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ABSTRACT

ENHANCING INDOOR POSITIONING PERFORMANCE
THROUGH WI-FI/RSSI-BASED MACHINE LEARNING
CLASSIFIERS

Indoor positioning (IP) is a pivotal component in real-time indoor localization
(IL), contributing to the identification of user or device locations within confined
spaces. Global positioning system (GPS) excels in outdoor positioning, but its efficacy
diminishes indoors due to challenges like multipath propagation, non-line of sight, and
signal distortion. To address this, an indoor positioning technique has developed,
including Wi-Fi positioning system, five access points sensors, user as a tag, and based
on the received signal strength power (RSS) with machine learning classifiers.

Machine learning empowers indoor positioning systems to adapt to diverse
conditions, manage uncertainties, and enhance accuracy continually through data-
driven learning. Fingerprinting localization faces challenges with high-dimensional
data, addressed by dimensionality reduction methods like principal component
analysis (PCA). Classification algorithms, such as Decision Trees (DT), Local
Discriminator Analysis (LDA), Support Vector Machine (SVM), K-nearest neighbor
(KNN), Logistic Regression (LR), Artificial Neural Networks (ANN), and Extreme
Learning Machine (OS-ELM) are employed to extract key characteristics for
localization and hence implement IP detection. The ensuing results are analyzed for
accuracy, prediction speed, and training time.

The research sets a foundation for understanding the strengths and limitations of

various classifiers in indoor positioning. The comparative analysis reveals that OS-

Xiv



ELM exhibits exceptional accuracy, rapid prediction speed, and minimal training time,
positioning it as a promising choice for real-time applications. The study concludes by
outlining future research directions, emphasizing the refinement of OS-ELM and
hybrid approaches to enhance accuracy and adaptability in dynamic indoor

environments.
Keywords: Indoor Positioning (IP), Wi-Fi Positioning System, RSS Power, machine

learning, dimensionality reduction, Extreme Learning Machine (ELM), training time,

training and testing Accuracy.
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OZET

WI-FI/RSSI TABANLI MAKINE OGRENIMI
SINIFLANDIRICILARIYLA KAPALI ALAN KONUMLANDIRMA
PERFORMANSININ ARTIRILMASI

Kapal1 alan konumlandirma (IP), ger¢ek zamanli kapali alan lokalizasyonunun
(IL) 6nemli bir bilesenidir ve kullanici veya cihaz konumlarmin kapali alanlarda
belirlenmesine katkida bulunur. Kiiresel Konumlandirma Sistemi (GPS), agik
alanlarda etkili bir sekilde ¢aligsa da, ¢oklu yol yayilimi, goriis hatti olmamasi ve
sinyal bozulmasi gibi zorluklar nedeniyle kapali alanlarda etkinligi azalir. Bu sorunu
¢ozmek i¢in, Wi-Fi konumlandirma sistemi, bes erisim noktasi sensorii, etiket olarak
kullanic1 ve alinan sinyal giicii (RSS) ile makine 6grenimi siniflandiricilarina dayal
bir kapal1 alan konumlandirma teknigi gelistirilmistir.

Makine 6grenimi, kapali alan konumlandirma sistemlerinin ¢esitli kosullara
uyum saglamasini, belirsizlikleri yonetmesini ve veri odakli &grenme yoluyla
dogrulugu stirekli artirmasini miimkiin kilar. Parmak izi tabanli lokalizasyon, yiiksek
boyutlu verilerle ilgili zorluklarla karsilasir ve bu zorluklar temel bilesen analizi (PCA)
gibi boyut azaltma yontemleriyle ele alinir. Karar Agaglar1 (DT), Yerel Ayirt Edici
Analiz (LDA), Destek Vektor Makinesi (SVM), K-en yakin komsu (KNN), Lojistik
Regresyon (LR), Yapay Sinir Aglar1 (ANN) ve Asir1 Ogrenme Makinesi (OS-ELM)
gibi siiflandirma algoritmalari, konumlandirma i¢in temel 6zellikleri ¢ikarmak ve IP
tespiti uygulamak i¢in kullanilir. Ortaya ¢ikan sonuglar, dogruluk, tahmin hizi ve

egitim siiresi acisindan analiz edilir.
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Arastirma, kapali alan konumlandirmada ¢esitli siniflandiricilarin giiglii ve zayif
yonlerini anlamak i¢in bir temel olusturur. Karsilastirmali analiz, OS-ELM'nin
olaganiistii dogruluk, hizli tahmin hiz1 ve minimal egitim siiresi ile 6ne ¢iktigini ortaya
koyarak, onu ger¢ek zamanli uygulamalar i¢in umut verici bir segenek haline
getirmektedir. Calisma, OS-ELM'nin ve dinamik kapali alan ortamlarinda dogruluk ve
uyarlanabilirligi artirmak i¢in hibrit yaklagimlarin iyilestirilmesini vurgulayarak

gelecekteki arastirma yonlerini ortaya koymaktadir.

Anahtar Kelimeler: Kapali Alan Konumlandirma, Wi-Fi Konumlandirma Sistemi,
RSS Giicii, makine dgrenimi, boyut azaltma, Asir1 Ogrenme Makinesi (ELM), egitim

stiresi, egitim ve test dogrulugu.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

Indoor positioning (IP) is crucial for determining the location of a user or device
within a confined space, constituting real-time indoor localization (IL). While the
global positioning system (GPS) effectively serves outdoor positioning needs, its
accuracy significantly diminishes in indoor environments due to challenges like
multipath propagation, non-line of sight, and signal distortion. This limitation has led
to the development of various indoor positioning techniques to address these issues
[1]. The applications of Indoor Positioning Systems (IPS) technology extend across
diverse sectors, including healthcare, building management, industry, police
investigation, disaster management, and various other domains. Additionally, IPS
technology finds relevance in emerging technologies like the Internet of Things (IoT)

and smart architectures [2][3].

1.2 Challenges of Localization Techniques

In today's world, with the increasing use of smart devices, IP or IL has become a
crucial task. It involves determining the location of a person or object within a
building, which is different from determining their location outside. The indoor
environment poses many challenges such as signal propagation leading to shadowing,
scattering, attenuation, and distortion. These challenges have led to scientific research
to discover new ways of indoor localization using various elements. However, the

challenges are significant due to the variety of sizes and shapes of buildings, the



presence of fixed and moving objects, as well as their influence on both line-of-sight
(LOS) and non-line-of-sight (NLOS) radio blind spots, all have an impact on indoor
positioning performance. Many solutions have been suggested for the recent years
including time of arrival (TOA) [4], angle of arrival (AOA) [5], received signal
strength (RSS) [6], difference of arrival (DOA) [7], time difference of arrival (TDOA)
[8], and hybrid methods [9][10].

Indoor localization systems utilizing RSS do not require any specialized
components, which makes their deployment much easier. These systems can be
implemented through various technologies such as WiFl [11], RFID [12][13],
Bluetooth [16], and others [14][15][17].

RSS-based localization methods are generally categorized into two types: model-
based (or range-based) methods [18] and fingerprinting-based methods [19]. Model-
based approaches leverage estimate the distance using an equation which quantifies
the relationship between received power and distance [20]. However, their
performance may be affected by the complexities of indoor signal propagation
environments.

Machine learning techniques, coupled with biometric approaches, are employed
to match a user's position with a predefined set of positions. The average RSSIreceived
at each position is retrieved from a database from data collected during system setup
[21]. This data can be updated in time to match changes in the environment.
Fingerprinting, which usually uses RSSI signals on WiFi has become very popular due
to the wide deployment of WiFi. While techniques such as TDOA can give higher
accuracy, RSSI is more robust to use in different environments without needing
specialized hardware such as antenna arrays. It exhibits satisfactory performance in
both LOS and NLOS environments.

The fingerprinting Wi-Fi localization occurs in two stages: the offline training
stage and online usage stage. In the offline phase, a fingerprint database is established
using Wi-Fi access points, which are then employed to estimate positions based on
received RSSI signals during the online phase. These access points are collected from
smart devices or signal transmitters and are tailored to the project's working

environment in the form of radio maps.



However, the challenge of limited RSS datasets poses difficulties for effective
machine learning models, which have shown promise in indoor-based localization
applications. To overcome this challenge, machine learning systems have
demonstrated the most promising performance due to their robustly and processing
time [22][23]. Additionally, researchers have explored advanced deep learning
techniques such as Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) for collecting and training RSS radio map databases [24][25].

1.3 The Problem Statement

Sensing data without knowledge of sensor locations renders a sensor network
ineffective in its primary function of collecting and forwarding data. This underscores
the critical need for precise sensor location determination in IP systems, particularly
in challenging indoor environments with various obstacles. Existing approaches,
including the use of ML to improve distance estimates between anchor nodes with
known positions and a target with an unknown position or increasing the number of
anchor nodes, are constrained by reliance on specific databases, limiting the
adaptability of indoor positioning systems to dynamic environments.

Furthermore, various researchers have explored the development of reliable IPS
using both single and hybrid machine learning algorithms. Despite these efforts, earlier
mechanisms fell short in achieving a high detection positioning rate. Consequently,
this thesis concentrates on attaining a high detection positioning accuracy for indoor
positioning systems. The approach involves creating an integrated work mechanism

that prioritizes IPS accuracy and processing time.

1.4 The Work Aims and Objectives

Our work aims to address key factors such as accuracy, complexity, reliability,
and deployment in indoor positioning systems. The significance of precise distance
estimates between anchor nodes and the mobile target is emphasized to achieve high-
accuracy positioning. As a result, the aim of this work is to design an Indoor

Positioning System (IPS) based on the RSS signals, Wi-Fi connections, with machine



learning abilities that can specify characteristics involves addressing several key
aspects to meet the outlined requirements:

Wireless Contact:

Utilize wireless technologies such as Wi-Fi, Bluetooth, for communication
between the positioning system components. Wireless connectivity enhances
flexibility and ease of use.

Easy for Personal Use:

Develop a user-friendly interface accessible via smartphones or dedicated
devices. Implement intuitive features, minimal setup requirements, and
straightforward calibration processes to ensure ease of use for individuals.

Low Cost:

Employ cost-effective hardware components and leverage existing infrastructure,
such as Wi-Fi routers or Bluetooth beacons, to minimize expenses. Optimize the
design for affordability without compromising on performance.

High Accuracy:

Implement advanced positioning algorithms, including machine learning
techniques, to enhance accuracy. Utilize a combination of signal strength, time-of-
flight, or trilateration methods to achieve precise indoor location tracking.

Suitable in All Indoor Environments:

Account for diverse indoor environments, considering factors like building
layouts, obstructions, and signal interference. Employ a scalable system that adapts to

different indoor settings, ensuring consistent performance across varied conditions.

1.5 The Main Contributions

To accomplish the objective of creating a real-time system capable of handling
various scenarios and capturing data from a typical indoor environment. We’ve made
the following issues:

1. Provide and calibrate a Wi-Fi-based indoor localization algorithms and
implement them to determine suitable ML approaches.

2. Collect measurements to create a dataset within a single floor building to

evaluate localization algorithms



3. Developing and applying different Machine Learning algorithms with offline
and online behavior, as well as reporting the achieved reasonable accuracy.

4. Simulate the proposed IP systems used the MATLAB environment with no
extra hardware or software.

5. Analyze and evaluate an appropriate option in which the user is simply carrying

a cell phone. The phone does not have any special software loaded.

1.6 Thesis Organization

This thesis is organized as follows:

Chapter One: This section serves as the introduction and provides a clear
explanation of the motive and objectives behind the selection of the thesis theme.

Chapter Two: Present a comprehensive description of the research background
through providing a literature review.

Chapter Three: Focuses on detail the proposed indoor positioning system
including the setup experiment and the database collection in different environments.
Theories of all developed ML approaches are explained in details.

Chapter Four: Describes and discuss the experimental findings, provides the
performance assessment of the detection rate for all recommended classifiers, and
compares them to several detection strategies from prior research.

Chapter Five: Delivers conclusions, recommendations and suggestions for

future works.



CHAPTER 2. THEORETICAL BACKGROUND
AND LITERATURE REVIEW

2.1 Introduction

Localization techniques refer to the methods and technologies used to determine
the precise location of an object or individual. Indoor localization techniques are
specifically designed for determining the position of objects or individuals inside
buildings, structures or enclosed spaces. On the other hand, outdoor localization
techniques are used for determining the position of objects or individuals in open
spaces, such as outdoors or in large areas. The main difference between indoor and
outdoor localization techniques lies in the challenges posed by the different
environments. Indoor environments present more obstacles, such as walls and
furniture, which can interfere with signal transmission and accuracy. Indoor
localization techniques include technologies such as Wi-Fi positioning, Bluetooth
beacons, Infrared sensors, ultrasonic sensors, and radio frequency identification. Also,
Ultra Wide Band (UWB) and their techniques with the various wireless IPs
communication technologies are widely adopted. These techniques use signals and
sensors to triangulate and estimate the location of an object or individual within an
indoor space. Applications of indoor localization techniques include: asset tracking in
warehouses, indoor navigation and wayfinding in large buildings such as airports or

shopping malls, proximity marketing, location-based services for healthcare facilities



such as tracking patients and medical equipment, indoor security systems, and
personalized experiences in museums or exhibitions. Outdoor localization techniques,
on the other hand, make use of technologies such as GPS, GNSS. This chapter, will
provide a comprehensive description of the research background through a literature
survey related to indoor positioning. The indoor localization system with their various
methods tolerate for continuous tracking of the location of objects or humans are
employed extensively. They are used as an efficient tools for measuring distances
or/and angles. Determining the position of a tag is a process achieved in two primary
steps. Initially, it entails acquiring a collection of accurate ranging data between the
anchor and the tag. Subsequently, the obtained data undergoes processing to ascertain
the probable location of the mobile station, commonly known as localization. Utilizing
diverse machine learning approaches empowers indoor positioning systems to adapt
to varying conditions, handle uncertainties, and continually improve accuracy through

learning from data.

2.2 Literature Review

Many IP studies were investigated and discussed using different techniques and
methods, among them that were related to Wifi with RSS and machine learning:

Hou et. al. (2015) [26] describe an indoor positioning system using lights. A LED
lamp is used as the transmitter and a smartphone is the receiver. Positioning uses both
the signal strength and angle of arrival. The outcomes revealed an average positioning
error of around 10.2 cm within a (2x2x2.5) m indoor environment.

Kotaru et. al. (2015) [27] propose an indoor localization system named SpotFi for
deployment on standard Wi-Fi. The localization algorithm was evaluated in a large
indoor office space employing six Access Points. The median accuracy attained was
40 cm, showcasing resilience in the presence of indoor obstacles.

Zou et. al. (2015) [28] proposed a localization algorithm for indoor positioning
utilizing an online sequential extreme learning machine (OS-ELM). Experimented
within an Internet of Things Laboratory, the algorithm demonstrated an accuracy of
1.794 m within a testbed area of approximately 400 m2 (20 m % 20 m), featuring four
Access Points (APs).



Thuong et. al. (2016) [29] investigate diverse facets of location fingerprinting-
based indoor positioning systems, with a particular emphasis on factors influencing
positioning accuracy, including the impact of human behavior on RSSI distribution.
The experiments were carried out in an indoor space which was again within the school
setting, covering an area of (7 m x 10 m). The results showcased positioning accuracy
within the range of (2.0 - 2.5) m.

Ding et. al. (2017) [30] introduced a technique for fingerprint-based indoor
positioning (IP) was proposed, known as the AP weighted multiple matching closest
neighbor's approach. This method aims to overcome challenges observed in the
conventional Weighted K-Nearest Neighbor (WKNN) algorithm for localization.

Dari and Pranowo (2018) [31] introduced a system combining RSS fingerprint
method with KNN for enhanced location recognition in mobile-based wireless
positioning systems utilizing wireless 802.11b technology.

Hou et. al. (2018) [32] proposed a wireless indoor localization approach,
employing AoA and coordinates from Wi-Fi Access Points (APs) for outpatient
wayfinding in hospitals. Despite its limited applicability in non-line of sight
conditions, the system demonstrated a localization error of less than two and a half
meters in 80% of the instances.

Oras et. al. (2019) [33] introduce a two-step localization algorithm, optimizing
the deployment of APs based on RSS simulation measurements. The algorithm
achieved an optimal location with a range probability of 0.74m and the highest RSS
mean received power value of -45 dBm.

Abbas et. al. (2019) [34] introduced WiDeep, a deep learning-based indoor
localization technique implemented on Android phones. Evaluated in university and
residential settings, WiDeep consistently achieving an average precision in the 1-2m
range on the two testbeds.

Xue et. al. (2020) [35] introduced the "Weight Range Localizer" and "Relative
Span Exponential Weight Range Localizer" algorithms for RSSI localization in
wireless sensor networks for short-range communication. The proposed algorithms
demonstrated acceptable accuracy, achieving less than 1 m in IP.

Yanet. al. (2021) [36] proposed novel ELM localization technique for multi-floor

environments, relying solely on RSSI fingerprints. The approach includes a



specialized data preprocessing algorithm to efficiently handle extensive training and
online measurement data in multi-floor settings. The offline phase utilizes individual
ELMs for all floors, generating floor-level classification functions and position
regression functions. In the online phase, first the algorithm determines a coarse
localization step estimates the floor using floor-level classification functions, followed
by a refined step for on-floor position estimation. Comparative experiments
demonstrate significant performance advantages in both floor estimation and on-floor
localization compared to existing algorithms.

Wang and Park (2021) [37] proposed a hybrid fingerprint location technology
based on both RSS and Channel State Information (CSI). The methodology involves
preprocessing RSSI and CSI values using Kalman filter and Gaussian function in the
off-line phase, eliminating mutation and noisy data. The accurate hybrid fingerprint
database is established, and the weighted k-nearest neighbor (WKNN) algorithm is
employed for online positioning. Experimental results demonstrate the proposed
algorithm is robust to noise, showcasing higher accuracy and smaller positioning
errors.

Djosic et. al. (2022) [38] present a novel localization method to improve UWB
accuracy with non-line-of-sight (NLOS) conditions. The approach uses multiple
deterministic algorithms based on LOS-measured distances, which converge much
more quickly to a solution and achieve better accuracy in LOS conditions, but also use
fingerprinting-based algorithm for NLOS conditions. Experimental results show that
this strategy outperforms traditional fingerprinting-based approaches.

Shyam et. al. (2023) [39] discuss utilizing UWB technology and a triangulation
algorithm for monitoring and tracking assets in industrial settings. Operating in an
edge computing environment, the system ensures quick and accurate data delivery to
end-users. Wall-fixed anchors gather and process assets' location information,
accessible to users through smart devices. The system traces assets in 2D and 3D,
demonstrating increased accuracy and coverage. Experiments in a room and
warehouse environment show improved performance, with special attention to error

mitigation resulting in a significant reduction in error percentage.



2.3 Wireless Positioning Technologies

According to accuracy, stability, scalability, safety, complexity, and cost metrics
criteria, several wireless positioning technologies can be created or employed to assess
the efficacy of positioning systems [40]. There are many wireless positioning

techniques:
2.3.1 Ultra-Wide-Band Technology (UWB)

Ultra-Wideband technology (UWB) refers to a telecommunication technology
that utilises a frequency that is higher than S00MHz. It offers promising capabilities
for accurate and reliable indoor positioning [ 14]. Its fine time resolution and ability to
penetrate obstacles make it a suitable choice for indoor environments where GPS
signals may be obstructed. Unlike other technologies such as Wi-Fi, Bluetooth, and
RFID, UWB does not rely on signal strength or line-of-sight communication. Instead,
it utilizes the transmission and reception of short radio pulses with sub-nanosecond
durations. This enables UWB systems to provide centimeter-level accuracy in
measuring distances, making them well-suited for applications that require high
precision [19].

UWB technology offers various advantages and disadvantages, with different
types and measurements. Advantages of UWB include high bit rate availability, low
power consumption, low costs, and high accuracy positioning capabilities [41]. On the
other hand, UWB technology also has its limitations. Some of the disadvantages of
UWB technology include limited range, susceptibility to interference from other
wireless devices, and regulatory restrictions on power levels. There are different types
of UWB measurements used. These measurements include distance measurement,
time-of-flight measurement (ToF), and signal strength measurement.

Additionally, there are different types of UWB antennas that have been proposed
to meet the requirements of UWB technology [42]. Some examples of UWB antennas
include planar antennas, printed antennas, and monopole antennas. These antennas are
designed to provide the necessary bandwidth and frequency range for Ultra-Wideband

communication.
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2.3.2 Radio Frequency Identification (RFID)

Radio Frequency Identification (RFID) is a technology that stores and retrieves
data via electromagnetic transmission to an RF-compatible integrated circuit, and it is
gaining popularity for its role in enhancing data processing operations [13]. An RFID
system is made up of many components, including RFID readers, which read data from
RFID tags, and RFID tags themselves, as well as the communication between them.
RFID tags may be passive or active. Passive RFID tags lack a battery, limiting their
range to around (1-2) meters [43]. Active RFID tags, on the other hand, are fitted with
small transceivers that can communicate over considerably greater distances, typically
exceeding tens of meters. RFID is an additional Radio Frequency (RF) method used
for estimation-based indoor positioning. RFID tags help with indoor locating by
reflecting the RF signal after adding extra information.

RFID systems generally have eight power levels for RFID readers. The reader
calculates the relevant power level for each tag based on the received signal strength,
and repeats this method for all tag power levels. This method generates RSS data,
which enables for the precise calculation of an item's position. Accuracy normally
ranges between (15-20) cm. Given that infrared (IR) and RF-based localization
systems may lack granularity or be expensive, there is need for more economical and
finely granulated locating systems, such as acoustical systems, particularly those that
use ultrasonic technology.

RFID is a highly robust indoor localization technique that can be used in various
applications. However, it is also known to be an expensive technology. The
fingerprinting localization approach that relies on RSSI can be used in indoor

localization applications utilizing RFID [44].

2.3.3 Wireless Fidelity (Wi-Fi)

Wi-Fi is a popular technology used for indoor localization, owing to the
widespread availability of Wi-Fi systems. In public, private, and commercial settings,
Wi-Fi is commonly used to provide internet access and networking capabilities to a

variety of devices [45]. It operates between the 2.4GHz and SGHz bandwidth values.
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However, the power consumption of WLAN systems is relatively higher. Wi-Fi has
become an excellent choice for indoor localization because Wi-Fi chipsets are present
on almost all modern PCs, smartphones, and other portable devices [46]. Even without
the need for new hardware devices to be connected to current Wi-Fi access points or
infrastructure, modest localization solutions with acceptable localization precision and
accuracy might be built. Additionally, fingerprinting-based solutions could employ the
Wi-Fi infrastructure as reference sites for signal collection. The abovementioned RSSI,
TOF that includes the TOA, RTT, and TDOA, AOA, or hybrid approaches can be used

to create Wi-Fi-based localization services.
2.3.4 Bluetooth

Bluetooth is today a very popular wireless technology standard used to
communicate data across short distances. It operates in the frequency range of (2.4-
2.48) kHz. Because of its simplicity of implementation, Bluetooth has become a
popular indoor location technique. Bluetooth-based locating systems rely largely on
Received Signal Strength (RSS) methodologies, although other methods such as AoA
and Time of Flight (ToF) may also be used with Bluetooth. One famous system,
iBeacon, uses Bluetooth technology only for localization reasons [47]. With Bluetooth
Low Energy (BLE), the latest version, providing an enhanced data rate of 24 Mbps
and coverage range of (70-100) m, the technology is highly energy-efficient compared
to previous versions [48]. Although positioning techniques like AoA and ToA can be
employed with BLE, most BLE-based indoor positioning systems (IPS) rely on RSSI
due to its simplicity. However, implementing an IPS based on Bluetooth technology

requires more base stations compared to other technologies.

2.3.5 ZigBee

ZigBee also known the IEEE 802.15.4 standard is a well-liked wireless
communication technology. It specifies the physical and MAC layers for cost-
effective, low rate personal and local area networks and allows for seamless

communication between devices made by different manufacturers [49].
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ZigBee based wireless devices operate in the (0.868, 0.915, and 2.4) GHz
frequency bands, and the greatest data rate is 250 kbps. In order to establish a secure
connection between devices, it offers two different types of keys: multiple link keys
and network keys. It is perfect for devices and applications that need little data usage,
high security, and a long battery life [50].

In an indoor setting, a ZigBee's signal range is between 20 and 30 meters.
Measurements of RSSI are frequently utilized for the determination of the range
between two ZigBee-capable devices. ZigBee might be successfully and well
employed for localization. However, it is not commonly employed in consumer

devices, and ZigBee is not popular for localization applications.

2.4 Localization Techniques

Some localization algorithms are reviewed in this section. These localization
algorithms use the arrival time, arrival angle and phase of the received signal, as well
as predicted channel station information to location objects inside buildings. In the
following subsections, we will discuss the most often employed range-based

localization techniques.
2.4.1 Time-Of-Arrival (ToA)

ToA is a commonly used technique in IP systems. It involves measuring the time
where it takes for a signal to mobile from a source point to a destination point in order
to determine the distance between them. The advantage of using ToA in indoor
positioning is that it can provide accurate distance measurements, which in turn can
lead to precise localization. One disadvantage of ToA is that it is highly susceptible to
multipath propagation, where signals bounce off walls and objects in the environment,
leading to inaccuracies in distance measurements. The equation for calculating

distance using ToA is:
c-t
d=-— (2.1)
2

where the speed of light is ¢ = 3 x 108m/s, t is the time of flight
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For small size regions, ToA is preferable over the RSSI approach. However,
synchronization and processing time have an impact on ToA distance measurement
[51]. The symmetric double-sided two-way may be used to decrease time
synchronization inaccuracy. This approach computes the standard error by analyzing

numerous back-and-forth signal propagation attempts between nodes.
2.4.2 Time-Difference-Of-Arrival (TDoA)

Time Difference of Arrival is a method used in indoor positioning systems to
calculate the position of an object or person based on the time difference of arrival of
signals from multiple reference points. This method relies on measuring the difference
in arrival time between the signals received at different reference points. The
advantages of TDoA in indoor positioning include its ability to provide accurate
positioning even in environments with obstacles and its independence from clock
synchronization between the target and the reference points. However, TDoA also has
some disadvantages. One disadvantage is that a TDoA-based positioning system
requires the recording and cross-correlation of signal waveforms from at least four
base stations, which can increase the complexity and computational requirements of
the system [52]. The equation for TDoA positioning is as Equation (2.2), where At =
treceived — teransmittea 1S the difference of the time of arrival at two different reference
points, and c is the speed of light.

(2.2)

d = ¢ - (treceivea — teransmitted)
For TOA techniques to work the transmitter and receiver must be time
synchronized. Even a microsecond microsecond synchronization error can result in a

300m error in location estimation.

2.4.3 Angle-Of-Arrival (AoA)

One of the prominent methods used in indoor positioning is Angle-of-Arrival
technology [53]. AoA technology utilizes the principle of measuring the angle at which
a radio signal arrives at multiple receiving antennas to determine the position of the
user or object. AoA positioning has several advantages. First, it provides higher

accuracy compared to other indoor positioning methods such as received signal
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strength indication or time of arrival. Second, AoA is less susceptible to interference
and signal distortions caused by multipath propagation in indoor environments. Third,
AoA positioning can work well in both line-of-sight and non-line-of-sight scenarios,
making it versatile for different indoor environments. Nevertheless, AoA positioning
also has some disadvantages. One of the main challenges is the requirement for precise
time synchronization between the transmitting and receiving antennas, which can be
difficult to achieve in practice. Additionally, AoA positioning typically requires a
complex hardware setup with multiple antennas, which can increase the cost and
complexity of implementation. Overall, AoA technology is a promising method for
indoor positioning due to its high accuracy, resilience to signal distortions, and
suitability for various indoor environments.

In AOA localization, to locate the object, the system must measure the angles 6,
and 6, shown in Figure 2.1 as well as the distance from the BS to the localization
target [54]. Given also the coordinates of the base stations as (x;,y;) and (x5, y,), the
location of the target is given by:

_ )2 - tan(6,) — x
y tan(6,) — tan(6,)’

x =y -tan(6,) (2.3)

Target
&

v “ﬂﬁmw

@

BS-(X3,Y3)

(> .

BS-(Xl, Yl)

A 4

Figure 2.1. Smart Angulation-based localization measuring setup.
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2.4.4 Received-Signal-Strength-Indicator (RSSI)

One of the commonly used methods in indoor positioning is the Received Signal
Strength Indicator. The RSSI is a measurement of the power level of the received
signal in wireless communication. So, it measures the strength of the received signal
from wireless access points or routers to estimate the distance between the receiver
and these reference points [55]. Although RSSI is simple and stable locating approach,
it may generate incorrect distance measurements, particularly in small-scale situations,
due to fading, interference, signal-shadowing, and scattering. As a result, ML
techniques such as the ANN have been used to minimize RSSI fluctuations, and signal
filters like Kalman filter (KF) may improve its functioning of the RSSI.

Using RSSI, as illustrated in Figure 2.2, to calculate the distance between
transmitter and receiver requires a formula for math known as a channel model. The
average RSSI should decrease with distance from the base station as described in
Equation (2.4). Based on this equation, the distance between the transmitter and

receiver can be estimated as shown in Equation (2.5):

d;:
RSSI;, = RSSI, + 10 - n - logy, (d—‘) (2.4)
0

RSSI;,—RSSI;

d;=d, - 10( 10n ) (2.5)
where n is a signal's propagating factor or exponent coefficient (which ranges
from two in free space to four in interior conditions), d is the estimated distance in
meters between the transmitter and the receiver, and RSSI, is the reference value of
received RSSI at a distance of d, typically equal to 1 meter, and RSSI;, is the current

RSSI value at the receiver.
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Figure 2.2. A distance calculations for a user with three stations system [56].

Advantages of using RSSI in indoor positioning include its low cost
implementation and availability in most wireless communication devices, easy to
connect and compatible to all wireless connection approaches. However, there are also
disadvantages to using RSSI for indoor positioning. One disadvantage is that RSSI-
based distance estimation provides poor accuracy, especially in non-ideal settings.
Additionally, the RSSI values can be influenced by various factors such as multipath
interference, signal fluctuations, and obstacles in the environment. As a result, it can
employ additional support techniques that can optimize and enhance this approach like

adopting the machine learning.

2.5 METHODS OF LOCALIZATION

In the field of positioning, there are various techniques used to determine the
location of an object or individual. Trilateration is a technique that involves measuring
the distances between an object and three known reference points to calculate its
precise position in two or three-dimensional space. Sometimes, it uses both the
distance and angle measurements from three or more reference points to determine the
location of an object [57]. Multilateration, on the other hand, is a more general

technique that involves using the distances from multiple known reference points to
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determine the position of an object, it often uses the time difference of arrival or time
of flight of signals to determine the location [58][59]. This can be done by solving a
system of equations based on the distances and the coordinates of the reference points.
Fingerprinting is another positioning technique that relies on the unique characteristics
of a specific environment. It relies on collecting and analyzing signal samples from the
environment to create a unique fingerprint for each location, which can then be used
to determine the location of an object or individual. For example, in indoor positioning
systems, fingerprints of signal strengths from Wi-Fi access points or Bluetooth
beacons are collected and stored in a database. When a user later enters the same
environment, their current signal strengths can be compared to the database of
fingerprints to estimate their position [37][60]. Global positioning systems are widely
used for accurate positioning. They rely on a network of satellites that orbit the Earth
and transmit signals. These signals are received by GPS receivers, which then use
trilateration techniques to calculate the receiver's position based on the time it takes
for the signals received [22]. Other localization methods, such as CoO, also known as
Cell ID, involves determining the location based on the cell tower that is in closest
proximity to the device. In summary, there are multiple localization methods available
including trilateration, multilateration, fingerprinting, and CoO. These methods can be
used individually or in combination to accurately determine the location of an object

or individual.

2.6 MACHINE LEARNING FOR INDOOR
LOCALIZATION

The indoor environment requires more accurate localization due to the presence
of numerous obstacles and objects. Traditional outdoor localization methods, such as
Global Positioning System, are not suitable for indoor environments due to signal
attenuation and scattering caused by walls and other obstacles. Machine learning has
emerged as a promising solution for indoor localization. ML algorithms have the
ability to process large amounts of data and extract meaningful patterns, enabling

accurate indoor localization. Various classifier types can be used in machine learning-
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based indoor localization, depending on the specific requirements and constraints of

the application. Some common types of classifiers used in indoor localization include:

e K-nearest neighbour (KNN) classification algorithm: This algorithm classifies an
object based on the majority vote of its nearest neighbours in the feature space.

e Neural networks (ANN): Neural networks are highly flexible and can learn
complex patterns in data. They consist of interconnected nodes (neurons) that
perform computations on input data and generate output predictions.

e  Support vector machines (SVM): SVMs are powerful classifiers that separate data
into various classes by finding an optimal hyperplane.

Leveraging machine learning (ML) techniques in indoor positioning systems
(IPS) has become increasingly prominent for enhancing accuracy and robustness. ML
algorithms analyze data patterns and make predictions, making them well-suited for
addressing the complex and dynamic nature of indoor environments. Several types of
machine learning approaches find application in IPS:

1. Supervised Learning:

I supervised learning, a data set is available with labels. The goal of the system
is to learn how to reproduce the correct labels for new data into the system. The
algorithm learns patterns and relationships between inputs, which are called features,
and corresponding output labels. It can be employed for training models on datasets
with known indoor locations, enabling the system to predict locations for new,
unlabeled data.

2. Unsupervised Learning:

Unsupervised learning deals with datasets lacking predefined labels. This type of
learning is more difficult, as the goals have to be stated clearly and there is more
exploration that needs to be performed by the algorithm. The algorithm must aim to
group the given data in some way or discover patterns in the data. For localization
based on unsupervised learning, algorithms such as K-means as considered the
significant clustering algorithm can be utilized to identify spatial patterns or group
similar locations together in an indoor setting.

3. Reinforcement Learning:

In reinforcement learning, the learning is online and the algorithm learns to

classify as it is processing data. After every decision, the algorithm receives feedback
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from the environment (which may be the user of the algorithm). Reinforcement
learning can be employed to optimize the movement of mobile nodes within indoor
spaces, learning optimal paths for accurate positioning.

4. Deep Learning:

Deep learning refers to a large neural network based algorithm, which is a type
of machine learning algorithm which mimics the way neurons work. There are many
types of deep learning systems, deep learning networks can use reinforcement
learning, they can be used for both supervised and unsupervised learning. These
networks are designed for advanced feature extraction and hierarchical learning. For
IPS, deep learning models like Convolutional Neural Networks (CNNs) or Recurrent
Neural Networks (RNNs) find applications for extracting feature-rich representations
and analyzing sequential data.

5. Semi-Supervised and Transfer Learning:

In semi-supervised learning some of the available training data has labels and
some does not. Both data need to be processed by the system, depending on the
application the semi-supervised system may or may not generate new data labels.

Transfer learning is when a learning algorithm trained for one task is used to
achieve a different, usually related task. These approaches are beneficial when labeled
data for indoor locations is limited, allowing models to generalize better from related
tasks or partially labeled datasets.

6. Ensemble Learning:

Ensemble learning involves combining predictions from multiple models to
enhance overall performance and robustness. Multiple ML models, each specialized
in different aspects of indoor positioning, can be combined to provide more accurate

and reliable results.
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CHAPTER 3. MACHINE LEARNING
ALGORITHMS AND PROPOSED WORK

3.1 Introduction

Traditional strategies for localization in indoor situations may be affected by
many factors that restrict their operations and abilities to estimate an object position
accurately and fast. Traditional localization techniques are ineffective in vast spaces
like airports or retail malls. Furthermore, localization algorithms are not flexible to
change or enlarge surroundings and disparate data sources. The benefit of machine
learning (ML) algorithms is that they may learn relevant characteristics from applied
input data. For instance, deep learning (DL) models can effectively study RSSI time
series computations and use route knowledge to lessen RSSI oscillations [61]. One of
the limitations of the fingerprinting localization approach is the existence of high-
dimensional data. To address this, dimensionality reduction techniques like Principal
Component Analysis (PCA) [62] can be employed to transform high-dimensional data
into a less complex dimension, thereby reducing the computational and storage
demands of fingerprinting-based localization.

Classification algorithms are typically utilized to extract key characteristics, for
example, predefined positions (x, y, z) and signals powers (RSSI). Feature extraction
using ML algorithms is especially useful for LOS and NLOS indoor localization. In
practice, a substantial quantity of data characterizing the fingerprint map is acquired
in the offline phase of fingerprint-based localization. As a result, estimating the online

data using the fingerprint map data points takes time.
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3.2 The Pre-processing

Collecting precise data from strategically positioned Access Points (APs) is
essential in developing a robust Indoor Positioning System (IPS) based on Received
Signal Strength Indicator (RSSI) powers. Deploying a network of APs allows for
triangulation or fingerprinting and proximity estimation, forming the basis of accurate
indoor localization. RSSI values, representing the signal strength between mobile
devices (target) and APs, serve as fundamental proximity metrics in IPS.

Handling missing values in the dataset is a critical preprocessing step. Imputation
techniques, such as mean complaint or more sophisticated machine learning-based
methods, are employed to handle missing or gap values in the dataset caused by
sporadic signal losses or environmental interferences. This ensures a comprehensive
dataset for subsequent analysis.

The standardization of the dataset is paramount to normalize and removing biases
in machine learning model training. Standardization like (z-score) method normalizes
the data and transforms features to a common scale, mitigating issues related to varying
measurement units and scales of different APs. This uniformity is crucial for the
accurate functioning of machine learning algorithms.

Principal Component Analysis (PCA) is a robust method used for dimensionality
reduction, especially in datasets with numerous attributes. By identifying and retaining
essential information while discarding redundant features, PCA not only optimizes
computational efficiency but also aids in visualizing the dataset's underlying structure.

Following preprocessing, the dataset undergoes a meticulous split into training
and testing subsets. The training set, constituting 70% of the data, is utilized for model
training, allowing algorithms to discern intricate patterns and relationships within the
data. The remaining 30% serves as a testing subset, evaluating the model's
generalization ability on unseen data.

The refined dataset, enriched through imputation, standardization, and potentially
PCA, is now poised for integration with various machine learning classifiers. Decision
Trees leverage hierarchical decision-making structures, while Support Vector

Machines focus on finding optimal hyperplanes for classification. k-Nearest
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Neighbors relies on proximity metrics, Logistic Regression models binary outcomes,
Artificial Neural Networks simulate human neural networks, and Extreme Learning
Machines employ efficient learning algorithms.

This amalgamation of scientific techniques ensures the IPS model's accuracy,
reliability, and adaptability in diverse indoor environments, marking a significant

stride in advanced indoor positioning technology.

3.3 Classification

Classification is the process of utilizing a training set of data that consists of
observations (or attributes) with specified group identities to determine the set of
classes (categories) to which a new observation belongs. The inputs for this process
include the refined feature vector or set obtained after feature selection procedures and
a classification dataset to be classified based on the aforementioned feature vector. The
accuracy of detection algorithms is significantly influenced by the classification
process [63]. Classification techniques can be broadly categorized into arithmetic,
statistical, and intelligent approaches. Arithmetic methods involve numerical
manipulations, such as KNN, LDA, LR, and SVM. Statistical methods rely on
computing probability distributions and estimating parameters like mean and standard
deviation to offer a more representative depiction of classes, as seen in DT. Intelligent
methods, like Artificial Neural Networks (ANN), possess learning capabilities and

employ artificial intelligence techniques in the classification process.
3.3.1 Decision Tree (DT)

The decision tree classifier is a machine learning algorithm that builds a
predictive model in the form of a tree structure. Each node of the tree represents a
decision or a splitting point based on a specific feature. These splitting points are
determined through a process of evaluating different criteria, such as Gini impurity or
information gain, to find the optimal way to divide the data. The decision tree classifier
recursively splits the data based on these split points, creating branches and leaf nodes

that represent different outcomes or classes [64][65].
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n
Entropy H(D) = - z pilog,(p:) (3.1)
i=1

n
Gini impurity Gini(D) =1 — Z(pi)z (3.2)
i=1

where p; is the probability of class i in dataset D.

The information gain of classifying by some property is:

Information gain IG(D,A) =H(D) —H(D]| a) (3.3)
v v
B D,
H(D| @) = ;Pa(vm(u,,) DAL

where A is a candidate attribute to split on, D,, is the subset of data for which
attribute A is equal to v, and V is the set of all possible values of A.

The goal is to perform
3.3.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is a supervised machine learning algorithm used
for classification tasks. It is a dimensionality reduction technique that projects the data
onto a lower-dimensional space in order to maximize the separation between classes.
LDA assumes that the data follows a Gaussian distribution and that each class has its
own mean vector and covariance matrix. Once computed, the LDA algorithm ranks
the variables according to their importance score [66]. Then, it calculates a
discriminant function for each class, which is a linear combination of the variables.
The LDA classifier then uses these discriminant functions to classify new data points
into one of the predefined classes. The LDA classifier is a linear classification method
that aims to find a linear combination of features that best separates data points
belonging to different classes. The basic form of the LDA equation is as follows:

y=WTx (3.5)

where y is the transformed feature vector in the lower-dimensional space. W is
the transformation matrix. X is the original feature vector.
In the context of Linear Discriminant Analysis, where the goal is often to find a

linear combination of features that best separates classes, the equation can be extended:
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y=WTx+b (3.6)

where b represents a bias term.

3.3.3 Support Vector Machine (SVM)

The Support Vector Machine (SVM) stands out as a robust machine learning
algorithm utilized for both classification and regression tasks. SVM works by
identifying a hyperplane that effectively separates data points belonging to different
classes in the feature space. This hyperplane is strategically determined to maximize
the margin, which is the distance between the hyperplane and the nearest data point of
each class. SVM can handle non-linear relationships by transforming the original
feature space into a higher-dimensional space, allowing for more complex decision
boundaries. The kernel is a function that performs a projection operation on that higher
dimensional space. SVM is effective in scenarios where the data is not linearly
separable, and it strives to create an optimal decision boundary with maximum margin

[671[68].

Linear Kernel K(x,x;) = x - x; (3.7)
where x and x; are input vectors.
Polynomial Kernel K(x,x) = (x-x; +¢)? (3.8)

where ¢ is a constant and d is the degree. The Gaussian kernel performs a

projection onto an infinite dimensional space:
. 3 llx — x|
Gaussian (RBF) Kernel K(x,x;) = exp| — g7 (3.9)

where o is the kernel width.

3.3.4 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a versatile machine learning algorithm used for
classification and regression tasks. KNN classifies data points based on the majority
class of their k nearest neighbors. The "k" in KNN represents the number of

neighboring data points considered in the classification. KNN is a non-parametric
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method, meaning it does not make explicit assumptions about the underlying data
distribution. It is particularly effective when dealing with locally varying patterns and
is sensitive to the choice of distance metrics, such as Euclidean or Manhattan distance.
KNN is straightforward to implement and well-suited for datasets with discernible

clusters [69].
k
Weighted distance d; = argmax [z wil (y; = C)] (3.10)
i=1
where [ is the indicator function and w; is the weight of the i-th neighbor.

3.3.5 Logistic Regression (LR)

Logistic Regression (LR) is a linear model used for binary classification tasks.
Despite its name, logistic regression is employed for classification, not regression. LR
models the probability that a given input belongs to a particular class using the logistic
function. The logistic function transforms the linear combination of input features into
a range between 0 and 1, representing the probability. Logistic regression is widely
used due to its simplicity, interpretability, and efficiency. It can be extended to handle
multiclass classification through techniques like one-vs-rest or one-vs-one. Logistic
regression is suitable for scenarios where the relationship between input features and

the target variable is assumed to be linear [70].

Logistic Function (Y=1)= 1 3.11)
(Sigmoid) 1+ exp (— (X, wix; + b))
n
Lw) = ) [yilog(P(Y = 1)
Log-Likelihood i=1 (3.12)

+ (1 —-y) log(P(Y #* 1))]

3.3.6 Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) belongs to the category of machine
learning models, drawing inspiration from the structure and functionality of the human
brain. ANNs are composed of interconnected nodes arranged in layers, encompassing

an input layer, one or more hidden layers, and an output layer. The connections
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between nodes have associated weights that are adjusted during the training process.
ANNSs can capture complex relationships in data and are capable of learning intricate
patterns. Training an ANN involves feeding it with input data, adjusting weights based
on the prediction errors, and iteratively refining the model. ANNs are known for their
ability to handle non-linear relationships and are widely used in various applications,

including image recognition and natural language processing [71][72].

n
Feedforw?rd a]gl) =g (Z Wi(jl) algl—1) n ab].(l)) (3.13)
equation i=1
Backpropagation Aw;j = —1 de (3.14)
weight update Wiy

Where eis the error, 7 is the learning rate.

. ®
Stochastic t+1) _ . (©® de
W Wiim —1 ® (3.15)

awl. y

gradient descent

3.3.7 Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) is a type of neural network machine learning
algorithm known for its efficiency and simplicity. ELM is primarily used for
supervised learning tasks, such as classification and regression. ELM differs from
traditional neural networks in that it randomly assigns weights to input nodes and only
adjusts the weights of the output layer during training. This randomness in weight
initialization accelerates the training process, making ELM particularly suitable for
large datasets. Despite its simplicity in structure as shown in Figure 3.1, ELM often
exhibits competitive performance compared to more complex models. It is employed
in scenarios where rapid training and prediction are essential [72][73]. Online
Sequential Extreme Learning Machine (OS-ELM) [73] is an extension of the basic
ELM that allows for sequential learning with individual samples.

The structure of ELM neural network includes three layers. The input layer
receives input features from the dataset. This input data is multiplied by random gains
before being passed on to the hidden layer, and remain fixed during training. The

hidden layer neurons are responsible for learning and extracting features from the input
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data. In OS-ELM, neurons can be added to this layer sequentially, as data arrives and

is used to train the network. The output layer produces the prediction.

X1
—_— ]
e)
@
0
le
—_—>

Figure 3.1. ELM basic Model.

OS-ELM updates its model parameters sequentially as new samples become
available. This allows for online learning, making it suitable for scenarios where data
arrives continuously. Similar to traditional ELM, OS-ELM exhibits fast learning due
to the random initialization of weights in the hidden layer. These parameters do not
need to be estimated, reducing the number of parameters the system needs to optimize.

Let us denote the key variables and parameters in OS-ELM. Let X be Input data
matrix with dimensions (n X m), where n is the number of features, and m is the
number of samples. Let H be Hidden layer output matrix with dimensions (N X m),
where N is the number of hidden neurons. The weights from the input to the hidden
layer form a random matrix with A with dimensions (N X n). B is the (1 X N) vector
of weights from the hidden layer nodes to the output nodes. b;;, is the vector of biases
for the hidden layer with dimensions (N X 1). b,,;; is the vector of biases for the output
layer.

The output of the hidden layer can be calculated for the i-th sample as:
H; = g(AX; + bin) (3.16)

where g(:) is the activation function (commonly a sigmoid or radial basis

function).
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The output of the network for the i-th sample is given by:

Y, = BH; + bou G-17)

The weights A, B, and biases b;,, b, are updated sequentially as new samples
are introduced.

Training procedure for OS-ELM is as follows:

Initialization: Initialize weights A, B, and biases b;,, b, With random values.

Sequential Learning: For each incoming sample X;, update the hidden layer
output H; and update the model parameters using the sequential learning rule.

Prediction: After training, the model can be used to predict the output for new
samples.

The Advantages of OS-ELM are that, firstly, it allows for continuous learning,
making it suitable for scenarios with a continuous stream of data. It converges quickly
due to its use of random weights between the first and middle layers. OS-ELM is also
memory efficient, since it does not require the entire dataset to be stored in memory to

perform batch functions.

3.4 Performance Evaluation Assessment

When assessing the effectiveness of classification algorithms, diverse
measurement metrics come into play. A prevalent method involves employing a
confusion matrix, also recognized as a contingency table. This table distinguishes four
key categories: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). TP and TN denote accurately classified positive and negative
instances, respectively. In contrast, FN signifies instances wrongly classified as
negative but are, in fact, positive. Conversely, FP indicates instances wrongly
classified as positive but are, in reality, negative. This research incorporates prevalent
classification metrics, including precision, recall, F-Measure, accuracy, and
specificity, offering insightful information on algorithm efficiency and facilitating
comparative analysis.

While accuracy remains a prominent metric for evaluating classification
algorithm performance, its utility diminishes in datasets with imbalanced classes. In

such scenarios, metrics like precision and recall prove more fitting. Precision
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quantifies the number of relevant selected items from the total selected items,
calculated by dividing true positives by the sum of true positives and false positives.
In contrast, recall gauges the number of relevant selected items from the total relevant
items, calculated by dividing true positives by the sum of true positives and false
negatives. F-Measure amalgamates precision and recall into a singular score, capturing
their harmonic mean. Specificity, as a final metric, gauges a test's ability to identify
the absence of a condition. These metrics furnish a nuanced and accurate means of
evaluating classification algorithms, particularly beneficial when confronted with
imbalanced datasets.

These performance metrics offer a comprehensive evaluation, shedding light on

the performance of classification algorithms:

CCUracy = Tp Y FN + FP + FN
TP
S (3.19)
Precision TP+ FP
TP
e (3.20)
Sensitivity TP+ FN
TN
PE i (3.21)
Specificity TN T FP

recision X recall
F —measure = 2 X P — (3.22)
precision + recall

3.5 The proposed IP approach

Implementing an Indoor Positioning System (IPS) using WIFI that can be
connected to a user easily using phone, laptop, or any connection device, with RSSI
(in dbm) values collected from 5 APs to classify the target for 14 different places
distributed non-uniformly in single floor place is our case under study. The single floor
is moderate in size with area about 2600m?, it is divided into 14 non-equal sections
and rooms. 5 APs were employed sufficiently for collecting all required attributes to

complete the fingerprinting position scan as shown in Figure 3.2.
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Figure 3.2. The diversity of the APs in the proposed floor map.

The collected data firstly is pre-processed and then applied to the well-known
robust state of the arts classifier methods (DT, SVM, KNN, LDA, LR, and ANN) and
to the Online Sequential Extreme Learning Machine (OS-ELM) classifier method
involves several steps. The dataset is handled with scenarios, first without
dimensionality reduction, second with PCA dimensionality reduction with neglecting
10% of the whole samples. Here's a general outline of the proposed process:

1. Data Collection: Collect RSSI values from the five access points (Aps) at
known locations in the indoor environment. Associate each set of RSSI values with

the corresponding ground truth location.
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2. Data Preprocessing: Handle missing or noisy data in the RSSI measurements.
Normalize or standardize the RSSI values to ensure consistency. If the gathered data
1s huge, we can employ the PCA to reduce the insignificant data to be able to minimize
the required processing time.

3. Feature Extraction: Identify relevant features that can contribute to the
accuracy of the positioning system. Extract additional information if available, such as
angle of arrival or time-of-flight.

4. Dataset division: Split the dataset into training and testing sets with suitable
ratios as 70% for the training data, and 30% for the testing.

5. Model Training: Implement five state of arts classifier methods, which are DT,
SVM, KNN, LDA, ANN. Implement the Online Sequential Extreme Learning
Machine (OS-ELM) algorithm by training using the preprocessed training data. Use
the sequential nature of OS-ELM to continuously update the model as new data
becomes available. Test the preprocessed testing data.

6. Model Evaluation: Evaluate the performance of the trained and test DT, SVM,
KNN, LDA, ANN, and OS-ELM models on the testing set using appropriate metrics
(e.g., Training accuracy, Testing accuracy, Training time, Prediction speed).

7. Fine-Tuning and Optimization: Iterate on the model and system performance,
making adjustments as needed. Optimize hyperparameters, such as learning rates,

number of hidden neurons, or regularization.

The comprehensive flow chart of the proposed method is as Figure 3.3, which
includes two processes as:

1. Offline Process: The objective is to create a database by taking measurements at
various locations within a predefined detection area sector. These measurements
involve obtaining five RSS from five APs. The collected RSS power values from
the APs are then linked to specific locations and classes within the maze.

2. Online or Real time Process: In this process, signal strength measurements are
collected from multiple APs in the surrounding area. These measurements are then
analyzed and grouped to ascertain the target's position within the designated

location or maze. The strength of the signals from the APs serves as crucial
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information in determining the target's location and class within the specified

environment.

B

»

Collect the RSSI power received
from 5 AP’s using Wi-Fi
technology to a certain tag

Input real-time data from all
AP’s and collect their data as
one raw data

!
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y
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Pre-processing Data
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Figure 3.3. The proposed indoor positioning system flow chart.
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CHAPTER 4. EXPERIMENTAL RESULTS

4.1 Introduction

In this chapter, the emphasis is placed on the practical implementation of IP
detection through the utilization of various machine learning algorithms, as elucidated
in the preceding chapters. The fundamental aspect involves the meticulous
development of six distinct ML algorithms, namely Decision Tree (DT), Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbors
(KNN), Logistic Regression (LR), and the Artificial Neural Network algorithm
(ANN). Also, we develop extensively an Extreme Learning Machine called (OS-
ELM).The ensuing results derived from both methodologies are thoroughly examined,
fostering a comparative analysis between them and against pertinent findings from
prior studies. To implement the proposed approach successfully, we need to utilize a
combination of both software and hardware tools. For the software requirements, we
were using the Matlab programming language (version 2022b) on Intel (R) Core i7-
8550U CPU @1.80 GHz, 8 GB Random Access Memory (RAM), hard disk with a
storage capacity of 500GB, and Intel(R) HD Graphics 520 MB.

4.2 The Applied Dataset

Exploiting the availability and facilities of the Wi-Fi technology, simplicity and
low cost of 5 APs, with a user tag, the off-line process dataset that includes 700
samples by 6 features was collected. The first five features represents the RSSI powers

in (dbm) for the 5 APs, while the last feature represents the target/class which is one
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of 14 different places. In brief, the dataset itself was divided into semi-equally 14

distinct categories that were labeled from 1 to 14. Table 4.1 shows some of these

attributes.
Table 4.1 Some of the collected data attributes.

RSSI1 RSSI2 RSSI3 RSSI4 RSSI5 Target
-69 -57 -76 -100 71 1
67 -50 78 -100 77 1
-50 -58 -62 -100 -88 2
51 -78 -68 -100 -79 2
75 -63 -76 -100 -60 3
71 67 -83 -100 -64 3
-45 78 74 -100 -64 4
-36 -78 -68 -100 -69 4
=70 -81 -74 =75 -58 5
=72 -82 -66 =79 -55 5
-64 -82 -60 -90 =77 6
-65 -86 -59 -89 -80 6
-76 -100 -48 -100 -100 7
=77 -100 -45 -100 -84 7
-80 -100 -55 -86 -87 8
-82 -100 -52 -81 -82 8

-100 -100 -71 -69 -100 9
-100 -100 -74 =70 -100 9
-100 -100 =79 -51 -88 10
-100 -100 -82 -45 -85 10
-100 -100 -67 -57 -65 11
-100 -100 -73 -58 -67 11
-100 -100 -100 -56 -100 12
-100 -100 -98 -54 -100 12
-100 -100 -100 -60 -100 13
-100 -100 -100 -61 -100 13
-100 -62 -66 -63 -100 14
-100 -87 -66 -56 -100 14

The entire data was randomly divided into two main parts: training data with 70%,
i.e, 490x6, while the remaining 30%, i.e, 210x6 was assigned to testing data. These
data are evaluated and tested with 10 folded cross validation (10 CV).
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4.3 Machine Learning Simulation Results

This section will showcase the simulation results obtained from each algorithm,

with a subsequent in-depth discussion of the outcomes. The evaluation will specifically

focus on time-related aspects and pertinent metrics employed to discern the efficacy

of each algorithm. The entire analysis and presentation are conducted within the

Matlab programming language. We had make the results in two scenarios as:

4.3.1 Classification without PCA Dimensionality Reduction

Here, all the data were considered without and dimensionality reduction, Figure

4.1 shows the whole systems used.

Models M
Sort by | Accuracy (Test) vl @ Scatter Plot
1 Tree Accuracy (Test) 938%
Last change: Fine Tree 55 features | Predictions: model 1
2 Linear Discriminant Accuracy (Test): 92.9% o
Last change: Linear Discriminant 5/5 features|
B
3 SW Accuracy (Test): 87.1% °
Last change: Linear SVM 5/5 features .
.t.
4 KNN Accuracy (Test): 94.8%
.l .. L1
Last change: Fine KNN 5/5 features ol . v ol ',
. o’ ol
5 Kemel Accuracy (Test): 96 2% R .. . 2
Last change: Logistic Regression Kernel 505 features ..
. g R x
6 Neural Network Accuracy (Test): 96.2% o} * x
Last change: Narrow Neural Network 5/5 features H
]
(]
¢
’
i
x
.
H x

Dataset x  Observations: 490 Size: 35kB  Predictors:5  Response: column_6  Response Classes: 14

Validation: 10-fold cross-validation

Figure 4.1. All machine learning used without PCA.
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Figures 4.2 and 4.3 illustrate the DT classifier results, the training confusion

matrix, and the testing confusion matrix.
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Figure 4.2. DT Confusion Matrix for training.
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Figure 4.3. DT Confusion Matrix for testing.
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Figures 4.4 and 4.5 depict the LDA classifier results, the training and the testing

confusion matrices.

Model 2 (Linear Discriminant)

3 14
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 4.4. LDA Confusion Matrix for training.

Model 2 (Linear Discriminant)
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Figure 4.5. LDA Confusion Matrix for testing.
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Figures 4.6 and 4.7 show the SVM classifier results, the training and the testing

confusion matrices.

Model 3 (Linear SVM)

True Class

1 2 3 4 5 6 T 8 9 10 11 12 13 14
Predicted Class

Figure 4.6. SVM Confusion Matrix for training.

Model 3 (Linear SVM)
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Figure 4.7. SVM Confusion Matrix for testing.
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Figures 4.8 and 4.9 explain the LDA classifier results, the training and the testing
confusion matrices.

Model 4 (Fine KNN)
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Figure 4.8. KNN Confusion Matrix for training.
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Figure 4.9. KNN Confusion Matrix for testing.
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Figures 4.10 and 4.11 explain the LR classifier results, the training and the testing

confusion matrices.

Model 5 (Logistic Regression Kernel)
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Figure 4.10. LR Confusion Matrix for training.

Model 5 (Logistic Regression Kernel)
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Figure 4.11. LR Confusion Matrix for testing.
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Figures 4.12 and 4.13 illustrate the ANN classifier results, the training and the

testing confusion matrices.
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Figure 4.12. ANN Confusion Matrix for training.
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Figure 4.13. ANN Confusion Matrix for testing.

Now the ELM was executed with 10 cross validation and Nh=300 hidden layer
nodes, as in table (4.2).
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Table 4.2 ELM accuracies for 10 trials and their averages.

Train Accuracy (%) Test Accuracy (%)
96.3576 89.6875
96.8543 95.1562
97.1854 94.0625
96.6887 99.5312
97.1854 95.1562
97.0199 89.6875
96.1921 96.2500
96.8543 86.4062
96.5232 94.0625
95.8609 92.9688

mean train accuracy = 96.6722%

mean test accuracy = 93.2969%

mean train time = 0.0516 sec

mean test time = 0.0078 sec

From the above table, it can be seen that the ELM has the best results including

accuracy and time. Table (4.2), Figures 4.14 and 4.15 show all dataset splitting,

classifiers information and resultant training and testing accuracies and times.

Table 4.3 All dataset, classifiers information and results.

Prediction
Model Accuracy %  Accuracy % Speed Training
No. Model Type (Validation) (Test) (obs/sec)  Time (sec)
1 DT 91.429 90.810 10851.704  1.38
2 LDA 93.265 92.857 7770.476 1.27
3 SVM 95.102 93.143 1183.189 11.83
4 KNN 93.265 92.762 4425230  2.14
5 LR 93.878 92.190 624.205 27.36
6 ANN 93.673 91.190 17914.464 11.95
7 ELM (Nh=300) 96.672 93.297 136500 0.0078
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Table 4.5 shows the final results for classification without PCA dimensionality
reduction. The total data is 490 samples, the data was separated into 210 test samples
and 280 training samples. Since the data set is relatively small, the data is 10-fold
cross-validated to ensure a good estimate of performance. The predictor is based on
the first four predictor properties, with a total of 14 possible classes for the data to be

classified into, corresponding to possible locations.

Accuracy
97,000
96,000
95,000
94,000
93,000
92,000
91,000
90,000
89,000
88,000
87,000
SVM LR ANN  LDA  KNN DT ELM
(Nh=300)

® Accuracy % (Validation) ~ ® Accuracy % (Test)

Figure 4.14. Training and testing accuracies.
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Figure 4.15. Training times.

In the classification analysis without PCA, the Extreme Learning Machine (ELM)
with Nh=300 emerged as the top-performing classifier. It achieved the highest
validation accuracy at 96.672% and maintained strong performance in the test dataset
with an accuracy of 93.297%. Notably, ELM demonstrated remarkable prediction
speed, registering 136500 observations per second, and an exceptionally low training
time of 0.05 seconds.

On the other hand, the DT classifier, while still providing reasonable accuracy,
exhibited comparatively lower performance. It secured a validation accuracy of
91.429% and a test accuracy of 90.810%. Additionally, the DT classifier showed a
prediction speed of 10851.704 observations per second and a training time of 1.38
seconds.

In summary, ELM with Nh=300 stands out as the best-performing classifier,
emphasizing high accuracy, rapid prediction speed, and swift training time.
Conversely, the DT classifier, while functional, presents a slightly lower performance

across these metrics.

4.3.2 Classification with PCA Dimensionality Reduction

Now, all the data were considered with PCA dimensionality reduction that
reduced the data by 20%, so the resultant features size is 700x4 instead of 700x35, it
can take into account the classifier results and explain how to be effected by this

reduction.
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Here, all the data were considered without and dimensionality reduction, Figure

4.16 shows the whole systems used.
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Figure 4.16. All machine learning used with PCA.

Figures 4.17 and 4.18 illustrate the DT classifier results, the training confusion

matrix, and the testing confusion matrix.
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Figure 4.17. DT Confusion Matrix for training.
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Model 1 (Fine Tree)
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Figure 4.18. DT Confusion Matrix for testing.

Figures 4.19 and 4.20 depict the LDA classifier results, the training and the testing

confusion matrices.

Model 2 (Linear Discriminant)
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Figure 4.19. LDA Confusion Matrix for training.
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Model 2 (Linear Discriminant)
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Figure 4.20. LDA Confusion Matrix for testing.

Figures 4.21 and 4.22 show the SVM classifier results, the training and the testing

confusion matrices.
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Figure 4.21. SVM Confusion Matrix for training.
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Model 3 (Linear SVM)
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Figure 4.22. SVM Confusion Matrix for testing.

Figures 4.23 and 4.24 explain the KNN classifier results, the training and the
testing confusion matrices.
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Figure 4.23. KNN Confusion Matrix for training.
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Model 4 (Fine KNN)
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Figure 4.24. KNN Confusion Matrix for testing.

Figures 4.25 and 4.26 explain the LR classifier results, the training and the testing

confusion matrices.
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Figure 4.25. LR Confusion Matrix for training.
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Figure 4.26. LR Confusion Matrix for testing.

Figures 4.27 and 4.28 illustrate the ANN classifier results, the training and the

testing confusion matrices.
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Figure 4.27. ANN Confusion Matrix for training.
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Model 6 (Narrow Neural Network)

1
2
3 6
4
5
6 2
2
g 7| 1 2
=}
s e
2 8 4 10 1
° 7 2
10 1
11 1
12 2
13 1
14 1 7
1 2 3 4 5 6 7 8 ° 10 11 12 13 14

Predicted Class

Figure 4.28. ANN Confusion Matrix for testing.

Now the ELM was executed with 10 cross validation and L=300 hidden layer

nodes, as in table (4.4) below:

Table 4.4 ELM accuracies for 10 trials and their averages.

Train Accuracy (%) Test Accuracy (%)
99.0066 91.8750
98.8411 92.9688
99.0066 91.8750
98.3444 96.2500
98.5099 97.3438
98.5099 95.1562
98.6755 98.4375
98.1788 99.5312
98.8411 94.0625
98.5099 95.1562
mean train accuracy= 98.6424% mean Test Accuracy = 95.2656%
mean train time= 0.0434sec mean test time= 0.0078 sec
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From the above Figures, it can be seen that the ELM has the best results including
accuracy and time. Table 4.5 and Figures 4.29 and 4.30 show all dataset splitting,
classifiers information and resultant training and testing accuracies and times.

Table 4.5 shows the final results for classification with PCA dimensionality
reduction. The total data is 490 samples, the data was separated into 210 test samples
and 280 training samples. Since the data set is relatively small, the data is 10-fold
cross-validated to ensure a good estimate of performance. The predictor is based on
the first four predictor properties, with a total of 14 possible classes for the data to be

classified into, corresponding to possible locations.

Table 4.5 All dataset, classifiers information and results.

Prediction
Model Accuracy %  Accuracy % Speed Training
No. Model Type (Validation) (Test) (obs/sec)  Time (sec)
3 SVM 95.510 93.333 761.062 17.170
2 LDA 94.490 90.000 6256.863 1.825
5 LR 94.286 91.905 406.173 48.063
1 DT 93.061 93.333 6689.511 2.129
6 ANN 92.857 91.429 6505.585 24.054
4 KNN 92.449 93.333 2003.663 8.154
7 ELM (Nh=300) 98.6424 95.2656 157250 0.0078
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Figure 4.29. Training and testing accuracies.
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Figure 4.30. Training times.

In the classification analysis with PCA, the Extreme Learning Machine (ELM)
outperformed other classifiers, particularly excelling in accuracy metrics. The ELM
achieved an outstanding validation accuracy of 98.6424% and maintained exceptional
accuracy in the test dataset at 95.2656%. Moreover, ELM showcased remarkable
prediction speed, handling 157250 observations per second, and an astonishingly low

training time of 0.0078 seconds.
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Comparatively, the DT classifier again demonstrated solid performance but with
slightly lower accuracy. It achieved a validation accuracy of 93.061% and a test
accuracy of 93.333%. The DT classifier showed a prediction speed of 6689.511
observations per second and a training time of 2.129 seconds.

In summary, the ELM classifier continues to exhibit superior performance in the
PCA-enhanced analysis, emphasizing exceptional accuracy, rapid prediction speed,
and swift training time. The DT classifier, while reliable, presents a slightly lower

accuracy and performance across the considered metrics.
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CHAPTER 5. CONCLUSION AND FUTURE
WORK

5.1 Introduction

The comprehensive exploration into indoor positioning (IP) using many
distributed access points (Aps), Wi-Fi, user tag, machine learning (ML) algorithms has
yielded insightful results, paving the way for advancements in accurate and efficient
real-time localization. The seven distinct ML algorithms, namely Decision Tree (DT),
Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest
Neighbors (KNN), Logistic Regression (LR), Artificial Neural Network (ANN), and
the innovative Extreme Learning Machine (OS-ELM), have undergone difficult
evaluation. The focus has been on achieving optimal accuracy, prediction speed, and

training time, ensuring applicability in diverse scenarios.

5.2 Conclusion

The implementation of IP detection using ML algorithms, notably the innovative
OS-ELM, demonstrates remarkable effectiveness for indoor localization. Traditional
strategies face challenges in large spaces, while ML algorithms offer adaptability and
efficiency in diverse environments like the NLOS. The significance of dimensionality
reduction techniques like PCA is underscored, addressing high-dimensional data in

fingerprinting.
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The numerical results showcase the exceptional performance of ML algorithms,
with OS-ELM standing out in terms of accuracy, prediction speed, and training time.
The synergy of different localization technologies, energy-efficient algorithms, and
real-time implementations emerges as critical areas for future exploration. The
conclusions are substantiated by real results, emphasizing the transformative potential
of ML in indoor positioning.

- Accuracy: OS-ELM outperforms other classifiers, achieving the highest
accuracy in both validation (98.64%) and test (95.27%) phases.

- Prediction Speed: LR exhibits the highest prediction speed (406.17 obs/sec),
while OS-ELM, despite its exceptional accuracy, maintains a rapid prediction speed
(157250 obs/sec).

- Training Time: OS-ELM excels with an astonishingly low training time (0.0078

sec), making it highly efficient for real-time applications.

5.3 Recommendations for Future Works

Future research should delve deeper into refining OS-ELM and exploring its
adaptability to dynamic environments. Additionally, the implications of integrating
multiple technologies and hybrid approaches for improved accuracy and robustness
deserve thorough investigation.

1. Integration of Multiple Technologies: Investigate the collaboration of different
localization technologies (Wi-Fi, UWB, etc.) for enhanced accuracy and robustness,
substantiating the recommendations with specific research directions and potential
outcomes.

2. Dynamic Learning Models: Explore dynamic ML models that can adapt to
changing environments and user behaviors over time, providing insights into the
feasibility and expected advantages.

3. Real-Time Implementation: Develop real-time implementations for ML
algorithms, ensuring seamless integration into practical applications. Discuss potential

challenges and considerations for real-world deployment.
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4. Energy-Efficient Algorithms: Focus on developing energy-efficient ML
algorithms for deployment in resource-constrained devices, delving into the
significance of energy efficiency and potential implications.

5. Hybrid Approaches: Investigate hybrid approaches that combine fingerprinting
with other localization techniques for improved performance, elucidating the rationale

behind such combinations and expected benefits.
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