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ÖZET  
Bu tez çalışmasında, elektromanyetik dalgaların ardışık basamak süreksizliklerinden 

kırınımı analitik olarak incelenmiş ve üçüncü türden Modifiye Wiener-Hopf (MWH) 

denklemlerinin çözümü için yeni bir yöntem önerilmiştir. Wiener-Hopf tekniği, 

elektromanyetik saçılma problemlerinin analitik çözümüne olanak tanıyan güçlü bir 

yöntemdir. Ancak, üçüncü türden MWH denklemlerinin çözümünde karşılaşılan 

kesim çizgisi integralleri genellikle yalnızca sayısal olarak değerlendirilebilmektedir. 

Bu çalışmada, konvansiyonel olmayan bir faktorizasyon yaklaşımı benimsenerek bu 

tür integrallerden kaçınılmış ve daha kararlı bir analitik çözüm elde edilmiştir. 

Önerilen yöntem ile klasik yaklaşımlar karşılaştırılmış ve sayısal analizler, yeni 

yöntemin hem hesaplama süresini azalttığını hem de daha istikrarlı sonuçlar 

sağladığını göstermiştir. Çalışma kapsamında, basamak süreksizliği parametrelerinin 

(basamak genişliği ve yüksekliği) kırınım üzerindeki etkileri de incelenmiş ve elde 

edilen sonuçlar grafiksel olarak sunulmuştur. 

Bu çalışma, elektromanyetik kırınım analizlerinde daha etkin ve hesaplaması kolay bir 

yöntem sunarak, radar kesit alanı (RKA) analizi, anten tasarımı ve mikrodalga 

mühendisliği gibi birçok alanda uygulanabilir potansiyel taşımaktadır. 
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ABSTRACT 
In this dissertation, the diffraction of electromagnetic waves from successive step 

discontinuities is analyzed analytically, and a novel approach is proposed for solving 

third-kind Modified Wiener-Hopf (MWH) equations. The Wiener-Hopf technique is a 

powerful method that enables the analytical solution of electromagnetic scattering 

problems. However, the solution of third-kind MWH equations often involves branch-

cut integrals that can only be evaluated numerically. In this study, a non-conventional 

factorization approach is adopted to eliminate the need for such integrals, leading to a 

more stable analytical solution. 

The proposed method is compared with conventional approaches, and numerical 

analyses demonstrate that it not only reduces computation time but also provides more 

stable results. Additionally, the effects of step discontinuity parameters, such as step 

width and height, on diffraction are examined, and the obtained results are presented 

graphically. 
This study offers a more efficient and computationally feasible method for electromagnetic 

diffraction analysis, with potential applications in radar cross-section (RCS) analysis, antenna 

design, and microwave engineering. 
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1. GİRİŞ 

Elektromanyetik ve akustik dalgaların saçılması problemlerinin analizinde bilinen 

etkili matematiksel yöntemlerin başında Wiener-Hopf Tekniği gelmektedir [1]. Bu 

teknik genel itibariyle karma sınır değer problemlerinde belirli koşullar altında kesin 

çözüm sunan bir yaklaşımdır. Yaklaşım temelde Helmholtz denklemi gibi, probleme 

ilişkin kısmi türevli diferansiyel denkleme ve çözülmesi istenen büyüklüğün sağladığı 

sınır ve süreklilik koşullarına bir integral dönüşüm uygulanmasına dayanır. Dönüşüm 

sonucunda kompleks düzlemin bir şeridinde geçerli olan Wiener-Hopf denklemi elde 

edilir ve denklem bilinen klasik Wiener-Hopf prosedürünün uygulanmasıyla çözülür. 

Bu prosedür faktorizasyon ve dekompozisyonu takiben analitik devam ilkesi ve 

Liouville teoreminin uygulanmasından müteşekkildir. Sonunda Wiener-Hopf 

denkleminin çözümünden elde edilen fonksiyona ters integral dönüşüm 

uygulanmasıyla saçılan alanlar bulunmuş olur.  

Bazı özel geometrilerden kırınım incelenirken, bilinmeyen ve sırasıyla alt ve üst yarı 

düzlemlerde regüler olan Φ−(𝛼) ve Φ+(𝛼) fonksiyonları, 𝑀(𝛼) çekirdek fonksiyonu 

ve dalganın kaynağının katkısı olan ℎ(𝛼) sağ yanından müteşekkil klasik Wiener-Hopf 

denklemi yapısı olan  

𝑀(𝛼)Φ−(𝛼) + Φ+(𝛼) = ℎ(𝛼) 
  (1.1) 

yapısından farklı olarak, Wiener-Hopf denklemlerinin bazı özel halleri ile karşılaşılır. 

Bunlara genel olarak Modifiye Wiener-Hopf denklemi adı verilir. Bunlardan birincisi 

bir şeritten kırınımın analizinde karşılaşılan birinci türden Modifiye Wiener-Hopf 

denklemidir [2]. Burada, Φ1(𝛼) sonsuz hariç tüm düzlemde regüler olan bir tam 

fonksiyon olmak üzere, 

𝑀(𝛼)Φ1(𝛼) + Φ−(𝛼) + Φ+(𝛼) = ℎ(𝛼)   (1.2) 

denklem formu ile karşılaşılır. Yukarıdaki Wiener-Hopf denkleminin çözümünde 

klasik Wiener-Hopf prosedürü iki farklı adım halinde uygulanır. İlkinin faktorizasyon 

aşamasında, 
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𝑀(𝛼) = 𝑀−(𝛼)𝑀+(𝛼) 
  (1.3) 

olmak üzere, tüm denklem 1/𝑀−(𝛼) ile çarpılır ve diğer aşamaların uygulanması 

sonucunda bir integral denklem elde edilir. İkinci adımın faktorizasyonunda ise tüm 

denklem 1/𝑀+(𝛼) ile çarpılır ve buradan da bir başka integral denklem elde edilir. 

Elde edilen birbirine kuple iki integral denklem, ikinci türden Fredholm tipinde bir 

integral denklem teşkil eder. İntegrandların yapısına göre bu integral denklem 

iterasyon vb. yöntemlerle çözülerek sonuç elde edilmiş olur. Problemin geometrisinde 

şerit yapısı yerine, basamak süreksizliği bulunursa, bu kez de 

𝑀(𝛼)Φ−(𝛼) + Φ+(𝛼) = ℎ(𝛼) + ∑ 𝑔𝑚(𝛼)

∞

𝑚=1

   (1.4) 

formunda bir denkleme ulaşılır [3]. Bu denklem yapısına ikinci türden Modifiye 

Wiener-Hopf denklemi adı verilir. Burada klasik Wiener-Hopf prosedürünün 

uygulanmasıyla tek adımda çözüme ulaşılır. Son olarak, hem şerit hem de basamak 

süreksizliği yapısı olması halinde elde edilen 

𝑀(𝛼)Φ1(𝛼) + Φ−(𝛼) + Φ+(𝛼) = ℎ(𝛼) + ∑ 𝑔𝑚(𝛼)

∞

𝑚=1

   (1.4) 

yapısındaki denklemlere üçüncü türden Modifiye Wiener-Hopf denklemi denir [4]. 

Burada da Wiener-Hopf prosedürünün iki adımda uygulanması gerekir. 

Konvansiyonel yaklaşım denklemin, birinci tipten Modifiye Wiener-Hopf 

denkleminde olduğu gibi bir kez alt yarı-düzlemde regüler olan 1/𝑀−(𝛼) ile daha 

sonraki adımda ise üst yarı-düzlemde regüler olan 1/𝑀+(𝛼) ile çarpılmasıyla, ikinci 

türden bir Fredholm integral denklemi elde etmektir. 

Üçüncü türden Modifiye Wiener-Hopf denklemine ulaşılan problemlerden biri de 

düzlemsel elektromanyetik dalgaların ya da bir çizgisel kaynaktan gelen dalgaların 

ardışık basamak süreksizliğine sahip bir geometriden kırınımı problemidir. Bir çizgisel 

kaynaktan gelen dalgaların dikkate alındığı problem, Doğan vd. tarafından 2017 

yılında çalışılmış ve elde edilen Modifiye Wiener-Hopf denklemine konvansiyonel 

yaklaşımla Wiener-Hopf prosedürü uygulanmıştır [5]. Bu prosedür sonucunda 
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Fredholm integral denklemi elde edilirken, aynı zamanda, çözümü ancak sayısal 

yöntemlerle mümkün olan bir kesim çizgisi integrali ile de karşılaşılmıştır. Söz konusu 

çalışmada bu integral sayısal olarak hesaplanarak işlemlere devam edilebilmiştir.  

Bu tez çalışmasında ise yukarıda bahsi geçen üçüncü türden Wiener-Hopf denkleminin 

çözümünde konvansiyonel olmayan ve literatürde bir benzerine rastlanmayan bir 

yaklaşım ile, iki adımın faktorizasyonunda da tüm denklem alt yarı-düzlemde regüler 

olan bir fonksiyon ile çarpılmış ve bunun neticesinde sayısal olarak hesaplanmak 

zorunda kalınan kesim çizgisi integraline rastlanmadan çözüm elde edilmiştir. Bu 

integrasyondan kaçınabilmek elbette çözümün hem daha hızlı hem de daha doğru 

olarak elde edilmesi anlamına gelmektedir.  

Elektromanyetik dalgaların çeşitli zemin yüzeylerindeki dikdörtgensel basamak 

benzeri süreksizliklerden kırınımının incelenmesi, radar kesit alanı (RKA) analizi ve 

birçok mikrodalga mühendisliği uygulamaları için kritik bir araştırma alanıdır. Bu tür 

basamak süreksizliği problemlerine örnek olarak, Sommer ve Pathak'ın geometrik 

kırınım teorisini (GKT) kullanarak panel kaplı kompakt menzil reflektörlerindeki 

metalik bantların kırınımı problemini analiz ettikleri çalışmaları gösterilebilir [6]. 

Benzer bir basamak süreksizliği problemi, Johansen [7] tarafından iki reaktif yarı 

düzlemin birleşmesiyle oluşan reaktif bir basamağın yüzey dalgasıyla aydınlatılması 

bağlamında ele alınmıştır. Sonraki araştırmaların çoğu, aynı empedans türüne sahip iki 

yarı düzlemin, farklı empedans ve reaktif özelliklere sahip basamaklarla birleştiği 

süreksizlik geometrilerinin düzlemsel dalga aydınlatması altındaki kırınımına 

odaklanmıştır. Bu konuda önemli katkılar, Büyükaksoy ve Birbir [8-9] ile Volakis ve 

Ricoy [10] tarafından sağlanmıştır. Çalışmalarında, bu tür süreksizliklerin kırınım 

problemleri, genellikle ikinci türden Modifiye Wiener-Hopf denkleminin çözümüne 

indirgenmiş ve farklı yüzey empedansları ve basamak yükseklikleri için sayısal olarak 

çözülmüştür. 

Sonlu uzaklıklardaki çizgisel kaynakların saçıcılar üzerindeki etkilerini incelemek, 

düzlemsel dalgalara kıyasla daha gerçekçi bir yaklaşım sunmaktadır. Bu alandaki son 

çalışmalar arasında, Ayub vd. [11] ile Ahmed [12] tarafından gerçekleştirilen ve 

benzer geometrilerde yüksek frekanslı çizgisel kaynaklardan gelen dalgaların 

kırınımını inceleyen araştırmalar bulunmaktadır; bu araştırmalar mükemmel 
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elektromanyetik iletken (PEMC) basamaklara ilişkin kırınım problemlerini 

incelemişlerdir. 

Yukarıda bahsedilen çalışmaların çoğu, asimetrik paralel iki yarı düzlemin (tek 

basamak süreksizliği) dik birleşimi olan geometrileri ele almaktadır. Ancak saçıcı iki 

asimetrik yarı düzlemin bir şerit ile ayrıldığı iki dik birleşime sahip olduğunda (çift 

basamak süreksizliği) karmaşıklık önemli ölçüde artar. Dogan vd. [5] tarafından 

sunulan çalışma, Şekil 2.1’de gösterilen, tüm yüzeylerin mükemmel iletken olduğu ve 

z-eksenine paralel, zamana bağlı harmonik bir çizgisel kaynak tarafından 

aydınlatıldığı bu tür basamak süreksizliklerinin tam bir analizini sunması açısından 

benzersizdir. [5]’te, yukarıda bahsedilen sınır-değer problemini çözmek için yazarlar 

önce ilgili indirgenmiş dalga denklemini Fourier integral dönüşümü ile çözüp ardından 

iletken sınır koşullarını dönüşüm uzayında ele alarak, problemi üçüncü tür Modifiye 

Wiener-Hopf denklemine indirgemişlerdir. Bu denklem, iki ayrı fonksiyon için üst ve 

alt kompleks yarı-düzlemlerde regüler olacak faktorize edilerek ve Wiener-Hopf 

prosedürünün diğer adımları uygulanarak iki adet integral denklem halinde 

çözülmüştür. Bu integral denklemlerin çözümleri ve dolayısıyla Modifiye Wiener-

Hopf denkleminin çözümü, yalnızca sayısal olarak hesaplanabilen bir kesim çizgisi 

integralini içermektedir. 

Bu çalışmanın amacı, Şekil 2.1’de verilen aynı geometri için yukarıda bahsedilen 

üçüncü türden Modifiye Wiener-Hopf denkleminin çözümüne yönelik yenilikçi bir 

yaklaşımı incelemektir. Bu amaçla, ele alınan Modifiye Wiener-Hopf denklemi, yine 

ikinci türden kuple Fredholm integral denklemlerine indirgenmiştir, ancak bu kez 

faktorizasyon işlemi her iki adımda da alt yarı-düzlemde regüler olan ifadelerle 

yapılmıştır. Klasik prosedürden farklı olan bu yeni yaklaşım, [5]’te yalnızca sayısal 

olarak değerlendirilebilen kesim çizgisi integralinin analitik olarak hesaplanabilmesini 

sağlamıştır. Sonuç olarak, kuple ikinci tür Fredholm integral denklemleri, iteratif 

olarak çözülmüş, nihai çözüm sonsuz bilinmeyenli bir lineer denklem sistemi 

cinsinden elde edilmiştir. 

Bu bağlamda bir sonraki bölümde, bir çizgisel kaynaktan gelen dalganın ardışık 

basamak süreksizliği yapısından kırınımı probleminde ortaya çıkan üçüncü türden bir 

Modifiye Wiener-Hopf denklemi ele alınmıştır. Bu denklemin konvansiyonel olmayan 

bir yaklaşımla çözümü ayrıntıları ile sunulmuştur. Daha sonraki bölümde, elde edilen 
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çözüme ilişkin sayısal sonuçlar incelenmiştir. Son olarak dördüncü bölümde genel 

değerlendirmeler belirtilmiştir. 
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2. PROBLEMİN FORMÜLASYONU 

Bu çalışmada, ardışık basamak süreksizliğine sahip geometrilerden kırınım 

problemlerinde karşılaşılan tipten Modifiye Wiener-Hopf denklemler için 

konvansiyonel olmayan bir yaklaşımla çözüm geliştirilmiştir. Örneğin, Doğan vd.’nin, 

Şekil 2.1’de görüldüğü gibi, uzaktaki bir çizgisel kaynaktan gelen dalgaların ardışık 

basamak süreksizliğinden saçılmasını inceledikleri çalışmalarında elde edilmiş olan 

Φ1(𝛼)

𝑀(𝛼)
+ ei𝛼𝑙

Φ+(𝛼)

𝑁(𝛼)
+ Φ−(𝛼)

= −2i𝐾(𝛼)𝐶(𝛼)

+∑(−1)𝑛 {
𝐾𝑛𝑓𝑛

(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

+ei𝛼𝑙 [
𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼2 − 𝛽𝑛2)

−
𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼2 − 𝛼𝑛2)
]} 

  (2.1) 

denklemi dikkate alınsın. 

  

Şekil 2.1: Problemin geometrisi. 

 

Toplam alan 𝑢𝑇(𝑥, 𝑦) 
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𝑢𝑇(𝑥, 𝑦) =

{
 

 
𝑢1(𝑥, 𝑦) , 𝑦 > 𝑦0, 𝑥 ∈ (−∞,∞)

𝑢2(𝑥, 𝑦) , 𝑑 < 𝑦 < 𝑦0, 𝑥 ∈ (−∞,∞)

𝑢3(𝑥, 𝑦) , 𝑐 < 𝑦 < 𝑑, 𝑥 ∈ (0, 𝑙)

𝑢4(𝑥, 𝑦) , 0 < 𝑦 < 𝑑, 𝑥 ∈ (𝑙, ∞)

   (2.2) 

olmak üzere, (2.1) denkleminde görülen Φ−(𝛼), Φ1(𝛼) ve Φ+(𝛼), sırasıyla,  

Φ−(𝛼) = ∫
𝜕𝑢2(𝑥, 𝑑)

𝜕𝑦
ei𝛼𝑥d𝑥

0

−∞

,   (2.3) 

Φ1(𝛼) = ∫ 𝑢2(𝑥, 𝑑)e
i𝛼𝑥d𝑥

𝑙

0

   (2.4) 

ve 

Φ+(𝛼) = ∫ 𝑢2(𝑥, 𝑑)e
i𝛼(𝑥−𝑙)d𝑥

∞

𝑙

   (2.5) 

şeklinde tanımlanmıştır. 𝐾(𝛼), 𝐾(𝛼) = √𝑘2 − 𝛼2 ile belirli, Şekil 2.2’de görüldüğü 

gibi kesilmiş olan kompleks 𝛼-düzleminde 𝐾(0) = 𝑘 ile tanımlanmış, bilinen karekök 

fonksiyonudur. Burada, 𝜔 açısal frekans, 𝑐 ışık hızı olmak üzere, 𝑘 = 𝜔/𝑐 dalga 

sayısıdır. Yine (2.1) denkleminde görülen çekirdek fonksiyonları 𝑀(𝛼) ve 𝑁(𝛼),  

𝑀(𝛼) =
sin[𝐾(𝛼)(𝑑 − 𝑐)]

𝐾(𝛼)
ei𝐾(𝛼)(𝑑−𝑐)   (2.6) 

ve 

𝑁(𝛼) =
sin[𝐾(𝛼)𝑑]

𝐾(𝛼)
ei𝐾(𝛼)𝑑   (2.7) 

ile, 𝐶(𝛼) ise 
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𝐶(𝛼) =
𝑘𝑍0𝐼0
2𝐾(𝛼)

ei𝛼𝑥0ei𝐾(𝛼)(𝑦0−𝑑)   (2.8) 

ile belirlidir. 

 

Şekil 2.2: Kompleks 𝛼-düzlemi. 

 

Bunların yanı sıra, (2.1) denkleminin sağ yanında 𝑓𝑛, 𝑔𝑛, ℎ𝑛, 𝑝𝑛 ve 𝑞𝑛 katsayıları 

görülmektedir. Bunlar, Wiener-Hopf formülasyonu neticesinde, 

𝑓(𝑦) =
𝜕𝑢3(0, 𝑦)

𝜕𝑥
, 𝑔(𝑦) =

𝜕𝑢3(𝑙, 𝑦)

𝜕𝑥
, ℎ(𝑦) = 𝑢3(𝑙, 𝑦) 

  (2.9) 

ile 

𝑝(𝑦) =
𝜕𝑢4(𝑙, 𝑦)

𝜕𝑥
, 𝑞(𝑦) = 𝑢4(𝑙, 𝑦) 

(2.10) 

olmak üzere 
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[
𝑓𝑛
𝑔𝑛
ℎ𝑛

] =
2

𝑑 − 𝑐
∫ [

𝑓(𝑡)

𝑔(𝑡)

ℎ(𝑡)
] sin[𝐾𝑛(𝑡 − 𝑐)] d𝑡

𝑑

𝑐

 (2.11) 

ve 

[
𝑝𝑛
𝑞𝑛
] =

2

𝑑
∫ [

𝑝(𝑡)

𝑞(𝑡)
] sin(𝛾𝑛𝑡) d𝑡

𝑑

0

 (2.12) 

olarak belirlenmiştir. Hem (2.1) Modifiye Wiener-Hopf denkleminde, hem de (2.11) 

ve (2.12) eşitliklerinde görülen 𝐾𝑛’ler ve  𝛼𝑛’ler 

𝐾𝑛 =
𝑛𝜋

(𝑑 − 𝑐)
, 𝛼𝑛 = √𝑘2 − 𝐾𝑛2,    𝑛 = 1,2, …, (2.13) 

𝛾𝑛’ler ve 𝛽𝑛’ler ise  

𝛾𝑛 =
𝑛𝜋

𝑑
, 𝛽𝑛 = √𝑘2 − 𝛾𝑛2,    𝑛 = 1,2, … (2.14) 

biçimindedir. (2.11) ve (2.12) ile tanımlı katsayılar için 𝑛 = 1,2, … olmak üzere, 

𝑓𝑛 − e
i𝛼𝑛𝑙(𝑔𝑛 − i𝛼𝑛ℎ𝑛) =

2(−1)𝑛+1𝐾𝑚
(𝑑 − 𝑐)

Φ1(𝛼𝑛), 
(2.15) 

𝑓𝑛 − e
−i𝛼𝑛𝑙(𝑔𝑛 + i𝛼𝑛ℎ𝑛) =

2(−1)𝑛+1𝐾𝑛
(𝑑 − 𝑐)

Φ1(−𝛼𝑛) 
(2.16) 

ve 

𝑝𝑛 − i𝛽𝑛𝑞𝑛 =
2(−1)𝑛+1𝛾𝑛

𝑑
Φ+(𝛽𝑛) 

(2.17) 
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bağıntıları söz konusudur. (2.1) Modifiye Wiener-Hopf denkleminin çözülmesiyle 

Φ1(𝛼) ve Φ+(𝛼) yukarıdaki bağıntılarda yerine konur ve böylece ilgili katsayıların 

çözülebileceği bir lineer denklem sistemi elde edilir. 

2.1. Konvansiyonel Olmayan Yaklaşım ile WHD Çözümü 

(2.1) denkleminin çözümü için 𝑀(𝛼) ve 𝑁(𝛼) çekirdek fonksiyonlarının 

𝑀(𝛼) = 𝑀−(𝛼)𝑀+(𝛼) 
(2.18) 

ve 

𝑁(𝛼) = 𝑁−(𝛼)𝑁+(𝛼) 
(2.19) 

biçiminde tanımlanmış çarpanlarına ihtiyaç bulunmaktadır. Bu çarpanlar [13]’te de 

görüldüğü gibi, 𝑀(𝛼) için 

𝑀+(𝛼) = √
sin[𝑘(𝑑 − 𝑐)]

𝑘
 e
𝐾(𝛼)(𝑑−𝑐)

𝜋
ln[
𝛼+i𝐾(𝛼)

𝑘
]
 

× e
i𝛼(𝑑−𝑐)

𝜋
{1−𝒞+ln[

2𝜋
𝑘(𝑑−𝑐)

]+i
𝜋
2
}
∏(1+

𝛼

𝛼𝑚
) e

i𝛼(𝑑−𝑐)
𝑚𝜋

∞

𝑚=1

 

(2.20) 

ve 

𝑀−(𝛼) = 𝑀+(−𝛼) 
(2.21) 

𝑁(𝛼) için 

𝑁+(𝛼) = √
sin(𝑘𝑑)

𝑘
 e
𝐾(𝛼)𝑑
𝜋

ln[
𝛼+i𝐾(𝛼)

𝑘
]
 

× e
i𝛼𝑑
𝜋
{1−𝒞+ln(

2𝜋
𝑘𝑑
)+i

𝜋
2
}
∏(1+

𝛼

𝛽𝑚
) e

i𝛼𝑑
𝑚𝜋

∞

𝑚=1

 

(2.22) 
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ve 

𝑁−(𝛼) = 𝑁+(−𝛼) 
(2.23) 

şeklindedir. Bu denklemlerde görünen 𝒞 büyüklüğü ile 𝒞 = 0.5772156649…  Euler 

sabiti kastedilmektedir. Bu bilgiler ışığında (2.1) Modifiye Wiener-Hopf denkleminin 

her iki yanı e−i𝛼𝑙𝑁−(𝛼) ile çarpılırsa 

e−i𝛼𝑙𝑁−(𝛼)
Φ1(𝛼)

𝑀(𝛼)
+
Φ+(𝛼)

𝑁+(𝛼)
+ e−i𝛼𝑙𝑁−(𝛼)Φ−(𝛼)

= −2i𝐾(𝛼)𝐶(𝛼)e−i𝛼𝑙𝑁−(𝛼)

+ e−i𝛼𝑙𝑁−(𝛼)∑(−1)𝑛 {
𝐾𝑛𝑓𝑛

(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

+ei𝛼𝑙 [
𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼2 − 𝛽𝑛2)

−
𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼2 − 𝛼𝑛2)
]} 

(2.24) 

elde edilir. Burada 

𝑃(𝛼) =
Φ1(𝛼)

𝑀(𝛼)
−∑(−1)𝑛

𝐾𝑛𝑓𝑛
(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

 (2.25) 

tanımı yapılırsa (2.24) denklemi 

e−i𝛼𝑙𝑁−(𝛼)𝑃(𝛼) +
Φ+(𝛼)

𝑁+(𝛼)
+ e−i𝛼𝑙𝑁−(𝛼)Φ−(𝛼)

= −i𝑘𝑍0𝐼0𝑁−(𝛼)e
i𝛼(𝑥0−𝑙)ei𝐾(𝛼)(𝑦0−𝑑)

+ 𝑁−(𝛼)∑(−1)𝑛 {
𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼2 − 𝛽𝑛2)
−
𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼2 − 𝛼𝑛2)
}

∞

𝑛=1

 

(2.26) 

şeklinde de yazılabilir. Bu eşitliğin sol yanındaki ikinci ve üçüncü terim, sırasıyla, üst 

ve alt yarı-düzlemlerde regülerdir. Diğer terimlerin ise dekompoze edilmeleri 

gerekmektedir. Söz konusu dekompozisyon (ayrıştırma) işlemi yapılacak olursa, sol 

yandaki ilk terim için 
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e−i𝛼𝑙𝑁−(𝛼)𝑃(𝛼)

= −
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ−

+
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

, 

(2.27) 

sağ yandaki terimler için ise 

−i𝑘𝑍0𝐼0𝑁−(𝛼)e
i𝛼(𝑥0−𝑙)ei𝐾(𝛼)(𝑦0−𝑑)

=
𝑘𝑍0𝐼0
2𝜋i

∫
𝑁−(𝜏)e

i𝜏(𝑥0−𝑙)ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ−

−
𝑘𝑍0𝐼0
2𝜋i

∫
𝑁−(𝜏)e

i𝜏(𝑥0−𝑙)ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

, 

(2.28) 

 

∑
(−1)𝑛𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼2 − 𝛽𝑛2)

∞

𝑛=1

= ∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)

∞

𝑛=1

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛

∞

𝑛=1

 

(2.29) 

ve 
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∑
(−1)𝑛𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

= ∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)

∞

𝑛=1

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
]

−∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 

(2.30) 

yazılır. (2.27-2.30) denklemlerinin sağ yanlarındaki ilk terimler alt yarı-düzlemde, 

ikinci terimler ise üst yarı-düzlemde regülerdir. Bu ifadeler (2.26) Wiener-Hopf 

denklemine taşınır, üst yarı-düzlemde regüler olan ifadeler eşitliğin soluna, alt yarı-

düzlemde regüler olanlar ise eşitliğin sağına yazılırsa, sol yanda 

Ψ+(𝛼) =
Φ+(𝛼)

𝑁+(𝛼)
+

1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
𝑘𝑍0𝐼0
2𝜋i

∫
𝑁−(𝜏)e

i𝜏(𝑥0−𝑙)ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

+∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛

∞

𝑛=1

−∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 

(2.31) 

sağ yanda 
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Ψ−(𝛼) =
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ−

− e−i𝛼𝑙𝑁−(𝛼)Φ−(𝛼)

+
𝑘𝑍0𝐼0
2𝜋i

∫
𝑁−(𝜏)e

i𝜏(𝑥0−𝑙)ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ−

+∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)

∞

𝑛=1

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

−∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)

∞

𝑛=1

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
] 

(2.32) 

olmak üzere 

Ψ+(𝛼) = Ψ−(𝛼) 
(2.33) 

elde edilir. Yukarıdaki eşitlikte Ψ+(𝛼) ve Ψ−(𝛼), sırasıyla, Im(𝛼) > Im(−𝑘) ile 

tanımlı üst yarı-düzlemde ve Im(𝛼) < Im(𝑘) ile tanımlı alt yarı-düzlemde regüler olan 

fonksiyonlardır. Im(−𝑘) < Im(𝛼) < Im(𝑘) şeridinde geçerli olan bu eşitlik için, 

analitik devam ilkesinden yararlanarak 

Ψ(𝛼) = {
Ψ−(𝛼) , Im(𝛼) < Im(𝑘)

Ψ+(𝛼) , Im(𝛼) > Im(−𝑘)
 (2.34) 

biçiminde bir Ψ(𝛼) tam fonksiyonu tanımlamak mümkün olur. Liouville teoremi 

gereği Ψ(𝛼) tam fonksiyonu |𝛼| → ∞ için bir sabite eşitse tüm düzlemde o sabite eşit 

olacaktır. 𝑀±(𝛼) ve 𝑁±(𝛼)’nın |𝛼| → ∞ için davranışları 

𝑀±(𝛼) = 𝑁±(𝛼) = 𝒪(𝛼
−1/2) (2.35) 

şeklindedir. Öte yandan 𝑥 → 𝑙+ ve 𝑥 → 0− için ayrıt koşulları gereği, sırasıyla 



15 

 

𝑢2(𝑥, 𝑑) = 𝒪(|𝑥|2/3) (2.36) 

ve 

𝜕

𝜕𝑦
𝑢2(𝑥, 𝑑) = 𝒪(|𝑥|−1/3) (2.37) 

olduğundan, |𝛼| → ∞ için Φ+(𝛼) ve Φ−(𝛼)’nin davranışları için, sırasıyla,  

Φ+(𝛼) = 𝒪(𝛼
−5/3) (2.38) 

ve 

Φ−(𝛼) = 𝒪(𝛼
−2/3) (2.39) 

belirlenir. Bunlar (2.34) tanımında görülen Ψ−(𝛼) ve Ψ+(𝛼)’nın açık ifadelerinde 

dikkate alınırsa, Liouville teoremi uyarınca önce Ψ(𝛼) = 0, dolayısıyla sonra 

Ψ−(𝛼) = 0 ve Ψ+(𝛼) = 0 sonucu elde edilir. Buradan, kolaylıkla 

𝐽1(𝛼) =
𝑘𝑍0𝐼0
2𝜋i

∫
𝑁−(𝜏)e

i𝜏(𝑥0−𝑙)ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

 
(2.40) 

olmak üzere 

Φ+(𝛼)

𝑁+(𝛼)
= −

1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

− 𝐽1(𝛼)

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛

∞

𝑛=1

+∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 

(2.41) 

bulunur. Yukarıdaki denklem, basit bir düzenleme ile 
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𝑄(𝛼) =
Φ+(𝛼)

𝑁(𝛼)
−∑(−1)𝑛 [

𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼2 − 𝛽𝑛2)
−
𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼2 − 𝛼𝑛2)
]

∞

𝑛=1

 (2.42) 

olmak üzere 

𝑁−(𝛼)𝑄(𝛼) = −
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

− 𝐽1(𝛼)

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)

∞

𝑛=1

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

+∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)

∞

𝑛=1

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
] 

(2.43) 

şeklinde yazılabilir. Burada gözüken 𝐽1(𝛼) integrali semer noktası yöntemi ile 

asimptotik olarak değerlendirilebilir. Buna göre 𝜏 = 𝑘 cos 𝑡, 𝑥0 − 𝑙 = 𝜌1 cos 𝜙1 ve 

𝑦0 − 𝑑 = 𝜌1 sin 𝜙1 olarak yerine konursa 

𝐽1(𝛼) =
𝑘2𝑍0𝐼0
2𝜋i

∫
𝑁−(𝑘 cos 𝑡)e

i𝑘𝜌1 cos(𝑡−𝜙1) sin 𝑡

(𝑘 cos 𝑡 − 𝛼)
d𝑡

Γ1

 (2.44) 

elde edilir. Açıkça görüldüğü gibi semer noktası 𝑡 = 𝜙1’de olan bu integralin 

asimptotik çözümü bazı elementer işlemler sonucu 

𝐽1(𝛼)

≅ −
e−i𝜋/4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌1

√𝑘𝜌1

𝑁−(𝑘 cos𝜙1) sin𝜙1
(𝛼 − 𝑘 cos𝜙1)

+ i𝑘𝑍0𝐼0𝑁−(𝛼)e
i𝜌1[𝛼 cos𝜙1+𝐾(𝛼) sin𝜙1]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)} − 𝜙1) 

(2.45) 

olur. Burada görülen ℋ(. ) fonksiyonu, bilinen Heaviside birim basamak 

fonksiyonudur. Böylece (2.43) denklemi 
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𝑁−(𝛼)𝑄(𝛼)

= −
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
e−

i𝜋
4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌1

√𝑘𝜌1

𝑁−(𝑘 cos𝜙1) sin𝜙1
(𝛼 − 𝑘 cos𝜙1)

− i𝑘𝑍0𝐼0𝑁−(𝛼)e
i𝜌1[𝛼 cos𝜙1+𝐾(𝛼) sin𝜙1]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)} − 𝜙1)

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)
+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

∞

𝑛=1

+∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)
+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

 

(2.46) 

haline gelir. Benzer bir yaklaşımla, (2.1) Modifiye Wiener-Hopf denkleminin her iki 

yanı 𝑀−(𝛼) ile çarpılırsa 

Φ1(𝛼)

𝑀+(𝛼)
+ ei𝛼𝑙

𝑀−(𝛼)Φ+(𝛼)

𝑁(𝛼)
+ 𝑀−(𝛼)Φ−(𝛼)

= −2i𝐾(𝛼)𝐶(𝛼)𝑀−(𝛼)

+ 𝑀−(𝛼)∑(−1)𝑛 {
𝐾𝑛𝑓𝑛

(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

+ei𝛼𝑙 [
𝛾𝑛(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼2 − 𝛽𝑛2)

−
𝐾𝑛(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼2 − 𝛼𝑛2)
]} 

(2.47) 

elde edilir. Bu ifade (2.42) yardımıyla 

Φ1(𝛼)

𝑀+(𝛼)
+ ei𝛼𝑙𝑀−(𝛼)𝑄(𝛼) + 𝑀−(𝛼)Φ−(𝛼)

= −2i𝐾(𝛼)𝐶(𝛼)𝑀−(𝛼) + 𝑀−(𝛼)∑(−1)𝑛
𝐾𝑛𝑓𝑛

(𝛼2 − 𝛼𝑛2)

∞

𝑛=1

 

(2.48) 

haline gelir. Yukarıdaki ifadenin sol yanındaki ilk ve üçüncü terimler, sırasıyla, üst ve 

alt yarı-düzlemde regülerdirler. Diğer terimlerin de üst ve alt yarı-düzlemde regüler 

parçalara ayrılabilmesi için dekompozisyon uygulanması gerekmektedir. Buna göre 

söz konusu terimlerin dekompozisyonu, 
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ei𝛼𝑙𝑀−(𝛼)𝑄(𝛼)

= −
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ−

+
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

, 

(2.49) 

2i𝐾(𝛼)𝐶(𝛼)𝑀−(𝛼)

=
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ−

−
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

 

(2.50) 

ve 

∑(−1)𝑛
𝐾𝑛𝑓𝑛𝑀−(𝛼)

(𝛼2 − 𝛼𝑛
2)

∞

𝑛=1

= ∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

[
𝑀−(𝛼)

(𝛼 − 𝛼𝑛)
+
𝑀+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

−∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

𝑀+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 

(2.51) 

biçimindedir. Bunların (2.48) denkleminde yerine konması ve üst yarı-düzlemde 

regüler terimlerin eşitliğin soluna, alt yarı-düzlemde regüler olanların ise eşitliğin 

sağına yazılmasıyla 
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Φ1(𝛼)

𝑀+(𝛼)
−
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

𝑀+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

= −𝑀−(𝛼)Φ−(𝛼) +
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ−

−
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ−

+∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

[
𝑀−(𝛼)

(𝛼 − 𝛼𝑛)
+
𝑀+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

 

(2.52) 

bulunur. (2.52)’nin sol yanı için 

Ψ̃+(𝛼) =
Φ1(𝛼)

𝑀+(𝛼)
−
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

𝑀+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 

(2.53) 

sağ yanı için ise 

Ψ̃−(𝛼) = −𝑀−(𝛼)Φ−(𝛼) +
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ−

−
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ−

+∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

[
𝑀−(𝛼)

(𝛼 − 𝛼𝑛)
+
𝑀+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

 

(2.54) 

yazılırsa, Im(−𝑘) < Im(𝛼) < Im(𝑘) şeridinde geçerli olan (2.52) denklemi için 

Ψ̃+(𝛼) = Ψ̃−(𝛼) 
(2.55) 
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ifadesine ulaşılır. Analitik devam ilkesinden yararlanarak 

Ψ̃(𝛼) = {
Ψ̃−(𝛼) , Im(𝛼) < Im(𝑘)

Ψ̃+(𝛼) , Im(𝛼) > Im(−𝑘)
 (2.56) 

biçiminde bir Ψ̃(𝛼) tam fonksiyonu tanımlamak mümkün olur. Liouville teoremi 

gereği, tıpkı (2.34) ile tanımlı Ψ(𝛼) fonksiyonunda olduğu gibi, Ψ̃(𝛼) tam fonksiyonu 

da, |𝛼| → ∞ için bir sabite eşitse tüm düzlemde o sabite eşit olacaktır. Burada da 

𝑀±(𝛼) ve 𝑁±(𝛼)’nın |𝛼| → ∞ için davranışları ve ayrıt koşullarının dikkate 

alınmasıyla, Ψ(𝛼) = 0, dolayısıyla, Ψ̃−(𝛼) = 0 ve Ψ̃−(𝛼) = 0 olduğu belirlenir. Buna 

göre 

𝐽2(𝛼) =
𝑘𝑍0𝐼0
2𝜋

∫
𝑀−(𝜏)e

i𝜏𝑥0ei𝐾(𝜏)(𝑦0−𝑑)

(𝜏 − 𝛼)
d𝜏

ℒ+

 
(2.57) 

olmak üzere 

Φ1(𝛼)

𝑀+(𝛼)
= −

1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+ 𝐽2(𝛼) −∑
(−1)𝑛𝐾𝑛𝑓𝑛
(𝛼 + 𝛼𝑛)

𝑀+(𝛼𝑛)

2𝛼𝑛

∞

𝑛=1

 
(2.58) 

olacaktır. Ayrıca, (2.25) tanımı yardımıyla basit bir düzenleme yapılırsa, (2.58) ifadesi 

𝑀−(𝛼)𝑃(𝛼) = −
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+ 𝐽2(𝛼)

−∑(−1)𝑛
𝐾𝑛𝑓𝑛

(𝛼 + 𝛼𝑛)
[
𝑀−(𝛼)

(𝛼 − 𝛼𝑛)
+
𝑀+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

 

(2.59) 

haline gelir. Yine 𝐽1(𝛼) integraline benzer şekilde, yukarıdaki 𝐽2(𝛼) integrali de 

asimptotik olarak değerlendirilebilir. Buna göre, 𝜏 = 𝑘 cos 𝑡, 𝑥0 = 𝜌2 cos𝜙2 ve 𝑦0 −

𝑑 = 𝜌2 sin 𝜙2 dönüşümleri yardımıyla, önce 
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𝐽2(𝛼) =
𝑘2𝑍0𝐼0
2𝜋

∫
𝑀−(𝑘 cos 𝑡)e

i𝑘𝜌2 cos(𝑡−𝜙2) sin 𝑡

(𝑘 cos 𝑡 − 𝛼)
d𝑡

ℒ+

 
(2.60) 

yazılır, ardından 𝑡 = 𝜙2’de bulunan semer noktasından yararlanarak 

𝐽2(𝛼) =

≅
e−

i𝜋
4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌2

√𝑘𝜌2

𝑀−(𝑘 cos𝜙2) sin 𝜙2
(𝛼 − 𝑘 cos𝜙2)

− i𝑘𝑍0𝐼0𝑀−(𝛼)e
i𝜌2[𝛼 cos𝜙2+𝐾(𝛼) sin𝜙2]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)} − 𝜙2) 

(2.61) 

elde edilir. Bunun (2.59) eşitliğinde yerine konmasıyla 

𝑀−(𝛼)𝑃(𝛼)

= −
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
e−i𝜋/4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌2

√𝑘𝜌2

𝑀−(𝑘 cos𝜙2) sin𝜙2
(𝛼 − 𝑘 cos𝜙2)

− i𝑘𝑍0𝐼0𝑀−(𝛼)e
i𝜌2[𝛼 cos𝜙2+𝐾(𝛼) sin𝜙2]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)} − 𝜙2)

−∑(−1)𝑛
𝐾𝑛𝑓𝑛

(𝛼 + 𝛼𝑛)
[
𝑀−(𝛼)

(𝛼 − 𝛼𝑛)
+
𝑀+(𝛼𝑛)

2𝛼𝑛
]

∞

𝑛=1

 

(2.62) 

bulunur. Böylece problemin çözümü (2.46) ve (2.62) denklemlerinden müteşekkil, 

ikinci tipten bir Fredholm integral denkleminin çözümüne indirgenmiş olur. Bu 

indirgeme esnasında uygulanan konvansiyonel olmayan prosedür sayesinde, sayısal 

olarak hesaplanmak zorunda olunan herhangi bir kesim çizgisi integrali karşımıza 

çıkmamıştır. (2.46) ve (2.62)’den oluşan integral denklem [14]’te ayrıntıları 

açıklanmış olan iteratif bir yöntem ile 

𝑃(𝛼) = 𝑃(1)(𝛼) + 𝑃(2)(𝛼) + ⋯ 
(2.63) 

ve 



22 

 

𝑄(𝛼) = 𝑄(1)(𝛼) + 𝑄(2)(𝛼) +⋯ 
(2.64) 

formunda çözülebilir. Birinci iterasyon çözümü olarak (2.46) ve (2.62) eşitliklerinin 

sağ yanlarında bulunan, integral içermeyen serbest terimler kabul edilir. Daha sonra 

birinci iterasyon çözümlerinin integrallerde yerine konmasıyla ikinci iterasyon 

çözümleri elde edilir. Bu yaklaşımla, dilenirse, üçüncü, dördüncü, iterasyonlar da 

hesaplanabilir. Geçmiş çalışmalar göstermiştir ki, ikinci iterasyondan sonra gelecek 

katkılar ihmal edilebilecek kadar küçük olmaktadır. Bu nedenle bu çalışmada da 

yalnızca birinci ve ikinci iterasyon çözümleri türetilecektir. Bu bağlamde birinci 

iterasyon çözümleri için 

𝑃(1)(𝛼) =
e−i𝜋/4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌2

√𝑘𝜌2

𝑀−(𝑘 cos𝜙2) sin𝜙2
𝑀−(𝛼)(𝛼 − 𝑘 cos𝜙2)

− i𝑘𝑍0𝐼0e
i𝜌2[𝛼 cos𝜙2+𝐾(𝛼) sin𝜙2]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)}

− 𝜙2) −∑(−1)𝑛
𝐾𝑛𝑓𝑛

(𝛼 + 𝛼𝑛)
[

1

(𝛼 − 𝛼𝑛)
−

𝑀+(𝛼𝑛)

2𝛼𝑛𝑀−(𝛼)
]

∞

𝑛=1

 

(2.65) 

ve 

𝑄(1)(𝛼) =
e−i𝜋/4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌1

√𝑘𝜌1

𝑁−(𝑘 cos𝜙1) sin𝜙1
𝑁−(𝛼)(𝛼 − 𝑘 cos𝜙1)

− i𝑘𝑍0𝐼0e
i𝜌1[𝛼 cos𝜙1+𝐾(𝛼) sin𝜙1]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)}

− 𝜙1)

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼 − 𝛽𝑛)
+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛𝑁−(𝛼)
]

∞

𝑛=1

+∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼 − 𝛼𝑛)
+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛𝑁−(𝛼)
]

∞

𝑛=1

 

(2.66) 

yazılır. Bu ifadeler için, 𝑗 = 1,2 olmak üzere 

𝑈𝑗 =
e−i𝜋/4

√2𝜋
𝑘2𝑍0𝐼0

ei𝑘𝜌𝑗

√𝑘𝜌𝑗
sin𝜙𝑗 

(2.67) 
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ve 

𝑉𝑗(𝛼) = i𝑘𝑍0𝐼0e
i𝜌𝑗[𝛼 cos𝜙𝑗+𝐾(𝛼) sin𝜙𝑗]ℋ(𝑅𝑒 {arccos (

𝛼

𝑘
)} − 𝜙𝑗) (2.68) 

konursa, (2.65) ve (2.66), sırasıyla, 

𝑃(1)(𝛼) =
𝑈2𝑀−(𝑘 cos𝜙2)

𝑀−(𝛼)(𝛼 − 𝑘 cos𝜙2)
− 𝑉2(𝛼)

−∑(−1)𝑛
𝐾𝑛𝑓𝑛

(𝛼 + 𝛼𝑛)
[

1

(𝛼 − 𝛼𝑛)
−

𝑀+(𝛼𝑛)

2𝛼𝑛𝑀−(𝛼)
]

∞

𝑛=1

 

(2.69) 

ve 

𝑄(1)(𝛼) =
𝑈1𝑁−(𝑘 cos𝜙1)

𝑁−(𝛼)(𝛼 − 𝑘 cos𝜙1)
− 𝑉1(𝛼)

−∑
(−1)𝑛𝛾𝑛
(𝛼 + 𝛽𝑛)

[
(𝑝𝑛 − i𝛼𝑞𝑛)

(𝛼 − 𝛽𝑛)
+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛𝑁−(𝛼)
]

∞

𝑛=1

+∑
(−1)𝑛𝐾𝑛
(𝛼 + 𝛼𝑛)

[
(𝑔𝑛 − i𝛼ℎ𝑛)

(𝛼 − 𝛼𝑛)
+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛𝑁−(𝛼)
]

∞

𝑛=1

 

(2.70) 

olur. Elde edilen birinci iterasyon çözümleri 

𝑀−(𝛼)𝑃
(2)(𝛼) = −

1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑄

(1)(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

 
(2.71) 

ve 

𝑁−(𝛼)𝑄
(2)(𝛼) = −

1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑃

(1)(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

 
(2.72) 

integrallerinde yerine konarak ikinci iterasyon çözümlerine ulaşılır. İlk olarak, 𝑃(2)(𝛼) 

çözümünü elde edilmeye çalışılsın. 𝑄(1)(𝛼) çözümü (2.71) ifadesinin sağ yanındaki 

integralde yerine konduğunda 
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𝑀−(𝛼)𝑃
(2)(𝛼) = −

1

2𝜋i
∫
𝑀−(𝜏)

𝑁−(𝜏)

𝑈1𝑁−(𝑘 cos𝜙1)e
i𝜏𝑙d𝜏

(𝜏 − 𝛼)(𝜏 − 𝑘 cos𝜙1)
ℒ+

+
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑉1(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
1

2𝜋i
∫

ei𝜏𝑙𝑀−(𝜏)

(𝜏 − 𝛼)𝑁−(𝜏)
∑

(−1)𝑛𝛾𝑛
(𝜏 + 𝛽𝑛)

[
(𝑝𝑛 − i𝜏𝑞𝑛)𝑁−(𝜏)

(𝜏 − 𝛽𝑛)

∞

𝑛=1ℒ+

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
] d𝜏

−
1

2𝜋i
∫

ei𝜏𝑙𝑀−(𝜏)

(𝜏 − 𝛼)𝑁−(𝜏)
∑

(−1)𝑛𝐾𝑛
(𝜏 + 𝛼𝑛)

[
𝑁−(𝜏)(𝑔𝑛 − i𝜏ℎ𝑛)

(𝜏 − 𝛼𝑛)

∞

𝑛=1ℒ+

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
] d𝜏 

(2.73) 

elde edilir. Burada,  

𝑀−(𝜏)

𝑁−(𝜏)
=
𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
 (2.71) 

olduğu dikkate alınarak 

𝐼1(𝛼) =
1

2𝜋i
∫
𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)

ei𝜏𝑙d𝜏

(𝜏 − 𝛼)(𝜏 − 𝑘 cos𝜙1)
ℒ+

, (2.74) 

𝐼2𝑛(𝛼) =
1

2𝜋i
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
[
(𝑝𝑛 − i𝜏𝑞𝑛)𝑁−(𝜏)

(𝜏 − 𝛽𝑛)
ℒ+

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
] d𝜏 

(2.76) 

ve 
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𝐼3𝑛(𝛼) =
1

2𝜋i
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛼𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
[
𝑁−(𝜏)(𝑔𝑛 − i𝜏ℎ𝑛)

(𝜏 − 𝛼𝑛)
ℒ+

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
] d𝜏 

(2.77) 

olmak üzere 

𝑀−(𝛼)𝑃
(2)(𝛼) = −𝑈1𝑁−(𝑘 cos𝜙1)𝐼1(𝛼) +∑(−1)𝑛𝛾𝑛

∞

𝑛=1

𝐼2𝑛(𝛼)

−∑(−1)𝑛𝐾𝑛

∞

𝑛=1

𝐼3𝑛(𝛼) +
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑉1(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

 

(2.78) 

yazılabilir. 𝐼1(𝛼), 𝐼2𝑛(𝛼) ve 𝐼3𝑛(𝛼) integralleri birer birer değerlendirilerek 𝑃(2)(𝛼) 

belirlenir. Buna göre, ilk olarak 𝐼1(𝛼) ele alınsın. Jordan lemmasından yararlanmak 

için buradaki integrasyon eğrisi üst yarı-düzlem üzerinden kapatılırsa 

𝐼1(𝛼) = Rez(𝛼) + Rez(𝑘 cos𝜙1) +∑Rez(𝛽𝑛)

∞

𝑛=1

+
1

2𝜋i
∫

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)

ei𝜏𝑙d𝜏

(𝜏 − 𝛼)(𝜏 − 𝑘 cos𝜙1)
𝒞1
++𝒞1

−

 

(2.79) 

olur. Burada Rez(𝛼), 𝜏 = 𝛼 noktasında bulunan basit kutba ilişkin rezidüyü 

göstermektedir. 𝒞1
+ ve 𝒞1

− eğrileri Şekil 2.2’de gösterilmektedir. (2.79) eşitliğinin sağ 

yanındaki rezidüler, kolaylıkla, 

Rez(𝛼) =
𝑀−(𝛼)

𝑁−(𝛼)

ei𝛼𝑙

(𝛼 − 𝑘 cos𝜙1)
 

(2.80) 

Rez(𝑘 cos𝜙1) = −
𝑀−(𝑘 cos𝜙1)

𝑁−(𝑘 cos𝜙1)

ei𝑘𝑙 cos𝜙1

(𝛼 − 𝑘 cos𝜙1)
 

(2.81) 

ve 
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∑Rez(𝛽𝑛)

∞

𝑛=1

=
𝜋

𝑑2
∑

𝑛

𝛽𝑛

𝑁+(𝛽𝑛)

𝑀+(𝛽𝑛)

sin (
𝑛𝜋𝑐
𝑑
) ei

𝑛𝜋𝑐
𝑑 ei𝛽𝑛𝑙

(𝛽𝑛 − 𝛼)(𝛽𝑛 − 𝑘 cos𝜙1)

∞

𝑛=1

 
(2.82) 

olarak elde edilir. Sağ yandaki son terimde görülen integral, Şekil 2.2’de görülen üst 

yarı-düzlemdeki kesim çizgisi üzerinden alınacaktır. Buna göre, 

𝐾(𝜏)|𝜏∈𝒞1+ = −𝐾(𝜏)|𝜏∈𝒞1
− (2.83) 

olduğundan 

𝑀(𝜏)

𝑁(𝜏)
|
𝜏∈𝒞1

++𝒞1
−

= −2i
sin[𝐾(𝑑 − 𝑐)] sin(𝐾𝑐)

sin(𝐾𝑑)
 (2.84) 

bulunur ve söz konusu integral 

𝒯+
(1)(𝜏) =

sin[𝐾(𝑑 − 𝑐)]

𝐾(𝑑 − 𝑐)

𝐾𝑑

sin(𝐾𝑑)

sin(𝐾𝑐)

𝐾𝑐

𝑁+(𝜏)

𝑀+(𝜏)

𝑐(𝑑 − 𝑐)

𝑑
√𝑘 + 𝜏 (2.85) 

olmak üzere 

−
1

𝜋(𝛼 − 𝑘 cos𝜙1)
∫ 𝒯+

(1)(𝜏)√𝑘 − 𝜏ei𝜏𝑙 [
1

(𝜏 − 𝛼)
−

1

(𝜏 − 𝑘 cos𝜙1)
] d𝜏

𝒞1
+

 (2.86) 

biçiminde düzenlenebilir. 𝒞1
+ üzerinde 𝜏 = 𝑘 + 𝑡ei𝜋/2 olduğu dikkate alınırsa 

yukarıdaki integral 

ei3𝜋/4eik𝑙

𝜋(𝛼 − 𝑘 cos𝜙1)
∫ 𝒯+

(1)(𝑘 + i𝑡)√𝑡e−𝑡𝑙 [
1

[𝑡 − 𝑖𝑘(1 − 𝛼/𝑘)]

∞

0

−
1

[𝑡 − 𝑖𝑘(1 − cos𝜙1)]
] d𝑡 

(2.87) 
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haline gelir. 𝑙 yeterince büyük olduğunda 𝒯+
(1)(𝑘 + i𝑡) fonksiyonunun bu integrale en 

büyük katkısı 𝑡 = 0 uç noktası civarından gelir. Dolayısıyla da, 

𝒯+
(1)(𝑘) =

𝑁+(𝑘)

𝑀+(𝑘)

𝑐(𝑑 − 𝑐)

𝑑
√2𝑘 (2.88) 

olmak üzere 

ei3𝜋/4eik𝑙

𝜋(𝛼 − 𝑘 cos𝜙1)
𝒯+
(1)(𝑘)∫ √𝑡e−𝑡𝑙 [

1

[𝑡 − 𝑖𝑘(1 − 𝛼/𝑘)]

∞

0

−
1

[𝑡 − 𝑖𝑘(1 − cos𝜙1)]
] d𝑡 

(2.89) 

yazmak mümkündür. 

ℱ(𝑧) = −2ie−i𝑧√𝑧 ∫ ei𝑥
2
d𝑥

∞

√𝑧

 (2.90) 

şeklinde tanımlı Fresnel integralleri için yazılan 

∫ e−𝑡𝑙
√𝑡

(𝑡 + 𝑧)
d𝑡

∞

0

= √
𝜋

𝑙
[1 − ℱ(i𝑧𝑙)] (2.91) 

bağıntısından yararlanılırsa integralin çözümü 

1

2𝜋i
∫

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)

ei𝜏𝑙d𝜏

(𝜏 − 𝛼)(𝜏 − 𝑘 cos𝜙1)
𝒞1
++𝒞1

−

= √
2

𝜋

𝑘𝑐(𝑑 − 𝑐)

𝑑

eik𝑙

√𝑘𝑙

ei3𝜋/4

(𝛼 − 𝑘 cos𝜙1)

𝑁+(𝑘)

𝑀+(𝑘)
{ℱ[𝑘𝑙(1

− cos𝜙1)] − ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.92) 

olarak elde edilir. Sonuç olarak, 𝐼1(𝛼) 
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𝐼1(𝛼) =
𝑀−(𝛼)

𝑁−(𝛼)

ei𝛼𝑙

(𝛼 − 𝑘 cos𝜙1)
−
𝑀−(𝑘 cos𝜙1)

𝑁−(𝑘 cos𝜙1)

ei𝑘𝑙 cos𝜙1

(𝛼 − 𝑘 cos𝜙1)

+
𝜋

𝑑2
∑

𝑛

𝛽𝑛

𝑁+(𝛽𝑛)

𝑀+(𝛽𝑛)

sin (
𝑛𝜋𝑐
𝑑
) ei

𝑛𝜋𝑐
𝑑 ei𝛽𝑛𝑙

(𝛽𝑛 − 𝛼)(𝛽𝑛 − 𝑘 cos𝜙1)

∞

𝑛=1

+√
2

𝜋

𝑘𝑐(𝑑 − 𝑐)

𝑑

eik𝑙

√𝑘𝑙

ei3𝜋/4

(𝛼 − 𝑘 cos𝜙1)

𝑁+(𝑘)

𝑀+(𝑘)
{ℱ[𝑘𝑙(1

− cos𝜙1)] − ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.93) 

şeklinde bulunur. 𝐼2𝑛(𝛼) için ise 

𝐼2𝑛(𝛼)

= Rez(𝛽𝑛) + Rez(𝛼) +
1

2𝜋i
∫

ei𝜏𝑙𝑀(𝜏)

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)𝑀+(𝜏)

(𝑝𝑛 − i𝜏𝑞𝑛)

(𝜏 − 𝛽𝑛)
d𝜏

𝒞1
++𝒞1

−

+
1

2𝜋i

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
d𝜏

𝒞1
++𝒞1

−

 

(2.94) 

yazılabilir. Söz konusu rezidüler 

Rez(𝛽𝑛) =
ei𝛽𝑛𝑙𝑀−(𝛽𝑛)(𝑝𝑛 − i𝛽𝑛𝑞𝑛)

2𝛽𝑛(𝛽𝑛 − 𝛼)
 

(2.95) 

ve 

Rez(𝛼) =
ei𝛼𝑙

(𝛼 + 𝛽𝑛)

𝑀−(𝛼)

𝑁−(𝛼)
[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)
+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
] (2.96) 

şeklindedir. Sağ yandaki kesim çizgisi integrallerinden birincisi 𝐼1(𝛼) için yapılana 

benzer şekilde değerlendirilirse 
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𝑀(𝜏)|𝜏∈𝒞1++𝒞1− =
sin[𝐾(𝑑 − 𝑐)] (ei𝐾(𝑑−𝑐) − e−i𝐾(𝑑−𝑐))

𝐾

= 2𝑖(𝑑 − 𝑐)2 [
sin 𝐾(𝑑 − 𝑐)

𝐾(𝑑 − 𝑐)
]

2

√𝑘 + 𝜏√𝑘 − 𝜏, 

(2.97) 

dolayısıyla 

𝒯+
(2)(𝜏) =

(𝑝𝑛 − i𝜏𝑞𝑛)

𝑀+(𝜏)(𝜏 + 𝛽𝑛)
[
sin 𝐾(𝑑 − 𝑐)

𝐾(𝑑 − 𝑐)
]

2

√𝑘 + 𝜏 
(2.98) 

olmak üzere 

1

2𝜋i
∫

ei𝜏𝑙𝑀(𝜏)

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)𝑀+(𝜏)

(𝑝𝑛 − i𝜏𝑞𝑛)

(𝜏 − 𝛽𝑛)
d𝜏

𝒞1
++𝒞1

−

=
(𝑑 − 𝑐)2

𝜋(𝛼 − 𝛽𝑛)
∫ 𝒯+

(2)(𝜏)√𝑘 − 𝜏ei𝜏𝑙 [
1

(𝜏 − 𝛼)
𝒞1
+

−
1

(𝜏 − 𝛽𝑛)
] d𝜏 

(2.99) 

yazılabilir. Burada da, 𝒞1
+ üzerinde 𝜏 = 𝑘 + 𝑡ei𝜋/2 olduğunun dikkate alınmasıyla 

1

2𝜋i
∫

ei𝜏𝑙𝑀(𝜏)(𝑝𝑛 − i𝜏𝑞𝑛)

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)𝑀+(𝜏)

d𝜏

(𝜏 − 𝛽𝑛)
𝒞1
++𝒞1

−

=
(𝑑 − 𝑐)2𝑒𝑖𝜋/4ei𝑘𝑙

𝑖𝜋(𝛼 − 𝛽𝑛)
∫ 𝒯+

(2)(𝑘 + i𝑡) [
√𝑡e−t𝑙

[𝑡 − 𝑖𝑘 (1 −
𝛼
𝑘
)]

∞

0

−
√𝑡e−t𝑙

[𝑡 − 𝑖𝑘 (1 −
𝛽𝑛
𝑘
)]
] d𝑡 

(2.100) 

olur. Yine, 𝑙’nin yeterince büyük olması halinde 𝒯+
(2)(𝑘 + i𝑡) fonksiyonunun bu 

integrale en büyük katkısı 𝑡 = 0 uç noktası civarından gelir ve 
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1

2𝜋i
∫

ei𝜏𝑙𝑀(𝜏)(𝑝𝑛 − i𝜏𝑞𝑛)

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)𝑀+(𝜏)

d𝜏

(𝜏 − 𝛽𝑛)
𝒞1
++𝒞1

−

=
(𝑑 − 𝑐)2𝑒𝑖𝜋/4ei𝑘𝑙

𝑖𝜋(𝛼 − 𝛽𝑛)
𝒯+
(2)(𝑘)∫ [

√𝑡e−t𝑙

[𝑡 − 𝑖𝑘 (1 −
𝛼
𝑘
)]

∞

0

−
√𝑡e−t𝑙

[𝑡 − 𝑖𝑘 (1 −
𝛽𝑛
𝑘
)]
] d𝑡 

(2.101) 

yazılır. 

𝒯+
(2)(𝑘) =

√2𝑘(𝑝𝑛 − i𝑘𝑞𝑛)

𝑀+(𝑘)(𝑘 + 𝛽𝑛)
 

(2.102) 

eşitliği ve (2.91) ilişkisi yardımıyla 

1

2𝜋i
∫

ei𝜏𝑙𝑀(𝜏)(𝑝𝑛 − i𝜏𝑞𝑛)

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)𝑀+(𝜏)

d𝜏

(𝜏 − 𝛽𝑛)
𝒞1
++𝒞1

−

= √
2

𝜋

ei𝑘𝑙

√𝑘𝑙

(𝑑 − 𝑐)2𝑒−𝑖𝜋/4

(𝛼 − 𝛽𝑛)

𝑘(𝑝𝑛 − i𝑘𝑞𝑛)

𝑀+(𝑘)(𝑘 + 𝛽𝑛)

× {ℱ[𝑘𝑙(1 − 𝛽𝑛/𝑘)] − ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.103) 

bulunur. (2.94) eşitliğinin sağ yanındaki son integral için ise, kesim çizigisi üzerinde 

yazılan (2.84) bağıntısından yararlanarak 

𝒯+
(3)(𝜏) =

sin[𝐾(𝑑 − 𝑐)]

𝐾(𝑑 − 𝑐)

𝐾𝑑

sin(𝐾𝑑)

sin(𝐾𝑐)

𝐾𝑐

𝑁+(𝜏)

𝑀+(𝜏)

𝑐(𝑑 − 𝑐)

𝑑(𝜏 + 𝛽𝑛)
√𝑘 + 𝜏 (2.104) 

olmak üzere 
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1

2𝜋i

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
d𝜏

𝒞1
++𝒞1

−

= −
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝜋𝛽𝑛
∫
ei𝜏𝑙𝒯+

(3)(𝜏)

(𝜏 − 𝛼)
√𝑘 − 𝜏d𝜏

𝒞1
+

 

(2.105) 

yazılır. 𝒞1
+ integrasyon çizgisi üzerinde 𝜏 = 𝑘 + 𝑡ei𝜋/2 yazılırsa yukarıdaki ifade 

1

2𝜋i

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
d𝜏

𝒞1
++𝒞1

−

= −
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)𝑒

𝑖𝑘𝑙e−i𝜋/4

2𝜋𝛽𝑛
∫
e−𝑡𝑙𝒯+

(3)(𝑘 + i𝑡)√𝑡

[𝑡 − 𝑖𝑘(1 − 𝛼/𝑘)]
d𝑡

𝒞1
+

 

(2.106) 

haline gelir. Yeterince büyük 𝑙’ler için 

1

2𝜋i

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
d𝜏

𝒞1
++𝒞1

−

= −
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)𝑒

𝑖𝑘𝑙e−i𝜋/4

2𝜋𝛽𝑛
𝒯+
(3)(𝑘) ∫

e−𝑡𝑙√𝑡

[𝑡 − 𝑖𝑘(1 − 𝛼/𝑘)]
d𝑡

𝒞1
+

 

(2.107) 

(2.91) bağıntısı yardımıyla da 

1

2𝜋i

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
∫

ei𝜏𝑙

(𝜏 − 𝛼)(𝜏 + 𝛽𝑛)

𝑀(𝜏)

𝑁(𝜏)

𝑁+(𝜏)

𝑀+(𝜏)
d𝜏

𝒞1
++𝒞1

−

=

=
ei3𝜋/4

√2𝜋

𝑒𝑖𝑘𝑙

√𝑘𝑙

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑘𝑐(𝑑 − 𝑐)𝑁+(𝛽𝑛)

𝛽𝑛𝑑(𝑘 + 𝛽𝑛)

𝑁+(𝑘)

𝑀+(𝑘)
{1

− ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.108) 

bulunur. Sonuç olarak, (2.95), (2.96), (2.103) ve (2.108) ifadelerinin (2.94)’te yerine 

konmasıyla 𝐼2𝑛(𝛼) integrali aşağıdaki gibi elde edilmiş olur: 
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𝐼2𝑛(𝛼) =
ei𝛽𝑛𝑙𝑀−(𝛽𝑛)(𝑝𝑛 − i𝛽𝑛𝑞𝑛)

2𝛽𝑛(𝛽𝑛 − 𝛼)

+
ei𝛼𝑙

(𝛼 + 𝛽𝑛)

𝑀−(𝛼)

𝑁−(𝛼)
[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)

+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

+ √
2

𝜋

ei𝑘𝑙

√𝑘𝑙

(𝑑 − 𝑐)2𝑒−𝑖𝜋/4

(𝛼 − 𝛽𝑛)

𝑘(𝑝𝑛 − i𝑘𝑞𝑛)

𝑀+(𝑘)(𝑘 + 𝛽𝑛)
{ℱ[𝑘𝑙(1

− 𝛽𝑛/𝑘)] − ℱ[𝑘𝑙(1 − 𝛼/𝑘)]}

+
ei3𝜋/4

√2𝜋

𝑒𝑖𝑘𝑙

√𝑘𝑙

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑘𝑐(𝑑 − 𝑐)𝑁+(𝛽𝑛)

𝛽𝑛𝑑(𝑘 + 𝛽𝑛)

𝑁+(𝑘)

𝑀+(𝑘)
{1

− ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.109) 

𝑃(2)(𝛼)’nin tamamen belirlenebilmesi için 𝐼3𝑛(𝛼) integralinin de benzer bir biçimde 

değerlendirilmesi gerekmektedir. 𝐼2𝑛(𝛼)’nın tanımlandığı (2.76) ile 𝐼3𝑛(𝛼)’nın 

tanımlandığı (2.77) ifadeleri karşılaştırılırsa, 𝐼2𝑛(𝛼) integralinde 𝛽𝑛 → 𝛼𝑛, 𝑝𝑛 → 𝑔𝑛, 

𝑞𝑛 → ℎ𝑛 koymakla 𝐼3𝑛(𝛼) integralinin elde edildiği kolaylıkla görülür. Bu durumda 

𝐼2𝑛(𝛼) integrali için elde edilen çözümde de bu dönüşümleri uygulamak 𝐼3𝑛(𝛼) 

integralini çözmek için yeterlidir. Böylece 𝐼3𝑛(𝛼) integrali için 

𝐼3𝑛(𝛼) =
ei𝛼𝑛𝑙𝑀−(𝛼𝑛)(𝑔𝑛 − i𝛼𝑛ℎ𝑛)

2𝛼𝑛(𝛼𝑛 − 𝛼)

+
ei𝛼𝑙

(𝛼 + 𝛼𝑛)

𝑀−(𝛼)

𝑁−(𝛼)
[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)

+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
]

+ √
2

𝜋

ei𝑘𝑙

√𝑘𝑙

(𝑑 − 𝑐)2𝑒−𝑖𝜋/4

(𝛼 − 𝛼𝑛)

𝑘(𝑔𝑛 − i𝑘ℎ𝑛)

𝑀+(𝑘)(𝑘 + 𝛼𝑛)
{ℱ[𝑘𝑙(1

− 𝛼𝑛/𝑘)] − ℱ[𝑘𝑙(1 − 𝛼/𝑘)]}

+
ei3𝜋/4

√2𝜋

𝑒𝑖𝑘𝑙

√𝑘𝑙

(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑘𝑐(𝑑 − 𝑐)𝑁+(𝛼𝑛)

𝛼𝑛𝑑(𝑘 + 𝛼𝑛)

𝑁+(𝑘)

𝑀+(𝑘)
{1

− ℱ[𝑘𝑙(1 − 𝛼/𝑘)]} 

(2.110) 

bulunur. Nihayet, (2.93), (2.109) ve (2.110) sonuçlarının (2.78) ifadesinde yerine 

konmasıyla 𝑃(2)(𝛼) için 
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𝑃(2)(𝛼)

= −
𝑈1𝑁−(𝑘 cos𝜙1)e

i𝛼𝑙

𝑁−(𝛼)(𝛼 − 𝑘 cos𝜙1)
+
𝑈1𝑀−(𝑘 cos𝜙1)e

i𝑘𝑙 cos𝜙1

𝑀−(𝛼)(𝛼 − 𝑘 cos𝜙1)

−
𝑈1𝑁−(𝑘 cos𝜙1)

𝑀−(𝛼)

𝜋

𝑑2
∑

𝑛

𝛽𝑛

𝑁+(𝛽𝑛)

𝑀+(𝛽𝑛)

sin (
𝑛𝜋𝑐
𝑑
) ei

𝑛𝜋𝑐
𝑑 ei𝛽𝑛𝑙

(𝛽𝑛 − 𝛼)(𝛽𝑛 − 𝑘 cos𝜙1)

∞

𝑛=1

−
𝑈1𝑁−(𝑘 cos𝜙1)

𝑀−(𝛼)
√
2

𝜋

𝑘𝑐(𝑑 − 𝑐)

𝑑

eik𝑙

√𝑘𝑙

e
i3𝜋
4

(𝛼 − 𝑘 cos𝜙1)

𝑁+(𝑘)

𝑀+(𝑘)
{ℱ[𝑘𝑙(1

− cos𝜙1)] − ℱ [𝑘𝑙 (1 −
𝛼

𝑘
)]}

+∑
(−1)𝑛𝛾𝑛
𝑀−(𝛼)

∞

𝑛=1

{
ei𝛽𝑛𝑙𝑀−(𝛽𝑛)(𝑝𝑛 − i𝛽𝑛𝑞𝑛)

2𝛽𝑛(𝛽𝑛 − 𝛼)

+
ei𝛼𝑙

(𝛼 + 𝛽𝑛)

𝑀−(𝛼)

𝑁−(𝛼)
[
(𝑝𝑛 − i𝛼𝑞𝑛)𝑁−(𝛼)

(𝛼 − 𝛽𝑛)
+
(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑁+(𝛽𝑛)

2𝛽𝑛
]

+ √
2

𝜋

ei𝑘𝑙

√𝑘𝑙

(𝑑 − 𝑐)2𝑒−
𝑖𝜋
4

(𝛼 − 𝛽𝑛)

𝑘(𝑝𝑛 − i𝑘𝑞𝑛)

𝑀+(𝑘)(𝑘 + 𝛽𝑛)
{ℱ [𝑘𝑙 (1 −

𝛽𝑛
𝑘
)]

− ℱ [𝑘𝑙 (1 −
𝛼

𝑘
)]}

+
e
i3𝜋
4

√2𝜋

𝑒𝑖𝑘𝑙

√𝑘𝑙

(𝑝𝑛 + i𝛽𝑛𝑞𝑛)𝑘𝑐(𝑑 − 𝑐)𝑁+(𝛽𝑛)

𝛽𝑛𝑑(𝑘 + 𝛽𝑛)

𝑁+(𝑘)

𝑀+(𝑘)
{1

− ℱ [𝑘𝑙 (1 −
𝛼

𝑘
)]}}

−
∑ (−1)𝑛𝐾𝑛
∞
𝑛=1

𝑀−(𝛼)
{
ei𝛼𝑛𝑙𝑀−(𝛼𝑛)(𝑔𝑛 − i𝛼𝑛ℎ𝑛)

2𝛼𝑛(𝛼𝑛 − 𝛼)

+
ei𝛼𝑙

(𝛼 + 𝛼𝑛)

𝑀−(𝛼)

𝑁−(𝛼)
[
(𝑔𝑛 − i𝛼ℎ𝑛)𝑁−(𝛼)

(𝛼 − 𝛼𝑛)
+
(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑁+(𝛼𝑛)

2𝛼𝑛
]

+ √
2

𝜋

ei𝑘𝑙

√𝑘𝑙

(𝑑 − 𝑐)2𝑒−𝑖𝜋/4

(𝛼 − 𝛼𝑛)

𝑘(𝑔𝑛 − i𝑘ℎ𝑛)

𝑀+(𝑘)(𝑘 + 𝛼𝑛)
{ℱ[𝑘𝑙(1 − 𝛼𝑛/𝑘)]

− ℱ[𝑘𝑙(1 − 𝛼/𝑘)]}

+
ei3𝜋/4

√2𝜋

𝑒𝑖𝑘𝑙

√𝑘𝑙

(𝑔𝑛 + i𝛼𝑛ℎ𝑛)𝑘𝑐(𝑑 − 𝑐)𝑁+(𝛼𝑛)

𝛼𝑛𝑑(𝑘 + 𝛼𝑛)

𝑁+(𝑘)

𝑀+(𝑘)
{1

− ℱ[𝑘𝑙(1 − 𝛼/𝑘)]}} +
1

2𝜋i
∫
ei𝜏𝑙𝑀−(𝜏)𝑉1(𝜏)

(𝜏 − 𝛼)𝑀−(𝛼)
d𝜏

ℒ+

 

(2.111) 

elde edilmiş olur. Öte yandan 𝑄(2)(𝛼) için de (2.69) ifadesi (2.72)’de yerine konur ve 
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𝑁−(𝛼)𝑄
(2)(𝛼) = −

1

2𝜋i
∫ e−i𝜏𝑙

𝑁−(𝜏)

𝑀−(𝜏)

𝑈2𝑀−(𝑘 cos𝜙2)

(𝜏 − 𝛼)(𝜏 − 𝑘 cos𝜙2)
d𝜏

ℒ+

+
1

2𝜋i
∫
e−i𝜏𝑙𝑁−(𝜏)𝑉2(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

+
1

2𝜋i
∫

e−i𝜏𝑙

(𝜏 − 𝛼)

𝑁−(𝜏)

𝑀−(𝜏)
∑(−1)𝑛

𝐾𝑛𝑓𝑛
(𝜏 + 𝛼𝑛)

[
𝑀−(𝜏)

(𝜏 − 𝛼𝑛)

∞

𝑛=1ℒ+

−
𝑀+(𝛼𝑛)

2𝛼𝑛
] d𝜏 

(2.112) 

eşitliğine ulaşılır. Yukarıdaki integrasyon eğrileri alt yarı-düzlemden kapatılır ve 

Jordan lemmasından yararlanılırsa, sağ yandaki birinci ve üçüncü integrallerin sıfıra 

eşit olacağı kolaylıkla görülür ve 

𝑄(2)(𝛼) =
1

2𝜋i𝑁−(𝛼)
∫
e−i𝜏𝑙𝑁−(𝜏)𝑉2(𝜏)

(𝜏 − 𝛼)
d𝜏

ℒ+

 
(2.113) 

bulunmuş olur. (2.63), (2.64), (2.111) ve (2.113) çözümlerinin (2.63) ve (2.64) 

ifadelerinde yerine konmasıyla 𝑃(𝛼) ve 𝑄(𝛼) fonksiyonları ikinci iterasyona kadar 

belirlenmiş olur.  Φ1(𝛼) ve Φ+(𝛼) fonksiyonları için ise 𝑃(𝛼) ve 𝑄(𝛼) için bulunan 

çözümlerin (2.25) ve (2.42) ile birlikte düşünülmesi yeterli olur. Bilinmeyen katsayılar 

𝑓𝑛, 𝑔𝑛, ℎ𝑛, 𝑝𝑛 ve 𝑞𝑛’leri elde edebilmek için  Φ1(𝛼) ve Φ+(𝛼) fonksiyonlarının (2.15), 

(2.16) ve (2.17)’ye konması ve ortaya çıkan lineer denklem sisteminin sayısal 

yöntemlerle çözülmesi gerekmektedir. Tam bir çözüm elde edebilmek için sözü geçen 

üç denklemin yanı sıra, fonksiyonların tanımlarından elde edilebilen 

𝑞𝑚 =
2

𝑑
sin(𝛾𝑚𝑐)∑

𝐾𝑛
𝐾𝑛2 − 𝛾𝑚2

∞

𝑛=1

 (2.114) 

ve 



35 

 

𝑝𝑚 =
2𝐾𝑚
(𝑑 − 𝑐)

∑
sin(𝛾𝑛𝑐)

𝐾𝑚2 − 𝛾𝑛2

∞

𝑛=1

 (2.115) 

ilişkilerinden de yararlanmak gerekmektedir. 

2.2. Alanın Analizi 

(2.2) denkleminde görülen 𝑢1(𝑥, 𝑦) saçılan alanı 

𝐹(𝛼, 𝑦) = ei𝐾(𝑦−𝑑) {Φ1(𝛼) + e
i𝛼𝑙Φ+(𝛼) − i𝑘𝑍0𝐼0

sin 𝐾(𝑦0 − 𝑑)

𝐾
ei𝛼𝑥0} (2.116) 

olmak üzere 

𝑢1(𝑥, 𝑦) =
1

2𝜋
∫ 𝐹(𝛼, 𝑦)ei𝛼𝑥d𝛼

ℒ

 (2.117) 

şeklinde tanımlanan ters Fourier dönüşümü ile hesaplanır. Φ1(𝛼) ve Φ+(𝛼) için 

bulunan çözümlerin yerine konması ve  

𝑥 = 𝑟 cos 𝜃 , 𝑦 − 𝑑 = 𝑟 sin 𝜃 

𝑥 − 𝑙 = 𝑟̃ cos 𝜃̃ , 𝑦 − 𝑑 = 𝑟̃ sin 𝜃 

𝑥0 − 𝑙 = 𝜌1 cos𝜙1 , 𝑦0 − 𝑑 = 𝜌1 sin𝜙1 

𝑥0 = 𝜌2 cos𝜙2 , 𝑦0 − 𝑑 = 𝜌2 sin 𝜙2 

(2.118) 

dönüşümlerinin uygulanmasıyla, (2.117) integrali semer noktası yöntemi yardımıyla 

asimptotik olarak değerlendirilebilir hale gelir. Böylelikle kırınan alan için 

𝒱 =
𝑘

√2𝜋
𝑒
𝑖3𝜋
4 sin 𝜃 [𝑀−(𝑘 cos 𝜃)]

2𝑃(−𝑘 cos 𝜃)
ei𝑘𝑟

√𝑘𝑟
 (2.116) 

olmak üzere 
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𝑢1
𝑑

≅
𝑒
𝑖3𝜋
4 𝑈2

√2𝜋

sin 𝜃𝑀−(𝑘 cos 𝜃)𝑀−(𝑘 cos𝜙2)

(cos 𝜃 + cos𝜙2)

ei𝑘𝑟

√𝑘𝑟

+ℋ(cos𝜙1 − cos𝜙2)
𝑒
𝑖3𝜋
4 𝑈1

√2𝜋

sin 𝜃̃ 𝑁−(𝑘 cos 𝜃̃)𝑁−(𝑘 cos𝜙1)

(cos 𝜃̃ + cos𝜙1)

ei𝑘𝑟̃

√𝑘𝑟̃

+
𝑘𝑒

𝑖3𝜋
4 sin 𝜃𝑀−(𝑘 cos 𝜃)

2√2𝜋

ei𝑘𝑟

√𝑘𝑟
∑

(−1)𝑛𝐾𝑛𝑀+(𝛼𝑛)

𝛼𝑛(𝛼𝑛 − 𝑘 cos 𝜃)

∞

𝑛=1

+
𝑘𝑒

𝑖3𝜋
4 sin 𝜃̃ 𝑁−(𝑘 cos 𝜃̃)

2√2𝜋

ei𝑘𝑟̃

√𝑘𝑟̃
∑

(−1)𝑛𝛾𝑛𝑁+(𝛽𝑛)(𝑝𝑛 + i𝛽𝑛𝑞𝑛)

𝛽𝑛(𝛽𝑛 − 𝑘 cos 𝜃̃)

∞

𝑛=1

− 𝒱∑
(−1)𝑛𝐾𝑛𝑁+(𝛼𝑛)(𝑔𝑛 + i𝛼𝑛ℎ𝑛)

𝛼𝑛(𝛼𝑛 − 𝑘 cos 𝜃̃)

∞

𝑛=1

 

(2.117) 

elde edilmiş olur. 
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3. SAYISAL SONUÇLAR 

İkinci bölümde elde edilen kırınan alanın, farklı basamak süreksizliği parametreleri 

olan genişlik 𝑙 ve yükseklikler 𝑐 ve 𝑑 (bkz. Şekil 2.1) ile nasıl değişim gösterdiği, 𝜙 =

arctan(𝑦/𝑥) ∈ [15°, 165°] gözlem açısı aralığı için incelenmiş, yapılan sayısal 

hesaplamalara ilişkin sonuçlar bu bölümde grafiklerle sunulmuştur. Tüm analizlerde, 

𝜆 monokromatik çizgisel kaynağa ilişkin dalga boyu olmak üzere, 𝑘 = 2𝜋/𝜆, 𝑥0 =

2𝜆, 𝑦0 = 𝜆 > 𝑑 değerleri dikkate alınmştır. Ayrıca, kırınan alanının genliğinin birinci 

ve ikinci mertebe kırınım katkılarından oluştuğu düşünülmüştür. Öncelikle, mevcut 

çalışmada öne atılan konvansiyonel olmayan yaklaşımın Doğan vd. yaklaşımı [5] ile 

karşılaştırılması gerçekleştirilmiştir. Bu karşılaştırmaya ilişkin sonuçlar Şekil 4.1’de 

görülmektedir. Şekilden de anlaşılacağı gibi, mevcut çalışmadaki yaklaşım ile hem 

ancak sayısal olarak değerlendirilebildiği için hesap yükü getiren bir kesim çizgisi 

integralinden kurtulunmuş hem de daha uniform bir sonuç elde edilebilmiştir. 

Aralarındaki küçük farklar, yeni yaklaşımda bahsi geçen kesim çizgisi integralinin 

bulunmamasından kaynaklanmaktadır. 

Diğer yandan, Şekil 4.2’de kırınan alanın genliğinin, 𝑑/𝑐 = 2 ve 𝑑 = 𝜆/3 için 

basamak genişliği 𝑙 ile değişimi gösterilmiştir. Şekilde görüldüğü üzere, kırınan alanın 

genliğindeki salınım, 𝑙 değerinin artmasıyla azalmaktadır. Şekil 4.3’te ise 𝐿 = 9𝜆 ve 

𝑑 = 𝜆/3 için, kırınan alanın genliğinin 𝑑/𝑐 oranının farklı değerleri için aldığı 

değerler sunulmuştur. Bu oranın artması durumunda kırınan alanın genliğinin de arttığı 

gözlemlenmiştir. Son olarak, Şekil 4.4’te kırınan alanın genliğinin basamak yüksekliği 

𝑑 ile arasındaki ilişki görülmektedir. Burada da 𝑑/𝑐 = 2 ve 𝐿 = 9𝜆 dikkate alınmıştır. 

𝑑 değerinin azalmasıyla kırınan alanın genliğinin de azaldığı kolayca anlaşılmaktadır.  
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Şekil 4.1: Bu çalışmada sunulan yaklaşım ile Doğan vd. yaklaşımının [5] 

karşılaştırması. 

 

 

Şekil 4.2: Kırınan alanın genliğinin basamak genişliği 𝑙 ile değişimi. 
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Şekil 4.3: Kırınan alanın genliğinin 𝑑/𝑐 oranı ile değişimi. 

 

 

Şekil 4.4: Kırınan alanın genliğinin 𝑑 ile değişimi. 
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4. SONUÇLAR VE DEĞERLENDİRMELER 

Bu çalışmada, bir çizgisel kaynaktan gelen monokromatik elektromanyetik dalgaların 

mükemmel iletken ardışık basamak süreksizliklerinden saçılması sırasında karşılaşılan 

üçüncü türden Modifiye Wiener-Hopf denkleminin çözümünde, faktorizasyon 

prosedüründe tümü alt yarı-düzlemde regüler olan fonksiyonların dikkate alınmasına 

dayanan alışılmışın dışında yenilikçi bir yaklaşım sunulmuştur. Bu yaklaşım ile 

problem ikinci türden kuple Fredholm integral denkleminin çözümüne indirgenirken, 

klasik yaklaşımda karşılaşılan ve ancak sayısal olarak değerlendirilebilen bir kesim 

çizgisi integralinden kurtulunmuştur.  Söz konusu integral denklemler asimptotik 

olarak çözülmüş ve kırınan alan elde edilmiştir. Bu çalışmadaki konvansiyonel 

olmayan yaklaşım ile klasik yaklaşım karşılaştırıldığında, yeni yaklaşımın daha 

uniform sonuçlar verdiği ve klasik yaklaşıma ait çözümde sebebi açıklanamayan bir 

süreksizlikten kaçınmayı mümkün kıldığı görülmüştür. Ayrıca, basamak 

süreksizliklerinin yüksekliği ve genişliği gibi çeşitli parametrelerin kırınım olayı 

üzerindeki etkileri de sunulmuştur. 
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