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MEMRİSTÖR TABANLI NÖROMORFİK DEVRE TASARIMI
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İstanbul Teknik Üniversitesi

Prof. Dr. Umut Engin AYTEN ..............................
Yıldız Teknik Üniversitesi

Teslim Tarihi : 7 Şubat 2025
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ŞEKİL LİSTESİ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx
ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
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3.3.3.2 Denetimsiz öğrenme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Sayfa
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xx



MEMRİSTÖR TABANLI NÖROMORFİK DEVRE TASARIMI

ÖZET

Nöromorfik devreler, sinir sisteminin biyolojik yapısını taklit ederek oluşturulan
devrelerdir. Bu devrelerin biyolojik sinir sisteminin en önemli iki avantajı olan yüksek
işlem gücü ve düşük güç tüketimi konusunda diğer devrelere göre üstünlükleri olacağı
düşünülmektedir. Bunun yanı sıra biyolojik sinir sisteminin öğrenme özelliğini de
bu devrelerin taklit edebileceği öngörülmektedir. Hafıza ve veri işlemenin biyolojik
sinir sistemindeki nöron hücreleri gibi aynı yerde yapılıyor olması da bu devrelerin
avantajlarındandır. Bu sebeplerden ötürü nöromorfik devreler hakkındaki çalışmalar
son yıllarda önemli ölçüde artmıştır. Nöromorfik devreler temel olarak bir sinaps
devresi, bir nöron devresi veya bir sinir ağı devresi olarak tasarlanmaktadır. Nöron
bilginin toplanarak işlendiği bölümdür. İşlenen veri sinapslar aracılığıyla diğer
nöronlara iletilmektedir. Birçok nöron ve sinaps bir araya gelerek bir sinir ağı
oluşturmaktadır. Nöromorfik devre tasarımı yapılırken temel olarak bu ilişki kullanılır.

Nöromorfik devre tasarımları çeşitli elemanlarla yapılmaktadır. Nöromorfik devre
tasarımı çalışmalarında yaygın olarak kullanılan elemanlardan biri de memristördür.
Memristör manyetik akı ile elektriksel yük arasındaki ilişki eksikliği düşünülerek
ortaya atılan pasif bir devre elemanıdır. Üzerine uygulanan güç kesildiğinde son
durumundaki direnç değerini korumasından dolayı bu devre elemanına hafızalı direnç
(memory resistor) kelimesinin kısaltması olan memristör adı verilmiştir. Memristörün
fiziksel olarak gerçeklenmesiyle beraber memristörle ilgili yapılan çalışmalar artmış ve
memristörün potansiyel kullanım alanları ile ilgili oldukça fazla çalışma yapılmasına
sebep olmuştur. Bu alanlardan biri de nöromorfik devrelerdir.

Memristörün nöromorfik devre tasarımlarında kullanılmasının en yaygın sebepleri
arasında bir tek memristörün sinaps ile aynı davranışı verebiliyor olması ve
memristörün nöron gibi hafızalılık özelliğine sahip olması gösterilebilir. Bu gibi
sebepler memristörün nöromorfik devre çalışmalarında kullanımının artmasına sebep
olmuştur. Memristörün doğrusal olmayan bir eleman olması da nöromorfik devre
çalışmalarında kullanılmasında etkili bir sebeptir. Bu çalışmada da nöromorfik
devrelerin avantajları ve memristörün nöromorfik devre tasarımında kullanılma
amaçları düşünülerek memristör tabanlı nöromorfik devre tasarımı yapılmaktadır.

Memristör tabanlı nöromorfik devre tasarımı simülasyon ortamında yapılacağından
memristörün simülasyon ortamları için geliştirilen modelleri çalışmanın ilk aşamasını
oluşturmaktadır. Bu sebeple çalışma kapsamında öncelikle memristör modelleri
araştırılmıştır. Literatürde çok çeşitli memristör modelleri olmasına rağmen bu çalışma
için nöromorfik devre tasarımında kullanılabilecek memristör modellerine öncelik
verilmiştir. HP memristör modeli ve literatürde Michigan Üniversitesi modeli olarak
bilinen model incelenmiştir. Bu çalışma kapsamında nöromorfik devre tasarımı
açısından kullanımı daha uygun olan Yakopcic modeli kullanılmıştır.
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Nöromorfik devre tasarımında, memristör tabanlı sinaps ve nöron devreleri en önemli
bileşenlerdir. Bu tez çalışması kapsamında kullanılacak sinaps modelinin belirlenmesi
amacıyla yapılan literatür taraması sonucunda dört çeşit memristör tabanlı sinaps
devresine ulaşılmıştır. Bunlar bir memristörlü sinaps devresi, iki memristörlü sinaps
devresi, iki memristörlü ve iki dirençli sinaps devresi ve dört memristörlü sinaps
devresidir. Sinaps devresi tasarımında memristör sayısı arttıkça devre karmaşıklığının
artması göz önünde bulundurularak, bu çalışma kapsamında bir memristörlü sinaps
devresi kullanılmıştır. Nöron modellernin memristör tabanlı devre gerçeklemeleri de
araştırılmış, Hodgkin-Huxley, Hindmarsh-Rose, Izhikevich ve Tut ve Ateşle modelleri
gibi nöron modellerinin memristör tabanlı devre gerçeklemelerine ulaşılmıştır.

Nöromorfik devre tasarımında kullanılacak sinir ağının belirlenmesi için literatür
taranmıştır. Sinir ağlarının temel olarak iğnecikli olmayan sinir ağı ve iğnecikli
sinir ağı olmak üzere ikiye ayrıldığı görülmüştür. İğnecikli olmayan sinir ağlarında
biyolojik sinir sistemine benzeme oranının daha düşük olduğu ve bu sinir ağlarında
biyolojik sinir sisteminin kavramsal olarak taklit edildiği görülmüştür. Bilginin reel
sayı olarak işlendiği bu ağlar biyolojik sinir sisteminin bilgi işleme mekanizmasından
farklı bir biçimde çalışmaktadır. Dolayısıyla iğnecikli olmayan sinir ağı tasarımında
nöron devresi olarak nöron modellerinin devre gerçeklemeleri yerine toplayıcı
devresi, eviren kuvvetlendirici devresi ve aktivasyon fonksiyonu devresi kullanılmıştır.
İğnecikli sinir ağının ise biyolojik sinir sistemine daha benzer bir yapıda olduğu
görülmüştür. Bu sinir ağlarında bilgi biyolojik sinir sisteminde olduğu gibi nöronlar
arasında iğneciklerle iletilmektedir. Bu sebeple kullanılan nöron devresi nöron
modellerinin devresel gerçeklemeleriyle oluşturulmaktadır.

Nöromorfik devre tasarımında kullanılacak sinaps devresi, nöron devresi ve sinir ağı
belirlendikten sonra bu yapılarla bazı fonksiyonları yerine getirecek ve sınıflandırma
yapabilen nöromorfik devreler oluşturulmuştur. Oluşturulan nöromorfik devrelere
uygulanan fonksiyonlar XOR fonksiyonu, çift eşlik biti üreteci ve çift eşlik biti kontrol
edicidir. Sınıflandırma için de İris çiçeğinin türlerine göre sınıflandırılması devresi
gerçeklenmiştir.

XOR fonksiyonu iki girişli bir çıkışlı bir fonksiyondur. Fonksiyon girişler aynı
olduğunda lojik ‘0’, farklı olduğunda lojik ‘1’ değerini üretmektedir. XOR fonksiyonu
ancak çok katmanlı bir sinir ağı ile gerçekleştirilebilmektedir. Bu sebeple sinir ağı
tasarımlarında ayırt edici bir yere sahiptir. Bu sebeple, bu çalışma kapsamında
XOR fonksiyonunu gerçekleyecek bir sinir ağı yapısı oluşturularak nöromorfik devre
tasarımı yapılmıştır. Oluşturulan devrenin simülasyon sonuçlarına bakılarak XOR
fonksiyonu çıktılarını doğru bir şekilde verdiği gözlenmiştir.

Bu çalışma kapsamında nöromorfik devreye uygulanan bir diğer fonksiyon çift eşlik
biti üretecidir. Çift eşlik biti üreteci bir haberleşme sisteminde göndericinin alıcıya
mesajın doğru gidip gitmediğini alıcının kontrol edebilmesi için göndericinin mesaja
eklediği bir bit değeri üretir. Çift eşlik biti üreteci, gönderilen mesajdaki bitlerin
toplamı çift ise lojik ‘0’ değerini, tek ise lojik ‘1’ değerini üretir. Çalışma kapsamında
bu fonksiyonu gerçekleyecek bir sinir ağı yapısı oluşturulmuş ve nöromorfik devre
tasarımı gerçekleştirilmiştir. Devrenin simülasyon sonuçlarında fonksiyonun doğru
bir şekilde gerçeklendiği gözlemlenmiştir.

Çift eşlik biti kontrol edici bu çalışma kapsamında nöromorfik devresi gerçeklenen
bir diğer fonksiyondur. Bir haberleşme sisteminde alıcı tarafında çalışan bu
fonksiyon mesajdaki bitlerle çift eşlik biti üretecinin ürettiği biti toplar ve sonucu

xxii



çift bulursa mesajın doğru gelmesi anlamında lojik ‘0’ değerini üretir. Eğer sonuç
tek ise mesajın hatalı gelmesi anlamında lojik ‘1’ değerini üretir. Gerçeklenen bu
nöromorfik devrenin simülasyon sonuçlarına bakılarak fonksiyonun doğru bir şekilde
gerçeklendiği görülmüştür.

İris çiçeğinin sınıflandırılması için iris veri seti kullanılmıştır. Bu veri setinde iris
çiçeğinin dört özelliği olan üst yaprak genişliği, üst yaprak uzunluğu, alt yaprak
genişliği ve alt yaprak uzunluğu bilgileriyle ve bu bilgilerin ait olduğu İris çiçeği
sınıfları (setosa, versicolor ve virginica) yer almaktadır. Oluşturulan nöromorfik
devrenin girişlerine çiçeğin özellikleri ölçeklendirilerek verilmiş ve çıktı olarak doğru
çiçek türünü vermesi beklenmiştir. Devre yüksek bir doğrulukla çiçekleri sınıflarına
ayırmıştır.

Sonuç olarak memristör tabanlı nöromorfik devre çalışmalarına rehberlik edecek, sinir
ağları tasarımında kullanılabilecek memristör tabanlı nöromorfik devre tasarımları
gösterilmiştir. Bu tasarımlara örnek fonksiyonlar ve sınıflandırma problemi
uygulanarak tasarımlar doğrulanmıştır. Tasarımlar, literatüredeki diğer çalışmalarla
karşılaştırılmış, avantajları ve dezavantajları belirtilmiştir.
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MEMRISTOR BASED NEUROMORPHIC CIRCUIT DESIGN

SUMMARY

Neuromorphic circuits are circuits created by mimicking the biological structure of the
nervous system. It is thought that these circuits will have advantages over other circuits
in terms of the two most important benefits of the biological nervous system: high
processing power and low power consumption. In addition, it is anticipated that these
circuits will be able to mimic the learning capability of the biological nervous system.
The fact that memory and data processing are done in the same place as the neuron
cells in the biological nervous system is also one of the advantages of these circuits.
For these reasons, research on neuromorphic circuits has significantly increased in
recent years. Neuromorphic circuits are fundamentally designed as a synapse circuit,
a neuron circuit, or a neural network circuit. The neuron is the part where information
is collected and processed. The processed data is transmitted to other neurons via
synapses. Many neurons and synapses come together to form a neural network. When
designing neuromorphic circuits, this relationship is fundamentally used.

Neuromorphic circuit designs are made with various elements. One of the elements
commonly used in neuromorphic circuit design studies is the memristor. Memristor is
a passive circuit element that was introduced by considering the lack of relationship
between magnetic flux and electrical charge. This circuit element is called memristor,
which is the abbreviation of the word memory resistor, because it maintains the
resistance value in its final state when the power applied to it is cut off. With the
physical realization of the memristor, studies on the memristor have increased and led
to a great deal of work on the potential uses of the memristor. One of these areas is
neuromorphic circuits.

The most common reasons for the use of memristor in neuromorphic circuit designs are
that a single memristor can give the same behavior as a synapse and that the memristor
has memory like a neuron. These reasons have led to the increased use of memristors
in neuromorphic circuit studies. The fact that the memristor is a nonlinear element
is also an effective reason for its use in neuromorphic circuit studies. In this study,
memristor based neuromorphic circuits are designed by considering the advantages
of neuromorphic circuits and the purpose of using memristor in neuromorphic circuit
design.

Since the memristor-based neuromorphic circuit design will be performed in a
simulation environment, the models of the memristor developed for simulation
environments constitute the first stage of the study. For this reason, memristor models
were first investigated within the scope of the study. Although there are a wide variety
of memristor models in the literature, for this study, memristor models that can be
used in neuromorphic circuit design were prioritized. The HP memristor model and
the model known as the University of Michigan model in the literature were examined.
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In this study, the Yakopcic model, which is more suitable for neuromorphic circuit
design, was used.

In neuromorphic circuit design, memristor-based synapse and neuron circuits are
the most important components. As a result of the literature review conducted to
determine the synapse model to be used in this thesis, four types of memristor based
synapse circuits have been identified. These are a one-memristor synapse circuit, a
two memristor synapse circuit, a two memristor and two resistor synapse circuit, and a
four memristor synapse circuit. Considering the increase in circuit complexity with the
number of memristors in the synapse circuit design, a single memristor synapse circuit
has been used in this study. The memristor-based circuit implementations of neuron
models were also investigated, and memristor-based circuit implementations of neuron
models such as Hodgkin-Huxley, Hindmarsh-Rose, Izhikevich, and Fire and Integrate
models were achieved.

The literature has been reviewed to determine the neural network to be used in the
design of the neuromorphic circuit. It has been observed that neural networks are
fundamentally divided into non-spiking neural networks and spiking neural networks.
In non-spiking neural networks, it has been observed that the resemblance to the
biological nervous system is lower, and these neural networks conceptually mimic
the biological nervous system. These networks, where information is processed as
real numbers, operate differently from the information processing mechanism of the
biological nervous system. Therefore, in the design of non-spiking neural networks,
instead of circuit implementations of neuron models as neuron circuits, summing
amplifier circuit, inverting amplifier circuit, and activation function circuit have been
used. It has been observed that the spiking neural network has a structure more similar
to the biological nervous system. In these neural networks, information is transmitted
between neurons through spikes, just like in the biological nervous system. Therefore,
the neuron circuit is created with the circuit implementations of neuron models.

After determining the synapse circuit, neuron circuit, and neural network to be used in
the design of the neuromorphic circuit, neuromorphic circuits capable of performing
certain functions and classification were created with these structures. The functions
applied to the created neuromorphic circuits are the XOR function, the even parity bit
generator, and the even parity bit checker. For classification, a circuit for classifying
Iris flower species has also been implemented.

The XOR function is a function with two inputs and one output. The function generates
logic ‘0’ when the inputs are the same and logic ‘1’ when they are different. The XOR
function can only be realized with a multilayer neural network. For this reason, it has
a distinctive place in neural network designs. For this reason, in this study, a neural
network structure to realize the XOR function was created and a neuromorphic circuit
was designed. The simulation results of the circuit design show that the circuit gives
correctly outputs of the XOR function.

Another function applied to the neuromorphic circuit in this study is the even parity
generator. In a communication system, the even parity generator generates a bit value
that the sender adds to the message so that the receiver can check whether the message
is correct or not. The even parity generator generates a logic ‘0’ if the sum of the bits
in the message is even and a logic ‘1’ if the sum is odd. In this study, a neural network
structure to implement this function was created and a neuromorphic circuit design

xxvi



was realized. Simulation results of the circuit show that the function is implemented
correctly.

The even parity checker is another function whose neuromorphic circuit is
implemented in this study. This function, which works at the receiver side of a
communication system, sums the bits in the message with the bit produced by the
even parity generator and if the result is even, it produces a logic ‘0’ value meaning
that the message is correct. If the result is odd, it generates logic ‘1’ meaning that the
message is incorrect. The simulation results of this neuromorphic circuit show that the
function is implemented correctly.

The Iris dataset has been used for the classification of the Iris flower. In this dataset,
there are four features of the Iris flower: sepal width, sepal length, petal width, and
petal length, along with the Iris flower classes (setosa, versicolor, and virginica) they
belong to. The features of the flower were scaled and provided as inputs to the created
neuromorphic circuit, and it was expected to output the correct flower type. The circuit
classified the flowers into their categories with high accuracy.

In conclusion, memristor-based neuromorphic circuit designs that can guide memristor
based neuromorphic circuit studies and be used in neural network design have
been presented. These designs were verified by applying example functions and a
classification problem. The designs were compared with other studies in the literature,
and their advantages and disadvantages were noted.
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1. GİRİŞ

Memristör, bir diğer adıya hafızalı direnç, temel devre elemanlarından kapasitör,

indüktör ve dirençten sonra dördüncü pasif devre elemanı olarak literatürde kendine

yer bulmuştur. Elektriksel yük ile manyetik akı arasındaki ilişki ile tanımlanan

memristör, kendisine uygulanan güç kesildiğinde üzerinden geçen son yük miktarına

göre bir direnç değerinde kaldığından bir hafızalılık özelliğine sahip olduğu

düşünülmektedir. Bunun yanı sıra gerilim-akım ilişkisinin doğrusal olmayan bir

karakteristik sergilemesi de bu devre elemanının önemli özelliklerinden biridir. Tüm

bu özellikleri ve memristörün 2008 yılında fiziksel olarak da gerçeklenmesi dolayısıyla

bu devre elemanı üzerine birçok farklı alanda çalışmalar yapılmaya başlanmıştır.

Memristörün çalışıldığı en önemli alanlardan biri de nöromorfik devreler konusudur.

Nöromorfik devreler, sinir sisteminin biyolojik çalışma prensiplerini kullanarak

oluşturulan devrelerdir. Nöromorfik devrelerin sinir sistemindeki gibi yüksek işlem

kapasitesine sahip olması ve işlemleri düşük güç tüketimi ile yapması bu devrelerden

beklenen en önemli iki avantajdır. Ayrıca bu devreler, beynin sahip olduğu öğrenme

ve adaptasyon özelliğini de öğrenme algoritmalarını kullanarak taklit edebilmektedir.

Buna ek olarak, nöromorfik devrelerde geleneksel bilgisayar mimarisi olan Von

Neumann mimarisinden farklı olarak veri işleme ve hafıza birimlerinin sinir sistemi

hücreleri olan nöronlar gibi aynı yerde olması, bu devrelerde hafıza ile veri işleme

birimleri arasındaki veri taşınması gibi zaman ve performans kaybı oluşturacak

problemlerin ortadan kalkmasını sağlamaktadır. Bu üstünlükler sebebiyle nöromorfik

devreler kullanılarak oluşturulacak sistemlerin geleneksel sistemlerin yerini alacağı

öngörülmektedir.

Bu tezde memristör elemanı kullanılarak bir nöromorfik devre tasarımının nasıl

yapılacağı anlatılacak ve çeşitli örnek devre tasarımları üzerinden gösterilecektir.

Öncelikle, memristörden ve memristör modellerinden bahsedilecektir. Daha sonra

sinir sisteminin biyolojik yapısı, nöron ve sinaps modelleri anlatılacak ve bazı

sinaps ve nöron modellerinin memristör tabanlı devresel gerçeklemesi hakkında bilgi

1



verilecektir. Ardından bu tez çalışması kapsamında tasarlanan memristör tabanlı

nöromorfik devreler gösterilecektir. Tez, sonuç ve öneriler kısmıyla bitirilecektir.

1.1 Tezin Amacı

Bu tezin amacı, bir memristör tabanlı nöromorfik devre tasarımının nasıl yapılacağını

adım adım göstermek ve örnek devrelerle açıklamaktır. Memristöre fiziksel olarak

erişim maliyetli olduğundan tasarımlar, elektrik devresi simülasyon programı aracılığı

ile yapılmıştır. Bunun için geliştirilen memristör modellerinden uygun olan bir

memristör modeli kullanılmıştır. Daha sonra sinaps ve nöron modelleri araştırılmış

ve bu simülasyon ortamında toplayıcı, kuvvetlendirici ve aktivasyon fonksiyonu

devresi kullanılarak nöron ve memristör tabanlı sinaps tasarımı oluşturulmuştur.

Bu tasarımdan yola çıkılarak oluşturulan nöromorfik devreler, bazı fonksiyonları

gerçekleyecek ve bir sınıflandırma problemini çözecek şekilde düzenlenmiştir.

Böylece, memristör tabanlı nöromorfik devrenin çeşitli fonksiyonları gerçekleyecek

ve sınıflandırma yapabilecek şekilde tasarlanması amaçlanmıştır. Ayrıca bu devreler

ile literatürdeki devreler karşılaştırılarak bu tez çalışması kapsamında geliştirilen

devrelerin diğer devrelerden farklılaşan yönleri ortaya konulmuştur.

1.2 Literatür Araştırması

Memristör tabanlı nöromorfik devreler ile ilgili literatürde oldukça fazla çalışma vardır.

Nöron modellerinin memristör tabanlı gerçeklenmesi nöromorfik devreler ile ilgili

çalışmalardandır. Bu devrelere Hodgkin-Huxley nöron modelinin memristör tabanlı

devresi örnek olarak verilebilir [1]. Bir başka nöron modeli olan HindmarshRose

modeli de memristör tabanlı bir devre olarak tasarlanmıştır [2]. FitzHughNagoumo

modeli de memristör tabanlı olarak gerçeklenen nöron modelleri arasında sayılabilir

[3]. En basit nöron modeli olarak da bilinen Tut ve Ateşle (Integrate and Fire)

modelinin de memristör tabanlı bir devresi oluşturulmuştur [4].

Nöron modellerinin memristör tabanlı gerçeklenmesinin yanı sıra nöromorfik sistem

tasarımında kullanılmak üzere memristör tabanlı sinaps ve nöron devrelerinin

önerildiği çalışmalar da vardır. Zheng ve çalışma arkadaşlarının yapay sinir ağları

devreleri tasarımında kullanılabilecek memristör tabanlı sinaps ve iğnecik üreten nöron

devreleri önerisi bu çalışmalardan biridir [5]. Başka bir çalışmada Chu ve çalışma
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arkadaşları önerdikleri bir nöromorfik sistem için sinaps olarak memristör kullanmıştır

[6]. Babacan ve çalışma arkadaşları da yaptıkları bir çalışmada memristör tabanlı bir

nöron devresi önermişlerdir [7].

Memristör tabanlı sinir ağları da nöromorfik devre çalışmaları altında literatürde

kendine yer bulmaktadır. Bir çalışmada, memristör tabanlı bir iğnecikli sinir

ağı tasarlanıp metin sınıflandırması yapılmıştır [8]. Eşlik biti kontrolü problemi

ile yüz tanıma probleminin uygulandığı bir diğer memristör tabanlı sinir ağı da

bu tip çalışmalardan biridir [9]. Memristör tabanlı bir iğnecikli sinir ağının

geliştirildiği bir çalışma da literatürde kendine yer bulmuştur [10]. Memristif

elemanlarla gerçekleştirilen sinir ağları simülasyonları, özellikle lineer olarak

ayrılabilen fonksiyonlar için, bir tez çalışmasında gerçeklenmiştir [11]. Memristör

tabanlı olarak gerçeklenen bir diğer çok katmanlı algılayıcı ile el yazısı tanıma

uygulaması yapılmıştır [12]. Yakopcic ve çalışma arkadaşlarının geliştirdiği bir

memristör tabanlı çok katmanlı algılayıcı ile Sobel kenar algılama çalışması

yapılmıştır [13]. Memristör çapraz çubuk dizisi (crossbar array) ile İris çiçeği

sınıflandırması, sinir ağlarının memristör tabanlı gerçeklenmesi çalışmalarından bir

diğeridir [14]. Literatürde 9 piksel resimleri sınıflandıran memristör tabanlı bir sinir

ağı uygulaması da bulunmaktadır [15].

Sonuç olarak, var olan nöron modellerini memristör tabanlı gerçeklemek, nöromorfik

sistemlerde kullanılmak üzere memristör tabanlı sinaps veya nöron devreleri önermek

ya da memristör tabanlı sinir ağları oluşturarak belirli problemleri bu ağlarda

uygulamak şeklinde literatürde farklı nöromorfik devre tasarımlarının yapıldığı

görülmektedir.
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2. MEMRİSTÖR

2.1 Memristör Hakkında Genel Bilgiler

1971 yılında Leon O. Chua tarafından temel devre değişkenlerinden olan manyetik

akı ve elektrik yükü arasındaki ilişkinin devre teorisi açısından eksikliğini fark ederek

yaptığı çalışmalar sonucunda bu iki değişken arasındaki ilişkiyi bir pasif devre elemanı

olarak tanıtmıştır ve bu devre elemanına hafızalı direnç anlamına gelen memristör adını

vermiştir [16]. Memristöre ait temel denklemsel ifade aşağıda (2.1)’deki gibi ifade

edilir.

dφ = Mdq (2.1)

Burada manyetik akı ile yük arasındaki ilişkinin M ile ifade edilen memristans değerini

verdiği görülmektedir.

Memristör ile ilgili en belirgin tanımlamardan biri de gerilim akım düzlemindeki özel

bir histerezis döngüsü ile yapılan tanımdır. Buna göre gerilim akım düzleminde

bu histerezis döngüsüne sahip olan iki uçlu bir eleman memristördür [17]. Bu

histerezis döngüsü Şekil 2.1’ de gösterilmiştir. 2008 yılında Hewlett-Packard

Şekil 2.1: Memristörün gerilim akım düzlemindeki histerezis döngüsü.
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Laboratuvarları’nda memristör fiziksel olarak ilk defa gerçeklenmiştir. İki platin

tabaka arasına titanyum dioksit katkılanmasıyla oluşturulan bu eleman ilk fiziksel

memristör olarak duyurulmuştur [18]. Bu çalışma ile birlikte memristör hakkındaki

çalışmalar ivme kazanmış ve memristör ile ilgili modelleme ve taklit devresi oluşturma

çalışmaları artmıştır.

2.2 Memristör Modelleri

Memristörün fiziksel olarak gerçeklenmesi ile birlikte memristörün uygulama alanları

ile ilgili çalışmalar artmıştır. Dolayısıyla memristörün modellenmesi önemli bir

konu haline gelmiştir. Bu başlık altında literatürde mevcut olan memristör modelleri

incelenecektir.

2.2.1 HP memristör modeli (doğrusal iyon sürüklemeli model)

Memristör ilk defa fiziksel olarak HP laboratuvarlarında gerçeklenmiştir. Gerçeklenen

bu fiziksel elemanın modeli de ilk defa bu ekip tarafından oluşturulmuştur. İki platin

tabaka arasına sıkıştırılmış katkılı titanyum dioksit ve katkısız titanyum dioksitten

oluşan elemanın üzerine pozitif gerilim uygulandığında katkılı bölgenin genişlediği

gözlenmektedir. Böylelikle elemanın direnci düşer ve bu durum elemanın üzerinden

daha fazla akım akmasına sebep olur. Eğer elemanın üzerine negatif gerilim

uygulanırsa bu durumda katkılı bölge daralır ve elemanın direnci yükselir [19]. Bu

durum Şekil 2.2’de gösterilmiştir.

Şekil 2.2: HP memristörünün pozitif ve negatif gerilim altındaki davranışı [19].
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Modelde, tabakalar arasının tamamen katkılı iyondan oluştuğu durumda elemanın

direnci Ron, tamamen katkısız iyonlardan oluştuğu durumda elemanın direnci Ro f f ,

katkılı alanın uzunluğu w, tüm alanın uzunluğu D ve katkılı alanın uzunluğunun tüm

alana oranı x = w
D olarak kabul edilirse, memristans denklemi aşağıdaki gibi yazılır:

M = Ronx+Ro f f (1− x) (2.2)

x =
w
D

(2.3)

Eğer iyon hareketliliği µv ile gösterilirse, bu durumda iyon hareketliliğine bağlı olarak

katkılı alanın uzunluğunun değişimi denklemleri aşağıdaki gibi elde edilir.

dw(t)
dt

= µv
Ron

D
i(t) (2.4)

w(t) = µv
Ron

D
q(t) (2.5)

Eğer (2.5) denklemi (2.2) denklemindeki ilgili yerlere yazılırsa ve denklemi

basitleştirmek için Ron « Ro f f kabul edilirse, bu durumda memristans denklemi

(2.6)’da verildiği gibi olur. Böylece memristans değeri yüke bağlı elde edilmiş olur.

M(q) = Ro f f

(
1− µvRon

D2 q(t)
)

(2.6)

2.2.2 Michigan üniversitesi memristör modeli

Ting Chang ve çalışma arkadaşları tarafından geliştirilen bu model, yine aynı ekip

tarafından tungsten oksit kullanılarak gerçeklenen fiziksel bir memristörün modelidir

ve literatürde Michigan Üniversitesi modeli olarak bilinmektedir [20]. Modelin

en temel özelliği akım ve gerilim arasında hiperbolik sinüs fonksiyonu özelliği

bulundurmasıdır. Bu ilişki denklem 2.7’de verilmiştir.

I = (1− x(t))α [1− exp(βV (t))]+ x(t)γ sinh(δV (t)) (2.7)

Bu denklemde α ve β Schottky bariyerinden kaynaklanan parametrelerdir. γ ve δ

parametreleri ise tünellemeden kaynaklanan parametrelerdir. Bu parametrelerin hepsi

pozitif değerlidir ve değerleri malzemenin özelliklerine göre belirlenir. x(t) ise durum

değişkenini belirtir. Bu durum değişkeni aşağıdaki denklemle ifade edilir:

dx
dt

= λ [η1 sinhη2 (V (t))] (2.8)

Burada λ , η1 ve η2 parametreleri, durum değişkeninin uyumlama parametreleridir ve

pozitif değerlidir.
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2.2.3 Yakopcic memristör modeli

Chris Yakopcic ve çalışma arkadaşları tarafından memristör tabanlı nöromorfik

sistemlerin kendisiyle modellenebileceği bir memristör modeli geliştirmişlerdir [21].

Bu model literatürde Yakopcic modeli olarak bilinmektedir. Önerilen model mevcut

modellerin üzerine kuruludur ve akım gerilim ilişkisi Michigan Üniversitesi modeli

gibi hiperbolik sinüs fonksiyonu ile tanımlanmaktadır. Bu akım gerilim ilişkisi

Denklem (2.9)’da verilmiştir.

I(t) =

{
a1x(t)sinh(bV (t)) , eğer V (t)≥ 0
a2x(t)sinh(bV (t)) , eğer V (t)< 0

(2.9)

Bu denklemde a1, a2 ve b parametreleri denklemin farklı memristör yapılarına uyması

için düzenlenmiş parametrelerdir. x(t), Michigan Üniversitesi modelinde olduğu gibi

durum değişkenini belirtir ve Denklem (2.10)’daki gibi tanımlanır.

dx
dt

= g(V (t)) f (x(t)) (2.10)

Bu denklemde g(V (t)), memristöre uygulanan bir eşik gerilim değeri fonksiyonudur.

Memristörlere belirli bir enerji değeri uygulanmadıkça durumunda herhangi bir

değişiklik olmadığı saptanmış ve bu eşik gerilim değerini belirtmek üzere bu fonksiyon

durum değişkeninin tanımına konulmuştur. f (x(t)) fonksiyonu ise durum değişkeni

sınır değerlere yaklaştığında doğrusal olmayan iyon hareketini modeller.
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3. NÖROMORFİK DEVRELER

Nöromorfik devreler sinir sisteminin çalışma prensiplerini temel alarak oluşturulan

devrelerdir. Nöromorfik bir devre, tasarımına göre sinaps devresi, nöron devresi veya

birden fazla sinaps ve nöronun bir araya gelerek oluşturduğu sinir ağı devresi olabilir.

3.1 Sinaps

Sinaps, sinir sisteminde nöronlar arasındaki bağlantı noktaları olarak tanımlanabilir.

Bu bağlantı noktaları sayesinde nöronlar birbirileri arasında bilgi alışverişi yaparlar.

Bu sebeple nöromorfik tasarımlarda sinaps devreleri önemli bir yere sahiptir. Bu

çalışmada memristör tabanlı tasarım yapılacağından memristör tabanlı sinaps devreleri

ele alınmıştır.

3.1.1 Memristör tabanlı sinaps devreleri

Literatürde memristör tabanlı tasarlanan birden fazla sinaps devresi vardır. Bu devreler

genel olarak bir memristörlü sinaps devresi, iki memristörlü sinaps devresi, iki

memristör ve iki dirençten oluşan sinaps devresi ve dört memristörlü sinaps devresi

olarak sınıflandırılabilir [22,23]. Şekil 3.1’de bir ve iki memristörlü sinaps devreleri

gösterilmektedir.

Şekil 3.1: (a) Bir memristörlü sinaps; (b) İki memristörlü sinaps [22].
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Bir ve iki memristörlü sinaps devreleri az sayıda eleman içerdiğinden nöromorfik

sistemlere entegrasyonu kolay devrelerdir. Şekil 3.2’de ise iki memristörlü ve iki

dirençli sinaps devresi ile dört memristörlü sinaps devresi görülmektedir.

Şekil 3.2: (a) İki memristörlü iki dirençli sinaps devresi; (b) Dört memristörlü sinaps
devresi [23].

İki memristörlü ve iki dirençli sinaps devresi ile dört memristörlü sinaps devresi

Wheatstone köprüsüne benzemektedir. Bu devreler, sinaps davranışını daha iyi temsil

etmekle beraber daha fazla eleman içerdiğinden nöromorfik sistemlere entegrasyonu

daha zor devrelerdir.

3.2 Nöron

Nöron, sinir sistemindeki bilgi işleme hücreleridir. Temel olarak dendrit, soma ve

akson denilen üç yapıdan oluşur. Dendrit, diğer nöronlardan sinapslar aracılığıyla

gelen bilginin nöronda ilk karşılandığı bölümdür. Soma, nöronun merkez bölgesidir ve

dendritlerden gelen bilgileri toplayarak bunu bir eşik değeriyle karşılaştırır. Eğer eşik

değeri aşılırsa nörondaki bilgi, nöronun çıkışı olan aksonlara iletilir. Aksonlar da bu

bilgiyi sinapslar aracılığıyla diğer nöronlara iletir. Nöronların bilgi işleme sürecindeki

bu davranışının modellenmesi ve modellerin memristör tabanlı devre gerçeklemesi

üzerine literatürde birçok çalışma vardır.

3.2.1 Hodgkin-Huxley modeli

Nöron davranışının temel modellerinden biri Hodgkin-Huxley modelidir. Bu model

Hodgkin ve Huxley tarafından 1952 yılında önerilmiştir [24]. Nöronda bulunan

sodyum, potasyum ve sızıntı kanalları, gerilim kaynakları ve iletkenlik değerleri

ile modellenmiştir. Modelin elektriksel eşdeğer devresinin gösterimi Şekil 3.3’te

verilmiştir.
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Şekil 3.3: Hodgkin-Huxley modeli eşdeğer devresi.

Modelin memristör tabanlı eşdeğer bir devresi de Şekil 3.4’te verilmiştir. Bu devrede

sodyum ve potasyum kanallarının iletkenliği memristör ile karşılanmıştır.

Şekil 3.4: Hodgkin-Huxley modeli memristör tabanlı eşdeğer devresi [25].

3.2.2 Hindmarsh-Rose modeli

Hindmarsh ve Rose tarafından 1982 yılında önerilmiştir [26]. Bu model

Hodgkin-Huxley modelindeki gibi bir diferansiyel denklem setiyle ifade edilir ve

matematiksel olarak Hodgkin-Huxley modeline göre daha az karmaşık bir modeldir.

Model, matematiksel olarak daha az karmaşıklık içermesine rağmen nöronun biyolojik

olarak gösterdiği davranışların birçoğunu modelleyebilmektedir. Modelin bir eşdeğer

devresi Jenderny ve çalışma arkadaşları tarafından oluşturulmuştur [27]. Aynı ekip
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tarafından bu model için memristör tabanlı eşdeğer bir devre de oluşturulmuştur

[28]. Oluşturulan bu devrenin önemli zayıflıklarından biri elemanları pasif olmayan

bir negatif empedans dönüştürücü içermesidir. Bu eşdeğer devre Şekil 3.5’te

gösterilmiştir.

Şekil 3.5: Hindmarsh-Rose modeli memristör tabanlı eşdeğer devresi [28].

3.2.3 Izhikevich modeli

Izhikevich tarafından geliştirilen bu model, nöronların biyolojik davranışını Hodgk-

inHuxley modelindeki gibi doğru bir şekilde modellerken aynı zamanda çok fazla

sayıda nöron kullanılarak oluşturulacak geniş çaplı bir analizde hesaplama verimliliği

sağlayabilmektedir [29]. Modelin memristör tabanlı eşdeğer bir devresi Şekil 3.6’da

verilmiştir.

Şekil 3.6: Izhikevich modeli memristör tabanlı eşdeğer devresi [30].

3.2.4 Tut ve ateşle modeli

En basit model olarak bilinen Tut ve Ateşle modelinin kabaca eşdeğer devresi bir

direnç ve ona paralel bağlı bir kapasitörle oluşturulabilir [31]. Devre gerçeklemesi

basit olduğu için çok fazla sayıda nöronlu sistemler için hesaplama kolaylığı sağlasa

da nöronların biyolojik davranışını sergilemek konusunda en zayıf modeldir. Tut
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ve Ateşle modelinin üzerinde yapılan çeşitli değişikliklerle Sızdırmalı Tut ve Ateşle

modeli, Uyarlamalı Tut ve Ateşle modeli gibi nöron modelleri de oluşturulmuştur.

Bu modellerden Sızdırmalı Tut ve Ateşle modeline ait memristör tabanlı bir devre

gerçeklemesi Şekil 3.7’de verilmiştir.

Şekil 3.7: Sızdırmalı Tut ve Ateşle modeli memristör tabanlı eşdeğer devresi [32].

3.3 Yapay Sinir Ağları

Yapay sinir ağları, biyolojik sinir ağlarından esinlenerek oluşturulmuş algoritmalardır.

Bu algoritmalar, biyolojik sinir ağlarındaki veri iletme ve işleme mekanizmasını çeşitli

yönleriyle taklit eder. Temel olarak iğnecikli olmayan sinir ağları ve iğnecikli sinir

ağları olmak üzere ikiye ayrılır.

3.3.1 İğnecikli olmayan sinir ağları

İğnecikli olmayan sinir ağları, biyolojik sinir ağlarının bilgi işleme biçimini aynen

taklit etmek yerine kavramsal olarak taklit eder. İğnecikli olmayan sinir ağlarında,

sinapslar bir ağırlık değerini temsil ederken nöronlar ise kendisinden önceki nöronların

çıkışlarının, sinapsların temsil ettiği ağırlıklarla çarpılarak elde edilen değerleri

toplayıp bir aktivasyon fonksiyonundan geçirir ve yine sinapsların temsil ettiği

ağırlıklarla çarpılmak üzere bir çıkış değeri üretir. Bu değerler bir reel sayıdır.

İğnecikli olmayan sinir ağlarında bir nöronun gerçekleştirdiği bu işlem Şekil 3.8’de

verilmiştir.

İğnecikli olmayan sinir ağlarının iki temel özelliği vardır. Bunlar çıkarım ve

öğrenmedir. Çıkarım girdilere bağlı olarak bir çıktı üretme işlemidir. Öğrenme

ise çıktıların doğru hale getirilebilmesi için sinir ağında sinapsların temsil ettiği

ağırlık değerlerinin değiştirilmesi sürecidir. Böylece, iğnecikli olmayan sinir ağlarına

uygulanan problemler biyolojik sinir sisteminin çalışma prensibi taklit edilerek

çözülmüş olur.
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Şekil 3.8: İğnecikli olmayan sinir ağlarında bir nöronun davranışı.

İğnecikli olmayan sinir ağları birden fazla nöron ve sinapsın katman katman bir araya

gelmesiyle oluşturulur. Bu katman sayısı ve her bir katmandaki nöron ve sinaps sayıları

sinir ağına uygulanacak probleme göre değişkenlik gösterebilir. Örnek çok katmanlı

bir iğnecikli sinir ağı Şekil 3.9’da gösterilmiştir.

Şekil 3.9: Çok katmanlı iğnecikli olmayan sinir ağı.

İğnecikli olmayan sinir ağlarında sinapslar reel sayı değerli ağırlıkları temsil ettiğinden

ve nöronlar da bir toplayıcıdan ve bir aktivasyon fonksiyonundan oluşan bir yapı

olduğundan bu ağların memristör tabanlı devre gerçeklemeleri sinaps ve nöronların

sahip olduğu bu özelliklerin memristör tabanlı gerçeklenmesi üzerine kurulmuştur.

Memristör tabanlı iğnecikli olmayan sinir ağı tasarımında kullanılmak üzere dizayn

edilmiş örnek bir devre Şekil 3.10’da verilmiştir. Bu tasarımda sinapsları temsilen bir

memristör ve nöronları temsilen memristör tabanlı bir toplayıcı ve memristör tabanlı

bir sigmoid aktivasyon fonksiyonu kullanılmıştır. Çalışmada bu devreler bir araya

getirilerek çok katmanlı bir iğnecikli olmayan sinir ağı oluşturulmuştur [33].
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Şekil 3.10: İğnecikli olmayan sinir ağında kullanılmak için tasarlanmış memristör
tabanlı sinaps ve nöron devresi [33].

3.3.2 İğnecikli sinir ağları

İğnecikli sinir ağları, biyolojik sinir ağlarını yalnızca kavramsal olarak değil biçimsel

olarak da taklit eder. Dolayısıyla gerçek sinaps ve nöron modellerini kullanır. İğnecikli

olmayan sinir ağlarındaki gibi bilgi reel sayılarla değil, biyolojik sinir ağlarında olduğu

gibi iğneciklerle (spike) iletilir. Bir iğnecikli sinir ağında sinapslardan nöronlara

iletilen iğnecikler, nöronlarda tıpkı biyolojik bir nöronda olduğu gibi bir eşik değerini

aşınca, nöronlar yeni iğnecikler üreterek bunu diğer katmandaki nöronlara bağlı olan

sinapslara iletir. İğnecikli sinir ağında bir nöronun gerçekleştirdiği işlem Şekil 3.11’de

verilmiştir.

Şekil 3.11: İğnecikli sinir ağlarında bir nöronun davranışı.

İğnecikli sinir ağlarında da iğnecikli olmayan sinir ağlarındaki gibi çıkarım ve

öğrenme en temel iki unsurdur. İğnecikli sinir ağında çıkarım iğnecikli olmayan
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sinir ağlarındaki gibi girdilere göre çıktı üretme işlemidir. Ancak, girdiler reel sayı

değerleri değil, iğneciklerdir. Öğrenme de çıktıların doğru hale getirilmesi için

iğneciklerin oluşturulma zamanı gibi özelliklerinin değiştirilme sürecidir. İğnecikli

sinir ağlarında biyolojik sinir ağındaki öğrenme modellerine yakınsayan modeller

kullanılır. Dolayısıyla bu açıdan da biyolojik sinir ağlarına daha fazla benzerler.

İğnecikli sinir ağları da iğnecikli olmayan sinir ağları gibi sinaps ve nöronların katman

katman bir araya getirilmesiyle oluşturulur. Örnek bir iğnecikli sinir ağı Şekil 3.12’de

verilmiştir.

Şekil 3.12: Çok katmanlı iğnecikli sinir ağı.

3.3.3 Sinir ağlarında öğrenme

Sinir ağlarında öğrenme, ağırlıkların değiştirilme süreci olarak tanımlanır. Ağırlıkların

değiştirilme süreçleri kullanılan öğrenme kurallarına göre üç türde sınıflandırılabilir.

Bunlar: denetimli öğrenme, denetimsiz öğrenme ve pekiştirmeli öğrenmedir.

3.3.3.1 Denetimli öğrenme

Denetimli öğrenme, doğru sınıflandırmanın önceden yapıldığı veri setlerinin

eğitilmesine dayanan bir öğrenme türüdür [34]. Bu öğrenme türünde, veri setindeki bir

verinin sinir ağlarındaki işlemlerden sonra oluşan çıktısı gerçek çıktı ile karşılaştırılır.

Bu karşılaştırma sonucunda bir hata hesaplanır ve bu hata üzerinden ağırlık değişimi

yapılarak sinir ağının eğitimi yapılır. Hata sıfıra yaklaşana kadar yani üretilen

çıktı gerçek durumla belli bir oranda örtüşene kadar eğitim devam eder. Denetimli

öğrenmenin nasıl gerçekleştirildiğine dair bir diyagram Şekil 3.13’te verilmiştir.
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Şekil 3.13: Denetimli öğrenme diyagramı.

3.3.3.2 Denetimsiz öğrenme

Denetimsiz öğrenme, sadece giriş verilerinin olduğu, doğru çıktıların veri setinde

önceden bulunmadığı durumlarda uygulanan bir öğrenme yöntemidir [35]. Dolayısıyla

sinir ağında öğrenme, veriden yola çıkarak bir model oluşturmak üzerine kuruludur.

Bu durumda sinir ağında, veri setinde veriler arasındaki uzaklık kullanılıp veri

kümeleri oluşturularak eğitim yapılır.

3.3.3.3 Pekiştirmeli öğrenme

Pekiştirmeli öğrenmede öğrenme öznesi, bir ortamda eylemleri boyunca hareket tarzını

değiştirerek bir ödül değerini en üst düzeye çıkarmaya çalışır [36]. Bu öğrenme

yönteminde öğrenme öznesi yaptığı eylem sonucunda hedefe doğru ilerliyorsa ödül

değeri artacak, hedeften uzaklaşıyorsa ödül değeri azalacaktır. Bu şekilde öğrenme

öznesini hedefe ulaştıracak şekilde eğitim gerçekleştirilir.

3.3.4 Sinir ağlarının donanımsal gerçeklemelerinde eğitim

Sinir ağlarının donanımsal gerçeklemelerinde ağırlık değişimleri için hesaplamalar iki

yöntemde yapılabilmektedir. Bunlar ex situ eğitim ve in situ eğitim olarak adlandırılır.

3.3.4.1 Ex situ eğitim

Sinir ağlarının donanımsal gerçeklemelerinde ağırlıklar bilgisayarda koşan yazılım

modelleri üzerinden yapılıyorsa bu eğitim yöntemine ex situ eğitim denmektedir [37].

Ex situ eğitim yönteminde öncelikle donanımda ilk hesaplamalar yapılır. Daha sonra

bilgisayar üzerinden ağırlık değişimleri hesapları yapılarak sinir ağının istenen sonucu
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verecek ağırlıkları bulunur. Son olarak bu ağırlıklar donanıma yüklenir ve donanım bu

şekilde çalıştırılır.

3.3.4.2 İn situ eğitim

Sinir ağlarının eğitiminde kullanılan diğer bir yöntem ise in situ eğitim yöntemidir. Bu

yöntemde ağırlık değişimleri doğrudan donanım üzerindeki devrelerle yapılır [37]. Bu

şekilde fazladan bilgisayar gereksinimi ortadan kaldırılarak alan ve enerji verimliliği

sağlanır.
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4. MEMRİSTÖR TABANLI NÖROMORFİK DEVRE TASARIMI

Bu bölümde tez çalışması kapsamında oluşturulan memristör tabanlı nöromorfik devre

tasarımları detaylıca anlatılmıştır. Tasarımlar ve simülasyonlar LTSpice programı

kullanılarak yapılmıştır.

4.1 Memristör Modelinin Seçimi ve Simülasyonu

Çalışmada kullanılmak üzere memristör modellerinin arasından uygun model olarak

Yakopcic modeli seçilmiştir. Bu modelin seçilme sebebi nöromorfik devre

tasarımlarında kullanılabilecek şekilde geliştirilmiş olmasıdır. Modelin LTSpice

ortamında test edildiği devre Şekil 4.1’de ve simülasyon sonucu Şekil 4.2’de

verilmiştir.

Şekil 4.1: Memristör test devresi şematiği.

Şekil 4.2: Memristör devresi simülasyon sonucu.
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Simülasyon sonucunda yatay eksen gerilimi düşey eksen akımı temsil etmektedir.

Grafikten anlaşılacağı üzere memristörün karakteristik eğrisi elde edilmiştir. Yakopcic

modeline ait LTSpice kodu Şekil 4.3’te verilmiştir.

Şekil 4.3: Yakopcic modeli kodu [38].
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4.2 İğnecikli Olmayan Sinir Ağı Tasarımı ve Simülasyonu

İğnecikli olmayan sinir ağı tasarımı için öncelikle kullanılacak sinaps ve nöron yapısı

belirlenmiştir. Buna göre sinaps olarak bir memristör, nöron olarak da toplayıcı,

eviren kuvvetlendirici ve basamak fonksiyonunu gerçekleyen bir aktivasyon devresi

oluşturulmuştur. Bir nöronun davranışını gösteren LTSpice ortamında tasarlanan devre

yapısı Şekil 4.4’te verilmiştir.

Şekil 4.4: İğnecikli olmayan sinir ağı için tasarlanmış bir nöron davranışını gösteren
devre şematiği.

Tasarlanan devrede iğnecikli olmayan sinir ağlarında sinapsların tek bir memristörden

oluşması devrenin karmaşıklığını önlemek içindir. Toplayıcı ağırlıkların gerilimle

çarpılarak toplanmasını sağlamaktadır. Toplayıcının geri besleme direncinin 120Ω

olarak seçilmesi, kullanılan memristör modelinin Ron direncinin 120Ω olmasından

kaynaklanmaktadır. Eviren kuvvetlendirici toplayıcı çıkışında evrilen değeri yeniden

evirerek ilk haline getirmek için konulmuştur. Aktivasyon fonksiyonu olarak basamak

fonksiyonu seçilmiştir. Basamak fonksiyonu gelen giriş değerini bir eşik değer ile

karşılaştırır. Eğer giriş değeri eşik değerinden büyükse çıkış 1, küçükse çıkış 0 olur.

Basamak fonksiyonun bu çalışma kapsamında kullanılan denklemi Denklem 4.1’de

verilmiştir.

y =

{
1, eğer x ≥ 0.1
0, eğer x < 0.1

(4.1)

4.2.1 XOR fonksiyonu ve nöromorfik devre gerçeklemesi

XOR fonksiyonunun iğnecikli olmayan sinir ağları ilk çalışılmaya başlandığında tek

katmanlı bir ağla gerçeklenemeyeceği belirlendiğinden bu fonksiyon çok katmanlı

sinir ağlarının tasarımında, tasarımın doğrulanması için ayırt edici bir fonksiyon haline
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gelmiştir. İki girişli bir XOR fonksiyonu, eğer girişlerin ikisi aynı değerdeyse çıkışa

lojik ‘0’ değerini, eğer girişler farklıysa lojik ‘1’ değerini verir. XOR fonksiyonuna ait

doğruluk tablosu Şekil 4.5’te verilmiştir.

Şekil 4.5: XOR fonksiyonu doğruluk tablosu.

XOR fonksiyonunu nöromorfik bir devre olarak tasarlamak için bu çalışma

kapsamında iğnecikli olmayan çok katmanlı bir sinir ağı oluşturulmuştur. Oluşturulan

bu sinir ağı Şekil 4.6’da verilmiştir.

Şekil 4.6: XOR fonksiyonu için tasarlanan iğnecikli olmayan sinir ağı.

Sinir ağında x1 ve x2 değerleri giriş değerlerini, bias değeri sinir ağlarında önyargı

olarak bilinen değeri, y değeri ise çıkış değerini göstermektedir. Oklar sinapsları,

çemberler ise nöronları temsil etmektedir. Tasarlanan iğnecikli olmayan sinir ağı için

LTSpice ortamında devre şematiği oluşturulmuştur. Oluşturulan devre şematiği Şekil

4.7’de verilmiştir. Sinir ağı denetimli öğrenme ile eğitilmiştir. Hatalar, doğru sonuç ile

sinir ağının çıktısı karşılaştırılarak hesaplanmıştır. Karşılaştırma, doğru sonucun sinir

ağı çıktısından büyük veya küçük olmasına göre ayrı ayrı yapılmıştır
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Şe
ki

l4
.7

:X
O

R
fo

nk
si

yo
nu

nu
ge

rç
ek

le
m

ek
iç

in
ta

sa
rl

an
an

iğ
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Hata oluştuğunda ilgili D flip flopa bu hata kaydedilmiştir. XOR fonksiyonunda iki

giriş olduğundan 4 farklı durum oluşmaktadır. Bu yüzden hataların kaydedildiği flip

flop sayısı 4 seçilmiştir. D flip flopta bulunan bu hata değeri sadece hata olduğunu veya

olmadığını gösteren lojik ‘0’ veya lojik ‘1’ değerlerini almaktadır. Devrede hataların

kodlandığı D flip flop yapısı Şekil 4.8’de verilmiştir.

Şekil 4.8: Devrede hataların kodlandığı D flip flop yapısı.

Hatanın sinir ağlarınının eğitiminde kullanılmak üzere bir öğrenme oranında ağa geri

verilmesi için bir sayıcı devresiyle gelen hata 0 ile 1 arasında bir gerilim değerine

dönüştürülmüştür. Oluşturulan bu gerilim değeri, eğer hata gerçek sonucun sinir

ağının çıktısından büyük olduğu bir durumda oluşmuşsa memristörün memristans

değerini düşürecek yani memristörü Ro f f durumundan Ron durumuna geçirecek

şekilde sinir ağına verilmiştir. Bu durumda, sinir ağı çıktısının gerilim değeri 0

değerinden 1 değerine getirilerek hatanın düzeltilmesi hedeflenmiştir. Eğer hata gerçek

sonucun sinir ağının çıktısından küçük olduğu bir durumda oluşmuşsa, bu durumda

sayıcı yardımıyla oluşturulan hata gerilimi, memristörün memristans değerini artırarak

memristörü Ron durumundan Ro f f durumuna geçirecek şekilde sinir ağına verilmiştir.

Böylece, o durum için ağ çıktısının değeri 1 değerinden 0 değerine dönüştürülerek

hatanın düzeltilmesi hedeflenmiştir. Sayıcı yardımıyla sinir ağına verilecek hata

geriliminin oluşturulması için tasarlanan devre yapısı Şekil 4.9’da verilmiştir. Ağırlık

değişimleri donanım üzerinde yapıldığından in situ eğitim yöntemi kullanılmıştır.
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Şekil 4.9: Devrede kullanılan sayıcı yapısı.

Devre transient analiz kullanılarak analiz edilmiştir. Devreye giriş olarak iki farklı

gerilim kaynağından lojik durum farklılıklarının tamamını sağlayacak şekilde gerilim

verilmiştir.

İlk iterasyonda hataların kodlanması yapılmıştır. Yapılan analiz sonucunda devrenin

9. iterasyon sonunda XOR fonksiyonunu doğru bir şekilde gerçeklediği görülmüştür.

10. iterasyon itibariyle devrede gerçek sonuç ile ağ çıktısını karşılaştıran birim,

eğitim-test aşamasını belirleyen bir giriş gerilimi yardımıyla durdurulmuş ve devre

eğitim durumundan test durumuna geçirilmiştir. Bu aşamadan itibaren girişlere

rastgele değerler verilerek çıkış gözlemlenmiştir. Çıkışın test durumunda da tüm

değerler için doğru sonucu verdiği görülmüştür. Devrenin simülasyon sonuçları Şekil

4.10’da verilmiştir.

Literatürde memristör tabanlı sinir ağları ile XOR fonksiyonunun gerçeklendiği başka

devreler de mevcuttur [39, 40]. Bu çalışma kapsamında gerçeklenen devre literatürdeki

devrelere kıyasla memristörün memristansını devre çalışırken değiştirmesi açısından

önem taşımaktadır. Devredeki sayıcı sayesinde belirli bir hata oranında geri besleme

yapılabilmesi de devrenin güçlü yanlarından bir diğeridir. Devre, dokuz iterasyon

gibi kısa bir döngüde XOR fonksiyonunu gerçekleyebilmiştir. Devrenin sadece

eğitim aşamasının değil test aşamasının da gösterilmesi devrenin literatürdeki XOR

fonksiyonunu gerçekleyen diğer devrelerden farklı yönlerinden biridir.
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4.2.2 Çift eşlik biti üreteci ve nöromorfik devre gerçeklemesi

Çift eşlik biti üreteci bir bit serisindeki bitlerin toplamını çift sayı yapmak için bit

serisine eklenecek biti üreten devredir. Örneğin üç bitlik bir seride bitler “001”

şeklinde geldiğinde bitlerin toplamının çift olabilmesi için bu devrenin lojik ‘1’ değeri

üretmesi gerekmektedir. Haberleşme sistemlerinde yaygın biçimde kullanılan bu

devre gönderici sistemlerinde bu biti üretip mesaja eklediğinde, alıcı sistemlerindeki

çözücü devresi çift eşlik bitine bakarak bitlerin doğru gidip gitmediğini kontrol

edebilmektedir. Üç bitlik bir sistemde çift eşlik biti üreteci devresinin doğruluk tablosu

Şekil 4.11’de gösterilmiştir.

Şekil 4.11: Çift eşlik biti üretecinin doğruluk tablosu.

Çift eşlik biti üretecinin nöromorfik devre tasarımı için Şekil 4.12’de verilen iğnecikli

olmayan sinir ağı oluşturulmuştur.

Şekil 4.12: Çift eşlik biti üreteci için tasarlanan sinir ağı yapısı.

Oluşturulan sinir ağının devre şematiği Şekil 4.13’te simülasyon sonuçları Şekil

4.14’te verilmiştir.
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Çift eşlik bit üreteci için tasarlanan sinir ağı, giriş katmanında 4 nöron bulunan,

çıkışın ise lojik ‘0’ veya lojik ‘1’ değerini alan bir yapı olarak kurgulanmıştır. Bu

sinir ağında ağırlık güncelleme için XOR fonksiyonu devresinde kullanılan yöntem

kullanılmıştır. Çift eşlik biti üreteci 3 girişli olduğu için hata kaydeden D flip flopların

sayısı 8’e çıkarılmıştır. Bu devrede öğrenme oranı ve giriş katmanındaki nöron sayısı

XOR fonksiyonu devresine göre artırıldığı için çift eşlik biti üreteci için tasarlanan

nöromorfik devre 5. iterasyon sonunda tüm değerleri doğru sınıflandırabilmiştir. 5.

iterasyondan sonra eğitim aşaması durdurulmuş, test aşaması için girişlere rastgele

değerler verilmiştir. Devrenin test aşamasında bütün girişler için doğru çıktı ürettiği

gözlemlenmiştir. Literatürde eşlik biti üretecinin memristör tabanlı sinir ağlarıyla

gerçeklendiği başka devreler de bulunmaktadır [41, 42]. Bu devrelerde kullanılan

sinaps yapısında iki memristör bulunmaktadır. Bu çalışma kapsamında gerçeklenen

devrede ise sinapsları temsilen bir memristör bulunmakta ve böylece devrenin

karmaşıklığı azaltılmaktadır. Ayrıca tasarlanan devrede hatanın bütün ağırlıklara ortak

olarak yayılması, öğrenme sürecini literatürdeki diğer örneklere göre daha basit bir

hale getirmiştir.

4.2.3 Çift eşlik biti kontrol edici ve nöromorfik devre gerçeklemesi

Çift eşlik biti kontrol edici, bir haberleşme sisteminde çift eşlik biti üretecinin ürettiği

bitle beraber gelen bitleri kontrol eder. Eğer bitlerin toplamı çift sayı ise haberleşme

doğru gerçekleşmiştir ve çift eşlik biti kontrol edici lojik ‘0’ değeri üretir. Eğer bitlerin

toplamı tek sayı ise haberleşme hatalı gerçekleşmiştir ve çift eşlik biti kontrol edici

lojik ‘1’ değeri üretir. Çift eşlik biti kontrol ediciye ait doğruluk tablosu Şekil 4.15’te

verilmiştir. Çift eşlik biti kontrol edici için oluşturulan iğnecikli olmayan sinir ağı Şekil

4.16’da verilmiştir. Sinir ağının LTSpice ortamında gerçeklenen devresinin şematiği

Şekil 4.17’de gösterilmiştir. Simülasyon sonuçları Şekil 4.18’de gösterilmiştir. Çift

eşlik biti kontrol edici devresinde ilk katmandaki nöron sayısı 5’e çıkarılmıştır. 4 adet

giriş bulunduğundan her bir durum için hata tutan D flip flop sayısı 16’ya çıkarılmıştır.

Öğrenme oranı XOR fonksiyonu devresiyle aynı tutulmasına rağmen nöron sayısının

fazlalığı gibi etmenlerden ötürü devrenin 3. iterasyon sonunda tüm giriş durumlarına

göre doğru çıktıları oluşturduğu gözlemlenmiştir. 3. iterasyon sonunda eğitim

durdurulmuş ve test aşaması için devreye rastgele giriş değerleri verilmiştir. Bu

durumda da verilen değerler için doğru çıktıların elde edildiği görülmüştür.
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Şekil 4.15: Çift eşlik biti kontrol edicinin doğruluk tablosu.

Şekil 4.16: Çift eşlik biti kontrol edici için tasarlanan sinir ağı yapısı.
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4.2.4 İris verilerini sınıflandıran nöromorfik devre gerçeklemesi

İris veri seti, dört girişli üç çıkışlı bir veri setidir. Veri seti iris çiçeğinin üst yaprak

genişliği (petal width), üst yaprak uzunluğu (petal length), alt yaprak genişliği (sepal

width) ve alt (sepal length) değerleri ile bu bilgilere göre sınıflandırılmış İris çiçeği

türünü belirtmektedir. İris çiçeği verilen bilgilere göre setosa, versicolor ve virginica

adlı üç türde sınıflandırılmıştır. Veri setinde doğru sonuçlar önceden bilindiği için

denetimli öğrenmeye uygundur. Veri setine ait örnek bir sınıflandırma Çizelge 4.1’de

verilmiştir.

Çizelge 4.1: İris çiçeği sınıflandırması.

Alt yaprak uzunluğu (cm) Alt yaprak genişliği (cm) Üst yaprak uzunluğu (cm) Üst yaprak genişliği (cm) İris türü

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

5.8 2.6 4.0 1.2 versicolor

6.7 3.1 4.7 1.5 versicolor

6.3 3.3 6.0 2.5 virginica

6.2 2.8 4.8 1.8 versicolor

6.4 2.8 5.6 2.1 virginica

5.7 3.8 1.7 0.3 setosa

6.6 2.9 4.6 1.3 versicolor

7.1 3.0 5.9 2.1 virginica

İris çiçeğinin sınıflandırılması için tasarlanan sinir ağı yapısı Şekil 4.19’da verilmiştir.

Ağın giriş katmanı 6 nörondan, çıkış katmanı ise çiçek türü sayısı olan 3 katmandan

oluşmaktadır. Giriş değerleri 0 ile 1 değerleri arasına ölçeklendirilerek devreye

gerilim olarak verilmiştir. Bunun için tüm değerler 10’a bölünmüştür. Çıkış

katmanındaki çiçek türleri verisi de denetimli öğrenme yapılmak üzere gerilim

değerlerine dönüştürülmüştür. İris çiçeğinin sınıflandırılması için tasarlanan sinir ağı

devresinin şematiği Şekil 4.20’de verilmiştir. Sinir ağının girişine dört değer verildiği

için hata tutan D flip flop sayısı 16 olarak belirlenmiştir. Giriş değerleri 0 ve 1 değeri

arasında değerler aldığı için D flip flopta hataları lojik olarak kodlamak için giriş

değerleri bir tampon devresinden geçirilerek 1 veya 0 değerlerine dönüştürülmüştür.
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3 nöronlu çıkış katmanında hatalar verilirken bir sayıcıdan geçirilerek bir öğrenme

oranında verilmiştir. Böylece öğrenme sırasında salınımların önüne geçilmiştir.

Çıkış katmanındaki memristans değişimi XOR fonksiyonunda uygulanan değişime

benzemektedir. Ancak burada çıkış katmanı 3 nöronlu olduğu için her bir nöronun

hatası, o nörona bağlı sinapsları temsil eden memristörlerin girişlerine verilen gerilimi

değiştirerek memristanslarını değiştirir. Giriş katmanındaki 6 nörona bağlı sinapsları

temsil eden memristörlerin memristansları ise çıkış katmanındaki 3 nörondan ayrı ayrı

gelen hataların toplamının giriş katmanındaki memristörlerin girişlerine verilmesi ile

değiştirilir. Devreye eğitim aşaması için İris veri setinden rastgele seçilen 50 veri ile

eğitim yapılmıştır. 5 iterasyon sonunda eğitim sonlandırılmıştır. Bu durumda devre

setosa ve versicolor türlerini tamamen doğru sınıflandırırken virginica türünde 2 tane

yanlış sınıflandırma yapmıştır. Bu durumda doğruluk %99 oranında gerçekleşmiştir.

Eğitim aşamasının her bir türün gerçek çıktısı ile sinir ağı çıktısını gösteren simülasyon

sonuçları Şekil 4.21’de verilmiştir.

Şekil 4.21: İris çiçeği sınıflandırması için eğitim aşaması simülasyon sonuçları.
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5. iterasyon sonrasında devre test aşamasına geçirilmiştir. Bu aşamada devreye eğitim

aşamasında bulunmayan rastgele 15 İris çiçeği verisi verilerek sonuçlar incelenmiştir.

Test aşamasında devrenin verilen verilerden İris çiçeklerini sınıflandırdığı görülmüştür.

Test aşamasına ait simülasyon sonuçları Şekil 4.22’de verilmiştir.

Şekil 4.22: İris çiçeği sınıflandırması için test aşaması simülasyon sonuçları.

Literatürde İris çiçeği sınıflandırması yapılan memristör tabanlı sinir ağları bulunmak-

tadır [42, 43]. Bu devrelerde sinaps olarak memristörün yanı sıra başka elemanlar

da kullanıldığı görülmektedir. Bu çalışma kapsamında önerilen memristör tabanlı

nöromorfik devre yapısında sinaps olarak sadece memristör kullanılarak İris çiçeği

sınıflandırması için devre daha basit bir hale indirgenmiştir. Ayrıca literatürdeki

çalışmalara göre daha basit bir öğrenme kuralı uygulanarak daha az iterasyonla doğru

bir sınıflandırma sonucuna ulaşılmıştır.
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5. SONUÇ VE ÖNERİLER

Bu tezde, memristör tabanlı nöromorfik devre tasarımı yapmak için öncelikle

memristör modelleri araştırılmış ve yapılacak devre tasarımları için Yakopcic

memristör modelinin uygun olduğuna karar verilmiştir. Bu modelin LTSpice

ortamında devre düzeneği kurularak testi yapılmış ve memristör karakteristiği

doğrulanmıştır.

Nöromorfik devre tasarımı için ilk önce literatürdeki örnek nöromorfik devreler

incelenmiştir. Nöromorfik devrelerin sinaps, nöron ve sinir ağı gerçeklemek gibi çeşitli

biçimlerinin olduğu görülmüş ve her biri için ayrı ayrı inceleme yapılmıştır. Sinaps

için dört çeşit memristör tabanlı devre bulunmuştur. Nöron modellerini gerçeklemek

için geliştirilen memristör tabanlı devreler incelenmiştir. Sinir ağı devreleri için

iğnecikli sinir ağı ve iğnecikli olmayan sinir ağı araştırılmıştır. Öğrenme aşamalarını

gerçekleştirmek için sinir ağlarında öğrenme türleri ve sinir ağlarının donanımsal

gerçeklemelerindeki eğitim metotları incelenmiştir.

Tasarım aşamasında memristör tabanlı sinaps çeşitlerinden tek memristörlü sinaps

devresi ile toplayıcı, eviren kuvvetlendirici ve aktivasyon devresi kullanılarak iğnecikli

olmayan sinir ağında kullanılabilecek bir nöron davranışı devresi oluşturulmuştur.

Oluşturulan bu devre kullanılarak çeşitli fonksiyonların uygulandığı çok katmanlı

iğnecikli olmayan sinir ağları oluşturulmuştur. İğnecikli olmayan sinir ağlarına

uygulanan bu fonksiyonlar, XOR fonksiyonu, çift eşlik biti üreteci ve çift eşlik

biti kontrol edicidir. Tasarlanan devrelerin simülasyon sonuçlarında sinir ağlarının

fonksiyonların doğruluk tablolarındaki değerlerini karşıladığı görülmüştür. Ayrıca İris

çiçeği sınıflandırması yapılan bir nöromorfik devre gerçeklenerek analizi yapılmıştır.

İğnecikli olmayan sinir ağları tasarımında devre tasarımları yapılırken güç tüketimi

gibi performans kriterleri gözetilmemiş sadece sinir ağına uygulanan fonksiyonların

ve sınıflandırma probleminin doğru çıktılarını alacak şekilde tasarımlar yapılmıştır.

Sinir ağlarının temel özellikleri olan çıkarım ve öğrenme özellikleri devrelere
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uygulanmıştır. Ağırlık değiştirme işlemleri donanım üzerinde yapılmıştır. Öğrenme

kuralı, her bir çıktı durumunun hatasının kaydedilmesi ve bu hatanın memristör girişine

verilerek ağırlığın değiştirilmesi şeklinde uygulanmıştır. Devrelerin bu öğrenme kuralı

sayesinde doğru sonuçlara ulaştığı gözlemlenmiştir.

Literatürdeki diğer çalışmalarla kıyaslandığında bir memristörlü basit bir sinaps

yapısının olması, basit bir öğrenme kuralının uygulanarak az iterasyonla yüksek

doğruluklu bir eğitim gerçeklenebilmesi devrelerin avantajları arasındadır. Ayrıca

ağırlık değişiminin donanım üzerinde yapılması, ağırlık değişimlerinin yazılım

modelleriyle yapıldığı diğer çalışmalardan farklı olarak fazladan bir bilgisayar

ihtiyacını ortadan kaldırmıştır. Bunun yanı sıra hata durumlarının tutulması için

gerekli hafıza elemanı (D flip flop) sayısı giriş katmanı sayısı ile doğru orantılı olarak

artacağından bu durum giriş katmanı yüksek veri setleri için dezavantaj oluşturabilir.

Sonuç olarak bu tezde çeşitli fonksiyonları gerçekleyen ve sınıflandırma yapabilen

memristör tabanlı nöromorfik devre tasarımları geliştirilmiştir. Devreler analiz

edilmiş ve literatürdeki diğer çalışmalarla karşılaştırılmıştır Bu devreler çeşitli

yönlerle zenginleştirilerek daha karmaşık sınıflandırma problemlerinin çözümünde

kullanılabilir.
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