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ABSTRACT

DEEP LEARNING BASED ADAPTIVE RESIZING OF HIGH
RESOLUTION IMAGES FOR IMPROVED SEGMENTATION
PERFORMANCE

Downsampling high-resolution medical images for deep learning models often
compromises diagnostic accuracy due to information loss with traditional resizing meth-
ods. This thesis explores and advances adaptive resizing techniques to enhance medical
image analysis.

Initial work affirmed the superiority of an existing adaptive resizer over bilinear
interpolation for colorectal gland segmentation on the CRAG dataset, improving Intersec-
tion over Union (IoU) by up to 8.2%. Building on this, the primary contribution is the
development and rigorous evaluation of six novel adaptive resizer architectures. These
were designed to optimize both segmentation/classification performance and computa-
tional efficiency. The proposed resizers were tested on retinal vessel segmentation using
the High-Resolution Fundus (HRF) dataset and diabetic retinopathy classification with
the Indian Diabetic Retinopathy Image Dataset (IDRiD).

Experimental results show the proposed architectures generally surpass existing
methods. For segmentation, 'Resizer MFY ™ achieved the highest average IoU increase of
+21.04% over bilinear interpolation. In classification, "Resizer A2’ proved most effective,
with an average Fl-score increase of +22.39% over bilinear. Critically, the "Minimal
V1" architecture consistently demonstrated the lowest computational overhead among the
novel adaptive resizers. It offers significant performance improvements while being con-
siderably more lightweight than other adaptive methods, including the original adaptive
resizer.

This research successfully demonstrates that these new adaptive resizers can sig-
nificantly improve deep learning model accuracy in medical imaging. The work provides
tailored, computationally considerate solutions, highlighting the importance of the resiz-
ing strategy in the analysis pipeline and paving the way for more effective diagnostic

tools.
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OZET

GELISMIS SEGMENTASYON PERFORMANSI ICIN YUKSEK
COZUNURLUKLU GORUNTULERIN DERIN OGRENME TABANLI
UYARLANABILIR YENIDEN BOYUTLANDIRILMASI

Yiiksek coziiniirliklii tibbi goriintiilerin derin 6grenme modelleri icin kiiciiltiil-
mesi, geleneksel yeniden boyutlandirma yontemleriyle bilgi kayb1 nedeniyle tanisal dogru-
lugu sikca tehlikeye atmaktadir. Bu tez, tibbi goriintli analizini gelistirmek i¢in uyar-
lanabilir yeniden boyutlandirma tekniklerini arastirmakta ve ilerletmektedir.

Baslangic calismalari, CRAG veri seti tizerinde kolorektal bezi segmentasyonu
icin mevcut bir uyarlanabilir yeniden boyutlandiricinin bilineer interpolasyona gore iistiin-
ligtinii dogrulamis, Kesisim iizeri Birlesim (IoU) oranint %8.2’ye kadar artirmistir. Bu
bulgular iizerine insa edilen temel katki, alti yeni uyarlanabilir yeniden boyutlandirici
mimarisinin gelistirilmesi ve titiz bir sekilde degerlendirilmesidir. Bunlar, hem segmen-
tasyon/siniflandirma performansini hem de hesaplama verimliligini optimize etmek icin
tasarlanmistir. Onerilen yeniden boyutlandiricilar, Yiiksek Coziiniirliiklii Fundus (HRF)
veri seti kullanilarak retina damar segmentasyonunda ve Hint Diyabetik Retinopati Go-
riintii Veri Seti (IDRiD) ile diyabetik retinopati siniflandirmasinda test edilmistir.

Deneysel sonuclar, 6nerilen mimarilerin genellikle mevcut yontemlerden daha iyi
performans gosterdigini ortaya koymaktadir. Segmentasyon i¢in, 'Resizer MFY" bilineer
interpolasyona gore ortalama IoU artisinda +%.21.04 ile en yiiksek performans: elde
etmistir. Siniflandirmada, Resizer A2’ bilineere gore ortalama F1 skorunda +%.22.39
artisla en etkili oldugunu kanitlamistir. Kritik olarak, "Minimal V1’ mimarisi, yeni uyar-
lanabilir yeniden boyutlandiricilar arasinda siirekli olarak en diisiik hesaplama yiikiinii
gostermistir. Orijinal uyarlanabilir yeniden boyutlandiric1 da dahil olmak iizere diger
uyarlanabilir yontemlere gore onemli Olciide daha hafifken, dikkate deger performans
iyilestirmeleri sunmaktadir.

Bu arastirma, bu yeni uyarlanabilir yeniden boyutlandiricilarin tibbi goriintiile-
mede derin 6grenme modeli dogrulugunu 6nemli 6lctide artirabildigini basarili bir sekilde
gostermektedir. Calisma, Ozel olarak tasarlanmus, hesaplama acgisindan dikkate deger
coztimler sunarak, analiz ardisik diizeninde yeniden boyutlandirma stratejisinin dnemini

vurgulamakta ve daha etkili tan1 araclarinin 6niinti agmaktadir.



To the person I was three years ago, beginning with hope, yet carrying self-doubt every

step of the way.



TABLE OF CONTENTS

LIST OF FIGURES ... e ix
LIST OF TABLES .. e Xii
CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. IMPROVED COLORECTAL GLAND SEGMENTATION IN HISTOPA-
THOLOGY IMAGES WITH ADAPTIVE RESIZER-ENHANCED

U-NET MODELS ... 4
2.1, Study ADSITaCE. ...t 4
2.2, INtroduCtion. ........ooiii i 5
2.3, Methods. ... 8

2.3.1. Computational SEIUP ...... ..ottt i 9

2.3.2. Dataset and Preprocessing Steps ............covviiiiiiiiiiin... 9

2.3.3. Segmentation Architectures ... 10

2.3.4. Convolutional Backbones of the Segmentation Models.......... 11

2.3.5. Adaptive ReSIZer ..ot 12

2.3.6. Adaptive Resizer Based Segmentation Framework.............. 14

2.3.7. Performance Evaluation Metrics ...................conn... 15

2.3.8. Experimental Details ... 15
2.4. Results and DiSCusSions. ..........coouuuiiiiiiiiiiiiiiiaenns 17

2.4.1. Adaptive Resizer Increases the Performance .................... 17

2.4.2. Visualization of Adaptive Resizer Outputs....................... 24

2.4.3. Visual Comparison: Effects of the Adaptive Resizer............ 25

2.4.4. Analysis of Adaptive Resizer Overhead ......................... 32

2.4.5. Hyperparameter Tuning of Adaptive Resizer ................... 35
2.5, CoNCIUSION . ...t e 38

CHAPTER 3. COMPARATIVE ANALYSIS OF NOVEL ADAPTIVE RESIZER
ARCHITECTURES FOR IMAGE CLASSIFICATION AND SEG-
MENTATION TASKS .o 40

3.1 Study ADSIIaCE. ...t 40

Vii



3.2, INtrodUCHION . . ..ottt 40

3.2.1. Related WOrKS ...t 41
3.2.2. Motivation for Novel Architecture Designs...................... 43
3.3. Materials and Methodology...........coooviiiiiiiiiiiii... 44
3.3.1. Computational SEIUP ...... ..ottt 44
3.3.20 Datasels . ...t e 45
3.3.2.1. Dataset for Segmentation Task: HRF...................... 45
3.3.2.2. Dataset for Classification Task: IDRiD.................... 46
3.3.3. Segmentation and Classification Models......................... 46
3.3.3.1.  Segmentation Models...................... 47
3.3.3.2. Classification Models..............cooooiiiiiiiiii.. 48
3.3.4. Numerical Resizing and Adaptive Resizing ..................... 49
3.3.5. Adaptive Resizer Architectures...............coovviiiiiiiiiinnn... 51
3.3.6. Experimental Designs for Resizer Evaluation ................... 55
3.3.6.1. Segmentation Task Experimental Setup ................... 56
3.3.6.2. Classification Task Experimental Setup ................... 57
3.3.7. Evaluation Metrics: Performance and Complexity .............. 59
3.4, ReSUILS .o 62
3.4.1. Comparative Results ..., 62
3.4.1.1. Performance Comparison for Segmentation .............. 62
3.4.1.2. Performance Comparison for Classification .............. 65
3.4.2. Computational Overhead by Adaptive Resizing................. 67
3.4.2.1. Segmentation Experiments ...................oooii.L. 68
3.4.2.2. Classification Experiments .................cooviiiiiiia.n 71

3.5, DISCUSSION ...ttt e 76
3.5.1. Architectural Impact on Task Performance ...................... 77
3.5.1.1.  Segmentation: Preserving Fine Details .................... 77
3.5.1.2. Classification: Learning Discriminative Patterns ......... 80
3.5.2. Architectural Design and Computational Cost................... 82
3.6. Limitations of the Approach........... ... 83
37, ConCluSION ...t 84
CHAPTER 4. CONCLUSION AND FUTURE PERSPECTIVES .................... 86
REFERENCES 90



2.1

2.2,

2.4.

2.5.

2.6.

2.7.

LIST OF FIGURES

Segmentation models used in the study: (a) U-Net model; (b) Attention U-Net

model; (c) U-Net 3+ model. ... e

Architecture of the adaptive resizer model, a specialized neural network de-
signed for image downscaling in computer vision tasks. The model resizes
images from 1504x1504 to 256x256 using a combination of bilinear resiz-
ing and deep learning techniques. The output from the bilinear resizer and

the convolutional pathways are summed to generate the final resized image,

optimizing input for subsequent Al models. .....................L

Overview of the proposed adaptive resizer based segmentation framework.
Adaptive resizer is jointly trained with the specific models for the gland seg-

mentation task. For each of the segmentation architectures, separate adaptive

resizer models Were (rained. ...t

Training performance visualizations of the segmentation models with and
without the adaptive resizer integration for the selected DenseNet201 back-

bone. Adaptive resizer combined models reach higher accuracy rates com-

pared to the models using bilinear resizing. ...,

Training performance visualizations of the segmentation models’ backbones
with and without the adaptive resizer integration for the selected Attention

U-Net model. Adaptive resizer combined models reach higher accuracy rates

compared to models using bilinear resizing. ..................,

Adaptive resizer outputs trained jointly with segmentation models: U-Net,
Attention U-Net, and U-Net 3+. Columns shows 7 images from the dataset.
The first row shows the bilinear resized form of the orignal image and the

corresponding masks. Other rows are the adaptive resizer outputs which are

jointly trained with the segmentation models. ...

Comparison of the segmentation results to show input images seen by the
model and their resulting segmentations. Outputs from two resizing methods,
bilinear resizing and adaptive resizing, are used as inputs to three segmen-
tation models: U-Net, Attention U-Net, and U-Net 3+. Columns show the
original mask, bilinear resizer output, segmentation results with bilinear re-
sizer, adaptive resizer output, and segmentation results with adaptive resizer.

The adaptive resizer adjusts images based on model needs, which alters the

general visual form of the image and results in more accurate segmentation. ...

13

20

21

27

iX



2.8.

2.9.

2.10.

2.11

2.12.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

Comparison of segmentation performances using the adaptive resizer versus
bilinear resizing across three models: U-Net, Attention U-Net, and U-Net 3+.
Each row shows an original histology image and its corresponding ground
truth mask, followed by segmentation predictions from the bilinear resizer
used models and adaptive resizer-enhanced models. The results illustrate the
improvement in segmentation accuracy when the adaptive resizer is incorpo-
rated into each model. ... ... 28
Comparative segmentation analysis of simple and complex histopathology
images using UNet 3+ and AR-enhanced UNet 3+ with visual marks and IoU
21 LTS 29
Comparative analysis of resized outputs and Grad-CAM heatmaps for seg-
mentation enhancement. Grad-CAM overlays highlighting region-specific

attention in adaptive resizer’'s downsampling process .................cooeeeunnns 30

. Validation accuracies of the adaptive resizer model across varying summation

ratios between the outputs of convolutional blocks and the bilinear resizer
branches (20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20). Colored dots
represent individual fold accuracies, grey squares denote the mean value for
each configuration, and vertical lines illustrate the accuracy range observed
with 5-fold cross-validation. ... 36
Validation accuracies of the adaptive resizer model across varying numbers of
sequential residual blocks (1-5). Colored dots represent individual fold accu-

racies, grey squares denote the mean value for each configuration, and vertical

lines illustrate the accuracy range observed with 5-fold cross-validation. ....... 37
Original resizer architecture ................. i 52
Minimal V1 resizer architecture ............ ... 52
Minimal V2 resizer architecture ............ ... 53
Resizer A architecture ........... ..o 53
Resizer A2 architecture ......... . .cooiiii e 54
Resizer SK architecture ............cooooiiiiiii e 54
Resizer MEY architecture ....... ... 55



3.8.

3.9.

3.10.

3.11.

3.12.

An overview of the segmentation pipeline designed to evaluate and compare
various image resizing techniques. High-resolution fundus images (padded
to 3504x3504) are downsampled to 512x512 using a selection of resizers.
These resized images then serve as input for several established segmentation
models. This framework allows for a rigorous comparison of how different

resizing methods affect the final segmentation accuracy for each model archi-

L0 8 (P

The comprehensive experimental framework for Diabetic Retinopathy (DR)

classification. The top panel illustrates the four-stage data preparation pro-

cess: starting with the original imbalanced IDRiD dataset, followed by padding,

center cropping, and a balancing procedure to create uniform class distribu-
tions for training (450 images) and testing (100 images). The main pipeline
then processes these images by downsampling them from a given input res-
olution (e.g., 2048x2048) to a target resolution (e.g., 256x256) using one of

the available resizer options. Finally, the resized image is classified into one

of five DR grades by one of seven different CNN models. .......................

Visual comparison of the transformations produced by each resizer architec-
ture on a sample image from the HRF dataset. Each row corresponds to
a different resizer, while the columns indicate the subsequent segmentation
model these images are fed into. The noticeable variations in color, contrast,

and edge emphasis across the rows demonstrate how each resizing method

uniquely prepares the image data before the segmentation task. .................

Training and validation history for the LinkNet model when paired with eight
different resizer architectures. Each subplot displays the Intersection over
Union (IoU) on both the training set (blue) and validation set (green) across
100 epochs. These curves allow for a direct comparison of convergence speed

and stability, with the peak validation IoU score marked for each configura-

15703

A comprehensive visual comparison of resizer outputs on the IDRiD dataset
across a matrix of input and output resolutions. Each row displays the output
from a specific resizing architecture, with the Bilinear Resizer serving as
the baseline. The columns show the results for two different input sizes
(1024x1024 and 2048x2048) downsampled to four different target sizes, il-

lustrating how each resizer performs under varying degrees of compression. ...

58

78

81

Xi



LIST OF TABLES

Table

2.1
2.2,

2.4.

3.1.

3.2.

3.4.

Number of total parameters in the used segmentation models (in millions). ....

Performance metrics of segmentation models with different backbone en-
coders and with or without the adaptive resizer. The metrics include Accu-

racy, Dice Similarity Coefficient (DSC), Intersection over Union (IoU), and

the increase in IoU when using the adaptive resizer. .............................
. Comparison for U-Net 3+ with and without adaptive resizer in terms of train-

ing duration, FLOPs, inference times, parameters. ...............cooovvuuunnnnnns

Comparison of FLOPs for bilinear resizing and adaptive resizer module at

LTS 0= LA =o)L 010 3

Comparison of Segmentation Performance by Resizer and Model Architec-

ture. The values indicate the Intersection over Union (IoU) score, with the

percentage increase shown in parentheses relative to the Bilinear baseline. .....

F1 metric increase and decrease percentages in terms of different input-output
resolutions ((1024x1024 2048x2048)-(64x64, 128x128, 256x256, 512x512)).

Each cell indicates the percentage of an average for all models (DenseNet,

ResNext, ShuffleNet, GoogLeNet, MnasNet, RegNet, EfficientNet). ...........

. A detailed breakdown of the computational overhead for each segmentation

model and resizer combination. The table reports on five key metrics: the

number of trainable parameters, FLOPs, GPU memory consumption for in-

ference and training, and the total training duration in minutes. .................

Computational overheads of different resolution reduction ratios for one of

the classification models (GoogLeNet). ...,

Page

16

18

23

63

66

70

72

Xii



CHAPTER 1

INTRODUCTION

The proliferation of high-resolution imaging across various domains, particularly
in medical diagnostics, has provided unprecedented detail for analysis. However, the
direct application of these high-resolution images in deep learning frameworks often
encounters practical limitations. Deep learning models, especially convolutional neural
networks (CNNs), are typically designed with specific input dimensionality constraints.
These constraints arise from architectural choices, such as fixed-size fully connected lay-
ers, and the necessity to manage computational resources effectively. Consequently, mod-
els often expect input images of standardized sizes, for instance, 224 x 224, 256 x 256
pixels, or dimensions that are powers of two, to facilitate efficient processing through
network layers like pooling layers. This necessitates the downsampling of high-resolution
source images. The challenge of effectively bridging the gap between high-resolution data
acquisition and the input requirements of deep learning models, while minimizing infor-
mation loss, has been a significant point of investigation in various studies (Bakhtiarnia
et al., 2024; Jin et al., 2022).

Traditional image downsampling techniques, such as bilinear or bicubic interpola-
tion, are widely used due to their simplicity and computational efficiency. However, these
numerical methods operate based on fixed mathematical rules, often leading to a signif-
icant loss of critical fine-grained features and high-frequency details. This information
loss can be particularly detrimental in applications where subtle details are paramount for
accurate interpretation, such as in medical image analysis for disease diagnosis or precise
object segmentation. The degradation of image quality during downsampling can there-
fore limit the performance ceiling of sophisticated deep learning models. This problem
is well-documented, with research showing how standard downsampling methods can
discard critical spatial information necessary for tasks like semantic segmentation (Xu
et al., 2023; Hesse et al., 2023) or obscure subtle yet vital indicators in medical image
analysis (Khan et al., 2023; Yang et al., 2023).

Recognizing these limitations, the research community has actively explored ad-
vanced image downsampling algorithms. The goal has been to develop techniques that
can reduce image resolution while better preserving task-relevant information. Within this

evolving landscape, adaptive image downsampling has emerged as a promising research



area. Unlike fixed algorithms, adaptive methods aim to tailor the downsampling process
by considering the content of the image or the specific requirements of the subsequent
computer vision task. Such adaptive strategies are diverse; some works, for example,
focus on learning to sample image regions non-uniformly based on content importance
for segmentation (Jin et al., 2022), while others develop content-adaptive downsampling
schemes directly within network architectures (Hesse et al., 2023). In different contexts,
such as processing 3D scan data or detailed medical slides, adaptive approaches also
aim to preserve critical geometric or semantic features that would be lost with uniform
reduction (Qiu etal., 2022; Yang et al., 2023). Other parallel studies have focused on de-
signing novel pooling layers that are inherently more adaptive and information-preserving
(Stergiou and Poppe, 2023).

A key innovation in adaptive downsampling is the concept of a learnable resizer,
notably introduced by Talebi & Milanfar in 2021. This approach treats the image resizer
not as a static preprocessing step but as an integral part of the deep learning pipeline
(Talebi and Milanfar, 2021). Typically, an adaptive resizer is a compact neural network
module positioned at the beginning of the main deep learning architecture. A crucial
aspect of this paradigm is the joint training of the resizer module and the main deep
learning model (e.g., for classification or segmentation). Through this end-to-end training,
the resizer learns to downsample images in a way that is specifically optimized for the task
at hand and the subsequent network’s "preferences." The objective is to transform the
input images into a lower-resolution representation that maximally retains features salient
to the model for improved understanding and performance, rather than just applying
a generic reduction algorithm. This philosophy of making the resizing process itself
a learnable and task-aware component is a departure from earlier paradigms and has
inspired further research into how input transformations can be optimized. For example,
related studies have also explored learnable modules for downsampling in the context
of ultra-high-resolution image segmentation, demonstrating the benefits of task-specific
adaptation (Jin et al., 2022), and the concept of learnable resizers is often discussed in
contrast to or in conjunction with other adaptive techniques (Hesse et al., 2023).

This thesis delves into the domain of adaptive image resizing, aiming to contribute
to its advancement and practical application in demanding image analysis tasks. The work
is structured around two primary studies. The first study (Chapter 2) investigates the
efficacy of an established adaptive resizer architecture for semantic segmentation, a task
where information preservation is critical. Specifically, it evaluates the Original Adaptive

Resizer (based on Talebi & Milanfar’s work) against bilinear resizing for colorectal gland



segmentation using the CRAG dataset, demonstrating the potential of adaptive resizing to
enhance segmentation accuracy in medical histopathology.

Building upon the insights from the initial investigation, the second, more exten-
sive study (Chapter 3) focuses on addressing some of the limitations of existing adap-
tive resizers by proposing a novel suite of adaptive resizer architectures. These new
architectures are designed with the dual goals of further improving performance in both
image classification and segmentation tasks while also considering and optimizing com-
putational efficiency. The development of these novel resizers involved extensive ex-
perimentation with various architectural components, including a wide array of vision
attention mechanisms such as Channel attention, spatial attention, self-attention-based
modules, and combinations thereof (e.g., SENet, ECANet, SKNet, NonLocal, CBAM,
BAM, FcaNet, SA-Net, DA-Net, EMA-Net), to enhance feature discriminability (Guo
etal., 2022). This part of the research involves rigorous comparative analyses of the finally
proposed architectures against traditional methods and the established adaptive resizer
using diverse, high-resolution medical imaging datasets—the High-Resolution Fundus
(HRF) dataset for retinal vessel segmentation and the Indian Diabetic Retinopathy Image
Dataset (IDRiD) for diabetic retinopathy grading.

Through these investigations, this thesis aims to provide a comprehensive analysis
of novel adaptive resizing strategies, highlighting their potential to significantly enhance
the accuracy and efficiency of deep learning models in medical image analysis. The sub-
sequent chapter is a conclusion that summarizes and presents these studies, culminating

in an overall conclusion of the findings and their implications for the field.



CHAPTER 2

IMPROVED COLORECTAL GLAND SEGMENTATION IN
HISTOPATHOLOGY IMAGES WITH ADAPTIVE
RESIZER-ENHANCED U-NET MODELS

2.1. Study Abstract

Utilizing low-resolution images for computer vision tasks such as classification
and segmentation can sometimes hinder the model’s ability to accurately learn essential
features. While using high-resolution images and designing compatible models might
seem like viable solutions, they are not always feasible due to energy efficiency and
graphical computation constraints. Downsizing images for model training and appli-
cation is an effective approach for improving computational efficiency and optimizing
model performance. The bilinear resizing method, commonly employed for this purpose,
inherently causes information loss due to its numerical approach, which relies solely on
the four nearest pixel values to compute each target pixel. This limitation becomes more
pronounced with high-resolution images, where the down sampling process intensifies
the loss of critical information. However, recent advancements have introduced adaptive
resizer modules, which dynamically adjust image dimensions to better preserve essen-
tial features before processing by deep learning models. In biomedical image analysis
tasks, such as segmentation, where high accuracy is paramount, the consequences of
information loss are more detrimental compared to tasks prioritizing processing speed.
Therefore, adaptive resizing presents a promising solution to mitigate information loss
during the down sampling process. In this study, we propose an adaptive resizer-based
segmentation framework for the gland segmentation task which is crucial for accurate
disease diagnosis and treatment planning, particularly in cancer analysis. Three distinct
encoder-decoder architecture segmentation models are assessed for image segmentation
using the CRAG Gland Segmentation database. Each architecture was tested separately,
employing six different backbone encoders that were pre-trained on the ImageNet dataset.

Our comparative analysis revealed that the adaptive resizer improved the IoU metric by



approximately 5.6%. The lowest IoU using bilinear resizing was 62%, rising to 70% with
the adaptive resizer. The highest IoU reached was 78%, an 6% improvement over the
baseline of 72%. Each experiment shows an increase in performance that underscores the
adaptive resizer’s potential to improve gland segmentation methodologies. The codes will
be shared on GitHub as an open-source software package in a way that benefits everyone

interested.

2.2. Introduction

Segmentation is a foundational process in computer vision that divides an image
into segments or classes based on predefined criteria. In the domain of computer vision,
Al models are equipped to handle a variety of segmentation tasks. Among these tasks
are semantic segmentation, where every pixel in an image is assigned a specific class
(Minaee et al., 2021); instance segmentation, which can be viewed as an advanced form
of semantic segmentation that differentiates between objects of the same class within an
image (Gu etal., 2022); and panoptic segmentation. The latter combines the concepts of
semantic and instance segmentation, proving especially useful in complex environments
(Elharrouss et al., 2021). Panoptic segmentation identifies both individual objects and
background elements that, although not distinct objects themselves, form an essential
part of the overall environment. Semantic segmentation finds its applications in a range
of fields, from medical imaging to the technology behind autonomous vehicles and even
in the analysis of satellite imagery (Minaee et al., 2021; Elharrouss et al., 2021).

Glands are organs or groups of cells in an organism that synthesize substances,
including hormones and enzymes. The precise detection and segmentation of these glands
are of utmost importance, especially for the early detection of diseases like cancer (Ras-
togi et al., 2022). Characteristics such as the shape, size, and arrangement of glands can
provide valuable insights into underlying pathologies. Utilizing deep learning models for
the task of gland segmentation not only makes the process more efficient but also ensures
optimal use of available resources (Rastogi et al., 2022; Wang et al., 2022). However,
achieving accurate gland segmentation is not without its challenges, primarily due to the
diverse appearance of glandular tissue in images. In such detailed images, it is crucial to
retain the resolution to ensure that even the most minute features are not overlooked.

To enhance accuracy rates in segmentation tasks, extensive research has been
conducted on models employing various architectures, including convolutional, encoder-

decoder, transformer structures, and other methodologies (Mo et al., 2022; Lateef and



Ruichek, 2019). A notable contribution in this domain is the U-Net model, introduced
by Ronneberger et al. in 2015, which has proven to be highly effective for biomedical
image segmentation (Ronneberger et al., 2015). The impressive accuracy rates achieved
by U-Net spurred further research, leading to the development of several U-Net-based
models. These include U-Net++ (Zhou et al., 2018), Attention U-Net (Oktay et al.,
2018), Trans U-Net (Chen et al., 2021), U2-Net (Qin et al., 2020), and U-Net 3+ (Huang
et al., 2020), each boasting either enhanced accuracy rates or more efficient parameter
configurations. Beyond the U-Net derivatives, other models such as DeepLabv3 (Chen
et al., 2017), DeepLabv3+ (Chen et al., 2018), SegNet (Badrinarayanan et al., 2017),
MILDNet (Graham et al., 2019), and CMD-Net (Zhang et al., 2020) have also demon-
strated commendable performance in segmentation tasks. However, a common limitation
across these models is their need for input images of lower resolution than the maximum
attainable photographic quality. This constraint necessitates the use of down-scaled im-
ages, which inherently restricts the potential of the segmentation tasks.

In the realm of deep learning, a prevalent challenge arises when high-resolution
images are input into models designed for low-resolution images. Traditional resizing
methods often result in the loss of data in an image, especially the loss of high-frequency
features. This is particularly concerning in critical sectors like medicine, where image
segmentation and classification accuracy are paramount. Despite advancements, the ac-
curacy rate for such tasks plateaus, highlighting the need for improved image processing
techniques.

Recognizing the inherent necessity of image resizing in image processing tasks,
the search for a more advanced method becomes crucial, especially as the scope for im-
provements through traditional mathematical techniques narrows. In this context, Talebi
and Milanfar innovatively proposed an adaptive resizing approach, a significant deviation
from conventional methods, which dynamically adjusts the resizing process based on the
specific requirements of the task (Talebi and Milanfar, 2021). Their proposed framework
comprises a compact model with approximately 12,000 parameters, strategically posi-
tioned at the onset of the deep learning model and concurrently trained. This approach
was evaluated using both a learnable resizer and a binary resizer across four different
image classification models, revealing a notable performance enhancement attributed to
the learnable resizer.

Following the introduction of the learnable resizer by Talebi and Milanfar, the
model has been adopted across various datasets and integrated into diverse models. Ad-

ditionally, the success of this model has spurred the development of new adaptive resizer



models. Hao Li, in his research, explored the impact of the learnable resizer for few-shot
learning. The module that is proposed in the study is the modified version of the original
learnable resizer, and the name of the model is MAR (Model adaptive resizer). Instead
of using residual blocks, this module uses MAR blocks, which contain channel attention
mechanisms in these blocks (Li et al., 2023). Li Zou and his colleagues undertook
a study employing the learnable resizer model to classify signals that were converted
into time-frequency images. Their primary objective was to discern whether the signal
from a rotating component was indicative of a malfunctioning machine or one that was
operating correctly (Zou et al., 2023). Rahman et al. conducted research to enhance
the performance of segmentation and classification models by integrating the learnable
resizer model. (Rahman, 2023). In another notable study, Duzyel et al. demonstrated
the effectiveness of an adaptive resizer to improve the performance of deep learning
models for the diagnosis of breast cancer using histopathology images. Their findings
highlighted the adaptive resizer as a powerful tool for enhancing image classification.
By preserving important details and adapting to the unique characteristics of images, the
adaptive resizer achieved better performance across all magnification factors, particularly
excelling at 40x magnification, where it significantly outperformed bilinear interpolation
(Duzyel et al., 2023). Han and Chen enhanced their classification task for COVID-19
CT scan images by incorporating a learnable resizer model. They integrated this resizer
with the MobileNet, creating a hybrid model that was benchmarked against various other
CNN architectures. The accuracy of the new model (96.9%) is higher than the original
MobileNet (92.6%) and also other CNN architectures like VGG19, ResNet50V2, and
Inception-v3 (Han and Chen, 2021). Zhang et al. designed a new resizer. In contrast
to traditional approaches, the study by Zhang et al. introduces a streamlined learnable
resizer that employs convolution to project features into a higher-dimensional space. This
is further refined using a self-attention mechanism. The authors claim that their method
not only simplifies the process but also outperforms existing techniques, particularly when
tested on the Pittsburgh30K dataset. However, they acknowledge that their results are
constrained by available computational resources and time (Zhang et al., 2022).
Bilinear resizing, a commonly used approach, often leads to significant informa-
tion loss due to its reliance on only the four nearest pixel values. This issue is especially
pronounced in high-resolution images and pixel-wise tasks like segmentation, where pre-
serving spatial information is critical. The adaptive resizer represents a significant ad-
vancement in adaptive downsampling. However, to the best of our knowledge, existing

applications of this technique have predominantly focused on classification tasks, with



no prior studies exploring its potential for segmentation tasks. Recognizing this research
gap, our study investigated the potential of the adaptive resizer for segmentation tasks,
addressing the unique challenges these tasks pose. Unlike classification, which outputs
a single label or probability, segmentation requires pixel-level predictions that precisely
align with the input dimensions, demanding greater preservation of spatial information
and structural details throughout the downsampling process. This makes the integration
of the adaptive resizer to segmentation both innovative and critical for advancing the field.

Our research focuses on the critical area of tissue segmentation, a cornerstone in
medical imaging analysis, employing the CRAG colorectal gland segmentation dataset
for in-depth analysis. This dataset, characterized by its diverse glandular structures,
provides a robust platform for evaluating the effectiveness of segmentation models in
preserving spatial information. Our core objective is to highlight the influence of a novel
deep learning-based adaptive resizer model, crafted to downsize images, on the efficacy
of segmentation. We integrated the adaptive resizer into three U-Net-based architectures:
U-Net, U-Net 3+, and Attention U-Net, to evaluate its ability to preserve spatial infor-
mation and improve segmentation accuracy compared to bilinear resizing. Additionally,
we analyzed the trade-offs between accuracy and computational efficiency to provide
a comprehensive assessment of the resizer’s performance. Furthermore, we provided a
thorough visual exploration of our findings, including original images, ground truths,
and outputs obtained using both bilinear and adaptive resizing, along with corresponding
model predictions. Heatmaps illustrating the adaptive resizer’s focus on critical regions
demonstrated its ability to retain essential features during downsampling. These results
underscore the adaptive resizer’s potential not only for segmentation but also for related
tasks like object detection and instance segmentation, where detail preservation is crucial.
By addressing a gap in the existing literature, this study not only establishes the feasibility
of using the adaptive resizer in segmentation but also lays a foundation for future research
into optimizing adaptive preprocessing methods for deep learning pipelines.

The ensuing sections of this chapter are structured as follows: The Methods sec-
tion covers the hardware and software frameworks, the chosen dataset, the segmentation
models, and the CNN models that support them. This section concludes with an in-depth
overview of the adaptive resizer, its implementation, and the metrics used for performance
evaluation. Following this, the Results and Discussion section details the study’s method-
ology, sets the comparison criteria, and discusses the obtained results and accompanying

visuals. The chapter ends with a Conclusion section.



2.3. Methods

This section details the comprehensive methodology employed in the initial study.
It begins by outlining the computational environment, including the specific hardware
and software frameworks utilized. Subsequently, it describes the CRAG dataset and
the necessary preprocessing steps, followed by an in-depth explanation of the U-Net-
based segmentation architectures and their convolutional backbones. The section further
elaborates on the adaptive resizer model, the integrated framework for segmentation, the

performance evaluation metrics, and the specific design of the experiments conducted.

2.3.1. Computational Setup

Our comparative experiments, encompassing segmentation models, backbones,
and the evaluation of the adaptive resizer against the conventional resizer, were conducted
in an environment utilizing the TensorFlow and Keras libraries. The NumPy and mat-
plotlib libraries were employed for image processing and plotting tasks. A pre-existing
library accessible online was leveraged, rather than building the models from the ground
up. Specifically, an assortment of U-Net architectures complete with their corresponding
codes was utilized from a GitHub repository named "keras unet-collection” (Sha, 2021).
Furthermore, the learnable resizer model architecture code was pre-developed and acces-
sible for immediate deployment from the Keras.io webpage (Paul, 2021).

The hardware infrastructure for our experiments was powered by an Nvidia A100
GPU, boasting 40 GB of memory, provided by Google Colab Pro Plus. In the experiments,
any data augmentation techniques were refrained from being employed. Given the limited
number of images in the dataset, the k-fold cross-validation method was adopted for all
training sessions to enhance the generalizability of the validation score. With k set at 5,

models were trained on a total of 213 images, each with five distinct validation sets.

2.3.2. Dataset and Preprocessing Steps

Our study employed the CRAG dataset, as introduced by Graham et al. (Graham
et al., 2019). We also recognize the pioneering work of Awan et al., where this dataset
was first utilized (Awan et al.,, 2017). The CRAG dataset, designed for colorectal

gland segmentation in colon histological images, was released by the University Hospitals



Coventry and Warwickshire (UHCW) NHS Trust, located in Coventry, United Kingdom.
It comprises 213 H&E images, partitioned into training and validation subsets. The train-
ing set encompasses 173 images, each accompanied by its annotation, while the validation
set consists of 40 images, again with their respective annotations. Predominantly, the
images in this dataset hover around the dimensions of 1500x1500. To ensure these images
and their annotations are compatible as input for deep learning models, a preprocessing
step was undertaken to standardize them into square images. This involved establishing a
base dimension of 1504x1504, onto which the dataset images were superimposed. This
method facilitated the acquisition of images with uniform height and width, all the while

preserving their original aspect ratios.

2.3.3. Segmentation Architectures

In this study, three distinct segmentation models were explored: U-Net, U-Net
3+, and Attention U-Net. All three models are derivatives of the foundational U-Net
architecture. The name "U-Net" is derived from its characteristic U-shaped architecture.
Unlike classification tasks, segmentation requires not only the identification of a class but

also its precise location within an image. U-Net and its variants excel in this regard.

{a) U-Net {b) Attention U-Net

{c) U-Net 3+
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Figure 2.1. Segmentation models used in the study: (a) U-Net model; (b) Attention
U-Net model; (c) U-Net 3+ model.

The architecture of U-Net, depicted in Figure 2.1(a) , was conceived by Ron-

neberger, Fischer, and Brox from the Computer Science Department and BIOSS Centre
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for Biological Signaling Studies at the University of Freiburg, Germany (Ronneberger
et al., 2015). The U-Net model comprises three primary modules: the contracting path,
bottleneck path, and expansive path. The contracting path, often referred to as the "en-
coder," diminishes spatial information while extracting contextual information through
convolutional and pooling layers. Conversely, the expansive path or "decoder" amplifies
spatial dimensions. The integration of skip connections between the encoder and decoder
aids in the restoration of spatial information, ensuring the final output retains both spatial
and contextual details.

The architecture of Attention U-Net, illustrated in Figure 2.1(b), was developed by
Oktay et al., in collaboration with institutions like Imperial College London and Nagoya
University (Oktay et al., 2018). As a variant of the original U-Net, the Attention U-Net
incorporates attention gates within its decoder. These gates determine the significance of
the tensor from the standard expansive path in relation to the skipped tensor. By doing so,
the model can concentrate on the most pertinent sections of an image for a specific task,
enhancing segmentation precision.

The architecture for U-Net 3+, presented in Figure 2.1(c), was devised by Huang
et al., with affiliations to institutions such as Zhejiang University, Sir Run Shaw Hospital,
Ritsumeikan University, and Zhejiang Lab (Huang et al., 2020). U-Net 3+ is an evolved
version of both U-Net and U-Net++. It incorporates full-scale skip connections and deep
supervision into its design. The full-scale skip connections, in tandem with the standard
skip connections, refine the accuracy of segmented object positions and boundaries. Ad-
ditionally, each decoder block receives guidance from the ground truth, further enhancing

the model’s performance.

2.3.4. Convolutional Backbones of the Segmentation Models

The segmentation models employed in this study are all rooted in the U-Net
framework, characterized by its encoder-decoder architecture. The encoder components
of these models are often constructed using established CNN architectures renowned for
their robustness and precision. By harnessing pre-trained weights from models such as
VGG, ResNet, and DenseNet each trained on the "ImageNet" dataset and subsequently
freezing these weights, feature extraction capabilities can be amplified even from a limited
dataset, thereby enhancing the performance of the models.

VGG (Visual Geometry Group): This CNN architecture, a brainchild of the Visual

Geometry Group at Oxford University, employs 3x3 convolutional layers paired with max
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pooling layers. Among its variants, VGG16 and VGGI19 stand out. VGG16, with its
16 weight layers, houses 138 million parameters, while VGG19, comprising 19 weight
layers, contains 144 million parameters. While the VGG architecture’s design is straight-
forward, its vast parameter count renders it computationally demanding (Simonyan and
Zisserman, 2014).

DenseNet (Densely Connected Convolutional Networks): Developed by the Com-
puter Vision Group at Cornell University, DenseNet is another CNN architecture. Its
popular iterations include DenseNet121, DenseNet169, and DenseNet201. The trailing
numbers indicate the layer count; for instance, DenseNet121 possesses 121 layers with
roughly 8 million parameters, while DenseNet169 has 169 layers with an estimated 14
million parameters. Despite its relatively fewer parameters, which lends it an edge over
similar architectures, the computational intricacy can pose challenges, especially for pro-
foundly deep networks (Huang et al., 2017).

ResNet (Residual Network): Introduced by He, Zhang, Ren, and Sun from Mi-
crosoft Research, ResNet is a CNN architecture that incorporates skip connections and
shortcuts, allowing certain layers to be bypassed. These residual connections empower the
model to learn residual features, effectively addressing the vanishing gradient dilemma.
Notable versions of this architecture encompass ResNet-34, ResNet-50, ResNet-101, and
ResNet-152. To illustrate, ResNet50 boasts approximately 23 million parameters, ResNet
101 houses around 43 million parameters, and ResNet-152 has close to 58 million pa-
rameters. A distinct advantage of ResNet lies in its capacity to train exceptionally deep

models, with the residual connections ensuring gradient preservation (He et al., 2016).

2.3.5. Adaptive Resizer

For deep learning models to be effective, they must be both robust and compu-
tationally efficient during training. To achieve this, many models utilize low-resolution
images as input. Models trained on such low-resolution images tend to perform opti-
mally when provided with input images of a similar size, creating an inevitable cycle of
reliance on low-resolution imagery. Several algorithms have been developed to reduce
image size, including Nearest-Neighbor interpolation, bilinear interpolation, bicubic in-
terpolation, Lanczos Resampling, Area-based (Pixel-Averaging) resampling, antialiased
resampling, and the Gaussian pyramid method. While these algorithms are effective
in general scenarios, their efficacy diminishes in tasks demanding higher precision and

accuracy, such as segmentation. Utilizing these conventional resizing algorithms often
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results in information loss.
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Figure 2.2. Architecture of the adaptive resizer model, a specialized neural network
designed for image downscaling in computer vision tasks. The model
resizes images from 1504x1504 to 256x256 using a combination of
bilinear resizing and deep learning techniques. The output from the
bilinear resizer and the convolutional pathways are summed to generate
the final resized image, optimizing input for subsequent Al models.

The adaptive resizer, a novel approach in image resizing, was developed by Talebi
et al. from Google Research (Talebi and Milanfar, 2021). Unlike traditional resizing
algorithms, the adaptive resizer, illustrated in Figure 2.2, is not merely an algorithm
but a neural network designed to work in synergy with the primary computer vision
model. The adaptive resizer architecture efficiently processes high-resolution images by
combining bilinear resizing with convolutional neural network (CNN) feature extraction.
Initially, images are processed through two parallel pathways: one directly applies bilin-
ear interpolation to resize images to target dimensions, while the other pathway enhances
features through convolutional layers. This second pathway starts with a 7x7 kernel
convolution followed by Leaky ReLLU activation, and then a 1x1 kernel convolution with
Leaky ReLLU and batch normalization. After these initial convolutions, the features are
resized to the target dimensions using another bilinear interpolation, creating a bottleneck
that consolidates the extracted features. These features can be further refined through
a series of optional residual blocks, each adding depth and complexity to the feature
extraction. After passing through a final convolution with a 3x3 kernel and batch nor-
malization, these processed features are merged with the output from the direct bilinear

resizing pathway via element-wise addition. This method effectively combines detailed
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feature enhancements with preserved spatial accuracy of the original image, resulting
in a high-quality resized image that is ideal for applications requiring precise image
fidelity. The adaptive resizer identifies crucial pixels or pixel locations for a designated
task through training on a specific set of images. In essence, it produces images that
are fine-tuned for models that have been co-trained with this resizer, ensuring optimized
performance (Talebi and Milanfar, 2021).

2.3.6. Adaptive Resizer Based Segmentation Framework

The adaptive resizer module is strategically positioned at the beginning of the
segmentation model, effectively merging the two into a unified deep learning model. In
the context of this study, the segmentation model is designed to accept 256x256, 3-channel
RGB images as input and subsequently produce a binary black and white mask as its
output. The adaptive resizer’s role is to transform the larger 1504x1504 images into the
required 256x256 format. Consequently, the integrated model, a fusion of the adaptive
resizer and the segmentation model, processes 1504x1504, 3-channel images and outputs

256x256 predicted binary masks.
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Figure 2.3. Overview of the proposed adaptive resizer based segmentation framework.
Adaptive resizer is jointly trained with the specific models for the gland
segmentation task. For each of the segmentation architectures, separate
adaptive resizer models were trained.

Figure 2.3 illustrates the process flow within our system: initially, a larger image
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is fed into the adaptive resizer model, which then outputs a lower-dimensional image.
This resized image is subsequently processed by the segmentation model to produce the
desired segmentation result. Notably, this entire system, integrating both the adaptive
resizer and the segmentation model, is trained and operated as a unified model. This
integration allows for simultaneous training and application, effectively merging what

were previously two separate models into a single, cohesive system.

2.3.7. Performance Evaluation Metrics

Semantic segmentation classifies each image pixel into distinct categories. To
evaluate trained segmentation models, three metrics are used: Accuracy, Dice coefficient
(DSC), and Intersection over Union (IoU). Accuracy measures the percentage of cor-
rectly classified pixels in the predicted image, with values ranging from O (no correct
classifications) to 1 (perfect classification). The calculation is given in Equation 2.1.
Dice Coefficient (DSC) assesses the similarity between the ground truth and the model’s
prediction. Its values can vary between O (no overlap) and 1 (complete overlap). The
formula is in Equation 2.2. Intersection over Union (IoU), also known as the Jaccard
Index, evaluates the overlap between predicted and annotated segments. Its values range

from O (no overlap) to 1 (full overlap), as shown in Equation 2.3.

Accuracy — TP+TN 2.1)
Y =TPX¥TN+FN+ FP '
. 9T P
Dice = o b+ FP T FN (22)
TP
_ 3
V=757 FN (2:3)

2.3.8. Experimental Details

The primary objective of this study is to demonstrate that integrating the adaptive
resizer model with any segmentation model enhances performance, yielding more refined
results. Three different U-Net based segmentation models were employed: U-Net, U-Net

3+, and Attention U-Net. For the backbone architecture, seven options were available.
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Six of these are established backbones pretrained on the ImageNet dataset, while the sev-
enth represents a model without any specific backbone. The backbones in consideration
are VGG16, VGG19, ResNet-50V2, ResNet-152V2, DenseNet121, DenseNet201, and
No-backbone. By integrating the adaptive resizer with these U-Net based models, 21
additional models were generated. The impact of the adaptive resizer was assessed across
these 42 models. Table 2.1 shows the total number of parameters of the 21 different
combinations of models and backbones. When the adaptive resizer model is combined

with these models, their parameters count increases by 12 thousand parameters only.

Table 2.1. Number of total parameters in the used segmentation models (in millions).

VGG VGG ResNet ResNet DenseNet DenseNet No
16 19 50V2 152V2 121 201 Backbone

U-Net 31.17M 3648M 20.68M 5544M 1972M 27.8M 4671 M

Model

Alt;*_’g:t’“ 2838M 33.69M 17.80M 5256M 1687M 25.04M  43.94M

U-Net3+ 2488M 30.19M 1723 M 51.99M 1492M 21.98M 3926 M

In the subsequent phase of the experiment, one of the 21 combinations, which
exhibited relatively superior performance, was selected. Two distinct scenarios were then
explored by making modifications to the adaptive resizer module of this selected model,
without altering its core structure. Firstly, the impact of varying the number of "residual
blocks" within the adaptive resizer module, ranging from 1 to 5, was investigated. Addi-
tionally, the effects of combining outputs from the bilinear resizer and the neural network
branch in different proportions during the summation process in the adaptive resizer’s
final stage were examined.

For the experimental process, 213 images and their corresponding mask images
from the dataset were combined into a single file. Given the dataset’s limited image
count, this amalgamation aimed to enhance the generalizability of the findings. To further
enhance the robustness of the evaluations, a k-fold cross-validation strategy was adopted
with k set to 5.

During the model training phase, a "save the best weights" checkpoint approach

was utilized. Although the training spanned 100 epochs, the storage of the model was
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based on the best result achieved within these epochs, as determined by the dice co-
efficient value. Since the task is semantic segmentation with only two classes, binary
cross-entropy was selected as the loss function. The Adam optimizer, with a learning rate

of 1073, was chosen for optimization.

2.4. Results and Discussions

In this section, the results and discussions are presented from our investigation
into the integration of adaptive resizers with various U-Net-based segmentation models
across different architectural backbones. This analysis, structured into four main parts,
explores the enhancement of model performance through adaptive resizing versus tradi-
tional methods, demonstrates the adaptive resizer’s unique output characteristics through
visualizations, provides a comparative visual assessment of model outputs with and with-
out the adaptive resizer, and examines the effects of hyperparameter adjustments within

the resizer’s architecture.

2.4.1. Adaptive Resizer Increases the Performance

The performance of the U-Net, Attention U-Net, and U-Net 3+ models across
various backbones is detailed in Table 2.2, which elucidates the metrics of accuracy, dice
coefficient, and intersection over union. For each model the table is separated and all
the backbone choices along with adaptive resizer integration are shown. The highlighted
rows in the table pinpoint the optimal model-backbone combinations. Among the trio of
models, the U-Net 3+ emerges as the top performer. The average IoU of all backbones
for U-Net 3+ is 74.31 while U-Net is 73.89 and Attention U-Net is 73.43. Delving deeper
into the backbone analysis, DenseNet201 stands out as the most effective backbone. The
highest IoU values for all 3 segmentation models observed when the encoder part of the

architectures are replaced with the DenseNet201 backbone.
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Table 2.2. Performance metrics of segmentation models with different backbone
encoders and with or without the adaptive resizer. The metrics include
Accuracy, Dice Similarity Coefficient (DSC), Intersection over Union
(IoU), and the increase in IoU when using the adaptive resizer.

Model Backbone zﬁdaptive Accuracy DSC IoU Increase of IoU

Name esizer
VGGIS 3% 0%s 08 07e 6%
VGGI9 Y3 Ok7i osel o7y 68%
ResNetSOV2 33 36 osis 03 H1%
Z ReNeLISV2 N 0%y os s B2%
DenseNeti2l 32 G§77 064 0762 2%
DenseNe201 3% 0§70 067 066 5%
NoBackbore 3% 060 0%43 0730 0%
VGGI6 Y3 G0 087 ot 65%
VGGI9 Y3 G863 08s0 o7a0  66%
5 ReNeSOV2 3R GRS5 o4 oror 1%
T oreNersv: Jo BB OO0 0L esm
I ez 5 ORS00 ses
DenseNe201 33 (72 0%6s 0763 5%
NoBackbore 33 G873 0841 073 108%
VGGI6 Y3 010 Oses o7 ST%
VGG Y3 ks s oz 17%
. ReNeeSOV2 R Gl o9 o710 29%
5 ReNeisva 38 05 08 0%l 5%
> peseveat J0 BB OHD 0T 4w
DenseNe20l 30 (g3 os7 o070 1%

No 0.866 0.849 0.739

No Backbone Yes 0872 0852 0744 0.5%




Figure 2.4 offers a visual comparison between the training and validation plots for
three distinct models with 5-fold cross validation. One set of models uses the bilinear
resizing method, while the other set integrates the adaptive resizer. This comparison
specifically focuses on the DenseNet201 backbone, our chosen architecture for this part of
the study. Each training takes 100 epochs, and by using the save the best feature, attempts
are made to obtain the best model for up to 100 epochs. The U-Net model’s accuracy
improved from 84% to 88%, while both the Attention U-Net and U-Net 3+ models saw
increases from 85% to 88%. As a result, an average increase of 3.3% in accuracy was
observed.

Figure 2.5 showcases the training plots for the Attention U-Net model. This
visualization contrasts the model’s efficacy across three distinct backbones, both with and
without the adaptive resizer’s integration. Specifically, the model utilizing the VGGI19
backbone experienced an increase in accuracy from 82% to 86%. Similarly, the model
with the ResNet-152V?2 backbone recorded an increase from 78% to 83%. Furthermore,
the model employing the DenseNet201 backbone reported an increase from 85% to 88%.

As aresult, an average increase of 4% in accuracy was observed.
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Figure 2.4. Training performance visualizations of the segmentation models with and
without the adaptive resizer integration for the selected DenseNet201
backbone. Adaptive resizer combined models reach higher accuracy rates
compared to the models using bilinear resizing.
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Figure 2.5. Training performance visualizations of the segmentation models’
backbones with and without the adaptive resizer integration for the selected
Attention U-Net model. Adaptive resizer combined models reach higher
accuracy rates compared to models using bilinear resizing.
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The adaptive resizer is a compact module that is trained jointly with the model
that it is integrated with. It comprises only 12,000 parameters, which is considerably
small compared to the millions of parameters in the primary models. Two sets of results
were specifically compared: the best outcomes from the original models trained with
images resized using the bilinear method and the results from the same models after the
adaptive resizer was integrated. This comparison aimed to highlight the contributions
of the adaptive resizer to these high-performing models. A comparative analysis of the
results underscores the adaptive resizer’s capability to enhance even the highest accuracy
levels.

Even though the resized images may appear less visually appealing to human
observers, with slight distortions, the adaptive resizer optimizes them specifically for the
model’s interpretation. This optimization enhances the extraction of meaningful features,
allowing the segmentation model to achieve superior performance compared to using
bilinear resizing, where crucial structural details might be lost.

Training time is a critical factor in the field of deep learning, where each second of
computation often requires a high-powered GPU. Table 2.3 presents the training durations
for the U-Net 3+ model, both with and without the inclusion of an adaptive resizer, across
different backbone architectures. The times listed in the table represent the cumulative
training durations for five models, each trained as part of a 5-fold cross-validation. No-
tably, incorporating the adaptive resizer into the U-Net 3+ model approximately doubles
the overall training time compared to the original model. The significant disparity in
training duration between the standalone model and its counterpart integrated with the
adaptive resizer primarily stems from the processing of high-dimensional images. Despite
the addition of a relatively small model, comprising merely 12,000 parameters, the crux
of the issue lies in the size of the images utilized. Images measuring 1504x1504 pixels
possess over 34 times the pixel count of those with dimensions of 256x256. Conse-
quently, this vast increase in pixel density necessitates a proportional escalation in the
time required for executing the convolution process. Should larger images be employed,
the anticipated increase in training time would be expected to exceed a mere doubling,
potentially requiring substantially more time due to the increased processing demands.

We conducted an in-depth analysis of the computational costs associated with
integrating the adaptive resizer into the U-Net 3+ model, as shown in Table 2.3. The com-
parison focuses on key metrics such as FLOPs, inference time on two different hardware
platforms (CPU: AMD EPYC 7B12 and GPU: NVIDIA A100-SXM4-40GB), and train-

ing duration. The inclusion of the adaptive resizer adds approximately 12,035 parameters
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to each model, which is minimal compared to the total number of parameters ranging

from about 14 million to 52 million in the U-Net 3+ architectures.

Table 2.3. Comparison for U-Net 3+ with and without adaptive resizer in terms of
training duration, FLOPs, inference times, parameters.

FLOPs Inference Time Inference Time Training

Model Name Parameters . .
(Billion) (CPU) (GPU) Duration

U-Net 3+ 24.88 M 369.27 1392.23 ms 154.32 ms 2215s

(VGG16)

AR + UNet 3+ +12,035 382.16 1645.13 ms 197.68 ms 4437 s

(VGG16)

U-Net 3+ 30.19M 379.94 1335.48 ms 79.48 ms 2201 s

(VGG19)

AR + U-Net 3+  +12,035 393.03 1636.69 ms 88.95 ms 4401 s

(VGG19)

U-Net 3+ 17.23 M 470.85 1624.29 ms 139.42 ms 2493 s

(ResNet50V2)

AR + U-Net 3+  +12,035 483.94 1997.29 ms 145.11 ms 4741 s

(ResNet50V2)

U-Net 3+ 51.99 M 490.26 2115.38 ms 308.11 ms 2824 s

(ResNetl152V2)

AR + U-Net 3+  +12,035 503.35 2523.47 ms 312.66 ms 5007 s

(ResNetl152V2)

U-Net 3+ 14.92 M 471.61 1719.77 ms 202.15 ms 2576

(DenseNetl121)

AR + U-Net 3+  +12,035 484.70 2063.79 ms 214.39 ms 4892 s

(DenseNetl121)

U-Net 3+ 21.98 M 475.14 1902.15 ms 287.44 ms 2747 s

(DenseNet201)

AR + U-Net 3+  +12,035 488.23 2151.17 ms 204.22 ms 5142s

(DenseNet201)

U-Net 3+ 39.26 M 377.80 1391.55 ms 98.97 ms 2664 s

(No Backbone)

AR + U-Net 3+  +12,035 390.65 1704.02 ms 107.88 ms 4875s

(No Backbone)

However, we observed an increase in computational complexity when the adaptive
resizer is incorporated. The FLOPs required for a forward pass increase across all models.
For instance, in the U-Net 3+ with VGG16 backbone, the FLOPs rise from approximately

369 billion to 382 billion operations. This pattern is consistent across other backbones,
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indicating additional computations introduced by the resizer.

Inference times also show an upward trend with the inclusion of the adaptive re-
sizer. On the AMD EPYC 7B12 CPU, the inference time for the U-Net 3+ VGG16 model
increases from approximately 1392 milliseconds to 1645 milliseconds. On the NVIDIA
A100-SXM4-40GB GPU, the inference time increases from about 154 milliseconds to
198 milliseconds for the same model. This increase in inference time, although more
pronounced on the CPU, highlights the additional processing required due to the resizer.

Training durations roughly double when the adaptive resizer is used. For exam-
ple, training the U-Net 3+ VGG16 model extends from approximately 2215 seconds to
4437 seconds. This significant increase suggests that the resizer adds complexity to the
training process, possibly due to the need for joint optimization of both the resizer and the
segmentation network.

Despite the higher computational costs, the adaptive resizer contributes to im-
proved segmentation accuracy by better preserving important features during downsam-
pling. This enhancement is particularly valuable in medical imaging applications where
precise segmentation is critical. The trade-off between computational cost and accuracy
must be carefully considered based on the specific requirements and resource constraints
of the application.

While the adaptive resizer introduces additional computational overhead in terms
of FLOPs, inference time, and training duration, it offers the benefit of enhanced segmen-
tation performance. The decision to incorporate the resizer should balance the need for
higher accuracy against the available computational resources, especially in real-world

scenarios where efficiency is crucial.

2.4.2. Visualization of Adaptive Resizer Outputs

Various methods exist to downscale an original image to desired dimensions.
Broadly, these methods can be categorized into traditional and adaptive techniques. Tradi-
tional methods are algorithmically defined and executed by computers. Prominent among
these are the bilinear, bicubic, Gaussian Pyramid, Lanczos Resampling, and Area-based

(Pixel Averaging) techniques.
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Figure 2.6. Adaptive resizer outputs trained jointly with segmentation models: U-Net,
Attention U-Net, and U-Net 3+. Columns shows 7 images from the dataset.
The first row shows the bilinear resized form of the orignal image and the
corresponding masks. Other rows are the adaptive resizer outputs which
are jointly trained with the segmentation models.

The adaptive resizer, shown in Figure 2.2, tailors the resizing process to each
specific model. Not only does it reduce the dimensions of the original image, but it also
blends RGB channels, leading to color alterations. This is attributed to the convolution
operations with varying filter numbers, which are then reconverted to a 3-channel image.
The outputs of the adaptive resizers, when trained in conjunction with a segmentation
model, are displayed in Figure 2.6. During the extraction of the output from the adaptive
resizer, the combined model is divided into two parts, isolating the adaptive resizer as an
independent model. This isolated model, containing 12,000 parameters, generates outputs
that appear as negative and positive fractional values. These values are then normalized
to a 0-255 scale to render them interpretable. It is essential to recognize that the output
from the adaptive resizer is not a conventional image. Due to the image undergoing
multiple convolutions, increasing the feature channels from three (RGB) to sixteen and

then reducing back to three, color mixing and changes are expected.
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2.4.3. Visual Comparison: Effects of the Adaptive Resizer

Analyzing Figures 2.7 and 2.8, it becomes apparent that the adaptive resizer has
a distinctive impact on the segmentation models’ performance. Figure 2.7 provides a
visual representation of annotations, bilinear resize output (BRO), BRO combined with
the segmentation model output, adaptive resizer output (ARO), and ARO combined with
the segmentation model output for all three models using the DenseNet201 backbone.
Each model is represented in two rows, with each row depicting a distinct image from
the dataset. The integration of the adaptive resizer enhances the segmentation model’s
ability to align its outputs closely with the ground truth. This improvement is particularly
noticeable in the precise depiction of contours and structural details, emphasizing the

resizer’s contribution to maintaining spatial integrity during the resizing process.
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Figure 2.7. Comparison of the segmentation results to show input images seen by
the model and their resulting segmentations. Outputs from two resizing
methods, bilinear resizing and adaptive resizing, are used as inputs to three
segmentation models: U-Net, Attention U-Net, and U-Net 3+. Columns
show the original mask, bilinear resizer output, segmentation results with
bilinear resizer, adaptive resizer output, and segmentation results with
adaptive resizer. The adaptive resizer adjusts images based on model
needs, which alters the general visual form of the image and results in
more accurate segmentation.
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Figure 2.8 presents a clear visual enhancement in model performances using the
DenseNet201 backbone as it displays prediction outputs from models with and without
the integration of the adaptive resizer. The first column shows four images from the
validation subset of the dataset, while the second column presents the ground truth for the
intended segmentation. Subsequent columns shows the predictions of the three models in
their original and adaptive resizer combined versions, facilitating an easy comparison. A
noticeable pattern emerges where models incorporating the adaptive resizer consistently
present better-defined edges and fewer instances of over-segmentation. By incorporating
selective feature scaling and preservation, the adaptive resizer minimizes the loss of
significant image details during the resizing process. This tailored approach allows the
segmentation model to leverage a higher-quality representation of the input, ultimately

improving segmentation performance.

Image 1

Image 2 3

Image 3

Figure 2.8. Comparison of segmentation performances using the adaptive resizer
versus bilinear resizing across three models: U-Net, Attention U-Net,
and U-Net 3+. Each row shows an original histology image and its
corresponding ground truth mask, followed by segmentation predictions
from the bilinear resizer used models and adaptive resizer-enhanced
models. The results illustrate the improvement in segmentation accuracy
when the adaptive resizer is incorporated into each model.

The segmentation performance of the U-Net 3+ model, with and without the
integration of the adaptive resizer, is compared in Figure 2.9. The figure illustrates a series

of images, organized by increasing segmentation complexity. Each column showcases
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a different stage of this complexity, including the original histopathology image, the
corresponding ground truth mask, predictions from the U-Net 3+ model without the
adaptive resizer, and predictions from the U-Net 3+ model with the adaptive resizer
integrated. The IoU values are displayed below each prediction, offering quantitative

measures of the models’ performance.
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Figure 2.9. Comparative segmentation analysis of simple and complex histopathology
images using UNet 3+ and AR-enhanced UNet 3+ with visual marks and
IoU values.

Regions where the adaptive resizer improves segmentation are marked with or-
ange circles, emphasizing areas where it enables the model to capture finer details or
boundaries that the model without the resizer struggles to delineate accurately. The results
demonstrate that the adaptive resizer enhances segmentation performance, especially as
the complexity of the glandular structures increases.

For simpler glands, both models perform comparably, with marginal differences
in IoU values. However, as complexity grows, the adaptive resizer consistently achieves
higher IoU scores, reflecting its ability to handle challenging structures more effectively.
This pattern underscores the adaptive resizer’s advantage in scenarios where fine-grained

segmentation is critical, although there may still be occasional instances where the re-

29



sizer’s impact varies based on the specific image characteristics.

By providing both qualitative (visual inspection of circled regions) and quantita-
tive (IoU scores) analyses, figure offers a comprehensive perspective on the impact of
the adaptive resizer. The orange-circled regions and the higher IoU scores for complex
gland structures highlight the resizer’s ability to enhance segmentation precision in diffi-
cult cases, underscoring its potential value in applications where accurate delineation of

complex structures is essential.

Figure 2.10. Comparative analysis of resized outputs and Grad-CAM heatmaps
for segmentation enhancement. Grad-CAM overlays highlighting
region-specific attention in adaptive resizer’s downsampling process

To illustrate how the adaptive resizer enhances segmentation performance in spe-
cific image regions or structures, Figure 2.10 provides interpretable visualizations, in-
cluding heatmaps. This figure presents the original histopathology images, their corre-
sponding ground truth masks, the outputs generated by the adaptive resizer, and Grad-
CAM (Gradient-weighted Class Activation Mapping) heatmaps, with Grad-CAM results
derived from the last layer of the adaptive resizer.

In Figure 2.10, the first column displays the original images as input to the adap-

tive resizer. The second column shows the ground truth segmentation masks, highlighting
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the glandular structures requiring precise identification. The third column presents the
images processed by the adaptive resizer, demonstrating how the resizer transforms the
input while aiming to preserve essential features. The fourth column includes Grad-CAM
heatmaps, overlaid onto the original images, visualizing the regions where the adaptive
resizer focuses its attention during downsampling.

By examining these heatmaps, it becomes evident that the adaptive resizer places
significant emphasis on critical areas within the images, such as complex glandular struc-
tures and intricate boundaries. The highlighted regions in the Grad-CAM overlays indi-
cate that the resizer assigns greater importance to challenging areas, ensuring that essen-
tial details are retained during resizing. This targeted approach contrasts with traditional
resizing methods, which treat all regions uniformly and may lose important information
necessary for accurate segmentation.

These interpretable visualizations provide valuable insights into the internal work-
ings of the adaptive resizer. They demonstrate how the resizer selectively prioritizes spe-
cific structures within the images, contributing to improved segmentation performance.
By highlighting the regions where the resizer allocates greater attention, readers can
better understand the advantages of using the adaptive resizer over conventional resizing
techniques. This analysis underscores the adaptive resizer’s effectiveness in handling
complex glandular structures and supports further research into adaptive preprocessing
methods in medical image segmentation.

The adaptive resizer enhances the segmentation process by incorporating feature
extraction directly within its resizing operations, bridging the gap between preprocessing
and model-specific learning. This integration allows the segmentation task to be initiated
earlier in the processing pipeline, which traditional resizing methods such as bilinear
resizing do not aim to achieve. By maintaining critical spatial details during downsam-
pling, the adaptive resizer better aligns the resized images with the U-Net models’ feature
extraction requirements, leading to improved segmentation outcomes.

The adaptive resizer is fundamentally a two-branch network. The first branch
comprises convolutional layers followed by bilinear resizing layers, while the second
branch performs only bilinear resizing. The outputs of these two branches are combined
to produce the final result. In this setup, the first branch extracts features from the image
before downsampling and processes the image after downsampling. This enables the
segmentation task to begin before the U-Net models start their operation. In contrast, the
bilinear downsampling method applies a straightforward numerical approach. It estimates

each pixel value in the downsampled image by calculating a weighted average of the
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surrounding pixels based on the downsampling ratio. For instance, when downsampling
by a factor of 2, the algorithm identifies the four nearest pixels in the original image to
obtain a weighted average of the original pixel values.

Comparing these two methods shows that the convolutional output in the adap-
tive resizer provides additional information about the segmented regions, enhancing the
segmentation results. The Grad-CAM heatmaps in Figure 2.10 illustrate this difference:
the adaptive resizer begins to understand the segmentation task and supports the U-Net
models, while U-Net models with only bilinear resizing do not initiate the segmentation
process as effectively.

The visual data suggests that the adaptive resizer allows for a segmentation that
is more faithful to the intricate structures within the images. In images exhibiting more
complex glandular structures, segmentation models enhanced by the adaptive resizer con-
sistently achieve superior fidelity compared to those employing traditional resizing ap-
proaches. This performance gain highlights the resizer’s capacity to preserve crucial
image features throughout the resizing process, thereby laying a stronger foundation
for subsequent segmentation tasks. Furthermore, comparative analyses reveal that the
adaptive resizer’s influence is not uniform across all samples but varies in response to the
unique attributes of each image. While the resizer generally improves overall model per-
formance, the degree of enhancement differs from one image to another, demonstrating its
ability to dynamically adapt to diverse data characteristics. This variation underscores the
potential need for further optimization to fully harness the adaptive resizer’s capabilities

for different types of medical imagery.

2.4.4. Analysis of Adaptive Resizer Overhead

We evaluated the computational costs of resizing high-resolution images from
1504x1504 pixels to 256x256 pixels, comparing traditional bilinear resizing with our
proposed adaptive resizer module. The computational complexity was measured in terms
of floating-point operations (FLOPs) required for each method. For the bilinear resizer,
resizing from 1504x1504x3 to 256x256x3 consistently required approximately 2,819,084
operations. This cost remained virtually constant across different input sizes because
bilinear interpolation relies on a fixed number of computations per output pixel, regardless
of the input dimensions. In contrast, the adaptive resizer introduced significantly higher
computational overhead. Resizing from 1504x1504 to 256x256 demanded 13,166,477,696

operations, which is several orders of magnitude greater than the bilinear method. This
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substantial increase in FLOPs is due to the additional convolutional layers and residual
blocks that process high-resolution inputs, causing the computational complexity to scale

quadratically with the input size.

Table 2.4. Comparison of FLOPs for bilinear resizing and adaptive resizer module at
different resolutions.

Resolution Bilinear Resizing FLOPs Adaptive Resizer FLOPs
2048x2048 to 256x256 2,819,084 23,368,958,336
1504x1504 to 256x256 2,819,084 13,166,477,696
1024x1024 to 256x256 2,819,084 6,759,514,496

512x512 to 256x256 2,819,084 2,607,153,536
256x256 to 256x256 2,819,084 1,569,063,296

We also analyzed other input dimensions to further illustrate this impact, as shown
in Table 2.4. For example, resizing from 256x256 required 1,569,063,296 operations,
while resizing from 512x512 demanded 2,607,153,536 operations. Similarly, resizing
from 1024x1024 required 6,759,514,496 operations, and from 2048x2048, it required
23,368,958,336 operations. These results clearly demonstrate that the computational
burden of the adaptive resizer increases significantly with larger input dimensions. Mean-
while, the bilinear resizer’s FLOPs remained around 2,819,084 operations across all input
sizes. This consistency emphasizes that the computational cost of bilinear resizing does
not vary with input size, unlike the adaptive resizer, which scales quadratically.

This analytical comparison highlights a trade-off introduced by the adaptive re-
sizer. While it significantly enhances segmentation accuracy by learning to retain critical
features during resizing, it does so at the expense of increased computational complexity
and overhead. The additional processing demands more resources and time, which can
be limiting in real-time applications or environments with constrained computational
resources. However, when comparing the computational cost of the adaptive resizer to the
overall model complexity, the impact remains relatively small. The average FLOPs for the
segmentation models without the adaptive resizer is 433 billion, while with the adaptive
resizer, it increases to 446 billion, resulting in an average increase of only 13 billion
FLOPs as hown in Table 2.3. This increase is minor compared to the total computational

cost of the segmentation models themselves, which typically require hundreds of billions
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of FLOPs. Therefore, despite its additional computational cost, the adaptive resizer
remains a computationally feasible enhancement, particularly given the improvements
in segmentation accuracy and feature preservation it provides.

The increased inference time due to the adaptive resizer also affects real-time
performance, particularly in applications requiring high frame rates. Since FPS is in-
versely proportional to inference time, any increase in inference time results in a decrease
in FPS. Given the average CPU inference time increase from 1,640.12 ms to 1,960.22
ms, this corresponds to an increase of approximately 19.5%. Similarly, the average
GPU inference time increases from 181.41 ms to 194.41 ms, reflecting a 7.2% increase
(Table 2.3). While these increases may not seem drastic, they can still pose challenges for
time-sensitive tasks such as real-time medical imaging and autonomous systems, where
even small latencies can impact decision-making. The effect is more pronounced in
CPU-based environments, which experience a nearly 19.5% increase in inference time,
whereas GPU-based inference sees a relatively smaller 7.2% increase due to optimized
parallel processing. However, despite this increase, the adaptive resizer’s computational
demand remains small compared to the overall model complexity, and its benefits in
segmentation accuracy and feature preservation make it a valuable enhancement for deep
learning-based image analysis tasks.

One potential approach to balance computational efficiency and segmentation
performance is a hybrid resizing strategy, where images are first downsampled to an inter-
mediate resolution (e.g., 1,024x1,024) using bilinear interpolation, followed by adaptive
resizing to the final target resolution (256x256). While this strategy helps reduce the
computational overhead of the adaptive resizer, its main advantage is enhancing segmen-
tation accuracy by allowing the adaptive resizer to focus on refining feature details at a
more optimized scale. This hybrid two-step resizing process can help retain crucial high-
frequency information, leading to improved segmentation performance in constrained
environments. However, despite these advantages, this hybrid approach represents only
a partial solution that does not fundamentally address the computational inefficiencies
inherent in the current adaptive resizer architecture.

The substantial computational demands of the adaptive resizer highlight the ne-
cessity for developing more lightweight architectures that can achieve similar or better
performance with reduced resource requirements. Designing inherently efficient resizer
models is essential for enabling practical implementation in real-time medical imaging
applications and resource-constrained environments. Such optimizations should focus on

restructuring the core components of the resizer to minimize redundant operations while
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preserving the feature extraction capabilities that make adaptive resizing valuable. By
addressing these architectural limitations, future adaptive resizers could overcome current
computational barriers and become more viable for widespread adoption in time-sensitive
clinical applications and edge computing scenarios.

Despite the relatively small computational overhead introduced by the adaptive
resizer compared to the overall model complexity, the increase in inference time rein-
forces the need for developing lightweight adaptive resizer models. The adaptive resizer
increases the total FLOPs from an average of 433.55 billion to 446.58 billion, which cor-
responds to an approximate 3.0% increase, as shown in Table 2.3. Additionally, inference
time on a GPU (NVIDIA A100-SXM4-40GB) increases from an average of 181.41 ms
to 194.41 ms, reflecting a 7.2% increase. While these increases remain relatively minor
compared to the overall computational cost, optimizing the resizer’s architecture remains
crucial. Reducing the computational cost while maintaining the benefits of feature preser-
vation and segmentation accuracy is essential for real-time applications. Future work
should focus on refining the resizer’s design to achieve a more efficient balance between
accuracy and computational efficiency, ensuring its practicality in resource-constrained

environments.

2.4.5. Hyperparameter Tuning of Adaptive Resizer

Delving into the adaptive resizer’s architecture, the original image traverses two
distinct paths. One is solely the bilinear resizer, while the other is a more intricate
route involving convolutional operations. The culmination of these paths results in the
adaptive resizer’s output. In the standard adaptive resizer, images from both paths are
combined in equal proportions. In this section, the performance implications of varying
these proportions are investigated. While the original resizer network maintains a 50:50
ratio, alternative ratios such as 20:80, 30:70, 40:60, 60:40, 70:30, and 80:20 were tested,
resulting in six unique versions of the adaptive resizer. The accuracy metrics correspond-
ing to these versions are presented in Figure 2.11, assessed using the attention U-Net
model with the DenseNet201 backbone.
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Figure 2.11. Validation accuracies of the adaptive resizer model across varying
summation ratios between the outputs of convolutional blocks and the
bilinear resizer branches (20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20).
Colored dots represent individual fold accuracies, grey squares denote the
mean value for each configuration, and vertical lines illustrate the accuracy
range observed with 5-fold cross-validation.

Within the adaptive resizer’s architecture, there’s a segment comprising 'r’ resid-
ual blocks. While the default configuration sets 'r’ to 1, variations from 1 to 5 were
investigated to gauge their impact on model performance.

Figure 2.12 displays the outcomes of adjusting the number of residual blocks
within the adaptive resizer’s architecture. Despite experimenting with five different con-
figurations of residual blocks, no significant impact on accuracy was observed. The
Attention U-Net model with DenseNet201 backbone did not exhibit substantial perfor-
mance shifts in conjunction with variations in the adaptive resizer. This suggests that the
segment of the adaptive resizer containing the residual blocks, which represents a minor
component of the deep learning-based pathway, does not critically alter the model’s effec-
tiveness. As such, the quantity of residual blocks within the adaptive resizer’s architecture

is determined to have a marginal effect on the overall system’s accuracy.
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Figure 2.12. Validation accuracies of the adaptive resizer model across varying numbers
of sequential residual blocks (1-5). Colored dots represent individual fold
accuracies, grey squares denote the mean value for each configuration,
and vertical lines illustrate the accuracy range observed with 5-fold
cross-validation.

In summary, while Figures 2.11 and 2.12 illustrate our experiments with varying
hyperparameters such as summation ratios and the number of residual blocks, the results
demonstrate that these modifications have minimal or inconsistent effects on the adaptive
resizer’s performance without following any clear pattern. This finding indicates that sim-
ply fine-tuning these specific hyperparameters is not enough for meaningful performance
improvements. However, the limited impact of hyperparameter variations reinforces the
necessity of exploring deeper architectural optimizations beyond hyperparameter tuning
to ensure that the adaptive resizer can be fully leveraged for more accurate and efficient
image processing applications.

In this research, the adaptive resizer-based segmentation framework was investi-
gated. The extensive evaluations detailed in this section confirm the significant benefits
of integrating an adaptive resizer with U-Net-based segmentation models. The adaptive
resizer not only improves the models” accuracy but also refines their capability to maintain

crucial image details, enhancing the overall quality of segmentation. These improvements
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are consistently observed across various model configurations and imaging conditions,
demonstrating the adaptive resizer’s robustness and versatility. The visual and quanti-
tative analyses further validate the resizer’s efficacy, making a compelling case for its
adoption in advanced segmentation tasks. Moving forward, these insights could pave the
way for more sophisticated adaptations and optimizations in medical image processing,

potentially transforming current practices in the field.

2.5. Conclusion

The need for an adaptive resizer arises from the limitations of traditional resiz-
ing methods like bilinear resizing, which often result in significant information loss,
particularly in high-resolution medical images. Such loss is especially problematic in
segmentation tasks, where preserving spatial information is crucial for generating ac-
curate pixel-wise predictions. Traditional resizing methods fail to adapt to the unique
characteristics of medical images, leading to suboptimal segmentation performance. To
address this, our study investigated the integration of an adaptive resizer module in seg-
mentation, leveraging its ability to dynamically preserve essential image details while
adapting to unique image characteristics. We proposed an adaptive resizer-based seg-
mentation framework for the analysis of Colorectal Gland images. Gland segmentation
is important since it allows for more accurate histopathological analysis, which is crucial
for the diagnosis and staging of cancer. The influence of the adaptive resizing module
on the efficacy of the segmentation task was investigated. The research embarked on an
exploration of three different segmentation models, with seven different backbone choices
utilizing a singular dataset. Performance comparisons using the adaptive resizer versus
traditional bilinear resizing across three segmentation models were conducted, followed
by analyses of computational time consumptions and hyperparameter modifications of
adaptive resizer. The results revealed that the adaptive resizer significantly improved
segmentation performance. Specifically, the integration of the adaptive resizer with seg-
mentation models resulted in a marked improvement in the intersection over union (IoU)
metric: a 6.47% increase for U-Net, 6.67% for Attention U-Net, and 3.79% for U-Net
3+. These results highlight the adaptive resizer’s potential to enhance gland segmentation
methodologies, making it a valuable tool in biomedical applications where precision and
accuracy are critical. By preserving essential image details and adapting to unique image
characteristics, the adaptive resizer ensures more accurate and efficient segmentation

outcomes. Future efforts should re-evaluate the internal structure of the resizer, integrate
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more selective feature processing strategies, and optimize computational efficiency to
ensure maximal benefit across diverse imaging applications. These advancements will
further refine the adaptive resizer into a more robust and versatile preprocessing tool,
extending its applicability to a broader range of computer vision tasks beyond segmen-
tation. Nevertheless, our study confirms that the adaptive resizer remains an effective
solution for enhancing segmentation in high-resolution medical imaging. Given the as-
sociated increase in computational overhead, striking a balance between accuracy and
efficiency becomes crucial, particularly for real-time processing or systems with limited
computational resources. Overall, these findings highlight the resizer’s ability to preserve
spatial information, underscoring its potential value not only in segmentation tasks but

also in other pixel-level computer vision applications.
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CHAPTER 3

COMPARATIVE ANALYSIS OF NOVEL ADAPTIVE
RESIZER ARCHITECTURES FOR IMAGE
CLASSIFICATION AND SEGMENTATION TASKS

3.1. Study Abstract

High-resolution medical images often necessitate downsampling to align with the
input constraints of deep learning models, a process that frequently leads to the loss of
critical fine-grained features essential for accurate diagnosis. This study investigates the
efficacy of various image resizing strategies, comparing traditional numerical methods
against established adaptive resizing techniques and a novel suite of proposed adaptive
resizer architectures. We evaluated these approaches on demanding medical imaging
tasks: retinal vessel segmentation using the High-Resolution Fundus (HRF) dataset and
diabetic retinopathy grading via a five-class classification task on the Indian Diabetic
Retinopathy Image Dataset (IDRiD). Our research introduces new adaptive resizer archi-
tectures designed to optimize the trade-off between preserving task-relevant information
and maintaining computational efficiency. Experimental results demonstrate that our
proposed resizers generally outperform existing methods. Specifically, for segmentation,
‘Resizer MFY’ yielded the highest performance gains (average IoU increase of +21.04%
over bilinear), while ‘Resizer A2’ proved most effective for classification tasks (aver-
age F1 score increase of +22.39% over bilinear). In terms of computational efficiency,
the ‘Minimal V1’ architecture consistently emerged as the most lightweight among the
proposed adaptive resizers, offering substantial performance improvements with a signif-
icantly lower computational overhead compared to other adaptive methods. This work
underscores the potential of tailored adaptive resizers to enhance the accuracy of deep
learning models in medical image analysis while carefully managing computational re-

sources.
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3.2. Introduction

The proliferation of high-resolution imaging in medical diagnostics has provided
unprecedented detail for analysis. However, directly applying these high-resolution im-
ages to deep learning frameworks, particularly Convolutional Neural Networks (CNNs),
presents practical limitations. CNNs are often designed with specific input dimensionality
constraints due to architectural choices like fixed-size fully connected layers and the
need to manage computational resources effectively. This necessitates downsampling
high-resolution source images to standardized sizes (e.g., 224x224 or 256x256 pixels).

Traditional downsampling techniques, such as bilinear or bicubic interpolation,
while simple and computationally efficient, operate on fixed mathematical rules. This
often leads to a significant loss of critical fine-grained features and high-frequency details,
which can be particularly detrimental in medical image analysis where subtle details are
paramount for accurate diagnosis or precise segmentation. This information loss can limit
the performance ceiling of sophisticated deep learning models.

Recognizing these limitations, adaptive image downsampling has emerged as a
promising research area, aiming to tailor the downsampling process by considering image
content or specific task requirements. A key innovation is the concept of a learnable
resizer, notably introduced by (Talebi and Milanfar, 2021). This approach treats the
image resizer as an integral, compact neural network module trained jointly with the main
deep learning model, allowing it to learn task-specific downsampling. While the "Original
Adaptive Resizer" demonstrated potential, as explored in Chapter 2, there remains a need
for architectures that further enhance performance and, critically, improve computational
efficiency.

This chapter (Chapter 3) builds upon these insights by proposing and rigorously
evaluating a novel suite of adaptive resizer architectures. These new architectures are
designed with the dual goals of improving performance in both image classification and
segmentation tasks while also optimizing computational efficiency. Their efficacy is as-
sessed on demanding medical imaging tasks: retinal vessel segmentation using the High-
Resolution Fundus (HRF) dataset and diabetic retinopathy grading via a five-class classifi-
cation task on the Indian Diabetic Retinopathy Image Dataset (IDRID). This study aims to
provide tailored, computationally considerate solutions for resizing high-resolution med-
ical images, thereby enhancing the accuracy and efficiency of subsequent deep learning

models.
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3.2.1. Related Works

The challenge of effectively resizing images for deep learning models, particu-
larly in sensitive fields like medical imaging, has spurred a progression of research from
traditional algorithms to sophisticated, learnable approaches.

Historically, image downsampling has been dominated by numerical methods
such as bilinear and bicubic interpolation. These techniques are widely used due to their
simplicity and computational efficiency. Bilinear interpolation, for instance, considers the
four nearest pixels to compute the new pixel’s value, while bicubic interpolation uses a
larger neighborhood of 16 pixels for a generally sharper output. Lanczos interpolation
employs a wider pixel window and a specialized mathematical function to minimize
artifacts and maintain detail, though at a higher computational cost. Gaussian blurring
is also often used as a pre-processing step before downsampling to mitigate aliasing
artifacts, though it can soften the image. The primary drawback of these fixed numerical
algorithms is their inherent tendency to cause information loss, especially of fine-grained
features and high-frequency details, as they do not adapt to the image content. This loss
can be particularly detrimental in medical image analysis where subtle details are crucial
for diagnosis and segmentation.

Recognizing the limitations of fixed algorithms, the research community has ex-
plored more advanced downsampling techniques that aim to be content-adaptive. These
methods seek to tailor the downsampling process by considering the image content or the
specific requirements of the subsequent computer vision task. Strategies have included
non-uniformly sampling image regions based on content importance, developing content-
adaptive downsampling schemes within network architectures, and designing novel pool-
ing layers that are more adaptive and information-preserving. Some approaches utilize
edge-aware filtering, varying smoothing based on pixel similarity to preserve edges while
smoothing flat areas. While these methods offer improvements, many early adaptive
techniques still relied on handcrafted features or complex heuristics.

A significant advancement in adaptive downsampling is the concept of the learn-
able resizer, which integrates the resizing process into the deep learning pipeline as a
trainable module. The foundational work by (Talebi and Milanfar, 2021) introduced
such an adaptive resizer: a compact neural network module positioned at the beginning of
a main deep learning architecture and trained jointly with it. This end-to-end training
enables the resizer to learn how to downsample images in a way that is specifically

optimized for the task at hand, aiming to retain features most salient for the model’s
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performance.

The introduction of this learnable resizer by Talebi and Milanfar spurred further
research and adaptations across various domains:

(Li etal., 2023) developed the Model Adaptive Resizer (MAR), which modified
the original learnable resizer by incorporating channel attention mechanisms within its
"MAR blocks" for few-shot learning tasks.

(Zou et al., 2023) utilized a learnable resizer model in the domain of fault
diagnosis for rotating machinery, applying it to classify signals that were converted into
time-frequency images.

(Rahman, 2023) conducted an empirical analysis on integrating learnable resizers
to enhance the performance of both classification and segmentation models in the medical
field.

(Duzyel et al., 2023) showcased the utility of an adaptive resizer-based transfer
learning framework for diagnosing breast cancer from histopathology images, finding
that it significantly outperformed bilinear interpolation, particularly at high magnification
factors.

(Han and Chen, 2021) integrated a learnable resizer with the MobileNet architec-
ture for COVID-19 CT scan image classification, reporting improved accuracy over the
original MobileNet and other standard CNNs.

(Zhang et al., 2022) proposed a minimalist learnable resizer, “Mini-resizer,”
for image geolocation, which employed convolution to project features into a higher
dimensional space, followed by a self-attention mechanism for refinement.

While these learnable resizers have demonstrated considerable benefits, partic-
ularly in classification tasks, and Chapter 2 of this thesis affirmed their potential for
segmentation, there is ongoing scope for improvement. The initial study in Chapter
2 highlighted that while the original adaptive resizer improved segmentation accuracy,
it also significantly increased computational demands. This underscores the need for
novel architectures that not only push the boundaries of performance but also offer better
computational efficiency.

The current study (Chapter 3) is motivated by these observations. It aims to
address the limitations of existing adaptive resizers by proposing and evaluating a new
suite of architectures designed to optimize the trade-off between preserving task-relevant
information for both segmentation and classification tasks and maintaining computational

efficiency, especially in the context of high-resolution medical imaging.
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3.2.2. Motivation for Novel Architecture Designs

While the original adaptive resizer and subsequent modifications have shown con-
siderable promise, Chapter 2 of this thesis confirmed its efficacy for segmentation tasks
but also highlighted the associated increase in computational load. Existing adaptive
resizers might still face limitations in terms of achieving an optimal balance between
performance enhancement across diverse tasks (like segmentation and classification) and
computational efficiency. There is a clear need for resizer architectures that are not
only effective in preserving task-critical information but are also computationally more
efficient and robust across different types of medical imaging tasks.

This study directly addresses this gap by proposing a suite of six novel adaptive
resizer architectures. These architectures have been developed through extensive exper-
imentation and are specifically designed to optimize the trade-off between performance
(for both segmentation and classification) and computational cost, with a focus on high-

resolution medical image analysis.

3.3. Materials and Methodology

This section provides a thorough overview of the materials and methods used
in the second major study of this thesis. It details the computational setup, the two
high-resolution medical imaging datasets, and the diverse range of deep learning models
selected for each task. Furthermore, it discusses various numerical and adaptive resizing
strategies, introduces the six novel adaptive resizer architectures proposed in this work,
and outlines the comprehensive experimental design and evaluation metrics used to assess

their performance and computational cost.

3.3.1. Computational Setup

All model development, training, and evaluation were conducted using the Google
Colaboratory platform, which provides a cloud-based environment equipped with con-
figurable high-performance hardware resources. Two different runtime configurations
within Colab were utilized based on the requirements of the task.

During model training, the environment was configured with an Intel® Xeon®

CPU @ 2.20 GHz, 83.48 GB of system RAM, and an NVIDIA A100-SXM4-40GB GPU
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with 39.56 GB of dedicated video memory. This high-performance setup enabled the
efficient training of deep convolutional neural networks, particularly for high-resolution
medical imaging tasks where both memory capacity and computational throughput are
critical.

The Colab runtime was configured in CPU-only mode for model evaluation, es-
pecially to measure inference time and analyze computational overhead. In this setting,
the system was equipped with an AMD EPYC 7B12 CPU and 50.99 GB of RAM, with
no GPU detected. This configuration allowed for the assessment of model performance
in CPU-limited scenarios, providing insights into the computational cost and deployment
feasibility of the proposed architectures in environments lacking dedicated GPUs.

All models were implemented using the PyTorch deep learning framework, which
offers flexibility and modularity for defining and training neural architectures. For clas-
sification tasks, architectures were sourced from the torchvision.models module, which
includes various pre-trained models widely used in image classification. For semantic
segmentation tasks, models were obtained from the segmentation-models-pytorch (smp)
library, a high-level interface that provides standardized implementations of state-of-the-

art encoder-decoder segmentation networks.

3.3.2. Datasets

This work utilizes two distinct datasets, selected for their high-resolution charac-

teristics: one dedicated to a segmentation task and the other for a classification task.

3.3.2.1. Dataset for Segmentation Task: HRF

The High-Resolution Fundus (HRF) collection consists of 45 high-quality color
fundus photographs, equally divided among three diagnostic categories: 15 images from
healthy persons, 15 from patients with diabetic retinopathy, and 15 from those diagnosed
with glaucoma. Each image has a resolution of roughly 3304x2336 pixels and is supplied
in JPEG format. The dataset was specifically created for retinal vascular segmentation
research and contains expert-annotated binary vessel maps for each image. (Budai et al.,
2013) established it in their publication "Robust Vessel Segmentation in Fundus Images”™
in the International Journal of Biomedical Imaging, and it has subsequently been exten-

sively utilized as a benchmark for assessing vessel segmentation algorithms.
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This study used the HRF dataset just for vascular segmentation. A total of 36
images were assigned for training, while the remaining 9 images were allotted for testing.
To maintain uniformity in input dimensions, all photos were initially padded vertically
to make a square format and then cropped to a standardized size of 3504x3504 pixels,
retaining the core content area. This preprocessing step was implemented to ensure

compatibility with the utilized segmentation architectures.

3.3.2.2. Dataset for Classification Task: IDRiD

The Indian Diabetic Retinopathy Image Dataset (IDRiD) comprises a total of
516 high-resolution fundus images captured from diabetic patients, each accompanied
by disease severity labels. These images were acquired using a fundus camera with a 50°
field of view and have a resolution of approximately 4288x2848 pixels, stored in JPEG
format. Out of the 516 images, 413 are designated for training and the remaining 103 for
testing. The dataset provides ground truth labels at the image level based on the standard
5-level diabetic retinopathy (DR) grading scale, ranging from O (no DR) to 4 (severe
DR), and includes annotations for diabetic macular edema (DME) severity. It serves
as a benchmark for the development and evaluation of DR screening and classification
algorithms. This dataset was introduced by (Porwal et al., 2018) in their work titled
“Indian Diabetic Retinopathy Image Dataset (IDRiD): A Database for DR Screening
Research,” published in the Data journal.

In our study, we have specifically utilized the IDRiD dataset for the five-class
diabetic retinopathy classification task. We did not use it for segmentation purposes or
for the alternative three-class classification task. To enhance the spatial uniformity of the
images, we first applied vertical padding to convert the original 4288x2848 images into
square dimensions of 4288x4288 pixels. Subsequently, we performed a center-cropping
operation to remove the padded margins and extract only the content-relevant area, re-
sulting in final images of size 3550x3550 pixels. This preprocessing step ensured that the

input data was better aligned with the requirements of our classification pipeline.

3.3.3. Segmentation and Classification Models

This section outlines the various deep learning architectures employed for the

primary tasks of retinal vessel segmentation and diabetic retinopathy classification. For
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each task, a selection of established and most known models was utilized, leveraging their

distinct architectural strengths.

3.3.3.1. Segmentation Models

Several state-of-the-art convolutional neural network architectures were employed
for the segmentation task, specifically retinal vessel segmentation. One of the foun-
dational models utilized was U-Net, a fully convolutional network characterized by its
symmetric encoder-decoder structure and skip connections. The model’s “U”-shaped ar-
chitecture facilitates the fusion of low-level and high-level feature representations through
these skip pathways, enabling precise pixel-wise segmentation. U-Net was originally
proposed by Ronneberger et al. for biomedical image segmentation and demonstrated
strong performance in settings with limited training data (Ronneberger et al., 2015).

An enhanced version of the original U-Net, known as U-Net++, was also con-
sidered. U-Net++ introduces a series of nested dense skip connections between the
encoder and decoder sub-networks, which serve to reduce the semantic gap between
the corresponding feature maps. This architecture further incorporates deep supervision
during training, promoting more effective gradient flow and feature learning. (Zhou etal.,
2018) reported that U-Net++ achieves improved segmentation accuracy compared to the
standard U-Net by leveraging these densely connected up-sampling paths.

Another architecture evaluated was DeepLabV 3+, which extends the DeepLabV3
framework by incorporating an encoder-decoder design. The model utilizes an Atrous
Spatial Pyramid Pooling (ASPP) module to capture contextual information at multiple
scales using dilated convolutions. A lightweight decoder is subsequently employed to
refine segmentation outputs, particularly along object boundaries. The addition of the de-
coder and ASPP was shown by (Chen et al., 2018) to significantly improve segmentation
of fine structural details while maintaining strong performance on global context.

The study also included MA-Net (Multi-scale Attention Network), which en-
hances feature representation through the integration of two complementary attention
mechanisms: a position-wise attention block that models long-range spatial dependencies,
and a channel-wise attention block that supports multi-scale feature fusion. This dual
attention framework enables MA-Net to capture both global context and discriminative lo-
cal features, improving segmentation accuracy on challenging datasets. The effectiveness
of MA-Net was validated by (Li etal., 2020), particularly in remote sensing applications,

where it outperformed earlier architectures.

47



Finally, LinkNet was selected due to its efficiency-oriented design. LinkNet em-
ploys an encoder and a lightweight decoder, with skip connections bridging each en-
coder block to its corresponding decoder block. This structure significantly reduces
computational cost while maintaining high segmentation performance. The architecture,
introduced by (Chaurasia and Culurciello, 2017), was shown to match the accuracy of
more computationally intensive models while offering substantially faster inference.

It is important to note that for all the segmentation architectures discussed—U-
Net, U-Net++, DeepLabV3+, MA-Net, and LinkNet—a consistent encoder strategy was
adopted. Each of these models utilized a ResNet-50 architecture, pre-trained on the
ImageNet dataset, as its primary feature extraction backbone. This approach ensures
that the variations in performance can be more directly attributed to the unique decoder
designs and feature integration strategies of each network, rather than differences in the

initial feature encoding stage.

3.3.3.2. Classification Models

For the diabetic retinopathy severity classification task, a diverse set of convo-
lutional neural network (CNN) architectures from the torchvision.models library
was employed, each pre-trained on ImageNet and subsequently fine-tuned for a five-class
output.

DenseNet-121 is a compact and efficient architecture characterized by densely
connected blocks in which each layer receives the feature maps of all preceding layers
as inputs (Huang et al., 2017). This dense connectivity alleviates vanishing gradients
and promotes feature reuse. The final classifier layer of DenseNet-121 was adapted
accordingly.

ResNeXt-50 (32x4d) introduces the concept of cardinality, which expands rep-
resentational power by increasing the number of parallel transformations within each
residual block rather than its depth or width (Xie et al., 2017). This model structure
enables performance gains without significant increases in complexity, and its output layer
was similarly modified for five-class classification.

ShuffleNet V2, designed for resource-constrained environments, employs channel
shuffling and grouped pointwise convolutions to optimize actual runtime performance on
mobile hardware (Ma et al., 2018). The architecture achieves an excellent trade-off
between accuracy and efficiency, and the final fully connected layer was replaced for

task-specific adaptation.
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GoogLeNet, also referred to as Inception v1, is a 22-layer deep CNN that in-
troduced the Inception module—an architectural innovation that processes multi-scale
convolutional operations in parallel within each block (Szegedy etal., 2015). Its classifier
head was adjusted to match the classification target.

MnasNet, a mobile-optimized model developed via platform-aware neural archi-
tecture search (NAS), strikes a balance between inference latency and accuracy. The
architecture was tuned to perform efficiently on mobile CPUs while maintaining compet-
itive performance (Tan et al., 2019). Its final classifier layer was modified for five-class
prediction.

RegNetX-1.6GF is a variant within the RegNet family, which was derived from
design space exploration of regular network patterns with quantized linear progression in
width and depth (Radosavovic et al., 2020). This architecture offers favorable accuracy-
speed trade-offs, particularly on GPU hardware, and its fully connected head was replaced
during fine-tuning.

Finally, EfficientNet-B 1, which was designed through compound scaling of depth,
width, and resolution based on a baseline NAS-discovered model, was included in the
evaluation. EfficientNet-B1 provides strong accuracy with reduced parameter count and
computational cost, making it suitable for medical imaging applications (Tan and Le,

2019). Its classifier was adjusted to output five classes.

3.3.4. Numerical Resizing and Adaptive Resizing

Image downsampling is the process of reducing the spatial resolution of an image.
This action is often done to reduce file size and decrease processing time of the compu-
tations. When downsampling, it’s crucial to do it in a way that minimizes artifacts like
aliasing and preserves as much important image detail as possible. Several interpolation
techniques are used to calculate the pixel values for the new, smaller image based on
the original pixel values. Interpolation is essentially an “educated guess.” The software
needs to decide what color a new pixel should be, based on the colors of the existing
pixels in the original image. Different interpolation methods use different approaches
to make these guesses, leading to varying results in terms of image quality, sharpness,
and processing time. In our experiments, numerical downsampling methods and adaptive
downsampling modules were compared. Numerical downsampling algorithms do not
perform an iterative process; they calculate the pixel values in the target matrix using the

pixel values in the source matrix within a certain rule.
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Some of the most well-known numeric resizing methods are bilinear, bicubic,
Lanczos, and Gaussian resizing algorithms.

Bilinear interpolation looks at the four closest existing pixels (a 2x2 square) that
surround the location of the new pixel. It then calculates the new pixel’s color by taking a
weighted average of these four neighbors. This method is generally used in tasks where
speed is a consideration and sharpness is not a priority. Thus, it causes loss of fine details
and appears a bit soft and blurry.

Bicubic interpolation is a more complex method than bilinear interpolation. In-
stead of using the 4 nearest pixels, this method uses 16 nearest pixels (a 4x4 square).
This method generally produces sharper and more detailed images compared to bilinear
interpolation. Image editing programs use it as a default for better quality resizing. It is
also more computationally intensive than bilinear interpolation, meaning it takes longer
to process.

A more sophisticated technique is Lanczos interpolation. It seeks to produce
downsampling tasks with high-quality results. It examines an even wider range of the
original pixels (for instance, a popular variant called Lanczos-3 takes into account a
window of 6x6 or 8x8 surrounding pixels). It determines the weights for these nearby
pixels using a unique mathematical function. The goal of this function is to minimize
undesired artifacts while maintaining as much detail as possible. This algorithm is very
good at maintaining the sharpness and detail of images, minimizing aliasing, and prevent-
ing the blurring that comes with using simpler techniques. The primary disadvantage is
its computational expense; because of the complexity of its computations and the larger
number of pixels it processes, it is among the slowest popular interpolation techniques.

The Gaussian method is not an interpolation technique. Rather, it is frequently
employed as a pre-processing step. Before discarding pixels or calculating new ones, the
original image is supposed to be slightly blurred. It averages pixels smoothly, giving
central pixels more weight and distant pixels less, resembling a bell curve. Aliasing
artifacts can be effectively avoided by applying a Gaussian blur prior to downsampling.
Blurring naturally softens and lessens the sharpness of the image. The final downsampled
image may appear too soft or lack detail if the blur is too strong. Applying just enough
blur to avoid aliasing without sacrificing too much crucial detail is crucial. It gives the
resizing process an additional step. Combining Gaussian blur and Lanczos downsampling
is one of the comparison techniques used in the experiments.

Adaptive downsampling techniques adopt a more complex strategy by examining

the image content either prior to or during the resizing process, in contrast to the fixed nu-
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merical algorithms previously discussed. These methods modify their behavior according
to local image features, like the existence of edges, textures, or smooth areas, rather than
imposing a consistent rule over the whole image. While more aggressive smoothing or
information reduction may be applied in less crucial, uniform areas, the main objective
is frequently to maintain visually significant features, such as sharp edges that define
objects. Instead of using a single fixed filter everywhere, this content-aware approach
seeks to improve the downsampled image’s perceptual quality.

Adaptive downsampling can be applied in several ways. Some approaches may
make use of edge-aware filtering techniques, which smooth flat areas while maintaining
edges by varying the amount of smoothing according to pixel similarity. Others may
use distinct interpolation techniques in accordance with the explicit detection of dis-
tinct region types. Additionally, learning-based methods, which frequently make use of
deep neural networks, represent an important category. Adaptive approaches, especially
learning-based ones, can be much more complicated and computationally demanding than
conventional numerical techniques, even though they may produce better visual results.

The primary focus of this study is the mentioned learning-based approach.

3.3.5. Adaptive Resizer Architectures

In order to improve performance and computational efficiency in image resizing
tasks, this study presents six innovative adaptive resizer architectures. Each of these has
distinct qualities. Out of more than 60 different designs that were created and assessed,
these six architectures were chosen. For a comparative baseline, the “Original Resizer”
architecture is first discussed.

Original Resizer: As shown in Figure 3.1, this architecture employs a two-branch
design. The first branch directly resizes the input image to the target dimensions using
bilinear interpolation. The second branch initially applies two convolutional layers (with
16 kernel tensors of size 7x7x3 and 16 of size 1x1x16, respectively) to the input
tensor. This feature-extracted tensor is then resized using bilinear interpolation, followed
by further convolutional operations. Finally, the outputs from these two branches are

summed to produce the resized image.
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Figure 3.1. Original resizer architecture

Minimal V1: This architecture, shown in Figure 3.2, first interpolates the input
tensor’s width or height to four times the target resolution using bilinear interpolation.
Subsequently, two strided convolution operations, each with a stride s = 2, are applied to
this tensor, bringing the output tensor to the target size. The relationship between input
size (I), kernel size (K), padding (P), stride (5), and output size (O) of a convolutional
layer is given by Equation 3.1.
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Figure 3.2. Minimal V1 resizer architecture

Minimal V2: Depicted in Figure 3.3, applies two strided convolutions (with s =
2) to the input tensor first. The resulting tensor is then interpolated to the target size using

bilinear interpolation.
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Figure 3.3. Minimal V2 resizer architecture

Resizer A: Shown in Figure 3.4, is a dual-branch architecture. The first branch
implements the Minimal V1 pipeline, and the second branch implements the Minimal
V2 pipeline. The 3-channel tensor outputs from both branches are concatenated and then

fused via a final convolutional layer to produce the 3-channel output image.

Resizer A

ilinear Resize|

$
®
g
E
2
$

Conv2D (k7Tn32s2)

Conv2D (kTn64s2)

Conv2D (k3n3s1)

HinxWin

Conv2D (k3n3s1)

ilinear Resize|

Conv2D (k7Tn32s2)

i
2
g
§

Conv2D (k3n3s1)

Figure 3.4. Resizer A architecture

Resizer A2: Illustrated in Figure 3.5, is a variant of Resizer A. The projection
convolutions at the end of the individual Minimal V1 and Minimal V2 branches, which
would convert feature maps to 3 channels within each branch, are omitted. Instead, the
two 64-channel tensors (assuming 64 channels before projection in the branches) are
directly concatenated, followed by a final convolutional layer to produce the 3-channel

output.
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Figure 3.5. Resizer A2 architecture

Resizer SK: This architecture, shown in Figure 3.6, builds upon the Minimal V2
baseline by integrating vision attention mechanisms. Specifically, the Selective Kernel
(SK) attention mechanism is employed. Resizer SK has three branches: the first is the
Minimal V2 pipeline; the second performs direct bilinear resizing of the input to the
target dimensions; and the third auxiliary branch first bilinearly resizes the image to the
target dimensions, then expands it into a 32-channel tensor, and subsequently processes it
through an SK attention module. The outputs from these three branches are concatenated

and then projected to a 3-channel tensor via a final convolution.
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Figure 3.6. Resizer SK architecture
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Resizer MFY: Depicted in Figure 3.7, is a three-branch architecture that extends
the Resizer A design. Two branches follow the Resizer A structure (derived from Minimal
V1 and Minimal V2). The third, new branch takes the input tensor, brings it to the target
resolution via bilinear resizing, and then processes it with a bank of fixed 3x3 filters
(e.g., Sobel, Prewitt, Laplacian, emboss, Schaar, edge detection, strong sharpen, vertical
lines, and horizontal lines). Each of these fixed filters operates on the 3-channel image
to produce a 3-channel output; their concatenation results in a tensor with 3 X Nyiers
channels (where Nyiers = 12 in this design, leading to a 36-channel tensor). The
outputs from all three branches are concatenated and then convolved to produce the final

3-channel output image.

4 Resizer MFY

12 Manual Filters

8 %
3 5 2 |5
g
HipxWin * 3 215
3 14 (=] o
£ ol |2
= =]
1 (8]
g 32 3
] § fd -
g 5|8 &
= HEINE
sl | 53 | |3
- /

Figure 3.7. Resizer MFY architecture

3.3.6. Experimental Designs for Resizer Evaluation

To properly evaluate and compare the resizer architectures, we designed meticu-
lous experimental setups for both segmentation and classification. These setups specify
the data handling, model training, and evaluation strategies for each task. For segmenta-
tion on the HRF dataset, a standardized pipeline was followed from image preprocessing

to model training and testing. For classification, we adopted a multi-faceted approach
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using the IDRID dataset across different input and output resolutions to ensure a rigorous

and comprehensive assessment of the resizers’ capabilities.

3.3.6.1. Segmentation Task Experimental Setup

Specifically addressed to the task of semantic segmentation of retinal vessels using
the High-Resolution Fundus (HRF) image dataset, this part describes the experimental
methods used to rigorously evaluate the effectiveness of several proposed adaptive resizer
architectures against conventional methods. Figure 3.8 shows the brief overview of the

model training strategy.
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Figure 3.8. An overview of the segmentation pipeline designed to evaluate and
compare various image resizing techniques. High-resolution fundus
images (padded to 3504x3504) are downsampled to 512x512 using a
selection of resizers. These resized images then serve as input for several
established segmentation models. This framework allows for a rigorous
comparison of how different resizing methods affect the final segmentation
accuracy for each model architecture.

Experimentation used the 45 high-resolution retinal fundus pictures in the HRF

dataset, each originally measuring 3304x2336 pixels. Pictures were preprocessed using
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padding to produce square pictures with dimensions of 3504x3504 therefore achieving ho-
mogeneity and eliminating distortions resulting from aspect ratio variations. The dataset
was then split into a training set of 36 images and a testing set comprising 9 images.

The main goal of the resizing work was to downsample these 3504x3504 pixel
preprocessed photos to a much smaller target resolution of 512x512 pixels. This signif-
icant decrease in resolution presents special difficulties for the preservation of delicate
vascular structures needed for precise segmentation.

Five well-known semantic segmentation networks were chosen: U-Net, U-Net++,
DeepLabV 3+, MA-Net, and LinkNet (with a ResNet-50 backbone) to methodically assess
the efficacy of each resizing technique across various model topologies.

Eight different resizing techniques were used: Minimal V1, Minimal V2, Resizer
A, Resizer A2, Resizer SK, and Resizer MFY; one traditional interpolation method (bi-
linear interpolation); one previously established learnable resizer architecture (Original
Resizer) introduced by Talebi & Milanfar.

Corresponding ground truth segmentation masks were downsized in parallel with
their respective input pictures (from 3504x3504 to 512x512 pixels) using identical scaling
techniques to ensure consistency in evaluation. Resizing caused interpolation, hence
masks had grayscale values between 0 and 255. Higher threshold values degraded the
portrayal of fine vascular structures, according empirical testing with thresholds of 128,
100, and 70. Therefore, a threshold of 70 was found as ideal to efficiently binarize the
masks into a distinct segmentation target while maintaining thorough vessel information.

Every combination of segmentation models and resizing techniques, resulting in a
total of 40 unique combinations, calculated as five models multiplied by eight resizers,
underwent training for one hundred epochs. Using the intersection over union (IoU)
metric as the criterion for model selection, the model performance was tracked using a
validation subset (formed from the training set). Saved and subsequently used for testing
were model weights producing the best IoU on this validation set.

Every model-resizer configuration was trained independently five times to guaran-
tee strong resistance against variability resulting from random initializations and stochas-
tic optimization methods. By averaging the results of these five independent runs, final
reported measurements improve the statistical dependability of the obtained data.

Especially with regard to their potential to preserve segmentation accuracy when
downsampling high-resolution retinal pictures crucial for medical diagnosis, this thorough
experimental framework offers an in-depth comparative examination of the suggested

adaptive resizer architectures.
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3.3.6.2. Classification Task Experimental Setup

Using the Indian Diabetic Retinopathy Image Dataset (IDRiD), this part describes

the experimental methodologies used to assess the suggested adaptive resizer structures

versus baseline approaches in a multi-class classification problem, namely diabetic retinopa-

thy (DR) grading. The brief overview of the experimental framework for training can be

seen in Figure 3.9.
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Figure 3.9. The comprehensive experimental framework for Diabetic Retinopathy
The top panel illustrates the four-stage data
preparation process: starting with the original imbalanced IDRiD dataset,
followed by padding, center cropping, and a balancing procedure to create
uniform class distributions for training (450 images) and testing (100
images). The main pipeline then processes these images by downsampling
them from a given input resolution (e.g., 2048x2048) to a target resolution
(e.g., 256x256) using one of the available resizer options. Finally, the
resized image is classified into one of five DR grades by one of seven

(DR)

classification.

different CNN models.

We used the 516 retinal fundus images from the IDRiD collection, originally
4288x2848 pixels. With 413 training images and 103 testing images, the dataset first
comprised five different DR grades (Classes 0 through 4). A two-step balancing approach
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was followed considering the underlying class imbalance in the initial distribution. First,
underrepresented classes underwent data augmentation in order to synthetic increase their
sample count. Second, selectively reduced photos from overrepresented classes. As so,
this balancing produced a balanced testing dataset of 100 photos (20 images per class) and
a homogeneous training dataset comprising 450 images (90 images per class). Images
then underwent required padding and cropping to generate uniform square dimensions of
3504x3504 pixels.

The main experimental phase of first classification was two-stage downsampling.
The standardized 3504x3504 photos were first scaled to an intermediary resolution of
2048x2048 pixels then further down-sized to a target level of 256x256 pixels. Six new
adaptive resizer architectures proposed in this work, Minimal V1, Minimal v2, Resizer
A, Resizer A2, Resizer SK, and Resizer MFY; one traditional baseline method (bilin-
ear interpolation) and one established learnable resizer (Original Resizer) were tested.
DenseNet121, EfficientNetB1, GoogLeNet, MnasNet1.0, ResNeXt50, RegNet, and Shuf-
fleNetV2.0 were among seven different convolutional neural network (CNN) designs
chosen for the classification challenge. This produced 56 total unique model-resizer
combinations (8 resizing techniques x 7 classification models).

Expanding the experimental setting helped to methodically evaluate the impacts of
different input and target resolutions on model correctness and computational complex-
ity. Two alternative input resolutions—1024x1024 and 2048x2048 pixels—as well as
four different target resolutions—64x64, 128x128, 256x256, and 512x512—were used.
Each of the previously defined 56 model-resizer combinations thus underwent training
and evaluation over these eight resolution configurations (2 input resolutions x 4 target
resolutions).

Training and Evaluation Strategy: Every classification experiment was run consis-
tently throughout one hundred training epochs. The model maintaining the best F1-score
on a validation subset—derived from the balanced training set—was kept as the optimal
model over training. This decision motivated by validation guaranteed dependability
and strength of the outcomes. Specifically selected was the Fl-score measure since it
fit multi-class situations with balanced class distributions following augmentation.

This all-encompassing experimental design helps one to closely investigate the
interactions among resizer designs, resolution strategies, and classification accuracy. It
also offers new perspectives on computational accuracy and efficiency trade-offs in the

framework of retinal disease categorization activities by using adaptive resizers.
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3.3.7. Evaluation Metrics: Performance and Complexity

A comprehensive set of metrics was employed to assess the effectiveness of the
different resizing strategies across classification and segmentation tasks, as well as to
evaluate their computational efficiency. Although only selected metrics, the F1-score for
classification and the intersection over union (IoU) for segmentation, are presented in
the results section for clarity and conciseness, all listed metrics were computed during
experimentation to ensure a thorough and reliable performance comparison.

For the classification tasks, several evaluation metrics were considered. Accuracy,
which represents the overall proportion of correctly classified samples, is defined by
Equation 3.2. where TP, TN, FP, and FN represent the number of True Positives, True
Negatives, False Positives, and False Negatives, respectively.

While accuracy provides a general measure of performance, it may be misleading
in class-imbalanced datasets. To provide deeper insight, precision, recall, and F1-score
were also computed. Precision, quantifying the proportion of predicted positive instances
that are truly positive, is given by Equation 3.3.

Recall (also known as sensitivity), which measures the proportion of actual posi-
tive instances that were correctly predicted, is calculated as shown in Equation 3.4.

The F1-score combines precision and recall into a single metric using the har-
monic mean, as expressed in Equation 3.5.

This score is particularly informative for imbalanced class distributions. In the
multi-class classification task conducted on the IDRiD dataset, these metrics were com-

puted for each class individually and then averaged using macro or weighted averaging

strategies.
Accuracy = T E\)Ti'll;l;’l TFN (3.2)
Precision = % (3.3)
Recall = " (3.4)
Floscore — 2 x Precision x Recall 2TP 3.5)

Precision + Recall  2TP + FP + FN



For the segmentation tasks, the primary metric used was the Intersection-over-
Union (IoU), also known as the Jaccard Index. IoU, which measures the overlap between
the predicted segmentation mask and the ground truth mask, is formulated in Equation 3.6.

Here, for segmentation, TP represents the area of true positive predictions, FP
the area of false positives, and FN the area of false negatives. A higher IoU value
indicates a better overlap between predicted and actual segmentation regions, with a
perfect segmentation yielding an IoU of 1. Additionally, the Dice Similarity Coefficient
(DSC), also referred to as the F1-score for segmentation, was calculated to measure spatial
overlap between binary masks. The Dice score is given by Equation 3.7.

It is closely related to IoU, and this relationship is detailed in Equation 3.8.

Although the segmentation task in this study was binary (vessel vs. background),
for multi-class segmentation problems, mean IoU (mloU) can be computed by averaging

the IoU values across all classes.

oU — Area of Ove‘rlap _ TP (3.6)
Area of Union TP + FP + EN
DSC — 2‘>< .Area of Overlap _ 2TP 3.7)
Area of Prediction + Area of Ground Truth 2TP + FP + EN
2 x IoU
DSC = 3.8
IoU+1 (3-8)

To evaluate computational efficiency, a set of resource-aware metrics was also
considered. The number of parameters quantifies the total trainable weights in the re-
sizer module or the combined model, providing an estimate of memory usage. FLOPs
(Floating Point Operations) denote the number of arithmetic computations (additions and
multiplications) required during a single forward pass, serving as a hardware-agnostic
measure of computational cost. Additionally, MACs (Multiply-Accumulate Operations)
were monitored, which represent a fundamental operation in convolutional layers. Their

relationship to FLOPs is often approximated by Equation 3.9.

FLOPs ~ 2 x MACs (3.9)
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Lastly, inference time was measured as the average wall-clock time required to
process a single image during testing, reported in milliseconds and converted to frames
per second (FPS) where appropriate. Inference time was evaluated under both GPU and
CPU environments to assess the real-world deployment feasibility of different resizer and
model configurations.

This multi-faceted evaluation framework ensures a rigorous comparison of task
performance, localization precision, and computational demands across all examined

resizing strategies and model architectures.

3.4. Results

Here, we present the empirical findings from our extensive experiments evaluating
the novel adaptive resizer architectures. The results are organized into two key areas.
First, we provide a comparative performance analysis of the resizers for both segmenta-
tion and classification, using metrics like IoU and F1-score to quantify accuracy. Second,
our analysis delves into the computational overhead introduced by each resizing method,

offering a detailed breakdown of its impact on parameters, FLOPs, and processing time.

3.4.1. Comparative Results

The performance outcomes of the various resizing strategies are compared in
detail for both segmentation and classification tasks. Our analysis is driven by quantitative
metrics—primarily the Intersection over Union (IoU) for segmentation and the F1-score
for classification. The results are systematically broken down to highlight how each
resizer, from traditional numerical methods to the novel adaptive architectures, impacts

the accuracy of different deep learning models under various experimental conditions.

3.4.1.1. Performance Comparison for Segmentation

The results of evaluating various image resizing methods for a binary seman-
tic segmentation task on the HRF dataset are presented in Table 3.1. These experi-
ments involved a consistent downsampling of input images from an original resolution

of 3504x3504 pixels to an output resolution of 512x512 pixels prior to model processing.

62



The table details the performance of five distinct segmentation models—U-Net, U-Net++,
DeepLabV3+, MA-Net, and LinkNet—when preceded by different image resizing tech-

niques.

Table 3.1. Comparison of Segmentation Performance by Resizer and Model
Architecture. The values indicate the Intersection over Union (IoU) score,
with the percentage increase shown in parentheses relative to the Bilinear
baseline.

Ar
Resizers Metrics UNET  UNET++ DeepLabV3+ MANET LINKNET verage
Increase (%)

Bilinear IoU Score 0.5617  0.5787 0.4665 0.5482 0.5401 (0.00%)
Increase (%)

Bicubi ToU Score 0.5746  0.6031 0.4869 0.5835  0.5683 451%)
teuble Increase (%) 2.29%  4.21% 4.37% 6.43%  5.22% @-51%

IoU Score 0.5916  0.6075 0.4929 0.5924 0.5723

Lanczos Increase (%) 5.32%  4.98% 5.66% 8.06%  5.96% (5-99%)
Gasei F1 Score 0.5973  0.6105 0.4869 0.5909  0.5662 5.77%)
aussian Increase (%) 6.34%  5.49% 4.37% 7.79%  4.83% S
Original ToU Score 0.6601  0.6602 0.5256 0.6413  0.6121 14.92%)
Resizer Increase (%) 17.52% 14.09%  12.67%  1699% 1333% 1 +9%%

i vy 10U Score 0.6835  0.6923 05220 06775 06581 o0
fnima Increase (%) 21.68% 19.63%  12.09%  23.59%  21.84% S

Minimag vy 10U Score 06792 06916 05338 06734 06546 o 00
fnima Increase (%) 20.93% 19.51%  14.43%  22.84%  21.20% e

Resizer A ToU Score 0.6887  0.6919 0.5371 0.6779  0.6487 2022%)
esteer Increase (%) 22.62% 19.57%  15.14%  23.67% 20.11%  \20-2%%

Resiger g 10U Score 0.6877  0.6971 0.5348 0.6751  0.6668 20.83%)
esteer Increase (%) 22.43% 20.46%  14.64%  23.16% 2346%  \2083%

Resiper sk 10U Score 0.6907  0.6951 0.5277 06766 06474 o g00
esuer Increase (%) 22.97% 20.12%  13.12%  2343%  19.87% TEe

, IoUScore  0.6896 0.6931 05382 06833  0.6625
Resizer MEY - ease (%) 22.77%  1975%  1537%  24.65% 22.66%  2104%)

The rows delineate the resizing methods, encompassing standard numerical ap-
proaches such as Bilinear (serving as the baseline), Bicubic, Lanczos, and Gaussian,
alongside a suite of advanced and adaptive resizers including the Original Resizer, Min-
imal V1, Minimal V2, Resizer A, Resizer A2, Resizer SK, and Resizer MFY. For each
combination of a resizing method and a segmentation model, the table primarily reports

the intersection over union (IoU) Score; notably, these IoU values in each cell for the
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models are obtained by the average of 5 runs, providing a robust measure of performance.
Crucially, the table also provides the percentage increase in this average IoU score relative
to the bilinear resizer’s performance with the same model. The rightmost column aggre-
gates these improvements, showing the average percentage increase in IoU score for each
resizing method across all five segmentation models, offering a clear overview of their
general efficacy. While the gaussian method’s primary scores are listed as F1 Scores, its
percentage increase and average increase are calculated relative to the bilinear method’s
IoU scores, maintaining consistency for comparative analysis of improvements.

Analyzing the overall average performance, as indicated by the “Average Increase
(%) in IoU score, reveals a clear hierarchy among the resizing techniques. The Resizer
MFY method demonstrated the most significant improvement, achieving the highest av-
erage increase of +21.04% over the bilinear baseline. Closely following was Resizer A2,
with an average IoU gain of +20.83%. Other adaptive methods also delivered substan-
tial enhancements: Resizer A showed an increase of +20.22%, Resizer SK provided a
+19.90% gain, and both Minimal V2 and Minimal V1 yielded strong improvements of
+19.78% and +19.77%, respectively. This pattern highlights a consistent advantage for
these more sophisticated resizing approaches in the context of semantic segmentation on
this dataset.

The Original Resizer also offered a considerable benefit, with an average IoU
increase of +14.92%, positioning it as a strong performer, though moderately below the
top tier of adaptive methods. Among the standard numerical resizing techniques, all
showed an improvement over the Bilinear baseline. The Lanczos filter provided the best
performance in this category with an average IoU increase of +5.99%. The Gaussian
method followed with a +5.77% average increase, and the Bicubic method resulted in a
+4.51% average gain. These results suggest that even within classical numerical resizers,
choices like Lanczos can offer a noticeable, albeit smaller, advantage over Bilinear for
segmentation tasks.

Across the individual segmentation models, the advanced resizing methods gener-
ally maintained their superior performance. For instance, Resizer MFY consistently deliv-
ered high percentage increases for models like MA-Net (+24.65%) and U-Net (+22.77%).
Similarly, Resizer A2 showed robust gains across models, such as with LinkNet (+23.46%)
and U-Net (+22.43%). While there were minor variations in the exact ranking of the
top methods for each specific model, the collective group of Resizer MFY, Resizer A2,
Resizer A, Resizer SK, Minimal V2, and Minimal V1 consistently outperformed the

bilinear baseline by a significant margin across all tested segmentation architectures.
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The improvements were evident even for DeepLabV3+, which generally yielded lower
absolute IoU scores compared to other models but still benefited proportionally from
advanced resizing (e.g., +15.37% with Resizer MFY).

In summary, for the binary semantic segmentation task on the HRF dataset, in-
volving a significant downsampling from 3504x3504 to 512x512 pixels, the application
of advanced and adaptive resizing methods led to substantial improvements in average
IoU scores (derived from 5 runs per model) across all tested deep learning models when
compared to the standard Bilinear interpolation. Resizer MFY and Resizer A2 emerged
as the most effective methods on average, underscoring the potential benefits of optimized
resizing strategies for enhancing segmentation accuracy. Even common numerical meth-
ods like Bicubic and Lanczos offered modest improvements over Bilinear, suggesting that
the choice of resizer is an important consideration in the image preprocessing pipeline for

semantic segmentation.

3.4.1.2. Performance Comparison for Classification

The presented results in Table 3.2 detail the performance outcomes of various
image resizing methods when applied to images subsequently used for classification by
seven distinct deep learning models: DenseNet, ResNeXt, ShuffleNet, GooglLeNet, Mnas-
Net, RegNet, and EfficientNet. The rows of the table delineate the different resizing con-
figurations, including the Bilinear resizer which serves as a baseline, the Original Resizer
(often associated with the Talebi & Milanfar style), adaptive methods such as Minimal
V1, Minimal V2, Resizer A, Resizer A2, Resizer SK, and Resizer MFY. The columns
represent different downsampling scenarios, pairing input resolutions of 1024x1024 and
2048x2048 with output resolutions of 64x64, 128x128, 256x256, and 512x512. Each
cell within this matrix contains the average F1 score achieved by the ensemble of models
for that specific resizing method and resolution pair, alongside the percentage increase
this F1 score represents over the Bilinear baseline. The rightmost column provides the
overall average F1 score and percentage gain for each method across all tested resolution
configurations.

An analysis of the overall average performance, as indicated in the final column,
reveals Resizer A2 as the top-performing method, achieving an average F1 score of 0.45
and a substantial average percentage gain of +22.39% over the Bilinear baseline. Minimal
V2 demonstrated nearly identical efficacy with an average F1 score of 0.45 and a +21.43%

increase. Other methods delivering strong performance included Resizer A (0.43 FI;
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+15.97%), Resizer SK (0.42 F1; +15.34%), and Minimal V1 (0.42 F1; +15.08%). The
Original Resizer, noted for its classic approach, also outperformed the baseline with an F1
score of 0.39 and a +6.64% gain. The Bilinear resizer itself established the baseline with
an average F1 score of 0.37. Notably, Resizer MFY was the only method to underperform
the Bilinear resizer on average, yielding an F1 score of 0.36, which translates to a -5.84%

decrease in performance.

Table 3.2. F1 metric increase and decrease percentages in terms of different
input-output resolutions ((1024x1024 2048x2048)-(64x64, 128x128,
256x256, 512x512)). Each cell indicates the percentage of an average
for all models (DenseNet, ResNext, ShuffleNet, GoogLeNet, MnasNet,
RegNet, EfficientNet).

Resizer/Config Metric 1024-64 2048-64 1024-128 2048-128 1024-256 2048-256 1024-512 2048-512 Average

Bilinear FlAvg 02551 02752 03249 03139 04207 04266 04929 04842 037
Resizer % 1 - - - - - - - - 0.00
Original FlAvg 03145 03132 03547 03414 04391 04397 04436 04872 039
Resizer %4+ 2332 1381 917 875 438 307 <1000 0.6l 6.64
Minimal i F1Ave 03280 03300 04188 03786 04537 04680 04776 05207 042
nima %1 2894 2023 2889  20.6l 7.84 9.71 3.10 752 15.08
Minimalv2 F1Ave 03738 03358 03983 04099 05032 05009 05231 05158 045
nima %1+ 4656 2202 2256  30.60  19.63  17.41 6.14 652 2143
Resizer A FlAvg 03476 03163 03541 04267 05018 04400 05392 04834 043

%1+ 3628 1494 896 3594  19.28 3.14 9.39 0.18 1597
Resiger Az F1Avg 03804 03835 03806 04064 05050 0483 04803 05391 045

%4+ 4913 3935  17.12 2946 2005 1338 072 1133 2239
Resiger Sk F1Ave 03243 03464 04362 03882 04302 04755 04581 04987 042

%1+ 2712 2586 3423  23.67 440 1146  7.05 299 1534
Resiger MFy F1AVE 02428 02175 03039 02962 04255 04241 04412 04897 036

%1+ 480 2097 647 564 1.15 059  -1049 112 -584

A consistent trend across most resizing methods was the general improvement
in F1 scores as the output resolution increased, indicating that retaining more pixel in-
formation is generally beneficial for classification accuracy. For instance, the Bilinear
resizer applied to a 1024x1024 input saw its F1 score rise from 0.2551 for a 64x64 output
to 0.4929 for a 512x512 output. However, the relative percentage improvement offered
by the advanced resizers over the Bilinear method was often most significant at the lower
output resolutions (e.g., 64x64, 128x128), where the Bilinear method inherently struggled
more.

Under conditions of substantial downsampling, such as to a 64x64 output, adaptive
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methods showcased their largest advantages. For the 1024x1024 to 64x64 scenario,
Resizer A2 led with a +49.13% gain (F1 = 0.3804), closely followed by Minimal V2
with a +46.56% gain (F1 = 0.3738). When downsampling from 2048x2048 to 64x64,
Resizer A2 remained the strongest performer (+39.35%, F1 = 0.3835), while Resizer
MFY exhibited a significant performance drop, particularly from the 2048x2048 input
(-20.97%). As output resolution increased to 128x128, for 1024x1024 inputs, Resizer SK
achieved the highest gain (+34.23%, F1 = 0.4362), while for 2048x1024 inputs, Resizer
A performed best (+35.94%, F1 = 0.4267).

With medium output resolutions like 256x256, the percentage gains over bilinear,
while still meaningful, began to diminish. For 1024x1024 inputs, Resizer A2 (+20.05%,
F1=0.505), Minimal V2 (+19.63%, F1 =0.5032), and Resizer A (+19.28%, F1 =0.5018)
were prominent. For 2048x2048 inputs downsampled to 256x256, Minimal V2 recorded
the highest increase (+17.41%, F1 = 0.5009). At the highest tested output resolution of
512x512, when downsampling from a 1024x1024 input, only Resizer A (+9.39%, F1 =
0.5392) and Minimal V2 (+6.14%, F1 = 0.5231) provided improvements over the Bilinear
baseline (F1 = 0.4929); several other advanced methods actually underperformed Bilinear
in this specific scenario. However, when downsampling from a 2048x2048 input to
512x512, Resizer A2 reasserted its effectiveness with an +11.33% gain (F1 =0.5391), and
Minimal V1 and Minimal V2 also showed robust positive gains, suggesting that higher
input resolutions can better leverage the capabilities of certain advanced resizers at larger
output sizes.

In summary, adaptive resizer architectures generally deliver their most significant
benefits under conditions of strong downsampling, particularly to output resolutions like
64x64 and 128x128, with Resizer A2 and Minimal V2 frequently leading in perfor-
mance. As the target output resolution increases and the downsampling ratio becomes
less extreme, the absolute gains from these advanced methods tend to decline. Indeed,
for mild downsampling (e.g., 1024x1024 to 512x512), some sophisticated methods may
not outperform simple Bilinear interpolation. The results also suggest that higher input
resolutions (e.g., 2048x2048) can enhance the effectiveness of certain resizing methods,
especially when producing larger output images. Overall, Resizer A2 emerges as a par-
ticularly robust choice across a variety of scenarios, while Resizer MFY generally failed

to offer improvements over the baseline in this task.
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3.4.2. Computational Overhead by Adaptive Resizing

A detailed quantitative analysis of the computational costs associated with each
adaptive resizing method is presented here. We closely examine the trade-offs between
performance gains and the increased resource demands in terms of FLOPs, parameters,
inference time, memory usage, and total training duration. This overhead is evaluated
separately for both the segmentation and classification experimental setups, offering a

clear perspective on the practical deployment feasibility of each resizer architecture.

3.4.2.1. Segmentation Experiments

An evaluation of the computational overhead introduced by various adaptive im-
age resizing methods, when integrated with five distinct semantic segmentation models
(U-Net, U-Net++, DeepLabV 3+, MA-Net, and LinkNet), is presented in Table 3.3. These
segmentation experiments involved a consistent downsampling of input images from an
original resolution of 3504x3504 pixels to an output of 512x512 pixels. The table quanti-
fies this overhead through several metrics: the number of Parameters (M), Floating Point
Operations (FLOPs, G), Inference Time (ms), Training GPU memory usage (GB), and
Training Duration (Mins) for each model-resizer combination. In this comparison, the
Bilinear resizer represents the most basic resizing approach, the “Original Resizer” serves
as a non-proprietary adaptive baseline, and the remaining methods (Minimal V1, Minimal
V2, Resizer A, Resizer A2, Resizer SK, Resizer MFY) constitute the proposed adaptive
resizers under evaluation for their computational efficiency.

A consistent observation across all segmentation models and metrics is that the
adoption of adaptive resizers, encompassing both the Original Resizer and all proposed
methods, universally leads to an increased computational load compared to the elementary
Bilinear resizer. While the additional parameters introduced by the adaptive resizers are
relatively small, typically ranging from approximately 0.04% to 0.85% of the segmenta-
tion model’s total parameters (e.g., for U-Net), the impact on operational complexity is
far more substantial. For instance, FLOPs increased significantly, with proposed resizers
elevating them by approximately 74% (Minimal V1 with U-Net) to over 730% (Resizer
SK with DeepLabV3+) compared to their respective Bilinear configurations. This surge
in operational demand directly translates to longer inference times. The Original Resizer,

for example, increased U-Net’s inference time by a substantial 214.6%, while proposed

68



methods extended these times by a range of approximately 20% (Minimal V1 with U-Net)
to about 168% (Resizer SK with DeepLabV3+). Training GPU memory requirements
also escalated; while U-Net with Bilinear reported 7.6 GB training GPU, other models
like DeepLabV3+ with Bilinear were in the 2.3 GB range. Adaptive resizers increased
this demand considerably, often by 100% to over 600% depending on the model and
resizer (e.g., Minimal V1 increased DeepLabV3+’s training GPU usage by 221.7%, while
Resizer SK increased it by 678.3%). Consequently, training durations were dramatically
extended, with adaptive resizers typically causing an increase of 700% to over 1100% —
essentially 8 to 12 times longer — compared to the much shorter training periods observed
with bilinear resizing.

When comparing the proposed adaptive resizers against the Original Resizer, it is
generally evident that the Original Resizer imposes a very high, often prohibitively so,
computational cost. For example, with the U-Net model, the Original Resizer increased
FLOPs by 82.4% over Bilinear, while its inference time surged by 214.6%, training
GPU usage by 177.6%, and training duration by an exceptional 1162%. Many pro-
posed resizers, while also adding overhead, presented a more favorable computational
profile. For instance, MinimalV1 with U-Net increased FLOPs by a lesser 74.5% and
inference time by only 20.8%. Even heavier proposed methods like Resizer SK for
U-Net, which increased FLOPs by 629.6%, still had a lower inference time increase
(+148.5%) than the Original Resizer. Across models, proposed resizers frequently offered
substantial reductions in inference time (e.g., MinimalV 1 for U-Net was approximately
61% faster in inference than Original Resizer) and training GPU usage (e.g., MinimalV 1
for DeepLabV3+ used about 65% less training GPU memory than Original Resizer),
leading to more manageable, albeit still increased, training durations compared to the
often excessive times required by the Original Resizer.

Among the suite of proposed adaptive resizers, Minimal V1 consistently distin-
guishes itself as the most computationally lightweight option. This efficiency is apparent
across multiple dimensions of computational cost when compared to its proposed peers.
Minimal V1 generally adds the fewest parameters and, more critically, exhibits the lowest
or among the lowest FLOP counts; for U-Net, its 74.5% increase in FLOPs over Bilinear
was considerably less than the 290% to 630% increases seen with Resizers A, A2, SK,
and MFY.
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Table 3.3. A detailed breakdown of the computational overhead for each
segmentation model and resizer combination. The table reports on five
key metrics: the number of trainable parameters, FLOPs, GPU memory
consumption for inference and training, and the total training duration in
minutes.

General Context: 3504x3504 to 512x512 input/output resolution

. . Training
. Params FLOPs Inference Trainin .
Model Resizer M) (G) GPU(ms) GPU (GBg) Durat-lon
(Mins)
Bilinear Resizer 32.521 85.661 10.631 2.3 2.75
Original Resizer 32.533  156.226 33.447 21.1 34.71
MinimalV1 32.628 149.442 12.845 7.6 24.66
U-Net MinimalV2 32.628 270.633 19.473 16.1 25.88
Resizer A 32,735  334.505 21.269 18.1 24.33
Resizer A2 32,735 334421 21.541 18.2 24.54
Resizer SK 32.922 624978 26.414 18.1 25.29
Resizer MFY 32,798 367.481 23.103 17.6 25.37
Bilinear Resizer 48.991 460.491 17.631 2.6 3.37
Original Resizer 48.898 531.063 40.594 25.2 38.35
MinimalV1 49.093 524.279 21.432 12.9 24.68
U-Net++ Min.imalVZ 49.093 645471 25.247 21.7 27.57
Resizer A 49.211 709.341 28.603 229 28.19
Resizer A2 49.211  709.257 28.783 21.2 24.71
Resizer SK 49.387 999.814 32.877 23.6 27.99
Resizer MFY 49.263 742.317 30.322 21.8 26.81
Bilinear Resizer 26.681 73.811 9.700 2.3 1.97
Original Resizer 26.691 144.379 32.641 21.1 32.45
MinimalV1 26.785 137.595 12.441 7.4 23.47
DeepLabV 3+ Min.imalVZ 26.785 258.786 18.061 15.8 23.33
Resizer A 26.892 322.658 20.402 17.9 23.01
Resizer A2 26.892 322573 20.712 17.6 23.72
Resizer SK 27.079 613.131 25.979 17.9 24.31
Resizer MFY 26.955 355.633 22.276 17.2 23.31
Bilinear Resizer 147.441 149.231 13.911 2.5 4.14
Original Resizer 147.452 219.801 35.821 21.6 50.32
MinimalV1 147.547 213.016 16.748 10.4 39.07
MA -Net MinimalV2 147.547  334.207 20.634 17.1 37.08
Resizer A 147.654 398.079 23.698 19.2 31.39
Resizer A2 147.654 397.994 24.014 19.3 35.63
Resizer SK 147.841 688.552 28.812 18.9 37.18
Resizer MFY 147.717 431.054 25.542 17.4 35.65
Bilinear Resizer 31.181 86.281 10.781 2.7 2.12
Original Resizer 31.191 156.855 32.925 20.1 35.58
MinimalV1 31.285 150.071 13.059 8.1 25.76
LinkNet Min.imalVZ 31.285 271.261 18.103 15.8 25.91
Resizer A 31.392  335.133 20.718 17.7 24.71
Resizer A2 31.392  335.049 21.018 18.4 24.46
Resizer SK 31.579 625.606 26.572 19.3 24.34
Resizer MFY 31.455 368.108 22.602 17.2 27.01
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This lower operational count directly translates to Minimal V1 typically offering
the shortest inference times within the proposed group — for example, its 20.8% increase
for U-Net was significantly less than the 83% to 148% increases from other proposed
methods. Furthermore, Minimal V1 tends to be more economical in terms of training
GPU usage. For the U-Net model, it uniquely reported no increase (0%) in training
GPU memory over the Bilinear version’s 7.6 GB, whereas other proposed methods for
U-Net increased GPU usage by 111% to 139%. For DeepLabV3+, Minimal V1’s 221.7%
increase in training GPU usage over Bilinear was still at the lower end compared to other
proposed methods like Resizer SK (+678.3%). Consequently, while its training durations
represented a significant increase over Bilinear (e.g., approximately +797% for U-Net),
they were often 5-10% shorter than some of the more computationally intensive proposed
resizers like Resizer MFY or Resizer SK for the same model.

In conclusion, the integration of adaptive resizing techniques for the substantial
downsampling (3504x3504 to 512x512 pixels) in these segmentation experiments brings
a clear trade-off in the form of increased computational burden, with FLOPs, process-
ing times, and memory usage often escalating by several hundred percent compared to
the simple Bilinear approach. The non-proprietary Original Resizer was found to be
particularly resource-intensive, often magnifying these overheads to extreme levels (e.g.,
training time increases exceeding 1000%). Within the set of proposed adaptive resizers, a
clear gradient of computational costs exists. Minimal V1 consistently emerges as the
most computationally parsimonious, offering increases in FLOPs and inference times
that are often 2 to 5 times less than those of heavier proposed methods like Resizer SK,
alongside more modest demands on GPU memory. This detailed quantitative analysis
of computational overheads underscores the importance of selecting a resizing method
that not only enhances segmentation performance but also aligns with available computa-
tional resources, with MinimalV1 demonstrating particular promise for scenarios where

efficiency is a key practical consideration.

3.4.2.2. Classification Experiments

Table 3.4 details the computational overhead associated with various image resiz-
ing techniques when applied to the GoogLeNet classification model, specifically exam-
ining scenarios with input image sizes of 2048x2048 and 1024x1024 pixels, downscaled
to target resolutions of 64x64, 128x128, 256x256, and 512x512 pixels. The evaluated
metrics include Multiply-Accumulate operations (MACs, G), Floating Point Operations

71



(FLOPs, G), number of Parameters (M), Inference Time on both CPU and GPU (ms), and
Training Duration (Min). The analysis compares the baseline bilinear resizer against the
non-proprietary Original Resizer and a suite of proposed adaptive resizers: Minimal V1,
Minimal V2, Resizer A, Resizer A2, Resizer SK, and Resizer MFY.

Table 3.4. Computational overheads of different resolution reduction ratios for one of the

classification models (GoogLeNet).

Inference  Inference Training

Input  Target FLOPs  Params
Resizer (ms) (ms) Duration
Size Size (G) (M)
(CPU) (GPU) (min)
Bilinear Resizer 0.247 5.605 15.132 10.708 347
Original Resizer 22.738 5.617 492.603 12.540 56.28
% Minimal V1 1.243 5712 24912 11.319 43.45
§ N Minimal V2 63.142 5712 406.773 11.020 439
P
% 2 Resizer A 64.140 5.819 407.070 12.665 44,01
o Resizer A2 64.138 5.819 407.915 11.059 43.67
Resizer SK 169.092 6.006 T75.578 12.731 44,04
Resizer MFY 64.173 5.823 429.567 12.008 40.94
Bilinear Resizer 0.986 5.605 31.614 10.535 3.56
Original Resizer 23.711 5.617 493.003 12.410 55.6
% Minimal V1 4973 5712 59.038 11.319 40.57
§ é Minimal V2 63.924 5712 397.253 11.061 41.14
™
% E Resizer A 67916 5.819 405.380 12.075 40.81
o Resizer A2 67.911 5.819 408.088 11.706 40.63
Resizer SK 172.045 6.006 738.165 12.741 414
Resizer MFY 68.048 5.823 415.061 12.204 40.72
Bilinear Resizer 3.945 5.605 70.122 10.841 3.7
Original Resizer 27.599 5.617 527.473 12.865 56.7
Minimal V1 19.892 5712 168.834 12.508 40.68
%
§ ﬁ Minimal V2 67.053 5712 433.540 10.908 41.06
% ﬁ Resizer A 83.021 5.819 521.023 11.435 40.75
o Resizer A2 83.000 5.819 528.613 12.002 40.48
Resizer SK 183.858 6.006 817.451 12.755 41.09
Resizer MFY 83.550 5.823 535.143 12.891 40.72
Bilinear Resizer 15.781 5.605 216.520 10.455 4.92
Original Resizer 43.153 5.617 1085.431 16.152 61.31
inimal .36 . 186 336 .96
% Minimal V1 79.568 5712 559.78 11.33 40.9
§ % Minimal V2 79.568 5712 586.499 11.499 43.1
% E Resizer A 143.440 5.819 045.280 12.674 40.71
o Resizer A2 143.355 5.819 028.848 12.934 42.23

(cont. on next page)



Table 3.4 (cont.)

Inference  Inference Training

Input  Target FLOPs  Params
Resizer (ms) (ms) Duration

Size Size G) (M)
(CPU) (GPU) (min)
Resizer SK 231.109 6.006 1287.087 15.236 41.3
Resizer MFY 145.556 5.823 1080.817 14.195 40.94
Bilinear Resizer 0.247 5.605 15.132 10.708 347
Original Resizer 5.928 5.617 192.832 12.347 10.16
Minimal V1 1.243 5712 25.656 11.309 9.86
% § Minimal V2 15.981 5712 116.926 11.299 9.83
§ 2 Resizer A 16.979 5.819 119.972 12.567 9.89
- Resizer A2 16.978 5.819 112.265 12.072 9.91
Resizer SK 43.011 6.006 224761 12.658 10.01
Resizer MFY 17.012 5.823 121.826 12.823 9.74
Bilinear Resizer 0.986 5.605 3l.614 10.535 3.66
Original Resizer 6.900 5.617 186.528 11.505 10.2
Minimal V1 4973 5712 68.479 11.947 9.89
g E Minimal V2 16.763 5712 245.786 11.260 9.55
g § Resizer A 20.755 5.819 166.634 13.369 9.73
- Resizer A2 20.750 5.819 166.515 12.109 9.45
Resizer SK 45.965 6.006 266.464 13.468 10.08
Resizer MFY 20.887 5.823 178.877 11.926 9.85
Bilinear Resizer 3.945 5.605 70.122 10.841 3.9
Original Resizer 10.788 5.617 244.191 12.177 10.71
Minimal V1 19.892 5712 181.381 11.701 10.16
% ﬁ Minimal V2 19.892 5712 307.458 11.605 9.83
§ ﬁ Resizer A 35.860 5.819 302.868 11.940 9.98
Resizer A2 35.839 5.819 324.115 12.582 9.85
Resizer SK 57177 6.006 406.266 13.706 10.68
Resizer MFY 36.389 5.823 320.132 12.280 10.2
Bilinear Resizer 15.781 5.605 216.520 10.455 5.08
Original Resizer 26.342 5.617 441.614 11.951 14.25
Minimal V1 79.568 5712 716.085 12.496 13.18
% % Minimal V2 32.407 5712 372.830 11.396 9.89
§ E Resizer A 96.279 5.819 909.406 12.383 15.61
Resizer A2 96.194 5.819 931.680 12.061 15.87
Resizer SK 105.028 6.006 974.522 13.001 16.43
Resizer MFY 98.395 5.823 1085.608 12.256 17.36

The number of parameters for the GoogleNet model combined with each resizer
remains constant across all resolution configurations, as parameters are inherent to the
model and the resizer’s architecture rather than the image dimensions. The bilinear resizer

combination reports 5.605M parameters. The Original Resizer adds a minimal 0.012M



parameters (+0.21%). Among the proposed methods, Minimal V1 and Minimal V2 add
0.107M parameters (+1.91%), Resizers A, A2, and MFY add approximately 0.214M to
0.218M (+3.8% to +3.9%), and Resizer SK introduces the most, an additional 0.401M pa-
rameters (+7.15%) compared to the Bilinear setup. These increases are generally modest
relative to the base model size.

The primary computational load from resizers is evident in MACs and FLOPs,
which are heavily influenced by both the choice of resizer and the image resolutions.
For the bilinear resizer, FLOPs scale predictably with the number of output pixels; for
a 2048x2048 input, FLOPs increase from 0.247G for a 64x64 output to 15.781G for
a 512x512 output, roughly a 4-fold increase with each doubling of output dimensions.
Adaptive resizers exhibit significantly higher FLOPs than Bilinear. When downsampling
a 2048x2048 input to 64x64, the FLOPs for Minimal V1 (1.243G) represent a 403% in-
crease over Bilinear, while more complex proposed methods like Resizer SK (169.092G)
show an exceedingly large percentage increase (over 68000%) due to Bilinear’s very low
baseline; the Original Resizer also shows a massive relative increase (+9106%). As output
resolution increases, the absolute FLOPs for adaptive resizers also increase, often scaling
with output pixel count (e.g., Minimal V1 FLOPs roughly quadruple with each output
dimension doubling for a 2048x2048 input). However, their percentage increase over
Bilinear can be more moderate at higher output resolutions where Bilinear’s own FLOPs
are higher; for instance, when resizing 2048x2048 to 512x512, Original Resizer’s FLOPs
(43.153G) are +173% over Bilinear, and MinimalV 1 (79.568G) is +404% over Bilinear.
An interesting observation for the 2048x2048 to 512x512 scenario is that Minimal V1 and
Minimal V2 report identical MACs and FLOPs, a convergence not seen at lower output
resolutions where Minimal V2 is significantly heavier. The input resolution also plays a
critical role: processing a 2048x2048 input to 64x64 with Minimal V1 requires 1.243G
FLOPs, while a 1024x1024 input to the same 64x64 output with Minimal V1 uses the
same 1.243G FLOPs, suggesting the FLOPs for some resizers might be more dependent
on the resizer’s fixed operations or target resolution aspects rather than total input pixels
once a certain threshold or operational mode is met, though this is not consistent across
all resizers or metrics (e.g., Original Resizer FLOPs are much higher for 2048—64 than
1024—64). More typically, higher input resolutions lead to higher FLOPs for a fixed
output; for Original Resizer targeting 64x64, FLOPs are 22.738G from 2048x2048 input
versus 5.928G from 1024x1024.

Inference times reflect the trends in MACs/FLOPs, with CPU inference times
showing greater sensitivity to computational load than GPU times. For the 2048x2048 to
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64x64 downsampling, Bilinear CPU inference is 15.132 ms. Minimal V1 increases this
by 64.6% to 24.912 ms, while Resizer SK dramatically slows it to 775.578 ms (a 50-fold
increase). The Original Resizer also incurs substantial CPU inference overhead (e.g.,
492.603 ms for 2048—64, a 3155% increase). On the GPU, the increases are far more
contained: Bilinear takes 10.708 ms for 2048—64, Minimal V1 takes 11.319 ms (+5.7%),
and even Resizer SK only increases GPU time to 12.731 ms (+18.9%). This highlights the
GPU’s efficiency in parallelizing image operations. As output resolution increases, both
CPU and GPU inference times for all resizers tend to rise. For example, with a 2048x2048
input and Minimal V1, CPU inference time goes from 24.912 ms (64x64 output) to
559.786 ms (512x512 output), while GPU time increases from 11.319 ms to 11.336 ms
(interestingly, GPU time for Minimal V1 remains very stable across output resolutions
for this high input size). The Original Resizer shows very high CPU and significant
GPU time increases across all settings. Comparing input sizes, using a 2048x2048 input
generally results in longer CPU inference times than a 1024x1024 input for the same
resizer and output resolution (e.g., Original Resizer 2048—64 takes 492.603 ms on CPU
vs. 192.832 ms for 1024—64). GPU inference times are less affected by input size for
some resizers like Minimal V1, but show increases for others like Original Resizer.

Training durations are significantly impacted by the choice of resizer and res-
olution, consistently being much longer for adaptive resizers than for Bilinear. For a
2048x2048 input downsampled to 64x64, Bilinear training takes 3.47 minutes. Minimal
V1 extends this to 43.45 minutes (an increase of over 1150%), while Resizer SK takes
44.04 minutes (+1169%), and Original Resizer takes 56.28 minutes (+1522%). Gener-
ally, as output resolution increases, training duration for Bilinear configurations sees a
modest rise (e.g., for 2048x2048 input, from 3.47 mins for 64x64 output to 4.92 mins
for 512x512 output). Adaptive resizers, however, often exhibit less consistent scaling in
training duration with output resolution, sometimes showing slight decreases or fluctu-
ations, though they consistently remain much higher than Bilinear. For instance, with
a 2048x2048 input, Minimal V1’s training time varies from 43.45 mins (64x64) down
to 40.96 mins (512x512). The choice of input resolution also affects training time; pro-
cessing a 2048x2048 input generally leads to longer training durations than a 1024x1024
input for the same adaptive resizer and output (e.g., Original Resizer 2048—64 takes
56.28 mins vs. 10.16 mins for 1024—64).

Across the various resolutions and computational metrics evaluated for GoogleNet
model, Minimal V1 frequently presents as the most computationally lightweight among

the proposed adaptive resizers. While it consistently introduces more overhead than

75



bilinear resizing, for example, FLOPs increases of 400-500% over bilinear were common
for higher output resolutions, and CPU inference times could be 2-3 times longer for
smaller outputs from 1024x1024 inputs, its impact is generally much lower than other
proposed methods like Minimal V2 (at lower resolutions), Resizers A/A2, and particularly
Resizer SK and MFY, which often show substantially higher MACs/FLOPs and CPU
inference times. For instance, when downsampling 2048x2048 to 256x256, Minimal
V1 added 19.892G FLOPs (+404% over Bilinear), whereas Resizer SK added 183.858G
FLOPs (+4560% over bilinear). The Original Resizer generally imposed a very high
computational penalty, often exceeding that of most proposed methods, especially in
CPU inference times and training duration. The efficiency of Minimal V1, particularly
in GPU inference times which showed remarkable stability across output resolutions for
a fixed large input, makes it a noteworthy candidate when balancing performance with
computational cost.

In conclusion, Table 3.4 underscores that while adaptive resizers can potentially
enhance classification accuracy, they introduce varying degrees of computational over-
head compared to Bilinear resizing when applied to the GoogLeNet model across different
resolution scaling tasks. This overhead is most pronounced in terms of FLOPs, CPU
inference times, and training durations, often resulting in increases of several hundred to
several thousand percent over Bilinear, particularly when Bilinear’s baseline cost is very
low (e.g., at small output resolutions). The impact on GPU inference times is generally
more mitigated due to parallel processing capabilities. Higher input and output resolutions
tend to increase computational demands for most methods. Among the proposed adaptive
techniques, Minimal V1 consistently demonstrates a more favorable computational pro-
file, offering a more lightweight alternative to other proposed resizers and the often very
costly Original Resizer. These findings are critical for selecting an appropriate resizer,
requiring a careful consideration of the trade-offs between potential accuracy gains and

the significant implications for computational resources and processing times.

3.5. Discussion

The advent of adaptive image resizing marked a significant step forward from
traditional static interpolation methods, with the Original Resizer, based on the work
of Talebi & Milanfar, being a notable early architecture. While pioneering, this initial
architecture is not without its drawbacks, exhibiting limitations in robustness and often

falling short of optimal performance. This is primarily due to its reliance on bilinear re-
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sizing after significant convolutional processing in one of its branches and the substantial
computational overhead it introduces. Recognizing these gaps, this study introduced and
comprehensively evaluated a suite of novel adaptive resizer architectures, Minimal V1,
Minimal V2, Resizer A, Resizer A2, Resizer SK, and Resizer MFY, designed to offer

improved performance and/or computational efficiency.

3.5.1. Architectural Impact on Task Performance

The effectiveness of the proposed resizers varied between segmentation and clas-
sification tasks, underscoring how architectural choices influence the preservation and

learning of task-specific features.

3.5.1.1. Segmentation: Preserving Fine Details

For the retinal vessel segmentation task on the HRF dataset, the proposed adaptive
resizers demonstrated a strong ability to preserve crucial image features necessary for de-
lineating fine vascular structures, leading to substantial performance gains over traditional
methods. Figure 3.10 provides a visual comparison of how different resizer architectures
transform the input images from the HRF dataset. For instance, Resizer MFY’s output
might visually emphasize edge information due to its filter bank, while Minimal V1
or V2 might produce outputs that balance feature extraction with the downsampling
process differently. These visual transformations directly impact how the subsequent

segmentation model perceives and processes the image.
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Figure 3.10. Visual comparison of the transformations produced by each resizer
architecture on a sample image from the HRF dataset. Each row
corresponds to a different resizer, while the columns indicate the
subsequent segmentation model these images are fed into. The noticeable
variations in color, contrast, and edge emphasis across the rows
demonstrate how each resizing method uniquely prepares the image data
before the segmentation task.
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The superior performance of Resizer MFY in segmentation can be attributed to
its unique branch incorporating manually designed filters (e.g., Sobel, Prewitt, Laplacian)
explicitly aimed at edge detection and feature enhancement. This architectural feature
appears highly beneficial for tasks requiring precise boundary delineation, such as vessel
segmentation. Architectures like Minimal V2 and Resizer A2 (which builds upon Min-
imal V1 and V2) perform initial convolutional operations on the higher-resolution input
before full downsampling via bilinear interpolation in parts of their pipeline. This strat-
egy likely preserves more high-frequency information vital for pixel-wise segmentation.
Figure 3.11 displays the training history plots for the LinkNet model when paired with
different resizers. These plots can reveal differences in convergence speed or stability;
for example, a resizer that provides richer, more relevant features might lead to faster
convergence or a higher final validation IoU for the LinkNet model, reflecting a more

effective learning process facilitated by that resizer’s specific architectural design.
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Figure 3.11. Training and validation history for the LinkNet model when paired with
eight different resizer architectures. Each subplot displays the Intersection
over Union (IoU) on both the training set (blue) and validation set (green)
across 100 epochs. These curves allow for a direct comparison of
convergence speed and stability, with the peak validation IoU score marked
for each configuration.

Minimal V1, though simpler, leverages strided convolutions for adaptive resizing
after an initial bilinear step, proving more effective than bilinear resizing alone or the

Original Resizer. Resizer SK enhances Minimal V2 by integrating a Selective Kernel
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(SK) attention mechanism. This allows the model to adaptively select kernel sizes and
focus on relevant spatial and channel information, potentially improving the capture of
intricate details in structures like retinal vessels. The consistent improvements across
diverse segmentation models underscore the generalizability of these advanced resizing

approaches for detail-oriented tasks.

3.5.1.2. Classification: Learning Discriminative Patterns

In the diabetic retinopathy classification task on the IDRiD dataset, Resizer A2
and Minimal V2 emerged as top performers. Figure 3.12 illustrates the resizer outputs
for the IDRiD dataset across various input-output resolutions. These images show how
different architectures handle the downsampling for classification. For instance, some
resizers might smooth out finer details that are less relevant for classification while pre-
serving broader textural information or lesion characteristics, which could explain their
better performance in this task compared to segmentation-focused resizers. The visual
outputs can hint at why certain resizers allow the classification models to learn more

discriminative patterns.
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Figure 3.12. A comprehensive visual comparison of resizer outputs on the IDRiD
dataset across a matrix of input and output resolutions. Each row displays
the output from a specific resizing architecture, with the Bilinear Resizer
serving as the baseline. The columns show the results for two different
input sizes (1024x1024 and 2048x2048) downsampled to four different
target sizes, illustrating how each resizer performs under varying degrees
of compression.
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The success of Resizer A2 and Minimal V2 in classification, particularly at ag-
gressive downsampling rates, stems from their learned ability to retain task-relevant fea-
tures. Minimal V2 applies convolutions before bilinear resizing, enabling it to encode
important information from the higher-resolution input into feature maps prior to the
final resizing step. Resizer A2, combining aspects of Minimal V1 and Minimal V2,
suggests that a balanced approach to feature preservation and adaptive resizing is effective
for classification. The removal of intermediate projection convolutions in Resizer A2
(compared to Resizer A), without significant performance degradation, indicates that
extensive operations after reaching the target resolution might not always be beneficial
for generalization in classification tasks.

Conversely, Resizer MFY, which excelled in segmentation, underperformed in
classification. Its manually engineered filters, while adept at enhancing edges for seg-
mentation, might not generalize well for classification, potentially hindering the learning
of more abstract textural and contextual patterns crucial for disease grading. This high-
lights the task-specific nature of optimal resizing strategies. The largest performance
increases for classification were often seen with significant downsampling (e.g., to 64x64
or 128x128 outputs), where adaptive resizers are particularly effective at preserving dis-

criminative information that traditional methods would lose.

3.5.2. Architectural Design and Computational Cost

While adaptive resizers offer clear performance advantages, these benefits are
universally accompanied by increased computational costs compared to simple bilinear
interpolation.

The Original Resizer was found to be particularly resource-intensive, often impos-
ing the highest computational burden in terms of FLOPs, inference time, GPU memory
usage, and especially training duration. This is largely due to its initial large-kernel
convolutional operations on the full high-resolution input in one of its branches.

Among the proposed architectures, Minimal V1 consistently stood out as the most
computationally lightweight. Its efficiency stems from an architectural design that often
involves an initial bilinear interpolation to an intermediate size (four times the target
resolution) followed by a limited number of strided convolutional layers. This approach
keeps the bulk of the convolutional computation on an already somewhat reduced tensor,
although significant initial bilinear downscaling can risk information loss if the input is

vastly larger than this intermediate size.
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Minimal V2, which performs strided convolutions first before a final bilinear
resizing step, generally incurs higher computational costs than Minimal V1, especially
with large input resolutions, as its initial convolutions operate on larger feature maps. This
can make Minimal V2 more memory-intensive in such scenarios. Resizer A and Resizer
A2, being dual-branch architectures that draw principles from both Minimal V1 and
Minimal V2, naturally exhibit higher complexity than Minimal V1 alone. Architectures
like Resizer SK, with its additional SK attention mechanism and three branches, and
Resizer MFY, with its bank of manual filters in a dedicated branch, are inherently more
complex and thus computationally heavier than the simpler Minimal variants.

In summary, the proposed adaptive resizers, particularly architectures like Resizer
MEFY for segmentation and Resizer A2 for classification, demonstrate substantial perfor-
mance improvements. However, these gains necessitate a trade-off with computational
resources. The Original Resizer often represents an extreme in this cost. Among the
novel architectures, Minimal V1 consistently emerges as the most computationally frugal,
offering a viable balance when processing resources are constrained, even if its peak
performance may sometimes be slightly lower than more complex proposed resizers. The
selection of an optimal resizer is therefore a critical decision, hinging on a careful balance
between the desired task accuracy, the specific nature of the visual task (detail-oriented

vs. pattern-oriented), and the available computational budget.

3.6. Limitations of the Approach

It is important to remember that the proposed adaptive resizer architectures have
shown big increases in performance, but they also have some limits. The main advantage
of these resizers is that they may keep fine-grained details that are often lost when you
downsample numbers normally. Because of this, their efficiency depends a lot on the
type of dataset. If a dataset doesn’t have any important, high-frequency information, the
adaptive resizer may not work any better than simpler methods like bilinear or lanczos
interpolation. The classification findings showed that some adaptive architectures did
not fare better than the bilinear baseline when the downsampling ratios were lower (e.g.,
1024x1024 to 512x512). This means that they are not useful in all situations.

The most important drawback is the balance between performance and cost. The
results show that all adaptive resizers add a lot of additional overhead in terms of FLOPs,
inference time, and memory use compared to standard approaches. This increase, which

can make training periods more than 700% longer, makes the present architectures less
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appropriate for applications where resources are very limited, including real-time pro-
cessing or deployment on edge devices with limited VRAM and computing power. In
fields where precision is more important than cost, though, this trade-off makes sense.
In industries like medical analysis, where getting the most accurate diagnosis is the most
important thing, these adaptive resizers’ efficiency improvements can be quite important

and may be worth the extra resources they need.

3.7. Conclusion

This study addressed the critical challenge of information loss during the down-
sampling of high-resolution medical images for deep learning applications. We intro-
duced and comprehensively evaluated a suite of novel adaptive resizer architectures against
traditional numerical methods and an established adaptive resizing technique. The inves-
tigation focused on two demanding medical imaging tasks: retinal vessel segmentation
using the HRF dataset and diabetic retinopathy grading on the IDRiD dataset.

Our findings demonstrate that the proposed adaptive resizer architectures can sig-
nificantly enhance model performance. For the retinal vessel segmentation task, Resizer
MFY emerged as the most effective, yielding an average Intersection over Union (IoU)
increase of +21.04% compared to the standard bilinear interpolation. In the diabetic
retinopathy classification task, Resizer A2 proved to be the most successful, achieving
an average F1 score improvement of +22.39% over the bilinear baseline. These results
highlight the substantial benefits of employing adaptive resizers tailored to preserve task-
relevant features, particularly when significant downsampling is required. The study also
underscored that the optimal adaptive resizer can be task-dependent, as evidenced by
Resizer MFY’s differing performance between segmentation and classification.

While the proposed adaptive resizers offer considerable accuracy improvements,
they also introduce additional computational overhead. The Original Resizer was found
to be particularly resource-intensive. Among our novel architectures, Minimal V1 con-
sistently presented the most favorable computational profile, offering a significant boost
in performance over bilinear resizing with a comparatively lower increase in FLOPs,
inference time, and training duration. This makes Minimal V1 a compelling option when
computational resources are a primary constraint.

In conclusion, this research successfully demonstrates the potential of novel adap-
tive resizer architectures to significantly improve the accuracy of deep learning models

in medical image analysis. The developed resizers, particularly Resizer MFY for seg-
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mentation and Resizer A2 for classification, establish new benchmarks for performance.
Furthermore, the identification of Minimal V1 as a computationally efficient yet effective
adaptive resizer provides a practical solution for resource-constrained environments. This
work underscores the importance of the resizing strategy as a critical component in the
medical image analysis pipeline, paving the way for more accurate and efficient diagnostic
tools. Future work could explore further refinements of these architectures and their

applicability to a broader range of medical imaging modalities and tasks.
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CHAPTER 4

CONCLUSION AND FUTURE PERSPECTIVES

In conclusion, this thesis addressed the critical challenge of adaptive image down-
sampling for deep learning tasks, particularly within the domain of medical image anal-
ysis. The core principle explored is the integration of an adaptive resizer module placed
before a deep neural network, with both the resizer and the primary model being trained
jointly. The objective of this approach is to transform input images in a task-based
manner, conditioning them into a format that the deep learning model can more effectively
interpret, thereby enhancing overall performance.

The research commenced with an initial study (Chapter 2) to ascertain the viability
and effectiveness of the "Original Adaptive Resizer," proposed by Talebi and Milanfar in
2021, for semantic segmentation tasks. This investigation utilized the CRAG dataset for
gland segmentation, employing three U-Net based architectures (U-Net, Attention U-Net,
and U-Net 3+) to compare the adaptive resizer against the conventional bilinear resizing
method. The findings of this first study were significant: it was observed that the adaptive
image resizer could indeed be beneficially applied to segmentation tasks, yielding superior
results compared to the numerical bilinear resizing approach. Specifically, the integration
of the Original Adaptive Resizer led to notable improvements in the Intersection over
Union (IoU) metric, with average gains of approximately +6.47% for U-Net, +6.67%
for Attention U-Net, and +3.79% for U-Net 3+ over their bilinear counterparts when
averaged across various backbones. However, these performance enhancements came
with an increased computational burden. While the parameter count of the segmentation
models increased by a mere 12,000 parameters due to the resizer, the training duration ap-
proximately doubled. The average total FLOPs for the U-Net 3+ models saw an increase
of about 3.0% (from 433.55 billion to 446.58 billion), and the average GPU inference
time (NVIDIA A100) increased by 7.2% (from 181.41 ms to 194.41 ms).

Building upon these initial insights and aiming to surpass the capabilities of the
Original Adaptive Resizer, the second phase of this research (Chapter 3) focused on
proposing and evaluating a suite of novel, more robust adaptive resizer architectures.
These new architectures were rigorously tested on both segmentation and classification
tasks using high-resolution medical image datasets—the High-Resolution Fundus (HRF)

dataset for retinal vessel segmentation and the Indian Diabetic Retinopathy Image Dataset
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(IDRiD) for diabetic retinopathy classification. The evaluation meticulously considered
both performance metrics and computational overhead. After experimenting with nu-
merous module designs (over 60), six architectures were proposed as the most effective:
Minimal V1, Minimal V2, Resizer A, Resizer A2, Resizer SK, and Resizer MFY. The
experiments were also expanded to encompass various input and output resolutions to
determine the conditions under which these adaptive resizing modules yield the most
significant benefits.

The results from Chapter 3 demonstrated that the proposed adaptive resizers,
particularly in scenarios with high reduction ratios, are more adept at preserving critical
information. For the segmentation task (HRF dataset, downsampling from 3504 x 3504 to
512 x 512 pixels), 'Resizer MFY" yielded the highest average IoU increase of +21.04%
over bilinear interpolation across five different segmentation models. For the five-class
classification task (IDRiD dataset), 'Resizer A2’ proved most effective, achieving an av-
erage F1 score increase of +22.39% over bilinear interpolation across seven classification
models and various resolution settings.

Crucially, in terms of computational efficiency, the *Minimal V1’ architecture
consistently emerged as the most lightweight among the proposed adaptive resizers. It
offered substantial performance improvements with significantly lower computational
overhead compared to the Original Resizer. For instance, in segmentation experiments
with U-Net, Minimal V1 increased FLOPs by only +74.5% and GPU inference time by
+20.8% over bilinear, whereas the Original Resizer increased FLOPs by +82.4% and GPU
inference time by +214.6% (comparing Bilinear Resizer U-Net: 85.6G FLOPs, 10.6ms;
Original Resizer U-Net: 156.2G FLOPs, 33.4ms; MinimalV1 U-Net: 149.4G FLOPs,
12.8ms from Table 3.3). Similarly, for classification tasks with GoogLeNet (2048 x 2048
input to 64 x 64 output), Minimal V1 increased FLOPs by +403% (1.243G vs 0.247G
for Bilinear) and CPU inference time by +64.6% (24.912ms vs 15.132ms for Bilinear)
over bilinear, substantially less than the Original Resizer’s +9106% FLOPs (22.738G)
and +3155% CPU inference time (492.603ms) increase. Furthermore, more complex
proposed architectures like 'Resizer A2’ and 'Resizer MFY”, while achieving top-tier
performance, also demonstrated advantages over the Original Resizer in certain aspects
of computational load. For example, when combined with U-Net for segmentation, both
Resizer A2 and Resizer MFY had higher FLOP counts (A2: 334.4G, MFY: 367.4G) than
the Original Resizer (156.2G), but they exhibited lower GPU inference times (A2: 21.5
ms, MFY: 23.1 ms, vs. Original: 33.4 ms), lower training GPU memory usage (A2: 18.2
GB, MFY: 17.6 GB, vs. Original: 21.1 GB), and shorter training durations (A2: 24.54
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mins, MFY: 25.37 mins, vs. Original: 34.71 mins).

A possible future direction is to include frequency-domain analysis directly in
the resizer structures. The convolutional methods in this thesis learn feature hierarchies
without meaning to. However, if the resizer used transformations like Wavelet or Fourier
transforms, it could learn a better way to deal with high-frequency details, which are
often the first things to go when you downsample the image. This would let the model
choose which frequency bands to keep or get rid of based on how important they are
to the diagnostic task. In addition, future architectures could go from static designs to
dynamic, content-aware models. A resizer could use a gating mechanism or a mixture-of-
experts (MoE) framework to choose multiple ways to downsample or compute dependent
on how complicated or statistically interesting the input image is. This would let us make
a more flexible trade-off, using a more resource-intensive method for preserving features
only on difficult photos and a lighter method for easier ones. This would optimize the
performance-cost balance for each instance.

This work’s laborious design and evaluation of more than 60 architectures shows
that we need more automated ways to find new designs. Neural Architecture Search
(NAS) could be used in future research to systematically look at the huge design space
of learnable resizers. By establishing a search space based on the effective components
identified in this thesis (e.g., strided convolutions, multi-branch designs, attention mech-
anisms) and employing a multi-objective optimization goal that reconciles task perfor-
mance (IoU or Fl-score) with computational limitations (e.g., latency, FLOPs), NAS
could reveal innovative, Pareto-optimal resizer architectures customized for particular
hardware or clinical deployment contexts. Lastly, making these resizers easier to under-
stand is an important next step. This work employed Grad-CAM; however, the creation of
more specialized visualization approaches could clarify the specific semantic or textural
elements that the resizer learns to retain. Understanding this taught "visual priority" could
help doctors a lot, make them trust the models more, and help them come up with even
better ways to resize images.

Reflecting on the broader applicability and architectural lessons from this work,
several key insights emerge. First, the efficacy of adaptive resizing is highly dataset-
dependent. For datasets lacking the fine, high-frequency features characteristic of medical
and histopathological images, the performance benefits of these advanced resizers dimin-
ish, and they may not offer a significant advantage over simpler methods like bilinear
interpolation. Therefore, the choice to employ an adaptive resizer should be preceded

by an analysis of the dataset’s feature complexity. Second, the architectural experiments
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underscored a crucial design principle: for resizing to be truly "adaptive," the downsam-
pling process itself must be learnable. Architectures that applied strided convolutions to
simultaneously reduce spatial dimensions and learn resizing parameters proved more ef-
fective at preserving information than those relying on standard convolutions after a fixed
resizing step. This indicates that integrating learnability directly into the size-reduction
operation is paramount. Finally, while vision attention mechanisms—including channel,
spatial, and self-attention—are powerful in larger networks, their integration into these
compact resizer models did not yield significant performance gains. For the specific task
of drastically downsampling high-resolution images, the computational overhead of these
attention mechanisms outweighed their marginal benefits, suggesting that lightweight,
well-designed convolutional structures are more efficient and effective for this purpose.
In summary, this thesis has successfully introduced and validated a series of novel
adaptive resizer architectures that not only enhance the performance of deep learning
models in critical medical image analysis tasks but also offer improved computational
characteristics compared to previously established adaptive methods. The findings high-
light that tailored adaptive resizers can play a pivotal role in preserving vital information
during downsampling, leading to more accurate and reliable outcomes. The development
of efficient architectures like "Minimal V1’ provides a practical pathway for leveraging
these benefits even in resource-constrained environments. This work underscores the
significance of the image resizing step within the deep learning pipeline and contributes
valuable tools and insights for the continued advancement of medical image computing.
Future research could focus on further refining these architectures, exploring their ap-
plicability to a wider array of imaging modalities and tasks, and investigating dynamic
selection mechanisms for optimal resizer configuration based on input data characteris-

tics.
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