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ÖZET 

Laplace dönüşümü [0, ∞)’da integrallenebilir fonksiyonlara 𝐿{𝑓} =

∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
 biçiminde uygulanır. Bu dönüşüm diferansiyel denklemleri cebirsel 

denklemlere indirger ve diferansiyel denklemlerin önemli bir sınıfında çözüme ulaşmak 

için kullanışlıdır. Bunun dışında Bilateral (İki-taraflı) Laplace dönüşümü (−∞, +∞) 

aralığında tanımlı fonksiyonlara uygulanır ve bu dönüşüm de diferansiyel denklemlerin 

çözümünde kullanılır. Klasik yöntemde, bu tür dönüşümler kullanılarak diferansiyel 

denklemlerin çözümü bulunurken diferansiyel denklemin Laplace (ya da Bilateral 

Laplace) dönüşümü alınarak çözüme ulaşılır. Biz tezde farklı bir bakış açısı kullanacağız. 

Diferansiyel denklemin kendisinin Laplace (Bilateral Laplace) uzayında olduğunu 

varsayacağız. Bunun için aradığımız 𝑦 çözümünün 𝑦(𝑠) = 𝐿{𝑓(𝑥)}(𝑠) biçimde (ya da 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) biçiminde), bilinmeyen bir fonksiyonun Laplace (Bilateral Laplace) 

dönüşümü olduğunu varsayacağız ve çözümleri buna göre arayacağız. Bu çözümleri 

araştırırken diferansiyel denklemin koşulları ve özelliklerine göre Laplace dönüşümünü 

veya Bilateral Laplace dönüşümünü kullanacağız. 

 

Anahtar kelimeler: Laplace dönüşümü, Dirac delta fonksiyonu, Genelleştirilmiş 

fonksiyonlar, Bilateral Laplace dönüşümü  
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ABSTRACT 

The Laplace transform is applied to integrable functions in [0, ∞) by 𝐿{𝑓} =

∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
. This transformation reduces differential equations to algebraic equations 

and is useful for solving an important class of differential equations. Furthermore, the 

Bilateral Laplace transform is applied to integrable functions defined on the interval 

(−∞, +∞) and is also used to solve differential equations. In the classical method, when 

solving differential equations using such transformations, the solution is obtained by 

taking the Laplace (or Bilateral Laplace) transform of the differential equation. We use a 

different perspective. We assume that the differential equation itself is in Laplace 

(Bilateral Laplace) space. So, we assume that the solution 𝑦 is the Laplace transform of 

an unknown function in the form 𝑦(𝑠) = 𝐿{𝑓(𝑥)}(𝑠) (or 𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠)) and search 

for solutions accordingly. We use the Laplace transform or Bilateral Laplace transform 

depending on the conditions and properties of the differential equation. 

 

Keywords: Laplace transform, Dirac delta function, Generalized functions, Bilateral 

Laplace transform   
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1.GİRİŞ 

Diferansiyel denklem; bir ya da birden fazla fonksiyonun, türevlerini 

ilişkilendiren denklemdir. Kimya, fizik, biyoloji, mühendislik, ekonomi gibi 

alanlarındaki matematiksel modellemeler yapmak için genellikle diferansiyel 

denklemlerden yararlanılır. 

Diferansiyel denklemler konusunda yapılan ilk çalışmalar, 17. yüzyılın ikinci 

yarısında Isaac Newton ve Gottfried Leibniz’in diferansiyel hesap konusundaki 

hesaplamaları ile diferansiyel denklemler kavramı başlar. Isaac Newton’un Methodus 

fluxionum et Serierum Infinitarum adlı kitabında üç diferansiyel denklem tanımlamıştır. 

Bunlar: 

 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

𝑥1

𝜕𝑦

𝜕𝑥1
+ 𝑥2

𝜕𝑦

𝜕𝑥2
= 𝑦 

 

dir. Burada 𝑦, 𝑥’in bilinmeyen bir fonksiyonu ve 𝑓 bilinen bir fonksiyondur. Isaac 

Newton Sonsuz Seriler yöntemini kullanarak bu örnekler ve benzerlerini çözer ayrıca 

çözümlerin bir tane olup olmadığını da sorgular. [1]. 

Diferansiyel denklemlerin çözülebilmesi için kullanılan bir diğer yöntem de 

Laplace dönüşümü yöntemidir. Pierre Simon Laplace’dan adını alan dönüşüm, tek 

değişkenli bir fonksiyonu dönüştüren bir integral operatörüdür. Laplace 1814 yılında 

fonksiyonların kullanımı alanında kapsamlı kitaplar yazdı ve Laplace dönüşümünün 

integral formu bunun sonucunda gelişmiş ve en son 

 

𝐿{𝑓} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥

∞

0
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biçiminde verilmiştir [2]. 

Matematikte, İki taraflı Laplace dönüşümü veya Bilateral Laplace dönüşümü 

olarak da bilinen dönüşüm ise, olasılığın moment üreten fonksiyonuna eşdeğer bir 

integral dönüşümüdür. Bilateral Laplace dönüşümü; Fourier dönüşümü, Mellin 

dönüşümü, Z dönüşümü ve Tek taraflı Laplace dönüşümü ile yakından ilişkilidir ve 

diferansiyel denklemlerin çözümü için daha geniş çözüm yelpazesi sunar. Ayrıca 

Bilateral Laplace dönüşümü ve Laplace dönüşümü, matematiksel analiz ve mühendislik 

uygulamalarında sıklıkla kullanılan bir yöntemdir. Her iki dönüşümde diferansiyel 

denklemlerin çözümünde önemli bir rol oynamaktadır.  

𝑓, tüm reel sayılar için tanımlanmış bir fonksiyonsa, Bilateral Laplace dönüşümü 

şu şekilde tanımlanmıştır: [3] 

 

𝐵{𝑓}(𝑠) = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

−∞

. 

 

Bilateral Laplace dönüşümü; 𝑦 = 𝑐 (𝑐 ≠ 0 sabit), 𝑦 = 𝑥𝑎 (𝑎 𝜖 ℝ), 𝑦 = 𝑎𝑥(𝑎 >

0), 𝑦 = log𝑎 𝑥 (𝑎 > 0, 𝑎 ≠ 1), 𝑦 = sin 𝑥, 𝑦 = cos 𝑥, gibi elementer fonksiyonlara 

uygulanamaz. Bunun sebebi (−∞, ∞) aralığında bu fonksiyonların Bilateral Laplace 

dönüşümüne karşılık gelen integrallerin ıraksak olmasıdır. Bilateral Laplace dönüşümü, 

daha çok parçalı fonksiyonlara ya da Dirac Delta fonksiyonu gibi genelleşmiş 

fonksiyonlara uygulanır. 

Diferansiyel denklemleri Laplace dönüşümü ile çözerken, bu denklemlerin her iki 

tarafına da Laplace dönüşümü uygulanır. Elde edilen denklemi çözümleyerek 𝐿{𝑦} 

fonksiyonunu ayrıştırırız. Bu fonksiyonun Ters Laplace dönüşümü alınarak da denklemin 

çözümüne ulaşılmış olunur. Biz Laplace (Bilateral Laplace) dönüşümünü kullanarak 

farklı bir bakış açısıyla ilerleyeceğiz. Diferansiyel denklemin kendisinin Laplace 

(Bilateral Laplace) uzayında olduğunu varsayarak 𝑦 çözümünü arayacağız. Denklemde 𝑦 

gördüğümüz yere 𝐿{𝑓(𝑥)}(𝑠) (ya da 𝐵{𝑓(𝑥)}(𝑠)) yazacağız. Dolayısıyla 𝑦′, 𝑦′′ gibi 

ifadeler de 
𝑑𝐿{𝑓(𝑥)}(𝑠)

𝑑𝑠
, 

𝑑2𝐿{𝑓(𝑥)}(𝑠)

𝑑𝑠2
 (ya da 

𝑑𝐵{𝑓(𝑥)}(𝑠)

𝑑𝑠
, 

𝑑2𝐵{𝑓(𝑥)}(𝑠)

𝑑𝑠2
) biçimine dönüşecek. 

Karşımıza çıkan yeni denklemi çözümleyip (Bu yeni denklem cebirsel ya da diferansiyel 
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olabilir) bilinmeyen 𝑓 fonksiyonunu bulacağız. Bulunan 𝑓 fonksiyonunun Laplace 

dönüşümü (ya da Bilateral Laplace dönüşümü) alınınca denklemin çözümünü elde etmiş 

olacağız. 

Tezdeki yöntemin diferansiyel denklemlere uygulamasından kısaca bahsedelim. 

Belirtelim ki, yöntem ilerleyen bölümlerde daha detaylı verilecektir. 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 =

𝑞(𝑥) gibi bir diferansiyel denklemi ele alalım. Varsayalım ki 𝑦 = 𝐵{𝑓}(𝑠) olacak şekilde 

denklemin bir çözümü vardır. Burada, 𝑓, tüm reel eksende tanımlı bir fonksiyondur. O 

halde denklem 

 

𝑎.
𝑑2

𝑑𝑠2
𝐵{𝑓}(𝑠) + 𝑏.

𝑑

𝑑𝑠
𝐵{𝑓}(𝑠) + 𝑐. 𝐵{𝑓}(𝑠) = 𝑞(𝑠) 

 

şeklinde olur. Buradan Bilateral Laplace dönüşümün özelliklerinden yararlanılarak 

 

𝑎. 𝐵{𝑥2𝑓(𝑥)} − 𝑏. 𝐵{𝑥𝑓(𝑥)} + 𝑐. 𝐵{𝑓(𝑥)} = 𝑞(𝑠) 

⇒ 𝐵{𝑎𝑥2𝑓(𝑥) − 𝑏𝑥𝑓(𝑥) + 𝑐𝑓(𝑥)} = 𝑞(𝑠) 

 

elde edilir. Bu denklemin Ters Bilateral Laplace dönüşümü alınırsa, 

 

𝑎𝑥2𝑓(𝑥) − 𝑏𝑥𝑓(𝑥) + 𝑐𝑓(𝑥) = 𝐵−1{𝑞(𝑠)}(𝑥) 

⇒ 𝑓(𝑥)(𝑎𝑥2 − 𝑏𝑥 + 𝑐) = 𝐵−1{𝑞(𝑠)}(𝑥) 

⇒ 𝑓(𝑥) =
𝐵−1{𝑞(𝑠)}(𝑥)

𝑎𝑥2 − 𝑏𝑥 + 𝑐
 

 

eşitliği sağlanmış olur. Buradan, Bilateral Laplace dönüşümü alınırsa denklemin çözümü 

elde edilmiş olur. 
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2. MATERYAL VE YÖNTEM 

2.1. Diferansiyel Denklemler 

Fen bilimleri ve mühendislikte, birçok olayın açıklanmasına yardımcı olmak 

üzere, matematiksel formüller veya matematiksel modeller geliştirilmiştir. Bu modeller, 

genellikle bir bilinmeyen fonksiyon ve bu fonksiyonun bazı türevlerini içeren bir denklem 

olarak ortaya çıkar. Bu denklemlere diferansiyel denklemler denir. [5] 

Tanım 2.1 [5]. Bir diferansiyel denklemde bilinmeyen fonksiyon yalnız bir değişkene 

bağlı ise, diferansiyel denkleme adi diferansiyel denklem; iki veya daha fazla bağımsız 

değişkene bağlı ise diferansiyel denkleme kısmi diferansiyel denklem denir. Örneğin, 

 

𝑦′ + 𝑥𝑦 = 𝑥2 

(𝑥2𝑦 − 𝑦2)𝑑𝑥 + 𝑥2𝑑𝑦 = 0 

𝑑3𝑦

𝑑𝑥3
+

𝑑2𝑦

𝑑𝑥2
sin 𝑥 + 𝑦𝑥3 = cos 𝑥 

(
𝑑2𝑦

𝑑𝑥2
)

3

+ 4
𝑑𝑦

𝑑𝑥
+ 5𝑦

𝑑𝑦

𝑑𝑥
+ 6𝑦 = 0 

 

denklemleri birer adi diferansiyel denklem ve 

 

𝜕𝑦

𝜕𝑡
+

𝜕𝑦

𝜕𝑥
+ sin 𝑥 = cos 𝑥 . 𝑥3 

𝜕𝑦2

𝜕𝑥𝜕𝑡
+ sin 𝑥 = cos 𝑥 

 

diferansiyel denklemleri ise birer kısmi diferansiyel denklemlerdir. 

Tanım 2.2 [5]. Eğer bir diferansiyel denklem bilinmeyen fonksiyon ve bilinmeyen 

fonksiyonun var olan türevlerine göre lineer ise, diferansiyel denkleme lineerdir denir. 

Örneğin, 
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𝑦′′′ + (sin 𝑥)𝑦 = 0 

𝑥2𝑦′′ − 𝑥𝑦′ = 0 

 

denklemleri lineerdir. 𝑛. mertebeden en genel lineer diferansiyel denklem  

 

𝑏0(𝑥)𝑦(𝑛) + 𝑏1(𝑥)𝑦(𝑛−1) + ⋯ + 𝑏𝑛−1(𝑥)𝑦′ + 𝑏𝑛(𝑥)𝑦 = 𝑄(𝑥) 

 

biçiminde yazılabilir. Burada 𝑏0, 𝑏1, … , 𝑏𝑛  ve 𝑄, 𝑥’in verilmiş fonksiyonlarıdır. Bir 

lineer diferansiyel denklem birinci derecedendir, fakat bunun tersi doğru değildir. 

Örneğin, 

 

𝑦′′ = 2 + 𝑥𝑦2 

𝑦′′′𝑦 − 𝑥2𝑦′ + cos 𝑥 . 𝑦 = 0 

 

denklemleri birinci derecedendir ancak lineer değildir. 

Tanım 2.3 [5]. 𝑛. mertebeden 

 

𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0 

 

diferansiyel denklemi ve reel eksenin bir 𝐼 aralığında (𝐼 açık, kapalı veya yarı-açık 

olabilir) tanımlı ve bu aralıkta 𝑛. mertebeye kadar türetilebilir bir 𝜑(𝑥) fonksiyonu 

verilmiş olsun. Eğer 𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0 denkleminde 𝑦 yerine 𝜑(𝑥) yazıldığında 

denklem özdeş olarak sağlanıyorsa, yani her 𝑥 ∈ 𝐼 için 

 

𝐹 (𝑥, 𝜑(𝑥), 𝜑′(𝑥), … , 𝜑(𝑛)(𝑥)) = 0 
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oluyorsa,  𝜑(𝑥) fonksiyonuna 𝐼 aralığında 𝐹(𝑥, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0 denkleminin bir 

çözümü denir. 

2.2 Laplace Dönüşümü  

Tanım 2.4. [5]. [0, ∞) aralığında tanımlı bir fonksiyon olsun. Eğer ∫ 𝑒−𝑠𝑥𝑓(𝑥) 𝑑𝑥
∞

0
 

integrali mevcut (veya yakınsak) ise, 𝑠’nin bir fonksiyonu olan 

 

𝐹(𝑠) = ∫ 𝑒−𝑠𝑥𝑓(𝑥) 𝑑𝑥

∞

0

 

 

integraline 𝑓’nin Laplace dönüşümü denir. 𝑓 fonksiyonunun Laplace dönüşümü 

𝐿{𝑓(𝑥)}(𝑠) = 𝐹(𝑠) veya basitçe 𝐿{𝑓} = 𝐹 biçiminde gösterilir. 

2.2.1. Laplace Dönüşümünün Temel Özellikleri 

Teorem 2.1. (Lineerlik Özelliği)[10] 𝑓(𝑥), 𝑔(𝑥) fonksiyonları ve 𝑎, 𝑏 keyfi sabitleri 

olmak üzere 

 

𝐿{𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)}(𝑠) = 𝑎𝐿{𝑓(𝑥)}(𝑠) + 𝑏𝐿{𝑔(𝑥)}(𝑠) 

 

eşitliği sağlanır. 

Teorem 2.2. [10] 𝐿{𝑓} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑥𝑓(𝑥) 𝑑𝑥
∞

0
 iken 

(i) 𝐿{𝑓(𝑎𝑥)} =
1

𝑎
𝐹 (

𝑠

𝑎
), 

(ii) 𝐿{∫ 𝑓(𝑢) 𝑑𝑢
𝑥

0
} =

𝐹(𝑠)

𝑠
 

ifadeleri doğrudur. 

Teorem 2.3. [6]. (Türevin Laplace dönüşümü): 𝑓, 𝑓′, … , 𝑓(𝑛−1) [0, ∞) aralığında 

sürekli ve 𝑓(𝑛), [0, ∞) aralığında parçalı sürekli olsun. Bu takdirde  𝐿{𝑓(𝑛)} mevcuttur ve  
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𝐿{𝑓(𝑛)(𝑥)} = 𝑠𝑛𝐿{𝑓(𝑥)} − 𝑠𝑛−1𝑓(0) − ⋯ − 𝑠𝑓(𝑛−2)(0) − 𝑓(𝑛−1)(0) 

 

dır. 

Teorem 2.4. [6] (Laplace dönüşümün türevi): 𝑓, [0, ∞) aralığında parçalı sürekli ise 

𝐹(𝑠) = 𝐿{𝑓(𝑥)}(𝑠) olmak üzere 

 

𝐿{(−1)𝑛𝑥𝑛𝑓(𝑥)}(𝑠) =
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
 

 

eşitliği sağlanır. 

2.2.2. Ters Laplace Dönüşümü 

Tanım 2.6.[6] Bir 𝐹(𝑠) fonksiyonu verilmiş olsun. Eğer 𝐿{𝑓(𝑥)} = 𝐹(𝑠) olacak biçimde 

bir 𝑓(𝑥) fonksiyonu var ise, 𝑓 ye 𝐹’nin ters Laplace dönüşümü denir. 𝐹’nin Ters Laplace 

dönüşümü 𝑓 = 𝐿−1{𝐹} veya 𝑓(𝑥) = 𝐿−1{𝐹(𝑠)} şeklinde gösterilir. 

Ters Laplace dönüşümü hesaplamaları için Laplace dönüşüm tablosu çok 

yararlıdır. Bazı fonksiyonların ters Laplace dönüşümleri doğrudan tablo yardımıyla elde 

edilebilir. Örneğin; 

 

𝑓(𝑥) = 1 ise 𝐿{1} =
1

𝑠
 olduğundan 𝐿−1 {

1

𝑠
} = 1, 

𝑓(𝑥) = 𝑥 ise 𝐿{𝑥} =
1

𝑠2 olduğundan 𝐿−1 {
1

𝑠2} = 𝑥 

𝑓(𝑥) = sin 3𝑥 ise 𝐿{sin 3𝑥} =  
3

𝑠2+32 olduğundan  𝐿−1 { 
3

𝑠2+32} = sin 3𝑥 

 

tir. 

 Aşağıda Laplace dönüşümü için bir tablo bulunmaktadır: 

 



8 
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2.3. Bilateral Laplace Dönüşümü 

Tanım 2.5 [3]. Tüm reel eksende tanımlanmış bir 𝑓 fonksiyonu için Bilateral (Dual, iki 

taraflı, two-sided) Laplace dönüşümü, 

 

𝐵{𝑓}(𝑠) = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

 

eşitliği ile tanımlanır. 

2.3.1. Bilateral Laplace Dönüşümün Özellikleri  

1) Zaman Ölçeklendirme Özelliği [4]. Reel eksende tanımlı bir 𝑓 fonksiyonu ve 

𝑎 > 0 olmak üzere  

 

𝐵{𝑓(𝑎𝑥)}(𝑠) =
1

|𝑎|
𝐹 (

𝑠

𝑎
) 

 

şeklinde olur. 

2) Tersine Çevirme Özelliği [4]. Reel eksende tanımlı bir 𝑓 fonksiyonu olmak 

üzere, 

 

𝐵{𝑓(−𝑥)}(𝑠) =  𝐹(−𝑠) 

 

şeklindedir. 

3) Fonksiyonun Genel Türevinin Bilateral Laplace Dönüşüm Özelliği [4]. Reel 

eksende tanımlı bir 𝑓 fonksiyonu olmak üzere 𝐹(𝑠) = 𝐵{𝑓}(𝑠) ise, 

 

𝐵{𝑓(𝑛)(𝑥)}(𝑠) = 𝑠𝑛𝐹(𝑠) 

 

şeklinde olur. 



10 

 

4) Kaydırma Özelliği [4]. Reel eksende tanımlı bir 𝑓 fonksiyonu olmak üzere 

𝐹(𝑠) = 𝐵{𝑓}(𝑠) ise, 

 

𝐵{𝑒𝑎𝑡𝑓(𝑥)}(𝑠) = 𝐹(𝑠 − 𝑎) 

 

şeklinde olur. 

5) Modülasyon Özelliği [4]. Reel eksende tanımlı bir 𝑓 fonksiyonu, 𝐹(𝑠) =

𝐵{𝑓}(𝑠) ve 𝑎 ∈ 𝑅 olmak üzere, 

 

𝐵{𝑐𝑜𝑠(𝑎𝑥)𝑓(𝑥)}(𝑠) =
1

2
𝐹(𝑠 − 𝑖𝑎) +

1

2
𝐹(𝑠 + 𝑖𝑎) 

 

şeklindedir. 

6) Bilateral Laplace Dönüşümün Türevi [4]. 𝐹(𝑠) = 𝐵{𝑓}(𝑠) olsun ve 𝑓(𝑥), 

(−∞, ∞) aralığında parçalı sürekli bir fonksiyon olmak üzere, 

 

𝐵{(−1)𝑛𝑥𝑛𝑓(𝑥)}(𝑠) =
𝑑𝑛𝐹(𝑠)

𝑑𝑠𝑛
 

 

eşitliği sağlanır. 

2.3.2. Ters Bilateral Laplace Dönüşümü 

 Eğer 

 

𝐹(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

−∞

 

 

integrali kompleks düzlemin bir bölgesinde düzgün yakınsak ise 𝑓(𝑥) = 𝐵−1{𝐹(𝑠)}(𝑥) 

ters Bilateral Laplace dönüşümü mevcuttur [8]. 
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 Biz örneklerimizde ve işlemlerinde ters Bilateral Laplace dönüşümünü sıklıkla 

kullanacağız. 

2.4. Dirac Delta Fonksiyonu 

Dirac delta fonksiyonu, genelleştirilmiş fonksiyon veya dağılımdır. İngiliz 

fizikçi Paul Dirac tarafından 1927 tarihli Kuantum Dinamiğinin Fiziksel Yorumu adlı 

kitabında tanıtılmış ve Kuantum Mekaniğinin Prensipleri adlı ders kitabında 

kullanılmıştır. Delta fonksiyonu 𝛿(𝑥); 𝑥 = 0 hariç her yerde değeri sıfır olan, fakat 𝑥 =

0'da sonsuz büyüklüğe sahip olan ve tüm reel eksen üzerindeki integrali 1'e eşit olan 

fonksiyondur. 

Dirac deltasının grafiğinin genellikle 𝑥 ekseninin tamamını ve pozitif 𝑦 eksenini 

takip ettiği düşünülür. Dirac deltası, impuls ve nokta yükü, nokta kütlesi veya elektron 

noktası gibi diğer benzer soyutlamaları modellemek için kullanılır. Örneğin, vurulan bir 

bilardo topunun dinamiklerini hesaplamak için, çarpma kuvvetinin Dirac deltası ile 

yaklaşık değeri hesaplanabilir.[9] 

Dirac, bu fonksiyonu 

 

𝛿(𝑥) =  {
0, 𝑥 ≠ 0
∞, 𝑥 = 0

 

 

ve 

 

∫ 𝛿(𝑥)𝑑𝑥
∞

−∞

= ∫ 𝛿(𝑥)𝑑𝑥 = 1
𝜀

−𝜀

 

 

özelliklerini sağlayan 𝛿(𝑥) ile sembolize etmiş ve 𝜙(𝑥) herhangi sıradan bir fonksiyon 

olmak üzere 𝛿(𝑥) fonksiyonu 

 

∫ 𝛿(𝑥)𝜙(𝑥) dx = 𝜙(0) 
∞

−∞
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şeklinde tanımlamıştır. Hiçbir regüler fonksiyon delta fonksiyonuna eşdeğer değildir. 

Yani, delta fonksiyonu klasik anlamda bir fonksiyon değildir. Bundan dolayı 𝛿(𝑥), 

genelleşmiş fonksiyonu veya dağılımı olarak adlandırılır. [7] 

2.4.1 Dirac Delta Fonksiyonun Özellikleri 

𝑓(𝑥), 𝑥 = 𝑎 noktasını içeren herhangi bir aralıkta sürekli bir fonksiyon olmak 

üzere delta fonksiyonu 𝛿(𝑥), 

 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)

∞

−∞

    (2.1) 

 

temel özelliği ile tanımlanır. Bu eşitlikten, 

 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)

∞

−∞

∫ 𝛿(𝑥 − 𝑎)𝑑𝑥 = 𝑓(𝑎)

∞

−∞

 

  

(2.2) 

 

olduğu aşikardır. 

 

Böylece (2.1) ve (2.2) denklemlerinden  

 

𝑓(𝑥)𝛿(𝑥 − 𝑎) = 𝑓(𝑎)𝛿(𝑥 − 𝑎) 

 

eşitliği elde edilir. Bu eşitlikten yola çıkarak 

 

𝑥𝛿(𝑥) = 0 

 

elde edilir. Ayrıca değişken değişimi ile 



13 

 

𝛿(𝑥 − 𝑎) = 𝛿(𝑎 − 𝑥) 

 

sonucuna ve 𝑥𝛿(𝑥) = 0’ ın türevini aldığımız zaman 

 

𝛿(𝑥) + 𝑥𝛿′(𝑥) = 0 

 

𝛿(𝑥) = −𝑥𝛿′(𝑥) (2.3) 

 

eşitliğine ulaşabiliriz. 𝛿(𝑥 − 𝑎) = 𝛿(𝑎 − 𝑥) sonucu 𝛿(𝑥) fonksiyonunun çift olduğunu 

gösterir. 

 𝑇 bir genelleştirilmiş fonksiyon ise 𝑇’nin genelleştirilmiş türevi 

 

∫ 𝑇′(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= − ∫ 𝑇(𝑥)𝑓′(𝑥)𝑑𝑥

∞

−∞

 

 

eşitliği ile verilir. 

Şimdi Dirac delta fonksiyonunun genelleşmiş türevlerini ele alalım: 

 

∫ 𝛿′(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= − ∫ 𝛿(𝑥)𝑓′(𝑥)𝑑𝑥

∞

−∞

= −𝑓′(0), 

∫ 𝛿′′(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= − ∫ 𝛿′(𝑥)𝑓′(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝛿(𝑥)𝑓′′(𝑥)𝑑𝑥

∞

−∞

= 𝑓′′(0), 

⋮ 

Bu şekilde devam edilirse 
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∫ 𝛿(𝑛)(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= (−1)𝑛𝑓(𝑛)(0) 

 

veya daha genel olarak 

 

∫ 𝛿(𝑛)(𝑥 − 𝑎)𝑓(𝑥)𝑑𝑥

∞

−∞

= (−1)𝑛𝑓(𝑛)(𝑎) 

 

elde edilir. [7] 

2.4.2. Dirac Delta Fonksiyonun Laplace Dönüşümü 

Dirac delta fonksiyonunun Laplace dönüşümü, delta fonksiyonunun tanımı 

kullanılarak elde edilebilir. Laplace dönüşümü [0, ∞) aralığında tanımlı olduğu için 

 

∫ 𝑒−𝑠𝑥𝛿(𝑥 − 𝑐)𝑑𝑥

∞

0

 

 

integralini 

 

∫ 𝑒−𝑠𝑥𝛿(𝑥 − 𝑐)𝑑𝑥

∞

0

= ∫ 𝜑(𝑥)𝛿(𝑥 − 𝑐)𝑑𝑥

∞

−∞

, 𝜑(𝑥) = {
𝑒−𝑠𝑥, 𝑥 ≥ 0,
0, 𝑥 < 0

 

 

olarak alabiliriz. Dolayısıyla 

 

ℒ{𝛿(𝑥 − 𝑐)} = ∫ 𝑒−𝑠𝑥

∞

0

𝛿(𝑥 − 𝑐)𝑑𝑥 = ∫ 𝜑(𝑥)𝛿(𝑥 − 𝑐)𝑑𝑥

∞

−∞

= {
𝑒−𝑠𝑐, 𝑐 ≥ 0,
0, 𝑐 < 0
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olur [8]. Özel olarak, 𝑐 = 0 için, 

 

ℒ{𝛿(𝑡)} = 1 

 

dir. 𝑐 < 0 için, 

 

ℒ{𝛿(𝑥 − 𝑐)} = ∫ 𝑒−𝑠𝑥

∞

0

𝛿(𝑥 − 𝑐)𝑑𝑥 = 0. 

 

olması bizim yöntemimiz açısından kullanışsız olduğundan çoğu durumda, diferansiyel 

denklemlerin çözümüne yöntemimizi uygularken Bilateral Laplace dönüşümünü 

uygulayacağız. 

Dirac delta fonksiyonunun Laplace dönüşümüne ait bilgileri tartıştığımız bu 

kısımda 𝛿(𝑥 − 𝑐)𝑓(𝑥) fonksiyonunun da Laplace dönüşümünün ne olduğunu verelim. 

Burada 𝑓 integrallenebilir bir fonksiyondur. 

 

ℒ{𝛿(𝑥 − 𝑐)𝑓(𝑥)} = ∫ 𝛿(𝑥 − 𝑐)𝑒−𝑠𝑥𝑓(𝑥)𝑑𝑥

∞

0

= ∫ 𝛿(𝑥 − 𝑐)𝜑(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= {
𝑒−𝑠𝑐𝑓(𝑐), 𝑐 ≥ 0,
0, 𝑐 < 0

 

 

2.4.3. Dirac Delta Fonksiyonun Bilateral Laplace Dönüşümü  

Dirac delta fonksiyonunun Bilateral Laplace dönüşümü, delta fonksiyonunun 

tanımı kullanılarak elde edilebilir. [6] 

 

𝐵{𝛿(𝑥 − 𝑐)} = ∫ 𝛿(𝑥 − 𝑐)𝑒−𝑠𝑥𝑑𝑥

∞

−∞

= 𝑒−𝑐𝑠 
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Buna göre, Bilateral Laplace dönüşümünün tanımlı olduğu aralık gereği klasik 

Laplace dönüşümüne göre daha kullanışlı olduğunu söyleyebiliriz. 

2.5. Heaviside Birim Fonksiyonu 

Tanım 2.7. 𝑎 ≥ 0 olmak üzere, 

 

𝐻(𝑥 − 𝑎) = {
0, 0 ≤ 𝑥 < 𝑎
1, 𝑥 ≥ 𝑎

 

 

biçiminde tanımlanan fonksiyona Heaviside birim fonksiyonu denir. Bu fonksiyon 𝑥 = 𝑎 

da sıçrama şeklinde bir süreksizliğe sahiptir. Aynı zamanda 𝐻 ile tanımlı dağılıma 

Heaviside dağılımı denir ve 

 

∫ 𝐻(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= ∫ 𝑓(𝑥)𝑑𝑥

∞

0

 

 

biçimindedir.[11] Şimdi bu eşitliklerle Heaviside dağılımının genelleşmiş türevini alalım: 

 

∫ 𝐻′(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

= − ∫ 𝐻(𝑥)𝑓′(𝑥)𝑑𝑥

∞

−∞

= − ∫ 𝑓′(𝑥)𝑑𝑥

∞

0

= −[𝑓(𝑥)]0
∞ = 𝑓(0) = 〈𝛿, 𝑓〉

= ∫ 𝛿(𝑥)𝑓(𝑥)𝑑𝑥

∞

−∞

. 

 

Son eşitlikten Heaviside fonksiyonun genelleştirilmiş türevinin Dirac delta fonksiyonu 

olduğu görülür: 𝐻′ = 𝛿.[12] 

 Şimdi, bir diferansiyel denklemin çözümünde klasik anlamda Laplace 

dönüşümünün nasıl kullanıldığını ve Dirac delta, Heaviside gibi fonksiyonların nasıl 

işlevi olduğunu somutlaştıracak bir örnek çözelim: 
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Örnek 2.1. 𝑦′′ − 3𝑦′ + 2𝑦 = 2𝛿(𝑡 − 3), 𝑦(0) = 1,𝑦′(0) = 3 başlangıç değer 

probleminin çözümünü bulunuz. 

Çözüm. 𝐿{𝑦(𝑥)} = 𝑌(𝑠) olsun. Denklemin her iki tarafına Laplace dönüşümü 

uygularsak, 

 

𝐿{𝑦′′ − 3𝑦′ + 2𝑦} = 𝐿{2𝛿(𝑡 − 3)} 

 

𝐿{𝑦′′} − 3𝐿{𝑦′} + 2𝐿{𝑦} = 2𝐿{𝛿(𝑡 − 3)} 

 

𝐿{𝑦′′} = 𝑠2𝑌(𝑠) − 𝑠 − 3, 𝐿{𝑦′} = 𝑠𝑌(𝑠) − 1 ve 𝐿{𝛿(𝑡 − 3)} = 𝑒−3𝑠 olduğundan 

denklemde kullanırsak, 

 

𝑠2𝑌(𝑠) − 𝑠 − 3 − 3𝑠𝑌(𝑠) + 3 + 2𝑌(𝑠) = 2𝑒−3𝑠 

 

𝑠2𝑌(𝑠) − 𝑠 − 3𝑠𝑌(𝑠) + 2𝑌(𝑠) = 2𝑒−3𝑠 

 

𝑌(𝑠)(𝑠2 − 3𝑠 + 2) = 2𝑒−3𝑠 + 𝑠 

 

𝑌(𝑠) =
2𝑒−3𝑠

(𝑠 − 2)(𝑠 − 1)
+

𝑠

(𝑠 − 2)(𝑠 − 1)
 

 

elde ederiz. Bu durumda 

 

𝑦(𝑥) = 𝐿−𝑙{𝑌(𝑠)} 

  

𝐿−1 {
2𝑒−3𝑠

(𝑠 − 2)(𝑠 − 1)
+

𝑠

(𝑠 − 2)(𝑠 − 1)
} 
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𝐿−1 {
2𝑒−3𝑠

(𝑠 − 2)(𝑠 − 1)
} + 𝐿−1 {

𝑠

(𝑠 − 2)(𝑠 − 1)
} 

 

Buradan basit kesirlere ayırma yöntemini kullanırsak 

 

2𝑒−3𝑠

(𝑠 − 2)(𝑠 − 1)
= 𝑒−3𝑠 {

2

(𝑠 − 2)(𝑠 − 1)
} = 𝑒−3𝑠 {

𝐴

(𝑠 − 2)
+

𝐵

(𝑠 − 1)
} 

 

2𝑒−3𝑠 = 𝑒−3𝑠{𝐴(𝑠 − 1) + 𝐵(𝑠 − 2)} 

 

𝐴 = 2, 𝐵 = −2 

 

𝐿−1 {
2𝑒−3𝑠

(𝑠 − 2)(𝑠 − 1)
} = 𝐿−1 [𝑒−3𝑠 {

2

(𝑠 − 2)
−

2

(𝑠 − 1)
}] 

 

𝑠

(𝑠 − 2)(𝑠 − 1)
=

𝐶

(𝑠 − 2)
+

𝐷

(𝑠 − 1)
=

𝐶(𝑠 − 1)

(𝑠 − 2)(𝑠 − 1)
+

𝐷(𝑠 − 2)

(𝑠 − 2)(𝑠 − 1)
 

 

𝐶 = 2, 𝐷 = −1 

 

𝐿−1 {
𝑠

(𝑠 − 2)(𝑠 − 1)
} = 𝐿−1 {

2

(𝑠 − 2)
−

1

(𝑠 − 1)
} = 𝐿−1 {

2

(𝑠 − 2)
} − 𝐿−1 {

1

(𝑠 − 1)
} 

 

elde ederiz. Denklemde yerine yazdığımız zaman  

 

𝐿−1 [𝑒−3𝑠 {
2

(𝑠 − 2)
−

2

(𝑠 − 1)
}] + 𝐿−1 {

2

(𝑠 − 2)
} − 𝐿−1 {

1

(𝑠 − 1)
} 
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𝐿−1 [𝑒−3𝑠 {
2

(𝑠 − 2)
−

2

(𝑠 − 1)
}] + 2𝑒2𝑥 − 𝑒𝑥 

 

olur ve (2.3) eşitliğinden, 𝑎 ≥ 0 olmak üzere 

 

𝐿−1{𝑒−𝑎𝑠𝑌(𝑠)} = 𝑓(𝑥 − 𝑎)𝐻(𝑥 − 𝑎) 

 

elde edilir. Buradan  

 

𝑌(𝑠) =
2

(𝑠 − 2)
−

2

(𝑠 − 1)
 

 

𝑓(𝑥) = 2𝑒2𝑥 − 2𝑒𝑥 

 

𝑓(𝑥 − 3) = 2𝑒2(𝑥−3) − 2𝑒(𝑥−3) 

 

sonuçlarını denklemde yerine yazdığımızda 

 

𝐿−1 [𝑒−3𝑠 {
2

(𝑠 − 2)
−

2

(𝑠 − 1)
}] = 𝐻(𝑥 − 3){2𝑒2(𝑥−3) − 2𝑒𝑥−3} 

 

𝑦(𝑥) = 𝐻(𝑥 − 3){2𝑒2(𝑥−3) − 2𝑒𝑥−3} + 2𝑒2𝑥 − 𝑒𝑥 

 

elde edilir. 

 Bu örnekte görülüyor ki, klasik anlamda Laplace dönüşümünü diferansiyel 

denklemlerin çözümünde kullanımı epey uzun işlemler gerektirmektedir. Aşağıdaki 

bölümde bizim yöntemimizle daha az işlemle denklemlerin çözülebildiğini göreceğiz. 
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3. BULGULAR VE TARTIŞMA 

Bu kısımda çeşitli diferansiyel denklemleri Laplace ya da Bilateral Laplace 

uzayında verilmiş gibi ele alıp denklemleri bu yöntemle çözeceğiz ve bu yöntemde Dirac 

delta fonksiyonu önemli bir role sahip olacak. 

 

𝑦′′ − 𝑦 = 0 

 

diferansiyel denklemini ele alalım. Bu denklemi çözmek için klasik Laplace dönüşümünü 

uyguladığımızda 

 

𝐿{𝑦′′ − 𝑦} = 𝐿{0} 

 

𝐿{𝑦′′} − 𝐿{𝑦} = 0 

 

𝑠2𝐿{𝑦} − 𝑠𝑦(0) − 𝑦′(0) −  𝐿{𝑦} = 0 

 

elde ederiz. Buradan denklemi düzenleyerek 

 

𝐿{𝑦} =
𝑠𝑦(0) + 𝑦′(0)

𝑠2 − 1
=

𝐴

𝑠 − 1
+

𝐵

𝑠 + 1
 

 

𝑦 = 𝐴𝑒𝑥 + 𝐵𝑒−𝑥 

 

çözümüne ulaşırız, burada 

 

𝐴 =
𝑦(0) + 𝑦′(0)

2
, 𝐵 =

𝑦(0) − 𝑦′(0)

2
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dir. Biz farklı bir bakış açısı kullanarak diferansiyel denklemin kendisinin ve aradığımız 

𝑦 çözümünün de Laplace (Bilateral Laplace) uzayında olduğunu varsayacağız. Bu 

çözümleri araştırırken diferansiyel denklemin koşulları ve özelliklerine göre Laplace 

dönüşümünü veya Bilateral Laplace dönüşümünü kullanacağız. Şimdi 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) 

olacak şekilde diferansiyel denklemde çözümü arayalım. O halde 𝑦′′ − 𝑦 = 0 denklemi 

 

𝑑2𝐵{𝑓(𝑥)}(𝑠)

𝑑𝑠2
− 𝐵{𝑓(𝑥)}(𝑠) = 0 

 

denklemine dönüşür. 2.3.1.6’da verdiğimiz Bilateral Laplace dönüşümünün türevi 

özelliğinden 

 

𝐵{(−1)2𝑥2𝑓(𝑥)}(𝑠) − 𝐵{𝑓(𝑥)}(𝑠) = 0 

 

yazılır. Bilateral Laplace dönüşümünün lineerliğinden 

 

𝐵{𝑥2𝑓(𝑥) − 𝑓(𝑥)}(𝑠) = 0 = 𝐵{0} 

 

elde edilir. Bilateral Laplace dönüşümünün tersinirlik özelliğinden [7] 

 

(𝑥2 − 1)𝑓(𝑥) = 0 

 

ya da 

 

𝑓(𝑥) =
0

𝑥2 − 1
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bulunur. Biz burada ve tezin tamamında 
0

𝑥2−1
 gibi ifadeleri 0 olarak almayacağız. Zaten 

bu ifadeleri 0 alırsak yöntem çalışmamaktadır. 
0

𝑥2−1
 ya da buna benzer ifadeleri Dirac 

delta fonksiyonu ile ilişkilendireceğiz. Dirac Delta fonksiyonunun 𝑥𝛿(𝑥) = 0 özelliğini 

Bölüm 2.4’den biliyoruz. Bunu 𝑎 bir sabit olmak üzere (𝑥 − 𝑎)𝛿(𝑥 − 𝑎) = 0 olarak 

yazabiliriz. Bu eşitliği 

 

0

𝑥 − 𝑎
= 𝛿(𝑥 − 𝑎) 

 

olarak ele alalım. Eşitliğin her tarafını bir 𝑐 sabiti ile çarpmak, eşitliği bozmaz: 

 

𝑐. 0

𝑥 − 𝑎
= 𝑐𝛿(𝑥 − 𝑎) 

 

0

𝑥 − 𝑎
= 𝑐𝛿(𝑥 − 𝑎) 

 
(3.1) 

 

Bu eşitliklerden yola çıkarak 𝑓’i basit kesirlere ayırma yöntemi ile yazdığımızda 

 

𝑓(𝑥) =
0

𝑥2 − 1
=

0

𝑥 − 1
+

0

𝑥 + 1
= 𝑐1𝛿(𝑥 − 1) + 𝑐2𝛿(𝑥 + 1) 

 

elde ederiz. Şimdi burada 𝑦 = 𝐵{𝑓(𝑥)} bağıntısı ile çözümü bulalım.  

 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = 𝑐1𝐵{𝛿(𝑥 − 1)} + 𝑐2𝐵{𝛿(𝑥 + 1)} 

 

olur. Burada Dirac Delta fonksiyonun Bilateral Laplace dönüşümünden 
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𝑦 = 𝑐1𝑒𝑠 + 𝑐2𝑒−𝑠 

 

elde edilir. 

Teorem.3.1. Her 𝑎 ∈ ℝ ve her 𝑛 ∈ ℕ için  

 

0

(𝑥 − 𝑎)𝑛
= 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) 

 

eşitliği doğrudur. Bu formül (3.1)’in bir genelleştirilmesidir. 

İspat. (3.1)’den 
0

𝑥−𝑎
= 𝑐1𝛿(𝑥 − 𝑎) olduğunu biliyoruz. Bu eşitlikte her iki tarafın türevi 

alındığında 

 

0. (𝑥 − 𝑎) − 0

(𝑥 − 𝑎)2
= 𝑐1𝛿′(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)
−

0

(𝑥 − 𝑎)2
= 𝑐1𝛿′(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)2
=

0

(𝑥 − 𝑎)
− 𝑐1𝛿′(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)2
= 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) 

 

elde etmiş oluruz (Burada sabitler yeniden işaretlenmiştir).  

Tümevarım varsayımı olarak 𝑛 için 
0

(𝑥−𝑎)𝑛 = 𝑐0𝛿(𝑥 − 𝑎) + 𝑐1𝛿′(𝑥 − 𝑎) +

𝑐2𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−2𝛿(𝑛−2)(𝑥 − 𝑎) + 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) olduğunu kabul edip, 𝑛 +

1 için ispatı yapalım. Varsaydığımız eşitlikte 2 taraftan türev alalım. 
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0. (𝑥 − 𝑎)𝑛 − 0. 𝑛(𝑥 − 𝑎)𝑛−1

(𝑥 − 𝑎)2𝑛
= 𝑐0𝛿′(𝑥 − 𝑎) + 𝑐1𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0

(𝑥 − 𝑎)𝑛
−

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= 𝑐0𝛿′(𝑥 − 𝑎) + 𝑐1𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= −

0

(𝑥 − 𝑎)𝑛
− 𝑐0𝛿′(𝑥 − 𝑎) − 𝑐1𝛿′′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

0. 𝑛

(𝑥 − 𝑎)𝑛+1
= −𝑐0𝛿(𝑥 − 𝑎) − 𝑐1𝛿′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛−1)(𝑥 − 𝑎) − 𝑐0𝛿′(𝑥 − 𝑎)

− 𝑐1𝛿′′(𝑥 − 𝑎) − ⋯ − 𝑐𝑛−1𝛿(𝑛)(𝑥 − 𝑎) 

 

elde edilir. Sabitleri düzenlediğimiz zaman 

 

= 𝑑0𝛿(𝑥 − 𝑎) + 𝑑1𝛿′(𝑥 − 𝑎) + 𝑑2𝛿′′(𝑥 − 𝑎) + ⋯ + 𝑑𝑛𝛿(𝑛)(𝑥 − 𝑎) 

 

olur ve ispat biter. 

Sonuç.3.1. Teorem.3.1’de 𝑎 sabiti sıfır olduğu zaman aşağıdaki eşitlikler elde edilir. 

 

0

𝑥2
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) 

0

𝑥3
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) 

0

𝑥4
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) + 𝑐3𝛿′′′(𝑥) 

.

.

.
 

0

𝑥𝑛
= 𝑐0𝛿(𝑥) + 𝑐1𝛿′(𝑥) + 𝑐2𝛿′′(𝑥) + ⋯ + 𝑐𝑛−2𝛿(𝑛−2)(𝑥)𝑐𝑛−1𝛿(𝑛−1)(𝑥) 
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Örnek 3.1.𝑦′′ + 𝑥𝑦 = 1 diferansiyel denklemini çözelim. 

Çözüm: Denklemi Bilateral Laplace dönüşümü ile çözmeye çalışalım. 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) 

olsun. O halde denklem, 

 

𝑑2𝐵{𝑓(𝑥)}(𝑠)

𝑑𝑠2
+ 𝑠𝐵{𝑓(𝑥)}(𝑠) = 1 

 

𝐵{𝑥2𝑓(𝑥)}(𝑠) + 𝐵{𝑓′(𝑥)}(𝑠) = 1 

 

olur. Bilateral Laplace dönüşümünün tersinirlik özelliğinden  

 

𝑥2𝑓(𝑥) + 𝑓′(𝑥) = 𝛿(𝑥) 

 

olur. Denklemi çözebilmek için integrasyon çarpan yöntemini kullanarak 𝑒
𝑥3

3  ile 

denklemin her iki tarafını çarpalım. 

 

𝑒
𝑥3

3 𝑓′(𝑥) + 𝑥2𝑒
𝑥3

3 𝑓(𝑥) = 𝑒
𝑥3

3 𝛿(𝑥) 

 

Bu eşitliği düzenlediğimizde  

 

𝑑 (𝑒
𝑥3

3 𝑓(𝑥))

𝑑𝑥
= 𝑒

𝑥3

3 𝛿(𝑥) 

 

∫ 𝑑 (𝑒
𝑡3

3 𝑓(𝑡))

𝑥

−∞

= ∫ 𝑒
𝑡3

3 𝛿(𝑡)𝑑𝑡

𝑥

−∞
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𝑒
𝑥3

3 𝑓(𝑥) = 𝐻(𝑥) 

 

𝑓(𝑥) = 𝑒
−𝑥3

3 𝐻(𝑥) 

 

olur. Şimdi, 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) bağıntısı ile denklemin çözümünü bulalım. 

 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = ∫ 𝐻(𝑥)

∞

−∞

𝑒
−𝑥3

3 𝑒−𝑠𝑥𝑑𝑥 = ∫ 𝑒
−𝑥3

3 𝑒−𝑠𝑥𝑑𝑥

∞

0

 

 

çözümünü elde etmiş oluruz.  

Örnek 3.2. 𝑦′ = 1 diferansiyel denklemini çözelim. 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 𝑦 = 𝑥 +

𝑐 şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi tekrar çözelim. 𝑦 =

𝐵{𝑓(𝑥)}(𝑠) olsun. 

 

𝑑𝐵{𝑓(𝑥)}(𝑠)

𝑑𝑠
= 𝐵{𝛿(𝑥)} 

 

𝐵{−𝑥𝑓(𝑥)}(𝑠) = 𝐵{𝛿(𝑥)} 

 

−𝑥𝑓(𝑥) = 𝛿(𝑥) 

 

𝑓(𝑥) = −
𝛿(𝑥)

𝑥
 

 

(2.3) den  

 



27 

 

𝑓(𝑥) = −
−𝑥𝛿′(𝑥) + 0

𝑥
 

 

𝑓(𝑥) = 𝛿′(𝑥) +
0

𝑥
= 𝛿′(𝑥) + 𝑐𝛿(𝑥) 

 

Şimdi, 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) bağıntısı ile denklemin çözümünü bulalım. 

 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = 𝐵{𝛿′(𝑥) + 𝑐𝛿(𝑥)}(𝑠) 

 

𝑦 = 𝑠 + 𝑐 

 

olur. Bu, mevcut çözüm ile tutarlıdır.  

Örnek 3.3 𝑦′′ + 𝑦 = 𝑥2 diferansiyel denklemin çözümünü bulalım. 

Çözüm: Klasik yöntemlerle çözüldüğü zaman diferansiyel denklemin çözümü 𝑦 =

𝑐1 cos 𝑥 + 𝑐2 sin 𝑥 + 𝑥2 − 2 şeklindedir. Şimdi kendi yöntemimizle diferansiyel 

denklemi tekrar çözelim. 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) olsun. 

 

𝐵{𝑥2𝑓(𝑥) + 𝑓(𝑥)}(𝑠) = 𝐵{𝛿′′(𝑥)}(𝑠) 

 

(𝑥2 + 1)𝑓(𝑥) = 𝛿′′(𝑥) 

 

𝑓(𝑥) =
𝛿′′(𝑥)

(𝑥2 + 1)
 

 

𝑓(𝑥) =
𝛿′′(𝑥) + 0

(𝑥2 + 1)
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𝑓(𝑥) =
𝛿′′(𝑥)

(𝑥2 + 1)
+

0

(𝑥 − 𝑖)(𝑥 + 𝑖)
 

 

𝑓(𝑥)’i basit kesirlere ayırma yöntemi ile tekrar yazdığımızda 

 

𝑓(𝑥) =
𝛿′′(𝑥)

(𝑥2 + 1)
+

0

(𝑥 − 𝑖)
+

0

(𝑥 + 𝑖)
 

 

elde ederiz. 
0

𝑥−𝑎
= 𝑐1𝛿(𝑥 − 𝑎) eşitliğinden 𝑓’i tekrar yazdığımızda 

 

𝑓(𝑥) =
𝛿′′(𝑥)

(𝑥2 + 1)
+ 𝑎1𝛿(𝑥 − 𝑖) + 𝑎2𝛿(𝑥 + 𝑖) 

 

olur. Şimdi, 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) bağıntısı ile denklemin çözümünü bulalım. 

 

𝐵{𝑓(𝑥)}(𝑠) = 𝐵 {
𝛿′′(𝑥)

(𝑥2 + 1)
+ 𝑎1𝛿(𝑥 − 𝑖) + 𝑎2𝛿(𝑥 + 𝑖)} (𝑠) 

 

𝐵{𝑓(𝑥)}(𝑠) = ∫
𝑒−𝑠𝑥𝛿′′(𝑥)

(𝑥2 + 1)

∞

−∞

+ 𝑎1𝑒−𝑖𝑠 + 𝑎2𝑒𝑖𝑠 

Burada Dirac Delta fonksiyonun genelleştirilmiş türev özelliğini kullanarak ∫
𝑒−𝑠𝑥𝛿′′(𝑥)

(𝑥2+1)

∞

−∞
 

integralin sonucunun 𝑠2 − 2 olduğu aşikardır.  

 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = 𝑠2 − 2 + 𝑎1(cos 𝑠 − 𝑖 sin 𝑠) + 𝑎2(cos 𝑠 + 𝑖 sin 𝑠) 

 

= 𝑠2 − 2 + (𝑎1 + 𝑎2) cos 𝑠 + 𝑖(−𝑎1 + 𝑎2) sin 𝑠 
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= 𝑠2 − 2 + 𝑐1 cos 𝑠 + 𝑐2 sin 𝑠 

 

olur. Bu, mevcut çözüm ile tutarlıdır. 

Örnek 3.4 𝑦′′ − 3𝑦′ + 2𝑦 = 𝑥 diferansiyel denklemin çözümünü bulalım. 

Çözüm: Klasik yöntemle çözüldüğünde diferansiyel denklemin çözümü 𝑦 = 𝑐1𝑒𝑥 +

𝑐2𝑒2𝑥 +
1

2
𝑥 −

3

4
 şeklindedir. Şimdi kendi yöntemimizle diferansiyel denklemi tekrar 

çözelim. 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) olsun. 

 

𝑑2

𝑑𝑠2
𝐵{𝑓(𝑥)}(𝑠) − 3

𝑑

𝑑𝑠
𝐵{𝑓(𝑥)}(𝑠) + 2𝐵{𝑓(𝑥)}(𝑠) = 𝑠 

 

𝐵{𝑥2𝑓(𝑥) + 3𝑥𝑓(𝑥) + 2𝑓(𝑥)}(𝑠) = 𝑠 

 

(𝑥2 + 3𝑥 + 2)𝑓(𝑥) = 𝛿′(𝑥) 

 

𝑓(𝑥) =
𝛿′(𝑥) + 0

(𝑥 + 1)(𝑥 + 2)
 

 

𝑓(𝑥)’i basit kesirlere ayırma yöntemi ile tekrar yazdığımızda 

 

𝑓(𝑥) =
𝛿′(𝑥)

(𝑥 + 1)(𝑥 + 2)
+

0

𝑥 + 1
+

0

𝑥 + 2
 

 

olur. 
0

𝑥−𝑎
= 𝑐1𝛿(𝑥 − 𝑎) eşitliğinden 𝑓’i tekrar yazdığımızda 

 

𝑓(𝑥) =
𝛿′(𝑥)

(𝑥 + 1)(𝑥 + 2)
+ 𝑐1𝛿(𝑥 + 1) + 𝑐2𝛿(𝑥 + 2) 
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elde ederiz. Şimdi, 𝑦 = 𝐵{𝑓(𝑥)}(𝑠) bağıntısı ile denklemin çözümünü bulalım. 

 

𝑦(𝑠) = 𝐵{𝑓(𝑥)}(𝑠) = 𝐵 {
𝛿′(𝑥)

(𝑥 + 1)(𝑥 + 2)
+ 𝑐1𝛿(𝑥 + 1) + 𝑐2𝛿(𝑥 + 2)} 

 

= ∫ 𝑒−𝑠𝑥
1

(𝑥 + 1)(𝑥 + 2)
𝛿′(𝑥)𝑑𝑥 + 𝑐1𝑒2𝑠 + 𝑐2𝑒𝑠

∞

−∞

 

Dirac Delta fonksiyonun genelleştirilmiş türev özelliğini de kullanarak 

 

= − ∫ (−𝑠𝑒−𝑠𝑥
1

(𝑥 + 1)(𝑥 + 2)
− 𝑒−𝑠𝑥

2𝑥 + 3

(𝑥 + 1)2(𝑥 + 2)2
) 𝛿(𝑥)𝑑𝑥 + 𝑐1𝑒2𝑠 + 𝑐2𝑒𝑠

∞

−∞

 

 

=
𝑠

2
+

3

4
+ 𝑐1𝑒2𝑠 + 𝑐2𝑒𝑠 

 

sonucunu elde etmiş oluruz. Bu, mevcut çözüm ile tutarlıdır. 
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4. SONUÇ VE ÖNERİLER  

Bu tez çalışmasında, diferansiyel denklemlerin çözümünde klasik Laplace 

dönüşümü yönteminin ötesine geçilerek, diferansiyel denklemin doğrudan Laplace veya 

Bilateral Laplace dönüşüm uzayında tanımlı olduğu varsayımına dayanan alternatif bir 

yaklaşım sunulmuştur. Bu yaklaşımla, diferansiyel denklemin çözümünün de dönüşüm 

uzayında var olduğu kabul edilmiş ve çözümler aranmıştır. 

Tez süresince yapılan analizler ve örnek çözümler, özellikle Bilateral Laplace 

dönüşümünün Dirac Delta fonksiyonu ve onun genelleştirilmiş türevleriyle birlikte 

kullanıldığında, klasik yöntemlere göre bazı problemlerde daha kısa ve doğrudan 

çözümler elde edilmesini sağladığını göstermiştir. Bu yöntem sayesinde bazı diferansiyel 

denklemlerin klasik çözümlerinde karşılaşılan karmaşık cebirsel işlemler en aza 

indirgenmiş, Dirac delta fonksiyonu gibi genelleştirilmiş fonksiyonların çözümde etkin 

biçimde kullanılabileceği ortaya konulmuştur. Ancak yöntemin sınırlılıkları da 

gözlemlenmiştir. Özellikle Bilateral Laplace dönüşümünün bazı fonksiyonlar için ıraksak 

sonuçlar üretmesi, yöntemin her denkleme uygulanamayacağını göstermektedir.  

Gelecek çalışmalarda, bu yöntemin farklı türden (örneğin, kısmi türevli) 

diferansiyel denklemlere uygulanabilirliği araştırılabilir. Genelleştirilmiş fonksiyonlar 

teorisi çerçevesinde, diğer dönüşüm yöntemleri (örneğin Fourier ve Mellin) ile benzer 

yaklaşımlar geliştirilebilir. Tezde sunulan yöntem klasik çözüm yollarına yeni bir 

perspektif getirmekte ve hem teorik hem de uygulamalı matematik açısından değerli bir 

yaklaşım sunmaktadır. Bu yöntem, diferansiyel denklemler kuramında alternatif ve 

yenilikçi çözümler üretmek isteyen araştırmacılar için yeni kapılar aralayabilir.  
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