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ABSTRACT 

ENHANCING INDOOR POSITIONING PERFORMANCE 

THROUGH WI-FI/RSSI-BASED MACHINE LEARNING 

CLASSIFIERS 

 

Indoor positioning (IP) is a pivotal component in real-time indoor localization 

(IL), contributing to the identification of user or device locations within confined 

spaces. Global positioning system (GPS) excels in outdoor positioning, but its efficacy 

diminishes indoors due to challenges like multipath propagation, non-line of sight, and 

signal distortion. To address this, an indoor positioning technique has developed, 

including Wi-Fi positioning system, five access points sensors, user as a tag, and based 

on the received signal strength power (RSS) with machine learning classifiers.  

Machine learning empowers indoor positioning systems to adapt to diverse 

conditions, manage uncertainties, and enhance accuracy continually through data-

driven learning. Fingerprinting localization faces challenges with high-dimensional 

data, addressed by dimensionality reduction methods like principal component 

analysis (PCA). Classification algorithms, such as Decision Trees (DT), Local 

Discriminator Analysis (LDA), Support Vector Machine (SVM), K-nearest neighbor 

(KNN), Logistic Regression (LR), Artificial Neural Networks (ANN), and Extreme 

Learning Machine (OS-ELM) are employed to extract key characteristics for 

localization and hence implement IP detection. The ensuing results are analyzed for 

accuracy, prediction speed, and training time. 

The research sets a foundation for understanding the strengths and limitations of 

various classifiers in indoor positioning. The comparative analysis reveals that OS-
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ELM exhibits exceptional accuracy, rapid prediction speed, and minimal training time, 

positioning it as a promising choice for real-time applications. The study concludes by 

outlining future research directions, emphasizing the refinement of OS-ELM and 

hybrid approaches to enhance accuracy and adaptability in dynamic indoor 

environments. 

 

Keywords: Indoor Positioning (IP), Wi-Fi Positioning System, RSS Power, machine 

learning, dimensionality reduction, Extreme Learning Machine (ELM), training time, 

training and testing Accuracy. 
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ÖZET 

WI-FI/RSSI TABANLI MAKINE ÖĞRENIMI 

SINIFLANDIRICILARIYLA KAPALI ALAN KONUMLANDIRMA 

PERFORMANSININ ARTIRILMASI 

 

Kapalı alan konumlandırma (IP), gerçek zamanlı kapalı alan lokalizasyonunun 

(IL) önemli bir bileşenidir ve kullanıcı veya cihaz konumlarının kapalı alanlarda 

belirlenmesine katkıda bulunur. Küresel Konumlandırma Sistemi (GPS), açık 

alanlarda etkili bir şekilde çalışsa da, çoklu yol yayılımı, görüş hattı olmaması ve 

sinyal bozulması gibi zorluklar nedeniyle kapalı alanlarda etkinliği azalır. Bu sorunu 

çözmek için, Wi-Fi konumlandırma sistemi, beş erişim noktası sensörü, etiket olarak 

kullanıcı ve alınan sinyal gücü (RSS) ile makine öğrenimi sınıflandırıcılarına dayalı 

bir kapalı alan konumlandırma tekniği geliştirilmiştir. 

Makine öğrenimi, kapalı alan konumlandırma sistemlerinin çeşitli koşullara 

uyum sağlamasını, belirsizlikleri yönetmesini ve veri odaklı öğrenme yoluyla 

doğruluğu sürekli artırmasını mümkün kılar. Parmak izi tabanlı lokalizasyon, yüksek 

boyutlu verilerle ilgili zorluklarla karşılaşır ve bu zorluklar temel bileşen analizi (PCA) 

gibi boyut azaltma yöntemleriyle ele alınır. Karar Ağaçları (DT), Yerel Ayırt Edici 

Analiz (LDA), Destek Vektör Makinesi (SVM), K-en yakın komşu (KNN), Lojistik 

Regresyon (LR), Yapay Sinir Ağları (ANN) ve Aşırı Öğrenme Makinesi (OS-ELM) 

gibi sınıflandırma algoritmaları, konumlandırma için temel özellikleri çıkarmak ve IP 

tespiti uygulamak için kullanılır. Ortaya çıkan sonuçlar, doğruluk, tahmin hızı ve 

eğitim süresi açısından analiz edilir. 
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Araştırma, kapalı alan konumlandırmada çeşitli sınıflandırıcıların güçlü ve zayıf 

yönlerini anlamak için bir temel oluşturur. Karşılaştırmalı analiz, OS-ELM'nin 

olağanüstü doğruluk, hızlı tahmin hızı ve minimal eğitim süresi ile öne çıktığını ortaya 

koyarak, onu gerçek zamanlı uygulamalar için umut verici bir seçenek haline 

getirmektedir. Çalışma, OS-ELM'nin ve dinamik kapalı alan ortamlarında doğruluk ve 

uyarlanabilirliği artırmak için hibrit yaklaşımların iyileştirilmesini vurgulayarak 

gelecekteki araştırma yönlerini ortaya koymaktadır. 

 

Anahtar Kelimeler: Kapalı Alan Konumlandırma, Wi-Fi Konumlandırma Sistemi, 

RSS Gücü, makine öğrenimi, boyut azaltma, Aşırı Öğrenme Makinesi (ELM), eğitim 

süresi, eğitim ve test doğruluğu. 
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CHAPTER 1.  INTRODUCTION 

1.1  Introduction 

Indoor positioning (IP) is crucial for determining the location of a user or device 

within a confined space, constituting real-time indoor localization (IL). While the 

global positioning system (GPS) effectively serves outdoor positioning needs, its 

accuracy significantly diminishes in indoor environments due to challenges like 

multipath propagation, non-line of sight, and signal distortion. This limitation has led 

to the development of various indoor positioning techniques to address these issues  

[1]. The applications of Indoor Positioning Systems (IPS) technology extend across 

diverse sectors, including healthcare, building management, industry, police 

investigation, disaster management, and various other domains. Additionally, IPS 

technology finds relevance in emerging technologies like the Internet of Things (IoT) 

and smart architectures [2][3]. 

1.2  Challenges of Localization Techniques 

In today's world, with the increasing use of smart devices, IP or IL has become a 

crucial task. It involves determining the location of a person or object within a 

building, which is different from determining their location outside. The indoor 

environment poses many challenges such as signal propagation leading to shadowing, 

scattering, attenuation, and distortion. These challenges have led to scientific research 

to discover new ways of indoor localization using various elements. However, the 

challenges are significant due to the variety of sizes and shapes of buildings, the 
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presence of fixed and moving objects, as well as their influence on both line-of-sight 

(LOS) and non-line-of-sight (NLOS) radio blind spots, all have an impact on indoor 

positioning performance. Many solutions have been suggested for the recent years 

including time of arrival (TOA) [4], angle of arrival (AOA) [5], received signal 

strength (RSS) [6], difference of arrival (DOA) [7], time difference of arrival (TDOA) 

[8], and hybrid methods [9][10].  

 Indoor localization systems utilizing RSS do not require any specialized 

components, which makes their deployment much easier. These systems can be 

implemented through various technologies such as WiFİ [11], RFID [12][13], 

Bluetooth [16], and others [14][15][17]. 

RSS-based localization methods are generally categorized into two types: model-

based (or range-based) methods [18] and fingerprinting-based methods [19]. Model-

based approaches leverage estimate the distance using an equation which quantifies 

the relationship between received power and distance [20]. However, their 

performance may be affected by the complexities of indoor signal propagation 

environments. 

Machine learning techniques, coupled with biometric approaches, are employed 

to match a user's position with a predefined set of positions. The average RSSI received 

at each position is retrieved from a database from data collected during system setup 

[21]. This data can be updated in time to match changes in the environment. 

Fingerprinting, which usually uses RSSI signals on WiFi has become very popular due 

to the wide deployment of WiFi. While techniques such as TDOA can give higher 

accuracy, RSSI is more robust to use in different environments without needing 

specialized hardware such as antenna arrays. It exhibits satisfactory performance in 

both LOS and NLOS environments. 

The fingerprinting Wi-Fi localization occurs in two stages: the offline training 

stage and online usage stage. In the offline phase, a fingerprint database is established 

using Wi-Fi access points, which are then employed to estimate positions based on 

received RSSI signals during the online phase. These access points are collected from 

smart devices or signal transmitters and are tailored to the project's working 

environment in the form of radio maps. 
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However, the challenge of limited RSS datasets poses difficulties for effective 

machine learning models, which have shown promise in indoor-based localization 

applications. To overcome this challenge, machine learning systems have 

demonstrated the most promising performance due to their robustly and processing 

time [22][23]. Additionally, researchers have explored advanced deep learning 

techniques such as Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) for collecting and training RSS radio map databases [24][25]. 

1.3  The Problem Statement 

Sensing data without knowledge of sensor locations renders a sensor network 

ineffective in its primary function of collecting and forwarding data. This underscores 

the critical need for precise sensor location determination in IP systems, particularly 

in challenging indoor environments with various obstacles. Existing approaches, 

including the use of ML to improve distance estimates between anchor nodes with 

known positions and a target with an unknown position or increasing the number of 

anchor nodes, are constrained by reliance on specific databases, limiting the 

adaptability of indoor positioning systems to dynamic environments.  

Furthermore, various researchers have explored the development of reliable IPS 

using both single and hybrid machine learning algorithms. Despite these efforts, earlier 

mechanisms fell short in achieving a high detection positioning rate. Consequently, 

this thesis concentrates on attaining a high detection positioning accuracy for indoor 

positioning systems. The approach involves creating an integrated work mechanism 

that prioritizes IPS accuracy and processing time.   

 

1.4  The Work Aims and Objectives 

Our work aims to address key factors such as accuracy, complexity, reliability, 

and deployment in indoor positioning systems. The significance of precise distance 

estimates between anchor nodes and the mobile target is emphasized to achieve high-

accuracy positioning. As a result, the aim of this work is to design an Indoor 

Positioning System (IPS) based on the RSS signals, Wi-Fi connections, with machine 
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learning abilities that can specify characteristics involves addressing several key 

aspects to meet the outlined requirements: 

Wireless Contact: 

Utilize wireless technologies such as Wi-Fi, Bluetooth, for communication 

between the positioning system components. Wireless connectivity enhances 

flexibility and ease of use. 

Easy for Personal Use: 

Develop a user-friendly interface accessible via smartphones or dedicated 

devices. Implement intuitive features, minimal setup requirements, and 

straightforward calibration processes to ensure ease of use for individuals. 

Low Cost: 

Employ cost-effective hardware components and leverage existing infrastructure, 

such as Wi-Fi routers or Bluetooth beacons, to minimize expenses. Optimize the 

design for affordability without compromising on performance. 

High Accuracy: 

Implement advanced positioning algorithms, including machine learning 

techniques, to enhance accuracy. Utilize a combination of signal strength, time-of-

flight, or trilateration methods to achieve precise indoor location tracking. 

Suitable in All Indoor Environments: 

Account for diverse indoor environments, considering factors like building 

layouts, obstructions, and signal interference. Employ a scalable system that adapts to 

different indoor settings, ensuring consistent performance across varied conditions. 

1.5  The Main Contributions  

To accomplish the objective of creating a real-time system capable of handling 

various scenarios and capturing data from a typical indoor environment. We’ve made 

the following issues: 

1. Provide and calibrate a Wi-Fi-based indoor localization algorithms and 

implement them to determine suitable ML approaches.  

2.  Collect measurements to create a dataset within a single floor building to 

evaluate localization algorithms 
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 3. Developing and applying different Machine Learning algorithms with offline 

and online behavior, as well as reporting the achieved reasonable accuracy.  

4. Simulate the proposed IP systems used the MATLAB environment with no 

extra hardware or software. 

5. Analyze and evaluate an appropriate option in which the user is simply carrying 

a cell phone. The phone does not have any special software loaded.  

1.6  Thesis Organization 

This thesis is organized as follows:  

Chapter One: This section serves as the introduction and provides a clear 

explanation of the motive and objectives behind the selection of the thesis theme. 

Chapter Two: Present a comprehensive description of the research background 

through providing a literature review.   

Chapter Three: Focuses on detail the proposed indoor positioning system 

including the setup experiment and the database collection in different environments.  

Theories of all developed ML approaches are explained in details. 

Chapter Four: Describes and discuss the experimental findings, provides the 

performance assessment of the detection rate for all recommended classifiers, and 

compares them to several detection strategies from prior research. 

Chapter Five: Delivers conclusions, recommendations and suggestions for 

future works. 
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CHAPTER 2.  THEORETICAL BACKGROUND 

AND LITERATURE REVIEW 

 

2.1  Introduction 

Localization techniques refer to the methods and technologies used to determine 

the precise location of an object or individual. Indoor localization techniques are 

specifically designed for determining the position of objects or individuals inside 

buildings, structures or enclosed spaces. On the other hand, outdoor localization 

techniques are used for determining the position of objects or individuals in open 

spaces, such as outdoors or in large areas. The main difference between indoor and 

outdoor localization techniques lies in the challenges posed by the different 

environments. Indoor environments present more obstacles, such as walls and 

furniture, which can interfere with signal transmission and accuracy. Indoor 

localization techniques include technologies such as Wi-Fi positioning, Bluetooth 

beacons, Infrared sensors, ultrasonic sensors, and radio frequency identification. Also, 

Ultra Wide Band (UWB) and their techniques with the various wireless IPs 

communication technologies are widely adopted. These techniques use signals and 

sensors to triangulate and estimate the location of an object or individual within an 

indoor space. Applications of indoor localization techniques include: asset tracking in 

warehouses, indoor navigation and wayfinding in large buildings such as airports or 

shopping malls, proximity marketing, location-based services for healthcare facilities 
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such as tracking patients and medical equipment, indoor security systems, and 

personalized experiences in museums or exhibitions. Outdoor localization techniques, 

on the other hand, make use of technologies such as GPS, GNSS. This chapter, will 

provide a comprehensive description of the research background through a literature 

survey related to indoor positioning. The indoor localization system with their various 

methods tolerate for continuous tracking of the location of objects or humans are 

employed extensively. They are used as an efficient tools for measuring distances 

or/and angles. Determining the position of a tag is a process achieved in two primary 

steps. Initially, it entails acquiring a collection of accurate ranging data between the 

anchor and the tag. Subsequently, the obtained data undergoes processing to ascertain 

the probable location of the mobile station, commonly known as localization. Utilizing 

diverse machine learning approaches empowers indoor positioning systems to adapt 

to varying conditions, handle uncertainties, and continually improve accuracy through 

learning from data. 

 

2.2  Literature Review 

Many IP studies were investigated and discussed using different techniques and 

methods, among them that were related to Wifi with RSS and machine learning: 

Hou et. al. (2015) [26] describe an indoor positioning system using lights. A LED 

lamp is used as the transmitter and a smartphone is the receiver. Positioning uses both 

the signal strength and angle of arrival. The outcomes revealed an average positioning 

error of around 10.2 cm within a (2×2×2.5) m indoor environment. 

Kotaru et. al. (2015) [27] propose an indoor localization system named SpotFi for 

deployment on standard Wi-Fi. The localization algorithm was evaluated in a large 

indoor office space employing six Access Points. The median accuracy attained was 

40 cm, showcasing resilience in the presence of indoor obstacles. 

Zou et. al. (2015) [28] proposed a localization algorithm for indoor positioning 

utilizing an online sequential extreme learning machine (OS-ELM). Experimented 

within an Internet of Things Laboratory, the algorithm demonstrated an accuracy of 

1.794 m within a testbed area of approximately 400 m2 (20 m × 20 m), featuring four 

Access Points (APs). 
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Thuong et. al. (2016) [29] investigate diverse facets of location fingerprinting-

based indoor positioning systems, with a particular emphasis on factors influencing 

positioning accuracy, including the impact of human behavior on RSSI distribution. 

The experiments were carried out in an indoor space which was again within the school 

setting, covering an area of (7 m × 10 m). The results showcased positioning accuracy 

within the range of (2.0 - 2.5) m. 

Ding et. al. (2017) [30] introduced a technique for fingerprint-based indoor 

positioning (IP) was proposed, known as the AP weighted multiple matching closest 

neighbor's approach. This method aims to overcome challenges observed in the 

conventional Weighted K-Nearest Neighbor (WKNN) algorithm for localization. 

Dari and Pranowo (2018) [31] introduced a system combining RSS fingerprint 

method with KNN for enhanced location recognition in mobile-based wireless 

positioning systems utilizing wireless 802.11b technology. 

Hou et. al. (2018) [32] proposed a wireless indoor localization approach, 

employing AoA and coordinates from Wi-Fi Access Points (APs) for outpatient 

wayfinding in hospitals. Despite its limited applicability in non-line of sight 

conditions, the system demonstrated a localization error of less than two and a half 

meters in 80% of the instances. 

Oras et. al. (2019) [33] introduce a two-step localization algorithm, optimizing 

the deployment of APs based on RSS simulation measurements. The algorithm 

achieved an optimal location with a range probability of 0.74m and the highest RSS 

mean received power value of -45 dBm. 

Abbas et. al. (2019) [34] introduced WiDeep, a deep learning-based indoor 

localization technique implemented on Android phones. Evaluated in university and 

residential settings, WiDeep consistently achieving an average precision in the 1-2m 

range on the two testbeds. 

Xue et. al. (2020) [35] introduced the "Weight Range Localizer" and "Relative 

Span Exponential Weight Range Localizer" algorithms for RSSI localization in 

wireless sensor networks for short-range communication. The proposed algorithms 

demonstrated acceptable accuracy, achieving less than 1 m in IP. 

Yan et. al. (2021) [36] proposed novel ELM localization technique for multi-floor 

environments, relying solely on RSSI fingerprints. The approach includes a 
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specialized data preprocessing algorithm to efficiently handle extensive training and 

online measurement data in multi-floor settings. The offline phase utilizes individual 

ELMs for all floors, generating floor-level classification functions and position 

regression functions. In the online phase, first the algorithm determines a coarse 

localization step estimates the floor using floor-level classification functions, followed 

by a refined step for on-floor position estimation. Comparative experiments 

demonstrate significant performance advantages in both floor estimation and on-floor 

localization compared to existing algorithms. 

Wang and Park (2021) [37] proposed a hybrid fingerprint location technology 

based on both RSS and Channel State Information (CSI). The methodology involves 

preprocessing RSSI and CSI values using Kalman filter and Gaussian function in the 

off-line phase, eliminating mutation and noisy data. The accurate hybrid fingerprint 

database is established, and the weighted k-nearest neighbor (WKNN) algorithm is 

employed for online positioning. Experimental results demonstrate the proposed 

algorithm is robust to noise, showcasing higher accuracy and smaller positioning 

errors. 

Djosic et. al. (2022) [38] present a novel localization method to improve UWB 

accuracy with non-line-of-sight (NLOS) conditions. The approach uses multiple 

deterministic algorithms based on LOS-measured distances, which converge much 

more quickly to a solution and achieve better accuracy in LOS conditions, but also use 

fingerprinting-based algorithm for NLOS conditions. Experimental results show that 

this strategy outperforms traditional fingerprinting-based approaches. 

Shyam et. al. (2023) [39] discuss utilizing UWB technology and a triangulation 

algorithm for monitoring and tracking assets in industrial settings. Operating in an 

edge computing environment, the system ensures quick and accurate data delivery to 

end-users. Wall-fixed anchors gather and process assets' location information, 

accessible to users through smart devices. The system traces assets in 2D and 3D, 

demonstrating increased accuracy and coverage. Experiments in a room and 

warehouse environment show improved performance, with special attention to error 

mitigation resulting in a significant reduction in error percentage. 
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2.3  Wireless Positioning Technologies 

According to accuracy, stability, scalability, safety, complexity, and cost metrics 

criteria, several wireless positioning technologies can be created or employed to assess 

the efficacy of positioning systems [40]. There are many wireless positioning 

techniques: 

2.3.1  Ultra-Wide-Band Technology (UWB) 

Ultra-Wideband technology (UWB) refers to a telecommunication technology 

that utilises a frequency that is higher than 500MHz. It offers promising capabilities 

for accurate and reliable indoor positioning [14]. Its fine time resolution and ability to 

penetrate obstacles make it a suitable choice for indoor environments where GPS 

signals may be obstructed. Unlike other technologies such as Wi-Fi, Bluetooth, and 

RFID, UWB does not rely on signal strength or line-of-sight communication. Instead, 

it utilizes the transmission and reception of short radio pulses with sub-nanosecond 

durations. This enables UWB systems to provide centimeter-level accuracy in 

measuring distances, making them well-suited for applications that require high 

precision [19]. 

UWB technology offers various advantages and disadvantages, with different 

types and measurements. Advantages of UWB include high bit rate availability, low 

power consumption, low costs, and high accuracy positioning capabilities [41]. On the 

other hand, UWB technology also has its limitations. Some of the disadvantages of 

UWB technology include limited range, susceptibility to interference from other 

wireless devices, and regulatory restrictions on power levels. There are different types 

of UWB measurements used. These measurements include distance measurement, 

time-of-flight measurement (ToF), and signal strength measurement.  

Additionally, there are different types of UWB antennas that have been proposed 

to meet the requirements of UWB technology [42]. Some examples of UWB antennas 

include planar antennas, printed antennas, and monopole antennas. These antennas are 

designed to provide the necessary bandwidth and frequency range for Ultra-Wideband 

communication. 
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2.3.2  Radio Frequency Identification (RFID) 

Radio Frequency Identification (RFID) is a technology that stores and retrieves 

data via electromagnetic transmission to an RF-compatible integrated circuit, and it is 

gaining popularity for its role in enhancing data processing operations [13]. An RFID 

system is made up of many components, including RFID readers, which read data from 

RFID tags, and RFID tags themselves, as well as the communication between them. 

RFID tags may be passive or active. Passive RFID tags lack a battery, limiting their 

range to around (1-2) meters [43]. Active RFID tags, on the other hand, are fitted with 

small transceivers that can communicate over considerably greater distances, typically 

exceeding tens of meters. RFID is an additional Radio Frequency (RF) method used 

for estimation-based indoor positioning. RFID tags help with indoor locating by 

reflecting the RF signal after adding extra information. 

RFID systems generally have eight power levels for RFID readers. The reader 

calculates the relevant power level for each tag based on the received signal strength, 

and repeats this method for all tag power levels. This method generates RSS data, 

which enables for the precise calculation of an item's position. Accuracy normally 

ranges between (15-20) cm. Given that infrared (IR) and RF-based localization 

systems may lack granularity or be expensive, there is need for more economical and 

finely granulated locating systems, such as acoustical systems, particularly those that 

use ultrasonic technology. 

 RFID is a highly robust indoor localization technique that can be used in various 

applications. However, it is also known to be an expensive technology. The 

fingerprinting localization approach that relies on RSSI can be used in indoor 

localization applications utilizing RFID [44]. 

 

2.3.3  Wireless Fidelity (Wi-Fi) 

Wi-Fi is a popular technology used for indoor localization, owing to the 

widespread availability of Wi-Fi systems. In public, private, and commercial settings, 

Wi-Fi is commonly used to provide internet access and networking capabilities to a 

variety of devices [45]. It operates between the 2.4GHz and 5GHz bandwidth values. 
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However, the power consumption of WLAN systems is relatively higher. Wi-Fi has 

become an excellent choice for indoor localization because Wi-Fi chipsets are present 

on almost all modern PCs, smartphones, and other portable devices [46]. Even without 

the need for new hardware devices to be connected to current Wi-Fi access points or 

infrastructure, modest localization solutions with acceptable localization precision and 

accuracy might be built. Additionally, fingerprinting-based solutions could employ the 

Wi-Fi infrastructure as reference sites for signal collection. The abovementioned RSSI, 

TOF that includes the TOA, RTT, and TDOA, AOA, or hybrid approaches can be used 

to create Wi-Fi-based localization services. 

2.3.4  Bluetooth  

Bluetooth is today a very popular wireless technology standard used to 

communicate data across short distances. It operates in the frequency range of (2.4-

2.48) kHz. Because of its simplicity of implementation, Bluetooth has become a 

popular indoor location technique. Bluetooth-based locating systems rely largely on 

Received Signal Strength (RSS) methodologies, although other methods such as AoA 

and Time of Flight (ToF) may also be used with Bluetooth. One famous system, 

iBeacon, uses Bluetooth technology only for localization reasons [47]. With Bluetooth 

Low Energy (BLE), the latest version, providing an enhanced data rate of 24 Mbps 

and coverage range of (70-100) m, the technology is highly energy-efficient compared 

to previous versions [48]. Although positioning techniques like AoA and ToA can be 

employed with BLE, most BLE-based indoor positioning systems (IPS) rely on RSSI 

due to its simplicity. However, implementing an IPS based on Bluetooth technology 

requires more base stations compared to other technologies.  

 

2.3.5  ZigBee 

ZigBee also known the IEEE 802.15.4 standard is a well-liked wireless 

communication technology. It specifies the physical and MAC layers for cost-

effective, low rate personal and local area networks and allows for seamless 

communication between devices made by different manufacturers [49]. 
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 ZigBee based wireless devices operate in the (0.868, 0.915, and 2.4) GHz 

frequency bands, and the greatest data rate is 250 kbps. In order to establish a secure 

connection between devices, it offers two different types of keys: multiple link keys 

and network keys. It is perfect for devices and applications that need little data usage, 

high security, and a long battery life [50]. 

In an indoor setting, a ZigBee's signal range is between 20 and 30 meters. 

Measurements of RSSI are frequently utilized for the determination of the range 

between two ZigBee-capable devices. ZigBee might be successfully and well 

employed for localization. However, it is not commonly employed in consumer 

devices, and ZigBee is not popular for localization applications. 

 

2.4  Localization Techniques  

Some localization algorithms are reviewed in this section. These localization 

algorithms use the arrival time, arrival angle and phase of the received signal, as well 

as predicted channel station information to location objects inside buildings. In the 

following subsections, we will discuss the most often employed range-based 

localization techniques. 

2.4.1  Time-Of-Arrival (ToA) 

ToA is a commonly used technique in IP systems. It involves measuring the time 

where it takes for a signal to mobile from a source point to a destination point in order 

to determine the distance between them. The advantage of using ToA in indoor 

positioning is that it can provide accurate distance measurements, which in turn can 

lead to precise localization. One disadvantage of ToA is that it is highly susceptible to 

multipath propagation, where signals bounce off walls and objects in the environment, 

leading to inaccuracies in distance measurements. The equation for calculating 

distance using ToA is:  

𝑑 =
𝑐 ⋅ 𝑡

2
 (2.1) 

where the speed of light is 𝑐 ≈ 3 × 10଼m/s, 𝑡 is the time of flight 
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For small size regions, ToA is preferable over the RSSI approach. However, 

synchronization and processing time have an impact on ToA distance measurement 

[51]. The symmetric double-sided two-way may be used to decrease time 

synchronization inaccuracy. This approach computes the standard error by analyzing 

numerous back-and-forth signal propagation attempts between nodes. 

2.4.2  Time-Difference-Of-Arrival (TDoA) 

Time Difference of Arrival is a method used in indoor positioning systems to 

calculate the position of an object or person based on the time difference of arrival of 

signals from multiple reference points. This method relies on measuring the difference 

in arrival time between the signals received at different reference points. The 

advantages of TDoA in indoor positioning include its ability to provide accurate 

positioning even in environments with obstacles and its independence from clock 

synchronization between the target and the reference points. However, TDoA also has 

some disadvantages. One disadvantage is that a TDoA-based positioning system 

requires the recording and cross-correlation of signal waveforms from at least four 

base stations, which can increase the complexity and computational requirements of 

the system [52]. The equation for TDoA positioning is as Equation (2.2), where Δ𝑡 =

𝑡௥௘௖௘௜௩௘ௗ − 𝑡௧௥௔௡௦௠௜௧௧௘ௗ is the difference of the time of arrival at two different reference 

points, and 𝑐 is the speed of light. 

𝑑 = 𝑐 ⋅ (𝑡௥௘௖௘௜௩௘ௗ − 𝑡௧௥௔௡௦௠௜௧௧௘ௗ) (2.2) 

For TOA techniques to work the transmitter and receiver must be time 

synchronized. Even a microsecond microsecond  synchronization error can result in a 

300m error in location estimation.  

2.4.3  Angle-Of-Arrival (AoA) 

One of the prominent methods used in indoor positioning is Angle-of-Arrival 

technology [53]. AoA technology utilizes the principle of measuring the angle at which 

a radio signal arrives at multiple receiving antennas to determine the position of the 

user or object. AoA positioning has several advantages. First, it provides higher 

accuracy compared to other indoor positioning methods such as received signal 
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strength indication or time of arrival. Second, AoA is less susceptible to interference 

and signal distortions caused by multipath propagation in indoor environments. Third, 

AoA positioning can work well in both line-of-sight and non-line-of-sight scenarios, 

making it versatile for different indoor environments. Nevertheless, AoA positioning 

also has some disadvantages. One of the main challenges is the requirement for precise 

time synchronization between the transmitting and receiving antennas, which can be 

difficult to achieve in practice. Additionally, AoA positioning typically requires a 

complex hardware setup with multiple antennas, which can increase the cost and 

complexity of implementation. Overall, AoA technology is a promising method for 

indoor positioning due to its high accuracy, resilience to signal distortions, and 

suitability for various indoor environments. 

In AOA localization, to locate the object, the system must measure the angles 𝜃ଵ 

and 𝜃ଶ shown in Figure 2.1 as well as the distance from the BS to the localization 

target [54]. Given also the coordinates of the base stations as (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ), the 

location of the target is gıven by: 

𝑦 =
𝑦ଶ ⋅ tan(𝜃ଶ) − 𝑥ଶ

tan(𝜃ଶ) − tan(𝜃ଵ)
,     𝑥 = 𝑦 ⋅ tan(𝜃ଵ) (2.3) 

 

 

 

Figure 2.1. Smart Angulation-based localization measuring setup. 
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2.4.4  Received-Signal-Strength-Indicator (RSSI) 

One of the commonly used methods in indoor positioning is the Received Signal 

Strength Indicator. The RSSI is a measurement of the power level of the received 

signal in wireless communication. So, it measures the strength of the received signal 

from wireless access points or routers to estimate the distance between the receiver 

and these reference points [55]. Although RSSI is simple and stable locating approach, 

it may generate incorrect distance measurements, particularly in small-scale situations, 

due to fading, interference, signal-shadowing, and scattering. As a result, ML 

techniques such as the ANN have been used to minimize RSSI fluctuations, and signal 

filters like Kalman filter (KF) may improve its functioning of the RSSI. 

Using RSSI, as illustrated in Figure 2.2, to calculate the distance between 

transmitter and receiver requires a formula for math known as a channel model. The 

average RSSI should decrease with distance from the base station as described in 

Equation (2.4). Based on this equation, the distance between the transmitter and 

receiver can be estimated as shown in Equation (2.5): 

𝑅𝑆𝑆𝐼௜௢ = 𝑅𝑆𝑆𝐼௢ + 10 ⋅ 𝑛 ⋅ logଵ଴ ൬
𝑑௜

𝑑଴
൰ (2.4) 

𝑑௜ = 𝑑௢ ⋅ 10
ቀ

ோௌௌூ೔೚ିோௌௌூ೔
ଵ଴௡

ቁ (2.5) 

 

where 𝑛 is a signal's propagating factor or exponent coefficient (which ranges 

from two in free space to four in interior conditions), 𝑑 is the estimated distance in 

meters between the transmitter and the receiver, and 𝑅𝑆𝑆𝐼௢ is the reference value of 

received RSSI at a distance of  𝑑଴ typically equal to 1 meter, and 𝑅𝑆𝑆𝐼௜௢ is the current 

RSSI value at the receiver.  
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Figure 2.2. A distance calculations for a user with three stations system [56]. 

 

Advantages of using RSSI in indoor positioning include its low cost 

implementation and availability in most wireless communication devices, easy to 

connect and compatible to all wireless connection approaches. However, there are also 

disadvantages to using RSSI for indoor positioning. One disadvantage is that RSSI-

based distance estimation provides poor accuracy, especially in non-ideal settings. 

Additionally, the RSSI values can be influenced by various factors such as multipath 

interference, signal fluctuations, and obstacles in the environment. As a result, it can 

employ additional support techniques that can optimize and enhance this approach like 

adopting the machine learning. 

           

2.5  METHODS OF LOCALIZATION 

In the field of positioning, there are various techniques used to determine the 

location of an object or individual. Trilateration is a technique that involves measuring 

the distances between an object and three known reference points to calculate its 

precise position in two or three-dimensional space. Sometimes, it uses both the 

distance and angle measurements from three or more reference points to determine the 

location of an object [57]. Multilateration, on the other hand, is a more general 

technique that involves using the distances from multiple known reference points to 
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determine the position of an object, it often uses the time difference of arrival or time 

of flight of signals to determine the location [58][59]. This can be done by solving a 

system of equations based on the distances and the coordinates of the reference points. 

Fingerprinting is another positioning technique that relies on the unique characteristics 

of a specific environment. It relies on collecting and analyzing signal samples from the 

environment to create a unique fingerprint for each location, which can then be used 

to determine the location of an object or individual.  For example, in indoor positioning 

systems, fingerprints of signal strengths from Wi-Fi access points or Bluetooth 

beacons are collected and stored in a database. When a user later enters the same 

environment, their current signal strengths can be compared to the database of 

fingerprints to estimate their position [37][60]. Global positioning systems are widely 

used for accurate positioning. They rely on a network of satellites that orbit the Earth 

and transmit signals. These signals are received by GPS receivers, which then use 

trilateration techniques to calculate the receiver's position based on the time it takes 

for the signals received [22]. Other localization methods, such as CoO, also known as 

Cell ID, involves determining the location based on the cell tower that is in closest 

proximity to the device. In summary, there are multiple localization methods available 

including trilateration, multilateration, fingerprinting, and CoO. These methods can be 

used individually or in combination to accurately determine the location of an object 

or individual. 

 

2.6  MACHINE LEARNING FOR INDOOR 

LOCALIZATION 

The indoor environment requires more accurate localization due to the presence 

of numerous obstacles and objects. Traditional outdoor localization methods, such as 

Global Positioning System, are not suitable for indoor environments due to signal 

attenuation and scattering caused by walls and other obstacles. Machine learning has 

emerged as a promising solution for indoor localization. ML algorithms have the 

ability to process large amounts of data and extract meaningful patterns, enabling 

accurate indoor localization. Various classifier types can be used in machine learning-
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based indoor localization, depending on the specific requirements and constraints of 

the application. Some common types of classifiers used in indoor localization include: 

 K-nearest neighbour (KNN) classification algorithm: This algorithm classifies an 

object based on the majority vote of its nearest neighbours in the feature space. 

 Neural networks (ANN): Neural networks are highly flexible and can learn 

complex patterns in data. They consist of interconnected nodes (neurons) that 

perform computations on input data and generate output predictions. 

 Support vector machines (SVM): SVMs are powerful classifiers that separate data 

into various classes by finding an optimal hyperplane. 

Leveraging machine learning (ML) techniques in indoor positioning systems 

(IPS) has become increasingly prominent for enhancing accuracy and robustness. ML 

algorithms analyze data patterns and make predictions, making them well-suited for 

addressing the complex and dynamic nature of indoor environments. Several types of 

machine learning approaches find application in IPS: 

1. Supervised Learning: 

   I supervised learning, a data set is available with labels. The goal of the system 

is to learn how to reproduce the correct labels for new data into the system. The 

algorithm learns patterns and relationships between inputs, which are called features, 

and corresponding output labels. It can be employed for training models on datasets 

with known indoor locations, enabling the system to predict locations for new, 

unlabeled data. 

2. Unsupervised Learning: 

Unsupervised learning deals with datasets lacking predefined labels. This type of 

learning is more difficult, as the goals have to be stated clearly and there is more 

exploration that needs to be performed by the algorithm. The algorithm must aim to 

group the given data in some way or discover patterns in the data. For localization 

based on unsupervised learning, algorithms such as K-means as considered the 

significant clustering algorithm can be utilized to identify spatial patterns or group 

similar locations together in an indoor setting. 

3. Reinforcement Learning: 

In reinforcement learning, the learning is online and the algorithm learns to 

classify as it is processing data. After every decision, the algorithm receives feedback 
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from the environment (which may be the user of the algorithm). Reinforcement 

learning can be employed to optimize the movement of mobile nodes within indoor 

spaces, learning optimal paths for accurate positioning. 

4. Deep Learning: 

Deep learning refers to a large neural network based algorithm, which is a type 

of machine learning algorithm which mimics the way neurons work. There are many 

types of deep learning systems, deep learning networks can use reinforcement 

learning, they can be used for both supervised and unsupervised learning. These 

networks are designed for advanced feature extraction and hierarchical learning. For 

IPS, deep learning models like Convolutional Neural Networks (CNNs) or Recurrent 

Neural Networks (RNNs) find applications for extracting feature-rich representations 

and analyzing sequential data. 

5. Semi-Supervised and Transfer Learning: 

In semi-supervised learning some of the available training data has labels and 

some does not. Both data need to be processed by the system, depending on the 

application the semi-supervised system may or may not generate new data labels.  

Transfer learning is when a learning algorithm trained for one task is used to 

achieve a different, usually related task. These approaches are beneficial when labeled 

data for indoor locations is limited, allowing models to generalize better from related 

tasks or partially labeled datasets. 

6. Ensemble Learning: 

  Ensemble learning involves combining predictions from multiple models to 

enhance overall performance and robustness. Multiple ML models, each specialized 

in different aspects of indoor positioning, can be combined to provide more accurate 

and reliable results. 
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CHAPTER 3.  MACHINE LEARNING 

ALGORITHMS AND PROPOSED WORK  

3.1  Introduction 

Traditional strategies for localization in indoor situations may be affected by 

many factors that restrict their operations and abilities to estimate an object position 

accurately and fast. Traditional localization techniques are ineffective in vast spaces 

like airports or retail malls. Furthermore, localization algorithms are not flexible to 

change or enlarge surroundings and disparate data sources. The benefit of machine 

learning (ML) algorithms is that they may learn relevant characteristics from applied 

input data. For instance, deep learning (DL) models can effectively study RSSI time 

series computations and use route knowledge to lessen RSSI oscillations [61]. One of 

the limitations of the fingerprinting localization approach is the existence of high-

dimensional data. To address this, dimensionality reduction techniques like Principal 

Component Analysis (PCA) [62] can be employed to transform high-dimensional data 

into a less complex dimension, thereby reducing the computational and storage 

demands of fingerprinting-based localization. 

Classification algorithms are typically utilized to extract key characteristics, for 

example, predefined positions (𝑥, 𝑦, 𝑧) and signals powers (RSSI). Feature extraction 

using ML algorithms is especially useful for LOS and NLOS indoor localization. In 

practice, a substantial quantity of data characterizing the fingerprint map is acquired 

in the offline phase of fingerprint-based localization. As a result, estimating the online 

data using the fingerprint map data points takes time.  
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3.2  The Pre-processing 

Collecting precise data from strategically positioned Access Points (APs) is 

essential in developing a robust Indoor Positioning System (IPS) based on Received 

Signal Strength Indicator (RSSI) powers. Deploying a network of APs allows for 

triangulation or fingerprinting and proximity estimation, forming the basis of accurate 

indoor localization. RSSI values, representing the signal strength between mobile 

devices (target) and APs, serve as fundamental proximity metrics in IPS. 

Handling missing values in the dataset is a critical preprocessing step. Imputation 

techniques, such as mean complaint or more sophisticated machine learning-based 

methods, are employed to handle missing or gap values in the dataset caused by 

sporadic signal losses or environmental interferences. This ensures a comprehensive 

dataset for subsequent analysis. 

The standardization of the dataset is paramount to normalize and removing biases 

in machine learning model training. Standardization like (z-score) method normalizes 

the data and transforms features to a common scale, mitigating issues related to varying 

measurement units and scales of different APs. This uniformity is crucial for the 

accurate functioning of machine learning algorithms. 

Principal Component Analysis (PCA) is a robust method used for dimensionality 

reduction, especially in datasets with numerous attributes. By identifying and retaining 

essential information while discarding redundant features, PCA not only optimizes 

computational efficiency but also aids in visualizing the dataset's underlying structure. 

Following preprocessing, the dataset undergoes a meticulous split into training 

and testing subsets. The training set, constituting 70% of the data, is utilized for model 

training, allowing algorithms to discern intricate patterns and relationships within the 

data. The remaining 30% serves as a testing subset, evaluating the model's 

generalization ability on unseen data. 

The refined dataset, enriched through imputation, standardization, and potentially 

PCA, is now poised for integration with various machine learning classifiers. Decision 

Trees leverage hierarchical decision-making structures, while Support Vector 

Machines focus on finding optimal hyperplanes for classification. k-Nearest 
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Neighbors relies on proximity metrics, Logistic Regression models binary outcomes, 

Artificial Neural Networks simulate human neural networks, and Extreme Learning 

Machines employ efficient learning algorithms. 

This amalgamation of scientific techniques ensures the IPS model's accuracy, 

reliability, and adaptability in diverse indoor environments, marking a significant 

stride in advanced indoor positioning technology. 

3.3  Classification 

  Classification is the process of utilizing a training set of data that consists of 

observations (or attributes) with specified group identities to determine the set of 

classes (categories) to which a new observation belongs. The inputs for this process 

include the refined feature vector or set obtained after feature selection procedures and 

a classification dataset to be classified based on the aforementioned feature vector. The 

accuracy of detection algorithms is significantly influenced by the classification 

process [63]. Classification techniques can be broadly categorized into arithmetic, 

statistical, and intelligent approaches. Arithmetic methods involve numerical 

manipulations, such as KNN, LDA, LR, and SVM. Statistical methods rely on 

computing probability distributions and estimating parameters like mean and standard 

deviation to offer a more representative depiction of classes, as seen in DT. Intelligent 

methods, like Artificial Neural Networks (ANN), possess learning capabilities and 

employ artificial intelligence techniques in the classification process. 

3.3.1  Decision Tree (DT)  

The decision tree classifier is a machine learning algorithm that builds a 

predictive model in the form of a tree structure. Each node of the tree represents a 

decision or a splitting point based on a specific feature. These splitting points are 

determined through a process of evaluating different criteria, such as Gini impurity or 

information gain, to find the optimal way to divide the data. The decision tree classifier 

recursively splits the data based on these split points, creating branches and leaf nodes 

that represent different outcomes or classes [64][65]. 
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Entropy 𝐻(𝐷) = − ෍ 𝑝௜ logଶ(𝑝௜)

௡

௜ୀଵ

 (3.1) 

Gini impurity 𝐺𝑖𝑛𝑖(𝐷) = 1 − ෍(𝑝௜)
ଶ

௡

௜ୀଵ

 (3.2) 

where 𝑝௜ is the probability of class 𝑖 in dataset 𝐷.   

The information gain of classifying by some property is:   

Information gain 𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) − 𝐻(𝐷| 𝑎) (3.3) 

 𝐻(𝐷| 𝑎) = ෍ 𝑃௔(𝑣)𝐻(𝐷௩)

௏

௩ୀଵ

= ෍
|𝐷௩|

|𝐷|
𝐻(𝐷௩)

௏

௩ୀଵ

 (3.4) 

where 𝐴 is a candidate attribute to split on, 𝐷௩ is the subset of data for which 

attribute 𝐴 is equal to 𝑣, and 𝑉 is the set of all possible values of 𝐴. 

The goal is to perform  

3.3.2  Linear Discriminant Analysis (LDA)  

Linear Discriminant Analysis is a supervised machine learning algorithm used 

for classification tasks. It is a dimensionality reduction technique that projects the data 

onto a lower-dimensional space in order to maximize the separation between classes. 

LDA assumes that the data follows a Gaussian distribution and that each class has its 

own mean vector and covariance matrix. Once computed, the LDA algorithm ranks 

the variables according to their importance score [66]. Then, it calculates a 

discriminant function for each class, which is a linear combination of the variables. 

The LDA classifier then uses these discriminant functions to classify new data points 

into one of the predefined classes. The LDA classifier is a linear classification method 

that aims to find a linear combination of features that best separates data points 

belonging to different classes. The basic form of the LDA equation is as follows: 

𝑦 = 𝑊்𝑥 (3.5) 

where 𝑦 is the transformed feature vector in the lower-dimensional space. 𝑊 is 

the transformation matrix. 𝑋 is the original feature vector. 

In the context of Linear Discriminant Analysis, where the goal is often to find a 

linear combination of features that best separates classes, the equation can be extended: 
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𝑦 = 𝑊்𝑥 + 𝑏 (3.6) 

where 𝑏 represents a bias term. 

3.3.3  Support Vector Machine (SVM) 

The Support Vector Machine (SVM) stands out as a robust machine learning 

algorithm utilized for both classification and regression tasks. SVM works by 

identifying a hyperplane that effectively separates data points belonging to different 

classes in the feature space. This hyperplane is strategically determined to maximize 

the margin, which is the distance between the hyperplane and the nearest data point of 

each class. SVM can handle non-linear relationships by transforming the original 

feature space into a higher-dimensional space, allowing for more complex decision 

boundaries. The kernel is a function that performs a projection operation on that higher 

dimensional space. SVM is effective in scenarios where the data is not linearly 

separable, and it strives to create an optimal decision boundary with maximum margin 

[67][68].  

 

Linear Kernel 𝐾(𝑥, 𝑥௜) = 𝑥 ⋅ 𝑥௜ (3.7) 

where 𝑥 and 𝑥௜ are input vectors. 

Polynomial Kernel 𝐾(𝑥, 𝑥௜) = (𝑥 ⋅ 𝑥௜ + 𝑐)ௗ (3.8) 

where 𝑐 is a constant and 𝑑 is the degree. The Gaussian kernel performs a 

projection onto an infinite dimensional space: 

Gaussian (RBF) Kernel 𝐾(𝑥, 𝑥௜) = exp ቆ−
‖𝑥 − 𝑥௜‖ଶ

2𝜎ଶ
ቇ (3.9) 

where σ is the kernel width. 

3.3.4  K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a versatile machine learning algorithm used for 

classification and regression tasks. KNN classifies data points based on the majority 

class of their k nearest neighbors. The "k" in KNN represents the number of 

neighboring data points considered in the classification. KNN is a non-parametric 
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method, meaning it does not make explicit assumptions about the underlying data 

distribution. It is particularly effective when dealing with locally varying patterns and 

is sensitive to the choice of distance metrics, such as Euclidean or Manhattan distance. 

KNN is straightforward to implement and well-suited for datasets with discernible 

clusters [69]. 

Weighted distance 𝑑௜ = arg max
௖

൥෍ 𝑤௜𝐼(𝑦௜ = 𝑐)

௞

௜ୀଵ

൩ (3.10) 

where I is the indicator function and 𝑤௜ is the weight of the 𝑖-th neighbor.  

3.3.5  Logistic Regression (LR) 

Logistic Regression (LR) is a linear model used for binary classification tasks. 

Despite its name, logistic regression is employed for classification, not regression. LR 

models the probability that a given input belongs to a particular class using the logistic 

function. The logistic function transforms the linear combination of input features into 

a range between 0 and 1, representing the probability. Logistic regression is widely 

used due to its simplicity, interpretability, and efficiency. It can be extended to handle 

multiclass classification through techniques like one-vs-rest or one-vs-one. Logistic 

regression is suitable for scenarios where the relationship between input features and 

the target variable is assumed to be linear [70]. 

Logistic Function 

(Sigmoid) 

(𝑌 = 1) =
1

1 + exp ቀ−(∑ 𝑤௜𝑥௜
௡
௜ୀଵ + 𝑏)ቁ

 (3.11) 

Log-Likelihood 
𝐿(𝑤) = ෍ൣ𝑦௜ log൫𝑃(𝑌 = 1)൯

௡

௜ୀଵ

+ (1 − 𝑦௜) log൫𝑃(𝑌 ≠ 1)൯൧ 

(3.12) 

3.3.6  Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) belongs to the category of machine 

learning models, drawing inspiration from the structure and functionality of the human 

brain. ANNs are composed of interconnected nodes arranged in layers, encompassing 

an input layer, one or more hidden layers, and an output layer. The connections 
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between nodes have associated weights that are adjusted during the training process. 

ANNs can capture complex relationships in data and are capable of learning intricate 

patterns. Training an ANN involves feeding it with input data, adjusting weights based 

on the prediction errors, and iteratively refining the model. ANNs are known for their 

ability to handle non-linear relationships and are widely used in various applications, 

including image recognition and natural language processing [71][72]. 

Feedforward 

equation 
𝑎௝

(௟)
= 𝑔 ൭෍ 𝑤௜௝

(௟)
𝑎௜

(௟ିଵ)
+ 𝑎𝑏௝

(௟)

௡

௜ୀଵ

൱ (3.13) 

Backpropagation 

weight update 
Δ𝑤௜௝ = −𝜂

𝜕𝑒

𝜕𝑤௜௝
 (3.14) 

Where e is the error, η is the learning rate. 

Stochastic 

gradient descent 
𝑤௜௝

(௧ାଵ)
= 𝑤௜௝

(௧)
− 𝜂

𝜕𝑒(௧)

𝜕𝑤௜௝
(௧)

 (3.15) 

3.3.7  Extreme Learning Machine (ELM) 

Extreme Learning Machine (ELM) is a type of neural network machine learning 

algorithm known for its efficiency and simplicity. ELM is primarily used for 

supervised learning tasks, such as classification and regression. ELM differs from 

traditional neural networks in that it randomly assigns weights to input nodes and only 

adjusts the weights of the output layer during training. This randomness in weight 

initialization accelerates the training process, making ELM particularly suitable for 

large datasets. Despite its simplicity in structure as shown in Figure 3.1, ELM often 

exhibits competitive performance compared to more complex models. It is employed 

in scenarios where rapid training and prediction are essential [72][73]. Online 

Sequential Extreme Learning Machine (OS-ELM) [73] is an extension of the basic 

ELM that allows for sequential learning with individual samples.  

The structure of ELM neural network includes three layers. The input layer 

receives input features from the dataset. This input data is multiplied by random gains 

before being passed on to the hidden layer, and remain fixed during training. The 

hidden layer neurons are responsible for learning and extracting features from the input 
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data. In OS-ELM, neurons can be added to this layer sequentially, as data arrives and 

is used to train the network. The output layer produces the prediction. 

 

  

Figure 3.1. ELM basic Model. 

OS-ELM updates its model parameters sequentially as new samples become 

available. This allows for online learning, making it suitable for scenarios where data 

arrives continuously. Similar to traditional ELM, OS-ELM exhibits fast learning due 

to the random initialization of weights in the hidden layer. These parameters do not 

need to be estimated, reducing the number of parameters the system needs to optimize.  

Let us denote the key variables and parameters in OS-ELM. Let 𝑋 be Input data 

matrix with dimensions (𝑛 × 𝑚), where 𝑛 is the number of features, and 𝑚 is the 

number of samples. Let 𝐻 be Hidden layer output matrix with dimensions (𝑁 × 𝑚), 

where 𝑁 is the number of hidden neurons. The weights from the input to the hidden 

layer form a random matrix with 𝐴 with dimensions (𝑁 × 𝑛). 𝐵 is the (1 × 𝑁) vector 

of weights from the hidden layer nodes to the output nodes. 𝑏௜௡ is the vector of biases 

for the hidden layer with dimensions (𝑁 × 1). 𝑏௢௨௧ is the vector of biases for the output 

layer. 

The output of the hidden layer can be calculated for the 𝑖-th sample as: 

𝐻௜ = 𝑔(𝐴𝑋௜ + 𝑏௜௡) (3.16) 

where 𝑔(⋅)  is the activation function (commonly a sigmoid or radial basis 

function). 
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The output of the network for the i-th sample is given by: 

𝑌௜ = 𝐵𝐻௜ + 𝑏௢௨௧ (3.17) 

The weights 𝐴, 𝐵, and biases 𝑏௜௡, 𝑏௢௨௧ are updated sequentially as new samples 

are introduced. 

Training procedure for OS-ELM is as follows: 

Initialization: Initialize weights 𝐴, 𝐵, and biases 𝑏௜௡, 𝑏௢௨௧ with random values. 

Sequential Learning: For each incoming sample 𝑋௜, update the hidden layer 

output 𝐻௜ and update the model parameters using the sequential learning rule. 

Prediction: After training, the model can be used to predict the output for new 

samples. 

The Advantages of OS-ELM are that, firstly, it allows for continuous learning, 

making it suitable for scenarios with a continuous stream of data. It converges quickly 

due to its use of random weights between the first and middle layers. OS-ELM is also 

memory efficient, since it does not require the entire dataset to be stored in memory to 

perform batch functions.  

3.4  Performance Evaluation Assessment 

When assessing the effectiveness of classification algorithms, diverse 

measurement metrics come into play. A prevalent method involves employing a 

confusion matrix, also recognized as a contingency table. This table distinguishes four 

key categories: True Positive (TP), True Negative (TN), False Positive (FP), and False 

Negative (FN). TP and TN denote accurately classified positive and negative 

instances, respectively. In contrast, FN signifies instances wrongly classified as 

negative but are, in fact, positive. Conversely, FP indicates instances wrongly 

classified as positive but are, in reality, negative. This research incorporates prevalent 

classification metrics, including precision, recall, F-Measure, accuracy, and 

specificity, offering insightful information on algorithm efficiency and facilitating 

comparative analysis. 

While accuracy remains a prominent metric for evaluating classification 

algorithm performance, its utility diminishes in datasets with imbalanced classes. In 

such scenarios, metrics like precision and recall prove more fitting. Precision 
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quantifies the number of relevant selected items from the total selected items, 

calculated by dividing true positives by the sum of true positives and false positives. 

In contrast, recall gauges the number of relevant selected items from the total relevant 

items, calculated by dividing true positives by the sum of true positives and false 

negatives. F-Measure amalgamates precision and recall into a singular score, capturing 

their harmonic mean. Specificity, as a final metric, gauges a test's ability to identify 

the absence of a condition. These metrics furnish a nuanced and accurate means of 

evaluating classification algorithms, particularly beneficial when confronted with 

imbalanced datasets. 

These performance metrics offer a comprehensive evaluation, shedding light on 

the performance of classification algorithms: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.19) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.20) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.21) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.22) 

3.5  The proposed IP approach 

Implementing an Indoor Positioning System (IPS) using WIFI that can be 

connected to a user easily using phone, laptop, or any connection device, with RSSI 

(in dbm) values collected from 5 APs to classify the target for 14 different places 

distributed non-uniformly in single floor place is our case under study. The single floor 

is moderate in size with area about 2600m2, it is divided into 14 non-equal sections 

and rooms. 5 APs were employed sufficiently for collecting all required attributes to 

complete the fingerprinting position scan as shown in Figure 3.2. 
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Figure 3.2. The diversity of the APs in the proposed floor map. 

 

The collected data firstly is pre-processed and then applied to the well-known 

robust state of the arts classifier methods (DT, SVM, KNN, LDA, LR, and ANN) and 

to the Online Sequential Extreme Learning Machine (OS-ELM) classifier method 

involves several steps. The dataset is handled with scenarios, first without 

dimensionality reduction, second with PCA dimensionality reduction with neglecting 

10% of the whole samples. Here's a general outline of the proposed process: 

 1. Data Collection: Collect RSSI values from the five access points (Aps) at 

known locations in the indoor environment. Associate each set of RSSI values with 

the corresponding ground truth location. 
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2. Data Preprocessing: Handle missing or noisy data in the RSSI measurements. 

Normalize or standardize the RSSI values to ensure consistency. If the gathered data 

is huge, we can employ the PCA to reduce the insignificant data to be able to minimize 

the required processing time.   

3. Feature Extraction: Identify relevant features that can contribute to the 

accuracy of the positioning system. Extract additional information if available, such as 

angle of arrival or time-of-flight. 

4. Dataset division: Split the dataset into training and testing sets with suitable 

ratios as 70% for the training data, and 30% for the testing. 

5. Model Training: Implement five state of arts classifier methods, which are DT, 

SVM, KNN, LDA, ANN. Implement the Online Sequential Extreme Learning 

Machine (OS-ELM) algorithm by training using the preprocessed training data. Use 

the sequential nature of OS-ELM to continuously update the model as new data 

becomes available. Test the preprocessed testing data. 

6. Model Evaluation: Evaluate the performance of the trained and test DT, SVM, 

KNN, LDA, ANN, and OS-ELM models on the testing set using appropriate metrics 

(e.g., Training accuracy, Testing accuracy, Training time, Prediction speed). 

7. Fine-Tuning and Optimization:  Iterate on the model and system performance, 

making adjustments as needed. Optimize hyperparameters, such as learning rates, 

number of hidden neurons, or regularization. 

 

The comprehensive flow chart of the proposed method is as Figure 3.3, which 

includes two processes as: 

1. Offline Process: The objective is to create a database by taking measurements at 

various locations within a predefined detection area sector. These measurements 

involve obtaining five RSS from five APs. The collected RSS power values from 

the APs are then linked to specific locations and classes within the maze. 

2. Online or Real time Process: In this process, signal strength measurements are 

collected from multiple APs in the surrounding area. These measurements are then 

analyzed and grouped to ascertain the target's position within the designated 

location or maze. The strength of the signals from the APs serves as crucial 
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information in determining the target's location and class within the specified 

environment. 

 

 

 

Figure 3.3. The proposed indoor positioning system flow chart. 

  

Collect the RSSI power received 
from 5 AP’s using Wi-Fi 

technology to a certain tag 

 

Start 

Acceptable
accuracy? 

N

Yes 

Label these data for 14 places 

Pre-processing including 
Imputation, standardization, 

dimensionality reduction  

Apply (DT, SVM, KNN, LDA, 
LR, and ANN) and ELM 

models training 

Different Performance 
Evaluation 

  

End 
  

Input real-time data from all 
AP’s and collect their data as 

one raw data 

  

Start 

Suitable 
Detect ? 

Pre-processing Data 

Apply any (DT, SVM, KNN, LDA, 
LR, and ANN) or ELM for the 

object location detection 

  

Give the 
location 

End 

Back to read 
another data 

Yes NO 

(a) Model Offline Training (b) Model Online Detecting 

Repeat 
  

Tune the 
hyper-

parameters
  



34 

CHAPTER 4.  EXPERIMENTAL RESULTS 

4.1  Introduction 

In this chapter, the emphasis is placed on the practical implementation of IP 

detection through the utilization of various machine learning algorithms, as elucidated 

in the preceding chapters. The fundamental aspect involves the meticulous 

development of six distinct ML algorithms, namely Decision Tree (DT), Linear 

Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbors 

(KNN), Logistic Regression (LR), and the Artificial Neural Network algorithm 

(ANN). Also, we develop extensively an Extreme Learning Machine called (OS-

ELM).The ensuing results derived from both methodologies are thoroughly examined, 

fostering a comparative analysis between them and against pertinent findings from 

prior studies. To implement the proposed approach successfully, we need to utilize a 

combination of both software and hardware tools. For the software requirements, we 

were using the Matlab programming language (version 2022b) on Intel (R) Core i7- 

8550U CPU @1.80 GHz, 8 GB Random Access Memory (RAM), hard disk with a 

storage capacity of 500GB, and Intel(R) HD Graphics 520 MB.  

4.2  The Applied Dataset 

Exploiting the availability and facilities of the Wi-Fi technology, simplicity and 

low cost of 5 APs, with a user tag, the off-line process dataset that includes 700 

samples by 6 features was collected. The first five features represents the RSSI powers 

in (dbm) for the 5 APs, while the last feature represents the target/class which is one 
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of 14 different places. In brief, the dataset itself was divided into semi-equally 14 

distinct categories that were labeled from 1 to 14. Table 4.1 shows some of these 

attributes. 

Table 4.1 Some of the collected data attributes. 

RSSI1  RSSI2  RSSI3  RSSI4  RSSI5  Target 
-69 -57 -76 -100 -71 1 
-67 -50 -78 -100 -77 1 
-50 -58 -62 -100 -88 2 
-51 -78 -68 -100 -79 2 
-75 -63 -76 -100 -60 3 
-71 -67 -83 -100 -64 3 
-45 -78 -74 -100 -64 4 

-36 -78 -68 -100 -69 4 

-70 -81 -74 -75 -58 5 
-72 -82 -66 -79 -55 5 
-64 -82 -60 -90 -77 6 
-65 -86 -59 -89 -80 6 
-76 -100 -48 -100 -100 7 
-77 -100 -45 -100 -84 7 
-80 -100 -55 -86 -87 8 
-82 -100 -52 -81 -82 8 
-100 -100 -71 -69 -100 9 
-100 -100 -74 -70 -100 9 
-100 -100 -79 -51 -88 10 
-100 -100 -82 -45 -85 10 
-100 -100 -67 -57 -65 11 
-100 -100 -73 -58 -67 11 
-100 -100 -100 -56 -100 12 
-100 -100 -98 -54 -100 12 
-100 -100 -100 -60 -100 13 
-100 -100 -100 -61 -100 13 
-100 -62 -66 -63 -100 14 
-100 -87 -66 -56 -100 14 

 

The entire data was randomly divided into two main parts: training data with 70%, 

i.e, 490×6, while the remaining 30%, i.e, 210×6 was assigned to testing data. These 

data are evaluated and tested with 10 folded cross validation (10 CV). 
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4.3  Machine Learning Simulation Results  

This section will showcase the simulation results obtained from each algorithm, 

with a subsequent in-depth discussion of the outcomes. The evaluation will specifically 

focus on time-related aspects and pertinent metrics employed to discern the efficacy 

of each algorithm. The entire analysis and presentation are conducted within the 

Matlab programming language. We had make the results in two scenarios as: 

4.3.1  Classification without PCA Dimensionality Reduction 

Here, all the data were considered without and dimensionality reduction, Figure 

4.1 shows the whole systems used.  

 

 Figure 4.1. All machine learning used without PCA. 

Figures 4.2 and 4.3 illustrate the DT classifier results, the training confusion 

matrix, and the testing confusion matrix.  

 



37 

 

 Figure 4.2. DT Confusion Matrix for training. 

 

 

Figure 4.3. DT Confusion Matrix for testing. 
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Figures 4.4 and 4.5 depict the LDA classifier results, the training and the testing 

confusion matrices.  

 

 

 

Figure 4.4. LDA Confusion Matrix for training. 

 

Figure 4.5. LDA Confusion Matrix for testing. 
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Figures 4.6 and 4.7 show the SVM classifier results, the training and the testing 

confusion matrices.  

 

Figure 4.6. SVM Confusion Matrix for training. 

 

Figure 4.7. SVM Confusion Matrix for testing. 
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Figures 4.8 and 4.9 explain the LDA classifier results, the training and the testing 

confusion matrices.  

 

Figure 4.8. KNN Confusion Matrix for training. 

 

 

Figure 4.9. KNN Confusion Matrix for testing. 



41 

Figures 4.10 and 4.11 explain the LR classifier results, the training and the testing 

confusion matrices.  

 

Figure 4.10. LR Confusion Matrix for training. 

 

Figure 4.11. LR Confusion Matrix for testing. 
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Figures 4.12 and 4.13 illustrate the ANN classifier results, the training and the 

testing confusion matrices.  

  

Figure 4.12. ANN Confusion Matrix for training. 

 

Figure 4.13. ANN Confusion Matrix for testing. 

Now the ELM was executed with 10 cross validation and Nh=300 hidden layer 

nodes, as in table (4.2). 
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Table 4.2 ELM accuracies for 10 trials and their averages. 

Train Accuracy (%) Test Accuracy (%) 

96.3576 89.6875 

96.8543 95.1562 

97.1854 94.0625 

96.6887 99.5312 

97.1854 95.1562 

97.0199 89.6875 

96.1921 96.2500 

96.8543 86.4062 

96.5232 94.0625 

95.8609 92.9688 

 mean train accuracy = 96.6722% mean test accuracy = 93.2969% 

mean train time = 0.0516 sec mean test time = 0.0078 sec 

 

From the above table, it can be seen that the ELM has the best results including 

accuracy and time.  Table (4.2), Figures 4.14 and 4.15 show all dataset splitting, 

classifiers information and resultant training and testing accuracies and times.  

 

Table 4.3 All dataset, classifiers information and results. 

Model 

No. Model Type 

Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

1 DT 91.429 90.810 10851.704 1.38 

2 LDA 93.265 92.857 7770.476 1.27 

3 SVM 95.102 93.143 1183.189 11.83 

4 KNN 93.265 92.762 4425.230 2.14 

5 LR 93.878 92.190 624.205 27.36 

6 ANN 93.673 91.190 17914.464 11.95 

7 ELM (Nh=300) 96.672 93.297 136500 0.0078 
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Table 4.5 shows the final results for classification without PCA dimensionality 

reduction. The total data is 490 samples, the data was separated into 210 test samples 

and 280 training samples. Since the data set is relatively small, the data is 10-fold 

cross-validated to ensure a good estimate of performance. The predictor is based on 

the first four predictor properties, with a total of 14 possible classes for the data to be 

classified into, corresponding to possible locations.  

 

 

Figure 4.14. Training and testing accuracies. 
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Figure 4.15. Training times. 

In the classification analysis without PCA, the Extreme Learning Machine (ELM) 

with Nh=300 emerged as the top-performing classifier. It achieved the highest 

validation accuracy at 96.672% and maintained strong performance in the test dataset 

with an accuracy of 93.297%. Notably, ELM demonstrated remarkable prediction 

speed, registering 136500 observations per second, and an exceptionally low training 

time of 0.05 seconds. 

On the other hand, the DT classifier, while still providing reasonable accuracy, 

exhibited comparatively lower performance. It secured a validation accuracy of 

91.429% and a test accuracy of 90.810%. Additionally, the DT classifier showed a 

prediction speed of 10851.704 observations per second and a training time of 1.38 

seconds. 

In summary, ELM with Nh=300 stands out as the best-performing classifier, 

emphasizing high accuracy, rapid prediction speed, and swift training time. 

Conversely, the DT classifier, while functional, presents a slightly lower performance 

across these metrics. 

 

4.3.2  Classification with PCA Dimensionality Reduction 

Now, all the data were considered with PCA dimensionality reduction that 

reduced the data by 20%, so the resultant features size is 700×4 instead of 700×5, it 

can take into account the classifier results and explain how to be effected by this 

reduction. 
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Here, all the data were considered without and dimensionality reduction, Figure 

4.16 shows the whole systems used.  

 

 

Figure 4.16. All machine learning used with PCA. 

Figures 4.17 and 4.18 illustrate the DT classifier results, the training confusion 

matrix, and the testing confusion matrix.  

 

 Figure 4.17. DT Confusion Matrix for training. 
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Figure 4.18. DT Confusion Matrix for testing. 

 

Figures 4.19 and 4.20 depict the LDA classifier results, the training and the testing 

confusion matrices.  

 

Figure 4.19. LDA Confusion Matrix for training. 
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Figure 4.20. LDA Confusion Matrix for testing. 

Figures 4.21 and 4.22 show the SVM classifier results, the training and the testing 

confusion matrices.  

 

 

Figure 4.21. SVM Confusion Matrix for training. 
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Figure 4.22. SVM Confusion Matrix for testing. 

Figures 4.23 and 4.24 explain the KNN classifier results, the training and the 

testing confusion matrices.  

 

Figure 4.23. KNN Confusion Matrix for training. 
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Figure 4.24. KNN Confusion Matrix for testing. 

Figures 4.25 and 4.26 explain the LR classifier results, the training and the testing 

confusion matrices.  

 

 

Figure 4.25. LR Confusion Matrix for training. 
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Figure 4.26. LR Confusion Matrix for testing. 

 

Figures 4.27 and 4.28 illustrate the ANN classifier results, the training and the 

testing confusion matrices.  

  

Figure 4.27. ANN Confusion Matrix for training. 
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Figure 4.28. ANN Confusion Matrix for testing. 

 

Now the ELM was executed with 10 cross validation and L=300 hidden layer 

nodes, as in table (4.4) below: 

Table 4.4 ELM accuracies for 10 trials and their averages. 

Train Accuracy (%) Test Accuracy (%) 

99.0066 91.8750 

98.8411 92.9688 

99.0066 91.8750 

98.3444 96.2500 

98.5099 97.3438 

98.5099 95.1562 

98.6755 98.4375 

98.1788 99.5312 

98.8411 94.0625 

98.5099 95.1562 

mean train accuracy= 98.6424% mean Test Accuracy = 95.2656% 

mean train time= 0.0434sec mean test time= 0.0078 sec 
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From the above Figures, it can be seen that the ELM has the best results including 

accuracy and time. Table 4.5 and Figures 4.29 and 4.30 show all dataset splitting, 

classifiers information and resultant training and testing accuracies and times.  

Table 4.5 shows the final results for classification with PCA dimensionality 

reduction. The total data is 490 samples, the data was separated into 210 test samples 

and 280 training samples. Since the data set is relatively small, the data is 10-fold 

cross-validated to ensure a good estimate of performance. The predictor is based on 

the first four predictor properties, with a total of 14 possible classes for the data to be 

classified into, corresponding to possible locations.  

Table 4.5 All dataset, classifiers information and results. 

Model 

No. Model Type 

Accuracy % 

(Validation) 

Accuracy % 

(Test) 

Prediction 

Speed 

(obs/sec) 

Training 

Time (sec) 

3 SVM 95.510 93.333 761.062 17.170 

2 LDA 94.490 90.000 6256.863 1.825 

5 LR 94.286 91.905 406.173 48.063 

1 DT 93.061 93.333 6689.511 2.129 

6 ANN 92.857 91.429 6505.585 24.054 

4 KNN 92.449 93.333 2003.663 8.154 

7 ELM (Nh=300) 98.6424 95.2656 157250 0.0078 
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 Figure 4.29. Training and testing accuracies. 

 

 

 Figure 4.30. Training times. 

In the classification analysis with PCA, the Extreme Learning Machine (ELM) 

outperformed other classifiers, particularly excelling in accuracy metrics. The ELM 

achieved an outstanding validation accuracy of 98.6424% and maintained exceptional 

accuracy in the test dataset at 95.2656%. Moreover, ELM showcased remarkable 

prediction speed, handling 157250 observations per second, and an astonishingly low 

training time of 0.0078 seconds. 
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Comparatively, the DT classifier again demonstrated solid performance but with 

slightly lower accuracy. It achieved a validation accuracy of 93.061% and a test 

accuracy of 93.333%. The DT classifier showed a prediction speed of 6689.511 

observations per second and a training time of 2.129 seconds. 

In summary, the ELM classifier continues to exhibit superior performance in the 

PCA-enhanced analysis, emphasizing exceptional accuracy, rapid prediction speed, 

and swift training time. The DT classifier, while reliable, presents a slightly lower 

accuracy and performance across the considered metrics. 
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CHAPTER 5.  CONCLUSION AND FUTURE 

WORK 

5.1  Introduction 

The comprehensive exploration into indoor positioning (IP) using many 

distributed access points (Aps), Wi-Fi, user tag, machine learning (ML) algorithms has 

yielded insightful results, paving the way for advancements in accurate and efficient 

real-time localization. The seven distinct ML algorithms, namely Decision Tree (DT), 

Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest 

Neighbors (KNN), Logistic Regression (LR), Artificial Neural Network (ANN), and 

the innovative Extreme Learning Machine (OS-ELM), have undergone difficult 

evaluation. The focus has been on achieving optimal accuracy, prediction speed, and 

training time, ensuring applicability in diverse scenarios. 

5.2  Conclusion 

The implementation of IP detection using ML algorithms, notably the innovative 

OS-ELM, demonstrates remarkable effectiveness for indoor localization. Traditional 

strategies face challenges in large spaces, while ML algorithms offer adaptability and 

efficiency in diverse environments like the NLOS. The significance of dimensionality 

reduction techniques like PCA is underscored, addressing high-dimensional data in 

fingerprinting. 
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The numerical results showcase the exceptional performance of ML algorithms, 

with OS-ELM standing out in terms of accuracy, prediction speed, and training time. 

The synergy of different localization technologies, energy-efficient algorithms, and 

real-time implementations emerges as critical areas for future exploration. The 

conclusions are substantiated by real results, emphasizing the transformative potential 

of ML in indoor positioning. 

- Accuracy: OS-ELM outperforms other classifiers, achieving the highest 

accuracy in both validation (98.64%) and test (95.27%) phases. 

  - Prediction Speed: LR exhibits the highest prediction speed (406.17 obs/sec), 

while OS-ELM, despite its exceptional accuracy, maintains a rapid prediction speed 

(157250 obs/sec). 

- Training Time: OS-ELM excels with an astonishingly low training time (0.0078 

sec), making it highly efficient for real-time applications. 

 

5.3  Recommendations for Future Works 

Future research should delve deeper into refining OS-ELM and exploring its 

adaptability to dynamic environments. Additionally, the implications of integrating 

multiple technologies and hybrid approaches for improved accuracy and robustness 

deserve thorough investigation. 

1. Integration of Multiple Technologies: Investigate the collaboration of different 

localization technologies (Wi-Fi, UWB, etc.) for enhanced accuracy and robustness, 

substantiating the recommendations with specific research directions and potential 

outcomes. 

2. Dynamic Learning Models: Explore dynamic ML models that can adapt to 

changing environments and user behaviors over time, providing insights into the 

feasibility and expected advantages. 

3. Real-Time Implementation: Develop real-time implementations for ML 

algorithms, ensuring seamless integration into practical applications. Discuss potential 

challenges and considerations for real-world deployment. 
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4. Energy-Efficient Algorithms: Focus on developing energy-efficient ML 

algorithms for deployment in resource-constrained devices, delving into the 

significance of energy efficiency and potential implications. 

5. Hybrid Approaches: Investigate hybrid approaches that combine fingerprinting 

with other localization techniques for improved performance, elucidating the rationale 

behind such combinations and expected benefits. 
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