

T.C.
ERCİYES ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
MEKATRONİK MÜHENDİSLİĞİ ANABİLİM DALI

ÇOKLU MOBİL ROBOT SİSTEMLERİ İÇİN
METASEZGİSEL VE DERİN ÖĞRENME TABANLI

YOL PLANLAMA OPTİMİZASYONU

Hazırlayan
Mustafa Yusuf YILDIRIM

Danışman
Doç. Dr. Rüştü AKAY

Doktora Tezi

Temmuz 2025
KAYSERİ

T.C.
ERCİYES ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
MEKATRONİK MÜHENDİSLİĞİ ANABİLİM DALI

ÇOKLU MOBİL ROBOT SİSTEMLERİ İÇİN
METASEZGİSEL VE DERİN ÖĞRENME TABANLI

YOL PLANLAMA OPTİMİZASYONU
(Doktora Tezi)

Hazırlayan
Mustafa Yusuf YILDIRIM

Danışman
Doç. Dr. Rüştü AKAY

Bu çalışma, Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi
tarafından FDK-2021-11472 kodlu proje ile desteklenmiştir.

Temmuz 2025

KAYSERİ

ii

BİLİMSEL ETİĞE UYGUNLUK

Bu çalışmadaki tüm bilgilerin, akademik ve etik kurallara uygun bir şekilde elde

edildiğini beyan ederim. Aynı zamanda bu kural ve davranışların gerektirdiği gibi, bu

çalışmanın özünde olmayan tüm materyal ve sonuçları tam olarak aktardığımı ve referans

gösterdiğimi belirtirim.

Mustafa Yusuf Yıldırım

YÖNERGEYE UYGUNLUK

iii

“Çoklu Mobil Robot Sistemleri için Metasezgisel ve Derin Öğrenme Tabanlı Yol

Planlama Optimizasyonu” adlı Doktora tezi, Erciyes Üniversitesi Lisansüstü Tez

Önerisi ve Tez Yazma Yönergesi’ ne uygun olarak hazırlanmıştır.

 Hazırlayan Danışman

Mustafa Yusuf YILDIRIM Doç. Dr. Rüştü AKAY

Mekatronik Mühendisliği ABD Başkanı

Prof. Dr. Şahin YILDIRIM

ONAY

iv

Doç. Dr. Rüştü AKAY danışmanlığında Mustafa Yusuf YILDIRIM tarafından

hazırlanan “Çoklu Mobil Robot Sistemleri için Metasezgisel ve Derin Öğrenme

Tabanlı Yol Planlama Optimizasyonu” adlı bu çalışma jürimiz tarafından Erciyes

Üniversitesi Fen Bilimleri Enstitüsü Mekatronik Mühendisliği Anabilim Dalında

Doktora tezi olarak kabul edilmiştir.

… / … / 2025

JÜRİ:
Danışman : Doç. Dr. Rüştü AKAY ..

Üye : Prof. Dr. Şahin YILDIRIM ..

Üye : Prof. Dr. Ahmet Turan ÖZDEMİR ..

Üye : Doç. Dr. Ahmet Şakir DOKUZ ..

Üye : Dr. Öğr. Üyesi M. Kürşat YALÇIN ..

ONAY:

Bu tezin kabulü Enstitü Yönetim Kurulunun ………....… tarih ve …………..……sayılı

kararı ile onaylanmıştır.

………. /……../ ………

 Prof. Dr. Munise Didem DEMİRBAŞ

 Enstitü Müdürü

v

TEŞEKKÜR

Bana çalışmalarım süresince her türlü yardımı ve fedakârlığı sağlayan saygıdeğer

danışman hocam Doç. Dr. Rüştü AKAY’a, optimizasyon konusunu bizlere sevdiren

saygıdeğer hocam Prof. Dr. Derviş KARABOĞA’ya ve tez izleme komitemde yer alan

hocalarım Prof. Dr. Şahin YILDIRIM, Prof. Dr. Ahmet Turan ÖZDEMİR’e, ayrıca tez

savunma sınavı jüri hocalarımdan Doç. Dr. Ahmet Şakir DOKUZ ile Dr. Öğr. Üyesi M.

Kürşat YALÇIN’a saygı ve teşekkürlerimi sunarım.

Destek ve anlayışını esirgemeyen sevgili eşim Yasemin YILDIRIM’a, sağladıkları

motivasyondan dolayı oğlum Yavuz Alp ve kızım Yağmur Ela’ya, hayatım boyunca

verdikleri tüm desteklerden dolayı aileme teşekkür ederim.

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne FDK-2021-

11472 kodlu proje desteğinden dolayı teşekkürlerimi sunarım.

Mustafa Yusuf YILDIRIM

Temmuz 2025, KAYSERİ

vi

ÇOKLU MOBİL ROBOT SİSTEMLERİ İÇİN METASEZGİSEL VE DERİN
ÖĞRENME TABANLI YOL PLANLAMA OPTİMİZASYONU

Mustafa Yusuf YILDIRIM

Erciyes Üniversitesi, Fen Bilimleri Enstitüsü
Doktora Tezi, Temmuz 2025

Danışman: Doç. Dr. Rüştü AKAY

ÖZET

Bu tez kapsamında mobil robotların yol planlama süreçlerini iyileştirmek amacıyla dört

farklı simülasyon çalışması ve bir gerçek zamanlı çalışma gerçekleştirilmiştir. Küresel

yol planlama bağlamında tek bir mobil robotun ızgara tabanlı ortamlarda yol planlaması

için iyileştirilmiş bir yapay arı koloni algoritması önerilmiştir. Bu algoritma yol

üzerindeki gereksiz köşeleri ortadan kaldırarak daha verimli rotalar oluşturmayı

hedefleyen bir strateji ile desteklenmiştir. Aynı zamanda yine küresel çapta yol planlama

probleminin karmaşıklığını azaltmak için engellerin kümelenmesine dayalı hibrit bir

model önerilmiştir. Bu model metasezgisel algoritmalar ile kümeleme yöntemlerini bir

araya getirilmiştir. Yerel yol planlama bağlamında çoklu mobil robot sistemlerinin yol

planlaması için bir sinüs kosinüs algoritma varyantı önerilmiştir. Bir robotun dinamik

ortamlardaki yol planlama başarısını artırmak için algoritmaya diferansiyel tabanlı

güncelleme stratejileri ve adaptif öğrenme mekanizmaları entegre edilmiştir. Ayrıca tek

ve çok robotlu sistemlerin küresel yol planlaması için genişletilmiş evrişim ve sıkma-

uyarma bloğu gibi katmanların entegre edildiği ResNet tabanlı bir derin öğrenme modeli

önerilmiştir. Bu modelin tam evrişimli ağa kıyasla daha optimal yollar ürettiği

gözlemlenmiştir. Bu simülasyonlara ek olarak bir mobil robotun bir ortamda planlanan

bir yolu istenen şekilde takip etmesi için bir gerçek zamanlı çalışma gerçekleştirilmiştir.

Bu çalışmada bir takip kontrolörü tasarlanmış, bu kontrolör kullanılarak robotun

planlanan yolda kaydadeğer bir hata olmadan hareket ederek hedef noktaya vardığı

gözlemlenmiştir.

Anahtar Kelimeler: Mobil Robot, Yol Planlama, Metasezgisel Algoritmalar,

Optimizasyon, Derin Öğrenme

vii

METAHEURISTIC AND DEEP LEARNING BASED PATH PLANNING
OPTIMIZATION FOR MULTIPLE MOBILE ROBOT SYSTEMS

Mustafa Yusuf YILDIRIM

Erciyes University, Graduate School of Natural and Applied Sciences
PhD Thesis, July 2025

Supervisor: Assoc. Prof. Dr. Rüştü AKAY

ABSTRACT

In this thesis, four different simulation studies and one experimental study were

conducted to improve the path planning processes of mobile robots. In the context of

global path planning, an improved artificial bee colony algorithm was proposed for the

path planning of a single mobile robot in grid-based environments. This algorithm was

supported by a strategy aimed at eliminating unnecessary corners along the path to

generate more efficient routes. Moreover, to reduce the complexity of the global path

planning problem, a hybrid model based on obstacle clustering was developed by

integrating metaheuristic algorithms with clustering techniques. For local path planning,

a variant of sine cosine algorithm was proposed for multi-robot systems. To improve the

performance of a robot in dynamic environments, differential-based update strategies and

adaptive learning mechanisms were incorporated into the algorithm. Furthermore, a

ResNet-based deep learning model was introduced for both single and multi-robot global

path planning by integrating extended convolution and squeeze-excitation blocks. This

model was observed to produce more optimal paths compared to a fully convolutional

network. In addition to these simulations, an experimental study was carried out in which

a mobile robot was tasked with tracking a planned path in a given environment. In this

study, a tracking controller was designed, and it was observed that the robot was able to

track the planned path and reach the target point with no significant error.

Keywords: Mobile Robot, Path Planning, Metaheuristic Algorithms, Optimization, Deep

Learning

viii

İÇİNDEKİLER

ÇOKLU MOBİL ROBOT SİSTEMLERİ İÇİN METASEZGİSEL VE DERİN
ÖĞRENME TABANLI YOL PLANLAMA OPTİMİZASYONU

BİLİMSEL ETİĞE UYGUNLUK .. ii

YÖNERGEYE UYGUNLUK .. iii

KABUL VE ONAY ... iii

TEŞEKKÜR .. v

ÖZET.. vi

ABSTRACT .. vii

İÇİNDEKİLER .. viii

KISALTMALAR ... xiii

SİMGELER ... xv

TABLOLAR LİSTESİ ... xviii

ŞEKİLLER LİSTESİ .. xx

GİRİŞ .. 1

1. BÖLÜM

GENEL BİLGİLER

1.1. Giriş ... 3

1.2. Literatür Taraması .. 4

1.2.1. Klasik Algoritma Tabanlı Çalışmalar ... 5

1.2.2. Metasezgisel Algoritma Tabanlı Çalışmalar .. 6

1.2.3. Makine Öğrenmesi Tabanlı Çalışmalar .. 8

1.2.4. Hibrit Algoritma Tabanlı Çalışmalar ... 10

1.3. Tezin Amacı .. 12

ix

2. BÖLÜM

YOL PLANLAMA PROBLEMİ

2.1. Giriş ... 14

2.2. Küresel Yol Planlama .. 15

2.2.1. Ortam Tanımı .. 17

 2.2.1.1. Graf Tabanlı Ortam ... 17

 2.2.1.2. Izgara Ortamı ... 18

 2.2.1.3. Sürekli Uzay Ortamı .. 19

2.2.2.Yol Planlama Süreci ... 20

2.3. Yerel Yol Planlama .. 21

3. BÖLÜM

YOL PLANLAMA YÖNTEMLERİ

3.1. Giriş ... 24

3.2. Klasik Algoritmalar ... 25

3.2.1. Dinamik Programlama ... 25

3.2.2. Dijkstra Algoritması ... 27

3.2.3. Genişlik Öncelikli Arama ... 28

3.2.4. A* Algoritması ... 29

3.2.5. Hızla Keşfeden Rastgele Ağaç .. 31

3.3. Metasezgisel Algoritmalar ... 32

3.3.1. Evrimsel Algoritmalar .. 33

 3.3.1.1. Genetik Algoritma .. 33

 3.3.1.2. Diferansiyel Gelişim ... 35

3.3.2. Sürü Zekâsı ve İnsan İlhamlı Algoritmalar .. 36

 3.3.2.1. Parçacık Sürü Optimizasyonu .. 36

 3.3.2.2. Yapay Arı Koloni Algoritması .. 37

 3.3.2.3. Öğretme-Öğrenme Tabanlı Optimizasyon 39

3.3.3. Matematik İlhamlı Algoritmalar ... 41

 3.3.3.1. Stokastik Fraktal Arama ... 41

 3.3.3.2. Sinüs Kosinüs Algoritması .. 43

 3.3.3.3. Aritmetik Optimizasyon Algoritması 44

x

3.4. Makine Öğrenmesi ... 45

3.4.1. Evrişimli Sinir Ağları .. 47

 3.4.1.1. LeNet-5 .. 48

 3.4.1.2. AlexNet .. 48

 3.4.1.3. VGG16 ... 49

 3.4.1.4. GoogleNet .. 50

 3.4.1.5. Tam Evrişimli Ağ ... 51

 3.4.1.6. ResNet.. 51

3.4.2. Takviyeli Öğrenme .. 52

 3.4.2.1. Aktör-Kritik Algoritması .. 53

 3.4.2.2. Q-Öğrenme ... 54

 3.4.2.3. Derin Deterministik Politika Gradyanı 55

4. BÖLÜM

BULGULAR

4.1. Giriş ... 58

4.2. İyileştirilmiş Yapay Arı Kolonisi Algoritmasını Kullanan Etkili Bir Izgara

Tabanlı Yol Planlama Yaklaşımı ... 59

4.2.1. Problem Tanımı ... 60

4.2.2. Önerilen Yöntem ... 62

 4.2.2.1. Doğrusallaştırma Stratejisi ... 62

 4.2.2.2. Yerel Arama Stratejisi ... 64

 4.2.2.3. IABC Algoritmasının Karmaşıklığı.. 67

4.2.3. Bulgular .. 69

 4.2.3.1. IABC Algoritmasının ABC ile Karşılaştırılması 69

 4.2.3.2. IABC Algoritmasının Ablasyon Analizi 72

 4.2.3.3. IABC Algoritmasının Ölçeklenebilirlik Analizi 73

4.2.3.4. IABC Algoritmasının İyi Bilinen ve Yeni Geliştirilmiş

Algoritmalarla Karşılaştırılması .. 75

4.2.3.5. IABC Algoritmasının Güncel Çalışmalardaki Sonuçlarla

Karşılaştırılması .. 76

4.3. Çok Engelli Ortamlarda Hızlı Yol Planlama .. 85

4.3.1. Problem Tanımı ... 85

xi

4.3.2. Önerilen Yöntem ... 87

 4.3.2.1. K-Ortalamalar Kümeleme Algoritması 88

 4.3.2.2. Engel Kümeleme Algoritması ... 89

4.3.3. Bulgular .. 91

 4.3.3.1. Önerilen Modelin Detaylı Analizi ... 91

4.3.3.2. Önerilen Modelin Farklı Metasezgisel ve Kümeleme

Algoritmalarıyla Gerçekleştirimi ... 99

4.4. Çoklu Robot Yol Planlaması için Çoklu Strateji ve Öz Uyarlamalı Diferansiyel

Sinüs-Kosinüs Algoritması ... 100

4.4.1. Problem Tanımı ... 101

 4.4.1.1. Yol Sapma Hatası ... 103

 4.4.1.2. Kalan Hedef Uzaklığı ... 104

4.4.2. Önerilen Yöntem ... 104

4.4.3. Bulgular .. 108

4.4.3.1. Önerilen sdSCA’nın CEC2015 Test Fonksiyonlarında

Gerçekleştirimi .. 108

4.4.3.2. Önerilen sdSCA’nın CEC2020 Gerçek Dünya Optimizasyon

Problemlerinde Gerçekleştirimi ... 111

4.4.3.3. Önerilen sdSCA’nın Çoklu Robot Yerel Yol Planlama

Probleminde Gerçekleştirimi ... 114

4.5. Izgara Haritalarda ResNet Tabanlı Çoklu-Robot Yol Planlaması 130

4.5.1. Problem Tanımı ... 131

4.5.2. Önerilen Yöntem ... 132

 4.5.2.1. Veri Seti ... 132

 4.5.2.2. Önerilen IResNet Mimarisi ... 133

 4.5.2.3. Değerlendirme Metrikleri ... 134

4.5.3. Bulgular .. 135

 4.5.3.1. Tekli Robot Senaryosu ... 136

 4.5.3.2. Çoklu Robot Senaryosu ... 139

4.6. Bir Mobil Robotun Gerçek Zamanlı Yol Planlaması ve Takip Kontrolü 142

4.6.1. Mobil Robot Tasarımı... 142

4.6.2. Mobil Robotun Ters Kinematiği .. 144

4.6.3. Platform ve Engeller ... 144

xii

4.6.4. Görüntü İşleme ve Gerçek Zamanlı Yol Planlama 147

4.6.5. Gerçek Zamanlı Yol Takip Kontrolü .. 151

5. BÖLÜM

SONUÇ VE ÖNERİLER

5.1. Sonuçlar .. 161

5.2. Gelecekteki Çalışmalar .. 164

KAYNAKÇA ... 165

ÖZGEÇMİŞ ... 176

xiii

KISALTMALAR

ABC : Artificial bee colony (yapay arı koloni)

A𝛽HC : Adaptive 𝛽-hill climbing (Adaptif 𝛽-tepe tırmanışı)

AC : Actor-critic (aktör-kritik)

ACO : Ant colony optimization (karınca koloni optimizasyonu)

AOA : Arithmetic optimization algorithm (aritmetik optimizasyon algoritması)

BFS : Breadth first search (genişlik öncelikli arama)

BWO : Beluga whale algorithm (beyaz balina algoritması)

BWOA : Black widow spider algorithm (karadul örümceği algoritması)

CEC : Congress on evolutionary computation (evrimsel hesaplama kongresi)

CMA-ES : Covariance matrix adaptation evolution strategy

 (kovaryans matrisi adaptasyon evrim stratejisi)

CNN : Convolutional neural network (evrişimli sinir ağı)

COLSHADE : L-SHADE’nin bir varyantı (L-SHADE: successful history-based

 adaptive DE with linear population size reduction (doğrusal popülasyon

 boyutu azaltmalı başarılı geçmişe dayalı adaptif DE)

𝐶𝑅 : Crossover rate (çaprazlama oranı)

DDPG : Deep deterministic policy gradient (derin deterministik politika gradyanı)

DE : Differential evolution (diferansiyel gelişim)

DP : Dynamic programming (dinamik programlama)

DSAF : Doğrusallaştırma stratejisi tabanlı amaç fonksiyonu

EABC : Exponential rank ABC (üstel sıralı ABC)

EHO : Elk herd optimizer (geyik sürüsü optimizasyonu)

EKA : Engel kümeleme algoritması

EnMODE : Enhanced multi-operator DE (geliştirilmiş çoklu operatörlü DE)

FCN : Fully convolutional networks (tam evrişimli ağ)

GA : Genetic algorithm (genetik algoritma)

GWO : Grey wolf optimizer (gri kurt optimizasyonu)

HC : Hierarchical clustering (hiyerarşik kümeleme)

HHO : Harris hawk optimization (Harris şahini optimizasyonu)

IABC : Improved ABC (iyileştirilmiş ABC)

IResNet : Improved ResNet (iyileştirilmiş ResNet)

xiv

KMC : K-means clustering (K-ortalamalar kümeleme)

LAPO : Lightning attachment procedure optimization

 (yıldırım tutunma prosedürü optimizasyonu)

𝑀𝑂𝐴 : Math optimizer accelerated (matematik optimizasyon hızlandırıcı)

𝑀𝑂𝑃 : Math optimizer probability (matematik optimizasyon olasılığı)

𝑀𝑅 : Mutation rate (mutasyon oranı)

𝑀𝑆𝐸 : Mean square error (ortalama karesel hata)

𝑂𝐾𝐻𝑈 : Ortalama kalan hedef uzaklığı

𝑂𝑆𝑌𝐻 : Ortalama yol sapma hatası

PSO : Particle swarm optimization (parçacık sürü optimizasyonu)

PgAFWA : Best firework updating guided adaptive fireworks algorithm

 (en iyi havaifişek güncelleme destekli adaptif havaifişek algoritması)

QL : Q-learning (Q-öğrenme)

RAM : Random access memory (rastgele erişim belleği)

ReLU : Rectified linear unit (doğrultulmuş doğrusal birim)

ResNet : Residual network (artık ağ)

RRT : Rapidly-exploring random tree (hızla keşfeden rastgele ağaç)

SASS : Self-adaptive spherical search (kendi kendine adaptif küresel arama)

SCA : Sine cosine algorithm (sinüs kosinüs algoritması)

sCMAgES : CMA-ES’nin bir varyantı

sdSCA : Self-adaptive differential SCA (kendi kendine adaptif diferansiyel SCA)

SFS : Stochastic fractal search (stokastik fraktal arama)

SOA : Seagull optimization algorithm (martı optimizasyon algoritması)

SPSA : Salp swarm algorithm (salp sürü algoritması)

STOA : Sooty tern optimization algorithm (isli sumru optimizasyon algoritması)

SSA : Sparrow search algorithm (serçe arama algoritması)

TLBO : Teaching-learning-based optimization

 (öğrenme-öğretme tabanlı optimizasyon)

WOA : Whale optimization algorithm (balina optimizasyon algoritması)

WSO : White shark optimizer (beyaz köpekbalığı optimizasyonu)

YAS : Yerel arama startejisi

YOLO : You only look once (sadece bir kez bak)

xv

SİMGELER

ℝ, ℕ : Reel sayı kümesi, doğal sayı kümesi

𝔼, 𝐸, 𝑂, 𝐺 : Ortam kümeleri ailesi, ortam kümesi, engel kümesi, graf kenar kümesi

𝑃 ∋ 𝑝 : Nokta kümesi (veya düğüm / hücre kümesi)

𝑝௦, 𝑝௧ : Robotun başlangıç ve hedef konumu

𝑛௣ : Graf veya ızgara ortamında toplam düğüm / hücre sayısı

𝑚, 𝑛, ℎ : Ortamın boyutları (genişlik, yükseklik, derinlik)

𝑝௢ , 𝑝௢௦, 𝑝௢ௗ : Tüm engellerin konumu, statik engel konumu, dinamik engel konumu

𝑛௢ , 𝑛௢௦, 𝑛௢ௗ : Toplam engel sayısı, statik engel sayısı, dinamik engel sayısı

𝑌, 𝑛௬ : Planlanan yol, planlanan yolu oluşturan nokta / düğüm / hücre sayısı

𝑣, 𝜑 : Robotun doğrusal hızı ve iki boyuttaki yönelimi

𝜙 : Robotun üç boyuttaki dikey yönelimi

𝑓 : Maliyet

‖⋅‖ : İki nokta / düğüm / hücre arasındaki Öklidyen mesafesi

𝑝௘ : DP ve Dijkstra’da ebeveyn düğüm / hücre

𝑛௙ : A*’da uygun komşu düğüm / hücre sayısı

𝑓௚, 𝑓௛ : A* algoritmasında gerçek maliyet, sezgisel maliyet

𝑝௥ , 𝜀 : RRT’de ortamdan rastgele seçilen nokta, adım büyüklüğü

𝑇, 𝑡 : Maksimum iterasyon sayısı, mevcut iterasyon

𝑋 ∋ 𝑥 : Popülasyon

𝑥௟ , 𝑥௛ : Arama sınırları

𝑟, Φ : Rastgele üretilen sayı

𝑆, 𝐷 : Popülasyon boyutu, problem boyutu

𝛿, 𝜌 : Seçilme olasılığı, birikimli olasılık

𝑒, 𝑙 : GA’da çaprazlama kesme noktaları

ℱ : Amaç fonksiyonu veya genel fonksiyon sembolü

𝐹 : DE’de ölçekleme faktörü

𝜗, 𝑤 : PSO’da parçacıkların hızı, eylemsizlik ağırlığı,

𝑐ଵ, 𝑐ଶ : PSO’da bilişsel ve sosyal katsayılar

𝑥ො, 𝑓መ : Popülasyondaki en iyi çözüm, en iyi çözümün maliyeti

𝑓𝑖𝑡 : ABC’de uygunluk değeri

xvi

𝑥෤ : TLBO’da popülasyondaki tüm çözümlerin ortalaması

𝑇ி : TLBO’da öğretme faktörü

𝑛ௗ௜௙, 𝑤𝑎𝑙𝑘 : SFS’de difüzyon sayısı, yürüme oranı

𝒩, 𝜎 : SFS’de normal dağılım, standart sapma

𝑎 : SCA’da 𝑟ଵ sayısı için ayarlanan parametre

𝑀𝑂𝐴௟ , 𝑀𝑂𝐴௛ : AOA’da 𝑀𝑂𝐴 parametresinin sınır değerleri

𝛼(஺ை஺) : AOA’da kullanım doğruluğunu tanımlayan parametre

𝜇 : AOA’da arama sürecini ayarlayan parametre

𝑠௧, 𝑎௧ : Takviyeli öğrenmede mevcut durum, mevcut aksiyon

𝜋, 𝑟௧ : Takviyeli öğrenmede politika, ödül

𝛼, 𝛾 : Takviyeli öğrenmede öğrenme oranı, indirim faktörü

𝐴௧ , 𝑉ఏ : AC’de avantaj fonksiyonu, değer fonksiyonu

𝜃௔ , 𝜃௖ : AC’de aktörün parametreleri, kritiğin paramatreleri,

𝜇, 𝑄, 𝜇ᇱ, 𝑄ᇱ : DDPG’de aktör ağı, kritik ağ, hedef aktör ağı, hedef kritik ağ

𝑁௧ : DDPG’de rastgele gürültü

𝑛௠, 𝜏 : DDPG’de minibatch boyutu, yumuşak güncellenme oranını

𝜃ொ , 𝜃ఓ : DDPG’de aktör ve kritik ağlarının parametreleri

𝜃ொᇲ
, 𝜃ఓᇲ

 : DDPG’de hedef aktör ve hedef kritik ağlarının parametreleri

𝑛௏ , 𝜐 : Engel ihlal sayısı, vektör

O(⋅), 𝑡௥ : Büyük O notasyonu, çalışma süresi

ℰ : Dönüş enerji tüketimi

𝑓௟ , 𝑓௛ : WSO’da dalgalı hareketin frekans sınır değerleri

𝜏, 𝑎଴, 𝑎ଵ, 𝑎ଶ : WSO’da ivme katsayısı, kullanum-keşif dengesini kontrol eden sabitler

𝐵௥ : EHO’da boğa oranı

𝜇(஼ெ஺ିா) : CMA-ES’de ebeveyn sayısı

𝑐ఙ, 𝑑ఙ : CMA-ES’de adım boyutu için öğrenme oranı, sönümleme parametresi

𝑐௖ , 𝑐ఓ : CMA-ES’de kovaryans güncelleme parametreleri

𝐿 : Uzunluk

𝛽, 𝑉 : Engel ihlal faktörü, engel ihlal fonkiyonu

𝑟௢ , 𝑟௥ : Engellerin ve robotların yarıçapı

𝐿௚ : Güvenlik mesafesi

ℚ ∋ 𝑞 : KMC’de küme merkezleri

xvii

𝑛௩, 𝑛௤ : KMC’de veri sayısı, küme sayısı

𝜆 : Kümeleme oranı

𝑝௖ , 𝑝௡ : Robotun mevcut ve yeni konumu

𝑛௥ : Robot sayısı

𝑣௢ௗ , 𝜑௢ௗ : Dinamik engellerin iki boyuttaki doğrusal hızı ve yönelimi

𝐼, 𝐻 : Robotun ideal mesafesi, robotun hedefe olan uzaklığı

𝑅 : Algoritma koşma sayısı

𝑛௦௧ , 𝑐 : Robotların adım sayısı, stratejilerin seçim sayacı

𝑓∗ : Bilinen en iyi fonksiyon değeri

𝑔, ℎ : CEC2020’de eşitsizlik ve eşitlik kısıtlarının sayıları

𝑏 : WOA’da logaritmik spiralin şeklini tanımlayan parametre

𝛽(ுுை) : HHO’da Levy uçuşunda kullanılan sabit parametre

𝑀௧௥௨௧௛, 𝑀௣௥௘ௗ : Gerçek yol matrisi, ağ tarafından tahmin edilen yol matrisi

𝜂௦௖ , 𝜂௢௣ : Başarı oranı, yol optimalitesi

𝑛௦௖ , 𝑛௢௣ : Başarılı planlanan yol sayısı, optimal planlanan yol sayısı

𝑛௧ : Test verisi sayısı

xviii

TABLOLAR LİSTESİ

Tablo 4.1. Bu tez kapsamındaki çalışmalarının özellikleri .. 59

Tablo 4.2. Ortamların engel oranı, özellikleri ve tasarım kriterleri 70

Tablo 4.3. IABC ve ABC’nin aynı boyuttaki ortamlarda performans karşılaştırması... 70

Tablo 4.4. ABC, IABC-1, IABC-2 ve önerilen IABC algoritmalarının Ortam 2 ve 4 için

yol uzunluğu karşılaştırması ... 72

Tablo 4.5. IABC ve ABC’nin 30 x 30 ve 40 x 40 boyutlardaki ortamlarda performans

karşılaştırması ... 74

Tablo 4.6. Tüm algoritmaların kontrol parametreleri .. 75

Tablo 4.7. Ortam 2 için IABC’nin iyi bilinen ve yeni geliştirilmiş algoritmalarla

performans karşılaştırılması .. 76

Tablo 4.8. IABC ile ABC ve [81]’deki algoritmaların yol uzunluğu karşılaştırması 79

Tablo 4.9. IABC ile ABC ve [82]’deki algoritmaların yol uzunluğu karşılaştırması 81

Tablo 4.10. IABC ile ABC ve [83]’teki algoritmaların yol uzunluğu karşılaştırması ... 82

Tablo 4.11. IABC ile ABC, [84] ve [85]’teki algoritmaların yol uzunluğu karşılaştırması

 ... 84

Tablo 4.12. Her iki ortam için elde edilen ortalama yol uzunlukları ve bu uzunlukların

kümelemesiz çalışmaya göre artış oranları ... 93

Tablo 4.13. Her iki ortam için elde edilen ortalama çalışma süreleri ve bu sürelerin

kümelemesiz çalışmaya göre azalma oranları ... 97

Tablo 4.14. Her iki ortam için kümeleme oranlarına göre kazanç oranları 98

Tablo 4.15. TLBO, ABC, DE ve GA’nın kontrol parametreleri.................................... 99

Tablo 4.16. Her iki ortam için PSO, TLBO, ABC, DE ve GA ile elde edilen ortalama yol

uzunlukları ve ortalama çalışma süreleri... 99

Tablo 4.17. CEC2015 test fonksiyonları .. 108

Tablo 4.18. CEC2015 test fonksiyonları için sdSCA’nın SCA, EABC, A𝛽HC ve

PgAFWA ile karşılaştırması ... 109

Tablo 4.19. CEC2020 gerçek dünya optimizasyon problemleri 111

Tablo 4.20. CEC2020 gerçek dünya optimizasyon problemleri için sdSCA’nın SASS,

COLSHADE, EnMODE ve sCMAgES ile karşılaştırması ... 112

Tablo 4.21. Algoritmaların kontrol parametreleri .. 117

xix

Tablo 4.22. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝑌𝑆𝐻 karşılaştırması 117

Tablo 4.23. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝐾𝐻𝑈 karşılaştırması 117

Tablo 4.24. SCA ve sdSCA’nın farklı robot sayıları için toplam uygunluk değeri

karşılaştırması ... 118

Tablo 4.25. SCA ve sdSCA’nın farklı robot sayıları için çalışma süresi karşılaştırması

 ... 118

Tablo 4.26. Ortam 1’de her robot ve toplam için ortalama adım sayısı karşılaştırması

 .. .120

Tablo 4.27. Ortam 1’de her robot ve toplam için ortalama yol uzunluğu karşılaştırması

 ... 121

Tablo 4.28. Ortam 1’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma

süresi karşılaştırmaları .. 121

Tablo 4.29. Ortam 2’de her robot ve toplam için ortalama adım sayısı karşılaştırması

 .. .124

Tablo 4.30. Ortam 2’de her robot ve toplam için ortalama yol uzunluğu karşılaştırması

 ... 125

Tablo 4.31. Ortam 2’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma

süresi karşılaştırmaları .. 125

Tablo 4.32. Ortam 3’te her robot ve toplam için ortalama adım sayısı karşılaştırması

127

Tablo 4.33. Ortam 3’te her robot ve toplam için ortalama yol uzunluğu karşılaştırması

 ... 128

Tablo 4.34. Ortam 3’te 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma süresi

karşılaştırmaları ... 129

Tablo 4.35. Tekli robot test verilerinde 10 x 10, 15 x 15 ve 20 x 20 boyutlu ortam verisi

ile eğitilen IResNet modelinin farklı test ortamlarında FCN ile karşılaştırması 136

Tablo 4.36. Çoklu robot test verilerinde 15 x 15 ortam boyutu ile eğitilen IResNet

modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırması 140

xx

ŞEKİLLER LİSTESİ

Şekil 1.1. Literatürdeki yol planlama çalışmalarının genel sınıflandırılması 4

Şekil 2.1. Yol planlama probleminin kapsamı .. 14

Şekil 2.2. Küresel yol planlamanın blok diyagramı .. 16

Şekil 2.3. Örnek graf tabanlı ortamlar ... 18

Şekil 2.4. Örnek ızgara ortamlar ... 19

Şekil 2.5. Örnek sürekli uzay ortamları .. 20

Şekil 2.6. Yerel yol planlamanın blok diyagramı ... 21

Şekil 2.7. Yerel yol planlamada noktasal bir robotun bir sonraki konumu 22

Şekil 3.1. Yol planlama yöntemlerinin sınıflandırılması .. 25

Şekil 3.2. Makine öğrenmesi ile derin öğrenme kapsamları ... 46

Şekil 3.3. Tipik bir evrişimli sinir ağı yapısı ... 47

Şekil 3.4. Temel bir artık blok .. 52

Şekil 3.5. Tipik bir takviyeli öğrenme yapısı .. 53

Şekil 4.1. Hücre sayısı ve toplam dönüş açısı kavramları... 61

Şekil 4.2. Doğrusallaştırma stratejisinin prensibi ... 63

Şekil 4.3. Yerel arama stratejisinin prensibi ... 65

Şekil 4.4. Önerilen IABC algoritmasının akış diyagramı ... 67

Şekil 4.5. Aynı boyutlarda dört farklı ızgara tipi ortam .. 69

Şekil 4.6. ABC ve IABC algoritmalarının Ortam 1-4 için planladığı yollar 70

Şekil 4.7. Ortam 1-4 için ortalama yakınsama grafikleri .. 71

Şekil 4.8. Farklı boyutlarda iki farklı ızgara tipi ortam... 73

Şekil 4.9. ABC ve IABC algoritmalarının Ortam 5 ve 6 için planladığı yollar 74

Şekil 4.10. [81], [82], [83], [84] ve [85]’te tasarlanan ortamlar 77

Şekil 4.11. FWOA ve IABC algoritmalarının Ortam 7 için planladığı yollar 78

Şekil 4.12. FWOA ve IABC algoritmalarının Ortam 8 için planladığı yollar 78

Şekil 4.13. IACO-IABC ve IABC algoritmalarının Ortam 9 için planladığı yollar 80

Şekil 4.14. IACO-IABC ve IABC algoritmalarının Ortam 10 için planladığı yollar 80

Şekil 4.15. ISSA ve IABC algoritmalarının Ortam 11 için planladığı yollar 82

Şekil 4.16. ISSA ve IABC algoritmalarının Ortam 12 için planladığı yollar 82

Şekil 4.17. IHMACO ve IABC algoritmalarının Ortam 13 için planladığı yollar 84

xxi

Şekil 4.18. IA* ve IABC algoritmalarının Ortam 14 için planladığı yollar 84

Şekil 4.19. Engelden kaçınma kontrolünün temsili çizimi ... 87

Şekil 4.20. Önerilen modelin akış diyagramı .. 88

Şekil 4.21. Birden fazla engelin kümelenmesi .. 90

Şekil 4.22. Önerilen modelin test edildiği ortamlar .. 92

Şekil 4.23. Her kümeleme oranı için elde edilen ortalama yol uzunlukları 93

Şekil 4.24. Örnek koşma için Ortam 15’te modelin kümelemesiz ve kümelemeli olarak

planladığı yollar .. 94

Şekil 4.25. Örnek koşma için Ortam 15’teki yakınsama eğrileri 95

Şekil 4.26. Örnek koşma için Ortam 16’da modelin kümelemesiz ve kümelemeli olarak

planladığı yollar .. 96

Şekil 4.27. Örnek koşma için Ortam 16’daki yakınsama eğrileri 96

Şekil 4.28. Her kümeleme oranı için elde edilen ortalama çalışma süreleri 97

Şekil 4.29. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın ortalama yakınsama

eğrileri ... 110

Şekil 4.30. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın kutu grafikleri .. 110

Şekil 4.31. Çoklu robotların yerel yol planlaması için tasarlanan ortamlar 115

Şekil 4.32. SCA ve sdSCA için toplam robot sayısına göre ortalama kalan hedef uzaklığı

ve ortalama çalışma süresi .. 118

Şekil 4.33. Ortam 17’de algoritmalar tarafından elde edilen örnek yollar.................... 120

Şekil 4.34. Ortam 17’de her robot için ortalama adım sayısının çubuk grafiği 121

Şekil 4.35. Ortam 17 için her algoritmanın adım sayısına göre yakınsama eğrileri 122

Şekil 4.36. Ortam 18’de algoritmalar tarafından elde edilen örnek yollar.................... 123

Şekil 4.37. Ortam 18’de her robot için ortalama adım sayısının çubuk grafiği 124

Şekil 4.38. Ortam 18 için her algoritmanın adım sayısına göre yakınsama eğrileri 126

Şekil 4.39. Ortam 19’da algoritmalar tarafından elde edilen örnek yollar.................... 127

Şekil 4.40. Ortam 19’da her robot için ortalama adım sayısının çubuk grafiği 128

Şekil 4.41. Ortam 19 için her algoritmanın adım sayısına göre yakınsama eğrileri 129

Şekil 4.42. Giriş ve çıkış verilerinin bir temsili .. 132

Şekil 4.43. Önerilen IResNet mimarisi ... 134

Şekil 4.44. Tekli robot test verilerinde 10 x 10, 15 x 15 ve 20 x 20 boyutlu ortam verisi

ile eğitilen IResNet modelinin FCN ile karşılaştırma grafiği 137

xxii

Şekil 4.45. Tekli robot test verilerinde 15 x 15 boyutlu ortam verisi ile eğitilen IResNet

modelinin her boyuttaki ortamda planladığı optimal ve yarı-optimal yollardan

örnekler ... 138

Şekil 4.46. Çoklu robot test verilerinde 15 x 15 ortam boyutu ile eğitilen IResNet

modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırma grafikleri 140

Şekil 4.47. Çoklu robot test verilerinde 15 x 15 boyutlu ortam verisi ile eğitilen IResNet

modelinin 2 ve 3 yol bulma durumlarında planladığı optimal ve yarı-optimal yollardan

örnekler ... 141

Şekil 4.48. Mobil robotun genel görünümü ve donanımı ... 143

Şekil 4.49. Mobil robotun elektronik bağlantı şeması .. 143

Şekil 4.50. Platform .. 145

Şekil 4.51. Genius Widecam F100 Webcam .. 145

Şekil 4.52. Ortamın üstten kamera görüntüsü ... 146

Şekil 4.53. Engeller ... 146

Şekil 4.54. Tasarlanan ortamlar .. 147

Şekil 4.55. Simülasyon çalışmasında yol planlama sonucu .. 148

Şekil 4.56. Gerçek zamanlı çalışmada robotun ve engellerin algılanması 150

Şekil 4.57. Gerçek zamanlı çalışmada yol planlama sonucu .. 151

Şekil 4.58. Gerçek zamanlı çalışmada referans yol üzerinde oluşturulan ara hedef

noktaları... 152

Şekil 4.59. Robotun global eksen takımına göre yönelimi ve ara hedef noktaya olan

yönelimi .. 153

Şekil 4.60. Yol takip kontrolünün blok diyagramı .. 154

Şekil 4.61. Ortam 20 için robotun hareket aşamaları .. 156

Şekil 4.62. Ortam 20 için robotun hareket aşamalarının kamera görüntüleri 157

Şekil 4.63. Ortam 21 için robotun hareket aşamaları .. 158

Şekil 4.64. Ortam 21 için robotun hareket aşamalarının kamera görüntüleri 159

Şekil 4.65. Planlanan ve gerçek yolların karşılaştırması... 160

Şekil 4.66. RMS hataları ... 160

1

GİRİŞ

Mobil robotlar, çevrelerini algılayarak otonom bir şekilde hareket etme kabiliyetine sahip

sistemlerdir ve bu özellikleriyle endüstriden tarıma, lojistikten arama-kurtarma

çalışmalarına kadar geniş bir yelpazede kullanılmaktadır. Bu robotların otonom hareket

kabiliyeti, haritalama, lokalizasyon ve yol planlama gibi temel becerilere dayanır.

Haritalama, robotun çevresini tanımasını ve bu çevreyi modelleyerek haritalar

oluşturmasını sağlarken, lokalizasyon, robotun bu harita üzerindeki konumunu hassas bir

şekilde belirlemesini sağlar. Ancak, haritalama ve lokalizasyon, robotun hedefe

ulaşabilmesi için tek başına yeterli değildir; robotun hedefe ulaşması için yol planlama

süreci kritik bir rol oynar.

Yol planlama, robotun çevresel engelleri dikkate alarak, güvenli, verimli ve enerji

tasarruflu bir yol oluşturmasını hedefler. Bu süreçte, robotun çevresel durumu, hareket

hızı, enerji tüketimi ve güvenlik gibi faktörler göz önünde bulundurulur. Yol planlama

yöntemleri genel olarak üç ana gruba ayrılır: Klasik arama algoritmaları, metasezgisel

algoritmalar ve makine öğrenme tabanlı yaklaşımlar. Klasik arama algoritmaları,

genellikle sabit haritalar üzerinde çalışır ve belirli kurallar çerçevesinde sistematik

çözümler sunar. Bu yöntemler, iyi tanımlanmış ve basit çevresel koşullarda oldukça etkili

olabilir. Öte yandan, metasezgisel algoritmalar, daha karmaşık ve dinamik çevreler için

geliştirilmiştir. Bu algoritmalar, geniş çözüm uzaylarında esnek arama yetenekleri

sayesinde optimal ya da optimale yakın yollar belirler ve robotun değişen çevre

koşullarına uyum sağlamasını kolaylaştırır. Makine öğrenme tabanlı yaklaşımlar ise

robotun çevreden gelen geri bildirimlere göre karar verme ve öğrenme becerisini

geliştirir. Bu yöntemler, özellikle dinamik engellerin bulunduğu karmaşık ortamlar için

etkili çözümler sunar.

Bu tezin amacı, mobil robotların yol planlaması problemlerine yönelik metasezgisel

algoritmaların etkinliğini artırmak ve bu alandaki mevcut yöntemlere yenilikçi katkılar

sağlamaktır. Çalışma kapsamında hem tekli mobil robot hem de çoklu mobil robot

2

sistemleri için optimize edilmiş yolların planlanması hedeflenmiş, bu süreçte

metasezgisel algoritmaların keşif ve sömürü dengesini iyileştiren yeni yaklaşımlar

geliştirilmiştir. Geliştirilen yöntemlerin performansı, literatürdeki standart algoritmalarla

karşılaştırılarak değerlendirilmiştir. Ayrıca çoklu robot sistemlerinin yol planlaması için

bir derin öğrenme modeli de tanıtılmış ve farklı bir derin öğrenme modeli ile

karşılaştırılarak performansı test edilmiştir. Son olarak bir mobil robotun bir ortamda

planlanan bir yolu istenen şekilde takip etmesi için bir takip kontrolörü tasarlanmış ve

robotun gerçek zamanlı takip kontrolü için bir gerçek zamanlı çalışma

gerçekleştirilmiştir.

Tezin organizasyonu şu şekildedir: Birinci bölümde genel bilgiler verilmiş ve yol

planlama problemine yönelik literatürdeki güncel çalışmalar sunulmuştur. İkinci bölümde

yol planlama problemi ayrıntılı olarak bahsedilmiştir. Model yaklaşımı, ortam

modellemesi ve yol planlama kapsamları açıklanmıştır. Üçüncü bölümde yol planlama

algoritmaları ayrıntılı olarak bahsedilmiştir. Klasik, metasezgisel ve makine öğrenmesi

algoritmaları açıklanmıştır. Dördüncü bölümde tez kapsamında gerçekleştirilen dört

simülasyon çalışması ve bir gerçek zamanlı çalışma ayrıntılı olarak sunulmuştur. Son

olarak beşinci bölümde ise sonuç ve gelecekteki çalışmalardan bahsedilmiştir.

3

1. BÖLÜM

GENEL BİLGİLER

1.1. Giriş

Mobil robotlar, çevrelerini algılayabilme ve bu çevreyle etkileşim kurabilme kapasitesine

sahip, otonom sistemler olarak tanımlanabilir. Bu robotlar, genellikle gelişmiş

algılayıcılar, işlemciler ve kontrol sistemleri ile donatılır, böylece çevrelerindeki

değişikliklere hızla uyum sağlayabilirler. Otonom robotlar, endüstriyel üretimden lojistik

çözümlerine, tarım uygulamalarından keşif görevlerine kadar geniş bir yelpazede

kullanılır. Modern robotlar, insan müdahalesini azaltarak verimliliği artırmak için

tasarlanmıştır. Örneğin, fabrikalarda malzeme taşımak, depolarda envanter yönetimini

sağlamak, zorlu arazi koşullarında tarım faaliyetlerini gerçekleştirmek ya da doğal afet

bölgelerinde arama-kurtarma operasyonlarına katılmak gibi görevler üstlenebilirler.

Ayrıca, otonom araçlar, akıllı robotik sistemler ve insansız hava araçları gibi

teknolojilerin temel yapı taşlarını oluştururlar ve gelecekteki yenilikçi uygulamalar için

temel oluştururlar [1].

Bir mobil robotun otonom hareket edebilmesi için haritalama, lokalizasyon ve yol

planlama gibi temel becerilere sahip olması gerekir. Haritalama, robotun çevresini tanıyıp

bu çevreyi haritalar aracılığıyla modellemesine olanak tanırken, lokalizasyon, robotun

harita üzerinde kendi konumunu belirlemesini sağlar. Ancak yalnızca haritalama ve

lokalizasyon, robotların hedeflerine ulaşmasını sağlamak için yeterli değildir. Yol

planlama, robotun belirlenen hedefe güvenli, verimli ve etkili bir şekilde ulaşmasını

sağlamak adına kritik bir rol oynar. Bu süreçte, robotun çevresel faktörleri ve engelleri

dikkate alarak en uygun yolu seçmesi gerekir. Yol planlamanın etkin bir şekilde

yapılabilmesi için, robotun çevresine dair derin bir anlayışa ve gelişmiş hesaplama

yeteneklerine sahip olması gerekir [2].

4

Yol planlama, mobil robotların belirlenen bir hedefe, engellerden kaçınarak ve en uygun

yolu seçerek ulaşmasını sağlayan kritik bir süreçtir. Bu süreçte, robotun çevresel durumu,

enerji verimliliği, hareket hızı ve güvenlik gibi faktörler dikkate alınır. Yol planlama

yöntemleri genel olarak üç ana kategoriye ayrılır: klasik algoritmalar, metasezgisel

algoritmalar ve makine öğrenme tabanlı yöntemler. Klasik algoritmalar, genellikle

robotun sabit bir çevrede belirli bir harita üzerinde çalıştığı durumlarda kullanılır ve

sistematik arama stratejileri ile çözüm üretir. Bu yöntemler, basit ve iyi tanımlı durumlar

için oldukça etkili olabilir. Metasezgisel algoritmalar ise daha karmaşık ve sürekli

alanlardaki problemler için geliştirilmiştir. Bu yöntemler, geniş çözüm uzaylarında esnek

arama yetenekleri sayesinde optimal veya optimale yakın çözümler sunarak, robotun

çevresel koşullara daha iyi uyum sağlamasına olanak tanır. Makine öğrenme tabanlı

yöntemler ise robotların çevreden aldığı geri bildirimlere göre karar verme becerisini

geliştirir. Özellikle, robotun öğrenme ve adaptasyon yeteneklerini destekleyen bu

yöntemler, statik ve dinamik engellerin bulunduğu karmaşık ortamlarda başarılı sonuçlar

sağlar. Çevresel algılama ve karar verme süreçlerini destekleyen bu yaklaşımlar,

robotların hedefe daha verimli ve güvenli bir şekilde ulaşmasını mümkün kılar.

1.2. Literatür Taraması

Bu tez çalışması için mobil robotların yol planlama problemine yönelik literatür taraması

yapılmış ve farklı yaklaşımlar üzerine gerçekleştirilen çalışmalar incelenmiştir.

Literatürde yol planlama süreci çözmek için Şekil 1.1’de gösterildiği gibi klasik

algoritmalar, metasezgisel algoritmalar, makine öğrenmesi ve bu yöntemlerin hibrit

yapıları gibi çeşitli yöntemler kullanılmıştır. Bu başlıklar altında, ilgili çalışmalara dair

temel bulgular ve yapılan katkılar tartışılmıştır.

Yol Planlama Literatürü

Klasik Algoritma
Tabanlı Çalışmalar

Metasezgisel Algoritma
Tabanlı Çalışmalar

Makine Öğrenmesi
 Tabanlı Çalışmalar

Hibrit Algoritma
Tabanlı Çalışmalar

Şekil 1.1. Literatürdeki yol planlama çalışmalarının genel sınıflandırılması

5

1.2.1. Klasik Algoritma Tabanlı Çalışmalar

Klasik algoritma tabanlı çalışmalar genellikle belirli haritalar üzerinde yapılan ve

sistematik arama stratejileri kullanan araştırmaları kapsamaktadır. Güncel çalışmalardan

bazıları şu şekilde özetlenebilir: Zhang ve Zhao, karmaşık ortamlarda mobil robotlar için

çevre bilgisinin amaç fonksiyonuna eklendiği iyileştirilmiş bir A* algoritması önermiştir.

Bu algoritma, çocuk düğüm seçimi için optimal kurallar ve yol düzleştirme için çift yönlü

optimizasyon stratejisi kullanarak arama alanını küçültür ve yolun düzgünlüğünü artırır

[3]. Liu ve arkadaşları, engebeli arazi koşullarında mobil robotlar için yer erişilebilirliği

ve yer engebeliği modellerine dayalı olarak iyileştirilmiş bir A* algoritması

önermişlerdir. Bu algoritma, yükselti maliyet fonksiyonunu entegre ederek ve orijinal

mesafe maliyet fonksiyonu ile birleştirerek daha optimize edilmiş yol planlaması

sağlamaktadır [4]. Li ve arkadaşları, A* algoritmasını iyileştirerek mobil robotlar için

daha verimli ve düzgün yol planlaması sağlamak amacıyla bir çift yönlü alternatif arama

stratejisi ve üssel zayıflama ile ağırlıklandırılmış sezgisel fonksiyon önermiştir. Ayrıca,

yol üzerindeki gereksiz düğümleri azaltmak için filtreleme fonksiyonu ekleyerek dönüş

açılarını küçültmüş ve Bézier eğrileri kullanarak düzgün yol planlaması sağlamışlardır

[5]. Wang ve arkadaşları, verimlilik, sağlamlık ve düğüm gezinti sayısını iyileştirmek

amacıyla bir iyileştirilmiş A* algoritması önermişlerdir. Bu geliştirmeler arasında

minimum yığın kullanılarak düğüm depolama yapısının optimize edilmesi, adaptif ağırlık

ve dönüş cezası eklenerek sezgisel fonksiyonun iyileştirilmesi, 8-komşu stratejisinin 16-

komşuya yükseltilmesi ve çift yönlü arama mekanizmasının uygulanması yer almaktadır

[6]. Guo ve arkadaşları, hızla keşfeden rastgele ağaç yıldız (rapidly-exploring random

tree star, RRT*) algoritmasının yavaş birleşme, yüksek zaman maliyeti ve zayıf çevresel

adaptasyon gibi kısıtlamalarını ele alarak, mobil robot yol planlama alanındaki

uygulamaların iyileştirilmesi için yeni bir iki yönlü RRT* algoritması önermişlerdir. Bu

algoritma, adaptif hedef sapma örnekleme ve değişken adım boyutu gibi yenilikçi

mekanizmalar ile hem planlama hızını artırmakta hem de çevresel uyumu

iyileştirmektedir [7]. Zhong ve arkadaşları, Halton dizisi tabanlı yeni bir RRT algoritması

önermişlerdir. Bu yöntem, düzensiz örnekleme sorunlarını çözmekte ve bellek

yetersizliği problemlerini aşmak için aday örnekleme havuzu stratejisini kullanmaktadır.

Ayrıca, yol optimizasyonu ve düzeltilmesi için çok seviyeli planlama yaklaşımı ve kübik

B-spline yöntemi ile genel planlama kalitesini artırmaktadır [8]. Han ve arkadaşları, yeni

bir teta* (theta*) algoritması önermişlerdir ve bu algoritma üç boyutlu haritalarla

6

birleştirilmiş yol yumuşatma yöntemine dayanmaktadır. Ayrıca bu algoritma, engel

bilgilerini kullanarak toplam maliyet fonksiyonunu optimize etmiş ve minimum snap

polinomu ile yolun stabilitesini artırmıştır [9]. Huang ve arkadaşları, dar geçitlerdeki yol

planlama başarısını artırmak için hibrit uniform örnekleme ve Gaussian örnekleme içeren

iyileştirilmiş bir olasılıksal yol haritası (probabilistic roadmap) yöntemi önermişler. Bu

yöntem, dar geçitlerde örnekleme yoğunluğunu artırarak ve geniş alanlarda örnekleme

fazlalığını azaltarak yol planlamasının etkinliğini ve verimliliğini artırmaktadır [10].

Alshammrei ve arkadaşları, robotun önceden belirlenmiş yolu takip ederken

karşılaşabileceği engelleri tespit edip grafiği dinamik olarak güncelleyerek hedef

noktasına ulaşmasını sağlamak için iyileştirilmiş bir Dijkstra algoritması önermişlerdir.

Ayrıca, elde edilen optimal yol, hareket kontrolüne dönüştürülmüş ve çizgi izleme

algılayıcıları kullanılarak pratik olarak uygulanmıştır [11]. Li ve arkadaşları, belirsiz

dinamiklere sahip mobil robotlar için iyileştirilmiş bir yapay potansiyel alan (artificial

potantial field) yöntemine dayalı yeni bir yol planlama ve kontrol stratejisi önermişlerdir.

Bu strateji, temel yapay potansiyel alanın yerel minimuma düşme eğilimini aşmak için

çekici potansiyel alan rotasyon yöntemi ve hedefe uzak mesafelerde aşırı çekici kuvvet

nedeniyle meydana gelen çarpışmaları önlemek için yeni bir çekici potansiyel alan sınıfı

tanımlamaktadır [12].

1.2.2. Metasezgisel Algoritma Tabanlı Çalışmalar

Metasezgisel algoritma tabanlı çalışmalar genellikle karmaşık ve sürekli alanlarda çözüm

arayarak daha esnek bir yol planlama yaklaşımı sunmuş ve birçok çalışmada

uygulanmıştır. Güncel çalışmalardan bazıları şu şekilde özetlenebilir: Cai ve arkadaşları,

ateşböceği algoritmasına (firefly algorithm) dayanan iyileştirilmiş bir karınca koloni

optimizasyon algoritması (ant colony optimization, ACO), sezgisel fonksiyon tabanlı

iyileştirilmiş bir ACO ve yeni bir yapay potansiyel alan yöntemine dayanan iyileştirilmiş

bir ACO olmak üzere üç farklı yöntem önermişlerdir. Bu yöntemler, iki boyutlu ve üç

boyutlu ortamlarda mobil robot yol planlama performansını iyileştirerek, yol planlama

süresini kısaltmakta ve ortalama yol uzunluğunu azaltmaktadır [13]. Huo ve arkadaşları,

Ackermann mobil robotlar için iyileştirilmiş bir ACO ve B-eğri fonksiyonuna dayanan

yeni bir yöntem önermişlerdir. Bu yöntem, yol uzunluğu ve yol yumuşatma

kısıtlamalarını içeren çok amaçlı bir optimizasyon problemi ile robotun dönüş açısı

kısıtlamasını dikkate alarak daha hızlı bir yakınsama oranı sağlar ve kinematik

7

kısıtlamalara uyumlu yollar üretir [14]. Ab Wahab ve arkadaşları, genetik algoritma

(genetic algorithm, GA) için lineer sıralama ve boşluk tabanlı olasılıksal yol haritası

tekniklerini içeren iyileştirilmiş bir yöntem önermişlerdir. Bu yöntem, yeni bir nüfus

başlatma yöntemi ve çeşitli genetik operatörlerin kombinasyonunu kullanarak yol

planlamasının kalitesini artırmakta ve optimum yolun daha hızlı bulunmasını

sağlamaktadır [15]. Duan ve arkadaşları, iyileştirilmiş bir egemen olmayan sıralamalı

GA-II (non-dominated sorting GA-II) önermişlerdir. Bu algoritma, yol uzunluğu, yol

güvenliği ve yol yumuşaklığı gibi çoklu hedefleri aynı anda optimize etmekte, başlangıç

popülasyonunun çeşitliliğini artırmak için hibrit bir başlatma stratejisi kullanmakta ve

sorunlara özgü evrimsel operatörler geliştirmektedir. Ayrıca, adaptif değişken komşuluk

arama stratejisi ve hibrit küresel arama stratejisi kullanarak algoritmanın keşif yeteneğini

artırmaktadır [16]. Tao ve Kim, iki alt popülasyona ve rastgele pertürbasyon stratejisine

sahip bir parçacık sürü optimizasyon algoritması (particle swarm optimization, PSO)

algoritması önermişlerdir. Bu yöntem, parçacıkların kalitesini ve rastgele seçilen bir

parçacığın optimal çözümünü dikkate alarak global arama yeteneklerini artırmakta ve

yerel arama yeteneklerini lineer bilişsel katsayı ayarlama stratejisi ile güçlendirmektedir.

Ayrıca, belirli bir eşik değeri aşıldığında rastgele pertürbasyon eklenerek çeşitlilik

artırılmakta ve yerel optimumdan kaçış yeteneği güçlendirilmektedir [17]. Lin ve

arkadaşları, çok stratejili sentezlemeye dayalı iyileştirilmiş bir yapay arı koloni (artificial

bee colony, ABC) algoritması önermişlerdir. Bu algoritma, insansız hava araçları için

daha üstün uçuş yolları sağlamak amacıyla hibrit mekanizma kullanarak popülasyonu

başlatmakta ve kesişen rastgele evrim mekanizması ile uçuş yolu kalitesini en üst düzeye

çıkarmaktadır [18]. Li ve arkadaşları, kendiliğinden uyarlanan popülasyon boyutuna

sahip iyileştirilmiş bir ateşböceği algoritmasına dayanan optimal bir yol planlama

yöntemi önermişlerdir. Bu yöntem, çarpışma derecesine göre popülasyon boyutunu

belirlemek için iki doğrusal olmayan fonksiyon kullanmakta ve geçersiz çözümleri

ortadan kaldırarak yol planlamasının çözüm kararlılığını, yakınsama hızını ve çalışma

süresini iyileştirmektedir [19]. Zhang ve Hao, geleneksel mobil robotların karmaşık yol

planlama sorunlarını çözmek için iyileştirilmiş bir serçe arama algoritmasına (sparrow

search algorithm, SSA) dayalı bir 2D-3D yol planlama yöntemi önermişlerdir. Bu

yöntem, ACO tabanlı stratejileri ve bir yerel arama mekanizmasını entegre ederek

algoritmanın yol arama yeteneğini artırmaktadır [20]. Tang ve arkadaşları, iyileştirilmiş

bir Harris şahini optimizasyon algoritması (harris hawk optimization, HHO)

8

önermişlerdir. Bu yöntem, çift adaptif ağırlık stratejisi, boyut öğrenme tabanlı avlanma

stratejisi ve gübre böceği optimizasyon algoritmasına (dung beetle optimizer) dayalı

pozisyon güncelleme stratejisi ile keşif ve sömürü arasında denge kurarak, optimizasyon

yeteneği, yakınsama hızını ve kararlılığı önemli ölçüde artırmaktadır [21]. Gao ve

arkadaşları, örümcek yaban arısı optimizasyon algoritması (spider-wasp optimizer)

tabanlı iyileştirilmiş bir yol planlama yöntemi önermişlerdir. Bu yöntem, algoritmanın

küresel optimizasyon performansını artırmak için öğrenme stratejisi, algoritmanın arama

kabiliyetini artırmak için çift medyan nokta yönlendirme stratejisi ve yerel optimal

yollardan kaçış yeteneğini artırmak için daha iyi bir yönlendirme stratejisi içermektedir

[22]. Shi ve arkadaşları, dinamik durumlarda hareketli engellerden kaçınmak için

iyileştirilmiş bir simüle edilmiş tavlama algoritması (simulated annealing) algoritması

önermişlerdir. Bu algoritma, hesaplama yükünü azaltmak amacıyla başlangıç yol seçimi

yöntemi ve silme işlemi kullanmakta ve hem statik hem de dinamik ortamlarda optimal

çözümler sağlamaktadır [23]. Yıldırım ve Akay, kullanıcı tanımlı iki boyutlu ortamlarda

statik engellerle birlikte mobil robotlar için PSO, ABC ve GA algoritmaları içeren

optimal yol planlama yazılımı geliştirmeyi ve bu yazılımı kullanarak algoritmaların

performansını analiz etmeyi amaçlamışlardır. Bu yazılım, çalışma alanında farklı şekil ve

boyutlarda engeller oluşturarak ve seçilen optimizasyon algoritmasını kullanarak robot

için en kısa yolu bulmak üzere tasarlanmıştır [24].

1.2.3. Makine Öğrenmesi Tabanlı Çalışmalar

Makine öğrenmesi tabanlı çalışmalar genellikle robotların çevreden aldıkları geri

bildirimlerle karar verme yeteneklerini geliştirmeye odaklanmaktadır. Güncel

çalışmalardan bazıları şu şekilde özetlenebilir: Galarza-Falfan ve arkadaşları, derin

öğrenmeye dayalı yapay görme sistemlerinin otonom mobil robotlara entegrasyonunu

kapsamlı bir şekilde analiz ederek bir yaklaşım önermişlerdir. Gerçek zamanlı nesne

tespiti için ResNet18 (residual network) ve YOLOv3 (you only look once) modellerini

karşılaştırarak, robotların dinamik ortamlardaki uyarlanabilirliğini ve verimliliğini

artırmak için bir yöntem sunmuşlardır [25]. Han, lojistik robotlarının yol planlama ve

engel kaçınma yeteneklerini geliştirmek için üç boyutlu bir evrişimli sinir ağı

(convolutional neural network, CNN), uzun kısa süreli bellek ve dijkstra algoritmasının

yeni bir hibritini önermişlerdir. Nesne tanıma, uzaysal-zamansal modelleme ve optimize

edilmiş karar vermeyi birleştirerek, dinamik lojistik ortamlarında robotların otonomisini

9

ve güvenilirliğini artırmak için bir yaklaşım sunmuşlardır [26]. Farkh ve arkadaşları, bir

hizmet robotuna yönelik hedef izleme ve yörünge tahmini için CNN’leri otomatik

direksiyon ve hız kontrolü için bir oransal-integral-türevsel denetleyicisiyle birleştiren bir

kontrol sistemi önermişlerdir. Sistem, görüntü girişlerine dayalı gerçek zamanlı

çıkarımlar için bir Raspberry Pi kullanarak otonom çizgi takibi ve yörünge kontrolüne

yönelik bir yaklaşım tanıtmaktadır [27]. Li ve arkadaşları, düşük başarı oranı ve yavaş

eğitim hızını gidermek için iyileştirilmiş bir derin deterministik politika gradyan

algoritması (deep deterministic policy gradient, DDPG) önermişlerdir. Bu yöntem,

öğrenme verimliliğini artırmak için öncelikli deneyim tekrarı ve transfer öğrenimi ile

dinamik gecikme güncelleme stratejisi ve Ornstein-Uhlenbeck gürültüsü eklemekte,

böylece yol planlamada başarı oranını ve eğitim hızını artırmaktadır [28]. Deshpande ve

arkadaşları, belirsizlikleri ele alarak mobil robotların statik ve dinamik engeller karşısında

güçlü davranışlar sergilemesi için iyileştirilmiş bir Markov karar süreci (Markov decision

process) modelini kullanarak bir yaklaşım önermişlerdir. Bu yaklaşım, iki mobil robot

üzerinde yapılan simülasyonlarla test edilerek, gözlem olasılığı yayılımının artırılmasıyla

sistemin çarpışma oranını azaltarak dayanıklılığı artırdığını göstermiştir [29]. Deshpande

ve arkadaşları, DDPG algoritmasına diferansiyel oyun (differential game) stratejisinin

entegre edildiği yeni bir yöntem önermişlerdir. Bu yöntem, başarılı bölümlerin sayısını

artırarak ve başarısız bölümlerin sayısını azaltarak daha hızlı öğrenmeyi sağlamaktadır

[30]. Zhou ve arkadaşları, yerel yol planlaması için yeni bir eylem seçme politikası, yeni

bir ödül fonksiyonu ve kök ortalama kare yayılımı (root mean square propagation)

yöntemini içeren iyileştirilmiş bir Q-öğrenme (Q-learning, QL) algoritması

önermişlerdir. Bu yöntem, öğrenme hızını artırarak ve yol planlama verimliliğini artırarak

mevcut algoritmalara göre tüm metriklerde iyileştirmeler sağlamaktadır [31]. Zhang ve

arkadaşları, otonom mobil robotların kinematiklerini dikkate alarak dinamik ortamlarda

performans ve yanıt verebilirlik gereksinimlerini karşılamak amacıyla çok ajanlı politika

öğrenimi (multi-agent policy learning) tabanlı bir yöntem önermişlerdir. Bu yöntem,

merkezi öğrenme ve dağıtılmış yürütme tabanlı bir yol planlama çerçevesi sunmakta olup,

geleneksel sinir ağlarını kullanarak kinematiği göz önünde bulundurarak politikanın

öğrenilmesini sağlamaktadır. Ayrıca, hata deneyimlerini düzelterek öğrenme süreçlerini

hızlandıran geliştirilmiş bir yakın politika optimizasyon algoritması geliştirilmiştir [32].

Yan ve arkadaşları, yörünge açısı, doğrusal hız ve güvenlik derecesini değerlendirme

indeksleri olarak kullanıldığı ve çok amaçlı performans indeksini ödül fonksiyonuna

10

entegre edildiği iyileştirilmiş bir DDPG algoritması önermişlerdir. Bu yöntem ayrıca

deneyim örneklerini optimize etmek için bağışıklık optimizasyon algoritmasını (immune

optimization algorithm) kullanarak düşük öğrenme ve eğitim verimliliği sorunlarını

çözmektedir [33]. Deshpande ve arkadaşları, özel bir yol planlama için kısmen

gözlemlenebilir Markov karar süreci (partially observable Markov decision process)

matrislerinin boyutlarını ve seyrekliğini kontrol edebilen yeni bir algoritma önermişlerdir.

Bu algoritma, duruma ait bileşenlerin ayrıştırılmasının inceliği ve gözlem olasılık

dağılımının yayılımı ayarlanarak zaman karmaşıklığı ve bu Markov karar sürecinin

çözümünün dayanıklılığı arasında bir denge kurmayı sağlamaktadır [34]. Low ve

arkadaşları, üç güncelleme ile iyileştirilmiş bir QL algoritması önermişlerdir. Bu

değişiklikler, hedefe doğru yönlendirme için bir mesafe metriği eklenmesi, QL

fonksiyonunun daha etkili bir şekilde çıkmazları aşacak şekilde düzeltilmesi ve

çıkmazları atlamak için sanal hedef kavramının tanıtılmasıdır [35]. Das ve Mishra, mobil

robotun yönlü hareketini sağa ve sola dönüş olarak ayırmak için stokastik gradyan inişine

(stochastic gradient descent) dayalı ve doğrusal regresyonun entegre edildiği yeni bir

yaklaşım önermişlerdir. Ayrıca, geliştirilen algoritma yol planlama ve navigasyon

amaçları için kullanılmıştır [36]. Chen ve arkadaşları, karmaşık kimyasal tesislerdeki altı

ayaklı robotların yol planlaması için PSO ve çift derin Q ağı (double deep Q network)

algoritmalarına dayalı bir yöntem önermişlerdir. Bu yöntem, rastgele seçim stratejisi

yerine PSO algoritmasını kullanarak verileri toplar ve bu verilerle geliştirilen modeli

eğitir [37].

1.2.4. Hibrit Algoritma Tabanlı Çalışmalar

Hibrit algoritma tabanlı çalışmalar ise birden fazla yaklaşımın güçlü yönlerini

birleştirerek çözüm üretmeyi amaçlayan yeni yöntemler önermektedir. Güncel

çalışmalardan bazıları şu şekilde özetlenebilir: Hu ve arkadaşları, bulanık mantık (fuzzy

logic), A*, QL ve yapay potansiyel alan yaklaşımlarını içeren bir yöntem önermişlerdir.

Bu yöntem, bulanık mantık ile A* algoritmasını, kuantum hesaplama ve çok aşamalı

eğitim yöntemlerini birleştirerek A* algoritmasını iyileştirmekte ve QL algoritmasının

yakınsama hızını artırmaktadır. Hareketli engellerin bulunduğu ortamlarda, yapay

potansiyel alan alt hedef noktalarını planlamak için A* yol noktalarını kullanmaktadır.

Yerel minimumlara düşen mobil robotlar için ise kuantum çok aşamalı QL yöntemi

devreye girmekte ve yerel minimumlar ile alt hedef noktası arasında bir yol

11

planlamaktadır [38]. Wang ve arkadaşları, iyileştirilmiş bir A* algoritması, bulanık

mantık ve dinamik pencere yaklaşımını (dynamic window approach) birleştiren bir yol

planlama yöntemi önermişlerdir. Bu yöntem, çevresel engel oranını dikkate alarak A*

algoritmasını iyileştirmekte, arama komşuluğunu optimize ederek düğüm arama

verimliliğini artırmakta ve bulanık mantık içeren yerel yol planlama stratejisi ile

engellerden güvenli mesafede durarak engel kaçınma kararlılığını artırmaktadır [39]. Tao

ve Kim, yumuşak aktör-kritik algoritması (soft actor-critic), karo kodlama ve dinamik

pencere yaklaşımını birleştirerek yol planlama problemine yönelik hibrit bir yöntem

önermişlerdir. Bu yöntem keşif ve sömürü dengesini sağlamak için otomatik entropi ayar

mekanizmasını kullanmakta, iyileştirilmiş özellik temsili için karo kodlamayı entegre

etmekte ve hedef başlığı, engel mesafesi ve hız gibi parametrelerle eylem alanını

tanımlamak için dinamik pencere yaklaşımını kullanmaktadır [40]. Zhang ve arkadaşları,

nükleer enerji santrallerinin rutin denetimlerindeki mobil robotların yol planlaması için

iki seviyeli çok amaçlı bir programlama çerçevesi önermişlerdir. Bunun için, iyileştirilmiş

bir ACO, GA ve iyileştirilmiş bir A* algoritmasını entegre edilmesiyle yeni bir iki

seviyeli hibrit algoritma geliştirilmiştir. Üst seviyede, GA tabanlı düzensiz başlangıç

feromon dağılımı, adaptif sezgisel fonksiyon ve feromon güncellemesi için elit strateji ile

ACO kullanılarak denetim hedeflerinin optimal geçiş sırası belirlenmiştir. Alt seviyede

ise, yol uzunluğu, risk derecesi ve enerji tüketimi gibi birden fazla kısıtlamayı dikkate

alarak çift yönlü yolları planlamak için iyileştirilmiş bir A* algoritması kullanılmıştır

[41]. Wei ve arkadaşları, bilinmeyen ortamlarda derin pekiştirmeli öğrenme

algoritmalarının eğitim süresinin uzun olması ve kararsızlık gibi sorunlarını çözmek için

DDPG algoritmasında iyileştirmeler yapmışlardır. Deney havuzu farklı deney

havuzlarına bölünmüş, deneyler çeşitli oranlarda toplanarak robotun engellerden kaçınma

yeteneği artırılmış ve kılavuz ödül fonksiyonu ile algoritmanın yakınsama hızı

iyileştirilmiştir [42]. Gao ve arkadaşları, D*lite algoritması ve dinamik pencere yaklaşımı

arasında kombinasyon sağlayan, çift katmanlı bir harita ve uygulanabilir alan stratejisi

kullanan bir yeni bir stratejisi önermişlerdir. Bu strateji, D*lite algoritmasının

verimliliğini artırmakta ve dinamik pencere yaklaşımınının yerel planlama yeteneklerini

tam anlamıyla kullanabilmesini sağlamaktadır [43]. Li ve arkadaşları, iyileştirilmiş bir

ACO ve ABC’den oluşan hibrit bir yaklaşım önermişlerdir. Bu yöntem yön bilgisine

sahip iyileştirilmiş bir sezgisel mekanizma, yeni komşuluk arama mekanizması ve yol

optimizasyon mekanizması içermektedir. Yöntem, yol dönüş sayısını ve yol uzunluğunu

12

azaltarak algoritmanın yakınsama hızını artırmakta ve yüksek kaliteli yol planlama

sonuçları elde etmektedir [44]. Yu ve arkadaşları, su akışı potansiyel alan yöntemi (water

flow potential field) ve böcek anten arama algoritmasının (beetle antennae search)

kombinasyonuna dayalı bir mobil robot yol planlama yöntemi önermişlerdir. Bu

yaklaşım, böcek genetik operatörü kullanarak küresel yolu bölmelere ayırmakta, yerel yol

planlamasını engellerin özelliklerine göre sınıflandırmakta ve yapay potansiyel alan ile

aramayı yönlendirmektedir [45]. Zhang ve arkadaşları, mobil robotlar için iyileştirilmiş

bir ACO, A* ve PSO algoritmasına dayalı hibrit bir yöntem önermişlerdir. Bu yöntem,

küresel arama yeteneği ve yakınsama hızını dengelemek amacıyla A* algoritması,

iyileştirilmiş feromon ve adaptif sezgisel fonksiyon kullanmaktadır. Ayrıca PSO’yu

kullanarak en iyi ACO kontrol parametrelerini ve çok amaçlı ağırlık katsayılarını elde

etmektedir [46]. Tian ve arkadaşları, balina optimizasyon algoritması (whale optimization

algorithm, WOA) ve ateşböceği algoritmasına dayalı çok popülasyonlu ve tersine

öğrenme temelli hibrit bir algoritma önermişlerdir. Bu yöntem, karmaşık mobil robot

çalışma ortamlarında optimal yolu hızla bulabilmekte ve keşif ile sömürü arasında denge

sağlamaktadır [47].

1.3. Tezin Amacı

Bu tezin amacı, mobil robotların yol planlaması problemlerine yönelik metasezgisel

algoritmaların etkinliğini artırmak ve bu alandaki mevcut yöntemlere yenilikçi katkılar

sağlamaktır. Günümüzde mobil robotların çeşitli endüstriyel, askeri ve günlük yaşam

uygulamalarında artan kullanımı, güvenilir ve verimli yol planlaması algoritmalarına

duyulan ihtiyacı artırmaktadır. Özellikle karmaşık ve dinamik ortamlarda, robotların en

kısa, en güvenli ve en enerji-verimli yolları planlayarak hedeflerine ulaşması büyük bir

önem taşımaktadır.

Bu doğrultuda, mobil robotların otonom hareket kabiliyetlerini geliştirmek adına, hem

tekli hem de çoklu mobil robot sistemleri için optimize edilmiş yolların planlanması

hedeflenmiştir. Tekli mobil robot sistemlerinde, bir robotun belirlenen başlangıç ve hedef

noktaları arasındaki en uygun yolu planlaması amaçlanırken, çoklu mobil robot

sistemlerinde ise birden fazla robotun çarpışma önleyici stratejilerle birlikte koordineli

bir şekilde hareket etmesi sağlanarak daha karmaşık senaryolara çözüm üretilmiştir.

13

Bu tezde, metasezgisel algoritmaların keşif ve sömürü dengesini iyileştiren yeni

yaklaşımlar geliştirilerek, algoritmaların doğruluk, hız ve hesaplama verimliliği açısından

performanslarını artırmaya yönelik çeşitli stratejiler uygulanmıştır. Keşif sürecinin daha

etkili hale getirilmesi, robotların bilinmeyen veya değişken ortamlarda daha başarılı

navigasyon yapmalarını sağlarken, sömürü sürecinin optimize edilmesi ise algoritmaların

küresel en iyi çözüme daha hızlı ve hassas bir şekilde ulaşmasına katkı sağlamıştır. Bu

çerçevede, farklı metasezgisel algoritmaların geliştirilmesi ve hibrit yöntemlerin

tasarlanması gibi çeşitli teknikler araştırılmış ve uygulanmıştır. Ayrıca makine öğrenmesi

teknikleri kapsamında bir derin öğrenme modeli de geliştirilmiş ve çoklu robot

sistemlerinin yol planlama problemi için uygulanmıştır. Bu sayede eğitim sürecine biraz

zaman harcansa da, model eğitildikten sonra her boyutta çok kısa bir sürede sonuç

alınabilmiş ve sistemin verimliliği önemli ölçüde artırılmıştır.

14

2. BÖLÜM

YOL PLANLAMA PROBLEMİ

2.1. Giriş

Mobil robotların yol planlama problemi, bir robotun belirli bir başlangıç noktasından

hedef bir noktaya en uygun şekilde ulaşmasını sağlayan bir süreçtir [48]. Bu süreç,

robotun belirlenen yolda ilerlerken çevresel engellerden kaçınmasını, enerji tüketimini

minimum seviyede tutmasını ve en kısa veya en hızlı yolu bulmasını gerektirir. Yol

planlama, robotun otonom şekilde hareket edebilmesi ve belirlenen görevleri yerine

getirebilmesi için hayati bir öneme sahiptir. Özellikle sanayi, tarım ve lojistik gibi

alanlarda, mobil robotların etkili bir şekilde kullanılabilmesi için yol planlama

algoritmalarının doğru ve hızlı sonuçlar üretmesi gerekir. Şekil 2.1 yol planlama

probleminin kapsamını göstermektedir.

Yol Planlama

Küresel Yol Planlama Yerel Yol Planlama

Ayrık Uzay Ortamı Sürekli Uzay Ortamı

Graf Tabanlı Ortam Izgara Ortamı

Şekil 2.1. Yol planlama probleminin kapsamı

15

Bu problem, robotun faaliyet göstereceği alanın uygun şekilde modellenmesiyle başlar.

Hareket edilebilecek alan, genellikle ızgara ortamı (ayrık uzay ortamı) veya sürekli uzay

ortamı olarak ifade edilir. Izgara ortamlar, hareket alanını hücrelere bölerek robotun hangi

hücrelerden geçebileceğini belirler. Sürekli uzay ortamları ise robotun herhangi bir

engelle karşılaşmadan hareket edebileceği sürekli alanları ifade eder. Çevresel koşulların

doğru bir şekilde modellenmesi, yol planlama algoritmalarının başarılı bir şekilde

çalışabilmesi için kritik bir adımdır.

Mobil robotların yol planlama problemleri, çözüm yöntemlerine bağlı olarak iki ana

kategoriye ayrılır: küresel yol planlama ve yerel yol planlama. Küresel yol planlama,

robotun tüm çevreyi bildiği durumlarda en uygun yolu belirlemeye odaklanır. Bu tür

planlama, genellikle önceden bilinen haritalar üzerinde gerçekleştirilir ve uzun vadeli

stratejiler gerektirir. Örneğin, bir depoda belirli raflar arasında ürün taşımak için robotun

tüm depo haritasına sahip olması ve en kısa yolu planlaması küresel yol planlama

kapsamında değerlendirilir. Yerel yol planlama ise robotun yalnızca yakın çevresine

dayalı olarak hareket etmesini sağlar. Robot, çevresindeki engelleri algılayarak anlık

kararlar alır ve yolunu buna göre günceller. Bu tür planlama, genellikle dinamik ve

önceden bilinmeyen ortamlarda, robotun çevresine adapte olması gereken durumlarda

tercih edilir. Örneğin, bir tarım arazisinde önceden belirlenmemiş engeller arasında

dolaşması gereken bir robot, yerel yol planlama yöntemlerini kullanır. Hem küresel hem

de yerel planlama yöntemleri, robotların güvenli ve verimli bir şekilde hareket etmesini

sağlamak için birbirini tamamlayıcı bir şekilde kullanılabilir.

2.2. Küresel Yol Planlama

Küresel yol planlama, robotun çevresel bilgilerini başlangıçtan itibaren tam olarak bildiği

varsayımına dayanır [49]. Robotun bu bilgiyi kullanarak, hedefe ulaşmasını sağlayan en

etkili yolu hesaplaması beklenir. Genellikle, küresel yol planlama otonom araçlar

(insansız hava aracı, tekerlekli mobil robot gibi) ve robot kolların çeşitli uygulamalarında

kullanılır. Planlamanın temel amacı, robotun hedefine hızlı, güvenli ve enerji açısından

verimli bir şekilde ulaşmasını sağlayan küresel çapta bir yol planlamaktır. Küresel yol

planlamanın blok diyagramı Şekil 2.2’de gösterilmektedir.

16

Küresel Ortam Bilgisi
(Ortam Sınırları,
Statik Engeller,

Başlangıç Noktası,
Hedef Noktası)

Yol Planlama
Algoritması

Mobil
Robot

Dinanik
Engel

Algılayıcı

Küresel Yol

Şekil 2.2. Küresel yol planlamanın blok diyagramı

Robotun hareket ettiği genel ortam iki veya üç boyutlu bir harita şeklinde tanımlanabilir.

Bu harita robotun hareket edebileceği geçilebilir alan ile robotun çarpışmaktan kaçınması

gereken engelleri içerir. Ayrıca robotun başlangıç ve hedef noktaları da geçilebilir alanlar

içinde önceden tanımlanması gerekir. Bu tanımlamalar Eşitlik (2.1)’de gösterilmektedir.

𝔼 = {𝐸 | ∃𝑂 ⊆ 𝐸, {𝑝௦, 𝑝௧} ⊆ 𝐸\𝑂} (2.1)

Burada, 𝐸 genel ortamı kümesini, 𝐸\𝑂 robotun hareket edebileceği geçilebilir alanı, 𝑂

engel kümesini, 𝑝௦ ve 𝑝௧ robotun sırasıyla başlangıç ve hedef konumlarını temsil eder.

Geçilebilir alan, robotun güvenle hareket edebileceği bölgeyi temsil ederken, engeller bu

alanların dışındaki tehlikeli veya yasaklı bölgeleri temsil eder. Robotun yolu, yalnızca

geçilebilir alan içinde oluşturulabilir ve engellerle çakışmaması gereklidir. Bu tür bir

ortam modeli, robotun çevresel bilgileri anlaması ve bu bilgiler doğrultusunda hareket

planı oluşturması için temel bir çerçeve sunar.

Planlama sürecinde robotun yalnızca geçilebilir alanda hareket etmesi yeterli değildir;

aynı zamanda bu hareketin belirli performans kriterlerini de sağlaması gerekir. Bu

kriterler arasında yolun uzunluğu, yolun güvenliği, engellerden kaçınma başarısı ve enerji

verimliliği gibi faktörler yer alır. Küresel yol planlama, bu kriterlerin bir

kombinasyonunu optimize etmeyi hedefler. Örneğin, bir otonom aracın bir şehirde yol

alırken hem en kısa yolu takip etmesi hem de trafik kurallarına ve güvenlik standartlarına

uyması beklenir. Benzer şekilde, bir robotun enerji tüketimini minimize ederken

engellerden kaçınması ve hedefine en hızlı şekilde ulaşması ideal bir çözüm olarak

değerlendirilir. Bu çerçevede küresel yol planlama, genelde bir optimizasyon problemine

dönüşür ve çözümü etkili bir matematiksel modelleme ile mümkün olur.

17

2.2.1. Ortam Tanımı

Küresel yol planlamada ilk adım olarak ortamın doğru bir şekilde tanımlanması

gerekmektedir. Bu tanımlama robotun hareket edeceği alanın yapısını belirler ve yol

planlamanın temellerini atar. Ortamlar genellikle üç ana kategoriye ayrılır: graf tabanlı

ortamlar, ızgara ortamlar ve sürekli uzay ortamları. Graf tabanlı ortamlar, ayrık bir yapıya

sahip olup ağ yapıları şeklinde modellenir. Her bir düğüm belirli bir konumu temsil eder

ve bu düğümler arasındaki bağlantılar robotun hareket edebileceği yolları gösterir. Izgara

ortamları belirli hücrelerden oluşan ve her hücrenin belirli bir durum aldığı ayrık bir

yapıyı ifade eder. Sürekli uzay ortamları ise robotun her türlü konumunun ve hareketinin

kesintisiz olarak tanımlandığı daha esnek bir model sunar. Bu ortamlar yol planlama

algoritmalarının uygulama biçimini ve karmaşıklığını doğrudan etkiler.

2.2.1.1. Graf Tabanlı Ortam

Graf tabanlı ortamlar küresel yol planlamanda genellikle ayrık bir yapıyı modellemek için

kullanılır. Bu tür ortamlar ortamı bir dizi düğüm ve bu düğümler arasındaki kenar ile

temsil eder. Her bir düğüm robotun belirli bir konumunu veya durumunu, kenarlar ise bu

düğümler arasındaki geçiş yollarını ifade eder. Graf tabanlı modelleme genellikle

ortamdaki engellerin konumları hakkında bilgi vermez, engel durumu kenarlarda ele

alınır. Bir graf tabanlı ortam iki ve üç boyutlu için Eşitlik (2.2)’deki gibi tanımlanır.

𝐸 = ൛(𝑃, 𝐺) | 𝑃 ⊂ ℝ஽ , 𝐺 ⊆ 𝑃 × 𝑃, 𝐷 ∈ {2,3}ൟ (2.2)

Burada, 𝑃 düğüm kümesini, 𝐺 kenar (bağlantı) kümesini ve 𝐷 ortam boyutunu temsil

eder. Düğüm kümesi iki ve üç boyutlu için Eşitlik (2.3)’teki gibi tanımlanır.

𝑃 = ቄ 𝑝௜ ∈ ℝ஽
∣
∣ 𝑝௜ ∉ 𝑂 ∪ {𝑝௦, 𝑝௧}, 𝑖 ∈ ൛1,2, … , 𝑛௣ൟ, 𝑛௣ ∈ ℕା, 𝐷 ∈ {2,3} ቅ (2.3)

Burada, 𝑝௜ 𝑖’inci düğümü ve 𝑛௣ graftaki toplam düğüm sayısını temsil eder. Kenar kümesi

iki ve üç boyutlu için Eşitlik (2.4)’teki gibi tanımlanır. Şekil 2.3 örnek graf tabanlı

ortamları göstermektedir.

𝐺 = ቐ ൛𝑝௜, 𝑝௝ൟ
∣
∣
∣
∣
∣ 𝑝௜, 𝑝௝ ∈ 𝑃 ⊂ ℝ஽ , ൛𝑝௜, 𝑝௝ൟ ∩ 𝑂 = ∅,

 𝑖, 𝑗 ∈ ൛1,2, … , 𝑛௣ൟ, 𝑖 ≠ 𝑗, 𝐷 ∈ {2,3}
ቑ (2.4)

18

(a) (b)

Şekil 2.3. Örnek graf tabanlı ortamlar: (a) İki boyutlu, (b) Üç boyutlu (Gri daire ve
gri silindir engelleri, kırmızı yıldızlar düğümleri, mavi çizgiler ise kenarları
temsil eder.)

2.2.1.2. Izgara Ortamı

Izgara ortamı, bir robotun hareket edebileceği alanın düzenli bir şekilde bölümlere

ayrıldığı ve bu bölümlerin birer hücre olarak tanımlandığı bir çevresel modeldir. Bu yapı,

çevrenin dijital olarak temsil edilmesi ve robotun hareket planlamasının kolaylaştırılması

amacıyla kullanılır. Izgara ortamı genellikle kare, dikdörtgen veya altıgen gibi düzenli

geometrik şekillerden oluşan hücrelerle modellenir. Matematiksel olarak bu ortamlar iki

ve üç boyutlu için Eşitlik (2.5) kullanılarak tanımlanır, ızgara hücrelerinden oluşan 𝑚 x

𝑛 veya 𝑚 x 𝑛 x ℎ boyutunda ızgara matrisleri olarak düşünülebilir.

𝐸 = ൜
𝑝௜௝

𝑝௜௝௞ ∣
∣
∣ 𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛}, 𝑒ğ𝑒𝑟 𝐷 = 2 𝑖𝑠𝑒

𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛}, 𝑘 ∈ {1,2, … , ℎ}, 𝑒ğ𝑒𝑟 𝐷 = 3 𝑖𝑠𝑒
ൠ (2.5)

Burada, 𝑚, 𝑛, ℎ ∈ ℕା, 𝑝௜௝ ve 𝑝௜௝௞ ızgara matrisindeki hücreyi; 𝑚, 𝑛 ve ℎ matrisin

boyutlarını yani sırasıyla satır, sütun ve katman sayısını temsil eder. Her hücre (𝑝) Eşitlik

(2.6)’da tanımlandığı gibi bir durum değişkeni ile işaretlenir: “0” değeri hücrenin

geçilebilir alan olduğunu belirtirken, “1” değeri hücrenin bir engel olduğunu ifade eder.

𝑝 = ൜
0, 𝑒ğ𝑒𝑟 𝑝 ∈ 𝐸\𝑂 𝑖𝑠𝑒
1, 𝑒ğ𝑒𝑟 𝑝 ∈ 𝑂 𝑖𝑠𝑒

 ൠ (2.6)

Şekil 2.4 örnek ızgara ortamlarını göstermektedir. Bu ortamların durum değişkenlerini

içeren ızgara matrisleri de Eşitlik (2.7) ve (2.8)’de gösterilmektedir.

19

(a) (b)

Şekil 2.4. Örnek ızgara ortamlar: (a) İki boyutlu, (b) Üç boyutlu (Gri kare ve gri
küpler engelleri temsil eder.)

𝐸ଶ஽ =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

(2.7)

𝐸ଷ஽ =

⎣
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎤

 (2.8)

2.2.1.3. Sürekli Uzay Ortamı

Sürekli uzay ortamı ızgara ortamından farklı olarak, robotun hareket edebileceği ortamın

sürekli bir alan olarak temsil edilmesiyle tanımlanır. Bu tür bir ortamda, robotun ve

engellerin konumları herhangi bir gerçek sayısal koordinatta ifade edilebilir ve yol düz

çizgilerden eğrilere kadar sürekli bir fonksiyon olarak modellenir. Sürekli uzayda,

robotun geçilebilir alan içinde engellere çarpmadan en uygun yolu bulması hedeflenir. Bu

yaklaşım, yüksek hassasiyet gerektiren ve doğal yolların kritik olduğu durumlarda avantaj

sağlar. Sürekli uzay ortamlarının esnekliği, robotun hareketlerini kesintisiz şekilde

planlamayı mümkün kılarak, hem enerji verimliliği hem de güvenlik açısından daha

optimize çözümler sunar. Matematiksel olarak bu ortamlar iki ve üç boyutlu için Eşitlik

(2.9)’da gösterildiği gibi noktalar ve sürekli fonksiyonlarla tanımlanır. Noktalar belirli bir

mesafeyle ayrılmamışlardır.

20

𝐸 = {𝑝 ∈ ℝ஽ | 𝐷 ∈ {2,3}, ∃ℱ: [0 1] → ℝ஽ , ℱ ∈ 𝐶([0 1], ℝ஽)} (2.9)

Burada, 𝑝 herhangi bir noktayı temsil eder. Engeller iki ve üç boyutlu için Eşitlik

(2.10)’daki gibi ifade edilebilir.

𝑂 = ൛𝑝௢ ∈ ℝ஽ | 𝑖 = {1,2, … , 𝑛௢}, 𝐷 ∈ {2,3}ൟ (2.10)

Burada, 𝑝௜
௢ 𝑖’inci engelin konumunu, 𝑛௢ engel sayısını temsil eder. Engeller farklı

geometrik şekillerde tasarlanabilir. Örneğin, Şekil 2.5 dairesel ve silindir şeklindeki

engellere sahip örnek sürekli uzay ortamlarını göstermektedir.

(a) (b)

Şekil 2.5. Örnek sürekli uzay ortamları: (a) İki boyutlu, (b) Üç boyutlu (Gri daire ve
gri silindirler engelleri temsil eder.)

2.2.2. Yol Planlama Süreci

Tanımlanan bu ortamlarda çeşitli algoritma ve yöntemlerle başlangıç hücresinden hedef

hücreye doğru bir yol planlanır. Bu planlama sonunda graf tabanlı ve ızgara ortamlarda

robotun yolu Eşitlik (2.11)’de tanımlandığı gibi belli düğümlerin bir dizisi olarak

tanımlanır.

𝑌 = ቂ𝑝௦, 𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝௡೤
, 𝑝௧ቃ (2.11)

Burada, 𝑌 yol dizisini, 𝑝௜ yolu oluşturan düğümleri veya hücreleri (başlangıç-hedef hariç)

ve 𝑛௬ yolu oluşturan bu düğüm veya hücrelerin sayısını temsil eder. Sürekli uzay

ortamlarında robotun yolu iki ve üç boyutlu için Eşitlik (2.12)’de gösterildiği gibi

geçilebilir alan içinde genelde noktalardan oluşan sürekli bir dizi olarak tanımlanır.

21

𝑌 = ቄ 𝑝௜ ∈ ℝ஽
∣
∣ 𝑝௦ ≤ 𝑝௜ ≤ 𝑝௧, [𝑝௦, 𝑝௧] → 𝐸\𝑂, 𝑖 ∈ ൛1,2, … , 𝑛௬ൟ, 𝐷 ∈ {2,3} ቅ (2.12)

Burada 𝑝௜ yolun 𝑖’inci noktasını, 𝑛௬ yolu oluşturan noktaların sayısını temsil eder.

2.3. Yerel Yol Planlama

Yerel yol planlama, robotun çevresel bilgileri tam olarak bilmediği ve hedef noktasına

adım adım ulaştığı varsayımına dayanır [50]. Genellikle dinamik engellerin olduğu

ortamlarda kullanılan bu planlamada robot sınırlı ve yerel bir alanda bir sonraki noktaya

hareket etmek için çalışır. Yerel yol planlamanın blok diyagramı Şekil 2.6’da

gösterilmektedir.

Yerel Ortam Bilgisi
(Yerel Harita,

Hedef Noktası)

Yol Planlama
Algoritması

Mobil
Robot

Engel
Algılayıcı

Yerel Hedef
Noktası

Güncel
Yerel Harita

Şekil 2.6. Yerel yol planlamanın blok diyagramı

Bu süreçte robot, kinematik modellere ve algılayıcılarından aldığı verilere dayanarak

hareket eder. Robotun hareket kabiliyeti, kinematik modeli ile tanımlanır. Kinematik

model, robotun nasıl hareket ettiğini ve nasıl yönlendiğini, robotun hızını, yönelimini ve

pozisyonunu birleştirerek tanımlar. Robotun pozisyonu, genellikle 𝑥 ve 𝑦 koordinatları

(iki boyutlu uzayda) ya da 𝑥, 𝑦 ve 𝑧 koordinatları (üç boyutlu uzayda) ile belirtilir. Her

iki durumda da robotun bir sonraki konumunun nasıl hesaplanacağı, robotun hızına ve

mevcut yönelimine bağlıdır.

Yerel yol planlama, robotun anlık çevresine odaklanarak engellerden kaçınmasını ve

hedefe doğru ilerlemesini sağlar. Bu yöntem, dinamik ortamlarda robotun değişen

koşullara hızlı bir şekilde uyum sağlamasına olanak tanır. Çevresel bilgilerin sürekli

güncellenmesi, robotun mevcut duruma göre en güvenli ve uygun rotayı seçmesini

mümkün kılar. Ayrıca, yerel yol planlama, daha düşük hesaplama gücü gerektirdiğinden,

gerçek zamanlı uygulamalarda tercih edilir. Robotun yalnızca yakın çevresindeki verileri

22

kullanması, büyük haritaların veya önceden belirlenmiş rotaların oluşturulmasını

gerektirmez, bu da yönteminin esnekliğini artırır.

Yerel yol planlama, yalnızca robotun yakın çevresine odaklandığından, küresel bir

perspektif sağlayamaz. Bu durum, robotun hedefe ulaşırken optimal bir yol

seçememesine veya döngüsel hareketlerle sıkışıp kalmasına neden olabilir. Örneğin,

robot bir engelin etrafında dönerek yanlışlıkla aynı noktaya geri dönebilir. Ayrıca, yerel

planlama, robotun uzun vadeli stratejik bir rota belirlemesini zorlaştırabilir. Dinamik

ortamlarda sürekli güncelleme gerekliliği, ani değişikliklerde planlamada gecikmelere

veya yanlış kararlar alınmasına yol açabilir. Bu yöntem, karmaşık veya engellerle dolu

ortamlarda daha az verimli olabilir ve küresel yol planlama stratejileriyle birlikte

kullanılması gerekebilir.

Matematiksel olarak robotun bir sonraki konumunu hesaplamak için kullanılan kinematik

model robotun mevcut konumu, yönelimi ve hızını dikkate alır. Noktasal modellenen bir

robot için bir sonraki noktanın hesaplanması Şekil 2.7’de gösterilmektedir. Bu hesap iki

ve üç boyutlu için sırasıyla Eşitlik (2.13) ve (2.14)’te gösterilmektedir.

𝑥𝑖

𝑥

𝑦

𝑥𝑖+1

𝑦i

𝑦𝑖+1

𝑣

𝜑 𝑝i

𝑝i+1

𝑥𝑖
𝑥

𝑧

𝑥𝑖+1

𝑦i

𝑦𝑖+1

𝑣

𝜑

𝑦

𝜙

𝑧i

𝑧𝑖+1

𝑝i

𝑝i+1

(a) (b)

Şekil 2.7. Yerel yol planlamada noktasal bir robotun bir sonraki konumu: (a) İki
boyutlu (b) Üç boyutlu (Mavi daire noktasal robotu temsil eder.)

𝑝௜ାଵ = 𝑝௜ + 𝑣 ቂ
𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑 ቃ Δ𝑡 (2.13)

𝑝௜ାଵ = 𝑝௜ + 𝑣 ൥

𝑐𝑜𝑠𝜙. 𝑐𝑜𝑠𝜑
𝑐𝑜𝑠𝜙. 𝑠𝑖𝑛𝜑

𝑠𝑖𝑛𝜙
 ൩ Δ𝑡 (2.14)

23

𝑝௜ = ൥

𝑥௜

𝑦௜

𝑧௜

 ൩ , 𝑝௜ାଵ = ൥

𝑥௜ାଵ

𝑦௜ାଵ

𝑧௜ାଵ

 ൩ (2.15)

Burada 𝑝௜ robotun mevcut konumu, 𝑝௜ାଵ robotun bir sonraki konumu, 𝑣 robotun doğrusal

hızını, 𝜑 robotun iki boyuttaki yönelimini, 𝜙 robotun üç boyuttaki dikey yönelimini, Δ𝑡

ise zaman adımını temsil eder. Robotun bir sonraki noktası hesaplandıktan sonra o

noktaya yönelir ve planlama hedef noktaya ulaşana kadar bu şekilde devam eder.

24

3. BÖLÜM

YOL PLANLAMA YÖNTEMLERİ

3.1. Giriş

Yol planlama yöntemleri, mobil robotların belirli bir başlangıç noktasından hedef bir

noktaya en kısa, en güvenli veya en verimli şekilde ulaşmalarını sağlayan matematiksel

ve hesaplamalı algoritmalardır. Bu algoritmalar, robotun hedefe ulaşırken çeşitli çevresel

ve operasyonal faktörleri dikkate alarak optimal bir yol bulmasını sağlar.

Bu yöntemlerin temel amacı, robotun hareket ederken çevresindeki engellerden

kaçınmasını ve aynı zamanda belirli kısıtlamalara uymasını sağlamaktır. Engeller, statik

veya dinamik olabilir ve robotun yol boyunca bu engelleri tespit edip güvenli bir şekilde

manevra yapmasını gerektirir. Ayrıca, robotun fiziksel özellikleri, hareket kabiliyeti,

enerji tüketimi ve çevredeki dinamik unsurlar gibi faktörler de bu süreçte önemli rol

oynar. Örneğin, bir robotun maksimum hız sınırı, batarya kapasitesi veya belirli

yüzeylerdeki hareket kabiliyeti gibi özellikler, yol planlama algoritmalarının dikkate

alması gereken kısıtlamalardır.

Bu bölüm yol planlama yöntemlerini üç farklı grupta açıklamaktadır: Klasik algoritmalar,

metasezgisel algoritmalar ve makine öğrenmesi. Klasik algoritmalar olarak arama

algoritmaları dâhilinde dinamik programlama, dijkstra algoritması, genişlik öncelikli

arama, A* algoritması ve örnekleme algoritması dâhilinde hızla keşfeden rastgele ağaçtan

bahsedilmektedir. Metasezgisel algoritmalar olarak evrimsel algoritma dâhilinde genetik

algoritma, diferansiyel gelişim, sürü zekası ve insan ilhamlı dâhilinde parçacık sürü

optimizasyonu, yapay arı koloni algoritması, öğrenme-öğretme tabanlı optimizasyon,

matematik ilhamlı dâhilinde stokastik fraktal arama, sinüs kosinüs algoritması ve

aritmetik optimizasyon algoritmasından bahsedilmektedir. Makine öğrenmesi yöntemleri

25

olarak evrişimli sinir ağları dâhilinde LeNet, AlexNet, VGG16, GoogleNet, tam evrişimli

ağ, ResNet ve takviyeli öğrenme dâhilinde aktör-kritik, Q-öğrenme, derin deterministik

politika gradyanı algoritmalarından bahsedilmektedir. Şekil 3.1.’de yol planlama

yöntemlerinin sınıflandırılması gösterilmektedir.

Öğrenme-Öğretme Tabanlı Optimizasyon, 2011

A* Algoritması, 1968

Genişlik Öncelikli Arama, 1959

Dijkstra Algoritması, 1959

Dinamik Programlama, 1953

Yol Planlama Yöntemleri

Klasik Algoritmalar

Hızla Keşfeden Rastgele Ağaç, 1998

Metasezgisel Algoritmalar

Evrimsel Algoritmalar

Diferansiyel Gelişim, 1997

Genetik Algoritma, 1975

Sürü Zekası ve İnsan İlhamlı

Yapay Arı Koloni Algoritması, 2005

Parçacık Sürü Optimizasyonu, 1995

Matematik İlhamlı

Sinüs Kosinüs Algoritması, 2016

Stokastik Fraktal Arama, 2015

Aritmetik Optimizasyon Algoritması, 2020

Makine Öğrenmesi

Evrişimli Sinir Ağları

AlexNet, 2012

LeNet-5, 1998

VGG16, 2014

Tam Evrişimli Ağ, 2015

GoogleNet, 2014

ResNet, 2015ResNet, 2015

Takviyeli Öğrenme

Q-Öğrenme, 1989

Aktör-Kritik Algoritması, 1984

Derin Deterministik Politika Gradyanı, 2015

Şekil 3.1. Yol planlama yöntemlerinin sınıflandırılması

3.2. Klasik Algoritmalar

Klasik algoritmalar, bir probleme çözüm bulmak amacıyla belirli bir yöntem ve stratejiyle

çözüm uzayını keşfeden algoritmalardır. Bu algoritmalar genellikle çözümün

doğruluğunu garantilemek için sistematik bir yaklaşım kullanır ve tüm olasılıkları belirli

bir sırayla değerlendirir. Bu tür algoritmaların çoğu deterministik bir yapıya sahiptir, yani

algoritmanın her çalıştırılmasında aynı başlangıç koşulları ve belirli kurallar

doğrultusunda aynı sonuca ulaşılır. Her adımda kullanılan yöntemler sabit olup, herhangi

bir rastlantısal unsur barındırmaz. Bu özellikleriyle klasik arama algoritmaları, sonuçların

tutarlı ve tekrarlanabilir olmasını sağlar, fakat bazı durumlarda daha verimli olmayan

sonuçlar da doğurabilir, çünkü arama alanını tamamen tarama gereksinimi doğurur.

3.2.1. Dinamik Programlama

Dinamik programlama (DP), 1953 yılında Bellman tarafından geliştirilen geniş kapsamlı

bir klasik arama algoritmasıdır [51]. Graf ortamlarda yol planlama problemi için DP’nin

amacı başlangıç düğümü ile hedef düğümü arasındaki en kısa yolu bulmaktır.

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Başlangıç düğümünün ulaşım

26

maliyeti sıfır, diğer düğümlerin ulaşım maliyeti sonsuz olarak ayarlanır. Başlangıç

düğümünden itibaren her düğümün maliyeti özyineli olarak hesaplanır. DP bir graftaki

herhangi bir 𝑝௜ düğümünün ulaşım maliyetini Eşitlik (3.1) kullanılarak hesaplar.

𝑓௣೔
= 𝑓௣ೕ

+ ฮ𝑝௜ − 𝑝௝ฮ, 𝑝௝ ∈ 𝑃௣೔
(3.1)

Burada, 𝑓௣೔
 𝑝௜ düğümünün ulaşım maliyetini, 𝑃௣೔

 𝑝௜ düğümünün giriş komşu kümesini,

𝑝௝ giriş komşu kümesindeki herhangi bir komşu düğümü, 𝑓௣ೕ
 başlangıç düğümünden 𝑝௝

düğümüne kadar olan ulaşım maliyetini, ‖ . ‖ iki düğüm arasındaki maliyeti (mesafeyi)

temsil eder. Giriş komşu kümesinden hangi komşu düğümün maliyeti daha düşükse o

komşu düğüm ebeveyn düğüm olarak Eşitlik (3.2)’de tanımlandığı gibi atanır.

𝑝௜
௘ = arg min

௣೔∈௉
൫𝑓௣೔

൯ (3.2)

Burada, 𝑝௜
௘ 𝑝௜ düğümüne atanan ebeveyni temsil eder. Bir düğümün ulaşım maliyeti

hesaplandıktan sonra bu maliyet diğer düğümlerin maliyetinin hesaplanmasında

kullanılır. Bu işlem hedef düğüme ulaşana kadar devam eder. Hedefe ulaşıldıktan sonra

geriye izleme aşaması devreye girer. Bu aşamada hedef düğümden başlayarak ve ebeveyn

düğümleri geriye doğru izlenerek başlangıç düğümüne kadar en kısa yol Eşitlik (3.3) ve

tersi (yolun kendisini elde etmek için) Eşitlik (3.4)’te tanımlandığı gibi planlanır.

𝑌௥ = ൜ቄ𝑝௧, 𝑝௡೤
, … , 𝑝௜, … , 𝑝ଵ, 𝑝௦ቅ | 𝑝௜ାଵ = 𝑝௜

௘ , 𝑖 > 0, 𝑛௬ ∈ ℕାൠ (3.3)

𝑌 = {ℱ(𝑌௥) | ℱ: 𝑌௥ → 𝑌} (3.4)

Burada, 𝑌 yol vektörünü, 𝑌௥ yol vektörünün tersini, 𝑝௜ yolu oluşturan düğümleri, 𝑝௦ ve

𝑝௧ başlangıç ve hedef düğümlerini, 𝑛௬ başlangıç-hedef hariç yolu oluşturan düğüm

sayısını temsil eder. Geriye izleme aşaması, algoritmanın sadece maliyet hesaplaması

değil, aynı zamanda yol bilgisini de sağlayan önemli bir bileşenidir. Bu adım olmadan,

hedef düğüme ulaşmanın maliyeti bilinse bile bu yolun hangi düğümlerden geçtiği

bilinemez. Bu yüzden yol planlama probleminde DP için kritik öneme sahiptir. DP

algoritmasının temel adımları Algoritma 3.1 ile gösterilmektedir.

27

Algoritma 3.1: DP algoritmasının temel adımları
1: Tüm düğümlerin maliyetinin sonsuz atanması
2: Başlangıç düğümünün maliyetinin sıfır atanması
3: while (tüm düğümlerin maliyeti hesaplanana kadar)
4: Her düğümün komşularının tespit edilmesi
5: Eşitlik (3.1) ile her düğümün maliyetinin hesaplanması
6: Eşitlik (3.2) ile her düğümün ebeveyninin atanması
7: end while
8: Geriye izleme aşaması
9: Yolun ve maliyetin raporlanması

3.2.2. Dijkstra Algoritması

Dijkstra algoritması, 1959 yıllarda Dijkstra tarafından geliştirilen bir klasik arama

algoritmasıdır [52]. Bu algoritma bir grafın başlangıç düğümünden diğer tüm düğümlere

olan en kısa yolları bulmak için kullanılır. Bu algoritmanın temel çalışma prensibi, graf

üzerindeki düğümleri ardışık olarak ziyaret ederek her adımda en kısa yolu seçmek ve bu

seçimi ilerleyen adımlarda optimize etmektir. Algoritmanın çalışma prensibi şu şekilde

açıklanabilir: Başlangıç düğümünün ulaşım maliyeti sıfır, diğer düğümlerin ulaşım

maliyeti sonsuz olarak ayarlanır. Başlangıçta yalnızca başlangıç düğümü içeren bir

optimum yol vektörü Eşitlik (3.5)’te tanımlandığı gibi oluşturulur.

𝑌 = {𝑝௦} (3.5)

Bu küme algoritmanın ilerleyen adımlarında güncellenir ve en kısa yola dâhil edilen

düğümleri içerir. Algoritma bir graftaki herhangi bir 𝑝௜ düğümünün ulaşım maliyetini

Eşitlik (3.6) kullanılarak hesaplar.

𝑓௣೔
= 𝑓௣ೕ

+ ฮ𝑝௜ − 𝑝௝ฮ, 𝑝௝ ∈ 𝑃௣೔
 , 𝑃௣೔

⊂ 𝑃\𝑌 (3.6)

Burada, 𝑓௣೔
 𝑝௜ düğümünün ulaşım maliyetini, 𝑃௣೔

 𝑝௜ düğümünün tüm komşu kümesini, 𝑝௝

komşu kümesindeki herhangi bir komşu düğümü, 𝑓௣ೕ
 başlangıç düğümünden 𝑝௝

düğümüne kadar olan ulaşım maliyetini, 𝑃 düğüm kümesini temsil eder. Bu eşitlikte

komşu kümesinin ziyaret edilmeyen yani optimum yol vektörüne eklenmeyen

düğümlerin kümesi olduğu görülmektedir. Mevcut düğümden komşu düğümlere olan

maliyetler hesaplanır ve en kısa mesafeli düğüm Eşitlik (3.7)’de tanımlandığı gibi seçilir.

𝑝௜
௘ = arg min

௣೔∈௉
൫𝑓௣೔

൯ (3.7)

28

Burada, 𝑝௜
௘ komşular içinde en düşük maliyete sahip düğümü temsil eder. Bu düğüm

ziyaret edilmiş olarak işaretlenir ve Eşitlik (3.8)’de tanımlandığı gibi 𝑌 kümesine eklenir.

𝑌 = 𝑌 ∪ {𝑝௜
௘} (3.8)

Bu adımlar hedef düğüme ulaşıncaya veya tüm düğümler ziyaret edilinceye kadar devam

eder. Sonunda en kısa yol Eşitlik (3.9)’da tanımlandığı gibi planlanır.

𝑌 = ൜ቄ𝑝௦, 𝑝ଵ, 𝑝ଶ … , 𝑝௜, … , 𝑝௡೤
, 𝑝௧ቅ | 𝑖 > 0, 𝑛௬ ∈ ℕାൠ (3.9)

Burada, 𝑌 yol vektörünü, 𝑝௜ yolu oluşturan düğümleri, 𝑝௦ ve 𝑝௧ başlangıç ve hedef

düğümleri, 𝑛௬ başlangıç-hedef hariç yolu oluşturan düğüm sayısını temsil eder. Dijkstra

algoritmasının temel adımları Algoritma 3.2 ile gösterilmektedir.

Algoritma 3.2: Dijkstra algoritmasının temel adımları
1: Tüm düğümlerin maliyetinin sonsuz atanması
2: Başlangıç düğümünün maliyetinin sıfır atanması
3: Optimum yol vektörüne başlangıç düğümünün eklenmesi
4: while (hedef düğüme ulaşana kadar)
5: Her düğümün komşularının tespit edilmesi
6: Eşitlik (3.6) ile her düğümün maliyetinin güncellenmesi
7: Eşitlik (3.7) ile en küçük maliyete sahip komşunun seçilmesi
8: Seçilen komşu düğümün optimum yol vektörüne eklenmesi
9: end while

10: Yolun ve maliyetin raporlanması

3.2.3. Genişlik Öncelikli Arama

Genişlik öncelikli arama (breadth first search, BFS), 1959 yıllarda Moore tarafından

geliştirilen bir klasik arama algoritmasıdır [53]. Bu algoritma, graf üzerindeki düğümleri

sırasıyla ve eşit mesafede keşfederek, en kısa yolun bulunmasını sağlar. BFS, özellikle

ağırlıksız ya da eşit ağırlıklı kenarlarla tanımlanmış graf yapılarında etkili bir şekilde

çalışır ve en kısa yolu belirlerken, her bir düğümü ziyaret etme sırasına göre ilerler.

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Başlangıç düğümünün ulaşım

maliyeti sıfır, diğer düğümlerin ulaşım maliyeti sonsuz olarak ayarlanır. Bir kuyruk dizisi

oluşturulur ve ilk olarak başlangıç düğüm bu diziye eklenir. Başlangıç düğümünden

başlamak üzere kuyruğun başındaki düğüm 𝑝௜ çıkarılır ve 𝑝௜ düğümümün tüm komşuları

29

𝑝௝ incelenir. Eğer 𝑝௝ ziyaret edilmemişse mesafesi Eşitlik (3.10)’da tanımlandığı gibi

güncellenir.

𝑓௣ೕ
= 𝑓௣೔

+ 1, 𝑝௝ ∈ 𝑃௣೔
(3.10)

Bu komşular doğrudan kuyruk dizisine eklenir, bu yüzden bu algoritma “en maliyetsiz

komşu seçimi” şeklinde bir işlem yapmaz. Bunun yerine, bir düğüm ilk kez

keşfedildiğinde, bu düğümün mesafesi otomatik olarak en kısa mesafe olarak kabul edilir.

Çünkü her düğüme ulaşma maliyeti eşit ve 1’dir. Kuyruk dizisine eklenen 𝑝௜

düğümlerinden ilki ziyaret edilmiş olarak işaretlenir ve bu düğümün tüm komşuları

üzerinde aynı işlemler gerçekleştirilir. Bu süreç kuyruk dizisi boş olana kadar devam eder.

BFS algoritmasının temel adımları Algoritma 3.3 ile gösterilmektedir.

Algoritma 3.3: BFS algoritmasının temel adımları
1: Tüm düğümlerin maliyetinin sonsuz, başlangıç düğümününkinin sıfır atanması
2: Bir kuyruk dizisinin oluşturulması
3: Başlangıç düğümünün bu kuyruk dizisine eklenmesi
4: while (kuyruk dizisine boş olana kadar)
5: Kuyruk dizisinin başındaki düğümün çıkarılması
6: Çıkarılan düğümün tüm komşularının tespit edilmesi
7: Eşitlik (3.10) ile komşuların ulaşım maliyetinin güncellenmesi
8: Komşuların kuyruk dizisine eklenmesi
9: end while

10: Yolun ve maliyetin raporlanması

3.2.4. A* Algoritması

A* algoritması 1968 yılında Hart, Nilsson ve Raphael tarafından geliştirilen ve genellikle

en kısa yol problemlerini çözmek için kullanılan sezgisel bir arama algoritmasıdır [54].

Video oyunları ve robotik gibi alanlarda sıkça kullanılmaktadır. Bu algoritma, bir

başlangıç düğümünden (veya hücreden) hedef düğüme, ızgara haritası veya graf üzerinde

en kısa yolu bulmayı amaçlar. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk

olarak başlangıç düğümü mevcut düğüm olarak belirlenir ve bir ana döngü başlar. Bu

döngü, başlangıç düğümünden hedef düğüme en kısa yolu bulmak için yinelemeli olarak

çalışır. Döngünün her yinelemesinde, mevcut düğümden erişilebilecek uygun komşular,

Eşitlik (3.11)’de verilen tanıma göre belirlenir. Bu uygun komşuların belirlenmesi,

kenarların herhangi bir engeli ihlal etmemesi kriterine dayanmaktadır.

30

𝑃௣೔
= ൛𝑝௝ | 𝑝௝ ∈ 𝑃 − {𝑝௜}, ൛൫𝑝௜, 𝑝௝൯ൟ ∈ 𝐸\𝑂, 𝑗 ∈ {1,2, … , 𝑛௙}ൟ (3.11)

Burada, 𝑝௜ mevcut düğümü, 𝑝௝ mevcut düğümün uygun komşu düğümlerini ve 𝑛௙ ise

uygun komşu düğümlerin sayısını temsil eder. Her bir uygun komşu için iki alt maliyet

hesaplanır: Gerçek maliyet ve sezgisel maliyet. Gerçek maliyet, mevcut düğüm ile 𝑗.

uygun komşusu arasındaki toplam maliyeti ifade ederken, sezgisel maliyet, 𝑗. uygun

komşu ile hedef düğüm arasındaki maliyeti ifade eder. Bu maliyetler sırasıyla Eşitlik

(3.12) ve (3.13) kullanılarak hesaplanır.

𝑓௜௝
௚

= 𝑓଴ + ‖𝑝௜ − 𝑝௝‖ (3.12)

𝑓௜௝
௛ = ‖𝑝௝ − 𝑝௧‖ (3.13)

Burada, 𝑓௜௝
௚ ve 𝑓௜௝

௛ 𝑝௜ düğümü ile 𝑝௝ komşusu arasındaki sırasıyla gerçek ve sezgisel

maliyetleri, 𝑓଴ başlangıç düğümünden 𝑝௜ düğümüne kadar olan geçmiş maliyeti ve 𝑝௧ ise

hedef düğümü temsil eder. Eşitlik (3.14)’te gösterildiği gibi, toplam maliyet bu iki alt

maliyetin toplamıdır.

𝑓௜௝ = 𝑓௜௝
௚

+ 𝑓௜௝
௛ (3.14)

Burada, 𝑓௜௝ 𝑝௜ düğümü ile 𝑝௝ komşusu arasındaki toplam maliyettir. Her uygun düğümün

toplam maliyeti karşılaştırılarak, en düşük maliyete sahip düğüm seçilir ve mevcut düğüm

olarak atanır. Bu döngü, hedef düğüme ulaşılana kadar devam eder. Döngünün sonunda

elde edilen yol çıktı olarak döndürülür. A* algoritmasının temel adımları Algoritma 3.4

ile gösterilmektedir.

Algoritma 3.4: A* algoritmasının temel adımları
1: Bir yol dizisinin oluşturulması
2: while (hedef düğüme ulaşıncaya kadar)
3: Eşitlik (3.11) ile mevcut düğümün uygun komşularının tespit edilmesi
4: Eşitlik (3.12) ile her komşu düğümün gerçek maliyetinin hesaplanması
5: Eşitlik (3.13) ile her komşu düğümün sezgisel maliyetinin hesaplanması
6: Eşitlik (3.14) ile her komşu düğümün toplam maliyetinin hesaplanması

 7: En düşük maliyete sahip düğümün yol dizisine eklenmesi
8: end while
9: Yolun ve maliyetin raporlanması

31

3.2.5. Hızla Keşfeden Rastgele Ağaç

Hızla keşfeden rastgele ağaç algoritması (rapidly-exploring random tree, RRT) 1998

yılında LaValle tarafından geliştirilen bir klasik arama algoritmasıdır [55]. Bu algoritma

özellikle sürekli uzay ortamlarında yol planlama problemlerine çözüm bulmak amacıyla

geliştirilmiştir. Algoritma, özellikle yüksek boyutlu uzaylarda yol planlama problemleri

için uygundur. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Algoritma,

başlangıçta bir ağaç dizisi 𝑌 oluşturur. Bu ağaç ilk olarak sadece başlangıç noktasını

içerir. Sürekli uzay ortamında rastgele bir nokta (𝑝௥ ∈ 𝐸\𝑂) seçilir ve ağaçtan bu noktaya

en yakın nokta (𝑝ᇱ) belirlenir. Bunun için 𝑝௥ noktası ile ağaçtaki tüm noktalar (𝑝௜)

arasında mesafe hesaplanır ve mesafesi minimum olan nokta en yakın nokta olarak Eşitlik

(3.15)’te tanımlandığı gibi belirlenir.

𝑝ᇱ = arg min
௣೔∈௒

(‖𝑝௜ − 𝑝௥‖) , 𝑖 ∈ ൛1,2, … , 𝑛௬
௖ ൟ (3.15)

Burada 𝑛௬
௖ o anki ağaçta bulunan nokta sayısıdır. Ardından, 𝑝௥ yönünde 𝑝ᇱ noktasından

belirli bir adım büyüklüğünde (𝜀) ilerlenerek yeni bir nokta (𝑝ᇱᇱ) Eşitlik (3.16)’da

tanımlandığı gibi oluşturulur.

𝑝ᇱᇱ = 𝑝ᇱ + 𝜀
𝑝௥ − 𝑝ᇱ

‖𝑝௥ − 𝑝ᇱ‖
(3.16)

Eğer 𝑝ᇱᇱ engel ihlali yapmıyorsa (𝑝ᇱᇱ ∈ 𝐸\𝑂 ise) bu nokta 𝑌 ağacına Eşitlik (3.17)’de

tanımlandığı gibi eklenir.

𝑌 = 𝑌 ∪ {𝑝ᇱᇱ} (3.17)

Bu süreç maksimum iterasyon sayısına (𝑇) erişene kadar veya hedef noktaya ulaşana

kadar yinelemeli olarak devam eder. Hedef noktaya ulaşma kontrolü de eğer 𝑝௡’nin hedef

noktaya belli bir mesafesinden daha yakın olup olmadığı şeklinde gerçekleşir. Bu

durdurma kriterlerinden biri sağlandığında algoritma durur ve yolu raporlar. RRT

algoritmasının temel adımları Algoritma 3.5 ile gösterilmektedir.

32

Algoritma 3.5: RRT algoritmasının temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝜀)
2: Bir ağacın oluşturulması
3: Başlangıç noktasının ağaç dizisine eklenmesi
4: while (hedefe ulaşıncaya veya maksimum iterasyon sayısına erişinceye kadar)
5: Ortamda rastgele bir noktanın seçilmesi
6: Eşitlik (3.15) ile seçilen noktaya en yakın ağaç noktasının tespit edilmesi
7: Eşitlik (3.16) ile yeni noktanın hesaplanması
8: Eğer yeni nokta engel ihlali yapmıyorsa bu noktanın ağaç dizisine eklenmesi
9: end while

10: Yolun ve maliyetin raporlanması

3.3. Metasezgisel Algoritmalar

Metasezgisel algoritmalar, genellikle karmaşık ve büyük ölçekli optimizasyon

problemleri için geliştirilmiş, sistematik olmayan ve çoğu zaman belirli bir çözüm alanına

rastgele bir keşif yaparak daha iyi çözümler bulmaya çalışan algoritmalardır. Bu

algoritmalar, genellikle başlangıçta rastgele bir çözüm seti ile başlarlar ve daha sonra

çözüm alanında ilerleyerek iyileştirmeler yapar. Temelde, optimal çözümü bulmaya

yönelik doğrudan bir strateji izlemek yerine, arama alanında geniş bir keşif yaparak

potansiyel çözümleri keşfeder ve daha sonra en uygun çözümle yakın sonuçlara ulaşmaya

çalışır. Klasik arama yöntemlerinin sınırlamalarını aşmak için kullanılan bu algoritmalar,

özellikle yerel optimumlarda sıkışıp kalma riskini en aza indirmeye yönelik tasarlanır.

Metasezgisel algoritmaların en büyük avantajlarından biri, esneklikleri ve çok farklı

optimizasyon problemlerine uygulanabilir olmalarıdır. Bu sayede, belirli bir problem için

özel olarak geliştirilmiş algoritmalar yerine, tek bir meta-sezgisel algoritma ile çok çeşitli

problemlere çözüm üretilebilmektedir. Ayrıca, bu algoritmaların çok sayıda parametreyi

kontrol edebilme yetenekleri, problemlerin dinamik doğasına adapte olmalarını sağlar.

Bununla birlikte, meta-sezgisel algoritmaların dezavantajları arasında, çözüm kalitesinin

her zaman garanti edilmemesi önemli bir sorundur. Çoğu zaman algoritma, global

optimumu bulmak yerine yerel optimumda sıkışabilir. Ayrıca, bu tür algoritmaların

performansını belirleyen parametrelerin ayarlanması oldukça zordur ve farklı problem

koşullarında başarılı olabilmesi için parametrelerin doğru şekilde optimize edilmesi

gerekir. Son olarak, hesaplama maliyetlerinin yüksek olabilmesi, özellikle büyük ve

karmaşık problemlerde uygulama süresini artırabilir ve çözüm bulmayı daha zor hale

getirebilir.

33

3.3.1. Evrimsel Algoritmalar

3.3.1.1. Genetik Algoritma

Genetik algoritma (genetic algorithm, GA) 1960 yılında Holland tarafından geliştirilen

bir metasezgisel algoritmadır [56]. Doğal seçilim ve evrimsel süreçlerinden ilham

alınarak geliştirilmiştir. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk olarak

bir çözüm kümesi (popülasyon) Eşitlik (3.18) kullanılarak rastgele üretilir.

𝑋 = 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)ௌ×஽ (3.18)

Burada, 𝑋 popülasyonu, [𝑥௟ , 𝑥௛] popülasyonun arama sınırlarını, 𝑟 [0 1] aralığında ve 𝑆 ×

𝐷 boyutunda sürekli düzgün dağılımda üretilen rastgele sayıları, 𝑆 popülasyon boyutunu

(çözüm kümesindeki çözüm sayısını) ve 𝐷 ise problemin boyutunu temsil eder. Bu

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve

uygunluk değerleri hesaplanır. Ardından popülasyondaki her çözüm seçim, çaprazlama

ve mutasyon adı verilen üç işleme tabi tutulur. Seçim işlemi, mevcut çözümlerden yeni

çözümler üretmek için ebeveynlerin belirlenmesi işlemidir. Bu aşamanın temel amacı,

daha yüksek uygunluk değerine sahip bireylerin seçilme olasılığını artırarak çözümlerin

iyileştirilmesini sağlamaktır. Seçim aşamasında genelde rulet tekerleği veya turnuva

seçimi stratejileri kullanılır. Rulet tekerleği stratejisinde her çözümün seçilme olasılığı

Eşitlik (3.19) kullanılarak hesaplanır.

𝛿௜ =
𝑓௜

∑ 𝑓௝
ௌ
௝ୀଵ

(3.19)

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığı, 𝑓௜ 𝑖’inci çözümün maliyeti, eşitliğin payda

kısmı ise popülasyondaki tüm çözümlerin maliyetlerinin toplamını temsil eder. Sonra,

Eşitlik (3.20) kullanılarak çözümlerin birikimli olasılıkları hesaplanır.

𝜌௞ = ෍ 𝛿௜

௞

௜ୀଵ

(3.20)

Burada, 𝑘 ∈ {1,2, … , 𝑆} ve 𝜌௞ 𝑘’ıncı çözüme kadar olan toplam olasılığı ifade eder.

Rastgele bir sayı üretilir ve bu sayı [𝜌௞ିଵ, 𝜌௞] aralığında ise (veya 𝜌௞’dan küçükse) 𝑘’ıncı

çözüm (𝑥௞) ebeveyn olarak seçilir. Turnuva seçimi stratejisinde popülasyondan 𝑆௧ sayıda

34

rastgele çözüm alınır. Bu çözümlerden minimum maliyete sahip çözüm Eşitlik (3.21)’de

tanımlandığı gibi seçilir.

൛𝑥௞భ,𝑥௞మ
ൟ = arg min

௜∈ௌ೟

𝑓(𝑥௜) (3.21)

Burada, 𝑆௧ ≥ 2 ve 𝑥௞ ise ebeveyn olarakseçilen çözümü temsil eder. Bu seçim

stratejileriyle iki ebeveyn çözüm seçilir. Sonra çaprazlama oranı (𝐶𝑅) kontrol

parametresiyle çaprazlama işlemi başlar. Rastgele bir sayı üretilir ve bu sayı 𝐶𝑅’den

küçükse çaprazlama işlemi gerçekleştirilir. Bu işlem iki ebeveyn çözüm üzerinde belirli

noktalarda keserek çaprazlama yapılır ve iki çocuk çözüm üretilir. Bu kesim tek veya iki

noktalı olabilir. Tek noktalı çaprazlama Eşitlik (3.22)-(3.23)’te tanımlanmıştır.

𝑥௛భ
= ൛𝑥௞భ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝐷]ൟ (3.22)

𝑥௛మ
= ൛𝑥௞మ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝐷]ൟ (3.23)

Burada, 𝑥௛భ
 ve 𝑥௛మ

 iki çocuk çözümü, 𝑥௞భ
 ve 𝑥௞మ

 iki ebeveyn çözümü ve 𝑒 kesme

noktasını temsil eder. Çift noktalı çaprazlama Eşitlik (3.24)-(3.25)’te tanımlanmıştır.

𝑥௛భ
= ൛𝑥௞భ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝑙]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑙 + 1, 𝐷]ൟ (3.24)

𝑥௛మ
= ൛𝑥௞మ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝑙]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑙 + 1, 𝐷]ൟ (3.25)

Burada, 𝑒 gibi 𝑙 de bir kesme noktasıdır. Bu şekilde iki yeni çözüm üretilmiş olur. Sonra

mutasyon oranı (𝑀𝑅) kontrol parametresiyle mutasyon işlemi başlar. Rastgele bir sayı

üretilir ve bu sayı 𝑀𝑅’den küçükse mutasyon işlemi gerçekleştirilir. Bu işlemde yeni

çocuk çözümlerin herhangi bir boyutu Eşitlik (3.26)’da tanımlandığı gibi değişime uğrar.

൫𝑥௛
௝
൯

ᇱ
= ቊ

𝑥௛
௝

+ ℱ௛
௝
, 𝐸ğ𝑒𝑟 𝑟 ≤ 𝑀𝑅 𝑖𝑠𝑒

𝑥௛
௝
, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.26)

Burada, ℎ = {ℎଵ, ℎଶ}, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௛
௝ yeni çocuk çözümlerin 𝑗’inci

değerini, ൫𝑥௛
௝
൯

ᇱ
 yeni çocuk çözümlerin 𝑗’inci değerinin güncellenmiş hâlini ve ℱ௛

௝ 𝑥௛
௝

üzerinde yapılan mutasyon fonksiyonunu temsil eder. Bu fonksiyon, mevcut değeri

değiştiren herhangi bir matematiksel işlemi temsil edebilir (örneğin, bir bit tersine

35

çevrilmesi veya mevcut değerin rastgele bir değerle değiştirilmesi). Bu işlemlerden sonra

güncel çözüm amaç fonksiyonunda değerlendirilir ve uygunluk değeri hesaplanır. Güncel

çözüm mevcut en iyi çözümden daha iyi ise en iyi çözüm olarak atanır. Yinelemeli süreç

maksimum iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır.

GA algoritmasının temel adımları Algoritma 3.6 ile gösterilmektedir.

Algoritma 3.6: GA algoritmasının temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝐶𝑅, 𝑀𝑅)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.21) ile iki çözümün seçilmesi
7: Eşitlik (3.22)-(3.23) veya (3.24)-(3.25) ile iki yeni çözümün üretilmesi
8: Eşitlik (3.26) ile bir çözümün mutasyona tabi tutulması
9: Popülasyonun amaç fonksiyonunda değerlendirilmesi

10: En iyi çözümün tespit edilmesi
11: end while
12: En iyi çözümün ve maliyetin raporlanması

3.3.1.2. Diferansiyel Gelişim

Diferansiyel gelişim (differential evolution, DE) 1997 yılında Storn ve Price tarafından

geliştirilen bir metasezgisel algoritmadır [57]. Evrimsel süreçlerden ve fark tabanlı

yöntemlerden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk

olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu popülasyon üretildikten

sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve uygunluk değerleri

hesaplanır. Bu çözümler GA’ya benzer şekilde sırasıyla mutasyon, çaprazlama ve seçim

adı verilen üç işleme tabi tutulur. Mutasyon işleminde her çözüm için, diğer iki çözüm

arasındaki farkı içeren bir fark vektörü oluşturulur. Bu fark, popülasyonun çeşitliliğini

sağlamak için kullanılır. Fark vektörü (DE/rand/1) Eşitlik (3.27) kullanılarak hesaplanır.

𝑥௨ = 𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯ (3.27)

Burada, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ ≠ 𝑖, 𝑥௨ 𝑖’inci çözümün fark vektörünü, 𝑥௥భ
, 𝑥௥మ

, 𝑥௥య
 poülasyondan

rastgele seçilen çözümleri, 𝐹 ise [0 1] aralığında değer alan ölçekleme faktörünü temsil

eder. Çaprazlama işleminde fark vektörü kullanılarak yeni aday çözüm önerisi yapılır. Bu

işlemde rastgele bir sayı üretilir ve bu sayı çaprazlama oranından küçükse mevcut çözüm

36

fark vektörü ile değiştirilir. Üretilen rastgele sayı çaprazlama oranından büyükse mevcut

çözüm değişmez. Bu işlem Eşitlik (3.28)’de tanımlanmıştır.

𝑥௨
ᇱ = ൜

𝑥௨, 𝐸ğ𝑒𝑟 𝑟 ≤ 𝐶𝑅 𝑖𝑠𝑒
𝑥௜ , 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.28)

Burada, 𝑥௜ 𝑖’inci çözümü, 𝑥௨
ᇱ 𝑖’inci çözüm için yeni aday çözümü, 𝑟~𝑈(0,1) rassal bir

sayıyı ve 𝐶𝑅 çaprazlama oranını temsil eder. Seçim işleminde üretilen aday çözüm ve

mevcut çözümün maliyetleri karşılaştırılır. Eğer aday çözümün maliyeti mevcut

çözümünkinden daha iyi ise mevcut çözüm yeni aday çözümle değiştirilir. Bu işlem

Eşitlik (3.29)’da tanımlanmıştır.

𝑥௜
ᇱ = ൜

𝑥௨
ᇱ , 𝐸ğ𝑒𝑟 𝑓(𝑥௨

ᇱ) ≤ 𝑓(𝑥௜) 𝑖𝑠𝑒
𝑥௜ , 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.29)

Burada, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş hâlini temsil eder. Yinelemeli süreç maksimum

iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. DE

algoritmasının temel adımları Algoritma 3.7 ile gösterilmektedir.

Algoritma 3.7: DE algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝐹, 𝜍)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.27) ile fark vektörünün üretilmesi (mutasyon)
7: Eşitlik (3.28) ile yeni aday çözümün üretilmesi (çaprazlama)
8: Eşitlik (3.29) ile mevcut çözümün güncellenmesi (seçim)
9: Popülasyonun amaç fonksiyonunda değerlendirilmesi

10: En iyi çözümün tespit edilmesi
11: end while
12: En iyi çözümün ve maliyetin raporlanması

3.3.2. Sürü Zekâsı ve İnsan İlhamlı Algoritmalar

3.3.2.1. Parçacık Sürü Optimizasyonu

Parçacık sürü optimizasyonu (particle swarm optimization, PSO) 1995 yılında Kennedy

ve Eberhart tarafından geliştirilen bir metasezgisel algoritmadır [58]. Kuş ve balık

sürülerinin beslenme davranışlarından ilham alınmıştır. Algoritmanın çalışma prensibi şu

şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu

37

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve

uygunluk değerleri hesaplanır. Ayrıca popülasyondaki her çözümün hızları da mevcuttur

ve başlangıçta rastgele veya sıfır olarak üretilir. Yinelemeli süreç başladığında bu hızlar

Eşitlik (3.30) kullanılarak güncellenir.

𝜗௜
ᇱ = 𝑤𝜗௜ + 𝑟𝑐ଵ(𝑥ො௜ − 𝑥௜) + 𝑟𝑐ଶ(𝑥ො − 𝑥௜) (3.30)

Burada, 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝜗௜ 𝑖’inci çözümün hızını, 𝜗௜
ᇱ 𝑖’inci çözümün

hızının güncellenmiş hâlini, 𝑤 eylemsizlik ağırlığını, 𝑐ଵ ve 𝑐ଶ bilişsel ve sosyal

katsayıları, 𝑥ො௜ 𝑖’inci çözümün o ana kadarki en iyi değerini, 𝑥ො popülasyondaki en iyi

çözümü, 𝑥௜ ise 𝑖’inci çözümü temsil eder. Bu hızlar güncellendikten sonra çözümler

Eşitlik (3.31) kullanılarak güncellenir.

𝑥௜
ᇱ = 𝑥௜ + 𝑣௜ (3.31)

Burada, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş hâlini temsil eder. Bu işlemlerden sonra güncel

çözüm amaç fonksiyonunda değerlendirilir ve uygunluk değeri hesaplanır. Bu çözüm

mevcut en iyi çözümden daha iyi ise en iyi çözüm olarak atanır. Yinelemeli süreç

maksimum iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır.

PSO algoritmasının temel adımları Algoritma 3.8 ile gösterilmektedir.

Algoritma 3.8: PSO algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑤, 𝑐ଵ, 𝑐ଶ)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.30) ile çözümlerin hızlarının güncellenmesi
7: Eşitlik (3.31) ile çözümlerin güncellenmesi
8: Popülasyonun amaç fonksiyonunda değerlendirilmesi
9: En iyi çözümün tespit edilmesi

10: end while
11: En iyi çözümün ve maliyetin raporlanması

3.3.2.2. Yapay Arı Koloni Algoritması

Yapay arı koloni algoritması (artificial bee colony, ABC) 2005 yılında Karaboğa

tarafından geliştirilen bir metasezgisel algoritmadır [59]. Yiyecek arayışında olan bal

arılarının işbirliğinden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde

38

açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve

uygunluk değerleri hesaplanır. Bu başlangıç popülasyonu işçi arı, gözcü arı ve kâşif arı

aşamalarına yönlendirilir. İşçi arı aşamasında bir çözümün rastgele bir parametresi seçilir

ve bu parametre Eşitlik (3.32) kullanılarak güncellenir.

൫𝑥௜
௝
൯

ᇱ
= 𝑥௜

௝
+ 𝛷௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯ (3.32)

Burada, 𝑟ଵ ≠ 𝑖, 𝑥௜
௝ 𝑖’inci çözümün 𝑗’inci parametresini, ൫𝑥௜

௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci

parametresinin güncellenmiş hâlini, 𝑥௥భ

௝ popülasyondan rastgele seçilen bir çözümün

𝑗’inci parametresini ve Φ௜
௝
~𝑈(0,1) ise rassal bir sayıyı temsil eder. Bu işlemlerden sonra

güncel çözüm amaç fonksiyonunda değerlendirilir ve maliyeti hesaplanır. Bu maliyet

kullanılarak farklı bir uygunluk değeri hesaplanır. Bu hesaplama Eşitlik (3.33)’te

gösterilmektedir.

𝑓𝑖𝑡௜ = ቐ

1

1 + 𝑓௜
, 𝐸ğ𝑒𝑟 𝑓௜ ≥ 0 𝑖𝑠𝑒

1 + |𝑓௜|, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.33)

Burada, 𝑓௜ 𝑖’inci çözümün maliyetini, 𝑓𝑖𝑡௜ ise 𝑖’inci çözümün uygunluk değerini temsil

eder. Gözcü arı aşamasına geçmeden önce uygunluk değerleri kullanılarak her çözümün

seçilme olasılığı Eşitlik (3.34)’te gösterildiği gibi hesaplanır.

𝛿௜ =
𝑓𝑖𝑡௜

∑ 𝑓𝑖𝑡௝
ௌ
௝ୀଵ

(3.34)

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığını temsil eder. Gözcü arı aşamasında, tercih

edilen çözümler daha iyi uygunluk değerlerine sahip olanlara yönlendirilir, bu da daha

yüksek uygunluk değerlerine sahip olanların seçilme olasılığını artırır. Her çözüm için

rastgele bir sayı üretilir ve bu sayı ilgili çözümün seçilme olasılığından küçükse, ilgili

çözüm Eşitlik (3.32) kullanılarak güncellenir. Güncellenen çözüm amaç fonksiyonunda

değerlendirilir, maliyeti elde edilir ve uygunluk değeri Eşitlik (3.33) kullanılarak

hesaplanır. Kâşif arısı aşamasında, belirli bir limit değerinde güncellenmeyen çözümler

yerine Eşitlik (3.18) kullanılarak yeni çözümler üretilir. Yinelemeli süreç maksimum

39

iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. ABC

algoritmasının temel adımları Algoritma 3.9 ile gösterilmektedir.

Algoritma 3.9: ABC algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑙𝑖𝑚𝑖𝑡)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.32) ile çözümlerin güncellenmesi
7: Eşitlik (3.33) ile çözümlerin uygunluk değerlerinin hesaplanması
8: Eşitlik (3.34) ile her çözümün seçilme olasılıklarının hesaplanması
9: Eşitlik (3.32) ile seçilen çözümlerin güncellemesi

10: Eşitlik (3.18) ile limiti aşan çözümlerin yerine rastgele çözümlerin üretilmesi
11: Popülasyonun amaç fonksiyonunda değerlendirilmesi
12: En iyi çözümün tespit edilmesi
13: end while
14: En iyi çözümün ve maliyetin raporlanması

3.3.2.3. Öğretme-Öğrenme Tabanlı Optimizasyon

Öğretme-öğrenme tabanlı optimizasyon (teaching-learning-based optimization, TLBO)

2011 yılında Rao ve arkadaşları tarafından geliştirilen bir metasezgisel algoritmadır [60].

Bir sınıf ortamında gerçekleşen öğretmen-öğrenci etkileşimi ve öğrencilerin

birbirlerinden öğrenmesi süreçlerinden ilham alınmıştır. Algoritmanın çalışma prensibi

şu şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir.

Bu popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve

uygunluk değerleri hesaplanır. Öncelikle popülasyondaki tüm çözümlerin ortalaması

Eşitlik (3.35) kullanılarak hesaplanır.

𝑥෤ =
1

𝑆
෍ 𝑥௜

ௌ

௜ୀଵ

(3.35)

Burada, 𝑥௜ 𝑖’inci çözümü temsil eder. Ardından, popülasyondaki en iyi çözüm öğretmen

olarak seçilir. Bu çözüm, öğretmen olarak görev yapacak ve diğer çözümleri

yönlendirecektir. Algoritma bu hesaplamalardan sonra öğretmen ve öğrenci olmak üzere

iki aşamayı takip eder. Öğretmen aşamasında her bir çözüm öğretmene ve popülasyonun

ortalamasına doğru hareket eder. Bu hareketin ne kadar olacağı, rastgele belirlenen

40

öğretme faktörü parametresi ile belirlenir. Bu değer çözümün öğretmene ne kadar

yaklaşacağını kontrol eder. Buna göre çözümler Eşitlik (3.36) kullanılarak güncellenir.

𝑥௜
ᇱ = 𝑥௜ + 𝑟(𝑥ො − 𝑇ி𝑥෤) (3.36)

Burada 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş

hâlini, , 𝑥ො popülasyondaki en iyi çözümü, 𝑇ி~ {1, 2} ise öğretme faktörünü temsil eder.

Öğrenci aşamasında ise çözümler birbirlerinden öğrenir ve Eşitlik (3.3) kullanılarak

güncellenir.

𝑥௜
ᇱᇱ = ቊ

𝑥௜
ᇱ + 𝑟൫𝑥௜

ᇱ − 𝑥௥భ
൯, 𝐸ğ𝑒𝑟 𝑓(𝑥௜

ᇱ) < 𝑓൫𝑥௥భ
൯ 𝑖𝑠𝑒

𝑥௜
ᇱ + 𝑟൫𝑥௥భ

− 𝑥௜
ᇱ൯, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.37)

Burada, 𝑟ଵ ≠ 𝑖, 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝑥௜
ᇱᇱ 𝑖’inci çözümün son güncellenmiş

hâlini, 𝑥௥భ
 popülasyondan rastgele seçilen bir çözümü temsil eder. Popülasyon

güncellendikten sonra her çözüm amaç fonksiyonunda değerlendirilir ve uygunluk

değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon sayısına (𝑇) erişinceye kadar

devam eder ve en iyi çözüm raporlanır. TLBO algoritmasının temel adımları Algoritma

3.10 ile gösterilmektedir.

Algoritma 3.10: TLBO algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.35) ile çözümlerin ortalamasının hesaplanması
7: En iyi çözümün (öğretmenin) seçilmesi
8: Eşitlik (3.36) ile çözümlerin güncellenmesi
9: Eşitlik (3.37) ile çözümlerin güncellenmesi

10: Popülasyonun amaç fonksiyonunda değerlendirilmesi
11: En iyi çözümün tespit edilmesi
12: end while
13: En iyi çözümün ve maliyetin raporlanması

41

3.3.3. Matematik İlhamlı Algoritmalar

3.3.3.1. Stokastik Fraktal Arama

Stokastik fraktal arama (stochastic fractal search, SFS) 2015 yılında Salimi tarafından

geliştirilen bir metasezgisel algoritmadır [61]. Fraktalların rastlantısal difüzyon

davranışları ve doğadaki rastlantısal büyüme süreçlerinden ilham alınmıştır.

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk olarak popülasyon Eşitlik

(3.18) kullanılarak rastgele üretilir. Bu popülasyon üretildikten sonra tüm çözümler amaç

fonksiyonunda değerlendirilir ve uygunluk değerleri hesaplanır. Popülasyondaki her bir

çözüm öncelikle bir difüzyon sürecinden geçer. Bu süreçte iki farklı Gauss yürüyüşünden

biri ile yeni aday çözümler üretilir. Bu aday çözümlerin sayısı maksimum difüzyon sayısı

(𝑛ௗ௜௙) adı verilen bir kontrol parametresi ile belirlenir. Rastgele bir sayı üretilir ve bu

sayının yürüme oranı (𝑤𝑎𝑙𝑘) adı verilen bir kontrol parametresiyle olan ilişkisine göre

bu iki yürüyüşten biri kullanılır. Bu difüzyon güncellemesi Eşitlik (3.38)’de

gösterilmektedir.

𝑥௜ೖ
= ൜

𝒩(|𝑥ො|, 𝜎) + (𝑟𝑥ො − 𝑟𝑥௜), 𝐸ğ𝑒𝑟 𝑟 < 𝑤𝑎𝑙𝑘 𝑖𝑠𝑒

𝒩(|𝑥௜|, 𝜎), 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(3.38)

𝜎 = ฬ
log (𝑡)

𝑡
(𝑥௜ − 𝑥ො)ฬ (3.39)

Burada, 𝑘 ∈ ൛0,1, … 𝑛ௗ௜௙ൟ, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜ೖ
 𝑖’inci çözüm için üretilen

𝑘’ıncı yeni aday çözümü, 𝑥௜ 𝑖’inci çözümü, 𝑥ො popülasyondaki en iyi çözümü, 𝒩 Gauss

dağılımını (normal dağılım) ve 𝑡 ise mevcut iterasyonu temsil eder. Mevcut çözüm ile

yeni aday çözümlerin uygunluk değerleri hesaplanır ve bunların arasındaki en iyi çözüm

difüzyon süreci fonksiyonunun çıktısı olarak verilir. Ardından popülasyon iki güncelleme

sürecinden geçer. Birinci güncelleme sürecinde ilk olarak çözümler Eşitlik (3.40)’e göre

sıralanır.

𝛿௜ =
𝑟𝑎𝑛𝑘(𝑥௜)

𝑆
(3.40)

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığı ve 𝑟𝑎𝑛𝑘(𝑥௜) ise 𝑖’inci çözümün uygunluk

değerine göre sıralamadaki konumunu temsil eder. Her bir çözümün her bir boyutu için

42

bir rassal sayı belirlenir. Bu sayı 𝑖’inci çözümün seçilme olasılığından büyükse Eşitlik

(3.41) kullanılarak çözüm güncellenir. Bu sayı 𝑖’inci çözümün seçilme olasılığından

küçükse mevcut çözüm değişmez.

൫𝑥௜
௝
൯

ᇱ
= 𝑥௥భ

௝
− 𝑟൫𝑥௥మ

௝
− 𝑥௜

௝
൯ (3.41)

Burada, 𝑟ଵ, 𝑟ଶ ≠ 𝑖, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜
௝ 𝑖’inci çözümün 𝑗’inci parametresini,

൫𝑥௜
௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci parametresinin birinci güncelleme sürecinde güncellenmiş

hâlini, 𝑥௥భ

௝ ve 𝑥௥మ

௝ popülasyondan seçilen rastgele çözümleri temsil eder. İkinci güncelleme

sürecinde ise birinci güncelleme aşamasında elde edilen tüm çözümler yine Eşitlik

(3.40)’a göre sıralanır. Her bir çözüm için tekrar bir rastgele sayı belirlenir. Bu sayı 𝑖’inci

çözümün olasılıksal değerinden büyükse Eşitlik (3.42) kullanılarak çözüm güncellenir.

Bu sayı 𝑖’inci çözümün olasılıksal değerinden küçükse mevcut çözüm değişmez.

𝑥௜
ᇱᇱ = ቊ

𝑥௜
ᇱ − 𝑟൫𝑥௥భ

− 𝑥ො൯, 𝐸ğ𝑒𝑟 𝑟 ≤ 0.5 𝑖𝑠𝑒

𝑥௜
ᇱ + 𝑟൫𝑥௥భ

− 𝑥௥మ
൯, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.42)

Burada, 𝑟ଵ, 𝑟ଶ ≠ 𝑖, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜
ᇱᇱ 𝑖’inci çözümün ikinci güncelleme

sürecinde güncellenmiş hâlini, 𝑥௜
ᇱ 𝑖’inci çözümün birinci güncelleme sürecinden sonraki

hâlini, 𝑥௥భ
 ve 𝑥௥మ

 birinci güncelleme sürecinden sonra popülasyondan seçilen rastgele

çözümleri temsil eder. Popülasyon güncellendikten sonra her çözüm amaç fonksiyonunda

değerlendirilir ve uygunluk değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon

sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. SFS algoritmasının

temel adımları Algoritma 3.11 ile gösterilmektedir.

43

Algoritma 3.11: SFS algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑛ௗ௜௙, 𝑤𝑎𝑙𝑘)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.38) ile çözümlerin difüzyon sürecine tabi tutulması
7: Eşitlik (3.40) ile her çözümün olasılıksal değerinin hesaplanması
8: Sırasıyla Eşitlik (3.41) ve (3.42) ile çözümlerin güncellenmesi
9: Popülasyonun amaç fonksiyonunda değerlendirilmesi

10: En iyi çözümün tespit edilmesi
11: end while
12: En iyi çözümün ve maliyetin raporlanması

3.3.3.2. Sinüs Kosinüs Algoritması

Sinüs kosinüs algoritması (sine cosine algorithm, SCA) 2016 yılında Mirjalili tarafından

geliştirilen bir metasezgisel algoritmadır [62]. Matematikteki sinüs ve kosinüs

trigonometrik fonksiyonlarından ilham alınmıştır. Algoritmanın çalışma prensibi şu

şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve

uygunluk değerleri hesaplanır. Yineleme süreci başladığında, 𝑟ଵ parametresi Eşitlik

(3.43) kullanılarak hesaplanır.

𝑟ଵ = 𝑎 − 𝑡
𝑎

𝑇
(3.43)

Burada, 𝑎 sabit bir kontrol parametresini ve 𝑡 mevcut iterasyonu temsil eder. Ardından

çözümler Eşitlik (3.44) kullanılarak güncellenir.

𝑥௜
ᇱ = ൜

𝑥௜ + 𝑟ଵ𝑠𝑖𝑛(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|, 𝐸ğ𝑒𝑟 𝑟ସ < 0.5 𝑖𝑠𝑒

𝑥௜ + 𝑟ଵ𝑐𝑜𝑠(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(3.44)

Burada, 𝑟ଶ~𝑈(0,2𝜋), 𝑟ଷ~𝑈(0,2), 𝑟ସ~𝑈(0,1) rassal sayıları, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci

çözümün güncellenmiş hâlini, 𝑥ො popülasyondaki en iyi çözümü temsi eder Popülasyon

güncellendikten sonra her çözüm amaç fonksiyonunda değerlendirilir ve uygunluk

değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon sayısına (𝑇) erişinceye kadar

devam eder ve en iyi çözüm raporlanır. SCA algoritmasının temel adımları Algoritma

3.12 ile gösterilmektedir.

44

Algoritma 3.12: SCA algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑀, 𝑆, 𝑎)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.43) ile 𝑟ଵ’in güncellenmesi
7: Eşitlik (3.44) kullanılarak çözümlerin güncellenmesi
8: Popülasyonun amaç fonksiyonunda değerlendirilmesi
9: En iyi çözümün tespit edilmesi

10: end while
11: En iyi çözümün ve maliyetin raporlanması

3.3.3.3. Aritmetik Optimizasyon Algoritması

Aritmetik optimizasyon algoritması (arithmetic optimization algorithm, AOA) 2021

yılında Abualigah ve arkadaşları tarafından geliştirilen bir metasezgisel algoritmadır [63].

Matematiksel hesaplamaların temelini oluşturan aritmetik işlemlerin dağılım

özelliklerinden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde açıklanabilir:

İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu popülasyon

üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve uygunluk

değerleri hesaplanır. Yineleme süreci başladığında ise matematik optimizasyon

hızlandırıcı (math optimizer accelerated, 𝑀𝑂𝐴) ve matematik optimizasyon olasılığı

(math optimizer probability, 𝑀𝑂𝑃) olmak üzere iki fonksiyon sırasıyla Eşitlik (3.45) ve

(3.46) kullanılarak hesaplanır.

𝑀𝑂𝐴 = 𝑀𝑂𝐴௟ + 𝑡 ൬
𝑀𝑂𝐴௛ − 𝑀𝑂𝐴௟

𝑇
൰ (3.45)

𝑀𝑂𝑃 = 1 −
𝑡

ଵ
ఈ

𝑇
ଵ
ఈ

(3.46)

Burada, 𝑀𝑂𝐴௟ ve 𝑀𝑂𝐴௛ değerleri 𝑀𝑂𝐴’nın sınır değerlerini, 𝑡 mevcut iterasyonu, 𝑇

maksimum iterasyon sayısını ve 𝛼 kullanım doğruluğunu tanımlayan bir kontrol

parametresini temsil eder. Her bir çözüm için bir rastgele sayı 𝑟ଵ~𝑈(0,1) üretilir ve bu

sayı mevcut iterasyondaki 𝑀𝑂𝐴’dan büyükse çözümler Eşitlik (3.47) kullanılarak

güncellenir. Eğer bu sayı 𝑀𝑂𝐴’dan küçükse o zaman da çözümler Eşitlik (3.48)

kullanılarak güncellenir.

45

൫𝑥௜
௝
൯

ᇱ
= ቐ

𝑥ො௝ ÷ (𝑀𝑂𝑃 + 𝜖) ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ , 𝐸ğ𝑒𝑟 𝑟ଶ < 0.5 𝑖𝑠𝑒

𝑥ො௝ × 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ , 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.47)

൫𝑥௜
௝
൯

ᇱ
= ቐ

𝑥ො௝ − 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ , 𝐸ğ𝑒𝑟 𝑟ଷ < 0.5 𝑖𝑠𝑒

𝑥ො௝ + 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ , 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.48)

Burada, 𝑟ଶ, 𝑟ଷ~𝑈(0,1) rassal bir sayıyı, ൫𝑥௜
௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci parametresinin

güncellenmiş hâlini, 𝑥ො௝ popülasyondaki en iyi çözümün 𝑗’inci parametresini, 𝜖 küçük bir

sayıyı, 𝑥௟
௝ ve 𝑥௛

௝ 𝑗’inci parametrenin sınır değerlerini, 𝜇 arama sürecini ayarlayan bir

kontrol parametresini temsil eder. Popülasyon güncellendikten sonra her çözüm amaç

fonksiyonunda değerlendirilir ve uygunluk değerleri hesaplanır. Yinelemeli süreç

maksimum iterasyon sayısına erişinceye kadar devam eder ve en iyi çözüm raporlanır.

AOA algoritmasının temel adımları Algoritma 3.13 ile gösterilmektedir.

Algoritma 3.13: AOA algoritmanın temel adımları
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑀𝑂𝐴௟ , 𝑀𝑂𝐴௛ , 𝛼, 𝜇)
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi
4: En iyi çözümün tespit edilmesi
5: while (maksimum iterasyon sayısına erişinceye kadar)
6: Eşitlik (3.45) ve (3.46) ile 𝑀𝑂𝐴 ve 𝑀𝑂𝑃 değerlerinin güncellenmesi
7: 𝑟ଵ sayısının üretilmesi
8: 𝑟ଵ ve 𝑀𝑂𝐴’ya göre Eşitlik (3.47) veya (3.48) ile çözümlerin güncellenmesi

10: Popülasyonun amaç fonksiyonunda değerlendirilmesi
11: En iyi çözümün tespit edilmesi
12: end while
13: En iyi çözümün ve maliyetin raporlanması

3.4. Makine Öğrenmesi

Makine öğrenmesi, bilgisayarların verilerden desenler öğrenerek tahminler yapmasını

sağlayan bir yapay zekâ dalıdır [64]. Bu süreçte, algoritmalar belirli kurallar çerçevesinde

eğitilir ve zamanla doğruluklarını artırır. Makine öğrenmesi yöntemleri genellikle ikiye

ayrılır: gözetimli ve gözetimsiz öğrenme. Gözetimli öğrenme etiketli verilerle modelin

eğitildiği bir yaklaşımken; gözetimsiz öğrenme ise verilerdeki gizli desenleri keşfetmeye

odaklanır. Örneğin, bir makine öğrenmesi modeli, el yazısı rakamları tanımak için önce

insan tarafından belirlenen kenar, eğim gibi özellikleri kullanarak öğrenme sürecini

46

tamamlar. Ancak, daha karmaşık problemlerde geleneksel makine öğrenmesi

yaklaşımları, özellik mühendisliği ve büyük veri ile başa çıkmada yetersiz kalabilir. Bu

noktada derin öğrenme devreye girer. Derin öğrenme, insan beyninin çalışma şeklini

taklit eden derin sinir ağlarını kullanarak daha karmaşık veri yapılarını öğrenen bir

makine öğrenmesi alt dalıdır. Bu yöntem, birçok katmandan oluşan sinir ağları sayesinde

büyük ve karmaşık veri kümeleriyle etkili bir şekilde çalışabilir. Makine öğrenmesi ile

derin öğrenme kapsamları Şekil 3.2’de gösterilmektedir.

Derin Öğrenme

Yapay Zekâ

Makine Öğrenmesi

Şekil 3.2. Makine öğrenmesi ile derin öğrenme kapsamları

Geleneksel makine öğrenmesinin aksine, derin öğrenme algoritmaları özellikleri manuel

olarak belirlemek yerine, veriden otomatik olarak öğrenir ve kendiliğinden en uygun

temsilleri keşfeder. Bu sayede, özellikle büyük ölçekli veri setleriyle çalışırken insan

müdahalesine duyulan ihtiyaç azalır ve modeller daha doğru sonuçlar üretebilir. Örneğin,

bir görüntü tanıma görevinde geleneksel yöntemlerde öncelikle görüntüden kenar, doku

veya renk gibi belirli özelliklerin insan tarafından çıkarılması gerekirken, derin öğrenme

modelleri ham piksel verisini doğrudan alarak, katmanlar boyunca giderek soyutlaşan

özellikler öğrenir ve nihai sınıflandırmayı gerçekleştirir. İlk katmanlar temel kenar ve

dokuları öğrenirken, daha derin katmanlar nesneleri, yüzleri veya daha karmaşık yapıları

tanıyabilir. Benzer şekilde, doğal dil işleme alanında, derin öğrenme algoritmaları ham

metin verisini analiz ederek kelimeler arasındaki anlam ilişkilerini otomatik olarak

öğrenir ve çeviri, metin özetleme veya duygu analizi gibi görevleri başarıyla yerine

getirebilir. Derin öğrenmenin bu yetenekleri, büyük veri çağında daha başarılı sonuçlar

elde edilmesini sağlar ve sağlık, otomotiv, finans, güvenlik gibi birçok alanda devrim

niteliğinde uygulamalara kapı aralar. Örneğin, otonom araçlar, çevresindeki nesneleri

gerçek zamanlı olarak algılamak ve güvenli sürüş kararları vermek için derin öğrenmeden

yararlanır. Aynı şekilde, tıbbi görüntüleme sistemleri, hastalıkları teşhis etmek için

47

röntgen ve MR görüntülerini analiz edebilir. Derin öğrenmenin sağladığı bu otomatik ve

ölçeklenebilir çözümler, birçok endüstride insan müdahalesini azaltarak hız, doğruluk ve

verimliliği artırmaktadır. Mobil robotların yol planlamasında makine öğrenmesi

yöntemleri arasında evrişimli sinir ağları ve takviyeli öğrenme giderek daha fazla tercih

edilmektedir [62]. Evrişimli sinir ağları, çevresel algılamada etkili özellik çıkarımı

sağlarken, takviyeli öğrenme ise robotun dinamik ortamlarda en uygun yolu keşfetmesine

ve çevresel değişikliklere uyum sağlamasına yardımcı olmaktadır.

3.4.1. Evrişimli Sinir Ağları

Evrişimli sinir ağı (convolutional neural network, CNN), özellikle görüntü ve video

analizinde kullanılan, derin öğrenme tabanlı bir yapay sinir ağı türüdür. İnsan beyninin

görme korteksinden esinlenerek geliştirilen CNN’ler karmaşık görsel desenleri ve

özellikleri otomatik olarak öğrenme yeteneğine sahiptir. Bu sayede görüntü

sınıflandırma, nesne tanıma, yüz tanıma gibi birçok alanda üstün performans gösterirler.

CNN’lerin temelinde evrişim (convolution) ve havuzlama (pooling) gibi özel katmanlar

bulunur. Bu katmanlar, görüntüdeki önemli özellikleri vurgulayarak, ağın daha etkili

öğrenmesini sağlar. Şekil 3.3’te tipik bir CNN yapısı gösterilmektedir.

Giriş Katmanı Evrişim ve Havuzlama Katmanları
(Özellik Çıkarımı)

Tam Bağlı Katman Çıkış Katmanı

Şekil 3.3. Tipik bir evrişimli sinir ağı yapısı

Giriş katmanında ağın aldığı ham veri olan görüntü işlenmeye başlar. Görüntü, piksel

değerlerini taşıyan bir matris olarak giriş katmanına gelir. Bu katmanda, ağın işleyeceği

temel veriler belirlenir ve bu veri sonraki katmanlar için temel oluşturur. Özellik çıkarımı

CNN’nin temelini oluşturan evrişim ve havuzlama işlemlerinin yapıldığı yerdir. Bu

katman görüntüdeki kenarlar, köşeler, dokular gibi temel özellikleri çıkarır. Evrişim

işlemi, görüntü üzerinde küçük filtreler gezdirerek özellik haritaları oluştururken,

havuzlama işlemi bu haritaların boyutunu küçülterek daha soyut temsiller elde eder. Tam

48

bağlı katman (fully connected layer), özellik çıkarımından elde edilen soyut özellikleri

kullanarak, görüntünün ne olduğunu tahmin etmeye çalışır. Bu katman klasik bir yapay

sinir ağı gibi çalışır ve her bir nöronun bir önceki katmandaki tüm nöronlara bağlı olduğu

bir yapıya sahiptir. Çıkış katmanı ağın tahmin sonucunu verir. Genellikle bir olasılık

dağılımı şeklinde sonuçlar üretir. Örneğin, bir görüntü sınıflandırma probleminde, bu

katman her bir sınıf için bir olasılık değeri vererek görüntünün hangi sınıfa ait olduğunu

tahmin eder. CNN’ler 1980’lerden itibaren gelişmeye başlamış ve zaman içinde birçok

farklı mimari ortaya çıkmıştır. Bu bölümde CNN’lerin gelişimine önemli katkılarda

bulunmuş öne çıkan bazı modeller ele alınacaktır.

3.4.1.1. LeNet-5

LeNet-5, 1998 yılında LeCun ve arkadaşları tarafından geliştirilen bir derin öğrenme

modelidir [66]. Bu model derin öğrenme alanındaki ilk başarılı CNN örneği olarak,

görüntü tanıma görevlerinde kullanılan ilk derin ağ yapılarından birisidir. Modelin

mimarisi şu şekilde özetlenebilir: İlk katman, 5 x 5 boyutunda 6 filtre kullanarak evrişim

işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır.

Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma ile ortalama havuzlama (average pooling)

işlemi yapılır. Sonraki katman, 5 x 5 boyutunda 16 filtre kullanarak evrişim işlemi yapar.

Adım uzunluğu 1 olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır. Ayırca yine

2 x 2 boyutunda ve 2 adım kaydırma ile ortalama havuzlama işlemi yapılır. Sonraki

katman, 5 x 5 boyutunda 120 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1

olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır. Sonraki katman, tam bağlı

katmandır ve tanh aktivasyon fonksiyonunu kullanır. Çıkış katmanına bağlanan son

katman ise softmax aktivasyon fonksiyonunu kullanan bir tam bağlı katmandır.

3.4.1.2. AlexNet

AlexNet, 2012 yılında Krizhevsky ve arkadaşları tarafından tarafından geliştirilen bir

derin öğrenme modelidir [67]. Bu model, grafik işlemci hızlandırmasını kullanarak büyük

veri setleri üzerinde eğitim yapmış ve doğrultulmuş doğrusal birim (rectified linear unit,

ReLU) aktivasyon fonksiyonunu etkin bir şekilde kullanarak eğitim sürecini

hızlandırmıştır. Modelin mimarisi şu şekilde özetlenebilir: İlk katman, 11 x 11 boyutunda

96 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 4 olarak ayarlanır ve ReLU

aktivasyon fonksiyonu kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile

49

maksimum havuzlama işlemi yapılır. Sonraki katman, 5 x 5 boyutunda 256 filtre

kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon

fonksiyonu kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile maksimum

havuzlama işlemi yapılır. Sonraki iki katman, 3 x 3 boyutunda 384 filtre kullanarak

evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu

kullanılır. Sonraki katman, 3 x 3 boyutunda 256 filtre kullanarak evrişim işlemi yapar.

Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Sonraki üç

katmanlar tam bağlı katmanlardır, bunların ilk ikisinde ReLU, üçüncüsünde ise softmax

aktivasyon fonksiyonu kullanılır. Ayrıca her tam bağlı katmana %50 oranla kullanılan bir

dropout katmanı bağlıdır. Son tam bağlı katman ise çıkış katmanına bağlanır.

3.4.1.3. VGG16

VGG16, 2014 yılında Simonyan ve Zisserman tarafından geliştirilen bir derin öğrenme

modelidir [68]. Bu modelde katman sayısının derinliği ve 3 x 3 boyutunda evrişim

katmanlarının üst üste kullanılmasıyla çok derin bir ağ yapısı oluşturulmuş ve bu sayede

ağın derinliği artırılarak yüksek doğruluk elde edilmiştir. Modelin mimarisi şu şekilde

özetlenebilir: İlk iki katman, 3 x 3 boyutunda 64 filtre kullanarak evrişim işlemi yapar.

Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x

2 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Sonraki iki

katman, 3 x 3 boyutunda 128 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1

olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2

adım kaydırma ile maksimum havuzlama işlemi yapılır. Sonraki üç katman, 3 x 3

boyutunda 256 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır

ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma

ile maksimum havuzlama işlemi yapılır. Sonraki üç katman, 3 x 3 boyutunda 512 filtre

kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon

fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma ile maksimum

havuzlama işlemi yapılır. Sonraki üç katman, yine 3 x 3 boyutunda 512 filtre kullanarak

evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu

kullanılır. Ayrıca yine 2 x 2 boyutunda ve 2 adım kaydırma ile maksimum havuzlama

işlemi yapar. Sonraki iki katman tam bağlı katmanlarıdır ve ReLU aktivasyon fonksiyonu

kullanılır. Çıkış katmanına bağlanan son katman ise softmax aktivasyon fonksiyonunu

kullanan bir tam bağlı katmandır.

50

3.4.1.4. GoogleNet

GoogleNet (Inception v1), 2014 yılında Szegedy ve arkadaşları tarafından geliştirilen bir

derin öğrenme modelidir [69]. Bu model başlangıç (inception) tanıtarak, aynı katmanda

farklı boyutlardaki filtreleri ve havuzlama işlemlerini birleştirmiştir. Ayrıca yardımcı

sınıflandırıcı (auxiliary classifier) adı verilen bir başka blok da tanıtılmıştır. Modelin

mimarisi şu şekilde özetlenebilir: İlk katman, 7 x 7 boyutunda 64 filtre kullanarak evrişim

işlemi yapar. Adım uzunluğu 2 olarak ayarlanır ve ReLU aktivasyon fonksiyonu

kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi

ve ardından yerel tepki normalizasyonu (local response normalization) yapılır. Sonraki

katman, 1 x 1 boyutunda 64 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1

olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Sonraki katman, 3 x 3

boyutunda 192 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır

ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca yerel tepki normalizasyonu, ardından

3 x 3 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Daha sonra

9 adet başlangıç bloğu uygulanır ve birleştirilir. Ayrıca 4. ve 7. başlangıç bloklarıyla

paralel olarak yardımcı sınıflandırıcı blokları uygulanır. Son başlangıç bloğunun ardından

7 x 7 boyutunda global ortalama havuzlama işlemi (global average pooling) ve %40

oranında dropout katmanı uygulanır. Çıkış katmanına bağlanan son katman ise bir tam

bağlı katmandır ve softmax aktivasyon fonksiyonu kullanılır.

Başlangıç bloğu şu şekilde özetlenebilir: Bloğun kendi yerel girişi 1 x 1 boyutunda 3 adet

evrişim ve 3 x 3 boyutunda 1 adet maksimum havuzlama katmanlarına aynı anda

gönderilir. 3 adet evrişim katmanından biri doğrudan bloğun yerel çıkışına yönlendirilir.

Bir diğeri 3 x 3 boyutunda başka bir evrişim katmanına bağlanır ve bu katmanın çıkışı

yerel çıkış noktasına yönlendirilir. Bir diğeri 5 x 5 boyutunda başka bir evrişim katmanına

bağlanır ve bu katmanın çıkışı yerel çıkış noktasına yönlendirilir. Maksimum havuzlama

katmanı ise 1 x 1 boyutunda başka bir evrişim katmanına bağlanır ve bu katmanın çıkışı

yerel çıkış noktasına yönlendirilir. Son olarak yerel çıkışa gönderilen her bir bağlantı

birleştirilir. Yardımcı sınıflandırıcı bloğu ise şu şekilde özetlenebilir: Bloğun kendi yerel

girişine ilk olarak global ortalama havuzlama işlemi uygulanır. Ardından 1 x 1 boyutunda

başka bir evrişim katmanına bağlanır. Sonraki iki katman tam bağlı katmanlarıdır ve

ReLU aktivasyon fonksiyonu kullanılır. Bloğun kendi yerel çıkış katmanında ise softmax

aktivasyon fonksiyonu kullanılır.

51

3.4.1.5. Tam Evrişimli Ağ

Tam evrişimli ağ (fully convolutional networks, FCN), 2015 yılında Long ve arkadaşları

tarafından geliştirilen bir derin öğrenme modelidir [70]. Bu model tamamen evrişim

katmanlar kullanarak görüntü segmentasyonu gibi görevlerde piksel düzeyinde tahminler

yapar ve tam bağlı katmanları ortadan kaldırarak modelin daha verimli hale getirir.

Modelin mimarisi şu şekilde özetlenebilir: FCN’nin temel yapı taşları evrişim, havuzlama

ve yukarı örnekleme (upsampling) katmanlarıdır. Evrişim katmanları, belirli bir boyutta

filtreler kullanarak girişten özellik çıkarır ve her konvolüsyon işlemi için belirlenen adım

uzunluğuna göre çıktıyı oluşturur. Bu katmanlarda genellikle ReLU aktivasyon

fonksiyonu kullanılır. FCN, temel CNN’lerden farklı olarak, tam bağlantılı katmanlar

içermez; bunun yerine 1 x 1 evrişim katmanları kullanarak sınıflandırma veya regresyon

işlemlerini doğrudan uzamsal boyutta gerçekleştirir. Modelin en önemli bileşenlerinden

biri yukarı örnekleme katmanlarıdır, çünkü bunlar havuzlama katmanları tarafından

küçültülen uzamsal boyutları tekrar büyüterek çıktıyı orijinal giriş boyutuna yaklaştırır.

Bu süreç, özellikle görüntü segmentasyonu gibi piksel tabanlı tahminler gerektiren

görevlerde kritik öneme sahiptir. FCN, klasik sınıflandırma ağlarının tam bağlı

katmanlarını kaldırarak herhangi bir boyuttaki girdilerle çalışabilir ve piksellerin konum

bilgilerini koruyarak çıktı üretebilir. Son olarak, FCN’nin çıkış katmanı genellikle

softmax aktivasyon fonksiyonuyla tamamlanır ve her pikselin belirli bir sınıfa ait olma

olasılığını hesaplar.

3.4.1.6. ResNet

ResNet, 2015 yılında He ve arkadaşları tarafından geliştirilen bir derin öğrenme modelidir

[71]. Bu model artık (residual) bağlantılar sayesinde derin ağların eğitimini

kolaylaştırarak kaybolan gradyan problemini etkili bir şekilde çözmüştür. Modelin

mimarisi şu şekilde özetlenebilir: İlk katman, 7 x 7 boyutunda 64 filtreli bir evrişim

katmanıdır; bu katman 2 adım boyutu kullanarak girişi işler. Bu katmanda ReLU

aktivasyon fonksiyonu kullanılır ve toplu normalizasyon gerçekleştirilir. Ayrıca 3 x 3

boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Ağın geri kalanı,

residual bloklar olarak organize edilmiştir. Tipik bir artık blok Şekil 3.4’te

gösterilmektedir.

52

Katman

Katman

+

𝑥

𝑥 + ℱ(𝑥)

ℱ(𝑥)

Şekil 3.4. Temel bir artık blok

Her artık blok, iki adet 3 x 3 evrişim katmanı, toplu normalizasyon ve ReLU

aktivasyonunu içerir. Daha derin katmanlara geçerken, her yeni artık bloğun ilk evrişim

katmanı filtre sayısını iki katına çıkarır ve boyut küçültmek için adım boyutu 2 olarak

belirlenir. Boyut değişen bloklarda kısa yol bağlantısı için 1 x 1 evrişim katmanı

kullanılır. Bunların ardından, global ortalama havuzlama katmanı ile tüm uzaysal

özellikler sıkıştırılarak sabit boyutlu bir vektör elde edilir. Bunu, 1000 çıkışlı bir tam bağlı

katman ve ardından softmax katmanı takip eder, böylece sınıflandırma yapılır.

3.4.2. Takviyeli Öğrenme

Takviyeli öğrenme (reinforcement learning), bir ajan (agent) ile ortam (environment)

arasındaki etkileşimi temel alan bir makine öğrenme yöntemidir. Ajan, ortama

etkileşimde bulunarak belirli hedeflere ulaşmayı amaçlar. Ortamdan aldığı ödülleri

kullanarak kendi politikasını (hangi duruma hangi aksiyonun uygun olduğunu belirleyen

strateji) optimize eder. Ajanın amacı, zaman içinde aldığı ödülleri maksimize etmek için

en iyi aksiyonları seçmektir. Bu süreç bir durum (state), bir aksiyon (action) ve alınan bir

ödül (reward) döngüsüyle gerçekleşir. Şekil 3.5’te tipik bir takviyeli öğrenme yapısı

gösterilmektedir.

53

Ajan Ortam

Aksiyon

Ödül

Şekil 3.5. Tipik bir takviyeli öğrenme yapısı

Takviyeli öğrenmede ajan, keşif ve kullanım arasında bir denge kurmak zorundadır. Keşif

ajanının yeni aksiyonları denemesi ve ortamın dinamiklerini öğrenmesi anlamına

gelirken, kullanım ise ajanın şu ana kadar öğrendiği en iyi aksiyonları seçmesidir. Bu iki

strateji arasında bir denge kurmak önemlidir; aksi halde ajan yalnızca bildiği aksiyonları

seçerek yeni fırsatlar kaçırabilir veya gereksiz keşiflerde bulunarak verimsiz olabilir.

Ayrıca, RL transfer öğrenmeyi de içerir, yani ajan bir görevde öğrendiği bilgileri başka

bir göreve aktarabilir. Örneğin, bir ajan bir ortamda başarılı bir şekilde öğrenmeyi

tamamladıktan sonra, başka bir benzer ortamda ajanın daha hızlı öğrenebilmesi

sağlanabilir. Transfer öğrenme, takviyeli öğrenmenin hesaplama yükünü azaltabilir ve

daha genel stratejiler geliştirilmesine yardımcı olabilir. Bu bölümde RL’deki öne çıkan

bazı modeller ele alınacaktır.

3.4.2.1. Aktör-Kritik Algoritması

Aktör-kritik algoritması (actor-critic, AC), ilk olarak 1984 yılında Sutton tarafından

geliştirilen bir RL modelidir [72]. Bu model politika tabanlı (aktör) ve değer tabanlı

(kritik) bileşenleri birleştirerek, hem politika öğrenmesini hem de değer fonksiyonu

tahminini paralel bir şekilde optimize eder. Algoritma, iki ana bileşenden oluşur: Aktör

ve kritik. Aktör, mevcut politika kullanılarak aksiyonlar seçerken, kritik, bu aksiyonların

değerini tahmin eder ve aktöre geri bildirim sağlar. Algoritmanın çalışma prensibi, bir

ajanın bir ortamda sürekli olarak etkileşime girip ödül toplaması sürecine dayanır. Ajan,

çevreden aldığı durum bilgisiyle, belirli bir politika (𝜋) kullanarak bir aksiyon seçer.

Kritik, seçilen aksiyonun değerini tahmin eder ve bu tahmin bir avantaj fonksiyonu (𝐴௧)

ile ilişkilendirilir. Aktör bu avantaj fonksiyonunu kullanarak politikasını günceller,

böylece daha yüksek ödül getiren eylemleri tercih eder. İlk olarak aksiyon seçilirerek ona

54

yönelik ödül ve bir sonraki durum gözlemlenir. Ardından avantaj fonksiyonu Eşitlik

(3.49) kullanılarak güncellenir.

𝐴௧ = 𝑟௧ + 𝛾𝑉ఏ(𝑠௧ାଵ) − 𝑉ఏ(𝑠௧) (3.49)

Burada, 𝑟௧ mevcut ödülü, 𝛾 indirim faktörünü, 𝑉ఏ(𝑠௧ାଵ) kritik tarafından tahmin edilen

bir sonraki durumun değerini ve 𝑉ఏ(𝑠௧) ise değer fonksiyonunu temsil eder. Ardından

aktör ve kritik Eşitlik (3.50) ve (3.51) kullanılarak güncellenir.

𝜃௔
௧ାଵ = 𝜃௔

௧ + 𝛼௔∇ఏ log 𝜋ఏ(𝑠௧, 𝑎௧) 𝐴௧ (3.50)

𝜃௖
௧ାଵ = 𝜃௖

௧ + 𝛼௖൫𝑟௧ + 𝛾𝑉ఏ(𝑠௧ାଵ) − 𝑉ఏ(𝑠௧)൯
ଶ

(3.51)

Burada, 𝜃௔ aktörün parametrelerini, 𝛼௔ aktörün öğrenme oranını, 𝜋ఏ(𝑠௧, 𝑎௧) mevcut

durum 𝑠௧ ve mevcut aksiyon 𝑎௧ için ilgili politikayı, 𝜃௖ kritiğin parametrelerini ve 𝑎௖

kritiğin öğrenme oranını temsil eder. Bu süreç durduma kriteri sağlanana kadar devam

eder. AC’nin temel adımları Algoritma 3.14 ile gösterilmektedir.

Algoritma 3.14: AC’nin temel adımları
1: Hiperparametrelerin ayarlanması (𝛼, 𝛽, 𝛾)
2: Aktör politikasının ve kritik değer fonksiyonunun değerlerinin başlatılması
3: while (maksimum epoch sayısına erişinceye kadar)
4: 𝑠 durumunun başlatılması
5: while (maksimum adım sayısına erişinceye kadar)
6: Aktör politikasına göre bir aksiyonun seçilmesi
7: Seçilen aksiyonu gerçekleştirilmesi
8: Ödül ve bir sonraki durumun gözlemlenmesi
9: Eşitlik (3.49) ile avantaj fonksiyonunun güncellenmesi

10: Eşitlik (3.50) ile aktörün güncellenmesi
11: Eşitlik (3.51) ile kritiğin güncellenmesi
12: end while
13: end while
14: Optimal politikanın raporlanması

3.4.2.2. Q-Öğrenme

Q-öğrenme (Q-learning, QL), 1989 yılında Watkins tarafından geliştirilen bir RL

modelidir [73]. QL çevrenin dinamiklerini bilmeden, sadece gözlemler ve ödüllerle karar

almayı öğrenir. QL temel olarak 𝑄 değerleri adı verilen bir yapı kullanır. Bu değerler bir

durum ve aksiyon çiftinin değerini temsil eder. Bu değer, o durumda belirtilen aksiyonun

alınmasının gelecekteki ödülleri ne kadar artıracağına dair bir tahmindir. Ajan bu 𝑄

55

değerlerini zamanla güncelleyerek en iyi politikasını öğrenir. Modelin çalışma prensibi

şu şekilde özetlenebilir: Başlangıçta tüm 𝑄 değerleri sıfır olarak ayarlanır veya küçük

rastgele değerlerle başlatılabilir. Ajan herhangi bir durumdayken bir aksiyon seçer. Bu

seçim genellikle epsilon açgözlü stratejisi (ε-greedy) ile yapılır, yani ajan rastgele bir

aksiyon seçme olasılığına sahip olup, çoğunlukla en yüksek 𝑄 değerine sahip aksiyonu

tercih eder. Seçilen aksiyon uygulanır, yeni bir durum gözlemlenir ve bu yeni durumda

alınan ödül elde edilir. Ajan, 𝑄 değerini Eşitlik (3.52)’de gösterilen QL güncelleme

kuralına göre günceller:

𝑄(𝑠௧, 𝑎௧) = 𝑄(𝑠௧, 𝑎௧) + 𝛼 ቆ𝑟௧ + 𝛾 max
௔ᇲ

𝑄(𝑠௧ାଵ, 𝑎ᇱ) − 𝑄(𝑠௧, 𝑎௧)ቇ (3.52)

Burada, 𝑄(𝑠௧, 𝑎௧) mevcut durum ve aksiyon için mevcut 𝑄 değerini, 𝛼 öğrenme oranını,

𝑟௧ alınan ödülü, 𝛾 indirim faktörünü, 𝑠௧ାଵ bir sonraki durumu ve 𝑎ᇱ ise yeni durumda

yapılabilecek tüm olası aksiyonları temsil eder. Ajan, bu işlemi çevreyi keşfederek ve

ödülleri öğrenerek devam eder. Sonunda, 𝑄 değerleri stabil hale gelir ve ajan en yüksek

𝑄 değerine sahip aksiyonları seçerek optimal politikayı öğrenmiş olur. QL’nin temel

adımları Algoritma 3.15 ile gösterilmektedir.

Algoritma 3.15: QL’nin temel adımları
1: Hiperparametrelerin ayarlanması (𝛼, 𝛾)
2: Tüm durum ve aksiyonlar için 𝑄 değerlerinin başlatılması
3: while (maksimum epoch sayısına erişinceye kadar)
4: 𝑠 durumunun başlatılması
5: while (maksimum adım sayısına erişinceye kadar)
6: Epsilon açgözlü stratejisi ile bir aksiyonun seçilmesi
7: Seçilen aksiyonun gerçekleştirilmesi

 Ödül ve bir sonraki durumun gözlemlenmesi
8: Eşitlik (3.52) ile 𝑄 değerinin güncellenmesi
9: Mevcut durumun bir sonraki durum olarak güncellenmesi

10: end while
11: end while
12: Optimal politikanın raporlanması

3.4.2.3. Derin Deterministik Politika Gradyanı

Derin Deterministik Politika Gradyanı (deep deterministic policy gradient, DDPG), 2015

yılında Lillicrap ve arkadaşları tarafından geliştirilen bir RL modelidir [74]. Bu model

sürekli eylem alanlarında politika gradyanı yöntemlerini derin öğrenme ile birleştirir.

56

Algoritma, aktör ve kritik ağları olmak üzere iki ana bileşene sahiptir. Aktör ağı verilen

bir durum için en iyi aksiyonu üretirken, kritik ağ verilen bir durum ve aksiyon çiftinin

ne kadar iyi olduğunu değerlendirir. DDPG, öğrenme sürecini daha stabil hale getirmek

için deney tekrarı (experience replay) ve hedef ağlar (target networks) gibi ek teknikler

kullanır. Modelin çalışma prensibi şu şekilde özetlenebilir: Algoritmanın ilk adımında,

kritik ağı ve aktör ağı rastgele başlatılır. Bunlar ajan tarafından kullanılan temel öğrenme

modelleridir. Ayrıca, bu ağların birer hedef kopyaları oluşturulur. Hedef ağlar, öğrenme

sürecindeki dalgalanmaları azaltarak algoritmanın daha stabil çalışmasını sağlar.

Ardından, deney tekrar havuzu oluşturulur. Bu havuz, ajanın çevrede deneyimlediği

durum-geçişlerini saklar ve rastgele örnekleme yaparak öğrenmeyi daha etkili hale getirir.

DDPG, her zaman adımında aksiyon keşfi için rastgele bir gürültü başlatır. Ajan,

çevreden ilk durumu alır ve süreç başlar. Her zaman adımında, ajan Eşitlik (3.53)’te

gösterildiği gibi mevcut duruma göre bir aksiyon seçer. Bu aksiyon, aktör ağı tarafından

belirlenir ancak keşfi artırmak için bir miktar rastgele gürültü eklenir.

𝑎௧ = 𝜇(𝑠௧|𝜃ఓ) + 𝑁௧ (3.53)

Burada, 𝑎௧ 𝑡 anındaki aksiyonu, 𝜇(𝑠௧|𝜃ఓ) aktör ağını, 𝑁௧ ise 𝑡 anındaki keşfi artırmak

için kullanılan rastgele gürültüyü temsil eder. Bu gürültü genellikle zamanla korelasyonlu

Ornstein-Uhlenbeck süreci olarak modellenir. Seçilen aksiyon çevrede uygulanır ve ajan

ödülü (𝑟௧) ve bir sonraki durumu (𝑠௧ାଵ) gözlemler. Bu geçiş deney tekrar havuzuna

(𝑠௧, 𝑎௧, 𝑟௧, 𝑠௧ାଵ) olarak kaydedilir. Deney tekrar havuzundan rastgele bir minibatch (𝑛௠

adet geçiş) örneklenir. Deney tekrar havuzundan örneklenen her minibatch için, hedef 𝑄

değeri Bellman denklemine göre Eşitlik (3.54) kullanılarak hesaplanır.

𝑦௜ = 𝑟௧೔
+ 𝛾𝑄ᇱ൫𝑠௜ାଵ, 𝜇ᇱ൫𝑠௜ାଵ|𝜃ఓᇱ

൯|𝜃ொᇲ
൯ (3.54)

Burada, 𝑟௧೔
 i’inci minibatch örneğinde elde edilen ödülü, 𝛾 indirim faktörünü, 𝜇ᇱ ve 𝑄ᇱ ise

hedef ağları temsil eder. Kritik ağ, bu hedef 𝑄 değerine yaklaşmak amacıyla Eşitlik

(3.55)’te gösterildiği gibi güncellenir.

𝜃ொ = 𝜃ொ − 𝛼ொ∇ఏೂ𝐿(𝜃ொ) (3.55)

57

𝐿(𝜃ொ) =
1

𝑛௠
෍൫𝑦௜ − 𝑄(𝑠௜, 𝑎௜|𝜃

ொ)൯
ଶ

௜

(3.56)

Burada, 𝑄(𝑠௜, 𝑎௜|𝜃
ொ) kritik ağı temsil eder. Aktör ağı Eşitlik (3.56)’da gösterildiği gibi

deterministik politika gradyan yöntemiyle güncellenir:

∇ఏ𝐽 ≈
1

𝑛௠
෍ 𝛻௔𝑄(𝑠, 𝑎|𝜃ொ)|௦ୀ௦೔,௔ୀఓ(௦೔)𝛻ఏഋ𝜇(𝑠|𝜃ఓ)|௦೔

௜

(3.57)

Ardından, hedef ağlar yumuşak güncellenme ile Eşitlik (3.57) ve (3.58)’de gösterildiği

gibi güncellenir.

𝜃ொᇱ
= 𝜏𝜃ொ + (1 − 𝜏)𝜃ொᇱ

(3.58)

𝜃ఓᇱ = 𝜏𝜃ఓ + (1 − 𝜏)𝜃ఓᇱ (3.59)

Burada, 𝜏 yumuşak güncellenme oranını temsil eder. Bu süreç, belirlenen zaman adımı

veya bölüm sayısı tamamlanana kadar tekrar edilir. DDPG’nin temel adımları Algoritma

3.16 ile gösterilmektedir.

Algoritma 3.16: DDPG’nin temel adımları
1: Hiperparametrelerin ayarlanması (𝜏, 𝛾, 𝑛௠)
2: Aktör ve kritik ağlarının başlatılması
3: Hedef ağların başlatılması
4: Deney tekrar havuzunun oluşturulması
5: while (maksimum epoch sayısına erişinceye kadar)
6: 𝑠 durumunun başlatılması
7: while (maksimum adım sayısına erişinceye kadar)
8: Eşitlik (3.53) ile aksiyonun seçilmesi
9: Seçilen aksiyonun gerçekleştirilmesi

10: Ödül ve bir sonraki durumun gözlemlenmesi
11: Bu deneyimin deney havuzuna eklenmesi
12: Havuzdan rastgele bir minibatch’in örneklenmesi
13: Eşitlik (3.54) ile hedef Q değeri hesaplanması

 Eşitlik (3.55) ile kritik ağın güncellenmesi
14: Eşitlik (3.56) ile aktör ağının güncellenmesi
15: Eşitlik (3.57) ve (3.58) ile hedef ağların güncellenmesi
16: end while
17: end while
18: Optimal politikanın raporlanması

58

4. BÖLÜM

BULGULAR

4.1. Giriş

Bu tez çalışması kapsamında mobil robotların yol planlama sorunlarına yönelik çözümler

geliştirmek amacıyla dört farklı simülasyon çalışması ve bir gerçek zamanlı çalışma

gerçekleştirilmiştir. Bu çalışmalar farklı yol tipleri, engel yapıları ve ortam özellikleri

dikkate alınarak yol planlama yöntemlerini iyileştirerek yeni yaklaşımlar geliştirmeye

odaklanmıştır. Bu tez çalışması kapsamında gerçekleştirilen dört simülasyon

çalışmasında iki boyutlu yol planlama problemine yönelik farklı metasezgisel ve makine

öğrenmesi tabanlı yaklaşımlar önerilmiş ve performansları test edilmiştir. Birinci

çalışmada tek bir mobil robotun ızgara ortamında küresel yol planlaması için iyileştirilmiş

bir yapay arı koloni algoritması önerilmiştir. İkinci çalışmada tek bir mobil robotun

sürekli uzay ortamında küresel yol planlaması için metasezgisel ve kümeleme

algoritmalarının hibrit bir modeli önerilmiştir. Üçüncü çalışmada çok sayıda mobil

robotun sürekli uzay ortamında yerel yol planlaması için iyileştirilmiş bir sinüs kosinüs

algoritması önerilmiştir. Dördüncü çalışmada ise tek ve çok robotlu sistemlerinin ızgara

ortamında küresel yol planlaması için ResNet tabanlı bir model önerilmiştir. Gerçek

zamanlı çalışmada ise simülasyon çalışmalarını desteklemek amacıyla mobil robotun

sürekli uzay ortamında küresel yol planlaması ve yol takip kontrolü gerçekleştirilmiştir.

Bu çalışmaların özellikleri Tablo 4.1’de özetlenmiştir. Bu tez kapsamda ele alınan

çalışmalar mobil robotların yol planlama süreçlerinde etkinliği artırmayı ve olası

zorluklara karşı çözüm üretmeyi hedeflemektedir.

59

Tablo 4.1. Bu tez kapsamındaki çalışmalarının özellikleri

Çalışma

Tipi
Programlama

Dili
Yöntem

Sınıfı
Robot
Sayısı

Planlama
Kapsamı

Ortam
Tipi

4.2 Simülasyon MATLAB Metasezgisel Tek Küresel Izgara
4.3 Simülasyon MATLAB Hibrit Tek Küresel Sürekli Uzay
4.4 Simülasyon MATLAB Metasezgisel Çok Yerel Sürekli Uzay
4.5 Simülasyon Python Makine Öğrenmesi Tek & Çok Küresel Izgara

4.6
Gerçek
Zamanlı

Python
Metasezgisel /

P Kontrol
Tek Küresel Sürekli Uzay

4.2. İyileştirilmiş Yapay Arı Kolonisi Algoritmasını Kullanan Etkili Bir Izgara

Tabanlı Yol Planlama Yaklaşımı

Yol planlama problemleri robotik ve otonom sistemler için kritik öneme sahiptir.

Literatürdeki çeşitli algoritmalar bu problemleri çözmek için etkili yöntemler sağlamış

olsa da, daha hızlı, daha doğru ve enerji açısından verimli çözümler geliştirmeye hala

ihtiyaç vardır. Bunlar arasında ABC algoritması, yol planlama problemleri için sıklıkla

kullanılan sağlam ve güçlü bir metasezgisel optimizasyon algoritması olarak öne

çıkmaktadır [75]. Ancak No Free Lunch teoremi doğrultusunda hiçbir optimizasyon

algoritmasının tüm problem tiplerinde optimum performans göstermesi beklenemez. Bu

makalenin odak noktası yol planlama problemini çözme yeteneğini artırmak için ABC

algoritmasını iyileştirmektir. Bu nedenle bu çalışmada ızgara tabanlı yol planlama

problemleri için iyileştirilmiş bir ABC algoritması (IABC) önerilmiştir. Bu çalışmanın

katkıları aşağıdaki gibi özetlenebilir:

 Yol planlama problemi hesaplama açısından zor bir optimizasyon problemidir.

ABC algoritmasının kısıtları vardır ve ızgara tabanlı yol planlamasını ele alırken

tatmin edici sonuçlar üretemez.

 IABC, kullanım-keşif dengesini iyileştirmek için tasarlanmış iki mekanizmanın

entegre edilmesiyle geliştirilmiştir.

 Bu mekanizmalardan biri olan doğrusallaştırma stratejisi, dönüş sayısını azaltmak

ve yol uzunluğunu kısaltmak için önerilmiştir. Bu strateji, gereksiz köşeleri

ortadan kaldırarak robotun yolunu basitleştirmeyi, daha verimli hareket etmeyi ve

enerji tasarrufu sağlamayı amaçlamaktadır.

60

 Bu mekanizmalardan bir diğeri olan yerel arama stratejisi, ABC algoritmasının

yakınsama hızını artırmak ve küresel optimum çözümü bulma yeteneğini

geliştirmek için önerilmiştir.

 Simülasyon deneylerinde IABC, temel ABC ve literatürdeki diğer algoritmalarla

karşılaştırıldı ve sadece yol uzunluğunda değil, aynı zamanda yolu oluşturan

hücre sayısı ve toplam dönüş açısında da diğer algoritmalardan üstün gelmiştir.

4.2.1. Problem Tanımı

Izgara tabanlı yol planlama problemi, bir mobil robotun engellere çarpmadan hedef

noktaya ulaşmak için en az sayıda ızgara hücresinden geçmesi gereken bir minimizasyon

problemi olarak tanımlanabilir. Izgara ortamları için 0 ve 1’den oluşan bir matris

oluşturulur. Bu matriste 0, engelsiz bir hücreyi ve 1, bir engel hücresini temsil eder. Aday

çözümler, Eşitlik (4.1)’deki gibi iki boyutlu bu ızgara ortamında bir dizi ızgara

hücresinden oluşan bir yolu temsil eder.

𝑌 = ቄ𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝௡೤
 | 𝑛௬ ∈ ℕାቅ (4.1)

Burada, 𝑌 planlanan yolu, 𝑝௜ yolun 𝑖’inci hücresini ve 𝑛௬ ise yolu oluşturan hücre sayısı

temsil eder. Bu çalışmada her yolun değerlendirildiği amaç fonksiyonu Eşitlik (4.2)’deki

gibi modellenmiştir.

arg min
௒

ℱ = ൜
𝑓ଵ, 𝑒ğ𝑒𝑟 𝑛௏ = 0 𝑖𝑠𝑒
𝑓ଶ, 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(4.2)

Burada, ℱ amaç fonksiyonunu ve 𝑛௏ engel ihlal sayısını temsil eder. Engel ihlal sayısı

bir çözüm tarafından temsil edilen yolun kaç engeli ihlal ettiğini gösterir. Bu fonksiyon

bir yolu iki farklı şekilde değerlendirir. Fonksiyon, engel ihlali yoksa yalnızca yolun

uzunluğunu (𝑓ଵ), engel ihlali varsa bir ceza puanı (𝑓ଶ) üretir. 𝑓ଵ yolun uzunluğunu hesaplar

ve Eşitlik (4.3)’de gösterilir. 𝑓ଶ ise 𝑛௏’ye bağlı olarak bir ceza puanı üretir ve Eşitlik

(4.4)’te gösterilir.

𝑓ଵ = ෍ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ

 (4.3)

61

𝑓ଶ = 𝑚 ⋅ 𝑛 ⋅ 𝑛௏ (4.4)

Burada, 𝑚 ve 𝑛 sırasıyla ortam matrisinin satır ve sütun sayılarını (ızgara ortamının

boyutunu) temsil eder. Önerilen algoritmanın kapsamlı değerlendirmesi için dört farklı

metrik dikkate alınmıştır: Yol uzunluğu, yolu oluşturan hücre sayısı, toplam dönüş açısı

ve dönüş enerji tüketimi. Bu metrikler, algoritmanın doğruluğunu ve verimliliğini

değerlendirmede kritik öneme sahiptir, çünkü algoritmanın performansını objektif olarak

ölçmek ve potansiyel iyileştirmeleri belirlemek için gereklidir. Yol uzunluğu ve hücre

sayısı yukarıda bahsedilmektedir. Toplam dönüş açısı (𝜑௧) robotun yolda döndüğü

açıların toplamıdır. Dönüş açısı ardaşık üç hücreden (𝑝௜, 𝑝௜ାଵ, 𝑝௜ାଶ) oluşan iki düzlemsel

çizgi arasındaki açı olarak düşünülebilir. Bu çizgiler hücreler arasındaki yol parçalarıdır.

Toplam dönüş açısı bu çizgiler arasındaki dönüş açıların toplamıdır ve Eşitlik (4.5)’te

gösterildiği gibi hesaplanmıştır. Hücre sayısı ve toplam dönüş açısı kavramları Şekil

4.1’de gösterilmektedir.

𝜑௧ = ෍ 𝜑௜

௡೤ିଶ

௜ୀଵ

= ෍ cosିଵ ቆ
(𝑝௜ାଵ − 𝑝௜) ⋅ (𝑝௜ାଶ − 𝑝௜ାଵ)

‖𝑝௜ାଵ − 𝑝௜‖ ⋅ ‖𝑝௜ାଶ − 𝑝௜ାଵ‖
ቇ

௡೤ିଶ

௜ୀଵ

 (4.5)

𝜑1

𝜑2

Başlangıç

Hedef

Şekil 4.1. Hücre sayısı ve toplam dönüş açısı kavramları (Mavi çizgi planlanan bir
yolu, siyah noktalar hücreleri ve 𝜑ଵ ve 𝜑ଶ ise dönüş açılarını temsil eder.)

Robot hareket yönünü değiştirdiği durumlarda düz ilerlemeye kıyasla daha fazla enerji

harcamaktadır. Bu nedenle dönüş anlarındaki enerji tüketiminin de dikkate alınması

gerekmektedir. Bu çalışmada dönüş enerji tüketimi (ℰ௧) robotun belirli bir yol üzerindeki

hareketi sırasında yönünü değiştirdiği noktalarda harcadığı enerjilerin toplamı olarak

tanımlanmıştır. Bu metrikte dönüş açısı 0° ise (robot düz gidiyorsa) dönüş enerji tüketimi

sıfır kabul edilirken; 45°, 90°, 135° ve 180° gibi dönüşlerde tüketilen enerji daha

62

yüksektir. Ayrıca bu çalışmadaki dönüş enerji tüketimi sadece belirli dönüş açılarına

değil, tüm yön değişimlerinin etkisine duyarlıdır. Her bir dönüş açısı 45°’lik referans

değere oranlanarak normalize edilmiş ve toplam tüketim bu oranların toplamı üzerinden

belirlenmiştir. Dönüş enerji tüketimi Eşitlik (4.6)’daki gibi hesaplanmıştır.

ℰ௧ = ෍ ℰ௜

௡೤ିଶ

௜ୀଵ

= ෍
𝜑௜

45°

௡೤ିଶ

௜ୀଵ

 (4.6)

4.2.2. Önerilen Yöntem

Önerilen IABC için iki mekanizma eklenmiştir: doğrusallaştırma stratejisi ve yerel arama

stratejisi. Doğrusallaştırma stratejisi, ızgara ortamında oluşturulan yolun gereksiz

köşelerini ortadan kaldırmaya odaklanan bir kullanım tabanlı iyileştirmedir. Yerel arama

stratejisi, en iyi çözümün maliyetini daha da optimize etmeyi amaçlayan bir keşif tabanlı

mekanizmadır. Böylece bu iyileştirmeler algoritmanın kullanım-keşif dengesini

bozmadan gerçekleştirilmiştir.

4.2.2.1. Doğrusallaştırma Stratejisi

Izgara tabanlı yol planlamasında, temel ABC optimum yolları planlarken engel

içermeyen gereksiz ızgara hücrelerini kullanabilir. Doğrusallaştırma stratejisini

kullanarak bu gereksiz ızgara hücreleri göz ardı edilir ve yol daha doğrusal hale getirilir.

Böylece daha uygun maliyetli yollar elde edilebilir. 𝑛௏ = 0 durumu için, 𝑓ଵ alt

fonksiyonunu hesaplamadan hemen önce, yolu doğrusallaştırmak için bu strateji

kullanılır. Bundan sonra algoritma doğrusallaştırılmış yolun uzunluğunu hesaba katarak

çalışmaya devam eder. Bu strateji, yolun ızgara hücrelerinin üçlü gruplarına odaklanarak

ilerler. İlk noktayı ve üçüncü noktayı temel alır ve ikinci noktada bir engel olup

olmadığını kontrol eder. Engel yoksa ikinci nokta gereksiz olarak tanımlanır ve yol

dizisinden çıkarılır. Böylece daha doğrusal bir yol parçası elde edilir. İkinci noktada bir

engel varsa hiçbir işlem yapılmaz ve bir sonraki üçlü gruba odaklanılır. Bu döngü, yolun

tüm hücreleri üçlü gruplar halinde incelenene kadar devam eder. Doğrusallaştırma

stratejisinin prensibini Şekil 4.2’de, doğrusallaştırma stratejisi tabanlı amaç

fonksiyonunun (DSAF) sözde kodu ise Algoritma 4.1’de gösterilmektedir.

63

1 2

3

1

2

 Doğrusallaştırma Öncesi Yol

 Doğrusallaştırma Sonrası Yol

 Engel

1 2

3

4

5 6

1

2

3 4

Şekil 4.2. Doğrusallaştırma stratejisinin prensibi (Yukarıdaki ortamda mavi yolun
ikinci hücreyi ve aşağıdaki ortamda mavi yolun ikinci ve üçüncü hücreleri
gereksiz olarak tanımlanabilir. İki yatay veya dikey ızgara hücresinin
merkezleri arasındaki uzaklığın 1 br olduğu düşünüldüğünde, aşağıdaki
ortam için mavi yolun uzunluğu 5.41 br, kırmızı yolun uzunluğu ise 4.65
br’dir. Bu sonuç yol uzunluğuna göre %14.05’lik bir iyileştirme olduğunu
göstermektedir.)

64

Algoritma 4.1: DSAF’nin sözde kodu
Girdi: 𝑥, 𝐸 // Aday çözüm, ortam matrisi
Çıktı: 𝑓 // Maliyet

1: 𝑛௏ ← 0, 𝑓 ← 0, [𝑚, 𝑛] ← 𝑠𝑖𝑧𝑒(𝐸)
2: 𝑌 ← ℱ(𝑥) // Aday çözümün yola dönüştürülmesi
3: 𝐿ଵ ← 𝑓ଵ(𝑌)
4: for 𝑖 = 1: 𝐿ଵ
5: 𝑝௜ ← 𝑌(𝑖)
6: if 𝐸(𝑝௜) == 1
7: 𝑛௏ ← 𝑛௏ + 1
8: end if
9: end for

10: if 𝑛௏ == 0
11: 𝑌′ ← 𝑌
12: 𝐿ଶ ← 𝑓ଵ(𝑌′)
13: 𝑖 ← 1
14: while 𝑖 ≠ 𝐿ଶ − 2
15: 𝑝௜ ← 𝑌ᇱ(𝑖)
16: 𝑝௜ାଶ ← 𝑌ᇱ(𝑖 + 2)
17: if 𝐸(𝑝௜: 𝑝௜ାଶ) == 0
18: 𝑌ᇱ(𝑖 + 1) = ∅
19: 𝑖 ← 𝑖 − 1
20: end if
21: 𝑖 ← 𝑖 + 1
22: 𝐿ଶ ← 𝑓ଵ(𝑌′)
23: end while
24: 𝑓 ← ∑ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ
, 𝑌ᇱ: ቄ𝑝ଵ, … , 𝑝௡೤

ቅ ⊂ 𝐸

25: else
26: 𝑓 ← 𝑚 ⋅ 𝑛 ⋅ 𝑛௏
27: end if

4.2.2.2. Yerel Arama Stratejisi

ABC bir çözümün komşularına ve problemin tek bir parametresine odaklanarak

güncelleme gerçekleştirir. Yinelemelerde üretilen en iyi çözüm her zaman en iyi

olmayabilir ve yerel minimuma düşebilir. Bu nedenle IABC’de her yinelemenin sonunda

üretilen en iyi çözüm, kâşif arısı aşamasına benzer bir yerel arama stratejisine tabi tutulur.

Bu stratejide, en iyi çözümün her parametresi için rastgele yeni bir değer üretilir. Bu yeni

parametreli çözümün maliyeti mevcut çözümünkine göre daha düşükse yeni parametreli

çözüm tercih edilir. Bu arama çözümün tüm boyutu boyunca devam eder. Bu strateji ile

en iyi çözümden daha iyi maliyete sahip çözümler üretilebilir ve böylece algoritmanın

arama performansı iyileştirilebilir. Yerel arama stratejisinin (YAS) prensibi Şekil 4.3’te,

65

bu strateji ile önerilen IABC algoritmasının sözde kodları sırasıyla Algoritma 4.2 ve

4.3’te, önerilen IABC algoritmasının akış diyagramı ise Şekil 4.4’te gösterilmektedir.

1 2 3 4 1 2 3 4

 Yerel Arama Öncesi Yol

 Yerel Arama Sonrası Yol

 Engel

Şekil 4.3. Yerel arama stratejisinin prensibi (En iyi çözümü temsil eden bu yolun
üçüncü hücreyi güncellenmiştir. İki yatay veya dikey ızgara hücresinin
merkezleri arasındaki uzaklığın 1 br olduğu düşünüldüğünde mavi yolun
uzunluğu 4.65 br, kırmızı yolun uzunluğu ise 4.16 br’dir. Bu sonuç yol
uzunluğuna göre %10.54’lük bir iyileştirme olduğunu göstermektedir.)

Algoritma 4.2: YAS’ın sözde kodu
Girdi: 𝑥ො, 𝑓መ, 𝐸, 𝑥௟, 𝑥௛ // Eski en iyi çözüm, eski en iyi çözümün maliyeti, ortam matrisi,
arama sınırları
Çıktı: 𝑥ො, 𝑓መ // Yeni en iyi çözüm, yeni en iyi çözümün maliyeti

1: 𝑚 ← 𝑠𝑖𝑧𝑒(𝑥ො)
2: for 𝑖 = 1: 𝑚
3: 𝑥ᇱ ← 𝑥ො
4: 𝑥ᇱ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)
5: 𝑓ᇱ ← DSAF(𝑥ᇱ, 𝐸) // Algoritma 4.1
6: if 𝑓ᇱ < 𝑓መ
7: 𝑥ො ← 𝑥ᇱ
8: 𝑓መ ← 𝑓ᇱ
9: end if

10: end for

66

Algoritma 4.3: Önerilen IABC algoritmasının sözde kodu
1: 𝐸, 𝐷, 𝑥௠௜௡, 𝑥௠௔௫ ← Ortam matrisi, problem boyutu, arama sınırları
2: 𝑇, 𝑆, 𝑙𝑖𝑚𝑖𝑡 ← Kontrol parametreleri
3: 𝑋 ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)ௌ×஽
4: 𝑓௜ ← DSAF(𝑥௜, 𝐸), 𝑖 ∈ {1,2, … , 𝑆}, 𝑥௜ ∈ 𝑋 // Algoritma 4.1
5: 𝑓𝑖𝑡௜ ← ℱ(𝑓௜) // Uygunluk değerleri - Eşitlik (3.33)
6: ൫𝑥ො, 𝑓መ൯ ← arg max

௫∈ఄ
𝑓𝑖𝑡(𝑥)

7: for 𝑡 = 1: 𝑇
8: for 𝑖 = 1: 𝑆
9: ൫𝑥௜

௝
൯

ᇱ
← 𝑥௜

௝
+ Φ௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯, 𝑥௥భ

~𝑋 \ {𝑥௜}, 𝑗~{1,2, … , 𝐷}
10: 𝑓௜

ᇱ ← DSAF ቀ൫𝑥௜
௝
൯

ᇱ
, 𝐸ቁ // Algoritma 4.1

11: 𝑓𝑖𝑡௜
ᇱ ← ℱ(𝑓௜

ᇱ) // Uygunluk değeri - Eşitlik (3.33)
12: if 𝑓𝑖𝑡௜

ᇱ > 𝑓𝑖𝑡௜
13: 𝑥௜

௝
← ൫𝑥௜

௝
൯

ᇱ

14: 𝑡𝑟𝑖𝑎𝑙௫೔
← 0

15: else
16: 𝑡𝑟𝑖𝑎𝑙௫೔

← 𝑡𝑟𝑖𝑎𝑙௫೔
+ 1

17: end if
18: end for
19: 𝛿 ← ℱ(𝑓𝑖𝑡) // Seçilme olasılıkları - Eşitlik (3.34)
20: for 𝑖 = 1: 𝑆
21: if 𝑟~𝑈(0,1) < 𝛿௜
22: ൫𝑥௜

௝
൯

ᇱ
← 𝑥௜

௝
+ 𝛷௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯, 𝑥௥భ

~𝑋 \ {𝑥௜}, 𝑗~{1,2, … , 𝐷}
23: 𝑓௜

ᇱ ← DSAF ቀ൫𝑥௜
௝
൯

ᇱ
, 𝐸ቁ // Algoritma 4.1

24: 𝑓𝑖𝑡௜
ᇱ ← ℱ(𝑓௜

ᇱ) // Uygunluk değeri - Eşitlik (3.33)
25: if 𝑓𝑖𝑡௜

ᇱ > 𝑓𝑖𝑡௜
26: 𝑥௜

௝
← ൫𝑥௜

௝
൯

ᇱ

27: 𝑡𝑟𝑖𝑎𝑙௫೔
← 0

28: else
29: 𝑡𝑟𝑖𝑎𝑙௫೔

← 𝑡𝑟𝑖𝑎𝑙௫೔
+ 1

30: end if
31: end if
32: end for
33: 𝑥௪ ← arg max

௫∈எ
𝑡𝑟𝑖𝑎𝑙(𝑥)

34: if 𝑡𝑟𝑖𝑎𝑙௫ೢ
> 𝑙𝑖𝑚𝑖𝑡

35: 𝑥௪ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)
36: 𝑓௫ೢ

← DSAF(𝑥௪, 𝐸) // Algoritma 4.1
37: 𝑓𝑖𝑡௫ೢ

← ℱ(𝑓௫ೢ
) // Uygunluk değeri - Eşitlik (3.33)

38: end if
39: ൫𝑥ො, 𝑓መ൯ ← arg max

௫∈எ
𝑓𝑖𝑡(𝑥)

40: ൫𝑥ො, 𝑓መ൯ ← YAS(𝑥ො, 𝑓መ, 𝐸, 𝑥௟ , 𝑥௛) // Algoritma 4.2
41: end for
42: 𝑥ො, 𝑓መ

67

Başla

Kontrol
parametrelerini

ayarla ve
popülasyonu üret

Yeni çözümler
üret

Maliyetleri
DSAF’de hesapla

Seçilme
olasılıklarını

hesapla

Tüm gözcüler
dağıtıldı mı?

Maksimum trial
değerli çözümü bul

Çözüm terk
edildi mi?

Rastgele yeni
çözüm üret

YAS’ı çalıştır

t > TDur

t ++

Evet

Hayır

Evet

Hayır

HayırEvet

İşçi Arı
Aşaması

Gözcü Arı
Aşaması

Kâşif Arı
Aşamasıo

Yeni çözümler
üret

Maliyetleri
DSAF’de hesapla

Şekil 4.4. Önerilen IABC algoritmasının akış diyagramı

4.2.2.3. IABC Algoritmasının Karmaşıklığı

Bu çalışmadaki amaç fonksiyonunda herhangi bir çözümün değerlendirme zamanı 𝑡௙
௥

olarak kabul edilirse, karmaşıklığı O(𝑡௙
௥) olarak ifade edilir. Temel ABC’de, önce

başlangıç popülasyonu amaç fonksiyonunda değerlendirilir. Popülasyon büyüklüğü 𝑆 ile

gösterilirse, ABC’nin başlangıç karmaşıklığı Eşitlik (4.7)’de gösterilmektedir.

68

O൫𝑆 ⋅ 𝑡௙
௥൯ = O(𝑆 ⋅ 𝑡௥) (4.7)

Daha sonra işçi arı, gözcü arı ve kâşif arı aşamaları maksimum iterasyon sayısı (𝑇) için

çalıştırılır. Amaç fonksiyonu işçi ve gözcü arı aşamalarında 𝑆 kez, bir çözümün sayacı

limit değerine ulaşırsa kâşif arı aşamasında bir kez çağrılır. ABC’nin iteratif karmaşıklığı

ve toplam karmaşıklığı sırasıyla Eşitlik (4.8) ve (4.9)’da gösterilmektedir [76].

O ቀ𝑇 ⋅ ൫𝑆 ⋅ 𝑡௙
௥ + 𝑆 ⋅ 𝑡௙

௥ + 𝑡௙
௥൯ቁ

= O ቀ𝑇 ⋅ ൫2 ⋅ 𝑆 ⋅ 𝑡௙
௥൯ቁ

= O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.8)

O(஺஻஼) = O(𝑆 ⋅ 𝑡௥) + O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) = O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.9)

Önerilen IABC’de ilk olarak, başlangıç popülasyonu amaç fonksiyonunda değerlendirilir.

Ancak, amaç fonksiyonunu çağırmadan önce bir çözüme karşılık gelen yol

doğrusallaştırma stratejisine tabi tutulur. Bu doğrusallaştırılmış yol (güncellenmiş

çözüm) amaç fonksiyonunda değerlendirilir. Bu stratejinin çalışma süresi 𝑡௜
௥ olarak

gösterilirse, IABC’nin başlangıç karmaşıklığı Eşitlik (4.10)’da gösterilmektedir.

O ቀ𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ቁ = O(𝑆 ⋅ 𝑡௥) (4.10)

Daha sonra işçi arı, gözlemci arı ve kâşif arısı aşamaları maksimum yineleme sayısı (𝑇)

boyunca çalıştırılır. Tıpkı ABC’de olduğu gibi, amaç fonksiyonu işçi ve gözlemci arı

aşamalarında 𝑆 kez ve çözümün sayacı limit değerine ulaşırsa kâşif arısı aşamasında bir

kez çağrılır. Ancak, her amaç fonksiyonu çağrısından önce doğrusallaştırma stratejisi

uygulanır. Amaç fonksiyonu yerel arama stratejisinde de çağrılır. Bu strateji yalnızca en

iyi çözüm üzerinde çalıştığı için amaç fonksiyonu yalnızca bir kez çağrılır. Yerel arama

stratejisinin çalışma zamanı 𝑡௢
௥ olarak gösterilirse, IABC’nin iteratif karmaşıklığı ve

toplam karmaşıklığı Eşitlik (4.11) ve (4.12)’de gösterilmektedir.

O ൬𝑇 ⋅ ቀ𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ + 𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ + ൫𝑡௜
௥ + 𝑡௙

௥൯ + ൫𝑡௢
௥ + 𝑡௙

௥൯ቁ൰

= O൫𝑇 ⋅ (𝑆 ⋅ 𝑡௥ + 𝑆 ⋅ 𝑡௥ + 𝑡௥ + 𝑡௥)൯

= O൫𝑇 ⋅ (2 ⋅ 𝑆 ⋅ 𝑡௥)൯

= O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.11)

69

O(ூ஺஻஼) = O(𝑆 ⋅ 𝑡௥) + O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) = O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.12)

Bu denklemler ABC ve IABC algoritmalarının aynı hesaplama karmaşıklığına sahip

olduğunu göstermektedir.

4.2.3. Bulgular

Bu çalışmadaki tüm simülasyonlar MATLAB programlama dilinde kodlanmış ve 16 GB

RAM ve 2.6 GHz işlemciye sahip bir bilgisayarda çalıştırılmıştır. Simülasyon

deneylerinde öncelikle önerilen IABC’nin performansı gerçekleştirilmiştir. IABC’nin

performans analizi için öncelikle aynı boyuttaki ortamlarda temel ABC ile detaylı bir

şekilde karşılaştırılmıştır. İkinci olarak, IABC’nin iyileştirme bileşenlerinin katkılarını

test etmek için bir ablasyon analizi gerçekleştirilmiştir. Üçüncü olarak IABC’nin

performansı farklı boyutlardaki ortamlarda test edilmiş ve algoritmanın ölçeklenebilirliği

araştırılmıştır. Son olarak IABC iyi bilinen ve yeni geliştirilmiş algoritmalarla ve güncel

çalışmalardan elde edilen sonuçlarla kapsamlı bir şekilde karşılaştırılmıştır.

4.2.3.1. IABC Algoritmasının ABC ile Karşılaştırılması

Bu simülasyonda önerilen IABC temel ABC ile karşılaştırılmıştır. İlk olarak, Şekil 4.5’te

gösterildiği gibi farklı zorluk seviyelerine sahip dört adet 20 x 20 br2 boyutunda ızgara

tipi ortam tasarlanmıştır. İki yatay veya dikey ızgara hücresinin merkezleri arasındaki

uzaklık 1 br’dir. Bu ortamlarda başlangıç noktası sol alt köşe (1, 1) ve hedef noktası sağ

üst köşedir (20, 20). Ortamların engel oranı, özellikleri ve tasarım kriterleri Tablo 4.2’de

gösterilmektedir.

 (a) (b) (c) (d)

Şekil 4.5. Aynı boyutlarda dört farklı ızgara tipi ortam: (a) Ortam 1, (b) Ortam 2, (c)
Ortam 3, (d) Ortam 4 (Gri kareler engelleri, kırmızı daireler ve yeşil kareler
sırasıyla robotun başlangıç ve hedef noktalarını temsil eder.)

70

Tablo 4.2. Ortamların engel oranı, özellikleri ve tasarım kriterleri

Ortam
Engel
Oranı

Özellik Tasarım Kriteri

1 0.19
Düzenli engellerle basit bir
ortam

Alternatif çözümlerin daha az
olduğu kısıtlı ortamlarda IABC
algoritmasının performansını
değerlendirmek. 2 0.26

Düzenli engellerle karmaşık
bir ortam

3 0.17
Rastgele dağıtılmış engellerle
basit bir ortam

Düzensiz ve kaotik ortamlarda
IABC algoritmasının
performansını değerlendirmek. 4 0.22

Rastgele dağıtılmış engellerle
karmaşık bir ortam

Her iki algoritma için de maksimum iterasyon sayısı, popülasyon boyutu ve limit değeri

sırasıyla 200, 50 ve 100’dür [77]. Algoritmalar 30 koşma ile çalıştırılmıştır. Simülasyon

sonucunda aynı boyuttaki ortamlarda her iki algoritma tarafından planlanan yollar,

IABC’nin ABC ile performans karşılaştırması ve ortalama yakınsama grafikleri sırasıyla

Şekil 4.6, Tablo 4.3 ve Şekil 4.7’de gösterilmektedir.

 (a) (b) (c) (d)

Şekil 4.6. ABC ve IABC algoritmalarının Ortam 1-4 için planladığı yollar:
(a) Ortam 1, (b) Ortam 2, (c) Ortam 3, (d) Ortam 4

Tablo 4.3. IABC ve ABC’nin aynı boyuttaki ortamlarda performans karşılaştırması
(OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Ortam Algoritma
Yol Uzunluğu (br) Hücre Sayısı

Toplam Dönüş Açısı
(rad)

Dönüş Enerji
Tüketimi

OP OR SS OP OR SS OP OR SS OP OR SS

1
ABC 43.21 46.06 1.80 38 41.33 1.88 11.78 15.39 2.26 14 19.53 3.03
IABC 41.24 41.24 0 11 11 0 4.94 4.94 0 2.36 2.36 0

2
ABC 57.21 60.25 2.43 53 55.96 4.86 14.92 18.09 2.94 13 19.93 5.31
IABC 55.63 55.71 0.32 18 18.93 0.25 11.35 11.36 0.04 2.54 2.66 0.39

3
ABC 30.79 33.84 1.65 24 29.03 2.25 7.06 13.32 2.84 9 17.80 4.93
IABC 27.46 28.79 0.98 8 10.40 1.63 1.95 4.20 1.47 2 3.95 1.05

4
ABC 31.21 34.17 1.18 26 29.10 1.49 10.21 15.47 2.45 10 16.56 4.17
IABC 28.50 29.61 0.47 12 15.03 1.27 5.53 7.38 1.23 2.59 4.28 1.64

71

 (a) (b) (c) (d)

Şekil 4.7. Ortam 1-4 için ortalama yakınsama grafikleri: (a) Ortam 1, (b) Ortam 2,
(c) Ortam 3, (d) Ortam 4

Şekil 4.6’da gösterilen yollar, IABC’nin ABC’den daha kısa ve daha düzgün yollar

ürettiğini göstermektedir. Doğrusallaştırma stratejisi nedeniyle IABC tarafından üretilen

yollardaki hücre sayısı ABC’den daha azdır. ABC, yolun geçtiği her hücreyi hesaba

katmıştır, bu da yolun maliyetini artırır. Tablo 4.3, IABC’nin yol uzunlukları açısından

her ortamda ABC’den üstün olduğunu göstermektedir. IABC, ABC’ye kıyasla ortalama

yol uzunlukları açısından Ortam 1 için %10.45, Ortam 2 için %7.53, Ortam 3 için %14.9

ve Ortam 4 için %13.35'lik bir iyileştirme sağlamıştır. Standart sapmalar, IABC’nin

ABC’den daha kararlı sonuçlar ürettiğini göstermektedir. Ayrıca, hücre sayısına göre

önerilen IABC ABC’den daha etkili görünmektedir. Ortalama hücre sayısı açısından

IABC, ABC’ye kıyasla Ortam 1 için %73.38, Ortam 2 için %66.17, Ortam 3 için %61.17

ve Ortam 4 için %48.34 oranında iyileştirme sağlamıştır. Bu sonuçlar, önerilen

algoritmanın diğer yöntemlere göre daha az hücre kullanarak aynı optimizasyon

hedeflerine ulaşabileceğini göstermektedir. Toplam dönüş açısına göre, IABC her ortam

için ABC’den daha düşük açılı ve daha düzgün yollar planlamıştır. Böylece diğer

metriklerde olduğu gibi bu metrikte de etkili bir yöntem olduğu görülmektedir. Robotların

dönüş hareketlerinde de enerji tükettiği düşünüldüğünde, önerilen algoritmanın robotun

enerjisini optimum şekilde yönettiği söylenebilir. Ortalama toplam dönüş açısı açısından,

IABC, ABC algoritmasına kıyasla Ortam 1 için %67.89, Ortam 2 için %37.18, Ortam 3

için %68.44 ve Ortam 4 için %52.26 oranında bir iyileştirme sağlamıştır. Şekil 4.7’de

gösterilen yakınsama grafikleri, IABC’nin ABC’den daha hızlı yakınsadığını

göstermektedir. Ayrıca, her iki algoritma da düzensiz engel ortamlarında düzenli engel

ortamlarına göre daha hızlı yakınsamıştır. Bu sonuçlar, IABC’nin tüm değerlendirme

ölçütleri açısından temel ABC'den üstün olduğunu kanıtlamaktadır.

72

4.2.3.2. IABC Algoritmasının Ablasyon Analizi

Ablasyon analizi, yapay zekâda bir algoritmanın farklı bileşenlerinin performansı

üzerindeki etkisini incelemek için kullanılan bir yöntemdir. Modelin belirli bir özelliğini

veya bileşenini kaldırarak performans değişikliği analiz edilir ve bu da kritik bileşenlerin

tanımlanmasına olanak tanır. Önerilen IABC’nin doğrusallaştırma ve yerel arama olmak

üzere iki iyileştirme bileşeni olduğundan, bu iki bileşenin ayrı ayrı etkilerini incelemek

ve hangisinin daha kritik bir iyileştirme olduğunu belirlemek önemlidir. Bu etkiyi

incelemek için, IABC-1 ve IABC-2 olmak üzere iki algoritma dikkate alınmıştır. IABC-

1 sadece doğrusallaştırma bileşenini içerirken, IABC-2 sadece yerel arama bileşenini

içerir. IABC-1 ve IABC-2, Alt Başlık 4.2.3.1’de bahsedilen Ortam 2 ve 4 için test

edilmiştir. Adil bir karşılaştırma için, IABC-1 ve IABC-2’nin maksimum iterasyon sayısı

ve popülasyon boyutu sırasıyla 200 ve 30 olarak ayarlanmıştır. Algoritmaların limit

değerleri de 100 olarak ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır.

ABC, IABC-1, IABC-2 ve IABC’nin Ortam 2 ve 4 için yol uzunluğu karşılaştırması

Tablo 4.4’te gösterilmektedir.

Tablo 4.4. ABC, IABC-1, IABC-2 ve önerilen IABC algoritmalarının Ortam 2 ve 4
için yol uzunluğu (br) karşılaştırması (OP: Optimum, OR: Ortalama, SS:
Standart Sapma)

Algoritma
Ortam 2 Ortam 4

OP OR SS OP OR SS
ABC 57.21 60.25 2.43 31.21 34.17 1.18

IABC-1 55.63 56.36 1.32 28.83 30.60 0.83
IABC-2 57.21 58.79 1.45 29.21 33.06 1.28
IABC 55.63 55.71 0.32 28.50 29.61 0.47

Tablo 4.4’te IABC-1’in IABC-2’den daha fazla iyileştirme sağladığı görülmektedir.

Ortam 2'deki ortalamalar açısından, IABC-1 ABC’ye kıyasla %6.45’lik bir iyileştirme

sağlarken, IABC-2 %2.43’lük bir iyileştirme sağlamıştır. Ortam 4 için ortalamalar

açısından, IABC-1 ABC’ye kıyasla %10.53’lük bir iyileştirme sağlarken, IABC-2

%3.26’lık bir iyileştirme sağlamıştır. Ayrıca, Ortam 2 için ortalamalar açısından IABC,

IABC-1’e kıyasla %1.17 ve IABC-2’ye kıyasla %5.21’lik bir iyileştirme göstermiştir.

Ortam 4 için ortalamalar açısından IABC, IABC-1’e kıyasla %3.24 ve IABC-2’ye kıyasla

%10.44’lük bir iyileştirme göstermiştir. Bu sonuçlara göre, doğrusallaştırma bileşeni

yerel arama bileşeninden daha kritiktir.

73

4.2.3.3. IABC Algoritmasının Ölçeklenebilirlik Analizi

Önerilen algoritmanın farklı boyutlardaki veri kümelerinde benzer performans gösterip

göstermediğini belirlemek de önemlidir. Bu nedenle, 30 x 30 br2 ve 40 x 40 br2

boyutlarında Ortam 5 ve Ortam 6 olarak adlandırılan iki ek ortam daha tasarlanmıştır. Bu

ortamlarda başlangıç noktaları sol alt köşe (1, 1); hedef noktaları sağ üst köşelerdir, Ortam

5 için (30, 30) ve Ortam 6 için (40, 40). Ortam 5 ve 6'nın engel oranları Alt Başlık

4.2.3.1’de bahsedilen Ortam 4 ile aynıdır. Bu ortamlar Şekil 4.8’de gösterilmektedir.

 (a) (b)

Şekil 4.8. Farklı boyutlarda iki farklı ızgara tipi ortam: (a) Ortam 5, (b) Ortam 6
(Gri kareler engelleri, kırmızı daireler ve yeşil kareler sırasıyla robotun
başlangıç ve hedef noktalarını temsil eder.)

Adil bir karşılaştırma için ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon

boyutu sırasıyla 200 ve 50 olarak ayarlanmıştır. Algoritmaların limit değerleri 100 olarak

ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. Ortam 5 ve 6 için ABC

ve IABC tarafından planlanan yollar Şekil 4.9’da gösterilmektedir. IABC ve ABC’nin

farklı boyutlardaki ortamlarda performans karşılaştırması Tablo 4.5’te gösterilmektedir.

74

 (a) (b)

Şekil 4.9. ABC ve IABC algoritmalarının Ortam 5 ve 6 için planladığı yollar:
(a) Ortam 5, (b) Ortam 6

Tablo 4.5. IABC ve ABC’nin 30 x 30 br2 ve 40 x 40 br2 boyutlardaki ortamlarda
performans karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart
Sapma)

Ortam Algoritma
Yol Uzunluğu (br) Hücre Sayısı

Toplam Dönüş Açısı
(rad)

Dönüş Enerji
Tüketimi

OP OR SS OP OR SS OP OR SS OP OR SS

5
ABC 56.52 64.54 3.75 48 56.40 3.72 21.99 29.68 4.15 22 35.06 5.69
IABC 45.74 52.10 3.15 17 22.16 2.56 10.35 15.73 2.65 1.18 6.79 2.92

6
ABC 90.42 114.5 13.39 79 102.4 12.96 32.98 47.83 8.50 37 60.53 15.77
IABC 68.67 91.25 11.77 23 32.76 4.89 15.38 26.66 5.86 6.40 15.36 5.09

Şekil 4.9, IABC’nin 30 x 30 br2ve 40 x 40 br2 ortamlarda 20 x 20 br2 ortamlarda olduğu

gibi ABC’den daha kısa yollar ürettiğini göstermektedir. Tablo 4.5 dikkate alındığında,

IABC tüm değerlendirme metriklerinde ABC’den yine daha iyi performans göstermiştir.

Ortalama yol uzunlukları açısından IABC, Ortam 5 için %19.26 ve Ortam 6 için

%20.31’lik bir iyileştirme göstermiştir. Ortalama hücre sayısı açısından, IABC sırasıyla

%60.71 ve %68.01’lik bir iyileştirme göstermiştir. Ortalama toplam dönüş açısı

açısından, IABC sırasıyla %47.02 ve %44.24’lük bir iyileştirme göstermiştir. Her

metriğin standart sapmalarına göre, IABC’nin ABC’den daha kararlı bir algoritma olduğu

söylenebilir. Bu sonuçlar, önerilen IABC’nin farklı boyutlardaki veri kümelerinde benzer

performans gösterdiğini ve ızgara tabanlı yol planlama probleminde kullanışlı bir

algoritma olduğunu kanıtlamaktadır.

75

4.2.3.4. IABC Algoritmasının İyi Bilinen ve Yeni Geliştirilmiş Algoritmalarla

Karşılaştırılması

Bu simülasyonda, önerilen IABC’nin yol planlama performansı DE, PSO, GA ve

kovaryans matrisi adaptasyon evrim stratejisi (covariance matrix adaptation evolution

strategy, CMA-ES) [78] gibi iyi bilinen algoritmalarla karşılaştırılmıştır. Ayrıca

literatürdeki beyaz köpekbalığı optimizasyonu (white shark optimizer, WSO) [79] ve

geyik sürüsü optimizasyonu (elk herd optimizer, EHO) [80] gibi yeni geliştirilmiş

algoritmalarla da karşılaştırılmıştır. Bu karşılaştırmalar için Alt Başlık 4.2.3.1’de

belirtilen Ortam 2 kullanılmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. Tüm

algoritmaların kontrol parametreleri Tablo 4.6’da, IABC’nin iyi bilinen ve yeni

geliştirilmiş algoritmalarla performans karşılaştırılması Tablo 4.7’de gösterilmektedir.

Tablo 4.6. Tüm algoritmaların kontrol parametreleri (𝑇 maksimum iterasyon sayısı,
𝑁 ve 𝜆 popülasyon boyutu, 𝐹 ölçekleme faktörü, 𝐶𝑅 çaprazlama oranı, 𝑐ଵ
ve 𝑐ଶ kişisel ve sosyal katsayılar, 𝑀𝑅 mutasyon oranı, 𝑓௟ ve 𝑓௛ dalgalı
hareketin sınır frekansları, 𝜏 ivme katsayısı, 𝑎଴, 𝑎ଵ ve 𝑎ଶ pozitif sabitler,
𝐵௥ boğa oranı, 𝜇 ebeveyn sayısı, 𝑐ఙ ve 𝑑ఙ adım boyutu kontrolü için
öğrenme oranı ve sönümleme parametresi, 𝑐௖, ve 𝑐ఓ kovaryans güncelleme
parametreleridir. CMA-ES'nin parametreleri bu çalışmadaki yol planlama
problemi için problem boyutu 18 ve arama alanı sınırları [1, 20] ile
ayarlanmıştır.)

Algoritma Parametre

ABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 100

DE 𝑇 = 200, 𝑆 = 50, 𝐹 = [0.2, 0.8], 𝐶𝑅 = 0.2

PSO 𝑇 = 200, 𝑆 = 50, 𝑐ଵ = 2, 𝑐ଶ = 2

GA 𝑇 = 200, 𝑆 = 50, 𝐶𝑅 = 0.9, 𝑀𝑅 = 0.1

CMA-ES 𝑇 = 200, 𝑆 = 50, 𝜇 = 25, 𝑐ఙ = 0.43, 𝑑ఙ = 1.43, 𝑐௖ = 0.2, 𝑐ఓ = 0.0581

WSO 𝑇 = 200, 𝑆 = 50, 𝑓௟ = 0.07, 𝑓௛ = 0.75, 𝜏 = 4.12, 𝑎଴ = 6.25,
𝑎ଵ = 100, 𝑎ଶ = 0.0005

EHO 𝑇 = 200, 𝑆 = 50, 𝐵௥ = 0.2

IABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 100

76

Tablo 4.7. Ortam 2 için IABC’nin iyi bilinen ve yeni geliştirilmiş algoritmalarla
performans karşılaştırılması (OP: Optimum, OR: Ortalama, SS: Standart
Sapma)

Algoritma
Yol Uzunluğu (br) Hücre Sayısı

Toplam Dönüş Açısı
(rad)

Dönüş Enerji
Tüketimi

OP OR SS OP OR SS OP OR SS OP OR SS
ABC 57.21 60.25 2.43 53 55.96 4.86 14.92 18.09 2.94 13 19.93 5.31
DE 57.21 57.21 0.00 52 52.00 0.00 14.92 18.22 1.20 13 16.13 1.69

PSO 75.21 78.49 1.84 70 73.06 2.39 16.49 26.65 3.05 20 33.53 4.88
GA 80.04 99.57 14.56 64 84.70 16.32 24.34 35.18 4.17 25 50.53 10.54

CMA-ES 93.45 106.4 3.76 94 103.7 4.14 16.49 24.19 6.39 23 35.40 7.95
WSO 57.80 65.78 9.54 54 62.83 11.54 16.49 24.24 5.24 15 30.83 10.97
EHO 57.21 60.77 4.49 52 55.76 3.22 14.92 19.16 2.40 11 20 4.54
IABC 55.63 55.71 0.32 18 18.93 0.25 11.35 11.36 0.04 2.54 2.66 0.39

Tablo 4.7’ye göre, IABC’nin tüm değerlendirme ölçütlerinde iyi bilinen ve yeni

geliştirilmiş algoritmalardan daha iyi performans gösterdiği görülmektedir. Ortalama yol

uzunluğu açısından IABC, DE’ye kıyasla %2.62, PSO’ya kıyasla %29.02, GA’ya kıyasla

%44.05, CMA-ES’ye kıyasla %47.67, WSO’ya kıyasla %15.31 ve EHO’ya kıyasla

%8.33 oranında bir iyileştirme göstermiştir. Ortalama hücre sayısı açısından, IABC aynı

sırayla %63.59, %74.09, %77.65, %81.74, %69.87 ve %66.05 oranında bir iyileştirme

göstermiştir. Ortalama toplam dönüş açısı açısından IABC, sırasıyla %37.64, %57.36,

%67.71, %53.03, %53.13 ve %40.71 oranında iyileştirme göstermiştir. Standart

sapmalardan da görülebileceği gibi IABC diğer algoritmalardan daha kararlıdır. Yol

uzunluğu ve hücre sayısının standart sapmaları açısından IABC, DE ile rekabet hâlinde

olmuştur; ancak DE’nin yerel minimumda takılıp kaldığı ve IABC’nin en iyi ve ortalama

değerler açısından DE’den üstün olduğu açıktır. Bu sonuçlar önerilen IABC’nin iyi

bilinen ve yeni geliştirilmiş algoritmalardan daha iyi performans gösterdiğini

kanıtlamaktadır.

4.2.3.5. IABC Algoritmasının Güncel Çalışmalardaki Sonuçlarla Karşılaştırılması

Bu simülasyon, önerilen IABC’nin yol planlama performansını literatürdeki son

çalışmalarda önerilen yöntemlerin sonuçlarıyla karşılaştırmayı amaçlamaktadır. Bu

nedenle IABC’nin yol planlama performansı 20 x 20 br2 boyutlu ızgara ortamlarda ABC

ve [81], [82], [83], [84] ve [85]’te önerilen algoritmaların performanslarıyla

karşılaştırılmıştır. Bu referanslarda tasarlanan ortamlar Şekil 4.10’da gösterilmektedir.

77

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Şekil 4.10. [81], [82], [83], [84] ve [85]’te tasarlanan ortamlar: (a) Ortam 7 [81], (b)
Ortam 8 [81], (c) Ortam 9 [82], (d) Ortam 10 [82], (e) Ortam 11 [83], (f)
Ortam 12 [83], (g) Ortam 13 [84], (h) Ortam 14 [85]

78

[81]’deki algoritmalar WOA, PSO, gri kurt optimizasyonu (grey wolf optimizer, GWO),

isli sumru optimizasyon algoritması (sooty tern optimization algorithm, STOA), salp sürü

algoritması (salp swarm algorithm, SPSA), martı optimizasyon algoritması (seagull

optimization algorithm, SOA) ve [81]’de önerilen algoritma olan hibrit ateş böceği-balina

optimizasyon algoritmasıdır (hybrid firefly-whale optimization algorithm, FWOA). Adil

bir karşılaştırma için, ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon

boyutu sırasıyla 500 ve 60 olarak ayarlanmıştır. ABC ve IABC’nin limit değerleri 100

olarak ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. [81]’de

tasarlanan ortamlarda (Ortam 7 ve 8) FWOA ve bu çalışmada önerilen IABC tarafından

planlanan yollar Şekil 4.11 ve 4.12’de gösterilmektedir. Bu ortamlarda başlangıç noktası

sol alt köşe (1, 1) ve hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu

karşılaştırması Tablo 4.8’de gösterilmektedir.

 (a) (b)

Şekil 4.11. FWOA ve IABC algoritmalarının Ortam 7 için planladığı yollar:
(a) FWOA, (b) IABC

 (a) (b)

Şekil 4.12. FWOA ve IABC algoritmalarının Ortam 8 için planladığı yollar:
(a) FWOA, (b) IABC

79

Tablo 4.8. IABC ile ABC ve [81]’deki algoritmaların yol uzunluğu (br)
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma
Ortam 7 Ortam 8

OP OR SS OP OR SS
ABC 29.79 31.07 0.64 30.38 31.83 0.93
WOA 28.70 45.48 67.09 29.80 45.71 66.95
PSO 28.46 31.67 4.60 29.91 44.59 67.15

GWO 28.82 30.55 2.40 29.21 31.05 0.92
STOA 29.40 29.45 0.13 30.87 31.14 0.17
SSA 28.82 29.85 0.36 29.11 31.33 0.54
SOA 28.82 29.45 0.22 30.54 31.16 0.21

FWOA 28.46 29.37 0.56 28.42 30.55 1.36
IABC 28.46 28.52 0.18 28.19 28.39 0.34

Ortam 7 için, IABC ile planlanan yolların en iyi uzunlukları ABC’ye kıyasla %4.48,

WOA’ya kıyasla %0.82, STOA’ya kıyasla %3.20 ve GWO, SSA ve SOA’ya kıyasla

%1.26 oranında kısaltılmıştır. IABC, FWOA ve PSO ile aynı sonucu üretmiştir. Tablo

4.9’daki sıraya göre ortalama uzunluklarda sırasıyla %8.22, %37.28, %9.95, %6.66,

%3.15, %4.45, %3.17 ve %2.89 oranında iyileşme gözlemlenmiştir. Standart

sapmalardan da görülebileceği gibi, IABC diğer algoritmalardan çoğunlukla daha kararlı

olmasına rağmen, STOA’dan biraz daha kararsızdır. Ancak bu kararsızlık, STOA’dan

daha iyi olan en iyi-ortalama bandındadır. En kararsız algoritma WOA’dır. Ortam 8 için

IABC ile planlanan yolların en iyi uzunlukları %7.20, %5.39, %5.73, %3.50, %8.67,

%3.16, %7.67 ve %0.81 oranında kısaltılmıştır. Ortalama uzunluklarda %10.80, %37.89,

%36.33, %8.57, %8.84, %9.39, %8.89 ve %7.08 oranında bir iyileşme gözlemlenmiştir.

Standart sapmalardan da görülebileceği gibi IABC’nin STOA, SOA ile yaklaşık olarak

aynı kararlılık seviyesinde olduğu söylenebilir. En kararsız algoritmaların PSO ve WOA

olduğu görülmektedir.

[82]’deki algoritmalar ACO, ABC, WOA, yıldırım tutunma prosedürü optimizasyonu

(lightning attachment procedure optimization, LAPO), SSA, GWO, beyaz balina

algoritması (beluga whale algorithm, BWO), karadul örümceği algoritması (black widow

spider algorithm, BWOA) ve [82]’de önerilen algoritma olan iyileştirilmiş bir ACO ve

iyileştirilmiş bir ABC’nin hibritidir (IACO-IABC). Adil bir karşılaştırma için, ABC ve

IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu sırasıyla 200 ve 40 olarak

ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak ayarlanmış ve algoritmalar

bağımsız olarak 30 kez çalıştırılmıştır. [82]’de tasarlanan ortamlarda (Ortam 9 ve 10)

80

IACO-IABC ve bu çalışmada önerilen IABC tarafından planlanan yollar Şekil 4.13 ve

4.14’te gösterilmektedir. Bu ortamlarda başlangıç noktası sol üst köşe (1, 20) ve hedef

noktası sağ alt köşedir (20, 1). Algoritmaların yol uzunluğu karşılaştırması Tablo 4.9’da

gösterilmektedir.

 (a) (b)

Şekil 4.13. IACO-IABC ve IABC algoritmalarının Ortam 9 için planladığı yollar:
(a) IACO-IABC, (b) IABC

 (a) (b)

Şekil 4.14. IACO-IABC ve IABC algoritmalarının Ortam 10 için planladığı yollar:
(a) IACO-IABC, (b) IABC

81

Tablo 4.9. IABC ile ABC ve [82]’deki algoritmaların yol uzunluğu (br)
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma
Ortam 9 Ortam 10

OP OR SS OP OR SS
ABC 29.77 30.11 0.27 31.20 31.57 0.30
ACO 28.62 31.62 2.44 30.38 32.09 1.39
WOA 30.00 30.93 0.76 32.78 33.15 0.30
LAPO 30.02 30.52 0.40 32.77 33.25 0.39
SSA 30.36 31.17 0.66 30.84 30.88 0.03

GWO 30.11 30.56 0.37 31.84 31.89 0.04
BWO 32.23 32.52 0.23 33.37 33.46 0.06

BWOA 30.23 30.61 0.31 31.10 31.28 0.15
IACO-IABC 31.40 31.40 0.00 30.89 30.89 0.00

IABC 27.73 28.52 0.45 29.04 29.33 0.22

Ortam 9 için IABC ile planlanan yolların en iyi uzunlukları Tablo 4.10’daki sıraya göre

sırasıyla %6.85, %3.12, %7.56, %7.64, %8.65, %7.88, %13.95, %8.27 ve %11.68

oranında kısaltılmıştır. Ortalama uzunluklarda sırasıyla %5.29, %9.8, %7.79, %6.56,

%8.49, %6.68, %12.3, %6.83 ve %9.16 oranında iyileşme gözlemlenmiştir. Standart

sapmalardan da görülebileceği gibi IABC bazı yöntemlere göre biraz daha kararsızdır.

Ancak bu kararsızlık bu yöntemlerden daha iyi olan en iyi-ortalama bandındadır. En

kararsız algoritma ACO’dur. Ortam 10 için IABC ile planlanan yolların en iyi uzunlukları

sırasıyla %6.91, %4.39, %11.38, %11.35, %5.82, %8.77, %12.98, %6.6 ve %5.97

oranında kısaltılmıştır. Ortalama uzunluklarda sırasıyla %7.08, %8.57, %11.52, %11.79,

%5.02, %8.01, %12.32, %6.23 ve %5.04 oranında iyileşme gözlemlenmiştir. Standart

sapmalardan da görülebileceği gibi IABC’nin diğer algoritmalarla yaklaşık olarak aynı

kararlılık seviyesinde olduğu söylenebilir. En kararsız algoritmanın yine ACO olduğu

görülmektedir.

[83]’teki algoritmalar ACO, ACO ve GA’nın bir hibriti (ACO+GA), SSA ve [83]’te

önerilen algoritma olan iyileştirilmiş SSA (improved SSA, ISSA) algoritmasıdır. Adil bir

karşılaştırma için, ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu

sırasıyla 200 ve 50 olarak ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak

ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. [83]’te tasarlanan

ortamlar (Ortam 11 ve 12) ile ISSA ve bu çalışmada önerilen IABC tarafından planlanan

yollar Şekil 4.15 ve 4.16’da gösterilmektedir. Bu ortamlarda başlangıç noktası sol alt köşe

(1, 1) ve hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu

karşılaştırması Tablo 4.10’da gösterilmektedir.

82

 (a) (b)

Şekil 4.15. ISSA ve IABC algoritmalarının Ortam 11 için planladığı yollar:
(a) ISSA, (b) IABC

 (a) (b)

Şekil 4.16. ISSA ve IABC algoritmalarının Ortam 12 için planladığı yollar:
(a) ISSA, (b) IABC

Tablo 4.10. IABC ile ABC ve [83]’teki algoritmaların yol uzunluğu (br) karşılaştırması
(OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma
Ortam 11 Ortam 12

OP OR SS OP OR SS
ABC 29.21 33.21 1.95 38.97 40.91 1.38
ACO 29.21 31.81 2.02 39.79 45.45 3.06

ACO+GA 28.62 30.70 1.43 38.97 40.78 1.13
SSA 29.21 32.60 1.24 38.97 42.31 3.25
ISSA 27.56 27.89 0.61 37.13 37.26 0.12
IABC 27.56 27.64 0.15 37.13 37.18 0.06

Ortam 11 için, IABC ile planlanan yolların en iyi uzunlukları ABC, ACO ve SSA ile

karşılaştırıldığında %5.65 ve ACO+GA ile karşılaştırıldığında %3.73 oranında

kısaltılmıştır. IABC, ISSA ile aynı sonucu üretmiştir. Ortalama uzunlukta ABC ile

83

karşılaştırıldığında %16.76, ACO ile karşılaştırıldığında %13.11, ACO+GA ile

karşılaştırıldığında %9.97, SSA ile karşılaştırıldığında %15.2 ve ISSA ile

karşılaştırıldığında %0.89 oranında bir iyileşme gözlemlenmiştir. Standart sapmalardan

da görülebileceği gibi, en kararlı algoritma IABC iken, en kararsız algoritma ACO’dur.

Ortam 12 için, IABC ile planlanan yolların en iyi uzunlukları ACO ile karşılaştırıldığında

%6.7 ve ABC, ACO+GA ve SSA ile karşılaştırıldığında %4.72 oranında kısaltılmıştır.

IABC, yine ISSA ile aynı sonucu üretmiştir. ABC ile karşılaştırıldığında ortalama

uzunlukta %9.10, ACO ile karşılaştırıldığında %18.19, ACO+GA ile karşılaştırıldığında

%8.82 ve SSA ile karşılaştırıldığında %12.12 ve ISSA ile karşılaştırıldığında %0.21

iyileşme gözlemlenmiştir. IABC, ISSA ile yaklaşık olarak aynı kararlılık düzeyine

sahiptir, diğer algoritmalar daha kararsızdır. Genel olarak, önerilen IABC diğer

algoritmalardan daha iyi performans göstermiştir. ISSA ile aralarında ufak bir fark

olmasına rağmen, yine de ondan üstün olduğu söylenebilir. Bu sonuçlar, IABC’nin yol

uzunluğu açısından diğer metasezgisellerden üstün olduğunu kanıtlamaktadır.

[84] ve [85]’teki algoritmalar dijkstra, A*, [84]’te önerilen iyileştirilmiş sezgisel

mekanizmalı ACO (improved heuristic mechanism ACO, IHMACO) ve [85]’te önerilen

iyileştirilmiş A* (improved A*, IA*) algoritmasıdır. Adil bir karşılaştırma için, ABC ve

IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu sırasıyla 200 ve 30 olarak

ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak ayarlanmış ve algoritmalar

bağımsız olarak 30 kez çalıştırılmıştır. [84] ve [85]’te tasarlanan ortamlarda (Ortam 13

ve 14) IHMACO, IA* ve bu çalışmada önerilen IABC tarafından planlanan yollar Şekil

4.17 ve 4.18’de gösterilmektedir. Ortam 13’te başlangıç noktası sol üst köşe (1, 20) ve

hedef noktası sağ alt köşedir (20, 1). Ortam 14’te başlangıç noktası sol alt köşe (1, 1) ve

hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu karşılaştırması Tablo

4.11’de gösterilmektedir.

84

 (a) (b)

Şekil 4.17. IHMACO ve IABC algoritmalarının Ortam 13 için planladığı yollar:
(a) IHMACO, (b) IABC

 (a) (b)

Şekil 4.18. IA* ve IABC algoritmalarının Ortam 14 için planladığı yollar: (a) IA*,
(b) IABC

Tablo 4.11. IABC ile ABC, [84] ve [85]’teki algoritmaların yol uzunluğu (br)
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

 Algoritma
Ortam 13 [84] Ortam 14 [85]

OP OR SS OP OR SS
ABC 30.97 33.58 2.10 30.97 35.82 3.23

Dijkstra 29.79 29.79 0.00 32.72 32.72 0.00
A* 29.79 29.79 0.00 32.09 32.09 0.00

IHMACO 29.79 29.79 0.00 - - -
IA* - - - 31.01 31.01 0.00

IABC 28.70 29.01 0.68 29.55 30.09 0.47

Ortam 13 için, IABC ile planlanan yolların en iyi uzunlukları ABC’ye kıyasla %7.33,

dijkstra, A* ve IHMACO’ya kıyasla %3.66 oranında kısaltılmıştır. Ortalama uzunlukta

ABC’ye kıyasla %7.33, dijkstra, A* ve IHMACO’ya kıyasla %2.62 oranında bir iyileşme

85

gözlemlenmiştir. Ortam 14 için, IABC ile planlanan yolların en iyi uzunlukları ABC,

dijkstra, A* ve IA*’a göre sırasıyla %4.59, %9.69, %7.92 ve %4.71 oranında

kısaltılmıştır. Ortalama uzunluklarda sırasıyla %16.01, %8.03, %6.23 ve %2.97 oranında

bir iyileşme gözlemlenmiştir. Standart sapmalardan da görülebileceği gibi, dijkstra ve A*

gibi klasik algoritmalar rastgelelik ve keşif mekanizmalarını içermediğinden, tüm

çalışmalarda aynı sonucu üretmeleri ve standart sapmanın sıfır olması kaçınılmazdır.

Önerilen IABC rastgelelik içerdiğinden, her çalışma farklı sonuçlar üretir ve bu standart

sapmaya yansır. Ancak, en iyi ve ortalama sonuçlar IABC’nin klasik arama

algoritmalarından daha verimli olduğunu göstermektedir. Sonuç olarak, önerilen

algoritma ızgara tabanlı yol planlama problemi için etkili bir yöntem olabilir.

4.3. Çok Engelli Ortamlarda Hızlı Yol Planlama

Literatürde birçok yol planlama algoritması geliştirilmesine rağmen, bu algoritmalar

karmaşık ve çok engelli ortamlarda uygulandığında uzun çalışma sürelerine ihtiyaç

duymaktadır. Bunun için bu algoritmaların çalışma hızlarının artırılması gerekmektedir.

Ancak ihtiyaç duyulan hızlanma genellikle algoritma tarafında çözülmeye

çalışılmaktadır. Daha hızlı algoritmalar geliştirilmekte veya mevcut algoritmalar

iyileştirilerek karmaşıklıkları azaltılmaktadır. Bu çalışmada ise hızlanmanın problem

tarafında çözülmesine odaklanılmış ve problemin basitleştirilmesi üzerinde durulmuştur.

Bunun için engellerin kümelenmesiyle ortam karmaşıklığının azaltılması ve bu sayede

yol planlama algoritmalarının çalışma hızlarının artırılması amaçlanmıştır. Bu amaçlar

doğrultusunda metasezgisel ve kümeleme algoritmalarının bir arada kullanıldığı hibrit bir

model önerilmiştir. Öncelikle PSO ve k-ortalamalar kümeleme algoritmaları ile önerilen

modelin detaylı analizi gerçekleştirilmiştir. Ardından, önerilen modelin etkinliği TLBO,

ABC, DE, GA ve hiyerarşik kümeleme algoritmalarının kullanılması ile karşılaştırmalı

olarak değerlendirilmiştir.

4.3.1. Problem Tanımı

Bu çalışmadaki yol planlama kübik eğri interpolasyonu (cubic spline interpolation) ile

gerçekleştirilmiştir. Kübik eğri interpolasyonunun uygulanabilmesi için belli noktalara

ihtiyaç duyulur. PSO algoritmasındaki çözümlere karşılık gelen bu noktalar parametre

noktaları olarak, noktaların sayısı da parametre sayısı (𝐷) olarak ifade edilir. Öncelikle,

amaç fonksiyonuna girdi olarak gelen bu parametre noktalarının 𝑥 ve 𝑦 konumları,

86

planlanacak yolun başlangıç ve bitiş noktaları ile birlikte farklı satır vektörlerine aktarılır.

Bu vektörler 𝑛௬ adet arama noktasına sahip kübik eğri interpolasyonu ile ayrı ayrı

interpole edilir. Bu şekilde planlanan yolun 𝑥 ve 𝑦 nokta dizileri elde edilmiş olur, burada

𝑥 dizisindeki her bir nokta 𝑝௜௫, 𝑦 dizisindeki her bir nokta 𝑝௜௬ olarak ifade edilir. Daha

sonra, parametre noktalarının uygunluk değerleri Eşitlik (4.13)’te gösterilen amaç

fonksiyonu ile hesaplanır. Bu denklem iki kısımdan oluşmaktadır. Birinci kısım robotun

gideceği yolun uzunluğunu hesaplarken, ikinci kısım da robot ile engeller arasındaki

uygulanabilir mesafeyi (engelden kaçınma kontrolü) hesaplar [86].

arg min
௣೔∈௒

ℱ = 𝐿(1 + 𝛽𝑉) (4.13)

Burada, 𝑖 ∈ ൛1,2, … , 𝑛௬ൟ, 𝑌 planlanan yolu, 𝑝௜ bu yolun 𝑖’inci noktasını, 𝐿 yol uzunluk

fonksiyonunu, 𝛽 engel ihlal faktörünü, 𝑉 engelden kaçınma fonksiyonunu temsil eder.

Yol uzunluğu Eşitlik (4.14)’te ve engelden kaçınma fonksiyonu Eşitlik (4.15)’te

gösterilmektedir.

𝐿 = ෍ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ

 (4.14)

𝑉 = ෍ ෍ ቐ
ቆ1 −

‖𝑝௜ − 𝑝௞
௢‖

𝑟௞
௢ ቇ , 𝑒ğ𝑒𝑟 ቆ1 −

‖𝑝௜ − 𝑝௞
௢‖

𝑟௞
௢ ቇ > 0 𝑖𝑠𝑒

0, 𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

௡೚

௞ୀଵ

௡೤

௜ୀଵ

 (4.15)

Burada, 𝑛௢ engel sayısını, 𝑝௜ yolun 𝑖’inci noktasını, 𝑝௞
௢ 𝑘’ıncı engelin merkez noktasını

ve 𝑟௞
௢ ise 𝑘’ıncı engelin yarıçapını temsil eder. Bu çalışmada mobil robot ve engeller

dairesel olarak tasarlanmıştır. Engelden kaçınma kontrolünde sadece engelin yarıçapı

değil (𝑟௢), aynı zamanda yarıçapı boyutu (𝑟௥) ve güvenlik mesafesi (𝐿௚) de hesaba

katılmıştır. Güvenlik mesafesi robot ile engel arasındaki boş alanı ifade eder. Engelden

kaçınma kontrolünün temsili çizimi Şekil 4.19’da gösterilmektedir.

87

Şekil 4.19. Engelden kaçınma kontrolünün temsili çizimi

4.3.2. Önerilen Yöntem

Bu çalışmada yol planlama algoritmalarının çalışma süreleri üzerinde durulmuş ve

metasezgisel ile kümeleme algoritmalarının bir arada kullanıldığı hibrit bir model

önerilmiştir. Bu model üç aşamadan oluşur: İlk aşamada, kullanılan metasezgisel

algoritmanın kontrol parametreleri ile kümeleme oranı belirlenir, ortam ve engel

karakteristikleri tanımlanarak orijinal ortam oluşturulur. İkinci aşama olarak, bir

kümeleme yöntemine dayanarak geliştirilen bir engel kümeleme algoritması çalıştırılır.

Bu algoritma ile orijinal ortamdaki engeller belli sayılarda kümelenir. Kümelenen

engeller tek bir engel olarak tanımlanır. Böylece ortam karmaşıklığı azaltılır ve yol

planlama için yeni bir ortam oluşturulur. Üçüncü aşamada ise söz konusu metasezgisel

algoritmanın kullanıldığı bir yol planlama simülasyonu ile bu yeni ortamda optimum yol

planlanır. Önerilen modelin akış diyagramı Şekil 4.20’de gösterilmektedir.

88

Başla

Bir metasezgisel
algoritma seç, kontrol

parametrelerini ve amaç
fonksiyonunu belirle

Ortam ve engel
karakteristikleri tanımla

Orijinal Ortamı oluştur

Bitir

Seçilen metasezgisel
algoritmayı kullanarak

güvenli optimum yolu bul

Güvenli optimum
yolu göster

Bir kümeleme
algoritması seç

Seçilen kümeleme
algoritmasını kullanarak

engelleri kümele

Küme sayacı
engel sayısını

aştı mı?Hayır

Kümedeki
engel sayısı 1

mi?

Kümeyi tek bir
engele

dönüştürerek çok
engelli küme
dizisine aktar

Küme sayacını bir artır

Hayır

İkinci Aşama

Birinci Aşama

Evet

Tek engelli küme dizisi ile çok
engelli küme dizisini birleştir ve

yeni ortamı oluştur

Evet

Engeli tek engelli
küme dizisine aktar

Üçüncü Aşama

Kümeleme oranını
belirle ve küme sayacını

tanımla

Şekil 4.20. Önerilen modelin akış diyagramı

4.3.2.1. K-Ortalamalar Kümeleme Algoritması

K-ortalamalar kümeleme algoritması (K-means clustering, KMC) verilerin belli bir

kritere göre otomatik olarak gruplandırılması için yaygın olarak kullanılan ve iteratif

olarak çalışan denetimsiz bir öğrenme tekniğidir. Bu kümeleme yöntemindeki temel

prensip, küme sayısının ve küme merkezlerinin belirlenerek birbirine benzerlik gösteren

verilerin aynı kümelere yerleştirilmesidir. Küme merkezlerinin birbirine olabildiğince

uzak konumlarda belirlenmesi gerekir. Küme sayısının belirlenmesi bu yöntemin kilit

noktasıdır. Algoritma öncelikle küme sayısınca rastgele merkezler oluşturur ve her bir

verinin küme merkezleri arasındaki mesafe Eşitlik (4.16) kullanılarak hesaplanır ve bu

mesafe aracılığıyla veriler en yakın kümeye atanır.

𝐿௜ = ฮ𝑝௜ − 𝑞௝ฮ (4.16)

89

Burada, 𝑖 ∈ {1,2, … , 𝑛௩}, 𝑗 ∈ ൛1,2, … , 𝑛௤ൟ, 𝑝௜ 𝑖’inci veriyi, 𝑞௝ 𝑗’inci küme merkezini, 𝐿௜

ise 𝑖’inci veri ile 𝑗’inci küme merkezi arasındaki Öklidyen mesafeyi, 𝑛௩ veri sayısını ve

𝑛௤ ise küme sayısını temsil eder. Öklidyen mesafesi yerine farklı mesafe denklemleri de

kullanılabilir. Veriler en yakın kümelere atandıktan sonra Eşitlik (4.17) kullanılarak her

kümenin ortalaması alınır ve böylece yeni küme merkezleri oluşturulur.

𝑞௝ =
1

ห𝑞௝ห
෍ 𝑝

௣∈௤ೕ

(4.17)

Burada, ห𝑞௝ห 𝑗’inci kümedeki veri sayısını ve 𝑝 ise 𝑗’inci kümedeki verileri temsil eder.

Bu yeni küme merkezleri ve veriler arasındaki mesafe tekrar hesaplanır. Bu iteratif süreç

tüm verilerin en yakın merkezlere atanmasıyla (durdurma kriteri) son bulur. KMC

algoritmasının sözde kodu Algoritma 4.4’te gösterilmektedir [87-90].

Algoritma 4.4: KMC algoritmasının sözde kodu
Girdi: 𝑝, 𝑛௤ , 𝑇, 𝑥௟ , 𝑥௛ // Veri, küme sayısı, maksimum iterasyon sayısı, arama sınırları
Çıktı: ℚ // Küme merkezleri

1: 𝑛௩ ← 𝑠𝑖𝑧𝑒(𝑝)
2: {𝑞ଵ, 𝑞ଶ, … , 𝑞௞} ⊂ ℚ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)
3: for 𝑡 = 1: 𝑇
4: for 𝑖 = 1: 𝑛௩
5: for 𝑗 = 1: 𝑛௤
6: 𝐿௜ ← ‖𝑝௜ − 𝑞௝‖
7: end for
8: 𝑞௜

௠ ← arg min
௤∈ℚ

𝐿௜(𝑞)

9: 𝑞௜
௠ ← 𝑞௜

௠ ∪ {𝑝௜}
10: end for
11: for 𝑗 = 1: 𝑛௤

12: 𝑞௝ ←
ଵ

ห௤ೕห
∑ 𝑝(௣∈௤ೕ)

13: end for
14: end for

4.3.2.2. Engel Kümeleme Algoritması

Bu çalışmada çeşitli kümeleme algoritmalarının kullanılabildiği bir engel kümeleme

algoritması önerilmiştir. Engeller dairesel oldukları için gruplandırma da dairesel olarak

tasarlanmıştır. Detaylı analizde kümeleme işlemi KMC algoritması ile

gerçekleştirilmiştir. Bu yöntem için küme sayısı gerekli olsa da, bu çalışma yol planlama

algoritmalarının çalışma hızlarını farklı küme sayıları ile analiz eder. Bu sebeple küme

90

sayısını değiştiren bir oran oluşturulmuştur. Çalışmada bu oran, % biriminde kümeleme

oranı (𝜆) olarak ifade edilir ve engellerin yüzde kaçının kümeleneceğini temsil eder.

Önerilen modelde birbirine yakın engellerin kümelenmesi esas alınır. Her engel

kümelenmediği için tek engelli kümeler oluşabilir. Kümeleme oranı arttıkça kümelerin

içindeki engel sayısı her zaman artar, ancak küme sayısı belli bir seviyeye kadar artış

gösterir. Bu seviyeden daha yüksek kümeleme oranlarında tek engelli küme kalmaz ve

kümelenecek engel sayısı arttığı için daha büyük kümeler oluşur. Bu durumda küme

sayısı azalır ve kümelerde çakışma durumu meydana gelir. Ancak algoritma bu kümeleri

yeni statik engeller olarak belirlediği için yol planlama konusunda herhangi bir zorluğa

neden olmaz. Bu sayede engel sayısı (𝑛௢) ve kümeleme oranı kullanılarak KMC

algoritması için gerekli olan küme sayısı hesaplanır. Küme sayısı Eşitlik (4.18)

kullanılarak hesaplanır.

𝑛௤ = 𝑛௢ × 𝜆 (4.18)

Birden fazla engelin kümelenmesinde Şekil 4.21’de olduğu gibi merkeze en uzak engelin

tamamını kapsayacak şekilde 𝑟௢ᇱ yarıçaplı bir daire oluşturulur [91].

Şekil 4.21. Birden fazla engelin kümelenmesi

Önerilen bu algoritma, bu daireleri ve tek engelli kümeleri yeni bir engel dizisine aktarır

ve yeni engel dizisini esas alarak çalışır. Bu şekilde engel sayısı azaltılarak ortam

karmaşıklığının basitleştirilmesi sağlanır. Bu çalışmadaki KMC tabanlı engel kümeleme

algoritmasının sözde kodu Algoritma 4.5’te gösterilmektedir. Bu algoritmada 𝑟௢

engellerin yarıçapını, 𝑂 eski engel dizisini ve 𝑂ᇱ ise yeni engel dizisini temsil eder.

91

Algoritma 4.5: KMC tabanlı engel kümeleme algoritmasının sözde kodu
Girdi: 𝜆, 𝑂, 𝑇, 𝑥௟ , 𝑥௛ // Kümeleme oranı, eski engel dizisi, maksimum iterasyon sayısı,
arama sınırları
Çıktı: 𝑂ᇱ // Yeni engel dizisi

1: 𝑛௢ ← 𝑠𝑖𝑧𝑒(𝑂)
2: 𝑛௤ ← 𝑛௢ × 𝜆
3: 𝑞௜ ∈ ℚ ← KMC൫𝑂, 𝑛௤ , 𝑇, 𝑥௟ , 𝑥௛൯, 𝑖 ∈ ൛1,2, … , 𝑛௤ൟ // Algoritma 4.4
4: for 𝑖 = 1: 𝑛௤
5: 𝑛௢௜ ← 𝑠𝑖𝑧𝑒(𝑞௜)
6: if 𝑛௢௜ == 1
7: 𝑂௧௘௞ ← {𝑝௢ , 𝑟௢}
8: else
9: 𝑂ç௢௞ ← {𝑞௜}

10: for 𝑗 = 1: 𝑛௢௜
11: 𝐿௜(𝑗) ← ‖𝑞௜ − 𝑝௝

௢‖
12: end for
13: 𝐿௠௔௫ , 𝑟௠௔௫

௢ ← arg max
௜

(𝐿௜)

14: 𝑟௢ᇱ
← 𝐿௠௔௫ + 𝑟௠௔௫

௢
15: 𝑂ç௢௞ ← 𝑂ç௢௞ ∪ ൛𝑟௢ᇱ

ൟ
16: end if
17: end for
18: 𝑂ᇱ ← ൛𝑂௧௘௞ , 𝑂ç௢௞ൟ

4.3.3. Bulgular

Önerilen model, MATLAB 2019 programlama dilinde kodlanmış ve Windows 10 işletim

sistemi, INTEL CORE i7 işlemcisi, 16 GB RAM’e sahip bir bilgisayarda çalıştırılmıştır.

Öncelikle önerilen modelin detaylı analizi gerçekleştirilmiştir. Bu analiz sonucunda yol

planlama algoritmalarının optimum çalışma hızlarına tekabül eden optimum kümeleme

oranları elde edilmiştir. Ardından, detaylı analizi desteklemek amacıyla model üzerinde

farklı metasezgisel ve farklı kümeleme algoritmalarının performansları

değerlendirilmiştir.

4.3.3.1. Önerilen Modelin Detaylı Analizi

Önerilen model engellerin rastgele konumlarda üretildiği ortamlarda test edilmiştir.

Bunun için 20 ve 30 engelli olmak üzere 50 x 50 br2 boyutlu sürekli uzay formatında iki

farklı ortam oluşturulmuştur. Ancak aynı alan içerisinde engel sayısı arttıkça modelin

problemi çözmesi zorlaşmaktadır. Bu çalışmada daha fazla engelli ortamlar oluşturulsa

da, 30 engelin üzerindeki ortamlar için orta ve yüksek seviyelerdeki kümeleme

oranlarında alan darlığından dolayı model problemi çözememektedir. Bunun için alanın

92

genişletilmesi gerekir, ancak bu çalışmada önerilen model sabit alan üzerinde test

edilmiştir. 20 engelin altındaki ortamlar ise değerlendirme için anlamlı değildir. Bu

çalışmada tasarlanan bu iki ortam Şekil 4.22’de gösterilmektedir. Bu ortamlarda robotun

başlangıç konumu sol alt köşe (0, 0) ve hedef konumu ise sağ üst köşedir (50, 50).

 (a) (b)

Şekil 4.22. Önerilen modelin test edildiği ortamlar: (a) Ortam 15 (20 engelli ortam),
(b) Ortam 16 (30 engelli ortam)

Bu ortamlarda engelsiz en kısa mesafe 70.71 br’dir. Amaç fonksiyonundaki engel ihlali

faktörü (𝛽) ve kübik eğri interpolasyonu için arama noktası sayısı (𝑞) 100 olarak, arama

alanının sınır değerleri x ve y için [0 50] br olarak, engel konumlarının sınır değerleri x

ve y için [10 40] br olarak belirlenmiştir. Engellerin yarıçapı 0.5 br, robotun yarıçapı 0.3

br ve güvenlik mesafesi 0.2 br olarak ayarlanmıştır. Detaylı analiz için metasezgisel

algoritmalardan PSO ve kümeleme algoritmalarından KMC algoritması tercih edilmiştir.

PSO algoritması maksimum iterasyon sayısı 50 ve popülasyon boyutu 20 için

çalıştırılmıştır. Kişisel ve sosyal deneyim katsayıları [2, 2], eylemsizlik ağırlığının

başlangıç değeri 1, eylemsizlik ağırlığının sınır değerleri [0.1 0.9] olarak belirlenmiştir.

Problemdeki parametre sayısı (𝐷) 2, 3, 4, 5, 6 ve 8 için ayrı ayrı test edilmiş ve en uygun

değerinin 2 olduğu gözlemlenmiştir. Bu sebeple bu çalışmadaki tüm simülasyonlarda

parametre sayısı 2 olarak ayarlanmıştır. Detaylı analiz için önerilen model kümelemesiz

ve kümelemeli olarak 30 koşma ile çalıştırılmıştır. Kümelemeli çalışmada 9 farklı

kümeleme oranı kullanılmıştır. Ayrıca model çalışma süresi bakımından, engel

kümeleme algoritmasının (EKA) çalışma süresinin dâhil olduğu ve olmadığı durumlar

için ayrı ayrı değerlendirme gerçekleştirilmiştir. Her iki ortam için elde edilen ortalama

93

yol uzunlukları ve bu uzunlukların kümelemesiz çalışmaya göre artış oranları Tablo

4.12’de gösterilmektedir. Şekil 4.23, Tablo 4.12’deki yol uzunluğu değerlerini grafiksel

olarak göstermektedir. Şekil 4.23’te kümeleme oranlarındaki 0 değerleri kümelemesiz

çalışmayı temsil eder.

Tablo 4.12. Her iki ortam için elde edilen ortalama yol uzunlukları ve bu uzunlukların
kümelemesiz çalışmaya göre artış oranları (Bu bulgular 30 koşmanın
ortalamasıdır.)

Çalışma
Kümeleme

Oranı
(%)

Ortam 15 Ortam 16
Yol

Uzunluğu
(br)

Artış
Oranı
(%)

Yol
Uzunluğu

(br)

Artış
Oranı
(%)

Kümelemesiz - 71.96 - 71.89 -

Kümelemeli

10 72.15 0.25 72.15 0.36
20 72.16 0.27 73.04 1.59
30 72.42 0.63 73.56 2.31
40 73.22 1.75 74.32 3.37
50 74.22 3.13 75.28 4.71
60 76.75 6.65 78.57 9.28
70 77.35 7.48 83.42 16.02
80 79.87 10.99 83.92 16.72
90 82.10 14.08 85.75 19.26

,

 (a) (b)

Şekil 4.23. Her kümeleme oranı için elde edilen ortalama yol uzunlukları:
(a) Ortam 15 (b) Ortam 16

Tablo 4.12 ve Şekil 4.23 genel olarak incelendiğinde, kümeleme oranı arttıkça elde edilen

yol uzunluklarında artış görülmektedir. Bunun nedeni, kümeleme oranının artmasıyla

yeni ortamdaki engellerin boyutlarının artması ve bundan dolayı yolların daha kavisli

olmasıdır. Ancak Tablo 4.12’deki artış oranları göz önüne alındığında, yüksek kümeleme

oranları dışında telafi veya ihmal edilebilir bir artış mevcuttur. Ortam 15 için yüksek

94

kümeleme oranları %80 ve %90 olarak kabul edilirse, diğer 7 kümeleme oranında artış

miktarı %10’u geçmemektedir. Ortam 16 için yüksek kümeleme oranları %70, %80 ve

%90 olarak kabul edilirse, diğer 6 kümeleme oranında artış miktarı yine %10’u

geçmemektedir. Çalışmadan örnek bir koşma için Ortam 15’te modelin kümelemesiz ve

kümelemeli olarak planladığı yollar Şekil 4.24’te, bu örnek koşma için yakınsama eğrileri

Şekil 4.25’te gösterilmektedir.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Şekil 4.24. Örnek koşma için Ortam 15’te modelin kümelemesiz ve kümelemeli olarak
planladığı yollar: (a) Kümelemesiz (b) %20 kümelemeli (c) %30
kümelemeli (d) %40 kümelemeli (e) %50 kümelemeli (f) %60 kümelemeli
(g) %70 kümelemeli (h) %80 kümelemeli (i) %90 kümelemeli

95

Şekil 4.25. Örnek koşma için Ortam 15’teki yakınsama eğrileri

Şekil 4.24 genel olarak incelendiğinde, kümeleme oranı arttıkça yolların daha kavisli bir

şekilde elde edildiği görülmektedir. Ayrıca Şekil 4.25’te görüldüğü gibi kümeleme oranı

arttıkça elde edilen yol uzunluklarının optimum değerlerinde artış görülmektedir. Ancak

bu artışlar yüzdesel olarak düşük seviyelerdedir. Bazı kümeleme oranlarındaki yakınsama

eğrilerinde çakışmalar tespit edildiği için bunların bir kısmı gösterilmemiştir. Örnek bir

koşma için Ortam 16’da modelin kümelemesiz ve kümelemeli olarak planladığı yollar

Şekil 4.26’da, bu örnek koşma için yakınsama eğrileri Şekil 4.27’de gösterilmektedir.

 (a) (b) (c)

96

 (d) (e) (f)

 (g) (h) (i)

Şekil 4.26. Örnek koşma için Ortam 16’da modelin kümelemesiz ve kümelemeli
olarak planladığı yollar: (a) Kümelemesiz (b) %20 kümelemeli (c) %30
kümelemeli (d) %40 kümelemeli (e) %50 kümelemeli (f) %60 kümelemeli
(g) %70 kümelemeli (h) %80 kümelemeli (i) %90 kümelemeli

Şekil 4.27. Örnek koşma için Ortam 16’daki yakınsama eğrileri

Şekil 4.26 genel olarak incelendiğinde, kümeleme oranı arttıkça yolların Ortam 15’e göre

çok daha kavisli bir şekilde elde edildiği görülmektedir. Ayrıca Şekil 4.27’de görüldüğü

gibi kümeleme oranı arttıkça elde edilen yol uzunluklarının optimum değerlerinde yine

97

artış görülmektedir ve bu artış Ortam 15’e göre daha fazladır. Ancak bu artışlar da

yüzdesel olarak düşük seviyelerdedir. Her iki ortam için elde edilen ortalama çalışma

süreleri ve bu sürelerin kümelemesiz çalışmaya göre azalma oranları Tablo 4.13’te

gösterilmektedir. Şekil 4.28, Tablo 4.13’teki çalışma süresi değerlerini grafiksel olarak

göstermektedir. Şekil 4.28’de kümeleme oranlarındaki 0 değerleri kümelemesiz

çalışmayı temsil etmektedir.

Tablo 4.13. Her iki ortam için elde edilen ortalama çalışma süreleri ve bu sürelerin
kümelemesiz çalışmaya göre azalma oranları (Bu bulgular 30 koşmanın
ortalamasıdır. KO: Kümeleme Oranı, ÇS: Çalışma Süresi, AO: Azalma
Oranı)

Çalışma
KO
(%)

Ortam 15 Ortam 16
EKA Hariç EKA Dâhil EKA Hariç EKA Dâhil

ÇS (s) AO (%) ÇS (s) AO (%) ÇS (s) AO (%) ÇS (s) AO (%)
Kümelemesiz - 1,36 - 1,36 - 1,48 - 1,48 -

Kümelemeli

10 1,32 2,85 1,33 2,14 1,46 1,42 1,47 0,47
20 1,28 5,17 1,29 5,05 1,37 7,10 1,38 6,40
30 1,22 9,86 1,23 9,21 1,34 9,55 1,35 8,81
40 1,21 11,16 1,21 10,55 1,31 11,60 1,32 10,92
50 1,13 16,69 1,14 16,10 1,24 16,00 1,25 15,34
60 1,09 19,91 1,10 19,35 1,17 20,85 1,18 20,25
70 1,06 21,61 1,07 21,08 1,10 25,45 1,11 24,91
80 1,05 22,47 1,06 22,01 1,07 27,62 1,08 27,13
90 1,05 22,83 1,05 22,42 1,06 28,33 1,06 27,90

 (a) (b)

Şekil 4.28. Her kümeleme oranı için elde edilen ortalama çalışma süreleri:
(a) Ortam 15 (b) Ortam 16

Tablo 4.13 ve Şekil 4.28 genel olarak incelendiğinde, kümeleme oranı arttıkça elde edilen

çalışma sürelerinde azalma görülmektedir. Bunun nedeni, kümeleme oranının artmasıyla

engel sayısının ve ortam karmaşıklığının azalmasıdır. Ayrıca Tablo 4.13’teki azalma

98

oranları göz önüne alındığında kayda değer azalma oranları elde edilmiştir ve bu

oranlarda kararlılık mevcuttur. Ortam 15’teki azalma oranları Ortam 16’daki oranlara

göre daha yüksektir, çünkü ortam karmaşıklığı daha düşük seviyededir. Kümelemeli

çalışmalarda EKA’nın dâhil edilmesi çalışma süresini sadece milisaniyelik düzeyde

artmasına sebep olduğu için azalma oranları yine kayda değer seviyede kalmıştır.

Çalışmadaki değerlendirme, yol uzunlukları ile çalışma süreleri arasındaki ilişki

üzerinedir. Bu ilişki çalışma sürelerindeki azalma ile yol uzunluklarındaki artış arasındaki

farktır, kazanç olarak da düşünülebilir. Bu kazanç tanımında yol uzunluğu ve çalışma

süresi eşit ağırlığa sahiptir ve kazanç oranları bu şekilde hesaplanmıştır. Her iki ortam

için kümeleme oranlarına göre kazanç oranları Tablo 4.14’te gösterilmektedir.

Tablo 4.14. Her iki ortam için kümeleme oranlarına göre kazanç oranları

Kümeleme Oranı
(%)

Ortam 15 Ortam 16
EKA Hariç EKA Dâhil EKA Hariç EKA Dâhil

10 2,60 1,89 1,06 0,11
20 4,90 4,78 5,51 4,81
30 9,23 8,58 7,24 6,50
40 9,41 8,80 8,23 7,55
50 13,56 12,97 11,29 10,63
60 13,26 12,70 11,57 10,97
70 14,13 13,60 9,43 8,89
80 11,48 11,02 10,90 10,41
90 8,75 8,34 9,07 8,64

Tablo 4.14 genel olarak incelendiğinde, kümeleme oranı arttıkça kazanç oranlarında önce

bir artış ve daha sonra bir azalma görülmektedir. Orta seviyelerdeki kümeleme

oranlarında maksimum kazanç elde edilirken, daha düşük veya daha yüksek kümeleme

oranlarında bu kazanç oranları düşmektedir. Ortam 15’te %70 kümeleme oranında

maksimum kazanç değeri elde edilirken, Ortam 16 için bu oran %60’tır. EKA’nın dâhil

edilmesi çalışma süresini etkilediği gibi kazanç oranlarını da sadece minimal düzeyde

etkilemiştir. Ayrıca model farklı ortamlarda test edilmesine rağmen sonuç değişmemiş ve

optimum kümeleme oranının her zaman orta seviyelerde olduğu tespit edilmiştir.

Engelleri kümelemek yol uzunluğu açısından küçük bir dezavantaj gibi görünse de,

çalışma süresi açısından yol uzunluğundaki zararı telafi edebilecek ve buna ek olarak hız

konusunda kazanç sağlayacak düzeyde bir avantaj sağlamaktadır.

99

4.3.3.2. Önerilen Modelin Farklı Metasezgisel ve Kümeleme Algoritmalarıyla

Gerçekleştirimi

Önerilen modelin detaylı analizinde optimum kümeleme oranları elde edilmişti. Modelin

etkinliğini göstermek ve analizi desteklemek amacıyla, bu kümeleme oranları ile farklı

metasezgisel ve kümeleme algoritmalarının performansları Alt Başlık 4.3.3.1’de

bahsedilen her iki ortamda da karşılaştırmalı olarak değerlendirilmiştir. Engellerin

kümelenmesi için KMC algoritmasına ek olarak hiyerarşik kümeleme (hierarchical

clustering, HC) algoritması kullanılmıştır. Metasezgisel algoritmalardan da PSO’ya ek

olarak TLBO, ABC, DE ve GA ele alınmıştır. Amaç fonksiyonu ve problem parametreleri

Alt Başlık 4.3.3.1’deki simülasyonla aynıdır. TLBO, ABC, DE ve GA’nın kontrol

parametreleri ise Tablo 4.15’te gösterilmektedir.

Tablo 4.15. TLBO, ABC, DE ve GA’nın kontrol parametreleri (𝑇 maksimum iterasyon
sayısı, 𝑆 popülasyon boyutu, 𝐷 problem boyutu, 𝐹 ölçekleme faktörü, 𝐶𝑅
çaprazlama oranı, 𝑀𝑅 mutasyon oranı)

Algoritma Parametre

TLBO 𝑇 = 200, 𝑆 = 50

ABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 0.5 × 𝐷 × 𝑆

DE 𝑇 = 200, 𝑆 = 50, 𝐹 = [0.2, 0.8], 𝐶𝑅 = 0.2

GA 𝑇 = 200, 𝑆 = 50, 𝐶𝑅 = 0.98, 𝑀𝑅 = 0.1

Önerilen modelde bu algoritmalar her iki kümeleme algoritması için ayrı ayrı 30 koşma

ile çalıştırılmıştır. Her iki ortam için optimum kümeleme oranlarında bu algoritmalar

tarafından elde edilen ortalama yol uzunlukları ve EKA’nın dâhil olduğu ortalama

çalışma süreleri Tablo 4.16’da gösterilmektedir.

Tablo 4.16. Her iki ortam için PSO, TLBO, ABC, DE ve GA ile elde edilen ortalama
yol uzunlukları ve ortalama çalışma süreleri (Bu bulgular 30 koşmanın
ortalamasıdır. YU: Yol Uzunluğu, EDÇS: EKA Dâhil Çalışma Süresi)

Metasezgisel
Algoritma

Ortam 15
(%70 Kümeleme Oranı)

Ortam 16
(%60 Kümeleme Oranı)

KMC HC KMC HC
YU
(br)

EDÇS
(s)

YU
(br)

EDÇS
(s)

YU
(br)

EDÇS
(s)

YU
(br)

EDÇS
(s)

PSO 77,35 1,07 77,04 1,12 78,57 1,18 75,45 1,15
TLBO 75,49 1,60 75,22 1,59 74,95 1,64 74,25 1,61
ABC 75,24 1,61 75,20 1,60 74,53 1,72 74,08 1,65
DE 87,37 1,17 87,35 1,15 90,59 1,30 85,76 1,28
GA 79,50 1,08 80,11 1,07 81,93 1,14 79,51 1,08

100

Tablo 4.16 kümeleme algoritmaları açısından incelendiğinde, her iki ortam için HC’nin

KMC’ye göre hem yol uzunluğu hem de çalışma süresi açısında avantajlı olduğu

söylenebilir. Çalışmada ayrıca, HC ve KMC’nin engellerin kümelenmesi için harcadığı

süreler sırasıyla yaklaşık 6 ve 20 ms olarak tespit edilmiştir. Bu değerler de bu avantajı

desteklemektedir. Tablo 4.16 metasezgisel algoritmalar için yol uzunluğu açısından

incelendiğinde, her iki ortam için en iyi performansı TLBO ve ABC algoritmaları

göstermiştir. DE, PSO ve GA daha verimsiz çalışırken, bunlar arasında en kötü

performans DE ile alınmıştır. Çalışma süresi açısından incelendiğinde ise Ortam 15’teki

KMC hariç diğer senaryolarda en hızlı algoritma GA olmuştur.

4.4. Çoklu Robot Yol Planlaması için Çoklu Strateji ve Öz Uyarlamalı Diferansiyel

Sinüs-Kosinüs Algoritması

Bedava Öğle Yemeği Yok (No Free Lunch) teoremine göre, bir algoritma tüm

optimizasyon problemlerini çözmeyi garanti edemez. Bu nedenle, farklı optimizasyon

tekniklerinin geliştirilmesi gerekir. Mobil robotların yol planlaması optimizasyonda

hesaplama açısından zor bir problemdir ve bu problemde metasezgisel algoritmalar

popülerdir [92]. Literatürde çoklu robotların yol planlama problemi için çeşitli

metasezgisel algoritmalar önerilmiş olmasına rağmen, bunların çoğu hala bir seferde bir

değişkeni güncellemeye dayanır. Bu, algoritmaların performansını ve yakınsamasını

sınırlar. Ayrıca, araştırmacılar bir probleme yönelik uygun bir güncelleme stratejisi

geliştirmek için birçok girişimde bulunmak zorundadır. Bu da yüksek hesaplama

maliyetleri ve uzun çalışma sürelerine neden olur. Bu dezavantajlar nedeniyle, tek bir

problem yerine daha geniş bir problem kümesi için optimizasyon algoritmaları

geliştirmek önemlidir. Bu algoritmalardan biri olan SCA, karmaşık optimizasyon

problemlerinde (özellikle çoklu robot sisteminin yol planlama probleminde) tatmin edici

sonuçlar üretemez. Bu çalışmada, strateji havuzu ve kendi kendine adaptif bir

mekanizmaya sahip olan sdSCA adında yeni bir algoritma önerilmiştir. Bu çalışmanın

temel katkıları şu şekilde özetlenebilir:

 Mobil robotların yol planlaması optimizasyonda hesaplama açısından zor bir

problemdir ve SCA çoklu robotların iki boyutlu yol planlama probleminde tatmin

edici sonuçlar üretemez.

101

 Daha geniş bir problem kümesi için SCA’yı geliştirmek amacıyla tek bir

güncelleme stratejisi yerine bir strateji havuzu düşünülmüştür. Bu havuz orijinal

güncelleme stratejisine ek olarak yeni diferansiyel stratejiler eklenerek

oluşturulmuştur.

 Strateji havuzunun kendi kendine adaptif olduğu, yani en tatmin edici sonucu

üreten stratejinin daha sık kullanıldığı yeni bir algoritma tanıtılmıştır. Böylece,

temel SCA’nın tek bir stratejiye bağımlılığı ortadan kaldırılmış ve daha geniş bir

problem kümesi için daha kararlı bir algoritma önerilmiştir.

 Bu çalışma, özellikle dinamik engellerin olduğu ortamlarda insansız kara

araçlarından oluşan çoklu robot sistemlerinin yerel yol planlama probleminde

çoklu stratejili kendi kendine adaptif optimizasyon algoritmalarının kullanıldığı

ilk uygulamalardan biridir.

4.4.1. Problem Tanımı

Çoklu robotların yerel yol planlaması, karmaşık ortamlarda statik-dinamik engellere ve

diğer robotlara çarpmadan bir sonraki noktaya en az maliyetle hareket etmeyi ve böylece

adım adım hedef noktaya ulaşmayı amaçlayan bir minimizasyon problemidir [93]. Bu

çalışmada, robotların dairesel ve homojen olduğu çoklu mobil robot sisteminlerinin yerel

yol planlaması amaçlanmıştır. Bu simülasyonda bir robotun bir sonraki konumu Eşitlik

(4.19) kullanılarak hesaplanır.

𝑝௜
௡ = 𝑝௜

௖ + 𝑣௜ ൤
cos(𝜑௜)

sin(𝜑௜)
൨ Δ𝑡 (4.19)

Burada, 𝑝௜
௡ 𝑖’inci robotun bir sonraki konumunu, 𝑝௜

௖ 𝑖’inci robotun mevcut konumunu,

𝑣௜ ve 𝜑௜ sırasıyla 𝑖’inci robotun hızı ve yönelimini, Δ𝑡 zaman adımını temsil eder. Hız,

adım başına kat edilen mesafe olarak tanımlanır. Robotların bir sonraki konumlarını

belirlemek için her adımda bir optimizasyon gerçekleştirilir. Bu optimizasyon tüm

robotların hızına ve yönelimlerine dayanır. Öncelikle, hız [𝑣௟ , 𝑣௛] aralığında ve yönelim

[𝜑௟, 𝜑௛] aralığında robotların etrafında yerel bir arama uzayı oluşturulur. Ardından, bu

arama uzayındaki en uygun bir sonraki konumun hızı ve yönelimi belirlenir. Robotlar

hedef noktalarına ulaşana kadar bu uygulanabilir konumlar üzerinde hareket eder. Tüm

robotların hızı ve yönelimi bir bütün olarak bir optimizasyon sürecinden geçer. Bu

102

nedenle, problem boyutu (𝐷) sabit değildir, robot sayısıyla (𝑛௥) orantılıdır. Optimizasyon

robotların bu iki kinematik karakteristiğine dayandığından, 𝐷 = 𝑛௥ × 2 şeklinde

hesaplanır. Bu konsept için tasarlanan genel amaç fonksiyonunun parametrik formu

Eşitlik (4.20)’deki gibi temsil edilir.

arg min
௩,ఝ

ℱ = ቐ 𝑓(𝑣௜ , 𝜑௜) ቮ

 𝑖 ∈ {1,2, … , 𝑛௥}

𝑣 ∈ [𝑣௟ , 𝑣௛]

𝜑 ∈ [𝜑௟ , 𝜑௛]
 ቑ (4.20)

Genel amaç fonksiyonu aşağıdaki dört maliyeti değerlendirir:

 𝑓ଵ: Yol uzunluğu maliyeti

 𝑓ଶ: Statik engellerden kaçınma maliyeti

 𝑓ଷ: Dinamik engellerden kaçınma maliyeti

 𝑓ସ: Diğer robotlardan kaçınma maliyeti

Birinci maliyet (𝑓ଵ) Eşitlik (4.21)’de gösterildiği gibi tanımlanmıştır.

𝑓ଵ = ෍(‖𝑝௜
௡ − 𝑝௜

௖‖ + ‖𝑝௜
௡ − 𝑝௧௜‖)

௡ೝ

௜ୀଵ

(4.21)

Burada, 𝑝௧௜ 𝑖’inci robotun hedef konumunu temsil eder. İkinci maliyet (𝑓ଶ) Eşitlik

(4.22)’de gösterildiği gibi tanımlanmıştır.

𝑓ଶ = ෍ ෍ ቊ
𝑓; 𝑒ğ𝑒𝑟 ฮ𝑝௜

௡ − 𝑝௝
௢௦ฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0; 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡೚ೞ

௝ୀଵ

௡ೝ

௜ୀଵ

(4.22)

Burada 𝑓 ∈ ℝା maliyeti (büyük bir sayıyı), 𝐿௚ önceden belirlenmiş bir güvenlik

mesafesini, 𝑛௢௦ statik engellerin sayısını ve 𝑝௝
௢௦ ise 𝑗’inci statik engelin konumunu temsil

eder. Üçüncü maliyet (𝑓ଷ) Eşitlik (4.23)’te gösterildiği gibi tanımlanmıştır.

𝑓ଷ = ෍ ෍ ቊ
𝑓; 𝑒ğ𝑒𝑟 ฮ𝑝௜

௡ − 𝑝௝
௢ௗฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0; 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡೚೏

௝ୀଵ

௡ೝ

௜ୀଵ

(4.23)

103

Burada 𝑛௢ௗ dinamik engellerin sayısını ve 𝑝௝
௢ௗ ise 𝑗’inci dinamik engelin konumunu

temsil eder. Dördüncü maliyet (𝑓ସ) Eşitlik (4.24)’te gösterildiği gibi tanımlanmıştır.

𝑓ସ = ෍ ෍ ቊ
𝑓; 𝑒ğ𝑒𝑟 ฮ𝑝௜

௡ − 𝑝௝
௥ฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0; 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡ೝିଵ

௝ୀଵ

௡ೝ

௜ୀଵ

(4.24)

Burada 𝑝௝
௥ ise 𝑗’inci diğer robotun konumunu temsil eder. Genel amaç fonksiyonu Eşitlik

(4.25)’te tanımlandığı gibi bu maliyetlerin toplamıdır.

ℱ = 𝑓ଵ + 𝑓ଶ + 𝑓ଷ + 𝑓ସ (4.25)

Ayrıca dinamik engeller her adımda Eşitlik (4.26)’da tanımlandığı gibi hareket eder.

𝑝௜
௢ௗ = 𝑝௜

௢ௗ + 𝑣௜
௢ௗ ቈ

cos൫𝜑௜
௢ௗ൯

sin൫𝜑௜
௢ௗ൯

቉ Δ𝑡 (4.26)

Burada, 𝑝௜
௢ௗ 𝑖’inci dinamik engelin anlık konumunu, 𝑣௜

௢ௗ ve 𝜑௜
௢ௗ 𝑖’inci dinamik engelin

sırasıyla sabit hızını ve hedef konumuna göre sabit yönelimini temsil eder. Bu çalışmada

önerilen algoritmanın performansı adım sayısı, yol uzunluğu, yol sapma hatası (𝑌𝑆𝐻),

kalan hedef uzaklığı (𝐾𝐻𝑈), toplam uygunluk değeri ve çalışma süresi açısından

değerlendirilmiştir.

4.4.1.1. Yol Sapma Hatası

İterasyon başlamadan önce, yol planlama algoritması her robot için ideal yolu belirler. Bu

yol başlangıç ve hedef noktaları arasında düz bir çizgidir. Yol sapma hatası (𝑌𝑆𝐻), bu

ideal yolun mesafesi ile algoritma tarafından planlanan yolun mesafesi arasındaki farktır

ve algoritmanın 𝑘’ıncı koşusunda 𝑌𝑆𝐻 Eşitlik (4.27)’deki gibi tanımlanmıştır.

𝑌𝑆𝐻௞ = ෍൫𝐿௜
௞ − 𝐼௜൯

௡ೝ

௜ୀଵ

(4.27)

Burada, 𝐿௜
௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun katettiği mesafesini ve 𝐼௜ 𝑖’inci

robotun ideal yol uzunluğunu temsil eder. Ortalama yol sapma hatası (𝑂𝑌𝑆𝐻) ise Eşitlik

(4.28) kullanılarak hesaplanır. Bu eşitlikte 𝑅 algoritmanın koşma sayısını temsil eder.

104

𝑂𝑌𝑆𝐻 =
∑ 𝑌𝑆𝐻௞

ோ
௞ୀଵ

𝑅
(4.28)

4.4.1.2. Kalan Hedef Uzaklığı

Yol planlama algoritması maksimum adıma sahip robotun hedef noktasına ulaşmasına

kadar işler. Bu süreçte her robotun her adımda hedefine olan uzaklığı saklanır. Robotların

hedef noktalarına olan uzaklıkları Öklid formu açısından Eşitlik (4.29) kullanılarak

hesaplanır.

𝐻௜
௝,௞

= ฮ𝑝௜
௝,௞

− 𝑝௧௜ฮ (4.29)

Burada 𝐻௜
௝,௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun 𝑗’inci adımında hedef

noktasına olan uzaklığını, 𝑝௜
௝,௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun 𝑗’inci

adımında optimizasyon sonunda elde edilen yeni konumunu ve 𝑝௧௜ 𝑖’inci robotun hedef

konumunu temsil eder. Algoritmanın 𝑘’ıncı koşusunda kalan hedef uzaklığı (𝐾𝐻𝑈)

Eşitlik (4.30) kullanılarak hesaplanır.

𝐾𝐻𝑈௞ = ෍ ෍ 𝐻௜
௝,௞

௡ೝ

௜ୀଵ

௡ೞ೟

௝ୀଵ

(4.30)

Burada, 𝑛௦௧ adım sayısı maksimum olan robotun adım sayısını temsil eder. Ortalama

kalan hedef uzaklığı (𝑂𝐾𝐻𝑈) ise Eşitlik (4.31) kullanılarak hesaplanır. Bu eşitlikte 𝑅

algoritmanın koşma sayısını temsil eder.

𝑂𝐾𝐻𝑈 =
∑ 𝐾𝐻𝑈௞

ோ
௞ୀଵ

𝑅
(4.31)

4.4.2. Önerilen Yöntem

Popülasyon tabanlı metasezgisel algoritmalar, rastgele bir başlangıç popülasyonu üretir.

Bu popülasyon bir amaç fonksiyonu ile değerlendirildikten sonra iteratif bir güncelleme

süreci başlar. Çoğu algoritmada bu popülasyondaki aday çözümler genellikle tek bir

güncelleme stratejisi ile güncellenir ve iteratif süreç sona erdiğinde en iyi çözüm

raporlanır. Ancak, tek bir güncelleme stratejisi kullanmak algoritmaların arama

performansını kısıtlar. SCA da Eşitlik (3.44)’te verilen tek bir güncelleme stratejisine

105

sahip popülasyon tabanlı bir algoritmadır. SCA’nın bu kısıtlamasını ortadan kaldırmak

için SCA’nın orijinal güncelleme stratejisine ilave olarak birkaç diferansiyel tabanlı

güncelleme stratejisi eklenmiş ve sdSCA adında yeni bir algoritma önerilmiştir. Bu

algoritmada popülasyondaki her çözüm bu stratejilerden birini seçerek kendini günceller.

Ancak bu seçim rastgele değildir, rulet tekerleğine dayalı bir olasılık hesabı yoluyla

gerçekleştirilir. Algoritma daha tatmin edici sonuçlar üreten stratejiyi adaptif bir şekilde

öğrenir. Algoritma bu stratejiyi daha sık seçer ve böylece temel SCA'nın arama

performansı iyileşir. İlave edilen güncelleme stratejileri Eşitlik (4.32), (4.33) ve (4.34)’te

tanımlanmıştır [94-96]. 𝑟ଵ, 𝑟ଶ, 𝑟ଷ ≠ 𝑖 olmak üzere,

𝑥௜
ᇱ = ቊ

𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯; 𝑒ğ𝑒𝑟 𝑟 < 𝐶𝑅 𝑖𝑠𝑒

𝑥௜; 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(4.32)

𝑥௜
ᇱ = ቊ

𝑥௥భ
+ 𝐹൫𝑥ො − 𝑥௜ + 𝑥௥భ

− 𝑥௥మ
൯; 𝑒ğ𝑒𝑟 𝑟 < 𝐶𝑅 𝑖𝑠𝑒

𝑥௜; 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(4.33)

𝑥௜
ᇱ = 𝑥௜ + 𝑟൫𝑥௥భ

− 𝑥௜൯ + 𝐹൫𝑥௥మ
− 𝑥௥య

൯; (4.34)

Burada, 𝑟~𝑈(0,1) rassal bir sayısı, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş

hâlini, 𝑥ො popülasyondaki en iyi çözümü, 𝑥௥భ
, 𝑥௥మ

 ve 𝑥௥య
 popülasyondan rastgele seçilen

üç çözümü, 𝐹 ölçekleme faktörünü ve 𝐶𝑅 çaprazlama oranını temsil eder. Önerilen

algoritmanın çalışma prensibi aşağıdaki gibi açıklanabilir: Dört güncelleme stratejisi olan

Eşitlik (3.44), (4.32), (4.33) ve (4.34) ile bir strateji havuzu oluşturulmuştur. Başlangıçta,

her bir stratejinin seçilme olasılığı eşit ve %25’tir. Başlangıç popülasyonu Eşitlik (3.18)

kullanılarak rastgele oluşturulur. Her çözüm rulet tekerleği tekniğini kullanarak kendi

stratejisini seçer. Çözümler bir amaç fonksiyonunda değerlendirildikten sonra iteratif

süreç başlar. Bu süreçte çözümler kendi stratejilerini kullanarak kendilerini günceller,

ayrıca bu stratejilerin seçim sayaçları da güncellenir. Yeni popülasyon amaç

fonksiyonunda değerlendirilir ve her stratejinin seçilme olasılığı Eşitlik (4.35)

kullanılarak hesaplanır.

𝛿௞ =
𝑐௞

∑ 𝑐௜
ସ
௜ୀଵ

(4.35)

Burada, 𝑘 ∈ {1, 2, 3, 4}, 𝛿௞ 𝑘’ıncı stratejinin seçilme olasılığını ve 𝑐 stratejilerin seçim

sayacını temsil eder. Bu olasılıkları göz önünde bulundurarak her çözüm rulet tekerleği

106

tekniğini kullanarak kendi stratejisini günceller ve iteratif süreç durdurma kriteri

sağanana kadar devam eder. En iyi çözüm, iteratif süreç sona erdiğinde raporlanır.

Minimizasyon problemleri için sdSCA tabanlı çoklu robot yerel yol planlama algoritması

ve önerilen sdSCA’nın sözde kodları sırasıyla Algoritma 4.6 ve 4.7’de gösterilmektedir.

Algoritma 4.6. sdSCA tabanlı çoklu robot yerel yol planlama algoritmasının sözde
kodu

1: 𝑝௦, 𝑝௧, 𝑝௢௦, 𝑝௢ௗ ← Robotların başlangıç ve hedef konumları, statik ve dinamik
engellerin konumu

2: 𝑣௢ௗ , 𝜑௢ௗ ← Dinamik engellerin sabit hızı ve sabit yönelimi
3: for 𝑖 = 1: 𝑛௥
4: 𝑝௜

௖ ← 𝑝௦೔

5: 𝐿௜ ← ฮ𝑝௜
௖ − 𝑝௧೔

ฮ
6: 𝑛௦௧௜

← 0
7: end for

8: 𝑘 ← arg max
௡ೝ

(𝐿)

9: while 𝑝௞
௖ ≠ 𝑝௧ೖ

10: (𝑣௜, 𝜑௜) ← 𝑠𝑑𝑆𝐶𝐴(𝑝௜

௖ , 𝑝௢௦, 𝑝௢ௗ), 𝑖 ∈ {1,2, … , 𝑛௥} // Algoritma 4.6
11: for 𝑖 = 1: 𝑛௥
12: if 𝑝௜

௖ ≠ 𝑝௧೔

13: 𝑝௜
௡ ← 𝑝௜

௖ + 𝑣௜ ൤
cos(𝜑௜)

sin(𝜑௜)
൨ Δ𝑡

14: 𝑛௦௧௜
← 𝑛௦௧௜

+ 1
15: end if
16: end for
17: for 𝑖 = 1: 𝑛௢ௗ

18: 𝑝௜
௢ௗ ← 𝑝௜

௢ௗ + 𝑣௜
௢ௗ ቈ

cos൫𝜑௜
௢ௗ൯

sin൫𝜑௜
௢ௗ൯

቉ Δ𝑡

19: end for
20: 𝑝௜

௖ ← 𝑝௜
௡, 𝑖 ∈ {1,2, … , 𝑛௥}

21: for 𝑖 = 1: 𝑛௥
22: 𝐿௜ ← ฮ𝑝௜

௖ − 𝑝௧೔
ฮ

23: end for

24: 𝑘 ← arg max
௡ೝ

(𝐿)

25: end while

107

Algoritma 4.7: sdSCA’nın sözde kodu

Girdi: 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ // Robotun mevcut konumu, statik ve dinamik engellerin konumu
Çıktı: (𝑣, 𝜑) // Robotun hızı ve yönelimi

1: 𝐷, 𝑥௟ , 𝑥௛ ← Problem boyutu, arama sınırları
2: 𝑇, 𝑆, 𝑎, 𝐹, 𝐶𝑅 ← Kontrol parametreleri
3: 𝑓መ ← ∞, 𝛿௞ ← 0.25, 𝑐௞ ← 0, 𝑘 ∈ {1, 2, 3, 4}
4: 𝑋 ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟), 𝑟~𝑈(0, 1)ௌ×஽
5: for 𝑖 = 1: 𝑆
6: 𝑓௫೔

← ℱ(𝑥௜ , 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ) // Amaç fonksiyonu - Eşitlik 4.25

7: if 𝑓௫೔
< 𝑓መ

8: 𝑥ො ← 𝑥௜ , 𝑓መ ← 𝑓௫೔

9: end if
10: 𝑥𝑠௜ ← ℱ(𝛿) // Rulet tekerleği
11: end for
12: for 𝑡 = 1: 𝑇
13: for 𝑖 = 1: 𝑆
14: switch 𝑥𝑠௜
15: case 1
16: 𝑟ଵ ← 𝑎 − 𝑡(𝑎/𝑇)
17: 𝑟ଶ, 𝑟ଷ, 𝑟ସ ~ 𝑈(0,2𝜋), 𝑈(0,2), 𝑈(0,1)
18: if 𝑟ସ < 0.5
19: 𝑥௜

ᇱ ← 𝑥௜ + 𝑟ଵ𝑠𝑖𝑛(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|
20: else
21: 𝑥௜

ᇱ ← 𝑥௜ + 𝑟ଵ𝑐𝑜𝑠(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|
22: end if
23: case 2
24: if 𝑟~𝑈(0,1) < 𝐶𝑅
25: 𝑥௜

ᇱ ← 𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯

26: end if
27: case 3
28: if 𝑟~𝑈(0,1) < 𝐶𝑅
29: 𝑥௜

ᇱ ← 𝑥௥భ
+ 𝐹൫𝑥ො − 𝑥௜ + 𝑥௥భ

− 𝑥௥మ
൯

30: end if
31: case 4
32: 𝑥௜

ᇱ ← 𝑥௜ + 𝑟൫𝑥௥భ
− 𝑥௜൯ + 𝐹൫𝑥௥మ

− 𝑥௥య
൯

33: end switch
34: 𝑓௜

ᇱ ← ℱ(𝑥௜
ᇱ, 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ) // Amaç fonksiyonu - Eşitlik 4.25

35: if 𝑓௜
ᇱ < 𝑓௫೔

36: 𝑥௜ ← 𝑥௜

ᇱ, 𝑓௫೔
← 𝑓௜

ᇱ
37: 𝑐(𝑥𝑠௜) ← 𝑐(𝑥𝑠௜) + 1
38: if 𝑓௫೔

< 𝑓መ

39: 𝑥ො ← 𝑥௜ , 𝑓መ ← 𝑓௫೔

40: end if
41: end if
42: end for
43: 𝛿௞ ← 𝑐௞ / ∑ 𝑐௜ ,ସ

௜ୀଵ 𝑘 ∈ {1,2,3,4}
44: for 𝑖 = 1: 𝑆
45: 𝑥𝑠௜ ← ℱ(𝛿) // Rulet tekerleği
46: end for
47: end for
48: (𝑣, 𝜑) ← 𝑥ො

108

4.4.3. Bulgular

Simülasyonlar için MATLAB programlama dili ve 16 GB RAM’e sahip bir bilgisayar

kullanılmıştır. Bu simülasyonlar aşağıdaki gibi özetlenebilir: İlk olarak, önerilen

algoritmanın etkinliğini değerlendirmek için CEC2015 test fonksiyonları kullanılmıştır

[97]. İkinci olarak, bu değerlendirmeyi desteklemek için algoritma CEC2020 gerçek

dünya optimizasyon problemlerine uygulanmıştır [98]. Son olarak, çoklu robot yerel yol

planlama problemine uygulanmış ve bazı güncel metasezgisel algoritmalarla

karşılaştırılmıştır.

4.4.3.1. Önerilen sdSCA’nın CEC2015 Test Fonksiyonlarında Gerçekleştirimi

sdSCA’nın etkinliğini kanıtlamak için kullanılan CEC2015 test fonksiyonları Tablo

4.17’de gösterilmektedir.

Tablo 4.17. CEC2015 test fonksiyonları (𝑓∗ bilinen en iyi fonksiyon değerini temsil
eder.)

Grup # Fonksiyonun Adı 𝒇∗

Tek Modlu
Fonksiyonlar

ℱଵ Döndürülmüş Çok Koşullu Eliptik Fonksiyon 100

ℱଶ Döndürülmüş Puro Fonksiyonu 200

Basit
Çok Modlu

Fonksiyonlar

ℱଷ Kaydırılmış ve Döndürülmüş Ackley Fonksiyonu 300
ℱସ Kaydırılmış ve Döndürülmüş Rastrigin Fonksiyonu 400
ℱହ Kaydırılmış ve Döndürülmüş Schwefel Fonksiyonu 500

Hibrit
Fonksiyonlar

ℱ଺ Hibrit Fonksiyon 1 (𝐷 = 3) 600
ℱ଻ Hibrit Fonksiyon 1 (𝐷 = 4) 700
ℱ଼ Hibrit Fonksiyon 1 (𝐷 = 5) 800

Kompozisyon
Fonksiyonları

ℱଽ Kompozisyon Fonksiyonu 1 (𝐷 = 3) 900
ℱଵ଴ Kompozisyon Fonksiyonu 2 (𝐷 = 3) 1000
ℱଵଵ Kompozisyon Fonksiyonu 3 (𝐷 = 5) 1100
ℱଵଶ Kompozisyon Fonksiyonu 4 (𝐷 = 5) 1200
ℱଵଷ Kompozisyon Fonksiyonu 5 (𝐷 = 5) 1300
ℱଵସ Kompozisyon Fonksiyonu 6 (𝐷 = 7) 1400
ℱଵହ Kompozisyon Fonksiyonu 7 (𝐷 = 10) 1500

Tüm test fonksiyonları 30 boyutlu ve [-100 100] aralığı için 30 kez çalıştırılmıştır. SCA

ve sdSCA için maksimum uygunluk değerlendirme sayısı, popülasyon boyutu ve 𝛼

sırasıyla 10000 x 𝐷, 30 ve 2 olarak; sdSCA için 𝐹 ve 𝐶𝑅 parametreleri sırasıyla 0.8 ve

109

0.95 olarak ayarlanmıştır. CEC2015 test fonksiyonları için sdSCA’nın SCA, EABC [99],

A𝛽HC [100] ve PgAFWA [101] ile karşılaştırması Tablo 4.18’de gösterilmektedir.

Tablo 4.18. CEC2015 test fonksiyonları için sdSCA’nın SCA, EABC, A𝛽HC ve
PgAFWA ile karşılaştırması (Bu bulgular 30 koşmanın ortalamasıdır.)

Fonksiyon SCA EABC AβHC PgAFWA sdSCA

ℱଵ 5.29e+08 6.91e+05 1.86e+07 1.70e+06 1.65e+04

ℱଶ 5.02e+10 5.45e+00 1.93e+08 3.98e+05 9.44e-01

ℱଷ 2.09e+01 2.00e+01 2.00e+01 3.20e+02 2.08e+01

ℱସ 4.19e+02 3.39e+01 1.19e+02 5.09e+02 7.14e+01

ℱହ 7.19e+03 1.29e+03 3.18e+03 3.69e+03 3.48e+03

ℱ଺ 1.38e+07 2.14e+05 4.82e+06 1.99e+05 2.29e+03

ℱ଻ 1.11e+02 4.20e+00 2.85e+01 7.15e+02 1.00e+01

ℱ଼ 2.90e+06 1.12e+05 1.16e+06 1.12e+05 6.82e+02

ℱଽ 2.61e+02 1.04e+02 1.76e+02 1.12e+03 1.20e+02

ℱଵ଴ 1.14e+07 1.10e+05 2.80e+06 1.73e+05 1.28e+03

ℱଵଵ 1.29e+03 2.82e+02 8.49e+02 1.68e+03 8.69e+02

ℱଵଶ 1.83e+02 1.05e+02 1.23e+02 1.31e+03 1.50e+02

ℱଵଷ 2.17e-01 8.33e+01 4.43e-02 1.42e+03 6.87e-02

ℱଵସ 4.87e+04 2.45e+04 3.37e+04 2.22e+04 3.44e+04

ℱଵହ 1.31e+04 1.00e+02 1.08e+02 1.60e+03 1.00e+02

Tablo 4.18, önerilen algoritmanın tüm test fonksiyonlarında temel SCA’dan çok daha iyi

performans gösterdiğini göstermektedir. Bu performans özellikle tek modlu

fonksiyonlarla birlikte ℱ଺, ℱ଼, ℱଵ଴ ve ℱଵହ’te görülmektedir. Diğer fonksiyonlarda

iyileştirme etkisi nispeten daha az olmuştur. Buna rağmen literatürdeki diğer

algoritmalarla karşılaştırıldığında oldukça verimli ve rekabetçi olduğu söylenebilir.

Çalışma süresine açısından her iki algoritma için de en az süre alan fonksiyon ℱଶ’dir, bu

fonksiyonda SCA’nın çalışma süresi 5.13 saniye iken, sdSCA’nın çalışma süresi 5.83

saniyedir. Yine her iki algoritma için de en fazla süre alan fonksiyon ℱଵହ’tir, bu

fonksiyonda SCA’nın çalışma süresi 43.24 saniye iken, sdSCA’nın çalışma süresi 40.88

saniyedir. Önerilen algoritmanın çalışma süresi açısından SCA ile yaklaşık aynı olduğu,

hatta ℱଵହ fonksiyonu için biraz daha iyi olduğu söylenebilir. Ortalama yakınsama eğrileri

ve kutu grafikleri için her gruptan için bir fonksiyon seçilmiştir. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ

fonksiyonları için SCA ve sdSCA’nın ortalama yakınsama eğrileri ve kutu grafikleri

sırasıyla Şekil 4.29 ve 4.30’da gösterilmektedir.

110

Şekil 4.29. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın ortalama
yakınsama eğrileri

Şekil 4.30. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın kutu grafikleri

Ortalama yakınsama eğrileri göz önüne alındığında, sdSCA’nın geliştirilmesiyle temel

SCA’nın optimizasyon yeteneğinin ve yakınsama hızının önemli ölçüde iyileştirildiği

görülmektedir. Kutu grafikleri göz önüne alındığında, sdSCA’nın çoğu fonksiyonda

düşük varyans ve medyan açısından daha performanslı olduğu ve temel algoritmadan

111

daha kararlı olduğu görülmektedir. Her iki algoritmanın maksimum ve minimum verileri

de bu sonucu desteklemektedir.

4.4.3.2. Önerilen sdSCA’nın CEC2020 Gerçek Dünya Optimizasyon Problemlerinde

Gerçekleştirimi

Önerilen algoritmanın CEC2015 test fonkisyonlarındaki etkinliğini desteklemek için

algoritma CEC2020 gerçek dünya optimizasyon problemlerine uygulanmıştır. Bu

problemlerden 20 tanesi kullanılmıştır ve bunlar Tablo 4.19’da gösterilmektedir.

Tablo 4.19. CEC2020 gerçek dünya optimizasyon problemleri (𝐷 problemin boyutu, 𝑔
eşitsizlik kısıtlarının sayısı, ℎ eşitlik kısıtlarının sayısı ve 𝑓∗ bilinen en iyi
fonksiyon değerini temsil eder.)

Grup # Problem 𝑫 𝒈 𝒉 𝒇∗
Endüstriyel
Kimyasal
Süreçler

ℱଵ Alkilasyon Ünitesinin Optimum İşlemi 7 14 0 -4.52e+03

ℱଶ Reaktör Ağ Tasarımı 6 1 4 -3.88e-01

Süreç
Sentezi ve
Tasarım

Problemleri

ℱଷ Süreç Sentezi Problemi 1 2 2 0 2.00e+00

ℱସ Süreç Sentezi ve Tasarım Problemi 3 1 1 2.55e+00

ℱହ Süreç Akış Şeması Problemi 3 3 0 1.07e+00

ℱ଺ Süreç Sentezi Problemi 2 7 9 0 2.92e+00

ℱ଻ Süreç Tasarım Problemi 5 3 0 2.68e+04

ℱ଼ Çok Ürünlü Yarı Mamul Tesisi 10 10 0 5.36e+04

Makine
Mühendisliği
Problemleri

ℱଽ Hız Azaltıcı Ağırlık Minimizasyonu 7 11 0 2.99e+03

ℱଵ଴ Gerilim/Kompressiyon Yay Tasarımı (V1) 3 3 0 1.26e-02

ℱଵଵ Kaynaklı Kiriş Tasarımı 4 5 0 1.67e+00

ℱଵଶ Üç Çubuklu Gerilme Problemi 2 3 0 2.63e+02

ℱଵଷ Adım Koni Kasnağı Problemi 5 8 3 1.60e+01

ℱଵସ Robot Uçişlevci Problemi 7 7 0 2.52e+00

ℱଵହ Hidrostatik Yataklama Tasarımı 4 7 0 1.61e+03

ℱଵ଺ 10 Çubuklu Gerilme Tasarımı 10 3 0 5.24e+02

ℱଵ଻ Gaz İletim Kompresör Tasarımı 4 1 0 2.96e+06

ℱଵ଼ Gerilim/Kompressiyon Yay Tasarımı (V2) 3 8 0 2.61e+00

ℱଵଽ Himmelblau Fonksiyonu 5 6 0 -3.06e+04

ℱଶ଴ Topoloji Optimizasyonu 30 30 0 2.63e+00

112

Tüm problemler 30 kez çalıştırılmıştır. Maksimum uygunluk değerlendirme sayısı ℱଵ-

ℱଵଽ için 1e+5 ve ℱଶ଴ için 2e+5 olarak, popülasyon boyutu 40 olarak ayarlanmıştır. SCA

ve sdSCA için diğer parametreler Alt Başlık 4.4.3.1’deki ayarlarla aynıdır. Önerilen

algoritma, CEC2020 yarışmasında en üst sıralarda yer alan algoritmalarla (SASS [102],

COLSHADE [103], EnMODE [104] ve sCMAgES [105]) karşılaştırılmıştır. Bu dört

algoritmanın parametreleri literatürde sunulan ayarlarla aynıdır [106]. Kısıt işleme tekniği

olarak öz uyarlamalı ceza stratejisi kullanılmıştır [107]. Bu karşılaştırma Tablo 4.20’de

gösterilmektedir.

Tablo 4.20. CEC2020 gerçek dünya optimizasyon problemleri için sdSCA’nın SASS,
COLSHADE, EnMODE ve sCMAgES ile karşılaştırması (OP: Optimum,
EK: En Kötü, OR: Ortalama, SS: Standart Sapma)

Problem SASS COLSHADE EnMODE sCMAgES sdSCA

ℱଵ

OP -1.42e+02 -4.52e+03 -4.52e+03 -4.52e+03 -4.52e+03

EK -1.42e+02 -4.36e+03 -4.52e+03 -4.15e+03 -4.52e+03

OR -1.42e+02 -3.71e+03 -4.52e+03 -3.32e+03 -4.52e+03

SS 1.07e-05 3.33e+02 1.62e-12 3.82e+02 1.78e-12

ℱଶ

OP -3.88e-01 -3.88e-01 -3.88e-01 -3.88e-01 -3.87e-01

EK -3.88e-01 -3.80e-01 -3.74e-01 -3.87e-01 1.94e+01

OR -3.88e-01 -3.58e-01 -3.69e-01 -3.74e-01 5.15e+00

SS 1.27e-06 1.15e-02 3.45e-03 2.98e-03 8.74e+00

ℱଷ

OP 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00

EK 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00

OR 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00

SS 6.12e-15 2.60e-16 2.28e-16 1.84e-16 1.88e-16

ℱସ

OP 2.55e+00 2.55e+00 2.55e+00 2.55e+00 2.56e+00

EK 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.55e+00

OR 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.00e+00

SS 2.74e-10 9.11e-16 9.11e-16 8.01e-09 3.75e-01

ℱହ

OP 1.07e+00 1.07e+00 1.07e+00 1.07e+00 1.07e+00

EK 1.07e+00 1.08e+00 1.17e+00 1.07e+00 1.25e+00

OR 1.07e+00 1.25e+00 2.25e+00 1.07e+00 1.09e+00

SS 1.18e-13 3.87e-02 8.85e-02 2.40e-14 4.73e-02

ℱ଺

OP 2.92e+00 2.92e+00 2.92e+00 2.92e+00 2.92e+00

EK 2.92e+00 2.93e+00 2.92e+00 2.93e+00 4.20e+00

OR 2.92e+00 3.08e+00 2.92e+00 2.95e+00 3.01e+00

SS 8.63e-10 3.52e-02 9.11e-16 1.15e-02 2.34e-01

113

Tablo 4.20. Devam

Problem SASS COLSHADE EnMODE sCMAgES sdSCA

ℱ଻

OP 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04

EK 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04

OR 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04

SS 4.07e-10 7.46e-12 1.12e-11 1.12e-11 1.48e-11

ℱ଼

OP 5.85e+04 5.85e+04 5.85e+04 5.36e+04 5.36e+04

EK 5.87e+04 5.85e+04 5.85e+04 5.49e+04 5.91e+04

OR 6.18e+04 5.85e+04 5.85e+04 5.92e+04 5.46e+04

SS 9.33e+02 2.83e-11 7.83e-09 1.67e+03 2.07e+03

ℱଽ

OP 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03

EK 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03

OR 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03

SS 5.91e-09 9.33e-13 1.40e-12 7.66e-12 0.00e+00

ℱଵ଴

OP 1.26e-02 1.26e-02 1.26e-02 1.26e-02 1.26e-02

EK 1.26e-02 1.26e-02 1.27e-02 1.26e-02 1.26e-02

OR 1.26e-02 1.26e-02 1.27e-02 1.26e-02 1.26e-02

SS 8.13e-10 5.11e-09 1.97e-05 2.53e-06 6.70e-18

ℱଵଵ

OP 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00

EK 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00

OR 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00

SS 7.72e-13 6.83e-16 6.97e-16 1.57e-13 2.22e-16

ℱଵଶ

OP 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02

EK 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02

OR 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02

SS 1.55e-12 0.00e+00 0.00e+00 6.66e-13 0.00e+00

ℱଵଷ

OP 1.60e+01 1.60e+01 1.60e+01 1.60e+01 1.60e+01

EK 1.60e+01 1.60e+01 1.60e+01 1.62e+01 1.60e+01

OR 1.60e+01 1.60e+01 1.60e+01 1.67e+01 1.60e+01

SS 3.47e-09 4.89e-15 3.04e-14 1.84e-01 7.22e-15

ℱଵସ

OP 2.54e+00 2.54e+00 2.54e+00 2.61e+00 2.54e+00

EK 2.54e+00 2.54e+00 2.54e+00 2.88e+00 2.54e+00

OR 2.54e+00 2.54e+00 2.54e+00 3.34e+00 2.54e+00

SS 5.27e-09 5.11e-14 4.75e-12 1.90e-01 2.01e-14

ℱଵହ

OP 1.61e+03 1.61e+03 1.61e+03 2.13e+03 1.61e+03

EK 1.61e+03 1.62e+03 1.61e+03 3.01e+03 1.61e+03

OR 1.63e+03 1.66e+03 1.61e+03 3.62e+03 1.61e+03

SS 4.15e+00 1.47e+01 1.00e-10 3.83e+02 4.22e-13

114

Tablo 4.20. Devam

Problem SASS COLSHADE EnMODE sCMAgES sdSCA

ℱଵ଺

OP 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.24e+02

EK 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.30e+02

OR 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.24e+02

SS 9.84e-03 1.05e-09 4.32e-09 1.13e-01 1.55e+00

ℱଵ଻

OP 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06

EK 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06

OR 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06

SS 1.74e-09 9.56e-10 9.56e-10 1.08e+01 1.42e-09

ℱଵ଼

OP 2.65e+00 2.65e+00 2.65e+00 2.97e+00 2.65e+00

EK 2.65e+00 2.65e+00 2.70e+00 4.28e+00 2.65e+00

OR 2.65e+00 2.65e+00 3.63e+00 6.35e+00 2.65e+00

SS 2.28e-11 4.56e-16 2.18e-01 9.08e-01 4.51e-16

ℱଵଽ

OP -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04

EK -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04

OR -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04

SS 2.17e-09 8.35e-13 3.73e-12 2.01e-10 1.11e-11

ℱଶ଴

OP 2.63e+00 2.63e+00 2.63e+00 2.63e+00 2.63e+00

EK 2.63e+00 2.63e+00 2.63e+00 2.63e+00 3.05e+00

OR 2.63e+00 2.63e+00 2.63e+00 2.63e+00 2.68e+00

SS 1.87e-09 1.28e-15 7.28e-16 1.14e-15 9.01e-02

Tablo 4.20 sdSCA’nın diğer dört algoritma gibi çoğunlukla bilinen en iyi fonksiyon

değerine ulaştığını göstermektedir. Önerilen algoritma karşılaştırılan algoritmalarla

rekabet halindedir. Algoritma, diğer algoritmalardan daha kötü sonuçlar veren

problemlerde bile bilinen en iyi fonksiyon değerine yakın sonuçlar üretmiştir.

4.4.3.3. Önerilen sdSCA’nın Çoklu Robot Yerel Yol Planlama Probleminde

Gerçekleştirimi

Bu simülasyonda önerilen algoritma çoklu robotların yerel yol planlaması probleminde

uygulanmıştır. Robotlar dairesel, homojen ve aynı boyutta tasarlanmıştır. Dinamik

engeller de homojendir ve sabit bir hızla iki belirli nokta arasında doğrusal olarak hareket

edecek şekilde düşünülmüştür. Bu çalışma için hem statik hem de dinamik engelleri

içeren üç ortam oluşturulmuştur. Ortam 17, 100 x 100 br boyutunda tasarlanmış ve 6

robot kullanılmıştır. Bu ortamda 7 statik engel ve 3 dinamik engel vardır. Ortam 18, 100

115

x 100 br boyutunda tasarlanmış ve 7 robot kullanılmıştır. Bu ortamda 7 statik engel ve 3

dinamik engel vardır. Ortam 19, 200 x 200 br boyutunda tasarlanmış ve 12 robot

kullanılmıştır. Bu ortamda 14 statik engel ve 6 dinamik engel vardır. Statik ve dinamik

engeller Ortam 18’de farklı şekillerdeyken, diğer ortamlarda çeşitli yarıçaplarda

daireseldir. Bu ortamlar Şekil 4.31’de gösterilmektedir.

 (a) (b)

 (c)

Şekil 4.31. Çoklu robotların yerel yol planlaması için tasarlanan ortamlar:
(a) Ortam 17, (b) Ortam 18, (c) Ortam 19

Ortam 17’de robotlar farklı renk kodlarıyla R1-R6 olarak temsil edilmektedir. Bu renklere

karşılık gelen noktalı çizgiler ve çarpı işaretleri sırasıyla robotların ideal yollarını ve hedef

noktalarını göstermektedir. Statik engeller gri dairelerle, dinamik engeller ise D1-D3

siyah dairelerle temsil edilmektedir. Siyah kesik çizgiler ve siyah kare işaretler sırasıyla

dinamik engellerin yollarını ve hedef noktalarını göstermektedir. Dinamik engeller düz

bir çizgide 0.5 br/s (D1), 0.45 br/s (D2) ve 1.2 br/s (D3) sabit hızlarla hareket etmektedir.

Dinamik engellerin bu hızları, robotları kısıtlayacak ve her ortam için problemi

116

karmaşıklaştıracak şekilde seçilmiştir. Ortam 18’de robotlar farklı renk kodlarıyla R1-R7

olarak temsil edilmektedir. Bu renklere karşılık gelen noktalı çizgiler ve çarpı işaretleri

sırasıyla robotların ideal yollarını ve hedef noktalarını göstermektedir. Statik engeller gri

dairelerle, dinamik engeller ise D1-D3 siyah dairelerle temsil edilmektedir. Statik

engeller iki daire, iki üçgen ve üç kare biçimindeyken, dinamik engeller bir daire, bir

üçgen ve bir kare şeklinde tasarlanmıştır. Siyah kesik çizgi ve siyah kare işaretler dinamik

engellerin sırasıyla yollarını ve hedef noktalarını göstermektedir. Dinamik engeller 0.5

br/s (D1), 0.1 br/s (D2) ve 1.1 br/s (D3) sabit hızlarıylaa düz bir çizgide hareket eder.

Ortam 19’da robotlar farklı renk kodlarıyla R1-R12 olarak temsil edilmektedir. Bu

renklere karşılık gelen noktalı çizgiler ve çarpı işaretleri sırasıyla robotların ideal yollarını

ve hedef noktalarını göstermektedir. Statik engeller gri dairelerle, dinamik engeller ise

D1-D6 siyah dairelerle temsil edilmektedir. Siyah kesik çizgi ve siyah kare işaretler

dinamik engellerin sırasıyla yollarını ve hedef noktalarını göstermektedir. Dinamik

engeller 0.5 br/s (D1), 0.5 br/s (D2), 0.6 br/s (D3), 0.3 br/s (D4), 0.4 br/s (D5) ve 0.25

br/s (D6) sabit hızlarıyla düz bir çizgide hareket eder. Her ortam için, robotların yarıçapı

1 br iken dinamik engellerin yarıçapı 1.5 br olarak tanımlanmıştır. Optimize edilecek

parametreler olan hız ve yönelim aralıkları sırasıyla [1 1.5] br/s ve [0 2𝜋] radyandır. Amaç

fonksiyonlarından 𝐹ଶ, 𝐹ଷ ve 𝐹ସ’teki 𝜀 değerleri 105, zaman adımı (Δ𝑡) da 1 s olarak

ayarlanmıştır.

İlk olarak, sdSCA’nın çoklu robot sistemindeki toplam robot sayısı üzerindeki

performansı Ortam 17 için incelenmiştir. Ardından, önerilen algoritma Ortam 17, 18 ve

19’da uygulanmış ve temel SCA ile SFS, AOA, WOA [108] ve HHO [109] algoritnaları

ile karşılaştırılmıştır. Algoritmaların kontrol parametreleri ise Tablo 4.21’de

gösterilmektedir.

117

Tablo 4.21. Algoritmaların kontrol parametreleri (𝑇 maksimum uygunluk
değerlendirme sayısı, 𝑆 popülasyon boyutu, 𝑎 𝑟ଵ sayısı için ayarlanan
parametre, 𝑛ௗ௜௙ difüzyon sayısı, 𝑤𝑎𝑙𝑘 yürüme oranı, 𝛼 kullanım
doğruluğunu tanımlayan parametre, 𝜇 arama sürecini ayarlayan parametre,
𝑏 logaritmik spiralin şeklini tanımlayan parametre, 𝛽 Levy uçuşunda
kullanılan sabit parametre, 𝐹 ölçekleme faktörü, 𝐶𝑅 çaprazlama oranı)

Algoritma Parametre

SCA 𝑇 = 1000, 𝑆 = 30, 𝑎 = 2

SFS 𝑇 = 1000, 𝑆 = 30, 𝑛ௗ௜௙ = 2, 𝑤𝑎𝑙𝑘 = 0.5

AOA 𝑇 = 1000, 𝑆 = 30, 𝛼 = 5, 𝜇 = 0.5

WOA 𝑇 = 1000, 𝑆 = 30, 𝑏 = 1

HHO 𝑇 = 1000, 𝑆 = 30, 𝛽 = 1.5

sdSCA 𝑇 = 1000, 𝑆 = 30, 𝑎 = 2, 𝐹 = 0.8, 𝐶𝑅 = 0.95

Robot Sayısının Performansa Etkisi: Çoklu robot sistemindeki toplam robot sayısı

üzerinde sdSCA’nın performansını incelemek için, Ortam 17’de sdSCA farklı robot

sayılarıyla (2, 3, 4 ve 5) 30 kez çalıştırılmış ve ortalama yol sapma hatası (𝑂𝑌𝑆𝐻),

ortalama kalan hedef uzaklığı (𝑂𝐾𝐻𝑈), toplam uygunluk değeri ve çalışma süresi

açısından temel SCA ile karşılaştırılmıştır. Bunlar sırasıyla Tablo 4.22, 4.23, 4.24 ve

4.25’te gösterilmektedir. SCA ve sdSCA için 𝑂𝐾𝐻𝑈 ve çalışma süresi robot sayısına göre

Şekil 4.32’de grafiksel olarak da gösterilmektedir.

Tablo 4.22. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝑌𝑆𝐻 karşılaştırması

Robot Sayısı
𝑶𝒀𝑺𝑯 (br)

İyileştirme Oranı (%)
SCA sdSCA

2 27.58 14.55 47.24

3 59.56 16.20 72.80

4 157.50 30.55 80.60

5 278.15 50.83 81.72

Tablo 4.23. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝐾𝐻𝑈 karşılaştırması

Robot Sayısı
𝑶𝑲𝑯𝑼 (br)

İyileştirme Oranı (%)
SCA sdSCA

2 7377 7034 4.65

3 9243 7733 16.33

4 16052 11250 29.91

5 21124 12901 38.92

118

Tablo 4.24. SCA ve sdSCA’nın farklı robot sayıları için toplam uygunluk değeri
karşılaştırması

Robot Sayısı
Toplam Uygunluk Değeri

İyileştirme Oranı (%)
SCA sdSCA

2 7893 7550 4.34

3 9560 8033 15.97

4 16459 11631 29.33

5 21442 13401 37.50

Tablo 4.25. SCA ve sdSCA’nın farklı robot sayıları için çalışma süresi karşılaştırması

Robot Sayısı
Çalışma Süresi (s)

İyileştirme Oranı (%)
SCA sdSCA

2 5.92 5.72 3.37

3 7.94 6.79 14.48

4 11.00 7.92 28.00

5 14.19 9.21 35.09

 (a) (b)

Şekil 4.32. SCA ve sdSCA için toplam robot sayısına göre ortalama kalan hedef
uzaklığı ve ortalama çalışma süresi: (a) Ortalama kalan hedef uzaklığı, (b)
Ortalama çalışma süresi

Çoklu robot sistemindeki toplam robot sayısı arttıkça problem de zorlaşmaktadır. Tablo

4.23, 4.24, 4.25 ve 4.26 dikkate alındığında, sdSCA hem performans (𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈,

toplam uygunluk değeri) hem de ortalama çalışma süresi açısından temel SCA’ya göre

oldukça önemli bir iyileştirme sağlamıştır. Dahası, robot sayısı artmasına rağmen

iyileştirme oranı da artmıştır. En fazla iyileştirme 𝑂𝑌𝑆𝐻’de görülmüş, iyileştirme oranı

robot sayısı arttıkça %47.24’ten %81.72’ye yükselmiştir. Diğer kriterler nispeten daha az

119

olmasına rağmen, hepsinde iyileştirme oranının arttığı görülmektedir. Robot sayısı

arttıkça iyileştirme oranları da 𝑂𝐾𝐻𝑈 için %4.65’ten %38.92’ye, toplam uygunluk değeri

için %4.34’ten %37.50’ye ve ortalama çalışma süresi için %3.37’den %35.09’a

yükselmiştir. Bu sonuçlar sdSCA’nın yüksek verimliliğini göstermektedir.

Önerilen Algoritmanın Ortam 17’de Gerçekleştirimi: Bu ortamda 6 robot

olduğundan, Alt Başlık 4.4.1’de belirtildiği gibi problem boyutu (𝐷) 12 olur. Tüm

algoritmalar 30 kez çalıştırılmıştır. Ortam 17’de algoritmalar tarafından elde edilen örnek

yollar Şekil 4.33’te gösterilmektedir.

 (a) (b)

 (c) (d)

120

 (e) (f)

Şekil 4.33. Ortam 17’de algoritmalar tarafından elde edilen örnek yollar: (a) SCA,
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun daha

kısa ve düzgün olduğu görülmektedir. Diğer algoritmaların planladığı yollar daha

kıvrımlıdır ve bu durum yolların daha uzun olmasına neden olur. Ortam 17’de ortalama

adım sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama yol

uzunluğu karşılaştırması sırasıyla Tablo 4.26, Şekil 4.34 ve Tablo 4.27’de

gösterilmektedir. Ayrıca, algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve

ortalama çalışma süresi açısından karşılaştırılmıştır ve bu bulgular Tablo 4.28’de

gösterilmektedir.

Tablo 4.26. Ortam 17’de her robot ve toplam için ortalama adım sayısı karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 138 99 155 154 132 88

Robot #2 142 94 143 125 121 86

Robot #3 66 38 68 53 47 35

Robot #4 135 94 142 149 113 84

Robot #5 88 51 87 64 64 46

Robot #6 115 75 121 103 102 67

Toplam 684 451 716 648 579 406

121

Şekil 4.34. Ortam 17’de her robot için ortalama adım sayısının çubuk grafiği

Tablo 4.27. Ortam 17’de her robot ve toplam için ortalama yol uzunluğu (br)
karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 167.81 117.04 190.72 177.61 158.95 105.58

Robot #2 171.64 110.76 176.83 144.71 146.20 103.70

Robot #3 80.74 45.95 83.69 62.71 57.78 43.43

Robot #4 165.05 110.44 175.19 172.32 136.82 101.68

Robot #5 106.63 60.90 107.56 75.77 78.47 54.82

Robot #6 140.58 89.52 149.52 119.91 124.17 82.04

Toplam 832.48 534.63 883.54 753.04 702.41 491.27

Tablo 4.28. Ortam 17’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma
süresi karşılaştırmaları

 SCA SFS AOA WOA HHO sdSCA

𝑂𝑌𝑆𝐻 (br) 409.41 111.56 460.47 329.97 279.35 68.20

𝑂𝐾𝐻𝑈 (br) 27976 17544 29693 27995 23669 15923
Toplam Uygunluk

Değeri
28501 18244 30009 28156 24850 16513

Ortalama Çalışma
Süresi (s)

41.49 34.51 39.15 35.78 64.88 18.54

122

Önerilen algoritma, tüm robotların hedef noktalarına minimum adımda ulaşmasını

sağlamıştır. Temel SCA’ya kıyasla toplam adım sayısını %40.63 oranında azaltmıştır.

Ayrıca, yol uzunlukları değerlendirildiğinde, önerilen algoritmanın hem temel SCA’dan

hem de diğer metasezgisel algoritmalardan daha iyi performans gösterdiği görülmektedir.

Temel SCA’ya kıyasla ortalama yol uzunluğunu %40.98 oranında azaltmıştır. Önerilen

algoritma, adım sayısı ve yol uzunluğu açısından tüm robotlar için başarılı olmuştur.

Ayrıca, Tablo 4.28’deki karşılaştırma bulguları da bu sonucu desteklemektedir. Özellikle,

önerilen algoritmanın yol planlama sürecini diğer algoritmalara kıyasla daha kısa sürede

tamamlaması performansını kanıtlamaktadır. Sonuç olarak, önerilen algoritma her

kriterde en iyi performansı göstermiştir. AOA en kötü performansı gösterirken, HHO yol

planlama sürecini en uzun sürede tamamlayan algoritma olmuştur. Ortam 17 için her

algoritmanın adım sayısına göre yakınsama eğrileri Şekil 4.35’te gösterilmektedir.

Şekil 4.35. Ortam 17 için her algoritmanın adım sayısına göre yakınsama eğrileri

Şekil 4.35’te önerilen algoritmanın Ortam 17’de diğer algoritmalardan daha hızlı

yakınsadığı ve diğer bulguları desteklediği görülmektedir.

Önerilen Algoritmanın Ortam 18’de Gerçekleştirimi: Bu ortamda 7 robot olduğundan

problem boyutu (𝐷) 14 olur. Tüm algoritmalar 30 kez çalıştırılmıştır. Ortam 18’de

algoritmalar tarafından elde edilen örnek yollar Şekil 4.36’da gösterilmektedir.

123

 (a) (b)

 (c) (d)

 (e) (f)

Şekil 4.36. Ortam 18’de algoritmalar tarafından elde edilen örnek yollar: (a) SCA,
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun Ortam

17’deki gibi daha kısa ve düzgün olduğu görülmektedir. Ortam 18’de ortalama adım

sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama yol uzunluğu

karşılaştırması sırasıyla Tablo 4.29, Şekil 4.37 ve Tablo 4.30’da gösterilmektedir. Ayrıca,

124

algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma süresi açısından

karşılaştırılmıştır ve bu bulgular Tablo 4.31’de gösterilmektedir.

Tablo 4.29. Ortam 18’de her robot ve toplam için ortalama adım sayısı karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 103 78 108 86 109 72

Robot #2 145 95 159 105 123 86

Robot #3 97 49 94 59 66 55

Robot #4 43 35 56 39 47 32

Robot #5 127 157 142 166 104 74

Robot #6 150 84 154 96 105 74

Robot #7 41 29 49 34 40 28

Toplam 706 527 762 585 594 421

Şekil 4.37. Ortam 18’de her robot için ortalama adım sayısının çubuk grafiği

125

Tablo 4.30. Ortam 18’de her robot ve toplam için ortalama yol uzunluğu (br)
karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 125.03 90.40 132.63 102.48 129.93 85.74

Robot #2 174.81 109.18 194.58 124.18 145.73 103.15

Robot #3 116.09 56.91 114.23 70.09 79.02 64.68

Robot #4 51.91 39.95 69.50 47.23 56.89 37.95

Robot #5 153.60 172.45 174.31 185.82 124.40 88.92

Robot #6 179.61 96.13 187.49 112.55 125.34 88.44

Robot #7 49.49 33.08 60.42 40.91 48.33 34.08

Toplam 850.56 598.12 933.19 683.29 709.66 503.00

Tablo 4.31. Ortam 18’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma
süresi karşılaştırmaları

 SCA SFS AOA WOA HHO sdSCA

𝑂𝑌𝑆𝐻 (br) 502.90 250.46 585.54 335.63 362.00 155.34

𝑂𝐾𝐻𝑈 (br) 23472 30872 26134 43786 18975 13927
Toplam Uygunluk

Değeri
25389 41374 44233 60575 22973 13870

Ortalama Çalışma
Süresi (s)

22.60 28.76 26.59 26.32 34.16 13.59

Ortam 18’de, adım sayıları ve yol uzunlukları değerlendirildiğinde, önerilen algoritmanın

genel olarak diğer algoritmalardan daha iyi performans gösterdiği görülmektedir. Yol

uzunluğu açısından 7 robottan 6’sı için diğer algoritmalardan daha iyi performans

göstermiştir. Ancak, üçüncü robot için SFS ve sdSCA’nın yol uzunluğu açısından

performansları arasında anlamlı bir fark olmadığı söylenebilir. Ayrıca, toplam dikkate

alındığında, önerilen algoritmanın diğer tüm algoritmalardan üstün olduğu

görülmektedir. Önerilen algoritma, temel SCA’ya kıyasla adım sayısını %40.36 ve yol

uzunluğunu %40.86 oranında azaltmıştır. Tablo 4.31’de, önerilen algoritmanın diğer

algoritmalara kıyasla tüm kriterlerde en iyi performansı gösterdiği görülmektedir. Ayrıca,

Ortam 17’de olduğu gibi, Ortam 18’de de en kötü performansa sahip algoritmanın AOA,

yol planlama sürecini en uzun sürede tamamlayan algoritmanın ise HHO olduğu

görülmektedir. Ortam 18 için her algoritmanın adım sayısına göre yakınsama eğrileri

Şekil 4.38’de gösterilmektedir.

126

Şekil 4.38. Ortam 18 için her algoritmanın adım sayısına göre yakınsama eğrileri

Şekil 4.38’de önerilen algoritmanın Ortam 18’de diğer algoritmalardan daha hızlı

yakınsadığı ve diğer bulguları desteklediği görülmektedir.

Önerilen Algoritmanın Ortam 19’da Gerçekleştirimi: Bu ortamda 12 robot

olduğundan problem boyutu (𝐷) 24 olur. Tüm algoritmalar 30 kez çalıştırılmıştır. Ortam

19’da algoritmalar tarafından elde edilen örnek yollar Şekil 4.39’da gösterilmektedir.

 (a) (b)

 (c) (d)

127

 (e) (f)

Şekil 4.39. Ortam 19’da algoritmalar tarafından elde edilen örnek yollar: (a) SCA,
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun Ortam

17 ve 18’e benzer şekilde daha kısa ve düzgün olduğu görülmektedir. Ortam 19’da

ortalama adım sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama

yol uzunluğu karşılaştırması sırasıyla Tablo 4.32, Şekil 4.40 ve Tablo 4.33’te

gösterilmektedir. Ayrıca, algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve

ortalama çalışma süresi açısından karşılaştırılmıştır ve bu bulgular Tablo 4.34’te

gösterilmektedir.

Tablo 4.32. Ortam 19’da her robot ve toplam için ortalama adım sayısı karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 78 47 85 65 73 44

Robot #2 294 220 312 386 268 160

Robot #3 241 174 262 274 215 128

Robot #4 101 53 114 98 100 46

Robot #5 176 118 187 174 146 93

Robot #6 165 126 177 165 149 98

Robot #7 148 107 178 155 152 98

Robot #8 71 52 83 64 77 48

Robot #9 115 88 138 111 110 74

Robot #10 250 183 291 299 248 138

Robot #11 154 88 159 145 143 79

Robot #12 59 32 59 49 56 31

Toplam 1852 1288 2045 1985 1737 1037

128

Şekil 4.40. Ortam 19’da her robot için ortalama adım sayısının çubuk grafiği

Tablo 4.33. Ortam 19’da her robot ve toplam için ortalama yol uzunluğu (br)
karşılaştırması

 SCA SFS AOA WOA HHO sdSCA

Robot #1 95.51 54.54 104.60 72.83 86.13 53.16

Robot #2 357.87 248.67 381.84 429.68 313.50 194.78

Robot #3 294.43 199.42 321.58 308.14 253.31 156.00

Robot #4 121.73 59.80 138.61 110.62 118.54 54.74

Robot #5 214.93 135.88 228.76 199.33 174.56 112.80

Robot #6 201.54 145.61 217.61 189.09 178.21 119.83

Robot #7 182.70 123.54 219.65 177.38 181.87 121.14

Robot #8 86.94 60.47 102.39 71.65 91.71 58.56

Robot #9 140.71 102.38 169.60 126.65 131.38 89.65

Robot #10 304.99 207.99 355.06 336.41 290.37 166.75

Robot #11 188.05 101.81 194.75 165.77 170.85 95.73

Robot #12 71.39 36.80 72.15 54.05 66.11 37.10

Toplam 2260.8 1477.0 2506.7 2241.7 2056.6 1260.3

129

Tablo 4.34. Ortam 19’da 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma
süresi karşılaştırmaları

 SCA SFS AOA WOA HHO sdSCA

𝑂𝑌𝑆𝐻 (br) 1340.4 556.5 1586.2 1321.2 1136.1 339.8

𝑂𝐾𝐻𝑈 (br) 95334 84580 152250 107690 95317 65262
Toplam Uygunluk

Değeri
97323 68086 115160 106860 90128 53926

Ortalama Çalışma
Süresi (s)

118.38 94.75 128.32 159.01 211.65 63.99

Önerilen algoritma, Ortam 17 ve 18’de olduğu gibi Ortam 19’da de tüm robotların

minimum adım sayısında hedef noktalarına ulaşmasını sağlamıştır. Yol uzunlukları

değerlendirildiğinde, önerilen algoritmanın genel olarak diğer algoritmalardan daha iyi

performans gösterdiği görülmektedir. Önerilen algoritma, adım sayısı açısından tüm

robotlar için başarılı olsa da, yol uzunluğu açısından 12 robottan 11’i için diğer

algoritmalardan daha iyi performans göstermiştir. Ancak, 12. robot için SFS ve

sdSCA’nın performansları arasında anlamlı bir fark olmadığı söylenebilir. Ayrıca, toplam

dikkate alındığında, önerilen algoritmanın diğer tüm algoritmalardan üstün olduğu

görülmektedir. Önerilen algoritma, temel SCA’ya kıyasla adım sayısını %44.00 ve yol

uzunluğunu %44.25 oranında azaltmıştır. Tablo 4.34’te, önerilen algoritmanın diğer

algoritmalara kıyasla tüm kriterlerde en iyi performansı gösterdiği görülmektedir. Ayrıca,

Ortam 17 ve 18’de olduğu gibi, Ortam 19’da de en kötü performansa sahip algoritmanın

AOA, yol planlama sürecini en uzun sürede tamamlayan algoritmanın ise HHO olduğu

görülmektedir. Ortam 19 için her algoritmanın adım sayısına göre yakınsama eğrileri

Şekil 4.41’de gösterilmektedir.

Şekil 4.41. Ortam 19 için her algoritmanın adım sayısına göre yakınsama eğrileri

130

Şekil 4.41’de Ortam 19’da önerilen algoritmanın diğer algoritmalardan daha hızlı

yakınsadığı ve diğer bulguları desteklediği görülmektedir. Sonuç olarak, bu çalışmada

önerilen algoritmanın performansı farklı zorluk seviyelerine sahip üç farklı ortamda test

edilmiş ve önerilen algoritmanın literatürdeki güncel metasezgisel algoritmalardan üstün

olduğu kanıtlanmıştır.

4.5. Izgara Haritalarda ResNet Tabanlı Çoklu-Robot Yol Planlaması

Izgara tabanlı mobil robot yol planlama problemlerinde standart FCN mimarileri

derinleştikçe kaybolan gradyan problemi yaşayabilir ve bu durum ağı derinleştirmenin

etkinliğini sınırlayabilir. Bu problem, özellikle yol planlama gibi karmaşık görevlerde

robotun çevresindeki engellerin doğru bir şekilde tanınması ve bu engellere karşı verimli

bir yol haritası çıkarılması için kritik öneme sahiptir. Gradyan kaybolması, geri yayılım

sırasında gradyanların hızla küçülmesi nedeniyle ağın daha derin katmanlarının etkili bir

şekilde öğrenmesini engeller. Bu da, robotun çevresindeki karmaşık engelleri ve yol

tıkanıklıklarını doğru bir şekilde öğrenmesini zorlaştırır. Ayrıca, standart FCN’ler, artık

(residual) katmanlar içermediğinden, daha derin katmanların öğrenmeye katkısı sınırlıdır,

bu da ağın genel öğrenme sürecini verimsiz hale getirir. Bu durum, robotun yol planlama

görevindeki öğrenme kapasitesini kısıtlar ve modelin daha fazla katman eklemenin fayda

sağlamadığı sınırlı çözünürlükteki haritalar üretmesine yol açar. Bunun yanı sıra,

FCN’lerde alıcı alanı genellikle sınırlıdır. Bu da robotun çevresindeki geniş bağlamsal

ilişkileri öğrenme yeteneğini engeller. Özellikle yol planlama gibi görevlerde, robotun

çevresindeki engelleri ve uygun yolları daha geniş bir bağlamda anlaması gerekmektedir.

Algılama alanının sınırlı olması modelin yalnızca yerel bilgiyle sınırlı kalmasına neden

olur, bu da genelleme yeteneğini zayıflatır ve modelin aşırı öğrenme gibi problemlerle

karşılaşmasına yol açar. Standart FCN’lerin bu sınırlamalarını aşmak amacıyla, bu

çalışmada genişletilmiş evrişim (dilated convolution), sıkma-uyarma bloğu (squeeze-

and-excitation) ve dropout içeren iyileştirilmiş bir ResNet (IResNet) mimarisi

önerilmiştir. Önerilen modelin ana katkıları şunlardır:

 Genişletilmiş evrişim kullanılarak alıcı alan genişletilmiştir. Böylece hem yerel

hem de küresel özelliklerin daha etkili şekilde öğrenilmesi ve gelişmiş bağlamsal

bilgi edinilmesi sağlanmıştır.

131

 Sıkma-uyarma bloğu eklenerek kanal bazında dikkat mekanizması sağlanmıştır.

Böylece modelin önemli görsel özelliklere odaklanması ve gereksiz bilgilerin

baskılanarak daha verimli öğrenme sürecinin gerçekleştirilmesi hedeflenmiştir.

 Toplu normalizasyonun (batch norm) etkisini desteklemek amacıyla dropout

kullanılmıştır. Böylece modelin daha sağlam genelleme yapması sağlanmış ve

aşırı öğrenme riski azaltılmıştır.

4.5.1. Problem Tanımı

Bu çalışma, bir mobil robotun engellere çarpmadan hedefe ulaşmasını sağlayacak

optimum yol planlamasını tahmin etmeyi amaçlamaktadır. Robotun başlangıç ve bitiş

noktası verildiğinde robotun en az sayıda ızgara hücresinden geçerek hedefe ulaşması

gereken yol, derin öğrenme kullanılarak tahmin edilmiştir. Çalışmada iki boyutlu bir

ızgara haritası kullanılmıştır. Bu harita, ikili bir görüntü formatında temsil edilir. Her bir

hücre boş (0) veya engelli (1) olabilir. Robotun yolu, 1’ler ile temsil edilen hücreler

üzerinden geçerken, 0’lar engel olmayan boş hücrelerdir. Bu ortamlar, görüntü olarak

modellenir, burada boş alanlar beyaz (0) ve engeller siyah (1) olarak kodlanır. Yol

planlaması 𝑚 x 𝑛 boyutunda bir ikili ızgara görüntüsü 𝑀௧௥௨௧௛ (gerçek yol haritası) ile

verilecektir. Model 𝑀௣௥௘ௗ (tahmin edilen yol haritası) adlı bir çıkış üretir. Bu çıkış

robotun geçmesi gereken hücrelerin 1 olarak işaretlendiği bir ikili matristir. Modelin

amacı 𝑀௣௥௘ௗ ile 𝑀௧௥௨௧௛ arasındaki farkı minimize etmektir. Buradaki fark Eşitlik

(4.36)’da gösterilen 𝑀𝑆𝐸 kayıp fonksiyonu ile hesaplanır.

𝑀𝑆𝐸 =
1

𝑛௣
෍ ቀ𝑀௧௥௨௧௛(𝑖) − 𝑀௣௥௘ௗ(𝑖)ቁ

ଶ
௡೛

௜ୀଵ

(4.36)

Burada 𝑛௣ harita üzerindeki toplam hücre sayısını, 𝑀௧௥௨௧௛(𝑖) ve 𝑀௣௥௘ௗ(𝑖) ise sırasıyla

gerçek yol ve tahmin edilen yol haritasındaki 𝑖’inci hücrenin değerini temsil eder. Tahmin

edilen yol haritası, doğru şekilde belirlenen 1’ler ile başlangıç noktasından hedefe giden

en kısa yolu temsil eder. Modelin görevi optimum yolun doğru şekilde tahmin edilmesini

sağlamaktır. Bu, her hücredeki tahminin, gerçek yol ile ne kadar yakın olduğunu ölçerek

minimize edilir. MSE ağın her iki harita arasındaki farkı minimize etmeyi amaçlar.

132

4.5.2. Önerilen Yöntem

4.5.2.1. Veri Seti

Bu çalışmada [110]’daki veri seti kullanılmıştır. Ağın girişine üç farklı veri

sağlanmaktadır: ortam matrisi, başlangıç noktası matrisi ve hedef noktası matrisi. Ortam

matrisi engel bilgilerini içerir ve 𝑛 x 𝑛 boyutundadır. Bu matriste engeller 1, boş alanlar

0 ile temsil edilmektedir. Engel dağılımı rastgele belirlenmiş ve her hücrenin engel olma

olasılığı %60 olarak atanmıştır. Başlangıç ve hedef hücre matrisleri de aynı boyutta olup,

sadece ilgili hücrede 1 değeri bulunurken diğer hücreler 0’dır. Modelin çıktısı ise tahmin

edilen yolun 1’lerle gösterildiği 𝑛 x 𝑛 boyutunda tek bir matristir. Bu matristeki yollar

optimum yol olarak ifade edilmiş ve A* algoritması ile 8 yönlü olarak planlanmıştır.

Çalışmada toplam 30000 veri örneği kullanılmış ve üç farklı ortam boyutu ele alınmıştır:

10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2. Tekli robot senaryolarında başlangıç ve hedef

hücreleri farklı ve rastgele olacak şekilde belirlenmiştir. Çoklu robot senaryoları ise

yalnızca 15 x 15 br2 boyutundaki ortamlarda test edilmiş ve bu senaryolarda tüm robotlar

aynı hedef hücresine yönlendirilmiştir. İki robotlu durumda başlangıç hücreleri (1, 1) ve

(1, 15), üç robotlu durumda ise (1, 1), (1, 15) ve (15, 1) olarak belirlenmiştir. Tüm

senaryolarda hedef hücresi ortamın merkezinde bulunan (8, 8) hücresidir. Giriş ve çıkış

verilerinin bir temsili Şekil 4.42’de gösterilmektedir.

Ortam Matrisi Başlangıç Hücre Matrisi Hedef Hücre Matrisi

Yol Matrisi

Çıkış Verisi
(1 x n x n)

Giriş Verisi
(3 x n x n)

Şekil 4.42. Giriş ve çıkış verilerinin bir temsili

133

4.5.2.2. Önerilen IResNet Mimarisi

Önerilen IResNet mimarisi, geleneksel artık ağ yapısını temel alarak, sıkma-uyarma ve

genişletilmiş evrişim mekanizmalarının entegre edildiği 41 evrişim katmanlı bir derin

öğrenme modelidir. Modelin giriş katmanı, adım uzunluğu 1 olan 3 x 3 boyutunda 64

filtre içeren bir evrişim katmanı ile başlamaktadır. Bu katman, ReLU aktivasyon

fonksiyonu ile etkinleştirilmekte ve ardından bir toplu normalizasyon işlemi

uygulanmaktadır. Modelin ana gövdesini her biri 64 filtre içeren 19 adet artık blok

oluşturmaktadır. Her artık blok 3 x 3 boyutunda, adım uzunluğu 1 olan ve ReLU

aktivasyon fonksiyonuna sahip iki evrişim katmanından meydana gelmektedir. Bu

katmanlardan her birine toplu normalizasyon işlemi uygulanarak modelin istikrarı

artırılmıştır. Artık bağlantı mekanizması ile giriş ve çıkış bilgileri toplanarak öğrenme

sürecinin verimliliği yükseltilmiştir. Her artık blok sonunda aşırı öğrenmeyi önlemek

amacıyla %10 oranında dropout uygulanmıştır. Artık blokların ardından, modelin daha

geniş bir alandan özellik çıkarabilmesi için genişletilmiş evrişim tekniği kullanılmıştır.

Burada genişleme oranı 2 olan 64 filtreli 3 x 3 boyutunda bir evrişim katmanı eklenmiştir.

Bu işlem, daha büyük alansal ilişkileri öğrenerek modelin daha güçlü temsil gücüne sahip

olmasını sağlamaktadır. Modelde dikkat mekanizmasını güçlendirmek amacıyla,

sıkıştırma-uyarma bloğu kullanılmıştır. Kanal sayısı 64 ve sıkıştırma oranı 16 olarak

belirlenmiştir. Dolayısyla, 4 nöronlu-ReLU aktivasyonlu ve 64 nöronlu-sigmoid

aktivasyonlu iki tam bağlantılı tasarlanmış ve giriş tensörüne uygulanmıştır. Çıkış

aşamasında tek kanal içeren bir çıktı üretmek amacıyla, 1 filtreli ve adım uzunluğu 1 olan

3 x 3 boyutunda bir evrişim katmanı eklenmiştir. Bu katmanda sigmoid aktivasyon

fonksiyonu ile çıktı değerleri 0 ile 1 arasında normalize edilmiştir. Son olarak toplu

normalizasyon işlemi ve %10 oranında dropout uygulanarak model tamamlanmıştır.

Önerilen IResNet mimarisi Şekil 4.43’te gösterilmektedir.

134

Evrişim 3x3, 64, 1, ReLU

Giriş (n x n x 3)

Toplu Normalizasyon

Artık Katman 1

Artık Katman 2

...

Artık Katman 19

Genişletilmiş Evrişim 3x3, 64, 2, ReLU

Toplu Normalizasyon

Sıkma-Uyarma Bloğu, 64, 16

Evrişim 3x3, 64, 1, Sigmoid

Toplu Normalizasyon

Dropout (0.10)

Çıkış (n x n x 1)

Evrişim 3x3, 64, 1, ReLU

Toplu Normalizasyon

Evrişim 3x3, 64, 1, ReLU

Toplu Normalizasyon

+

X

Global Ortalama Havuzlama

Tam Bağlı Katman, ReLU

Tam Bağlı Katman, Sigmoid

Dropout (0.10)

Şekil 4.43. Önerilen IResNet mimarisi

4.5.2.3. Değerlendirme Metrikleri

Önerilen modelin tahmin ettiği yollar, eğitim verisinde A* algoritması ile planlanan en

kısa yollar ile karşılaştırılarak değerlendirilmiştir. Model performansını ölçmek amacıyla

başarı oranı ve yol optimalitesi metrikleri kullanılmıştır. Başarı oranı (𝜂௦௖), test

ortamlarında modelin başlangıç ve hedef hücreleri arasında geçerli bir yol planlayabildiği

durumların yüzdesi olarak tanımlanmış Eşitlik (4.37) kullanılarak hesaplanmıştır.

𝜂௦௖ = ൬
𝑛௦௖

𝑛௧
൰ ⋅ 100% (4.37)

135

Burada, 𝑛௦௖ model tarafından başarılı şekilde üretilen yolların sayısını, 𝑛௧ ise toplam test

ortamı sayısını temsil eder. Yol optimalitesi (𝜂௢௣), model tarafından üretilen yolların, A*

algoritması tarafından hesaplanan en kısa yollar ile aynı olup olmadığını belirlemek

amacıyla kullanılmıştır. Modelin tahmin ettiği yolların uzunluğu (𝐿ூோ௘௦ே௘௧) A*

algoritması ile elde edilen en kısa yolun uzunluğu (𝐿஺∗) ile karşılaştırılmıştır. Eğer

𝐿ூோ௘௦ே௘௧ = 𝐿஺∗ koşulu sağlanıyorsa, yol optimal kabul edilmiştir. Yol optimalitesi Eşitlik

(4.38) kullanılarak hesaplanmıştır.

𝜂௢௣ = ൬
𝑛௢௣

𝑛௧
൰ ⋅ 100% (4.38)

Burada, 𝑛௢௣ model tarafından planlanan optimal yolların sayısını temsil eder. Bu

metrikler, modelin genel başarımını ve en kısa yolu üretebilme yetisini değerlendirmek

için kullanılmıştır.

4.5.3. Bulgular

Bu çalışmada, önerilen IResNet modelinin performansı hem tekli hem de çoklu robot

senaryolarında test edilmiş ve [110]’daki FCN ile elde edilen sonuçlarla kıyaslanmıştır.

Tüm simülasyonlar Python programlama dilinde kodlanmış, Intel Core i7-1255U işlemci

ve 32 GB RAM’e sahip bir bilgisayarda çalıştırılmıştır. Önerilen model, sadece tekli robot

senaryosunda eğitilmiş, ancak eğitilen model hem tekli hem de çoklu robot

senaryolarında test edilmiştir. Tüm eğitim parametreleri [110]’daki ayarlarla aynıdır.

Modelin eğitiminde toplam 30000 veriden 26000’i eğitim, 2000’i ise doğrulama için

ayrılmıştır. Modelin daha önce görmediği ortamlarda genel performansını

değerlendirmek amacıyla, 2000 test verisi yalnızca eğitimde kullanılmayan ortamları

içermektedir. Çoklu ortam senaryosundaki analiz için ise 1000 test verisi kullanılmıştır.

Model 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu ortamlar için ayrı ayrı eğitilmiştir.

Eğitim sürecinde, model Adam optimizasyon algoritması kullanılarak MSE kaybı ile

eğitilmiştir. Performans ölçütü olarak doğruluk metriği izlenmiştir. Modelin aşırı

öğrenmesini önlemek amacıyla, erken durdurma mekanizması uygulanmıştır. Erken

durdurma, doğrulama doğruluğunu izleyerek 10 epoch boyunca iyileşme

gözlemlenmediğinde eğitimi sonlandıracak şekilde ayarlanmıştır. Ayrıca, modelin en iyi

ağırlıklarını kaydetmek için ModelCheckpoint kullanılmış ve doğrulama doğruluğu en

yüksek olan modelin ağırlıkları saklanmıştır. Eğitim verileri uygun bir formatta yeniden

136

şekillendirilerek modele verilmiş, veriler 64’lük batch boyutunda işlenmiş ve epoch sayısı

100 olarak ayarlanmıştır. Eğitim süreci boyunca modelin performansı takip edilerek en

iyi sonuçları veren ağırlıklar kaydedilmiş ve analiz için kullanılmıştır.

4.5.3.1. Tekli Robot Senaryosu

Bu çalışmada, önerilen modelin performansı farklı ortam boyutlarında test edilerek

değerlendirilmiştir. İlk olarak, modelin 10 x 10 br2 boyutundaki bir ızgara ortamında

eğitim süreci gerçekleştirilmiştir. Bu eğitimden sonra, bu model hem 10 x 10 br2 hem de

15 x 15 br2 ile 20 x 20 br2 boyutlarındaki ızgara ortamlarında test edilmiştir. Bunun yanı

sıra, 15 x 15 br2 ve 20 x 20 br2 boyutlarında ayrı ayrı eğitilen modeller de benzer şekilde,

her üç ortam boyutunda da test edilerek genel performansları karşılaştırılmıştır. Bu çoklu

test ortamları, modelin genelleme yeteneğini ve farklı ortam boyutlarına adaptasyon

kabiliyetini analiz etmek amacıyla kullanılmıştır. Tekli robot test verilerinde 10 x 10 br2,

15 x 15 br2 ve 20 x 20 br2 boyutlu ortam verileri ile eğitilen IResNet modellerinin farklı

test ortamlarında FCN ile karşılaştırmaları sırasıyla Tablo 4.35’te, bunların çubuk

grafikleri ise sırasıyla Şekil 4.44’te gösterilmektedir. Ayrıca 15 x 15 boyutlu ortam verisi

ile eğitilen IResNet modelinin her boyuttaki ortamda planladığı optimal ve yarı-optimal

yollardan örnekler Şekil 4.45’te gösterilmektedir.

Tablo 4.35. Tekli robot test verilerinde 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu
ortam verisi ile eğitilen IResNet modelinin farklı test ortamlarında FCN ile
karşılaştırması

 Model
Başarı Oranı (%) Yol Optimalitesi (%)

10 x 10
Test

15 x 15
Test

20 x 20
Test

10 x 10
Test

15 x 15
Test

20 x 20
Test

10 x 10
Eğitim

FCN 100 99.75 98.45 99.85 83.51 58.10

IResNet 100 99.85 98.10 98.05 89.85 66.25

15 x 15
Eğitim

FCN 99.90 99.95 98.90 97.25 91.00 75.53

IResNet 100 100 99.95 98.30 96.45 90.70

20 x 20
Eğitim

FCN 99.90 99.70 99.60 98.05 94.38 86.55

IResNet 99.90 99.75 99.85 98.70 97.00 94.25

137

 (a) (b)

 (c) (d)

 (e) (f)

Şekil 4.44. Tekli robot test verilerinde 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu
ortam verisi ile eğitilen IResNet modelinin FCN ile karşılaştırma grafiği:
(a) 10 x 10 br2 başarı oranı, (b) 10 x 10 br2 yol optimalitesi, (c) 15 x 15 br2
başarı oranı, (d) 15 x 15 br2 yol optimalitesi, (e) 20 x 20 br2 başarı oranı,
(f) 20 x 20 br2 yol optimalitesi

138

 (a) (b)

 (c) (d)

 (e) (f)

Şekil 4.45. Tekli robot test verilerinde 15 x 15 br2 boyutlu ortam verisi ile eğitilen
IResNet modelinin her boyuttaki ortamda planladığı optimal ve yarı-
optimal yollardan örnekler: (a) 10 x 10 br2 optimal, (b) 10 x 10 br2 yarı-
optimal, (c) 15 x 15 br2 optimal, (d) 15 x 15 br2 yarı-optimal, (e) 20 x 20
br2 optimal, (f) 20 x 20 br2 yarı-optimal (Siyah çarpılar gerçek yolu, mavi
çizgiler önerilen IResNet modeli ile tahmin edilen yolları, yeşi ve kırmızı
noktalar sırasıyla başlangıç ve hedef noktalarını temsil eder.)

139

Başarı oranı açısından değerlendirildiğinde, önerilen IResNet modeli tüm ortam

boyutlarında FCN ile rekabet edebilir sonuçlar üretmiş ve benzer bir başarı oranı elde

etmiştir. Ancak, yol optimalitesi açısından yapılan değerlendirmelerde, IResNet

modelinin genel olarak FCN’ye kıyasla daha üstün bir performans sergilediği

gözlemlenmiştir. Küçük boyutlu ortamlarda eğitilen modeller arasında, 10 x 10 br2

boyutlu ortam verisiyle eğitilen IResNet’in, aynı boyuttaki test verisinde FCN’ye kıyasla

görece düşük bir optimaliteye sahip olduğu, ancak ortam boyutu büyüdüğünde FCN’yi

geride bıraktığı tespit edilmiştir. Ortam boyutu büyüdükçe IResNet’in bu metrikteki

başarısı belirgin şekilde artmış ve 15 x 15 br2 ile 20 x 20 br2 boyutlu ortam verileriyle

eğitilen modeller tüm test ortamlarında FCN’ye kıyasla daha yüksek yol optimalitesi

sunmuştur. Özellikle daha büyük test ortamlarında FCN’nin yol uzunluğu açısından ciddi

performans kayıpları yaşadığı görülürken, IResNet modelinin optimal yollar üretme

konusunda daha kararlı sonuçlar verdiği ortaya konmuştur.

4.5.3.2. Çoklu Robot Senaryosu

Bu senaryoda ek bir eğitim yapılmadan, tekli robot senaryosunda 15 x 15 br2 ortam

boyutu ile eğitilen model kullanılarak birden fazla robotun yol planlamasındaki

performansı incelenmiştir. Buradaki amaç, farklı başlama noktalarından aynı hedef

noktasına ulaşan birden fazla robot yolunun tahmin edilmesidir. Çoklu robot

senaryosunda sadece 15 x 15 br2 boyutundaki ortamda yer alan 1000 test verisi

kullanılmıştır. Bu kapsamda, başarı oranı ve yol optimalitesi dikkate alınarak 1, 2 ve 3

yol tahmin etme durumu değerlendirilmiştir. Çoklu robot test verilerinde 15 x 15 br2

ortam boyutu ile eğitilen IResNet modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile

karşılaştırması sırasıyla Tablo 4.36’da, bunların çubuk grafikleri ise sırasıyla Şekil

4.46’da gösterilmektedir. Ayrıca bu modelinin 2 ve 3 yol bulma durumlarında planladığı

optimal ve yarı-optimal yollardan örnekler Şekil 4.47’de gösterilmektedir.

140

Tablo 4.36. Çoklu robot test verilerinde 15 x 15 br2 ortam boyutu ile eğitilen IResNet
modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırması

Değerlendirme Metriği Model
Robot Sayısı

1 2 3

Başarı Oranı
(%)

1 Yol Bulma Durumu
FCN 99.50 99.80 100

IResNet 100 100 100

2 Yol Bulma Durumu
FCN - 96.40 99.20

IResNet - 99.80 99.50

3 Yol Bulma Durumu
FCN - - 83.90

IResNet - - 96.50

Yol Optimalitesi (%)
FCN 93.77 85.88 83.33

IResNet 97.70 94.46 90.42

(a) (b)

 (c) (d)

Şekil 4.46. Çoklu robot test verilerinde 15 x 15 br2 ortam boyutu ile eğitilen IResNet
modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırma
grafikleri: (a) 1 yol bulma durumunda başarı oranı, (b) 2 yol bulma
durumunda başarı oranı, (c) 3 yol bulma durumunda başarı oranı, (d) Yol
optimalitesi

141

 (a) (b)

 (c) (d)

Şekil 4.47. Çoklu robot test verilerinde 15 x 15 br2 boyutlu ortam verisi ile eğitilen
IResNet modelinin 2 ve 3 yol bulma durumlarında planladığı optimal ve
yarı-optimal yollardan örnekler: (a) 2 yol bulma durumunda optimal, (b) 2
yol bulma durumunda yarı-optimal, (c) 3 yol bulma durumunda optimal,
(d) 3 yol bulma durumunda yarı-optimal (Siyah çarpılar gerçek yolu, mavi
çizgiler önerilen IResNet modeli ile tahmin edilen yolları, yeşi ve kırmızı
noktalar sırasıyla başlangıç ve hedef noktalarını temsil eder.)

Başarı oranı açısından değerlendirildiğinde, önerilen IResNet modelinin tüm test

senaryolarında FCN modelinden daha üstün performans sergilediği açıkça görülmektedir.

Özellikle araştırılan yol sayısı arttıkça, bu performans farkı daha belirgin bir şekilde

ortaya çıkmaktadır. İlk başta, her iki modelin başarı oranları arasında küçük farklar

bulunsa da, yol sayısı arttıkça IResNet'in yüksek başarı oranı daha net bir şekilde fark

edilmektedir. Bu durum, modelin daha karmaşık ve geniş ortamlar ile daha fazla yol

bulma gereksinimlerini daha etkin şekilde karşılayabildiğini göstermektedir. Ayrıca,

önerilen IResNet modeli, FCN’ye kıyasla daha yüksek bir optimalite oranına sahiptir. Bu

142

da, IResNet'in sadece daha fazla sayıda başarılı çıkış sağlamakla kalmadığını, aynı

zamanda daha verimli yolları seçerek daha optimal sonuçlar sunduğunu ortaya

koymaktadır. IResNet’in yüksek başarı oranı ile birlikte, düşük maliyetli ve daha kısa

yollar üretme yeteneği, onun yol planlama alanında güçlü bir alternatif olarak öne

çıkmasını sağlamaktadır. Sonuç olarak IResNet, büyük ölçekli ve karmaşık ortamlar için

daha başarılı bir yol planlama yaklaşımı sunmaktadır. Hem başarı oranı hem de yol

optimalitesi açısından FCN modelini geride bırakarak, özellikle robotik ve otonom

sistemlerde yüksek doğruluk ve verimlilik gerektiren uygulamalarda tercih edilmesi

gereken bir model olarak dikkat çekmektedir. Bu durum, IResNet'in çeşitli robotik

senaryolarda daha verimli ve güvenilir çözümler sunduğunu ve dolayısıyla daha geniş

çaplı kullanım alanları için uygun olduğunu göstermektedir.

4.6. Bir Mobil Robotun Gerçek Zamanlı Yol Planlaması ve Takip Kontrolü

4.6.1. Mobil Robot Tasarımı

Bu çalışmada dört tekerlekli ve 4WD (four-wheel drive) sürüş sistemine sahip siyah bir

mobil robot kullanılmıştır. Robotun şasesi iki katmandan oluşmaktadır: Alt katman

alüminyum, üst katman ise akrilik plastik malzemeden imal edilmiştir. Tekerlekler omni

mekanum tipinde seçilmiştir, bu sayede robot sağa-sola veya çapraz gibi çok yönlü

hareket edebilmektedir. Robotun ana kontrol birimi olarak Raspberry Pi 3B+

kullanılmıştır. Tüm sistemin enerji ihtiyacı 3S LiPo batarya ile karşılanmıştır. Tekerlek

motorları 12V DC ile çalıştığı için bu gerilim doğrudan motor sürücülerine

yönlendirilmiştir. Motor sürücüsü olarak iki adet L298N kartı kullanılmıştır. Her sürücü

kartı iki motor kontrol edebildiği için toplamda dört motor için iki sürücü yeterli olmuştur.

Raspberry Pi kartı ise 5V DC ile çalıştığı için bataryadan gelen gerilim LM2596

ayarlanabilir DC-DC regülatör ile düşürülmüştür. Ayrıca, robot ile ana bilgisayar arasında

kablosuz iletişimi sağlamak amacıyla XBee S2C haberleşme modülü kullanılmıştır.

XBee’nin Raspberry Pi kartına kolayca bağlanabilmesi için XBee Explorer USB tercih

edilmiştir. Mobil robotun genel görünümü ve donanımı Şekil 4.48’de, elektronik bağlantı

şeması ise Şekil 4.49’da gösterilmektedir.

143

 (a) (b)

 (c) (d)

Şekil 4.48. Mobil robotun genel görünümü ve donanımı: (a) Genel görünüm, (b) Ara
katmanın alt yüzeyi, (c) Ara katmanın üst yüzeyi, (d) Üst katman

Şekil 4.49. Mobil robotun elektronik bağlantı şeması

144

4.6.2. Mobil Robotun Ters Kinematiği

Bu çalışmada kullanılan robot çok yönlü tekerleklere sahip olduğundan her yöne hareket

edebilir, yani robot holonomik olarak tanımlanabilir. Bu robotun hareketi merkezine

yerleştirilen yerel bir koordinat sisteminde tanımlanır. Bu sistemde robotun 𝑋 yönündeki

doğrusal hızı 𝑣௫, 𝑌 yönündeki doğrusal hızı 𝑣௬ ve 𝑍 ekseni etrafındaki açısal hızı 𝜔௭

olmak üzere üç hız bileşeni bulunur. Bu hızlar vektörel olarak Eşitlik (4.39)’daki gibi

gösterilebilir.

𝑣⃗ = ൥

𝑣௫

𝑣௬

𝜔௭

൩ (4.39)

Burada, 𝑣⃗ robotun genel hız vektörünü temsil eder. Ters kinematik ise robotun bu üç

hızından hareketle her bir tekerleğin açısal hızının (𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝜔ସ) elde edilmesidir.

4WD sürüşlü ve omni mekanum tekerlekli bir mobil robot için bu tekerlek hızları Eşitlik

(4.40) kullanılarak hesaplanır.

൦

𝜔ଵ

𝜔ଶ

𝜔ଷ

𝜔ସ

൪ =
1

𝑟௪
൦

1 −1 −(𝑙௛ + 𝑙௩)
1 1 (𝑙௛ + 𝑙௩)

1 −1 (𝑙௛ + 𝑙௩)
1 1 −(𝑙௛ + 𝑙௩)

൪ ൥

𝑣௫

𝑣௬

𝜔௭

൩ (4.40)

Burada, 𝑟௪ tekerleklerin yarıçapını, 𝑙௛ ve 𝑙௩ robot gövde merkezinin tekerlek merkezine

olan yatay ve dikey uzaklıklarını temsil eder. Hesaplanan tekerlek hızları robotun belirli

bir referans yol üzerinde istenilen şekilde ilerlemesini sağlamak amacıyla geliştirilen

kontrol algoritmalarında kullanılır.

4.6.3. Platform ve Engeller

Bu çalışmada, mobil robotun yol planlaması için bölümümüzün El-Cezeri Mobil Robotik

Sistemler Laboratuvarındaki çalışma platformu kullanılmıştır. Platformun genel yapısı

“T” harfi formundadır, ancak gerçek zamanlı çalışma sadece bu yapının üst kısmında yer

alan dikdörtgen alan tercih edilmiştir. Bu bölüm robotun hem serbestçe hareket

edebilmesini hem de sınırlar içinde kalmasını sağlayacak şekilde seçilmiştir. Bu

çalışmada kullanılan platform Şekil 4.50’de gösterilmektedir.

145

KameraMobil Robot

Platform

Şekil 4.50. Platform

Laboratuvarın tavanına Genius Widecam F100 model bir webcam sabitlenmiş ve bu

kamera ile platform tamamı yukarıdan izlenebilmiştir. Kullanılan kamera Şekil 4.51’de,

platform üstten kamera görüntüsü ise Şekil 4.52’de gösterilmektedir.

Şekil 4.51. Genius Widecam F100 Webcam

146

Şekil 4.52. Platform üstten kamera görüntüsü

Platform üzerine yerleştirilen engeller mavi renkli silindirik cisimler olarak seçilmiştir.

Renk ve şekil tercihleri robotun üzerindeki kamera ile çalışan görsel algılama sisteminin

bu engelleri daha kolay tespit edebilmesi göz önünde bulundurularak yapılmıştır. Mavi

silindirik engeller Şekil 4.53’te gösterilmektedir.

Şekil 4.53. Engeller

147

4.6.4. Görüntü İşleme ve Gerçek Zamanlı Yol Planlama

Gerçek zamanlı çalışmadan önce, MATLAB programlama dilinde çalışmada kullanılan

iki farklı ortam tasarlanmış ve bu ortamlar için yol planlama simülasyonu

gerçekleştirilmiştir. Şekil 4.54’te gösterilen bu ortamlar gerçek zamanlı çalışmada da

kullanılmıştır.

(a)

(b)

Şekil 4.54. Tasarlanan ortamlar: (a) Ortam 20, (b) Ortam 21 (Siyah daireler robotu,
çarpı işaretleri hedef noktasını, gri daireler ise engelleri temsil eder.)

Bu simülasyonda robot ve hedef noktası arasında kübik spline interpolasyonu tabanlı

optimum bir yol (𝑃௥) planlanmıştır. Bu optimziasyon ABC algoritması kullanılarak

gerçekleştirilmiş ve robotun gideceği en kısa ve en güvenli yol planlanmıştır. ABC

algoritmasında kullanılan amaç fonksiyonu Eşitlik (4.41)’de gösterilmektedir.

arg min
௉ೝ

ℱ = ℱଵ + 𝛽ℱଶ (4.41)

ℱଵ = ෍‖𝑝௜ାଵ − 𝑝௜‖

௡೤

௜ୀଵ

(4.42)

148

ℱଶ = ෍ ቐ
ቆ1 −

‖𝑝௜ − 𝑝௢‖

𝑟௢ + 𝐿௚
ቇ , 𝑒ğ𝑒𝑟 ቆ1 −

‖𝑝௜ − 𝑝௢‖

𝑟௢ + 𝐿௚
ቇ > 0 𝑖𝑠𝑒

0, 𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

௡೤

௜ୀଵ

 (4.43)

Burada 𝛽 engel ihlal faktörünü, 𝑛௬ yolu oluşturan nokta sayısını, 𝑝௜ yolun 𝑖’inci noktasını,

𝑝௢ engelin merkez noktasını, 𝑟௢ engelin yarıçapını ve 𝐿௚ ise güvenlik mesafesini temsil

eder. ABC algoritması için maksimum iterasyon sayısı 200, popülasyon sayısı ve limit

değeri 100 olarak ayarlanmıştır. Simülasyondaki yol planlama sonucu Şekil 4.55’te

gösterilmektedir.

(a)

(b)

Şekil 4.55. Simülasyon çalışmasında yol planlama sonucu: (a) Ortam 20, (b) Ortam 21
(Siyah çizgi planlanan yolu temsil eder.)

Gerçek zamanlı çalışma Python programlama dilinde kodlanmış ve görüntü işleme için

OpenCV kütüphanesinden yararlanılmıştır. İlk olarak, “T” harfi biçimindeki platformun

yalnızca üstteki dikdörtgen bölümü sınırlandırılmıştır. Global referans ekseni ise bu

dikdörtgen ekranın sol üst köşesidir. İlk aşamada ana bilgisayarda robotun ve engellerin

konumları belirlenmiştir. Bu amaçla renk tabanlı bir görüntü işleme algoritması

kullanılmıştır. Algoritmada belirli renkleri tespit edebilmek için HSV renk uzayında

eşikleme yöntemi uygulanmış ve bu işlem sonucunda ikili bir maske görüntüsü elde

edilmiştir. Maske görüntüsünde yalnızca eşik değerini sağlayan pikseller 1 (beyaz), diğer

tüm pikseller ise 0 (siyah) olarak atanmıştır. Elde edilen bu maske üzerinde kontur analizi

149

gerçekleştirilmiş ve böylece ilgili renk bölgelerinin merkez koordinatları hesaplanmıştır.

Bu sayede robot ve engellerin konumları kamera görüntüsünden başarıyla tespit

edilmiştir. Ancak robotun yönelim bilgisi de gerektiğinden, robotun tespiti sırasında

yalnızca kendi rengi yeterli olmamış ve robot üzerinde farklı bir renk daha kullanılmıştır.

Bu yüzden robotun ön kısmına kırmızı bir etiket (marker) yerleştirilmiş ve arka kısmı ise

robotun kendi rengi olan siyah ile ayırt edilmiştir. Aynı görüntü işleme algoritması ile

robotun üzerindeki kırmızı ve siyah renk bölgeleri ayrı ayrı algılanmış ve böylece robotun

ön ve arka noktası belirlenmiştir. Ardından bu iki nokta kullanılarak robotun global eksen

takımına göre konum ve yönelimi Eşitlik (4.44) ve (4.45)’teki gibi hesaplanmıştır.

𝑋௥ =
𝑋ö௡ + 𝑋௔௥௞௔

2
, 𝑌௥ =

𝑌ö௡ + 𝑌௔௥௞௔

2
(4.44)

𝜃௥ = tanିଵ ൬
𝑌ö௡ − 𝑌௔௥௞௔

𝑋ö௡ − 𝑋௔௥௞௔
൰ (4.45)

Burada (𝑋௥ , 𝑌௥) robotun merkez konumunu, (𝑋ö௡, 𝑌ö௡) robotun ön noktasının konumunu,

(𝑋௔௥௞௔, 𝑌௔௥௞௔) robotun arka noktasının konumunu, 𝜃௥ ise robotun yönelimini temsil eder.

Gerçek zamanlı çalışmada robotun ve engellerin algılanması Şekil 4.56’da, ana

bilgisayardaki görüntü işleme algoritmasının temel adımları ise Algoritma 4.8’de

gösterilmektedir.

Engel Robotun Arkası
Robotun Önü

(a)

150

Robotun Arkası
Robotun ÖnüEngeller

(b)

Şekil 4.56. Gerçek zamanlı çalışmada robotun ve engellerin algılanması: (a) Ortam 20,
(b) Ortam 21

Algoritma 4.8: Ana bilgisayardaki görüntü işleme algoritmasının temel adımları
1: Kameranın başlatılması
2: Kameradan görüntü alınması
3: Gürültülerin medyan filtre ile azaltılması
4: Görüntünün HSV uzayına dönüştürülmesi
5: Mavi (engel), kırmızı (robot ön) ve siyah (robot arka) renkli bölgelerin tespit edilmesi
6: Kontur analizi ile bu renkli bölgelerin merkez noktalarının hesaplanması
7: Eşitlik (4.39) ve (4.40) kullanılarak robotun konum ve yöneliminin hesaplanması
8: İşlenmiş görüntünün ekranda gösterilmesi

Robotun ve engellerin tespit edilmesinden sonra robotun konumu ve daha önceden girdi

olarak alınan hedef nokta arasında tekrar ABC algoritması kullanılarak yol planlanmıştır.

Gerçek zamanlı çalışmada ABC algoritmasında yine Eşitlik (4.41)’deki amaç fonksiyonu

kullanılmış, maksimum iterasyon sayısı, popülasyon sayısı ve limit değeri de simülasyon

çalışmasında kullanılan ayarlarla aynıdır. Yol planlama sonucunda elde edilen bu

koordinat dizisi (planlanan yol) takip kontrolünde referans yol olarak kullanılmıştır.

Gerçek zamanlı çalışmada yol planlama sonucu Şekil 4.57’de, ana bilgisayardaki gerçek

zamanlı yol planlama algoritmasının temel adımları ise Algoritma 4.9’da

gösterilmektedir.

151

Engel

Hedef Noktası

Mobil Robot
Planlanan

Referans Yol

(a)

Hedef Noktası

Mobil Robot

Planlanan
Referans Yol Engeller

(b)

Şekil 4.57. Gerçek zamanlı çalışmada yol planlama sonucu: (a) Ortam 20, (b) Ortam 21

Algoritma 4.9: Ana bilgisayardaki gerçek zamanlı yol planlama algoritmasının temel adımları
1: Hedef noktanın kullanıcı tarafından girilmesi
2: Robotun başlangıç noktasının o anki durduğu yer olarak atanması
3: Görüntü işleme algoritmasından engel bilgilerinin (merkezi ve yarıçapı) alınması
4: Eşitlik (4.41) kullanılarak amaç fonksiyonu tanımı
5: ABC algoritması kullanılarak optimum yolun hesaplanması
6: Planlanan referans yolun işlenmiş görüntüde gösterilmesi
7: Planlanan referans yolun koordinat dizisi olarak kaydedilmesi

4.6.5. Gerçek Zamanlı Yol Takip Kontrolü

Robotun planlanan referans yol üzerinde en az hata ile hedef noktaya ulaşması için bir

yol takip kontrol algoritması geliştirilmiştir. Bu süreç başlamadan önce robot ile ana

bilgisayar arasında kablosuz haberleşmeyi sağlamak için XBee modülü başlatılmıştır. İlk

olarak referans yol belirli sayıda ara hedef noktaya (yerel hedefler) bölünmüştür. Bu

152

noktalar robotun ana hedefe kademeli olarak yönelmesini sağlar. Gerçek zamanlı

çalışmada referans yol için oluşturulan ara hedef noktaları Şekil 4.58’de gösterilmektedir.

Engel Mobil Robot

Ana Hedef
Noktası

Ara Hedef
Noktaları

(a)

Engeller
Mobil Robot

Ana Hedef
Noktası

Ara Hedef
Noktaları

(b)

Şekil 4.58. Gerçek zamanlı çalışmada referans yol üzerinde oluşturulan ara hedef
noktaları: (a) Ortam 20, (b) Ortam 21

Ara hedef noktaları oluşturulduktan sonra görüntü işleme algoritması kullanılarak

robotun anlık olarak global eksen takımına göre konum ve yönelim bilgisi elde edilmiştir.

Ayrıca robotun konumuna en yakın ara hedef noktasına olan yönelim de elde edilir.

Robotun global eksen takımına göre yönelimi ve ara hedef noktaya olan yönelimi Şekil

4.59’da gösterilmektedir.

153

𝑌

𝑥

𝑋
𝑦

𝜃𝑟

𝜃𝑟𝑒𝑓

Ara Hedef Noktası

Global Eksen
Takımı

Şekil 4.59. Robotun global eksen takımına göre yönelimi ve ara hedef noktaya olan
yönelimi

Bu iki yönelim açısı arasındaki hata Eşitlik (4.46)’da tanımlandığı gibi hesaplanmıştır.

𝜃௘ = 𝜃௥௘௙ − 𝜃௥ (4.46)

Burada 𝜃௘ açısal hatayı ve 𝜃௥௘௙ ise robotun hedef noktaya olan yönelimini temsil eder.

Açısal hata XBee modülü aracılığıyla robot üzerinde çalışan Raspberry Pi kartındaki

hareket algoritmasına girdi olarak verilmiştir. Robot üzerinde çalışan hareket algoritması

açısal hatayı P kontrol organına verir. P kontrol organının girişi açısal hata iken çıkışı

robot merkezinin 𝑍 ekseni etrafındaki açısal hızı (𝜔௭) olarak tanımlanmıştır. Bu kontrol

organında açısal hata Eşitlik (4.47)’de gösterildiği gibi sabit bir katsayı (𝐾௣) ile çarpılır.

𝜔௭ = 𝐾௣𝜃௘ (4.47)

Bu sayede robot merkezinin açısal hızı hesaplanır ve bu hız ters kinematik model

kullanarak tekerlek hızlarına çevrilir. Böylece hata ne kadar küçükse o kadar yumuşak,

hata ne kadar büyükse o kadar keskin dönüş sağlanır. Ancak açısal hatanın çok küçük

olduğu durumlarda hareket algoritması robotun ileri doğrultuda (𝑋 doğrultusunda) sabit

bir lineer hızda (𝑣) düz gitmesini sağlar ve yanal hareket yoktur. Bu sebeple robotun genel

hız vektörü Eşitlik (4.48)’deki gibi tanımlanmıştır.

𝑣⃗ = ൥

𝑣௫

𝑣௬

𝜔௭

൩ = ൥

𝑣
0

𝐾௣𝜃௘

൩ (4.48)

154

Bu durumda robotun her bir tekerleğin açısal hızı ters kinematik model kullanılarak

Eşitlik (4.49)-(4.52)’deki gibi hesaplanmıştır.

𝜔ଵ =
1

𝑟௪
൫𝑣 − (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.49)

𝜔ଶ =
1

𝑟௪
൫𝑣 + (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.50)

𝜔ଷ =
1

𝑟௪
൫𝑣 + (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.51)

𝜔ସ =
1

𝑟௪
൫𝑣 − (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.52)

0 ≤ ห(𝑙௛ + 𝑙௩)𝐾௣𝜃௘ห ≤ 𝑣 (4.53)

Hesaplanan bu tekerlek hızları ile robot sürülmüş ve en yakın ara hedef noktasına ulaşana

kadar bu kontrol döngüsü devam etmiştir. Robot en yakın ara hedef noktasına ulaştığında

bir sonraki hedef noktası robotun yeni yerel hedefi olmuş ve aynı kontrol döngüsü

tekrarlanmıştır. Bu süreç robot ana hedef noktaya ulaşana kadar devam etmiştir. Bu basit

kontrol mantığı sayesinde robot ara hedef noktalarını sırayla takip ederek referans yol

üzerinde güvenli ve kararlı bir şekilde ana hedefe yönlendirilebilmiştir. Yol takip

kontrolünün blok diyagramı Şekil 4.60’ta, ana bilgisayardaki yol takip kontrol

algoritmasının temel adımları Algoritma 4.10’da ve robot üzerinde çalışan hareket

algoritmasının temel adımları ise Algoritma 4.11’de gösterilmektedir.

Referans
Yol

Ara Hedef
Noktası

𝑞𝑟

+

𝜃𝑟𝑒𝑓

−

XBee
𝜃𝑒

𝜃𝑟

Kamera

XBee
P Kontrol

Organı

𝜃𝑒
Ters

Kinematik
Model

𝜔𝑧

𝜔1

𝜔2

𝜔3

𝜔4

Sabit
Lineer Hız

𝑣

Mobil
Robot

Şekil 4.60. Yol takip kontrolünün blok diyagramı

155

Algoritma 4.10: Ana bilgisayardaki yol takip kontrol algoritmasının temel adımları
1: XBee modülünün başlatılması
2: Ara hedef noktalarının belirlenmesi
3: while (Ana hedef noktasına ulaşılana kadar)
4: for (Her ara hedef noktasında)
5: while (Ara hedef noktasına ulaşılana kadar)
6: Robotun konum ve yöneliminin tespit edilmesi
7: Robotun ara hedef noktasına olan yöneliminin tespit edilmesi
8: Eşitlik (4.46) kullanılarak açısal hatanın hesaplanması
9: XBee modülü ile açısal hatanın robota gönderilmesi

10: end while
11: end for
12: end while
13: XBee modülünün kapatılması

Algoritma 4.11: Robot üzerinde çalışan hareket algoritmasının temel adımları
1: GPIO pin ayarlarının yapılması
2: XBee modülünün başlatılması
3: while (XBee modülünden “Dur” emri gelene kadar)
4: XBee modülünden açısal hatanın alınması
5: Eşitlik (4.47) kullanılarak robot merkezinin açısal hızının hesaplanması
6: Eşitlik (4.49)-(4.52) kullanılarak tekerlek hızlarının hesaplanması
7: Robotun bu tekerlek hızlarında sürülmesi
8: end while
9: XBee modülünün kapatılması

Tasarlanan ortamlar için gerçek zamanlı bir yol takip çalışması gerçekleştirilmiştir. Her

iki ortam için robotun hareket aşamaları Şekil 4.61 ve 4.62’de, bu hareket aşamalarının

kamera görüntüleri Şekil 4.63 ve 6.64’te, planlanan ile gerçek yolların karşılaştırması

Şekil 4.65’te, RMS hataları ise Şekil 4.66’te gösterilmektedir.

156

1

2

3

4

5

6

Şekil 4.61. Ortam 20 için robotun hareket aşamaları

157

1

2

3

4

5

6

Şekil 4.62. Ortam 20 için robotun hareket aşamalarının kamera görüntüleri (Planlanan
yol turkuaz çizgi, gerçek yol ise yeşil çizgi ile temsil edilmiştir.)

158

1 2 3

4 5 6

Şekil 4.63. Ortam 21 için robotun hareket aşamaları

159

1

2

3

4

5

6

Şekil 4.64. Ortam 21 için robotun hareket aşamalarının kamera görüntüleri (Planlanan
yol turkuaz çizgi, gerçek yol ise yeşil çizgi ile temsil edilmiştir.)

160

 (a) (b)

Şekil 4.65. Planlanan ve gerçek yolların karşılaştırması: (a) Ortam 20, (b) Ortam 21

 (a) (b)

Şekil 4.66. RMS hataları: (a) Ortam 20, (b) Ortam 21

Şekil 4.61-4.66 göz önüne alındığında, mobil robotun referans yolu başarılı bir şekilde

takip ettiği görülmektedir. Bu takip kontrolü boyunca kayda değer bir sapma veya

kararsızlık gözlemlenmemiştir. Ortam 20’de 𝑋, 𝑌 ve 𝜃 için RMS hataları sırasıyla 0.164

metre, 0.049 metre ve 1.93° olarak hesaplanmıştır. Ortam 21’de ise RMS hataları sırasıyla

0.269 metre, 0.106 metre ve 1.98° olarak hesaplanmıştır. Bu hatalar 4.5 x 1.5 metrelik

platform ve 0.26 x 0.24 metrelik robot boyutlarıyla karşılaştırıldığında kabul edilebilir

seviyelerdedir. Bu doğrultuda tasarlanan kontrol algoritmasının referans yol takibinde

etkin performans sergilediği söylenebilir. Tasarlanan algoritma belirlenen ara hedef

noktalar sayesinde hassas bir yönelim takip kontrolü sağlamıştır.

161

5. BÖLÜM

SONUÇ VE ÖNERİLER

5.1. Sonuçlar

Mobil robotlar, çevrelerini algılayarak otonom hareket edebilen sistemler olup, endüstri,

tarım, lojistik ve arama-kurtarma gibi birçok alanda yaygın olarak kullanılmaktadır. Bu

robotların etkin çalışabilmesi için haritalama, lokalizasyon ve yol planlama gibi temel

becerilere sahip olması gerekir. Haritalama, robotun çevresini tanıyıp modellemesini

sağlarken, lokalizasyon, bu harita üzerinde konumunu belirlemeye yardımcı olur. Ancak,

robotun hedefe ulaşabilmesi için en kritik adım yol planlamadır. Yol planlama süreci,

güvenli, verimli ve enerji tasarruflu rotalar oluşturmayı amaçlar ve çevresel engeller,

hareket kısıtlamaları ve dinamik değişimler gibi faktörleri göz önünde bulundurur. Yol

planlama yöntemleri genel olarak klasik arama algoritmaları, metasezgisel yaklaşımlar

ve makine öğrenme tabanlı teknikler olarak üç gruba ayrılır. Klasik algoritmalar sabit

haritalarda etkili çözümler sunarken, metasezgisel yöntemler daha geniş çözüm uzaylarını

keşfederek karmaşık ve dinamik çevrelerde daha uygun yollar belirleyebilir. Makine

öğrenme tabanlı yaklaşımlar ise çevresel geri bildirimleri değerlendirerek adaptif ve

esnek çözümler sunar, özellikle dinamik engellerin bulunduğu ortamlarda robotun karar

verme sürecini güçlendirir.

Bu tez çalışması kapsamında mobil robotların yol planlama sorunlarına yönelik çözümler

geliştirmek amacıyla dört farklı simülasyon çalışması ve bir gerçek zamanlı çalışma

gerçekleştirilmiştir. Birinci çalışmada tek bir mobil robotun ızgara ortamında küresel yol

planlaması için bir IABC algoritması önerilmiştir. Bu algoritma için iki mekanizma

düşünülmüştür: Doğrusallaştırma stratejisi ve yerel arama stratejisi. Doğrusallaştırma

stratejisi, ızgara ortamında oluşturulan yolun gereksiz köşelerini ortadan kaldırmaya

162

odaklanan bir kullanım tabanlı iyileştirmedir. Yerel arama stratejisi, en iyi çözümün

maliyetini daha da optimize etmeyi amaçlayan bir keşif tabanlı mekanizmadır. Böylece

bu iyileştirmeler algoritmanın kullanım-keşif dengesini bozmadan gerçekleştirilmiştir.

İkinci çalışmada yol planlama probleminin basitleştirilmesi üzerinde durulmuştur. Bunun

için engellerin kümelenmesiyle ortam karmaşıklığının azaltılması ve bu sayede

algoritmaların çalışma hızlarının artırılması amaçlanmıştır. Bu amaç doğrultusunda, tek

bir mobil robotun sürekli uzay ortamında küresel yol planlaması için metasezgisel ve

kümeleme algoritmalarının bir arada kullanıldığı hibrit bir model önerilmiştir. Üçüncü

çalışmada çok sayıda mobil robotun sürekli uzay ortamında yerel yol planlaması için

sdSCA algoritması önerilmiştir. Bu algoritmada temel SCA’nın orijinal güncelleme

stratejisine ilave olarak birkaç diferansiyel tabanlı güncelleme stratejisi eklenmiştir. Bu

algoritmada popülasyondaki her çözüm bu stratejilerden birini seçerek kendini günceller.

Ancak bu seçim rastgele değildir, rulet tekerleğine dayalı bir olasılık hesabı yoluyla

gerçekleştirilir. Algoritma daha tatmin edici sonuçlar üreten stratejiyi adaptif bir şekilde

öğrenir. Dördüncü çalışmada ise tek ve çok robotlu sistemlerinin ızgara ortamında küresel

yol planlaması için ResNet tabanlı bir model önerilmiştir. Bu model genişletilmiş evrişim

(dilated convolution), sıkma-uyarma bloğu (squeeze-and-excitation) ve dropout

katmanları içerir. Gerçek zamanlı çalışmada ise bir mobil robotun bir ortamda planlanan

bir yolu istenen şekilde takip etmesi için bir takip kontrolörü tasarlanmış ve robotun

gerçek zamanlı takip kontrolü gerçekleştirilmiştir.

Bu çalışmalar ile elde edilen neticeleri listeleyecek olursak:

 Önerilen IABC, aynı boyuttaki ortamlarda ABC ile karşılaştırıldığında ortalama

yol uzunluğunda %7-14’lük bir iyileşme gözlemlenmiştir. Ayrıca, farklı

boyutlardaki ortamlarda gerçekleştirilen ölçeklenebilirlik testleri ABC’ye kıyasla

%19-20 aralığında iyileşmeler ortaya koymuştur. İyi bilinen ve yeni geliştirilmiş

algoritmalarla yapılan karşılaştırmalar %2-78 aralığında iyileşmeler görülmüştür.

Son olarak, güncel çalışmalardaki sonuçlara kıyasla %1-37 aralığında iyileşmeler

elde edilmiştir.

 Önerilen hibrit modelin analizi sonucu, yol uzunluğu açısından küçük seviyelerde

kayıplar gözlemlenmiştir. Ancak çalışma süreleri incelendiğinde, modelin bu

kayıpları fazlasıyla telafi ettiği ve çalışma hızı bakımından kazanç elde edildiği

163

söylenebilir. Ayrıca farklı ortamlarda algoritmaların test edilmesi sonucu

değiştirmemiştir. Dahası, önerilen modelde PSO’ya ek olarak TLBO, ABC, DE,

GA algoritmaları ve KMC’ye ek olarak HC yöntemi de kullanılmıştır. Bu

değerlendirme sonucunda yol uzunluğu açısından en iyi performansı TLBO ve

ABC algoritmaları gösterirken en hızlı algoritma GA olmuştur. Ayrıca HC

yönteminin KMC yöntemine göre daha verimli çalıştığı söylenebilir.

 Önerilen sdSCA, CEC2015 ve CEC2020 test problemlerinde uygulanmış ve

başarılı sonuçlar elde etmiştir. CEC2015 problemlerinde belirgin bir iyileşme

sağlanırken, CEC2020’de kazanan algoritmalarla rekabet edebilecek düzeyde

performans göstermiştir. Algoritmanın etkinliği, statik ve dinamik engeller içeren

üç farklı senaryoda çoklu robotların yol planlaması için yapılan simülasyonlarda

da test edilmiştir. Ortam 17’de toplam adım sayısı %40.63, toplam yol uzunluğu

%40.98 oranında azaltılmıştır. Ortam 18’de bu oranlar sırasıyla %40.36 ve

%40.86 olarak gerçekleşirken, Ortam 19’da %44.00 ve %44.25’lik bir iyileşme

sağlanmıştır.

 Önerilen IResNet modeli tek robotlu senaryoda, özellikle daha büyük ortamlarda,

FCN ile yol planlama başarısında rekabet halinde olsa da IResNet’in tahmin ettiği

yollar daha optimaldir. Çok robotlu senaryoda, IResNet FCN’yi hem yol planlama

başarısında üstün gelmiş hem de daha optimal yollar planlamıştır. Ayrıca robot

sayısı ve ortam karmaşıklığı arttıkça IResNet’in avantajı daha belirgin hale gelir.

 Gerçek zamanlı çalışmada tasarlanan kontrolör kullanılarak robotun planlanan

yolda kayda değer bir hata olmadan hareket ederek hedef noktaya vardığı

gözlemlenmiştir. Ortam 20-21’de RMS hataları 𝑋 ekseni için 0.164-0.269 metre,

𝑌 ekseni için RMS hataları 0.049-0.106 metre, 𝜃 için RMS hataları 1.93°-1.98°

olarak ölçülmüştür. Bu hatalar 4.5 x 1.5 metrelik platform ve 0.26 x 0.24 metrelik

robot boyutlarıyla karşılaştırıldığında kabul edilebilir seviyelerdedir.

Bu tezde yapılan çalışmalarla, mobil robotların yol planlama süreçlerinde etkinliğin

artırılması ve karşılaşılabilecek zorluklara yönelik çözümler geliştirilmesi amaçlanmıştır.

Bu doğrultuda, farklı algoritmalar incelenmiş, çeşitli senaryolar üzerinde testler

gerçekleştirilmiş ve elde edilen sonuçlar doğrultusunda yol planlama performansının

164

iyileştirilmesine yönelik öneriler sunulmuştur. Geliştirilen yöntemler, hem statik hem de

dinamik engellerin bulunduğu ortamlarda robotların daha verimli ve güvenli bir şekilde

hareket edebilmesine katkı sağlamayı hedeflemiştir. Böylece, mobil robotların farklı

uygulama alanlarında daha etkin kullanılabilmesi için önemli kazanımlar elde edilmiştir.

5.2. Gelecekteki Çalışmalar

Bu çalışmada geliştirilen algoritmaların ve modellerin başarısı, mobil robotların yol

planlamasında önemli iyileştirmeler sağladığını göstermektedir. Gelecekteki

çalışmalarda, önerilen yöntemlerin farklı robot türleri ve daha karmaşık dinamik ortamlar

üzerinde test edilmesi hedeflenebilir. Özellikle, gerçek dünyadaki belirsizlikleri ve sensör

hatalarını daha iyi yönetebilmek için çevrimiçi öğrenme ve adaptif kontrol mekanizmaları

entegre edilebilir. Ayrıca, daha büyük ölçekli çoklu robot sistemlerinde koordinasyon ve

çakışma önleme stratejilerinin geliştirilmesi, robotların otonom hareket kabiliyetini

artıracaktır.

Bunun yanı sıra, derin öğrenme tabanlı modellerin yol planlama süreçlerine daha etkin

entegrasyonu önemli bir araştırma alanı olarak öne çıkmaktadır. Önerilen ResNet tabanlı

modelin farklı ağ yapılarıyla genişletilerek daha karmaşık engel senaryolarına

uyarlanması ve transfer öğrenme tekniklerinin kullanılması, algoritmaların genelleştirme

yeteneğini artırabilir. Ayrıca, hibrit metasezgisel yöntemlerin gelişmiş optimizasyon

teknikleriyle birleştirilmesi, yol planlama süreçlerinde daha hızlı ve verimli çözümler

sunulmasını sağlayabilir. Son olarak gerçek zamanlı çalışmara yönelik, haberleşme

yeteneğine sahip çoklu mobil robotlarla işbirlikçi yol planlaması ve takip kontrolü üzerine

odaklanılabilir.

165

KAYNAKÇA

1. Loganathan, A., Ahmad, N. S., 2023. A systematic review on recent advances in

autonomous mobile robot navigation. Engineering Science and Technology, an

International Journal, 40: 101343.

2. Borkar, K. K., Aljrees, T., Pandey, S. K., Kumar, A., Singh, M. K., Sinha, A., Singh

K. U., Sharma, V., 2023. Stability analysis and navigational techniques of

wheeled mobile robot: A review. Processes, 11 (12): 3302.

3. Zhang, Y., Zhao, Q., 2024. Complex environment based on improved A* algorithm

research on path planning of inspection robots. Processes, 12 (5): 855.

4. Liu, Z., Guo, S., Yu, F., Hao, J., Zhang, P., 2024. Improved A* algorithm for mobile

robots under rough terrain based on ground trafficability model and ground

ruggedness model. Sensors, 24 (15): 4884.

5. Li, C., Huang, X., Ding, J., Song, K., Lu, S., 2022. Global path planning based on a

bidirectional alternating search A* algorithm for mobile robots. Computers &

Industrial Engineering, 168: 108123.

6. Wang, D., Liu, Q., Yang, J., & Huang, D., 2024. Research on path planning for

intelligent mobile robots based on improved A* algorithm. Symmetry, 16 (10):

1311.

7. Guo, S., Gong, J., Shen, H., Yuan, L., Wei, W., Long, Y., 2024. DBVSB-P-RRT*: A

path planning algorithm for mobile robot with high environmental adaptability

and ultra-high speed planning. Expert Systems with Applications, 266: 126123.

8. Zhong, H., Cong, M., Wang, M., Du, Y., Liu, D., 2024. HB-RRT: A path planning

algorithm for mobile robots using Halton sequence-based rapidly-exploring

random tree. Engineering Applications of Artificial Intelligence, 133: 108362.

9. Han, L., He, L., Sun, X., Li, Z., Zhang, Y., 2023. An enhanced adaptive 3D path

planning algorithm for mobile robots with obstacle buffering and improved

Theta* using minimum snap trajectory smoothing. Journal of King Saud

University-Computer and Information Sciences, 35 (10): 101844.

10. Huang, Y., Wang, H., Han, L., Xu, Y., 2024. Robot path planning in narrow passages

based on improved PRM method. Intelligent Service Robotics, 17: 609-620.

166

11. Alshammrei, S., Boubaker, S., Kolsi, L., 2022. Improved dijkstra algorithm for

mobile robot path planning and obstacle avoidance. Comput. Mater. Contin, 72:

5939-5954.

12. Li, Y., Song, H., Ji, Y., Zhang, L., 2024. Path planning method and control of mobile

robot with uncertain dynamics based on improved artificial potential field and its

application in health monitoring. Mathematics, 12 (19): 2965.

13. Cai, Z., Liu, J., Xu, L., Wang, J., 2024. Cooperative path planning study of distributed

multi-mobile robots based on optimised ACO algorithm. Robotics and

Autonomous Systems, 179: 104748.

14. Huo, F., Zhu, S., Dong, H., Ren, W., 2024. A new approach to smooth path planning

of Ackerman mobile robot based on improved ACO algorithm and B-spline curve.

Robotics and Autonomous Systems, 175: 104655.

15. Ab Wahab, M. N., Nazir, A., Khalil, A., Ho, W. J., Akbar, M. F., Noor, M. H. M.,

Mohamed, A. S. A., 2024. Improved genetic algorithm for mobile robot path

planning in static environments. Expert Systems with Applications, 249:

123762.

16. Duan, P., Yu, Z., Gao, K., Meng, L., Han, Y., Ye, F. 2024. Solving the multi-objective

path planning problem for mobile robot using an improved NSGA-II algorithm.

Swarm and Evolutionary Computation, 87: 101576.

17. Tao, B., Kim, J. H., 2024. Mobile robot path planning based on bi-population particle

swarm optimization with random perturbation strategy. Journal of King Saud

University-Computer and Information Sciences, 36 (2): 101974.

18. Lin, S., Li, F., Li, X., Jia, K., Zhang, X., 2022. Improved artificial bee colony

algorithm based on multi-strategy synthesis for UAV path planning. IEEE

Access, 10: 119269-119282.

19. Li, F., Fan, X., Hou, Z., 2020. A firefly algorithm with self-adaptive population size

for global path planning of mobile robot. IEEE Access, 8: 168951-168964.

20. Zhang, M., Hao, P., 2024. 2D and 3D path planning for mobile robots based on

improved SSA algorithm. International Journal of Intelligent Robotics and

Applications, 1-13.

21. Tang, C., Li, W., Han, T., Yu, L., Cui, T., 2024. Multi-strategy improved harris hawk

optimization algorithm and its application in path planning. Biomimetics, 9 (9):

552.

167

22. Gao, Y., Li, Z., Wang, H., Hu, Y., Jiang, H., Jiang, X., Chen, D., 2024. An improved

spider-wasp optimizer for obstacle avoidance path planning in mobile robots.

Mathematics, 12 (17): 2604.

23. Shi, K., Wu, Z., Jiang, B., Karimi, H. R., 2023. Dynamic path planning of mobile

robot based on improved simulated annealing algorithm. Journal of the Franklin

Institute, 360 (6): 4378-4398.

24. Yıldırım, M. Y., Akay, R., 2021. A comparative study of optimization algorithms for

global path planning of mobile robots. Sakarya University Journal of Science,

25 (2): 417-428.

25. Galarza-Falfan, J., García-Guerrero, E. E., Aguirre-Castro, O. A., López-Bonilla, O.

R., Tamayo-Pérez, U. J., Cárdenas-Valdez, J. R., Hernández-Mejía, C., Borrego-

Dominguez, S., Inzunza-Gonzalez, E., 2024. Path planning for autonomous

mobile robot using intelligent algorithms. Technologies, 12 (6): 82.

26. Han, Z., 2023. Multimodal intelligent logistics robot combining 3D CNN, LSTM,

and visual SLAM for path planning and control. Frontiers in Neurorobotics, 17:

1285673.

27. Farkh, R., Quasim, M. T., Al Jaloud, K., Alhuwaimel, S., Siddiqui, S. T., 2021.

Computer vision-control-based CNN-PID for mobile robot. Computers,

Materials & Continua, 68 (1).

28. Li, P., Chen, D., Wang, Y., Zhang, L., Zhao, S., 2024. Path planning of mobile robot

based on ımproved TD3 algorithm in dynamic environment. Heliyon, 10 (11):

e32167.

29. Deshpande, S. V., Harikrishnan, R., Walambe, R., 2024. POMDP-based probabilistic

decision making for path planning in wheeled mobile robot. Cognitive Robotics,

4: 104-115.

30. Deshpande, S. V., Harikrishnan, R., Ibrahim, B. S. K. K., Ponnuru, M. D. S., 2024.

Mobile robot path planning using deep deterministic policy gradient with

differential gaming (DDPG-DG) exploration. Cognitive Robotics, 4: 156-173.

31. Zhou, Q., Lian, Y., Wu, J., Zhu, M., Wang, H., Cao, J., 2024. An optimized Q-

Learning algorithm for mobile robot local path planning. Knowledge-Based

Systems, 286: 111400.

168

32. Zhang, L., Cai, Z., Yan, Y., Yang, C., Hu, Y., 2024. Multi-agent policy learning-

based path planning for autonomous mobile robots. Engineering Applications of

Artificial Intelligence, 129: 107631.

33. Yan, C., Chen, G., Li, Y., Sun, F., Wu, Y., 2023. Immune deep reinforcement

learning-based path planning for mobile robot in unknown environment. Applied

Soft Computing, 145: 110601.

34. Deshpande, S. V., Harikrishnan, R., Sampe, J., Patwa, A., 2024. An algorithm to

create model file for partially observable markov decision process for mobile

robot path planning. MethodsX, 12: 102552.

35. Low, E. S., Ong, P., Low, C. Y., Omar, R., 2022. Modified Q-learning with distance

metric and virtual target on path planning of mobile robot. Expert Systems with

Applications, 199: 117191.

36. Das, S., Mishra, S. K., 2022. A machine learning approach for collision avoidance

and path planning of mobile robot under dense and cluttered environments.

Computers and Electrical Engineering, 103: 108376.

37. Chen, L., Wang, Q., Deng, C., Xie, B., Tuo, X., Jiang, G., 2024. Improved double

deep Q-network algorithm applied to multi-dimensional environment path

planning of hexapod robots. Sensors, 24 (7): 2061.

38. Hu, L., Wei, C., Yin, L., 2025. Fuzzy A∗ quantum multi-stage Q-learning artificial

potential field for path planning of mobile robots. Engineering Applications of

Artificial Intelligence, 141: 109866.

39. Wang, Y., Fu, C., Huang, R., Tong, K., He, Y., Xu, L., 2024. Path planning for mobile

robots in greenhouse orchards based on improved A* and fuzzy DWA algorithms.

Computers and Electronics in Agriculture, 227: 109598.

40. Tao, B., Kim, J. H., 2024. Deep reinforcement learning-based local path planning in

dynamic environments for mobile robot. Journal of King Saud University-

Computer and Information Sciences, 36 (10): 102254.

41. Zhang, D., Yin, Y., Xiong, G., Zou, S., 2024. A bi-level hybrid algorithm for solving

multi-target inspection path planning problem of mobile robot in complex

radioactive indoor environment. Expert Systems with Applications, 266:

126095.

169

42. Wei, L., Xu, Q., Hu, Z., 2024. Mobile robot path planning based on multi-experience

pool deep deterministic policy gradient in unknown environment. International

Journal of Machine Learning and Cybernetics, 15: 5823-5837.

43. Gao, Y., Han, Q., Feng, S., Wang, Z., Meng, T., Yang, J., 2024. Improvement and

fusion of D* lite algorithm and dynamic window approach for path planning in

complex environments. Machines, 12 (8): 525.

44. Li, G., Liu, C., Wu, L., Xiao, W., 2023. A mixing algorithm of ACO and ABC for

solving path planning of mobile robot. Applied Soft Computing, 148: 110868.

45. Yu, Z., Yuan, J., Li, Y., Yuan, C., Deng, S., 2023. A path planning algorithm for

mobile robot based on water flow potential field method and beetle antennae

search algorithm. Computers and Electrical Engineering, 109: 108730.

46. Zhang, D., Yin, Y. B., Luo, R., Zou, S. L., 2023. Hybrid IACO-A*-PSO optimization

algorithm for solving multiobjective path planning problem of mobile robot in

radioactive environment. Progress in Nuclear Energy, 159: 104651.

47. Tian, T., Liang, Z., Wei, Y., Luo, Q., Zhou, Y., 2024. Hybrid whale optimization

with a firefly algorithm for function optimization and mobile robot path planning.

Biomimetics, 9 (1): 39.

48. Abdulsaheb, J. A., Kadhim, D. J., 2023. Classical and heuristic approaches for mobile

robot path planning: A survey. Robotics, 12 (4): 93.

49. Karur, K., Sharma, N., Dharmatti, C., Siegel, J. E., 2021. A survey of path planning

algorithms for mobile robots. Vehicles, 3 (3): 448-468.

50. Toufan, N., Niknafs, A., 2020. Robot path planning based on laser range finder and

novel objective functions in grey wolf optimizer. SN Applied Sciences, 2 (8):

1324.

51. Bellman, R., 1966. Dynamic programming. Science, 153 (3731): 34-37.

52. Dijkstra, E. W., 1959. A note on two problems in connexion with graphs.

Numerische Mathematik, 1: 269-271.

53. Moore, E.F., 1959. The shortest path through a maze, 285-292. The International

Symposium on the Theory of Switching, June 29-July 1, 1959, Massachusetts,

USA.

54. Hart, P. E., Nilsson, N. J., Raphael, B., 1968. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science

and Cybernetics, 4 (2): 100-107.

170

55. LaValle, S., 1998. Rapidly-exploring random trees: A new tool for path

planning. Research Report, 9811.

56. Holland, J. H., 1992. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence.

University of Michigan Press, Ann Arbor.

57. Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11:

341-359.

58. Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, 1942-1948.

International Conference on Neural Networks, November 27-December 1, 1995,

Perth, WA, Australia.

59. Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39: 459-471.

60. Rao, R. V., Savsani, V. J., Vakharia, D. P., 2011. Teaching-learning-based

optimization: a novel method for constrained mechanical design optimization

problems. Computer-Aided Design, 43 (3): 303-315.

61. Salimi, H., 2015. Stochastic fractal search: a powerful metaheuristic

algorithm. Knowledge-Based Systems, 75: 1-18.

62. Mirjalili, S., 2016. SCA: A sine cosine algorithm for solving optimization

problems. Knowledge-Based Systems, 96: 120-133.

63. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A. H., 2021. The

arithmetic optimization algorithm. Computer Methods in Applied Mechanics

and Engineering, 376: 113609.

64. Manakitsa, N., Maraslidis, G. S., Moysis, L., Fragulis, G. F., 2024. A review of

machine learning and deep learning for object detection, semantic segmentation,

and human action recognition in machine and robotic vision. Technologies, 12

(2): 15.

65. Zhou, C., Huang, B., Fränti, P., 2022. A review of motion planning algorithms for

intelligent robots. Journal of Intelligent Manufacturing, 33 (2): 387-424.

66. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324.

171

67. Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep

convolutional neural networks. Advances in Neural Information Processing

Systems, 25.

68. Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-

scale image recognition. ArXiv Preprint ArXiv: 1409.1556.

69. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions, 1-9. IEEE

Conference on Computer Vision and Pattern Recognition, 7-12 June, 2015,

Boston, MA, USA.

70. Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic

segmentation, 3431-3440. IEEE Conference on Computer Vision and Pattern

Recognition, 7-12 June, 2015, Boston, MA, USA.

71. He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image

recognition, 770-778. IEEE Conference on Computer Vision and Pattern

Recognition, 27-30 June, 2016, Las Vegas, NV, USA.

72. Sutton, R. S., McAllester, D., Singh, S., Mansour, Y., 1999. Policy gradient methods

for reinforcement learning with function approximation. Advances in neural

information processing systems, 12.

73. Watkins, C. J., Dayan, P., 1992. Q-learning. Machine Learning, 8: 279-292.

74. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,

Wierstra, D., 2015. Continuous control with deep reinforcement learning. ArXiv

Preprint Arxiv: 1509.02971.

75. Karaman, A., Pacal, I., Basturk, A., Akay, B., Nalbantoglu, U., Coskun, S., Sahin O.,

Karaboga, D., 2023. Robust real-time polyp detection system design based on

YOLO algorithms by optimizing activation functions and hyper-parameters with

artificial bee colony (ABC). Expert Systems with Applications, 221: 119741.

76. Ye, T., Wang, W., Wang, H., Cui, Z., Wang, Y., Zhao, J., Hu, M., 2022. Artificial

bee colony algorithm with efficient search strategy based on random

neighborhood structure. Knowledge-Based Systems, 241: 108306.

77. Karaboga, D., Basturk, B., 2008. On the performance of artificial bee colony (ABC)

algorithm. Applied Soft Computing, 8 (1): 687-697.

78. Hansen, N., Ostermeier, A., 2001. Completely derandomized self-adaptation in

evolution strategies. Evolutionary Computation, 9 (2): 159-195.

172

79. Braik, M., Hammouri, A., Atwan, J., Al-Betar, M. A., Awadallah, M. A., 2022. White

shark optimizer: A novel bio-inspired meta-heuristic algorithm for global

optimization problems. Knowledge-Based Systems, 243: 108457.

80. Al-Betar, M. A., Awadallah, M. A., Braik, M. S., Makhadmeh, S., Doush, I. A., 2024.

Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artificial

Intelligence Review, 57 (3): 48.

81. Tian, T., Liang, Z., Wei, Y., Luo, Q., Zhou, Y., 2024. Hybrid whale optimization

with a firefly algorithm for function optimization and mobile robot path

planning. Biomimetics, 9 (1).

82. Li, G., Liu, C., Wu, L., Xiao, W., 2023. A mixing algorithm of ACO and ABC for

solving path planning of mobile robot. Applied Soft Computing, 148: 110868.

83. Zhang, Z., He, R., Yang, K., 2022. A bioinspired path planning approach for mobile

robots based on improved sparrow search algorithm. Advances in

Manufacturing, 10 (1): 114-130.

84. Liu, C., Wu, L., Xiao, W., Li, G., Xu, D., Guo, J., Li, W., 2023. An improved heuristic

mechanism ant colony optimization algorithm for solving path

planning. Knowledge-Based Systems, 271: 110540.

85. Li, Y., Yang, J., 2024. Path planning and obstacle avoidance technology for mobile

robots using improved a-star algorithm, 121-124. 5th International Seminar on

Artificial Intelligence, Networking and Information Technology, March 29-31,

2024, Nanjing, China.

86. Chołodowicz, E., Figurowski, D., 2017. Mobile robot path planning with obstacle

avoidance using particle swarm optimization. Pomiary Automatyka

Robotyka, 21 (3): 59-68.

87. Zhao, F., Hung, D. L., Wu, S., 2020. K-means clustering-driven detection of time-

resolved vortex patterns and cyclic variations inside a direct injection

engine. Applied Thermal Engineering, 180: 115810.

88. Aytaç, E., 2020. Unsupervised learning approach in defining the similarity of

catchments: Hydrological response unit based k-means clustering, a

demonstration on Western Black Sea Region of Turkey. International soil and

water conservation research, 8 (3): 321-331.

89. Rehman, T. U., Mahmud, M. S., Chang, Y. K., Jin, J., Shin, J., 2019. Current and

future applications of statistical machine learning algorithms for agricultural

173

machine vision systems. Computers and electronics in agriculture, 156: 585-

605.

90. Tang, Y., Zhou, R., Sun, G., Di, B., Xiong, R., 2020. A novel cooperative path

planning for multirobot persistent coverage in complex environments. IEEE

Sensors Journal, 20 (8): 4485-4495.

91. Peng, Y., Qu, D., Zhong, Y., Xie, S., Luo, J., Gu, J., 2015. The obstacle detection and

obstacle avoidance algorithm based on 2-d lidar, 1648-1653. IEEE International

Conference on Information and Automation, August 8-10, 2015, Lijiang, Yunnan,

China.

92. Lin, S., Liu, A., Wang, J., Kong, X., 2022. A review of path-planning approaches for

multiple mobile robots. Machines, 10 (9): 773.

93. Toufan, N., Niknafs, A., 2020. Robot path planning based on laser range finder and

novel objective functions in grey wolf optimizer. SN Applied Sciences, 2 (8):

1324.

94. Das, S., Suganthan, P. N., 2010. Differential evolution: A survey of the state-of-the-

art. IEEE Transactions on Evolutionary Computation, 15 (1): 4-31.

95. Zhang, J., Sanderson, A. C., 2009. JADE: adaptive differential evolution with

optional external archive. IEEE Transactions on Evolutionary

Computation, 13 (5): 945-958.

96. Wang, Y., Cai, Z., Zhang, Q., 2011. Differential evolution with composite trial vector

generation strategies and control parameters. IEEE transactions on

Evolutionary Computation, 15 (1): 55-66.

97. Liang, J. J., Qu, B. Y., Suganthan, P. N., Chen, Q., 2014. Problem definitions and

evaluation criteria for the CEC 2015 competition on learning-based real-

parameter single objective optimization. Technical Report 201411A,

Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou

China and Technical Report, Nanyang Technological University,

Singapore, 29: 625-640.

98. Kumar, A., Wu, G., Ali, M. Z., Mallipeddi, R., Suganthan, P. N., Das, S., 2020. A

test-suite of non-convex constrained optimization problems from the real-world

and some baseline results. Swarm and Evolutionary Computation, 56: 100693.

174

99. Awadallah, M. A., Al-Betar, M. A., Bolaji, A. L. A., Alsukhni, E. M., Al-Zoubi, H.,

2019. Natural selection methods for artificial bee colony with new versions of

onlooker bee. Soft Computing, 23 (15): 6455-6494.

100. Al-Betar, M. A., Aljarah, I., Awadallah, M. A., Faris, H., Mirjalili, S., 2019.

Adaptive β-hill climbing for optimization. Soft Computing, 23 (24): 13489-

13512.

101. Zhao, H., Zhang, C., Ning, J., 2019. A best firework updating information guided

adaptive fireworks algorithm. Neural Computing and Applications, 31: 79-99.

102. Kumar, A., Das, S., Zelinka, I., 2020. A self-adaptive spherical search algorithm

for real-world constrained optimization problems, 13-14. The 2020 Genetic and

Evolutionary Computation Conference Companion, July 26, 2020, Cancún,

Mexico.

103. Gurrola-Ramos, J., Hernàndez-Aguirre, A., Dalmau-Cedeño, O., 2020.

COLSHADE for real-world single-objective constrained optimization problems,

1-8. 2020 IEEE Congress on Evolutionary Computation (CEC), July 19-24, 2020,

Glasgow, United Kingdom.

104. Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K., Ryan, M. J., 2020. Multi-

operator differential evolution algorithm for solving real-world constrained

optimization problems, 1-8. 2020 IEEE Congress on Evolutionary Computation

(CEC), July 19-24, 2020, Glasgow, United Kingdom.

105. Kumar, A., Das, S., Zelinka, I., 2020. A modified covariance matrix adaptation

evolution strategy for real-world constrained optimization problems, 11-12. The

2020 Genetic and Evolutionary Computation Conference Companion, July 26,

2020, Cancún, Mexico.

106. Xu, J., Xu, L., 2021. Optimal stochastic process optimizer: A new metaheuristic

algorithm with adaptive exploration-exploitation property. IEEE Access, 9:

108640-108664.

107. Tessema, B., Yen, G. G., 2006. A self adaptive penalty function based algorithm

for constrained optimization, 246-253. IEEE International Conference On

Evolutionary Computation, July 16-21, 2006, Vancouver, BC, Canada.

175

108. Mirjalili, S., Lewis, A., 2016. The whale optimization algorithm. Advances in

Engineering Software, 95: 51-67.

109. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H., 2019.

Harris hawks optimization: Algorithm and applications. Future Generation

Computer Systems, 97: 849-872.

110. Kulvicius, T., Herzog, S., Lüddecke, T., Tamosiunaite, M., Wörgötter, F., 2020.

One-shot multi-path planning for robotic applications using fully convolutional

networks, 1460-1466. IEEE International Conference on Robotics and

Automation, May 31-August 31, 2020, Paris, France.

176

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı: Mustafa Yusuf YILDIRIM

Uyruğu: Türkiye (T.C)

Doğum Tarihi ve Yeri: 20.10.1992 - Bolu

Medeni Durum: Evli

E-mail: myyildirim@erciyes.edu.tr

Yazışma Adresi: Erciyes Üniversitesi, Mühendislik Fakültesi, Mekatronik

Mühendisliği, Köşk, Talas Bulvarı, 38030, Melikgazi / Kayseri

EĞİTİM

Derece Kurum Mezuniyet Tarihi

Yüksek Lisans
Karabük Üniversitesi,

 Mekatronik Mühendisliği Anabilim Dalı
2019

Lisans
Erciyes Üniversitesi,

Mekatronik Mühendisliği Bölümü
2015

Lise Bolu Atatürk Anadolu Lisesi 2010

İŞ DENEYİMLERİ

Yıl Kurum Görev

2019-Hâlen
Erciyes Üniversitesi,

Fen Bilimleri Enstitüsü
Araştırma Görevlisi

2017-2019
Niğde Ömer Halisdemir Üniversitesi,

Mekatronik Mühendisliği Bölümü
Araştırma Görevlisi

2016-2017
Aremas Özderya Asansör

Tic. ve San. Ltd. Şti.
Mühendis

YABANCI DİL

İngilizce

177

YAYINLAR

SCI, SSCI, AHCI İndekslerine Giren Dergilerde Yayımlanan Makaleler

1. Yıldırım, M. Y., Akay. R. (2025). An efficient grid-based path planning approach using

improved artificial bee colony algorithm. Knowledge-Based System, 318, ss 113528.

2. Akay, R., Yıldırım, M. Y. (2025). SBA*: An efficient method for 3D path planning of

unmanned vehicles. Mathematics and Computers in Simulation, 231, ss 294-317.

3. Akay, R., Yıldırım, M. Y. (2023). Multi-strategy and self-adaptive differential sine-

cosine algorithm for multi-robot path planning. Expert Systems with Applications, 232, ss

120849.

4. Suveren M., Akay R., Yıldırım M. Y., Kanaan M. (2022). Application of hybrid

metaheuristic with Levenberg-Marquardt algorithm for 6-dimensional magnetic

localization. Evolving Systems, 13(6), ss 849-867.

5. Yıldırım M. Y., Akay R. (2021). Mobil robotlar için çok engelli ortamlarda hızlı yol

planlama. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), ss 1552-

1564.

Diğer Dergilerde Yayımlanan Makaleler

1. Savas S., Yıldırım M. Y., Akay R. (kabul edildi). The effect of path linearity on mobile

robot path planning and tracking control. Erciyes Üniversitesi Fen Bilimleri Enstitüsü

Dergisi.

2. Yıldırım M. Y., Akay R. (2024). Robot tutucu problemi için çok stratejili aritmetik

optimizasyon algoritması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve

Teknoloji, 12, ss 108-116.

3. Yıldırım M. Y., Akay R. (2021). Mobil robotların yol planlamasında doğrusallığın

incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 24, ss 138-142.

4. Yıldırım M. Y., Akay R. (2021). A comparative study of optimization algorithms for

global path planning of mobile robots. Sakarya University Journal of Science, 25(2), ss

417-428.

178

5. Yıldırım M. Y., Anutgan M. (2020). Development of an industrial robotic arm

education kit based on object recognition and robot kinematics for engineers. Journal of

Selcuk-Technic, Special Issue, ss 47-65.

Hakemli Kongre / Sempozyum Bildiri Kitaplarında Yer Alan Yayınlar

1. Yıldırım M. Y., Akay R. (2024). Welded beam design optimization using honey badger

algorithm. 1st Bilsel International Aspendos Scientific Researches Congress, Antalya,

Türkiye, 24-25 Şubat 2024, ss 59-66.

2. Yıldırım M. Y., Akay R. (2021). Izgara bazlı yol planlama için matematik tabanlı

metasezgisellerin karşılaştırılması. International Conference on Design, Research and

Development, Kayseri, Türkiye, 15-18 Aralık 2021, ss 157.

3. Yıldırım M. Y., Akay R. (2020). DC motor hız kontrolü için PID denetleyici

parametrelerinin PSO algoritması ile gerçek zamanlı optimizasyonu. 2nd International

Eurasian Conference on Science, Engineering and Technology, Gaziantep, Türkiye, 7-9

Ekim 2020, ss 543-549.

4. Yıldırım M. Y., Anutgan M. (2018). Stereo görme ve 3 eksenli robot kol kullanılarak

nesne sınıflandırma. Anadolu I. Uluslararası Multidisipliner Çalışmalar Kongresi,

Diyarbakır, Türkiye, 28-29 Aralık 2018, ss 412-418.

5. Yıldırım M. Y., Anutgan M. (2018). Ters Kinematik Analizin Yapay Sinir Ağları ile

Simülasyonu. Anadolu I. Uluslararası Multidisipliner Çalışmalar Kongresi, Diyarbakır,

Türkiye, 28-29 Aralık 2018, ss 407-411.

