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ABSTRACT

LEARNING CONTINUOUS GROUP SYMMETRIES FOR SIMPLIFYING
AND SOLVING DIFFERENTIAL EQUATIONS

Gürcan, İlker
Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ramazan Gökberk Cinbiş

March 2025, 144 pages

Symmetry groups play a fundamental role in understanding the behavior of mathe-

matical and physical systems governed by differential equations. This work presents

a novel framework for learning continuous, non-trivial group symmetries in the con-

text of Lie point transformations. The core idea of the proposed approach is to con-

struct the symmetry group G by learning its infinitesimal action on a relevant jet

space, given by the symmetry generators spanning its Lie algebra. Another critical

component of this approach is the construction of the exponential map, exp , which

allows for the generation of any group element g ∈ G from the learned g and is

implemented using invertible residual networks. In contrast to previous algebraic

or analytical methods typically implemented in symbolic libraries, our iterative ap-

proach discovers the representation of infinitesimal symmetries on a given jet space

through learning directly from input data of a given dynamic system. Moreover,

our involutivity conditions are decoupled from the involutivity of the contact system

describing the dynamic system. In our experiments, we validate the learned vector

fields forming g by demonstrating their ability to generalize to multiple solution do-

mains beyond the training domain. Notably, we show that a canonical vector field for
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the wave equation lies within the span of the learned g. Our framework has poten-

tial applications in discovering G-invariant coframes to simplify differential equation

systems that are solvable by neural architectures. Additionally, this study aims to in-

troduce the concept of continuous symmetry for analytic mathematical objects to the

machine learning community.

Keywords: Group symmetries, Cartan equivalence, Moving (co)frame, Differential

equations, Machine learning
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ÖZ

SÜREKLİ SİMETRİ GRUPLARININ DİFERANSİYEL DENKLEMLERİN
ÇÖZÜMÜ VE SADELEŞTİRİLMESİ AMACIYLA ÖĞRENİLMESİ

Gürcan, İlker
Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ramazan Gökberk Cinbiş

Mart 2025 , 144 sayfa

Simetri grupları, diferansiyel denklemlerle tanımlanan matematiksel ve fiziksel sis-

temlerin davranışını anlamada temel bir rol oynar. Bu çalışma, Lie nokta dönüşüm-

leri bağlamında önem arz eden sürekli grup simetrilerini öğrenmek için yeni bir çer-

çeve sunmaktadır. Önerilen yaklaşımın temel fikri, simetri grubu G’yi, Lie cebirini

oluşturan simetri üreteçlerinin ilgili jet uzayı üzerindeki sonsuz küçük etkisini öğre-

nerek inşa etmektir. Bu yaklaşımın bir diğer kritik bileşeni, öğrenilen g’den herhangi

bir g ∈ G grup elemanını üretmeyi sağlayan üstel haritanın (exp ) oluşturulmasıdır;

bu harita, terslenebilir artık ağlar kullanılarak gerçeklenmektedir. Geleneksel olarak

sembolik kütüphanelerde uygulanan cebirsel veya analitik yöntemlerin aksine, öneri-

len yinelemeli yöntem, verilen bir dinamik sistemin giriş verilerinden doğrudan öğ-

renme yoluyla, ilgili jet uzayı üzerindeki sonsuz küçük simetri üreteçlerinin bir temsi-

lini bulmaktadır. Ayrıca, öngörülen involütivite koşullarımız, dinamik sistemi tanım-

layan kontak sisteminin involütivitesinden ayrışmaktadır. Deneylerimizde, öğreni-

len vektör alanlarının g’yi oluşturduğunu doğruluyor ve eğitim alanının ötesindeki çö-

züm alanlarına genelleştirilebildiklerini gösteriyoruz. Özellikle, dalga denklemi için
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bir kanonik vektör alanının öğrenilen g’nin doğrusal uzayında bulunduğunu ortaya

koyuyoruz. Önerilen yöntem, diferansiyel denklem sistemlerinin çözülme sürecini

sadeleştirmek için ilgili G-değişmez eş-çerçevesini keşfetmeye olanak tanıyabilir ve

sinir ağlarıyla çözülebilir sistemlerin analizine katkı sağlayabilir. Ayrıca, bu çalışma,

sürekli simetri kavramını analitik matematiksel nesneler bağlamında makine öğren-

mesi topluluğuna tanıtmayı amaçlamaktadır.

Anahtar Kelimeler: Grup simetrileri, Cartan benzerliği, Hareketli (eş)çerçeveler, Di-

feransiyel denklemler, Makina öğrenme
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İlker Gürcan was financially supported by the Scientific and Technological Research
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CHAPTER 1

INTRODUCTION

With advancements in computational power and the extensive data collected from

dynamical systems, various computational methods have been developed to solve

differential equations (DEs), including finite element methods (FEMs) [2], finite dif-

ference methods (FDMs) [3], single-step methods, and multi-step methods. However,

these methods can quickly become computationally prohibitive, depending on factors

such as the linearity of the DEs, the dimensionality of the domain, or the smoothness

of the domain (see Section 11.6 in [4]). An important aspect of dynamical systems

is learning the intrinsic, continuous symmetries that govern them. Identifying these

group symmetries can lead to lower-dimensional problems [5], facilitate the transla-

tion of solutions between different basins within a given phase space [6], or enable

the approximation of unknown densities of specified datasets that are equivariant un-

der local group symmetries [7] and controlled by predefined dynamics. Moreover,

the intersection of numerical solutions of DEs and the discovery of continuous sym-

metries for dynamical systems is the application of group symmetries to DEs in both

theoretical and practical contexts [8].

We introduce the targeted problem in the following four subsections. First, we pro-

vide a concise definition and an example to illustrate how group symmetries can be

employed to aid in solving DEs. Second, we will distinguish between two types of

group symmetries: trivial and non-trivial (see Chapter 3.2.3 in [9]). Third, we shortly

describe the significance of effectiveness and transitivity of the group action (see Def-

initions 12 and 13 resp.) and of the involutivity of a given differential system (see

Section 3.5), both of which play an important role in the design of our framework.

Additionally, another component in defining our problem is the class of diffeomor-

1



phisms that represent the action of the symmetry group G. This research involves

learning about Lie point transformations, which is a subset of contact transforma-

tions (see Definition 22 and Chapter 4 in [10]), and will be deferred to Section 3.

Fourth, we add a short subsection to clarify issues regarding accuracy, scalability, and

applicability of our framework, in comparison to existing computational algebraic

methods. Finally, we will outline the structure of this paper before concluding the

section.

1.1 An Introduction to the Equivalence Problem

Par t icul ar  
Sol ut ion

Figure 1.1: Various solutions of ∆(1) in (1.1) under rotational symmetry. The graph

of other solutions are derived from the particular solution colored in light blue.

Most scientific phenomena can be modeled by DEs; thus, characterizing the solu-

tions of these DEs is crucial in science, engineering, and economics. In this context,

“characterizing solutions” is defined as follows:

Definition 1. Let u = f(x) be a solution for a given set of DEs, ∆(s)
(
x, u(s)

)
= 0,

where N ∋ s is the order of ∆(s) and u(s) represents all partial derivatives of u

w.r.t. x up to s. Suppose that Γf = {x, f(x)} be the graph of f . If there exists a

diffeomorphism ϕ : (x, u)→ (x̂, û); s.t. Γf̂ =
{
x̂, f̂(x̂)

}
is also the graph of another

solution for ∆(s), then f(x) is equivalent to f̂(x̂) w.r.t. ϕ and is denoted by Γf ∼=ϕ Γf̂ .

In other words, we seek an “appropriate” collection of transformations that map one

solution of ∆(s) to another within their domain of definition. This collection is re-

ferred to as a Lie group (see Definition 3). Although these definitions may seem ab-
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stract, their deeper meaning will become clear, once all required mathematical tools

are explained coherently in Section 3. To illustrate this concept, consider the follow-

ing simple, first-order ordinary differential equation (ODE) [11]. Let p = 1 and q = 1

represent the number of independent and dependent variables, respectively, for the jet

space J (1)(M) = X × U (1) (see Definition 14), with coordinates given by (x, u, ux),

where ux is partial derivative of u w.r.t. x and M = X × U . Then:

∆(1) (x, u, ux) = ux −
u3 + x2u− u− x
x3 + u2x+ u− x

= 0 (1.1)

defines a manifold Σ(1) ⊂ J (1)(M). Although it appears challenging to separate and

solve this ODE, recognizing that SO(2), rotation in x − u plane, is a symmetry for

∆(1) (see Figure 1.1), it simplifies the problem significantly. The previously difficult

equation now becomes:
dθ

dr
=

1

r(1− r2)
, (1.2)

where (θ, r) is polar coordinates on M . There are two important takeaways from

(1.2):

(i) The number of variables is reduced by one: (x, u, ux) → (θr, r), where θr =

dθ/dr.

(ii) The dependent variable θr is separated from the independent variable r.

These two concepts form the foundation for studying continuous group symmetries

to simplify and solve DEs. A parallel can be drawn between kernel methods in statis-

tical analysis and the process of learning group symmetries for DE systems, as both

approaches aim to represent the problem in a simpler space to mitigate the effects of

the curse of dimensionality [12]. We refer reader to Chapter 4, 6, and 7 in [8] for

further application of such group symmetries to variational problems, Hamiltonion

Systems, and evolution equations respectively.

1.2 Type of the Symmetry

As discussed at the beginning of this section, defining the type of symmetry we are

targeting is crucial, as it outlines the scope and purpose of our problem. First, we
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Figure 1.2: Non-trivial and trivial symmetry types generated by vector fields v̂|x and

ŵ|x, respectively.

explain what is meant by the “type” of a symmetry group G. However, a precise

mathematical definition will not be provided until Section 3.4, as it necessitates sev-

eral other mathematical tools as prerequisites. Fortunately, this intuitive explanation

should clarify the core concept for a wide range of audiences.

Definition 2. Let v̂|x ∈ X(M) be a vector field on the manifoldM . If the graph of any

solution u = f(x) is translated to the graph of a new solution û = f̂(x̂) under the

flow generated by v̂|x, then the one-parameter symmetry group associated with v̂|x
(see Definition 10) is of non-trivial type. Conversely, if this flow leaves Γf invariant,

then the symmetry is of trivial type. See Figure 1.2 for an illustration.

Non-trivial symmetries (see Definition 26) are associated with canonical coordinates

in which a given DE system becomes separable, as demonstrated in the example

in Section 1.1. Therefore, we can conclude that (θ, r, θr) represents the canonical

coordinate system for ∆(1) as presented in (1.1). Trivial symmetries are ineffective in

simplifying DE systems in regard to the two remarks listed at the end of Section 1.1.

On the other hand, non-trivial symmetries provide these canonical coordinates (see

Chapter 2 in [11] and “Equivalence and Trivial Symmetries” section in Chapter 5

in [8] for more information). Thus, the objective of this study is to identify such

non-trivial symmetries that also form a (local) Lie group.
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Figure 1.3: The orbits (circles centered at the origin) ofG = SO(2) are isomorphic to

each other inM = R2\{0} due to transitive group action when the action is restricted

to a particular orbit Oz=(x,u). = Ω {dθ, dr} is a coframe (see Remark 6) on M

1.3 Transitive and Effective Actions & Involutivity of Differential Systems

The concepts of effective and transitive group actions (see Definition 12 and Defi-

nition 13 resp.), along with the involutivity of exterior differential systems (see Sec-

tion 3.5), are pivotal in both determining a complete invariant coframe (see Section 5

in [13] and Chapter 8 in [10]) Ω on J (s)(M) w.r.t. a given equivalence ϕ and the inte-

grability of DE systems within their defined spaces (see Chapters 14 and 15 in [10],

as well as Chapter 4 in [14]). Although we do not introduce the notion of Cartan

equivalence, under a specified ϕ, we strongly encourage reader to go through the first

four Chapters and Example 4 in Chapter 5 in [15] as Cartan’s equivalence problem is

the root of any concept discussed in this study. Transitive and locally effective group

actions enable the uniform treatment of equivalent coframes, when they are restricted

to different integral submanifolds (see Definition 37). Specifically, each orbit of G,

induced by the equivalence ϕ, possesses the same maximal dimension, and these or-

bits are isomorphic to one another as manifolds: Oz1 ∼= Oz2, where z1 ̸= z2 ∈ M .

An illustration of a transitive group action is provided in Figure 1.3. Regarding the

involutivity of a given exterior differential ideal I (see Section 3.5), which ensures the

consistency of the vector space tangent to an integral submanifold N , it is instrumen-

tal in establishing the existence/unique of N . However, the existence/uniqueness of

N for non-simply-generated exterior differential systems (see Definition 35) neces-

5



sitates a more comprehensive analysis of such differential systems (refer to Cartan’s

involutivity test in Chapters 11 and 15 of [10]). Readers, familiar with the existence

and uniqueness theorems for ODEs (see Theorem 2.8.1 in [16]), may draw paral-

lels with the Frobenius’ or Cartan-Kähler theorem (see Theorem 14.1 & 15.7 in [10]

resp.). The transitivity of a group action also significantly impacts the involutivity of

a given coframe. When restricted to an orbit where G acts transitively, the structure

equations (see Chapter 3 in [15]) associated with a coframe Ω on M exhibit constant

essential torsion coefficients. These coefficients correspond to the terms of the form

θj ∧ θk in (15.26) of [10]. This transitivity simplifies the process of establishing the

involutivity of Ω, reducing it to verifying the involutivity of a rank-0 coframe (see

Theorem 14.26 in [10]), provided the integrability conditions defined by the Cartan-

Kähler theorem are satisfied.

In summary, this research assumes transitive, once restricted to a certain orbit of G,

and locally effective group actions with every orbit being locally transverse. If these

conditions are not met, the framework may fail to function properly, as elaborated

in Section 4. The transitivity condition is also crucial when selecting data points for

sample datasets (see Section 5 for further details).

1.4 Accuracy, Scalability, and Applicability

Algebraic methods, relying on symbolic manipulations, focus on obtaining precise,

pointwise solutions for symmetry generators by solving the determining equations

exactly (see the discussion in Section 2 for further details). In contrast, our data-

oriented framework employs neural networks to learn approximate solutions across

the entire domain, offering a global perspective. While algebraic methods provide ex-

act solutions or an analytic approximation in the vicinity of specific points[17], they

require re-computation of initial conditions and Taylor approximation steps for each

new point, potentially leading to inefficiencies in scenarios necessitating solutions

over extensive domains. Since their solutions are exact, closed-form mathematical

expressions, the accuracy comparison with the approach, we propose, is not reason-

able.
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Algebraic methods also face significant scalability challenges as the number of deter-

mining equations can explode with the number of independent/dependent variables

and the nonlinearity of the system. For example, even for relatively simple systems

like the heat equation in one dimension, there are already ten linear PDEs to solve

(see Example 2.41 in [8]). For the sake of illustration, if one more spatial dimension

was added to the linear heat equation, then it would have become:

ut = uxx + uyy. (1.3)

Assume that any symmetry generator for (1.3) is in the following form (see (3.18)):

v̂ = ξ̂(x, y, t, u)
∂

∂x
+ η̂(x, y, t, u)

∂

∂y
+ τ̂(x, y, t, u)

∂

∂t
+ ϕ̂(x, y, t, u)

∂

∂u
. (1.4)

Then, using the Matlab’s Symlink library[18], the following determining equations

are obtained:

τ̂u = ξ̂u = η̂u = 0,

ϕ̂uu = τ̂xu = τ̂yu = 0,

ξ̂xu + η̂yu = 0,

ϕxu − ξ̂xx − ξ̂yy + τ̂t − 2ξ̂x = 0,

ϕ̂yu − η̂xx − η̂yy + τ̂t − 2η̂y = 0,

ϕ̂tu − ξ̂tx − η̂ty + τ̂t − ξ̂x − η̂y = 0,

ϕ̂t − ϕ̂xx − ϕyy = 0,

τ̂x = τ̂y = 0,

τ̂t − 2ξ̂x = 0,

τ̂t − 2η̂y = 0.

(1.5)

These fifteen determining equations must be solved simultaneously to obtain the co-

efficient functions of the various symmetry generators v̂ in (1.4). As evident from

the comparison with the one-dimensional case, which requires solving only ten deter-

mining equations, the complexity of the system grows significantly with an increas-

ing number of independent variables. This highlights the rapid escalation in com-

putational difficulty as the dimensionality of the base manifold increases. For more

complex systems, the number of determining equations can reach the order of hun-

dreds or even thousands, rendering algebraic approaches computationally intractable.
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In contrast, our framework exhibits an approximately linear growth in the number

of learnable parameters with respect to the number of independent and dependent

variables, i.e., the dimension of the base manifold M . Furthermore, the presence

of non-linearities in the DE system does not alter the fundamental structure of our

method; at most, it may lead to a slight increase in optimization time.

Regarding the applicability of algebraic approaches, these methods rely on the avail-

ability of a closed-form system of determining equations expressed in terms of dif-

ferential polynomials of the coefficient functions. In the absence of such a system,

algebraic methods fail entirely. By contrast, our data-driven approach does not re-

quire explicit knowledge of the determining equations and remains applicable even

when the underlying system is non-polynomial, partially unknown, or highly com-

plex. As discussed in Sections 2 and 6, an example of this applicability can be seen in

Neural-ODE-based architectures [19], which can learn the dynamics of a system in its

phase space from observed data. Since such learned dynamics are first-order ODEs

expressed in terms of phase-space variables and the time variable t, the output of a

Neural-ODE model can serve as an input to our framework for symmetry discovery.

This, in turn, enables the construction of an involutive G-coframe (see Example 4.12

in [13] for constructing a G-coframe, provided that the symmetry group G is known),

ultimately facilitating the simplification of the ODE system before attempting to solve

it. Reformulating the system in this manner not only enhances the accuracy of the so-

lution but also reduces the computational complexity associated with its numerical

integration.

1.5 Structure of the Paper

The remainder of this paper is organized as follows: Section 2 presents a comprehen-

sive literature review; Section 3 discusses the mathematical foundations; Section 4

outlines the methodology we developed; Section 5 details the experimental results;

and Section 6 offers concluding remarks.

In Section 2, we begin by examining methods that adopt an algebraic approach, not-

ing that our framework in Section 4 is analytical due to the intrinsic nature of neural
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networks. The section then covers significant advancements in machine learning re-

lated to modeling and solving differential equations (DEs) and concludes with recent

studies leveraging group symmetries to improve the quality of solutions for DE sys-

tems.

Section 3 provides the essential mathematical components required to formulate our

problem and establish the necessary notation. Readers familiar with applying group

symmetries to DE systems may skim this section, focusing on the notation and as-

sumptions (typically located toward the end of each subsection) used throughout this

work. The final two sections of this chapter are dedicated to the prospective con-

tinuation of the research presented in this thesis and are essential for ensuring the

completeness of this study. The notation introduced here will also be used in fu-

ture relevant studies. In summary, this chapter serves as a concise reference for

fundamental concepts, which the reader may revisit as needed throughout the paper.

Additionally, it includes several remarks to clarify potential ambiguities arising from

varied terminologies across sources, a challenge the authors have already encoun-

tered.

Section 4 describes our contributions to continuous symmetry learning. It begins by

modeling the Lie algebra (see Definition 7). The second subsection discusses the

implementation of involutivity for the vector field system (see Definition 39) V , that

is generated by the action of non-trivial symmetry generators (see Definition 26) for

the DE system of interest. In the final subsection, we address how to construct any

group action from the learned infinitesimal group action that is associated with g.

Section 5 presents the experimental results of the developed framework. It begins by

detailing the input data, then demonstrates how the generated dataset validates the

learning process against a DE system with known non-trivial group symmetries, as

well as assessing the generalization of learned symmetries across distinct domains.

In Section 6, we summarize our contributions to symmetry learning using machine

learning tools and outline future directions. The scope of the current study is restricted

to geometric subgroups of symmetries for DE systems under fundamental involutiv-

ity conditions. We provide a sequential roadmap for future research based on these

findings. Moreover, we include various advantages of the proposed framework over
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existing computational algebraic and analytical approaches.
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CHAPTER 2

LITERATURE REVIEW

The development of symbolic computation libraries such as MAPLE, REDUCE, and

Mathematica in the 1980s led to the creation of various iterative, algebraic algo-

rithms. These algorithms derive the determining equations by applying the infinites-

imal symmetry condition specified in (3.35). The resulting system is an overdeter-

mined, linear, and homogeneous system formulated within the R-module of differ-

ential operators, DK(R)[ξ,φ] (see [20]). Here, R represents a differential ring of

polynomials in jet space coordinates, defined over the field K and closed under par-

tial differentiation with respect to these coordinates (see Section 3.2). The variables

(ξ,φ) correspond to the component functions of the symmetry generators (see Sec-

tion 3.1), which act as indeterminates in the module DK(R)[ξ,φ]. The system is

then transformed into a canonical (standard) form, which is the involutive comple-

tion of a reduced form. The algorithm for achieving this standard form comprises

two main steps: reducing the system to a simpler form and completing the reduced

form by adding integrability conditions to achieve involutivity (as implemented in

the AutoReduce and CompleteSystem algorithms, respectively, in [21]). Reid et

al. further enhanced these methods in [17] by developing techniques that automat-

ically determine the initial conditions needed to obtain a Taylor approximation of

the solution to the determining equations, in addition to implementing the standard

form algorithm. These algorithms for obtaining a closed-form or Taylor approxima-

tion of (ξ,φ), the component functions of symmetry generators, trace their roots to

the pioneering work of Maurice Janet in the early 20th century, as summarized in

[22]. Janet’s approach establishes a profound connection between monomials in the

polynomial ring K[x1, . . . , xn, . . . , uα
xIk
, . . . ] and elements of the ring of polynomial

differential operators D(∂x1 , . . . , ∂xn , . . . , ∂uα
xIk
, . . . ), which act on the functions de-
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fined in a given jet space, where Ik is a multi-index into independent variables of order

k (see Section 4 in [22]). This parallelism forms the basis for treating determining

equations algebraically, leveraging techniques like reduction to a standard form and

systematic elimination to solve the overdetermined linear system effectively. Unlike

the approach in this study, which learns the non-trivial symmetry generators, that are

intrinsic to a given input dataset governed by a DE system; those algebraic methods

do not differentiate between trivial and non-trivial symmetries (see Definition 26).

For a comprehensive theoretical and computational background on the modern alge-

braic approach to solving determining equations, we refer the reader to the textbook

“Involution: The Formal Theory of Differential Equations and Its Applications in

Computer Algebra” by Werner M. Seiler [23]. In addition to its relevance for deter-

mining equations of DE systems, this book serves as an excellent resource for learning

computational algebra methods applicable to solving various types of DE systems.

Another collection of methods, which bears a resemblance to our framework (though

still an algebraic approach), is based on contact systems (see Definition 38) and the

Cartan-Kähler theorem (see Theorem 15.7 in [10]). Hartley et al. developed such

an algorithm in [24] by converting a given system of DEs into a contact system and

constructing a chain of regular integral submanifolds (see Definition 37) by ensuring

the involutivity condition as dictated by Frobenius’ theorem (see Theorem 5), at each

step of extending the chain. However, this approach may fail in certain pathologi-

cal cases where the DE system is not involutive (see the discussion towards the end

of Chapter 2 in [24]). To address such cases, they improved their method for non-

involutive systems in [25]. It is important to note that the concept of “involutivity” in

this type of algorithm is distinct from the involutivity introduced by Janet et al. [22]

for the previously discussed algebraic algorithms. In essence, involutivity in the con-

tact system is a geometric property ensuring integrability of the differential structure,

while involutivity in Janet’s standard form ensures that the determining equations are

algebraically consistent and computationally complete. The studies, in this category,

convert a given DE system to an exterior differential system (see Definition 36) and

construct a chain of integral elements, that are tangent to integral submanifolds. How-

ever, our research focuses on the complementary integral submanifold, which is the

foliation of the flow generated by non-trivial, contact preserving (see Definitions 26
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and 22) symmetry generators for the DE system of interest. For a comprehensive

survey of algorithms developed in symbolic algebra systems, the reader is referred to

Chapter 13 in [26].

Emerging methods for solving DEs have become increasingly data-driven. Of these,

three approaches have garnered significant attention: (i) Physics-Informed Neural

Networks (PINNs) [27], (ii) Koopman Operator Theory-based models [28], & (iii) Neu-

ral ODE-like frameworks [19]. PINNs seek to approximate a solution ũθ to the

equation ∆(s) = 0, where θ represents a set of parameters learned to approximate

ũθ. PINNs exploit the universal approximation property of neural networks (NNs)

[29] and incorporate initial/boundary conditions as constraints. In contrast, Koopman

Operator-based methods primarily address nonlinear dynamics within a given phase

space [30]. Originally introduced by Bernard Koopman in 1931 [28], this method ex-

perienced a resurgence following an in-depth analysis of its spectral properties [31].

Since then, it has drawn considerable interest from the machine learning community.

Although a nonlinear system can typically only be linearly approximated in a local

neighborhood, Koopman theory posits that a transformed phase space can be identi-

fied in which the dynamics of interest become linear. Finally, Neural ODE-like meth-

ods, such as the one described in [19], aim to learn continuous dynamics, in contrast

to residual networks, which are designed to learn discrete-time dynamics. A recent

study further refines this approach by learning the manifolds on which the dynam-

ics occur through constructing the underlying atlas [32]. This approach is based on

the premise that a nonlinear manifold lacks a global parameterization and therefore

requires more than one coordinate chart. Consequently, nonlinear dynamics, which

cannot be accurately captured by linear manifold learning methods, are reconstructed

from data with high precision.

The study of continuous groups and their numerical applications has traditionally

been confined to the realms of mathematics and the physical sciences. Historically,

the engineering community has exhibited limited interest in continuous symmetries.

However, there has been a recent shift toward recognizing their relevance in address-

ing engineering problems. This interest, in particular, was sparked by Mallat’s work

in [5], which introduced a theoretical framework explaining how convolutional neural

networks (CNNs) learn group symmetries through their spectral properties. As for the
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realm of DE systems, most existing studies focus on leveraging known group sym-

metries of a given DE system to improve problem-solving frameworks. For instance,

Mialon et al. [33] demonstrated that enforcing symmetry constraints enhances the

quality of representations for objects in computer vision tasks. Similarly, Akhoundi et

al. [34] showed that predefined group symmetries improve the accuracy of solutions

computed via PINNs. In another notable contribution, Finzi et al. [35] developed neu-

ral network layers that are equivariant under predefined general linear groups, such as

SO(2) and SO(3) [1], and applied this framework to dynamical systems. Of partic-

ular relevance to our work is the research by Otto et al. [36], which extends beyond

enforcing known symmetries to also extracting novel symmetries inherent in a given

dynamical system dataset. However, in contrast to the present study, their architecture

is restricted to general linear groups acting on vector bundles. Despite this limitation,

their framework is a valuable tool for learning equivariant Koopman operators acting

on linearized subspaces.
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CHAPTER 3

MATHEMATICAL FOUNDATIONS

In this chapter, we present the essential mathematical background required to for-

mulate our target problem in Sections 4 and 5. While this chapter will consolidate

relevant information, it will not merely reiterate what is already available in the lit-

erature. Consequently, we will frequently direct the reader to pertinent resources for

more comprehensive details. Additionally, any propositions, theorems, or lemmas

requiring proof will have their proofs provided in the Appendix A, ensuring that the

main discussion remains uncluttered.

We begin by introducing the necessary notations, definitions, and mathematical tools

from the fields of differential geometry, group theory, modern algebra, calculus, and

functional analysis. Next, we provide a precise definition of Cartan’s equivalence

problem, as our framework ultimately aims to address a subproblem within this con-

text. Finally, we discuss the moving coframes method developed by Olver et al.

through a series of articles. Unlike Cartan’s framework, which is an algebraic frame-

work, moving coframes is an analytical tool.

Remark 1 (Notational Convention). In this chapter, we establish the notational con-

ventions that will be consistently applied throughout this paper, including in the pre-

ceding two chapters. Any terminology or notation introduced earlier in the text may

not be redefined later, and all subsequent references will assume the initial definition.

3.1 Lie Groups

In this subsection, we present the continuous group terminology that will be utilized

throughout this study. The notation, definitions, and related concepts closely follow
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Figure 3.1: An illustration of various concepts discussed in Section 3.1. A sketch of

the general linear group GL(r,R) . The coordinates gij belong to the space of r × r
matrices denoted by Mr(R). GL(r,R) represents the continuous set of invertible

matrices, and hence GL(r,R) ⊂ Mr(R). The exponential map exp in (3.10) and the

logarithm map ln facilitate the transition between the Lie algebra g (see Definition 7)

and GL(r,R) (refer to Chapter 2.3 in [1] for more details on the ln map).

those provided in [10], [1], and [37]. Broadly defined, a Lie group is a group that has

continuous group operations. Formally:

Definition 3. A Lie group G is a smooth manifold equipped with continuous group

multiplication, (g, h) → g · h , and inversion, g → g−1, operations that satisfy the

group axioms, specifically:

(i) the existence of a unique identity element e ∈ G ,

(ii) the associativity of group multiplication, (g · h) · k = g · (h · k), and

(iii) the existence of an inverse element g−1 ∈ G for every g ∈ G.

For readers unfamiliar with continuous group theory, a Lie group can be thought

of as a topological set of invertible, continuous transformations, closed under the

composition of those transformations. Additionally, G can act on objects other than

itself via its representation on the space where those objects are defined.

Definition 4. The action of a Lie group on a smooth manifold M is defined by a

diffeomorphism Ψ : G×M →M and satisfies the following:

Ψ(e, x) = x, and

Ψ(g · h, x) = Ψ(g,Ψ(h, x)),
(3.1)
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where x ∈M and g, h ∈ G.

For brevity, we will also denote the group action by Ψ(g, x) ≡ g ·x. It is common for

Lie group multiplication and/or its action onM to be undefined globally (see Example

1.27/(c) in [8]). Therefore, this research will focus on local group actions given by

g ∈ G, such that g is sufficiently close to e (in a topological sense). We define the

local Lie group action in the vicinity of (e, x) ∈ G ×M as Gx := {g | (g, x) ∈ U },
where {e} ×M ⊂ U ⊂ G ×M is an open set. This locality definition induces an

open submanifold Mg := {x | (g, x) ∈ U }.

Every Lie group is associated with a Lie algebra, denoted by g, which is isomorphic

to the tangent space at the identity element, specifically TeG. Before providing a

rigorous definition, it is necessary to define two types of group multiplication and the

concept of a vector field on any tangent bundle, such as TG.

Definition 5. Left multiplication by g ∈ G, denoted by Lg : G → G, is a diffeomor-

phism on G and is given by:

Lg(h) := g · h, ,∀, h ∈ G. (3.2)

Similarly, right multiplication, denoted by Rg(h), is defined as:

Rg(h) := h · g−1. (3.3)

The inverse is required to satisfy the group action composition law in (3.1) (i.e., the

second equation).

We denote a vector field on any manifold M by v ∈ X(M), where X(M) ⊂ TM

represents the set of all vector fields onM . To specify the value of v at a point x ∈M ,

we use the notation v|x. Thus, we treat any vector field as a section on the tangent

bundle TM (see Chapter 7 in [38]). The final component is the right invariance of a

given vector field v on G:

Definition 6. Let Rg∗ : ThG → Th·gG denote the pushforward for Rg (see Vec-

tor Fields and Smooth Maps in Chapter 8 in [39] for a detailed description of the

pushforward map). Then, a right invariant vector field v|h on G is one that remains

invariant under right translations:

Rg∗(v|h) = v|h·g. (3.4)
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In other words, the right action of G on v does not translate v to a new vector field

on G; but only changes its point of evaluation.

In light of these definitions:

Definition 7. A Lie algebra g is a vector space spanned by right-invariant vector

fields {v1, . . . , vr} on the Lie groupG. It is equipped with an anti-symmetric, bilinear

multiplication operation called the Lie bracket, denoted as follows:

[vi, , vj] = − [vj, , vi] =
∑
k

ckijvk ∈ g, (3.5)

where r is the dimension of G, denoted by dim(G) = r and ckij are constant, called

structure constants for G. The operation [ , ] does not satisfy an associativity law;

however, it adheres to the Jacobi identity:

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0. (3.6)

Moreover, g is isomorphic to TeG (see Proposition 29.1.11 in [37]).

The right invariance of g and its isomorphism to TeG will be pivotal in Section 4, as

learning g is effectively equivalent to learning G. This study will focus on the former.

Remark 2 (The Notation for Vector Fields). From this point onward, we distinguish

between vector fields on G and those on the manifold M on which G acts. Thus, we

denote vector fields in X(G) ⊂ TG by v and those in X(M) ⊂ TM by v̂.

Any v ∈ X(G) has a corresponding representation v̂ on M . To describe the connec-

tion between them as well as the one between g and G, we introduce the exponential

map, a crucial construct in Lie group theory. First, we define how v acts on any other

vector field w ∈ TeG:

Definition 8. Let the component functions of v|e ∈ TeG be given by:

v|e =
r∑
j=1

ζj(e)
∂

∂gj
, (3.7)

where {∂/∂gj}j denotes the basis tangent vectors on TG, which coincide with coordi-

nate flows onG (see Sections 1.3 and 1.4 in [8]). Similarly, letw =
∑r

j=1 ξ
j(e)∂/∂gj ∈e
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G. Then, the action of v on w at e is as follows:

v(w)|e =
r∑

k=1

{
r∑
j=1

ζj
∂ξk

∂gj

}
∣∣
e

∂

∂gk
. (3.8)

This may be considered as the directional derivative of w in the direction of v at the

point e ∈ G. Furthermore, the Lie bracket defined in Definition 7 becomes:

[vi, vj] |e = vi(vj)|e − vj(vi)|e, (3.9)

which measures the commutativity of two vector fields.

It is worth noting that, in some references, a vector field might be regarded as a

“derivation” (cf. Definition 12.45 in [40] for more details). On the other hand, the

Lie bracket in (3.9) is essential for defining various tools required in this research.

However, it also carries geometric significance, and we encourage readers to consult

Figure 5 and Theorem 1.33 in [8]. We now introduce the first important application

of a vector field:

Definition 9. The exponential map exp : TeG→ G is given by:

exp (ϵv|e) := e+ ϵv|e +
ϵ2

2!
v (v) |e + . . . =

∞∑
i=0

ϵi

i!
vi|e, (3.10)

where ϵ ∈ R, and vi|e denotes the action of v on itself i times.

One may interpret exp as constructing a group element in the vicinity of e. This tool

will be implemented by invertible residual network (iResNET) [41] to generate local

group transformations from any v ∈ g in Section 4.4. What makes exp exceptionally

significant is its ability to construct any g ∈ G, provided that e and g are path-

connected (see Section 1.3.2 in [1]), by utilizing a diffeomorphism known as the

normal coordinate map (see (1.40) in [8]):

Theorem 1. Let g = {v1, . . . , vr} for G with dim(G) = r. Assuming G is connected,

any gϵ ∈ G sufficiently close to e ∈ G can be written as:

gϵ = Φ(v) = exp
(
ϵ1v1

)
· . . . · exp (ϵrvr), (3.11)

where v =
∑

j ϵ
jvj , ϵ = [ϵ1, . . . , ϵr]

t ∈ R, and the map Φ : g → G is called the

normal coordinate map. Furthermore, any g ∈ G can be expressed as:

g = exp
(
ϵi1vi1

)
· . . . · exp

(
ϵikvik

)
, (3.12)
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where k ∈ N is arbitrarily large and 1 ≤ ij ≤ r.

We provide a proof of Theorem 1 in Appendix A.1. For an illustration of the termi-

nology discussed thus far, see Figure 3.1. The logarithm map, ln, for GL(r,R), is not

easily defined for a Lie group other than GL(r,R). However, the reader should keep

in mind Ado’s Theorem (see Theorem in 3.17.7 in [42]), particularly when consider-

ing any finite dimensional G locally and and any of its element, in the vicinity of e,

given by Φ map. Fortunately, ln is not required for implementation in this study.

Before introducing Definition 8, our aim in this extensive introduction was to estab-

lish a connection between the vector field v on G and its representation v̂ on M . With

the necessary groundwork laid, we can now state this relationship explicitly:

Definition 10. Let v ∈ g and f : M → R be a smooth, scalar-valued function. The

action of v on f is given by:

v̂(f) =
d

dϵ
f (exp (ϵv) · x)

∣∣
ϵ=0
, (3.13)

where x ∈M , ϵ ∈ R, and the group action on x is defined by (3.1).

Equation (3.13) describes the action of any vector field on a scalar function on M .

This concept can be extended by replacing f ∈ C∞ (M) with any other analytical

object on M , thereby defining the action of v̂ ∈ TM on that object. Using (3.13), the

actions on M induced by mathematical constructs in (3.8), (3.9), and (3.10) could be

found out.

Remark 3 (Representation Theory is Concerned with Linear Actions of G). Linear

actions of a Lie group G on a vector space V play a fundamental role in various

applications within physics and engineering. As a result, mathematicians typically

use the term “representation” to refer to the action of G on V by means of a set of

invertible matrices. This perspective constitutes a significant branch of group theory,

commonly known as representation theory [1]. In contrast, the term “representation”

in this thesis is employed in a broader sense: it encompasses both linear and non-

linear actions of G on a manifold M , where M is not necessarily a vector space. As

such, our usage extends beyond the classical, linear context of representation theory.
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Before concluding this subsection, we need to define various types of group actions,

as these will be referenced in the subsequent sections. For a concise explanation, see

Chapter 2 in [13]. Here, we present only the definitions essential for this research.

Definition 11. A group action Ψ : G ×M → M is called free if Ψ(g, x) = x holds

only for g = e ∈ G and ∀x ∈ M . In other words, all stabilizers (isotropy groups)

are trivial: Sx = {e}, ∀x ∈M .

However, a milder condition can be imposed on G:

Definition 12. Let Sx = {g ∈ G | g · x = x} be the stabilizer at x ∈ M . The group

G is said to act effectively if:

S :=
⋂
x∈M

Sx = {e} . (3.14)

While a free action is inherently effective, the converse is not necessarily true. For

example, consider G ⊂ SO(3), representing rotations about the z-axis and let M =

S2 (the two-dimensional sphere embedded in R3). Now, if {e} ̸= SM ⊂ G is the

global isotropy group, then G can be replaced with G⧸SM to obtain an effective

group action on M without losing any pertinent information. Note that this quotient

group is well-defined because SM is a normal subgroup of G (see Theorem 2.12 in

[10]). Since our focus is on locally defined groups and actions, we are primarily

interested in groups with locally effective action. In the context of this study, we

replace global G and SM with their local counterparts. The significance of local

effectiveness will become clear in Section 4, but our primary interest in effective

group action lies in the following theorem (cf. Theorem 2.62 in [10]):

Theorem 2. Let {v1, . . . , vr} = g for a group G acting locally effectively on M .

Then, g ∼= V , where V is an involutive vector field system (see Definition 39) on M .

Hence, the set {v̂1, . . . , v̂r}, defined by (3.13), forms a basis in TM .

Therefore, any G, that acts locally effectively, avoids the complications arising from

linear dependencies within the set {v̂1, . . . , v̂r} (see Definition 27). The final class of

group actions that we will consider is known as “transitive”:

Definition 13. A group action Ψ : G×M →M is said to be transitive if it possesses

a single orbit; that is, for any x, y ∈M , ∃ g ∈ G such that g · x = y.
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Transitivity is a crucial property for defining homogeneous spaces, which are con-

structed using the orbits of an isotropy subgroup H ⩽ G on M , with M ∼= G⧸H by

selecting a base point x0 ∈M (see Section 4 in Chapter II of [43]). In addition to that,

transitivity will be instrumental in Section 4.2, where it will aid in simplifying the in-

volutivity conditions. It is important to note that G⧸H is not necessarily a quotient

group, as H is not required to be a normal subgroup. Additionally, readers should

note that a free action does not necessarily imply transitivity. For instance, consider

the action of the group S1 on S3 ⊂ C2, defined by eiθ · (z1, z2) = (eiθz1, e
iθz2). As

discussed in [44], this action is free but not transitive, as the group S1 preserves the

fibration structure of S3 (Hopf fibration) and does not connect every pair of points on

S3. Therefore, both locally effective and transitive (once G’s action is restricted to a

particular orbit Ox) properties must be satisfied in the context of this research.

3.2 Jet Space and the Prolongation

The purpose of this subsection is to familiarize the reader with the subspace Σ(s),

on which the symmetry group G acts and within which the DE system of interest is

defined. We begin by defining the jet space J (s)(M) over M (see Chapter 2 in [8]

for a brief introduction and Sections 2.1 and 2.2 in [23] for a thorough treatment), as

Σ(s) is a subspace of J (s)(M). Following this, we discuss the method of prolonga-

tion for multi-valued functions and vector fields on M . This process extends objects

represented in M to objects in J (s)(M); while preserving the contact condition (see

Proposition 1).

In simple terms, the jet space J (s)(M) is constructed by augmenting the graph of

a multi-valued function with its partial derivatives, up to a certain order s ∈ N, as

coordinates.

Definition 14. Let u = (u1, . . . , uα, . . . , uq) ∈ U and x = (x1, . . . , xi, . . . , xp) ∈
X represent the sets of dependent and independent coordinates, respectively, such

that M = X × U , where p, q ∈ N. Let uα
xi1 ...xik

denote the partial derivatives of uα

with respect to xi1 , . . . , xik , where k = 1, . . . , s represents the order of differentiation.

Then, J (s)(M) = X × U (s) is called the jet space of order s defined over M , where
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U (s) = U × U1 × . . .× U s, Uk =
{
uα
xIk

}α
Ik

is the subspace spanned by the kth order

partial derivatives of u, and Ik = (i1 . . . ik) is the multi-index of order k into x, s.t.

i1 ≤ . . . ≤ ik.

Remark 4 (Geometric vs Coordinate View of Jet Space). The jet space definition in

Definition 14 is the coordinate-based framework. However, in the geometric frame-

work of exterior differential systems (see Section 3.5), the partial derivatives, uxIk ,

are replaced by independent jet variables (e.g., p, q, r) to treat the jet space as a fiber

bundle over the base manifold M = X × U . The two frameworks are equivalent

on integral submanifolds of the jet space (see Definition 37), as the geometric per-

spective enforces the derivative relationships only when restricted to these submani-

folds. Specifically, the pullback of the contact forms (see Definition 20) to an integral

submanifold ensures that the geometric constraints align with the partial derivative

relations, e.g. pαi = ∂uα/∂xi. This equivalence underscores the consistency of the two

definitions while allowing the geometric framework to encode additional structural

properties of the system.

We will always assume that all partial derivatives exist (see Theorem 5.13 in [40])

wherever they are defined in M and commute. Thus:

∂

∂xi
∂

∂xj
=

∂

∂xj
∂

∂xi
, (3.15)

where i ̸= j and i, j = 1, . . . , p. Consequently, we remove all redundant dimensions

from J (s)(M) (refer to Section 2.3 in [8] for a discussion on its dimension). With the

definition of J (s)(M) established, we can introduce the manifold induced by a given

DE system:

Definition 15. Let ∆(s) : J (s)(M) → Rn be a map such that ∆(s)(x,u(s)) = 0

represents a DE system of order s ∈ N defined in J (s)(M) and is of maximal rank (see

Theorem 1.13 [8]). Then, ∆(s) = 0 defines a regular submanifold Σ(s) ⊂ J (s)(M) of

dimension m− n, where m = dim
(
J (s)(M)

)
and n ≤ m.

In the context of Definition 15, the geometric view of jet space is utilized and hence,

all partial derivatives of order 0 ≤ k ≤ s are considered to be independent variables

on J (s)(M). For the example we presented in Section 1.1, J (1)(M) = X × U (1) with
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X = {x}, U = {u}, and m = 3. Since n = 1, dim(Σ(1)) = 2 under the assumption

of regularity.

Suppose that u = f(x) is a solution to a given ∆(s) = 0, has no vertical tangent, and

therefore, by the Implicit Function Theorem (see Theorem 10.26 in [40]), the graph

Γf = {x,f(x)} defines a submanifold Sf ⊂ M . We must then establish a method

to

(i) prolong Γf to Γ
(s)
f such that S(s)

f ⊂ Σ(s), and

(ii) define x→ Γ
(s)
f as a section in the jet bundle J (s)(M)→ X .

Remark 5 (J (s)(M)→ X as a Special Jet Bundle). Note the second condition above.

The bundle is not standard jet bundle J (s)(M) → M , as pr(s)(f) is a section over

J (s)(M) provided that f only depends on independent variables x.

Before addressing these two objectives, we should define the prolongation operator

pr(s) and its behavior on a smooth function:

Definition 16. Let f ∈ C∞(X ) be scalar-valued. Then, its sth prolongation is given

by:

pr(s)(f) [x] =

(
f(x),

∂f

∂xi1
(x),

∂2f

∂xi1∂xi2
(x), . . . ,

∂sf

∂xIs
(x)

)
, (3.16)

where Is is the multi-index of order s (see Definition 14), ij ∈ (1, . . . , p), and j =

1, . . . , s. If f ∈ C∞(X ) (i.e., a multi-valued function from X to U with dim(U) = q),

then its prolongation is simply applying (3.16) to each fα(x) for α = 1, . . . , q.

Now, to satisfy the second condition, (ii), simply let Γ(s)
f =

{
x, pr(s)(f) [x]

}
. As

for the first condition, we will address it after stating the symmetry condition for DE

systems in Section 3.4.

As a section of the tangent bundle TM → M , the vector field v̂ defined in Defini-

tion 10 can be naturally prolonged to the jet tangent bundle TJ (s)(M)→ J (s)(M)→
M . To compactly define the prolongation of v̂, we first introduce the total derivative

operator Di on M :

Di =
∂

∂xi
+
∑
α

∑
I

uαxIxi
∂

∂uαI
, (3.17)
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where the order of the multi-index I , denoted by |I|, is arbitrarily large. However, we

can safely assume that |I| ≤ s, corresponding to the maximum order s of the system

under consideration. The repeated application of the total derivative operator Di is

denoted byDIk = Dik . . . Di1 , where Ik is a multi-index of order k. Before presenting

the formula for the prolongation of a vector field, we introduce a key quantity that

encodes significant information about the vector field. This quantity will be utilized

in various contexts throughout this research.

Definition 17. Let the component functions of v̂ ∈ TM for M = X × U , which is

induced by (3.13), be defined as:

v̂|z =
p∑
i=1

ξ̂i(z)
∂

∂xi
+

q∑
α=1

φ̂α(z)
∂

∂uα
, (3.18)

where z = (x,u) ∈M . Then, the characteristic of v̂ (see (2.48) in [8]) is given by

Qα(z(1)) = φ̂α(z)−
p∑
i=1

uαxi(x)ξ̂
i(z), (3.19)

where z(1) = (x,u(1)) and α = 1, . . . , q.

Theorem 3. Let the component functions and the characteristic of v̂ be as in (3.7)

and (3.19) respectively. Then, the sth prolongation of v̂ is given by:

pr(s)(v̂)|z(s) = v̂(s)|z(s) =
p∑
i=1

ξ̂i(z)
∂

∂xi
+

q∑
α=1

∑
I

φ̂αI (z
(|I|))

∂

∂uαI
, (3.20)

where 0 ≤ |I| ≤ s is the order of the multi-index into x (see Definition 14), and

φ̂αI (z
(|I|)) = DIQ

α(z(1)) +

p∑
i=1

uαxIxi(x)ξ̂
i(z), (3.21)

with DI = Dik . . . Di1 , k = 1, . . . , s, and ij ∈ (1, . . . , p).

The proof of Theorem 3 can be found in Theorem 2.36 of [8]. Note that v̂(s)|z(s) ∈
TJ (s)(M), and (3.17) suggests that Di is also a vector field. Consequently, the inter-

pretation of v̂ in Definition 8 as a directional derivative is consistent with the inter-

pretation of Di is a vector field. However, observe that Di in (3.17) is not defined in

TJ (s)(M) as it has coefficients in J (s+1)(M). It is given in a special tangent space

Xloc
(
(πs+1

s )∗
(
TJ (s)(M)

))
, where (πs+1

s )∗ is the pullback of the canonical projec-

tion in (3.22) and Xloc(·) denotes the local sections (i.e. vector fields) of the specified

tangent bundle (see Remark 2.1.8 in [23]).
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We highlight the following canonical projection for a given jet space, which estab-

lishes a connection between analytical objects, such as the prolonged vector field in

Theorem 3 and the prolonged scalar function in Definition 16, of different jet orders.

Specifically, this projection maps jet spaces of higher orders to those of lower orders,

as described in (2.20) of [8]:

πts(z
(t)) = z(s), (3.22)

where z(t) ∈ J (t)(M) and z(s) ∈ J (s)(M) for t > s ≥ 0. This projection can also

be applied when z(t) represents either a symmetry generator, pr(t)(v̂) ∈ TJ (t)(M), or

a scalar function, pr(t)(f) ∈ C∞(J (t)(M)). In computational differential algebra, a

similar projection is also employed to project the prolonged DE system ∆(s+1) = 0,

represented by Σ(s+1). The resulting space Σ
(s+1)
(s)

:= πs+1
s

(
Σ(s+1)

)
incorporates any

newly generated integrability conditions of order s. For further details, we refer the

reader to [23], particularly Example 2.3.9.

3.3 Contact Forms and Transformations

Thus far, we have discussed vector fields on various tangent spaces. In this subsection,

we introduce one of the core objects relevant to the equivalence of solutions of a given

DE system ∆(s) = 0, which are dual to p-vector fields in the alternating graded-

algebra on TM . These objects are referred to, in the differential geometry literature,

as (differential) p-forms, defined in the alternating graded-algebra on the cotangent

bundle T ∗M . They are particularly essential for describing Cartan’s equivalence [15]

and the method of moving coframes [45], especially when p = 1, 2. The study of p-

forms is a rich area of mathematics, and we direct the reader to Sections 26.2 and 26.3

for their algebraic properties, and to Section 28.5 for their definition and application

on smooth manifolds, as detailed in [37]. In the final part of this subsection, our

primary focus will be on contact forms and their prolongation to higher-order jet

cotangent bundles. These forms are crucial for constructing the invariant coframe

in case of DE system and for determining whether a given section, X → J (s)(M),

results from the prolongation of a function f(x), a topic that we shall explore shortly.

Remark 6 (Frames and Coframes). We do not define the “frame” and “coframe”

notions from differential geometry; but one may safely assume that they consist of
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(smooth) ordered basis and dual basis for respective vector bundles (see Chapter 8

and 10 in [39]).

We begin by introducing a set of notations. We denote the cotangent bundle over

M by T ∗M and the jet cotangent bundle by T ∗J (s)(M). Furthermore, Ω(s),l(M) :=

Λl(T ∗J (s)(M)) represents the space of l-forms on T ∗J (s)(M). Then, we can in-

fer that Ω(s),0(M) is simply composed of smooth scalar functions in C∞(J (s)(M)).

Specifically, the definition of one-forms on T ∗J (s)(M) is as follows:

Definition 18. Let z(s) = (x,u(s)) ∈ J (s)(M), and let {dx1, . . . , dxp, . . . , duxIk , . . . }
=
{
dz(s),i

}i
= Ω(s),1(M), such that dz(s),i (∂/∂z(s),j) = δij , where δij is the Kronecker

delta function, {∂/∂z(s),j}j forms a basis for TJ (s)(M), Ik is a multi-index of order k

into x, k = 1, . . . , s, and i = 1, . . . ,m = dim(J (s)(M)). Then, Ω(s),1(M) is called

the space of one forms on M . In particular, any other one-form ω|z(s) ∈ Ω(s),1(M)

can be expressed as a linear combination of these basis one-forms:

ω|z(s) =
m∑
i=1

Pi(z
(s)) dz(s),i, (3.23)

where Pi : J (s)(M)→ R are smooth functions.

To define higher-order forms from lower-order ones, we require the exterior deriva-

tive operator d : Ω(s),l(M)→ Ω(s),l+1(M), which maps an l-form to an (l + 1)-form:

Definition 19. Let ω|z(s) be an l-form. Then, the operator d acts on ω|z(s) as:

d(ω)|z(s) :=
m∑
i=1

dPi(z
(s)) ∧ dz(s),i ∈ Ω(s),l+1(M), (3.24)

where ∧ denotes the wedge product (refer to the discussion on exterior algebra in

Section 26.3 of [37]). Furthermore, it holds that d2 = 0; i.e., applying d two or more

times to the same form yields 0.

We can now define contact forms:

Definition 20. A contact form θ is a specialized type of one-form that annihilates

prolonged functions (see Definition 16). Thus, its defining property is:

θ∣∣Γ(s)
f

= 0, (3.25)
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where Γ
(s)
f denotes the prolonged graph of a multi-valued function f on X (see Defi-

nition 16) and s ≥ 1.

An equivalent definition of a contact form can be given using the pullback of θ by

pr(s)(f). To establish this, we first define the pullback of a given l-form:

Definition 21. Let F : M → N be a smooth map between any two manifolds, and

let ω̄|z̄ =
∑

Jl
P̄Jl(z̄)dz̄

Jl ∈ Ωl(N), where dz̄Jl = dz̄j1 ∧ . . . ∧ dz̄jl forms a basis for

l-forms, with 1 ≤ j1 < . . . < jl ≤ dim(N) for the multi-index Jl = (j1 . . . jl), and

z̄ = F (z). The pullback of ω̄|z̄ by F is then given by:

F ∗(ω̄|z̄) =
∑
Jl

P̄Jl(F (z))
∂F (z)j1

∂zi1
dzi1 ∧ . . . ∧ ∂F (z)

jl

∂zil
dzil

=
∑
Jl

P̄Jl(F (z))
∂F (z)j1

∂zi1
. . .

∂F (z)jl

∂zil︸ ︷︷ ︸
=PIl

(z)

dzi1 ∧ . . . ∧ dzil︸ ︷︷ ︸
=dzIl

=
∑
Il

PIl(z)dz
Il = ω|z ∈ Ωl(M),

(3.26)

where sums over corresponding ik indices are implied, with the
∑dim(M)

ik=1 operators

omitted in the first and second equalities for all k = 1, . . . , l, and in the final equality,

1 ≤ i1 < . . . < il ≤ dim(M) for the multi-index Il = (i1 . . . il).

Remark 7 (Einstein Notation). Henceforth, if any summation operator is omitted for

a particular index, it is understood that corresponding upper and lower indices are

to be summed over, e.g.: ∑
i

Pidz
i = Pidz

i. (3.27)

Note that M and N in Definition 21 can be replaced by jet spaces without altering the

final result. Consequently, the equivalent defining property for θ in (3.25) is:[
pr(s)(f)

]∗
(θ) = 0, (3.28)

where pr(s) is the prolongation operator as defined in Definition 16.

The following contact forms are known as basic contact forms:

θαI = duαI −
p∑
i=1

uαxIxi(x)dx
i ∈ Ω(s+1),1(M), (3.29)
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where α = 1, . . . , q = dim(U), p = dim(X ), I = (i1 . . . is) is a multi-index of order

s into x, s ≥ 1, and M = X × U .

Remark 8 (Order of a Contact Form). Note that, sth order contact form θαI in (3.29) is

defined on J (s+1)(M), one order higher than of the contact form itself. For instance,

the 0th order contact form θα = duα−
∑

i u
α
xidx

i is defined on J (1)(M), because uxi

coordinates are involved in its definition.

Using basic contact forms, any other contact form θ can be expressed (see Theorem

4.23 in [10]):

θ =
∑
I

∑
α

Pα
I (z

(s))θαI , (3.30)

where z(s) ∈ J (s)(M). Thus, the set {θαI }
α
I forms a subspace C(s)(M) ⊂ T ∗J (s)(M).

This subspace C(s)(M) allows us to decompose T ∗J (s)(M) into horizontal and verti-

cal cotangent subbundles. Let C(s)(M) denote the vertical cotangent subbundle, then

its complement, the horizontal subbundle H(M), is given by {dx1, . . . , dxp} (see

(8.2) in [13]). Hence, we obtain the decomposition:

T ∗J (s)(M) = H(M)⊕ C(s)(M). (3.31)

The final element necessary for our discussion is the interaction between contact

forms and Lie group transformations, beginning with contact invariant transforma-

tions:

Definition 22. Let G be a local Lie group acting on M , with its prolonged group

of transformations on J (s)(M) denoted by G(s) and induced by (3.20) and (3.12).

For any θ ∈ C(s), we define G as a group of contact-preserving transformations if

g(s)∗(θ) ∈ C(s) for all g(s) ∈ G(s), where g(s)∗ is pullback by the prolonged group

action (see Definition 21).

In other words, if a contact form remains invariant under the translation of a group,

such group actions are termed contact transformations. These transformation groups

are of particular interest in this study, as the lift of a solution u = f(x) (via pro-

longation in Definition 16) to J (s)(M) is determined by a contact system, which is a

specific type of exterior differential system (see Definition 36) with the independence
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condition dx1∧ . . .∧dxp ̸= 0, owing to the contact form property in (3.25). The inde-

pendence condition implies that any submanifold S(s)
f ⊂ J (s)(M) parameterized by

x1, . . . , xp and associated with Γ
(s)
f is fully transverse. The contact system’s definition

is provided in Definition38.

To ensure that G is a group of contact transformations, an infinitesimal contact con-

dition must be satisfied (see 4.55 and 4.56 in [10] for proof):

Proposition 1. Let v̂(1) := pr(1)(v̂) (see Theorem 3). Suppose that θ ∈ C(s) is an

arbitrary contact form. Then, the condition in Definition 22 is satisfied iff:

v̂(1)(θ) = ν ∈ C(s). (3.32)

The condition in (3.32) also translates into:

∂φ̂α

∂uβj
−
∑
i

uαi
∂ξ̂i

∂uβj
= 0, ∀α, β, and j, (3.33)

where i, j = 1, . . . , p, and α, β = 1, . . . , q. Alternatively, in terms of the characteris-

tics Q = (Q1, . . . , Qα, . . . , Qq) (see Definition 17):

∂Qα

∂uβi
+ ξ̂iδαβ = 0, ∀α, β, and i, (3.34)

where δαβ is the delta function.

The condition (3.33) (or equivalently (3.34)) will be one of several conditions that

must be satisfied in the construction of a future model covering Lie contact transfor-

mations. However, in this particular study, grounded in a data-oriented framework,

will concentrate on learning a particular subset of transformations with notable ge-

ometric significance in physics and engineering: Lie point transformations and any

symmetry generator v̂ of a given set of Lie point transformations implicitly satisfies

(3.34), thanks to any of its Qα’s linear dependence in uαi .

Lie point transformations constitute a significant portion of contact transformations.

According to Theorem 4.32 in [10], every contact transformation for q > 1 arises

from the prolongation (see Theorem 3) of a Lie point transformation. However, when

q = 1, there may exist first-order contact transformations that are not Lie point trans-

formations. The distinction between these transformations is summarized by the fol-

lowing additional condition:
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Definition 23. Let v̂ be given by (3.18). If ξi and φα do not depend on uα
xIk

(where

kth order partial derivatives of uα are considered) for all i = 1, . . . , p, α = 1, . . . , q,

and k ≥ 1, then the transformation induced by v̂ is called a Lie point transforma-

tion. Conversely, if these component functions of v̂ depend only on uαxi in addition to

(x,u) ∀ i = 1, . . . , p, then the transformation is termed a Lie contact transformation.

Therefore, Lie point symmetries are a subset of Lie contact transformations.

Transformations that involve dependencies of order higher than or equal to 2 are re-

ferred to as generalized transformations. However, they do not constitute symmetries

of geometric PDEs. Furthermore, symmetries for DE systems, that are covered by Lie

point and contact transformations, can even be involved in analyzing solitons, such as

the Korteweg-de Vries (KdV) equations (see Example 2.44 in [8]), that are not only

governed by Lie groups; but also by non-local and discrete symmetries, which can ei-

ther be defined by generalized symmetries or be approximated by Lie pseudo-groups.

Therefore, Lie point and contact symmetries are powerful tools across wide variety

of DE systems.

3.4 Symmetry and Invariance for Differential Equations

This subsection marks the point where we formally introduce the concept of a sym-

metry group for a given differential equation (DE) system ∆(s) = 0. We proceed to

define invariant objects on J (s)(M), distinguishing between an invariant function, a

differential invariant, and a lifted differential invariant. A clear understanding of these

three notions of invariance is essential for grasping the subsequent discussions.

The symmetry condition for a given subvariety ∆(s) = 0 (a DE system within the

scope of our research) can be formulated in terms of either the ordinary group action

(see Definition 4) or the infinitesimal action (see Definition 8) of a group G on the

subvariety.

Definition 24. Suppose that Σ(s) = {z(s) ∈ J (s)(M) | ∆(s)(z(s)) = 0} is a submani-

fold of maximal rank (see Theorem 1.13 in [8]). The group G is a symmetry group for

∆(s) = 0 if g(s) · Σ(s) ⊆ Σ(s), ∀ g(s) ∈ G(s), where g(s) denotes the prolonged group

transformation.
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Alternatively, the infinitesimal symmetry condition is provided by Theorem 2.31 in

[8]:

Definition 25. Let ∆(s) = 0 be the subvariety of interest. Let {v1, . . . , vr} = g (see

Definition 7) represent the Lie algebra of G. Then, G is a symmetry group for the

subvariety if:

pr(s)(v̂i)
[
∆(s)

]
|
∆(s)=0

= 0, ∀ i = 1, . . . , r, (3.35)

where v̂i denotes the representation of vi on M (see Definition 8), and pr(s) is the

prolongation operator (see Theorem 3).

Remark 9. It is important to note that we do not assert that the group G in either

Definition 24 or Definition 25 is necessarily a point or contact transformation group.

These conditions simply imply that any transformation given by g(s) ∈ G(s) leaves

Σ(s) invariant.

Now, consider that u = f(x) is a solution to a given DE system ∆(s) = 0. In this con-

text, it is important to distinguish between two different types of symmetries. The first

type of symmetry is one that transforms pr(s) [f ] (x) into a new solution pr(s)
[
f̄
]
(x̄).

The second type is a symmetry that leaves Γ(s)
f (see Definition 16) invariant. As can

be readily observed, the definition provided in Definition 24 (or equivalently, the

one in Definition 25) encompasses both types of symmetry. To differentiate between

those types, we introduce the following infinitesimal condition (see the section on

Equivalence and Trivial Symmetries in Chapter 5 of [10] and Section 3.2.3 in [9]):

Definition 26. Let pr(s)(v̂)|z(s) be the prolonged representation of a vector field v ∈ g,

as induced by (3.13), on the jet space J (s)(M). We refer to v̂ as the generator of a

trivial one-parameter symmetry group if its characteristic vector Q, defined in (3.19),

vanishes on Γ
(1)
f , that is:

Qα(z(1))|
Γ
(1)
f

= 0, ∀, α = 1, . . . , q. (3.36)

Otherwise, v̂ is said to be the generator of a non-trivial one-parameter symmetry

group.

To facilitate the discussion of various types of invariant objects, we first introduce the

concept of stable orbit dimension for G, which provides insights into the number of
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differential invariants that may be obtained. Besides, it will aid in formulating the

stopping criteria for the algorithm discussed in Section 4.

Definition 27. Let dim(G) = r. Denote by ot ≤ r the maximal orbit dimension of

G(t) on J (t)(M). The maximal orbit dimension ot eventually stabilizes at a particular

order sG, such that ot = osG = r ∀t ≥ sG (see (5.5) in [10]). This dimension osG is

termed the stable orbit dimension, and sG is referred to as the order of stabilization.

In this context, the property of locally effective group action (see Definition 12) is

also crucial. If G(sG) acts locally effectively on J (sG)(M), then osG = r = dim(G)

(see Theorem 5.11 in [10]). Since the group is assumed to act locally effectively, the

number of differential invariants is given by

isG = dim(J (sG)(M))− dim(G) = p+ q

(
p+ sG
sG

)
− r, (3.37)

where p and q denote the number of independent and dependendent variables, respec-

tively. For further details, see (9.6) in [13]. If G(s) has not yet reached its stable orbit

dimension, then r can be replaced with the maximal orbit dimension os over J (s)(M).

While this work focuses exclusively on learning non-trivial Lie point transformations

that satisfy particular involutivity conditions, defining the concept of an invariant is

crucial for understanding the role of invariant coordinates in reformulating and sim-

plifying DE systems. In the context of algebraic equations, an invariant is a function

I : M → R that remains unchanged under the action of a symmetry group G. For

DEs, such functions are referred to as differential invariants.

Definition 28. Let G(s) be a symmetry group for ∆(s) = 0 acting on J (s)(M). A

smooth function I(s) : J (s)(M)→ R is called a differential invariant if

I(s)(g(s) · z(s)) = I(s)(z(s)) (3.38)

where z(s) = (x,u(s)). Alternatively, this condition can be expressed in infinitesimal

terms as:

v̂
(s)
i (I(s)) = 0, ∀ i = 1, . . . , r, (3.39)

where v̂(s)i represents vi ∈ g in J (s)(M), and dim(G) = r.
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Another type of invariance involves a scenario where the algebraic form of the invari-

ant function remains unchanged, although its output value may vary. This is known

as lifted invariance (see Definition 3.3 in [13]).

Definition 29. Let G be a symmetry group for ∆(s) = 0 acting on J (s)(M), and

L (s) : J (s)(M)×G→ J (s)(M) be a differential function, given by:

L (s) = Ψ(z(s), g) = g(s) · z(s), (3.40)

where Ψ is the group action as defined in Definition 4. Then, L (s) is called the lifted

invariant.

The final type of invariance relevant to the future research is the invariant function:

Definition 30. Let u = f(x) ∈ C∞(M) with Γ
(s)
f being its prolonged graph. If

g(s) · Γ(s)
f ⊆ Γ

(s)
f , then f(x) is called an invariant function.

3.5 Exterior Differential Systems and Involutivity

The content of this section is essential for understanding the concept of “involutivity”

as discussed in Sections 4.2. It provides a summary of one of two main forms of

involutivity, namely the Frobenius theorem (the other form will briefly be discussed

in the end of this subsection), and includes an example of an exterior differential

system known as a Pfaffian system. We assume the geometric view of jet space (see

Remark 4) in this subsection, unless any specified p-form is pulled-back to an integral

submanifold.

Remark 10 (Omitting Jet Order s). For the sake of generalization, we omit the jet

space order s from the notation for the space of p-forms, denoted Ω(s),l(M) (see

the discussion preceding Definition 18). This omission is justified, as the following

definitions are not limited to systems of DEs. However, we will reintroduce the order

s into the notation when the context specifically returns to DEs.

Broadly speaking, involutivity refers to a set of conditions that ensure the integrability

of a system. Involutivity is closely related to ideals generated by p-forms or, equiv-

alently, by vector field systems (see Chapter 14, Section 1 in [10]). To formalize the

discussion, a series of mathematical objects should be introduced:
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Definition 31. Let Ω∗ =
⊕∞

l=0 Ω
l be a graded algebra of p-forms closed under the

wedge product ∧ (see Theorem 26.3.6 in [37]). Any subspace I l ⊂ Ωl, consisting

solely of forms of degree l, is called a homogeneous subspace.

Definition 32. An algebraic ideal Ialg is defined as a direct sum of homogeneous

subspaces I l (i.e., Ialg =
⊕∞

l=0 I l), such that:

(i) ω1 + ω2 ∈ Ialg, if ω1, ω2 ∈ I l ⊂ Ialg for any l ≥ 0,

(ii) f ω ∈ Ialg if ω ∈ Ialg and f ∈ Ω0 (i.e., multiplication by a smooth scalar

function), and

(iii) ω ∧ α ∈ Ialg if ω ∈ Ialg for any arbitrary p-form α (not necessarily a homoge-

neous form, i.e., α ∈ Ωl for some l ∈ N).

Definition 33. An algebraic ideal Ialg is termed a differential ideal if it is closed

under the exterior derivative operator d, as defined in Definition 19. In other words,

if ω ∈ Idiff, then dω ∈ Idiff.

Differential ideals are also referred to as “closed” ideals, and this closedness property

will be integral to describing the involutivity of the Pfaffian system associated with a

given DE system. Furthermore, both types of ideals can be succinctly defined if they

have a finite number of generators:

Definition 34. Let G =
{
ω1, . . . , ωL

}
⊂ I be a subset of p-forms. If any β ∈ I can

be expressed as:

β =
L∑
l=1

ωl ∧ αl, (3.41)

then I is said to admit the generator G , where αl is a p-form such that deg(ωl) +

deg(αl) = deg(β). For brevity, we denote this by I :=
{
ω1, . . . , ωL

}
and will subse-

quently omit reference to G .

Remark 11 (Generators of Idiff). Since dω ∈ Idiff for any ω ∈ Idiff by definition, we

will not include the forms dω explicitly in the generator of any Idiff.

This concise definition will be particularly valuable when defining the concept of an

integral submanifold (see Definition 37). The last ingredient necessary to describe

higher-level notions is so-called simply-generated exterior ideal:
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Definition 35. An ideal I = {ω1, . . . , ωm−p} is called simply-generated, if each of

its generators ωi ∈ Ω(s),1 is a one-form.

This is crucial because, in the systems of interest, the exterior differential system

associated with a vector field system of constant rank can be defined by such a simply-

generated ideal. For additional insights into the mathematical tools introduced, thus

far, in this subsection, readers are directed to Chapter 13 of [10] and Appendix B.4 of

[14].

The following two definitions provide a foundation for understanding the involutivity

of any equivalence problem, extending beyond differential equation (DE) systems.

Definition 36. Let M be a manifold of dimension m. A differential system on M

with an independence condition 0 ̸= α ∈ Ωp(M), associated with a differential ideal

Idiff ⊂ Ω∗, is called an exterior differential system (EDS), where p ≤ m.

Definition 37. An integral submanifold N ⊂ M of an EDS is an immersion (i.e., ι :

N →M where ι∗ maps TN injectively, though ι(N) itself may not be injective) such

that the differential ideal Idiff of the EDS vanishes on N ; that is, ω|N := i∗(ω) = 0,

for all ω ∈ Idiff, where dim(N) = p.

With the concept of an integral submanifold now introduced, the reader may appreci-

ate the significance of ideal generators in Definition 34. If all generators of I vanish

on N , then I also vanishes on N (see Lemma 13.4 in [10]).

Before illustrating these concepts with an example from a DE system, we note an

aspect of the homogeneous space I0 (see discussion related to (13.1) in [10]):

Remark 12 (Excluding I0). I0 is a subspace of smooth scalar functions on M (i.e.,

∈ C∞(M)). Whenever we define an EDS, it is implicitly restricted to a submanifold

specified by the vanishing set of such functions. For example, if a DE system is ex-

pressed as ∆(s),i = 0, where i = 1, . . . , n, then Idiff := Idiff|Σ(s) , with Σ(s) as defined

in Definition 24.

We revisit the example introduced in Section 1.1. As noted in Remark 12, since

∆(1) (x, u, ux) = 0 in (1.1), we have
{
∆(1)

}
= I0. For Idiff, we first define a specific
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EDS in which the prolongation of any solution graph Γf , using the operator pr(s) as

specified in Definition 16, is the integral submanifold.

Definition 38. Let the jet space of order s, its coordinates, and the base manifold M

be as defined in Definition 14. Suppose Ω(0),p ∋ α := dx1 ∧ . . . ∧ dxp ̸= 0 represents

the independence condition in Definition 36, and I0 =
{
∆(s),1, . . . ,∆(s),n

}
defines a

system of DEs. Then, Idiff, given by all basic contact forms in (3.29) and restricted to

Σ(s), specifies an EDS called a contact system (see (1.29) in [14]). Contact systems,

without any restriction to a particular submanifold, are also Pfaffian systems (see

Definition 5.1.1 in [14]), as they consist solely of one-forms with α ̸= 0.

Remark 13 (Pfaffian System Clarification). A DE system of Pfaffian type should not

be conflated with the fact that any contact system is Pfaffian. Suppose Idiff, together

with an independence condition Ωp(M) ∋ α ̸= 0, forms a contact system. Since any

dθ ∈ Idiff for any contact form θ ∈ Idiff, it is called a Pfaffian system. However, once

this contact system is restricted (or pulled back) to a DE system, Idiff may no longer

be closed, and thus, the resulting system may cease to be Pfaffian. To determine if

a DE system (restated in the form of a contact system) is Pfaffian, it must satisfy the

following condition for any θi ∈ Idiff when restricted to Σ(s):

θ1 ∧ . . . ∧ θL ∧ dθi = 0. (3.42)

Now, letA(x, u) = u3+x2u−u−x
x3+u2x+u−x . Returning to the example in the introduction, accord-

ing to Definition 38, we have Idiff = {θ1 := du− uxdx, θ2 := dux − dA}, where the

second one-form is imposed by (1.1). Furthermore, from Definition 33, dθ1 ∈ Ω(1),2

should an element of Idiff, while dθ2 = 0 due to d2 = 0 as specified in Definition 19.

However, as indicated in Remark 11, we do not include any dβ for β ∈ Idiff in the

generator subset G of Idiff. Thus, θ1 and θ2 are the only generators and the indepen-

dence condition is dx ̸= 0. Let ι : Σ(1) → J (1)(M) be the immersion, where Σ(1) is

the regular submanifold describing ∆(1) = 0 in (1.1). Then:

ι∗(θ1) = du− A(x, u) dx and

ι∗(dθ1) = d ι∗(θ1)

= −dA(x, u) ∧ dx

=

(
∂A

∂x
(x, u) dx+

∂A

∂u
(x, u) du

)
∧ dx,

(3.43)
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where d is the exterior derivative operator defined in Definition 19, ι∗ is the pull-back

by the immersion ι (see Definition 21), and the second equality follows from (8.8) in

[10]. Thus, ι∗(θ1) ∧ θ2 ∧ ι∗(dθ1) = 0, which implies that the DE system in (1.1) is

Pfaffian by (3.42). Specifically, ι∗(θ1)∧ ι∗(dθ1) = 0. Finally, the EDS for our simple

DE system is represented as follows:

∆(1) (x, u, ux) = 0,

Idiff = {θ1, θ2} ,

α = dx ̸= 0.

(3.44)

The rest of this subsection expands on the concept of involutivity in the context of

vector field systems (VFS) and EDS, including Frobenius’ theorem, which guarantees

the existence of integral submanifolds when the system is Pfaffian.

Remark 14 (Applicability of Frobenius’ Theorem to J (s)(M)). In the remainder

of this subsection, we intentionally refrain from explicitly specifying the jet space

J (s)(M), which itself constitutes a manifold, as the discussion applies to any man-

ifold M . Additionally, we highlight the following commutation relation, which is

essential for understanding how involutivity calculation on M extends to J (s)(M)

(see Theorem 2.39 in [8]):

pr(s) ([v̂j, v̂k]) =
[
pr(s)(v̂j), pr(s)(v̂k)

]
. (3.45)

Although the equality in (3.45) holds universally, it is important to note that [v̂i, v̂j] ∈
V does not necessarily imply pr(s)([v̂i, v̂j]) ∈ pr(s)(V). This is because the prolonga-

tion of ∆(s0) (see Section 4.3) to ∆(s), for s > s0, may introduce additional constraints

that must be satisfied.

We begin with the following definition:

Definition 39. Let V = {v̂1, . . . , v̂p} ⊂ TM be a vector space closed under multipli-

cation by any f ∈ C∞(M). Then, V is called a vector field system (VFS). Involutivity

of a VFS, as specified here, requires that the Lie bracket between any pair of vector

fields in the system remains within the VFS, ensuring closure (see Definition 13.20 in

[10]):

[v̂j, v̂k] |z =
∑
i

aijk(z)v̂i|z ∈ V , (3.46)
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where aijk(z) are smooth scalar functions on M and i, j, k = 1, . . . , p.

Remark 15 (V is not a g). V in Definition39 is not necessarily a Lie algebra g, as

defined in Definition 7. This distinction means that the structure constants aijk(z) are

not required to be constants, which would otherwise be necessary in a Lie algebra.

The next definition formalizes the dual relationship between an EDS and a VFS:

Definition 40. Let V , as in Definition 39, be an involutive system. Then, the simply-

generated EDS of constant rank m − p (see Remark 16) determined by Idiff is its

corresponding dual, if:

ω|z(v̂j|z) = 0, ∀ω ∈ Idiff and j = 1, . . . , p, (3.47)

where z ∈M .

Analogous to the existence and uniqueness theorem for the first-order ODEs (see

Theorem 2.8.1 in [16]), the involutivity of a VFS or the closure of its simply-generated

dual EDS implies the existence of an integral submanifold. This is formalized as

follows:

Theorem 4 (Frobenius’ Theorem for a VFS). Let V be a VFS of constant rank p in

an open neighborhood U ⊂ M containing z ∈ U . Then, there exists an integral

submanifold NU ⊂ U of dimension p passing through z, and V is called integrable at

z if and only if V is involutive (see Definition 39).

Equivalently, this condition can be expressed in terms of EDS:

Theorem 5 (Frobenius’ Theorem for an EDS). Let I be a simply-generated ideal

(see Definition 35) of constant rank m− p. Then, I is called p-integrable if and only

if I is closed (i.e., forms a differential ideal).

We refer the reader to Theorem 14.1 and Proposition 13.22 in [10] for the proofs of

these theorems.

Remark 16 (Constant Rank and Independence Condition). The reader may interpret

the “constant rank” condition in Theorems 4 and 5 as the independence condition

α ̸= 0 on a given integral submanifold described in Definition 36.
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This subsection focuses primarily on contact systems as defined in Definition 38,

which meet the involutivity condition stated in Frobenius’ theorem (Theorem 4, equiv-

alently Theorem 5) for the sake of an introduction to “how a DE system is represented

in terms of an EDS”. It is important to note again, however, that not all differential

equations can be expressed as a simply-generated EDS (see Remark 13). Addressing

more complex systems often requires the Cartan-Kähler theorem (see Chapter 15 in

[10]). For readers interested in an example of a non-Pfaffian DE system, the wave

equation in three spatial dimensions, with no additional constraint imposed (e.g. ra-

dially symmetric dependent variable), is a good candidate and its EDS can be con-

structed using REDUCE’s pde2eds procedure in EDS package[46]. It will introduce

higher order compatibility conditions, which in turn, indicate a not-simply-generated

EDS. This particular study employs the wave equation in two spatial dimensions as

the sample DE system in Section 5.1 and in Appendix B, it is also shown to be of

Pfaffian type

Fortunately, the framework proposed in this research, as detailed in Section 4, is unaf-

fected by whether the DE system under consideration is Pfaffian. This is because the

framework specifically targets non-trivial, contact-preserving symmetries that map

the graph of one solution to that of an entirely new solution. By assumption, the

action of such non-trivial symmetries is locally effective (see Definition 12). Conse-

quently, the complementary submanifoldN (s)⊥ ⊂ Σ(s) generated by the flow of these

symmetry generators, which are in involution, is transverse to the integral subman-

ifolds defined by the contact system. The associated VFS corresponding to g must

satisfy involutivity in the sense of Frobenius and preserve the contact structure. If

these conditions are not met, the action of G(s) would disrupt the contact forms char-

acterizing the DE system, and its orbits would fail to form a foliation aligned with the

flow of these non-trivial symmetry generators.

3.6 Cartan Equivalence

This and the following sections present the mathematical tools essential for construct-

ing the G-coframe [45, 13]. In subsequent studies, the framework established in

Chapter 4 and the results obtained in Chapter 5 will be utilized for this purpose. Ac-
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cordingly, these sections serve as a reference guide for the forthcoming developments.

Cartan’s equivalence is a powerful and versatile tool that defines continuous equiv-

alence between various mathematically significant objects, such as metrics, sets of

DEs, or collections of differential geometric entities. We strongly recommend that

readers, even those familiar with the subject, refer to Chapter 1 of [15] for a con-

cise overview of various equivalence problems. Owing to the foundational work of

Sophus Lie, Jean Gaston Darboux, Élie Cartan, and many of their successors, the

state-of-the-art equivalence framework is well-established. However, its scope is too

vast to cover comprehensively, even when confined to the domain of DEs.

The primary aim of this section is to introduce its application to DEs with a particular

focus on the study in the follow-up work of this thesis. We will refrain from detailing

the three main steps of Cartan’s algorithm, namely absorption, normalization, and

prolongation, as these are seamlessly integrated into the algorithm we are planning to

employ-the method of moving coframes (see Section 3.7). However, it is important

to note that the method of moving coframes does indeed incorporate several steps

from Cartan’s algorithm. Therefore, we strongly encourage the reader to consult

Chapter 4 of [15] for a thorough understanding of absorption (particularly the section

concerning Lie algebra-compatible absorption) and normalization (specifically the

part related to the reduction of structure group theorem). As for a detailed discussion

on prolongation, refer to Chapter 12 of [10].

Remark 17 (Cartan’s Prolongation Procedure). It is crucial to clarify that the term

“prolongation,” as used in Cartan’s algorithm, is unrelated to the prolongation pro-

cedure discussed in Section 3.2.

3.6.1 The Equivalence and Its Lifting Procedure

We previously introduced a glimpse of the equivalence problem in Definition 1 con-

cerning a set of DEs. However, Cartan’s equivalence problem is defined using one-

forms (see Section 3.3).

Definition 41 (Cartan’s Equivalence). Let U and V be two subsets of M (where M

is any smooth manifold, although it will be J (s)(M) in our targeted problem) with
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U ∩ V ̸= ∅. Let ωU = {ω1
U , . . . , ω

m
U } and ΩV = {ω1

V , . . . , ω
m
V } be two coframes

(see Remark 6) on U and V , respectively, where m = dim(M). If there exists a

diffeomorphism ϕ : U → V , such that:

ϕ∗(ΩV ) = ωU , (3.48)

where ϕ∗ denotes the pullback (see Definition 21) of the coframe ΩV on V to U via

ϕ, then ΩV is said to be equivalent to ωU under ϕ, denoted by ωU
∼=ϕ ΩV .

Remark 18 (Non-empty Intersection). The condition U ∩ V ̸= ∅ is not essential for

Definition 41; however, this fact will be employed when defining the bundle transition

functions on a principal bundle and the connection one-form in Section 3.6.2.

Cartan recognized that to “construct” an equivalence problem, as outlined in Def-

inition 41, it is necessary to extend the equivalence space M to a (trivial) principal

bundleM×G, whereG is referred to as the structure group (see Definition 42), which

incorporates bundle transition functions (see Definition 45). Providing a sample case

will aid in understanding the concept of “extension”.

Let z(1) = (x, u, ux) ∈ U and Z(1) = (X,U, UX) ∈ V be two coordinate systems for

subsets U, V ⊂ J (1)(M), where M = X × U , X = {x}, and U = {u}. Suppose that

two (ODEs) are given in these respective coordinates:

∆(1) = ux − f(x, u) = 0,

∆̄(1) = UX − F (X,U) = 0,
(3.49)

where f and F are smooth scalar functions on M (noting that they do not depend

on ux and UX respectively, see the Cauchy-Kovalevskaya Theorem in Chapter 2 [8]).

First, we require that the integral curves defined by the contact forms ω3
U := du−uxdx

and Ω3
V := dU −UXdX (see Definition 20 and the following discussion) are mapped

to each other under a diffeomorphism ϕ:

ϕ∗(Ω3
V ) = wω3

U , (3.50)

where w is a scalar function on J (1)(M) (see (4.53) in [10] for an explanation of

why the transformation of contact forms takes this specific form). Notice that ϕ may

be interpreted as a transformation of coordinate systems. Consequently, its Jacobian
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matrix induces a transformation between the one-form sets (ω1
U , ω

2
U) := (fdx, du)

and (Ω1
V ,Ω

2
V ) := (FdX, dU):

ϕ∗

Ω1
V

Ω2
V

 =

u 0

0 v

ω1
U

ω2
U

 , (3.51)

where u and v are scalar functions on J (1)(M). The off-diagonal elements are equal to

zero, as we assume that the transformation is fiber-preserving, a common assumption

for most physical systems (see Example 9.3 in [10] for fiber-preserving transforma-

tions in the context of second-order differential equations). Combining (3.50) and

(3.51) leads to the following equivalence problem:

ϕ∗


Ω1
V

Ω2
V

Ω3
V

 =


u 0 0

0 v 0

0 0 w


︸ ︷︷ ︸
=(γV U )−1∈G


ω1
U

ω2
U

ω3
U

 . (3.52)

The equivalence in (3.52) can be further simplified due to the system in (3.52) be-

ing overdetermined; but it is not a priority for the scope of this research. We refer

the interested reader to Example 3 in Chapter 1 of [15] for a complete analysis of

this example. Lastly, we suggest the reader should observe that the sample ODE in

Section 1.1 is also subject to a similar equivalence problem.

We can observe that the matrix (γV U)
−1 in (3.52) governs the transition between the

specified coframes in the example given in (3.49). Strictly speaking, such transfor-

mations form a special linear Lie group G:

Definition 42. LetG ⊂ GL(m,R), whereGL(m,R) denotes the general linear group

of dimension m over the real field (see Chapters 1-5 in [1] for a comprehensive study

of general linear groups), and let the equivalence be as defined in Definition 41. The

general form of the equivalence problem is then given by:

ϕ∗(ΩV ) =
(
γV U(z

(s))
)−1

ωU , (3.53)

where γV U : J (s)(M) → G is a G-valued function, and G is called the structure

group of the equivalence with respect to ϕ. When G = {e}, the equivalence problem

reduces to (3.48).
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Remark 19 (G is not the symmetry group of (3.53)). The symmetry group associated

with a given system of DEs, as defined in Definition 24, is distinct from the structure

group G (see Definition 8.21 in [10] for symmetries of a coframe). While the symme-

try group is induced by the diffeomorphism ϕ, the structure group primarily serves to

model additional constraints imposed on the coframe elements by the nature of the

equivalence problem (see Example 9.3 in [10] for an illustration of these constraints

in practice).

Remark 20 (Why is G ⊂ GL(m,R) ?). Note that ϕ is a diffeomorphism, and its

Jacobian matrix is involved in its pullback operator for the one-forms that describe

the equivalence problem in Definition 41. Since the the composition of two Jacobian

matrices is just another Jacobian matrix for ϕ, G is a collection of invertible matrices

that preserves the equivalence.

Remark 21 (Why the Inverse of γV U?). Our action on the principal bundle P in

Definition 43 is defined as a right action. However, we often reference [15], where

the author assumes a left action on the fibers of P . To maintain consistency with our

framework, we convert Gardner’s left action into a right action by taking the inverse

of γV U (see Definition 5 for more information).

Local izat ion

Figure 3.2: A depiction of a principal bundle and of its localization (see Definitions 43

and 44, respectively). Each fiber Pz is isomorphic to a given subspace F , ∀ z ∈M .

A straightforward comparison of (3.48) and (3.53) reveals that the presence of a non-
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trivial G (i.e., G ̸= {e}) is the ultimate difference. This leads us to the question:

“How can (3.53) be transformed into the form stated in (3.48)?” Only after this

transformation will we be able to apply all the theorems, propositions, and lemmas

developed for the equivalence problem in Definition 41 (see Chapter 8 in [10] for the

theorems, propositions, and lemmas related to the equivalence in (3.48)).

To address the question posed in the previous paragraph, we first require additional

definitions and notations.

Definition 43. A principal G-bundle P is a fiber bundle π : P →M (see Part X in

[37] for an extensive examination of principal fiber bundles, as many relevant notions

are drawn from it) with a continuous right action Ψ : P × G → P that preserves

its fibers, i.e.:

Pz · g ∈Pz, ∀ g ∈ G, (3.54)

where M is the base space, Pz denotes the fiber over z ∈M , and G is a topological

group. Furthermore, G is assumed to act freely and transitively (see Definitions 11

and 13, respectively). Therefore, Pz is isomorphic to G (as a manifold), ∀ z ∈ M

(see Figure 3.2).

Remark 22 (Notational Convention for P). We will denote any principal bundle

P as P(M,G) to explicitly specify its base space and fiber-preserving topological

group in order; however, we may omit (M,G) if it is clear from the context.

P U ×G

U

π

TU

π1

σU sU

Figure 3.3: The commuting diagram that shows the localization of a principle bundle

P (see Definition 44 for details). σU is a local section on P; while sU is a section

on its trivialized bundle U ×G.

However, this global definition is insufficient for the specific problem under consid-

eration, necessitating the localization (trivialization) of P , similar to the localization

of G and its action in Section 3.1 (see the discussion following Definition 4).
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Definition 44. A principal bundle P is called locally trivial if there exists an open

subset U ⊂ M for every z ∈ M , and a diffeomorphism TU : P → U ×G, such that

TU(p) = (π(p), τU(p)), where p ∈ P , π : P → U is the projection map satisfying

π(p · g) = π(p) ∈ U , and τU(p) ∈ G. Since Pz
∼= G for any z ∈ U , it follows that

τU(p · g) = τU(p) · g. The trivialized bundle U × G is equipped with the following

continuous right action:

(z, h) · g = (z, h · g), (3.55)

where z ∈ U , h, g ∈ G. Moreover, the diagram in Figure 3.3 commutes, ensuring

that π1 ◦ TU = π.

P could also be considered as a smooth manifold and hence, for the reader unfamiliar

with local coordinate chart notion on a manifold, localization could be thought of as

expressing P in flat coordinates (i.e. in a Euclidean space) to do calculus. The local

sections σU : U →P and σV : V →P (see the diagram in Figure 3.3 and Definition

34.1.8 in [37]) will be essential for the development of our framework, as the moving

frame (see Definition 55) is also a local section on P . Since σU(z) ∈Pz:

σU(z) · g ∈Pz, ∀ g ∈ G. (3.56)

Now, consider another section σV defined on V ⊂ M , such that U ∩ V ̸= ∅ as in

Definition 41. Let z ∈ U ∩ V . There must exist a γV U ∈ G such that:

σU(z) · γV U = σV (z), (3.57)

since both σU(z) and σV (z) belong to Pz (note the property of any section σ: π◦σ =

1M ). Using the localization as specified in Definition 44:

Definition 45. Let TU and TV be the localizations of P(M,G) over subsets U and

V , respectively. Assume that z ∈ U ∩ V . Without loss of generality, let σU(z) = p =

T−1
U (z, e) ∈ Pz and σV (z) = p̄ = T−1

V (z, e) ∈ Pz. Therefore, τU(p) = τV (p̄) =

e = τV (p) · g, for a g ∈ G, implying τV (p) = g−1, where the right equivariance of τV

defined in Definition 44 is employed. By utilizing the fact p̄ = p · g:

p = σU(z) · τU(p) = σV (z) · g−1 = σV (z) · τV (p)

=⇒ σU(z) · τU(p) · (τV (p))−1 = σV (z).
(3.58)

Let γV U(p) := τU(p) · (τV (p))−1. Then, γV U is called the bundle transition function.
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Remark 23 (γV U only Depends on z ∈ M ). Although γV U appears to be a function

of p ∈P , it is, in fact, only a function of z ∈ U (see Proposition 34.1.5 in [37]). This

is consistent with (3.53) in Definition 42.

U ×G V ×G

M ⊃ U V ⊂M

Φ

πU πV

ϕ

σU σV

Figure 3.4: Lifting the equivalence problem in (3.53). The equivalence for σU and σV

sections is provided by Φ (see (3.63)).

Now, we are prepared to articulate the “lifted” equivalence necessary to achieve the

desired transformation of our previously proposed problem. Assume that P is a

principal bundle with fibers isomorphic to the structure group G, where the initial

form of G is provided by the equivalence problem itself (e.g., the γV U matrix in

(3.52). We refer the reader to check out for the first example in Chapter 5 in [15]).

Let ωU and ΩV be two coframes on U and V as defined in Definition 41. Suppose

that we have already obtained the trivial principal bundles U ×G and V ×G through

the localizations TU and TV , respectively, as given in Definition 44. We begin by

lifting these coframes to their corresponding principal bundles:

Definition 46. Suppose that:

ωi|(z,τU ) =
(
τU(z)

−1
)i
j
ωjU |z,

Ωi|(z̄,τV ) =
(
τV (z̄)

−1
)i
j
Ωj
V |z̄,

(3.59)

where τU , τV ∈ G, z ∈ U , and z̄ ∈ V (see Remark 7 for Einstein notation and

Remark 21 for inverting τU and τV ). Then, both ω and Ω are called lifted coframes

on the corresponding trivial principal bundles (see Chapter 2 in [15] for intricate

details of lifted coframes).

It is now evident that ω and Ω are defined over U ×G and V ×G respectively, with

U ∩ V ̸= ∅. Our goal is to establish an equivalence between these two collection of

forms, such that:

Φ∗(Ω) = ω, (3.60)
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where Φ : U × G → V × G is a diffeomorphism between the two bundles (see

Definition 21 for pulling back any p-form). This partially answers the question we

posed earlier, as we sought a way to transform (3.53) into a form analogous to (3.48).

However, we still need to determine the form and properties that Φ must satisfy. We

require Φ to fulfill the following criteria:

(i) The lifted equivalence in (3.60) must hold for the specified lifted coframes in

Definition 46.

(ii) Φ should encompass the equivalence ϕ. Specifically, satisfying the Φ-equivalence

must imply the ϕ-equivalence, thereby ensuring the commutativity of the dia-

gram in Figure 3.4 (i.e., πV ◦ Φ ◦ σU = ϕ).

The following definition for Φ ensures that these properties are satisfied (cf. Proposi-

tion on page 11 in [15]):

Φ(p) = (ϕ(z), τU(z)
−1 · γV U(z)) = (z̄, τV (z̄)), (3.61)

where γV U(z) ∈ G is the bundle transition function defined in (3.58). Observe that

the second function is equal to (τV (z))
−1 (cf. Definition 45). Indeed:

Φ∗(Ω) = Φ∗(τV (z̄) ·ΩV )

= τU(z)
−1 · γV U(z) · ϕ∗(ΩV )

= τU(z)
−1 · γV U(z) · (γV U(z))−1 · ωU

= τU(z)
−1 · ωU

= ω,

(3.62)

where (3.53) is used to derive the third equality. Note that σU(z) = (z, τU(z)) and

σV (z̄) = (z̄, τV (z̄)) are two sections over U ∩ V (see the diagram in Figure 3.4 and

do not confuse these sections with the section in Figure 3.3, as these are relabeling sU

and sV in Figure 3.3 with σU and σV respectively). Thus:

Φ∗(σV ) = σU . (3.63)

We have succinctly presented the core aspects of the Cartan Equivalence problem.

However, for a more comprehensive understanding, we strongly recommend that the

reader consults the references cited throughout this section. Nevertheless, the intro-

duction provided here should be sufficient for the purposes of this study.
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3.6.2 Structure Equations, Connection and Torsion

We have reached a significant milestone in Chapter 3, where we introduce the fun-

damental elements of Cartan’s algorithm (see Chapters 4, 5, and 7 in [14]). The

mathematical objects discussed in this section are universally applicable, regardless

of the specific algorithm used to implement a given equivalence problem, whether in

practical or theoretical contexts. Consequently, these concepts are also integral to the

moving coframes approach discussed in Section 3.7.

Remark 24 (P is Trivialized). In this subsection, the assumption is that P is already

trivialized through the process explained in Definition 44, and hence P denotes M×
G and is equipped with a right multiplication specified in (3.55).

We begin by introducing a crucial set of one-forms defined on T ∗G, where G is the

structure group defined in Definition 42:

Definition 47. Let {µ1, . . . , µr} be a basis for T ∗G, such that µi(vj) = δij , where

g = {v1, . . . , vr} (see Definition 7) and r = dim(G). The defining property of these

forms is:

µi|g(w|g) := wi|e, ∀ i = 1, . . . , r, (3.64)

where w|g ∈ TgG and g ∈ G. These forms are known as Maurer-Cartan (M-C)

forms. Utilizing (3.3), we have:

µi|g(w|g) := Rg−1∗ [w|g] = wi|e, ∀ i = 1, . . . , r, (3.65)

where Rg−1∗ denotes the pushforward associated with right multiplication by g−1 , as

defined in Definition 6.

In the case where G ⊂ GL(m,R), the M-C forms take the form:

µij := dgkj · (g−1)ik, (3.66)

resulting in an r×r matrix, where dgkj are the basis elements for T ∗G (see Remark 7).

Another essential set of one-forms, known as connection one-forms, is defined on

principal fiber bundles (see Definition 43). These forms play a pivotal role in the

analysis of structure equations and are central to numerous physical applications (see
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Chapters 35, 36, and 37 in [37]). Connection one-forms are also crucial in the con-

text of this research, as the moving frame (see Definition 55) is a vertical lift (see

Lemma 1, which directly implies the vertical lift). To proceed, we first introduce the

following definition (see (34.3) in [37]):

Definition 48. Let v̂ ∈ X(P) (see Remark 2). Suppose that τ ◦ cv̂ : R→ G defines a

flow in G, such that dcv̂
dϵ
(ϵ) = v̂|cv̂(ϵ). If τ ◦ cv̂(0) = e, then v̂ is called the fundamental

vector field (see the equation before (34.5) in [37] for a discussion on how this condi-

tion may fail to hold). This is the converse of the statement in Definition 8, and since

g ∼= TeG, ∃! v ∈ g such that:

[τ∗] |cv̂(0)(v̂) = v|e, (3.67)

where τ∗ denotes the pushforward of the map τ (cf. (3.4)).

Next, we describe a new action on v̂ in Definition 48:

Definition 49. Let g ∈ G and v ∈ g be related to v̂ ∈ X(P) as defined in Defi-

nition 48. Suppose P is equipped with a left action Ψ : G ×P → P (though in

our case, it is a right action). The adjoint action Ad : G × g → g is then defined as

follows:

Adg(v) := [Rg−1∗ ◦ Lg∗] (v), (3.68)

where Adg denotes the adjoint action of G on v ∈ g, and Lg∗ and Rg−1∗ are the

pushforwards for the left and right multiplications by g and g−1, respectively, as given

in (3.2) and (3.3). The notationAdg represents the pushforward of the following inner

automorphism of G (i.e., Adg ≡ Ig∗):

Ig(exp (ϵ v)) = g · exp (ϵ v) · g−1, (3.69)

where exp is the exponential map defined in (3.10). Since Adg is a Lie algebra iso-

morphism (see Definition 29.1.25 in [37]), the relationship between (3.68) and (3.69)

is given by Corollary 29.1.27 in [37] as: exp (ϵAdg(v)) = Ig(exp (ϵ v)).

The induced action of Ad on v̂ via (3.8) is then defined as:

Âdg(v̂)|p :=
d

dϵ
Ψ(exp (ϵAdg(v)) p)∣∣

ϵ=0

= [Ψg∗] |g−1·p (v̂|g−1·p)

= [Ψg∗(v̂)] |p,

(3.70)
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where p ∈ P and Ψg∗ is the pushforward of the left action given by g on P . The

final equality follows from the fact that Ψg∗|g−1·p : Tg−1·pP → TpP (see Proposition

29.1.34 in [37] for the complete proof). Since in our case, P is equipped with a right

action as in Definition 43, substituting g−1 for g (see Definition 4 for the relationship

between left and right multiplications) gives:

Âdg(v̂|p) = [Ψg−1∗(v̂)] |p, (3.71)

or equivalently:

Âdg−1(v̂|p) = [Ψg∗(v̂)] |p. (3.72)

Remark 25 (Adjoint Action for GL(m,R)). When G ⊂ GL(m,R), the expressions

Adg(v) and g · v · g−1 can be used interchangeably, as v, g, and g−1 are all matrices.

Differentiating (3.69) with respect to ϵ and evaluating the result at ϵ = 0 yields a ma-

trix multiplication by g on the left and by g−1 on the right. This observation justifies

the notation g · v · g−1.

Observe that v̂|p in Definition 48 is tangent to Pz (see Definition 43). Consequently,

we define the following one-form:

Definition 50. Let η|p : TpP → TeG be a G-valued one-form on P . If η satisfies:

(i) η|p(v̂|p) = v|e, where v and v̂ are as defined in Definition 48, and

(ii) Ψ∗
g(η|p) [v̂|p] = Adg−1 ◦η|p(v̂|p) = Adg−1(v|e), where Ψ∗

g is the pullback of the

right action given by g ∈ G (see Definition 21) and Adg−1 is the adjoint action

as defined in (3.68),

then η is called the connection one-form.

Remark 26 (M-C forms are connection one-forms). Observe that any M-C form

µ ∈ T ∗G in Definition 47 satisfies two conditions specified in Definition 50 and

hence, is a connection one-form.

Remark 27 (η as a Transformation). It is important to note that, unlike the one-forms

ω ∈ Ω(s),1 discussed thus far, η does not yield a scalar. Instead, it maps v̂|p ∈ TpP
to v|e ∈ TeG. Therefore, it should be regarded as a linear transformation rather than

a linear map.
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The property (ii) in Definition 50 states that the right action of G on P , as given in

(3.72), is preserved for right-invariant vector fields in g. Moreover, the form η induces

a decomposition of the tangent bundle TP into horizontal H(P) and vertical V(P)

subspaces. Notice that for any ŵ|p ∈ TpP , property (i) in Definition 50 implies:

ŵ|p = v̂|p + ŵH |p, (3.73)

where η|p(ŵ|p) = η|p(v̂|p) = v|e and η|p(ŵH |p) = 0, with v and v̂ as defined in

Definition 48. From this, we deduce the following:

Definition 51. Let η be the connection one-form defined on P . Then:

H(P) := {ŵ ∈ TP | η|p(ŵ|p) = 0, ∀ p ∈P} (3.74)

is called the horizontal subspace of TP . The complement of H(P) is known as the

vertical subspace of TP and is denoted by V(P) := H(P), or equivalently:

V(P) := {ŵ ∈ TP | π∗(ŵ|p) = 0, ∀ p ∈P} , (3.75)

where π∗ : TP → TM is the pushforward for the projection map as defined in

Definition 43. Therefore, TP = H(P)⊕V(P).

Since X(P) consists of sections in TP , the subspaces defined in Definition 51 are

applicable to X(P) when those subspaces are restricted to X(P).

Remark 28 (Splitting T ∗J (s)(M) vs. TP). It is important not to confuse the de-

composition T ∗J (s)(M) = H(M) ⊕ C(s)(M) (as discussed prior to (3.31)) with the

decomposition TP = H(P) ⊕ V(P) as given in Definition 51. The connection

one-form η is also employed to split T ∗P , as demonstrated in Proposition 2.

The primary objective of the preceding definitions is to establish a method for “con-

necting” two nearby fibers since any action by g ∈ G moves a point p ∈ P only

along the fiber Pz where p resides, with z ∈ M . Hence, a mechanism is required to

traverse across fibers.

Let P be localized as in Definition 44 and depicted in Figure 3.3. Suppose that

σU and σV are two local sections on U × G and V × G, respectively, as defined in

(3.57). Additionally, let ŵ ∈ X(M) and z ∈ U ∩ V . The connection one-form η
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can then be expressed in the following localized form using sections σU and σV (for

a complete proof, see Section 34.2.1 in [37], noting that the inverse of the bundle

transition function guv(x) should be applied):

ηV |z(ŵ|z) = L(γV U (z))−1∗ ◦ dγV U |z(ŵ|z) + Ad(γV U (z))−1 ◦ ηU |z(ŵ|z) (3.76)

where L(γV U (z))−1∗ ◦ dγV U |z(ŵ|z) represents the pullback of the left invariant M-C

form by γV U as per Definition 45. Here, ηV = σ∗
V (η), and ηU = σ∗

U(η), with

Ad(γV U (z))−1 denoting the adjoint action as defined in (3.68) by γV U . Consequently,

ηU |z : TzU → TeG and ηV |z : TzV → TeG serve as localized connection one-forms

on U and V , respectively. The sections σU and σV are often referred to as “lifts”,

as they elevate any problem defined on M to one on P (see Definition 1.5.3 and the

exercises in Chapters 1–2 of [14]). A specific lift that connects fibers horizontally with

respect to a given connection one-form η plays a fundamental role in this analysis.

As derived from (3.76), such a lift is characterized by the condition that the localized

connection one-form vanishes on the generator ŵH of a horizontally lifted flow FH ,

i.e., ηV (ŵH) = 0. This property leads to the following result:

Lemma 1. Let Fŵ : [0, 1]→ U be the integral curve (or flow) generated by a vector

field ŵ ∈ X(U). Suppose that for a local section σU of U ×G, the curve

FL := σU ◦ Fŵ (3.77)

defines a lifted trajectory. Then, there exists a unique curve FH : [0, 1] → P such

that

1. π(FH(0)) = Fŵ(0),

2. FH = FL · g for some function g : [0, 1]→ G,

3. π∗(ŵH) = ŵ,

where ŵH ∈ H(P) is the generator of the flow FH , and the function g satisfies the

DE:

ηU |Fŵ
(ŵ|Fŵ

) = −Rg−1∗ ◦ dg|Fŵ
(ŵ|Fŵ

)

= −µ̂|Fŵ
(ŵ|Fŵ

),
(3.78)
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where ηU |Fŵ is the localized connection one-form and µ̂|Fŵ
is the right-invariant

M-C form as given in (3.65), both pulled back along the flow Fŵ. The curve FH is

referred to as a horizontally lifted curve.

This result will be used to establish that the moving frame section σ(s), introduced in

Definition 56, constitutes a vertical lift. A proof of Lemma 1 is provided in Proposi-

tion 3.1 of [47].

By applying the adjoint action Adg−1 to both sides of (3.78), rearranging terms, and

invoking (3.76), we obtain

Adg−1 ◦ ηU |Fŵ
(ŵ|Fŵ

) + Lg−1∗ ◦ dg|Fŵ
(ŵ|Fŵ

) = ηV |Fŵ
(ŵ|Fŵ

) = 0, (3.79)

Here, similar to the transition function in (3.57), ηV represents the localized connec-

tion one-form associated with the flow FH . Thus, equation (3.79) encapsulates the

defining property of a horizontal lift, ensuring that it establishes a structured connec-

tion between nearby fibers in P .

Another critical application of the connection one-forms ηU (or ηV ) from (3.76) is

their role in spanning the cotangent bundle T ∗(U×G) (or T ∗(V ×G)), in conjunction

with the lifted one-forms ω (or Ω), which are semi-basic (see Appendix B.3 in [14])

as described in (3.59):

Proposition 2. Let ηU ∈ T ∗(U×G) and ω ∈ T ∗(U×G) be the local connection one-

forms from (3.76) and the lifted one-forms from (3.59), respectively. Then, T ∗(U×G)
is spanned by the components of ηU and ω.

The proof of Proposition 2 is presented in Appendix A.2 (see also Exercise 8.3.2/1

in [14]). This proposition will be instrumental in deriving the structure equations

discussed in (3.80).

With the necessary background now established, we can proceed to discuss the struc-

ture equations. These equations will provide all the essential information needed to

address the equivalence problem introduced in (3.60) in Section 3.6. Let ω denote

the lifted one-forms generating a coframe on U related to the equivalence problem

in (3.59). Additionally, let π = {π1, . . . , πr} form a basis for T ∗G. By applying
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the exterior derivative operator d as defined in Definition 19 and omitting evaluation

points, we obtain:

dωi = d
[(
τ−1
U

)i
j
ωjU

]
= d

(
τU(z)

−1
)i
j
∧ ωjU +

(
τU(z)

−1
)i
j
dωjU

= d
(
τU(z)

−1
)i
j
τU(z)

j
k ∧
(
τU(z)

−1
)k
l
ωlU +

(
τU(z)

−1
)i
j
dωjU

= µik|τ−1
U
∧ ωk + (TU)

i
jk(z, g)ω

j ∧ ωk

= Aikκπ
κ ∧ ωk + (TU)

i
jk(z, g)ω

j ∧ ωk,

(3.80)

where 1 = τU(z)
j
k (τU(z)

−1)
k
l is inserted to obtain the fourth equality, µik|τ−1

U
is the

M-C form in (3.65), and Aikκ is an m × m constant matrix for κ = 1, . . . , r (see

Exercise on page 19 in [15] for why it is a constant matrix). As for the second term in

the second equality, dωjU = Kj
kl(z)ω

k
U ∧ ωlU , where Kj

kl is a set of smooth functions,

since ωU forms a coframe on U . When multiplied by (τU(z)
−1)

i
j , they become semi-

basic (see Appendix B.3 in [14]) two-forms and can thus be represented by the lifted

coframe ω on U × G, which, themselves, are semi-basic too. For further details

regarding (3.80), refer to (3) in Chapter 3 of [15].

We now turn our attention to analyzing the structure equations in (3.80), continu-

ing through the end of this section. We begin by examining the set of functions

(TU)
i
jk(z, g), known as torsion coefficients (or, as we shall see shortly, the torsion

of the connection). These coefficients are of both physical and theoretical signifi-

cance. In Euclidean space, as described in (3.15), partial derivative operators acting

on a smooth function commute, except in pathological cases. However, this commu-

tativity generally does not hold when differentiating a section on a principal bundle.

Torsion measures the failure of this commutation relation of differential operators

for a given frame on a fiber bundle (see Section 8.2 in [38] for an introduction to

the torsion tensor and its relation with connection one-forms in Definition 50). Let

D = {D1, . . . ,Dm} be the frame dual to the coframe ω in (3.80). Since the lifted

forms ω are sections on P , the coefficients (TU)
i
jk measure the failure of the com-

mutation of Dj and Dk along the direction of Di. Therefore, torsion represents an

obstacle that needs to be addressed.

By Proposition 2, there should be an equivalent representation of the structure equa-
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tions in (3.80) using the components of ηU and ω. Indeed, we have:

dωi = ηU
i
k ∧ ωk +

(
TηU

)i
jk
(z, g)ωj ∧ ωk, (3.81)

where ηU represents the local connection one-forms in (3.76), and
(
TηU

)i
jk

is known

as the torsion of the connection (see Proposition 8.3.3 in [14] for the proof). A simple

comparison of (3.80) and (3.81) reveals:(
ηU

i
k − Aikκπκ

)
∧ ωk ≡ 0mod

{
ω1, . . . , ωm

}
=⇒ ηU

i
k − Aikκπκ ≡ 0mod {ω} ,

(3.82)

where mod {ω} := mod {ω1, . . . , ωm} indicates that we are considering the state-

ment modulo the algebraic ideal Ialg generated by the coframe ω (see Definition 32),

and Cartan’s Lemma (see Lemma A.1.9 in [14]) is applied to obtain the second equiv-

alence statement. Equation (3.82) is remarkable in that it asserts that any connection

one-forms ηU differ from a set of M-C forms on G by a combination of one-forms in

ω:

ηU
i
k = Aikκπ

κ + ν̃iklω
l or

ηU
i
k = Aikκ(π

κ + νκl ω
l),

(3.83)

where ν̃ikl = Aikκν
κ
l is a set of smooth functions on P . Since, by Remark 26, any

M-C form µik = Aikκπ
κ is a connection one-form and hence, any two connection one-

forms differ by a linear combination of elements of the coframe ω (at a given p ∈P).

Although we have utilized the coframe on U ⊂ M , the same reasoning applies to Ω

on V ⊂M as well.

To define a unique connection one-form ηU , the ambiguity, caused by ν̄iklω
l in (3.83),

should be resolved. This operation is called absorption. Substituting xx into (3.81)

results in:

dωi = Aikκπ
κ ∧ ωk +

[(
TηU

)i
jk
(z, g) +

(
Aikκν

κ
j − Aijκνκk

)]
ωj ∧ ωk (3.84)

due to anti-symmetric property of two forms, where j < k. To eliminate the inessen-

tial torsions, i.e.
(
TηU

)i
jk
(z, g) satisfying(
TηU

)i
jk
(z, g) = −

(
Aikκν

κ
j − Aijκνκk

)
, (3.85)

we solve (3.85) for νκj . Note that the number of variables in the system given by

(3.85) is mr (notice the number of νκj functions). However, the rank of the sys-

tem on the right-hand side is constrained by dim(G) = r, meaning only the subset
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{
Ai1k1κπ

κ, . . . , Airkrκπ
κ
}

is linearly independent (recall that i and k are index into M-C

forms in Definition 47). Consequently, Aik
jkκ

forms an r × r matrix of rank r (see the

discussion in Chapter 3 of [15]).

Definition 52. Solving (3.85) eliminates the so-called inessential torsion coefficients

(refer to the L map in Chapter 4 of [15] and (10.14) in [10] for further details) and

uniquely defines the connection one-form:

ηU
i
k = Aikκ

(
πκ + νκj ω

j
)

(3.86)

on U × G for remaining
(
TηU

)i
jk
(z, g) called essential torsion coefficients, that do

not satisfy (3.85), and is denoted by (TE)
i
jk (z, g). This procedure is known as Car-

tan’s absorption method and constitutes the next step after formulating the equiva-

lence problem in (3.60).

We revisit the lifted equivalence problem introduced in (3.60) to elucidate the role

of the structure equations in addressing it. Cartan made a crucial observation that

the pullback of a diffeomorphism commutes with the exterior derivative operator d as

defined in Definition 19 (see (8.8) in [10]):

dΦ∗(Ω) = dω = Φ∗(dΩ). (3.87)

In addition to the structure equations for the coframe on U provided in (3.80), we now

present a corresponding set of structure equations for the coframe on V ×G:

dΩi = Aikκπ̄
κ ∧ Ωk + (TV )

i
jk (z̄, ḡ) Ω

j ∧ Ωk (3.88)

where {π̄1, . . . , π̄r} forms another basis on G arising from the diffeomorphism Φ.

Notably, the same constant matrices Aikκ are used; the rationale for this is that Aikκ is

a constant matrix and, under the pullback of Φ, it remains unchanged. Moreover, the

essential torsion coefficients are also transferred to V ×G without being affected by

Φ∗ (see the diagram on page 32 in [15]), i.e.

Φ∗((TV )
i
jk (z̄, ḡ)) = (TE)

i
jk (z, g). (3.89)

Finally, since the absorption process in Definition 52 uniquely defines ηU , using the

observation in (3.87) results in

Φ∗(π̄κ) = πκ + νκj ω
j. (3.90)
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Recall the discussion in Definition 42. The third major step in Cartan’s algorithm is to

reduce the structure group G to the trivial group {e}. It is important to note that some

of the essential torsion coefficients (TE)
i
jk explicitly depend on the group parameters

g, and their level curves correspond to the flows generated by Φ in (3.60).

Definition 53. Let
{
(TE)

il
jlkl

}
l

be a subset of essential torsion coefficients for the

equivalence problem in (3.60), where (TE)
il
jlkl

explicitly depends on g ∈ G for all

l ≤ r. To express a group parameter g as an invariant combination of (z,h), we

require:

(TE)
il
jlkl

(z, g,h) = Cg, (3.91)

where h represents group parameters other than g, z is the coordinate vector on

M , and Cg is an “appropriate” constant (see Example 9.9 in [10] and Example 4

in Lecture 5 of [15] for a discussion on what constitutes an appropriate constant).

We then say that g is “normalized”, effectively reducing the equivalence problem in

(3.60) to a simpler one, such that G(1) ⊂ G with dim(G(1)) + 1 = dim(G), where

G(1) is the new structure group.

We proceed by iteratively applying the absorption and normalization procedures, sys-

tematically reformulating the structure equations to address the reduced equivalence

problem at each step (see Algorithm 1). Upon reaching a stage where no further

parameters remain for normalization, three possible scenarios may arise:

(i) The reduced equivalence problem, which is governed by a simply generated

EDS (see Definition 35), reduces to the form given in (3.48). In this scenario,

the system is involutive, as guaranteed by Frobenius’ theorem (see Theorem 5).

(ii) The reduced equivalence problem, which is not governed by a simply gener-

ated EDS, reduces to the form given in (3.48). Here, the system is involutive

according to the Cartan-Kähler theorem (see Chapter 15 in [10]).

(iii) The coframe ω̃ for the reduced equivalence problem still depends on some

group parameters, yet no non-constant essential torsion coefficient (T̃E)
il

jlkl
re-

mains to normalize these parameters, leaving the system not involutive.

The determination of the correct outcome among these scenarios is made using a

procedure known as Cartan’s involutivity test (see Chapter 11 and the discussion in
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the final section of Chapter 15 in [10]). The first case, when dealing with a system of

DEs, refers to the Pfaffian systems (see Section 3.5), as illustrated in (3.44) for (1.1).

In contrast, the condition for involutivity in (ii) is more challenging to compute, as

it requires Cartan-Kähler Theorem. The final scenario, (iii), is addressed through a

method called prolongation (see Remark 17). In this context, the principal bundle P

on which the equivalence problem is formulated has a dimension less than that of the

structure group G (i.e., m < r) and therefore requires extension.

3.7 Moving Coframes

The moving coframes method is a powerful analytical tool for decomposing the

cotangent bundle of a localized jet space bundle P(s) = G ×
(
U ⊂ J (s)(M)

)
in a

G-invariant manner. In short, it provides a systematic approach for constructing a

unique G-coframe on P(s). Before proceeding to the core discussion, we emphasize

an important conceptual distinction, as highlighted in Remark 19.

In Cartan’s equivalence method (Section 3.6), the group G is referred to as the struc-

ture group (Definition 42), which acts on the vector bundle T ∗M , whereM is the base

manifold on which the original equivalence problem (Definition 41) is formulated. In

contrast, the symmetry group H acts on M to preserve the underlying geometric

structure—for example, the prolonged graph of a particular solution u = f(x).

Consequently, G encodes additional degrees of freedom inherent in the formulation

of the equivalence problem, as exemplified in (3.52).

Cartan’s reduction process (Definition 53) eliminates this extraneous gauge freedom,

leaving behind a uniquely determined geometry on M . At this stage, the equivalence

problem is expressed entirely in terms of transformations of M under the action of

H . However, in the moving coframes method, there is no structure group in the

sense described in Section 3.6. Instead, we denote the symmetry group itself as G

and define the principal bundle of interest as P(s) to maintain consistency with the

notation used in foundational works such as [45, 13, 48].

As the reader may recall, the cotangent bundle T ∗J (s)(M) is initially split into hori-

zontal and vertical subbundles, H(M) and C(s)(M), respectively, as given in (3.31).
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However, the decompositionH(M)⊕C(s)(M) is not invariant under the action of G.

Moreover, as in Definition 51, the cotangent bundle T ∗P(s) must also be decomposed

into G-invariant subspaces. We discuss it in Section 3.7.3.

To address this issue, the moving coframes method [45, 13] provides an alternative to

Cartan’s equivalence framework by constructing aG-coframe on T ∗J (s)(M). The key

ingredients in this approach are the notions of regular cross-sections and locally free

group actions (see Definitions 54 and 11, respectively), which enable the construction

of a G-coframe through a simpler normalization procedure than that required in Car-

tan’s method. Furthermore, unlike Cartan’s approach, the moving coframes method

bypasses the need for the inherently algebraic Cartan test (Chapter 11 in [10]) to

verify the involutivity of the constructed coframe.

The remainder of this section introduces the moving coframes method within the

context of this thesis. A fundamental distinction from Cartan’s method is that moving

coframes do not lift the equivalence problem to a vector bundle whose fibers are

isomorphic to a structure group. Instead, the method utilizes the symmetry group

action itself to lift the equivalence problem from J (s)(M) to the localized principal

bundle P(s). The discussion proceeds as follows:

(i) We first describe this lifting procedure in detail.

(ii) Next, we introduce the key mathematical structures required for the construc-

tion of a G-coframe via moving coframes, namely the cross-section, moving

frame, and moving frame section.

(iii) We then demonstrate how the cotangent bundle T ∗P(s) can be decomposed

into its G-invariant components.

(iv) Finally, we discuss how moving coframes ensure the involutivity of a coframe

on T ∗J (s)(M).

Remark 29 (The Base Manifold in Section 3.7). In Section 3.6 and in any referenced

article, there is no mention of a particular base manifold and it is generally denoted

by M . However, in this section, we specifically state that the base manifold of P(s)

is the jet space bundle J (s)(M) as defined in Section 3.2.
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3.7.1 Right Regularization and Lifting Procedure

Let P(s) = G × J (s)(M) be a trivial principal bundle (see Definition 43). The right

action on this bundle differs from the right action described in (3.54). The purpose of

this modified right action is to lift the action of G to P(s), thereby eliminating irreg-

ularities introduced by the original group action of G on J (s)(M) (see the discussion

of such irregularities in Chapter 3 of [13]). The right action ΨR : P(s) ×G→P(s)

is defined as

ΨR((z
(s), g), h) := (h(s) · z(s), g · (h(s))−1) (3.92)

and is referred to as the right regularization of the action of G.

The concept of a lifted invariant was briefly introduced in Definition 29. We now

elaborate on this notion in greater detail. Lifting an analytical object (e.g., a vector

field or a scalar function) defined on J (s)(M) to P(s) is a straightforward process

when the fundamental right lifted invariant is given by

L (s)
R = Ψ(g, z(s)) = g(s) · z(s), (3.93)

where Ψ(g, z(s)) denotes the group action in (3.1). The quantity L (s)
R is invariant

under ΨR as defined in (3.92). The level sets of L (s)
R , given by

[
L (s)
R

]−1 {
z(s)
}

,

correspond to the orbits of G in P(s) passing through (z(s), e) (see Proposition 3.5 in

[45] for further details).

To lift a scalar function F : J (s)(M)→ R, it suffices to consider the composition

F ◦L (s)
R : P(s) → R. (3.94)

It is important to distinguish between a differential invariant I(s) : J (s)(M) → R, as

introduced in Definition 28, and the lifted invariant F ◦L (s)
R . After lifting an ordinary

differential invariant via (3.94), its group differential satisfies

dG

[
I(s) ◦L (s)

R

]
= 0, (3.95)

whereas the group differential of F ◦L (s)
R , i.e., dG

[
F ◦L (s)

R

]
, is nontrivial and both

this result and dG are thoroughly discussed in Theorem 3.10 of [13]. The moving

coframe approach exploits this distinction to differentiate I(s) on J (s)(M) from an

arbitrary lifted invariant F ◦L (s)
R on P(s).

61



Although this thesis does not delve into the details of lifting vector fields on J (s)(M),

the principle underlying (3.94), combined with the component functions of pr(s)(v̂)

in (3.20), provides insight into how this process is achieved. For a comprehensive

discussion on the lifting procedure for vector fields and p-forms, we refer the reader

to Chapter 5 in both [49] and [48], respectively.

3.7.2 Cross-Section, Moving Frame, & Moving Frame Section

Figure 3.5: Identity cross-section K(0) = (e, r) and moving frame ρ(0), that generates

the group action ρ(0)(z) ∈ SO(2), such that ρ(0)(z) · (θ, r) ∈ K(0), where (θ, r) ∈
K̃(0). z0 is the base point through which Oz0 passes.

In this subsection, we introduce the fundamental tools that motivated our use of the

moving coframe method within our analytical framework. These mathematically ele-

gant structures operate in harmony, enabling us to remain within the realm of analysis

without resorting to algebraic techniques.

Suppose that G acts regularly (see Definition 1.26 in [8]) and that the dimension

of its orbits is equal to r. Then, by Theorem 2.23 in [10], there exists a recti-

fying coordinate system in a sufficiently small neighborhood U ⊂ J (s)(M), given

by (t1, . . . , tr, y1, . . . , ym−r), where t ∈ G corresponds to the coordinates along the

group orbits, and y ∈ Y are invariant coordinates under the action of G (see Example
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2.7 in [13]). The coordinates y thus define a special subspace of J (s)(M).

Definition 54. LetG act semi-regularly on J (s)(M) with dim(Oz(s)) = r, whereOz(s)
is the orbit ofG with z(s) ∈ U ⊂ J (s)(M). The orbits ofG, then, intersect an (m−r)-
dimensional submanifold K(s) ⊂ U transversally. This submanifold K(s) is called a

(local) cross-section (see Figure 3.5). If, in addition, K(s) intersects each orbit Oz(s)
at most once, then K(s) is called a regular cross-section. In rectifying coordinates, a

cross-section is given by K(s) = (a(y),y), where a : Y → G is a smooth function,

i.e., K(s) is the graph of a function in invariant coordinates. If a(y) = e, then K(s) is

called the identity cross-section.

The cross-section K(s) plays a crucial role in the normalization procedure within the

moving coframe method (see Example 4.12 in [13] and Example 10 in [48]).

As demonstrated in Chapter 5, our dataset consists of the prolonged graph of a given

solution u = f(x), denoted by Γ
(s)
f (see Section 3.2 for further details on Γ

(s)
f ).

In the context of our research, we observe that K(s) ≡ Γ
(s)
f . This key observation

serves as the foundation for constructing the associated G-coframe in future work,

leveraging the involutive vector field system V(s), which represents the Lie algebra g

within TJ (s)(M) and is obtained through the methodology outlined in Chapter 4.

Remark 30 (Γ(s)
f and the Identity Cross-Section). In this work and future studies,

the identity cross-section K(s), as defined in Definition 54, will always be taken to

correspond to the prolonged solution graph Γ
(s)
f .

In any exposition on Cartan’s equivalence method, the lifting procedure plays a cen-

tral role, whether formulated as in Section 3.6 or as described in 3.7.1. The moving

frame section σ(s) constitutes a particular type of such a lift, endowed with several

beneficial properties that will be discussed in the remainder of Section 3.7. To define

σ(s), we first introduce a smooth function that gives the moving coframe method its

name.

Definition 55. Let ρ(s) : J (s)(M)→ G be a smooth function satisfying the following

two conditions:
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1. ρ(s) is G-equivariant, meaning that:

ρ(s)(g(s) · z(s)) = ρ(s)(z(s)) · (g(s))−1. (3.96)

2. ρ(s) satisfies the compatible lift condition (see [45]):

ρ(s)(z(s)) · z(s) = z
(s)
0 , (3.97)

where z(s)0 is a base point such that z(s)0 ∈ K(s), where K(s) is the relevant

cross-section as defined in Definition 54.

A smooth function ρ(s) satisfying these properties is called a (right) moving frame.

Theorem 4.4 in [13] guarantees the existence of a moving frame ρ(s), while Theorem

4.5 in [13] states that ρ(s) provides a complete set of differential invariants on J (s)(M),

given by

I(s) = ρ(s)(z(s)) · z(s) ∈ K(s). (3.98)

We illustrate the role of ρ(s) in Figure 3.5, where we take x = 0 and u > 0 as the

identity cross-section, for the case s = 0. In this example, (θ, r) (polar coordinates

in 2D) serve as the canonical coordinates for the action of G = SO(2) on the x− u
plane. Locally, the bundle structure is given by P(s) = SO(2)× Y , where Y = {r}.
The orbits of G are transverse to K(s), and K(s) intersects each orbit exactly once.

For any K(0) = (a(r), r), corresponding to a specific base point z(0)0 := z0 = (0, u0),

we have

a(r) =


tan−1

(√
r20
r2
− 1

)
, u > 0

π/2, u = 0

π/2 + tan−1

(
r√
r20−r2

)
, u < 0,

(3.99)

where r0 = |u0| and r = |u|. While this formulation applies to the half-plane x ≥ 0, a

similar expression holds for x < 0. For further details, we refer the reader to Example

4.7 in [13].

Analogous to the lifting procedure in Cartan’s equivalence method (see Figure 3.4),

the moving frame section is a key component of the moving coframes approach.
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Definition 56. Let ρ(s) be a moving frame as defined in Definition 55. Then, the

section σ(s) : J (s)(M)→P(s), defined by

σ(s)(z(s)) = (z(s), ρ(s)(z(s))), (3.100)

is called a moving frame section.

The right-regularized action in (3.92) establishes that the section σ(s) isG-equivariant,

as follows:

σ(s)(z(s)) · h = (h(s) · z(s), ρ(s)(z(s)) · (h(s))−1)

= (h(s) · z(s), ρ(s)(h(s) · z(s)))

= σ(s)(h(s) · z(s)),

(3.101)

where the second equality follows from Property 1 in Definition 55. Furthermore, the

combination of (3.100) and (3.93) yields the mapping

I(s) = L (s) ◦ σ(s) : J (s)(M)→ Rm, (3.102)

which is referred to as invariantization and m = dim(J (s)(M)). This result reiterates

the conclusion obtained in (3.98).

Recalling the discussion of the horizontal lift FH from Lemma 1, let σ(s) correspond

to the section σU in the lemma. Then, applying (3.79) (omitting evaluation points)

yields

Adg−1 ◦ ηU(ŵ)− µ̂(ŵ) = 0, (3.103)

where ηU denotes the localized connection one-form associated with σ(s), defined as

ηU := (σ(s))∗(η) = η◦σ(s)
∗ and µ̂ is right invariant M-C form (cf. Proposition 2.44 in

[10] for converting left-invariant Lie algebra to its right-invariant counterpart). Since

σ(s) is a G-equivariant section and using the property of connection one-forms given

in (ii), (3.103) simplifies to

(Adg−1 ◦ η) ◦ σ(s)
∗ [ŵ]− µ̂(ŵ) = 0

=⇒ σ(s)
∗ [ŵ] = µ̂(ŵ).

(3.104)

(3.104) establishes that σ(s) constitutes a vertical lift, meaning that it maps any ŵ ∈
TJ (s)(M) to w ∈ TG. Consequently, σ(s)

∗ defines a map between the Lie algebra g

and its representation in the subbundle V(s) ⊂ TJ (s)(M).
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3.7.3 G-Invariant Decomposition of T ∗P(s)

This section provides a brief discussion on how moving coframes decompose an in-

variant coframe Υ(s)
G on P(s) into its invariant subspaces with respect to the action of

G. We begin by defining the relevant coframes while clarifying two key concepts to

prevent potential misunderstandings.

The notion of an algebraic ideal Ialg, as introduced in Definition 32, is closely related

to that of a coframe.

Definition 57. Let Υ(s) = {ω1, . . . , ωm−r} ⊂ Ω(s),1, where m = dim(J (s)(M))

and r is the dimension of the symmetry group G that generates self-equivalences

of Υ(s) (see Definition 8.21 in [10]). The set Υ(s) is called a coframe if it forms a

module over C∞(J (s)(M)) in the cotangent bundle T ∗J (s)(M). The rank of Υ(s) at a

point z(s) ∈ J (s)(M), denoted by rΥ(z(s)), is given by the dimension of the subspace

spanned by {ω1, . . . , ωm−r} at z(s). Thus, it satisfies the inequality:

rΥ(z
(s)) ≤ m− r. (3.105)

Furthermore, if rΥ(z(s)) is constant throughout T ∗J (s)(M), then Υ(s) is said to be a

semi-regular coframe. If, in addition, its classifying submanifold of order s (see Def-

inition 5.3 in [45]), specified by its differential invariants (obtained as per Definition

5.9 in [13]), is an embedded submanifold in the relevant ambient space, then Υ(s) is

called a regular coframe.

Remark 31. (Local Regularity) The regularity condition in Definition 57 is related

to the rank of the Jacobian matrix of the differential invariants I(s) associated with

Υ(s), which form a functionally independent set. While verifying the constancy of the

Jacobian matrix rank across J (s)(M) is sufficient for semi-regularity, establishing

regularity additionally requires checking the injectivity and continuity of I(s), as well

as confirming that the Jacobian matrix attains maximal rank. Since we primarily

consider sufficiently small, open subsets of T ∗J (s)(M), the full regularity of Υ(s) is

generally unnecessary. Consequently, throughout this thesis and in future studies,

we will always assume semi-regularity and that the Jacobian matrix of I(s) attains

maximal rank within a sufficiently small open neighborhood U ⊂ J (s)(M), ensuring

local regularity.
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In accordance with Definitions 32 and 57, the algebraic ideal Ialg generated by Υ(s)

is given by Ialg = {ω1, . . . , ωm−r}. This ideal imposes additional structure on Υ(s);

for instance, the closeness of Ialg implies the involutivity of Υ(s) in the sense of the

Frobenius or Cartan-Kähler theorems (see Chapters 14 and 15 of [10], respectively).

Another potential source of confusion concerns the role of the symmetry group G

of Υ(s). In differential geometry and the study of continuous symmetries, some re-

searchers may omit the M-C forms µ, which span T ∗G (see Definition 47), from

the definition of Υ(s) when focusing purely on the geometric aspects of the equiva-

lence problem’s invariant structures. In contrast, others include the M-C forms µ to

emphasize the self-equivalences of Υ(s). In particular, when employing the moving

coframes method, µ is appended to Υ(s) because the structure equations of Υ(s), and

consequently its involutivity, become significant.

Definition 58. Let Υ(s) be a coframe in T ∗J (s)(M) with symmetry group G of dimen-

sion r, satisfying:

(g(s))∗(ω̄i) = ωi, (3.106)

for i = 1, . . . ,m− r and g ∈ G. Furthermore, let µ denote the M-C forms of G, and

define the coframe Υ̃(s) := {ω,µ}. If Υ̃(s) is an involutive, (locally) regular coframe,

then it is called a G-coframe and is denoted by Υ
(s)
G . The rank of Υ(s)

G coincides with

that of Υ(s).

This extended discussion is necessary for two reasons. First, textbooks may obscure

the distinction between and the similarity of Υ(s) and the algebraic ideal Ialg it gener-

ates. Second, the regularity condition plays a crucial role in ensuring the involutivity

of a G-coframe, as discussed in Section 3.7.4.

The goal is to decompose the cotangent bundle T ∗P(s) in an invariant manner us-

ing moving coframes. Since the cotangent space of the symmetry group, T ∗G =

{µ1, . . . , µr}, is naturally invariant, the key question is whether the remaining part of

T ∗P(s) can be spanned by utilizing lifted invariants.

To achieve this, we introduce lifted coordinates for independent (xi) and dependent
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(uα) variables as:

X i := L (s),i
R , i = 1, . . . , p

Uα
I := L (s),p+α

R , α = 1, . . . , q, 0 ≤ |I| ≤ s,
(3.107)

where L (s)
R = Ψ(g, z(s)) as in (3.93).

Two types of differentials, namely horizontal and vertical differentials, denoted by

dH and dV , respectively:

dH(L) :=

p∑
i=1

Di(L) dx
i

dV (L) :=

0≤|I|≤s∑
I

q∑
α=1

∂L

∂uαI
θαI ,

(3.108)

where L = F ◦L (s)
R is a lifted scalar function,Di is total derivative operator in (3.17),

and θαI is basic contact form of order |I| in (3.29) (see also Remark 8). These combine

into the jet differential:

dJ := dH + dV , (3.109)

that acts on coordinates of J (s)(M). This leads to a natural invariant splitting of

one-forms on J (s)(M), thanks to Proposition 10.11 in [13]:

dJX
i and

Θα
I := dJU

α
I −

p∑
i=1

Uα
I,idJX

i,
(3.110)

where Uα
I,i = Ei(Uα

I ), Ei := ∂/∂Xi is the invariant differential operator in (10.10)

in [13] (see also Therorem 10.12 in [13]). From these, we define two invariant sub-

spaces:

H(P(s)) :=
{
dJX

i
}p
i=1

V(P(s)) := {Θα
I }

q,0≤|I|≤s
α=1, I .

(3.111)

Thus, the invariant decomposition of T ∗P(s) is given by:

T ∗P(s) ≡ H(P(s))⊕V(P(s))⊕ T ∗G. (3.112)

This decomposition ensures that the moving coframes method provides a structured

way to analyze the geometry of P(s), while maintaining invariance under G, as

Υ
(s)
G =

{
H(P(s)),V(P(s)),µ

}
. (3.113)
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3.7.4 Involutivity of a Coframe on T ∗J (s)(M)

In Section 3.5, we discussed EDS and the conditions under which a given EDS be-

comes involutive. Our primary focus was on involutivity via Frobenius’ Theorem

(Theorem 4), with a brief mention of the Cartan–Kähler Theorem, which ensures the

involutivity of an EDS composed of p-forms with p > 1. In the case of an EDS gen-

erated by Υ(s) (constructed via the moving coframes method), ensuring involutivity is

more straightforward. In Sections 5 and 6 of [13], the authors provide a detailed anal-

ysis of involution for a G-coframe constructed via the moving coframes method. In

contrast, the present section provides only the necessary background for the reader to

understand how moving coframes facilitate replacing Cartan’s involutivity test with

a more analytically tractable approach, making it more accessible for integration into

machine learning frameworks.

In the classical Cartan framework, the standard procedure involves constructing a

contact ideal (see Definition 38) for a given DE system without prior knowledge of

nontrivial, contact-preserving symmetries—i.e., those that preserve the contact ideal

while mapping one solution to another. Subsequently, conditions for involutivity are

determined using computational algebraic methods [24, 25]. However, the frame-

work we propose inherently provides prior knowledge of intrinsic symmetries (see

Section 4.1). This enables the learning of an involutive distribution associated with

each solution u = f(x) via Theorem 4, as discussed in Section 4.2. The folia-

tion induced by this distribution defines a submanifold complementary to the integral

submanifold (see Definition 37), denoted by N (s)⊥ . This distribution represents non-

trivial, contact-preserving symmetry generators within T ∗J (s)(M). Nevertheless, as

highlighted in Definition 58, any G-coframe Υ
(s)
G comprises not only the M-C forms

of G but also includes ω, the coframe invariant under the action of G. Consequently,

the closure of the algebraic ideal Ialg, induced by Υ
(s)
G = {ω,µ}, must be ensured.

By definition, Υ(s)
G must be both regular and involutive. Throughout this chapter, we

emphasize that G acts locally effectively on J (s)(M). This ensures that the kernel of

the Lie algebra representation ψ : g → W(s)
f on J (s)(M) is trivial, as established by

Theorem 2 (see Chapter 4 of [1] for a detailed discussion on representations). Con-

sequently, this guarantees the involutivity of W(s)
f . However, we enforce a stricter
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constraint in Section 4.1, namely Cind, suffices to ensure locally free action (see Exer-

cise 2.69 in [10]), which, by default, implies locally effective action. Specifically, the

symmetry generators in V(s) must be pointwise linearly independent in TJ (s)(M).

Remark 32 (Lack of a Complete Symmetry Set and Involutivity). Suppose that s <

sG (see Definition 27). In this case, while g may still form a Lie algebra, it lacks

a complete set of symmetry generators. Nevertheless, the isomorphism g ∼=ψ W(s)
f

holds, ensuring that
[
W(s)

f ,W(s)
f

]
⊆ W(s)

f .

Regarding the involutivity of Υ(s), the requirement is more intricate; however, the

moving coframes method simplifies it. Lemma 6.4 of [45] provides an analytical

guarantee for the closure of Ialg. This result hinges on the existence of a moving

frame ρ(s), established by Theorem 6.5 of [13]. The requirements for such existence

are discussed in Section 3.7.2, where G must act locally (i) regularly and (ii) freely,

due to Theorem 4.5 in [13]. Since, in Section 3.7.2, the cross-section K(s) ≡ Γ
(s)
f

associated with a given solution u = f(x) is assumed to be regular, and regular ac-

tions admit regular cross-sections (see Definition 2.6 of [13]), the regularity of K(s)

(see Definition 54) implies that G acts regularly. However, we cannot rely solely

on the assumption that the given dataset constitutes a regular cross-section, as the

proposed framework lacks a mechanism to distinguish between a regular and an ir-

regular cross-section. During the construction of W(s)
f ⊂ TJ (s)(M), which is dual

to µ̂ ⊂ T ∗J (s)(M), in Section 4.2, we impose the condition
[
W(s)

f ,W(s)
f

]
⊆ W(s)

f .

A natural question arises as to how this condition informs the proposed model of the

regularity of G’s action. A regular action requires that the orbit dimension remains

constant across an open subset U ⊂ J (s)(M) and that each orbit contains a connected

subset at any given point z(s) ∈ U . As previously discussed, the constraint Cind in

(4.8) ensures the constancy of the orbit dimension. On the other hand, as established

by (3.11) in Theorem 1, any local flow F
z
(s)
0

: Rr → J (s)(M) passing through z(s)0 at

ϵ = 0 ∈ Rr can be expressed as

F
z
(s)
0
(ϵ) = Φ(v) · z(s)0 . (3.114)

By the Baker-Campbell-Hausdorff formula (Theorem 5.3 in [1]), the term Φ(v) can

be expressed as a series of Lie brackets. Consequently, enforcing the closure ofW(s)
f

under the Lie bracket operation yields an integrable action on J (s)(M), which, in
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turn, guarantees the existence of a connected subset of the orbit for 0 < ∥ϵ∥ ≤ δ ∈ R,

where δ > 0 is a small constant.

The final question concerning involutivity pertains to the stabilization order s ∈ N of

involutivity for Υ(s)
G . The concept of “stabilization order” of G, sG, as introduced in

Definition 27, refers to the order at which the orbits ofG on J (s)(M) attain their max-

imal dimension. One may ask whether this order coincides with the order at which

Υ(s) becomes involutive. When s reaches the “order of involutivity”, every differ-

ential invariant I(s) can be expressed in terms of fundamental invariants I(s), which

describe the classifying submanifold of Υ(s) (see Section 5 of [13] for further details).

Furthermore, Theorem 9.13 of [13] states that if the orbits of G attain their maximal

dimension at sG, then there exists a contact-invariant coframe in T ∗J (s)(M), allow-

ing every I(s) to be expressed in terms of I(s). Consequently, both stabilization orders

describe the same notion of “stability”. In the case of Lie point symmetries, the sta-

bilization order coincides with the order of the original DE system, i.e., sG = s0.

Remark 33 (Stabilization Order of Lie Point Symmetries). The fundamental compo-

nent functions of Lie point symmetries, as defined in (3.18), do not depend on fiber

coordinates corresponding to the partial derivatives of uα. Thus, point symmetries

cannot generate involutivity conditions for orders s > s0.

Remark 34 (Moving Coframes Theory for Lie pseudo-groups). The fundamental

theory of moving coframes for infinite dimensional groups is also established by Olver

et. al in [49, 48].

In conclusion, Section 3.7 provides only an introductory perspective on a sophisti-

cated topic in differential geometry and continuous symmetries.
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CHAPTER 4

METHODOLOGY

In this section, we present our contributions to the problem of learning/discovering

non-trivial, contact preserving group symmetries for a given system of DEs. As a

preliminary step, we propose a sub-algorithm designed to identify non-zero Lie point

symmetries (see Remark 36 and Definition 23). Subsequently, we ensure the invo-

lutivity and non-triviality (see Definition 26) of the VFS associated with g (see Def-

initions 39 and 7) and a particular solution u = f(x), as this property is essential

for constructing an involutive G-coframe on J (s)(M) [13, 49]. The involutivity re-

quirement arises from the need to pull back the Maurer-Cartan forms, which span

T ∗G, to T ∗J (s)(M) via a moving frame section σ(s) : J (s)(M)→ G× J (s)(M) (see

Definitions 47 and 56).

As outlined in Section 3.5, the neural architecture developed in this research learns

only the involutive VFS corresponding to non-trivial, contact-preserving symmetry

generators, whose involutivity is governed by Theorem 4. At first glance, using an

existing sample solution dataset as a cross-section (see Definition 54) may appear

paradoxical, as the primary goal of studying the EDS associated with DE systems

is to identify the integral submanifolds representing their solutions. However, in

the context of machine learning, it is standard practice to gather a dataset captur-

ing the output of a dynamical system, often expressed as the graph of a solution f ,

Γf . Accordingly, leveraging this sample dataset in conjunction with numerical finite-

difference methods to compute partial derivatives, ∂|Ik|fα/∂xIk , aligns naturally with

such methodologies.

This approach enables our framework to learn the complementary submanifoldN (s)⊥

—a foliation of the flow generated by the non-trivial symmetry generators—without
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disturbing the contact system (see Definition 38) associated with the DE system under

consideration.

In the concluding part of this section, we employ iResNETs [41] to implement the ex-

ponential map exp : TeG→ G, as described in (3.10) (see Figure 4.1). Additionally,

we propose a technique to address the deviation of the group action from the solution

manifold Σ(s) (see Definition 24) as consecutive group actions are iteratively applied,

beginning from an initial point z(s)0 ∈ Σ(s).

4.1 Learning the Infinitesimal Lie Point Symmetries

Figure 4.1: iResNET architecture with ∥gt∥ < 1. Each iResNET block gt is con-

structed using v̂i, representation of vi ∈ g in TM via (3.13), as a building block. See

Section 4.4 for further details.

We begin by outlining the process of learning the finite-dimensional Lie algebra g.

This sub-algorithm constitutes a key component of the iterative framework introduced

in Section 4.3. Let g = {v1, . . . , vos} represent the vector fields spanning the Lie

algebra of the symmetry group G associated with the DE system ∆(s0) = 0, where

s0 is the original order of the system. The parameter os = dim(G) corresponds to

the orbit dimension of G(s) acting on J (s)(M), with s denoting the stabilization order

of the group orbit (see Definition 27). The parameters to be learned are denoted

by Λ := {λ1, . . . , λos}, where each λi parametrizes the representation of vi ∈ g.

The corresponding approximation v̂i ∈ TM is implemented using a fully connected

neural network (FCN). In Sections 4 and 5, v̂i and FCNλi are used interchangeably

to emphasize that the component functions of v̂i, as stated in (3.18), are determined

by an FCN parameterized by the subset λi. Furthermore, the index t, denoted as
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a subscript in gt, specifies the number of times the corresponding group action is

applied to transform an initial point z(s)0 ∈ J (s)(M) into z(s)t ∈ J (s)(M). For further

details, we refer the reader to Section 4.4.

To compute the infinitesimal group action of vi on J (s)(M), we leverage the back-

propagation tools provided by PyTorch [50]. The action of pr(s)(v̂i) on a scalar func-

tion f ∈ C∞(J (s)(M)) is formulated as:

pr(s)(v̂i) [f ] |z(s) =
∑
j

FCN(s),j
λi
|z(s)

∂

∂z(s),j
(f)︸ ︷︷ ︸

(∗)

[z(s)] , (4.1)

where (∗) represents the derivative of f , with respect to jet space coordinates, com-

puted using PyTorch’s grad library, |z(s) indicates evaluation at z(s), and pr(s) denotes

the prolongation operator defined in Definition 16.

The remaining aspect of implementing (4.1) involves realizing the prolongation op-

erator pr(s) as outlined in Theorem 3. To this end, we compute the characteristic of

each v̂i as given in (3.19) and implement the total derivative operator Dik := d/dxik in

(3.17) using PyTorch’s grad facility. While it is feasible to train the framework to

learn the prolonged component functions φ̂αi,Ik in (3.21), this approach would intro-

duce additional parameters to optimize for each v̂i.

In this and the subsequent sections, let u = f tr(x) and u = f te(x) represent the

training and testing solution datasets, respectively. The graphs of these functions,

denoted as Γf tr
and Γf te

, are further prolonged to J (s)(M) → X (see Remark 5) and

represented as Γ(s)
f tr

and Γ
(s)
f te

, respectively.

To learn any FCNλi , a set of conditions must be satisfied. First, each vector field

vi ∈ g is required to satisfy the infinitesimal symmetry condition given in (3.35).

Using (4.1), the first component of the final Lagrangian, LLie, is defined as:

Jsym =
1

2

∥∥∥(pr(s)(v̂i)
[
∆(s)

])
|
z(s)

∥∥∥2 , (4.2)

where ∥ ·∥ denotes the ℓ2 norm. Special care must be taken when implementing (4.2),

as residual terms may arise after applying the infinitesimal action of v̂i, as defined

in (3.35). These residual terms can involve ∆(s) and
{
∂∆(s),ls/∂z(s),js

}ls
js

as their least

common multiple (LCM), where ls = 1, . . . , ns, js = 1, . . . ,ms = dim(J (s)(M)),

and ns denotes the number of DEs in ∆(s0) prolonged to J (s)(M) (see Remark 35).
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Such terms may lead to superfluous non-zero expressions, even though they are math-

ematically equal to zero. For instance, consider Example 2.41 in [8], where applying

pr(2)(v3) to the linear heat equation yields ut − uxx ̸= 0, despite being zero theoreti-

cally. To formalize this issue, let

R∆(s) =

rest(k),lk = ∆(k),lk = 0,

rest(k),lkjk
= ∂∆(k),lk

∂z(k),jk
= 0

(4.3)

represent the set of such restrictions on Σ(k), where k = s0, . . . , s, lk = 1, . . . , nk,

and jk = 1, . . . ,mk. AddressingR∆(s) typically requires symbolic computation tools

such as SymPy [51] or REDUCE [46]. However, in our framework, these concerns

are mitigated by the assumption that the sample datasets Γf tr
and Γf te

are the graphs

of solutions to ∆(s0). This ensures that such residual terms are already evaluated to

zero, thanks to the computational graph generated by PyTorch.

Remark 35 (Prolongation of ∆(s0)). It is worth noting that (4.2) demonstrates that

the infinitesimal symmetry condition can be imposed on the prolonged DE system

∆(s) = 0, where s ≥ s0, with s0 denoting the order of the original system. As specified

in Algorithm 2, any v̂i ∈ V must satisfy the resulting constraints ∀ k = s0, s0 +

1, . . . , s, which arise from the prolongation process. Therefore, the notation ∆(s)

encompasses DEs of all orders (s0, . . . , s). This prolongation procedure is further

detailed in Section 4.3.

As we are focusing on learning Lie point transformations, which are a subset of con-

tact transformations (see Section 3.3), the contact condition given in (3.33) (or equiv-

alently in (3.34)) must also be satisfied:

Jcnt =
1

2

∥∥∥∥∥∥
(
∂Qα

i

∂uβj
+ ξ̂ji δ

α
β

)
|
z(1)

∥∥∥∥∥∥
2

. (4.4)

Here, we prefer the formulation in (3.34) over (3.33), as the characteristic of the

prolongation of v̂i is already computed. The contact condition along with the pro-

longation formula in Theorem 3 can be interpreted as preserving the consistency of

a solution u = f(x) with its partial derivatives ∂kfα/∂xIk under the action of G(s),

where α = 1, . . . , q, k = 1, . . . , s, and |Ik| = k (see Definition 14). As noted in

the discussion following Proposition 1, for Lie point transformations, the inclusion
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of (4.4) in the ultimate cost function is not necessary. However, this cost function

becomes essential when extending the framework to encompass Lie contact trans-

formations, which are typically infinite-dimensional and necessitate a distinct imple-

mentation scheme.

The set pr(s)({v̂1, . . . , v̂os}) ⊂ TJ (s)(M) must be linearly independent at any z(s) ∈
J (s)(M). Given that Algorithm 3 learns each vector field vi, which spans g, in a single

optimization phase indexed by i ∈ {1, . . . , os}, and under the assumption of a locally

effective group action (see Definition12), we enforce the inclusion hierarchy:

V(s)
1 |z(s) ⊂ . . . ⊂ V(s)

i |z(s) ⊂ . . . ⊂ V(s)
os |z(s) ⊂ Tz(s)J

(s)(M) (4.5)

for all z(s) ∈ J (s)(M). Here, each V(s)
i := pr(s)(Vi) = pr(s)({v̂1, . . . , v̂i}) is a VFS

of dimension i. For i = 1, linear independence is trivially satisfied. However, for

i ≥ 2, two cases arise: (i) i = 2 and (ii) i ≥ 2. Define κ12 = ∠(v̂1, v̂2)|z(s) as the

angle between pr(s)(v̂1) and pr(s)(v̂2) at z(s). For i = 2, the objective is to minimize

| cos (κ12)|2. For i > 2, we minimize the square of the cosine of the angle κ(i−1)i =

∠(v̂i∥, v̂i)|z(s) , where v̂i∥ is the projection of pr(s)(v̂i) onto the subspace spanned by

V(s)
i−1. To formalize this, let Ai represent the matrix:

Ai =


| |

pr(s)(v̂1) . . . pr(s)(v̂i−1)

| |


|
z(s)

, (4.6)

where i = 3, . . . , os. The corresponding projection matrix Pi is given by Pi :=

Ai (A
t
iAi)

−1At
i, where t denotes the matrix transposition operator [52]. Consequently,

v̂i∥ becomes:

v̂i∥|z(s) = Pi · pr(s)(v̂i)|z(s) . (4.7)

It is important to note that the linear independence of V(s)
i does not necessarily ensure

that | cos(κ(i−1)i)|2 → 0 as epoch → ∞ in Algorithm 3. Hence, this condition must

also be introduced as a constraint in LLie:

Cind = | cos (κ(i−1)i)|2 − tolind, (4.8)

where tolind ∈ R+ is a tolerance value. Alternatively, a simpler theoretical approach

exists, albeit computationally more expensive than the previously described method.
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Specifically, let the matrix Ai from (4.6) be extended by appending the column vector

pr(s)(v̂i), forming a new matrix denoted by Ãi. Ensuring that Ãi is of maximal rank

can be achieved by verifying the existence of at least one non-vanishing i× iminor of

Ãi. However, this method is not employed due to the high computational complexity

associated with calculating such minors, which is given by:

O

((
m

i

)
i3
)
, (4.9)

where m = dim(J (s)(M)).

As discussed in Section 5.3, the ultimate cost function includes a crucial term to elimi-

nate solution-dependent but non-trivial symmetry generators. The primary motivation

for excluding such symmetries is to prevent the emergence of infinite-dimensional Lie

algebras acting on J (s)(M). Furthermore, these solution-dependent symmetries are

directly influenced by initial and/or boundary conditions (IBCs), which is particu-

larly undesirable when focusing on intrinsic symmetry generators. For instance, in

the case of linear DE systems, solution-dependent symmetry generators arise due to

the superposition property of solutions and take the form:

v̂ =

q∑
α=1

φ̂α(x)
∂

∂uα
, (4.10)

where φ̂α depends only on the independent variables x and not on the dependent

variables u. However, for nonlinear PDEs, this assumption does not hold. Regardless

of the linearity of ∆(s0) = 0 or the dependence of φ̂α on u, any solution-dependent

symmetry generator must satisfy the following condition:

∆(s0)(x, φ̂αJ) = 0, (4.11)

where α = 1, . . . , q, 0 ≤ |J | ≤ s0, and φ̂αJ denotes the prolongation of φ̂α, as defined

in Definition 16. Readers should note the distinction between φ̂αJ(x,u) and φ̂αI (z
(|I|))

in (3.21). Specifically:

φ̂αJ(x,u) =
∂#J φ̂α(x,u)

∂xJ
(4.12)

where ∂#J/∂xJ is the partial derivative operator, of order |J |, with respect to xJ .

To exclude solution-dependent symmetry generators, the cost function must include

a penalization term, defined as follows:

Cdep =
1

εdep + ∥∆(s)(x, φ̂αJ)∥2
− toldep, (4.13)
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where εdep ∈ R+ and toldep ∈ R+ are regularization and tolerance values, respectively,

and ∥ · ∥ denotes the ℓ2 norm. Here, α = 1, . . . , q, and 0 ≤ |J | ≤ s (see Remark 35).

Since the objective is to discover only intrinsic symmetries, any nonlinear dependence

of ξ̂i or φ̂α, as defined in (3.18), on uα leads to non-uniform transformations across

different solutions of the given DE system. The issue is particularly evident for φ̂α,

as it explicitly determines the transformation of the dependent variables uα in Σ(s).

Although the effect of nonlinearity in ξ̂i may appear more subtle, there are two funda-

mental reasons why intrinsic symmetry generators must also remain at most linearly

dependent on uα: (i) Non-uniform transformation of independent coordinates. If any

ξ̂i depends nonlinearly on uα, then the transformation of the independent variables xi

will be solution-dependent. This results in a non-uniform deformation of the solution

space Σ(s), much like the distortion caused by nonlinearity in φ̂α. (ii) Potential vio-

lation of the Lie algebra closure property. Nonlinear dependence on uα can obstruct

the closure of the Lie algebra under the Lie bracket operation defined in (3.5). This

closure is essential for integrating the action of the symmetry generators to construct

a well-defined group transformation on Σ(s).

To illustrate these issues, consider the following first-order DE along with a nonlinear

generator:

∆(1)(x, u, ux) =
du

dx
− u = 0,

v̂ = u2
∂

∂x
.

(4.14)

The general solution to ∆(1)(x, u, ux) is given by

u(x) = Cex, (4.15)

where C ∈ R is an arbitrary integration constant. Consider two particular solutions,

u1(x) = ex and u2(x) = 2ex. The integral curves of v̂ in (4.14) yield the following

transformations of x for these solutions, respectively:

x1(t) = −
1

2
ln(C − 2t),

x2(t) = −
1

2
ln(C − 8t).

(4.16)

This result demonstrates that the rate of change in x differs across solutions, meaning

the transformation induced by v̂ is inherently solution-dependent. Consequently, such

79



a symmetry generator disrupts the uniform, global action of an intrinsic Lie symmetry

group G. While solution-dependent symmetries are sometimes studied in applied

settings, they are beyond the scope of this work.

To prevent the learned symmetry generators v̂i from exhibiting nonlinear dependence

on u, we introduce the following regularization term:

Jnlu =
∑
i

∑
α

∥∥∥∥∥ ∂2ξ̂i

∂uj1∂uj2

∥∥∥∥∥
2

+

∥∥∥∥ ∂2φ̂α

∂uj1∂uj2

∥∥∥∥2 , (4.17)

where ∥·∥ denotes the Frobenius norm of each matrix indexed by i and α and j1, j2 =

1, . . . , q. This term penalizes second-order derivatives with respect to uα, ensuring

that both ξ̂i and φ̂α remain at most linearly dependent on uα.

Incorporating (4.2), (4.8), (4.13), and (4.17) the final Lie Lagrangian LLie takes the

form:

LLie = Jsym + Jnlu + µindCind + µdepCdep, (4.18)

where µ := [µind, µdep]
t represents the dual optimal Karush-Kuhn-Tucker (KKT) mul-

tipliers (cf. λ∗i variables in (5.49) of [53]). However, reader should keep in mind that

(4.4) is included when transformation groups larger than Lie point transformations are

considered, though such infinite dimensional groups require a modified approach as

discussed in [48]. As noted earlier, the log-barrier extension method in [54] converts

this constrained optimization problem into an unconstrained one.

Remark 36 (Zero Vector Field). The cost functions Jsym, Jnlu, and Jcnt may be triv-

ially satisfied if any v̂i is a zero vector field. However, normalizing any v̂i to unity,
v̂i/∥v̂i∥, prevents this triviality.

The costs outlined thus far are consolidated in Algorithms 2 and 3.

Remark 37 (Jet Space Order sc in Algorithms). It is important to note that the jet

space order sc, referred to as the current order of the jet space in the algorithms,

does not necessarily coincide with s0. Prolongation of J (sc)(M) may be required

until the stabilization order s is attained, when an involutive, non-trivial distribution

is considered in the next section. Further elaboration is provided in Section 4.3.
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4.2 Learning Involutive Non-Trivial Distribution

This section builds upon the discussion in Section 3.5. As highlighted in the con-

cluding paragraph of that section, unlike trivial symmetries, non-trivial symmetries

actively influence the dynamics of DE systems and may compromise the integrity of

the contact system characterizing the integral submanifold under consideration. Con-

sequently, ensuring the involutivity ofWf , which corresponds to the representation of

these non-trivial, contact-preserving symmetry generators, is essential in constructing

a G-coframe. However, it is important to note that the symmetry generators learned

in Section 4.1 are not necessarily non-trivial, as defined in Definition 26, when re-

stricted to a particular solution u = f(x). Consequently, the non-triviality of these

generators must be assessed on a per-solution basis. Since such symmetries ŵj are

already known to belong to V , it follows that

ŵj|z =
∑
i

aij(z)v̂i|z ∈ Wf , (4.19)

where aij ∈ C∞(M) are coefficient functions.

Observe that the distribution V obtained in Section 4.1 consists solely of intrinsic

symmetry generators; that is, no vector field v̂i ∈ V depends on a particular solution,

nor does any exhibit nonlinear dependence on the dependent variables u. Neverthe-

less, several important questions arise—even when considering a single example from

among Examples 2.41 through 2.45 in [8]. For instance, both the heat equation in Ex-

ample 2.41 and the Burgers’ equation in Example 2.42 possess solution-dependent

symmetry generators, commonly denoted vα. As indicated in these examples, such

generators form infinite-dimensional Abelian subalgebras, whereas the intrinsic sym-

metry generators constitute a finite-dimensional Lie subalgebra g. Moreover, there

exist differential equation systems, such as the Korteweg–de Vries (KdV) equation

presented in Example 2.44 of [8], that do not admit any solution-dependent symme-

try generators. In such cases, the consideration of solution-dependent symmetries

becomes unnecessary.

In keeping with our notation, let v̂α denote any solution-dependent symmetry gener-

ator. This prompts the natural question: why does v̂α not appear in (4.19)? The first

reason is that including this Abelian subalgebra would necessarily lead to an infinite-
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dimensional representation for any ŵj ∈ Wf . Furthermore, generators of the form

v̂α do not admit a global representation on the full jet space J (s)(M). To see this,

consider the solution space

S(s) :=
{
Γ
(s)
f | ∆

(s)(x,f (s)) = 0
}
, (4.20)

which consists of all prolonged graphs corresponding to solutions of the DE system

∆(s). Then, pr(s)(v̂α) ∈ TS(s). However, since S(s) ⊊ Σ(s) ⊂ J (s)(M), unless

the system is trivial, it follows that v̂α is not defined globally on J (s)(M). Conse-

quently, any v̂α fails to generate directions transverse to the orbits of the global sym-

metry group G ⊂ Diff(J (s)(M)), which is generated by the Lie algebra g ∼= V(s) ⊂
X(J (s)(M)).

Fortunately, identifyingWf is computationally efficient due to the frozen parameter

set Λ of V , allowing only the coefficients aij(z) to be learned. In contrast, modifying

Λ directly to extract the non-trivial, involutive subset of V for a given solution dataset

would be computationally expensive, especially when a large number of symmetry

generators have been discovered.

Remark 38 (V may not be a linearly independent set). We consistently denote any

linearly independent set as {v1, . . . , vn}. However, unless prolonged to a specific

order s, a VFS V = {v̂1, . . . , v̂os} may not constitute a linearly independent set.

Hence, this non-prolonged V is treated as an overdetermined VFS.

As discussed in Sections 1.2 and 3.4, our aim is to learn non-trivial symmetries (see

Definition 26). To ensure this, the components of any vector field v̂i must satisfy the

following non-zero constraint:

Qα
i (z

(1))|
Γ
(1)
f tr

̸= 0, ∀α = 1, . . . , q. (4.21)

Since (4.21) is expressed as a “ ̸= 0” condition, standard optimization methods, such

as those used in (4.2) or (4.4), are not applicable. Instead, this constraint is incorpo-

rated into Linv in (4.27) as an additional term, denoted by Cntr, and optimized using

log-barrier method in [54]. Let tolntr ∈ R+ be a small tolerance value. The constraint

is then expressed as:

Cntr = −1
(
γ(Qi(z

(1)))− tolntr
)
, (4.22)
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where Qi = [Q1
i , . . . , Q

q
i ]

t in (3.19), z(1) ∈ Γ
(1)
f tr

, and γ is the “softmin” function:

γ(Q) = ln

(∑
j

eQ
j

)
. (4.23)

Observe that, (4.22) ensures that v̂i has non-trivial effect on each dependent variable

uα.

According to Theorem 4, a VFS is involutive if and only if v̂jk = [v̂j, v̂k] ∈ V := Vos ,

where [·, ·] denotes the Lie bracket as defined in (3.5), and 1 ≤ j < k ≤ os. As

discussed in the last paragraph of Section 3.1, transitivity of a group action, when

restricted to a single orbit Oz(s) of G(s), is crucial for involutivity as non-transitive

actions might result in singularities or disconnected components in Oz(s) , potentially

leading to a failure of the bracket closure property of V . Under this assumption, the

sub-algorithm for ensuring involutivity ofWf begins with the following proposition:

Proposition 3. LetW(s)
f := pr(s)(W) = pr(s)({ŵ1, . . . , ŵos}) be the VFS for a given

DE system ∆(s0) = 0, and the solution dataset Γ(s)
f , where each ŵj satisfies (3.34),

(3.35), and (4.21) for all sc = s0, s0 + 1, . . . , s. Then:

pr(s)(ŵjk) := pr(s)([ŵj, ŵk]) ∈ Wf (4.24)

is sufficient for the vector field pr(s)(ŵjk), 1 ≤ j < k ≤ os, to satisfy the same

conditions as any pr(s)(ŵj) spanningW(s)
f (see also (3.45)).

The proof of Proposition 3 is straightforward, when (3.46) is considered. This propo-

sition implies that minimizing the Euclidean distance between pr(s)(ŵjk) and its pro-

jection ontoW(s)
f is sufficient to satisfy the involutivity condition stated in Theorem 4:

Jinv =
∑

1≤j<k≤os

∥pr(s)(ŵjk)|z(s) − P̄ · pr(s)(ŵjk)|z(s)∥2, (4.25)

where P̄ := Ā
(
ĀtĀ

)−1
Āt is the projection matrix, and

Ā =


| |

pr(s)(ŵ1) . . . pr(s)(ŵos)

| |


|
z(s)

. (4.26)

SinceWf is required to form a linearly independent set, the constraint Cind must be

enforced for all pairs (ŵj,Wf \ ŵj) simultaneously, where j = 1, . . . , dim(Wf ) (see
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Algorithm 4 for details). Incorporating the constraints (4.8), (4.25), and (4.22), the

final Lagrangian including the involutivity condition is given by:

Linv = Jinv + µindCind + µntrCntr, (4.27)

where µind and µntr are the corresponding KKT multipliers associated with the linear

independence and non-triviality constraints, respectively.

The concise yet profound algorithm is summarized in Algorithms 4 and 5. However,

note that Algorithm 5 is invoked in Algorithm 6 only after reaching a specific order

sc, as detailed in Section 4.3.

One might propose, “Why not enforce the involutivity conditions during every ith

training phase alongside the optimization of LLie?” While this observation is valid,

enforcing involutivity at all training steps—except for the final step, when i = os—is

redundant. Moreover, while the vector field system V learned in Section 4.1 is valid

for any solution in Σ(s), constructing a non-trivial involutive distribution, as discussed

at the beginning of this section, is necessary only for a particular solution u = f(x).

Another potential approach involves constructing a Lie algebra chain as follows:

0 ⊂ {w1} = g1 ⊂ {w1, w2} = g2 ⊂ . . . ⊂ {w1, . . . , wos} = g, (4.28)

where [gi−1, gi] ⊂ gi. In this context, g is referred to as a solvable Lie algebra (see

Definition 2.63 in [8]). Equation (4.28) implies that each gi−1 is not only a vector

subspace but also an algebraic ideal in gi. (Note: This is distinct from the algebraic

ideal defined in Definition 32.) This chain creates a hierarchy of normal subgroups

such that {I} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gos = G. However, as discussed in the Solvable

Groups section of Chapter 2 in [8], this approach overly restricts the discovery of

new symmetries due to the potential lack of sufficient number of normal subgroups.

While such a chain is valuable for simplifying DE systems via normal subgroups Gi,

without interference from higher-dimensional normal subgroups Gj (where j > i),

it is not relevant to the context of this study or the construction of the G-coframe in

future research.

Remark 39 (Arbitrary functions and Frobenius’ Theorem). Learning aij(z)’s in (4.19)

via Algorithm 5 is equivalent to computing arbitrary (free) functions that satisfy in-
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tegrability conditions. These functions are derived as a consequence of the Car-

tan–Kähler theorem, a generalization of Frobenius’ theorem (see, for example, the
∂uα/∂y functions in (15.24) of [10]). However, in the case of Frobenius’ theorem, such

free functions are computed indirectly.

4.3 Prolongation & Iterative Learning Algorithm

In this final subsection, we delve into the process of prolongation, which plays a key

role in learning the involutive, finite-dimensional Lie algebra g. Note that this use

of the term “prolongation” should not be confused with the prolongation of analytic

objects, as defined in Definition 16 and Theorem 3. The culmination of this discussion

is encapsulated in Algorithm 6, which constructs the involutive chain forWf similar

to the one presented in (4.5).

Although Cartan’s equivalence problem [15] is not explicitly addressed here, the

problem at hand is inherently an equivalence problem. Any DE system can be ex-

pressed via a contact system that is specific to that DE system (see Section 3.5).

Consequently, any contact form θ ∈ Idiff must satisfy the following compatibility

condition:

ϕ∗(θ̄) = θ, (4.29)

where θ̄ ∈ Idiff and ϕ is the transformation induced by the non-trivial, contact-

preserving symmetry generators of g (see the equivalence problem in Section 3.6).

Analogous to Cartan’s framework (see Chapter 12 in [10]), prolongation of the sub-

space underlying the DE system may become necessary to ensure the involutivity of

W(s)
f in (4.5). In the context of DE systems, prolongation is intrinsically tied to the

jet space framework, as DE systems are naturally defined in jet spaces. New con-

straints often emerge due to the relationships between higher-order derivatives of the

solutions. For this reason, the term “prolongation” in this study refers specifically to

the prolongation of the underlying jet space:

J (sc)(M) = pr(1)(J (sc−1)(M)). (4.30)

The need for prolongation arises from two key considerations. First, the symmetry

groupGmust reach its stabilization order s. At this order, a contact-invariant coframe
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of rank p exists (see Definition 9.11 and Theorem 9.13 in [13]). While this condition

can be relaxed by forgoing full-symmetry reduction (which is computationally expen-

sive), approximating the prolongation using finite differences [55] for:

Γ
(sc)
f tr

= pr(1)(Γ(sc−1)
f tr

) (4.31)

may lead to inaccuracies in higher-order partial derivatives of the sample dataset (see

also Remark 32). To construct a contact-invariant coframe, the following condition

must be satisfied:

osc ≤ dim(Σ(sc))− p, (4.32)

where osc is the orbit dimension of G(sc) in J (sc)(M), and Σ(sc) ⊂ J (sc)(M) is the

regular submanifold representing the prolonged DE system ∆(sc) = 0 as discussed

below. This inequality ensures that the symmetry group action G(s) is compatible

with the available degrees of freedom in the integral submanifold associated with

u = f(x) at jet order sc. However, this condition alone is insufficient to guarantee

the involutivity ofW(sc)
f for sc < s. Hence, further prolongation might be required to

incorporate additional integrability conditions for involutivity.

In addition to prolonging the input dataset Γf tr
in (4.31), each vector field ŵj ∈ Wf

must also be prolonged. However, directly applying pr(sc)(ŵj) to ∆(s0) is theoretically

incorrect, as it neglects the higher-order relations on which pr(sc)(v̂i) acts. Thus, the

DE system ∆(s0) must also undergo prolongation. This is achieved through the total

derivative operator Dj defined in (3.17) and is expressed by the following recursive

formula (see Equation (2.54) in [23]):

pr(1)(∆(k−1),lk−1) =



∆(k−1),lk−1

∆
(k),lk−1

1 := D1(∆
(k−1),lk−1)

...

∆
(k),lk−1
p := Dp(∆

(k−1),lk−1)

, (4.33)

where lk−1 = 1, . . . , nk−1, k = s0 + 1, . . . , sc, and nk−1 denotes the number of all

constraints up to (k − 1)th order of prolongation, with ns0 being the number of DEs

in ∆(s0). For convenience, we relabel ∆(k),lk−1

j as ∆(k),lk , where j = 1, . . . , p and

lk = 1, . . . , nk. Consequently, the prolongation defined in (4.33) introduces new
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constraints, which must be satisfied via the following conditions:

pr(k)(ŵj)
[
∆(k)

]
|
∆(k)=0

= 0, (4.34)

for j = 1, . . . , osc .

Remark 40 (Polynomial DE Systems and Prolongation). In this study, we assume

that all DE systems are expressed as polynomials in jet space coordinates. Con-

sequently, employing a computational algebra tool rather than PyTorch’s compu-

tational graph to implement (4.33) offers an advantage in terms of computational

efficiency. Although the gain is not substantial for smaller systems, it can become

valuable when dealing with large-scale DE systems. Moreover, since SymPy pro-

vides functionality for bi-directional conversion of expressions, (4.33) can be im-

plemented without disrupting PyTorch’s computational graph. This interoperability

enables seamless integration of symbolic computation with machine learning frame-

works, enhancing flexibility and efficiency in handling complex DE systems.

Not all such restrictions, however, contribute to the geometric structure of Σ(k), though

they remain part of the differential ideal generated by the prolonged DE system via

(4.33). This leads to the following definition:

Definition 59. Let ∆(k),lk ∈ ∆(k) \ ∆(k−1), as given by (4.33), for a particular pair

(k, lk), where k ∈ {s0 + 1, . . . , sc} and lk ∈ {nk−1 + 1, . . . , nk}. If ∆(k),lk satisfies:

0 ≡ ∆(k),lkmod
(
∆(k−1)

)
, (4.35)

then ∆(k),lk is trivially satisfied and is termed a redundant differential consequence,

where ∆(k−1) forms a differential ideal (see Remark 41).

Remark 41 (Idiff in Differential Geometry vs the One in Differential Algebra). The

term differential ideal, as used in Definition 59, slightly differs from Idiff in Defi-

nition 33. In differential geometry, Idiff characterizes the geometric properties of

DE systems via differential forms and exterior derivative (see Definitions 18 and 19).

Conversely, in differential algebra, a differential ideal models DE systems using poly-

nomials in jet space coordinates and their derivatives (see Definition B.1.24 in [23]).

Despite these differences, both notions encode the same principle of closure under

differentiation and are often interconvertible.
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According to Definition 59, redundant differential consequences should not be in-

cluded in the total count of non-trivial constraints ck for all k = s0 + 1, . . . , sc.

In computational algebra, tools such as Gröbner or Pommaret bases are employed

to identify and eliminate these trivial differential consequences, as discussed exten-

sively in [23]. These algebraic techniques determine the involutivity conditions and

the prolongation step sc at which involutivity is achieved.

Fortunately, in our case, such computational tools are unnecessary to evaluate the con-

dition in (4.32), as our objective is not to identify the maximal integral submanifold

(see Definition 37) defined by the involutive subsystem of (4.33). Instead, our focus

lies on the submanifold N (sc)
⊥ ⊂ Σ(sc), which is transverse to that maximal integral

submanifold S
(sc)
f and is foliated by the non-trivial, contact-preserving vector fields

W(sc)
f (see Section 3.5). Assuming regularity of Σ(k) for all k = s0, . . . , sc, we avoid

computing dim(Σ(k)) at every point z(k) ∈ Σ(k), as it retains constant rank. Thanks

to the following proposition, the redundant differential consequences do not have to

be detected:

Proposition 4. Let ∆(k),lk be a redundant differential consequence as defined in

(4.35). Then:

rank
[
Jac(∆(k))

]
= rank

[
Jac(∆(k) \ {∆(k),lk})

]
, (4.36)

where Jac(·) is the Jacobian matrix operator with respect to the jet coordinates of

J (k)(M).

A proof of Proposition 4 is provided in Appendix A.3 and is inspired by the result in

Theorem 7.1.6 in [23]. In contrast to Proposition 4, Theorem 7.1.6 in Seiler’s work

excludes the columns of Jac(∆(k)) corresponding to ∂∆(k),lk/∂xi. This exclusion arises

because Seiler’s focus is not on the geometric differential consequences, but rather

on those induced by relations among the fiber coordinates. Here, a geometric differ-

ential consequence refers to the natural tangency to the base manifold M . As such,

it does not represent a non-trivial differential consequence within the emerging fiber

TΣ(k)∩ker(dπkk−1), relative to the fibration πkk−1 (see (3.22)). Specifically, ker(dπkk−1)

denotes the kernel of the differential map associated with πkk−1 (see (3.24)). How-

ever, it does not mean that such geometric consequences do not influence the rank of

Jac(∆(k)) and hence, we include them in our implementation.
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Consequently, by Proposition 4, redundant differential consequences introduced at

the kth prolongation step do not influence dim(Σ(k)), allowing us to compute:

dim(Σ(k)) = mk − rank
[
Jac(∆(k))

]
, (4.37)

where mk = dim(J (k)(M)) (see (3.37)).

In summary, redundant differential consequences do not need to be eliminated to

evaluate (4.32) in our algorithms. Nonetheless, for generalized symmetries and/or

DE systems that define non-trivial contact structures, the number of constraints in-

troduced via (4.33) can become computationally prohibitive, necessitating algebraic

methods to discard such differential consequences. However, this aspect is reserved

for future research, as the prolongation process is seldom required for Lie point trans-

formations.

We also want reader to recall that, in (3.22), the canonical projection for a given

jet bundle is defined. As elaborated in the corresponding section, this operator can

be reliably employed in conjunction with Lie point transformations. Notably, dif-

ferent jet space orders are required for the various cost functions discussed thus

far. Consequently, the projection πts is utilized across various algorithms in Ap-

pendix D and implicitly implemented by discarding the prolonged components of

order k = t, t− 1, . . . , s+ 1 from the relevant analytic objects, where s < t.

Remark 42 (Discovering no new Symmetry upon Prolongation). The purpose of

the inner while-loop in Algorithm 6 is to prolong the analytical objects of interest

and search for additional symmetries that may arise from the constraints introduced

by (4.33). However, prolonging the system as described in (4.33) to address non-

involutivity and establish a contact-invariant coframe does not guarantee the discov-

ery of new symmetries. Consequently, the absence of newly identified symmetries

upon prolongation does not indicate a failure of the algorithm. Thus, uncovering new

symmetries is not a prerequisite for satisfying the conditions in (4.32) and (4.25).

4.4 Constructing the Group Action from the Learned Lie Algebra

Generating group actions is crucial for determining a G-coframe, as fundamental

lifted differential invariants, defined in (3.93), are constructed using these actions.

89



Figure 4.2: The implementation of exp : TeG → G in (3.10) using iResNET. The

iResNET block gt represents the action of {exp (ϵw)− e} in J (s)(M) (see Figure 4.1)

and ensures all the group axioms in Definition 3.

Having obtained an approximation of the representation of g ∈ J (s)(M), we now

turn to the construction of any gϵ ∈ G in the neighborhood of e ∈ G. For this

purpose, we revisit the exponential map exp : TeG→ G, introduced in (3.10), in the

context of the group action Ψ : G × J (s)(M) → J (s)(M) defined in (3.1). Using

(3.13) and considering z(s) as a coordinate function, we write:

Ψ(exp (ϵw), z(s)) = z(s) + ϵ pr(s)(ŵ)|z(s) +
ϵ2

2!
pr(s)(ŵ)

[
pr(s)(ŵ)

]
|z(s) + . . .︸ ︷︷ ︸

=gt

= z̄(s),

(4.38)

where ϵ ∈ R and z(s), z̄(s) ∈ J (s)(M) (see Figure 4.2).

The group axioms, listed in Definition 3, must be satisfied by our implementation.

We employ iResNET, as discussed in Section 4.1, to fulfill these requirements. The

identity element e ∈ G is trivially satisfied when ϵ = 0, as it nullifies the gt term in

(4.38). Associativity follows from the compatibility rule of the group action Ψ, stated

in (3.1), and the composition law of iResNET, given as:

(1+ gt+1) · [(1+ gt) · z(s)t−1] = [(1+ gt+1) · (1+ gt)] · z(s)t−1, (4.39)

where 1 is the identity operator on J (s)(M). Ensuring invertibility is more challeng-

ing but can be addressed using Theorem 3.42 in [1] and the following result:
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Proposition 5. Let ϵ ∈ R, v̂ ∈ Vos , and

∥pr(s)(v̂)∥op := sup
TJ(s)(M)∋ŵ ̸=0

∥pr(s)(v̂)[ŵ]∥
∥pr(s)(v̂)∥∥ŵ∥

= K, (4.40)

where ∥ · ∥op is the operator norm on TJ (s)(M) with respect to a metric defined on

J (s)(M). If K < ln(2)/|ϵ|, then, by Theorem 1 in [41], the transformation specified in

(4.38), implemented via iResNET, is invertible.

Remark 43 (Why Vos in Proposition 5?). Observe thatWf is not involved in Propo-

sition 5, but Vos . The reason is that the operator norm of any ŵj ∈ Wf could be

controlled by v̂i’s spanning Vos .

The proof of Proposition 5 is provided in Appendix A.4. As its name suggests, iRes-

NET ensures invertibility by controlling the spectral norms {σ1
i , . . . , σ

Ni
i } of the linear

layers in FCNλi associated with v̂i, and by employing contractive non-linear activa-

tion functions. Here, Ni denotes the number of linear layers in FCNλi . The following

inequality illustrates why bounding the spectral norms of {W j
i }

Ni−1
j=1 constrains the

operator norm as stated in Proposition 5:

∥W j
i ∥2op ≥

v̂t(W j
i )

tW j
i v̂

∥v̂∥2
, (4.41)

where v̂ ∈ TJ (s)(M). The maximum value of the Rayleigh quotient (the right-hand

side of the inequality) is achieved when v̂ is the eigenvector of W j
i corresponding to

σji . Therefore,

∥W j
i ∥op = σji , (4.42)

where ∥ · ∥op denotes the ℓ2-induced operator norm. Moreover, σji may provide an

upper bound on ∥W j
i ∥op when the operator norm is induced by a norm other than

ℓ2. Consequently, iResNET must ensure σji < ln(2)/|ϵ|, where i = 1, . . . , os and j =

1, . . . , Ni. Although contractive activation functions naturally reduce K below this

threshold, minor adjustments can further optimize it.

An accuracy issue arises due to truncating the expansion in (4.38), which becomes

significant as consecutive actions are applied to z(s)0 ∈ Σ(s). To mitigate this devi-

ation from the submanifold Σ(s) of interest, a retraction map r : U → Σ(s), where

U ⊂ J (s)(M), is employed. By Proposition 6.25 in [39], r is a smooth submersion
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computed via:

min
z(s),µ
∥z̄(s) − z(s)∥2 + µt∆(s)(z(s)), (4.43)

where µ ∈ Rn are Lagrange multipliers, n is the number of equations in ∆(s) = 0,

and z̄(s) is the truncated group action output from (4.38). Typically, we expand (4.38)

to second or third order for computational efficiency.

The retraction map r can be simplified when linear DE systems are considered, as

such systems are embedded into J (s)(M) as affine submanifolds—for instance, a

hyperplane. This observation is utilized in Section 5.4, where the sample DE system

is linear and homogeneous, corresponding to a hyperplane passing through the origin

in J (s0)(M). Consequently, the retraction map reduces to the canonical projection

from the normal bundle NΣ(s) = TJ (s)(M)|Σ(s) \ TΣ(s) (see the definition preceding

Theorem 6.23 in [39]) onto Σ(s)(M). Explicitly, it is given by:

r(z̄(s)) = z̄(s) − Ã · (A · z̄(s) − b)︸ ︷︷ ︸
∈N

Σ(s)

, (4.44)

whereA represents the matrix form of ∆(s) = 0, Ã = At(A·At)−1 is the Moore–Penrose

inverse of A, and b ∈ R is the inhomogeneous component of ∆(s) = 0 (see the pro-

longation of ∆(s0) to order s > s0 in (4.33)).

Remark 44 (Activation of retraction map). The retraction map r : U → Σ(s), im-

plemented via (4.43), is only activated when ∥∆(s)(z̄(s))∥, measured in the ℓ2 norm,

exceeds a predefined threshold.
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CHAPTER 5

EXPERIMENTS

This section presents our experiments to validate and assess the generalization capa-

bilities of our neural architecture, implemented in PyTorch [50]. First, we introduce

and analyze a selected DE system with known symmetry generators, obtained by

solving the determining equations. Second, these known symmetries are classified

into trivial and non-trivial categories using the computational algebra tool SymPy

[51]. For one of these non-trivial, contact-preserving, canonical symmetry gener-

ators, we verify whether it remains within the span of the learned involutive VFS

V(s)
os . Finally, we alter the domain and initial conditions (ICs) to generate entirely

new datasets, distinct from those used during training and validation, to evaluate the

framework’s generalization under varying conditions. Additionally, we demonstrate

how the group actions, constructed in Section 4.4, begin to diverge from the solution

manifold Σ(s) and highlight how the retraction map in (4.44) can mitigate the adverse

effects caused by truncating the exp in (4.38).

5.1 The Differential Equation System & The Input Data

We consider a simple, linear, and homogeneous DE system whose symmetry gen-

erators, spanning g, are known. This setup enables direct comparison between the

learned ḡ and the original symmetries, as well as the dimension of its representation

in J (s)(M). For instance, in Section 5.3, the representation of a non-trivial symmetry

generator v ∈ g is used to demonstrate that it lies within Span(V(s)
os ), which corre-

sponds to the representation of ḡ in TJ (s)(M).
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Figure 5.1: The Green’s function for the wave equation in two spatial dimensions at

different time steps. Time runs forward from left to right and from top to bottom. The

point source is located at [x1 y1]
t = [0 0]t, its time t1 = 0.0, and c = 1.0. Observe

that, the wave front is still within the data boundary in the figures located at the top;

while it goes out of that boundary in the figures at the bottom.

To validate these principles, we employ the wave equation in two spatial dimensions:

∆(2)(z(2)) = utt − c2 (uxx + uyy) = 0, (5.1)

where (x, y, t) are the independent variables, u is the dependent variable, and c = 1

is the wave propagation speed used throughout all experiments in this study. As

discussed in Section 3.5, the fact that a DE system is a Pfaffian does not explicitly

influence the construction of our framework. Nevertheless, we provide the proof that

(5.1) constitutes a Pfaffian DE in Appendix B, as it implicitly reflects the complexity

of the system and, consequently, the difficulty of the learning process. To construct a

simple solution u = f(x, y, t), we utilize an elementary setup.

The Green’s function for (5.1) is given by (see Exercise 10.2.12-(a) in [56]):

G (x, y, t, x1, y1, t1) =

{
1

2πc
√
c2(t1 − t)2 − r2

}
H (c (t1 − t)− r) , (5.2)

whereH(·) denotes the Heaviside function in two dimensions, r =
√

(x1 − x)2 + (y1 − y)2,
and the coordinate pairs (x1, y1, t1) and (x, y, t) represent source and response loca-

tions, respectively (see Figure 5.1).
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To simplify the numerical integration further, the following ICs are imposed:

u0 = 0,

ut0 =

1, −0.05 ≤ x, y ≤ 0.05,

0, otherwise,

(5.3)

where ut0 represents the IC for ut. The ICs in (5.3) states that the field disturbance

(initial velocity) is spread across the specified rectangular region. The fact that u0 = 0

implies the medium starts at rest with no initial displacement, but the nonzero initial

velocity implies that the medium is “kicked” in this small rectangular region, ini-

tiating wave propagation. Furthermore, no boundary condition (BC) is imposed as

boundaries are assumed at infinity and the wave dies down due to its finite energy.

The closed-form expression for the numerical integration is then given by (see Chap-

ter 10 in [56]):

u(x, y, t) =

∫
y1

∫
x1

ut0G(x, y, t, x1, y1, t1), dx1, dy1. (5.4)

For the training and validation purposes, we define a rectangular spatial domain

[−0.03, 0.03]× [−0.03, 0.03] (response locations) and a temporal domain [0.2, 0.206],

denoted by:

Dtr = {(xi, yi, ti) | ti ∈ (0.2, 0.206),

(xi, yi) ∈ [−0.03, 0.03]× [−0.03, 0.03]}. (5.5)

The spatial domain is discretized into a 101 × 101 uniform grid, while the temporal

domain is divided into 10 equal subintervals, yielding 11 equally spaced time points.

This results in a total of 112211 grid points in Γf tr
.

Remark 45 (Maximal Rank Condition and Sample Points). Let ∂∆(s),i/∂z(s),j denote

the Jacobian matrix of ∆(s) : J (s)(M) → Rn. Any irregular sampling point z(s) ∈
Γ
(s)
f such that ∂∆(s),ls/∂z(s),js |z(s) is not of maximal rank should be excluded. Otherwise,

such samples may compromise the local effectiveness and/or transitivity of the group

action G(s) (see Definitions 12 and 13).

In Figure 5.2, the graphs of uxx, uyy, and utt, constructed using the findiff library

[55], are displayed sequentially. The lower-right subfigure demonstrates the numer-

ical accuracy of evaluating these derivatives within (5.1). The computed numerical
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Figure 5.2: The graphs of uxx, uyy, and utt at t0 = 0.216, and the accuracy of (5.1).

The accuracy is illustrated in the lower-right graph and is in the order of ≈ 7e− 11.

accuracy is approximately 7 × 10−11, which serves as a relative benchmark for ac-

cepting a model.

A valid question arises: “Does utilizing a solution obtained with imposing IBCs re-

strict the process of learning a full set of non-trivial symmetries, since the solution

submanifold Σ(s)|IBC is a subset of Σ(s)?” [57]. The concise answer is: “No, it does

not, provided that the symmetries are non-trivial and their flows are non-degenerate”.

Consider the cost functions discussed in Section 4. None of those functions depend

on whether a sample solution lies within a submanifold of Σ(s) or not. This is because

the flow of a non-trivial symmetry generator maps a solution to an entirely new so-

lution, independent of how the original solution was obtained. The only limitation is

that the mapped solution may no longer belong to Σ(s)|IBC, although it will still reside

in Σ(s). Thus, we conclude that imposing IBCs does not hinder the learning process or

reduce the number of discoverable symmetry generators. However, for future studies

aimed at constructing invariant G-coframes to simplify ∆(s) = 0, the coframe should

be established on Σ(s)|IBC rather than on the broader Σ(s).

Remark 46 (Why not using a known solution?). A closed-form solution, such as the

one specified in (5.8), could have been utilized without imposing any IBCs. This ap-

proach would certainly simplify data generation, especially in practical applications.
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However, our decision to generate an approximated solution serves three primary

purposes. First, it simulates a dataset as if captured from a dynamical system, which

in real-world scenarios is always constrained by a set of IBCs. Second, there might be

DE systems that have no closed form definition and learned/approximated by another

machine learning framework by analyzing a given dataset [19]. Lastly, it provides a

means to evaluate the findiff library’s capability in prolonging a solution to J (s)(M).

This is particularly important since the output of a dynamical system typically lacks

partial derivatives of the associated sample solution.

5.2 Training Results

In this section, we analyze the training performance corresponding to the dataset

introduced in Section 5.1. As computed in Example 2.43 of [8], the dimension of

the solution manifold for the wave equation in two spatial dimensions is given by

dim(Σ(2)) = 13− 1 = 12, based on the assumption that ∆(2) is of maximal rank (see

Definition 15). Furthermore, since the wave equation constitutes a linear differential

system, the submanifold Σ(2) forms a hyperplane within the jet space J (2)(M).

The goal of the training procedure is to recover eleven intrinsic symmetry genera-

tors using the methodology developed in Section 4.1, despite the fact that Σ(2) is

a 12-D submanifold invariant under the symmetry group. This discrepancy arises

because one of the symmetry generators, denoted vα in Example 2.43 of [8], is

solution-dependent. To avoid generating an infinite-dimensional Lie algebra, this

generator is excluded from V by imposing the constraint Cdep in (4.13). Indeed, it is

a well-established fact that any linear differential equation system admits a solution-

dependent symmetry generator as described in (4.10). Consequently, the final learned

vector field system is denoted V(2)
11 .

The results of the training process used to learn V(2)
11 are presented in Table 5.1. For

each v̂i ∈ V(2)
11 , only the model corresponding to the lowest validation cost is re-

ported. A primary observation is that the cost function tends to increase as additional

vector fields are incorporated into V(2)
11 . This trend is expected, as the simultaneous

satisfaction of all imposed constraints—particularly the linear independence condi-
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tion—becomes increasingly difficult for the optimizer.

Given that the quality of the input dataset in satisfying ∆(2) = 0 from (5.1) is ap-

proximately 7 × 10−11, and that Jsym remains well below this threshold, we may

confidently conclude that each v̂i ∈ V11 is tangent to Σ(2). While the constraint Cdep

in (4.13) is theoretically justified, it becomes numerically steep as ∥∆(s)∥ → 0, lead-

ing to a loss of smoothness in practical implementation. This, in turn, causes abrupt

discontinuities in the cost function, which may destabilize the training process at the

epochs where such discontinuities occur.

To mitigate this issue, a smoother formulation of the constraint is introduced as fol-

lows:

Cdep = h(e)log1p(max(toldep − ∥∆(s)(x, φ̂αJ)∥, 0)/toldep), (5.6)

where h(e) is a ramp factor, depending on the current epoch number e, that increases

up to a predefined epoch and then remains constant. The function log1p(x) = ln(1 +

x), and toldep is typically chosen to match the step size of the input dataset, which is

6× 10−4 in this experimental setup.

Both Jnlu and the smoothed constraint Cdep are observed to be satisfied at an early

stage of training. Once satisfied, these terms remain inactive throughout the re-

mainder of the training process, as they only become active if Jnlu > 6 × 10−4 or

Cdep > 6× 10−4.

In the rest of this section, we examine the properties of the Lie subalgebra comprising

solely intrinsic symmetry generators and justify why W(2)
f must form a subalgebra

within the subspace spanned by V(2)
11 , as outlined in Section 4.2. Moreover, no further

prolongation beyond s0 = 2 is required, as expected. This result aligns with the

discussion in Section 4.3, where it is noted that prolongation is unnecessary for Lie

point symmetries (see also Remark 33).

In accordance with the condition stated in (4.32), the dimension of any orbit generated

by non-trivial, contact-preserving symmetry generators inWf must satisfy:

os2 ≤ dim(Σ(2))− p = 12− 3 = 9. (5.7)

Since all symmetries under consideration are Lie point symmetries, they are inher-

ently contact-preserving, as discussed in the paragraph following Proposition 1. The
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Table 5.1: Quality of validation of costs and constraints discussed in Section 4.1.

Idx Jsym Jnlu
Cind Cdep

tolind = 0.846 toldep = 6e− 4

1 3.907e-13 0.0 N/A 0.0
2 8.122e-13 0.0 -0.842 0.0
3 6.972e-13 0.0 -0.801 0.0
4 8.658e-13 0.0 -0.714 0.0
5 7.580e-13 0.0 -0.658 0.0
6 9.011e-13 0.0 -0.529 0.0
7 6.001e-13 0.0 -0.405 0.0
8 8.843e-13 0.0 -0.328 0.0
9 9.240e-13 0.0 -0.219 0.0
10 9.341e-13 0.0 -0.116 0.0
11 1.086e-12 0.0 -0.001 0.0

eleven symmetry generators obtained by solving the determining equations are listed

in Example 2.43 of [8]. However, not all of these generators are necessarily non-

trivial. Their classification is carried out via the following procedure:

(i) Select a closed-form solution u = f(x, y, t) to (5.1).

(ii) Compute the characteristics Qi of each symmetry generator v̂i from (2.65) and

the subsequent equation in [8] using a symbolic computation library, specifi-

cally Sympy [51].

(iii) Evaluate Qi on Γ
(1)
fte

: Symbolically test whether Qi vanishes for i = 1, . . . , 12.

To this end, we select the following elementary solution:

u(x, y, t) = cos(kx) cos(ly) cos(ωt), (5.8)

where ω2 = c2(k2 + l2) represents the dispersion relation, and c = 1 as specified in

Section 5.1. Steps (ii) and (ii) are then executed sequentially.

Remark 47 (c = 1 in Example 2.43 in [8]). Assigning any constant value to c does

not affect the conclusions drawn in this thesis. Furthermore, the general algebraic

expressions of the symmetry generators presented in (2.65) and the subsequent equa-

tion in [8] remain structurally intact. However, c-dependent multiplicative factors
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may appear in the expressions. Accordingly, the symmetry generators described in

Example 2.43 of [8] remain valid.

We find that all eleven symmetry generators listed in Example 2.43 of [8] are non-

trivial, as Qi|Γ(1)
f
̸= 0 for all i = 1, . . . , 11. It is important, however, not to conflate

the dimension of an involutive distribution with the number of linearly independent

symmetry generators that act non-trivially at each point of the surface Γ(2)
f te

, defined by

(5.8). To illustrate, consider a 3-D surface embedded in a 12-D space: although there

may exist eleven vector fields that deform the surface in various directions, the normal

bundle of the surface is limited to nine dimensions, as dictated by (5.7). Hence, only

nine of these directions can be linearly independent, while the remaining two must

be expressible as linear combinations of the others, modulo the tangent space of the

surface.

As outlined in Algorithm 5, we initialize with the maximum number of generators

that can be linearly independent and act non-trivially on Γ
(2)
f te

, namely dim(W(2)
f ) = 9.

Subsequently, dim(W(2)
f ) is iteratively reduced until eitherW(2)

f becomes involutive

or its dimension reaches unity. For the specific function f(x) given in (5.8), invo-

lutivity is achieved precisely when dim(W(2)
f ) = 9. The corresponding validation

results for the optimal model, representing the coefficients aij in (4.19), are summa-

rized in Table 5.2. The constraint Cind is not applied to individual generators ŵj ∈ Wf

in isolation, as is the case for each v̂i ∈ V . Instead, it is designed to ensure linear in-

dependence across the entire setWf simultaneously. For the best-performing model,

the average value is observed to be Cind ≈ −0.7. Regarding Cntr, it is deactivated

in the early stages of training, similar to the behavior of Cdep and Jnlu as discussed

above. Furthermore, the value of Jinv satisfies Jinv ≪ 6e− 11, where 6e− 11 corre-

sponds to the average residual ∥∆(s)∥ of the input dataset. This result verifies that a

full symmetry reduction viaW(2)
f is indeed achievable.

5.3 Verifying the Learned Algebra against a Known Canonical Symmetry

The objective of this experiment is to determine whether a known non-trivial, contact-

preserving symmetry of (5.1) lies within Span(V(sc)
osc ). This validation seeks to ensure
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Table 5.2: Quality of validation of costs and constraints discussed in Section 4.2.

Idx Jinv
Cntr

tolntr = 6e− 4

1 2.014e-13 0.0
2 8.994e-13 0.0
3 3.467e-12 0.0
4 7.146e-13 0.0
5 3.582e-12 0.0
6 4.088e-13 0.0
7 6.114e-13 0.0
8 9.056e-13 0.0
9 2.348e-12 0.0
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Figure 5.3: Some integral curves of v̂can in (5.9), that are projected onto x− y, x− t,
and y − t planes respectively. Black dots show the initial points of the flows.

that V(sc)
osc , associated with ḡ, represents the correct subspace.

We begin by identifying the canonical symmetry generator, v̂can ∈ g. In light of none

of Qi|Γ(2)
f te

= 0 for the solution in (5.8), we select the following vector field as the

canonical symmetry generator (see (3.7) and (3.20) for notation):

v̂can := v̂8 = x2 − y2 + t2
∂

∂x
+ 2xy

∂

∂y
+ 2xt

∂

∂t
− xu ∂

∂u
(5.9)

The projections of the flows generated by v̂can onto various planes in the base manifold

M are depicted in Figure 5.3.

To determine whether v̂can ∈ Span(V11), a model must be proposed to approximate

v̂can. Definition 39 suggests the appropriate model for this approximation. Specifi-
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cally, any vector field within V11 takes the following form:

v̂|z =
11∑
i=1

bj(z)v̂j|z, (5.10)

where z = (x,u). Consequently, the goal is to learn smooth coefficient functions

bjcan(z), where j = 1, . . . , 4. If v̂can ̸∈ V11, the algorithm described below will fail to

identify such functions bjcan(z). Assuming that bcan(z) = [b1can, . . . , b
11
can]

t is modeled

by FCNθ, where θ represents the parameter set, the cost function to be minimized is

given by:

Jcan =
1

2

∥∥∥∥∥
11∑
i=1

bjcan(z)v̂j|z − v̂can|z .

∥∥∥∥∥
2

(5.11)

If Jcan cannot be reduced below a predefined threshold tolcan, it can be concluded that

V(2)
4 fails to span the correct subspace of non-trivial, contact-preserving symmetry

generators. The corresponding learning algorithm is presented as Algorithm 7.
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Figure 5.4: Some integral curves of ˆ̄vcan, an approximation to v̂can in (5.9) via the

learned V11, that overlay the projections of v̂can onto x − y, x − t, and y − t planes,

respectively, illustrated in Figure 5.3. They are drawn in dashed, black, and thinner

lines.

We now focus on verifying whether v̂can ∈ Span(V11). Although, as stated in Re-

mark 38, V11 may not form a linearly independent set until it is prolonged to a certain

jet space of order s, v̂can is still expected to lie in the span of V11. Thus, employing its

prolonged version, V(2)
11 , is necessary.

Next, we implement Algorithm 7 to evaluate whether the cost function (5.11) can

be reduced below the specified threshold tolcan = 6e − 4. This threshold value was

chosen to match the dataset step size. Remarkably, Jcan drops below 5e − 5 within
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approximately 200 training epochs, and the entire computation completes in under

four minutes on a grid platform equipped with NVIDIA A100 graphical processing

units (GPUs).

In conclusion, this experiment validates that V11 accurately spans the subspace de-

fined by {v̂1, . . . , v̂11} from Example 2.43 in [8]. Additionally, we provide visu-

alizations of the integral curves of the approximated vector field, denoted ˆ̄vcan, in

Figure 5.4.

Remark 48 (Querying Datasets for Known Symmetry Generators). The straightfor-

ward yet effective method discussed in this subsection, namely “approximating a

canonical symmetry generator”, can also be applied to query datasets for known

symmetries. This capability is especially valuable for interpreting datasets originat-

ing from physical and engineering problems, offering insights into underlying sym-

metries present in such systems.

5.4 Generalization of the Learned Algebra to Other Domains and The Effect

of Retraction

In this final subsection, we perform two types of experiments: (i) evaluating the gen-

eralization capabilities of the proposed neural architecture under different conditions,

and (ii) analyzing the cumulative effect of repeatedly applying a small group action

gϵ, as well as how the accuracy of the symmetries can be recovered.

To assess whether the learned symmetries are influenced by changes in the input do-

main, we generate a new dataset, Γ(2)
f te

, by modifying the domain defined in Section 5.1

as follows:

Dtr = {(xi, yi, ti) | ti ∈ (0.3, 0.306),

(xi, yi) ∈ [−0.04, 0.02]× [−0.04, 0.02]}. (5.12)

It is important to emphasize that the initial conditions (ICs) defined in (5.3) remain

unchanged. Thus, only the sampling points at which the response of the propagating

wave is measured are modified. The results obtained for all symmetry generators in

V11 are summarized in the upper section of Table 5.3. Notably, altering the input
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domain does not result in any discernible impact on the quality of the cost function.

The last column indicates the measure of divergence from the solution submanifold

Σ(2):

Jdiv = |∆(2)(gnϵ · z(2))|, (5.13)

where z(2) ∈ Γ
(2)
f te

, ∆(2) is the DE system in (5.2), and gnϵ denotes the continued

application of gϵ ∈ G for n ∈ N times.

Table 5.3: The quality of testing in case Dte is set to (5.12). #gϵi stands for the

number of repeated application of the group action gϵi , which is generated by v̂i ∈ V11
from Section 5.2

Idx Jsym Jdiv

#gϵi = 1

1 6.110e-13 8.414e-13
2 2.446e-12 3.113e-12
3 9.119e-13 5.821e-12
4 1.366e-12 2.886e-12
5 1.002e-12 1.922e-12
6 3.241e-12 5.286e-12
7 5.794e-13 8.011e-13
8 7.587e-13 9.046e-13
9 4.371e-12 6.478e-12

10 2.244e-12 4.919e-12
11 7.866e-11 1.009e-10

#gϵi = 1000

1 4.188e-11 6.744e-11
2 7.211e-10 1.016e-9
3 5.183-11 7.621e-11
4 9.666e-11 2.042e-10
5 6.137e-11 8.414e-11
6 9.011e-11 3.874e-10
7 1.866e-11 8.554e-10
8 5.843e-11 8.117e-11
9 9.240e-10 1.811e-9

10 9.341e-11 2.018e-10
11 1.332e-9 4.019e-9

In the second experiment aimed at testing the generalization of our model, the training

domain Dtr defined in (5.5) remains unchanged, while the ICs specified in (5.3) are
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Figure 5.5: The graphs of uxx, uyy, and utt at t0 = 0.06, and the accuracy of (5.1)

when ICs are set as in (5.14). The accuracy is illustrated in the lower-right graph and

is ≈ 6e− 8.

modified as follows:

u0 = 0,

ut0 =


e
(
− st·V−1·s

2

)
√

(2π)2|V|
, −0.05 ≤ x, y ≤ 0.05

0, otherwise

, (5.14)

Here, s = (x, y)t denotes the spatial sample point, V is the covariance matrix, and

|V| is its determinant. In other words, the initial velocity field is normally distributed

over Dtr. In this experiment, we assume that x and y are uncorrelated, so V is a

diagonal matrix with entries equal to 0.0255.

As illustrated in Figure 5.5, similar to Figure 5.2, the quality of the updated dataset

is evaluated with respect to (5.1). The results are summarized in the upper section of

Table 5.4. Changing the initial conditions does not result in any significant degrada-

tion in quality. However, compared to the cost function values reported in Table 5.3,

the values in this case are on the order of 1e − 8, which is attributed to the dataset’s

accuracy being restricted to Σ(2). Consequently, we conclude that intrinsic noise

plays a critical role. In real-world applications, denoising methods for collected sig-

nal data—applied prior to both training and testing—are essential for improving the
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robustness of the system.

Table 5.4: The quality of testing in case Dte and ICs are set to (5.5) and (5.14),

respectively.

Idx Jsym Jdiv

#gϵi = 1

1 6.110e-11 8.084e-11
2 7.117e-10 9.912e-10
3 4.831e-11 7.015e-11
4 3.199e-10 5.001e-10
5 9.111e-11 8.190e-10
6 3.066e-10 4.656e-10
7 3.217e-11 6.818e-11
8 5.103e-11 8.999e-11
9 2.377e-10 3.717e-10

10 8.200e-10 1.655e-9
11 4.778e-9 9.000e-9

#gϵi = 1000

1 2.101e-9 6.146e-9
2 2.100e-9 7.002e-9
3 1.818e-9 2.664e-9
4 1.002e-8 2.015e-8
5 4.142e-9 9.378e-9
6 1.676e-8 3.211e-8
7 6.606e-9 9.898e-9
8 5.111e-9 7.379e-9
9 6.140e-8 8.011e-8

10 9.341e-8 2.099e-7
11 1.002e-7 3.077e-7

In the final set of experiments, we investigate the effect of the retraction map defined

in (4.43). Since (5.1) is a linear DE system, we employ the simplified retraction map

given in (4.44). The group action gϵi ∈ G is constructed separately for each v̂i ∈ V11,

i = 1, . . . , 11, and the exponential map in (4.38) is truncated to third order.

The lower sections of Tables 5.3 and 5.4 report the average accuracy of the cost func-

tions after transforming a set of initial points z(2)0 ∈ Γ
(2)
f te

by repeatedly applying the

group action gϵi · z(2) = exp (ϵivi) · z(2)0 1, 000 times (#gϵi). As observed, the ac-

cumulating errors lead to a progressive decline in accuracy. However, incorporating

the retraction map (4.44) when the error exceeds a predefined threshold prevents any
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transformed point z̄(2) from escaping the tubular neighborhood of Σ(2). The results

demonstrating this effect are presented in Tables 5.5 and 5.6 (cf. Tables 5.3 and 5.4,

respectively). For this experiment, we set ϵi = 0.6, i = 1, . . . , 11, and activate the

retraction map when Jdiv > 7e−11 and Jdiv > 6e−8, respectively. It should be noted

that, given the dataset’s step size of 6e−4, the retraction map would ideally be acti-

vated at Jdiv > 6e−4. While the error would inevitably surpass the 6e−4 threshold

with continued application of gϵi , this experiment primarily demonstrates the neces-

sity of the retraction map when the truncated expansion in (4.38) is employed.

Table 5.5: The quality of testing the retraction map in case Dte and ICs are set to

(5.12) and (5.3), respectively (cf. Table 5.3).

Idx Jsym Jdiv

1 4.815e-13 7.413e-14
2 1.017e-12 4.289e-13
3 4.088e-13 8.009e-14
4 9.067e-13 2.001e-13
5 8.414e-13 5.386e-13
6 9.017e-13 6.588e-13
7 2.696e-13 5.002e-14
8 7.587e-13 3.087e-14
9 1.0917e-12 1.314e-13
10 7.364e-13 3.145e-13
11 6.009e-12 9.877e-13
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Table 5.6: The quality of testing the retraction map in case Dte and ICs are set to (5.5)

and (5.14), respectively (cf. Table 5.4).

Idx Jsym Jdiv

1 4.833e-11 7.211e-12
2 3.677e-10 6.084e-11
3 1.011e-11 3.269e-12
4 3.199e-10 5.568e-11
5 3.077e-11 4.996e-11
6 8.099e-11 3.069e-11
7 1.119e-11 8.917e-12
8 1.737e-11 6.556e-12
9 9.316e-11 2.709e-11
10 5.333e-11 9.419e-11
11 8.118e-10 1.116e-10
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CHAPTER 6

CONCLUSION AND REMARKS

This study aimed to develop a neural framework capable of learning non-trivial,

contact-preserving symmetries of a DE system, while laying the groundwork for con-

structing G-invariant coframes in future research. Unlike computational algebraic

methods, our approach does not seek to approximate solutions of determining equa-

tions using neural networks. First, algebraic methods fail to distinguish non-trivial

symmetries from trivial ones. Second, the proposed framework extracts symmetries

of interest directly from input datasets. Third, algebraic approaches require the ex-

plicit closed form of the dynamics and are thus incompatible with analytical models,

such as the one introduced in [19]. The framework in [19] is capable of approximating

governing equations (i.e., the DE system ∆(s) = 0) in an analytic form by training on

data collected from the dynamical system of interest. Therefore, neural frameworks

like ours could integrate with such architectures to simultaneously discover the DE

system and its non-trivial, contact-preserving symmetries.

A significant limitation of computational algebraic methods is their dependency on

the polynomial structure of DE systems, where these systems are viewed as elements

of differential modules over rings of polynomials in jet space coordinates. Unlike

these methods, our framework avoids producing an intractable number of non-linear

PDEs requiring symbolic manipulation and resolution. Furthermore, in the absence

of a polynomial structure, it is unclear whether the system satisfies necessary closure

conditions for Lie symmetry analysis when algebraic methods are employed. In con-

trast, our analytical approach leverages the computational graph of neural networks,

making it capable of handling non-polynomial DE systems when cost functions, as

outlined in Section 4, are considered.
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Algebraic methods traditionally focus on solving the involutivity problem (see Sec-

tion 3.5) by constructing integral submanifolds, which represent solutions to the PDE

system. However, prior knowledge of non-trivial symmetries—those that preserve

contact structure and map one solution to a fundamentally distinct one—can provide

significant advantages. Such symmetries often can be studied independently of the

full contact system, with their involutivity conditions governed by Frobenius’ theo-

rem (Theorem 4), which is computationally simpler than the constraints imposed by

the Cartan–Kähler theorem (see Chapter 15 of [10]).

Another objective of this study was to systematically introduce the symmetries of DE

systems to the machine learning community. In Sections 1 and 3, we provided the

necessary tools from differential geometry and algebra to facilitate this. As discussed

in Section 2, recent studies have explored these symmetries; however, their goals were

not to discover symmetries through training on datasets derived from dynamical sys-

tems, but rather to apply existing symmetries to specific problems. For example, [36]

is among the first studies proposing a framework to learn symmetries within a subset

of GL(n,R). However, our focus on Lie point symmetries encompasses GL(n,R),

making our scope broader. Furthermore, unlike our study, [36] does not present a

learning-based architecture, focusing solely on theoretical development. Their frame-

work targets DE systems defined in linear subspaces and does not operate within the

jet space framework, which might restrict their ability to learn more general classes of

symmetries, such as Lie contact symmetries and Lie pseudogroups, in future studies.

Our framework also facilitates the construction of the associated G-coframe (as in

[13]), which consists of invariant and covariant directions with respect toG in a given

jet space. The invariant subspace spanned by these directions plays a crucial role in

simplifying DE systems. For instance, such simplifications may lead to dimension-

ality reduction or decoupling (see the example in Section 1.1) or to order reduction

(as in Example 2.65 of [8]). From a statistical perspective, this process is akin to

principal component analysis (PCA), as it identifies directions irrelevant to particular

solutions. For example, PINNs [27] could benefit from our framework by improv-

ing the accuracy of analytically approximated solutions and reducing computational

complexity.
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Additionally, as noted in Remark 48, physicists and engineers may query their datasets

for specific symmetries of interest. Since our framework learns symmetries in the Lie

algebra ḡ without assigning intrinsic geometric meaning (e.g., rotation, translation,

inversion), users can test for specific geometric symmetries relevant to their theoreti-

cal models and simplify these models accordingly.

A compelling application of our framework lies within generative models. As demon-

strated in [58], the Liouville PDE serves as the mathematical dual of the log-likelihood

function in normalizing flow and diffusion approaches [59, 60]. Discovering non-

trivial symmetries of this highly non-linear PDE could facilitate searching for flows

in lower-dimensional submanifolds, tailored to specific applications.

This work thus lays the foundation for future exploration of symmetries, bridging the

gap between traditional differential geometry and modern machine learning.
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APPENDICES

A Proofs

A.1 Theorem 1

The normal coordinate map Φ in (3.11) clearly satisfies:

Φ(ϵjvj) = exp (ϵjvj), (A.1)

where ϵj ∈ R. Similar to (3.13):

d

dϵ
exp (ϵv)|ϵ=0 = v ∈ g. (A.2)

Therefore, using the definition of differential:

dΦ [vj] |ϵ=0 = vj (A.3)

for all j = 1, . . . , r, so that dΦ|ϵ=0 = 1g.

Consequently, by the Implicit Function Theorem (see Theorem 10.26 in [40]), Φ :

V → U defines a local diffeomorphism from an open neighborhood 0 ∈ V ⊂ g to a

neighborhood e ∈ U ⊂ G, so that every gϵ ∈ U can be uniquely defined written as in

(3.11).

One now uses Proposition 1.24 in [8] to prove (3.12) (see Corollary 3.47 in [1] for its

proof).

A.2 Proof of Proposition 2

We aim to show that the connection one-forms ηU together with the lifted one-forms

ω provide a basis for the cotangent bundle of the localized principal bundle, i.e.
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T ∗P = T ∗U ⊕ T ∗G. This follows from the properties of the M-C forms and the

connection one-forms, as detailed below.

First, recall the definition of the lifted one-forms ω given in (3.59), which expresses

their dependence on the local trivialization:

ωi|(z,τU ) =
(
τU(z)

−1
)i
j
ωjU |z. (A.4)

Since τU(z)−1 ∈ G, the set of forms ω = {ω1, . . . , ωm} constitutes a basis for T ∗U .

Consequently, the key remaining step is to establish that the connection one-forms ηU
span T ∗G. By Definition 50, the components ηU ik define a linear map ηU : TP =

TU⊕TG→ TeG. Furthermore, by Definition 51, ηU annihilates all vectors v̂ ∈ TU ,

implying that it acts nontrivially only on elements of TG.

Now, recall from Definition 47 that the M-C forms µ satisfy

µ|g : TgG→ TeG. (A.5)

Comparing this with the action of ηU on TP , we observe that ηU behaves analo-

gously to µ when restricted to TG (see also Definition 8.3.1 in [14]). Since µ is

known to form a basis for T ∗G, it follows that ηU spans T ∗G within T ∗P .

Thus, combining the basis ω for T ∗U with the basis ηU for T ∗G, we conclude that

{ω,ηU} provides a basis for the cotangent bundle of the principal bundle P , yielding

the desired decomposition:

T ∗P = T ∗U ⊕ T ∗G. (A.6)

This result is consistent with Definition 8.3.1 in [14], which establishes a natural

splitting of the cotangent bundle in terms of a principal bundle structure.

A.3 Proposition 4

Recall the regularity condition imposed on the map ∆(k) : J (k)(M) → Rnk , as

discussed in Section 3, where nk ≤ mk = dim(J (k)(M)), and nk represents the

total number of DEs generated by the prolongation procedure in (4.33) across all
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orders s0, . . . , k, with s0 being the original order of the system. Consequently, the

submanifold Σ(k), defined by the zero set of ∆(k), is a regular submanifold of constant

rankmk−nk+rk, embedded (or immersed, though the distinction is irrelevant for our

discussion) into J (k)(M), where rk denotes the total number of redundant differential

consequences as defined in Definition 59.

The regularity condition has significant implications for the higher-order derivatives

of ∆(k) when restricted to Σ(k). This effect, utilized in the proof, is demonstrated con-

structively as follows. Let Jac(∆(k)) denote the Jacobian matrix of ∆(k). Then, the

tangent space to Σ(k) at a point z(k) ∈ Σ(k) is given by Tz(k)Σ(k) = ker
(
Jac(∆(k))|z(k)

)
.

Since ∆(k) is regular and ∆(k)(z(k)) = 0, the following constraints hold:

∂∆(k),lk

∂z(k),i
(z(k)) = 0

∂2∆(k),lk

∂z(k),i2∂z(k),i1
(z(k)) = 0,

(A.7)

where z(k) ∈ Σ(k), lk = 1, . . . , nk, and i, i1, i2 = 1, . . . ,mk. Fixing indices lk and i1,

define the vector

v̂lki1 :=
∑
i2

∂2∆(k),lk

∂z(k),i2∂z(k),i1
∂

∂z(k),i2
∈ TJ (k)(M). (A.8)

By (A.7), we find that v̂lki1 |Σ(k) = 0, meaning v̂lki1 ∈ Span(Jac(∆(k))t|Σ(k)). Therefore,

appending v̂lki1 as a row to Jac(∆(k)) does not alter its rank.

Having established this critical property of Jac(∆(k)), we now proceed to the proof of

the proposition. By Definition 59, any redundant ∆(k),lk is expressed as

∆(k),lk =
∑
lk−1

∑
J

f
lk−1

J

∂|J |∆(k−1),lk−1

∂Jz(k−1)
, (A.9)

where ∂|J|/∂Jz(k−1) denotes ∂|J|/∂z(k−1),j1 ...∂z
(k−1),j|J| , lk ∈ {nk−1 + 1, . . . , nk} (i.e., a

newly emerged differential consequence due to the prolongation in (4.33)), f lk−1

J ∈
C∞(J (k−1)(M)) are coefficient functions, lk−1 = 1, . . . , nk−1, z(k−1) are jet coordi-

nates on J (k−1)(M), J is a multi-index on jet coordinates, and |J | is bounded by some

finite N ∈ N.

The entries in the row of Jac(∆(k)) corresponding to ∆(k),lk take the form∑
lk−1

∑
J

f
lk−1

J

∂|J |+1∆(k−1),lk−1

∂z(k),i∂Jz(k−1)
+
∂f

lk−1

J

∂z(k),i
∂|J |∆(k−1),lk−1

∂Jz(k−1)
(A.10)
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where i = 1, . . . ,mk. Note that the partial derivatives with respect to the fiber coor-

dinates (z(k),mk−1+1, . . . , z(k),mk) are all zero, as ∆(k),lk does not depend on the fibers

of J (k)(M) over J (k−1)(M).

Since all lower-order differential consequences ∆(k−1) are already represented in the

relevant rows of Jac(∆(k)), specifically as

[
∂∆(k−1),lk−1

∂z(k),1
, . . . ,

∂∆(k−1),lk−1

∂z(k),mk

]
(A.11)

for all lk−1 = 1, . . . , nk−1, the row containing the entries in (A.10), when evaluated

at z(k) ∈ Σ(k), remains in Span(Jac(∆(k−1))t|z(k)), thanks to the discussion about

Jac(∆(k)) in the beginning of the proof.

A.4 Proposition 5

Theorem 1 in [41] states that if the operator norm of the iResNET block gt satisfies

∥gt∥op < 1, then the transformation given in (4.38) is invertible by Banach fixed-point

iteration theorem.

Let z(s)1 and z(s)2 be two sufficiently close points in J (s)(M). Then:

∥∥ exp (ϵv) · z(s)2 − exp (ϵv) · z(s)1

∥∥ ≤∥∥z(s)2 − z
(s)
1

∥∥+ ϵ
∥∥v̂(s)|

z
(s)
2
− v̂(s)|

z
(s)
1

∥∥+
ϵ2

2

∥∥(v̂(s))2|
z
(s)
2
− (v̂(s))2|

z
(s)
1

∥∥+O(ϵ3), (A.12)

where v̂(s) := pr(s)(v̂), ∥ · ∥ is ℓ2 norm, and, without loss of generality, ϵ ∈ R+.

We may treat v̂(s) : J (s)(M) → TJ (s)(M) as an operator. Therefore, defining Lip-

schitz constant for v̂(s) makes sense and it signifies how “smoothly” v̂(s) varies over

J (s)(M): ∥∥v̂(s)|
z
(s)
2
− v̂(s)|

z
(s)
1

∥∥ ≤ K
∥∥z(s)2 − z

(s)
1

∥∥, (A.13)
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where K ∈ R+ is the Lipschitz constant for v̂(s). Therefore:

∥∥(v̂(s))n|
z
(s)
2
− (v̂(s))2|

z
(s)
1

∥∥ ≤
K
∥∥(v̂(s))n−1|

z
(s)
2
− (v̂(s))n−1|

z
(s)
1

∥∥ ≤ . . . ≤

Kn
∥∥z(s)2 − z

(s)
1

∥∥, (A.14)

for all n ≥ 1. Substitute (A.14) into (A.12):

∥∥ exp (ϵv) · z(s)2 − exp (ϵv) · z(s)1

∥∥ ≤(
1 + ϵK +

1

2
(ϵK)2 + . . .

)∥∥z(s)2 − z
(s)
1

∥∥ =

eϵK
∥∥z(s)2 − z

(s)
1

∥∥. (A.15)

Therefore, L = eϵK is the Lipschitz constant for exp map. Since Lipschitz constant

could be considered as an upper bound on ∥ · ∥op, the cap on ∥ exp ∥op depends on

the Lipschitz constant of v̂. The iResNET block gt represents the transformation

[exp (ϵv)− e]. Thus, ∥gt∥op ≤ L− 1. In accordance with Theorem 1 in [41]:

∥gt∥op ≤ L− 1 < 1 (A.16)

and hence, L < 2 implies K < ln 2/ϵ.
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B Pfaffian Characterization of the Wave Equation in Two Spatial Dimensions

This section establishes that the DE system, utilized throughout this study, is of Pfaf-

fian type (see Section 3.5). The significance of this classification lies in its implica-

tion that ∆(2) = 0, as given in (5.1), possesses a simpler contact structure compared

to non-Pfaffian systems, particularly regarding the satisfaction of involutivity condi-

tions. Furthermore, for the interested reader, we demonstrate how a DE system can

be reformulated as a contact system.

The two-dimensional wave equation (5.1) in its standard form is not directly suitable

for verifying the inclusion dθi ∈ Idiff. Without loss of generality, let c = 1. To render

the equation more tractable, we introduce the characteristic coordinates ξ = x+ t and

η = x − t. The corresponding first- and second-order partial derivatives in terms of

(ξ, η) are:

∂

∂x
=

∂

∂ξ
+

∂

∂η
,

∂

∂t
=

∂

∂ξ
− ∂

∂η
,

∂2

∂x2
=

∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2
,

∂2

∂t2
=

∂2

∂ξ2
− 2

∂2

∂ξ∂η
+

∂2

∂η2
.

(B.1)

Using (B.1) alongside ∂/∂y and ∂2/∂y2, the wave equation (5.1) transforms into:

∆(2) =
∂2u

∂ξ∂η
+

1

4

∂2u

∂y2
= 0, (B.2)

where u = ū(ξ, η, y).

The associated EDS for (B.2) consists of the following one-forms:

(i) First-order consistency condition:

θ1 = du−
3∑
i=1

pi dx
i. (B.3)

where pi = ∂u
∂xi

and (x1, x2, x3) := (ξ, η, y).

(ii) Second-order consistency conditions:
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θi+1 = dpi −
3∑
j=1

qij dx
j, (B.4)

for i = 1, 2, 3, where qij = ∂pi
∂xj

.

(iii) Constraint imposed by the DE system:

From (B.2), we find q12 = −1
4
q33. Thus, the additional condition is:

θ5 = dq12 +
1

4
dq33. (B.5)

Consequently, the EDS for (B.2) is given by:

∆(2)(x1, x2, x3, u(2)) = 0,

Idiff = {θ1, . . . , θ5},

α = dx1 ∧ dx2 ∧ dx3.

(B.6)

First, we verify the independence condition α ̸= 0:

dx1 ∧ dx2 ∧ dx3 = d(x+ t) ∧ d(x− t) ∧ dy

= dx ∧ dy ∧ dt+ dt ∧ dx ∧ dy

= 2dx ∧ dy ∧ dt ̸= 0.

(B.7)

Thus, α ensures independence on the base manifold M .

To verify the Pfaffian criterion for every θi ∈ Idiff, we do not rely on the geometric

condition in (3.42). Instead, we employ the algebraic condition dθi ∈ Idiff, which

is both sufficient and computationally simpler for the case of (B.2). Specifically, we

note that dθ5 = 0 ∈ Idiff, while for dθ1, we have dθ1 = −
∑

j dpj ∧ dxj . Observe

that:

−
3∑
j=1

(θj+1) ∧ dxj = −
3∑
j=1

dpj ∧ dxj︸ ︷︷ ︸
dθ1

+
3∑

ij=1,
j=1

qjijdx
ij ∧ dxj

︸ ︷︷ ︸
=0

. (B.8)

The second term on the right-hand side vanishes because, for each pair (qjij dx
ij ∧

dxj, qijj dx
j ∧ dxij), the terms cancel each other. Consequently, dθ1 ∈ Idiff.
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Computing dθi+1 ∈ Idiff for i = 1, 2, 3 is more intricate compared to the case of θ1.

Let

dθi+1 = −
3∑
j=1

dqij ∧ dxj, (B.9)

where i = 1, 2, 3. Note that dqij = d
(
∂pi/∂xj

)
= ∂/∂xj(dpi). Since pi ∈ J (1)(M), we

have:

dpi :=
3∑

k=1

∂pi
∂xk

dxk +
∂pi
∂u

du, (B.10)

where terms involving partial derivatives with respect to pl (for l = 1, 2, 3) are omitted

because they vanish when ∂/∂xj is applied. Substituting this into (B.9), we obtain:

dθi+1 = −
3∑
j=1

3∑
k=1

∂2pi
∂xj∂xk

dxk ∧ dxj︸ ︷︷ ︸
=0

−
3∑
j=1

∂2pi
∂xj∂u

du ∧ dxj

= −
3∑
j=1

∂2pi
∂xj∂u

du ∧ dxj.

(B.11)

The first term vanishes due to the same reasoning as in (B.8). Next, we introduce the

expression:
∂2pi
∂xj∂u

θ1 ∧ dxj ∈ Idiff (B.12)

which holds because fθ ∧ ω ∈ Idiff for all f ∈ C∞(J (s)(M)) and ω ∈ Ω(s),k, where

θ ∈ Idiff. This leads to:

dθi+1 = −
3∑
j=1

∂2pi
∂xj∂u

θ1 ∧ dxj︸ ︷︷ ︸
∈Idiff

−
3∑
j=1

3∑
k=1
k ̸=j

∂2pi
∂xj∂u

pkdx
k ∧ dxj

︸ ︷︷ ︸
(∗)

. (B.13)

Thus, the final step is to prove whether (∗) ∈ Idiff. Using the substitution:

pkdx
k = du− θ1 −

3∑
l=1
l ̸=k

pldx
l (B.14)

and applying it to (∗) in (B.13), we have:

3∑
j=1

3∑
k=1
k ̸=j

∂2pi
∂xj∂u

(
du− θ1 −

3∑
l=1
l ̸=k

pldx
l

)
∧ dxj =

3∑
j=1

∂2pi
∂xj∂u

θ1 ∧ dxj+

3∑
j=1

3∑
k=1
k ̸=j

(
du−

3∑
l=1
l ̸=k

pldx
l
)
∧ dxj.

(B.15)
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The second term on the right-hand side can be safely replaced with
∑3

j=1 θ1 ∧ dxj ,
since terms such as dxl ∧ dxj = 0 when j = l. Thus, (∗) in (B.13) simplifies to:

3∑
j=1

(
∂2pi
∂xj∂u

+ 1

)
θ1 ∧ dxj ∈ Idiff. (B.16)

Combining (B.13) and (B.16), we conclude that dθi+1 ∈ Idiff for all i = 1, 2, 3.
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C Table of Symbols

Symbol Description

G, H Lie group and its subgroup

GL(r,R) General linear group of degree r over R

M , N Manifold (or submanifold) on which G acts

J (s)(M) Jet space of order s over the base manifold M

S
(s)
f Integral submanifold in J (s)(M), associated with solution u =

f(x)

V System of vector fields

g, h Lie algebra and its subalgebra

TG, TM Tangent bundles of G and M , respectively

T ∗G, T ∗M Cotangent bundles of G and M , respectively

X(M) Space of vector fields on M

Ωl(M) Space of l-forms on M

Ω(s),l(M) Space of l-forms on J (s)(M)

C(s)(M) Space of contact forms of order s in T ∗J (s)(M)

H(M) Space of horizontal one-forms in T ∗J (s)(M)

Ialg Algebraic ideal of l-forms

Idiff Differential ideal of l-forms

xi ith local independent coordinate on M

I , Ik Multi-index notation for independent coordinates, e.g., I ≡
Ik = (xi1 , . . . , xik) of length k

|I| Length (order) of the multi-index I

uα αth local dependent coordinate on M

Continued on next page
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Continued from previous page

Symbol Description

uα
xIk

, uαI kth-order partial derivative of uα with respect to xIk

p Number of independent coordinates x

q Number of independent coordinates u

z Coordinate in the base manifold, assuming M = X × U

z(s) Coordinate in J (s)(M)

C∞(M) Space of smooth functions on M

X , U Spaces spanned by independent and dependent coordinates, re-

spectively

U s Space spanned only by the sth-order derivatives of uα

U (s) Space spanned by all derivatives of uα up to order s

x Coordinate vector in X , i.e., x = (x1, . . . , xp)

u Coordinate vector in U , i.e., u = (u1, . . . , uq)

u(s) Coordinate vector in U (s)

∂
∂xi

Basis vector in the coordinate frame of M corresponding to xi

∂
∂uαI

Basis vector in the coordinate frame of J (s)(M) corresponding

to uαI

dxi Basis one-form in the coordinate coframe of M corresponding

to xi

duαI Basis one-form in the coordinate coframe of J (s)(M) corre-

sponding to uαI

θαI Contact form of order #I given by duαI −
∑p

i=1 u
α
xIxi(x)dx

i

g, h Elements of the Lie group G

g(s) Prolongation of g acting on J (s)(M)

Continued on next page
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Continued from previous page

Symbol Description

e Identity element of G

v, w Arbitrary vector fields in TG

v̂, ŵ Arbitrary vector fields in TM

ω Arbitrary l-form in Ωl(M)

Υ(s) Coframe on J (s)(M)

Υ
(s)
G G-Coframe on J (s)(M)

ξ̂i Component function of v̂ in the ∂
∂xi

direction

φ̂αI Component function of v̂ in the ∂
∂uαI

direction

Q Characteristic of v̂, given by Q = (Q1, . . . , Qq)

Ψ Group action Ψ : G×M →M

exp (·) Exponential map

Φ Normal coordinate map

g · x Shorthand for Ψ(g, x)

1 Identity operator

[·, ·] Lie bracket operator

v(·), v̂(·) Infinitesimal action of v (or v̂) on an analytical object in G (or

M )

pr(s)(·) Prolongation operator of order s

πts(·) Canonical projection from J (t)(M) to J (s)(M), where s < t

Di Total derivative operator in the xi direction

d Exterior derivative operator

∧ Wedge product operator

Continued on next page
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Continued from previous page

Symbol Description

ι Immersion map ι : N →M

r Retraction map r : U →M for a tubular neighborhood U ⊂M

Jac(·) Jacobian matrix operator

rank(·) Rank operator for a given matrix

σ(s) Moving frame section of order s, σ(s) : J (s)(M)→ G×J (s)(M)

Γf Graph of the function u = f(x)

Γ
(s)
f Prolonged graph of u = f(x) in J (s)(M)

∆(s)(x,u(s)) System of differential equations of order s

Σ(s) Submanifold of J (s)(M) defined by ∆(s)(x,u(s)) = 0

Λ Parameter set of a neural model

J∗ Cost function notation

C∗ Constraint function notation

µ Vector of Lagrange multipliers

ℓp p-norm space
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D Algorithms

All algorithms (except the first one) presented in this appendix are discussed sequen-

tially in Sections 4 and 5. They illustrate the core concepts underlying the implemen-

tation but do not account for any instruction-level or data-level optimizations provided

by PyTorch [50]. A flow-chart depicting the control flow throughout all algorithms is

included in the end of this section.
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Algorithm 1: Cartan’s Algorithm
input: ( ϕ, ωU , ΩV , G )

f ← 0

Formulate the lifted coframes ((3.59)) and equivalence map ((3.61)):

(ω,Ω,Φ)

while G ̸= {e} do

Generate structure equations (3.81) and (3.88):

dωi = ηU
i
k ∧ ωk + (TηU )

i
jk (z, g)ω

j ∧ ωk

dΩi = Aikκπ̄
κ ∧ Ωk + (TV )

i
jk(z̄, ḡ) Ω

j ∧ Ωk

Construct and solve absorption equations (3.85) for νκj :(
TηU

)i
jk
(z, g) = −

(
Aikκν

κ
j − Aijκνκj

)
, j < k

Extract essential torsion coefficients ((3.89)):

Bi
jk [ν]← Aikκν

κ
j − Aijκνκk , j < k

forall i, j, k; s.t. j < k do

if Bi
jk = 0 then

TE ← TE ∪ (TηU )
i
jk

if TE = ∅ then
return (ω,Ω)

Normalize group parameters g of G(f):

forall (TE)iljlkl ∈ TE do

if (TE)iljlkl explicitly depends on any g then

g(z,h)← Solve (3.91) for g

Substitute g(z,h) into TE
Substitute all normalized params g(z,h) into lifted coframes and hence,

reduce the structure group G:

(ω̃, Ω̃, G(f+1))

Set the reduced structure group and coframes for the next iteration:

(ω,Ω, G)← (ω̃, Ω̃, G(f+1))

f ← f + 1

return (ω,Ω)
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Algorithm 2: Cost for discovering a single v ∈ g

input: ( isSltnInd, V , v̂, ∆(sc), z(sc), tolind, toldep, εdep )

Jsym ← evalEqn-(4.2)(∆(sc), v̂, z(sc))

if isSltnInd then

Jnlu ← evalEqn-(4.17)(v̂, z(sc))

else

Jnlu ← 0.0

if len(V) > 1 then

Cind ← evalEqn-(4.8)(V , z(sc), v̂, tolind)

else

Cind ← 0.0

if isSltnInd then

Cdep ← evalEqn-(4.13)(εdep,∆
(s0), v̂, z(sc), toldep)

else

Cdep ← 0.0

LLie ← evalEqn-(4.18)(Jsym,Jnlu,Cind,Cdep)

return LLie
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Algorithm 3: Discovering symmetries up to order sc

input: ( isSltnInd, sc, Γ
(sc)
f tr

, ∆(sc), tolhalt, tolind, toldep, εdep, dim
(
Σ(sc)

)
,

maxNumEp, o(sc−1), V , Λ )

i← osc−1

numSmpl← numSamples(Γ(sc)
f tr

)

failed← False

while not failed and i ≤ dim
(
Σ(sc)

)
do

// Initialize FCNλi

cost←∞
epoch← 0

λi ← createAndInitParams(. . . )

v̂λi ← FCN(λi)

// Learn vi ∈ g

while cost ≥ tolhalt and epoch < maxNumEp do

dataset← randomize(Γ(sc)
f tr

)

epochCost← 0.

forall z(sc) ← next(dataset) do

LLie ← callAlgorithm-2(

isSltnInd, sc, z(sc),V , v̂λi ,∆(sc),

tolind, toldep, εdep

)

epochCost← epochCost +minλi,µ LLie

cost← epochCost/numSmpl

epoch← epoch + 1

if cost ≥ tolhalt then

failed← True

else

V ← V + [v̂λi ]

Λ← Λ+ [λi]

i← i+ 1

osc ← i

return (V , Λ, osc)
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Algorithm 4: Cost for learningWf

input: ( z(sc),W , tolntr, tolind )

W̄ ← pr(sc)(W)|z(sc)
// +Cost for involutivity

Jinv ← 0.0

if len(W) > 1 then

Ā← evalEqn-(4.26)(W , z(sc))

P̄← Ā
(
ĀtĀ

)−1
Āt

// Lie bracketing ∀ 1 ≤ j < k ≤ os

W̄jk ←
[
W̄ [j] , W̄ [k]

]
Jinv ← evalEqn-(4.25)(P̄, W̄jk)

// +Constraint for linear-indep

Cind ← 0.0

if len(W) > 1 then

foreach ŵj ∈ W̄ do

Cind ← Cind + evalEqn-(4.8)(W̄ , z(sc), ŵj, tolind)

// +Constraint for non-triviality

Cntr ← evalEqn-(4.22)(v̂, z(1), tolntr)

Linv ← evalEqn-(4.27)(Jinv,Cind,Cntr)

return Linv
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Algorithm 5: LearningWf

input: ( osc , dof, Γ(sc)
f tr

, V , tolhalt, tolntr, tolind, maxNumEp )

// osc = 1 taken care of by ODE’s

// existence/uniqueness theorem

if osc < 2 then
return True

V ← pr(sc)(V)
cost←∞
epoch← 0

// See (4.19) and (4.32)

ΛW ← createAndInitParams(dof, osc)

W ← FCN(ΛW ,V)
success← False

while not success and len(W) > 1 do

while cost > tolhalt and epoch < maxNumEp do

dataset← randomize(Γ(sc)
f tr

)

epochCost← 0.

forall z(sc) ← next(dataset) do

Linv ← callAlgorithm-4(

z(sc),W , tolntr, tolind

)

epochCost← epochCost +minΛW ,µ Linv

cost← epochCost/numSmpl

epoch← epoch + 1

if cost < tolhalt then

success← True

else

// Remove the last generator

W ←W \W [−1]
ΛW ← ΛW \ΛW [−1]
reinitializeParams(ΛW)

returnW
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Algorithm 6: The main algorithm with prolongation

input: ( Γ(s0)
f tr

, ∆(s0), dim
(
Σ(s0)

)
, tolhalt, tolntr, tolind, toldep, εdep, p, q, s0,

maxNumEp, maxProlong )

V ← []

Λ← []

sc ← s0

isStabOrder← False

prCnt← 0

isInvolutive← False

// Discover symmetries independent

// of a particuler solution

(V ,Λ, osc)← callAlgorithm-3(

True, sc,Γ
(sc)
f tr
,∆(s0), tolind, tolhalt, toldep, εdep,

dim
(
Σ(sc)

)
,maxNumEp, 0,V ,Λ

)

// Failed to find any symmetry...

if osc < 1 then
return None

Continues on the next page...
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Algorithm 6: The main algorithm with prolongation (cnt.)

// Prolong until (4.32) and

// involutivity conditions are met

∆(sc) ←∆(s0)

while prCnt < maxProlong do

// Construct involutive Wf

W ← callAlgorithm-5(

osc , dim
(
Σ(sc)

)
− p,Γ(sc)

f tr
,V ,

tolhalt, tolntr, tolind,maxNumEp

)

isInvolutive← len(W) > 0

if isInvolutive then
break

// Necessary prolongation and

// further symmetry discovery

sc ← sc + 1

∆(sc) ← evalEqn-(4.33)(∆(sc−1))

dim
(
Σ(sc)

)
← evalEqn-(4.37)(∆(sc), sc, p, q)

Γ
(sc)
f tr
← evalEqn-(4.31)(Γ(sc−1)

f tr
)

(V ,Λ, osc)← callAlgorithm-3(

False, sc,Γ
(sc)
f tr
,∆(sc), tolhalt, tolind, toldep, εdep,

dim
(
Σ(sc)

)
,maxNumEp, osc−1,V ,Λ

)

prCnt← prCnt + 1

// Not sufficient prolongation

if not isInvolutive then
return None

// Is sc = s?

if sc = s0 or osc−1 = osc ≤ dim
(
Σ(sc−1)

)
− p then

isStabOrder← True

return (V , Λ, sc, isStabOrder)
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Algorithm 7: Learning v̂can in Section 5.3
input: ( Γf tr

, Vos , tolcan, v̂can, maxNumEp )

cost←∞
epoch← 0

numSmpl← numSamples(Γf tr
)

θ ← createAndInitParams(. . . )

bcan ← FCN(θ)

while cost ≥ tolcan and epoch < maxNumEp do

dataset← randomize(Γf tr
)

epochCost← 0.

forall z ← next(dataset) do

Jcan ← evalEqn− (5.11)(Vos , v̂can, bcan)

epochCost← epochCost +minθ Jcan

cost← epochCost/numSmpl

epoch← epoch + 1

if cost ≥ tolcan then
return None

return (bcan, cost, epoch)
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2015-2017 TÜBİTAK Researcher
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