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ÇOKLU MOBİL ROBOT SİSTEMLERİ İÇİN METASEZGİSEL VE DERİN 
ÖĞRENME TABANLI YOL PLANLAMA OPTİMİZASYONU 

Mustafa Yusuf YILDIRIM 

Erciyes Üniversitesi, Fen Bilimleri Enstitüsü 
Doktora Tezi, Temmuz 2025 

Danışman: Doç. Dr. Rüştü AKAY 

ÖZET 

Bu tez kapsamında mobil robotların yol planlama süreçlerini iyileştirmek amacıyla dört 

farklı simülasyon çalışması ve bir gerçek zamanlı çalışma gerçekleştirilmiştir. Küresel 

yol planlama bağlamında tek bir mobil robotun ızgara tabanlı ortamlarda yol planlaması 

için iyileştirilmiş bir yapay arı koloni algoritması önerilmiştir. Bu algoritma yol 

üzerindeki gereksiz köşeleri ortadan kaldırarak daha verimli rotalar oluşturmayı 

hedefleyen bir strateji ile desteklenmiştir. Aynı zamanda yine küresel çapta yol planlama 

probleminin karmaşıklığını azaltmak için engellerin kümelenmesine dayalı hibrit bir 

model önerilmiştir. Bu model metasezgisel algoritmalar ile kümeleme yöntemlerini bir 

araya getirilmiştir. Yerel yol planlama bağlamında çoklu mobil robot sistemlerinin yol 

planlaması için bir sinüs kosinüs algoritma varyantı önerilmiştir. Bir robotun dinamik 

ortamlardaki yol planlama başarısını artırmak için algoritmaya diferansiyel tabanlı 

güncelleme stratejileri ve adaptif öğrenme mekanizmaları entegre edilmiştir. Ayrıca tek 

ve çok robotlu sistemlerin küresel yol planlaması için genişletilmiş evrişim ve sıkma-

uyarma bloğu gibi katmanların entegre edildiği ResNet tabanlı bir derin öğrenme modeli 

önerilmiştir. Bu modelin tam evrişimli ağa kıyasla daha optimal yollar ürettiği 

gözlemlenmiştir. Bu simülasyonlara ek olarak bir mobil robotun bir ortamda planlanan 

bir yolu istenen şekilde takip etmesi için bir gerçek zamanlı çalışma gerçekleştirilmiştir. 

Bu çalışmada bir takip kontrolörü tasarlanmış, bu kontrolör kullanılarak robotun 

planlanan yolda kaydadeğer bir hata olmadan hareket ederek hedef noktaya vardığı 

gözlemlenmiştir.  

Anahtar Kelimeler: Mobil Robot, Yol Planlama, Metasezgisel Algoritmalar, 

Optimizasyon, Derin Öğrenme  
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METAHEURISTIC AND DEEP LEARNING BASED PATH PLANNING 
OPTIMIZATION FOR MULTIPLE MOBILE ROBOT SYSTEMS 

Mustafa Yusuf YILDIRIM 

Erciyes University, Graduate School of Natural and Applied Sciences  
PhD Thesis, July 2025 

Supervisor: Assoc. Prof. Dr. Rüştü AKAY 

ABSTRACT 

In this thesis, four different simulation studies and one experimental study were 

conducted to improve the path planning processes of mobile robots. In the context of 

global path planning, an improved artificial bee colony algorithm was proposed for the 

path planning of a single mobile robot in grid-based environments. This algorithm was 

supported by a strategy aimed at eliminating unnecessary corners along the path to 

generate more efficient routes. Moreover, to reduce the complexity of the global path 

planning problem, a hybrid model based on obstacle clustering was developed by 

integrating metaheuristic algorithms with clustering techniques. For local path planning, 

a variant of sine cosine algorithm was proposed for multi-robot systems. To improve the 

performance of a robot in dynamic environments, differential-based update strategies and 

adaptive learning mechanisms were incorporated into the algorithm. Furthermore, a 

ResNet-based deep learning model was introduced for both single and multi-robot global 

path planning by integrating extended convolution and squeeze-excitation blocks. This 

model was observed to produce more optimal paths compared to a fully convolutional 

network. In addition to these simulations, an experimental study was carried out in which 

a mobile robot was tasked with tracking a planned path in a given environment. In this 

study, a tracking controller was designed, and it was observed that the robot was able to 

track the planned path and reach the target point with no significant error. 

Keywords: Mobile Robot, Path Planning, Metaheuristic Algorithms, Optimization, Deep 

Learning  
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GİRİŞ 

Mobil robotlar, çevrelerini algılayarak otonom bir şekilde hareket etme kabiliyetine sahip 

sistemlerdir ve bu özellikleriyle endüstriden tarıma, lojistikten arama-kurtarma 

çalışmalarına kadar geniş bir yelpazede kullanılmaktadır. Bu robotların otonom hareket 

kabiliyeti, haritalama, lokalizasyon ve yol planlama gibi temel becerilere dayanır. 

Haritalama, robotun çevresini tanımasını ve bu çevreyi modelleyerek haritalar 

oluşturmasını sağlarken, lokalizasyon, robotun bu harita üzerindeki konumunu hassas bir 

şekilde belirlemesini sağlar. Ancak, haritalama ve lokalizasyon, robotun hedefe 

ulaşabilmesi için tek başına yeterli değildir; robotun hedefe ulaşması için yol planlama 

süreci kritik bir rol oynar. 

Yol planlama, robotun çevresel engelleri dikkate alarak, güvenli, verimli ve enerji 

tasarruflu bir yol oluşturmasını hedefler. Bu süreçte, robotun çevresel durumu, hareket 

hızı, enerji tüketimi ve güvenlik gibi faktörler göz önünde bulundurulur. Yol planlama 

yöntemleri genel olarak üç ana gruba ayrılır: Klasik arama algoritmaları, metasezgisel 

algoritmalar ve makine öğrenme tabanlı yaklaşımlar. Klasik arama algoritmaları, 

genellikle sabit haritalar üzerinde çalışır ve belirli kurallar çerçevesinde sistematik 

çözümler sunar. Bu yöntemler, iyi tanımlanmış ve basit çevresel koşullarda oldukça etkili 

olabilir. Öte yandan, metasezgisel algoritmalar, daha karmaşık ve dinamik çevreler için 

geliştirilmiştir. Bu algoritmalar, geniş çözüm uzaylarında esnek arama yetenekleri 

sayesinde optimal ya da optimale yakın yollar belirler ve robotun değişen çevre 

koşullarına uyum sağlamasını kolaylaştırır. Makine öğrenme tabanlı yaklaşımlar ise 

robotun çevreden gelen geri bildirimlere göre karar verme ve öğrenme becerisini 

geliştirir. Bu yöntemler, özellikle dinamik engellerin bulunduğu karmaşık ortamlar için 

etkili çözümler sunar. 

Bu tezin amacı, mobil robotların yol planlaması problemlerine yönelik metasezgisel 

algoritmaların etkinliğini artırmak ve bu alandaki mevcut yöntemlere yenilikçi katkılar 

sağlamaktır. Çalışma kapsamında hem tekli mobil robot hem de çoklu mobil robot 
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sistemleri için optimize edilmiş yolların planlanması hedeflenmiş, bu süreçte 

metasezgisel algoritmaların keşif ve sömürü dengesini iyileştiren yeni yaklaşımlar 

geliştirilmiştir. Geliştirilen yöntemlerin performansı, literatürdeki standart algoritmalarla 

karşılaştırılarak değerlendirilmiştir. Ayrıca çoklu robot sistemlerinin yol planlaması için 

bir derin öğrenme modeli de tanıtılmış ve farklı bir derin öğrenme modeli ile 

karşılaştırılarak performansı test edilmiştir. Son olarak bir mobil robotun bir ortamda 

planlanan bir yolu istenen şekilde takip etmesi için bir takip kontrolörü tasarlanmış ve 

robotun gerçek zamanlı takip kontrolü için bir gerçek zamanlı çalışma 

gerçekleştirilmiştir.  

Tezin organizasyonu şu şekildedir: Birinci bölümde genel bilgiler verilmiş ve yol 

planlama problemine yönelik literatürdeki güncel çalışmalar sunulmuştur. İkinci bölümde 

yol planlama problemi ayrıntılı olarak bahsedilmiştir. Model yaklaşımı, ortam 

modellemesi ve yol planlama kapsamları açıklanmıştır. Üçüncü bölümde yol planlama 

algoritmaları ayrıntılı olarak bahsedilmiştir. Klasik, metasezgisel ve makine öğrenmesi 

algoritmaları açıklanmıştır. Dördüncü bölümde tez kapsamında gerçekleştirilen dört 

simülasyon çalışması ve bir gerçek zamanlı çalışma ayrıntılı olarak sunulmuştur. Son 

olarak beşinci bölümde ise sonuç ve gelecekteki çalışmalardan bahsedilmiştir.  
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1.  BÖLÜM  

GENEL BİLGİLER 

1.1. Giriş 

Mobil robotlar, çevrelerini algılayabilme ve bu çevreyle etkileşim kurabilme kapasitesine 

sahip, otonom sistemler olarak tanımlanabilir. Bu robotlar, genellikle gelişmiş 

algılayıcılar, işlemciler ve kontrol sistemleri ile donatılır, böylece çevrelerindeki 

değişikliklere hızla uyum sağlayabilirler. Otonom robotlar, endüstriyel üretimden lojistik 

çözümlerine, tarım uygulamalarından keşif görevlerine kadar geniş bir yelpazede 

kullanılır. Modern robotlar, insan müdahalesini azaltarak verimliliği artırmak için 

tasarlanmıştır. Örneğin, fabrikalarda malzeme taşımak, depolarda envanter yönetimini 

sağlamak, zorlu arazi koşullarında tarım faaliyetlerini gerçekleştirmek ya da doğal afet 

bölgelerinde arama-kurtarma operasyonlarına katılmak gibi görevler üstlenebilirler. 

Ayrıca, otonom araçlar, akıllı robotik sistemler ve insansız hava araçları gibi 

teknolojilerin temel yapı taşlarını oluştururlar ve gelecekteki yenilikçi uygulamalar için 

temel oluştururlar [1]. 

Bir mobil robotun otonom hareket edebilmesi için haritalama, lokalizasyon ve yol 

planlama gibi temel becerilere sahip olması gerekir. Haritalama, robotun çevresini tanıyıp 

bu çevreyi haritalar aracılığıyla modellemesine olanak tanırken, lokalizasyon, robotun 

harita üzerinde kendi konumunu belirlemesini sağlar. Ancak yalnızca haritalama ve 

lokalizasyon, robotların hedeflerine ulaşmasını sağlamak için yeterli değildir. Yol 

planlama, robotun belirlenen hedefe güvenli, verimli ve etkili bir şekilde ulaşmasını 

sağlamak adına kritik bir rol oynar. Bu süreçte, robotun çevresel faktörleri ve engelleri 

dikkate alarak en uygun yolu seçmesi gerekir. Yol planlamanın etkin bir şekilde 

yapılabilmesi için, robotun çevresine dair derin bir anlayışa ve gelişmiş hesaplama 

yeteneklerine sahip olması gerekir [2]. 
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Yol planlama, mobil robotların belirlenen bir hedefe, engellerden kaçınarak ve en uygun 

yolu seçerek ulaşmasını sağlayan kritik bir süreçtir. Bu süreçte, robotun çevresel durumu, 

enerji verimliliği, hareket hızı ve güvenlik gibi faktörler dikkate alınır. Yol planlama 

yöntemleri genel olarak üç ana kategoriye ayrılır: klasik algoritmalar, metasezgisel 

algoritmalar ve makine öğrenme tabanlı yöntemler. Klasik algoritmalar, genellikle 

robotun sabit bir çevrede belirli bir harita üzerinde çalıştığı durumlarda kullanılır ve 

sistematik arama stratejileri ile çözüm üretir. Bu yöntemler, basit ve iyi tanımlı durumlar 

için oldukça etkili olabilir. Metasezgisel algoritmalar ise daha karmaşık ve sürekli 

alanlardaki problemler için geliştirilmiştir. Bu yöntemler, geniş çözüm uzaylarında esnek 

arama yetenekleri sayesinde optimal veya optimale yakın çözümler sunarak, robotun 

çevresel koşullara daha iyi uyum sağlamasına olanak tanır. Makine öğrenme tabanlı 

yöntemler ise robotların çevreden aldığı geri bildirimlere göre karar verme becerisini 

geliştirir. Özellikle, robotun öğrenme ve adaptasyon yeteneklerini destekleyen bu 

yöntemler, statik ve dinamik engellerin bulunduğu karmaşık ortamlarda başarılı sonuçlar 

sağlar. Çevresel algılama ve karar verme süreçlerini destekleyen bu yaklaşımlar, 

robotların hedefe daha verimli ve güvenli bir şekilde ulaşmasını mümkün kılar. 

1.2. Literatür Taraması 

Bu tez çalışması için mobil robotların yol planlama problemine yönelik literatür taraması 

yapılmış ve farklı yaklaşımlar üzerine gerçekleştirilen çalışmalar incelenmiştir. 

Literatürde yol planlama süreci çözmek için Şekil 1.1’de gösterildiği gibi klasik 

algoritmalar, metasezgisel algoritmalar, makine öğrenmesi ve bu yöntemlerin hibrit 

yapıları gibi çeşitli yöntemler kullanılmıştır. Bu başlıklar altında, ilgili çalışmalara dair 

temel bulgular ve yapılan katkılar tartışılmıştır.  

Yol Planlama Literatürü

Klasik Algoritma 
Tabanlı Çalışmalar

Metasezgisel Algoritma 
Tabanlı Çalışmalar

Makine Öğrenmesi
 Tabanlı Çalışmalar

Hibrit Algoritma 
Tabanlı Çalışmalar

 

Şekil 1.1. Literatürdeki yol planlama çalışmalarının genel sınıflandırılması 
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1.2.1. Klasik Algoritma Tabanlı Çalışmalar 

Klasik algoritma tabanlı çalışmalar genellikle belirli haritalar üzerinde yapılan ve 

sistematik arama stratejileri kullanan araştırmaları kapsamaktadır. Güncel çalışmalardan 

bazıları şu şekilde özetlenebilir: Zhang ve Zhao, karmaşık ortamlarda mobil robotlar için 

çevre bilgisinin amaç fonksiyonuna eklendiği iyileştirilmiş bir A* algoritması önermiştir. 

Bu algoritma, çocuk düğüm seçimi için optimal kurallar ve yol düzleştirme için çift yönlü 

optimizasyon stratejisi kullanarak arama alanını küçültür ve yolun düzgünlüğünü artırır 

[3]. Liu ve arkadaşları, engebeli arazi koşullarında mobil robotlar için yer erişilebilirliği 

ve yer engebeliği modellerine dayalı olarak iyileştirilmiş bir A* algoritması 

önermişlerdir. Bu algoritma, yükselti maliyet fonksiyonunu entegre ederek ve orijinal 

mesafe maliyet fonksiyonu ile birleştirerek daha optimize edilmiş yol planlaması 

sağlamaktadır [4]. Li ve arkadaşları, A* algoritmasını iyileştirerek mobil robotlar için 

daha verimli ve düzgün yol planlaması sağlamak amacıyla bir çift yönlü alternatif arama 

stratejisi ve üssel zayıflama ile ağırlıklandırılmış sezgisel fonksiyon önermiştir. Ayrıca, 

yol üzerindeki gereksiz düğümleri azaltmak için filtreleme fonksiyonu ekleyerek dönüş 

açılarını küçültmüş ve Bézier eğrileri kullanarak düzgün yol planlaması sağlamışlardır 

[5]. Wang ve arkadaşları, verimlilik, sağlamlık ve düğüm gezinti sayısını iyileştirmek 

amacıyla bir iyileştirilmiş A* algoritması önermişlerdir. Bu geliştirmeler arasında 

minimum yığın kullanılarak düğüm depolama yapısının optimize edilmesi, adaptif ağırlık 

ve dönüş cezası eklenerek sezgisel fonksiyonun iyileştirilmesi, 8-komşu stratejisinin 16-

komşuya yükseltilmesi ve çift yönlü arama mekanizmasının uygulanması yer almaktadır 

[6]. Guo ve arkadaşları, hızla keşfeden rastgele ağaç yıldız (rapidly-exploring random 

tree star, RRT*) algoritmasının yavaş birleşme, yüksek zaman maliyeti ve zayıf çevresel 

adaptasyon gibi kısıtlamalarını ele alarak, mobil robot yol planlama alanındaki 

uygulamaların iyileştirilmesi için yeni bir iki yönlü RRT* algoritması önermişlerdir. Bu 

algoritma, adaptif hedef sapma örnekleme ve değişken adım boyutu gibi yenilikçi 

mekanizmalar ile hem planlama hızını artırmakta hem de çevresel uyumu 

iyileştirmektedir [7]. Zhong ve arkadaşları, Halton dizisi tabanlı yeni bir RRT algoritması 

önermişlerdir. Bu yöntem, düzensiz örnekleme sorunlarını çözmekte ve bellek 

yetersizliği problemlerini aşmak için aday örnekleme havuzu stratejisini kullanmaktadır. 

Ayrıca, yol optimizasyonu ve düzeltilmesi için çok seviyeli planlama yaklaşımı ve kübik 

B-spline yöntemi ile genel planlama kalitesini artırmaktadır [8]. Han ve arkadaşları, yeni 

bir teta* (theta*) algoritması önermişlerdir ve bu algoritma üç boyutlu haritalarla 
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birleştirilmiş yol yumuşatma yöntemine dayanmaktadır. Ayrıca bu algoritma, engel 

bilgilerini kullanarak toplam maliyet fonksiyonunu optimize etmiş ve minimum snap 

polinomu ile yolun stabilitesini artırmıştır [9]. Huang ve arkadaşları, dar geçitlerdeki yol 

planlama başarısını artırmak için hibrit uniform örnekleme ve Gaussian örnekleme içeren 

iyileştirilmiş bir olasılıksal yol haritası (probabilistic roadmap) yöntemi önermişler. Bu 

yöntem, dar geçitlerde örnekleme yoğunluğunu artırarak ve geniş alanlarda örnekleme 

fazlalığını azaltarak yol planlamasının etkinliğini ve verimliliğini artırmaktadır [10]. 

Alshammrei ve arkadaşları, robotun önceden belirlenmiş yolu takip ederken 

karşılaşabileceği engelleri tespit edip grafiği dinamik olarak güncelleyerek hedef 

noktasına ulaşmasını sağlamak için iyileştirilmiş bir Dijkstra algoritması önermişlerdir. 

Ayrıca, elde edilen optimal yol, hareket kontrolüne dönüştürülmüş ve çizgi izleme 

algılayıcıları kullanılarak pratik olarak uygulanmıştır [11]. Li ve arkadaşları, belirsiz 

dinamiklere sahip mobil robotlar için iyileştirilmiş bir yapay potansiyel alan (artificial 

potantial field) yöntemine dayalı yeni bir yol planlama ve kontrol stratejisi önermişlerdir. 

Bu strateji, temel yapay potansiyel alanın yerel minimuma düşme eğilimini aşmak için 

çekici potansiyel alan rotasyon yöntemi ve hedefe uzak mesafelerde aşırı çekici kuvvet 

nedeniyle meydana gelen çarpışmaları önlemek için yeni bir çekici potansiyel alan sınıfı 

tanımlamaktadır [12].  

1.2.2. Metasezgisel Algoritma Tabanlı Çalışmalar 

Metasezgisel algoritma tabanlı çalışmalar genellikle karmaşık ve sürekli alanlarda çözüm 

arayarak daha esnek bir yol planlama yaklaşımı sunmuş ve birçok çalışmada 

uygulanmıştır. Güncel çalışmalardan bazıları şu şekilde özetlenebilir: Cai ve arkadaşları, 

ateşböceği algoritmasına (firefly algorithm) dayanan iyileştirilmiş bir karınca koloni 

optimizasyon algoritması (ant colony optimization, ACO), sezgisel fonksiyon tabanlı 

iyileştirilmiş bir ACO ve yeni bir yapay potansiyel alan yöntemine dayanan iyileştirilmiş 

bir ACO olmak üzere üç farklı yöntem önermişlerdir. Bu yöntemler, iki boyutlu ve üç 

boyutlu ortamlarda mobil robot yol planlama performansını iyileştirerek, yol planlama 

süresini kısaltmakta ve ortalama yol uzunluğunu azaltmaktadır [13]. Huo ve arkadaşları, 

Ackermann mobil robotlar için iyileştirilmiş bir ACO ve B-eğri fonksiyonuna dayanan 

yeni bir yöntem önermişlerdir. Bu yöntem, yol uzunluğu ve yol yumuşatma 

kısıtlamalarını içeren çok amaçlı bir optimizasyon problemi ile robotun dönüş açısı 

kısıtlamasını dikkate alarak daha hızlı bir yakınsama oranı sağlar ve kinematik 
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kısıtlamalara uyumlu yollar üretir [14]. Ab Wahab ve arkadaşları, genetik algoritma 

(genetic algorithm, GA) için lineer sıralama ve boşluk tabanlı olasılıksal yol haritası 

tekniklerini içeren iyileştirilmiş bir yöntem önermişlerdir. Bu yöntem, yeni bir nüfus 

başlatma yöntemi ve çeşitli genetik operatörlerin kombinasyonunu kullanarak yol 

planlamasının kalitesini artırmakta ve optimum yolun daha hızlı bulunmasını 

sağlamaktadır [15]. Duan ve arkadaşları, iyileştirilmiş bir egemen olmayan sıralamalı 

GA-II (non-dominated sorting GA-II) önermişlerdir. Bu algoritma, yol uzunluğu, yol 

güvenliği ve yol yumuşaklığı gibi çoklu hedefleri aynı anda optimize etmekte, başlangıç 

popülasyonunun çeşitliliğini artırmak için hibrit bir başlatma stratejisi kullanmakta ve 

sorunlara özgü evrimsel operatörler geliştirmektedir. Ayrıca, adaptif değişken komşuluk 

arama stratejisi ve hibrit küresel arama stratejisi kullanarak algoritmanın keşif yeteneğini 

artırmaktadır [16]. Tao ve Kim, iki alt popülasyona ve rastgele pertürbasyon stratejisine 

sahip bir parçacık sürü optimizasyon algoritması (particle swarm optimization, PSO) 

algoritması önermişlerdir. Bu yöntem, parçacıkların kalitesini ve rastgele seçilen bir 

parçacığın optimal çözümünü dikkate alarak global arama yeteneklerini artırmakta ve 

yerel arama yeteneklerini lineer bilişsel katsayı ayarlama stratejisi ile güçlendirmektedir. 

Ayrıca, belirli bir eşik değeri aşıldığında rastgele pertürbasyon eklenerek çeşitlilik 

artırılmakta ve yerel optimumdan kaçış yeteneği güçlendirilmektedir [17]. Lin ve 

arkadaşları, çok stratejili sentezlemeye dayalı iyileştirilmiş bir yapay arı koloni (artificial 

bee colony, ABC) algoritması önermişlerdir. Bu algoritma, insansız hava araçları için 

daha üstün uçuş yolları sağlamak amacıyla hibrit mekanizma kullanarak popülasyonu 

başlatmakta ve kesişen rastgele evrim mekanizması ile uçuş yolu kalitesini en üst düzeye 

çıkarmaktadır [18]. Li ve arkadaşları, kendiliğinden uyarlanan popülasyon boyutuna 

sahip iyileştirilmiş bir ateşböceği algoritmasına dayanan optimal bir yol planlama 

yöntemi önermişlerdir. Bu yöntem, çarpışma derecesine göre popülasyon boyutunu 

belirlemek için iki doğrusal olmayan fonksiyon kullanmakta ve geçersiz çözümleri 

ortadan kaldırarak yol planlamasının çözüm kararlılığını, yakınsama hızını ve çalışma 

süresini iyileştirmektedir [19]. Zhang ve Hao, geleneksel mobil robotların karmaşık yol 

planlama sorunlarını çözmek için iyileştirilmiş bir serçe arama algoritmasına (sparrow 

search algorithm, SSA) dayalı bir 2D-3D yol planlama yöntemi önermişlerdir. Bu 

yöntem, ACO tabanlı stratejileri ve bir yerel arama mekanizmasını entegre ederek 

algoritmanın yol arama yeteneğini artırmaktadır [20]. Tang ve arkadaşları, iyileştirilmiş 

bir Harris şahini optimizasyon algoritması (harris hawk optimization, HHO) 



8 

önermişlerdir. Bu yöntem, çift adaptif ağırlık stratejisi, boyut öğrenme tabanlı avlanma 

stratejisi ve gübre böceği optimizasyon algoritmasına (dung beetle optimizer) dayalı 

pozisyon güncelleme stratejisi ile keşif ve sömürü arasında denge kurarak, optimizasyon 

yeteneği, yakınsama hızını ve kararlılığı önemli ölçüde artırmaktadır [21]. Gao ve 

arkadaşları, örümcek yaban arısı optimizasyon algoritması (spider-wasp optimizer) 

tabanlı iyileştirilmiş bir yol planlama yöntemi önermişlerdir. Bu yöntem, algoritmanın 

küresel optimizasyon performansını artırmak için öğrenme stratejisi, algoritmanın arama 

kabiliyetini artırmak için çift medyan nokta yönlendirme stratejisi ve yerel optimal 

yollardan kaçış yeteneğini artırmak için daha iyi bir yönlendirme stratejisi içermektedir 

[22]. Shi ve arkadaşları, dinamik durumlarda hareketli engellerden kaçınmak için 

iyileştirilmiş bir simüle edilmiş tavlama algoritması (simulated annealing) algoritması 

önermişlerdir. Bu algoritma, hesaplama yükünü azaltmak amacıyla başlangıç yol seçimi 

yöntemi ve silme işlemi kullanmakta ve hem statik hem de dinamik ortamlarda optimal 

çözümler sağlamaktadır [23]. Yıldırım ve Akay, kullanıcı tanımlı iki boyutlu ortamlarda 

statik engellerle birlikte mobil robotlar için PSO, ABC ve GA algoritmaları içeren 

optimal yol planlama yazılımı geliştirmeyi ve bu yazılımı kullanarak algoritmaların 

performansını analiz etmeyi amaçlamışlardır. Bu yazılım, çalışma alanında farklı şekil ve 

boyutlarda engeller oluşturarak ve seçilen optimizasyon algoritmasını kullanarak robot 

için en kısa yolu bulmak üzere tasarlanmıştır [24].  

1.2.3. Makine Öğrenmesi Tabanlı Çalışmalar 

Makine öğrenmesi tabanlı çalışmalar genellikle robotların çevreden aldıkları geri 

bildirimlerle karar verme yeteneklerini geliştirmeye odaklanmaktadır. Güncel 

çalışmalardan bazıları şu şekilde özetlenebilir: Galarza-Falfan ve arkadaşları, derin 

öğrenmeye dayalı yapay görme sistemlerinin otonom mobil robotlara entegrasyonunu 

kapsamlı bir şekilde analiz ederek bir yaklaşım önermişlerdir. Gerçek zamanlı nesne 

tespiti için ResNet18 (residual network) ve YOLOv3 (you only look once) modellerini 

karşılaştırarak, robotların dinamik ortamlardaki uyarlanabilirliğini ve verimliliğini 

artırmak için bir yöntem sunmuşlardır [25]. Han, lojistik robotlarının yol planlama ve 

engel kaçınma yeteneklerini geliştirmek için üç boyutlu bir evrişimli sinir ağı 

(convolutional neural network, CNN), uzun kısa süreli bellek ve dijkstra algoritmasının 

yeni bir hibritini önermişlerdir. Nesne tanıma, uzaysal-zamansal modelleme ve optimize 

edilmiş karar vermeyi birleştirerek, dinamik lojistik ortamlarında robotların otonomisini 
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ve güvenilirliğini artırmak için bir yaklaşım sunmuşlardır [26]. Farkh ve arkadaşları, bir 

hizmet robotuna yönelik hedef izleme ve yörünge tahmini için CNN’leri otomatik 

direksiyon ve hız kontrolü için bir oransal-integral-türevsel denetleyicisiyle birleştiren bir 

kontrol sistemi önermişlerdir. Sistem, görüntü girişlerine dayalı gerçek zamanlı 

çıkarımlar için bir Raspberry Pi kullanarak otonom çizgi takibi ve yörünge kontrolüne 

yönelik bir yaklaşım tanıtmaktadır [27]. Li ve arkadaşları, düşük başarı oranı ve yavaş 

eğitim hızını gidermek için iyileştirilmiş bir derin deterministik politika gradyan 

algoritması (deep deterministic policy gradient, DDPG) önermişlerdir. Bu yöntem, 

öğrenme verimliliğini artırmak için öncelikli deneyim tekrarı ve transfer öğrenimi ile 

dinamik gecikme güncelleme stratejisi ve Ornstein-Uhlenbeck gürültüsü eklemekte, 

böylece yol planlamada başarı oranını ve eğitim hızını artırmaktadır [28]. Deshpande ve 

arkadaşları, belirsizlikleri ele alarak mobil robotların statik ve dinamik engeller karşısında 

güçlü davranışlar sergilemesi için iyileştirilmiş bir Markov karar süreci (Markov decision 

process) modelini kullanarak bir yaklaşım önermişlerdir. Bu yaklaşım, iki mobil robot 

üzerinde yapılan simülasyonlarla test edilerek, gözlem olasılığı yayılımının artırılmasıyla 

sistemin çarpışma oranını azaltarak dayanıklılığı artırdığını göstermiştir [29]. Deshpande 

ve arkadaşları, DDPG algoritmasına diferansiyel oyun (differential game) stratejisinin 

entegre edildiği yeni bir yöntem önermişlerdir. Bu yöntem, başarılı bölümlerin sayısını 

artırarak ve başarısız bölümlerin sayısını azaltarak daha hızlı öğrenmeyi sağlamaktadır 

[30]. Zhou ve arkadaşları, yerel yol planlaması için yeni bir eylem seçme politikası, yeni 

bir ödül fonksiyonu ve kök ortalama kare yayılımı (root mean square propagation) 

yöntemini içeren iyileştirilmiş bir Q-öğrenme (Q-learning, QL) algoritması 

önermişlerdir. Bu yöntem, öğrenme hızını artırarak ve yol planlama verimliliğini artırarak 

mevcut algoritmalara göre tüm metriklerde iyileştirmeler sağlamaktadır [31]. Zhang ve 

arkadaşları, otonom mobil robotların kinematiklerini dikkate alarak dinamik ortamlarda 

performans ve yanıt verebilirlik gereksinimlerini karşılamak amacıyla çok ajanlı politika 

öğrenimi (multi-agent policy learning) tabanlı bir yöntem önermişlerdir. Bu yöntem, 

merkezi öğrenme ve dağıtılmış yürütme tabanlı bir yol planlama çerçevesi sunmakta olup, 

geleneksel sinir ağlarını kullanarak kinematiği göz önünde bulundurarak politikanın 

öğrenilmesini sağlamaktadır. Ayrıca, hata deneyimlerini düzelterek öğrenme süreçlerini 

hızlandıran geliştirilmiş bir yakın politika optimizasyon algoritması geliştirilmiştir [32]. 

Yan ve arkadaşları, yörünge açısı, doğrusal hız ve güvenlik derecesini değerlendirme 

indeksleri olarak kullanıldığı ve çok amaçlı performans indeksini ödül fonksiyonuna 
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entegre edildiği iyileştirilmiş bir DDPG algoritması önermişlerdir. Bu yöntem ayrıca 

deneyim örneklerini optimize etmek için bağışıklık optimizasyon algoritmasını (immune 

optimization algorithm) kullanarak düşük öğrenme ve eğitim verimliliği sorunlarını 

çözmektedir [33]. Deshpande ve arkadaşları, özel bir yol planlama için kısmen 

gözlemlenebilir Markov karar süreci (partially observable Markov decision process) 

matrislerinin boyutlarını ve seyrekliğini kontrol edebilen yeni bir algoritma önermişlerdir. 

Bu algoritma, duruma ait bileşenlerin ayrıştırılmasının inceliği ve gözlem olasılık 

dağılımının yayılımı ayarlanarak zaman karmaşıklığı ve bu Markov karar sürecinin 

çözümünün dayanıklılığı arasında bir denge kurmayı sağlamaktadır [34]. Low ve 

arkadaşları, üç güncelleme ile iyileştirilmiş bir QL algoritması önermişlerdir. Bu 

değişiklikler, hedefe doğru yönlendirme için bir mesafe metriği eklenmesi, QL 

fonksiyonunun daha etkili bir şekilde çıkmazları aşacak şekilde düzeltilmesi ve 

çıkmazları atlamak için sanal hedef kavramının tanıtılmasıdır [35]. Das ve Mishra, mobil 

robotun yönlü hareketini sağa ve sola dönüş olarak ayırmak için stokastik gradyan inişine 

(stochastic gradient descent) dayalı ve doğrusal regresyonun entegre edildiği yeni bir 

yaklaşım önermişlerdir. Ayrıca, geliştirilen algoritma yol planlama ve navigasyon 

amaçları için kullanılmıştır [36]. Chen ve arkadaşları, karmaşık kimyasal tesislerdeki altı 

ayaklı robotların yol planlaması için PSO ve çift derin Q ağı (double deep Q network) 

algoritmalarına dayalı bir yöntem önermişlerdir. Bu yöntem, rastgele seçim stratejisi 

yerine PSO algoritmasını kullanarak verileri toplar ve bu verilerle geliştirilen modeli 

eğitir [37]. 

1.2.4. Hibrit Algoritma Tabanlı Çalışmalar 

Hibrit algoritma tabanlı çalışmalar ise birden fazla yaklaşımın güçlü yönlerini 

birleştirerek çözüm üretmeyi amaçlayan yeni yöntemler önermektedir. Güncel 

çalışmalardan bazıları şu şekilde özetlenebilir: Hu ve arkadaşları, bulanık mantık (fuzzy 

logic), A*, QL ve yapay potansiyel alan yaklaşımlarını içeren bir yöntem önermişlerdir. 

Bu yöntem, bulanık mantık ile A* algoritmasını, kuantum hesaplama ve çok aşamalı 

eğitim yöntemlerini birleştirerek A* algoritmasını iyileştirmekte ve QL algoritmasının 

yakınsama hızını artırmaktadır. Hareketli engellerin bulunduğu ortamlarda, yapay 

potansiyel alan alt hedef noktalarını planlamak için A* yol noktalarını kullanmaktadır. 

Yerel minimumlara düşen mobil robotlar için ise kuantum çok aşamalı QL yöntemi 

devreye girmekte ve yerel minimumlar ile alt hedef noktası arasında bir yol 
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planlamaktadır [38]. Wang ve arkadaşları, iyileştirilmiş bir A* algoritması, bulanık 

mantık ve dinamik pencere yaklaşımını (dynamic window approach) birleştiren bir yol 

planlama yöntemi önermişlerdir. Bu yöntem, çevresel engel oranını dikkate alarak A* 

algoritmasını iyileştirmekte, arama komşuluğunu optimize ederek düğüm arama 

verimliliğini artırmakta ve bulanık mantık içeren yerel yol planlama stratejisi ile 

engellerden güvenli mesafede durarak engel kaçınma kararlılığını artırmaktadır [39]. Tao 

ve Kim, yumuşak aktör-kritik algoritması (soft actor-critic), karo kodlama ve dinamik 

pencere yaklaşımını birleştirerek yol planlama problemine yönelik hibrit bir yöntem 

önermişlerdir. Bu yöntem keşif ve sömürü dengesini sağlamak için otomatik entropi ayar 

mekanizmasını kullanmakta, iyileştirilmiş özellik temsili için karo kodlamayı entegre 

etmekte ve hedef başlığı, engel mesafesi ve hız gibi parametrelerle eylem alanını 

tanımlamak için dinamik pencere yaklaşımını kullanmaktadır [40]. Zhang ve arkadaşları, 

nükleer enerji santrallerinin rutin denetimlerindeki mobil robotların yol planlaması için 

iki seviyeli çok amaçlı bir programlama çerçevesi önermişlerdir. Bunun için, iyileştirilmiş 

bir ACO, GA ve iyileştirilmiş bir A* algoritmasını entegre edilmesiyle yeni bir iki 

seviyeli hibrit algoritma geliştirilmiştir. Üst seviyede, GA tabanlı düzensiz başlangıç 

feromon dağılımı, adaptif sezgisel fonksiyon ve feromon güncellemesi için elit strateji ile 

ACO kullanılarak denetim hedeflerinin optimal geçiş sırası belirlenmiştir. Alt seviyede 

ise, yol uzunluğu, risk derecesi ve enerji tüketimi gibi birden fazla kısıtlamayı dikkate 

alarak çift yönlü yolları planlamak için iyileştirilmiş bir A* algoritması kullanılmıştır 

[41]. Wei ve arkadaşları, bilinmeyen ortamlarda derin pekiştirmeli öğrenme 

algoritmalarının eğitim süresinin uzun olması ve kararsızlık gibi sorunlarını çözmek için 

DDPG algoritmasında iyileştirmeler yapmışlardır. Deney havuzu farklı deney 

havuzlarına bölünmüş, deneyler çeşitli oranlarda toplanarak robotun engellerden kaçınma 

yeteneği artırılmış ve kılavuz ödül fonksiyonu ile algoritmanın yakınsama hızı 

iyileştirilmiştir [42]. Gao ve arkadaşları, D*lite algoritması ve dinamik pencere yaklaşımı 

arasında kombinasyon sağlayan, çift katmanlı bir harita ve uygulanabilir alan stratejisi 

kullanan bir yeni bir stratejisi önermişlerdir. Bu strateji, D*lite algoritmasının 

verimliliğini artırmakta ve dinamik pencere yaklaşımınının yerel planlama yeteneklerini 

tam anlamıyla kullanabilmesini sağlamaktadır [43]. Li ve arkadaşları, iyileştirilmiş bir 

ACO ve ABC’den oluşan hibrit bir yaklaşım önermişlerdir. Bu yöntem yön bilgisine 

sahip iyileştirilmiş bir sezgisel mekanizma, yeni komşuluk arama mekanizması ve yol 

optimizasyon mekanizması içermektedir. Yöntem, yol dönüş sayısını ve yol uzunluğunu 
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azaltarak algoritmanın yakınsama hızını artırmakta ve yüksek kaliteli yol planlama 

sonuçları elde etmektedir [44]. Yu ve arkadaşları, su akışı potansiyel alan yöntemi (water 

flow potential field) ve böcek anten arama algoritmasının (beetle antennae search) 

kombinasyonuna dayalı bir mobil robot yol planlama yöntemi önermişlerdir. Bu 

yaklaşım, böcek genetik operatörü kullanarak küresel yolu bölmelere ayırmakta, yerel yol 

planlamasını engellerin özelliklerine göre sınıflandırmakta ve yapay potansiyel alan ile 

aramayı yönlendirmektedir [45]. Zhang ve arkadaşları, mobil robotlar için iyileştirilmiş 

bir ACO, A* ve PSO algoritmasına dayalı hibrit bir yöntem önermişlerdir. Bu yöntem, 

küresel arama yeteneği ve yakınsama hızını dengelemek amacıyla A* algoritması, 

iyileştirilmiş feromon ve adaptif sezgisel fonksiyon kullanmaktadır. Ayrıca PSO’yu 

kullanarak en iyi ACO kontrol parametrelerini ve çok amaçlı ağırlık katsayılarını elde 

etmektedir [46]. Tian ve arkadaşları, balina optimizasyon algoritması (whale optimization 

algorithm, WOA) ve ateşböceği algoritmasına dayalı çok popülasyonlu ve tersine 

öğrenme temelli hibrit bir algoritma önermişlerdir. Bu yöntem, karmaşık mobil robot 

çalışma ortamlarında optimal yolu hızla bulabilmekte ve keşif ile sömürü arasında denge 

sağlamaktadır [47]. 

1.3. Tezin Amacı 

Bu tezin amacı, mobil robotların yol planlaması problemlerine yönelik metasezgisel 

algoritmaların etkinliğini artırmak ve bu alandaki mevcut yöntemlere yenilikçi katkılar 

sağlamaktır. Günümüzde mobil robotların çeşitli endüstriyel, askeri ve günlük yaşam 

uygulamalarında artan kullanımı, güvenilir ve verimli yol planlaması algoritmalarına 

duyulan ihtiyacı artırmaktadır. Özellikle karmaşık ve dinamik ortamlarda, robotların en 

kısa, en güvenli ve en enerji-verimli yolları planlayarak hedeflerine ulaşması büyük bir 

önem taşımaktadır. 

Bu doğrultuda, mobil robotların otonom hareket kabiliyetlerini geliştirmek adına, hem 

tekli hem de çoklu mobil robot sistemleri için optimize edilmiş yolların planlanması 

hedeflenmiştir. Tekli mobil robot sistemlerinde, bir robotun belirlenen başlangıç ve hedef 

noktaları arasındaki en uygun yolu planlaması amaçlanırken, çoklu mobil robot 

sistemlerinde ise birden fazla robotun çarpışma önleyici stratejilerle birlikte koordineli 

bir şekilde hareket etmesi sağlanarak daha karmaşık senaryolara çözüm üretilmiştir. 
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Bu tezde, metasezgisel algoritmaların keşif ve sömürü dengesini iyileştiren yeni 

yaklaşımlar geliştirilerek, algoritmaların doğruluk, hız ve hesaplama verimliliği açısından 

performanslarını artırmaya yönelik çeşitli stratejiler uygulanmıştır. Keşif sürecinin daha 

etkili hale getirilmesi, robotların bilinmeyen veya değişken ortamlarda daha başarılı 

navigasyon yapmalarını sağlarken, sömürü sürecinin optimize edilmesi ise algoritmaların 

küresel en iyi çözüme daha hızlı ve hassas bir şekilde ulaşmasına katkı sağlamıştır. Bu 

çerçevede, farklı metasezgisel algoritmaların geliştirilmesi ve hibrit yöntemlerin 

tasarlanması gibi çeşitli teknikler araştırılmış ve uygulanmıştır. Ayrıca makine öğrenmesi 

teknikleri kapsamında bir derin öğrenme modeli de geliştirilmiş ve çoklu robot 

sistemlerinin yol planlama problemi için uygulanmıştır. Bu sayede eğitim sürecine biraz 

zaman harcansa da, model eğitildikten sonra her boyutta çok kısa bir sürede sonuç 

alınabilmiş ve sistemin verimliliği önemli ölçüde artırılmıştır. 
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2.  BÖLÜM  

YOL PLANLAMA PROBLEMİ 

2.1. Giriş 

Mobil robotların yol planlama problemi, bir robotun belirli bir başlangıç noktasından 

hedef bir noktaya en uygun şekilde ulaşmasını sağlayan bir süreçtir [48]. Bu süreç, 

robotun belirlenen yolda ilerlerken çevresel engellerden kaçınmasını, enerji tüketimini 

minimum seviyede tutmasını ve en kısa veya en hızlı yolu bulmasını gerektirir. Yol 

planlama, robotun otonom şekilde hareket edebilmesi ve belirlenen görevleri yerine 

getirebilmesi için hayati bir öneme sahiptir. Özellikle sanayi, tarım ve lojistik gibi 

alanlarda, mobil robotların etkili bir şekilde kullanılabilmesi için yol planlama 

algoritmalarının doğru ve hızlı sonuçlar üretmesi gerekir. Şekil 2.1 yol planlama 

probleminin kapsamını göstermektedir.  

Yol Planlama

Küresel Yol Planlama Yerel Yol Planlama

Ayrık Uzay Ortamı Sürekli Uzay Ortamı

Graf Tabanlı Ortam Izgara Ortamı  

Şekil 2.1. Yol planlama probleminin kapsamı 
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Bu problem, robotun faaliyet göstereceği alanın uygun şekilde modellenmesiyle başlar. 

Hareket edilebilecek alan, genellikle ızgara ortamı (ayrık uzay ortamı) veya sürekli uzay 

ortamı olarak ifade edilir. Izgara ortamlar, hareket alanını hücrelere bölerek robotun hangi 

hücrelerden geçebileceğini belirler. Sürekli uzay ortamları ise robotun herhangi bir 

engelle karşılaşmadan hareket edebileceği sürekli alanları ifade eder. Çevresel koşulların 

doğru bir şekilde modellenmesi, yol planlama algoritmalarının başarılı bir şekilde 

çalışabilmesi için kritik bir adımdır. 

Mobil robotların yol planlama problemleri, çözüm yöntemlerine bağlı olarak iki ana 

kategoriye ayrılır: küresel yol planlama ve yerel yol planlama. Küresel yol planlama, 

robotun tüm çevreyi bildiği durumlarda en uygun yolu belirlemeye odaklanır. Bu tür 

planlama, genellikle önceden bilinen haritalar üzerinde gerçekleştirilir ve uzun vadeli 

stratejiler gerektirir. Örneğin, bir depoda belirli raflar arasında ürün taşımak için robotun 

tüm depo haritasına sahip olması ve en kısa yolu planlaması küresel yol planlama 

kapsamında değerlendirilir. Yerel yol planlama ise robotun yalnızca yakın çevresine 

dayalı olarak hareket etmesini sağlar. Robot, çevresindeki engelleri algılayarak anlık 

kararlar alır ve yolunu buna göre günceller. Bu tür planlama, genellikle dinamik ve 

önceden bilinmeyen ortamlarda, robotun çevresine adapte olması gereken durumlarda 

tercih edilir. Örneğin, bir tarım arazisinde önceden belirlenmemiş engeller arasında 

dolaşması gereken bir robot, yerel yol planlama yöntemlerini kullanır. Hem küresel hem 

de yerel planlama yöntemleri, robotların güvenli ve verimli bir şekilde hareket etmesini 

sağlamak için birbirini tamamlayıcı bir şekilde kullanılabilir. 

2.2. Küresel Yol Planlama 

Küresel yol planlama, robotun çevresel bilgilerini başlangıçtan itibaren tam olarak bildiği 

varsayımına dayanır [49]. Robotun bu bilgiyi kullanarak, hedefe ulaşmasını sağlayan en 

etkili yolu hesaplaması beklenir. Genellikle, küresel yol planlama otonom araçlar 

(insansız hava aracı, tekerlekli mobil robot gibi) ve robot kolların çeşitli uygulamalarında 

kullanılır. Planlamanın temel amacı, robotun hedefine hızlı, güvenli ve enerji açısından 

verimli bir şekilde ulaşmasını sağlayan küresel çapta bir yol planlamaktır. Küresel yol 

planlamanın blok diyagramı Şekil 2.2’de gösterilmektedir. 
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Küresel Ortam Bilgisi
(Ortam Sınırları, 
Statik Engeller, 

Başlangıç Noktası, 
Hedef Noktası)

Yol Planlama  
Algoritması

Mobil 
Robot

Dinanik 
Engel 

Algılayıcı

Küresel Yol

 

Şekil 2.2. Küresel yol planlamanın blok diyagramı 

Robotun hareket ettiği genel ortam iki veya üç boyutlu bir harita şeklinde tanımlanabilir. 

Bu harita robotun hareket edebileceği geçilebilir alan ile robotun çarpışmaktan kaçınması 

gereken engelleri içerir. Ayrıca robotun başlangıç ve hedef noktaları da geçilebilir alanlar 

içinde önceden tanımlanması gerekir. Bu tanımlamalar Eşitlik (2.1)’de gösterilmektedir. 

𝔼 = {𝐸 | ∃𝑂 ⊆ 𝐸, {𝑝௦, 𝑝௧} ⊆ 𝐸\𝑂} (2.1) 

Burada, 𝐸 genel ortamı kümesini, 𝐸\𝑂 robotun hareket edebileceği geçilebilir alanı, 𝑂 

engel kümesini, 𝑝௦ ve 𝑝௧ robotun sırasıyla başlangıç ve hedef konumlarını temsil eder. 

Geçilebilir alan, robotun güvenle hareket edebileceği bölgeyi temsil ederken, engeller bu 

alanların dışındaki tehlikeli veya yasaklı bölgeleri temsil eder. Robotun yolu, yalnızca 

geçilebilir alan içinde oluşturulabilir ve engellerle çakışmaması gereklidir. Bu tür bir 

ortam modeli, robotun çevresel bilgileri anlaması ve bu bilgiler doğrultusunda hareket 

planı oluşturması için temel bir çerçeve sunar. 

Planlama sürecinde robotun yalnızca geçilebilir alanda hareket etmesi yeterli değildir; 

aynı zamanda bu hareketin belirli performans kriterlerini de sağlaması gerekir. Bu 

kriterler arasında yolun uzunluğu, yolun güvenliği, engellerden kaçınma başarısı ve enerji 

verimliliği gibi faktörler yer alır. Küresel yol planlama, bu kriterlerin bir 

kombinasyonunu optimize etmeyi hedefler. Örneğin, bir otonom aracın bir şehirde yol 

alırken hem en kısa yolu takip etmesi hem de trafik kurallarına ve güvenlik standartlarına 

uyması beklenir. Benzer şekilde, bir robotun enerji tüketimini minimize ederken 

engellerden kaçınması ve hedefine en hızlı şekilde ulaşması ideal bir çözüm olarak 

değerlendirilir. Bu çerçevede küresel yol planlama, genelde bir optimizasyon problemine 

dönüşür ve çözümü etkili bir matematiksel modelleme ile mümkün olur.  
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2.2.1. Ortam Tanımı 

Küresel yol planlamada ilk adım olarak ortamın doğru bir şekilde tanımlanması 

gerekmektedir. Bu tanımlama robotun hareket edeceği alanın yapısını belirler ve yol 

planlamanın temellerini atar. Ortamlar genellikle üç ana kategoriye ayrılır: graf tabanlı 

ortamlar, ızgara ortamlar ve sürekli uzay ortamları. Graf tabanlı ortamlar, ayrık bir yapıya 

sahip olup ağ yapıları şeklinde modellenir. Her bir düğüm belirli bir konumu temsil eder 

ve bu düğümler arasındaki bağlantılar robotun hareket edebileceği yolları gösterir. Izgara 

ortamları belirli hücrelerden oluşan ve her hücrenin belirli bir durum aldığı ayrık bir 

yapıyı ifade eder. Sürekli uzay ortamları ise robotun her türlü konumunun ve hareketinin 

kesintisiz olarak tanımlandığı daha esnek bir model sunar. Bu ortamlar yol planlama 

algoritmalarının uygulama biçimini ve karmaşıklığını doğrudan etkiler. 

2.2.1.1. Graf Tabanlı Ortam 

Graf tabanlı ortamlar küresel yol planlamanda genellikle ayrık bir yapıyı modellemek için 

kullanılır. Bu tür ortamlar ortamı bir dizi düğüm ve bu düğümler arasındaki kenar ile 

temsil eder. Her bir düğüm robotun belirli bir konumunu veya durumunu, kenarlar ise bu 

düğümler arasındaki geçiş yollarını ifade eder. Graf tabanlı modelleme genellikle 

ortamdaki engellerin konumları hakkında bilgi vermez, engel durumu kenarlarda ele 

alınır. Bir graf tabanlı ortam iki ve üç boyutlu için Eşitlik (2.2)’deki gibi tanımlanır. 

𝐸 = ൛(𝑃, 𝐺) | 𝑃 ⊂ ℝ஽ , 𝐺 ⊆ 𝑃 × 𝑃, 𝐷 ∈ {2,3}ൟ (2.2) 

Burada, 𝑃 düğüm kümesini, 𝐺 kenar (bağlantı) kümesini ve 𝐷 ortam boyutunu temsil 

eder. Düğüm kümesi iki ve üç boyutlu için Eşitlik (2.3)’teki gibi tanımlanır. 

𝑃 = ቄ 𝑝௜ ∈ ℝ஽
∣
∣ 𝑝௜ ∉ 𝑂 ∪ {𝑝௦, 𝑝௧}, 𝑖 ∈ ൛1,2, … , 𝑛௣ൟ, 𝑛௣ ∈ ℕା, 𝐷 ∈ {2,3} ቅ (2.3) 

Burada, 𝑝௜ 𝑖’inci düğümü ve 𝑛௣ graftaki toplam düğüm sayısını temsil eder. Kenar kümesi 

iki ve üç boyutlu için Eşitlik (2.4)’teki gibi tanımlanır. Şekil 2.3 örnek graf tabanlı 

ortamları göstermektedir.   

𝐺 = ቐ ൛𝑝௜, 𝑝௝ൟ
∣
∣
∣
∣
∣ 𝑝௜, 𝑝௝ ∈ 𝑃 ⊂ ℝ஽ , ൛𝑝௜, 𝑝௝ൟ ∩ 𝑂 = ∅,

  𝑖, 𝑗 ∈ ൛1,2, … , 𝑛௣ൟ, 𝑖 ≠ 𝑗, 𝐷 ∈ {2,3}
ቑ (2.4) 
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(a)                                                     (b) 

Şekil 2.3. Örnek graf tabanlı ortamlar: (a) İki boyutlu, (b) Üç boyutlu (Gri daire ve 
gri silindir engelleri, kırmızı yıldızlar düğümleri, mavi çizgiler ise kenarları 
temsil eder.) 

2.2.1.2. Izgara Ortamı 

Izgara ortamı, bir robotun hareket edebileceği alanın düzenli bir şekilde bölümlere 

ayrıldığı ve bu bölümlerin birer hücre olarak tanımlandığı bir çevresel modeldir. Bu yapı, 

çevrenin dijital olarak temsil edilmesi ve robotun hareket planlamasının kolaylaştırılması 

amacıyla kullanılır. Izgara ortamı genellikle kare, dikdörtgen veya altıgen gibi düzenli 

geometrik şekillerden oluşan hücrelerle modellenir. Matematiksel olarak bu ortamlar iki 

ve üç boyutlu için Eşitlik (2.5) kullanılarak tanımlanır, ızgara hücrelerinden oluşan 𝑚 x 

𝑛 veya 𝑚 x 𝑛 x ℎ boyutunda ızgara matrisleri olarak düşünülebilir.  

𝐸 = ൜
𝑝௜௝

𝑝௜௝௞ ∣
∣
∣ 𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛},                               𝑒ğ𝑒𝑟 𝐷 = 2 𝑖𝑠𝑒

𝑖 ∈ {1,2, … , 𝑚}, 𝑗 ∈ {1,2, … , 𝑛}, 𝑘 ∈ {1,2, … , ℎ}, 𝑒ğ𝑒𝑟 𝐷 = 3 𝑖𝑠𝑒
ൠ (2.5) 

Burada, 𝑚, 𝑛, ℎ ∈ ℕା, 𝑝௜௝ ve 𝑝௜௝௞ ızgara matrisindeki hücreyi; 𝑚, 𝑛 ve ℎ matrisin 

boyutlarını yani sırasıyla satır, sütun ve katman sayısını temsil eder. Her hücre (𝑝) Eşitlik 

(2.6)’da tanımlandığı gibi bir durum değişkeni ile işaretlenir: “0” değeri hücrenin 

geçilebilir alan olduğunu belirtirken, “1” değeri hücrenin bir engel olduğunu ifade eder.   

𝑝 = ൜ 
0,      𝑒ğ𝑒𝑟 𝑝 ∈ 𝐸\𝑂 𝑖𝑠𝑒
1,           𝑒ğ𝑒𝑟 𝑝 ∈ 𝑂 𝑖𝑠𝑒

 ൠ (2.6) 

Şekil 2.4 örnek ızgara ortamlarını göstermektedir. Bu ortamların durum değişkenlerini 

içeren ızgara matrisleri de Eşitlik (2.7) ve (2.8)’de gösterilmektedir. 
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(a)                                                     (b) 

Şekil 2.4. Örnek ızgara ortamlar: (a) İki boyutlu, (b) Üç boyutlu (Gri kare ve gri 
küpler engelleri temsil eder.) 

𝐸ଶ஽ =

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

 

(2.7) 

𝐸ଷ஽ =

⎣
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

,

⎣
⎢
⎢
⎢
⎡
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎤

            (2.8) 

2.2.1.3. Sürekli Uzay Ortamı 

Sürekli uzay ortamı ızgara ortamından farklı olarak, robotun hareket edebileceği ortamın 

sürekli bir alan olarak temsil edilmesiyle tanımlanır. Bu tür bir ortamda, robotun ve 

engellerin konumları herhangi bir gerçek sayısal koordinatta ifade edilebilir ve yol düz 

çizgilerden eğrilere kadar sürekli bir fonksiyon olarak modellenir. Sürekli uzayda, 

robotun geçilebilir alan içinde engellere çarpmadan en uygun yolu bulması hedeflenir. Bu 

yaklaşım, yüksek hassasiyet gerektiren ve doğal yolların kritik olduğu durumlarda avantaj 

sağlar. Sürekli uzay ortamlarının esnekliği, robotun hareketlerini kesintisiz şekilde 

planlamayı mümkün kılarak, hem enerji verimliliği hem de güvenlik açısından daha 

optimize çözümler sunar. Matematiksel olarak bu ortamlar iki ve üç boyutlu için Eşitlik 

(2.9)’da gösterildiği gibi noktalar ve sürekli fonksiyonlarla tanımlanır. Noktalar belirli bir 

mesafeyle ayrılmamışlardır.   
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𝐸 = {𝑝 ∈ ℝ஽ | 𝐷 ∈ {2,3},   ∃ℱ: [0 1] → ℝ஽ ,   ℱ ∈ 𝐶([0 1], ℝ஽)} (2.9) 

Burada, 𝑝 herhangi bir noktayı temsil eder. Engeller iki ve üç boyutlu için Eşitlik 

(2.10)’daki gibi ifade edilebilir.   

𝑂 = ൛𝑝௢ ∈ ℝ஽ | 𝑖 = {1,2, … , 𝑛௢}, 𝐷 ∈ {2,3}ൟ (2.10) 

Burada, 𝑝௜
௢ 𝑖’inci engelin konumunu, 𝑛௢ engel sayısını temsil eder. Engeller farklı 

geometrik şekillerde tasarlanabilir. Örneğin, Şekil 2.5 dairesel ve silindir şeklindeki 

engellere sahip örnek sürekli uzay ortamlarını göstermektedir.  

     
(a)                                                     (b) 

Şekil 2.5. Örnek sürekli uzay ortamları: (a) İki boyutlu, (b) Üç boyutlu (Gri daire ve 
gri silindirler engelleri temsil eder.) 

 

2.2.2. Yol Planlama Süreci 

Tanımlanan bu ortamlarda çeşitli algoritma ve yöntemlerle başlangıç hücresinden hedef 

hücreye doğru bir yol planlanır. Bu planlama sonunda graf tabanlı ve ızgara ortamlarda 

robotun yolu Eşitlik (2.11)’de tanımlandığı gibi belli düğümlerin bir dizisi olarak 

tanımlanır. 

𝑌 = ቂ𝑝௦, 𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝௡೤
, 𝑝௧ቃ (2.11) 

Burada, 𝑌 yol dizisini, 𝑝௜ yolu oluşturan düğümleri veya hücreleri (başlangıç-hedef hariç) 

ve 𝑛௬ yolu oluşturan bu düğüm veya hücrelerin sayısını temsil eder. Sürekli uzay 

ortamlarında robotun yolu iki ve üç boyutlu için Eşitlik (2.12)’de gösterildiği gibi 

geçilebilir alan içinde genelde noktalardan oluşan sürekli bir dizi olarak tanımlanır.  
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𝑌 = ቄ 𝑝௜ ∈ ℝ஽
∣
∣ 𝑝௦ ≤ 𝑝௜ ≤ 𝑝௧, [𝑝௦, 𝑝௧] → 𝐸\𝑂, 𝑖 ∈ ൛1,2, … , 𝑛௬ൟ, 𝐷 ∈ {2,3} ቅ (2.12) 

Burada 𝑝௜ yolun 𝑖’inci noktasını, 𝑛௬ yolu oluşturan noktaların sayısını temsil eder.        

2.3. Yerel Yol Planlama 

Yerel yol planlama, robotun çevresel bilgileri tam olarak bilmediği ve hedef noktasına 

adım adım ulaştığı varsayımına dayanır [50]. Genellikle dinamik engellerin olduğu 

ortamlarda kullanılan bu planlamada robot sınırlı ve yerel bir alanda bir sonraki noktaya 

hareket etmek için çalışır. Yerel yol planlamanın blok diyagramı Şekil 2.6’da 

gösterilmektedir. 

Yerel Ortam Bilgisi
(Yerel Harita,  

Hedef Noktası)

Yol Planlama  
Algoritması

Mobil 
Robot

Engel 
Algılayıcı

Yerel Hedef 
Noktası

Güncel 
Yerel Harita

        

Şekil 2.6. Yerel yol planlamanın blok diyagramı 

Bu süreçte robot, kinematik modellere ve algılayıcılarından aldığı verilere dayanarak 

hareket eder.  Robotun hareket kabiliyeti, kinematik modeli ile tanımlanır. Kinematik 

model, robotun nasıl hareket ettiğini ve nasıl yönlendiğini, robotun hızını, yönelimini ve 

pozisyonunu birleştirerek tanımlar. Robotun pozisyonu, genellikle 𝑥 ve 𝑦 koordinatları 

(iki boyutlu uzayda) ya da 𝑥, 𝑦 ve 𝑧 koordinatları (üç boyutlu uzayda) ile belirtilir. Her 

iki durumda da robotun bir sonraki konumunun nasıl hesaplanacağı, robotun hızına ve 

mevcut yönelimine bağlıdır.  

Yerel yol planlama, robotun anlık çevresine odaklanarak engellerden kaçınmasını ve 

hedefe doğru ilerlemesini sağlar. Bu yöntem, dinamik ortamlarda robotun değişen 

koşullara hızlı bir şekilde uyum sağlamasına olanak tanır. Çevresel bilgilerin sürekli 

güncellenmesi, robotun mevcut duruma göre en güvenli ve uygun rotayı seçmesini 

mümkün kılar. Ayrıca, yerel yol planlama, daha düşük hesaplama gücü gerektirdiğinden, 

gerçek zamanlı uygulamalarda tercih edilir. Robotun yalnızca yakın çevresindeki verileri 
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kullanması, büyük haritaların veya önceden belirlenmiş rotaların oluşturulmasını 

gerektirmez, bu da yönteminin esnekliğini artırır. 

Yerel yol planlama, yalnızca robotun yakın çevresine odaklandığından, küresel bir 

perspektif sağlayamaz. Bu durum, robotun hedefe ulaşırken optimal bir yol 

seçememesine veya döngüsel hareketlerle sıkışıp kalmasına neden olabilir. Örneğin, 

robot bir engelin etrafında dönerek yanlışlıkla aynı noktaya geri dönebilir. Ayrıca, yerel 

planlama, robotun uzun vadeli stratejik bir rota belirlemesini zorlaştırabilir. Dinamik 

ortamlarda sürekli güncelleme gerekliliği, ani değişikliklerde planlamada gecikmelere 

veya yanlış kararlar alınmasına yol açabilir. Bu yöntem, karmaşık veya engellerle dolu 

ortamlarda daha az verimli olabilir ve küresel yol planlama stratejileriyle birlikte 

kullanılması gerekebilir.  

Matematiksel olarak robotun bir sonraki konumunu hesaplamak için kullanılan kinematik 

model robotun mevcut konumu, yönelimi ve hızını dikkate alır. Noktasal modellenen bir 

robot için bir sonraki noktanın hesaplanması Şekil 2.7’de gösterilmektedir. Bu hesap iki 

ve üç boyutlu için sırasıyla Eşitlik (2.13) ve (2.14)’te gösterilmektedir.    

     
𝑥𝑖 

𝑥 

𝑦 

𝑥𝑖+1

𝑦i 

𝑦𝑖+1 

𝑣 

𝜑 𝑝i 

𝑝i+1 

    

𝑥𝑖 
𝑥 

𝑧 

𝑥𝑖+1

𝑦i 

𝑦𝑖+1 

𝑣 

𝜑 

 

𝑦 

𝜙 

𝑧i  

𝑧𝑖+1 

𝑝i 

𝑝i+1 

 
(a)                                                     (b) 

Şekil 2.7. Yerel yol planlamada noktasal bir robotun bir sonraki konumu: (a) İki 
boyutlu (b) Üç boyutlu (Mavi daire noktasal robotu temsil eder.) 

𝑝௜ାଵ = 𝑝௜ + 𝑣 ቂ 
𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑 ቃ Δ𝑡 (2.13) 

𝑝௜ାଵ = 𝑝௜ + 𝑣 ൥ 

𝑐𝑜𝑠𝜙. 𝑐𝑜𝑠𝜑
𝑐𝑜𝑠𝜙. 𝑠𝑖𝑛𝜑

𝑠𝑖𝑛𝜙
 ൩ Δ𝑡 (2.14) 
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𝑝௜ = ൥ 

𝑥௜

𝑦௜

𝑧௜

 ൩ ,   𝑝௜ାଵ = ൥ 

𝑥௜ାଵ

𝑦௜ାଵ

𝑧௜ାଵ

 ൩ (2.15) 

Burada 𝑝௜ robotun mevcut konumu, 𝑝௜ାଵ robotun bir sonraki konumu, 𝑣 robotun doğrusal 

hızını, 𝜑 robotun iki boyuttaki yönelimini, 𝜙 robotun üç boyuttaki dikey yönelimini, Δ𝑡 

ise zaman adımını temsil eder. Robotun bir sonraki noktası hesaplandıktan sonra o 

noktaya yönelir ve planlama hedef noktaya ulaşana kadar bu şekilde devam eder.  
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3.  BÖLÜM 
 

YOL PLANLAMA YÖNTEMLERİ 

 

3.1. Giriş 

Yol planlama yöntemleri, mobil robotların belirli bir başlangıç noktasından hedef bir 

noktaya en kısa, en güvenli veya en verimli şekilde ulaşmalarını sağlayan matematiksel 

ve hesaplamalı algoritmalardır. Bu algoritmalar, robotun hedefe ulaşırken çeşitli çevresel 

ve operasyonal faktörleri dikkate alarak optimal bir yol bulmasını sağlar. 

Bu yöntemlerin temel amacı, robotun hareket ederken çevresindeki engellerden 

kaçınmasını ve aynı zamanda belirli kısıtlamalara uymasını sağlamaktır. Engeller, statik 

veya dinamik olabilir ve robotun yol boyunca bu engelleri tespit edip güvenli bir şekilde 

manevra yapmasını gerektirir. Ayrıca, robotun fiziksel özellikleri, hareket kabiliyeti, 

enerji tüketimi ve çevredeki dinamik unsurlar gibi faktörler de bu süreçte önemli rol 

oynar. Örneğin, bir robotun maksimum hız sınırı, batarya kapasitesi veya belirli 

yüzeylerdeki hareket kabiliyeti gibi özellikler, yol planlama algoritmalarının dikkate 

alması gereken kısıtlamalardır. 

Bu bölüm yol planlama yöntemlerini üç farklı grupta açıklamaktadır: Klasik algoritmalar, 

metasezgisel algoritmalar ve makine öğrenmesi. Klasik algoritmalar olarak arama 

algoritmaları dâhilinde dinamik programlama, dijkstra algoritması, genişlik öncelikli 

arama, A* algoritması ve örnekleme algoritması dâhilinde hızla keşfeden rastgele ağaçtan 

bahsedilmektedir. Metasezgisel algoritmalar olarak evrimsel algoritma dâhilinde genetik 

algoritma, diferansiyel gelişim, sürü zekası ve insan ilhamlı dâhilinde parçacık sürü 

optimizasyonu, yapay arı koloni algoritması, öğrenme-öğretme tabanlı optimizasyon, 

matematik ilhamlı dâhilinde stokastik fraktal arama, sinüs kosinüs algoritması ve 

aritmetik optimizasyon algoritmasından bahsedilmektedir. Makine öğrenmesi yöntemleri 
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olarak evrişimli sinir ağları dâhilinde LeNet, AlexNet, VGG16, GoogleNet, tam evrişimli 

ağ, ResNet ve takviyeli öğrenme dâhilinde aktör-kritik, Q-öğrenme, derin deterministik 

politika gradyanı algoritmalarından bahsedilmektedir. Şekil 3.1.’de yol planlama 

yöntemlerinin sınıflandırılması gösterilmektedir.  

Öğrenme-Öğretme Tabanlı Optimizasyon, 2011

A* Algoritması, 1968

Genişlik Öncelikli Arama, 1959

Dijkstra Algoritması, 1959

Dinamik Programlama, 1953

Yol Planlama Yöntemleri

Klasik Algoritmalar

Hızla Keşfeden Rastgele Ağaç, 1998

Metasezgisel Algoritmalar

Evrimsel Algoritmalar

Diferansiyel Gelişim, 1997

Genetik Algoritma, 1975

Sürü Zekası ve İnsan İlhamlı

Yapay Arı Koloni Algoritması, 2005

Parçacık Sürü Optimizasyonu, 1995

Matematik İlhamlı

Sinüs Kosinüs Algoritması, 2016

Stokastik Fraktal Arama, 2015

Aritmetik Optimizasyon Algoritması, 2020

Makine Öğrenmesi

Evrişimli Sinir Ağları

AlexNet, 2012

LeNet-5, 1998

VGG16, 2014

Tam Evrişimli Ağ, 2015

GoogleNet, 2014

ResNet, 2015ResNet, 2015

Takviyeli Öğrenme

Q-Öğrenme, 1989

Aktör-Kritik Algoritması, 1984

Derin Deterministik Politika Gradyanı, 2015

     

Şekil 3.1. Yol planlama yöntemlerinin sınıflandırılması 

3.2. Klasik Algoritmalar 

Klasik algoritmalar, bir probleme çözüm bulmak amacıyla belirli bir yöntem ve stratejiyle 

çözüm uzayını keşfeden algoritmalardır. Bu algoritmalar genellikle çözümün 

doğruluğunu garantilemek için sistematik bir yaklaşım kullanır ve tüm olasılıkları belirli 

bir sırayla değerlendirir. Bu tür algoritmaların çoğu deterministik bir yapıya sahiptir, yani 

algoritmanın her çalıştırılmasında aynı başlangıç koşulları ve belirli kurallar 

doğrultusunda aynı sonuca ulaşılır. Her adımda kullanılan yöntemler sabit olup, herhangi 

bir rastlantısal unsur barındırmaz. Bu özellikleriyle klasik arama algoritmaları, sonuçların 

tutarlı ve tekrarlanabilir olmasını sağlar, fakat bazı durumlarda daha verimli olmayan 

sonuçlar da doğurabilir, çünkü arama alanını tamamen tarama gereksinimi doğurur. 

3.2.1. Dinamik Programlama 

Dinamik programlama (DP), 1953 yılında Bellman tarafından geliştirilen geniş kapsamlı 

bir klasik arama algoritmasıdır [51]. Graf ortamlarda yol planlama problemi için DP’nin 

amacı başlangıç düğümü ile hedef düğümü arasındaki en kısa yolu bulmaktır. 

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Başlangıç düğümünün ulaşım 
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maliyeti sıfır, diğer düğümlerin ulaşım maliyeti sonsuz olarak ayarlanır. Başlangıç 

düğümünden itibaren her düğümün maliyeti özyineli olarak hesaplanır. DP bir graftaki 

herhangi bir 𝑝௜ düğümünün ulaşım maliyetini Eşitlik (3.1) kullanılarak hesaplar.  

𝑓௣೔
= 𝑓௣ೕ

+ ฮ𝑝௜ − 𝑝௝ฮ,   𝑝௝ ∈ 𝑃௣೔
(3.1) 

Burada, 𝑓௣೔
 𝑝௜ düğümünün ulaşım maliyetini, 𝑃௣೔

 𝑝௜ düğümünün giriş komşu kümesini, 

𝑝௝ giriş komşu kümesindeki herhangi bir komşu düğümü, 𝑓௣ೕ
 başlangıç düğümünden 𝑝௝ 

düğümüne kadar olan ulaşım maliyetini, ‖ . ‖ iki düğüm arasındaki maliyeti (mesafeyi) 

temsil eder. Giriş komşu kümesinden hangi komşu düğümün maliyeti daha düşükse o 

komşu düğüm ebeveyn düğüm olarak Eşitlik (3.2)’de tanımlandığı gibi atanır.  

𝑝௜
௘ = arg min

௣೔∈௉
൫𝑓௣೔

൯ (3.2) 

Burada, 𝑝௜
௘ 𝑝௜ düğümüne atanan ebeveyni temsil eder. Bir düğümün ulaşım maliyeti 

hesaplandıktan sonra bu maliyet diğer düğümlerin maliyetinin hesaplanmasında 

kullanılır. Bu işlem hedef düğüme ulaşana kadar devam eder.  Hedefe ulaşıldıktan sonra 

geriye izleme aşaması devreye girer. Bu aşamada hedef düğümden başlayarak ve ebeveyn 

düğümleri geriye doğru izlenerek başlangıç düğümüne kadar en kısa yol Eşitlik (3.3) ve 

tersi (yolun kendisini elde etmek için) Eşitlik (3.4)’te tanımlandığı gibi planlanır.  

𝑌௥ = ൜ቄ𝑝௧, 𝑝௡೤
, … , 𝑝௜, … , 𝑝ଵ, 𝑝௦ቅ | 𝑝௜ାଵ = 𝑝௜

௘ , 𝑖 > 0, 𝑛௬ ∈ ℕାൠ (3.3) 

𝑌 = {ℱ(𝑌௥) | ℱ: 𝑌௥ → 𝑌} (3.4) 

Burada, 𝑌 yol vektörünü, 𝑌௥ yol vektörünün tersini, 𝑝௜ yolu oluşturan düğümleri, 𝑝௦ ve 

𝑝௧ başlangıç ve hedef düğümlerini, 𝑛௬ başlangıç-hedef hariç yolu oluşturan düğüm 

sayısını temsil eder. Geriye izleme aşaması, algoritmanın sadece maliyet hesaplaması 

değil, aynı zamanda yol bilgisini de sağlayan önemli bir bileşenidir. Bu adım olmadan, 

hedef düğüme ulaşmanın maliyeti bilinse bile bu yolun hangi düğümlerden geçtiği 

bilinemez. Bu yüzden yol planlama probleminde DP için kritik öneme sahiptir. DP 

algoritmasının temel adımları Algoritma 3.1 ile gösterilmektedir. 
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Algoritma 3.1: DP algoritmasının temel adımları 
1: Tüm düğümlerin maliyetinin sonsuz atanması 
2: Başlangıç düğümünün maliyetinin sıfır atanması 
3: while (tüm düğümlerin maliyeti hesaplanana kadar) 
4:  Her düğümün komşularının tespit edilmesi  
5:  Eşitlik (3.1) ile her düğümün maliyetinin hesaplanması 
6:  Eşitlik (3.2) ile her düğümün ebeveyninin atanması 
7: end while 
8: Geriye izleme aşaması 
9: Yolun ve maliyetin raporlanması 

3.2.2. Dijkstra Algoritması 

Dijkstra algoritması, 1959 yıllarda Dijkstra tarafından geliştirilen bir klasik arama 

algoritmasıdır [52]. Bu algoritma bir grafın başlangıç düğümünden diğer tüm düğümlere 

olan en kısa yolları bulmak için kullanılır. Bu algoritmanın temel çalışma prensibi, graf 

üzerindeki düğümleri ardışık olarak ziyaret ederek her adımda en kısa yolu seçmek ve bu 

seçimi ilerleyen adımlarda optimize etmektir. Algoritmanın çalışma prensibi şu şekilde 

açıklanabilir: Başlangıç düğümünün ulaşım maliyeti sıfır, diğer düğümlerin ulaşım 

maliyeti sonsuz olarak ayarlanır. Başlangıçta yalnızca başlangıç düğümü içeren bir 

optimum yol vektörü Eşitlik (3.5)’te tanımlandığı gibi oluşturulur.  

𝑌 = {𝑝௦} (3.5) 

Bu küme algoritmanın ilerleyen adımlarında güncellenir ve en kısa yola dâhil edilen 

düğümleri içerir.  Algoritma bir graftaki herhangi bir 𝑝௜ düğümünün ulaşım maliyetini 

Eşitlik (3.6) kullanılarak hesaplar.  

𝑓௣೔
= 𝑓௣ೕ

+ ฮ𝑝௜ − 𝑝௝ฮ,    𝑝௝ ∈ 𝑃௣೔
 ,   𝑃௣೔

⊂ 𝑃\𝑌 (3.6) 

Burada, 𝑓௣೔
 𝑝௜ düğümünün ulaşım maliyetini, 𝑃௣೔

 𝑝௜ düğümünün tüm komşu kümesini, 𝑝௝ 

komşu kümesindeki herhangi bir komşu düğümü, 𝑓௣ೕ
 başlangıç düğümünden 𝑝௝ 

düğümüne kadar olan ulaşım maliyetini, 𝑃 düğüm kümesini temsil eder. Bu eşitlikte 

komşu kümesinin ziyaret edilmeyen yani optimum yol vektörüne eklenmeyen 

düğümlerin kümesi olduğu görülmektedir. Mevcut düğümden komşu düğümlere olan 

maliyetler hesaplanır ve en kısa mesafeli düğüm Eşitlik (3.7)’de tanımlandığı gibi seçilir. 

𝑝௜
௘ = arg min

௣೔∈௉
൫𝑓௣೔

൯ (3.7) 
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Burada, 𝑝௜
௘ komşular içinde en düşük maliyete sahip düğümü temsil eder. Bu düğüm 

ziyaret edilmiş olarak işaretlenir ve Eşitlik (3.8)’de tanımlandığı gibi 𝑌 kümesine eklenir.   

𝑌 = 𝑌 ∪ {𝑝௜
௘} (3.8) 

Bu adımlar hedef düğüme ulaşıncaya veya tüm düğümler ziyaret edilinceye kadar devam 

eder. Sonunda en kısa yol Eşitlik (3.9)’da tanımlandığı gibi planlanır.  

𝑌 = ൜ቄ𝑝௦, 𝑝ଵ, 𝑝ଶ … , 𝑝௜, … , 𝑝௡೤
, 𝑝௧ቅ | 𝑖 > 0, 𝑛௬ ∈ ℕାൠ (3.9) 

Burada, 𝑌 yol vektörünü, 𝑝௜ yolu oluşturan düğümleri, 𝑝௦ ve 𝑝௧ başlangıç ve hedef 

düğümleri, 𝑛௬ başlangıç-hedef hariç yolu oluşturan düğüm sayısını temsil eder. Dijkstra 

algoritmasının temel adımları Algoritma 3.2 ile gösterilmektedir.  

Algoritma 3.2: Dijkstra algoritmasının temel adımları  
1: Tüm düğümlerin maliyetinin sonsuz atanması 
2: Başlangıç düğümünün maliyetinin sıfır atanması 
3: Optimum yol vektörüne başlangıç düğümünün eklenmesi 
4: while (hedef düğüme ulaşana kadar) 
5:  Her düğümün komşularının tespit edilmesi 
6:  Eşitlik (3.6) ile her düğümün maliyetinin güncellenmesi 
7:  Eşitlik (3.7) ile en küçük maliyete sahip komşunun seçilmesi 
8:  Seçilen komşu düğümün optimum yol vektörüne eklenmesi 
9: end while 

10: Yolun ve maliyetin raporlanması 

3.2.3. Genişlik Öncelikli Arama 

Genişlik öncelikli arama (breadth first search, BFS), 1959 yıllarda Moore tarafından 

geliştirilen bir klasik arama algoritmasıdır [53]. Bu algoritma, graf üzerindeki düğümleri 

sırasıyla ve eşit mesafede keşfederek, en kısa yolun bulunmasını sağlar. BFS, özellikle 

ağırlıksız ya da eşit ağırlıklı kenarlarla tanımlanmış graf yapılarında etkili bir şekilde 

çalışır ve en kısa yolu belirlerken, her bir düğümü ziyaret etme sırasına göre ilerler. 

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Başlangıç düğümünün ulaşım 

maliyeti sıfır, diğer düğümlerin ulaşım maliyeti sonsuz olarak ayarlanır. Bir kuyruk dizisi 

oluşturulur ve ilk olarak başlangıç düğüm bu diziye eklenir. Başlangıç düğümünden 

başlamak üzere kuyruğun başındaki düğüm 𝑝௜ çıkarılır ve 𝑝௜ düğümümün tüm komşuları 
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𝑝௝ incelenir. Eğer 𝑝௝ ziyaret edilmemişse mesafesi Eşitlik (3.10)’da tanımlandığı gibi 

güncellenir. 

𝑓௣ೕ
= 𝑓௣೔

+ 1,    𝑝௝ ∈ 𝑃௣೔
(3.10) 

Bu komşular doğrudan kuyruk dizisine eklenir, bu yüzden bu algoritma “en maliyetsiz 

komşu seçimi” şeklinde bir işlem yapmaz. Bunun yerine, bir düğüm ilk kez 

keşfedildiğinde, bu düğümün mesafesi otomatik olarak en kısa mesafe olarak kabul edilir. 

Çünkü her düğüme ulaşma maliyeti eşit ve 1’dir. Kuyruk dizisine eklenen 𝑝௜ 

düğümlerinden ilki ziyaret edilmiş olarak işaretlenir ve bu düğümün tüm komşuları 

üzerinde aynı işlemler gerçekleştirilir. Bu süreç kuyruk dizisi boş olana kadar devam eder. 

BFS algoritmasının temel adımları Algoritma 3.3 ile gösterilmektedir. 

Algoritma 3.3: BFS algoritmasının temel adımları  
1: Tüm düğümlerin maliyetinin sonsuz, başlangıç düğümününkinin sıfır atanması 
2: Bir kuyruk dizisinin oluşturulması 
3: Başlangıç düğümünün bu kuyruk dizisine eklenmesi 
4: while (kuyruk dizisine boş olana kadar) 
5:  Kuyruk dizisinin başındaki düğümün çıkarılması  
6:  Çıkarılan düğümün tüm komşularının tespit edilmesi  
7:  Eşitlik (3.10) ile komşuların ulaşım maliyetinin güncellenmesi 
8:  Komşuların kuyruk dizisine eklenmesi   
9: end while 

10: Yolun ve maliyetin raporlanması 

3.2.4. A* Algoritması 

A* algoritması 1968 yılında Hart, Nilsson ve Raphael tarafından geliştirilen ve genellikle 

en kısa yol problemlerini çözmek için kullanılan sezgisel bir arama algoritmasıdır [54]. 

Video oyunları ve robotik gibi alanlarda sıkça kullanılmaktadır. Bu algoritma, bir 

başlangıç düğümünden (veya hücreden) hedef düğüme, ızgara haritası veya graf üzerinde 

en kısa yolu bulmayı amaçlar. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk 

olarak başlangıç düğümü mevcut düğüm olarak belirlenir ve bir ana döngü başlar. Bu 

döngü, başlangıç düğümünden hedef düğüme en kısa yolu bulmak için yinelemeli olarak 

çalışır. Döngünün her yinelemesinde, mevcut düğümden erişilebilecek uygun komşular, 

Eşitlik (3.11)’de verilen tanıma göre belirlenir. Bu uygun komşuların belirlenmesi, 

kenarların herhangi bir engeli ihlal etmemesi kriterine dayanmaktadır. 
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𝑃௣೔
= ൛𝑝௝ | 𝑝௝ ∈ 𝑃 − {𝑝௜},   ൛൫𝑝௜, 𝑝௝൯ൟ ∈ 𝐸\𝑂,   𝑗 ∈ {1,2, … , 𝑛௙}ൟ (3.11) 

Burada, 𝑝௜ mevcut düğümü, 𝑝௝ mevcut düğümün uygun komşu düğümlerini ve 𝑛௙ ise 

uygun komşu düğümlerin sayısını temsil eder. Her bir uygun komşu için iki alt maliyet 

hesaplanır: Gerçek maliyet ve sezgisel maliyet. Gerçek maliyet, mevcut düğüm ile 𝑗. 

uygun komşusu arasındaki toplam maliyeti ifade ederken, sezgisel maliyet, 𝑗. uygun 

komşu ile hedef düğüm arasındaki maliyeti ifade eder. Bu maliyetler sırasıyla Eşitlik 

(3.12) ve (3.13) kullanılarak hesaplanır. 

𝑓௜௝
௚

= 𝑓଴ + ‖𝑝௜ − 𝑝௝‖ (3.12) 

𝑓௜௝
௛ = ‖𝑝௝ − 𝑝௧‖ (3.13) 

Burada, 𝑓௜௝
௚ ve 𝑓௜௝

௛ 𝑝௜ düğümü ile 𝑝௝ komşusu arasındaki sırasıyla gerçek ve sezgisel 

maliyetleri, 𝑓଴ başlangıç düğümünden 𝑝௜ düğümüne kadar olan geçmiş maliyeti ve 𝑝௧ ise 

hedef düğümü temsil eder. Eşitlik (3.14)’te gösterildiği gibi, toplam maliyet bu iki alt 

maliyetin toplamıdır. 

𝑓௜௝ = 𝑓௜௝
௚

+ 𝑓௜௝
௛ (3.14) 

Burada, 𝑓௜௝ 𝑝௜ düğümü ile 𝑝௝ komşusu arasındaki toplam maliyettir. Her uygun düğümün 

toplam maliyeti karşılaştırılarak, en düşük maliyete sahip düğüm seçilir ve mevcut düğüm 

olarak atanır. Bu döngü, hedef düğüme ulaşılana kadar devam eder. Döngünün sonunda 

elde edilen yol çıktı olarak döndürülür. A* algoritmasının temel adımları Algoritma 3.4 

ile gösterilmektedir. 

Algoritma 3.4: A* algoritmasının temel adımları  
1: Bir yol dizisinin oluşturulması 
2: while (hedef düğüme ulaşıncaya kadar) 
3:  Eşitlik (3.11) ile mevcut düğümün uygun komşularının tespit edilmesi 
4:  Eşitlik (3.12) ile her komşu düğümün gerçek maliyetinin hesaplanması 
5:  Eşitlik (3.13) ile her komşu düğümün sezgisel maliyetinin hesaplanması 
6:  Eşitlik (3.14) ile her komşu düğümün toplam maliyetinin hesaplanması 

   7:  En düşük maliyete sahip düğümün yol dizisine eklenmesi 
8: end while 
9: Yolun ve maliyetin raporlanması 
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3.2.5. Hızla Keşfeden Rastgele Ağaç 

Hızla keşfeden rastgele ağaç algoritması (rapidly-exploring random tree, RRT) 1998 

yılında LaValle tarafından geliştirilen bir klasik arama algoritmasıdır [55]. Bu algoritma 

özellikle sürekli uzay ortamlarında yol planlama problemlerine çözüm bulmak amacıyla 

geliştirilmiştir. Algoritma, özellikle yüksek boyutlu uzaylarda yol planlama problemleri 

için uygundur. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: Algoritma, 

başlangıçta bir ağaç dizisi 𝑌 oluşturur. Bu ağaç ilk olarak sadece başlangıç noktasını 

içerir. Sürekli uzay ortamında rastgele bir nokta (𝑝௥ ∈ 𝐸\𝑂) seçilir ve ağaçtan bu noktaya 

en yakın nokta (𝑝ᇱ) belirlenir. Bunun için 𝑝௥ noktası ile ağaçtaki tüm noktalar (𝑝௜) 

arasında mesafe hesaplanır ve mesafesi minimum olan nokta en yakın nokta olarak Eşitlik 

(3.15)’te tanımlandığı gibi belirlenir. 

𝑝ᇱ = arg  min
௣೔∈௒

(‖𝑝௜ − 𝑝௥‖) ,   𝑖 ∈ ൛1,2, … , 𝑛௬
௖ ൟ (3.15) 

Burada 𝑛௬
௖  o anki ağaçta bulunan nokta sayısıdır. Ardından, 𝑝௥ yönünde 𝑝ᇱ noktasından 

belirli bir adım büyüklüğünde (𝜀) ilerlenerek yeni bir nokta (𝑝ᇱᇱ) Eşitlik (3.16)’da 

tanımlandığı gibi oluşturulur.   

𝑝ᇱᇱ = 𝑝ᇱ + 𝜀
𝑝௥ − 𝑝ᇱ

‖𝑝௥ − 𝑝ᇱ‖
(3.16) 

Eğer 𝑝ᇱᇱ engel ihlali yapmıyorsa (𝑝ᇱᇱ ∈ 𝐸\𝑂 ise) bu nokta 𝑌 ağacına Eşitlik (3.17)’de 

tanımlandığı gibi eklenir.   

𝑌 = 𝑌 ∪ {𝑝ᇱᇱ} (3.17) 

Bu süreç maksimum iterasyon sayısına (𝑇) erişene kadar veya hedef noktaya ulaşana 

kadar yinelemeli olarak devam eder. Hedef noktaya ulaşma kontrolü de eğer 𝑝௡’nin hedef 

noktaya belli bir mesafesinden daha yakın olup olmadığı şeklinde gerçekleşir. Bu 

durdurma kriterlerinden biri sağlandığında algoritma durur ve yolu raporlar. RRT 

algoritmasının temel adımları Algoritma 3.5 ile gösterilmektedir.  
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Algoritma 3.5: RRT algoritmasının temel adımları  
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝜀) 
2: Bir ağacın oluşturulması 
3: Başlangıç noktasının ağaç dizisine eklenmesi 
4: while (hedefe ulaşıncaya veya maksimum iterasyon sayısına erişinceye kadar) 
5:  Ortamda rastgele bir noktanın seçilmesi 
6:  Eşitlik (3.15) ile seçilen noktaya en yakın ağaç noktasının tespit edilmesi 
7:  Eşitlik (3.16) ile yeni noktanın hesaplanması 
8:  Eğer yeni nokta engel ihlali yapmıyorsa bu noktanın ağaç dizisine eklenmesi 
9: end while 

10: Yolun ve maliyetin raporlanması 

3.3. Metasezgisel Algoritmalar 

Metasezgisel algoritmalar, genellikle karmaşık ve büyük ölçekli optimizasyon 

problemleri için geliştirilmiş, sistematik olmayan ve çoğu zaman belirli bir çözüm alanına 

rastgele bir keşif yaparak daha iyi çözümler bulmaya çalışan algoritmalardır. Bu 

algoritmalar, genellikle başlangıçta rastgele bir çözüm seti ile başlarlar ve daha sonra 

çözüm alanında ilerleyerek iyileştirmeler yapar. Temelde, optimal çözümü bulmaya 

yönelik doğrudan bir strateji izlemek yerine, arama alanında geniş bir keşif yaparak 

potansiyel çözümleri keşfeder ve daha sonra en uygun çözümle yakın sonuçlara ulaşmaya 

çalışır. Klasik arama yöntemlerinin sınırlamalarını aşmak için kullanılan bu algoritmalar, 

özellikle yerel optimumlarda sıkışıp kalma riskini en aza indirmeye yönelik tasarlanır.  

Metasezgisel algoritmaların en büyük avantajlarından biri, esneklikleri ve çok farklı 

optimizasyon problemlerine uygulanabilir olmalarıdır. Bu sayede, belirli bir problem için 

özel olarak geliştirilmiş algoritmalar yerine, tek bir meta-sezgisel algoritma ile çok çeşitli 

problemlere çözüm üretilebilmektedir. Ayrıca, bu algoritmaların çok sayıda parametreyi 

kontrol edebilme yetenekleri, problemlerin dinamik doğasına adapte olmalarını sağlar. 

Bununla birlikte, meta-sezgisel algoritmaların dezavantajları arasında, çözüm kalitesinin 

her zaman garanti edilmemesi önemli bir sorundur. Çoğu zaman algoritma, global 

optimumu bulmak yerine yerel optimumda sıkışabilir. Ayrıca, bu tür algoritmaların 

performansını belirleyen parametrelerin ayarlanması oldukça zordur ve farklı problem 

koşullarında başarılı olabilmesi için parametrelerin doğru şekilde optimize edilmesi 

gerekir. Son olarak, hesaplama maliyetlerinin yüksek olabilmesi, özellikle büyük ve 

karmaşık problemlerde uygulama süresini artırabilir ve çözüm bulmayı daha zor hale 

getirebilir. 
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3.3.1. Evrimsel Algoritmalar 

3.3.1.1. Genetik Algoritma 

Genetik algoritma (genetic algorithm, GA) 1960 yılında Holland tarafından geliştirilen 

bir metasezgisel algoritmadır [56]. Doğal seçilim ve evrimsel süreçlerinden ilham 

alınarak geliştirilmiştir. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk olarak 

bir çözüm kümesi (popülasyon) Eşitlik (3.18) kullanılarak rastgele üretilir.  

𝑋 = 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),     𝑟~𝑈(0, 1)ௌ×஽ (3.18) 

Burada, 𝑋 popülasyonu, [𝑥௟ , 𝑥௛] popülasyonun arama sınırlarını, 𝑟 [0 1] aralığında ve 𝑆 ×

𝐷 boyutunda sürekli düzgün dağılımda üretilen rastgele sayıları, 𝑆 popülasyon boyutunu 

(çözüm kümesindeki çözüm sayısını) ve 𝐷 ise problemin boyutunu temsil eder. Bu 

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve 

uygunluk değerleri hesaplanır. Ardından popülasyondaki her çözüm seçim, çaprazlama 

ve mutasyon adı verilen üç işleme tabi tutulur. Seçim işlemi, mevcut çözümlerden yeni 

çözümler üretmek için ebeveynlerin belirlenmesi işlemidir. Bu aşamanın temel amacı, 

daha yüksek uygunluk değerine sahip bireylerin seçilme olasılığını artırarak çözümlerin 

iyileştirilmesini sağlamaktır. Seçim aşamasında genelde rulet tekerleği veya turnuva 

seçimi stratejileri kullanılır. Rulet tekerleği stratejisinde her çözümün seçilme olasılığı 

Eşitlik (3.19) kullanılarak hesaplanır. 

𝛿௜ =
𝑓௜

∑ 𝑓௝
ௌ
௝ୀଵ

(3.19) 

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığı, 𝑓௜ 𝑖’inci çözümün maliyeti, eşitliğin payda 

kısmı ise popülasyondaki tüm çözümlerin maliyetlerinin toplamını temsil eder. Sonra, 

Eşitlik (3.20) kullanılarak çözümlerin birikimli olasılıkları hesaplanır.   

𝜌௞ = ෍ 𝛿௜

௞

௜ୀଵ

(3.20) 

Burada, 𝑘 ∈ {1,2, … , 𝑆} ve 𝜌௞ 𝑘’ıncı çözüme kadar olan toplam olasılığı ifade eder. 

Rastgele bir sayı üretilir ve bu sayı [𝜌௞ିଵ, 𝜌௞] aralığında ise (veya 𝜌௞’dan küçükse) 𝑘’ıncı 

çözüm (𝑥௞) ebeveyn olarak seçilir. Turnuva seçimi stratejisinde popülasyondan 𝑆௧ sayıda 
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rastgele çözüm alınır. Bu çözümlerden minimum maliyete sahip çözüm Eşitlik (3.21)’de 

tanımlandığı gibi seçilir. 

൛𝑥௞భ,𝑥௞మ
ൟ = arg min

௜∈ௌ೟

𝑓(𝑥௜) (3.21) 

Burada, 𝑆௧ ≥ 2 ve 𝑥௞ ise ebeveyn olarakseçilen çözümü temsil eder. Bu seçim 

stratejileriyle iki ebeveyn çözüm seçilir. Sonra çaprazlama oranı (𝐶𝑅) kontrol 

parametresiyle çaprazlama işlemi başlar. Rastgele bir sayı üretilir ve bu sayı 𝐶𝑅’den 

küçükse çaprazlama işlemi gerçekleştirilir. Bu işlem iki ebeveyn çözüm üzerinde belirli 

noktalarda keserek çaprazlama yapılır ve iki çocuk çözüm üretilir. Bu kesim tek veya iki 

noktalı olabilir. Tek noktalı çaprazlama Eşitlik (3.22)-(3.23)’te tanımlanmıştır. 

𝑥௛భ
= ൛𝑥௞భ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝐷]ൟ (3.22) 

𝑥௛మ
= ൛𝑥௞మ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝐷]ൟ (3.23) 

Burada, 𝑥௛భ
 ve 𝑥௛మ

 iki çocuk çözümü, 𝑥௞భ
 ve 𝑥௞మ

 iki ebeveyn çözümü ve 𝑒 kesme 

noktasını temsil eder. Çift noktalı çaprazlama Eşitlik (3.24)-(3.25)’te tanımlanmıştır. 

𝑥௛భ
= ൛𝑥௞భ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝑙]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑙 + 1, 𝐷]ൟ (3.24) 

𝑥௛మ
= ൛𝑥௞మ

௝
 | 𝑗 ∈ [1, 𝑒]ൟ ∪ ൛𝑥௞భ

௝
 | 𝑗 ∈ [𝑒 + 1, 𝑙]ൟ ∪ ൛𝑥௞మ

௝
 | 𝑗 ∈ [𝑙 + 1, 𝐷]ൟ (3.25) 

Burada, 𝑒 gibi 𝑙 de bir kesme noktasıdır. Bu şekilde iki yeni çözüm üretilmiş olur. Sonra 

mutasyon oranı (𝑀𝑅) kontrol parametresiyle mutasyon işlemi başlar. Rastgele bir sayı 

üretilir ve bu sayı 𝑀𝑅’den küçükse mutasyon işlemi gerçekleştirilir. Bu işlemde yeni 

çocuk çözümlerin herhangi bir boyutu Eşitlik (3.26)’da tanımlandığı gibi değişime uğrar.  

൫𝑥௛
௝
൯

ᇱ
= ቊ 

𝑥௛
௝

+ ℱ௛
௝
,       𝐸ğ𝑒𝑟 𝑟 ≤ 𝑀𝑅 𝑖𝑠𝑒

𝑥௛
௝
,                        𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.26) 

Burada, ℎ = {ℎଵ, ℎଶ}, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௛
௝  yeni çocuk çözümlerin 𝑗’inci 

değerini, ൫𝑥௛
௝
൯

ᇱ
 yeni çocuk çözümlerin 𝑗’inci değerinin güncellenmiş hâlini ve ℱ௛

௝ 𝑥௛
௝  

üzerinde yapılan mutasyon fonksiyonunu temsil eder. Bu fonksiyon, mevcut değeri 

değiştiren herhangi bir matematiksel işlemi temsil edebilir (örneğin, bir bit tersine 
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çevrilmesi veya mevcut değerin rastgele bir değerle değiştirilmesi). Bu işlemlerden sonra 

güncel çözüm amaç fonksiyonunda değerlendirilir ve uygunluk değeri hesaplanır. Güncel 

çözüm mevcut en iyi çözümden daha iyi ise en iyi çözüm olarak atanır. Yinelemeli süreç 

maksimum iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. 

GA algoritmasının temel adımları Algoritma 3.6 ile gösterilmektedir. 

Algoritma 3.6: GA algoritmasının temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝐶𝑅, 𝑀𝑅) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.21) ile iki çözümün seçilmesi 
7:  Eşitlik (3.22)-(3.23) veya (3.24)-(3.25) ile iki yeni çözümün üretilmesi 
8:  Eşitlik (3.26) ile bir çözümün mutasyona tabi tutulması 
9:  Popülasyonun amaç fonksiyonunda değerlendirilmesi 

10:  En iyi çözümün tespit edilmesi 
11: end while 
12: En iyi çözümün ve maliyetin raporlanması  

3.3.1.2. Diferansiyel Gelişim  

Diferansiyel gelişim (differential evolution, DE) 1997 yılında Storn ve Price tarafından 

geliştirilen bir metasezgisel algoritmadır [57]. Evrimsel süreçlerden ve fark tabanlı 

yöntemlerden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk 

olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu popülasyon üretildikten 

sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve uygunluk değerleri 

hesaplanır. Bu çözümler GA’ya benzer şekilde sırasıyla mutasyon, çaprazlama ve seçim 

adı verilen üç işleme tabi tutulur. Mutasyon işleminde her çözüm için, diğer iki çözüm 

arasındaki farkı içeren bir fark vektörü oluşturulur. Bu fark, popülasyonun çeşitliliğini 

sağlamak için kullanılır. Fark vektörü (DE/rand/1) Eşitlik (3.27) kullanılarak hesaplanır. 

𝑥௨ = 𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯ (3.27) 

Burada, 𝑟ଵ, 𝑟ଶ, 𝑟ଷ ≠ 𝑖, 𝑥௨ 𝑖’inci çözümün fark vektörünü, 𝑥௥భ
, 𝑥௥మ

, 𝑥௥య
 poülasyondan 

rastgele seçilen çözümleri, 𝐹 ise [0 1] aralığında değer alan ölçekleme faktörünü temsil 

eder. Çaprazlama işleminde fark vektörü kullanılarak yeni aday çözüm önerisi yapılır. Bu 

işlemde rastgele bir sayı üretilir ve bu sayı çaprazlama oranından küçükse mevcut çözüm 
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fark vektörü ile değiştirilir. Üretilen rastgele sayı çaprazlama oranından büyükse mevcut 

çözüm değişmez. Bu işlem Eşitlik (3.28)’de tanımlanmıştır.  

𝑥௨
ᇱ = ൜ 

𝑥௨,        𝐸ğ𝑒𝑟 𝑟 ≤ 𝐶𝑅 𝑖𝑠𝑒
𝑥௜ ,             𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.28) 

Burada, 𝑥௜ 𝑖’inci çözümü, 𝑥௨
ᇱ  𝑖’inci çözüm için yeni aday çözümü, 𝑟~𝑈(0,1) rassal bir 

sayıyı ve 𝐶𝑅 çaprazlama oranını temsil eder. Seçim işleminde üretilen aday çözüm ve 

mevcut çözümün maliyetleri karşılaştırılır. Eğer aday çözümün maliyeti mevcut 

çözümünkinden daha iyi ise mevcut çözüm yeni aday çözümle değiştirilir. Bu işlem 

Eşitlik (3.29)’da tanımlanmıştır. 

𝑥௜
ᇱ = ൜ 

𝑥௨
ᇱ ,        𝐸ğ𝑒𝑟 𝑓(𝑥௨

ᇱ ) ≤ 𝑓(𝑥௜) 𝑖𝑠𝑒
𝑥௜ ,                          𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.29) 

Burada, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş hâlini temsil eder. Yinelemeli süreç maksimum 

iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. DE 

algoritmasının temel adımları Algoritma 3.7 ile gösterilmektedir.  

Algoritma 3.7: DE algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝐹, 𝜍) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.27) ile fark vektörünün üretilmesi (mutasyon) 
7:  Eşitlik (3.28) ile yeni aday çözümün üretilmesi (çaprazlama) 
8:  Eşitlik (3.29) ile mevcut çözümün güncellenmesi (seçim) 
9:  Popülasyonun amaç fonksiyonunda değerlendirilmesi 

10:  En iyi çözümün tespit edilmesi 
11: end while 
12: En iyi çözümün ve maliyetin raporlanması  

3.3.2. Sürü Zekâsı ve İnsan İlhamlı Algoritmalar 

3.3.2.1. Parçacık Sürü Optimizasyonu 

Parçacık sürü optimizasyonu (particle swarm optimization, PSO) 1995 yılında Kennedy 

ve Eberhart tarafından geliştirilen bir metasezgisel algoritmadır [58]. Kuş ve balık 

sürülerinin beslenme davranışlarından ilham alınmıştır. Algoritmanın çalışma prensibi şu 

şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu 
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popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve 

uygunluk değerleri hesaplanır. Ayrıca popülasyondaki her çözümün hızları da mevcuttur 

ve başlangıçta rastgele veya sıfır olarak üretilir. Yinelemeli süreç başladığında bu hızlar 

Eşitlik (3.30) kullanılarak güncellenir. 

𝜗௜
ᇱ = 𝑤𝜗௜ + 𝑟𝑐ଵ(𝑥ො௜ − 𝑥௜) + 𝑟𝑐ଶ(𝑥ො − 𝑥௜) (3.30) 

Burada, 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝜗௜ 𝑖’inci çözümün hızını, 𝜗௜
ᇱ 𝑖’inci çözümün 

hızının güncellenmiş hâlini, 𝑤 eylemsizlik ağırlığını, 𝑐ଵ ve 𝑐ଶ bilişsel ve sosyal 

katsayıları, 𝑥ො௜ 𝑖’inci çözümün o ana kadarki en iyi değerini, 𝑥ො popülasyondaki en iyi 

çözümü, 𝑥௜ ise 𝑖’inci çözümü temsil eder. Bu hızlar güncellendikten sonra çözümler 

Eşitlik (3.31) kullanılarak güncellenir. 

𝑥௜
ᇱ = 𝑥௜ + 𝑣௜ (3.31) 

Burada, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş hâlini temsil eder. Bu işlemlerden sonra güncel 

çözüm amaç fonksiyonunda değerlendirilir ve uygunluk değeri hesaplanır. Bu çözüm 

mevcut en iyi çözümden daha iyi ise en iyi çözüm olarak atanır. Yinelemeli süreç 

maksimum iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. 

PSO algoritmasının temel adımları Algoritma 3.8 ile gösterilmektedir.  

Algoritma 3.8: PSO algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑤, 𝑐ଵ, 𝑐ଶ) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.30) ile çözümlerin hızlarının güncellenmesi 
7:  Eşitlik (3.31) ile çözümlerin güncellenmesi  
8:  Popülasyonun amaç fonksiyonunda değerlendirilmesi 
9:  En iyi çözümün tespit edilmesi 

10: end while 
11: En iyi çözümün ve maliyetin raporlanması  

3.3.2.2. Yapay Arı Koloni Algoritması 

Yapay arı koloni algoritması (artificial bee colony, ABC) 2005 yılında Karaboğa 

tarafından geliştirilen bir metasezgisel algoritmadır [59]. Yiyecek arayışında olan bal 

arılarının işbirliğinden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde 
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açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu 

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve 

uygunluk değerleri hesaplanır. Bu başlangıç popülasyonu işçi arı, gözcü arı ve kâşif arı 

aşamalarına yönlendirilir. İşçi arı aşamasında bir çözümün rastgele bir parametresi seçilir 

ve bu parametre Eşitlik (3.32) kullanılarak güncellenir. 

൫𝑥௜
௝
൯

ᇱ
= 𝑥௜

௝
+ 𝛷௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯ (3.32) 

Burada, 𝑟ଵ ≠ 𝑖, 𝑥௜
௝  𝑖’inci çözümün 𝑗’inci parametresini, ൫𝑥௜

௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci 

parametresinin güncellenmiş hâlini, 𝑥௥భ

௝  popülasyondan rastgele seçilen bir çözümün 

𝑗’inci parametresini ve Φ௜
௝
~𝑈(0,1) ise rassal bir sayıyı temsil eder. Bu işlemlerden sonra 

güncel çözüm amaç fonksiyonunda değerlendirilir ve maliyeti hesaplanır. Bu maliyet 

kullanılarak farklı bir uygunluk değeri hesaplanır. Bu hesaplama Eşitlik (3.33)’te 

gösterilmektedir. 

𝑓𝑖𝑡௜ = ቐ 

1

1 + 𝑓௜
,           𝐸ğ𝑒𝑟 𝑓௜ ≥ 0 𝑖𝑠𝑒

1 + |𝑓௜|,            𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.33) 

Burada, 𝑓௜ 𝑖’inci çözümün maliyetini, 𝑓𝑖𝑡௜ ise 𝑖’inci çözümün uygunluk değerini temsil 

eder. Gözcü arı aşamasına geçmeden önce uygunluk değerleri kullanılarak her çözümün 

seçilme olasılığı Eşitlik (3.34)’te gösterildiği gibi hesaplanır. 

𝛿௜ =
𝑓𝑖𝑡௜

∑ 𝑓𝑖𝑡௝
ௌ
௝ୀଵ

(3.34) 

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığını temsil eder. Gözcü arı aşamasında, tercih 

edilen çözümler daha iyi uygunluk değerlerine sahip olanlara yönlendirilir, bu da daha 

yüksek uygunluk değerlerine sahip olanların seçilme olasılığını artırır. Her çözüm için 

rastgele bir sayı üretilir ve bu sayı ilgili çözümün seçilme olasılığından küçükse, ilgili 

çözüm Eşitlik (3.32) kullanılarak güncellenir. Güncellenen çözüm amaç fonksiyonunda 

değerlendirilir, maliyeti elde edilir ve uygunluk değeri Eşitlik (3.33) kullanılarak 

hesaplanır. Kâşif arısı aşamasında, belirli bir limit değerinde güncellenmeyen çözümler 

yerine Eşitlik (3.18) kullanılarak yeni çözümler üretilir. Yinelemeli süreç maksimum 
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iterasyon sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. ABC 

algoritmasının temel adımları Algoritma 3.9 ile gösterilmektedir.    

Algoritma 3.9: ABC algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑙𝑖𝑚𝑖𝑡) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.32) ile çözümlerin güncellenmesi 
7:  Eşitlik (3.33) ile çözümlerin uygunluk değerlerinin hesaplanması 
8:  Eşitlik (3.34) ile her çözümün seçilme olasılıklarının hesaplanması 
9:  Eşitlik (3.32) ile seçilen çözümlerin güncellemesi  

10:  Eşitlik (3.18) ile limiti aşan çözümlerin yerine rastgele çözümlerin üretilmesi 
11:  Popülasyonun amaç fonksiyonunda değerlendirilmesi  
12:  En iyi çözümün tespit edilmesi  
13: end while 
14: En iyi çözümün ve maliyetin raporlanması  

3.3.2.3. Öğretme-Öğrenme Tabanlı Optimizasyon 

Öğretme-öğrenme tabanlı optimizasyon (teaching-learning-based optimization, TLBO) 

2011 yılında Rao ve arkadaşları tarafından geliştirilen bir metasezgisel algoritmadır [60]. 

Bir sınıf ortamında gerçekleşen öğretmen-öğrenci etkileşimi ve öğrencilerin 

birbirlerinden öğrenmesi süreçlerinden ilham alınmıştır. Algoritmanın çalışma prensibi 

şu şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. 

Bu popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve 

uygunluk değerleri hesaplanır. Öncelikle popülasyondaki tüm çözümlerin ortalaması 

Eşitlik (3.35) kullanılarak hesaplanır.   

𝑥෤ =
1

𝑆
෍ 𝑥௜

ௌ

௜ୀଵ

(3.35) 

Burada, 𝑥௜ 𝑖’inci çözümü temsil eder. Ardından, popülasyondaki en iyi çözüm öğretmen 

olarak seçilir. Bu çözüm, öğretmen olarak görev yapacak ve diğer çözümleri 

yönlendirecektir. Algoritma bu hesaplamalardan sonra öğretmen ve öğrenci olmak üzere 

iki aşamayı takip eder.  Öğretmen aşamasında her bir çözüm öğretmene ve popülasyonun 

ortalamasına doğru hareket eder. Bu hareketin ne kadar olacağı, rastgele belirlenen 
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öğretme faktörü parametresi ile belirlenir. Bu değer çözümün öğretmene ne kadar 

yaklaşacağını kontrol eder. Buna göre çözümler Eşitlik (3.36) kullanılarak güncellenir.  

𝑥௜
ᇱ = 𝑥௜ + 𝑟(𝑥ො − 𝑇ி𝑥෤) (3.36) 

Burada 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş 

hâlini, , 𝑥ො popülasyondaki en iyi çözümü, 𝑇ி~ {1, 2} ise öğretme faktörünü temsil eder. 

Öğrenci aşamasında ise çözümler birbirlerinden öğrenir ve Eşitlik (3.3) kullanılarak 

güncellenir.  

𝑥௜
ᇱᇱ = ቊ 

𝑥௜
ᇱ + 𝑟൫𝑥௜

ᇱ − 𝑥௥భ
൯,     𝐸ğ𝑒𝑟 𝑓(𝑥௜

ᇱ) < 𝑓൫𝑥௥భ
൯ 𝑖𝑠𝑒

𝑥௜
ᇱ + 𝑟൫𝑥௥భ

− 𝑥௜
ᇱ൯,                         𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.37) 

Burada, 𝑟ଵ ≠ 𝑖, 𝑟~𝑈(0,1)ଵ×஽ rassal bir sayıyı, 𝑥௜
ᇱᇱ 𝑖’inci çözümün son güncellenmiş 

hâlini, 𝑥௥భ
 popülasyondan rastgele seçilen bir çözümü temsil eder. Popülasyon 

güncellendikten sonra her çözüm amaç fonksiyonunda değerlendirilir ve uygunluk 

değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon sayısına (𝑇) erişinceye kadar 

devam eder ve en iyi çözüm raporlanır. TLBO algoritmasının temel adımları Algoritma 

3.10 ile gösterilmektedir.   

Algoritma 3.10: TLBO algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.35) ile çözümlerin ortalamasının hesaplanması 
7:  En iyi çözümün (öğretmenin) seçilmesi 
8:  Eşitlik (3.36) ile çözümlerin güncellenmesi 
9:  Eşitlik (3.37) ile çözümlerin güncellenmesi 

10:  Popülasyonun amaç fonksiyonunda değerlendirilmesi  
11:  En iyi çözümün tespit edilmesi 
12: end while 
13: En iyi çözümün ve maliyetin raporlanması  
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3.3.3. Matematik İlhamlı Algoritmalar  

3.3.3.1. Stokastik Fraktal Arama 

Stokastik fraktal arama (stochastic fractal search, SFS) 2015 yılında Salimi tarafından 

geliştirilen bir metasezgisel algoritmadır [61]. Fraktalların rastlantısal difüzyon 

davranışları ve doğadaki rastlantısal büyüme süreçlerinden ilham alınmıştır. 

Algoritmanın çalışma prensibi şu şekilde açıklanabilir: İlk olarak popülasyon Eşitlik 

(3.18) kullanılarak rastgele üretilir. Bu popülasyon üretildikten sonra tüm çözümler amaç 

fonksiyonunda değerlendirilir ve uygunluk değerleri hesaplanır. Popülasyondaki her bir 

çözüm öncelikle bir difüzyon sürecinden geçer. Bu süreçte iki farklı Gauss yürüyüşünden 

biri ile yeni aday çözümler üretilir. Bu aday çözümlerin sayısı maksimum difüzyon sayısı 

(𝑛ௗ௜௙) adı verilen bir kontrol parametresi ile belirlenir. Rastgele bir sayı üretilir ve bu 

sayının yürüme oranı (𝑤𝑎𝑙𝑘) adı verilen bir kontrol parametresiyle olan ilişkisine göre 

bu iki yürüyüşten biri kullanılır. Bu difüzyon güncellemesi Eşitlik (3.38)’de 

gösterilmektedir.   

𝑥௜ೖ
= ൜ 

𝒩(|𝑥ො|, 𝜎)  + (𝑟𝑥ො − 𝑟𝑥௜),     𝐸ğ𝑒𝑟 𝑟 < 𝑤𝑎𝑙𝑘 𝑖𝑠𝑒

𝒩(|𝑥௜|, 𝜎),                                       𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(3.38) 

𝜎 = ฬ
log (𝑡)

𝑡
(𝑥௜ − 𝑥ො)ฬ (3.39) 

Burada, 𝑘 ∈ ൛0,1, … 𝑛ௗ௜௙ൟ, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜ೖ
 𝑖’inci çözüm için üretilen 

𝑘’ıncı yeni aday çözümü, 𝑥௜ 𝑖’inci çözümü, 𝑥ො popülasyondaki en iyi çözümü, 𝒩 Gauss 

dağılımını (normal dağılım) ve 𝑡 ise mevcut iterasyonu temsil eder. Mevcut çözüm ile 

yeni aday çözümlerin uygunluk değerleri hesaplanır ve bunların arasındaki en iyi çözüm 

difüzyon süreci fonksiyonunun çıktısı olarak verilir. Ardından popülasyon iki güncelleme 

sürecinden geçer. Birinci güncelleme sürecinde ilk olarak çözümler Eşitlik (3.40)’e göre 

sıralanır.  

𝛿௜ =
𝑟𝑎𝑛𝑘(𝑥௜)

𝑆
(3.40) 

Burada, 𝛿௜ 𝑖’inci çözümün seçilme olasılığı ve 𝑟𝑎𝑛𝑘(𝑥௜) ise 𝑖’inci çözümün uygunluk 

değerine göre sıralamadaki konumunu temsil eder. Her bir çözümün her bir boyutu için 
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bir rassal sayı belirlenir. Bu sayı 𝑖’inci çözümün seçilme olasılığından büyükse Eşitlik 

(3.41) kullanılarak çözüm güncellenir. Bu sayı 𝑖’inci çözümün seçilme olasılığından 

küçükse mevcut çözüm değişmez. 

൫𝑥௜
௝
൯

ᇱ
= 𝑥௥భ

௝
− 𝑟൫𝑥௥మ

௝
− 𝑥௜

௝
൯ (3.41) 

Burada, 𝑟ଵ, 𝑟ଶ ≠ 𝑖, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜
௝  𝑖’inci çözümün 𝑗’inci parametresini, 

൫𝑥௜
௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci parametresinin birinci güncelleme sürecinde güncellenmiş 

hâlini, 𝑥௥భ

௝  ve 𝑥௥మ

௝  popülasyondan seçilen rastgele çözümleri temsil eder. İkinci güncelleme 

sürecinde ise birinci güncelleme aşamasında elde edilen tüm çözümler yine Eşitlik 

(3.40)’a göre sıralanır. Her bir çözüm için tekrar bir rastgele sayı belirlenir. Bu sayı 𝑖’inci 

çözümün olasılıksal değerinden büyükse Eşitlik (3.42) kullanılarak çözüm güncellenir. 

Bu sayı 𝑖’inci çözümün olasılıksal değerinden küçükse mevcut çözüm değişmez.   

𝑥௜
ᇱᇱ = ቊ 

𝑥௜
ᇱ − 𝑟൫𝑥௥భ

− 𝑥ො൯,                 𝐸ğ𝑒𝑟 𝑟 ≤ 0.5 𝑖𝑠𝑒

𝑥௜
ᇱ + 𝑟൫𝑥௥భ

− 𝑥௥మ
൯,                   𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.42) 

Burada, 𝑟ଵ, 𝑟ଶ ≠ 𝑖, 𝑟~𝑈(0,1) rassal bir sayıyı, 𝑥௜
ᇱᇱ 𝑖’inci çözümün ikinci güncelleme 

sürecinde güncellenmiş hâlini, 𝑥௜
ᇱ 𝑖’inci çözümün birinci güncelleme sürecinden sonraki 

hâlini, 𝑥௥భ
 ve 𝑥௥మ

 birinci güncelleme sürecinden sonra popülasyondan seçilen rastgele 

çözümleri temsil eder. Popülasyon güncellendikten sonra her çözüm amaç fonksiyonunda 

değerlendirilir ve uygunluk değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon 

sayısına (𝑇) erişinceye kadar devam eder ve en iyi çözüm raporlanır. SFS algoritmasının 

temel adımları Algoritma 3.11 ile gösterilmektedir.    
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Algoritma 3.11: SFS algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑛ௗ௜௙, 𝑤𝑎𝑙𝑘) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.38) ile çözümlerin difüzyon sürecine tabi tutulması 
7:  Eşitlik (3.40) ile her çözümün olasılıksal değerinin hesaplanması 
8:  Sırasıyla Eşitlik (3.41) ve (3.42) ile çözümlerin güncellenmesi 
9:  Popülasyonun amaç fonksiyonunda değerlendirilmesi  

10:  En iyi çözümün tespit edilmesi 
11: end while 
12: En iyi çözümün ve maliyetin raporlanması  

3.3.3.2. Sinüs Kosinüs Algoritması 

Sinüs kosinüs algoritması (sine cosine algorithm, SCA) 2016 yılında Mirjalili tarafından 

geliştirilen bir metasezgisel algoritmadır [62]. Matematikteki sinüs ve kosinüs 

trigonometrik fonksiyonlarından ilham alınmıştır. Algoritmanın çalışma prensibi şu 

şekilde açıklanabilir: İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu 

popülasyon üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve 

uygunluk değerleri hesaplanır. Yineleme süreci başladığında, 𝑟ଵ parametresi Eşitlik 

(3.43) kullanılarak hesaplanır.  

𝑟ଵ = 𝑎 − 𝑡
𝑎

𝑇
(3.43) 

Burada, 𝑎 sabit bir kontrol parametresini ve 𝑡 mevcut iterasyonu temsil eder. Ardından 

çözümler Eşitlik (3.44) kullanılarak güncellenir. 

𝑥௜
ᇱ = ൜ 

𝑥௜ + 𝑟ଵ𝑠𝑖𝑛(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|,         𝐸ğ𝑒𝑟 𝑟ସ < 0.5 𝑖𝑠𝑒

𝑥௜ + 𝑟ଵ𝑐𝑜𝑠(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|,               𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(3.44) 

Burada, 𝑟ଶ~𝑈(0,2𝜋), 𝑟ଷ~𝑈(0,2), 𝑟ସ~𝑈(0,1) rassal sayıları, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci 

çözümün güncellenmiş hâlini, 𝑥ො popülasyondaki en iyi çözümü temsi eder Popülasyon 

güncellendikten sonra her çözüm amaç fonksiyonunda değerlendirilir ve uygunluk 

değerleri hesaplanır. Yinelemeli süreç maksimum iterasyon sayısına (𝑇) erişinceye kadar 

devam eder ve en iyi çözüm raporlanır. SCA algoritmasının temel adımları Algoritma 

3.12 ile gösterilmektedir.    
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Algoritma 3.12: SCA algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑀, 𝑆, 𝑎) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.43) ile 𝑟ଵ’in güncellenmesi 
7:  Eşitlik (3.44) kullanılarak çözümlerin güncellenmesi 
8:  Popülasyonun amaç fonksiyonunda değerlendirilmesi  
9:  En iyi çözümün tespit edilmesi 

10: end while 
11: En iyi çözümün ve maliyetin raporlanması  

3.3.3.3. Aritmetik Optimizasyon Algoritması 

Aritmetik optimizasyon algoritması (arithmetic optimization algorithm, AOA) 2021 

yılında Abualigah ve arkadaşları tarafından geliştirilen bir metasezgisel algoritmadır [63]. 

Matematiksel hesaplamaların temelini oluşturan aritmetik işlemlerin dağılım 

özelliklerinden ilham alınmıştır. Algoritmanın çalışma prensibi şu şekilde açıklanabilir: 

İlk olarak popülasyon Eşitlik (3.18) kullanılarak rastgele üretilir. Bu popülasyon 

üretildikten sonra tüm çözümler amaç fonksiyonunda değerlendirilir ve uygunluk 

değerleri hesaplanır. Yineleme süreci başladığında ise matematik optimizasyon 

hızlandırıcı (math optimizer accelerated, 𝑀𝑂𝐴) ve matematik optimizasyon olasılığı 

(math optimizer probability, 𝑀𝑂𝑃) olmak üzere iki fonksiyon sırasıyla Eşitlik (3.45) ve 

(3.46) kullanılarak hesaplanır.  

𝑀𝑂𝐴 = 𝑀𝑂𝐴௟ + 𝑡 ൬
𝑀𝑂𝐴௛ − 𝑀𝑂𝐴௟

𝑇
൰ (3.45) 

𝑀𝑂𝑃 = 1 −
𝑡

ଵ
ఈ

𝑇
ଵ
ఈ

(3.46) 

Burada, 𝑀𝑂𝐴௟ ve 𝑀𝑂𝐴௛ değerleri 𝑀𝑂𝐴’nın sınır değerlerini, 𝑡 mevcut iterasyonu, 𝑇 

maksimum iterasyon sayısını ve 𝛼 kullanım doğruluğunu tanımlayan bir kontrol 

parametresini temsil eder. Her bir çözüm için bir rastgele sayı 𝑟ଵ~𝑈(0,1) üretilir ve bu 

sayı mevcut iterasyondaki 𝑀𝑂𝐴’dan büyükse çözümler Eşitlik (3.47) kullanılarak 

güncellenir. Eğer bu sayı 𝑀𝑂𝐴’dan küçükse o zaman da çözümler Eşitlik (3.48) 

kullanılarak güncellenir.  
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൫𝑥௜
௝
൯

ᇱ
= ቐ 

𝑥ො௝ ÷ (𝑀𝑂𝑃 + 𝜖) ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ ,   𝐸ğ𝑒𝑟 𝑟ଶ < 0.5 𝑖𝑠𝑒

𝑥ො௝ × 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ ,                    𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.47) 

൫𝑥௜
௝
൯

ᇱ
= ቐ 

𝑥ො௝ − 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ ,               𝐸ğ𝑒𝑟 𝑟ଷ < 0.5 𝑖𝑠𝑒

𝑥ො௝ + 𝑀𝑂𝑃 ቀ൫𝑥௛
௝

− 𝑥௟
௝
൯𝜇 + 𝑥௟

௝
ቁ ,                    𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(3.48) 

Burada, 𝑟ଶ, 𝑟ଷ~𝑈(0,1) rassal bir sayıyı, ൫𝑥௜
௝
൯

ᇱ
 𝑖’inci çözümün 𝑗’inci parametresinin 

güncellenmiş hâlini, 𝑥ො௝ popülasyondaki en iyi çözümün 𝑗’inci parametresini, 𝜖 küçük bir 

sayıyı, 𝑥௟
௝  ve 𝑥௛

௝  𝑗’inci parametrenin sınır değerlerini, 𝜇 arama sürecini ayarlayan bir 

kontrol parametresini temsil eder. Popülasyon güncellendikten sonra her çözüm amaç 

fonksiyonunda değerlendirilir ve uygunluk değerleri hesaplanır. Yinelemeli süreç 

maksimum iterasyon sayısına erişinceye kadar devam eder ve en iyi çözüm raporlanır. 

AOA algoritmasının temel adımları Algoritma 3.13 ile gösterilmektedir.    

Algoritma 3.13: AOA algoritmanın temel adımları   
1: Kontrol parametrelerinin ayarlanması (𝑇, 𝑆, 𝑀𝑂𝐴௟ , 𝑀𝑂𝐴௛ , 𝛼, 𝜇) 
2: Eşitlik (3.18) ile popülasyonun rastgele üretilmesi 
3: Popülasyonun amaç fonksiyonunda değerlendirilmesi 
4: En iyi çözümün tespit edilmesi 
5: while (maksimum iterasyon sayısına erişinceye kadar) 
6:  Eşitlik (3.45) ve (3.46) ile 𝑀𝑂𝐴 ve 𝑀𝑂𝑃 değerlerinin güncellenmesi 
7:  𝑟ଵ sayısının üretilmesi 
8:  𝑟ଵ ve 𝑀𝑂𝐴’ya göre Eşitlik (3.47) veya (3.48) ile çözümlerin güncellenmesi 

10:  Popülasyonun amaç fonksiyonunda değerlendirilmesi  
11:  En iyi çözümün tespit edilmesi 
12: end while 
13: En iyi çözümün ve maliyetin raporlanması  

3.4. Makine Öğrenmesi 

Makine öğrenmesi, bilgisayarların verilerden desenler öğrenerek tahminler yapmasını 

sağlayan bir yapay zekâ dalıdır [64]. Bu süreçte, algoritmalar belirli kurallar çerçevesinde 

eğitilir ve zamanla doğruluklarını artırır. Makine öğrenmesi yöntemleri genellikle ikiye 

ayrılır: gözetimli ve gözetimsiz öğrenme. Gözetimli öğrenme etiketli verilerle modelin 

eğitildiği bir yaklaşımken; gözetimsiz öğrenme ise verilerdeki gizli desenleri keşfetmeye 

odaklanır. Örneğin, bir makine öğrenmesi modeli, el yazısı rakamları tanımak için önce 

insan tarafından belirlenen kenar, eğim gibi özellikleri kullanarak öğrenme sürecini 
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tamamlar. Ancak, daha karmaşık problemlerde geleneksel makine öğrenmesi 

yaklaşımları, özellik mühendisliği ve büyük veri ile başa çıkmada yetersiz kalabilir. Bu 

noktada derin öğrenme devreye girer. Derin öğrenme, insan beyninin çalışma şeklini 

taklit eden derin sinir ağlarını kullanarak daha karmaşık veri yapılarını öğrenen bir 

makine öğrenmesi alt dalıdır. Bu yöntem, birçok katmandan oluşan sinir ağları sayesinde 

büyük ve karmaşık veri kümeleriyle etkili bir şekilde çalışabilir. Makine öğrenmesi ile 

derin öğrenme kapsamları Şekil 3.2’de gösterilmektedir. 

Derin Öğrenme

Yapay Zekâ

Makine Öğrenmesi

     

Şekil 3.2. Makine öğrenmesi ile derin öğrenme kapsamları 

Geleneksel makine öğrenmesinin aksine, derin öğrenme algoritmaları özellikleri manuel 

olarak belirlemek yerine, veriden otomatik olarak öğrenir ve kendiliğinden en uygun 

temsilleri keşfeder. Bu sayede, özellikle büyük ölçekli veri setleriyle çalışırken insan 

müdahalesine duyulan ihtiyaç azalır ve modeller daha doğru sonuçlar üretebilir. Örneğin, 

bir görüntü tanıma görevinde geleneksel yöntemlerde öncelikle görüntüden kenar, doku 

veya renk gibi belirli özelliklerin insan tarafından çıkarılması gerekirken, derin öğrenme 

modelleri ham piksel verisini doğrudan alarak, katmanlar boyunca giderek soyutlaşan 

özellikler öğrenir ve nihai sınıflandırmayı gerçekleştirir. İlk katmanlar temel kenar ve 

dokuları öğrenirken, daha derin katmanlar nesneleri, yüzleri veya daha karmaşık yapıları 

tanıyabilir. Benzer şekilde, doğal dil işleme alanında, derin öğrenme algoritmaları ham 

metin verisini analiz ederek kelimeler arasındaki anlam ilişkilerini otomatik olarak 

öğrenir ve çeviri, metin özetleme veya duygu analizi gibi görevleri başarıyla yerine 

getirebilir. Derin öğrenmenin bu yetenekleri, büyük veri çağında daha başarılı sonuçlar 

elde edilmesini sağlar ve sağlık, otomotiv, finans, güvenlik gibi birçok alanda devrim 

niteliğinde uygulamalara kapı aralar. Örneğin, otonom araçlar, çevresindeki nesneleri 

gerçek zamanlı olarak algılamak ve güvenli sürüş kararları vermek için derin öğrenmeden 

yararlanır. Aynı şekilde, tıbbi görüntüleme sistemleri, hastalıkları teşhis etmek için 
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röntgen ve MR görüntülerini analiz edebilir. Derin öğrenmenin sağladığı bu otomatik ve 

ölçeklenebilir çözümler, birçok endüstride insan müdahalesini azaltarak hız, doğruluk ve 

verimliliği artırmaktadır. Mobil robotların yol planlamasında makine öğrenmesi 

yöntemleri arasında evrişimli sinir ağları ve takviyeli öğrenme giderek daha fazla tercih 

edilmektedir [62]. Evrişimli sinir ağları, çevresel algılamada etkili özellik çıkarımı 

sağlarken, takviyeli öğrenme ise robotun dinamik ortamlarda en uygun yolu keşfetmesine 

ve çevresel değişikliklere uyum sağlamasına yardımcı olmaktadır. 

3.4.1. Evrişimli Sinir Ağları 

Evrişimli sinir ağı (convolutional neural network, CNN), özellikle görüntü ve video 

analizinde kullanılan, derin öğrenme tabanlı bir yapay sinir ağı türüdür. İnsan beyninin 

görme korteksinden esinlenerek geliştirilen CNN’ler karmaşık görsel desenleri ve 

özellikleri otomatik olarak öğrenme yeteneğine sahiptir. Bu sayede görüntü 

sınıflandırma, nesne tanıma, yüz tanıma gibi birçok alanda üstün performans gösterirler. 

CNN’lerin temelinde evrişim (convolution) ve havuzlama (pooling) gibi özel katmanlar 

bulunur. Bu katmanlar, görüntüdeki önemli özellikleri vurgulayarak, ağın daha etkili 

öğrenmesini sağlar. Şekil 3.3’te tipik bir CNN yapısı gösterilmektedir. 

Giriş Katmanı Evrişim ve Havuzlama Katmanları
(Özellik Çıkarımı)

Tam Bağlı Katman Çıkış Katmanı

     

Şekil 3.3. Tipik bir evrişimli sinir ağı yapısı 

Giriş katmanında ağın aldığı ham veri olan görüntü işlenmeye başlar. Görüntü, piksel 

değerlerini taşıyan bir matris olarak giriş katmanına gelir. Bu katmanda, ağın işleyeceği 

temel veriler belirlenir ve bu veri sonraki katmanlar için temel oluşturur. Özellik çıkarımı 

CNN’nin temelini oluşturan evrişim ve havuzlama işlemlerinin yapıldığı yerdir. Bu 

katman görüntüdeki kenarlar, köşeler, dokular gibi temel özellikleri çıkarır. Evrişim 

işlemi, görüntü üzerinde küçük filtreler gezdirerek özellik haritaları oluştururken, 

havuzlama işlemi bu haritaların boyutunu küçülterek daha soyut temsiller elde eder. Tam 
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bağlı katman (fully connected layer), özellik çıkarımından elde edilen soyut özellikleri 

kullanarak, görüntünün ne olduğunu tahmin etmeye çalışır. Bu katman klasik bir yapay 

sinir ağı gibi çalışır ve her bir nöronun bir önceki katmandaki tüm nöronlara bağlı olduğu 

bir yapıya sahiptir. Çıkış katmanı ağın tahmin sonucunu verir. Genellikle bir olasılık 

dağılımı şeklinde sonuçlar üretir. Örneğin, bir görüntü sınıflandırma probleminde, bu 

katman her bir sınıf için bir olasılık değeri vererek görüntünün hangi sınıfa ait olduğunu 

tahmin eder. CNN’ler 1980’lerden itibaren gelişmeye başlamış ve zaman içinde birçok 

farklı mimari ortaya çıkmıştır. Bu bölümde CNN’lerin gelişimine önemli katkılarda 

bulunmuş öne çıkan bazı modeller ele alınacaktır. 

3.4.1.1. LeNet-5 

LeNet-5, 1998 yılında LeCun ve arkadaşları tarafından geliştirilen bir derin öğrenme 

modelidir [66]. Bu model derin öğrenme alanındaki ilk başarılı CNN örneği olarak, 

görüntü tanıma görevlerinde kullanılan ilk derin ağ yapılarından birisidir. Modelin 

mimarisi şu şekilde özetlenebilir: İlk katman, 5 x 5 boyutunda 6 filtre kullanarak evrişim 

işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır. 

Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma ile ortalama havuzlama (average pooling) 

işlemi yapılır. Sonraki katman, 5 x 5 boyutunda 16 filtre kullanarak evrişim işlemi yapar. 

Adım uzunluğu 1 olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır. Ayırca yine 

2 x 2 boyutunda ve 2 adım kaydırma ile ortalama havuzlama işlemi yapılır. Sonraki 

katman, 5 x 5 boyutunda 120 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 

olarak ayarlanır ve tanh aktivasyon fonksiyonu kullanılır. Sonraki katman, tam bağlı 

katmandır ve tanh aktivasyon fonksiyonunu kullanır. Çıkış katmanına bağlanan son 

katman ise softmax aktivasyon fonksiyonunu kullanan bir tam bağlı katmandır.   

3.4.1.2. AlexNet 

AlexNet, 2012 yılında Krizhevsky ve arkadaşları tarafından tarafından geliştirilen bir 

derin öğrenme modelidir [67]. Bu model, grafik işlemci hızlandırmasını kullanarak büyük 

veri setleri üzerinde eğitim yapmış ve doğrultulmuş doğrusal birim (rectified linear unit, 

ReLU) aktivasyon fonksiyonunu etkin bir şekilde kullanarak eğitim sürecini 

hızlandırmıştır. Modelin mimarisi şu şekilde özetlenebilir: İlk katman, 11 x 11 boyutunda 

96 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 4 olarak ayarlanır ve ReLU 

aktivasyon fonksiyonu kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile 
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maksimum havuzlama işlemi yapılır. Sonraki katman, 5 x 5 boyutunda 256 filtre 

kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon 

fonksiyonu kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile maksimum 

havuzlama işlemi yapılır. Sonraki iki katman, 3 x 3 boyutunda 384 filtre kullanarak 

evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu 

kullanılır. Sonraki katman, 3 x 3 boyutunda 256 filtre kullanarak evrişim işlemi yapar. 

Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Sonraki üç 

katmanlar tam bağlı katmanlardır, bunların ilk ikisinde ReLU, üçüncüsünde ise softmax 

aktivasyon fonksiyonu kullanılır. Ayrıca her tam bağlı katmana %50 oranla kullanılan bir 

dropout katmanı bağlıdır. Son tam bağlı katman ise çıkış katmanına bağlanır.  

3.4.1.3. VGG16 

VGG16, 2014 yılında Simonyan ve Zisserman tarafından geliştirilen bir derin öğrenme 

modelidir [68]. Bu modelde katman sayısının derinliği ve 3 x 3 boyutunda evrişim 

katmanlarının üst üste kullanılmasıyla çok derin bir ağ yapısı oluşturulmuş ve bu sayede 

ağın derinliği artırılarak yüksek doğruluk elde edilmiştir. Modelin mimarisi şu şekilde 

özetlenebilir: İlk iki katman, 3 x 3 boyutunda 64 filtre kullanarak evrişim işlemi yapar. 

Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x 

2 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Sonraki iki 

katman, 3 x 3 boyutunda 128 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 

olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2 

adım kaydırma ile maksimum havuzlama işlemi yapılır. Sonraki üç katman, 3 x 3 

boyutunda 256 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır 

ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma 

ile maksimum havuzlama işlemi yapılır. Sonraki üç katman, 3 x 3 boyutunda 512 filtre 

kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon 

fonksiyonu kullanılır. Ayrıca 2 x 2 boyutunda ve 2 adım kaydırma ile maksimum 

havuzlama işlemi yapılır. Sonraki üç katman, yine 3 x 3 boyutunda 512 filtre kullanarak 

evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır ve ReLU aktivasyon fonksiyonu 

kullanılır. Ayrıca yine 2 x 2 boyutunda ve 2 adım kaydırma ile maksimum havuzlama 

işlemi yapar. Sonraki iki katman tam bağlı katmanlarıdır ve ReLU aktivasyon fonksiyonu 

kullanılır. Çıkış katmanına bağlanan son katman ise softmax aktivasyon fonksiyonunu 

kullanan bir tam bağlı katmandır.  
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3.4.1.4. GoogleNet 

GoogleNet (Inception v1), 2014 yılında Szegedy ve arkadaşları tarafından geliştirilen bir 

derin öğrenme modelidir [69]. Bu model başlangıç (inception) tanıtarak, aynı katmanda 

farklı boyutlardaki filtreleri ve havuzlama işlemlerini birleştirmiştir. Ayrıca yardımcı 

sınıflandırıcı (auxiliary classifier) adı verilen bir başka blok da tanıtılmıştır. Modelin 

mimarisi şu şekilde özetlenebilir: İlk katman, 7 x 7 boyutunda 64 filtre kullanarak evrişim 

işlemi yapar. Adım uzunluğu 2 olarak ayarlanır ve ReLU aktivasyon fonksiyonu 

kullanılır. Ayrıca 3 x 3 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi 

ve ardından yerel tepki normalizasyonu (local response normalization) yapılır. Sonraki 

katman, 1 x 1 boyutunda 64 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 

olarak ayarlanır ve ReLU aktivasyon fonksiyonu kullanılır. Sonraki katman, 3 x 3 

boyutunda 192 filtre kullanarak evrişim işlemi yapar. Adım uzunluğu 1 olarak ayarlanır 

ve ReLU aktivasyon fonksiyonu kullanılır. Ayrıca yerel tepki normalizasyonu, ardından 

3 x 3 boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Daha sonra 

9 adet başlangıç bloğu uygulanır ve birleştirilir. Ayrıca 4. ve 7. başlangıç bloklarıyla 

paralel olarak yardımcı sınıflandırıcı blokları uygulanır. Son başlangıç bloğunun ardından 

7 x 7 boyutunda global ortalama havuzlama işlemi (global average pooling) ve %40 

oranında dropout katmanı uygulanır. Çıkış katmanına bağlanan son katman ise bir tam 

bağlı katmandır ve softmax aktivasyon fonksiyonu kullanılır. 

Başlangıç bloğu şu şekilde özetlenebilir: Bloğun kendi yerel girişi 1 x 1 boyutunda 3 adet 

evrişim ve 3 x 3 boyutunda 1 adet maksimum havuzlama katmanlarına aynı anda 

gönderilir. 3 adet evrişim katmanından biri doğrudan bloğun yerel çıkışına yönlendirilir. 

Bir diğeri 3 x 3 boyutunda başka bir evrişim katmanına bağlanır ve bu katmanın çıkışı 

yerel çıkış noktasına yönlendirilir. Bir diğeri 5 x 5 boyutunda başka bir evrişim katmanına 

bağlanır ve bu katmanın çıkışı yerel çıkış noktasına yönlendirilir. Maksimum havuzlama 

katmanı ise 1 x 1 boyutunda başka bir evrişim katmanına bağlanır ve bu katmanın çıkışı 

yerel çıkış noktasına yönlendirilir. Son olarak yerel çıkışa gönderilen her bir bağlantı 

birleştirilir. Yardımcı sınıflandırıcı bloğu ise şu şekilde özetlenebilir: Bloğun kendi yerel 

girişine ilk olarak global ortalama havuzlama işlemi uygulanır. Ardından 1 x 1 boyutunda 

başka bir evrişim katmanına bağlanır. Sonraki iki katman tam bağlı katmanlarıdır ve 

ReLU aktivasyon fonksiyonu kullanılır. Bloğun kendi yerel çıkış katmanında ise softmax 

aktivasyon fonksiyonu kullanılır.  
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3.4.1.5. Tam Evrişimli Ağ 

Tam evrişimli ağ (fully convolutional networks, FCN), 2015 yılında Long ve arkadaşları 

tarafından geliştirilen bir derin öğrenme modelidir [70]. Bu model tamamen evrişim 

katmanlar kullanarak görüntü segmentasyonu gibi görevlerde piksel düzeyinde tahminler 

yapar ve tam bağlı katmanları ortadan kaldırarak modelin daha verimli hale getirir. 

Modelin mimarisi şu şekilde özetlenebilir: FCN’nin temel yapı taşları evrişim, havuzlama 

ve yukarı örnekleme (upsampling) katmanlarıdır. Evrişim katmanları, belirli bir boyutta 

filtreler kullanarak girişten özellik çıkarır ve her konvolüsyon işlemi için belirlenen adım 

uzunluğuna göre çıktıyı oluşturur. Bu katmanlarda genellikle ReLU aktivasyon 

fonksiyonu kullanılır. FCN, temel CNN’lerden farklı olarak, tam bağlantılı katmanlar 

içermez; bunun yerine 1 x 1 evrişim katmanları kullanarak sınıflandırma veya regresyon 

işlemlerini doğrudan uzamsal boyutta gerçekleştirir. Modelin en önemli bileşenlerinden 

biri yukarı örnekleme katmanlarıdır, çünkü bunlar havuzlama katmanları tarafından 

küçültülen uzamsal boyutları tekrar büyüterek çıktıyı orijinal giriş boyutuna yaklaştırır. 

Bu süreç, özellikle görüntü segmentasyonu gibi piksel tabanlı tahminler gerektiren 

görevlerde kritik öneme sahiptir. FCN, klasik sınıflandırma ağlarının tam bağlı 

katmanlarını kaldırarak herhangi bir boyuttaki girdilerle çalışabilir ve piksellerin konum 

bilgilerini koruyarak çıktı üretebilir. Son olarak, FCN’nin çıkış katmanı genellikle 

softmax aktivasyon fonksiyonuyla tamamlanır ve her pikselin belirli bir sınıfa ait olma 

olasılığını hesaplar.  

3.4.1.6. ResNet 

ResNet, 2015 yılında He ve arkadaşları tarafından geliştirilen bir derin öğrenme modelidir 

[71]. Bu model artık (residual) bağlantılar sayesinde derin ağların eğitimini 

kolaylaştırarak kaybolan gradyan problemini etkili bir şekilde çözmüştür. Modelin 

mimarisi şu şekilde özetlenebilir: İlk katman, 7 x 7 boyutunda 64 filtreli bir evrişim 

katmanıdır; bu katman 2 adım boyutu kullanarak girişi işler. Bu katmanda ReLU 

aktivasyon fonksiyonu kullanılır ve toplu normalizasyon gerçekleştirilir. Ayrıca 3 x 3 

boyutunda ve 2 adım kaydırma ile maksimum havuzlama işlemi yapılır. Ağın geri kalanı, 

residual bloklar olarak organize edilmiştir. Tipik bir artık blok Şekil 3.4’te 

gösterilmektedir.    
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Şekil 3.4. Temel bir artık blok 

Her artık blok, iki adet 3 x 3 evrişim katmanı, toplu normalizasyon ve ReLU 

aktivasyonunu içerir. Daha derin katmanlara geçerken, her yeni artık bloğun ilk evrişim 

katmanı filtre sayısını iki katına çıkarır ve boyut küçültmek için adım boyutu 2 olarak 

belirlenir. Boyut değişen bloklarda kısa yol bağlantısı için 1 x 1 evrişim katmanı 

kullanılır. Bunların ardından, global ortalama havuzlama katmanı ile tüm uzaysal 

özellikler sıkıştırılarak sabit boyutlu bir vektör elde edilir. Bunu, 1000 çıkışlı bir tam bağlı 

katman ve ardından softmax katmanı takip eder, böylece sınıflandırma yapılır.   

3.4.2. Takviyeli Öğrenme  

Takviyeli öğrenme (reinforcement learning), bir ajan (agent) ile ortam (environment) 

arasındaki etkileşimi temel alan bir makine öğrenme yöntemidir. Ajan, ortama 

etkileşimde bulunarak belirli hedeflere ulaşmayı amaçlar. Ortamdan aldığı ödülleri 

kullanarak kendi politikasını (hangi duruma hangi aksiyonun uygun olduğunu belirleyen 

strateji) optimize eder. Ajanın amacı, zaman içinde aldığı ödülleri maksimize etmek için 

en iyi aksiyonları seçmektir. Bu süreç bir durum (state), bir aksiyon (action) ve alınan bir 

ödül (reward) döngüsüyle gerçekleşir. Şekil 3.5’te tipik bir takviyeli öğrenme yapısı 

gösterilmektedir.  
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Şekil 3.5. Tipik bir takviyeli öğrenme yapısı 

Takviyeli öğrenmede ajan, keşif ve kullanım arasında bir denge kurmak zorundadır. Keşif 

ajanının yeni aksiyonları denemesi ve ortamın dinamiklerini öğrenmesi anlamına 

gelirken, kullanım ise ajanın şu ana kadar öğrendiği en iyi aksiyonları seçmesidir. Bu iki 

strateji arasında bir denge kurmak önemlidir; aksi halde ajan yalnızca bildiği aksiyonları 

seçerek yeni fırsatlar kaçırabilir veya gereksiz keşiflerde bulunarak verimsiz olabilir. 

Ayrıca, RL transfer öğrenmeyi de içerir, yani ajan bir görevde öğrendiği bilgileri başka 

bir göreve aktarabilir. Örneğin, bir ajan bir ortamda başarılı bir şekilde öğrenmeyi 

tamamladıktan sonra, başka bir benzer ortamda ajanın daha hızlı öğrenebilmesi 

sağlanabilir. Transfer öğrenme, takviyeli öğrenmenin hesaplama yükünü azaltabilir ve 

daha genel stratejiler geliştirilmesine yardımcı olabilir. Bu bölümde RL’deki öne çıkan 

bazı modeller ele alınacaktır. 

3.4.2.1. Aktör-Kritik Algoritması 

Aktör-kritik algoritması (actor-critic, AC), ilk olarak 1984 yılında Sutton tarafından 

geliştirilen bir RL modelidir [72]. Bu model politika tabanlı (aktör) ve değer tabanlı 

(kritik) bileşenleri birleştirerek, hem politika öğrenmesini hem de değer fonksiyonu 

tahminini paralel bir şekilde optimize eder. Algoritma, iki ana bileşenden oluşur: Aktör 

ve kritik. Aktör, mevcut politika kullanılarak aksiyonlar seçerken, kritik, bu aksiyonların 

değerini tahmin eder ve aktöre geri bildirim sağlar. Algoritmanın çalışma prensibi, bir 

ajanın bir ortamda sürekli olarak etkileşime girip ödül toplaması sürecine dayanır. Ajan, 

çevreden aldığı durum bilgisiyle, belirli bir politika (𝜋) kullanarak bir aksiyon seçer. 

Kritik, seçilen aksiyonun değerini tahmin eder ve bu tahmin bir avantaj fonksiyonu (𝐴௧) 

ile ilişkilendirilir. Aktör bu avantaj fonksiyonunu kullanarak politikasını günceller, 

böylece daha yüksek ödül getiren eylemleri tercih eder. İlk olarak aksiyon seçilirerek ona 
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yönelik ödül ve bir sonraki durum gözlemlenir. Ardından avantaj fonksiyonu Eşitlik 

(3.49) kullanılarak güncellenir. 

𝐴௧ = 𝑟௧ + 𝛾𝑉ఏ(𝑠௧ାଵ) − 𝑉ఏ(𝑠௧) (3.49) 

Burada, 𝑟௧ mevcut ödülü, 𝛾 indirim faktörünü, 𝑉ఏ(𝑠௧ାଵ) kritik tarafından tahmin edilen 

bir sonraki durumun değerini ve 𝑉ఏ(𝑠௧) ise değer fonksiyonunu temsil eder. Ardından 

aktör ve kritik Eşitlik (3.50) ve (3.51) kullanılarak güncellenir. 

𝜃௔
௧ାଵ = 𝜃௔

௧ + 𝛼௔∇ఏ log 𝜋ఏ(𝑠௧, 𝑎௧) 𝐴௧ (3.50) 

𝜃௖
௧ାଵ = 𝜃௖

௧ + 𝛼௖൫𝑟௧ + 𝛾𝑉ఏ(𝑠௧ାଵ) − 𝑉ఏ(𝑠௧)൯
ଶ

(3.51) 

Burada, 𝜃௔ aktörün parametrelerini, 𝛼௔ aktörün öğrenme oranını, 𝜋ఏ(𝑠௧, 𝑎௧) mevcut 

durum 𝑠௧ ve mevcut aksiyon 𝑎௧ için ilgili politikayı, 𝜃௖ kritiğin parametrelerini ve 𝑎௖ 

kritiğin öğrenme oranını temsil eder. Bu süreç durduma kriteri sağlanana kadar devam 

eder. AC’nin temel adımları Algoritma 3.14 ile gösterilmektedir.      

Algoritma 3.14: AC’nin temel adımları 
1: Hiperparametrelerin ayarlanması (𝛼, 𝛽, 𝛾) 
2: Aktör politikasının ve kritik değer fonksiyonunun değerlerinin başlatılması 
3: while (maksimum epoch sayısına erişinceye kadar) 
4:  𝑠 durumunun başlatılması 
5:  while (maksimum adım sayısına erişinceye kadar) 
6:   Aktör politikasına göre bir aksiyonun seçilmesi 
7:   Seçilen aksiyonu gerçekleştirilmesi  
8:   Ödül ve bir sonraki durumun gözlemlenmesi 
9:   Eşitlik (3.49) ile avantaj fonksiyonunun güncellenmesi 

10:   Eşitlik (3.50) ile aktörün güncellenmesi 
11:   Eşitlik (3.51) ile kritiğin güncellenmesi 
12:  end while 
13: end while 
14: Optimal politikanın raporlanması  

3.4.2.2. Q-Öğrenme 

Q-öğrenme (Q-learning, QL), 1989 yılında Watkins tarafından geliştirilen bir RL 

modelidir [73]. QL çevrenin dinamiklerini bilmeden, sadece gözlemler ve ödüllerle karar 

almayı öğrenir. QL temel olarak 𝑄 değerleri adı verilen bir yapı kullanır. Bu değerler bir 

durum ve aksiyon çiftinin değerini temsil eder. Bu değer, o durumda belirtilen aksiyonun 

alınmasının gelecekteki ödülleri ne kadar artıracağına dair bir tahmindir. Ajan bu 𝑄 
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değerlerini zamanla güncelleyerek en iyi politikasını öğrenir. Modelin çalışma prensibi 

şu şekilde özetlenebilir: Başlangıçta tüm 𝑄 değerleri sıfır olarak ayarlanır veya küçük 

rastgele değerlerle başlatılabilir. Ajan herhangi bir durumdayken bir aksiyon seçer. Bu 

seçim genellikle epsilon açgözlü stratejisi (ε-greedy) ile yapılır, yani ajan rastgele bir 

aksiyon seçme olasılığına sahip olup, çoğunlukla en yüksek 𝑄 değerine sahip aksiyonu 

tercih eder. Seçilen aksiyon uygulanır, yeni bir durum gözlemlenir ve bu yeni durumda 

alınan ödül elde edilir. Ajan, 𝑄 değerini Eşitlik (3.52)’de gösterilen QL güncelleme 

kuralına göre günceller:  

𝑄(𝑠௧, 𝑎௧) = 𝑄(𝑠௧, 𝑎௧) + 𝛼 ቆ𝑟௧ + 𝛾 max
௔ᇲ

𝑄(𝑠௧ାଵ, 𝑎ᇱ) − 𝑄(𝑠௧, 𝑎௧)ቇ (3.52) 

Burada, 𝑄(𝑠௧, 𝑎௧) mevcut durum ve aksiyon için mevcut 𝑄 değerini, 𝛼 öğrenme oranını, 

𝑟௧ alınan ödülü, 𝛾 indirim faktörünü, 𝑠௧ାଵ bir sonraki durumu ve 𝑎ᇱ ise yeni durumda 

yapılabilecek tüm olası aksiyonları temsil eder. Ajan, bu işlemi çevreyi keşfederek ve 

ödülleri öğrenerek devam eder. Sonunda, 𝑄 değerleri stabil hale gelir ve ajan en yüksek 

𝑄 değerine sahip aksiyonları seçerek optimal politikayı öğrenmiş olur. QL’nin temel 

adımları Algoritma 3.15 ile gösterilmektedir.     

Algoritma 3.15: QL’nin temel adımları 
1: Hiperparametrelerin ayarlanması (𝛼, 𝛾) 
2: Tüm durum ve aksiyonlar için 𝑄 değerlerinin başlatılması 
3: while (maksimum epoch sayısına erişinceye kadar) 
4:  𝑠 durumunun başlatılması 
5:  while (maksimum adım sayısına erişinceye kadar) 
6:   Epsilon açgözlü stratejisi ile bir aksiyonun seçilmesi 
7:   Seçilen aksiyonun gerçekleştirilmesi 

   Ödül ve bir sonraki durumun gözlemlenmesi 
8:   Eşitlik (3.52) ile 𝑄 değerinin güncellenmesi 
9:   Mevcut durumun bir sonraki durum olarak güncellenmesi 

10:  end while 
11: end while 
12: Optimal politikanın raporlanması  

3.4.2.3. Derin Deterministik Politika Gradyanı 

Derin Deterministik Politika Gradyanı (deep deterministic policy gradient, DDPG), 2015 

yılında Lillicrap ve arkadaşları tarafından geliştirilen bir RL modelidir [74]. Bu model 

sürekli eylem alanlarında politika gradyanı yöntemlerini derin öğrenme ile birleştirir. 
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Algoritma, aktör ve kritik ağları olmak üzere iki ana bileşene sahiptir. Aktör ağı verilen 

bir durum için en iyi aksiyonu üretirken, kritik ağ verilen bir durum ve aksiyon çiftinin 

ne kadar iyi olduğunu değerlendirir. DDPG, öğrenme sürecini daha stabil hale getirmek 

için deney tekrarı (experience replay) ve hedef ağlar (target networks) gibi ek teknikler 

kullanır. Modelin çalışma prensibi şu şekilde özetlenebilir: Algoritmanın ilk adımında, 

kritik ağı ve aktör ağı rastgele başlatılır. Bunlar ajan tarafından kullanılan temel öğrenme 

modelleridir. Ayrıca, bu ağların birer hedef kopyaları oluşturulur. Hedef ağlar, öğrenme 

sürecindeki dalgalanmaları azaltarak algoritmanın daha stabil çalışmasını sağlar. 

Ardından, deney tekrar havuzu oluşturulur. Bu havuz, ajanın çevrede deneyimlediği 

durum-geçişlerini saklar ve rastgele örnekleme yaparak öğrenmeyi daha etkili hale getirir. 

DDPG, her zaman adımında aksiyon keşfi için rastgele bir gürültü başlatır. Ajan, 

çevreden ilk durumu alır ve süreç başlar. Her zaman adımında, ajan Eşitlik (3.53)’te 

gösterildiği gibi mevcut duruma göre bir aksiyon seçer. Bu aksiyon, aktör ağı tarafından 

belirlenir ancak keşfi artırmak için bir miktar rastgele gürültü eklenir.  

𝑎௧ = 𝜇(𝑠௧|𝜃ఓ) + 𝑁௧ (3.53) 

Burada, 𝑎௧ 𝑡 anındaki aksiyonu, 𝜇(𝑠௧|𝜃ఓ) aktör ağını, 𝑁௧ ise 𝑡 anındaki keşfi artırmak 

için kullanılan rastgele gürültüyü temsil eder. Bu gürültü genellikle zamanla korelasyonlu 

Ornstein-Uhlenbeck süreci olarak modellenir. Seçilen aksiyon çevrede uygulanır ve ajan 

ödülü (𝑟௧) ve bir sonraki durumu (𝑠௧ାଵ) gözlemler. Bu geçiş deney tekrar havuzuna 

(𝑠௧, 𝑎௧, 𝑟௧, 𝑠௧ାଵ) olarak kaydedilir. Deney tekrar havuzundan rastgele bir minibatch (𝑛௠ 

adet geçiş) örneklenir. Deney tekrar havuzundan örneklenen her minibatch için, hedef 𝑄 

değeri Bellman denklemine göre Eşitlik (3.54) kullanılarak hesaplanır. 

𝑦௜ = 𝑟௧೔
+ 𝛾𝑄ᇱ൫𝑠௜ାଵ, 𝜇ᇱ൫𝑠௜ାଵ|𝜃ఓᇱ

൯|𝜃ொᇲ
൯ (3.54) 

Burada, 𝑟௧೔
 i’inci minibatch örneğinde elde edilen ödülü, 𝛾 indirim faktörünü, 𝜇ᇱ ve 𝑄ᇱ ise 

hedef ağları temsil eder. Kritik ağ, bu hedef 𝑄 değerine yaklaşmak amacıyla Eşitlik 

(3.55)’te gösterildiği gibi güncellenir.  

𝜃ொ = 𝜃ொ − 𝛼ொ∇ఏೂ𝐿(𝜃ொ) (3.55) 
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𝐿(𝜃ொ) =
1

𝑛௠
෍൫𝑦௜ − 𝑄(𝑠௜, 𝑎௜|𝜃

ொ)൯
ଶ

௜

(3.56) 

Burada, 𝑄(𝑠௜, 𝑎௜|𝜃
ொ) kritik ağı temsil eder. Aktör ağı Eşitlik (3.56)’da gösterildiği gibi 

deterministik politika gradyan yöntemiyle güncellenir:  

∇ఏ𝐽 ≈
1

𝑛௠
෍ 𝛻௔𝑄(𝑠, 𝑎|𝜃ொ)|௦ୀ௦೔,௔ୀఓ(௦೔)𝛻ఏഋ𝜇(𝑠|𝜃ఓ)|௦೔

௜

(3.57) 

Ardından, hedef ağlar yumuşak güncellenme ile Eşitlik (3.57) ve (3.58)’de gösterildiği 

gibi güncellenir.   

𝜃ொᇱ
= 𝜏𝜃ொ + (1 − 𝜏)𝜃ொᇱ

(3.58) 

𝜃ఓᇱ = 𝜏𝜃ఓ + (1 − 𝜏)𝜃ఓᇱ (3.59) 

Burada, 𝜏 yumuşak güncellenme oranını temsil eder. Bu süreç, belirlenen zaman adımı 

veya bölüm sayısı tamamlanana kadar tekrar edilir. DDPG’nin temel adımları Algoritma 

3.16 ile gösterilmektedir.     

Algoritma 3.16: DDPG’nin temel adımları 
1: Hiperparametrelerin ayarlanması (𝜏, 𝛾, 𝑛௠) 
2: Aktör ve kritik ağlarının başlatılması 
3: Hedef ağların başlatılması 
4: Deney tekrar havuzunun oluşturulması 
5: while (maksimum epoch sayısına erişinceye kadar) 
6:  𝑠 durumunun başlatılması 
7:  while (maksimum adım sayısına erişinceye kadar) 
8:   Eşitlik (3.53) ile aksiyonun seçilmesi 
9:   Seçilen aksiyonun gerçekleştirilmesi 

10:   Ödül ve bir sonraki durumun gözlemlenmesi 
11:   Bu deneyimin deney havuzuna eklenmesi 
12:   Havuzdan rastgele bir minibatch’in örneklenmesi 
13:   Eşitlik (3.54) ile hedef Q değeri hesaplanması 

   Eşitlik (3.55) ile kritik ağın güncellenmesi 
14:   Eşitlik (3.56) ile aktör ağının güncellenmesi 
15:   Eşitlik (3.57) ve (3.58) ile hedef ağların güncellenmesi 
16:  end while 
17: end while 
18: Optimal politikanın raporlanması  

  



58  

 

 

 

4.  BÖLÜM 

 

BULGULAR  

 

4.1. Giriş 

Bu tez çalışması kapsamında mobil robotların yol planlama sorunlarına yönelik çözümler 

geliştirmek amacıyla dört farklı simülasyon çalışması ve bir gerçek zamanlı çalışma 

gerçekleştirilmiştir. Bu çalışmalar farklı yol tipleri, engel yapıları ve ortam özellikleri 

dikkate alınarak yol planlama yöntemlerini iyileştirerek yeni yaklaşımlar geliştirmeye 

odaklanmıştır. Bu tez çalışması kapsamında gerçekleştirilen dört simülasyon 

çalışmasında iki boyutlu yol planlama problemine yönelik farklı metasezgisel ve makine 

öğrenmesi tabanlı yaklaşımlar önerilmiş ve performansları test edilmiştir. Birinci 

çalışmada tek bir mobil robotun ızgara ortamında küresel yol planlaması için iyileştirilmiş 

bir yapay arı koloni algoritması önerilmiştir. İkinci çalışmada tek bir mobil robotun 

sürekli uzay ortamında küresel yol planlaması için metasezgisel ve kümeleme 

algoritmalarının hibrit bir modeli önerilmiştir. Üçüncü çalışmada çok sayıda mobil 

robotun sürekli uzay ortamında yerel yol planlaması için iyileştirilmiş bir sinüs kosinüs 

algoritması önerilmiştir. Dördüncü çalışmada ise tek ve çok robotlu sistemlerinin ızgara 

ortamında küresel yol planlaması için ResNet tabanlı bir model önerilmiştir. Gerçek 

zamanlı çalışmada ise simülasyon çalışmalarını desteklemek amacıyla mobil robotun 

sürekli uzay ortamında küresel yol planlaması ve yol takip kontrolü gerçekleştirilmiştir. 

Bu çalışmaların özellikleri Tablo 4.1’de özetlenmiştir. Bu tez kapsamda ele alınan 

çalışmalar mobil robotların yol planlama süreçlerinde etkinliği artırmayı ve olası 

zorluklara karşı çözüm üretmeyi hedeflemektedir. 
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Tablo 4.1. Bu tez kapsamındaki çalışmalarının özellikleri 

# 
Çalışma 

Tipi 
Programlama 

Dili 
Yöntem 

Sınıfı 
Robot 
Sayısı 

Planlama 
Kapsamı 

Ortam 
Tipi 

4.2 Simülasyon MATLAB Metasezgisel Tek Küresel Izgara 
4.3 Simülasyon MATLAB Hibrit Tek Küresel Sürekli Uzay 
4.4 Simülasyon MATLAB Metasezgisel Çok Yerel Sürekli Uzay 
4.5 Simülasyon Python Makine Öğrenmesi Tek & Çok Küresel Izgara 

4.6 
Gerçek 
Zamanlı 

Python 
Metasezgisel / 

P Kontrol 
Tek Küresel Sürekli Uzay 

4.2. İyileştirilmiş Yapay Arı Kolonisi Algoritmasını Kullanan Etkili Bir Izgara 

Tabanlı Yol Planlama Yaklaşımı 

Yol planlama problemleri robotik ve otonom sistemler için kritik öneme sahiptir. 

Literatürdeki çeşitli algoritmalar bu problemleri çözmek için etkili yöntemler sağlamış 

olsa da, daha hızlı, daha doğru ve enerji açısından verimli çözümler geliştirmeye hala 

ihtiyaç vardır. Bunlar arasında ABC algoritması, yol planlama problemleri için sıklıkla 

kullanılan sağlam ve güçlü bir metasezgisel optimizasyon algoritması olarak öne 

çıkmaktadır [75]. Ancak No Free Lunch teoremi doğrultusunda hiçbir optimizasyon 

algoritmasının tüm problem tiplerinde optimum performans göstermesi beklenemez. Bu 

makalenin odak noktası yol planlama problemini çözme yeteneğini artırmak için ABC 

algoritmasını iyileştirmektir. Bu nedenle bu çalışmada ızgara tabanlı yol planlama 

problemleri için iyileştirilmiş bir ABC algoritması (IABC) önerilmiştir. Bu çalışmanın 

katkıları aşağıdaki gibi özetlenebilir: 

 Yol planlama problemi hesaplama açısından zor bir optimizasyon problemidir. 

ABC algoritmasının kısıtları vardır ve ızgara tabanlı yol planlamasını ele alırken 

tatmin edici sonuçlar üretemez. 

 IABC, kullanım-keşif dengesini iyileştirmek için tasarlanmış iki mekanizmanın 

entegre edilmesiyle geliştirilmiştir. 

 Bu mekanizmalardan biri olan doğrusallaştırma stratejisi, dönüş sayısını azaltmak 

ve yol uzunluğunu kısaltmak için önerilmiştir. Bu strateji, gereksiz köşeleri 

ortadan kaldırarak robotun yolunu basitleştirmeyi, daha verimli hareket etmeyi ve 

enerji tasarrufu sağlamayı amaçlamaktadır. 
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 Bu mekanizmalardan bir diğeri olan yerel arama stratejisi, ABC algoritmasının 

yakınsama hızını artırmak ve küresel optimum çözümü bulma yeteneğini 

geliştirmek için önerilmiştir. 

 Simülasyon deneylerinde IABC, temel ABC ve literatürdeki diğer algoritmalarla 

karşılaştırıldı ve sadece yol uzunluğunda değil, aynı zamanda yolu oluşturan 

hücre sayısı ve toplam dönüş açısında da diğer algoritmalardan üstün gelmiştir. 

4.2.1. Problem Tanımı 

Izgara tabanlı yol planlama problemi, bir mobil robotun engellere çarpmadan hedef 

noktaya ulaşmak için en az sayıda ızgara hücresinden geçmesi gereken bir minimizasyon 

problemi olarak tanımlanabilir. Izgara ortamları için 0 ve 1’den oluşan bir matris 

oluşturulur. Bu matriste 0, engelsiz bir hücreyi ve 1, bir engel hücresini temsil eder. Aday 

çözümler, Eşitlik (4.1)’deki gibi iki boyutlu bu ızgara ortamında bir dizi ızgara 

hücresinden oluşan bir yolu temsil eder.  

𝑌 = ቄ𝑝ଵ, 𝑝ଶ, … , 𝑝௜, … , 𝑝௡೤
 | 𝑛௬ ∈ ℕାቅ (4.1) 

Burada, 𝑌 planlanan yolu, 𝑝௜ yolun 𝑖’inci hücresini ve 𝑛௬ ise yolu oluşturan hücre sayısı 

temsil eder. Bu çalışmada her yolun değerlendirildiği amaç fonksiyonu Eşitlik (4.2)’deki 

gibi modellenmiştir.  

arg min
௒

ℱ = ൜ 
𝑓ଵ,              𝑒ğ𝑒𝑟 𝑛௏ = 0 𝑖𝑠𝑒
𝑓ଶ,                 𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

(4.2) 

Burada, ℱ amaç fonksiyonunu ve 𝑛௏ engel ihlal sayısını temsil eder. Engel ihlal sayısı 

bir çözüm tarafından temsil edilen yolun kaç engeli ihlal ettiğini gösterir. Bu fonksiyon 

bir yolu iki farklı şekilde değerlendirir. Fonksiyon, engel ihlali yoksa yalnızca yolun 

uzunluğunu (𝑓ଵ), engel ihlali varsa bir ceza puanı (𝑓ଶ) üretir. 𝑓ଵ yolun uzunluğunu hesaplar 

ve Eşitlik (4.3)’de gösterilir. 𝑓ଶ ise 𝑛௏’ye bağlı olarak bir ceza puanı üretir ve Eşitlik 

(4.4)’te gösterilir. 

𝑓ଵ = ෍ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ

  (4.3) 
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𝑓ଶ = 𝑚 ⋅ 𝑛 ⋅ 𝑛௏   (4.4) 

Burada, 𝑚 ve 𝑛 sırasıyla ortam matrisinin satır ve sütun sayılarını (ızgara ortamının 

boyutunu) temsil eder. Önerilen algoritmanın kapsamlı değerlendirmesi için dört farklı 

metrik dikkate alınmıştır: Yol uzunluğu, yolu oluşturan hücre sayısı, toplam dönüş açısı 

ve dönüş enerji tüketimi. Bu metrikler, algoritmanın doğruluğunu ve verimliliğini 

değerlendirmede kritik öneme sahiptir, çünkü algoritmanın performansını objektif olarak 

ölçmek ve potansiyel iyileştirmeleri belirlemek için gereklidir. Yol uzunluğu ve hücre 

sayısı yukarıda bahsedilmektedir. Toplam dönüş açısı (𝜑௧) robotun yolda döndüğü 

açıların toplamıdır. Dönüş açısı ardaşık üç hücreden (𝑝௜, 𝑝௜ାଵ, 𝑝௜ାଶ) oluşan iki düzlemsel 

çizgi arasındaki açı olarak düşünülebilir. Bu çizgiler hücreler arasındaki yol parçalarıdır. 

Toplam dönüş açısı bu çizgiler arasındaki dönüş açıların toplamıdır ve Eşitlik (4.5)’te 

gösterildiği gibi hesaplanmıştır. Hücre sayısı ve toplam dönüş açısı kavramları Şekil 

4.1’de gösterilmektedir. 

𝜑௧ = ෍ 𝜑௜

௡೤ିଶ

௜ୀଵ

= ෍ cosିଵ ቆ
(𝑝௜ାଵ − 𝑝௜) ⋅ (𝑝௜ାଶ − 𝑝௜ାଵ)

‖𝑝௜ାଵ − 𝑝௜‖ ⋅ ‖𝑝௜ାଶ − 𝑝௜ାଵ‖
ቇ

௡೤ିଶ

௜ୀଵ

 (4.5) 

𝜑1 

𝜑2 

Başlangıç

Hedef

        

Şekil 4.1. Hücre sayısı ve toplam dönüş açısı kavramları (Mavi çizgi planlanan bir 
yolu, siyah noktalar hücreleri ve 𝜑ଵ ve 𝜑ଶ ise dönüş açılarını temsil eder.) 

Robot hareket yönünü değiştirdiği durumlarda düz ilerlemeye kıyasla daha fazla enerji 

harcamaktadır. Bu nedenle dönüş anlarındaki enerji tüketiminin de dikkate alınması 

gerekmektedir. Bu çalışmada dönüş enerji tüketimi (ℰ௧) robotun belirli bir yol üzerindeki 

hareketi sırasında yönünü değiştirdiği noktalarda harcadığı enerjilerin toplamı olarak 

tanımlanmıştır. Bu metrikte dönüş açısı 0° ise (robot düz gidiyorsa) dönüş enerji tüketimi 

sıfır kabul edilirken; 45°, 90°, 135° ve 180° gibi dönüşlerde tüketilen enerji daha 
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yüksektir. Ayrıca bu çalışmadaki dönüş enerji tüketimi sadece belirli dönüş açılarına 

değil, tüm yön değişimlerinin etkisine duyarlıdır. Her bir dönüş açısı 45°’lik referans 

değere oranlanarak normalize edilmiş ve toplam tüketim bu oranların toplamı üzerinden 

belirlenmiştir. Dönüş enerji tüketimi Eşitlik (4.6)’daki gibi hesaplanmıştır.  

ℰ௧ = ෍ ℰ௜

௡೤ିଶ

௜ୀଵ

= ෍
𝜑௜

45°

௡೤ିଶ

௜ୀଵ

 (4.6) 

4.2.2. Önerilen Yöntem 

Önerilen IABC için iki mekanizma eklenmiştir: doğrusallaştırma stratejisi ve yerel arama 

stratejisi. Doğrusallaştırma stratejisi, ızgara ortamında oluşturulan yolun gereksiz 

köşelerini ortadan kaldırmaya odaklanan bir kullanım tabanlı iyileştirmedir. Yerel arama 

stratejisi, en iyi çözümün maliyetini daha da optimize etmeyi amaçlayan bir keşif tabanlı 

mekanizmadır. Böylece bu iyileştirmeler algoritmanın kullanım-keşif dengesini 

bozmadan gerçekleştirilmiştir. 

4.2.2.1. Doğrusallaştırma Stratejisi 

Izgara tabanlı yol planlamasında, temel ABC optimum yolları planlarken engel 

içermeyen gereksiz ızgara hücrelerini kullanabilir. Doğrusallaştırma stratejisini 

kullanarak bu gereksiz ızgara hücreleri göz ardı edilir ve yol daha doğrusal hale getirilir. 

Böylece daha uygun maliyetli yollar elde edilebilir. 𝑛௏ = 0 durumu için, 𝑓ଵ alt 

fonksiyonunu hesaplamadan hemen önce, yolu doğrusallaştırmak için bu strateji 

kullanılır. Bundan sonra algoritma doğrusallaştırılmış yolun uzunluğunu hesaba katarak 

çalışmaya devam eder. Bu strateji, yolun ızgara hücrelerinin üçlü gruplarına odaklanarak 

ilerler. İlk noktayı ve üçüncü noktayı temel alır ve ikinci noktada bir engel olup 

olmadığını kontrol eder. Engel yoksa ikinci nokta gereksiz olarak tanımlanır ve yol 

dizisinden çıkarılır. Böylece daha doğrusal bir yol parçası elde edilir. İkinci noktada bir 

engel varsa hiçbir işlem yapılmaz ve bir sonraki üçlü gruba odaklanılır. Bu döngü, yolun 

tüm hücreleri üçlü gruplar halinde incelenene kadar devam eder. Doğrusallaştırma 

stratejisinin prensibini Şekil 4.2’de, doğrusallaştırma stratejisi tabanlı amaç 

fonksiyonunun (DSAF) sözde kodu ise Algoritma 4.1’de gösterilmektedir. 
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1 2

3

1

2

              Doğrusallaştırma Öncesi Yol

              Doğrusallaştırma Sonrası Yol

              Engel

1 2

3

4

5 6

1

2

3 4

 

Şekil 4.2. Doğrusallaştırma stratejisinin prensibi (Yukarıdaki ortamda mavi yolun 
ikinci hücreyi ve aşağıdaki ortamda mavi yolun ikinci ve üçüncü hücreleri 
gereksiz olarak tanımlanabilir. İki yatay veya dikey ızgara hücresinin 
merkezleri arasındaki uzaklığın 1 br olduğu düşünüldüğünde, aşağıdaki 
ortam için mavi yolun uzunluğu 5.41 br, kırmızı yolun uzunluğu ise 4.65 
br’dir. Bu sonuç yol uzunluğuna göre %14.05’lik bir iyileştirme olduğunu 
göstermektedir.) 

 

 

 

 

 

 

 

 

 



64 

Algoritma 4.1: DSAF’nin sözde kodu   
Girdi: 𝑥, 𝐸  // Aday çözüm, ortam matrisi 
Çıktı: 𝑓  // Maliyet 

1: 𝑛௏ ← 0,   𝑓 ← 0, [𝑚, 𝑛] ← 𝑠𝑖𝑧𝑒(𝐸) 
2: 𝑌 ← ℱ(𝑥)  // Aday çözümün yola dönüştürülmesi 
3: 𝐿ଵ ← 𝑓ଵ(𝑌)  
4: for 𝑖 = 1: 𝐿ଵ 
5:  𝑝௜ ← 𝑌(𝑖) 
6:  if 𝐸(𝑝௜) == 1 
7:   𝑛௏ ← 𝑛௏ + 1 
8:  end if 
9: end for 

10: if 𝑛௏ == 0 
11:  𝑌′ ← 𝑌 
12:  𝐿ଶ ← 𝑓ଵ(𝑌′)  
13:  𝑖 ← 1  
14:  while 𝑖 ≠ 𝐿ଶ − 2 
15:   𝑝௜ ← 𝑌ᇱ(𝑖) 
16:   𝑝௜ାଶ ← 𝑌ᇱ(𝑖 + 2) 
17:   if 𝐸(𝑝௜: 𝑝௜ାଶ) == 0 
18:    𝑌ᇱ(𝑖 + 1) = ∅ 
19:    𝑖 ← 𝑖 − 1 
20:   end if 
21:   𝑖 ← 𝑖 + 1 
22:   𝐿ଶ ← 𝑓ଵ(𝑌′)  
23:  end while 
24:  𝑓 ← ∑ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ
, 𝑌ᇱ: ቄ𝑝ଵ, … , 𝑝௡೤

ቅ ⊂ 𝐸  

25: else 
26:  𝑓 ← 𝑚 ⋅ 𝑛 ⋅ 𝑛௏  
27: end if 

4.2.2.2. Yerel Arama Stratejisi 

ABC bir çözümün komşularına ve problemin tek bir parametresine odaklanarak 

güncelleme gerçekleştirir. Yinelemelerde üretilen en iyi çözüm her zaman en iyi 

olmayabilir ve yerel minimuma düşebilir. Bu nedenle IABC’de her yinelemenin sonunda 

üretilen en iyi çözüm, kâşif arısı aşamasına benzer bir yerel arama stratejisine tabi tutulur. 

Bu stratejide, en iyi çözümün her parametresi için rastgele yeni bir değer üretilir. Bu yeni 

parametreli çözümün maliyeti mevcut çözümünkine göre daha düşükse yeni parametreli 

çözüm tercih edilir. Bu arama çözümün tüm boyutu boyunca devam eder. Bu strateji ile 

en iyi çözümden daha iyi maliyete sahip çözümler üretilebilir ve böylece algoritmanın 

arama performansı iyileştirilebilir. Yerel arama stratejisinin (YAS) prensibi Şekil 4.3’te, 
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bu strateji ile önerilen IABC algoritmasının sözde kodları sırasıyla Algoritma 4.2 ve 

4.3’te, önerilen IABC algoritmasının akış diyagramı ise Şekil 4.4’te gösterilmektedir.   

1 2 3 4 1 2 3 4

              Yerel Arama Öncesi Yol

              Yerel Arama Sonrası Yol

              Engel

 

Şekil 4.3. Yerel arama stratejisinin prensibi (En iyi çözümü temsil eden bu yolun 
üçüncü hücreyi güncellenmiştir. İki yatay veya dikey ızgara hücresinin 
merkezleri arasındaki uzaklığın 1 br olduğu düşünüldüğünde mavi yolun 
uzunluğu 4.65 br, kırmızı yolun uzunluğu ise 4.16 br’dir. Bu sonuç yol 
uzunluğuna göre %10.54’lük bir iyileştirme olduğunu göstermektedir.) 

Algoritma 4.2: YAS’ın sözde kodu   
Girdi: 𝑥ො, 𝑓መ, 𝐸, 𝑥௟, 𝑥௛  // Eski en iyi çözüm, eski en iyi çözümün maliyeti, ortam matrisi, 
arama sınırları 
Çıktı: 𝑥ො, 𝑓መ  // Yeni en iyi çözüm, yeni en iyi çözümün maliyeti 

1: 𝑚 ← 𝑠𝑖𝑧𝑒(𝑥ො) 
2: for 𝑖 = 1: 𝑚 
3:  𝑥ᇱ ← 𝑥ො 
4:  𝑥ᇱ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),   𝑟~𝑈(0, 1) 
5:  𝑓ᇱ ← DSAF(𝑥ᇱ, 𝐸)  // Algoritma 4.1 
6:  if 𝑓ᇱ < 𝑓መ 
7:   𝑥ො ← 𝑥ᇱ 
8:   𝑓መ  ← 𝑓ᇱ 
9:  end if 

10: end for 
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Algoritma 4.3: Önerilen IABC algoritmasının sözde kodu 
1: 𝐸, 𝐷, 𝑥௠௜௡, 𝑥௠௔௫ ← Ortam matrisi, problem boyutu, arama sınırları 
2: 𝑇, 𝑆, 𝑙𝑖𝑚𝑖𝑡 ← Kontrol parametreleri 
3: 𝑋 ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),   𝑟~𝑈(0, 1)ௌ×஽ 
4: 𝑓௜ ← DSAF(𝑥௜, 𝐸),    𝑖 ∈ {1,2, … , 𝑆},   𝑥௜ ∈ 𝑋  // Algoritma 4.1 
5: 𝑓𝑖𝑡௜ ← ℱ(𝑓௜)  // Uygunluk değerleri - Eşitlik (3.33) 
6: ൫𝑥ො, 𝑓መ൯ ← arg max

௫∈ఄ
𝑓𝑖𝑡(𝑥) 

7: for 𝑡 = 1: 𝑇 
8:  for 𝑖 = 1: 𝑆 
9:   ൫𝑥௜

௝
൯

ᇱ
← 𝑥௜

௝
+ Φ௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯,    𝑥௥భ

~𝑋 \ {𝑥௜},    𝑗~{1,2, … , 𝐷} 
10:   𝑓௜

ᇱ ← DSAF ቀ൫𝑥௜
௝
൯

ᇱ
, 𝐸ቁ  // Algoritma 4.1 

11:   𝑓𝑖𝑡௜
ᇱ ← ℱ(𝑓௜

ᇱ)  // Uygunluk değeri - Eşitlik (3.33) 
12:   if 𝑓𝑖𝑡௜

ᇱ > 𝑓𝑖𝑡௜ 
13:    𝑥௜

௝
← ൫𝑥௜

௝
൯

ᇱ
 

14:    𝑡𝑟𝑖𝑎𝑙௫೔
← 0 

15:   else 
16:    𝑡𝑟𝑖𝑎𝑙௫೔

← 𝑡𝑟𝑖𝑎𝑙௫೔
+ 1 

17:   end if 
18:  end for 
19:  𝛿 ← ℱ(𝑓𝑖𝑡)  // Seçilme olasılıkları - Eşitlik (3.34) 
20:  for 𝑖 = 1: 𝑆 
21:   if 𝑟~𝑈(0,1) < 𝛿௜ 
22:    ൫𝑥௜

௝
൯

ᇱ
← 𝑥௜

௝
+ 𝛷௜

௝
൫𝑥௜

௝
− 𝑥௥భ

௝
൯,    𝑥௥భ

~𝑋 \ {𝑥௜},    𝑗~{1,2, … , 𝐷} 
23:    𝑓௜

ᇱ ← DSAF ቀ൫𝑥௜
௝
൯

ᇱ
, 𝐸ቁ  // Algoritma 4.1 

24:    𝑓𝑖𝑡௜
ᇱ ← ℱ(𝑓௜

ᇱ)  // Uygunluk değeri - Eşitlik (3.33)  
25:    if 𝑓𝑖𝑡௜

ᇱ > 𝑓𝑖𝑡௜ 
26:     𝑥௜

௝
← ൫𝑥௜

௝
൯

ᇱ
 

27:     𝑡𝑟𝑖𝑎𝑙௫೔
← 0 

28:    else  
29:     𝑡𝑟𝑖𝑎𝑙௫೔

← 𝑡𝑟𝑖𝑎𝑙௫೔
+ 1 

30:    end if 
31:   end if  
32:  end for 
33:  𝑥௪ ← arg max

௫∈எ
𝑡𝑟𝑖𝑎𝑙(𝑥) 

34:  if 𝑡𝑟𝑖𝑎𝑙௫ೢ
> 𝑙𝑖𝑚𝑖𝑡 

35:   𝑥௪ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),   𝑟~𝑈(0, 1) 
36:   𝑓௫ೢ

← DSAF(𝑥௪, 𝐸)  // Algoritma 4.1 
37:   𝑓𝑖𝑡௫ೢ

← ℱ(𝑓௫ೢ
)  // Uygunluk değeri - Eşitlik (3.33)  

38:  end if 
39:  ൫𝑥ො, 𝑓መ൯ ← arg max

௫∈எ
𝑓𝑖𝑡(𝑥) 

40:  ൫𝑥ො, 𝑓መ൯ ← YAS(𝑥ො, 𝑓መ, 𝐸, 𝑥௟ , 𝑥௛)  // Algoritma 4.2 
41: end for 
42: 𝑥ො, 𝑓መ 
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Başla

Kontrol 
parametrelerini 

ayarla ve 
popülasyonu üret

Yeni çözümler 
üret

Maliyetleri 
DSAF’de hesapla

Seçilme 
olasılıklarını 

hesapla

Tüm gözcüler 
dağıtıldı mı?

Maksimum trial 
değerli çözümü bul

Çözüm terk 
edildi mi?

Rastgele yeni 
çözüm üret

YAS’ı çalıştır

t > TDur

t ++

Evet

Hayır

Evet

Hayır

HayırEvet

İşçi Arı 
Aşaması

Gözcü Arı 
Aşaması

Kâşif Arı 
Aşamasıo

Yeni çözümler 
üret

Maliyetleri 
DSAF’de hesapla

 

Şekil 4.4. Önerilen IABC algoritmasının akış diyagramı  
 

4.2.2.3. IABC Algoritmasının Karmaşıklığı 

Bu çalışmadaki amaç fonksiyonunda herhangi bir çözümün değerlendirme zamanı 𝑡௙
௥ 

olarak kabul edilirse, karmaşıklığı O(𝑡௙
௥) olarak ifade edilir. Temel ABC’de, önce 

başlangıç popülasyonu amaç fonksiyonunda değerlendirilir. Popülasyon büyüklüğü 𝑆 ile 

gösterilirse, ABC’nin başlangıç karmaşıklığı Eşitlik (4.7)’de gösterilmektedir. 
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O൫𝑆 ⋅ 𝑡௙
௥൯ = O(𝑆 ⋅ 𝑡௥) (4.7) 

Daha sonra işçi arı, gözcü arı ve kâşif arı aşamaları maksimum iterasyon sayısı (𝑇) için 

çalıştırılır. Amaç fonksiyonu işçi ve gözcü arı aşamalarında 𝑆 kez, bir çözümün sayacı 

limit değerine ulaşırsa kâşif arı aşamasında bir kez çağrılır. ABC’nin iteratif karmaşıklığı 

ve toplam karmaşıklığı sırasıyla Eşitlik (4.8) ve (4.9)’da gösterilmektedir [76].   

O ቀ𝑇 ⋅ ൫𝑆 ⋅ 𝑡௙
௥ + 𝑆 ⋅ 𝑡௙

௥ + 𝑡௙
௥൯ቁ

= O ቀ𝑇 ⋅ ൫2 ⋅ 𝑆 ⋅ 𝑡௙
௥൯ቁ

= O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.8)

 

O(஺஻஼) = O(𝑆 ⋅ 𝑡௥) + O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) = O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.9) 

Önerilen IABC’de ilk olarak, başlangıç popülasyonu amaç fonksiyonunda değerlendirilir. 

Ancak, amaç fonksiyonunu çağırmadan önce bir çözüme karşılık gelen yol 

doğrusallaştırma stratejisine tabi tutulur. Bu doğrusallaştırılmış yol (güncellenmiş 

çözüm) amaç fonksiyonunda değerlendirilir. Bu stratejinin çalışma süresi 𝑡௜
௥ olarak 

gösterilirse, IABC’nin başlangıç karmaşıklığı Eşitlik (4.10)’da gösterilmektedir. 

O ቀ𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ቁ = O(𝑆 ⋅ 𝑡௥) (4.10) 

Daha sonra işçi arı, gözlemci arı ve kâşif arısı aşamaları maksimum yineleme sayısı (𝑇) 

boyunca çalıştırılır. Tıpkı ABC’de olduğu gibi, amaç fonksiyonu işçi ve gözlemci arı 

aşamalarında 𝑆 kez ve çözümün sayacı limit değerine ulaşırsa kâşif arısı aşamasında bir 

kez çağrılır. Ancak, her amaç fonksiyonu çağrısından önce doğrusallaştırma stratejisi 

uygulanır. Amaç fonksiyonu yerel arama stratejisinde de çağrılır. Bu strateji yalnızca en 

iyi çözüm üzerinde çalıştığı için amaç fonksiyonu yalnızca bir kez çağrılır. Yerel arama 

stratejisinin çalışma zamanı 𝑡௢
௥ olarak gösterilirse, IABC’nin iteratif karmaşıklığı ve 

toplam karmaşıklığı Eşitlik (4.11) ve (4.12)’de gösterilmektedir. 

O ൬𝑇 ⋅ ቀ𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ + 𝑆 ⋅ ൫𝑡௜
௥ + 𝑡௙

௥൯ + ൫𝑡௜
௥ + 𝑡௙

௥൯ + ൫𝑡௢
௥ + 𝑡௙

௥൯ቁ൰

= O൫𝑇 ⋅ (𝑆 ⋅ 𝑡௥ + 𝑆 ⋅ 𝑡௥ + 𝑡௥ + 𝑡௥)൯

= O൫𝑇 ⋅ (2 ⋅ 𝑆 ⋅ 𝑡௥)൯

= O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.11)
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O(ூ஺஻஼) = O(𝑆 ⋅ 𝑡௥) + O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) = O(𝑇 ⋅ 𝑆 ⋅ 𝑡௥) (4.12) 

Bu denklemler ABC ve IABC algoritmalarının aynı hesaplama karmaşıklığına sahip 

olduğunu göstermektedir.  

4.2.3. Bulgular 

Bu çalışmadaki tüm simülasyonlar MATLAB programlama dilinde kodlanmış ve 16 GB 

RAM ve 2.6 GHz işlemciye sahip bir bilgisayarda çalıştırılmıştır. Simülasyon 

deneylerinde öncelikle önerilen IABC’nin performansı gerçekleştirilmiştir. IABC’nin 

performans analizi için öncelikle aynı boyuttaki ortamlarda temel ABC ile detaylı bir 

şekilde karşılaştırılmıştır. İkinci olarak, IABC’nin iyileştirme bileşenlerinin katkılarını 

test etmek için bir ablasyon analizi gerçekleştirilmiştir. Üçüncü olarak IABC’nin 

performansı farklı boyutlardaki ortamlarda test edilmiş ve algoritmanın ölçeklenebilirliği 

araştırılmıştır. Son olarak IABC iyi bilinen ve yeni geliştirilmiş algoritmalarla ve güncel 

çalışmalardan elde edilen sonuçlarla kapsamlı bir şekilde karşılaştırılmıştır. 

4.2.3.1. IABC Algoritmasının ABC ile Karşılaştırılması  

Bu simülasyonda önerilen IABC temel ABC ile karşılaştırılmıştır. İlk olarak, Şekil 4.5’te 

gösterildiği gibi farklı zorluk seviyelerine sahip dört adet 20 x 20 br2 boyutunda ızgara 

tipi ortam tasarlanmıştır. İki yatay veya dikey ızgara hücresinin merkezleri arasındaki 

uzaklık 1 br’dir. Bu ortamlarda başlangıç noktası sol alt köşe (1, 1) ve hedef noktası sağ 

üst köşedir (20, 20). Ortamların engel oranı, özellikleri ve tasarım kriterleri Tablo 4.2’de 

gösterilmektedir. 

        
              (a)                              (b)                               (c)                              (d) 

Şekil 4.5. Aynı boyutlarda dört farklı ızgara tipi ortam: (a) Ortam 1, (b) Ortam 2, (c) 
Ortam 3, (d) Ortam 4 (Gri kareler engelleri, kırmızı daireler ve yeşil kareler 
sırasıyla robotun başlangıç ve hedef noktalarını temsil eder.) 
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Tablo 4.2. Ortamların engel oranı, özellikleri ve tasarım kriterleri  

Ortam 
Engel 
Oranı 

Özellik Tasarım Kriteri 

1 0.19 
Düzenli engellerle basit bir 
ortam 

Alternatif çözümlerin daha az 
olduğu kısıtlı ortamlarda IABC 
algoritmasının performansını 
değerlendirmek. 2 0.26 

Düzenli engellerle karmaşık 
bir ortam 

3 0.17 
Rastgele dağıtılmış engellerle 
basit bir ortam 

Düzensiz ve kaotik ortamlarda 
IABC algoritmasının 
performansını değerlendirmek. 4 0.22 

Rastgele dağıtılmış engellerle 
karmaşık bir ortam 

Her iki algoritma için de maksimum iterasyon sayısı, popülasyon boyutu ve limit değeri 

sırasıyla 200, 50 ve 100’dür [77]. Algoritmalar 30 koşma ile çalıştırılmıştır. Simülasyon 

sonucunda aynı boyuttaki ortamlarda her iki algoritma tarafından planlanan yollar, 

IABC’nin ABC ile performans karşılaştırması ve ortalama yakınsama grafikleri sırasıyla 

Şekil 4.6, Tablo 4.3 ve Şekil 4.7’de gösterilmektedir.  

       
              (a)                              (b)                               (c)                              (d) 

Şekil 4.6. ABC ve IABC algoritmalarının Ortam 1-4 için planladığı yollar:                    
(a) Ortam 1, (b) Ortam 2, (c) Ortam 3, (d) Ortam 4  

Tablo 4.3. IABC ve ABC’nin aynı boyuttaki ortamlarda performans karşılaştırması 
(OP: Optimum, OR: Ortalama, SS: Standart Sapma) 

Ortam Algoritma 
Yol Uzunluğu (br) Hücre Sayısı 

Toplam Dönüş Açısı 
(rad) 

Dönüş Enerji 
Tüketimi 

OP OR SS OP OR SS OP OR SS OP OR SS 

1 
ABC 43.21 46.06 1.80 38 41.33 1.88 11.78 15.39 2.26 14 19.53 3.03 
IABC 41.24 41.24 0 11 11 0 4.94 4.94 0 2.36 2.36 0 

2 
ABC 57.21 60.25 2.43 53 55.96 4.86 14.92 18.09 2.94 13 19.93 5.31 
IABC 55.63 55.71 0.32 18 18.93 0.25 11.35 11.36 0.04 2.54 2.66 0.39 

3 
ABC 30.79 33.84 1.65 24 29.03 2.25 7.06 13.32 2.84 9 17.80 4.93 
IABC 27.46 28.79 0.98 8 10.40 1.63 1.95 4.20 1.47 2 3.95 1.05 

4 
ABC 31.21 34.17 1.18 26 29.10 1.49 10.21 15.47 2.45 10 16.56 4.17 
IABC 28.50 29.61 0.47 12 15.03 1.27 5.53 7.38 1.23 2.59 4.28 1.64 
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  (a)                              (b)                               (c)                              (d) 

Şekil 4.7. Ortam 1-4 için ortalama yakınsama grafikleri: (a) Ortam 1, (b) Ortam 2,   
(c) Ortam 3, (d) Ortam 4  

Şekil 4.6’da gösterilen yollar, IABC’nin ABC’den daha kısa ve daha düzgün yollar 

ürettiğini göstermektedir. Doğrusallaştırma stratejisi nedeniyle IABC tarafından üretilen 

yollardaki hücre sayısı ABC’den daha azdır. ABC, yolun geçtiği her hücreyi hesaba 

katmıştır, bu da yolun maliyetini artırır. Tablo 4.3, IABC’nin yol uzunlukları açısından 

her ortamda ABC’den üstün olduğunu göstermektedir. IABC, ABC’ye kıyasla ortalama 

yol uzunlukları açısından Ortam 1 için %10.45, Ortam 2 için %7.53, Ortam 3 için %14.9 

ve Ortam 4 için %13.35'lik bir iyileştirme sağlamıştır. Standart sapmalar, IABC’nin 

ABC’den daha kararlı sonuçlar ürettiğini göstermektedir. Ayrıca, hücre sayısına göre 

önerilen IABC ABC’den daha etkili görünmektedir. Ortalama hücre sayısı açısından 

IABC, ABC’ye kıyasla Ortam 1 için %73.38, Ortam 2 için %66.17, Ortam 3 için %61.17 

ve Ortam 4 için %48.34 oranında iyileştirme sağlamıştır. Bu sonuçlar, önerilen 

algoritmanın diğer yöntemlere göre daha az hücre kullanarak aynı optimizasyon 

hedeflerine ulaşabileceğini göstermektedir. Toplam dönüş açısına göre, IABC her ortam 

için ABC’den daha düşük açılı ve daha düzgün yollar planlamıştır. Böylece diğer 

metriklerde olduğu gibi bu metrikte de etkili bir yöntem olduğu görülmektedir. Robotların 

dönüş hareketlerinde de enerji tükettiği düşünüldüğünde, önerilen algoritmanın robotun 

enerjisini optimum şekilde yönettiği söylenebilir. Ortalama toplam dönüş açısı açısından, 

IABC, ABC algoritmasına kıyasla Ortam 1 için %67.89, Ortam 2 için %37.18, Ortam 3 

için %68.44 ve Ortam 4 için %52.26 oranında bir iyileştirme sağlamıştır. Şekil 4.7’de 

gösterilen yakınsama grafikleri, IABC’nin ABC’den daha hızlı yakınsadığını 

göstermektedir. Ayrıca, her iki algoritma da düzensiz engel ortamlarında düzenli engel 

ortamlarına göre daha hızlı yakınsamıştır. Bu sonuçlar, IABC’nin tüm değerlendirme 

ölçütleri açısından temel ABC'den üstün olduğunu kanıtlamaktadır.   
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4.2.3.2. IABC Algoritmasının Ablasyon Analizi  

Ablasyon analizi, yapay zekâda bir algoritmanın farklı bileşenlerinin performansı 

üzerindeki etkisini incelemek için kullanılan bir yöntemdir. Modelin belirli bir özelliğini 

veya bileşenini kaldırarak performans değişikliği analiz edilir ve bu da kritik bileşenlerin 

tanımlanmasına olanak tanır. Önerilen IABC’nin doğrusallaştırma ve yerel arama olmak 

üzere iki iyileştirme bileşeni olduğundan, bu iki bileşenin ayrı ayrı etkilerini incelemek 

ve hangisinin daha kritik bir iyileştirme olduğunu belirlemek önemlidir. Bu etkiyi 

incelemek için, IABC-1 ve IABC-2 olmak üzere iki algoritma dikkate alınmıştır. IABC-

1 sadece doğrusallaştırma bileşenini içerirken, IABC-2 sadece yerel arama bileşenini 

içerir. IABC-1 ve IABC-2, Alt Başlık 4.2.3.1’de bahsedilen Ortam 2 ve 4 için test 

edilmiştir. Adil bir karşılaştırma için, IABC-1 ve IABC-2’nin maksimum iterasyon sayısı 

ve popülasyon boyutu sırasıyla 200 ve 30 olarak ayarlanmıştır. Algoritmaların limit 

değerleri de 100 olarak ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. 

ABC, IABC-1, IABC-2 ve IABC’nin Ortam 2 ve 4 için yol uzunluğu karşılaştırması 

Tablo 4.4’te gösterilmektedir.  

Tablo 4.4. ABC, IABC-1, IABC-2 ve önerilen IABC algoritmalarının Ortam 2 ve 4 
için yol uzunluğu (br) karşılaştırması (OP: Optimum, OR: Ortalama, SS: 
Standart Sapma) 

Algoritma 
Ortam 2 Ortam 4 

OP OR SS OP OR SS 
ABC 57.21 60.25 2.43 31.21 34.17 1.18 

IABC-1 55.63 56.36 1.32 28.83 30.60 0.83 
IABC-2 57.21 58.79 1.45 29.21 33.06 1.28 
IABC 55.63 55.71 0.32 28.50 29.61 0.47 

Tablo 4.4’te IABC-1’in IABC-2’den daha fazla iyileştirme sağladığı görülmektedir. 

Ortam 2'deki ortalamalar açısından, IABC-1 ABC’ye kıyasla %6.45’lik bir iyileştirme 

sağlarken, IABC-2 %2.43’lük bir iyileştirme sağlamıştır. Ortam 4 için ortalamalar 

açısından, IABC-1 ABC’ye kıyasla %10.53’lük bir iyileştirme sağlarken, IABC-2 

%3.26’lık bir iyileştirme sağlamıştır. Ayrıca, Ortam 2 için ortalamalar açısından IABC, 

IABC-1’e kıyasla %1.17 ve IABC-2’ye kıyasla %5.21’lik bir iyileştirme göstermiştir. 

Ortam 4 için ortalamalar açısından IABC, IABC-1’e kıyasla %3.24 ve IABC-2’ye kıyasla 

%10.44’lük bir iyileştirme göstermiştir. Bu sonuçlara göre, doğrusallaştırma bileşeni 

yerel arama bileşeninden daha kritiktir.    
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4.2.3.3. IABC Algoritmasının Ölçeklenebilirlik Analizi  

Önerilen algoritmanın farklı boyutlardaki veri kümelerinde benzer performans gösterip 

göstermediğini belirlemek de önemlidir. Bu nedenle, 30 x 30 br2 ve 40 x 40 br2 

boyutlarında Ortam 5 ve Ortam 6 olarak adlandırılan iki ek ortam daha tasarlanmıştır. Bu 

ortamlarda başlangıç noktaları sol alt köşe (1, 1); hedef noktaları sağ üst köşelerdir, Ortam 

5 için   (30, 30) ve Ortam 6 için (40, 40). Ortam 5 ve 6'nın engel oranları Alt Başlık 

4.2.3.1’de bahsedilen Ortam 4 ile aynıdır. Bu ortamlar Şekil 4.8’de gösterilmektedir. 

   
                              (a)                                                               (b) 

Şekil 4.8. Farklı boyutlarda iki farklı ızgara tipi ortam: (a) Ortam 5, (b) Ortam 6 
(Gri kareler engelleri, kırmızı daireler ve yeşil kareler sırasıyla robotun 
başlangıç ve hedef noktalarını temsil eder.) 

Adil bir karşılaştırma için ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon 

boyutu sırasıyla 200 ve 50 olarak ayarlanmıştır. Algoritmaların limit değerleri 100 olarak 

ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. Ortam 5 ve 6 için ABC 

ve IABC tarafından planlanan yollar Şekil 4.9’da gösterilmektedir. IABC ve ABC’nin 

farklı boyutlardaki ortamlarda performans karşılaştırması Tablo 4.5’te gösterilmektedir.  
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                              (a)                                                               (b) 

Şekil 4.9. ABC ve IABC algoritmalarının Ortam 5 ve 6 için planladığı yollar:                    
(a) Ortam 5, (b) Ortam 6 

Tablo 4.5. IABC ve ABC’nin 30 x 30 br2 ve 40 x 40 br2 boyutlardaki ortamlarda 
performans karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart 
Sapma) 

Ortam Algoritma 
Yol Uzunluğu (br) Hücre Sayısı 

Toplam Dönüş Açısı 
(rad) 

Dönüş Enerji 
Tüketimi 

OP OR SS OP OR SS OP OR SS OP OR SS 

5 
ABC 56.52 64.54 3.75 48 56.40 3.72 21.99 29.68 4.15 22 35.06 5.69 
IABC 45.74 52.10 3.15 17 22.16 2.56 10.35 15.73 2.65 1.18 6.79 2.92 

6 
ABC 90.42 114.5 13.39 79 102.4 12.96 32.98 47.83 8.50 37 60.53 15.77 
IABC 68.67 91.25 11.77 23 32.76 4.89 15.38 26.66 5.86 6.40 15.36 5.09 

Şekil 4.9, IABC’nin 30 x 30 br2ve 40 x 40 br2 ortamlarda 20 x 20 br2 ortamlarda olduğu 

gibi ABC’den daha kısa yollar ürettiğini göstermektedir. Tablo 4.5 dikkate alındığında, 

IABC tüm değerlendirme metriklerinde ABC’den yine daha iyi performans göstermiştir. 

Ortalama yol uzunlukları açısından IABC, Ortam 5 için %19.26 ve Ortam 6 için 

%20.31’lik bir iyileştirme göstermiştir. Ortalama hücre sayısı açısından, IABC sırasıyla 

%60.71 ve %68.01’lik bir iyileştirme göstermiştir. Ortalama toplam dönüş açısı 

açısından, IABC sırasıyla %47.02 ve %44.24’lük bir iyileştirme göstermiştir. Her 

metriğin standart sapmalarına göre, IABC’nin ABC’den daha kararlı bir algoritma olduğu 

söylenebilir. Bu sonuçlar, önerilen IABC’nin farklı boyutlardaki veri kümelerinde benzer 

performans gösterdiğini ve ızgara tabanlı yol planlama probleminde kullanışlı bir 

algoritma olduğunu kanıtlamaktadır.   
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4.2.3.4. IABC Algoritmasının İyi Bilinen ve Yeni Geliştirilmiş Algoritmalarla 

Karşılaştırılması 

Bu simülasyonda, önerilen IABC’nin yol planlama performansı DE, PSO, GA ve 

kovaryans matrisi adaptasyon evrim stratejisi (covariance matrix adaptation evolution 

strategy, CMA-ES) [78] gibi iyi bilinen algoritmalarla karşılaştırılmıştır. Ayrıca 

literatürdeki beyaz köpekbalığı optimizasyonu (white shark optimizer, WSO) [79] ve 

geyik sürüsü optimizasyonu (elk herd optimizer, EHO) [80] gibi yeni geliştirilmiş 

algoritmalarla da karşılaştırılmıştır. Bu karşılaştırmalar için Alt Başlık 4.2.3.1’de 

belirtilen Ortam 2 kullanılmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. Tüm 

algoritmaların kontrol parametreleri Tablo 4.6’da, IABC’nin iyi bilinen ve yeni 

geliştirilmiş algoritmalarla performans karşılaştırılması Tablo 4.7’de gösterilmektedir.   

Tablo 4.6. Tüm algoritmaların kontrol parametreleri (𝑇 maksimum iterasyon sayısı, 
𝑁 ve 𝜆 popülasyon boyutu, 𝐹 ölçekleme faktörü, 𝐶𝑅 çaprazlama oranı, 𝑐ଵ 
ve 𝑐ଶ kişisel ve sosyal katsayılar, 𝑀𝑅 mutasyon oranı, 𝑓௟ ve 𝑓௛ dalgalı 
hareketin sınır frekansları, 𝜏 ivme katsayısı, 𝑎଴, 𝑎ଵ ve 𝑎ଶ pozitif sabitler, 
𝐵௥ boğa oranı, 𝜇 ebeveyn sayısı, 𝑐ఙ ve 𝑑ఙ adım boyutu kontrolü için 
öğrenme oranı ve sönümleme parametresi, 𝑐௖, ve 𝑐ఓ kovaryans güncelleme 
parametreleridir. CMA-ES'nin parametreleri bu çalışmadaki yol planlama 
problemi için problem boyutu 18 ve arama alanı sınırları [1, 20] ile 
ayarlanmıştır.) 

Algoritma Parametre 

ABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 100 

DE 𝑇 = 200, 𝑆 = 50, 𝐹 = [0.2, 0.8], 𝐶𝑅 = 0.2 

PSO 𝑇 = 200, 𝑆 = 50, 𝑐ଵ = 2, 𝑐ଶ = 2 

GA 𝑇 = 200, 𝑆 = 50, 𝐶𝑅 = 0.9, 𝑀𝑅 = 0.1 

CMA-ES 𝑇 = 200, 𝑆 = 50, 𝜇 = 25, 𝑐ఙ = 0.43, 𝑑ఙ = 1.43, 𝑐௖ = 0.2, 𝑐ఓ = 0.0581 

WSO 𝑇 = 200, 𝑆 = 50, 𝑓௟ = 0.07, 𝑓௛ = 0.75, 𝜏 = 4.12, 𝑎଴ = 6.25, 
𝑎ଵ = 100, 𝑎ଶ = 0.0005 

EHO 𝑇 = 200, 𝑆 = 50, 𝐵௥ = 0.2 

IABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 100 
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Tablo 4.7. Ortam 2 için IABC’nin iyi bilinen ve yeni geliştirilmiş algoritmalarla 
performans karşılaştırılması (OP: Optimum, OR: Ortalama, SS: Standart 
Sapma) 

Algoritma 
Yol Uzunluğu (br) Hücre Sayısı 

Toplam Dönüş Açısı 
(rad) 

Dönüş Enerji  
Tüketimi 

OP OR SS OP OR SS OP OR SS OP OR SS 
ABC 57.21 60.25 2.43 53 55.96 4.86 14.92 18.09 2.94 13 19.93 5.31 
DE 57.21 57.21 0.00 52 52.00 0.00 14.92 18.22 1.20 13 16.13 1.69 

PSO 75.21 78.49 1.84 70 73.06 2.39 16.49 26.65 3.05 20 33.53 4.88 
GA 80.04 99.57 14.56 64 84.70 16.32 24.34 35.18 4.17 25 50.53 10.54 

CMA-ES 93.45 106.4 3.76 94 103.7 4.14 16.49 24.19 6.39 23 35.40 7.95 
WSO 57.80 65.78 9.54 54 62.83 11.54 16.49 24.24 5.24 15 30.83 10.97 
EHO 57.21 60.77 4.49 52 55.76 3.22 14.92 19.16 2.40 11 20 4.54 
IABC 55.63 55.71 0.32 18 18.93 0.25 11.35 11.36 0.04 2.54 2.66 0.39 

Tablo 4.7’ye göre, IABC’nin tüm değerlendirme ölçütlerinde iyi bilinen ve yeni 

geliştirilmiş algoritmalardan daha iyi performans gösterdiği görülmektedir. Ortalama yol 

uzunluğu açısından IABC, DE’ye kıyasla %2.62, PSO’ya kıyasla %29.02, GA’ya kıyasla 

%44.05, CMA-ES’ye kıyasla %47.67, WSO’ya kıyasla %15.31 ve EHO’ya kıyasla 

%8.33 oranında bir iyileştirme göstermiştir. Ortalama hücre sayısı açısından, IABC aynı 

sırayla %63.59, %74.09, %77.65, %81.74, %69.87 ve %66.05 oranında bir iyileştirme 

göstermiştir. Ortalama toplam dönüş açısı açısından IABC, sırasıyla %37.64, %57.36, 

%67.71, %53.03, %53.13 ve %40.71 oranında iyileştirme göstermiştir. Standart 

sapmalardan da görülebileceği gibi IABC diğer algoritmalardan daha kararlıdır. Yol 

uzunluğu ve hücre sayısının standart sapmaları açısından IABC, DE ile rekabet hâlinde 

olmuştur; ancak DE’nin yerel minimumda takılıp kaldığı ve IABC’nin en iyi ve ortalama 

değerler açısından DE’den üstün olduğu açıktır. Bu sonuçlar önerilen IABC’nin iyi 

bilinen ve yeni geliştirilmiş algoritmalardan daha iyi performans gösterdiğini 

kanıtlamaktadır.  

4.2.3.5. IABC Algoritmasının Güncel Çalışmalardaki Sonuçlarla Karşılaştırılması 

Bu simülasyon, önerilen IABC’nin yol planlama performansını literatürdeki son 

çalışmalarda önerilen yöntemlerin sonuçlarıyla karşılaştırmayı amaçlamaktadır. Bu 

nedenle IABC’nin yol planlama performansı 20 x 20 br2 boyutlu ızgara ortamlarda ABC 

ve [81], [82], [83], [84] ve [85]’te önerilen algoritmaların performanslarıyla 

karşılaştırılmıştır. Bu referanslarda tasarlanan ortamlar Şekil 4.10’da gösterilmektedir. 
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                                        (a)                                                       (b) 

    
                                        (c)                                                       (d) 

    
                                        (e)                                                       (f) 

    
                                        (g)                                                       (h) 

Şekil 4.10. [81], [82], [83], [84] ve [85]’te tasarlanan ortamlar: (a) Ortam 7 [81], (b) 
Ortam 8 [81], (c) Ortam 9 [82], (d) Ortam 10 [82], (e) Ortam 11 [83], (f) 
Ortam 12 [83], (g) Ortam 13 [84], (h) Ortam 14 [85] 
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[81]’deki algoritmalar WOA, PSO, gri kurt optimizasyonu (grey wolf optimizer, GWO), 

isli sumru optimizasyon algoritması (sooty tern optimization algorithm, STOA), salp sürü 

algoritması (salp swarm algorithm, SPSA), martı optimizasyon algoritması (seagull 

optimization algorithm, SOA) ve [81]’de önerilen algoritma olan hibrit ateş böceği-balina 

optimizasyon algoritmasıdır (hybrid firefly-whale optimization algorithm, FWOA). Adil 

bir karşılaştırma için, ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon 

boyutu sırasıyla 500 ve 60 olarak ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 

olarak ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. [81]’de 

tasarlanan ortamlarda (Ortam 7 ve 8) FWOA ve bu çalışmada önerilen IABC tarafından 

planlanan yollar Şekil 4.11 ve 4.12’de gösterilmektedir. Bu ortamlarda başlangıç noktası 

sol alt köşe (1, 1) ve hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu 

karşılaştırması Tablo 4.8’de gösterilmektedir.    

      
                                   (a)                                                                  (b) 

Şekil 4.11. FWOA ve IABC algoritmalarının Ortam 7 için planladığı yollar:                   
(a) FWOA, (b) IABC  

        
                                    (a)                                                                (b) 

Şekil 4.12. FWOA ve IABC algoritmalarının Ortam 8 için planladığı yollar:                   
(a) FWOA, (b) IABC  
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Tablo 4.8. IABC ile ABC ve [81]’deki algoritmaların yol uzunluğu (br) 
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma) 

Algoritma 
Ortam 7 Ortam 8 

OP OR SS OP OR SS 
ABC 29.79 31.07 0.64 30.38 31.83 0.93 
WOA 28.70 45.48 67.09 29.80 45.71 66.95 
PSO 28.46 31.67 4.60 29.91 44.59 67.15 

GWO 28.82 30.55 2.40 29.21 31.05 0.92 
STOA 29.40 29.45 0.13 30.87 31.14 0.17 
SSA 28.82 29.85 0.36 29.11 31.33 0.54 
SOA 28.82 29.45 0.22 30.54 31.16 0.21 

FWOA 28.46 29.37 0.56 28.42 30.55 1.36 
IABC 28.46 28.52 0.18 28.19 28.39 0.34 

Ortam 7 için, IABC ile planlanan yolların en iyi uzunlukları ABC’ye kıyasla %4.48, 

WOA’ya kıyasla %0.82, STOA’ya kıyasla %3.20 ve GWO, SSA ve SOA’ya kıyasla 

%1.26 oranında kısaltılmıştır. IABC, FWOA ve PSO ile aynı sonucu üretmiştir. Tablo 

4.9’daki sıraya göre ortalama uzunluklarda sırasıyla %8.22, %37.28, %9.95, %6.66, 

%3.15, %4.45, %3.17 ve %2.89 oranında iyileşme gözlemlenmiştir. Standart 

sapmalardan da görülebileceği gibi, IABC diğer algoritmalardan çoğunlukla daha kararlı 

olmasına rağmen, STOA’dan biraz daha kararsızdır. Ancak bu kararsızlık, STOA’dan 

daha iyi olan en iyi-ortalama bandındadır. En kararsız algoritma WOA’dır. Ortam 8 için 

IABC ile planlanan yolların en iyi uzunlukları %7.20, %5.39, %5.73, %3.50, %8.67, 

%3.16, %7.67 ve %0.81 oranında kısaltılmıştır. Ortalama uzunluklarda %10.80, %37.89, 

%36.33, %8.57, %8.84, %9.39, %8.89 ve %7.08 oranında bir iyileşme gözlemlenmiştir. 

Standart sapmalardan da görülebileceği gibi IABC’nin STOA, SOA ile yaklaşık olarak 

aynı kararlılık seviyesinde olduğu söylenebilir. En kararsız algoritmaların PSO ve WOA 

olduğu görülmektedir.  

[82]’deki algoritmalar ACO, ABC, WOA, yıldırım tutunma prosedürü optimizasyonu 

(lightning attachment procedure optimization, LAPO), SSA, GWO, beyaz balina 

algoritması (beluga whale algorithm, BWO), karadul örümceği algoritması (black widow 

spider algorithm, BWOA) ve [82]’de önerilen algoritma olan iyileştirilmiş bir ACO ve 

iyileştirilmiş bir ABC’nin hibritidir (IACO-IABC). Adil bir karşılaştırma için, ABC ve 

IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu sırasıyla 200 ve 40 olarak 

ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak ayarlanmış ve algoritmalar 

bağımsız olarak 30 kez çalıştırılmıştır. [82]’de tasarlanan ortamlarda (Ortam 9 ve 10) 
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IACO-IABC ve bu çalışmada önerilen IABC tarafından planlanan yollar Şekil 4.13 ve 

4.14’te gösterilmektedir. Bu ortamlarda başlangıç noktası sol üst köşe (1, 20) ve hedef 

noktası sağ alt köşedir (20, 1). Algoritmaların yol uzunluğu karşılaştırması Tablo 4.9’da 

gösterilmektedir. 

      
                                    (a)                                                                (b) 

Şekil 4.13. IACO-IABC ve IABC algoritmalarının Ortam 9 için planladığı yollar:                   
(a) IACO-IABC, (b) IABC  

      
                                    (a)                                                                (b) 

Şekil 4.14. IACO-IABC ve IABC algoritmalarının Ortam 10 için planladığı yollar:                   
(a) IACO-IABC, (b) IABC    
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Tablo 4.9. IABC ile ABC ve [82]’deki algoritmaların yol uzunluğu (br) 
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma) 

Algoritma 
Ortam 9 Ortam 10 

OP OR SS OP OR SS 
ABC 29.77 30.11 0.27 31.20 31.57 0.30 
ACO 28.62 31.62 2.44 30.38 32.09 1.39 
WOA 30.00 30.93 0.76 32.78 33.15 0.30 
LAPO 30.02 30.52 0.40 32.77 33.25 0.39 
SSA 30.36 31.17 0.66 30.84 30.88 0.03 

GWO 30.11 30.56 0.37 31.84 31.89 0.04 
BWO 32.23 32.52 0.23 33.37 33.46 0.06 

BWOA 30.23 30.61 0.31 31.10 31.28 0.15 
IACO-IABC 31.40 31.40 0.00 30.89 30.89 0.00 

IABC 27.73 28.52 0.45 29.04 29.33 0.22 

Ortam 9 için IABC ile planlanan yolların en iyi uzunlukları Tablo 4.10’daki sıraya göre 

sırasıyla %6.85, %3.12, %7.56, %7.64, %8.65, %7.88, %13.95, %8.27 ve %11.68 

oranında kısaltılmıştır. Ortalama uzunluklarda sırasıyla %5.29, %9.8, %7.79, %6.56, 

%8.49, %6.68, %12.3, %6.83 ve %9.16 oranında iyileşme gözlemlenmiştir. Standart 

sapmalardan da görülebileceği gibi IABC bazı yöntemlere göre biraz daha kararsızdır. 

Ancak bu kararsızlık bu yöntemlerden daha iyi olan en iyi-ortalama bandındadır. En 

kararsız algoritma ACO’dur. Ortam 10 için IABC ile planlanan yolların en iyi uzunlukları 

sırasıyla %6.91, %4.39, %11.38, %11.35, %5.82, %8.77, %12.98, %6.6 ve %5.97 

oranında kısaltılmıştır. Ortalama uzunluklarda sırasıyla %7.08, %8.57, %11.52, %11.79, 

%5.02, %8.01, %12.32, %6.23 ve %5.04 oranında iyileşme gözlemlenmiştir. Standart 

sapmalardan da görülebileceği gibi IABC’nin diğer algoritmalarla yaklaşık olarak aynı 

kararlılık seviyesinde olduğu söylenebilir. En kararsız algoritmanın yine ACO olduğu 

görülmektedir. 

[83]’teki algoritmalar ACO, ACO ve GA’nın bir hibriti (ACO+GA), SSA ve [83]’te 

önerilen algoritma olan iyileştirilmiş SSA (improved SSA, ISSA) algoritmasıdır. Adil bir 

karşılaştırma için, ABC ve IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu 

sırasıyla 200 ve 50 olarak ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak 

ayarlanmış ve algoritmalar bağımsız olarak 30 kez çalıştırılmıştır. [83]’te tasarlanan 

ortamlar (Ortam 11 ve 12) ile ISSA ve bu çalışmada önerilen IABC tarafından planlanan 

yollar Şekil 4.15 ve 4.16’da gösterilmektedir. Bu ortamlarda başlangıç noktası sol alt köşe 

(1, 1) ve hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu 

karşılaştırması Tablo 4.10’da gösterilmektedir.  
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                                    (a)                                                                (b) 

Şekil 4.15. ISSA ve IABC algoritmalarının Ortam 11 için planladığı yollar:                   
(a) ISSA, (b) IABC  

        
                                    (a)                                                                (b) 

Şekil 4.16. ISSA ve IABC algoritmalarının Ortam 12 için planladığı yollar:                   
(a) ISSA, (b) IABC   

Tablo 4.10. IABC ile ABC ve [83]’teki algoritmaların yol uzunluğu (br) karşılaştırması 
(OP: Optimum, OR: Ortalama, SS: Standart Sapma) 

Algoritma 
Ortam 11 Ortam 12 

OP OR SS OP OR SS 
ABC 29.21 33.21 1.95 38.97 40.91 1.38 
ACO 29.21 31.81 2.02 39.79 45.45 3.06 

ACO+GA 28.62 30.70 1.43 38.97 40.78 1.13 
SSA 29.21 32.60 1.24 38.97 42.31 3.25 
ISSA 27.56 27.89 0.61 37.13 37.26 0.12 
IABC 27.56 27.64 0.15 37.13 37.18 0.06 

Ortam 11 için, IABC ile planlanan yolların en iyi uzunlukları ABC, ACO ve SSA ile 

karşılaştırıldığında %5.65 ve ACO+GA ile karşılaştırıldığında %3.73 oranında 

kısaltılmıştır. IABC, ISSA ile aynı sonucu üretmiştir. Ortalama uzunlukta ABC ile 
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karşılaştırıldığında %16.76, ACO ile karşılaştırıldığında %13.11, ACO+GA ile 

karşılaştırıldığında %9.97, SSA ile karşılaştırıldığında %15.2 ve ISSA ile 

karşılaştırıldığında %0.89 oranında bir iyileşme gözlemlenmiştir. Standart sapmalardan 

da görülebileceği gibi, en kararlı algoritma IABC iken, en kararsız algoritma ACO’dur. 

Ortam 12 için, IABC ile planlanan yolların en iyi uzunlukları ACO ile karşılaştırıldığında 

%6.7 ve ABC, ACO+GA ve SSA ile karşılaştırıldığında %4.72 oranında kısaltılmıştır. 

IABC, yine ISSA ile aynı sonucu üretmiştir. ABC ile karşılaştırıldığında ortalama 

uzunlukta %9.10, ACO ile karşılaştırıldığında %18.19, ACO+GA ile karşılaştırıldığında 

%8.82 ve SSA ile karşılaştırıldığında %12.12 ve ISSA ile karşılaştırıldığında %0.21 

iyileşme gözlemlenmiştir. IABC, ISSA ile yaklaşık olarak aynı kararlılık düzeyine 

sahiptir, diğer algoritmalar daha kararsızdır. Genel olarak, önerilen IABC diğer 

algoritmalardan daha iyi performans göstermiştir. ISSA ile aralarında ufak bir fark 

olmasına rağmen, yine de ondan üstün olduğu söylenebilir. Bu sonuçlar, IABC’nin yol 

uzunluğu açısından diğer metasezgisellerden üstün olduğunu kanıtlamaktadır. 

[84] ve [85]’teki algoritmalar dijkstra, A*, [84]’te önerilen iyileştirilmiş sezgisel 

mekanizmalı ACO (improved heuristic mechanism ACO, IHMACO) ve [85]’te önerilen 

iyileştirilmiş A* (improved A*, IA*) algoritmasıdır. Adil bir karşılaştırma için, ABC ve 

IABC’nin maksimum iterasyon sayısı ve popülasyon boyutu sırasıyla 200 ve 30 olarak 

ayarlanmıştır. ABC ve IABC’nin limit değerleri 100 olarak ayarlanmış ve algoritmalar 

bağımsız olarak 30 kez çalıştırılmıştır. [84] ve [85]’te tasarlanan ortamlarda (Ortam 13 

ve 14)  IHMACO, IA* ve bu çalışmada önerilen IABC tarafından planlanan yollar Şekil 

4.17 ve 4.18’de gösterilmektedir. Ortam 13’te başlangıç noktası sol üst köşe (1, 20) ve 

hedef noktası sağ alt köşedir (20, 1). Ortam 14’te başlangıç noktası sol alt köşe (1, 1) ve 

hedef noktası sağ üst köşedir (20, 20). Algoritmaların yol uzunluğu karşılaştırması Tablo 

4.11’de gösterilmektedir.  
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                                    (a)                                                                (b) 

Şekil 4.17. IHMACO ve IABC algoritmalarının Ortam 13 için planladığı yollar:                   
(a) IHMACO, (b) IABC  

          
                                       (a)                                                               (b) 

Şekil 4.18. IA* ve IABC algoritmalarının Ortam 14 için planladığı yollar: (a) IA*,      
(b) IABC   

Tablo 4.11. IABC ile ABC, [84] ve [85]’teki algoritmaların yol uzunluğu (br) 
karşılaştırması (OP: Optimum, OR: Ortalama, SS: Standart Sapma) 

 Algoritma 
Ortam 13 [84] Ortam 14 [85] 

OP OR SS OP OR SS 
ABC 30.97 33.58 2.10 30.97 35.82 3.23 

Dijkstra 29.79 29.79 0.00 32.72 32.72 0.00 
A* 29.79 29.79 0.00 32.09 32.09 0.00 

IHMACO 29.79 29.79 0.00 - - - 
IA* - - - 31.01 31.01 0.00 

IABC 28.70 29.01 0.68 29.55 30.09 0.47 

Ortam 13 için, IABC ile planlanan yolların en iyi uzunlukları ABC’ye kıyasla %7.33, 

dijkstra, A* ve IHMACO’ya kıyasla %3.66 oranında kısaltılmıştır. Ortalama uzunlukta 

ABC’ye kıyasla %7.33, dijkstra, A* ve IHMACO’ya kıyasla %2.62 oranında bir iyileşme 
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gözlemlenmiştir. Ortam 14 için, IABC ile planlanan yolların en iyi uzunlukları ABC, 

dijkstra, A* ve IA*’a göre sırasıyla %4.59, %9.69, %7.92 ve %4.71 oranında 

kısaltılmıştır. Ortalama uzunluklarda sırasıyla %16.01, %8.03, %6.23 ve %2.97 oranında 

bir iyileşme gözlemlenmiştir. Standart sapmalardan da görülebileceği gibi, dijkstra ve A* 

gibi klasik algoritmalar rastgelelik ve keşif mekanizmalarını içermediğinden, tüm 

çalışmalarda aynı sonucu üretmeleri ve standart sapmanın sıfır olması kaçınılmazdır. 

Önerilen IABC rastgelelik içerdiğinden, her çalışma farklı sonuçlar üretir ve bu standart 

sapmaya yansır. Ancak, en iyi ve ortalama sonuçlar IABC’nin klasik arama 

algoritmalarından daha verimli olduğunu göstermektedir. Sonuç olarak, önerilen 

algoritma ızgara tabanlı yol planlama problemi için etkili bir yöntem olabilir. 

4.3. Çok Engelli Ortamlarda Hızlı Yol Planlama  

Literatürde birçok yol planlama algoritması geliştirilmesine rağmen, bu algoritmalar 

karmaşık ve çok engelli ortamlarda uygulandığında uzun çalışma sürelerine ihtiyaç 

duymaktadır. Bunun için bu algoritmaların çalışma hızlarının artırılması gerekmektedir. 

Ancak ihtiyaç duyulan hızlanma genellikle algoritma tarafında çözülmeye 

çalışılmaktadır. Daha hızlı algoritmalar geliştirilmekte veya mevcut algoritmalar 

iyileştirilerek karmaşıklıkları azaltılmaktadır. Bu çalışmada ise hızlanmanın problem 

tarafında çözülmesine odaklanılmış ve problemin basitleştirilmesi üzerinde durulmuştur. 

Bunun için engellerin kümelenmesiyle ortam karmaşıklığının azaltılması ve bu sayede 

yol planlama algoritmalarının çalışma hızlarının artırılması amaçlanmıştır. Bu amaçlar 

doğrultusunda metasezgisel ve kümeleme algoritmalarının bir arada kullanıldığı hibrit bir 

model önerilmiştir. Öncelikle PSO ve k-ortalamalar kümeleme algoritmaları ile önerilen 

modelin detaylı analizi gerçekleştirilmiştir. Ardından, önerilen modelin etkinliği TLBO, 

ABC, DE, GA ve hiyerarşik kümeleme algoritmalarının kullanılması ile karşılaştırmalı 

olarak değerlendirilmiştir. 

4.3.1. Problem Tanımı 

Bu çalışmadaki yol planlama kübik eğri interpolasyonu (cubic spline interpolation) ile 

gerçekleştirilmiştir. Kübik eğri interpolasyonunun uygulanabilmesi için belli noktalara 

ihtiyaç duyulur. PSO algoritmasındaki çözümlere karşılık gelen bu noktalar parametre 

noktaları olarak, noktaların sayısı da parametre sayısı (𝐷) olarak ifade edilir. Öncelikle, 

amaç fonksiyonuna girdi olarak gelen bu parametre noktalarının 𝑥 ve 𝑦 konumları, 
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planlanacak yolun başlangıç ve bitiş noktaları ile birlikte farklı satır vektörlerine aktarılır. 

Bu vektörler 𝑛௬ adet arama noktasına sahip kübik eğri interpolasyonu ile ayrı ayrı 

interpole edilir. Bu şekilde planlanan yolun 𝑥 ve 𝑦 nokta dizileri elde edilmiş olur, burada 

𝑥 dizisindeki her bir nokta 𝑝௜௫, 𝑦 dizisindeki her bir nokta 𝑝௜௬ olarak ifade edilir. Daha 

sonra, parametre noktalarının uygunluk değerleri Eşitlik (4.13)’te gösterilen amaç 

fonksiyonu ile hesaplanır. Bu denklem iki kısımdan oluşmaktadır. Birinci kısım robotun 

gideceği yolun uzunluğunu hesaplarken, ikinci kısım da robot ile engeller arasındaki 

uygulanabilir mesafeyi (engelden kaçınma kontrolü) hesaplar [86]. 

arg min
௣೔∈௒

ℱ = 𝐿(1 + 𝛽𝑉) (4.13) 

Burada, 𝑖 ∈ ൛1,2, … , 𝑛௬ൟ, 𝑌 planlanan yolu, 𝑝௜ bu yolun 𝑖’inci noktasını, 𝐿 yol uzunluk 

fonksiyonunu, 𝛽 engel ihlal faktörünü, 𝑉 engelden kaçınma fonksiyonunu temsil eder. 

Yol uzunluğu Eşitlik (4.14)’te ve engelden kaçınma fonksiyonu Eşitlik (4.15)’te 

gösterilmektedir.  

𝐿 = ෍ ‖𝑝௜ାଵ − 𝑝௜‖

௡೤ିଵ

௜ୀଵ

 (4.14) 

𝑉 = ෍ ෍ ቐ 
ቆ1 −

‖𝑝௜ − 𝑝௞
௢‖

𝑟௞
௢ ቇ ,     𝑒ğ𝑒𝑟 ቆ1 −

‖𝑝௜ − 𝑝௞
௢‖

𝑟௞
௢ ቇ > 0 𝑖𝑠𝑒

0,                                                                        𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

௡೚

௞ୀଵ

௡೤

௜ୀଵ

 (4.15) 

Burada, 𝑛௢ engel sayısını, 𝑝௜ yolun 𝑖’inci noktasını, 𝑝௞
௢ 𝑘’ıncı engelin merkez noktasını 

ve 𝑟௞
௢ ise 𝑘’ıncı engelin yarıçapını temsil eder. Bu çalışmada mobil robot ve engeller 

dairesel olarak tasarlanmıştır. Engelden kaçınma kontrolünde sadece engelin yarıçapı 

değil (𝑟௢), aynı zamanda yarıçapı boyutu (𝑟௥) ve güvenlik mesafesi (𝐿௚) de hesaba 

katılmıştır. Güvenlik mesafesi robot ile engel arasındaki boş alanı ifade eder. Engelden 

kaçınma kontrolünün temsili çizimi Şekil 4.19’da gösterilmektedir.  



87 

 

Şekil 4.19. Engelden kaçınma kontrolünün temsili çizimi  

4.3.2. Önerilen Yöntem 

Bu çalışmada yol planlama algoritmalarının çalışma süreleri üzerinde durulmuş ve 

metasezgisel ile kümeleme algoritmalarının bir arada kullanıldığı hibrit bir model 

önerilmiştir. Bu model üç aşamadan oluşur: İlk aşamada, kullanılan metasezgisel 

algoritmanın kontrol parametreleri ile kümeleme oranı belirlenir, ortam ve engel 

karakteristikleri tanımlanarak orijinal ortam oluşturulur. İkinci aşama olarak, bir 

kümeleme yöntemine dayanarak geliştirilen bir engel kümeleme algoritması çalıştırılır. 

Bu algoritma ile orijinal ortamdaki engeller belli sayılarda kümelenir. Kümelenen 

engeller tek bir engel olarak tanımlanır. Böylece ortam karmaşıklığı azaltılır ve yol 

planlama için yeni bir ortam oluşturulur. Üçüncü aşamada ise söz konusu metasezgisel 

algoritmanın kullanıldığı bir yol planlama simülasyonu ile bu yeni ortamda optimum yol 

planlanır. Önerilen modelin akış diyagramı Şekil 4.20’de gösterilmektedir. 
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Başla

Bir metasezgisel 
algoritma seç, kontrol 

parametrelerini ve amaç 
fonksiyonunu belirle

Ortam ve engel 
karakteristikleri tanımla

Orijinal Ortamı oluştur

Bitir

Seçilen metasezgisel 
algoritmayı kullanarak 

güvenli optimum yolu bul

Güvenli optimum 
yolu göster

Bir kümeleme 
algoritması seç

Seçilen kümeleme 
algoritmasını kullanarak 

engelleri kümele

Küme sayacı 
engel sayısını 

aştı mı?Hayır 

Kümedeki 
engel sayısı 1 

mi?

Kümeyi tek bir 
engele 

dönüştürerek çok 
engelli küme 
dizisine aktar

Küme sayacını bir artır

Hayır 

İkinci Aşama 

Birinci Aşama 

Evet 

Tek engelli küme dizisi ile çok 
engelli küme dizisini birleştir ve 

yeni ortamı oluştur

Evet 

Engeli tek engelli 
küme dizisine aktar

Üçüncü Aşama 

Kümeleme oranını 
belirle ve küme sayacını 

tanımla

 

Şekil 4.20. Önerilen modelin akış diyagramı 

4.3.2.1. K-Ortalamalar Kümeleme Algoritması 

K-ortalamalar kümeleme algoritması (K-means clustering, KMC) verilerin belli bir 

kritere göre otomatik olarak gruplandırılması için yaygın olarak kullanılan ve iteratif 

olarak çalışan denetimsiz bir öğrenme tekniğidir. Bu kümeleme yöntemindeki temel 

prensip, küme sayısının ve küme merkezlerinin belirlenerek birbirine benzerlik gösteren 

verilerin aynı kümelere yerleştirilmesidir. Küme merkezlerinin birbirine olabildiğince 

uzak konumlarda belirlenmesi gerekir. Küme sayısının belirlenmesi bu yöntemin kilit 

noktasıdır. Algoritma öncelikle küme sayısınca rastgele merkezler oluşturur ve her bir 

verinin küme merkezleri arasındaki mesafe Eşitlik (4.16) kullanılarak hesaplanır ve bu 

mesafe aracılığıyla veriler en yakın kümeye atanır. 

𝐿௜ = ฮ𝑝௜ − 𝑞௝ฮ (4.16) 



89 

Burada, 𝑖 ∈ {1,2, … , 𝑛௩}, 𝑗 ∈ ൛1,2, … , 𝑛௤ൟ, 𝑝௜ 𝑖’inci veriyi, 𝑞௝ 𝑗’inci küme merkezini, 𝐿௜ 

ise 𝑖’inci veri ile 𝑗’inci küme merkezi arasındaki Öklidyen mesafeyi, 𝑛௩ veri sayısını ve 

𝑛௤ ise küme sayısını temsil eder. Öklidyen mesafesi yerine farklı mesafe denklemleri de 

kullanılabilir. Veriler en yakın kümelere atandıktan sonra Eşitlik (4.17) kullanılarak her 

kümenin ortalaması alınır ve böylece yeni küme merkezleri oluşturulur.  

𝑞௝ =
1

ห𝑞௝ห
෍ 𝑝

௣∈௤ೕ

(4.17) 

Burada, ห𝑞௝ห 𝑗’inci kümedeki veri sayısını ve 𝑝 ise 𝑗’inci kümedeki verileri temsil eder. 

Bu yeni küme merkezleri ve veriler arasındaki mesafe tekrar hesaplanır. Bu iteratif süreç 

tüm verilerin en yakın merkezlere atanmasıyla (durdurma kriteri) son bulur. KMC 

algoritmasının sözde kodu Algoritma 4.4’te gösterilmektedir [87-90]. 

Algoritma 4.4: KMC algoritmasının sözde kodu   
Girdi: 𝑝, 𝑛௤ , 𝑇, 𝑥௟ , 𝑥௛  // Veri, küme sayısı, maksimum iterasyon sayısı, arama sınırları 
Çıktı: ℚ  // Küme merkezleri 

1: 𝑛௩ ← 𝑠𝑖𝑧𝑒(𝑝) 
2: {𝑞ଵ, 𝑞ଶ, … , 𝑞௞} ⊂ ℚ ← 𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),   𝑟~𝑈(0, 1)  
3: for 𝑡 = 1: 𝑇 
4:  for 𝑖 = 1: 𝑛௩ 
5:   for 𝑗 = 1: 𝑛௤ 
6:    𝐿௜ ← ‖𝑝௜ − 𝑞௝‖ 
7:   end for 
8:   𝑞௜

௠ ← arg min
௤∈ℚ

𝐿௜(𝑞) 

9:   𝑞௜
௠ ← 𝑞௜

௠ ∪ {𝑝௜} 
10:  end for 
11:  for 𝑗 = 1: 𝑛௤ 

12:   𝑞௝ ← 
ଵ

ห௤ೕห
∑ 𝑝(௣∈௤ೕ)  

13:  end for 
14: end for 

4.3.2.2. Engel Kümeleme Algoritması 

Bu çalışmada çeşitli kümeleme algoritmalarının kullanılabildiği bir engel kümeleme 

algoritması önerilmiştir. Engeller dairesel oldukları için gruplandırma da dairesel olarak 

tasarlanmıştır. Detaylı analizde kümeleme işlemi KMC algoritması ile 

gerçekleştirilmiştir. Bu yöntem için küme sayısı gerekli olsa da, bu çalışma yol planlama 

algoritmalarının çalışma hızlarını farklı küme sayıları ile analiz eder. Bu sebeple küme 



90 

sayısını değiştiren bir oran oluşturulmuştur. Çalışmada bu oran, % biriminde kümeleme 

oranı (𝜆) olarak ifade edilir ve engellerin yüzde kaçının kümeleneceğini temsil eder. 

Önerilen modelde birbirine yakın engellerin kümelenmesi esas alınır. Her engel 

kümelenmediği için tek engelli kümeler oluşabilir. Kümeleme oranı arttıkça kümelerin 

içindeki engel sayısı her zaman artar, ancak küme sayısı belli bir seviyeye kadar artış 

gösterir. Bu seviyeden daha yüksek kümeleme oranlarında tek engelli küme kalmaz ve 

kümelenecek engel sayısı arttığı için daha büyük kümeler oluşur. Bu durumda küme 

sayısı azalır ve kümelerde çakışma durumu meydana gelir. Ancak algoritma bu kümeleri 

yeni statik engeller olarak belirlediği için yol planlama konusunda herhangi bir zorluğa 

neden olmaz. Bu sayede engel sayısı (𝑛௢) ve kümeleme oranı kullanılarak KMC 

algoritması için gerekli olan küme sayısı hesaplanır. Küme sayısı Eşitlik (4.18) 

kullanılarak hesaplanır.   

𝑛௤ = 𝑛௢ × 𝜆 (4.18) 

Birden fazla engelin kümelenmesinde Şekil 4.21’de olduğu gibi merkeze en uzak engelin 

tamamını kapsayacak şekilde 𝑟௢ᇱ yarıçaplı bir daire oluşturulur [91].   

 

Şekil 4.21. Birden fazla engelin kümelenmesi 

Önerilen bu algoritma, bu daireleri ve tek engelli kümeleri yeni bir engel dizisine aktarır 

ve yeni engel dizisini esas alarak çalışır. Bu şekilde engel sayısı azaltılarak ortam 

karmaşıklığının basitleştirilmesi sağlanır. Bu çalışmadaki KMC tabanlı engel kümeleme 

algoritmasının sözde kodu Algoritma 4.5’te gösterilmektedir. Bu algoritmada 𝑟௢ 

engellerin yarıçapını, 𝑂 eski engel dizisini ve 𝑂ᇱ ise yeni engel dizisini temsil eder. 
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Algoritma 4.5: KMC tabanlı engel kümeleme algoritmasının sözde kodu  
Girdi: 𝜆, 𝑂, 𝑇, 𝑥௟ , 𝑥௛  // Kümeleme oranı, eski engel dizisi, maksimum iterasyon sayısı, 
arama sınırları 
Çıktı: 𝑂ᇱ  // Yeni engel dizisi 

1: 𝑛௢ ← 𝑠𝑖𝑧𝑒(𝑂) 
2: 𝑛௤ ← 𝑛௢ × 𝜆 
3: 𝑞௜ ∈ ℚ ← KMC൫𝑂, 𝑛௤ , 𝑇, 𝑥௟ , 𝑥௛൯,    𝑖 ∈ ൛1,2, … , 𝑛௤ൟ  // Algoritma 4.4 
4: for 𝑖 = 1: 𝑛௤  
5:  𝑛௢௜ ← 𝑠𝑖𝑧𝑒(𝑞௜) 
6:  if 𝑛௢௜ == 1 
7:   𝑂௧௘௞ ← {𝑝௢ , 𝑟௢} 
8:  else 
9:   𝑂ç௢௞ ← {𝑞௜} 

10:   for 𝑗 = 1: 𝑛௢௜ 
11:    𝐿௜(𝑗) ← ‖𝑞௜ − 𝑝௝

௢‖ 
12:   end for 
13:   𝐿௠௔௫ , 𝑟௠௔௫

௢ ← arg max
௜

(𝐿௜)  

14:   𝑟௢ᇱ
← 𝐿௠௔௫ + 𝑟௠௔௫

௢  
15:   𝑂ç௢௞ ← 𝑂ç௢௞ ∪ ൛𝑟௢ᇱ

ൟ 
16:  end if 
17: end for 
18: 𝑂ᇱ ← ൛𝑂௧௘௞ , 𝑂ç௢௞ൟ 

4.3.3. Bulgular 

Önerilen model, MATLAB 2019 programlama dilinde kodlanmış ve Windows 10 işletim 

sistemi, INTEL CORE i7 işlemcisi, 16 GB RAM’e sahip bir bilgisayarda çalıştırılmıştır. 

Öncelikle önerilen modelin detaylı analizi gerçekleştirilmiştir. Bu analiz sonucunda yol 

planlama algoritmalarının optimum çalışma hızlarına tekabül eden optimum kümeleme 

oranları elde edilmiştir. Ardından, detaylı analizi desteklemek amacıyla model üzerinde 

farklı metasezgisel ve farklı kümeleme algoritmalarının performansları 

değerlendirilmiştir.  

4.3.3.1. Önerilen Modelin Detaylı Analizi 

Önerilen model engellerin rastgele konumlarda üretildiği ortamlarda test edilmiştir. 

Bunun için 20 ve 30 engelli olmak üzere 50 x 50 br2 boyutlu sürekli uzay formatında iki 

farklı ortam oluşturulmuştur. Ancak aynı alan içerisinde engel sayısı arttıkça modelin 

problemi çözmesi zorlaşmaktadır. Bu çalışmada daha fazla engelli ortamlar oluşturulsa 

da, 30 engelin üzerindeki ortamlar için orta ve yüksek seviyelerdeki kümeleme 

oranlarında alan darlığından dolayı model problemi çözememektedir. Bunun için alanın 
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genişletilmesi gerekir, ancak bu çalışmada önerilen model sabit alan üzerinde test 

edilmiştir. 20 engelin altındaki ortamlar ise değerlendirme için anlamlı değildir. Bu 

çalışmada tasarlanan bu iki ortam Şekil 4.22’de gösterilmektedir. Bu ortamlarda robotun 

başlangıç konumu sol alt köşe (0, 0) ve hedef konumu ise sağ üst köşedir (50, 50).          

     
                                   (a)                                                               (b) 

Şekil 4.22. Önerilen modelin test edildiği ortamlar: (a) Ortam 15 (20 engelli ortam),    
(b) Ortam 16 (30 engelli ortam) 

Bu ortamlarda engelsiz en kısa mesafe 70.71 br’dir. Amaç fonksiyonundaki engel ihlali 

faktörü (𝛽) ve kübik eğri interpolasyonu için arama noktası sayısı (𝑞) 100 olarak, arama 

alanının sınır değerleri x ve y için [0 50] br olarak, engel konumlarının sınır değerleri x 

ve y için [10 40] br olarak belirlenmiştir. Engellerin yarıçapı 0.5 br, robotun yarıçapı 0.3 

br ve güvenlik mesafesi 0.2 br olarak ayarlanmıştır. Detaylı analiz için metasezgisel 

algoritmalardan PSO ve kümeleme algoritmalarından KMC algoritması tercih edilmiştir. 

PSO algoritması maksimum iterasyon sayısı 50 ve popülasyon boyutu 20 için 

çalıştırılmıştır. Kişisel ve sosyal deneyim katsayıları [2, 2], eylemsizlik ağırlığının 

başlangıç değeri 1, eylemsizlik ağırlığının sınır değerleri [0.1 0.9] olarak belirlenmiştir. 

Problemdeki parametre sayısı (𝐷) 2, 3, 4, 5, 6 ve 8 için ayrı ayrı test edilmiş ve en uygun 

değerinin 2 olduğu gözlemlenmiştir. Bu sebeple bu çalışmadaki tüm simülasyonlarda 

parametre sayısı 2 olarak ayarlanmıştır. Detaylı analiz için önerilen model kümelemesiz 

ve kümelemeli olarak 30 koşma ile çalıştırılmıştır. Kümelemeli çalışmada 9 farklı 

kümeleme oranı kullanılmıştır. Ayrıca model çalışma süresi bakımından, engel 

kümeleme algoritmasının (EKA) çalışma süresinin dâhil olduğu ve olmadığı durumlar 

için ayrı ayrı değerlendirme gerçekleştirilmiştir. Her iki ortam için elde edilen ortalama 
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yol uzunlukları ve bu uzunlukların kümelemesiz çalışmaya göre artış oranları Tablo 

4.12’de gösterilmektedir. Şekil 4.23, Tablo 4.12’deki yol uzunluğu değerlerini grafiksel 

olarak göstermektedir. Şekil 4.23’te kümeleme oranlarındaki 0 değerleri kümelemesiz 

çalışmayı temsil eder.      

Tablo 4.12. Her iki ortam için elde edilen ortalama yol uzunlukları ve bu uzunlukların 
kümelemesiz çalışmaya göre artış oranları (Bu bulgular 30 koşmanın 
ortalamasıdır.) 

Çalışma 
Kümeleme 

Oranı  
(%) 

Ortam 15  Ortam 16 
Yol 

Uzunluğu 
(br) 

Artış 
Oranı  
(%) 

Yol 
Uzunluğu  

(br) 

Artış 
Oranı  
(%) 

Kümelemesiz - 71.96 - 71.89 - 

Kümelemeli 

10 72.15 0.25 72.15 0.36 
20 72.16 0.27 73.04 1.59 
30 72.42 0.63 73.56 2.31 
40 73.22 1.75 74.32 3.37 
50 74.22 3.13 75.28 4.71 
60 76.75 6.65 78.57 9.28 
70 77.35 7.48 83.42 16.02 
80 79.87 10.99 83.92 16.72 
90 82.10 14.08 85.75 19.26 

, 

     
                                    (a)                                                                (b) 

Şekil 4.23. Her kümeleme oranı için elde edilen ortalama yol uzunlukları:                           
(a) Ortam 15 (b) Ortam 16 

Tablo 4.12 ve Şekil 4.23 genel olarak incelendiğinde, kümeleme oranı arttıkça elde edilen 

yol uzunluklarında artış görülmektedir. Bunun nedeni, kümeleme oranının artmasıyla 

yeni ortamdaki engellerin boyutlarının artması ve bundan dolayı yolların daha kavisli 

olmasıdır. Ancak Tablo 4.12’deki artış oranları göz önüne alındığında, yüksek kümeleme 

oranları dışında telafi veya ihmal edilebilir bir artış mevcuttur. Ortam 15 için yüksek 
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kümeleme oranları %80 ve %90 olarak kabul edilirse, diğer 7 kümeleme oranında artış 

miktarı %10’u geçmemektedir. Ortam 16 için yüksek kümeleme oranları %70, %80 ve 

%90 olarak kabul edilirse, diğer 6 kümeleme oranında artış miktarı yine %10’u 

geçmemektedir. Çalışmadan örnek bir koşma için Ortam 15’te modelin kümelemesiz ve 

kümelemeli olarak planladığı yollar Şekil 4.24’te, bu örnek koşma için yakınsama eğrileri 

Şekil 4.25’te gösterilmektedir. 

 

 
                            (a)                                      (b)                                      (c) 

 
                            (d)                                      (e)                                      (f)  

 
                            (g)                                      (h)                                      (i)  

Şekil 4.24. Örnek koşma için Ortam 15’te modelin kümelemesiz ve kümelemeli olarak 
planladığı yollar: (a) Kümelemesiz (b) %20 kümelemeli (c) %30 
kümelemeli (d) %40 kümelemeli (e) %50 kümelemeli (f) %60 kümelemeli 
(g) %70 kümelemeli (h) %80 kümelemeli (i) %90 kümelemeli 
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Şekil 4.25. Örnek koşma için Ortam 15’teki yakınsama eğrileri 

Şekil 4.24 genel olarak incelendiğinde, kümeleme oranı arttıkça yolların daha kavisli bir 

şekilde elde edildiği görülmektedir. Ayrıca Şekil 4.25’te görüldüğü gibi kümeleme oranı 

arttıkça elde edilen yol uzunluklarının optimum değerlerinde artış görülmektedir. Ancak 

bu artışlar yüzdesel olarak düşük seviyelerdedir. Bazı kümeleme oranlarındaki yakınsama 

eğrilerinde çakışmalar tespit edildiği için bunların bir kısmı gösterilmemiştir. Örnek bir 

koşma için Ortam 16’da modelin kümelemesiz ve kümelemeli olarak planladığı yollar 

Şekil 4.26’da, bu örnek koşma için yakınsama eğrileri Şekil 4.27’de gösterilmektedir. 

 

 
                            (a)                                      (b)                                      (c) 
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                            (d)                                      (e)                                      (f)  

 
                            (g)                                      (h)                                      (i)  

Şekil 4.26. Örnek koşma için Ortam 16’da modelin kümelemesiz ve kümelemeli 
olarak planladığı yollar: (a) Kümelemesiz (b) %20 kümelemeli (c) %30 
kümelemeli (d) %40 kümelemeli (e) %50 kümelemeli (f) %60 kümelemeli 
(g) %70 kümelemeli (h) %80 kümelemeli (i) %90 kümelemeli  

 

 

Şekil 4.27. Örnek koşma için Ortam 16’daki yakınsama eğrileri 

Şekil 4.26 genel olarak incelendiğinde, kümeleme oranı arttıkça yolların Ortam 15’e göre 

çok daha kavisli bir şekilde elde edildiği görülmektedir. Ayrıca Şekil 4.27’de görüldüğü 

gibi kümeleme oranı arttıkça elde edilen yol uzunluklarının optimum değerlerinde yine 
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artış görülmektedir ve bu artış Ortam 15’e göre daha fazladır. Ancak bu artışlar da 

yüzdesel olarak düşük seviyelerdedir. Her iki ortam için elde edilen ortalama çalışma 

süreleri ve bu sürelerin kümelemesiz çalışmaya göre azalma oranları Tablo 4.13’te 

gösterilmektedir. Şekil 4.28, Tablo 4.13’teki çalışma süresi değerlerini grafiksel olarak 

göstermektedir. Şekil 4.28’de kümeleme oranlarındaki 0 değerleri kümelemesiz 

çalışmayı temsil etmektedir. 

Tablo 4.13. Her iki ortam için elde edilen ortalama çalışma süreleri ve bu sürelerin 
kümelemesiz çalışmaya göre azalma oranları (Bu bulgular 30 koşmanın 
ortalamasıdır. KO: Kümeleme Oranı, ÇS: Çalışma Süresi, AO: Azalma 
Oranı) 

Çalışma 
KO 
(%) 

Ortam 15 Ortam 16 
EKA Hariç EKA Dâhil EKA Hariç EKA Dâhil 

ÇS (s) AO (%) ÇS (s) AO (%) ÇS (s)  AO (%) ÇS (s) AO (%) 
Kümelemesiz - 1,36 - 1,36 - 1,48 - 1,48 - 

Kümelemeli 

10 1,32 2,85 1,33 2,14 1,46 1,42 1,47 0,47 
20 1,28 5,17 1,29 5,05 1,37 7,10 1,38 6,40 
30 1,22 9,86 1,23 9,21 1,34 9,55 1,35 8,81 
40 1,21 11,16 1,21 10,55 1,31 11,60 1,32 10,92 
50 1,13 16,69 1,14 16,10 1,24 16,00 1,25 15,34 
60 1,09 19,91 1,10 19,35 1,17 20,85 1,18 20,25 
70 1,06 21,61 1,07 21,08 1,10 25,45 1,11 24,91 
80 1,05 22,47 1,06 22,01 1,07 27,62 1,08 27,13 
90 1,05 22,83 1,05 22,42 1,06 28,33 1,06 27,90 

 

     
                                    (a)                                                                (b) 

Şekil 4.28. Her kümeleme oranı için elde edilen ortalama çalışma süreleri:                           
(a) Ortam 15 (b) Ortam 16 

Tablo 4.13 ve Şekil 4.28 genel olarak incelendiğinde, kümeleme oranı arttıkça elde edilen 

çalışma sürelerinde azalma görülmektedir. Bunun nedeni, kümeleme oranının artmasıyla 

engel sayısının ve ortam karmaşıklığının azalmasıdır. Ayrıca Tablo 4.13’teki azalma 
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oranları göz önüne alındığında kayda değer azalma oranları elde edilmiştir ve bu 

oranlarda kararlılık mevcuttur. Ortam 15’teki azalma oranları Ortam 16’daki oranlara 

göre daha yüksektir, çünkü ortam karmaşıklığı daha düşük seviyededir. Kümelemeli 

çalışmalarda EKA’nın dâhil edilmesi çalışma süresini sadece milisaniyelik düzeyde 

artmasına sebep olduğu için azalma oranları yine kayda değer seviyede kalmıştır. 

Çalışmadaki değerlendirme, yol uzunlukları ile çalışma süreleri arasındaki ilişki 

üzerinedir. Bu ilişki çalışma sürelerindeki azalma ile yol uzunluklarındaki artış arasındaki 

farktır, kazanç olarak da düşünülebilir. Bu kazanç tanımında yol uzunluğu ve çalışma 

süresi eşit ağırlığa sahiptir ve kazanç oranları bu şekilde hesaplanmıştır. Her iki ortam 

için kümeleme oranlarına göre kazanç oranları Tablo 4.14’te gösterilmektedir. 

Tablo 4.14. Her iki ortam için kümeleme oranlarına göre kazanç oranları  

Kümeleme Oranı  
(%) 

Ortam 15 Ortam 16 
EKA Hariç EKA Dâhil EKA Hariç EKA Dâhil 

10 2,60 1,89 1,06 0,11 
20 4,90 4,78 5,51 4,81 
30 9,23 8,58 7,24 6,50 
40 9,41 8,80 8,23 7,55 
50 13,56 12,97 11,29 10,63 
60 13,26 12,70 11,57 10,97 
70 14,13 13,60 9,43 8,89 
80 11,48 11,02 10,90 10,41 
90 8,75 8,34 9,07 8,64 

Tablo 4.14 genel olarak incelendiğinde, kümeleme oranı arttıkça kazanç oranlarında önce 

bir artış ve daha sonra bir azalma görülmektedir. Orta seviyelerdeki kümeleme 

oranlarında maksimum kazanç elde edilirken, daha düşük veya daha yüksek kümeleme 

oranlarında bu kazanç oranları düşmektedir. Ortam 15’te %70 kümeleme oranında 

maksimum kazanç değeri elde edilirken, Ortam 16 için bu oran %60’tır. EKA’nın dâhil 

edilmesi çalışma süresini etkilediği gibi kazanç oranlarını da sadece minimal düzeyde 

etkilemiştir. Ayrıca model farklı ortamlarda test edilmesine rağmen sonuç değişmemiş ve 

optimum kümeleme oranının her zaman orta seviyelerde olduğu tespit edilmiştir. 

Engelleri kümelemek yol uzunluğu açısından küçük bir dezavantaj gibi görünse de, 

çalışma süresi açısından yol uzunluğundaki zararı telafi edebilecek ve buna ek olarak hız 

konusunda kazanç sağlayacak düzeyde bir avantaj sağlamaktadır.  
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4.3.3.2. Önerilen Modelin Farklı Metasezgisel ve Kümeleme Algoritmalarıyla 

Gerçekleştirimi 

Önerilen modelin detaylı analizinde optimum kümeleme oranları elde edilmişti. Modelin 

etkinliğini göstermek ve analizi desteklemek amacıyla, bu kümeleme oranları ile farklı 

metasezgisel ve kümeleme algoritmalarının performansları Alt Başlık 4.3.3.1’de 

bahsedilen her iki ortamda da karşılaştırmalı olarak değerlendirilmiştir. Engellerin 

kümelenmesi için KMC algoritmasına ek olarak hiyerarşik kümeleme (hierarchical 

clustering, HC) algoritması kullanılmıştır. Metasezgisel algoritmalardan da PSO’ya ek 

olarak TLBO, ABC, DE ve GA ele alınmıştır. Amaç fonksiyonu ve problem parametreleri 

Alt Başlık 4.3.3.1’deki simülasyonla aynıdır. TLBO, ABC, DE ve GA’nın kontrol 

parametreleri ise Tablo 4.15’te gösterilmektedir.  

Tablo 4.15. TLBO, ABC, DE ve GA’nın kontrol parametreleri (𝑇 maksimum iterasyon 
sayısı, 𝑆 popülasyon boyutu, 𝐷 problem boyutu, 𝐹 ölçekleme faktörü, 𝐶𝑅 
çaprazlama oranı, 𝑀𝑅 mutasyon oranı) 

Algoritma Parametre 

TLBO 𝑇 = 200, 𝑆 = 50 

ABC 𝑇 = 200, 𝑆 = 50, 𝑙𝑖𝑚𝑖𝑡 = 0.5 × 𝐷 × 𝑆 

DE 𝑇 = 200, 𝑆 = 50, 𝐹 = [0.2, 0.8], 𝐶𝑅 = 0.2 

GA 𝑇 = 200, 𝑆 = 50, 𝐶𝑅 = 0.98, 𝑀𝑅 = 0.1 

Önerilen modelde bu algoritmalar her iki kümeleme algoritması için ayrı ayrı 30 koşma 

ile çalıştırılmıştır. Her iki ortam için optimum kümeleme oranlarında bu algoritmalar 

tarafından elde edilen ortalama yol uzunlukları ve EKA’nın dâhil olduğu ortalama 

çalışma süreleri Tablo 4.16’da gösterilmektedir. 

Tablo 4.16. Her iki ortam için PSO, TLBO, ABC, DE ve GA ile elde edilen ortalama 
yol uzunlukları ve ortalama çalışma süreleri (Bu bulgular 30 koşmanın 
ortalamasıdır. YU: Yol Uzunluğu, EDÇS: EKA Dâhil Çalışma Süresi) 

Metasezgisel 
Algoritma 

Ortam 15  
(%70 Kümeleme Oranı) 

Ortam 16 
(%60 Kümeleme Oranı) 

KMC HC KMC HC 
YU 
(br) 

EDÇS 
(s) 

YU 
(br) 

EDÇS 
(s) 

YU 
(br) 

EDÇS 
(s) 

YU 
(br) 

EDÇS  
(s) 

PSO 77,35 1,07 77,04 1,12 78,57 1,18 75,45 1,15 
TLBO 75,49 1,60 75,22 1,59 74,95 1,64 74,25 1,61 
ABC 75,24 1,61 75,20 1,60 74,53 1,72 74,08 1,65 
DE 87,37 1,17 87,35 1,15 90,59 1,30 85,76 1,28 
GA 79,50 1,08 80,11 1,07 81,93 1,14 79,51 1,08 
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Tablo 4.16 kümeleme algoritmaları açısından incelendiğinde, her iki ortam için HC’nin 

KMC’ye göre hem yol uzunluğu hem de çalışma süresi açısında avantajlı olduğu 

söylenebilir. Çalışmada ayrıca, HC ve KMC’nin engellerin kümelenmesi için harcadığı 

süreler sırasıyla yaklaşık 6 ve 20 ms olarak tespit edilmiştir. Bu değerler de bu avantajı 

desteklemektedir. Tablo 4.16 metasezgisel algoritmalar için yol uzunluğu açısından 

incelendiğinde, her iki ortam için en iyi performansı TLBO ve ABC algoritmaları 

göstermiştir. DE, PSO ve GA daha verimsiz çalışırken, bunlar arasında en kötü 

performans DE ile alınmıştır. Çalışma süresi açısından incelendiğinde ise Ortam 15’teki 

KMC hariç diğer senaryolarda en hızlı algoritma GA olmuştur.  

4.4. Çoklu Robot Yol Planlaması için Çoklu Strateji ve Öz Uyarlamalı Diferansiyel 

Sinüs-Kosinüs Algoritması 

Bedava Öğle Yemeği Yok (No Free Lunch) teoremine göre, bir algoritma tüm 

optimizasyon problemlerini çözmeyi garanti edemez. Bu nedenle, farklı optimizasyon 

tekniklerinin geliştirilmesi gerekir. Mobil robotların yol planlaması optimizasyonda 

hesaplama açısından zor bir problemdir ve bu problemde metasezgisel algoritmalar 

popülerdir [92]. Literatürde çoklu robotların yol planlama problemi için çeşitli 

metasezgisel algoritmalar önerilmiş olmasına rağmen, bunların çoğu hala bir seferde bir 

değişkeni güncellemeye dayanır. Bu, algoritmaların performansını ve yakınsamasını 

sınırlar. Ayrıca, araştırmacılar bir probleme yönelik uygun bir güncelleme stratejisi 

geliştirmek için birçok girişimde bulunmak zorundadır. Bu da yüksek hesaplama 

maliyetleri ve uzun çalışma sürelerine neden olur. Bu dezavantajlar nedeniyle, tek bir 

problem yerine daha geniş bir problem kümesi için optimizasyon algoritmaları 

geliştirmek önemlidir. Bu algoritmalardan biri olan SCA, karmaşık optimizasyon 

problemlerinde (özellikle çoklu robot sisteminin yol planlama probleminde) tatmin edici 

sonuçlar üretemez. Bu çalışmada, strateji havuzu ve kendi kendine adaptif bir 

mekanizmaya sahip olan sdSCA adında yeni bir algoritma önerilmiştir. Bu çalışmanın 

temel katkıları şu şekilde özetlenebilir: 

 Mobil robotların yol planlaması optimizasyonda hesaplama açısından zor bir 

problemdir ve SCA çoklu robotların iki boyutlu yol planlama probleminde tatmin 

edici sonuçlar üretemez. 
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 Daha geniş bir problem kümesi için SCA’yı geliştirmek amacıyla tek bir 

güncelleme stratejisi yerine bir strateji havuzu düşünülmüştür. Bu havuz orijinal 

güncelleme stratejisine ek olarak yeni diferansiyel stratejiler eklenerek 

oluşturulmuştur. 

 Strateji havuzunun kendi kendine adaptif olduğu, yani en tatmin edici sonucu 

üreten stratejinin daha sık kullanıldığı yeni bir algoritma tanıtılmıştır. Böylece, 

temel SCA’nın tek bir stratejiye bağımlılığı ortadan kaldırılmış ve daha geniş bir 

problem kümesi için daha kararlı bir algoritma önerilmiştir. 

 Bu çalışma, özellikle dinamik engellerin olduğu ortamlarda insansız kara 

araçlarından oluşan çoklu robot sistemlerinin yerel yol planlama probleminde 

çoklu stratejili kendi kendine adaptif optimizasyon algoritmalarının kullanıldığı 

ilk uygulamalardan biridir. 

4.4.1. Problem Tanımı 

Çoklu robotların yerel yol planlaması, karmaşık ortamlarda statik-dinamik engellere ve 

diğer robotlara çarpmadan bir sonraki noktaya en az maliyetle hareket etmeyi ve böylece 

adım adım hedef noktaya ulaşmayı amaçlayan bir minimizasyon problemidir [93]. Bu 

çalışmada, robotların dairesel ve homojen olduğu çoklu mobil robot sisteminlerinin yerel 

yol planlaması amaçlanmıştır. Bu simülasyonda bir robotun bir sonraki konumu Eşitlik 

(4.19) kullanılarak hesaplanır. 

𝑝௜
௡ = 𝑝௜

௖ + 𝑣௜ ൤
cos(𝜑௜)

sin(𝜑௜)
൨ Δ𝑡 (4.19) 

Burada, 𝑝௜
௡ 𝑖’inci robotun bir sonraki konumunu, 𝑝௜

௖ 𝑖’inci robotun mevcut konumunu,  

𝑣௜ ve 𝜑௜ sırasıyla 𝑖’inci robotun hızı ve yönelimini, Δ𝑡 zaman adımını temsil eder. Hız, 

adım başına kat edilen mesafe olarak tanımlanır. Robotların bir sonraki konumlarını 

belirlemek için her adımda bir optimizasyon gerçekleştirilir. Bu optimizasyon tüm 

robotların hızına ve yönelimlerine dayanır. Öncelikle, hız [𝑣௟ , 𝑣௛] aralığında ve yönelim 

[𝜑௟, 𝜑௛] aralığında robotların etrafında yerel bir arama uzayı oluşturulur. Ardından, bu 

arama uzayındaki en uygun bir sonraki konumun hızı ve yönelimi belirlenir. Robotlar 

hedef noktalarına ulaşana kadar bu uygulanabilir konumlar üzerinde hareket eder. Tüm 

robotların hızı ve yönelimi bir bütün olarak bir optimizasyon sürecinden geçer. Bu 
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nedenle, problem boyutu (𝐷) sabit değildir, robot sayısıyla (𝑛௥) orantılıdır. Optimizasyon 

robotların bu iki kinematik karakteristiğine dayandığından, 𝐷 = 𝑛௥ × 2 şeklinde 

hesaplanır. Bu konsept için tasarlanan genel amaç fonksiyonunun parametrik formu 

Eşitlik (4.20)’deki gibi temsil edilir.  

arg min
௩,ఝ

ℱ = ቐ 𝑓(𝑣௜ , 𝜑௜) ቮ 

 𝑖 ∈ {1,2, … , 𝑛௥}

𝑣 ∈ [𝑣௟ , 𝑣௛]

𝜑 ∈ [𝜑௟ , 𝜑௛]
  ቑ (4.20) 

Genel amaç fonksiyonu aşağıdaki dört maliyeti değerlendirir: 

 𝑓ଵ: Yol uzunluğu maliyeti 

 𝑓ଶ: Statik engellerden kaçınma maliyeti 

 𝑓ଷ: Dinamik engellerden kaçınma maliyeti 

 𝑓ସ: Diğer robotlardan kaçınma maliyeti 

Birinci maliyet (𝑓ଵ) Eşitlik (4.21)’de gösterildiği gibi tanımlanmıştır.  

𝑓ଵ = ෍(‖𝑝௜
௡ − 𝑝௜

௖‖ + ‖𝑝௜
௡ − 𝑝௧௜‖)

௡ೝ

௜ୀଵ

(4.21) 

Burada, 𝑝௧௜ 𝑖’inci robotun hedef konumunu temsil eder. İkinci maliyet (𝑓ଶ) Eşitlik 

(4.22)’de gösterildiği gibi tanımlanmıştır. 

𝑓ଶ = ෍ ෍ ቊ
𝑓;    𝑒ğ𝑒𝑟  ฮ𝑝௜

௡ − 𝑝௝
௢௦ฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0;                           𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡೚ೞ

௝ୀଵ

௡ೝ

௜ୀଵ

(4.22) 

Burada 𝑓 ∈ ℝା maliyeti (büyük bir sayıyı), 𝐿௚ önceden belirlenmiş bir güvenlik 

mesafesini, 𝑛௢௦ statik engellerin sayısını ve 𝑝௝
௢௦ ise 𝑗’inci statik engelin konumunu temsil 

eder. Üçüncü maliyet (𝑓ଷ) Eşitlik (4.23)’te gösterildiği gibi tanımlanmıştır. 

𝑓ଷ = ෍ ෍ ቊ
𝑓;    𝑒ğ𝑒𝑟  ฮ𝑝௜

௡ − 𝑝௝
௢ௗฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0;                            𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡೚೏

௝ୀଵ

௡ೝ

௜ୀଵ

(4.23) 
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Burada 𝑛௢ௗ dinamik engellerin sayısını ve 𝑝௝
௢ௗ ise 𝑗’inci dinamik engelin konumunu 

temsil eder. Dördüncü maliyet (𝑓ସ) Eşitlik (4.24)’te gösterildiği gibi tanımlanmıştır.  

𝑓ସ = ෍ ෍ ቊ
𝑓;    𝑒ğ𝑒𝑟  ฮ𝑝௜

௡ − 𝑝௝
௥ฮ ≤ 𝐿௚ 𝑖𝑠𝑒

0;                          𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒

௡ೝିଵ

௝ୀଵ

௡ೝ

௜ୀଵ

(4.24) 

Burada 𝑝௝
௥ ise 𝑗’inci diğer robotun konumunu temsil eder. Genel amaç fonksiyonu Eşitlik 

(4.25)’te tanımlandığı gibi bu maliyetlerin toplamıdır. 

ℱ = 𝑓ଵ + 𝑓ଶ + 𝑓ଷ + 𝑓ସ (4.25) 

Ayrıca dinamik engeller her adımda Eşitlik (4.26)’da tanımlandığı gibi hareket eder.  

𝑝௜
௢ௗ = 𝑝௜

௢ௗ + 𝑣௜
௢ௗ ቈ

cos൫𝜑௜
௢ௗ൯

sin൫𝜑௜
௢ௗ൯

቉ Δ𝑡 (4.26) 

Burada, 𝑝௜
௢ௗ 𝑖’inci dinamik engelin anlık konumunu, 𝑣௜

௢ௗ ve 𝜑௜
௢ௗ 𝑖’inci dinamik engelin 

sırasıyla sabit hızını ve hedef konumuna göre sabit yönelimini temsil eder. Bu çalışmada 

önerilen algoritmanın performansı adım sayısı, yol uzunluğu, yol sapma hatası (𝑌𝑆𝐻), 

kalan hedef uzaklığı (𝐾𝐻𝑈), toplam uygunluk değeri ve çalışma süresi açısından 

değerlendirilmiştir.  

4.4.1.1. Yol Sapma Hatası 

İterasyon başlamadan önce, yol planlama algoritması her robot için ideal yolu belirler. Bu 

yol başlangıç ve hedef noktaları arasında düz bir çizgidir. Yol sapma hatası (𝑌𝑆𝐻), bu 

ideal yolun mesafesi ile algoritma tarafından planlanan yolun mesafesi arasındaki farktır 

ve algoritmanın 𝑘’ıncı koşusunda 𝑌𝑆𝐻 Eşitlik (4.27)’deki gibi tanımlanmıştır. 

𝑌𝑆𝐻௞ = ෍൫𝐿௜
௞ − 𝐼௜൯

௡ೝ

௜ୀଵ

(4.27) 

Burada, 𝐿௜
௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun katettiği mesafesini ve 𝐼௜ 𝑖’inci 

robotun ideal yol uzunluğunu temsil eder. Ortalama yol sapma hatası (𝑂𝑌𝑆𝐻) ise Eşitlik 

(4.28) kullanılarak hesaplanır. Bu eşitlikte 𝑅 algoritmanın koşma sayısını temsil eder. 
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𝑂𝑌𝑆𝐻 =
∑ 𝑌𝑆𝐻௞

ோ
௞ୀଵ

𝑅
(4.28) 

4.4.1.2. Kalan Hedef Uzaklığı 

Yol planlama algoritması maksimum adıma sahip robotun hedef noktasına ulaşmasına 

kadar işler. Bu süreçte her robotun her adımda hedefine olan uzaklığı saklanır. Robotların 

hedef noktalarına olan uzaklıkları Öklid formu açısından Eşitlik (4.29) kullanılarak 

hesaplanır. 

𝐻௜
௝,௞

= ฮ𝑝௜
௝,௞

− 𝑝௧௜ฮ (4.29) 

Burada 𝐻௜
௝,௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun 𝑗’inci adımında hedef 

noktasına olan uzaklığını, 𝑝௜
௝,௞ algoritmanın 𝑘’ıncı koşusunda 𝑖’inci robotun 𝑗’inci 

adımında optimizasyon sonunda elde edilen yeni konumunu ve 𝑝௧௜ 𝑖’inci robotun hedef 

konumunu temsil eder. Algoritmanın 𝑘’ıncı koşusunda kalan hedef uzaklığı (𝐾𝐻𝑈) 

Eşitlik (4.30) kullanılarak hesaplanır. 

𝐾𝐻𝑈௞ = ෍ ෍ 𝐻௜
௝,௞

௡ೝ

௜ୀଵ

௡ೞ೟ 

௝ୀଵ

(4.30) 

Burada, 𝑛௦௧ adım sayısı maksimum olan robotun adım sayısını temsil eder. Ortalama 

kalan hedef uzaklığı (𝑂𝐾𝐻𝑈) ise Eşitlik (4.31) kullanılarak hesaplanır. Bu eşitlikte 𝑅 

algoritmanın koşma sayısını temsil eder.  

𝑂𝐾𝐻𝑈 =
∑ 𝐾𝐻𝑈௞

ோ
௞ୀଵ

𝑅
(4.31) 

4.4.2. Önerilen Yöntem 

Popülasyon tabanlı metasezgisel algoritmalar, rastgele bir başlangıç popülasyonu üretir. 

Bu popülasyon bir amaç fonksiyonu ile değerlendirildikten sonra iteratif bir güncelleme 

süreci başlar. Çoğu algoritmada bu popülasyondaki aday çözümler genellikle tek bir 

güncelleme stratejisi ile güncellenir ve iteratif süreç sona erdiğinde en iyi çözüm 

raporlanır. Ancak, tek bir güncelleme stratejisi kullanmak algoritmaların arama 

performansını kısıtlar. SCA da Eşitlik (3.44)’te verilen tek bir güncelleme stratejisine 
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sahip popülasyon tabanlı bir algoritmadır. SCA’nın bu kısıtlamasını ortadan kaldırmak 

için SCA’nın orijinal güncelleme stratejisine ilave olarak birkaç diferansiyel tabanlı 

güncelleme stratejisi eklenmiş ve sdSCA adında yeni bir algoritma önerilmiştir. Bu 

algoritmada popülasyondaki her çözüm bu stratejilerden birini seçerek kendini günceller. 

Ancak bu seçim rastgele değildir, rulet tekerleğine dayalı bir olasılık hesabı yoluyla 

gerçekleştirilir. Algoritma daha tatmin edici sonuçlar üreten stratejiyi adaptif bir şekilde 

öğrenir. Algoritma bu stratejiyi daha sık seçer ve böylece temel SCA'nın arama 

performansı iyileşir. İlave edilen güncelleme stratejileri Eşitlik (4.32), (4.33) ve (4.34)’te 

tanımlanmıştır [94-96]. 𝑟ଵ, 𝑟ଶ, 𝑟ଷ ≠ 𝑖 olmak üzere, 

𝑥௜
ᇱ = ቊ 

𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯;        𝑒ğ𝑒𝑟 𝑟 < 𝐶𝑅 𝑖𝑠𝑒

𝑥௜;                                           𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(4.32) 

𝑥௜
ᇱ = ቊ 

𝑥௥భ
+ 𝐹൫𝑥ො − 𝑥௜ + 𝑥௥భ

− 𝑥௥మ
൯;      𝑒ğ𝑒𝑟 𝑟 < 𝐶𝑅 𝑖𝑠𝑒

𝑥௜;                                                          𝑎𝑘𝑠𝑖 𝑡𝑎𝑘𝑡𝑖𝑟𝑑𝑒
(4.33) 

𝑥௜
ᇱ = 𝑥௜ + 𝑟൫𝑥௥భ

− 𝑥௜൯ + 𝐹൫𝑥௥మ
− 𝑥௥య

൯; (4.34) 

Burada, 𝑟~𝑈(0,1) rassal bir sayısı, 𝑥௜ 𝑖’inci çözümü, 𝑥௜
ᇱ 𝑖’inci çözümün güncellenmiş 

hâlini, 𝑥ො popülasyondaki en iyi çözümü, 𝑥௥భ
, 𝑥௥మ

 ve 𝑥௥య
 popülasyondan rastgele seçilen 

üç çözümü, 𝐹 ölçekleme faktörünü ve 𝐶𝑅 çaprazlama oranını temsil eder. Önerilen 

algoritmanın çalışma prensibi aşağıdaki gibi açıklanabilir: Dört güncelleme stratejisi olan 

Eşitlik (3.44), (4.32), (4.33) ve (4.34) ile bir strateji havuzu oluşturulmuştur. Başlangıçta, 

her bir stratejinin seçilme olasılığı eşit ve %25’tir. Başlangıç popülasyonu Eşitlik (3.18) 

kullanılarak rastgele oluşturulur. Her çözüm rulet tekerleği tekniğini kullanarak kendi 

stratejisini seçer. Çözümler bir amaç fonksiyonunda değerlendirildikten sonra iteratif 

süreç başlar. Bu süreçte çözümler kendi stratejilerini kullanarak kendilerini günceller, 

ayrıca bu stratejilerin seçim sayaçları da güncellenir. Yeni popülasyon amaç 

fonksiyonunda değerlendirilir ve her stratejinin seçilme olasılığı Eşitlik (4.35) 

kullanılarak hesaplanır. 

𝛿௞ =
𝑐௞

∑ 𝑐௜
ସ
௜ୀଵ

(4.35) 

Burada, 𝑘 ∈ {1, 2, 3, 4}, 𝛿௞ 𝑘’ıncı stratejinin seçilme olasılığını ve 𝑐 stratejilerin seçim 

sayacını temsil eder. Bu olasılıkları göz önünde bulundurarak her çözüm rulet tekerleği 
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tekniğini kullanarak kendi stratejisini günceller ve iteratif süreç durdurma kriteri 

sağanana kadar devam eder. En iyi çözüm, iteratif süreç sona erdiğinde raporlanır. 

Minimizasyon problemleri için sdSCA tabanlı çoklu robot yerel yol planlama algoritması 

ve önerilen sdSCA’nın sözde kodları sırasıyla Algoritma 4.6 ve 4.7’de gösterilmektedir. 

Algoritma 4.6. sdSCA tabanlı çoklu robot yerel yol planlama algoritmasının sözde 
kodu 

1: 𝑝௦, 𝑝௧, 𝑝௢௦, 𝑝௢ௗ ← Robotların başlangıç ve hedef konumları, statik ve dinamik 
engellerin konumu 

2: 𝑣௢ௗ , 𝜑௢ௗ ← Dinamik engellerin sabit hızı ve sabit yönelimi 
3: for 𝑖 = 1: 𝑛௥ 
4:  𝑝௜

௖ ← 𝑝௦೔
 

5:  𝐿௜ ← ฮ𝑝௜
௖ − 𝑝௧೔

ฮ 
6:  𝑛௦௧௜

← 0 
7: end for 

8: 𝑘 ← arg max
௡ೝ

(𝐿) 

9: while 𝑝௞
௖ ≠ 𝑝௧ೖ

 
10:  (𝑣௜, 𝜑௜) ← 𝑠𝑑𝑆𝐶𝐴(𝑝௜

௖ , 𝑝௢௦, 𝑝௢ௗ),     𝑖 ∈ {1,2, … , 𝑛௥}  // Algoritma 4.6  
11:  for 𝑖 = 1: 𝑛௥ 
12:   if 𝑝௜

௖ ≠ 𝑝௧೔
 

13:    𝑝௜
௡ ← 𝑝௜

௖ + 𝑣௜ ൤
cos(𝜑௜)

sin(𝜑௜)
൨ Δ𝑡 

14:    𝑛௦௧௜
← 𝑛௦௧௜

+ 1 
15:   end if 
16:  end for 
17:  for 𝑖 = 1: 𝑛௢ௗ 

18:   𝑝௜
௢ௗ ← 𝑝௜

௢ௗ + 𝑣௜
௢ௗ ቈ

cos൫𝜑௜
௢ௗ൯

sin൫𝜑௜
௢ௗ൯

቉ Δ𝑡 

19:  end for 
20:  𝑝௜

௖ ← 𝑝௜
௡,     𝑖 ∈ {1,2, … , 𝑛௥}  

21:  for 𝑖 = 1: 𝑛௥ 
22:   𝐿௜ ← ฮ𝑝௜

௖ − 𝑝௧೔
ฮ 

23:  end for 

24:  𝑘 ← arg max
௡ೝ

(𝐿) 

25: end while 
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Algoritma 4.7: sdSCA’nın sözde kodu  

Girdi: 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ  // Robotun mevcut konumu, statik ve dinamik engellerin konumu 
Çıktı: (𝑣, 𝜑)  // Robotun hızı ve yönelimi 

1: 𝐷, 𝑥௟ , 𝑥௛ ← Problem boyutu, arama sınırları 
2: 𝑇, 𝑆, 𝑎, 𝐹, 𝐶𝑅 ← Kontrol parametreleri 
3: 𝑓መ ← ∞,   𝛿௞ ← 0.25,   𝑐௞ ← 0,     𝑘 ∈ {1, 2, 3, 4} 
4: 𝑋 ←  𝑥௟ + 𝑟(𝑥௛ − 𝑥௟),   𝑟~𝑈(0, 1)ௌ×஽ 
5: for 𝑖 = 1: 𝑆 
6:  𝑓௫೔

← ℱ(𝑥௜ , 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ)  // Amaç fonksiyonu - Eşitlik 4.25 

7:  if 𝑓௫೔
< 𝑓መ 

8:   𝑥ො ← 𝑥௜ ,   𝑓መ ← 𝑓௫೔
 

9:  end if 
10:  𝑥𝑠௜ ← ℱ(𝛿)  // Rulet tekerleği 
11: end for 
12: for 𝑡 = 1: 𝑇 
13:  for 𝑖 = 1: 𝑆 
14:   switch 𝑥𝑠௜ 
15:    case 1 
16:     𝑟ଵ ← 𝑎 − 𝑡(𝑎/𝑇) 
17:     𝑟ଶ, 𝑟ଷ, 𝑟ସ ~ 𝑈(0,2𝜋), 𝑈(0,2), 𝑈(0,1)  
18:     if 𝑟ସ < 0.5 
19:      𝑥௜

ᇱ ← 𝑥௜ + 𝑟ଵ𝑠𝑖𝑛(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜|   
20:     else 
21:      𝑥௜

ᇱ ← 𝑥௜ + 𝑟ଵ𝑐𝑜𝑠(𝑟ଶ)|𝑟ଷ𝑥ො − 𝑥௜| 
22:     end if 
23:    case 2 
24:     if 𝑟~𝑈(0,1) < 𝐶𝑅 
25:      𝑥௜

ᇱ ← 𝑥௥భ
+ 𝐹൫𝑥௥మ

− 𝑥௥య
൯ 

26:     end if 
27:    case 3 
28:     if 𝑟~𝑈(0,1) < 𝐶𝑅 
29:      𝑥௜

ᇱ ← 𝑥௥భ
+ 𝐹൫𝑥ො − 𝑥௜ + 𝑥௥భ

− 𝑥௥మ
൯ 

30:     end if 
31:    case 4 
32:     𝑥௜

ᇱ ← 𝑥௜ + 𝑟൫𝑥௥భ
− 𝑥௜൯ + 𝐹൫𝑥௥మ

− 𝑥௥య
൯ 

33:   end switch 
34:   𝑓௜

ᇱ  ← ℱ(𝑥௜
ᇱ, 𝑝௖ , 𝑝௢௦, 𝑝௢ௗ)  // Amaç fonksiyonu - Eşitlik 4.25 

35:   if 𝑓௜
ᇱ  < 𝑓௫೔

  
36:    𝑥௜ ← 𝑥௜

ᇱ,   𝑓௫೔
← 𝑓௜

ᇱ  
37:    𝑐(𝑥𝑠௜) ← 𝑐(𝑥𝑠௜) + 1 
38:    if 𝑓௫೔

< 𝑓መ 

39:     𝑥ො ← 𝑥௜ ,   𝑓መ ← 𝑓௫೔
 

40:    end if 
41:   end if 
42:  end for 
43:  𝛿௞ ← 𝑐௞  / ∑ 𝑐௜ ,ସ

௜ୀଵ   𝑘 ∈ {1,2,3,4}  
44:  for 𝑖 = 1: 𝑆 
45:   𝑥𝑠௜ ← ℱ(𝛿)  // Rulet tekerleği 
46:  end for 
47: end for 
48: (𝑣, 𝜑) ← 𝑥ො 
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4.4.3. Bulgular 

Simülasyonlar için MATLAB programlama dili ve 16 GB RAM’e sahip bir bilgisayar 

kullanılmıştır. Bu simülasyonlar aşağıdaki gibi özetlenebilir: İlk olarak, önerilen 

algoritmanın etkinliğini değerlendirmek için CEC2015 test fonksiyonları kullanılmıştır 

[97]. İkinci olarak, bu değerlendirmeyi desteklemek için algoritma CEC2020 gerçek 

dünya optimizasyon problemlerine uygulanmıştır [98]. Son olarak, çoklu robot yerel yol 

planlama problemine uygulanmış ve bazı güncel metasezgisel algoritmalarla 

karşılaştırılmıştır. 

4.4.3.1. Önerilen sdSCA’nın CEC2015 Test Fonksiyonlarında Gerçekleştirimi 

sdSCA’nın etkinliğini kanıtlamak için kullanılan CEC2015 test fonksiyonları Tablo 

4.17’de gösterilmektedir.  

Tablo 4.17. CEC2015 test fonksiyonları (𝑓∗ bilinen en iyi fonksiyon değerini temsil 
eder.) 

Grup # Fonksiyonun Adı 𝒇∗ 

Tek Modlu 
Fonksiyonlar 

ℱଵ Döndürülmüş Çok Koşullu Eliptik Fonksiyon 100 

ℱଶ Döndürülmüş Puro Fonksiyonu 200 

Basit  
Çok Modlu 

Fonksiyonlar 

ℱଷ Kaydırılmış ve Döndürülmüş Ackley Fonksiyonu 300 
ℱସ Kaydırılmış ve Döndürülmüş Rastrigin Fonksiyonu 400 
ℱହ Kaydırılmış ve Döndürülmüş Schwefel Fonksiyonu 500 

Hibrit 
Fonksiyonlar 

ℱ଺ Hibrit Fonksiyon 1 (𝐷 = 3) 600 
ℱ଻ Hibrit Fonksiyon 1 (𝐷 = 4) 700 
ℱ଼ Hibrit Fonksiyon 1 (𝐷 = 5) 800 

Kompozisyon 
Fonksiyonları 

ℱଽ Kompozisyon Fonksiyonu 1 (𝐷 = 3) 900 
ℱଵ଴ Kompozisyon Fonksiyonu 2 (𝐷 = 3) 1000 
ℱଵଵ Kompozisyon Fonksiyonu 3 (𝐷 = 5) 1100 
ℱଵଶ Kompozisyon Fonksiyonu 4 (𝐷 = 5) 1200 
ℱଵଷ Kompozisyon Fonksiyonu 5 (𝐷 = 5) 1300 
ℱଵସ Kompozisyon Fonksiyonu 6 (𝐷 = 7) 1400 
ℱଵହ Kompozisyon Fonksiyonu 7 (𝐷 = 10) 1500 

Tüm test fonksiyonları 30 boyutlu ve [-100 100] aralığı için 30 kez çalıştırılmıştır. SCA 

ve sdSCA için maksimum uygunluk değerlendirme sayısı, popülasyon boyutu ve 𝛼 

sırasıyla 10000 x 𝐷, 30 ve 2 olarak; sdSCA için 𝐹 ve 𝐶𝑅 parametreleri sırasıyla 0.8 ve 
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0.95 olarak ayarlanmıştır. CEC2015 test fonksiyonları için sdSCA’nın SCA, EABC [99], 

A𝛽HC [100] ve PgAFWA [101] ile karşılaştırması Tablo 4.18’de gösterilmektedir.  

Tablo 4.18. CEC2015 test fonksiyonları için sdSCA’nın SCA, EABC, A𝛽HC ve 
PgAFWA ile karşılaştırması (Bu bulgular 30 koşmanın ortalamasıdır.) 

Fonksiyon SCA EABC AβHC PgAFWA sdSCA 

ℱଵ 5.29e+08 6.91e+05 1.86e+07 1.70e+06 1.65e+04 

ℱଶ 5.02e+10 5.45e+00 1.93e+08 3.98e+05 9.44e-01 

ℱଷ 2.09e+01 2.00e+01 2.00e+01 3.20e+02 2.08e+01 

ℱସ 4.19e+02 3.39e+01 1.19e+02 5.09e+02 7.14e+01 

ℱହ 7.19e+03 1.29e+03 3.18e+03 3.69e+03 3.48e+03 

ℱ଺ 1.38e+07 2.14e+05 4.82e+06 1.99e+05 2.29e+03 

ℱ଻ 1.11e+02 4.20e+00 2.85e+01 7.15e+02 1.00e+01 

ℱ଼ 2.90e+06 1.12e+05 1.16e+06 1.12e+05 6.82e+02 

ℱଽ 2.61e+02 1.04e+02 1.76e+02 1.12e+03 1.20e+02 

ℱଵ଴ 1.14e+07 1.10e+05 2.80e+06 1.73e+05 1.28e+03 

ℱଵଵ 1.29e+03 2.82e+02 8.49e+02 1.68e+03 8.69e+02 

ℱଵଶ 1.83e+02 1.05e+02 1.23e+02 1.31e+03 1.50e+02 

ℱଵଷ 2.17e-01 8.33e+01 4.43e-02 1.42e+03 6.87e-02 

ℱଵସ 4.87e+04 2.45e+04 3.37e+04 2.22e+04 3.44e+04 

ℱଵହ 1.31e+04 1.00e+02 1.08e+02 1.60e+03 1.00e+02 

Tablo 4.18, önerilen algoritmanın tüm test fonksiyonlarında temel SCA’dan çok daha iyi 

performans gösterdiğini göstermektedir. Bu performans özellikle tek modlu 

fonksiyonlarla birlikte ℱ଺, ℱ଼, ℱଵ଴ ve ℱଵହ’te görülmektedir. Diğer fonksiyonlarda 

iyileştirme etkisi nispeten daha az olmuştur. Buna rağmen literatürdeki diğer 

algoritmalarla karşılaştırıldığında oldukça verimli ve rekabetçi olduğu söylenebilir. 

Çalışma süresine açısından her iki algoritma için de en az süre alan fonksiyon ℱଶ’dir, bu 

fonksiyonda SCA’nın çalışma süresi 5.13 saniye iken, sdSCA’nın çalışma süresi 5.83 

saniyedir. Yine her iki algoritma için de en fazla süre alan fonksiyon ℱଵହ’tir, bu 

fonksiyonda SCA’nın çalışma süresi 43.24 saniye iken, sdSCA’nın çalışma süresi 40.88 

saniyedir. Önerilen algoritmanın çalışma süresi açısından SCA ile yaklaşık aynı olduğu, 

hatta ℱଵହ fonksiyonu için biraz daha iyi olduğu söylenebilir. Ortalama yakınsama eğrileri 

ve kutu grafikleri için her gruptan için bir fonksiyon seçilmiştir. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ 

fonksiyonları için SCA ve sdSCA’nın ortalama yakınsama eğrileri ve kutu grafikleri 

sırasıyla Şekil 4.29 ve 4.30’da gösterilmektedir. 



110 

 

 

Şekil 4.29. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın ortalama 
yakınsama eğrileri 

 

Şekil 4.30. ℱଵ, ℱସ, ℱ଻ ve ℱଵଵ fonksiyonları için SCA ve sdSCA’nın kutu grafikleri 

Ortalama yakınsama eğrileri göz önüne alındığında, sdSCA’nın geliştirilmesiyle temel 

SCA’nın optimizasyon yeteneğinin ve yakınsama hızının önemli ölçüde iyileştirildiği 

görülmektedir. Kutu grafikleri göz önüne alındığında, sdSCA’nın çoğu fonksiyonda 

düşük varyans ve medyan açısından daha performanslı olduğu ve temel algoritmadan 
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daha kararlı olduğu görülmektedir. Her iki algoritmanın maksimum ve minimum verileri 

de bu sonucu desteklemektedir.  

4.4.3.2. Önerilen sdSCA’nın CEC2020 Gerçek Dünya Optimizasyon Problemlerinde 

Gerçekleştirimi 

Önerilen algoritmanın CEC2015 test fonkisyonlarındaki etkinliğini desteklemek için 

algoritma CEC2020 gerçek dünya optimizasyon problemlerine uygulanmıştır. Bu 

problemlerden 20 tanesi kullanılmıştır ve bunlar Tablo 4.19’da gösterilmektedir. 

Tablo 4.19. CEC2020 gerçek dünya optimizasyon problemleri (𝐷 problemin boyutu, 𝑔 
eşitsizlik kısıtlarının sayısı, ℎ eşitlik kısıtlarının sayısı ve 𝑓∗ bilinen en iyi 
fonksiyon değerini temsil eder.) 

Grup # Problem 𝑫 𝒈 𝒉 𝒇∗ 
Endüstriyel 
Kimyasal 
Süreçler 

ℱଵ Alkilasyon Ünitesinin Optimum İşlemi 7 14 0 -4.52e+03 

ℱଶ Reaktör Ağ Tasarımı 6 1 4 -3.88e-01 

Süreç 
Sentezi ve 
Tasarım 

Problemleri 

ℱଷ Süreç Sentezi Problemi 1 2 2 0 2.00e+00 

ℱସ Süreç Sentezi ve Tasarım Problemi 3 1 1 2.55e+00 

ℱହ Süreç Akış Şeması Problemi 3 3 0 1.07e+00 

ℱ଺ Süreç Sentezi Problemi 2 7 9 0 2.92e+00 

ℱ଻ Süreç Tasarım Problemi 5 3 0 2.68e+04 

ℱ଼ Çok Ürünlü Yarı Mamul Tesisi 10 10 0 5.36e+04 

Makine 
Mühendisliği 
Problemleri 

ℱଽ Hız Azaltıcı Ağırlık Minimizasyonu 7 11 0 2.99e+03 

ℱଵ଴ Gerilim/Kompressiyon Yay Tasarımı (V1) 3 3 0 1.26e-02 

ℱଵଵ Kaynaklı Kiriş Tasarımı 4 5 0 1.67e+00 

ℱଵଶ Üç Çubuklu Gerilme Problemi 2 3 0 2.63e+02 

ℱଵଷ Adım Koni Kasnağı Problemi 5 8 3 1.60e+01 

ℱଵସ Robot Uçişlevci Problemi 7 7 0 2.52e+00 

ℱଵହ Hidrostatik Yataklama Tasarımı 4 7 0 1.61e+03 

ℱଵ଺ 10 Çubuklu Gerilme Tasarımı 10 3 0 5.24e+02 

ℱଵ଻ Gaz İletim Kompresör Tasarımı 4 1 0 2.96e+06 

ℱଵ଼ Gerilim/Kompressiyon Yay Tasarımı (V2) 3 8 0 2.61e+00 

ℱଵଽ Himmelblau Fonksiyonu 5 6 0 -3.06e+04 

ℱଶ଴ Topoloji Optimizasyonu 30 30 0 2.63e+00 
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Tüm problemler 30 kez çalıştırılmıştır. Maksimum uygunluk değerlendirme sayısı ℱଵ-

ℱଵଽ için 1e+5 ve ℱଶ଴ için 2e+5 olarak, popülasyon boyutu 40 olarak ayarlanmıştır. SCA 

ve sdSCA için diğer parametreler Alt Başlık 4.4.3.1’deki ayarlarla aynıdır. Önerilen 

algoritma, CEC2020 yarışmasında en üst sıralarda yer alan algoritmalarla (SASS [102], 

COLSHADE [103], EnMODE [104] ve sCMAgES [105]) karşılaştırılmıştır. Bu dört 

algoritmanın parametreleri literatürde sunulan ayarlarla aynıdır [106]. Kısıt işleme tekniği 

olarak öz uyarlamalı ceza stratejisi kullanılmıştır [107]. Bu karşılaştırma Tablo 4.20’de 

gösterilmektedir.   

Tablo 4.20. CEC2020 gerçek dünya optimizasyon problemleri için sdSCA’nın SASS, 
COLSHADE, EnMODE ve sCMAgES ile karşılaştırması (OP: Optimum, 
EK: En Kötü, OR: Ortalama, SS: Standart Sapma)  

Problem SASS COLSHADE EnMODE sCMAgES sdSCA 

ℱଵ 

OP -1.42e+02 -4.52e+03 -4.52e+03 -4.52e+03 -4.52e+03 

EK -1.42e+02 -4.36e+03 -4.52e+03 -4.15e+03 -4.52e+03 

OR -1.42e+02 -3.71e+03 -4.52e+03 -3.32e+03 -4.52e+03 

SS 1.07e-05 3.33e+02 1.62e-12 3.82e+02 1.78e-12 

ℱଶ 

OP -3.88e-01 -3.88e-01 -3.88e-01 -3.88e-01 -3.87e-01 

EK -3.88e-01 -3.80e-01 -3.74e-01 -3.87e-01 1.94e+01 

OR -3.88e-01 -3.58e-01 -3.69e-01 -3.74e-01 5.15e+00 

SS 1.27e-06 1.15e-02 3.45e-03 2.98e-03 8.74e+00 

ℱଷ 

OP 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00 

EK 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00 

OR 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00 

SS 6.12e-15 2.60e-16 2.28e-16 1.84e-16 1.88e-16 

ℱସ 

OP 2.55e+00 2.55e+00 2.55e+00 2.55e+00 2.56e+00 

EK 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.55e+00 

OR 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.00e+00 

SS 2.74e-10 9.11e-16 9.11e-16 8.01e-09 3.75e-01 

ℱହ 

OP 1.07e+00 1.07e+00 1.07e+00 1.07e+00 1.07e+00 

EK 1.07e+00 1.08e+00 1.17e+00 1.07e+00 1.25e+00 

OR 1.07e+00 1.25e+00 2.25e+00 1.07e+00 1.09e+00 

SS 1.18e-13 3.87e-02 8.85e-02 2.40e-14 4.73e-02 

ℱ଺ 

OP 2.92e+00 2.92e+00 2.92e+00 2.92e+00 2.92e+00 

EK 2.92e+00 2.93e+00 2.92e+00 2.93e+00 4.20e+00 

OR 2.92e+00 3.08e+00 2.92e+00 2.95e+00 3.01e+00 

SS 8.63e-10 3.52e-02 9.11e-16 1.15e-02 2.34e-01 
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Tablo 4.20. Devam 

Problem SASS COLSHADE EnMODE sCMAgES sdSCA 

ℱ଻ 

OP 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04 

EK 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04 

OR 2.68e+04 2.68e+04 2.68e+04 2.68e+04 2.68e+04 

SS 4.07e-10 7.46e-12 1.12e-11 1.12e-11 1.48e-11 

ℱ଼ 

OP 5.85e+04 5.85e+04 5.85e+04 5.36e+04 5.36e+04 

EK 5.87e+04 5.85e+04 5.85e+04 5.49e+04 5.91e+04 

OR 6.18e+04 5.85e+04 5.85e+04 5.92e+04 5.46e+04 

SS 9.33e+02 2.83e-11 7.83e-09 1.67e+03 2.07e+03 

ℱଽ 

OP 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03 

EK 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03 

OR 2.99e+03 2.99e+03 2.99e+03 2.99e+03 2.99e+03 

SS 5.91e-09 9.33e-13 1.40e-12 7.66e-12 0.00e+00 

ℱଵ଴ 

OP 1.26e-02 1.26e-02 1.26e-02 1.26e-02 1.26e-02 

EK 1.26e-02 1.26e-02 1.27e-02 1.26e-02 1.26e-02 

OR 1.26e-02 1.26e-02 1.27e-02 1.26e-02 1.26e-02 

SS 8.13e-10 5.11e-09 1.97e-05 2.53e-06 6.70e-18 

ℱଵଵ 

OP 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00 

EK 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00 

OR 1.67e+00 1.67e+00 1.67e+00 1.67e+00 1.67e+00 

SS 7.72e-13 6.83e-16 6.97e-16 1.57e-13 2.22e-16 

ℱଵଶ 

OP 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02 

EK 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02 

OR 2.63e+02 2.63e+02 2.63e+02 2.63e+02 2.63e+02 

SS 1.55e-12 0.00e+00 0.00e+00 6.66e-13 0.00e+00 

ℱଵଷ 

OP 1.60e+01 1.60e+01 1.60e+01 1.60e+01 1.60e+01 

EK 1.60e+01 1.60e+01 1.60e+01 1.62e+01 1.60e+01 

OR 1.60e+01 1.60e+01 1.60e+01 1.67e+01 1.60e+01 

SS 3.47e-09 4.89e-15 3.04e-14 1.84e-01 7.22e-15 

ℱଵସ 

OP 2.54e+00 2.54e+00 2.54e+00 2.61e+00 2.54e+00 

EK 2.54e+00 2.54e+00 2.54e+00 2.88e+00 2.54e+00 

OR 2.54e+00 2.54e+00 2.54e+00 3.34e+00 2.54e+00 

SS 5.27e-09 5.11e-14 4.75e-12 1.90e-01 2.01e-14 

ℱଵହ 

OP 1.61e+03 1.61e+03 1.61e+03 2.13e+03 1.61e+03 

EK 1.61e+03 1.62e+03 1.61e+03 3.01e+03 1.61e+03 

OR 1.63e+03 1.66e+03 1.61e+03 3.62e+03 1.61e+03 

SS 4.15e+00 1.47e+01 1.00e-10 3.83e+02 4.22e-13 
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Tablo 4.20. Devam  

Problem SASS COLSHADE EnMODE sCMAgES sdSCA 

ℱଵ଺ 

OP 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.24e+02 

EK 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.30e+02 

OR 5.24e+02 5.24e+02 5.24e+02 5.24e+02 5.24e+02 

SS 9.84e-03 1.05e-09 4.32e-09 1.13e-01 1.55e+00 

ℱଵ଻ 

OP 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06 

EK 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06 

OR 2.96e+06 2.96e+06 2.96e+06 2.96e+06 2.96e+06 

SS 1.74e-09 9.56e-10 9.56e-10 1.08e+01 1.42e-09 

ℱଵ଼ 

OP 2.65e+00 2.65e+00 2.65e+00 2.97e+00 2.65e+00 

EK 2.65e+00 2.65e+00 2.70e+00 4.28e+00 2.65e+00 

OR 2.65e+00 2.65e+00 3.63e+00 6.35e+00 2.65e+00 

SS 2.28e-11 4.56e-16 2.18e-01 9.08e-01 4.51e-16 

ℱଵଽ 

OP -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 

EK -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 

OR -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 -3.06e+04 

SS 2.17e-09 8.35e-13 3.73e-12 2.01e-10 1.11e-11 

ℱଶ଴ 

OP 2.63e+00 2.63e+00 2.63e+00 2.63e+00 2.63e+00 

EK 2.63e+00 2.63e+00 2.63e+00 2.63e+00 3.05e+00 

OR 2.63e+00 2.63e+00 2.63e+00 2.63e+00 2.68e+00 

SS 1.87e-09 1.28e-15 7.28e-16 1.14e-15 9.01e-02 

Tablo 4.20 sdSCA’nın diğer dört algoritma gibi çoğunlukla bilinen en iyi fonksiyon 

değerine ulaştığını göstermektedir. Önerilen algoritma karşılaştırılan algoritmalarla 

rekabet halindedir. Algoritma, diğer algoritmalardan daha kötü sonuçlar veren 

problemlerde bile bilinen en iyi fonksiyon değerine yakın sonuçlar üretmiştir. 

4.4.3.3. Önerilen sdSCA’nın Çoklu Robot Yerel Yol Planlama Probleminde 

Gerçekleştirimi 

Bu simülasyonda önerilen algoritma çoklu robotların yerel yol planlaması probleminde 

uygulanmıştır. Robotlar dairesel, homojen ve aynı boyutta tasarlanmıştır. Dinamik 

engeller de homojendir ve sabit bir hızla iki belirli nokta arasında doğrusal olarak hareket 

edecek şekilde düşünülmüştür. Bu çalışma için hem statik hem de dinamik engelleri 

içeren üç ortam oluşturulmuştur. Ortam 17, 100 x 100 br boyutunda tasarlanmış ve 6 

robot kullanılmıştır. Bu ortamda 7 statik engel ve 3 dinamik engel vardır. Ortam 18, 100 
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x 100 br boyutunda tasarlanmış ve 7 robot kullanılmıştır. Bu ortamda 7 statik engel ve 3 

dinamik engel vardır. Ortam 19, 200 x 200 br boyutunda tasarlanmış ve 12 robot 

kullanılmıştır. Bu ortamda 14 statik engel ve 6 dinamik engel vardır. Statik ve dinamik 

engeller Ortam 18’de farklı şekillerdeyken, diğer ortamlarda çeşitli yarıçaplarda 

daireseldir. Bu ortamlar Şekil 4.31’de gösterilmektedir.  

 

                                          (a)                                                 (b) 

 

 (c) 

Şekil 4.31. Çoklu robotların yerel yol planlaması için tasarlanan ortamlar:                          
(a) Ortam 17, (b) Ortam 18, (c) Ortam 19 

Ortam 17’de robotlar farklı renk kodlarıyla R1-R6 olarak temsil edilmektedir. Bu renklere 

karşılık gelen noktalı çizgiler ve çarpı işaretleri sırasıyla robotların ideal yollarını ve hedef 

noktalarını göstermektedir. Statik engeller gri dairelerle, dinamik engeller ise D1-D3 

siyah dairelerle temsil edilmektedir. Siyah kesik çizgiler ve siyah kare işaretler sırasıyla 

dinamik engellerin yollarını ve hedef noktalarını göstermektedir. Dinamik engeller düz 

bir çizgide 0.5 br/s (D1), 0.45 br/s (D2) ve 1.2 br/s (D3) sabit hızlarla hareket etmektedir. 

Dinamik engellerin bu hızları, robotları kısıtlayacak ve her ortam için problemi 
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karmaşıklaştıracak şekilde seçilmiştir. Ortam 18’de robotlar farklı renk kodlarıyla R1-R7 

olarak temsil edilmektedir. Bu renklere karşılık gelen noktalı çizgiler ve çarpı işaretleri 

sırasıyla robotların ideal yollarını ve hedef noktalarını göstermektedir. Statik engeller gri 

dairelerle, dinamik engeller ise D1-D3 siyah dairelerle temsil edilmektedir. Statik 

engeller iki daire, iki üçgen ve üç kare biçimindeyken, dinamik engeller bir daire, bir 

üçgen ve bir kare şeklinde tasarlanmıştır. Siyah kesik çizgi ve siyah kare işaretler dinamik 

engellerin sırasıyla yollarını ve hedef noktalarını göstermektedir. Dinamik engeller 0.5 

br/s (D1), 0.1 br/s (D2) ve 1.1 br/s (D3) sabit hızlarıylaa düz bir çizgide hareket eder. 

Ortam 19’da robotlar farklı renk kodlarıyla R1-R12 olarak temsil edilmektedir. Bu 

renklere karşılık gelen noktalı çizgiler ve çarpı işaretleri sırasıyla robotların ideal yollarını 

ve hedef noktalarını göstermektedir. Statik engeller gri dairelerle, dinamik engeller ise 

D1-D6 siyah dairelerle temsil edilmektedir. Siyah kesik çizgi ve siyah kare işaretler 

dinamik engellerin sırasıyla yollarını ve hedef noktalarını göstermektedir. Dinamik 

engeller 0.5 br/s (D1), 0.5 br/s (D2), 0.6 br/s (D3), 0.3 br/s (D4), 0.4 br/s (D5) ve 0.25 

br/s (D6) sabit hızlarıyla düz bir çizgide hareket eder. Her ortam için, robotların yarıçapı 

1 br iken dinamik engellerin yarıçapı 1.5 br olarak tanımlanmıştır. Optimize edilecek 

parametreler olan hız ve yönelim aralıkları sırasıyla [1 1.5] br/s ve [0 2𝜋] radyandır. Amaç 

fonksiyonlarından 𝐹ଶ, 𝐹ଷ ve 𝐹ସ’teki 𝜀 değerleri 105, zaman adımı (Δ𝑡) da 1 s olarak 

ayarlanmıştır. 

İlk olarak, sdSCA’nın çoklu robot sistemindeki toplam robot sayısı üzerindeki 

performansı Ortam 17 için incelenmiştir. Ardından, önerilen algoritma Ortam 17, 18 ve 

19’da uygulanmış ve temel SCA ile SFS, AOA, WOA [108] ve HHO [109] algoritnaları 

ile karşılaştırılmıştır. Algoritmaların kontrol parametreleri ise Tablo 4.21’de 

gösterilmektedir.  
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Tablo 4.21. Algoritmaların kontrol parametreleri (𝑇 maksimum uygunluk 
değerlendirme sayısı, 𝑆 popülasyon boyutu, 𝑎 𝑟ଵ sayısı için ayarlanan 
parametre, 𝑛ௗ௜௙ difüzyon sayısı, 𝑤𝑎𝑙𝑘 yürüme oranı, 𝛼 kullanım 
doğruluğunu tanımlayan parametre, 𝜇 arama sürecini ayarlayan parametre, 
𝑏 logaritmik spiralin şeklini tanımlayan parametre, 𝛽 Levy uçuşunda 
kullanılan sabit parametre, 𝐹 ölçekleme faktörü, 𝐶𝑅 çaprazlama oranı) 

Algoritma Parametre 

SCA 𝑇 = 1000, 𝑆 = 30, 𝑎 = 2 

SFS 𝑇 = 1000, 𝑆 = 30, 𝑛ௗ௜௙ = 2, 𝑤𝑎𝑙𝑘 = 0.5 

AOA 𝑇 = 1000, 𝑆 = 30, 𝛼 = 5, 𝜇 = 0.5 

WOA 𝑇 = 1000, 𝑆 = 30, 𝑏 = 1 

HHO 𝑇 = 1000, 𝑆 = 30, 𝛽 = 1.5 

sdSCA 𝑇 = 1000, 𝑆 = 30, 𝑎 = 2, 𝐹 = 0.8, 𝐶𝑅 = 0.95 

Robot Sayısının Performansa Etkisi: Çoklu robot sistemindeki toplam robot sayısı 

üzerinde sdSCA’nın performansını incelemek için, Ortam 17’de sdSCA farklı robot 

sayılarıyla (2, 3, 4 ve 5) 30 kez çalıştırılmış ve ortalama yol sapma hatası (𝑂𝑌𝑆𝐻), 

ortalama kalan hedef uzaklığı (𝑂𝐾𝐻𝑈), toplam uygunluk değeri ve çalışma süresi 

açısından temel SCA ile karşılaştırılmıştır. Bunlar sırasıyla Tablo 4.22, 4.23, 4.24 ve 

4.25’te gösterilmektedir. SCA ve sdSCA için 𝑂𝐾𝐻𝑈 ve çalışma süresi robot sayısına göre 

Şekil 4.32’de grafiksel olarak da gösterilmektedir.   

Tablo 4.22. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝑌𝑆𝐻 karşılaştırması 

Robot Sayısı 
𝑶𝒀𝑺𝑯 (br) 

İyileştirme Oranı (%) 
SCA sdSCA 

2 27.58 14.55 47.24 

3 59.56 16.20 72.80 

4 157.50 30.55 80.60 

5 278.15 50.83 81.72 
 

Tablo 4.23. SCA ve sdSCA’nın farklı robot sayıları için 𝑂𝐾𝐻𝑈 karşılaştırması 

Robot Sayısı 
𝑶𝑲𝑯𝑼 (br) 

İyileştirme Oranı (%) 
SCA sdSCA 

2 7377 7034 4.65 

3 9243 7733 16.33 

4 16052 11250 29.91 

5 21124 12901 38.92 
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Tablo 4.24. SCA ve sdSCA’nın farklı robot sayıları için toplam uygunluk değeri 
karşılaştırması 

Robot Sayısı 
Toplam Uygunluk Değeri 

İyileştirme Oranı (%) 
SCA sdSCA 

2 7893 7550 4.34 

3 9560 8033 15.97 

4 16459 11631 29.33 

5 21442 13401 37.50 
 

Tablo 4.25. SCA ve sdSCA’nın farklı robot sayıları için çalışma süresi karşılaştırması 

Robot Sayısı 
Çalışma Süresi (s) 

İyileştirme Oranı (%) 
SCA sdSCA 

2 5.92 5.72 3.37 

3 7.94 6.79 14.48 

4 11.00 7.92 28.00 

5 14.19 9.21 35.09 
 
 

  
                               (a)                                                              (b) 

Şekil 4.32. SCA ve sdSCA için toplam robot sayısına göre ortalama kalan hedef 
uzaklığı ve ortalama çalışma süresi: (a) Ortalama kalan hedef uzaklığı, (b) 
Ortalama çalışma süresi 

Çoklu robot sistemindeki toplam robot sayısı arttıkça problem de zorlaşmaktadır. Tablo 

4.23, 4.24, 4.25 ve 4.26 dikkate alındığında, sdSCA hem performans (𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, 

toplam uygunluk değeri) hem de ortalama çalışma süresi açısından temel SCA’ya göre 

oldukça önemli bir iyileştirme sağlamıştır. Dahası, robot sayısı artmasına rağmen 

iyileştirme oranı da artmıştır. En fazla iyileştirme 𝑂𝑌𝑆𝐻’de görülmüş, iyileştirme oranı 

robot sayısı arttıkça %47.24’ten %81.72’ye yükselmiştir. Diğer kriterler nispeten daha az 
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olmasına rağmen, hepsinde iyileştirme oranının arttığı görülmektedir. Robot sayısı 

arttıkça iyileştirme oranları da 𝑂𝐾𝐻𝑈 için %4.65’ten %38.92’ye, toplam uygunluk değeri 

için %4.34’ten %37.50’ye ve ortalama çalışma süresi için %3.37’den %35.09’a 

yükselmiştir. Bu sonuçlar sdSCA’nın yüksek verimliliğini göstermektedir.   

Önerilen Algoritmanın Ortam 17’de Gerçekleştirimi: Bu ortamda 6 robot 

olduğundan, Alt Başlık 4.4.1’de belirtildiği gibi problem boyutu (𝐷) 12 olur. Tüm 

algoritmalar 30 kez çalıştırılmıştır. Ortam 17’de algoritmalar tarafından elde edilen örnek 

yollar Şekil 4.33’te gösterilmektedir.  

 

                                      (a)                                                     (b) 

 

                                       (c)                                                   (d) 
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                                       (e)                                                      (f) 

Şekil 4.33. Ortam 17’de algoritmalar tarafından elde edilen örnek yollar: (a) SCA,         
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA 

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun daha 

kısa ve düzgün olduğu görülmektedir. Diğer algoritmaların planladığı yollar daha 

kıvrımlıdır ve bu durum yolların daha uzun olmasına neden olur. Ortam 17’de ortalama 

adım sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama yol 

uzunluğu karşılaştırması sırasıyla Tablo 4.26, Şekil 4.34 ve Tablo 4.27’de 

gösterilmektedir. Ayrıca, algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve 

ortalama çalışma süresi açısından karşılaştırılmıştır ve bu bulgular Tablo 4.28’de 

gösterilmektedir. 

Tablo 4.26. Ortam 17’de her robot ve toplam için ortalama adım sayısı karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 138 99 155 154 132 88 

Robot #2 142 94 143 125 121 86 

Robot #3 66 38 68 53 47 35 

Robot #4 135 94 142 149 113 84 

Robot #5 88 51 87 64 64 46 

Robot #6 115 75 121 103 102 67 

Toplam 684 451 716 648 579 406 
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Şekil 4.34. Ortam 17’de her robot için ortalama adım sayısının çubuk grafiği 

 

Tablo 4.27. Ortam 17’de her robot ve toplam için ortalama yol uzunluğu (br) 
karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 167.81 117.04 190.72 177.61 158.95 105.58 

Robot #2 171.64 110.76 176.83 144.71 146.20 103.70 

Robot #3 80.74 45.95 83.69 62.71 57.78 43.43 

Robot #4 165.05 110.44 175.19 172.32 136.82 101.68 

Robot #5 106.63 60.90 107.56 75.77 78.47 54.82 

Robot #6 140.58 89.52 149.52 119.91 124.17 82.04 

Toplam 832.48 534.63 883.54 753.04 702.41 491.27 

 

Tablo 4.28. Ortam 17’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma 
süresi karşılaştırmaları 

 SCA SFS AOA WOA HHO sdSCA 

𝑂𝑌𝑆𝐻 (br) 409.41 111.56 460.47 329.97 279.35 68.20 

𝑂𝐾𝐻𝑈 (br) 27976 17544 29693 27995 23669 15923 
Toplam Uygunluk 

Değeri 
28501 18244 30009 28156 24850 16513 

Ortalama Çalışma 
Süresi (s) 

41.49 34.51 39.15 35.78 64.88 18.54 
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Önerilen algoritma, tüm robotların hedef noktalarına minimum adımda ulaşmasını 

sağlamıştır. Temel SCA’ya kıyasla toplam adım sayısını %40.63 oranında azaltmıştır. 

Ayrıca, yol uzunlukları değerlendirildiğinde, önerilen algoritmanın hem temel SCA’dan 

hem de diğer metasezgisel algoritmalardan daha iyi performans gösterdiği görülmektedir. 

Temel SCA’ya kıyasla ortalama yol uzunluğunu %40.98 oranında azaltmıştır. Önerilen 

algoritma, adım sayısı ve yol uzunluğu açısından tüm robotlar için başarılı olmuştur. 

Ayrıca, Tablo 4.28’deki karşılaştırma bulguları da bu sonucu desteklemektedir. Özellikle, 

önerilen algoritmanın yol planlama sürecini diğer algoritmalara kıyasla daha kısa sürede 

tamamlaması performansını kanıtlamaktadır. Sonuç olarak, önerilen algoritma her 

kriterde en iyi performansı göstermiştir. AOA en kötü performansı gösterirken, HHO yol 

planlama sürecini en uzun sürede tamamlayan algoritma olmuştur. Ortam 17 için her 

algoritmanın adım sayısına göre yakınsama eğrileri Şekil 4.35’te gösterilmektedir. 

 

Şekil 4.35. Ortam 17 için her algoritmanın adım sayısına göre yakınsama eğrileri 

Şekil 4.35’te önerilen algoritmanın Ortam 17’de diğer algoritmalardan daha hızlı 

yakınsadığı ve diğer bulguları desteklediği görülmektedir.  

Önerilen Algoritmanın Ortam 18’de Gerçekleştirimi: Bu ortamda 7 robot olduğundan 

problem boyutu (𝐷) 14 olur. Tüm algoritmalar 30 kez çalıştırılmıştır. Ortam 18’de 

algoritmalar tarafından elde edilen örnek yollar Şekil 4.36’da gösterilmektedir.  
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                                       (a)                                                    (b) 

 

                                        (c)                                                   (d) 

 

                                          (e)                                                   (f) 

Şekil 4.36. Ortam 18’de algoritmalar tarafından elde edilen örnek yollar: (a) SCA,         
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA 

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun Ortam 

17’deki gibi daha kısa ve düzgün olduğu görülmektedir. Ortam 18’de ortalama adım 

sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama yol uzunluğu 

karşılaştırması sırasıyla Tablo 4.29, Şekil 4.37 ve Tablo 4.30’da gösterilmektedir. Ayrıca, 
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algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma süresi açısından 

karşılaştırılmıştır ve bu bulgular Tablo 4.31’de gösterilmektedir. 

Tablo 4.29. Ortam 18’de her robot ve toplam için ortalama adım sayısı karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 103 78 108 86 109 72 

Robot #2 145 95 159 105 123 86 

Robot #3 97 49 94 59 66 55 

Robot #4 43 35 56 39 47 32 

Robot #5 127 157 142 166 104 74 

Robot #6 150 84 154 96 105 74 

Robot #7 41 29 49 34 40 28 

Toplam 706 527 762 585 594 421 

 

 

Şekil 4.37. Ortam 18’de her robot için ortalama adım sayısının çubuk grafiği 
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Tablo 4.30. Ortam 18’de her robot ve toplam için ortalama yol uzunluğu (br) 
karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 125.03 90.40 132.63 102.48 129.93 85.74 

Robot #2 174.81 109.18 194.58 124.18 145.73 103.15 

Robot #3 116.09 56.91 114.23 70.09 79.02 64.68 

Robot #4 51.91 39.95 69.50 47.23 56.89 37.95 

Robot #5 153.60 172.45 174.31 185.82 124.40 88.92 

Robot #6 179.61 96.13 187.49 112.55 125.34 88.44 

Robot #7 49.49 33.08 60.42 40.91 48.33 34.08 

Toplam 850.56 598.12 933.19 683.29 709.66 503.00 

 

Tablo 4.31. Ortam 18’de 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma 
süresi karşılaştırmaları 

 SCA SFS AOA WOA HHO sdSCA 

𝑂𝑌𝑆𝐻 (br) 502.90 250.46 585.54 335.63 362.00 155.34 

𝑂𝐾𝐻𝑈 (br) 23472 30872 26134 43786 18975 13927 
Toplam Uygunluk 

Değeri 
25389 41374 44233 60575 22973 13870 

Ortalama Çalışma 
Süresi (s) 

22.60 28.76 26.59 26.32 34.16 13.59 

Ortam 18’de, adım sayıları ve yol uzunlukları değerlendirildiğinde, önerilen algoritmanın 

genel olarak diğer algoritmalardan daha iyi performans gösterdiği görülmektedir. Yol 

uzunluğu açısından 7 robottan 6’sı için diğer algoritmalardan daha iyi performans 

göstermiştir. Ancak, üçüncü robot için SFS ve sdSCA’nın yol uzunluğu açısından 

performansları arasında anlamlı bir fark olmadığı söylenebilir. Ayrıca, toplam dikkate 

alındığında, önerilen algoritmanın diğer tüm algoritmalardan üstün olduğu 

görülmektedir. Önerilen algoritma, temel SCA’ya kıyasla adım sayısını %40.36 ve yol 

uzunluğunu %40.86 oranında azaltmıştır. Tablo 4.31’de, önerilen algoritmanın diğer 

algoritmalara kıyasla tüm kriterlerde en iyi performansı gösterdiği görülmektedir. Ayrıca, 

Ortam 17’de olduğu gibi, Ortam 18’de de en kötü performansa sahip algoritmanın AOA, 

yol planlama sürecini en uzun sürede tamamlayan algoritmanın ise HHO olduğu 

görülmektedir. Ortam 18 için her algoritmanın adım sayısına göre yakınsama eğrileri 

Şekil 4.38’de gösterilmektedir. 
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Şekil 4.38. Ortam 18 için her algoritmanın adım sayısına göre yakınsama eğrileri 

Şekil 4.38’de önerilen algoritmanın Ortam 18’de diğer algoritmalardan daha hızlı 

yakınsadığı ve diğer bulguları desteklediği görülmektedir. 

Önerilen Algoritmanın Ortam 19’da Gerçekleştirimi: Bu ortamda 12 robot 

olduğundan problem boyutu (𝐷) 24 olur. Tüm algoritmalar 30 kez çalıştırılmıştır. Ortam 

19’da algoritmalar tarafından elde edilen örnek yollar Şekil 4.39’da gösterilmektedir.  

  

                                         (a)                                              (b) 

  

                                           (c)                                             (d) 
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                                         (e)                                                (f) 

Şekil 4.39. Ortam 19’da algoritmalar tarafından elde edilen örnek yollar: (a) SCA,         
(b) SFS, (c) AOA, (d) WOA, (e) HHO, (f) sdSCA 

Örnek yollar göz önüne alındığında, önerilen algoritma tarafından planlanan yolun Ortam 

17 ve 18’e benzer şekilde daha kısa ve düzgün olduğu görülmektedir. Ortam 19’da 

ortalama adım sayısı karşılaştırması, ortalama adım sayısının çubuk grafiği ve ortalama 

yol uzunluğu karşılaştırması sırasıyla Tablo 4.32, Şekil 4.40 ve Tablo 4.33’te 

gösterilmektedir. Ayrıca, algoritmalar 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve 

ortalama çalışma süresi açısından karşılaştırılmıştır ve bu bulgular Tablo 4.34’te 

gösterilmektedir. 

Tablo 4.32. Ortam 19’da her robot ve toplam için ortalama adım sayısı karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 78 47 85 65 73 44 

Robot #2 294 220 312 386 268 160 

Robot #3 241 174 262 274 215 128 

Robot #4 101 53 114 98 100 46 

Robot #5 176 118 187 174 146 93 

Robot #6 165 126 177 165 149 98 

Robot #7 148 107 178 155 152 98 

Robot #8 71 52 83 64 77 48 

Robot #9 115 88 138 111 110 74 

Robot #10 250 183 291 299 248 138 

Robot #11 154 88 159 145 143 79 

Robot #12 59 32 59 49 56 31 

Toplam 1852 1288 2045 1985 1737 1037 
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Şekil 4.40. Ortam 19’da her robot için ortalama adım sayısının çubuk grafiği 

Tablo 4.33. Ortam 19’da her robot ve toplam için ortalama yol uzunluğu (br) 
karşılaştırması 

 SCA SFS AOA WOA HHO sdSCA 

Robot #1 95.51 54.54 104.60 72.83 86.13 53.16 

Robot #2 357.87 248.67 381.84 429.68 313.50 194.78 

Robot #3 294.43 199.42 321.58 308.14 253.31 156.00 

Robot #4 121.73 59.80 138.61 110.62 118.54 54.74 

Robot #5 214.93 135.88 228.76 199.33 174.56 112.80 

Robot #6 201.54 145.61 217.61 189.09 178.21 119.83 

Robot #7 182.70 123.54 219.65 177.38 181.87 121.14 

Robot #8 86.94 60.47 102.39 71.65 91.71 58.56 

Robot #9 140.71 102.38 169.60 126.65 131.38 89.65 

Robot #10 304.99 207.99 355.06 336.41 290.37 166.75 

Robot #11 188.05 101.81 194.75 165.77 170.85 95.73 

Robot #12 71.39 36.80 72.15 54.05 66.11 37.10 

Toplam 2260.8 1477.0 2506.7 2241.7 2056.6 1260.3 
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Tablo 4.34. Ortam 19’da 𝑂𝑌𝑆𝐻, 𝑂𝐾𝐻𝑈, toplam uygunluk değeri ve ortalama çalışma 
süresi karşılaştırmaları 

 SCA SFS AOA WOA HHO sdSCA 

𝑂𝑌𝑆𝐻 (br) 1340.4 556.5 1586.2 1321.2 1136.1 339.8 

𝑂𝐾𝐻𝑈 (br) 95334 84580 152250 107690 95317 65262 
Toplam Uygunluk 

Değeri 
97323 68086 115160 106860 90128 53926 

Ortalama Çalışma 
Süresi (s) 

118.38 94.75 128.32 159.01 211.65 63.99 

 

Önerilen algoritma, Ortam 17 ve 18’de olduğu gibi Ortam 19’da de tüm robotların 

minimum adım sayısında hedef noktalarına ulaşmasını sağlamıştır. Yol uzunlukları 

değerlendirildiğinde, önerilen algoritmanın genel olarak diğer algoritmalardan daha iyi 

performans gösterdiği görülmektedir. Önerilen algoritma, adım sayısı açısından tüm 

robotlar için başarılı olsa da, yol uzunluğu açısından 12 robottan 11’i için diğer 

algoritmalardan daha iyi performans göstermiştir. Ancak, 12. robot için SFS ve 

sdSCA’nın performansları arasında anlamlı bir fark olmadığı söylenebilir. Ayrıca, toplam 

dikkate alındığında, önerilen algoritmanın diğer tüm algoritmalardan üstün olduğu 

görülmektedir. Önerilen algoritma, temel SCA’ya kıyasla adım sayısını %44.00 ve yol 

uzunluğunu %44.25 oranında azaltmıştır. Tablo 4.34’te, önerilen algoritmanın diğer 

algoritmalara kıyasla tüm kriterlerde en iyi performansı gösterdiği görülmektedir. Ayrıca, 

Ortam 17 ve 18’de olduğu gibi, Ortam 19’da de en kötü performansa sahip algoritmanın 

AOA, yol planlama sürecini en uzun sürede tamamlayan algoritmanın ise HHO olduğu 

görülmektedir. Ortam 19 için her algoritmanın adım sayısına göre yakınsama eğrileri 

Şekil 4.41’de gösterilmektedir. 

 

Şekil 4.41. Ortam 19 için her algoritmanın adım sayısına göre yakınsama eğrileri 
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Şekil 4.41’de Ortam 19’da önerilen algoritmanın diğer algoritmalardan daha hızlı 

yakınsadığı ve diğer bulguları desteklediği görülmektedir. Sonuç olarak, bu çalışmada 

önerilen algoritmanın performansı farklı zorluk seviyelerine sahip üç farklı ortamda test 

edilmiş ve önerilen algoritmanın literatürdeki güncel metasezgisel algoritmalardan üstün 

olduğu kanıtlanmıştır. 

4.5. Izgara Haritalarda ResNet Tabanlı Çoklu-Robot Yol Planlaması  

Izgara tabanlı mobil robot yol planlama problemlerinde standart FCN mimarileri 

derinleştikçe kaybolan gradyan problemi yaşayabilir ve bu durum ağı derinleştirmenin 

etkinliğini sınırlayabilir. Bu problem, özellikle yol planlama gibi karmaşık görevlerde 

robotun çevresindeki engellerin doğru bir şekilde tanınması ve bu engellere karşı verimli 

bir yol haritası çıkarılması için kritik öneme sahiptir. Gradyan kaybolması, geri yayılım 

sırasında gradyanların hızla küçülmesi nedeniyle ağın daha derin katmanlarının etkili bir 

şekilde öğrenmesini engeller. Bu da, robotun çevresindeki karmaşık engelleri ve yol 

tıkanıklıklarını doğru bir şekilde öğrenmesini zorlaştırır. Ayrıca, standart FCN’ler, artık 

(residual) katmanlar içermediğinden, daha derin katmanların öğrenmeye katkısı sınırlıdır, 

bu da ağın genel öğrenme sürecini verimsiz hale getirir. Bu durum, robotun yol planlama 

görevindeki öğrenme kapasitesini kısıtlar ve modelin daha fazla katman eklemenin fayda 

sağlamadığı sınırlı çözünürlükteki haritalar üretmesine yol açar. Bunun yanı sıra, 

FCN’lerde alıcı alanı genellikle sınırlıdır. Bu da robotun çevresindeki geniş bağlamsal 

ilişkileri öğrenme yeteneğini engeller. Özellikle yol planlama gibi görevlerde, robotun 

çevresindeki engelleri ve uygun yolları daha geniş bir bağlamda anlaması gerekmektedir. 

Algılama alanının sınırlı olması modelin yalnızca yerel bilgiyle sınırlı kalmasına neden 

olur, bu da genelleme yeteneğini zayıflatır ve modelin aşırı öğrenme gibi problemlerle 

karşılaşmasına yol açar. Standart FCN’lerin bu sınırlamalarını aşmak amacıyla, bu 

çalışmada genişletilmiş evrişim (dilated convolution), sıkma-uyarma bloğu (squeeze-

and-excitation) ve dropout içeren iyileştirilmiş bir ResNet (IResNet) mimarisi 

önerilmiştir. Önerilen modelin ana katkıları şunlardır:  

 Genişletilmiş evrişim kullanılarak alıcı alan genişletilmiştir. Böylece hem yerel 

hem de küresel özelliklerin daha etkili şekilde öğrenilmesi ve gelişmiş bağlamsal 

bilgi edinilmesi sağlanmıştır. 
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 Sıkma-uyarma bloğu eklenerek kanal bazında dikkat mekanizması sağlanmıştır. 

Böylece modelin önemli görsel özelliklere odaklanması ve gereksiz bilgilerin 

baskılanarak daha verimli öğrenme sürecinin gerçekleştirilmesi hedeflenmiştir. 

 Toplu normalizasyonun (batch norm) etkisini desteklemek amacıyla dropout 

kullanılmıştır. Böylece modelin daha sağlam genelleme yapması sağlanmış ve 

aşırı öğrenme riski azaltılmıştır. 

4.5.1. Problem Tanımı 

Bu çalışma, bir mobil robotun engellere çarpmadan hedefe ulaşmasını sağlayacak 

optimum yol planlamasını tahmin etmeyi amaçlamaktadır. Robotun başlangıç ve bitiş 

noktası verildiğinde robotun en az sayıda ızgara hücresinden geçerek hedefe ulaşması 

gereken yol, derin öğrenme kullanılarak tahmin edilmiştir. Çalışmada iki boyutlu bir 

ızgara haritası kullanılmıştır. Bu harita, ikili bir görüntü formatında temsil edilir. Her bir 

hücre boş (0) veya engelli (1) olabilir. Robotun yolu, 1’ler ile temsil edilen hücreler 

üzerinden geçerken, 0’lar engel olmayan boş hücrelerdir. Bu ortamlar, görüntü olarak 

modellenir, burada boş alanlar beyaz (0) ve engeller siyah (1) olarak kodlanır. Yol 

planlaması 𝑚 x 𝑛 boyutunda bir ikili ızgara görüntüsü 𝑀௧௥௨௧௛ (gerçek yol haritası) ile 

verilecektir. Model 𝑀௣௥௘ௗ (tahmin edilen yol haritası) adlı bir çıkış üretir. Bu çıkış 

robotun geçmesi gereken hücrelerin 1 olarak işaretlendiği bir ikili matristir. Modelin 

amacı 𝑀௣௥௘ௗ ile 𝑀௧௥௨௧௛ arasındaki farkı minimize etmektir. Buradaki fark Eşitlik 

(4.36)’da gösterilen 𝑀𝑆𝐸 kayıp fonksiyonu ile hesaplanır. 

𝑀𝑆𝐸 =
1

𝑛௣
෍ ቀ𝑀௧௥௨௧௛(𝑖) − 𝑀௣௥௘ௗ(𝑖)ቁ

ଶ
௡೛

௜ୀଵ

(4.36) 

Burada 𝑛௣ harita üzerindeki toplam hücre sayısını, 𝑀௧௥௨௧௛(𝑖) ve 𝑀௣௥௘ௗ(𝑖) ise sırasıyla 

gerçek yol ve tahmin edilen yol haritasındaki 𝑖’inci hücrenin değerini temsil eder. Tahmin 

edilen yol haritası, doğru şekilde belirlenen 1’ler ile başlangıç noktasından hedefe giden 

en kısa yolu temsil eder. Modelin görevi optimum yolun doğru şekilde tahmin edilmesini 

sağlamaktır. Bu, her hücredeki tahminin, gerçek yol ile ne kadar yakın olduğunu ölçerek 

minimize edilir. MSE ağın her iki harita arasındaki farkı minimize etmeyi amaçlar. 
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4.5.2. Önerilen Yöntem 

4.5.2.1. Veri Seti 

Bu çalışmada [110]’daki veri seti kullanılmıştır. Ağın girişine üç farklı veri 

sağlanmaktadır: ortam matrisi, başlangıç noktası matrisi ve hedef noktası matrisi. Ortam 

matrisi engel bilgilerini içerir ve 𝑛 x 𝑛 boyutundadır. Bu matriste engeller 1, boş alanlar 

0 ile temsil edilmektedir. Engel dağılımı rastgele belirlenmiş ve her hücrenin engel olma 

olasılığı %60 olarak atanmıştır. Başlangıç ve hedef hücre matrisleri de aynı boyutta olup, 

sadece ilgili hücrede 1 değeri bulunurken diğer hücreler 0’dır. Modelin çıktısı ise tahmin 

edilen yolun 1’lerle gösterildiği 𝑛 x 𝑛 boyutunda tek bir matristir. Bu matristeki yollar 

optimum yol olarak ifade edilmiş ve A* algoritması ile 8 yönlü olarak planlanmıştır. 

Çalışmada toplam 30000 veri örneği kullanılmış ve üç farklı ortam boyutu ele alınmıştır: 

10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2. Tekli robot senaryolarında başlangıç ve hedef 

hücreleri farklı ve rastgele olacak şekilde belirlenmiştir. Çoklu robot senaryoları ise 

yalnızca 15 x 15 br2 boyutundaki ortamlarda test edilmiş ve bu senaryolarda tüm robotlar 

aynı hedef hücresine yönlendirilmiştir. İki robotlu durumda başlangıç hücreleri (1, 1) ve 

(1, 15), üç robotlu durumda ise (1, 1), (1, 15) ve (15, 1) olarak belirlenmiştir. Tüm 

senaryolarda hedef hücresi ortamın merkezinde bulunan (8, 8) hücresidir. Giriş ve çıkış 

verilerinin bir temsili Şekil 4.42’de gösterilmektedir. 

Ortam Matrisi Başlangıç Hücre Matrisi Hedef Hücre Matrisi

Yol Matrisi

Çıkış Verisi
(1 x n x n)

Giriş Verisi
(3 x n x n)

 

Şekil 4.42. Giriş ve çıkış verilerinin bir temsili   
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4.5.2.2. Önerilen IResNet Mimarisi 

Önerilen IResNet mimarisi, geleneksel artık ağ yapısını temel alarak, sıkma-uyarma ve 

genişletilmiş evrişim mekanizmalarının entegre edildiği 41 evrişim katmanlı bir derin 

öğrenme modelidir. Modelin giriş katmanı, adım uzunluğu 1 olan 3 x 3 boyutunda 64 

filtre içeren bir evrişim katmanı ile başlamaktadır. Bu katman, ReLU aktivasyon 

fonksiyonu ile etkinleştirilmekte ve ardından bir toplu normalizasyon işlemi 

uygulanmaktadır. Modelin ana gövdesini her biri 64 filtre içeren 19 adet artık blok 

oluşturmaktadır. Her artık blok 3 x 3 boyutunda, adım uzunluğu 1 olan ve ReLU 

aktivasyon fonksiyonuna sahip iki evrişim katmanından meydana gelmektedir. Bu 

katmanlardan her birine toplu normalizasyon işlemi uygulanarak modelin istikrarı 

artırılmıştır. Artık bağlantı mekanizması ile giriş ve çıkış bilgileri toplanarak öğrenme 

sürecinin verimliliği yükseltilmiştir. Her artık blok sonunda aşırı öğrenmeyi önlemek 

amacıyla %10 oranında dropout uygulanmıştır. Artık blokların ardından, modelin daha 

geniş bir alandan özellik çıkarabilmesi için genişletilmiş evrişim tekniği kullanılmıştır. 

Burada genişleme oranı 2 olan 64 filtreli 3 x 3 boyutunda bir evrişim katmanı eklenmiştir. 

Bu işlem, daha büyük alansal ilişkileri öğrenerek modelin daha güçlü temsil gücüne sahip 

olmasını sağlamaktadır. Modelde dikkat mekanizmasını güçlendirmek amacıyla, 

sıkıştırma-uyarma bloğu kullanılmıştır. Kanal sayısı 64 ve sıkıştırma oranı 16 olarak 

belirlenmiştir. Dolayısyla, 4 nöronlu-ReLU aktivasyonlu ve 64 nöronlu-sigmoid 

aktivasyonlu iki tam bağlantılı tasarlanmış ve giriş tensörüne uygulanmıştır. Çıkış 

aşamasında tek kanal içeren bir çıktı üretmek amacıyla, 1 filtreli ve adım uzunluğu 1 olan 

3 x 3 boyutunda bir evrişim katmanı eklenmiştir. Bu katmanda sigmoid aktivasyon 

fonksiyonu ile çıktı değerleri 0 ile 1 arasında normalize edilmiştir. Son olarak toplu 

normalizasyon işlemi ve %10 oranında dropout uygulanarak model tamamlanmıştır. 

Önerilen IResNet mimarisi Şekil 4.43’te gösterilmektedir. 
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Evrişim 3x3, 64, 1, ReLU 

Giriş (n x n x 3)

Toplu Normalizasyon

Artık Katman 1

Artık Katman 2

...

Artık Katman 19

Genişletilmiş Evrişim 3x3, 64, 2, ReLU

Toplu Normalizasyon

Sıkma-Uyarma Bloğu, 64, 16 

Evrişim 3x3, 64, 1, Sigmoid 

Toplu Normalizasyon

Dropout (0.10)

Çıkış (n x n x 1)

Evrişim 3x3, 64, 1, ReLU

Toplu Normalizasyon

Evrişim 3x3, 64, 1, ReLU

Toplu Normalizasyon

+

X

Global Ortalama Havuzlama

Tam Bağlı Katman, ReLU

Tam Bağlı Katman, Sigmoid

Dropout (0.10)

 

Şekil 4.43. Önerilen IResNet mimarisi 

4.5.2.3. Değerlendirme Metrikleri 

Önerilen modelin tahmin ettiği yollar, eğitim verisinde A* algoritması ile planlanan en 

kısa yollar ile karşılaştırılarak değerlendirilmiştir. Model performansını ölçmek amacıyla 

başarı oranı ve yol optimalitesi metrikleri kullanılmıştır. Başarı oranı (𝜂௦௖), test 

ortamlarında modelin başlangıç ve hedef hücreleri arasında geçerli bir yol planlayabildiği 

durumların yüzdesi olarak tanımlanmış Eşitlik (4.37) kullanılarak hesaplanmıştır.  

𝜂௦௖ = ൬
𝑛௦௖

𝑛௧
൰ ⋅ 100% (4.37) 
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Burada, 𝑛௦௖ model tarafından başarılı şekilde üretilen yolların sayısını, 𝑛௧ ise toplam test 

ortamı sayısını temsil eder. Yol optimalitesi (𝜂௢௣), model tarafından üretilen yolların, A* 

algoritması tarafından hesaplanan en kısa yollar ile aynı olup olmadığını belirlemek 

amacıyla kullanılmıştır. Modelin tahmin ettiği yolların uzunluğu (𝐿ூோ௘௦ே௘௧) A* 

algoritması ile elde edilen en kısa yolun uzunluğu (𝐿஺∗) ile karşılaştırılmıştır. Eğer 

𝐿ூோ௘௦ே௘௧ = 𝐿஺∗ koşulu sağlanıyorsa, yol optimal kabul edilmiştir. Yol optimalitesi Eşitlik 

(4.38) kullanılarak hesaplanmıştır. 

𝜂௢௣ = ൬
𝑛௢௣

𝑛௧
൰ ⋅ 100% (4.38) 

Burada, 𝑛௢௣ model tarafından planlanan optimal yolların sayısını temsil eder. Bu 

metrikler, modelin genel başarımını ve en kısa yolu üretebilme yetisini değerlendirmek 

için kullanılmıştır.  

4.5.3. Bulgular 

Bu çalışmada, önerilen IResNet modelinin performansı hem tekli hem de çoklu robot 

senaryolarında test edilmiş ve [110]’daki FCN ile elde edilen sonuçlarla kıyaslanmıştır. 

Tüm simülasyonlar Python programlama dilinde kodlanmış, Intel Core i7-1255U işlemci 

ve 32 GB RAM’e sahip bir bilgisayarda çalıştırılmıştır. Önerilen model, sadece tekli robot 

senaryosunda eğitilmiş, ancak eğitilen model hem tekli hem de çoklu robot 

senaryolarında test edilmiştir. Tüm eğitim parametreleri [110]’daki ayarlarla aynıdır. 

Modelin eğitiminde toplam 30000 veriden 26000’i eğitim, 2000’i ise doğrulama için 

ayrılmıştır. Modelin daha önce görmediği ortamlarda genel performansını 

değerlendirmek amacıyla, 2000 test verisi yalnızca eğitimde kullanılmayan ortamları 

içermektedir. Çoklu ortam senaryosundaki analiz için ise 1000 test verisi kullanılmıştır. 

Model 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu ortamlar için ayrı ayrı eğitilmiştir. 

Eğitim sürecinde, model Adam optimizasyon algoritması kullanılarak MSE kaybı ile 

eğitilmiştir. Performans ölçütü olarak doğruluk metriği izlenmiştir. Modelin aşırı 

öğrenmesini önlemek amacıyla, erken durdurma mekanizması uygulanmıştır. Erken 

durdurma, doğrulama doğruluğunu izleyerek 10 epoch boyunca iyileşme 

gözlemlenmediğinde eğitimi sonlandıracak şekilde ayarlanmıştır. Ayrıca, modelin en iyi 

ağırlıklarını kaydetmek için ModelCheckpoint kullanılmış ve doğrulama doğruluğu en 

yüksek olan modelin ağırlıkları saklanmıştır. Eğitim verileri uygun bir formatta yeniden 
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şekillendirilerek modele verilmiş, veriler 64’lük batch boyutunda işlenmiş ve epoch sayısı 

100 olarak ayarlanmıştır. Eğitim süreci boyunca modelin performansı takip edilerek en 

iyi sonuçları veren ağırlıklar kaydedilmiş ve analiz için kullanılmıştır. 

4.5.3.1. Tekli Robot Senaryosu 

Bu çalışmada, önerilen modelin performansı farklı ortam boyutlarında test edilerek 

değerlendirilmiştir. İlk olarak, modelin 10 x 10 br2 boyutundaki bir ızgara ortamında 

eğitim süreci gerçekleştirilmiştir. Bu eğitimden sonra, bu model hem 10 x 10 br2 hem de 

15 x 15 br2 ile 20 x 20 br2 boyutlarındaki ızgara ortamlarında test edilmiştir. Bunun yanı 

sıra, 15 x 15 br2 ve 20 x 20 br2 boyutlarında ayrı ayrı eğitilen modeller de benzer şekilde, 

her üç ortam boyutunda da test edilerek genel performansları karşılaştırılmıştır. Bu çoklu 

test ortamları, modelin genelleme yeteneğini ve farklı ortam boyutlarına adaptasyon 

kabiliyetini analiz etmek amacıyla kullanılmıştır. Tekli robot test verilerinde 10 x 10 br2, 

15 x 15 br2 ve 20 x 20 br2 boyutlu ortam verileri ile eğitilen IResNet modellerinin farklı 

test ortamlarında FCN ile karşılaştırmaları sırasıyla Tablo 4.35’te, bunların çubuk 

grafikleri ise sırasıyla Şekil 4.44’te gösterilmektedir. Ayrıca 15 x 15 boyutlu ortam verisi 

ile eğitilen IResNet modelinin her boyuttaki ortamda planladığı optimal ve yarı-optimal 

yollardan örnekler Şekil 4.45’te gösterilmektedir. 

Tablo 4.35. Tekli robot test verilerinde 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu 
ortam verisi ile eğitilen IResNet modelinin farklı test ortamlarında FCN ile 
karşılaştırması  

 Model 
Başarı Oranı (%) Yol Optimalitesi (%) 

10 x 10 
Test 

15 x 15 
Test 

20 x 20 
Test 

10 x 10 
Test 

15 x 15 
Test 

20 x 20 
Test 

10 x 10 
Eğitim 

FCN 100 99.75 98.45 99.85 83.51 58.10 

IResNet 100 99.85 98.10 98.05 89.85 66.25 

15 x 15 
Eğitim 

FCN 99.90 99.95 98.90 97.25 91.00 75.53 

IResNet 100 100 99.95 98.30 96.45 90.70 

20 x 20 
Eğitim 

FCN 99.90 99.70 99.60 98.05 94.38 86.55 

IResNet 99.90 99.75 99.85 98.70 97.00 94.25 
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                                (a)                                                               (b) 

  
                                (c)                                                               (d) 

  
                                (e)                                                               (f) 

Şekil 4.44. Tekli robot test verilerinde 10 x 10 br2, 15 x 15 br2 ve 20 x 20 br2 boyutlu 
ortam verisi ile eğitilen IResNet modelinin FCN ile karşılaştırma grafiği: 
(a) 10 x 10 br2 başarı oranı, (b) 10 x 10 br2 yol optimalitesi, (c) 15 x 15 br2 
başarı oranı, (d) 15 x 15 br2 yol optimalitesi, (e) 20 x 20 br2 başarı oranı, 
(f) 20 x 20 br2 yol optimalitesi 
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                                       (a)                                                          (b) 

  
                                      (c)                                                          (d) 

  
                                      (e)                                                           (f) 

Şekil 4.45. Tekli robot test verilerinde 15 x 15 br2 boyutlu ortam verisi ile eğitilen 
IResNet modelinin her boyuttaki ortamda planladığı optimal ve yarı-
optimal yollardan örnekler: (a) 10 x 10 br2 optimal, (b) 10 x 10 br2 yarı-
optimal, (c) 15 x 15 br2 optimal, (d) 15 x 15 br2 yarı-optimal, (e) 20 x 20 
br2 optimal, (f) 20 x 20 br2 yarı-optimal (Siyah çarpılar gerçek yolu, mavi 
çizgiler önerilen IResNet modeli ile tahmin edilen yolları, yeşi ve kırmızı 
noktalar sırasıyla başlangıç ve hedef noktalarını temsil eder.) 
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Başarı oranı açısından değerlendirildiğinde, önerilen IResNet modeli tüm ortam 

boyutlarında FCN ile rekabet edebilir sonuçlar üretmiş ve benzer bir başarı oranı elde 

etmiştir. Ancak, yol optimalitesi açısından yapılan değerlendirmelerde, IResNet 

modelinin genel olarak FCN’ye kıyasla daha üstün bir performans sergilediği 

gözlemlenmiştir. Küçük boyutlu ortamlarda eğitilen modeller arasında, 10 x 10 br2 

boyutlu ortam verisiyle eğitilen IResNet’in, aynı boyuttaki test verisinde FCN’ye kıyasla 

görece düşük bir optimaliteye sahip olduğu, ancak ortam boyutu büyüdüğünde FCN’yi 

geride bıraktığı tespit edilmiştir. Ortam boyutu büyüdükçe IResNet’in bu metrikteki 

başarısı belirgin şekilde artmış ve 15 x 15 br2 ile 20 x 20 br2 boyutlu ortam verileriyle 

eğitilen modeller tüm test ortamlarında FCN’ye kıyasla daha yüksek yol optimalitesi 

sunmuştur. Özellikle daha büyük test ortamlarında FCN’nin yol uzunluğu açısından ciddi 

performans kayıpları yaşadığı görülürken, IResNet modelinin optimal yollar üretme 

konusunda daha kararlı sonuçlar verdiği ortaya konmuştur.  

4.5.3.2. Çoklu Robot Senaryosu 

Bu senaryoda ek bir eğitim yapılmadan, tekli robot senaryosunda 15 x 15 br2 ortam 

boyutu ile eğitilen model kullanılarak birden fazla robotun yol planlamasındaki 

performansı incelenmiştir. Buradaki amaç, farklı başlama noktalarından aynı hedef 

noktasına ulaşan birden fazla robot yolunun tahmin edilmesidir. Çoklu robot 

senaryosunda sadece 15 x 15 br2 boyutundaki ortamda yer alan 1000 test verisi 

kullanılmıştır. Bu kapsamda, başarı oranı ve yol optimalitesi dikkate alınarak 1, 2 ve 3 

yol tahmin etme durumu değerlendirilmiştir. Çoklu robot test verilerinde 15 x 15 br2 

ortam boyutu ile eğitilen IResNet modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile 

karşılaştırması sırasıyla Tablo 4.36’da, bunların çubuk grafikleri ise sırasıyla Şekil 

4.46’da gösterilmektedir. Ayrıca bu modelinin 2 ve 3 yol bulma durumlarında planladığı 

optimal ve yarı-optimal yollardan örnekler Şekil 4.47’de gösterilmektedir.  
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Tablo 4.36. Çoklu robot test verilerinde 15 x 15 br2 ortam boyutu ile eğitilen IResNet 
modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırması 

Değerlendirme Metriği Model 
Robot Sayısı 

1 2 3 

Başarı Oranı 
(%) 

1 Yol Bulma Durumu 
FCN 99.50 99.80 100 

IResNet 100 100 100 

2 Yol Bulma Durumu 
FCN - 96.40 99.20 

IResNet - 99.80 99.50 

3 Yol Bulma Durumu 
FCN - - 83.90 

IResNet - - 96.50 

Yol Optimalitesi (%) 
FCN 93.77 85.88 83.33 

IResNet 97.70 94.46 90.42 

 

    

 

 

 

(a) (b)           

 

                                (c)                                                              (d) 

Şekil 4.46. Çoklu robot test verilerinde 15 x 15 br2 ortam boyutu ile eğitilen IResNet 
modelinin 1, 2 ve 3 yol bulma durumlarında FCN ile karşılaştırma 
grafikleri: (a) 1 yol bulma durumunda başarı oranı, (b) 2 yol bulma 
durumunda başarı oranı, (c) 3 yol bulma durumunda başarı oranı, (d) Yol 
optimalitesi 
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                                     (a)                                                       (b)           

    

                                       (c)                                                     (d)           

Şekil 4.47. Çoklu robot test verilerinde 15 x 15 br2 boyutlu ortam verisi ile eğitilen 
IResNet modelinin 2 ve 3 yol bulma durumlarında planladığı optimal ve 
yarı-optimal yollardan örnekler: (a) 2 yol bulma durumunda optimal, (b) 2 
yol bulma durumunda yarı-optimal, (c) 3 yol bulma durumunda optimal,       
(d) 3 yol bulma durumunda yarı-optimal (Siyah çarpılar gerçek yolu, mavi 
çizgiler önerilen IResNet modeli ile tahmin edilen yolları, yeşi ve kırmızı 
noktalar sırasıyla başlangıç ve hedef noktalarını temsil eder.) 

Başarı oranı açısından değerlendirildiğinde, önerilen IResNet modelinin tüm test 

senaryolarında FCN modelinden daha üstün performans sergilediği açıkça görülmektedir. 

Özellikle araştırılan yol sayısı arttıkça, bu performans farkı daha belirgin bir şekilde 

ortaya çıkmaktadır. İlk başta, her iki modelin başarı oranları arasında küçük farklar 

bulunsa da, yol sayısı arttıkça IResNet'in yüksek başarı oranı daha net bir şekilde fark 

edilmektedir. Bu durum, modelin daha karmaşık ve geniş ortamlar ile daha fazla yol 

bulma gereksinimlerini daha etkin şekilde karşılayabildiğini göstermektedir. Ayrıca, 

önerilen IResNet modeli, FCN’ye kıyasla daha yüksek bir optimalite oranına sahiptir. Bu 
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da, IResNet'in sadece daha fazla sayıda başarılı çıkış sağlamakla kalmadığını, aynı 

zamanda daha verimli yolları seçerek daha optimal sonuçlar sunduğunu ortaya 

koymaktadır. IResNet’in yüksek başarı oranı ile birlikte, düşük maliyetli ve daha kısa 

yollar üretme yeteneği, onun yol planlama alanında güçlü bir alternatif olarak öne 

çıkmasını sağlamaktadır. Sonuç olarak IResNet, büyük ölçekli ve karmaşık ortamlar için 

daha başarılı bir yol planlama yaklaşımı sunmaktadır. Hem başarı oranı hem de yol 

optimalitesi açısından FCN modelini geride bırakarak, özellikle robotik ve otonom 

sistemlerde yüksek doğruluk ve verimlilik gerektiren uygulamalarda tercih edilmesi 

gereken bir model olarak dikkat çekmektedir. Bu durum, IResNet'in çeşitli robotik 

senaryolarda daha verimli ve güvenilir çözümler sunduğunu ve dolayısıyla daha geniş 

çaplı kullanım alanları için uygun olduğunu göstermektedir. 

4.6. Bir Mobil Robotun Gerçek Zamanlı Yol Planlaması ve Takip Kontrolü  

4.6.1. Mobil Robot Tasarımı 

Bu çalışmada dört tekerlekli ve 4WD (four-wheel drive) sürüş sistemine sahip siyah bir 

mobil robot kullanılmıştır. Robotun şasesi iki katmandan oluşmaktadır: Alt katman 

alüminyum, üst katman ise akrilik plastik malzemeden imal edilmiştir. Tekerlekler omni 

mekanum tipinde seçilmiştir, bu sayede robot sağa-sola veya çapraz gibi çok yönlü 

hareket edebilmektedir. Robotun ana kontrol birimi olarak Raspberry Pi 3B+ 

kullanılmıştır. Tüm sistemin enerji ihtiyacı 3S LiPo batarya ile karşılanmıştır. Tekerlek 

motorları 12V DC ile çalıştığı için bu gerilim doğrudan motor sürücülerine 

yönlendirilmiştir. Motor sürücüsü olarak iki adet L298N kartı kullanılmıştır. Her sürücü 

kartı iki motor kontrol edebildiği için toplamda dört motor için iki sürücü yeterli olmuştur. 

Raspberry Pi kartı ise 5V DC ile çalıştığı için bataryadan gelen gerilim LM2596 

ayarlanabilir DC-DC regülatör ile düşürülmüştür. Ayrıca, robot ile ana bilgisayar arasında 

kablosuz iletişimi sağlamak amacıyla XBee S2C haberleşme modülü kullanılmıştır. 

XBee’nin Raspberry Pi kartına kolayca bağlanabilmesi için XBee Explorer USB tercih 

edilmiştir. Mobil robotun genel görünümü ve donanımı Şekil 4.48’de, elektronik bağlantı 

şeması ise Şekil 4.49’da gösterilmektedir. 
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                                          (a)                                                 (b)           

    

                                          (c)                                                (d)           

Şekil 4.48. Mobil robotun genel görünümü ve donanımı: (a) Genel görünüm, (b) Ara 
katmanın alt yüzeyi, (c) Ara katmanın üst yüzeyi, (d) Üst katman  

 

 

Şekil 4.49. Mobil robotun elektronik bağlantı şeması 
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4.6.2. Mobil Robotun Ters Kinematiği  

Bu çalışmada kullanılan robot çok yönlü tekerleklere sahip olduğundan her yöne hareket 

edebilir, yani robot holonomik olarak tanımlanabilir. Bu robotun hareketi merkezine 

yerleştirilen yerel bir koordinat sisteminde tanımlanır. Bu sistemde robotun 𝑋 yönündeki 

doğrusal hızı 𝑣௫, 𝑌 yönündeki doğrusal hızı 𝑣௬ ve 𝑍 ekseni etrafındaki açısal hızı 𝜔௭ 

olmak üzere üç hız bileşeni bulunur. Bu hızlar vektörel olarak Eşitlik (4.39)’daki gibi 

gösterilebilir.  

𝑣⃗ = ൥

𝑣௫

𝑣௬

𝜔௭

൩ (4.39) 

Burada, 𝑣⃗ robotun genel hız vektörünü temsil eder. Ters kinematik ise robotun bu üç 

hızından hareketle her bir tekerleğin açısal hızının (𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝜔ସ) elde edilmesidir. 

4WD sürüşlü ve omni mekanum tekerlekli bir mobil robot için bu tekerlek hızları Eşitlik 

(4.40) kullanılarak hesaplanır. 

൦

𝜔ଵ

𝜔ଶ

𝜔ଷ

𝜔ସ

൪ =
1

𝑟௪
൦

1 −1 −(𝑙௛ + 𝑙௩)
1 1 (𝑙௛ + 𝑙௩)

1 −1 (𝑙௛ + 𝑙௩)
1 1 −(𝑙௛ + 𝑙௩)

൪ ൥

𝑣௫

𝑣௬

𝜔௭

൩ (4.40) 

Burada, 𝑟௪ tekerleklerin yarıçapını,  𝑙௛ ve 𝑙௩ robot gövde merkezinin tekerlek merkezine 

olan yatay ve dikey uzaklıklarını temsil eder. Hesaplanan tekerlek hızları robotun belirli 

bir referans yol üzerinde istenilen şekilde ilerlemesini sağlamak amacıyla geliştirilen 

kontrol algoritmalarında kullanılır.   

4.6.3. Platform ve Engeller  

Bu çalışmada, mobil robotun yol planlaması için bölümümüzün El-Cezeri Mobil Robotik 

Sistemler Laboratuvarındaki çalışma platformu kullanılmıştır. Platformun genel yapısı 

“T” harfi formundadır, ancak gerçek zamanlı çalışma sadece bu yapının üst kısmında yer 

alan dikdörtgen alan tercih edilmiştir. Bu bölüm robotun hem serbestçe hareket 

edebilmesini hem de sınırlar içinde kalmasını sağlayacak şekilde seçilmiştir. Bu 

çalışmada kullanılan platform Şekil 4.50’de gösterilmektedir.    
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KameraMobil Robot

Platform

 

Şekil 4.50. Platform 

Laboratuvarın tavanına Genius Widecam F100 model bir webcam sabitlenmiş ve bu 

kamera ile platform tamamı yukarıdan izlenebilmiştir. Kullanılan kamera Şekil 4.51’de, 

platform üstten kamera görüntüsü ise Şekil 4.52’de gösterilmektedir.  

 

Şekil 4.51. Genius Widecam F100 Webcam 
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Şekil 4.52. Platform üstten kamera görüntüsü  

Platform üzerine yerleştirilen engeller mavi renkli silindirik cisimler olarak seçilmiştir. 

Renk ve şekil tercihleri robotun üzerindeki kamera ile çalışan görsel algılama sisteminin 

bu engelleri daha kolay tespit edebilmesi göz önünde bulundurularak yapılmıştır. Mavi 

silindirik engeller Şekil 4.53’te gösterilmektedir. 

 

Şekil 4.53. Engeller 
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4.6.4. Görüntü İşleme ve Gerçek Zamanlı Yol Planlama 

Gerçek zamanlı çalışmadan önce, MATLAB programlama dilinde çalışmada kullanılan 

iki farklı ortam tasarlanmış ve bu ortamlar için yol planlama simülasyonu 

gerçekleştirilmiştir. Şekil 4.54’te gösterilen bu ortamlar gerçek zamanlı çalışmada da 

kullanılmıştır.  

 

(a) 

 

(b) 

Şekil 4.54. Tasarlanan ortamlar: (a) Ortam 20, (b) Ortam 21 (Siyah daireler robotu, 
çarpı işaretleri hedef noktasını, gri daireler ise engelleri temsil eder.) 

Bu simülasyonda robot ve hedef noktası arasında kübik spline interpolasyonu tabanlı 

optimum bir yol (𝑃௥) planlanmıştır. Bu optimziasyon ABC algoritması kullanılarak 

gerçekleştirilmiş ve robotun gideceği en kısa ve en güvenli yol planlanmıştır. ABC 

algoritmasında kullanılan amaç fonksiyonu Eşitlik (4.41)’de gösterilmektedir.  

arg min
௉ೝ

ℱ = ℱଵ + 𝛽ℱଶ (4.41) 

ℱଵ = ෍‖𝑝௜ାଵ − 𝑝௜‖

௡೤

௜ୀଵ

(4.42) 
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ℱଶ = ෍ ቐ 
ቆ1 −

‖𝑝௜ − 𝑝௢‖

𝑟௢ + 𝐿௚
ቇ ,     𝑒ğ𝑒𝑟 ቆ1 −

‖𝑝௜ − 𝑝௢‖

𝑟௢ + 𝐿௚
ቇ > 0 𝑖𝑠𝑒

0,                                                                         𝑎𝑘𝑠𝑖 ℎ𝑎𝑙𝑑𝑒

௡೤

௜ୀଵ

 (4.43) 

Burada 𝛽 engel ihlal faktörünü, 𝑛௬ yolu oluşturan nokta sayısını, 𝑝௜ yolun 𝑖’inci noktasını, 

𝑝௢ engelin merkez noktasını, 𝑟௢ engelin yarıçapını ve 𝐿௚ ise güvenlik mesafesini temsil 

eder. ABC algoritması için maksimum iterasyon sayısı 200, popülasyon sayısı ve limit 

değeri 100 olarak ayarlanmıştır. Simülasyondaki yol planlama sonucu Şekil 4.55’te 

gösterilmektedir.  

 

(a) 

 

(b) 

Şekil 4.55. Simülasyon çalışmasında yol planlama sonucu: (a) Ortam 20, (b) Ortam 21 
(Siyah çizgi planlanan yolu temsil eder.) 

Gerçek zamanlı çalışma Python programlama dilinde kodlanmış ve görüntü işleme için 

OpenCV kütüphanesinden yararlanılmıştır. İlk olarak, “T” harfi biçimindeki platformun 

yalnızca üstteki dikdörtgen bölümü sınırlandırılmıştır. Global referans ekseni ise bu 

dikdörtgen ekranın sol üst köşesidir. İlk aşamada ana bilgisayarda robotun ve engellerin 

konumları belirlenmiştir. Bu amaçla renk tabanlı bir görüntü işleme algoritması 

kullanılmıştır. Algoritmada belirli renkleri tespit edebilmek için HSV renk uzayında 

eşikleme yöntemi uygulanmış ve bu işlem sonucunda ikili bir maske görüntüsü elde 

edilmiştir. Maske görüntüsünde yalnızca eşik değerini sağlayan pikseller 1 (beyaz), diğer 

tüm pikseller ise 0 (siyah) olarak atanmıştır. Elde edilen bu maske üzerinde kontur analizi 
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gerçekleştirilmiş ve böylece ilgili renk bölgelerinin merkez koordinatları hesaplanmıştır. 

Bu sayede robot ve engellerin konumları kamera görüntüsünden başarıyla tespit 

edilmiştir. Ancak robotun yönelim bilgisi de gerektiğinden, robotun tespiti sırasında 

yalnızca kendi rengi yeterli olmamış ve robot üzerinde farklı bir renk daha kullanılmıştır. 

Bu yüzden robotun ön kısmına kırmızı bir etiket (marker) yerleştirilmiş ve arka kısmı ise 

robotun kendi rengi olan siyah ile ayırt edilmiştir. Aynı görüntü işleme algoritması ile 

robotun üzerindeki kırmızı ve siyah renk bölgeleri ayrı ayrı algılanmış ve böylece robotun 

ön ve arka noktası belirlenmiştir. Ardından bu iki nokta kullanılarak robotun global eksen 

takımına göre konum ve yönelimi Eşitlik (4.44) ve (4.45)’teki gibi hesaplanmıştır. 

 

𝑋௥ =
𝑋ö௡ + 𝑋௔௥௞௔

2
, 𝑌௥ =

𝑌ö௡ + 𝑌௔௥௞௔

2
(4.44) 

𝜃௥ = tanିଵ ൬
𝑌ö௡ − 𝑌௔௥௞௔

𝑋ö௡ − 𝑋௔௥௞௔
൰ (4.45) 

Burada (𝑋௥ , 𝑌௥) robotun merkez konumunu, (𝑋ö௡, 𝑌ö௡) robotun ön noktasının konumunu, 

(𝑋௔௥௞௔, 𝑌௔௥௞௔) robotun arka noktasının konumunu, 𝜃௥ ise robotun yönelimini temsil eder. 

Gerçek zamanlı çalışmada robotun ve engellerin algılanması Şekil 4.56’da, ana 

bilgisayardaki görüntü işleme algoritmasının temel adımları ise Algoritma 4.8’de 

gösterilmektedir. 

Engel Robotun Arkası
Robotun Önü

 

(a) 
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Robotun Arkası
Robotun ÖnüEngeller

 

(b) 

Şekil 4.56. Gerçek zamanlı çalışmada robotun ve engellerin algılanması: (a) Ortam 20, 
(b) Ortam 21  

Algoritma 4.8: Ana bilgisayardaki görüntü işleme algoritmasının temel adımları  
1: Kameranın başlatılması 
2: Kameradan görüntü alınması 
3: Gürültülerin medyan filtre ile azaltılması 
4: Görüntünün HSV uzayına dönüştürülmesi 
5: Mavi (engel), kırmızı (robot ön) ve siyah (robot arka) renkli bölgelerin tespit edilmesi 
6: Kontur analizi ile bu renkli bölgelerin merkez noktalarının hesaplanması 
7: Eşitlik (4.39) ve (4.40) kullanılarak robotun konum ve yöneliminin hesaplanması 
8: İşlenmiş görüntünün ekranda gösterilmesi 

Robotun ve engellerin tespit edilmesinden sonra robotun konumu ve daha önceden girdi 

olarak alınan hedef nokta arasında tekrar ABC algoritması kullanılarak yol planlanmıştır. 

Gerçek zamanlı çalışmada ABC algoritmasında yine Eşitlik (4.41)’deki amaç fonksiyonu 

kullanılmış, maksimum iterasyon sayısı, popülasyon sayısı ve limit değeri de simülasyon 

çalışmasında kullanılan ayarlarla aynıdır. Yol planlama sonucunda elde edilen bu 

koordinat dizisi (planlanan yol) takip kontrolünde referans yol olarak kullanılmıştır. 

Gerçek zamanlı çalışmada yol planlama sonucu Şekil 4.57’de, ana bilgisayardaki gerçek 

zamanlı yol planlama algoritmasının temel adımları ise Algoritma 4.9’da 

gösterilmektedir.  
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Engel

Hedef Noktası

Mobil Robot
Planlanan 

Referans Yol

 

(a) 

Hedef Noktası

Mobil Robot

Planlanan 
Referans Yol Engeller

 

(b) 

Şekil 4.57. Gerçek zamanlı çalışmada yol planlama sonucu: (a) Ortam 20, (b) Ortam 21 

 

Algoritma 4.9: Ana bilgisayardaki gerçek zamanlı yol planlama algoritmasının temel adımları 
1: Hedef noktanın kullanıcı tarafından girilmesi 
2: Robotun başlangıç noktasının o anki durduğu yer olarak atanması 
3: Görüntü işleme algoritmasından engel bilgilerinin (merkezi ve yarıçapı) alınması 
4: Eşitlik (4.41) kullanılarak amaç fonksiyonu tanımı 
5: ABC algoritması kullanılarak optimum yolun hesaplanması 
6: Planlanan referans yolun işlenmiş görüntüde gösterilmesi 
7: Planlanan referans yolun koordinat dizisi olarak kaydedilmesi 

 

4.6.5. Gerçek Zamanlı Yol Takip Kontrolü  

Robotun planlanan referans yol üzerinde en az hata ile hedef noktaya ulaşması için bir 

yol takip kontrol algoritması geliştirilmiştir. Bu süreç başlamadan önce robot ile ana 

bilgisayar arasında kablosuz haberleşmeyi sağlamak için XBee modülü başlatılmıştır. İlk 

olarak referans yol belirli sayıda ara hedef noktaya (yerel hedefler) bölünmüştür. Bu 
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noktalar robotun ana hedefe kademeli olarak yönelmesini sağlar. Gerçek zamanlı 

çalışmada referans yol için oluşturulan ara hedef noktaları Şekil 4.58’de gösterilmektedir. 

Engel Mobil Robot

Ana Hedef 
Noktası

Ara Hedef 
Noktaları

 

(a) 

Engeller
Mobil Robot

Ana Hedef 
Noktası

Ara Hedef 
Noktaları

 

(b) 

Şekil 4.58. Gerçek zamanlı çalışmada referans yol üzerinde oluşturulan ara hedef 
noktaları: (a) Ortam 20, (b) Ortam 21 

Ara hedef noktaları oluşturulduktan sonra görüntü işleme algoritması kullanılarak 

robotun anlık olarak global eksen takımına göre konum ve yönelim bilgisi elde edilmiştir. 

Ayrıca robotun konumuna en yakın ara hedef noktasına olan yönelim de elde edilir. 

Robotun global eksen takımına göre yönelimi ve ara hedef noktaya olan yönelimi Şekil 

4.59’da gösterilmektedir. 
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𝑌 

𝑥 

𝑋 
𝑦 

𝜃𝑟  

𝜃𝑟𝑒𝑓  

Ara Hedef Noktası

Global Eksen 
Takımı

 

Şekil 4.59. Robotun global eksen takımına göre yönelimi ve ara hedef noktaya olan 
yönelimi 

Bu iki yönelim açısı arasındaki hata Eşitlik (4.46)’da tanımlandığı gibi hesaplanmıştır. 

𝜃௘ = 𝜃௥௘௙ − 𝜃௥ (4.46) 

Burada 𝜃௘ açısal hatayı ve 𝜃௥௘௙ ise robotun hedef noktaya olan yönelimini temsil eder. 

Açısal hata XBee modülü aracılığıyla robot üzerinde çalışan Raspberry Pi kartındaki 

hareket algoritmasına girdi olarak verilmiştir. Robot üzerinde çalışan hareket algoritması 

açısal hatayı P kontrol organına verir. P kontrol organının girişi açısal hata iken çıkışı 

robot merkezinin 𝑍 ekseni etrafındaki açısal hızı (𝜔௭) olarak tanımlanmıştır. Bu kontrol 

organında açısal hata Eşitlik (4.47)’de gösterildiği gibi sabit bir katsayı (𝐾௣) ile çarpılır. 

𝜔௭ = 𝐾௣𝜃௘ (4.47) 

Bu sayede robot merkezinin açısal hızı hesaplanır ve bu hız ters kinematik model 

kullanarak tekerlek hızlarına çevrilir. Böylece hata ne kadar küçükse o kadar yumuşak, 

hata ne kadar büyükse o kadar keskin dönüş sağlanır. Ancak açısal hatanın çok küçük 

olduğu durumlarda hareket algoritması robotun ileri doğrultuda (𝑋 doğrultusunda) sabit 

bir lineer hızda (𝑣) düz gitmesini sağlar ve yanal hareket yoktur. Bu sebeple robotun genel 

hız vektörü Eşitlik (4.48)’deki gibi tanımlanmıştır.   

𝑣⃗ = ൥

𝑣௫

𝑣௬

𝜔௭

൩ = ൥

𝑣
0

𝐾௣𝜃௘

൩ (4.48) 



154 

Bu durumda robotun her bir tekerleğin açısal hızı ters kinematik model kullanılarak 

Eşitlik (4.49)-(4.52)’deki gibi hesaplanmıştır. 

𝜔ଵ =
1

𝑟௪
൫𝑣 − (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.49) 

𝜔ଶ =
1

𝑟௪
൫𝑣 + (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.50) 

𝜔ଷ =
1

𝑟௪
൫𝑣 + (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.51) 

𝜔ସ =
1

𝑟௪
൫𝑣 − (𝑙௛ + 𝑙௩)𝐾௣𝜃௘൯ (4.52) 

0 ≤ ห(𝑙௛ + 𝑙௩)𝐾௣𝜃௘ห ≤ 𝑣 (4.53) 

Hesaplanan bu tekerlek hızları ile robot sürülmüş ve en yakın ara hedef noktasına ulaşana 

kadar bu kontrol döngüsü devam etmiştir. Robot en yakın ara hedef noktasına ulaştığında 

bir sonraki hedef noktası robotun yeni yerel hedefi olmuş ve aynı kontrol döngüsü 

tekrarlanmıştır. Bu süreç robot ana hedef noktaya ulaşana kadar devam etmiştir. Bu basit 

kontrol mantığı sayesinde robot ara hedef noktalarını sırayla takip ederek referans yol 

üzerinde güvenli ve kararlı bir şekilde ana hedefe yönlendirilebilmiştir. Yol takip 

kontrolünün blok diyagramı Şekil 4.60’ta, ana bilgisayardaki yol takip kontrol 

algoritmasının temel adımları Algoritma 4.10’da ve robot üzerinde çalışan hareket 

algoritmasının temel adımları ise Algoritma 4.11’de gösterilmektedir. 

Referans 
Yol 

Ara Hedef 
Noktası

𝑞𝑟  

+ 

𝜃𝑟𝑒𝑓  

− 

XBee
𝜃𝑒  

𝜃𝑟  

Kamera

XBee
P Kontrol 

Organı

𝜃𝑒  
Ters 

Kinematik 
Model

𝜔𝑧  

𝜔1 

𝜔2 

𝜔3 

𝜔4 

Sabit 
Lineer Hız

𝑣 

Mobil 
Robot

 

Şekil 4.60. Yol takip kontrolünün blok diyagramı 
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Algoritma 4.10: Ana bilgisayardaki yol takip kontrol algoritmasının temel adımları 
1: XBee modülünün başlatılması 
2: Ara hedef noktalarının belirlenmesi 
3: while (Ana hedef noktasına ulaşılana kadar) 
4:  for (Her ara hedef noktasında) 
5:   while (Ara hedef noktasına ulaşılana kadar) 
6:    Robotun konum ve yöneliminin tespit edilmesi 
7:    Robotun ara hedef noktasına olan yöneliminin tespit edilmesi 
8:    Eşitlik (4.46) kullanılarak açısal hatanın hesaplanması 
9:    XBee modülü ile açısal hatanın robota gönderilmesi 

10:   end while 
11:  end for 
12: end while 
13: XBee modülünün kapatılması 

 

Algoritma 4.11: Robot üzerinde çalışan hareket algoritmasının temel adımları 
1: GPIO pin ayarlarının yapılması 
2: XBee modülünün başlatılması 
3: while (XBee modülünden “Dur” emri gelene kadar) 
4:  XBee modülünden açısal hatanın alınması 
5:  Eşitlik (4.47) kullanılarak robot merkezinin açısal hızının hesaplanması  
6:  Eşitlik (4.49)-(4.52) kullanılarak tekerlek hızlarının hesaplanması 
7:  Robotun bu tekerlek hızlarında sürülmesi 
8: end while 
9: XBee modülünün kapatılması 

Tasarlanan ortamlar için gerçek zamanlı bir yol takip çalışması gerçekleştirilmiştir. Her 

iki ortam için robotun hareket aşamaları Şekil 4.61 ve 4.62’de, bu hareket aşamalarının 

kamera görüntüleri Şekil 4.63 ve 6.64’te, planlanan ile gerçek yolların karşılaştırması 

Şekil 4.65’te, RMS hataları ise Şekil 4.66’te gösterilmektedir. 
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Şekil 4.61. Ortam 20 için robotun hareket aşamaları 
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6

 

Şekil 4.62. Ortam 20 için robotun hareket aşamalarının kamera görüntüleri (Planlanan 
yol turkuaz çizgi, gerçek yol ise yeşil çizgi ile temsil edilmiştir.)  
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Şekil 4.63. Ortam 21 için robotun hareket aşamaları 
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Şekil 4.64. Ortam 21 için robotun hareket aşamalarının kamera görüntüleri (Planlanan 
yol turkuaz çizgi, gerçek yol ise yeşil çizgi ile temsil edilmiştir.)  
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                                      (a)                                                            (b) 

Şekil 4.65. Planlanan ve gerçek yolların karşılaştırması: (a) Ortam 20, (b) Ortam 21 

 

  

                                      (a)                                                            (b) 

Şekil 4.66. RMS hataları: (a) Ortam 20, (b) Ortam 21 

Şekil 4.61-4.66 göz önüne alındığında, mobil robotun referans yolu başarılı bir şekilde 

takip ettiği görülmektedir. Bu takip kontrolü boyunca kayda değer bir sapma veya 

kararsızlık gözlemlenmemiştir. Ortam 20’de 𝑋, 𝑌 ve 𝜃 için RMS hataları sırasıyla 0.164 

metre, 0.049 metre ve 1.93° olarak hesaplanmıştır. Ortam 21’de ise RMS hataları sırasıyla 

0.269 metre, 0.106 metre ve 1.98° olarak hesaplanmıştır. Bu hatalar 4.5 x 1.5 metrelik 

platform ve 0.26 x 0.24 metrelik robot boyutlarıyla karşılaştırıldığında kabul edilebilir 

seviyelerdedir. Bu doğrultuda tasarlanan kontrol algoritmasının referans yol takibinde 

etkin performans sergilediği söylenebilir. Tasarlanan algoritma belirlenen ara hedef 

noktalar sayesinde hassas bir yönelim takip kontrolü sağlamıştır. 
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5.  BÖLÜM 

 

SONUÇ VE ÖNERİLER 

 

5.1. Sonuçlar 

Mobil robotlar, çevrelerini algılayarak otonom hareket edebilen sistemler olup, endüstri, 

tarım, lojistik ve arama-kurtarma gibi birçok alanda yaygın olarak kullanılmaktadır. Bu 

robotların etkin çalışabilmesi için haritalama, lokalizasyon ve yol planlama gibi temel 

becerilere sahip olması gerekir. Haritalama, robotun çevresini tanıyıp modellemesini 

sağlarken, lokalizasyon, bu harita üzerinde konumunu belirlemeye yardımcı olur. Ancak, 

robotun hedefe ulaşabilmesi için en kritik adım yol planlamadır. Yol planlama süreci, 

güvenli, verimli ve enerji tasarruflu rotalar oluşturmayı amaçlar ve çevresel engeller, 

hareket kısıtlamaları ve dinamik değişimler gibi faktörleri göz önünde bulundurur. Yol 

planlama yöntemleri genel olarak klasik arama algoritmaları, metasezgisel yaklaşımlar 

ve makine öğrenme tabanlı teknikler olarak üç gruba ayrılır. Klasik algoritmalar sabit 

haritalarda etkili çözümler sunarken, metasezgisel yöntemler daha geniş çözüm uzaylarını 

keşfederek karmaşık ve dinamik çevrelerde daha uygun yollar belirleyebilir. Makine 

öğrenme tabanlı yaklaşımlar ise çevresel geri bildirimleri değerlendirerek adaptif ve 

esnek çözümler sunar, özellikle dinamik engellerin bulunduğu ortamlarda robotun karar 

verme sürecini güçlendirir. 

Bu tez çalışması kapsamında mobil robotların yol planlama sorunlarına yönelik çözümler 

geliştirmek amacıyla dört farklı simülasyon çalışması ve bir gerçek zamanlı çalışma 

gerçekleştirilmiştir. Birinci çalışmada tek bir mobil robotun ızgara ortamında küresel yol 

planlaması için bir IABC algoritması önerilmiştir. Bu algoritma için iki mekanizma 

düşünülmüştür: Doğrusallaştırma stratejisi ve yerel arama stratejisi. Doğrusallaştırma 

stratejisi, ızgara ortamında oluşturulan yolun gereksiz köşelerini ortadan kaldırmaya 
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odaklanan bir kullanım tabanlı iyileştirmedir. Yerel arama stratejisi, en iyi çözümün 

maliyetini daha da optimize etmeyi amaçlayan bir keşif tabanlı mekanizmadır. Böylece 

bu iyileştirmeler algoritmanın kullanım-keşif dengesini bozmadan gerçekleştirilmiştir. 

İkinci çalışmada yol planlama probleminin basitleştirilmesi üzerinde durulmuştur. Bunun 

için engellerin kümelenmesiyle ortam karmaşıklığının azaltılması ve bu sayede 

algoritmaların çalışma hızlarının artırılması amaçlanmıştır. Bu amaç doğrultusunda, tek 

bir mobil robotun sürekli uzay ortamında küresel yol planlaması için metasezgisel ve 

kümeleme algoritmalarının bir arada kullanıldığı hibrit bir model önerilmiştir. Üçüncü 

çalışmada çok sayıda mobil robotun sürekli uzay ortamında yerel yol planlaması için 

sdSCA algoritması önerilmiştir. Bu algoritmada temel SCA’nın orijinal güncelleme 

stratejisine ilave olarak birkaç diferansiyel tabanlı güncelleme stratejisi eklenmiştir. Bu 

algoritmada popülasyondaki her çözüm bu stratejilerden birini seçerek kendini günceller. 

Ancak bu seçim rastgele değildir, rulet tekerleğine dayalı bir olasılık hesabı yoluyla 

gerçekleştirilir. Algoritma daha tatmin edici sonuçlar üreten stratejiyi adaptif bir şekilde 

öğrenir. Dördüncü çalışmada ise tek ve çok robotlu sistemlerinin ızgara ortamında küresel 

yol planlaması için ResNet tabanlı bir model önerilmiştir. Bu model genişletilmiş evrişim 

(dilated convolution), sıkma-uyarma bloğu (squeeze-and-excitation) ve dropout 

katmanları içerir. Gerçek zamanlı çalışmada ise bir mobil robotun bir ortamda planlanan 

bir yolu istenen şekilde takip etmesi için bir takip kontrolörü tasarlanmış ve robotun 

gerçek zamanlı takip kontrolü gerçekleştirilmiştir.  

Bu çalışmalar ile elde edilen neticeleri listeleyecek olursak: 

 Önerilen IABC, aynı boyuttaki ortamlarda ABC ile karşılaştırıldığında ortalama 

yol uzunluğunda %7-14’lük bir iyileşme gözlemlenmiştir. Ayrıca, farklı 

boyutlardaki ortamlarda gerçekleştirilen ölçeklenebilirlik testleri ABC’ye kıyasla 

%19-20 aralığında iyileşmeler ortaya koymuştur. İyi bilinen ve yeni geliştirilmiş 

algoritmalarla yapılan karşılaştırmalar %2-78 aralığında iyileşmeler görülmüştür. 

Son olarak, güncel çalışmalardaki sonuçlara kıyasla %1-37 aralığında iyileşmeler 

elde edilmiştir.  

 Önerilen hibrit modelin analizi sonucu, yol uzunluğu açısından küçük seviyelerde 

kayıplar gözlemlenmiştir. Ancak çalışma süreleri incelendiğinde, modelin bu 

kayıpları fazlasıyla telafi ettiği ve çalışma hızı bakımından kazanç elde edildiği 
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söylenebilir. Ayrıca farklı ortamlarda algoritmaların test edilmesi sonucu 

değiştirmemiştir. Dahası, önerilen modelde PSO’ya ek olarak TLBO, ABC, DE, 

GA algoritmaları ve KMC’ye ek olarak HC yöntemi de kullanılmıştır. Bu 

değerlendirme sonucunda yol uzunluğu açısından en iyi performansı TLBO ve 

ABC algoritmaları gösterirken en hızlı algoritma GA olmuştur. Ayrıca HC 

yönteminin KMC yöntemine göre daha verimli çalıştığı söylenebilir. 

 Önerilen sdSCA, CEC2015 ve CEC2020 test problemlerinde uygulanmış ve 

başarılı sonuçlar elde etmiştir. CEC2015 problemlerinde belirgin bir iyileşme 

sağlanırken, CEC2020’de kazanan algoritmalarla rekabet edebilecek düzeyde 

performans göstermiştir. Algoritmanın etkinliği, statik ve dinamik engeller içeren 

üç farklı senaryoda çoklu robotların yol planlaması için yapılan simülasyonlarda 

da test edilmiştir. Ortam 17’de toplam adım sayısı %40.63, toplam yol uzunluğu 

%40.98 oranında azaltılmıştır. Ortam 18’de bu oranlar sırasıyla %40.36 ve 

%40.86 olarak gerçekleşirken, Ortam 19’da %44.00 ve %44.25’lik bir iyileşme 

sağlanmıştır. 

 Önerilen IResNet modeli tek robotlu senaryoda, özellikle daha büyük ortamlarda, 

FCN ile yol planlama başarısında rekabet halinde olsa da IResNet’in tahmin ettiği 

yollar daha optimaldir. Çok robotlu senaryoda, IResNet FCN’yi hem yol planlama 

başarısında üstün gelmiş hem de daha optimal yollar planlamıştır. Ayrıca robot 

sayısı ve ortam karmaşıklığı arttıkça IResNet’in avantajı daha belirgin hale gelir. 

 Gerçek zamanlı çalışmada tasarlanan kontrolör kullanılarak robotun planlanan 

yolda kayda değer bir hata olmadan hareket ederek hedef noktaya vardığı 

gözlemlenmiştir. Ortam 20-21’de RMS hataları 𝑋 ekseni için 0.164-0.269 metre, 

𝑌 ekseni için RMS hataları 0.049-0.106 metre, 𝜃 için RMS hataları 1.93°-1.98° 

olarak ölçülmüştür. Bu hatalar 4.5 x 1.5 metrelik platform ve 0.26 x 0.24 metrelik 

robot boyutlarıyla karşılaştırıldığında kabul edilebilir seviyelerdedir.  

Bu tezde yapılan çalışmalarla, mobil robotların yol planlama süreçlerinde etkinliğin 

artırılması ve karşılaşılabilecek zorluklara yönelik çözümler geliştirilmesi amaçlanmıştır. 

Bu doğrultuda, farklı algoritmalar incelenmiş, çeşitli senaryolar üzerinde testler 

gerçekleştirilmiş ve elde edilen sonuçlar doğrultusunda yol planlama performansının 
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iyileştirilmesine yönelik öneriler sunulmuştur. Geliştirilen yöntemler, hem statik hem de 

dinamik engellerin bulunduğu ortamlarda robotların daha verimli ve güvenli bir şekilde 

hareket edebilmesine katkı sağlamayı hedeflemiştir. Böylece, mobil robotların farklı 

uygulama alanlarında daha etkin kullanılabilmesi için önemli kazanımlar elde edilmiştir. 

5.2. Gelecekteki Çalışmalar 

Bu çalışmada geliştirilen algoritmaların ve modellerin başarısı, mobil robotların yol 

planlamasında önemli iyileştirmeler sağladığını göstermektedir. Gelecekteki 

çalışmalarda, önerilen yöntemlerin farklı robot türleri ve daha karmaşık dinamik ortamlar 

üzerinde test edilmesi hedeflenebilir. Özellikle, gerçek dünyadaki belirsizlikleri ve sensör 

hatalarını daha iyi yönetebilmek için çevrimiçi öğrenme ve adaptif kontrol mekanizmaları 

entegre edilebilir. Ayrıca, daha büyük ölçekli çoklu robot sistemlerinde koordinasyon ve 

çakışma önleme stratejilerinin geliştirilmesi, robotların otonom hareket kabiliyetini 

artıracaktır. 

Bunun yanı sıra, derin öğrenme tabanlı modellerin yol planlama süreçlerine daha etkin 

entegrasyonu önemli bir araştırma alanı olarak öne çıkmaktadır. Önerilen ResNet tabanlı 

modelin farklı ağ yapılarıyla genişletilerek daha karmaşık engel senaryolarına 

uyarlanması ve transfer öğrenme tekniklerinin kullanılması, algoritmaların genelleştirme 

yeteneğini artırabilir. Ayrıca, hibrit metasezgisel yöntemlerin gelişmiş optimizasyon 

teknikleriyle birleştirilmesi, yol planlama süreçlerinde daha hızlı ve verimli çözümler 

sunulmasını sağlayabilir. Son olarak gerçek zamanlı çalışmara yönelik, haberleşme 

yeteneğine sahip çoklu mobil robotlarla işbirlikçi yol planlaması ve takip kontrolü üzerine 

odaklanılabilir.  
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