
2] Uniform Min:0.6 Max:0.9 0.61734
a Uniform Min:0.01 Max:0.999 0.75074
€ 1,3,5,7,9,11 5

o 1,3,5,7,9,11 9

® 1,234 3

b Uniform Min:1 Max:2 1.76522
b, Uniform Min:0.01 Max:0.999 0.59629

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2

70



443 Hyperparameter Tuning for DAGKM Model

Hyperparameter and model parameter tuning are conducted for the PIM-LSTM
architecture for the DAGKM model. When working with the PIM-LSTM model, we
utilize estimated parameters. These estimated parameters for the DAGKM model in
the USA are derived from the article by Bailly et al. [3]. Table 4.26 exhibits the
estimated parameters used in the DAGKM model for the USA.

Table 4.26 Estimate of Parameters from Bailly’s Article [3]

» = 0.0000352 r=00126 &= 0.0427
k, = 0.0584 k, =4.03 A= 0.469

Table 4.27 shows the detailed setup for PIM-LSTM model with known parameters.
The hyperparameter tuning experiment for PIM-LSTM model with known
parameters in the DAGKM model was conducted using Ray Tune with
OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize
validation loss. The best model configuration selected 64 hidden units in the first
LSTM layer, one LSTM layer, zero linear layer, and a dropout rate of 0.1. The best
training parameters were determined using the RMSProp optimizer, Normal weight
initialization, and Normal bias initialization, with batch shuffling enabled. The
optimal batch size was 8, and the input sequence length was 4. The learning rate was
found to be 0.005097, with a weight decay of 0.00006. Learning rate scheduling was
applied using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction
factor of 0.8. The training process was set to run for a maximum of 100 epochs, with
a grace period of 10 and a reduction factor of 2. a; = 0.1 and @, = 0.5 determine
how much influence each loss component has on the total loss function: L;,:q =

MSEtrain + alMSEprior + azLCCF-

Table 4.28 shows the detailed setup for PIM-LSTM model with unknown
parameters. The hyperparameter tuning experiment for PIM-LSTM model with
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unknown parameters in the DAGKM model was conducted using Ray Tune with
OptunaSearch and an Async Hyperband Scheduler, running 50 trials to minimize
validation loss. The best model configuration selected 32 hidden units in the first
LSTM layer, one LSTM layer, no linear layers, and a dropout rate of 0.4. The best
training parameters were found using the RMSProp optimizer, Normal weight
initialization, and Normal bias initialization, with batch shuffling enabled. The
optimal batch size was 16, and the input sequence length was 4. The learning rate
was 0.00764, with a weight decay of 0.00006. Learning rate scheduling was applied
using Reduce Learning Rate on Plateau, with a patience of 2 and a reduction factor
of 0.8. Additional parameters were optimized, with the best values set for p =
0.00004, k; = 0.01935, k, = 5.09022,r = 0.00947,§ = 0.03806, A= 0.85094.

Also, the best weighting coefficients are a; = 0.1 and a, = 0.3.
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Table 4.27 Hyperparameter tuning experiment setup for PIM-LSTM1 Model for

DAGKM Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 50

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256,512 64

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 0

Dropout 1 0.1,0.2,0.3,04,0.5 0.1

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256,512 64

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256,512 256

Model Training Parameter Trials Best

Tuning Training
Parameters

Optimizers Adam, RMSProp, SGD, AdamW RMSProp

Weight Initialization Xavier, Kaiming, Normal Normal

Bias Initialization Zeros, Ones, Normal Normal

Batch Shuffle On On

Batch Size 4,8, 16, 32,64 8

Input Sequence Length 4,8,12,16 4

a, 0.1,0.3,0.5,0.7 0.1

a, 0.1,0.3,0.5,0.7 0.5

Learning Rate Log Uniform: Min:0.00001 Max:0.01  0.005907

Weight Decay Log Uniform: Min:0.000001 Max:0.01  0.00006

Learning Rate Scheduler

Learning Rate Scheduler Patience
Learning Rate Scheduler Factor

Reduce Learning Rate on Plateau
2
0.8

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2
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Table 4.28 Hyperparameter tuning experiment setup for PIM-LSTM2 Model for

DAGKM Model

Hyperparameter Tuning Trials Best Model
Parameters

Tuning Environment Ray Tune

Search Algorithm OptunaSearch

Scheduler AsyncHyperBandScheduler

Hyperparameter Trials 50

Tuning Objective Minimize Validation Loss

Hyperparameter Trial Epochs 100

LSTM Layer 1 Hidden Size 16, 32, 64, 128, 256, 512 32

LSTM Layer Num Layer 1,2,3,4,5 1

Linear Layer Num Layer 0,12 0

Dropout 1 0.1,0.2,0.3,0.4,05 04

Linear Layer 1 Hidden Size 16, 32, 64, 128, 256, 512 256

Linear Layer 2 Hidden Size 16, 32, 64, 128, 256, 512 256

Model Training Parameter Trials Best

Tuning Training
Parameters

Optimizers Adam, RMSProp, SGD, AdamW RMSProp

Weight Initialization Xavier, Kaiming, Normal Normal

Bias Initialization Zeros, Ones, Normal Normal

Batch Shuffle On On

Batch Size 4,8, 16, 32,64 16

Input Sequence Length 4,8,12,16 4

a, 0.1,0.3,0.5,0.7 0.1

a, 0.1,0.3,0.5,0.7 0.3

Learning Rate Log Uniform: Min:0.00001 Max:0.01  0.00764

Weight Decay Log Uniform: Min:0.000001 Max:0.01

Learning Rate Scheduler Reduce Learning Rate on Plateau 0.00006

Learning Rate Scheduler Patience 2

Learning Rate Scheduler Factor 0.8

p Uniform Min:0.0000144 0.00004

Max:0.000044

ky Uniform Min:0.00279 Max:0.148 0.01935

k, Uniform Min:2.47 Max:10 5.09022

r Uniform Min:-0.0501 Max:0.0721 0.00947

Y Uniform Min:0 Max:0.0937 0.03806

A Uniform Min:0.000036 Max:0.894 0.85094

Best Model Training

Additional Setting

Max Epoch
Grace Period
Reduction Factor

100
10
2
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45 Results

Firstly, we conducted multivariate time series forecasting for the New Keynesian
model for Turkiye. Six deep learning models were utilized to predict the values of
the series in the New Keynesian model. These models are the LSTM model and
LSTM model with CCF loss, PINN model with Data-Driven Solution, PINN model
with Data-Driven Discovery, PIM-LSTM model with known parameters (referred to
as PIM-LSTM1), and PIM-LSTM model with unknown parameters (referred to as
PIM-LSTMZ2). After performing hyperparameter tuning on all models for three
series, the performance metrics, MAE, RMSE and MASE were calculated.
Furthermore, the Vector Error Correction Model (VECM) is implemented for
multivariate time series forecasting. Table 4.29 shows the out-of-sample forecast
performance of these models for each series. In terms of overall performance across
all indicators, the PIM-LSTML1 achieves the lowest MAE (0.0073), RMSE (0.0132),
and MASE (0.8013), indicating superior accuracy.

Table 4.29 Test Set Model Performance for Turkiye’s New Keynesian Model

Model MAE RMSE MASE
LSTM Model 0.0140 0.0197  1.5288
PINN Model (Data-Driven Solution) 0.0093  0.0138 1.0194
PINN Model (Data-Driven Discovery) 0.0173  0.0255 1.8814
LSTM_CCF Model 0.0101  0.0201  1.1062
PIM-LSTM1 0.0073  0.0132  0.8013
PIM-LSTM2 0.0116  0.0171  1.2696
VECM Model 0.0095 0.014 1.9027

Figures 4.19, 4.20 and 4.21 depict the time series forecast plot for the CPI inflation
rate, the short-term interest rate and real GDP of Turkiye. In these plots, the legend
of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while
"PIM-LSTM1" represents the PIM-LSTM model with known parameters.
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Additionally, "PINN1" represents the PINN model with data-driven solutions and
"PINN2" refers to the PINN model with data-driven discovery.

Figure 4.19 shows the performance of different models in forecasting the CPI
inflation rate over time, compared to the actual CPI inflation values, which are
represented by the "Test Set" in orange. Each colored and dashed line corresponds
to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-
LSTM1, and VECM. Most models struggle to fully capture the upward trend in
inflation rate seen in the test set in late 2020. Nevertheless, among the models, the
LSTM (green) and PINNZ1(purple) model forecasts are slightly closer to actual
inflation values. Figure 4.20 shows the forecast of interest rates obtained by various
models, including the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-
LSTM2, PIM-LSTM1, and VECM. Overall, the forecasts from the PIM-
LSTM1(red) model, PINN1(purple) model, and the PIM-LSTM2(light blue) model
are closer to the actual interest rate values. Figure 4.21 shows the predictions of the
real GDP using the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-
LSTM2, PIM-LSTM1, and VECM. Both the PIM-LSTM1 (red) model and VECM

(brown) provide a more consistent and realistic forecast.
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Figure 4.19 Forecast Plot of Turkiye’s Inflation Rate
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Figure 4.20 Forecast Plot of Turkiye’s Interest Rate

78

— Train Set
Test Set
LsT™M
—-=- LSTM_CCF
——- PINN1
=== PINN2

—— Train Set
Test Set
—=- PIM-LSTM2
=== PIM-LSTM1
—--- VECM

Test Set
—-=- LST™M
—-- LSTM_CCF
=== PINN1
=== PINN2
PIM-LSTM2
PIM-LSTM1
=== VECM



Real GDP

Real GDP

Real GDP

5.7 1

L
Yorr”

5.6 1

551

5.4 4

531

Train Set
Test Set
LsT™M
LSTM_CCF
PINN1
PINNZ

T T T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

DateTime

571

5.6 4

551

5.4 1

5.3 4

T T T T T
2012 2014 2016 2018 2020

DateTime

T T T T T T
2002 2004 2006 2008 2010 2022

5.74 4

5.72 4

5.70 -

5.68

5.66

5.64

T T T T T
2020-11 2021-01 2021-03 2021-05 2021-07

DateTime

T T
2020-07 2020-09

Figure 4.21 Forecast Plot of Turkiye’s Real GDP
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Secondly, we performed multivariate time series forecasting using the New
Keynesian model for Mexico. We employed six deep learning models to forecast the
values associated with the series in the New Keynesian framework. These models
include the LSTM model, the LSTM model with CCF loss, the PINN model utilizing
a Data-Driven Solution, the PINN model based on Data-Driven Discovery, the PIM-
LSTM model with known parameters (referred to as PIM-LSTM1), and the PIM-
LSTM model with unknown parameters (referred to as PIM-LSTM2). After
performing hyperparameter tuning on all models for three series, the performance
metrics, MAE, RMSE, and MASE, were calculated. Furthermore, the Vector
Autoregressive (VAR) is implemented for multivariate time series forecasting. Table
4.30 shows the out-of-sample forecast performance of these models for each series.
In terms of overall performance across all indicators, the PIM-LSTM2 achieves the
lowest MAE (0.0030), RMSE (0.0036), and MASE (1.5847), indicating superior

accuracy.

Table 4.30 Test Set Model Performance for Mexico’s New Keynesian Model

Model MAE RMSE MASE
LSTM Model 0.0130 0.0189  6.7887
PINN Model (Data-Driven Solution) 0.0087 0.0126  4.5628
PINN Model (Data-Driven Discovery) 0.0136  0.0191 7.1034
LSTM_CCF Model 0.0080 0.0103 4.2164
PIM-LSTM1 0.0033 0.0041 1.7471
PIM-LSTM2 0.0030 0.0036  1.5847
VAR Model 0.0064  0.0081  3.3501

Figures 4.22, 4.23 and 4.24 depict the time series forecast plot for the CPI inflation
rate, the short-term interest rate and real GDP of Mexico. In these plots, the legend
of "PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while
"PIM-LSTM1" represents the PIM-LSTM model with known parameters.
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Additionally, "PINN1" represents the PINN model with data-driven solutions and
"PINN2" refers to the PINN model with data-driven discovery.

Figure 4.22 shows the performance of different models in forecasting the CPI
inflation rate over time, compared to the actual CPI inflation values, which are
represented by the "Test Set" in orange. Each colored and dashed line corresponds
to a different model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-
LSTM1, and VAR. Although all models struggle to precisely capture the fluctuations
observed in the inflation rate within the test set, the narrow range of the test set
indicates that most of the forecasts are quite close to the actual values. Figure 4.23
shows the forecast of interest rates obtained by various models, including the LSTM
model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR.
Overall, the PIM-LSTM1(red) model forecasts are closer to the actual interest rate
values. Figure 4.24 exhibits the forecast of the real GDP using the LSTM model,
LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and VAR. The
PIM-LSTML1 (red) model provides a more consistent and realistic forecast than the

other models.
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Figure 4.22 Forecast Plot of Mexico’s Inflation Rate
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Figure 4.23 Forecast Plot of Mexico’s Interest Rate
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Figure 4.24 Forecast Plot of Mexico’s Real GDP
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Lastly, we conducted multivariate time series forecasting for the Dividend-
Augmented Goodwin-Keen model (DAGKM) for the USA. Six deep learning
models were utilized to get the forecasts of the series in the DAGKM model. These
models are LSTM model and LSTM model with CCF loss, PINN model with Data
Driven Solution, PINN model with Data Driven Discovery, PIM-LSTM model with
known parameters (referred to as PIM-LSTM1) and PIM-LSTM model with
unknown parameters (referred to as PIM-LSTM2). After performing hyperparameter
tuning on all models for three series, the performance metrics such as MAE, RMSE
and MASE for three series were calculated. Furthermore, VECM is built for
multivariate time series forecasting. Table 4.31 presents the out-of-sample forecast
performance of these models for each series. In terms of overall performance across
all indicators, the PIM-LSTM1 achieves the lowest MAE (0.0080), RMSE (0.0103),
and MASE (1.5546), indicating superior accuracy.

Table 4.31 Test Set Model Performance for US DAGKM model

Model MAE RMSE MASE
LSTM Model 0.0190 0.0290 3.7129
PINN Model (Data Driven Solution) 0.0098 0.0174 1.9161
PINN Model (Data Driven Discovery) 0.0295 0.0475 5.7727

LSTM_CCF Model 0.0098 0.0149 1.9144
PIM-LSTM1 0.0080 0.0103 1.5546
PIM-LSTM2 0.0174 0.0265 3.3869
VECM Model 0.0399 0.0447 5.8167

Figures 4.25, 4.26 and 4.27 shows the time series forecast plot for the wage share,
the debt ratio and the employment rate of the USA. In these plots, the legend of
"PIM-LSTM2" represents the PIM-LSTM model with unknown parameters, while
"PIM-LSTM1" represents the PIM-LSTM model with known parameters.
Additionally, "PINN1" represents the PINN model with data-driven solutions and
"PINN2" refers to the PINN model with data-driven discovery.
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Figure 4.25 illustrates the performance of different models in forecasting the wage
share over time, compared to the actual wage share values, which are represented by
the "Test Set" in orange. Each colored and dashed line corresponds to a different
model: LSTM, LSTM_CCF, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1, and
VECM. All models except the VECM (in brown) effectively showed an upward
trend in wage share, as seen in Figure 4.25. Among these models, the PINN1 (in
purple) and PIM-LSTM1 (in red) performed better at capturing the small fluctuations
that followed the initial increase.

Figure 4.26 shows the forecast of debt ratio obtained by various models, including
the LSTM model, LSTM_CCF model, PINN1, PINN2, PIM-LSTM2, PIM-LSTM1,
and VAR. All models, except the VECM (brown), successfully captured the
increasing trend in the debt ratio as seen in Figure 4.26. However, among these
models, the PIM-LSTM1(red) model performs better, as its forecasted values are

closer to the actual debt ratio values.

Furthermore, Figure 4.27 shows that all models, except the VECM (brown),
successfully capture the increasing trend in the employment rate. However, the
forecasts from the LSTM_CCF (black) and the PIM-LSTM2(light blue) are more

closely aligned with the actual values.
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CHAPTER 5

DISCUSSION AND CONCLUSION

The main goal of this thesis is to adapt Physics-Informed Neural Networks (PINNs)
to multivariate time series analysis, integrating causal relationships and cross-
correlations into the PINNs framework to enhance model performance. Additionally,
a side goal is to introduce the PINNs model to economic modeling, which has not
been previously applied in economics. To achieve this, we developed the Prior-
Informed Multivariate LSTM (PIM-LSTM) model, drawing inspiration from the
PINNs framework. The proposed PIM-LSTM model leverages prior knowledge
constraints and incorporates cross-correlation function (CCF) constraints to improve
multivariate time-series forecasting. In this study, while training our model, the
econometric model and the CCF function are incorporated into the loss function.
This integration results in adjusting weights and biases according to the modified
loss function, improving the training process and model performance. By integrating
economic prior knowledge and cross-correlation information into the model, the
PIM-LSTM model produces more reliable and consistent forecasts, ultimately
improving the performance of multivariate time series forecasting. In this context,
how the PIM-LSTM model works for the New Keynesian model for Turkiye and
Mexico macroeconomic series is demonstrated, and its performance is compared
with that of the LSTM model and the PINNs model. While training our model, the
New Keynesian model and the CCF function are incorporated into the loss function

to improve the overall training process and model performance.

In our analysis of Turkiye’s macroeconomic series, the PIM-LSTM model with
known parameters achieves the lowest errors across all performance metrics,
demonstrating the highest overall accuracy for the New Keynesian Model.
Specifically, the PIM-LSTM model with known parameters achieves a Mean
Absolute Error (MAE) of 0.0073, a Root Mean Squared Error (RMSE) of 0.0132,
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and a Mean Absolute Scaled Error (MASE) of 0.8013. In our analysis of Mexico’s
macroeconomic series, the PIM-LSTM model with unknown parameters achieves
the lowest errors across all performance metrics, demonstrating the highest overall
accuracy for the New Keynesian Model. Specifically, the PIM-LSTM model with
unknown parameters achieves an MAE of 0.0030, an RMSE of 0.0036, and a MASE
of 1.5847. Similarly, we show how the PIM-LSTM model works for the DAGKM
model, and its performance is compared with the LSTM and PINNs models. Our
analysis reveals that the PIM-LSTM model with known parameters achieves the
lowest errors across all performance metrics, demonstrating the highest overall
accuracy for the DAGKM model. Specifically, the PIM-LSTM model with known
parameters achieves an MAE of 0.0080, RMSE of 0.0103, and MASE of 1.5546.
Upon evaluating the performance metrics alongside the forecast plots in detail, it can
be inferred that the PIM-LSTM model displayed the highest overall performance in
multivariate time series analysis. Its ability to balance precision across different
variables and effectively identify significant trends establishes it as the most
dependable model for this analysis.

Future research could extend the PIM-LSTM model to additional economic models,
such as DSGE or agent-based models, to evaluate its adaptability across different
macroeconomic models. Alternative architectures, like graph neural networks or
transformers, could also be explored to enhance forecasting accuracy. Improving
interpretability through causal inference and explainability methods would help
validate learned relationships against economic theories. Additional studies could
examine the model’s robustness under different economic conditions, including
financial crises and changes in policy. These studies may use statistical methods like
VAR or Bayesian estimation to create hybrid models. Improving training methods
with new loss functions and better optimization strategies could also boost
performance. Finally, extending PIM-LSTM to capture time-varying and nonlinear
economic dynamics would help address structural breaks and evolving relationships

in financial systems.
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APPENDIX A

TABLES FOR EXPERIMENT SETUP

Table A.1 Detailed data sources - quarterly and monthly data series

Variable Sector FRED code Complete series name

Gross value Corporate NCBGAVQ027S Nonfinancial Corporate Business; Gross Value Added,

added Transactions

Gross value Noncorporate | NNBGAVQO027S Nonfinancial Noncorporate Business; Gross Value

added Added, Transactions

Consumption Corporate BOGZ1FA1063 Nonfinancial Corporate Business; Consumption of Fixed

of fixed capital 00003Q Capital, Structures, Equipment, and Intellectual Property
Products, Including Equity REIT Residential Structures
(NIPA Basis), Transactions

Consumption Noncorporate | NNBCCFQO027S Nonfinancial Noncorporate Business; Consumption of

of fixed capital Fixed Capital, Structures, Equipment, and Intellectual
Property Products, Current Cost Basis, Transactions

Net taxes on Corporate NCBPISQ027S Nonfinancial Corporate Business; Taxes on Production

production and and Imports Less Subsidies, Payable, Transactions

imports

Net taxes on Noncorporate | NNBTPIQ027S Nonfinancial Noncorporate Business; Taxes on

production and Production and Imports Less Subsidies, Payable,

imports Transactions

Compensation Corporate NCBCEPQO027S Nonfinancial Corporate Business; Compensation of

of employees Employees Paid, Transactions

Compensation Noncorporate | NNBCEPQO027S Nonfinancial Noncorporate Business; Compensation of

of employees Employees Paid, Transactions

Debt securities | Corporate NCBDBIQ027S Nonfinancial Corporate Business; Debt Securities;
Liability, Level

Loans Corporate NCBLILQ027S Nonfinancial Corporate Business; Loans Including
Foreign Direct Investment Intercompany Debt; Liability,
Level

Loans Noncorporate | NNBTLBQO027S Nonfinancial Noncorporate Business; Loans Including
Foreign Direct Investment Intercompany Debt; Liability,
Level

Time and Corporate TSDABSNNCB Nonfinancial Corporate Business; Total Time and

saving deposits Savings Deposits; Asset, Level

Time and Noncorporate | TSDABSNNB Nonfinancial Noncorporate Business; Total Time and

saving deposits Savings Deposits; Asset, Level

Employment - Non agri LNU02032189 Employment Level - Nonagriculture, Private Industries

non agri Wage and Salary Workers

private sector

Unemployment | Non agri LNU03032229 Unemployment Level - Nonagriculture, Private Wage

- non agri and Salary Workers

private sector

Employment - Tot private USPRIV All Employees, Total Private

total private sector

sector

GDP deflator All economy | GDPDEF Gross Domestic Product: Implicit Price Deflator

Nonfinancial Corporate BOGZ1LM102010005Q | Nonfinancial Corporate Business; Nonfinancial Assets,

assets Market Value Levels

Nonfinancial Noncorporate | BOGZ1LM112010005Q | Nonfinancial Noncorporate Business; Nonfinancial

assets Assets, Market Value Levels

Inventories Corporate BOGZ1LM105020015Q | Nonfinancial Corporate Business; Inventories Excluding
IVA, Current Cost Basis, Market Value Levels

Inventories Noncorporate | BOGZ1LM115020005Q | Nonfinancial Noncorporate Business; Inventories,

Market Value Levels
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APPENDIX B
ARCHITECTURE OF PIM-LSTM MODEL
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Figure B.1 Architecture of PIM-LSTM Model for New Keynesian Model
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Figure B.2 Architecture of PIM-LSTM Model for DAGKM
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