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MULTI-AGENT PLANNING WITH
AUTOMATED CURRICULUM LEARNING

SUMMARY

Reinforcement learning (RL) represents a formidable paradigm for training
autonomous agents to master sequential decision-making tasks. Its core principle,
learning through trial and error guided by a reward signal, has proven successful
in a variety of domains. However, the efficacy of standard RL algorithms
diminishes drastically in environments characterized by sparse rewards or complex,
high-dimensional state spaces. In these challenging settings, an agent receives
meaningful feedback only after executing a long and specific sequence of correct
actions. This "credit assignment problem" makes exploration, the process of
discovering rewarding behaviors, profoundly inefficient. An agent may wander
aimlessly without ever stumbling upon the feedback necessary to learn, preventing
standard algorithms from developing effective policies.

To overcome this fundamental limitation, this thesis turns to curriculum learning (CL),
a strategy inspired by the principles of human pedagogy. Just as we teach students
arithmetic before calculus, CL structures the learning process by initially presenting
the agent with simpler tasks and gradually increasing the difficulty as its competence
grows. This guided approach helps the agent build foundational skills that can be
leveraged to solve more complex problems. The primary bottleneck of traditional CL,
however, is its reliance on manual design; creating an effective curriculum requires
significant human expertise, intuition, and domain-specific knowledge, making it a
process that is both laborious and difficult to generalize.

This thesis addresses this critical gap by proposing a novel framework for the
automated and adaptive generation of learning curricula. The central objective was
to develop, implement, and rigorously evaluate an algorithmic framework, termed
Bayesian Curriculum Generation (BCG), designed to dynamically construct and adapt
a curriculum based on an understanding of the task’s underlying structure and the
agent’s real-time progress. The aim is to significantly enhance the performance,
stability, and sample efficiency of RL agents, particularly in complex, sparse-reward
scenarios where traditional methods falter.

The proposed BCG algorithm is built upon a synergistic integration of several key
concepts. At its heart, the framework utilizes Bayesian Networks (BNs), a type
of probabilistic graphical model, to represent the structural dependencies among the
key parameters that define the tasks within an environment. For instance, in a
navigation task, these parameters might include map size, the number of obstacles, or
the presence of adversaries. The BN captures the probabilistic relationships between
these parameters, serving as a powerful generative model. This allows the framework
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to sample a diverse yet coherent set of task configurations, moving beyond simple
parameter randomization to generate tasks with a principled structure.

A critical component of the framework is its ability to handle diverse input modalities
through flexible task representation techniques. For visual environments like
MiniGrid, where the state is an image, a convolutional autoencoder (CAE) is trained to
compress high-dimensional observations into a low-dimensional latent feature vector.
This vector captures the essential semantic content of the state, providing a compact
and meaningful representation for analysis. For environments defined by a set of scalar
parameters, such as the physics-based AeroRival simulator, normalized parameter
vectors are used directly.

Once tasks are represented in a common feature space, their difficulty is quantified.
This is typically achieved by measuring the distance (e.g., Euclidean distance) between
a given task’s representation and that of the final target task. The intuition is that tasks
with representations closer to the target are more similar in the skills they require.
These raw distance values are then normalized and processed using unsupervised
clustering algorithms, such as K-Means, to automatically group tasks into a discrete
number of difficulty levels or "bins." This process effectively creates the structured
stages of the curriculum.

A defining feature of BCG is its adaptability. The curriculum is not a static, predefined
sequence. Instead, the selection of tasks for the agent to train on is performed
probabilistically, guided by the agent’s real-time performance metrics, such as its
average reward or task success rate. If an agent consistently succeeds at a certain
difficulty level, the probability of sampling tasks from the next, more challenging
level increases. Conversely, if the agent struggles, the framework can present it with
easier tasks to help it consolidate its skills. This closed-loop system ensures the
agent is always training at the edge of its capabilities, preventing both stagnation and
frustration.

Crucially, the BCG framework implicitly and effectively leverages transfer learning to
accelerate skill acquisition. The policy and value function parameters, learned by the
base RL agent (in our evaluations, Proximal Policy Optimization - PPO) on tasks from
one curriculum stage, are used to initialize the learning process for the subsequent,
more challenging stage. This prevents the agent from having to learn from scratch at
each step, allowing it to build upon previously acquired knowledge and dramatically
speeding up convergence to an optimal policy for the final task.

The practical efficacy and robustness of the BCG framework were empirically
validated through comprehensive experiments in two distinct and demanding RL
environments. The first, MiniGrid (specifically, the DoorKey variant), provided a
discrete, grid-based navigation challenge characterized by partial observability (the
agent can only see a small portion of its surroundings) and a hierarchically sparse
reward (the agent must first find a key, then navigate to a door, and only then receive
a reward). The second, AeroRival Pursuit, offered a continuous control task involving
high-speed adversarial interaction, dynamic hazard avoidance, and sparse rewards,
simulating an aerial combat scenario. In both testbeds, BCG’s performance was
rigorously benchmarked against a baseline PPO agent (with no curriculum) and a
diverse set of relevant contemporary algorithms designed to address similar challenges.
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The experimental results consistently and unequivocally demonstrated the superiority
of the BCG approach. Across both the discrete MiniGrid and continuous
AeroRival environments, agents trained with BCG achieved significantly higher final
performance levels and converged on successful policies more reliably than all tested
baselines. Furthermore, BCG exhibited greater learning stability, as evidenced by a
lower variance in performance across multiple independent training runs, indicating
that its success is not due to random chance. Notably, in MiniGrid, BCG enabled the
agent to master tasks of progressively increasing complexity where many baselines
failed to scale. In the highly complex AeroRival environment, BCG was the only
method that consistently enabled the agent to learn a successful policy, whereas most
baselines failed to obtain any positive rewards at all. This success across environments
with fundamentally different dynamics underscores the versatility and generality of the
framework.

In conclusion, this research makes a significant contribution to the field of
reinforcement learning by developing, implementing, and validating the Bayesian
Curriculum Generation algorithm. BCG presents a robust, principled, and effective
solution for automated and adaptive curriculum learning, particularly in challenging
domains hampered by sparse rewards and complex state spaces. By synergistically
combining probabilistic modeling of the task space, adaptive task selection driven by
agent performance, and efficient knowledge transfer between stages, BCG successfully
guides exploration and accelerates the acquisition of complex skills. While
acknowledging certain limitations—such as the initial need for domain knowledge to
identify parameters for the BN and the added computational overhead—the presented
results are highly promising. Future work will focus on automating parameter
selection, extending the framework to non-stationary environments, and further
improving computational efficiency. Ultimately, BCG offers a powerful approach that
advances the potential for training more capable, efficient, and autonomous AI agents
in the complex scenarios of tomorrow.
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OTOMATİK MÜFREDAT ÖĞRENMESİ
İLE ÇOKLU AJAN PLANLAMASI

ÖZET

Pekiştirmeli öğrenme (RL), özerk ajanların ardışık karar verme görevlerinde
ustalaşmaları için güçlü bir paradigma sunmaktadır. Temel prensibi olan, ödül sinyali
rehberliğinde deneme-yanılma yoluyla öğrenme yaklaşımı, çeşitli alanlarda başarıyla
uygulanmıştır. Ancak, standart RL algoritmalarının etkinliği, ödüllerin seyrek olduğu
ya da karmaşık ve yüksek boyutlu durum uzaylarıyla karakterize edilen ortamlarda
ciddi şekilde azalmaktadır. Bu tür zorlu ortamlarda bir ajan, ancak doğru eylemlerden
oluşan uzun ve belirli bir dizi gerçekleştirdikten sonra anlamlı bir geri bildirim alabilir.
Bu durum, keşif sürecini—yani ödüllendirici davranışların bulunmasını—son derece
verimsiz kılan “kredi atfetme problemi” olarak adlandırılır. Ajan, öğrenmesi için
gerekli geri bildirimi asla elde edemeden amaçsızca dolaşabilir ve bu da standart
algoritmaların etkili politikalar geliştirmesini engeller.

Bu temel sınırlamanın üstesinden gelmek amacıyla, bu tezde insan pedagojisinden
esinlenen bir strateji olan müfredat öğrenmesi (Curriculum Learning, CL) ele
alınmaktadır. Nasıl ki öğrencilere kalkülüs öğretmeden önce aritmetik öğretiyorsak,
CL de öğrenme sürecini başlangıçta daha basit görevlerle başlatıp, ajan yeterlilik
kazandıkça zorluk derecesini kademeli olarak artırarak yapılandırır. Bu rehberli
yaklaşım, ajanın daha karmaşık problemleri çözmek için kullanabileceği temel
beceriler geliştirmesine olanak tanır. Ancak geleneksel CL’in temel darboğazı, büyük
ölçüde manuel tasarıma bağımlı olmasıdır; etkili bir müfredat oluşturmak ciddi
derecede insan uzmanlığı, sezgi ve alan bilgisi gerektirir; bu da süreci hem zahmetli
hem de genelleştirilmesi güç kılar.

Bu tez, bu kritik boşluğu doldurmayı amaçlayarak öğrenme müfredatlarının otomatik
ve uyarlanabilir bir şekilde oluşturulmasına yönelik özgün bir çerçeve önermektedir.
Temel hedef, Bayesyen Müfredat Oluşturma (Bayesian Curriculum Generation, BCG)
adı verilen ve görevin altında yatan yapının ve ajanın gerçek zamanlı gelişiminin
anlaşılmasına dayalı olarak dinamik biçimde müfredat inşa eden ve uyarlayan
algoritmik bir çerçevenin geliştirilmesi, uygulanması ve titizlikle değerlendirilmesidir.
Amaç, özellikle geleneksel yöntemlerin başarısız olduğu, karmaşık ve ödülü seyrek
ortamlarda, RL ajanlarının performansını, kararlılığını ve örnek verimliliğini önemli
ölçüde artırmaktır.

Önerilen BCG algoritması, birkaç temel kavramın bütünleşik şekilde kullanılmasına
dayanmaktadır. Çerçevenin merkezinde, Bayesyen Ağlar (Bayesian Networks, BN)
adı verilen olasılıksal grafiksel modeller yer almakta olup, bir ortam içindeki görevleri
tanımlayan temel parametreler arasındaki yapısal bağımlılıkları temsil etmektedir.
Örneğin bir gezinme (navigasyon) görevinde bu parametreler harita boyutu, engel
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sayısı veya rakip varlığı gibi unsurları içerebilir. BN, bu parametreler arasındaki
olasılıksal ilişkileri yakalar ve güçlü bir üretici model işlevi görür. Bu sayede çerçeve,
basit parametre rastgeleleştirmesini aşarak ilkesel bir yapıya sahip, çeşitli ve tutarlı
görev konfigürasyonları üretebilir.

Çerçevenin kritik bir bileşeni de, esnek görev gösterim teknikleriyle farklı girdi
türlerini işleyebilmesidir. MiniGrid gibi görsel ortamlarda, durumun bir görüntü
olduğu durumlarda, yüksek boyutlu gözlemleri düşük boyutlu gizli özellik vektörüne
sıkıştırmak üzere evrişimli bir otomatik kodlayıcı (CAE) eğitilmektedir. Bu vektör,
durumun temel anlamsal içeriğini yakalayarak analiz için kompakt ve anlamlı bir
gösterim sağlar. Fizik tabanlı AeroRival simülatörü gibi ortamlar ise doğrudan
normalleştirilmiş parametre vektörleriyle temsil edilir.

Görevler ortak bir özellik uzayında temsil edildikten sonra, zorluk dereceleri nicel
olarak belirlenir. Bu genellikle, belirli bir görevin gösterimi ile nihai hedef görevinki
arasındaki (örneğin Öklidyen) mesafe ölçülerek yapılır. Bu yaklaşım, gösterimi hedefe
yakın olan görevlerin gerektirdiği becerilerin de benzer olduğu varsayımına dayanır.
Elde edilen ham mesafe değerleri daha sonra normalleştirilir ve K-Ortalamalar
(K-Means) gibi gözetimsiz kümeleme algoritmalarıyla otomatik olarak ayrık zorluk
seviyelerine veya “kutulara” gruplandırılır. Bu süreç, müfredatın yapılandırılmış
aşamalarını etkin biçimde oluşturur.

BCG’nin ayırt edici özelliği, uyarlanabilirliğidir. Müfredat, statik ve önceden
tanımlanmış bir dizi değildir. Ajanın eğitim alacağı görevlerin seçimi, ajanın gerçek
zamanlı performans ölçütleri (ortalama ödül veya görev başarısı gibi) doğrultusunda
olasılıksal olarak gerçekleştirilir. Ajan bir zorluk seviyesinde tutarlı şekilde başarılı
olursa, bir sonraki daha zor seviyeden görev seçme olasılığı artar; tersi durumda ise
çerçeve, ajanın becerilerini pekiştirmesi için daha kolay görevler sunabilir. Bu kapalı
döngü sistem, ajanın her zaman yeteneklerinin sınırında eğitim almasını sağlar ve hem
durağanlaşmayı hem de hayal kırıklığını önler.

Önemli olarak, BCG çerçevesi bilgi aktarımını (transfer learning) dolaylı ve etkili
biçimde kullanarak yetenek edinimini hızlandırır. Temel RL ajanı (deneylerde
Proximal Policy Optimization – PPO) tarafından bir müfredat aşamasındaki görevlerde
öğrenilen politika ve değer fonksiyonu parametreleri, bir sonraki daha zorlu aşamadaki
öğrenme süreci için başlangıç noktası olarak kullanılır. Bu sayede ajan her adımda
tekrar baştan öğrenmek zorunda kalmaz, önceki bilgilerini üzerine inşa edebilir ve
nihai göreve ulaşmak için optimal politikaya çok daha hızlı yakınsar.

BCG çerçevesinin pratik etkinliği ve sağlamlığı, iki farklı ve zorlu RL ortamında
gerçekleştirilen kapsamlı deneylerle doğrulanmıştır. İlki, MiniGrid’in DoorKey
varyantı olup, kısmi gözlemlenebilirliğe (ajan yalnızca çevresinin küçük bir kısmını
görebilir) ve hiyerarşik olarak seyrek ödüllere sahip, ayrık ve ızgara tabanlı bir gezinme
problemidir (ajan önce anahtarı bulmalı, ardından kapıya giderek ödül almalıdır).
İkincisi ise AeroRival Pursuit olup, yüksek hızlı rakip etkileşimleri, dinamik
tehlikelerden kaçınma ve seyrek ödüller içeren, sürekli kontrol gerektiren bir hava
muharebe senaryosudur. Her iki test ortamında da, BCG’nin performansı, müfredatsız
temel PPO ajanı ve benzer zorlukları çözmeye yönelik çağdaş algoritmalarla
karşılaştırmalı olarak değerlendirilmiştir.
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Deneysel sonuçlar, BCG yaklaşımının üstünlüğünü tutarlı ve açık biçimde ortaya
koymuştur. Hem ayrık MiniGrid hem de sürekli AeroRival ortamlarında, BCG
ile eğitilen ajanlar, test edilen tüm taban çizgilerine kıyasla anlamlı derecede daha
yüksek nihai performans düzeylerine ulaşmış ve başarılı politikalara daha güvenilir
biçimde yakınsamıştır. Ayrıca BCG, birden fazla bağımsız eğitim koşusunda
daha düşük performans varyansı ile daha yüksek öğrenme kararlılığı sergilemiş,
başarının rastlantısal olmadığını göstermiştir. Özellikle MiniGrid’de, BCG ajanların
artan karmaşıklıktaki görevleri başarıyla öğrenmesini sağlarken, birçok taban çizgisi
ölçeklenememiştir. Son derece karmaşık AeroRival ortamında ise, BCG ajanların
tutarlı şekilde başarılı politika öğrenebildiği tek yöntem olmuş, çoğu taban çizgisi
herhangi bir olumlu ödül elde edememiştir. Temel dinamikleri tamamen farklı iki
ortamda dahi elde edilen bu başarı, çerçevenin çok yönlülüğünü ve genellenebilirliğini
vurgulamaktadır.

Sonuç olarak, bu çalışma, Bayesyen Müfredat Oluşturma algoritmasını geliştirerek,
uygulayarak ve doğrulayarak pekiştirmeli öğrenme alanına önemli bir katkı
sunmaktadır. BCG, özellikle ödülün seyrek ve durum uzayının karmaşık olduğu
zorlu alanlarda, otomatik ve uyarlanabilir müfredat öğrenimi için sağlam, ilkesel
ve etkili bir çözüm sunmaktadır. Görev uzayının olasılıksal modellenmesi, ajanın
performansına dayalı uyarlanabilir görev seçimi ve aşamalar arasında verimli bilgi
aktarımını bütünleştirerek, BCG keşif süreçlerini etkin şekilde yönlendirmekte ve
karmaşık becerilerin edinimini hızlandırmaktadır. Bazı sınırlamalar—örneğin BN
için parametrelerin belirlenmesinde başlangıçta alan bilgisine ihtiyaç duyulması
ve ek hesaplama maliyeti—olmakla birlikte, sunulan sonuçlar son derece umut
vericidir. Gelecekteki çalışmalar, parametre seçiminin otomatikleştirilmesi, çerçevenin
durağan olmayan ortamlara genişletilmesi ve hesaplama verimliliğinin artırılmasına
odaklanacaktır. Sonuç olarak, BCG, yarının karmaşık senaryolarında daha yetenekli,
verimli ve özerk yapay zekâ ajanlarının eğitilmesinde potansiyeli ileriye taşıyan güçlü
bir yaklaşım sunmaktadır.
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1. INTRODUCTION

1.1 Background

Reinforcement Learning (RL) has emerged as a powerful paradigm for training

autonomous agents to perform complex tasks through trial-and-error interactions with

their environment (Sutton & Barto, 2018). Despite impressive achievements in various

domains such as game playing (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare,

Graves, Riedmiller, Fidjeland, Ostrovski, et al., 2015; Silver, Schrittwieser, Simonyan,

Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton, et al., 2017) and robotics

(Levine, Finn, Darrell, & Abbeel, 2016), RL algorithms continue to face significant

challenges in environments with sparse rewards, where meaningful feedback is only

received after completing a sequence of correct actions (Andrychowicz, Wolski, Ray,

Schneider, Fong, Welinder, McGrew, Tobin, Abbeel, & Zaremba, 2017).

In sparse reward settings, agents must explore vast state-action spaces with minimal

guidance, often resulting in inefficient learning processes and poor sample complexity

(Pathak, Agrawal, Efros, & Darrell, 2017). This fundamental challenge has motivated

research into methods that can structure the learning process to make it more efficient

and tractable (Bengio, Louradour, Collobert, & Weston, 2009).

Curriculum learning, inspired by human educational practices, offers a promising

approach by organizing the learning experience through a progression of increasingly

difficult tasks (Bengio, Louradour, Collobert, & Weston, 2009; Narvekar, Peng,

Leonetti, Sinapov, Taylor, & Stone, 2020). Rather than immediately confronting an

agent with the full complexity of a target task, curriculum learning introduces simpler,

related tasks that allow the agent to build foundational knowledge and skills gradually.

This approach has been shown to accelerate learning and improve final performance

across various domains (Graves, Bellemare, Menick, Munos, & Kavukcuoglu, 2017;

Matiisen, Oliver, Cohen, & Schulman, 2019).
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However, designing effective curricula presents its own challenges. Traditional

approaches often rely on manually crafted task sequences designed by domain

experts (Narvekar, Peng, Leonetti, Sinapov, Taylor, & Stone, 2020), which can

be labor-intensive and may not generalize well across different environments or

agents. Automating curriculum generation has thus become an active area of research,

with approaches ranging from task sequencing based on learning progress (Graves,

Bellemare, Menick, Munos, & Kavukcuoglu, 2017) to procedural content generation

(Justesen, Torrado, Bontrager, Khalifa, Togelius, & Risi, 2018) and goal generation

(Florensa, Held, Geng, & Abbeel, 2018).

Despite these advances, existing automated curriculum methods often face limitations:

many are tightly coupled with specific RL algorithms, limiting their applicability;

others lack mechanisms to efficiently evaluate task difficulty without extensive

training; and most struggle to adapt dynamically to the agent’s evolving capabilities

during the learning process (Narvekar, Peng, Leonetti, Sinapov, Taylor, & Stone, 2020;

Portelas, Colas, Hofmann, & Oudeyer, 2020a).

This thesis introduces the Bayesian Curriculum Generator (BCG) (Akgün & Üre,

2025), a novel approach that addresses these limitations. Our method leverages

Bayesian networks to dynamically create and adapt curricula for RL agents in sparse

reward environments. The algorithm operates by systematically altering environment

parameters to generate tasks of varying difficulty, creating a structured learning

pathway that evolves based on the agent’s performance.

A key innovation of our approach is its independence from the underlying RL

algorithm, allowing it to be integrated with various learning techniques as a

modular component. Additionally, our algorithm incorporates an unsupervised task

classification system that efficiently categorizes tasks based on difficulty without

requiring exhaustive training for each potential task. This classification can operate on

both image outputs and scalar parameter values, providing flexibility across different

environment types.
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BCG represents a significant advancement in curriculum learning for reinforcement

learning, offering a dynamic and adaptive solution that enhances learning efficiency in

complex environments with sparse rewards.

1.2 Purpose of Thesis

The primary purpose of this thesis is to address the fundamental challenges of

reinforcement learning in sparse reward environments through the development,

analysis, and validation of the Bayesian Curriculum Generator (BCG). This research

aims to create a novel framework that dynamically adapts learning progression to

match agent capabilities, making complex reinforcement learning tasks more tractable.

1.3 Research Objectives

This thesis pursues six core objectives that collectively advance the field of curriculum

learning for reinforcement learning:

1. Develop a robust and generalizable methodology for automatically generating

curricula that can adapt to the learning progress of RL agents in sparse reward

settings.

2. Design and implement an unsupervised task classification system that can

efficiently categorize tasks based on difficulty without requiring extensive training

for each potential task.

3. Create a modular curriculum generation framework that operates independently

from the underlying RL algorithm, enabling compatibility with a wide range of

learning techniques.

4. Establish a theoretical foundation for the relationship between Bayesian parameter

modification and task difficulty in the context of curriculum learning.

5. Empirically evaluate the effectiveness of the proposed approach across diverse

environments with varying characteristics, including maze-like structures, discrete

and continuous action spaces, and adversarial elements.
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6. Contribute to the broader understanding of curriculum learning by analyzing

the conditions under which dynamically generated curricula enhance learning

efficiency.

1.4 Research Questions

To guide our investigation, this thesis addresses five fundamental questions about

curriculum learning in reinforcement learning environments, with particular emphasis

on probabilistic modeling approaches:

RQ1: How can Bayesian networks be effectively utilized to create adaptive curriculum

learning frameworks that systematically structure task progressions based on agent

capabilities?

RQ2: What advantages might probabilistic curriculum generation offer compared to

existing approaches such as teacher-student frameworks, intermediate goal creation,

and self-play methods?

RQ3: How can a curriculum learning system effectively balance between task

difficulty and agent capability in environments with sparse rewards or complex skill

hierarchies?

RQ4: To what extent can a generalized curriculum learning framework maintain

effectiveness across diverse reinforcement learning algorithms and environmental

contexts?

RQ5: What design principles enable curriculum learning systems to adapt dynamically

to changing agent capabilities throughout the training process?

1.5 Significance and Potential Applications

By developing and validating the Bayesian Curriculum Generation (BCG) framework

(Akgün & Üre, 2025), this thesis aims to make a significant contribution to the field

of curriculum learning for reinforcement learning. The research provides a novel,

principled approach for automating the generation of adaptive curricula, offering

researchers and practitioners a potent tool particularly suited for enhancing learning

efficiency and final performance in complex environments where sparse rewards pose
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a major obstacle. The demonstrated success of BCG in navigating such challenges

suggests wide-ranging potential applications across various domains.

In robotics, where acquiring complex manipulation skills (Andrychowicz, Baker,

Chociej, Jozefowicz, McGrew, Pachocki, Petron, Plappert, Powell, Ray, et al., 2020;

Gu, Holly, Lillicrap, & Levine, 2017) or robust navigation strategies in unstructured

environments (Kahn, Villaflor, Ding, Abbeel, & Levine, 2018) often involves extensive

trial-and-error with sparse feedback, BCG’s ability to structure learning through

an adaptive sequence of tasks could drastically reduce training time and improve

generalization. The framework’s capacity to handle both continuous parameters and

visual inputs further enhances its applicability to diverse robotic systems.

The adaptive nature of BCG also aligns well with personalized educational

technologies. By modeling task difficulty (analogous to problem difficulty) and

adapting the sequence based on learner performance (analogous to student progress),

similar principles could inform systems that dynamically tailor educational content to

individual needs, potentially improving learning outcomes and engagement (Clement,

Roy, Oudeyer, & Lopes, 2015; Tabibian, Upadhyay, De, Zarezade, Schölkopf, &

Gomez-Rodriguez, 2019).

Furthermore, in high-stakes domains like healthcare, where RL is explored for

treatment optimization (Yu, Liu, & Nemati, 2021) or resource management (Shortreed,

Laber, Lizotte, Stroup, Pineau, & Murphy, 2011), minimizing sample requirements

during learning is critical. BCG’s curriculum-based approach, by guiding the agent

efficiently, holds the potential to reduce the amount of interaction needed to learn

effective policies, making RL applications more feasible in these data-sensitive or

safety-critical contexts.

Additionally, the framework could be highly beneficial in complex game AI

development. Training agents to achieve human-level or superhuman performance in

sophisticated games often involves mastering intricate skill hierarchies with delayed

rewards (OpenAI et al., 2019; Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik,

Chung, Choi, Powell, Ewalds, Georgiev, et al., 2019). An automated curriculum
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generator like BCG could structure the acquisition of these skills, potentially

accelerating the development of highly capable game-playing agents.

Beyond specific applications, the theoretical contributions of this

work—demonstrating the effective use of Bayesian Networks for modeling

task dependencies within a CL framework and developing specific adaptive

mechanisms—inform broader research on automated machine learning, skill

acquisition, and transfer learning. The principles underlying BCG relate to how

complex knowledge can be built incrementally, drawing connections to lifelong

learning concepts and efficient knowledge transfer strategies explored in works

like Progressive Networks (Rusu, Rabinowitz, Desjardins, Soyer, Kirkpatrick,

Kavukcuoglu, Pascanu, & Hadsell, 2016) and Meta-Learning (e.g., MAML (Finn,

Abbeel, & Levine, 2017)).

By directly addressing our research questions concerning adaptive, structured

curriculum generation and its advantages, this thesis contributes to a deeper

understanding of how to design effective learning progressions for artificial agents.

The practical BCG framework and the empirical results provide valuable insights and

tools for systematically overcoming the bottlenecks of sparse rewards and complex

skill acquisition that currently limit the reach of reinforcement learning in many

real-world applications.
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2. LITERATURE REVIEW

This chapter examines the foundational concepts and recent advances relevant to our

research. We explore three main areas: reinforcement learning fundamentals, Bayesian

networks, and curriculum learning approaches.

2.1 Reinforcement Learning Fundamentals

Reinforcement learning (RL) represents a computational approach to learning through

interaction with an environment. In RL, an agent learns to make decisions by

taking actions and receiving feedback in the form of rewards or penalties. This

learning paradigm has demonstrated remarkable achievements across various domains

including game playing and robotics applications (Duan, Chen, Houthooft, Schulman,

& Abbeel, 2016; Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre,

Kumaran, Graepel, et al., 2018).

Despite these successes, reinforcement learning faces significant challenges when

rewards are sparse–situations where meaningful feedback is only received after

completing a sequence of correct actions (Florensa, Held, Geng, & Abbeel, 2018;

Florensa, Held, Wulfmeier, Zhang, & Abbeel, 2017). This sparsity creates exploration

difficulties, as the agent may struggle to discover reward-yielding action sequences

through random exploration alone (Parisi, Dean, Pathak, & Gupta, 2021; Wan, Tang,

Tian, & Kaneko, 2023).

The core principles of reinforcement learning encompass several interconnected

concepts. Agents learn primarily through trial-and-error interactions with their

environment, gradually improving decision-making through experience (Duan, Chen,

Houthooft, Schulman, & Abbeel, 2016; Silver, Hubert, Schrittwieser, Antonoglou,

Lai, Guez, Lanctot, Sifre, Kumaran, Graepel, et al., 2018). This process involves

delayed feedback mechanisms, where the consequences of actions may only become

apparent after several subsequent steps (Sukhbaatar, Lin, Kostrikov, Synnaeve, Szlam,
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& Fergus, 2017; Sukhbaatar, Szlam, Synnaeve, Chintala, & Fergus, 2015). A

central challenge in RL involves balancing exploration of unknown possibilities with

exploitation of known rewarding strategies (Campero, Raileanu, Küttler, Tenenbaum,

Rocktäschel, & Grefenstette, 2020; Zha, Ma, Yuan, Hu, & Liu, 2021). Throughout

this process, agents optimize their policies based on cumulative rewards rather than

immediate gains, enabling long-term strategic planning (Szoke, Shperberg, Holtz, &

Allievi, 2024; Uchendu, Xiao, Lu, Zhu, Yan, Simon, Bennice, Fu, Ma, Jiao, et al.,

2023). These principles form the foundation for the more specialized approaches

discussed in subsequent sections, particularly as they relate to curriculum development

and learning optimization.

2.2 Bayesian Networks

Bayesian networks (BNs) provide a powerful framework for modeling complex

systems as networks of interactive variables, portraying relationships from fundamen-

tal causes to ultimate outcomes while making all cause-effect assumptions explicit

(Voinov & Bousquet, 2010). Their effectiveness in analyzing tradeoffs and integrating

multiple factors makes them particularly suitable for environmental systems modeling,

though their applications extend much further. A key advantage of Bayesian networks

is their relatively simple causal graphical structure, which allows for construction

without highly specialized technical modeling expertise. This accessibility enables

both technical and non-technical stakeholders to understand and interpret the models–a

particularly valuable attribute in collaborative environments requiring transdisciplinary

approaches (Castelletti & Soncini-Sessa, 2007; Voinov & Bousquet, 2010).

The operational foundation of Bayesian networks rests on Conditional Probability

Tables (CPTs) associated with each node in the network. These tables quantify

relationship strengths by specifying probabilistic beliefs about node states based

on parent node conditions. When observations or scenario values are introduced

as evidence, the network updates a priori probabilities across all nodes using

Bayes’ Theorem and belief propagation mechanisms (Chen & Pollino, 2012).

This propagation capability supports both diagnostic (bottom-up) and explanatory

(top-down) reasoning processes (Castelletti & Soncini-Sessa, 2007). Unlike "black
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box" approaches such as neural networks (Chen, Jakeman, & Norton, 2008), Bayesian

networks maintain transparency by clearly presenting variable interactions, allowing

users to interrogate the reasoning behind model outputs and facilitating system

understanding.

Bayesian networks offer notable advantages for classification and prediction tasks even

when working with incomplete or ambiguous data (Newton, 2010). This capability

represents a significant benefit compared to conventional statistical models that

typically require substantial empirical datasets for construction (Marcot, Steventon,

Sutherland, & McCann, 2006). The flexible nature of Bayesian networks allows for

integration of expert knowledge, empirical data, and theoretical constructs within a

unified modeling framework. This integration capability makes Bayesian networks

particularly valuable in domains where comprehensive data collection may be

impractical or prohibitively expensive, allowing for model development and refinement

through iterative incorporation of diverse information sources (Chen & Pollino, 2012;

Newton, 2010).

2.3 Curriculum Learning

Curriculum learning represents an approach to training in which learning experiences

are organized in progressively increasing complexity, similar to educational curricula

for human learners. This methodology has proven particularly valuable in

reinforcement learning contexts, where it enables the creation of personalized and

efficient learning paths for autonomous agents. According to the comprehensive survey

by K. Gupta, Mukherjee, and Najjaran (2022), curriculum methods can be categorized

into several distinct approaches, each contributing uniquely to the learning process.

The following subsections explore these primary curriculum learning methodologies,

examining their implementations, advantages, and limitations compared to our

proposed BCG approach.
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2.3.1 Teacher-student interaction methods

In teacher-student curriculum learning, a teacher agent guides a student agent based

on performance metrics, facilitating the development of an automatic curriculum

(Graves, Bellemare, Menick, Munos, & Kavukcuoglu, 2017; Matiisen, Oliver, Cohen,

& Schulman, 2019). This framework positions the teacher as a semi-explicit supervisor

that adjusts tasks based on student performance. Portelas and colleagues expanded

this approach to accommodate both discrete and continuous task environments using

Gaussian mixture models for environment sampling (Portelas, Colas, Hofmann, &

Oudeyer, 2020b), demonstrating improved efficiency in complex learning scenarios

(Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, & Zaremba, 2016).

Recent innovations include Diaz’s data-centric perspective analyzing teacher-student

dynamics through cooperative game theory (Diaz, Paull, & Tacchetti, 2024),

Bajaj’s "Task Phasing" approach that progressively increases task complexity using

demonstrations (Bajaj, Sharon, & Stone, 2023), and Li’s framework transforming

single-task RL problems into multi-task problems through curriculum development

(Li, Zhai, Ma, & Levine, 2023). While effective, these approaches generally lack the

nuanced adaptability of probabilistic modeling that characterizes Bayesian methods.

2.3.2 Intermediate goal creation

Intermediate goal methods establish achievable milestones that guide agent

progression through complex environments with sparse rewards (K. Gupta & Najjaran,

2021). Florensa’s Goal Generative Adversarial Network (Goal GAN) generates

intermediate goals calibrated to an agent’s current capabilities—challenging enough

to promote learning while remaining achievable (Florensa, Held, Geng, & Abbeel,

2018). This enhances learning processes particularly in robotic domains, though it

requires expert input for goal specification.

An alternative approach, reverse curriculum learning (Florensa, Held, Wulfmeier,

Zhang, & Abbeel, 2017), establishes progressively distant starting points toward a

fixed goal state, simplifying complex trajectory learning by initially positioning the
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agent closer to success. Both approaches offer valuable frameworks but typically

require substantial domain knowledge or predetermined constraints compared to more

adaptive Bayesian approaches.

2.3.3 Self-play approaches

Self-play has transformed game-based reinforcement learning by enabling "tabula

rasa" agents to begin without prior knowledge and rapidly progress to expert

performance levels (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot,

Sifre, Kumaran, Graepel, et al., 2018). Sukhbaatar and colleagues (Sukhbaatar,

Lin, Kostrikov, Synnaeve, Szlam, & Fergus, 2017) enhanced traditional self-play by

integrating intrinsic motivation principles, creating a framework supporting navigation

through expansive environments. Their implementation utilizes two agent modules in a

coordinated learning process, demonstrating effectiveness across varied environments

including Mazebase and StarCraft (Duan, Chen, Houthooft, Schulman, & Abbeel,

2016; Sukhbaatar, Szlam, Synnaeve, Chintala, & Fergus, 2015).

Despite these advantages, self-play approaches typically require substantial data

resources and may experience stability issues due to their reliance on continuously

generated tasks. Probabilistic frameworks like BCG can offer more structured

adaptation while reducing dependence on extensive data collection.

2.3.4 Exploration-enhanced approaches

Several strategies improve exploration in reinforcement learning by implicitly

implementing curricula through guided exploration. Campero’s AMIGO (Campero,

Raileanu, Küttler, Tenenbaum, Rocktäschel, & Grefenstette, 2020) utilizes a

goal-generating teacher to suggest progressively complex intrinsic objectives, naturally

inducing task progression. The Adversarially Guided Actor-Critic (AGAC) algorithm

(Flet-Berliac, Ferret, Pietquin, Preux, & Geist, 2021) employs adversarial critics to

encourage novel strategy discovery without systematic sequencing.

Other approaches include Parisi’s Change-Based Exploration Transfer (C-BET)

(Parisi, Dean, Pathak, & Gupta, 2021), which facilitates skill reuse across

environments, and novelty-based exploration methods like DEIR (Wan, Tang, Tian,
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& Kaneko, 2023) and RAPID (Zha, Ma, Yuan, Hu, & Liu, 2021), which derive

exploration rewards from novelty and imitation respectively. These methods provide

effective exploration strategies but depend more on environmental characteristics than

explicitly designed task sequences.

2.3.5 Recent advances in structured progression

Contemporary curriculum learning research has increasingly focused on explicit task

progression structures. Sayar’s COHER (Sayar, Iacca, & Knoll, 2024) dynamically

adjusts training environment complexity without requiring explicit obstacle position

knowledge, demonstrating effectiveness in real-world robotic applications. Niu’s

GOATS (Niu, Jin, Zhang, Zhu, Zhao, & Zhang, 2023) employs goal-factorized reward

formulations for robotic skill development through progressive interpolation of goal

distributions.

Other advances include Margolis’s adaptive curriculum approaches with online system

identification for legged robots (Margolis, Yang, Paigwar, Chen, & Agrawal, 2024),

Szoke’s PREFVEC (Szoke, Shperberg, Holtz, & Allievi, 2024) for addressing

environments with imbalanced reward components, Lee’s CQM (Lee, Cho, Park,

& Kim, 2024) leveraging vector quantized-variational autoencoders for semantic

goal representations, and Uchendu’s JSRL (Uchendu, Xiao, Lu, Zhu, Yan, Simon,

Bennice, Fu, Ma, Jiao, et al., 2023) improving sample efficiency through guide-policy

initialization. These approaches collectively demonstrate how structured progression

can enhance learning across diverse domains and challenges.

2.4 Comparative Analysis and Research Positioning

Our proposed Bayesian Curriculum Generator (BCG) (Akgün & Üre, 2025) builds

upon these foundations while addressing several limitations in existing approaches.

While sharing fundamental principles with teacher-student methods such as TSCL

(Graves, Bellemare, Menick, Munos, & Kavukcuoglu, 2017; Matiisen, Oliver, Cohen,

& Schulman, 2019) and environment sampling using Gaussian mixture models

(Linden, Lopes, & Bidarra, 2013; Portelas, Colas, Hofmann, & Oudeyer, 2020b),

BCG demonstrates enhanced adaptability, seamless integration capabilities with
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diverse reinforcement learning algorithms, and optimized task sequencing through

unsupervised learning and adaptive Bayesian networks.

Though BCG shares conceptual similarities with intermediate goal creation methods

(Florensa, Held, Geng, & Abbeel, 2018; Florensa, Held, Wulfmeier, Zhang, &

Abbeel, 2017) in guiding agents through progressively complex tasks, it offers superior

adaptability and precision through its probabilistic modeling framework. Similarly,

compared to self-play methods (Duan, Chen, Houthooft, Schulman, & Abbeel, 2016;

Sukhbaatar, Lin, Kostrikov, Synnaeve, Szlam, & Fergus, 2017; Sukhbaatar, Szlam,

Synnaeve, Chintala, & Fergus, 2015), BCG provides more structured progression

while reducing data collection requirements.

Given the demonstrated success of implicit curriculum methods in environments

like MiniGrid and the explicit progression enabled by recent research advances,

these works serve as valuable comparative baselines for evaluating our approach’s

effectiveness. The BCG methodology, with its nuanced probabilistic curriculum

structure, offers a comprehensive solution addressing limitations in both traditional

and contemporary approaches while maintaining their core advantages in progressive

skill development.
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3. BACKGROUND

This chapter provides the foundational knowledge required to understand the core

concepts underpinning this thesis. We delve into three key areas: Bayesian Networks,

which form the basis of our probabilistic task modeling; Reinforcement Learning, the

paradigm within which our learning problem is situated; and Curriculum Learning,

the training strategy that our proposed method automates and enhances. Each section

aims to provide sufficient detail for readers who may not be deeply familiar with these

topics.

3.1 Bayesian Networks

Reasoning and making decisions in complex, real-world scenarios often involve

dealing with uncertainty and intricate dependencies between various factors. Proba-

bilistic Graphical Models (PGMs) provide a powerful framework for representing and

reasoning about such uncertain knowledge, combining principles from graph theory

and probability theory. Bayesian Networks (BNs), also known as Belief Networks or

Directed Probabilistic Graphical Models, are a prominent type of PGM that represent

conditional dependencies among a set of random variables using a Directed Acyclic

Graph (DAG) (Jensen, 1996; Koller & Friedman, 2009; Pearl, 1988).

3.1.1 Formal definition

Formally, a Bayesian Network for a set of random variables V = {V1,V2, . . . ,Vn}

consists of two components:

1. Directed acyclic graph (DAG): G = (V,E), where each node Vi ∈V corresponds to

a random variable Vi, and the directed edges E ⊆V ×V represent direct conditional

dependencies between these variables. An edge from Vi to Vj indicates that Vi has

a direct influence on Vj. If such an edge exists, Vi is called a parent of Vj, denoted
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Vi ∈ PaG(Vj) or simply Pa(Vj) when the graph G is clear from context. The acyclic

nature means there are no directed paths Vk1→Vk2→ ···→Vkm such that Vk1 =Vkm .

2. Set of conditional probability distributions (CPDs): For each variable Vi, there is

a CPD, P(Vi|Pa(Vi)), that quantifies the probabilistic relationship between Vi and

its parents. This distribution specifies the probability (or probability density for

continuous variables) of Vi taking on a particular value vi given any combination of

values pa j assigned to its parent variables Pa(Vi).

The random variables Vi can be discrete or continuous.

• For discrete variables, the CPD P(Vi|Pa(Vi)) is typically represented as a

Conditional Probability Table (CPT). A CPT lists the probability P(Vi = k|Pa(Vi) =

j) for each possible state (value) k of Vi and each possible configuration j of its

parents Pa(Vi). Let Vi have ri possible values and its parents Pa(Vi) have qi possible

configurations. Then the CPT for Vi contains ri× qi probability values. For each

parent configuration j, the probabilities must sum to one: ∑
ri
k=1 P(Vi = k|Pa(Vi) =

j) = 1. The specific parameters defining these probabilities are often denoted

θi jk = P(Vi = k|Pa(Vi) = j).

• For continuous variables, common CPDs include linear Gaussian models (Geiger

& Heckerman, 1994), where P(Vi|Pa(Vi) = pa j) is a normal distribution N (µ j,σ
2
j )

whose mean µ j is a linear function of the parent values pa j, i.e., µ j = w0 +

∑Vp∈Pa(Vi)wpvp, where vp is the value of parent Vp in configuration pa j. Other

forms like logistic functions (for modeling discrete children of continuous parents)

are also used.

The set of all parameters defining the CPDs for all variables in the network is often

denoted collectively by θ .
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3.1.2 Key concepts and properties

3.1.2.1 Conditional independence and the markov property

The structure of the DAG G encodes assumptions about conditional independence. The

Local Markov Property states that each variable Vi is conditionally independent of its

non-descendants, given its parents Pa(Vi). This is a fundamental assumption linking

the graph structure to probabilistic independence.

More generally, the graph structure G defines a set of conditional independence

assertions (X ⊥Y |Z)G, meaning the set of variables X is independent of the set Y given

the set Z, according to the graph structure. These independencies can be determined

using the graphical criterion called d-separation (directed separation) (Pearl, 1988).

Two sets of nodes X and Y are d-separated by a set of evidence nodes Z if every

undirected path between any node in X and any node in Y is "blocked" by Z. A path is

blocked if there is a node W on the path such that either:

1. W ∈ Z and the path connections meeting at W are serial (→W →) or diverging

(←W →).

2. W /∈ Z, and neither are any of its descendants, and the path connections meeting at

W are converging (→W ←). This node W is often called a collider or v-structure.

If all paths are blocked, then (X ⊥ Y |Z)G holds. This criterion allows us to read off all

conditional independencies implied by the BN structure directly from the graph.

3.1.2.2 Factorization of the joint probability distribution

A key consequence of the graph structure and the associated conditional independence

assumptions (specifically, the ordered Markov property derived from the DAG) is the

ability to factorize the full joint probability distribution P(V1, . . . ,Vn) over all variables

into a product of local CPDs (Pearl, 1988):

P(V1,V2, . . . ,Vn) =
n

∏
i=1

P(Vi|Pa(Vi)) (3.1)
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This factorization is immensely powerful. Consider n binary variables. The full joint

distribution requires specifying 2n− 1 parameters. However, if each variable in the

BN has at most k parents, the number of parameters needed is ∑
n
i=1 |States(Vi)| ×

|Configs(Pa(Vi))| ≤ ∑
n
i=1 2× 2k = n · 2k+1. If k is small compared to n, the BN

provides an exponential reduction in the number of parameters required to represent

the distribution, making both representation and computation more tractable (Koller &

Friedman, 2009).

3.1.3 Inference and learning

3.1.3.1 Probabilistic inference

Inference in BNs involves computing probabilities of interest given the network

structure G, parameters θ , and potentially some observed evidence E ⊂V . Let Q⊂V

be the query variables. Common inference tasks include:

• Marginal probability: Computing P(Q) by summing (or integrating for continuous

variables) over all other variables W =V \Q:

P(Q) = ∑
W

P(Q,W ) = ∑
W

n

∏
i=1

P(Vi|Pa(Vi)) (3.2)

• Conditional probability (Posterior probability): Computing P(Q|E = e), where e

represents the observed values for variables in E. Using the definition of conditional

probability:

P(Q|E = e) =
P(Q,E = e)

P(E = e)
=

∑W ′ P(Q,E = e,W ′)
∑Q′∑W ′ P(Q′,E = e,W ′)

(3.3)

where W ′ = V \ (Q ∪ E). Both numerator and denominator are computed via

marginalization.

• Most probable explanation (MPE): Finding the most likely assignment of values

w∗ to a set of unobserved variables W =V \E given evidence E = e:

w∗ = argmaxwP(W = w|E = e) = argmaxwP(W = w,E = e) (3.4)

Exact inference is generally NP-hard (Cooper, 1990). Efficient exact algorithms like

Variable Elimination (Dechter, 1996) exist but scale poorly with graph complexity
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(treewidth). Approximate methods like Markov Chain Monte Carlo (MCMC)

sampling (e.g., Gibbs sampling (Geman & Geman, 1984)) or Variational Inference

(Jordan, Ghahramani, Jaakkola, & Saul, 1999) are widely used for larger networks.

3.1.3.2 Learning bayesian networks

Learning BNs from a dataset D = {d1, . . . ,dm} of m independent observations involves

two primary tasks (Heckerman, 1995):

• Parameter learning (Given structure G): Estimate parameters θ .

– Maximum likelihood estimation (MLE): Find parameters θ that maximize the

likelihood of the data: θ̂MLE = argmaxθ P(D|G,θ). Assuming complete data,

the likelihood function factorizes according to the BN structure:

L(θ |D,G) = P(D|G,θ) =
m

∏
j=1

P(d j|G,θ) =
m

∏
j=1

n

∏
i=1

P(vi j|pai j,θi) (3.5)

where vi j and pai j are the values of Vi and its parents in data point d j, and

θi are the parameters for Vi’s CPD. This often decomposes into independent

maximizations for each node Vi. For discrete variables with CPTs, the MLE is

given by frequency counts: θ̂i jk =
Ni jk
Ni j

, where Ni jk counts observations where

Vi = k and Pa(Vi) = j, and Ni j = ∑k Ni jk.

– Maximum a posteriori (MAP) estimation: Incorporate prior beliefs P(θ |G)

about the parameters using Bayes’ theorem: P(θ |D,G) ∝ P(D|G,θ)P(θ |G).

Find the parameters maximizing the posterior: θ̂MAP = argmaxθ P(θ |D,G).

If conjugate priors are used (e.g., Dirichlet priors for multinomial CPDs), the

posterior distribution has the same form as the prior, simplifying calculation

(Heckerman, 1995). With a Dirichlet prior with hyperparameters ααα =

{αi jk}, the MAP estimate for discrete variables is θ̂i jk =
Ni jk+αi jk−1
Ni j+αi j−|Vi| , where

αi j = ∑k αi jk and |Vi| is the number of states of Vi. This acts like adding

pseudo-counts based on the prior.

Handling missing data or latent variables typically requires iterative methods like

the Expectation-Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977;

Lauritzen, 1995).
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• Structure learning (Structure G unknown): Learn the DAG G. This is

computationally harder due to the large space of possible DAGs. Common

approaches include:

– Score-based methods: Define a scoring function Score(G|D) that measures

how well a structure G fits the data D, often penalizing complexity. Search

for the structure G∗ maximizing the score. Common scores include Bayesian

scores (like BDeu (Heckerman, 1995)) derived from P(G|D) ∝ P(D|G)P(G),

or information-theoretic scores like BIC (Schwarz, 1978) and AIC. For

example:

BIC(G|D) = logP(D|G, θ̂MLE)−
logm

2
|θG| (3.6)

where |θG| is the number of independent parameters in the model for structure

G. The search often involves heuristic methods like greedy hill-climbing.

– Constraint-based methods: Perform statistical tests of conditional inde-

pendence on the data (e.g., χ2 tests) to identify constraints, then find a

DAG consistent with these independence facts (e.g., using the PC algorithm

(Spirtes, Glymour, & Scheines, 2000)).

In practice, domain knowledge is often used to constrain the structure search or validate

learned structures.

3.1.4 Advantages and use

Bayesian Networks provide a mathematically rigorous and intuitive framework

for modeling complex systems involving uncertainty and interdependence. Key

advantages include compact representation, explicit dependency modeling, integration

of prior knowledge with data, and support for probabilistic reasoning (Koller

& Friedman, 2009). Their utility spans numerous fields, including diagnostics,

bioinformatics, risk assessment, and machine learning. In this thesis, their ability

to model task parameter dependencies forms the core of the proposed curriculum

generation mechanism.
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3.2 Reinforcement Learning

Reinforcement Learning (RL) is a paradigm of machine learning concerned with how

intelligent agents ought to take actions in an environment to maximize some notion of

cumulative reward. Inspired by behavioral psychology, RL focuses on learning through

interaction and feedback, rather than learning from labeled examples (as in supervised

learning) or finding hidden structure (as in unsupervised learning).

3.2.1 Core concepts

The standard RL setting involves an agent interacting with an environment over a

sequence of discrete time steps t = 0,1,2, . . .. At each time step t:

1. The agent observes the current state st of the environment.

2. Based on the state, the agent selects an action at according to its current policy π .

3. The environment transitions to a new state st+1 based on the previous state st and

the agent’s action at .

4. The environment provides a scalar reward signal rt+1 to the agent, indicating the

immediate consequence of the action taken in the previous state.

This interaction forms a closed loop, often referred to as the agent-environment

interaction loop, illustrated in Figure 3.1. The agent continually perceives the state,

acts upon the environment, and receives feedback in the form of rewards and new

states. The fundamental goal of the agent is to learn a policy π that maximizes the

expected sum of rewards collected over time.

The agent’s goal is typically to learn a behavior, known as a policy, that maximizes the

expected cumulative reward over time.

3.2.2 Markov decision processes (MDPs)

The interaction between the agent and the environment is often formalized using a

Markov Decision Process (MDP). An MDP is defined by a tuple (S,A,P,R,γ), where:
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Figure 3.1: The standard agent-environment interaction loop in Reinforcement
Learning. The agent observes state st , selects action at , receives reward rt+1 and

transitions to state st+1.

• S: A set of possible states.

• A: A set of possible actions.

• P: The state transition probability function, P(s′|s,a) = Pr(st+1 = s′|st = s,at = a).

• R: The reward function, specifying the immediate reward rt+1.

• γ: The discount factor, γ ∈ [0,1].

The key assumption is the Markov property: the next state and reward depend only on

the current state and action.

3.2.3 Policies and value functions

The agent’s behavior is defined by its policy π . A stochastic policy π(a|s) gives the

probability of taking action a in state s. The goal is to find an optimal policy π∗

maximizing the expected return (cumulative discounted reward):

Gt =
∞

∑
k=0

γ
krt+k+1 (3.7)

Value functions estimate the expected return:

• State-value function V π(s) = Eπ [Gt |st = s].

• Action-value function Qπ(s,a) = Eπ [Gt |st = s,at = a].

Optimal value functions V ∗(s) and Q∗(s,a) represent the maximum possible expected

return.
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3.2.4 Bellman equations

Value functions satisfy recursive Bellman equations. The Bellman optimality equation

for V ∗ is:

V ∗(s) = max
a ∑

s′
P(s′|s,a)[R(s,a,s′)+ γV ∗(s′)] (3.8)

These equations are fundamental to many RL algorithms.

3.2.5 Exploration vs. exploitation

A key challenge is balancing exploration (trying new actions) and exploitation (using

known good actions) to find the true optimal policy.

3.2.6 Reinforcement learning algorithm categories

RL algorithms can be broadly categorized:

• Value-Based Methods: Learn value functions (e.g., Q-learning, DQN).

• Policy-Based Methods: Directly learn policies (e.g., REINFORCE).

• Actor-Critic Methods: Learn both a policy (actor) and a value function (critic) (e.g.,

A2C, A3C, PPO, SAC, DDPG, TD3).

3.2.7 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) (Schulman, Wolski, Dhariwal, Radford, &

Klimov, 2017) is a highly effective and widely used policy gradient algorithm within

the Actor-Critic family. It has become a default choice for many Deep RL applications

due to its favorable balance between sample efficiency, implementation simplicity, and

robust performance across a variety of continuous and discrete control tasks. PPO aims

to achieve the stability and reliable performance of Trust Region Policy Optimization

(TRPO) (Schulman, Levine, Abbeel, Jordan, & Moritz, 2015) while using only

first-order optimization, making it simpler to implement and computationally less

demanding.

The core idea behind policy gradient methods is to directly optimize the parameters θ

of the agent’s policy πθ to maximize the expected return J(θ) = Eτ∼πθ
[∑t γ trt ]. The
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gradient is typically estimated as ∇θ J(θ) ≈ Êt [∇θ logπθ (at |st)Ât ], where Êt denotes

the empirical average over a batch of state-action pairs collected under the policy, and

Ât is an estimate of the advantage function at time t. A major challenge with standard

policy gradients is that a single large gradient update can drastically change the policy,

potentially collapsing performance.

TRPO addresses this by maximizing a surrogate objective function subject to a

constraint on the KL divergence between the old and new policies, DKL(πθold ||πθ )≤ δ ,

effectively limiting the size of the policy update. However, TRPO involves complex

second-order optimization methods.

PPO simplifies this by incorporating the constraint directly into the objective function

using either a clipped surrogate objective or a KL penalty. The most common variant

uses the clipped objective. Let the probability ratio be rt(θ) =
πθ (at |st)

πθold (at |st)
, where θold

are the policy parameters before the update. The PPO clipped surrogate objective is:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât

)]
(3.9)

Here, Ât is the advantage estimate (often computed using Generalized Advantage

Estimation - GAE (Schulman, Moritz, Levine, Jordan, & Abbeel, 2018)), and ε is

a small hyperparameter (e.g., 0.2) defining the clipping range. The ‘clip‘ function

restricts rt(θ) to the interval [1− ε,1+ ε]. The ‘min‘ operator ensures that the final

objective is a lower bound (a pessimistic estimate) of the unclipped objective when the

ratio rt(θ) would cause a large policy change away from πθold . Specifically:

• If Ât > 0 (action was better than average), the update is clipped if the new policy

becomes too likely (rt > 1+ ε), preventing overly optimistic updates.

• If Ât < 0 (action was worse than average), the update is clipped if the new policy

becomes too unlikely (rt < 1− ε), preventing overly pessimistic updates that could

destabilize learning.

This clipping mechanism effectively discourages large policy updates, promoting

stable learning without the computational overhead of TRPO’s explicit trust region

constraint.
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PPO is typically implemented using an Actor-Critic architecture. The policy πθ (the

Actor) is updated by maximizing LCLIP(θ) via gradient ascent. A separate value

function network Vφ (s) (the Critic) is trained concurrently, usually by minimizing a

squared-error loss between its predictions and empirical targets (e.g., Monte Carlo

returns or λ -returns used in GAE): LV F(φ) = Êt [(V
target

t −Vφ (st))
2]. The learned

value function Vφ is used to compute the advantage estimates Ât needed for the policy

objective. Often, an entropy bonus term is added to the PPO objective to encourage

exploration.

In practice, PPO algorithms collect a batch of trajectories using the policy πθold ,

compute the advantages Ât using these trajectories and the current value function

estimate Vφ , and then perform multiple epochs of stochastic gradient updates on

the combined objective (policy loss + value function loss + entropy bonus) using

mini-batches sampled from the collected data before updating θold to the newly

optimized θ .

Given its strong empirical performance, stability, and ease of use, PPO serves as the

foundational RL algorithm upon which our BCG framework is built in this thesis.

3.2.8 Challenges

Despite significant progress, RL faces challenges, including:

• Sample Efficiency: Learning often requires many interactions.

• Sparse Rewards: Difficulty learning when feedback is infrequent.

• High-Dimensional Spaces: Handling large state/action spaces (Deep RL helps). *

Partial Observability: When the true state is not fully perceived.

Curriculum learning, discussed next, is one strategy specifically aimed at addressing

challenges like sparse rewards and complex tasks.

3.3 Curriculum Learning

Curriculum Learning (CL) is a training strategy in machine learning inspired by human

and animal pedagogy, where learning progresses through stages of increasing difficulty
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(Bengio, Louradour, Collobert, & Weston, 2009). Instead of exposing the learner

to the full complexity of the target task or dataset from the outset, CL introduces

simpler concepts or easier examples first, gradually building up to the more challenging

ones. This structured approach aims to improve learning speed, final performance, and

generalization. Figure 3.2 provides a general illustration of this concept, showing how

a model is trained on progressively larger and harder subsets of data drawn according

to a curriculum schedule.

Figure 3.2: Conceptual illustration of Curriculum Learning. The model is initially
trained on a small, easy subset of data/tasks (Curriculum stage Q1), then progresses to

larger, harder subsets (Qt), eventually encompassing the entire target distribution
(QT = P). Image adapted from (Wang, Chen, & Zhu, 2021).

3.3.1 Motivation and application in reinforcement learning

In Reinforcement Learning (RL), CL is particularly valuable for tackling complex

problems where standard training might fail or be prohibitively inefficient. These often

include scenarios with:

• Sparse Rewards: A curriculum can introduce intermediate tasks with denser or

shaped rewards, guiding the agent towards the sparsely rewarded goal of the target

task.
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• Complex Tasks: Tasks requiring long sequences of actions or intricate skills can be

decomposed into simpler prerequisite tasks.

• Large State/Action Spaces: A curriculum can effectively constrain the exploration

problem in early stages, focusing learning on essential skills before exposing the

agent to the full complexity.

The core idea in RL is to design or automatically generate a sequence of tasks (MDPs),

T1,T2, . . . ,TN , where TN is the final target task, such that learning progresses efficiently

through the sequence.

3.3.2 Formalizing curriculum components

A curriculum can be formalized by defining its key components:

1. Task space and distribution: Let T be the space of all possible tasks, often defined

by a set of parameters ψ ∈Ψ. The target is often a specific task TN (with parameters

ψN) or a target distribution P(T ) over T . A curriculum defines a sequence of

N intermediate task distributions Q1,Q2, . . . ,QN , where typically QN = P(T ) or

samples heavily around TN . At stage i, the agent trains on tasks T ∼ Qi.

2. Difficulty measure: A function D : T → R that assigns a difficulty score to each

task T . This score should ideally correlate with the learning challenge posed to the

agent. Measures can be based on:

• Task parameters (e.g., distance to target parameters D(Ti) = ∥ψi−ψN∥).

• Heuristics (e.g., required steps, object counts).

• Agent’s performance (e.g., 1−SuccessRate(Ti), or −V ∗(Ti)).

• Learning dynamics (e.g., learning progress (Graves, Bellemare, Menick,

Munos, & Kavukcuoglu, 2017), model uncertainty).

The curriculum typically orders tasks such that D(Ti) ≤ D(Ti+1) on average for

Ti ∼ Qi,Ti+1 ∼ Qi+1.

3. Sequencing strategy / Pacing: A mechanism determining the progression through

the curriculum stages Q1, . . . ,QN . This can be:
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• Fixed: Predetermined schedule or number of steps per stage.

• Adaptive: Transitioning from stage i to i+1 based on the agent’s performance.

For example, move to stage i+1 when the agent’s average performance metric

Mi (e.g., mean success rate or reward on tasks from Qi) exceeds a threshold

ηi.

3.3.3 Curriculum learning and transfer learning

A crucial aspect enabling the effectiveness of CL in RL is the implicit use of Transfer

Learning between consecutive stages of the curriculum. As the agent masters tasks Ti∼

Qi at stage i, the knowledge encoded in its learned components (e.g., policy parameters,

value function parameters, learned representations) is used to initialize the learning

process for tasks Ti+1 ∼ Qi+1 at stage i+1.

Let πθi be the policy with parameters θi learned by the end of curriculum stage i.

Similarly, let Vφi be a learned value function with parameters φi. The transfer process

can be formalized as initializing the parameters for stage i + 1 based on the final

parameters from stage i:

θ
initial
i+1 = f (θ final

i ) (3.10)

φ
initial
i+1 = g(φ final

i ) (3.11)

Often, the transfer functions f and g are simply the identity function (i.e., θ initial
i+1 =

θ final
i ), meaning the learning for the next stage starts exactly where the previous stage

left off. In other cases, f or g might involve minor modifications, like adding small

amounts of noise or freezing certain layers while retraining others.

This transfer of learned parameters is essential. Instead of learning each task Ti+1

from a random initialization θ random, the agent starts from a point θ final
i that already

encodes useful skills and knowledge relevant to the (presumably similar) tasks in Qi+1.

The hypothesis is that this warm start significantly reduces the number of samples

or training iterations required to achieve proficiency on Ti+1, thereby accelerating

convergence towards competence on the final target task TN .
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3.3.4 Automation and approaches

While curricula can be manually designed by experts, this requires significant effort

and domain knowledge. Research increasingly focuses on Automated Curriculum

Learning, where the task generation, difficulty assessment, and sequencing are

performed algorithmically. Approaches include:

• Goal generation: Methods like Hindsight Experience Replay (HER) implicitly

create curricula by treating failed attempts as successes for intermediate goals

(Andrychowicz, Wolski, Ray, Schneider, Fong, Welinder, McGrew, Tobin, Abbeel,

& Zaremba, 2017). Other methods generate achievable goals based on the agent’s

current state space coverage.

• Task parameter sampling: Explicitly sampling task parameters ψ from distributions

Qi that evolve over time, often guided by agent performance or learning progress

(Graves, Bellemare, Menick, Munos, & Kavukcuoglu, 2017). The BCG method

in this thesis falls broadly into this category, using BNs to structure the parameter

space.

• Teacher-student frameworks: An external ’teacher’ model learns to propose tasks

that are maximally beneficial for the ’student’ agent’s learning progress (Matiisen,

Oliver, Cohen, & Schulman, 2019).

• Difficulty via self-competition: Using self-play mechanisms where agents compete

against past versions of themselves, naturally creating a curriculum of increasing

opponent difficulty (Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez,

Hubert, Baker, Lai, Bolton, et al., 2017).

3.3.5 Benefits and challenges

When successful, CL offers significant benefits in RL:

• Faster convergence times.

• Improved final performance on the target task.
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• Ability to solve complex, sparse-reward tasks intractable otherwise.

• Guided exploration towards relevant parts of the state-action space.

However, effective CL design faces challenges:

• Defining appropriate task spaces and meaningful difficulty metrics.

• Avoiding negative transfer if intermediate tasks are poorly chosen.

• Ensuring the curriculum ultimately leads to good performance on the *target* task.

• Potential computational overhead of managing the curriculum generation and

sequencing.

This thesis contributes an automated approach (BCG) aiming to address some of

these challenges by using probabilistic models for structured and adaptive curriculum

generation.

3.4 Autoencoders

Autoencoders are a type of Artificial Neural Network (ANN) used primarily for

unsupervised learning tasks, particularly dimensionality reduction and feature learning

(Hinton & Salakhutdinov, 2006). The fundamental idea is to train the network to

reconstruct its input, essentially learning an approximation of the identity function, but

under constraints that force it to learn a compressed, salient representation of the data

in an intermediate layer.

3.4.1 Architecture

An autoencoder consists of two main components connected sequentially: an encoder

and a decoder. A typical architecture is visualized in Figure 3.3.

1. Encoder: This part of the network takes the input data x ∈ Rd and maps it to a

hidden representation z ∈ Rd′ in the latent space. Typically, the dimension of the

latent space d′ is much smaller than the input dimension d (d′ ≪ d), creating an
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Figure 3.3: Typical architecture of an Autoencoder. The encoder maps the input x to
a lower-dimensional latent code z. The decoder attempts to reconstruct the original

input x′ from the code z. The bottleneck structure forces the network to learn a
compressed representation.

information bottleneck. The encoder can be represented as a function e : Rd→Rd′ ,

parameterized by weights and biases θe:

z = e(x;θe) (3.12)

The encoder often consists of one or more layers (e.g., fully connected,

convolutional) with non-linear activation functions (e.g., ReLU, sigmoid).

2. Decoder: This part takes the latent representation z and maps it back to a

reconstruction x′ ∈ Rd in the original input space. The goal is for x′ to be as close

as possible to the original input x. The decoder can be represented as a function

d : Rd′ → Rd , parameterized by θd:

x′ = d(z;θd) (3.13)

The decoder architecture often mirrors the encoder’s structure (e.g., using

transposed convolutions if the encoder used convolutions). The activation function

of the final decoder layer is chosen based on the nature of the input data (e.g.,

sigmoid for inputs normalized to [0,1], linear for unbounded real values).

The complete autoencoder function is the composition of the encoder and decoder:

x′ = d(e(x;θe);θd).
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3.4.2 Training objective

Autoencoders are trained by minimizing a loss function that measures the difference

between the original input x and its reconstruction x′. This difference is often called

the reconstruction error. Given a dataset D = {x(1), . . . ,x(m)}, the objective is to find

the parameters (θe,θd) that minimize the average loss:

(θ̂e, θ̂d) = argminθe,θd

1
m

m

∑
j=1

L(x( j),d(e(x( j);θe);θd)) (3.14)

The choice of the loss function L(·, ·) depends on the data type:

• For real-valued inputs (e.g., normalized image pixel intensities), the Mean Squared

Error (MSE) is commonly used:

LMSE(x,x′) = ∥x− x′∥2
2 =

d

∑
k=1

(xk− x′k)
2 (3.15)

• For binary inputs or inputs interpreted as probabilities (e.g., pixel values in [0,1]),

the Binary Cross-Entropy (BCE) loss is often preferred:

LBCE(x,x′) =−
d

∑
k=1

[xk log(x′k)+(1− xk) log(1− x′k)] (3.16)

where x′k is typically the output of a sigmoid activation in the final decoder layer.

Training is performed using standard backpropagation and gradient-based optimization

algorithms (like Adam or SGD) to update the parameters θe and θd .

3.4.3 Use cases and variants

The primary purpose of training an autoencoder is often not the reconstruction x′ itself,

but the learned latent representation z or the learned encoder function e(·).

• Dimensionality reduction: The encoder e(x) provides a lower-dimensional

representation z of the input x, capturing its most salient features.

• Feature learning: The latent code z can be used as a learned feature vector for input

into subsequent supervised learning models (e.g., classifiers, regressors) or, as in

this thesis, for analyzing task characteristics.
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• Data denoising: Denoising Autoencoders are trained to reconstruct clean inputs

from corrupted versions, forcing them to learn robust features.

• Generative modeling: Variational Autoencoders (VAEs) (Kingma & Welling, 2014)

are a probabilistic extension that learns a distribution over the latent space, allowing

for the generation of new data samples similar to the training data.

Other variants include Sparse Autoencoders (which add sparsity penalties to the latent

code) and Convolutional Autoencoders (which use convolutional layers, suitable for

image data).

In the context of this thesis, we utilize the encoder part e(·) of a trained autoencoder

(specifically, a convolutional autoencoder for visual inputs like MiniGrid states)

to extract a compressed feature vector z = e(x) representing the essential visual

characteristics of a given task’s state or configuration. This learned representation z

is then used as input for downstream analysis, such as measuring task similarity or

difficulty within the Curriculum Learning framework.
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4. METHODOLOGY

4.1 Problem Formulation

We address curriculum learning within reinforcement learning (RL) environments,

particularly those characterized by sparse rewards. The standard RL problem is

modeled as a Markov Decision Process (MDP), defined by the tuple (S,A,P,R), where:

• S represents the state space: all possible configurations of the environment.

• A denotes the action space: all actions available to the agent.

• P : S×A×S→ [0,1] is the state transition function, giving the probability P(s′|s,a)

of transitioning to state s′ after taking action a in state s.

• R : S×A→R is the reward function, assigning a scalar reward to state-action pairs.

The agent’s objective is to learn an optimal policy π∗ that maximizes the expected

discounted cumulative reward, represented by the value function:

V π(s) = Eπ

[
∞

∑
t=0

γ
tR(st ,at) | s0 = s

]
, (4.1)

where γ ∈ [0,1) is the discount factor. The optimal policy π∗ and its corresponding

optimal value function V ∗ satisfy:

π
∗ = argmax

π
V π(s), ∀s ∈ S, (4.2)

V ∗(s) = max
π

V π(s) =V π∗(s), ∀s ∈ S. (4.3)

In the context of curriculum learning, this MDP formulation is extended. A curriculum

is defined as a sequence of related tasks [T1,T2, . . . ,Tn], where each task Ti is an MDP,

often sharing structure but varying in difficulty (e.g., different parameters within the

same environment). The agent learns these tasks sequentially. A crucial aspect is

transfer learning: the policy learned for task Ti is often used to initialize the learning
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process for the subsequent task Ti+1, aiming to accelerate convergence towards the final

target task Tn. Our work focuses on generating this sequence T1, . . . ,Tn automatically

and adaptively.

4.2 Bayesian Curriculum Learning Framework

This research proposes a novel Bayesian Curriculum Generation (BCG) (Akgün &

Üre, 2025) approach for RL in sparse reward settings. The core idea is to integrate

probabilistic modeling, unsupervised clustering, and adaptive task sequencing based

on agent performance. This framework aims to create structured, efficient, and

adaptive curricula tailored to the agent’s learning progress. The complete algorithm

is detailed in Section 4.3.

4.2.1 Probabilistic task modeling with bayesian networks

We utilize Bayesian Networks (BNs) to model the relationships and dependencies

between key parameters defining the tasks within an environment (Koller & Friedman,

2009; Pearl, 1988). A BN is a directed acyclic graph (DAG) G = (V,E), where nodes

V = {V1, . . . ,Vn} represent environmental parameters (e.g., agent/goal positions, object

properties) and edges E represent conditional dependencies. The structure allows

factorization of the joint probability distribution:

P(V1, . . . ,Vn) =
n

∏
i=1

P(Vi | Pa(Vi)), (4.4)

where Pa(Vi) are the parents of node Vi. Each Conditional Probability Distribution

(CPD), P(Vi | Pa(Vi)), often denoted as θi jk = P(Vi = k | Pa(Vi) = j), quantifies

the influence of parent parameters on a child parameter. This probabilistic model

serves as the basis for generating diverse yet structured tasks by sampling parameter

configurations according to the learned dependencies. Tasks are generated by sampling

parameters following the topological order of the BN.
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4.2.2 Task representation and difficulty evaluation

Effective curriculum design requires quantifying task characteristics and difficulty.

Tasks T = {T1, . . . ,Tn} are mapped into a feature space using an embedding function

φ .

• Visual tasks: For tasks represented by images (e.g., grid environments like

MiniGrid (Chevalier-Boisvert, Dai, Towers, Perez-Vicente, Willems, Lahlou, Pal,

Castro, & Terry, 2023)), an autoencoder A extracts a latent representation zi =

A (Ti). Dimensionality reduction D (e.g., t-SNE) may be applied subsequently:

yi = D(zi).

• Scalar tasks: Tasks defined by scalar parameters (e.g., velocities in AeroRival

Pursuit) are represented by their normalized parameter vectors.

The difficulty of a task Ti is initially assessed based on its distance to the final target

task Tn in the feature space:

d(Ti) = ∥φ(Ti)−φ(Tn)∥2. (4.5)

These distances are then normalized and potentially combined (using weights λ1,λ2) if

multiple representations exist (e.g., visual and scalar), resulting in normalized difficulty

scores D′i.

4.2.3 Clustering and adaptive task sequencing

Based on the normalized difficulty scores D′i, tasks are grouped into Nbins distinct

difficulty levels or clusters {C1, . . . ,CNbins} using an unsupervised clustering algorithm

(e.g., K-means). This ensures tasks within a cluster are of similar difficulty and

that clusters are ordered, forming the backbone of the curriculum sequence. Task

selection during training is dynamic and probabilistic, often guided by the agent’s

performance Mt (e.g., mean episodic reward, success rate). The selection mechanism

(detailed in Eq. 4.16) typically favors tasks that are appropriately challenging for the

agent’s current skill level. Furthermore, the framework adapts based on performance.
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Task difficulty assessments and the underlying BN model can be updated using

Bayesian inference (Eq. 4.18, 4.19, 4.20) incorporating observed agent performance

data. Task solvability σ(Ti) is evaluated against a threshold η (Eq. 4.17, 4.21),

potentially triggering adjustments to the perceived difficulty of related tasks (Eq. 4.22,

4.23). Training transitions to the target task Tn once the agent demonstrates sufficient

competence on prerequisite tasks, optimizing training time.

4.3 Bayesian Curriculum Generation (BCG) Algorithm

The BCG algorithm (Akgün & Üre, 2025), detailed in this section, operationalizes the

framework described above. It systematically integrates task representation, difficulty

assessment via clustering, probabilistic task generation using BNs, and dynamic

adaptation based on agent performance. Figure 4.1 provides a visual overview of the

workflow.

The algorithm proceeds through the following key steps:

4.3.1 Task representation processing

Tasks T = {T1, . . . ,Tn} are mapped to a feature space via φ .

• Visual tasks: Use an autoencoder A for latent features zi = A (Ti) ∈ Rm (Eq. 4.6),

potentially followed by dimensionality reduction D to get yi =D(zi)∈Rk (Eq. 4.7).

• Scalar tasks: Use normalized parameter vectors directly via φ .

zi = A (Ti) (4.6)

yi = D(zi) (4.7)

4.3.2 Difficulty assessment and normalization

Compute base difficulty relative to the target task Tn:

d(Ti) = ∥φ(Ti)−φ(Tn)∥2. (4.8)
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Figure 4.1: Overview of the Bayesian Curriculum Generation (BCG) Algorithm
(adapted from (Akgün & Üre, 2025)): This flowchart illustrates the structured
approach. It starts with building a Bayesian Network for curriculum modeling.

Unsupervised clustering differentiates task complexity levels, and a cost function
guides task sequencing. The curriculum evolves dynamically through iterative cycles
of task generation, difficulty evaluation, and agent training, repeating until the target

task is mastered. This enhances sample efficiency and reduces training burden.
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Calculate a normalized similarity score snorm(Ti), potentially combining different

feature types (e.g., encoded vs. direct parameters) using weights λ1,λ2:

snorm(Ti) =

{
λ1ŝE +λ2(1− ŝS), if encoder A is used
1− ŝS, otherwise

(4.9)

where ŝE and ŝS are normalized distances based on encoded features (E = D ◦A ) and

direct features (φ ) respectively:

ŝE =
∥E (Ti)−E (Tn)∥2

max j ∥E (Tj)−E (Tn)∥2
, (4.10)

ŝS =
∥φ(Ti)−φ(Tn)∥2

max j ∥φ(Tj)−φ(Tn)∥2
. (4.11)

Derive the final normalized difficulty score D′i using min-max scaling:

D′i =
d(Ti)−min j(d(Tj))

max j(d(Tj))−min j(d(Tj))
. (4.12)

4.3.3 Difficulty clustering and task selection

Cluster tasks into K = Nbins ordered difficulty groups {C1, . . . ,CK} based on D′i using

K-means, such that:

K⋃
k=1

Ck = T , (4.13)

Ck∩C j = /0 ∀k ̸= j, (4.14)

∀Ti ∈Ck,Tj ∈Ck+1 : mean(D′T∈Ck
)≤mean(D′T∈Ck+1

). (4.15)

Select the next task Ti based on its posterior probability given agent performance

metrics Mt :

P(Ti|Mt) =
P(Mt |Ti)P(Ti)

∑
n
j=1 P(Mt |Tj)P(Tj)

, (4.16)

where performance metrics Mt might include mean reward Rt and episode length lt :

Mt =

{
Rt =

1
N

N

∑
e=1

re, lt =
1
N

N

∑
e=1

lene

}
. (4.17)
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4.3.4 Probabilistic task generation and bayesian updating

Leverage the BN G = (V,E) to generate new task parameters by sampling from

the CPDs P(Vi|Pa(Vi)). Update the BN parameters (θ ) based on observed agent

performance data Dnew using Bayesian inference:

P(θ |Dnew) ∝ P(Dnew|θ)P(θ) ∝ P(Dnew|θ)∏
i, j,k

θ
αi jk−1
i jk . (4.18)

Refine CPDs using methods like Maximum Likelihood Estimation (MLE):

P∗(Vi|Pa(Vi)) = argmax
P

N

∑
j=1

logP(O j,Tj|Vi,Pa(Vi),G), (4.19)

or Maximum A Posteriori (MAP) estimation:

P∗(Vi|Pa(Vi)) = argmax
P

(
N

∑
j=1

logP(O j,Tj|Vi,Pa(Vi),G)

)
+ logP(Vi|Pa(Vi)). (4.20)

4.3.5 Dynamic difficulty adjustment and thresholding

Assess task solvability σ(Ti) using a performance threshold η :

σ(Ti) = (Rt ≥ η ·Rmax(Ti)), (4.21)

where Rt is the recent average reward on Ti and Rmax(Ti) is the estimated maximum

possible reward. Adjust the difficulty level l(Tj) of tasks Tj similar to Ti based on

whether Ti was solved, using a similarity threshold τt :

l′(Tj) =


l(Tj) if snorm(Tj,Ti)> τt ∧σ(Ti)

min(l(Tj)+1,Nbins−1) if snorm(Tj,Ti)> τt ∧¬σ(Ti)

l(Tj) otherwise
(4.22)

The similarity threshold τt itself can be adaptive, e.g., based on the mean similarity

µsnorm scaled by a factor β :

τt = µsnorm ·β . (4.23)

This iterative process of generation, training, evaluation, and adaptation continues until

the target task Tn is mastered.
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4.3.6 Computational complexity analysis

The overall computational complexity of training an RL agent with BCG is the sum of

the complexity of the underlying RL algorithm (e.g., PPO) and the overhead introduced

by the BCG framework. The goal of BCG is that its overhead is significantly offset by

a reduction in the sample complexity required by the RL agent to solve the tasks. The

BCG overhead consists of three main components:

1. Bayesian Network Learning (Offline Cost): The initial learning of the Bayesian

Network’s Conditional Probability Distributions (CPDs) from data is an offline,

one-time cost. If learning from a dataset of M tasks with N parameters, the

complexity depends on the chosen structure learning and parameter learning

algorithms. For a fixed BN structure, learning the parameters is generally efficient.

However, structure learning can be computationally intensive, though this is

performed only once before the main training loop.

2. Bayesian Network Inference (Online Cost): This is the most significant part

of BCG’s online overhead, performed periodically during RL training. The

complexity of exact probabilistic inference in a BN is, in the worst case, exponential

in the network’s treewidth. The treewidth is a measure of a graph’s structural

complexity.

• For simple structures like chains (A -> B -> C) or trees, the treewidth is

low (1 or 2), and inference is linear in the number of nodes, making it very

fast.

• For densely connected graphs, where nodes have many parents, the treewidth

can be large, leading to exponential complexity. This is the core of the

trade-off mentioned in our Limitations (Section 6.5): a manually designed,

simple BN structure is computationally cheap, while a more complex,

highly-connected structure is expensive.
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Therefore, the inference complexity can be expressed as O(exp(w)), where w is

the treewidth of the manually defined BN. This cost is incurred each time the

curriculum is updated.

3. Clustering and Task Selection (Online Cost): After inferring difficulties for a pool

of T candidate tasks, BCG performs clustering. Using an efficient algorithm like

k-means on a one-dimensional difficulty score is highly efficient, typically with a

complexity of O(T ·k · i), where k is the number of clusters (bins) and i is the number

of iterations. This cost is generally negligible compared to BN inference and RL

training.

In summary, the primary computational consideration for BCG is the complexity

of inference in the user-defined Bayesian Network. By encouraging the use of

causally-inspired, sparse network structures, the online overhead can be kept minimal,

allowing the gains in RL sample efficiency to dominate the overall training time.

4.4 Hyperparameter Analysis and Configuration

The operational characteristics of the BCG framework are influenced by several key

hyperparameters, summarized in Table 4.1. A detailed parametric study was conducted

to understand their impact. Our findings suggest considerable stability, with overall

performance metrics typically varying by only 5-10% when parameters are adjusted

within their recommended ranges under the evaluated environmental conditions.

This observed robustness likely stems from several integral design aspects of the

framework:

• The adaptive nature of the similarity threshold (τt), which self-calibrates based on

observed task feature distances.

• The use of unsupervised clustering (Nbins) to group tasks by difficulty, providing

inherent structure regardless of the precise bin count.

• The probabilistic task selection mechanism, which naturally balances exploring

different task types and exploiting successful ones.
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While the default values presented proved effective in our experiments on environ-

ments with predefined parameters, scenarios featuring greater complexity, dynamic

elements, or temporal variations might require a more extensive hyperparameter

search. Nonetheless, for settings similar to those tested, the values in Table 4.1

offer effective starting points. The following analysis explores key hyperparameter

interactions visualized via heatmaps.

Table 4.1: BCG Framework Hyperparameters: Settings and Effects (adapted from
(Akgün & Üre, 2025)).

Parameter Default
value

Recommended
range

Effect on curriculum

β 0.4 [0.3, 0.5] Influences the adaptiveness of difficulty
adjustments based on task similarity;
higher values make adjustments affect
more similar tasks (related to τt).

Nbins 3 [2, 5] Sets the number of distinct difficulty
levels (clusters). More bins allow
finer-grained progression but can poten-
tially slow learning if tasks within bins
are too similar or if too many stages are
created.

λ1,λ2 0.6, 0.4 [0.5, 0.7], [0.3,
0.5]

Balances the contribution of different
feature types in similarity calculations:
λ1 weights autoencoder-derived features,
λ2 weights state-based features. Values
>0.5 indicate stronger reliance on the
corresponding feature type.

η 0.7 [0.6, 0.9] Defines the performance threshold for
considering a task ’solved’ or mastered.
Higher values demand greater proficiency
before progression or confirming task
difficulty.

For the heatmap analysis, performance was quantified using a combined metric giving

equal importance (50% weight each) to task success (measured by normalized reward)

and learning efficiency (measured by normalized training timesteps required).

The interplay between hyperparameters is revealed in the heatmaps. Figure 4.2

examines the relationship between the number of difficulty clusters (Nbins) and the
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combined performance (adapted from (Akgün & Üre, 2025)).
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similarity threshold factor (β ). Optimal performance (score 0.96) was observed

around Nbins = 3 and β = 0.43, suggesting a balance between moderate difficulty

granularity and adaptive similarity assessment is beneficial. The framework shows

robustness, maintaining scores above 0.80 for β between approximately 0.28 and 0.51.

Performance declines sharply outside this band, especially when coarse granularity

(Nbins = 2) combines with high β (>0.67), leading to failure. Conversely, very fine

granularity (Nbins≥ 5) tended to slow progress, yielding lower scores than intermediate

values (Nbins = 3 or 4). This highlights the need for appropriately scaled difficulty

levels and task diversity control.

Figure 4.3 illustrates the interaction between the task completion threshold (η) and

β . The highest performance (around 0.90) occurs in a region where β is near 0.4

(specifically 0.39–0.41) and η is approximately 0.70. This peak underscores the value

of coupling moderate task selection diversity with a reasonably demanding success

criterion. Performance tends to decrease symmetrically as β moves away from 0.4.

Notably, very high η values (>0.85) significantly reduce performance irrespective of

β , likely because excessively strict completion criteria hinder the agent’s progression

through the curriculum. Similarly, low η values (<0.5) allow agents to advance

prematurely with insufficient skill mastery, which also leads to lower overall scores due

to reduced final task success and inefficient learning. This emphasizes the sensitivity

of the curriculum’s effectiveness to the chosen success threshold.

The relationship between the weights for different similarity measures, λ1

(autoencoder features) and λ2 (state-based features), is shown in Figure 4.4. A diagonal

band indicates strong performance when both measures contribute. The optimum lies

near λ1 ≈ 0.63 and λ2 ≈ 0.37, suggesting a slight preference for using the abstract

features learned by the autoencoder but confirming that incorporating state-based

similarity is also crucial. Relying too heavily on only one measure (e.g., λ1 > 0.81

or λ2 > 0.63) leads to a marked decrease in performance, underlining the benefit of a

combined approach for robust task representation in the curriculum.

In conclusion, this parametric analysis indicates that the BCG framework exhibits

reliable performance within the recommended hyperparameter ranges for the
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tested environments, with the default settings providing a solid baseline. The

heatmap visualizations offer valuable insights into parameter interactions, consistently

pointing towards the benefits of balanced settings for granularity (Nbins), task

selection/adaptation (β ), success criteria (η), and feature weighting (λ1,λ2). These

findings establish a foundation for applying the framework while suggesting areas for

careful tuning when extending to more complex or dynamic scenarios.

4.5 Implementation Details

This section outlines the technical specifics of the framework’s implementation,

including the software environment, computational hardware, and the architecture used

for processing visual task representations.

4.5.1 Software and hardware environment

The development and execution of the experiments were carried out using Python

version 3.8. Core numerical operations and data handling leveraged NumPy (v1.21.0)

and Pandas (v1.1.5). The deep learning components, including the base reinforcement

learning agent and the autoencoder, were implemented using PyTorch (v1.10.2),

utilizing its ‘torch.nn‘ module for network layers and ‘torch.optim‘ for optimization.

Image preprocessing steps potentially involved torchvision (v0.11.3).

For constructing and manipulating Bayesian Networks, the ‘pgmpy‘ library (v0.1.24)

was employed, specifically using its ‘BayesianNetwork‘ module for structure

definition and learning, alongside its parameter estimation (MLE) and inference

functionalities. Dimensionality reduction of latent representations was performed

using the ‘openTSNE‘ library (v0.6.0), noted for its efficient FFT-accelerated

implementation.

Clustering of tasks based on their representations utilized algorithms available in

‘scikit-learn‘ (v0.24.2), such as KMeans and potentially DBSCAN, along with its

‘StandardScaler‘ for feature normalization. Additional scientific computing tasks were

supported by ‘scipy‘ (v1.5.4). Visualizations were generated using Matplotlib (v3.3.4),

and experiment progress was monitored with ‘tqdm‘ (v4.64.1).
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All computational experiments were performed on a high-performance computing

cluster equipped with NVIDIA V100 GPUs, leveraging CUDA 11.3 for accelerated

computation. The project’s source code was managed using Git for version control,

and code correctness was ensured through unit tests developed with ‘pytest‘ (v6.2.5).

4.5.2 Visual task representation: autoencoder implementation

To handle visual inputs, such as the grid representations in the MiniGrid environment,

an autoencoder was implemented to learn compressed latent features representative

of the task’s visual state. As introduced in Section 3.4, autoencoders learn to

reconstruct their input through an encoder-decoder architecture, forcing data through

an information bottleneck. This process facilitates the extraction of salient features for

downstream analysis, such as assessing task difficulty within the BCG framework.

The specific architecture employed was a deep convolutional autoencoder, detailed

in Table 4.2. The encoder component progressively reduces the spatial dimensions

of the input image (assumed to be 224x224x3) while increasing the feature depth

using a sequence of 2D convolutions (with ReLU activations and Batch Normalization)

and MaxPooling layers. This results in a compact latent representation (7x7x512 in

this specific architecture). The decoder component then reconstructs the image back

to its original dimensions using corresponding ConvTranspose2D layers (also with

ReLU/BatchNorm), culminating in a final Sigmoid activation to output pixel values

typically normalized between 0 and 1. Figure 4.5 illustrates this architectural concept.
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Figure 4.5: Conceptual illustration of the Convolutional Autoencoder architecture
used for processing visual task inputs (e.g., from MiniGrid). Input images are

compressed by the encoder into a latent feature space and subsequently reconstructed
by the decoder (adapted from (Akgün & Üre, 2025)).

The autoencoder network was trained by minimizing the reconstruction error between

the input task images and the decoder’s output, typically using a loss function like

Mean Squared Error (MSE) or Binary Cross-Entropy (BCE), optimized via stochastic

gradient descent methods (e.g., Adam).

Following training, only the encoder part of the network ( f in the background section’s

notation) was utilized during the curriculum generation phase. The encoder transforms

a given visual task input x into its corresponding latent vector z = f (x). These

high-dimensional latent vectors, capturing essential task features, were then processed

further. Specifically, to facilitate visualization and clustering based on task similarity,

the t-SNE algorithm was applied to reduce the dimensionality of the latent vectors z

down to a two-dimensional representation, aiming to preserve the local structure and

reveal inherent groupings within the task space.

4.5.3 Dimensionality reduction for visualization (t-SNE)

To analyze and visualize the relationships between tasks based on the high-dimensional

latent vectors (z) generated by the autoencoder’s encoder component, we employed

t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton,

2008). t-SNE is a non-linear technique particularly effective at revealing local structure

and similarities within high-dimensional data by embedding it into a low-dimensional

space, typically 2D for visualization.
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Table 4.2: Detailed Architecture of the Deep Convolutional Autoencoder Network.
The table specifies the layer type, output shape, spatial dimensions (HxW), feature

depth, and filter size for each step in the encoder (compression) and decoder
(reconstruction) paths (adapted from (Akgün & Üre, 2025)).

Block Operation Output Shape HxW Depth Filter
HxW

Encoder Input 224x224x3 224 3 -

Encoder Conv2D +
ReLU +
BatchNorm

224x224x32 224 32 3x3

Encoder MaxPool2D 112x112x32 112 32 2x2

Encoder Conv2D +
ReLU +
BatchNorm

112x112x64 112 64 3x3

Encoder MaxPool2D 56x56x64 56 64 2x2

Encoder Conv2D +
ReLU +
BatchNorm

56x56x128 56 128 3x3

Encoder MaxPool2D 28x28x128 28 128 2x2

Encoder Conv2D +
ReLU +
BatchNorm

28x28x256 28 256 3x3

Encoder MaxPool2D 14x14x256 14 256 2x2

Encoder Conv2D +
ReLU +
BatchNorm

14x14x512 14 512 3x3

Encoder MaxPool2D 7x7x512 7 512 2x2

Decoder ConvTranspose2D
+ ReLU +
BatchNorm

14x14x256 14 256 2x2

Decoder ConvTranspose2D
+ ReLU +
BatchNorm

28x28x128 28 128 2x2

Decoder ConvTranspose2D
+ ReLU +
BatchNorm

56x56x64 56 64 2x2

Decoder ConvTranspose2D
+ ReLU +
BatchNorm

112x112x32 112 32 2x2

Decoder ConvTranspose2D
+ Sigmoid

224x224x3 224 3 2x2
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The ‘openTSNE‘ library (v0.6.0), noted for its efficient implementation, was utilized

for this purpose. t-SNE computes pairwise similarities between the high-dimensional

latent vectors (modeling them with a Gaussian distribution) and attempts to find a

low-dimensional embedding where pairwise similarities (modeled with a Student’s

t-distribution) closely match, minimizing the Kullback-Leibler divergence between

the two distributions. A key parameter in t-SNE is perplexity, which influences the

balance between preserving local versus global aspects of the data structure in the

resulting embedding. Tuning perplexity (within ranges like 50-150, depending on

dataset size) helps achieve meaningful visualizations where clusters represent groups

of tasks deemed similar by the learned latent features. Figure 4.6 provides an example

of such a 2D visualization obtained by applying t-SNE to the encoder outputs for a set

of tasks.

Figure 4.6: Example 2D visualization produced by applying t-SNE to the latent
features generated by the autoencoder’s encoder network for various tasks. Each point

corresponds to a task, and proximity suggests similarity in the learned latent space
(adapted from (Akgün & Üre, 2025)).

This low-dimensional embedding serves primarily as a tool for visual inspection and

qualitative analysis of the learned task representations, helping to confirm whether the

autoencoder captures meaningful differences and similarities relevant to task difficulty.

The quantitative difficulty assessment, however, was based on distances calculated

from these embeddings as described next.
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4.5.4 Visual difficulty assessment pipeline

For tasks represented by visual inputs (e.g., images Ii from MiniGrid), the

implementation of the difficulty assessment (conceptually described in Section 4.2

and with formulas in Section 4.2.2) followed a specific pipeline utilizing the trained

autoencoder and the subsequent t-SNE embedding:

1. Encoding: Each task image Ii in the set of considered tasks T (including the

target task Itarget) was passed through the pre-trained encoder network E (detailed in

Section 4.5.2) to obtain its corresponding high-dimensional latent vector Li = E (Ii).

2. Dimensionality reduction: The set of all obtained latent vectors {L1,L2, . . . ,Ln}was

processed using the t-SNE algorithm (implemented via ‘openTSNE‘) to generate a

2D representation T ′ = {y1,y2, . . . ,yn}, where yi = t-SNE(Li).

3. Distance calculation: The Euclidean distance (L2 norm) was calculated in the 2D

t-SNE space between the representation of each task yi and the representation of the

target task ytarget. Let this distance be di = ∥yi− ytarget∥2. This distance served as

the raw difficulty score relative to the target.

4. Normalization: These raw distances di were then normalized across all tasks to

produce the final difficulty scores δi ranging from 0 to 1, using min-max scaling as

defined previously in the methodology (specifically, δi = (di−min(d))/(max(d)−

min(d)) ). A lower δi indicates higher similarity (lower difficulty relative) to the

target task in this embedded space.

This pipeline provided a practical method to derive quantitative difficulty scores from

complex visual inputs by leveraging learned features and dimensionality reduction,

which were then used for clustering and task selection within the BCG algorithm.
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4.5.5 Scalar difficulty assessment pipeline

For environments like AeroRival Pursuit where tasks are primarily defined by

continuous or scalar parameters rather than visual inputs, a different pipeline was

implemented to determine task difficulty relative to the target task (Ttarget), following

the principles outlined in Section 4.2 and using the distance/normalization formulas

defined in Section 4.2.2.

Since image processing via autoencoders is not required, the focus shifts directly to

the task-defining parameters (e.g., enemy velocity, rocket velocity, target distances).

Let the set of relevant parameters for a task Ti be represented by a vector ψi. The

implementation involved:

1. Parameter representation: Each task Ti was represented by its normalized

parameter vector ψi ∈Rk. Normalization (e.g., min-max scaling across the range of

parameters encountered) ensures that different parameters contribute appropriately

to distance calculations.

2. Distance calculation: The similarity between a task Ti and the target task Ttarget

was quantified by calculating the Euclidean distance (L2 norm) between their

respective normalized parameter vectors, ψi and ψtarget:

di = ∥ψi−ψtarget∥2 (4.24)

A smaller distance di indicates higher similarity to the target task configuration.

3. Normalization: These raw distances were subsequently normalized using the

min-max scaling formula (as defined in the general difficulty assessment

methodology, e.g., Eq. 4.12) to produce the final difficulty score δi:

δi =
di−min j(d j)

max j(d j)−min j(d j)
(4.25)

This maps the difficulty to the [0, 1] range, where 0 represents the task

parametrically closest (least difficult relative) to the target among the considered

set, and 1 represents the farthest (most difficult relative).
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These normalized difficulty scores δi for scalar-parameter tasks were then used

analogously to the scores derived from visual inputs for clustering tasks into difficulty

bins (Nbins) and guiding the curriculum progression within the BCG framework.
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5. RESULTS

This chapter presents the empirical findings concerning the performance of the

proposed Bayesian Curriculum Generation (BCG) methodology. Comparative

results were obtained through experiments conducted in two distinct reinforcement

learning (RL) environments: the discrete, grid-based MiniGrid and the continuous,

dynamic AeroRival Pursuit simulation. These testbeds were chosen to evaluate the

algorithm’s effectiveness across different environmental characteristics and challenges,

particularly those involving sparse rewards and complex task structures.

5.1 Performance in the MiniGrid Environment

This section details the experimental setup and outcomes for the BCG algorithm and

baseline methods within the MiniGrid environment suite. Key aspects include the

use of Autoencoders with t-SNE for task representation and difficulty assessment,

integrated with the BN-based adaptive curriculum generator.

5.1.1 MiniGrid environment characteristics and setup

The specific environment utilized was MiniGrid-DoorKey (Chevalier-Boisvert, Dai,

Towers, Perez-Vicente, Willems, Lahlou, Pal, Castro, & Terry, 2023). In this setting,

an agent operates within a grid world and must learn a sequence of actions: navigate to

find a key, use the key to unlock a specific door, and finally proceed to a designated goal

location (visualized generally in Figure 5.1). This task structure inherently requires

multi-step planning and handling sparse rewards, as positive feedback is typically only

provided upon reaching the final goal.

The agent perceives the environment through partial, egocentric visual observations

and selects actions from a discrete set (e.g., move forward, turn left/right, pick up,

toggle door). For the evaluation, four distinct task configurations were created based

on the DoorKey setup. These tasks varied primarily in grid size (two 6x6, two 8x8)
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Figure 5.1: General illustration of a MiniGrid environment variant. The DoorKey
tasks used involve navigating grids, finding a key (object), unlocking a door

(obstacle), and reaching a goal (target square)

and the relative starting positions of the agent, the key, the door, and the goal location.

These positional variations alter the required navigation path and interaction sequence,

thereby modulating task complexity without changing the fundamental objective. The

curriculum generated by BCG aims to sequence these or similar parameter variations

to facilitate learning from simpler to more complex instances.

5.1.1.1 Evaluation metrics

Performance within MiniGrid was primarily assessed using the average episodic

reward. In this environment setup, a successful episode (reaching the goal) yields a

reward between 0 and 1, calculated based on the efficiency (number of steps taken). A

reward closer to 1 indicates a faster, more optimal solution path. Failure to reach the

goal within a time limit results in a low or zero reward. Averaging this reward over

multiple evaluation episodes provides a measure of the learned policy’s effectiveness

and convergence speed. This metric implicitly reflects episode length, as higher

rewards correlate with shorter successful episodes.

5.1.2 Analysis of visual task representation

Before presenting comparative results, we analyze the effectiveness of the Autoencoder

(AE) and t-SNE pipeline (detailed in Section 4.5.2 and 4.5.3) in capturing task

similarities for visual MiniGrid tasks. The goal was to verify if the learned latent
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representations, when visualized in 2D via t-SNE, grouped tasks in a way that reflects

their inherent structural similarities or difficulties.

Figure 5.2 shows the 2D t-SNE projection of latent features extracted by the trained

encoder from various MiniGrid-DoorKey task configurations. Each point represents

a unique task instance. The spatial arrangement suggests that t-SNE preserves

meaningful relationships present in the high-dimensional latent space.

Figure 5.2: Example 2D t-SNE visualization of latent features extracted from
MiniGrid tasks by the autoencoder’s encoder. Proximity of points suggests similarity

in the learned feature space, potentially correlating with task difficulty or structure
(adapted from (Akgün & Üre, 2025)).

Further examination revealed distinct clusters emerging in the t-SNE space. Figures

5.3 and 5.5 highlight two such clusters, arbitrarily labeled A and B. Corresponding

task examples are shown in Figures 5.4 and 5.6. Tasks within Cluster A (Figure 5.4)

tend to share similar layouts or require analogous solution strategies, reflected by their

proximity in the t-SNE plot (Figure 5.3). Similarly, tasks within Cluster B (Figure 5.6)

form another group based on shared characteristics, spatially separated from Cluster A

in the projection (Figure 5.5).

This visual analysis confirms that the implemented AE+t-SNE pipeline generates

representations that capture inherent task similarities and differences based on the

visual inputs. The emergence of distinct clusters supports the approach of using these

representations for unsupervised task categorization and difficulty assessment within

the BCG framework. The spatial arrangement reflects relative similarities, which forms

the basis for the distance calculations used in the difficulty pipeline (Section 4.5.4).
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Figure 5.3: t-SNE projection highlighting tasks grouped into Cluster A (adapted from
(Akgün & Üre, 2025)).

Figure 5.4: Example task configurations from Cluster A, illustrating shared structural
features (adapted from (Akgün & Üre, 2025)).
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Figure 5.5: t-SNE projection highlighting tasks grouped into Cluster B, distinct from
Cluster A (adapted from (Akgün & Üre, 2025)).

Figure 5.6: Example task configurations from Cluster B (adapted from (Akgün &
Üre, 2025)).
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5.1.3 Comparative performance evaluation

BCG’s performance was benchmarked against several contemporary algorithms

selected for their relevance to exploration and structured learning in RL: AGAC

(Flet-Berliac, Ferret, Pietquin, Preux, & Geist, 2021), CBET (Parisi, Dean, Pathak,

& Gupta, 2021), RAPID (Zha, Ma, Yuan, Hu, & Liu, 2021), DEIR (Wan, Tang, Tian,

& Kaneko, 2023), AMIGO (Campero, Raileanu, Küttler, Tenenbaum, Rocktäschel,

& Grefenstette, 2020), MASK (Ben-Iwhiwhu, Nath, Pilly, Kolouri, & Soltoggio,

2022), and PREFVEC (Szoke, Shperberg, Holtz, & Allievi, 2024). The rationale

for selecting these baselines is further discussed in the Literature Review (Section 2).

The evaluation framework consisted of a series of MiniGrid tasks with systematically

increasing complexity, as depicted in Figure 5.7.

Figure 5.7: Illustration of Increasing Task Difficulty in MiniGrid Test Scenarios. (a)
Task 0: Baseline map. (b) Task 1: Simple obstacles. (c) Task 2: Complex barriers,
longer paths. (d) Task 3: Highest complexity map. This progression tests algorithm

adaptability (adapted from (Akgün & Üre, 2025)).

The comparative analysis involved executing BCG and the eight baseline methods

(AMIGO (Campero, Raileanu, Küttler, Tenenbaum, Rocktäschel, & Grefenstette,

2020), CBET (Parisi, Dean, Pathak, & Gupta, 2021), AGAC (Flet-Berliac, Ferret,

Pietquin, Preux, & Geist, 2021), DEIR (Wan, Tang, Tian, & Kaneko, 2023), RAPID

(Zha, Ma, Yuan, Hu, & Liu, 2021), PPO (Schulman, Wolski, Dhariwal, Radford, &

Klimov, 2017), MASK (Ben-Iwhiwhu, Nath, Pilly, Kolouri, & Soltoggio, 2022), and

PREFVEC (Szoke, Shperberg, Holtz, & Allievi, 2024)) on the MiniGrid tasks. Each

algorithm ran three times per task with different random seeds for robustness. The

PPO (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017) implementation from
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Figure 5.8: Learning Curves of RL Algorithms on MiniGrid Tasks. Shows mean
reward ± std dev. BCG demonstrates consistent high performance and low variance.

AMIGO/CBET excel early but decline. AGAC/DEIR show moderate, variable
performance. RAPID/PPO lag. MASK fails to scale. PREFVEC struggles.

Highlights BCG’s adaptability (adapted from (Akgün & Üre, 2025)).

Table 5.1: Quantitative Comparison of Algorithm Performance on MiniGrid Tasks.
Mean reward ± std dev over three trials. Higher is better. Bold indicates best per task

(adapted from (Akgün & Üre, 2025)).

Method Task 0 Task 1 Task 2 Task 3
BCG (Ours) 0.960 ± 0.002 0.950 ± 0.003 0.967 ± 0.003 0.973 ± 0.003
AMIGO 0.994 ± 0.001 0.725 ± 0.053 0.200 ± 0.009 0.277 ± 0.014
CBET 0.965 ± 0.010 0.958 ± 0.007 0.033 ± 0.013 0.007 ± 0.001
AGAC 0.886 ± 0.008 0.569 ± 0.041 0.260 ± 0.089 0.412 ± 0.012
DEIR 0.385 ± 0.084 0.551 ± 0.072 0.602 ± 0.073 0.245 ± 0.098
RAPID 0.107 ± 0.007 0.034 ± 0.001 0.014 ± 0.003 0.006 ± 0.001
PPO 0.952 ± 0.003 0.957 ± 0.003 0.321 ± 0.111 0.000 ± 0.000
MASK 0.836 ± 0.020 0.250 ± 0.011 0.000 ± 0.000 0.000 ± 0.000
PREFVEC 0.127 ± 0.014 0.185 ± 0.000 0.051 ± 0.000 0.083 ± 0.000
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the Stable Baselines 3 library (Raffin, Hill, Gleave, Kanervisto, Ernestus, & Dormann,

2021) served as the base RL algorithm for BCG.

Figure 5.8 presents the learning curves. BCG consistently achieved high reward levels

rapidly and demonstrated stable performance (narrow variance band). While AMIGO

and CBET performed well on easier tasks, their effectiveness decreased significantly

as complexity rose. AGAC and DEIR showed moderate but less stable performance.

RAPID and the standard PPO baseline consistently underperformed. MASK showed

initial promise but failed to scale, while PREFVEC struggled throughout, likely due to

its design not being optimized for MiniGrid’s sparse rewards.

Table 5.1 quantifies these observations. While AMIGO achieved the highest score on

the simplest Task 0, and CBET on Task 1, BCG clearly registered the best performance

on the more complex Tasks 2 (0.967) and 3 (0.973). Importantly, BCG maintained very

low standard deviations on these tasks, indicating high reliability. The performance

drop-off for algorithms like MASK and the consistent low scores for PREFVEC are

also numerically evident.

5.1.4 BCG process analysis (Minigrid)

To provide further insight into the BCG algorithm’s operation, we illustrate its adaptive

curriculum generation process within the MiniGrid-DoorKey setting. Figure 5.9 shows

an example sequence of tasks generated by the curriculum, demonstrating a gradual

increase in complexity (e.g., spatial distance between key, door, and goal). The

framework utilizes transfer learning between these stages.

The adaptive nature is highlighted when the agent struggles with a particular task

difficulty level. The Bayesian Network component can adjust the task sampling

probabilities, potentially selecting slightly easier or different tasks that better match

the agent’s current capabilities before re-attempting harder ones, as conceptualized in

Figure 5.10.

The overall training efficiency is reflected in the learning progress over time. Figure

5.11 plots the average timesteps required to solve tasks at different stages of the

curriculum. Initially, simple tasks are solved quickly. As complexity increases,
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Figure 5.9: Example illustration of task progression generated by BCG in MiniGrid,
showing increasing complexity over the curriculum stages (adapted from (Akgün &

Üre, 2025)).

Figure 5.10: Conceptual depiction of adaptive task selection within BCG. If progress
stalls, the framework can sample alternative tasks within or near the current difficulty
level based on BN probabilities and performance feedback (adapted from (Akgün &

Üre, 2025)).
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completion time grows, but the agent successfully learns. Variations in completion

time might also reflect the adaptive nature, where occasional harder tasks might

be sampled or retried. Despite this, the BCG approach demonstrates effective task

resolution compared to baseline methods in these settings.

Figure 5.11: Training progress showing mean (and standard deviation) timesteps to
task completion across curriculum stages in MiniGrid. Illustrates initial speed on easy

tasks and successful learning despite increasing time on harder tasks (adapted from
(Akgün & Üre, 2025)).

5.1.5 Minigrid summary

The results from the MiniGrid experiments, encompassing both learning dynamics

(Figure 5.8) and final performance metrics (Table 5.1), demonstrate the effectiveness

of the BCG algorithm in this environment. BCG exhibited superior adaptability to

increasing task complexity, consistently achieving high rewards with low variance

compared to the evaluated baselines. This suggests BCG is a robust method for

tackling challenges typical of partially observable grid worlds with sparse rewards.
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5.2 Performance in the AeroRival Pursuit Environment

This section reports on the evaluation of the BCG algorithm within the AeroRival

Pursuit Environment, focusing on continuous control, a continuous-space 2D

simulation featuring navigation, hazard avoidance, and adversarial elements.

5.2.1 Evaluation metrics

As in MiniGrid, performance was evaluated using the average episodic reward, but

the scale differs. Here, rewards range from -1 (failure) to +1 (optimal success), with

values between 0 and 1 reflecting faster successful completions. This metric effectively

captures both mission success and agent efficiency.

5.2.2 AeroRival pursuit environment characteristics

In AeroRival Pursuit, an agent-controlled aircraft aims to reach a target before

a competing adversary, while navigating hazardous zones that trigger defensive

rockets upon entry. Success requires reaching the correct target (potentially inferred

from the adversary’s trajectory if multiple targets exist) safely and efficiently. The

environment combines continuous control with strategic decision-making under threat

and competition.
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5.2.3 Comparative performance evaluation

Performance was evaluated on two AeroRival configurations: Task 0 (baseline with

one hazard zone, Figure 5.12) and Task 1 (complex with three hazard zones, Figure

5.13). Rewards ranged from -1 (failure) to +1 (optimal success), with sparsity adding

challenge. BCG, using PPO (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017)

from Stable Baselines 3 (Raffin, Hill, Gleave, Kanervisto, Ernestus, & Dormann, 2021)

as its base, was compared against DDPG, TD3, PPO, SAC, MASK, and COHER in

this setting.

Figure 5.12: AeroRival Pursuit Baseline
Setup (Task 0). Single threat zone

(adapted from (Akgün & Üre, 2025)).

Figure 5.13: AeroRival Pursuit Complex
Setup (Task 1). Three threat zones

(adapted from (Akgün & Üre, 2025)).

Table 5.2: Quantitative Comparison of Algorithm Performance on AeroRival Pursuit
Tasks. Mean reward ± std dev over three trials. Positive values indicate success. Bold

indicates best per task (adapted from (Akgün & Üre, 2025)).

Method Task 0 Task 1
BCG (Ours) 0.668 ± 0.070 0.726 ± 0.016
DDPG -0.493 ± 0.110 -0.672 ± 0.110
TD3 -0.980 ± 0.002 -0.981 ± 0.002
PPO -0.740 ± 0.121 -0.974 ± 0.002
SAC -0.450 ± 0.118 -0.988 ± 0.003
MASK -0.647 ± 0.016 -1.000 ± 0.000
COHER -0.823 ± 0.002 -0.964 ± 0.000
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Figure 5.14: Learning Curves of RL Algorithms on AeroRival Pursuit Tasks. Mean
reward ± std dev. BCG shows rapid convergence to high positive rewards in Task 0
and maintains strong performance in Task 1, benefiting from curriculum structure.

Baselines struggle significantly, mostly failing to achieve positive rewards, especially
in Task 1 (adapted from (Akgün & Üre, 2025)).

The learning curves in Figure 5.14 show BCG rapidly reaching high positive rewards

in Task 0, indicating effective learning of navigation and hazard avoidance. The jumps

correspond to curriculum stage transitions. In contrast, baseline algorithms largely

failed to achieve positive rewards. In the more complex Task 1, BCG maintained its

superior performance, achieving positive rewards while most baselines (PPO, SAC,

TD3, MASK, COHER) failed completely. DDPG showed minimal capability but

was still significantly outperformed by BCG. Fluctuations in BCG’s Task 1 curve are

indicative of the curriculum adaptation process.

Table 5.2 provides the numerical comparison. BCG achieved substantial positive

rewards in both Task 0 (0.668) and Task 1 (0.726), demonstrating successful task

completion and consistency (especially in Task 1 with low std dev). All baseline

algorithms registered negative average rewards across both tasks, indicating consistent

failure. MASK notably scored -1.000 in Task 1, signifying complete failure on all runs.
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5.2.4 AeroRival summary

The experimental results in the AeroRival Pursuit environment consistently highlight

the effectiveness of the BCG algorithm. As shown visually (Figure 5.14) and

numerically (Table 5.2), BCG successfully solved both task configurations, achieving

positive rewards and demonstrating stability, particularly in the more complex

scenario. This contrasts sharply with the benchmark algorithms, which failed to

cope with the environment’s demands. These findings suggest BCG is a capable

approach for RL problems involving continuous control, dynamic interactions, and

sparse rewards.
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6. DISCUSSIONS

This chapter synthesizes and interprets the empirical findings presented in Chapter

5. We analyze the performance patterns of the Bayesian Curriculum Generation

(BCG) algorithm across different environments, relate these outcomes to the initial

research objectives and questions defined in Chapter 1, and compare them with existing

literature discussed in Chapter 2. Furthermore, we discuss the broader implications of

the work and acknowledge its limitations.

6.1 Synthesis of Key Findings

The empirical results presented in Chapter 5 consistently highlight the efficacy of the

proposed Bayesian Curriculum Generation (BCG) algorithm. Across two distinct and

challenging environments – the discrete, partially observable MiniGrid-DoorKey tasks

and the continuous, adversarial AeroRival Pursuit simulation – BCG demonstrated

a marked advantage in learning performance compared to standard Proximal Policy

Optimization (PPO) and a range of contemporary baseline algorithms. Key findings

include:

• Superior performance: BCG consistently achieved higher average rewards

and demonstrated greater success rates, particularly in the more complex task

configurations within both environments (Tables 5.1 and 5.2). In AeroRival, BCG

was notably the only method to achieve consistent positive rewards, indicating

successful task completion where others failed systemically.

• Enhanced adaptability: The framework proved robust to increasing task

complexity. In MiniGrid, BCG maintained high performance across Tasks 0

through 3, whereas many baselines exhibited significant performance degradation

(Figure 5.8). Its success in both the grid-based MiniGrid and the continuous

AeroRival highlights its versatility across different environment dynamics and

state/action spaces.
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• Improved stability and efficiency: BCG generally exhibited lower variance in

performance across multiple runs compared to several baselines (indicated by

shaded areas in Figures 5.8 and 5.14). While direct sample efficiency comparison

was complex, the faster convergence to high reward levels, especially evident

in AeroRival Task 0, suggests improved learning efficiency facilitated by the

curriculum structure. The characteristic jumps in BCG’s learning curves likely

correspond to effective knowledge transfer between curriculum stages (Figure

5.14).

• Effective task representation: The analysis of the Autoencoder and t-SNE pipeline

for MiniGrid (Section 5.1.2) indicated that the learned visual features effectively

captured task similarities, leading to meaningful clusters (Figures 5.3-5.6) that

could be leveraged for difficulty assessment.

These findings collectively suggest that the structured, adaptive curriculum generated

by BCG successfully guides the learning process in challenging, sparse-reward

settings.

6.2 Relation to Research Objectives and Questions

The empirical findings presented in Chapter 5 provide insights into the research

questions that motivated this work. We now explicitly address each question based

on the performance and behavior observed for the Bayesian Curriculum Generation

(BCG) framework.

Addressing RQ1: How can Bayesian networks be effectively utilized to create adaptive

curriculum learning frameworks that systematically structure task progressions based

on agent capabilities?

The results demonstrate that Bayesian Networks (BNs) serve as an effective foundation

for structuring and adapting RL curricula. As detailed in the Methodology (Section

4.2), BNs were used to model dependencies between task-defining parameters. This

probabilistic structure enabled the systematic generation of related, yet diverse, task

instances (Section 4.3.4). The successful learning trajectories observed, particularly

the ability to solve complex final tasks where direct RL failed (Chapter 5), indicate
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that the curricula generated possessed a meaningful structure facilitating skill

acquisition (e.g., Figure 5.9). Furthermore, the framework integrates agent capabilities

(performance metrics Mt) into the task selection process (Equation 4.16) and allows

for dynamic updates to perceived task difficulty based on performance (Equation 4.22).

This linkage creates an adaptive system where the curriculum structure, rooted in

the BN, evolves in response to the agent’s learning state. Therefore, the evidence

suggests BNs are effectively utilized by BCG to provide both systematic structure and

capability-driven adaptation in curriculum generation.

Addressing RQ2: What advantages might probabilistic curriculum generation offer

compared to existing approaches such as teacher-student frameworks, intermediate

goal creation, and self-play methods?

BCG’s probabilistic generation, centered on the BN, demonstrated clear advantages

in the tested scenarios compared to the likely outcomes of alternative approaches

discussed in the literature (Section 6.3).

• Compared to some Teacher-Student frameworks (Graves, Bellemare, Menick,

Munos, & Kavukcuoglu, 2017; Matiisen, Oliver, Cohen, & Schulman, 2019) that

primarily react to student progress, BCG’s BN provides an explicit, generative

model of the task space itself. This may offer more structured control over task

distribution and difficulty, potentially leading to the observed robust performance

even when agent progress signals might be noisy or delayed in sparse reward

settings.

• Unlike Intermediate Goal Creation methods (Florensa, Held, Geng, & Abbeel,

2018; Florensa, Held, Wulfmeier, Zhang, & Abbeel, 2017) that typically define

sub-goals within a fixed environment, BCG directly manipulates the underlying

task parameters governed by the BN. This parameter-space curriculum proved

highly effective for environments like MiniGrid and AeroRival where difficulty is

intrinsically tied to layout or physics parameters, offering perhaps a more direct

control mechanism than goal setting alone.

• While Self-Play (Duan, Chen, Houthooft, Schulman, & Abbeel, 2016; Sukhbaatar,

Lin, Kostrikov, Synnaeve, Szlam, & Fergus, 2017; Sukhbaatar, Szlam, Synnaeve,
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Chintala, & Fergus, 2015) generates curricula based on opponent modeling, BCG

provides explicit control over environmental task difficulty through its probabilistic

parameter generation. This makes it directly applicable to single-agent tasks and

potentially more sample-efficient initially, as it doesn’t require training competent

opponents.

The significant performance margin between BCG and various baselines in Chapter

5 suggests that its specific approach—combining probabilistic task modeling via

BNs with adaptive sequencing—offered tangible advantages in effectiveness and

adaptability for these challenging sparse reward problems.

Addressing RQ3: How can a curriculum learning system effectively balance between

task difficulty and agent capability in environments with sparse rewards or complex

skill hierarchies?

BCG employs several interacting mechanisms to achieve this balance. Firstly, task

difficulty is explicitly quantified relative to the target task using learned representations

or parameter distances, followed by normalization (δi, Section 4.2.2, 4.5.4, 4.5.5).

Secondly, tasks are grouped into discrete difficulty levels via unsupervised clustering

(Nbins, Section 4.2.3), providing a structured scaffold. Thirdly, progression between

these levels and selection within levels are gated by agent performance, using

success thresholds (η , Equation 4.21) and probabilistic selection biased by current

capabilities (Equation 4.16). The results demonstrate this balance was effective: agents

successfully learned complex, sparse-reward tasks in both MiniGrid and AeroRival

(Chapter 5). They progressed through increasing difficulties (Figure 5.9) without

evidence of insurmountable steps (getting stuck) or premature advancement leading to

failure (supported by hyperparameter analysis, Figure 4.3). This indicates the system

successfully matched task challenge to the agent’s evolving competence.

Addressing RQ4: To what extent can a generalized curriculum learning framework

maintain effectiveness across diverse reinforcement learning algorithms and environ-

mental contexts?

The results provide strong evidence for BCG’s effectiveness across diverse

environmental contexts. Its success in both the discrete, grid-based MiniGrid and
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the continuous, adversarial AeroRival Pursuit environment (Chapter 5) demonstrates

the framework’s applicability to fundamentally different state spaces, action spaces,

and task dynamics. The methodology for handling both visual (via AE+tSNE) and

scalar parameters further supports this versatility. Regarding different reinforcement

learning algorithms, BCG was intentionally designed to be modular (Section 4.2). The

experiments successfully validated its use with PPO (Schulman, Wolski, Dhariwal,

Radford, & Klimov, 2017), a standard and effective actor-critic algorithm. However,

the current study did not empirically evaluate BCG with other algorithm families

(e.g., off-policy methods like SAC/DDPG, or value-based methods). Therefore, while

designed for generality and proven effective with PPO, definitive conclusions about

its universal effectiveness across *all* RL algorithms require further investigation, as

noted in Limitations (Section 6.5).

Addressing RQ5: What design principles enable curriculum learning systems to adapt

dynamically to changing agent capabilities throughout the training process?

The BCG framework incorporates several key design principles enabling its dynamic

adaptation, validated by the successful learning observed:

1. Continuous performance monitoring: Tracking metrics like reward (Rt) provides

real-time feedback on agent capability (Equation 4.17).

2. Quantified and structured task space: Representing tasks (φ(Ti),ψi) allows

measuring difficulty/similarity (di,δi,snorm), and clustering (Ck) provides discrete

stages reflecting capability levels.

3. Performance-gated progression: Using explicit thresholds (η) ensures mastery

before advancing, linking progression directly to demonstrated capability (Equation

4.21).

4. Adaptive task selection: Probabilistic selection (Equation 4.16), potentially biased

by current performance and task characteristics, allows focusing on appropriately

challenging tasks within or across stages.
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5. Dynamic difficulty adjustment: Mechanisms like updating solvability indicators

(σ(Ti)) and using adaptive similarity thresholds (τt) allow the system’s perception

of task difficulty itself to evolve based on agent interaction (Equation 4.22).

6. Model updating: The framework allows for Bayesian updating of the BN

parameters θ (Equation 4.18), enabling the underlying task generation model

to adapt based on data, though the extent of online updating might vary by

implementation.

These principles, implemented within BCG (Chapter 4, Section 4.3), collectively

create a system that dynamically adjusts the learning pathway in response to the agent’s

evolving competence.

6.3 Comparison with Existing Literature

The performance of BCG relative to the baselines provides valuable context within

the existing literature (Section 2). While methods like AMIGO and CBET showed

promise in specific (often simpler) MiniGrid tasks, they lacked the consistent

adaptability of BCG across the full range of complexities. Algorithms focused

purely on exploration enhancement or intrinsic motivation (represented implicitly

by some baselines’ design philosophies) struggled significantly in the sparse reward

settings, highlighting the benefits of a structured curriculum. Methods like MASK,

potentially incorporating knowledge reuse, succeeded initially but failed to scale,

suggesting BCG’s probabilistic and adaptive sequencing offers a more robust approach

to managing task difficulty progression. PREFVEC’s struggles underscore that even

successful algorithms from other benchmarks may not be suited for these specific

sparse reward challenges without adaptation, further motivating curriculum-based

approaches like BCG. Compared to manually designed curricula, BCG offers

automation and adaptation, while compared to purely goal-generation methods, the

BN provides more structure based on underlying task parameters.
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6.4 Implications and Significance

The success of BCG carries several implications. Firstly, it demonstrates the

viability of integrating probabilistic graphical models (BNs) into the core of

curriculum generation, offering a principled way to manage task parameterization

and dependencies. Secondly, it reinforces the importance of adaptive curricula that

respond to agent progress, rather than relying on fixed sequences. Thirdly, the

versatility shown across MiniGrid and AeroRival suggests the underlying principles

of BCG could be applicable to a broader range of challenging RL domains, such

as robotics, game AI, and complex simulations, where sparse rewards and intricate

task structures are common. This work contributes a concrete algorithmic framework

that balances structured task generation with dynamic adaptation, potentially inspiring

similar hybrid approaches in automated machine learning and AI training.

6.5 Limitations

Despite its promising results, BCG has several limitations that provide clear avenues

for future work:

• Manual Design and Computational Trade-off of the Bayesian Network: A primary

limitation is that the BN structure, which models the dependencies between

task parameters, must be manually designed. This design process involves a

critical trade-off between model fidelity and computational cost. For example,

an expert might define a simple, computationally efficient causal chain, such

as Parameter A > Parameter B > Difficulty. However, a more

complex and potentially more accurate model—where multiple parameters are

modeled as joint causes influencing a single outcome, resulting in a more densely

connected graph—would demand significantly more computational resources for

probabilistic inference. This manual, expert-driven design not only requires domain

knowledge but also directly dictates the computational overhead of the curriculum

generation process.
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• Static Parameter Relationships: The current implementation assumes the

relationships between task parameters, as encoded in the BN, remain static. This

may not hold in non-stationary environments where task dynamics change over

time, potentially limiting BCG’s effectiveness in such scenarios without periodic

re-evaluation of the network structure.

• Hyperparameter Sensitivity: While our analysis showed robustness within tested

ranges (Table 4.1), BCG’s performance can still depend on the careful tuning of

key hyperparameters, including the binning number for discretization (Nbins) and

the weighting factors for curriculum selection (λ1,λ2).

• Scope of Evaluation: While tested in two distinct and challenging environments,

evaluation across a wider variety of domains, especially those with continuous

parameter spaces or different underlying causal structures, is necessary to fully

establish the generalizability of BCG.

6.6 Concluding Remarks on Discussion

In summary, the empirical results strongly support the Bayesian Curriculum

Generation algorithm as an effective method for improving reinforcement learning in

sparse reward environments. By leveraging Bayesian Networks for structured task

modeling and incorporating adaptive mechanisms based on agent performance, BCG

consistently outperformed various baseline methods across different task complexities

and environmental dynamics. The findings align with the research objectives and

demonstrate clear advantages over methods struggling with exploration or lacking

adaptability. While limitations related to parameterization, environmental dynamics,

and computation exist, the work provides significant insights and a robust foundation

for future development in automated and adaptive curriculum learning.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis addressed the significant challenge of efficient learning in reinforcement

learning (RL) environments characterized by sparse rewards, where traditional

methods often struggle due to inadequate exploration and slow convergence. We

introduced the Bayesian Curriculum Generation (BCG) algorithm (Akgün & Üre,

2025), a novel framework for automated and adaptive curriculum learning. The

core principle of BCG is the integration of probabilistic modeling using Bayesian

Networks (BNs) with adaptive sequencing mechanisms. BNs are employed to model

the underlying structure and parameter dependencies of the task space, enabling the

structured generation of diverse tasks. Task difficulty is quantified based on learned

representations (using autoencoders for visual inputs) or parameter vectors, and tasks

are grouped into difficulty levels via clustering. Crucially, the curriculum adapts

dynamically to the agent’s learning progress, utilizing performance metrics to guide

probabilistic task selection and update difficulty assessments, while leveraging transfer

learning between curriculum stages.

The effectiveness and versatility of BCG were empirically demonstrated through

comprehensive experiments in two distinct environments: the discrete, partially

observable MiniGrid-DoorKey navigation task and the continuous, adversarial

AeroRival Pursuit simulation. In both settings, BCG, using PPO as its base RL learner,

consistently and significantly outperformed standard PPO and a range of contemporary

baseline algorithms designed for exploration or related curriculum concepts. Key

findings indicated BCG’s superior final performance, greater learning stability, and

robust adaptability to increasing task complexity and diverse environmental dynamics

(Chapter 5). The results validated the core hypothesis that combining structured
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probabilistic task modeling with online adaptation provides a powerful approach to

overcoming the hurdles of sparse reward RL.

The main contributions of this work include (1) The development of the novel

BCG framework, demonstrating the successful integration of Bayesian Networks

for structured, automated curriculum generation in RL. (2) The implementation

of adaptive mechanisms, including performance-based task selection and dynamic

difficulty assessment using learned features or parameters, enabling the curriculum

to respond to agent capabilities. (3) Empirical validation of BCG’s effectiveness

and versatility across different types of challenging, sparse-reward environments

(discrete/visual and continuous/parameter-based).

Despite these promising results, the current BCG framework has several limitations,

as discussed in Chapter 6. The reliance on manually identified key task parameters

for the BN structure can be a bottleneck in highly complex or poorly understood

environments. The assumption of static relationships between these parameters

limits applicability in non-stationary settings where task dynamics evolve over time.

Additionally, the computational overhead associated with BN learning/inference,

feature extraction, clustering, and curriculum management requires consideration,

especially for scaling to very large problems. Finally, performance remains dependent

on careful hyperparameter tuning, and broader evaluation across more diverse tasks

and RL algorithms is needed to fully assess generalizability.

7.2 Future Research Directions

Addressing the identified limitations and extending the capabilities of BCG provides

several exciting avenues for future research:

• Automated parameter identification and BN structure learning: A key priority is

reducing the reliance on manual parameter selection. Future work will investigate

methods to automatically identify curriculum-relevant parameters directly from

agent interaction data or environment specifications. Techniques from feature

selection, dimensionality reduction, or even applying reinforcement learning itself

to optimize the choice of BN nodes and structure could be explored. This would
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significantly enhance the autonomy and applicability of BCG to novel environments

where key difficulty factors are not immediately obvious.

• Extension to dynamic and non-stationary environments: The current assumption of

static task parameter relationships needs to be relaxed. We plan to extend BCG to

explicitly handle dynamic systems where task characteristics or dependencies might

change over time. This could involve incorporating temporal dependencies into the

BN structure (e.g., using Dynamic Bayesian Networks), developing mechanisms

for online updating of both BN parameters (θ ) and structure (G) based on recent

agent experience, and designing adaptive sequencing strategies that are more

sensitive to non-stationarity and environmental shifts. Evaluating such extensions

in environments with evolving dynamics would be crucial.

• Application and evaluation in complex robotics domains: To further validate

BCG’s utility and explore its potential impact, we aim to implement and test

the framework in more complex and realistic robotic scenarios. This includes

areas such as Multi-Agent Systems: applying adaptive curricula in cooperative

or competitive tasks, such as multiple drone navigation and coordination,

where inter-agent dynamics add complexity that might be captured by the

BN; Long-Horizon Manipulation/Assembly: structuring the learning of complex

manipulation sequences with sparse success signals by generating curricula based

on object properties, configurations, or sub-task dependencies; and Navigation

in Unstructured/Dynamic Environments: creating curricula that adapt not only to

agent skill but also to changes in a real-world environment for mobile robots.

This involves addressing challenges in defining appropriate task parameters and

representations for these richer domains.

• Improving computational efficiency: Investigating methods to reduce the

computational overhead of the BCG framework is important for scalability. This

could involve exploring more efficient approximate inference techniques for BNs,

faster clustering algorithms suitable for online updates, or optimizing the feature

extraction and difficulty calculation pipeline.
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By pursuing these directions, we aim to develop BCG into an even more robust,

autonomous, and widely applicable tool for accelerating reinforcement learning in

complex, real-world problems. Continued research will help solidify the understanding

of how structured, probabilistic, and adaptive curricula can effectively address

fundamental challenges in artificial intelligence.
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