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ABSTRACT 
 
Deep learning has become increasingly prevalent across diverse fields, driven by advanced learning 

techniques and complex network architectures such as transfer learning and teacher-student models. Transfer 
learning aims to achieve high performance in a target domain by leveraging knowledge from a related source 
domain. In contrast, teacher-student models distill knowledge from a large, complex teacher model to a 
smaller student model, allowing for reduced complexity without significantly compromising accuracy. 
Convolutional Neural Networks (CNNs), widely used in image recognition, play a key role in such models 
due to their efficiency and performance. However, due to their complexity, CNNs often demand substantial 
computational resources and long training times. This study introduces a novel hybrid neural network 
topology: Intergenerational Interaction Neural Networks (IINNs). The proposed hybridization topology is 
called Intergenerational Interaction Neural Networks. The hypothesis behind this method is that “the 
presence of a guiding father model enables the son model to succeed quicker and better than the others”. This 
philosophy can be extended by incorporating additional ancestors, such as grandfathers and great-
grandfathers. Unlike traditional teacher-student models, IINNs employ a pre-trained ancestor model (father) 
that remains static during training but actively guides the learning of the Son model. Specifically, a Self-
Organizing Map (SOM) acts as the pre-trained father, and a Differential Convolutional Neural Network 
(DiffCNN) functions as the son. The SOM's outputs are integrated into the DiffCNN’s training, enhancing 
convergence speed and accuracy while reducing convolutional complexity. The proposed model was 
evaluated on six datasets: MNIST, FashionMNIST, Birds, STL10, CIFAR-100, and CIFAR-10. It achieved 
superior accuracy scores of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65%, respectively, 
outperforming state-of-the-art CNN, DiffCNN, and Deep Convolutional SOM models. Moreover, the model 
demonstrated faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such as 
CIFAR-10, Birds, and CIFAR-100, within the first 7 to 10 epochs. At the same time, it maintained strong 
performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the 7th epoch, 
resulting in a 74% faster convergence. These results underscore the effectiveness and versatility of IINNs in 
accelerating training, faster convergence, and improving performance across simple and complex datasets, 
making them suitable for applications in medical imaging, automotive systems, and real-time scenarios like 
autonomous driving. 

 
Keywords: Deep learning; Convolutional neural networks; Self-organizing maps; Differential Convolutional 

neural networks and Image datasets. 
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ÖZ 

 

Derin öğrenme, aktarımlı öğrenme ve öğretmen-öğrenci modelleri gibi gelişmiş öğrenme teknikleri 
ve karmaşık ağ mimarilerinin etkisiyle çeşitli alanlarda giderek daha yaygın hale gelmiştir. Aktarımlı 
öğrenme, ilgili bir kaynak alandan elde edilen bilgiyi kullanarak hedef alanda yüksek performans sağlamayı 
amaçlar. Buna karşılık, öğretmen-öğrenci modelleri, büyük ve karmaşık bir öğretmen modelinden daha 
küçük bir öğrenci modele bilgi aktarımı yaparak, doğruluktan fazla ödün vermeden modelin karmaşıklığını 
azaltmayı sağlar. Görüntü tanıma alanında yaygın olarak kullanılan Konvolüsyonel Sinir Ağları (CNN’ler), 
verimlilikleri ve yüksek performansları nedeniyle bu tür modellerde kilit rol oynar. Ancak, karmaşık yapıları 
nedeniyle CNN’ler genellikle yüksek hesaplama kaynakları ve uzun eğitim süreleri gerektirir. Bu çalışma, 
yeni bir hibrit sinir ağı topolojisi olan Kuşaklararası Etkileşimli Sinir Ağları (Intergenerational Interaction 
Neural Networks IINNs)'nı tanıtmaktadır. Önerilen bu hibrit topoloji, Kuşaklararası Etkileşimli Sinir Ağları 
(IINNs) olarak adlandırılmaktadır. Bu yöntemin arkasındaki temel hipotez, “yol gösterici bir baba modelin 
varlığı, oğul modelin diğerlerinden daha hızlı ve başarılı şekilde öğrenmesini sağlar” şeklindedir. Bu 
felsefe, dede ve büyükbaba gibi ek ataların dahil edilmesiyle genişletilebilir. Geleneksel öğretmen-öğrenci 
modellerinden farklı olarak, IINNs mimarisi, eğitim sürecinde sabit kalan ancak oğul modelin öğrenmesini 
aktif şekilde yönlendiren, önceden eğitilmiş bir ata modeli (baba) kullanır. Bu yapıda, Kendini Örgütleyen 
Harita (Self-Organizing Map - SOM) önceden eğitilmiş baba model olarak görev yaparken, Farklılaştırılmış 
Konvolüsyonel Sinir Ağı (Differential CNN - DiffCNN) oğul modeli olarak işlev görür. SOM’un çıktıları, 
DiffCNN’in eğitim sürecine entegre edilerek yakınsama hızını ve doğruluğunu artırmakta, konvolüsyonel 
karmaşıklığı ise azaltmaktadır. Önerilen model, MNIST, FashionMNIST, Birds, STL10, CIFAR-100 ve 
CIFAR-10 olmak üzere altı veri kümesi üzerinde değerlendirilmiştir. Sırasıyla %98,58, %96,53, %87,49, 
%86,99, %86,78 ve %81,65 doğruluk skorları elde ederek; en güncel CNN, DiffCNN ve Derin 
Konvolüsyonel SOM modellerinden daha iyi performans göstermiştir. Ayrıca model, %84’e kadar daha hızlı 
yakınsama sergilemiş; CIFAR-10, Birds ve CIFAR-100 gibi daha karmaşık veri kümelerinde ilk 7 ila 10 
epoch içinde %85 doğruluğa ulaşmıştır. Aynı zamanda, FashionMNIST gibi daha basit veri kümelerinde 7. 
epoch itibariyle %90 doğruluğa erişmiş ve %74 oranında daha hızlı yakınsama sağlamıştır. Bu sonuçlar, 
IINNs mimarisinin eğitim sürecini hızlandırmada, daha hızlı yakınsamayı sağlamada ve basit ya da karmaşık 
veri kümelerinde performansı artırmada etkili ve çok yönlü olduğunu göstermektedir. Bu yönleriyle, model 
tıbbi görüntüleme, otomotiv sistemleri ve otonom sürüş gibi gerçek zamanlı uygulamalar için uygun bir 
çözüm sunmaktadır. 

 
Anahtar Kelimeler: Derin öğrenme; Konvolüsyonel sinir ağları; Öz-örgütlenen haritalar; Diferansiyel 

konvolüsyonel sinir ağları; Görüntü veri seti. 
  



III 
 

GENİŞLETİLMİŞ ÖZET 

 

Derin öğrenme, son yıllarda gösterdiği üstün performans ve çok çeşitli alanlardaki geniş 

uygulama yelpazesi sayesinde hızla önem kazanmıştır. Görüntü işleme, doğal dil işleme, büyük 

ölçekli veri analizi ve internet aramaları gibi alanlardan, makinelerin karmaşık verilerle nasıl 

öğrendiği ve etkileşim kurduğuna kadar birçok süreci köklü biçimde dönüştürmüştür. Derin 

öğrenme yöntemlerinin temelinde, insan beyninin yapısından ve işleyişinden esinlenen yapay sinir 

ağları yer almaktadır. Bu ağlar, genellikle birden fazla katmandan oluşur; bu nedenle "derin" 

öğrenme olarak adlandırılır. Katmanlar, girdileri giderek daha soyut ve bilgilendirici özelliklere 

dönüştürerek verinin hiyerarşik temsillerini öğrenmelerine olanak tanır. Bu çok katmanlı yapı, 

artan hesaplama gücü ve büyük veri kümelerine erişimin kolaylaşmasıyla birleştiğinde, derin 

öğrenmenin farklı gerçek dünya uygulamalarında yüksek etkililik ve esneklik göstermesine önemli 

ölçüde katkı sağlamıştır.Bu yaklaşımlar genellikle iki ana türe ayrılır: Derin İnanç Ağları (DBNs) 

(Le Roux & Bengio, 2008) ve Konvolüsyonel Sinir Ağları (CNNs) (Yuda et al., 2020). DBNs, 

temel, olasılıksal, katmanlı bir ağ modeliyken, CNNs, görüntü tanıma gibi yüksek performans 

gerektiren görevler için tasarlanmış, özel konvolüsyonel katmanlara sahip çok katmanlı ağlardır. 

CNN'lerdeki konvolüsyonel katmanlar, hiyerarşik özellikleri çıkarmak için maksimum havuzlama 

işlemlerini kullanır (O'Shea & Nash, 2015). Bu derin katmanlı ağların eğitimini optimize etmek 

için statik olarak düzenlenmiş başlangıç veya hafif öğrenme teknikleri gibi yöntemler önerilmiştir 

(Acharya et al., 2017). Ancak, daha fazla ilerleme sağlamak için diğer sinir ağı mimarilerinin 

kullanılması gerekmektedir. Görüntü işleme ve desen tanıma sistemlerinin çoğu, görselleştirme için 

bir hiyerarşi eğitmeye vurgu yapmaktadır (Danuser, 2011). 

Başarılarına rağmen, Evrişimli Sinir Ağları (Convolutional Neural Networks - CNN), 

genellikle büyük ağ boyutlarına sahip olmaları nedeniyle yüksek hesaplama maliyetleri ve uzun 

eğitim süreleri gibi sorunlarla karşı karşıya kalmaktadır. Bu tür sınırlılıklar, özellikle kaynak kısıtlı 

ortamlarda veya gerçek zamanlı uygulamalarda bu modellerin kullanımını zorlaştırabilmektedir. 

Ayrıca, CNN mimarilerinin büyük çoğunluğu denetimli öğrenmeye odaklanmakta ve büyük etiketli 

veri kümelerine olan bağımlılıklarını sürdürmektedir. Buna karşın, denetimsiz öğrenme 

tekniklerinin araştırılması görece olarak daha az ilgi görmüştür. Etiketli veriye ihtiyaç duymayan 

denetimsiz yöntemler, veri etiketleme maliyetlerini azaltma ve modelin genelleme yeteneğini 

artırma açısından önemli bir potansiyele sahip olmasına rağmen, mevcut CNN geliştirme 

süreçlerinde yeterince değerlendirilememektedir. 

K-means (Ahmad & Dey, 2007), PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021) 

ve SOMNet (Hankins et al., 2018) gibi denetimsiz yöntemler, derin öğrenmeye uygulanmıştır, 

ancak denetimli öğrenme tekniklerine kıyasla daha az kullanılmaktadır. 

Transfer öğrenimi, derin sinir ağlarının eğitim sürecinde karşılaşılan veri yetersizliği ve 

yüksek hesaplama maliyeti gibi zorlukları aşmak amacıyla etkili bir teknik olarak öne çıkmıştır. Bu 
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yaklaşım, daha önce büyük ve ilişkili veri kümeleri üzerinde eğitilmiş bir modelin, daha küçük 

ölçekli ve alanına özgü görevler için yeniden kullanılmasına olanak tanır. Böylece, hem etiketli 

veri ihtiyacı önemli ölçüde azalır hem de modelin eğitim süreci hızlanır. Transfer öğrenimi, 

özellikle bilgisayarlı görü ve doğal dil işleme gibi büyük veri gerektiren alanlarda yaygın bir 

şekilde kullanılmakta; modellerin daha hızlı öğrenmesini, daha yüksek doğrulukla sonuç üretmesini 

ve genelleme kapasitesinin artmasını sağlamaktadır. Bu yönüyle transfer öğrenimi, derin öğrenme 

modellerinin daha esnek ve verimli bir şekilde farklı problemlere uyarlanmasına önemli katkılar 

sunmaktadır (Pan & Yang, 2010). Transfer öğrenimi içinde bir yaklaşım olan öğretmen-öğrenci 

ağı, bilgi damıtma kullanarak karmaşık bir öğretmen modelinden daha basit bir öğrenci modeline 

bilgi aktarır ve kaynak kısıtlı ortamlarda yüksek performanslı modellerden faydalanılmasını sağlar 

(Hinton, Vinyals & Dean, 2015). 

Transfer öğrenimi ve öğretmen-öğrenci çerçeveleri, verimlilik ve ölçeklenebilirliğe vurgu 

yaparken, genellikle iş birliğine dayalı, nesiller arası öğrenme paradigmalarının potansiyelini göz 

ardı etmektedir. İnsan ve doğal sistemlerdeki nesiller arası bilgi aktarımından ilham alan bu 

çalışmada, ardışık nesiller arasındaki ilişkilere dayalı yeni bir sinir ağı hibridizasyon yaklaşımı 

tanıtılmıştır. Önerilen hibridizasyon topolojisine Nesiller Arası Etkileşim Sinir Ağları (IINNs) adı 

verilmiştir. Bu yöntemin hipotezi, "bir yönlendirici baba modelin varlığının, oğul modelin 

diğerlerinden daha hızlı ve daha iyi başarı göstermesini sağladığıdır." Bu felsefe, büyükbaba ve 

büyük büyükbaba gibi ek ataları içerecek şekilde genişletilebilir. Öğretmen-öğrenci modelinden 

farklı olarak, önerilen yaklaşımda önceden eğitilmiş baba veya ata modeller, oğul model ile birlikte 

çalışır. Oğul sinir ağının hem eğitim hem de uygulama aşamalarında baba veya ata bölümlerinin 

ağırlık değerleri güncellenmez.Önerilen yaklaşım, baba olarak bir Özyönlendirmeli Harita (SOM) 

ve oğul olarak bir Diferansiyel Konvolüsyonel Sinir Ağı (DiffCNN) kullanılarak uygulanmıştır. Bu 

yapılandırmada SOM, bağımsız olarak eğitilerek yönlendirici baba işlevi görür. Eğitim sırasında 

modelin her adımında, SOM'dan kodlanmış girişler kullanılarak SOM'nin çıktıları tam bağlantılı 

katmanlara geçmeden önce düzleştirilerek görüntülerin kodlanmış çıktılarıyla birleştirilmiştir. Bu 

adaptasyon, konvolüsyonel katmanların karmaşıklığını azaltırken yakınsama hızını ve genel 

performansı artırmıştır. 

Bu makalenin birincil amacı, derin öğrenme modellerinin performansını, yakınsama hızını 

ve hesaplama verimliliğini artırmak için yeni bir hibrit sinir ağı olan Nesiller Arası Etkileşim Sinir 

Ağı (SOMdiffCNN) mimarisini önermek ve değerlendirmektir. Bir yönlendirici baba modelin 

varlığı, oğul modelin daha hızlı ve daha başarılı bir şekilde öğrenmesini sağlarken, karmaşıklığı 

azaltır ve birden fazla görüntü veri setinde yüksek doğruluk elde eder. Makalenin bir diğer amacı, 

önerilen modelin performansını, DCSOM, DiffCNN ve CNN gibi mevcut en iyi yöntemlerle 

karşılaştırarak etkinliğini göstermektir. Bu çalışmayla, geleneksel hiyerarşik öğrenme yöntemleri 

ile daha iş birliğine dayalı, nesiller arası bir yaklaşım arasında köprü kurmayı, derin öğrenmenin 

kavramsal çerçevesini ve pratik uygulamalarını ilerletmeyi hedeflemektedir. 
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Önerilen model, MNIST, Fashion_MNIST, Birds, STL10, CIFAR-100 ve CIFAR-10 gibi 

altı yaygın kullanılan görüntü veri seti üzerinde test edilmiştir. Sonuç olarak sırasıyla %98.58, 

%96.53, %87.49, %86.99, %86.78 ve %81.65 sınıflandırma doğruluk değerlerine ulaşılmıştır. 

Ayrıca model, ilk 10 eğitim epoch'u içinde önemli performans iyileştirmeleri göstermiştir. 

Deneysel sonuçlar, eğitim ve test doğruluğunda önemli iyileştirmeler olduğunu göstermektedir. 

MNIST veri seti için model, eğitim doğruluğunda %10.62 ve test doğruluğunda %6.53 iyileşme 

sağlamıştır. Benzer şekilde, Fashion-MNIST, CIFAR-10 ve CIFAR-100 veri setlerinde model, 

sırasıyla %23.72 / %24.16, %20.48 / %9.42 ve %62.48 / %50.92 doğruluk iyileştirmeleri 

kaydetmiştir. Ayrıca, Birds ve STL-10 veri setlerinde de %26.92 / %31.14 ve %10.21 / %15.03 

doğruluk artışları gözlemlenmiştir. 

Önerilen model, ilk 7 ila 10 epoch içinde %85 doğruluğa ulaşarak %84'e varan hızlı 

yakınsama sağlamıştır. FashionMNIST gibi daha basit veri setlerinde 7. epoch’da %90 doğruluğa 

ulaşarak %74 daha hızlı yakınsama sağlamıştır. Sonuçlar, SOMdiffCNN’in mevcut yöntemlerden 

daha üstün olduğunu ve tüm veri setlerinde son teknoloji doğruluk elde ettiğini göstermektedir.bir 

öğrenme paradigmasını teşvik ettiği yönündeki hipotezi doğrulamaktadır. Kuşaklar arası yaklaşım, 

yalnızca hibrit sinir ağlarına yönelik teorik anlayışı geliştirmekle kalmamakta, aynı zamanda zorlu 

sınıflandırma görevlerinde model performansını artırmak için pratik bir çözüm de sunmaktadır. Bu 

çalışma, denetimli ve denetimsiz öğrenme ilkelerini birleştiren yenilikçi bir hibrit mimari sunarak 

derin öğrenme alanına katkı sağlamaktadır. Baba-Oğul Ağ Paradigması, kuşaklar arası bilgi 

aktarımının daha verimli ve uyarlanabilir sinir ağlarının inşasında ne denli önemli olduğunu 

vurgulamaktadır. Gelecekte yapılacak araştırmalar, bu çerçevenin ölçeklenebilirliğini, doğal dil 

işleme veya zaman serisi verileri gibi diğer alanlardaki uygulanabilirliğini, daha derin atasal 

yapıları ve ilave hiyerarşik kuşak katmanlarının entegrasyonunu inceleyerek performansı daha da 

artırma potansiyelini araştırabilir. 

Geliştirilen topoloji; tıbbi görüntü tanıma, otomotiv sektöründe görüntü tanıma ve otomatik 

sürüş sistemleri gibi gerçek zamanlı görüntü tanıma görevlerinde daha yüksek performans 

avantajları ve daha hızlı öğrenme hızı ile uygulanabilir niteliktedir. Bu çalışma aracılığıyla, 

geleneksel hiyerarşik öğrenme yöntemleri ile daha iş birliğine dayalı, kuşaklar arası yaklaşım 

arasında bir köprü kurmak, hem kavramsal çerçeveyi hem de derin öğrenmenin pratik 

uygulamalarını ileriye taşımak amaçlanmaktadır. Bu çalışma, yapay zekânın gelişiminde biyolojik 

esinli metodolojilerin potansiyelini vurgulayarak, yeni nesil sinir ağı mimarilerinin tasarımı ve 

uygulanması için umut verici bir temel sunmaktadır. Özellikle canlı sistemlerde gözlemlenen 

kuşaklar arası bilgi aktarımı, adaptasyon ve iş birliği mekanizmalarından ilham alan bu yaklaşım, 

yapay öğrenme süreçlerine yeni bir boyut kazandırmaktadır. Bu yönüyle çalışma, hem biyolojik 

sistemlerin işleyişine dayalı yapay öğrenme yaklaşımlarının etkinliğini ortaya koymakta hem de 

gelecekteki yapay zekâ araştırmaları için yeni açılımlar sunmaktadır.  
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EXTENDED ABSTRACT 

 

Deep learning has rapidly gained prominence in recent years due to its remarkable 

performance and wide-ranging applicability across numerous domains. From image processing and 

natural language processing to large-scale data analysis and internet search, deep learning has 

revolutionized how machines learn and interact with complex data. At the heart of deep learning 

methodologies lies the artificial neural network, a computational model inspired by the structure 

and function of the human brain. These networks are typically composed of multiple layers hence 

the term "deep" learning, which allow them to learn hierarchical representations of data. Each layer 

transforms the input data into increasingly abstract and informative features, enabling the network 

to capture intricate patterns and relationships. This multilayered structure, along with 

advancements in computational power and the availability of large datasets, has significantly 

contributed to the effectiveness and versatility of deep learning across various real-world 

applications.These approaches are often categorized into two primary types: deep belief networks 

(DBNs) (Le Roux & Bengio, 2008) and convolutional neural networks (CNNs) (Yuda et al., 2020). 

DBNs are a fundamental, probabilistic, layered network model, while CNNs are multi-layered 

networks with specialized convolutional layers designed for high-performance tasks like image 

recognition. The convolutional layers in CNNs employ max pooling operations to extract 

hierarchical features (O’Shea & Nash, 2015). Methods like statically organized initialization or 

lightweight learning techniques have been proposed to optimize the training of such deeply layered 

networks (Acharya et al., 2017). And the other neural network architectures must be used to make 

more progress. Several computer vision and pattern recognition systems emphasize training a 

hierarchy of features for visualization (Danuser, 2011). 

Despite their success, Convolutional Neural Networks (CNNs) often suffer from large 

network sizes, leading to high computational costs and prolonged training times. These limitations 

can hinder their deployment in resource-constrained environments or real-time applications. 

Moreover, while most CNN architectures focus on supervised learning, relying heavily on large 

labeled datasets, there has been comparatively less emphasis on exploring unsupervised learning 

techniques. Unsupervised methods, which do not require labeled data, hold significant potential for 

reducing data annotation costs and improving model generalization, yet remain underutilized in 

mainstream CNN development.Unsupervised methods like K-means (Ahmad & Dey, 2007), 

PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021), and SOMNet (Hankins et al., 2018), have 

been applied to deep learning, they remain underutilized compared to supervised learning 

techniques. 

Transfer learning has emerged as an effective technique to address the challenges of 

training deep neural networks. It allows models trained on large, related datasets to be adapted for 

smaller, domain-specific tasks, reducing the need for extensive computational resources and 
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labeled data. This method has found wide application in fields such as computer vision and natural 

language processing, enabling models to learn faster and achieve better performance (Pan  & Yang, 

2010). One approach within transfer learning, the teacher-student network, uses knowledge 

distillation to transfer knowledge from a complex teacher model to a simpler student model, 

enabling resource-constrained environments to benefit from high-performance models (Hinton, 

Vinyals, & Dean, 2015). 

While transfer learning and teacher-student frameworks emphasize efficiency and 

scalability, they often overlook the potential of collaborative, intergenerational learning paradigms. 

Drawing inspiration from the intergenerational transmission of knowledge in human and natural 

systems. 

In this work, a novel type of neural network hybridization approach based on the 

relationships among sequential generations is introduced. The proposed hybridization topology is 

called intergenerational interaction neural networks (IINNs). The hypothesis behind this method is 

that “the presence of a guiding father model enables the son model to succeed quicker and better 

than the others”. This philosophy can be extended by including incorporating additional ancestors, 

such as grandfathers and great-grandfathers. Unlike the teacher-student model, the proposed 

approach involves pre-trained father or ancestor models working together with the son model. In 

both in training and application phases of the son neural network, father or ancestor parts do not 

update their weight values.  The proposed approach was implemented by using a Self-Organizing 

Map (SOM) as the father and a Differential Convolutional Neural Network (DiffCNN) as the son. 

In this configuration, the SOM serves as the guiding father, independently pre-trained before 

connecting the son. The proposed NN by using the trained SOM during each training step of the 

model, the encoded inputs from the SOM were used, and the flattened output was concatenated 

with the encoded images before being passed through the fully connected layers. This adaptation 

reduced the complexity of the convolutional layers while improving convergence speed and overall 

performance. 

The primary aim of this PhD Research is to propose and evaluate a novel hybrid neural 

network the Intergenerational Interaction Neural Network SOMdiffCNN architecture, to enhance 

the performance, convergence speed, and computational efficiency of deep learning models.  By 

the presence of a guiding father model enables the son model to succeed quicker and better than the 

others reducing complexity, and achieving high accuracy on multiple image datasets. The work 

also aims to demonstrate the effectiveness of this approach by comparing the proposed model’s 

performance with existing state-of-the-art methods, such as DCSOM, DiffCNN, and CNN, across 

various benchmark datasets. Through this work, the thesis seeks to advance the field of deep 

learning by introducing a new, efficient approach to neural network training and model 

deployment. 
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The proposed model was tested on six widely used image datasets: MNIST, 

Fashion_MNIST, Birds, STL10, CIFAR-100, and CIFAR-10. Resulting in classification accuracy 

values of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65% respectively. Moreover, the 

model demonstrated significant performance improvements within the first 10 training epochs. 

Experimental results indicate notable enhancements in both training and testing accuracy. For the 

MNIST dataset, the model improved 10.62% in training accuracy and 6.53% in testing accuracy. 

Similarly, for the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, the model recorded 

accuracy improvements of 23.72% / 24.16%, 20.48% / 9.42%, and 62.48% / 50.92%, respectively. 

Additionally, notable performance gains were observed on the Birds and STL-10 datasets, with 

accuracy improvements of 26.92% / 31.14% and 10.21% / 15.03%, respectively. The proposed 

model achieves faster convergence and significant performance improvements across multiple 

datasets within the first 10 training epochs. The experimental results underscore the model’s ability 

to achieve faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such 

as CIFAR-10, Birds, and CIFAR-100 within the first 7 to 10 epochs.  Maintaining strong 

performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the 

7th epoch, resulting in a 74% faster convergence.  The results demonstrate that the SOMdiffCNN 

outperforms existing methods such as DCSOM, DiffCNN, and CNN, achieving state-of-the-art 

accuracy on all datasets.  

The findings validate the hypothesis that leveraging generational interactions within neural 

networks fosters a more efficient and effective learning paradigm. The intergenerational approach 

not only advances the theoretical understanding of hybrid neural networks but also offers a 

practical solution for enhancing model performance on challenging classification tasks.  

This work contributes to the growing field of deep learning by presenting an innovative 

hybrid architecture that combines unsupervised and supervised learning principles. The Father-Son 

Network paradigm emphasizes the importance of leveraging intergenerational knowledge transfer 

to build more efficient and adaptive neural networks. Future research may explore the scalability of 

this framework, its applicability to other domains, such as natural language processing or time-

series data, investigating the inclusion of deeper ancestral structures and the integration of 

additional hierarchical generational layers to further enhance performance. The developed topology 

is applicable to medical image recognition, image recognition in the automotive industry with 

better performance advantages, and real-time image recognition tasks such as automatic driving 

systems with much faster learning speed.  

By introducing this work, the aim is to bridge the gap between traditional hierarchical 

learning methods and a more collaborative, intergenerational approach, advancing both the 

conceptual framework and practical applications of deep learning. This study sets a promising 

foundation for next-generation neural network architectures, highlighting the potential of 

biologically inspired methodologies in advancing artificial intelligence. 
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1. INTRODUCTION 

 

Deep learning is becoming increasingly popular across the world, and many applications 

based on it are being developed. It is used in image processing, natural language processing, large data 

analysis, internet search, and other areas. 

Practically all deep learning approaches include a deeply layered neural network. Deep 

learning methods are typically divided into two categories: deep belief networks (DBNs) (Le Roux 

& Bengio, 2008), and convolutional neural networks (CNNs) (Yuda et al., 2020). The deep belief 

network (DBN) is a basic, layered network with probabilistic neurons as hidden units. The 

convolutional neural network (CNN) is a multilayer network with a convolution layer between 

neural network layers. The neural network output is processed by the max pooling operation in the 

convolution layer (O’Shea & Nash, 2015). To properly train the deeply layered network, the 

network is initialized using the statically organized methodology or the lightweight learning method 

in both methods (Acharya et al., 2017). As I said before, these methods are nearly well-established 

and have been applied to commercial applications. And the other neural        network architectures must 

be used to make more progress. Several computer vision and pattern recognition systems 

emphasize training a hierarchy of features for visualization (Danuser, 2011). 

The vast majority of deep convolutional neural network (CNN) designs currently in use are 

designed to gain supervision features, while only a few methods for learning without supervision 

have evolved. To comprehend the fundamental framework of data, traditional unsupervised 

learning of features algorithms (Reis & Housley, 2022) nearly exclusively concentrate on using the 

accessibility of unlabeled data from training images. The Self-Organizing Map (SOM) learning 

method (Giraudel & Lek, 2001; Kohonen et al., 1996) stands out as one of the many remarkable 

learning methods that utilize neighborhood functions to master the structure of the high-

dimensional data space. 

In contrast to supervised CNN structures, unsupervised deep convolutional neural networks 

receive less attention. Similar to Gabor filters (Joni-Kristian Kämärä൴nen, 2003), or൴entat൴on-

sensitive filters are learned through sparse coding and unsupervised learning from natural images 

(Nguyen-Phuoc et al., 2019). A variety of unsupervised deep learning methods, such as K-means 

(Trevino, 2016), PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021), and SOMNet (Hankins et 

al., 2018), are available to design a simple deep network. 

Developing algorithms that can solve problems computationally is one of the primary 

objectives of the discipline of computer engineering. Such algorithms have been developed in a 

major way by human intelligence. However, there are problems whose solutions appear to exceed 

the capabilities of human intelligence. Additionally, some problems are simple for people to 

resolve but difficult to express formally. These problems are frequently referred to together with 

the name artificial intelligence (“Artificial Intelligence Abstracts,” 1987). 
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Differential convolutional neural networks are the fundamental building block of deep 

learning systems is the process of convolution, which is carried out by swiping several filters over 

the input image. It offers the ability to extract visual patterns from the supplied image. As a result, 

the more feature maps the structure produces, the more characteristics the classifier gathers (Sarıgül 

et al., 2019). 

Through a different deviation computation, differential convolution maps are utilized to 

examine the directional patterns within pixels and the areas surrounding them. It's important to note 

that in mathematical differentiation, the sequence change is taken into account by figuring out how 

different the pixel activations are from one another (Qu et al., 2020). A technique to explore the 

Diff-CNN is to merge differential calculus theories with convolutional neural networks (CNNs) 

(Sarıgül et al., 2019). It refers to a neural network that incorporates differential calculus in its 

convolutional layers or during the training process (Sarıgül et al., 2019). This approach can create a 

neural network that adjusts its parameters in real time according to the input data or shifts in the 

data distribution.   

The differential convolutional neural network aims to transfer feature maps containing 

directional activation differences to the next layer. This technique takes the idea of how convolved 

features change on the feature map into consideration (Abd El Kader et al., 2021; Sarıgül et al., 

2019). In a sense, this process adapts the mathematical differentiation operation into the 

convolutional process. This property increases the classification performance without changing the 

number of filters.  

Also, the benefit of differential convolution is the ability to extract more features without 

adding more convolutional layers by raising the depth of a single convolutional layer. An 

additional convolution is performed using a differential convolutional layer without the use of any 

additional trainable parameters (Lei et al., 2018; Sarıgül et al., 2019). 

When compared to conventional CNNs, differential CNNs use pre-defined 

hyperparameters and differential operators to produce feature maps utilizing normal convolutional 

feature maps (Qu et al., 2020; Lei et al., 2018). 

By performing further modifications to the quantity math calculations, differential 

convolution assesses the pattern direction of each pixel and its neighbors. Computing the difference 

between pixel activations allows for an evaluation of successive changes (Sarıgül et al., 2019). 

Transfer learning is a machine learning technique where a model developed for a particular 

task is reused as the starting point for a model on a second, related task. This approach leverages 

the knowledge learned from a pre-trained model, typically trained on a large dataset, and fine-tunes 

it for a smaller, domain-specific dataset, thereby reducing the need for extensive computational 

resources and large amounts of labeled data. It is widely used in fields such as natural language 

processing and computer vision, enabling faster training and often yielding higher accuracy for 

specialized tasks (Pan & Yang, 2010). 
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A teacher-student network is a framework in machine learning where a large, complex 

model (teacher) guides the training of a smaller, simpler model (student). The teacher model, 

typically pre-trained, provides soft labels or logits that encode richer information about the data 

distribution compared to hard labels. The student learns to mimic the teacher's predictions, 

achieving comparable performance with reduced computational resources and model size. This 

technique, also known as knowledge distillation, is widely used to compress deep neural networks 

for applications in resource-constrained environments (Hinton, Vinyals, & Dean, 2015). 

In this PhD thesis, a novel type of neural network hybridization approach based on the 

relationships among sequential generations is introduced. The proposed hybridization topology is 

called intergenerational interaction neural networks (IINNs) .The hypothesis behind this method is 

that “the presence of a guiding father model enables the son model to succeed quicker and better 

than the others”. This philosophy can be extended by including incorporating additional ancestors, 

such as grandfathers and great-grandfathers. Unlike the teacher-student model, the proposed 

approach involves pre-trained father or ancestor models working together with the son model. In 

both in training and application phases of the son neural network, father or ancestor parts do not 

update their weight values.  The proposed approach was implemented by using a Self-Organizing 

Map (SOM) as the father and a Differential Convolutional Neural Network (DiffCNN) as the son. 

In this configuration, the SOM serves as the guiding father, independently pre-trained before 

connecting the son. The proposed NN by using the trained SOM during each training step of the 

model, the encoded inputs from the SOM were used, and the flattened output was concatenated 

with the encoded images before being passed through the fully connected layers. This adaptation 

reduced the complexity of the convolutional layers while improving convergence speed and overall 

performance. The results demonstrate that the SOMdiffCNN outperforms existing methods, 

achieving state-of-the-art accuracy on all datasets. By introducing this work, the aim is to bridge 

the gap between traditional hierarchical learning methods and a more collaborative, 

intergenerational approach, advancing both the conceptual framework and practical applications of 

deep learning. And all the implementations were executed in PYTHON environments. 

 

1.1. Research Description  

This thesis introduces a novel neural network hybridization approach called 

Intergenerational Interaction Neural Networks (IINNs), inspired by the concept of intergenerational 

knowledge transfer. The model leverages that “the presence of a guiding father model enables the 

son model to succeed quicker and better than the others”. This philosophy can be extended by 

including incorporating additional ancestors, such as grandfathers and great-grandfathers. Unlike 

the teacher-student model, the proposed approach involves pre-trained father or ancestor models 

working together with the son model. In both in training and application phases without updating 

its weight values. 
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The hybrid architecture, termed SOMDiffCNN, integrates a pre-trained Self-Organizing 

Map (SOM) as the father network and a Differential Convolutional Neural Network (DiffCNN) as 

the son network. The SOM, trained independently, provides encoded outputs that are concatenated 

with image features and fed into the DiffCNN. This structure reduces convolutional layer 

complexity, leading to faster convergence and improved performance. 

The thesis evaluates the SOMDiff-CNN model across six different datasets datasets: 

MNIST, Fashion-MNIST, Birds, STL10, CIFAR-10, and CIFAR-100. Results demonstrate 

superior classification accuracy, faster convergence, and reduced training complexity compared to 

existing methods such as Deep Convolutional Self-Organizing Maps (DCSOM), Differential CNNs 

(DiffCNN), and standard CNNs. Key achievements include significant performance improvements 

within the first 10 training epochs, achieving up to 84% faster convergence and state-of-the-art 

accuracy across all datasets. 

This research advances the field of deep learning by proposing a novel intergenerational 

learning framework, bridging traditional hierarchical learning models and collaborative multi-

generational approaches. The developed methodology holds significant potential for applications in 

real-time image recognition tasks, such as autonomous driving, medical imaging, and the 

automotive industry. 

 

1.2. The Research Goal 

The primary aim of this PhD research is to propose and evaluate a new hybrid neural 

network the Intergenerational Interaction Neural Network SOMdiffCNN architecture, to enhance 

the performance, convergence speed, and computational efficiency of deep learning models.  The 

presence of a guiding father model enables the son model to succeed quicker and better than the 

others achieving high accuracy on multiple image datasets. The research also aims to demonstrate 

the effectiveness of this approach by comparing the proposed model’s performance with existing 

state-of-the-art methods, such as DCSOM, DiffCNN, and CNN, across various benchmark datasets. 

Also, this research aims to bridge the gap between traditional hierarchical learning methods and a 

more collaborative, intergenerational approach, advancing both the conceptual framework and 

practical applications of deep learning. Through this work, the research seeks to advance the field 

of deep learning by introducing a new, efficient approach to neural network training and model 

deployment.  
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1.3. Research Outline  

The thesis follows a general methodology illustrated in Figure 1.1 and  

comprises six chapters:  

 

Chapter 1: This chapter presents a summary of the research, including an  

introduction to the Study and its objectives. It also outlines the structure  

and key components of the   Thesis. 

Chapter 2: This chapter presents a comprehensive overview of relevant literature,    

including Academic journals, conference proceedings, and thesis. 

Chapter 3: This chapter provides an overview of the research material and  

methodology,  Including datasets, data preprocessing, supervised and   

unsupervised learning, classification Analysis, statistical analysis    

methods Such as Euclidean   and  Manhattan distance, ensemble   

learning, Teacher-Student Network, deep learning Techniques such as    

SOM, CNN,  DCAE, DiffCNN, DCSOM, and SOMdiffCNN. We also    

discuss the Implementation and tuning steps for these Methods, as well    

as software  Environment implementation and utilization of Hardware  

and frameworks, The Structured Models, and the Evaluation Metrics  

used in the Thesis. 

Chapter 4:  In this chapter, we will discuss and conclude the results of the proposed  

method, SOMdiffCNN. We will evaluate these methods on six image    

datasets and compare it with the results of other deep learning methods,  

namely DCSOM, CNN, and DiffCNN. The purpose of this comparison  

is to determine the  effectiveness of the accuracy performance of these  

methods.  

Chapter 5: This chapter provides a brief overview of the key findings, conclusions,  

and recommendations of the study. 

Chapter 6:  This chapter contains the references and appendices used in this research 
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Research Methodology Progress 
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Figure 1.1 Demonstration of general research methodology progress(Source: created by 
the author) 
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2. PRELIMINARY WORK 

 

Several studies have explored the concept of the hybrid networks for optimizing neural 

network training and deployment. One significant contribution by Hinton et al. (2015) introduced 

the concept of knowledge distillation, where the soft outputs from the teacher network are used as 

additional training signals for the student. This approach demonstrated how smaller networks could 

achieve comparable performance to larger ones while requiring less memory and computational 

power. Another study by Romero et al. (2014) extended this idea by introducing FitNets, where 

intermediate representations from the teacher network were also used to guide the student. This 

method allowed deeper but thinner student networks to be trained effectively, highlighting the 

adaptability and scalability of the teacher-student framework. 

Another notable work in the teacher-student paradigm was conducted by Yim et al. (2017), 

who introduced a method called flow-based knowledge distillation. Instead of using only output 

logits, this approach focused on transferring the flow of activation maps between layers of the 

teacher and student networks. By capturing and mimicking the relationships between these layers, 

the student was able to gain a more comprehensive understanding of the learning process. 

Furthermore, Zagoruyko and Komodakis (2016) explored attention-based transfer, where the 

attention mechanisms of the teacher model were distilled to the student, further enhancing 

performance in tasks such as image classification and object detection. 

Recent developments in transfer learning have been driven by advancements in pre-trained 

deep learning architectures. The introduction of models such as ResNet (He et al., 2016) and BERT 

(Devlin et al., 2019) has transformed the landscape by enabling the transfer of powerful, general-

purpose feature representations to a wide range of tasks. These models, trained on large datasets 

like ImageNet or massive corpora of text, significantly reduce the time and resources required for 

training on new tasks. 

In computer vision, models such as EfficientNet (Tan & Le, 2019) have refined transfer 

learning by balancing performance and computational efficiency. Techniques like fine-tuning and 

feature extraction are commonly used to adapt these pre-trained models to specific tasks. In NLP, 

transfer learning has seen groundbreaking progress with transformer-based models like GPT 

(Radford et al., 2018) and its successors. These models leverage unsupervised pretraining on 

extensive text data followed by supervised fine-tuning on task-specific datasets, achieving state-of-

the-art results across a wide array of applications. 

A seminal contribution to transfer learning was made by Bengio et al. (2012), who 

highlighted the power of unsupervised pretraining in deep learning models. This foundational work 

demonstrated how features learned from large-scale datasets could be fine-tuned to address 

domain-specific tasks with fewer resources. Yosinski et al. (2014) further explored this concept by 

analyzing the transferability of features across layers in convolutional neural networks (CNNs). 
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Their findings revealed that lower-layer features are more general and transferable across tasks, 

while higher-layer features are task-specific and require fine-tuning for optimal performance. 

Another key advancement in transfer learning was the introduction of domain adaptation 

techniques (Pan & Yang, 2010). These methods aimed to align feature distributions between the 

source and target domains, enabling effective knowledge transfer even when the two domains 

differ significantly. This concept laid the foundation for many modern transfer learning approaches 

used in applications such as image classification, natural language processing (NLP), and speech 

recognition. 

There are a variety of traditional approaches that may be used to map or project high-

dimensional datasets into a two-dimensional space to see the distribution of huge data sets. Such a 

technique is known as multidimensional scaling (MDS) (Torgerson, 1952; Leeuw & Heise, 1982), 

and its frequently used variation is called Sammon's projection (Sammon, 1969). These traditional 

techniques and their mappings take a long time since they require a lot of processing for huge data 

sets. 

Hiba Mzough et al. developed an efficient 3D CNN model using differential operators in 

the differential deep-CNN architecture for glioma brain tumor classification using T1-Gado 

magnetic resonance sequences. The model merges local and global contextual information with 

reduced weights. The model uses intensity normalization and adaptive contrast enhancement to 

control heterogeneity and uses data augmentation for successful training. The model outperforms 

other models, achieving an overall accuracy of 96.49% using the validation dataset (Abd El Kader 

et al., 2021). 

A study by researchers at Hebei University of Technology and the University of Pittsburgh 

has developed a differential convolutional neural network (differential-CNN) to automatically 

identify six fetal brain standard planes (FBSPs) from non-standard planes. The study aims to 

overcome difficulties in detecting fetal brain tissue features due to the non-mature nature of fetal 

brain tissue and limited labeled image data due to high collection costs. The differential-CNN 

framework uses differential operators to derive additional feature maps from the original CNN 

without increasing the number of convolution layers and parameters. The results showed an 

accuracy of 92.93% in identifying FBSPs from 30,000 2D ultrasound images from 155 fetal 

subjects aged 16 to 34 weeks. The study demonstrates that differential-CNN can be used for 

automated identification of FBSPs (Qu et al., 2020). 

Sarıgül et al. introduce a new convolution technique called Differential Convolution and an 

updated error back-propagation algorithm, which considers directional changes among a pixel and 

its neighbors. It improves standard convolution by extracting pattern orientation. The technique 

was tested on four different experiment sets, showing improved accuracy in the first set the 

differential convolution technique increased the accuracy value up to 55.29%. The technique 

outperformed traditional convolution and other compared convolution techniques, demonstrating 
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its efficiency and adaptability to different convolutional structures. This suggests that differential 

convolution can be used to improve popular deep learning models (Sarıgül et al., 2019). 

Wang et al .presents a hybrid differential evolution (DE) algorithm called DECNN, which 

aims to automatically evolve the structures and parameters of deep convolutional neural networks 

(CNNs) for image classification. The DECNN method refines an existing effective encoding 

scheme for variable-length CNN architectures, develops new mutation and crossover operators for 

variable-length DE to optimize hyper parameters, and introduces a second crossover to evolve the 

depth of CNN architectures. The method is tested on six widely-used benchmark datasets and 

compared to 12 state-of-the-art methods. The DECNN method outperforms IPPSO in terms of 

accuracy, demonstrating the potential of DE for improving efficiency in designing deep CNNs. The 

authors propose refining the existing effective encoding scheme used by IPPSO to break the 

constraint of predefining the maximum depth of CNNs, designing and developing new mutation 

and crossover operators for the DECNN method, and integrating a second crossover operator to 

produce children representing CNN architectures with different lengths. The DECNN method is 

competitive to state-of-the-art algorithms and outperforms IPPSO in terms of accuracy (Wang et 

al., 2020). 

A study investigated the anti-cancer effects of nutritional components on lung cancer cell 

lines A549 and HLC-1. Results showed that iron treatment inhibited A549 cell growth, while 

ferroptosis may correlate with cancer cell death. Asiaticoside, a natural compound, showed anti-

inflammatory, antioxidant, neuroprotective, and wound-healing properties. A CNN model was used 

to differentiate between sarcoidosis and lymphoma. A study on asthmatics found age and annual 

concentration of PAHs as independent factors for the annual decline of FEV1. Understanding the 

impact of air pollutants on lung function and asthma is crucial (“P3‐1: Differential Model of the 

Deep Convolutional Neural Network between Sarcoidosis and Lymphoma in 18F‐FDG‐PET/CT,” 

2021). 

Openshaw & Turton discusses the development of Kohonen net-based methods for large 

spatial dataset classification on a 256 processor Cray T3D parallel supercomputer. The paper aims 

to reduce multivariate complexity in census data by utilizing the power of the seventh fastest 

supercomputer. The Kohonen self-organizing map type of unsupervised neural network offers the 

best levels of performance, as demonstrated by an empirical evaluation of various classifiers. The 

paper demonstrates the potential of this new type of spatial classification technology for improving 

the classification of 1991 Census data for Britain (Openshaw & Turton, 1996). 

Kaski et al. created a new SOM-based methodology. This approach, known as WEBSOM, 

is designed specifically for investigating large document collections. Textual documents are 

organized on a map, which contains capabilities that are helpful for searching across large 

document collections. The main goals of this study are to decrease the order of magnitude of an 

application for processing massive document collections, discover a new technique for creating 
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statistical models of documents, discover some "shortcuts" for the SOM algorithm, such as 

enhancements to the quick creation of large document maps, adopt a different map-initialization 

technique, and implement a different winner-searching technique (Kaski et al., 1998). 

Jaakko Hollmén et al. presents a general framework for learning Self-Organizing Maps, 

which store probabilistic models in map units. The authors show that minimizing the Kullback-

Leibler distance between the unknown true generator of data and empirical models minimizes the 

negative log probability of the data with the empirical model. The framework is applied to learning 

multiple user profiles from calling data from a mobile communications network and can be used 

for fraud detection (Jaakko Hollmén et al., 1999).  

Authors Lawrence et al. describe a hybrid neural network solution for face recognition that 

combines local image sampling, a self-organizing map neural network, and a convolutional neural 

network. This technique can quickly classify data and just needs quick normalization and 

preprocessing. It consistently performs better in classification than the eigenfaces technique. 

Without taking into account invariance to high degrees of rotation or scaling, the research focuses 

on recognition with variable facial detail, expression, and stance. The authors investigate 

geometrical feature-based face identification techniques using the ORL database, which contains a 

collection of faces taken between 1992 and 1994 (Lawrence et al., 1997).  

The Self-Organizing Map (SuSi) Python package was introduced by Riese et al., 2019, 

offering supervised regression and classification for hyperspectral data. SOMs, a weakly 

represented artificial neural network, are used in unsupervised learning but rarely in supervised 

learning. The SuSi framework is the first Python package to provide both unsupervised and 

supervised SOM algorithms for easy usage. It can perform on small and large datasets without 

significant overfitting. The training process includes initialization, random input data points, best-

matching units, learning rate, neighborhood function, and weight matrix modification (Riese et al., 

2019). 

Li Yuan from the University of Rhode Island has submitted a Master's Theses on 

implementing Self-Organizing Maps (SOMs) with Python. The project aims to provide Python 

users with the advantages of the POPSOM package, which can perform functionality beyond model 

construction and visualization. The study includes migrating the POPSOM package from R to 

Python, refactoring the source code, and improving the package by adding normalization options. 

FORTRAN is also embedded to accelerate model construction. The study was a collaborative effort 

with several committee members, including Dr. Lutz Hamel, Dr. Natallia Katenka, Dr. Austin 

Humphries, Dr. Orlando Merino, Lorraine Berube, and the author's family (Digitalcommons@uri 

& Yuan, 2018.).  

Adam Coates and Andrew Y. Ng from Stanford University have studied K-means 

clustering as a fast alternative training method for learning deep hierarchies of features from 

unlabeled data, particularly images. The authors discuss recent results and technical tricks needed 
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for effective use of K-means clustering for large-scale representations of images. They connect K-

means to other well-known algorithms to clarify when K-means can be most useful and convey 

intuitions about its behavior for debugging and engineering new systems. K-means is useful for 

learning features due to its speed and scalability, but sparse coding is a better performer in many 

applications (Coates & Ng, 2012).  

Zhao & Zhang introduces a new background modeling method called the stacked 

multilayer self-organizing map background model (SMSOM-BM), which enhances representative 

ability and automatic parameter learning for complex scenarios. The method uses deep learning to 

extend the existing single-layer self-organizing map background model, resulting in a strong 

representative ability and automatic determination for most network parameters. It also introduces 

an over-layer filtering process for efficient layer-by-layer training. Implemented using the NVIDIA 

CUDA platform, the method shows superior performance in real-time performance. Background 

modeling is crucial for motion detection tasks and modern video surveillance applications (Zhao & 

Zhang, 2015). 

Aly & Aly introduces a deep learning framework for recognizing gestures in Arabic sign 

language, regardless of the signer this framework employs hand semantic segmentation, hand shape 

feature representation, and deep recurrent neural networks. For semantic segmentation, 

DeepLabv3+ is utilized, while CSOM is used for hand-shape features. The Bi-directional Long 

Short-Term Memory (BiLSTM) recurrent neural network is responsible for recognizing the 

sequence of extracted feature vectors. This framework surpasses current methods for a signer-

independent testing strategy, effectively addressing challenges in hand segmentation, hand shape 

feature representation, and sequence classification in sign language recognition systems (Aly & 

Aly, 2020). 

Convolutional neural networks (CNN) have been developed in a variety of forms to take 

advantage of different image modification methods using unsupervised learning. The authors Chan 

et al.(2015), applied the Principle Component Analysis (PCA) algorithm to learn various filter bank 

levels and, by cascading this operation, developed a straightforward deep neural network 

architecture (Chan et al., 2015). 

The authors (Tan et al., 2005). Propose a local probabilistic approach to face recognition 

techniques, extending template-based methods. It utilizes the SOM rather than Gaussians to learn 

the subspace representing each individual.   Two strategies are suggested: one involves training a 

single SOM map for all samples, while the other involves training a separate SOM map for each 

class. Additionally, a soft nearest neighbor ensemble method is proposed to identify unlabeled 

subjects. The proposed method demonstrates highly robust performance against partial occlusions 

and varying expressions. Face recognition technology can be applied in surveillance, information 

security, access control, smart cards, and law enforcement. (Tan et al., 2005). 
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Hankins et al. suggested SOMNet, an unsupervised approach to image classification using 

SOM-centered filters to train a collection of non-orthogonal filters, through the discretized 

representation of neurons. This non-orthogonal alternative to PCANet delivers similar 

performance. But does not suffer from the same constraints. The authors show that a simple 

adjustment in the binarization process decreases the dimension of the final feature vector, leading 

to more filters and deeper structures. They also demonstrate a hybrid method that uses generative 

Markov random fields as filters for clustering, offering further diverse features in a data-driven 

deep-learning methodology. (Hankins et al., 2018).  

Almabdy & Elrefaei's paper examines the performance of a pre-trained CNN combined 

with a multi-class support vector machine (SVM) classifier and transfer learning, using the 

AlexNet model for face recognition. The research focuses on CNN architectures that have achieved 

top results in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), including 

AlexNet and ResNet-50. The findings reveal that the CNN model outperformed most advanced 

models in accuracy, achieving an accuracy range of 92% to 94% across various databases, and 

demonstrating up to a 39% improvement in recognition accuracy. (Almabdy & Elrefaei, 2019). 

Aly et al., a revised version of the hypercolumn model (HCM) network is introduced to 

enhance face recognition accuracy. The HCM network is structured hierarchically, inspired by self-

organizing maps and the visual cortex. The proposed method suggests a change in the feature 

extraction layer, with a variable dimension for each map, and the quantity of neurons in each map 

is determined through automated analysis of the training data. This improved HCM network 

addresses three key issues: dimensionality reduction, invariance, and network parameters. The 

ORL face database was used to demonstrate the efficacy of this model, which outperformed both 

neurocognition and standard models (Aly et al., 2008).   

The author introduces an enhanced version of the deep SOM algorithm, known as 

Extended-DSOM, which enhances the learning algorithm by making it completely unsupervised 

and modifying the architecture to capture features at various resolutions in the hidden layers. The 

E-DSOM offers improved classification accuracy, generalization capability, and reduced training 

time. It outperforms DSOM in classification accuracy by up to 15% and reduces training time by 

up to 19% across all datasets. The study focuses on exhausting SOMs as an unsupervised deep-

learning methodology for image classification, overcoming limitations in high-level feature 

abstraction because of their shallow structure (Wickramasinghe et al., 2019). 

This paper presents a parallelizable Deep Self-Organizing Maps (PD-SOM) framework for 

image classification, designed to enhance the computational efficiency of DSOMs while preserving 

their performance. The PD-SOM framework provides three key benefits: unsupervised learning for 

image classification, advanced feature abstraction, and reduced computational expense during 

training, all while achieving high accuracy. It was tested on the MNIST handwritten digit dataset to 

maximize accuracy using unlabeled data in a computationally efficient way. Despite its 
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computational demands, PD-SOMs demonstrate notable accuracy improvements over conventional 

SOMs. (Wickramasinghe et al., 2017). 

The rapid expansion of autonomous industrial environments has heightened the demand for 

advanced video surveillance, especially for detecting complex human movements. While current 

methods rely on supervised deep learning for human activity recognition (HAR), they face 

challenges with unlabeled video streams. This article introduces a novel adaptation of the Growing 

Self-Organizing Map (GSOM) to overcome these limitations. The new approach integrates 

traditional deep learning concepts, incorporates hierarchical and multi-stream learning, and features 

a transience property within the algorithm. The effectiveness and applicability of this model are 

validated through tests on three benchmark video datasets (Rashmika Nawaratne et al., 2020).  

Aly et al discuss the usage of Gabor-based face representation for face recognition, which 

requires large amounts of data. The authors propose a nonlinear projection method using self-

organizing maps, utilizing the Multiple Self-Organized Gabor Features (MSOGF) process to 

symbolize the input image. A novel local matching algorithm is introduced for classifying 

unlabeled data. The proposed system employs multiple SOMs to understand the distribution of GF 

with a MAX filter applied to handle local distortion. A self-organizing map (SOM) is trained using 

Gabor features. The Local Similarity Matching (LSM) algorithm compensates for local feature 

changes using a Gaussian function (Aly et al., 2010).     

Aly & Tsuruta introduce a novel face recognition approach utilizing hierarchical self-

organized Gabor features (HSOGF) as a feature extractor. The HSOGF method uses Gabor 

wavelets, which are resilient to changes in illumination, rotation, and scale, to capture nonlinear 

data and represent it in a compact feature space. The method uses two-layer self-organizing maps 

(SOM) to construct a feature map from Gabor filters at each position in the image, reducing 

computational complexity while maintaining recognition accuracy. The paper discusses setting 

filter parameters in Gabor filters, including orientation, Gaussian radius, aspect ratio, and a 

biologically motivated MAX filter to reduce feature shifting in the Gabor response image (  Aly & 

Tsuruta, 2009 ). 

Kulak et al. offer a comprehensive perspective on SOMs and Stochastic Neighbor 

Embedding (SNE). As data visualization techniques. Both algorithms can result from a common 

scientific context and can be quantitatively compared on different datasets. The study demonstrates 

that SOMs adjust neuron weights while keeping points fixed in the 2D space, whereas SNE 

maintains fixed neuron weights and optimizes point positions. SNE serves both as a visualization 

tool and a data representation method. The study anticipates that integrating these algorithms will 

pave the way for future research that capitalizes on their respective strengths. (Kulak et al., 2022). 

Wang et al. introduce a novel deep supervised quantization approach utilizing SOMs to 

address the Approximate Nearest Neighbor (ANN) search problem in multimedia and computer 

vision.  The method combines CNN and SOMs into a single deep architecture, aiming to reduce 
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discrepancies between similar and dissimilar image pairs. It extracts deep features and quantizes 

them into appropriate nodes within the SOM. Experiments on publicly available standard datasets 

demonstrate the method's superiority over current ANN search methods, and it can be easily 

adapted for classification and visualization tasks with minimal modifications. (Wang et al., 2019). 

The authors Sakkari & Zaied, introduce a new Unsupervised DSOM algorithm for feature 

extraction, which is akin to existing multi-layer SOM architectures. This algorithm includes a 

splitting process, alternating self-organization layers, a ReLU rectification function, and an 

abstraction layer that combines convolution and pooling. The self-organizing layer comprises 

multiple maps, each targeting a local sub-region of the input image. The most active neurons are 

organized into a second sampling layer to form a new 2D map. ReLU is applied multiple times, 

altering the size of the splitting window and the displacement step on the reconstructed input image 

each time. (Sakkari & Zaied, 2020). 

Aly & Almotairi suggested a new deep unsupervised network called DCSOM for robust 

handwritten digit recognition. The network employs a series of convolutional SOM layers trained 

one after another to capture multiple levels of features. The ND-SOM grid uses a competitive 

learning algorithm to extract abstract visual features. The topological arrangement of features helps 

manage local transformations and deformations in visual data. Experiments with the MNIST 

handwritten digit database demonstrate that DCSOM outperforms current state-of-the-art methods 

in handling noisy digits and other image variations. (Aly & Almotairi, 2020). 

Sakkari et al. present a deep self-organizing map model (Deep-SOMs) designed for 

automated feature extraction and classification from large-scale data streams. The model is based 

on abstraction, allowing patterns to be extracted from raw data. It includes three hidden self-

organizing layers, along with input and output layers, each with multiple SOMs. The model is 

distinguished by its unique layer architecture, SOM sampling method, and learning approach. It has 

been validated on large datasets like the Leukemia dataset and SRBCT, outperforming many 

existing algorithms for image classification. The model is implemented in a distributed architecture 

in Map Reduce model and Spark (Sakkari et al., 2017).    

Split-brain autoencoders are a modified version of the traditional autoencoder architecture 

used for unsupervised representation learning. These sub-networks extract features from input 

signals by predicting data channels from one another. They achieve cutting-edge performance on 

extensive transfer learning benchmarks, allowing for improved transfer to new tasks. Traditional 

autoencoder models have not demonstrated strong representations for transfer tasks due to their 

abstraction mechanisms. This work introduces an architectural modification to the autoencoder 

paradigm, resulting in two separate, concatenated sub-networks trained as cross-channel encoders 

(Zhang et al., 2017).  

The autoencoder (AE) is a key method for anomaly detection, but its ability to distinguish 

anomalies through reconstruction errors is limited in unsupervised cases. To address this, three new 
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methods are introduced: cumulative error scoring (CES), percentile loss (PL), and early stopping 

via knee detection. These methods show significant improvements over conventional AE training 

on image, remote-sensing, and cybersecurity datasets. Unsupervised anomaly detection is crucial in 

various domains, and these methods prevent AEs from generalizing anomalies across applications, 

enhancing their reliability in unsupervised DAD (Merrill & Eskandarian, 2020).  

Zhu & Zhang introduce a new classification supervised autoencoder (CSAE) based on 

predefined evenly distributed class centroids (PEDCC) to learn complex data distributions. The 

method uses PEDCC of latent variables to train the network, ensuring maximum inter-class 

distance and minimization of inner-class distance. The authors propose a new loss function that 

combines the loss function of classification and encoding, decoding, classification, and model 

generalization performance. The main contributions include the PEDCC, which combines 

classification and autoencoder, and the wavelets loss function, which improves image quality by 

combining traditional pattern recognition methods. Future research should focus on improving 

autoencoder accuracy in incremental learning. (Zhu & Zhang, 2019). 

Xuejun Zhang et al. propose a novel DDoS attack detection method that trains detection 

models in an unsupervised learning manner using preprocessed and unlabeled normal network 

traffic data. The technique uses the Balanced Iterative Reducing and Clustering Using Hierarchies 

algorithm (BIRCH) to pre-cluster the normal network traffic data and explores an autoencoder 

(AE) to build the detection model in an unsupervised manner based on the cluster subsets. 

Experiments on benchmark network intrusion detection datasets KDDCUP99 and UNSWNB15 

were conducted to verify the performance of the method. The results showed that the proposed 

method achieves better performance in terms of detection accuracy rate and false positive rate 

compared to state-of-the-art models using supervised learning and unsupervised learning. (Xuejun 

Zhang et al., 2022).  

Chen et al. introduces context autoencoder (CAE), a novel masked image modeling (MIM) 

method, for unsupervised learning. They randomly divide the image into two sets: visible patches 

and masked patches, in order to improve the encoding quality. From visible patches to masked 

patches, they make predictions in the latent semantic representation space. For the purpose of 

designing an unsupervised feature learning network for hyperspectral classification (Chen et al., 

2022).  

The article "Unsupervised Feature Learning by Autoencoder and Prototypical Contrastive 

Learning for Hyperspectral Classification" by Cao, Li, and Zhao discusses the growing popularity 

of unsupervised learning methods for feature extraction. The authors combine traditional 

contrastive learning and autoencoder to create an unsupervised feature learning network for 

hyperspectral classification. The proposed network outperforms other comparison methods, 

maintaining fast feature extraction speed and reducing computing resource requirements. The 
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authors also note that their method separates feature extraction and contrastive learning, allowing 

more researchers to conduct research on unsupervised contrastive learning.(Cao et al., 2021).  

Author Dolgikh presents a new method for enhancing small datasets using unsupervised 

machine learning. It addresses challenges like insufficient sampling of characteristic patterns, 

leading to lower statistical confidence and higher error. The authors propose an ensemble of neural 

network models of unsupervised generative self-learning, which identifies stable clusters of data 

points in latent representations of observable data. Techniques of augmentation based on identified 

latent cluster structure are applied to produce new data points and enhance the dataset. This method 

can be used with small and extremely small datasets to identify characteristic patterns, augment 

data, and improve classification accuracy in scenarios with strong deficits of labels (Dolgikh, 

2021). 

Bosch discusses methods for extracting features for student modeling from educational 

data, specifically interaction-log data, using deep neural networks and unsupervised training. It 

covers various types of auto encoder networks, including deep, recurrent, variational, 

convolutional, and asymmetric networks. The implications of training these networks with 

educational data are discussed, including peculiarities for interaction-log data not commonly 

encountered in domains like computer vision and natural language processing. The paper also 

discusses methods for evaluating the network training process and suggests future work in transfer 

learning and semi-supervised methods (Bosch, 2023). 

Park et al. suggest a symmetric graph convolutional autoencoder for unsupervised graph 

representation learning. It uses a new decoder that creates a symmetric autoencoder form, allowing 

for reconstruction of node features based on Laplacian sharpening. The autoencoder incorporates 

signed graphs to prevent numerical instability caused by Laplacian sharpening. A new cost function 

is developed to find a latent representation and a latent affinity matrix simultaneously, improving 

image clustering performance. Experimental results show the model is stable and outperforms 

existing algorithms. The main contributions include the first completely symmetric graph 

convolutional autoencoder, a new numerically stable decoder form, and a computationally efficient 

subspace clustering cost.(Park et al., 2019). 

Authors Mei et al. presents an unsupervised spatial-spectral feature learning strategy for 

hyperspectral images using a 3-Dimensional (3D) convolutional autoencoder (3D-CAE). The 3D-

CAE uses 3D operations like convolution, pooling, and batch normalization to explore spatial-

spectral structure information for feature extraction. A companion 3D convolutional decoder 

network reconstructs input patterns, allowing all parameters to be trained without labeled samples. 

Experimental results show the 3D-CAE is highly effective in extracting spatial-spectral features 

and outperforms traditional unsupervised and supervised feature extraction algorithms in 

classification applications.(Mei et al., 2019). 
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There are many research that integrate SOM with CNN. These models typically aim to 

enhance CNNs with the unsupervised clustering skills of SOMs or to extract deep representations 

(e.g., CNN codes) and map them into the SOM neural network. 

The Table below shows a Summary of the related work. 

Table.2.1. Shows a Summary of the related work. 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

1 2021 
Differential Deep 
Convolutional Neural 
Network Model for 
Brain Tumor 
Classification 

Abd El Kader, 
I., Xu, G., 
Shuai, Z., 
Saminu, S., 
Javaid, I., & 
Salim Ahmad,  

Normal 
and 
abnormal 
MR brain 
images 

SVM,KNN 
and Back 
Propagation 

 
99.25% 

2 2020 
Standard Plane 
Identification in Fetal 
Brain Ultrasound 
Scans Using a 
Differential 
Convolutional Neural 
Network. 

Qu, R., Xu, G., 
Ding, C., Jia, 
W., & Sun, M. 

2D 
ultrasound 
image  

K-means, 
support-vector 
machine 
(SVM) , RCM 
and  Back 
Propagation 

 
 
   

92.93% 

3 2019 
Differential 
convolutional neural 
network. 

M. Sarigül, 
B.M. 
Ozyildirim and 
M. Avci. 

CIFAR10 
and 
CIFAR100 
datasets 

Back 
Propagation 

 
   

98.25% 

4 2020 
A hybrid differential 
evolution approach to 
designing deep 
convolutional neural 
networks for image 
classification. 

Wang, B., Sun, 
Y., Xue, B., & 
Zhang, M. 

M
NIST, 
MBI, 
MDRBI, 
MRB and 
MRD 
datasets 

Geneti
c Algorithms 
(GAs) and 
CNN. 

 
 
    

71% 

5 2021 
Differential model of 
the deep 
convolutional neural 
network between 
sarcoidosis and 
lymphoma in 18F-
FDG-PET/CT 

Dinesh Patel 56 patients 
Image 
datasets 

CNN 92.9% 

6 1996 
Development of  A 
parallelized version 
of SOM  

Openshaw and 
Turton 

Geographi
cal 
datasets. 

Self-organizing 
map(SOM) 

  
- 

  



18 

Table.2.1. Shows a Summary of the related work. (continued) 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

7 1998 
WEBSOM – 

Self-organizing maps 
of document 
collections 

Samuel Kaski, 
Krista Lagus, 
Teuvo 
Kohonen, and 
Timo Honkela. 

Large Text 
database. 

Computationall
y efficient 
algorithms, and 
random 
mapping 
method. 

 
- 

1999 
Self-organizing map 
for the probabilistic 
model. 

Jaakko 
Hollman , 
Volker Tresp 
and Olli 
Simula, 

records 
from calls 
made with 
mobile 
phones 

 Self-
Organizing 
Map and 
unsupervised 
learning. 

86% 

9 1997 
Face recognition: A 
convolutional neural-
network approach 

S. Lawrence, C. 
L. Giles, A. C. 
Tsoi, and A. D. 
Back 

 
ORL 
Database 

Karhunen-
Lo`eve 
transform 
multi-layer 
,perceptron, 
Convolutional 
Networks,and 
Self-organizing 
map. 

 
 

90% 

10 2019 
Supervised and Semi-
Supervised Self-
Organizing Maps for 
Regression and 
Classification 
Focusing on 
Hyperspectral Data. 

 
Riese, F. M., 
Keller, S., & 
Hinz, S. 

 
soil-
moisture 
dataset 

Self-organizing 
map (SOM), 
random forest 
(RF). 

 
 
- 

11 2018 
Implementation of 
Self-Organizing 
Maps with Python 

Li Yuan IRIS 
Dataset 

 

Self-
Organizing 
Map(SOM) 

 
98% 

12 2012 
Learning feature 
representations with 
k-means 

A. Coates and 
A. Y. Ng 

CIFAR10 
  And STL-
10 datasets 

K-Means  
82% 

13 2015 
Stacked multilayer 
self-organizing map 
for background 
modeling 

Z. Zhao, X. 
Zhang, and Y. 
Fang 

A camera 
captured 
image 
dataset.  

Self-
Organizing 
Feature Map  
and NN. 

74% 

14 2020 
A novel signer-
independent deep 
learning framework 
for isolated Arabic 
sign language 
gestures recognition 

S. Aly and W. 
Aly 

Arabic 
sign 
language 
database  

BiLSTM,SOM 
and RNN 

 
89.59% 
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Table.2.1. Shows a Summary of the related work. (continued) 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

15 2015 
A simple deep 
learning baseline for 
image classification 

T.-H. Chan, K. 
Jia, S. GAO, J. 
Lu, Z. Zeng, 
and Y. Ma 

MNIST 
Yale B, 
AR,FERE
T datasets  

PCA ,LDA and  
CNN 

 
86.66% 

16 2005 
Recognizing partially 
occluded, expression 
variant faces from 
single training image 
per person with SOM 
and soft k-NN 
ensemble 

X. Tan, S. 
Chen, Z.-H. 
Zhou, and F. 
Zhang 

AR  image 
database  

Self organizing 
Map(SOM)and 
A soft knearest 
neighbor(soft-
KNN) 

 
    

99% 

17 2018 
unsupervised 

feature learning 
networks for image 
classification 

R. Hankins, Y. 
Peng, and 
H.Yin 

MNIST Self-organizing 
maps(SOM) 
PCANet and  
SVM 

 

 
 

86% 

18 2019 
Deep Convolutional 
Neural Network-
Based Approaches 
for Face Recognition 

Soad Almabdy, 
and  Lamiaa 
Elrefaei. 

ORL,GTA
V face, 
Georgia 
Tech face, 
LFW,FLF
W face, 
YouTube 
face, and 
FEI faces 

 Pre-trained 
CNN AlexNet 
with SVM, and 
Pre-trained 
CNN ResNet-
50 with SVM. 

 
 

96.63% 

19 2008 
Visual feature 
extraction using 
variable map-
dimension hyper 
column model 

S. Aly, N. 
Tsuruta, R.-I. 
Taniguchi, and 
A. Shimada 

ORL face 
database. 

SOM, NN, and 
variable map 
dimension 
hypercolumn 
model. 

 
 

91.8% 

20 2019 
Deep self-organizing 
maps for 
unsupervised image 
classification 

C. S. 
Wicramasinghe
, K. 
Amarasinghe, 
and M. Manic 

MNIST 
GSA 
SP-HAR 

SOM and  
CNN 

 
 

87.18% 

21 2017 
Parallelizable deep 
self-organizing maps 
for image 
classification 

C. S. 
Wickramasingh
e, K. 
Amarasinghe, 
and M. Manic 

MNIST Self-
Organizing 
Map (SOM 

   
 
82.88% 
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Table.2.1. Shows a Summary of the related work. (continued) 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

22 2010 
Hierarchical two-
stream growing self-
organizing maps with 
transience for human 
activity recognition 

R. Nawaratne, 
D. Alahakoon, 
D. De Silva, H. 
Kumara, and X. 
Yu 

KTH, 
Weizmann  
and 
UCF11 
human 
activity 
datasets 

Self-
Organizing 
Maps 

 
 

94.3% 

23 2010 
Robust face 
recognition using 
multiple self-
organized Gabor 
features and local 
similarity matching 

Aly, A. 
Shimada, N. 
Tsuruta, and 
R.-I. Taniguchi 

FERET 
database 

SOM map, 
Local 
Similarity 
Matching 
(LSM) And 
KNN. 

 
 
 

93.1% 

24 2009 
face recognition 
using hierarchical 
self-organized Gabor 
features 

S. K. 
Aly and R.-I. 
Taniguchi 

ORL face 
database 

hierarchical 
Self-organizing 
maps, KNN 
and SVM. 

 
 

80% 

25 2022 
A unified view on 
Self-Organizing 
Maps (SOMs) and 
Stochastic Neighbor 
Embedding 

Kulak, T., 
Fillion, A., & 
Blayo, F. 

MNIST 
and and 
STL-10 
datasets. 

Stochastic 
Neighbor 
Embedding 
and SOM. 

 
98.84% 

26 2019 
Deep scalable 
supervised 
quantization by self-
organizing map 

M. Wang, W. 
Zhou, Q. Tian, 
and H. Li 

CIFAR-10 
and 
MNIST. 

 ANN, Self-
Organizing 
Map, CNN. 

 
98.90% 

27 2020 
A Convolutional 
Deep Self-
Organizing Map 
Feature extraction for 
machine learning 

Mohamed 
Sakkari 1 & 
Mourad Zaied1 

MNIST 
and and 
STL-10 
datasets. 

 

SVMs , CNN 
and SOM 

 
81.4% 

28 2020 
Deep Convolutional 
Self-Organizing Map 
Network for Robust 
Handwritten Digit 
Recognition. 

Aly, S., & 
Almotairi, S. 

MNIST Self-organizing 
Map (SOM), 
Batch learning 
algorithm and 
SVM. 

    
 
    

- 

29 2017 
Deep soms for 
automated feature 
extraction and 
classification from 
big data streaming 

 M. Sakkari, R. 
Ejbali, and M. 
Zaied 

MNIST, 
Leukemia 
andSRBCT 
Data sets. 

 

 Self-
Organizing 
Map (SOM) 

 
91.11% 
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Table.2.1. Shows a Summary of the related work. (continued) 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

30 2017 
Split-Brain 
Autoencoders: 
Unsupervised 
Learning by Cross-
Channel Prediction 

Richard Zhang 
, Phillip Isola 
and Alexei A. 
Efros 

NYU-D 
and 
ImageNet 
dataset 

Auto-encoder 
(AE). 

 
 

67.1% 

31 2020 
Modified 
Autoencoder 
Training and Scoring 
for Robust 
Unsupervised 
Anomaly Detection 
in Deep Learning. 

Nicholas 
Merrill and 
Azim 
Eskandarian 

 

Remote-
sensing, 
and cyber 
security 
datasets. 

Auto-encoder 
(AE). 

 

 
   

83.5% 

32 2019 
A Classification 
Supervised Auto-
Encoder Based on 
Predefined Evenly-
Distributed Class 
Centroids 

Qiuyu Zhu a 
and Ruixin 
Zhang a 

MNIST 
and 
Fashion 
MNIST 
image 
dataset 

SGD 
optimization 
method and 
Auto-encoder 
(AE). 

 

 
 
  

92,89% 

33 2022 
Exploring 
Unsupervised 
Learning with 
Clustering and Deep 
Autoencoder to 
Detect DDoS Attack 

Xuejun 
Zhang1, Jiyang 
Gai, Zhili Ma, 
Jinxiong Zhao, 
HongzhongMa
3, Fucun He 
and Tao Ju 

KDDCUP9
9 and 
UNSWNB
15datasets 

K-means, 
DBSCAN and 
Clustering 
Using 
Hierarchies 
algorithm 
(BIRCH)  

 
 

96.7% 

34 2022 
Context Autoencoder 
for Self-Supervised 
Representation 
Learning 

Xiaokang 
Chen, Mingyu 
Ding, Xiaodi 
Wang Ying Xin 
,Shentong 
Mo,Yunhao 
Wang ,Shumin 
Han ,Ping Luo 
Gang Zeng, and 
Jingdong Wang 

ImageNet 
dataset 

Context  
auto-encoder 
(CAE) and 
self-supervised 
learning.  

 
 
 
 
- 

35 2021 
Unsupervised Feature 
Learning by 
Autoencoder and 
Prototypical 
Contrastive Learning 
for Hyperspectral 
Classification 

Zeyu Cao1, 
Xiaorun Li1 
and Liaoying 
Zhao2 

Salinas, 
University 
of Pavia, 
and Indian 
Pines 
datasets. 

prototypical 
contrastive 
learning and 
auto-encoder 
learning 
method 

 

 
 

95.0% 
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Table.2.1. Shows a Summary of the related work. (continued) 
NO Years  The Title  The authors Datasets 

they used  
The algorithms  The Max 

Accuracy 

36 2021 
Analysis and 
Augmentation of 
Small Datasets with 
Unsupervised 
Machine Learning 

Serge Dolgikh small 
datasets of  
Covid-19 

 

Deep 
autoencoder , 
and Ensemble 
of 
Unsupervised 
Models. 

 
 

 91% 

37 2023 
Unsupervised Deep 
Autoencoders for 
Feature Extraction 
with Educational 
Data 

Nigel Bosch 
and Luc 
Paquette. 

educational 
data(Betty’
s Brain) 
datasets. 

Autoencoder 
networks, 
recurrent 
neural 
networks, 
Asymmetric 
networks, and 
CNN. 

 
 

67.3% 

38 2019 
Symmetric Graph 
Convolutional 
Autoencoder for 
Unsupervised Graph 
Representation 
Learning 

Jiwoong Park 
Minsik Lee, 
Hyung Jin 
Chang, 
Kyuewang, Lee 
Jin and Young 
Choi. 

COIL20, 
YALE, and 
MNIST 
datasets 
and n 
Pubmed 
dataset 

Convolutional 
autoencoder, 
Kmeans, 
Spectral, and 
others. 

 
 

82% 

39 2019 
Unsupervised 
Spatial–Spectral 
Feature Learning by 
3D Convolutional 
Autoencoder for 
Hyperspectral 
Classification 

Shaohui Mei, 
Jingyu Ji, 
Yunhao Geng, 
Zhi Zhang, Xu 
Li, and Qian 
Du. 

Indian 
Pines 
Dataset, 
Salinas 
Dataset, 
andSalinas, 
University 
of Pavia 

Convolutional 
neural 
networks, and 
convolutional 
autoencoder. 

 
 
 
 

95.39% 

 

Previous studies have provided significant advancements in SOMs, CNNs, and teacher-

student learning. However, none have successfully integrated these techniques into a unified 

framework that balances: Deep hierarchical feature extraction, Computational efficiency 

and structured knowledge transfer. 

The primary goal of this research was to develop new novel methods called 

intergenerational interaction type of neural networks SOMDiffCNN Hybridization approach 

considering the relation among sequential generation. 

Our research redefines the optimization of neural networks by combining Self-Organizing 

Maps (SOMs), Differential Convolutional Neural Networks (DiffCNNs), and intergenerational 

learning into a novel hybrid model called SOMdiffCNN. This approach improves accuracy, 

convergence speed, and overall efficiency. Specifically, this thesis enhances: 
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1. Feature extraction through SOM-enhanced CNNs. 

2. Computational efficiency using differential convolutions. 

3. Knowledge transfer via father-son intergenerational learning.This innovative approach  

 

Addresses key limitations in existing models and paves the way for more scalable and 

adaptable deep learning architectures by Advancing intergenerational learning by integrating 

structural knowledge transfer beyond traditional logits-based distillation. Fusing SOMs and 

DiffCNNs for structured self-organization and deep learning. Using differential convolution for 

enhanced feature representation. And applying intergenerational learning to optimize training and 

convergence. Making SOMdiffCNN a robust solution for modern AI applications. Bridges the the 

gap between traditional hierarchical learning methods and a more collaborative, intergenerational 

approach, advancing both the conceptual framework and practical applications of deep learning. 

According to the Results, the proposed method should be taken into consideration because they 

have historically produced the greatest results in image Classification. As compared to the majority 

of the state-of-the-art models. 
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3. MATERIAL AND METHOD 

 

This chapter focuses on the structure, implementation, and optimization of statistical and 

deep learning models. It provides a detailed overview of the architecture of these networks and 

outlines the methodologies used during their training. The chapter also presents a collection of 

datasets utilized in this research, which serve as benchmarks for evaluating the effectiveness of the 

proposed models. In addition, it discusses the methodologies for feature extraction, data cleaning, 

and visualization using the software framework examined in this study. Information about software 

frameworks and data preprocessing functions is also included. Finally, the chapter explains 

evaluation metrics and the methods used to assess and compare the quality of classification results 

obtained in the experiments. 
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Figure 3.1 Shows the Research Material and Methodology Overview (Source: Created by 
the author) 
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3.1 Datasets 

The Photographer's Gallery's digital initiative, Data, Set, and Match, is a year-long program 

that looks for novel ways to share, visualize, and analyze modern image databases. Computer 

vision is the process of creating an understanding of the information contained in digital images as 

well as the creation or modification of images using software (C. Rasche, 2022). 

In recent years, algorithms have gotten better and better at automatically categorizing 

photographs, reading license plates, and determining whether tumors are present in medical images 

the digital photo has evolved into an experiment in new technologies. 

The advancement of computer vision has led to methods for improving photos, as various 

social media sites like Snapchat(Tropp & Baetzgen, 2019) or Facebook Messenger (Smutny & 

Schreiberova, 2020) now provide a variety of filters. The same methods and developments have 

also fueled the production of strange psychedelic imagery from deep dreams (Suzuki et al., 2017) 

or deep fakes (“Detecting and Combating Deep Fakes,” 2021), which have now become cultural 

references. Computer vision algorithms alter how people typically think about what an image is, 

what it can achieve, and whether or not it can be trusted. They go beyond simple technical 

advancements. These advancements were made possible by modeling algorithmically how people 

view, understand, and create images. Computer vision algorithms heavily rely on collections of 

images called datasets to mimic these cognitive capacities (“Computer Vision: Algorithms and 

Applications,” 2011). 

In computer vision, a dataset is a carefully managed collection of digital images that 

programmers use to test, train, and evaluate the accuracy of their algorithms. It has been suggested 

that the algorithm picks up new skills from the dataset's samples. Alan Turing outlined what 

learning meant in this context in 1950. To "point things out" and name them, a dataset in computer 

vision compiles a series of images that are labeled and used as references for objects in the real 

world (Lu & Young, 2020). 

In this thesis, 6 different image datasets demonstrated the proposed model performance. 

Including Bird datasets (Mohanty et al., 2020), Fashion _MNIST Datasets (Han et al., 2017), 

MNIST datasets (Cheng et al., 2020), Cifar10 datasets (Li et al., 2017) Cifar100 (Sun et al, 2017) 

and STL10 datasets (Ji et al., 2018). All the datasets were normalized to zero mean and unit 

variance. These studied datasets were gathered from Kaggle.com, and the machine learning 

repository is publicly available from 

https://archive.ics.uci.edu/ml//index.phpdatasets,http://cs.joensuu.fi/sipu/datasets/  and 

https://www.kaggle.com/datasets/dhruvildave their properties are shown in Table 2 
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3.1.1 MNIST dataset  

The MNIST dataset comprises 28 by 28-pixel images of handwritten characters ranging 

from numbers 0 to 9. The dataset consists of 60,000 training images and 10,000 test images, with 

each row containing 785 values for examples and labels. In this research, a smaller training set of 

only 3000 photos was used to reduce classifier training time. The accuracy of the algorithms was 

evaluated using the entire testing set consisting of 10,000 photos. (Cheng et al., 2020).   

 

 

Figure 3.2. Shows MNIST datasets. The image is taken from (Krut Patel, 2019) 
 
3.1.2 Fashion-MNIST dataset  

Fashion-MNIST: A more difficult version of the MNIST dataset, it is a dataset of 

Zealand’s article images Fashion-MNIST has 60,000 training sets and 10,000 test sets, both of 

which are in grayscale and sized 28 by 28 pixels. Each image in this research was flattened into a 

784-dimensional Vector (Han et al., 2017).  

 

Figure 3.3. Shows Fashion-MNIST datasets the image is taken from (Si Lu And Ruisi Li, 
2021).  

 
3.1.3 Cifer10 datasets  

The Canadian Institute for Advanced Research's (CIFAR) CIFAR-10 dataset is a database 

of images that are widely used to train computer vision and machine learning algorithms. It is one 

of the datasets that are most frequently utilized in machine learning research. The CIFAR-10 

dataset consists of 60,000 32x32 color images organized into 10 groups. The ten groups are cars, 

deer, dogs, frogs, horses, birds, cats, airplanes, trucks, And ships, every class contains 6000 images 

(Li et al., 2017). 
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Figure.3.4. Shows Cifer-10 datasets the image is taken from (CIFAR-10 数据集可视化详

细讲解（附代码） | 航行学园, n.d.). 
 
3.1.4 Bird dataset  

The dataset of bird pictures was gathered in Jordan and contains 525 bird species. The 

images in the dataset were gathered from scientific sources and certified by the Jordanian Bird 

Watching Association based on their scientific names (Mohanty et al., 2020).  

 

Figure.3.5 Shows Bird datasets. The image is taken from (BIRDS 525 SPECIES- IMAGE 
CLASSIFICATION, n.d.). 

 
3.1.5 STL-10 dataset  

The STL-10 is an image dataset taken from ImageNet that is commonly used to assess 

unsupervised feature learning or self-taught learning techniques. It includes 13,000 images from 10 

item classes (such as birds, cats, and trucks), with 5,000 images partitioned for training and the 

remaining 8,000 images for testing. All of the images are color with 96×96 pixels in size and it is a 

very large dataset (Ji et al., 2018).  
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Figure .3.6 Shows STL-10 datasets. The image is taken from (STL-10 Dataset, n.d.). 
 
3.1.6 Cifer-100 datasets  

This dataset is similar to the CIFAR-10 in that it comprises 100 classes with 600 photos. 

Each class has 500 training images and 100 testing images The CIFAR-100 classifier divides the 

100 classes into 20 super-classes. Each picture bears the label "fine" (the class to which it belongs) 

with a "coarse" label (the superclass to which it belongs) (Bjorn Barz & Joachim Denzler, 2020; 

Sun et al., 2017). 

 

 

Figure 3.7 Shows Cifer-100 datasets. The image is taken from (Aymaz et al., 2022). 
 
3.2 Data Preprocessing (Image preprocessing)  

Image pre-processing may significantly improve the accuracy of feature extraction and the 

outcomes of image analysis. The mathematical normalization of data collection, which is a typical 

step in many feature extraction processes, is an analog to image pre-processing. Descriptive 

techniques (Krig, 2014). 

It is an essential step in computer vision and image analysis tasks. It involves applying 

various techniques to prepare images for further analysis or processing. Image preprocessing 

techniques help enhance image quality, remove noise, standardize the format, and extract relevant 

features (Bieniecki et al., 2007). 
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Here are some common image preprocessing techniques: Resizing and Scaling: Resizing 

an image involves adjusting its dimensions to a specific size or aspect ratio (“Image Resizing in 

Saliency Histogram Domain,” 2017). Scaling refers to normalizing pixel values to a specific range 

(e.g., 0-1) (C. Brian Atkins et al., 2002). Resizing and scaling are often performed to ensure 

uniformity and reduce computational complexity. 

The choice of preprocessing techniques depends on the specific application and the 

characteristics of the images. It is common to combine multiple preprocessing techniques in a 

pipeline to achieve the desired image quality and prepare the data for subsequent analysis or 

machine learning tasks (Krig, 2014). 

To ensure that images are comparable in terms of colors, value range, and image size, we 

must first execute some preprocessing processes before we can extract features from the images.  

The preparation processes step in this thesis is taken from openCV and pipelined in the 

clustimage (Gilewski, 2019). Python provides several libraries for image preprocessing, including 

OpenCV, scikit-image, and PIL (Python Imaging Library).  

These libraries offer a wide range of functions and algorithms for performing various 

image preprocessing operations.    

We applied appropriate image preprocessing techniques, in this research to improve the 

quality of our image datasets. Which are publically available. To achieve the dataset’s greatest 

score and reduced computation time. When we test it using our different methods a self-organizing 

map differential convolutional (SOMDiff-CNN), deep convolutional self-organizing map 

(DCSOM), a differential convolutional neural network (DiffCNN, and Convolutional neural 

network (CNN). 

For the techniques of Rescaling the size of each image in the collection was consistently 

adjusted to 224×224×155pixels to prevent the impact of image enlargement on the accuracy 

performance. Additionally, all of the images' input sizes must be the same and correspond with the 

input dimensions of the proposed model architecture. A similar process was used to combine and 

reshape two successive sagittal slices to 224×224 pixel sizes. Also, we divided the datasets into two 

groups, with 25% being used for testing and 75% for training. To balance the OS distribution 

between the two groups, we used stratified random sampling.    

The grayscale is set to either true or false if the images can be properly gray-scaled (as in 

the case of the Fashion MNST (Han et al., 2017) and MINST (Cheng et al., 2020) datasets). 

Additionally, the dataset’s images were kept in CSV file extension format. With the use of the 

Euclidean distance metric we used Stochastic Gradient Descent (SGD) (Jonathan &David, 2018), 

Clasifications are found using the DCSOM, DiffCNN, and standard CNN approaches. With the 

Accuracy and F_ scores, gets evaluated. 
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During the preprocessing stages of the images, we used the Python framework to 

preprocess our six different image datasets image including the OpenCV library (Matthew et al., 

2017; Preprocess Images Using OpenCV for Pytesseract OCR, n.d.). 

We applied appropriate image preprocessing techniques, in this research to improve the 

quality of images, extract meaningful features, and enhance the performance of Image 

Clasifications tasks.  

 

3.2.1 The Normalization  

As is well known, any kind of issue statement's pre-processing stage includes the 

normalisation. For data modification, such as scaling down or scaling up the range of data before it 

is used for future stages, normalization plays a vital function, especially in the areas of soft 

computing, cloud computing, etc. Min-Max normalization (Ioffe & Szegedy, 2015). Z-score 

normalisation, and Decimal scaling normalisation (Patro & sahu, 2015) are just a few of the many 

normalisation methods available. Scaling, mapping, or pre-processing stages are examples of 

normalisation. From a previously determined range, we can deduce a new range. It can be quite 

beneficial for purposes of forecast or predicting (Patro & sahu, 2015). 

Professionals who deal with a large volume of data are its key users. The data set is altered 

by the formula, causing the variation to range between 0 and 1. As a result, the largest data unit will 

be assigned a normalized value of one, and the smallest data unit will get a normalized value of 

zero in the results of the normalisation calculation. Other data elements will have decimal amounts 

that range from zero to one (Normalization Formula | Step by Step Guide with Calculation 

Examples, 2019). 

 

The normalization equation can be expressed mathematically as follows: 

 

𝑥 normalized ൌ
൫௫  – ௫ ୫୧୬୧൯

൫௫ ୫ୟ୶ – ௫ ୫୧୬୧൯
                                      (3.1) 

 

The following are some significant advantages of the method: 

 

I. Improved accuracy: The machine learning normalization formula aids in raising the 

accuracy levels of the methods employed in the field as well as in all other kinds of 

analysis using large amounts of data. It ensures that all factors are equally important and 

prevents anyone from taking center stage. 

II. A better comparison: It makes it easier to compare data from different scales and formats. 

Every data point falls within the same range, making them similar. 
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III. Removes duplication: It is especially helpful when a dataset has several dimensions and 

helps to avoid duplication and inconsistency. 

IV. Superior visualization: The approach simplifies the interpretation of the data by making it 

simple to visualize and display the data in graphics. It becomes simple to create diagrams 

and graphs. 

V. Effective mining of data - The common normalization equation makes algorithmic 

methods for data mining more precise and successful. The accuracy of data improves when 

the outliers are reduced. Thus, practical outcomes are obtained (Dheeraj & Ashish, 2023). 

 

Since SOM is sensitive to feature scales, we used the normalization method in this 

research. Then normalized all datasets to make sure that all features had comparable scales. That is, 

we take the patch average from all input local patches of size X × X and then divide the result by 

the standard deviation. There is no need to add the normalization layer to the following SOM 

Convoluted layer; it is just used on the input image.  

 

3.3 Supervised learning 

Supervised learning is a machine learning approach in which models are trained on labeled 

data to predict outcomes for new, unseen data. Each training example consists of input-output 

pairs, allowing the model to learn the relationship between inputs and the desired output. This 

approach is widely used for tasks such as classification and regression (Bishop, 2006).Key 

Concepts in Supervised Learning: 

 

1. Data Preparation: Clean and preprocess data, ensuring it is structured with known labels 

for training. Data is typically split into training and test sets to evaluate model 

performance effectively (Han, Kamber, & Pei, 2012). 

2.  Algorithm Selection: Choose from algorithms suited to the task: 

   - Linear Regression: For predicting continuous values, like house prices or stock trends  

      (Seber & Lee, 2012). 

   - Decision Trees and Random Forests: For interpretability in decision-making tasks  

       (Breiman, 1984). 

   - Support Vector Machines (SVM): Effective for high-dimensional data and both linear  

      and non-linear classification (Vapnik, 1995). 

   - Neural Networks: Useful for complex patterns, particularly in image and language  

       Processing (Goodfellow, Bengio, & Courville, 2016). 

3. Training Process: The model is trained by minimizing the difference between predictions 

and the actual labeled data using optimization methods, like gradient descent (LeCun, 

Bottou, Bengio, & Haffner, 1998). 
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4. Evaluation Assess: the model on unseen data using metrics like accuracy for classification, 

or mean squared error (MSE) for regression, to understand how well it generalizes 

(Powers, 2011). 

5. Tuning and Improvement: Hyperparameter tuning (e.g., with grid or random search) is 

used to improve model performance by optimizing the settings for algorithms (Bergstra & 

Bengio, 2012). 

 

3.4 Unsupervised learning  

Unsupervised learning is a form of machine learning that scans a collection of data for 

previously undiscovered patterns without the use of labels and with a minimum amount of human 

supervision (“A Neural Unsupervised Learning Technique,” 1988). Unsupervised learning, often 

referred to as self-organization, enables the mathematical representation of probability distributions 

across inputs as opposed to supervised learning, which typically uses a human-labeled dataset 

(Papageorgiou et al., 2006). It is one of the three primary types of machine learning, along with 

reinforcement (Horie et al., 2019) and supervised learning (Sotiris Kotsiantis, 2007). A comparable 

variation called semi-supervised learning employs both supervised and unsupervised methods 

(Siadati, 2018). 

Principal component analysis (Wold et al., 1987) and cluster analysis (Layek & 

Mukhopadhyay, 1977) are two of the most commonly utilized techniques in unsupervised learning. 

In unsupervised learning (“A Neural Unsupervised Learning Technique,” 1988), cluster analysis is 

used to categorize or segment datasets with related properties to determine algorithmic correlations. 

 

3.4.1 Process of unsupervised learning 

The following flowchart provides a summary of the general steps we'll take to create an 

unsupervised learning model (Raina et al., 2009). 

 

Figure 3.9 Shows the chart of the unsupervised learning model(Source: Created by the 
author). 
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3.5 Classification Analysis 

Classification analysis is a fundamental method in machine learning used to assign data 

points to predefined classes. This technique is applicable across diverse fields such as image 

recognition, medical diagnosis, spam detection, and more. Classification models are typically 

trained using labeled datasets, enabling them to generalize and make predictions on new, unseen 

data (Bishop, 2006). This process typically involves: 

Data Preprocessing: Preparing data by cleaning, normalizing, and splitting it into training 

and test sets to ensure effective model teaching (Han et al., 2012). 

Feature Selection/Extraction: Identifying relevant features to improve model accuracy, 

often using methods like PCA and RFE (Guyon & Elisseeff, 2003). 

Model Selection: Choosing the best algorithm, such as Logistic Regression, Decision 

Trees, SVM, K-Nearest Neighbors, Naïve Bayes, Random Forests, or Neural Networks, based on 

task requirements (Bishop, 2006). 

Model Training: Training the model by minimizing error using optimization techniques, 

such as gradient descent in neural networks (LeCun et al., 1998). 

Evaluation: Assessing the model’s accuracy and robustness through metrics like accuracy, 

precision, recall, F1-score, and confusion matrices, which help gauge performance on imbalanced 

datasets (Powers, 2011). 

Hyperparameter Tuning: Optimizing model parameters using methods like grid search or 

cross-validation for best results (Bergstra & Bengio, 2012). 

Deployment: After satisfactory testing, the model to make predictions on real-world data. 

 

3.6 Hardware and Frameworks 

The whole computation for this thesis was done on a personal laptop with the following 

characteristics and a remote machine.  

DESKTOP-1MPCSP5: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz   2.11 GHz, RAM 

8, 00 GB, And system type:  64-bit operating system, x64-based processor, Windows 11 Operating 

System, Pen and touch support with 10 touch points. Utilizing Python programs and a Kaggle 

framework (Kaggle, 2010). An online portal for data scientists and machine learning enthusiasts is 

called Kaggle. On Kaggle, users may work together, identify and publish databases, use notebooks 

with GPU integration, and participate with other researchers to overcome problems associated with 

data science. In essence, Kaggle Kernels are Jupiter Notebooks that run in a web browser. 

Consumption of such kernels is unrestricted. Many languages used for programming, including 

Python and R, among others, are accessible. 

Virtual Machine (Google's free cloud service for AI engineers): Google Colab comes with 

a free GPU. 
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3.7 The Software environment implementation in this thesis 

Python belongs to the high-level, examined, multipurpose programming language category. 

The approach to design places a high priority on code readability and makes extensive use of 

indentation. Python's benefits for applications founded on machine learning and AI involve its 

relative simplicity and consistency, the availability of excellent frameworks and libraries for AI as 

well as deep learning, adaptability, platform autonomy, and a large market (Djokic-Petrovic et al., 

2016).  

It was produced by Guido van Rossum and released in its initial form in 1991. Its 

architectural philosophy includes impressive use of extensive emptiness and focuses a heavy 

emphasis on the accessibility of the coding. Its Object-oriented (OD) programming style and 

grammar are made to assist programmers in writing clear, understandable codes for projects that 

are large or small. The enduring popularity of the language as a whole is influenced by these 

elements (Wikipedia Contributors, 2019). 

Flexible typing and collecting waste are features of Python. It allows a range of paradigms 

for programming, including administrative in nature, object-oriented, and operational 

programming, as well as organized code (particularly). Python is commonly referred to as a 

language with "batteries included" because of its large common library. Python was envisioned in 

the late 1980s as an ABC language substitute. The second version of Python was updated in 2000 

with two new features: list comprehension and an explanatory numbering removal scheme. The 

enduring popularity of the language as a whole is influenced by these elements (About Python, 

n.d.). 

 

3.7.1 PyTorch 

PyTorch is a free and open-source framework for the execution of DL models on GPUs 

and CPUs. It was primarily developed by Facebook's AI Research Lab Group (FAIR) and made 

available to the public on GitHub in 2017. It provides a platform for research in the fields of 

computer vision and natural language processing, enabling the creation of novel deep learning 

architectures or advanced DL architectures with trained models for obtaining cutting-edge results 

quickly and effectively, regardless of resource limitations. It is renowned for being generally 

straightforward, easy to use, flexible, easy to debug, and memory-efficient. The SOMdiffCNN 

architecture was implemented in our thesis using this PyTorch package. 

 

3.7.2 TensorFllow  

A complete open-source framework developed by Google for building machine learning 

applications is called TensorFlow. It is a symbolic math toolkit that carries out several operations 

targeted at deep neural network training and inference using dataflow and identifiable 

programming (Pulkit Sharma, 2019). It enables the creation of machine learning applications by 
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engineers utilizing a variety of tools, libraries, and neighborhood resources. Google's TensorFlow 

is perhaps the most popular deep-learning library in the world right now. All of the products 

offered by Google incorporate machine learning to enhance the search engine, translation, and 

captioning of images, or recommendations. (Daniel Johnson, 2023). The Google Neuroscience 

Team created the TensorFlow library as a way to speed up machine learning and deep learning 

studies. It features many interfaces in different languages like Python, C++, or Java, and it was 

designed to run on a variety of CPUs, GPUs, and even smartphone operating systems. The first 

stability version debuted in 2017, but it was first made available in late 2015. Under the Apache 

Open Source License, it is open source. It is available for usage, modification, and redistribution at 

a price without any payment to Google (Abadi, 2016).  

TensorFlow receives inputs as an array with multiple dimensions called a tensor, allowing 

you to develop data flow topologies and architectures to specify how data goes through a graph. It 

enables you to create a diagram of the operations that can be carried out on these inputs, where one 

end is where the input goes and the other end is where the result comes from(Pulkit 

Sharmam,2019;Rampasek & Goldenberg, 2016). 

There are three components to the Tensorflow building design: handling the data 

previously, constructing the model, and developing and estimating the model. 

Tensorflow is so named because it accepts input in the form of multi-dimensional arrays, or 

tensors. You can create a "graph" (also known as a flowchart) of the actions that you intend to 

carry out on that input. The input enters at one end, passes through this network of many processes, 

and finally exits at another end as the output (Designing TensorFlow Modeling Code for TFX, 

n.d.). 

The Tensorflow library uses a variety of APIs to build deep learning architectures like 

CNNs and RNNs.TensorFlow, which is based on graph computing, enables the programmer to use 

Tensorboad to see how a neural network is being built. This tool is useful for program debugging. 

Finally, Tensorflow is designed for large-scale deployment. The CPU and GPU power it (Google, 

2019). 

Tensorflow has been imported as TF by using import numpy as np and import Tensorflow 

as tf. Python is used in our research. The Tensorflow library uses a variety of APIs to build deep 

learning architectures like CNNs and RNNs. TensorFlow, which is based on graph computing, 

enables the programmer to use Tensorboad to see how a neural network is being built. This tool is 

useful for programmed debugging. Finally, Tensorflow is designed for large-scale deployment. The 

CPU and GPU power it (Google, 2019). 

Tensorflow is simple to implement on a large scale, which is why we used it in our 

research. It is designed to operate on mobile platforms like iOS and Android as well as in the cloud 

(Johnson, 2023). 
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3.7.3 Keras  

Keras is a high-level, easy-to-use API used in developing and educating neural networks. It 

is a freely available library created in Python that utilizes TensorFlow (Chollet, 2015).  It was 

designed to facilitate quick testing and iteration, and it reduces the entrance hurdle for using deep 

learning (Chollet, 2015; Pulkit Sharmam, 2019). 

TensorFlow needs to be installed before you can use Keras. You may see a minor variation 

in appearance depending on the operating system you're running, but you can generally use pip, 

Python's package manager. # first, upgrade pip, such as "pip install --upgrade pip." # then install 

TensorFlow with "pip install Tensorflow". Then to utilize Keras, just execute the next import 

statement at the starting point of your script or notebook: "from Tensorflow import Keras (Pulkit 

Sharma, 2019).” 

Because it is the simplest approach to utilizing Keras to generate neural network models, 

we chose The Sequential API in this study. A neural network can be created by stacking many 

layer types, one following the other, employing the Sequential class. The Sequential API of Kera 

supports a wide variety of layer types. Dense layers, fully connected layers, convolutional layers, 

recurrent layers, and embedding layers are some of the more popular types of layers, while there 

are many others as well. The layers might be merged to produce effective designs for neural 

networks. Each layer has the goal of carrying out a certain type of processing on the inputs 

(Thomas, 2023).          

Additionally, we supply a loss function and an optimizer with Kera’s when constructing 

our models.  

 

There are a variety of possibilities available including Loss functions (Zhao et al., 2017): 

 

1. Binary Crossentropy: which calculates the cross-entropy between the anticipated and actual 

binary payments, is a loss function for problems with binary classification. 

2. Mean Squared Error (MSE): The sum of the average squared variance among the predicted 

and actual values is measured by the mean squared error (MSE), a typical loss function for 

regression issues. 

3. Categorical Crossentropy: which quantifies the cross-entropy that exists among anticipated 

and actual categorical distributions, is a loss function for problems with multiple classes of 

classification (Zhao et al., 2017). 
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The Optimizers: 

 

 Stochastic Gradient Descent (SGD) is a straightforward optimization approach that 

computes the gradient of the loss function concerning the parameters before updating the 

parameters. 

 Adam is a learning rate-adapting optimization technique that uses historical gradient data. 

 RMSprop is an optimization approach that normalizes gradient updates by using a moving 

average of squared gradients (Thomas, 2023). 

 

These are only a few of the numerous loss functions and optimizers that Keras offers. The 

exact issue you're attempting to resolve and the features of the information you have will determine 

the loss function and optimizer you use. For instance, Mean Squared Error was employed as the 

loss function as well as Stochastic Gradient Descent (SGD) & Adam as the optimizers in our 

research to compile our models. 

  



 

40 

3.8 Ensemble Learning 

Ensemble learning is a machine learning technique that involves combining multiple 

models (learners) to create a stronger, more accurate, and robust predictive model. Instead of 

relying on the performance of a single model, ensemble methods leverage the wisdom of the 

crowd, tapping into the collective knowledge of multiple models to make more informed and 

accurate predictions (pinsky, 2018).    

Multiple separate models are combined using ensemble learning to improve generalization 

performance. Deep learning topologies are now outperforming shallow or conventional algorithms 

in terms of performance. Deep ensemble learning models combine the benefits of the two types of 

deep learning methods and ensemble learning, improving the generalization performance of the 

resulting model (Yin et al., 2017). 

The fundamental idea behind ensemble learning is that by combining several weak 

learners, the overall performance can be significantly improved, often outperforming any of the 

individual models used in the ensemble. A weak learner is a model that performs better than 

random guessing but may not be highly accurate on its own (Zhou et al., 2002). There are several 

popular ensemble learning techniques, including Bagging (Bootstrap Aggregating), Boosting 

(Karel, 2021), Random Forest (Witten et al., 2011), Stacking, and others. 

Ensemble learning can provide several benefits, such as increased accuracy, improved 

generalization, and better resilience to Overfitting. However, it may also be computationally more 

expensive and require more resources than using a single model (Brownlee, 2021). 

When building an ensemble, it is essential to ensure that the base models are diverse, 

meaning they make different types of errors so that the ensemble can capture a wide range of 

patterns and improve overall performance. This is often achieved by using different algorithms, 

varying hyper parameters, or training on different subsets of data (Zhou et al., 2002).  

 

3.9 Teacher-Student Network 

The teacher-student network concept is based on the idea of using a pre-trained teacher 

model to assist in training a smaller student model. The goal is to take advantage of the teacher 

model's performance and knowledge, which includes the subtle patterns or representations learned 

from the data. This assistance helps the student model achieve similar performance while using 

fewer parameters and reducing computational complexity (Hinton, Vinyals, & Dean, 2015).  
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Figure 3.10. Shows Teacher-Student Network Structure(ShivamRajsharma.,2021). 
 
3.9.1 Essential Elements 

 

1. Teacher Model: 

A teacher model is usually large, powerful, and complex, such as a deep neural network 

with many layers. It has already been trained on extensive data and provides high-quality 

predictions. This teacher model can be state-of-the-art, watch it is computationally expensive but 

delivers strong performance (Hinton et al., 2015). 

2. Student Model: 

A smaller, simpler, and more efficient model (for example, one with fewer layers or 

parameters) is often referred to as a student model. This student model is typically trained to 

replicate the output of a larger, more complex teacher model, enabling it to inherit the knowledge 

the teacher has gained. While the student may not reach the same performance level as the teacher, 

it can achieve a comparable level of accuracy while being more computationally efficient (Hinton 

et al., 2015). 

 

3.9.2 Knowledge Distillation 

The process of distillation involves training a student model to mimic the output of a 

teacher model. Instead of relying on the original labels in the training data, the student model learns 

from the soft targets, which are the output probabilities generated by the teacher model (Hinton et 

al., 2015). 

 

3.9.3 The general steps for knowledge distillation are as follows: 

4. Train a large and complex teacher model on your dataset. This model should achieve high 

accuracy and demonstrate a strong understanding of the problem (Hinton et al., 2015). 

5. After the teacher model has been trained, it can be used to make predictions on the training 

data. The output is usually a probability distribution over the different classes, often referred to 

as "soft targets." These soft targets provide more detailed information than just the hard labels 

(Hinton et al., 2015). 
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6. Train the Student Model: The student model is trained to replicate the soft targets (predictions) 

provided by the teacher model. The goal is to minimize the difference between the outputs of 

the student and the teacher. This is typically achieved by using a loss function, such as 

Kullback-Leibler (KL) divergence, to compare the output distributions of the teacher and 

student (Hinton et al., 2015). 

 

3.10 Self-organizing map  

The objective of developing computationally intelligent systems that "enable or facilitate 

intelligent action in complex and changing environments" is one of the major topics that are 

currently visible in all engineering sciences areas. The neurobiological-inspired SOM is one of the 

computational intelligence techniques that is a very effective tool for data processing (Teuvo 

Kohonen, 2001). 

SOMs have found applications in fields such as image processing, natural language 

processing, and data mining. They are a powerful tool for exploring and understanding complex 

data patterns in an unsupervised manner (López et al., 2012). 

SOM is an ANN technique that uses unsupervised learning to generate a low-dimensional 

(typically two-dimensional) representation of the input data space (Vesanto & Alhoniemi, 2000). 

This discrete representation is commonly known as, a "map". A self-organizing map (SOM) may 

be applied concurrently for multidimensional scaling, grouping, and projection of the 

multidimensional data set into a lower-dimensional space, like multidimensional scaling. Unlike 

other artificial neural network methods, SOM employs a neighborhood function to maintain the 

topological properties of the input space, distinguishing it from other approaches. Developed in 

1982 by Professor Teuvo Kohonen from Finland, the SOM algorithm was initially defined as an 

artificial neural network and is frequently referred to as a Kohonen map (Teuvo Kohonen, 2001; 

Kohonen, 1990). 

A Self-Organizing Map (SOM) is a neural network with a single layer arranged in an n-

dimensional grid. While most applications utilize a two-dimensional rectangular grid, some employ 

hexagonal grids or grids with one, three, or more dimensions. SOMs generate low-dimensional 

representations of high-dimensional data, maintaining the relationships between similar data points 

(Vesanto & Alhoniemi, 2000; T. Kohonen, 2014). 

Nodes, or neurons, are elements of a Kohonen map. Each node is represented by a location 

in the map space and a weight vector that matches the data set's dimensions. Nodes are usually 

arranged in a grid of rectangles or hexagons, where each grid cell represents a node element 

(Miljković, 2017). The SOM method produces a final topological order of nodes that represents the 

input space, effectively mapping from a higher-dimensional input space to a lower-dimensional 

map space (Kohonen, 2013). Each feature from the input space is mapped to the output space, 
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primarily by identifying the node with the closest (smallest distance metric) weight vector, known 

as the Best Match Unit (BMU), to the input vector. (Laaksonen et al., 2002).  

 

3.10.1 Self-Organization Mechanisms in SOMs 

The SOM algorithm can be broken down into four main phases (Haykin, 1999): 

 

1. Initialization: There are various techniques to initialize the weight vectors of the nodes, with 

linear initialization and random initialization being the most frequently used (Teuvo Kohonen, 

2001; Haykin, 1999).  Randomly generating or random initialization of the node's weights can 

be done by either selecting a random vector for each node or by choosing random vectors from 

the input space. Whereas with linear initialization, the two most significant principal 

component vectors the eigenvectors corresponding to the largest eigenvalues are identified first 

and then used to form a linear two-dimensional space. (Appiah et al., 2012). As the method 

starts with a well-ordered map that has previously been tuned, linear initialization indicates a 

quicker convergence of the algorithm.  (Valova et al., 2013).  

2.  Competition: Each node estimates the remoteness metric among the input pattern and its 

corresponding weight vector for each input vector. The winner, also known as the best 

matching unit (BMU), is determined as the value with the shortest distance (Principe et al., 

2009; Appiah et al., 2012; Gunes Kayacik et al., 2007). 

3. The Collaboration: The winning neuron locates its nearest neighbors who are willing and 

prepared to cooperate, and then collaborates with them (TAKANASHI et al., 2007). A 

neighborhood function(Kolasa et al., 2012) that starts as large as the entire map, with the BMU 

at its canter, eventually shrinks down to the size of a single node to find the BMU's 

neighbors(Laaksonen et al., 2002).  

4. Adaptation: Neurons near the BMU adjust their weight vectors based on their proximity to the 

BMU and the importance of the input pattern transferred to it. The input pattern values and a 

coefficient related to the distance from the BMU influence neighboring neurons. The input 

pattern will often be reflected in their altered weights (Lee & Verleysen, 2002). 

 

3.10.1.1The initializing phase 

There are many techniques to initialize the weight vectors of the nodes; however, linear 

initialization and random initialization are the two that are most frequently used (Kohonen, 2001). 

Either randomly generating values for each node or choosing random vectors from the input space 

can be used to randomly initialize the nodes' weights. Whereas with linear initialization, the two 

most significant principal component vectors (those with the largest eigenvalues) are first 

identified, and these eigenvectors are then utilized to span a linear two-dimensional space. As the 
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method starts with a well-ordered map that has previously been tuned, the linear initialization 

suggests a faster convergence of the algorithm (Akinduko & Mirkes, 2012). 

 

3.10.1.2 The Competition phase  

Each node calculates the distance metric between the input pattern and its corresponding 

weight vector for each input vector. The winner, or best matching unit (BMU), is then determined 

to be the value with the shortest distance. 

The input sequences from the input area might be declared as (x1, x2, x3… xi) D in a D-

dimensional space (i.e., a data environment with D attributes), whereas the weight vectors that 

connect the input elements i and the node j in the output layer (space) 

Just a single neuron will emerge victorious from the competition phase. The node denoted 

as BMU is the one whose weight value is closest to the input value. When calculating the distance 

between inputs and node weights, a number of distance measurement metrics are used; however, 

Euclidian Distance and Manhattan Distance are the most widely used (Ghaseminezhad & Karami, 

2011). 

The function known as the discriminant, which determines the separation between the input 

vectors x and the weight vector wj for each neuron j using the Euclidean Distance measurement, 

takes a particular form (Ekanayake & Ranjith , 1994): 

 

                               (3.2) 

 

W is the node's weight vector, while X is the current input vector. 

 

3.10.1.3 The Collaboration phase  

The winning neuron identifies its own closest neighbors who are eager and ready to work 

with it and then collaborates with them. A neighborhood function that starts as large as the entire 

map, with the BMU at its center, eventually shrinks down to the size of a single node to find the 

BMU's neighbors. 
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According to Haykin, there is neurobiological proof of lateral connectivity among a group 

of stimulated neurons. A neuron's neighbor neurons are stimulated when the neuron fires. Neural 

connections close by are stimulated more than those that are farther away. This implies that the 

collection of activated neurons is contained inside a topological neighborhood that surrounds the 

winning node i (Haykin, 1999). 

Suppose the total number of stimulated neurons is contained inside the topological 

neighborhood defined by Nji, which is centered on the BMU i. The function that most successfully 

satisfies the constraints of the topological neighborhood of SOM is a Gaussian function if the 

excited neurons (collaborating) are denoted by j and if dist ij suggests the distance between 

winning neuron i and excited neuron j i (Haykin, 1999). 

 

                                                       (3.3) 

 

The variable σ is the measurement of the width of the geometrical neighborhood function 

N j, i within the output region. As illustrated in the diagram 

 

 

Figure 3.11 Shows the Gaussian neighborhood function before applying SOM((Source: 
Created by the author). 

 
The primary and most significant features of this topological neighborhood are as follows:  

 

1.  It hits the winning neuron where it has the most value.  

2. About the winning neuron, it is symmetric.  

3. The distance shrinks to zero monotonically as it approaches infinity.  

4. It is translational invariant or independent of where the BMU is located.  
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In comparison to the rectangle topological neighborhood, this Gaussian topological 

neighborhood is of higher quality. The introduction of Gaussian topological neighborhood speeds 

up the convergence of the SOM technique (Yu, & Bavarian, 1993; Obermayer & Schulten, 1992). 

The fact that a given topological neighborhood reduces over time is a useful property of 

SOM. This SOM property can be produced by having the spread factor decrease over time. An 

exponential decay rate is a frequently used time-dependent function: the following equation is 

used to calculate the learning rate's decay (Nathan Hubens, 2018): 

 

σ (t) = σ0 exp (- )                                                          (3.4) 

 

Where t is the current time step, σ0 is the width of the lattice at time zero, and λ is the time 

constant. Where t = 0,1,2,3 ...n .The neighborhood shrinks with time after each repetition     

                                            

                                        (3.5)                            

Where  the influence is rate and is the width of the lattice at time t.and t is the 

number of iterations (Miljković, 2017; Haykin, 1999). 

 

3.10.1.4 The Adaptation phase  

Neurons in the area of the BMU adapt by changing their own weight vector to correspond 

with their nearness to the BMU and the significance of the input pattern that is actually transferred 

to the BMU. The values of the input pattern and a coefficient proportionate to the distance from the 

BMU will have an impact on neighboring neurons. The input pattern will often be reflected in their 

altered weights (Lee & Verleysen, 2002). 

SOM requires learning (self-learning), which is essentially a type of adaptive process, in 

order for the structure of the SOM technique to be self-organized ones.  

Output space is made to become self-organized as a result of this adaptation, and as a 

result, this structure is actually an illustration (mapping) of input space in the output space.  

This is accomplished theoretically by modifying the weight vector wj to look like the input 

vector x.  

The neighbors of the winning neuron will also have their weights altered, albeit not to the 

same extent as the winning neuron. The formula that is applied to update the weight vector is as 

follows in discrete-time structure: 
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 W (t+1) = W (t) + L (t) (V (t) — W (t))                    (3.6) 

 

Where L is a little variable known as the learning rate that decreases over time, t refers to 

the time step, and V is the input vector. Once the weights have been updated. For each iteration, the 

following equation is used to calculate the learning rate's decay. 

 

L (t) = L0 exp (- )                                          (3.7) 

 

Where L is a little variable known as the learning rate that decreases over time. The 

learning-rate factor is a time-dependent parameter that begins with a starting score of 0 and 

subsequently declines with passing time t and where t is a further algorithmic time constant. The 

neighborhood becomes smaller as training continues. At the end of the training, the size of the 

neighborhoods is zeroed (Haykin, 1999).There are two stages to the adaption process: 

 

1. Ordering Stages: The topological ordering of the weight vectors occurs during the 

ordering process. The SOM method may need to be run up to 1,000 times to achieve it, 

and the neighborhood and learning rate parameters should be carefully chosen (Haykin, 

1999). Learning rate progress L must begin with a value of roughly 0.01. The 

neighborhood function should first fence in every neuron within the map before 

gradually reducing this collection of neighbors (Haykin, 1999). 

2. Convergence Stages: the feature map is adjusted throughout this time, becoming able to 

accurately and statistically quantify the input space. When the neighborhood function Nj, 

i is small enough to just contain its immediate neighbors, it can eventually become zero. 

Learning rate parameters should be carefully chosen; they shouldn't reach zero and 

should always be about 0.001; if not, they might accumulate to local minima (Haykin, 

1999). 

 

3.10.2 The SOM Common Topologies 

The self-organizing map is made up of a two-dimensional array of neurons. Figure 1.5 

illustrates this. This has the same number of dimensions as the input vectors (n-dimensional). The 

map's topology, or structure, is determined. Through a neighborhood connection, the neurons 

become connected to their neighbors. Typically, the neurons are connected via linear, rectangular, 

or hexagonal architecture. The lines connecting the neurons in Figure 1.5 represent the topological 

relationships. 
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The most popular SOM topologies are in one or two dimensions, although they can also be 

in three dimensions (Principe et al., 2009; Haykin, 1998; Anderson, 1995). Rectangular and 

hexagonal grids are the two most frequently used two-dimensional grids in SOMs. For three-

dimensional topologies, shapes can include a toroid or a cylinder. According to (Bondarenko & 

Katsuk, 2007), 1-dimensional (linear) and 2-dimensional grids are illustrated in Figures. 3.12, with 

the associated SOMs depicted in Figures 3.13 and 3.14. 

 

 

Figure.3.12. Shows neuron neighborhoods and the most common SOM grids(Source: 
Created by the author). 

 
 

(Image is taken from Brief Review of Self-organizing map/reseachgate.net) 

 

Figure.3.13. Shows a 1-D SOM network,  Figure 3.14. Shows a 2-D SOM network, 
(Source: Created by the author) 

 

 

Figure.3.15 Shows the architecture of the SOM network and the connections between the 
input and output function regions(Source: Created by the author). 
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Summary of the Self-Organizing Map (SOM Algorithm) 

 
 

To implement our model, we applied the SOM model for dimensionality reduction and 

feature extraction from the dataset. 

  

Algorithm1: SOM Algorithm 

 Step 1:Ininitialization: 

 Randomly initialize the weights 𝑤𝑗 for each neuron j in the grid. 

 Step 2:  Sampling: 

 Randomly select a vector sample x(n) from the dataset. 

 Step3:Cocorresponding: 

    For each neuron j: 

 Calculate the Euclidean distance  as: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ൌ ඩ෍ሺxi ൅ wiሻଶ

௡

௜ୀଵ

 

Identify the Best Matching Unit (BMU) 𝑖 as the neuron with the minimum 

 
 
 
 
 Step4: Predicting Neighborhood Size: 

 Determine the neighborhood size surrounding the BMU 

 Calculate the standard deviation 𝜎(𝑡) at time 𝑡 using: 

 
ℎሺ𝑖, 𝑗, 𝑡, 𝑐ሻ ൌ 𝑒𝑥𝑝 ቆെ

‖ሺi, jሻ െ 𝑐‖ଶ

2𝜎ሺ𝑡ሻଶ ቇ  
 
 Where (𝑖,𝑗) are the coordinates of the neuron and 𝑐 is the coordinates of the 

 Step5:  Update Weights: 

 For each neuron j in the neighborhood of the BMU: 

 Update the weight vector using: 

 𝑤𝑖𝑗ሺ𝑡 ൅ 1ሻ ൌ 𝑤𝑖𝑗ሺ𝑡ሻ ൅ 𝛼ሺ𝑡ሻ. ℎ𝑖𝑗ሺ𝑡ሻ. ൫𝑥ሺ𝑡ሻ െ 𝑤𝑖𝑗ሺ𝑡ሻ൯ 

 where 𝛼(𝑡)is the learning rate at time t. 

 Step6: Decay Learning Rate: 

    Update the learning rate 𝛼(𝑡) using a decay function, typically: 

 𝛼ሺ𝑡ሻ ൌ 𝛼0 . 𝑒𝑥𝑝 ቀെ
𝑥
𝜆

ቁ 

Where 𝛼0 is the initial learning rate and t is the decay time constant. 
 
 
 Step 7:  Looping: 

   Repeat steps 2 through 6 until the map ceases to change significantly 

End 
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3.11 Euclidean Distance  

The Euclidean Distance is the "common" distance between two or three points in 

mathematics that may be calculated by using a ruler. The Pythagorean formula produces the 

Euclidean distance or Euclidean metric. Euclidean space (or any inner product space) is actually a 

metric space by utilizing this formula as distance. The Euclidean standard is known as the name of 

the associated standard (Liberti et al., 2012). If two points in Euclidean n-space are represented in 

Cartesian coordinates as X=(x1, x2, x3 … xn) and W= (w1, w2, w3 … wn), then the distance from 

X to W or from W to X is given by: 

 

  (3.9) 

 

3.12 Manhattan Distance  

The Manhattan distance function calculates the grid-space travel distance between two data 

points. The total of the differences in the corresponding coordinates of two places is known as the 

Manhattan distance. Their corresponding coordinates in grid space correspond to the node positions 

in the grid (Chiu et al., 2016) A point X=(x1, x2, x3 … xn) and a point W= (w1, w2, w3 … wn) are 

separated by this distance using the following formula:  

 

      (3.10) 

 

The values of the i-th variable at the points x and w, respectively, are xi and wi, where n is 

the number of variables. The difference between the Manhattan distance and the Euclidean distance 

is shown in the following figure: 

 

 

Figure.3.16. Shows the difference between Manhattan Distance and Euclidean 
Distance(Source: Created by the author). 
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3.13 Neighborhood Functions 

Most machine learning techniques depend heavily on neighborhood functions, especially 

those in competitive learning and self-organizing maps (SOM) families. During the learning 

process, these mechanisms describe the influence or impact that a specific data point (or neuron) in 

the model has on its nearby data points. 

The main goal of Neighborhood functions' is to incorporate the concept of proximity or 

similarity into the learning process. When given a neighborhood influence, data points in the input 

space that are close to one another will have a greater influence on one another's learning than data 

points that are farther apart. This enables the model to self-organize and meaningfully represent the 

underlying data distribution (Natita et al., 2016). 

Typically, the neighborhood function is based on a distance metric that measures how 

similar two data points are. Euclidean distance (Liberti et al., 2012) and Manhattan distance (Chiu 

et al., 2016) are two popular distance measures. The neighborhood function is typically stated as a 

function of distance, with values that decrease as the distance from a particular data point rises. The 

neighborhood function's shape and size might vary depending on the particular algorithm being 

utilized (Aoki & Aoyagi, 2007). 

In topological spaces, the neighborhood is a fundamental and important mathematical idea. 

When talking about ANN algorithms, and particularly when referring to SOM, the area 

surrounding a point (the winning neuron) is a set that fences in certain other neurons nearby. 

Additionally, the winning neuron in the center can influence the weights of the other neurons in 

this set, pushing them to move toward the winning neuron's state (Natita et al., 2016). 

If X1 is a topological space and   P1 is a point in X1 then a neighborhood of P1 is 

a subset S of X1 that includes an open set U that contains P1 where p1�U�X1 (Kelley & John, 

1975). 

Different neighborhood functions can be utilized in the case of self-organizing maps, 

including:  

 

A. Gaussian neighborhood function 

The Gaussian neighborhood function assigns weights to data points based on their distance 

from a central point (e.g., a neuron in the model). The influence of data points decreases 

exponentially as the distance from the central point increases (Natita et al., 2016). The formula for 

the Gaussian neighborhood function is typically expressed as: 

 

                (3.11)                         
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Where: 

 

 h (i, j , t) is how data point j affected data point i's learning at time step t. 

 The positions of data points i and j in the input space at time step t are represented by the 

values of x i (t) and x j (t). 

 σ(t) is The width parameter at time step t determines how widely the neighborhood 

spreads. (Natita et al., 2016 ; Yang et al., 2015) 

 

B. Bubble Neighborhood Function  

The bubble neighborhood function which defines a fixed-size neighborhood surrounding a 

central point, is more straightforward than the Gaussian function. While data points outside the 

bubble remain unaffected by learning, those inside the bubble are affected (Natita et al., 2016). The 

bubble neighborhood function's formula is frequently as follows:  

 

 The influence of data point j on data point i's learning at time step t is represented by the 

formula h (i, j, t). 

 At time step t, the data points i and j are located at xi (t) and xj (t), respectively, in the input 

space. 

  The neighborhood's fixed radius at time step t is represented by radius (t). 

 

But often the Neighborhood range is established using a Gaussian kernel surrounding the 

winner neuron or a rectangular neighborhood function. The processor must compute the 

exponential function, making computation of the Gaussian function, as in equation (3.11), 

significantly more expensive. Rectangular functions can be used to approximate this function with 

high accuracy while requiring less computation but at the cost of adding more neurons to the 

update phase of Self-Organizing Maps (Murakoshi & Sato, 2007). 

In self-organizing maps, neighborhood functions are essential because they give the 

network the ability to arrange and represent high-dimensional data in a lower-dimensional space, 

exposing the underlying structure and patterns in the data. Additionally, they are employed in many 

clustering methods that rely on the idea of similarity between data points as well as other 

competitive learning algorithms. 

 

3.14 Deep learning  

Modern artificial intelligence (AI) systems may now be designed with many billions of 

basic elements due to significant advancements in computer technology. When these components 

are correctly established and followed by training, AI may execute tasks that were previously 
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thought to be so extraordinarily difficult that only natural intelligence systems, i.e., human beings, 

could perform those (LeCun et al., 2015; Benuwa et al., 2016). 

Deep learning is primarily to blame for this achievement in AI. While loosely based on 

biological neural networks, such as those in your brain, artificial neural networks are best thought 

of as an especially attractive way of specifying a flexible set of functions. They are built out of 

many basic computational units called neurons. Deep learning uses artificial neural networks as the 

underlying model for AI (Bengio, Y, 2009; Perspectives and Future Outlook of Deep Learning AI, 

2017). In reality, this computation model differs significantly from the one that drives the 

computer. Deep learning models, in particular, are trained on data from the real world and learn 

how to solve problems rather than programming a precise set of instructions to solve a problem 

directly. 

Deep neural networks are where deep learning gets its actual power. By organizing a large 

number of parallel neurons into successive processing layers, the nervous system may develop 

helpful world representations (Yasaka et al., 2018). Such representation learning is regarded as a 

defining characteristic of success in artificial and biological intelligence since it turns data into 

ever-more-refined forms that are useful for executing an underlying goal (Norgeot et al., 2019; 

Sam, 2013). 

Deep learning is a member of a border family of machine learning (ML) techniques based 

on artificial neural networks with billions of artificial neurons arranged in layers between the input 

and the output (Amini et al., 2020). The input features that are necessary for discriminating are 

enhanced by the hidden layers, while unimportant variations are suppressed. Learning can be 

supervised, semi-supervised, or unsupervised (Good fellow et al., 2016; Bengio, & Hinton, 2015; 

Schmidhuber, 2015). 
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Deep learning uses a general-purpose learning approach to find the discriminative 

characteristics required for detection or classification after being fed a vast amount of unprocessed 

data.  According to (Good fellow et al., 2016; Bengio, and Hinton 2015, and Schmidhuber 2015), 

the general-purpose learning procedure represents the raw data as a nested hierarchy of features or 

concepts in many stages between the input and output layers. Each concept is defined in terms of 

simpler concepts, and more abstract representations are built in terms of less abstract ones. Deep 

learning can vastly outperform systems that rely on features that are manually created or provided 

by domain experts by learning the automated discriminative features that are necessary for 

detection or classification (Valavanis & Kosmopoulos, 2010; Lecun et al., 2015).  

Deep learning has produced significant progress in many different areas of artificial 

intelligence research. Over the past decade. This technology, which developed from previous 

studies on artificial neural networks, has outperformed other machine learning algorithms in a wide 

range of complex problems, including those involving image and voice recognition(Das, et al., 

2015), natural language processing (Howard & Ruder, 2018; Peters et al., 2018b, 2018a), machine 

translation, bioinformatics, drug discovery, genomics (Chang et al., 2018; Jiménez et al., 2018), the 

analysis of unstructured, tabular-type data using entity embedding’s(Yury et al.,2022),image 

classification or clustering (Wouter Van Gansbeke et al., 2020), speech recognition and synthesis 

(Oord et al., 2016; Xiong et al., 2018), image analysis (Chen, et al., 2020; Farabet et al., 2013), and 

the reconstruction of brain circuits (Helmstaedter et al., 2013; K. Lee et al., 2019), among others. 

Recent years have seen the emergence of the first wave of deep-learning applications in 

pharmaceutical research. These applications go beyond bioactivity predictions and show promise 

for solving a variety of issues in drug discovery. Additionally, it has influenced our daily lives due 

to its wide acceptance by major technology companies like IBM, Google, Apple, Microsoft, and 

Adobe. OpenAI, Deep Mind, and other current deep learning research institutions work to develop 

secure AI systems that learn how to solve challenges and promote scientific research for everybody 

(Toshihiro Takahashi, 2018). 

Different categories of deep learning approaches have also been developed and 

implemented by experts in order to solve different kinds of problems (Sutskever, & Hinton, 2012). 

These categories include convolutional neural networks (CNN or ConvNet),(Zhou et al.,2020), 

multi-layer perceptron’s (MLP) (Zhao et al, 2015), auto-encoders(AE) (Weng et al. ,2016), deep 

belief networks (DBN) (Hinton, G.,2009),  deep Boltzmann machines (DBM) (Salakhutdinov et 

al,2012), capsule neural networks (Goldani et al., 2021), recurrent neural networks (RNN) 

(Schuster & Paliwal, 1997), long-short-term memories (LSTM) (Hochreiter & Schmidhuber, 

1997), and generative adversarial networks (GAN) (Odena ,2019) and others. 
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Figure 3.17 Illustrates the progress of Deep Learning Models(Source: Created by the author). 
 

3.14.1 Convolutional neural network 

Convolutional Neural Networks (CNNs /ConvNet) are a particular kind of artificial neural 

network (ANN) that have been shown to perform well on a variety of visual tasks (Keiron O'Shea 

& Nash, 2015; Dorafshan et al., 2018)., such as image classification( Tao & Talab 2017; Copur, 

Melisozyildirim, & Ibrikci, 2018; Pak & Kim, 2018), image segmentation(Khan et al., 2014), 

image retrieval(Datta et al.,2008), object detection(EriĢ & Çevik, 2019; Donahue et al., 2014; 

Sultana et al. ,2020; Ulku & Akagündüz , 2022)., image captioning(Anderson et al., 2018), face 

recognition(Xie & Lam , 2008), pose estimation(Sun et al.,2019), traffic sign recognition(Miura et 

al.,2000), speech processing(Hou et al., 2018), neural style transfer, video processing (Ballas et al., 

2016; Mathieu et al., 2016) and more. 

CNNs are made to deal with data that is presented as several arrays, such as a color picture 

made up of three 2D arrays that each include the pixel intensities for each of the three color 

channels (Cheng et al., 2016). With the help of their convolutional filters, they are able to extract 

information from pictures. The early layers are used to detect edges, the later layers are used to 

detect sections of things, and the later layers may even be used to detect whole objects, such as 

faces or other complicated geometrical structures. The convolutional layer, pooling layer, and 

fully-connected layer are the three primary types of layers that make up CNN and may be 

categorized according to their capabilities (Frosst, & Hinton, 2017). 
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Figure 3.18 A Convolutional Neural Network Architecture including (convolutional, 
pooling, and fully-connected layers)(muhammad osman tarig et all.,2020). 

 
3.14.1.1 Convolutional layer 

A convolutional neural network's basic building block is the convolution process. The 

parameters of the convolutional layer are a collection of learnable filters (kernels). Every filter has 

a narrow spatial range (in width and height), but it covers the whole depth of the input volume. 

Sizes like 3x3, 5x5, and 7x7 are typical filter sizes (Pandian et al., 2022). The total number of input 

channels is represented by the filter's third dimension. The grayscale image depth is 1, and there are 

three RGB color channels in the color image (Hamed Habibi Aghdam et al., 2017). 

Each filter performs convolution on the input volume across the width and height and 

computes the dot products between the filter entries and the input at any position during forward 

propagation. This operation is followed by a nonlinear activation function (sigmoid, tanh, ReLU, 

etc.) (Ertuğrul, 2018), and the outputs produced are referred to as feature maps. The response of the 

filter is provided at each spatial point by the feature map, sometimes referred to as an activation 

map. Displays the filter's reactions at each individual location on the map. There are three erp, 

padding, stride, and depth that determine output volume (He et al., 2016). The output size is 

determined by using the formula (Anthimopoulos et al., 2016): 

 

 (n + 2p - f) / s + 1.                                                     (3.12) 

 

Where p is the amount of padding, f is the size of the filters, n is the number of filters, and s 

is the stride. 

 

3.14.1.2 Pooling layer 

The pooling layer technique, also known as subsampling or downsampling, is frequently 

used by CNNs to decrease the dimension following convolution layers. The filter size and strides 

are represented by the pooling layer's hyperparameters. The pooling layer with filter size 2 and 
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stride 2 is the most common. Max pooling and average pooling are two common types of pooling 

layers where the maximum and average values are taken, respectively. More frequently than 

average pooling, max pooling has been used. The parameters for the pooling layer cannot be 

learned. The idea behind maximum pooling is that a feature may be discovered because of the high 

quantity (Yamashita et al., 2018). 

 

3.14.1.3 Fully Connected layer  

The CNN often ends with many fully connected layers after several convolutions and 

poolings. The output tensor from these layers gets transformed into a vector before more neural 

network layers are added (Basha et al., 2019). The dropout (Choe & Shim, 2019).a regularization 

approach can be used in the fully connected layers to prevent overfitting. The architecture's last 

fully connected layer has exactly the same number of output neurons as the number of classes to be 

identified (Szegedy et al., 2015). 

 

3.14.2 Convolutional Auto encoder neural network  

A Convolutional Autoencoder (CAE) is a type of neural network that combines the 

concepts of convolutional neural networks (CNNs) and autoencoders. It is commonly used for 

unsupervised learning and dimensionality reduction in computer vision tasks, such as image 

denoising, compression, and feature extraction (Seyfioglu et al., 2018). The components and 

working of a Convolutional Autoencoder: 

Auto-encoders (AE): is a deep neural network method utilized for unsupervised feature 

learning with effective data encoding and decoding, typically for data compression and 

dimensionality reduction (Yousefi-Azar et al., 2017).. 

Also, an autoencoder is a type of neural network that aims to encode the input data into a 

lower-dimensional representation and then decode it back to the original data 

The goal of auto-encoders (AE), which are neural networks, aims to duplicate the inputs in 

the outputs. In order to produce the desired result, they first compress the input into a latent-space 

representation and then rebuild the output from this representation (Wen et al., 2019). Two 

components make up this type of network: 

Encoder: This part compresses the input data and maps it to a lower-dimensional latent 

space representation. In a CAE, the encoder typically consists of convolutional layers followed by 

pooling or downsampling layers, which help to extract relevant features from the input data(Han et 

al., 2019). 

The encoder section of the network compresses the input into a representation of latent 

space. By using the encoding function h=f(x), it may be expressed. 
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Decoder: This part takes the compressed representation from the encoder and reconstructs 

the original input data. In a CAE, the decoder consists of convolutional layers followed by 

upsampling or De-convolutional layers, which help to reconstruct the data from the compressed 

representation. 

Reconstructing the input from the latent space representation is the goal of the decoder. By 

using the decoding function r= g (h), it may be expressed (Han et al., 2019). 

Combining Convolutional Layers in Autoencoder: In a Convolutional Autoencoder, the 

convolutional layers in both the encoder and decoder play a crucial role in learning relevant feature 

representations from the input data. The convolutional filters are trained to capture local patterns in 

the image, and as the network goes deeper, it can capture more complex and abstract features 

(Seyfioglu et al., 2018). 

 

3.14.2.1 Working of Convolutional Autoencoder: 

 

1. Data Input: Images or different kinds of data are provided to the CAE as sources. In this 

scenario, we are using images, which are modeled as 3D tensors (height, width, and 

channels) (Le, 2015). 

2. Encoder: The encoder section of the CAE utilizes a sequence of convolutional and pooling 

layers on the input data in order to extract pertinent features and minimize its geographic 

dimensions. An encoder's output is a compressed representation that is frequently referred 

to as "latent space" or "code." (Han et al., 2019). 

3. Decoder: The decoder section of the CAE uses an array of upsampling and convolutional 

layers in order to recreate the original input data from the compressed version (Han et al., 

2019). 

4. Loss Function: The CAE is trained using a loss function that measures how comparable the 

input data and the output of the reconstruction are. On image-based autoencoders, Mean 

Squared Error (MSE) is a popular option. Which is used in this thesis. 

5. Training: In order to decrease the process of reconstruction loss, the CAE trains how to 

improve the weights of the convolutional filters in the encoder as well as the decoder. 

 

As a preprocessing stage for other neural network architectures or for various downstream 

tasks, the CAE is very good at learning condensed and understandable representations of the input 

data (Kamran Ghasedi Dizaji et al., 2017). 
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Figure 3.19 Shows Convolutional Auto-encoders (DCAE) Neural Network Architecture 
including (convolutional layers for both encoding and decoding) (Source: Created by the 

author). 
The DCAE architecture includes convolutional layers for both encoding and decoding 

operations to reduce the spatial dimensions and extract features. An encoder with convolutional and 

max-pooling layers is used. In a decoder, there are layers of upsampling and convolution to 

reconstruct the original image. The final layer is supposed to be the activation function used to 

make sure that the pixel values are between 0 and 1. Then, the model is predicted for the image 

reconstruction with a loss function. 

 

3.15 Deep convolutional Self-organizing map  

A deep convolutional self-organizing map (DCSOM) is an extension of the self-organizing 

map (SOM) algorithm that incorporates convolutional layers, enabling it to learn spatial features in 

a hierarchical manner. It combines the unsupervised learning capabilities of SOMs with the feature 

learning capabilities of deep convolutional neural networks (CNNs).  Is commonly used for tasks 

of image clustering, visualization, and unsupervised feature learning (Aly & Almotairi, 2020). 

The initial design of the deep Convolutional Self-Organizing Map (DCSOM) is done by, 

the convolutional part of the deep convolutional neural network is tried to be added to the deep 

self-organizing map. The new hybrid topology has merged the concepts of SOMs and convolution 

neural networks (CNNs). The hybridization is done by using existing standard learning methods for 

the two different parts combined together (Sakkari & Zaied, 2020).  
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3.15.1 The Architecture 

The architecture of a deep convolutional self-organizing map (DCSOM) typically consists 

of multiple convolutional layers followed by a SOM layer. The convolutional layers are responsible 

for learning hierarchical representations of the input data, capturing spatial features at different 

levels of abstraction. The SOM layer performs the clustering and mapping of the learned features 

onto a low-dimensional grid (Ferles et al., 2021). 

Below is the DCSOM neural network architecture:  

 

Figure 3.20 Showing DCSOM neural network architecture Diagram(Source: Created by the 
author). 

 

3.15.2 Convolutional Layers 

The convolutional layers in the DCSOM perform local receptive field operations on the 

input data. They consist of convolutional filters (or kernels) that slide across the input data, 

extracting spatially local features. Each convolutional layer is followed by a non-linear activation 

function (e.g., ReLU) and pooling layers (e.g.,Max Pooling) to downsample the feature maps (Aly 

& Almotairi, 2020). 

 

3.15.3 SOM Layer 

The SOM layer in DCSOM performs competitive learning and clustering. It consists of a 

grid of neurons, where each neuron represents a weight vector. The weight vectors are adjusted 

during training to match the learned features from the convolutional layers. The SOM layer 

preserves the spatial relationships between the neurons, ensuring that similar features are mapped 

to nearby neurons (Aly & Almotairi, 2020). 

 

3.15.4 Training 

The training of a DCSOM involves a two-step process. First, the convolutional layers are 

trained using unsupervised learning, typically through a pre-training phase using autoencoder 

learning techniques. Then, the SOM layer is trained using the learned features from the 

convolutional layers. The training process involves presenting input data, finding the best-matching 

unit (BMU) in the SOM layer, and updating the weights of the BMU and its neighboring neurons 

(Aly & Almotairi, 2020). 
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3.15.5 Clustering and Visualization 

After training, the DCSOM used for clustering the image datasets is similar to the 

traditional SOM. Each input data point is assigned to the neuron with the closest weight vector. 

Additionally, the low-dimensional grid of neurons in the SOM layer is visualized to gain insights 

into the learned features and their spatial organization (Aly & Almotairi, 2020). 

 

3.16 Differential convolutional neural networks 

The fundamental building block of deep learning systems is the process of convolution, 

which is carried out by swiping several filters over the input image. . It offers the ability to extract 

visual patterns from the supplied image. As a result, the more feature maps the structure produces, 

the more characteristics the classifier gathers (Sarıgül et al., 2019). 

Through a different deviation computation, Differential convolution maps are utilized to 

analyze directional patterns within pixels and their surrounding areas. It’s important to note that in 

mathematical variation, the change in sequence is taken into account by figuring out how different 

the pixel activations are from one another (Qu et al., 2020). 

A technique to explore the Diff-CNN is to merge differential calculus theories with 

convolutional neural networks (CNNs) (Sarıgül et al., 2019). It refers to a neural network that 

incorporates differential calculus in its convolutional layers or during the training process (Sarıgül 

et al., 2019). This approach can create a neural network that adjusts its parameters in real-time 

according to the input data or shifts in the data distribution. 

The Diff-CNN is designed to pass feature maps with directional activation differences to 

the next layer. This approach incorporates the concept of how convolved features vary across the 

feature map (Abd El Kader et al., 2021). Essentially, it adapts mathematical differentiation to the 

convolutional process, enhancing classification performance without altering the number of filters. 

Also, the benefit of differential convolution is the ability to extract more features without 

adding more convolutional layers are enhanced by raising the depth of a single convolutional layer. 

An extra convolution is applied using a differential convolutional layer, without adding any extra 

trainable parameters. (Sarıgül et al., 2019).When compared to conventional CNNs, differential 

CNNs use pre-defined hyperparameters and differential operators to produce feature maps utilizing 

normal convolutional feature maps. 

By performing further modifications to the quantity math calculations, differential 

convolution assesses the pattern direction of each pixel and its neighbors. Computing the difference 

between pixel activations allows for an evaluation of successive changes (Sarıgül et al., 2019; Lei 

et al., 2018).     
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Figure 3.16: Displays the predefined feature maps. The difference in one direction is 

computed for each feature map. As a result, extra feature maps with disparities along various 

directions are obtained. In contrast to Sarıgül et al., they extend the original approach and add a 

fixed filter to extract more task-related information (Sarıgül et al., 2019; Qu et al., 2020).  

  

Figure 3.21 Shows the available predefined filters for Diff-CNN(Source: Created by the 
author). 

 
The differences in one direction are determined using each of the above filters. As a result 

of this, supplementary feature maps are produced that incorporate signal differences for each 

direction. 

Utilizing a differential operator, every one of the five feature maps produced from the 

classic CNN is G2, G3, G4, G5, and G6. Each map's neurons are computed from (3.13) to (3.17) 

(Qu et al., 2020): 

 

 𝐺2, 𝑖, 𝑗 ൌ  𝐺1, 𝑖, 𝑗 െ  𝐺1, 𝑖 ൅ 1, 𝑗                                                                                                            ሺ3.13ሻ 

𝐺3, 𝑖, 𝑗 ൌ  𝐺1, 𝑖, 𝑗 െ  𝐺1, 𝑖, 𝑗 ൅ 1                                                                                                            ሺ3.14ሻ 

𝐺4, 𝑖, 𝑗 ൌ  𝐺1, 𝑖, 𝑗 െ  𝐺1, 𝑖 ൅ 1, 𝑗 ൅ 1                                                                                                     ሺ3.15ሻ 

𝐺5, 𝑖, 𝑗 ൌ  𝐺1, 𝑖 ൅ 1, 𝑗 െ  𝐺1, 𝑖, 𝑗 ൅ 1                                                                                                     ሺ3.16ሻ 

𝐺6, 𝑖, 𝑗 ൌ  𝐺1, 𝑖 ൅ 1, 𝑗 ൅ 1 െ  𝐺1, 𝑖, 𝑗 ൅ 1                                                                                             ሺ3. 17ሻ     

 

if we Assume that (i) and (j) denote the coordinates of the neurons in the convolutional 

feature maps, G1 has dimensions of (M x N), while G2, G3, G4, G5, and G6 have dimensions of 

(M - 1)× N, M×(N - 1), ((M - 1)× (N-1),(M - 1)× (N - 1), and ((M - 1) × (N - 1), in that 

order(Sarıgül et al.,  2019; Abd El Kader et al., 2021). Figure 1.5 illustrates the method used to 

calculate these feature maps. 

Once creating the initial feature map through typical convolution, differential equations are 

employed to produce Diff-CNN feature maps from this original feature map. These differential 

convolution feature maps can recognize edges and corners, among other things (Qu et al., 2020). 
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Figure 3.22 Shows how the differential feature maps are determined(Source: Created by the 
author). 

 
By utilizing differential feature maps, the Diff-CNN can extract more image features 

without requiring additional convolution layers. This is evident from the previously mentioned 

derivation procedure. As a result, the Diff-CNN reduces the complication of the CNN framework 

and decreases computational demands (Sarıgül et al., 2019). 

Back-propagation Procedure: To apply Diff-CNN with the new feature maps, an 

enhancement to the back-propagation process is necessary. During back-propagation, errors are 

propagated across each feature map. In the opposite direction. The fixed filter weights specific to 

each feature map are then multiplied by the errors and added together. The error matrix obtained 

from the first feature map's related errors is transmitted backward to train the appropriate filter. 

(Sarıgül et al., 2019; Qu et al., 2020; Lei et al., 2018). 

Calculating the derivative of an activation function is useful for finding the gradients of the 

loss function concerning the network's parameters during the backpropagation process. The 

gradients act as a guide for the optimization algorithm to update the parameters, resulting in the 

reduction of loss and enhancement of network performance (Abd El Kader et al., 2021). 

We use h1 to represent the error passed to the first map, while h2, h3, h4, and h5 represent 

the errors transferred to the additional maps. E represents the error matrix. The error computations 

for the corresponding filter are shown in functions (3.18) to (3.20) (Qu et al., 2020). 

 

𝐸𝑖, 𝑗 ൌ  ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 ൅  ℎ2, 𝑖, 𝑗 െ  ℎ3, 𝑖 െ 1, 𝑗  

൅ ℎ3, 𝑖, 𝑗 െ  ℎ4, 𝑖 െ 1, 𝑗 െ 1 ൅  ℎ4, 𝑖, 𝑗 െ  ℎ5, 𝑖 െ 1, 𝑗 ൅  ℎ5, 𝑖, 𝑗 െ 1                                           ሺ3.18ሻ 
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In the given scenario, when i exceeds 1, j is greater than 1, i is less than M, and j is less 

than N, the neurons situated at the corners as well as the edges do not receive error input from all 

the adjoining neurons. Equation (3.18) highlights this fact. However, the corner neurons of the map 

receive an error signal from three of their nearby neighbors, as mentioned in Equation (3.19),(, 

(Sarıgül et al., 2019). 

 

𝐸𝑖, 𝑗 ൌ ൞

ℎ1, 𝑖, 𝑗 ൅  ℎ2, 𝑖, 𝑗 ൅  ℎ3, 𝑖, 𝑗 ൅  ℎ4, 𝑖, 𝑗,                       𝑖 ൌ  1, 𝑗 
ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 ൅  ℎ3, 𝑖, 𝑗 ൅  ℎ5, 𝑖, 𝑗 െ 1,                 𝑖 ൌ  1, 𝑗 ൌ  𝑚
ℎ1, 𝑖, 𝑗 ൅  ℎ2, 𝑖, 𝑗 െ  ℎ3, 𝑖 െ 1, 𝑗 െ  ℎ5, 𝑖 െ 1, 𝑗,                   𝑖 ൌ  𝑛, 𝑗 ൌ  1

 ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 െ  ℎ3, 𝑖 െ 1, 𝑗 െ  ℎ4, 𝑖 െ 1, 𝑗 െ 1,    𝑖 ൌ  𝑛, 𝑗 ൌ  𝑚

        

(3.19) 

 

The error that will spread to the neurons located at the boundary of the map is estimated in 

(3.20). Five nearby Neurons deliver error signals to the edge neurons (Sarıgül et al., 2019). 

 

𝐸𝑖, 𝑗  ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧

ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 ൅  ℎ2, 𝑖, 𝑗 ൅  ℎ3, 𝑖, 𝑗 ൅  ℎ4, 𝑖, 𝑗 ൅  ℎ5, 𝑖, 𝑗 െ 1    
    𝑖 ൌ  1, 1 ൏  𝑗 ൏  𝑁

ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 ൅  ℎ2, 𝑖, 𝑗 െ  ℎ3, 𝑖 െ 1, 𝑗 െ  ℎ4, 𝑖 െ 1, 𝑗 െ 1 െ  ℎ5, 𝑖 െ 1, 𝑗     
  𝑖 ൌ  𝑛, 1 ൏  𝑗 ൏  𝑁

ℎ1, 𝑖, 𝑗 ൅  ℎ2, 𝑖, 𝑗 ൅  ℎ3, 𝑖, 𝑗 െ  ℎ3, 𝑖 െ 1, 𝑗 ൅  ℎ4, 𝑖, 𝑗 െ  ℎ5, 𝑖 െ 1, 𝑗 
1 ൏  𝑖 ൏  𝑀, 𝑗 ൌ  1  

ℎ1, 𝑖, 𝑗 െ  ℎ2, 𝑖, 𝑗 െ 1 ൅  ℎ3, 𝑖, 𝑗 െ  ℎ3, 𝑖 െ 1, 𝑗 െ  ℎ4, 𝑖 െ 1, 𝑗 െ 1 ൅  ℎ5, 𝑖, 𝑗 െ 1 
1 ൏  𝑖 ൏  𝑀, 𝑗 ൌ  𝑛

 

                                    

(3.20) 

 

3.17 Intergenerational Interaction Neural Networks 

This method draws inspiration from the conceptual idea that the presence of a guiding 

father model enables the son model to succeed quicker and better than the others. Embodying the 

essence of intergenerational interaction within neural network architectures. Unlike the teacher-

student model, this approach involves pretrained father or ancestor models work together with the 

son model. The Self-Organizing Map (SOM) serves as the father, providing pre-trained, high-level 

feature representations that guide the training of the son. The method was implemented by using a 

Self-Organizing Map (SOM) as the father and a Differential Convolutional Neural Network 

(DiffCNN) as the son. In this configuration, the SOM serves as the guiding father, independently 

pretrained before connecting the son. The proposed approach by using the trained SOM during 

each training step of the model, the encoded inputs from the SOM were used, and the flattened 

output was concatenated with the encoded images before being passed through the fully connected 

layers. This adaptation reduced the complexity of the convolutional layers while improving 

convergence speed and overall performance   
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By embedding this intergenerational interaction mechanism, the DiffCNN benefits from 

reduced convolutional layer complexity and accelerated convergence. The SOM's unsupervised 

clustering capabilities offer structured guidance, while the DiffCNN's adaptability ensures the 

model evolves with the data. This synergy mirrors the collaborative dynamic between generations, 

where foundational wisdom enhances adaptability and innovation. This framework has promising 

applications in areas such as adaptive learning systems, cross-disciplinary AI models, and the 

modeling of generational dynamics in real-world scenarios.  

 

 

Figure 3.23 Shows Intergenerational Interaction Neural Network Architecture(Source: 
Created by the author). 

 
3.18 The proposed Father-Son Network: Self-organizing map   Differential Convolutional   

neural network 

The SOMdiffCNN integrates the concepts of Self-Organizing Maps (SOMs) and 

Differential Convolutional Neural Networks (Diff-CNNs) within a novel Father-Son Network 

framework. In this intergenerational interaction method, the SOM acts as the father, guiding the 

training of the son, DiffCNN model. The self-organizing map was initially pre-trained on the 

dataset, where it learns high-level feature representations through unsupervised clustering. These 

learned features are then used during each training step of the DiffCNN, forming the foundation of 

the son’s learning process .Encoded inputs from the SOM are concatenated with the flattened 

output of the DiffCNN and subsequently passed through dense layers for classification. 
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3.18.1 The Proposed Method Architecture 

The architecture of the proposed SOMdiffCNN typically includes an input layer (image), 

SOM class, differential convolutional class, DiffCNN model with Differential convolutional layers 

adapted in the first layer followed by convolutional layers and max-pooling layers  (the output of 

the DiffConv layer is processed through convolutional layers, max-pooling, and dense layers), and 

then to the output layer. They are responsible for learning hierarchical representations of the input 

data, capturing spatial features at different levels of abstraction. The SOM layer performs the 

clustering and mapping of the learned features onto a low-dimensional grid. 

In this method The SOM is initiated to extract features from the dataset it is a grid of 

neurons is utilized, in which every neuron represents a weight vector. During the preparation the 

trained SOM is used for each training step of the DiffCNN, also the SOM is used to encode inputs. 

(Self. SOM), and the encoded images are concatenated with the flattened output before being 

passed through the fully connected layers. Below is the proposed neural network; architectures  

 

 

Figure.3.24 Showing the proposed neural network architecture Diagram(Source: Created by 
the author). 

 
3.18.1.1 Input Layer Processes the image data. 

 

3.18.1.2 Differential convolutional layer 

Adapts differential convolution techniques in the first layer of the DiffCNN, emphasizing 

spatial relationships in the data. The differential convolutional layers in the proposed method 

perform local receptive field operations on the input data .In the proposed methods the DiffCNN is 

used for classifying the data by using the trained SOM. It includes convolutional filters (or kernels) 

that slide across the input data (trained.som), extracting spatially local features. The non-linear 

activation function (ReLU) succeeds in each convolutional layer, a differential convolutional layer 
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adapted in the model first layer, and pooling layers (e.g., in our case Max Pooling) to down-sample 

the feature Maps. 

 

3.18.1.3 SOM Layer 

Extracts feature using a grid of neurons, each representing a weight vector. The SOM 

encodes input features into a high-dimensional space and performs competitive learning and 

clustering. It consists of a grid of neurons, where each neuron represents a weight vector. The 

weight vectors are adjusted during training to match the learned features from the differential 

convolutional layers. The SOM layer preserves the spatial relationships between the neurons, 

ensuring that similar features are mapped to nearby neurons. 

 

3.18.1.4 Convolutional and Max-Pooling Layers 

Process the SOM-encoded input and extract hierarchical spatial features while down-

sampling the feature maps. 

 

3.18.1.5 Fully Connected Layers and Output Layer:  

Perform classification based on the concatenated SOM-encoded features and DiffCNN 

outputs. In this approach, the SOM serves a dual role: it provides pre-trained feature 

representations and dynamically encodes input features at each training step of the DiffCNN. The 

encoded outputs from the SOM are combined with the DiffCNN’s features to enrich the learning 

process, enabling the DiffCNN to achieve faster convergence and better performance. 

 

3.18.2 Training 

The training process of the SOMdiffCNN in this thesis involves a two-step process. First, 

the features from the datasets are learned by the SOM and DiffCNN. Then, The SOM is trained to 

capture the dataset’s structural relationships. The trained SOM is cast in each training step of the 

DiffCNN, also the SOM is used to encode inputs (Self. SOM), and The SOM-encoded features are 

integrated into the DiffCNN. The trained SOM guides the son model, concatenated with the 

flattened output before being passed through the fully connected layers. The training process also 

involves presenting input data, finding the best-matching unit (BMU) in the SOM layer, and 

updating the weights of the BMU and its neighboring neurons., 

 

3.18.3 Classification and Visualization 

After training, the proposed SOMdiffCNN is used for the classification of the image 

datasets. Each input data point is matched to the neuron with the closest weight vector. 

Additionally, the low-dimensional grid of neurons in the SOM layer is visualized to gain insights 

into the learned features and their spatial organization. This intergenerational interaction 
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framework allows the son model to benefit from the father model’s prior knowledge, increasing 

performance and accelerating convergence. The proposed Father-Son Network architecture 

demonstrated superior accuracy and efficiency across multiple image datasets, showcasing its 

potential for broader applications in deep learning. 

Figure 3.25 illustrates the architecture of the proposed SOMdiffCNN, highlighting the 

interplay between the father (SOM) and the son (DiffCNN) components. 

 

 

Figure 3.25 Shows the father-son Network Structure(Source: Created by the author). 
 

Below  displays the proposed neural network.SOMdiffCNN Model Algorithm 

 

3.18.4 Algorithm2:  the proposed neural network SOMdiffCNN Model Algorithm 

 

 Step 1:  Import the required libraries
 Step 2: Load and Preprocess Datasets 
 Apply  necessary transformations(normalization, convert image to tensor) 

 Flatten and concatenate the data for SOM training. 
 Step 3:  Initialize Self-Organizing Map  Module: 
 Define functions 
 Distance Calculation: Use Euclidean distance to measure similarity 
 

   
 
 Find Best Matching Unit (BMU): Identify the unit with the minimum distance 
 Update the weights: update the weights of the BMU and its neighbors 
 𝑤𝑖𝑗ሺ𝑡 ൅ 1ሻ ൌ 𝑤𝑖𝑗ሺ𝑡ሻ ൅ 𝛼ሺ𝑡ሻ. ℎ𝑖𝑗ሺ𝑡ሻ. ൫𝑥ሺ𝑡ሻ െ 𝑤𝑖𝑗ሺ𝑡ሻ൯ 
  
         Train  the SOM 
 Step4:Call DiffConv Module: 
    Call and implement the differentiable convolutional module (DiffConv)   
 Step5: DiffCNN Model Initialization  
   Incorporate DiffConv layer  followed by standard convolutional layers, and  



 

69 

 

3.19 The Structured Models  

 

Table 3.1. The structured representation of the SOMdiffCNN Model  
Layer/Component Type Input Shape Output Shape Description 

Trained SOM SOM 
(Batch Size, 
Features) 

(Encoded Features) 

Encodes input 
data using a 
trained Self-
Organizing Map 
(SOM). 

DiffConv 
Custom 
DiffConv 

(Batch_Size, 
Channels, Height, 
Width) 

(Batch_Size, 5 * 
Channels, Height, 
Width) 

Computes 
differential 
convolution to 
extract unique 
features. 

Conv1 Conv2d 
(Batch_Size, 5 * 
Channels, Height, 
Width) 

(Batch_Size, 64, H-
4, W-4) 

Convolutional 
layer with 64 
filters, kernel size 
5x5, stride 1, and 
padding 0. 

Max Pooling MaxPool2d 
(Batch_Size, 64, 
H-4, W-4) 

(Batch_Size, 64, 
H/2, W/2) 

Downsamples 
feature maps with 
kernel size 2x2. 

Flatten 
Reshape 
Operation 

(Batch_Size, 64, 
H/2, W/2) 

(Batch_Size, 
Flattened_Size) 

Flattens the tensor 
into a 1D feature 
vector. 

  

   Encode inputs using the trained SOM and concatenate with the flattened output 
 Create an Instance of DiffCNN with Trained SOM 
 an instance of the defined model with specified output classes and the trained 
 Define the model architecture 
 Output=Fully Connected(Concat(SOM_Output,Flattened_Output)) 
 
 compile the model using 
 Optimizer : Stochastic Gradient  descent  (SGD)  
 Loss   function: cross-entropy  loss for classification tasks  .  
 Step6:Train  the SOMdiffCNN network 
   Train  The  network  using training data Conduct forward and backward passes 
   Updates. 
 Step 7: Evaluate  the  network 
  evaluate The trained network  and print the results 
 Step8: Visualize Results: 
    Plot the performance of the SOM-based DiffCNN model Results 

End 
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Table 3.1. The structured representation of the SOMdiffCNN Model (continued) 

 

Table 3.2 The detailed structure of the DiffCNN model  
Layer Name Type Input Shape Output Shape Description 

diffconv DiffConv 
[batch_size, 1, 

28, 28] 

[batch_size, 5, 

28, 28] 

Custom 

convolutional 

layer generating 5 

feature maps. 

conv1 Conv2d 
[batch_size, 5, 

28, 28] 

[batch_size, 64, 

24, 24] 

Standard 

convolution with 

kernel size 5 and 

64 filters. 

pool1 MaxPool2d 
[batch_size, 64, 

24, 24] 

[batch_size, 64, 

12, 12] 

Max pooling 

layer with kernel 

size 2. 

  

Concatenate Concatenate 

(Flattened_Size) + 

(Encoded_Feature

s) 

(Combined_Features

) 

Combines the 

flattened CNN 

output with the 

encoded SOM 

features. 

Fully Connected 

Layer 1 
Linear 

(Combined_Featu

res) 
(Batch_Size, 1024) 

Fully connected 

layer with 1024 

neurons. 

Fully Connected 

Layer 2 
Linear 

(Batch_Size, 

1024) 

(Batch_Size, No 

Class) 

Fully connected 

layer with 

classification 

(digits 0-9). 

Output Classification 
(Batch_Size, 

Class) 

(Batch_Size, No 

Class) 

Final class 

probabilities for 

the dataset using 

CrossEntropyLoss

. 
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Table 3.2 the detailed structure of the DiffCNN model (continued) 

 

Table 3.3 The Implemented CNN Structure. 
Layer Name Type Input Shape Output Shape Description 

conv1 Conv2d 
[batch_size, 1, 

28, 28] 

[batch_size, 32, 

28, 28] 

Convolution 

layer with 32 

filters, kernel size 

3, padding 1. 

relu1 ReLU 
[batch_size, 32, 

28, 28] 

[batch_size, 32, 

28, 28] 
ReLU activation. 

conv2 Conv2d 
[batch_size, 32, 

28, 28] 

[batch_size, 64, 

28, 28] 

Convolution 

layer with 64 

filters, kernel size 

3, padding 1. 

relu2 ReLU 
[batch_size, 64, 

28, 28] 

[batch_size, 64, 

28, 28] 
ReLU activation. 

pool1 MaxPool2d 
[batch_size, 64, 

28, 28] 

[batch_size, 64, 

14, 14] 

Max pooling with 

kernel size 2 and 

stride 2. 

  

conv2 Conv2d 
[batch_size, 64, 

12, 12] 

[batch_size, 128, 

8, 8] 

Second 

convolution with 

kernel size 5 and 

128 filters. 

pool2 MaxPool2d 
[batch_size, 128, 

8, 8] 

[batch_size, 128, 

4, 4] 

Max pooling 

layer with kernel 

size 2. 

fc1 
Linear (Fully 

Connected) 

[batch_size, 128 

* 4 * 4] 

[batch_size, 

1024] 

Fully connected 

layer with 1024 

output features. 

fc2 
Linear (Fully 

Connected) 

[batch_size, 

1024] 
[batch_size, 10] 

Fully connected 

layer with 10 

output features 

(classes). 
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Table 3.3 The Implemented CNN Structure.(continued) 

 

  

conv3 Conv2d 
[batch_size, 64, 14, 

14] 

[batch_size, 128, 

14, 14] 

Convolution layer 

with 128 filters, 

kernel size 3, 

padding 1. 

relu3 ReLU 
[batch_size, 128, 

14, 14] 

[batch_size, 128, 

14, 14] 
ReLU activation. 

conv4 Conv2d 
[batch_size, 128, 

14, 14] 

[batch_size, 128, 

14, 14] 

Convolution layer 

with 128 filters, 

kernel size 3, 

padding 1. 

relu4 ReLU 
[batch_size, 128, 

14, 14] 

[batch_size, 128, 

14, 14] 
ReLU activation. 

pool2 MaxPool2d 
[batch_size, 128, 

14, 14] 

[batch_size, 128, 7, 

7] 

Max pooling with 

kernel size 2 and 

stride 2. 

flatten Flatten 
[batch_size, 128, 7, 

7] 

[batch_size, 128 * 

7 * 7] 

Flatten the feature 

maps for the fully 

connected layer. 

fc1 
Linear (Fully 

Connected) 

[batch_siz

e, 128 * 7 * 7] 

[batch_siz

e, 256] 

Fully 

connected layer 

with 256 neurons. 

relu_fc1 ReLU [batch_size, 256] [batch_size, 256] ReLU activation. 

dropout1 Dropout [batch_size, 256] [batch_size, 256] 
Dropout layer with 

probability 0.5. 

fc2 
Linear (Fully 

Connected) 
[batch_size, 256] [batch_size, 128] 

Fully connected 

layer with 128 

neurons. 

relu_fc2 ReLU [batch_size, 128] [batch_size, 128] ReLU activation. 

dropout2 Dropout [batch_size, 128] [batch_size, 128] 
Dropout layer with 

probability 0.5. 

fc3 
Linear (Fully 

Connected) 
[batch_size, 128] [batch_size, 10] 

Fully connected 

layer with 10 

output neurons 

(classes). 
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Table 3.4. The Architecture of Deep Convolutional Self-Organizing Map (DCSOM) 
DCSOM N-SOM SOM-size stride patch/kernel Auto encoder parameters 

layer1 81 20×20 1 16×16 Encoder (Cnov2D, Relu , 

Maxpooling,Conv2D, Relu , 

Maxpooling) Decoder(Cnov2D,

Relu,Upsampling,Conv2D,soft

max,Upsampling ) 

layer2 81 15× 15 1 8×8 

 

layer3 

 

36 

 

10× 10 

 

2 

 

6×10 

 

3.20 Evaluation Metrics 

In classification problems, the performance of a model is measured using a variety of 

evaluation metrics. These metrics evaluate the ability of the model to correctly classify data into 

predefined categories. In this research we employed two widely used metrics for assessment are:  

accuracy, and F1_score is the harmonic mean of Precision and Recall. It considers both false 

positives and false negatives, making it more reliable for imbalanced datasets. Below is an 

overview of key metrics used for assessing classification capability in this research: 

 

3.20.1 Accuracy 

Is the proportion of correct predictions out of the total predictions it is a straightforward 

metric often used when the dataset is balanced, meaning the classes are roughly equal in size. 

However, it can be misleading in cases of imbalanced datasets situations where one class 

significantly outweighs another (e.g., fraud detection). For example, predicting all outcomes as the 

majority class could yield high accuracy but fail to capture minority class performance (Raschka, 

2018).  

Accutacy ൌ
TP ൅ TN

TP ൅ TN ൅ FP ൅ FN
 

 

Where the TP is the True Positives, FN is False Negatives, TN is True Negatives and the 

FP is the False Positives. 

 

3.20.2 F1-Score 

F1-Score is the harmonic mean of Precision and Recall, making it particularly useful for 

imbalanced datasets. Precision focuses on the correctness of positive predictions, while Recall 

measures the ability to capture all true positive instances. The F1-Score balances these two, 

providing a reliable measure for tasks where the minority class is critical, such as detecting rare 

diseases (Han, Kamber, & Pei, 2011). For instance, a model with high Accuracy but low F1-Score 
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might perform poorly on the minority class, emphasizing the importance of using F1-Score in 

relevant scenarios (Brownlee, 2020). 

 

F1 െ Score ൌ 2 ൈ  
P ൈ R
P ൅ R

 

 

Where the P is the Precision and the R is the recall. 

 

3.20.3 Precision 

The proportion of true positive predictions out of all positive predictions Precision 

measures the accuracy of positive predictions made by a classification model emphasizes 

correctness of positive predictions. It answers the question: Of all the instances predicted as 

positive, how many are actually positive (Raschka, 2018). Use Case: Precision is crucial when false 

positives are costly, such as in spam email detection, where wrongly classifying a legitimate email 

as spam can lead to loss of important information (Han, Kamber, & Pei, 2011). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
TP

TP ൅ FP
 

 

Where the TP True Positives is the Instances correctly classified as positive And the FP 

False Positives is the Instances incorrectly classified as positive. 

 

3.20.4 Recall 

Recall, also known as Sensitivity or the True Positive Rate, measures the ability of a 

classification model to identify all actual positive instances. It answers the question: Of all the 

actual positive cases, how many did the model correctly identify (Brownlee, 2020). Use Case: 

Recall is essential in scenarios where missing a positive case (false negatives) is costly, such as in 

medical diagnostics, where failing to identify a disease can lead to severe consequences (Han, 

Kamber, & Pei, 2011). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
TP

TP ൅ FN
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Where True Positives (TP): Instances correctly classified as positive and False Negatives 

(FN): Instances incorrectly classified as negative (missed positives). 
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4. RESULTS AND DISCUSSIONS 

 

The experiments and discussion of our proposed network are evaluated in this section using 

six different image datasets employed to assess the performance of the proposed method in all the 

experiments. The accuracy of the proposed methods was compared with that of other models. Such 

as the convolutional networks (CNN), differential convolutional networks (DiffCNN), and the deep 

convolutional self-organizing map (DCSOM) in all tests. All experiments aim to examine how the 

new models have improved and to assess the impact of changes in accuracy and performance. The 

primary goal is to investigate the effects of the new module. Hence, every experiment is being done 

to examine how the SOMdiffCNN has improved and to analyze the impact of changes in accuracy 

performance. 

 

4.1 The datasets 

The Photographer's Gallery's Data, Set, and Match program aims to share, visualize, and 

analyze modern image databases. Six image datasets are utilized to demonstrate the performance of 

the models:  Fashion MNIST, Bird, MNIST, CIFAR-100, CIFAR-10, and STL-10 Datasets. The 

Bird Dataset contains high-resolution images of birds captured from multiple angles and in various 

environmental settings, includes 525 bird species, with 84,635 training images, 2,625 test images, 

and 2,625 validation images, where each image is a 224x224 color picture. The Fashion MNIST 

Dataset Each image is a 28x28 grayscale picture, categorized into 10 classes. Used for 

benchmarking computer vision algorithms. The MNIST Dataset is a set of handwritten digits, 

comprising 28x28 grayscale images of digits ranging from 0 to 9. Used for training models for 

handwritten digit recognition. The CIFAR-10 Dataset includes 60,000 color images of size 32x32, 

divided into 10 distinct classes for image classification tasks. The CIFAR-100 Dataset is an 

expanded version with 60,000 color images of size 32x32, categorized into 100 different classes for 

more complex classification tasks.  STL-10 Dataset has 10,000 images of 96x96 color images and 

is used for developing and evaluating various semi-supervised and unsupervised learning methods. 

To demonstrate the effectiveness of the techniques, 7 different experiment sets were carried 

out. These datasets are available to the public. Each dataset was normalized to have a zero mean 

and unit variance. 

https://archive.ics.uci.edu/ml//index.phpdatasets,http://cs.joensuu.fi/sipu/datasets/   and Hata! 

Köprü başvurusu geçerli değil.www.kaggle.com/datasets/dhruvildave and their properties are 

shown in Table 1 

. 
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Table 4.1 Shows the dataset evaluation 
Data Sets Name Attributes Classes Training Data Test Data 

MNIST 64 10 60000 10000 

Fashion-mnist 12 10 60000 10000 

Cifer10 16 10 50000 10000 

Bird 3 525 84,635 2,625 

STL10 16 10 5000 8000 

Cifer100 16 100 500000 100000 

Table 4.1. Shows the dataset evaluation. 

4.2 The Experiments  

 

4.2.1 The initial set 

Comparing the accuracy of the SOMdiffCNN model across different datasets in this 

experiment, the proposed model assesses the resulting improvement of the Classification of six 

different image datasets. The model parameter values for all experiments are compiled in Table 1. 

The model consists of SOM, differential convolution, convolutional, and reshaping layers. The 

SOM was initially trained and then used in each training step in DiffCNN, The encoded inputs 

were then utilized by the SOM (Self. SOM) and concatenated with the encoded images before 

being passed through the dense layers. The results are displayed in Table 2. Overall, the model 

demonstrated a significant performance enhancement. 

 

Table 4.2 Shown the hyper-parameter settings for the proposed model used in all experiments 

Parameter name The values 
 

Image Size 
(28 × 28 × 1) pixels, 

(224 × 224 × 3) pixels,  
(32 × 32 × 3) pixels, 

 And (96 × 96 × 3) pixels. 
Number of  Differential layers 1 

batch size 64 
SOM map dimension 10×10 

Neighborhood radius(σi, σf ) (1.0,0) 
Number of epochs used in the learning  50 

Learning rate 0.001 
Batch normalization  - 

kernel size 3 
Map Size  4-20 

Stride 2 
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4.2.2 The Second series of Experiments 

The effectiveness of our approach on the MNIST dataset was examined in comparison to 

the DiffCNN, CNN, and DCSOM models. The SOMdiffCNN was fine-tuned using a portion of the 

MNIST dataset (6000 training samples and 1000 testing samples) and the highest accuracy among 

all models was achieved by our model. 

 

4.2.3 The Third set of Experiments 

An examination is conducted on how well the suggested method performs on the Cifar10 

dataset with normalization. The model begins with an input layer (an image of size 32 × 32 × 3 

pixels), incorporating DiffConv Layer "subsequently followed by a convolutional layer by ReLU 

activation, max pooling, and fully connected layers." Subsequently, there are two fully connected 

(dense) layers (fc1 and fc2) with ReLU and softmax activation functions, respectively. The model 

was compiled using sparse categorical cross-entropy loss along with the stochastic gradient descent 

(SGD) optimizer. All the experiments in this paper The results, including accuracy, F1 score, and 

the loss values collected during training, are printed for evaluation, and compared to the DiffCNN, 

DCSOM, and CNN models.  

 

4.2.4 The Fourth experiment set 

The suggested method was compared with three models: DiffCNN, DCSOM, and CNN 

networks on Bird datasets. All compared structures had the same hyperparameter tuning. The 

method was defined using PyTorch indicating the Input layer: Accepts input data with shapes of 

(224, 224, and 3). It uses SOM, a differential convolutional layer.  Followed by the standard 

convolutional layers (conv1, Conv2) with ReLU activation, a max-pooling layer, and layers that are 

fully connected. Subsequently, there are two fully connected (dense) layers (fc1 and fc2) with 

ReLU and softmax activation functions to produce output with 525 Classes of the softmax 

activation, suitable for multi-class classification tasks. The number 525 corresponds to the number 

of classes in the classification issue. The models are compiled using the categorical cross-entropy 

loss function, which is common for multi-class classification problems, and The Adam optimizer 

with a learning rate of 0.001 is utilized. Accuracy and F1 scores are then computed. 

 

4.2.5 The fifth set of experiments 

The correctness of the proposed approach on The STL10 dataset was investigated.  STL-10 

dataset was loaded using the Torchvision library and data loaders for training and testing were 

created. The model is defined as a PyTorch module that combines the SOM, differential 

convolutional layer (DiffConv layer), and DiffCNN with convolutional layers. Followed by the 

standard convolutional layers (conv1, conv2, etc.) with ReLU activation, a max-pooling layer, and 

dense layers. The network is trained with the specified loss function (cross-entropy) and optimizer 
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(Adam). Accuracy and the F1 score for both training and testing are calculated. Then, a comparison 

is done with three models DiffCNN, DCSOM, and CNN networks.  

 

4.2.6 Experiment Sixth 

The accuracy of the suggested Method was compared with three models: DiffCNN, 

DCSOM, and CNN models utilizing the Fashion MNIST dataset. The dataset is accessed via 

Keras.datasets.fashion_mnist. Additionally, the pixel values in the images were normalized to a 

range of 0 to 1. The data type of the images is modified to float32. The model is composed of 

SOM, DiffCNN with a DiffConvLayer as the main layer, double fully connected layers, max 

pooling, flattening, and a convolutional layer. The model was developed with the Adam optimizer, 

which results in a learning rate of 0.001 and sparse categorical cross-entropy loss. Then, 50 epochs 

were performed on the Fashion MNIST training. The accuracy and F1 scores are calculated for 

individual training and testing sets according to the labels assigned by SOM.  

 

4.2.7 Experiment seven 

The proposed method was tested on the Cifar100 dataset compared with the DiffCNN, 

DCSOM, and CNN models. The model consists of SOM and DiffCNN with a layer for input, 

diffConvLayer, flattening layers, convolutional layers, and max-pooling. The model is trained on 

the CIFAR-100 dataset using the stochastic gradient descent (SGD) optimizer and the sparse 

categorical cross-entropy loss for 50 epochs.  Accuracy and F1 scores are calculated for the training 

and test set.  

 

4.3 The Results  

 

4.3.1 Experiment 1 

The MNIST, Fashion-mnist, Cifar100, Birds, Cifar10, and STL10, Datasets were compared 

using the SOMdiffCNN method. Also, the accuracy was achieved by MNIST with an accuracy of 

98.58%, While Fashion-mnist, Birds, STL10, Cifar100, and Cifar10, achieved accuracies of 

96.531%, 87.49%, 86.9933%, 86.78%, and 81.657% respectively. The compression of our 

suggested approach with the six datasets is illustrated in Table 2. 

 

4.3.2 The experiment 2 

Comparisons of the accuracies of the proposed model with those of DiffCNN, CNN, and 

DCSOM, on the MNIST dataset.  Accuracies of 98.01%, 95.73%, and 81.55% were achieved by 

DCSOM, DiffCNN, and CNN respectively our techniques demonstrated a very effective accuracy of 

98.58%. The accuracy of 81.55% for CNN demonstrates poorer than our model (17.03% 



 

81 

improvement over CNN, 0.57% over DCSOM, and 2.85% over DiffCNN). The comparisons are 

presented in Table 3. 

 

4.3.3 Experiment 3 

In this test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM, were compared with the 

Cifar10 dataset. Test accuracies of 81.657%, 80.88%, 79.26%, and 78.53% were achieved by 

SOMdiffCNN, DCSOM, CNN, and DiffCNN, respectively, According to the result of this dataset, 

Very effective accuracy was demonstrated by the SOMdiffCNN technique (3.12% improvement 

over DiffCNN, 0.77% over DCSOM, and  2.39% over CNN, ). The compression of our suggested 

approaches with the other techniques is shown in Table 4. 

 

4.3.4 Experiment 4 

In this test, the SOMdiffCNN, DiffCNN, CNN, and the DCSOM were compared on the 

Birds dataset. Our method achieved an accuracy of 87.49%. While DiffCNN, CNN, and DCSOM 

achieved 83.96%, 81.09%, and 76.46% respectively. In this dataset, our technique demonstrated 

a very effective test accuracy (3.53% improvement over DiffCNN, 6.4% over CNN, and 11.03% 

over DCSOM). Compression of the suggested methods with the other models is illustrated in Table 

5. 

 

4.3.5 Experiment 5 

In this test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM were compared on the STL10 

dataset our proposed method Achieved 86.99% as its best accuracy on the STL10 dataset while 

DCSOM achieved 77.32%, CNN achieved 72.03% and DiffCNN achieved 85.16% accuracies. Our 

technique demonstrated (a 9.67% improvement over DCSOM, 1.83% over DiffCNN, and 14.96% 

over CNN). Table 6 shows the compression of our proposed approach with the other technique.  

 

4.3.6 Experiment 6 

In this experiment, our suggested method with DiffCNN, CNN, and DCSOM were comparedon 

the Fashion-mnist dataset. SOMdiffCNN achieved 96.53%, while DCSOM Achieved 93.39%, 

DiffCNN achieved 91.905%, and CNN achieved 88.56%, accuracies our technique demonstrated 

(3.19% improvement over DCSOM, 4.68% than DiffCNN and 8.02 % than CNN). Our proposed 

method achieved the best accuracy over all datasets. The compression is shown in Table 7. 

 

4.3.7 Experiment 7  

In this test, our proposed method, with DCSOM, CNN, and DiffCNN was compared with 

Cifar100 datasets. An accuracy of 86.78% was achieved by our method. While DCSOM Achieved 

74.49%, DiffCNN achieved 75.06%, and CNN achieved 81.79%. Our technique demonstrated (a 
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12.29% improvement over DCSOM, 11.72% over DiffCNN, and 4.99% over CNN). The 

compression is presented in Table 8. 

 

Table 4.3 The accuracies of our proposed SOMdiffCNN comparisons on six different image 
datasets are presented. 
The 

model 
The datasets 

 
Train-Acc % Test-Acc    % F1-score 

 
 
 
 

SOMdi
ffCNN 

MNIST 98.9183 98.5816 98.5816 
Cifar10 

 
90.422 81.657 90.327 

Birds 
 

88.65 87.49 87.49 

STL10 88.023 86.9933 86.97 
Cifar100 95.874 86.78 94.024 

Fashion-mnist 97.705 96.531 96.53 
 

The experiment results show that the proposed methods demonstrate very effective 

accuracy in all the datasets. Achieved accuracy values of 98.58%, 96.53%, 87.49, 86.99%, 86.78%, 

and 81.65% in the MNIST, Fashion_MNIST, Birds, STL10, Cifer100, and Cifer10 datasets, 

respectively.  
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Figure 4.1 SOMdiffCNN Model Accuracies for Birds Dataset. 
 

 
 
 

Figure 4.2 SOMdiffCNN Model Training Loss for Birds dataset. 
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Figure 4.3. SOMdiffCNN Model Accuracies for STL10 Dataset. 
   

 

Figure 4.4 SOMdiffCNN Model Accuracies for STL10 Datasets.
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Figure  4.5 SOMdiffCNN Model  Accuracies  for Fashion-mnist Dataset. 
 

 

Figure 4.6 SOMdiffCNN Model Training Loss for Fashion-mnist datasets. 
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Figure 4.7  SOMdiffCNN Model  Accuracies  for Cifar100 dataset. 
 

 

Figure 4.8 SOMdiffCNN Model Training Loss for Cifar100 Dataset. 
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Figure 4.9 SOMdiffCNN Model  Accuracies  for Cifar10 Dataset. 
 
 

 

Figure 4.10  SOMdiffCNN Model  Training Loss  for Cifar10 Dataset. 
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Figure 4.11 SOMdiffCNN Model Accuracies for MNIST Dataset. 
 
 

 

Figure 4.12  SOMdiffCNN Model Training Loss  for MNIST Dataset. 
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It is important to note that the term 'test accuracy' used in the plots throughout this thesis 

refers to the validation accuracy obtained during model development, not the final accuracy on the 

held-out test set . 

 

Table 4.4 The accuracy of our proposed method, comparisons with DiffCNN, CNN, and  
DCSOM on MNIST datasets are presented 

 
Table 4.5 displays the accuracies of our proposed method compared to DiffCNN, CNN, and  

DCSOM on CIFAR-10 datasets. 
The dataset  The models Train-

Accuracy 
Test-
Accuracy 

F1-Score Loss Function 

 
 

Cifar10 
datasets 

SOMdiffCNN 
 

90.422 % 81.657 81.657% 0.1936 

DiffCNN 
 

85.68 % 78.53 78.53% 0.3771 

CNN 
 

79.763 % 79.26 79.26% 0.3790 

DCSOM 
 

82.33 % 80.05 80.13% 0.3517 

 

Table 4.6 shown the accuracies of our proposed approach compared with DiffCNN,CNN, and 
DCSOM on Birds datasets. 

 
  

The datasets  The models Train-
Accuracy 

Test-
Accuracy 

F1-Score Loss Function 

 
 

MNIST 
dataset 

SOMdiffCNN 
 

98.9183 % 98.5816 98.16% 0.0065 

DiffCNN 
 

95.91 % 95.73 95.73% 0.0437 

CNN 
 

85.64 % 81.55 81.55% 0.0910 

DCSOM 
 

98.11 % 98.01 98.01% 0.0810 

The dataset The models Train-Accuracy Test-Accuracy F1-Score Loss Function 

 SOMdiffCNN 

 

88.65 % 87.49% 87.49% 0.1085 

Birds 

datasets 

DiffCNN 

 

84.701 % 83.96% 83.63% 0.1241 

 CNN 

 

81.19 % 81.09% 81.09% 0.3491 

 DCSOM 

 

78.62 % 76.46% 76.44% 0.2248 
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Table 4.7 Presentations the accuracies of our proposed method compared to DiffCNN,CNN, And 
DCSOM on the STL10 datasets. 

 

Table 4.8 Confirmations the accuracies of our suggested Method comparisons with DiffCNN, 
CNN, and DCSOM on Fashion-mnist datasets are displayed. 

The 

dataset  

The models Train-

Accuracy 

Test-

Accuracy 

F1-Score Loss Function 

 

 

Fashion-

MNIST 

dataset 

SOMdiffCNN 

 

97.705 % 96.58% 96.58% 0.0710 

DiffCNN 

 

94.66% 91.905% 91.905% 0.0814 

CNN 

 

88.56% 88.56% 88.01% 0.2900 

DCSOM 

 

93.87 % 93.398% 93.39% 0.1047 

 

Table 4.9 displays the accuracies of our suggested method compared with DiffCNN, CNN, and 
DCSOM on the Cifar100 datasets. 

The dataset  The models Train-

Accuracy 

Test-Accuracy F1-Score Loss Function 

 

 

 

Cifar100 

SOMdiffCNN 

 

95.874 % 86.78% 86.78% 0.4025 

DiffCNN 

 

89.76% 75.06% 75.06% 0.3971 

CNN 

 

79.33% 81.79% 78.87% 0.4264 

DCSOM 

 

90.03 % 74.49% 74.49% 0.4925 

 

The dataset  The models Train-Accuracy Test-

Accuracy 

F1-Score Loss Function 

 

 

STL10 

 

SOMdiffCNN 

 

89.023 % 86.9933 86.99 0.2768 

DiffCNN 

 

85.60% 85.16% 85.16% 0,3443 

CNN 

 

78.03% 72.03% 72.17% 0.4224 

DCSOM 79.40 % 77.32% 77.22% 0.3836 
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Figure 4.13 Accuracy Comparison Results for Fashion-mnist Datasets. 
 

 

Figure 4.14  Loss Comparison Results for Fashion-mnist Datasets. 
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Figure 4.15 Accuracy  Comparison Results for MNIST Datasets. 
 

 

 

Figure 4.16 Loss Comparison Results for MNIST Datasets 
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Figure 4.17 Accuracy Comparison Results for Cifar10 Datasets. 
 
 

 

Figure 4.18  Loss Comparison Results for Cifar10 Datasets. 
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Figure 4.19 Accuracy Comparison  Results for Birds Datasets. 
 

 

 

Figure 4.20 Loss Comparison Results for Birds dataset.
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Figure 4.21. Accuracy Comparison Results for STL10 Datasets. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22. loss Comparison Results for STL10 Datasets. 
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Figure 4.23. Accuracy Comparison Results for Cifar100 Datasets. 
 

 

Figure 4.24. loss Comparison Results for Cifar100 Datasets. 

 
Within this work, we suggested a novel Intergenerational Interaction Type of Neural 

Network Self-Organizing Map Differential Convolutional Neural Network for classifying image 

datasets.  

A new perspective on the Differential Convolutional Neural Network has been considered, 

and the hypothesis behind the method is that a building father’s presence enables the son to succeed 

quicker than others. Self-organizing map stands for the building father it is pre-trained by 

experience before training his son. Son is the Differential convolutional neural network where in 
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this case is used. Since this Enhancement increases both learning and classification speed, it leads 

to wider application possibilities for the proposed topology. The proposed architecture is distinct 

and different from further SOM-based DL. Tested on six different datasets, it demonstrated very 

effective accuracy in all the datasets.  

In the First test, we compared the DiffCNN, CNN, and, DCSOM, with the MINST dataset 

DCSOM, DiffCNN, and, CNN achieved 98.01%, 95.73%, and 81.55%, respectively our technique 

demonstrated a very effective accuracy. The accuracy of 81.55 % for CNN demonstrates poor data 

classification than our Model. 

In the Second test, we compared the SOMdiffCNN, DiffCNN, CNN, and DCSOM, with 

the Ciar10 dataset SOMdiffCNN, DCSOM, CNN, and DiffCNN achieved test accuracies of 

81.657%, 80.88, 79.26%, and 78.53 respectively. According to the results of this datasets our 

technique demonstrates a very effective Classification accuracy (3.12% improvement over 

DiffCNN, 0.77% than DCSOM, and 2.39 over DCNN). 

In the Third test, the SOMdiffCNN, DiffCNN, CNN, and the DCSOM were compared on 

the Birds dataset. Our method achieved an accuracy of 87.49%. While DiffCNN, CNN, and 

DCSOM achieved 83.96%, 81.09%, and 76.46% respectively. In this dataset, our technique 

demonstrated a very effective test accuracy (3.53% improvement over DiffCNN, 6.4% over CNN, 

and 11.03% over DCSOM). 

In the Fourth test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM were compared on the 

STL10 dataset our proposed method Achieved 86.99% as its best accuracy on the STL10 dataset while 

DCSOM achieved 77.32%, CNN achieved 72.03% and DiffCNN achieved 85.16% accuracies. Our 

technique demonstrated (a 9.67% improvement over DCSOM, 1.83% over DiffCNN, and 14.96% 

over CNN). 

In the Fives test, our suggested method with DiffCNN, CNN, and DCSOM were compared on 

the Fashion-mnist dataset. SOMdiffCNN achieved 96.53%, while DCSOM Achieved 93.39%, 

DiffCNN achieved 91.905%, and CNN achieved 88.56%, accuracies our technique demonstrated 

(3.19% improvement over DCSOM, 4.68% than DiffCNN and 8.02 % than CNN).  

In the sixth test our proposed method, with DCSOM, CNN, and DiffCNN was compared 

with Cifar100 datasets. An accuracy of 86.78% was achieved by our method. While DCSOM 

Achieved 74.49%, DiffCNN achieved 75.06%, and CNN achieved 81.79%. Our technique 

demonstrated (a 12.29% improvement over DCSOM, 11.72% over DiffCNN, and 4.99% over 

CNN). 

The experiments showed that the proposed method demonstrated very effective accuracy in 

all the datasets. The accuracy values achieved by 98.58%, 96.53%, 87.49%, 86.99%, 86.78 and 

81.65% in the MNIST, Fashion_MNIST, Birds,  STL10, Cifer100, and  Cifar10, datasets, 

respectively, surpassing the latest advancements performance. 
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Table 4.10 Optimized parameters for the models (CNN, DCSOM, SOMdiffCNN, and DiffCNN). 

Properties DCNN DCSOM SOMdiffCNN DiffCNN 

Learning late 0.001 0.001 0.001 0,001 

Epochs 50 50 50 50 

Bach Size 64 64 64 64 

Number of Filter 512 512 512 - 

Filter Size 3 3 3 - 

pooling Maxpooling2D Maxpooling2D, 

Upsampling2D 

Maxpooling2D, 

Upsampling2D 

Maxpooling2D

Differential  layer - - yes yes 

Euclidean Distance - yes yes yes 

Manhattan distance - - - - 

Activation Function   Relu , Softmax , sigmoid 

Loss Binary Cross entropy 

Optimizer Adam , SGD 

 

Table 4.10. Shows the Optimized parameters for the models (CNN, DCSOM, Diff-CSOM, 

and DiffCNN). 
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5. CONCLUSIONS  

 

This research introduced a novel hybrid neural network framework, termed 

Intergenerational Interaction Neural Networks (IINNs), which integrates the principles of Self-

Organizing Maps (SOMs) and Differential Convolutional Neural Networks (DiffCNNs). Inspired 

by the philosophy of generational guidance. The proposed method leverages the synergy between a 

Self-Organizing Map (SOM), representing the guiding father, and a Differential Convolutional 

Neural Network (DiffCNN), symbolizing the son The hypothesis behind this method is that “The 

presence of a guiding father enables the son  to succeed quicker and better than the others” to 

enhance the faster convergence and improve the performance. Unlike traditional teacher-student 

frameworks the proposed approach involves pre-trained father or ancestor models working together 

with the son model during both the training and application phases of the son network.  

The SOMdiffCNN represents a unique Father-Son Network,By leveraging the SOM's 

unsupervised feature extraction and Encoding capabilities, the DiffCNN benefits from pre-learned 

structural representations, which are dynamically integrated during each training step. This 

intergenerational approach significantly reduces the complexity of the convolutional layers in the 

DiffCNN, while simultaneously improving convergence speed and overall classification accuracy. 

The SOM was pre-trained independently before integrating with the DiffCNN, where its 

output was concatenated with encoded inputs. This hybrid architecture demonstrated superior 

adaptability and feature representation capabilities, as evidenced by its application to six diverse 

image datasets.  

The effectiveness of the SOMdiffCNN was validated across six image datasets MNIST, 

Fashion-MNIST, Birds, STL10, CIFAR10, and CIFAR100. Resulting in classification accuracy 

values of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65% respectively. Moreover, the 

model demonstrated significant performance improvements within the first 10 training epochs. 

Experimental results indicate notable enhancements in both training and testing accuracy. For the 

MNIST dataset, the model improved 10.62% in training accuracy and 6.53% in testing accuracy. 

Similarly, for the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, the model recorded 

accuracy improvements of 23.72% / 24.16%, 20.48% / 9.42%, and 62.48% / 50.92%, respectively. 

Additionally, notable performance gains were observed on the Birds and STL-10 datasets, with 

accuracy improvements of 26.92% / 31.14% and 10.21% / 15.03%, respectively. The proposed 

model achieves faster convergence and significant performance improvements across multiple 

datasets within the first 10 training epochs. The experimental results underscore the model’s ability 

to achieve faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such 

as CIFAR-10, Birds, and CIFAR-100 within the first 7 to 10 epochs.  Maintaining strong 

performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the 

7th epoch, resulting in a 74% faster convergence. The proposed model achieved state-of-the-art 
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accuracy rates, surpassing traditional CNN, DiffCNN, and DCSOM models. These results highlight 

the ability of the SOMdiffCNN to balance computational efficiency and predictive performance, 

particularly in resource-constrained environments. 

The findings validate the hypothesis that leveraging generational interactions within neural 

networks fosters a more efficient and effective learning paradigm. The intergenerational approach 

not only advances the theoretical understanding of hybrid neural networks but also offers a 

practical solution for enhancing model performance on challenging classification tasks.  

This work contributes to the growing field of deep learning by presenting an innovative 

hybrid architecture that combines unsupervised and supervised learning principles.The Father-Son 

Network paradigm emphasizes the importance of leveraging intergenerational knowledge transfer 

to build more efficient and adaptive neural networks. Future research may explore the scalability of 

this framework, its applicability to other domains, such as natural language processing or time-

series data, investigating the inclusion of deeper ancestral structures and the integration of 

additional hierarchical generational layers to further enhance performance. The developed topology 

is applicable to medical image recognition, image recognition in automotive industry with better 

performance advantages and real time image recognition tasks such as automatic driving systems 

with much faster learning speed.  

By introducing this work the aim is to bridge the gap between traditional hierarchical 

learning methods and a more collaborative, intergenerational approach, advancing both the 

conceptual framework and practical applications of deep learning. 

This study sets a promising foundation for next-generation neural network architectures, 

highlighting the potential of biologically inspired methodologies in advancing artificial 

intelligence. 
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