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COKLU MOBIL ROBOT SISTEMLERI iCiN METASEZGISEL VE DERIN
OGRENME TABANLI YOL PLANLAMA OPTiMiZASYONU

Mustafa Yusuf YILDIRIM
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Doktora Tezi, Temmuz 2025
Damisman: Dog. Dr. Riistii AKAY

OZET

Bu tez kapsaminda mobil robotlarin yol planlama siireglerini iyilestirmek amaciyla dort
farkli simiilasyon c¢aligmasi1 ve bir ger¢cek zamanli ¢alisma gercgeklestirilmistir. Kiiresel
yol planlama baglaminda tek bir mobil robotun 1zgara tabanli ortamlarda yol planlamasi
icin iyilestirilmis bir yapay ar1 koloni algoritmasi Onerilmistir. Bu algoritma yol
tizerindeki gereksiz koseleri ortadan kaldirarak daha verimli rotalar olusturmayi
hedefleyen bir strateji ile desteklenmistir. Ayn1 zamanda yine kiiresel ¢capta yol planlama
probleminin karmagikligin1 azaltmak i¢in engellerin kiimelenmesine dayali hibrit bir
model Onerilmistir. Bu model metasezgisel algoritmalar ile kiimeleme yontemlerini bir
araya getirilmistir. Yerel yol planlama baglaminda ¢oklu mobil robot sistemlerinin yol
planlamasi icin bir siniis kosiniis algoritma varyant1 onerilmistir. Bir robotun dinamik
ortamlardaki yol planlama basarisin1 artirmak i¢in algoritmaya diferansiyel tabanl
giincelleme stratejileri ve adaptif 6grenme mekanizmalar1 entegre edilmistir. Ayrica tek
ve ¢ok robotlu sistemlerin kiiresel yol planlamasi i¢in genisletilmis evrisim ve sikma-
uyarma blogu gibi katmanlarin entegre edildigi ResNet tabanli bir derin 6grenme modeli
Onerilmistir. Bu modelin tam evrisimli aga kiyasla daha optimal yollar iirettigi
gozlemlenmistir. Bu simiilasyonlara ek olarak bir mobil robotun bir ortamda planlanan
bir yolu istenen sekilde takip etmesi i¢in bir gercek zamanli ¢aligma gergeklestirilmistir.
Bu calismada bir takip kontroldrii tasarlanmig, bu kontrolor kullanilarak robotun
planlanan yolda kaydadeger bir hata olmadan hareket ederek hedef noktaya vardig

gozlemlenmistir.

Anahtar Kelimeler: Mobil Robot, Yol Planlama, Metasezgisel Algoritmalar,

Optimizasyon, Derin Ogrenme
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METAHEURISTIC AND DEEP LEARNING BASED PATH PLANNING
OPTIMIZATION FOR MULTIPLE MOBILE ROBOT SYSTEMS

Mustafa Yusuf YILDIRIM

Erciyes University, Graduate School of Natural and Applied Sciences
PhD Thesis, July 2025
Supervisor: Assoc. Prof. Dr. Riistii AKAY

ABSTRACT

In this thesis, four different simulation studies and one experimental study were
conducted to improve the path planning processes of mobile robots. In the context of
global path planning, an improved artificial bee colony algorithm was proposed for the
path planning of a single mobile robot in grid-based environments. This algorithm was
supported by a strategy aimed at eliminating unnecessary corners along the path to
generate more efficient routes. Moreover, to reduce the complexity of the global path
planning problem, a hybrid model based on obstacle clustering was developed by
integrating metaheuristic algorithms with clustering techniques. For local path planning,
a variant of sine cosine algorithm was proposed for multi-robot systems. To improve the
performance of a robot in dynamic environments, differential-based update strategies and
adaptive learning mechanisms were incorporated into the algorithm. Furthermore, a
ResNet-based deep learning model was introduced for both single and multi-robot global
path planning by integrating extended convolution and squeeze-excitation blocks. This
model was observed to produce more optimal paths compared to a fully convolutional
network. In addition to these simulations, an experimental study was carried out in which
a mobile robot was tasked with tracking a planned path in a given environment. In this
study, a tracking controller was designed, and it was observed that the robot was able to

track the planned path and reach the target point with no significant error.

Keywords: Mobile Robot, Path Planning, Metaheuristic Algorithms, Optimization, Deep

Learning
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KISALTMALAR

: Artificial bee colony (yapay ar1 koloni)

: Adaptive £-hill climbing (Adaptif f-tepe tirmanisi)

: Actor-critic (aktor-kritik)

: Ant colony optimization (karinca koloni optimizasyonu)

: Arithmetic optimization algorithm (aritmetik optimizasyon algoritmasi)
: Breadth first search (genislik dncelikli arama)

: Beluga whale algorithm (beyaz balina algoritmast)

: Black widow spider algorithm (karadul 6riimcegi algoritmasi)

: Congress on evolutionary computation (evrimsel hesaplama kongresi)

: Covariance matrix adaptation evolution strategy

(kovaryans matrisi adaptasyon evrim stratejisi)

: Convolutional neural network (evrisimli sinir ag)

: L-SHADE nin bir varyant1 (L-SHADE: successful history-based

adaptive DE with linear population size reduction (dogrusal popiilasyon

boyutu azaltmali basarili gegcmise dayali adaptif DE)

: Crossover rate (¢aprazlama orani)

: Deep deterministic policy gradient (derin deterministik politika gradyani)
: Differential evolution (diferansiyel geligim)

: Dynamic programming (dinamik programlama)

: Dogrusallastirma stratejisi tabanli amag fonksiyonu

: Exponential rank ABC (iistel sirali ABC)

: Elk herd optimizer (geyik siiriisii optimizasyonu)

: Engel kiimeleme algoritmasi

: Enhanced multi-operator DE (gelistirilmis ¢coklu operatorlii DE)
: Fully convolutional networks (tam evrisimli ag)

: Genetic algorithm (genetik algoritma)

: Grey wolf optimizer (gri kurt optimizasyonu)

: Hierarchical clustering (hiyerarsik kiimeleme)

: Harris hawk optimization (Harris sahini optimizasyonu)

: Improved ABC (iyilestirilmis ABC)

: Improved ResNet (iyilestirilmis ResNet)



KMC
LAPO

MOA
MOP

MR

MSE
OKHU
OSYH
PSO
PgAFWA

QL

ReLU
ResNet
RRT
SASS
SCA
sCMAEES
sdSCA
SFS
SOA
SPSA
STOA
SSA
TLBO

WOA
WSO
YAS
YOLO

Xiv

: K-means clustering (K-ortalamalar kiimeleme)

: Lightning attachment procedure optimization

(yildirim tutunma prosediirii optimizasyonu)

: Math optimizer accelerated (matematik optimizasyon hizlandirici)
: Math optimizer probability (matematik optimizasyon olasilig1)

: Mutation rate (mutasyon orani)

: Mean square error (ortalama karesel hata)

: Ortalama kalan hedef uzaklig1

: Ortalama yol sapma hatasi

: Particle swarm optimization (pargacik siirii optimizasyonu)

: Best firework updating guided adaptive fireworks algorithm

(en iyi havaifigek giincelleme destekli adaptif havaifisek algoritmasi)

: Q-learning (Q-6grenme)

: Random access memory (rastgele erisim bellegi)

: Rectified linear unit (dogrultulmus dogrusal birim)

: Residual network (artik ag)

: Rapidly-exploring random tree (hizla kesfeden rastgele agac)

: Self-adaptive spherical search (kendi kendine adaptif kiiresel arama)

: Sine cosine algorithm (siniis kosiniis algoritmast)

: CMA-ES’nin bir varyanti

: Self-adaptive differential SCA (kendi kendine adaptif diferansiyel SCA)
: Stochastic fractal search (stokastik fraktal arama)

: Seagull optimization algorithm (mart1 optimizasyon algoritmast)

: Salp swarm algorithm (salp siirii algoritmasi)

: Sooty tern optimization algorithm (isli sumru optimizasyon algoritmasi)
: Sparrow search algorithm (ser¢e arama algoritmast)
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GIRIS
Mobil robotlar, ¢evrelerini algilayarak otonom bir sekilde hareket etme kabiliyetine sahip
sistemlerdir ve bu Ozellikleriyle endiistriden tarima, lojistikten arama-kurtarma
caligmalarina kadar genis bir yelpazede kullanilmaktadir. Bu robotlarin otonom hareket
kabiliyeti, haritalama, lokalizasyon ve yol planlama gibi temel becerilere dayanir.
Haritalama, robotun c¢evresini tanimasini ve bu cevreyli modelleyerek haritalar
olusturmasini saglarken, lokalizasyon, robotun bu harita iizerindeki konumunu hassas bir
sekilde belirlemesini saglar. Ancak, haritalama ve lokalizasyon, robotun hedefe
ulasabilmesi i¢in tek basina yeterli degildir; robotun hedefe ulasmasi i¢in yol planlama

stireci kritik bir rol oynar.

Yol planlama, robotun cevresel engelleri dikkate alarak, giivenli, verimli ve enerji
tasarruflu bir yol olusturmasini hedefler. Bu siiregte, robotun ¢evresel durumu, hareket
hizi, enerji tiiketimi ve giivenlik gibi faktorler goz onlinde bulundurulur. Yol planlama
yontemleri genel olarak {i¢ ana gruba ayrilir: Klasik arama algoritmalari, metasezgisel
algoritmalar ve makine Ogrenme tabanli yaklasimlar. Klasik arama algoritmalari,
genellikle sabit haritalar tizerinde c¢alisir ve belirli kurallar ¢ercevesinde sistematik
cOzlimler sunar. Bu yontemler, iyi tanimlanmis ve basit ¢evresel kosullarda oldukea etkili
olabilir. Ote yandan, metasezgisel algoritmalar, daha karmasik ve dinamik cevreler i¢in
gelistirilmistir. Bu algoritmalar, genis ¢0ziim uzaylarinda esnek arama yetenekleri
sayesinde optimal ya da optimale yakin yollar belirler ve robotun degisen g¢evre
kosullarina uyum saglamasini kolaylastirir. Makine 6grenme tabanli yaklagimlar ise
robotun cevreden gelen geri bildirimlere gore karar verme ve 6grenme becerisini
gelistirir. Bu yontemler, 6zellikle dinamik engellerin bulundugu karmasik ortamlar i¢in

etkili ¢ozlimler sunar.

Bu tezin amaci, mobil robotlarin yol planlamasi problemlerine yonelik metasezgisel
algoritmalarin etkinligini artirmak ve bu alandaki mevcut yontemlere yenilik¢i katkilar

saglamaktir. Calisma kapsaminda hem tekli mobil robot hem de c¢oklu mobil robot



sistemleri i¢in optimize edilmis yollarin planlanmasi hedeflenmis, bu siirecte
metasezgisel algoritmalarin kesif ve sOmiirli dengesini iyilestiren yeni yaklasimlar
gelistirilmistir. Gelistirilen yontemlerin performansi, literatiirdeki standart algoritmalarla
karsilagtirilarak degerlendirilmistir. Ayrica ¢oklu robot sistemlerinin yol planlamasi i¢in
bir derin 6grenme modeli de tanitilmis ve farkli bir derin 6grenme modeli ile
karsilastirilarak performansi test edilmistir. Son olarak bir mobil robotun bir ortamda
planlanan bir yolu istenen sekilde takip etmesi i¢in bir takip kontrolorii tasarlanmis ve
robotun gercek zamanh takip kontrolii i¢in bir gercek zamanli calisma

gerceklestirilmistir.

Tezin organizasyonu su sekildedir: Birinci bolimde genel bilgiler verilmis ve yol
planlama problemine ydnelik literatiirdeki giincel ¢alismalar sunulmustur. ikinci boliimde
yol planlama problemi ayrintili olarak bahsedilmistir. Model yaklagimi, ortam
modellemesi ve yol planlama kapsamlar1 aciklanmstir. Uciincii boliimde yol planlama
algoritmalar1 ayrintili olarak bahsedilmistir. Klasik, metasezgisel ve makine dgrenmesi
algoritmalar1 agiklanmistir. Dordiincii boliimde tez kapsaminda gerceklestirilen dort
simiilasyon ¢alismasi ve bir gergek zamanli ¢alisma ayrintili olarak sunulmustur. Son

olarak besinci boliimde ise sonug ve gelecekteki calismalardan bahsedilmistir.



1. BOLUM

GENEL BIiLGILER

1.1. Giris

Mobil robotlar, ¢evrelerini algilayabilme ve bu ¢evreyle etkilesim kurabilme kapasitesine
sahip, otonom sistemler olarak tanimlanabilir. Bu robotlar, genellikle gelismis
algilayicilar, islemciler ve kontrol sistemleri ile donatilir, bdylece c¢evrelerindeki
degisikliklere hizla uyum saglayabilirler. Otonom robotlar, endiistriyel {iretimden lojistik
¢Ozlimlerine, tarim uygulamalarindan kesif gorevlerine kadar genis bir yelpazede
kullanilir. Modern robotlar, insan miidahalesini azaltarak verimliligi artirmak igin
tasarlanmistir. Ornegin, fabrikalarda malzeme tasimak, depolarda envanter yonetimini
saglamak, zorlu arazi kosullarinda tarim faaliyetlerini ger¢eklestirmek ya da dogal afet
bolgelerinde arama-kurtarma operasyonlarina katilmak gibi gorevler iistlenebilirler.
Ayrica, otonom aracglar, akilli robotik sistemler ve insansiz hava araglar1 gibi
teknolojilerin temel yap1 taslarini olustururlar ve gelecekteki yenilik¢i uygulamalar i¢in

temel olustururlar [1].

Bir mobil robotun otonom hareket edebilmesi i¢in haritalama, lokalizasyon ve yol
planlama gibi temel becerilere sahip olmasi1 gerekir. Haritalama, robotun ¢evresini taniyip
bu ¢evreyi haritalar aracilifiyla modellemesine olanak tanirken, lokalizasyon, robotun
harita {izerinde kendi konumunu belirlemesini saglar. Ancak yalnizca haritalama ve
lokalizasyon, robotlarin hedeflerine ulagsmasmi saglamak i¢in yeterli degildir. Yol
planlama, robotun belirlenen hedefe gilivenli, verimli ve etkili bir sekilde ulagmasini
saglamak adina kritik bir rol oynar. Bu siirecte, robotun ¢evresel faktorleri ve engelleri
dikkate alarak en uygun yolu seg¢mesi gerekir. Yol planlamanin etkin bir sekilde
yapilabilmesi icin, robotun cevresine dair derin bir anlayisa ve gelismis hesaplama

yeteneklerine sahip olmasi gerekir [2].



Yol planlama, mobil robotlarin belirlenen bir hedefe, engellerden kaginarak ve en uygun
yolu segerek ulagmasini saglayan kritik bir siirectir. Bu siirecte, robotun ¢evresel durumu,
enerji verimliligi, hareket hiz1 ve giivenlik gibi faktorler dikkate alinir. Yol planlama
yontemleri genel olarak ii¢ ana kategoriye ayrilir: klasik algoritmalar, metasezgisel
algoritmalar ve makine 6grenme tabanli yontemler. Klasik algoritmalar, genellikle
robotun sabit bir ¢evrede belirli bir harita {izerinde calistigi durumlarda kullanilir ve
sistematik arama stratejileri ile ¢oziim tretir. Bu yontemler, basit ve 1yi tanimli durumlar
icin oldukca etkili olabilir. Metasezgisel algoritmalar ise daha karmasik ve siirekli
alanlardaki problemler i¢in gelistirilmistir. Bu yontemler, genis ¢6ziim uzaylarinda esnek
arama yetenekleri sayesinde optimal veya optimale yakin ¢oziimler sunarak, robotun
cevresel kosullara daha iyi uyum saglamasina olanak tanir. Makine 6grenme tabanl
yontemler ise robotlarin ¢evreden aldig1 geri bildirimlere gore karar verme becerisini
gelistirir. Ozellikle, robotun grenme ve adaptasyon yeteneklerini destekleyen bu
yontemler, statik ve dinamik engellerin bulundugu karmasik ortamlarda basarili sonuglar
saglar. Cevresel algilama ve karar verme siireclerini destekleyen bu yaklasimlar,

robotlarin hedefe daha verimli ve giivenli bir sekilde ulagsmasini miimkiin kilar.

1.2. Literatiir Taramasi

Bu tez ¢alismasi i¢in mobil robotlarin yol planlama problemine yonelik literatiir taramasi
yapilmigs ve farkli yaklasimlar {izerine gerceklestirilen caligmalar incelenmistir.
Literatiirde yol planlama siireci ¢ozmek icin Sekil 1.1°de gosterildigi gibi klasik
algoritmalar, metasezgisel algoritmalar, makine 6grenmesi ve bu ydntemlerin hibrit
yapilar1 gibi ¢esitli yontemler kullanilmistir. Bu basliklar altinda, ilgili caligmalara dair

temel bulgular ve yapilan katkilar tartisilmistir.

Yol Planlama Literatiirti

A A 4 A 4 A
Klasik Algoritma Metasezgisel Algoritma Makine Ogrenmesi Hibrit Algoritma
Tabanh Calismalar Tabanh Calismalar Tabanl Calismalar Tabanh Calismalar

Sekil 1.1. Literatlirdeki yol planlama ¢alismalarinin genel siiflandirilmasi



1.2.1. Klasik Algoritma Tabanh Calismalar

Klasik algoritma tabanli ¢alismalar genellikle belirli haritalar {izerinde yapilan ve
sistematik arama stratejileri kullanan arastirmalar1 kapsamaktadir. Giincel ¢aligmalardan
bazilar1 su sekilde 6zetlenebilir: Zhang ve Zhao, karmasik ortamlarda mobil robotlar i¢in
cevre bilgisinin amag fonksiyonuna eklendigi iyilestirilmis bir A* algoritmasi 6nermistir.
Bu algoritma, ¢ocuk diigiim se¢imi i¢in optimal kurallar ve yol diizlestirme i¢in ¢ift yonlii
optimizasyon stratejisi kullanarak arama alanin1 kiigiiltlir ve yolun diizglinliiglinti artirir
[3]. Liu ve arkadaslari, engebeli arazi kosullarinda mobil robotlar i¢in yer erisilebilirligi
ve yer engebeligi modellerine dayali olarak iyilestirilmis bir A* algoritmasi
onermislerdir. Bu algoritma, yiikselti maliyet fonksiyonunu entegre ederek ve orijinal
mesafe maliyet fonksiyonu ile birlestirerek daha optimize edilmis yol planlamasi
saglamaktadir [4]. Li ve arkadaslari, A* algoritmasini iyilestirerek mobil robotlar i¢in
daha verimli ve diizgiin yol planlamasi saglamak amactyla bir ¢ift yonlii alternatif arama
stratejisi ve tissel zayiflama ile agirliklandirilmis sezgisel fonksiyon dnermistir. Ayrica,
yol lizerindeki gereksiz diigiimleri azaltmak icin filtreleme fonksiyonu ekleyerek doniis
acilarmi kiigiiltmiis ve Bézier egrileri kullanarak diizgiin yol planlamasi saglamislardir
[5]. Wang ve arkadaglari, verimlilik, saglamlik ve diiglim gezinti sayisini iyilestirmek
amaciyla bir iyilestirilmis A* algoritmasi Onermislerdir. Bu gelistirmeler arasinda
minimum yigin kullanilarak diigiim depolama yapisinin optimize edilmesi, adaptif agirlik
ve doniis cezasi eklenerek sezgisel fonksiyonun iyilestirilmesi, 8-komsu stratejisinin 16-
komsuya yiikseltilmesi ve ¢ift yonlii arama mekanizmasinin uygulanmasi yer almaktadir
[6]. Guo ve arkadaslari, hizla kesfeden rastgele agac yildiz (rapidly-exploring random
tree star, RRT*) algoritmasinin yavas birlesme, yiiksek zaman maliyeti ve zayif ¢evresel
adaptasyon gibi kisitlamalarin1 ele alarak, mobil robot yol planlama alanindaki
uygulamalarin iyilestirilmesi i¢in yeni bir iki yonlii RRT* algoritmast 6énermislerdir. Bu
algoritma, adaptif hedef sapma 6rnekleme ve degisken adim boyutu gibi yenilik¢i
mekanizmalar ile hem planlama hizin1 artirmakta hem de c¢evresel uyumu
iyilestirmektedir [7]. Zhong ve arkadaslari, Halton dizisi tabanli yeni bir RRT algoritmasi
Oonermislerdir. Bu yoOntem, diizensiz Ornekleme sorunlarini ¢dzmekte ve bellek
yetersizligi problemlerini asmak i¢in aday oérnekleme havuzu stratejisini kullanmaktadir.
Ayrica, yol optimizasyonu ve diizeltilmesi i¢in ¢ok seviyeli planlama yaklagimi ve kiibik
B-spline yontemi ile genel planlama kalitesini artirmaktadir [8]. Han ve arkadaslari, yeni

bir teta* (theta*™) algoritmasi Onermislerdir ve bu algoritma ii¢ boyutlu haritalarla



birlestirilmis yol yumusatma yOntemine dayanmaktadir. Ayrica bu algoritma, engel
bilgilerini kullanarak toplam maliyet fonksiyonunu optimize etmis ve minimum snap
polinomu ile yolun stabilitesini artirmistir [9]. Huang ve arkadaslari, dar gegitlerdeki yol
planlama basarisini artirmak i¢in hibrit uniform 6rnekleme ve Gaussian dérnekleme igeren
tyilestirilmis bir olasiliksal yol haritasi (probabilistic roadmap) yontemi onermigler. Bu
yontem, dar gecitlerde 6rnekleme yogunlugunu artirarak ve genis alanlarda ornekleme
fazlaligimi azaltarak yol planlamasinin etkinligini ve verimliligini artirmaktadir [10].
Alshammrei ve arkadaslari, robotun Onceden belirlenmis yolu takip ederken
karsilagabilecegi engelleri tespit edip grafigi dinamik olarak giincelleyerek hedef
noktasina ulagmasini saglamak icin iyilestirilmis bir Dijkstra algoritmasi onermislerdir.
Ayrica, elde edilen optimal yol, hareket kontroliine doniistiiriilmiis ve ¢izgi izleme
algilayicilart kullanilarak pratik olarak uygulanmistir [11]. Li ve arkadaslar, belirsiz
dinamiklere sahip mobil robotlar i¢in iyilestirilmis bir yapay potansiyel alan (artificial
potantial field) yontemine dayal1 yeni bir yol planlama ve kontrol stratejisi dnermislerdir.
Bu strateji, temel yapay potansiyel alanin yerel minimuma diisme egilimini asmak i¢in
cekici potansiyel alan rotasyon yontemi ve hedefe uzak mesafelerde asir1 ¢ekici kuvvet
nedeniyle meydana gelen ¢arpigmalart 6nlemek i¢in yeni bir ¢ekici potansiyel alan sinifi

tanimlamaktadir [12].

1.2.2. Metasezgisel Algoritma Tabanh Calismalar

Metasezgisel algoritma tabanli ¢aligmalar genellikle karmagik ve siirekli alanlarda ¢6ziim
arayarak daha esnek bir yol planlama yaklasimi sunmus ve birgok c¢alismada
uygulanmistir. Glincel ¢alismalardan bazilar su sekilde 6zetlenebilir: Cai ve arkadaglari,
atesbocegi algoritmasina (firefly algorithm) dayanan iyilestirilmis bir karinca koloni
optimizasyon algoritmasi (ant colony optimization, ACO), sezgisel fonksiyon tabanli
tyilestirilmis bir ACO ve yeni bir yapay potansiyel alan yontemine dayanan iyilestirilmis
bir ACO olmak tizere ii¢ farkli yontem onermislerdir. Bu yontemler, iki boyutlu ve ii¢
boyutlu ortamlarda mobil robot yol planlama performansini iyilestirerek, yol planlama
stiresini kisaltmakta ve ortalama yol uzunlugunu azaltmaktadir [13]. Huo ve arkadaslari,
Ackermann mobil robotlar i¢in iyilestirilmis bir ACO ve B-egri fonksiyonuna dayanan
yeni bir yontem Onermislerdir. Bu ydntem, yol uzunlugu ve yol yumusatma
kisitlamalarin1 igeren ¢ok amagli bir optimizasyon problemi ile robotun doéniis agisi

kisitlamasini dikkate alarak daha hizli bir yakinsama orami saglar ve kinematik



kisitlamalara uyumlu yollar tretir [14]. Ab Wahab ve arkadaslari, genetik algoritma
(genetic algorithm, GA) i¢in lineer siralama ve bosluk tabanli olasiliksal yol haritasi
tekniklerini igeren iyilestirilmis bir yontem onermislerdir. Bu yontem, yeni bir niifus
baslatma yontemi ve g¢esitli genetik operatorlerin kombinasyonunu kullanarak yol
planlamasinin kalitesini artirmakta ve optimum yolun daha hizli bulunmasini
saglamaktadir [15]. Duan ve arkadaslari, iyilestirilmis bir egemen olmayan siralamali
GA-II (non-dominated sorting GA-II) 6nermislerdir. Bu algoritma, yol uzunlugu, yol
giivenligi ve yol yumusakligi gibi ¢oklu hedefleri ayn1 anda optimize etmekte, baslangic
popiilasyonunun ¢esitliligini artirmak i¢in hibrit bir baslatma stratejisi kullanmakta ve
sorunlara 6zgii evrimsel operatorler gelistirmektedir. Ayrica, adaptif degisken komsuluk
arama stratejisi ve hibrit kiiresel arama stratejisi kullanarak algoritmanin kesif yetenegini
artirmaktadir [16]. Tao ve Kim, iki alt popiilasyona ve rastgele pertiirbasyon stratejisine
sahip bir parcacik siirii optimizasyon algoritmasi (particle swarm optimization, PSO)
algoritmas1 Onermislerdir. Bu yontem, pargaciklarin kalitesini ve rastgele segilen bir
parcacigin optimal ¢oziimiinii dikkate alarak global arama yeteneklerini artirmakta ve
yerel arama yeteneklerini lineer bilissel katsay1 ayarlama stratejisi ile gliclendirmektedir.
Ayrica, belirli bir esik degeri asildiginda rastgele pertiirbasyon eklenerek cesitlilik
artirtlmakta ve yerel optimumdan kacgis yetenegi giiclendirilmektedir [17]. Lin ve
arkadaslari, ¢cok stratejili sentezlemeye dayali 1yilestirilmis bir yapay ar1 koloni (artificial
bee colony, ABC) algoritmasi 6énermislerdir. Bu algoritma, insansiz hava araglari i¢in
daha {istiin ugus yollar1 saglamak amaciyla hibrit mekanizma kullanarak popiilasyonu
baslatmakta ve kesisen rastgele evrim mekanizmasi ile ugus yolu kalitesini en {ist diizeye
cikarmaktadir [18]. Li ve arkadaslari, kendiliginden uyarlanan popiilasyon boyutuna
sahip iyilestirilmis bir atesbocegi algoritmasina dayanan optimal bir yol planlama
yontemi Onermislerdir. Bu ydntem, carpisma derecesine gore popiilasyon boyutunu
belirlemek i¢in iki dogrusal olmayan fonksiyon kullanmakta ve gecersiz ¢oziimleri
ortadan kaldirarak yol planlamasinin ¢6ziim kararliligini, yakinsama hizinm1 ve ¢alisma
stiresini iyilestirmektedir [19]. Zhang ve Hao, geleneksel mobil robotlarin karmasik yol
planlama sorunlarini ¢6zmek igin iyilestirilmis bir ser¢e arama algoritmasina (sparrow
search algorithm, SSA) dayali bir 2D-3D yol planlama ydntemi Onermislerdir. Bu
yontem, ACO tabanli stratejileri ve bir yerel arama mekanizmasini entegre ederek
algoritmanin yol arama yetenegini artirmaktadir [20]. Tang ve arkadaglari, iyilestirilmis

bir Harris sahini optimizasyon algoritmas1 (harris hawk optimization, HHO)



onermislerdir. Bu yontem, c¢ift adaptif agirlik stratejisi, boyut 6grenme tabanli avlanma
stratejisi ve giibre bocegi optimizasyon algoritmasina (dung beetle optimizer) dayal
pozisyon giincelleme stratejisi ile kesif ve somiirii arasinda denge kurarak, optimizasyon
yetenegi, yakinsama hizini ve kararliligi onemli olgiide artirmaktadir [21]. Gao ve
arkadaglari, oriimcek yaban aris1 optimizasyon algoritmasi (spider-wasp optimizer)
tabanli tyilestirilmis bir yol planlama yontemi onermislerdir. Bu yontem, algoritmanin
kiiresel optimizasyon performansini artirmak i¢in 6grenme stratejisi, algoritmanin arama
kabiliyetini artirmak i¢in ¢ift medyan nokta yonlendirme stratejisi ve yerel optimal
yollardan kacis yetenegini artirmak i¢in daha iyi bir yonlendirme stratejisi igermektedir
[22]. Shi ve arkadaslari, dinamik durumlarda hareketli engellerden kaginmak ig¢in
tyilestirilmis bir simiile edilmis tavlama algoritmasi (simulated annealing) algoritmasi
onermislerdir. Bu algoritma, hesaplama yiikiinii azaltmak amaciyla baslangic yol se¢imi
yontemi ve silme islemi kullanmakta ve hem statik hem de dinamik ortamlarda optimal
¢oziimler saglamaktadir [23]. Yildirim ve Akay, kullanici tanimli iki boyutlu ortamlarda
statik engellerle birlikte mobil robotlar i¢cin PSO, ABC ve GA algoritmalar1 igeren
optimal yol planlama yazilimi gelistirmeyi ve bu yazilimi kullanarak algoritmalarin
performansini analiz etmeyi amaglamiglardir. Bu yazilim, ¢alisma alaninda farkli sekil ve
boyutlarda engeller olusturarak ve secilen optimizasyon algoritmasini kullanarak robot

icin en kisa yolu bulmak iizere tasarlanmistir [24].

1.2.3. Makine Ogrenmesi Tabanh Cahismalar

Makine Ogrenmesi tabanli g¢aligmalar genellikle robotlarin g¢evreden aldiklar1 geri
bildirimlerle karar verme yeteneklerini gelistirmeye odaklanmaktadir. Giincel
calismalardan bazilar1 su sekilde Ozetlenebilir: Galarza-Falfan ve arkadaslari, derin
O0grenmeye dayali yapay gérme sistemlerinin otonom mobil robotlara entegrasyonunu
kapsaml1 bir sekilde analiz ederek bir yaklagim Onermislerdir. Ger¢cek zamanli nesne
tespiti icin ResNet18 (residual network) ve YOLOV3 (you only look once) modellerini
karsilastirarak, robotlarin dinamik ortamlardaki uyarlanabilirligini ve verimliligini
artirmak i¢in bir yontem sunmuslardir [25]. Han, lojistik robotlarinin yol planlama ve
engel kagmmma yeteneklerini gelistirmek icin iic boyutlu bir evrisimli sinir agi
(convolutional neural network, CNN), uzun kisa siireli bellek ve dijkstra algoritmasinin
yeni bir hibritini 6nermislerdir. Nesne tanima, uzaysal-zamansal modelleme ve optimize

edilmis karar vermeyi birlestirerek, dinamik lojistik ortamlarinda robotlarin otonomisini



ve giivenilirligini artirmak i¢in bir yaklasim sunmuslardir [26]. Farkh ve arkadaslari, bir
hizmet robotuna yonelik hedef izleme ve yoriinge tahmini icin CNN’leri otomatik
direksiyon ve hiz kontrolii i¢in bir oransal-integral-tiirevsel denetleyicisiyle birlestiren bir
kontrol sistemi Onermislerdir. Sistem, goriinti girislerine dayali ger¢ek zamanl
cikarimlar i¢in bir Raspberry Pi kullanarak otonom ¢izgi takibi ve yoriinge kontroliine
yonelik bir yaklasim tanitmaktadir [27]. Li ve arkadaslari, diisiik basar1 oran1 ve yavas
egitim hizim1 gidermek i¢in 1iyilestirilmis bir derin deterministik politika gradyan
algoritmasi1 (deep deterministic policy gradient, DDPG) Onermislerdir. Bu yontem,
o6grenme verimliligini artirmak i¢in Oncelikli deneyim tekrar1 ve transfer 6grenimi ile
dinamik gecikme giincelleme stratejisi ve Ornstein-Uhlenbeck giiriiltiisii eklemekte,
boylece yol planlamada basar1 oranini ve egitim hizin artirmaktadir [28]. Deshpande ve
arkadaslari, belirsizlikleri ele alarak mobil robotlarin statik ve dinamik engeller karsisinda
giiclii davraniglar sergilemesi i¢in iyilestirilmis bir Markov karar siireci (Markov decision
process) modelini kullanarak bir yaklasim dnermislerdir. Bu yaklasim, iki mobil robot
tizerinde yapilan simiilasyonlarla test edilerek, gézlem olasilig1 yayiliminin artirilmasiyla
sistemin ¢arpisma oranini azaltarak dayaniklilig artirdigini géstermistir [29]. Deshpande
ve arkadaglari, DDPG algoritmasina diferansiyel oyun (differential game) stratejisinin
entegre edildigi yeni bir yontem Onermislerdir. Bu yontem, basarili boliimlerin sayisini
artirarak ve basarisiz boliimlerin sayisini azaltarak daha hizli 6grenmeyi saglamaktadir
[30]. Zhou ve arkadaslari, yerel yol planlamasi i¢in yeni bir eylem se¢me politikasi, yeni
bir ddiil fonksiyonu ve kok ortalama kare yayilimi (root mean square propagation)
yontemini igeren iyilestirilmis bir Q-0grenme (Q-learning, QL) algoritmasi
onermislerdir. Bu yontem, 6grenme hizini artirarak ve yol planlama verimliligini artirarak
mevcut algoritmalara gore tim metriklerde iyilestirmeler saglamaktadir [31]. Zhang ve
arkadaslari, otonom mobil robotlarin kinematiklerini dikkate alarak dinamik ortamlarda
performans ve yanit verebilirlik gereksinimlerini karsilamak amaciyla ¢ok ajanli politika
O0grenimi (multi-agent policy learning) tabanli bir yontem onermislerdir. Bu yontem,
merkezi 6grenme ve dagitilmis yiiriitme tabanli bir yol planlama ¢ergevesi sunmakta olup,
geleneksel sinir aglarint kullanarak kinematigi goz Oniinde bulundurarak politikanin
ogrenilmesini saglamaktadir. Ayrica, hata deneyimlerini diizelterek 6grenme siireglerini
hizlandiran gelistirilmis bir yakin politika optimizasyon algoritmasi gelistirilmistir [32].
Yan ve arkadaslari, yoriinge agisi, dogrusal hiz ve giivenlik derecesini degerlendirme

indeksleri olarak kullanildigi ve ¢ok amacl performans indeksini 6diil fonksiyonuna
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entegre edildigi iyilestirilmis bir DDPG algoritmasi dnermislerdir. Bu yontem ayrica
deneyim orneklerini optimize etmek i¢in bagisiklik optimizasyon algoritmasini (immune
optimization algorithm) kullanarak diisiik 6grenme ve egitim verimliligi sorunlarini
cozmektedir [33]. Deshpande ve arkadaslari, 6zel bir yol planlama ic¢in kismen
gozlemlenebilir Markov karar siireci (partially observable Markov decision process)
matrislerinin boyutlarini ve seyrekligini kontrol edebilen yeni bir algoritma 6nermislerdir.
Bu algoritma, duruma ait bilesenlerin ayristirilmasinin inceligi ve gozlem olasilik
dagiliminin yayilimi ayarlanarak zaman karmasikligi ve bu Markov karar siirecinin
¢cozlimiiniin dayaniklilig1 arasinda bir denge kurmayi saglamaktadir [34]. Low ve
arkadaslari, lic glincelleme ile iyilestirilmis bir QL algoritmasi Onermislerdir. Bu
degisiklikler, hedefe dogru yonlendirme i¢in bir mesafe metrigi eklenmesi, QL
fonksiyonunun daha etkili bir sekilde c¢ikmazlar1 asacak sekilde diizeltilmesi ve
cikmazlar atlamak i¢in sanal hedef kavraminin tanitilmasidir [35]. Das ve Mishra, mobil
robotun yonlii hareketini saga ve sola doniis olarak ayirmak i¢in stokastik gradyan inisine
(stochastic gradient descent) dayali ve dogrusal regresyonun entegre edildigi yeni bir
yaklasim Onermislerdir. Ayrica, gelistirilen algoritma yol planlama ve navigasyon
amaglart i¢in kullanilmistir [36]. Chen ve arkadaslari, karmasik kimyasal tesislerdeki alti
ayakl1 robotlarin yol planlamasi icin PSO ve ¢ift derin Q ag1 (double deep Q network)
algoritmalarina dayali bir yontem Onermislerdir. Bu yontem, rastgele secim stratejisi
yerine PSO algoritmasini kullanarak verileri toplar ve bu verilerle gelistirilen modeli

egitir [37].

1.2.4. Hibrit Algoritma Tabanh Cahsmalar

Hibrit algoritma tabanli caligmalar ise birden fazla yaklagimin gii¢lii yonlerini
birlestirerek ¢oziim {iretmeyi amaglayan yeni yontemler Onermektedir. Giincel
calismalardan bazilar su sekilde 6zetlenebilir: Hu ve arkadaslari, bulanik mantik (fuzzy
logic), A*, QL ve yapay potansiyel alan yaklagimlarini igeren bir yontem 6nermislerdir.
Bu yontem, bulanik mantik ile A* algoritmasini, kuantum hesaplama ve ¢ok asamali
egitim yOntemlerini birlestirerek A* algoritmasini iyilestirmekte ve QL algoritmasinin
yakinsama hizin1 artirmaktadir. Hareketli engellerin bulundugu ortamlarda, yapay
potansiyel alan alt hedef noktalarini planlamak i¢in A* yol noktalarim1 kullanmaktadir.
Yerel minimumlara diisen mobil robotlar i¢in ise kuantum ¢ok asamali QL yoOntemi

devreye girmekte ve yerel minimumlar ile alt hedef noktasi arasinda bir yol
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planlamaktadir [38]. Wang ve arkadaslari, iyilestirilmis bir A* algoritmasi, bulanik
mantik ve dinamik pencere yaklasimini (dynamic window approach) birlestiren bir yol
planlama yontemi 6nermislerdir. Bu yontem, cevresel engel oranim1 dikkate alarak A*
algoritmasin1 1iyilestirmekte, arama komsulugunu optimize ederek diiglim arama
verimliligini artirmakta ve bulanik mantik iceren yerel yol planlama stratejisi ile
engellerden gilivenli mesafede durarak engel kagcinma kararliligini artirmaktadir [39]. Tao
ve Kim, yumusak aktor-kritik algoritmasi (soft actor-critic), karo kodlama ve dinamik
pencere yaklagimini birlestirerek yol planlama problemine yonelik hibrit bir yontem
onermislerdir. Bu yontem kesif ve somiirii dengesini saglamak i¢in otomatik entropi ayar
mekanizmasini kullanmakta, iyilestirilmis 6zellik temsili i¢in karo kodlamay1 entegre
etmekte ve hedef bashigi, engel mesafesi ve hiz gibi parametrelerle eylem alanini
tanimlamak i¢in dinamik pencere yaklasimini kullanmaktadir [40]. Zhang ve arkadaslari,
niikleer enerji santrallerinin rutin denetimlerindeki mobil robotlarin yol planlamasi i¢in
iki seviyeli ¢ok amagli bir programlama ¢ercevesi dnermislerdir. Bunun igin, iyilestirilmis
bir ACO, GA ve iyilestirilmis bir A* algoritmasini entegre edilmesiyle yeni bir iki
seviyeli hibrit algoritma gelistirilmistir. Ust seviyede, GA tabanl diizensiz baslangi¢
feromon dagilimi, adaptif sezgisel fonksiyon ve feromon giincellemesi i¢in elit strateji ile
ACO kullanilarak denetim hedeflerinin optimal gegis siras1 belirlenmistir. Alt seviyede
ise, yol uzunlugu, risk derecesi ve enerji tiikketimi gibi birden fazla kisitlamay1 dikkate
alarak cift yonlii yollar1 planlamak icin iyilestirilmis bir A* algoritmasi kullanilmistir
[41]. Wei ve arkadaglari, bilinmeyen ortamlarda derin pekistirmeli 6grenme
algoritmalarinin egitim siiresinin uzun olmasi ve kararsizlik gibi sorunlarini ¢ézmek igin
DDPG algoritmasinda iyilestirmeler yapmislardir. Deney havuzu farkli deney
havuzlarina boliinmiis, deneyler ¢esitli oranlarda toplanarak robotun engellerden kaginma
yetenegi artirilmis ve kilavuz o6diil fonksiyonu ile algoritmanin yakinsama hizi
tyilestirilmistir [42]. Gao ve arkadaglari, D*lite algoritmasi ve dinamik pencere yaklasimi
arasinda kombinasyon saglayan, ¢ift katmanli bir harita ve uygulanabilir alan stratejisi
kullanan bir yeni bir stratejisi Onermislerdir. Bu strateji, D*lite algoritmasinin
verimliligini artirmakta ve dinamik pencere yaklagimininin yerel planlama yeteneklerini
tam anlamiyla kullanabilmesini saglamaktadir [43]. Li ve arkadaslar, iyilestirilmis bir
ACO ve ABC’den olusan hibrit bir yaklasim onermislerdir. Bu yontem yon bilgisine
sahip iyilestirilmis bir sezgisel mekanizma, yeni komsuluk arama mekanizmasi ve yol

optimizasyon mekanizmasi igermektedir. Yontem, yol doniis sayisini ve yol uzunlugunu
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azaltarak algoritmanin yakinsama hizini artirmakta ve yiiksek kaliteli yol planlama
sonuglari elde etmektedir [44]. Yu ve arkadaslari, su akis1 potansiyel alan yontemi (water
flow potential field) ve bocek anten arama algoritmasinin (beetle antennae search)
kombinasyonuna dayali bir mobil robot yol planlama ydntemi Onermislerdir. Bu
yaklasim, bocek genetik operatorii kullanarak kiiresel yolu bolmelere ayirmakta, yerel yol
planlamasini engellerin 6zelliklerine gore simiflandirmakta ve yapay potansiyel alan ile
aramay1 yonlendirmektedir [45]. Zhang ve arkadaslari, mobil robotlar i¢in iyilestirilmis
bir ACO, A* ve PSO algoritmasina dayali hibrit bir yontem 6nermislerdir. Bu yontem,
kiiresel arama yetenegi ve yakinsama hizini dengelemek amaciyla A* algoritmasi,
tyilestirilmis feromon ve adaptif sezgisel fonksiyon kullanmaktadir. Ayrica PSO’yu
kullanarak en iyi ACO kontrol parametrelerini ve ¢ok amacli agirlik katsayilarini elde
etmektedir [46]. Tian ve arkadaslari, balina optimizasyon algoritmasi (whale optimization
algorithm, WOA) ve atesbocegi algoritmasina dayali ¢ok popiilasyonlu ve tersine
O0grenme temelli hibrit bir algoritma Onermislerdir. Bu yontem, karmasik mobil robot
caligma ortamlarinda optimal yolu hizla bulabilmekte ve kesif ile somiirii arasinda denge

saglamaktadir [47].

1.3. Tezin Amaci

Bu tezin amaci, mobil robotlarin yol planlamasi problemlerine yonelik metasezgisel
algoritmalarin etkinligini artirmak ve bu alandaki mevcut yontemlere yenilik¢i katkilar
saglamaktir. Gilinlimiizde mobil robotlarin ¢esitli endiistriyel, askeri ve giinlik yasam
uygulamalarinda artan kullanimi, giivenilir ve verimli yol planlamasi algoritmalarina
duyulan ihtiyaci artirmaktadir. Ozellikle karmasik ve dinamik ortamlarda, robotlarin en
kisa, en giivenli ve en enerji-verimli yollar1 planlayarak hedeflerine ulasmasi biiyiik bir

Onem tagimaktadir.

Bu dogrultuda, mobil robotlarin otonom hareket kabiliyetlerini gelistirmek adina, hem
tekli hem de ¢oklu mobil robot sistemleri i¢cin optimize edilmis yollarin planlanmasi
hedeflenmistir. Tekli mobil robot sistemlerinde, bir robotun belirlenen baslangic ve hedef
noktalar1 arasindaki en uygun yolu planlamasi amaglanirken, ¢oklu mobil robot
sistemlerinde ise birden fazla robotun ¢arpigsma Onleyici stratejilerle birlikte koordineli

bir sekilde hareket etmesi saglanarak daha karmasik senaryolara ¢oziim iiretilmistir.
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Bu tezde, metasezgisel algoritmalarin kesif ve somiirii dengesini iyilestiren yeni
yaklasimlar gelistirilerek, algoritmalarin dogruluk, hiz ve hesaplama verimliligi agisindan
performanslarini artirmaya yonelik cesitli stratejiler uygulanmistir. Kesif siirecinin daha
etkili hale getirilmesi, robotlarin bilinmeyen veya degisken ortamlarda daha basarili
navigasyon yapmalarini saglarken, somiirii siirecinin optimize edilmesi ise algoritmalarin
kiiresel en iyi ¢ozlime daha hizli ve hassas bir sekilde ulasmasina katki saglamistir. Bu
cercevede, farkli metasezgisel algoritmalarin gelistirilmesi ve hibrit yontemlerin
tasarlanmasi gibi ¢esitli teknikler arastirilmis ve uygulanmistir. Ayrica makine 6grenmesi
teknikleri kapsaminda bir derin 6grenme modeli de gelistirilmis ve c¢oklu robot
sistemlerinin yol planlama problemi i¢in uygulanmistir. Bu sayede egitim siirecine biraz
zaman harcansa da, model egitildikten sonra her boyutta ¢ok kisa bir siirede sonug

alinabilmis ve sistemin verimliligi onemli 6l¢lide artirilmistir.



2. BOLUM

YOL PLANLAMA PROBLEMIi

2.1. Giris

Mobil robotlarin yol planlama problemi, bir robotun belirli bir baslangic noktasindan
hedef bir noktaya en uygun sekilde ulagsmasini saglayan bir siirectir [48]. Bu siireg,
robotun belirlenen yolda ilerlerken ¢evresel engellerden kaginmasini, enerji tiikketimini
minimum seviyede tutmasini ve en kisa veya en hizli yolu bulmasini gerektirir. Yol
planlama, robotun otonom sekilde hareket edebilmesi ve belirlenen gorevleri yerine
getirebilmesi i¢in hayati bir éneme sahiptir. Ozellikle sanayi, tarim ve lojistik gibi
alanlarda, mobil robotlarin etkili bir sekilde kullanilabilmesi i¢in yol planlama

algoritmalarinin dogru ve hizli sonuglar iiretmesi gerekir. Sekil 2.1 yol planlama

Yol Planlama

probleminin kapsamini géstermektedir.

4 A
| Kiiresel Yol Planlama | | Yerel Yol Planlama

|

A A

| Ayrik Uzay Ortami | | Siirekli Uzay Ortami |
|
A 4 A 4
| Graf Tabanli Ortam | | Izgara Ortam |

Sekil 2.1. Yol planlama probleminin kapsami
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Bu problem, robotun faaliyet gosterecegi alanin uygun sekilde modellenmesiyle baslar.
Hareket edilebilecek alan, genellikle 1zgara ortami (ayrik uzay ortami) veya siirekli uzay
ortami olarak ifade edilir. [zgara ortamlar, hareket alanin1 hiicrelere bolerek robotun hangi
hiicrelerden gegebilecegini belirler. Siirekli uzay ortamlar1 ise robotun herhangi bir
engelle karsilagmadan hareket edebilecegi siirekli alanlar1 ifade eder. Cevresel kosullarin
dogru bir sekilde modellenmesi, yol planlama algoritmalarinin bagarili bir sekilde

calisabilmesi i¢in kritik bir adimdir.

Mobil robotlarin yol planlama problemleri, ¢éziim yontemlerine bagli olarak iki ana
kategoriye ayrilir: kiiresel yol planlama ve yerel yol planlama. Kiiresel yol planlama,
robotun tiim ¢evreyi bildigi durumlarda en uygun yolu belirlemeye odaklanir. Bu tiir
planlama, genellikle 6nceden bilinen haritalar iizerinde gergeklestirilir ve uzun vadeli
stratejiler gerektirir. Ornegin, bir depoda belirli raflar arasinda iiriin tasimak igin robotun
tiim depo haritasina sahip olmasi ve en kisa yolu planlamasi kiiresel yol planlama
kapsaminda degerlendirilir. Yerel yol planlama ise robotun yalnizca yakin ¢evresine
dayali olarak hareket etmesini saglar. Robot, ¢evresindeki engelleri algilayarak anlik
kararlar alir ve yolunu buna gore giinceller. Bu tiir planlama, genellikle dinamik ve
onceden bilinmeyen ortamlarda, robotun ¢evresine adapte olmasi gereken durumlarda
tercih edilir. Ornegin, bir tarim arazisinde onceden belirlenmemis engeller arasinda
dolasmasi gereken bir robot, yerel yol planlama yontemlerini kullanir. Hem kiiresel hem
de yerel planlama yontemleri, robotlarin giivenli ve verimli bir sekilde hareket etmesini

saglamak i¢in birbirini tamamlayici bir sekilde kullanilabilir.

2.2. Kiiresel Yol Planlama

Kiiresel yol planlama, robotun ¢evresel bilgilerini baslangi¢tan itibaren tam olarak bildigi
varsayimina dayanir [49]. Robotun bu bilgiyi kullanarak, hedefe ulasmasini saglayan en
etkili yolu hesaplamasi beklenir. Genellikle, kiiresel yol planlama otonom araglar
(insansiz hava araci, tekerlekli mobil robot gibi) ve robot kollarin ¢esitli uygulamalarinda
kullanilir. Planlamanin temel amaci, robotun hedefine hizli, giivenli ve enerji agisindan
verimli bir sekilde ulagsmasini saglayan kiiresel ¢apta bir yol planlamaktir. Kiiresel yol

planlamanin blok diyagrami Sekil 2.2°de gosterilmektedir.
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Kiiresel Ortam Bilgisi

(Ortam Sinirlari, .

Statik Engeller, > T:ll Pl??rilzmla P Kiiresel Yol > 11\{[ Ol;b 11
Baslangi¢ Noktasi, £0 ¥ 00

Hedef Noktasi) A

Dinanik
Engel |«
Algilayic

Sekil 2.2. Kiiresel yol planlamanin blok diyagrami

Robotun hareket ettigi genel ortam iki veya {li¢ boyutlu bir harita seklinde tanimlanabilir.
Bu harita robotun hareket edebilecegi gecilebilir alan ile robotun ¢arpigmaktan kaginmasi
gereken engelleri igerir. Ayrica robotun baslangi¢ ve hedef noktalar1 da gegilebilir alanlar

icinde dnceden tanimlanmasi gerekir. Bu tanimlamalar Esitlik (2.1)’de gosterilmektedir.

E = {E |30 C E, {p,, p;} € E\O} (2.1)

Burada, E genel ortam1 kiimesini, E\O robotun hareket edebilecegi gecilebilir alani, O
engel kiimesini, ps ve p; robotun sirasiyla baslangic ve hedef konumlarini temsil eder.
Gegilebilir alan, robotun giivenle hareket edebilecegi bolgeyi temsil ederken, engeller bu
alanlarin digindaki tehlikeli veya yasakli bolgeleri temsil eder. Robotun yolu, yalnizca
gecilebilir alan i¢inde olusturulabilir ve engellerle ¢akismamasi gereklidir. Bu tiir bir
ortam modeli, robotun cevresel bilgileri anlamas1 ve bu bilgiler dogrultusunda hareket

plani olusturmasi i¢in temel bir ¢erceve sunar.

Planlama siirecinde robotun yalnizca gecilebilir alanda hareket etmesi yeterli degildir;
ayni zamanda bu hareketin belirli performans kriterlerini de saglamasi gerekir. Bu
kriterler arasinda yolun uzunlugu, yolun giivenligi, engellerden kaginma basarisi ve enerji
verimliligi gibi faktoérler yer alir. Kiiresel yol planlama, bu kriterlerin bir
kombinasyonunu optimize etmeyi hedefler. Ornegin, bir otonom aracin bir sehirde yol
alirken hem en kisa yolu takip etmesi hem de trafik kurallarina ve giivenlik standartlarina
uymasi beklenir. Benzer sekilde, bir robotun enerji tiilketimini minimize ederken
engellerden kacinmasi ve hedefine en hizli sekilde ulasmasi ideal bir ¢oziim olarak
degerlendirilir. Bu ¢ercevede kiiresel yol planlama, genelde bir optimizasyon problemine

doniisiir ve ¢oziimi etkili bir matematiksel modelleme ile miimkiin olur.
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2.2.1. Ortam Tanim

Kiiresel yol planlamada ilk adim olarak ortamin dogru bir sekilde tanimlanmasi
gerekmektedir. Bu tanimlama robotun hareket edecegi alanin yapisini belirler ve yol
planlamanin temellerini atar. Ortamlar genellikle {i¢ ana kategoriye ayrilir: graf tabanl
ortamlar, 1zgara ortamlar ve siirekli uzay ortamlari. Graf tabanli ortamlar, ayrik bir yapiya
sahip olup ag yapilar1 seklinde modellenir. Her bir diigiim belirli bir konumu temsil eder
ve bu diigiimler arasindaki baglantilar robotun hareket edebilecegi yollar1 gosterir. Izgara
ortamlar1 belirli hiicrelerden olusan ve her hiicrenin belirli bir durum aldig1 ayrik bir
yapiy1 ifade eder. Siirekli uzay ortamlari ise robotun her tiirlii konumunun ve hareketinin
kesintisiz olarak tanimlandig1 daha esnek bir model sunar. Bu ortamlar yol planlama

algoritmalarinin uygulama bigimini ve karmasikligini dogrudan etkiler.
2.2.1.1. Graf Tabanh Ortam

Graf tabanl ortamlar kiiresel yol planlamanda genellikle ayrik bir yapiy1 modellemek i¢in
kullanilir. Bu tiir ortamlar ortami bir dizi diiglim ve bu diigiimler arasindaki kenar ile
temsil eder. Her bir diigiim robotun belirli bir konumunu veya durumunu, kenarlar ise bu
diglimler arasindaki gecis yollarmi ifade eder. Graf tabanli modelleme genellikle
ortamdaki engellerin konumlar1 hakkinda bilgi vermez, engel durumu kenarlarda ele

alinir. Bir graf tabanli ortam iki ve {i¢ boyutlu i¢in Esitlik (2.2)’deki gibi tanimlanur.
E={(P,G)|PcRP,GcPxP,De{23}} (2.2)

Burada, P diiglim kiimesini, G kenar (baglant1) kiimesini ve D ortam boyutunu temsil

eder. Diigiim kiimesi iki ve ii¢ boyutlu i¢in Esitlik (2.3)’teki gibi tanimlanir.
pP= {pi ER” | p; € 0U{p,p)i €{12,..,n,},n, EN*,D € {2,3}} (2.3)

Burada, p; i’inci diigiimii ve n,, graftaki toplam diigtim sayisini temsil eder. Kenar kiimesi

iki ve ii¢ boyutlu icin Esitlik (2.4)’teki gibi tanimlanir. Sekil 2.3 6rnek graf tabanl

ortamlar1 gostermektedir.

pi,pi EPCRP, {p,p;tno =0,
G = {pi’pi}i i Dj {l ]}

2.4
i,jef{12,..,n,}, i #j, De€{23} 24
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(@) (b)

Sekil 2.3.  Ornek graf tabanli ortamlar: (a) iki boyutlu, (b) Ug boyutlu (Gri daire ve
gri silindir engelleri, kirmiz1 yildizlar digiimleri, mavi ¢izgiler ise kenarlari
temsil eder.)

2.2.1.2. Izgara Ortam

Izgara ortami, bir robotun hareket edebilecegi alanin diizenli bir sekilde boliimlere
ayrildig1 ve bu boliimlerin birer hiicre olarak tanimlandigi bir ¢evresel modeldir. Bu yapi,
cevrenin dijital olarak temsil edilmesi ve robotun hareket planlamasinin kolaylastiriimasi
amaciyla kullanilir. Izgara ortami genellikle kare, dikdortgen veya altigen gibi diizenli
geometrik sekillerden olusan hiicrelerle modellenir. Matematiksel olarak bu ortamlar iki
ve li¢ boyutlu i¢in Esitlik (2.5) kullanilarak tanimlanir, 1zgara hiicrelerinden olusan m x

n veya m x n x h boyutunda 1zgara matrisleri olarak diisiiniilebilir.

{ Pij | i€f{1,2,..,m}je{1,2..,n}, eger D = 2 ise

Pk lie{1,2,..,m},j € {12, ...,n}k € {1,2,..,h}, eger D =3 ise} (25)

Burada, m,n,h € N*, p;; ve p;j 1zgara matrisindeki hiicreyi; m, n ve h matrisin
boyutlarini yani sirasiyla satir, siitun ve katman sayisini temsil eder. Her hiicre (p) Esitlik
(2.6)’da tanimlandig1 gibi bir durum degiskeni ile isaretlenir: “0” degeri hiicrenin

gecilebilir alan oldugunu belirtirken, “1” degeri hiicrenin bir engel oldugunu ifade eder.

_{O, eger p € E\O ise} (2.6)

1, eger p € 0 ise

Sekil 2.4 6rnek 1zgara ortamlarini gostermektedir. Bu ortamlarin durum degiskenlerini

iceren 1zgara matrisleri de Esitlik (2.7) ve (2.8)’de gosterilmektedir.
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[N}

Sekil 2.4. Ornek 1zgara ortamlar: (a) Iki boyutlu, (b) Uc boyutlu (Gri kare ve gri
kiipler engelleri temsil eder.)

[00000]
|00010|
E;>p=10 1 0 0 O (2.7)
00100J
0O 0 0 0O
[0000000000[000001[00000][000001
00000[00000“00000”00010||00000|
Esp=|lo 0 o o ol,Jt o o o offlo o 0o 0o ofJlo 0 0 0 olJo 0 0 0 0O (2.8)
0000oloo000“00000“00000[00000“
0000 0looooolloo1oolooooolooooo

2.2.1.3. Siirekli Uzay Ortamm

Stirekli uzay ortami 1zgara ortamindan farkli olarak, robotun hareket edebilecegi ortamin
stirekli bir alan olarak temsil edilmesiyle tanimlanir. Bu tiir bir ortamda, robotun ve
engellerin konumlar1 herhangi bir gergek sayisal koordinatta ifade edilebilir ve yol diiz
cizgilerden egrilere kadar siirekli bir fonksiyon olarak modellenir. Siirekli uzayda,
robotun gegilebilir alan i¢inde engellere carpmadan en uygun yolu bulmasi hedeflenir. Bu
yaklasim, yiiksek hassasiyet gerektiren ve dogal yollarin kritik oldugu durumlarda avantaj
saglar. Siirekli uzay ortamlarinin esnekligi, robotun hareketlerini kesintisiz sekilde
planlamayr miimkiin kilarak, hem enerji verimliligi hem de giivenlik acisindan daha
optimize ¢oziimler sunar. Matematiksel olarak bu ortamlar iki ve {i¢ boyutlu i¢in Esitlik
(2.9)’da gosterildigi gibi noktalar ve stirekli fonksiyonlarla tanimlanir. Noktalar belirli bir

mesafeyle ayrilmamaiglardir.
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E={peRP|De{23}, 3F:[01] > R>, F e C([01],R")} (2.9)

Burada, p herhangi bir noktay1 temsil eder. Engeller iki ve {i¢ boyutlu i¢in Esitlik
(2.10)’daki gibi ifade edilebilir.

0={p°eRP|i={12,..,n,},D €{23}} (2.10)

Burada, p{ i’inci engelin konumunu, n, engel sayisini temsil eder. Engeller farkl
geometrik sekillerde tasarlanabilir. Ornegin, Sekil 2.5 dairesel ve silindir seklindeki

engellere sahip 0rnek siirekli uzay ortamlarini géstermektedir.

3
3
N
- 2
2 . 1
. 0

0 1 2 3 4 5 X 5 1
x y

(a) (b)

Sekil 2.5.  Ornek siirekli uzay ortamlari: (a) iki boyutlu, (b) Ug boyutlu (Gri daire ve
gri silindirler engelleri temsil eder.)

2.2.2. Yol Planlama Siireci

Tanimlanan bu ortamlarda ¢esitli algoritma ve yontemlerle baslangi¢ hiicresinden hedef
hiicreye dogru bir yol planlanir. Bu planlama sonunda graf tabanli ve 1zgara ortamlarda
robotun yolu Esitlik (2.11)’de tanimlandigi gibi belli diiglimlerin bir dizisi olarak

tanimlanir.

Y = [ps, plf pZ' L] pi' AL pny' pt] (211)

Burada, Y yol dizisini, p; yolu olusturan diigiimleri veya hiicreleri (baslangi¢-hedef harig)
ve N, yolu olusturan bu digim veya hiicrelerin sayisim temsil eder. Siirekli uzay
ortamlarinda robotun yolu iki ve {i¢ boyutlu icin Esitlik (2.12)’de gosterildigi gibi

gecilebilir alan i¢inde genelde noktalardan olusan siirekli bir dizi olarak tanimlanir.



21

Y = {pl- €R® | ps <pi <pp [pspe] > ENO, i €{12,..,n,}, D € {2,3}} (2.12)

Burada p; yolun i’inci noktasini, n,, yolu olusturan noktalarin sayisini temsil eder.

2.3. Yerel Yol Planlama

Yerel yol planlama, robotun c¢evresel bilgileri tam olarak bilmedigi ve hedef noktasina
adim adim ulastigr varsayimina dayanir [50]. Genellikle dinamik engellerin oldugu
ortamlarda kullanilan bu planlamada robot siirli ve yerel bir alanda bir sonraki noktaya

hareket etmek i¢in calisir. Yerel yol planlamanin blok diyagrami Sekil 2.6’da

gosterilmektedir.
Yerel Ortam Bilgisi .
o (o] Yt | f et | [
Hedef Noktasi) &
A
Gilincel | Engel |,
Yerel Harita | Algilayict |

Sekil 2.6. Yerel yol planlamanin blok diyagrami

Bu siiregte robot, kinematik modellere ve algilayicilarindan aldigi verilere dayanarak
hareket eder. Robotun hareket kabiliyeti, kinematik modeli ile tanimlanir. Kinematik
model, robotun nasil hareket ettigini ve nasil yonlendigini, robotun hizini, yonelimini ve
pozisyonunu birlestirerek tanimlar. Robotun pozisyonu, genellikle x ve y koordinatlari
(iki boyutlu uzayda) ya da x,y ve z koordinatlar1 (li¢ boyutlu uzayda) ile belirtilir. Her
iki durumda da robotun bir sonraki konumunun nasil hesaplanacagi, robotun hizina ve

mevcut yonelimine baglidir.

Yerel yol planlama, robotun anlik c¢evresine odaklanarak engellerden kaginmasini ve
hedefe dogru ilerlemesini saglar. Bu yontem, dinamik ortamlarda robotun degisen
kosullara hizli bir sekilde uyum saglamasina olanak tanir. Cevresel bilgilerin stirekli
giincellenmesi, robotun mevcut duruma gore en giivenli ve uygun rotaylr segcmesini
miimkiin kilar. Ayrica, yerel yol planlama, daha diisiik hesaplama giicii gerektirdiginden,

gercek zamanli uygulamalarda tercih edilir. Robotun yalnizca yakin ¢evresindeki verileri
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kullanmasi, bliylik haritalarin veya oOnceden belirlenmis rotalarin olusturulmasini

gerektirmez, bu da yonteminin esnekligini artirir.

Yerel yol planlama, yalnizca robotun yakin g¢evresine odaklandigindan, kiiresel bir
perspektif saglayamaz. Bu durum, robotun hedefe ulagirken optimal bir yol
secememesine veya dongiisel hareketlerle sikisip kalmasina neden olabilir. Ornegin,
robot bir engelin etrafinda donerek yanlislikla ayni noktaya geri donebilir. Ayrica, yerel
planlama, robotun uzun vadeli stratejik bir rota belirlemesini zorlastirabilir. Dinamik
ortamlarda siirekli giincelleme gerekliligi, ani degisikliklerde planlamada gecikmelere
veya yanlis kararlar alinmasina yol agabilir. Bu yontem, karmasik veya engellerle dolu
ortamlarda daha az verimli olabilir ve kiiresel yol planlama stratejileriyle birlikte

kullanilmas1 gerekebilir.

Matematiksel olarak robotun bir sonraki konumunu hesaplamak i¢in kullanilan kinematik
model robotun mevcut konumu, yonelimi ve hizin1 dikkate alir. Noktasal modellenen bir
robot i¢in bir sonraki noktanin hesaplanmasi Sekil 2.7°de gosterilmektedir. Bu hesap iki

ve li¢ boyutlu icin sirastyla Esitlik (2.13) ve (2.14)’te gosterilmektedir.

z A

yA Zi+1
Pi+1

;Ci Xi+1
(@ (b)

Sekil 2.7.  Yerel yol planlamada noktasal bir robotun bir sonraki konumu: (a) iki
boyutlu (b) Ug boyutlu (Mavi daire noktasal robotu temsil eder.)

_ cosQ
cosp.cos@
Div1 =i + V| cosg.sing | At (2.14)
sing
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X Xi+1
pi=1Yil|, Piy1=|Yi+t1 (215)
Zj Ziyq

Burada p; robotun mevcut konumu, p;,; robotun bir sonraki konumu, v robotun dogrusal
hizini, ¢ robotun iki boyuttaki yonelimini, ¢ robotun {i¢ boyuttaki dikey yonelimini, At
ise zaman adimini temsil eder. Robotun bir sonraki noktasi hesaplandiktan sonra o

noktaya yonelir ve planlama hedef noktaya ulasana kadar bu sekilde devam eder.



3. BOLUM

YOL PLANLAMA YONTEMLERI

3.1. Giris

Yol planlama yontemleri, mobil robotlarin belirli bir baslangi¢ noktasindan hedef bir
noktaya en kisa, en giivenli veya en verimli sekilde ulagsmalarin1 saglayan matematiksel
ve hesaplamali algoritmalardir. Bu algoritmalar, robotun hedefe ulasirken gesitli ¢evresel

ve operasyonal faktorleri dikkate alarak optimal bir yol bulmasini saglar.

Bu yontemlerin temel amaci, robotun hareket ederken c¢evresindeki engellerden
kaginmasini ve ayni zamanda belirli kisitlamalara uymasini saglamaktir. Engeller, statik
veya dinamik olabilir ve robotun yol boyunca bu engelleri tespit edip giivenli bir sekilde
manevra yapmasini gerektirir. Ayrica, robotun fiziksel 6zellikleri, hareket kabiliyeti,
enerji tiikketimi ve cevredeki dinamik unsurlar gibi faktorler de bu siirecte énemli rol
oynar. Ornegin, bir robotun maksimum hiz siniri, batarya kapasitesi veya belirli
yiizeylerdeki hareket kabiliyeti gibi 6zellikler, yol planlama algoritmalarinin dikkate

almasi gereken kisitlamalardir.

Bu boliim yol planlama yontemlerini ii¢ farkli grupta agiklamaktadir: Klasik algoritmalar,
metasezgisel algoritmalar ve makine Ogrenmesi. Klasik algoritmalar olarak arama
algoritmalar1 dahilinde dinamik programlama, dijkstra algoritmasi, genislik oncelikli
arama, A* algoritmasi ve 6rnekleme algoritmasi dahilinde hizla kesfeden rastgele agagtan
bahsedilmektedir. Metasezgisel algoritmalar olarak evrimsel algoritma dahilinde genetik
algoritma, diferansiyel gelisim, siirii zekas1 ve insan ilhamli dahilinde parcacik siirii
optimizasyonu, yapay art koloni algoritmasi, 6grenme-0gretme tabanli optimizasyon,
matematik ilhamli dahilinde stokastik fraktal arama, siniis kosiniis algoritmasi ve

aritmetik optimizasyon algoritmasindan bahsedilmektedir. Makine 6grenmesi yontemleri
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olarak evrigimli sinir aglar1 dahilinde LeNet, AlexNet, VGG16, GoogleNet, tam evrisimli
ag, ResNet ve takviyeli 6grenme dahilinde aktor-kritik, Q-6grenme, derin deterministik
politika gradyani algoritmalarindan bahsedilmektedir. Sekil 3.1.’de yol planlama

yontemlerinin siniflandirilmasi gosterilmektedir.

Yol Planlama Yéntemleri

A L
Klasik Algoritmalar Metasezgisel Algoritmalar Makine Ogrenmesi
Dinamik Programlama, 1953 4>{ Evrimsel Algoritmalar —b{ Evrisimli Sinir Aglari

Dijkstra Algoritmasi, 1959

R —» Genetik Algoritma, 1975 —» LeNet-5, 1998
Genislik Oncelikli Arama, 1959

. — Diferansiyel Gelisim, 1997 —» AlexNet, 2012
A* Algoritmasi, 1968
Hizla Kesfeden Rastgele Agag, 1998 Siirii Zekast ve insan ilhamli VGGle, 2014

—» GoogleNet, 2014
—» Pargacik Siirii Optimizasyonu, 1995
—» Tam Evrisimli Ag, 2015
—» Yapay An Koloni Algoritmasi, 2005
—» ResNet, 2015

> Ogrenme-Ogretme Tabanl1 Optimizasyon, 2011

Matematik ilhamlt

Stokastik Fraktal Arama, 2015

Takviyeli Ogrenme

—» Aktor-Kritik Algoritmasi, 1984

—» Q-Ogrenme, 1989

Siniis Kosiniis Algoritmasi, 2016

— Derin Deterministik Politika Gradyam, 2015
Aritmetik Optimizasyon Algoritmasi, 2020

Sekil 3.1. Yol planlama yontemlerinin siiflandiriimasi
3.2. Klasik Algoritmalar

Klasik algoritmalar, bir probleme ¢6ziim bulmak amaciyla belirli bir yontem ve stratejiyle
¢Oziim wuzaymi kesfeden algoritmalardir. Bu algoritmalar genellikle ¢oziimiin
dogrulugunu garantilemek i¢in sistematik bir yaklagim kullanir ve tiim olasiliklar1 belirli
bir sirayla degerlendirir. Bu tiir algoritmalarin ¢cogu deterministik bir yapiya sahiptir, yani
algoritmanin her calistirilmasinda ayni baslangic kosullar1 ve belirli  kurallar
dogrultusunda ayni sonuca ulagilir. Her adimda kullanilan yontemler sabit olup, herhangi
bir rastlantisal unsur barindirmaz. Bu 6zellikleriyle klasik arama algoritmalar1, sonuglarin
tutarli ve tekrarlanabilir olmasini saglar, fakat baz1 durumlarda daha verimli olmayan

sonuglar da dogurabilir, ¢iinkii arama alanini tamamen tarama gereksinimi dogurur.
3.2.1. Dinamik Programlama

Dinamik programlama (DP), 1953 yilinda Bellman tarafindan gelistirilen genis kapsamli
bir klasik arama algoritmasidir [51]. Graf ortamlarda yol planlama problemi i¢in DP’nin
amaci baslangic diigiimii ile hedef diigiimii arasindaki en kisa yolu bulmaktir.

Algoritmanin g¢aligma prensibi su sekilde agiklanabilir: Baslangi¢ diiglimiiniin ulasim
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maliyeti sifir, diger diiglimlerin ulasim maliyeti sonsuz olarak ayarlanir. Baslangic
diiglimiinden itibaren her diiglimiin maliyeti 6zyineli olarak hesaplanir. DP bir graftaki

herhangi bir p; diiglimiiniin ulagim maliyetini Esitlik (3.1) kullanilarak hesaplar.
fpi = fiﬂj + ”pi o p]'”' p; € PPi (3.1

Burada, f, p; digiiminiin ulasim maliyetini, B,, p; digiimiintin giris komsu kiimesini,
p; giris komsu kiimesindeki herhangi bir komgu diigiimdi, fpj baslangi¢ diiglimiinden p;
diigiimiine kadar olan ulagim maliyetini, || .|| iki diigiim arasindaki maliyeti (mesafeyi)
temsil eder. Giris komsu kiimesinden hangi komsu diigiimiin maliyeti daha diisiikse o
komsu diigiim ebeveyn diigiim olarak Esitlik (3.2)’de tanimlandig1 gibi atanur.

pi = arg min(fpi) (3.2)

piEP

Burada, p{ p; diigiimiine atanan ebeveyni temsil eder. Bir diigiimiin ulagim maliyeti
hesaplandiktan sonra bu maliyet diger diiglimlerin maliyetinin hesaplanmasinda
kullanilir. Bu islem hedef diigiime ulasana kadar devam eder. Hedefe ulasildiktan sonra
geriye izleme asamasi devreye girer. Bu asamada hedef diiglimden baslayarak ve ebeveyn
diigtimleri geriye dogru izlenerek baslangic diiglimiine kadar en kisa yol Esitlik (3.3) ve
tersi (yolun kendisini elde etmek i¢in) Esitlik (3.4)’te tanimlandig1 gibi planlanir.

vro {{pt,Pny' P ...,pl,Ps} | piv1 =p{,i>0,n, € N+} (3.3)
Y ={FQ") | F:Y" > Y} G4

Burada, Y yol vektoriinii, Y yol vektoriiniin tersini, p; yolu olusturan diigimleri, ps ve
p: baslangic ve hedef diigtimlerini, n, baslangig-hedef hari¢ yolu olusturan diigiim
sayisini temsil eder. Geriye izleme asamasi, algoritmanin sadece maliyet hesaplamasi
degil, ayn1 zamanda yol bilgisini de saglayan 6nemli bir bilesenidir. Bu adim olmadan,
hedef diiglime ulasmanin maliyeti bilinse bile bu yolun hangi diigiimlerden gegtigi
bilinemez. Bu ylizden yol planlama probleminde DP ig¢in kritik dneme sahiptir. DP

algoritmasinin temel adimlar1 Algoritma 3.1 ile gosterilmektedir.
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Algoritma 3.1: DP algoritmasinin temel adimlar

1: Tiim diigimlerin maliyetinin sonsuz atanmasi
Baslangi¢ diiglimiiniin maliyetinin sifir atanmasi
while (tiim diiglimlerin maliyeti hesaplanana kadar)
Her diigtimiin komsularinin tespit edilmesi
Esitlik (3.1) ile her diigimiin maliyetinin hesaplanmasi
Esitlik (3.2) ile her diigiimiin ebeveyninin atanmasi
end while
Geriye izleme agamast
Yolun ve maliyetin raporlanmasi

ORI ERDN

3.2.2. Dijkstra Algoritmasi

Dijkstra algoritmasi, 1959 yillarda Dijkstra tarafindan gelistirilen bir klasik arama
algoritmasidir [52]. Bu algoritma bir grafin baglangi¢ diigiimiinden diger tiim diiglimlere
olan en kisa yollar1 bulmak i¢in kullanilir. Bu algoritmanin temel ¢alisma prensibi, graf
tizerindeki diigiimleri ardisik olarak ziyaret ederek her adimda en kisa yolu segcmek ve bu
secimi ilerleyen adimlarda optimize etmektir. Algoritmanin ¢alisma prensibi su sekilde
aciklanabilir: Baslangic diglimiiniin ulasim maliyeti sifir, diger diiglimlerin ulasim
maliyeti sonsuz olarak ayarlanir. Baglangicta yalnizca baslangic diigiimii iceren bir

optimum yol vektorii Esitlik (3.5)’te tanimlandig1 gibi olusturulur.

Y = {ps} (3.5)

Bu kiime algoritmanin ilerleyen adimlarinda giincellenir ve en kisa yola dahil edilen
diglimleri igerir. Algoritma bir graftaki herhangi bir p; diiglimiiniin ulasim maliyetini

Esitlik (3.6) kullanilarak hesaplar.

for = o + lp: = pjll. »; € Py, P < P\Y (3.6)

Burada, f,, p; diiglimiiniin ulagim maliyetini, B, p; diiglimiiniin tiim komgu kiimesini, p;
komsu kiimesindeki herhangi bir komsu digiimii, fp]. baglangigc dugiimiinden p;
diiglimiine kadar olan ulasim maliyetini, P diigiim kiimesini temsil eder. Bu esitlikte
komsu kiimesinin ziyaret edilmeyen yani optimum yol vektdriine eklenmeyen
diigiimlerin kiimesi oldugu goriilmektedir. Mevcut diigiimden komsu diigiimlere olan
maliyetler hesaplanir ve en kisa mesafeli diiglim Esitlik (3.7)’de tanimlandig1 gibi segilir.

pf = arg min(fpi) (3.7)

DiEP
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Burada, p{ komsular iginde en diisik maliyete sahip diigiimii temsil eder. Bu digiim

ziyaret edilmis olarak isaretlenir ve Esitlik (3.8)’de tanimlandig1 gibi Y kiimesine eklenir.
Y=Y U {pf) 3.8)

Bu adimlar hedef diigiime ulasincaya veya tiim diigiimler ziyaret edilinceye kadar devam

eder. Sonunda en kisa yol Esitlik (3.9)’da tanimlandig1 gibi planlanir.

Y = {{ps, D1, D2 -» Dis ...,pny,pt} |i>0,n, € N+} (3.9)

Burada, Y yol vektoriinii, p; yolu olusturan diigiimleri, py ve p; baslangic ve hedef
dugumleri, n,, baslangi¢c-hedef hari¢ yolu olusturan diigiim sayisin1 temsil eder. Dijkstra

algoritmasinin temel adimlar1 Algoritma 3.2 ile gosterilmektedir.

Algoritma 3.2: Dijkstra algoritmasinin temel adimlar1

1: Tiim diigiimlerin maliyetinin sonsuz atanmasi

Baslangi¢ diiglimiiniin maliyetinin sifir atanmasi

Optimum yol vektoriine baslangi¢ diiglimiiniin eklenmesi

while (hedef diigiime ulasana kadar)
Her diiglimiin komsularinin tespit edilmesi
Esitlik (3.6) ile her diigiimiin maliyetinin giincellenmesi
Esitlik (3.7) ile en kiigiik maliyete sahip komsunun secilmesi
Secilen komsu diigiimiin optimum yol vektoriine eklenmesi

end while

Yolun ve maliyetin raporlanmasi

SV RELD

[

3.2.3. Genislik Oncelikli Arama

Genislik oncelikli arama (breadth first search, BFS), 1959 yillarda Moore tarafindan
gelistirilen bir klasik arama algoritmasidir [53]. Bu algoritma, graf {izerindeki diigtimleri
sirastyla ve esit mesafede kesfederek, en kisa yolun bulunmasini saglar. BFS, 6zellikle
agirliksiz ya da esit agirlikli kenarlarla tanimlanmig graf yapilarinda etkili bir sekilde
calisir ve en kisa yolu belirlerken, her bir diigiimii ziyaret etme sirasina gore ilerler.
Algoritmanin ¢alisma prensibi su sekilde agiklanabilir: Baslangi¢ diiglimiiniin ulasim
maliyeti sifir, diger diiglimlerin ulagim maliyeti sonsuz olarak ayarlanir. Bir kuyruk dizisi
olusturulur ve ilk olarak baglangi¢c diiglim bu diziye eklenir. Baslangi¢c diiglimiinden

baslamak iizere kuyrugun basindaki diigiim p; ¢ikarilir ve p; diiglimiimiin tim komsulari
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p; incelenir. Eger p; ziyaret edilmemisse mesafesi Esitlik (3.10)’da tanimlandigi gibi

giincellenir.
fo, =ty +1 DjEPR, (3.10)

Bu komsular dogrudan kuyruk dizisine eklenir, bu yiizden bu algoritma “en maliyetsiz
komsu secimi” seklinde bir islem yapmaz. Bunun yerine, bir diigim ilk kez
kesfedildiginde, bu diiglimiin mesafesi otomatik olarak en kisa mesafe olarak kabul edilir.
Ciinkii her diiglime ulagsma maliyeti esit ve 1’dir. Kuyruk dizisine eklenen p;
diigiimlerinden ilki ziyaret edilmis olarak isaretlenir ve bu diigiimiin tiim komsulari
tizerinde ayni islemler gerceklestirilir. Bu siire¢ kuyruk dizisi bos olana kadar devam eder.

BFS algoritmasinin temel adimlar1 Algoritma 3.3 ile gosterilmektedir.

Algoritma 3.3: BFS algoritmasinin temel adimlarn

1: Tim diigiimlerin maliyetinin sonsuz, baslangi¢ diiglimiiniinkinin sifir atanmasi

2: Bir kuyruk dizisinin olusturulmasi
3: Baslangi¢ diigiimiiniin bu kuyruk dizisine eklenmesi
4: while (kuyruk dizisine bos olana kadar)
5: Kuyruk dizisinin bagindaki diigiimiin ¢ikarilmasi
6: Cikarilan diiglimiin tiim komsularmin tespit edilmesi
7: Esitlik (3.10) ile komsularin ulagim maliyetinin giincellenmesi
8: Komgularn kuyruk dizisine eklenmesi
9:  end while
10:  Yolun ve maliyetin raporlanmasi
3.2.4. A* Algoritmasi

A* algoritmasi1 1968 yilinda Hart, Nilsson ve Raphael tarafindan gelistirilen ve genellikle
en kisa yol problemlerini ¢6zmek i¢in kullanilan sezgisel bir arama algoritmasidir [54].
Video oyunlar1 ve robotik gibi alanlarda sik¢a kullanilmaktadir. Bu algoritma, bir
baslangi¢ diigiimiinden (veya hiicreden) hedef diigiime, 1zgara haritasi veya graf iizerinde
en kisa yolu bulmay1 amaglar. Algoritmanin galigsma prensibi su sekilde agiklanabilir: ik
olarak baslangi¢ diigiimii mevcut diiglim olarak belirlenir ve bir ana dongii baslar. Bu
dongii, baslangi¢ diigiimiinden hedef diiglime en kisa yolu bulmak i¢in yinelemeli olarak
caligir. Dongiiniin her yinelemesinde, mevcut diiglimden erisilebilecek uygun komsular,
Esitlik (3.11)’de verilen tanima gore belirlenir. Bu uygun komsularin belirlenmesi,

kenarlarin herhangi bir engeli ihlal etmemesi kriterine dayanmaktadir.
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B, ={pjIv;€P—{p:}, {(pip;)} €E\O, jE{12,..,n:}} (3.11)

Burada, p; mevcut diigiimii, p; mevcut diigiimiin uygun komsu diigiimlerini ve ny ise
uygun komsu diiglimlerin sayisini temsil eder. Her bir uygun komsu i¢in iki alt maliyet
hesaplanir: Gergek maliyet ve sezgisel maliyet. Gergek maliyet, mevcut diigiim ile j.
uygun komsusu arasindaki toplam maliyeti ifade ederken, sezgisel maliyet, j. uygun

komsu ile hedef diiglim arasindaki maliyeti ifade eder. Bu maliyetler sirasiyla Esitlik

(3.12) ve (3.13) kullanilarak hesaplanir.
7= fo+ i —pjll (3.12)

£ = llp; — pell (3.13)

9

Burada, f;; ve fl;l p; diigimii ile p; komsusu arasindaki sirasiyla gergek ve sezgisel

maliyetleri, f, baslangi¢ diiglimiinden p; diigiimiine kadar olan ge¢gmis maliyeti ve p; ise
hedef diigiimii temsil eder. Esitlik (3.14)’te gosterildigi gibi, toplam maliyet bu iki alt

maliyetin toplamudir.
fi = fi +fi (3.14)

Burada, f;; p; diiglimii ile p; komsusu arasindaki toplam maliyettir. Her uygun diigiimiin
toplam maliyeti karsilastirilarak, en diisiik maliyete sahip diiglim segilir ve mevcut diiglim
olarak atanir. Bu dongii, hedef diigiime ulasilana kadar devam eder. Dongiiniin sonunda
elde edilen yol ¢ikt1 olarak dondiiriiliir. A* algoritmasinin temel adimlar1 Algoritma 3.4

ile gosterilmektedir.

Algoritma 3.4: A* algoritmasinin temel adimlarn

1: Bir yol dizisinin olusturulmasi

2:  while (hedef diiglime ulagincaya kadar)

3: Esitlik (3.11) ile mevcut diiglimiin uygun komsularmin tespit edilmesi

4 Esitlik (3.12) ile her komsu diigiimiin ger¢ek maliyetinin hesaplanmasi
5 Esitlik (3.13) ile her komsu diigiimiin sezgisel maliyetinin hesaplanmasi
6: Esitlik (3.14) ile her komsu diigiimiin toplam maliyetinin hesaplanmasi
7: En diisiik maliyete sahip diiglimiin yol dizisine eklenmesi

8. end while

9:  Yolun ve maliyetin raporlanmasi
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3.2.5. Hizla Kesfeden Rastgele Agac

Hizla kesfeden rastgele agag¢ algoritmasi (rapidly-exploring random tree, RRT) 1998
yilinda LaValle tarafindan gelistirilen bir klasik arama algoritmasidir [55]. Bu algoritma
ozellikle siirekli uzay ortamlarinda yol planlama problemlerine ¢éziim bulmak amaciyla
gelistirilmistir. Algoritma, 6zellikle yiiksek boyutlu uzaylarda yol planlama problemleri
icin uygundur. Algoritmanin ¢alisma prensibi su sekilde agiklanabilir: Algoritma,
baslangicta bir aga¢ dizisi Y olusturur. Bu aga¢ ilk olarak sadece basglangi¢c noktasini
icerir. Stirekli uzay ortaminda rastgele bir nokta (p,- € E\0) segilir ve agagtan bu noktaya
en yakin nokta (p') belirlenir. Bunun i¢in p, noktasi ile agagtaki tiim noktalar (p;)
arasinda mesafe hesaplanir ve mesafesi minimum olan nokta en yakin nokta olarak Esitlik

(3.15)’te tanimlandig1 gibi belirlenir.
p' = arg min(lip; —p,I), i€ {12,..,n5} (3.15)

Burada nj, o anki agagta bulunan nokta sayisidir. Ardindan, p, yoniinde p’ noktasindan

belirli bir adim biiyiikliigiinde (¢) ilerlenerek yeni bir nokta (p'") Esitlik (3.16)’da

tanimlandig1 gibi olusturulur.

!

pr—D

— (3.16)
llpr —p'll

pll — pl + 8
Eger p" engel ihlali yapmiyorsa (p” € E\O ise) bu nokta Y agacina Esitlik (3.17)’de

tanimlandig1 gibi eklenir.
Y=YU{p"} (3.17)

Bu siire¢ maksimum iterasyon sayisina (T) erisene kadar veya hedef noktaya ulasana
kadar yinelemeli olarak devam eder. Hedef noktaya ulasma kontrolii de eger p,, 'nin hedef
noktaya belli bir mesafesinden daha yakin olup olmadigi seklinde gergeklesir. Bu
durdurma kriterlerinden biri saglandiginda algoritma durur ve yolu raporlar. RRT

algoritmasinin temel adimlar1 Algoritma 3.5 ile gosterilmektedir.
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Algoritma 3.5: RRT algoritmasinin temel adimlari

1: Kontrol parametrelerinin ayarlanmasi (T, €)

2: Bir agacin olusturulmasi

3: Baslangi¢ noktasinin aga¢ dizisine eklenmesi

4: while (hedefe ulasincaya veya maksimum iterasyon sayisina erisinceye kadar)

5: Ortamda rastgele bir noktanin se¢ilmesi

6: Esitlik (3.15) ile segilen noktaya en yakin aga¢ noktasinin tespit edilmesi

7: Esitlik (3.16) ile yeni noktanin hesaplanmasi
8 Eger yeni nokta engel ihlali yapmiyorsa bu noktanin aga¢ dizisine eklenmesi
9:  end while

10:  Yolun ve maliyetin raporlanmasi

3.3. Metasezgisel Algoritmalar

Metasezgisel algoritmalar, genellikle karmasik ve bilylik o6lcekli optimizasyon
problemleri i¢in gelistirilmis, sistematik olmayan ve ¢ogu zaman belirli bir ¢6ziim alanina
rastgele bir kesif yaparak daha iyi c¢oziimler bulmaya calisan algoritmalardir. Bu
algoritmalar, genellikle baslangigta rastgele bir ¢ozliim seti ile baslarlar ve daha sonra
¢Ozlim alaninda ilerleyerek iyilestirmeler yapar. Temelde, optimal ¢oziimii bulmaya
yonelik dogrudan bir strateji izlemek yerine, arama alaninda genis bir kesif yaparak
potansiyel ¢oziimleri kesfeder ve daha sonra en uygun ¢éziimle yakin sonuglara ulasmaya
calisir. Klasik arama yontemlerinin sinirlamalarini agmak i¢in kullanilan bu algoritmalar,

ozellikle yerel optimumlarda sikisip kalma riskini en aza indirmeye yonelik tasarlanir.

Metasezgisel algoritmalarin en biiyiik avantajlarindan biri, esneklikleri ve ¢ok farkli
optimizasyon problemlerine uygulanabilir olmalaridir. Bu sayede, belirli bir problem i¢in
0zel olarak gelistirilmis algoritmalar yerine, tek bir meta-sezgisel algoritma ile ¢ok ¢esitli
problemlere ¢oziim iiretilebilmektedir. Ayrica, bu algoritmalarin ¢ok sayida parametreyi
kontrol edebilme yetenekleri, problemlerin dinamik dogasina adapte olmalarin1 saglar.
Bununla birlikte, meta-sezgisel algoritmalarin dezavantajlar1 arasinda, ¢6ziim kalitesinin
her zaman garanti edilmemesi onemli bir sorundur. Cogu zaman algoritma, global
optimumu bulmak yerine yerel optimumda sikigabilir. Ayrica, bu tiir algoritmalarin
performansini belirleyen parametrelerin ayarlanmasi olduk¢a zordur ve farkli problem
kosullarinda basarili olabilmesi icin parametrelerin dogru sekilde optimize edilmesi
gerekir. Son olarak, hesaplama maliyetlerinin yiliksek olabilmesi, 6zellikle biiyiik ve
karmasik problemlerde uygulama siiresini artirabilir ve ¢ziim bulmayi daha zor hale

getirebilir.
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3.3.1. Evrimsel Algoritmalar
3.3.1.1. Genetik Algoritma

Genetik algoritma (genetic algorithm, GA) 1960 yilinda Holland tarafindan gelistirilen
bir metasezgisel algoritmadir [56]. Dogal secilim ve evrimsel siireglerinden ilham
alinarak gelistirilmistir. Algoritmanin ¢alisma prensibi su sekilde aciklanabilir: Tlk olarak

bir ¢oziim kiimesi (popiilasyon) Esitlik (3.18) kullanilarak rastgele tiretilir.
X=x+r(,—x), r~U(0,1)5*P (3.18)

Burada, X popiilasyonu, [x;, x;, ] popiilasyonun arama sinirlarini, r [0 1] araliginda ve S X
D boyutunda stirekli diizgiin dagilimda iiretilen rastgele sayilari, S popiilasyon boyutunu
(¢0ziim kiimesindeki ¢6ziim sayisini) ve D ise problemin boyutunu temsil eder. Bu
popiilasyon iiretildikten sonra tiim c¢oziimler amag¢ fonksiyonunda degerlendirilir ve
uygunluk degerleri hesaplanir. Ardindan popiilasyondaki her ¢6ziim se¢im, ¢aprazlama
ve mutasyon adi verilen ii¢ isleme tabi tutulur. Se¢im islemi, mevcut ¢oziimlerden yeni
cOzlimler tiretmek i¢in ebeveynlerin belirlenmesi islemidir. Bu agsamanin temel amaci,
daha yiiksek uygunluk degerine sahip bireylerin secilme olasiligini artirarak ¢éziimlerin
iyilestirilmesini saglamaktir. Secim asamasinda genelde rulet tekerlegi veya turnuva
secimi stratejileri kullanilir. Rulet tekerlegi stratejisinde her ¢oziimiin sec¢ilme olasiligi

Esitlik (3.19) kullanilarak hesaplanir.

fi

5 = —2t
YRV

(3.19)
Burada, §; i’inci ¢ozlimiin segilme olasiligl, f; i’inci ¢6ziimiin maliyeti, esitligin payda
kismi ise popiilasyondaki tiim ¢dziimlerin maliyetlerinin toplamini temsil eder. Sonra,

Esitlik (3.20) kullanilarak ¢éziimlerin birikimli olasiliklar1 hesaplanir.

Dy = Z 5; (3.20)

Burada, k € {1,2,...,S} ve p, k’inc1 ¢oziime kadar olan toplam olasilig1 ifade eder.
Rastgele bir sayi tiretilir ve bu sayi [py_1, pi ] araliginda ise (veya pj,’dan kiigiikse) k’mc1

¢Ozlim (x;) ebeveyn olarak secilir. Turnuva secimi stratejisinde popiilasyondan S; sayida
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rastgele ¢ozlim alinir. Bu ¢dziimlerden minimum maliyete sahip ¢6ziim Esitlik (3.21)’de

tanimlandig gibi segilir.
{2, 20, } = argmin £ (x;) (3.21)
LES:

Burada, S; > 2 ve x; ise ebeveyn olaraksecilen ¢oziimii temsil eder. Bu se¢im
stratejileriyle iki ebeveyn ¢ozliim secilir. Sonra ¢aprazlama orami (CR) kontrol
parametresiyle caprazlama islemi baslar. Rastgele bir say1 {iretilir ve bu say1 CR’den
kiigiikse caprazlama islemi gerceklestirilir. Bu islem iki ebeveyn ¢6ziim {izerinde belirli
noktalarda keserek ¢aprazlama yapilir ve iki ¢ocuk ¢6ziim iiretilir. Bu kesim tek veya iki

noktali olabilir. Tek noktali ¢aprazlama Esitlik (3.22)-(3.23)’te tamimlanmustir.
xn, = {x7, |j € [Lel}ufx], |j € [e+1,D]) (3.22)
xn, = (x| € [Lel}ufx) |j€le+1,D]} (3.23)

Burada, xj, ve xp, iki ¢ocuk ¢oziimii, x, ve X, iki ebeveyn ¢oziimii ve e kesme

noktasini temsil eder. Cift noktali caprazlama Esitlik (3.24)-(3.25)’te tanimlanmustir.
xn, ={x) 1jeLelfu{x] ljele+1,1}ufx] |je[l+1,D]} (3.24)
xn, ={xi lj€Lelju{x] |jele+1,0}u{xl |jell+1,D]} (325

Burada, e gibi [ de bir kesme noktasidir. Bu sekilde iki yeni ¢6ziim iiretilmis olur. Sonra
mutasyon orani (MR) kontrol parametresiyle mutasyon islemi baslar. Rastgele bir say1
iretilir ve bu say1 MR’den kiigiikse mutasyon islemi gergeklestirilir. Bu islemde yeni
cocuk ¢oziimlerin herhangi bir boyutu Esitlik (3.26)’da tanimlandig1 gibi degisime ugrar.
x,’; + ?,lj, Eger r < MR ise

G ={

(3.26)
Xp,» aksi taktirde

Burada, h = {hy, h,}, r~U(0,1) rassal bir say1yi, x,{ yeni ¢ocuk c¢oziimlerin j’inci
degerini, (x,]l) yeni ¢ocuk ¢oziimlerin j’inci degerinin giincellenmis halini ve ?,lj x,{
lizerinde yapilan mutasyon fonksiyonunu temsil eder. Bu fonksiyon, mevcut degeri

degistiren herhangi bir matematiksel igslemi temsil edebilir (6rnegin, bir bit tersine
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cevrilmesi veya mevcut degerin rastgele bir degerle degistirilmesi). Bu islemlerden sonra
giincel ¢6ziim amag fonksiyonunda degerlendirilir ve uygunluk degeri hesaplanir. Giincel
¢Ozlim mevcut en 1yi ¢ézlimden daha iyi ise en 1yi ¢oziim olarak atanir. Yinelemeli siire¢
maksimum iterasyon sayisina (T') erisinceye kadar devam eder ve en iyi ¢6ziim raporlanir.

GA algoritmasinin temel adimlar1 Algoritma 3.6 ile gosterilmektedir.

Algoritma 3.6: GA algoritmasinin temel adimlar

1: Kontrol parametrelerinin ayarlanmasi (T, S, CR, MR)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi
3: Popiilasyonun amag fonksiyonunda degerlendirilmesi
4: En iyi ¢Ozlimiin tespit edilmesi
5:  while (maksimum iterasyon sayisma eriginceye kadar)
6: Esitlik (3.21) ile iki ¢6ziimiin se¢ilmesi
7: Esitlik (3.22)-(3.23) veya (3.24)-(3.25) ile iki yeni ¢dziimiin tiretilmesi
8: Esitlik (3.26) ile bir ¢oziimiin mutasyona tabi tutulmasi
9: Popiilasyonun amag fonksiyonunda degerlendirilmesi
10: En iyi ¢ozlimiin tespit edilmesi

11:  end while
12: En iyi ¢oziimiin ve maliyetin raporlanmasi

3.3.1.2. Diferansiyel Gelisim

Diferansiyel gelisim (differential evolution, DE) 1997 yilinda Storn ve Price tarafindan
gelistirilen bir metasezgisel algoritmadir [57]. Evrimsel siireclerden ve fark tabanl
yontemlerden ilham alimmistir. Algoritmanin ¢alisma prensibi su sekilde aciklanabilir: ilk
olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir. Bu popiilasyon iiretildikten
sonra tim ¢oOziimler amag¢ fonksiyonunda degerlendirilir ve uygunluk degerleri
hesaplanir. Bu ¢oziimler GA’ya benzer sekilde sirasiyla mutasyon, caprazlama ve se¢im
ad1 verilen ii¢ isleme tabi tutulur. Mutasyon isleminde her ¢6ziim i¢in, diger iki ¢6zliim
arasindaki farki iceren bir fark vektorii olusturulur. Bu fark, popiilasyonun c¢esitliligini

saglamak i¢in kullanilir. Fark vektorii (DE/rand/1) Esitlik (3.27) kullanilarak hesaplanir.
Xy = Xp, + F(xr2 - xr3) (3.27)

Burada, 1,175,713 # i, x,, {’inci ¢éziimin fark vektoriind, X, ,x.,,x,, poiilasyondan
rastgele secilen ¢oziimleri, F ise [0 1] araliginda deger alan 6l¢ekleme faktoriinii temsil
eder. Caprazlama isleminde fark vektorii kullanilarak yeni aday ¢6ziim 6nerisi yapilir. Bu

islemde rastgele bir say1 iiretilir ve bu say1 ¢aprazlama oranindan kiigiikse mevcut ¢éziim
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fark vektorii ile degistirilir. Uretilen rastgele say1 caprazlama oranindan biiyiikse mevcut

¢Ozlim degismez. Bu islem Esitlik (3.28)’de tanimlanmustir.

, {xu, Egerr < CR ise

L aksi taktirde (3.28)

Burada, x; i’inci ¢oziimii, x,, i’inci ¢dziim i¢in yeni aday ¢6ziimii, r~U(0,1) rassal bir
saylyl ve CR ¢aprazlama oranini temsil eder. Se¢im isleminde iiretilen aday ¢6zliim ve
mevcut ¢Ozlimiin maliyetleri karsilastirilir. Eger aday c¢oziimiin maliyeti mevcut
¢Oziimiinkinden daha iyi ise mevcut ¢oziim yeni aday ¢oziimle degistirilir. Bu islem

Esitlik (3.29)’da tanimlanmustir.

= (T BT () S f ) se
-

Xi) aksi taktirde (3.29)

Burada, x; i’inci ¢éziimiin glincellenmis halini temsil eder. Yinelemeli siire¢ maksimum
iterasyon sayisina (T) erisinceye kadar devam eder ve en iyi ¢6zlim raporlanir. DE

algoritmasinin temel adimlar1 Algoritma 3.7 ile gosterilmektedir.

Algoritma 3.7: DE algoritmanin temel adimlari

1: Kontrol parametrelerinin ayarlanmasi (T, S, F, ¢)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi
3: Popiilasyonun amag fonksiyonunda degerlendirilmesi
4: En iyi ¢Oziimiin tespit edilmesi
5:  while (maksimum iterasyon sayisma eriginceye kadar)
6: Esitlik (3.27) ile fark vektoriiniin iiretilmesi (mutasyon)
7: Esitlik (3.28) ile yeni aday ¢oziimiin {iretilmesi (¢aprazlama)
8: Esitlik (3.29) ile mevcut ¢oziimiin giincellenmesi (segim)
9: Popiilasyonun amag fonksiyonunda degerlendirilmesi
10: En iyi ¢6zlimiin tespit edilmesi

11:  end while
12:  En iyi ¢oziimiin ve maliyetin raporlanmasi

3.3.2. Siirii Zekas1 ve Insan ilhamh Algoritmalar
3.3.2.1. Parcacik Siirii Optimizasyonu

Parcacik siirli optimizasyonu (particle swarm optimization, PSO) 1995 yilinda Kennedy
ve Eberhart tarafindan gelistirilen bir metasezgisel algoritmadir [58]. Kus ve balik
stiriilerinin beslenme davranislarindan ilham alinmigtir. Algoritmanin ¢alisma prensibi su

sekilde aciklanabilir: 11k olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir. Bu
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popiilasyon iiretildikten sonra tiim ¢oziimler amag¢ fonksiyonunda degerlendirilir ve
uygunluk degerleri hesaplanir. Ayrica popiilasyondaki her ¢6ziimiin hizlar1 da mevcuttur
ve baglangicta rastgele veya sifir olarak tiretilir. Yinelemeli siire¢ basladiginda bu hizlar

Esitlik (3.30) kullanilarak giincellenir.
9 =wI; +re; (X — x;) +rey (X — xy) (3.30)

Burada, r~U(0,1)*P rassal bir sayiy1, 9; i’inci ¢dziimiin hizim, 9/ i’inci ¢dziimiin
hizinin giincellenmis halini, w eylemsizlik agirhigini, ¢; ve c¢, biligssel ve sosyal
katsayilari, X; i’inci ¢oziimiin o ana kadarki en iyi degerini, X popiilasyondaki en iyi
¢Oziimii, x; ise i’inci ¢ozliimil temsil eder. Bu hizlar giincellendikten sonra ¢éziimler

Esitlik (3.31) kullanilarak giincellenir.
xX; = x; + v (3.31)

Burada, x; i’inci ¢6ziimiin giincellenmis hélini temsil eder. Bu islemlerden sonra giincel
¢Ozlim amag¢ fonksiyonunda degerlendirilir ve uygunluk degeri hesaplanir. Bu ¢6ziim
mevcut en iyl ¢oziimden daha iyi ise en iyi ¢Ozlim olarak atanir. Yinelemeli siire¢
maksimum iterasyon sayisina (T') erisinceye kadar devam eder ve en iyi ¢6ziim raporlanir.

PSO algoritmasinin temel adimlart Algoritma 3.8 ile gosterilmektedir.

Algoritma 3.8: PSO algoritmanin temel adimlari

1: Kontrol parametrelerinin ayarlanmasi (T, S, w, ¢4, ¢3)

Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi

Popiilasyonun amag fonksiyonunda degerlendirilmesi

En iyi ¢0zlimiin tespit edilmesi

while (maksimum iterasyon sayisina eriginceye kadar)
Esitlik (3.30) ile ¢oziimlerin hizlarmin glincellenmesi
Esitlik (3.31) ile ¢oziimlerin giincellenmesi
Popiilasyonun amag fonksiyonunda degerlendirilmesi
En iyi ¢6zlimiin tespit edilmesi

end while

En iyi ¢6zlimiin ve maliyetin raporlanmasi

H
STYRRIINRELDD

[

3.3.2.2. Yapay Arn Koloni Algoritmasi

Yapay ar1 koloni algoritmasi (artificial bee colony, ABC) 2005 yilinda Karaboga
tarafindan gelistirilen bir metasezgisel algoritmadir [59]. Yiyecek arayisinda olan bal

arilarinin igbirliginden ilham alinmigtir. Algoritmanin c¢alisma prensibi su sekilde
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aciklanabilir: Ik olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir. Bu
popiilasyon iiretildikten sonra tiim c¢oziimler amag¢ fonksiyonunda degerlendirilir ve
uygunluk degerleri hesaplanir. Bu baglangi¢ popiilasyonu is¢i ar1, gozcii ar1 ve kasif ar
asamalarina yonlendirilir. Is¢i ar1 asamasinda bir ¢oziimiin rastgele bir parametresi segilir

ve bu parametre Esitlik (3.32) kullanilarak giincellenir.
(xij), = xij + @ij(xl-j - le) (3.32)

. L7
Burada, 7, # 1, xl-J i’inci ¢Oziimiin j’inci parametresini, (xlj ) i’inci ¢oziimiin j’inci
parametresinin giincellenmis halini, xﬂl popiilasyondan rastgele segilen bir ¢dzliimiin

j’inci parametresini ve CD{ ~U(0,1) ise rassal bir say1y1 temsil eder. Bu islemlerden sonra
giincel ¢oziim amag fonksiyonunda degerlendirilir ve maliyeti hesaplanir. Bu maliyet
kullanilarak farklt bir uygunluk degeri hesaplanir. Bu hesaplama Esitlik (3.33)’te

gosterilmektedir.

— il & " >0i
fit,={ T4 7’ Eger f; = O ise

1+ |fil, aksi taktirde

(3.33)

Burada, f; i’inci ¢oziimiin maliyetini, fit; ise i’inci ¢6ziimiin uygunluk degerini temsil
eder. GOzcii a1 asamasina gegmeden dnce uygunluk degerleri kullanilarak her ¢oziimiin

secilme olasilig1 Esitlik (3.34)’te gosterildigi gibi hesaplanur.

fit;

5 = co—
S .
j=1fltj

(3.34)
Burada, §; i’inci ¢oziimiin sec¢ilme olasiligini temsil eder. Gozcii ar1 agamasinda, tercih
edilen ¢éziimler daha iyi uygunluk degerlerine sahip olanlara yonlendirilir, bu da daha
yiiksek uygunluk degerlerine sahip olanlarin secilme olasiligini artirir. Her ¢6ziim igin
rastgele bir say1 iiretilir ve bu say1 ilgili ¢éziimiin sec¢ilme olasiligindan kiiciikse, ilgili
¢oziim Esitlik (3.32) kullanilarak giincellenir. Giincellenen ¢6ziim amag fonksiyonunda
degerlendirilir, maliyeti elde edilir ve uygunluk degeri Esitlik (3.33) kullanilarak
hesaplanir. Kasif aris1 asamasinda, belirli bir limit degerinde giincellenmeyen ¢6ziimler

yerine Esitlik (3.18) kullanilarak yeni ¢oziimler iiretilir. Yinelemeli siire¢ maksimum
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iterasyon sayisina (T') erisinceye kadar devam eder ve en iyi ¢6zliim raporlanir. ABC

algoritmasinin temel adimlart Algoritma 3.9 ile gosterilmektedir.

Algoritma 3.9: ABC algoritmanin temel adimlar1

1: Kontrol parametrelerinin ayarlanmasi (T, S, limit)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi
3: Popiilasyonun amag fonksiyonunda degerlendirilmesi
4: En iyi ¢Oziimiin tespit edilmesi
5:  while (maksimum iterasyon sayisina erisinceye kadar)
6: Esitlik (3.32) ile ¢ozlimlerin giincellenmesi
7: Esitlik (3.33) ile ¢oziimlerin uygunluk degerlerinin hesaplanmasi
8: Esitlik (3.34) ile her ¢ozlimiin segilme olasiliklarinin hesaplanmasi
9: Esitlik (3.32) ile segilen ¢oziimlerin giincellemesi
10: Esitlik (3.18) ile limiti asan ¢ozlimlerin yerine rastgele ¢oziimlerin iiretilmesi
11: Popiilasyonun amag fonksiyonunda degerlendirilmesi
12: En iyi ¢6zlimiin tespit edilmesi

13:  end while
14:  En iyi ¢oziimiin ve maliyetin raporlanmasi

3.3.2.3. Ogretme-Ogrenme Tabanh Optimizasyon

Ogretme-dgrenme tabanli optimizasyon (teaching-learning-based optimization, TLBO)
2011 yilinda Rao ve arkadaslar1 tarafindan gelistirilen bir metasezgisel algoritmadir [60].
Bir smif ortaminda gergeklesen Ogretmen-0grenci etkilesimi ve Ogrencilerin
birbirlerinden 6grenmesi siire¢lerinden ilham alinmistir. Algoritmanin ¢aligma prensibi
su sekilde aciklanabilir: 11k olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir.
Bu popiilasyon iiretildikten sonra tiim ¢oziimler amag¢ fonksiyonunda degerlendirilir ve
uygunluk degerleri hesaplanir. Oncelikle popiilasyondaki tiim ¢dziimlerin ortalamasi

Esitlik (3.35) kullanilarak hesaplanir.

% =%in (3.35)

Burada, x; i’inci ¢6zlimii temsil eder. Ardindan, popiilasyondaki en iyi ¢6zlim 6gretmen
olarak segilir. Bu ¢06ziim, Ogretmen olarak gorev yapacak ve diger cozlimleri
yonlendirecektir. Algoritma bu hesaplamalardan sonra 6gretmen ve 6grenci olmak tlizere
iki asamay takip eder. Ogretmen asamasinda her bir ¢6ziim dgretmene ve popiilasyonun

ortalamasma dogru hareket eder. Bu hareketin ne kadar olacagi, rastgele belirlenen
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O0gretme faktorii parametresi ile belirlenir. Bu deger ¢ozlimiin 6gretmene ne kadar

yaklasacagini kontrol eder. Buna gore ¢coziimler Esitlik (3.36) kullanilarak gilincellenir.
x; =x; +r(X — TpX) (3.36)

Burada r~U(0,1)1*P rassal bir say1y, x; i inci ¢dziimii, x; i’inci ¢dziimiin giincellenmis
halini, , X popiilasyondaki en iyi ¢oziimii, T~ {1, 2} ise 6gretme faktOriinii temsil eder.
Ogrenci asamasinda ise ¢oziimler birbirlerinden &grenir ve Esitlik (3.3) kullanilarak

giincellenir.

" { x; + r(x{ — xrl), Eger f(x;) < f(xrl) ise (337)

: x; + (%, —x{), aksi taktirde

Burada, r; # i, r~U(0,1)*P rassal bir say1y1, x;" i’inci ¢dziimiin son giincellenmis
halini, x, —popiilasyondan rastgele secilen bir ¢oziimii temsil eder. Popiilasyon
giincellendikten sonra her ¢6ziim amag¢ fonksiyonunda degerlendirilir ve uygunluk
degerleri hesaplanir. Yinelemeli siire¢ maksimum iterasyon sayisina (T) erisinceye kadar
devam eder ve en iyi ¢6zliim raporlanir. TLBO algoritmasinin temel adimlar1 Algoritma

3.10 ile gosterilmektedir.

Algoritma 3.10: TLBO algoritmanin temel adimlari

1: Kontrol parametrelerinin ayarlanmasi (T, S)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi

3: Popiilasyonun amag fonksiyonunda degerlendirilmesi

4: En iyi ¢Oziimiin tespit edilmesi

5:  while (maksimum iterasyon sayisina erisinceye kadar)

6: Esitlik (3.35) ile ¢oziimlerin ortalamasinin hesaplanmasi

7: En iyi ¢6zliimiin (6gretmenin) se¢ilmesi

8: Esitlik (3.36) ile ¢oziimlerin giincellenmesi

9: Esitlik (3.37) ile ¢ozlimlerin giincellenmesi
10: Popiilasyonun amag fonksiyonunda degerlendirilmesi
11: En iyi ¢ozlimiin tespit edilmesi

12: end while
13: En iyi ¢oziimiin ve maliyetin raporlanmasi
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3.3.3. Matematik ilhamh Algoritmalar
3.3.3.1. Stokastik Fraktal Arama

Stokastik fraktal arama (stochastic fractal search, SFS) 2015 yilinda Salimi tarafindan
gelistirilen bir metasezgisel algoritmadir [61]. Fraktallarin rastlantisal difiizyon
davraniglart ve dogadaki rastlantisal biiyiime siireclerinden ilham alinmistir.
Algoritmanin c¢alisma prensibi su sekilde aciklanabilir: Ik olarak popiilasyon Esitlik
(3.18) kullanilarak rastgele tiretilir. Bu popiilasyon iiretildikten sonra tiim ¢éziimler amag
fonksiyonunda degerlendirilir ve uygunluk degerleri hesaplanir. Popiilasyondaki her bir
¢Oziim Oncelikle bir difiizyon siirecinden gecer. Bu siirecte iki farkli Gauss yiiriiyiisiinden
biri ile yeni aday ¢oziimler liretilir. Bu aday ¢oziimlerin sayis1t maksimum difiizyon sayisi
(ngif) adi verilen bir kontrol parametresi ile belirlenir. Rastgele bir sayi tiretilir ve bu
saymin ylriime orani (walk) ad1 verilen bir kontrol parametresiyle olan iliskisine gore
bu iki yiirliylisten biri kullanilir. Bu diflizyon giincellemesi Esitlik (3.38)’de

gosterilmektedir.

N(x|,0) + (rx —rx;), Egerr < walk ise
Xip = . . (3.38)
ko AN (xil, 0), aksi taktirde
log(t)
t

(x; — %) (3.39)

Burada, k € {0,1, ...ndif}, r~U(0,1) rassal bir sayiy1, x;, i’inci ¢dziim icin iiretilen
k’inct yeni aday ¢oziimil, x; i’inci ¢dzliimii, X popiilasyondaki en iyi ¢dziimii, N Gauss
dagilimini (normal dagilim) ve t ise mevcut iterasyonu temsil eder. Mevcut ¢6zlim ile
yeni aday ¢oziimlerin uygunluk degerleri hesaplanir ve bunlarin arasindaki en iyi ¢6ziim
diflizyon siireci fonksiyonunun ¢iktis1 olarak verilir. Ardindan popiilasyon iki giincelleme
stirecinden geger. Birinci glincelleme siirecinde ilk olarak ¢oziimler Esitlik (3.40)’e gore

siralanir.

_ rank(x;)

i < (3.40)

Burada, 6; i’inci ¢oziimiin seg¢ilme olasilig1 ve rank(x;) ise i’inci ¢dzliimiin uygunluk

degerine gore siralamadaki konumunu temsil eder. Her bir ¢6ziimiin her bir boyutu i¢in
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bir rassal say1 belirlenir. Bu say1 i’inci ¢6zlimiin sec¢ilme olasiligindan biiytlikse Esitlik
(3.41) kullanilarak ¢6zlim gilincellenir. Bu say1 i’inci ¢0zlimiin seg¢ilme olasiligindan

kiigiikse mevcut ¢oziim degismez.

(/) =, —r(xd, = x)) (341)

i

Burada, 1y, 1, # i, r~U(0,1) rassal bir say1yi, xl.] i’inci ¢Oziimiin j’inci parametresini,

S !
x?) i’inci ¢oziimiin j’inci parametresinin birinci giincelleme siirecinde giincellenmi
(x; ¢ j*inci p g gil 5

halini, xfl ve xfz popiilasyondan segilen rastgele ¢dziimleri temsil eder. Ikinci giincelleme

siirecinde ise birinci giincelleme asamasinda elde edilen tiim ¢dziimler yine Esitlik
(3.40)’a gore siralanir. Her bir ¢6zlim igin tekrar bir rastgele say1 belirlenir. Bu say1 i’inci
¢Oziimiin olasiliksal degerinden biiyiikse Esitlik (3.42) kullanilarak ¢6ziim giincellenir.

Bu say1 i’inci ¢oziimiin olasiliksal degerinden kiiclikse mevcut ¢oziim degismez.

" {xl’ - r(xr1 — %), Egerr < 0.5 ise (342)

4 x; + r(xr1 — xrz), aksi taktirde
Burada, ry,7, # i, r~U(0,1) rassal bir sayiy1, x;' i’inci ¢6ziimiin ikinci giincelleme
siirecinde giincellenmis halini, x; i’inci ¢6ziimiin birinci giincelleme siirecinden sonraki
halini, x,, ve x,, birinci gilincelleme siirecinden sonra popiilasyondan segilen rastgele
cOzlimleri temsil eder. Popiilasyon giincellendikten sonra her ¢6ziim amag fonksiyonunda
degerlendirilir ve uygunluk degerleri hesaplanir. Yinelemeli siire¢ maksimum iterasyon
sayisina (T') eriginceye kadar devam eder ve en iyi ¢6ziim raporlanir. SFS algoritmasinin

temel adimlar1 Algoritma 3.11 ile gdsterilmektedir.
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Algoritma 3.11: SFS algoritmanin temel adimlari
1:  Kontrol parametrelerinin ayarlanmasi (T, S, ng;r, walk)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi
3: Popiilasyonun amag fonksiyonunda degerlendirilmesi
4: En iyi ¢Ozlimiin tespit edilmesi
5:  while (maksimum iterasyon sayisina erisinceye kadar)
6: Esitlik (3.38) ile ¢oziimlerin difiizyon siirecine tabi tutulmasi
7: Esitlik (3.40) ile her ¢6ziimiin olasiliksal degerinin hesaplanmasi
8: Sirasiyla Esitlik (3.41) ve (3.42) ile ¢oziimlerin giincellenmesi
9: Popiilasyonun amag fonksiyonunda degerlendirilmesi
10: En iyi ¢ozlimiin tespit edilmesi

11:  end while
12:  En iyi ¢Oziimiin ve maliyetin raporlanmasi

3.3.3.2. Siniis Kosiniis Algoritmasi

Siniis kosiniis algoritmasi (sine cosine algorithm, SCA) 2016 yilinda Mirjalili tarafindan
gelistirilen bir metasezgisel algoritmadir [62]. Matematikteki siniis ve kosiniis
trigonometrik fonksiyonlarmmdan ilham alinmistir. Algoritmanin caligma prensibi su
sekilde agiklanabilir: Ilk olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir. Bu
popiilasyon iiretildikten sonra tiim c¢oziimler amag¢ fonksiyonunda degerlendirilir ve
uygunluk degerleri hesaplanir. Yineleme siireci basladiginda, r; parametresi Esitlik

(3.43) kullanilarak hesaplanir.

a
rn=a—t— 3.43
s = (3.43)
Burada, a sabit bir kontrol parametresini ve t mevcut iterasyonu temsil eder. Ardindan

cOzlimler Esitlik (3.44) kullanilarak gilincellenir.

' { x; + rysin(ry) 3% — x4, Egerr, < 0.5 ise (3.44)

‘ x; + rycos(ry)|r3X — x4, aksi taktirde

Burada, r,~U(0,27), r3~U(0,2), r,~U(0,1) rassal sayilari, x; i’inci ¢dziimi, x; i’inci
¢oziimiin gilincellenmis halini, ¥ popiilasyondaki en iyi ¢oziimii temsi eder Popiilasyon
giincellendikten sonra her ¢oziim amag¢ fonksiyonunda degerlendirilir ve uygunluk
degerleri hesaplanir. Yinelemeli siire¢ maksimum iterasyon sayisina (T') erisinceye kadar
devam eder ve en iyi ¢oziim raporlanir. SCA algoritmasinin temel adimlar1 Algoritma

3.12 ile gosterilmektedir.
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Algoritma 3.12: SCA algoritmanin temel adimlari

1: Kontrol parametrelerinin ayarlanmasi (M, S, a)

Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi

Popiilasyonun amag fonksiyonunda degerlendirilmesi

En iyi ¢0zlimiin tespit edilmesi

while (maksimum iterasyon sayisina eriginceye kadar)
Esitlik (3.43) ile 1y ’in giincellenmesi
Esitlik (3.44) kullanilarak ¢oztimlerin giincellenmesi
Popiilasyonun amag fonksiyonunda degerlendirilmesi
En iyi ¢6zlimiin tespit edilmesi

end while

En iyi ¢6zlimiin ve maliyetin raporlanmasi

H
SY RN

[

3.3.3.3. Aritmetik Optimizasyon Algoritmasi

Aritmetik optimizasyon algoritmasi (arithmetic optimization algorithm, AOA) 2021
yilinda Abualigah ve arkadaglari tarafindan gelistirilen bir metasezgisel algoritmadir [63].
Matematiksel hesaplamalarin temelini olusturan aritmetik iglemlerin dagilim
ozelliklerinden ilham alinmistir. Algoritmanin ¢alisma prensibi su sekilde agiklanabilir:
Ilk olarak popiilasyon Esitlik (3.18) kullanilarak rastgele iiretilir. Bu popiilasyon
iiretildikten sonra tiim ¢ozlimler amag¢ fonksiyonunda degerlendirilir ve uygunluk
degerleri hesaplanir. Yineleme siireci basladiginda ise matematik optimizasyon
hizlandirici1 (math optimizer accelerated, MOA) ve matematik optimizasyon olasilig
(math optimizer probability, MOP) olmak iizere iki fonksiyon sirasiyla Esitlik (3.45) ve
(3.46) kullanilarak hesaplanir.

MOA, — MOA;
MOA = MOA, + t( T ) (3.45)
1
ta
MOP =1 — - (3.46)
Ta

Burada, MOA; ve MOA,, degerleri MOA’nin sinir degerlerini, t mevcut iterasyonu, T
maksimum iterasyon sayisint ve a kullanim dogrulugunu tanimlayan bir kontrol
parametresini temsil eder. Her bir ¢oziim i¢in bir rastgele say1 r;~U(0,1) iiretilir ve bu
sayt mevcut iterasyondaki MOA’dan biiyiikse ¢oziimler Esitlik (3.47) kullanilarak
giincellenir. Eger bu sayt MOA’dan kiigilkse o zaman da ¢oziimler Esitlik (3.48)

kullanilarak giincellenir.
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%) + (MOP + ¢€) ((x,fl —x )+ xlj), Egerr, < 0.5 ise

D=1 . . (3.47)
( l) X/ X MOP ((x,’l - xlj)u + xlj), aksi taktirde
. & —MoP((x) —x/ ,u+xj , Eger r; < 0.5 ise

() =4 ( =) l.) o (3.48)
x) + MOP ((x,fl — xlj)u + xlj), aksi taktirde

L !
Burada, 7,,73~U(0,1) rassal bir say1yi, (xl] ) i’inci ¢Ozliimiin j’inci parametresinin
giincellenmis halini, 2/ popiilasyondaki en iyi ¢dziimiin j’inci parametresini, € kiiciik bir

say1yl, xl] ve x,]l J’inci parametrenin sinir degerlerini, 4 arama siirecini ayarlayan bir

kontrol parametresini temsil eder. Popiilasyon giincellendikten sonra her ¢éziim amag
fonksiyonunda degerlendirilir ve uygunluk degerleri hesaplanir. Yinelemeli siireg
maksimum iterasyon sayisina erisinceye kadar devam eder ve en 1yl ¢oziim raporlanir.

AOA algoritmasinin temel adimlar1 Algoritma 3.13 ile gosterilmektedir.

Algoritma 3.13: AOA algoritmanin temel adimlar1

1: Kontrol parametrelerinin ayarlanmasi (T, S, MOA;, MO Ay, a, i)

2: Esitlik (3.18) ile popiilasyonun rastgele iiretilmesi

3: Popiilasyonun amag fonksiyonunda degerlendirilmesi

4: Eniyi ¢Ozlimiin tespit edilmesi

5:  while (maksimum iterasyon sayisma eriginceye kadar)

6: Esitlik (3.45) ve (3.46) ile MOA ve MOP degerlerinin gilincellenmesi

7: 71 sayisinin Uretilmesi

8: r; ve MOA’ya gore Esitlik (3.47) veya (3.48) ile ¢6ziimlerin glincellenmesi
10: Popiilasyonun amag fonksiyonunda degerlendirilmesi
11: En iyi ¢6zlimiin tespit edilmesi

12:  end while
13:  En iyi ¢Oziimiin ve maliyetin raporlanmasi

3.4. Makine Ogrenmesi

Makine 6grenmesi, bilgisayarlarin verilerden desenler 6grenerek tahminler yapmasini
saglayan bir yapay zeka dalidir [64]. Bu siirecte, algoritmalar belirli kurallar ¢cer¢cevesinde
egitilir ve zamanla dogruluklarini artirir. Makine 6grenmesi yontemleri genellikle ikiye
ayrilir: gozetimli ve gézetimsiz 6grenme. Gozetimli 6grenme etiketli verilerle modelin
egitildigi bir yaklagimken; gozetimsiz 6grenme ise verilerdeki gizli desenleri kesfetmeye
odaklanir. Ornegin, bir makine 6grenmesi modeli, el yazisi rakamlari tanimak icin énce

insan tarafindan belirlenen kenar, egim gibi 6zellikleri kullanarak 6grenme siirecini
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tamamlar. Ancak, daha karmasik problemlerde geleneksel makine Ogrenmesi
yaklasimlari, 6zellik miihendisligi ve biiylik veri ile basa ¢ikmada yetersiz kalabilir. Bu
noktada derin 6grenme devreye girer. Derin 6grenme, insan beyninin ¢alisma seklini
taklit eden derin sinir aglarimi1 kullanarak daha karmasik veri yapilarint 6grenen bir
makine 6grenmesi alt dalidir. Bu yontem, bir¢ok katmandan olusan sinir aglar1 sayesinde
bliyiik ve karmasik veri kiimeleriyle etkili bir sekilde caligabilir. Makine 68renmesi ile

derin 6grenme kapsamlar1 Sekil 3.2°de gosterilmektedir.

~

Yapay Zeka

Makine Ogrenmesi

[ Derin Ogrenme ]

- 7/

Sekil 3.2. Makine 6grenmesi ile derin 6grenme kapsamlari

Geleneksel makine 6grenmesinin aksine, derin 6grenme algoritmalar1 6zellikleri manuel
olarak belirlemek yerine, veriden otomatik olarak 6grenir ve kendiliginden en uygun
temsilleri kesfeder. Bu sayede, 6zellikle biiyiik 6lgekli veri setleriyle calisirken insan
miidahalesine duyulan ihtiyag¢ azalir ve modeller daha dogru sonuglar iiretebilir. Ornegin,
bir goriintii tanima gorevinde geleneksel yontemlerde oncelikle goriintiiden kenar, doku
veya renk gibi belirli 6zelliklerin insan tarafindan ¢ikarilmasi gerekirken, derin 6grenme
modelleri ham piksel verisini dogrudan alarak, katmanlar boyunca giderek soyutlagsan
ozellikler 6grenir ve nihai siniflandirmay1 gergeklestirir. Ik katmanlar temel kenar ve
dokular1 6grenirken, daha derin katmanlar nesneleri, yiizleri veya daha karmasik yapilar
taniyabilir. Benzer sekilde, dogal dil isleme alaninda, derin 6grenme algoritmalar: ham
metin verisini analiz ederek kelimeler arasindaki anlam iliskilerini otomatik olarak
Ogrenir ve ¢eviri, metin Ozetleme veya duygu analizi gibi gorevleri basariyla yerine
getirebilir. Derin 6grenmenin bu yetenekleri, biiyiik veri ¢aginda daha basarili sonuglar
elde edilmesini saglar ve saglik, otomotiv, finans, glivenlik gibi bir¢ok alanda devrim
niteliginde uygulamalara kap1 aralar. Ornegin, otonom araclar, ¢evresindeki nesneleri
gercek zamanli olarak algilamak ve giivenli siiriis kararlar1 vermek i¢in derin 6grenmeden

yararlanir. Aynm sekilde, tibbi goriintiileme sistemleri, hastaliklari teshis etmek i¢in
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rontgen ve MR goriintiilerini analiz edebilir. Derin 6grenmenin sagladigi bu otomatik ve
Olceklenebilir ¢oziimler, birgok endiistride insan miidahalesini azaltarak hiz, dogruluk ve
verimliligi artirmaktadir. Mobil robotlarin yol planlamasinda makine Ogrenmesi
yontemleri arasinda evrisimli sinir aglar1 ve takviyeli 6grenme giderek daha fazla tercih
edilmektedir [62]. Evrisimli sinir aglari, ¢evresel algilamada etkili 6zellik ¢ikarimi
saglarken, takviyeli 6grenme ise robotun dinamik ortamlarda en uygun yolu kesfetmesine

ve cevresel degisikliklere uyum saglamasina yardimci olmaktadir.
3.4.1. Evrisimli Sinir Aglan

Evrisimli sinir ag1 (convolutional neural network, CNN), ozellikle goriintii ve video
analizinde kullanilan, derin 6grenme tabanl1 bir yapay sinir ag1 tiiriidiir. Insan beyninin
gorme korteksinden esinlenerek gelistirilen CNN’ler karmasik gorsel desenleri ve
Ozellikleri otomatik olarak Ogrenme yetenegine sahiptir. Bu sayede goriintii
siiflandirma, nesne tanima, yiiz tanima gibi bir¢ok alanda iistiin performans gosterirler.
CNN’lerin temelinde evrisim (convolution) ve havuzlama (pooling) gibi 6zel katmanlar
bulunur. Bu katmanlar, goriintiideki 6nemli 6zellikleri vurgulayarak, agin daha etkili

O0grenmesini saglar. Sekil 3.3’te tipik bir CNN yapis1 gosterilmektedir.

ss

Evrisim ve Havuzlama Katmanlarn Tam Bagh Katman Cikis Katmamn
(Ozellik Cikarimi)

Giris Katmani

Sekil 3.3. Tipik bir evrigimli sinir ag1 yapisi

Giris katmaninda agin aldig1 ham veri olan goriintii islenmeye baslar. Goriintii, piksel
degerlerini tagiyan bir matris olarak girig katmanina gelir. Bu katmanda, agin isleyecegi
temel veriler belirlenir ve bu veri sonraki katmanlar i¢in temel olusturur. Ozellik ¢ikarimi
CNN’nin temelini olusturan evrisim ve havuzlama islemlerinin yapildigi yerdir. Bu
katman goriintiideki kenarlar, koseler, dokular gibi temel o6zellikleri ¢ikarir. Evrisim
islemi, goriintii iizerinde kiiciik filtreler gezdirerek 6zellik haritalar1 olustururken,

havuzlama islemi bu haritalarin boyutunu kiigiilterek daha soyut temsiller elde eder. Tam
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bagli katman (fully connected layer), 6zellik ¢ikarimindan elde edilen soyut 6zellikleri
kullanarak, goriintiiniin ne oldugunu tahmin etmeye calisir. Bu katman klasik bir yapay
sinir ag1 gibi calisir ve her bir néronun bir 6nceki katmandaki tiim néronlara bagli oldugu
bir yapiya sahiptir. Cikis katmani agin tahmin sonucunu verir. Genellikle bir olasilik
dagilimi seklinde sonuglar iiretir. Ornegin, bir gériintii smiflandirma probleminde, bu
katman her bir smif i¢in bir olasilik degeri vererek goriintiiniin hangi sinifa ait oldugunu
tahmin eder. CNN’ler 1980’lerden itibaren gelismeye baslamis ve zaman iginde birgok
farkli mimari ortaya ¢ikmistir. Bu boliimde CNN’lerin gelisimine 6nemli katkilarda

bulunmus 6ne ¢ikan bazi modeller ele alinacaktir.
3.4.1.1. LeNet-5

LeNet-5, 1998 yilinda LeCun ve arkadaglar1 tarafindan gelistirilen bir derin 6grenme
modelidir [66]. Bu model derin 6grenme alanindaki ilk basarili CNN 06rnegi olarak,
goriintii tanima gorevlerinde kullanilan ilk derin ag yapilarindan birisidir. Modelin
mimarisi su sekilde 6zetlenebilir: ilk katman, 5 x 5 boyutunda 6 filtre kullanarak evrisim
islemi yapar. Adim uzunlugu 1 olarak ayarlanir ve tanh aktivasyon fonksiyonu kullanilir.
Ayrica 2 x 2 boyutunda ve 2 adim kaydirma ile ortalama havuzlama (average pooling)
islemi yapilir. Sonraki katman, 5 x 5 boyutunda 16 filtre kullanarak evrisim islemi yapar.
Adim uzunlugu 1 olarak ayarlanir ve tanh aktivasyon fonksiyonu kullanilir. Ayirca yine
2 x 2 boyutunda ve 2 adim kaydirma ile ortalama havuzlama islemi yapilir. Sonraki
katman, 5 x 5 boyutunda 120 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 1
olarak ayarlanir ve tanh aktivasyon fonksiyonu kullanilir. Sonraki katman, tam bagh
katmandir ve tanh aktivasyon fonksiyonunu kullanir. Cikis katmanina baglanan son

katman ise softmax aktivasyon fonksiyonunu kullanan bir tam bagli katmandir.
3.4.1.2. AlexNet

AlexNet, 2012 yilinda Krizhevsky ve arkadaglar1 tarafindan tarafindan gelistirilen bir
derin 6grenme modelidir [67]. Bu model, grafik islemci hizlandirmasini kullanarak biiyiik
veri setleri lizerinde egitim yapmis ve dogrultulmus dogrusal birim (rectified linear unit,
ReLU) aktivasyon fonksiyonunu etkin bir sekilde kullanarak egitim siirecini
hizlandirmistir. Modelin mimarisi su sekilde 6zetlenebilir: Ik katman, 11 x 11 boyutunda
96 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 4 olarak ayarlanir ve ReLU

aktivasyon fonksiyonu kullanilir. Ayrica 3 x 3 boyutunda ve 2 adim kaydirma ile
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maksimum havuzlama islemi yapilir. Sonraki katman, 5 x 5 boyutunda 256 filtre
kullanarak evrisim igslemi yapar. Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon
fonksiyonu kullanilir. Ayrica 3 x 3 boyutunda ve 2 adim kaydirma ile maksimum
havuzlama islemi yapilir. Sonraki iki katman, 3 x 3 boyutunda 384 filtre kullanarak
evrisim islemi yapar. Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon fonksiyonu
kullanilir. Sonraki katman, 3 x 3 boyutunda 256 filtre kullanarak evrisim iglemi yapar.
Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon fonksiyonu kullanilir. Sonraki ii¢
katmanlar tam bagli katmanlardir, bunlarin ilk ikisinde ReLLU, {i¢iinciisiinde ise softmax
aktivasyon fonksiyonu kullanilir. Ayrica her tam bagli katmana %50 oranla kullanilan bir

dropout katmani baglidir. Son tam bagli katman ise ¢ikis katmanina baglanir.
3.4.1.3. VGG16

VGG16, 2014 yilinda Simonyan ve Zisserman tarafindan gelistirilen bir derin 6grenme
modelidir [68]. Bu modelde katman sayisinin derinligi ve 3 x 3 boyutunda evrisim
katmanlarinin iist tiste kullanilmasiyla ¢cok derin bir ag yapisi olusturulmus ve bu sayede
agin derinligi artirillarak yliksek dogruluk elde edilmistir. Modelin mimarisi su sekilde
ozetlenebilir: 1k iki katman, 3 x 3 boyutunda 64 filtre kullanarak evrisim islemi yapar.
Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon fonksiyonu kullanilir. Ayrica 2 x
2 boyutunda ve 2 adim kaydirma ile maksimum havuzlama islemi yapilir. Sonraki iki
katman, 3 x 3 boyutunda 128 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 1
olarak ayarlanir ve ReLU aktivasyon fonksiyonu kullanilir. Ayrica 2 x 2 boyutunda ve 2
adim kaydirma ile maksimum havuzlama iglemi yapilir. Sonraki {i¢ katman, 3 x 3
boyutunda 256 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 1 olarak ayarlanir
ve ReLU aktivasyon fonksiyonu kullanilir. Ayrica 2 x 2 boyutunda ve 2 adim kaydirma
ile maksimum havuzlama islemi yapilir. Sonraki ii¢ katman, 3 x 3 boyutunda 512 filtre
kullanarak evrisim islemi yapar. Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon
fonksiyonu kullanilir. Ayrica 2 x 2 boyutunda ve 2 adim kaydirma ile maksimum
havuzlama islemi yapilir. Sonraki ii¢ katman, yine 3 x 3 boyutunda 512 filtre kullanarak
evrisim islemi yapar. Adim uzunlugu 1 olarak ayarlanir ve ReLU aktivasyon fonksiyonu
kullanilir. Ayrica yine 2 x 2 boyutunda ve 2 adim kaydirma ile maksimum havuzlama
islemi yapar. Sonraki iki katman tam bagli katmanlaridir ve ReLU aktivasyon fonksiyonu
kullanilir. Cikis katmanina baglanan son katman ise softmax aktivasyon fonksiyonunu

kullanan bir tam baglh katmandir.
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3.4.1.4. GoogleNet

GoogleNet (Inception v1), 2014 yilinda Szegedy ve arkadaslar tarafindan gelistirilen bir
derin 6grenme modelidir [69]. Bu model baslangi¢ (inception) tanitarak, ayni katmanda
farkl1 boyutlardaki filtreleri ve havuzlama iglemlerini birlestirmistir. Ayrica yardimeci
smiflandiric1 (auxiliary classifier) adi verilen bir baska blok da tanitilmistir. Modelin
mimarisi su sekilde dzetlenebilir: Ik katman, 7 x 7 boyutunda 64 filtre kullanarak evrisim
islemi yapar. Adim uzunlugu 2 olarak ayarlanir ve ReLU aktivasyon fonksiyonu
kullanilir. Ayrica 3 x 3 boyutunda ve 2 adim kaydirma ile maksimum havuzlama islemi
ve ardindan yerel tepki normalizasyonu (local response normalization) yapilir. Sonraki
katman, 1 x 1 boyutunda 64 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 1
olarak ayarlanir ve ReLU aktivasyon fonksiyonu kullanilir. Sonraki katman, 3 x 3
boyutunda 192 filtre kullanarak evrisim islemi yapar. Adim uzunlugu 1 olarak ayarlanir
ve ReLU aktivasyon fonksiyonu kullanilir. Ayrica yerel tepki normalizasyonu, ardindan
3 x 3 boyutunda ve 2 adim kaydirma ile maksimum havuzlama islemi yapilir. Daha sonra
9 adet baslangi¢c blogu uygulanir ve birlestirilir. Ayrica 4. ve 7. baglangi¢ bloklariyla
paralel olarak yardimci siniflandiric1 bloklar1 uygulanir. Son baslangi¢ blogunun ardindan
7 x 7 boyutunda global ortalama havuzlama islemi (global average pooling) ve %40
oraninda dropout katmani uygulanir. Cikis katmanina baglanan son katman ise bir tam

bagl katmandir ve softmax aktivasyon fonksiyonu kullanilir.

Baslangi¢ blogu su sekilde 6zetlenebilir: Blogun kendi yerel girisi 1 x 1 boyutunda 3 adet
evrisim ve 3 x 3 boyutunda 1 adet maksimum havuzlama katmanlarina ayn1 anda
gonderilir. 3 adet evrisim katmanindan biri dogrudan blogun yerel ¢ikisina yonlendirilir.
Bir digeri 3 x 3 boyutunda bagka bir evrisim katmanina baglanir ve bu katmanin ¢ikisi
yerel ¢ikis noktasina yonlendirilir. Bir digeri 5 x 5 boyutunda baska bir evrisim katmanina
baglanir ve bu katmanin ¢ikis1 yerel ¢ikis noktasina yonlendirilir. Maksimum havuzlama
katmani ise 1 x 1 boyutunda bagka bir evrisim katmanina baglanir ve bu katmanin ¢ikisi
yerel ¢ikis noktasina yonlendirilir. Son olarak yerel ¢ikisa gonderilen her bir baglanti
birlestirilir. Yardimci siniflandirici blogu ise su sekilde 6zetlenebilir: Blogun kendi yerel
girisine ilk olarak global ortalama havuzlama iglemi uygulanir. Ardindan 1 x 1 boyutunda
baska bir evrisim katmanima baglanir. Sonraki iki katman tam bagl katmanlaridir ve
ReLU aktivasyon fonksiyonu kullanilir. Blogun kendi yerel ¢ikis katmaninda ise softmax

aktivasyon fonksiyonu kullanilir.
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3.4.1.5. Tam Evrisimli Ag

Tam evrisimli ag (fully convolutional networks, FCN), 2015 yilinda Long ve arkadaslar1
tarafindan gelistirilen bir derin 6grenme modelidir [70]. Bu model tamamen evrisim
katmanlar kullanarak goriintii segmentasyonu gibi gérevlerde piksel diizeyinde tahminler
yapar ve tam bagl katmanlar1 ortadan kaldirarak modelin daha verimli hale getirir.
Modelin mimarisi su sekilde 6zetlenebilir: FCN’nin temel yapi taglari1 evrisim, havuzlama
ve yukar 6rnekleme (upsampling) katmanlaridir. Evrisim katmanlari, belirli bir boyutta
filtreler kullanarak giristen 6zellik ¢ikarir ve her konvoliisyon islemi i¢in belirlenen adim
uzunluguna gore c¢iktiyr olusturur. Bu katmanlarda genellikle ReLU aktivasyon
fonksiyonu kullanilir. FCN, temel CNN’lerden farkli olarak, tam baglantili katmanlar
igcermez; bunun yerine 1 x 1 evrisim katmanlar1 kullanarak siniflandirma veya regresyon
islemlerini dogrudan uzamsal boyutta gerceklestirir. Modelin en 6nemli bilesenlerinden
biri yukar1 6rnekleme katmanlaridir, ¢iinkii bunlar havuzlama katmanlari tarafindan
kiictiltiilen uzamsal boyutlar tekrar biiyiiterek ¢iktiy1 orijinal girig boyutuna yaklastirir.
Bu siireg, ozellikle goriintli segmentasyonu gibi piksel tabanli tahminler gerektiren
gorevlerde kritik Oneme sahiptir. FCN, klasik smiflandirma aglarinin tam bagh
katmanlarin1 kaldirarak herhangi bir boyuttaki girdilerle ¢alisabilir ve piksellerin konum
bilgilerini koruyarak cikti iiretebilir. Son olarak, FCN’nin ¢ikis katmani genellikle
softmax aktivasyon fonksiyonuyla tamamlanir ve her pikselin belirli bir siifa ait olma

olasiligini hesaplar.
3.4.1.6. ResNet

ResNet, 2015 yilinda He ve arkadaslari tarafindan gelistirilen bir derin 6grenme modelidir
[71]. Bu model artik (residual) baglantilar sayesinde derin aglarin egitimini
kolaylastirarak kaybolan gradyan problemini etkili bir sekilde ¢ozmiistiir. Modelin
mimarisi su sekilde 6zetlenebilir: ilk katman, 7 x 7 boyutunda 64 filtreli bir evrisim
katmanidir; bu katman 2 adim boyutu kullanarak girisi isler. Bu katmanda ReLU
aktivasyon fonksiyonu kullanilir ve toplu normalizasyon gergeklestirilir. Ayrica 3 x 3
boyutunda ve 2 adim kaydirma ile maksimum havuzlama islemi yapilir. Agin geri kalani,
residual bloklar olarak organize edilmistir. Tipik bir artik blok Sekil 3.4’te

gosterilmektedir.
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Sekil 3.4. Temel bir artik blok

Her artik blok, iki adet 3 x 3 evrisim katmani, toplu normalizasyon ve ReLU
aktivasyonunu igerir. Daha derin katmanlara gecerken, her yeni artik blogun ilk evrisim
katman filtre sayisini iki katina ¢ikarir ve boyut kiiciiltmek i¢in adim boyutu 2 olarak
belirlenir. Boyut degisen bloklarda kisa yol baglantisi i¢cin 1 x 1 evrisim katmani
kullanilir. Bunlarin ardindan, global ortalama havuzlama katmani ile tiim uzaysal
ozellikler sikistirilarak sabit boyutlu bir vektor elde edilir. Bunu, 1000 ¢ikisli bir tam bagh

katman ve ardindan softmax katmani takip eder, boylece siniflandirma yapilir.
3.4.2. Takviyeli Ogrenme

Takviyeli 6grenme (reinforcement learning), bir ajan (agent) ile ortam (environment)
arasindaki etkilesimi temel alan bir makine Ogrenme yontemidir. Ajan, ortama
etkilesimde bulunarak belirli hedeflere ulagsmayr amagclar. Ortamdan aldig1 odiilleri
kullanarak kendi politikasini (hangi duruma hangi aksiyonun uygun oldugunu belirleyen
strateji) optimize eder. Ajanin amaci, zaman iginde aldig1 6diilleri maksimize etmek i¢in
en 1yi aksiyonlar1 segmektir. Bu siire¢ bir durum (state), bir aksiyon (action) ve alinan bir
odil (reward) dongiisiiyle gerceklesir. Sekil 3.5°te tipik bir takviyeli 6grenme yapisi

gosterilmektedir.
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Sekil 3.5. Tipik bir takviyeli 6grenme yapisi

Takviyeli 6grenmede ajan, kesif ve kullanim arasinda bir denge kurmak zorundadir. Kesif
ajaniin yeni aksiyonlar1 denemesi ve ortamin dinamiklerini 6grenmesi anlamina
gelirken, kullanim ise ajanin su ana kadar 6grendigi en iyi aksiyonlar1 se¢mesidir. Bu iki
strateji arasinda bir denge kurmak 6nemlidir; aksi halde ajan yalnizca bildigi aksiyonlari
secerek yeni firsatlar kacirabilir veya gereksiz kesiflerde bulunarak verimsiz olabilir.
Ayrica, RL transfer 6grenmeyi de icerir, yani ajan bir goérevde 6grendigi bilgileri baska
bir goreve aktarabilir. Ornegin, bir ajan bir ortamda basarili bir sekilde 6grenmeyi
tamamladiktan sonra, baska bir benzer ortamda ajanin daha hizli 6grenebilmesi
saglanabilir. Transfer 6grenme, takviyeli 6grenmenin hesaplama yiikiinii azaltabilir ve
daha genel stratejiler gelistirilmesine yardimci olabilir. Bu boliimde RL’deki 6ne ¢ikan

bazi modeller ele alinacaktir.
3.4.2.1. Aktor-Kritik Algoritmasi

Aktor-kritik algoritmasi (actor-critic, AC), ilk olarak 1984 yilinda Sutton tarafindan
gelistirilen bir RL modelidir [72]. Bu model politika tabanli (aktor) ve deger tabanl
(kritik) bilesenleri birlestirerek, hem politika 6grenmesini hem de deger fonksiyonu
tahminini paralel bir sekilde optimize eder. Algoritma, iki ana bilesenden olusur: Aktor
ve kritik. Aktor, mevcut politika kullanilarak aksiyonlar secerken, kritik, bu aksiyonlarin
degerini tahmin eder ve aktore geri bildirim saglar. Algoritmanin ¢aligma prensibi, bir
ajanin bir ortamda siirekli olarak etkilesime girip 6diil toplamasi siirecine dayanir. Ajan,
cevreden aldig1 durum bilgisiyle, belirli bir politika () kullanarak bir aksiyon seger.
Kritik, secilen aksiyonun degerini tahmin eder ve bu tahmin bir avantaj fonksiyonu (4;)
ile iligkilendirilir. Aktér bu avantaj fonksiyonunu kullanarak politikasini gilinceller,

bdylece daha yiiksek ddiil getiren eylemleri tercih eder. ilk olarak aksiyon segilirerek ona
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yonelik 6diil ve bir sonraki durum gozlemlenir. Ardindan avantaj fonksiyonu Esitlik

(3.49) kullanilarak giincellenir.
Ay =1+ YVo(St41) — Vo(st) (3.49)

Burada, r; mevcut 6diilii, y indirim faktoriinii, Vg (s;41) kritik tarafindan tahmin edilen
bir sonraki durumun degerini ve Vy(s;) ise deger fonksiyonunu temsil eder. Ardindan

aktor ve kritik Esitlik (3.50) ve (3.51) kullanilarak giincellenir.

0Lt =0t + a,Vylogmy(ss, a;) As (3.50)
2
6 =6; + ac(rt +¥Vo(st11) — VB(St)) (3.51)

Burada, 6, aktoriin parametrelerini, a, aktoriin 6grenme oranini, 7y (S;, a;) mevcut
durum s; ve mevcut aksiyon a; i¢in ilgili politikayi, 6, kritigin parametrelerini ve a,
kritigin 6grenme oranini temsil eder. Bu siire¢ durduma kriteri saglanana kadar devam

eder. AC’nin temel adimlar1 Algoritma 3.14 ile gosterilmektedir.

Algoritma 3.14: AC’nin temel adimlari

1: Hiperparametrelerin ayarlanmasi (a, 3, ¥)
2:  Aktor politikasinin ve kritik deger fonksiyonunun degerlerinin baslatilmasi
3. while (maksimum epoch sayisina erisinceye kadar)

4: s durumunun baglatilmasi

5: while (maksimum adim sayisina erisinceye kadar)

6: Aktor politikasina gore bir aksiyonun se¢ilmesi

7: Secilen aksiyonu gergeklestirilmesi

8: Odiil ve bir sonraki durumun gézlemlenmesi

9: Esitlik (3.49) ile avantaj fonksiyonunun giincellenmesi
10: Esitlik (3.50) ile aktoriin giincellenmesi
11: Esitlik (3.51) ile kritigin giincellenmesi
12: end while

13:  end while
14: Optimal politikanin raporlanmasi

3.4.2.2. Q-Ogrenme

Q-6grenme (Q-learning, QL), 1989 yilinda Watkins tarafindan gelistirilen bir RL
modelidir [73]. QL ¢evrenin dinamiklerini bilmeden, sadece gozlemler ve ddiillerle karar
almay1 6grenir. QL temel olarak Q degerleri ad1 verilen bir yap1 kullanir. Bu degerler bir
durum ve aksiyon ¢iftinin degerini temsil eder. Bu deger, o durumda belirtilen aksiyonun

alinmasinin gelecekteki odiilleri ne kadar artiracagina dair bir tahmindir. Ajan bu Q
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degerlerini zamanla giincelleyerek en iyi politikasini 6grenir. Modelin ¢aligma prensibi
su sekilde Ozetlenebilir: Baglangicta tiim Q degerleri sifir olarak ayarlanir veya kiigiik
rastgele degerlerle baglatilabilir. Ajan herhangi bir durumdayken bir aksiyon seger. Bu
secim genellikle epsilon a¢gozli stratejisi (e-greedy) ile yapilir, yani ajan rastgele bir
aksiyon se¢gme olasiligina sahip olup, cogunlukla en yiiksek Q degerine sahip aksiyonu
tercih eder. Se¢ilen aksiyon uygulanir, yeni bir durum gézlemlenir ve bu yeni durumda
aliman 6dil elde edilir. Ajan, Q degerini Esitlik (3.52)’de gosterilen QL giincelleme

kuralina gore glinceller:

Q(spa)) = Q(sp,ar) +a <Tt t+y max Q(st+1,a") — Qs at)) (3.52)

Burada, Q(s;, a;) mevcut durum ve aksiyon i¢in mevcut Q degerini, @ 6grenme oranini,
1 alan 6dili, y indirim faktoriini, s;,; bir sonraki durumu ve a’ ise yeni durumda
yapilabilecek tiim olas1 aksiyonlar1 temsil eder. Ajan, bu islemi ¢evreyi kesfederek ve
odiilleri 6grenerek devam eder. Sonunda, Q degerleri stabil hale gelir ve ajan en yliksek
Q degerine sahip aksiyonlar secerek optimal politikayr 6grenmis olur. QL’nin temel

adimlar1 Algoritma 3.15 ile gosterilmektedir.

Algoritma 3.15: QL’nin temel adimlar1

1: Hiperparametrelerin ayarlanmasi (a, y)
2: Tiim durum ve aksiyonlar i¢in Q degerlerinin baslatilmasi
3:  while (maksimum epoch sayisina erisinceye kadar)

4: s durumunun baglatilmast

5: while (maksimum adim sayisina erisinceye kadar)

6: Epsilon a¢gozlii stratejisi ile bir aksiyonun se¢ilmesi

7: Secilen aksiyonun gergeklestirilmesi

Odiil ve bir sonraki durumun gdzlemlenmesi

8: Esitlik (3.52) ile Q degerinin gilincellenmesi

9: Mevcut durumun bir sonraki durum olarak giincellenmesi
10: end while

11:  end while
12:  Optimal politikanin raporlanmasi

3.4.2.3. Derin Deterministik Politika Gradyani

Derin Deterministik Politika Gradyani (deep deterministic policy gradient, DDPG), 2015
yilinda Lillicrap ve arkadaslar tarafindan gelistirilen bir RL modelidir [74]. Bu model

stirekli eylem alanlarinda politika gradyan1 yontemlerini derin 6grenme ile birlestirir.
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Algoritma, aktor ve kritik aglar1 olmak iizere iki ana bilesene sahiptir. Aktor ag1 verilen
bir durum i¢in en iyi aksiyonu iiretirken, kritik ag verilen bir durum ve aksiyon ¢iftinin
ne kadar iyi oldugunu degerlendirir. DDPG, 6grenme siirecini daha stabil hale getirmek
icin deney tekrar1 (experience replay) ve hedef aglar (target networks) gibi ek teknikler
kullanir. Modelin ¢aligma prensibi su sekilde 6zetlenebilir: Algoritmanin ilk adiminda,
kritik ag1 ve aktor agi rastgele baslatilir. Bunlar ajan tarafindan kullanilan temel 6grenme
modelleridir. Ayrica, bu aglarin birer hedef kopyalar1 olusturulur. Hedef aglar, 6grenme
siirecindeki dalgalanmalar1 azaltarak algoritmanin daha stabil c¢alismasimi saglar.
Ardindan, deney tekrar havuzu olusturulur. Bu havuz, ajanin ¢evrede deneyimledigi
durum-gegislerini saklar ve rastgele 6rnekleme yaparak 6grenmeyi daha etkili hale getirir.
DDPG, her zaman adiminda aksiyon kesfi icin rastgele bir giiriiltii baglatir. Ajan,
cevreden ilk durumu alir ve silireg baslar. Her zaman adiminda, ajan Esitlik (3.53)’te
gosterildigi gibi mevcut duruma gore bir aksiyon secer. Bu aksiyon, aktor agi tarafindan

belirlenir ancak kesfi artirmak i¢in bir miktar rastgele giiriiltii eklenir.
a; = u(se|6*) + N, (3.53)

Burada, a; t anindaki aksiyonu, u(s;|0*) aktor agini, N; ise t anindaki kesfi artirmak
icin kullanilan rastgele giiriiltiiyii temsil eder. Bu giirtiltii genellikle zamanla korelasyonlu
Ornstein-Uhlenbeck siireci olarak modellenir. Secilen aksiyon ¢evrede uygulanir ve ajan
odiilii (r¢) ve bir sonraki durumu (s;,1) gozlemler. Bu gecis deney tekrar havuzuna
(St ag, 1t S¢41) olarak kaydedilir. Deney tekrar havuzundan rastgele bir minibatch (n,,
adet gecis) orneklenir. Deney tekrar havuzundan 6rneklenen her minibatch igin, hedef Q

degeri Bellman denklemine gore Esitlik (3.54) kullanilarak hesaplanir.

Vi =7t +¥Q (si00, ' (514116#)169") (3.54)

Burada, 1, i’inci minibatch 6rneginde elde edilen 6diilii, y indirim faktoriinii, 4’ ve Q" ise
hedef aglar1 temsil eder. Kritik ag, bu hedef Q degerine yaklasmak amaciyla Esitlik
(3.55)’te gosterildigi gibi giincellenir.

09 = 69 — ayVyoL(69) (3.55)
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1 2
L9 = — > (%~ Q(s,a:169) (3.56)

Burada, Q(s;, a;|0?) kritik ag1 temsil eder. Aktor ag Esitlik (3.56)’da gosterildigi gibi

deterministik politika gradyan yontemiyle giincellenir:
1 Q
Vo] = n_z VaQ(sr a|9 )Is:si,azu(si)veﬂﬂ(sleu)Isi (3-57)
m ==
L
Ardindan, hedef aglar yumusak giincellenme ile Esitlik (3.57) ve (3.58)’de gosterildigi
gibi glincellenir.
0% =702 + (1-1)0% (3.58)
OH = 0% + (1 — 1)0* (3.59)

Burada, T yumusak giincellenme oranini temsil eder. Bu siireg, belirlenen zaman adimi
veya boliim sayis1 tamamlanana kadar tekrar edilir. DDPG’nin temel adimlar1 Algoritma

3.16 ile gosterilmektedir.

Algoritma 3.16: DDPG’nin temel adimlar1
1: Hiperparametrelerin ayarlanmasi (7, y, n,,)

2:  Aktor ve kritik aglarinin baglatilmasi
3. Hedef aglarin baslatilmasi
4: Deney tekrar havuzunun olusturulmasi
5:  while (maksimum epoch sayisina erisinceye kadar)
6: s durumunun baglatilmasi
7: while (maksimum adim sayisina erisinceye kadar)
8: Esitlik (3.53) ile aksiyonun segilmesi
9: Secilen aksiyonun gerceklestirilmesi
10: Odiil ve bir sonraki durumun gézlemlenmesi
11: Bu deneyimin deney havuzuna eklenmesi
12: Havuzdan rastgele bir minibatch’in 6rneklenmesi
13: Esitlik (3.54) ile hedef Q degeri hesaplanmasi
Esitlik (3.55) ile kritik agin giincellenmesi
14: Esitlik (3.56) ile aktor aginin giincellenmesi
15: Esitlik (3.57) ve (3.58) ile hedef aglarin giincellenmesi
16: end while

17: end while
18: Optimal politikanin raporlanmasi




4. BOLUM

BULGULAR

4.1. Giris

Bu tez ¢alismasi kapsaminda mobil robotlarin yol planlama sorunlarina yonelik ¢éztimler
gelistirmek amaciyla dort farkli simiilasyon calismast ve bir gercek zamanli ¢aligma
gerceklestirilmistir. Bu ¢alismalar farkli yol tipleri, engel yapilar1 ve ortam 6zellikleri
dikkate alinarak yol planlama yontemlerini iyilestirerek yeni yaklagimlar gelistirmeye
odaklanmistir. Bu tez c¢alismast kapsaminda gergeklestirilen dort simiilasyon
caligmasinda iki boyutlu yol planlama problemine yonelik farkli metasezgisel ve makine
O0grenmesi tabanli yaklasimlar Onerilmis ve performanslart test edilmistir. Birinci
caligmada tek bir mobil robotun 1zgara ortaminda kiiresel yol planlamasi i¢in iyilestirilmis
bir yapay ar1 koloni algoritmasi1 &nerilmistir. Ikinci calismada tek bir mobil robotun
stirekli uzay ortaminda kiiresel yol planlamasi i¢in metasezgisel ve kiimeleme
algoritmalarinin hibrit bir modeli onerilmistir. Ugiincii ¢alismada ¢ok sayida mobil
robotun siirekli uzay ortaminda yerel yol planlamasi i¢in iyilestirilmis bir siniis kosiniis
algoritmasi onerilmistir. Dordiincii ¢alismada ise tek ve ¢ok robotlu sistemlerinin 1zgara
ortaminda kiiresel yol planlamasi i¢in ResNet tabanli bir model onerilmistir. Gergek
zamanl caligmada ise simiilasyon ¢aligmalarini desteklemek amaciyla mobil robotun
siirekli uzay ortaminda kiiresel yol planlamas1 ve yol takip kontrolii gergeklestirilmistir.
Bu caligmalarin 6zellikleri Tablo 4.1°de Ozetlenmistir. Bu tez kapsamda ele alinan
calismalar mobil robotlarin yol planlama siireclerinde etkinligi artirmayi ve olasi

zorluklara kars1 ¢ozlim iiretmeyi hedeflemektedir.
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4 Cahsma Programlama Yontem Robot Planlama Ortam
Tipi Dili Sinifi Sayisi Kapsam Tipi
4.2 | Simiilasyon MATLAB Metasezgisel Tek Kiiresel Izgara
4.3 | Simiilasyon MATLAB Hibrit Tek Kiiresel Siirekli Uzay
4.4 | Simiilasyon MATLAB Metasezgisel Cok Yerel Siirekli Uzay
4.5 | Simiilasyon Python Makine Ogrenmesi | Tek & Cok Kiiresel Izgara
4.6 Z(Zl Gr::;fll; Python M;tﬁzi%;(sjl/ Tek Kiiresel Siirekli Uzay

4.2. lyilestirilmis Yapay Ar1 Kolonisi Algoritmasim Kullanan Etkili Bir Izgara
Tabanh Yol Planlama Yaklasinm

Yol planlama problemleri robotik ve otonom sistemler i¢in kritik dneme sahiptir.
Literatiirdeki ¢esitli algoritmalar bu problemleri ¢6zmek i¢in etkili yontemler saglamis
olsa da, daha hizli, daha dogru ve enerji agisindan verimli ¢ézlimler gelistirmeye hala
ihtiyac vardir. Bunlar arasinda ABC algoritmasi, yol planlama problemleri i¢in siklikla
kullanilan saglam ve gii¢lii bir metasezgisel optimizasyon algoritmasi olarak One
cikmaktadir [75]. Ancak No Free Lunch teoremi dogrultusunda higbir optimizasyon
algoritmasinin tiim problem tiplerinde optimum performans géstermesi beklenemez. Bu
makalenin odak noktasi yol planlama problemini ¢6zme yetenegini artirmak igin ABC
algoritmasini iyilestirmektir. Bu nedenle bu calismada i1zgara tabanli yol planlama
problemleri igin iyilestirilmis bir ABC algoritmasi (IABC) onerilmistir. Bu ¢alismanin
katkilar1 asagidaki gibi 6zetlenebilir:

¢ Yol planlama problemi hesaplama agisindan zor bir optimizasyon problemidir.
ABC algoritmasinin kisitlar1 vardir ve 1zgara tabanl yol planlamasini ele alirken

tatmin edici sonuglar liretemez.

e [TABC, kullanim-kesif dengesini iyilestirmek i¢in tasarlanmis iki mekanizmanin

entegre edilmesiyle gelistirilmistir.

e Bu mekanizmalardan biri olan dogrusallastirma stratejisi, doniis sayisini azaltmak
ve yol uzunlugunu kisaltmak i¢in Onerilmistir. Bu strateji, gereksiz koseleri
ortadan kaldirarak robotun yolunu basitlestirmeyi, daha verimli hareket etmeyi ve

enerji tasarrufu saglamay1 amaglamaktadir.
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e Bu mekanizmalardan bir digeri olan yerel arama stratejisi, ABC algoritmasinin
yakinsama hizin1 artirmak ve kiiresel optimum ¢oziimii bulma yetenegini

gelistirmek icin Onerilmistir.

e Simiilasyon deneylerinde IABC, temel ABC ve literatiirdeki diger algoritmalarla
karsilagtirildi ve sadece yol uzunlugunda degil, ayn1 zamanda yolu olusturan

hiicre sayis1 ve toplam doniis agisinda da diger algoritmalardan iistiin gelmistir.
4.2.1. Problem Tanim

Izgara tabanli yol planlama problemi, bir mobil robotun engellere ¢arpmadan hedef
noktaya ulagsmak i¢in en az sayida 1zgara hiicresinden ge¢mesi gereken bir minimizasyon
problemi olarak tanimlanabilir. Izgara ortamlari i¢cin 0 ve 1°den olusan bir matris
olusturulur. Bu matriste 0, engelsiz bir hiicreyi ve 1, bir engel hiicresini temsil eder. Aday
coziimler, Esitlik (4.1)’deki gibi iki boyutlu bu 1zgara ortaminda bir dizi 1zgara

hiicresinden olusan bir yolu temsil eder.

Y = {pl,pz, wrDis o Py, | My € N*} (4.1)

Burada, Y planlanan yolu, p; yolun i’inci hiicresini ve n,, ise yolu olusturan hiicre saysi

temsil eder. Bu ¢alismada her yolun degerlendirildigi amag fonksiyonu Esitlik (4.2)’deki

gibi modellenmistir.

f1, eger ny, = 0 ise

f2) aksi taktirde (4.2)

arg myin F= {
Burada, F amag fonksiyonunu ve n; engel ihlal sayisini1 temsil eder. Engel ihlal sayis1
bir ¢6zlim tarafindan temsil edilen yolun kag¢ engeli ihlal ettigini gdsterir. Bu fonksiyon
bir yolu iki farkli sekilde degerlendirir. Fonksiyon, engel ihlali yoksa yalnizca yolun
uzunlugunu (f; ), engel ihlali varsa bir ceza puani (f5) tiretir. f; yolun uzunlugunu hesaplar
ve Esitlik (4.3)’de gosterilir. f, ise n,’ye bagl olarak bir ceza puani liretir ve Esitlik

(4.4)’te gosterilir.

ny-1

fi= ) =il (43)
i=1
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fhp=m-n-ny (4.4)

Burada, m ve n sirasiyla ortam matrisinin satir ve siitun sayilarini (1zgara ortaminin
boyutunu) temsil eder. Onerilen algoritmanin kapsamli degerlendirmesi igin dért farkli
metrik dikkate alinmistir: Yol uzunlugu, yolu olusturan hiicre sayisi, toplam doniis agisi
ve doniis enerji tilketimi. Bu metrikler, algoritmanin dogrulugunu ve verimliligini
degerlendirmede kritik 6neme sahiptir, ¢linkii algoritmanin performansini objektif olarak
Olcmek ve potansiyel iyilestirmeleri belirlemek i¢in gereklidir. Yol uzunlugu ve hiicre
sayis1 yukarida bahsedilmektedir. Toplam doniis agist (¢;) robotun yolda dondiigi
acilarin toplamidir. Doniis acis1 ardasik ti¢ hiicreden (p;, pi+1, Pi+2) olusan iki diizlemsel
¢izgi arasindaki a¢1 olarak diisiiniilebilir. Bu ¢izgiler hiicreler arasindaki yol parcalaridir.
Toplam doniis agis1 bu ¢izgiler arasindaki doniis acilarin toplamidir ve Esitlik (4.5)’te
gosterildigi gibi hesaplanmistir. Hiicre sayis1 ve toplam doniis acis1 kavramlart Sekil

4.1°de gosterilmektedir.

ny—Z ny—Z

0, = z 0; = cos=1 ( (Pir1 — P - Piv2 — Pis1) )
TLYT L Pier = pill - Pirz — Preall

(4.5)

L

Hedef

Baslangig

Sekil 4.1. Hiicre sayis1 ve toplam doniis acist kavramlar1 (Mavi ¢izgi planlanan bir
yolu, siyah noktalar hiicreleri ve ¢, ve ¢, ise doniis a¢ilarini temsil eder.)

Robot hareket yoniinii degistirdigi durumlarda diiz ilerlemeye kiyasla daha fazla enerji
harcamaktadir. Bu nedenle doniis anlarindaki enerji tiiketiminin de dikkate alinmasi
gerekmektedir. Bu ¢alismada doniis enerji tiiketimi (€;) robotun belirli bir yol {izerindeki
hareketi sirasinda yoniinii degistirdigi noktalarda harcadigi enerjilerin toplami olarak
tanimlanmistir. Bu metrikte doniis agis1 0° ise (robot diiz gidiyorsa) doniis enerji tiiketimi

sifir kabul edilirken; 45°, 90°, 135° ve 180° gibi doniislerde tiiketilen enerji daha
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yiiksektir. Ayrica bu caligmadaki doniis enerji tiiketimi sadece belirli doniis agilarina
degil, tim yon degisimlerinin etkisine duyarlidir. Her bir doniis acis1 45°’lik referans
degere oranlanarak normalize edilmis ve toplam tiiketim bu oranlarin toplami iizerinden

belirlenmistir. Doniis enerji tilketimi Esitlik (4.6)’daki gibi hesaplanmustir.

ny—Z ny—Z

(p.
E = z £ = Z 45‘0 (4.6)
i=1 i=1

4.2.2. Onerilen Yontem

Onerilen IABC igin iki mekanizma eklenmistir: dogrusallastirma stratejisi ve yerel arama
stratejisi. Dogrusallagtirma stratejisi, 1zgara ortaminda olusturulan yolun gereksiz
koselerini ortadan kaldirmaya odaklanan bir kullanim tabanli 1yilestirmedir. Yerel arama
stratejisi, en 1yl ¢Ozlimiin maliyetini daha da optimize etmeyi amaglayan bir kesif tabanl
mekanizmadir. Boylece bu iyilestirmeler algoritmanin kullanim-kesif dengesini

bozmadan gerceklestirilmistir.
4.2.2.1. Dogrusallastirma Stratejisi

Izgara tabanli yol planlamasinda, temel ABC optimum yollar1 planlarken engel
icermeyen gereksiz 1zgara hiicrelerini kullanabilir. Dogrusallagtirma stratejisini
kullanarak bu gereksiz 1zgara hiicreleri goz ardi edilir ve yol daha dogrusal hale getirilir.
Boylece daha uygun maliyetli yollar elde edilebilir. ny, =0 durumu igin, f; alt
fonksiyonunu hesaplamadan hemen oOnce, yolu dogrusallastirmak i¢in bu strateji
kullanilir. Bundan sonra algoritma dogrusallastirilmis yolun uzunlugunu hesaba katarak
calismaya devam eder. Bu strateji, yolun 1zgara hiicrelerinin ti¢lii gruplarina odaklanarak
ilerler. Ilk noktay1 ve iiciincii noktayr temel alir ve ikinci noktada bir engel olup
olmadigimi kontrol eder. Engel yoksa ikinci nokta gereksiz olarak tanimlanir ve yol
dizisinden ¢ikarilir. Bdylece daha dogrusal bir yol parcasi elde edilir. ikinci noktada bir
engel varsa hicbir islem yapilmaz ve bir sonraki {li¢lii gruba odaklanilir. Bu dongii, yolun
tim hiicreleri tg¢lii gruplar halinde incelenene kadar devam eder. Dogrusallastirma
stratejisinin  prensibini  Sekil 4.2’de, dogrusallastirma stratejisi tabanli amag

fonksiyonunun (DSAF) s6zde kodu ise Algoritma 4.1°de gosterilmektedir.
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—— Dogrusallastirma Oncesi Yol
3 2 <
—p ‘ — Dogrusallastirma Sonras1 Yol
._
1 2 1 D Engel
e
5 6 3 4
4 _» 2
)
3
o
1 2 1
Sekil 4.2.  Dogrusallagtirma stratejisinin prensibi (Yukaridaki ortamda mavi yolun

ikinci hiicreyi ve asagidaki ortamda mavi yolun ikinci ve ii¢iincii hiicreleri
gereksiz olarak tanimlanabilir. iki yatay veya dikey 1zgara hiicresinin
merkezleri arasindaki uzakligin 1 br oldugu disiiniildiiglinde, asagidaki
ortam i¢in mavi yolun uzunlugu 5.41 br, kirmiz1 yolun uzunlugu ise 4.65
br’dir. Bu sonug¢ yol uzunluguna gore %14.05°lik bir iyilestirme oldugunu
gostermektedir.)
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Algoritma 4.1: DSAF’nin s6zde kodu
Girdi: x, E // Aday ¢0zlim, ortam matrisi
Cikti: f // Maliyet

I: ny <0, fe<0,[mn] < size(E)

2: Y « F(x) // Aday ¢6ziimiin yola doniistiiriilmesi
30 Ly « f1(Y)
4: fori=1:1,
5: pi < Y (D)
6: ifE(p) ==1
7: ny <ny+1
8: end if
9: end for
10: ifn, ==0
11: Y «Y
12: L, « fi(Y")
13: i1
14: while i # L, — 2
15: pi < Y'(i)
16: Divz < YV'(i+2)
17: if E(pi:piv2) == 0
18: Y'i+1) =0
19: i—i—1
20: end if
21: i—i+1
22: L, « f,(Y")
23: end while
24: f S Mo —pill, Yi{po, o)} < E
25: else
26: | fem-n-ny
27: end if

4.2.2.2. Yerel Arama Stratejisi

ABC bir ¢oziimiin komsularina ve problemin tek bir parametresine odaklanarak
giincelleme gerceklestirir. Yinelemelerde iiretilen en iyi ¢oziim her zaman en iyi
olmayabilir ve yerel minimuma diisebilir. Bu nedenle IABC’de her yinelemenin sonunda
iiretilen en 1yi ¢6ziim, kasif aris1 agamasina benzer bir yerel arama stratejisine tabi tutulur.
Bu stratejide, en 1yi ¢6ziimiin her parametresi i¢in rastgele yeni bir deger iiretilir. Bu yeni
parametreli ¢oziimiin maliyeti mevcut ¢ézlimiinkine gore daha diisiikse yeni parametreli
¢ozlim tercih edilir. Bu arama ¢oziimiin tiim boyutu boyunca devam eder. Bu strateji ile
en iyi ¢ozlimden daha iyi maliyete sahip ¢oziimler iiretilebilir ve boylece algoritmanin

arama performansi iyilestirilebilir. Yerel arama stratejisinin (YAS) prensibi Sekil 4.3’te,
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bu strateji ile Onerilen IABC algoritmasinin sdzde kodlar1 sirasiyla Algoritma 4.2 ve

4.3’te, onerilen IABC algoritmasinin akis diyagrami ise Sekil 4.4’te gosterilmektedir.

© 06006 © 06006
e

' — Yerel Arama Sonras1 Yol

|:| Engel

Yerel Arama Oncesi Yol

Sekil 4.3.  Yerel arama stratejisinin prensibi (En iyi ¢6ziimii temsil eden bu yolun
ficiincii hiicreyi giincellenmistir. Iki yatay veya dikey 1zgara hiicresinin
merkezleri arasindaki uzakligin 1 br oldugu diisiiniildiigiinde mavi yolun
uzunlugu 4.65 br, kirmizi yolun uzunlugu ise 4.16 br’dir. Bu sonug yol
uzunluguna gore %10.54°liik bir iyilestirme oldugunu gostermektedir.)

Algoritma 4.2: YAS 1n s6zde kodu
Girdi: %, f, E, x;, x, // Eski en iyi ¢oziim, eski en iyi ¢6ziimiin maliyeti, ortam matrisi,
arama sinirlari
Cikti: %, f // Yeni en iyi ¢6ziim, yeni en iyi ¢oziimiin maliyeti

I: m e size(%)

2: fori=1:m

3: x' <X
4 x' < x;+r(x, —x), r~U(0,1)
5 f' « DSAF(x',E) // Algoritma 4.1
6: iff'<f
7 £ ex'
8.
9
0

fef
end if
end for

10:
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Algoritma 4.3: Onerilen IABC algoritmasinin sézde kodu

11 E,D,Xmin, Xmax < Ortam matrisi, problem boyutu, arama sinirlar

2: T,S,limit « Kontrol parametreleri
30 X ex +r(x, —x), r~U(0,1)5%P
4. f; « DSAF(x;,E), i€{1,2,..,5}, x; € X // Algoritma 4.1
5: fit; « F(f;) // Uygunluk degerleri - Esitlik (3.33)
6: (%, f)«<arg rilél)?(flt(x)
7. fort=1:T
8: fori = 1: S
o (x]) « Xx; +<I>](x - X;. ) X, ~X\{x;}, j~{12,..,D}
10: f; < DSAF ((x/) ,E) // Algoritma 4.1
11: fit; « F(f{) // Uygunluk degeri - Esitlik (3.33)
12: if fit; > fit;
= i ()
14: trialy, < 0
15: else
16: | trialy, < trial,, +1
17: end if
18: end for
19: 6 « F(fit) // Segilme olasiliklar - Esitlik (3.34)
20: fori =1:S
21 ifr~U(01) <4
22 (x]) « Xx; +<D](x - X;. ) X, ~X\{x;}, j~{12,..,D}
23: f{ < DSAF ((xl]) ,E) // Algoritma 4.1
24: fit; « F(f;) // Uygunluk degeri - Esitlik (3.33)
25: if fit! > fit;
2 il < (x])
27: trialy, < 0
28: else
29: | trialy, < trial,, + 1
30: end if
31: end if
32: end for
33: x,, < argmaxtrial(x)
x€X
34: if trial, > limit
35: Xy < X +1(xp —x7), v~U(0,1)
36: fxW < DSAF(x,, E) // Algoritma 4.1
37: fity, < F(fy,) // Uygunluk degeri - Esitlik (3.33)
38: end if
39: (% f) < arg r)rclea)gfit(x)
40: (%, f) < YAS(®, f, E, x;, x) // Algoritma 4.2
41: end for

42: % f
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Kontrol

parametrelerini
ayarla ve

popiilasyonu iiret

A 4

Yeni ¢oziimler |
iiret E
Is¢i Ar1
Asamasi A 4
Maliyetleri
DSAF’de hesapla
Secilme
olasiliklarint
— hesapla
Maliyetleri
DSAF’de hesapla
Gozell An 4
Asamasi

Yeni ¢oziimler Tim gozciler

iiret dagitildi m1?
Maksimun trial £+
degerli ¢6ziimii bul
A
Kasif Ant Coziim terk
Asamasio edildi mi?

Rastgele yeni
¢Ozlim lret

- v

Y AS’1 galigtir

Evet Hayir
Dur

\ 4

Sekil 4.4. Onerilen IABC algoritmasinin akis diyagrami

4.2.2.3. IABC Algoritmasinin Karmasikhgi

Bu calismadaki amag¢ fonksiyonunda herhangi bir ¢oziimiin degerlendirme zamani tjf
olarak kabul edilirse, karmagsikligi O(tf) olarak ifade edilir. Temel ABC’de, dnce

baslangi¢ popiilasyonu amag fonksiyonunda degerlendirilir. Popiilasyon biiytikligi S ile
gosterilirse, ABC’nin baslangi¢c karmasikligi Esitlik (4.7)’de gosterilmektedir.
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O(S-tf) =0(S-t") (4.7)

Daha sonra is¢i ar1, goézcii ar1 ve kasif ar1 asamalart maksimum iterasyon sayist (T) igin
calistirilir. Amag fonksiyonu is¢i ve gozcii ar1 asamalarinda S kez, bir ¢oziimiin sayaci
limit degerine ulagirsa kasif ar1 asamasinda bir kez ¢cagrilir. ABC’nin iteratif karmasikligi

ve toplam karmasiklig sirasiyla Esitlik (4.8) ve (4.9)’da gosterilmektedir [76].

o(T-(s-tf+5-tf +1)))

=0(T-(2-5-1))
=0(T-S-t7) (4.8)

0UBO =0(S-t") +0O(T-S-t")=0(T-S-t") (4.9)

Onerilen IABC’de ilk olarak, baslangi¢ popiilasyonu amag fonksiyonunda degerlendirilir.
Ancak, amag¢ fonksiyonunu cagirmadan Once bir c¢oziime karsilik gelen yol
dogrusallagtirma stratejisine tabi tutulur. Bu dogrusallastirilmis yol (giincellenmis
¢oziim) amag fonksiyonunda degerlendirilir. Bu stratejinin ¢aligma siiresi t; olarak

gosterilirse, IABC’nin baslangic karmasiklig1 Esitlik (4.10)’da gosterilmektedir.
0(s-(t +1tf)) = 0(s- ") (4.10)

Daha sonra is¢i ar1, gdzlemci ar1 ve kasif aris1 asamalari maksimum yineleme sayisi (T)
boyunca calistirilir. Tipki ABC’de oldugu gibi, amag¢ fonksiyonu is¢i ve gozlemci ar1
asamalarinda S kez ve ¢Ozlimiin sayaci limit degerine ulasirsa kasif aris1 agamasinda bir
kez cagrilir. Ancak, her amac¢ fonksiyonu ¢agrisindan 6nce dogrusallastirma stratejisi
uygulanir. Amag fonksiyonu yerel arama stratejisinde de ¢agrilir. Bu strateji yalnizca en
1yl ¢6zlim iizerinde ¢alistig1 icin amag fonksiyonu yalnizca bir kez ¢agrilir. Yerel arama
stratejisinin ¢aligma zamani t; olarak gosterilirse, IABC’nin iteratif karmasikligi ve

toplam karmagiklig Esitlik (4.11) ve (4.12)’de gosterilmektedir.

O(T-(S-(t{+t]f)+S-(t{+t})+(t{+t})+(t5+t})))
=0(T-(S-tT+S-tT+t"+1t"))
=0(T-(2-5-t")
=0(T-S-t") (4.11)
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OUABO) = O(S-t™)+ O(T-S-t7)=0(T-S - t7) (4.12)

Bu denklemler ABC ve IABC algoritmalarinin ayn1 hesaplama karmasikligina sahip

oldugunu gostermektedir.
4.2.3. Bulgular

Bu ¢alismadaki tiim simiilasyonlar MATLAB programlama dilinde kodlanmis ve 16 GB
RAM ve 2.6 GHz islemciye sahip bir bilgisayarda c¢alistirilmistir. Simiilasyon
deneylerinde Oncelikle onerilen IABC’nin performansi gerceklestirilmistir. IABC’nin
performans analizi i¢in Oncelikle ayn1 boyuttaki ortamlarda temel ABC ile detayli bir
sekilde karsilastirilmistir. ikinci olarak, IABC’nin iyilestirme bilesenlerinin katkilarini
test etmek icin bir ablasyon analizi gerceklestirilmistir. Ugiincii olarak IABC’nin
performansi farkli boyutlardaki ortamlarda test edilmis ve algoritmanin dl¢eklenebilirligi
arastirilmistir. Son olarak IABC 1iyi bilinen ve yeni gelistirilmis algoritmalarla ve giincel

caligmalardan elde edilen sonuglarla kapsamli bir sekilde karsilagtirilmistir.
4.2.3.1. IABC Algoritmasinin ABC ile Karsilagtirilmasi

Bu simiilasyonda &nerilen IABC temel ABC ile karsilastirilmistir. Ilk olarak, Sekil 4.5°te
gosterildigi gibi farkli zorluk seviyelerine sahip dért adet 20 x 20 br? boyutunda 1zgara
tipi ortam tasarlanmstir. Iki yatay veya dikey 1zgara hiicresinin merkezleri arasindaki
uzaklik 1 br’dir. Bu ortamlarda baslangic noktasi sol alt kose (1, 1) ve hedef noktasi sag
iist kosedir (20, 20). Ortamlarin engel orani, 6zellikleri ve tasarim kriterleri Tablo 4.2°de

gosterilmektedir.

[l T

() (b)

Sekil 4.5.  Ayni boyutlarda dort farkli 1zgara tipi ortam: (a) Ortam 1, (b) Ortam 2, (¢)
Ortam 3, (d) Ortam 4 (Gri kareler engelleri, kirmizi daireler ve yesil kareler
sirasiyla robotun baslangi¢ ve hedef noktalarini temsil eder.)
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Tablo 4.2. Ortamlarin engel orani, 6zellikleri ve tasarim kriterleri
Engel o I
Ortam Ozellik Tasarim Kriteri
Oram
1 0.19 Diizenli engellerle basit bir Alternatif ¢oziimlerin daha az
) ortam oldugu kisith ortamlarda IABC
Diizenli engellerle karmasik | algoritmasinin performansini
2 0.26 . 9 .
bir ortam degerlendirmek.
3 0.17 Ragtge}e dagilmis engellerle Diizensiz ve kaotik ortamlarda
basit bir ortam .
- IABC algoritmasinin
Rastgele dagitilmis engellerle N .
4 0.22 . performansini degerlendirmek.
karmasik bir ortam

Her iki algoritma i¢in de maksimum iterasyon sayisi, popiilasyon boyutu ve limit degeri

strastyla 200, 50 ve 100°diir [77]. Algoritmalar 30 kosma ile ¢calistirilmistir. Simiilasyon

sonucunda aymi boyuttaki ortamlarda her iki algoritma tarafindan planlanan yollar,

IABC’nin ABC ile performans karsilastirmasi ve ortalama yakinsama grafikleri sirasiyla

Sekil 4.6, Tablo 4.3 ve Sekil 4.7°de gosterilmektedir.

T T el [T
i
1

el |1

()
Sekil 4.6.

[T

LT

!

(b)

ABC ve IABC algoritmalarinin Ortam 1-4 i¢in planladigi yollar:
(a) Ortam 1, (b) Ortam 2, (¢) Ortam 3, (d) Ortam 4

Tablo 4.3. TABC ve ABC’nin ayn1 boyuttaki ortamlarda performans karsilastirmasi
(OP: Optimum, OR: Ortalama, SS: Standart Sapma)

o . Toplam Doéniis A¢ist Doniis Enerji
Ortam | Algoritma Yol Uzunlugu (br) Hiicre Sayist b (rad) Tl'iketimiJ

oP OR SS oP OR SS oP OR SS oP OR SS
1 ABC 43.21 | 46.06 | 1.80 38 4133 | 1.88 | 11.78 | 15.39 | 2.26 14 19.53 | 3.03

TIABC 41.24 | 41.24 0 11 11 0 4.94 4.94 0 2.36 2.36 0
5 ABC 57.21 | 60.25 | 2.43 53 55.96 | 4.86 | 14.92 | 18.09 | 2.94 13 19.93 | 5.31
TIABC 55.63 | 55.71 | 0.32 18 1893 | 0.25 | 11.35 | 11.36 | 0.04 2.54 2.66 0.39
3 ABC 30.79 | 33.84 | 1.65 24 29.03 | 2.25 7.06 | 1332 | 2.84 9 17.80 | 4.93
TABC 27.46 | 28.79 | 0.98 8 10.40 | 1.63 1.95 4.20 1.47 2 3.95 1.05
4 ABC 31.21 | 34.17 | 1.18 26 29.10 | 1.49 | 1021 | 1547 | 245 10 16.56 | 4.17
IABC 28.50 | 29.61 | 0.47 12 15.03 | 1.27 5.53 7.38 1.23 2.59 4.28 1.64
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Sekil 4.7.  Ortam 1-4 i¢in ortalama yakinsama grafikleri: (a) Ortam 1, (b) Ortam 2,
(¢) Ortam 3, (d) Ortam 4

Sekil 4.6°’da gosterilen yollar, IJABC’nin ABC’den daha kisa ve daha diizglin yollar
tirettigini gdstermektedir. Dogrusallastirma stratejisi nedeniyle IABC tarafindan iiretilen
yollardaki hiicre sayisi ABC’den daha azdir. ABC, yolun gectigi her hiicreyi hesaba
katmistir, bu da yolun maliyetini artirir. Tablo 4.3, IABC’nin yol uzunluklar1 agisindan
her ortamda ABC’den iistiin oldugunu gostermektedir. IABC, ABC’ye kiyasla ortalama
yol uzunluklari agisindan Ortam 1 i¢in %10.45, Ortam 2 i¢in %7.53, Ortam 3 i¢in %14.9
ve Ortam 4 i¢cin %13.35'lik bir iyilestirme saglamistir. Standart sapmalar, IABC’nin
ABC’den daha kararli sonuglar iirettigini gostermektedir. Ayrica, hiicre sayisina gore
onerilen IABC ABC’den daha etkili goriinmektedir. Ortalama hiicre sayis1 agisindan
IABC, ABC’ye kiyasla Ortam 1 i¢in %73.38, Ortam 2 i¢in %66.17, Ortam 3 i¢in %61.17
ve Ortam 4 icin %48.34 oraninda iyilestirme saglamistir. Bu sonuglar, Onerilen
algoritmanin diger yontemlere goére daha az hiicre kullanarak ayni optimizasyon
hedeflerine ulasabilecegini gostermektedir. Toplam doniis agisina gore, IABC her ortam
icin ABC’den daha diisiik ac¢ili ve daha diizgiin yollar planlamistir. Boylece diger
metriklerde oldugu gibi bu metrikte de etkili bir yontem oldugu goriilmektedir. Robotlarin
doniis hareketlerinde de enerji tiikettigi diigiiniildiigiinde, 6nerilen algoritmanin robotun
enerjisini optimum sekilde yonettigi soylenebilir. Ortalama toplam doniis agis1 agisindan,
IABC, ABC algoritmasina kiyasla Ortam 1 i¢in %67.89, Ortam 2 i¢in %37.18, Ortam 3
icin %68.44 ve Ortam 4 icin %52.26 oraninda bir iyilestirme saglamistir. Sekil 4.7°de
gosterilen yakinsama grafikleri, IABC’nin ABC’den daha hizli yakinsadigim
gostermektedir. Ayrica, her iki algoritma da diizensiz engel ortamlarinda diizenli engel
ortamlarina goére daha hizli yakinsamistir. Bu sonuglar, IABC’nin tiim degerlendirme

Olciitleri acisindan temel ABC'den iistiin oldugunu kanitlamaktadir.
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4.2.3.2. IABC Algoritmasinin Ablasyon Analizi

Ablasyon analizi, yapay zekadda bir algoritmanin farkli bilesenlerinin performansi
tizerindeki etkisini incelemek i¢in kullanilan bir yontemdir. Modelin belirli bir 6zelligini
veya bilesenini kaldirarak performans degisikligi analiz edilir ve bu da kritik bilesenlerin
tanimlanmasina olanak tanir. Onerilen IABC’nin dogrusallastirma ve yerel arama olmak
tizere iki iyilestirme bileseni oldugundan, bu iki bilesenin ayr1 ayr etkilerini incelemek
ve hangisinin daha kritik bir iyilestirme oldugunu belirlemek onemlidir. Bu etkiyi
incelemek i¢in, IABC-1 ve IABC-2 olmak {izere iki algoritma dikkate alinmistir. IABC-
1 sadece dogrusallagtirma bilesenini icerirken, IABC-2 sadece yerel arama bilesenini
icerir. IABC-1 ve TABC-2, Alt Baslik 4.2.3.1°de bahsedilen Ortam 2 ve 4 i¢in test
edilmistir. Adil bir karsilastirma i¢in, IABC-1 ve IABC-2’nin maksimum iterasyon sayisi
ve poplilasyon boyutu sirasiyla 200 ve 30 olarak ayarlanmistir. Algoritmalarin limit
degerleri de 100 olarak ayarlanmig ve algoritmalar bagimsiz olarak 30 kez ¢alistirilmistir.
ABC, TABC-1, IABC-2 ve IABC’nin Ortam 2 ve 4 i¢in yol uzunlugu karsilagtirmasi
Tablo 4.4’te gosterilmektedir.

Tablo 4.4. ABC, IABC-1, IABC-2 ve onerilen IABC algoritmalarinin Ortam 2 ve 4
i¢cin yol uzunlugu (br) karsilagtirmasi (OP: Optimum, OR: Ortalama, SS:

Standart Sapma)
Algoritma Ortam 2 Ortam 4
op OR SS op OR SS
ABC 57.21 60.25 243 31.21 34.17 1.18
IABC-1 55.63 56.36 1.32 28.83 30.60 0.83
IABC-2 57.21 58.79 1.45 29.21 33.06 1.28
IABC 55.63 55.71 0.32 28.50 29.61 0.47

Tablo 4.4’te IABC-1’in IABC-2’den daha fazla iyilestirme sagladigi goriilmektedir.
Ortam 2'deki ortalamalar agisindan, IABC-1 ABC’ye kiyasla %6.45’lik bir iyilestirme
saglarken, IABC-2 %?2.43’liikk bir iyilestirme saglamistir. Ortam 4 i¢in ortalamalar
acisindan, IABC-1 ABC’ye kiyasla %10.53’liik bir iyilestirme saglarken, IABC-2
%3.26’l1k bir iyilestirme saglamistir. Ayrica, Ortam 2 i¢in ortalamalar agisindan IABC,
IABC-1’e kiyasla %1.17 ve IABC-2’ye kiyasla %5.21’lik bir iyilestirme gostermistir.
Ortam 4 i¢in ortalamalar agisindan IABC, IABC-1"e kiyasla %3.24 ve IABC-2’ye kiyasla
%10.44°1iik bir iyilestirme gostermistir. Bu sonuglara gore, dogrusallastirma bileseni

yerel arama bileseninden daha kritiktir.
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4.2.3.3. IABC Algoritmasinin Olceklenebilirlik Analizi

Onerilen algoritmanin farkli boyutlardaki veri kiimelerinde benzer performans gdsterip
gostermedigini belirlemek de 6nemlidir. Bu nedenle, 30 x 30 br’> ve 40 x 40 br?
boyutlarinda Ortam 5 ve Ortam 6 olarak adlandirilan iki ek ortam daha tasarlanmistir. Bu
ortamlarda baslangi¢ noktalari sol alt kdse (1, 1); hedefnoktalari sag {ist kdselerdir, Ortam
51i¢in (30, 30) ve Ortam 6 i¢in (40, 40). Ortam 5 ve 6'nin engel oranlar1 Alt Baslik
4.2.3.1°de bahsedilen Ortam 4 ile aynidir. Bu ortamlar Sekil 4.8’ de gdsterilmektedir.

(b)

Sekil 4.8. Farkli boyutlarda iki farkli 1zgara tipi ortam: (a) Ortam 5, (b) Ortam 6
(Gri kareler engelleri, kirmiz1 daireler ve yesil kareler sirasiyla robotun
baslangi¢ ve hedef noktalarini temsil eder.)

Adil bir karsilastirma i¢cin ABC ve JABC’nin maksimum iterasyon sayist ve popiilasyon
boyutu sirastyla 200 ve 50 olarak ayarlanmistir. Algoritmalarin limit degerleri 100 olarak
ayarlanmis ve algoritmalar bagimsiz olarak 30 kez calistirilmistir. Ortam 5 ve 6 i¢cin ABC
ve IABC tarafindan planlanan yollar Sekil 4.9°da gosterilmektedir. IABC ve ABC’nin
farkli boyutlardaki ortamlarda performans karsilastirmasi Tablo 4.5’te gosterilmektedir.
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Sekil 4.9. ABC ve TABC algoritmalarinin Ortam 5 ve 6 i¢in planladig1 yollar:
(a) Ortam 5, (b) Ortam 6

EEE

Tablo 4.5. TABC ve ABC’nin 30 x 30 br® ve 40 x 40 br? boyutlardaki ortamlarda
performans karsilagtirmasi (OP: Optimum, OR: Ortalama, SS: Standart
Sapma)

Toplam Doéniis A¢ist Doniis Enerji
(rad) Tiiketimi

orP OR SS oP OR SS op OR SS orP OR SS

ABC 56.52 | 64.54 | 3.75 48 56.40 | 3.72 | 21.99 | 29.68 | 4.15 22 35.06 | 5.69

IABC 45.74 | 52.10 | 3.15 17 22.16 | 2.56 | 10.35 | 15.73 | 2.65 1.18 6.79 2.92

ABC 90.42 | 114.5 | 13.39 79 102.4 | 12.96 | 32.98 | 47.83 | 8.50 37 60.53 | 15.77

IABC 68.67 | 91.25 | 11.77 23 32.76 | 4.89 | 15.38 | 26.66 | 5.86 6.40 | 15.36 | 5.09

Ortam | Algoritma Yol Uzunlugu (br) Hiicre Sayis1

5

6

Sekil 4.9, IABC’nin 30 x 30 br’ve 40 x 40 br? ortamlarda 20 x 20 br? ortamlarda oldugu
gibi ABC’den daha kisa yollar iirettigini gdstermektedir. Tablo 4.5 dikkate alindiginda,
IABC tiim degerlendirme metriklerinde ABC’den yine daha iyi performans gostermistir.
Ortalama yol uzunluklar1 agisindan IABC, Ortam 5 i¢in %19.26 ve Ortam 6 i¢in
%20.31°lik bir iyilestirme gdstermistir. Ortalama hiicre sayis1 acisindan, IABC sirasiyla
%60.71 ve %68.01’lik bir iyilestirme gostermistir. Ortalama toplam doniis agisi
acisindan, IABC sirastyla %47.02 ve %44.24°lik bir iyilestirme gostermistir. Her
metrigin standart sapmalarina gére, IABC’nin ABC’den daha kararli bir algoritma oldugu
sOylenebilir. Bu sonuglar, onerilen IABC’nin farkli boyutlardaki veri kiimelerinde benzer
performans gosterdigini ve i1zgara tabanli yol planlama probleminde kullanigh bir

algoritma oldugunu kanitlamaktadir.
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4.2.3.4. TABC Algoritmasinin Iyi Bilinen ve Yeni Gelistirilmis Algoritmalarla

Karsilastirilmasi

Bu simiilasyonda, 6nerilen IABC’nin yol planlama performansi DE, PSO, GA ve
kovaryans matrisi adaptasyon evrim stratejisi (covariance matrix adaptation evolution
strategy, CMA-ES) [78] gibi iyi bilinen algoritmalarla karsilastirilmistir. Ayrica
literatiirdeki beyaz kdpekbaligi optimizasyonu (white shark optimizer, WSO) [79] ve
geyik siiriisii optimizasyonu (elk herd optimizer, EHO) [80] gibi yeni gelistirilmis
algoritmalarla da karsilastirilmistir. Bu karsilastirmalar icin Alt Bashik 4.2.3.1°de
belirtilen Ortam 2 kullanilmis ve algoritmalar bagimsiz olarak 30 kez ¢alistirilmistir. Tim
algoritmalarin kontrol parametreleri Tablo 4.6’da, IABC’nin iyi bilinen ve yeni

gelistirilmis algoritmalarla performans karsilastirilmasi Tablo 4.7°de gosterilmektedir.

Tablo 4.6. Tiim algoritmalarin kontrol parametreleri (T maksimum iterasyon sayisi,
N ve A popiilasyon boyutu, F 6l¢cekleme faktorii, CR ¢aprazlama orani, ¢,
ve ¢, kisisel ve sosyal katsayilar, MR mutasyon orani, f; ve f, dalgal
hareketin siir frekanslari, T ivme katsayisi, aq, a; ve a, pozitif sabitler,
B, boga orani, u ebeveyn sayisi, ¢, ve d, adim boyutu kontrolii i¢in
ogrenme orani ve soniimleme parametresi, c., ve ¢, kovaryans giincelleme
parametreleridir. CMA-ES'nin parametreleri bu ¢aligmadaki yol planlama
problemi i¢in problem boyutu 18 ve arama alani simrlart [1, 20] ile
ayarlanmistir.)

Algoritma | Parametre
ABC T =200,S = 50,limit = 100
DE T =200,S =50,F =[0.2,0.8],CR = 0.2
PSO T =200,S =50,¢c, =2,¢c, =2
GA T =200,S =50,CR=09,MR =0.1
CMA-ES | T =200,S =50,u = 25,¢, =0.43,d, = 1.43,c. = 0.2,¢, = 0.0581
T =200,S =50,f, =0.07,f, = 0.75,7 = 4.12,a, = 6.25,
a; = 100,a, = 0.0005
EHO T =200, =50,B, =0.2
IABC T =200,S = 50,limit = 100

WSO
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Tablo 4.7. Ortam 2 i¢in IABC’nin 1iyi bilinen ve yeni gelistirilmis algoritmalarla
performans karsilagtirilmasi (OP: Optimum, OR: Ortalama, SS: Standart

Sapma)
Algorifma Yol Uzunlugu (br) Hiicre Sayisi T0plam(?aodl;us Agist D“;‘i?lfef‘i'l‘;i”'

OP | OR ss OP | OR sS OP | OR sS OP | OR ss

ABC 5721 | 60.25 | 2.43 53 | 5596 | 4.86 | 14.92 | 18.09 | 2.94 13 | 19.93 | 531
DE 5721 | 5721 | 000 | 52 | 52.00 | 0.00 | 1492 | 1822 | 1.20 13 | 1613 | 1.69
PSO 7521 | 7849 | 184 | 70 | 73.06 | 2.39 | 1649 | 26.65 | 3.05 | 20 | 33.53 | 4588
GA 80.04 | 9957 | 1456 | 64 | 8470 | 1632 | 2434 | 3518 | 417 | 25 | 50.53 | 10.54
CMA-ES 9345 | 1064 | 376 | 94 | 1037 | 4.14 | 1649 | 24.19 | 639 | 23 | 3540 | 7.95
WSO 57.80 | 65.78 | 9.54 | 54 | 62.83 | 11.54 | 1649 | 2424 | 524 15 | 30.83 | 10.97
EHO 5721 | 60.77 | 449 | 52 | 55.76 | 322 | 1492 | 19.16 | 2.40 11 20 | 454
TABC 5563 | 5571 | 032 18 | 1893 | 025 | 1135 | 11.36 | 0.04 | 254 | 266 | 0.39

Tablo 4.7°ye gore, IABC’nin tiim degerlendirme Olgiitlerinde iyi bilinen ve yeni
gelistirilmis algoritmalardan daha iyi performans gosterdigi goriilmektedir. Ortalama yol
uzunlugu acisindan IABC, DE’ye kiyasla %2.62, PSO’ya kiyasla %29.02, GA’ya kiyasla
%44.05, CMA-ES’ye kiyasla %47.67, WSO’ya kiyasla %15.31 ve EHO’ya kiyasla
%8.33 oraninda bir iyilestirme gostermistir. Ortalama hiicre sayis1 agisindan, IABC ayn1
sirayla %63.59, %74.09, %77.65, %81.74, %69.87 ve %66.05 oraninda bir iyilestirme
gostermistir. Ortalama toplam doniis acis1 agisindan IABC, sirasiyla %37.64, %57.36,
%67.71, %53.03, %53.13 ve %40.71 oraninda iyilestirme goOstermistir. Standart
sapmalardan da goriilebilecegi gibi IABC diger algoritmalardan daha kararlidir. Yol
uzunlugu ve hiicre sayisinin standart sapmalar1 agisindan IABC, DE ile rekabet halinde
olmustur; ancak DE’nin yerel minimumda takilip kaldigi ve IABC’nin en iyi ve ortalama
degerler agisindan DE’den iistiin oldugu agiktir. Bu sonuglar 6nerilen IABC’nin 1yi
bilinen ve yeni gelistirilmis algoritmalardan daha 1iyi performans gosterdigini

kanitlamaktadir.
4.2.3.5. IABC Algoritmasinin Giincel Calismalardaki Sonuglarla Karsilastirilmasi

Bu simiilasyon, onerilen IABC’nin yol planlama performansii literatiirdeki son
calismalarda Onerilen yontemlerin sonuglariyla karsilasgtirmayr amacglamaktadir. Bu
nedenle IABC’nin yol planlama performanst 20 x 20 br? boyutlu 1zgara ortamlarda ABC
ve [81], [82], [83], [84] ve [85]te Onerilen algoritmalarin performanslariyla

karsilastirilmistir. Bu referanslarda tasarlanan ortamlar Sekil 4.10°da gosterilmektedir.
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Sekil 4.10. [81], [82], [83], [84] ve [85]te tasarlanan ortamlar: (a) Ortam 7 [81], (b)

Ortam 8 [81], (¢) Ortam 9 [82], (d) Ortam 10 [82], (e) Ortam 11 [83], ()
Ortam 12 [83], (g) Ortam 13 [84], (h) Ortam 14 [85]
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[81]°deki algoritmalar WOA, PSO, gri kurt optimizasyonu (grey wolf optimizer, GWO),
1sli sumru optimizasyon algoritmasi (sooty tern optimization algorithm, STOA), salp stirii
algoritmas1 (salp swarm algorithm, SPSA), mart1 optimizasyon algoritmasi (seagull
optimization algorithm, SOA) ve [81] de 6nerilen algoritma olan hibrit ates bocegi-balina
optimizasyon algoritmasidir (hybrid firefly-whale optimization algorithm, FWOA). Adil
bir karsilagtirma icin, ABC ve TABC’nin maksimum iterasyon sayisi ve popiilasyon
boyutu sirasiyla 500 ve 60 olarak ayarlanmistir. ABC ve IABC’nin limit degerleri 100
olarak ayarlanmis ve algoritmalar bagimsiz olarak 30 kez calistirllmistir. [81]°de
tasarlanan ortamlarda (Ortam 7 ve 8) FWOA ve bu ¢alismada onerilen IABC tarafindan
planlanan yollar Sekil 4.11 ve 4.12°de gosterilmektedir. Bu ortamlarda baslangi¢ noktasi
sol alt kose (1, 1) ve hedef noktasi sag iist kosedir (20, 20). Algoritmalarin yol uzunlugu
karsilastirmasi Tablo 4.8’de gosterilmektedir.

# I ol I

:: B

14 14 Vi
L
10 1 ‘/ 10 Il

4 1 4 1

j # 11 0 :H 11

(a) (b)
Sekil 4.11. FWOA ve IABC algoritmalarinin Ortam 7 ig¢in planladigi yollar:
(a) FWOA, (b) IABC
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Sekil 4.12. FWOA ve IABC algoritmalarinin Ortam 8 ig¢in planladigi yollar:
(a) FWOA, (b) IABC
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Tablo 4.8. TABC ile ABC ve [81]’deki algoritmalarin yol wuzunlugu (br)
karsilastirmasi (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma Ortam 7 Ortam 8
opP OR SS opP OR SS
ABC 29.79 31.07 0.64 30.38 31.83 0.93
WOA 28.70 45.48 67.09 29.80 45.71 66.95
PSO 28.46 31.67 4.60 29.91 44.59 67.15
GWO 28.82 30.55 2.40 29.21 31.05 0.92
STOA 29.40 29.45 0.13 30.87 31.14 0.17
SSA 28.82 29.85 0.36 29.11 31.33 0.54
SOA 28.82 29.45 0.22 30.54 31.16 0.21
FWOA 28.46 29.37 0.56 28.42 30.55 1.36
IABC 28.46 28.52 0.18 28.19 28.39 0.34

Ortam 7 i¢in, IABC ile planlanan yollarin en iyi uzunluklar1 ABC’ye kiyasla %4.48,
WOA’ya kiyasla 9%0.82, STOA’ya kiyasla %3.20 ve GWO, SSA ve SOA’ya kiyasla
%1.26 oraninda kisaltilmistir. IABC, FWOA ve PSO ile ayn1 sonucu iiretmistir. Tablo
4.9°daki siraya gore ortalama uzunluklarda sirasiyla %8.22, %37.28, %9.95, %6.66,
%3.15, %4.45, %3.17 ve %2.89 oraninda iyilesme gozlemlenmistir. Standart
sapmalardan da goriilebilecegi gibi, IABC diger algoritmalardan ¢ogunlukla daha kararh
olmasina ragmen, STOA’dan biraz daha kararsizdir. Ancak bu kararsizlik, STOA’dan
daha iyi olan en iyi-ortalama bandindadir. En kararsiz algoritma WOA’dir. Ortam 8 i¢in
IABC ile planlanan yollarin en iyi uzunluklar1 %7.20, %5.39, %5.73, %3.50, %38.67,
%3.16, %7.67 ve %0.81 oraninda kisaltilmistir. Ortalama uzunluklarda %10.80, %37.89,
%36.33, %8.57, %8.84, %9.39, %8.89 ve %7.08 oraninda bir iyilesme gozlemlenmistir.
Standart sapmalardan da goriilebilecegi gibi IABC’nin STOA, SOA ile yaklagik olarak
ayni1 kararlilik seviyesinde oldugu sOylenebilir. En kararsiz algoritmalarin PSO ve WOA

oldugu goriilmektedir.

[82]’deki algoritmalar ACO, ABC, WOA, yildirim tutunma prosediirii optimizasyonu
(lightning attachment procedure optimization, LAPO), SSA, GWO, beyaz balina
algoritmasi (beluga whale algorithm, BWO), karadul 6riimcegi algoritmasi (black widow
spider algorithm, BWOA) ve [82]’de Onerilen algoritma olan iyilestirilmis bir ACO ve
tyilestirilmis bir ABC’nin hibritidir (IACO-IABC). Adil bir karsilastirma i¢in, ABC ve
IABC’nin maksimum iterasyon sayist ve popiilasyon boyutu sirasiyla 200 ve 40 olarak
ayarlanmistir. ABC ve TABC’nin limit degerleri 100 olarak ayarlanmis ve algoritmalar

bagimsiz olarak 30 kez c¢alistirilmistir. [82]’de tasarlanan ortamlarda (Ortam 9 ve 10)
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IACO-IABC ve bu calismada 6nerilen IABC tarafindan planlanan yollar Sekil 4.13 ve
4.14°te gosterilmektedir. Bu ortamlarda baslangic noktasi sol {ist kose (1, 20) ve hedef
noktasi sag alt kosedir (20, 1). Algoritmalarin yol uzunlugu karsilagtirmasi Tablo 4.9°da

gosterilmektedir.
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Sekil 4.13. IACO-IABC ve TABC algoritmalarinin Ortam 9 i¢in planladigi yollar:
(a) IACO-IABC, (b) IABC

0 2 4 6 8 10 12 14 16 18 20 6 8 10 12
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Sekil 4.14. TACO-IABC ve IABC algoritmalarinin Ortam 10 i¢in planladig yollar:
(a) IACO-IABC, (b) IABC
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Tablo 4.9. TABC ile ABC ve [82]’deki algoritmalarin yol wuzunlugu (br)
karsilastirmasi (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma Ortam 9 Ortam 10

opP OR SS opP OR SS
ABC 29.77 30.11 0.27 31.20 31.57 0.30
ACO 28.62 31.62 2.44 30.38 32.09 1.39
WOA 30.00 30.93 0.76 32.78 33.15 0.30
LAPO 30.02 30.52 0.40 32.77 33.25 0.39
SSA 30.36 31.17 0.66 30.84 30.88 0.03
GWO 30.11 30.56 0.37 31.84 31.89 0.04
BWO 32.23 32.52 0.23 33.37 33.46 0.06
BWOA 30.23 30.61 0.31 31.10 31.28 0.15
IACO-IABC 31.40 31.40 0.00 30.89 30.89 0.00
IABC 27.73 28.52 0.45 29.04 29.33 0.22

Ortam 9 i¢in IABC ile planlanan yollarin en iyi uzunluklar1 Tablo 4.10’daki siraya gore
strastyla %6.85, %3.12, %7.56, %7.64, %8.65, %7.88, %13.95, %8.27 ve %11.68
oraninda kisaltilmistir. Ortalama uzunluklarda sirasiyla %5.29, %9.8, %7.79, %6.56,
%8.49, %6.68, %12.3, %6.83 ve %9.16 oraninda iyilesme gozlemlenmistir. Standart
sapmalardan da goriilebilecegi gibi IABC bazi yontemlere gore biraz daha kararsizdir.
Ancak bu kararsizlik bu yontemlerden daha iyi olan en iyi-ortalama bandindadir. En
kararsiz algoritma ACO’dur. Ortam 10 i¢in IABC ile planlanan yollarin en iyi uzunluklari
sirastyla %6.91, %4.39, %11.38, %11.35, %5.82, %8.77, %12.98, %6.6 ve %5.97
oraninda kisaltilmistir. Ortalama uzunluklarda sirasiyla %7.08, %8.57, %11.52, %11.79,
%5.02, %8.01, %12.32, %6.23 ve %5.04 oraninda iyilesme gozlemlenmistir. Standart
sapmalardan da goriilebilecegi gibi IABC’nin diger algoritmalarla yaklasik olarak ayni
kararlilik seviyesinde oldugu sdylenebilir. En kararsiz algoritmanin yine ACO oldugu

goriilmektedir.

[83]’teki algoritmalar ACO, ACO ve GA’nin bir hibriti (ACO+GA), SSA ve [83]’te
Onerilen algoritma olan iyilestirilmis SSA (improved SSA, ISSA) algoritmasidir. Adil bir
karsilastirma i¢cin, ABC ve IABC’nin maksimum iterasyon sayisi ve popiilasyon boyutu
sirasiyla 200 ve 50 olarak ayarlanmistir. ABC ve IABC’nin limit degerleri 100 olarak
ayarlanmig ve algoritmalar bagimsiz olarak 30 kez calistirnlmigtir. [83]’te tasarlanan
ortamlar (Ortam 11 ve 12) ile ISSA ve bu ¢alismada onerilen IABC tarafindan planlanan
yollar Sekil 4.15 ve 4.16’da gosterilmektedir. Bu ortamlarda baglangi¢ noktasi sol alt kose
(1, 1) ve hedef noktasi sag {list kosedir (20, 20). Algoritmalarin yol uzunlugu
karsilagtirmasi Tablo 4.10°da gosterilmektedir.
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Sekil 4.15. ISSA ve IABC algoritmalarinin Ortam 11 i¢in planladigi yollar:
(a) ISSA, (b) IABC
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Sekil 4.16. ISSA ve ITABC algoritmalarinin Ortam 12 i¢in planladig1 yollar:
(a) ISSA, (b) IABC

Tablo 4.10. TABC ile ABC ve [83]’teki algoritmalarin yol uzunlugu (br) karsilastirmast
(OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma Ortam 11 Ortam 12
opP OR SS opP OR SS
ABC 29.21 33.21 1.95 38.97 4091 1.38
ACO 29.21 31.81 2.02 39.79 45.45 3.06
ACO+GA 28.62 30.70 1.43 38.97 40.78 1.13
SSA 29.21 32.60 1.24 38.97 4231 3.25
ISSA 27.56 27.89 0.61 37.13 37.26 0.12
IABC 27.56 27.64 0.15 37.13 37.18 0.06

Ortam 11 i¢in, IABC ile planlanan yollarin en iyi uzunluklart ABC, ACO ve SSA ile
karsilagtirildiginda  %5.65 ve ACO+GA ile karsilastirildiginda %3.73 oraninda
kisaltilmigtir. IABC, ISSA ile aym1 sonucu iiretmistir. Ortalama uzunlukta ABC ile
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karsilagtirildiginda  9%16.76, ACO ile karsilastirildiginda %13.11, ACO+GA ile
karsilastinlldiginda  %9.97, SSA ile karsilagtinildiginda %15.2 ve ISSA ile
karsilastirildiginda %0.89 oraninda bir iyilesme gdzlemlenmistir. Standart sapmalardan
da gortilebilecegi gibi, en kararli algoritma IABC iken, en kararsiz algoritma ACO’dur.
Ortam 12 i¢in, IABC ile planlanan yollarin en iyi uzunluklar1 ACO ile karsilastirildiginda
%6.7 ve ABC, ACO+GA ve SSA ile karsilagtirildiginda %4.72 oraninda kisaltilmistir.
IABC, yine ISSA ile ayni sonucu tretmistir. ABC ile karsilagtirildiginda ortalama
uzunlukta %9.10, ACO ile karsilastirildiginda %18.19, ACO+GA ile karsilastirildiginda
%8.82 ve SSA ile karsilastirildiginda %12.12 ve ISSA ile karsilastirildiginda %0.21
iyilesme gozlemlenmistir. IABC, ISSA ile yaklasik olarak aynmi kararlilik diizeyine
sahiptir, diger algoritmalar daha kararsizdir. Genel olarak, oOnerilen IABC diger
algoritmalardan daha iyi performans gostermistir. ISSA ile aralarinda ufak bir fark
olmasina ragmen, yine de ondan tistiin oldugu sdylenebilir. Bu sonuglar, IABC’nin yol

uzunlugu agisindan diger metasezgisellerden iistiin oldugunu kanitlamaktadir.

[84] ve [85]’teki algoritmalar dijkstra, A*, [84]’te Onerilen iyilestirilmis sezgisel
mekanizmali ACO (improved heuristic mechanism ACO, IHMACO) ve [85]’te Onerilen
tyilestirilmis A* (improved A*, IA*) algoritmasidir. Adil bir karsilagtirma i¢in, ABC ve
[IABC’nin maksimum iterasyon sayist ve popiilasyon boyutu sirasiyla 200 ve 30 olarak
ayarlanmistir. ABC ve TABC’nin limit degerleri 100 olarak ayarlanmis ve algoritmalar
bagimsiz olarak 30 kez calistirllmistir. [84] ve [85] te tasarlanan ortamlarda (Ortam 13
ve 14) IHMACO, IA* ve bu ¢aligmada 6nerilen IABC tarafindan planlanan yollar Sekil
4.17 ve 4.18’de gosterilmektedir. Ortam 13’te baslangi¢ noktast sol iist kose (1, 20) ve
hedef noktas1 sag alt kosedir (20, 1). Ortam 14’te baslangic¢ noktasi sol alt kose (1, 1) ve
hedef noktasi sag iist kosedir (20, 20). Algoritmalarin yol uzunlugu karsilastirmasi Tablo
4.11°de gosterilmektedir.
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Sekil 4.17. IHMACO ve IABC algoritmalarinin Ortam 13 i¢in planladigi yollar:
(a) IHMACO, (b) IABC
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Sekil 4.18. TA* ve IABC algoritmalarinin Ortam 14 icin planladig1 yollar: (a) IA*,
(b) IABC

Tablo 4.11. TABC ile ABC, [84] ve [85]'teki algoritmalarin yol uzunlugu (br)
karsilagtirmasi (OP: Optimum, OR: Ortalama, SS: Standart Sapma)

Algoritma Ortam 13 [84] Ortam 14 [85]

OoP OR SS OoP OR SS
ABC 30.97 33.58 2.10 30.97 35.82 3.23
Dijkstra 29.79 29.79 0.00 32.72 32.72 0.00
A* 29.79 29.79 0.00 32.09 32.09 0.00

IHMACO 29.79 29.79 0.00 - - -
IA* - - - 31.01 31.01 0.00
IABC 28.70 29.01 0.68 29.55 30.09 0.47

Ortam 13 i¢in, IABC ile planlanan yollarin en iyi uzunluklart ABC’ye kiyasla %7.33,
dijkstra, A* ve IHMACQ’ya kiyasla %3.66 oraninda kisaltilmistir. Ortalama uzunlukta
ABC’ye kiyasla %7.33, dijkstra, A* ve IHMACO ya kiyasla %2.62 oraninda bir iyilesme



85

gozlemlenmistir. Ortam 14 icin, IABC ile planlanan yollarin en iyi uzunluklart ABC,
dijkstra, A* ve I[A*’a gore swrasiyla %4.59, %9.69, %7.92 ve %4.71 oraninda
kisaltilmigtir. Ortalama uzunluklarda sirasiyla %16.01, %8.03, %6.23 ve %2.97 oraninda
bir iyilesme gézlemlenmistir. Standart sapmalardan da goriilebilecegi gibi, dijkstra ve A*
gibi klasik algoritmalar rastgelelik ve kesif mekanizmalarini igermediginden, tiim
caligmalarda ayni sonucu lretmeleri ve standart sapmanin sifir olmasi kaginilmazdir.
Onerilen IABC rastgelelik icerdiginden, her calisma farkli sonuglar iiretir ve bu standart
sapmaya yansir. Ancak, en iyi ve ortalama sonuclar TABC’nin klasik arama
algoritmalarindan daha verimli oldugunu gostermektedir. Sonug¢ olarak, Onerilen

algoritma 1zgara tabanl yol planlama problemi i¢in etkili bir yontem olabilir.
4.3. Cok Engelli Ortamlarda Hizh Yol Planlama

Literatiirde bircok yol planlama algoritmasi1 gelistirilmesine ragmen, bu algoritmalar
karmasik ve ¢ok engelli ortamlarda uygulandiginda uzun calisma siirelerine ihtiyag
duymaktadir. Bunun i¢in bu algoritmalarin ¢aligma hizlarinin artirilmasi gerekmektedir.
Ancak ihtiyag¢ duyulan hizlanma genellikle algoritma tarafinda ¢oziilmeye
calisilmaktadir. Daha hizli algoritmalar gelistirilmekte veya mevcut algoritmalar
iyilestirilerek karmasikliklar1 azaltilmaktadir. Bu ¢alismada ise hizlanmanin problem
tarafinda ¢6zlilmesine odaklanilmis ve problemin basitlestirilmesi {izerinde durulmustur.
Bunun i¢in engellerin kiimelenmesiyle ortam karmasikliginin azaltilmasi ve bu sayede
yol planlama algoritmalarinin ¢aligma hizlarinin artirilmasi amaglanmistir. Bu amaglar
dogrultusunda metasezgisel ve kiimeleme algoritmalarinin bir arada kullanildig1 hibrit bir
model énerilmistir. Oncelikle PSO ve k-ortalamalar kiimeleme algoritmalari ile dnerilen
modelin detayl1 analizi gergeklestirilmistir. Ardindan, dnerilen modelin etkinligi TLBO,
ABC, DE, GA ve hiyerarsik kiimeleme algoritmalarinin kullanilmasi ile karsilastirmali

olarak degerlendirilmistir.
4.3.1. Problem Tanim

Bu calismadaki yol planlama kiibik egri interpolasyonu (cubic spline interpolation) ile
gergeklestirilmistir. Kiibik egri interpolasyonunun uygulanabilmesi i¢in belli noktalara
ihtiya¢ duyulur. PSO algoritmasindaki ¢oziimlere karsilik gelen bu noktalar parametre
noktalar1 olarak, noktalarin sayis1 da parametre sayist (D) olarak ifade edilir. Oncelikle,

amac¢ fonksiyonuna girdi olarak gelen bu parametre noktalarinin x ve y konumlari,
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planlanacak yolun baglangi¢ ve bitis noktalar ile birlikte farkl satir vektorlerine aktarilir.
Bu vektorler n, adet arama noktasina sahip kiibik egri interpolasyonu ile ayri ayri
interpole edilir. Bu sekilde planlanan yolun x ve y nokta dizileri elde edilmis olur, burada
x dizisindeki her bir nokta p;,, y dizisindeki her bir nokta p;, olarak ifade edilir. Daha
sonra, parametre noktalarinin uygunluk degerleri Esitlik (4.13)’te gosterilen amag
fonksiyonu ile hesaplanir. Bu denklem iki kisimdan olugmaktadir. Birinci kisim robotun
gidecegi yolun uzunlugunu hesaplarken, ikinci kisim da robot ile engeller arasindaki

uygulanabilir mesafeyi (engelden kaginma kontrolii) hesaplar [86].

argminF = L(1 + BV) (4.13)
Di€Y

Burada, i € {1,2, - ny}, Y planlanan yolu, p; bu yolun i’inci noktasini, L yol uzunluk
fonksiyonunu, f engel ihlal faktoriinii, V engelden kaginma fonksiyonunu temsil eder.
Yol uzunlugu Esitlik (4.14)’te ve engelden kaginma fonksiyonu Esitlik (4.15)te

gosterilmektedir.

ny-1

L= b —pil (4.14)

e IIPL pkll 3 P — pill .
V:zz <1 eger 1_T > 0 ise (4.15)

i=1k=1{ 0, aksi halde

Burada, n, engel sayisini, p; yolun i’inci noktasini, py k’mnc1 engelin merkez noktasini
ve 1Y ise k’inc1 engelin yarigapini temsil eder. Bu ¢alismada mobil robot ve engeller
dairesel olarak tasarlanmistir. Engelden kacinma kontroliinde sadece engelin yarigapi
degil (r°), ayn1 zamanda yaricapt boyutu (r") ve giivenlik mesafesi (L) de hesaba
katilmistir. Giivenlik mesafesi robot ile engel arasindaki bos alan1 ifade eder. Engelden

kaginma kontroliiniin temsili ¢izimi Sekil 4.19°da gosterilmektedir.



87

Sekil 4.19. Engelden kagcinma kontroliiniin temsili ¢izimi
4.3.2. Onerilen Yéntem

Bu c¢aligmada yol planlama algoritmalarinin ¢alisma siireleri iizerinde durulmus ve
metasezgisel ile kiimeleme algoritmalarinin bir arada kullanildigi hibrit bir model
onerilmistir. Bu model ii¢ asamadan olusur: Ilk asamada, kullanilan metasezgisel
algoritmanin kontrol parametreleri ile kiimeleme orami belirlenir, ortam ve engel
karakteristikleri tamimlanarak orijinal ortam olusturulur. ikinci asama olarak, bir
kiimeleme yontemine dayanarak gelistirilen bir engel kiimeleme algoritmasi ¢alistirilir.
Bu algoritma ile orijinal ortamdaki engeller belli sayilarda kiimelenir. Kiimelenen
engeller tek bir engel olarak tanimlanir. Boylece ortam karmasikligi azaltilir ve yol
planlama i¢in yeni bir ortam olusturulur. Uciincii asamada ise s6z konusu metasezgisel
algoritmanin kullanildig1 bir yol planlama simiilasyonu ile bu yeni ortamda optimum yol

planlanir. Onerilen modelin akis diyagram Sekil 4.20°de gosterilmektedir.
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Sekil 4.20. Onerilen modelin akis diyagrami

4.3.2.1. K-Ortalamalar Kiimeleme Algoritmasi
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K-ortalamalar kiimeleme algoritmasi (K-means clustering, KMC) verilerin belli bir

kritere gore otomatik olarak gruplandirilmasi i¢in yaygin olarak kullanilan ve iteratif

olarak calisan denetimsiz bir 6grenme teknigidir. Bu kiimeleme yontemindeki temel

prensip, kiime sayisinin ve kiime merkezlerinin belirlenerek birbirine benzerlik gosteren

verilerin aym1 kiimelere yerlestirilmesidir. Kiime merkezlerinin birbirine olabildigince

uzak konumlarda belirlenmesi gerekir. Kiime sayisinin belirlenmesi bu yontemin kilit

noktasidir. Algoritma oncelikle kiime sayisinca rastgele merkezler olusturur ve her bir

verinin kiime merkezleri arasindaki mesafe Esitlik (4.16) kullanilarak hesaplanir ve bu

mesafe araciligiyla veriler en yakin kiimeye atanir.

L; = ||pi — g4

(4.16)
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Burada, i € {1,2,..,n,}, j € {1,2, ...,nq}, p; i’inci veriyi, q; j’inci kiime merkezini, L;
ise i’inci veri ile j’inci kiime merkezi arasindaki Oklidyen mesafeyi, n, veri sayisini ve
ng ise kiime sayisini temsil eder. Oklidyen mesafesi yerine farkli mesafe denklemleri de

kullanilabilir. Veriler en yakin kiimelere atandiktan sonra Esitlik (4.17) kullanilarak her

kiimenin ortalamasi alinir ve bdylece yeni kiime merkezleri olusturulur.

1
q; =—z p (4.17)
|q1’|

pPEq;

Burada, |q ]-| j’inci kiimedeki veri sayisin1 ve p ise j’inci kiimedeki verileri temsil eder.
Bu yeni kiime merkezleri ve veriler arasindaki mesafe tekrar hesaplanir. Bu iteratif siire¢
tim verilerin en yakin merkezlere atanmasiyla (durdurma kriteri) son bulur. KMC

algoritmasinin sdzde kodu Algoritma 4.4’te gosterilmektedir [87-90].

Algoritma 4.4: KMC algoritmasinin sdzde kodu
Girdi: p,ng, T, x;, x;, // Veri, kiime say1s1, maksimum iterasyon sayisi, arama sinirlari
Cikti: Q // Kiime merkezleri

I: n, « size(p)

2: {91,923} € Q «x;+7r(xp, —x), r~U(0,1)

3: fort=1:T
4: fori =1:n,
S: for j = 1:n,
6: | L < llp: — gl
7: end for
8: q" < argmin L;(q)
qeqQ
9: q" < qi" V{pi}
10: end for
11: for j = 1:n,
1
12: qj < |q_j|2(PEQj)p
13: end for
14: end for

4.3.2.2. Engel Kiimeleme Algoritmasi

Bu c¢alismada cesitli kiimeleme algoritmalarinin kullanilabildigi bir engel kiimeleme
algoritmas1 onerilmistir. Engeller dairesel olduklari i¢in gruplandirma da dairesel olarak
tasarlanmigtir.  Detayli  analizde kiimeleme islemi KMC algoritmas: ile
gergeklestirilmistir. Bu yontem icin kiime sayis1 gerekli olsa da, bu ¢alisma yol planlama

algoritmalarinin ¢alisma hizlarini1 farkli kiime sayilar ile analiz eder. Bu sebeple kiime
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sayisini degistiren bir oran olusturulmustur. Calismada bu oran, % biriminde kiimeleme
orani (4) olarak ifade edilir ve engellerin yiizde kaginin kiimelenecegini temsil eder.
Onerilen modelde birbirine yakin engellerin kiimelenmesi esas almir. Her engel
kiimelenmedigi i¢in tek engelli kiimeler olusabilir. Kiimeleme orani arttik¢a kiimelerin
icindeki engel sayisi her zaman artar, ancak kiime sayisi belli bir seviyeye kadar artis
gosterir. Bu seviyeden daha yiiksek kiimeleme oranlarinda tek engelli kiime kalmaz ve
kiimelenecek engel sayist arttigt icin daha biiylik kiimeler olusur. Bu durumda kiime
sayis1 azalir ve kiimelerde ¢akisma durumu meydana gelir. Ancak algoritma bu kiimeleri
yeni statik engeller olarak belirledigi i¢in yol planlama konusunda herhangi bir zorluga
neden olmaz. Bu sayede engel sayist (n,) ve kiimeleme orani kullanilarak KMC
algoritmasit icin gerekli olan kiime sayis1 hesaplanir. Kiime sayisi Esitlik (4.18)

kullanilarak hesaplanir.

ngG=mn, XA (4.18)

q

Birden fazla engelin kiimelenmesinde Sekil 4.21°de oldugu gibi merkeze en uzak engelin

tamanni kapsayacak sekilde 7°" yarigapl bir daire olusturulur [91].

Sekil 4.21. Birden fazla engelin kiimelenmesi

Onerilen bu algoritma, bu daireleri ve tek engelli kiimeleri yeni bir engel dizisine aktarir
ve yeni engel dizisini esas alarak calisir. Bu sekilde engel sayisi azaltilarak ortam
karmagikliginin basitlestirilmesi saglanir. Bu ¢alismadaki KMC tabanli engel kiimeleme
algoritmasmin sdzde kodu Algoritma 4.5’te gosterilmektedir. Bu algoritmada 7°

engellerin yarigapini, O eski engel dizisini ve O’ ise yeni engel dizisini temsil eder.
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Algoritma 4.5: KMC tabanl engel kiimeleme algoritmasinin s6zde kodu
Girdi: 4,0, T, x;, x;, // Kiimeleme orani, eski engel dizisi, maksimum iterasyon sayisi,
arama sinirlar
Cikti: O’ // Yeni engel dizisi
l: n, < size(0)
2: ngeny X4
3: q; € Q< KMC(0,n,,T,x;,x), i€{12,..,n,} // Algoritma 4.4
4: fori=1lin,

5 n,; < size(q;)

6: ifn, ==

7. Otek < {po:ro}

8: else

9: Oc;ok < {qi}
10: for j = 1:n,;
11: | L:() < lla: —pl
12: end for

13: Linax, Tmax < arg ml.aX(Li)
14: rOI « Lmax + rr?tax

15: Ocor < Ogor U {r°'}

16: end if

17: end for

18: 0" « {Orer, Ocor}

4.3.3. Bulgular

Onerilen model, MATLAB 2019 programlama dilinde kodlanmis ve Windows 10 isletim
sistemi, INTEL CORE 17 islemcisi, 16 GB RAM’e sahip bir bilgisayarda ¢alistirilmistir.
Oncelikle 6nerilen modelin detayli analizi gerceklestirilmistir. Bu analiz sonucunda yol
planlama algoritmalarinin optimum c¢aligma hizlarma tekabiil eden optimum kiimeleme
oranlar1 elde edilmistir. Ardindan, detayli analizi desteklemek amaciyla model iizerinde
farkli  metasezgisel ve farkli kiimeleme algoritmalarinin  performanslari

degerlendirilmistir.
4.3.3.1. Onerilen Modelin Detayh Analizi

Onerilen model engellerin rastgele konumlarda iiretildigi ortamlarda test edilmistir.
Bunun i¢in 20 ve 30 engelli olmak iizere 50 x 50 br? boyutlu siirekli uzay formatinda iki
farkli ortam olusturulmustur. Ancak ayni alan igerisinde engel sayis1 arttikca modelin
problemi ¢6zmesi zorlagmaktadir. Bu calismada daha fazla engelli ortamlar olusturulsa
da, 30 engelin iizerindeki ortamlar i¢in orta ve yiiksek seviyelerdeki kiimeleme

oranlarinda alan darligindan dolay1 model problemi ¢6zememektedir. Bunun i¢in alanin
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genisletilmesi gerekir, ancak bu g¢alismada Onerilen model sabit alan {izerinde test
edilmistir. 20 engelin altindaki ortamlar ise degerlendirme i¢in anlamli degildir. Bu

caligmada tasarlanan bu iki ortam Sekil 4.22°de gosterilmektedir. Bu ortamlarda robotun

baslangi¢ konumu sol alt kose (0, 0) ve hedef konumu ise sag iist kdsedir (50, 50).

50 * 50 *
40 40 °
M °
° ° ° = ° ot
30 30 s
' *
> o ° >
* ° oo
20 . 20 N
° . . L
° %5 0 it
10 ° ¢ Engel 10 *° e Engel
W Baglangig Noktasi W Baslangi¢ Noktasi
* Hedef Nokta * Hedef Nokta
om ' om
0 10 20 30 40 50 0 10 20 30 40 50
X X
(a) (b)

Sekil 4.22. Onerilen modelin test edildigi ortamlar: (a) Ortam 15 (20 engelli ortam),
(b) Ortam 16 (30 engelli ortam)

Bu ortamlarda engelsiz en kisa mesafe 70.71 br’dir. Amag fonksiyonundaki engel ihlali
faktorii (f) ve kiibik egri interpolasyonu igin arama noktasi sayisi (q) 100 olarak, arama
alaninin siir degerleri x ve y i¢in [0 50] br olarak, engel konumlarinin siir degerleri x
ve y i¢in [10 40] br olarak belirlenmistir. Engellerin yarigap1 0.5 br, robotun yarigap1 0.3
br ve gilivenlik mesafesi 0.2 br olarak ayarlanmistir. Detayli analiz i¢in metasezgisel
algoritmalardan PSO ve kiimeleme algoritmalarindan KMC algoritmasi tercih edilmistir.
PSO algoritmas1 maksimum iterasyon sayist 50 ve poplilasyon boyutu 20 ig¢in
calistirilmistir. Kisisel ve sosyal deneyim katsayilar1 [2, 2], eylemsizlik agirliginin
baslangi¢ degeri 1, eylemsizlik agirliginin sinir degerleri [0.1 0.9] olarak belirlenmistir.
Problemdeki parametre sayis1 (D) 2, 3,4, 5, 6 ve 8 i¢in ayr1 ayr1 test edilmis ve en uygun
degerinin 2 oldugu gozlemlenmistir. Bu sebeple bu ¢alismadaki tiim simiilasyonlarda
parametre sayis1 2 olarak ayarlanmistir. Detayli analiz i¢in 6nerilen model kiimelemesiz
ve kiimelemeli olarak 30 kosma ile calistirilmistir. Kiimelemeli ¢alismada 9 farkl
kiimeleme orani kullanilmigtir. Ayrica model ¢alisma siiresi bakimindan, engel
kiimeleme algoritmasimin (EKA) ¢alisma siiresinin dahil oldugu ve olmadigi durumlar

icin ayr1 ayr1 degerlendirme gergeklestirilmistir. Her iki ortam i¢in elde edilen ortalama
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yol uzunluklar1 ve bu uzunluklarin kiimelemesiz calismaya gore artis oranlar1 Tablo
4.12°de gosterilmektedir. Sekil 4.23, Tablo 4.12°deki yol uzunlugu degerlerini grafiksel
olarak gostermektedir. Sekil 4.23’te kiimeleme oranlarindaki 0 degerleri kiimelemesiz

calismay1 temsil eder.

Tablo 4.12. Her iki ortam i¢in elde edilen ortalama yol uzunluklar1 ve bu uzunluklarin
kiimelemesiz calismaya goére artis oranlart (Bu bulgular 30 kosmanin
ortalamasidir.)

Kiimeleme Ortam 15 Ortam 16
Calisma Oram Yol ) Artis Yol ) Artis
(%) Uzunlugu Oram Uzunlugu Oram
(br) (%) (br) (%)

Kiimelemesiz - 71.96 - 71.89 -
10 72.15 0.25 72.15 0.36
20 72.16 0.27 73.04 1.59
30 72.42 0.63 73.56 2.31
40 73.22 1.75 74.32 3.37
Kiimelemeli 50 74.22 3.13 75.28 4.71
60 76.75 6.65 78.57 9.28
70 77.35 7.48 83.42 16.02
80 79.87 10.99 83.92 16.72
90 82.10 14.08 85.75 19.26

T mdemecramen T mdemecrmen

(a) (b)

Sekil 4.23. Her kiimeleme oranm1 icin elde edilen ortalama yol uzunluklar:
(a) Ortam 15 (b) Ortam 16

Tablo 4.12 ve Sekil 4.23 genel olarak incelendiginde, kiimeleme orani arttikca elde edilen
yol uzunluklarinda artis goriilmektedir. Bunun nedeni, kiimeleme oraninin artmasiyla
yeni ortamdaki engellerin boyutlarinin artmasi ve bundan dolay:1 yollarin daha kavisli
olmasidir. Ancak Tablo 4.12°deki artis oranlar1 goz oniine alindiginda, ytliksek kiimeleme

oranlar1 disinda telafi veya ihmal edilebilir bir artis mevcuttur. Ortam 15 icin yiiksek
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kiimeleme oranlar1 %80 ve %90 olarak kabul edilirse, diger 7 kiimeleme oraninda artig
miktar1 %10’u gegmemektedir. Ortam 16 icin yiiksek kiimeleme oranlar1 %70, %80 ve
%90 olarak kabul edilirse, diger 6 kiimeleme oraninda artis miktar1 yine %10’u
geecmemektedir. Calismadan 6rnek bir kogsma i¢in Ortam 15°te modelin kiimelemesiz ve
kiimelemeli olarak planladigi yollar Sekil 4.24°te, bu 6rnek kosma i¢in yakinsama egrileri

Sekil 4.25°te gosterilmektedir.

° Engel B Bagslangi¢ Noktasi % Hedef Nokta ~ —Yol ---Giivenlik Siniri * Robot o Kiimeler

50

* 50

50

50

50

(2) (h) (i)
Sekil 4.24. Ornek kosma i¢in Ortam 15’te modelin kiimelemesiz ve kiimelemeli olarak
planladig1 yollar: (a) Kiimelemesiz (b) %20 kiimelemeli (c) %30

kiimelemeli (d) %40 kiimelemeli (e) %50 kiimelemeli (f) %60 kiimelemeli
(g) %70 kiimelemeli (h) %80 kiimelemeli (i) %90 kiimelemeli
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\ Kimelemesiz
86 | %20 Kimelemeli ||
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%70 Kiimelemeli
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Sekil 4.25. Ornek kosma icin Ortam 15°teki yakinsama egrileri

Sekil 4.24 genel olarak incelendiginde, kiimeleme orani arttik¢a yollarin daha kavisli bir
sekilde elde edildigi goriilmektedir. Ayrica Sekil 4.25°te goriildiigi gibi kiimeleme orant
arttikca elde edilen yol uzunluklarinin optimum degerlerinde artig goriilmektedir. Ancak
bu artiglar ylizdesel olarak diisiik seviyelerdedir. Bazi kiimeleme oranlarindaki yakinsama
egrilerinde ¢akigmalar tespit edildigi igin bunlarin bir kismi gosterilmemistir. Ornek bir
kosma i¢in Ortam 16’da modelin kiimelemesiz ve kiimelemeli olarak planladig: yollar

Sekil 4.26°da, bu 6rnek kosma icin yakinsama egrileri Sekil 4.27°de gosterilmektedir.

° Engel B Baglangi¢ Noktast % HedefNokta ~ —Yol  ---Giivenlik Smir1 ° Robot  ° Kiimeler

50 4 50
40
30

-

20
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(2) (h) (i)

Sekil 4.26. Ornek kosma igin Ortam 16’da modelin kiimelemesiz ve kiimelemeli
olarak planladig1 yollar: (a) Kiimelemesiz (b) %20 kiimelemeli (¢) %30
kiimelemeli (d) %40 kiimelemeli (e) %50 kiimelemeli (f) %60 kiimelemeli
(g) %70 kiimelemeli (h) %80 kiimelemeli (i) %90 kiimelemeli

100 T T T T T T T T T

| Kiimelemesiz

‘ %30 Kiimelemeli
%50 Kiimelemeli
%70 Kiimelemeli | |
%80 Kiimelemeli
%90 Kiimelemeli

95 |

90 [

85

Yol Uzunlugu (br)

80 [

751

70 . . | | | | . . .
0 5 10 15 20 25 30 35 40 45 50
iterasyon

Sekil 4.27. Ornek kosma igin Ortam 16’daki yakinsama egrileri

Sekil 4.26 genel olarak incelendiginde, kiimeleme orani arttik¢a yollarin Ortam 15°e gore
cok daha kavisli bir sekilde elde edildigi goriilmektedir. Ayrica Sekil 4.27°de goriildiigi

gibi kiimeleme orani arttik¢a elde edilen yol uzunluklariin optimum degerlerinde yine
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artis goriilmektedir ve bu artig Ortam 15’e gore daha fazladir. Ancak bu artiglar da
yiizdesel olarak diisiik seviyelerdedir. Her iki ortam igin elde edilen ortalama calisma
siireleri ve bu siirelerin kiimelemesiz calismaya gore azalma oranlar1 Tablo 4.13’te
gosterilmektedir. Sekil 4.28, Tablo 4.13’teki ¢alisma siiresi degerlerini grafiksel olarak
gostermektedir. Sekil 4.28’de kiimeleme oranlarindaki 0 degerleri kiimelemesiz
calismay1 temsil etmektedir.

Tablo 4.13.  Her iki ortam i¢in elde edilen ortalama ¢alisma siireleri ve bu siirelerin

kiimelemesiz ¢alismaya gore azalma oranlar1 (Bu bulgular 30 kosmanin
ortalamasidir. KO: Kiimeleme Orani, CS: Calisma Siiresi, AO: Azalma

Orani)
KO Ortam 15 Ortam 16
Calisma (%) EKA Haric EKA Dahil EKA Haric EKA Dabhil
()

CS(s) | AO(%)| CS(s) |AO (%) | CS(s) |AO (%) | CS(s) | AO (%)
Kiimelemesiz - 1,36 - 1,36 - 1,48 - 1,48 -
10 1,32 2,85 1,33 2,14 1,46 1,42 1,47 0,47

20 1,28 5,17 1,29 5,05 1,37 7,10 1,38 6,40

30 1,22 9,86 1,23 9,21 1,34 9,55 1,35 8,81

40 1,21 11,16 1,21 10,55 1,31 11,60 1,32 10,92
Kiimelemeli 50 1,13 16,69 1,14 16,10 1,24 16,00 1,25 15,34
60 1,09 19,91 1,10 19,35 1,17 20,85 1,18 20,25
70 1,06 21,61 1,07 21,08 1,10 25,45 1,11 2491
80 1,05 22,47 1,06 22,01 1,07 27,62 1,08 27,13
90 1,05 22,83 1,05 22,42 1,06 28,33 1,06 27,90

T T T
EKA Harig
EKA Dahil | |

] ]
EKA Harig ¢
EKA Dahil 145

S
o W
w &

(8]
T
]
]

Calisma Siiresi (s)
Calisma Siresi (s)

o
T
[N}

1.7

1.05 I | L L . . . . . . L .
40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

0 15 20 30
Kimeleme Orani (%) Kiimeleme Orani (%)
(@) (b)

Sekil 4.28. Her kiimeleme oram1 i¢in elde edilen ortalama c¢alisma siireleri:
(a) Ortam 15 (b) Ortam 16

Tablo 4.13 ve Sekil 4.28 genel olarak incelendiginde, kiimeleme orani arttik¢a elde edilen
caligma siirelerinde azalma goriilmektedir. Bunun nedeni, kiimeleme oraninin artmasiyla

engel sayisinin ve ortam karmasikliginin azalmasidir. Ayrica Tablo 4.13’teki azalma
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oranlar1 goz Oniine alindiginda kayda deger azalma oranlari elde edilmistir ve bu
oranlarda kararlilik mevcuttur. Ortam 15°teki azalma oranlar1 Ortam 16’daki oranlara
gore daha yliksektir, ¢iinkii ortam karmasiklig1 daha diistiik seviyededir. Kiimelemeli
calismalarda EKA’nin dahil edilmesi calisma siiresini sadece milisaniyelik diizeyde

artmasina sebep oldugu i¢in azalma oranlar1 yine kayda deger seviyede kalmistir.

Calismadaki degerlendirme, yol uzunluklar ile c¢alisma siireleri arasindaki iligki
tizerinedir. Bu iliski ¢calisma siirelerindeki azalma ile yol uzunluklarindaki artis arasindaki
farktir, kazang olarak da diisiiniilebilir. Bu kazan¢ taniminda yol uzunlugu ve calisma
stiresi esit agirhiga sahiptir ve kazang oranlar1 bu sekilde hesaplanmistir. Her iki ortam

icin kiimeleme oranlarina gore kazang oranlar1 Tablo 4.14’°te gosterilmektedir.

Tablo 4.14. Her iki ortam i¢in kiimeleme oranlarina gore kazang oranlari

Kiimeleme Orani Ortam 15 Ortam 16
(%) EKA Hari¢c | EKA Dahil | EKA Hari¢c | EKA Dahil
10 2,60 1,89 1,06 0,11
20 4,90 4,78 5,51 4,81
30 9,23 8,58 7,24 6,50
40 9,41 8,80 8,23 7,55
50 13,56 12,97 11,29 10,63
60 13,26 12,70 11,57 10,97
70 14,13 13,60 9,43 8,89
80 11,48 11,02 10,90 10,41
90 8,75 8,34 9,07 8,64

Tablo 4.14 genel olarak incelendiginde, kiimeleme orani arttik¢a kazang oranlarinda 6nce
bir artts ve daha sonra bir azalma goriilmektedir. Orta seviyelerdeki kiimeleme
oranlarinda maksimum kazang elde edilirken, daha diisiik veya daha yiiksek kiimeleme
oranlarinda bu kazang¢ oranlar1 diigmektedir. Ortam 15’te %70 kiimeleme oraninda
maksimum kazang degeri elde edilirken, Ortam 16 i¢in bu oran %60’tir. EKA’nin dahil
edilmesi ¢alisma siiresini etkiledigi gibi kazang oranlarin1 da sadece minimal diizeyde
etkilemistir. Ayrica model farkli ortamlarda test edilmesine ragmen sonug¢ degismemis ve
optimum kiimeleme oranmin her zaman orta seviyelerde oldugu tespit edilmistir.
Engelleri kiimelemek yol uzunlugu agisindan kii¢iik bir dezavantaj gibi goriinse de,
caligma siiresi agisindan yol uzunlugundaki zarar telafi edebilecek ve buna ek olarak hiz

konusunda kazang saglayacak diizeyde bir avantaj saglamaktadir.
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4.3.3.2. Onerilen Modelin Farkhh Metasezgisel ve Kiimeleme Algoritmalariyla

Gergceklestirimi

Onerilen modelin detayli analizinde optimum kiimeleme oranlari elde edilmisti. Modelin
etkinligini gostermek ve analizi desteklemek amaciyla, bu kiimeleme oranlar ile farkl
metasezgisel ve kiimeleme algoritmalarinin performanslart Alt Baghk 4.3.3.1°de
bahsedilen her iki ortamda da karsilagtirmali olarak degerlendirilmistir. Engellerin
kiimelenmesi i¢cin KMC algoritmasina ek olarak hiyerarsik kiimeleme (hierarchical
clustering, HC) algoritmas1 kullanilmistir. Metasezgisel algoritmalardan da PSO’ya ek
olarak TLBO, ABC, DE ve GA ele alinmigtir. Amag fonksiyonu ve problem parametreleri
Alt Baslik 4.3.3.1°deki simiilasyonla aynidir. TLBO, ABC, DE ve GA’nin kontrol

parametreleri ise Tablo 4.15°te gosterilmektedir.

Tablo 4.15. TLBO, ABC, DE ve GA’nin kontrol parametreleri (T maksimum iterasyon
sayis1, S poptilasyon boyutu, D problem boyutu, F 6lgekleme faktorii, CR
caprazlama orani, MR mutasyon orant)

Algoritma | Parametre
TLBO T =200,S =50
ABC T =200,S =50,limit=05XxD XS
DE T =200,S =50,F =[0.2,0.8],CR =0.2
GA T =200,S =50,CR =098, MR = 0.1

Onerilen modelde bu algoritmalar her iki kiimeleme algoritmasi i¢in ayr1 ayr1 30 kosma
ile calistirilmistir. Her iki ortam i¢in optimum kiimeleme oranlarinda bu algoritmalar
tarafindan elde edilen ortalama yol uzunluklar1 ve EKA’nin dahil oldugu ortalama

caligma stireleri Tablo 4.16°da gosterilmektedir.

Tablo 4.16. Her iki ortam i¢cin PSO, TLBO, ABC, DE ve GA ile elde edilen ortalama
yol uzunluklar1 ve ortalama calisma siireleri (Bu bulgular 30 kosmanin
ortalamasidir. YU: Yol Uzunlugu, EDCS: EKA Dahil Calisma Stiresi)

Ortam 15 Ortam 16
Metasezgisel (%70 Kiimeleme Orani) (%60 Kiimeleme Orami)
Algoritma KMC HC KMC HC
YU EDCS YU EDCS YU EDCS YU EDCS
(br) (s) (br) (s) (br) (s) (br) (s)
PSO 77,35 1,07 77,04 1,12 78,57 1,18 75,45 1,15
TLBO 75,49 1,60 75,22 1,59 74,95 1,64 74,25 1,61
ABC 75,24 1,61 75,20 1,60 74,53 1,72 74,08 1,65
DE 87,37 1,17 87,35 1,15 90,59 1,30 85,76 1,28
GA 79,50 1,08 80,11 1,07 81,93 1,14 79,51 1,08
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Tablo 4.16 kiimeleme algoritmalar1 agisindan incelendiginde, her iki ortam i¢in HC’ nin
KMC’ye gore hem yol uzunlugu hem de calisma siiresi agisinda avantajli oldugu
sOylenebilir. Calismada ayrica, HC ve KMC’nin engellerin kiimelenmesi i¢in harcadigi
stireler sirastyla yaklasik 6 ve 20 ms olarak tespit edilmistir. Bu degerler de bu avantaji
desteklemektedir. Tablo 4.16 metasezgisel algoritmalar i¢in yol uzunlugu acisindan
incelendiginde, her iki ortam i¢in en iyi performanst TLBO ve ABC algoritmalari
gostermistir. DE, PSO ve GA daha verimsiz calisirken, bunlar arasinda en kotii
performans DE ile alinmistir. Calisma siiresi agisindan incelendiginde ise Ortam 15’teki

KMC harig diger senaryolarda en hizli algoritma GA olmustur.

4.4. Coklu Robot Yol Planlamasi i¢in Coklu Strateji ve Oz Uyarlamah Diferansiyel

Siniis-Kosiniis Algoritmasi

Bedava Ogle Yemegi Yok (No Free Lunch) teoremine gore, bir algoritma tiim
optimizasyon problemlerini ¢é6zmeyi garanti edemez. Bu nedenle, farkli optimizasyon
tekniklerinin gelistirilmesi gerekir. Mobil robotlarin yol planlamasi optimizasyonda
hesaplama agisindan zor bir problemdir ve bu problemde metasezgisel algoritmalar
popiilerdir [92]. Literatiirde ¢oklu robotlarin yol planlama problemi icin c¢esitli
metasezgisel algoritmalar dnerilmis olmasina ragmen, bunlarin ¢ogu hala bir seferde bir
degiskeni giincellemeye dayanir. Bu, algoritmalarin performansini ve yakinsamasini
sinirlar. Ayrica, arastirmacilar bir probleme yonelik uygun bir giincelleme stratejisi
gelistirmek icin bir¢ok girisimde bulunmak zorundadir. Bu da yiiksek hesaplama
maliyetleri ve uzun ¢aligma siirelerine neden olur. Bu dezavantajlar nedeniyle, tek bir
problem yerine daha genis bir problem kiimesi i¢in optimizasyon algoritmalari
gelistirmek Onemlidir. Bu algoritmalardan biri olan SCA, karmasik optimizasyon
problemlerinde (6zellikle ¢oklu robot sisteminin yol planlama probleminde) tatmin edici
sonuclar liretemez. Bu calismada, strateji havuzu ve kendi kendine adaptif bir
mekanizmaya sahip olan sdSCA adinda yeni bir algoritma Onerilmistir. Bu ¢aligmanin

temel katkilar1 su sekilde 6zetlenebilir:

e Mobil robotlarin yol planlamasi optimizasyonda hesaplama agisindan zor bir
problemdir ve SCA ¢oklu robotlarin iki boyutlu yol planlama probleminde tatmin

edici sonuglar iiretemez.
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e Daha genis bir problem kiimesi i¢in SCA’y1 gelistirmek amaciyla tek bir
giincelleme stratejisi yerine bir strateji havuzu diistiniilmiistiir. Bu havuz orijinal
giincelleme stratejisine ek olarak yeni diferansiyel stratejiler eklenerek

olusturulmustur.

e Strateji havuzunun kendi kendine adaptif oldugu, yani en tatmin edici sonucu
iireten stratejinin daha sik kullanildigi yeni bir algoritma tamitilmistir. Boylece,
temel SCA’nin tek bir stratejiye bagimliligi1 ortadan kaldirilmis ve daha genis bir

problem kiimesi i¢in daha kararli bir algoritma dnerilmistir.

e Bu calisma, ozellikle dinamik engellerin oldugu ortamlarda insansiz kara
araglarindan olusan ¢oklu robot sistemlerinin yerel yol planlama probleminde
coklu stratejili kendi kendine adaptif optimizasyon algoritmalarinin kullanildigi

ilk uygulamalardan biridir.
4.4.1. Problem Tanim

Coklu robotlarin yerel yol planlamasi, karmasik ortamlarda statik-dinamik engellere ve
diger robotlara carpmadan bir sonraki noktaya en az maliyetle hareket etmeyi ve boylece
adim adim hedef noktaya ulasmay1 amaglayan bir minimizasyon problemidir [93]. Bu
caligmada, robotlarin dairesel ve homojen oldugu ¢oklu mobil robot sisteminlerinin yerel
yol planlamas1 amaglanmistir. Bu simiilasyonda bir robotun bir sonraki konumu Esitlik

(4.19) kullanilarak hesaplanir.

p = pf + v, [(;?SEZB] At (4.19)
Burada, p}' i’inci robotun bir sonraki konumunu, pf i’inci robotun mevcut konumunu,
v; ve @; sirastyla i’inci robotun hizi ve yonelimini, At zaman adimini temsil eder. Hiz,
adim basina kat edilen mesafe olarak tanimlanir. Robotlarin bir sonraki konumlarini
belirlemek i¢in her adimda bir optimizasyon gergeklestirilir. Bu optimizasyon tiim
robotlarmn hizina ve ydnelimlerine dayanir. Oncelikle, hiz [v;, v,,] araliginda ve ydnelim
[@1, on] araliginda robotlarin etrafinda yerel bir arama uzay1 olusturulur. Ardindan, bu
arama uzayindaki en uygun bir sonraki konumun hizi ve yonelimi belirlenir. Robotlar
hedef noktalarina ulasana kadar bu uygulanabilir konumlar {lizerinde hareket eder. Tiim

robotlarin hizi ve yonelimi bir biitiin olarak bir optimizasyon siirecinden gecer. Bu
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nedenle, problem boyutu (D) sabit degildir, robot sayisiyla (n,) orantilidir. Optimizasyon
robotlarin bu iki kinematik karakteristigine dayandigindan, D =n, X 2 seklinde

hesaplanir. Bu konsept i¢in tasarlanan genel amag¢ fonksiyonunun parametrik formu
Esitlik (4.20)’deki gibi temsil edilir.
i€ef{12,..,n}
argminF =< f(v;, ;)| v E|[v,v] (4.20)
v,
v ¢ € [p1, @]

Genel amag fonksiyonu asagidaki dort maliyeti degerlendirir:
e fi: Yol uzunlugu maliyeti
e f,: Statik engellerden kacinma maliyeti
e f3: Dinamik engellerden kaginma maliyeti
e f,: Diger robotlardan kagcinma maliyeti

Birinci maliyet (f;) Esitlik (4.21)’de gosterildigi gibi tanimlanmustir.

ny
fi= > gk = pEll+ o} = palD) (4:21)
i=1

Burada, p,; i’inci robotun hedef konumunu temsil eder. Ikinci maliyet (f,) Esitlik

(4.22)’de gosterildigi gibi tantmlanmistir.

Ny Nos

fo= ZZ {g cger [t =l < ko e (4.22)

ASy. ; aksi taktirde
i=1 j=1

Burada f € R* maliyeti (biyik bir sayiyi), L, onceden belirlenmis bir giivenlik
mesafesini, n, statik engellerin sayisini ve p;* ise j’inci statik engelin konumunu temsil

eder. Ugiincii maliyet (f3) Esitlik (4.23)’te gosterildigi gibi tanimlanmistir.

Ny Mod

=)0, {g oger lr =]l < L ise (423)

i 4 ; aksi taktirde
i=1 j=1
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Burada n,; dinamik engellerin sayisini ve p;-’d ise j’inci dinamik engelin konumunu

temsil eder. Dordiincii maliyet (f;) Esitlik (4.24)’te gosterildigi gibi tanimlanmustir.

f4:§

Burada pj ise j’inci diger robotun konumunu temsil eder. Genel amag fonksiyonu Esitlik

ny—1
{g; eger ||p}' —pj|| < Ly ise (4.24)

= ; aksi taktirde

(4.25)’te tanimlandig1 gibi bu maliyetlerin toplamidir.

F=H+th+fi+/s (4.25)

Ayrica dinamik engeller her adimda Esitlik (4.26)’da tanimlandig1 gibi hareket eder.

cos(<pfd) At

cin(p?) (4.26)

po = 4 |
Burada, p?? i’inci dinamik engelin anlik konumunu, v?% ve ¢?? i’inci dinamik engelin
strastyla sabit hizin1 ve hedef konumuna gore sabit yonelimini temsil eder. Bu ¢calismada
Onerilen algoritmanin performansi adim sayisi, yol uzunlugu, yol sapma hatas1 (YSH),
kalan hedef uzakligi (KHU), toplam uygunluk degeri ve g¢aligma siiresi agisindan

degerlendirilmistir.
4.4.1.1. Yol Sapma Hatas1

Iterasyon baslamadan 6nce, yol planlama algoritmasi her robot igin ideal yolu belitler. Bu
yol baslangi¢c ve hedef noktalar1 arasinda diiz bir ¢izgidir. Yol sapma hatas1 (YSH), bu
ideal yolun mesafesi ile algoritma tarafindan planlanan yolun mesafesi arasindaki farktir

ve algoritmanin k’inc1 kosusunda YSH Esitlik (4.27)’deki gibi tanimlanmustir.

ny
YSH = Z(L’{ — L) (4.27)
i=1

Burada, L¥ algoritmanin k’mc1 kosusunda i’inci robotun katettigi mesafesini ve I; i’inci
robotun ideal yol uzunlugunu temsil eder. Ortalama yol sapma hatas1 (OYSH) ise Esitlik

(4.28) kullanilarak hesaplanir. Bu esitlikte R algoritmanin kogma sayisini temsil eder.



104

R_YSH
OYSH = 2k=L "k (4.28)

4.4.1.2. Kalan Hedef Uzakh@

Yol planlama algoritmas1 maksimum adima sahip robotun hedef noktasina ulagmasina
kadar isler. Bu siirecte her robotun her adimda hedefine olan uzakligi saklanir. Robotlarin
hedef noktalarina olan uzakliklar1 Oklid formu acisindan Esitlik (4.29) kullanilarak

hesaplanir.
1" = |Ip)* — pall (4.29)

Burada Hl-j‘k algoritmanin k’inct kosusunda i’inci robotun j’inci adiminda hedef

< j ke 3 e e
noktasina olan uzakligini, pl.] algoritmanin k’inc1 kosusunda i’inci robotun j’inci
adiminda optimizasyon sonunda elde edilen yeni konumunu ve p;; i’inci robotun hedef

konumunu temsil eder. Algoritmanin k’inc1 kosusunda kalan hedef uzakligr (KHU)

Esitlik (4.30) kullanilarak hesaplanir.

Nst Ny

KHU, = z z H* (4.30)

j=1i=1

Burada, ng adim sayist maksimum olan robotun adim sayisini temsil eder. Ortalama
kalan hedef uzaklhigi (OKHU) ise Esitlik (4.31) kullanilarak hesaplanir. Bu esitlikte R
algoritmanin kogma sayisini temsil eder.

YR_1KHU,

OKHU = ==— (4.31)

4.4.2. Onerilen Yontem

Popiilasyon tabanli metasezgisel algoritmalar, rastgele bir baslangi¢ popiilasyonu iiretir.
Bu popiilasyon bir amag fonksiyonu ile degerlendirildikten sonra iteratif bir giincelleme
siireci baglar. Cogu algoritmada bu popiilasyondaki aday ¢oziimler genellikle tek bir
giincelleme stratejisi ile giincellenir ve iteratif siire¢ sona erdiginde en iyi ¢oziim
raporlanir. Ancak, tek bir giincelleme stratejisi kullanmak algoritmalarin arama

performansini kisitlar. SCA da Esitlik (3.44)’te verilen tek bir giincelleme stratejisine
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sahip popiilasyon tabanl bir algoritmadir. SCA’nin bu kisitlamasini ortadan kaldirmak
icin SCA’nin orijinal giincelleme stratejisine ilave olarak birkag¢ diferansiyel tabanli
giincelleme stratejisi eklenmis ve sdSCA adinda yeni bir algoritma Onerilmistir. Bu
algoritmada popiilasyondaki her ¢6ziim bu stratejilerden birini segerek kendini giinceller.
Ancak bu secim rastgele degildir, rulet tekerlegine dayali bir olasilik hesabi yoluyla
gergeklestirilir. Algoritma daha tatmin edici sonuglar iireten stratejiyi adaptif bir sekilde
Ogrenir. Algoritma bu stratejiyi daha sik secer ve bdylece temel SCA'nin arama
performansi iyilesir. Ilave edilen giincelleme stratejileri Esitlik (4.32), (4.33) ve (4.34)’te

tanimlanmistir [94-96]. 14, 15, 73 # i olmak iizere,

T + F(xr2 - xr3); egerr < CR ise (432)
! X; aksi taktirde '
. +F(J?—xi+xr1 —xrz); egerr < CR ise (4.33)
- X;; aksi taktirde
x; =x; + r(xrl —x;) + F(xr2 — xrs); (4.34)

Burada, r~U(0,1) rassal bir sayisi, x; i’inci ¢oziimii, x; i’inci ¢éziimiin glincellenmis
hélini, X popiilasyondaki en iyi ¢dziimii, X, , X, ve X, popiilasyondan rastgele segilen
lic ¢oziimii, F 6lcekleme faktdriinii ve CR g¢aprazlama oranmi temsil eder. Onerilen
algoritmanin ¢alisma prensibi asagidaki gibi agiklanabilir: Dort glincelleme stratejisi olan
Esitlik (3.44), (4.32), (4.33) ve (4.34) ile bir strateji havuzu olusturulmustur. Baslangicta,
her bir stratejinin se¢ilme olasilig1 esit ve %25’tir. Baslangi¢ popiilasyonu Esitlik (3.18)
kullanilarak rastgele olusturulur. Her ¢6ziim rulet tekerlegi teknigini kullanarak kendi
stratejisini seger. Cozlimler bir amag fonksiyonunda degerlendirildikten sonra iteratif
siire¢ baslar. Bu siiregte ¢oziimler kendi stratejilerini kullanarak kendilerini giinceller,
ayrica bu stratejilerin se¢im sayaclar1 da giincellenir. Yeni popiilasyon amag
fonksiyonunda degerlendirilir ve her stratejinin secilme olasiligi Esitlik (4.35)

kullanilarak hesaplanir.

. (4.35)

i=1Ci

Burada, k € {1, 2, 3,4}, §;, k’inc1 stratejinin se¢ilme olasiligini ve ¢ stratejilerin se¢im

sayacini temsil eder. Bu olasiliklar1 goz 6niinde bulundurarak her ¢oziim rulet tekerlegi
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teknigini kullanarak kendi stratejisini gilinceller ve iteratif siire¢ durdurma kriteri
saganana kadar devam eder. En iyi ¢oziim, iteratif siire¢ sona erdiginde raporlanir.
Minimizasyon problemleri i¢in sdSCA tabanli ¢oklu robot yerel yol planlama algoritmasi

ve Onerilen sdSCA’nin s6zde kodlari sirastyla Algoritma 4.6 ve 4.7°de gosterilmektedir.

Algoritma 4.6. sdSCA tabanli ¢oklu robot yerel yol planlama algoritmasinin sézde
kodu

Ds,» Pe, P°5, p°% « Robotlarin baslangic ve hedef konumlari, statik ve dinamik

engellerin konumu

2: 9%, 9% « Dinamik engellerin sabit hiz1 ve sabit yonelimi

3: fori=1:n,

4: pi < Dy,

5: Li < ||pf — o |

6.

7

8

Nge; < 0
end for
k < argmax(L)
Ny

9: while p; # p,

10: (i, @;) < sdSCA(pf,p°s,p°Y), i€{12,..,n.} // Algoritma 4.6
11: fori =1:n,
12: if pf # py,
F n c COS((pi)
13: pi <p; +v; [sin(fpi)] At
14: Ngp; < N, + 1
15: end if
16: end for
17: fori =1:n,4
. od od od COS((p?d)
18: pi¢ < it + v lSin((P?d) At
19: end for
20: pf <o, i€{12,..,n.}
21: fori =1:n,
22: | Li < [Ipf —pe,|
23: end for
24: k « argmax(L)

25: end while
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Algoritma 4.7: sdSCA’nin sdzde kodu

Girdi: p¢,p°%,p°? // Robotun mevcut konumu, statik ve dinamik engellerin konumu

Cikti: (v, @) // Robotun hizi ve yonelimi

1: | D, x;, xp, « Problem boyutu, arama sinirlart
2:|T,S,a,F,CR < Kontrol parametreleri
3:| fe oo, 8, <025 c, <0, ke{1,234}
4: | X « x;+7(xp, —x), 7~U(0,1)5%P
S:|fori=1:S
6: fe, < F(x,p%,p°%,p°%) // Amag fonksiyonu - Esitlik 4.25
7: iff,, <f
8: | 56 < xi' f « fxi
9: end if
10: xs; « F(6) // Rulet tekerlegi
11: | end for
12: [ fort =1:T
13: fori =1:§
14: switch xs;
15: case 1
16: rn < a—t(a/T)
17: 1y, 13,1, ~ U(0,21),U(0,2),U(0,1)
18: ifr, <0.5
19: | x; « x; + rysin(ry) |2 — x4
20: else
21: | x| « x; + ricos(ry)|rs% — x4
22: end if
23: case 2
24: if r~U(0,1) < CR
25: | X{ < Xy, +F(xr2 —xr3)
26: end if
27: case 3
28: ifr~U(0,1) < CR
29: |xl-'<—xT1+F(J?—xi+xr1—
30: end if
31: case 4
32: | X[ < x; + r(xr1 —x;)+ F(xr2 - xr3)
33: end switch
34: fl < F(x}{,p% p°,p°%) // Amag fonksiyonu - Esitlik 4.25
35: if f{ < fy,
36: Xi < xi, fr, < ff
37: c(xs;) « c(xs;) +1
38: iff,, <f
39: |3?<—xl-, f<—fxi
40: end if
41: end if
42: end for
43: Sk« o [ Xqc, ke{1,23,4}
44: fori=1:§
45: | xs; < F(6) // Rulet tekerlegi
46: end for
47: | end for
48: | (v, p) « X
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4.4.3. Bulgular

Simiilasyonlar icin MATLAB programlama dili ve 16 GB RAM’e sahip bir bilgisayar
kullamlmistir. Bu simiilasyonlar asagidaki gibi 6zetlenebilir: Ilk olarak, Onerilen
algoritmanin etkinligini degerlendirmek i¢in CEC2015 test fonksiyonlar1 kullanilmigtir
[97]. ikinci olarak, bu degerlendirmeyi desteklemek igin algoritma CEC2020 gergek
diinya optimizasyon problemlerine uygulanmistir [98]. Son olarak, ¢oklu robot yerel yol
planlama problemine wuygulanmis ve baz1 giincel metasezgisel algoritmalarla

karsilastirilmistir.
4.4.3.1. Onerilen sdSCA’nin CEC2015 Test Fonksiyonlarinda Gergceklestirimi

sdSCA’nin etkinligini kanitlamak i¢in kullanilan CEC2015 test fonksiyonlar1 Tablo
4.17°de gosterilmektedir.

Tablo 4.17. CEC2015 test fonksiyonlar1 (f* bilinen en iyi fonksiyon degerini temsil

eder.)
Grup # | Fonksiyonun Ad1 fr
Tek Modlu F, | Dondiiriilmiis Cok Kosullu Eliptik Fonksiyon 100
Fonksiyonlar F, | Dondiiriilmiis Puro Fonksiyonu 200
Basit F3 | Kaydirilmis ve Dondiiriilmils Ackley Fonksiyonu 300

Cok Modlu F4 | Kaydirilmis ve Dondiiriilmiis Rastrigin Fonksiyonu | 400
Fonksiyonlar Fs | Kaydirilmis ve Dondiiriilmiis Schwefel Fonksiyonu | 500

b Fe | Hibrit Fonksiyon 1 (D = 3) 600
1bor1t - -
Fonksiyonlar F; | Hibrit Fonksiyon 1 (D = 4) 700
Fg | Hibrit Fonksiyon 1 (D = 5) 800
Fg9 | Kompozisyon Fonksiyonu 1 (D = 3) 900
Fio | Kompozisyon Fonksiyonu 2 (D = 3) 1000
' Fi;, | Kompozisyon Fonksiyonu 3 (D = 5) 1100
Komppmsyon Fi, | Kompozisyon Fonksiyonu 4 (D = 5) 1200
Fonksiyonlari . .
Fi3 | Kompozisyon Fonksiyonu 5 (D = 5) 1300
Fi4 | Kompozisyon Fonksiyonu 6 (D = 7) 1400
Fis | Kompozisyon Fonksiyonu 7 (D = 10) 1500

Tim test fonksiyonlar1 30 boyutlu ve [-100 100] aralig1 i¢in 30 kez calistirilmistir. SCA
ve sdSCA i¢in maksimum uygunluk degerlendirme sayisi, popiilasyon boyutu ve «

sirastyla 10000 x D, 30 ve 2 olarak; sdSCA icin F ve CR parametreleri sirasiyla 0.8 ve
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0.95 olarak ayarlanmistir. CEC2015 test fonksiyonlari i¢in sdSCA’nin SCA, EABC [99],
ABHC [100] ve PeAFWA [101] ile karsilagtirmas1 Tablo 4.18’de gosterilmektedir.

Tablo 4.18. CEC2015 test fonksiyonlart i¢in sdSCA’nin SCA, EABC, AFHC ve
PgAFWA ile karsilastirmasi (Bu bulgular 30 kosmanin ortalamasidir.)

Fonksiyon SCA EABC ABHC PgAFWA sdSCA
F1 5.29¢+08 6.91e+05 1.86e+07 1.70e+06 1.65¢+04
F, 5.02e+10 5.45e+00 1.93e+08 3.98e+05 9.44e-01
Fs 2.09e+01 2.00e+01 2.00e+01 3.20e+02 2.08e+01
Fa 4.19e+02 3.39¢+01 1.19e+02 5.09¢+02 7.14e+01
Fs 7.19e+03 1.29e+03 3.18e+03 3.69¢+03 3.48e+03
Fe 1.38e+07 2.14e+05 4.82e+06 1.99e+05 2.29e+03
F, 1.11e+02 4.20e+00 2.85e+01 7.15e+02 1.00e+01
Fg 2.90e+06 1.12e+05 1.16e+06 1.12e+05 6.82e+02
Fo 2.61e+02 1.04e+02 1.76e+02 1.12e+03 1.20e+02
Fio 1.14e+07 1.10e+05 2.80e+06 1.73e+05 1.28e+03
Fi1 1.29¢+03 2.82e+02 8.49¢+02 1.68e+03 8.69¢e+02
Fiz 1.83e+02 1.05e+02 1.23e+02 1.31e+03 1.50e+02
Fiz 2.17e-01 8.33e+01 4.43¢-02 1.42e+03 6.87e-02
Fia 4.87¢+04 2.45e+04 3.37e+04 2.22e+04 3.44e+04
Fis 1.31e+04 1.00e+02 1.08e+02 1.60e+03 1.00e+02

Tablo 4.18, dnerilen algoritmanin tiim test fonksiyonlarinda temel SCA’dan ¢ok daha iyi
performans gosterdigini gOstermektedir. Bu performans 6zellikle tek modlu
fonksiyonlarla birlikte Fg, Fg, F1o9 ve Fi5'te goriilmektedir. Diger fonksiyonlarda
tyilestirme etkisi nispeten daha az olmustur. Buna ragmen literatiirdeki diger
algoritmalarla karsilastirildiginda oldukca verimli ve rekabet¢i oldugu sdylenebilir.
Calisma siiresine agisindan her iki algoritma i¢in de en az siire alan fonksiyon F,’dir, bu
fonksiyonda SCA’nin ¢alisma siiresi 5.13 saniye iken, sdSCA’nin ¢aligma siiresi 5.83
saniyedir. Yine her iki algoritma i¢in de en fazla silire alan fonksiyon F;s’tir, bu
fonksiyonda SCA’nin ¢aligma siiresi 43.24 saniye iken, sdSCA’nin ¢alisma siiresi 40.88
saniyedir. Onerilen algoritmanin ¢alisma siiresi agisindan SCA ile yaklasik ayni1 oldugu,
hatta F, 5 fonksiyonu i¢in biraz daha iyi oldugu sdylenebilir. Ortalama yakinsama egrileri
ve kutu grafikleri i¢in her gruptan igin bir fonksiyon secilmistir. F;, F,, F, ve Fi;
fonksiyonlar1 i¢gin SCA ve sdSCA’nin ortalama yakinsama egrileri ve kutu grafikleri

sirastyla Sekil 4.29 ve 4.30°da gosterilmektedir.
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Sekil 4.30. F,, Fy, F, ve Fq4 fonksiyonlari igcin SCA ve sdSCA’nin kutu grafikleri

Ortalama yakinsama egrileri goz oniine alindiginda, sdSCA’nin gelistirilmesiyle temel

SCA’nin optimizasyon yeteneginin ve yakinsama hizinin énemli 6l¢iide iyilestirildigi
goriilmektedir. Kutu grafikleri géz oniine alindiginda, sdSCA’nin ¢ogu fonksiyonda

diisiik varyans ve medyan a¢isindan daha performansl oldugu ve temel algoritmadan
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daha kararli oldugu goriilmektedir. Her iki algoritmanin maksimum ve minimum verileri

de bu sonucu desteklemektedir.

4.4.3.2. Onerilen sdSCA’nin CEC2020 Gerg¢ek Diinya Optimizasyon Problemlerinde

Gerceklestirimi

Onerilen algoritmanin CEC2015 test fonkisyonlarindaki etkinligini desteklemek icin
algoritma CEC2020 ger¢ek diinya optimizasyon problemlerine uygulanmistir. Bu

problemlerden 20 tanesi kullanilmistir ve bunlar Tablo 4.19°da gosterilmektedir.

Tablo 4.19. CEC2020 gercek diinya optimizasyon problemleri (D problemin boyutu, g
esitsizlik kisitlarinin sayisi, h esitlik kisitlarinin sayist ve f* bilinen en iyi
fonksiyon degerini temsil eder.)

Grup # Problem D|g|h f
Endistriyel | F, | Alkilasyon Unitesinin Optimum Islemi 7 |14 |0 | -4.52e+03
Kimyasal

Siirecler F, | Reaktor Ag Tasarimi 6 | 1 ]4] -3.88e-01

F5 | Stireg Sentezi Problemi 1 212 |0] 2.00et+00

Siireg F, | Stireg Sentezi ve Tasarim Problemi 311 ]1] 2.55+00

Sentezi ve Fs | Sireg Akis Semas1 Problemi 313 ]0] 1.07e+00

Tasarim | Fe | Siireg Sentezi Problemi 2 719 |0/ 2.92e+00

Problemleri F, | Stire¢ Tasarim Problemi 513 (0] 2.68et+04

Fg | Cok Uriinlii Yar1 Mamul Tesisi 10 [ 10 | O | 5.36e+04

Fy | Hiz Azaltict Agirlik Minimizasyonu 7 (11| 0] 2.99¢+03

Fio | Gerilim/Kompressiyon Yay Tasarimi (V1) | 3 | 3 | 0| 1.26e-02

Fi1 | Kaynakli Kirig Tasarim 4 (5|0 1.67¢+00

Fi, | Ug Cubuklu Gerilme Problemi 2| 31]0] 2.63e+02

Fi3 | Adim Koni Kasnagi Problemi 51 8 ]3] 1.60et+01

"Makir'le .| Fya | Robot Ugislevci Problemi 7170 2.52¢+00
Miihendisligi - -

Problemleri | F1s | Hidrostatik Yataklama Tasarimi 41710 1.61et03

Fie | 10 Cubuklu Gerilme Tasarimi 10| 3 | 0| 5.24e+02

F.; | Gaz lletim Kompresér Tasarimi 4 (10| 2.96et06

Fig | Gerilim/Kompressiyon Yay Tasarimi (V2) 8 | 0] 2.61et+00

Fio | Himmelblau Fonksiyonu 516 |0]-3.06e+04

F,o | Topoloji Optimizasyonu 30 (30| 0| 2.63e+00
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Tim problemler 30 kez calistirllmistir. Maksimum uygunluk degerlendirme sayist F;-
Fio icin le+5 ve F,q i¢in 2e+5 olarak, popiilasyon boyutu 40 olarak ayarlanmistir. SCA
ve sdSCA igin diger parametreler Alt Baslik 4.4.3.1°deki ayarlarla aynidir. Onerilen
algoritma, CEC2020 yarismasinda en {ist siralarda yer alan algoritmalarla (SASS [102],
COLSHADE [103], EnMODE [104] ve sCMAgES [105]) karsilagtirilmistir. Bu dort
algoritmanin parametreleri literatiirde sunulan ayarlarla aynidir [ 106]. Kisit isleme teknigi
olarak 6z uyarlamali ceza stratejisi kullanilmistir [107]. Bu karsilastirma Tablo 4.20°de

gosterilmektedir.

Tablo 4.20. CEC2020 gercek diinya optimizasyon problemleri i¢in sdSCA’nin SASS,
COLSHADE, EnMODE ve sCMAZES ile karsilagtirmas1 (OP: Optimum,
EK: En Kotii, OR: Ortalama, SS: Standart Sapma)

Problem SASS COLSHADE EnMODE sCMAgES sdSCA

op -1.42e+02 -4.52e+03 -4.52e+03 -4.52e+03 -4.52e+03

EK | -1.42e+02 -4.36e+03 -4.52e+03 -4.15e+03 -4.52e+03

P OR | -1.42e+02 -3.71e+03 -4.52e+03 -3.32e+03 -4.52e+03
SS 1.07e-05 3.33e+02 1.62e-12 3.82e+02 1.78e-12

0] -3.88e-01 -3.88e-01 -3.88e-01 -3.88e-01 -3.87e-01

EK -3.88e-01 -3.80e-01 -3.74e-01 -3.87e-01 1.94e+01

2 OR -3.88e-01 -3.58e-01 -3.69¢-01 -3.74e-01 5.15e+00
SS 1.27e-06 1.15e-02 3.45e-03 2.98e-03 8.74e+00

op 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00

EK 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00

T3 OR 2.00e+00 2.00e+00 2.00e+00 2.00e+00 2.00e+00
SS 6.12e-15 2.60e-16 2.28e-16 1.84e-16 1.88e-16

op 2.55e+00 2.55e+00 2.55e+00 2.55e+00 2.56e+00

EK 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.55e+00

4 OR 2.55e+00 2.55e+00 2.55e+00 2.55e+00 3.00e+00
SS 2.74e-10 9.11e-16 9.11e-16 8.01e-09 3.75e-01

op 1.07e+00 1.07e+00 1.07e+00 1.07e+00 1.07e+00

EK 1.07e+00 1.08e+00 1.17e+00 1.07e+00 1.25e+00

Fs OR 1.07e+00 1.25e+00 2.25e+00 1.07e+00 1.09¢e+00
SS 1.18e-13 3.87e-02 8.85e-02 2.40e-14 4.73e-02

op 2.92e+00 2.92e+00 2.92e+00 2.92e+00 2.92e+00

EK 2.92e+00 2.93e+00 2.92e+00 2.93e+00 4.20e+00

Te OR 2.92e+00 3.08e+00 2.92e+00 2.95e+00 3.01e+00
SS 8.63e-10 3.52e-02 9.11e-16 1.15e-02 2.34e-01
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Problem SASS COLSHADE EnMODE sCMAGgES sdSCA
OP | 2.68¢+04 2.68e+04 2.68e+04 2.68¢+04 | 2.68e+04
EK | 2.68¢+04 2.68e+04 2.68e+04 2.68¢+04 | 2.68e+04
P2 TOR | 2.680+04 2.68e+04 2.68e+04 2.68¢+04 | 2.68¢+04
SS | 4.07e-10 7.46e-12 1.12e-11 1.12e-11 1.48¢-11
OP | 5.85¢+04 5.85e+04 5.85¢+04 5.36e+04 | 5.36e+04
EK | 5.87e+04 5.85¢+04 5.85¢+04 5.49¢+04 | 5.91e+04
Fs TOR | 6.180r04 5.85¢+04 5.85¢+04 5.92e+04 | 5.46e+04
SS | 9.33e+02 2.83e-11 7.83e-09 1.67¢+03 | 2.07e+03
OP | 2.99¢+03 2.99¢+03 2.99¢+03 2.99¢+03 | 2.99¢+03
EK | 2.99¢+03 2.99¢+03 2.99¢+03 2.99¢+03 | 2.99¢+03
Fo TOR | 299e+03 2.99¢+03 2.99¢+03 2.99¢+03 | 2.99¢+03
SS | 5.91e-09 9.33e-13 1.40e-12 7.66e-12 0.00e-+00
OP | 1.26e-02 1.26e-02 1.26e-02 1.26e-02 1.26e-02
EK | 1.26e-02 1.26e-02 1.27¢-02 1.26e-02 1.26e-02
Fro ToR | 126002 1.26e-02 1.27¢-02 1.26e-02 1.26e-02
SS | 8.13¢-10 5.11e-09 1.97¢-05 2.53e-06 6.70e-18
OP | 1.67e+00 1.67e+00 1.67e+00 1.67¢+00 | 1.67e+00
EK | 1.67e+00 1.67e+00 1.67¢+00 1.67¢+00 | 1.67¢+00
Fir [ToR T 167e+00 1.67e+00 1.67¢+00 1.67¢+00 | 1.67¢+00
SS | 7.72e-13 6.83¢-16 6.97¢-16 1.57-13 2.22¢-16
OP | 2.63e+02 2.63e+02 2.63e+02 2.63e+02 | 2.63e+02
EK | 2.63e+02 2.63e+02 2.63e+02 2.63e+02 | 2.63e+02
P2 [Tor | 2630002 2.63e+02 2.63e+02 2.63e+02 | 2.63e+02
SS | 1.55e-12 0.00e-+00 0.00e-+00 6.66e-13 0.00e-+00
OP | 1.60e+01 1.60e+01 1.60e+01 1.60e+01 1.60e+01
EK | 1.60et+01 1.60e+01 1.60e+01 1.62e+01 1.60e+01
P15 7orR | 1.60es01 1.60e+01 1.60e+01 1.67e+01 1.60e+01
SS | 3.47e-09 4.89¢-15 3.04¢-14 1.84¢-01 7.22¢-15
OP | 2.54e+00 2.54e+00 2.54e+00 2.61e+00 | 2.54e+00
EK | 2.54e+00 2.54e+00 2.54e+00 2.88¢+00 | 2.54e+00
Faa [ToR | 2540400 2.54e+00 2.54e+00 3.34e+00 | 2.54e+00
SS | 5.27e-09 5.11e-14 4.75¢-12 1.90e-01 2.0le-14
OP | 1.61e+03 1.61e+03 1.61e+03 2.13¢+03 | 1.61e+03
EK | 1.61e+03 1.62e+03 1.61e+03 3.01e+03 | 1.61e+03
Fis TOR | 1.63e+03 1.66e+03 1.61e+03 3.62e+03 | 1.61e+03
SS | 4.15e+00 1.47e+01 1.00e-10 3.83¢+02 | 4.22¢-13




114

Tablo 4.20. Devam

Problem SASS COLSHADE EnMODE sCMAGgES sdSCA
OP | 5.24e+02 5.24e+02 5.24e+02 524e+02 | 5.24e+02
EK | 5.24et+02 5.24e+02 5.24e+02 524e+02 | 5.30e+02
Fis [TorR | 5240102 5.24e+02 5.24e+02 524e+02 | 5.24e+02
SS | 9.84e-03 1.05¢-09 4.32¢-09 1.13e-01 1.55¢+00
OP | 2.96e+06 2.96e+06 2.96e+06 2.96e+06 | 2.96e+06
EK | 2.96e+06 2.96e+06 2.96e+06 2.96e+06 | 2.96e+06
P17 [7oR | 2960106 2.96e+06 2.96e+06 2.96e+06 | 2.96e+06
SS | 1.74e-09 9.56e-10 9.56e-10 1.08e+01 1.42¢-09
OP | 2.65¢+00 2.65e+00 2.65e+00 2.97¢+00 | 2.65¢+00
EK | 2.65¢+00 2.65e+00 2.70e+00 428e+00 | 2.65¢+00
Fas [ToR | 2.650+00 2.65e+00 3.63e+00 6.35¢+00 | 2.65e+00
SS | 2.28e-11 4.56e-16 2.18¢-01 9.08¢-01 4.51e-16
OP | -3.06e+04 | -3.06e+04 -3.06e+04 3.06e+04 | -3.06e+04
EK | -3.06e+04 | -3.06e+04 -3.06e+04 3.06e+04 | -3.06e+04
Fio TOR | 3.060704 | 3.060+04 -3.06e+04 3.06e+04 | -3.06e+04
SS | 2.17e-09 8.35¢-13 3.73e-12 2.01e-10 1.11e-11
OP | 2.63e+00 2.63e+00 2.63e+00 2.63¢+00 | 2.63e+00
EK | 2.63¢+00 2.63e+00 2.63e+00 2.63¢+00 | 3.05¢+00
P20 ToR | 2.63e+00 2.63e+00 2.63e+00 2.63¢+00 | 2.68¢+00
SS | 1.87e-09 1.28¢-15 7.28¢-16 1.14e-15 9.01e-02

Tablo 4.20 sdSCA’nin diger dort algoritma gibi ¢ogunlukla bilinen en iyi fonksiyon
degerine ulastigin1 gostermektedir. Onerilen algoritma karsilastirilan algoritmalarla
rekabet halindedir. Algoritma, diger algoritmalardan daha kotii sonuglar veren

problemlerde bile bilinen en iyi fonksiyon degerine yakin sonuglar tiretmistir.

4.4.3.3. Onerilen sdSCA’nin Coklu Robot Yerel Yol Planlama Probleminde

Gerceklestirimi

Bu simiilasyonda 6nerilen algoritma ¢oklu robotlarin yerel yol planlamasi probleminde
uygulanmistir. Robotlar dairesel, homojen ve aymi boyutta tasarlanmistir. Dinamik
engeller de homojendir ve sabit bir hizla iki belirli nokta arasinda dogrusal olarak hareket
edecek sekilde diisiiniilmiistiir. Bu calisma i¢in hem statik hem de dinamik engelleri
iceren ii¢ ortam olusturulmustur. Ortam 17, 100 x 100 br boyutunda tasarlanmis ve 6

robot kullanilmigtir. Bu ortamda 7 statik engel ve 3 dinamik engel vardir. Ortam 18, 100
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x 100 br boyutunda tasarlanmis ve 7 robot kullanilmistir. Bu ortamda 7 statik engel ve 3
dinamik engel vardir. Ortam 19, 200 x 200 br boyutunda tasarlanmis ve 12 robot
kullanilmistir. Bu ortamda 14 statik engel ve 6 dinamik engel vardir. Statik ve dinamik
engeller Ortam 18’de farkli sekillerdeyken, diger ortamlarda c¢esitli yarigaplarda
daireseldir. Bu ortamlar Sekil 4.31°de gosterilmektedir.
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Sekil 4.31. Coklu robotlarin yerel yol planlamast icin tasarlanan ortamlar:
(a) Ortam 17, (b) Ortam 18, (¢) Ortam 19

Ortam 17’de robotlar farkli renk kodlariyla R1-R6 olarak temsil edilmektedir. Bu renklere
karsilik gelen noktali ¢izgiler ve carpi isaretleri sirasiyla robotlarin ideal yollarini ve hedef
noktalarin1 gostermektedir. Statik engeller gri dairelerle, dinamik engeller ise D1-D3
siyah dairelerle temsil edilmektedir. Siyah kesik cizgiler ve siyah kare isaretler sirasiyla
dinamik engellerin yollarin1 ve hedef noktalarin1 géstermektedir. Dinamik engeller diiz
bir ¢izgide 0.5 br/s (D1), 0.45 br/s (D2) ve 1.2 br/s (D3) sabit hizlarla hareket etmektedir.

Dinamik engellerin bu hizlari, robotlar1 kisitlayacak ve her ortam igin problemi
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karmagiklastiracak sekilde se¢ilmistir. Ortam 18’de robotlar farkli renk kodlartyla R1-R7
olarak temsil edilmektedir. Bu renklere karsilik gelen noktali ¢izgiler ve carp1 isaretleri
sirasiyla robotlarin ideal yollarin1 ve hedef noktalarini gostermektedir. Statik engeller gri
dairelerle, dinamik engeller ise D1-D3 siyah dairelerle temsil edilmektedir. Statik
engeller iki daire, iki tiggen ve ii¢ kare bi¢cimindeyken, dinamik engeller bir daire, bir
ticgen ve bir kare seklinde tasarlanmistir. Siyah kesik ¢izgi ve siyah kare isaretler dinamik
engellerin sirasiyla yollari ve hedef noktalarini géstermektedir. Dinamik engeller 0.5
br/s (D1), 0.1 br/s (D2) ve 1.1 br/s (D3) sabit hizlariylaa diiz bir ¢izgide hareket eder.
Ortam 19°da robotlar farkli renk kodlariyla R1-R12 olarak temsil edilmektedir. Bu
renklere karsilik gelen noktali ¢izgiler ve ¢arpi isaretleri sirasiyla robotlarin ideal yollarini
ve hedef noktalarini gostermektedir. Statik engeller gri dairelerle, dinamik engeller ise
D1-D6 siyah dairelerle temsil edilmektedir. Siyah kesik ¢izgi ve siyah kare isaretler
dinamik engellerin sirasiyla yollarin1 ve hedef noktalarini goéstermektedir. Dinamik
engeller 0.5 br/s (D1), 0.5 br/s (D2), 0.6 br/s (D3), 0.3 br/s (D4), 0.4 br/s (D5) ve 0.25
br/s (D6) sabit hizlariyla diiz bir ¢izgide hareket eder. Her ortam igin, robotlarin yarigapi
1 br iken dinamik engellerin yaricap1 1.5 br olarak tanimlanmistir. Optimize edilecek

parametreler olan hiz ve yonelim araliklari sirasiyla [1 1.5] br/s ve [0 21r] radyandir. Amag
fonksiyonlarindan F,, F; ve F,’teki € degerleri 10°, zaman adimi (At) da 1 s olarak

ayarlanmistir.

Ilk olarak, sdSCA’nmn coklu robot sistemindeki toplam robot sayisi iizerindeki
performanst Ortam 17 i¢in incelenmistir. Ardindan, onerilen algoritma Ortam 17, 18 ve
19°da uygulanmis ve temel SCA ile SFS, AOA, WOA [108] ve HHO [109] algoritnalar
ile karsilastirilmistir.  Algoritmalarin  kontrol parametreleri ise Tablo 4.21°de

gosterilmektedir.
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Tablo 4.21. Algoritmalarin  kontrol — parametreleri (T maksimum uygunluk
degerlendirme sayisi, S popiilasyon boyutu, a r; sayisi i¢in ayarlanan
parametre, ng;r diflizyon sayisi, walk yirime oram, a kullanim
dogrulugunu tanimlayan parametre, y arama siirecini ayarlayan parametre,
b logaritmik spiralin seklini tanimlayan parametre, f Levy ucusunda
kullanilan sabit parametre, F 6l¢cekleme faktorii, CR ¢aprazlama orani)

Algoritma | Parametre
SCA T =1000,S =30,a =2
SES T =1000,5 = 30,n4;f = 2,walk = 0.5
AOA T =1000,S =30, =5u=0.5
WOA T =1000,S=30,b=1
HHO T =1000,S=30,=15
sdSCA | T =1000,S =30,a=2,F =0.8,CR =095

Robot Sayisinin Performansa Etkisi: Coklu robot sistemindeki toplam robot sayisi

tizerinde sdSCA’nin performansini incelemek i¢in, Ortam 17°de sdSCA farkli robot

sayilariyla (2, 3, 4 ve 5) 30 kez calistirllmis ve ortalama yol sapma hatas1 (OYSH),

ortalama kalan hedef uzakligt (OKHU), toplam uygunluk degeri ve caligma siiresi

acisindan temel SCA ile karsilagtirilmistir. Bunlar sirasiyla Tablo 4.22, 4.23, 4.24 ve

4.25°te gosterilmektedir. SCA ve sdSCA i¢in OKHU ve ¢aligsma siiresi robot sayisina gore

Sekil 4.32°de grafiksel olarak da gdsterilmektedir.

Tablo 4.22. SCA ve sdSCA’nin farkli robot sayilari i¢in OYSH karsilastirmasi

OYSH (br) Co
Robot Sayisi lyilestirme Oram (%)
SCA sdSCA
2 27.58 14.55 47.24
3 59.56 16.20 72.80
4 157.50 30.55 80.60
5 278.15 50.83 81.72

Tablo 4.23. SCA ve sdSCA’nin farkli robot sayilari icin OKHU karsilagtirmasi

OKHU (br) Co
Robot Sayisi lyilestirme Oram (%)
SCA sdSCA
2 7377 7034 4.65
3 9243 7733 16.33
4 16052 11250 29.91
5 21124 12901 38.92
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Tablo 4.24. SCA ve sdSCA’nin farkli robot sayilari i¢in toplam uygunluk degeri

karsilastirmast
Toplam Uygunluk Degeri Co
Robot Sayisi lyilestirme Oram (%)
SCA sdSCA
2 7893 7550 4.34
3 9560 8033 15.97
4 16459 11631 29.33
5 21442 13401 37.50

Tablo 4.25. SCA ve sdSCA’nin farkli robot sayilari i¢in ¢alisma siiresi karsilastirmasi

Calisma Siiresi (s) Lo
Robot Sayisi lyilestirme Orani (%)
SCA sdSCA
2 5.92 5.72 3.37
3 7.94 6.79 14.48
4 11.00 7.92 28.00
5 14.19 9.21 35.09

<10*

Ortalama Kalan Hedef Uzakhg (br)
-~

0.8

0.6
2 3

4

Robot Sayisi

(@

—#*—SCA
—#—sdSCA

Ortalama Galigma Siiresi (s)

o @ N ®m ©

—#—SCA
—#—sdSCA

3 4
Robot Sayisi

(b)

Sekil 4.32. SCA ve sdSCA i¢in toplam robot sayisina gore ortalama kalan hedef
uzaklig1 ve ortalama caligma siiresi: (a) Ortalama kalan hedef uzakligi, (b)
Ortalama calisma siiresi

Coklu robot sistemindeki toplam robot sayis1 arttik¢a problem de zorlasmaktadir. Tablo

4.23, 4.24, 4.25 ve 4.26 dikkate alindiginda, sdSCA hem performans (OYSH, OKHU,

toplam uygunluk degeri) hem de ortalama calisma siiresi agisindan temel SCA’ya gore

oldukca Onemli bir iyilestirme saglamistir. Dahasi, robot sayisi artmasina ragmen

tyilestirme orani da artmistir. En fazla iyilestirme OYSH’ de goriilmiis, iyilestirme orani

robot sayis1 arttikca %47.24’ten %81.72 ye yiikselmistir. Diger kriterler nispeten daha az
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olmasma ragmen, hepsinde iyilestirme oraninin arttifi goriilmektedir. Robot sayisi
arttik¢a iyilestirme oranlari da OKHU igin %4.65’ten %38.92’ye, toplam uygunluk degeri
icin %4.34’ten %37.50’ye ve ortalama calisma siiresi i¢cin %3.37°den %35.09’a

yiikselmistir. Bu sonuglar sdSCA’nin yiiksek verimliligini gostermektedir.

Onerilen Algoritmanin Ortam 17’de Gerceklestirimi: Bu ortamda 6 robot
oldugundan, Alt Baglik 4.4.1°de belirtildigi gibi problem boyutu (D) 12 olur. Tiim
algoritmalar 30 kez calistirilmigtir. Ortam 17°de algoritmalar tarafindan elde edilen 6rnek

yollar Sekil 4.33’te gosterilmektedir.

(b)

(© (d)
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Sekil 4.33. Ortam 17’°de algoritmalar tarafindan elde edilen 6rnek yollar: (a) SCA,

(b) SES, (¢) AOA, (d) WOA, (e) HHO, (f) sdSCA

Ornek yollar g6z 6niine alindiginda, 6nerilen algoritma tarafindan planlanan yolun daha

kisa ve diizgiin oldugu goriilmektedir. Diger algoritmalarin planladigi yollar daha

kivrimlidir ve bu durum yollarin daha uzun olmasina neden olur. Ortam 17°de ortalama

adim sayist karsilastirmasi, ortalama adim sayisinin ¢ubuk grafigi ve ortalama yol

uzunlugu karsilagtirmasi

sirasiyla Tablo 4.26, Sekil 4.34 ve Tablo 4.27°de

gosterilmektedir. Ayrica, algoritmalar OYSH, OKHU, toplam uygunluk degeri ve

ortalama g¢alisma siiresi agisindan karsilagtirilmistir ve bu bulgular Tablo 4.28’de

gosterilmektedir.

Tablo 4.26. Ortam 17’de her robot ve toplam icin ortalama adim sayis1 karsilastirmast

SCA SFS AOA WOA HHO sdSCA

Robot #1 138 99 155 154 132 88
Robot #2 142 94 143 125 121 86
Robot #3 66 38 68 53 47 35
Robot #4 135 94 142 149 113 84
Robot #5 88 51 87 64 64 46
Robot #6 115 75 121 103 102 67

Toplam 684 451 716 648 579 406
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Ortalama Adim Sayisi

Robot #1

Robot #2

Robot #3

Robot #4

Robot #5

Robot #6

I scA
I sFs
[AcA
_| (IEwWOA
[ HHo
[sdscA

Sekil 4.34. Ortam 17°de her robot i¢in ortalama adim sayisinin ¢ubuk grafigi

Tablo 4.27. Ortam 17°de her robot ve toplam i¢in ortalama yol uzunlugu (br)
karsilastirmast
SCA SFS AOA WOA HHO sdSCA
Robot #1 167.81 117.04 190.72 177.61 158.95 105.58
Robot #2 171.64 110.76 176.83 144.71 146.20 103.70
Robot #3 80.74 45.95 83.69 62.71 57.78 43.43
Robot #4 165.05 110.44 175.19 172.32 136.82 101.68
Robot #5 106.63 60.90 107.56 75.77 78.47 54.82
Robot #6 140.58 89.52 149.52 119.91 124.17 82.04
Toplam 832.48 534.63 883.54 753.04 702.41 491.27
Tablo 4.28. Ortam 17°de OYSH, OKHU, toplam uygunluk degeri ve ortalama ¢aligsma
stiresi karsilagtirmalari
SCA SFS AOA WOA HHO | sdSCA
OYSH (br) 409.41 | 111.56 | 460.47 | 329.97 | 279.35 68.20
OKHU (br) 27976 17544 29693 27995 23669 15923
Toplam Uygunluk | o551 | 18244 | 30000 | 28156 | 24850 | 16513
Degeri
Ortalama Galisma | ) 49 | 3451 | 3015 | 3578 | 64.88 | 18.54
Stiresi (s)
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Onerilen algoritma, tiim robotlarin hedef noktalarmna minimum adimda ulagmasini
saglamistir. Temel SCA’ya kiyasla toplam adim sayisim1 %40.63 oraninda azaltmistir.
Ayrica, yol uzunluklar1 degerlendirildiginde, 6nerilen algoritmanin hem temel SCA’dan
hem de diger metasezgisel algoritmalardan daha iyi performans gosterdigi goriilmektedir.
Temel SCA’ya kiyasla ortalama yol uzunlugunu %40.98 oraninda azaltmistir. Onerilen
algoritma, adim sayis1 ve yol uzunlugu agisindan tiim robotlar i¢in basarili olmustur.
Ayrica, Tablo 4.28°deki karsilastirma bulgular1 da bu sonucu desteklemektedir. Ozellikle,
Onerilen algoritmanin yol planlama siirecini diger algoritmalara kiyasla daha kisa siirede
tamamlamas1 performansin1 kanitlamaktadir. Sonug¢ olarak, Onerilen algoritma her
kriterde en iyi performansi gostermistir. AOA en kotii performansi gosterirken, HHO yol
planlama siirecini en uzun siirede tamamlayan algoritma olmustur. Ortam 17 i¢in her

algoritmanin adim sayisina gore yakinsama egrileri Sekil 4.35°te gosterilmektedir.
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Sekil 4.35. Ortam 17 i¢in her algoritmanin adim sayisina gére yakinsama egrileri

Sekil 4.35’te Onerilen algoritmanin Ortam 17°de diger algoritmalardan daha hizli

yakinsadig1 ve diger bulgular destekledigi goriilmektedir.

Onerilen Algoritmanin Ortam 18’de Gerceklestirimi: Bu ortamda 7 robot oldugundan
problem boyutu (D) 14 olur. Tiim algoritmalar 30 kez calistirilmistir. Ortam 18°de

algoritmalar tarafindan elde edilen 6rnek yollar Sekil 4.36°da gosterilmektedir.
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(e) ®

Sekil 4.36. Ortam 18’de algoritmalar tarafindan elde edilen 6rnek yollar: (a) SCA,
(b) SFS, (¢) AOA, (d) WOA, (e) HHO, (f) sdSCA

Ornek yollar goz 6niine alindiginda, dnerilen algoritma tarafindan planlanan yolun Ortam
17°deki gibi daha kisa ve diizgiin oldugu goriilmektedir. Ortam 18’de ortalama adim
sayis1 kargilastirmasi, ortalama adim sayisinin ¢ubuk grafigi ve ortalama yol uzunlugu

karsilastirmasi sirasiyla Tablo 4.29, Sekil 4.37 ve Tablo 4.30°da gosterilmektedir. Ayrica,
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algoritmalar OYSH, OKHU, toplam uygunluk degeri ve ortalama ¢aligma siiresi a¢isindan

karsilastirilmistir ve bu bulgular Tablo 4.31°de gdsterilmektedir.

Tablo 4.29. Ortam 18’de her robot ve toplam icin ortalama adim sayis1 karsilastirmasi

Ortalama Adim Sayisi

SCA SFS AOA WOA HHO sdSCA
Robot #1 103 78 108 86 109 72
Robot #2 145 95 159 105 123 86
Robot #3 97 49 94 59 66 55
Robot #4 43 35 56 39 47 32
Robot #5 127 157 142 166 104 74
Robot #6 150 84 154 96 105 74
Robot #7 41 29 49 34 40 28
Toplam 706 527 762 585 594 421
180 T T T T -SCA
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Sekil 4.37. Ortam 18’de her robot i¢in ortalama adim sayisinin gubuk grafigi



125

Tablo 4.30. Ortam 18’de her robot ve toplam i¢in ortalama yol uzunlugu (br)
karsilastirmast
SCA SFS AOA WOA HHO sdSCA
Robot #1 125.03 90.40 132.63 102.48 129.93 85.74
Robot #2 174.81 109.18 194.58 124.18 145.73 103.15
Robot #3 116.09 56.91 114.23 70.09 79.02 64.68
Robot #4 51.91 39.95 69.50 47.23 56.89 37.95
Robot #5 153.60 172.45 174.31 185.82 124.40 88.92
Robot #6 179.61 96.13 187.49 112.55 125.34 88.44
Robot #7 49.49 33.08 60.42 40.91 48.33 34.08
Toplam 850.56 598.12 933.19 683.29 709.66 503.00
Tablo 4.31. Ortam 18’de OYSH, OKHU, toplam uygunluk degeri ve ortalama ¢alisma
siiresi karsilastirmalari
SCA SFS AOA WOA HHO | sdSCA
OYSH (br) 50290 | 250.46 | 585.54 | 335.63 | 362.00 | 155.34
OKHU (br) 23472 30872 26134 43786 18975 13927
Toplam Uygunluk | 5309 | 41374 | 44233 | 60575 | 22973 | 13870
Degeri
Ortalama Calsma | = ) 6o | 2876 | 2659 | 2632 | 34.16 | 13.59
Stiresi (s)

Ortam 18’de, adim sayilar1 ve yol uzunluklar1 degerlendirildiginde, 6nerilen algoritmanin
genel olarak diger algoritmalardan daha iyi performans gosterdigi goriilmektedir. Yol
uzunlugu agisindan 7 robottan 6’s1 i¢in diger algoritmalardan daha iyi performans
gostermistir. Ancak, tcilincii robot i¢in SFS ve sdSCA’nin yol uzunlugu agisindan
performanslar1 arasinda anlamli bir fark olmadig1 sdylenebilir. Ayrica, toplam dikkate
alindiginda, Onerilen algoritmanin diger tiim algoritmalardan {istlin oldugu
goriilmektedir. Onerilen algoritma, temel SCA’ya kiyasla adim sayisii %40.36 ve yol
uzunlugunu %40.86 oraninda azaltmistir. Tablo 4.31°de, Onerilen algoritmanin diger
algoritmalara kiyasla tiim kriterlerde en iyi performansi gosterdigi goriilmektedir. Ayrica,
Ortam 17°de oldugu gibi, Ortam 18’de de en kotii performansa sahip algoritmanin AOA,
yol planlama siirecini en uzun siirede tamamlayan algoritmanin ise HHO oldugu
gorilmektedir. Ortam 18 i¢in her algoritmanin adim sayisina gore yakinsama egrileri

Sekil 4.38’de gosterilmektedir.
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Sekil 4.38. Ortam 18 i¢in her algoritmanin adim sayisina gére yakinsama egrileri

Sekil 4.38’de oOnerilen algoritmanin Ortam 18’de diger algoritmalardan daha hizli

yakinsadig1 ve diger bulgular destekledigi goriilmektedir.

Onerilen Algoritmanin Ortam 19°da Gergeklestirimi: Bu ortamda 12 robot
oldugundan problem boyutu (D) 24 olur. Tiim algoritmalar 30 kez ¢alistirilmistir. Ortam
19°da algoritmalar tarafindan elde edilen 6rnek yollar Sekil 4.39°da gosterilmektedir.
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Sekil 4.39. Ortam 19’da algoritmalar tarafindan elde edilen 6rnek yollar: (a) SCA,

(b) SES, (¢) AOA, (d) WOA, (e) HHO, (f) sdSCA

Ornek yollar goz 6niine alindiginda, dnerilen algoritma tarafindan planlanan yolun Ortam

17 ve 18’e benzer sekilde daha kisa ve diizglin oldugu goriilmektedir. Ortam 19°da

ortalama adim sayis1 karsilagtirmasi, ortalama adim sayisinin ¢ubuk grafigi ve ortalama

yol uzunlugu karsilastirmasi sirasiyla Tablo 4.32, Sekil 4.40 ve Tablo 4.33’te

gosterilmektedir. Ayrica, algoritmalar OYSH, OKHU, toplam uygunluk degeri ve

ortalama c¢aligsma siiresi agisindan karsilagtirilmistir ve bu bulgular Tablo 4.34°te

gosterilmektedir.

Tablo 4.32. Ortam 19°da her robot ve toplam icin ortalama adim sayis1 karsilastirmasi

SCA SFS AOA WOA HHO sdSCA
Robot #1 78 47 85 65 73 44
Robot #2 294 220 312 386 268 160
Robot #3 241 174 262 274 215 128
Robot #4 101 53 114 98 100 46
Robot #5 176 118 187 174 146 93
Robot #6 165 126 177 165 149 98
Robot #7 148 107 178 155 152 98
Robot #8 71 52 &3 64 71 48
Robot #9 115 88 138 111 110 74
Robot #10 250 183 291 299 248 138
Robot #11 154 88 159 145 143 79
Robot #12 59 32 59 49 56 31
Toplam 1852 1288 2045 1985 1737 1037
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Sekil 4.40. Ortam 19°’da her robot i¢in ortalama adim sayisinin ¢ubuk grafigi

Tablo 4.33. Ortam 19°da her robot ve toplam i¢in ortalama yol uzunlugu (br)

karsilastirmasi

SCA SFS AOA WOA HHO sdSCA

Robot #1 95.51 54.54 104.60 72.83 86.13 53.16
Robot #2 357.87 248.67 381.84 429.68 313.50 194.78
Robot #3 294 .43 199.42 321.58 308.14 253.31 156.00
Robot #4 121.73 59.80 138.61 110.62 118.54 54.74
Robot #5 214.93 135.88 228.76 199.33 174.56 112.80
Robot #6 201.54 145.61 217.61 189.09 178.21 119.83
Robot #7 182.70 123.54 219.65 177.38 181.87 121.14
Robot #8 86.94 60.47 102.39 71.65 91.71 58.56
Robot #9 140.71 102.38 169.60 126.65 131.38 89.65
Robot #10 304.99 207.99 355.06 336.41 290.37 166.75

Robot #11 188.05 101.81 194.75 165.77 170.85 95.73
Robot #12 71.39 36.80 72.15 54.05 66.11 37.10
Toplam 2260.8 1477.0 2506.7 2241.7 2056.6 1260.3
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Tablo 4.34. Ortam 19°da OYSH, OKHU, toplam uygunluk degeri ve ortalama ¢aligma
stiresi karsilagtirmalari

SCA SFS AOA WOA HHO | sdSCA

OYSH (br) 13404 | 5565 | 15862 | 13212 | 1136.1 | 339.8
OKHU (br) 95334 | 84580 | 152250 | 107690 | 95317 | 65262
Toplam Uygunluk | o395 | co086 | 115160 | 106860 | 90128 | 53926
Degeri
Ortalama Galisma | 1o 36 | 9475 | 12832 | 159.01 | 211.65 | 63.99
Stiresi (s)

Onerilen algoritma, Ortam 17 ve 18’de oldugu gibi Ortam 19’da de tiim robotlarin
minimum adim sayisinda hedef noktalarina ulagsmasini saglamistir. Yol uzunluklar
degerlendirildiginde, onerilen algoritmanin genel olarak diger algoritmalardan daha iyi
performans gosterdigi goriilmektedir. Onerilen algoritma, adim sayisi acisindan tiim
robotlar i¢in basarili olsa da, yol uzunlugu agisindan 12 robottan 11’1 icin diger
algoritmalardan daha i1yi performans gostermistir. Ancak, 12. robot i¢in SFS ve
sdSCA’nin performanslari arasinda anlamli bir fark olmadig1 sdylenebilir. Ayrica, toplam
dikkate alindiginda, Onerilen algoritmanin diger tiim algoritmalardan dstiin oldugu
goriilmektedir. Onerilen algoritma, temel SCA’ya kiyasla adim sayisim %44.00 ve yol
uzunlugunu %44.25 oraninda azaltmistir. Tablo 4.34’te, Onerilen algoritmanin diger
algoritmalara kiyasla tiim kriterlerde en iyi performansi gosterdigi goriilmektedir. Ayrica,
Ortam 17 ve 18’de oldugu gibi, Ortam 19’da de en kotii performansa sahip algoritmanin
AOA, yol planlama siirecini en uzun silirede tamamlayan algoritmanin ise HHO oldugu
gorilmektedir. Ortam 19 i¢in her algoritmanin adim sayisina gére yakinsama egrileri

Sekil 4.41°de gosterilmektedir.
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Sekil 4.41. Ortam 19 i¢in her algoritmanin adim sayisina gére yakinsama egrileri
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Sekil 4.41°de Ortam 19’da Onerilen algoritmanin diger algoritmalardan daha hizli
yakinsadig1 ve diger bulgulart destekledigi goriilmektedir. Sonug olarak, bu calismada
Onerilen algoritmanin performansi farkli zorluk seviyelerine sahip ii¢ farkli ortamda test
edilmis ve Onerilen algoritmanin literatiirdeki giincel metasezgisel algoritmalardan tistiin

oldugu kanitlanmustir.
4.5. Izgara Haritalarda ResNet Tabanh Coklu-Robot Yol Planlamasi

Izgara tabanli mobil robot yol planlama problemlerinde standart FCN mimarileri
derinlestikce kaybolan gradyan problemi yasayabilir ve bu durum agi1 derinlestirmenin
etkinligini smirlayabilir. Bu problem, 6zellikle yol planlama gibi karmasik gérevlerde
robotun ¢evresindeki engellerin dogru bir sekilde taninmasi ve bu engellere kars1 verimli
bir yol haritas1 ¢gikarilmasi i¢in kritik 6neme sahiptir. Gradyan kaybolmasi, geri yayilim
sirasinda gradyanlarin hizla kiigiilmesi nedeniyle agin daha derin katmanlarinin etkili bir
sekilde 6grenmesini engeller. Bu da, robotun gevresindeki karmasik engelleri ve yol
tikanikliklarini dogru bir sekilde 6grenmesini zorlastirir. Ayrica, standart FCN’ler, artik
(residual) katmanlar icermediginden, daha derin katmanlarin 6grenmeye katkisi1 sinirlidir,
bu da agin genel 6grenme siirecini verimsiz hale getirir. Bu durum, robotun yol planlama
gorevindeki 6grenme kapasitesini kisitlar ve modelin daha fazla katman eklemenin fayda
saglamadigr simirh ¢ozilintirliikkteki haritalar {iretmesine yol acar. Bunun yani sira,
FCN’lerde alic1 alanm1 genellikle sinirlidir. Bu da robotun ¢evresindeki genis baglamsal
iliskileri 6grenme yetenegini engeller. Ozellikle yol planlama gibi gérevlerde, robotun
cevresindeki engelleri ve uygun yollar1 daha genis bir baglamda anlamasi1 gerekmektedir.
Algilama alanmin sinirlt olmas1 modelin yalnizca yerel bilgiyle sinirli kalmasina neden
olur, bu da genelleme yetenegini zayiflatir ve modelin asir1 6grenme gibi problemlerle
karsilasmasina yol acar. Standart FCN’lerin bu sinirlamalarini asmak amaciyla, bu
calismada genisletilmis evrisim (dilated convolution), stkma-uyarma blogu (squeeze-
and-excitation) ve dropout igeren iyilestirilmis bir ResNet (IResNet) mimarisi

onerilmistir. Onerilen modelin ana katkilar1 sunlardir:

e Genisletilmis evrisim kullanilarak alic1 alan genisletilmistir. Boylece hem yerel
hem de kiiresel 6zelliklerin daha etkili sekilde 6grenilmesi ve gelismis baglamsal

bilgi edinilmesi saglanmustir.



131

e Sikma-uyarma blogu eklenerek kanal bazinda dikkat mekanizmasi saglanmstir.
Boylece modelin 6nemli gorsel ozelliklere odaklanmasi ve gereksiz bilgilerin

baskilanarak daha verimli 6grenme siirecinin gerceklestirilmesi hedeflenmistir.

e Toplu normalizasyonun (batch norm) etkisini desteklemek amaciyla dropout
kullanilmistir. Boylece modelin daha saglam genelleme yapmasi saglanmis ve

asir1 6grenme riski azaltilmistir.
4.5.1. Problem Tanim

Bu calisma, bir mobil robotun engellere carpmadan hedefe ulagmasini saglayacak
optimum yol planlamasini1 tahmin etmeyi amaclamaktadir. Robotun baslangi¢ ve bitis
noktas1 verildiginde robotun en az sayida i1zgara hiicresinden gecerek hedefe ulagsmasi
gereken yol, derin 6grenme kullanilarak tahmin edilmistir. Calismada iki boyutlu bir
1zgara haritas1 kullanilmistir. Bu harita, ikili bir gériintii formatinda temsil edilir. Her bir
hiicre bos (0) veya engelli (1) olabilir. Robotun yolu, 1’ler ile temsil edilen hiicreler
tizerinden gecerken, 0’lar engel olmayan bos hiicrelerdir. Bu ortamlar, goriintii olarak
modellenir, burada bos alanlar beyaz (0) ve engeller siyah (1) olarak kodlanir. Yol
planlamasi m x n boyutunda bir ikili 1zgara gorlintiisii My,¢,, (ger¢ek yol haritasi) ile
verilecektir. Model M,,,.4 (tahmin edilen yol haritasi) adli bir ¢ikis iretir. Bu ¢ikis
robotun ge¢cmesi gereken hiicrelerin 1 olarak isaretlendigi bir ikili matristir. Modelin
amact M,,.q ile Mgy, arasindaki farki minimize etmektir. Buradaki fark Esitlik

(4.36)’da gosterilen MSE kayip fonksiyonu ile hesaplanir.

Mp

MSE = %Z (Meraen® = Mprea(D))’ (4.36)

Burada n,, harita iizerindeki toplam hiicre sayismni, My (i) ve Mpyeq (i) ise sirastyla
gergek yol ve tahmin edilen yol haritasindaki i’inci hiicrenin degerini temsil eder. Tahmin
edilen yol haritasi, dogru sekilde belirlenen 1’ler ile baglangi¢ noktasindan hedefe giden
en kisa yolu temsil eder. Modelin gérevi optimum yolun dogru sekilde tahmin edilmesini
saglamaktir. Bu, her hiicredeki tahminin, gergek yol ile ne kadar yakin oldugunu 6lgerek

minimize edilir. MSE agin her iki harita arasindaki farki minimize etmeyi amaglar.
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4.5.2. Onerilen Yontem
4.5.2.1. Veri Seti

Bu calismada [110]’daki veri seti kullanilmistir. Agm girisine ¢ farkli veri
saglanmaktadir: ortam matrisi, baslangi¢c noktast matrisi ve hedef noktasi matrisi. Ortam
matrisi engel bilgilerini igerir ve n x n boyutundadir. Bu matriste engeller 1, bos alanlar
0 ile temsil edilmektedir. Engel dagilimi rastgele belirlenmis ve her hiicrenin engel olma
olasilig1 %60 olarak atanmistir. Baslangi¢ ve hedef hiicre matrisleri de ayn1 boyutta olup,
sadece ilgili hiicrede 1 degeri bulunurken diger hiicreler 0’dir. Modelin ¢iktisi ise tahmin
edilen yolun 1’lerle gosterildigi n x n boyutunda tek bir matristir. Bu matristeki yollar
optimum yol olarak ifade edilmis ve A* algoritmasi ile 8 yonlii olarak planlanmistir.
Calismada toplam 30000 veri 6rnegi kullanilmis ve ii¢ farkli ortam boyutu ele alinmstir:
10 x 10 br?, 15 x 15 br? ve 20 x 20 br®. Tekli robot senaryolarinda baslangic ve hedef
hiicreleri farkli ve rastgele olacak sekilde belirlenmistir. Coklu robot senaryolari ise
yalnizca 15 x 15 br? boyutundaki ortamlarda test edilmis ve bu senaryolarda tiim robotlar
ayn1 hedef hiicresine yonlendirilmistir. Iki robotlu durumda baslangig hiicreleri (1, 1) ve
(1, 15), ti¢ robotlu durumda ise (1, 1), (1, 15) ve (15, 1) olarak belirlenmistir. Tiim
senaryolarda hedef hiicresi ortamin merkezinde bulunan (8, 8) hiicresidir. Giris ve ¢ikis

verilerinin bir temsili Sekil 4.42°de gosterilmektedir.

Ortam Matrisi Baglangi¢ Hiicre Matrisi ~ Hedef Hiicre Matrisi

Giris Verisi
(3xnxn)

Yol Matrisi

Cikis Verisi
(I xnxn)

Sekil 4.42. Giris ve ¢ikis verilerinin bir temsili
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4.5.2.2. Onerilen IResNet Mimarisi

Onerilen IResNet mimarisi, geleneksel artik ag yapisini temel alarak, stkma-uyarma ve
genisletilmis evrisim mekanizmalarinin entegre edildigi 41 evrisim katmanli bir derin
o6grenme modelidir. Modelin giris katmani, adim uzunlugu 1 olan 3 x 3 boyutunda 64
filtre iceren bir evrisim katmani ile baslamaktadir. Bu katman, ReLU aktivasyon
fonksiyonu ile etkinlestirilmekte ve ardindan bir toplu normalizasyon islemi
uygulanmaktadir. Modelin ana govdesini her biri 64 filtre iceren 19 adet artik blok
olusturmaktadir. Her artik blok 3 x 3 boyutunda, adim uzunlugu 1 olan ve ReLU
aktivasyon fonksiyonuna sahip iki evrisim katmanindan meydana gelmektedir. Bu
katmanlardan her birine toplu normalizasyon islemi uygulanarak modelin istikrari
artirllmistir. Artik baglanti mekanizmasi ile giris ve ¢ikis bilgileri toplanarak 6grenme
stirecinin verimliligi yiikseltilmistir. Her artik blok sonunda asir1 6grenmeyi onlemek
amaciyla %10 oraninda dropout uygulanmistir. Artik bloklarin ardindan, modelin daha
genis bir alandan 6zellik ¢ikarabilmesi icin genisletilmis evrisim teknigi kullanilmistir.
Burada genisleme orani 2 olan 64 filtreli 3 x 3 boyutunda bir evrisim katman1 eklenmistir.
Bu islem, daha biiytik alansal iliskileri 6grenerek modelin daha giiclii temsil giiciine sahip
olmasim1 saglamaktadir. Modelde dikkat mekanizmasimi giiclendirmek amaciyla,
sikistirma-uyarma blogu kullanilmistir. Kanal sayis1 64 ve sikistirma orani 16 olarak
belirlenmistir. Dolayisyla, 4 néronlu-ReLLU aktivasyonlu ve 64 ndronlu-sigmoid
aktivasyonlu iki tam baglantili tasarlanmis ve giris tensoriine uygulanmistir. Cikis
asamasinda tek kanal iceren bir ¢ikt1 iretmek amaciyla, 1 filtreli ve adim uzunlugu 1 olan
3 x 3 boyutunda bir evrisim katmani eklenmistir. Bu katmanda sigmoid aktivasyon
fonksiyonu ile ¢ikt1 degerleri O ile 1 arasinda normalize edilmistir. Son olarak toplu
normalizasyon islemi ve %10 oraninda dropout uygulanarak model tamamlanmistir.

Onerilen IResNet mimarisi Sekil 4.43’te gdsterilmektedir.
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. l
Giris (n x n x 3) *
) : Evrisim 3x3, 64, 1, ReLU
Evrisim 3x3, 64, 1, ReLU Toplu Normalizasyon

Toplu Normalizasyon ¢

v [ Evrisim3x3, 64, 1,ReLU |

| Artik Katman 1 | | Toplu Normalizasyon |

| Artik Katman 2 | @ <

¢ Dropout (0.10) |

| Artik Katman 19 | ¢

[ Genisletilmis Evrisim 3x3, 64, 2, ReLU | |
| Toplu Normalizasyon | '
¢ | Global Ortalama Havuzlama |
| Sikma-Uyarma Blogu, 64, 16 | ¢
¢ | Tam Bagh Katman, ReLU |
[ Evrisim 3x3, 64, 1, Sigmoid | y
| Toplu Normalizasyon | | Tam Bagli Katman, Sigmoid |
! |
| Dropout (0.10) | CI) .

Cikis(nxnx 1)
Sekil 4.43. Onerilen IResNet mimarisi
4.5.2.3. Degerlendirme Metrikleri

Onerilen modelin tahmin ettigi yollar, egitim verisinde A* algoritmasi ile planlanan en
kisa yollar ile karsilastirilarak degerlendirilmistir. Model performansini 6lgmek amaciyla
basari oran1 ve yol optimalitesi metrikleri kullanilmistir. Bagar1 orant (n,.), test
ortamlarinda modelin baglangi¢ ve hedef hiicreleri arasinda gecerli bir yol planlayabildigi

durumlarin yiizdesi olarak tanimlanmis Esitlik (4.37) kullanilarak hesaplanmustir.

Moo = (k) -100% (4.37)

ng
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Burada, ny, model tarafindan basarili sekilde tiretilen yollarin sayisini, n; ise toplam test
ortami sayisini temsil eder. Yol optimalitesi (7,,,), model tarafindan tiretilen yollarin, A*
algoritmasi tarafindan hesaplanan en kisa yollar ile ayni1 olup olmadigini belirlemek
amaciyla kullanilmistir. Modelin tahmin ettigi yollarin uzunlugu (Ligesyer) A*
algoritmasi ile elde edilen en kisa yolun uzunlugu (Lg+) ile karsilastirilmistir. Eger
Liresnet = La* kosulu saglaniyorsa, yol optimal kabul edilmistir. Yol optimalitesi Esitlik

(4.38) kullanilarak hesaplanmistir.

Nop
Nop = |—) - 100% (4.38)
U
Burada, n,, model tarafindan planlanan optimal yollarin sayisini temsil eder. Bu
metrikler, modelin genel basarimini ve en kisa yolu iiretebilme yetisini degerlendirmek

icin kullanilmistir.
4.5.3. Bulgular

Bu ¢alismada, onerilen IResNet modelinin performanst hem tekli hem de c¢oklu robot
senaryolarinda test edilmis ve [110]’daki FCN ile elde edilen sonuglarla kiyaslanmistir.
Tiim simiilasyonlar Python programlama dilinde kodlanmuis, Intel Core 17-1255U islemci
ve 32 GB RAM e sahip bir bilgisayarda calistirilmistir. Onerilen model, sadece tekli robot
senaryosunda egitilmis, ancak egitilen model hem tekli hem de c¢oklu robot
senaryolarinda test edilmistir. Tiim egitim parametreleri [110]’daki ayarlarla aynidir.
Modelin egitiminde toplam 30000 veriden 26000’1 egitim, 2000’1 ise dogrulama ig¢in
ayrilmigtir.  Modelin daha o©nce gormedigi ortamlarda genel performansini
degerlendirmek amaciyla, 2000 test verisi yalnizca egitimde kullanilmayan ortamlari
icermektedir. Coklu ortam senaryosundaki analiz i¢in ise 1000 test verisi kullanilmistir.
Model 10 x 10 br?, 15 x 15 br? ve 20 x 20 br? boyutlu ortamlar igin ayr1 ayr1 egitilmistir.
Egitim siirecinde, model Adam optimizasyon algoritmasi kullanilarak MSE kaybi ile
egitilmistir. Performans Olgiitii olarak dogruluk metrigi izlenmistir. Modelin asir1
o0grenmesini Onlemek amaciyla, erken durdurma mekanizmasi uygulanmistir. Erken
durdurma, dogrulama dogrulugunu izleyerek 10 epoch boyunca iyilesme
gozlemlenmediginde egitimi sonlandiracak sekilde ayarlanmistir. Ayrica, modelin en 1yi
agirliklarim1 kaydetmek i¢in ModelCheckpoint kullanilmis ve dogrulama dogrulugu en

yiiksek olan modelin agirliklari saklanmistir. Egitim verileri uygun bir formatta yeniden



136

sekillendirilerek modele verilmis, veriler 64’liik batch boyutunda islenmis ve epoch sayisi
100 olarak ayarlanmistir. Egitim siireci boyunca modelin performansi takip edilerek en

1yi sonuglar1 veren agirliklar kaydedilmis ve analiz i¢in kullanilmistir.
4.5.3.1. Tekli Robot Senaryosu

Bu calismada, onerilen modelin performansi farkli ortam boyutlarinda test edilerek
degerlendirilmistir. Ik olarak, modelin 10 x 10 br* boyutundaki bir 1zgara ortaminda
egitim siireci gerceklestirilmistir. Bu egitimden sonra, bu model hem 10 x 10 br?> hem de
15 x 15 br? ile 20 x 20 br? boyutlarindaki 1zgara ortamlarinda test edilmistir. Bunun yani
sira, 15 x 15 br? ve 20 x 20 br? boyutlarinda ayr1 ayr1 egitilen modeller de benzer sekilde,
her {i¢ ortam boyutunda da test edilerek genel performanslari karsilastirilmistir. Bu ¢oklu
test ortamlari, modelin genelleme yetenegini ve farkli ortam boyutlarina adaptasyon
kabiliyetini analiz etmek amaciyla kullanilmistir. Tekli robot test verilerinde 10 x 10 br?,
15 x 15 br? ve 20 x 20 br? boyutlu ortam verileri ile egitilen IResNet modellerinin farkli
test ortamlarinda FCN ile karsilagtirmalar1 sirasiyla Tablo 4.35°te, bunlarin c¢ubuk
grafikleri ise sirasiyla Sekil 4.44°te gosterilmektedir. Ayrica 15 x 15 boyutlu ortam verisi
ile egitilen IResNet modelinin her boyuttaki ortamda planladig1 optimal ve yari-optimal

yollardan 6rnekler Sekil 4.45°te gosterilmektedir.

Tablo 4.35. Tekli robot test verilerinde 10 x 10 br?, 15 x 15 br? ve 20 x 20 br? boyutlu
ortam verisi ile egitilen IResNet modelinin farkli test ortamlarinda FCN ile

karsilastirmasi
Basar1 Orani (%) Yol Optimalitesi (%)
Model | 10x10 | 15x15 | 20x20 | 10x10 | 15x15 | 20x20
Test Test Test Test Test Test
10x10 | ECN 100 99.75 98.45 99.85 83.51 58.10
Egitim | JResNet 100 99.85 98.10 98.05 89.85 66.25
15x15 | FCN 99.90 99.95 98.90 97.25 91.00 75.53
Egitim | TResNet 100 100 99.95 98.30 96.45 90.70
20x20 | FCN 99.90 99.70 99.60 98.05 94.38 86.55
Egitim | [ResNet | 99.90 99.75 99.85 98.70 97.00 94.25
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Sekil 4.44. Tekli robot test verilerinde 10 x 10 br?, 15 x 15 br? ve 20 x 20 br? boyutlu
ortam verisi ile egitilen IResNet modelinin FCN ile karsilastirma grafigi:
(a) 10 x 10 br? basar1 orani, (b) 10 x 10 br? yol optimalitesi, (¢) 15 x 15 br?
basar1 oram, (d) 15 x 15 br? yol optimalitesi, (e) 20 x 20 br? basar1 orani,
(f) 20 x 20 br? yol optimalitesi
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Sekil 4.45. Tekli robot test verilerinde 15 x 15 br? boyutlu ortam verisi ile egitilen
IResNet modelinin her boyuttaki ortamda planladigi optimal ve yari-
optimal yollardan drnekler: (a) 10 x 10 br? optimal, (b) 10 x 10 br? yari-
optimal, (¢) 15 x 15 br? optimal, (d) 15 x 15 br? yar1-optimal, (e) 20 x 20
br? optimal, (f) 20 x 20 br? yari-optimal (Siyah carpilar gergek yolu, mavi
cizgiler onerilen IResNet modeli ile tahmin edilen yollari, yesi ve kirmizi
noktalar sirastyla baslangi¢ ve hedef noktalarini temsil eder.)
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Basar1 orani agisindan degerlendirildiginde, Onerilen IResNet modeli tiim ortam
boyutlarinda FCN ile rekabet edebilir sonuglar iiretmis ve benzer bir basar1 orani elde
etmistir. Ancak, yol optimalitesi acisindan yapilan degerlendirmelerde, IResNet
modelinin genel olarak FCN’ye kiyasla daha dstiin bir performans sergiledigi
gdzlemlenmistir. Kii¢iik boyutlu ortamlarda egitilen modeller arasinda, 10 x 10 br?
boyutlu ortam verisiyle egitilen IResNet’in, ayn1 boyuttaki test verisinde FCN’ye kiyasla
gorece diisiik bir optimaliteye sahip oldugu, ancak ortam boyutu biiyiidiiglinde FCN’yi
geride biraktifi tespit edilmistir. Ortam boyutu biiyiidiikge IResNet’in bu metrikteki
basaris1 belirgin sekilde artmis ve 15 x 15 br? ile 20 x 20 br? boyutlu ortam verileriyle
egitilen modeller tiim test ortamlarinda FCN’ye kiyasla daha yiiksek yol optimalitesi
sunmustur. Ozellikle daha biiyiik test ortamlarinda FCN’nin yol uzunlugu agisindan ciddi
performans kayiplar1 yasadigi goriiliirken, IResNet modelinin optimal yollar {iretme

konusunda daha kararli sonuglar verdigi ortaya konmustur.
4.5.3.2. Coklu Robot Senaryosu

Bu senaryoda ek bir egitim yapilmadan, tekli robot senaryosunda 15 x 15 br? ortam
boyutu ile egitilen model kullanilarak birden fazla robotun yol planlamasindaki
performansi incelenmistir. Buradaki amag, farkli baslama noktalarindan ayni hedef
noktasina ulasan birden fazla robot yolunun tahmin edilmesidir. Coklu robot
senaryosunda sadece 15 x 15 br’ boyutundaki ortamda yer alan 1000 test verisi
kullanilmistir. Bu kapsamda, basar1 oran1 ve yol optimalitesi dikkate alinarak 1, 2 ve 3
yol tahmin etme durumu degerlendirilmistir. Coklu robot test verilerinde 15 x 15 br?
ortam boyutu ile egitilen IResNet modelinin 1, 2 ve 3 yol bulma durumlarinda FCN ile
karsilastirmasi sirasiyla Tablo 4.36’da, bunlarin c¢ubuk grafikleri ise sirasiyla Sekil
4.46°da gosterilmektedir. Ayrica bu modelinin 2 ve 3 yol bulma durumlarinda planladigi

optimal ve yari-optimal yollardan 6rnekler Sekil 4.47°de gosterilmektedir.
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Tablo 4.36. Coklu robot test verilerinde 15 x 15 br? ortam boyutu ile egitilen IResNet
modelinin 1, 2 ve 3 yol bulma durumlarinda FCN ile karsilastirmasi

. . . Robot Sayisi
Degerlendirme Metrigi Model 1 5 3
FCN 99.50 99.80 100
1 Yol Bulma Durumu
IResNet 100 100 100
FCN - 96.40 99.20
Basarol Orani 2 Yol Bulma Durumu
(%) IResNet - 99.80 | 99.50
FCN - - 83.90
3 Yol Bulma Durumu
IResNet - - 96.50
. FCN 93.77 85.88 83.33
Yol Optimalitesi (%)
IResNet 97.70 94.46 90.42
(@) (b)

Basari Orani (%)

= FCN
mmm ResNet

3
Robot Sayisi

(©)

100

80

60

Yol Optimalitesi (%)

2
Robot Sayisi

(d)

= FCN
== ResNet

Sekil 4.46. Coklu robot test verilerinde 15 x 15 br? ortam boyutu ile egitilen IResNet
modelinin 1, 2 ve 3 yol bulma durumlarinda FCN ile karsilastirma
grafikleri: (a) 1 yol bulma durumunda basar1 orani, (b) 2 yol bulma
durumunda bagari orani, (¢) 3 yol bulma durumunda basari orani, (d) Yol
optimalitesi
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Sekil 4.47. Coklu robot test verilerinde 15 x 15 br? boyutlu ortam verisi ile egitilen
IResNet modelinin 2 ve 3 yol bulma durumlarinda planladigr optimal ve
yari-optimal yollardan 6rnekler: (a) 2 yol bulma durumunda optimal, (b) 2
yol bulma durumunda yari-optimal, (¢) 3 yol bulma durumunda optimal,
(d) 3 yol bulma durumunda yari-optimal (Siyah carpilar ger¢ek yolu, mavi
cizgiler onerilen IResNet modeli ile tahmin edilen yollari, yesi ve kirmiz
noktalar sirasiyla baglangi¢ ve hedef noktalarini temsil eder.)

(a)
r:.11
-
c)

(d)

Basar1 orani acisindan degerlendirildiginde, onerilen IResNet modelinin tiim test
senaryolarinda FCN modelinden daha iistiin performans sergiledigi agikca goriilmektedir.
Ozellikle arastirilan yol sayis1 arttikca, bu performans farki daha belirgin bir sekilde
ortaya ¢ikmaktadir. Ilk basta, her iki modelin basar1 oranlar arasinda kiigiik farklar
bulunsa da, yol sayis1 arttikca IResNet'in yiiksek basar1 oran1 daha net bir sekilde fark
edilmektedir. Bu durum, modelin daha karmasik ve genis ortamlar ile daha fazla yol
bulma gereksinimlerini daha etkin sekilde karsilayabildigini gostermektedir. Ayrica,

onerilen IResNet modeli, FCN’ye kiyasla daha yiiksek bir optimalite oranina sahiptir. Bu
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da, IResNet'in sadece daha fazla sayida basarili ¢ikis saglamakla kalmadigini, aym
zamanda daha verimli yollar1 secerek daha optimal sonuglar sundugunu ortaya
koymaktadir. IResNet’in yiiksek basar1 orani ile birlikte, diisitk maliyetli ve daha kisa
yollar liretme yetenegi, onun yol planlama alaninda giiclii bir alternatif olarak 6ne
cikmasini saglamaktadir. Sonug olarak IResNet, biiyiik 6l¢ekli ve karmasik ortamlar igin
daha basarili bir yol planlama yaklasimi sunmaktadir. Hem basari oran1 hem de yol
optimalitesi agisindan FCN modelini geride birakarak, 6zellikle robotik ve otonom
sistemlerde yiiksek dogruluk ve verimlilik gerektiren uygulamalarda tercih edilmesi
gereken bir model olarak dikkat ¢ekmektedir. Bu durum, IResNet'in ¢esitli robotik
senaryolarda daha verimli ve giivenilir ¢ézliimler sundugunu ve dolayisiyla daha genis

capl kullanim alanlari i¢in uygun oldugunu gostermektedir.
4.6. Bir Mobil Robotun Gercek Zamanh Yol Planlamasi ve Takip Kontrolii
4.6.1. Mobil Robot Tasarimi

Bu ¢aligmada dort tekerlekli ve 4WD (four-wheel drive) siiriis sistemine sahip siyah bir
mobil robot kullanilmistir. Robotun sasesi iki katmandan olusmaktadir: Alt katman
alliminyum, iist katman ise akrilik plastik malzemeden imal edilmistir. Tekerlekler omni
mekanum tipinde secilmistir, bu sayede robot saga-sola veya capraz gibi ¢ok yonlii
hareket edebilmektedir. Robotun ana kontrol birimi olarak Raspberry Pi 3B+
kullanilmistir. Tiim sistemin enerji ithtiyaci 3S LiPo batarya ile karsilanmistir. Tekerlek
motorlart 12V DC ile calistigit i¢in bu gerilim dogrudan motor siiriiclilerine
yonlendirilmistir. Motor siiriiciisii olarak iki adet L298N kart1 kullanilmistir. Her siiriicii
kart1 iki motor kontrol edebildigi i¢in toplamda dort motor i¢in iki siiriicii yeterli olmustur.
Raspberry Pi kart1 ise 5V DC ile calistif1 icin bataryadan gelen gerilim LM2596
ayarlanabilir DC-DC regiilator ile diistiriilmiistiir. Ayrica, robot ile ana bilgisayar arasinda
kablosuz iletisimi saglamak amaciyla XBee S2C haberlesme modiilii kullanilmistir.
XBee’nin Raspberry Pi kartina kolayca baglanabilmesi i¢in XBee Explorer USB tercih
edilmistir. Mobil robotun genel goriintimii ve donanimi1 Sekil 4.48’de, elektronik baglanti

semast ise Sekil 4.49°da gosterilmektedir.
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12V DC Motor

Omni Mekanum
Tekerlekler

Kirmizi Etiket
(Marker)

Sekil 4.48. Mobil robotun genel gériintimii ve donanimu: (a) Genel gériniim, (b) Ara
katmanin alt yiizeyi, (¢) Ara katmanin {ist yiizeyi, (d) Ust katman
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Sekil 4.49. Mobil robotun elektronik baglant1 semasi
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4.6.2. Mobil Robotun Ters Kinematigi

Bu c¢alismada kullanilan robot ¢ok yonlii tekerleklere sahip oldugundan her yone hareket
edebilir, yani robot holonomik olarak tanimlanabilir. Bu robotun hareketi merkezine
yerlestirilen yerel bir koordinat sisteminde tanimlanir. Bu sistemde robotun X yoniindeki
dogrusal hiz1 vy, Y yonindeki dogrusal hizi v, ve Z ekseni etrafindaki agisal hiz1 w,
olmak iizere {i¢ hiz bileseni bulunur. Bu hizlar vektorel olarak Esitlik (4.39)’daki gibi

gosterilebilir.
vx
U= [Uy] (4.39)
wZ

Burada, ¥ robotun genel hiz vektoriinii temsil eder. Ters kinematik ise robotun bu ii¢
hizindan hareketle her bir tekerlegin acisal hizinin (w;, w,, w3, w,) elde edilmesidir.

4WD siiriiglii ve omni mekanum tekerlekli bir mobil robot i¢in bu tekerlek hizlar1 Esitlik

(4.40) kullanilarak hesaplanir.

W, 1 -1 —(+ )],
w| 111 G+l V]
w3l |1 -1 (p+1,) Y
Wy 1 1 —(+1) 17

(4.40)

Burada, 7, tekerleklerin yaricapini, I ve [, robot govde merkezinin tekerlek merkezine
olan yatay ve dikey uzakliklarini temsil eder. Hesaplanan tekerlek hizlari robotun belirli
bir referans yol lizerinde istenilen sekilde ilerlemesini saglamak amaciyla gelistirilen

kontrol algoritmalarinda kullanilir.
4.6.3. Platform ve Engeller

Bu ¢alismada, mobil robotun yol planlamasi i¢in bdliimiimiiziin El-Cezeri Mobil Robotik
Sistemler Laboratuvarindaki ¢alisma platformu kullanilmistir. Platformun genel yapisi
“T” harfi formundadir, ancak ger¢ek zamanli ¢alisma sadece bu yapinin iist kisminda yer
alan dikdortgen alan tercih edilmistir. Bu boliim robotun hem serbestce hareket
edebilmesini hem de simirlar icinde kalmasini saglayacak sekilde secilmistir. Bu

caligmada kullanilan platform Sekil 4.50°de gosterilmektedir.
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Sekil 4.50. Platform

Laboratuvarin tavanina Genius Widecam F100 model bir webcam sabitlenmis ve bu
kamera ile platform tamami yukaridan izlenebilmistir. Kullanilan kamera Sekil 4.51°de,

platform iistten kamera goriintiisii ise Sekil 4.52°de gosterilmektedir.

s R T B i ¥ 3 e g

Sekil 4.51. Genius Widecam F100 Webcam
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Sekil 4.52. Platform iistten kamera goriintiisii

Platform iizerine yerlestirilen engeller mavi renkli silindirik cisimler olarak secilmistir.
Renk ve sekil tercihleri robotun {izerindeki kamera ile ¢alisan gorsel algilama sisteminin
bu engelleri daha kolay tespit edebilmesi goz oniinde bulundurularak yapilmistir. Mavi

silindirik engeller Sekil 4.53’te gosterilmektedir.

Sekil 4.53. Engeller
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4.6.4. Goriintii isleme ve Gercek Zamanh Yol Planlama

Gergek zamanl ¢alismadan 6nce, MATLAB programlama dilinde ¢calismada kullanilan
iki farkli ortam tasarlanmis ve bu ortamlar i¢in yol planlama simiilasyonu

gerceklestirilmistir. Sekil 4.54°te gosterilen bu ortamlar ger¢cek zamanli ¢aligmada da

kullanilmistir.
150
100 |
o O .
50
D | | | | | 1 1 1
0 50 100 150 200 250 300 350 400
X
(@
150 : ; .
x @
100
>

® .

O | 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450

X

(b)

Sekil 4.54. Tasarlanan ortamlar: (a) Ortam 20, (b) Ortam 21 (Siyah daireler robotu,
carpi isaretleri hedef noktasini, gri daireler ise engelleri temsil eder.)

Bu simiilasyonda robot ve hedef noktasi arasinda kiibik spline interpolasyonu tabanli
optimum bir yol (B-) planlanmistir. Bu optimziasyon ABC algoritmas1 kullanilarak
gergeklestirilmis ve robotun gidecegi en kisa ve en gilivenli yol planlanmistir. ABC

algoritmasinda kullanilan amag fonksiyonu Esitlik (4.41)’de gosterilmektedir.

arg n}inT =F; + BF, (4.41)

Ty
Fi= ) Ipics —pil (442)
i=1
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llpi = p°ll || 5 llp; — p°ll .
F, = (1 Toxr, ) B\ Teqy, )70 (4.43)
0

i=1 ) aksi halde

Burada f engel ihlal faktoriinii, n,, yolu olusturan nokta sayisini, p; yolun i’inci noktasini,
p? engelin merkez noktasini, 7° engelin yarigapini ve Ly ise giivenlik mesafesini temsil

eder. ABC algoritmasi i¢in maksimum iterasyon sayisi 200, popiilasyon sayisi ve limit

degeri 100 olarak ayarlanmistir. Simiilasyondaki yol planlama sonucu Sekil 4.55te

gosterilmektedir.
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Sekil 4.55. Simiilasyon ¢alismasinda yol planlama sonucu: (a) Ortam 20, (b) Ortam 21
(Siyah ¢izgi planlanan yolu temsil eder.)

Gergek zamanh ¢calisma Python programlama dilinde kodlanmis ve goriintii isleme i¢in
OpenCV Kkiitiiphanesinden yararlanilmistir. Ilk olarak, “T” harfi bicimindeki platformun
yalnizca tstteki dikdortgen boliimii sinirlandirilmistir. Global referans ekseni ise bu
dikdértgen ekranin sol iist kdsesidir. ilk asamada ana bilgisayarda robotun ve engellerin
konumlar1 belirlenmistir. Bu amagla renk tabanli bir goriinti isleme algoritmasi
kullanilmistir. Algoritmada belirli renkleri tespit edebilmek icin HSV renk uzayinda
esikleme yontemi uygulanmis ve bu islem sonucunda ikili bir maske goriintiisti elde
edilmistir. Maske goriintiisiinde yalnizca esik degerini saglayan pikseller 1 (beyaz), diger

tiim pikseller ise 0 (siyah) olarak atanmistir. Elde edilen bu maske {izerinde kontur analizi
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gerceklestirilmis ve boylece ilgili renk bolgelerinin merkez koordinatlar1 hesaplanmaistir.
Bu sayede robot ve engellerin konumlar1 kamera goriintiisiinden basariyla tespit
edilmistir. Ancak robotun yonelim bilgisi de gerektiginden, robotun tespiti sirasinda
yalnizca kendi rengi yeterli olmamis ve robot iizerinde farkli bir renk daha kullanilmustir.
Bu yiizden robotun 6n kismina kirmizi bir etiket (marker) yerlestirilmis ve arka kismi ise
robotun kendi rengi olan siyah ile ayirt edilmistir. Ayn1 goriintii isleme algoritmasi ile
robotun iizerindeki kirmizi ve siyah renk bolgeleri ayr1 ayri algilanmis ve bdylece robotun
On ve arka noktasi belirlenmistir. Ardindan bu iki nokta kullanilarak robotun global eksen

takimina gore konum ve yonelimi Esitlik (4.44) ve (4.45)’teki gibi hesaplanmistir.

— Xt’m + Xarka Y. = Yén + Yarka

T 2 r 2 (4'44)

Yé‘)n - Yarka) (4 45)

0, = tan~! (
" Xt’m _Xarka

Burada (X, ¥;-) robotun merkez konumunu, (X;,,, Y;,) robotun 6n noktasinin konumunu,
(Xarkar Yarkae) robotun arka noktasinin konumunu, 68, ise robotun yonelimini temsil eder.
Gergek zamanli calismada robotun ve engellerin algilanmasi Sekil 4.56’da, ana
bilgisayardaki goriintii isleme algoritmasimin temel adimlari ise Algoritma 4.8’de

gosterilmektedir.

B! Frame = O X
y : -l

e am
‘/ Robotun OnuA/ w\

Engel Robotun Arkasi

(@)
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Sekil 4.56. Gergek zamanli calismada robotun ve engellerin algilanmasi: (a) Ortam 20,
(b) Ortam 21

Algoritma 4.8: Ana bilgisayardaki goriintii isleme algoritmasinin temel adimlari
1: Kameranin baslatilmasi
Kameradan goriintii alinmasi
Giriltiilerin medyan filtre ile azaltilmasi
Goriintiiniin HSV uzayina donistiirilmesi
Mavi (engel), kirmizi (robot 6n) ve siyah (robot arka) renkli bolgelerin tespit edilmesi
Kontur analizi ile bu renkli bolgelerin merkez noktalarinin hesaplanmasi
Esitlik (4.39) ve (4.40) kullanilarak robotun konum ve yoneliminin hesaplanmasi
Islenmis goriintiiniin ekranda gosterilmesi

Robotun ve engellerin tespit edilmesinden sonra robotun konumu ve daha 6nceden girdi
olarak alinan hedef nokta arasinda tekrar ABC algoritmasi kullanilarak yol planlanmistir.
Gergek zamanhi calismada ABC algoritmasinda yine Esitlik (4.41)’deki amag fonksiyonu
kullan1lmis, maksimum iterasyon sayisi, popiilasyon sayisi ve limit degeri de simiilasyon
caligmasinda kullanilan ayarlarla aymidir. Yol planlama sonucunda elde edilen bu
koordinat dizisi (planlanan yol) takip kontroliinde referans yol olarak kullanilmistir.
Gergek zamanli ¢alismada yol planlama sonucu Sekil 4.57°de, ana bilgisayardaki gercek
zamanli yol planlama algoritmasinin temel adimlar1 ise Algoritma 4.9°da

gosterilmektedir.
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/ &
Hedef Noktasi
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Referans Yol Engeller
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(b)

Sekil 4.57. Ger¢ek zamanl ¢calismada yol planlama sonucu: (a) Ortam 20, (b) Ortam 21

Algoritma 4.9: Ana bilgisayardaki ger¢ek zamanli yol planlama algoritmasinin temel adimlari

1:

A A

Hedef noktanin kullanici tarafindan girilmesi

Robotun baslangi¢ noktasinin o anki durdugu yer olarak atanmasi

Goriinti isleme algoritmasindan engel bilgilerinin (merkezi ve yarigapi) alinmasi
Esitlik (4.41) kullanilarak amag fonksiyonu tanimi

ABC algoritmasi kullanilarak optimum yolun hesaplanmasi

Planlanan referans yolun islenmis goriintiide gosterilmesi

Planlanan referans yolun koordinat dizisi olarak kaydedilmesi

4.6.5. Ger¢cek Zamanh Yol Takip Kontrolii

Robotun planlanan referans yol {izerinde en az hata ile hedef noktaya ulasmasi i¢in bir

yol takip kontrol algoritmasi gelistirilmistir. Bu silire¢ baslamadan 6nce robot ile ana

bilgisayar arasinda kablosuz haberlesmeyi saglamak i¢in XBee modiilii baslatilmistir. i1k

olarak referans yol belirli sayida ara hedef noktaya (yerel hedefler) boliinmiistiir. Bu
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noktalar robotun ana hedefe kademeli olarak yonelmesini saglar. Ger¢ek zamanl

calismada referans yol i¢in olusturulan ara hedef noktalar1 Sekil 4.58°de gosterilmektedir.

! Frame — (] *

Ara Hedef
Noktalari

el

|® ! Frame — O X

Engeller

(b)

Sekil 4.58. Gergek zamanli ¢alismada referans yol {izerinde olusturulan ara hedef
noktalari: (a) Ortam 20, (b) Ortam 21

Ara hedef noktalar1 olusturulduktan sonra goriintii isleme algoritmas: kullanilarak
robotun anlik olarak global eksen takimina gore konum ve yonelim bilgisi elde edilmistir.
Ayrica robotun konumuna en yakin ara hedef noktasina olan yonelim de elde edilir.
Robotun global eksen takimina gore yonelimi ve ara hedef noktaya olan yonelimi Sekil

4.59’da gosterilmektedir.
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Ara Hedef Noktas1 Y

X
y Global Eksen

Takimi
---------------------------------------------- =)

Sekil 4.59. Robotun global eksen takimina gore yonelimi ve ara hedef noktaya olan
yonelimi

Bu iki yonelim agis1 arasindaki hata Esitlik (4.46)’da tanimlandig1 gibi hesaplanmistir.
O = Orer — O (4.46)

Burada 6, agisal hatay1 ve 6, ise robotun hedef noktaya olan yonelimini temsil eder.
Acisal hata XBee modiilii araciligiyla robot {izerinde c¢alisan Raspberry Pi kartindaki
hareket algoritmasina girdi olarak verilmistir. Robot iizerinde ¢alisan hareket algoritmasi
acisal hatayr P kontrol organina verir. P kontrol organinin girisi acisal hata iken ¢ikisi
robot merkezinin Z ekseni etrafindaki agisal hiz1 (w,) olarak tanimlanmistir. Bu kontrol

organinda agisal hata Esitlik (4.47)’de gosterildigi gibi sabit bir katsay1 (Kp,) ile garpilir.
w, = K,0, (4.47)

Bu sayede robot merkezinin agisal hizi hesaplanir ve bu hiz ters kinematik model
kullanarak tekerlek hizlarina ¢evrilir. Boylece hata ne kadar kiiciikse o kadar yumusak,
hata ne kadar biiyiikse o kadar keskin doniis saglanir. Ancak agisal hatanin ¢ok kiiciik
oldugu durumlarda hareket algoritmasi robotun ileri dogrultuda (X dogrultusunda) sabit
bir lineer hizda (v) diiz gitmesini saglar ve yanal hareket yoktur. Bu sebeple robotun genel

hiz vektorii Esitlik (4.48)’deki gibi tanimlanmustir.

Vy v
U= [vy = 0 (4.48)
W, K,0,
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Bu durumda robotun her bir tekerlegin agisal hizi ters kinematik model kullanilarak

Esitlik (4.49)-(4.52)’deki gibi hesaplanmaistir.

1

w; = r—(v — (ln + L)K0,)
w
1

W, = r—(v + (In + L,)K,6,)
w
1

w3 = r—(v + (In + L,)K,6,)
w

1
Wy = r—(v — (In + L,)K,6,)
w

0 < |(Un + LDKy0.| < v

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

Hesaplanan bu tekerlek hizlari ile robot siiriilmiis ve en yakin ara hedef noktasina ulagsana

kadar bu kontrol dongiisii devam etmistir. Robot en yakin ara hedef noktasina ulastiginda

bir sonraki hedef noktasi robotun yeni yerel hedefi olmus ve aynmi kontrol dongiisii

tekrarlanmistir. Bu slire¢ robot ana hedef noktaya ulasana kadar devam etmistir. Bu basit

kontrol mantig1 sayesinde robot ara hedef noktalarini sirayla takip ederek referans yol

tizerinde glivenli ve kararli bir sekilde ana hedefe yonlendirilebilmistir. Yol takip

kontroliiniin blok diyagrami Sekil 4.60°ta, ana bilgisayardaki yol takip kontrol

algoritmasinin temel adimlar1 Algoritma 4.10°da ve robot iizerinde c¢alisan hareket

algoritmasinin temel adimlar1 ise Algoritma 4.11°de gosterilmektedir.

Sabit
Lineer Hiz

Referans
Yol

Ara Hedef
Noktasi

P Kontrol

Orgam

Kamera

Ters
Kinematik
Model

w2

w3

y v VY

y

Mobil
Robot

L 1

Sekil 4.60. Yol takip kontroliiniin blok diyagrami
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Algoritma 4.10: Ana bilgisayardaki yol takip kontrol algoritmasinin temel adimlari
1: XBee modiiliiniin baslatilmasi
2:  Ara hedef noktalariin belirlenmesi
3:  while (Ana hedef noktasina ulasilana kadar)

4. for (Her ara hedef noktasinda)
5: while (Ara hedef noktasina ulasilana kadar)
6: Robotun konum ve ydneliminin tespit edilmesi
7: Robotun ara hedef noktasina olan yoneliminin tespit edilmesi
8: Esitlik (4.46) kullanilarak agisal hatanin hesaplanmasi
9: XBee modiilii ile agisal hatanin robota gonderilmesi
10: end while
11: end for

12:  end while
13: XBee modiiliiniin kapatilmasi

Algoritma 4.11: Robot iizerinde ¢alisan hareket algoritmasinin temel adimlari
1:  GPIO pin ayarlarinin yapilmasi

XBee modiiliiniin baglatilmasi

while (XBee modiiliinden “Dur” emri gelene kadar)
XBee modiiliinden agisal hatanin alinmast
Esitlik (4.47) kullanilarak robot merkezinin agisal hizinin hesaplanmasi
Esitlik (4.49)-(4.52) kullanilarak tekerlek hizlarinin hesaplanmasi
Robotun bu tekerlek hizlarinda siiriilmesi

end while

XBee modiiliiniin kapatilmas1

A R AR ANl

Tasarlanan ortamlar i¢in gercek zamanli bir yol takip ¢aligmasi gergeklestirilmistir. Her
iki ortam i¢in robotun hareket asamalar1 Sekil 4.61 ve 4.62°de, bu hareket asamalarinin
kamera goriintiileri Sekil 4.63 ve 6.64’te, planlanan ile gercek yollarin karsilastirmasi

Sekil 4.65°te, RMS hatalar1 ise Sekil 4.66°te gosterilmektedir.
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Sekil 4.61. Ortam 20 i¢in robotun hareket asamalari
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Sekil 4.62. Ortam 20 i¢in robotun hareket asamalarinin kamera goriintiileri (Planlanan
yol turkuaz ¢izgi, gercek yol ise yesil ¢izgi ile temsil edilmistir.)
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Sekil 4.63. Ortam 21 i¢in robotun hareket asamalari
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Sekil 4.64. Ortam 21 i¢in robotun hareket asamalarinin kamera goriintiileri (Planlanan
yol turkuaz ¢izgi, gercek yol ise yesil ¢izgi ile temsil edilmistir.)
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Sekil 4.65. Planlanan ve gercgek yollarin karsilastirmasi: (a) Ortam 20, (b) Ortam 21
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Sekil 4.66. RMS hatalar1: (a) Ortam 20, (b) Ortam 21

Sekil 4.61-4.66 gbz oniine alindiginda, mobil robotun referans yolu basarili bir sekilde
takip ettigi goriilmektedir. Bu takip kontrolii boyunca kayda deger bir sapma veya
kararsizlik gozlemlenmemistir. Ortam 20°de X, Y ve 6 i¢cin RMS hatalar1 sirasiyla 0.164
metre, 0.049 metre ve 1.93° olarak hesaplanmigtir. Ortam 21°de ise RMS hatalar1 sirastyla
0.269 metre, 0.106 metre ve 1.98° olarak hesaplanmistir. Bu hatalar 4.5 x 1.5 metrelik
platform ve 0.26 x 0.24 metrelik robot boyutlariyla karsilastirildiginda kabul edilebilir
seviyelerdedir. Bu dogrultuda tasarlanan kontrol algoritmasinin referans yol takibinde
etkin performans sergiledigi sOylenebilir. Tasarlanan algoritma belirlenen ara hedef

noktalar sayesinde hassas bir yonelim takip kontrolii saglamistir.



5. BOLUM

SONUC VE ONERILER

5.1. Sonuclar

Mobil robotlar, ¢evrelerini algilayarak otonom hareket edebilen sistemler olup, endiistri,
tarim, lojistik ve arama-kurtarma gibi bir¢ok alanda yaygin olarak kullanilmaktadir. Bu
robotlarin etkin c¢alisabilmesi i¢in haritalama, lokalizasyon ve yol planlama gibi temel
becerilere sahip olmasi1 gerekir. Haritalama, robotun g¢evresini taniyip modellemesini
saglarken, lokalizasyon, bu harita iizerinde konumunu belirlemeye yardimci olur. Ancak,
robotun hedefe ulagabilmesi igin en kritik adim yol planlamadir. Yol planlama siireci,
giivenli, verimli ve enerji tasarruflu rotalar olusturmay1 amaglar ve c¢evresel engeller,
hareket kisitlamalar1 ve dinamik degisimler gibi faktorleri géz oniinde bulundurur. Yol
planlama yontemleri genel olarak klasik arama algoritmalari, metasezgisel yaklagimlar
ve makine 0grenme tabanli teknikler olarak {i¢ gruba ayrilir. Klasik algoritmalar sabit
haritalarda etkili ¢6ziimler sunarken, metasezgisel yontemler daha genis ¢6ziim uzaylarini
kesfederek karmasik ve dinamik c¢evrelerde daha uygun yollar belirleyebilir. Makine
O0grenme tabanli yaklagimlar ise ¢evresel geri bildirimleri degerlendirerek adaptif ve
esnek ¢ozlimler sunar, 6zellikle dinamik engellerin bulundugu ortamlarda robotun karar

verme siirecini gli¢lendirir.

Bu tez ¢alismasi kapsaminda mobil robotlarin yol planlama sorunlarina yonelik ¢éztimler
gelistirmek amaciyla dort farkli simiilasyon calismasi ve bir gergek zamanli ¢aligma
gerceklestirilmistir. Birinci calismada tek bir mobil robotun 1zgara ortaminda kiiresel yol
planlamasi i¢in bir IABC algoritmas1 onerilmistir. Bu algoritma icin iki mekanizma
diistintilmiistiir: Dogrusallastirma stratejisi ve yerel arama stratejisi. Dogrusallastirma

stratejisi, 1zgara ortaminda olusturulan yolun gereksiz kdselerini ortadan kaldirmaya
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odaklanan bir kullanim tabanli iyilestirmedir. Yerel arama stratejisi, en iyi ¢ozliimiin
maliyetini daha da optimize etmeyi amaclayan bir kesif tabanli mekanizmadir. Boylece
bu iyilestirmeler algoritmanin kullanim-kesif dengesini bozmadan gergeklestirilmistir.
Ikinci galismada yol planlama probleminin basitlestirilmesi iizerinde durulmustur. Bunun
icin engellerin kiimelenmesiyle ortam karmasikliginin azaltilmast ve bu sayede
algoritmalarin ¢alisma hizlarinin artirilmasi amaglanmistir. Bu amag dogrultusunda, tek
bir mobil robotun siirekli uzay ortaminda kiiresel yol planlamasi i¢in metasezgisel ve
kiimeleme algoritmalarmin bir arada kullanildig1 hibrit bir model 6nerilmistir. Ugiincii
calismada c¢ok sayida mobil robotun siirekli uzay ortaminda yerel yol planlamasi i¢in
sdSCA algoritmast Onerilmistir. Bu algoritmada temel SCA’nin orijinal giincelleme
stratejisine ilave olarak birkag diferansiyel tabanli giincelleme stratejisi eklenmistir. Bu
algoritmada popiilasyondaki her ¢6ziim bu stratejilerden birini secerek kendini giinceller.
Ancak bu secim rastgele degildir, rulet tekerlegine dayali bir olasilik hesabi yoluyla
gerceklestirilir. Algoritma daha tatmin edici sonuglar {ireten stratejiyi adaptif bir sekilde
Ogrenir. Dordiincii ¢aligmada ise tek ve ¢ok robotlu sistemlerinin 1zgara ortaminda kiiresel
yol planlamasi i¢in ResNet tabanli bir model 6nerilmistir. Bu model genisletilmis evrisim
(dilated convolution), sikma-uyarma blogu (squeeze-and-excitation) ve dropout
katmanlan igerir. Gergek zamanli ¢alismada ise bir mobil robotun bir ortamda planlanan
bir yolu istenen sekilde takip etmesi icin bir takip kontrolorii tasarlanmis ve robotun

gercek zamanl takip kontrolii gergeklestirilmistir.
Bu caligmalar ile elde edilen neticeleri listeleyecek olursak:

e Onerilen IABC, ayn1 boyuttaki ortamlarda ABC ile karsilastirildiginda ortalama
yol uzunlugunda %7-14’liikk bir iyilesme go6zlemlenmistir. Ayrica, farkli
boyutlardaki ortamlarda gerceklestirilen 6l¢eklenebilirlik testleri ABC’ye kiyasla
%19-20 araliginda iyilesmeler ortaya koymustur. Iyi bilinen ve yeni gelistirilmis
algoritmalarla yapilan karsilastirmalar %2-78 araliginda iyilesmeler goriilmiistiir.
Son olarak, glincel ¢aligsmalardaki sonuglara kiyasla %1-37 araliginda iyilesmeler

elde edilmistir.

e  Onerilen hibrit modelin analizi sonucu, yol uzunlugu agisindan kiiciik seviyelerde
kayiplar gozlemlenmistir. Ancak g¢alisma siireleri incelendiginde, modelin bu

kayiplar1 fazlasiyla telafi ettigi ve ¢alisma hizi bakimindan kazang elde edildigi
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sOylenebilir. Ayrica farkli ortamlarda algoritmalarin test edilmesi sonucu
degistirmemistir. Dahasi, onerilen modelde PSO’ya ek olarak TLBO, ABC, DE,
GA algoritmalarn1 ve KMC’ye ek olarak HC yontemi de kullanilmistir. Bu
degerlendirme sonucunda yol uzunlugu agisindan en iyi performanst TLBO ve
ABC algoritmalar1 gosterirken en hizli algoritma GA olmustur. Ayrica HC

yonteminin KMC yontemine gore daha verimli ¢alistig1 sdylenebilir.

e Onerilen sdSCA, CEC2015 ve CEC2020 test problemlerinde uygulanmis ve
basaril1 sonuglar elde etmistir. CEC2015 problemlerinde belirgin bir iyilesme
saglanirken, CEC2020°de kazanan algoritmalarla rekabet edebilecek diizeyde
performans gostermistir. Algoritmanin etkinligi, statik ve dinamik engeller igeren
ti¢ farkli senaryoda ¢oklu robotlarin yol planlamasi i¢in yapilan simiilasyonlarda
da test edilmistir. Ortam 17°de toplam adim sayis1 %40.63, toplam yol uzunlugu
%40.98 oraninda azaltilmistir. Ortam 18’de bu oranlar sirasiyla %40.36 ve
%40.86 olarak gergeklesirken, Ortam 19°da %44.00 ve %44.25’lik bir iyilesme

saglanmistir.

o Onerilen IResNet modeli tek robotlu senaryoda, dzellikle daha biiyiik ortamlarda,
FCN ile yol planlama basarisinda rekabet halinde olsa da IResNet’in tahmin ettigi
yollar daha optimaldir. Cok robotlu senaryoda, IResNet FCN’yi hem yol planlama
basarisinda iistiin gelmis hem de daha optimal yollar planlamistir. Ayrica robot

say1s1 ve ortam karmagiklig: arttikca [ResNet’in avantaji daha belirgin hale gelir.

e Gergcek zamanh ¢alismada tasarlanan kontrolér kullanilarak robotun planlanan
yolda kayda deger bir hata olmadan hareket ederek hedef noktaya vardig
gbozlemlenmistir. Ortam 20-21°de RMS hatalar1 X ekseni i¢in 0.164-0.269 metre,
Y ekseni icin RMS hatalar1 0.049-0.106 metre, € i¢cin RMS hatalar1 1.93°-1.98°
olarak Olciilmiistiir. Bu hatalar 4.5 x 1.5 metrelik platform ve 0.26 x 0.24 metrelik
robot boyutlariyla karsilastirildiginda kabul edilebilir seviyelerdedir.

Bu tezde yapilan c¢alismalarla, mobil robotlarin yol planlama siireglerinde etkinligin
artirilmasi ve karsilasilabilecek zorluklara yonelik ¢oztiimler gelistirilmesi amaglanmistir.
Bu dogrultuda, farkli algoritmalar incelenmis, g¢esitli senaryolar tlizerinde testler

gerceklestirilmis ve elde edilen sonuglar dogrultusunda yol planlama performansinin
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iyilestirilmesine yonelik oneriler sunulmustur. Gelistirilen yontemler, hem statik hem de
dinamik engellerin bulundugu ortamlarda robotlarin daha verimli ve giivenli bir sekilde
hareket edebilmesine katki saglamayi hedeflemistir. Boylece, mobil robotlarin farkli

uygulama alanlarinda daha etkin kullanilabilmesi i¢in 6nemli kazanimlar elde edilmistir.
5.2. Gelecekteki Calismalar

Bu c¢alismada gelistirilen algoritmalarin ve modellerin basarisi, mobil robotlarin yol
planlamasinda 6nemli iyilestirmeler sagladigim1  gostermektedir.  Gelecekteki
caligmalarda, 6nerilen yontemlerin farkli robot tiirleri ve daha karmasik dinamik ortamlar
iizerinde test edilmesi hedeflenebilir. Ozellikle, gercek diinyadaki belirsizlikleri ve sensor
hatalarini daha iyi yonetebilmek i¢in ¢cevrimigi 6grenme ve adaptif kontrol mekanizmalari
entegre edilebilir. Ayrica, daha biiyiik 6l¢ekli coklu robot sistemlerinde koordinasyon ve
cakisma Onleme stratejilerinin gelistirilmesi, robotlarin otonom hareket kabiliyetini

artiracaktir.

Bunun yani sira, derin 6grenme tabanli modellerin yol planlama siireglerine daha etkin
entegrasyonu 6nemli bir arastirma alani olarak 6ne ¢ikmaktadir. Onerilen ResNet tabanli
modelin farkli ag vyapilariyla genisletilerek daha karmagsik engel senaryolarina
uyarlanmasi ve transfer 6grenme tekniklerinin kullanilmasi, algoritmalarin genellestirme
yetenegini artirabilir. Ayrica, hibrit metasezgisel yontemlerin gelismis optimizasyon
teknikleriyle birlestirilmesi, yol planlama siireclerinde daha hizli ve verimli ¢éziimler
sunulmasin1 saglayabilir. Son olarak ger¢ek zamanli ¢alismara yonelik, haberlesme
yetenegine sahip ¢coklu mobil robotlarla igbirlik¢i yol planlamast ve takip kontrolii tizerine

odaklanilabilir.
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