CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

PhD THESIS

Intergenerational Interactive Artificial Neural Networks

ZKEIA ABDALLA ABDRHMAN JAZAM

Department of Computer Engineering
May , 2025

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

PhD THESIS APPROVAL

Intergenerational Interactive Artificial Neural Networks

ZKEIA ABDALLA ABDRHMAN JAZAM

Department of Computer Engineering
This Doctorate Thesis was evaluated by the following Jury Members on .../.../...... and
was approved by unanimity/majority of votes.
Jury : Prof. Dr. Mutlu AVCI (Advisor) .l
: Prof. Dr. Selma Ayse OZEL ...
: Prof. Dr. Serdar YILDIRIM ...
: Assoc. Prof. Dr. Ali INAN .

: Assoc. Prof. Dr.Serkan KARTAL ...

This Thesis was written in the Department of Computer Engineering, Institute of Natural
and Applied Sciences.

Thesis Number:

Prof. Dr. Sadik DINCER
Director
Institute of Natural and Applied Sciences

This work was supported by the XXXXX.
Project ID: XXX-XXXX-XXXX

Note: The usage of the presented specific declarations, tables, figures, and photographs either in this thesis or
in any other reference without citation is subject to "The law of Arts and Intellectual Products" number
of 5846 of Turkish Republic

ICINDEKILER

ABSTRACT ..ttt b e e e et b ettt e bt et e s bt est et e eb e e st et en e et e e bt et e steeneebea I
OZ oo 1
GENISLETILMIS OZET ...ttt 111
EXTENDED ABSTRACT ...ttt sttt ettt sttt ettt et et e st e e e sneeneenes VI
ACKNOWLEDGEMENTSottt ettt ettt sttt et ee s st eneesteeneenaesaeeneens IX
LIST OF TABLES ...ttt ettt ettt et et e et e st e e e beene e teeneeeesneeneas X
LIST OF FIGURES ...ttt ettt ettt et ettt e e e et emt e aeese e e e sneeneenes XI
SYMBOLS AND ABBREVIATIONS ...ttt X1
1. INTRODUCGTION ..ottt ettt ettt te st e e aeeseessesseensesseeneesesseensenseensensesneenses 1
1.1. ReSEarch DESCIIPLIONuviiiiieeiiieiiieeiieeiee et et e et e et eeab e e s beeesteeesebaeestaeessseaensaeenssaesnseeenes 3
1.2. The ReSearch GOal...........cocuiiiiiiiiiieiieee ettt ettt 4
1.3. ReSCAICh OULINEGooiiiiiiiieiie ettt ettt e e e e et e e e abeeeraeeseseeenreeenes 5

2. PRELIMINARY WORKoootiiiiiiiiiieii ettt ettt ettt esae s s esesseensessessnensesnsensas 7
3. MATERIAL AND METHODccooitiiiiiiiieieie ettt ettt st se st ensesseennenes 25
I B D 1 72T £ TR 27
3.1.1T MINIST datASELeccuveeeeriiiiieeeiie ettt et ete e et e et e e e aeeessbeeerbeesabeeeteeesesesenreeenes 28

3.1.2 Fashion-MNIST datasetceccererriererieieneeieeesieete ettt 28

31,3 CHfRr10 datasetsS......ccueeueerueniieieieeiiete ettt ettt ettt st b et ees 28

314 BIrd dataSELeveeeieieieieieieee ettt sttt neas 29

315 STLAT0 dAtASET ...ceeenietieiieieeeeeeste ettt ettt ettt ettt et sae et sbe st et ebeeneas 29

3.1.6 Cifer-100 dataSELScccerueeierieitieierieseeeie ettt ettt et esteee et et e sneeaeeeeeneeneas 30

3.2 Data Preprocessing (Image preproCesSSiNg)....cueereerreenueerverrerreesseerseesseeseesssesssesssesssessssenens 30
3.2.1 The NOrmMAaliZAtIONcc.eeiiieieieieiieie ettt et ae e e neas 32

3.3 SUPETVISEA LEAIMING......ccvieiieiieiietierieestesteeteereebeesteestbesebessbeesbeesseessaesssessseasseassessseesseesens 33
3.4 UnSuperviSed ICAIMINGc.ccovveviiiriiiiieite et ete et ete et e ste s e e beeseesseesteestaessaessseesseesseessenens 34
3.4.1 Process of unsupervised 1€arning...........ccuvevveeeeieeeriiiesirieeeieeciee e eree e esveeeaee e 34

3.5 ClassifiCation ANALYSIS......ccuieivieiirieeiiieiieeeiee ettt eereeeteeesebeesteeestseesseeesreesssesesseessseeaseennes 35
3.6 Hardware and Frameworkscooiiiiiiiiiiii et 35
3.7 The Software environment implementation in this thesis..........ccccceeeeviieriieeniieiiie e 36
TR B o o) (o] DRSO PURPRTRSRP 36

3.7.2 TENSOTFIIOW .ottt et ettt et e et e e s abeeeteeeseveeereeenes 36

I B (G 1 U PRRUPP 38

3.8 ENSEMDIE LEAIMINGeoviiiiieiiieiieiieite sttt ettt et ettt e st e st esabe e e ebeesseens 40
3.9 Teacher-Student NEetWOTKccoiiiiiiiiiiicie et e eaee e 40

3.9.1 ESSENtIal EIEIMENLSoevviiiiiiiieiieieeeee ettt e e e e e e s eaaaeeeesssesenaaees 41

3.9.2 Knowledge DiStillationc.cccveriieriierieniienie e eie et esee e sreeseeseessaesseessnesnneans 41

3.9.3 The general steps for knowledge distillation are as follows:c.ccceevevveriervernenns 41
3.10 Self-0rZaniZing MAPccceecveerrierieerieerreereeteesteesseesseesseessseaseesseesseesseesseesssesssessseesseesseesses 42
3.10.1 Self-Organization Mechanisms in SOMS.........ccccccverierierierienienieereeseeseeseesneees 43
3.10.2 The SOM Common TOPOIOZIESc.eerveerirriiiieereeieeieesierresereereereesseesreesraesenenes 47
3.11 Euclidean DIStAnCe.c.eeueruieierieiiieieee ettt ettt ettt e e eneeaeeneenes 50
3.12 Manhattan DISTANCEceoueruieieiiiiieiese ettt ettt et sa e et et etesee et e sseeneenes 50
3.13 Neighborhood FUNCHONS........cccviiiiieiiiiie ettt e staeseaessbeesreesbeesseens 51
3,14 DEEP LCAIMING ... eecveeiieeiiieiieieeteeteesteestestestreesreebeesteessaessseasseasseessaessaesssessseasseasseessensseesens 52
3.14.1 Convolutional neural NEtWOTKcoiiiiiiiiiiiiiei e 55
3.14.1.1 Convolutional JayYer.........cccviiiiiiiiiiecieeceecee ettt et e e eveeeaee e 56
3.14.2 Convolutional Auto encoder neural NEtWOTKccceveeiiiiiiniiiniiiiereereeseeee 57
3.15 Deep convolutional Self-0rganizing mMapcccccveeveeerieeeiieenieesieeeeeeeeveeereeeseveesveeenns 59
3.15.1 The ATCRItECLUTEeeiieiiiiiieiie ettt ettt ettt ettt st ente e e e teesseesaneens 60
3.15.2 Convolutional LaYerscccieciieriieriiinieiieeieete ettt ettt st eneeeteeteesseesreesnneens 60
3153 SOM LAYET ...ttt sttt ettt et sttt et saeesane e 60
3154 TLAIMING ...eevveeieeeteeeteeeteeeiie et et et et e bt e steeeateeateeabeebeestesseesnsesnseenseanseanseesseesnnesanenns 60
3.15.5 Clustering and ViSUaliZationcoceeieririiieenieninieniencete st 61
3.16 Differential convolutional neural NEtWOTKSccevieiieriiiieninieeseeeeeee e 61
3.17 Intergenerational Interaction Neural Networks.ccocceviroeiiiiiiiniiiineeeeec 64

3.18 The proposed Father-Son Network: Self-organizing map Differential Convolutional

NEUTAL TIEEWOTK ...ttt sttt b e et b et emeenaeseeeneens 65
3.18.1 The Proposed Method ArChiteCtUIEcccvevvvieieeiieiieieeeerre e e 66
3.18.2 TIAIMING .. .ccuveeeriereerieieesieesttesteetbeesseesseestaesesessseasseasseasseesssasssesssessseassessseesseesseesssenss 67
3.18.3 Classification and ViSUaliZation...........ccoeeeierierierieienieeceie e 67
3.18.4 Algorithm2: the proposed neural network SOMdiffCNN Model Algorithm.......... 68

3.19 The Structured MOdEIS........ccieieiiiiieee ettt e 69
3.20 Evaluation MELIICScooueiiuiiiieiieeieetee sttt ettt ettt ettt e et e st e et et e b e nbeeas 73
3.20.1 ACCUTACY .evvvieieiiiieeeiiieeeeiitee e ettt e e ettt e e ettt e e esebeeeeassaeeeessaeeesansseeeennsseeeannssaeesnnsseeenns 73
3L20.2 FLIoSCOTE .ttt ettt ettt ettt et e sttt esabe e st e enbbeesabeeenns 73
3.20.3 PIrECISION....uttiuttetieitteetie ettt ettt et et e st e sht e s et e bt et e e bt e bt esbeesaeeemteemteenteenbeesbeesaneaas 74
3,204 RECAIL ...ttt ettt ettt b e a e et et e ente e e e teeeneeeaneen 74

4. RESULTS AND DISCUSSIONS ...ttt ettt eetete st etessesteestestessaesesseessessesnsesesssensens 77
4.1 TRE AAtASELS...cueieieeie ettt ettt ettt et e st e stt e e aaeeate e bt e bt esseesneeenseenseenseeseesteesseesnnesnneans 77
4.2 The EXPETIMENLS ...c..eeeiieiieiieeiieeiie e et estce st e st e st e seeeeteebe e beesseesneesnseenseenseeseesseesseesanesnsenns 78
4.2.1 The INTHAL SEL....cueetieiieriieeiie ettt ettt ettt ettt e st e st e ebeesbeesbeesneesnteenseenseeneean 78

4.2.2 The Second series 0f EXPErimMEntsccvecvieriiereeriieriiesiesreereesieeseesnesresseeseensees 79

4.2.3 The Third set of EXPEriments.........ccccccveriereririieeiiieriierie e sreeieeieeseessaeseressseeseensees 79

4.2.4 The FOurth eXperiment STcuerverierueriuerieeieesieeseesresseaseesseesseessaesssesssessseensees 79

4.2.5 The fifth set Of EXPETIMENLSccceeviiriieiieiieieeie ettt sre s e enseensees 79

4.2.6 EXPEriment SiXth........ccoecuiiriieriierienieeie ettt et sieeseaesevesseeseessaessaessseenseenseensens 80

4.2.7 EXPETIMENTE SEVEIuvveirerieeiieereieerrteetreesseesseeessseesssseessseesssesssssessssssssssessssessssseesssees 80

4.3 THE RESUILS. ...ttt ettt sttt es et e e et et e et eneeneesneenseseeeneens 80
TG TR =54 153 3 10 1<3 1 1 A SRR 80

4.3.2 The €XPEITMENE 2 ...eeivieieieiiieieereeieestesresereeereeseesseesseesseesssessseasseesseesseesssesssesssesssens 80

TG TG T =54 153 4 11013 1 1 5 SRS 81

4.3.4 EXPEIIMENT 4 ...ocveiiiiiieeeiiieeiie ettt e etee e teesveesteeestaeeebaeesseessseesssseesssaeensasessseessseeenssenns 81

4.3.5 EXPEIIMENL 5 ..oiiiiieiiiieeiiie ettt e eite et esiteesteeetteeebaeestseesaseeassseessseeensseesseessseeessseens 81

4.3.6 EXPETIMENT O ...ecuvieeiiieeeiiieeiieesiieeeiteeeteesteesteeestveessbeeessseessseeansseessseeensseesssesssseeessseenn 81

4.3.7 EXPEIIMENL 7 ..vieiiieeiieeeiieeetieesiteeetteesteeseseesseeessseeenseeessseessseesnsseessseesssseesssessssesesssenns 81

5. CONCLUSIONSttt ettt ettt et est e teeteesbeste et e s teestessesseesbenseessensesseessesseansensesseensansenseenes 99
REFERENCES ...ttt ettt ettt ettt ettt e e steestesbeessenseeseessesseensensesseensensennnenns 101

CURRICULUM VITAEooiiiiitetet ettt ettt ettt s e et 127

CUKUROVA UNIVERSITY
INSTITUTE OF NATURAL AND APPLIED SCIENCES

PhD THESIS

Intergenerational Interactive Artificial Neural Networks

ZKEIA ABDALLA ABDRHMAN JAZAM

Advisor: Prof. Dr. Mutlu AVCI

Department of Computer Engineering

ABSTRACT

Deep learning has become increasingly prevalent across diverse fields, driven by advanced learning
techniques and complex network architectures such as transfer learning and teacher-student models. Transfer
learning aims to achieve high performance in a target domain by leveraging knowledge from a related source
domain. In contrast, teacher-student models distill knowledge from a large, complex teacher model to a
smaller student model, allowing for reduced complexity without significantly compromising accuracy.
Convolutional Neural Networks (CNNs), widely used in image recognition, play a key role in such models
due to their efficiency and performance. However, due to their complexity, CNNs often demand substantial
computational resources and long training times. This study introduces a novel hybrid neural network
topology: Intergenerational Interaction Neural Networks (IINNs). The proposed hybridization topology is
called Intergenerational Interaction Neural Networks. The hypothesis behind this method is that “the
presence of a guiding father model enables the son model to succeed quicker and better than the others”. This
philosophy can be extended by incorporating additional ancestors, such as grandfathers and great-
grandfathers. Unlike traditional teacher-student models, [INNs employ a pre-trained ancestor model (father)
that remains static during training but actively guides the learning of the Son model. Specifically, a Self-
Organizing Map (SOM) acts as the pre-trained father, and a Differential Convolutional Neural Network
(DiffCNN) functions as the son. The SOM's outputs are integrated into the DiffCNN’s training, enhancing
convergence speed and accuracy while reducing convolutional complexity. The proposed model was
evaluated on six datasets: MNIST, FashionMNIST, Birds, STL10, CIFAR-100, and CIFAR-10. It achieved
superior accuracy scores of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65%, respectively,
outperforming state-of-the-art CNN, DiffCNN, and Deep Convolutional SOM models. Moreover, the model
demonstrated faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such as
CIFAR-10, Birds, and CIFAR-100, within the first 7 to 10 epochs. At the same time, it maintained strong
performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the 7th epoch,
resulting in a 74% faster convergence. These results underscore the effectiveness and versatility of IINNs in
accelerating training, faster convergence, and improving performance across simple and complex datasets,
making them suitable for applications in medical imaging, automotive systems, and real-time scenarios like
autonomous driving.

Keywords: Deep learning; Convolutional neural networks; Self-organizing maps; Differential Convolutional
neural networks and Image datasets.

CUKUROVA UNIVERSITESI
FEN BiLIMLERI ENSTITUSU

DOKTORA TEZi

Kusaklararasi Etkilesimli Yapay Sinir Aglar:

Ad1 SOYADI
ZKETA ABDALLABDRHMAN JAZAM

Danisman: Prof. Dr. Mutlu AVCI

Bilgisayar Miihendislik Anabilim Dali

0z

Derin 6grenme, aktarimli 6grenme ve dgretmen-6grenci modelleri gibi gelismis 6grenme teknikleri
ve karmasik a§ mimarilerinin etkisiyle ¢esitli alanlarda giderek daha yaygm hale gelmigtir. Aktarimli
Ogrenme, ilgili bir kaynak alandan elde edilen bilgiyi kullanarak hedef alanda yiiksek performans saglamayi
amaclar. Buna karsilik, 6gretmen-6grenci modelleri, biiyiik ve karmasik bir 6gretmen modelinden daha
kiiciik bir 6grenci modele bilgi aktarimi yaparak, dogruluktan fazla 6diin vermeden modelin karmagikligini
azaltmay1 saglar. Goriintli tanima alaninda yaygin olarak kullanilan Konvoliisyonel Sinir Aglari (CNN’ler),
verimlilikleri ve yiiksek performanslari nedeniyle bu tiir modellerde kilit rol oynar. Ancak, karmasik yapilar
nedeniyle CNN’ler genellikle yiiksek hesaplama kaynaklart ve uzun egitim siireleri gerektirir. Bu ¢alisma,
yeni bir hibrit sinir ag1 topolojisi olan Kusaklararasi Etkilesimli Sinir Aglar1 (Intergenerational Interaction
Neural Networks IINNs)'n1 tanitmaktadir. Onerilen bu hibrit topoloji, Kusaklararas1 Etkilesimli Sinir Aglar1
(IINNs) olarak adlandirilmaktadir. Bu yontemin arkasindaki temel hipotez, “yol gdsterici bir baba modelin
varligi, ogul modelin digerlerinden daha hizli ve basarili sekilde ogrenmesini saglar” seklindedir. Bu
felsefe, dede ve biiyiikbaba gibi ek atalarin dahil edilmesiyle genisletilebilir. Geleneksel 6gretmen-6grenci
modellerinden farkli olarak, [INNs mimarisi, egitim siirecinde sabit kalan ancak ogul modelin 6grenmesini
aktif sekilde yonlendiren, 6nceden egitilmis bir ata modeli (baba) kullanir. Bu yapida, Kendini Orgiitleyen
Harita (Self-Organizing Map - SOM) 6nceden egitilmis baba model olarak gorev yaparken, Farklilagtirilmig
Konvoliisyonel Sinir Ag1 (Differential CNN - DiffCNN) ogul modeli olarak islev goriir. SOM’un ciktilart,
DiffCNN’in egitim siirecine entegre edilerek yakinsama hizin1 ve dogrulugunu artirmakta, konvoliisyonel
karmagikligi1 ise azaltmaktadir. Onerilen model, MNIST, FashionMNIST, Birds, STL10, CIFAR-100 ve
CIFAR-10 olmak {izere alt1 veri kiimesi {izerinde degerlendirilmistir. Sirasiyla %98,58, %96,53, %87,49,
%86,99, %86,78 ve %81,65 dogruluk skorlar1 elde ederek; en giincel CNN, DiffCNN ve Derin
Konvoliisyonel SOM modellerinden daha iyi performans gostermistir. Ayrica model, %84’e kadar daha hizli
yakinsama sergilemis; CIFAR-10, Birds ve CIFAR-100 gibi daha karmasik veri kiimelerinde ilk 7 ila 10
epoch icinde %85 dogruluga ulagmistir. Ayn1 zamanda, FashionMNIST gibi daha basit veri kiimelerinde 7.
epoch itibariyle %90 dogruluga erismis ve %74 oraninda daha hizli yakinsama saglamistir. Bu sonuglar,
IINNs mimarisinin egitim siirecini hizlandirmada, daha hizli yakinsamay1 saglamada ve basit ya da karmagik
veri kiimelerinde performansi artirmada etkili ve ¢ok yonlii oldugunu goéstermektedir. Bu yonleriyle, model
tibbi goriintiileme, otomotiv sistemleri ve otonom siiriis gibi ger¢ek zamanli uygulamalar i¢in uygun bir
¢Oziim sunmaktadir.

Anahtar Kelimeler: Derin dgrenme; Konvoliisyonel sinir aglari; Oz-6rgiitlenen haritalar; Diferansiyel
konvoliisyonel sinir aglari; Goriintii veri seti.

II

GENISLETILMIS OZET

Derin 6grenme, son yillarda gosterdigi iistiin performans ve ¢ok gesitli alanlardaki genis
uygulama yelpazesi sayesinde hizla 6nem kazanmistir. Goriintii isleme, dogal dil isleme, biiyiik
Olcekli veri analizi ve internet aramalart gibi alanlardan, makinelerin karmagik verilerle nasil
ogrendigi ve etkilesim kurduguna kadar birgok siireci koklii bigimde doniigtiirmiistiir. Derin
o6grenme yontemlerinin temelinde, insan beyninin yapisindan ve isleyisinden esinlenen yapay sinir
aglart yer almaktadir. Bu aglar, genellikle birden fazla katmandan olusur; bu nedenle "derin"
Ogrenme olarak adlandirilir. Katmanlar, girdileri giderek daha soyut ve bilgilendirici 6zelliklere
dontistiirerek verinin hiyerarsik temsillerini 6grenmelerine olanak tanir. Bu ¢ok katmanli yapi,
artan hesaplama giicli ve biiylik veri kiimelerine erisimin kolaylagsmasiyla birlestiginde, derin
o0grenmenin farkli gercek diinya uygulamalarinda yiiksek etkililik ve esneklik gostermesine 6nemli
ol¢iide katk1 saglamistir. Bu yaklasimlar genellikle iki ana tiire ayrilir: Derin Inang Aglar1 (DBNs)
(Le Roux & Bengio, 2008) ve Konvoliisyonel Sinir Aglari (CNNs) (Yuda et al., 2020). DBNs,
temel, olasiliksal, katmanli bir ag modeliyken, CNNs, goriintii tanima gibi yiiksek performans
gerektiren gorevler icin tasarlanmig, 6zel konvoliisyonel katmanlara sahip ¢ok katmanli aglardir.
CNN'lerdeki konvoliisyonel katmanlar, hiyerarsik 6zellikleri ¢ikarmak i¢cin maksimum havuzlama
islemlerini kullanir (O'Shea & Nash, 2015). Bu derin katmanli aglarin egitimini optimize etmek
icin statik olarak diizenlenmis baslangic veya hafif 6grenme teknikleri gibi yontemler 6nerilmistir
(Acharya et al., 2017). Ancak, daha fazla ilerleme saglamak igin diger sinir ag1 mimarilerinin
kullanilmas1 gerekmektedir. Goriintii isleme ve desen tanima sistemlerinin ¢ogu, gorsellestirme igin
bir hiyerarsi egitmeye vurgu yapmaktadir (Danuser, 2011).

Bagarilarina ragmen, Evrisimli Sinir Aglar1 (Convolutional Neural Networks - CNN),
genellikle biiyiik ag boyutlarina sahip olmalar1 nedeniyle yiliksek hesaplama maliyetleri ve uzun
egitim siireleri gibi sorunlarla kars1 karsiya kalmaktadir. Bu tiir sinirliliklar, 6zellikle kaynak kisith
ortamlarda veya ger¢cek zamanli uygulamalarda bu modellerin kullanimini zorlastirabilmektedir.
Ayrica, CNN mimarilerinin biiyiik ¢cogunlugu denetimli 6grenmeye odaklanmakta ve biiyiik etiketli
veri kiimelerine olan bagimliliklarini siirdirmektedir. Buna karsin, denetimsiz 6grenme
tekniklerinin aragtirilmasi gorece olarak daha az ilgi gormistiir. Etiketli veriye ihtiya¢ duymayan
denetimsiz yontemler, veri etiketleme maliyetlerini azaltma ve modelin genelleme yetenegini
artirma agisindan Onemli bir potansiyele sahip olmasmma ragmen, mevcut CNN gelistirme
stireclerinde yeterince degerlendirilememektedir.

K-means (Ahmad & Dey, 2007), PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021)
ve SOMNet (Hankins et al., 2018) gibi denetimsiz yontemler, derin 6grenmeye uygulanmistir,
ancak denetimli 6grenme tekniklerine kiyasla daha az kullanilmaktadir.

Transfer 6grenimi, derin sinir aglarinin egitim siirecinde karsilasilan veri yetersizligi ve

yiiksek hesaplama maliyeti gibi zorluklar1 agmak amaciyla etkili bir teknik olarak 6ne ¢ikmistir. Bu

I

yaklagim, daha Once biiyiik ve iliskili veri kiimeleri iizerinde egitilmis bir modelin, daha kii¢iik
Olgekli ve alanina 6zgii gorevler i¢in yeniden kullanilmasina olanak tanir. Bdylece, hem etiketli
veri ihtiyact 6nemli Ol¢iide azalir hem de modelin egitim siireci hizlanir. Transfer 6grenimi,
ozellikle bilgisayarli gorii ve dogal dil isleme gibi biiylik veri gerektiren alanlarda yaygin bir
sekilde kullanilmakta; modellerin daha hizli 6grenmesini, daha yiiksek dogrulukla sonug iiretmesini
ve genelleme kapasitesinin artmasini saglamaktadir. Bu yoniiyle transfer 6grenimi, derin 6grenme
modellerinin daha esnek ve verimli bir sekilde farkli problemlere uyarlanmasina énemli katkilar
sunmaktadir (Pan & Yang, 2010). Transfer 6grenimi i¢inde bir yaklagim olan 6gretmen-0grenci
ag1, bilgi damitma kullanarak karmasik bir 6gretmen modelinden daha basit bir 6grenci modeline
bilgi aktarir ve kaynak kisitli ortamlarda yiiksek performansli modellerden faydalanilmasini saglar
(Hinton, Vinyals & Dean, 2015).

Transfer 6grenimi ve 6gretmen-0grenci ¢ergeveleri, verimlilik ve dlgeklenebilirlige vurgu
yaparken, genellikle is birligine dayali, nesiller arasi 6grenme paradigmalariin potansiyelini goz
ard1 etmektedir. Insan ve dogal sistemlerdeki nesiller arasi bilgi aktarimindan ilham alan bu
calismada, ardisik nesiller arasindaki iliskilere dayali yeni bir sinir ag1 hibridizasyon yaklasimi
tamitilmistir. Onerilen hibridizasyon topolojisine Nesiller Arasi Etkilesim Sinir Aglar1 (IINNs) adi
verilmistir. Bu yontemin hipotezi, "bir yonlendirici baba modelin varligmin, ogul modelin
digerlerinden daha hizli ve daha iyi basar1 gostermesini sagladigidir." Bu felsefe, biiylikbaba ve
biiyiik biiyiikbaba gibi ek atalar1 icerecek sekilde genisletilebilir. Ogretmen-6grenci modelinden
farkli olarak, dnerilen yaklagimda dnceden egitilmis baba veya ata modeller, ogul model ile birlikte
caligir. Ogul sinir aginin hem egitim hem de uygulama asamalarinda baba veya ata bdliimlerinin
agirlik degerleri giincellenmez.Onerilen yaklagim, baba olarak bir Ozydnlendirmeli Harita (SOM)
ve ogul olarak bir Diferansiyel Konvoliisyonel Sinir Ag1 (DiffCNN) kullanilarak uygulanmistir. Bu
yapilandirmada SOM, bagimsiz olarak egitilerek yonlendirici baba iglevi goriir. Egitim sirasinda
modelin her adiminda, SOM'dan kodlanmus girisler kullanilarak SOM'nin ¢iktilar1 tam baglantili
katmanlara gegmeden once diizlestirilerek goriintiilerin kodlanmis ¢iktilariyla birlestirilmistir. Bu
adaptasyon, konvoliisyonel katmanlarin karmagikligini azaltirken yakinsama hizint ve genel
performansi artirmigtir.

Bu makalenin birincil amaci, derin 6grenme modellerinin performansini, yakinsama hizini
ve hesaplama verimliligini artirmak i¢in yeni bir hibrit sinir ag1 olan Nesiller Aras1 Etkilesim Sinir
Ag1 (SOMdiffCNN) mimarisini énermek ve degerlendirmektir. Bir yonlendirici baba modelin
varlig1, ogul modelin daha hizli ve daha basarili bir sekilde 6grenmesini saglarken, karmagikligi
azaltir ve birden fazla goriintii veri setinde yiiksek dogruluk elde eder. Makalenin bir diger amaci,
Onerilen modelin performansini, DCSOM, DiffCNN ve CNN gibi mevcut en iyi yontemlerle
karsilagtirarak etkinligini gostermektir. Bu calismayla, geleneksel hiyerarsik 6grenme yontemleri
ile daha is birligine dayali, nesiller arasi1 bir yaklagim arasinda koprii kurmayi, derin 6grenmenin

kavramsal gergevesini ve pratik uygulamalarini ilerletmeyi hedeflemektedir.

v

Onerilen model, MNIST, Fashion MNIST, Birds, STL10, CIFAR-100 ve CIFAR-10 gibi
alt1 yaygin kullanilan goriintii veri seti lizerinde test edilmistir. Sonug olarak sirasiyla %98.58,
%96.53, %87.49, %86.99, %86.78 ve %81.65 siniflandirma dogruluk degerlerine ulasilmistir.
Ayrica model, ilk 10 egitim epoch'u iginde Onemli performans iyilestirmeleri gostermistir.
Deneysel sonuglar, egitim ve test dogrulugunda 6nemli iyilestirmeler oldugunu gdstermektedir.
MNIST veri seti i¢in model, egitim dogrulugunda %10.62 ve test dogrulugunda %6.53 iyilesme
saglamistir. Benzer sekilde, Fashion-MNIST, CIFAR-10 ve CIFAR-100 veri setlerinde model,
sirastyla %23.72 / %24.16, %20.48 / %9.42 ve %62.48 / %50.92 dogruluk iyilestirmeleri
kaydetmistir. Ayrica, Birds ve STL-10 veri setlerinde de %26.92 / %31.14 ve %10.21 / %15.03
dogruluk artiglar1 gézlemlenmistir.

Onerilen model, ilk 7 ila 10 epoch iginde %85 dogruluga ulasarak %84'e varan hizli
yakinsama saglamistir. FashionMNIST gibi daha basit veri setlerinde 7. epoch’da %90 dogruluga
ulasarak %74 daha hizl1 yakinsama saglamistir. Sonuglar, SOMdiffCNN’in mevcut yontemlerden
daha iistiin oldugunu ve tiim veri setlerinde son teknoloji dogruluk elde ettigini gostermektedir.bir
O0grenme paradigmasini tegvik ettigi yoniindeki hipotezi dogrulamaktadir. Kugaklar aras1 yaklasim,
yalnizca hibrit sinir aglarina yonelik teorik anlayisi gelistirmekle kalmamakta, ayni1 zamanda zorlu
siniflandirma gorevlerinde model performansini artirmak i¢in pratik bir ¢6ziim de sunmaktadir. Bu
calisma, denetimli ve denetimsiz 6grenme ilkelerini birlestiren yenilik¢i bir hibrit mimari sunarak
derin 6grenme alanina katki saglamaktadir. Baba-Ogul Ag Paradigmasi, kusaklar arasi bilgi
aktarimmin daha verimli ve uyarlanabilir sinir aglarinin ingasinda ne denli énemli oldugunu
vurgulamaktadir. Gelecekte yapilacak arastirmalar, bu gergevenin Olgeklenebilirligini, dogal dil
isleme veya zaman serisi verileri gibi diger alanlardaki uygulanabilirligini, daha derin atasal
yapilar1 ve ilave hiyerarsik kusak katmanlarinin entegrasyonunu inceleyerek performansi daha da
artirma potansiyelini aragtirabilir.

Gelistirilen topoloji; tibbi goriintii tanima, otomotiv sektdriinde goriintii tanima ve otomatik
stiris sistemleri gibi gercek zamanli goriinti tanima gorevlerinde daha yiiksek performans
avantajlar1 ve daha hizli 6grenme hizi ile uygulanabilir niteliktedir. Bu g¢aligma aracilifiyla,
geleneksel hiyerarsik 6grenme yontemleri ile daha is birligine dayali, kusaklar arasi yaklagim
arasinda bir koprii kurmak, hem kavramsal c¢er¢eveyi hem de derin Ogrenmenin pratik
uygulamalarini ileriye tagimak amaglanmaktadir. Bu ¢alisma, yapay zekanin gelisiminde biyolojik
esinli metodolojilerin potansiyelini vurgulayarak, yeni nesil sinir agt mimarilerinin tasarimi ve
uygulanmasi igin umut verici bir temel sunmaktadir. Ozellikle canli sistemlerde gozlemlenen
kusaklar aras1 bilgi aktarimi, adaptasyon ve is birligi mekanizmalarindan ilham alan bu yaklagim,
yapay Ogrenme siireclerine yeni bir boyut kazandirmaktadir. Bu yoniiyle ¢alisma, hem biyolojik
sistemlerin isleyisine dayali yapay 6grenme yaklagimlarinin etkinligini ortaya koymakta hem de

gelecekteki yapay zeka aragtirmalari i¢in yeni agilimlar sunmaktadir.

EXTENDED ABSTRACT

Deep learning has rapidly gained prominence in recent years due to its remarkable
performance and wide-ranging applicability across numerous domains. From image processing and
natural language processing to large-scale data analysis and internet search, deep learning has
revolutionized how machines learn and interact with complex data. At the heart of deep learning
methodologies lies the artificial neural network, a computational model inspired by the structure
and function of the human brain. These networks are typically composed of multiple layers hence
the term "deep" learning, which allow them to learn hierarchical representations of data. Each layer
transforms the input data into increasingly abstract and informative features, enabling the network
to capture intricate patterns and relationships. This multilayered structure, along with
advancements in computational power and the availability of large datasets, has significantly
contributed to the effectiveness and versatility of deep learning across various real-world
applications.These approaches are often categorized into two primary types: deep belief networks
(DBNs) (Le Roux & Bengio, 2008) and convolutional neural networks (CNNs) (Yuda et al., 2020).
DBNs are a fundamental, probabilistic, layered network model, while CNNs are multi-layered
networks with specialized convolutional layers designed for high-performance tasks like image
recognition. The convolutional layers in CNNs employ max pooling operations to extract
hierarchical features (O’Shea & Nash, 2015). Methods like statically organized initialization or
lightweight learning techniques have been proposed to optimize the training of such deeply layered
networks (Acharya et al., 2017). And the other neural network architectures must be used to make
more progress. Several computer vision and pattern recognition systems emphasize training a
hierarchy of features for visualization (Danuser, 2011).

Despite their success, Convolutional Neural Networks (CNNs) often suffer from large
network sizes, leading to high computational costs and prolonged training times. These limitations
can hinder their deployment in resource-constrained environments or real-time applications.
Moreover, while most CNN architectures focus on supervised learning, relying heavily on large
labeled datasets, there has been comparatively less emphasis on exploring unsupervised learning
techniques. Unsupervised methods, which do not require labeled data, hold significant potential for
reducing data annotation costs and improving model generalization, yet remain underutilized in
mainstream CNN development.Unsupervised methods like K-means (Ahmad & Dey, 2007),
PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021), and SOMNet (Hankins et al., 2018), have
been applied to deep learning, they remain underutilized compared to supervised learning
techniques.

Transfer learning has emerged as an effective technique to address the challenges of
training deep neural networks. It allows models trained on large, related datasets to be adapted for

smaller, domain-specific tasks, reducing the need for extensive computational resources and

VI

labeled data. This method has found wide application in fields such as computer vision and natural
language processing, enabling models to learn faster and achieve better performance (Pan & Yang,
2010). One approach within transfer learning, the teacher-student network, uses knowledge
distillation to transfer knowledge from a complex teacher model to a simpler student model,
enabling resource-constrained environments to benefit from high-performance models (Hinton,
Vinyals, & Dean, 2015).

While transfer learning and teacher-student frameworks emphasize efficiency and
scalability, they often overlook the potential of collaborative, intergenerational learning paradigms.
Drawing inspiration from the intergenerational transmission of knowledge in human and natural
systems.

In this work, a novel type of neural network hybridization approach based on the
relationships among sequential generations is introduced. The proposed hybridization topology is
called intergenerational interaction neural networks (IINNs). The hypothesis behind this method is
that “the presence of a guiding father model enables the son model to succeed quicker and better
than the others”. This philosophy can be extended by including incorporating additional ancestors,
such as grandfathers and great-grandfathers. Unlike the teacher-student model, the proposed
approach involves pre-trained father or ancestor models working together with the son model. In
both in training and application phases of the son neural network, father or ancestor parts do not
update their weight values. The proposed approach was implemented by using a Self-Organizing
Map (SOM) as the father and a Differential Convolutional Neural Network (DiffCNN) as the son.
In this configuration, the SOM serves as the guiding father, independently pre-trained before
connecting the son. The proposed NN by using the trained SOM during each training step of the
model, the encoded inputs from the SOM were used, and the flattened output was concatenated
with the encoded images before being passed through the fully connected layers. This adaptation
reduced the complexity of the convolutional layers while improving convergence speed and overall
performance.

The primary aim of this PhD Research is to propose and evaluate a novel hybrid neural
network the Intergenerational Interaction Neural Network SOMdiffCNN architecture, to enhance
the performance, convergence speed, and computational efficiency of deep learning models. By
the presence of a guiding father model enables the son model to succeed quicker and better than the
others reducing complexity, and achieving high accuracy on multiple image datasets. The work
also aims to demonstrate the effectiveness of this approach by comparing the proposed model’s
performance with existing state-of-the-art methods, such as DCSOM, DiffCNN, and CNN, across
various benchmark datasets. Through this work, the thesis seeks to advance the field of deep
learning by introducing a new, efficient approach to neural network training and model

deployment.

VII

The proposed model was tested on six widely used image datasets: MNIST,
Fashion MNIST, Birds, STL10, CIFAR-100, and CIFAR-10. Resulting in classification accuracy
values of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65% respectively. Moreover, the
model demonstrated significant performance improvements within the first 10 training epochs.
Experimental results indicate notable enhancements in both training and testing accuracy. For the
MNIST dataset, the model improved 10.62% in training accuracy and 6.53% in testing accuracy.
Similarly, for the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, the model recorded
accuracy improvements of 23.72% / 24.16%, 20.48% / 9.42%, and 62.48% / 50.92%, respectively.
Additionally, notable performance gains were observed on the Birds and STL-10 datasets, with
accuracy improvements of 26.92% / 31.14% and 10.21% / 15.03%, respectively. The proposed
model achieves faster convergence and significant performance improvements across multiple
datasets within the first 10 training epochs. The experimental results underscore the model’s ability
to achieve faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such
as CIFAR-10, Birds, and CIFAR-100 within the first 7 to 10 epochs. Maintaining strong
performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the
7th epoch, resulting in a 74% faster convergence. The results demonstrate that the SOMdiffCNN
outperforms existing methods such as DCSOM, DiffCNN, and CNN, achieving state-of-the-art
accuracy on all datasets.

The findings validate the hypothesis that leveraging generational interactions within neural
networks fosters a more efficient and effective learning paradigm. The intergenerational approach
not only advances the theoretical understanding of hybrid neural networks but also offers a
practical solution for enhancing model performance on challenging classification tasks.

This work contributes to the growing field of deep learning by presenting an innovative
hybrid architecture that combines unsupervised and supervised learning principles. The Father-Son
Network paradigm emphasizes the importance of leveraging intergenerational knowledge transfer
to build more efficient and adaptive neural networks. Future research may explore the scalability of
this framework, its applicability to other domains, such as natural language processing or time-
series data, investigating the inclusion of deeper ancestral structures and the integration of
additional hierarchical generational layers to further enhance performance. The developed topology
is applicable to medical image recognition, image recognition in the automotive industry with
better performance advantages, and real-time image recognition tasks such as automatic driving
systems with much faster learning speed.

By introducing this work, the aim is to bridge the gap between traditional hierarchical
learning methods and a more collaborative, intergenerational approach, advancing both the
conceptual framework and practical applications of deep learning. This study sets a promising
foundation for next-generation neural network architectures, highlighting the potential of

biologically inspired methodologies in advancing artificial intelligence.

VI

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my supervisor,
Prof.Dr. Mutlu AVCI, for their unwavering guidance, encouragement, and insightful feedback
throughout this research journey. Their expertise and mentorship have been invaluable in shaping
this work and my growth as a researcher, He was the source of inspiration and a supportive father
to me. I would also like to extend my sincere appreciation to the members of my supervisory
committee, Prof.Dr. Selma Ayse OZEL and Prof.Dr. Serdar YILDIRIM, for their constructive
suggestions and support, which significantly enriched the quality of this thesis.

I am deeply thankful to the faculty and staff of the Department of Computer Engineering
and Department of Biomedical Engineering at Cukurova University, whose expertise and
resources provided a robust foundation for my research. Their dedication and support created an
environment that enabled me to thrive academically and personally.

I extend my heartfelt gratitude to Asst. Prof. Mehmet SARIGUL for his invaluable
guidance and unwavering support throughout this journey. His encouragement and insights have
greatly contributed to the development of this work.

I am also profoundly thankful to the Ministry of High Education in Sudan and Al-
Geneina University for their support and for laying the initial foundation of my academic journey,
which enabled me to pursue advanced studies abroad.

A special thanks to my family for their unconditional love, patience, and encouragement,
which have been a constant source of strength and inspiration. To my friends thank you for being
my extended family, offering laughter, companionship, and support during the highs and lows of
this journey.

I am profoundly grateful to the YOK Scholarship Program in Tiirkiye, which afforded
me the incredible opportunity to pursue my Ph.D. in this beautiful country. Your financial and
academic support has been pivotal to my success, and I am deeply appreciative of the trust and
investment you placed in me.

Lastly, thank you to all who have contributed to my academic and personal journey in

ways both big and small. This thesis is as much a testament to your support as it is to my efforts.

IX

LIST OF TABLES

Table.2.1.

Table 3.1.

Table 3.2

Table 3.3

Table 3.4.

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6

Table 4.7

Table 4.8

Table 4.9

Table 4.10

Shows a Summary of the related WOTK.ccccveviieriieriienieiiececceeeeeee e 17
The structured representation of the SOMdiffCNN Model..........ccccovieveriiienineenene 69
The detailed structure of the DiffCNN modelccooveiiiieiiiieeeeeeee e 70
The Implemented CNN StrUCLUIE.ccveevvieriieriieriieeie et sreer e b eseees 71
The Architecture of Deep Convolutional Self-Organizing Map..........ccccceeverveeveennen. 73
Shows the dataset evaluationceoerieiierieere e 78

Shown the hyper-parameter settings for the proposed model used in all
CXPCTIITICNES ... eeeuvveeiereeeereeeteeestteesseeesereesssaeesseesssaeassseesssesassseesssessssseessseesnsesessseennsesanes 78

The accuracies of our proposed SOMdiffCNN comparisons on six different image

datasets are PreSENLEA.ccviiiiiieeeiie ettt ertee et e e sreeeteeesbeeebbeestaeesnbaeesebeeenraeenes 82
The accuracy of our proposed method comparisons with DiffCNN, CNN, and 89
DCSOM on MNIST datasets are presented.ooveeeeerieerieenieenienieeie e 89

Displays the accuracies of our proposed method compared to DiffCNN, CNN,

and DCSOM on CIFAR-10 datasets.cccceeeeierererieneneeieneetenesieeee et 89
Shown the accuracies of our proposed approach comparisons with DiffCNN,CNN,
and DCSOM on Birds datasets.cocceeevieririiniininieneiietesieeteeseeee et 89

Presentations the accuracies of our proposed method compared to DiffCNN,CNN,

And DCSOM on the STL10 datasets.cecceeeeeerienieierienierie ettt 90
Confirmations the accuracies of our suggested Method comparisons with DiffCNN,
CNN, and DCSOM on Fashion-mnist datasets are displayed.ccoeevvrvvrcreeniennen. 90
Displays the accuracies of our suggested method compared with DiffCNN, CNN, and
DCSOM on Cifarl00 datasets.ccecereeriereeieiere et see et ees 90
Optimized parameters for the MOdels.cceevvieviiiiieiiieci e 98

Sekil tablosu 6gesi bulunamadi.

LIST OF FIGURES

Figure 1.1
Figure 3.1
Figure 3.2.
Figure 3.3.
Figure.3.4.
Figure.3.5
Figure .3.6
Figure 3.7
Figure 3.9

Figure 3.10.

Figure 3.11

Figure.3.12.
Figure.3.13.
Figure 3.14.

Figure.3.15

Figure.3.16.

Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure.3.24
Figure 3.25
Figure 4.1
Figure 4.2
Figure 4.3.
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Demonstration of general research methodology progresscccveevveveerververcvennenns 6
Shows the Research Material and Methodology OVerviewcccceeeveveervenvennens 26
Shows MNIST datasets. The image is taken fromcccoecvevierciiiciiicienicsie e, 28
Shows Fashion-MNIST datasets the image is taken from............cccocvvevvevieiiencieanens 28
Shows Cifer-10 datasets the image is taken from...........ccceeveveieiciieciicieeniesee e, 29
Shows Bird datasets. The image is taken from............cccceeevierierciiiciieiieniesee e 29
Shows STL-10 datasets. The image is taken fromcccoccveveverciinciiiiieniesee e 30
Shows Cifer-100 datasets. The image is taken fromcccoeeeveiieiiienciencie e, 30
Shows the chart of the unsupervised learning modelcccceevviiiiiiiiiiienciee e, 34
Shows Teacher-Student Network Structure..........ccoceeveeiieiienieiieeieeeeeeee e 41
Shows the Gaussian neighborhood function before applyingccccoocvveecvveennennne. 45
Shows neuron neighborhoods and the most common SOM grids.........cccccoeeveenenneene. 48
Shows a 1-D SOM NEtWOTK, ocoviiiiiiiie e e e 48
Shows a 2-D SOM NEtWOTK, .eeiiiiiiiiiieeeec et 48
Shows the architecture of the SOM network and the connections between the input
and output fUNCHION TEZIONSeveeruieeiiieieeiieiteieerteerteeeite e ete et esteesseeseeesaeeeneeeseeneeas 48
Shows the difference between Manhattan Distance and Euclidean Distance 50
lustrates the progress of Deep Learning Models.c.ccccevevveviecienienienieeieeieenen, 55
A Convolutional Neural Network Architecture including...........cccocevevveviverieereennnenne, 56
Shows Convolutional AUtO-eNCOAETS.cecueruerierieriieienieeeeieeteete et 59
Showing DCSOM neural network architecture Diagram.............cceeveveereenvenineennens 60
Shows the available predefined filters for DiffEFCNN........ccooiieiiiciiiiiiciccee e, 62
Shows how the differential feature maps are determined.............cceevvveveevierienneenens 63
Shows Intergenerational Interaction Neural Network Architecturecccceeueeneene. 65
Showing the proposed neural network architecture Diagram..............cccevverveereannenns 66
Shows the father-son Network Structure..........cc.ccoooiiiiiiiiiiieeeeee e 68
SOMdiffCNN Model Accuracies for Birds Dataset.ccccceveerieineeieencenienieeiens 83
SOMdiffCNN Model Training Loss for Birds dataset.cccceeeevierciieeniienieeene. 83
SOMdiffCNN Model Accuracies for STL10 Dataset.cccoeceevieiiiiieinieniiiieeies 84
SOMdiffCNN Model Accuracies for STL10 Datasets.cccceeveeveeiieieenienernieeiens 84
SOMdiffCNN Model Accuracies for Fashion-mnist Dataset............ccccoeceeveerriieenenns 85
SOMdiffCNN Model Training Loss for Fashion-mnist datasets.cc.cccoceeveurenne 85
SOMdiffCNN Model Accuracies for Cifar100 dataset.ccoeceeveeeveeneereerieeienns 86
SOMdiffCNN Model Training Loss for Cifar100 Dataset...........ccceceeveenienerrieneinnns 86
SOMJiffCNN Model Accuracies for Cifarl0 Dataset.ccccoeceeveneeeeninienieneenene 87

XI

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20

Figure 4.21.
Figure 4.22.
Figure 4.23.
Figure 4.24.

SOMJiffCNN Model Training Loss for Cifarl0 Dataset..........cccoceveeveererieneneennnne 87
SOMdiffCNN Model Accuracies for MNIST Dataset.cccceeeeveererreeneneeneenieneenn 88
SOMJiffCNN Model Training Loss for MNIST Dataset.........ccccecceververineencneenene 88
Accuracy Comparison Results for Fashion-mnist Datasets............cccceceevenerieenenenee. 91
Loss Comparison Results for Fashion-mnist Datasets.ccccevveviencrencriecreenieennen. 91
Accuracy Comparison Results for MNIST Datasets.cccoevveveerveiieenieereeneeneneen 92
Loss Comparison Results for MNIST Datasets........ccceccveeveereevieesiesiesvenreereesseennens 92
Accuracy Comparison Results for Cifar10 Datasets.cccevveeveereenveecreerieesieesenenens 93
Loss Comparison Results for Cifarl10 Datasets.cccceeevieerievieenienienieereereeveennenn 93
Accuracy Comparison Results for Birds Datasets.ccccccveeveiiieriieiiiieeiieeeiee e, 94
Loss Comparison Results for Birds dataset.ccccceeveveeeiieenciieeniieciie e evee e 94
Accuracy Comparison Results for STL10 Datasets.ccccceeeeieeeriieicieeiiieesiee e, 95
loss Comparison Results for STL10 Datasets.cccceeeveeeviiercieeeriienieeeiieeeveeeieeenns 95
Accuracy Comparison Results for Cifar100 Datasets.cccceveeveirireiieenienieneene, 96
loss Comparison Results for Cifar100 Datasets.ccccceeceeeviierieenienienieeieeeeeieenenn 96

XII

SYMBOLS AND ABBREVIATIONS

SOM : Self-organizing map
CSOM : Convolutional Self-organizing map
DCSOM : Deep Convolutional Self-organizing map

Diff-CNN : Differential Convolutional Neural Network
Diff-CSOM : Differential Convolutional Self-organizing map

BP : Back Propagation

AE : Auto-encoder

DCAE : Deep Convolutional Aotu encoder
SVM : Support Victor Machine

2D : Two-Dimensional

DCNN : Deep Convolutional Neural Network
ACS : American Cancer Society

Adam : Adaptive moment estimation

Al : Artificial Intelligence

ANN : Artificial Neural Network

CNN : Convolutional Neural Network
Caps Net : Capsule Neural Network

MDS : Multi-Dimensional Scaling
ConvNet : Convolutional Neural Network
DBM : Deep Boltzmann Machine
SOMNet : Self-Organizing Map Neural Network
DBN : Deep Belief Network

BMU : Best Match Unit

PCA : Principle Component Analysis
DL : Deep Learning

RGB : Red Green Blue

DNN : Deep Neural Network

LSTM : Long-Short-Term Memories

EL : Ensemble Learning

GPU : Graphical Processing Unit

GRU : Gated Recurrent Unit

HPC : High-Performance Computing
ML : Machine Learning

DNA : Deoxyribonucleic acid

NLP : Natural Language Processing

X1

RelLU
RNN
UL
UAE
SGD
GAN
ResNet
CSAE
DDoS
MSE
BIRCH
3D
LOG
LBP
PIL
API
RMSProP :
RAM

: Restricted Boltzmann Machine

: Rectified Linear Unit

: Recurrent Neural Network

: Unsupervised Learning

: Unsupervised Auto encoder

: Stochastic Gradient Descent

: Generative adversarial Network

: Residual Networks

: Classification Supervised Auto encoder
: Distributed Denial of Service attack

: Mean Squared Error

: Balanced Iterative Reducing and Clustering Hierarchy Algorithm
: Three Dimensional

: Laplacian of Gaussian

: Local Binary Patterns

: Python Imaging Language

: application programming interface

Root Mean Square Propagation

: Random Access Memory

X1V

1. INTRODUCTION

Deep learning is becoming increasingly popular across the world, and many applications
based on it are being developed. It is used in image processing, natural language processing, large da
analysis, internet search, and other areas.

Practically all deep learning approaches include a deeply layered neural network. Deep
learning methods are typically divided into two categories: deep belief networks (DBNs) (Le Roux
& Bengio, 2008), and convolutional neural networks (CNNs) (Yuda et al., 2020). The deep belief
network (DBN) is a basic, layered network with probabilistic neurons as hidden units. The
convolutional neural network (CNN) is a multilayer network with a convolution layer between
neural network layers. The neural network output is processed by the max pooling operation in the
convolution layer (O’Shea & Nash, 2015). To properly train the deeply layered network, the
network is initialized using the statically organized methodology or the lightweight learning method
in both methods (Acharya et al., 2017). As I said before, these methods are nearly well-established
and have been applied to commercial applications. And the other neural network architectures must
be used to make more progress. Several computer vision and pattern recognition systems
emphasize training a hierarchy of features for visualization (Danuser, 2011).

The vast majority of deep convolutional neural network (CNN) designs currently in use are
designed to gain supervision features, while only a few methods for learning without supervision
have evolved. To comprehend the fundamental framework of data, traditional unsupervised
learning of features algorithms (Reis & Housley, 2022) nearly exclusively concentrate on using the
accessibility of unlabeled data from training images. The Self-Organizing Map (SOM) learning
method (Giraudel & Lek, 2001; Kohonen et al., 1996) stands out as one of the many remarkable
learning methods that utilize neighborhood functions to master the structure of the high-
dimensional data space.

In contrast to supervised CNN structures, unsupervised deep convolutional neural networks
receive less attention. Similar to Gabor filters (Joni-Kristian Kédmaérdinen, 2003), orientation-
sensitive filters are learned through sparse coding and unsupervised learning from natural images
(Nguyen-Phuoc et al., 2019). A variety of unsupervised deep learning methods, such as K-means
(Trevino, 2016), PCANet (Chan et al., 2015), ScatNet (Feng et al., 2021), and SOMNet (Hankins et
al., 2018), are available to design a simple deep network.

Developing algorithms that can solve problems computationally is one of the primary
objectives of the discipline of computer engineering. Such algorithms have been developed in a
major way by human intelligence. However, there are problems whose solutions appear to exceed
the capabilities of human intelligence. Additionally, some problems are simple for people to
resolve but difficult to express formally. These problems are frequently referred to together with

the name artificial intelligence (“Artificial Intelligence Abstracts,” 1987).

Differential convolutional neural networks are the fundamental building block of deep
learning systems is the process of convolution, which is carried out by swiping several filters over
the input image. It offers the ability to extract visual patterns from the supplied image. As a result,
the more feature maps the structure produces, the more characteristics the classifier gathers (Sarigiil
etal., 2019).

Through a different deviation computation, differential convolution maps are utilized to
examine the directional patterns within pixels and the areas surrounding them. It's important to note
that in mathematical differentiation, the sequence change is taken into account by figuring out how
different the pixel activations are from one another (Qu et al., 2020). A technique to explore the
Diff-CNN is to merge differential calculus theories with convolutional neural networks (CNNs)
(Sangiil et al., 2019). It refers to a neural network that incorporates differential calculus in its
convolutional layers or during the training process (Sarigiil et al., 2019). This approach can create a
neural network that adjusts its parameters in real time according to the input data or shifts in the
data distribution.

The differential convolutional neural network aims to transfer feature maps containing
directional activation differences to the next layer. This technique takes the idea of how convolved
features change on the feature map into consideration (Abd El Kader et al., 2021; Sangiil et al.,
2019). In a sense, this process adapts the mathematical differentiation operation into the
convolutional process. This property increases the classification performance without changing the
number of filters.

Also, the benefit of differential convolution is the ability to extract more features without
adding more convolutional layers by raising the depth of a single convolutional layer. An
additional convolution is performed using a differential convolutional layer without the use of any
additional trainable parameters (Lei et al., 2018; Sarigil et al., 2019).

When compared to conventional CNNs, differential CNNs use pre-defined
hyperparameters and differential operators to produce feature maps utilizing normal convolutional
feature maps (Qu et al., 2020; Lei et al., 2018).

By performing further modifications to the quantity math calculations, differential
convolution assesses the pattern direction of each pixel and its neighbors. Computing the difference
between pixel activations allows for an evaluation of successive changes (Sarigiil et al., 2019).

Transfer learning is a machine learning technique where a model developed for a particular
task is reused as the starting point for a model on a second, related task. This approach leverages
the knowledge learned from a pre-trained model, typically trained on a large dataset, and fine-tunes
it for a smaller, domain-specific dataset, thereby reducing the need for extensive computational
resources and large amounts of labeled data. It is widely used in fields such as natural language
processing and computer vision, enabling faster training and often yielding higher accuracy for

specialized tasks (Pan & Yang, 2010).

A teacher-student network is a framework in machine learning where a large, complex
model (teacher) guides the training of a smaller, simpler model (student). The teacher model,
typically pre-trained, provides soft labels or logits that encode richer information about the data
distribution compared to hard labels. The student learns to mimic the teacher's predictions,
achieving comparable performance with reduced computational resources and model size. This
technique, also known as knowledge distillation, is widely used to compress deep neural networks
for applications in resource-constrained environments (Hinton, Vinyals, & Dean, 2015).

In this PhD thesis, a novel type of neural network hybridization approach based on the
relationships among sequential generations is introduced. The proposed hybridization topology is
called intergenerational interaction neural networks (IINNs) .The hypothesis behind this method is
that “the presence of a guiding father model enables the son model to succeed quicker and better
than the others”. This philosophy can be extended by including incorporating additional ancestors,
such as grandfathers and great-grandfathers. Unlike the teacher-student model, the proposed
approach involves pre-trained father or ancestor models working together with the son model. In
both in training and application phases of the son neural network, father or ancestor parts do not
update their weight values. The proposed approach was implemented by using a Self-Organizing
Map (SOM) as the father and a Differential Convolutional Neural Network (DiffCNN) as the son.
In this configuration, the SOM serves as the guiding father, independently pre-trained before
connecting the son. The proposed NN by using the trained SOM during each training step of the
model, the encoded inputs from the SOM were used, and the flattened output was concatenated
with the encoded images before being passed through the fully connected layers. This adaptation
reduced the complexity of the convolutional layers while improving convergence speed and overall
performance. The results demonstrate that the SOMAiffCNN outperforms existing methods,
achieving state-of-the-art accuracy on all datasets. By introducing this work, the aim is to bridge
the gap between traditional hierarchical learning methods and a more collaborative,
intergenerational approach, advancing both the conceptual framework and practical applications of

deep learning. And all the implementations were executed in PYTHON environments.

1.1. Research Description

This thesis introduces a novel neural network hybridization approach called
Intergenerational Interaction Neural Networks (IINNs), inspired by the concept of intergenerational
knowledge transfer. The model leverages that “the presence of a guiding father model enables the
son model to succeed quicker and better than the others”. This philosophy can be extended by
including incorporating additional ancestors, such as grandfathers and great-grandfathers. Unlike
the teacher-student model, the proposed approach involves pre-trained father or ancestor models
working together with the son model. In both in training and application phases without updating

its weight values.

The hybrid architecture, termed SOMDIffCNN, integrates a pre-trained Self-Organizing
Map (SOM) as the father network and a Differential Convolutional Neural Network (DiffCNN) as
the son network. The SOM, trained independently, provides encoded outputs that are concatenated
with image features and fed into the DiffCNN. This structure reduces convolutional layer
complexity, leading to faster convergence and improved performance.

The thesis evaluates the SOMDIff-CNN model across six different datasets datasets:
MNIST, Fashion-MNIST, Birds, STL10, CIFAR-10, and CIFAR-100. Results demonstrate
superior classification accuracy, faster convergence, and reduced training complexity compared to
existing methods such as Deep Convolutional Self-Organizing Maps (DCSOM), Differential CNNs
(DiffCNN), and standard CNNs. Key achievements include significant performance improvements
within the first 10 training epochs, achieving up to 84% faster convergence and state-of-the-art
accuracy across all datasets.

This research advances the field of deep learning by proposing a novel intergenerational
learning framework, bridging traditional hierarchical learning models and collaborative multi-
generational approaches. The developed methodology holds significant potential for applications in
real-time image recognition tasks, such as autonomous driving, medical imaging, and the

automotive industry.

1.2. The Research Goal

The primary aim of this PhD research is to propose and evaluate a new hybrid neural
network the Intergenerational Interaction Neural Network SOMdiffCNN architecture, to enhance
the performance, convergence speed, and computational efficiency of deep learning models. The
presence of a guiding father model enables the son model to succeed quicker and better than the
others achieving high accuracy on multiple image datasets. The research also aims to demonstrate
the effectiveness of this approach by comparing the proposed model’s performance with existing
state-of-the-art methods, such as DCSOM, DiffCNN, and CNN, across various benchmark datasets.
Also, this research aims to bridge the gap between traditional hierarchical learning methods and a
more collaborative, intergenerational approach, advancing both the conceptual framework and
practical applications of deep learning. Through this work, the research seeks to advance the field
of deep learning by introducing a new, efficient approach to neural network training and model

deployment.

1.3. Research Outline

The thesis follows a general methodology illustrated in Figure 1.1 and

comprises six chapters:

Chapter 1: This chapter presents a summary of the research, including an

introduction to the Study and its objectives. It also outlines the structure

and key components of the Thesis.

Chapter 2: This chapter presents a comprehensive overview of relevant literature,

including Academic journals, conference proceedings, and thesis.

Chapter 3: This chapter provides an overview of the research material and

Chapter 4:

methodology, Including datasets, data preprocessing, supervised and
unsupervised learning, classification Analysis, statistical analysis
methods Such as Euclidean and Manhattan distance, ensemble
learning, Teacher-Student Network, deep learning Techniques such as
SOM, CNN, DCAE, DiffCNN, DCSOM, and SOMdiffCNN. We also
discuss the Implementation and tuning steps for these Methods, as well
as software Environment implementation and utilization of Hardware
and frameworks, The Structured Models, and the Evaluation Metrics
used in the Thesis.

In this chapter, we will discuss and conclude the results of the proposed
method, SOMdiffCNN. We will evaluate these methods on six image
datasets and compare it with the results of other deep learning methods,
namely DCSOM, CNN, and DiffCNN. The purpose of this comparison
is to determine the effectiveness of the accuracy performance of these

methods.

Chapter 5: This chapter provides a brief overview of the key findings, conclusions,

Chapter 6:

and recommendations of the study.

This chapter contains the references and appendices used in this research

Research Methodology Progress

— T | |
Features
Extraction

- Cifarl0 - Normalization SOM - SOMdiffCNN - Image
-Cifar100 between [0, 1] - DiffCNN Prediction
- Bird - Data-spilt 80% - CNN
- STL10 and 20% for training - DCSOM
- Fashion MNIST and testing
- MNIST respectively

Figure 1.1 Demonstration of general research methodology progress(Source: created by
the author)

2. PRELIMINARY WORK

Several studies have explored the concept of the hybrid networks for optimizing neural
network training and deployment. One significant contribution by Hinton et al. (2015) introduced
the concept of knowledge distillation, where the soft outputs from the teacher network are used as
additional training signals for the student. This approach demonstrated how smaller networks could
achieve comparable performance to larger ones while requiring less memory and computational
power. Another study by Romero et al. (2014) extended this idea by introducing FitNets, where
intermediate representations from the teacher network were also used to guide the student. This
method allowed deeper but thinner student networks to be trained effectively, highlighting the
adaptability and scalability of the teacher-student framework.

Another notable work in the teacher-student paradigm was conducted by Yim et al. (2017),
who introduced a method called flow-based knowledge distillation. Instead of using only output
logits, this approach focused on transferring the flow of activation maps between layers of the
teacher and student networks. By capturing and mimicking the relationships between these layers,
the student was able to gain a more comprehensive understanding of the learning process.
Furthermore, Zagoruyko and Komodakis (2016) explored attention-based transfer, where the
attention mechanisms of the teacher model were distilled to the student, further enhancing
performance in tasks such as image classification and object detection.

Recent developments in transfer learning have been driven by advancements in pre-trained
deep learning architectures. The introduction of models such as ResNet (He et al., 2016) and BERT
(Devlin et al., 2019) has transformed the landscape by enabling the transfer of powerful, general-
purpose feature representations to a wide range of tasks. These models, trained on large datasets
like ImageNet or massive corpora of text, significantly reduce the time and resources required for
training on new tasks.

In computer vision, models such as EfficientNet (Tan & Le, 2019) have refined transfer
learning by balancing performance and computational efficiency. Techniques like fine-tuning and
feature extraction are commonly used to adapt these pre-trained models to specific tasks. In NLP,
transfer learning has seen groundbreaking progress with transformer-based models like GPT
(Radford et al., 2018) and its successors. These models leverage unsupervised pretraining on
extensive text data followed by supervised fine-tuning on task-specific datasets, achieving state-of-
the-art results across a wide array of applications.

A seminal contribution to transfer learning was made by Bengio et al. (2012), who
highlighted the power of unsupervised pretraining in deep learning models. This foundational work
demonstrated how features learned from large-scale datasets could be fine-tuned to address
domain-specific tasks with fewer resources. Yosinski et al. (2014) further explored this concept by

analyzing the transferability of features across layers in convolutional neural networks (CNNs).

Their findings revealed that lower-layer features are more general and transferable across tasks,
while higher-layer features are task-specific and require fine-tuning for optimal performance.

Another key advancement in transfer learning was the introduction of domain adaptation
techniques (Pan & Yang, 2010). These methods aimed to align feature distributions between the
source and target domains, enabling effective knowledge transfer even when the two domains
differ significantly. This concept laid the foundation for many modern transfer learning approaches
used in applications such as image classification, natural language processing (NLP), and speech
recognition.

There are a variety of traditional approaches that may be used to map or project high-
dimensional datasets into a two-dimensional space to see the distribution of huge data sets. Such a
technique is known as multidimensional scaling (MDS) (Torgerson, 1952; Leeuw & Heise, 1982),
and its frequently used variation is called Sammon's projection (Sammon, 1969). These traditional
techniques and their mappings take a long time since they require a lot of processing for huge data
sets.

Hiba Mzough et al. developed an efficient 3D CNN model using differential operators in
the differential deep-CNN architecture for glioma brain tumor classification using T1-Gado
magnetic resonance sequences. The model merges local and global contextual information with
reduced weights. The model uses intensity normalization and adaptive contrast enhancement to
control heterogeneity and uses data augmentation for successful training. The model outperforms
other models, achieving an overall accuracy of 96.49% using the validation dataset (Abd El Kader
etal., 2021).

A study by researchers at Hebei University of Technology and the University of Pittsburgh
has developed a differential convolutional neural network (differential-CNN) to automatically
identify six fetal brain standard planes (FBSPs) from non-standard planes. The study aims to
overcome difficulties in detecting fetal brain tissue features due to the non-mature nature of fetal
brain tissue and limited labeled image data due to high collection costs. The differential-CNN
framework uses differential operators to derive additional feature maps from the original CNN
without increasing the number of convolution layers and parameters. The results showed an
accuracy of 92.93% in identifying FBSPs from 30,000 2D ultrasound images from 155 fetal
subjects aged 16 to 34 weeks. The study demonstrates that differential-CNN can be used for
automated identification of FBSPs (Qu et al., 2020).

Sarigiil et al. introduce a new convolution technique called Differential Convolution and an
updated error back-propagation algorithm, which considers directional changes among a pixel and
its neighbors. It improves standard convolution by extracting pattern orientation. The technique
was tested on four different experiment sets, showing improved accuracy in the first set the
differential convolution technique increased the accuracy value up to 55.29%. The technique

outperformed traditional convolution and other compared convolution techniques, demonstrating

its efficiency and adaptability to different convolutional structures. This suggests that differential
convolution can be used to improve popular deep learning models (Sarigiil et al., 2019).

Wang et al .presents a hybrid differential evolution (DE) algorithm called DECNN, which
aims to automatically evolve the structures and parameters of deep convolutional neural networks
(CNNs) for image classification. The DECNN method refines an existing effective encoding
scheme for variable-length CNN architectures, develops new mutation and crossover operators for
variable-length DE to optimize hyper parameters, and introduces a second crossover to evolve the
depth of CNN architectures. The method is tested on six widely-used benchmark datasets and
compared to 12 state-of-the-art methods. The DECNN method outperforms IPPSO in terms of
accuracy, demonstrating the potential of DE for improving efficiency in designing deep CNNs. The
authors propose refining the existing effective encoding scheme used by IPPSO to break the
constraint of predefining the maximum depth of CNNs, designing and developing new mutation
and crossover operators for the DECNN method, and integrating a second crossover operator to
produce children representing CNN architectures with different lengths. The DECNN method is
competitive to state-of-the-art algorithms and outperforms IPPSO in terms of accuracy (Wang et
al., 2020).

A study investigated the anti-cancer effects of nutritional components on lung cancer cell
lines A549 and HLC-1. Results showed that iron treatment inhibited A549 cell growth, while
ferroptosis may correlate with cancer cell death. Asiaticoside, a natural compound, showed anti-
inflammatory, antioxidant, neuroprotective, and wound-healing properties. A CNN model was used
to differentiate between sarcoidosis and lymphoma. A study on asthmatics found age and annual
concentration of PAHs as independent factors for the annual decline of FEV1. Understanding the
impact of air pollutants on lung function and asthma is crucial (“P3-1: Differential Model of the
Deep Convolutional Neural Network between Sarcoidosis and Lymphoma in 18F-FDG-PET/CT,”
2021).

Openshaw & Turton discusses the development of Kohonen net-based methods for large
spatial dataset classification on a 256 processor Cray T3D parallel supercomputer. The paper aims
to reduce multivariate complexity in census data by utilizing the power of the seventh fastest
supercomputer. The Kohonen self-organizing map type of unsupervised neural network offers the
best levels of performance, as demonstrated by an empirical evaluation of various classifiers. The
paper demonstrates the potential of this new type of spatial classification technology for improving
the classification of 1991 Census data for Britain (Openshaw & Turton, 1996).

Kaski et al. created a new SOM-based methodology. This approach, known as WEBSOM,
is designed specifically for investigating large document collections. Textual documents are
organized on a map, which contains capabilities that are helpful for searching across large
document collections. The main goals of this study are to decrease the order of magnitude of an

application for processing massive document collections, discover a new technique for creating

statistical models of documents, discover some "shortcuts" for the SOM algorithm, such as
enhancements to the quick creation of large document maps, adopt a different map-initialization
technique, and implement a different winner-searching technique (Kaski et al., 1998).

Jaakko Hollmén et al. presents a general framework for learning Self-Organizing Maps,
which store probabilistic models in map units. The authors show that minimizing the Kullback-
Leibler distance between the unknown true generator of data and empirical models minimizes the
negative log probability of the data with the empirical model. The framework is applied to learning
multiple user profiles from calling data from a mobile communications network and can be used
for fraud detection (Jaakko Hollmén et al., 1999).

Authors Lawrence et al. describe a hybrid neural network solution for face recognition that
combines local image sampling, a self-organizing map neural network, and a convolutional neural
network. This technique can quickly classify data and just needs quick normalization and
preprocessing. It consistently performs better in classification than the eigenfaces technique.
Without taking into account invariance to high degrees of rotation or scaling, the research focuses
on recognition with variable facial detail, expression, and stance. The authors investigate
geometrical feature-based face identification techniques using the ORL database, which contains a
collection of faces taken between 1992 and 1994 (Lawrence et al., 1997).

The Self-Organizing Map (SuSi) Python package was introduced by Riese et al., 2019,
offering supervised regression and classification for hyperspectral data. SOMs, a weakly
represented artificial neural network, are used in unsupervised learning but rarely in supervised
learning. The SuSi framework is the first Python package to provide both unsupervised and
supervised SOM algorithms for easy usage. It can perform on small and large datasets without
significant overfitting. The training process includes initialization, random input data points, best-
matching units, learning rate, neighborhood function, and weight matrix modification (Riese et al.,
2019).

Li Yuan from the University of Rhode Island has submitted a Master's Theses on
implementing Self-Organizing Maps (SOMs) with Python. The project aims to provide Python
users with the advantages of the POPSOM package, which can perform functionality beyond model
construction and visualization. The study includes migrating the POPSOM package from R to
Python, refactoring the source code, and improving the package by adding normalization options.
FORTRAN is also embedded to accelerate model construction. The study was a collaborative effort
with several committee members, including Dr. Lutz Hamel, Dr. Natallia Katenka, Dr. Austin
Humphries, Dr. Orlando Merino, Lorraine Berube, and the author's family (Digitalcommons@uri
& Yuan, 2018.).

Adam Coates and Andrew Y. Ng from Stanford University have studied K-means
clustering as a fast alternative training method for learning deep hierarchies of features from

unlabeled data, particularly images. The authors discuss recent results and technical tricks needed

10

for effective use of K-means clustering for large-scale representations of images. They connect K-
means to other well-known algorithms to clarify when K-means can be most useful and convey
intuitions about its behavior for debugging and engineering new systems. K-means is useful for
learning features due to its speed and scalability, but sparse coding is a better performer in many
applications (Coates & Ng, 2012).

Zhao & Zhang introduces a new background modeling method called the stacked
multilayer self-organizing map background model (SMSOM-BM), which enhances representative
ability and automatic parameter learning for complex scenarios. The method uses deep learning to
extend the existing single-layer self-organizing map background model, resulting in a strong
representative ability and automatic determination for most network parameters. It also introduces
an over-layer filtering process for efficient layer-by-layer training. Implemented using the NVIDIA
CUDA platform, the method shows superior performance in real-time performance. Background
modeling is crucial for motion detection tasks and modern video surveillance applications (Zhao &
Zhang, 2015).

Aly & Aly introduces a deep learning framework for recognizing gestures in Arabic sign
language, regardless of the signer this framework employs hand semantic segmentation, hand shape
feature representation, and deep recurrent neural networks. For semantic segmentation,
DeepLabv3+ is utilized, while CSOM is used for hand-shape features. The Bi-directional Long
Short-Term Memory (BiLSTM) recurrent neural network is responsible for recognizing the
sequence of extracted feature vectors. This framework surpasses current methods for a signer-
independent testing strategy, effectively addressing challenges in hand segmentation, hand shape
feature representation, and sequence classification in sign language recognition systems (Aly &
Aly, 2020).

Convolutional neural networks (CNN) have been developed in a variety of forms to take
advantage of different image modification methods using unsupervised learning. The authors Chan
et al.(2015), applied the Principle Component Analysis (PCA) algorithm to learn various filter bank
levels and, by cascading this operation, developed a straightforward deep neural network
architecture (Chan et al., 2015).

The authors (Tan et al., 2005). Propose a local probabilistic approach to face recognition
techniques, extending template-based methods. It utilizes the SOM rather than Gaussians to learn
the subspace representing each individual. Two strategies are suggested: one involves training a
single SOM map for all samples, while the other involves training a separate SOM map for each
class. Additionally, a soft nearest neighbor ensemble method is proposed to identify unlabeled
subjects. The proposed method demonstrates highly robust performance against partial occlusions
and varying expressions. Face recognition technology can be applied in surveillance, information

security, access control, smart cards, and law enforcement. (Tan et al., 2005).

11

Hankins et al. suggested SOMNet, an unsupervised approach to image classification using
SOM-centered filters to train a collection of non-orthogonal filters, through the discretized
representation of neurons. This non-orthogonal alternative to PCANet delivers similar
performance. But does not suffer from the same constraints. The authors show that a simple
adjustment in the binarization process decreases the dimension of the final feature vector, leading
to more filters and deeper structures. They also demonstrate a hybrid method that uses generative
Markov random fields as filters for clustering, offering further diverse features in a data-driven
deep-learning methodology. (Hankins et al., 2018).

Almabdy & Elrefaei's paper examines the performance of a pre-trained CNN combined
with a multi-class support vector machine (SVM) classifier and transfer learning, using the
AlexNet model for face recognition. The research focuses on CNN architectures that have achieved
top results in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), including
AlexNet and ResNet-50. The findings reveal that the CNN model outperformed most advanced
models in accuracy, achieving an accuracy range of 92% to 94% across various databases, and
demonstrating up to a 39% improvement in recognition accuracy. (Almabdy & Elrefaei, 2019).

Aly et al., a revised version of the hypercolumn model (HCM) network is introduced to
enhance face recognition accuracy. The HCM network is structured hierarchically, inspired by self-
organizing maps and the visual cortex. The proposed method suggests a change in the feature
extraction layer, with a variable dimension for each map, and the quantity of neurons in each map
is determined through automated analysis of the training data. This improved HCM network
addresses three key issues: dimensionality reduction, invariance, and network parameters. The
ORL face database was used to demonstrate the efficacy of this model, which outperformed both
neurocognition and standard models (Aly et al., 2008).

The author introduces an enhanced version of the deep SOM algorithm, known as
Extended-DSOM, which enhances the learning algorithm by making it completely unsupervised
and modifying the architecture to capture features at various resolutions in the hidden layers. The
E-DSOM offers improved classification accuracy, generalization capability, and reduced training
time. It outperforms DSOM in classification accuracy by up to 15% and reduces training time by
up to 19% across all datasets. The study focuses on exhausting SOMs as an unsupervised deep-
learning methodology for image classification, overcoming limitations in high-level feature
abstraction because of their shallow structure (Wickramasinghe et al., 2019).

This paper presents a parallelizable Deep Self-Organizing Maps (PD-SOM) framework for
image classification, designed to enhance the computational efficiency of DSOMs while preserving
their performance. The PD-SOM framework provides three key benefits: unsupervised learning for
image classification, advanced feature abstraction, and reduced computational expense during
training, all while achieving high accuracy. It was tested on the MNIST handwritten digit dataset to

maximize accuracy using unlabeled data in a computationally efficient way. Despite its

12

computational demands, PD-SOMs demonstrate notable accuracy improvements over conventional
SOMs. (Wickramasinghe et al., 2017).

The rapid expansion of autonomous industrial environments has heightened the demand for
advanced video surveillance, especially for detecting complex human movements. While current
methods rely on supervised deep learning for human activity recognition (HAR), they face
challenges with unlabeled video streams. This article introduces a novel adaptation of the Growing
Self-Organizing Map (GSOM) to overcome these limitations. The new approach integrates
traditional deep learning concepts, incorporates hierarchical and multi-stream learning, and features
a transience property within the algorithm. The effectiveness and applicability of this model are
validated through tests on three benchmark video datasets (Rashmika Nawaratne et al., 2020).

Aly et al discuss the usage of Gabor-based face representation for face recognition, which
requires large amounts of data. The authors propose a nonlinear projection method using self-
organizing maps, utilizing the Multiple Self-Organized Gabor Features (MSOGF) process to
symbolize the input image. A novel local matching algorithm is introduced for classifying
unlabeled data. The proposed system employs multiple SOMs to understand the distribution of GF
with a MAX filter applied to handle local distortion. A self-organizing map (SOM) is trained using
Gabor features. The Local Similarity Matching (LSM) algorithm compensates for local feature
changes using a Gaussian function (Aly et al., 2010).

Aly & Tsuruta introduce a novel face recognition approach utilizing hierarchical self-
organized Gabor features (HSOGF) as a feature extractor. The HSOGF method uses Gabor
wavelets, which are resilient to changes in illumination, rotation, and scale, to capture nonlinear
data and represent it in a compact feature space. The method uses two-layer self-organizing maps
(SOM) to construct a feature map from Gabor filters at each position in the image, reducing
computational complexity while maintaining recognition accuracy. The paper discusses setting
filter parameters in Gabor filters, including orientation, Gaussian radius, aspect ratio, and a
biologically motivated MAX filter to reduce feature shifting in the Gabor response image (Aly &
Tsuruta, 2009).

Kulak et al. offer a comprehensive perspective on SOMs and Stochastic Neighbor
Embedding (SNE). As data visualization techniques. Both algorithms can result from a common
scientific context and can be quantitatively compared on different datasets. The study demonstrates
that SOMs adjust neuron weights while keeping points fixed in the 2D space, whereas SNE
maintains fixed neuron weights and optimizes point positions. SNE serves both as a visualization
tool and a data representation method. The study anticipates that integrating these algorithms will
pave the way for future research that capitalizes on their respective strengths. (Kulak et al., 2022).

Wang et al. introduce a novel deep supervised quantization approach utilizing SOMs to
address the Approximate Nearest Neighbor (ANN) search problem in multimedia and computer

vision. The method combines CNN and SOMs into a single deep architecture, aiming to reduce

13

discrepancies between similar and dissimilar image pairs. It extracts deep features and quantizes
them into appropriate nodes within the SOM. Experiments on publicly available standard datasets
demonstrate the method's superiority over current ANN search methods, and it can be easily
adapted for classification and visualization tasks with minimal modifications. (Wang et al., 2019).

The authors Sakkari & Zaied, introduce a new Unsupervised DSOM algorithm for feature
extraction, which is akin to existing multi-layer SOM architectures. This algorithm includes a
splitting process, alternating self-organization layers, a ReLU rectification function, and an
abstraction layer that combines convolution and pooling. The self-organizing layer comprises
multiple maps, each targeting a local sub-region of the input image. The most active neurons are
organized into a second sampling layer to form a new 2D map. ReLU is applied multiple times,
altering the size of the splitting window and the displacement step on the reconstructed input image
each time. (Sakkari & Zaied, 2020).

Aly & Almotairi suggested a new deep unsupervised network called DCSOM for robust
handwritten digit recognition. The network employs a series of convolutional SOM layers trained
one after another to capture multiple levels of features. The ND-SOM grid uses a competitive
learning algorithm to extract abstract visual features. The topological arrangement of features helps
manage local transformations and deformations in visual data. Experiments with the MNIST
handwritten digit database demonstrate that DCSOM outperforms current state-of-the-art methods
in handling noisy digits and other image variations. (Aly & Almotairi, 2020).

Sakkari et al. present a deep self-organizing map model (Deep-SOMs) designed for
automated feature extraction and classification from large-scale data streams. The model is based
on abstraction, allowing patterns to be extracted from raw data. It includes three hidden self-
organizing layers, along with input and output layers, each with multiple SOMs. The model is
distinguished by its unique layer architecture, SOM sampling method, and learning approach. It has
been validated on large datasets like the Leukemia dataset and SRBCT, outperforming many
existing algorithms for image classification. The model is implemented in a distributed architecture
in Map Reduce model and Spark (Sakkari et al., 2017).

Split-brain autoencoders are a modified version of the traditional autoencoder architecture
used for unsupervised representation learning. These sub-networks extract features from input
signals by predicting data channels from one another. They achieve cutting-edge performance on
extensive transfer learning benchmarks, allowing for improved transfer to new tasks. Traditional
autoencoder models have not demonstrated strong representations for transfer tasks due to their
abstraction mechanisms. This work introduces an architectural modification to the autoencoder
paradigm, resulting in two separate, concatenated sub-networks trained as cross-channel encoders
(Zhang et al., 2017).

The autoencoder (AE) is a key method for anomaly detection, but its ability to distinguish

anomalies through reconstruction errors is limited in unsupervised cases. To address this, three new

14

methods are introduced: cumulative error scoring (CES), percentile loss (PL), and early stopping
via knee detection. These methods show significant improvements over conventional AE training
on image, remote-sensing, and cybersecurity datasets. Unsupervised anomaly detection is crucial in
various domains, and these methods prevent AEs from generalizing anomalies across applications,
enhancing their reliability in unsupervised DAD (Merrill & Eskandarian, 2020).

Zhu & Zhang introduce a new classification supervised autoencoder (CSAE) based on
predefined evenly distributed class centroids (PEDCC) to learn complex data distributions. The
method uses PEDCC of latent variables to train the network, ensuring maximum inter-class
distance and minimization of inner-class distance. The authors propose a new loss function that
combines the loss function of classification and encoding, decoding, classification, and model
generalization performance. The main contributions include the PEDCC, which combines
classification and autoencoder, and the wavelets loss function, which improves image quality by
combining traditional pattern recognition methods. Future research should focus on improving
autoencoder accuracy in incremental learning. (Zhu & Zhang, 2019).

Xuejun Zhang et al. propose a novel DDoS attack detection method that trains detection
models in an unsupervised learning manner using preprocessed and unlabeled normal network
traffic data. The technique uses the Balanced Iterative Reducing and Clustering Using Hierarchies
algorithm (BIRCH) to pre-cluster the normal network traffic data and explores an autoencoder
(AE) to build the detection model in an unsupervised manner based on the cluster subsets.
Experiments on benchmark network intrusion detection datasets KDDCUP99 and UNSWNBI5
were conducted to verify the performance of the method. The results showed that the proposed
method achieves better performance in terms of detection accuracy rate and false positive rate
compared to state-of-the-art models using supervised learning and unsupervised learning. (Xuejun
Zhang et al., 2022).

Chen et al. introduces context autoencoder (CAE), a novel masked image modeling (MIM)
method, for unsupervised learning. They randomly divide the image into two sets: visible patches
and masked patches, in order to improve the encoding quality. From visible patches to masked
patches, they make predictions in the latent semantic representation space. For the purpose of
designing an unsupervised feature learning network for hyperspectral classification (Chen et al.,
2022).

The article "Unsupervised Feature Learning by Autoencoder and Prototypical Contrastive
Learning for Hyperspectral Classification" by Cao, Li, and Zhao discusses the growing popularity
of unsupervised learning methods for feature extraction. The authors combine traditional
contrastive learning and autoencoder to create an unsupervised feature learning network for
hyperspectral classification. The proposed network outperforms other comparison methods,

maintaining fast feature extraction speed and reducing computing resource requirements. The

15

authors also note that their method separates feature extraction and contrastive learning, allowing
more researchers to conduct research on unsupervised contrastive learning.(Cao et al., 2021).

Author Dolgikh presents a new method for enhancing small datasets using unsupervised
machine learning. It addresses challenges like insufficient sampling of characteristic patterns,
leading to lower statistical confidence and higher error. The authors propose an ensemble of neural
network models of unsupervised generative self-learning, which identifies stable clusters of data
points in latent representations of observable data. Techniques of augmentation based on identified
latent cluster structure are applied to produce new data points and enhance the dataset. This method
can be used with small and extremely small datasets to identify characteristic patterns, augment
data, and improve classification accuracy in scenarios with strong deficits of labels (Dolgikh,
2021).

Bosch discusses methods for extracting features for student modeling from educational
data, specifically interaction-log data, using deep neural networks and unsupervised training. It
covers various types of auto encoder networks, including deep, recurrent, variational,
convolutional, and asymmetric networks. The implications of training these networks with
educational data are discussed, including peculiarities for interaction-log data not commonly
encountered in domains like computer vision and natural language processing. The paper also
discusses methods for evaluating the network training process and suggests future work in transfer
learning and semi-supervised methods (Bosch, 2023).

Park et al. suggest a symmetric graph convolutional autoencoder for unsupervised graph
representation learning. It uses a new decoder that creates a symmetric autoencoder form, allowing
for reconstruction of node features based on Laplacian sharpening. The autoencoder incorporates
signed graphs to prevent numerical instability caused by Laplacian sharpening. A new cost function
is developed to find a latent representation and a latent affinity matrix simultaneously, improving
image clustering performance. Experimental results show the model is stable and outperforms
existing algorithms. The main contributions include the first completely symmetric graph
convolutional autoencoder, a new numerically stable decoder form, and a computationally efficient
subspace clustering cost.(Park et al., 2019).

Authors Mei et al. presents an unsupervised spatial-spectral feature learning strategy for
hyperspectral images using a 3-Dimensional (3D) convolutional autoencoder (3D-CAE). The 3D-
CAE uses 3D operations like convolution, pooling, and batch normalization to explore spatial-
spectral structure information for feature extraction. A companion 3D convolutional decoder
network reconstructs input patterns, allowing all parameters to be trained without labeled samples.
Experimental results show the 3D-CAE is highly effective in extracting spatial-spectral features
and outperforms traditional unsupervised and supervised feature extraction algorithms in

classification applications.(Mei et al., 2019).

16

There are many research that integrate SOM with CNN. These models typically aim to

enhance CNNs with the unsupervised clustering skills of SOMs or to extract deep representations

(e.g., CNN codes) and map them into the SOM neural network.

The Table below shows a Summary of the related work.

Table.2.1. Shows a Summary of the related work.

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
Differential Deep Abd El Kader, | Normal SVM,KNN
1 2021 | Convolutional Neural | 1., Xu, G., and and Back 99.25%
Network Model for Shuai, Z., abnormal Propagation
Brain Tumor Saminu, S., MR brain
Classification Javaid, I., & images
Salim Ahmad,
Standard Plane Qu, R., Xu, G.,, | 2D K-means,
2 2020 | Identification in Fetal | Ding, C., Jia, ultrasound | support-vector
Brain Ultrasound W., & Sun, M. | image machine
Scans Using a (SVM), RCM | 92.93%
Differential and Back
Convolutional Neural Propagation
Network.
Differential M. Sarigiil, CIFAR10 Back
3 2019 | convolutional neural | B.M. and Propagation
network. Ozyildirim and | CIFAR100 98.25%
M. Avci. datasets
A hybrid differential | Wang, B., Sun, M Geneti
4 2020 | evolution approach to | Y., Xue, B., & | NIST, ¢ Algorithms
designing deep Zhang, M. MBI, (GAs) and
convolutional neural MDRBI, CNN. T1%
networks for image MRB and
classification. MRD
datasets
Differential model of | Dinesh Patel 56 patients | CNN 92.9%
5 2021 | the deep Image
convolutional neural datasets
network between
sarcoidosis and
lymphoma in 18F-
FDG-PET/CT
Development of A Openshaw and | Geographi | Self-organizing
6 1996 | parallelized version Turton cal map(SOM) -
of SOM datasets.

17

Table.2.1. Shows a Summary of the related work. (continued)

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
WEBSOM — | Samuel Kaski, | Large Text | Computationall
7 1998 | Self-organizing maps | Krista Lagus, database. y efficient -
of document Teuvo algorithms, and
collections Kohonen, and random
Timo Honkela. mapping
method.
Self-organizing map | Jaakko records Self- 86%
1999 | for the probabilistic Hollman , from calls | Organizing
model. Volker Tresp made with | Map and
and Olli mobile unsupervised
Simula, phones learning.
Face recognition: A S. Lawrence, C. Karhunen-
9 1997 | convolutional neural- | L. Giles, A. C. | ORL Lo'eve
network approach Tsoi, and A. D. | Database transform 90%
Back multi-layer
,perceptron,
Convolutional
Networks,and
Self-organizing
map.
Supervised and Semi- Self-organizing
10 2019 | Supervised Self- Riese, F. M., soil- map (SOM),
Organizing Maps for | Keller, S., & moisture random forest -
Regression and Hinz, S. dataset (RF).
Classification
Focusing on
Hyperspectral Data.
Implementation of Li Yuan IRIS Self-
11 2018 | Self-Organizing Dataset Organizing 98%
Maps with Python Map(SOM)
Learning feature A. Coates and | CIFAR10 | K-Means
12 2012 | representations with | A. Y. Ng And STL- 82%
k-means 10 datasets
Stacked multilayer Z. Zhao, X. A camera Self- 74%
13 2015 | self-organizing map | Zhang,and Y. | captured Organizing
for background Fang image Feature Map
modeling dataset. and NN.
A novel signer- S. Aly and W. | Arabic BiLSTM,SOM
14 2020 | independent deep Aly sign and RNN 89.59%
learning framework language
for isolated Arabic database

sign language
gestures recognition

18

Table.2.1. Shows a Summary of the related work. (continued)

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
A simple deep T.-H. Chan, K. | MNIST PCA ,LDA and
15 2015 | learning baseline for | Jia, S. GAO,J. | Yale B, CNN 86.66%
image classification Lu, Z. Zeng, AR,FERE
and Y. Ma T datasets
Recognizing partially | X. Tan, S. AR image | Self organizing
16 2005 | occluded, expression | Chen, Z.-H. database Map(SOM)and
variant faces from Zhou, and F. A soft knearest | 99%
single training image | Zhang neighbor(soft-
per person with SOM KNN)
and soft k-NN
ensemble
unsupervised | R. Hankins, Y. | MNIST Self-organizing
17 2018 | feature learning Peng, and maps(SOM)
networks for image H.Yin PCANet and 86%
classification SVM
Deep Convolutional | Soad Almabdy, | ORL,GTA | Pre-trained
18 2019 | Neural Network- and Lamiaa V face, CNN AlexNet
Based Approaches Elrefaei. Georgia with SVM, and | 96.63%
for Face Recognition Tech face, | Pre-trained
LFW,FLF | CNN ResNet-
W face, 50 with SVM.
YouTube
face, and
FEI faces
Visual feature S. Aly, N. ORL face SOM, NN, and
19 2008 | extraction using Tsuruta, R.-I. database. variable map
variable map- Taniguchi, and dimension 91.8%
dimension hyper A. Shimada hypercolumn
column model model.
Deep self-organizing C.S. MNIST SOM and
20 | 2019 | maps for Wicramasinghe | GSA CNN
unsupervised image , K. SP-HAR 87.18%
classification Amarasinghe,
and M. Manic
Parallelizable deep C.S. MNIST Self-
21 2017 | self-organizing maps | Wickramasingh Organizing
for image e, K. Map (SOM 82.88%
classification Amarasinghe,
and M. Manic

19

Table.2.1. Shows a Summary of the related work. (continued)

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
Hierarchical two- R. Nawaratne, KTH, Self-
22 2010 | stream growing self- | D. Alahakoon, | Weizmann | Organizing
organizing maps with | D. De Silva, H. | and Maps 94.3%
transience for human | Kumara, and X. | UCF11
activity recognition Yu human
activity
datasets
Robust face Aly, A. FERET SOM map,
23 2010 | recognition using Shimada, N. database Local
multiple self- Tsuruta, and Similarity
organized Gabor R.-I. Taniguchi Matching 93.1%
features and local (LSM) And
similarity matching KNN.
face recognition S. K. ORL face | hierarchical
24 2009 | using hierarchical Aly and R.-L. database Self-organizing
self-organized Gabor | Taniguchi maps, KNN 80%
features and SVM.
A unified view on Kulak, T., MNIST Stochastic
25 12022 | Self-Organizing Fillion, A., & and and Neighbor 98.84%
Maps (SOMs) and Blayo, F. STL-10 Embedding
Stochastic Neighbor datasets. and SOM.
Embedding
Deep scalable M. Wang, W. CIFAR-10 | ANN, Self-
26 | 2019 | supervised Zhou, Q. Tian, | and Organizing 98.90%
quantization by self- | and H. Li MNIST. Map, CNN.
organizing map
A Convolutional Mohamed MNIST SVMs , CNN
27 2020 | Deep Self- Sakkari 1 & and and and SOM 81.4%
Organizing Map Mourad Zaiedl | STL-10
Feature extraction for datasets.
machine learning
Deep Convolutional | Aly, S., & MNIST Self-organizing
28 2020 | Self-Organizing Map | Almotairi, S. Map (SOM),
Network for Robust Batch learning
Handwritten Digit algorithm and | -
Recognition. SVM.
Deep soms for M. Sakkari, R. | MNIST, Self-
29 2017 | automated feature Ejbali, and M. | Leukemia | Organizing 91.11%
extraction and Zaied andSRBCT | Map (SOM)
classification from Data sets.

big data streaming

20

Table.2.1. Shows a Summary of the related work. (continued)

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
Split-Brain Richard Zhang | NYU-D Auto-encoder
30 | 2017 | Autoencoders: , Phillip Isola and (AE).
Unsupervised and Alexei A. ImageNet 67.1%
Learning by Cross- Efros dataset
Channel Prediction
Modified Nicholas Remote- Auto-encoder
31 2020 | Autoencoder Merrill and sensing, (AE).
Training and Scoring | Azim and cyber 83.5%
for Robust Eskandarian security
Unsupervised datasets.
Anomaly Detection
in Deep Learning.
A Classification Qiuyu Zhu a MNIST SGD
32 2019 | Supervised Auto- and Ruixin and optimization
Encoder Based on Zhang a Fashion method and
Predefined Evenly- MNIST Auto-encoder | 92,89%
Distributed Class image (AE).
Centroids dataset
Exploring Xuejun KDDCUPY | K-means,
33 | 2022 | Unsupervised Zhangl, Jiyang | 9 and DBSCAN and
Learning with Gai, Zhili Ma, | UNSWNB | Clustering 96.7%
Clustering and Deep | Jinxiong Zhao, | 15datasets | Using
Autoencoder to HongzhongMa Hierarchies
Detect DDoS Attack | 3, Fucun He algorithm
and Tao Ju (BIRCH)
Context Autoencoder | Xiaokang ImageNet | Context
34 | 2022 | for Self-Supervised Chen, Mingyu | dataset auto-encoder
Representation Ding, Xiaodi (CAE) and
Learning Wang Ying Xin self-supervised
,Shentong learning. -
Mo, Yunhao
Wang ,Shumin
Han ,Ping Luo
Gang Zeng, and
Jingdong Wang
Unsupervised Feature | Zeyu Caol, Salinas, prototypical
35 2021 | Learning by Xiaorun Lil University | contrastive
Autoencoder and and Liaoying of Pavia, learning and 95.0%
Prototypical Zhao2 and Indian | auto-encoder
Contrastive Learning Pines learning
for Hyperspectral datasets. method
Classification

21

Table.2.1. Shows a Summary of the related work. (continued)

NO | Years The Title The authors Datasets The algorithms | The Max
they used Accuracy
Analysis and Serge Dolgikh | small Deep
36 | 2021 | Augmentation of datasets of | autoencoder,
Small Datasets with Covid-19 and Ensemble 91%
Unsupervised of
Machine Learning Unsupervised
Models.
Unsupervised Deep Nigel Bosch educational | Autoencoder
37 | 2023 | Autoencoders for and Luc data(Betty’ | networks,
Feature Extraction Paquette. s Brain) recurrent 67.3%
with Educational datasets. neural
Data networks,
Asymmetric
networks, and
CNN.
Symmetric Graph Jiwoong Park COIL20, Convolutional
38 2019 | Convolutional Minsik Lee, YALE, and | autoencoder,
Autoencoder for Hyung Jin MNIST Kmeans, 82%
Unsupervised Graph | Chang, datasets Spectral, and
Representation Kyuewang, Lee | and n others.
Learning Jin and Young | Pubmed
Choi. dataset
Unsupervised Shaohui Mei, Indian Convolutional
39 2019 | Spatial-Spectral Jingyu Ji, Pines neural
Feature Learning by | Yunhao Geng, | Dataset, networks, and
3D Convolutional Zhi Zhang, Xu | Salinas convolutional
Autoencoder for Li, and Qian Dataset, autoencoder. 95.39%
Hyperspectral Du. andSalinas,
Classification University
of Pavia

Previous studies have provided significant advancements in SOMs, CNNs, and teacher-

student learning. However, none have successfully integrated these techniques into a unified

framework that balances: Deep hierarchical feature extraction, Computational efficiency

and structured knowledge transfer.

The primary goal of this research was to develop new novel methods called

intergenerational interaction type of neural networks SOMDIiIffCNN Hybridization approach

considering the relation among sequential generation.

Our research redefines the optimization of neural networks by combining Self-Organizing

Maps (SOMs), Differential Convolutional Neural Networks (DiffCNNs), and intergenerational

learning into a novel hybrid model called SOMdiffCNN. This approach improves accuracy,

convergence speed, and overall efficiency. Specifically, this thesis enhances:

22

1. Feature extraction through SOM-enhanced CNNSs.
2. Computational efficiency using differential convolutions.

3. Knowledge transfer via father-son intergenerational learning. This innovative approach

Addresses key limitations in existing models and paves the way for more scalable and
adaptable deep learning architectures by Advancing intergenerational learning by integrating
structural knowledge transfer beyond traditional logits-based distillation. Fusing SOMs and
DiffCNNs for structured self-organization and deep learning. Using differential convolution for
enhanced feature representation. And applying intergenerational learning to optimize training and
convergence. Making SOMdiffCNN a robust solution for modern Al applications. Bridges the the
gap between traditional hierarchical learning methods and a more collaborative, intergenerational
approach, advancing both the conceptual framework and practical applications of deep learning.
According to the Results, the proposed method should be taken into consideration because they
have historically produced the greatest results in image Classification. As compared to the majority

of the state-of-the-art models.

23

3. MATERIAL AND METHOD

This chapter focuses on the structure, implementation, and optimization of statistical and
deep learning models. It provides a detailed overview of the architecture of these networks and
outlines the methodologies used during their training. The chapter also presents a collection of
datasets utilized in this research, which serve as benchmarks for evaluating the effectiveness of the
proposed models. In addition, it discusses the methodologies for feature extraction, data cleaning,
and visualization using the software framework examined in this study. Information about software
frameworks and data preprocessing functions is also included. Finally, the chapter explains
evaluation metrics and the methods used to assess and compare the quality of classification results

obtained in the experiments.

25

(I1ed29y pue

UOISINII])
31028 T

‘Aoeanddy

Sururea

o[quIasuy

0UeISI(

uB)RYUEIA

29 uedpIONg

gurssadoadaag

eleq

sjaseje(q

Figure 3.1 Shows the Research Material and Methodology Overview (Source: Created by

the author)

26

3.1 Datasets

The Photographer's Gallery's digital initiative, Data, Set, and Match, is a year-long program
that looks for novel ways to share, visualize, and analyze modern image databases. Computer
vision is the process of creating an understanding of the information contained in digital images as
well as the creation or modification of images using software (C. Rasche, 2022).

In recent years, algorithms have gotten better and better at automatically categorizing
photographs, reading license plates, and determining whether tumors are present in medical images
the digital photo has evolved into an experiment in new technologies.

The advancement of computer vision has led to methods for improving photos, as various
social media sites like Snapchat(Tropp & Baetzgen, 2019) or Facebook Messenger (Smutny &
Schreiberova, 2020) now provide a variety of filters. The same methods and developments have
also fueled the production of strange psychedelic imagery from deep dreams (Suzuki et al., 2017)
or deep fakes (“Detecting and Combating Deep Fakes,” 2021), which have now become cultural
references. Computer vision algorithms alter how people typically think about what an image is,
what it can achieve, and whether or not it can be trusted. They go beyond simple technical
advancements. These advancements were made possible by modeling algorithmically how people
view, understand, and create images. Computer vision algorithms heavily rely on collections of
images called datasets to mimic these cognitive capacities (“Computer Vision: Algorithms and
Applications,” 2011).

In computer vision, a dataset is a carefully managed collection of digital images that
programmers use to test, train, and evaluate the accuracy of their algorithms. It has been suggested
that the algorithm picks up new skills from the dataset's samples. Alan Turing outlined what
learning meant in this context in 1950. To "point things out" and name them, a dataset in computer
vision compiles a series of images that are labeled and used as references for objects in the real
world (Lu & Young, 2020).

In this thesis, 6 different image datasets demonstrated the proposed model performance.
Including Bird datasets (Mohanty et al., 2020), Fashion MNIST Datasets (Han et al., 2017),
MNIST datasets (Cheng et al., 2020), Cifar10 datasets (Li et al., 2017) Cifar100 (Sun et al, 2017)
and STL10 datasets (Ji et al., 2018). All the datasets were normalized to zero mean and unit
variance. These studied datasets were gathered from Kaggle.com, and the machine learning
repository is publicly available from
https://archive.ics.uci.edu/ml//index.phpdatasets,http://cs.joensuu.fi/sipu/datasets/ and
https://www.kaggle.com/datasets/dhruvildave their properties are shown in Table 2

27

3.1.1 MNIST dataset

The MNIST dataset comprises 28 by 28-pixel images of handwritten characters ranging
from numbers 0 to 9. The dataset consists of 60,000 training images and 10,000 test images, with
each row containing 785 values for examples and labels. In this research, a smaller training set of
only 3000 photos was used to reduce classifier training time. The accuracy of the algorithms was

evaluated using the entire testing set consisting of 10,000 photos. (Cheng et al., 2020).

Figure 3.2. Shows MNIST datasets. The image is taken from (Krut Patel, 2019)

3.1.2 Fashion-MNIST dataset

Fashion-MNIST: A more difficult version of the MNIST dataset, it is a dataset of
Zealand’s article images Fashion-MNIST has 60,000 training sets and 10,000 test sets, both of
which are in grayscale and sized 28 by 28 pixels. Each image in this research was flattened into a

784-dimensional Vector (Han et al., 2017).

Figure 3.3. Shows Fashion-MNIST datasets the image is taken from (Si Lu And Ruisi Li,
2021).

3.1.3 Cifer10 datasets

The Canadian Institute for Advanced Research's (CIFAR) CIFAR-10 dataset is a database
of images that are widely used to train computer vision and machine learning algorithms. It is one
of the datasets that are most frequently utilized in machine learning research. The CIFAR-10
dataset consists of 60,000 32x32 color images organized into 10 groups. The ten groups are cars,
deer, dogs, frogs, horses, birds, cats, airplanes, trucks, And ships, every class contains 6000 images

(Lietal., 2017).

28

T
~
o
wn
g
o
V]
0n
-
o
Il
o
3
Q

Here are the classes n the dataset,
airplane
automobile
bird

cat

om images from each:

y

| JEBCE KN
5T Neq [
P T

NEE".
Fh bEREYEG

o~
W
Ed

-

R4 EHL

deer
dog
frog

=
=]
=
2n
el |
2o

horse

[RS A R
ﬂllllﬂﬂﬂl
SR T

“
™ |
S
=1,
=

J'A—ﬂﬂﬂiﬂ-

ship
truck

i

Figure.3.4. Shows Cifer-10 datasets the image is taken from (CIFAR-10 Z(#E4E nf AL 1
AR CBHARESD | fiAT 5, n.d.).

3.1.4 Bird dataset
The dataset of bird pictures was gathered in Jordan and contains 525 bird species. The
images in the dataset were gathered from scientific sources and certified by the Jordanian Bird

Watching Association based on their scientific names (Mohanty et al., 2020).

Figure.3.5 Shows Bird datasets. The image is taken from (BIRDS 525 SPECIES- IMAGE
CLASSIFICATION, n.d.).
3.1.5 STL-10 dataset
The STL-10 is an image dataset taken from ImageNet that is commonly used to assess
unsupervised feature learning or self-taught learning techniques. It includes 13,000 images from 10
item classes (such as birds, cats, and trucks), with 5,000 images partitioned for training and the
remaining 8,000 images for testing. All of the images are color with 96x96 pixels in size and it is a

very large dataset (Ji et al., 2018).

29

Figure .3.6 Shows STL-10 datasets. The image is taken from (STL-10 Dataset, n.d.).

3.1.6 Cifer-100 datasets

This dataset is similar to the CIFAR-10 in that it comprises 100 classes with 600 photos.
Each class has 500 training images and 100 testing images The CIFAR-100 classifier divides the
100 classes into 20 super-classes. Each picture bears the label "fine" (the class to which it belongs)
with a "coarse" label (the superclass to which it belongs) (Bjorn Barz & Joachim Denzler, 2020;

Sun et al., 2017).

Figure 3.7 Shows Cifer-100 datasets. The image is taken from (Aymaz et al., 2022).

3.2 Data Preprocessing (Image preprocessing)

Image pre-processing may significantly improve the accuracy of feature extraction and the
outcomes of image analysis. The mathematical normalization of data collection, which is a typical
step in many feature extraction processes, is an analog to image pre-processing. Descriptive
techniques (Krig, 2014).

It is an essential step in computer vision and image analysis tasks. It involves applying
various techniques to prepare images for further analysis or processing. Image preprocessing
techniques help enhance image quality, remove noise, standardize the format, and extract relevant

features (Bieniecki et al., 2007).

30

Here are some common image preprocessing techniques: Resizing and Scaling: Resizing
an image involves adjusting its dimensions to a specific size or aspect ratio (“Image Resizing in
Saliency Histogram Domain,” 2017). Scaling refers to normalizing pixel values to a specific range
(e.g., 0-1) (C. Brian Atkins et al., 2002). Resizing and scaling are often performed to ensure
uniformity and reduce computational complexity.

The choice of preprocessing techniques depends on the specific application and the
characteristics of the images. It is common to combine multiple preprocessing techniques in a
pipeline to achieve the desired image quality and prepare the data for subsequent analysis or
machine learning tasks (Krig, 2014).

To ensure that images are comparable in terms of colors, value range, and image size, we
must first execute some preprocessing processes before we can extract features from the images.

The preparation processes step in this thesis is taken from openCV and pipelined in the
clustimage (Gilewski, 2019). Python provides several libraries for image preprocessing, including
OpenCV, scikit-image, and PIL (Python Imaging Library).

These libraries offer a wide range of functions and algorithms for performing various
image preprocessing operations.

We applied appropriate image preprocessing techniques, in this research to improve the
quality of our image datasets. Which are publically available. To achieve the dataset’s greatest
score and reduced computation time. When we test it using our different methods a self-organizing
map differential convolutional (SOMDIiff-CNN), deep convolutional self-organizing map
(DCSOM), a differential convolutional neural network (DiffCNN, and Convolutional neural
network (CNN).

For the techniques of Rescaling the size of each image in the collection was consistently
adjusted to 224x224x155pixels to prevent the impact of image enlargement on the accuracy
performance. Additionally, all of the images' input sizes must be the same and correspond with the
input dimensions of the proposed model architecture. A similar process was used to combine and
reshape two successive sagittal slices to 224x224 pixel sizes. Also, we divided the datasets into two
groups, with 25% being used for testing and 75% for training. To balance the OS distribution
between the two groups, we used stratified random sampling.

The grayscale is set to either true or false if the images can be properly gray-scaled (as in
the case of the Fashion MNST (Han et al., 2017) and MINST (Cheng et al., 2020) datasets).
Additionally, the dataset’s images were kept in CSV file extension format. With the use of the
Euclidean distance metric we used Stochastic Gradient Descent (SGD) (Jonathan &David, 2018),
Clasifications are found using the DCSOM, DiffCNN, and standard CNN approaches. With the

Accuracy and F_scores, gets evaluated.

31

During the preprocessing stages of the images, we used the Python framework to
preprocess our six different image datasets image including the OpenCV library (Matthew et al.,
2017; Preprocess Images Using OpenCV for Pytesseract OCR, n.d.).

We applied appropriate image preprocessing techniques, in this research to improve the
quality of images, extract meaningful features, and enhance the performance of Image

Clasifications tasks.

3.2.1 The Normalization

As is well known, any kind of issue statement's pre-processing stage includes the
normalisation. For data modification, such as scaling down or scaling up the range of data before it
is used for future stages, normalization plays a vital function, especially in the areas of soft
computing, cloud computing, etc. Min-Max normalization (Ioffe & Szegedy, 2015). Z-score
normalisation, and Decimal scaling normalisation (Patro & sahu, 2015) are just a few of the many
normalisation methods available. Scaling, mapping, or pre-processing stages are examples of
normalisation. From a previously determined range, we can deduce a new range. It can be quite
beneficial for purposes of forecast or predicting (Patro & sahu, 2015).

Professionals who deal with a large volume of data are its key users. The data set is altered
by the formula, causing the variation to range between 0 and 1. As a result, the largest data unit will
be assigned a normalized value of one, and the smallest data unit will get a normalized value of
zero in the results of the normalisation calculation. Other data elements will have decimal amounts
that range from zero to one (Normalization Formula | Step by Step Guide with Calculation

Examples, 2019).

The normalization equation can be expressed mathematically as follows:

x normalized = (x - x mini)

3.1)

(x max - x mini)

The following are some significant advantages of the method:

I. Improved accuracy: The machine learning normalization formula aids in raising the
accuracy levels of the methods employed in the field as well as in all other kinds of
analysis using large amounts of data. It ensures that all factors are equally important and
prevents anyone from taking center stage.

I. A better comparison: It makes it easier to compare data from different scales and formats.

Every data point falls within the same range, making them similar.

32

III. Removes duplication: It is especially helpful when a dataset has several dimensions and
helps to avoid duplication and inconsistency.

IV. Superior visualization: The approach simplifies the interpretation of the data by making it
simple to visualize and display the data in graphics. It becomes simple to create diagrams
and graphs.

V. Effective mining of data - The common normalization equation makes algorithmic
methods for data mining more precise and successful. The accuracy of data improves when

the outliers are reduced. Thus, practical outcomes are obtained (Dheeraj & Ashish, 2023).

Since SOM is sensitive to feature scales, we used the normalization method in this
research. Then normalized all datasets to make sure that all features had comparable scales. That is,
we take the patch average from all input local patches of size X x X and then divide the result by
the standard deviation. There is no need to add the normalization layer to the following SOM

Convoluted layer; it is just used on the input image.

3.3 Supervised learning

Supervised learning is a machine learning approach in which models are trained on labeled
data to predict outcomes for new, unseen data. Each training example consists of input-output
pairs, allowing the model to learn the relationship between inputs and the desired output. This
approach is widely used for tasks such as classification and regression (Bishop, 2006).Key

Concepts in Supervised Learning:

1. Data Preparation: Clean and preprocess data, ensuring it is structured with known labels
for training. Data is typically split into training and test sets to evaluate model
performance effectively (Han, Kamber, & Pei, 2012).

2. Algorithm Selection: Choose from algorithms suited to the task:

- Linear Regression: For predicting continuous values, like house prices or stock trends
(Seber & Lee, 2012).

- Decision Trees and Random Forests: For interpretability in decision-making tasks
(Breiman, 1984).

- Support Vector Machines (SVM): Effective for high-dimensional data and both linear
and non-linear classification (Vapnik, 1995).

- Neural Networks: Useful for complex patterns, particularly in image and language
Processing (Goodfellow, Bengio, & Courville, 2016).

3. Training Process: The model is trained by minimizing the difference between predictions
and the actual labeled data using optimization methods, like gradient descent (LeCun,

Bottou, Bengio, & Haffner, 1998).

33

4. Evaluation Assess: the model on unseen data using metrics like accuracy for classification,
or mean squared error (MSE) for regression, to understand how well it generalizes
(Powers, 2011).

5. Tuning and Improvement: Hyperparameter tuning (e.g., with grid or random search) is
used to improve model performance by optimizing the settings for algorithms (Bergstra &

Bengio, 2012).

3.4 Unsupervised learning

Unsupervised learning is a form of machine learning that scans a collection of data for
previously undiscovered patterns without the use of labels and with a minimum amount of human
supervision (“A Neural Unsupervised Learning Technique,” 1988). Unsupervised learning, often
referred to as self-organization, enables the mathematical representation of probability distributions
across inputs as opposed to supervised learning, which typically uses a human-labeled dataset
(Papageorgiou et al., 2006). It is one of the three primary types of machine learning, along with
reinforcement (Horie et al., 2019) and supervised learning (Sotiris Kotsiantis, 2007). A comparable
variation called semi-supervised learning employs both supervised and unsupervised methods
(Siadati, 2018).

Principal component analysis (Wold et al., 1987) and cluster analysis (Layek &
Mukhopadhyay, 1977) are two of the most commonly utilized techniques in unsupervised learning.
In unsupervised learning (“A Neural Unsupervised Learning Technique,” 1988), cluster analysis is

used to categorize or segment datasets with related properties to determine algorithmic correlations.

3.4.1 Process of unsupervised learning
The following flowchart provides a summary of the general steps we'll take to create an

unsupervised learning model (Raina et al., 2009).

—— FTatu.re . Clust-ering o Cluster
selection | algorithms < Validation
Extraction (SOM)

Datasets

= |

Interpretation
Of results

Knowledge

Figure 3.9 Shows the chart of the unsupervised learning model(Source: Created by the
author).

34

3.5 Classification Analysis

Classification analysis is a fundamental method in machine learning used to assign data
points to predefined classes. This technique is applicable across diverse fields such as image
recognition, medical diagnosis, spam detection, and more. Classification models are typically
trained using labeled datasets, enabling them to generalize and make predictions on new, unseen
data (Bishop, 2006). This process typically involves:

Data Preprocessing: Preparing data by cleaning, normalizing, and splitting it into training
and test sets to ensure effective model teaching (Han et al., 2012).

Feature Selection/Extraction: Identifying relevant features to improve model accuracy,
often using methods like PCA and RFE (Guyon & Elisseeft, 2003).

Model Selection: Choosing the best algorithm, such as Logistic Regression, Decision
Trees, SVM, K-Nearest Neighbors, Naive Bayes, Random Forests, or Neural Networks, based on
task requirements (Bishop, 2006).

Model Training: Training the model by minimizing error using optimization techniques,
such as gradient descent in neural networks (LeCun et al., 1998).

Evaluation: Assessing the model’s accuracy and robustness through metrics like accuracy,
precision, recall, F1-score, and confusion matrices, which help gauge performance on imbalanced
datasets (Powers, 2011).

Hyperparameter Tuning: Optimizing model parameters using methods like grid search or
cross-validation for best results (Bergstra & Bengio, 2012).

Deployment: After satisfactory testing, the model to make predictions on real-world data.

3.6 Hardware and Frameworks

The whole computation for this thesis was done on a personal laptop with the following
characteristics and a remote machine.

DESKTOP-1MPCSPS: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz, RAM
8, 00 GB, And system type: 64-bit operating system, x64-based processor, Windows 11 Operating
System, Pen and touch support with 10 touch points. Utilizing Python programs and a Kaggle
framework (Kaggle, 2010). An online portal for data scientists and machine learning enthusiasts is
called Kaggle. On Kaggle, users may work together, identify and publish databases, use notebooks
with GPU integration, and participate with other researchers to overcome problems associated with
data science. In essence, Kaggle Kernels are Jupiter Notebooks that run in a web browser.
Consumption of such kernels is unrestricted. Many languages used for programming, including
Python and R, among others, are accessible.

Virtual Machine (Google's free cloud service for Al engineers): Google Colab comes with

a free GPU.

35

3.7 The Software environment implementation in this thesis

Python belongs to the high-level, examined, multipurpose programming language category.
The approach to design places a high priority on code readability and makes extensive use of
indentation. Python's benefits for applications founded on machine learning and Al involve its
relative simplicity and consistency, the availability of excellent frameworks and libraries for Al as
well as deep learning, adaptability, platform autonomy, and a large market (Djokic-Petrovic et al.,
2016).

It was produced by Guido van Rossum and released in its initial form in 1991. Its
architectural philosophy includes impressive use of extensive emptiness and focuses a heavy
emphasis on the accessibility of the coding. Its Object-oriented (OD) programming style and
grammar are made to assist programmers in writing clear, understandable codes for projects that
are large or small. The enduring popularity of the language as a whole is influenced by these
elements (Wikipedia Contributors, 2019).

Flexible typing and collecting waste are features of Python. It allows a range of paradigms
for programming, including administrative in nature, object-oriented, and operational
programming, as well as organized code (particularly). Python is commonly referred to as a
language with "batteries included" because of its large common library. Python was envisioned in
the late 1980s as an ABC language substitute. The second version of Python was updated in 2000
with two new features: list comprehension and an explanatory numbering removal scheme. The
enduring popularity of the language as a whole is influenced by these elements (About Python,

n.d.).

3.7.1 PyTorch

PyTorch is a free and open-source framework for the execution of DL models on GPUs
and CPUs. It was primarily developed by Facebook's Al Research Lab Group (FAIR) and made
available to the public on GitHub in 2017. It provides a platform for research in the fields of
computer vision and natural language processing, enabling the creation of novel deep learning
architectures or advanced DL architectures with trained models for obtaining cutting-edge results
quickly and effectively, regardless of resource limitations. It is renowned for being generally
straightforward, easy to use, flexible, easy to debug, and memory-efficient. The SOMdiffCNN

architecture was implemented in our thesis using this PyTorch package.

3.7.2 TensorFllow

A complete open-source framework developed by Google for building machine learning
applications is called TensorFlow. It is a symbolic math toolkit that carries out several operations
targeted at deep neural network training and inference using dataflow and identifiable

programming (Pulkit Sharma, 2019). It enables the creation of machine learning applications by

36

engineers utilizing a variety of tools, libraries, and neighborhood resources. Google's TensorFlow
is perhaps the most popular deep-learning library in the world right now. All of the products
offered by Google incorporate machine learning to enhance the search engine, translation, and
captioning of images, or recommendations. (Daniel Johnson, 2023). The Google Neuroscience
Team created the TensorFlow library as a way to speed up machine learning and deep learning
studies. It features many interfaces in different languages like Python, C++, or Java, and it was
designed to run on a variety of CPUs, GPUs, and even smartphone operating systems. The first
stability version debuted in 2017, but it was first made available in late 2015. Under the Apache
Open Source License, it is open source. It is available for usage, modification, and redistribution at
a price without any payment to Google (Abadi, 2016).

TensorFlow receives inputs as an array with multiple dimensions called a tensor, allowing
you to develop data flow topologies and architectures to specify how data goes through a graph. It
enables you to create a diagram of the operations that can be carried out on these inputs, where one
end is where the input goes and the other end is where the result comes from(Pulkit
Sharmam,2019;Rampasek & Goldenberg, 2016).

There are three components to the Tensorflow building design: handling the data
previously, constructing the model, and developing and estimating the model.

Tensorflow is so named because it accepts input in the form of multi-dimensional arrays, or
tensors. You can create a "graph" (also known as a flowchart) of the actions that you intend to
carry out on that input. The input enters at one end, passes through this network of many processes,
and finally exits at another end as the output (Designing TensorFlow Modeling Code for TFX,
n.d.).

The Tensorflow library uses a variety of APIs to build deep learning architectures like
CNNs and RNNs.TensorFlow, which is based on graph computing, enables the programmer to use
Tensorboad to see how a neural network is being built. This tool is useful for program debugging.
Finally, Tensorflow is designed for large-scale deployment. The CPU and GPU power it (Google,
2019).

Tensorflow has been imported as TF by using import numpy as np and import Tensorflow
as tf. Python is used in our research. The Tensorflow library uses a variety of APIs to build deep
learning architectures like CNNs and RNNs. TensorFlow, which is based on graph computing,
enables the programmer to use Tensorboad to see how a neural network is being built. This tool is
useful for programmed debugging. Finally, Tensorflow is designed for large-scale deployment. The
CPU and GPU power it (Google, 2019).

Tensorflow is simple to implement on a large scale, which is why we used it in our
research. It is designed to operate on mobile platforms like iOS and Android as well as in the cloud

(Johnson, 2023).

37

3.7.3 Keras

Keras is a high-level, easy-to-use API used in developing and educating neural networks. It
is a freely available library created in Python that utilizes TensorFlow (Chollet, 2015). It was
designed to facilitate quick testing and iteration, and it reduces the entrance hurdle for using deep
learning (Chollet, 2015; Pulkit Sharmam, 2019).

TensorFlow needs to be installed before you can use Keras. You may see a minor variation
in appearance depending on the operating system you're running, but you can generally use pip,
Python's package manager. # first, upgrade pip, such as "pip install --upgrade pip." # then install
TensorFlow with "pip install Tensorflow". Then to utilize Keras, just execute the next import
statement at the starting point of your script or notebook: "from Tensorflow import Keras (Pulkit
Sharma, 2019).”

Because it is the simplest approach to utilizing Keras to generate neural network models,
we chose The Sequential API in this study. A neural network can be created by stacking many
layer types, one following the other, employing the Sequential class. The Sequential API of Kera
supports a wide variety of layer types. Dense layers, fully connected layers, convolutional layers,
recurrent layers, and embedding layers are some of the more popular types of layers, while there
are many others as well. The layers might be merged to produce effective designs for neural
networks. Each layer has the goal of carrying out a certain type of processing on the inputs
(Thomas, 2023).

Additionally, we supply a loss function and an optimizer with Kera’s when constructing

our models.

There are a variety of possibilities available including Loss functions (Zhao et al., 2017):

1. Binary Crossentropy: which calculates the cross-entropy between the anticipated and actual
binary payments, is a loss function for problems with binary classification.

2. Mean Squared Error (MSE): The sum of the average squared variance among the predicted
and actual values is measured by the mean squared error (MSE), a typical loss function for
regression issues.

3. Categorical Crossentropy: which quantifies the cross-entropy that exists among anticipated
and actual categorical distributions, is a loss function for problems with multiple classes of

classification (Zhao et al., 2017).

38

The Optimizers:

e Stochastic Gradient Descent (SGD) is a straightforward optimization approach that
computes the gradient of the loss function concerning the parameters before updating the
parameters.

e Adam is a learning rate-adapting optimization technique that uses historical gradient data.

e RMSprop is an optimization approach that normalizes gradient updates by using a moving

average of squared gradients (Thomas, 2023).

These are only a few of the numerous loss functions and optimizers that Keras offers. The
exact issue you're attempting to resolve and the features of the information you have will determine
the loss function and optimizer you use. For instance, Mean Squared Error was employed as the
loss function as well as Stochastic Gradient Descent (SGD) & Adam as the optimizers in our

research to compile our models.

39

3.8 Ensemble Learning

Ensemble learning is a machine learning technique that involves combining multiple
models (learners) to create a stronger, more accurate, and robust predictive model. Instead of
relying on the performance of a single model, ensemble methods leverage the wisdom of the
crowd, tapping into the collective knowledge of multiple models to make more informed and
accurate predictions (pinsky, 2018).

Multiple separate models are combined using ensemble learning to improve generalization
performance. Deep learning topologies are now outperforming shallow or conventional algorithms
in terms of performance. Deep ensemble learning models combine the benefits of the two types of
deep learning methods and ensemble learning, improving the generalization performance of the
resulting model (Yin et al., 2017).

The fundamental idea behind ensemble learning is that by combining several weak
learners, the overall performance can be significantly improved, often outperforming any of the
individual models used in the ensemble. A weak learner is a model that performs better than
random guessing but may not be highly accurate on its own (Zhou et al., 2002). There are several
popular ensemble learning techniques, including Bagging (Bootstrap Aggregating), Boosting
(Karel, 2021), Random Forest (Witten et al., 2011), Stacking, and others.

Ensemble learning can provide several benefits, such as increased accuracy, improved
generalization, and better resilience to Overfitting. However, it may also be computationally more
expensive and require more resources than using a single model (Brownlee, 2021).

When building an ensemble, it is essential to ensure that the base models are diverse,
meaning they make different types of errors so that the ensemble can capture a wide range of
patterns and improve overall performance. This is often achieved by using different algorithms,

varying hyper parameters, or training on different subsets of data (Zhou et al., 2002).

3.9 Teacher-Student Network

The teacher-student network concept is based on the idea of using a pre-trained teacher
model to assist in training a smaller student model. The goal is to take advantage of the teacher
model's performance and knowledge, which includes the subtle patterns or representations learned
from the data. This assistance helps the student model achieve similar performance while using

fewer parameters and reducing computational complexity (Hinton, Vinyals, & Dean, 2015).

40

soft labe
predictio

harc

Training data
Student

Figure 3.10. Shows Teacher-Student Network Structure(ShivamRajsharma.,2021).

3.9.1 Essential Elements

1. Teacher Model:

A teacher model is usually large, powerful, and complex, such as a deep neural network
with many layers. It has already been trained on extensive data and provides high-quality
predictions. This teacher model can be state-of-the-art, watch it is computationally expensive but
delivers strong performance (Hinton et al., 2015).

2. Student Model:

A smaller, simpler, and more efficient model (for example, one with fewer layers or
parameters) is often referred to as a student model. This student model is typically trained to
replicate the output of a larger, more complex teacher model, enabling it to inherit the knowledge
the teacher has gained. While the student may not reach the same performance level as the teacher,
it can achieve a comparable level of accuracy while being more computationally efficient (Hinton

etal., 2015).

3.9.2 Knowledge Distillation
The process of distillation involves training a student model to mimic the output of a
teacher model. Instead of relying on the original labels in the training data, the student model learns

from the soft targets, which are the output probabilities generated by the teacher model (Hinton et

al., 2015).

3.9.3 The general steps for knowledge distillation are as follows:

4. Train a large and complex teacher model on your dataset. This model should achieve high
accuracy and demonstrate a strong understanding of the problem (Hinton et al., 2015).

5. After the teacher model has been trained, it can be used to make predictions on the training
data. The output is usually a probability distribution over the different classes, often referred to
as "soft targets." These soft targets provide more detailed information than just the hard labels

(Hinton et al., 2015).

41

6. Train the Student Model: The student model is trained to replicate the soft targets (predictions)
provided by the teacher model. The goal is to minimize the difference between the outputs of
the student and the teacher. This is typically achieved by using a loss function, such as
Kullback-Leibler (KL) divergence, to compare the output distributions of the teacher and
student (Hinton et al., 2015).

3.10 Self-organizing map

The objective of developing computationally intelligent systems that "enable or facilitate
intelligent action in complex and changing environments" is one of the major topics that are
currently visible in all engineering sciences areas. The neurobiological-inspired SOM is one of the
computational intelligence techniques that is a very effective tool for data processing (Teuvo
Kohonen, 2001).

SOMs have found applications in fields such as image processing, natural language
processing, and data mining. They are a powerful tool for exploring and understanding complex
data patterns in an unsupervised manner (Lopez et al., 2012).

SOM is an ANN technique that uses unsupervised learning to generate a low-dimensional
(typically two-dimensional) representation of the input data space (Vesanto & Alhoniemi, 2000).
This discrete representation is commonly known as, a "map". A self-organizing map (SOM) may
be applied concurrently for multidimensional scaling, grouping, and projection of the
multidimensional data set into a lower-dimensional space, like multidimensional scaling. Unlike
other artificial neural network methods, SOM employs a neighborhood function to maintain the
topological properties of the input space, distinguishing it from other approaches. Developed in
1982 by Professor Teuvo Kohonen from Finland, the SOM algorithm was initially defined as an
artificial neural network and is frequently referred to as a Kohonen map (Teuvo Kohonen, 2001;
Kohonen, 1990).

A Self-Organizing Map (SOM) is a neural network with a single layer arranged in an n-
dimensional grid. While most applications utilize a two-dimensional rectangular grid, some employ
hexagonal grids or grids with one, three, or more dimensions. SOMs generate low-dimensional
representations of high-dimensional data, maintaining the relationships between similar data points
(Vesanto & Alhoniemi, 2000; T. Kohonen, 2014).

Nodes, or neurons, are elements of a Kohonen map. Each node is represented by a location
in the map space and a weight vector that matches the data set's dimensions. Nodes are usually
arranged in a grid of rectangles or hexagons, where each grid cell represents a node element
(Miljkovi¢, 2017). The SOM method produces a final topological order of nodes that represents the
input space, effectively mapping from a higher-dimensional input space to a lower-dimensional

map space (Kohonen, 2013). Each feature from the input space is mapped to the output space,

42

primarily by identifying the node with the closest (smallest distance metric) weight vector, known

as the Best Match Unit (BMU), to the input vector. (Laaksonen et al., 2002).

3.10.1 Self-Organization Mechanisms in SOMs
The SOM algorithm can be broken down into four main phases (Haykin, 1999):

1. Inmitialization: There are various techniques to initialize the weight vectors of the nodes, with
linear initialization and random initialization being the most frequently used (Teuvo Kohonen,
2001; Haykin, 1999). Randomly generating or random initialization of the node's weights can
be done by either selecting a random vector for each node or by choosing random vectors from
the input space. Whereas with linear initialization, the two most significant principal
component vectors the eigenvectors corresponding to the largest eigenvalues are identified first
and then used to form a linear two-dimensional space. (Appiah et al., 2012). As the method
starts with a well-ordered map that has previously been tuned, linear initialization indicates a
quicker convergence of the algorithm. (Valova et al., 2013).

2. Competition: Each node estimates the remoteness metric among the input pattern and its
corresponding weight vector for each input vector. The winner, also known as the best
matching unit (BMU), is determined as the value with the shortest distance (Principe et al.,
2009; Appiah et al., 2012; Gunes Kayacik et al., 2007).

3. The Collaboration: The winning neuron locates its nearest neighbors who are willing and
prepared to cooperate, and then collaborates with them (TAKANASHI et al.,, 2007). A
neighborhood function(Kolasa et al., 2012) that starts as large as the entire map, with the BMU
at its canter, eventually shrinks down to the size of a single node to find the BMU's
neighbors(Laaksonen et al., 2002).

4. Adaptation: Neurons near the BMU adjust their weight vectors based on their proximity to the
BMU and the importance of the input pattern transferred to it. The input pattern values and a
coefficient related to the distance from the BMU influence neighboring neurons. The input

pattern will often be reflected in their altered weights (Lee & Verleysen, 2002).

3.10.1.1The initializing phase

There are many techniques to initialize the weight vectors of the nodes; however, linear
initialization and random initialization are the two that are most frequently used (Kohonen, 2001).
Either randomly generating values for each node or choosing random vectors from the input space
can be used to randomly initialize the nodes' weights. Whereas with linear initialization, the two
most significant principal component vectors (those with the largest eigenvalues) are first

identified, and these eigenvectors are then utilized to span a linear two-dimensional space. As the

43

method starts with a well-ordered map that has previously been tuned, the linear initialization

suggests a faster convergence of the algorithm (Akinduko & Mirkes, 2012).

3.10.1.2 The Competition phase

Each node calculates the distance metric between the input pattern and its corresponding
weight vector for each input vector. The winner, or best matching unit (BMU), is then determined
to be the value with the shortest distance.

The input sequences from the input area might be declared as (x1, x2, x3... xi) D in a D-
dimensional space (i.e., a data environment with D attributes), whereas the weight vectors that
connect the input elements i and the node j in the output layer (space)

Just a single neuron will emerge victorious from the competition phase. The node denoted
as BMU is the one whose weight value is closest to the input value. When calculating the distance
between inputs and node weights, a number of distance measurement metrics are used; however,
Euclidian Distance and Manhattan Distance are the most widely used (Ghaseminezhad & Karami,
2011).

The function known as the discriminant, which determines the separation between the input
vectors x and the weight vector wj for each neuron j using the Euclidean Distance measurement,

takes a particular form (Ekanayake & Ranjith , 1994):

Euclidean distance = Z(Xi + Wi)?
i=1 (3.2)

W is the node's weight vector, while X is the current input vector.

3.10.1.3 The Collaboration phase

The winning neuron identifies its own closest neighbors who are eager and ready to work
with it and then collaborates with them. A neighborhood function that starts as large as the entire
map, with the BMU at its center, eventually shrinks down to the size of a single node to find the

BMU's neighbors.

44

According to Haykin, there is neurobiological proof of lateral connectivity among a group
of stimulated neurons. A neuron's neighbor neurons are stimulated when the neuron fires. Neural
connections close by are stimulated more than those that are farther away. This implies that the
collection of activated neurons is contained inside a topological neighborhood that surrounds the
winning node i (Haykin, 1999).

Suppose the total number of stimulated neurons is contained inside the topological
neighborhood defined by Nji, which is centered on the BMU i. The function that most successfully
satisfies the constraints of the topological neighborhood of SOM is a Gaussian function if the
excited neurons (collaborating) are denoted by j and if dist ij suggests the distance between

winning neuron i and excited neuron j i (Haykin, 1999).

.. distji2
Nji =ex (—)

J P 202 (3.3)
The variable o is the measurement of the width of the geometrical neighborhood function

N j, 1 within the output region. As illustrated in the diagram

Figure 3.11 Shows the Gaussian neighborhood function before applying SOM((Source:
Created by the author).

The primary and most significant features of this topological neighborhood are as follows:

It hits the winning neuron where it has the most value.
About the winning neuron, it is symmetric.

The distance shrinks to zero monotonically as it approaches infinity.

L b =

It is translational invariant or independent of where the BMU is located.

45

In comparison to the rectangle topological neighborhood, this Gaussian topological
neighborhood is of higher quality. The introduction of Gaussian topological neighborhood speeds
up the convergence of the SOM technique (Yu, & Bavarian, 1993; Obermayer & Schulten, 1992).

The fact that a given topological neighborhood reduces over time is a useful property of
SOM. This SOM property can be produced by having the spread factor decrease over time. An
exponential decay rate is a frequently used time-dependent function: the following equation is

used to calculate the learning rate's decay (Nathan Hubens, 2018):

t
c(t)=c0exp (- 4) (3.4)

Where t is the current time step, 60 is the width of the lattice at time zero, and A is the time

constant. Where t = 0,1,2,3 ...n .The neighborhood shrinks with time after each repetition

0(1) = exp [~ oot
=exp =53y
Where 0 (t) the influence is rate and U(t) is the width of the lattice at time t.and t is the

number of iterations (Miljkovi¢, 2017; Haykin, 1999).

3.10.1.4 The Adaptation phase

Neurons in the area of the BMU adapt by changing their own weight vector to correspond
with their nearness to the BMU and the significance of the input pattern that is actually transferred
to the BMU. The values of the input pattern and a coefficient proportionate to the distance from the
BMU will have an impact on neighboring neurons. The input pattern will often be reflected in their
altered weights (Lee & Verleysen, 2002).

SOM requires learning (self-learning), which is essentially a type of adaptive process, in
order for the structure of the SOM technique to be self-organized ones.

Output space is made to become self-organized as a result of this adaptation, and as a
result, this structure is actually an illustration (mapping) of input space in the output space.

This is accomplished theoretically by modifying the weight vector wj to look like the input
vector X.

The neighbors of the winning neuron will also have their weights altered, albeit not to the
same extent as the winning neuron. The formula that is applied to update the weight vector is as

follows in discrete-time structure:

46

W+ =W () + L (t) (V(t) — W (1) (3.6)

Where L is a little variable known as the learning rate that decreases over time, t refers to
the time step, and V is the input vector. Once the weights have been updated. For each iteration, the

following equation is used to calculate the learning rate's decay.

t
Lt)=L0exp(- 4) (3.7)

Where L is a little variable known as the learning rate that decreases over time. The
learning-rate factor is a time-dependent parameter that begins with a starting score of 0 and
subsequently declines with passing time t and where t is a further algorithmic time constant. The
neighborhood becomes smaller as training continues. At the end of the training, the size of the

neighborhoods is zeroed (Haykin, 1999).There are two stages to the adaption process:

1. Ordering Stages: The topological ordering of the weight vectors occurs during the
ordering process. The SOM method may need to be run up to 1,000 times to achieve it,
and the neighborhood and learning rate parameters should be carefully chosen (Haykin,
1999). Learning rate progress L must begin with a value of roughly 0.01. The
neighborhood function should first fence in every neuron within the map before
gradually reducing this collection of neighbors (Haykin, 1999).

2. Convergence Stages: the feature map is adjusted throughout this time, becoming able to
accurately and statistically quantify the input space. When the neighborhood function Nj,
1 is small enough to just contain its immediate neighbors, it can eventually become zero.
Learning rate parameters should be carefully chosen; they shouldn't reach zero and
should always be about 0.001; if not, they might accumulate to local minima (Haykin,

1999).

3.10.2 The SOM Common Topologies

The self-organizing map is made up of a two-dimensional array of neurons. Figure 1.5
illustrates this. This has the same number of dimensions as the input vectors (n-dimensional). The
map's topology, or structure, is determined. Through a neighborhood connection, the neurons
become connected to their neighbors. Typically, the neurons are connected via linear, rectangular,
or hexagonal architecture. The lines connecting the neurons in Figure 1.5 represent the topological

relationships.

47

The most popular SOM topologies are in one or two dimensions, although they can also be
in three dimensions (Principe et al., 2009; Haykin, 1998; Anderson, 1995). Rectangular and
hexagonal grids are the two most frequently used two-dimensional grids in SOMs. For three-
dimensional topologies, shapes can include a toroid or a cylinder. According to (Bondarenko &
Katsuk, 2007), 1-dimensional (linear) and 2-dimensional grids are illustrated in Figures. 3.12, with

the associated SOMs depicted in Figures 3.13 and 3.14.

COO0COO0O0OO0O0O0

O|C|O @ O|O|C O

Loear

0000000
0/[c0000|0
0[0[0 0 O|0|0
O[0[O @ 0|0|0
0[00000|0
0000000
0000000

O

Sgquare Hexagonal

O O0OO0O0OO0QCO0O0

Figure.3.12. Shows neuron neighborhoods and the most common SOM grids(Source:
Created by the author).

(Image is taken from Brief Review of Self-organizing map/reseachgate.net)

1D array of SOM
Computational
\?*’ Layer
\ J g
E f' Neuron i
Connection to SOM' / X\ | R \
.’ . ‘ Input layer Inputs layer (x1, x2, x3) 2D Output

Figure.3.13. Shows a 1-D SOM network, Figure 3.14. Shows a 2-D SOM network,
(Source: Created by the author)

\ Output
_— L, Layer

Neurons

Input Competitive layer

Figure.3.15 Shows the architecture of the SOM network and the connections between the
input and output function regions(Source: Created by the author).

48

Summary of the Self-Organizing Map (SOM Algorithm)

Algorithm1: SOM Algorithm

Step 1:Ininitialization:
| Randomly initialize the weights wj for each neuron j in the grid.
Step 2: Sampling:
| Randomly select a vector sample x(n) from the dataset.
Step3:Cocorresponding:
For each neuron j:
Calculate the Euclidean distance as:

Distance =

Identify the Best Matching Unit (BMU) i as the neuron with the minimum

Step4: Predicting Neighborhood Size:
Determine the neighborhood size surrounding the BMU
Calculate the standard deviation g(t) at time t using:
0. o NG —ell®
) _]l) p 2 O_ (t) 2
Where (i,j) are the coordinates of the neuron and c is the coordinates of the
Step5: Update Weights:
For each neuron j in the neighborhood of the BMU:

Update the weight vector using:

wij(t + 1) = wij () + a(t). hij(t). (x(t) — wij(t))
where a(t)is the learning rate at time t.

Step6: Decay Learning Rate:
Update the learning rate a(?) using a decay function, typically:

a(t) =al.exp (— %)

Where a0 is the initial learning rate and t is the decay time constant.
Step 7: Looping:
Repeat steps 2 through 6 until the map ceases to change significantly
End

To implement our model, we applied the SOM model for dimensionality reduction and

feature extraction from the dataset.

49

3.11 Euclidean Distance

The Euclidean Distance is the "common" distance between two or three points in
mathematics that may be calculated by using a ruler. The Pythagorean formula produces the
Euclidean distance or Euclidean metric. Euclidean space (or any inner product space) is actually a
metric space by utilizing this formula as distance. The Euclidean standard is known as the name of
the associated standard (Liberti et al., 2012). If two points in Euclidean n-space are represented in
Cartesian coordinates as X=(x1, x2, x3 ... xn) and W= (w1, w2, w3 ... wn), then the distance from

X to W or from W to X is given by:

E_distance = /(w1 —x1)? + (W2 — x2)2+ . (wn — xn)? = /YL, (wi — xi)? (3.9)

3.12 Manhattan Distance

The Manhattan distance function calculates the grid-space travel distance between two data
points. The total of the differences in the corresponding coordinates of two places is known as the
Manhattan distance. Their corresponding coordinates in grid space correspond to the node positions
in the grid (Chiu et al., 2016) A point X=(x1, x2, X3 ... xn) and a point W= (w1, w2, w3 ... wn) are

separated by this distance using the following formula:

M_distance = w1 —x1|? + w2 — x2|>+ - lwn—an|? = /S wi—xi] 5,

The values of the i-th variable at the points x and w, respectively, are xi and wi, where n is
the number of variables. The difference between the Manhattan distance and the Euclidean distance

is shown in the following figure:

P2(x2, w2) P2(x2, w2)

P1(x1, wl) P1(x1, wl) M_distance

Euclidean Distance Manhattan Distance

Figure.3.16. Shows the difference between Manhattan Distance and Euclidean
Distance(Source: Created by the author).

50

3.13 Neighborhood Functions

Most machine learning techniques depend heavily on neighborhood functions, especially
those in competitive learning and self-organizing maps (SOM) families. During the learning
process, these mechanisms describe the influence or impact that a specific data point (or neuron) in
the model has on its nearby data points.

The main goal of Neighborhood functions' is to incorporate the concept of proximity or
similarity into the learning process. When given a neighborhood influence, data points in the input
space that are close to one another will have a greater influence on one another's learning than data
points that are farther apart. This enables the model to self-organize and meaningfully represent the
underlying data distribution (Natita et al., 2016).

Typically, the neighborhood function is based on a distance metric that measures how
similar two data points are. Euclidean distance (Liberti et al., 2012) and Manhattan distance (Chiu
et al., 2016) are two popular distance measures. The neighborhood function is typically stated as a
function of distance, with values that decrease as the distance from a particular data point rises. The
neighborhood function's shape and size might vary depending on the particular algorithm being
utilized (Aoki & Aoyagi, 2007).

In topological spaces, the neighborhood is a fundamental and important mathematical idea.
When talking about ANN algorithms, and particularly when referring to SOM, the area
surrounding a point (the winning neuron) is a set that fences in certain other neurons nearby.
Additionally, the winning neuron in the center can influence the weights of the other neurons in
this set, pushing them to move toward the winning neuron's state (Natita et al., 2016).

If X1 is atopological space and Pl is a point in X1 then aneighborhood of P1 is
a subset S of X1 that includes an open set U that contains P1 where p1[JU[X1 (Kelley & John,
1975).

Different neighborhood functions can be utilized in the case of self-organizing maps,

including:

A. Gaussian neighborhood function

The Gaussian neighborhood function assigns weights to data points based on their distance
from a central point (e.g., a neuron in the model). The influence of data points decreases
exponentially as the distance from the central point increases (Natita et al., 2016). The formula for

the Gaussian neighborhood function is typically expressed as:

t) — x; ()|
202(t) (3.11)

| (

h(i,j,t) =exp | —

51

Where:

e h(i,j,t)is how data point j affected data point i's learning at time step t.

e The positions of data points i and j in the input space at time step t are represented by the
values of x i (t) and x j (t).

e o(t) is The width parameter at time step t determines how widely the neighborhood

spreads. (Natita et al., 2016 ; Yang et al., 2015)

B. Bubble Neighborhood Function

The bubble neighborhood function which defines a fixed-size neighborhood surrounding a
central point, is more straightforward than the Gaussian function. While data points outside the
bubble remain unaffected by learning, those inside the bubble are affected (Natita et al., 2016). The

bubble neighborhood function's formula is frequently as follows:

e The influence of data point j on data point i's learning at time step t is represented by the
formula h (i, j, t).

e At time step t, the data points i and j are located at xi (t) and xj (t), respectively, in the input
space.

e The neighborhood's fixed radius at time step t is represented by radius (t).

But often the Neighborhood range is established using a Gaussian kernel surrounding the
winner neuron or a rectangular neighborhood function. The processor must compute the
exponential function, making computation of the Gaussian function, as in equation (3.11),
significantly more expensive. Rectangular functions can be used to approximate this function with
high accuracy while requiring less computation but at the cost of adding more neurons to the
update phase of Self-Organizing Maps (Murakoshi & Sato, 2007).

In self-organizing maps, neighborhood functions are essential because they give the
network the ability to arrange and represent high-dimensional data in a lower-dimensional space,
exposing the underlying structure and patterns in the data. Additionally, they are employed in many
clustering methods that rely on the idea of similarity between data points as well as other

competitive learning algorithms.

3.14 Deep learning
Modern artificial intelligence (Al) systems may now be designed with many billions of
basic elements due to significant advancements in computer technology. When these components

are correctly established and followed by training, Al may execute tasks that were previously

52

thought to be so extraordinarily difficult that only natural intelligence systems, i.e., human beings,
could perform those (LeCun et al., 2015; Benuwa et al., 2016).

Deep learning is primarily to blame for this achievement in Al. While loosely based on
biological neural networks, such as those in your brain, artificial neural networks are best thought
of as an especially attractive way of specifying a flexible set of functions. They are built out of
many basic computational units called neurons. Deep learning uses artificial neural networks as the
underlying model for Al (Bengio, Y, 2009; Perspectives and Future Outlook of Deep Learning Al,
2017). In reality, this computation model differs significantly from the one that drives the
computer. Deep learning models, in particular, are trained on data from the real world and learn
how to solve problems rather than programming a precise set of instructions to solve a problem
directly.

Deep neural networks are where deep learning gets its actual power. By organizing a large
number of parallel neurons into successive processing layers, the nervous system may develop
helpful world representations (Yasaka et al., 2018). Such representation learning is regarded as a
defining characteristic of success in artificial and biological intelligence since it turns data into
ever-more-refined forms that are useful for executing an underlying goal (Norgeot et al., 2019;
Sam, 2013).

Deep learning is a member of a border family of machine learning (ML) techniques based
on artificial neural networks with billions of artificial neurons arranged in layers between the input
and the output (Amini et al., 2020). The input features that are necessary for discriminating are
enhanced by the hidden layers, while unimportant variations are suppressed. Learning can be
supervised, semi-supervised, or unsupervised (Good fellow et al., 2016; Bengio, & Hinton, 2015;

Schmidhuber, 2015).

53

Deep learning uses a general-purpose learning approach to find the discriminative
characteristics required for detection or classification after being fed a vast amount of unprocessed
data. According to (Good fellow et al., 2016; Bengio, and Hinton 2015, and Schmidhuber 2015),
the general-purpose learning procedure represents the raw data as a nested hierarchy of features or
concepts in many stages between the input and output layers. Each concept is defined in terms of
simpler concepts, and more abstract representations are built in terms of less abstract ones. Deep
learning can vastly outperform systems that rely on features that are manually created or provided
by domain experts by learning the automated discriminative features that are necessary for
detection or classification (Valavanis & Kosmopoulos, 2010; Lecun et al., 2015).

Deep learning has produced significant progress in many different areas of artificial
intelligence research. Over the past decade. This technology, which developed from previous
studies on artificial neural networks, has outperformed other machine learning algorithms in a wide
range of complex problems, including those involving image and voice recognition(Das, et al.,
2015), natural language processing (Howard & Ruder, 2018; Peters et al., 2018b, 2018a), machine
translation, bioinformatics, drug discovery, genomics (Chang et al., 2018; Jiménez et al., 2018), the
analysis of unstructured, tabular-type data using entity embedding’s(Yury et al.,2022),image
classification or clustering (Wouter Van Gansbeke et al., 2020), speech recognition and synthesis
(Oord et al., 2016; Xiong et al., 2018), image analysis (Chen, et al., 2020; Farabet et al., 2013), and
the reconstruction of brain circuits (Helmstaedter et al., 2013; K. Lee et al., 2019), among others.
Recent years have seen the emergence of the first wave of deep-learning applications in
pharmaceutical research. These applications go beyond bioactivity predictions and show promise
for solving a variety of issues in drug discovery. Additionally, it has influenced our daily lives due
to its wide acceptance by major technology companies like IBM, Google, Apple, Microsoft, and
Adobe. OpenAl, Deep Mind, and other current deep learning research institutions work to develop
secure Al systems that learn how to solve challenges and promote scientific research for everybody
(Toshihiro Takahashi, 2018).

Different categories of deep learning approaches have also been developed and
implemented by experts in order to solve different kinds of problems (Sutskever, & Hinton, 2012).
These categories include convolutional neural networks (CNN or ConvNet),(Zhou et al.,2020),
multi-layer perceptron’s (MLP) (Zhao et al, 2015), auto-encoders(AE) (Weng et al. ,2016), deep
belief networks (DBN) (Hinton, G.,2009), deep Boltzmann machines (DBM) (Salakhutdinov et
al,2012), capsule neural networks (Goldani et al., 2021), recurrent neural networks (RNN)
(Schuster & Paliwal, 1997), long-short-term memories (LSTM) (Hochreiter & Schmidhuber,
1997), and generative adversarial networks (GAN) (Odena ,2019) and others.

54

Perceptron Decision Support Vector Booting Restricted

(Rosenbalt) Trees (Hunt) Machine (Schapire) ::;;Tlnn
1958 1966 (Vapnik) 1979 1990 (Hinton) 1999

t] 1 |]

Traditional Models
F 3

Denoising Auto BayesNP (Teh Deep Boltzmann Generative 4
Encoder &Joedan) Machine adversarial Deep models
(Vincent) 2008 2009 (Salakhutdinov Networks (Good
&Hinton) 2009 fellow) 2014

i i : :
Neural networks Recurrent Neural Conv.net Sparse Coding Deep Belief
(Mc Culloch, pitt) network (Fukushima) (Olshausen) Networks

1943 (Grossberg) 1973 1979 1996 (Hinton etal)

Figure 3.17 Illustrates the progress of Deep Learning Models(Source: Created by the author).

3.14.1 Convolutional neural network

Convolutional Neural Networks (CNNs /ConvNet) are a particular kind of artificial neural
network (ANN) that have been shown to perform well on a variety of visual tasks (Keiron O'Shea
& Nash, 2015; Dorafshan et al., 2018)., such as image classification(Tao & Talab 2017; Copur,
Melisozyildirim, & Ibrikci, 2018; Pak & Kim, 2018), image segmentation(Khan et al., 2014),
image retrieval(Datta et al.,2008), object detection(EriG & Cevik, 2019; Donahue et al., 2014;
Sultana et al. ,2020; Ulku & Akagiindiiz , 2022)., image captioning(Anderson et al., 2018), face
recognition(Xie & Lam , 2008), pose estimation(Sun et al.,2019), traffic sign recognition(Miura et
al.,2000), speech processing(Hou et al., 2018), neural style transfer, video processing (Ballas et al.,
2016; Mathieu et al., 2016) and more.

CNNs are made to deal with data that is presented as several arrays, such as a color picture
made up of three 2D arrays that each include the pixel intensities for each of the three color
channels (Cheng et al., 2016). With the help of their convolutional filters, they are able to extract
information from pictures. The early layers are used to detect edges, the later layers are used to
detect sections of things, and the later layers may even be used to detect whole objects, such as
faces or other complicated geometrical structures. The convolutional layer, pooling layer, and
fully-connected layer are the three primary types of layers that make up CNN and may be
categorized according to their capabilities (Frosst, & Hinton, 2017).

55

fc_3 fc_4a
Fully-Connected Fully-Connected

Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convoelution Convolution A /_M
(5;"5} k;:_"ﬂ Max-Pooling (5”_‘:1 k;;'_"" Max-Pooling (with
valid padding (2x2) valid padding (2x2) @ dropout)
— ® @o
A 1
3 1 @) @2
INPUT) nl channels nl channels n2 channels n2 channels E ' 9
(28 x 28 x 1) (24 x 24 x n1) (12x12xn1) (8 x 8 xn2) (4x4xn2) E OUTPUT

n3 units

Figure 3.18 A Convolutional Neural Network Architecture including (convolutional,
pooling, and fully-connected layers)(muhammad osman tarig et all.,2020).

3.14.1.1 Convolutional layer

A convolutional neural network's basic building block is the convolution process. The
parameters of the convolutional layer are a collection of learnable filters (kernels). Every filter has
a narrow spatial range (in width and height), but it covers the whole depth of the input volume.
Sizes like 3x3, 5x5, and 7x7 are typical filter sizes (Pandian et al., 2022). The total number of input
channels is represented by the filter's third dimension. The grayscale image depth is 1, and there are
three RGB color channels in the color image (Hamed Habibi Aghdam et al., 2017).

Each filter performs convolution on the input volume across the width and height and
computes the dot products between the filter entries and the input at any position during forward
propagation. This operation is followed by a nonlinear activation function (sigmoid, tanh, ReLU,
etc.) (Ertugrul, 2018), and the outputs produced are referred to as feature maps. The response of the
filter is provided at each spatial point by the feature map, sometimes referred to as an activation
map. Displays the filter's reactions at each individual location on the map. There are three erp,
padding, stride, and depth that determine output volume (He et al., 2016). The output size is
determined by using the formula (Anthimopoulos et al., 2016):

(n+2p-f)/s+1. (3.12)

Where p is the amount of padding, f is the size of the filters, n is the number of filters, and s

is the stride.

3.14.1.2 Pooling layer
The pooling layer technique, also known as subsampling or downsampling, is frequently
used by CNNs to decrease the dimension following convolution layers. The filter size and strides

are represented by the pooling layer's hyperparameters. The pooling layer with filter size 2 and

56

stride 2 is the most common. Max pooling and average pooling are two common types of pooling
layers where the maximum and average values are taken, respectively. More frequently than
average pooling, max pooling has been used. The parameters for the pooling layer cannot be
learned. The idea behind maximum pooling is that a feature may be discovered because of the high

quantity (Yamashita et al., 2018).

3.14.1.3 Fully Connected layer

The CNN often ends with many fully connected layers after several convolutions and
poolings. The output tensor from these layers gets transformed into a vector before more neural
network layers are added (Basha et al., 2019). The dropout (Choe & Shim, 2019).a regularization
approach can be used in the fully connected layers to prevent overfitting. The architecture's last
fully connected layer has exactly the same number of output neurons as the number of classes to be

identified (Szegedy et al., 2015).

3.14.2 Convolutional Auto encoder neural network

A Convolutional Autoencoder (CAE) is a type of neural network that combines the
concepts of convolutional neural networks (CNNs) and autoencoders. It is commonly used for
unsupervised learning and dimensionality reduction in computer vision tasks, such as image
denoising, compression, and feature extraction (Seyfioglu et al., 2018). The components and
working of a Convolutional Autoencoder:

Auto-encoders (AE): is a deep neural network method utilized for unsupervised feature
learning with effective data encoding and decoding, typically for data compression and
dimensionality reduction (Yousefi-Azar et al., 2017)..

Also, an autoencoder is a type of neural network that aims to encode the input data into a
lower-dimensional representation and then decode it back to the original data

The goal of auto-encoders (AE), which are neural networks, aims to duplicate the inputs in
the outputs. In order to produce the desired result, they first compress the input into a latent-space
representation and then rebuild the output from this representation (Wen et al., 2019). Two
components make up this type of network:

Encoder: This part compresses the input data and maps it to a lower-dimensional latent
space representation. In a CAE, the encoder typically consists of convolutional layers followed by
pooling or downsampling layers, which help to extract relevant features from the input data(Han et
al., 2019).

The encoder section of the network compresses the input into a representation of latent

space. By using the encoding function h=f(x), it may be expressed.

57

Decoder: This part takes the compressed representation from the encoder and reconstructs
the original input data. In a CAE, the decoder consists of convolutional layers followed by
upsampling or De-convolutional layers, which help to reconstruct the data from the compressed
representation.

Reconstructing the input from the latent space representation is the goal of the decoder. By
using the decoding function r= g (h), it may be expressed (Han et al., 2019).

Combining Convolutional Layers in Autoencoder: In a Convolutional Autoencoder, the
convolutional layers in both the encoder and decoder play a crucial role in learning relevant feature
representations from the input data. The convolutional filters are trained to capture local patterns in
the image, and as the network goes deeper, it can capture more complex and abstract features

(Seyfioglu et al., 2018).

3.14.2.1 Working of Convolutional Autoencoder:

1. Data Input: Images or different kinds of data are provided to the CAE as sources. In this
scenario, we are using images, which are modeled as 3D tensors (height, width, and
channels) (Le, 2015).

2. Encoder: The encoder section of the CAE utilizes a sequence of convolutional and pooling
layers on the input data in order to extract pertinent features and minimize its geographic
dimensions. An encoder's output is a compressed representation that is frequently referred
to as "latent space" or "code." (Han et al., 2019).

3. Decoder: The decoder section of the CAE uses an array of upsampling and convolutional
layers in order to recreate the original input data from the compressed version (Han et al.,
2019).

4. Loss Function: The CAE is trained using a loss function that measures how comparable the
input data and the output of the reconstruction are. On image-based autoencoders, Mean
Squared Error (MSE) is a popular option. Which is used in this thesis.

5. Training: In order to decrease the process of reconstruction loss, the CAE trains how to

improve the weights of the convolutional filters in the encoder as well as the decoder.
As a preprocessing stage for other neural network architectures or for various downstream

tasks, the CAE is very good at learning condensed and understandable representations of the input

data (Kamran Ghasedi Dizaji et al., 2017).

58

Conv2D layer MaxPooling Conv2D layer2

Data Prepressing

Max pooling

Conv2D layer4 Up Sampling Conv2D layer3
—0

Up Sampling

Figure 3.19 Shows Convolutional Auto-encoders (DCAE) Neural Network Architecture
including (convolutional layers for both encoding and decoding) (Source: Created by the
author).
The DCAE architecture includes convolutional layers for both encoding and decoding

operations to reduce the spatial dimensions and extract features. An encoder with convolutional and
max-pooling layers is used. In a decoder, there are layers of upsampling and convolution to
reconstruct the original image. The final layer is supposed to be the activation function used to
make sure that the pixel values are between 0 and 1. Then, the model is predicted for the image

reconstruction with a loss function.

3.15 Deep convolutional Self-organizing map

A deep convolutional self-organizing map (DCSOM) is an extension of the self-organizing
map (SOM) algorithm that incorporates convolutional layers, enabling it to learn spatial features in
a hierarchical manner. It combines the unsupervised learning capabilities of SOMs with the feature
learning capabilities of deep convolutional neural networks (CNNs). Is commonly used for tasks
of image clustering, visualization, and unsupervised feature learning (Aly & Almotairi, 2020).

The initial design of the deep Convolutional Self-Organizing Map (DCSOM) is done by,
the convolutional part of the deep convolutional neural network is tried to be added to the deep
self-organizing map. The new hybrid topology has merged the concepts of SOMs and convolution
neural networks (CNNs). The hybridization is done by using existing standard learning methods for

the two different parts combined together (Sakkari & Zaied, 2020).

59

3.15.1 The Architecture

The architecture of a deep convolutional self-organizing map (DCSOM) typically consists
of multiple convolutional layers followed by a SOM layer. The convolutional layers are responsible
for learning hierarchical representations of the input data, capturing spatial features at different
levels of abstraction. The SOM layer performs the clustering and mapping of the learned features
onto a low-dimensional grid (Ferles et al., 2021).

Below is the DCSOM neural network architecture:

ConvSOM L1 ConvSOM L2 ConvSOM L3 Output layer

N N G

s u > > U - ;*D ™

L -—

Input Layer

‘g 1

. L SOM Sampling
OM - Samphing hage Phase
Phase Phase Phase Phase ase

ke SOM (ﬂltp?l?

Batch
Normalization
¥
L

Input image

Figure 3.20 Showing DCSOM neural network architecture Diagram(Source: Created by the
author).

3.15.2 Convolutional Layers

The convolutional layers in the DCSOM perform local receptive field operations on the
input data. They consist of convolutional filters (or kernels) that slide across the input data,
extracting spatially local features. Each convolutional layer is followed by a non-linear activation
function (e.g., ReLU) and pooling layers (e.g.,Max Pooling) to downsample the feature maps (Aly
& Almotairi, 2020).

3.15.3 SOM Layer

The SOM layer in DCSOM performs competitive learning and clustering. It consists of a
grid of neurons, where each neuron represents a weight vector. The weight vectors are adjusted
during training to match the learned features from the convolutional layers. The SOM layer
preserves the spatial relationships between the neurons, ensuring that similar features are mapped

to nearby neurons (Aly & Almotairi, 2020).

3.15.4 Training

The training of a DCSOM involves a two-step process. First, the convolutional layers are
trained using unsupervised learning, typically through a pre-training phase using autoencoder
learning techniques. Then, the SOM layer is trained using the learned features from the
convolutional layers. The training process involves presenting input data, finding the best-matching
unit (BMU) in the SOM layer, and updating the weights of the BMU and its neighboring neurons
(Aly & Almotairi, 2020).

60

3.15.5 Clustering and Visualization

After training, the DCSOM used for clustering the image datasets is similar to the
traditional SOM. Each input data point is assigned to the neuron with the closest weight vector.
Additionally, the low-dimensional grid of neurons in the SOM layer is visualized to gain insights

into the learned features and their spatial organization (Aly & Almotairi, 2020).

3.16 Differential convolutional neural networks

The fundamental building block of deep learning systems is the process of convolution,
which is carried out by swiping several filters over the input image. . It offers the ability to extract
visual patterns from the supplied image. As a result, the more feature maps the structure produces,
the more characteristics the classifier gathers (Sarigiil et al., 2019).

Through a different deviation computation, Differential convolution maps are utilized to
analyze directional patterns within pixels and their surrounding areas. It’s important to note that in
mathematical variation, the change in sequence is taken into account by figuring out how different
the pixel activations are from one another (Qu et al., 2020).

A technique to explore the Diff-CNN is to merge differential calculus theories with
convolutional neural networks (CNNs) (Sarigiil et al., 2019). It refers to a neural network that
incorporates differential calculus in its convolutional layers or during the training process (Sarigiil
et al., 2019). This approach can create a neural network that adjusts its parameters in real-time
according to the input data or shifts in the data distribution.

The Diff-CNN is designed to pass feature maps with directional activation differences to
the next layer. This approach incorporates the concept of how convolved features vary across the
feature map (Abd El Kader et al., 2021). Essentially, it adapts mathematical differentiation to the
convolutional process, enhancing classification performance without altering the number of filters.

Also, the benefit of differential convolution is the ability to extract more features without
adding more convolutional layers are enhanced by raising the depth of a single convolutional layer.
An extra convolution is applied using a differential convolutional layer, without adding any extra
trainable parameters. (Sarigiil et al., 2019).When compared to conventional CNNs, differential
CNNs use pre-defined hyperparameters and differential operators to produce feature maps utilizing
normal convolutional feature maps.

By performing further modifications to the quantity math calculations, differential
convolution assesses the pattern direction of each pixel and its neighbors. Computing the difference
between pixel activations allows for an evaluation of successive changes (Sangiil et al., 2019; Lei

etal., 2018).

61

Figure 3.16: Displays the predefined feature maps. The difference in one direction is
computed for each feature map. As a result, extra feature maps with disparities along various
directions are obtained. In contrast to Sarigiil et al., they extend the original approach and add a

fixed filter to extract more task-related information (Sarigiil et al., 2019; Qu et al., 2020).

Figure 3.21 Shows the available predefined filters for Diff-CNN(Source: Created by the
author).

The differences in one direction are determined using each of the above filters. As a result
of this, supplementary feature maps are produced that incorporate signal differences for each
direction.

Utilizing a differential operator, every one of the five feature maps produced from the
classic CNN is G2, G3, G4, G5, and G6. Each map's neurons are computed from (3.13) to (3.17)
(Qu et al., 2020):

G2,i,j = Gl,i,j — GL,i+1,j (3.13)
G3,i,j = G1,i,j — G1,i,j+1 (3.14)
G4,i,j = G1,i,j — GL,i+1,j+1 (3.15)
G5,i,j = Gl,i+1,j — G1,i,j+1 (3.16)
G6,i,j = Gl,i+1,j+1 — GL,i,j+1 (3.17)

if we Assume that (i) and (j) denote the coordinates of the neurons in the convolutional
feature maps, G1 has dimensions of (M x N), while G2, G3, G4, G5, and G6 have dimensions of
M - Dx N, MX(N - 1), (M - 1)x (N-1),M - 1)x (N - 1), and (M - 1) x (N - 1), in that
order(Sarigiil et al., 2019; Abd El Kader et al., 2021). Figure 1.5 illustrates the method used to
calculate these feature maps.

Once creating the initial feature map through typical convolution, differential equations are
employed to produce Diff-CNN feature maps from this original feature map. These differential

convolution feature maps can recognize edges and corners, among other things (Qu et al., 2020).

62

u //
1N { / 1 o
‘|/~ -\7 To 1 |:>
\\
AN o 1
__\\.\ ol
V1 a
1 1

Figure 3.22 Shows how the differential feature maps are determined(Source: Created by the
author).

By utilizing differential feature maps, the Diff-CNN can extract more image features
without requiring additional convolution layers. This is evident from the previously mentioned
derivation procedure. As a result, the Diff-CNN reduces the complication of the CNN framework
and decreases computational demands (Sarigiil et al., 2019).

Back-propagation Procedure: To apply Diff-CNN with the new feature maps, an
enhancement to the back-propagation process is necessary. During back-propagation, errors are
propagated across each feature map. In the opposite direction. The fixed filter weights specific to
each feature map are then multiplied by the errors and added together. The error matrix obtained
from the first feature map's related errors is transmitted backward to train the appropriate filter.
(Sarigiil et al., 2019; Qu et al., 2020; Lei et al., 2018).

Calculating the derivative of an activation function is useful for finding the gradients of the
loss function concerning the network's parameters during the backpropagation process. The
gradients act as a guide for the optimization algorithm to update the parameters, resulting in the
reduction of loss and enhancement of network performance (Abd El Kader et al., 2021).

We use hl to represent the error passed to the first map, while h2, h3, h4, and hS5 represent
the errors transferred to the additional maps. E represents the error matrix. The error computations

for the corresponding filter are shown in functions (3.18) to (3.20) (Qu et al., 2020).

Ei,j = hl,i,j — h2,i,j—1 + h2,i,j — h3,i—1,j
+h3,i,j — h4i—1,j—1+ h4,i,j — h5,i—1,j + h5,i,j—1 (3.18)

63

In the given scenario, when i exceeds 1, j is greater than 1, i is less than M, and j is less
than N, the neurons situated at the corners as well as the edges do not receive error input from all
the adjoining neurons. Equation (3.18) highlights this fact. However, the corner neurons of the map
receive an error signal from three of their nearby neighbors, as mentioned in Equation (3.19),(,

(Sarigiil et al., 2019).

hl,i,j + h2,i,j + h3,i,j + h4,i,j, i=1j
gii =) ALLJ = h20j =1+ h3,0,j + h5,ij -1, i=1j=m
T n1,ij + h2,i,j — h3,i—1,j — h5,i—1,j, i=nj=1
hl,i,j — h2,i,j—1 — h3,i—1,j — h4i—1,j—1, i =nj =m
(3.19)

The error that will spread to the neurons located at the boundary of the map is estimated in

(3.20). Five nearby Neurons deliver error signals to the edge neurons (Sarigiil et al., 2019).

(hl,i,j — h2,i,j—1 + h2,i,j + h3,i,j + h4,i,j + h5,i,j —1
i=11<j<N

hl,i,j — h2,i,j—1 + h2,i,j — h3,i—1,j — h4,i—1,j—1 — h5,i—1,j
i=nl<j<N

ELj =9 hl,i,j + h2,i,j + h3,i,j — h3,i—1,j + h4,i,j — h5,i—1,j
1<i<Mj=1
hl,i,j — h2,i,j—1 + h3,i,j — h3,i—1,j — h4,i—1,j—1 + h5,i,j—1
L 1<i<Mj=n

(3.20)

3.17 Intergenerational Interaction Neural Networks

This method draws inspiration from the conceptual idea that the presence of a guiding
father model enables the son model to succeed quicker and better than the others. Embodying the
essence of intergenerational interaction within neural network architectures. Unlike the teacher-
student model, this approach involves pretrained father or ancestor models work together with the
son model. The Self-Organizing Map (SOM) serves as the father, providing pre-trained, high-level
feature representations that guide the training of the son. The method was implemented by using a
Self-Organizing Map (SOM) as the father and a Differential Convolutional Neural Network
(DiffCNN) as the son. In this configuration, the SOM serves as the guiding father, independently
pretrained before connecting the son. The proposed approach by using the trained SOM during
each training step of the model, the encoded inputs from the SOM were used, and the flattened
output was concatenated with the encoded images before being passed through the fully connected
layers. This adaptation reduced the complexity of the convolutional layers while improving

convergence speed and overall performance

64

By embedding this intergenerational interaction mechanism, the DiffCNN benefits from
reduced convolutional layer complexity and accelerated convergence. The SOM's unsupervised
clustering capabilities offer structured guidance, while the DiffCNN's adaptability ensures the
model evolves with the data. This synergy mirrors the collaborative dynamic between generations,
where foundational wisdom enhances adaptability and innovation. This framework has promising
applications in areas such as adaptive learning systems, cross-disciplinary Al models, and the

modeling of generational dynamics in real-world scenarios.

nth
N— I
Ancestor I
I
|
l
> Grand Father j
— Father
r 1
| I
I & | I
nputs I . . [
> Convolution Classifier 1 Outputs
| I
| I
| I
B bl i i e e s’ i, s i i | dii i e— e G — " -l

Figure 3.23 Shows Intergenerational Interaction Neural Network Architecture(Source:
Created by the author).

3.18 The proposed Father-Son Network: Self-organizing map Differential Convolutional
neural network

The SOMUJiffCNN integrates the concepts of Self-Organizing Maps (SOMs) and
Differential Convolutional Neural Networks (Diff-CNNs) within a novel Father-Son Network
framework. In this intergenerational interaction method, the SOM acts as the father, guiding the
training of the son, DiffCNN model. The self-organizing map was initially pre-trained on the
dataset, where it learns high-level feature representations through unsupervised clustering. These
learned features are then used during each training step of the DiffCNN, forming the foundation of
the son’s learning process .Encoded inputs from the SOM are concatenated with the flattened

output of the DiffCNN and subsequently passed through dense layers for classification.

65

3.18.1 The Proposed Method Architecture

The architecture of the proposed SOMdiffCNN typically includes an input layer (image),
SOM class, differential convolutional class, Diff CNN model with Differential convolutional layers
adapted in the first layer followed by convolutional layers and max-pooling layers (the output of
the DiffConv layer is processed through convolutional layers, max-pooling, and dense layers), and
then to the output layer. They are responsible for learning hierarchical representations of the input
data, capturing spatial features at different levels of abstraction. The SOM layer performs the
clustering and mapping of the learned features onto a low-dimensional grid.

In this method The SOM is initiated to extract features from the dataset it is a grid of
neurons is utilized, in which every neuron represents a weight vector. During the preparation the
trained SOM is used for each training step of the DiffCNN, also the SOM is used to encode inputs.
(Self. SOM), and the encoded images are concatenated with the flattened output before being

passed through the fully connected layers. Below is the proposed neural network; architectures

Father- Pre-Trained SOM

input layer

Fully Connected

Layer
Diff-layer Conl-layer Pooling SOM layer Conv2-layer Pooling SOM [encode-images) "
— i .
L
——it > .‘_(‘
7!
Yy
Differential Convolution Classification

Son — DiffCNN

Figure.3.24 Showing the proposed neural network architecture Diagram(Source: Created by
the author).

3.18.1.1 Input Layer Processes the image data.

3.18.1.2 Differential convolutional layer

Adapts differential convolution techniques in the first layer of the DiffCNN, emphasizing
spatial relationships in the data. The differential convolutional layers in the proposed method
perform local receptive field operations on the input data .In the proposed methods the DiffCNN is
used for classifying the data by using the trained SOM. It includes convolutional filters (or kernels)
that slide across the input data (trained.som), extracting spatially local features. The non-linear

activation function (ReLU) succeeds in each convolutional layer, a differential convolutional layer

66

adapted in the model first layer, and pooling layers (e.g., in our case Max Pooling) to down-sample

the feature Maps.

3.18.1.3 SOM Layer

Extracts feature using a grid of neurons, each representing a weight vector. The SOM
encodes input features into a high-dimensional space and performs competitive learning and
clustering. It consists of a grid of neurons, where each neuron represents a weight vector. The
weight vectors are adjusted during training to match the learned features from the differential
convolutional layers. The SOM layer preserves the spatial relationships between the neurons,

ensuring that similar features are mapped to nearby neurons.

3.18.1.4 Convolutional and Max-Pooling Layers
Process the SOM-encoded input and extract hierarchical spatial features while down-

sampling the feature maps.

3.18.1.5 Fully Connected Layers and Output Layer:

Perform classification based on the concatenated SOM-encoded features and DiffCNN
outputs. In this approach, the SOM serves a dual role: it provides pre-trained feature
representations and dynamically encodes input features at each training step of the DiffCNN. The
encoded outputs from the SOM are combined with the DiffCNN’s features to enrich the learning

process, enabling the DiffCNN to achieve faster convergence and better performance.

3.18.2 Training

The training process of the SOMdiffCNN in this thesis involves a two-step process. First,
the features from the datasets are learned by the SOM and DiffCNN. Then, The SOM is trained to
capture the dataset’s structural relationships. The trained SOM is cast in each training step of the
DiffCNN, also the SOM is used to encode inputs (Self. SOM), and The SOM-encoded features are
integrated into the DiffCNN. The trained SOM guides the son model, concatenated with the
flattened output before being passed through the fully connected layers. The training process also
involves presenting input data, finding the best-matching unit (BMU) in the SOM layer, and
updating the weights of the BMU and its neighboring neurons.,

3.18.3 Classification and Visualization

After training, the proposed SOMdiffCNN is used for the classification of the image
datasets. Each input data point is matched to the neuron with the closest weight vector.
Additionally, the low-dimensional grid of neurons in the SOM layer is visualized to gain insights

into the learned features and their spatial organization. This intergenerational interaction

67

framework allows the son model to benefit from the father model’s prior knowledge, increasing
performance and accelerating convergence. The proposed Father-Son Network architecture
demonstrated superior accuracy and efficiency across multiple image datasets, showcasing its
potential for broader applications in deep learning.

Figure 3.25 illustrates the architecture of the proposed SOMJiffCNN, highlighting the
interplay between the father (SOM) and the son (DiffCNN) components.

Father

SOM L

|

\ I

\ ; I
| DiffCNN | Classify L,

i

l

|

|

Inputs

&

Figure 3.25 Shows the father-son Network Structure(Source: Created by the author).

Below displays the proposed neural network. SOMdiffCNN Model Algorithm

3.18.4 Algorithm2: the proposed neural network SOMdiffCNN Model Algorithm

Step 1: Import the required libraries
Step 2: Load and Preprocess Datasets
Apply necessary transformations(normalization, convert image to tensor)

Flatten and concatenate the data for SOM training.
Step 3: Initialize Self-Organizing Map Module:
Define functions
Distance Calculation: Use Euclidean distance to measure similarity

Euclidean distance = Z(Xi + Wi)?

i=1

Find Best Matching Unit (BMU): Identify the unit with the minimum distance
Update the weights: update the weights of the BMU and its neighbors
wij(t + 1) = wij(t) + a(t). hij(t). (x(t) — wij(t))

Train the SOM
Step4:Call DiffConv Module:
| Call and implement the differentiable convolutional module (DiffConv)
Step5: DiffCNN Model Initialization
| Incorporate DiffConv layer followed by standard convolutional layers, and

68

Encode inputs using the trained SOM and concatenate with the flattened output
Create an Instance of DiffCNN with Trained SOM
an instance of the defined model with specified output classes and the trained
Define the model architecture

Output=Fully Connected(Concat(SOM_Output,Flattened Output))

compile the model using
Optimizer : Stochastic Gradient descent (SGD)

Loss function: cross-entropy loss for classification tasks .

Step6:Train the SOMdiffCNN network

Train The network using training data Conduct forward and backward passes

Updates.

Step 7: Evaluate the network
| evaluate The trained network and print the results

Step8: Visualize Results:
| Plot the performance of the SOM-based DiffCNN model Results

End

3.19 The Structured Models

Table 3.1. The structured representation of the SOMdiffCNN Model

Layer/Component Type Input Shape Output Shape Description
Encodes input
. data using a
Trained SOM SOM Fuich 3128 (Encoded Features) | trained Self-
Features) -
Organizing Map
(SOM).
Computes
Custom (Batch_Size, (Batch_Size, 5 * differenti.al
DiffConv DiffCony Channels, Height, | Channels, Height, convolution to
Width) Width) extract unique
features.
Convolutional
(Batch_Size, 5 * . layer with 64
Convl Conv2d Channels, Height, EtBi.{]CilﬁSlze, 64, H- filters, kernel size
Width) ’ 5x5, stride 1, and
padding 0.
. . Downsamples
Max Pooling MaxPool2d (}113_ Zt’c\l;/_jl)ze, 64, (}}IB/;CSV_/%ZC’ 64, feature maps with
kernel size 2x2.
Flatten Reshape (Batch_Size, 64, (Batch_Size, fnlz;[tznlsl)ﬂzsl?::r
Operation H/2, W/2) Flattened Size)

vector.

69

Table 3.1. The structured representation of the SOMdiffCNN Model (continued)

Combines the
(Flattened_Size) +) flattened CNN
(Combined Features .
Concatenate Concatenate | (Encoded Feature) output with the
s) encoded SOM
features.
. Fully connected
Fully Connected _ (Combined_Featu _ .
Linear (Batch_Size, 1024) layer with 1024
Layer 1 res)
neurons.
Fully connected
Fully Connected L (Batch_Size, (Batch_Size, No layer with
inear
Layer 2 1024) Class) classification
(digits 0-9).
Final class
. _ probabilities for
(Batch_Size, (Batch_Size, No)
Output Classification the dataset using
Class) Class)
CrossEntropyLoss
Table 3.2 The detailed structure of the DiffCNN model
Layer Name Type Input Shape Output Shape Description
Custom
) [batch_size, 1, [batch_size, 5, convolutional
diffconv DiffConv
28, 28] 28, 28] layer generating 5
feature maps.
Standard
[batch size, 5, [batch size, 64, convolution with
convl Conv2d
28, 28] 24, 24] kernel size 5 and
64 filters.
_ _ Max pooling
[batch_size, 64, [batch_size, 64,)
pooll MaxPool2d layer with kernel

24, 24]

12, 12]

size 2.

70

Table 3.2 the detailed structure of the DiffCNN model (continued)

Second
[batch_size, 64, [batch_size, 128, | convolution with
conv2 Conv2d .
12, 12] 8, 8] kernel size 5 and
128 filters.
. . Max pooling
[batch size, 128, | [batch_size, 128,)
pool2 MaxPool2d layer with kernel
8, 8] 4,4] ,
size 2.
) _) Fully connected
Linear (Fully [batch_size, 128 | [batch_size,
fel layer with 1024
Connected) *4* 4] 1024]
output features.
Fully connected
Linear (Fully [batch_size, layer with 10
fc2 [batch size, 10]
Connected) 1024] output features
(classes).
Table 3.3 The Implemented CNN Structure.
Layer Name Type Input Shape Output Shape Description
Convolution
[batch_size, 1, [batch_size, 32, layer with 32
convl Conv2d
28, 28] 28, 28] filters, kernel size
3, padding 1.
[batch_size, 32, [batch_size, 32,
relul RelLU ReLU activation.
28, 28] 28, 28]
Convolution
[batch_size, 32, [batch_size, 64, layer with 64
conv2 Conv2d
28, 28] 28, 28] filters, kernel size
3, padding 1.
[batch_size, 64, [batch_size, 64,
relu2 RelLU ReLU activation.
28, 28] 28, 28]
Max pooling with
[batch_size, 64, [batch_size, 64,)
pooll MaxPool2d kernel size 2 and

28, 28]

14, 14]

stride 2.

71

Table 3.3 The Implemented CNN Structure.(continued)

[batch_size, 64, 14,

[batch_size, 128,

Convolution layer

with 128 filters,

conv3 Conv2d
14] 14, 14] kernel size 3,
padding 1.
[batch_size, 128, [batch_size, 128,
relu3 ReLU ReLU activation.
14, 14] 14, 14]
Convolution layer
[batch_size, 128, [batch_size, 128, with 128 filters,
conv4 Conv2d
14, 14] 14, 14] kernel size 3,
padding 1.
[batch_size, 128, [batch_size, 128, o
relud ReLU ReLU activation.
14, 14] 14, 14]
)) Max pooling with
[batch_size, 128, [batch_size, 128, 7,]
pool2 MaxPool2d kernel size 2 and
14, 14] 7]
stride 2.
Flatten the feature
[batch_size, 128, 7, | [batch size, 128 *
flatten Flatten maps for the fully
7] 7*7]
connected layer.
Fully
Linear (Fully [batch_siz [batch_siz
fel connected layer
Connected) e, 128 *7* 7] e, 256])
with 256 neurons.
relu_fel ReLU [batch_size, 256] [batch_size, 256] ReLU activation.
)) Dropout layer with
dropoutl Dropout [batch_size, 256] [batch_size, 256] »
probability 0.5.
. Fully connected
Linear (Fully)))
fc2 [batch_size, 256] [batch_size, 128] layer with 128
Connected)
neurons.
relu_fc2 ReLU [batch_size, 128] [batch_size, 128] ReLU activation.
Dropout layer with
dropout2 Dropout [batch_size, 128] [batch_size, 128]
probability 0.5.
Fully connected
Linear (Fully)) layer with 10
fc3 [batch_size, 128] [batch_size, 10]
Connected) output neurons

(classes).

72

Table 3.4. The Architecture of Deep Convolutional Self-Organizing Map (DCSOM)

DCSOM IN-SOM SOM-size stride patch/kernel |Auto encoder parameters
layerl 81 20%20 1 16x16 |Encoder (Cnov2D,Relu,
layer2 81 15x 15 1 g§x8 Maxpooling,Conv2D, Relu,

Maxpooling) Decoder(Cnov2D,

Relu,Upsampling,Conv2D,soft
layer3 36 10x 10 2 6x10

max,Upsampling)

3.20 Evaluation Metrics

In classification problems, the performance of a model is measured using a variety of
evaluation metrics. These metrics evaluate the ability of the model to correctly classify data into
predefined categories. In this research we employed two widely used metrics for assessment are:
accuracy, and F1 score is the harmonic mean of Precision and Recall. It considers both false
positives and false negatives, making it more reliable for imbalanced datasets. Below is an

overview of key metrics used for assessing classification capability in this research:

3.20.1 Accuracy

Is the proportion of correct predictions out of the total predictions it is a straightforward
metric often used when the dataset is balanced, meaning the classes are roughly equal in size.
However, it can be misleading in cases of imbalanced datasets situations where one class
significantly outweighs another (e.g., fraud detection). For example, predicting all outcomes as the
majority class could yield high accuracy but fail to capture minority class performance (Raschka,
2018).

Mecutacy — TP + TN
Y = TP I TN + FP + FN

Where the TP is the True Positives, FN is False Negatives, TN is True Negatives and the
FP is the False Positives.

3.20.2 F1-Score

F1-Score is the harmonic mean of Precision and Recall, making it particularly useful for
imbalanced datasets. Precision focuses on the correctness of positive predictions, while Recall
measures the ability to capture all true positive instances. The F1-Score balances these two,
providing a reliable measure for tasks where the minority class is critical, such as detecting rare

diseases (Han, Kamber, & Pei, 2011). For instance, a model with high Accuracy but low F1-Score

73

might perform poorly on the minority class, emphasizing the importance of using F1-Score in

relevant scenarios (Brownlee, 2020).

P xR

F1-S =2X
core PTR

Where the P is the Precision and the R is the recall.

3.20.3 Precision

The proportion of true positive predictions out of all positive predictions Precision
measures the accuracy of positive predictions made by a classification model emphasizes
correctness of positive predictions. It answers the question: Of all the instances predicted as
positive, how many are actually positive (Raschka, 2018). Use Case: Precision is crucial when false
positives are costly, such as in spam email detection, where wrongly classifying a legitimate email

as spam can lead to loss of important information (Han, Kamber, & Pei, 2011).

TP

p il — il
recision TP + FP

Where the TP True Positives is the Instances correctly classified as positive And the FP

False Positives is the Instances incorrectly classified as positive.

3.20.4 Recall

Recall, also known as Sensitivity or the True Positive Rate, measures the ability of a
classification model to identify all actual positive instances. It answers the question: Of all the
actual positive cases, how many did the model correctly identify (Brownlee, 2020). Use Case:
Recall is essential in scenarios where missing a positive case (false negatives) is costly, such as in
medical diagnostics, where failing to identify a disease can lead to severe consequences (Han,

Kamber, & Pei, 2011).

TP

Recall = m

74

Where True Positives (TP): Instances correctly classified as positive and False Negatives

(FN): Instances incorrectly classified as negative (missed positives).

75

4. RESULTS AND DISCUSSIONS

The experiments and discussion of our proposed network are evaluated in this section using
six different image datasets employed to assess the performance of the proposed method in all the
experiments. The accuracy of the proposed methods was compared with that of other models. Such
as the convolutional networks (CNN), differential convolutional networks (DiffCNN), and the deep
convolutional self-organizing map (DCSOM) in all tests. All experiments aim to examine how the
new models have improved and to assess the impact of changes in accuracy and performance. The
primary goal is to investigate the effects of the new module. Hence, every experiment is being done
to examine how the SOMdiffCNN has improved and to analyze the impact of changes in accuracy

performance.

4.1 The datasets

The Photographer's Gallery's Data, Set, and Match program aims to share, visualize, and
analyze modern image databases. Six image datasets are utilized to demonstrate the performance of
the models: Fashion MNIST, Bird, MNIST, CIFAR-100, CIFAR-10, and STL-10 Datasets. The
Bird Dataset contains high-resolution images of birds captured from multiple angles and in various
environmental settings, includes 525 bird species, with 84,635 training images, 2,625 test images,
and 2,625 validation images, where each image is a 224x224 color picture. The Fashion MNIST
Dataset Each image is a 28x28 grayscale picture, categorized into 10 classes. Used for
benchmarking computer vision algorithms. The MNIST Dataset is a set of handwritten digits,
comprising 28x28 grayscale images of digits ranging from 0 to 9. Used for training models for
handwritten digit recognition. The CIFAR-10 Dataset includes 60,000 color images of size 32x32,
divided into 10 distinct classes for image classification tasks. The CIFAR-100 Dataset is an
expanded version with 60,000 color images of size 32x32, categorized into 100 different classes for
more complex classification tasks. STL-10 Dataset has 10,000 images of 96x96 color images and
is used for developing and evaluating various semi-supervised and unsupervised learning methods.

To demonstrate the effectiveness of the techniques, 7 different experiment sets were carried
out. These datasets are available to the public. Each dataset was normalized to have a zero mean
and unit variance.

https://archive.ics.uci.edu/ml//index.phpdatasets,http://cs.joensuu.fi/sipu/datasets/ and Hata!

Koprii basvurusu gecerli degil. www.kaggle.com/datasets/dhruvildave and their properties are

shown in Table 1

77

Table 4.1 Shows the dataset evaluation

Data Sets Name Attributes Classes Training Data Test Data
MNIST 64 10 60000 10000
Fashion-mnist 12 10 60000 10000
Cifer10 16 10 50000 10000
Bird 3 525 84,635 2,625
STL10 16 10 5000 8000
Cifer100 16 100 500000 100000

Table 4.1. Shows the dataset evaluation.

4.2 The Experiments

4.2.1 The initial set

Comparing the accuracy of the SOMAiffCNN model across different datasets in this
experiment, the proposed model assesses the resulting improvement of the Classification of six
different image datasets. The model parameter values for all experiments are compiled in Table 1.
The model consists of SOM, differential convolution, convolutional, and reshaping layers. The
SOM was initially trained and then used in each training step in DiffCNN, The encoded inputs
were then utilized by the SOM (Self. SOM) and concatenated with the encoded images before
being passed through the dense layers. The results are displayed in Table 2. Overall, the model

demonstrated a significant performance enhancement.

Table 4.2 Shown the hyper-parameter settings for the proposed model used in all experiments

Parameter name

The values

Image Size

(28 x 28 x 1) pixels,
(224 x 224 x 3) pixels,
(32 x 32 x 3) pixels,
And (96 X 96 x 3) pixels.

Number of Differential layers 1
batch size 64
SOM map dimension 10x10
Neighborhood radius(ci, of) (1.0,0)
Number of epochs used in the learning 50
Learning rate 0.001
Batch normalization -
kernel size 3
Map Size 4-20
Stride 2

78

4.2.2 The Second series of Experiments

The effectiveness of our approach on the MNIST dataset was examined in comparison to
the DiffCNN, CNN, and DCSOM models. The SOMdiffCNN was fine-tuned using a portion of the
MNIST dataset (6000 training samples and 1000 testing samples) and the highest accuracy among

all models was achieved by our model.

4.2.3 The Third set of Experiments

An examination is conducted on how well the suggested method performs on the Cifar10
dataset with normalization. The model begins with an input layer (an image of size 32 x 32 x 3
pixels), incorporating DiffConv Layer "subsequently followed by a convolutional layer by ReLU
activation, max pooling, and fully connected layers." Subsequently, there are two fully connected
(dense) layers (fc1 and fc2) with ReLU and softmax activation functions, respectively. The model
was compiled using sparse categorical cross-entropy loss along with the stochastic gradient descent
(SGD) optimizer. All the experiments in this paper The results, including accuracy, F1 score, and
the loss values collected during training, are printed for evaluation, and compared to the DiffCNN,

DCSOM, and CNN models.

4.2.4 The Fourth experiment set

The suggested method was compared with three models: DiffCNN, DCSOM, and CNN
networks on Bird datasets. All compared structures had the same hyperparameter tuning. The
method was defined using PyTorch indicating the Input layer: Accepts input data with shapes of
(224, 224, and 3). It uses SOM, a differential convolutional layer. Followed by the standard
convolutional layers (convl, Conv2) with ReLU activation, a max-pooling layer, and layers that are
fully connected. Subsequently, there are two fully connected (dense) layers (fcl and fc2) with
ReLU and softmax activation functions to produce output with 525 Classes of the softmax
activation, suitable for multi-class classification tasks. The number 525 corresponds to the number
of classes in the classification issue. The models are compiled using the categorical cross-entropy
loss function, which is common for multi-class classification problems, and The Adam optimizer

with a learning rate of 0.001 is utilized. Accuracy and F1 scores are then computed.

4.2.5 The fifth set of experiments

The correctness of the proposed approach on The STL10 dataset was investigated. STL-10
dataset was loaded using the Torchvision library and data loaders for training and testing were
created. The model is defined as a PyTorch module that combines the SOM, differential
convolutional layer (DiffConv layer), and DiffCNN with convolutional layers. Followed by the
standard convolutional layers (conv1, conv2, etc.) with ReLU activation, a max-pooling layer, and

dense layers. The network is trained with the specified loss function (cross-entropy) and optimizer

79

(Adam). Accuracy and the F1 score for both training and testing are calculated. Then, a comparison

is done with three models DiffCNN, DCSOM, and CNN networks.

4.2.6 Experiment Sixth

The accuracy of the suggested Method was compared with three models: DiffCNN,
DCSOM, and CNN models utilizing the Fashion MNIST dataset. The dataset is accessed via
Keras.datasets.fashion_mnist. Additionally, the pixel values in the images were normalized to a
range of 0 to 1. The data type of the images is modified to float32. The model is composed of
SOM, DiffCNN with a DiffConvLayer as the main layer, double fully connected layers, max
pooling, flattening, and a convolutional layer. The model was developed with the Adam optimizer,
which results in a learning rate of 0.001 and sparse categorical cross-entropy loss. Then, 50 epochs
were performed on the Fashion MNIST training. The accuracy and F1 scores are calculated for

individual training and testing sets according to the labels assigned by SOM.

4.2.7 Experiment seven

The proposed method was tested on the Cifarl00 dataset compared with the DiffCNN,
DCSOM, and CNN models. The model consists of SOM and DiffCNN with a layer for input,
diffConvLayer, flattening layers, convolutional layers, and max-pooling. The model is trained on
the CIFAR-100 dataset using the stochastic gradient descent (SGD) optimizer and the sparse
categorical cross-entropy loss for 50 epochs. Accuracy and F1 scores are calculated for the training

and test set.

4.3 The Results

4.3.1 Experiment 1

The MNIST, Fashion-mnist, Cifar100, Birds, Cifar10, and STL10, Datasets were compared
using the SOMdiffCNN method. Also, the accuracy was achieved by MNIST with an accuracy of
98.58%, While Fashion-mnist, Birds, STL10, Cifar100, and Cifarl0, achieved accuracies of
96.531%, 87.49%, 86.9933%, 86.78%, and 81.657% respectively. The compression of our

suggested approach with the six datasets is illustrated in Table 2.

4.3.2 The experiment 2

Comparisons of the accuracies of the proposed model with those of DiffCNN, CNN, and
DCSOM, on the MNIST dataset. Accuracies of 98.01%, 95.73%, and 81.55% were achieved by
DCSOM, DiffCNN, and CNN respectively our techniques demonstrated a very effective accuracy of
98.58%. The accuracy of 81.55% for CNN demonstrates poorer than our model (17.03%

80

improvement over CNN, 0.57% over DCSOM, and 2.85% over DiffCNN). The comparisons are
presented in Table 3.

4.3.3 Experiment 3

In this test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM, were compared with the
Cifar10 dataset. Test accuracies of 81.657%, 80.88%, 79.26%, and 78.53% were achieved by
SOMUiffCNN, DCSOM, CNN, and DiffCNN, respectively, According to the result of this dataset,
Very effective accuracy was demonstrated by the SOMdiffCNN technique (3.12% improvement
over DiffCNN, 0.77% over DCSOM, and 2.39% over CNN,). The compression of our suggested

approaches with the other techniques is shown in Table 4.

4.3.4 Experiment 4

In this test, the SOMdiffCNN, DiffCNN, CNN, and the DCSOM were compared on the
Birds dataset. Our method achieved an accuracy of 87.49%. While DiffCNN, CNN, and DCSOM
achieved 83.96%, 81.09%, and 76.46% respectively. In this dataset, our technique demonstrated
a very effective test accuracy (3.53% improvement over DiffCNN, 6.4% over CNN, and 11.03%
over DCSOM). Compression of the suggested methods with the other models is illustrated in Table
5.

4.3.5 Experiment 5

In this test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM were compared on the STL10
dataset our proposed method Achieved 86.99% as its best accuracy on the STL10 dataset while
DCSOM achieved 77.32%, CNN achieved 72.03% and DiffCNN achieved 85.16% accuracies. Our
technique demonstrated (a 9.67% improvement over DCSOM, 1.83% over DiffCNN, and 14.96%

over CNN). Table 6 shows the compression of our proposed approach with the other technique.

4.3.6 Experiment 6

In this experiment, our suggested method with DiffCNN, CNN, and DCSOM were comparedon
the Fashion-mnist dataset. SOMAiffCNN achieved 96.53%, while DCSOM Achieved 93.39%,
DiffCNN achieved 91.905%, and CNN achieved 88.56%, accuracies our technique demonstrated
(3.19% improvement over DCSOM, 4.68% than DiffCNN and 8.02 % than CNN). Our proposed

method achieved the best accuracy over all datasets. The compression is shown in Table 7.

4.3.7 Experiment 7

In this test, our proposed method, with DCSOM, CNN, and DiffCNN was compared with
Cifar100 datasets. An accuracy of 86.78% was achieved byour method. While DCSOM Achieved
74.49%, DiffCNN achieved 75.06%, and CNN achieved 81.79%. Our technique demonstrated (a

81

12.29% improvement over DCSOM, 11.72% over DiffCNN, and 4.99% over CNN). The

compression is presented in Table 8.

Table 4.3 The accuracies of our proposed SOMdiffCNN comparisons on six different image

datasets are presented.

The The datasets Train-Acc % Test-Acc % F1-score
model
MNIST 98.9183 08.5816 98.5816
Cifarl0 90.422 81.657 90.327
Birds 88.65 87.49 87.49
SOMdi
ffCNN STL10 88.023 86.9933 86.97
Cifar100 95.874 86.78 94.024
Fashion-mnist 97.705 96.531 96.53

The experiment results show that the proposed methods demonstrate very effective
accuracy in all the datasets. Achieved accuracy values of 98.58%, 96.53%, 87.49, 86.99%, 86.78%,
and 81.65% in the MNIST, Fashion MNIST, Birds, STL10, Cifer100, and Ciferl0 datasets,

respectively.

82

Loss

Accuracy (%)

Figure 4.1 SOMdiffCNN Model Accuracies for Birds Dataset.

175 1

150 -

125 -

100 -

0.75 -

0.50 -

0.25 A

55

SOMAIffCNN Accuracy for Birds data

—&— Training Accuracy
—— Test Accuracy

20
Epochs

30 40

SOMdIffCNN Loss for Birds data

—e— Loss

20

30
Epochs

50

Figure 4.2 SOMdiffCNN Model Training Loss for Birds dataset.

83

Accuracy (%)

SOMdIffCNN Accuracy for STL10 data

—&— Training Accuracy
{ —+— Test Accuracy

-~
-

Epochs

Figure 4.3. SOMdiffCNN Model Accuracies for STL.10 Dataset.

SOMdIffCNN Loss for STL10 data

ll'T

10
0.9 1
0.8 1
0.7 1
0.6 4

Loss

0.5 1
0.4 -
0.3 -

-&— Loss

-

Epochs

Figure 4.4 SOMdiffCNN Model Accuracies for STL10 Datasets.

84

Loss

SOMdIffCNN Accuracy for FashionMINST data

—&— Training Accuracy
1 = Test Accuracy

Accuracy (%)
8 & 8 ¥

v

=]

0 10 20 30 40 50
Epochs

Figure 4.5 SOMdiffCNN Model Accuracies for Fashion-mnist Dataset.

SOMdIffCNN Loss for FashionMINST data

06
-~ Loss
0.5 -

04 1

0.2 1

0.1 1

Epochs

Figure 4.6 SOMdiffCNN Model Training Loss for Fashion-mnist datasets.

85

SOMdiffCNN Accuracy for Cifar100 data

Accuracy (%)

m -

m .

70 -

,w .

50 -

40 .

30 1 =&~ Training Accuracy

—+— Test Accuracy

m L] L L L) L] Ll

0 10 20 30 40 50
Epochs

Figure 4.7 SOMdifftCNN Model Accuracies for Cifar100 dataset.

SOMdIffCNN Loss for Cifarl00 data

-~ Loss
301

25 1

w 2.0 -

15 1

10 1

05 |

Epochs

Figure 4.8 SOMdiffCNN Model Training Loss for Cifar100 Dataset.

86

Accuracy (%)

SOMDIffCNN Accuracy For Cifarl0

1 —e— Training Accuracy
~+— Test Accuracy

Epoch
Figure 4.9 SOMdiffCNN Model Accuracies for Cifarl0 Dataset.

SOMDIffCNN Loss For Cifarl0

0.2 -

Epoch
Figure 4.10 SOMdiffCNN Model Training Loss for Cifar10 Dataset.

87

Accuracy (%)

SOMdIffCNN Accuracy for MINST data

=&~ Training Accuracy
—+— Test Accuracy

100 -

Epoch

Figure 4.11 SOMdiffCNN Model Accuracies for MNIST Dataset.

SomDiffCNN Loss For MINSTdata

0.35 1
T —o— Loss
0.30 1

0.25 -

0.20 -

Loss

0.15 1

0.10 1

0.05 1

0.00 1

Epoch
Figure 4.12 SOMdiffCNN Model Training Loss for MNIST Dataset.

88

It is important to note that the term 'test accuracy' used in the plots throughout this thesis
refers to the validation accuracy obtained during model development, not the final accuracy on the

held-out test set .

Table 4.4 The accuracy of our proposed method, comparisons with DiffCNN, CNN, and
DCSOM on MNIST datasets are presented

The datasets | The models Train- Test- F1-Score | Loss Function
Accuracy Accuracy
SOMUJiffCNN | 98.9183 % 98.5816 98.16% 0.0065
MNIST DiffCNN 9591 % 95.73 95.73% 0.0437
dataset
CNN 85.64 % 81.55 81.55% 0.0910
DCSOM 98.11 % 98.01 98.01% 0.0810

Table 4.5 displays the accuracies of our proposed method compared to DiffCNN, CNN, and
DCSOM on CIFAR-10 datasets.

The dataset | The models Train- Test- F1-Score | Loss Function
Accuracy Accuracy
SOMUdiffCNN 90.422 % 81.657 81.657% | 0.1936
Cifarl0 DiffCNN 85.68 % 78.53 78.53% 0.3771
datasets
CNN 79.763 % 79.26 79.26% 0.3790
DCSOM 82.33 % 80.05 80.13% 0.3517

Table 4.6 shown the accuracies of our proposed approach compared with DiffCNN,CNN, and

DCSOM on Birds datasets.
The dataset | The models Train-Accuracy | Test-Accuracy | F1-Score Loss Function
SOMdiffCNN 88.65 % 87.49% 87.49% 0.1085
Birds DiffCNN 84.701 % 83.96% 83.63% 0.1241
datasets
CNN 81.19 % 81.09% 81.09% 0.3491
DCSOM 78.62 % 76.46% 76.44% 0.2248

89

Table 4.7 Presentations the accuracies of our proposed method compared to DiffCNN,CNN, And
DCSOM on the STL10 datasets.

The dataset | The models Train-Accuracy | Test- F1-Score | Loss Function
Accuracy
SOMUiffCNN | 89.023 % 86.9933 86.99 0.2768
STL10 DiffCNN 85.60% 85.16% 85.16% | 0,3443
CNN 78.03% 72.03% 72.17% | 0.4224
DCSOM 79.40 % 77.32% 77.22% | 0.3836

Table 4.8 Confirmations the accuracies of our suggested Method comparisons with DiffCNN,
CNN, and DCSOM on Fashion-mnist datasets are displayed.

The The models Train- Test- F1-Score Loss Function
dataset Accuracy Accuracy
SOMJiffCNN 97.705 % 96.58% 96.58% 0.0710
Fashion- DiffCNN 94.66% 91.905% 91.905% 0.0814
MNIST
dataset CNN 88.56% 88.56% 88.01% 0.2900
DCSOM 93.87 % 93.398% 93.39% 0.1047

Table 4.9 displays the accuracies of our suggested method compared with DiffCNN, CNN, and
DCSOM on the Cifar100 datasets.

The dataset | The models Train- Test-Accuracy | F1-Score | Loss Function
Accuracy
SOMUJiffCNN | 95.874 % 86.78% 86.78% 0.4025
DiffCNN 89.76% 75.06% 75.06% 0.3971
Cifar100
CNN 79.33% 81.79% 78.87% 0.4264
DCSOM 90.03 % 74.49% 74.49% 0.4925

90

Fashion-mnist dataset Test Accuracy Comparison

100 -
m .
— m -
g
-
70 -
g
=
o
< 60 -
=@~ SOMdiffCNN_acc
50 - ~#- DiffCNN_acc
—*= CNN_acc
40 - —#&~ DCSOM _acc
0 10 20 30 40 50

Epochs

Figure 4.13 Accuracy Comparison Results for Fashion-mnist Datasets.

Fashion-mnist dataset Training Loss Comparison

161 —o— SOMGiffCNN
—@— DIiffCNN
0.8 - —a— CNN
—a— DCSOM

Loss

Epochs

Figure 4.14 Loss Comparison Results for Fashion-mnist Datasets.

91

100 1

Accuracy (%)
b

MINST dataset Test Accuracy Comparison

~&~ SOMdiffCNN_acc
~#- DiffCNN_acc
~*= (NN _acc

—&= DCSOM _acc

T T T T 1 T

0 10 20 30 40 50
Epochs

Figure 4.15 Accuracy Comparison Results for MNIST Datasets.

MNIST dataset Training Loss Comparison

—o— SOMdiffCNN
201 ~m- DiffCNN
=4+ CNN
—&~ DCSOM
15 -
A
S0
05 1
0.0 1
0 10 20 0 40 50

Epochs

Figure 4.16 Loss Comparison Results for MNIST Datasets

92

70 1

Accuracy (%)
8

Cifar10 dataset Test Accuracy Comparison

—&~ SOMdiffCNN_acc
~#- DiffCNN_acc
—*= (NN_acc

—&— DCSOM _acc

Epochs

40 50

Figure 4.17 Accuracy Comparison Results for Cifar10 Datasets.

Cifarl0 dataset Training Loss Comparison

200 A1
175 1
150 1

125 1

Los

100 1
0.75 -
0.50 1

0.25 1

~&— SOMdiffCNN
~m- DiffCNN
—+— CNN

—&— DCSOM

Epochs

Figure 4.18 Loss Comparison Results for Cifar10 Datasets.

93

Birds dataset Test Accuracy Comparison

m e
2 70
g
5
o
$ 60
—®— SOMdiffCNN_acc
50 - ~#- DiffCNN_acc
=*= CNN_acc
== DCSOM_acc
0 10 20 30 40 50

Epochs

Figure 4.19 Accuracy Comparison Results for Birds Datasets.

Birds dataset Training Loss Comparison

S —o~ SOMdffCNN
St ~@- DIffCNN
. —a— CNN
25 - —4&— DCSOM
20 -
b
5 15 1
10 A
05 1
00 k T T T T T T
0 10 20 30 40 50
Epochs

Figure 4.20 Loss Comparison Results for Birds dataset.

94

STL10 dataset Test Accuracy Comparison

m -
2707
=
o
g
g 60
<
@~ SOMdiffCNN_acc
50 1 &~ DIffCNN_acc
—*= (NN _acc
40 - —*— DCSOM _acc
0 10 20 30 40 50

Epochs

Figure 4.21. Accuracy Comparison Results for STL10 Datasets.

STL10 dataset Training Loss Comparison

~&— SOMdIffCNN

25 4 ~@— DiffCNN
—+— CNN
—&— DCSOM
2.0 1
i 15
s
10
05
0 10 20 30 40 50
Epochs

Figure 4.22. loss Comparison Results for STL10 Datasets.

95

Cifar100 dataset Test Accuracy Comparison

m -
70 1
€
3 60 1
e
2
g
< 50
=@~ SOMdiffCNN_acc
40 ~#- DiffCNN_acc
=*= CNN_acc
.
30 DCSOM _acc
0 10 20 30 40 50

Epochs

Figure 4.23. Accuracy Comparison Results for Cifar100 Datasets.

Cifar100 dataset Training Loss Comparison

—&— SOMdiffCNN
~@- DiffCNN
4 —+— CNN
—a— DCSOM
3 -
a
k|
2 §
1 -
0 10 20 30 40 50

Epochs

Figure 4.24. loss Comparison Results for Cifar100 Datasets.

Within this work, we suggested a novel Intergenerational Interaction Type of Neural
Network Self-Organizing Map Differential Convolutional Neural Network for classifying image
datasets.

A new perspective on the Differential Convolutional Neural Network has been considered,
and the hypothesis behind the method is that a building father’s presence enables the son to succeed
quicker than others. Self-organizing map stands for the building father it is pre-trained by

experience before training his son. Son is the Differential convolutional neural network where in

96

this case is used. Since this Enhancement increases both learning and classification speed, it leads
to wider application possibilities for the proposed topology. The proposed architecture is distinct
and different from further SOM-based DL. Tested on six different datasets, it demonstrated very
effective accuracy in all the datasets.

In the First test, we compared the DiffCNN, CNN, and, DCSOM, with the MINST dataset
DCSOM, DiffCNN, and, CNN achieved 98.01%, 95.73%, and 81.55%, respectively our technique
demonstrated a very effective accuracy. The accuracy of 81.55 % for CNN demonstrates poor data
classification than our Model.

In the Second test, we compared the SOMdiffCNN, DiffCNN, CNN, and DCSOM, with
the Ciarl0 dataset SOMdiffCNN, DCSOM, CNN, and DiffCNN achieved test accuracies of
81.657%, 80.88, 79.26%, and 78.53 respectively. According to the results of this datasets our
technique demonstrates a very effective Classification accuracy (3.12% improvement over
DiffCNN, 0.77% than DCSOM, and 2.39 over DCNN).

In the Third test, the SOMdiffCNN, DiffCNN, CNN, and the DCSOM were compared on
the Birds dataset. Our method achieved an accuracy of 87.49%. While DiffCNN, CNN, and
DCSOM achieved 83.96%, 81.09%, and 76.46% respectively. In this dataset, our technique
demonstrated a very effective test accuracy (3.53% improvement over DiffCNN, 6.4% over CNN,
and 11.03% over DCSOM).

In the Fourth test, the SOMdiffCNN, DiffCNN, CNN, and DCSOM were compared on the
STL10 dataset our proposed method Achieved 86.99% as its best accuracyon the STL10 dataset while
DCSOM achieved 77.32%, CNN achieved 72.03% and DiffCNN achieved 85.16% accuracies. Our
technique demonstrated (a 9.67% improvement over DCSOM, 1.83% over DiffCNN, and 14.96%
over CNN).

In the Fives test, our suggested method with DifftCNN, CNN, and DCSOM were compared on
the Fashion-mnist dataset. SOMAiffCNN achieved 96.53%, while DCSOM Achieved 93.39%,
DiffCNN achieved 91.905%, and CNN achieved 88.56%, accuracies our technique demonstrated
(3.19% improvement over DCSOM, 4.68% than DiffCNN and 8.02 % than CNN).

In the sixth test our proposed method, with DCSOM, CNN, and DiffCNN was compared
with Cifar100 datasets. An accuracy of 86.78% was achieved by our method. While DCSOM
Achieved 74.49%, DiffCNN achieved 75.06%, and CNN achieved 81.79%. Our technique
demonstrated (a 12.29% improvement over DCSOM, 11.72% over DiffCNN, and 4.99% over
CNN).

The experiments showed that the proposed method demonstrated very effective accuracy in
all the datasets. The accuracy values achieved by 98.58%, 96.53%, 87.49%, 86.99%, 86.78 and
81.65% in the MNIST, Fashion MNIST, Birds, STL10, Cifer100, and Cifarl0, datasets,

respectively, surpassing the latest advancements performance.

97

Table 4.10 Optimized parameters for the models (CNN, DCSOM, SOMdiffCNN, and DiffCNN).

Properties DCNN DCSOM SOMdiffCNN DiffCNN

Epochs 50 50 50 50

Bach Size 64 64 64 64
Number of Filter 512 512 512 -
Filter Size 3 3 3 -

pooling Maxpooling2D Maxpooling2D, Maxpooling2D, Maxpooling2D
Upsampling2D Upsampling2D
Differential layer - - yes yes
Euclidean Distance - yes yes yes

Manbhattan distance

Activation Function Relu, Softmax, sigmoid
Loss Binary Cross entropy
Optimizer Adam , SGD

Table 4.10. Shows the Optimized parameters for the models (CNN, DCSOM, Diff-CSOM,

and DiffCNN).

98

5. CONCLUSIONS

This research introduced a mnovel hybrid neural network framework, termed
Intergenerational Interaction Neural Networks (IINNs), which integrates the principles of Self-
Organizing Maps (SOMs) and Differential Convolutional Neural Networks (DiffCNNs). Inspired
by the philosophy of generational guidance. The proposed method leverages the synergy between a
Self-Organizing Map (SOM), representing the guiding father, and a Differential Convolutional
Neural Network (DiffCNN), symbolizing the son The hypothesis behind this method is that “The
presence of a guiding father enables the son to succeed quicker and better than the others” to
enhance the faster convergence and improve the performance. Unlike traditional teacher-student
frameworks the proposed approach involves pre-trained father or ancestor models working together
with the son model during both the training and application phases of the son network.

The SOMAiffCNN represents a unique Father-Son Network,By leveraging the SOM's
unsupervised feature extraction and Encoding capabilities, the DiffCNN benefits from pre-learned
structural representations, which are dynamically integrated during each training step. This
intergenerational approach significantly reduces the complexity of the convolutional layers in the
DiffCNN, while simultaneously improving convergence speed and overall classification accuracy.

The SOM was pre-trained independently before integrating with the DiffCNN, where its
output was concatenated with encoded inputs. This hybrid architecture demonstrated superior
adaptability and feature representation capabilities, as evidenced by its application to six diverse
image datasets.

The effectiveness of the SOMdiffCNN was validated across six image datasets MNIST,
Fashion-MNIST, Birds, STL10, CIFAR10, and CIFAR100. Resulting in classification accuracy
values of 98.58%, 96.53%, 87.49%, 86.99%, 86.78%, and 81.65% respectively. Moreover, the
model demonstrated significant performance improvements within the first 10 training epochs.
Experimental results indicate notable enhancements in both training and testing accuracy. For the
MNIST dataset, the model improved 10.62% in training accuracy and 6.53% in testing accuracy.
Similarly, for the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, the model recorded
accuracy improvements of 23.72% / 24.16%, 20.48% / 9.42%, and 62.48% / 50.92%, respectively.
Additionally, notable performance gains were observed on the Birds and STL-10 datasets, with
accuracy improvements of 26.92% / 31.14% and 10.21% / 15.03%, respectively. The proposed
model achieves faster convergence and significant performance improvements across multiple
datasets within the first 10 training epochs. The experimental results underscore the model’s ability
to achieve faster convergence up to 84%, reaching 85% accuracy on more complex datasets, such
as CIFAR-10, Birds, and CIFAR-100 within the first 7 to 10 epochs. Maintaining strong
performance across simpler datasets like FashionMNIST, where it reached 90% accuracy by the

7th epoch, resulting in a 74% faster convergence. The proposed model achieved state-of-the-art

99

accuracy rates, surpassing traditional CNN, DiffCNN, and DCSOM models. These results highlight
the ability of the SOMdiffCNN to balance computational efficiency and predictive performance,
particularly in resource-constrained environments.

The findings validate the hypothesis that leveraging generational interactions within neural
networks fosters a more efficient and effective learning paradigm. The intergenerational approach
not only advances the theoretical understanding of hybrid neural networks but also offers a
practical solution for enhancing model performance on challenging classification tasks.

This work contributes to the growing field of deep learning by presenting an innovative
hybrid architecture that combines unsupervised and supervised learning principles.The Father-Son
Network paradigm emphasizes the importance of leveraging intergenerational knowledge transfer
to build more efficient and adaptive neural networks. Future research may explore the scalability of
this framework, its applicability to other domains, such as natural language processing or time-
series data, investigating the inclusion of deeper ancestral structures and the integration of
additional hierarchical generational layers to further enhance performance. The developed topology
is applicable to medical image recognition, image recognition in automotive industry with better
performance advantages and real time image recognition tasks such as automatic driving systems
with much faster learning speed.

By introducing this work the aim is to bridge the gap between traditional hierarchical
learning methods and a more collaborative, intergenerational approach, advancing both the
conceptual framework and practical applications of deep learning.

This study sets a promising foundation for next-generation neural network architectures,
highlighting the potential of biologically inspired methodologies in advancing artificial

intelligence.

100

REFERENCES

Alexander Amini, and Ava Soleimany. (2020). Introduction to Deep Learning | Electrical
Engineering and Computer Science. (n.d.). MIT OpenCourseWare. Retrieved June 17,
2023, from https://ocw.mit.edu/courses/6-s191-introduction-to-deep-learning-january-iap-
2020/

Aly, S., Shimada, A., Tsuruta, N., & Taniguchi, R. (2010, August 1). Robust Face Recognition
Using Multiple Self-Organized Gabor Features and Local Similarity Matching. IEEE
Xplore. https://doi.org/10.1109/ICPR.2010.71

Aly, S., & Almotairi, S. (2020). Deep Convolutional Self-Organizing Map Network for Robust
Handwritten Digit Recognition. IEEE Access, 8, 107035-107045.
https://doi.org/10.1109/access.2020.3000829

Akdemir, D., & Jannink, J.-L. (2014). Ensemble learning with trees and rules: Supervised, semi-
supervised, and unsupervised. Intelligent = Data Analysis, 18(5), 857-872.
https://doi.org/10.3233/ida-140672

A Deep Learning Framework for Predicting Response to Therapy in Cancer. (2019). Cell
Reports, 29(11), 3367-3373.e4. https://doi.org/10.1016/j.celrep.2019.11.017

Agarwal, P. (2016). Machine Learning Toolbox. Machine Learning and Applications: An
International Journal, 3(3), 25-34. https://doi.org/10.5121/mlaij.2016.3303

Altaf, F., Islam, S. M. S., Akhtar, N., & Janjua, N. K. (2019). Going Deep in Medical Image
Analysis: Concepts, Methods, Challenges, and Future Directions. /[EEE Access, 7, 99540—
99572. https://doi.org/10.1109/access.2019.2929365

Aaron, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
& Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. ArXiv.org.
https://arxiv.org/abs/1609.03499

Alexander Amini, and Ava Soleimany.(2020).A SURVEY ON DEEP LEARNING
TECHNIQUES. (2020). Strad Research, 7(8). https://doi.org/10.37896/sr7.8/037

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang, L. (2018). Bottom-
Up and Top-Down Attention for Image Captioning and Visual Question Answering. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/cvpr.2018.00636

Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., & Mougiakakou, S. (2016). Lung
Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural
Network. IEEE Transactions on Medical Imaging, 35(5), 1207-1216.
https://doi.org/10.1109/TM1.2016.2535865

About Python. (n.d.). Www.pythoninstitute.org. https://www.pythoninstitute.org/about-python

101

Aly, S., & Aly, W. (2020). DeepArSLR: A Novel Signer-Independent Deep Learning Framework
for Isolated Arabic Sign Language Gestures Recognition. IEEE Access, 8, 83199-83212.
https://doi.org/10.1109/access.2020.2990699

Aly, S., & Almotairi, S. (2020). Deep Convolutional Self-Organizing Map Network for Robust
Handwritten Digit Recognition. IEEE Access, 8, 107035-107045.
https://doi.org/10.1109/access.2020.3000829

Aly, S., Tsuruta, N., Taniguchi, R.-I., & Shimada, A. (2008, June 1). Visual feature extraction
using variable map-dimension Hypercolumn Model. IEEE Xplore.
https://doi.org/10.1109/IJCNN.2008.4633896

Aly, S., & Tsuruta, N. (2009). On Face Recognition using Hierarchical Self-organized Gabor
Features. Retrieved September 21, 2023, from https://www.mva-
org.jp/Proceedings/2009CD/papers/13-23.pdf

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van
Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A State-of-the-Art Survey on Deep
Learning Theory and Architectures. Electronics, 8(3), 292.
https://doi.org/10.3390/electronics8030292

Abdi, A. H., Luong, C., Tsang, T., Allan, G., Nouranian, S., Jue, J., Hawley, D., Fleming, S., Gin,
K., Swift, J., Rohling, R., & Abolmaesumi, P. (2017). Automatic Quality Assessment of
Echocardiograms Using Convolutional Neural Networks: Feasibility on the Apical Four-
Chamber View. IEEE Transactions on Medical Imaging, 36(6), 1221-1230.
https://doi.org/10.1109/tmi.2017.2690836

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A. K., Dean, J., Devin, M., Sanjay Ghemawat,
Irving, G., Isard, M., Manjunath Kudlur, Levenberg, J., Monga, R., Moore, S., Murray, D.
G., Steiner, B., Tucker, P. G., Vasudevan, V. K., Warden, P., & Wicke, M. (2016).
TensorFlow: a system for large-scale machine learning. Operating Systems Design and
Implementation, 265-283. https://doi.org/10.5555/3026877.3026899

Akinduko, A. A., & Mirkes, E. M. (2012). Initialization of Self-Organizing Maps: Principal
Components Versus Random Initialization. A Case Study. ArXiv (Cornell University).

Abd El Kader, I., Xu, G., Shuai, Z., Saminu, S., Javaid, 1., & Salim Ahmad, 1. (2021). Differential
Deep Convolutional Neural Network Model for Brain Tumor Classification. Brain
Sciences, 11(3), 352. https://doi.org/10.3390/brainscil 1030352

Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & Tan, R. S. (2017). A
deep convolutional neural network model to classify heartbeats. Computers in Biology and
Medicine, 89, 389-396. https://doi.org/10.1016/j.compbiomed.2017.08.022

Appiah, K., Hunter, A., Dickinson, P., & Meng, H. (2012). Implementation and Applications of
Tri-State Self-Organizing Maps on FPGA. IEEE Transactions on Circuits and Systems for
Video Technology, 22(8), 1150-1160. https://doi.org/10.1109/tcsvt.2012.2197077

102

Author Rahul Kumar. (n.d.). Machine learning quick reference : quick and essential machine
learning hacks for training smart data models. Packt Uuuu-Uuuu.

Anderson, J. A. (1995). An Introduction to Neural Networks. MIT Press.

Artificial intelligence abstracts. (1987). Artificial Intelligence, 32(3), 414-415.
https://doi.org/10.1016/0004-3702(87)90098-1

A neural unsupervised learning technique. (1988). Neural = Networks, I, 69.
https://doi.org/10.1016/0893-6080(88)90108-6

Abadi, M. (2016). TensorFlow: learning functions at scale. ACM SIGPLAN Notices, 51(9), 1-1.
https://doi.org/10.1145/3022670.2976746

Bondarenko, A. N., & Katsuk, A. V. (2007, April 1). Application of Self-Organization Maps to the
Biomedical Images Classification. IEEE Xplore.
https://doi.org/10.1109/SIBCON.2007.371312

Box, P., Van Der Maaten, L., Postma, E., & Van Den Herik, J. (2009). Tilburg centre for Creative
Computing Dimensionality Reduction: A Comparative Review Dimensionality Reduction:
A Comparative Review.
http://lvdmaaten.github.io/publications/papers/TR _Dimensionality Reduction Review 20
09.pdf

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. *Journal of
Machine Learning Research*, 13(2), 281-305.

Brady, J. M. (2020). Artificial intelligence and natural man. Artificial Intelligence, 11(3), 267-269.
https://doi.org/10.1016/0004-3702(78)90003-6

Bieniecki, W., Grabowski, S., & Rozenberg, W. (2007). Image Preprocessing for Improving OCR
Accuracy. 2007 International Conference on Perspective Technologies and Methods in
MEMS Design. https://doi.org/10.1109/memstech.2007.4283429
Bill Wilson.(2010). Self-organisation Notes,

www.cse.unsw.edu.au/~billw/cs9444/selforganising-10-4up.pdf

Bergstra, J., Olivier Breuleux, Bastien, F., Lamblin, P., Razvan Pascanu, Desjardins, G., Turian, J.,
Warde-Farley, D., & Yoshua Bengio. (2010). Theano: A CPU and GPU Math Compiler in
Python. https://doi.org/10.25080/majora-92bf1922-003

Brownlee, J. (2021, April 18). A Gentle Introduction to Ensemble Learning Algorithms. Machine
Learning Mastery. https://machinelearningmastery.com/tour-of-ensemble-learning-
algorithms/

Becker, H. (2001). Computing with words and machine learning in medical
diagnostics. Information Sciences, 134(1-4), 53-69. https://doi.org/10.1016/s0020-
0255(01)00092-5

Braun, G. J. (1999). Image lightness rescaling using sigmoidal contrast enhancement functions.

Journal of Electronic Imaging, 8(4), 380. https://doi.org/10.1117/1.482706

103

Benuwa, B. B., Zhan, Y. Z., Ghansah, B., Wornyo, D. K., & Banaseka Kataka, F. (2016). A
Review of Deep Machine Learning. International Journal of Engineering Research in
Africa, 24, 124-136. https://doi.org/10.4028/www.scientific.net/jera.24.124

Bengio, Y., Courville, A., & Vincent, P. (2012). Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8),
1798-1828. https://doi.org/10.1109/TPAMI.2013.50

Bengio, Y. (2009). Learning Deep Architectures for Al. Foundations and Trends® in Machine
Learning, 2(1), 1-127. https://doi.org/10.1561/2200000006

Ballas, N., Yao, L., Pal, C., & Courville, A. (2016, March 1). Delving Deeper into Convolutional
Networks for Learning Video Representations. ArXiv.org.
https://doi.org/10.48550/arXiv.1511.06432

Bergkvist, A., Rusnakova, V., Sindelka, R., Garda, J. M. A., Sjégreen, B., Lindh, D., Forootan, A.,
& Kubista, M. (2010). Gene expression profiling — Clusters of possibilities. Methods,
50(4), 323-335. https://doi.org/10.1016/j.ymeth.2010.01.009

Basha, S. H. S., Dubey, S. R., Pulabaigari, V., & Mukherjee, S. (2019). Impact of fully connected
layers on performance of convolutional neural networks for image
classification. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.10.008

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Breiman, L. (1984). Classification and regression trees. CRC press.

Brodtkorb, A. R., Hagen, T. R., & Satra, M. L. (2013). Graphics processing unit (GPU)
programming strategies and trends in GPU computing. Journal of Parallel and Distributed
Computing, 73(1), 4-13. https://doi.org/10.1016/j.jpdc.2012.04.003

B Arnold, T. (2017). KerasR: R Interface to the Keras Deep Learning Library. The Journal of Open
Source Software, 2(14), 296. https://doi.org/10.21105/j0ss.00296

Boixader, D., & Jacas, J. (1998). Extensionality based approximate reasoning. International
Journal of Approximate Reasoning, 19(3-4), 221-230. https://doi.org/10.1016/s0888-
613x(98)00018-8

Cheng, G., Zhou, P., & Han, J. (2016). Learning Rotation-Invariant Convolutional Neural
Networks for Object Detection in VHR Optical Remote Sensing Images. I[EEE
Transactions on Geoscience and Remote Sensing, 54(12), 7405-7415.
https://doi.org/10.1109/TGRS.2016.2601622

CIFAR-10 ¥ fEnT AL EANHAE (BARRS) | MifT2%0E. (n.d.). Www.voycn.com. Retrieved
September 25, 2023, from http://www.voycn.com/article/cifar-10-
shujujikeshihuaxiangxijiangjiefudaima

Couprie, C., Farabet, C., Najman, L., & Lecun, Y. (n.d.). Indoor Semantic Segmentation using
depth information. Retrieved September 13, 2023, from https://arxiv.org/pdf/1301.3572

104

Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y. (2014). Deep Learning-Based Classification of
Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 7(6), 2094-2107. https://doi.org/10.1109/jstars.2014.2329330

Choe, J.-1., & Shim, H. (2019). Attention-Based Dropout Layer for Weakly Supervised Object
Localization. ArXiv (Cornell University). https://doi.org/10.1109/cvpr.2019.00232

Cooil, B., Lerzan Aksoy, & Keiningham, T. L. (2007). Approaches to Customer Segmentation.
ResearchGate; Taylor & Francis (Routledge).
https://www.researchgate.net/publication/230557972 Approaches to Customer Segmenta
tion

Cho, K., Bart van Merrienboer, Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,
Y. (2014). Learning Phrase Representations using RNN Encoder—Decoder for Statistical
Machine Translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). https://doi.org/10.3115/v1/d14-1179

Chollet, F. (2018). Keras: The Python Deep Learning library. Astrophysics Source Code Library.

Cheng, K., Tahir, R., Eric, L. K., & Li, M. (2020). An analysis of generative adversarial networks
and variants for image synthesis on MNIST dataset. Multimedia Tools and Applications.
https://doi.org/10.1007/s11042-019-08600-2

Chikofsky, E. J.,, & Cross, J. H. (1990). Reverse engineering and design recovery: a
taxonomy. [EEE Software, 7(1), 13—17. https://doi.org/10.1109/52.43044

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A Simple Deep Learning
Baseline for Image Classification? IEEE Transactions on Image Processing, 24(12), 5017—
5032. https://doi.org/10.1109/tip.2015.2475625

cifarl00 | TensorFlow Datasets. (n.d.). TensorFlow. Retrieved May 6, 2023, from
https://www.tensorflow.org/datasets/catalog/cifar100

Chaoyang, L., Fang, L., & Yinxiang, X. (2003, September 1). Face recognition using self-
organizing feature maps and support vector machines. IEEE Xplore.
https://doi.org/10.1109/ICCIMA.2003.1238097

Chiu, W.-Y., Yen, G. G., & Juan, T.-K. (2016). Minimum Manhattan Distance Approach to
Multiple Criteria Decision Making in Multiobjective Optimization Problems. /[EEE
Transactions on Evolutionary Computation, 20(6), 972-985.
https://doi.org/10.1109/tevc.2016.2564158

Cao, Z., Li, X., Feng, Y., Chen, S., Xia, C., & Zhao, L. (2021). ContrastNet: Unsupervised feature
learning by autoencoder and prototypical contrastive learning for hyperspectral imagery
classification. Neurocomputing, 460, 71-83. https://doi.org/10.1016/j.neucom.2021.07.015

cifarl0 | TensorFlow Datasets. (n.d.). TensorFlow. Retrieved December 29, 2022, from

https://www.tensorflow.org/datasets/catalog/cifar10

105

C. Brian Atkins, Bouman, C. A., & Allebach, J. P. (2002). Optimal image scaling using pixel
classification. CiteSeer X (the Pennsylvania State University).
https://doi.org/10.1109/icip.2001.958257

Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y., Han, S., Luo, P., Zeng, G., & Wang, J.
(2022). Context Autoencoder for Self-Supervised Representation Learning.
Openreview.net. https://openreview.net/forum?id=Gb2Rndy5595

Computer vision: algorithms and applications. (2011). Choice Reviews Online, 48(09), 48—
514048-5140. https://doi.org/10.5860/choice.48-5140

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A Simple Deep Learning
Baseline for Image Classification? IEEE Transactions on Image Processing, 24(12), 5017—
5032. https://doi.org/10.1109/tip.2015.2475625

Coates, A., & Ng, A. Y. (2012). Learning Feature Representations with K-Means. Lecture Notes in
Computer Science, 561-580. https://doi.org/10.1007/978-3-642-35289-8 30

Diniz, W. J. S., & Canduri, F. (2017). REVIEW-ARTICLE Bioinformatics: an overview and its
applications. Genetics and Molecular Research, 16(1).
https://doi.org/10.4238/gmr16019645

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT
2019 (pp. 4171-4186).

Dugger, S. A., Platt, A., & Goldstein, D. B. (2017). Drug development in the era of precision
medicine. Nature Reviews Drug Discovery, 17(3), 183-196.
https://doi.org/10.1038/nrd.2017.226

Dorafshan, S., Thomas, R. J., & Maguire, M. (2018). Comparison of deep convolutional neural
networks and edge detectors for image-based crack detection in concrete. Construction and
Building Materials, 186, 1031-1045. https://doi.org/10.1016/j.conbuildmat.2018.08.011

Digitalcommons@uri, D., & Yuan, L. (n.d.). Implementation of Self-Organizing Maps with Python
Implementation of Self-Organizing Maps with Python. Retrieved September 21, 2023,
from https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=2244&context=theses

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval. ACM Computing Surveys, 40(2),
1-60. https://doi.org/10.1145/1348246.1348248

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale
hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern
Recognition. https://doi.org/10.1109/cvpr.2009.5206848

Divam. (2019, March 8). An Overview of Deep Learning Based Clustering Techniques. Divam
Gupta. https://divamgupta.com/unsupervised-learning/2019/03/08/an-overview-of-deep-

learning-based-clustering-techniques.html

106

Deravi, F. (2007). Editorial: IET Image Processing. IET Image Processing, 1(1), 1.
https://doi.org/10.1049/iet-ipr:20079006

Dolgikh, S. (2021). Analysis and Augmentation of Small Datasets with Unsupervised Machine
Learnin. Europe PMC. https://europepmec.org/article/PPR/PPR316421

Detecting and Combating Deep Fakes. (2021). The Journal of Intelligence, Conflict, and Warfare,
3(3), 83-87. https://doi.org/10.21810/jicw.v3i3.2752

Danuser, G. (2011). Computer Vision in Cell Biology. Cell, 147(5), 973-978.
https://doi.org/10.1016/j.cell.2011.11.001

Djokic-Petrovic, M., Pritchard, D., Ivanovic, M., & Cvjetkovic, V. (2016). IMI Python: Upgraded
CS Circles web-based Python course. Computer Applications in Engineering Education,
24(3), 464—480. https://doi.org/10.1002/cae.21724

Designing TensorFlow Modeling Code For TFX. (n.d.). TensorFlow. Retrieved September 26,
2023, from https://www.tensorflow.org/tfx/guide/train

Ephrat, A., Mosseri, I., Lang, O., Dekel, T., Wilson, K., Hassidim, A., Freeman, W. T., &
Rubinstein, M. (2018). Looking to Listen at the Cocktail Party: A Speaker-Independent
Audio-Visual Model for Speech Separation. ACM Transactions on Graphics, 37(4), 1-11.
https://doi.org/10.1145/3197517.3201357

Ekanayake, N., & Ranjith Liyanapathirana. (1994). On the exact formula for the minimum squared
Euclidean distance of CPFSK.IEEE Transactions on Communications, 42(11), 2917—
2918. https://doi.org/10.1109/26.328969

Ertugrul, O. F. (2018). A novel type of activation function in artificial neural networks: Trained
activation function. Neural Networks, 99, 148-157.
https://doi.org/10.1016/j.neunet.2018.01.007

Ephrat, A., Mosseri, 1., Lang, O., Dekel, T., Wilson, K., Hassidim, A., Freeman, W. T., &
Rubinstein, M. (2018). Looking to Listen at the Cocktail Party: A Speaker-Independent
Audio-Visual Model for Speech Separation. ACM Transactions on Graphics, 37(4), 1-11.
https://doi.org/10.1145/3197517.3201357
Emily Edward.(2023).Machine Learning for Medical Diagnostics: A Review in

Bioinformatics.

Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Sciences,
95(25), 14863—14868. https://doi.org/10.1073/pnas.95.25.14863

Eckardt, B. V., & Haugeland, J. (1988). Artificial Intelligence: The Very Idea. The Philosophical
Review, 97(2), 286. https://doi.org/10.2307/2185277

Edge Detection Using OpenCV | LearnOpenCV #. (2021, June 10). LearnOpenCV.

https://learnopencv.com/edge-detection-using-opencv/

107

Feng, C.-C., Wang, Y.-C., & Chen, C.-Y. (2013). Combining Geo-SOM and Hierarchical
Clustering to Explore Geospatial Data. Transactions in GIS, 18(1), 125-146.
https://doi.org/10.1111/tgis.12025

Feng, H.-Y., Chen, H.-W., & Hou, J. (2021). SR-ScatNet Algorithm for On-device ECG Time
Series Anomaly Detection. https://doi.org/10.1109/southeastcon45413.2021.9401872

Ferles, C., Papanikolaou, Y., Savaidis, S. P., & Mitilineos, S. A. (2021). Deep Self-Organizing
Map of Convolutional Layers for Clustering and Visualizing Image Data. Machine
Learning and Knowledge Extraction, 3(4), 879—899. https://doi.org/10.3390/make304004

Ernesto, & Hashmi, M. (2021, April 28). What is Data Preprocessing in Machine Learning? | Data
Science Process. Dr. Ernesto Lee. https://ernesto.net/data-preprocessing-in-machine-
learning/

Forest, F., Mustapha Lebbah, Hanene Azzag, & Lacalille, J. (2021). Deep embedded self-organizing
maps for joint representation learning and topology-preserving clustering. Neural
Computing and Applications, 33(24), 17439—-17469. https://doi.org/10.1007/s00521-021-
06331-w

Gerry. (n.d.). BIRDS 400 - SPECIES IMAGE CLASSIFICATION. Www kaggle.com.
https://www.kaggle.com/datasets/gpiosenka/100-bird-species

Gilewski, J. (2019, November 9). Modular image processing pipeline using OpenCV and Python
generators. DeepVisionGuru. https://medium.com/deepvisionguru/modular-image-
processing-pipeline-using-opencv-and-python-generators-9edca3ccb696

Gunes Kayacik, H., Nur Zincir-Heywood, A., & Heywood, M. 1. (2007). A hierarchical SOM-
based intrusion detection system. Engineering Applications of Artificial Intelligence, 20(4),
439-451. https://doi.org/10.1016/j.engappai.2006.09.005

Guan, D. (2020, July 27).Classical Architectures in CNN. Deep Learning.
https://guandi1995.github.io/Classical-CNN-architecture/

Goldani, M. H., Momtazi, S., & Safabakhsh, R. (2021). Detecting fake news with capsule neural
networks. Applied Soft Computing, 101, 106991.
https://doi.org/10.1016/j.as0¢.2020.106991

Google. (2019). TensorFlow. TensorFlow; Google. https://www.tensorflow.org/

Gorishniy, Y., Rubachev, 1., & Babenko, A. (2023, July 26). On Embeddings for Numerical
Features in Tabular Deep Learning. ArXiv.org.
https://doi.org/10.48550/arXiv.2203.05556

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Giraudel, J. L., & Lek, S. (2001). A comparison of self-organizing map algorithm and some
conventional statistical methods for ecological community ordination. Ecological

Modelling, 146(1-3), 329-339. https://doi.org/10.1016/s0304-3800(01)00324-6

108

Guyon, ., & Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of
Machine Learning Research*, 3, 1157-1182.

Grajciarova, L., Mares, J., Dvorék, P., & Prochazka, A. (n.d.). BIOMEDICAL IMAGE ANALYSIS
USING SELF-ORGANIZING MAPS. Retrieved September 19, 2023, from
http://dsp.vscht.cz/konference_matlab/MATLAB12/full_paper/028 Grajciarova.pdf

Gower, J. C. (1985). Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra
and Its Applications, 67, 81-97. https://doi.org/10.1016/0024-3795(85)90187-9

Gao, Y., Kang, X., & Chen, Y. (2020). A robust video zero-watermarking based on deep
convolutional neural network and self-organizing map in polar complex exponential
transform domain. Multimedia Tools and Applications, 80(4), 6019-6039.
https://doi.org/10.1007/s11042-020-09904-4

Greenberg-Toledo, T., Mazor, R., Haj-Ali, A., & Kvatinsky, S. (2019). Supporting the Momentum
Training Algorithm Using a Memristor-Based Synapse. IEEE Transactions on Circuits and
Systems I: Regular Papers, 66(4), 1571-1583. https://doi.org/10.1109/tcsi.2018.2888538

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
https://doi.org/10.1109/cvpr.2016.90

Heaton, J. (2017). Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genetic
Programming and Evolvable Machines, 19(1-2), 305-307. https://doi.org/10.1007/s10710-
017-9314-z

Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Elsevier.

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification.
ArXiv.org. https://arxiv.org/abs/1801.06146

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 770-778).

Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service
Research, 21(2), 155-172. https://doi.org/10.1177/1094670517752459

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief
Nets. Neural Computation, 18(7), 1527—1554. https://doi.org/10.1162/neco0.2006.18.7.1527

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013).
Connectomic reconstruction of the inner plexiform layer in the mouse
retina. Nature, 500(7461), 168—174. https://doi.org/10.1038/nature12346

Hinton, G. (2009). Deep belief networks. Scholarpedia, 4(5), 5947.
https://doi.org/10.4249/scholarpedia.5947

Habibi Aghdam, H., & Jahani Heravi, E. (2017). Guide to Convolutional Neural Networks.
Springer International Publishing. https://doi.org/10.1007/978-3-319-57550-6

109

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),
1735-1780. https://doi.org/10.1162/nec0.1997.9.8.1735

Hankins, R., Peng, Y., & Yin, H. (2018). SOMNet: Unsupervised Feature Learning Networks for
Image Classification. Research Explorer (the University of Manchester).
https://doi.org/10.1109/ijcnn.2018.8489404

Hankins, R., Peng, Y., & Yin, H. (2018). SOMNet: Unsupervised Feature Learning Networks for
Image Classification. Research Explorer (the University of Manchester).
https://doi.org/10.1109/ijcnn.2018.8489404

Horie, N., Matsui, T., Moriyama, K., Mutoh, A., & Inuzuka, N. (2019). Multi-objective safe
reinforcement learning: the relationship between multi-objective reinforcement learning
and safe reinforcement learning. Artificial Life and Robotics.
https://doi.org/10.1007/s10015-019-00523-3

Han, X., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. ArXiv (Cornell University).

Haykin, S. (1999). Neural networks : a comprehensive foundation. Pearson Education.

Han, K., Wen, H., Shi, J., Lu, K.-H., Zhang, Y., Fu, D., & Liu, Z. (2019). Variational autoencoder:
An unsupervised model for encoding and decoding fMRI activity in visual
cortex. Neurolmage, 198, 125—-136. https://doi.org/10.1016/j.neuroimage.2019.05.039

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),
1735-1780. https://doi.org/10.1162/nec0.1997.9.8.1735

Han, X., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. ArXiv (Cornell University).

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531. Retrieved from https://arxiv.org/abs/1503.02531

Hankins, R., Peng, Y., & Yin, H. (2018). SOMNet: Unsupervised Feature Learning Networks for
Image Classification. Research Explorer (the University of Manchester).
https://doi.org/10.1109/ijcnn.2018.8489404

Handl, J., Knowles, J., & Kell, D. B. (2005). Computational cluster validation in post-genomic data
analysis. Bioinformatics, 21(15), 3201-3212. https://doi.org/10.1093/bioinformatics/bti517

Hemingway, H., Asselbergs, F. W., Danesh, J., Dobson, R., Maniadakis, N., Maggioni, A., van
Thiel, G. J. M., Cronin, M., Brobert, G., Vardas, P., Anker, S. D., Grobbee, D. E., &
Denaxas, S. (2017). Big data from electronic health records for early and late translational
cardiovascular research: challenges and potential. European Heart Journal, 39(16), 1481—
1495. https://doi.org/10.1093/eurheartj/ehx487

Iriananda, S. W., Muslim, M. A., & Dachlan, H. S. (2018). Measure the Similarity of Complaint

Document Using Cosine Similarity Based on Class-Based Indexing. International Journal

110

of Computer Applications Technology and Research, 7(8), 292-296.
https://doi.org/10.7753/ijcatr0708.1001

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. ArXiv.org. https://arxiv.org/abs/1502.03167

Image Resizing in Saliency Histogram Domain. (2017). Sensors and Materials, 1483.
https://doi.org/10.18494/sam.2017.1657

Jason Brownlee. (2019, July 5). A Gentle Introduction to Object Recognition With Deep Learning.
Machine Learning Mastery. https://machinelearningmastery.com/object-recognition-with-
deep-learning/

Jokhio, F. (2019). Image Classification using AlexNet with SVM Classifier and Transfer Learning.
Www.academia.edu.
https://www.academia.edu/65400683/Image Classification using AlexNet with SVM Cl
assifier and Transfer Learning

Jiménez, J., Skali¢, M., Martinez-Rosell, G., & De Fabritiis, G. (2018). KDEEP: Protein—Ligand
Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. Journal of
Chemical Information and Modeling, 58(2), 287-296.
https://doi.org/10.1021/acs.jcim.7b00650

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell,
T. (2014). Caffe. Proceedings of the ACM International Conference on Multimedia - MM
"14. https://doi.org/10.1145/2647868.2654889

Jaakko Hollmén, Volker Tresp, & Simula, O. (1999). A self-organizing map for clustering
probabilistic models. https://doi.org/10.1049/cp:19991234

Joni-Kristian Kéamaérdinen. (2003). Feature extraction using Gabor filters. Lappeenranta
Lappeenrannan Teknillinen Yliopisto.

Jakel, F., & Schreiber, C. (2013). Introspection in Problem Solving. The Journal of Problem
Solving, 6(1). https://doi.org/10.7771/1932-6246.1131

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8),
651 .666-https://doi.org/10.1016/j.patrec.2009.09.011

Ji, X., Henriques, J. F., & Vedaldi, A. (2018). Invariant Information Distillation for Unsupervised
Image Segmentation and Clustering. ArXiv (Cornell University).

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84-90.
https://doi.org/10.1145/3065386

Kulak, T., Fillion, A., & Blayo, F. (2022, May 3). A unified view on Self-Organizing Maps
(SOMs) and Stochastic Neighbor Embedding (SNE). ArXiv.org.
https://doi.org/10.48550/arXiv.2205.01492

111

Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health
management. Mechanical ~ Systems and Signal Processing, 107, 241-265.
https://doi.org/10.1016/j.ymssp.2017.11.024

Karel, A. A. (2021, March 16). Ensemble Learning. Nerd for Tech. https://medium.com/nerd-for-
tech/ensemble-learning-f93819e0b196

Kaski, S., Honkela, T., Lagus, K., & Kohonen, T. (1998). WEBSOM - Self-organizing maps of
document collections. Neurocomputing, 21(1-3), 101-117. https://doi.org/10.1016/s0925-
2312(98)00039-3

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464—1480.
https://doi.org/10.1109/5.58325

Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, 52—65.
https://doi.org/10.1016/j.neunet.2012.09.018

Kolasa, M., Dhlugosz, R., Pedrycz, W., & Szulc, M. (2012). A programmable triangular
neighborhood function for a Kohonen self-organizing map implemented on chip. Neural
Networks, 25, 146—160. https://doi.org/10.1016/j.neunet.2011.09.002

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE,78(9), 1464-1480.
https://doi.org/10.1109/5.58325

Krig, S. (2014). Image Pre-Processing. Apress EBooks, 39-83. https://doi.org/10.1007/978-1-4302-
5930-5 2

Kohonen, T., Oja, E., Simula, O., Visa, A., & Kangas, J. (1996). Engineering applications of the
self-organizing map. Proceedings of the IEEE, 84(10), 1358-1384.
https://doi.org/10.1109/5.537105

Kamran Ghasedi Dizaji, Amirhossein Herandi, Deng, C., Cai, W., & Huang, H. (2017). Deep
Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy
Minimization. International Conference on Computer Vision.
https://doi.org/10.1109/iccv.2017.612

Kulikowski, C. A. (2019). Beginnings of Artificial Intelligence in Medicine (AIM): Computational
Artifice Assisting Scientific Inquiry and Clinical Art — with Reflections on Present AIM
Challenges. Yearbook of Medical Informatics, 28(01), 249-256. https://doi.org/10.1055/s-
0039-1677895

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464-1480.
https://doi.org/10.1109/5.58325

Karaev, A., Lenny Koh, S. C., & Szamosi, L. T. (2007). The cluster approach and SME
competitiveness: a review. Journal of Manufacturing Technology Management, 18(7),

818 .835-https://doi.org/10.1108/17410380710817273

112

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., & Saarela, A. (2000). Self
organization of a massive document collection. IEEE Transactions on Neural Networks,
11(3), 574 .585-https://doi.org/10.1109/72.846729

Krut Patel. (2019, September 7). MNIST Handwritten Digits Classification using a Convolutional
Neural Network (CNN). Medium,; Towards Data Science.
https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-
convolutional-neural-network-cnn-af5fatbc35e9

LEGENDRE, P., & FORTIN, M.-J. (2010). Comparison of the Mantel test and alternative
approaches for detecting complex multivariate relationships in the spatial analysis of
genetic data. Molecular Ecology Resources, 10(5), 831-844.
https://doi.org/10.1111/j.1755-0998.2010.02866.x

Lu, Y., & Young, S. (2020). A survey of public datasets for computer vision tasks in precision
agriculture. Computers and Electronics in Agriculture, 178, 105760.
https://doi.org/10.1016/j.compag.2020.105760

Li, H., Liu, H., Ji, X., Li, G., & Shi, L. (2017). CIFAR10-DVS: An Event-Stream Dataset for
Object Classification. Frontiers in Neuroscience, 11.
https://doi.org/10.3389/fnins.2017.00309

Lin, S.-K. (2011). Social Sciences and Sustainability. Social Sciences, 1(1), 1-I1.
https://doi.org/10.3390/s0cscil010001

Lawrence, S., Giles, C. L., Ah Chung Tsoi, & Back, A. D. (1997). Face recognition: a
convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98—
113. https://doi.org/10.1109/72.554195

Lee, J. A.,, & Verleysen, M. (2002). Self-organizing maps with recursive neighborhood
adaptation. Neural ~ Networks, 15(8-9), 993-1003. https://doi.org/10.1016/s0893-
6080(02)00073-4

Lopez, M., Valero, S., Senabre, C., Aparicio, J., & Gabaldon, A. (2012). Application of SOM
neural networks to short-term load forecasting: The Spanish electricity market case
study. Electric Power Systems Research, 91, 18-27.
https://doi.org/10.1016/j.epsr.2012.04.009

Laaksonen, J., Koskela, M., & Oja, E. (2002). PicSOM-self-organizing image retrieval

with MPEG-7 content descriptors. [EEE Transactions on Neural Networks, 13(4), 841-853.

https://doi.org/10.1109/tnn.2002.1021885

Li, X., Zhang, Y., Cheng, H., Li, M., & Yin, B. (2022). Student achievement prediction using deep
neural network from multi-source campus data. Complex & Intelligent Systems.
https://doi.org/10.1007/s40747-022-00731-8

Layek, & Mukhopadhyay. (1977). On Cluster Sets And Essential Cluster Sets. Real Analysis
Exchange, 3(1), 25. https://doi.org/10.2307/44151122

113

Lei, B., Huang, S., Li, R, Bian, C., Li, H., Chou, Y.-H., & Cheng, J.-Z. (2018). Segmentation of
breast anatomy for automated whole breast ultrasound images with boundary regularized
convolutional encoder—decoder network. Neurocomputing, 321, 178-186.
https://doi.org/10.1016/j.neucom.2018.09.043

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436—444.
https://doi.org/10.1038/nature14539

Liu, Q., & Wu, Y. (2012). Supervised Learning. Encyclopedia of the Sciences of Learning, 3243—
3245. https://doi.org/10.1007/978-1-4419-1428-6 451

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436444,
https://doi.org/10.1038/nature14539

Liu, C., & Zhang, L. (2023). A Novel Denoising Algorithm Based on Wavelet and Non-Local
Moment Mean Filtering. Electronics, 12(6), 1461.
https://doi.org/10.3390/electronics 12061461

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436444,
https://doi.org/10.1038/nature14539

Liu, Y., Zhang, J., Xiong, H., Zhou, L., He, Z., Wu, H., Wang, H., & Zong, C. (2020).
Synchronous Speech Recognition and Speech-to-Text Translation with Interactive
Decoding. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8417—
8424. https://doi.org/10.1609/aaai.v34i05.6360

Lee, K.-S., Turner, N. J., Macrina, T., Wu, J., Lu, R., & H. Sebastian Seung. (2019). Convolutional
nets for recomstructing neural circuits from brain images acquired by serial section
electron microscopy. 55, 188—198. https://doi.org/10.1016/j.conb.2019.04.001

Liberti, L., Lavor, C., Maculan, N., & Mucherino, A. (2012, May 2). Euclidean distance geometry
and applications. ArXiv.org. https://doi.org/10.48550/arXiv.1205.0349

Li, A., Chen, D., Wu, Z., Sun, G., & Lin, K. (2018). Self-supervised sparse coding scheme for
image classification based on low rank representation. PLOS ONE, 13(6), €0199141—
€0199141. https://doi.org/10.1371/journal.pone.0199141

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

LeCun, Y., et al. (2015) Deep Learning. Nature, 521, 436-444. - References - Scientific Research
Publishing. (n.d.). Www.scirp.org.
https://www.scirp.org/reference/referencespapers.aspx?referenceid=2704915https://doi.org
/10.1038/nature1453

Le Roux, N., & Bengio, Y. (2008). Representational Power of Restricted Boltzmann Machines and
Deep Belief Networks. Neural Computation, 20(06), 1631-1649.
https://doi.org/10.1162/neco.2008.04-07-510

114

M. Ben-Ari and F. Mondada.(2018). (PDF) Robots and Their Applications. (n.d.). ResearchGate.
https://www.researchgate.net/publication/320674637 Robots and Their Applications

Madhuri, G. S., & Rani, M. U. (2018). Anomaly Detection Techniques. SSRN Electronic Journal.
https://doi.org/10.2139/sstn.3167172

Mohanty, S. P., Choppali, U., & Kougianos, E. (2016). Everything you wanted to know about
smart cities: The Internet of things is the backbone. I[EEE Consumer FElectronics
Magazine, 5(3), 60-70. https://doi.org/10.1109/mce.2016.2556879

Manduchi, L., Hiiser, M., Vogt, J., Rétsch, G., & Fortuin, V. (2020, June 9). DPSOM: Deep
Probabilistic Clustering with Self-Organizing Maps. ArXiv.org.
https://doi.org/10.48550/arXiv.1910.01590

Miller, M. (2015). The Internet of Things. Que Publishing.

Merchant, A., Rahimtoroghi, E., Pavlick, E., & Tenney, 1. (n.d.). What Happens To BERT
Embeddings During Fine-tuning? https://arxiv.org/pdf/2004.14448 . pdf

Mert Copur, Buse MelisOzyildirim, & Turgay Ibrikci. (2018). Image Classification of Aerial
Images Using CNN-SVM. https://doi.org/10.1109/asyu.2018.8554008

Miura, J., Kanda, T., & Shirai, Y. (2000, October 1). An active vision system for real-time traffic
sign recognition. IEEE Xplore. https://doi.org/10.1109/ITSC.2000.881017

Mathieu, M., Couprie, C., & Lecun, Y. (n.d.). DEEP MULTI-SCALE VIDEO PREDICTION
BEYOND MEAN SQUARE ERROR. https://arxiv.org/pdf/1511.05440v3

Merrill, N., & Eskandarian, A. (2020). Modified Autoencoder Training and Scoring for Robust
Unsupervised Anomaly Detection in Deep Learning. IEEE Access, 1-1.
https://doi.org/10.1109/access.2020.2997327

Natita, W., Wiboonsak, W., & Dusadee, S. (2016). Appropriate Learning Rate and Neighborhood
Function of Self-organizing Map (SOM) for Specific Humidity Pattern Classification over
Southern Thailand. International Journal of Modeling and Optimization, 6(1), 61-65.
https://doi.org/10.7763/ijmo.2016.v6.504

Miljkovi¢, D. (2017, May 1). Brief review of self-organizing maps. 1EEE Xplore.
https://doi.org/10.23919/MIPRO.2017.7973581

Mao, Y., & Yin, Z. (2016). A Hierarchical Convolutional Neural Network for Mitosis Detection in
Phase-Contrast Microscopy Images. Lecture Notes in Computer Science, 685—692.
https://doi.org/10.1007/978-3-319-46723-8 79

Mei, S., Ji, J., Geng, Y., Zhang, Z., Li, X., & Du, Q. (2019). Unsupervised Spatial-Spectral Feature
Learning by 3D Convolutional Autoencoder for Hyperspectral Classification. 57(9), 6808—
6820. https://doi.org/10.1109/tgrs.2019.2908756

Manduchi, L., Hiiser, M., Vogt, J., Rétsch, G., & Fortuin, V. (2020, June 9). DPSOM: Deep
Probabilistic Clustering with Self-Organizing Maps. ArXiv.org.
https://doi.org/10.48550/arXiv.1910.01590

115

Malkauthekar, M. D. (2013). Analysis of euclidean distance and manhattan distance measure in
face recognition. Third International Conference on Computational Intelligence and
Information Technology (CIT 2013). https://doi.org/10.1049/cp.2013.2636

Mohanty, R., Kumar Mallik, B., & Singh Solanki, S. (2020). Recognition of Bird Species Based on
Spike Model Using Bird Dataset. Data in Brief, 105301.
https://doi.org/10.1016/j.dib.2020.105301

Madhulatha, T. S. (2012). An Overview on Clustering Methods. Arxiv.org.
https://arxiv.org/abs/1205.1117

Ngo, G. C., & Macabebe, E. Q. B. (2016, November 1). Image segmentation using K-means color
quantization and density-based spatial clustering of applications with noise (DBSCAN) for
hotspot detection in photovoltaic modules. IEEE Xplore.
https://doi.org/10.1109/TENCON.2016.7848290

Nguyen-Phuoc, T., Ding, Y., Theis, L., Richardt, C., & Yang, Y.-L. (2019). HoloGAN:
Unsupervised Learning of 3D Representations From Natural Images.
https://doi.org/10.1109/iccvw.2019.00255

Normalization Formula | Step By Step Guide with Calculation Examples. (2019, May 15).
WallStreetMojo. https://www.wallstreetmojo.com/normalization-formula/

N., Sam M.S.(2013).What is BIOLOGICAL INTELLIGENCE? definition of BIOLOGICAL
INTELLIGENCE (Psychology Dictionary). (2013, April 7.
https://psychologydictionary.org/biological-intelligence/

Norgeot, B., Glicksberg, B. S., Trupin, L., Lituiev, D., Gianfrancesco, M., Oskotsky, B., Schmajuk,
G., Yazdany, J., & Butte, A. J. (2019). Assessment of a Deep Learning Model Based on
Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid
Arthritis. JAMA Network Open, 2(3), €190606.
https://doi.org/10.1001/jamanetworkopen.2019.0606

Natita, W., Wiboonsak, W., & Dusadee, S. (2016). Appropriate Learning Rate and Neighborhood
Function of Self-organizing Map (SOM) for Specific Humidity Pattern Classification over
Southern Thailand. International Journal of Modeling and Optimization, 6(1), 61-65.
https://doi.org/10.7763/ijmo0.2016.v6.504

O’Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural
Networks. ArXiv:1511.08458 [Cs]. https://arxiv.org/abs/1511.08458

Odena, A. (2019). Open Questions about Generative Adversarial Networks. Distill, 4(4).
https://doi.org/10.23915/distill.00018

O'shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks.
https://arxiv.org/pdf/1511.08458

Oak, R. (2016). A Study of Digital Image Segmentation Techniques. International Journal of
Engineering and Computer Science. https://doi.org/10.18535/ijecs/v5i12.76

116

Pak, M., & Kim, S. (2017, August 1). 4 review of deep learning in image recognition. IEEE
Xplore. https://doi.org/10.1109/CAIPT.2017.8320684

Patro, S. Gopal. K., & sahu, K. K. (2015). Normalization: A Preprocessing Stage. IARJSET, 20—
22. https://doi.org/10.17148/iarjset.2015.2305

Preprocess images using OpenCV for pytesseract OCR. (n.d.). Stack Overflow. Retrieved
September 26, 2023, from https://stackoverflow.com/questions/63845174/preprocess-
images-using-opencv-for-pytesseract-ocr

Perspectives and Future Outlook of Deep Learning Al. (2017). International Journal of Modern
Trends in Engineering & Research, 4(11), 86-94.
https://doi.org/10.21884/ijmter.2017.4349.pqhil
Prasad, V. (2015). VOICE RECOGNITION SYSTEM: SPEECH-TO-TEXT. Journal of

Applied

and Fundamental Sciences, 1(2), 191.

Park, J., Lee, M., Hyung Jin Chang, Lee, K., & Choi, J.-Y. (2019). Symmetric Graph
Convolutional Autoencoder for Unsupervised Graph Representation Learning. International
Conference on Computer Vision. https://doi.org/10.1109/iccv.2019.00662
Pu, Y., Min, M., Gan, Z., & Carin, L. (2018). Adaptive Feature Abstraction for Translating Video

to Text. Proceedings of the AAAl Conference on Artificial Intelligence, 32(1).

https://doi.org/10.1609/aaai.v32i1.12245

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. /EEE Transactions on Knowledge and
Data Engineering, 22(10), 1345-1359.
https://doi.org/10.1109/TKDE.2009.191

Pandian, J. A., Kanchanadevi, K., Kumar, V. D., Jasinska, E., Gono, R., Leonowicz, Z., & Jasinski,
M. (2022). A Five Convolutional Layer Deep Convolutional Neural Network for Plant
Leaf Disease Detection. Electronics, 11(8), 1266.
https://doi.org/10.3390/electronics11081266

Powers, D. M. (2011). Evaluation: From precision, recall, and F-measure to ROC, informedness,
markedness, and correlation.Journal of Machine Learning Technologies, 2(1), 37-63.

Pei, S.-C., & Lin, C.-N. (1995). Image normalization for pattern recognition. Image and Vision
Computing, 13(10), 711-723. https://doi.org/10.1016/0262-8856(95)98753-g.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. ArXiv.org.
https://arxiv.org/abs/1802.05365

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Luca Antiga, Alban Desmaison, Kopf, A., Yang, E. Z., DeVito, Z.,
Raison, M., Tejani, A., Sasank Chilamkurthy, Steiner, B., Fang, L., & Bai, J. (2019).

117

PyTorch: An Imperative Style, High-Performance Deep Learning Library. ArXiv (Cornell
University), 32, 8026—8037.

Principe, J. C., Risto Miikkulainen, & Springerlink (Online Service. (2009). Advances in Self-

Organizing Maps: 7th International Workshop, WSOM 2009, St. Augustine,
Florida, June 8-10, 2009. Proceedings. Springer Berlin Heidelberg.

Papageorgiou, E. 1., Stylios, C., & Groumpos, P. P. (2006). Unsupervised learning techniques for
fine-tuning fuzzy cognitive map causal links. International Journal of Human-Computer
Studies, 64(8), 727-743. https://doi.org/10.1016/].ijhcs.2006.02.009

Polat, O., & Dokur, Z. (2016). Protein Fold Recognition Using Self-Organizing Map Neural
Network. Current Bioinformatics, 11(4), 451-458.
https://doi.org/10.2174/1574893611666160617091142

Pan, S. J., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10), 1345-1359.

Pulkit Sharma. (n.d.). Analytics Vidhya. Retrieved September 26, 2023, from
https://www.analyticsvidhya.com/blog/author/pulkits/

pinsky, eugene. (2018). Mathematical Foundation for Ensemble Machine Learning and Ensemble
Portfolio Analysis. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3243974

Qin, C., Schlemper, J., Caballero, J., Price, A. N., Hajnal, J. V., & Rueckert, D. (2019).
Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. /EEE
Transactions on Medical Imaging, 38(1), 280-290.
https://doi.org/10.1109/tmi.2018.2863670

Qu, R, Xu, G., Ding, C., Jia, W., & Sun, M. (2020). Standard Plane Identification in Fetal Brain
Ultrasound Scans Using a Differential Convolutional Neural Network. /[EEE Access, &,
83821-83830. https://doi.org/10.1109/access.2020.2991845

Qin, L., Zheng, Q., Jiang, S., Huang, Q., & Gao, W. (2008). Unsupervised texture classification:
Automatically discover and classify texture patterns. Image and Vision Computing, 26(5),
647-656. https://doi.org/10.1016/j.imavis.2007.08.003

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014). FitNets: Hints
for thin deep nets. arXiv preprint arXiv:1412.6550. Retrieved
from https://arxiv.org/abs/1412.6550

Ruder, S., Ghaffari, P., & Breslin, J. G. (2016). INSIGHT-1 at SemEval-2016 Task 5: Deep
Learning for Multilingual Aspect-based Sentiment Analysis. North American Chapter of
the Association for Computational Linguistics. https://doi.org/10.18653/v1/s16-1053

Rampasek, L., & Goldenberg, A. (2016). TensorFlow: Biology’s Gateway to Deep Learning? Cell
Systems, 2(1), 12—14. https://doi.org/10.1016/j.cels.2016.01.009

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language

understanding by generative pretraining. OpenAl Research.

118

Rebai, I., & BenAyed, Y. (2015). Text-to-speech synthesis system with Arabic diacritic recognition
system. Computer Speech & Language, 34(1), 43-60.
https://doi.org/10.1016/j.cs1.2015.04.002

Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A
Comprehensive Review. Neural Computation, 29(9), 2352-2449,
https://doi.org/10.1162/neco_a 00990

Ralbovsky, N. M., & Lednev, I. K. (2020). Towards development of a novel universal medical
diagnostic method: Raman spectroscopy and machine learning. Chemical Society
Reviews, 49(20), 7428-7453. https://doi.org/10.1039/DOCS01019G

Rashmika Nawaratne, Damminda Alahakoon, Daswin De Silva, Harsha Kumara, & Yu, X. (2020).
Hierarchical Two-Stream Growing Self-Organizing Maps With Transience for Human
Activity Recognition. 16(12), 7756—7764. https://doi.org/10.1109/ti1.2019.2957454

Riese, F. M., Keller, S., & Hinz, S. (2019). Supervised and Semi-Supervised Self-Organizing Maps
for Regression and Classification Focusing on Hyperspectral Data. Remote Sensing, 12(1),

7. https://doi.org/10.3390/rs12010007
Reis, J., & Housley, M. (2022). Fundamentals of Data Engineering. “O’Reilly Media, Inc

Russell, S., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach.

stl10 | TensorFlow Datasets. (n.d.). TensorFlow. Retrieved May 6, 2023, from
https://www.tensorflow.org/datasets/catalog/stl10

Shafig, M., Ji, L., Liu, A. X., & Wang, J. (2011). Characterizing and modeling internet traffic
dynamics of cellular devices. Measurement and Modeling of Computer Systems.
https://doi.org/10.1145/1993744.1993776

STL-10 dataset. (n.d.). Cs.stanford.edu. https://cs.stanford.edu/~acoates/stl10/

Sakkari, M., & Zaied, M. (2020). A Convolutional Deep Self-Organizing Map Feature extraction
for machine learning. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-
020-08822-9

Sun, M., Song, Z., Jiang, X., Pan, J., & Pang, Y. (2017). Learning Pooling for Convolutional
Neural Network. Neurocomputing, 224, 96-104.
https://doi.org/10.1016/j.neucom.2016.10.049

Sekhon, M. (2019, November 24). Image Filters in Python. Medium.
https://towardsdatascience.com/image-filters-in-python-26ee938e57d2

Sul, S.-J., & Andrey Tovchigrechko. (2011). Parallelizing BLAST and SOM Algorithms with
MapReduce-MPI Library. https://doi.org/10.1109/ipdps.2011.180

Shorten, C. (2019, April 14). Unsupervised Feature = Learning. Medium.

https://towardsdatascience.com/unsupervised-feature-learning-46a2fe399929

119

Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for
the Facebook Messenger. Computers & Education, 151(103862), 103862.
https://doi.org/10.1016/j.compedu.2020.103862

Schuld, M., & Petruccione, F. (2018). Supervised Learning with Quantum Computers. In The Open
Library. Springer.
https://openlibrary.org/books/OL27764408M/Supervised Learning with Quantum_ Comp
uters

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85—
117. https://doi.org/10.1016/j.neunet.2014.09.003

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2020). Efficient Processing of Deep Neural
Networks. In Synthesis Lectures on Computer Architecture. Springer International
Publishing. https://doi.org/10.1007/978-3-031-01766-7

Schmidhuber, J. (2015). Deep Learning. Scholarpedia, 10(11), 32832.
https://doi.org/10.4249/scholarpedia.32832

Siadati, S. (2018). What is UnSupervised Learning. Www.academia.edu.
https://www.academia.edu/43389195/What is UnSupervised Learning

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., & Vanhoucke, V.
(2015). Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1-9. https://doi.org/10.1109/cvpr.2015.7298594

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093

Salakhutdinov, R., & Hinton, G. (2012). An Efficient Learning Procedure for Deep Boltzmann
Machines. Neural Computation, 24(8), 1967-2006. https://doi.org/10.1162/neco_a 00311

Shlens, J. (2014). A Tutorial on Principal Component Analysis. https://arxiv.org/pdf/1404.1100.pdf

Sunil Kumar, A. S., & Mahesh, K. (2023, July 1). An Investigation of Deep Neural Network based
Techniques for Object Detection and Recognition Task in Computer Vision. IEEE Xplore.
https://doi.org/10.1109/ICECAAS58104.2023.10212307

Sun, K., Xiao, B., Liu, D., & Wang, J. (2019, June 1). Deep High-Resolution Representation
Learning for Human Pose Estimation. IEEE Xplore.
https://doi.org/10.1109/CVPR.2019.00584

Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access,
8, 80716-80727. https://doi.org/10.1109/access.2020.2988796

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic Routing Between
Capsules. ArXiv:1710.09829 [Cs]. https://arxiv.org/abs/1710.09829

Sarigiil, M., Ogzyildirim, B. M., & Avci, M. (2019). Differential convolutional neural
network. Neural Networks, 116,279-287. https://doi.org/10.1016/j.neunet.2019.04.025

120

Serge Dolgikh. (2021). Analysis and Augmentation of Small Datasets with Unsupervised Machine
Learning. https://doi.org/10.1101/2021.04.21.21254796

Saba Jamalian, & Rajaei, H. (2015). Data-Intensive HPC Tasks Scheduling with SDN to Enable
HPC-as-a-Service. Zenodo (CERN European Organization for Nuclear Research).
https://doi.org/10.1109/cloud.2015.85

Suzuki, K., Roseboom, W., Schwartzman, D. J., & Seth, A. K. (2017). A Deep-Dream Virtual
Reality Platform for Studying Altered Perceptual Phenomenology. Scientific Reports, 7(1).
https://doi.org/10.1038/s41598-017-16316-2

Sotiris Kotsiantis. (2007). Supervised Machine Learning: A Review of Classification
Techniques. Informatica (Lithuanian Academy of Sciences), 31(3), 249-268.

Siadati, S. (2018). What is UnSupervised Learning. Www.academia.edu.
https://www.academia.edu/43389195/What_is UnSupervised Learning

Sakkari, M., Ejbali, R., & Zaied, M. (2017). Deep SOMs for automated feature extraction and
classification from big data streaming. NASA ADS, 10341, 103412L.
https://doi.org/10.1117/12.2269082
Toshihiro Takahashi.2018.Image Classification Algorithm Based on Sparse Coding.

Journal of Multimedia pp.114 - 122.
https://patentimages.storage.googleapis.com/78/b0/dd/19afb912be2fb1/US10013644.pdf

TAKANASHI, M., TORIKALI, H., & SAITO, T. (2007). An Approach to Collaboration of Growing
Self-Organizing Maps and Adaptive Resonance Theory Maps. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E90-A(9), 2047—
2050. https://doi.org/10.1093/ietfec/e90-a.9.2047

Trevino, A. (2016, December 0). Introduction to K-means Clustering. Oracle.com.
https://blogs.oracle.com/ai-and-datascience/post/introduction-to-k-means-clustering

TensorFlow Datasets. (2010). mnist | TensorFlow Datasets. TensorFlow.
https://www.tensorflow.org/datasets/catalog/mnist

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the International Conference on Machine Learning
(ICML) (pp. 6105-6114).

Tripathy, B. K., S Anveshrithaa, & Shrusti Ghela. (2021). t-Distributed Stochastic Neighbor
Embedding (t-SNE). CRC Press EBooks, 127-135.
https://doi.org/10.1201/9781003190554-13

Tropp, J., & Baetzgen, A. (2019). Users’ Definition of Snapchat Usage. Implications for Marketing
on Snapchat. International Journal on Media Management, 21(2), 130-156.
https://doi.org/10.1080/14241277.2019.1637343
Teuvo Kohonen. (2012). Self-Organizing Maps. Springer Science & Business Media.

121

Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., & Liu, H. (2020). Attention-guided CNN for image
denoising. Neural Networks, 124, 117—-129. https://doi.org/10.1016/j.neunet.2019.12.024
Teuvo Kohonen. (2001). Self-organizing maps. New York Springer.

Tan, X., Chen, S., Zhou, Z.-H. ., & Zhang, F. (2005). Recognizing Partially Occluded,
Expression Variant Faces From Single Training Image per Person With SOM and Softk-NN
Ensemble. IEEE Transactions on Neural Networks, 16(4), 875-886.
https://doi.org/10.1109/tnn.2005.849817

T. Kohonen, Self-Organizing Maps, 2nd ed., Springer 1997

T. Kohonen,Unigrafia, Helsinki, Finland.(2014). MATLAB Implementations and

Applications of the Self-Organizing Map.

Ulku, 1., & Akagiindiiz, E. (2022). A Survey on Deep Learning-based Architectures for Semantic
Segmentation on 2D Images. Applied Artificial Intelligence, 1-45.
https://doi.org/10.1080/08839514.2022.2032924

Van Engelen, J. E., & Hoos, H. H. (2019). A survey on semi-supervised learning. Machine
Learning. https://doi.org/10.1007/s10994-019-05855-6

Valavanis, 1., & Kosmopoulos, D. (2010). Multiclass defect detection and classification in weld
radiographic images using geometric and texture features. Expert Systems with
Applications, 37(12), 7606-7614. https://doi.org/10.1016/j.eswa.2010.04.082

Vapnik, V. (1995). The nature of statistical learning theory. Springer Science & Business Media.

Vijayakumar, C., Damayanti, G., Pant, R., & Sreedhar, C. M. (2007). Segmentation and grading of
brain tumors on apparent diffusion coefficient images wusing self-organizing
maps. Computerized Medical Imaging and Graphics, 31(7), 473-484.
https://doi.org/10.1016/j.compmedimag.2007.04.004

Valova, 1., Georgiev, G., Gueorguieva, N., & Olson, J. (2013). Initialization Issues in Self-
organizing Maps. Procedia Computer Science, 20, 52-57.
https://doi.org/10.1016/j.procs.2013.09.238

Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. I[EEE Transactions on
Neural Networks, 11(3), 586—600. https://doi.org/10.1109/72.846731

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and
Intelligent ~ Laboratory Systems, 2(1-3), 37-52. https://doi.org/10.1016/0169-
7439(87)80084-9

Wang, L., & Pu, J. (2014). Image Classification Algorithm Based on Sparse Coding. Journal of
Multimedia, 9(1). https://doi.org/10.4304/jmm.9.1.114-122

Weng, R., Lu, J., Tan, Y.-P., & Zhou, J. (2016). Learning Cascaded Deep Auto-Encoder Networks
for Face Alignment. [EEE Transactions on Multimedia, 18(10), 2066-2078.
https://doi.org/10.1109/tmm.2016.2591508

122

Wang, B., Sun, Y., Xue, B., & Zhang, M. (n.d.). A Hybrid Differential Evolution Approach to
Designing Deep Convolutional Neural Networks for Image Classification. Retrieved
September 21, 2023, from https://arxiv.org/pdf/1808.06661.pdf

Wikipedia Contributors. (2019, May 4). Python (programming language). Wikipedia; Wikimedia
Foundation. https://en.wikipedia.org/wiki/Python (programming language)

Waseem Khan, M. (2014). A Survey: Image Segmentation Techniques. International Journal of
Future Computer and Communication, 89-93. https://doi.org/10.7763/ijfcc.2014.v3.274

Wen, L., Gao, L., & Li, X. (2019). A New Deep Transfer Learning Based on Sparse Auto-Encoder
for Fault Diagnosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1),
136-144. https://doi.org/10.1109/tsmc.2017.2754287

Wouter Van Gansbeke, Vandenhende, S., Georgoulis, S., Proesmans, M., & Luc Van Gool. (2020).
Learning To Classify Images Without Labels. ArXiv (Cornell University).

Wickramasinghe, C. S., Amarasinghe, K., & Manic, M. (2017, November 1). Parallalizable deep
self-organizing maps for image classification. IEEE Xplore.
https://doi.org/10.1109/SSC1.2017.8285443

Witten, L. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and
Techniques. In Google Books. Elsevier.
https://books.google.com.tr/books/about/Data Mining.html?id=bDtLM8CODsQC&redir e
sc=y

Wasserbacher, H., & Spindler, M. (2021). Machine learning for financial forecasting, planning and
analysis: recent developments and pitfalls. Digital Finance, 4.
https://doi.org/10.1007/s42521-021-00046-2

Wickramasinghe, C. S., Amarasinghe, K., & Manic, M. (2019). Deep Self-Organizing Maps for
Unsupervised Image Classification. IEEE Transactions on Industrial Informatics, 15(11),
5837-5845. https://doi.org/10.1109/1ii.2019.2906083

Xie, X., & Lam, K.-M. (2008). Face recognition using elastic local reconstruction based on a single
face image. Pattern Recognition, 41(1), 406417.
https://doi.org/10.1016/j.patcog.2007.03.020

Xuejun Zhang, X. Z., Xuejun Zhang, J. G., Jiyang Gai, Z. M., Zhili Ma, J. Z., Jinxiong Zhao, H.
M., Hongzhong Ma, F. H., & Fucun He, T. J. (2022). Exploring Unsupervised Learning
with Clustering and Deep Autoencoder to Detect DDoS Attack. & 1], 33(4), 029-044.
https://doi.org/10.53106/199115992022083304003

Yasaka, K., Akai, H., Abe, O., & Kiryu, S. (2018). Deep Learning with Convolutional Neural
Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A
Preliminary Study. Radiology, 286(3), 887-896. https://doi.org/10.1148/radiol.2017170706

Yim, J., Joo, D., Bae, J., & Kim, J. (2017). A gift from knowledge distillation: Fast optimization,

network minimization, and transfer learning. In Proceedings of the IEEE Conference on

123

Computer Vision and Pattern Recognition (CVPR) (pp. 7130-7138). Retrieved
from https://openaccess.thecvf.com/content_cvpr 2017/html/Yim_A_Gift From CVPR 2
017_paper.html

Yang, Y., Etesami, J., & Kiyavash, N. (2015). Efficient Neighborhood Selection for Gaussian
Graphical Models. https://arxiv.org/pdf/1509.06449.pdf

Yadav, S. (2020, May 29). A Quick Overview of Contrast Enhancement and Its Variants for
Medical Image Processing. Medium. https://medium.com/@sunil7545/a-quick-overview-
of-contrast-enhancement-and-its-variants-for-medical-image-processing-fcece3d2298a

Yiicesoy, Y. E. Y., & Tiimer, M. B. (2015). Hierarchical Reinforcement Learning with Context
Detection (HRL-CD). International Journal of Machine Learning and Computing, 5(5),
353-358. https://doi.org/10.7763/ijmlc.2015.v5.533

Yan, L., Zhao, M., Wang, X., Zhang, Y., & Chen, J. (2021). Object Detection in Hyperspectral
Images. IEEE Signal Processing Letters, 28, 508-512.
https://doi.org/10.1109/LSP.2021.3059204

Yan, K., Li, T., Marques, J. A. L., Gao, J., & Fong, S. J. (2023). A review on multimodal machine
learning in medical diagnostics. Mathematical Biosciences and Engineering: MBE, 20(5),
8708-8726. https://doi.org/10.3934/mbe.2023382

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an
overview and application in radiology. Insights into Imaging, 9(4), 611-629.
https://doi.org/10.1007/s13244-018-0639-9

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems (pp. 3320-3328).

Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017). Autoencoder-based
feature learning for cyber security applications. 2017 International Joint Conference on
Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2017.796634

Yin, Z., Zhao, M., Wang, Y., Yang, J., & Zhang, J. (2017). Recognition of emotions using
multimodal physiological signals and an ensemble deep learning model. Computer
Methods and Programs in Biomedicine, 140, 93-110.
https://doi.org/10.1016/j.cmpb.2016.12.005

Yuda, R. P., Aroef, C., Rustam, Z., & Alatas, H. (2020). Gender Classification Based on Face
Recognition using Convolutional Neural Networks (CNNSs). Journal of Physics:
Conference Series, 1490, 012042. https://doi.org/10.1088/1742-6596/1490/1/012042

Yi Xie, & Shun-Zheng Yu. (2009). Monitoring the Application-Layer DDoS Attacks for Popular
Websites. IEEE/ACM Transactions on Networking, 17(1), 15-25.
https://doi.org/10.1109/tnet.2008.925628

Zhou, D.-X. (2020). Theory of deep convolutional neural networks: Downsampling. Neural
Networks. https://doi.org/10.1016/j.neunet.2020.01.018

124

Zhao, Z., Xu, S., Kang, B. H., Kabir, M. M. J., Liu, Y., & Wasinger, R. (2015). Investigation and
improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems
with Applications, 42(7), 3508-3516. https://doi.org/10.1016/j.eswa.2014.12.006

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep
Learning in Remote Sensing: A Comprehensive Review and List of Resources. I[EEE
Geoscience and Remote Sensing Magazine, 5(4), 8-36.
https://doi.org/10.1109/mgrs.2017.2762307

ZHENG, D., & WANG, Q. (2013). Selection algorithm for K-means initial clustering
center. Journal of Computer Applications, 32(8), 2186-2188.
https://doi.org/10.3724/sp.j.1087.2012.02186

Zivkovic, Z. (2004, August 1). Improved adaptive Gaussian mixture model for background
subtraction. IEEE Xplore. https://doi.org/10.1109/ICPR.2004.1333992

Zhao, W., Wu, C., Yin, K., Young, T. Y., & Ginsberg, M. D. (2006). Pixel-based statistical
analysis by a 3D clustering approach: Application to autoradiographic images. Computer
Methods and Programs in Biomedicine, 83(1), 18-28.
https://doi.org/10.1016/j.cmpb.2006.05.005

Zagoruyko, S., & Komodakis, N. (2016). Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928. Retrieved from https://arxiv.org/abs/1612.03928

Zhang, R., Isola, P., & Efros, A. A. (2017). Split-Brain Autoencoders: Unsupervised Learning by
Cross-Channel Prediction. https://doi.org/10.1109/cvpr.2017.76

Zahrotun, L. (2016). Comparison Jaccard similarity, Cosine Similarity and Combined Both of the
Data Clustering With Shared Nearest Neighbor Method. Computer Engineering and
Applications Journal, 5(1), 11-18. https://doi.org/10.18495/comengapp.v5il.160

Zhu, Q., & Zhang, R. (2020, January 10). A Classification Supervised Auto-Encoder Based on
Predefined Evenly-Distributed Class Centroids. ArXiv.org.
https://doi.org/10.48550/arXiv.1902.00220

Zhu, Q., & Zhang, R. (2019). A Classification Supervised Auto-Encoder Based on Predefined
Evenly-Distributed Class Centroids. ArXiv (Cornell University).

Zhao, Z.-Q., & Zhang, X. (2015). Stacked Multilayer Self-Organizing Map for Background
Modeling. IEEE Transactions on Image Processing, 24(9), 2841-2850.
https://doi.org/10.1109/tip.2015.2427519

Zeyad, D. T. (2005). Human Face Recognition Using GABOR Filter And Different Self
Organizing Maps Neural Networks. Al-Khwarizmi Engineering Journal, 1(1), 38-45.
https://alkej.uobaghdad.edu.ig/index.php/alkej/article/view/ 1 9#:~:text=This%20work%20i
mplements%20the%20face%20recognition%20system%20based

125

Zhou, Z.-H., Wu, J., & Tang, W. (2002). Ensembling neural networks: Many could be better than
all. Artificial Intelligence, 137(1-2), 239-263. https://doi.org/10.1016/s0004-
3702(02)00190-x

126

CURRICULUM VITAE

Zkeia Abdalla Abdrhman JAZAM, completed her elementary education at Al-Mustagbal
Elementary School and her secondary education at Al-Shatti Secondary School. In 2015, she
earned a bachelor's degree in Computer Science from Omdurman Islamic University in Sudan.
Shortly after graduation, she began her academic career as an Assistant Lecturer at the University

of Al-Geneina (GU) in Sudan (http://gu.edu.sd/). In 2018, she obtained her Master’s degree in

Information Technology from Al-Neelain University in Sudan. She continued her role as a Lecturer
at the University of Al-Geneina until September 2019, when she commenced her Ph.D. studies in
the Department of Computer Engineering at Cukurova University, Turkiye. Her doctoral studies
were supported by an international scholarship (YOK scholarship). During her Ph.D., she focused
on developing and implementing Intergenerational Interaction Type of Neural Network: Self
Organizing Map Differential Convolutional Neural Network (SOMDIiffCNN), working under the
guidance of Prof. Dr. Mutlu AVCI. Her research reflects her dedication to advancing computational

methodologies and contributing to the field of computer science.

127

APPENDICES

The Publication about the Thesis is attached

129

