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OZET
Bu tez ¢alismasinda, elektromanyetik dalgalarin ardisik basamak siireksizliklerinden
kirinimi analitik olarak incelenmis ve {igiincii tirden Modifiye Wiener-Hopf (MWH)
denklemlerinin ¢oziimili i¢in yeni bir yontem Onerilmistir. Wiener-Hopf teknigi,
elektromanyetik sagilma problemlerinin analitik ¢éziimiine olanak tantyan giiglii bir
yontemdir. Ancak, iglincii tirden MWH denklemlerinin ¢oziimiinde karsilasilan
kesim ¢izgisi integralleri genellikle yalnizca sayisal olarak degerlendirilebilmektedir.
Bu calismada, konvansiyonel olmayan bir faktorizasyon yaklasimi benimsenerek bu
tiir integrallerden kaginilmis ve daha kararl bir analitik ¢6ziim elde edilmistir.
Onerilen yéntem ile klasik yaklasimlar karsilastirilmis ve sayisal analizler, yeni
yontemin hem hesaplama siiresini azalttiini hem de daha istikrarli sonuglar
sagladigini gostermistir. Calisma kapsaminda, basamak siireksizligi parametrelerinin
(basamak genisligi ve yiiksekligi) kirinim {izerindeki etkileri de incelenmis ve elde
edilen sonuglar grafiksel olarak sunulmustur.
Bu caligma, elektromanyetik kirinim analizlerinde daha etkin ve hesaplamasi kolay bir
yontem sunarak, radar kesit alan1t (RKA) analizi, anten tasarimi ve mikrodalga
miithendisligi gibi birgok alanda uygulanabilir potansiyel tagimaktadir.

Anahtar Kelimeler: Basamak siireksizligi, Modifiye Wiener-Hopf Denklemi
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ABSTRACT
In this dissertation, the diffraction of electromagnetic waves from successive step
discontinuities is analyzed analytically, and a novel approach is proposed for solving
third-kind Modified Wiener-Hopf (MWH) equations. The Wiener-Hopf technique is a
powerful method that enables the analytical solution of electromagnetic scattering
problems. However, the solution of third-kind MWH equations often involves branch-
cut integrals that can only be evaluated numerically. In this study, a non-conventional
factorization approach is adopted to eliminate the need for such integrals, leading to a
more stable analytical solution.
The proposed method is compared with conventional approaches, and numerical
analyses demonstrate that it not only reduces computation time but also provides more
stable results. Additionally, the effects of step discontinuity parameters, such as step
width and height, on diffraction are examined, and the obtained results are presented
graphically.
This study offers a more efficient and computationally feasible method for electromagnetic
diffraction analysis, with potential applications in radar cross-section (RCS) analysis, antenna
design, and microwave engineering.

Keywords: Step discontinuity, Modified Wiener-Hopf Equation.
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1. GIRIS

Elektromanyetik ve akustik dalgalarin sagilmasi problemlerinin analizinde bilinen
etkili matematiksel yontemlerin basinda Wiener-Hopf Teknigi gelmektedir [1]. Bu
teknik genel itibariyle karma siir deger problemlerinde belirli kosullar altinda kesin
¢Ozlim sunan bir yaklasimdir. Yaklasim temelde Helmholtz denklemi gibi, probleme
iliskin kismi tiirevli diferansiyel denkleme ve ¢oziilmesi istenen biiylikliiglin sagladig
sinir ve silireklilik kosullarina bir integral doniisiim uygulanmasina dayanir. Doniisiim
sonucunda kompleks diizlemin bir seridinde gegerli olan Wiener-Hopf denklemi elde
edilir ve denklem bilinen klasik Wiener-Hopf prosediiriiniin uygulanmasiyla ¢oziiliir.
Bu prosediir faktorizasyon ve dekompozisyonu takiben analitik devam ilkesi ve
Liouville teoreminin uygulanmasindan miitesekkildir. Sonunda Wiener-Hopf
denkleminin ¢0zlimiinden elde edilen fonksiyona ters integral doniisiim

uygulanmasiyla sagilan alanlar bulunmus olur.

Bazi 6zel geometrilerden kirinim incelenirken, bilinmeyen ve sirasiyla alt ve {ist yari
diizlemlerde regiiler olan ®_(a) ve @ (a) fonksiyonlari, M (a) ¢ekirdek fonksiyonu
ve dalganin kaynaginin katkisi olan h(a) sag yanindan miitesekkil klasik Wiener-Hopf

denklemi yapisi olan

M(@)®_(a) + @, (a) = h(a) (1.1)

yapisindan farkli olarak, Wiener-Hopf denklemlerinin bazi1 6zel halleri ile karsilagilir.
Bunlara genel olarak Modifiye Wiener-Hopf denklemi adi verilir. Bunlardan birincisi
bir seritten kirinimin analizinde karsilagilan birinci tiirden Modifiye Wiener-Hopf
denklemidir [2]. Burada, ®,(a) sonsuz hari¢ tim diizlemde regiiler olan bir tam

fonksiyon olmak iizere,

M(a)®;(a) + P_(a) + P, (a) = h(a) (1.2)

denklem formu ile karsilagilir. Yukaridaki Wiener-Hopf denkleminin ¢dziimiinde
klasik Wiener-Hopf prosediirii iki farkli adim halinde uygulanir. ilkinin faktorizasyon

agsamasinda,



M(a) = M_(a)M, () (1.3)

olmak tizere, tiim denklem 1/M_(a) ile carpilir ve diger asamalarin uygulanmasi
sonucunda bir integral denklem elde edilir. Ikinci adimin faktorizasyonunda ise tiim
denklem 1/M, (@) ile ¢arpilir ve buradan da bir baska integral denklem elde edilir.
Elde edilen birbirine kuple iki integral denklem, ikinci tiirden Fredholm tipinde bir
integral denklem teskil eder. Integrandlarin yapisina goére bu integral denklem
iterasyon vb. yontemlerle ¢oziilerek sonug elde edilmis olur. Problemin geometrisinde

serit yapisi yerine, basamak siireksizligi bulunursa, bu kez de
M@®_(@) +P4() = h(@ + ) gn(@) (1.4)
m=1

formunda bir denkleme ulasilir [3]. Bu denklem yapisina ikinci tiirden Modifiye
Wiener-Hopf denklemi adi verilir. Burada klasik Wiener-Hopf prosediiriiniin
uygulanmasiyla tek adimda ¢ézlime ulagilir. Son olarak, hem serit hem de basamak

stireksizligi yapist olmasi1 halinde elde edilen

M(@)®,(@) + _(a) + D, (@) = h(a) + Z g (@) (1.4)

yapisindaki denklemlere t¢iincii tiirden Modifiye Wiener-Hopf denklemi denir [4].
Burada da Wiener-Hopf prosediiriinin  iki adimda uygulanmast gerekir.
Konvansiyonel yaklasim denklemin, birinci tipten Modifiye Wiener-Hopf
denkleminde oldugu gibi bir kez alt yari-diizlemde regiiler olan 1/M_(«) ile daha
sonraki adimda ise st yari-diizlemde regiiler olan 1/M, («) ile ¢arpilmasiyla, ikinci

tiirden bir Fredholm integral denklemi elde etmektir.

Ucgiincii tiirden Modifiye Wiener-Hopf denklemine ulagilan problemlerden biri de
diizlemsel elektromanyetik dalgalarin ya da bir cizgisel kaynaktan gelen dalgalarin
ardigik basamak stireksizligine sahip bir geometriden kirinimi problemidir. Bir ¢izgisel
kaynaktan gelen dalgalarin dikkate alindigi problem, Dogan vd. tarafindan 2017
yilinda ¢alisilmis ve elde edilen Modifiye Wiener-Hopf denklemine konvansiyonel

yaklasimla Wiener-Hopf prosediirii uygulanmistir [5]. Bu prosediir sonucunda
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Fredholm integral denklemi elde edilirken, ayn1 zamanda, ¢6ziimii ancak sayisal
yontemlerle miimkiin olan bir kesim ¢izgisi integrali ile de karsilagilmistir. S6z konusu

calismada bu integral sayisal olarak hesaplanarak islemlere devam edilebilmistir.

Bu tez ¢alismasinda ise yukarida bahsi gecen ti¢giincii tiirden Wiener-Hopf denkleminin
¢oziimiinde konvansiyonel olmayan ve literatiirde bir benzerine rastlanmayan bir
yaklasim ile, iki adimin faktorizasyonunda da tiim denklem alt yari-diizlemde regiiler
olan bir fonksiyon ile ¢arpilmis ve bunun neticesinde sayisal olarak hesaplanmak
zorunda kalman kesim ¢izgisi integraline rastlanmadan ¢6ziim elde edilmistir. Bu
integrasyondan kag¢inabilmek elbette ¢6ziimiin hem daha hizli hem de daha dogru

olarak elde edilmesi anlamina gelmektedir.

Elektromanyetik dalgalarin cesitli zemin yiizeylerindeki dikdortgensel basamak
benzeri siireksizliklerden kiriniminin incelenmesi, radar kesit alan1 (RKA) analizi ve
bir¢ok mikrodalga miihendisligi uygulamalari igin kritik bir arastirma alanidir. Bu tiir
basamak siireksizligi problemlerine 6rnek olarak, Sommer ve Pathak'in geometrik
kirmim teorisini (GKT) kullanarak panel kapli kompakt menzil reflektorlerindeki

metalik bantlarin kirinimi problemini analiz ettikleri ¢aligmalar1 gosterilebilir [6].

Benzer bir basamak siireksizligi problemi, Johansen [7] tarafindan iki reaktif yar1
diizlemin birlegsmesiyle olusan reaktif bir basamagin yiizey dalgasiyla aydinlatilmasi
baglaminda ele alinmistir. Sonraki aragtirmalarin cogu, ayn1 empedans tiirline sahip iki
yar1 diizlemin, farkli empedans ve reaktif 6zelliklere sahip basamaklarla birlestigi
stireksizlik geometrilerinin diizlemsel dalga aydinlatmasi altindaki kirmimina
odaklanmistir. Bu konuda 6nemli katkilar, Biiyiikaksoy ve Birbir [8-9] ile Volakis ve
Ricoy [10] tarafindan saglanmistir. Calismalarinda, bu tiir siireksizliklerin kirinim
problemleri, genellikle ikinci tiirden Modifiye Wiener-Hopf denkleminin ¢dziimiine
indirgenmis ve farkli ylizey empedanslar1 ve basamak yiikseklikleri i¢in sayisal olarak

¢Ozilmiistiir.

Sonlu uzakliklardaki ¢izgisel kaynaklarin sagicilar iizerindeki etkilerini incelemek,
diizlemsel dalgalara kiyasla daha gercekei bir yaklagim sunmaktadir. Bu alandaki son
caligmalar arasinda, Ayub vd. [11] ile Ahmed [12] tarafindan gergeklestirilen ve
benzer geometrilerde yiiksek frekansli cizgisel kaynaklardan gelen dalgalarin

kirmimmini inceleyen arastirmalar bulunmaktadir; bu arastirmalar miikemmel



elektromanyetik iletken (PEMC) basamaklara iligkin kirmmim problemlerini

incelemislerdir.

Yukarida bahsedilen caligmalarin ¢ogu, asimetrik paralel iki yar1 diizlemin (tek
basamak siireksizligi) dik birlesimi olan geometrileri ele almaktadir. Ancak sagici iki
asimetrik yari diizlemin bir serit ile ayrildig: iki dik birlesime sahip oldugunda (gift
basamak siireksizligi) karmasiklik 6nemli Ol¢lide artar. Dogan vd. [5] tarafindan
sunulan ¢alisma, Sekil 2.1°de gosterilen, tiim yiizeylerin miikemmel iletken oldugu ve
z-eksenine paralel, zamana bagli harmonik bir ¢izgisel kaynak tarafindan
aydinlatildigt bu tiir basamak siireksizliklerinin tam bir analizini sunmasi agisindan
benzersizdir. [5]’te, yukarida bahsedilen sinir-deger problemini ¢6zmek igin yazarlar
once ilgili indirgenmis dalga denklemini Fourier integral doniisiimii ile ¢6ziip ardindan
iletken smir kosullarin1 doniisiim uzayinda ele alarak, problemi tiglincii tiir Modifiye
Wiener-Hopf denklemine indirgemislerdir. Bu denklem, iki ayr1 fonksiyon igin {ist ve
alt kompleks yari-diizlemlerde regiiler olacak faktorize edilerek ve Wiener-Hopf
prosediiriiniin diger adimlar1 uygulanarak iki adet integral denklem halinde
¢ozlilmistiir. Bu integral denklemlerin ¢6ziimleri ve dolayisiyla Modifiye Wiener-
Hopf denkleminin ¢dziimii, yalnizca sayisal olarak hesaplanabilen bir kesim ¢izgisi

integralini igermektedir.

Bu calismanin amaci, Sekil 2.1’de verilen ayn1 geometri i¢in yukarida bahsedilen
tiglincii tiirden Modifiye Wiener-Hopf denkleminin ¢dziimiine yonelik yenilikgi bir
yaklasimi incelemektir. Bu amagla, ele alinan Modifiye Wiener-Hopf denklemi, yine
ikinci tiirden kuple Fredholm integral denklemlerine indirgenmistir, ancak bu kez
faktorizasyon islemi her iki adimda da alt yari-diizlemde regiiler olan ifadelerle
yapilmustir. Klasik prosediirden farkli olan bu yeni yaklagim, [5]’te yalnizca sayisal
olarak degerlendirilebilen kesim ¢izgisi integralinin analitik olarak hesaplanabilmesini
saglamistir. Sonug olarak, kuple ikinci tiir Fredholm integral denklemleri, iteratif
olarak ¢oziilmiis, nihai ¢6ztim sonsuz bilinmeyenli bir lineer denklem sistemi

cinsinden elde edilmistir.

Bu baglamda bir sonraki bdliimde, bir ¢izgisel kaynaktan gelen dalganin ardisik
basamak siireksizligi yapisindan kirinimi probleminde ortaya ¢ikan iigiincii tiirden bir
Modifiye Wiener-Hopf denklemi ele alinmistir. Bu denklemin konvansiyonel olmayan

bir yaklagimla ¢6zlimii ayrintilari ile sunulmustur. Daha sonraki boliimde, elde edilen



¢coziime iligkin sayisal sonuclar incelenmistir. Son olarak dordiincii boliimde genel

degerlendirmeler belirtilmistir.



2. PROBLEMIN FORMULASYONU

Bu calismada, ardisik basamak siireksizligine sahip geometrilerden kirinim
problemlerinde karsilagilan tipten Modifiye Wiener-Hopf denklemler igin
konvansiyonel olmayan bir yaklagimla ¢6ziim gelistirilmistir. Ornegin, Dogan vd. nin,
Sekil 2.1°de goriildiigii gibi, uzaktaki bir ¢izgisel kaynaktan gelen dalgalarin ardigik

basamak siireksizliginden sagilmasini inceledikleri calismalarinda elde edilmis olan

P1(@) | i P+(@)
@ W @
= —2iK(a)C(a)

¥ n Knfn o Yn(Pn — iaqy) (2.1)
+ Z(—l) {—(az e : NN
| Kalgn— iah,a]}

(a? — az)

denklemi dikkate alinsin.

Y
U1($7y) o
J
............................................ (@).
L0s Yo
uZ("E7y)
d
(PEC)
'U,3(ZU, y)
C
U4(m’ y)
(PEC)
xr
1 (PEC)

Sekil 2.1: Problemin geometrisi.

Toplam alan u;(x,y)



(ul(x'y) Y > Yo, X € (_Oo’oo)

_ uz(x,y),d<y<y0,xe(—00,00) (22)
ur(x,y) = iu3(x,y) ,c<y<d,xe€(0,I
u,(x,y),0<y<d,x € (l,o)

olmak tizere, (2.1) denkleminde goriilen ®_(a), ®;(a) ve ®, (a), sirasiyla,

> @=| : %;“"’”eiaxdx, (2.3)
l
®,(a) = f u, (x, d)e'**dx (2.4)
0
ve
P, (a) = f oouz(x, d)el**=Ddx (2.5)
1

seklinde tanimlanmustir. K(a), K(a) = Vk? — a? ile belirli, Sekil 2.2’de gérildigi
gibi kesilmis olan kompleks a-diizleminde K (0) = k ile tanimlanmus, bilinen karekok
fonksiyonudur. Burada, w agisal frekans, c¢ 1gik hizi olmak iizere, k = w/c dalga

sayisidir. Yine (2.1) denkleminde goriilen ¢ekirdek fonksiyonlart M («) ve N(a),

M(a) = S0K (Iz‘gi‘; ~ I ik@i@-o (2.6)
ve
N(a) = %eim)d (2.7)
ile, C(a) ise



kZOIO . . 28
C = 90 Liaxgaik(@)(yo-d) (2.8)
() ZK(a)e e
ile belirlidir.
ImoeA
A
crller
_____________________________ — . !
e >
o Re &
- >
C
E+
____________________ .___________'__ - - ———
—k

Sekil 2.2: Kompleks a-diizlemi.

Bunlarin yani sira, (2.1) denkleminin sag yaninda f,, gn, h,, pn V€ g, katsayilar

goriilmektedir. Bunlar, Wiener-Hopf formiilasyonu neticesinde,

du3(0,y) _ ousz(,y)
F} ’ F}

fy) = 9 () = us(l,y) (2:9)

ile

ouy(l,
p0) =22 46 = u,Ly) (219

olmak tzere



fn d f(t)
[g"] =1 f g(t)|sin[K,(t — c)]dt (2.11)
th - c h(t)
ve
d
[5“] =§ f [28 sin(y,t) dt (2.12)
n 0

olarak belirlenmistir. Hem (2.1) Modifiye Wiener-Hopf denkleminde, hem de (2.11)

ve (2.12) esitliklerinde goriilen K,,’ler ve a;,’ler

nr
Kn = m, a, = MF n= 1,2, ey (213)

¥ ler ve B, ler ise

nm
Yn = 7, ﬁn = \/W' n= 1,2’ (2_14)

bicimindedir. (2.11) ve (2.12) ile tamiml1 katsayilar icin n = 1,2, ... olmak lizere,

. 2(—1 n+1Km
f, — el%l(g, —iayh,) = %q)l(an), (2.15)
fo — e nl(g. +iayh,) = —2(_1)n+1Kn¢ (—a,) (2.16)
n In n''n (d — C) 1 n
ve
2(—1 n+1 -
Pn — iBudn = %q)_k(ﬁn) (2.17)



bagintilar1 s6z konusudur. (2.1) Modifiye Wiener-Hopf denkleminin ¢6ziilmesiyle
@, (a) ve &, (a) yukaridaki bagmntilarda yerine konur ve boylece ilgili katsayilarin

coziilebilecegi bir lineer denklem sistemi elde edilir.

2.1. Konvansiyonel Olmayan Yaklasim ile WHD Co6ziimii

(2.1) denkleminin ¢oziimii i¢in M (a) ve N(a) ¢ekirdek fonksiyonlarinin

M(a) = M_(a)M, () (2.18)

ve

N(a) = N_(a)N, (@) (2.19)

bi¢giminde tanimlanmis ¢arpanlarina ihtiyag bulunmaktadir. Bu ¢arpanlar [13]’te de

goruldigi gibi, M () igin

i — K(a)(d—c) +iK (@)
sin[k(d — ¢)] . “n c 1n[“ ‘k “]

k (2.20)
ia(d-c)

- (d-c)
e T {1 C+1n[k(d B) +1 1_[(1+—)elamﬂc

m=1

M, (a) =

ve

M_(a) = M, (—a) (2.21)

N(a) i¢in

in(kd K(a)d n a+iK(a)
o [0 Sppepe .

(o]
1ad iad
Xem 1 C+1n | | (1+—>emn

m=1
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ve

N_(@) = N,(~a) (2.23)
seklindedir. Bu denklemlerde gériinen C biyiikligi ile C = 0.5772156649 ... Euler
sabiti kastedilmektedir. Bu bilgiler 1s181inda (2.1) Modifiye Wiener-Hopf denkleminin
her iki yan1 e 7'*'N_(«) ile carpilirsa

®1(a)  P,(a) —ia
@ + N. (@) + e 9N _(a)P_(a)

= —ZiK(a)C(a)e_i‘”N ()

e—ialN_ (a)

—ia n f el Vn(pn_iaCIn) (2'24)
" “‘)Z( et

_K (gn — lahn)]}

(az - an)

elde edilir. Burada

PO = (@ - a?)

®, (a) z( " Knfn (2.25)

tanimi yapilirsa (2.24) denklemi

—lal @ (a) —ial
N_(a)P(«a )+N @ + e N_(a)P_(a)
= —ikZyI,N_ (a)eia(xo—l)eiK(a)(J’o—d) (2.26)
C _1\n yn(pn - iQQn) _ Kn(gn - iahn)
#IL@ ) (D { @ FD) @) }

seklinde de yazilabilir. Bu esitligin sol yanindaki ikinci ve ii¢lincii terim, sirastyla, st
ve alt yari-diizlemlerde regiilerdir. Diger terimlerin ise dekompoze edilmeleri
gerekmektedir. S6z konusu dekompozisyon (ayristirma) islemi yapilacak olursa, sol

yandaki ilk terim i¢in
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e N_(a)P(a)

mi ) G- (2.27)

L [e"N-@P@

1 e IN_(7)P(1) q

2mi (t—a) OV
Lt

sag yandaki terimler igin ise

—ikZyIoN_(a)el@*o=DelK(@(o-a)

kZyl,  N_(1)el"®o=DelK@Go-d)
B _[ dr
(t—a) (2.28)

2mi
/a

kZyl,  N_(17)e™®0=DelKk@Go-d)
) j (t—a)

dr
2mi ’
L+

i (=)™ (pn — i€ gn)N_()
(a? - B7)
_ N D' [(pn — iag,)N_(a)
i (a+ fn) (@ —Brn) (2.29)
o Pn+ 1@V, (B)
26,
O D™ P+ Bu@) N (Ba)
L (a+ fr) 2Bn

ve
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(a? — a2)
(DK, I(gn — iahy)N_(@)
Lata) (a - an) (2.30)
(gn + ianh) N, (@)
+
20y
O (— 1)K, (g + i hy)N, ()
B ~ (a+ ay) 2a,

i (—1)"Kp(gy — iehy)N_(a)

yazilir. (2.27-2.30) denklemlerinin sag yanlarindaki ilk terimler alt yari-diizlemde,
ikinci terimler ise ist yari-diizlemde regiilerdir. Bu ifadeler (2.26) Wiener-Hopf
denklemine tasinir, iist yari-diizlemde regiiler olan ifadeler esitligin soluna, alt yari-

diizlemde regiiler olanlar ise esitligin sagina yazilirsa, sol yanda

(@), 1 [TIN@P@

¥i(@) = N, (a) T 27Ti£+ (t—a)

kZyly [ N_(z)e?®o=DeiK@o-a)
* - f dr

O (1) (D + 1Brgn) Ny (By)
+

(a + Bn) 2pn

_ (_1)nKn (gn + iafnh'n)N+ (a’n)
o] (a+ ay) 2a,

sag yanda

13



—itl
Y_(a) = % ¢ (IZ__(Z;D(T) dr — e “N_(a)P_(a)
Fa

dr

kZ,l, N_ (T)eir(xO —1) ik (T)(yo—a)
+ 2mi L[ (t—a)

o (=)™, [0y — iaq)N_(@)

L+pd| @5 (2.32)
N (Pn + 1Bnqn) N+ (Br)

2B,

- (= 1)K, [(gn — i )N_(@)

Li(atay) l (@ —ay)

(gn t+ iayhy)N, (an)l
+
20y

olmak lizere

¥, (@) = V(@ (2:33)

elde edilir. Yukaridaki esitlikte W, (a) ve W_(a), sirastyla, Im(a) > Im(—k) ile
tanimli Gist yari-diizlemde ve Im(a) < Im(k) ile tanimli alt yari-diizlemde regiiler olan
fonksiyonlardir. Im(—k) < Im(a) < Im(k) seridinde gegerli olan bu esitlik igin,

analitik devam ilkesinden yararlanarak

_(Y-(0) , Im(a) <Im(k) 2.34
“‘”‘{%(@ " Im(@) > Im(—k) (239

bigiminde bir W(a) tam fonksiyonu tanimlamak miimkiin olur. Liouville teoremi
geregi W(a) tam fonksiyonu |a| — oo i¢in bir sabite esitse tiim diizlemde o sabite esit

olacaktir. My (@) ve Ny (a)’nin |a| — oo i¢in davranislart

M. (a) = Ny(a) = 0(a"/?) (2.35)

seklindedir. Ote yandan x — [* ve x — 07 i¢in aynit kosullar1 geregi, sirasiyla
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up (x, d) = O(|x|*/?) (2.36)

ve

0
31200 d) = 0(1xI77) (2:37)
oldugundan, |a| — oo i¢in @, (a) ve ®_(a) nin davranislar1 i¢in, sirasiyla,

d>+(a) — 0(a—5/3) (2.38)
ve
q)_(a) — 0(a—2/3) (2.39)

belirlenir. Bunlar (2.34) taniminda goriilen W_(a) ve W, (a)’nin acik ifadelerinde
dikkate alinirsa, Liouville teoremi uyarinca once W(a) = 0, dolayisiyla sonra

Y_(a) = 0 ve W, (a) = 0 sonucu elde edilir. Buradan, kolaylikla

_ kZOIO N_ (T)ei‘r(xo—l) eiK(T)(YO_d) (240)
Ju(e) = 21l L[ (t—a) dz
olmak iizere
b, () 1 e TIN_(7)P(7)
N, (@) _ﬁﬁ G- G h@
— N (_1)nyn (pn + i.BnQn)N+ (.Bn) (2-41)
Lia+h 2B
O (= 1)K, (g + ictahy) Ny (@)
Llara) 24

bulunur. Yukaridaki denklem, basit bir diizenleme ile

15



(2.42)

_ CD+(“) - n Vn(pn - ia%‘z) Kn(gn - iahn)
0@ =Figy 2LV e
olmak uzere
1 —i‘rlN_ )2
M (@0@ =~ [ b (@)
L+
O EDYy l(pn — iagn)N_(a)
L+ @B
(Pn + iBnqn) N+ (Br) (2.43)
* 2B ]
O (—1)"K, [(gn — iah)N_(@)
"Lt a l (a—a)
N (gn + ianhn)N+(an)
20y

seklinde yazilabilir. Burada goziiken J;(a) integrali semer noktasi yontemi ile
asimptotik olarak degerlendirilebilir. Buna gére T = kcost, xo — [ = p; cos ¢p; ve

Yo — d = p; sin ¢, olarak yerine konursa

k2Z,I,  N_(k cost)elkPicos(t=01) gin ¢
B =2 | (e cost) it (2.44)
27i (kcost —a)
Iy

elde edilir. Acgikca goriildiigii gibi semer noktasi t = ¢;’de olan bu integralin
asimptotik ¢oziimii bazi elementer islemler sonucu

J1(@) . %
- in/ o eP1 N_(k cos ¢y) sin ¢, (2.45)
Nz Jkp, (@ —kcosey)

+ikZyloN_ (a)eipl[a cos p1+K(a)sinpq]qr (Re {aI‘CCOS (%)} - ¢1)

olur. Burada gorilen H(.) fonksiyonu,

bilinen Heaviside birim basamak
fonksiyonudur. Boylece (2.43) denklemi
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N_(a)Q(a)

1 (e ™N_(0)P(7) T elkP1 N_(k cos ¢;) sin ¢,

T 2mi ,f (t—a) de kZZOIO [kp, (a—kcosg;)
Lt

—ikZOION_(a)eipl[“C°S¢1+K(“)S‘n¢’1]7-[ (Re {arccos( )} ¢1)
- (-1, [<pn —iagIN-(@)  @n+ iﬁnqn>1v+(ﬁn>l

(2.46)

L@+ @B 2fn
(= 1)Ky, [(gn — i@h)N_(@)  (gn + ianhy)N, (@)
— (a+ a,) I (a —a,) + 2a, l

haline gelir. Benzer bir yaklasimla, (2.1) Modifiye Wiener-Hopf denkleminin her iki
yant M_(a) ile garpilirsa

P1(@) | M- (@), (@)
M+((l) + e ZW & M_(a)QD_(a)

= —2iK () C(a)M_(a)

. O iag,, (2.47)
+M_ (a)Z( 1)”{ﬁ+em %
_K (gn lahn)]}

(az - an)

elde edilir. Bu ifade (2.42) yardimiyla

@, (a) + el M_(a)Q(a) + M_(a)P_(a)
M, (a) 249

— _2iK(2)C(a)M_(a) + M_ (a)Z( 1)n—f

i)

haline gelir. Yukaridaki ifadenin sol yanindaki ilk ve tiglincii terimler, sirasiyla, iist ve
alt yari-diizlemde regiilerdirler. Diger terimlerin de {ist ve alt yari-diizlemde regiiler
parcalara ayrilabilmesi i¢in dekompozisyon uygulanmasi gerekmektedir. Buna gore

s0z konusu terimlerin dekompozisyonu,
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e M_(a)Q(a)
1 [ e™"M_(DQ(1) :

i) Gma (2.49)

1 [e"M-D0@ ,

2mi (t—a)
I+

)

2iK(a)C(a)M_(a)

kZl, J M_ (*[)eifxo elK(@)(yo—a)
- dr

L (t—a) (2.50)
kZOIO M_(T)eiTxoeiK(T)(J’O—d)
~om J (t—a) i
Lt
ve
Kn nM—

Z(_l)n (a]; a(:l)
n=1 n

) o (DK, f,, | M_(a) +M+(an) (2.51)

= L (a+a,) |[(@—a,) 2a,

_ N (_1)nannM+(an)
L (a+a,) 2a,

bicimindedir. Bunlarin (2.48) denkleminde yerine konmasi ve {ist yari-diizlemde
regiiler terimlerin esitligin soluna, alt yari-diizlemde regiiler olanlarin ise esitligin

sagina yazilmasiyla
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o, (a)  kZyl, M_(T)eifxoeiK(T)(J/o—d)d
M, (a) 2 J; (1 —a) T
1 eitlp (1)0(7) > (—D)"K, f, M, (at,,)
2mi (t—a) (a+a,) 2a,
L+ n=1
- 1 [ e"M_(DQ() (2.52)
— —M_(@)0_(a) +%L[ 20
kZyl, M_ (T)eifxoeiK(T)(YO—d)
- L[ = dr
N (_1)nann M_(a) M, (an)
n=1 (CZ + an) (CZ - dn) 2a,

bulunur. (2.52)’nin sol yani i¢in

B, (a) = ®i(a)  kZol, f M_(7)ei™o0elK(®)(3o=d) -
M, (a) 21 (t—a) o5
1 [T @e 1)K £, M, (@)
21i (T — a) (a n an) Zan
L+ ]
sag yan1 igin ise
P 1 ity
P _(a) = -M_(a)®_(a) + — f e (1)Q (1) .
2mi (T—a)
s
kZyl, f M_ (T)eirxoeiK(r)(yO_d) 25
- dr
2T (T . a)
2

Z (=D"Knfn | M_(a) N M, (ay)
(a+a,) [(a—a,) 2a,

n=1
yazilirsa, Im(—k) < Im(a) < Im(k) seridinde gegerli olan (2.52) denklemi igin

P, (a) = P_(a) (2.55)
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ifadesine ulagilir. Analitik devam ilkesinden yararlanarak

= v [P_(a) , Im(a)<Im(k) (2.56)
¥(a) = {ff’+ (o) , Im(a)>Im(=k)

biciminde bir P(a) tam fonksiyonu tanimlamak miimkiin olur. Liouville teoremi
geregi, tipki (2.34) ile tanimli W () fonksiyonunda oldugu gibi, ¥ () tam fonksiyonu
da, |a| — oo igin bir sabite esitse tiim diizlemde o sabite esit olacaktir. Burada da
My(a) ve Ni(a)’nn |a| - oo igin davranislari ve ayrit kosullarinin dikkate
alinmasiyla, ¥(a) = 0, dolayisiyla, P_(a) = 0 ve P_(a) = 0 oldugu belirlenir. Buna

gore

_kZoly [ M_ (7)e!™0elK (D) (o—d) (2.57)
(@) = =~ l Yy
olmak tizere
il 2 (—1)"
®,(a) _ 1 e M_(7)Q(7) dt + J,(a) — (—D"Knfrn My () (2.58)

M (a)  2mi (t—a) (a+a, 2a,
L+ n=1

olacaktir. Ayrica, (2.25) tanim1 yardimiyla basit bir diizenleme yapilirsa, (2.58) ifadesi

1 itl M_
M_(@)P(a) = —5— ¢ i ffzg(r)
L+

dr + J,(a)
(2.59)

O Kefy [ M@ Mi(a)
‘;(‘” @ta)|@—a) " za,

haline gelir. Yine J;(a) integraline benzer sekilde, yukaridaki J,(a) integrali de

asimptotik olarak degerlendirilebilir. Buna gore, T = k cost, x, = p, cos ¢, Ve yo —

d = p, sin ¢, doniigiimleri yardimiyla, 6nce
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k?Z,1, f M_(k cos t)eikrzcos(t=¢2) 5in ¢ it (2.60)

Ja(a) = 27 2 (kcost — a)

yazilir, ardindan t = ¢, de bulunan semer noktasindan yararlanarak

J2 (05)_ =

in )
e K27 1 elkP2 M_(k cos ¢,) sin ¢,
- \2m OOJkp2 (a — k cos )

— ikZyloM_ (a)elP2lacos b2 +K(a) sin bzl gy (Re {arccos (%)} — (j)z)

(2.61)

elde edilir. Bunun (2.59) esitliginde yerine konmasiyla

M_(a)P(a)
1 el M_(1)Q(7)
dr

21 A (t—a)
£
e~ im/4 K27 ] e*P2 M_(k cos ¢,) sin ¢,
V2m 0 0,/kp2 (a — k cos¢,)
— ikZoloM_(a)eiPzla cos b2 +K(@)sin $:lgp (Re {arccos (%)} — (])2)

+ (2.62)

o K [M(@ M(a)
_;(_1) (a+ ay,) (a—an)+ 2ay, l

bulunur. Boylece problemin ¢oziimii (2.46) ve (2.62) denklemlerinden miitesekkil,
ikinci tipten bir Fredholm integral denkleminin ¢dziimiine indirgenmis olur. Bu
indirgeme esnasinda uygulanan konvansiyonel olmayan prosediir sayesinde, sayisal
olarak hesaplanmak zorunda olunan herhangi bir kesim c¢izgisi integrali karsimiza
cikmamistir. (2.46) ve (2.62)’den olusan integral denklem [14]’te ayrintilari

aciklanmis olan iteratif bir yontem ile

P(a) = PY(a) + PO (a) + - (2.63)

ve
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(@) = QW (@) + QP (@) + -- (2.64)

formunda ¢oziilebilir. Birinci iterasyon ¢oziimii olarak (2.46) ve (2.62) esitliklerinin
sag yanlarinda bulunan, integral icermeyen serbest terimler kabul edilir. Daha sonra
birinci iterasyon c¢oOziimlerinin integrallerde yerine konmasiyla ikinci iterasyon
¢oziimleri elde edilir. Bu yaklasimla, dilenirse, ii¢lincii, dordiincii, iterasyonlar da
hesaplanabilir. Gegmis calismalar géstermistir ki, ikinci iterasyondan sonra gelecek
katkilar ithmal edilebilecek kadar kiiclik olmaktadir. Bu nedenle bu calismada da
yalnizca birinci ve ikinci iterasyon ¢oziimleri tiiretilecektir. Bu baglamde birinci

iterasyon ¢ozlimleri i¢in

PW(a) = ' k2Z,1 e'P2 M_(k cos ¢,) sin ¢,
VZr O Jkp, M_(a)(a — k cos ¢,)
o ip2[a cos ¢, +K(a) sin ¢;] a 265
1kZoIoeooz 2 2lgr (Re {arccos (k)} (2.65)
K 1 M, («
— ¢2) T Z(_l)n nfn - +( n)
] (a+ay) |[(@—an) 2a,M_(a)
ve
Q) = S 2z, S N-(k cospo) sin
- 040

Ner \/k—plN— (a)(a — k cos ¢,)

— ikZ, I e'Prlacos é1+K(a)sin byl gy (Re {arccos (%)}

- ¢>1) (2.66)
N DM [0n = iq) | @+ iBadu)Ne (B)
Li(a+ )| (@=Bo) 2B,N_(a)
O (1)K, [(gn = iahy) | (gn + ianhy) N, ()
Liata)| (@—ay 2a,N_(a)

yazilir. Bu ifadeler i¢in, j = 1,2 olmak {izere

—im/4 eikpj

U = k2Z,l,——sin ¢; (2.67)
Jj 0 0\/k_pj d)]

V2r
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ve
=i ip; ' ing; ¢ 2.68
V]((Z) — lkZOIOelp][a cos ¢ +K(a) Sln¢]]j—[ (Re {arccos (E)} — d)]) ( )
konursa, (2.65) ve (2.66), sirasiyla,

U,M_(k cos ¢,)

(€Y) — —
G M_ (a)goa — kcos¢,) V(@) (2.69)
oK 1 M, (a)
a ; =1 (a + ay,) l(a —a,) 2a,M_(a)
ve
QW (a) = RSPy

N_(a)(a — k cos ¢,)

C (_1)11]/” (pn - iaCIn) (pn + iﬁnqn)N+ (,Bn)
- 2.70
LGB @B | 26.N-@ | e
C (_1)nKn (gn F iahn) (gn + iO'-'nh'n)N+ (an)
o] (a+ay)| (a—ay) 2a,N_(a) l
olur. Elde edilen birinci iterasyon ¢oziimleri
1 (M (DQW(1) (2.71)
M_(@)PP(a) = —ﬁ[[ e
ve
1 (e _@PD() (2.72)
N_(2)Q®@(a) = _ﬁﬁ - dr

integrallerinde yerine konarak ikinci iterasyon ¢oziimlerine ulasilir. Ilk olarak, P@(a)
¢oziimiinii elde edilmeye cahisilsin. Q™ () ¢oziimii (2.71) ifadesinin sag yanindaki

integralde yerine kondugunda
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1 [ M_(t) UN_(k cos ¢,)e'"dr
_ﬁ“ N_(t) (t—a)(t — kcos¢,)

M_(0)PP(a) =

1 e M_(D)Vy (1)
dr

ﬁ“ (t—a)
LM N D [0 — i)
27TiLJr (t—a)N_(7) ~ (t+Bn) (t—fB,) (2.73)

N (Pn +1Bnqn) N+ (Br)

25, dt
1 [ "M (1) O (-, [N-(2)(gn — ithy)
o) G-oON.O4Gra) | -
N (gn + ianhn)N+(an)] de
2a,
elde edilir. Burada,
M_(D) M@ N, (D) 2.71)
N_(r)  N(v) M, (7)
oldugu dikkate alinarak
1 [ M()N.(7) eltldr (2.74)
h(a) = ﬁl N(@) M, (1) (t — a)(t —k cos ¢,)

fon(@) = o | e M@ N l(pn—irqn)lv_(r)
725 | GG B NO D[ G-f) @)
N (Pn +iﬁgzn)N+(ﬁn)l i

ve
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; el M(7) Ny(z) [N_(7)(gn — iThy)
n(@) = 2mi f (T —a)(T+ a,) N(z) My (2) (Tt —ay) (2.77)
N (gn +ianhy)N, (an)l
2a,

olmak lzere

M_(@PD(@) = ~UN_(kcos pR(@) + ) (=1 (@)

n=1 2.78)
1 iTlM_ V.
Z( 1"y Ly (@) + 5 f ¢ e (_Tl)l(r) dr

yazilabilir. I; (a), L, (@) Ve I, (a) integralleri birer birer degerlendirilerek P® ()
belirlenir. Buna gore, ilk olarak I, (a) ele alinsin. Jordan lemmasindan yararlanmak

icin buradaki integrasyon egrisi iist yari-diizlem iizerinden kapatilirsa

I;(a) = Rez(a) + Rez(k cos ¢,) + z Rez(B,)
n=1 (2.79)

1 J‘ M(t) N, (7) el’ldr

2mi I N(t) M, (1) (t — a)(t — k cos ¢,)

e +ey
olur. Burada Rez(a), 7 = a noktasinda bulunan basit kutba iliskin rezidiyii
gostermektedir. Cf ve Gy egrileri Sekil 2.2°de gosterilmektedir. (2.79) esitliginin sag

yanindaki rezidiiler, kolaylikla,

_ M_(a) elet (2.80)
Rez(a) = N_(a) (@ — k cos ¢,)
ikl cos ¢4
Rez(k cos ;) = _ M_(kcos¢y) e (2.81)

N_(k cos ¢1) (a — k cos ¢;)

ve
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N R _m o N (By) s (%) @ el (2.82)
nZl eZ(’Bn) - ﬁn=1ﬁ_nM+(ﬁn) (ﬁn - a)(ﬁn — k cos ¢1)

olarak elde edilir. Sag yandaki son terimde goriilen integral, Sekil 2.2°de goriilen {ist

yari-diizlemdeki kesim ¢izgisi lizerinden alinacaktir. Buna gore,

K(T)l‘recf = —K(7) I‘recl_ (2.83)
oldugundan
M(7) __sin[K(d — ©)] sin(Kc) (284)
NOleerser sin(Kd) |

bulunur ve s6z konusu integral

sin[K(d —c¢)] Kd sin(Kc) N,.(7) c(d —c) N (2.85)

Wy —
T, = K(d—c) sin(Kd) Kc M,.(1) d

olmak tzere

. 1 1
7 (Ve | dr (2:86)

1
_n(a—kcosflh)j —a) (t—kcos¢,)
cf

bigiminde diizenlenebilir. Cf iizerinde T = k + te!™? oldugu dikkate alimirsa
yukaridaki integral
@i37/4 ikl 1
® : —tl
T (k +it)VVte [ -
n(a—keos¢)) [t — k(1= a/k)] (2.87)

! d
" [t — ik(1— cos gbl)]] t
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haline gelir. [ yeterince biiyiik oldugunda T+(1) (k + it) fonksiyonunun bu integrale en

biiyiik katkist t = 0 ug noktasi civarindan gelir. Dolayisiyla da,

N.(k) c(d—c)
Wy = 2+ (2.88)
7 (k) RO 2k
olmak iizere
Qi37/4 ikl < 1
€Y —tl
TP (k J Vte [ .
T —keosgn + ) [t — k(1 — a/k)] (2.89)
L
[t —ik(1 — cos¢,)]
yazmak miimkiindiir.
F(z) = —2ie %z f el dx (2.90)
vz
seklinde taniml Fresnel integralleri i¢in yazilan
%) \/E .
—tl dt = \/: 1 — F(izl (291)
fe t+2) g L1 = D)
0
bagintisindan yararlanilirsa integralin ¢ozimii
1 J M(t) N, (1) eltldr
2mi N(@) M, (1) (t—a)(t — kcos¢,)
ci+er (2.92)

_ ikl i3m/4
_ \/%kc(d c)e e N, (k) (Fla

d  Vkl(a—kcos¢,) M, (k)
—cos )] = FlkI(1 — a/l)]}

olarak elde edilir. Sonug olarak, I; (a)
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M_(CZ) eiozl M._ (k cos ¢1) eikl cos ¢q
N_(a) (a — k cos ¢;) B N_(k cos ¢;) (@ — k cos ¢p,)
o0 . w iﬂ iBnl
T n N.(B,) sm(d)e da ern
T @ Ly B (B (B — @) (B — k05 1) (293)
2 ke(d —c¢) elkt el3m/4 N, (k)
+ T d Vkl (@ — k cos ¢p1) M, (k)
—cos p1)] — Flkl(1 — a/k)]}

Ii(a) =

{Flkl(1

seklinde bulunur. I,, (@) i¢in ise

Iyn(a)

) 1 el'!M (1) (P — i7qy)
= Rez(B,) + Rez(a) + 2m y t—a)(T+ B IM:(r) (-, & (2.94)

Gy +Cq

oL nt iBndn)N. (Bn)
c

el?! M(t) N, (7) q
2mi 2B, f
w

DT+ B N My(0)

+
1161

yazilabilir. S6z konusu rezidiiler

i[”nl]w_ n n — i 'nOn
Rez(B,) = - zéﬁ(/)g(p_ a)‘ﬁ In) (2.95)
ve
Rez(a) = el M_ (a) (pn - iaqn)N— (a) (pn + iﬁnqn)N+ (.Bn) (296)

@+BIN(@)| @-Bo 2B

seklindedir. Sag yandaki kesim ¢izgisi integrallerinden birincisi I; («) i¢in yapilana

benzer sekilde degerlendirilirse
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sin[K(d — ¢)] (eiK(d—C) _ e—iK(d—c))

M(t) |TEC1++C1_ = K (2.97)
) sinK(d — ¢) 2 .
= 2i(d — ¢)? [Wl Vk+ 1tk -1,
dolayisiyla
- —irq, i K(d — O
70 = | ka=o ] o

olmak lizere

eiTlM(T) (pn 4 iTQn) d
N A e Ry AT NO N CEy S
_ (d=-o)? @) it (2.99)
“aepn ) O g
e
(T - ﬁn) ‘

yazilabilir. Burada da, C; iizerinde 7 = k + te'™? oldugunun dikkate alinmasiyla

1 f e'M(0)(p, —itq,) dr

2mi o (t—a) T+ B )M, (7)) (t — Br)
_(d — c)2eim/teit - @ . Vet 5 100
T in(a— B fT+ (4o [t—ik(1-F)] (2100

\/ze—tl

()

olur. Yine, I’nin yeterince biiyiik olmasi halinde sz)(k + it) fonksiyonunun bu

dt

integrale en biiytik katkis1 t = 0 ug noktas1 civarindan gelir ve
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1 iﬂM(T) (Pn — i7qn) dt

2mi (t—a)(T+ B )M, (7) (t— Br)

Ci+C1
(d C)Z 171/4 ikl \/_e—tl
= k 2.101
| =
JViet
- dt
)
yazilir.
V2k(py — k) (2.102)
@y — .
ER RN TROICEY
esitligi ve (2.91) iliskisi yardimiyla
1 "M@ (p, —itqy)  dr
2mi (T — )T+ BM (1) (T — Bn)
ci+er (2.103)

2™ (d— o)’ k(p, — ikqn)
vkl (@a—pn) Mo(k)(k+B,)
X {F[kl(1 = Bp/l)] — FIkI(1 — a/K)]}

bulunur. (2.94) esitliginin sag yanindaki son integral igin ise, kesim ¢izigisi tizerinde

yazilan (2.84) bagintisindan yararlanarak

sin[K(d —c)] Kd sin(Kc) Ny(1) c(d—c) Viss (2104)

G =
5O S @—g kD Ke M@ AT B

olmak tzere
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1 (pn +iBnqn) N+ (Br) f el M () N, (1) de
(t—

2mi 2By, @) (T + B,) N(7) M, (7)
ci+er (2.105)
(o + Bu@n)N+(Br) [ €T3 (1)
e | S Ve

yazilir. Cf integrasyon cizgisi iizerinde T = k + te'™? yazilirsa yukaridaki ifade

1 (pn +1Bnqn)N.+(Br) j el M(z) N, (7) dr
(t—

2mi 2B, @) (t + B,) N(t) M, (7)
ci+er (2.106)

(Pn + iBndn) Ny (Bp)e™e /% =073 (k + i0)e
- 2B, J [t — ik(1 — a/k)]

¢1

haline gelir. Yeterince biiyiik [’ler igin

1 (P +iBnqn)IN,(Br) f el M(t) N, (1) &
(t—

o 2 )+ ) N M, (7)

v (2.107)
_ _ n+iBgIN, (Be™e M ) eV
o 21 B T f k(I —a/0]

(2.91) bagintis1 yardimiyla da

1 (P +iBnqn)N+(Br) f el M(t) N, (1) &
rt—a)

2mi 2B, (T +B) N(@©) M, (D)
crier (2.108)
_ e et o+ iBnanke(d — N, (B) Ny (k) )
B \V2m \/H ﬁnd(k +ﬁn) M+(k)

— Flkl(1 — a/k)]}

bulunur. Sonug olarak, (2.95), (2.96), (2.103) ve (2.108) ifadelerinin (2.94)’te yerine

konmastyla I,, () integrali asagidaki gibi elde edilmis olur:
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eiﬁnlM— (ﬁn)(pn - iﬁnqn)

Z.Bn(_,gn —a)
el M_(a) [(py — iagn)N_(a)

T@tr BN @] (a- o)
N (P + iBnqn) N+ (Br)
2065
2™ (d—c)?e™™* k(pn — ikqn)
Tl.'\/k_l (a - Bn) M+(k)(k + ﬁn)
— B /0] = FIKI(A = 2/}
el3m/% ekl (p, +iBuqn)ke(d — )N (B) N. (k)

N Brd(k + Br) M, (k)
—Flkl(1 —a/k)]}

In (a) =

(2.109)

{Flkl(1

(1

P®@ (@)’nin tamamen belirlenebilmesi igin I, () integralinin de benzer bir bicimde
degerlendirilmesi gerekmektedir. I,,(a)’nmin tanimlandigi (2.76) ile I3,(a)’nin
tanimlandigi (2.77) ifadeleri karsilastirilirsa, I,,(«) integralinde 8, = a,, Pn = Gn,
qn = h, koymakla I3, (a) integralinin elde edildigi kolaylikla goriiliir. Bu durumda
I, (a) integrali i¢in elde edilen ¢oziimde de bu doniisiimleri uygulamak I, (a)

integralini ¢6zmek i¢in yeterlidir. Boylece /5, (@) integrali i¢in

eianlM— (an) (gn - ianhn)

I3 (a) = 2a,(a, — @)
el M_(a)[(gn — iah,)N_(a)
(a + ap) N_(a) (a —ay)
(gn + iazhy)N, (an)l
+
2oy (2.110)

Eeikl (d — c)?e~™/* k(g,, —ikh,)
vkl (@—ap) Mi(k)(k+ay)
— an /)] = FlklI(1 — a/k)]}
el3m/4 gikl (gn +iaphy)ke(d — ¢)Ni(ay,) Ny (k)

* o Vi apd(k + ay) M, (k)
—Flkl(1 —a/k)]}

{Flkl(1

1

bulunur. Nihayet, (2.93), (2.109) ve (2.110) sonuglarinin (2.78) ifadesinde yerine
konmasiyla P® (@) i¢in
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P@ ()
_ UyN_(kcos¢y)e'™  U;M_(k cos ¢y)ektcos s
= TN (@(@—kcosd) | M_(@)(@— kcos$y)
00 . @ iﬂ iBnl
UiN_(kcosgy) m o n Ny(B) Sin(Fg)e e
M—(“) d? n=1.8n M+ (.Bn) (Bn - a)(,gn — k cos ¢1)

U;N_(kcos¢,) [2ke(d—c)e elng N, (k)
BEEC j; T VEG ke, K0
—cos¢py)]|—F [kl (1 - %)]}

C (_1)nyn eiﬁnlM—(ﬁn)(pn - iﬁnCIn)
* Z M_(a) 28, (B — @)
4 el M_(a) [(pp —iagq)N_(a) A (Pn + iBnqn) Ny (ﬁn)l

(@+p)N-(@) (a—pn) 2By

ikl (g _ N2p—a _
e e Tous L LI ()

-7 [k (1~ %)]}

. et e (p, + iBugm)ke(d — Ny (Ba) Ny (k) (
NI Bad i + Br) TRO)

-olutr-90}

_ Z?lozl(_l)nKn {eianlM— (an) (gn - ianhn)

(2.111)

M_(a) 2a,(a, — a)

e M_(a)[(gy —iahy)N_(a) = (gn +iayh,)N, ()
(a + ay) N_(a) (a —ay) 2ay
2 ek (d — ¢)?e~/* k(g, —ikh,)
nvkl (@—a) M)k + ay)
— FlkI(1 - 2/}
N eB3/* e (g, +iayhy)ke(d — )N, (ay) N, (k)
V2 ki and(k + ay) M, (k)

1 el M_(t)V, (1)
ﬁﬁ —a)M_(a) *

{Flkl(1 = an/k)]

{1

—Flkl(1—a/k)]}; +

elde edilmis olur. Ote yandan Q@ (@) igin de (2.69) ifadesi (2.72)’de yerine konur ve
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N_(t) U,M_(kcos¢,)
M_(t) (1t — a)(t — kcos ¢,) '

1 .
N_(a)Q(Z)(a) = - f e-itl
Lt

1 e-iflzv_(r)vz(r)d
2mi A (t—a) t (2.112)

L
1 e 1 N_(1) © K.f, [ M_(7)
="
LJ; ;

"o | GmoM_(0 T+ aw) [T — an)

_ M, (ay)

d
2a, '

esitligine ulasilir. Yukaridaki integrasyon egrileri alt yari-diizlemden kapatilir ve
Jordan lemmasindan yararlanilirsa, sag yandaki birinci ve ii¢lincii integrallerin sifira

esit olacagi kolaylikla goriiliir ve

QP (a) = 2nil\}_(a) f - m(l\:—(rc)z‘)/z R § -
I+

bulunmus olur. (2.63), (2.64), (2.111) ve (2.113) ¢ozlimlerinin (2.63) ve (2.64)
ifadelerinde yerine konmasiyla P(a) ve Q(a) fonksiyonlari ikinci iterasyona kadar
belirlenmis olur. ®;(a) ve @, (a) fonksiyonlari i¢in ise P(a) ve Q(a) i¢in bulunan
¢oziimlerin (2.25) ve (2.42) ile birlikte diisiiniilmesi yeterli olur. Bilinmeyen katsayilar
frr Gns Py Pn VE @y’ leri elde edebilmek i¢in @4 () ve @, (a) fonksiyonlarinin (2.15),
(2.16) ve (2.17)’ye konmasi ve ortaya ¢ikan lineer denklem sisteminin sayisal
yontemlerle ¢oziilmesi gerekmektedir. Tam bir ¢6ziim elde edebilmek icin s6zii gegen

ic denklemin yani sira, fonksiyonlarin tanimlarindan elde edilebilen

z v Ka 2.114
qm = Esm(ymc) Zm ( )
n=

ve
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_ 2K, sin(yyc) (2.115)
SN CET VY R
n=

iligkilerinden de yararlanmak gerekmektedir.

2.2. Alanin Analizi

(2.2) denkleminde goriilen u, (x, y) sagilan alani

sin K(y, — d)

F(a,y) = 0~ {Cbl(cx) + e, (a) —ikZyl, e

ei“xo} (2.116)
olmak lizere
1 )
u(x,y) = %J F(a,y)e'™*da (2.117)
L

seklinde tanimlanan ters Fourier doniisiimii ile hesaplanir. @, (a) ve () i¢in

bulunan ¢oziimlerin yerine konmasi ve

x =rcosb, y—d=rsinf
x—1=*%cos0, y—d =fsinf
Xg —l = picosq, yo —d = p; sin ¢, (2.118)

Xo = P2 COS ¢, Yo —d = pzsing,

doniistimlerinin uygulanmasiyla, (2.117) integrali semer noktas1 yontemi yardimiyla

asimptotik olarak degerlendirilebilir hale gelir. Boylelikle kirinan alan i¢in

1% ks 0 [M_(k 0)]?P(—k 6) o (2.116)
=——¢e 4 sin _(k cos —k cos :
V21 vkr

olmak tizere
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uf

i31

_ e & Uysin® M_(k cos 0)M_(k cos ¢,) e
T \2r (cos B + cos ¢,) Vkr

i31

e % Uy sin@ N_(k cos §)N_(k cos ¢,) e*"
+ H (cos ¢ — cos —
(cos ¢1 $2) V21 (cos 8 + cos ¢;) ki
i3m . o
N ke % sin@ M_(k cos 0) e*"  (-1)"K, M. (a,)
2V2m mn=1an(an — k cos 0)

. "
ke ® sindN_(kcos ) e 5 (~1"als (B) (P + iBadn)
22w Vki &4 BBy — k cos B)

—p Z (_1)nKnN+ (an)(gn 4 ia{nhn)
o] an(a, —kcosd)

elde edilmis olur.
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3. SAYISAL SONUCLAR

Ikinci boliimde elde edilen kirman alanin, farkli basamak siireksizligi parametreleri
olan genislik [ ve yiikseklikler c ve d (bkz. Sekil 2.1) ile nasil degisim gosterdigi, ¢ =
arctan(y/x) € [15°,165°] gozlem agis1 araligi igin incelenmis, yapilan sayisal
hesaplamalara iliskin sonuglar bu bélimde grafiklerle sunulmustur. Tiim analizlerde,
A monokromatik c¢izgisel kaynaga iligkin dalga boyu olmak iizere, k = 2w /A, xo =
21, y9 = A > d degerleri dikkate alinmstir. Ayrica, kirinan alaninin genliginin birinci
ve ikinci mertebe kirinim katkilarindan olustugu diisiiniilmiistiir. Oncelikle, mevcut
caligmada One atilan konvansiyonel olmayan yaklasimin Dogan vd. yaklasimi [5] ile
karsilastirilmasi gergeklestirilmistir. Bu karsilagtirmaya iligkin sonuglar Sekil 4.1°de
goriilmektedir. Sekilden de anlasilacagi gibi, mevcut ¢alismadaki yaklasim ile hem
ancak sayisal olarak degerlendirilebildigi i¢in hesap yiikii getiren bir kesim ¢izgisi
integralinden kurtulunmus hem de daha uniform bir sonu¢ elde edilebilmistir.
Aralarindaki kiiglik farklar, yeni yaklagsimda bahsi gecen kesim ¢izgisi integralinin

bulunmamasindan kaynaklanmaktadir.

Diger yandan, Sekil 4.2’de kirinan alanin genliginin, d/c =2 ve d = 1/3 i¢in
basamak genisligi [ ile degisimi gosterilmistir. Sekilde goriildiigii tizere, kirman alanin
genligindeki salinim, [ degerinin artmasiyla azalmaktadir. Sekil 4.3’te ise L = 94 ve
d = A/3 i¢in, kirinan alanin genliginin d/c oranmn farkli degerleri i¢in aldig:
degerler sunulmustur. Bu oranin artmasi durumunda kirman alanin genliginin de arttig1
gozlemlenmistir. Son olarak, Sekil 4.4’te kirinan alanin genliginin basamak yiiksekligi
d ile arasindaki iligki goriilmektedir. Burada da d /c = 2 ve L = 94 dikkate alinmistir.

d degerinin azalmasiyla kiriman alanin genliginin de azaldigi kolayca anlasilmaktadir.
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Result in this paper

== Result in [8]

Magnitude of the diffracted field (in dBs)

-70 | 1 L | 1 L 1 1
20 40 60 80 100 120 140 160

Observation angle (in degrees)

Sekil 4.1: Bu calismada sunulan yaklasim ile Dogan vd. yaklasiminin [5]
karsilastirmas.

Magnitude of the diffracted field (in dBs)

70 L1 I | | | . | I
20 40 60 80 100 120 140 160

Observation angle (in degrees)

Sekil 4.2: Kirman alanin genliginin basamak genisligi [ ile degisimi.
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o

c=d/4

N
o

Magnitude of the diffracted field (in dBs)
A
o

T0E L ]

80 L . | | | L L .
20 40 60 80 100 120 140 160

Observation angle (in degrees)

Sekil 4.3: Kirman alanin genliginin d/c orani ile degigimi.

——d=\/3
|- —d=x/4

N
o

Ny
S

-30

-50

Magnitude of the diffracted field (in dBs)

_70 ) 1 1 L L L 1 1 1
20 40 60 80 100 120 140 160

Observation angle (in degrees)

Sekil 4.4: Kirman alanin genliginin d ile degisimi.
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4. SONUCLAR VE DEGERLENDIRMELER

Bu ¢alismada, bir ¢izgisel kaynaktan gelen monokromatik elektromanyetik dalgalarin
miikemmel iletken ardisik basamak stireksizliklerinden sagilmasi sirasinda karsilasilan
iciincli tirden Modifiye Wiener-Hopf denkleminin ¢6ziimiinde, faktorizasyon
prosediiriinde tiimii alt yari-diizlemde regiiler olan fonksiyonlarin dikkate alinmasina
dayanan alisilmisin disinda yenilik¢i bir yaklasim sunulmustur. Bu yaklagim ile
problem ikinci tiirden kuple Fredholm integral denkleminin ¢6zlimiine indirgenirken,
klasik yaklasimda karsilasilan ve ancak sayisal olarak degerlendirilebilen bir kesim
cizgisi integralinden kurtulunmustur. So6z konusu integral denklemler asimptotik
olarak ¢oziilmiis ve kirinan alan elde edilmistir. Bu calismadaki konvansiyonel
olmayan yaklasim ile klasik yaklasim karsilastirildiginda, yeni yaklasimin daha
uniform sonuglar verdigi ve klasik yaklasima ait ¢oziimde sebebi agiklanamayan bir
stireksizlikten kacinmayr mimkiin  kildig1  gorilmistiir. Ayrica, basamak
stireksizliklerinin yiiksekligi ve genisligi gibi gesitli parametrelerin kirmim olay1

tizerindeki etkileri de sunulmustur.
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