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OZET

Laplace dontisimii  [0,00)’da  integrallenebilir  fonksiyonlara L{f} =
fooo f(x)e™*dx bigiminde uygulanir. Bu doniisiim diferansiyel denklemleri cebirsel

denklemlere indirger ve diferansiyel denklemlerin 6nemli bir siifinda ¢dziime ulasmak
icin kullanishdir. Bunun disinda Bilateral (iki-tarafli) Laplace doniisiimii (—oo, +00)
araliginda tanimli fonksiyonlara uygulanir ve bu doniistim de diferansiyel denklemlerin
¢oziimiinde kullanilir. Klasik yontemde, bu tiir doniistimler kullanilarak diferansiyel
denklemlerin ¢oztimii bulunurken diferansiyel denklemin Laplace (ya da Bilateral
Laplace) doniisiimii alinarak ¢oziime ulasilir. Biz tezde farkli bir bakis agis1 kullanacagiz.
Diferansiyel denklemin kendisinin Laplace (Bilateral Laplace) uzayinda oldugunu
varsayacagiz. Bunun i¢in aradigimiz y ¢oziimiiniin y(s) = L{f (x)}(s) bigimde (ya da
y(s) = B{f (x)}(s) bi¢iminde), bilinmeyen bir fonksiyonun Laplace (Bilateral Laplace)
doniistimii oldugunu varsayacagiz ve ¢oziimleri buna gore arayacagiz. Bu ¢oziimleri
arastirirken diferansiyel denklemin kosullar1 ve 6zelliklerine gére Laplace doniisiimiinii

veya Bilateral Laplace doniistimiinii kullanacagiz.

Anahtar kelimeler: Laplace doniisiimii, Dirac delta fonksiyonu, Genellestirilmis

fonksiyonlar, Bilateral Laplace doniisiimii
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ABSTRACT

The Laplace transform is applied to integrable functions in[0,c0) by L{f} =
fooo f(x)e™*dx. This transformation reduces differential equations to algebraic equations

and is useful for solving an important class of differential equations. Furthermore, the
Bilateral Laplace transform is applied to integrable functions defined on the interval
(—o0, +00) and is also used to solve differential equations. In the classical method, when
solving differential equations using such transformations, the solution is obtained by
taking the Laplace (or Bilateral Laplace) transform of the differential equation. We use a
different perspective. We assume that the differential equation itself is in Laplace
(Bilateral Laplace) space. So, we assume that the solution y is the Laplace transform of
an unknown function in the form y(s) = L{f (x)}(s) (or y(s) = B{f(x)}(s)) and search
for solutions accordingly. We use the Laplace transform or Bilateral Laplace transform

depending on the conditions and properties of the differential equation.

Keywords: Laplace transform, Dirac delta function, Generalized functions, Bilateral

Laplace transform
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1.GIRiS

Diferansiyel denklem; bir ya da birden fazla fonksiyonun, tiirevlerini
iliskilendiren denklemdir. Kimya, fizik, biyoloji, miihendislik, ekonomi gibi
alanlarindaki matematiksel modellemeler yapmak icin genellikle diferansiyel

denklemlerden yararlanilir.

Diferansiyel denklemler konusunda yapilan ilk calismalar, 17. ylizyilin ikinci
yarisinda Isaac Newton ve Gottfried Leibniz’in diferansiyel hesap konusundaki
hesaplamalar: ile diferansiyel denklemler kavrami baslar. Isaac Newton’un Methodus
fluxionum et Serierum Infinitarum adli kitabinda ti¢ diferansiyel denklem tanimlamaistir.

Bunlar:

dy
a—f(x)

d

Y _
a_f(xry)

dy dy

X1+ Xy
Lox, % 0x, y

dir. Burada y, x’in bilinmeyen bir fonksiyonu ve f bilinen bir fonksiyondur. Isaac
Newton Sonsuz Seriler yontemini kullanarak bu ornekler ve benzerlerini ¢ozer ayrica

¢ozlimlerin bir tane olup olmadigin1 da sorgular. [1].

Diferansiyel denklemlerin ¢6ziilebilmesi i¢in kullanilan bir diger yontem de
Laplace doniisiimii yontemidir. Pierre Simon Laplace’dan adini alan doniisiim, tek
degiskenli bir fonksiyonu doniistiiren bir integral operatoriidiir. Laplace 1814 yilinda
fonksiyonlarin kullanimi alaninda kapsamli kitaplar yazdi ve Laplace doniisiimiiniin

integral formu bunun sonucunda gelismis ve en son

L{f} = f (e S*dx
0



bi¢iminde verilmistir [2].

Matematikte, Iki tarafli Laplace doniisiimii veya Bilateral Laplace doniisiimii
olarak da bilinen doniisiim ise, olasiligin moment {iireten fonksiyonuna esdeger bir
integral doniisimiidiir. Bilateral Laplace doniistimii; Fourier doniisimii, Mellin
doniistimii, Z doniisiimii ve Tek tarafli Laplace doniisiimii ile yakindan iliskilidir ve
diferansiyel denklemlerin ¢6ziimii i¢in daha genis ¢oziim yelpazesi sunar. Ayrica
Bilateral Laplace doniisiimii ve Laplace doniisiimii, matematiksel analiz ve miihendislik
uygulamalarinda siklikla kullanilan bir yontemdir. Her iki doniisiimde diferansiyel

denklemlerin ¢6ziimiinde 6nemli bir rol oynamaktadir.

f, tim reel sayilar igin tanimlanmis bir fonksiyonsa, Bilateral Laplace doniisiimii

su sekilde tanimlanmigtir: [3]

oo}

B{F}(s) = F(s) = f et f (6)dt.

— 00

Bilateral Laplace doniisiimii; y = ¢ (c # 0 sabit), y = x* (a e R), y = a*(a >
0), y=1log,x(a>0,a+#1), y=sinx, y=cosx, gibi elementer fonksiyonlara
uygulanamaz. Bunun sebebi (—oo,0) araliginda bu fonksiyonlarin Bilateral Laplace
doniistimiine karsilik gelen integrallerin iraksak olmasidir. Bilateral Laplace doniisiimii,
daha ¢ok pargali fonksiyonlara ya da Dirac Delta fonksiyonu gibi genellesmis
fonksiyonlara uygulanir.

Diferansiyel denklemleri Laplace doniistimii ile ¢6zerken, bu denklemlerin her iki
tarafina da Laplace dontisiimii uygulanir. Elde edilen denklemi ¢oziimleyerek L{y}
fonksiyonunu ayristiririz. Bu fonksiyonun Ters Laplace doniisiimii alinarak da denklemin
¢ozliimiine ulasilmig olunur. Biz Laplace (Bilateral Laplace) doniisiimiinii kullanarak
farkli bir bakis agisiyla ilerleyecegiz. Diferansiyel denklemin kendisinin Laplace
(Bilateral Laplace) uzayinda oldugunu varsayarak y ¢6ziimiinii arayacagiz. Denklemde y

gordigimiiz yere L{f(x)}(s) (ya da B{f(x)}(s)) yazacagiz. Dolayisiyla y', y" gibi
dL{f ()}(s)  d*L{f (x)}(s) dB{f()}(s) d*B{f(0)}(s)
ds ds !

! ds? ds?

ifadeler de

(ya da ) bigimine doniisecek.

Karsimiza ¢ikan yeni denklemi ¢oziimleyip (Bu yeni denklem cebirsel ya da diferansiyel



olabilir) bilinmeyen f fonksiyonunu bulacagiz. Bulunan f fonksiyonunun Laplace
dontisiimii (ya da Bilateral Laplace doniislimii) alininca denklemin ¢oziimiinii elde etmis

olacagiz.

Tezdeki yontemin diferansiyel denklemlere uygulamasindan kisaca bahsedelim.
Belirtelim ki, yontem ilerleyen bolimlerde daha detayli verilecektir. ay” + by’ + cy =
q(x) gibi bir diferansiyel denklemi ele alalim. Varsayalim ki y = B{f}(s) olacak sekilde
denklemin bir ¢dziimii vardir. Burada, f, tiim reel eksende tanimli bir fonksiyondur. O

halde denklem

d? d
.25 BUIS) + b. - Bf}(s) + c. B{f}(s) = q(s)
seklinde olur. Buradan Bilateral Laplace doniisiimiin 6zelliklerinden yararlanilarak

a.B{x*f(x)} — b. B{xf ()} + c. B{f (x)} = q(s)
= Blax?f(x) — bxf (x) + cf(x)} = q(s)

elde edilir. Bu denklemin Ters Bilateral Laplace doniistimii alinirsa,

ax?f(x) = bxf (x) + cf (x) = B~H{q(s)}(x)
= f(x)(ax? = bx + ¢) = B~ {q(s)}(x)

B7{q(s)}(x)

ax?—bx+c

= flx) =

esitligi saglanmis olur. Buradan, Bilateral Laplace doniisiimii alinirsa denklemin ¢oziimii

elde edilmis olur.



2. MATERYAL VE YONTEM
2.1. Diferansiyel Denklemler

Fen bilimleri ve miihendislikte, bircok olaymn agiklanmasina yardimci olmak
lizere, matematiksel formiiller veya matematiksel modeller gelistirilmistir. Bu modeller,
genellikle bir bilinmeyen fonksiyon ve bu fonksiyonun bazi tiirevlerini igeren bir denklem

olarak ortaya ¢ikar. Bu denklemlere diferansiyel denklemler denir. [5]

Tamm 2.1 [5]. Bir diferansiyel denklemde bilinmeyen fonksiyon yalniz bir degiskene
bagl ise, diferansiyel denkleme adi diferansiyel denklem; iki veya daha fazla bagimsiz

degiskene bagli ise diferansiyel denkleme kismi diferansiyel denklem denir. Ornegin,

y' +xy =x?
(x2y —y®)dx + x?dy = 0

d’y d*y
@+W51nx+yx3 = COS X

d2y\°  dy dy
(ﬁ) +4a+5ya+6}/=0

denklemleri birer adi diferansiyel denklem ve

d d
—y+—y+sinx = cosx.x3
at  Ox

dy?

dxdt

+ sinx = cosx

diferansiyel denklemleri ise birer kismi diferansiyel denklemlerdir.

Tamim 2.2 [5]. Eger bir diferansiyel denklem bilinmeyen fonksiyon ve bilinmeyen
fonksiyonun var olan tiirevlerine gore lineer ise, diferansiyel denkleme lineerdir denir.

Ornegin,



y" + (sinx)y =0

x?y" —xy' =0
denklemleri lineerdir. n. mertebeden en genel lineer diferansiyel denklem
bo()y™ + by )y "V + -+ b1 ()Y + bp(0)y = Q(x)

bi¢iminde yazilabilir. Burada by, by, ... , b, Ve @, x’in verilmis fonksiyonlaridir. Bir
lineer diferansiyel denklem birinci derecedendir, fakat bunun tersi dogru degildir.

Ornegin,

y" =2+ xy?

y'"y —x*y' 4+ cosx.y =0

denklemleri birinci derecedendir ancak lineer degildir.

Tamim 2.3 [5]. n. mertebeden

F(x, Y,y .. ,y(”)) =0

diferansiyel denklemi ve reel eksenin bir I araliginda (I agik, kapali veya yari-agik

olabilir) tanimli ve bu aralikta n. mertebeye kadar tiiretilebilir bir ¢(x) fonksiyonu
verilmis olsun. Eger F(x, v,y ...,y(")) = 0 denkleminde y yerine ¢(x) yazildiginda

denklem 6zdes olarak saglaniyorsa, yani her x € [ i¢in

F (%, 0(0),0'(x), ., 0™ () = 0



oluyorsa, ¢(x) fonksiyonuna I araligmnda F(x,y,y’,..,y™) =0 denkleminin bir

¢Oziimii denir.

2.2 Laplace Doniisiimii
Tanmmm 2.4. [5]. [0, ) araliginda tanimli bir fonksiyon olsun. Eger foooe_sx f(x)dx

integrali mevcut (veya yakinsak) ise, s’nin bir fonksiyonu olan

o)

F(s)zfe‘sxf(x)dx

0

integraline f’nin Laplace donlisimii denir. f fonksiyonunun Laplace doniisimii
L{f (x)}(s) = F(s) veya basitge L{f} = F bi¢iminde gosterilir.

2.2.1. Laplace Déniisiimiiniin Temel Ozellikleri

Teorem 2.1. (Lineerlik Ozelligi)[10] f(x), g(x) fonksiyonlar1 ve a, b keyfi sabitleri

olmak lizere

L{af (x) + bg(x)}(s) = aL{f (x)}(s) + bL{g(x)}(s)

esitligi saglanir.

Teorem 2.2. [10] L{f} = F(s) = [, e™*f(x) dx iken
(i) Lfa0}=2F(3),
) L{ F)du}="2

ifadeleri dogrudur.

Teorem 2.3. [6]. (Tiirevin Laplace déniisiimii): f,f’,..,f® D [0,0) araliginda

siirekli ve £, [0, ) araliginda parcali siirekli olsun. Bu takdirde L{f ™} mevcuttur ve



L{FP @} = L0} = s"(0) = -+ = sfD(0) - f D (0)

dir.

Teorem 2.4. [6] (Laplace doniisiimiin tiirevi): f, [0, ) araliginda pargali siirekli ise
F(s) = L{f (x)}(s) olmak iizere

d™F(s)

LD F)s) = —

esitligi saglanir.

2.2.2. Ters Laplace Doniisiimii

Tanim 2.6.[6] Bir F(s) fonksiyonu verilmis olsun. Eger L{f (x)} = F(s) olacak bigimde
bir £ (x) fonksiyonu var ise, f ye F’nin ters Laplace dontisiimii denir. F’nin Ters Laplace
doniisiimii f = L™1{F} veya f(x) = L Y{F(s)} seklinde gosterilir.

Ters Laplace doniigiimii hesaplamalart i¢in Laplace doniisiim tablosu cok
yararlidir. Baz1 fonksiyonlarin ters Laplace doniisiimleri dogrudan tablo yardimiyla elde

edilebilir. Ornegin;

f(x)=1iseL{1} = éoldugundan L1 E} =1,

. 1 o — 1
f(x) =xise L{x} =  oldugundan L 1 {S—z} =

f(x) = sin3x ise L{sin 3x} = % oldugundan L1 {

2432 52432

} = sin 3x

tir.

Asagida Laplace doniisiimii i¢in bir tablo bulunmaktadir:



f(0)=2* {F(s)

Laplace Ddéniigiim Tablosu

F(s)=2{f (1)}

f(1)=2"{F(s)}

F(s)=2{/ ()}

11.

13.

15.

17.

19.

21

23

25,

27.
29.

3l

33.

35.
37.

t", n=123,...

Jr
sin(at)

tsin(at)
sin(ar)-atcos(ar)
cos(at )—atsin(ar)

sin(at +b)
sinh(ar)
¢ sin (br)
¢ sinh (bt )

ar

e, n=1,273,...

u, (i‘)=u(f —c'}

Heaviside Funciion

u (t)f(t-c)
e’ f(1)

1
;f(‘]

[, f(t-7)g(z)dz

f'(t)
()

[s: +al)2
s(s*—a?)

(s +a*)

ssin(b)+acos(b)

2 2
s +a
o

£ -a
b
I:s—e:[:I1 +h*
b
(s —a}z .3
n!

(S _d]n—l

e-ﬂ

e"’;‘(s)
F(s-¢)

[ F(u)du

F(s)G(s)

sF(s)-/(0)

24,

26.

28.
30.

3

[

34,

36.

at
[

7 p=-l
O on=1,23...
cos{at)

tcos(at)

sin(at)+af cos(at )
cos(at )+atsin(ar )
cos(at +b)

cosh (ar)

e cos(bt)

e cosh(br)

fet)

&(t-c)

Dhirac Delta Function

u(t)glr)
L f ()

f(t+T)=1(1)
f(1)

f(r), n=1L23,_ ..

s=a

r{p+]:|

1-3-5---?2:;—1)‘.'?

25"t

|:s= +a=}:
2as®
[sl +a }:
Sl:.i! +3a:}
(s* +a:}:
scos(b)-asin(b)

2 1
s +a
&

2 2

s —a

S—a
{.\'—a]2+bz

S=a

e"“ﬂ{g{nc}}
(1) F(s)
F(s)

L:‘e‘"f(l)dl

1-e™

s’F(s)-s(0)-f'(0)

S"F(s)_-‘"_'f(o)—s"‘zf'(o)---—sf""z'(o)_f("-lb(o)



2.3. Bilateral Laplace Doniisiimii

Tamim 2.5 [3]. Tiim reel eksende tanimlanmis bir f fonksiyonu igin Bilateral (Dual, iki

tarafl1, two-sided) Laplace doniisiimii,

o)

B{f}(s) = F(s) = f &5 f (x)dx

—00

esitligi ile tanimlanir.

2.3.1. Bilateral Laplace Déniisiimiin Ozellikleri

1)

2)

3)

Zaman Olceklendirme Ozelligi [4]. Reel eksende tanimli bir £ fonksiyonu ve

a > 0 olmak tizere

Bif@))s) = —F (2)

lal ‘a
seklinde olur.

Tersine Cevirme Ozelligi [4]. Reel eksende tanimli bir £ fonksiyonu olmak

uzere,

B{f (=x)}(s) = F(=s)

seklindedir.
Fonksiyonun Genel Tiirevinin Bilateral Laplace Déniisiim Ozelligi [4]. Reel

eksende tanimli bir f fonksiyonu olmak tizere F(s) = B{f}(s) ise,

B{f ™ ()}(s) = s"F(s)

seklinde olur.



4) Kaydirma Ozelligi [4]. Reel eksende tanimli bir f fonksiyonu olmak iizere

F(s) = B{f}(s) ise,
B{e®f()}(s) =F(s —a)

seklinde olur.

5) Modiilasyon Ozelligi [4]. Reel eksende tamimli bir f fonksiyonu, F(s) =
B{f}(s) ve a € R olmak iizere,

B{cos(ax)f(x)}(s) = %F(s —ia) + %F(s + ia)

seklindedir.

6) Bilateral Laplace Doniisiimiin Tiirevi [4]. F(s) = B{f}(s) olsun ve f(x),

(—o00, ) araliginda parcali siirekli bir fonksiyon olmak iizere,

d"F(s)

B fNS) = —

esitligi saglanir.
2.3.2. Ters Bilateral Laplace Doniisiimii

Eger
FES) = BN = | e dx
integrali kompleks diizlemin bir bdlgesinde diizgiin yakimsak ise f(x) = B~{F(s)}(x)

ters Bilateral Laplace doniisiimii mevcuttur [8].
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Biz 6rneklerimizde ve islemlerinde ters Bilateral Laplace doniisiimiinii siklikla

kullanacagiz.
2.4. Dirac Delta Fonksiyonu

Dirac delta fonksiyonu, genellestirilmis fonksiyon veya dagilimdir. Ingiliz
fizik¢i Paul Dirac tarafindan 1927 tarihli Kuantum Dinamiginin Fiziksel Yorumu adli
kitabinda tanmitilmig ve Kuantum Mekaniginin Prensipleri adli ders kitabinda
kullanilmigtir. Delta fonksiyonu & (x); x = 0 hari¢ her yerde degeri sifir olan, fakat x =
0'da sonsuz biiyiikliige sahip olan ve tiim reel eksen iizerindeki integrali 1'e esit olan

fonksiyondur.

Dirac deltasinin grafiginin genellikle x ekseninin tamamin1 ve pozitif y eksenini
takip ettigi diistiniiliir. Dirac deltas1, impuls ve nokta yiikii, nokta kiitlesi veya elektron
noktasi gibi diger benzer soyutlamalart modellemek i¢in kullanilir. Ornegin, vurulan bir
bilardo topunun dinamiklerini hesaplamak i¢in, carpma kuvvetinin Dirac deltas1 ile

yaklasik degeri hesaplanabilir.[9]

Dirac, bu fonksiyonu

0,x#0
oo, x =0

5(x) = {
ve
Jm6(x)dx = Jgd(x)dx =1

ozelliklerini saglayan &(x) ile sembolize etmis ve ¢(x) herhangi siradan bir fonksiyon

olmak iizere § (x) fonksiyonu

j 5()$(x) dx = $(0)

11



seklinde tanimlamistir. Higbir regiiler fonksiyon delta fonksiyonuna esdeger degildir.
Yani, delta fonksiyonu klasik anlamda bir fonksiyon degildir. Bundan dolayr &(x),

genellesmis fonksiyonu veya dagilimi olarak adlandirtlir. [7]
2.4.1 Dirac Delta Fonksiyonun Ozellikleri

f(x), x = a noktasini iceren herhangi bir aralikta siirekli bir fonksiyon olmak

tizere delta fonksiyonu §(x),

[ 1986 - yax = £ (2.1)

temel 6zelligi ile tanimlanir. Bu esitlikten,

f f(x)8(x —a)dx = f(a) j §(x —a)dx = f(a) 22)

oldugu asikardir.
Boylece (2.1) ve (2.2) denklemlerinden
fX)é(x —a) = f(@)é(x — a)
esitligi elde edilir. Bu esitlikten yola ¢ikarak
x6(x) =0

elde edilir. Ayrica degisken degisimi ile

12



6(x—a)=6(a—x)
sonucuna ve x8(x) = 0’ 1n tiirevini aldigimiz zaman

6(x)+x8'(x) =0

§(x) = —x6"(x) (2.3)

esitligine ulasabiliriz. §(x — a) = §(a — x) sonucu &(x) fonksiyonunun gift oldugunu
gosterir.

T bir genellestirilmis fonksiyon ise T nin genellestirilmis tiirevi

o (o8]

fT’(x)f(x)dxz— fT(x)f’(x)dx

— 00 — 00

esitligi ile verilir.

Simdi Dirac delta fonksiyonunun genellesmis tiirevlerini ele alalim:

f 500 f (X)dx = — f 5Cf (0)dx = —f(0),

j 5" (x)f (X)dx = — j 5'COf (x)dx = j 5()f"(x)dx = £7(0),

Bu sekilde devam edilirse
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j'aoﬂ(x>f(x>dx-= (~1)"F™(0)

veya daha genel olarak

oo

fMMQ—av@Mx=04wﬂmm)

— 00

elde edilir. [7]
2.4.2. Dirac Delta Fonksiyonun Laplace Doniisiimii

Dirac delta fonksiyonunun Laplace doniisiimii, delta fonksiyonunun tanimi

kullanilarak elde edilebilir. Laplace doniistimii [0, o0) aralifinda tanimli oldugu i¢in

o

f e *6(x — c)dx

0

integralini
—SX
j e *§(x — c)dx = j @(x)6(x — c)dx, p(x) = {(e) ’ i i 8,
0 — 00

olarak alabiliriz. Dolayisiyla

(o8] (°9)

L{E(x —c)} = f e 8(x —c)dx = J 0(X)8(x — ¢)dx = {8’_56’ g z 8’

0 —00

14



olur [8]. Ozel olarak, ¢ = 0 igin,
L) =1

dir. ¢ < 0 igin,

(0]

L{6(x — )} = f e *8(x —c)dx = 0.

0

olmasi bizim yontemimiz acisindan kullanigsiz oldugundan ¢ogu durumda, diferansiyel
denklemlerin ¢0zlimiine yoOntemimizi uygularken Bilateral Laplace doniisiimiinii

uygulayacagiz.

Dirac delta fonksiyonunun Laplace doniisiimiine ait bilgileri tartistigimiz bu
kisimda §(x — ¢)f (x) fonksiyonunun da Laplace doniisiimiiniin ne oldugunu verelim.

Burada f integrallenebilir bir fonksiyondur.

LEEx—)f (0} = f 6(x —c)e™f(x)dx = f §(x = )e(0)f (x)dx
0 —00

_ {e‘scf(c), c=>0,
0, c<O0

2.4.3. Dirac Delta Fonksiyonun Bilateral Laplace Doniisiimii

Dirac delta fonksiyonunun Bilateral Laplace doniisiimii, delta fonksiyonunun

tanimi1 kullanilarak elde edilebilir. [6]

oo

B{§(x —c)} = f §(x —c)e S*dx = e~

— 00
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Buna gore, Bilateral Laplace doniigiimiiniin tanimli oldugu aralik geregi klasik

Laplace doniisiimiine gore daha kullanigh oldugunu sdyleyebiliriz.
2.5. Heaviside Birim Fonksiyonu

Tanmm 2.7. a = 0 olmak iizere,

0, 0x<a
H(x—a)={1 xX>a

biciminde tanimlanan fonksiyona Heaviside birim fonksiyonu denir. Bu fonksiyon x = a
da sicrama seklinde bir siireksizlige sahiptir. Ayn1 zamanda H ile tanimli dagilima

Heaviside dagilimi denir ve

o)

fH(x)f(x)dxsz(x)dx
0

— 00

bi¢imindedir.[11] Simdi bu esitliklerle Heaviside dagiliminin genellesmis tiirevini alalim:

j H' () f (1) dx = — j HGOf (O dx = — f G dx = —[FW]2 = £(0) = (5, f)
—o0 —00 0
= J S(x)f (x)dx.

Son esitlikten Heaviside fonksiyonun genellestirilmis tiirevinin Dirac delta fonksiyonu
oldugu gorilur: H' = 6.[12]

Simdi, bir diferansiyel denklemin ¢oziimiinde klasik anlamda Laplace
doniistimiiniin nasil kullanildigin1 ve Dirac delta, Heaviside gibi fonksiyonlarin nasil

islevi oldugunu somutlastiracak bir 6rnek ¢ozelim:
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Ornek 2.1. y”" —3y' +2y=26(t—-3), y(0)=1,9(0)=3 baslangic deger

probleminin ¢6ztiimiinii bulunuz.

Coziim. L{y(x)} =Y(s) olsun. Denklemin her iki tarafina Laplace doniisimii

uygularsak,

L{y" —3y"' + 2y} = L{26(t — 3)}

L{y"} = 3L{y'} + 2L{y} = 2L{6(t — 3)}

L{y"}=s%Y(s) —s—3, L{y'}=sY(s)—1 ve L{5(t—3)}=e"3 oldugundan

denklemde kullanirsak,
s2Y(s) —s — 3 —3sY(s) + 3 + 2Y(s) = 2¢73¢
s?Y(s) —s —3sY(s) + 2Y(s) = 2e73¢
Y(s)(s?2—3s+2)=2e3+s

2e73s s
G-DG-1) G-DG-1)

Y(s) =

elde ederiz. Bu durumda

y(x) = LY (s)}

) 2e738 s
L{@—a@—n+@—m@—n}
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_ 2e7% _ s
‘ 1{(5 —2)(s - 1)} th 1{(5 —2)(s — 1)}

Buradan basit kesirlere ayirma yontemini kullanirsak

G —2263_(25— 5=¢" {(s _ 2)2(5 _ 1)} =e” {(s il ARG - 1)}

2735 = e 35{A(s — 1) + B(s — 2)}

- {(s —226;_(25— 1)} =L [6_35 {(s E D G E 1)}]

s _C D (C(s—-1 D(s—2)
G-2G-1D (-2 G-D G-26-D G-26-D

O ey L - 2) G - 5=e - G . D)

elde ederiz. Denklemde yerine yazdigimiz zaman

gt e {(s . 2) G : 1)}] L {(s - 2)} - {(s . 1>}
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Lre {(s - 2 G - )|+ 267 - e

olur ve (2.3) esitliginden, a > 0 olmak iizere
LHe™®Y(s)} =f(x—a)H(x — a)
elde edilir. Buradan

¥ & 2
(S)_(S—Z)_(s—l)

f(x) = 2e?* — 2¢e*

fx —3) = 22073 — 2(*=3)

sonuglarini denklemde yerine yazdigimizda

L [6_35 {(s : 2) (s - 1)}] = H(x = 3){2*79 — 2%77)

y(x) = H(x — 3){2e2%73) — 2e%73} 4 22% — ¢*

elde edilir.

Bu ornekte goriiliiyor ki, klasik anlamda Laplace doniisiimiinii diferansiyel
denklemlerin ¢6ziimiinde kullanimi epey uzun islemler gerektirmektedir. Asagidaki

boliimde bizim yontemimizle daha az islemle denklemlerin ¢6ziilebildigini gorecegiz.
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3. BULGULAR VE TARTISMA

Bu kisimda c¢esitli diferansiyel denklemleri Laplace ya da Bilateral Laplace
uzayinda verilmis gibi ele alip denklemleri bu yontemle ¢6zecegiz ve bu yontemde Dirac

delta fonksiyonu énemli bir role sahip olacak.

n

y ' —y=0

diferansiyel denklemini ele alalim. Bu denklemi ¢6zmek i¢in klasik Laplace doniistimiinii

uyguladigimizda

L{y" —y} = L{0}

L{y"}-L{y}=0

s?L{y} = sy(0) —=y'(0) — L{y} =0

elde ederiz. Buradan denklemi diizenleyerek

sy(0)+y'(0) A N B
s2—1 T s—1 s+1

L{y} =
y = Ae* + Be™
¢Oziimiine ulasiriz, burada

_y(0) +y'(0) B = y(0) —y'(0)

A )
2 2
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dir. Biz farkli bir bakis agis1 kullanarak diferansiyel denklemin kendisinin ve aradigimiz
y ¢Oziimiiniin de Laplace (Bilateral Laplace) uzayinda oldugunu varsayacagiz. Bu
¢cozlimleri arastirirken diferansiyel denklemin kosullar1 ve ozelliklerine gore Laplace
dontisiimiinti veya Bilateral Laplace doniisiimiinii kullanacagiz. Simdi y = B{f (x)}(s)

olacak sekilde diferansiyel denklemde ¢6ziimii arayalim. O halde y” — y = 0 denklemi

d*B{f ()}(s)

o~ B 0)(s) = 0

denklemine doniisiir. 2.3.1.6’da verdigimiz Bilateral Laplace doniisiimiiniin tlirevi

ozelliginden

B{(-=1)?x*f(x)}(s) = B{f (x)}(s) = 0

yazilir. Bilateral Laplace doniistimiiniin lineerliginden

B{x*f(x) — f(x)}(s) = 0 = B{0}

elde edilir. Bilateral Laplace doniisiimiiniin tersinirlik 6zelliginden [7]

(*=Df(x) =0

ya da

f&x) =

x2—1
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0
x2-1

bulunur. Biz burada ve tezin tamaminda gibi ifadeleri O olarak almayacagiz. Zaten

0
x2-1

bu ifadeleri 0 alirsak yontem galismamaktadir. ya da buna benzer ifadeleri Dirac

delta fonksiyonu ile iligkilendirecegiz. Dirac Delta fonksiyonunun x&(x) = 0 6zelligini
Boliim 2.4’den biliyoruz. Bunu a bir sabit olmak tlizere (x — a)d(x — a) = 0 olarak

yazabiliriz. Bu esitligi

0
=6(x—a)
xX—a

olarak ele alalim. Esitligin her tarafin1 bir ¢ sabiti ile ¢arpmak, esitligi bozmaz:

c.0
=co(x—a)
a

x—

x_azcé‘(x—a) 3.1)

Bu esitliklerden yola ¢ikarak f’i basit kesirlere ayirma yontemi ile yazdigimizda

0 0 0
f(x)—xz_1—x_1+x+1—616(x—1)+c26(x+1)

elde ederiz. Simdi burada y = B{f (x)} bagmtisi ile ¢6ziimii bulalim.

y(s) = B{f ()}(s) = c1B{6(x — D} + c,B{6(x + 1)}

olur. Burada Dirac Delta fonksiyonun Bilateral Laplace doniisiimiinden
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y=ce’+ce’

elde edilir.

Teorem.3.1. Her a € R ve her n € N igin

0
G—a)" cd(x —a) + 18" (x —a) + + + ¢ 1 8™ V(x — a)
esitligi dogrudur. Bu formiil (3.1)’in bir genellestirilmesidir.

Ispat. (3.1)’den ﬁ = ;6 (x — a) oldugunu biliyoruz. Bu esitlikte her iki tarafin tiirevi

alindiginda

0. — -0
(gjc_—czl))Z=616’(x—a)
0 0 _
G-a) G-aF @9
0 _ 0 5
G- - @Y
0

Goar =cd(x—a)+c8'(x—a)

elde etmis oluruz (Burada sabitler yeniden isaretlenmistir).

Timevarim varsayimi olarak n igin =cyb(x —a)+c,6'(x—a)+

(x—a)™
8" (x —a) + -+ 28D (x — a) + ¢,;_1 6™V (x — a) oldugunu kabul edip, n +

1 i¢in ispat1 yapalim. Varsaydigimiz esitlikte 2 taraftan tlirev alalim.
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0.(x—a)*—0.n(x —a)"?
(x—a)

=cd'(x—a)+c,;8"(x—a)+ -+, 1™ (x — a)

0 0.n

x-—a)" (x—a)r+t Co8'(x —a) + 18" (x — @) + =+ + Cpoy 6™ (x — @)

0.n 0

G — )t = - =) —c8'(x—a) —c;8"(x—a) — - —cp_1 6™ (x — a)
L —cod(x—a) — 18" (x —a) — -+ — ;1 8@V (x — @) — ¢p8'(x — a)
(x_a)n+1 - 0 1 n—-1 0

— 18" (x—a) = —cp_16™(x — a)

elde edilir. Sabitleri diizenledigimiz zaman
=dys(x—a)+d8'(x—a) +dy8"(x —a) + -+ d,,6™W(x — a)

olur ve ispat biter.
Sonu¢.3.1. Teorem.3.1’de a sabiti sifir oldugu zaman asagidaki esitlikler elde edilir.
O !
Z= co0(x) + ¢,6'(x)
0
— =6 (x) + 16" (x) + 6" (x)

x3

0
—7 = C08(0) +€16"(x) + €26 (x) + 36" (%)

0
— = p8(x) + 18" (x) + 28" (X) + - + 28D (%) ey 1 6V (x)

x"
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Ornek 3.1.y" + xy = 1 diferansiyel denklemini ¢zelim.

Coziim: Denklemi Bilateral Laplace doniisiimii ile ¢ozmeye ¢alisalim. y = B{f (x)}(s)

olsun. O halde denklem,

d?B{f (x)}(s)
ds?

+sB{f(0)}(s) =1
B{x*f(x)}(s) + B{f'(x)}(s) = 1
olur. Bilateral Laplace doniisiimiiniin tersinirlik 6zelliginden

x*f(x) + f'(x) = 8(x)

x3
olur. Denklemi ¢6zebilmek igin integrasyon carpan yontemini kullanarak es ile

denklemin her iki tarafini carpalim.

eg_Bf’(x) + xzex3_3f(x) = 6363_36(9()

Bu esitligi diizenledigimizde

d <ex3_3f(x)> ,

X
I =e36(x)

X

fd(egf(t)> = fe§6(t)dt

—00
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eTf(x) = H(x)

fx) = e THX)

olur. Simdi, y = B{f (x)}(s) bagintis1 ile denklemin ¢oziimiinii bulalim.

y(6) = BFEIO) = [ HE sy = [ s gy
—o0 0

¢Oziimiinii elde etmis oluruz.
Ornek 3.2. y' = 1 diferansiyel denklemini ¢ozelim.

Coziim: Klasik yontemlerle ¢oziildiigli zaman diferansiyel denklemin ¢oziimii y = x +
¢ seklindedir. Simdi kendi yontemimizle diferansiyel denklemi tekrar ¢ozelim. y =

B{f (x)}(s) olsun.

dB{f()}(s) _
— == B6()}

B{—=xf(x)}(s) = B{6(x)}

—xf () = 5(2)
1)
Fo) = -2

(2.3) den
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FQ) = — —x6'(x)+0

f(x)=6"(x) +g= 6 (x) + cd(x)

Simdi, y = B{f (x)}(s) bagintisi ile denklemin ¢6ziimiinii bulalim.
y(s) = B{f (x)}(s) = B{§'(x) + c6(x)}(s)
y=s+c

olur. Bu, mevcut ¢6ziim ile tutarlidir.
Ornek 3.3 y"' + y = x? diferansiyel denklemin ¢oziimiinii bulalim.

Coziim: Klasik yontemlerle ¢o6ziildiigii zaman diferansiyel denklemin ¢6zimi y =
€, CoSXx + ¢, sinx + x%2 — 2 seklindedir. Simdi kendi yontemimizle diferansiyel

denklemi tekrar ¢zelim. y = B{f (x)}(s) olsun.
B{x*f(x) + f(x)}(s) = B{8" (x)}(s)

(x? + Df(x) =6"(x)

Sll(x)
f(x) = G D)
5@ +0
FO =Gy
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6" (x) 0
+D) =D +D

fGx) =

f(x)’1 basit kesirlere ayirma yontemi ile tekrar yazdigimizda

5" (x) 0 0
M CED T

flx) =

elde ederiz. ﬁ = ¢;6(x — a) esitliginden f’i tekrar yazdigimizda

6”(9()

f(x)=m

+a;6(x —i)+a,6(x +1i)

olur. Simdi, y = B{f (x)}(s) bagmtis1 ile denklemin ¢6ziimiinii bulalim.

6ll(x)

B{f(x)}(s) =B {m

+a,6(x—1i)+a,0(x+ i)} (s)

r e 5*6" (x)

+a,e”S +a,ets
(x2 + 1) 1 2

B{f (x)}(s) =

— 00

fo'e) —sx g
Burada Dirac Delta fonksiyonun genellestirilmis tiirev 6zelligini kullanarak f_oo z (x26+ 1()x)

integralin sonucunun s? — 2 oldugu asikardir.

y(s) = B{f (x)}(s) = s? — 2 + a,(coss — isins) + a,(cos s + isins)

=s2—2+(a; +ay)coss+i(—a; + ay)sins
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=s%2—2+c,coss+c,sins

olur. Bu, mevcut ¢6ziim ile tutarlidir.
Ornek 3.4 y"' — 3y’ + 2y = x diferansiyel denklemin ¢oziimiinii bulalim.

Coziim: Klasik yontemle ¢oziildiigiinde diferansiyel denklemin ¢oziimii y = c,e* +
c22* +-x — > seklindedir. Simdi kendi yontemimizle diferansiyel denklemi tekrar

¢ozelim. y = B{f(x)}(s) olsun.

d? d
S BUIFOY() = 3 BFOYS) + 2B ()}s) = 5

B{x*f(x) + 3xf (x) + 2f (x)}(s) = s
(x2+3x+2)f(x) =6'(x)

8 () +0

&= e+

f(x)’1 basit kesirlere ayirma yontemi ile tekrar yazdigimizda

6'(x) 0 N 0
x+D(x+2) x+1 x+2

f) =

olur. ﬁ = ¢16(x — a) esitliginden f’i tekrar yazdigimizda

§'(x)
x+D(x+2)

f(x) = +c,6(x+1)+c,6(x+2)
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elde ederiz. Simdi, y = B{f (x)}(s) bagmtisi ile denklemin ¢6ziimiinii bulalim.

6'(x)
x+1D(x+2)

y(s) = B{f(x)}(s) = B{ +c6(x+1)+c,6(x+ 2)}

o)

1
= f e =S¥ GIDGTD) §'(x)dx + cie?s + cye’

—00

Dirac Delta fonksiyonun genellestirilmis tiirev 6zelligini de kullanarak

= — J (—se‘sx ! —e - )6(x)dx + ce?5 + c,e’
x+1D(x+2) (x + 1)2(x + 2)?

=£+E+c e* + cye’
stzta 2

sonucunu elde etmis oluruz. Bu, mevcut ¢6ziim ile tutarlidir.
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4. SONUC VE ONERILER

Bu tez c¢alismasinda, diferansiyel denklemlerin ¢6ziimiinde klasik Laplace
doniisiimii yonteminin 6tesine gecilerek, diferansiyel denklemin dogrudan Laplace veya
Bilateral Laplace doniisiim uzayinda tanimli oldugu varsayimina dayanan alternatif bir
yaklagim sunulmustur. Bu yaklasimla, diferansiyel denklemin ¢oziimiiniin de doniisiim

uzayinda var oldugu kabul edilmis ve ¢ézlimler aranmustir.

Tez siiresince yapilan analizler ve 6rnek ¢oziimler, 6zellikle Bilateral Laplace
dontigiimiiniin Dirac Delta fonksiyonu ve onun genellestirilmis tiirevleriyle birlikte
kullanildiginda, klasik yontemlere gore bazi problemlerde daha kisa ve dogrudan
¢ozlimler elde edilmesini sagladigini gostermistir. Bu yontem sayesinde bazi diferansiyel
denklemlerin klasik ¢oziimlerinde karsilasilan karmasik cebirsel islemler en aza
indirgenmis, Dirac delta fonksiyonu gibi genellestirilmis fonksiyonlarin ¢éziimde etkin
bicimde kullanilabilecegi ortaya konulmustur. Ancak yontemin smirhiliklart da
gozlemlenmistir. Ozellikle Bilateral Laplace déniisiimiiniin bazi fonksiyonlar i¢in raksak

sonuglar tiretmesi, yontemin her denkleme uygulanamayacagini géstermektedir.

Gelecek calismalarda, bu yontemin farkli tiirden (6rnegin, kismi tiirevli)
diferansiyel denklemlere uygulanabilirligi arastirilabilir. Genellestirilmis fonksiyonlar
teorisi ¢ercevesinde, diger doniisiim yontemleri (6rnegin Fourier ve Mellin) ile benzer
yaklagimlar gelistirilebilir. Tezde sunulan yontem klasik ¢6ziim yollarina yeni bir
perspektif getirmekte ve hem teorik hem de uygulamali matematik agisindan degerli bir
yaklagim sunmaktadir. Bu yontem, diferansiyel denklemler kuraminda alternatif ve

yenilik¢i ¢oziimler liretmek isteyen arastirmacilar i¢in yeni kapilar aralayabilir.
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